Loading...
HomeMy WebLinkAboutFAI FNSB Ben Eielson Jr-Sr High School 2012-EEManaging Office 2400 College Road 3105 Lakeshore Dr. Suite 106A 4402 Thane Road Fairbanks, Alaska 99709 Anchorage, Alaska 99517 Juneau, Alaska 99801 p. 907.452.5688 p. 907.222.2445 p: 907.586.6813 f. 907.452.5694 f. 907.222.0915 f: 907.586.6819 www.nortechengr.com ENERGY AUDIT – FINAL REPORT Ben Eielson Jr/Sr High School 675 Ravens Way Eielson AFB, Alaska Prepared for: Mr. Larry Morris Fairbanks North Star Borough School District July 31, 2012 Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE-EE0000095.” ENVIRONMENTAL ENGINEERING, HEALTH & SAFETY Anchorage: 3105 Lakeshore Dr, Ste 106A, 99503 907.222.2445 Fax: 222.0915 Juneau: 4402 Thane Rd, 99801 907.586.6813 Fax: 586.6819 Fairbanks: 2400 College Rd, 99709 907.452.5688 Fax: 452.5694 info@nortechengr.com www.nortechengr.com F:\00-Jobs\2011\2602 F - AHFC Grade Audits\50-100 Doyon Fairbanks Region\50-127 FNSB SD Ben Eielson Jr Sr\Reports\Final\Ben Eielson-Cover-Letter-V4.Docx As a Technical Service Provider (TSP) to the Alaska Housing Finance Corporation (AHFC) under Task Order 4, NORTECH has completed an Investment Grade Audit (IGA) of Ben Eielson Jr/Sr High School in Eielson AFB, Alaska. This work was funded by AHFC through the American Recovery and Reinvestment Act of 2009 (ARRA). Due to the scheduling requirements for completion of the IGAs and to provide a more thorough review of certain mechanical systems, NORTECH sub-contracted RS Consulting for the primary energy audit services for Ben Eielson Jr/Sr High School. RS Consulting is owned and operated by Ray Sneeringer, a licensed Mechanical Engineer in the State of Washington and most of the audit field work was completed by Sandra Edwards, a Certified Energy Manager (CEM) and owner of Edwards Energy Environmental and Waste Management. RS Consulting’s IGA methodology generally followed that outlined in the REAL Manual for an IGA. RS Consulting used Trane Trace 700 to model Ben Eielson Jr/Sr High School due to the more complex systems found in this facility. This report evaluates a few major EEMs and ECMs, which are generally consistent with NORTECH’s overall findings that FNSB SD facilities are well-maintained and well- operated with few areas for significant potential energy savings. While NORTECH agrees with the recommendations for the EEM/ECM packages, the cost estimates appear to be somewhat lower than expected from local vendors. Since the recommended upgrade(s) involve specific pieces of equipment and installation methods, NORTECH recommends the FNSB SD obtain project-specific quotes or bids from local vendors before approving the specific project. Due to rapid advancements of lighting technologies, project-specific lighting retrofits should be designed no more than six months prior to retrofitting in order to achieve the best technology and maximum savings. NORTECH believes some additional energy and cost savings may be achievable in particular areas of the building. The data necessary to evaluate these upgrades is outside the scope of work of this IGA, but could most likely be collected relatively easily using the mechanical system controls and/or some dataloggers. Specific areas that have the potential for additional energy and cost savings include: 1) Plug load retrofits (ex: replacing old refrigerators, placing vending machines on timers) 2) Occupancy sensors in the gymnasium to go along with the proposed lighting retrofit 3) De-lamping areas of high foot-candles if lighting replacement isn’t performed 4) Domestic hot water generation and use (ex: low flow/automatic fixtures, solar water heating) While this report differs from the format of other NORTECH reports produced for AHFC and the FNSB SD, NORTECH has reviewed the work of RS Consulting and determined this report is complete and accurately depicts the energy use of the building. Any future questions, comments, or correspondence regarding this report should be addressed to the undersigned. Sincerely, NORTECH Peter Beardsley, PE, CEA Principal RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 1   ENERGY USE AUDIT REPORT   FOR   ALASKA HOUSING FINANCE CORPORATION    Client:  Alaska Housing Finance Corporation    Research and Rural Development Division   P.O. Box 101020   Anchorage, Alaska  99510   Attention:  Ms. Rebekah Lührs    Prepared by:  RS Consulting     2400 NW 80th Street, Suite 178    Seattle, Washington 98117    Telephone:  (206) 368‐1784        Edwards Energy Environmental & Waste Management    PO Box 2110    Issaquah, Washington 98027    Telephone:  (206) 303‐0121    Principal  Ray W. Sneeringer, PE   Investigators:  Sandra F. Edwards, CEM, CDSM      Prepared for:  NORTECH      Sustainable Environmental Engineering, Health, & Safety    2400 College Road    Fairbanks, Alaska  99709    Telephone:  (907) 452‐5688        RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 2   ACKNOWLEDGMENT   AND   DISCLAIMER    Acknowledgment:  We would like to acknowledge and extend our heartfelt gratitude to the Department of Energy.   This  material is based upon work supported by the Department of Energy under Award Number DE‐ EE0000095.   Disclaimer:  This report was prepared as an account of work sponsored by an agency of the United States  Government. Neither the United States Government nor any agency thereof, nor any of their  employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for  the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,  or represents that its use would not infringe privately owned rights. Reference herein to any specific  commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does  not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States  Government or any agency thereof. The views and opinions of authors expressed herein do not  necessarily state or reflect those of the United States Government or any agency thereof.   RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 3   TABLE  OF CONTENTS    1.0  EXECUTIVE SUMMARY ................................................................................................................. 4  2.0  INTRODUCTION ........................................................................................................................... 6  3.0  BUILDING DESCRIPTION ............................................................................................................... 8  4.0  ENVELOPE .................................................................................................................................... 9  5.0  LIGHTING ................................................................................................................................... 12  6.0  MECHANICAL ............................................................................................................................. 16  7.0  ENERGY USE .............................................................................................................................. 19  8.0  ENERGY MEASURES ................................................................................................................... 20  9.0  ENERGY MEASURE DESCRIPTIONS ............................................................................................. 22  10.0  SIMPLE PAYBACK AND SIR ......................................................................................................... 25  11.0  OPERATIONS AND MAINTENANCE ............................................................................................. 26  12.0  RECOMMENDATIONS ................................................................................................................ 27      APPENDICES APPENDIX A ......................................................................................................  ENERGY UTILIZATION INDEX  APPENDIX B ........................................................................................................................... COST ESTIMATE  APPENDIX C ...........................................................................................................  LIGHTING CALCULATIONS  APPENDIX D .................................................................................................... MECHANICAL CALCULATIONS  APPENDIX E ..................................................................................................................... SYSTEM DIAGRAMS  APPENDIX F ............................................................................................................ EQUIPMENT SCHEDULES  APPENDIX G ........................................................................................................................ TRACE 700 INPUT  APPENDIX H ..................................................................................................................... TRACE 700 OUTPUT  APPENDIX I ......................................................................................................... TREND LOG INFORMATION  APPENDIX J ............................................................................................................................... FLOOR PLANS          RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 4   1.0 EXECUTIVE SUMMARY  Background  This energy audit report was prepared by RS Consulting and Edwards Energy Environmental & Waste  Management in conjunction with NORTECH Sustainable Environmental Engineering, Health, & Safety for  the Alaska Housing Finance Corporation.   The Ben Eilson Jr/Sr High School is a 106,800 square foot  facility located on Eielson Air Force Base, Alaska.  The building serves 7th through 12th grade junior and  senior high school students and consists of classrooms, shops, a theater, two gymnasiums,  administrative offices, and other miscellaneous support functions.    Scope   This Level II Energy Audit focused on the building’s envelope, lighting, and heating/ventilation (HV)  systems.  The audit began with a review of existing utility bills and generation of the building’s Energy  Utilization Index (EUI).  Several on‐site reviews were conducted to examine the existing building systems  and the most current construction drawings were reviewed to determine the configuration and  sequencing of the mechanical systems.  Once this information was gathered, the audit included  identification of potential energy saving measures (ECMs/EEMS), creation of a computer simulation  model to examine the energy saving measures, generation of a schematic level estimate of the installed  costs of the measures and calculation of relative pay backs for each measure examined.  The Trane Trace 700 computer program was used to model the existing building’s energy consumption.    The energy consumption values predicted by the model were then compared to actual energy  consumption as shown in utility bills from 2009 and 2010.  The computer model was then “tuned” to  match the actual energy consumption as closely as possible.    Energy Use Index  Two years of utility bills were examined to determine the current energy consumption of the facility.   The Energy Use Index (EUI) for this facility is 90 kBTU/SF.  The chart below compares the existing and  proposed EUI for the building with the EPA Energy Star design target value for a similar building in this  location.  This target value was developed using the Energy Star Target Finder software and represents  the design criteria for a 50% Energy Star Rated Building, rather than the median value for existing K‐12  Schools.    RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 5   Energy Consumption  The majority of the facility’s energy consumption can be attributed to the energy required to heat the  outside ventilation air as it is introduced into the building.   Any effort to conserve energy should start  with an examination of the operation of the ventilation system.  Utility Costs  The annual utility cost predicted by the energy model for the existing building is $274,150.  The  estimated utility cost after implementation of the recommended Energy Efficiency Measures (EEM) is  $233,040 for an annual savings of $41,110.  A breakdown of the current and proposed energy costs is  presented in the following charts:    Recommendations  An inspection and monitoring the outside air dampers of each air handling unit should be performed in  order to reduce the amount of outside air being introduced into the facility to current code minimums  during cold weather and to eliminate the introduction of outside air into the facility during unoccupied  hours.  We also recommend implementation of the Energy Efficiency Measures listed in the table below.   Implementation of these measures should be accompanied by a more detailed Level III analysis, which  should include operational data logging, detailed engineering drawings and cost estimates, and a plan  for future monitoring and verification of the performance of the installed measure.   BEN EIELSON JR/SR HIGH SCHOOL ‐ Recommended Measures  Tag Measure Description Cost Payback  (Yrs) SIR  ECM‐C Cold Run Set Point Mod       $1,000 0.1 99.2 EEM‐1 Lighting Upgrades $265,800 8.9 1.6 EEM‐2 Add VSDs on Jr High Gym           $15,000 3.5 4.1   Please refer the body of this report for additional information on these Energy Efficiency Measures.  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 6   2.0 INTRODUCTION  This energy audit report has been prepared by RS Consulting (RSC) and Edwards Energy Environmental &  Waste Management (EEEWM) in conjunction with NORTECH Sustainable Environmental Engineering,  Health, & Safety for the Alaska Housing Finance Corporation (AHFC).  RSC and EEEWM audited Ben  Eielson Jr/Sr High School in an effort to find cost effective opportunities to reduce building energy  consumption.  The Energy Conservation Measures (ECMs) and Energy Efficiency Measures (EEMs)  analyzed in‐depth as part of the contract included several mechanical system improvements.   Two classifications of energy saving measures were examined during this energy audit. The first is a low  cost or no cost solution designed to save energy by making changes to occupant activities, schedules,  control set points, or small upgrades to existing equipment.  This type of measure is identified in this  report as an Energy Conservation Measure (ECM).   The second type of energy saving measure requires  significant capital investment to achieve energy savings. This is referred to as an Energy Efficiency  Measure (EEM).  This Level II Energy Audit focused on the building’s envelope, lighting, and Heating and Ventilation (HV)  systems.  A level II energy audit includes a survey of the building and a breakdown of the energy end  uses within the building.  This audit identifies and examines practical ECMs and EEMs to determine the  potential energy savings realized if the measure is enacted.  It also serves to identify potential  improvements that may require the more thorough data collection and detailed engineering drawings  and estimates which typically occur in a Level III audit.  The scope of work for this audit consisted of an  on‐site review of the existing facility, a review of the most current construction drawings, identification  of potential Energy Conservation Measures (ECMs) and Energy Efficiency Measures (EEMS), creation of a  computer simulation model to examine these EEMs, and a schematic level estimate of the installed costs  and relative pay backs for each measure examined.     The audit team inspected the building during preliminary stages of the energy audit.  The purpose of this  field visit was to verify the configuration of the existing mechanical equipment and to assess its  condition. Information was also gathered on the size and efficiency of the existing accessible mechanical  system motors.   A list of major mechanical equipment used in this facility can be found in Appendix F.  We also performed a review of the building envelope to identify any potential areas for possible  improvement in energy performance and documented the type and number of lighting fixtures used  throughout the facility to in order to identify opportunities to improve the performance of the lighting  system.   Two years of utility bills were analyzed to determine the energy performance of the existing building in  order to match the existing use with the use predicted by the computer model.  Potential EEMs were  identified and examined via the computer model or spreadsheet calculations.  The predicted energy  savings of these measures were then compared to the estimated installation cost to determine the  relative pay back of each measure.  A building energy model was used to validate a number of proposed EEMs.  The Trane Trace 700  computer program was used to model the existing building’s energy consumption.   The energy  consumption values predicted by the model were then compared to actual energy consumption as  shown in utility bills from 2009 and 2010.  The computer model was then “tuned” to match the actual  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 7   energy consumption as closely as possible.  This baseline was used to predict the energy savings realized  by the proposed EEMs.   The existing building energy use, as predicted by the computer model is shown  in Figure 1.    Figure 1:  Ben Eielson Jr/Sr High School:  Energy Use by System  Heating energy comprises72% of the energy used in the school.  This is consistent with the extremely  low temperatures experienced during the subarctic winters in Fairbanks.  This heating energy consists of  an oil component, which is the oil used by the boilers and the domestic hot water generators, and an  electrical component, which is the electricity used by the boiler’s ancillary equipment, such as the oil  pump, the burner fan and miscellaneous electrical controls.     The cost of steam is significantly less than the cost of electricity per unit of energy ($.019/mbtu vs.  $.052/mbtu) so although the heating system consumes 72% of the building energy, it represents only  47% of the total utility bills.  Figure 2 shows the actual cost of the energy consumed by the facility.    Figure 2:  Ben Eielson Jr/Sr High School:  Energy Cost by System  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 8   The heating load consists of the heat lost across the building envelope and the heat used to warm  outside air as it enters the building.  This outside air is necessary to provide make up air for the  building’s exhaust fans and ventilation air for the occupants.  The breakdown of the total heat load of  the school is shown in Figure 3.    Figure 3: Ben Eielson Jr/Sr High School:  Building Heating Loads by Component  It can be concluded from the preceding charts, that efforts to conserve energy in the facility should  begin with an examination of the ventilation air system.  Please refer to Section 9.0 of this report for a  more detailed discussion of this ventilation system.  Information in this study has focused on the areas of building envelope, lighting, and HVAC.  Please  reference subsequent sections of this audit report for detail information on the Energy Conservation  Measures (ECMs), Energy Efficiency Measures (EEMs), calculation methodologies, and a summary of the  findings and recommendations.    3.0 BUILDING DESCRIPTION  Ben Eielson Junior‐Senior High School is a one‐story 103,200 square foot facility located on the Eielson  Air Force Base (AFB) located in Alaska.   The high school was originally constructed in 1962 and was  27,985 sq. ft.  The school became occupied in 1963.  In 1965, an addition of 5,966 sq. ft. was added to  the facility.  In 1975, the on‐base school joined the Fairbanks North Star Borough School District. In  1978, a new addition of 62,125 sq. ft. was built for the high school and the original structure built in  1962 became the junior high school.  In 1978, the school became known as Ben Eielson Junior‐Senior  High School.  In 1996, a renovation study began and an additional 7,124 was added to the facility in  1998.  Ben Eielson Junior‐Senior High School is unique in the district for a number of reasons.  It is the  only high school located on a military base, it is the smallest school in the district at their respective  grade levels, and it is the only combined junior‐senior high school in the Fairbanks North Star Borough  School District.    The United States Air Force base is located approximately 26 miles southeast of  Fairbanks, Alaska and just southeast of Moose Creek, Alaska. This building serves seventh (7th) through  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 9   twelve (12th) grade junior and high school students and consists of classrooms, library, theater, two  gymnasiums, administrative offices, and other miscellaneous support functions.  The assessment  performed on this facility focused on the building’s envelope, lighting, and HVAC systems and consisted  of an on‐site review of the existing facility, creation of a computer simulation model, review of the HVAC  sequences of operation and schedules, and calculation of the relative paybacks for each measure  examined.     3.1 Building Construction    Year Built: 1962  Area: 106,800 sq. ft.  Stories: One‐story  Roof: Built‐Up Asphalt Roofing  Floor: Slab on grade   Walls: Combination of Concrete, Stucco (EIFS) /Metal Siding  Windows: Double‐pane‐Vinyl Windows    Doors: Metal/Glass  3.2 Building Operation  Use: Education  Operation: 6:00 am – 11:00 pm (cleaning /events until 11:00 pm)   Monday – Friday   Summer School  (No)  Occupancy /  Enrollment: 55  Staff & 473 Students    3.3 Existing Energy Efficiency Items    Several energy efficient measures are currently in use in this facility.  These include:     Variable air volume terminal units in the classroom and administrative areas.   Variable speed supply and return fans on the majority of the air handling units.   Demand controlled ventilation (DCV) system with return air CO2 monitors.   Variable speed pumping with two way control valves.  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 10   4.0 ENVELOPE  4.1 General  The building envelope is more than a polished exterior of glass, concrete, and steel.  The components  utilized for controlling heat transfer, infiltration, stack effect, solar gain, and humidity are vital for a high‐ performance building.  Insulated window or door panes whether it is single, double, or triple and “R”  factors have an impact on the loads and efficiencies of mechanical and electrical systems.  A cursory  review of the existing building envelope and windows was performed to identify any areas, which may  benefit from replacement, new weather stripping, caulking and/or seals to prevent infiltration of outside  air.  This review included verifying the proper operation and alignment of windows and doors, checking  for proper levels of insulation where accessible, and noting if any insulation was found to be damaged.   The Department of Energy has identified eight (8) climate zones for the United States.  A list of counties  and their respective climate zones can be found in American Society of Heating Refrigerating and Air‐ Conditioning Engineers (ASHRAE) Advanced Energy Design Guide, and in the Department of Energy,  Energy Efficiency and Renewable Energy Volume 7.1 Building America Best Practices Series.  Hutchinson  Institute of Technology is a part of Zone 8, which means it is a part of the subarctic climate.  A subarctic  climate is defined as a region with 12,600 heating degree‐days (65°F basis) or more.  For this climate and  to achieve over 30% above ASHRAE Standard 90.1‐1999, R‐values of between R13 to R60 is  recommended depending on the type and the location of the envelope description.  Window U‐values  of .33 is recommended and this is again to exceed energy savings of 30% above ASHRAE Standard 90.1‐ 1999.     4.2 Windows       Figure 4.1 Typical Existing Classroom Windows Figure 4.2 Typical Existing Classroom Windows  The windows installed at Ben Eielson Jr. /Sr. High School are dual glazed comfort T‐R, double pane, low  e, with argon, and  tempered inside and out vinyl windows.  The air space between each pane is filled  with argon gas.  Each pane has heat reflective coatings (“low e” coatings).   “Low e coatings” is another  name for window film.  The higher a window’s R‐value, the greater the resistance to heat flow and the  greater the insulating value.  The inverse of the R‐value provides the U‐value.  Low U‐value ratings are  good for windows.  The window glass identification number is NWI ¼ U 16CFR1201CAT2ANSIZ97.1‐1984;  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 11   safety glass 1639 temper SG CC.  The windows open from the top (see Figures 4.1 and 4.2) and have U‐ values of .33, which equates to R‐values of approximately R‐3.0.    4.3 Roof    The roofing at Ben Eielson Jr. /Sr. High School is classified as single ply IRMA (Inverted Roof Membrane  Assembly) built‐up asphalt roofing. Built‐up‐roofing (BUR) is a roofing system comprised of numerous  layers of asphalt and felts, applied in the field (not factory coated) by the contractor to achieve various  ply's as specified. Commonly referred to as 4‐ply or 5‐ply, pitch and gravel, hot tar, hot, and hot mop.  The final ply must be protected from UV and may require a cap sheet, gravel or some other coating. The  roof insulation (R‐value) thickness is approximately R‐40 and is made of extruded polystyrene.   Polystyrene insulation is a type of rigid foam that provides continuous thermal insulation barriers for  roofs. It has an exceptional ability to insulate against extreme temperatures, and is waterproof and long  lasting.  Polystyrene is held in place with a perimeter securement/ballast. These qualities combine to  make polystyrene insulation an exceptionally useful product.   Larger R‐values have greater thermal  resistance or more insulating potential than smaller R‐values.     4.4 Walls       Figure 4.3 Restroom J104‐Minor Cracks in Wall Figure 4.4 Restroom J104‐Minor Cracks in Wall  The walls to this facility are a combination of brick, EIFS (stucco), sheetrock, GWB and plywood  sheathing, fiberglass batt, and polystyrene vapor barrier.  Typical wall insulation at Ben Eielson Jr. /Sr.  High School has an R‐value of approximately R‐32.    4.5 Doors  The weather‐stripping for the most part around most of the doors is in good condition.  There was just  one entrance door that was observed that was in need of reinforced weatherstripping.  This entrance   was vestibule 101 where there was ice built‐up.  Typical doors are 3’x7’x1¾” and hollow metal with ¼”  wire‐glass glazing.     RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 12   4.6 Miscellaneous  During our walk through some envelope issues were noticed that were not directly related to building  energy consumption.  We are noting these items for use in planning future maintenance items.  In the men’s restroom J104 there appears to be minor cracks in the wall.  Samples are provided in  (Figures 4.3 and 4.4).   4.7  Recommendations  The following items should be implemented to improve the performance and operation of the building’s  envelope:      Replace worn and/or broken weather‐stripping around doors     Implementing these potential opportunities will have a holistic impact on mechanical and electrical  systems through building envelope improvements.  Investments in the building envelope will often add  value to the buildings appearance.  Please refer to Appendix D for calculation of building envelope heat  transfer properties.  5.0 LIGHTING  5.1 General   The majority of the lighting systems were upgraded circa 1996 and now predominantly uses T8  fluorescent lamps with electronic ballasts in most interior lighting areas.  Exterior lighting consists of  primarily high‐pressure sodiums (HPS) and metal halides.   A lighting audit was performed to find and  implement additional cost effective lighting related energy saving opportunities. A detailed description  of the retrofit measures and lighting upgrades at each location can be found in Appendix C of this  report.    5.2 Methodology Used  A detail site survey was conducted to identify the type of light fixtures that exist in each area. A light  meter was used to determine the existing light levels and compared to   Illuminating Engineering Society  of North America (IESNA) recommended lighting levels.   A lighting ballast discriminator was used to  determine the existing ballast type.  A laser distance‐measuring tool was used to measure the height  and width of the workspace. A camera was used to take pictures. Electrical drawings were also  reviewed.  The site survey results were used to determine the different types of retrofit measures to  propose.  A detail summary of the fixtures identified during the walk through is provided in Appendix C.               RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 13   5.3 Existing Lighting        Figure 5.1 F32‐T8’s Lighting in the Corridors Figure 5.2 400‐W Metal Halides in Gym       Figure 5.3 F32‐T8’s Typical Classroom Lighting  Figure 5.4 Typical Lighting in the Theater  Based upon a detailed lighting audit the majority of the existing interior lighting consists of a mixture of  32‐watt T8 lamps and normal ballast factor ballast (NBF).  There are also some 40‐Watt, 65‐Watt, 100‐ Watt and 200‐Watt incandescent lamps. There are 250‐Watt mercury vapor lamps in classroom H136.   In gymnasiums J101 and H113, there are mixtures of 400‐Watt metal halide lamps along with 32‐Watt  T8 lamp fixtures.  The outside perimeter of the building has a mixture of 100‐Watt, 250‐Watt, and 400‐ Watt high‐pressure sodium lighting (Figures 5.5‐Figures 5.8).     5.4 Ballast Factors   T8 Fluorescent lighting has the advantage of offering a range of ballast factors ‐ from 0.60 to 1.30.  Ballast factors are the ratio of lamp lumens produced when lamps operated by a given ballast to the  lamp lumens produced when the lamps operated on reference ballast as used by lamp manufacturers  and American National Standard Institute (ANCI) and rated at 1.0.  Ballast factors range from low,  normal and high.   Ballast factors of .78 are considered “low”, Ballast factors of .88 are considered  normal, and ballast factors of 1.10 are considered high.  In a retrofit application, the ballast factor can be  used to tune the light levels in a space, especially if the levels are determined to be too high relative to  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 14   the tasks performed.  Most of the time T8 lamps in 25W, 28W and 30W models operate on low (0.71‐ 0.78) and normal (0.87‐0.88) ballast factor with instant‐start or programmed‐start ballasts.      The difference between instant‐ start versus program‐start ballast is the starting modes in which the  cathodes are heated.    Instant‐start ballast provides a high initial voltage to start the lamp without pre‐ heating the cathodes whereas program‐start provides an initial low voltage to heat the filaments first  then after a short delay pre‐heats the cathodes.   The instant start ballast starts lamps immediately, and  is very energy efficient but can be cause short lamp life if used in an application where the   lamps are frequently switched on/off.  The program start provides maximum lamp life in frequent on/off  starting conditions.  In addition, if there are concerns regarding dimming you do not want to use instant  start but should use program start.  The ballast cost for instant start versus program start can vary  between $15.00‐$19.00 for instant start and between $20.00 and $29.00 for program start.      Consortium for Energy Efficiency (CEE) high performance 120/277 Volt T8 Ballast products have been   provided in Appendix C which shows  the difference, and benefits of using a program start versus an  instant start, and the difference between using high, normal or low ballast factors.  On many occasions,  the ballast efficacy factor (BEF) performance is improved when using a low or normal ballast factor  coupled with a high lumen lamp.        5.5 Existing Lighting Controls   The majority of the lighting systems within the Ben Eielson Jr./Sr. High School  are controlled via  occupancy sensors.    5.6 Existing Lighting Level Measurements Recorded  The lighting level measurements were taken using a light meter.  These measurements were  recorded  in foot‐candles.  A foot‐candle is a common unit of measurement used to calculate adequate lighting  levels of workspaces in buildings or outdoor spaces.  The existing foot‐candle level reading ranges at Ben  Eielson Jr./Sr. High School were as follows: corridors‐(55), A102 administrative area‐(55), A102A  administrative office‐(55), A104A administrative office‐(75), classroom H117 CR‐(75‐80), J101 gym‐(65),  J101B girls locker‐(45),kitchen walk‐in‐(45), H109B multi‐purpose room‐(50‐65), and  H113 gym‐(70).    5.7 Illuminating Engineering Society of North America (IESNA) Recommended Lighting Levels  The Illuminating Engineering Society of North America (IESNA) recommends the following foot‐candle  level  reading ranges for the following: corridors‐(5‐10), A102 administrative area‐(20‐50), A102A  administrative office‐(20‐50), A104A administrative office‐(20‐50),classroom H117 CR‐(20‐50), J101 gym‐ (30‐60), J101B girls locker‐(10), kitchen walk‐in‐(50), H109B multi‐purpose room‐(5‐30), and  H113 gym‐ 30‐60). Some of the existing lighting levels exceed  what is recommended by IESNA target illuminances.   Copies of IESNA recommendations are provided in detail in Appendix C of this audit report.    5.8 Incentives & Lighting Product Information Update  The Energy Policy Act of 2005 included a new tax incentive. The "Commercial Building Tax Deduction"  establishes a tax deduction for expenses incurred for energy efficient building expenditures made by a  building owner. The deduction is limited to $1.80 per square foot of the property, with allowances for  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 15   partial deductions for improvements in interior lighting, HVAC and hot water systems, and building  envelope systems.   The Emergency Economic Stabilization Act of 2008 (HR‐1424), approved and signed  on October 3, 2008, extends the benefits of the Energy Policy Act of 2005 through December 31, 2013.  In fact, by federal law, T12s won’t be manufactured after July 14, 2012; you eventually won’t be able to  find replacements for burned‐out T12s.  5.9  Recommendations  Based upon a detailed audit of all areas, we are recommending lighting efficiency upgrades of existing  fluorescent, incandescent, mercury vapors,  metal halides and high‐pressure sodium lighting fixtures  located throughout this facility.    In some of the  corridors and  classrooms we propose retrofitting  the  existing  32‐watt T8 lamps and normal ballast factor  (NBF)  to  28‐watt  lamps with program‐start,  low  ballast factor(LBF).  In some areas, the 28‐Watt lamp is paired with program‐start and normal ballast  factor.    In classrooms H102C, 102D, the theater, the walk‐in, and the nurse’s station,   we recommend  replacing the 40‐Watt incandescent lamps with 8‐Watt LED A‐19 lamps, the 65‐Watt incandescent lamps  with 14‐Watt LED Par 30 lamps, the 100‐Watt Watt incandescent lamps with Phillips 16‐Watt A‐19 Style  LED lamps, and the 200‐Watt incandescent lamps with 90‐Watt LED Par 38 lamps. The 250‐Watt  mercury vapor lamps in classroom H136 should be replaced with F32T8 lamps and high ballast factor  (HBF).  In gymnasiums J101 and H113, there are mixtures of 400‐Watt metal halides along with 32‐Watt  compact fluorescents.   We recommend replacing the 400‐Watt metal halides with new F54 T‐5 lighting  fixtures and high ballast factor ballast, and replacing the existing 32‐watt T8 lamps and normal ballast  factor (NBF) with 28‐Watt lamps with program‐start, normal ballast factor (NBF).  In the outside  perimeter of the building where there are a mixture of 100‐Watt,  250‐Watt, and 400‐Watt high‐ pressure sodium lighting we recommend replacing the  100‐Watt with new 28‐Watt LED fixtures,  the  250‐Watt  metal halides  with 104‐Watt LED’s, and the 400‐Watt high‐pressure sodium’s with 153‐Watt  LED’s.  The proposed cost and estimated savings are provided in the EEM Summary Table in Section 10.0 and a  complete list of all the fixtures audited is located in Appendix C of this audit report.  The lighting  Calculations and Common Conversions, The Illuminating Engineering Society of North America (IESNA)  Recommended Light Levels, IESNA Target Illuminances, Classroom Lighting Know How, and The  Consortium for Energy Efficiency (CEE) List of High Performance for Commercial Lighting Systems are  also included in Appendix C of this audit report.  Printed below are some of the photos taken during this cursory walkthrough.    RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 16        Figure 5.5 Typical Exterior Lighting  Figure 5.6 Typical Exterior Lighting       Figure 5.7 Typical Parking Lot Lighting   Figure 5.8 Typical Parking Lot Lighting   6.0 MECHANICAL  6.1 Air‐Handling Systems  Ben Eielson Jr/Sr High School was orginally  constructed in 1962 and substatially upgraded in 1998  and 2000.  The 2000 remodel replaced several air  handlers and the majority of the distribution  ductwork and terminal units.  The Direct Digital  Control (DDC) system was also upgraded during this  remodel.    The Junior High classroom wing AHU (SF18) was  replaced in 2000 and consists of a minimum outside  air damper with a glycol preheat coil, an economizer  damper, mixing box, heating coil, and a variable  volume plug type supply fan equipped with a variable  speed drive.   Supply air from this unit is distributed  through medium pressure ductwork located in a Figure 6.1 – SF10 Air Handling Unit  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 17   trench below the corridor, to variable volume terminal units located in the ceiling spaces.  These  terminal units are equipped with air volume dampers to control the volume of air being delivered to  each temperature control zone.  The terminal units vary the air between full design cfm and 40% flow  depending on the load in the space being served.  Heating of the perimeter zones is provided by finned  tube heating elements at the exterior walls.  Refer to Drawing M1.2 in Appendix E  The Junior High Gym is served by the original built up  air handling system.  This system includes an outside  air intake plenum equipped with a glycol preheat coil,  a return air/outside air mixing room with a relief  damper, and multiple centrifugal type supply fans  with hot water heating coils.  Refer to Drawing M1.3  in Appendix E for additional details.  The main portion of the building (administration,  offices, and cafeteria) is served by SF10 which is  similar in arrangement to SF18.  The Senior High  Gymnasium and Multipurpose Room received new air  handlers during the 2000 remodel.  The gymnasium  unit consists of an outside air intake with preheat coil,  a mixing box, a heating coil and variable speed supply  fan.   The multipurpose AHU (SF17) is a heat recovery  unit which captures heat from the locker room exhaust airstream and transfers this heat to the incoming  outside air.  A diagram of this system is shown in Drawing M1.5 of Appendix E.  The Senior High classroom area is served by two original air handling units (SA12 and SA13).  SA12  provides heating and minimum ventilation to the space, while SA13 provides additional ventilation and  free cooling via outside air when needed.  This system is shown in Drawing M1.6 of Appendix E.   6.2 Heating Systems   Building heating is provided by a shell and tube steam  to hot glycol converter.  Steam is delivered to the  building via an underground steam line originating at  the main steam plant on the base   This steam is  passed through the heat exchanger where it transfers  heat to the building’s combination water/glycol  heating solution.  The condensate from the heat  exchanger is pumped back to the steam plant via a  steam powered condensate return system.  The junior  high and senior high are served by two independent  steam converters and the condensate from each of  these systems is separately monitored.   This system distributes hot glycol to heating coils  located in the air handlers as well as heating coils  located in the interior zone terminal units.  Heating water is also distributed to perimeter finned tube  Figure 6.3 – High School Steam Station  Figure 6.2 – Jr. High Gym Mechanical Room  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 18   units, cabinet heaters (vestibules) and unit heaters (mechanical rooms).  The heating water distribution  pumps are controlled by variable speed drives that regulate the speed of the pumps in response to  system loads.     Two way heating water control valves are used throughout the facility.  A small number  of three way control valves are used at the end of each run in order to keep hot water flowing in each  loop.  Please refer to Diagram M1.1 in Appendix E for additional information on the heating water distribution  system.  6.3 Control Systems  The mechanical system is monitored and controlled by a Johnson Controls direct digital control (DDC)  system.  Valves and dampers are positioned by electric actuators.   CO2 sensors are provided in the  return duct of the majority of the air handlers to control the amount of outside air in response to  building occupancy.  6.4 Domestic Hot Water  Domestic hot water is generated by an instantaneous steam to hot water generator.  6.5 Mechanical System Trend Logs  With the assistance of FNSB personnel, the operating parameters of a single air handling unit and the  heating water system were monitored and recorded over a period of several days.  This period included  weekday and weekend operation.  The intent of monitoring a select group of points was to determine if  the operation of the mechanical systems was consistent with the assumed schedules and operating  parameters used in the computer simulation model, and to identify any potential energy saving items  that may be candidates for more in depth monitoring and analysis in the future. This data (typically  referred to as a trend log) was taken for SF12 which serves Senior High classrooms.  Observations for  SF12 may or may not apply to the other units that were not monitored.  Certain sections of the trend  data were graphed to illuminate items of interest that were noted in our review of the data collected.   The data points that were monitored during this study were a small selection of the total number of  points available for monitoring in the future.  The following observations are from our analysis of the  trend logs:   The heating water temperature control is stable  and the heating water temperature appears to be  resetting based on outside air temperature.   The outside air damper does not appear to close  during unoccupied hours when the supply fan is  running.   The control of the preheat temperature  during this time is very unstable.  Coil discharge  temperatures vary by around 30 degrees over ten  minute periods.  Typical control variations would be  expected to be in the 3‐5 degree range.   The most Figure 6.4:  Frosting of Lower Tubes  on SF12 Preheat Coil  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 19   likely cause of this variation is stratification of the outside air across the coil.   We noted during  our field investigation that the lower portion of the preheat coil was frosted while the upper  portion was too hot to touch.   Although this is not a significant problem, correcting this issue by  employing a a device to distribute the air evenly over the coil in the duct would allow better  control of this coil discharge temperature.   Refer to Figure 6.4.   The “Cold Run” Operation appears to be initiating at minus 10 degrees F, instead of the typical  set point of minus 20 degrees F.    Please refer to Appendix I for a graphical depiction of this data.  7.0 ENERGY USE  The purpose of this energy audit is to identify measures or practices that will result in a reduction in the  energy use of the facility.  Fuel oil is used for building heating and domestic hot water generation, while  electricity is used by fans, pumps, lights, and miscellaneous plug loads.     A reduction in oil use can be achieved by one or more of the following actions:    Reduce the amount of ventilation air being introduced into the building.   Reduce the amount of heat lost through the envelope of the building.   Recover heat before it is exhausted from the building.   Improve the efficiency of the oil burning equipment.  A reduction in electrical consumption can be achieved in one or more of the following manners:    Improve the efficiency of the lighting systems.   Vary the speed of fans and pumps in response to the building loads.   Improve the efficiency of the motors.   Turn off systems when they are not required.  Two years of utility bills were analyzed to determine the energy consumption characteristics of the  facility.   These numbers were then normalized to account for any unusual weather conditions that may  have occurred during the span of the two years.  For example, if the winter of 2010 was abnormally  warm, the yearly energy consumption would be less than that of a typical year.  The number of actual  heating degree days (HDD) for each month during the two year time period was compared to the  historical average heating degree days for that month, and the oil consumption use was adjusted based  on this ratio.  These adjusted energy consumption values were then used to calculate an overall building  energy use index.  The calculated Energy Utilization Index (EUI) for this facility is 90 kBTU/SF.  The EUI  calculation is included in Appendix A.  Figure 7.1 shows a comparison of the existing and proposed EUI  with both the average EUI found in the building operated by the Fairbanks North Star Borough and the  Environmental Protection Agency’s Energy Star target for a median building of a similar type.  This target  value was developed using the Energy Star Target Finder software and represents the design criteria for  a 50% Energy Star Rated Building, rather than the median value for existing K‐12 Schools.  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 20     Figure 7.1 – Building Energy Use Index  8.0 ENERGY MEASURES   8.1 Types of Energy Savings Measures  Potential energy saving measures (ECMs and EEMs) were identified for the facility based upon an on‐site  inspection, a review of utility records, computer modeling and interviews with facility personnel.  The  purpose of identifying these energy measures is to reduce energy consumption, and  lower operational  costs.     Each measure was analyzed either by utilizing a spreadsheet calculation or by employing the TRACE  energy‐modeling program.   A rolling baseline modeling system is employed during the modeling  process.  This system analyzes each alternative based on the results of the previous alternative.  The first  alternatives analyzed are the ones thought to be most likely to result in a short payback period.   The  rolling baseline system is used to prevent double accounting of energy savings.  For example, if one  alternative improves the building envelope and the following alternative increases the efficiency of the  heating system, the second alternative must take into account the decreased heating load provided by  improving the envelope in the first alternative.  If this reduced heating load is not taken into account,  the second alternative would show additional heating energy savings that would not be realized in a  building with an improved envelope.        RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 21   The following measures were analyzed for this facility:  Energy Conservation Measures:   ECM A – Ventilation System Optimization   ECM B – Replacement of Existing Motors with More Efficient Motors   ECM C – Adjustment of Cold Run Set Point  Energy Efficiency Measures:   EEM 1 – Lighting Upgrades   EEM 2 – Replace Inlet Vanes with Variable Speed Drives  8.2 Computer Modeling  The TRACE building modeling system examined four alternatives.   The lighting energy savings measure  (EEM‐1) was calculated using a spreadsheet.  This was accounted for by entering the proposed lighting  values into the model prior to examining any other measures.   The alternatives examined were:  8.2.1  Trace Model Alternative One:  Baseline Building  This alternative models the existing facility using information from the most current as built drawings, as  well as information gathered during our field visits.    The existing wall and roof u‐values were calculated  and input into the model.   The existing lighting densities, HVAC system types, airflows, and operational  schedules were used.  The energy use predicted by the baseline model was then compared to the actual  utility bills (normalized to reflect an average year) to determine if the model was accurately describing  the operation of the existing facility.   The model was then “tuned” to follow the existing building energy  consumption as closely as possible.  8.2.2  Trace Model Alternative Two: Lighting Upgrades  This alternative accounts for the lighting upgrades that were calculated via a spread sheet.  The  reduction in lighting load will lead to a slight increase in building heating, and this is accounted for in this  alternative.    8.2.3  Trace Model Alternative Three:  Adjustment to Cold Run Set Point  This alternative incorporates the lighting upgrades from EEM 1 and examines ECM‐C, changing the cold  run set point from minus 10 Deg F to minus 20 Deg F.  8.2.4  Trace Model Alternative Four:  Variable Speed Fans  This alternative incorporates the changes Alternatives 2 and 3 and examines EEM 2, addition of variable  speed drives to the Junior High School Gym fan system.  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 22   The TRACE 700 computer model input and output data is included in Appendix G and H respectively.  A more thorough discussion of each ECM/EEM can be found in Section 9.0.  8.3 Energy Costs  The following energy costs were used in this analysis:  Steam = $1.90 per Therm  Electricity Consumption = $.156 per Kwh  Electrical Demand = $10.79 Kw  Blended Electrical Rate = $.177 per Kwh  9.0 ENERGY MEASURE DESCRIPTIONS  9.1 ECM A – Ventilation Air Analysis  Heating of the outside ventilation air is the primary source of energy use for the facility.  Any actions  taken to reduce the amount of ventilation air introduced into the building will save a significant amount  of energy.    A certain amount of fresh air is required in order to provide adequate indoor air quality; however,  excessive amounts of outdoor air lead to increased energy consumption.   This delicate balance between  indoor air quality and energy consumption is perhaps the most important aspect of any energy  conservation project.     The 2009 International Mechanical Code stipulates the minimum outside air requirements for any  facility.  These requirements include a people component and an area component.  For each particular  use, the code specifies a cubic foot per minute of outside air per each occupant (cfm/person) and an  amount of outside air required based on the square footage of the space (cfm/square foot).  Codes that  were in place during the design of this facility typically only included a people component.  The 2009  IMC reduces many of the cfm/person requirements from the original codes in place during the time  construction of this facility.  However, some of the requirements for Classrooms have actually increased.   Depending on the balance of Classroom to other uses, implementation of the new code may either  increase or decrease the total required amount of outside air for a particular facility.   An excerpt from  the current code is listed below:  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 23     Minimum Ventilation Rates – Schools  Use  2009 IMC Previous  Cfm Cfm People  Net  Cfm Code  Person Sq Ft  1000 Sq  Ft Person Cfm/Per  Classroom (Age 5‐8) 10 0.12 25 14.8 15  Classroom (Age 9+) 10 0.12 35 13.4 15  Science Room 10 0.18 25 17.2 15  Art Classroom 10 0.18 20 19.0 15  Lecture Classroom 7.5 0.06 65 8.4 15  Lecture Hall (Fixed Seats) 7.5 0.06 150 7.9 15  Computer Lab 10 0.12 25 14.8 20  Shops 10 0.18 20 19.0 20  Music/Theater/Dance 10 0.06 35 11.7 20  Multi‐Use/Assembly 7.5 0.06 100 8.1 20  Office 5 0.06 5 17.0 20  If the air‐handling system provides ventilation air to multiple zones, several additional calculations must  be performed to determine the fraction of outdoor air required at the air‐handling unit.  These  calculations provide correction factors for over ventilated zones, air distribution effectiveness, and  system efficiencies.   A calculation of the overall percentage of outside air required at each air‐handling  unit can be found in Appendix D.  Ben Eielson Jr/Sr High School utilizes CO2 sensors in the return air ducts to monitor the ambient CO2  level.  The control system modulates the amount of outside air introduced in the building in proportion  to the number of people in the space at any given time.  This is known as demand controlled ventilation  (DCV) and is the best method to balance the need for adequate indoor air quality with the desire to  reduce energy consumption.     Demand Controlled Ventilation (DCV) is a method of adjusting the amount of outside ventilation air  introduced in to the building based on the number of occupants at any given time.  The number of  occupants can be determined indirectly by measuring the concentration of carbon dioxide (CO2) in the  air.  Each person produces CO2 at a fairly constant rate, therefore the concentration of CO2 in the return  air system can be used as an indication of the number of people occupying the space.    Measuring the return air CO2 is a relatively inexpensive method of DCV since it requires only one sensor  and minimal control wiring.   However, this method provides an average reading of all the spaces served  by the system.  If one space is fully occupied and the other is empty the average value read in the return  air stream will not be indicative of what is actually happening on a room by room level and some zones  may be over ventilated, while others are under ventilated.    RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 24   The control system monitors the CO2 level in the return air stream and opens the outside air damper  when this level exceeds a certain set point.   This set point is based on a calculation of the minimum  amount of outside air required by code.   The calculation of the maximum allowable CO2 level is  provided in Appendix D.  This CO2 set point should be compared to the current set point and adjusted, if  possible, to reduce the amount of outside air required.   We also recommend a visual inspection of all the outside air dampers in the facility to verify that they  are closing properly during unoccupied hours.  Also, the seals on these dampers should be inspected to  verify that the damper is not leaking when it is closed.  9.2 ECM B – Energy Efficient Motors  The pay back derived from replacing existing electric motors with premium efficiency motors depends  on the horsepower, the efficiency, hours of operation, type of system, and the location of the existing  motor.  Larger motors tend to provide lower pay back periods.  The tables included in Appendix D  provide information on the typical motors used in this facility and indicates the existing motor efficiency  at which the payback period becomes feasible.   For example, if an existing 10 horsepower motor used  in a perimeter heating loop has an efficiency of 87.5% or less, then replacing the motor with a premium  efficiency model will provide a payback of 5 years.  Motors used in variable speed systems will have a  longer payback than indicated in the charts because the motor is not operating at full design  horsepower for the number of hours indicated.  Additionally motors located in the airstream of fan  systems will also have a slightly longer payback, because the heat produced by the inefficiency of the  motor is used in a beneficial way during the heating season.  Please refer to the tables to determine the  feasibility of replacing other motors used throughout the facility.    Since many of the motor nameplates  are obstructed or could not be found, a simple payback calculation for each motor is not feasible.   However, as maintenance personnel are working in this building, this chart can be used to determine if  the motors should be replaced or re‐used.   9.3  ECM C – Adjust the Cold Run Set Point  During the Cold Run operation, if the outside air temperature falls below a certain set point value and  the building is in unoccupied mode, the fan starts and the outside air damper is opened slightly to  pressurize the building.  This is done to prevent accidental freeze up and subsequent damage to  equipment.   There is a cost associated with running the system in this mode, since the fan consumes  electricity and heating the incoming outside air requires steam consumption.    Examination of the trend logs for SF12 indicates that the Cold Run operation is being initiated at  temperatures below minus 10 degrees F (see excerpt from the trend logs in Appendix I).  Other typical  buildings in the school district are set to initiate the Cold Run operation at minus 20 degrees F.   Adjusting the on point of the Cold Run sequence to a lower temperature reduces the time the fans are  running and therefore saves energy.  A table showing the approximate fan energy and heating energy  costs for several different initiation temperatures is included in Appendix D for reference.    9.4  EEM 1 ‐ Lighting Upgrades  Based upon a detailed audit of all areas, we are recommending lighting efficiency upgrades of existing  fluorescent, incandescent, mercury vapors, metal halides and high‐pressure sodium lighting fixtures  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 25   located throughout this facility.    In some of the  corridors and  classrooms we propose retrofitting  the  existing  32‐watt T8 lamps and normal ballast factor  (NBF)  to  28‐watt  lamps with program‐start,  low  ballast factor(LBF).  In some areas, the 28‐Watt lamp is paired with program‐start and normal ballast  factor.    In classrooms H102C, 102D, the theater, the walk‐in, and the nurse’s station,   we recommend  replacing the 40‐Watt incandescent lamps with 8‐Watt LED A‐19 lamps, the 65‐Watt incandescent lamps  with 14‐Watt LED Par 30 lamps, the 100‐Watt Watt incandescent lamps with Phillips 16‐Watt A‐19 Style  LED lamps, and the 200‐Watt Watt incandescent lamps with 90‐Watt LED Par 38 lamps. The 250‐Watt  mercury vapor lamps in classroom H136 should be replaced with F32T8 lamps and high ballast factor  (HBF).  In gymnasiums J101 and H113, there are mixtures of 400‐Watt metal halides along with 32‐Watt  compact fluorescents.   We recommend replacing the 400‐Watt metal halides with new F54 T‐5 lighting  fixtures and high ballast factor ballast, and replacing the existing 32‐watt T8 lamps and normal ballast  factor (NBF) with 28‐watt lamps with program‐start, normal ballast factor (NBF).  In the outside  perimeter of the building where there are a mixture of 100‐Watt,  250‐Watt, and 400‐Watt high‐ pressure sodium lighting we recommend replacing the  100‐Watt with new 28‐Watt LED fixtures,  the  250‐Watt  metal halides  with 104‐Watt LED’s, and the 400‐Watt high‐pressure sodium’s with 153‐Watt  LED’s. A complete detail of all of the fixtures audited and savings estimated is provided in Appendix C of  this audit report.    9.5  EEM 2 – Convert the Jr. High Gym Fan System to  Variable Speed  The existing Junior High School gymnasium is served by two constant volume supply fans.  This EEM  replaces the existing fan motors and adds variable speed control to the fans, so that their speed can be  reduced during periods of low occupancy.     Replace the existing motors with high efficiency motors designed for use with variable speed  drives.    Provide new variable speed drives for each fan motor.   Extend the existing DDC control system to incorporate these new points.  10.0 SIMPLE PAYBACK AND SIR  The total energy saved by employing Energy Conservations Measures ECM‐A, Ventilation Air Reduction  and ECM‐B, Energy Efficient Motors, could not be calculated.  Calculation of the total energy saved from  implementing ECM‐A requires detailed data monitoring and analysis of each individual air handling  system in order to determine the existing energy consumption of each unit.  Calculation of the total  energy saved by employing ECM B could not be performed since many of the motor nameplates were  inaccessible or missing during our walkthrough.  This level of detailed analysis is beyond the scope of a  Level II audit and is typically performed during a Level III Audit.  Therefore, simple payback and Savings  to Investment Ratio (SIR) calculations are not presented for the recommended Energy Conservation  Measures (ECM A and ECM B).   However, we do have enough data to estimate the energy saved by  employing ECM C so we are able to calculate the simple pay back and SIR of this ECM.  The simple payback calculation is a quick method of comparing various ECMs/EEMs; however, does not  take into account the time value of money or the costs or savings beyond the first cost.    The savings‐to‐investment ratio (SIR) is the ratio of the present value savings to the present value costs  of an energy conservation measure. The numerator of the ratio is the present value of net savings in  RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 26   energy plus or minus any additional maintenance costs related to the measure.   The denominator of the  ratio is the present value of the installation cost of the measure.    The following formulas were used in the calculation of each ratio:  Simple Payback = Cost of Energy Saved/Cost of Installation of ECM/EEM   SIR = Present Value of Energy Saved for the Life of the Measure/Present Value of the Installed Cost  BEN EIELSON JR/SR HIGH SCHOOL ‐ EEM SUMMARY  Measure  Number Measure Description  Annual Energy and Cost Savings Payback Calculations  Peak  Demand  Savings  Electricity  Usage  Savings  Oil  Usage  Savings  Annual  Cost  Savings  Measure  Cost  Simple  Payback  Savings  to  Invest  Ratio Kw Kwh Therms $ $ Yrs  ECM‐C Cold Run Set Point Mod 45 25,000 1,397 $7,040 $2,500 0.4 39.7  EEM‐1 Lighting Upgrades 659 168,560 *(1,936) $29,728 $265,800 8.9 1.6  EEM‐2 Add VSDs on Jr High Gym  25 18,450 629 $4,343 $15,000 3.5 4.1  * Reducing the lighting load leads to an increase in overall building heating demand.  11.0 OPERATIONS AND MAINTENANCE  A successful operations and maintenance plan is the key to continued energy savings in any facility.   According to the American Society of Heating and Refrigeration Engineers (ASHRAE) 2007 Handbook,  the original design and installation of a mechanical system constitutes only around 10% of the total life  cycle cost, while operation and maintenance costs represent approximately 80% of the total cost over  the life of the system.   The remaining 10% of the life cycle cost is attributed to acquisition, renewal and  disposal.   When a mechanical system is installed, it should be commissioned to ensure that the operation of the  system meets the design intent.  Over the life of this system, its operation should be verified via control  system trending and/or field measurements.  If the system is found to be operating outside of the  original design intent, corrective action or retro commissioning should be initiated.  A quality preventative maintenance plan can extend the life of the mechanical system beyond the  estimated service life of the equipment and free up capital funds for other projects.  Frequent filter  changes can result in significant energy savings over the life of the building.  The pressure drop across  the filter increases as it captures dirt and dust.   This increased pressure drop results in additional energy  consumption, a decrease in airflow, or both.  For a typical 20,000 cfm fan system a 1‐inch static pressure  increase will result in an increased annual energy cost of $2,000.  The level of maintenance at the Ben Eielson Jr/Sr High School appears to be excellent.  The level of  quality of the installed Pace and Trane custom air handlers is very high, and there were no visible signs  of wear or of any maintenance problems.  The mechanical spaces are clean and well kept and the filters  appear to have been changed frequently.    RS Consulting  Energy Audit – Final Report  Edwards Energy Engineering &  Ben Eielson Jr/Sr High School  Waste Management  Eielson AFB, Alaska         July 30, 2012  Page 27   12.0 RECOMMENDATIONS  We recommend further analysis of the following Energy Conservation Measures:     ECM A   Ventilation Air Reductions   Verify that the maximum CO2 set points used in the Demand Controlled  Ventilation (DCV) control scheme are in agreement with current codes.  It is  possible that some of the set points may be increased, which will reduce the  amount of outside air needed.   Revisit the practice of pressurizing the building in cold weather during  unoccupied hours.  This practice may be required to prevent freeze up or  damage, but any reduction in the amount of pressurization required will  result in substantial energy savings.       Inspect and repair all outside air dampers that may be leaking or not closing  properly to prevent introduction of un‐wanted outside air during unoccupied  hours.      The majority of the facility energy use can be attributed to the heating of the  outside air as it is introduced into the building.  Therefore, anything that can be  done to reduce this outside airflow will have the greatest impact on the overall  energy consumption of the facility.     ECM B  Replace Low Efficiency Motors Where Applicable  Replace motors that do not meet the minimum efficiency criteria as listed in the  Table provided in Appendix D.    We recommend implementation of the following Energy Conservation and Energy Efficiency Measures:     ECM C  Change the set point temperature of “Cold Run” to Minus 20  Cold Run operation is initiated during unoccupied hours when the outside air  temperature drops below a set point value.  It appears from analysis of Trend  Logs for SF12, that this set point is currently minus 10 degrees F.  Both fan  energy and heating energy can be saved if this set point is adjusted down.      EEM 1  Lighting Upgrades  Electrical energy consumption will be reduced significantly by upgrading the  lighting system with energy efficient fixtures.     EEM 2  Variable Speed Drives on Junior High Gym System  Remove the existing fan motors and provide new premium efficiency motors  with variable speed drives.     APPENDIX A – CALCULATION OF ENERGY USE INDEX Building Square Footage 106,760 Assumes Delivery of 50 psig Saturated Steam & Return of 200 Deg Cond Actual Average Total Cond Net Base 60 Base 60 Cost Per Cost per Energy Use Date Lbs kbtu-Stm Cost Cost/kbtu Cost/Lb Notes HDD HDD KWH kbtu-Elec Cost KWH kbtu kbtu Jan-09 1,059,600 1,055,362 15,143$0.014$0.014$2095 2150 115,500 394,086 23,527$0.204$0.060$1,449,448 Feb-09 995,020 991,040 14,220$0.014$0.014$1833 1763 71,400 243,617 14,544$0.204$0.060$1,234,657 Mar-09 774,000 770,904 11,061$0.014$0.014$1654 1634 66,000 225,192 13,444$0.204$0.060$996,096 Apr-09 606,800 604,373 8,672$0.014$0.014$850 780 74,400 253,853 15,155$0.204$0.060$858,226 May-09 376,000 374,496 5,373$0.014$0.014$357 328 51,900 177,083 10,572$0.204$0.060$551,579 Jun-09 71,400 71,114 1,020$0.014$0.014$123 119 37,200 126,926 7,578$0.204$0.060$198,041 Jul-09 71,400 71,114 1,020$0.014$0.014$61 88 26,700 91,100 5,439$0.204$0.060$162,215 Aug-09 100,000 99,600 1,429$0.014$0.014$260 205 60,600 206,767 12,344$0.204$0.060$306,367 Sep-09 610,220 607,779 8,721$0.014$0.014$456 459 108,900 371,567 22,183$0.204$0.060$979,346 Oct-09 600,000 597,600 8,400$0.014$0.014$*987 1145 105,000 358,260 21,420$0.204$0.060$955,860 Nov-09 995,020 991,040 14,220$0.014$0.014$1820 1712 69,900 238,499 14,239$0.204$0.060$1,229,539 Dec-09 696,510 693,724 9,954$0.014$0.014$1928 2035 61,800 210,862 12,589$0.204$0.060$904,586 Jan-10 1,200,000 1,195,200 16,800$0.014$0.014$*2263 2150 115,000 392,380 23,460$0.204$0.060$1,587,580 Feb-10 1,000,000 996,000 14,000$0.014$0.014$*1555 1763 70,000 238,840 14,280$0.204$0.060$1,234,840 Mar-10 774,010 770,914 11,061$0.014$0.014$1459 1634 59,400 202,673 12,100$0.204$0.060$973,587 Apr-10 606,800 604,373 10,637$0.018$0.018$665 780 83,100 283,537 18,623$0.224$0.066$887,910 May-10 376,000 374,496 6,591$0.018$0.018$291 328 47,400 161,729 10,622$0.224$0.066$536,225 Jun-10 71,400 71,114 1,252$0.018$0.018$126 119 22,500 76,770 5,042$0.224$0.066$147,884 Jul-10 71,400 71,114 1,252$0.018$0.018$78 88 33,600 114,643 7,530$0.224$0.066$185,758 Aug-10 100,000 99,600 1,753$0.018$0.018$161 205 52,500 179,130 11,765$0.224$0.066$278,730 Sep-10 339,120 337,764 5,945$0.018$0.018$505 459 29,100 99,289 6,521$0.224$0.066$437,053 Oct-10 619,700 617,221 11,447$0.019$0.018$1018 1145 107,400 366,449 24,004$0.224$0.066$983,670 Nov-10 600,000 597,600 11,085$0.019$0.018$1434 1712 70,500 240,546 15,757$0.224$0.066$838,146 Dec-10 700,000 697,200 12,600$0.018$0.018$*2447 2035 63,000 214,956 14,112$0.224$0.066$912,156 Heating Deg DaysSteam Use Electrical Use Ben Eielson Jr/Sr High School Energy Use Index Dec-10 700,000 697,200 12,600$0.018$0.018$*2447 2035 63,000 214,956 14,112$0.224$0.066$912,156 *Data is not available, assumed values based on other months Avg Cost 2009 6,955,970 6,928,146 99,234$0.014$0.014$12,424 12,418 849,300 2,897,812 173,034$Avg Cost Avg Cost 9,825,958 2010 6,458,430 6,432,596 104,422$0.016$0.016$12,002 12,418 753,500 2,570,942 163,816$Per KWH Per Kbtu 9,003,538 Averages 6,707,200 6,680,371 101,828$0.015$0.015$12,213 12,418 801,400 2,734,377 168,425$0.221$0.065$18,829,496 Energy Adjusted Energy Use( MBH)Steam Elect Total BTU/SF For HDD Steam Electric Total 2009 6,928,146 2,897,812 9,825,958 92,038 91,993 Avg Utility Costs 101,828$168,425$270,253$ 2010 6,432,596 2,570,942 9,003,538 84,334 87,257 Utility Costs/ SF 0.95$1.58$2.53$per Square foot Average 89,600 Ben Eielson Jr/Sr High School Energy Use Index 0 20,000 40,000 60,000 80,000 100,000 120,000 Monthly Electrical Consumption (KWh) 0 500,000 1,000,000 1,500,000 2,000,000 Jan-09Feb-09-09-090909090909Total Monthly Energy Consumption (kBtu) 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 Jan-09Mar-09May-09Jul-09Sep-09Nov-09Jan-10Mar-10May-10Jul-10Sep-10Nov-10Steam Consumption (Lbs)JanFebMar-Apr-09May-09Jun-09Jul-09Aug-09Sep-09Oct-09Nov-09Dec-09Jan-10Feb-10Mar-10Apr-10May-10Jun-10Jul-10Aug-10Sep-10Oct-10Nov-10Dec-100 200,000 400,000 600,000 800,000 1,000,000 1,200,000 BuildingEnergy Consumption Steam and Electricty (kBtu) APPENDIX B –COST ESTIMATES RS Consulting Opinion of Probable Cost Job:Ben Eielson Jr/Sr High School Date:29-May-12 Job #:Status of Design:Energy Audit Est:RWS QTY UNIT MATERIAL LABOR ENGINEERING EST DESCRIPTION UNIT TOTAL UNIT TOTAL UNIT TOTAL EEM Provide Variable Speed Drives for Jr High Gym Supply Fans Remove Existing Motors 2 EA 250 500 250 $500 Provide New Premimum Eff Motors 2 EA 560 1120 180 360 740 $1,480 Provide VSD for Supply Fans (3 Hp)2 EA 1050 2100 450 900 1500 $3,000 Electrical Wiring 1 EA 300 300 2500 2500 2800 $2,800 Modify DDC Control Signal 1 EA 250 250 1200 1200 1450 $1,450 Control Wiring and Conduit 1 EA 100 100 800 800 900 $900 Controls Programming and Test 1 EA 1250 1250 1250 $1,250 Subtotal $11,380 General Conditions 25%$2,845 $14,225 Construction Contingency 15%$2,134 $16,359 Design 12%$1,963 $18,322 Total for EEM $18,322 Round to $18,000 APPENDIX C –LIGHTING CALCULATIONS Project Name Contact - 19804 141st Place NE Woodinville, WA 98072 Office: 425-806-9200 Fax: 425-806-7455 Energy Analysis Existing System Baseline Energy Efficient System Energy Reduction 33.82% Annual Energy Savings Estimated Annual Savings at 15.600¢per kWh Total Savings Rebates Estimated Potential Golden Valley Elec Utility Rebate / Grant Project Investments Lighting System Sensors / Controls Ben Eielson Jr & Sr High School $0.00 498,418 kWh / Yr. 329,861 kWh / Yr. (206) 303-0121Sandra Edwards Project Analysis for Ben Eielson Jr & Sr High School $33,406.76 168,557 kWh / Yr. $7,111.82 $26,294.95 Estimated Demand Savings $248,255.00 $0.00 Lamp Recycle Permits Waste Removal Haz-Mat (PCB) Fees Lifts and Equipment State Tax (if applicable)0.00% Total Project Investment Proposal Outline Total Initial Investment Total Estimated Rebate Actual Investment Total Annual Energy Savings Simple Payback The information provided herein is based on information collected from the building location during our energy surveys and also provided by authorized personnel. All data contained within this document is to be considered as an estimate. This information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison. $265,781.80 I, the undersigned, do hereby give consent to proceed with the project as outlined in this and all other relevant project documents. I understand that the material costs are considered current for sixty days from the date stated below. All other data provided by sources other than Northwest Edison is subject to change without notice. Authorized Signature ______________________________________________________________________ 7.96 Years $33,406.76 $265,781.80 Date ___________________ $0.00 $0.00 $265,781.80 $5,560.91 $6,131.90 $0.00 $5,833.99 $0.00 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor HeightE25 400 464 12 7P25 153 153 12 7*E25 100 130 12 7P2528 28 12 7*E2250 295 12 7P2104 104 12 7$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Existing Fixture Metal Halide 250 watt LampNew Exterior LED Fixture 104 wattsExisting Wall Pack High Pressure Sodium 100 watt LampNew Exterior LED Fixture 28 watts3Fixture IDEFHPS400NLED153ExteriorExteriorEWHPS100Existing / Proposed Fixture DescriptionExisting Fixture High Pressure Sodium 400 watt LampNew Exterior LED Fixture 153 wattsLocationStateExteriorCountyExteriorExterior12ExteriorSurvey Noteswith semi cut-offShoebox @ 28', square pole, 2 bolts, silverMaint. RateEFMH250NLED104(425) 806-9200(425) 806-74550.0000NLED28Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E13 100 130 12 7P1328 28 12 7*E145 32 85 12 7 55P145 28 48 12 7*E632 58 12 7P628 48 12 7*E6632 32 12 7P6628 26 12 7*E532 32 12 7P528 26 12 7*E1532 32 12 7P1528 26 12 7*E732 85 9 5P728 73 9 5LB328NPExisting Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastLamp And Ballast Retrofit w 1 F32 28 watt Lamp, NBF BallastExisting Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast NLED28Entry / HallLamp And Ballast Retrofit w 1 F32 28 watt Lamp, NBF BallastLB128NLamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF BallastNew Exterior LED Fixture 28 wattsExisting Fixture High Pressure Sodium 100 watt Lamp6TK4228NPEntry / HallES4232NEntry / HallES4132NLB128NA102 AdminET4332NEntry / HallEntry / HallES4132NExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF BallastExisting Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast 54ExteriorEntry / Hall10A102 Admin89Entry / HallLamp And Ballast Retrofit w 1 F32 28 watt Lamp, NBF BallastExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastExisting Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast 7EFHPS100ExteriorEntry / HallET4332NLB228NES4132NEntry / HallEntry / HallLB128NIn displayCanopyACAC, 0.84x120 motorola ballastIn coveUplightIn displayThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 1 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E232 85 24 7P228 72 24 7*E826 52 9 5 55P814 14 9 5*E432 85 9 5 55P428 73 9 510AA102 AdminET4332NExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast2 on e-circuitA102 AdminLB328NLamp And Ballast Retrofit w 3 F32 28 watt Lamp, NBF BallastECFL22614WLEDP3011A102 AdminExisting Dual 26 watt Compact Fluorescent Lamp14 watt LED Par 30 LampExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast12A102A OfficeA102A Office7-1/2" holeACET4332NLB328NPA102 Admin*E432 85 9 5P428 73 9 5*E1832 85 9 5P1828 73 9 5*E832 85 9 5P828 73 9 5*E432 85 9 5 75P428 73 9 5*E432 85 9 5P428 73 9 5*E332 58 12 7P328 42 12 7*E232 58 9 5P228 42 9 5Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF BallastExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastExisting Troffer T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF BallastExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastExisting Wrap T8 4' w 2 F32 32 watt Lamp, NBF Ballast14Counseling Office13A102B Office1716A104A Office15Counseling OfficeA104B OfficeA104B Office1918A106 Hall to NurseA110A106 Hall to NurseACACACACACACACET4232NLB228LPA110EW4232NLB228LPA102B OfficeET4332NLB328NPET4332NA102C Workroom & LoungeLB328NPA102C Workroom & LoungeET4332NLB328NPA104A OfficeET4332NLB328NPET4332NLB328NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 2 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E432 58 9 5 65P428 42 9 5*E2200 200 9 5P290 90 9 5*E232 58 12.5 5P228 42 12.5 5Existing Incandescent 200 watt Lamp90 watt LED Par 38 LampExisting Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF BallastExisting Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast22A114 Restroom21A114 Nurse20A114 NurseA114 NurseA114 Nurse10", Can with new tileACACEW4232NLB228LPEINC20090WLEDP38A114 RestroomEW4232NLB228LP*E432 85 9 5P428 73 9 5*E432 85 9 5P428 73 9 5*E432 85 9 5P428 73 9 5*E632 112 9 5P628 94 9 5*E3332 112 9 5 75-80P3328 48 9 5*E232 58 9 5P228 48 9 5*E832 112 9 5P828 48 9 5Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF BallastExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastExisting Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF BallastExisting Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF BallastExisting Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF BallastExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastA116 Conference26H117 CR - Applied Tech2524A118 OfficeA120 OfficeA118 OfficeA120AA120 OfficeA116 Conference232928H117A27H117 CR - Applied TechH117BH117AACACACET4332NLB328NPET4332NLB328NPET4332NLB328NPET4432NA120ALB428NPEW4432NWK4228NPEW4232NLB228NEW4432NH117BWK4228NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 3 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E332 58 9 5P328 48 9 5*E832 58 12.5 5P828 42 12.5 5*E432 58 12.5 5P428 42 12.5 5Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast31Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast30H117BEW4232NJ102 Womens RestroomES4232NJ102 Womens RestroomLB228LP32Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast J102 Womens RestroomES4232NJ102 Womens RestroomLB228LPAC, On wallAC, In coveACH117BLB228NP*E832 58 12.5 5P828 42 12.5 5*E432 58 12.5 5P428 42 12.5 5*E132 112 2 5P128 48 2 5*E1532 112 9 5P1528 48 9 5*E432 32 9 5P428 22 9 5*E432 58 2 5P428 42 2 5*E832 170 9 5P1628 73 9 5One on topDirect / Indirect, ACWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF BallastLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast33Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast35Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, NBF Ballast34Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast J104 RestroomES4232NJ104 RestroomLB228LP37Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast36Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastJ106 CREW4432NJ106 CRWK4228NPJ104 B Janitorial ClosetEW4432NJ104 B Janitorial ClosetWK4228NJ106 CRES4132NJ106 CRLB128L39Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast38Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast J108 MechanicalES4232NJ108 MechanicalLB228LJ110 CRES8632NJ110 CRLB328NPTask lightingACJ104 RestroomLB228LPJ104 RestroomES4232NThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 4 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E332 85 9 5P328 73 9 5*E332 32 9 5P328 22 9 5*E832 170 9 5P1628 73 9 5Direct / Indirect, ACLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast41Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast40Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast J110 CRES4332NJ110 CRLB328NPJ110 CRES4132NJ110 CRLB128L42Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast J112 CRES8632NJ112 CRLB328NPLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastTask lightingDirect / Indirect, AC*E432 85 9 5P428 73 9 5*E332 32 9 5P328 22 9 5*E832 170 9 5P1628 73 9 5*E432 85 9 5P428 73 9 5*E432 32 9 5P428 22 9 5*E832 170 9 5P1628 73 9 5*E432 85 9 5P428 73 9 5Direct / Indirect, AC43Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast45Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast44Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast J112 CRES4132NJ112 CRLB128LJ112 CRES4332NJ112 CRLB328NPJ114 CRES8632NJ114 CRLB328NP47Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast46Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast J114 CRES4332NJ114 CRLB328NPLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast49Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast48Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast J116 CRES8632NJ116 CRLB328NPJ114 CRES4132NJ114 CRLB128LJ116 CRES4332NJ116 CRLB328NPLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF BallastDirect / Indirect, ACDirect / Indirect, ACDirect / Indirect, ACDirect / Indirect, ACThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 5 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E432 32 9 5P428 22 9 5*E832 170 9 5P1628 73 9 5*E432 85 9 5P428 73 9 5Direct / Indirect, ACDirect / Indirect, ACLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast51Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast50Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast J116 CRES4132NJ116 CRLB128LLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast52Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast J118 CRES4332NJ118 CRLB328NPJ118 CRES8632NJ118 CRLB328NP*E432 32 9 5P428 22 9 5*E832 170 9 5P1628 73 9 5*E432 85 9 5P428 73 9 5*E432 32 9 5P428 22 9 5*E432 85 9 5P428 73 9 5*E132 58 9 5P128 42 9 5*E432 85 9 5P428 73 9 5ACDirect / Indirect, ACDirect / Indirect, AC53Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF BallastJ118 CRES4132NJ118 CRLB128LLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast55Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast54Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast J120 CRES8632NJ120 CRLB328NPLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast57Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast56Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast J120 CRES4132NJ120 CRLB128LJ120 CRES4332NJ120 CRLB328NPJ122 WorkroomET4332NJ122 WorkroomLB328NPLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast59Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast58Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastJ122 WorkroomEW4232NJ122 WorkroomLB228LJ122B OfficeET4332NJ122B OfficeLB328NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 6 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E1232 170 9 5P2428 73 9 5*E432 85 9 5P428 73 9 5*E132 32 9 5P128 22 9 5Direct / Indirect, ACDirect / Indirect, ACLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast61Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast60Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast J115 CRES8632NJ115 CRLB328NPJ115 CRES4332NJ115 CRLB328NPLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast62Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast J115 CRES4132NJ115 CRLB128L*E332 112 9 5P328 94 9 5*E1532 170 9 5P3028 73 9 5*E532 85 9 5P528 73 9 5*E332 32 9 5P328 22 9 5*E432 58 9 5P428 48 9 5*E232 58 9 5P228 48 9 5*E432 58 9 5P428 48 9 5Direct / Indirect, ACDirect / Indirect, AC63Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast65Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast64Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast J111 CRES8632NJ111 CRLB328NPJ113 OfficeET4432NJ113 OfficeLB428NPJ111 CRES4332NJ111 CRLB328NPLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast67Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast66Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast J111 CRES4132NJ111 CRLB128LLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast69Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast68Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastJ111BEW4232NJ111BLB228NPJ111CEW4232NJ111CLB228NJ111AEW4232NJ111ALB228NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 7 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E1232 170 9 5P2428 73 9 5*E432 85 9 5P428 73 9 5*E832 32 9 5P828 22 9 5Direct / Indirect, ACDirect / Indirect, ACLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast71Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast70Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast J109 CRES8632NJ109 CRLB328NPLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast72Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast J109 CRES4132NJ109 CRLB128LJ109 CRES4332NJ109 CRLB328NP*E332 58 9 5P328 48 9 5*E1532 170 9 5P3028 73 9 5*E532 85 9 5P528 73 9 5*E632 32 9 5P628 22 9 5*E232 85 9 5P228 48 9 5*E1132 85 9 5P1128 73 9 5*E332 32 9 5P328 22 9 5Direct / Indirect, ACDirect / Indirect, AC73Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF BallastJ109AEW4232NJ109ALB228NPLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast75Existing Strip T8 4' w 3 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast74Existing Strip T8 8' w 6 F32 32 watt Lamp, NBF Ballast J107 CRES8632NJ107 CRLB328NPLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast77Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast76Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast J107 CRES4132NJ107 CRLB128LJ107 CRES4332NJ107 CRLB328NPJ107AET4332NJ107ATK4228NPLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast79Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast78Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastJ105 CRET4332NJ105 CRLB328NPJ105 CRES4132NJ105 CRLB128LThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 8 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E132 112 2 5P128 48 2 5*E24 400 458 10 5 65P2454 364 10 5*E232 112 9 5P228 94 9 5AC, 22', with cage & lensWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast81Existing Fixture Metal Halide 400 watt LampNew Paragon 1748E Fixture 4' w 6 F54 54 watt T5 Lamp, HBF Ballast80Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastJ103 Janitorial ClosetEW4432NJ103 Janitorial ClosetWK4228NPJ101 GymEFMH400J101 GymN1748E654HLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast82Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastJ101AET4432NJ101ALB428NP*E232 58 9 5P228 42 9 5*E932 58 10 5 45P928 48 10 5*E532 58 10 5P528 48 10 5*E532 58 2 5P528 48 2 5*E232 112 9 5P228 94 9 5*E132 112 9 5P128 48 9 5*E1232 58 10 5P1228 48 10 583Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast85Existing Vapor Tight T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast84Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastJ101B Girls LockerEW4232NJ101B Girls LockerLB228NPJ101AEW4232NJ101ALB228LPJ101B Girls LockerEV4232NJ101B Girls LockerLB228NPLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast87Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast86Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastJ101C StorageEW4232NJ101C StorageLB228NPWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast89Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast88Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastJ101DEW4432NJ101DWK4228NPJ101DET4432NJ101DLB428NPJ101E Boys LockerEW4232NJ101E Boys LockerLB228NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 9 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E432 58 10 5P428 48 10 5*E432 58 9 5P428 42 9 5*E432 85 12 7P428 48 12 7Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast91Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast90Existing Vapor Tight T8 4' w 2 F32 32 watt Lamp, NBF BallastJ101E Boys LockerEV4232NJ101E Boys LockerLB228NPTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast92Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastBack Entry x 2ET4332NBack Entry x 2TK4228NPJ101FET4232NJ101FLB228LP*E632 58 9 5P628 48 9 5*E432 85 9 5P428 48 9 5*E332 58 9 5P328 48 9 5*E1432 85 10 5P1428 73 10 5*E432 85 9 5P428 73 9 5*E1832 85 9 5P1828 73 9 5*E432 85 12 7P428 48 12 7AC93Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF BallastH119ET4232NH119LB228NPTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast95Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast94Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastH119AET4332NH119ATK4228NPLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast97Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast96Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastH124 Weight RoomET4332NH124 Weight RoomLB328NPH119BES4232NH119BLB228NPH124BET4332NH124BLB328NPLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast99Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast98Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastH122 CRET4332NH122 CRLB328NPShort Hall by H113ET4332NShort Hall by H113TK4228NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 10 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E332 58 2 5P328 42 2 5*E1532 58 10 5P1528 48 10 5*E432 58 10 5P428 48 10 5ACACLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast101Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast100Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastH116 ElectricalEW4232NH116 ElectricalLB228LPH113 Womens Locker RoomEW4232NH113 Womens Locker RoomLB228NPLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast102Existing Vapor Tight T8 4' w 2 F32 32 watt Lamp, NBF BallastH113 Womens Locker RoomEV4232NH113 Womens Locker RoomLB228NP*E232 58 10 5P228 48 10 5*E232 112 9 5P228 48 9 5*E132 58 9 5P128 48 9 5*E232 58 12 7P228 42 12 7*E2032 112 10 5P2028 48 10 5*E332 58 10 5P328 48 10 5*E932 58 2 5P928 48 2 5AC103Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, NBF Ballast105Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast104Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastH113A OfficeEW4432NH113A OfficeWK4228NH113 Womens Locker RoomES4232NH113 Womens Locker RoomLB228NPH113A OfficeEW4232NH113A OfficeLB228NLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast107Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast106Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastStairs to MezzanineEW4232NStairs to MezzanineLB228LLamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast109Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast108Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastH203 Mat RoomEW4232NH203 Mat RoomLB228NH203 Mat RoomEW4432NH203 Mat RoomWK4228NPH202 MechanicalES4232NH202 MechanicalLB228NThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 11 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E432 85 2 5P428 48 2 5*E432 85 2 5P428 48 2 5*E1632 85 12 5P1628 48 12 5Troffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast111Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast110Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastH118 Book StorageET4332NH118 Book StorageTK4228NPTroffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast112Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastK101 KitchenET4332NK101 KitchenTK4228NH120 Book StorageET4332NH120 Book StorageTK4228NP*E2100 100 12 5P216 16 12 5*E132 85 12.5 5P128 48 12.5 5*E232 85 9 5P228 48 9 5*E1100 100 2 5 45P116 16 2 5*E5232 112 9 5P5228 94 9 5*E2326 52 9 5P2314 14 9 5*E932 85 9 5P928 73 9 5Locked, fixture may also be VT 2L HO T12113Existing Incandescent 100 watt Lamp16 watt A19 Style LED Phillips LampK101 KitchenEINC100K101 Kitchen16WLEDTroffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast115Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastTroffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast114Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastK101 Restroom in KitchenET4332NK101 Restroom in KitchenTK4228N16 watt A19 Style LED Phillips Lamp117Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast116Existing Incandescent 100 watt LampWalk-InEINC100Walk-In16WLEDK101BET4332NK101BTK4228NL101 LibraryET4432NL101 LibraryLB428NP14 watt LED Par 30 Lamp119Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast118Existing Dual 26 watt Compact Fluorescent LampL101 LibraryECFL226L101 Library14WLEDP30L101 LibraryET4332NL101 LibraryLB328NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 12 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E332 85 9 5P328 48 9 5*E632 85 9 5P628 73 9 5*E632 85 9 5P628 48 9 5Troffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast121Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast120Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastL107 VideoET4332NL107 VideoTK4228NPL108 CPUET4332NL108 CPULB328NPTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast122Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastL109ET4332NL109TK4228NP*E232 112 9 5P228 94 9 5*E232 112 9 5P228 94 9 5*E332 85 9 5P328 73 9 5*E832 112 9 5P828 94 9 5*E1032 58 12.5 5P1028 42 12.5 5*E332 58 12.5 5P328 42 12.5 5*E132 112 12.5 5P128 48 12.5 5ACAC123Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast125Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast124Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastL103 ConferenceET4432NL103 ConferenceLB428NPL104ET4432NL104LB428NPL102ET4332NL102LB328NPLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast127Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast126Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastH101 CRET4432NH101 CRLB428NPLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast129Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast128Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastH103 RestroomEW4232NH103 RestroomLB228LPH103 RestroomES4232NH103 RestroomLB228LPH103 RestroomEW4432NH103 RestroomWK4228NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 13 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E232 112 2 5P228 48 2 5*E1132 58 12.5 5P1128 42 12.5 5*E332 58 12.5 5P328 42 12.5 5Wrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast131Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast130Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastH105 Janitorial ClosetEW4432NH105 Janitorial ClosetWK4228NPLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast132Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastH107 Mens RestroomEW4232NH107 Mens RestroomLB228LPH107 Mens RestroomES4232NH107 Mens RestroomLB228LP*E132 112 12.5 5P128 48 12.5 5*E132 58 2 5P128 42 2 5*E4832 85 9 5 50-65P4828 73 9 5*E832 170 9 5P828 82 9 5*E95P828 42 9 5*E432 85 9 5P428 42 9 5*E95P428 22 9 5137H109B Multi-Purpose RoomET4332NExisting Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastWarm whiteH109B Multi-Purpose RoomLB228LLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF BallastLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF BallastWarm whiteWarm whiteWarm white133Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF BallastH107 Mens RestroomEW4432NH107 Mens RestroomWK4228NPLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast135Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast134Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast H107A ElectricalES4232NH107A ElectricalLB228LLamp And Ballast Retrofit w 4 F32 28 watt Lamp, LBF Ballast136ALamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast136Existing Wrap T8 8' w 6 F32 32 watt Lamp, NBF BallastH109B Multi-Purpose RoomEW8632NH109B Multi-Purpose RoomLB428LH109B Multi-Purpose RoomET4332NH109B Multi-Purpose RoomLB328NPH109B Multi-Purpose RoomH109B Multi-Purpose RoomLB228L137AH109B Multi-Purpose RoomH109B Multi-Purpose RoomLB128LThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 14 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E232 58 9 5P228 42 9 5*E332 58 2 5P328 48 2 5*E332 85 10 5P328 48 10 5LB228LLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast139Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF BallastTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast140Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastH111 Mens LockerET4332NH111 Mens LockerTK4228NPH109A ElectricalES4232NH109A ElectricalLB228N138H109B Multi-Purpose RoomES4232NExisting Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast H109B Multi-Purpose Room*E1532 58 10 5P1528 48 10 5*E232 58 10 5P228 48 10 5*E532 58 10 5P528 48 10 5*E232 112 9 5P228 48 9 5*E132 58 9 5P128 42 9 5*E30 400 464 10 5 70P3054 364 10 5*E1232 112 10 5P1228 48 10 526', with cage & lens141Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF BallastH111B Locker RoomEW4232NH111B Locker RoomLB228NPLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast143Existing Vapor Tight T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast142Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast H111B Locker RoomES4232NH111B Locker RoomLB228NPWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast145Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast144Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastH111A OfficeEW4432NH111A OfficeWK4228NPH111B Locker RoomEV4232NH111B Locker RoomLB228NPH111A OfficeEW4232NH111A OfficeLB228LPNew Paragon 1748E Fixture 4' w 6 F54 54 watt T5 Lamp, HBF Ballast147Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast146Existing Fixture High Pressure Sodium 400 watt LampH113 GymEFHPS400H113 GymN1748E654HH113 GymEW4432NH113 GymWK4228NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 15 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E232 58 9 5P228 48 9 5*E632 58 9 5P628 48 9 5*E232 85 12 7P228 48 12 7Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast149Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast148Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF BallastH113HET4232NH113HLB228NPH1113HEW4232NH1113HLB228NPTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast150Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastEntry x 2ET4332NEntry x 2TK4228NP*E432 58 9 5P428 42 9 5*E432 58 9 5P428 42 9 5*E432 85 9 5P428 73 9 5*E1232 112 9 5P1228 94 9 5*E332 32 9 5P328 22 9 5*E1232 112 9 5P1228 94 9 5*E332 32 9 5P328 22 9 5ACACAC, task lighting151Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF BallastLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast153Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast152Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastH113EEW4232NH113ELB228LH113DEW4232NH113DLB228LH126ET4332NH126LB328NPLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast155Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast154Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastH121 CRET4432NH121 CRLB428NPLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast157Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast156Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastH123 CRET4432NH123 CRLB428NPH121 CRES4132NH121 CRLB128LH123 CRES4132NH123 CRLB128LThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 16 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E1232 112 9 5P1228 94 9 5*E1132 32 9 5P1128 22 9 5*E132 112 9 5P128 48 9 5Task lightingLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast159Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast158Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastH128 CRET4432NH128 CRLB428NPWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast160Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastH130EW4432NH130WK4228NPH128 CRES4132NH128 CRLB128L*E1332 112 9 5P1328 48 9 5*E732 58 2 5P728 48 2 5*E1232 112 9 5P1228 94 9 5*E432 32 9 5P428 22 9 5*E1232 112 9 5P1228 94 9 5*E132 32 9 5P128 22 9 5*E732 112 12.5 5P728 48 12.5 5Task lighting161Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF BallastH137 PrepEW4432NH137 PrepWK4228NPLamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast163Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast162Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast H201 Mechanical (Up-Pull-Down)ES4232NH201 Mechanical (Up-Pull-Down)LB228NLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast165Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast164Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H125 CRES4132NH125 CRLB128LH125 CRET4432NH125 CRLB428NPH127 CRET4432NH127 CRLB428NPLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast167Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast166Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H127 CRES4132NH127 CRLB128LH132 Womens RestroomEW4432NH132 Womens RestroomWK4228NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 17 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E234 82 2 5P228 42 2 5*E732 112 12.5 5P728 48 12.5 5*E132 58 2 5P128 42 2 5Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS LBF Ballast169Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast168Existing Strip 4' 2 Lamp F34 T12 Standard Ballast H132B Janitorial ClosetES4234NH132B Janitorial ClosetLB228LPH134 Mens RestroomEW4432NH134 Mens RestroomWK4228NPLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast170Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast H134A ElectricalES4232NH134A ElectricalLB228L*E1232 112 9 5P1228 94 9 5*E432 32 9 5P428 22 9 5*E1232 112 9 5P1228 94 9 5*E432 32 9 5P428 22 9 5*E1232 112 9 5P1228 94 9 5*E432 32 9 5P428 22 9 5*E1232 112 9 5P1228 94 9 5171Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF BallastLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast173Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast172Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H129 CRES4132NH129 CRLB128LH129 CRET4432NH129 CRLB428NPH131 CRET4432NH131 CRLB428NPLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast175Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast174Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H131 CRES4132NH131 CRLB128LLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast177Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast176Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H133 CRES4132NH133 CRLB128LH133 CRET4432NH133 CRLB428NPH138 CRET4432NH138 CRLB428NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 18 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E432 32 9 5P428 22 9 5*E2732 112 9 5P2728 94 9 5*E732 85 9 5P728 73 9 5Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast179Existing Strip T8 8' w 4 F32 32 watt Lamp, NBF Ballast Lamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast178Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H138 CRES4132NH138 CRLB128LLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast180Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastH136 CRET4332NH136 CRLB328NPH136 CRES8432NH136 CRLB428NP*E3250 285 9 5P332 146 9 5*E232 112 9 5P228 48 9 5*E232 112 9 5P228 48 9 5*E332 58 2 5P328 48 2 5*E132 112 9 5P128 94 9 5*E1832 112 9 5P1828 94 9 5*E1132 112 9 5P1128 94 9 5Surface mount181Existing Fixture Mercury Vapor 250 watt LampNew Troffer Fixture 4' w 4 F32 32 watt Lamp, HBF BallastH136 CREFMV250H136 CRNT4432HWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast183Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast182Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastH136AEW4432NH136AWK4228NPLamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast185Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast184Existing Vapor Tight T8 4' w 2 F32 32 watt Lamp, NBF BallastMechanical (Up-Pull-Down)EV4232NMechanical (Up-Pull-Down)LB228NH136BEW4432NH136BWK4228NPH136CET4432NH136CLB428NPLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast187Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast186Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastH139 CRET4432NH139 CRLB428NPH141 CRET4432NH141 CRLB428NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 19 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E432 32 9 5P428 22 9 5*E1232 112 9 5P1228 94 9 5*E432 32 9 5P428 22 9 5Task lightingTask lightingLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast189Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast188Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H141 CRES4132NH141 CRLB128LH146 CRET4432NH146 CRLB428NPLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast190Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H146 CRES4132NH146 CRLB128L*E1532 112 9 5P1528 94 9 5*E732 32 9 5P728 22 9 5*E1832 85 9 5P1828 73 9 5*E432 32 9 5P428 22 9 5*E132 58 9 5P128 42 9 5*E1632 112 9 5P1628 94 9 5*E632 32 9 5P628 22 9 5Task lightingTask lightingTask lighting191Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF BallastLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast193Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast192Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H144 CRES4132NH144 CRLB128LH144 CRET4432NH144 CRLB428NPH142 CRET4332NH142 CRLB328NPLamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast195Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastLamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast194Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast H142 CRES4132NH142 CRLB128LLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast197Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast196Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastH135 CRET4432NH135 CRLB428NPH140EW4232NH140LB228LH135 CRES4132NH135 CRLB128LThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 20 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E1332 85 9 5P1328 72 9 5*E632 85 2 5P628 48 2 5*E3165 65 9 5P3114 14 9 5Warm whiteLamp And Ballast Retrofit w 3 F32 28 watt Lamp, NBF Ballast199Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast198Existing Wrap T8 4' w 3 F32 32 watt Lamp, NBF BallastH140 StageEW4332NH140 StageLB328N14 watt LED Par 30 Lamp200Existing Incandescent 65 watt LampTheaterEINC65Theater14WLEDP30Prop StorageET4332NProp StorageTK4228NP* E3232 32 9 5P1628 48 9 5*E232 85 9 5P228 48 9 5*E332 85 9 5P328 73 9 5*E132 112 9 5P128 48 9 5*E2632 85 9 5P2628 73 9 5*E232 112 9 5P228 94 9 5*E232 85 9 5P228 48 9 5ACACAC201Existing Troffer T8 4' w 1 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF BallastTheaterET4132NTheaterLB228NPWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast203Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast202Existing Wrap T8 4' w 3 F32 32 watt Lamp, NBF BallastTheaterEW4332NTheaterWK4228NPWrap Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast205Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast204Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF BallastH102 MusicEW4432NH102 MusicWK4228NPControl RoomET4332NControl RoomLB328NPH102 MusicET4332NH102 MusicLB328NPLamp and Ballast Retrofit w 4 F32 28 watt T8 Lamp, PRS NBF Ballast207Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastTroffer Kit with Reflector 4' w 2 F32 28 watt T8 Lamp, PRS NBF Ballast206Existing Troffer T8 4' w 4 F32 32 watt Lamp, NBF BallastH102A OfficeET4432NH102A OfficeLB428NPH102BET4332NH102BTK4228NPThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 21 of 22 1/24/2012 Energy AuditFacility ContactAuditor(s)Phone Ext. Audit DateBuilding ContactLast RevisedPhone Ext. Utility kWh Rate Demand RateTax RateFacility TypeHeatLamp ReplaceBallast ReplaceSecond Tier Start LevelGroupSpotECM #Fixture QtyLamp WattsFixture WattsFixture HeightHours/DayDays/WeekFCSensor QtySensor / Power PackEnergy SavedSensor Height$10.7919804 141st Place NE Woodinville, WA 98072Mike CampbellNWE Contact Phone(509) 680-3963Fixture ID Existing / Proposed Fixture DescriptionLocationStateCountySurvey NotesMaint. Rate(425) 806-9200(425) 806-74550.0000Ben Eielson Jr & Sr High SchoolAlaskaEielson AfbOffice Phone #Office Fax #1/23/12675 Ravens WayProject NameZip Code0.00%Sq. FeetFairbanks North StarACAddressCity99702Sandra Edwards(206) 303-0121 11/21/11PCB / PercentGolden Valley Elec15.600¢*E232 85 9 5P228 73 9 5*E1240 40 9 5P1288 95*E432 58 9 5P428 48 9 5Globe vanityACLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast209Existing Incandescent 40 watt Lamp8 watt LED A-19 Lamp208Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastH102CET4332NH102CLB328NPH102CEINC40H102C8WLEDA19Lamp and Ballast Retrofit w 2 F32 28 watt T8 Lamp, PRS NBF Ballast210Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF BallastBack Door to StageEW4232NBack Door to StageLB228NP*E232 85 9 5P228 73 9 5*E2440 40 9 5P2488 95*E232 85 9 5P228 73 9 5*E1,741P1,8390Globe vanity211Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast8 watt LED A-19 Lamp213Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF BallastLamp and Ballast Retrofit w 3 F32 28 watt T8 Lamp, PRS NBF Ballast212Existing Incandescent 40 watt LampH102DEINC40H102D8WLEDA19H102DET4332NH102DLB328NPH102EET4332NH102ELB328NPExisting Fixture TotalProposed Fixture TotalSensor TotalThis information is proprietary, not to be disclosed to third parties without prior written permission from Northwest Edison.Energy Audit Calculation 22 of 22 1/24/2012 Lighting - Calculations and Common Conversions Sample Calculation: Fixture Quantity = 52 Existing Fixture (Troffer T8 4’ w 3 F32 32 watt lamp NBF) Proposed Fixture (Light & Ballast retrofitted with 3 lamp F32 T8 28 watt lamp PRS NBF Ballast) Existing Wattage Lamp Wattage = 32 Watts Proposed Wattage Lamp Wattage = 28 Watts Existing Watts/Fixture = 85 Watts Proposed Watts/Fixture = 73 Watts Existing Lighting Power: [ kWEX ] ((# Fixtures) EX x (Watts / Fixture) EX) / (1,000 W/kW) = kWEX 52 x 85/1000 = 4.42 kW (existing) Proposed Lighting Power: [kWPR] ((# Fixtures) PR x (Watts / Fixture) PR) / (1,000 W/kW) = kWPR 52 x73/1000 = 3.796 kW (proposed) Existing Lighting Power Consumption: [kWhEX] (kWEX) x (Annual Burn Hours) = kWhEX 4.42 kW (existing) x (12 hrs/day)x (7days/wk) x 48 wks./year = 17, 821.44 kWh (Existing) Proposed Lighting Power Consumption: [kWhPR] (kWPR) x (Annual Burn Hours) = kWhPR 3.796 kW (proposed) x (12 hrs/day)x (7days/wk) x 48 wks./year = 15, 305.47 kWh (Proposed) The following calculations were performed on a building-by-building basis: Annual Lighting Power Savings: [KwLGHT] (kWEX) – (kWPR) = KwLGHT 4.42 kW – 3.796 kW = .0624 kW Annual Lighting Power Consumption Savings: [kWhLGHT] (kWhEX) – (kWhPR) = kWhLGHT 17,821.44 kWh – 15,305.47 kWh= 2,515.96 kWh Illuminating Engineering Society of North America (IESNA) RECOMMENDED LIGHT LEVELS Table 1.00a – IESNA Lighting Levels Type of Space Category Foot-candles Assembly Areas C2 10 to 15 Office Areas C & E 20 to 50 Dining Areas B3 5 Retail Areas E 50 Classroom Areas C & E 20 to 50 Corridors A 5 Restrooms B 5 Misc. C 10 to 15 Exit/Emergency B 5 Mechanical Rooms C 10 to15 Stairwells A 3 Gymnasium Various 30 to 50 Shop Areas E 50 Target illuminances are based on the recommendations of the IESNA. Space Type Lighting Power Allowance (LPA) W/Sq. Ft. Light Level Target (Foot- candles) CLP Allowance Other Lighting Auditorium 1.4 10 Banking Activity Area 1.8 A 50 Break Room (Dining) 1.3 30 Classroom / Lecture Hall / Training room 1.4 30 Closet 0.9 N/A Conference / Meeting Room 1.4 A 30 Convention Hall Multipurpose Area 1.4 A 30 Corridor 0.7 5 Dining 1.3 A 10 Electrical / Mechanical Area 0.9 N/A Examination Room (Medical) 1.4 D 50 Exercise Area 1.0 A 50 Exhibition Hall 3.0 10 Financial Institution 1.8 A 30 Food Preparation (Kitchen area) 2.0 50 Grocery Store General Merchandise Area 1.9 C 50 Gymnasium Playing Area 1.7 60 Hotel Function Area 2.2> A 30 Hotel Lobby 1.7 A 10 Industrial Area < 20ft. ceiling height 1.9 30 Industrial Area > 20ft. ceiling height 2.7 30 Kitchen / Food Preparation 2.0 50 Laboratory Medical 1.4 D 50 Laboratory - Industrial 1.9 50 Library 1.6 A 30 Lobby - Hotel 1.7 A 10 Lobby - Waiting Area (Other Buildings) 0.9 A 10 Mall General Sales Area (see Retail Sales) Mall Arcade / Atrium / Concourse 1.3 30 Manufacturing (Industrial) Area < 20ft. ceiling height 1.9 50 Manufacturing (Industrial) Area > 20ft. ceiling height 2.7 50 Medical and Clinical Care 1.4 D 50 Multipurpose Room (Meeting Room) 1.4 A 30 Museum 1.4 10 Nurses Stations (Medical) 1.4 D 30 Office, Private (< 300 sq. ft.) 1.4 50 Office, Open Plan (> 300 sq. ft.) 1.4 30 Reception Area (Lobby) 0.9 A 30 Religious Worship 2.9 A 10 Restaurant 1.5 A 30 Restroom 0.7 10 Retail Sales Fine Merchandise Area 1.9 C1 30 Retail Sales General Merchandise Area and Wholesale Showroom 1.9 C 30 Shipping (Industrial) Area < 20ft. ceiling height 1.9 30 Shipping (Industrial) Area > 20ft. ceiling height 2.7 30 Stairs (Support Area) 0.7 5 Storage - Industrial, Commercial 0.9 10 Theater - Motion Picture 0.9 10 Theater - Motion Picture, Lobby 0.9 A 30 Theater - Performance 1.4 10 Warehouse Area < 20ft. ceiling height 1.9 10 Warehouse Area > 20ft. ceiling height 2.7 10 "Other Lighting" Codes: A: plus 0.9 W/Sq. Ft. for Accent Lighting C: plus 1.4 W/Sq. Ft. for Accent Lighting C1: plus 3.5 W/Sq. Ft. for Accent Lighting D: plus 0.9 W/Sq. Ft. for Medical Lighting Lighting on the walls and ceiling improves lighting quality. Numbers refer to quality issues in chart below. Good lighting promotes better learning. Today’s schools must provide a stimulating environment where children will learn best. High quality lighting improves students’ moods, behavior, concentration, and therefore their learning.1 1 - Adapted from “Designing the Future,” AIA Center for Building Performance. Lighting quality means visual comfort, good color, uniformity and balanced brightness. This can be achieved with light- colored materials, glare control, distribution of light to ceiling and walls, and flexible lighting controls. These factors contribute to long-term system performance and aid in student concentration. Shadows, glare, lamp flicker or chaotic patterns can be distracting and should be avoided. (See the chart below for the importance of quality factors.) This guide gives you the knowhow to provide “energy effective” lighting for classrooms – lighting systems that optimize energy use while creating a productive, comfortable, and adaptable learning environment. Energy effective lighting is the best use of financial and natural resources. CLASSROOM LIGHTING “ENERGY EFFECTIVE”LIGHTING FOR CLASSROOMS:COMBINING QUALITY DESIGN AND ENERGY EFFICIENCY TOPICS: The Value of Lighting Quality Lighting Controls Daylighting General Classroom Layouts Computer Classroom Layouts Corridor Layouts Lighting Fixture Specifications QUALITY ISSUES FOR SCHOOL LIGHTING Classrooms with windows help keep children alert. See back page for more information on daylighting. CLASSROOM LIGHTING George Leisey/Photographer, Bellows Falls, VTACHIEVING BETTER & BETTER YET RESULTS Classrooms often are lighted by recessed parabolic fluorescent 2’ x 4’ or 2’ x 2’ fixtures, systems that may not provide the best quality of light for learning. This knowhow guide shows you energy effective solutions that will deliver Better quality with improved energy efficiency. The Better Yet solutions identify further improvements, providing even greater long-term value for schools. know how better yet better yet 1 2 Copyright 2002, Northeast Energy Efficiency Partnerships, Inc. All Rights Reserved. Any use, reproduction or distribution of knowhow or its contents without the express written consent of NEEP is prohibited. Contact www.neep.org or (781) 860-9177 ext. 10. General Computer School Classroom Classroom Corridor Light on walls and ceilings on photo above Control of direct and reflected glare Uniformity Daylight Color rendering and color temperature Lighting controls Quantity of light (horizontal footcandles) 40-50 fc 20-40 fc 10 vert. fc Ve ry Important Important Somewhat Important * Adapted from the Lighting Design Guide. IESNA Lighting Handbook, 9th Edition 1 2 3 4 4 3 CONTROL GLARE Glare occurs when bright light sources and reflections interfere with the viewing of less bright objects. This high contrast may be uncomfortable or even disabling. Direct Glare is caused by fixtures located in front of students. Overhead Glare is caused by fixtures directly overhead. Reflected Glare is caused by bright reflections in surfaces such as glossy papers, shiny surfaces or computer screens. Glare control is especially important in flexible classrooms where desks and tables may face any direction, or in rooms with full time computer use.knowhow classroom lighting2 how to achieve lighting quality COLORS & FINISH TIPS • Acoustic ceiling tiles are often only 70% reflective. Specify 80% or higher. Ceiling tile and paint companies list these values in their product specifications. • Choose wall colors that are light in color (pastels) and at least 65% reflective. • Choose furniture that is light in color (60% or higher). • Always use matte (not shiny or high gloss) surface finishes for walls, ceilings, and furniture. •Limit the use of primary or saturated colors to accents or wainscots, since they absorb a lot of light. ACCENT FOCAL WALLS The brightest surfaces should be the most important surfaces. Lighting the focal walls helps teachers catch and hold students’ attention as well as to improve the visibility of information. • For rooms where desks face one direction, provide focal lighting on the front wall or board. • For multi-purpose spaces, provide focal lighting on two or three walls. • Dedicate light fixtures (such as Type H, J, K) to accent these surfaces. • Light levels on boards or focal walls should be at least equal to light levels on the desktop, or up to twice that level if the board is green or black. For uniformity, the edges of the board should not be less than 1/3 the brightness of the center. • Locate fixtures 1 to 3 feet from the board or vertical surface so that light reflections do not obscure information on the board. CREATE BALANCED BRIGHTNESS Light levels throughout the classroom should not differ greatly from the light level on the desks. Large variations in brightness will cause distraction and fatigue. • Use pendant light fixtures that direct at least 50% of the light upward. • Avoid high contrast. The brightest and darkest room surfaces should be no greater than 3 times or 1/3 as bright as the task (preferred) or 10 times or 1/10 as bright as the task (maximum). • For best student concentration, the brightest surfaces should be desk tops and focal walls. • Use only semi-specular or white louvers to prevent harsh wall patterns. GLARE PREVENTION TIPS • Distribute light to walls and ceilings. Bi-directional fixtures such as A, D, and E (see p. 7) work well. • Use daylight to light walls and ceilings. • Use adjustable blinds or shades that control window glare while retaining view. • Choose higher reflectance room surfaces. • Select only semi-specular or white painted louvers and reflectors. Avoid mirrored or specular (shiny) reflectors or louvers that can be seen from any angle. • Shield the lamp from view with baffles, louvers, lenses or diffusing overlays. • Use lamps of lower brightness. Use more fixtures if necessary. • Only use T5, T5HO and T5 biaxial lamps in coves or indirect applications where the lamp is not visible by classroom users. • Use no more than three (3) T8 lamps in 2’ x 4’ fixtures. 10:1 2:1 1:3 USE HIGHER REFLECTANCES A small increase in room reflectances (lighter-colored surfaces) greatly improves efficiency. The lighter-colored room (below) provides 55% more light on the work surface for the same energy or uses 70% less energy for equivalent brightness. The lighter-colored room also provides better daylight distribution, improves brightness ratios, and is more visually comfortable. These significant improvements are possible at little or no additional cost. Light is both reflected and absorbed by surfaces. Lighter colors reflect more than darker colors. When more light is reflected, room surfaces become more uniform and visually comfortable. Reflectances are deceiving – surfaces absorb more light than you think! Don’t guess: verify finish reflectances with manufacturers. 40% 20% 70% 40% 90% 70% 70% 40% DAYLIGHTING CONTROLS AND PHOTOSENSORS • Orient fixtures parallel to window wall. (See layouts 1 to 5.) • Control each row of lamps separately. • Continuous dimming is much better than switching – there are no distractions and greater energy savings. Electronic dimming ballasts typically dim to 10% of full output. • Start dimming when combined light levels exceed 125% of designed light level. • Specify photosensors of the “continuous response” type. • Use “open loop” controls, i.e. photosensor is located to respond to daylight only, rather than located to sense daylight and the electric light source being controlled. (See windows.lbl.gov/daylighting/designguide/ designguide.htm for reference.) • Specify a 60 second time delay to allow for temporary cloud cover.knowhow classroom lighting3 lighting controls Conserve Energy by: • Reducing power.Use energy efficient sources, ballasts and luminaires. The power limit* for schools is 1.5 w/sf total connected load. • Reducing energy use.Provide lighting controls to reduce the time of use (by switching) or level of power (by dimming). •Wise design.Integrate daylight, room surfaces and layouts. • Proper maintenance.Clean surfaces, group relamp, calibrate controls. * ANSI/ASHRAE/IESNA Std. 90.1 - 2001 OCCUPANCY SENSOR (OS) & PHOTOSENSOR (PS) TIPS Optimum product locations, coverage areas and wiring requirements vary between products – work closely with manufacturers to verify appropriate coverage, installation and location. Redesign may be required if products are substituted during construction. Lighting controls give teachers the flexibility to set the lighting level to match the tasks being performed. Controls also turn off lights automatically in an empty room or dim the electric lights when there is enough daylight. For lighting controls to operate properly, they must be checked and set at the beginning of each school year. Calibration and maintenance of lighting controls are essential for energy conservation. MULTI-LEVEL SWITCHING • Avoid less-efficient one-lamp ballasts. Use master-slave wiring between adjacent fixtures and use multi-lamp ballasts. (See layouts 1, 6 & 7.) • Use switchable two-level ballasts for three-lamp fixtures. Occupants can choose between two levels of light while maintaining uniform distribution. SEPARATE ROW SWITCHING • Provide multiple levels in a uniform pattern by factory-wiring each row of lamps separately (shown below) or dimming. Avoid distracting switching patterns. * As compared to standard manual switching for a 5,000 sq. ft. building with a 1.2 watts per sq. ft. connected load. MATCH CONTROLS TO ROOM TYPES PS General Computer School Potential Classroom Classroom Corridor Energy Savings * Ceiling Occupancy Sensor, Manual-On, Auto-Off 30% Multi-Level Switching with Ceiling Occupancy Sensor 35% Daylight Controls with Occupancy Sensor 45% Multi-Level Switching 15% Building Time Controls 10% Appropriate Sometimes Appropriate Not Appropriate George Leisey/Photographer, Bellows Falls, VTThe row of lights closest to the window dims in response to daylight. OCCUPANCY SENSORS • Require that lights turn off automatically when spaces are not occupied. • Use manual-on automatic switches (AS) with ceiling or wall mounted sensors (OS) for all spaces with daylight or receiving spill light from other rooms. Manual-on prevents unnecessary activation when daylight is adequate or when doors are opened. The switches also allow the lights to be turned off for AV purposes. • Manual-off is recommended only as a temporary override. Sensor must stay in automatic-off mode at all times. • Use ultrasonic sensors – they are more sensitive than infrared to subtle motion and less likely to turn lights off in an occupied room. Dual technology is not required when sensor is to be used with manual-on capability. • Set sensors for medium to high sensitivity and 10-minute delay. • Locate sensors inside classrooms so they do not “see” corridor motion. AS OS classroomlighting knowhow classroom lightingLAYOUT 2 - BETTER LAYOUT 3 – BETTER YET What Makes Layout 3 ‘Better Yet’? • Combination direct/indirect more comfortable than totally direct or surface systems. Works well for part-day computer use. • Direct/indirect more energy efficient than totally indirect systems. • Pendants faster to install than recessed fixtures, and easier to maintain. • Most cost effective. Greatest long-term value for investment. • Overhead glare not a problem, due to T8 lamp and lighted ceiling. • Wide distribution and white louvers reduce contrast and increase uniformity. • Separate light fixtures accentuate front board. Controls Upgrade:3 Provide dimming ballasts and photosensor for better control of light levels. Alternative 3A:Use Type D T-8 fixtures with parabolic louvers, to provide more shielding for intensive computer use. What Makes Layout 2 ‘Better’? • More visually comfortable than recessed or totally direct fixtures. • Wider distribution puts more light on walls. • White louvers and spill light on ceiling reduce fixture glare. • Two-level switching of continuous rows more uniform. • Best choice for ceiling lower than 8’-9’. Controls Upgrade:Switch fixture adjacent to window separately, and connect to photosensor for automatic response to daylight. This is more reliable than leaving daylight control to the teachers. Alternative 2A:Add 3” stems and diffuser on top, to increase light on ceiling. LAYOUT TIPS FOR WIDER ROOMS • For rooms 28 to 34 feet wide with continuous windows along the long wall, consider shifting both rows of fixtures 2 to 4 feet farther away from the windows. • For rooms 34 to 38 feet wide, use three rows of fixtures. • Perform lighting level calculations to verify expected light levels. master-slave wiring general and multi-purpose classrooms K A J B H D COMPARISON CHART FOR GENERAL CLASSROOMS For classrooms from 750 to 850 sf. Base Case1 Layout 1 Layout 2 Layout 3 Interest Uniformity Comfort & Quality Power Density (w/sf)1.32 1.01 1.16 1.16 Energy Savings (Potential %)2 Base 46% 40% 40% First Cost (% Increase)Base 40% 170% 115% Maintained Footcandles (fc) 50-60 45-50 45-50 45-50 OVERALL VALUE ACCEPTABLE BETTER BETTER YET Layouts shown will meet light level requirements and current energy codes if they are within the given size ranges, between 8’0” and 9’6” ceiling heights. 1 - Base case assumptions used for comparison are 12 fixtures, recessed 3-lamp 2’x4’ parabolic 12- cell with T8 electronic ballasts and two-level switching. 2 - Includes savings due to controls shown. Control upgrades will yield greater energy savings. 3 - Go to www.designlights.org/classroomwiring/ for schematic daylighting control diagrams. C What Makes Layout 1 ‘Acceptable’? • Fixtures are oriented parallel to window; best for front focus, multipurpose uses, and daylighting. • Fixtures use minimum 3” deep louver for greater comfort. • Separate light on front board increases visibility and student attentiveness. • Master-slave wiring saves energy by using multi-lamp ballasts. • Occupancy sensors with manual-on switches save more energy in daylit spaces. See page 7 for complete fixture specifications.ACCEPTABLEBETTER BETTER YET 4 LAYOUT 1 – ACCEPTABLE 34’ 10’ 16’ 12’ 12’ 24’ 16’ OS AS OS AS OS AS 5 LAYOUT 4 – BETTER LAYOUT 5 – BETTER YET computer classrooms What Makes Layout 5 ‘Better Yet’? • Combination direct/indirect more comfortable than totally direct. • Direct/indirect more energy efficient than totally indirect. • More cost effective. Greatest value for investment. • T8 lamp and lighted ceiling prevent overhead glare. • Higher light levels and 2-level switching more flexible for computer rooms with paper tasks. • Separate fixtures used for front board when video screen not in use. Controls Upgrade:Provide dimming ballasts and wall box dimmer for better light level control. Alternative 5A:Same layout. Use Type E three-lamp T-8 fixtures. • Direct and indirect components can be controlled separately. • Greatest flexibility for rooms used for both computers and paper tasks. What Makes Layout 4 ‘Better’? • Indirect lighting more comfortable than totally direct systems. • No overhead glare. • Greater uniformity of light on ceilings and walls. • Two levels of control provide flexibility and energy savings. • Glowing sides reduce contrast, increase comfort. • Pendant fixtures faster to install and easier to maintain. Controls Upgrade:Provide a third switch to control lamps nearest the front of the room for better contrast on video screen. Alternative 4A:Same layout. Use fixture Type F1 with T5HO lamps. (See T5 box on page 6.) • High lumen output of the T5HO lamp requires half the amount of lamps. • Illuminance decreased. Appropriate for computer use only. J D E F1 “Pendant fixtures can save installation time and cost, since they only require one power feed at the end of each row.” Electrical Contractor, Braza Electric Use A Different Approach for Computer Rooms • Avoid totally direct lighting systems. • Recessed fixtures leave ceilings dark. Contrast between bright lamps or lens and dark ceiling is too great for computer rooms. • Specular (shiny) louvers or reflectors create overhead glare (see diagram)and harsh patterns. • Small-cell louvers are very inefficient and create cave-like rooms. • Always provide some light on ceiling and walls. Distribute light as uniformly as possible. COMPARISON CHART FOR COMPUTER CLASSROOMS For computer classrooms from 750 to 850 sf. Base Case1 Layout 4 Alt. 4A Layout 5 Interest Uniformity Comfort & Quality Power Density (w/sf)1.32 1.01 1.01 1.01 Energy Savings (Potential %)2 Base 46%46% 46% First Cost (% Increase) Base 12%30% 30% Maintained Footcandles (fc) 40-50 35-40 30-35 35-40 OVERALL VALUE BETTER BETTER BETTER YET Layouts shown will meet light level requirements and current energy codes if they are within the given size ranges, between 8’6" and 9’6" ceiling heights. 1 - Base case used for comparison is 12 fixtures, recessed 3-lamp 2’ x 4’ deep-cell VDT parabolic, 27-cells, with T8 electronic ballasts and two-level switching. 2 - Includes savings due to controls shown. Control upgrades will yield greater energy savings. OVERHEAD GLARE ZONE LUMINAIRE SHIELDING ANGLE "NORMAL ANGLES" OF VIEW (45°) F 16’ 34’ 12’ 12’ 10’ AS OS AS OS knowhow classroom lightingPhoto by Whitney Cox. Courtesy of Norman Rosenfeld Architect. 6knowhow classroom lightingschool corridors LAYOUT 7 – BETTER YET What Makes Layout 6 ‘Better’? • One-lamp fixtures, oriented parallel to corridor, provide uniform distribution on lockers and walls. • Master-slave ballast wiring saves energy by using multi-lamp ballasts. What Makes Layout 7 ‘Better Yet’? • Surface mounted fixture allows for greater ceiling height. • Works well with any tile system and access panels. • Wide distribution and white louvers provide most uniformity. SCHOOL CODE TIP If your state code requires minimum light levels, consider: • Computer calculations for greater accuracy. • Precise definition of task area. • High output ballasts. • Higher room reflectances. 1-Base case assumptions used for comparison are 2’x4’ lensed fixtures, with two T8 lamps and electronic ballasts, spaced 12’ on center, oriented perpendicular to the corridor, and on time clock control. 2-Includes savings due to controls shown. Layout tips for wider corridors: Layout 7 works for 10’ corridor. Layout 6 limited to 9’ corridor. master-slave ballast wiring LAYOUT 6 – BETTER M L COMPARISON CHART FOR SCHOOL CORRIDORS For corridors up to 9 feet wide. Base Case1 Layout 6 Layout 7 Interest Uniformity Comfort & Quality Power Density (w/sf) 0.61 0.49 0.49 Energy Savings (Potential %)2 Base 20% 20% First Cost (% Increase) Base 60% 23% Maintained Footcandles (fc)3 on walls 5-15 8-12 8-12 OVERALL VALUE ACCEPTABLE BETTER BETTER YET T5 LAMPS T5 lamps are not a replacement for T8 lamps. They are different lengths, use different sockets and ballasts, and have different pros and cons. Advantages: • Smaller size allows for greater reflector control. • Smaller lamps and ballasts allow for smaller fixtures. • Higher lumen output (T5HO) reduces the number of lamps and ballasts to maintain. • Costs for T5 fixtures are competitive with T8 fixtures. • Efficiency of T5 and T8 systems are comparable. Disadvantages: • Excessive brightness of T5 and T5HO limits their use to primarily indirect fixtures. • Current replacement cost of components (lamps and ballasts) higher than T8, but will reduce over time. • Using one T5HO lamp instead of two T8 lamps eliminates two-level switching options. • Adds an additional lamp type to a project, complicating ordering, maintenance and repair. USE ENERGY EFFICIENT SOURCES Fluorescent lighting today is not only more energy efficient, but rivals incandescent in quality, comfort and aesthetics. Lamps are available in a variety of superior colors providing a natural appearance for people and room colors. Electronic high frequency ballasts eliminate the flicker and noise of older model ballasts. The graph compares efficacies (mean lumens per watt) of common fluorescent lamp/ ballast combinations with the efficacy of a tungsten halogen (incandescent) lamp. Lamp/Ballast Efficacies 0 20 40 60 80 100 T8 & T5 T5 HO Mean Lumens Per WattLamp Types T5 Twin CFL Tu ngsten Halogen lamp and ballast specifications The following specifications apply to all of the fixture types shown on page 7 for both T8 and T5 linear fluorescent systems. Lamp Criteria: • Minimum Color Rendering Index (CRI) of 80. • Color temperature of 3500 Kelvin or 4100 Kelvin. Provide mockup for other colors. Note: Generic color code "835" means CRI of 80 and color temperature of 3500. • Mean lamp lumens (at 40% of rated life) at least 94% of initial lumens. Ballasts and Lamp-Ballast System Criteria: • High-frequency electronic using instant start or program rapid start circuitry. • Harmonic distortion shall not exceed 20%. • Ballast factor minimum 0.88 for T8 and 1.0 for T5. • Consider "low" or "high" ballast factor ballasts to optimize lamp count, input watts, and power density. Limit any ballast type to only one type of fixture. • Mean system efficacy (mean lamp lumens times # of lamps divided by ballast input power): Minimum 83 lumens/watt for 4’ long T8 at 25°C and minimum 80 lumens/watt for 4’ long T5HO at 35°C. L1 M1 8’ 34’ 8’ A+ knowhow classroom lightingA. Pendant Direct/Indirect Baffled LAMPS: (2) 32W T8 fluorescent, 835 color DESCRIPTION: Pendant mounted. White cross- baffles. Minimum 35° lengthwise shielding. Wire for separate row switching. Multi-lamp ballasts. 80% min. fixture efficiency. Nominal 59 watts per (2) lamps. F and F1. Pendant Indirect – Perforated Sides LAMPS: (2) 32W T8 fluorescent, 835 color DESCRIPTION: Pendant mounted. 85% indirect component with perforated sides. Wire for separate row switching. Multi-lamp ballasts. 78% min. fixture efficiency. Nominal 59 watts per (2) lamps. Alternative F1: (1) 54W T5HO lamp, 95% indirect component. 88% min. fixture efficiency. Nominal 117 watts per (2) T5HO lamps. D. Pendant Direct/Indirect Parabolic LAMPS: (2) 32W T8 fluorescent, 835 color DESCRIPTION: Pendant mounted. Semi-specular low-iridescent parabolic cross-baffles minimum 1-3/4" deep, 3" on center. Wire for separate row switching. Multi-lamp ballasts. 80% min. fixture efficiency. Nominal 59 watts per (2) lamps. C. Two-Lamp Recessed Parabolic 2’ x 4’ LAMP: (2) 32W T8 fluorescent, 835 color DESCRIPTION: Recessed. White baked enamel reflector (minimum 90% reflectance) and minimum 3" deep parabolic louvers. 12 cells. Wire for separate row switching. Multi-lamp ballasts. 76% min. fixture efficiency. Nominal 59 watts per (2) lamps. B. Surface Mounted Baffled, Wide Distribution LAMPS: (2) 32W T8 fluorescent, 835 color DESCRIPTION: Same as Type ‘A’ except surface mounted. Luminous sides for wide distribution. 60% min. fixture efficiency. lighting fixture schedule A These specifications are for cost-effective fixtures that ensure a balance of performance, energy savings, comfort, lighting quality and ease of maintenance. Many standard products meet these generic specifications. Even small variations from these specifications may result in undesirable effects. For example, specular louvers or reflectors may increase light levels and reduce reflected glare, but will also increase overhead glare and decrease desirable room surface brightness. D E. Pendant Direct/Indirect Three-Lamp LAMPS: (3) 32W T8 fluorescent, 835 color DESCRIPTION: Pendant mounted. 2 lamps up and 1 lamp down. Semi-specular low-iridescent parabolic cross-baffles, minimum 1-3/4" deep and 3" on center. Optional lamp shield for center lamp. Wire for separate row switching. Multi-lamp ballasts. 71% min. fixture efficiency. Nominal 89 watts per (3) lamps. E K. Bracket Mounted Asymmetric Board Light LAMP: (1) 32W T8 fluorescent, 835 color DESCRIPTION: Wall mounted. Asymmetric reflector. Cantilever 6" to 12" from board. Multi- lamp ballasts. 71% min. fixture efficiency. Nominal 59 watts per (2) lamps. J. Recessed 1’ x 4’ Linear Wall Wash LAMPS: (2) 32W T8 fluorescent, 835 color DESCRIPTION: Recessed wallwasher with semi- specular aluminum reflector. Locate 2’ to 3’ away from wall. Nominal 59 input watts per (2) lamps, 67% minimum fixture efficiency. H. Fluorescent Channel with Valance LAMP: (1) 32W T8 fluorescent, 835 color DESCRIPTION: Surface mounted standard channel concealed by architectural valance. Multi-lamp ballasts. Nominal 30 watts per fixture.H L and L1. Surface Mounted Corridor Wall Lighter LAMP: (1) 32W T8 fluorescent, 835 color DESCRIPTION: Surface mounted. White baked enamel housing and prismatic lens. Multi-lamp ballasts. 78% min. fixture efficiency. Nominal 59 watts per (2) lamps. (Available as pendant version if ceiling height is greater than 9’0".) Alternative: White cross baffles. 68% min. fixture efficiency. F 7 B J M and M1. Recessed Fluorescent 1’ x 4’ LAMPS: (1) 32W T8 fluorescent, 835 color DESCRIPTION: Recessed. White upper reflector and white parabolic louvers 6" on center. Multi-lamp ballasts. Nominal 59 input watts per (2) lamps. 73% min. fixture efficiency. Alternative: Prismatic lens. 65% min. fixture efficiency. K Valances (Type H) are an inexpensive way to light focal walls, but don’t provide the best uniformity. C AMBIENT LIGHTING WALL ACCENT OPTIONS CORRIDOR OPTIONS L1 L F1 M M1 George Leisey/Photographer, Bellows Falls, VT 8 Disclaimer: These guides are provided for information purposes only. Neither the Sponsoring Agents nor any of their employees or sub-contractors makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any data, information, method, product or process disclosed in this document, or represents that its use will not infringe any privately owned rights, including, but not limited to, patents, trademarks or copyrights. better lighting = better learning knowhow classroom lightingResearch has shown that information presented visually is absorbed faster and retained more reliably than information presented orally.1 To promote learning, provide an environment where teachers and students can perform their visual tasks comfortably, quickly and accurately. Lighting impacts the psychological and emotional needs of students: it makes a room attractive and pleasant, stimulates learning and improves behavior. High quality, energy effective lighting is a wise investment for our schools! 1 - Adapted from Good Lighting for Schools by Fodergemeinshaft GutesLicht. www.designlights.org Efficiency Vermont Conectiv Power Delivery Jersey Central Power & Light, A FirstEnergy Company Long Island Power Authority National Grid: · Massachusetts Electric · Narragansett Electric · Granite State Electric · Nantucket Electric Northeast Utilities: · The Connecticut Light & Power Company · Western Massachusetts Electric Company NSTAR Electric NYSERDA New York State Energy Research and Development Authority United Illuminating Unitil: · Fitchburg Gas & Electric Light Company Northeast Energy Efficiency Partnerships, Inc. Content/graphics by Hayden McKay Lighting Design Inc. Support from Lindsley Consultants Inc. Additional consultation by Donna Leban, Mark Loeffler, Charles Michal and Naomi Miller. Market Research Review by Light/Space/Design. Graphic design by Outsource. For commercial lighting services in your area contact: Students and teachers benefit from a connection to the outdoors – windows not only provide daylight but also a sense of time, weather, and distant focal points – all of which prevent fatigue and contribute to greater alertness in class. high quality checklist Use fixtures that provide comfort by distributing some light on ceilings and walls, such as direct/indirect or semi-indirect fixtures. Use light-colored finishes on room surfaces to maximize reflected light. Include windows or skylights in every classroom. Design electric lighting to maximize benefits from natural lighting. Use interior blinds to control window glare. Use lighting controls to increase flexibility and decrease energy use for each room. Provide additional light for front wall or board, and other important room features. ACKNOWLEDGEMENTS The LIGHTING KNOWHOW series was developed, funded and sponsored by the following members of the DesignLights Consortium: “Visual richness in classrooms stimulates creative thinking. Quality lighting and flexible lighting controls are major contributors to a positive learning environment.” Professor, Texas Christian University ✓ daylighting Daylighting is a key to lighting quality. Students with daylight in their classrooms (from windows and skylights) perform 20 to 25% better on reading and math tests than students without access to daylight.2 The same study shows that students in classrooms with larger window areas progress up to 20% faster than their counterparts in rooms with smaller window areas. Go to http://www.h-m-g.com to read the study that presents these data. DAYLIGHTING HINTS Daylight only saves energy if the electric lights are dimmed or switched off. Dimming lights in response to daylight is less distracting than switching, but requires dimming ballasts and a commitment to maintenance. Avoid direct solar penetration – it creates glare and overheating. Use neutral- colored window glass and exterior overhangs to control window glare and solar heat gain.Balance the light by providing daylight from more than one direction. See page 3 and classroom layouts for daylight controls. 2 - The Heschong-Mahone Group (published 1999) ✓ ✓ ✓ ✓ ✓ ✓George Leisey/Photographer, Bellows Falls, VT DESCRIPTION OF COLUMN HEADINGS FOR CEE HIGH-PERFORMANCE 4’ T8 LAMP AND BALLAST QUALIFYING LISTS Column Heading Description Manufacturer By clicking on this field, the user will be directed to the manufacturer Web site and on-line catalogue. Product Name, Order Code, Model Number Information provided from manufacturers on product including ordering codes. Color Temperature The perceived “whiteness” of the light source in Kelvin. Rated Life Operating hours that a lamp lasts at 3 hours duty cycle depending upon the type of Ballast. IS Instant Start Ballast RS/PRS Rapid Start or Programmed-Rapid Start Initial Lumens Amount of luminous flux emitted by a lamp after 100 hours of operation at 25C. Mean Lumens Amount of luminous flux emitted by a lamp at 40% of the rated lamp life. CRI Color Rendering Index. The effect that the spectral characteristic of the light emitted by the lamp has on the color appearance of the objects illuminated by the lamp. Lumen Maintenance Ratio of mean lumens to initial lumens. Voltage Operating voltage for ballasts. Multiple voltage ballasts (also referred to as Universal Voltage) designated with two voltage values. Input Watts Reported ANSI rated watts for ballast. BEF Ballast Efficacy Factor. This is a calculated value with the exception of Howard Industries, who provides this value in their catalogue. Ballast Start Type Ballast starting circuitry identified as Instant (I), Rapid (R) or Programmed-Rapid (P). Ballast Factor Ratio of lamp lumens produced when lamp(s) operated by a given ballast to the lamp lumens produced when the lamp(s) operated on a reference ballast. Ballast Factor Range Ballast factor range of low, normal or high based upon CEE specification.LAMPBALLAST HP T8 Lamps QUALIFYING PRODUCTS High-Performance 4’ T8 Lamps CEE High-Performance Commercial Lighting Systems Initiative IS RS/PRS F32T8/841 F32T8/841 Linear 4100 20,000 24,000 3100 2950 82 0.95 F32T8/850 F32T8/851 Linear 5000 20,000 24,000 3100 2950 82 0.95 455338 ULTIMATE US 32W/835 Linear 3500 53,000 60,000 3100 2900 80 0.94 455334 ULTIMATE US 32W/841 Linear 4100 53,000 60,000 3100 2900 80 0.94 529632 F32T8/835/HL Linear 3500 24,000 30,000 3300 3135 85 0.95 529732 F32T8/841/HL Linear 4100 24,000 30,000 3300 3135 85 0.95 529832 F32T8/850/HL Linear 5000 24,000 30,000 3200 3040 85 0.95 Contractor Lighting BEST LAMP 12-32T8-850 12-32T8-850 Linear 5000 20,000 24,000 3100 3000 85 0.97 F32T8/830 XP Linear 3000 24,000 30,000 3100 2950 83 0.94 F32T8/835 XP Linear 3500 24,000 30,000 3100 2950 83 0.94 F32T8/841 XP Linear 4100 24,000 30,000 3100 2950 83 0.94 F32T8/850 XP Linear 5000 24,000 30,000 3100 2950 83 0.94 F32T8/865 XP Linear 6500 24,000 30,000 3100 2950 83 0.94 FLTHNVX5V F32T8/841TL Linear 4100 24,000 24,000 3150 2950 85 0.94 FLTHNVX6V F32T8/850TL Linear 5000 24,000 24,000 3150 2950 85 0.94 Tri-Lux/Medistar FLTHNVXDV F32T8/859TL Linear 5900 24,000 24,000 3150 2975 85 0.94 n/a F32T8/830K/HL Linear 3000 24,000 24,000 3100 2915 83 0.94 n/a F32T8/835K/HL Linear 3500 24,000 24,000 3100 2915 83 0.94 n/a F32T8/841K/HL Linear 4100 24,000 24,000 3100 2915 83 0.94 n/a F32T8/850K/HL Linear 5000 24,000 24,000 3000 2820 83 0.94 n/a F32T8/865K/HL Linear 6500 24,000 24,000 3000 2820 83 0.94 13986 F32T8/827/HE Linear 2700 24,000 30,000 3100 2915 85 0.94 13987 F32T8/830/HE Linear 3000 24,000 30,000 3100 2915 85 0.94 13988 F32T8/835/HE Linear 3500 24,000 30,000 3100 2915 85 0.94 13989 F32T8/841/HE Linear 4100 24,000 30,000 3100 2915 85 0.94 13990 F32T8/850/HE Linear 5000 24,000 30,000 3100 2915 85 0.94 32865 F32T8/865/HE Linear 6500 24,000 30,000 2976 2798 85 0.94 B32841 FB32T8/841/HE U-Bend 4100 20,000 24,000 3100 2900 85 0.94 B32850 FB32T8/850/HE U-Bend 5000 20,000 24,000 2980 2830 85 0.95 Full Spectrum Solutions, Inc Maxum 5000 F32T8 Shatterproof 204453SC F32-T8 48" Shatter Proof 5000K Linear 5000 34,000 28,000 3300 2950 91 0.95 FN6C32A2F/HLO FN6C32A2F/HLO Linear 4100 20,000 24,000 3200 3000 85 0.94 FF32/T8/830/HLO FF32/T8/830/HLO Linear 3000 20,000 24,000 3200 3000 85 0.94 FF32/T8/835/HLO FF32/T8/835/HLO Linear 3500 20,000 24,000 3200 3000 85 0.94 FF32/T8/841/HLO FF32/T8/841/HLO Linear 4100 20,000 24,000 3200 3000 85 0.94 FF32/T8/850/HLO FF32/T8/850/HLO Linear 5000 20,000 24,000 3100 2915 85 0.94 10327 F32T8/XL/SPX30/HL/ECO Linear 3000 25,000 36,000 3100 2915 85 0.94 10326 F32T8/XL/SPX35/HL/ECO Linear 3500 25,000 36,000 3100 2915 85 0.94 10322 F32T8/XL/SPX41/HL/ECO Linear 4100 25,000 36,000 3100 2915 82 0.94 42556 F32T8/XL/SPX50/HL/ECO Linear 5000 25,000 36,000 3000 2820 80 0.94 109404 F32T8/850/ECO Linear 5000 24,000 24,000 3050 2900 86 0.95 109428 F32T8/865/ECO Linear 6500 24,000 24,000 3050 2900 86 0.95 35153 F32T8/850/ECO/IC Linear 5000 24,000 24,000 3050 2900 85 0.95 35154 F32T8/865/ECO/IC Linear 6500 24,000 24,000 3050 2900 85 0.95 35155 F32T8/830/ECO/HL Linear 3000 24,000 24,000 3100 2950 85 0.95 35156 F32T8/835/ECO/HL Linear 3500 24,000 24,000 3100 2950 85 0.95 35157 F32T8/841/ECO/HL Linear 4100 24,000 24,000 3100 2950 85 0.95 35158 F32T8/850/ECO/HL Linear 5000 24,000 24,000 3100 2950 85 0.95 35161 F32T8/850/ECO/XL Linear 5000 40,000 40,000 2950 2800 85 0.95 CoverShield 90093 F32T8/850/ECO/IC/CS Linear 5000 24,000 24,000 3050 2900 86 0.95 POWR-TEK PLUS HH301 F32T8POWR-TEK PLUS Linear 5000 36,000 36,000 3150 2992 89 0.95 VITEK93+HH9312 F32T8VITEK93+Linear 6700 36,000 36,000 3010 2860 93 0.95 01947 F32T8/830/HL/ECO Linear 3000 24,000 24,000 3100 2950 85 0.95 01948 F32T8/835/HL/ECO Linear 3500 24,000 24,000 3100 2950 85 0.95 01949 F32T8/841/HL/ECO Linear 4100 24,000 24,000 3100 2950 85 0.95 02858 F32T8/850/HL/ECO Linear 5000 24,000 24,000 3100 2950 85 0.95 03753 F32T8/830/HL/ECO/IC Linear 3000 24,000 24,000 3100 2950 83 0.95 03754 F32T8/835/HL/ECO/IC Linear 3500 24,000 24,000 3100 2950 83 0.95 03755 F32T8/841/HL/ECO/IC Linear 4100 24,000 24,000 3100 2950 83 0.95 03756 F32T8/850/HL/ECO/IC Linear 5000 24,000 24,000 3100 2950 83 0.95 04933 F32T8/865/HL/ECO/IC Linear 6500 24,000 24,000 2950 2800 83 0.95 681 F32T8/HL/830 Linear 3000 24,000 24,000 3100 2950 85 0.95 682 F32T8/HL/835 Linear 6500 24,000 24,000 3100 2950 85 0.95 683 F32T8/HL/841 Linear 4100 24,000 24,000 3100 2950 85 0.95 684 F32T8/HL/850 Linear 5000 24,000 24,000 3100 2950 85 0.95 IWI Lighting IntegraLight 91613PIL F32T8IntegraLight Linear 5000 36,000 36,000 3100 2950 86 0.95 Espen Technology, Inc. (Last Updated 12/30/11) Color Temp (K)Mfr Product Name Order Code Model Number or Description Legend: Red Font is a product no longer manufactured, but existing stock still meets the criteria as qualifying products CRI Lumen Maintena nceShape Mean Lumens Initial Lumens Fusion HLO Series Tri-Lux n/a Energy Wiser High Lumen High Lumen Eiko High Lumen Ecolux High Lumen Atlas Lighting Products, Inc. Fusion Lamps CRI Lighting Rated Life (hrs)1 ProLume Hygrade (also NARVA, Hygrade/Narva, and TriPhase) DLU Lighting USA Bulbrite Howard Industries N/A Aura Light Accendo | AURA ULTIMATE US Long Life Eiko General Electric Company Halco Lighting Technologies H&H Industries, Inc. Elite HE HP T8 Lamps IS RS/PRS Color Temp (K)Mfr Product Name Order Code Model Number or Description CRI Lumen Maintena nceShape Mean Lumens Initial Lumens Rated Life (hrs)1 413830 F29T8/830/EC-HL Linear 3000 24,000 24,000 3100 2915 82 0.94 413835 F29T8/835/EC-HL Linear 3500 24,000 24,000 3100 2915 82 0.94 413841 F29T8/841/EC-HL Linear 4100 24,000 24,000 3100 2915 82 0.94 413850 F29T8/850/EC-HL Linear 5000 24,000 24,000 3070 2885 82 0.94 403830 F32T8/830 Linear 3000 24,000 36,000 3100 2915 82 0.94 403835 F32T8/835 Linear 3500 24,000 36,000 3100 2915 82 0.94 403841 F32T8/841 Linear 4100 24,000 36,000 3100 2915 82 0.94 403850 F32T8/850 Linear 5000 24,000 36,000 3100 2915 82 0.94 403865 F32T8/865 Linear 6500 24,000 30,000 3100 2950 82 0.94 453830 F32T8/830/SQ (HL)Linear 3000 60,000 70,000 3100 2976 80.5 0.96 453835 F32T8/835/SQ (HL)Linear 3500 60,000 70,000 3100 2976 80.5 0.96 453841 F32T8/841/SQ (HL)Linear 4100 60,000 70,000 3100 2976 80.5 0.96 453850 F32T8/850/SQ (HL)Linear 5000 60,000 70,000 3025 2904 80.5 0.96 Color Brite T8 L-359 F32T8 CB50 Linear 5000 30,000 30,000 3200 3025 90 0.94 L-334 F32 T8 830 Linear 3000 30,000 30,000 3100 2925 85 0.94 L-335 F32 T8 835 Linear 3500 30,000 30,000 3100 2925 85 0.94 L-336 F32 T8 841 Linear 4100 30,000 30,000 3100 2925 85 0.94 L-337 F32 T8 850 Linear 5000 30,000 30,000 3100 2925 85 0.94 L-385 F32 T8 835 U U-Bend 3500 30,000 30,000 3100 2925 85 0.94 L-386 F32 T8 841 U U-Bend 4100 30,000 30,000 3100 2925 85 0.94 L-387 F32 T8 850 U U-Bend 5000 30,000 30,000 3100 2925 85 0.94 PMX135 F32T8/AWX8550/TC Linear 5000 24,000 30,000 3050 2898 85 0.95 PMX139 F32T8/VLX9155/TC Linear 5500 24,000 30,000 3100 2950 91 0.95 51048 F32T8/830 Linear 3000 24,000 24,000 3100 2900 85 0.94 51045 F32T8/835 Linear 3500 24,000 24,000 3100 2900 85 0.94 51046 F32T8/841 Linear 4100 24,000 24,000 3100 2900 85 0.94 51047 F32T8/850 Linear 5000 24,000 24,000 3100 2900 85 0.94 51053 F32T8/865 Linear 6500 24,000 24,000 3100 2900 85 0.94 51058 F32T8/835XL Linear 3500 24,000 24,000 3200 3020 85 0.94 51050 F32T8/841XL Linear 4100 24,000 24,000 3200 3020 85 0.94 51049 F32T8/850XL Linear 5000 24,000 24,000 3200 3020 85 0.94 51060 F32T8/865XL Linear 6500 24,000 24,000 3200 3020 85 0.94 Midwest Industrial Lighting F32T8-850HL 45728 FE32-850HL Linear 5000 24,000 30,000 3150 2995 86 0.95 4187 FL32T8/835/HO/ECO Linear 3500 20,000 24,000 3200 3050 82 0.95 4188 FL32T8/835/HO/ECO Linear 3500 20,000 24,000 3200 3050 82 0.95 4189 FL32T8/850/HO/ECO Linear 5000 20,000 24,000 3200 3050 82 0.95 4182 FL32T8/850/ECO Linear 5000 20,000 24,000 3000 2850 82 0.95 10322AL T8 ARMORLITE 841 HL LAMP Linear 4100 25,000 36,000 3100 2915 82 0.94 42556AL T8 ARMORLITE 850 HL LAMP Linear 5000 25,000 36,000 3100 2915 82 0.94 18041 ORION F32 T8 / 841 Linear 4100 36,000 36,000 3100 2915 82 0.94 18050 ORION F32 T8 / 850 Linear 5000 36,000 36,000 3100 2915 85 0.94 21660 FO32/850XPS/ECO3 Linear 5000 24,000 40,000 3100 2914 81 0.94 21680 FO32/830/XPS/ECO3 Linear 3000 24,000 40,000 3100 2914 85 0.94 21659 FO32/865XPS/ECO3 Linear 6500 24,000 40,000 3000 2820 81 0.94 21697 FO32/835/XPS/ECO3 Linear 3500 24,000 40,000 3100 2914 85 0.94 21681 FO32/841/XPS/ECO3 Linear 4100 24,000 40,000 3100 2914 85 0.94 22168 FBO32/850XPS/6/ECO U-Bend 5000 18,000 24,000 2980 2830 85 0.94 22143 FO32/850/ECO Linear 5000 24,000 30,000 2950 2773 80 0.94 22026 FO32/850XP/ECO Linear 5000 24,000 40,000 3000 2820 85 0.94 22002 FO32/850/XP/XL/ECO Linear 5000 36,000 52,000 2950 2832 80 0.96 13987-3 F32T8/ADV830/ALTO Linear 3000 24,000 30,000 3100 2950 85 0.97 13988-1 F32T8/ADV835/ALTO Linear 3500 24,000 30,000 3100 2950 85 0.97 13989-9 F32T8/ADV841/ALTO Linear 4100 24,000 30,000 3100 2950 85 0.97 13990-7 F32T8/ADV850/ALTO Linear 5000 24,000 30,000 3100 2935 82 0.97 91610 F32T8/835 - Hi Lumen Linear 3500 30,000 36,000 3100 2950 85 0.95 91611 F32T8/841/Hi Lumen - Superior Life Linear 4100 30,000 36,000 3100 2950 85 0.95 91612 F32T8/Sky-Brite Plus Hi Lumen Linear 5000 30,000 36,000 3100 2950 85 0.95 91613 F32T8/Sky-Brite Plus® Hi Lumen Linear 5000 30,000 36,000 3100 2950 85 0.95 91613-HL F32T8/850 Hi Lumen Linear 5000 24,000 24,000 3100 2950 85 0.95 91607-HL F32T8/841 Hi Lumen Linear 4100 24,000 24,000 3100 2950 85 0.95 91601-HL F32T8/835 Hi Lumen Linear 3500 24,000 24,000 3100 2950 85 0.95 91603-HL F32T8/830 Hi Lumen Linear 3000 24,000 24,000 3100 2950 85 0.95 72614 F32T8/865 Linear 6500 24,000 24,000 3100 2950 85 0.95 91615 F32T8/VITA-BRITE Linear 5400 24,000 24,000 3100 2950 88 0.95 82614 F32T8/865 - Superior Life Linear 6500 24,000 36,000 3100 2950 85 0.95 S8426 F32T8/830/HL/ENV Linear 3000 24,000 24,000 3200 3050 85 0.95 S8427 F32T8/835/HL/ENV Linear 3500 24,000 24,000 3200 3050 85 0.95 S8428 F32T8/841/HL/ENV Linear 4100 24,000 24,000 3200 3050 85 0.95 S8429 F32T8/850/HL/ENV Linear 5000 24,000 24,000 3200 3050 85 0.95 46547S F32T8 830/XPS/ECO Linear 3000 24,000 36,000 3100 2945 85 0.95 46549S F32T8 835/XPS/ECO Linear 3500 24,000 36,000 3100 2945 85 0.95 46548S F32T8 841/XPS/ECO Linear 4100 24,000 36,000 3100 2945 85 0.95 46550S F32T8 850/XPS/ECO Linear 5000 24,000 36,000 3100 2945 81 0.95 46551S F32T8 865/XPS/ECO Linear 6500 24,000 36,000 3100 2945 81 0.95 46648 F32T8 ADV830/ALTO Linear 3000 24,000 30,000 3100 2950 85 0.97 46646 F32T8 ADV835/ALTO Linear 3500 24,000 30,000 3100 2950 85 0.97 46548 F32T8 ADV841/ALTO Linear 4100 24,000 30,000 3100 2950 85 0.97 46558 F32T8 ADV850/ALTO Linear 5000 24,000 30,000 3100 2950 82 0.97 46823S FO32/850/ECO Linear 5000 24,000 30,000 2950 2773 80 0.94 46828S FO32/850/XP/ECO Linear 5000 24,000 36,000 3000 2820 80 0.94 46822S FO32/850/XP/XL/ECO Linear 5000 36,000 40,000 2950 2832 80 0.96 Clear Safety- Coated Extended Performance Elemental Philips Lighting Premium T8 Alto Advantage T8 XL SuperiorLife - HiLum Octron XPS Satco Hygrade Octron - Sequoia OSRAM SYLVANIA P.Q.L., Inc. Satco Products, Inc Shat-r-shield, Inc LITETRONICS, INT. Kumho Electric USA ArmorLite ECO-LUMEN Orion Energy Systems Optilumens Maintenance Engineering Maxlite ENERGY-LITE Premira Flourescent Earthcare HP T8 Lamps IS RS/PRS Color Temp (K)Mfr Product Name Order Code Model Number or Description CRI Lumen Maintena nceShape Mean Lumens Initial Lumens Rated Life (hrs)1 1920 F32T8/HL/835 Linear 3500 24,000 24,000 3100 2915 85 0.94 1921 F32T8/HL/841 Linear 4100 24,000 24,000 3100 2915 85 0.94 1923 F32T8/HL/850 Linear 5000 24,000 24,000 3100 2915 85 0.94 30080 T8, 800 Series, 32 Watt Linear 3500 20,000 24,000 3100 2914 82 0.94 30090 T8, 800 Series, 32 Watt Linear 4100 20,000 24,000 3100 2914 82 0.94 30100 T8, 800 Series, 32 Watt Linear 5000 20,000 24,000 3100 2914 82 0.94 58769 F32T8/830/XL31SM Linear 3000 24,000 36,000 3100 2950 89 0.95 58771 F32T8/835/XL31SM Linear 3500 24,000 36,000 3100 2950 89 0.95 57022 F32T8/841/XL31SM Linear 4100 24,000 36,000 3100 2950 89 0.95 58772 F32T8/850/XL31SM Linear 5000 24,000 36,000 3100 2950 89 0.95 10914 F32T8/830/XL31 Linear 3000 24,000 36,000 3100 2950 85 0.97 10915 F32T8/835/XL31 Linear 3500 24,000 36,000 3100 2950 85 0.97 10916 F32T8/841/XL31 Linear 4100 24,000 36,000 3100 2950 85 0.97 10917 F32T8/850/XL31 Linear 5000 24,000 36,000 3100 2950 85 0.97 10004 F32T8/50K/8/RS/G13/STD ESV Linear 5000 24,000 30,000 2950 2800 85 0.95 51169 F32T8/65K/8/RS/G13/STD ESV Linear 6500 24,000 30,000 2950 2800 85 0.95 32830 F32T8/830/SuperEco Linear 3000 24,000 30,000 3200 3040 86 0.95 32840 F32T8/840/SuperEco Linear 4200 24,000 30,000 3200 3040 86 0.95 32850 F32T8/850/SuperEco Linear 5000 24,000 30,000 3200 3040 86 0.95 HDX145 F32T8/FWX8550/TC Linear 5000 24,000 30,000 3050 2898 85 0.95 HDX149 F32T8/VLX9155/TC Linear 5500 24,000 30,000 3100 2950 91 0.95 31032850HL F32T8/850/HL Linear 5000 24,000 24,000 3100 2915 86 0.94 31032830HL F32T8/830/HL Linear 3000 24,000 24,000 3100 2915 85 0.94 31032835HL F32T8/835/HL Linear 3500 24,000 24,000 3100 2915 85 0.94 31032841HL F32T8/841/HL Linear 4100 24,000 24,000 3100 2915 85 0.94 31032865HL F32T8/865/HL Linear 6500 24,000 24,000 3100 2915 85 0.94 31032850 F32T8/850 Linear 5000 24,000 24,000 2950 2800 85 0.95 FO32/830/XL-40 32W 48" T8 3,000K Flourescent Linear 3000 24,000 30,000 3100 2900 85 0.94 FO32/835/XL-40 32W 48" T8 3,500K Flourescent Linear 3500 24,000 30,000 3100 2900 85 0.94 FO32/841/XL-40 32W 48" T8 4,100K Flourescent Linear 4100 24,000 30,000 3100 2900 85 0.94 FO32/850/XL-40 32W 48" T8 5,000K Flourescent Linear 5000 24,000 30,000 3100 2900 85 0.94 25898 F32T8/835HL Linear 3500 24,000 24,000 3100 2915 84 0.94 25899 F32T8/841HL Linear 4100 24,000 24,000 3100 2915 84 0.94 25900 F32T8/850HL Linear 5000 24,000 24,000 3000 2820 82 0.94 3000480 F32T8/841/HL Linear 4100 24,000 30,000 3150 2990 86 0.95 3000524 F32T8/850/HL Linear 5000 24,000 30,000 3150 2990 86 0.95 07027 F32T8/830/XL/ECOMAX Linear 3000 24,000 30,000 3100 2950 86 0.95 07028 F32T8/835/XL/ECOMAX Linear 3500 24,000 30,000 3100 2950 86 0.95 07029 F32T8/841/XL/ECOMAX Linear 4100 24,000 30,000 3100 2950 86 0.95 Triten 50 Ultra 60766 F32T8/Triten50/ULTRA/ENV Linear 5000 24,000 24,000 3100 2950 86 0.95 1 Life based on 3-hr. duty cycle © 2007 Consortium for Energy Efficiency, Inc. All rights reserved. CONSORTIUM FOR ENERGY EFFICIENCY www.cee1.org 617-589-3949 XL ULTRA 8 High LumenUSHIO America, Inc. Heavy Duty FlourescentSuperior Lamp, Inc. Universal Lighting Technologies Universal 800HL TOPAZ/CXL SLI Lighting/Havells USA Standard Products, Inc. Terra-Lux High Lumen Topaz Lighting TCP High LumenTechnical Consumer Products, Inc. XL31 XL31 Safety Max Super Eco T-8 Plus Earthsaver Westinghouse Lighting Corporation F32 T8SOLTERRA Super Eco Products, LLC HP 120 and 277 V T8 Ballasts QUALIFYING PRODUCTS 1 High-Performance 120 and 277V T8 Ballasts CEE High-Performance Commercial Lighting Systems Initiative For a list of qualifying 347 V T8 ballasts, see: www.cee1.org/com/com-lt/347-ballasts.xls Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ ACCUPRO High Efficiency A*-132-IP-UNV yes 277 I Normal 0.87 28 3.11 AB1-32-IP-UNV-HE yes 120/277 I Normal 0.91 29 3.14 AB1-32-IP-UNV-1 yes 120/277 I Normal 0.91 29 3.14 DXE1H81 no 120 I Normal 0.88 28 3.14 DXE1H81U no 120/277 I Normal 0.88 28.2 3.12 Dynamic Ballast High Efficiency DY 132 IS WV - HE no 120/277 I Normal 0.88 28 3.14 WHHE2-UNV-T8-IS no 120/277 I High 1.08 34 3.18 WHSG2-UNV-T8-HB no 120/277 I High 1.38 45 3.07 WHPS1-UNV-T8-PS no 120/277 P Normal 0.88 30 2.93 GE-132-MAX-N/Ultra yes 120/277 I Normal 0.88 28 3.11 GE-132-MAX-L/Ultra yes 120/277 I Low 0.77 25 3.08 GE132-MVPS-L yes 120/277 P Low 0.72 25 2.88 GE132-MVPS-N yes 120/277 P Normal 0.89 30 2.97 GE132-MVPS-H yes 120/277 P High 1.18 39 3.03 Proline GE-132-MV-N yes 120/277 I Normal 0.87 28 3.11 EP232IS/L/MV/HE yes 120/277 I Normal 0.95 30 3.17 EP232IS/MV/HE yes 120/277 I High 1.05 33 3.18 EP232IS/120/SL yes 120 I High 1.15 38 3.03 EP232IS/MV/SL yes 120/277 I High 1.15 38 3.03 HL232AIS/UV/HE/W no 120/277 I Normal 0.95 30 3.17 HL232BIS/UV/HE/W no 120/277 I High 1.05 33 3.18 SIS117-32 UNI 21 no 120/277 P High 1.05 34.5 3.04 SIS117-32S UNI no 120/277 P High 1.05 34.5 3.04 E1/32IS-120HEX no 120 I Normal 0.87 28 3.11 E1/32IS-277HEX no 277 I Normal 0.87 28 3.11 HE High Efficiency EP2/32IS/MV/SC/HE no 120/277 I Normal 1.00 35 2.86 HE Micro Case EPH2/32IS/MV/MC/HE no 120/277 I High 1.08 35/34 3.09/3.18 KTEB-132-UV-IS-L-P yes 120/277 I Low 0.77 25 3.08 KTEB-132-UV-IS-N-P yes 120/277 I Normal 0.87 28 3.10 KTEB-132-UV-PS-N-P yes 120/277 P Normal 0.88 31 2.84 KTEB-132-UV-PS-L-P yes 120/277 P Low 0.77 27 2.85 KTEB-132-UV-PS-H-P yes 120/277 P High 1.18 40 2.95 KTEB-132-UV-IS-H-P yes 120/277 I High 1.18 39 3.03 High Efficiency Ballast SKEU322HEL no 120/277 I Normal 0.95 30 3.17 Electronic Ballasts SKEU322H/SC no 120/277 I High 1.38 45 3.07 EB-132PRS-U-ES yes 120/277 P Normal 0.88 30 2.93 EB-132PRS-U-ES-HBF yes 120/277 P High 1.18 38 3.11 FL2T17-32M NO no 120/277 P Normal 0.87 28 3.11 FX2T17-32M NO no 120/277 P Normal 0.87 28 3.11 FX2T17-32M HO no 120/277 P High 1.21 39 3.10 FL2T17-32M HO no 120/277 P High 1.21 39 3.10 Orion Energy Systems HIGH EFFICIENCY OB2-T8-32-120/277-E-IN-0.9 no 120/277 I Normal 0.89 28 3.18 QHE1x32T8/UNV ISH-SC yes 120/277 I High 1.20 38 3.16 QHE 1X32T8/UNV ISL-SC yes 120/277 I Low 0.78 25 3.12 QHE 1X32T8/UNV ISL-SC-1 yes 120/277 I Low 0.77 25 3.08 QHE 1X32T8/UNV ISN-SC yes 120/277 I Normal 0.88 28 3.14 QHE1x32T8/UNV ISN-SC-1 yes 120/277 I Normal 0.87 28 3.11 QHE1x32T8/UNV PSN-MC yes 120/277 P Normal 0.88 30/29 2.93/3.03 QTP 1X32T8/UNV PSN-TC yes 120/277 P Normal 0.88 31/30 2.84/ 2.93 QTP 1X32T8/UNV PSX-TC yes 120/277 P Low 0.71 25 2.84 QTP 1X32T8/UNV ISN-SC yes 277 I Normal 0.89 28.6 3.11 IOP-1S32-SC yes 120/277 P Normal 0.88 28 3.14 IOP-1P32-SC yes 120/277 I Normal 0.87 28 3.11 IOP-1P32-HL-SC yes 120/277 P Normal 0.88 28 3.14 IOP-1P32-LW-SC yes 120/277 I Low 0.77 25 3.08 IOP-1S32-LW-SC yes 120/277 P Low 0.72 24 3.00 IOPA-1P32 LW-SC yes 120/277 I Low 0.77 25 3.08 IOPA-1P32-SC yes 120/277 I Normal 0.87 28 3.11 Centium ICN-1P32-N no 277 I Normal 0.91 29 3.14 Optanium 1 Lamp ProductsGE Ultramax Updated 12/30/11 HP T8 Qualified Ballasts with 1 Lamp UltraStart Click "Open." When "Connect to www.cee1.org" box opens, click on "Cancel" twice Legend: Red Font is a product no longer manufactured, but still meets the criteria as a qualifying product General Electric Company High EfficiencyAmerican Ballast DuroPower (BallastWise)Ballastwise HEX Electronic Hatch Lighting HEP Group USA, Inc. Smart Ballast Quicktronic Omnitronix Engineering LLC HEP HE Ballast Electronic Ballast Premium Series Hatch MW McWong International Keystone Technologies Howard Industries Halco Lighting Technologies Fulham Workhorse Maxlite ProLume OSRAM SYLVANIA Philips - Advance HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ 70201 no 120/277 I Normal 0.87 27/26.5 3.22/3.28 70210 no 120/277 P High 1.06 34 3.12 70213 no 120 I High 1.37 45 3.04 SL-1/32IS-120 (70209)no 120 I Normal 0.88 28 3.11 SL-1/32IS-277 (70200)no 277 I Normal 0.88 28 3.11 ISL132T8HEMVL yes 120/277 I Low 0.77 25 3.08 ISU232T8HEMV yes 120 I High 1.12 36 3.11 PSA132T8HEMV yes 120/277 P Normal 0.91 30 3.03 PSA132T8HEMH yes 120/277 P High 1.18 39/38 3.03/3.11 NLO232T8PIS no 120 P High 1.03 36 2.86 SAU139Q2 no 120 P Normal 1.00 33 3.03 SLU232T8HPIS-ROHS no 120/277 P High 1.40 45 3.11 NU240T8RS-ROHS no 120 P High 1.40 41 3.41 SAU139Q2 no 120 P High 1.02 33 3.09 SLU232T8HPIS-ROHS no 120/277 I High 1.40 45 3.11 SOLA Canada Lighting & Power Inc Sola E-758-F-132SC no 120 I Normal 0.97 31 3.13 Optistart E232T8PRS120-277/L no 120/277 P Normal 0.88 29 3.03 E232T8PS120-277/N/XTRM no 120/277 P High 1.40 41 3.41 E232T8PRS120-277/N no 120/277 P Normal 0.90 29 3.10 E232T8PS120- 277/N/AS/BULK no 120/277 P Normal 0.90 29 3.10 E132T8IS120/N no 120 I Normal 0.90 28 3.21 E132T8IS120/L/BULK no 120 I Low 0.78 25 3.12 E132T8IS120/L no 120 I Low 0.78 25 3.12 Sunpark Electronics Corp.Ultralumen U-1/32PSE no 120/277 P Normal 0.88 30 2.93 TCP2P32ISUNVH yes 120/277 I High 1.37 45 3.04 E2P32ISUNVHE yes 120/277 I High 1.37 45 3.04 TCP2P32ISUNV yes 120/277 I Normal 0.99 31 3.19 E2P32ISUNVLE yes 120/277 I Normal 0.88 28 3.14 E2P32ISUNVHE yes 120/277 I High 1.37 45 3.04 E2P32ISUNVE yes 120/277 I Normal 0.99 31 3.19 Topstar International Inc. T8 Electronic Ballast BB-T8/UVH-2x32/HPF no 120 I Normal 0.96 30 3.20 SR132120 no 120 P Normal 0.86 30 2.87 SR132277 no 277 P Normal 0.86 30 2.87 PR232120M-HE no 120/277 P Normal 0.97 33 2.94 UT132120M-HE no 120/277 I Normal 0.87 28 3.11 UT132120ML-HE no 120/277 I Low 0.74 24 3.08 UT232120L-HE no 120 I Normal 0.97 30 3.23 PR132120M-P-HE no 120/277 P Normal 0.88 30 2.93 PR232120M-P-HE no 120/277 P Normal 0.88 29 3.03 PR232120ML-P-HE no 120/277 P Low 0.72 24 3.00 B232PUNVEL-A yes 120/277 P Low 0.71 25/23 2.84/3.09 B232PUNVHP-A yes 120/277 P Normal 1.00 32 3.13 B232IUNVEL-A yes 120/277 I Normal 0.95 30 3.17 B232IUNVHE-A yes 120/277 I High 1.05 33 3.18 B132PUNVHP-A yes 120/277 P Normal 0.88 31/30 2.84/ 2.93 B132IUNVHE-A yes 120/277 I Normal 0.87 28 3.11 B132IUNVEL-A yes 120/277 I Low 0.77 25 3.08 A*-232-IP-UNV yes 277 I Normal 0.88 55 1.60 A*-232IP-H-UNV no 120/277 I High 1.18 76/75 1.55/1.57 A*-232IP-L-UNV no 120/277 I Low 0.77 48 1.60 AB2-32-IP-UNV-HE yes 120/277 I Normal 0.89 56 1.59 AB2-32-IP-UNV-1 yes 120/277 I Normal 0.89 56 1.59 AB2-32-IP-UNV-HBF yes 120/277 I High 1.18 76/75 1.55/1.57 AB2-32-IP-UNV-LX yes 120/277 I Low 0.77 48 1.60 EB232UIH yes 120/277 I High 1.18 70 1.69 EB232UI yes 120/277 I Normal 0.87 55 1.58 Axis Technologies DDH AX232B no 120/277 P Normal 0.99 64/66 1.55/1.50 DXE2H8 no 120 I Normal 0.92 56 1.64 DXE2H81 no 120 I Normal 0.88 55 1.60 DXE2H8U no 120/277 I Normal 0.88 55/54 1.60/1.63 DXE2H8U-HBF no 120/277 I High 1.18 74/72 1.59/1.64 Dynamic Ballast High Efficiency DY 232 IS WV - HE no 120/277 I Normal 0.88 55 1.60 Energy Efficient Lighting Supply High Efficiency EEL-PSB-F32-2-MVOLT no 120/277 P Normal .88/.91 59 1.49/1.54 VE232MVHIPE yes 120/277 I Normal 0.89 55/54 1.62/1.65 VE232MVHIPHE yes 120/277 I High 1.19 76/75 1.57/1.59 VE232MVHRPHE yes 120/277 P High 1.18 72/71 1.64/1.66 VE232MVHRPE yes 120/277 P Normal 0.88 57/56 1.54/1.57 VE232MVHIPLE yes 120/277 I Low 0.77 48/47 1.60/1.64 Apollo VE232120HIPE yes 120 I Normal 0.85 53 1.60 Sterling Series Sage Lighting Ltd Elite BallastwiseDuroPower (BallastWise) Gold Label Standard Products, Inc. - Ultrasave Lighting Ltd. American Ballast HP T8 Qualified Ballasts with 2 Lamps F32 T8 Robertson Worldwide - Espen Technology, Inc. High Efficiency - Sage Technical Consumer Products, Inc. High Efficiency Universal Lighting Technologies - Superior Life Atlas Lighting Products, Inc. P.Q.L., Inc. ACCUPRO HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ WHSG3-UNV-T8-IS no 277 I High 1.02 66 1.55 WHSG3-UNV-T8-HB no 120/277 I High 1.27 81/80 1.57/1.59 WHPS2-UNV-T8-PS no 120/277 P Normal 0.88 57/56 1.54/1.57 WHHE2-UNV-T8-IS no 120/277 I Normal 0.89 55/54 1.61/1.64 WHSG2-UNV-T8-HB no 120/277 I High 1.18 74/73 1.59/1.62 WHSG3-UNV-T8-LB no 120/277 I Normal 0.92 58/57 1.59/1.61 Fusion Ballasts Electronic ballasts FB232MVE-HE no 120/277 I Normal 0.87 55 1.58 GE-232-MV-H no 120/277 I High 1.18 76 1.55 GE-232-MV-N yes 277 I Normal 0.88 55 1.60 GE-232-277-N yes 277 I Normal 0.89 56 1.59 GE-232-MV-PS-H yes 120/277 P High 1.15 75 / 74 1.53/ 1.55 GE-232-MVPS-N yes 120/277 P Normal 0.89 58 1.53 GE-232-MVPS-L yes 120/277 P Low 0.71 47 1.51 GE-232-MAX-N+yes 120/277 I Normal 1.00 62 1.61 GE-232-MAX-L-42T yes 277 I Low 0.77 48 1.60 GE-232-MAX-H-42T yes 120/277 I High 1.15 73 1.58 GE-232-MAX-H yes 120/277 I High 1.19 74/73 1.61/1.63 GE-232-MAX-L/Ultra yes 120/277 I Low 0.77 48 1.60 GE-232-MAX-N/Ultra yes 120/277 I Normal 0.87 54 / 53 1.61/ 1.64 GE-232-MAX-H/Ultra yes 120/277 I High 1.15 74 / 73 1.55/ 1.58 GE-232-120-PS-N yes 120 P Normal 0.89 57 1.56 GE-232-277-PS-N yes 277 P Normal 0.89 57 1.56 Green Ballast Inc.DDH AX232B120 no 120/277 P Normal 0.99 64/66 1.55/1.50 EP232IS/MV/HE yes 120/277 I Normal 0.87 55 1.58 EP232IS/L/MV/HE yes 120/277 I Low 0.77 48 1.60 EP232IS/H/MV/SL yes 120/277 I High 1.18 74 1.59 EP332IS/H/MV/SL yes 120/277 I High 1.33 83 1.60 EP232PS/MV/HE no 120/277 P Normal 0.88 60/60 1.47 EP232PS/L/MV/HE no 120/277 P Low 0.77 52/52 1.48 HL232AIS/UV/HE/W no 120/277 I Low 0.77 48 1.60 HL232BIS/UV/HE/W no 120/277 I Normal 0.87 55 1.58 HL332AIS/UV/HE/W no 120/277 I Normal 0.92 57 1.61 HL332BIS/UV/HE/W no 120/277 I High 1.02/1.01 64/63 1.59/1.60 HL332CIS/UV/HE/W no 120/277 I High 1.27 82/81 1.55/1.57 HEP Group USA, Inc. HEP HE Ballast SI2117-32 UNI no 120/277 P Normal 1.00 59 1.69 E2/32IS-120HEX no 120 I Normal 0.87 55 1.58 E2/32IS-277HEX no 277 I Normal 0.87 55 1.58 EL2/32IS-277HEX no 277 I Low 0.77 48 1.60 EPL2/32IS/MV/SC/HE no 120/277 I Low 0.77 48 1.60 EP2/32IS/MV/SC/HE no 120/277 I Normal 0.87 54/53 1.61/1.64 EPH2/32IS/MV/SC/HE no 120/277 I High 1.14 73/72 1.56/1.58 EPH3/32IS/MV/SC/HE no 277 I High 1.25 80 1.56 EP2/32IS/MV/MC/HE no 120/277 I Normal 0.89 55/54 1.62/1.65 EPL2/32IS/MV/MC/HE no 277 I Low 0.78 48 1.63 EP2/32PRS/MV/MC/HE no 120/277 P Normal 0.88 57 / 56 1.54/1.57 EPH3/32IS/MV/MC/HE no 277 I Normal 1.27 80 1.59 EPL3/32IS/MV/MC/HE no 277 I Normal 0.92 57 1.61 EPH2/32IS/MV/MC/HE no 120/277 I High 1.18 74/73 1.59/1.61 Micro Case EPH2/32IS/MV/MC no 120/277 I High 1.18 74/73 1.59/1.62 KTEB-232-UV-IS-L-P yes 120/277 I Low 0.77 48 1.60 KTEB-232-UV-IS-N-P yes 120/277 I Normal 0.87 55 1.58 KTEB-232-UV-PS-N-P yes 120/277 P Normal 0.88 60 1.47 KTEB-232-UV-PS-L-P yes 120/277 P Low 0.77 52 1.48 KTEB-232-UV-PS-H-P yes 120/277 P High 1.18 78 1.51 KTEB-232-UV-IS-H-P yes 120/277 I High 1.18 74/73 1.60/1.61 DB-232H-MV-TP-HE no 120/277 I High 1.18 74/73 1.59/1.62 DB-232N-MV-TP-HE no 120/277 I Normal 0.87 55 1.58 DB-232L-MV-TP-HE no 120/277 I Low 0.77 48 1.60 Maintenance Engineering Premira Electronic Ballast BPM932 no 120/277 P Normal 0.88 55 1.60 Anti- Striation SKEU322AS no 120/277 I Normal 0.88 44 2.00 SKEU322HE/SC no 120/277 I Normal 0.89 55/54 1.62/1.65 SKEU322HEH/SC no 120/277 I High 1.19 76/75 1.57/1.59 SKEU322HEL/SC no 120/277 I Low 0.77 48/47 1.60/1.64 SKEU322HEL no 120/277 I Low 0.77 48 1.60 SKEU322L/SC no 120/277 I Low 0.78 48 1.63 SKE1323 no 120 I Normal 0.96 55 1.75 SKE1324 no 120 I High 1.05 67 1.57 SKE1324L no 120 I Normal 0.94 58 1.62 SKEU322H/SC no 120/277 I High 1.18 74/73 1.59/1.61 SKEU323HER/SC yes 120/277 P Normal 0.88 57/56 1.54/1.57 SKEU323HEHR/SC yes 120/277 P High 1.18 72/71 1.64/1.66 HE High Efficiency Hatch Lighting Lighting and Power Technologies Maxlite Keystone Technologies Proline Howard Industries General Electric Company - Ultramax ProLume High Efficiency Ballast Ultrastart HE Micro Case Ultrastart WorkhorseFulham Deltek HEX Electronic Premium Series Electronic Ballasts Halco Lighting Technologies HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ EB-232PRS-U-ES yes 120/277 P Normal 0.88 57/56 1.54/1.57 EB-232PRS-U-ES-LBF yes 120/277 P Low 0.78 52/51 1.50/1.53 EB-232PRS-U-ES-HBF yes 120/277 P High 1.18 72/71 1.64/1.66 EB-232IS-U-ES yes 120/277 I Normal 0.89 55/54 1.62/1.65 EB-232IS-U-ES-LBF yes 277 I Low 0.78 48 1.62 EB-232IS-U-ES-HBF yes 120/277 I High 1.18 74/73 1.59/1.61 U-2/32IS no 120/277 I Normal 0.95 60 1.58 U-2/32IS HO no 120/277 I High 1.25 78 1.60 FX2T17-32M NO no 120/277 P Normal 0.86 56 1.54 FL2T17-32M NO no 120/277 P Normal 0.86 56 1.54 FL2T17-32M HO no 120/277 P High 1.19 76 1.57 FX2T17-32M HO no 120/277 P High 1.19 76 1.57 Orion Energy Systems HIGH EFFICIENCY OB2-T8-32-120/277-E-IN-0.9 no 120/277 I Normal 0.89 56 1.59 QHE 2X32T8/UNV ISH-SC yes 120/277 I High 1.20 74 / 73 1.62 /1.64 QHE 2X32T8/UNV ISL-SC yes 120/277 I Low 0.78 48 1.63 QHE 2X32T8/UNV ISL-SC-1 yes 120/277 I Low 0.77 48 1.60 QHE 2X32T8/UNV ISN-SC yes 120/277 I Normal 0.88 55 1.60 QHE 2X32T8/UNV ISN-SC-1 yes 120/277 I Normal 0.87 55 1.58 QHE 3X32T8/UNV ISN-SC yes 277 I Normal 0.99 62 1.60 QHE 4X32T8/UNV ISN-SC yes 120/277 I High 1.06 68 1.56 QHE 2x32T8/UNV-PSH-HT yes 120/277 P High 1.15 72/70 1.60/1.64 QHE 2x32T8/UNV-PSN-MC yes 120/277 P Normal 0.88 57/55 1.54/1.60 QTP 2X32T8/UNV PSN-TC yes 120/277 P Normal 0.88 59 / 56 1.49/ 1.57 QTP 2X32T8/UNV PSX-TC yes 120/277 P Low 0.71 47 / 46 1.51/ 1.54 QTP 2X32T8/UNV ISN-SC yes 277 I Normal 0.88 55.6 1.58 QTP 2X32T8/UNV ISH-SC yes 277 I High 1.20 77 1.56 QHE 2x32T8/UNV ISM-SC yes 120/277 I Medium 1.00 63/62 1.61 IOP-2P32-HL-SC yes 120/277 I High 1.18 74/72 1.59/ 1.64 IOP-2S32-SC yes 120/277 P Normal 0.88 56 1.57 IOP-2P32-SC @ 120V yes 120 I Normal 0.87 55 1.58 IOP-2P32-SC @ 277V yes 277 I Normal 0.87 54 1.61 IOP-2P32-LW-SC yes 120/277 I Low 0.77 48 1.60 IOP-2S32-LW-SC yes 120/277 P Low 0.71 47 1.51 IOPA-2P32-LW-SC yes 120/277 I Low 0.77 48 1.60 IOPA-2P32-SC yes 120/277 I Normal 0.87 54 1.61 IOPA-2P32-HL-SC yes 120/277 I High 1.18 74/72 1.59/1.64 IOP-2PSP32-SC yes 120/277 P Normal 0.85 58 1.47 IOPANA-2P32SC no 277 I Normal 1.00 59 1.69 IOPA-2P32-N yes 120/277 I Normal .87/.89 55/56 1.58/1.59 IOP-2PSP32-LW-SC yes 120/277 P Low 0.71 46/45 1.54/1.58 IOPA-2P32-LW-N yes 277 I Low .77/.80 48/50 1.60 REL-2P32-HL-SC no 120 I High 1.20 77 1.56 VEL-2P32-HL-SC no 277 I High 1.20 77 1.56 ICN-2P32-LW-SC yes 277 I Low 0.78 48 1.63 ICN-2P32N yes 120/277 I Normal 0.89 56 1.59 70201 no 120/277 I Normal 0.87 54/53 1.61/1.64 70210 no 120/277 P Normal 0.88 54.6/54.7 1.61 70213 no 120/277 I High 1.18 73/74 1.62/1.59 SL-2/32IS-120 (70209)no 120 I Normal 0.88 56 1.60 SL-2/32IS-277 (70200)no 277 I Normal 0.88 56 1.60 ISL232T8HEMVL yes 120/277 I Low 0.77 48/47 1.60/1.64 ISA232T8HEMV yes 120/277 I Normal 0.89 55 1.62 ISA232T8HEMVH yes 120/277 I High 1.18 74/73 1.59/1.62 ISA232T8HEMVL yes 277 I Low 0.78 48 1.63 ISL232T8HEMV yes 277 I Normal 0.88 55 1.60 ISS232T8HEMVH yes 120/277 I High 1.18/1.19 75/76 1.57 ISU232T8HEMV yes 120/277 I Normal .92/.93 58 1.58/1.60 ISU232T8HEMVL yes 120/277 I Low 0.82 51 1.61 ISS332T8HEMVH yes 120/277 I High 1.33/1.34 85 1.56/1.58 ISS332T8HEMV yes 120/277 I High 1.01/1.03 64/65 1.58 PSS232T8HEMV yes 120/277 P Normal 0.93 61 1.52 PSA232T8HEMV yes 120/277 P Normal 0.88 58/56 1.52/1.57 PSA232T8HEMH yes 120/277 P High 1.18 76/74 1.55/1.60 PSL232T8HEMV yes 120/277 P Normal 0.88 60/59 1.47/1.49 NLO232T8PIS no 120 P Normal 0.90 58 1.55 NLU232T8PIS no 120/277 P Normal 0.90 58/59 1.55/1.53 SLU232T8HPIS-ROHS no 120/277 P High 1.18/1.20 73 1.62/1.64 NU232T8RS-ROHS no 120/277 P Normal 0.90 61 1.48 NU240T8RS-ROHS no 120 P High 1.20 75 1.60 SLU232T8HPIS-ROHS no 120/277 I High 1.18/1.20 73 1.62/1.64 SU232T8LMCIS-ROHS no 120/277 I Low 0.78 48.9 1.60 E2-32-I-UV-H no 120/277 I High 1.18/1.20 73/74 1.62 E2-32-I-UV-N no 120/277 I Normal 0.88 55 1.60 E2-32-I-UV-L no 120/277 I Low 0.77 48 1.60 E-758-F-232-HL no 120 I High 1.16 74 1.57 E-758-F-232SC no 120 I Normal 0.91 57 1.60 E-758-U-232SC no 120/277 I Normal 0.94 58.5 1.61 Quicktronic Electronic Ballast Philips - Advance SLI Lighting/Havells USA OSRAM SYLVANIA P.Q.L., Inc. Sage Lighting Ltd 2 Lamp ProductsSLI High Efficiency Ballast MW McWong International Sage Standard Robertson Worldwide Mylar Electronics Co, Ltd. SOLA Canada Lighting & Power Inc Sterling Series Optanium - Omnitronix Engineering LLC Sola Superior Life Smart Ballast Centium HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ E232T8IS120/N no 120 I Normal 0.88 55 1.60 E232T8IS120/N/BULK no 120 I Normal 0.88 55 1.60 E232T8IS120/L no 120 I Low 0.78 48 1.63 E232T8PS120-277/N/XTRM no 120/277 P High 1.20 75 1.60 E232T8PS120- 277/N/AS/BULK no 120/277 P Normal 0.88 57/56 1.54/1.57 E232T8S120-277/L/AS/BULK no 120/277 P Low 0.78 52/51 1.50/1.53 E232T8PRS120-277/L no 120/277 P Low 0.71 47 1.51 E232T8PRS120-277/N no 120/277 P Normal 0.88 56/55 1.57/1.60 OptiStart E232SPR120-277L no 120/277 P Low .67/.70 42/44 1.60/1.59 U-2/32IS yes 120/277 I Normal 0.89 55.7 1.60 U-2/32IS HBF yes 120/277 I High 1.17 74.9 1.56 U-2/32ISE yes 120/277 I Normal 0.89 54 1.65 U-2/32ISE-HBF yes 120/277 I High 1.18 73 1.62 U-2/32ISE-LBF yes 120/277 I Low 0.78 48 1.63 U-2/32PSE yes 120/277 P Normal 0.88 56 1.57 U-2/32PSE-HBF yes 120/277 P High 1.15 71.6 1.61 Superior Lamps, Inc. Heavy Duty Electronic Ballast BPS932 no 120/277 P Normal 0.88 55 1.60 SwitchGenie, LLC.SwitchGenie SG232 no 120/277 I Normal 0.88 54 1.63 E32IS32120H no 120 I High 1.22 77 1.58 E32IS32277H no 277 I High 1.22 78 1.57 E432IS32120N no 120 I Normal 0.89 55.9 1.59 E432IS32277N no 277 I Normal 0.99 63 1.58 E432IS32120L no 120 I Low 0.79 49 1.60 E432IS32120U no 120 I Low 0.72 44 1.62 TCP2P32ISUNVLE yes 277 I Low 0.78 48 1.63 TCP2P32ISUNVE yes 120/277 I Normal 0.89 55/54 1.62/1.65 TCP2P32ISUNVHE yes 120/277 I High 1.18 74/73 1.60/1.62 TCP2P321SUNVH yes 120/277 I High 1.18 73/72 1.61/1.64 E2P32ISUNVHE yes 120/277 I High 1.18 73/72 1.61/1.64 TCP2P32ISUNV yes 120/277 I Normal 0.88 54/53 1.63/1.66 E2P32ISUNVE yes 120/277 I Normal 0.88 54/53 1.63/1.66 TCP2P32ISUNVL yes 120/277 I Low 0.78 48 1.63 E2P32ISUNVLE yes 120/277 I Low 0.78 48 1.63 E3P32ISUNVE yes 120/277 I Normal 0.99 62 1.60 E3P32ISUNVHE yes 120/277 I High 1.27 82/81 1.55/1.57 APC 402 U no 120/277 P Normal 0.95 61 1.56 APC 402 U no 120/277 P High 1.10 68 1.62 SR232120 no 120 P Normal 0.88 55 1.60 SR232277 no 277 P Low 0.85 53 1.60 UT232120MH no 120/277 I High 1.18 75 1.57 UT232120M-HE no 120/277 I Normal 0.87 55 1.58 UT332120M-HE no 120/277 I Normal 1.00 63 1.59 PR232120M-HE no 120/277 P Normal 0.93 62 1.50 UT232120ML-HE no 120/277 I Low 0.77 48 1.60 UT332120MH-HE no 120/277 I High 1.26 81 1.56 PR232120M-P-HE no 120/277 P Normal 0.87 56 1.55 PR232120ML-P-HE no 120/277 P Low 0.70 46 1.52 PR232120M-PP-HE no 120/277 P Normal 0.91 61 1.49 B332I277HE yes 277 I High 1.01 61 1.66 B232IUNV104-A yes 120/277 I High 1.04 65/64 1.60/1.63 B232PUNVHE-A yes 120/277 P Normal 0.88 56/55 1.57/1.60 B232PUNVEL-A yes 120/277 P Low 0.71 47/46 1.51/1.54 B332PUNVHP-A yes 120/277 P Normal 0.99 64 / 63 1.55/1.57 B232IUNVHP-B yes 277 I Normal 0.88 55 1.60 B332I120HE yes 120 I Normal 0.96 60 1.60 B332I120L-A yes 120 I Normal 0.92 58 1.59 B332IUNVEL-A yes 277 I Normal 0.89 56 1.59 B232PUNVHP-A yes 277 P Normal 0.88 60 1.47 B232I120HE yes 120 I Normal 0.87 54 1.61 B232I277HE yes 277 I Normal 0.87 53 1.64 B232IUNVHE-A yes 120/277 I Normal 0.87 55 / 54 1.58/1.61 B332I277EL yes 277 I Normal 0.87 55 1.58 B332I120EL yes 120 I Normal 0.86 53 1.62 B232I120EL yes 120 I Low 0.77 47 1.64 B232I2770EL yes 277 I Low 0.77 47 1.64 B232IUNVEL-A yes 120/277 I Low 0.77 48 1.60 B232IUNVHEH-A yes 120/277 I High 1.18 74/73 1.59/1.61 B232PUNVEL-A yes 120/277 P Low 0.71 47/46 1.51/1.54 B232PUNVEL-B no 120/277 P Low 0.71 46/44 1.54/1.61 B232PUNVHE-A yes 120/277 P Normal 0.88 56/55 1.57/1.60 B232PUNVHE-B no 120/277 P Normal 0.88 55/54 1.60/1.63 Triad B232IUNV104-A yes 120/277 I High 1.04 65/64 1.60/1.63 HP T8 Qualified Ballasts with 3 Lamps A*-332-IP-UNV yes 277 I Normal 0.88 83 1.06 A*-332IP-H-UNV no 120/277 I High 1.18 112/109 1.05/1.08 A*-332IP-L-UNV no 120/277 I Low 0.77 73 1.05 Technical Consumer Products, Inc. Sunpark Electronics Corp. ACCUPRO Universal Lighting Technologies TransPower Company Ultra Lumen E432 Energy Saving Ballast F32 T8 Ultim8 HiLumen High Efficiency Standard Products, Inc. - Ultrasave Lighting Ltd. - Gold Label E32 HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ AB3-32-IP-UNV-HE yes 120/277 I Normal 0.88 83 1.06 AB3-32-IP-UNV-1 yes 120/277 I Normal 0.88 83 1.06 AB3-32-IP-UNV-HBF yes 120/277 I High 1.18 112/109 1.05/1.08 AB3-32-IP-UNV-LX yes 120/277 I Low 0.77 73 1.05 EB332UIH yes 120/277 I High 1.18 108/106 1.09/1.11 EB332UI yes 120/277 I Normal 0.87 83 1.05 DXE3H8 no 120 I Normal 0.92 83 1.11 DXE3H81 no 120 I Normal 0.88 82 1.07 DXE3H8U no 120/277 I Normal 0.88 83/82 1.06/1.07 DXE3H8U-HBF no 120/277 I High 1.18 109/107 1.08/1.10 Dynamic Ballast High Efficiency DY 332 IS WV - HE no 120/277 I Normal 0.88 83 1.06 Energy Efficient Lighting Supply High Efficiency EEL-ISB-F32-3-MVOLT no 120/277 I Normal .94/.96 89/91 1.06/1.05 VE332120HIP yes 120 I Normal 0.88 84 1.05 VE332120HIPH yes 120 I High 1.18 109 1.08 VE432120HIPE yes 120 I Normal 1.00 94 1.06 VE332MVHIPLE yes 277 I Low 0.78 74 1.05 VE332MVHIPE yes 120/277 I Normal 0.88 84/83 1.05/1.06 VE332MVHIPHE yes 120/277 I High 1.17 110/108 1.06/1.08 VE332MVHIPH yes 120/277 I High 1.18 109/107 1.08/1.10 VE332MVHRPE yes 120/277 P Normal 0.88 87/85 1.01/1.03 VE332MVHRPHE yes 120/277 P High 1.18 113/110 1.04/1.07 WHSG3-UNV-T8-IS no 277 I Normal 0.88 83 1.06 WHCG4-120-T8-IS no 120 I Normal 0.99 91 1.09 WHSG3-UNV-T8-HB no 120/277 I High 1.18 109/107 1.08/1.10 WHSG3-UNV-T8-LB no 277 I Low 0.78 74 1.05 WHSG4-UNV-T8-HB no 120/277 I High 1.19 115/112 1.04/1.06 WHSG4-UNV-T8-IS no 277 I Normal 0.96 89 1.08 FB432MVE no 120/277 I Normal 0.99 92 1.08 FB432MVE-HE no 120/277 I Normal 0.96 88 1.09 Proline GE-332-277-N yes 277 I Normal 0.88 84 1.05 GE-332-MV-L yes 120/277 I Low 0.78 74/73 1.07 GE-332-MV-N yes 120/277 I Normal 0.87 81/80 1.09 GE-332-MV-H yes 120/277 I High 1.15 113/110 1.05 GE-332-MAX-N+yes 120/277 I Normal 1.00 91/90 1.10/1.11 GE-332-MAX-N-42T yes 120/277 I Normal 0.87 82/80 1.06/1.09 GE-332-MAX-L-42T yes 120/277 I Low 0.77 72/71 1.07/1.08 GE-332-MAX-H-42T yes 120/277 I High 1.18 106/104 1.11/1.13 GE-332-MAX-H/Ultra yes 120/277 I High 1.18 1.06/1.04 1.11/1.13 GE-332-MAX-L/Ultra yes 120/277 I Low 0.77 72/71 1.07/1.08 GE-332-MAX-N/Ultra yes 120/277 I Normal 0.87 82 / 80 1.06/1.09 GE-332-MVPS-L yes 120/277 P Low 0.71 68 1.04 GE-332-MVPS-N yes 120/277 P Normal 0.89 84 1.06 GE-332-MV-PS-H yes 120/277 P High 1.15 110/108 1.04/1.06 GE-332-120-PS-N yes 120 P Normal 0.89 84 1.06 GE-332-277-PS-N yes 277 P Normal 0.89 85 1.05 EP332IS/L/MV/HE yes 120/277 I Low .78/.77 75/74 1.04 EP332IS/MV/HE yes 120/277 I Normal .87/.88 83/81 1.05/1.09 EP332IS/H/MV/SL yes 120/277 I High 1.18 108 1.09 EP432IS/L/MV/HE yes 120/277 I Normal .87/.86 81/78 1.07/1.10 EP432IS/MV/HE yes 120/277 I Normal .94/.95 89/88 1.06/1.08 EP432IS/L/MV/SL yes 120/277 I Low 0.84 79 1.06 EP432PS/L/MV/HE no 120/277 P Low .78/.79 78 1/1.01 HL432AIS/UV/HE/W no 120/277 I Normal .87/.86 81/78 1.07/1.10 HL432BIS/UV/HE/W no 120/277 I Normal .94/.95 89/88 1.06/1.08 HL332AIS/UV/HE/W no 120/277 I Normal .78/.77 75/74 1.04 HL332BIS/UV/HE/W no 120/277 I High .87/.88 83/81 1.05/1.09 HL332CIS/UV/HE/W no 120/277 I High 1.18 111/108 1.06/1.09 E3/32IS-277 HEX no 277 I Normal 0.87 83 1.05 E3/32IS-120 HEX no 120 I Normal 0.87 83 1.05 EL3/32IS-120 HEX no 120 I Low 0.77 73 1.05 EL3/32IS/MV/SC/HE no 277 I Low 0.75 71 1.06 EL3/32IS-277 HEX no 277 I Low 0.77 73 1.05 EP3/32IS/MV/SC/HE no 120/277 I Normal 0.87 82/80 1.06/1.09 EPH3/32IS/MV/SC/HE no 120/277 I High 1.15 110/107 1.05/1.07 EPL4/32IS/MV/SC/HE no 120/277 I Low 0.84 80 / 79 1.05/1.06 EPL3/32IS/MV/SC/HE no 120/277 I Low 0.75 72/71 1.04/1.06 EP4/32IS/MV/SC/HE no 277 I Normal 0.92 88 1.05 EP3/32IS/MV/MC no 120/277 I Normal 0.88 84/83 1.05/1.06 EPL3/32IS/MV/MC no 120/277 I Low 0.78 75/74 1.04/1.05 EPH3/32IS/MV/MC no 120/277 I High 1.18 109/107 1.08/1.10 EP3/32IS/MV/MC/HE no 120/277 I Normal 0.88 84/83 1.05/1.06 EP4/32IS/MV/MC/HE no 277 I Normal 0.96 89 1.08 EPH3/32IS/MV/MC/HE no 120/277 I High 1.18 109/107 1.08/1.10 EPL3/32IS/MV/MC/HE no 120/277 I Low 0.78 75/74 1.04/1.05 HE High Efficiency General Electric Company Fusion Ballasts HE Micro Case Atlas Lighting Products, Inc. Hatch Lighting Espen Technology, Inc. DuroPower (BallastWise) HEX Electronic Hatch - Elite Micro Case Ultrastart Ballastwise WorkhorseFulham - Ultramax American Ballast High Efficiency Howard Industries Electronic ballasts ProLumeHalco Lighting Technologies Apollo HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ Jefferson Electric Jefferson 401-4320-UNV no 277 I Normal 0.94 89 1.06 KTEB-332EBF-UV-TP-PIC no 120/277 I Low 0.77 74 1.04 KTEB-332HBF-UV-TP-PIC no 120/277 I High 1.18 108 1.09 KTEB-332-UV-IS-L-P yes 120/277 I Low .78/.77 75/74 1.04 KTEB-332-UV-IS-N-P yes 120/277 I Normal .87/.88 83/81 1.05/1.09 KTEB-332-UV-PS-N-P yes 120/277 P Normal 0.88 88 1.00 KTEB-332-UV-PS-L-P yes 120/277 P Low 0.77 79 0.97 KTEB-332-UV-PS-H-P yes 120/277 P High 1.18 114 1.04 KTEB-332-UV-IS-H-P yes 120/277 I High 1.18 111/108 1.06/1.09 DB-332H-MV-TP-HE no 120/277 I High 1.18 111/108 1.06/1.09 DB-332N-MV-TP-HE no 120/277 I Normal .87/.88 83/81 1.05/1.09 DB-332L-MV-TP-HE no 120/277 I Low .78/.77 75/74 1.04 Maintenance Engineering Premira Electronic Ballast BPM933 no 120/277 P Normal 0.88 81 1.09 SKEU324HE no 120/277 I Normal 0.96 89 1.08 SKEU324HEL no 120/277 I Normal 0.86 80 1.08 SKEU323HEL/SC no 120 I Low 0.78 74 1.05 SKEU323HE/SC no 120/277 I Normal 0.88 84/83 1.05/1.06 SKEU323HEH/SC no 120/277 I High 1.17 110/108 1.06/1.08 SKE1323/SC no 120 I Normal 0.88 84 1.05 SKE1323H/SC no 120 I High 1.18 109 1.08 SKEU323H/SC no 120/277 I High 1.18 109/107 1.08/1.10 SKEU323L/SC no 277 I Low 0.78 74 1.05 SKEU323/SC no 120/277 I Normal 0.88 85 1.04 SKE1323 no 120 I Normal 0.88 75 1.17 SKE1324 no 120 I Normal 0.96 91 1.06 SKE1324L no 120 I Low 0.85 77 1.10 SKEU1324L no 120 I Low 0.84 77 1.09 SKEU323HER/SC yes 120/277 P Normal 0.88 87/85 1.01/1.04 SKEU323HEHR/SC yes 120/277 P High 1.18 113/110 1.04/1.07 EB-332PRS-U-ES yes 120/277 P Normal 0.88 87/85 1.01/1.03 EB-332IS-U-ES yes 120/277 I Normal 0.88 84/83 1.05/1.06 EB-332IS-U-ES-LBF yes 277 I Low 0.78 74 1.05 EB-332IS-U-ES-HBF yes 120/277 I High 1.18 108/106 1.09/1.11 U-3/32IS no 120/277 I Normal 0.95 88 1.08 U-3/32IS HO no 120/277 I High 1.15 104 1.11 QHE 3X32T8/UNV ISH-SC yes 120/277 I High 1.18 111/109 1.06/1.08 QHE 3x32T8/UNV-PSH-HT yes 120/277 P High 1.15 110/108 1.05/1.07 QHE 3X32T8/UNV ISL-SC yes 120/277 I Low 0.78 73/72 1.08 QHE 3X32T8/UNV ISL-SC1 yes 120/277 I Low 0.77 73 1.05 QHE 3X32T8/UNV ISN-SC yes 120/277 I Normal 0.88 83 / 82 1.06/1.07 QHE 3X32T8/UNVISN-SC1 yes 120/277 I Normal 0.87 82/81 1.06/1.07 QHE 4X32T8/UNV ISL-SC yes 120/277 I Low 0.85 80 1.06 QHE 4X32T8/UNV ISN-SC yes 120/277 I Normal 0.96 90/89 1.07/1.08 QHE 3X32T8/UNV PSN-SC yes 120/277 P Normal 0.88 83/82 1.06/1.07 QTP 3X32T8/UNV PSN-SC yes 120/277 P Normal 0.88 88 / 85 1/1.04 QTP 3X32T8/UNV PSX-SC yes 120/277 P Low 0.71 73/71 .97/1.00 QTP 3X32T8/UNV ISH-SC yes 120/277 I High 1.18 114/111 1.04/1.06 QTP 3X32T8/UNV ISN-SC yes 277 I Normal 0.88 84 1.05 QTP 3X32T8/UNV ISL-SC yes 277 I Low 0.78 75 1.04 QHE 3x32T8/UNV ISM-SC yes 120/277 I Medium 0.98 90/89 1.10 ICN-3P32-SC yes 277 I Normal 0.88 84 1.05 ICN-3P32-LW-SC yes 120/277 I Low 0.77 73 1.05 IOP-3P32-HL-90C-SC yes 120/277 I High 1.18 110/107 1.07/1.10 IOP-3S32-SC yes 120/277 P Normal 0.88 83 1.06 IOP-3P32-SC @ 120V yes 120 I Normal 0.87 82 1.06 IOP-3P32-SC @ 277V yes 277 I Normal 0.87 80 1.09 IOP-3P32-LW-SC @ 120V yes 120 I Low 0.77 73 1.05 IOP-3P32-LW-SC @ 277V yes 277 I Low 0.77 71 1.08 IOP-3S32-LW-SC yes 120/277 P Low 0.71 72 0.99 IOPA-3P32 LW-SC yes 120/277 I Low 0.77 73/71 1.05/1.08 IOPA-3P32-SC yes 120/277 I Normal 0.87 82/80 1.06/1.09 IOPA-3P32-HL-SC yes 120/277 I High 1.18 110/107 1.07/1.10 IOP-3PSP32-SC yes 120/277 P Normal 0.88 84/85 1.05/1.04 IOPA-4P32-HL yes 120/277 I High 1.29 122/120 1.06/1.08 70204 no 120/277 I Normal 0.88 84/83 1.05/1.06 70205 no 120/277 I Normal 0.88 84/83 1.05/1.06 70208 no 120/277 I Normal 0.88/0.90 83 / 86 1.06/1.05 70211 no 120/277 P Normal 0.94/0.96 89 / 91 1.06/1.05 70214 no 120/277 I High 1.28/1.31 109/111 1.17/1.18 70220 no 120/277 I Normal 0.85 76 / 77 1.12/1.10 SL-3/32IS-120 (70212)no 120 I Normal 0.88 84 1.05 SL-3/32IS-277 (70203)no 277 I Normal 0.88 84 1.05 Mylar Electronics Co, Ltd. High Efficiency Ballast Maxlite Keystone Technologies 3 Lamp ProductsSuperior Life High Efficiency OSRAM SYLVANIA Lighting and Power Technologies Deltek Philips - Advance P.Q.L., Inc. Electronic Ballast Optanium Quicktronic Centium MW McWong International Electronic Ballast High Efficiency Ballast Premium Series HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ ISA332T8HEMV yes 120/277 I Normal 0.88 84/83 1.05/1.06 ISA332T8HEMVH yes 120/277 I High 1.18 108/106 1.09/1.11 ISA332T8HEMVL yes 277 I Low 0.78 74 1.05 ISL332T8HEMVL yes 120/277 I Low 0.77 73/72 1.05/1.07 ISL332T8HEMV yes 120/277 I Normal 0.88 83/81 1.06/1.09 ISS332T8HEMVL yes 120/277 I Low .80/.81 76/77 1.05 ISS332T8HEMVH yes 120/277 I High 1.16/1.17 110/111 1.05 ISS332T8HEMV yes 120/277 I Normal 0.92 85/86 1.08/1.07 ISS432T8HEMVL yes 120/277 I Low .84/.85 80 1.05/1.06 ISS432T8HEMV yes 120/277 I Normal 0.97 90/91 1.08/1.07 - PSL432T8HEMV yes 277 P Normal .98/.99 95 1.03/1.04 SAU440IS-ROHS no 120 P Normal 0.91 89 1.02 SAU440HPIS-ROHS no 120/277 I High 1.43 117 1.22 E3-32-I-UV-L no 120/277 I Low 0.78 73 1.07 E3-32-I-UV-N no 120/277 I Normal 0.88 83 1.06 E3-32-I-UV-H no 120/277 I High 1.18 104 1.13 SOLA Canada Lighting & Power Inc Sola E-758-F-332 no 120 I Normal 0.86 82 1.05 E332T8IS120/N no 120 I Normal 0.90 83 1.08 E332T8IS120/L no 120 I Low 0.78 73 1.07 E332T8IS120/L/BULK no 120 I Low 0.78 73 1.07 E332T8IS120/L/90C/BULK no 120 I Low 0.77 73 1.05 E432T8IS120/L no 120 I Low 0.85 80 1.06 E432T8IS120/N no 120 I Normal 0.97 88 1.10 E432T8IS120/N/BULK no 120 I Normal 1.00 93 1.08 E432T8IS120-277/N no 120/277 I Normal 0.94 89 1.06 E432T8IS120/L/BULK no 120 I Low 0.85 80 1.06 E432T8IS120/H no 120 I High 1.15 109 1.06 E432T8IS120/H/90C no 120 I High 1.15 109 1.06 E432T8PS120- 277/L/AS/BULK no 120/277 P Low 0.76 78 0.97 E432T8PS120- 277/N/AS/BULK no 120/277 P Normal 0.94/0.96 89/91 1.06/1.05 E432T8PRS120-277/N no 120/277 P Normal 0.94 89 1.06 E432T8PRS120-277/L no 120/277 P Normal 0.87 78 1.12 U-3/32IS HPF yes 120/277 I Normal 0.89 82.9 1.07 U-3/32IS HBF yes 120/277 I High 1.17 109.8 1.07 U-3/32ISE yes 120/277 I Normal 0.88 83 1.06 U-3/32ISE-HBF yes 120/277 I High 1.18 106 1.11 U-3/32ISE-LBF yes 120/277 I Low 0.78 74 1.05 U-3/32PSE no 120/277 P Normal 0.88 85 1.04 U-3/32PSE-HBF no 120/277 P High 1.18 110 1.07 U-332PS3 no 277 P Normal 1.00 100 1.00 U-332PS3-HBF no 120/277 P High 1.15 115/111 1.00/1.04 Superior Lamps, Inc. Heavy Duty Electronic Ballast BPS933 no 120/277 P Normal 0.88 81 1.09 SwitchGenie, LLC.SwitchGenie SG332 no 120/277 I Normal 0.88 81 1.09 E32IS32120H no 120 I High 1.20 114 1.05 E32IS32277H no 277 I High 1.18 112 1.06 E432IS32120N no 120 I Normal 0.87 80 1.08 E432IS32277N no 277 I Normal 0.95 89 1.07 E432IS32120L no 120 I Low 0.84 78 1.07 E432IS32120U no 120 I Low 0.77 72 1.07 E432IS32277L no 277 I Low 0.82 77 1.07 E432IS32277U no 277 I Low 0.77 71 1.08 TCP3P32ISUNVLE yes 277 I Low 0.78 74 1.05 TCP3P2ISUNVE yes 120/277 I Normal 0.88 84/83 1.05/1.06 TCP3P32ISUNVHE yes 120/277 I High 1.18 108/106 1.09/1.11 TCP3P32ISUNVH yes 120/277 I High 1.18 109/107 1.08/1.10 E3P32ISUNVHE yes 120/277 I High 1.18 109/107 1.08/1.10 TCP3P32ISUNV yes 120/277 I Normal 0.88 84/83 1.05/1.06 E3P32ISUNVE yes 120/277 I Normal 0.88 84/83 1.05/1.06 TCP3P32ISUNVL yes 120/277 I Low 0.78 75/74 1.04/1.05 E3P32ISUNVLE yes 120/277 I Low 0.78 75/74 1.04/1.05 E4P32ISUNVLE yes 120/277 I Normal 0.86 78/77 1.10/1.12 E4P32ISUNVE yes 120/277 I Normal 0.94 89 1.06 E4P32ISUNVHE yes 120/277 I High 1.27 122/120 1.04/1.06 BB-T8/UVH-4x32/HPF no 120 I Normal 0.90 84 1.07 BB-T8/UVH-3x32/HPF no 120 I Normal 0.86 81 1.06 UT332120 no 120 I Normal 0.89 83 1.07 UT332120M no 120/277 I Normal 0.89 83 1.07 UT332120MH no 120/277 I High 1.18 110 1.07 UT432120 no 120 I Normal 1.00 93 1.08 UT432120M no 120/277 I Normal 1.00 93 1.08 eT432120M no 120/277 I Normal 0.99 92 1.08 GTL432120 no 120 I Normal 0.91 86 1.06 UT432120L no 120 I Low 0.82 78 1.05 UT432120M-HE no 120/277 I Normal 0.96 88 1.09 UT332120M-HE no 120/277 I Normal 0.87 82 1.06 UT332120MH-HE no 120/277 I High 1.13 108 1.05 UT332120ML-HE no 120/277 I Low 0.76 73 1.04 PR432120M-PP-HE no 120/277 P Normal 0.95 89 1.07 T8 Electronic Ballast - Standard Products, Inc. Optistart E432 E32 Technical Consumer Products, Inc. Topstar International Inc. - HiLumen SLI Lighting/Havells USA Sage Lighting Ltd Ultra Lumen Ultrasave Lighting Ltd. Sunpark Electronics Corp. Sage Sterling Series SLI Robertson Worldwide Gold Label HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ B332I120RHH yes 120 I High 1.18 113 1.04 B332I277RHH yes 277 I High 1.18 113 1.04 B332I277RHU-A yes 277 I High 1.08 102 1.06 B432I277HEH yes 277 I High 1.28 119 1.08 B332IUNVHP-A yes 277 I Normal 0.88 83 1.06 B332I120HE yes 120 I Normal 0.87 80 1.09 B332I277HE yes 277 I Normal 0.87 79 1.10 B432I120HE yes 120 I Normal 0.96 88 1.09 B432I277HE yes 277 I Normal 0.96 89 1.08 B332IUNVHE-A yes 120/277 I Normal 0.87 83 / 81 1.05/1.07 B432I120EL yes 120 I Low 0.84 79 1.06 B332IUNVHEH-A yes 120/277 I High 1.18 111/108 1.06/1.09 B332PUNVEL-A no 120/277 P Low 0.71 70/69 1.01/1.03 B332PUNVHE-A no 120/277 P Normal 0.88 84/82 1.05/1.07 B432PUNVHP-A yes 120/277 P Normal 0.93 92/90 1.01/1.03 B432IUNVHP-A yes 277 I Normal 0.94 89 1.06 B432IUNVHE-A yes 120/277 I Normal 0.96 84/82 1.14/1.17 B432I277EL yes 277 I Normal 0.87 76 1.14 B432I120EL yes 120 I Normal 0.85 73 1.16 B332I120EL yes 120 I Low 0.77 70 1.10 B332IUNVEL-A yes 120/277 I Low 0.77 74 / 73 1.04/1.05 ES1720B yes 120/277 I Normal 0.87 80/82 1.09/1.06 A*-432-IP-UNV yes 277 I Normal 0.88 108 0.81 A*-432IP-H-UNV no 120/277 I High 1.18 147/144 .80/.82 A*-432IP-L-UNV no 120/277 I Low 0.77 96 0.80 AB4-32-IP-UNV-HE yes 120/277 I Normal 0.88 109 0.81 AB4-32-IP-UNV-1 yes 120/277 I Normal 0.88 109 0.81 AB4-32-IP-UNV-HBF yes 120/277 I High 1.18 147/144 .80/.82 AB4-32-IP-UNV-LX yes 120/277 I Low 0.77 96 0.80 EB432UIH yes 120/277 I High 1.18 140/134 .86/.90 EB432UI yes 120/277 I Normal 0.87 109 0.80 DXE4H8 no 120 I Normal 0.92 111 0.83 DXE4H81 no 120 I Normal 0.88 108 0.81 DXE4H8U no 120/277 I Normal 0.88 109/107 .81/.82 Dynamic Ballast High Efficiency DY 432 IS WV - HE no 120/277 I Normal 0.88 106 0.83 Energy Efficient Lighting Supply High Efficiency EEL-ISB-F32-4-MVOLT no 120/277 I Normal .87/.88 106/108 .82/.81 VE432MVHIPL yes 120/277 I Low 0.77 98/96 0.79/0.80 VE432MVHIPE yes 120/277 I Normal 0.88 110/108 0.80/0.81 VE432MVHIPHE yes 120/277 I High 1.16 145/144 0.80/0.81 VE432MVHIPH yes 120/277 I High 1.16 145 0.80 VE432MVHIPLE yes 120/277 I Low 0.77 98/96 0.79/0.80 Apollo VE432120HIPE yes 120 I Normal 0.88 110 0.80 WHSG4-UNV-T8-IS no 120 I Normal 0.88 108 0.81 WHSG4-UNV-T8-IS no 277 I Normal 0.92 112 0.82 WHCG4-277-T8-IS no 277 I Normal 0.89 110 0.81 WHSG4-UNV-T8-LB no 120/277 I Low .79/.80 98/96 .81/.83 WHSG4-UNV-T8-HB no 120/277 I High 1.16 145/144 .80/.81 FB432MVE no 120/277 I Normal 0.87 108 0.81 FB432MVE-HE no 120/277 I Normal 0.86 106 0.81 GE-432-MV-L yes 120/277 I Low 0.80 100/98 .80/.82 GE-432-MV-N yes 120/277 I Normal 0.88 110 0.80 GE-432-MV-H yes 120/277 I High 1.18 146/143 .81/.83 GE-432-MAX-H/Ultra yes 120/277 I High 1.18 148/145 .80/.81 GE-432-MAX-N/Ultra yes 120/277 I Normal 0.87 108/106 .81/.82 GE-432-MAX-L/Ultra yes 120/277 I Low 0.77 97/95 .79/.81 GE-432-MAX-N+yes 120/277 I Normal 1.00 121 0.83 GE-432-MAX-N-42T yes 120/277 I Normal 0.87 108/106 .81/.82 GE-432-MAX-L-42T yes 120/277 I Low 0.77 97/95 .79/.81 GE-432-MAX-H-42T yes 120/277 I High 1.15 148/145 .80/.81 GE-432-277-PS-N yes 277 I Normal 0.88 110 0.80 GE-432-120-PS-N yes 120 P Normal 0.89 112 0.79 GE-432-MVPS-N yes 120/277 P Normal 0.89 114/112 .78/.79 GE-432-MVPS-L yes 120/277 P Low 0.71 88 0.81 GE-432-MVPS-H yes 120/277 P High 1.16 144 0.81 GE-432-277-N yes 277 I Normal 0.88 110 0.80 EP432IS/L/MV/HE yes 120/277 I Low .78/.77 98/96 0.80 EP432IS/MV/HE yes 120/277 I Normal .88/.87 110/106 .80/.82 EP432IS/L/MV/SL yes 120/277 I Low 0.77 96 0.80 EP432PS/MV/HE no 120/277 P Normal 0.86 114 0.75 EP432PS/L/MV/HE no 120/277 P Low 0.74 97 0.76 HL432AIS/UV/HE/W no 120/277 I Normal .78/.77 98/96 .80/.80 HL432BIS/UV/HE/W no 120/277 I Normal .88/.87 110/106 .80/.82 Universal Lighting Technologies F32 T8 Ultim8 Ultrastart High Efficiency Workhorse General Electric Company DuroPower (BallastWise) Atlas Lighting Products, Inc. - ACCUPRO American Ballast Electronic ballasts Fulham Espen Technology, Inc. Fusion Ballasts Proline Ultramax High Efficiency Elite Ballastwise Hatch Lighting Hatch HP T8 Qualified Ballasts with 4 Lamps ProLumeHalco Lighting Technologies HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ E4/32IS-120HEX no 120 I Normal 0.87 109 0.80 E4/32IS/-277HEX no 277 I Normal 0.87 109 0.80 EL4/32IS-120HEX no 120 I Low 0.77 98 0.79 EL4/32IS-277HEX no 277 I Low 0.77 96 0.80 EPL4/32IS/MV/SC/HE no 120/277 I Low 0.75 95 / 94 0.80 EL4/32IS/MV/SC/HE no 277 I Low 0.75 94 0.80 EP4/32IS/MV/SC/HE no 120/277 I Normal 0.87 109/107 .80/.81 EP4/32IS/MV/MC no 120/277 I Normal 0.88 110/108 .80/.81 EPL4/32IS/MV/MC no 120/277 I Low 0.77 98/96 .79/.80 EP4/32IS/MV/MC/HE no 120/277 I Normal 0.88 110/108 .80/.82 EPL4/32IS/MV/MC/HE no 120/277 I Low 0.77 98/96 .79/.80 Small Case EPH4/32IS/MV/SC no 120/277 I High 1.16 145/144 .80/.81 Jefferson Electric Jefferson 401-4320-UNV no 277 I Normal 0.88 108 0.81 High Efficiency KTEB-432EBF-UV-TP-PIC no 120/277 I Low 0.77 96 0.80 KTEB-432-UV-IS-L-P yes 120/277 I Low .78/.77 98/96 0.80 KTEB-432-UV-IS-N-P yes 120/277 I Normal .88/.87 110/106 .80/.82 KTEB-432-UV-PS-N-P yes 120/277 P Normal 0.87 114 0.76 KTEB-432-UV-PS-L-P yes 120/277 P Low 0.74 97 0.76 KTEB-432-1-IS-N-P yes 120 I Normal 0.88 108 0.81 DB-432L-MV-TP-HE no 120/277 I Low .78/.77 98/96 0.80 DB-432N-MV-TP-HE no 120/277 I Normal .88/.87 110/106 .80/.82 Maintenance Engineering Premira Electronic Ballast BPM934 no 120/277 P Normal 0.87 110 0.79 Anti- Striation SKEU324AS no 120/277 I Normal 0.88 88 1.00 SKEU324L/SC no 120/277 I Low 0.77 98/96 .79/.80 SKEU324/SC no 277 I Normal 0.88 108 0.82 SKEU324H/SC no 120/277 I High 1.16 145 0.80 SKEU324HE no 120/277 I Normal 0.88 109 0.81 SKEU324HEH/SC no 120/277 I High 1.16 145/144 0.80 SKEU324HEL/SC no 120/277 I Low 0.77 98/96 .79/.80 SKEU324HE/SC no 120/277 I Normal 0.88 110/108 .80/.82 SKEU324HEL no 120/277 I Low 0.77 95 0.81 EB-432IS-U-ES yes 120/277 I Normal 0.88 110/108 .80/.81 EB-432IS-U-ES-LBF yes 120/277 I Low 0.77 98/96 .79/.80 EB-432IS-U-ES-HBF yes 120/277 I High 1.16 145/144 .80/.81 Mylar Electronics Co, Ltd. High Efficiency Ballast U-4/32IS no 120/277 I Normal 0.90 110 0.82 QHE4x32T8/UNV ISH yes 120/277 I High 1.15 144/141 0.80/0.82 QHE4x32T8/277 ISH no 277 I High 1.15 148 0.78 QHE 4X32T8/UNV ISL-SC yes 120/277 I Low 0.78 95 0.82 QHE 4X32T8/UNV ISL-SC-1 yes 120/277 I Low 0.77 96 0.80 QHE 4X32T8/UNV ISN-SC yes 120/277 I Normal 0.88 108/107 0.81/0.82 QHE 4X32T8/UNV ISN-SC-1 yes 120/277 I Normal 0.87 109/107 .80/.81 QHE 4x32T8/UNV-PSH-HT yes 120/277 P High 1.15 143/141 .80/.82 QHE 4x32T8/UNV-PSN-SC yes 120/277 P Normal 0.88 111/108 .79/.81 QTP 4X32T8/UNV PSN-SC yes 120/277 P Normal 0.88 118/113 .75/.78 QTP 4X32T8/UNV PSX-SC yes 120/277 P Low 0.71 93/91 .76/.78 QTP 4X32T8/UNV ISL-SC yes 120/277 I Low 0.78 98 0.80 QTP 4X32T8/UNV ISN-SC yes 277 I Normal 0.88 110 0.80 QHE 4x32T8/UNV ISM-SC yes 120/277 I Medium 0.98 122/120 0.80/0.82 ICN-4P32-LW-SC yes 120/277 I Low 0.77 95 0.81 ICN-4P32-SC yes 120/277 I Normal 0.89 111 0.80 ICN-4P32-N yes 120/277 I Normal 0.89 111 0.80 IOP-4P32-HL-90C-G yes 120/277 I High 1.18 148/144 0.80/0.82 IOP-4S32-SC yes 120/277 P Normal 0.88 109 0.81 IOP-4P32-SC @ 120V yes 120 I Normal 0.87 108 0.81 IOP-4P32-SC @ 277V yes 277 I Normal 0.87 106 0.82 IOP-4P32-LW-SC @120V yes 120 I Low 0.77 97 0.79 IOP-4P32-LW-SC @277V yes 277 I Low 0.77 95 0.81 IOP-4S32-LW-SC yes 120/277 P Low 0.71 92 0.77 IOPA-4P32-LW-SC yes 120/277 I Low 0.77 94 0.82 IOPA-4P32-SC yes 120/277 I Normal 0.87 106 0.82 IOP-4PSP32-SC no 120/277 P Normal 0.88 109/110 .81/.80 IOPA-4P32-HL yes 120/277 I High 1.18 152/148 .78/.80 70204 no 120/277 I Normal 0.87 109/107 .80/.81 70205 no 120 I Normal 0.87 109/107 .80/.81 70211 no 120/277 P Normal 0.87/0.88 106/104 .82/.85 70214 no 120/277 I High 1.20 140/134 .86/.90 70220 no 120/277 I Low 0.78 95 / 96 .82/.81 SL-4/32IS-120 (70212)no 120 I Normal 0.88 110 0.80 SL-4/32IS-277 (70203)no 277 I Normal 0.88 110 0.80 Lighting and Power Technologies Deltek Electronic Ballast High Efficiency Ballast HE High Efficiency Premium Series Electronic Ballasts Maxlite Keystone Technologies OSRAM SYLVANIA Philips - Advance Superior Life Optanium Quicktronic Centium Micro Case Howard Industries HEX Electronic P.Q.L., Inc. MW McWong International 4 Lamp Products HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ ISA432T8HEMV yes 120/277 I Normal 0.88 110/108 .80/.82 ISA432T8HEMVL yes 120/277 I Low 0.77 98/96 .79/.80 ISL432T8HEMVL yes 120/277 I Low 0.77 95/94 0.81/0.82 ISL432T8HEMV yes 120/277 I Normal 0.88 110/108 0.80/0.81 ISS432T8HEMVL yes 120/277 I Low 0.79 98 0.81 ISS432T8HEMV yes 120/277 I Normal 0.90 110/111 .82/.81 - PSL432T8HEMV yes 120/277 P Normal .90/.91 114 .79/.80 SAU440IS-ROHS no 120/277 P Normal 0.88 107 0.82 SAU440HPIS-ROHS no 120/277 I High 1.33 143 0.93 E4-32-I-UV-L no 120/277 I Low 0.78 95/96 0.82 E4-32-I-UV-N no 120/277 I Normal 0.87 106 0.82 E4-32-I-UV-H no 120/277 I High 1.20 140/134 .86/.90 E-758-F-432SC no 120 I Normal 0.91 112 0.81 E-758-U-432SC no 120/277 I Normal 0.91 13 0.81 E432T8IS120/L no 120 I Low 0.78 95 0.82 E432T8IS120/N no 120 I Normal 0.85 105 0.81 E432T8IS120-277/N no 120/277 I Normal 0.88 106 0.83 E432T8IS120/N/BULK no 120 I Normal 0.88 108 0.81 E432T8IS120/L/BULK no 120 I Low 0.78 95 0.82 E432T8IS120/H no 120 I High 1.15 109 1.06 E432T8IS120/H/90C no 120 I High 1.10 140 0.79 E432T8PS120- 277/N/AS/BULK no 120/277 P Normal 0.87 110/109 0.79/0.80 E432T8PS120- 277/L/AS/BULK no 120/277 P Low 0.71 93/92 0.76/0.77 Optistart E432T8PRS120-277/L no 120/277 P Low 0.77 101 0.77 U-4/32IS HPF yes 120/277 I Normal 0.88 109 0.81 U-4/32IS HBF yes 120/277 I High 1.17 149.8 0.79 U-4/32IS LBF yes 120/277 I Low 0.78 97.2 0.80 U-4/32ISE yes 120/277 I Normal 0.88 108 0.81 U-4/32ISE-HBF yes 120/277 I High 1.16 144 0.81 U-4/32ISE-LBF yes 120/277 I Low 0.77 96 0.80 Superior Lamps, Inc. Heavy Duty Electronic Ballast BPS934 no 120/277 P Normal 0.87 110 0.79 SwitchGenie, LLC.SwitchGenie SG432 no 120/277 I Normal 0.88 108 0.81 E432IS32120N no 120 I Normal 0.87 107 0.81 E432IS32277N no 277 I Normal 0.88 108 0.82 E432IS32120L no 120 I Low 0.78 95 0.82 E432IS32120U no 120 I Low 0.72 84 0.85 E432IS32277L no 277 I Low 0.75 92 0.82 E432IS32277U no 277 I Low 0.70 85 0.82 TCP4P32ISUNVLE yes 120/277 I Low 0.77 98/96 .79/.80 TCP4P32ISUNVE yes 120/277 I Normal 0.88 110/108 .80/.82 TCP4P32ISUNVHE yes 120/277 I High 1.16 145/144 .80/.81 TCP4P321SUNVH yes 120/277 I High 1.18 147/145 .80/.81 E4P32ISUNVHE yes 120/277 I High 1.18 147/145 .80/.81 TCP4P32ISUNV yes 120/277 I Normal 0.88 110/108 .80/.81 E4P32ISUNVE yes 120/277 I Normal 0.88 110/108 .80/.81 TCP4P32ISUNVL yes 120/277 I Low 0.77 96/95 .80/.81 E4P32ISUNVLE yes 120/277 I Low 0.78 96/95 .81/.82 Topstar International Inc. T8 Electronic Ballast BB-T8/UVH-4x32/HPF no 120 I Normal 0.86 108 0.80 UT432120L no 120 I Low 0.71 93 0.76 eT432120M no 120/277 I Normal 0.87 108 0.81 GTL432120 no 120 I Low 0.82 101 0.81 UT432120MH no 120/277 I High 1.18 146 0.81 UT432120M-HE no 120/277 I Normal 0.86 106 0.81 UT432120L-HE no 120 I Low 0.79 100 0.79 UT432120ML-HE no 120/277 I Low 0.76 96 0.79 PR432120M-PP-HE no 120/277 P Normal 0.88 110 0.80 B432I277HEH yes 277 I High 1.18 145 0.81 B432I120HE yes 120 I Normal 0.87 100 0.87 B432PUNVHP-A yes 277 P Normal 0.88 115 0.77 B432IUNV-D yes 277 I Normal 0.88 109 0.81 B432I277RH-A yes 277 I Normal 0.88 110 0.80 B432IUNVHP-A yes 277 I Normal 0.88 108 0.81 B432I277HE yes 277 I Normal 0.87 105 0.83 B432IUNVHE-A yes 120/277 I Normal 0.87 109/106 0.80/0.82 B423I120HE yes 120 I Normal 0.87 106 0.82 B432I277L-A yes 277 I Low 0.78 98 0.76 B432I120EL yes 120 I Low 0.77 95 0.81 B432I277EL yes 277 I Low 0.77 93 0.82 B432IUNVEL-A yes 120/277 I Low 0.77 97/96 0.79/0.80 ES1720B yes 120/277 I Normal 0.87 107/108 0.81 B432PUNVEL-A no 120/277 P Low 0.71 91/90 0.78/0.79 B432PUNVHE-A no 120/277 P Normal 0.87 109/107 0.80/0.81 - F32 T8 HiLumen Gold Label Sterling Series E432 Sola Technical Consumer Products, Inc. Robertson Worldwide Sunpark Electronics Corp. Ultra Lumen SOLA Canada Lighting & Power Standard Products, Inc. SLI SageSage Lighting Ltd - Ultrasave Lighting Ltd. SLI Lighting/Havells USA Universal Lighting Technologies Ultim 8 HP 120 and 277 V T8 Ballasts Manufacturer Product Name Model Number NEMA4 Premium® Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W) BEF³ HP T8 Qualified Ballasts with 6 Lamps General Electric Company UltraMax GE632MAX-H90 yes 120/277 I High 1.18 221/215 .53/.55 6 Lamp1 CEE's specification uses the BALLAST EFFICACY FACTOR (BEF) as the true measure of efficiency. The input watt figure calculations are based on a premium 4', 32W T8 reference lamp. 2 “P” signifies programmed start, “I” signifies instant start, "D" signifies dimming capabilities 3 BEF is calculated by multiplying the Ballast Factor by 100 and dividing by the input watts, except for Howard Industries and Standard Products, which provide the information in their catalog. 4 NEMA Premium® is a trademark of the National Electrical Manufacturers Association. It is an identifiable certification mark for manufacturers to use on products that meet the ballast portion of CEE's current specification for High Performance Lighting Systems. The label is available to all manufacturers that enroll in the NEMA Premium® program and sign a Memorandum of Understanding and Licensing agreement with NEMA. CONSORTIUM FOR ENERGY EFFICIENCY www.cee1.org 617-589-3949 © 2007 Consortium for Energy Efficiency, Inc. All rights reserved. QUALIFYING PRODUCTS 1 High-Performance 120 and 277V T8 Dimming Ballasts CEE High-Performance Commercial Lighting Systems Initiative For a list of qualifying 347 V T8 ballasts, see: www.cee1.org/com/com-lt/347-ballasts.xls Manufacturer Product Name Model Number NEMA4 Premium® Lamp Wattage Voltage (V) Ballast Type ² Ballast Factor Range Ballast Factor Input Watts (W)BEF³ FLT-120-1x32WT8HBF-DALI no 32 120 PD Normal 1.00 35 2.86 FLT-277-1x32WT8HBF-DALI no 32 277 PD Normal 1.00 35 2.86 General Electric Company UltraStart T8 100-3% Dimming GE132MVPS-N-VO3 no 32 120/277 PD Normal 0.88 30/29 2.93/3.03 SD1F8-32M no 32 120/277 PD High 1.15 39 2.95 SD1J8-32M no 32 120/277 PD High 1.15 39 2.95 LUMEnergi LUMEnergi LUM-LD-IB100 no 32 120/277 PD High 1.20 40 3.00 H3D T832 C UNV 1 10 no 32 120/277 PD Normal 1.00 35.1 / 34.8 2.85/2.87 H3D T832 C UNV 1 17 no 32 120/277 PD High 1.17 39.7 2.95 EHD T832 C U 1 10 no 32 120/277 PD Normal 1.00 35.1 / 34.8 2.85/2.87 EHD T832 C U 1 17 no 32 277 PD High 1.17 39.7 2.95 QTP1X32T8/UNVDIM-TC yes 32 120/277 PD Normal 0.88 30 2.93 QHES2X32T8/UNVPSN-SC yes 32 120/277 PD Normal 0.87 28/29 3.00/3.11 REZ-132-SC yes 32 120 PD Normal 1.00 35 2.86 VEZ-132-SC yes 32 277 PD Normal 1.00 35 2.86 Mark 7 IZT-132-SC yes 32 120/277 PD Normal 1.00 35 2.86 ROVR IDA-132-SC yes 32 120/277 PD Normal 1.00 27/35 3.70/2.86 Robertson Worldwide Sterling Series PSL132T8MV3D yes 32 120/277 PD Normal 1.00 34 2.94 B232PUNVDRL-A yes 32 120/277 PD Low .83/.84 23.7/23.8 2.88/2.87 B232PUNVDR-A yes 32 120/277 PD Normal 0.88 29/30 3.03/2.93 Ballastar B232PUS50-A yes 32 120/277 PD Normal 0.88 29 3.03 SuperDim B132PUNVSV3-A yes 32 120/277 PD Normal 0.88 30 2.93 ELB-2L32 EA10ES120-277 no 32 277 PD Normal 0.88 58.3 1.51 ELB-2L32 EA10E120-277 no 32 277 PD Normal 1.00 67.5 1.48 ELB-2L32 EA10EH120-277 no 32 120/277 PD High 1.18 74.2/72.3 1.59/1.63 VE232MVHRPT3-AB yes 32 120/277 PD Normal 1.00 68 1.47 VE232MVHRPHT3-AB yes 32 120/277 PD High 1.20 79 1.52 UltraMax Bi- Level Switching GE232MAX90-S60 yes 32 120/277 PD High 1.18 75/74 1.57/1.59 UltraMax LoadShed Dimming GE232MAX90-V60 yes 32 120/277 PD High 1.18 75/74 1.57/1.59 GE232MVPS-N-VO3 no 32 120/277 PD Normal 0.88 58/56 1.52/1.57 GE232MVPS-H-VO3 no 32 120/277 PD High 1.18 76/74 1.55/1.59 SD2F8-32M no 32 120/277 PD High 1.15 76 1.51 SD2J8-32M no 32 120/277 PD High 1.15 76 1.51 LUMEnergi LUMEnergi LUM-LD-IB100 no 32 120/277 PD High 1.20 76/75 1.58/1.60 H3D T832 C UNV 2 10 no 32 120/277 PD Normal 1.00 66.5/65.7 1.50/1.52 H3D T832 C UNV 2 17 no 32 120/277 PD High 1.17 76.9/75.4 1.52/1.55 EC5 T832 G UNV 2L no 32 120/277 PD Low 0.85 56.9 1.49 EC5 T832 J UNV 2 no 32 120/277 PD Low 0.85 59.1/57.4 1.44/1.48 EHD T832 C U 2 10 no 32 120/277 PD Normal 1.00 66.5 / 65.7 1.50 / 1.52 EHD T832 C U 2 17 no 32 120/277 PD High 1.17 76.9 / 75.4 1.52 / 1.55 EC3 T832 C U 2 10 no 32 120/277 PD Normal 1.00 66.5 / 65.7 1.50/1.52 EC3 T832 G U 2 10 no 32 120/277 PD Normal 1.00 66.5 / 65.7 1.50/1.52 EC3 T832 C U 2 17 no 32 120/277 PD High 1.17 76.9 / 75.4 1.52/1.55 EC3 T832 G U 2 17 no 32 120/277 PD High 1.17 76.9 / 75.4 1.52/1.55 Dynamus EcoSystem Leviton Sector Eco-10 Lutron General Electric Company UltraStart T8 100-3% Dimming DemandFlex Hi-Lume3D Universal Lighting Technologies ELB Electronics, Inc. Quicktronic HP T8 Qualified Ballasts with 2 Lamps ELB Plus Dimming Ballast 0-10VDC Espen Technology, Inc. Fifth Light Technology DALI Philips - Advance OSRAM SYLVANIA Lutron EcoSystem 1 Lamp Hi-Lume3D Updated 12/30/11 Click "Open." When "Connect to www.cee1.org" box opens, click on "Cancel" twice Mark 10 Powerline Legend: Red Font is a product no longer manufactured, but still meets the criteria as a qualifying product Leviton Sector HP T8 Qualified Ballasts with 1 Lamp QHES2X32T8/UNVPSN-SC yes 32 120/277 PD Normal 0.87 55/54 1.58/1.61 QTP2X32T8/UNV DIM TC yes 32 120/277 PD Normal 0.88 60/58 1.47/1.52 QHELS2X32T8/UNV-ISN-SC yes 32 277 ID Normal 0.88 56/55 1.60 QHES2X32T8/UNVPSL-SC yes 32 120/277 PD Low 0.77 48 1.60 QHE2x32T8/UNV DALI yes 32 120/277 PD Normal 1.00 66/65 1.51/1.54 REZ-2S32-SC yes 32 120 PD Normal 1.00 68 1.47 VEZ-2S32-SC yes 32 277 PD Normal 1.00 68 1.47 Mark 7 IZT-2S32-SC yes 32 120/277 PD Normal 1.00 67 1.49 EssentiaLine ILV-2S32-SC yes 32 120/277 PD Normal 0.88 59 1.49 ROVR IDA-2S32-SC yes 32 120/277 PD Normal 1.00 68.0 1.47 Pure Spectrum Lighting PureSpectrum PST232PNS3 no 32 277 PD Normal 1.00 68 1.47 Robertson Worldwide Sterling Series PSL232T8MV3D no 32 120/277 PD Normal 1.00 68 1.47 Sage Lighting Ltd Sage NU232T8D-ROHS no 32 120/277 PD Normal 0.88 60 1.47 U-232PS3 no 32 277 PD Normal 1.00 68 1.47 U-232PS3-HBF no 32 277 PD High 1.20 79 1.52 Ultrasave Lighting Ltd. - PR232120M-D no 32 120/277 PD Normal 1.00 67 1.49 B232PUNVDR-A yes 32 120/277 PD Normal 0.88 56/55 1.57/1.6 B232PUNVDRL-A yes 32 120/277 PD Low 0.71 47 1.51 B232PUNVDRH-A yes 32 120/277 PD High 1.18 74/72 1.59/1.64 B232PUNVDFH-A yes 32 120/277 PD High 1.15 76/75 1.51/1.53 B232PUNVDYL-A yes 32 277 PD Low 0.69 46 1.50 B232PUNVDY-A yes 32 120/277 PD Normal 0.87 58/57 1.50/1.53 B232PUNVDYH-A yes 32 120/277 PD High 1.15 76/74 1.51/1.55 B232PU104S50-A yes 32 120/277 PD High 1.04 65 1.60 B232PUS50-A yes 32 120/277 PD Normal 0.88 57/56 1.54/1.57 SuperDim B232PUNVSV3-A yes 32 120/277 PD Normal 0.88 57/56 1.54/1.57 ELB-3L32 EA10ES120-277 no 32 120/277 PD Normal 0.88 84/82.5 1.51 ELB-3L32 EA10E120-277 no 32 277 PD Normal 1.00 98.8 1.48 ELB-3L32 EA10EH120-277 no 32 120/277 PD High 1.18 118.4/115.9 1.59/1.63 VE332MVHRPT3-AB yes 32 120/277 PD Normal 1.00 99 1.01 VE332MVHRPHT3-AB yes 32 120/277 PD High 1.20 119 1.01 UltraMax Bi- Level Switching GE332MAX90-S60 yes 32 120/277 PD High 1.18 113/110 1.04/1.07 UltraMax LoadShed Dimming GE332MAX90-V60 yes 32 120/277 PD High 1.18 113/110 1.04/1.07 GE332MVPS-N-VO3 no 32 120/277 PD Normal 0.88 87/85 1.01/1.04 GE332MVPS-H-VO3 no 32 120/277 PD High 1.18 116/113 1.02/1.04 LUMEnergi LUMEnergi LUM-LD-IB100 no 32 120/277 PD High 1.20 113/112 1.06/1.07 H3D T832 C UNV 3 17 no 32 120/277 PD High 1.17 106.8/105.7 1.10/1.11 H3D T832 G UNV 3 10 no 32 120/277 PD Normal 1.00 95.4/93.5 1.05/1.07 EC5 T832 G UNV 3 17 no 32 120/277 PD High 1.17 106.8/105.7 1.10/1.11 EC5 T832 G UNV 3L no 32 120/277 PD Low 0.85 85.9/86.5 .99/.98 EHD T832 G U 3 10 no 32 120/277 PD Normal 1.00 95.4 / 93.5 1.05 / 1.07 EC3 T832 G U 3 10 no 32 120/277 PD Normal 1.00 95.4 / 93.5 1.05 / 1.07 EC3 T832 G U 3 17 no 32 120/277 PD Normal 1.17 106.8/105.7 1.10/1.11 QHELS3X32T8/UNV ISN-SC yes 32 120/277 ID Normal 0.88 83/82 1.06/1.07 QTP3X32T8/UNVDIM-TC yes 32 120/277 PD Normal 0.88 87/84 1.01/1.05 Mark 7 IZT-3S32-SC yes 32 120/277 PD Normal 1.00 93 1.08 REZ-3S32-SC yes 32 120 PD Normal 0.97 96.0 1.01 VEZ-3S32-SC yes 32 277 PD Normal 0.97 96.0 1.01 ROVR IDA-3S32-G yes 32 120/277 PD Normal 1.00 99.0 1.01 Robertson Worldwide Sterling Series PSL332T8MV3D yes 32 120/277 PD Normal 1.00 100 1.00 U-332PS3 no 32 277 PD Normal 1.00 100 1.00 U-332PS3-HBF no 32 120/277 PD High 1.15 115/111 1.00/1.04 Espen Technology, Inc. Dynamus QuicktronicOSRAM SYLVANIA 2 Lamp3 LampQuicktronic Mark 10 Powerline Hi-Lume3D EcoSystem Eco-10 UltraStart T8 100-3% Dimming OSRAM SYLVANIA Ultra Lumen Philips - Advance Sunpark Electronics Corp. Philips - Advance Ballastar Mark 10 Powerline Sunpark Electronics Corp. Ultra Lumen Demand Flex Lutron HP T8 Qualified Ballasts with 3 Lamps ELB Electronics, Inc. ELB Plus Dimming Ballast 0-10VDC General Electric Company Universal Lighting Technologies B332PUNVDR-A yes 32 120/277 PD Normal 0.87 85/83 1.02/1.05 B332PUNVDRL-A yes 32 120/277 PD Low 0.71 72 0.99 B332PUNVDRH-E yes 32 120/277 PD High 1.15 115/111 1.00/1.04 UltraMax Bi- Level Switching GE432MAX90-S60 yes 32 120/277 PD High 1.18 149/146 0.79/.81 UltraMax LoadShed Dimming GE432MAX90-V60 yes 32 120/277 PD High 1.18 149/146 .79/.81 GE432MVPS-N-VO3 no 32 120/277 PD Normal 0.88 114/111 .77/.79 GE432MVPS-H-VO3 no 32 120/277 PD High 1.18 150/148 .79/.80 OSRAM SYLVANIA Quicktronic QTP4X32T8/UNV DIM-TC yes 32 120/277 PD Normal 0.88 114/110 .77/.80 IZT-4S32 yes 32 120/277 PD Normal 0.88 116 0.76 VZT-4S32-G yes 32 277 PD Normal 0.88 116 0.76 VZT-4S32-HL yes 32 277 PD High 1.18 149 0.79 VZT-4PSP32-G no 32 277 PD Normal 0.88 112 0.79 ROVR IDA-4S32 yes 32 120/277 PD Normal 0.88 116 0.76 B432PUNVDR-E yes 32 120/277 PD Normal 0.88 116/112 0.76/0.79 B432PUNVDRL-E yes 32 120/277 PD Low 0.71 93 0.76 B432P277V5-E yes 32 277 PD Normal 0.88 115 0.77 B432P277V5H-E yes 32 277 PD High 1.18 150 0.79 GE632MAX-H90-S60 yes 32 120/277 ID High 1.18 221/215 .53/.55 GE632MAX-H90-V60 yes 32 120/277 ID High 1.18 221/215 .53/.55 3 BEF is calculated by multiplying the Ballast Factor by 100 and dividing by the input watts, except for Howard Industries and Standard Products, which provide the information in their catalog. 4 NEMA Premium® is a trademark of the National Electrical Manufacturers Association. It is an identifiable certification mark for manufacturers to use on products that meet the ballast portion of CEE's current specification for High Performance Lighting Systems. The label is available to all manufacturers that enroll in the NEMA Premium® program and sign a Memorandum of Understanding and Licensing agreement with NEMA. CONSORTIUM FOR ENERGY EFFICIENCY www.cee1.org 617-589-3949 © 2007 Consortium for Energy Efficiency, Inc. All rights reserved. Demand Flex 6 Lamp4 LampBallastar Demand Flex Mark 7 HP T8 Qualified Ballasts with 6 Lamps General Electric Company UltraMax HP T8 Qualified Ballasts with 4 Lamps Universal Lighting Technologies General Electric Company UltraStart T8 100-3% Dimming Philips - Advance Universal Lighting Technologies APPENDIX D –MECHANICAL CALCULATIONS U-VALUE CALCULATIONS RS Consulting Seattle, Washington Job Name:Ben Eielson Jr/Sr High School Date:3-Dec-11 Job Number:Eng:R. Sneeringer Wall -1 Construction Resistance (R) Remodel Areas At Frame Btwn Frame 20%80% 1)Outside Air Film (15 mph)0.17 0.17 2)3" EIFS @ R-4/in 12.00 12.00 3)3/4" Plywood 0.80 0.80 4)2x6 Wood @ 16" OC 4.35 -- 5)R-19 Batt Insulation (comp)--18.00 6)5/8" Sheetrock 0.56 0.56 7)Inside Air Film (still air)0.68 0.68 R-Total 18.56 32.21 Wall U-Value 0.036 Wall - 2 Construction Resistance (R) Gym Areas At Frame Btwn Frame 20%80% 1)Outside Air Film (15 mph)0.17 0.17 2)3" EIFS @ R-4/in 8.00 8.00 3)3/4" Plywood 0.80 0.80 4)2x8 Wood @ 16" OC 5.80 -- 5)R-21 Batt Insulation (comp)--21.00 6)5/8" Ply 0.80 0.80 7)5/8" Sheetrock 1.56 1.56 8)Inside Air Film (still air)0.68 0.68 R-Total 17.81 33.01 Wall U-Value 0.035 U-VALUE CALCULATIONS RS Consulting Seattle, Washington Job Name:Ben Eielson Jr/Sr High School Date:3-Dec-11 Job Number:Eng:R. Sneeringer Roof-1:Construction Resistance (R) At Frame Btwn Frame 100% 1)Outside Air Film (15 mph)--0.17 2)Built Up Roofing --0.50 3)20" Rigid Insulation --40.00 4)3/4" Plywood --0.80 5)Air Space --2.00 6)Inside Air Film (still air)--0.17 R-Total N/A 43.64 Roof U-Value 0.023 Floor:Existing Slab /Grade Construction Resistance (R) At Frame Btwn Frame Insulated Slab Edge R-Total N/A Floor U-Value 0.550 Btu/deg f/lin ft Windows:Double Pane Construction 1)Vinyl Frame, Triple Pane 1/2" Air Space, TBrk, 1" Thk 2)Use Value from ASHRAE Table 13 1989 Window U-Value 0.330 Shading Coefficient 0.83 Clear Glazing Doors:Man Doors Construction 1)Sandwiched Panel Insulated Door U-Value 0.600 Building Envelope - Calculations and Common Conversions • U-Value = 1/R-Value • R-Values per Inch of Common Insulation Materials Fiberglass Blanket 3.2 Loose Fiberglass 2.5 Fiberglass Blown-in-Bat 4.0 Loose Rock Wool 2.8 Loose Cellulose 3.5 Wet-Spray Cellulose 3.9 Vermiculite 2.7 Polyisocyanurate 5.8 Expanded Polystyrene (bead board) 3.8 Extruded Polystyrene (blue board) 4.8 Foil Faced Polyisocyanurate 7.0 Spray applied Foam 6.0 U value = btu’s/ Hour x sq ft x deg F = 1/R R value = Hours x sq ft x deg F / BTU’s= 1/U q (Building heat loss in btu’s/hr)= U x A x Delta T = U x A x DD x 24 (annual heat loss) Sample Calculations: Building Envelope-Heat Transfer Calculations R- “Resistance value” of building materials to heat flow RT = R inside film + R1 + R2 +… R outside film U-value: “overall heat transfer co-efficient” (Includes allowance for BOTH convection and conduction heat transfer) U = 1/ RT Sample Calculation 1: Windows: window area is 1000 square feet Window is triple pane; U = .27 Q = A * U * (Ti – To) Where Q = Total hourly rate of heat loss through walls, roof, glass, etc in Btu/hr U = Overall heat-transfer coefficient of walls, roof, ceiling, floor, or glass in Btu/hr ft2°F A = Net area of walls, roof, ceiling, floor, or glass in ft2 Ti = Inside design temperature in °F = 70 To = Outside design temperature in °F = 30 Q = U * A * delta T = .27 x 1000 x (70 – 30) = .27 x 1000 x 40 = 10,800 Btu/hour Sample Calculation 2: For sample calculations- outside design = 30 F, inside design = 70 F Walls: wall area is 1000 square feet Wall is wood stud with R-30 insulation; U = 0.033 Q = U x A x delta T = 0.033 x 1000 x (70 – 30) = 0.033 x 1000 x 40 = 1333.3 Btu/hour Radiation heat gain thru windows Q = (A) x (SHGF) x (CLF) x (SC) Where: Q = heat transfer in BTU/HR A = window area in ft2 SHGF= solar heat gain factor (dependent on orientation and location) CLF = cooling load factor (dependent on shading and color of interior surface) SC = shading coefficient (property of glazing; dependent on clear/tinted/mirror glass surface) Other ratings- SHGC = solar heat gain coefficient = SC x 0.86 Glazing selection – Single pane vs. dual/triple pane Single pane- “U” = 1.10 Dual pane- “U” = 0.35 Triple pane- “U” = 0.22 (NOTE effect of interior “films” at glass surfaces; insulation value increases due to air space and number of surface films) – “low E” glass coating that allows light to get thru but not heat Glazing Selection SHGC- Solar Heat Gain Coefficient (% of ALL radiation (UV, visible and IR) that gets thru glass) VT- Visible Transmittance (% of visible light that gets thru glass) SOUTH FACING GLAZING: – Cold climate: SHGC > 0.6; high VT; low “U” – Moderate climate: SHGC < 0.6; high VT; low “U” – Hot climate: SHGC < 0.4; medium VT; low “U” – East/west facing: SHGC < 0.4; high VT; low “U” Job:Ben Eielson Jr/Sr High School Job Number: Date:22-May-12 Zone Zone Area Ceil Ht Room Zone SA OA Zone Zone OA Primary Zone No.Description Sf Ft Vol cf Cfm Density Total cfm/per cfm cfm/sf cfm Vbz Eff (Ez)Voz OA Fract Served Az V Vpz #/1000 sf Pz Rp Ra Vbz Ez Voz Zp By 104 Boys/Girls restrooms 880 9.0 7,920 400 0 0 5 0 0.06 50 50 1.0 50 13%SF03 105 Boys/Girls locker rooms, storage 2,610 9.0 23,490 400 0 0 5 0 0.06 160 160 1.0 160 40%SF03 106 Junior High Gymnasium 6,560 29.0 190,240 6,500 34 220 5 1100 0.06 390 1,490 1.0 1,490 23%SF03 107 Applied tech, metals, woods 2,820 9.0 25,380 2,700 13 36 10 360 0.18 510 870 1.0 870 32%SF10 108 ISS reception, ISS 1,150 9.0 10,350 1,170 17 20 5 100 0.06 70 170 1.0 170 15%SF10 109 Faculty lounge, workroom 1,100 9.0 9,900 2,325 14 15 5 75 0.06 70 145 1.0 150 6%SF10 110 Principal, VP, secretary 530 9.0 4,770 785 15 8 5 40 0.06 30 70 1.0 70 9%SF10 111 VP, conf, recp, councel, career 2,050 9.0 18,450 2,095 5 10 5 50 0.06 120 170 1.0 170 8%SF10 112 Corridors 4,430 9.0 39,870 1,200 0 0 5 0 0.06 270 270 1.0 270 23%SF10 113 Library, offices, Computer lab 5,760 9.0 51,840 4,780 25 145 5 725 0.06 350 1,075 1.0 1,080 23%SF10 114 Mens/Womens restrooms 1,120 9.0 10,080 600 0 0 5 0 0.06 70 70 1.0 70 12%SF10 115 Cafeteria 5,170 12.0 62,040 6,760 48 250 5 1250 0.06 310 1,560 1.0 1,560 23%SF10 116 Corridors 2,920 9.0 26,280 850 0 0 5 0 0.06 180 180 1.0 180 21%SF10 117 Scullery, storage, elect 1,830 9.0 16,470 2,640 3 5 5 25 0.06 110 135 1.0 140 5%SF10 118 CADD classroom, weight rm, train 2,180 9.0 19,620 3,040 28 60 10 600 0.12 260 860 1.0 860 28%SF10 119 Gym storage 870 9.0 7,830 840 0 0 5 0 0.06 50 50 1.0 50 6%SF10 120 Custodian, general, service 740 9.0 6,660 730 0 0 5 0 0.06 40 40 1.0 40 5%SF10 121 Storage 140 10.0 1,400 240 0 0 5 0 0.06 10 10 1.0 10 4%SF10 123 Mens/Womens locker room 3,450 9.0 31,050 1,645 0 0 5 0 0.06 210 210 1.0 210 13%SF10 131 Music 2,710 10.0 27,100 4,020 9 25 10 250 0.06 160 410 1.0 410 10%SF10 128 Math, social studies 3,300 9.0 29,700 4,620 32 105 10 1050 0.12 400 1,450 1.0 1,450 31%SF11 124 Language arts, math 5,810 9.0 52,290 11,600 35 205 10 2050 0.12 700 2,750 1.0 2,750 24%SF12 125 Corridors 4,150 9.0 37,350 1,200 0 0 5 0 0.06 250 250 1.0 250 21%SF12 126 Foreign language, physics, biotech 5,590 9.0 50,310 5,130 25 140 10 1400 0.12 670 2,070 1.0 2,070 40%SF12 127 Art Class 1,710 9.0 15,390 3,700 23 40 10 400 0.18 310 710 1.0 710 19%SF12 129 Computers, health, social studies 2,090 9.0 18,810 2,440 25 52 10 520 0.12 250 770 1.0 770 32%SF12 130 Theater, stage, office, storage 1,470 15.0 22,050 5,120 58 85 10 850 0.06 90 940 1.0 940 18%SF12 122 Senior High Gymnasium 9,780 29.0 283,620 13,500 41 400 5 2000 0.06 590 2,590 1.0 2,590 19%SF16 101 Art, Science Classrooms 6,700 9.0 60,300 10,850 25 165 10 1650 0.18 1210 2,860 1.0 2,860 26%SF18 102 Classrooms 6,310 9.0 56,790 10,850 35 220 10 2200 0.12 760 2,960 1.0 2,960 27%SF18 103 Corridors 3,180 9.0 28,620 1,185 0 0 5 0 0.06 190 190 1.0 190 16%SF18 99,110 2,206 25,550 Area Primary Tot Tot Diversity Total Uncrtd Max Vent Total OA OA OA Avg CO2 TAG SERVES Served Air People People of People OA OSA Zp Eff OSA Percent Cfm/Per Cfm/Sf Met Setting SF Cfm Zone Pz Sys Ps D Voz Vou %Ev Vot Ros Rate SF03 JUNIOR HIGH GYM 10,050 7,300 220 220 100%1,700 1,700 40.0%0.70 2,429 33%11 0.24 2.5 1,500 SF10 OFFICE ADMIN 38,970 36,420 574 450 78%6,310 4,947 32.2%0.80 6,184 17%11 0.16 1.2 1,100 SF11 CLASSROOMS 3,300 4,620 105 105 100%1,450 1,450 31.4%0.80 1,813 39%17 0.55 1.2 700 SF12 CLASSROOMS 20,820 29,190 522 500 96%7,490 7,174 40.4%0.70 10,249 35%20 0.49 1.2 700 OUTSIDE AIR CALCULATIONS From 2009 IMC Table 403.3 Number of Occ People Rate Area Rate 113,915 SF16 SENIOR HIGH GYM 9,780 13,500 400 400 100%2,590 2,590 19.2%0.90 2,878 21%7 0.29 2.5 2,400 SF18 CLASSROOMS 16,190 22,885 385 300 78%6,010 4,683 27.3%0.80 5,854 26%15 0.36 1.2 800 99,110 113,915 2,206 25,550 22,544 Based on 2009 IMC ASHRAE 62.1, 2007 Appendix A-2: Table A-A Typical Met Levels For Activities Az Area of the zone (sq ft)MET ACTIVITY Pz Zone population 1.0 Seated, quiet Rp Outdoor air required per person (Table 6.1)1.0 Reading and Writing, seated Ra Outdoor air required per unit area (Table 6.1)1.1 Typing Vbz The design outdoor airflow in the breathing zone ( people factor plus area factor in accordance with Table 6.1)1.2 Filing, Seated Voz The design outdoor airflow supplied to the zone ( Vbc/Ez)1.4 Filing, Standing Vou Uncorrected outdoor intake (sum of all zones served by the ahu times the occupanct diversity D)2.0 Walking, at 0.89m/s Vot Design outdoor intake flow ( Vou/Ev)2-3 House Cleaning Ez Zone air distribution effectiveness in accordance with Table 403.3.1.2 3-4 Exercise Ev System ventilation efficency ( Per table 403.2.2.3.2) Short Term Conditions If the peak occupancy will be of short duration, the design may be based on the average condtions over a time period T. T Averaging time period , min ( 3v/Vbz) V Volume of the zone , cu ft CO2 Calculations Cru - C0 = 1,000,000 x Nb x M / Ros Calculates rise in CO2 concentration if all supplied outdoor air is consumed. Cs-C0 = Zs x 0 + (1-Zs) x (Cru - C0)Calculates target SA CO2 concentration (above ambient) based on previous calculation. Cru = CO2 concentration in recirculated air if all outdoor air supplied to the building is used. C0 = CO2 concentration outdoors. Nb = CO2 generation rate per person at base metabolic rate. Default = 0.0091 CFM/Person (0.0043 L/s per person). M = Relative metabolic rate in met units. Default is sedentary person = 1.2 mets, ASHRAE standard 62.1-2007, Appendix C. 400 Assumed Ambient OA CO2 Concentration [PPM] 20%Factor of Safety (accounts for lag in controls) 0.0091 Base CO2 Generation Rate (PPM/Person) Ros = OA Dilution Per Person (Vot / Population Served) 29,405 Motor Upgrades Feasiblity Analysis Blended Electrical Cost $0.177 Maximum Acceptable Payback 5 Years Ratio of BHP to Motor HP 75% Estimated Annual Hours of Operation 3600 Exist Est Replace if Proposed Required Proposed Required Required Proposed Required Motor Brake Motor Eff New Existing Energy Energy An Energy Motor Simple Hp Hp Is Less Motor Energy Consump Savings Savings Instalation Payback Than Eff Cons KWh KWH KWH $Costs Yrs 1 0.75 67.6%85.5%2,976 2,355 621 110$550$5.0 1.5 1.13 72.0%86.5%4,192 3,491 701 124$620$5.0 2 1.50 74.6%86.5%5,395 4,655 740 131$655$5.0 3 2.25 79.6%89.5%7,585 6,749 836 148$740$5.0 5 3.75 83.2%89.5%12,101 11,248 853 151$755$5.0 7.5 5.63 85.1%91.0%17,746 16,594 1,153 204$1,020$5.0 10 7.50 86.2%91.7%23,369 21,956 1,412 250$1,250$5.0 15 11.25 88.0%93.0%34,338 32,474 1,864 330$1,650$5.0 20 15.00 88.2%93.0%45,672 43,299 2,373 420$2,100$5.0 25 18.75 88.4%93.6%56,963 53,776 3,186 564$2,820$5.0 30 22.50 89.6%94.1%67,409 64,189 3,220 570$2,850$5.0 40 30.00 90.1%94.1%89,427 85,585 3,842 680$3,400$5.0 50 37.50 90.7%94.5%111,048 106,529 4,520 800$4,000$5.0 60 45.00 91.3%95.0%132,314 127,161 5,153 912$4,560$5.0 75 56.25 91.2%95.0%165,573 158,952 6,621 1,172$5,860$5.0 100 75 91.8%95.4%219,386 211,047 8,339 1,476$7,380$5.0 Main Building Fan Systems Motor Upgrades Feasiblity Analysis Blended Electrical Cost $0.177 Maximum Acceptable Payback 5 Years Ratio of BHP to Motor HP 75% Estimated Annual Hours of Operation 2400 Exist Est Replace if Proposed Required Proposed Required Required Proposed Required Motor Brake Motor Eff New Existing Energy Energy Energy Motor Simple Hp Hp Is Less Motor Energy Consump Savings Savings Instalation Payback Than Eff Cons KWh KWH KWH $Costs Yrs 1 0.75 61.3%85.5%2,191 1,570 621 110$550$5.0 1.5 1.13 66.5%86.5%3,028 2,328 701 124$620$5.0 2 1.50 69.8%86.5%3,844 3,103 740 131$655$5.0 3 2.25 75.5%89.5%5,335 4,499 836 148$740$5.0 5 3.75 80.4%89.5%8,352 7,499 853 151$755$5.0 7.5 5.63 82.4%91.0%12,215 11,063 1,153 204$1,020$5.0 10 7.50 83.6%91.7%16,050 14,638 1,412 250$1,250$5.0 15 11.25 85.6%93.0%23,514 21,649 1,864 330$1,650$5.0 20 15.00 85.9%93.0%31,239 28,866 2,373 420$2,100$5.0 25 18.75 86.0%93.6%39,037 35,851 3,186 564$2,820$5.0 30 22.50 87.5%94.1%46,013 42,793 3,220 570$2,850$5.0 40 30.00 88.2%94.1%60,899 57,057 3,842 680$3,400$5.0 50 37.50 88.8%94.5%75,539 71,019 4,520 800$4,000$5.0 60 45.00 89.6%95.0%89,927 84,774 5,153 912$4,560$5.0 75 56.25 89.4%95.0%112,589 105,968 6,621 1,172$5,860$5.0 100 75 90.1%95.4%149,037 140,698 8,339 1,476$7,380$5.0 Gymnasium Fan Systems Motor Upgrades Feasiblity Analysis Blended Electrical Cost $0.177 Maximum Acceptable Payback 5 Years Ratio of BHP to Motor HP 75% Estimated Annual Hours of Operation 4800 Exist Est Replace if Proposed Required Proposed Required Required Proposed Required Motor Brake Motor Eff New Existing Energy Energy Energy Motor Simple Hp Hp Is Less Motor Energy Consump Savings Savings Instalation Payback Than Eff Cons KWh KWH KWH $Costs Yrs 1 0.75 71.4%85.5%3,761 3,140 621 110$550$5.0 1.5 1.13 75.2%86.5%5,356 4,655 701 124$620$5.0 2 1.50 77.3%86.5%6,947 6,207 740 131$655$5.0 3 2.25 81.9%89.5%9,835 8,998 836 148$740$5.0 5 3.75 84.7%89.5%15,850 14,997 853 151$755$5.0 7.5 5.63 86.5%91.0%23,278 22,125 1,153 204$1,020$5.0 10 7.50 87.5%91.7%30,687 29,275 1,412 250$1,250$5.0 15 11.25 89.2%93.0%45,163 43,299 1,864 330$1,650$5.0 20 15.00 89.3%93.0%60,104 57,732 2,373 420$2,100$5.0 25 18.75 89.6%93.6%74,888 71,702 3,186 564$2,820$5.0 30 22.50 90.7%94.1%88,805 85,585 3,220 570$2,850$5.0 40 30.00 91.0%94.1%117,955 114,113 3,842 680$3,400$5.0 50 37.50 91.6%94.5%146,558 142,038 4,520 800$4,000$5.0 60 45.00 92.2%95.0%174,701 169,549 5,153 912$4,560$5.0 75 56.25 92.1%95.0%218,557 211,936 6,621 1,172$5,860$5.0 100 75 92.7%95.4%289,735 281,396 8,339 1,476$7,380$5.0 Perimeter Pump Systems Motor Upgrades Feasiblity Analysis Blended Electrical Cost $0.177 Maximum Acceptable Payback 5 Years Ratio of BHP to Motor HP 75% Estimated Annual Hours of Operation 2550 Exist Est Replace if Proposed Required Proposed Required Required Proposed Required Motor Brake Motor Eff New Existing Energy Energy Energy Motor Simple Hp Hp Is Less Motor Energy Consump Savings Savings Instalation Payback Than Eff Cons KWh KWH KWH $Costs Yrs 1 0.75 62.3%85.5%2,289 1,668 621 110$550$5.0 1.5 1.13 67.4%86.5%3,174 2,473 701 124$620$5.0 2 1.50 70.6%86.5%4,038 3,297 740 131$655$5.0 3 2.25 76.2%89.5%5,617 4,780 836 148$740$5.0 5 3.75 80.8%89.5%8,820 7,967 853 151$755$5.0 7.5 5.63 82.9%91.0%12,907 11,754 1,153 204$1,020$5.0 10 7.50 84.1%91.7%16,965 15,552 1,412 250$1,250$5.0 15 11.25 86.0%93.0%24,867 23,002 1,864 330$1,650$5.0 20 15.00 86.3%93.0%33,043 30,670 2,373 420$2,100$5.0 25 18.75 86.4%93.6%41,278 38,092 3,186 564$2,820$5.0 30 22.50 87.9%94.1%48,687 45,467 3,220 570$2,850$5.0 40 30.00 88.5%94.1%64,465 60,623 3,842 680$3,400$5.0 50 37.50 89.2%94.5%79,978 75,458 4,520 800$4,000$5.0 60 45.00 89.9%95.0%95,225 90,073 5,153 912$4,560$5.0 75 56.25 89.7%95.0%119,212 112,591 6,621 1,172$5,860$5.0 100 75 90.4%95.4%157,831 149,492 8,339 1,476$7,380$5.0 Heating Coil Pump Systems $0.110 $0.130 $0.150 $0.170 $0.190 $0.210 $0.230 $0.250 $0.138 Heat APPENDIX E –SYSTEM DIAGRAMS HEATING WATER SYSTEMHEATING WATER SYSTEM DIAGAMSM1.1 MAIN BUILDING VAV AIR HANDLING UNITTYPICAL AHUM1.2 JR HIGH GYM AIR HANDLING UNITGYM AHUM1.3 SR HIGH GYM AIR HANDLING UNITGYM AHUM1.4 LOCKER ROOM/MULTIPURPOSE HEAT RECOVERY UNITLOCKER ROOM HRUM1.5 SR HIGH CLASSROOM WING AHU SYSTEMSR HIGH AHUM1.6 APPENDIX F –EQUIPMENT LIST AHFC ENERGY AUDITS - EXISTING EQUIPMENT SCHEDULES STEAM CONVERTER SCHEDULE - BEN EIELSON JR/SR HIGH SCHOOL MARK TYPE MODEL CAP STEAM FLUUID FLUID OUTLET REMARKS #STEAM PRESSURE GPM TYPE TEMP PPH PSIG F HX-1 JR HIGH HEATING SHELL/TUBE SU165-4 3,040 5 215 50% PG 190 HX-2 SR HIGH HEATING SHELL/TUBE QSU207-4 8,968 5 634 50% PG 190 AHU SCHEDULE - BEN EIELSON JR/SR HIGH SCHOOL MARK FAN AIR MIN TSP CAPACITY MOTOR MOTOR MANUF FLOW OSA IN CONTROL SIZE EFF CFM CFM H20 HP SA02 RECOLD 3,250 650 N/A CV 3 N/A SA03 RECOLD 3,250 650 N/A CV 3 N/A SA10 PACE 36,420 7,284 N/A VSD 40 N/A SA11 TRANE 4,620 924 N/A CV 5 N/A SA12 PACE 23,030 4,606 N/A VSD 25 N/A INTERIOR ZONE - COOLING SA13 PACE 2,840 568 N/A VSD 10 N/A PERIMETER ZONES SF16 TRANE 13,500 2,700 3.12 VSD 20 N/A SF17 TRANE 3,000 600 2.86 CV 5 N/A HEAT RECOVERY UNIT SF18 TRANE 22,900 4,580 3.30 VSD 15 90.0% PUMP SCHEDULE - BEN EIELSON JR/SR HIGH SCHOOL MARK PUMP PUMP PUMP PUMP PUMP CAPACITY MOTOR MOTOR REMARKS MANUF TYP MODEL FLOW HEAD CONTROL SIZE EFF #GPM FT H20 HP P1 - GO5 B & G END SUCT 1510 215 55 VSD 5 84.0% P2 - G06 B & G END SUCT 1510 215 55 VSD 5 84.0%REDUNDANT P3 - G07 B & G END SUCT 1510 634 65 VSD 15 88.5% P4 - G08 B & G END SUCT 1510 634 65 VSD 15 88.5%REDUNDANT REMARKS MOTOR MANUFACTURER WAGNER WAGNER N/A N/A WESTINGHOUSE WESTINGHOUSE N/A BALDOR SUPER E JR HIGH HEATING SERVES SERVES SERVES JR HIGH GYM JR HIGH GYM SR HIGH AREAS B,C,D,F EAST PORTION OF E SR HIGH SCIENCE SR HIGH SCIENCE SR HIGH GYM SR HIGH MULTIPURPOSE JR HIGH CLASSROOMS MARATHON MARATHON MANUF MARATHON MOTOR MANUF BELL & GOSSET TACO MARATHONSR HIGH HEATING JR HIGH HEATING SR HIGH HEATING RS Consulting - Mechanical Engineering - 2400 NW 80th St #178 Seattle, WA 98117 APPENDIX G –TRACE 700 INPUT DATA Bldg:Ben Eielson Jr/Sr High Zone Zone Floor Roof Total Floor Ceiling Plenum Grs Wall Window #Occ Design Design Number Name Area Area Perimeter to Floor Height Ht Area Area of per Total Watts Total Watts Total Loads System Airflow Cfm Sf Sf Lgth, Ft Ht Ft Ft Ft Sf Sf People 1000 sf Watts Per SF Watts Per SF Watts Watt/Sf Cfm SF 101 Art, Science Classrooms 6,700 6,700 226 12.5 9.0 3.5 2,825 310 165 25 13,577 2.0 11,465 1.7 8,040 1.20 SF18 10,850 1.62 102 Classrooms 6,310 6,310 291 12.5 9.0 3.5 3,638 300 220 35 13,597 2.2 10,773 1.7 7,572 1.20 SF18 10,850 1.72 103 Corridors 3,180 3,180 0 12.5 9.0 3.5 0 0 0 0 3,232 1.0 1,950 0.6 795 0.25 SF18 1,185 0.37 104 Boys/Girls restrooms 880 880 35 12.5 9.0 3.5 438 0 0 0 1,504 1.7 1,056 1.2 220 0.25 SF03 400 0.45 105 Boys/Girls locker rooms, storage 2,610 2,610 0 12.5 9.0 3.5 0 0 0 0 3,050 1.2 2,404 0.9 653 0.25 SF03 400 0.15 106 Junior High Gymnasium 6,560 6,560 109 29.0 29.0 0.0 3,158 0 220 34 10,992 1.7 8,736 1.3 1,312 0.20 SF03 6,500 0.99 107 Applied tech, metals, woods 2,820 2,820 86 12.5 9.0 3.5 1,075 0 36 13 4,482 1.6 2,208 0.8 7,050 2.50 SF10 2,700 0.96 108 ISS reception, ISS 1,150 1,150 71 12.5 9.0 3.5 888 194 20 17 1,760 1.5 1,288 1.1 1,725 1.50 SF10 1,170 1.02 109 Faculty lounge, workroom 1,100 1,100 55 12.5 9.0 3.5 688 66 15 14 765 0.7 657 0.6 1,925 1.75 SF10 2,325 2.11 110 Principal, VP, secretary 530 530 30 12.5 9.0 3.5 375 161 8 15 2,210 4.2 1,898 3.6 795 1.50 SF10 785 1.48 111 VP, conf, recp, councel, career 2,050 2,050 0 12.5 9.0 3.5 0 0 10 5 3,511 1.7 2,729 1.3 3,075 1.50 SF10 2,095 1.02 112 Corridors 4,430 4,430 0 12.5 9.0 3.5 0 0 0 0 4,553 1.0 2,566 0.6 1,108 0.25 SF10 1,200 0.27 113 Library, offices, Computer lab 5,760 4,920 0 12.5 9.0 3.5 0 0 145 25 10,659 1.9 8,084 1.4 11,520 2.00 SF10 4,780 0.83 114 Mens/Womens restrooms 1,120 1,120 0 12.5 9.0 3.5 0 0 0 0 2,246 2.0 1,512 1.4 280 0.25 SF10 600 0.54 115 Cafeteria 5,170 5,170 225 15.0 12.0 3.0 3,375 324 250 48 5,896 1.1 4,836 0.9 2,585 0.50 SF10 6,760 1.31 116 Corridors 2,920 2,920 0 12.5 9.0 3.5 0 0 0 0 3,045 1.0 1,860 0.6 730 0.25 SF10 850 0.29 117 Scullery, storage, elect 1,830 1,830 0 12.5 9.0 3.5 0 0 5 3 2,769 1.5 1,470 0.8 5,490 3.00 SF10 2,640 1.44 118 CADD classroom, weight rm, train 2,180 2,180 0 12.5 9.0 3.5 0 0 60 28 1,530 0.7 1,314 0.6 5,450 2.50 SF10 3,040 1.39 119 Gym storage 870 870 63 12.5 9.0 3.5 785 0 0 0 1,530 1.8 1,314 1.5 218 0.25 SF10 840 0.97 120 Custodian, general, service 740 740 62 12.5 9.0 3.5 771 0 0 0 862 1.2 624 0.8 185 0.25 SF10 730 0.99 121 Storage 140 140 84 10.0 10.0 0.0 840 0 0 0 464 3.3 336 2.4 35 0.25 SF10 240 1.71 122 Senior High Gymnasium 9,780 9,780 182 29.0 29.0 0.0 5,275 0 400 41 15,264 1.6 11,496 1.2 1,956 0.20 SF16 13,500 1.38 123 Mens/Womens locker room 3,450 0 0 12.5 9.0 3.5 0 0 0 0 3,777 1.1 2,874 0.8 863 0.25 SF10 1,645 0.48 124 Language arts, math 5,810 5,810 191 12.5 9.0 3.5 2,388 430 205 35 10,144 1.7 8,402 1.4 6,972 1.20 SF12 11,600 2.00 125 Corridors 4,150 4,150 0 12.5 9.0 3.5 0 0 0 0 4,755 1.1 2,566 0.6 1,038 0.25 SF12 1,200 0.29 126 Foreign language, physics, biotech 5,590 4,600 0 12.5 9.0 3.5 0 0 140 25 9,394 1.7 6,460 1.2 6,708 1.20 SF12 5,130 0.92 127 Art Class 1,710 1,500 120 12.5 9.0 3.5 1,500 200 40 23 5,034 2.9 3,779 2.2 2,993 1.75 SF12 3,700 2.16 128 Math, social studies 3,300 3,300 182 12.5 9.0 3.5 2,275 192 105 32 2,832 0.9 2,338 0.7 3,960 1.20 SF11 4,620 1.40 129 Computers, health, social studies 2,090 2,090 67 12.5 9.0 3.5 838 48 52 25 5,034 2.4 4,182 2.0 6,793 3.25 SF12 2,440 1.17 130 Theater, stage, office, storage 1,470 1,470 0 22.0 15.0 7.0 0 0 85 58 3,656 2.5 2,587 1.8 3,675 2.50 SF12 5,120 3.48 131 Music 2,710 2,710 104 12.5 10.0 2.5 1,295 0 25 9 6,147 2.3 3,152 1.2 3,252 1.20 SF10 4,020 1.48 132 Vestibule 290 290 27 12.5 10.0 2.5 333 0 0 0 232 0.8 192 0.7 0 0.00 CH 750 2.59 133 Vestibule 60 60 8 12.5 10.0 2.5 100 0 0 0 85 1.4 48 0.8 0 0.00 CH 150 2.50 134 Vestibule 60 60 9 12.5 10.0 2.5 113 0 0 0 85 1.4 48 0.8 0 0.00 CH 150 2.50 135 Vestibule 60 60 17 12.5 10.0 2.5 213 0 0 0 85 1.4 48 0.8 0 0.00 CH 150 2.50 136 Vestibule 120 120 0 12.5 10.0 2.5 250 0 0 0 85 0.7 48 0.4 0 0.00 CH 300 2.50 137 Vestibule 80 80 20 12.5 10.0 2.5 250 0 0 0 85 1.1 48 0.6 0 0.00 CH 200 2.50 138 Vestibule 80 80 21 12.5 10.0 2.5 263 0 0 0 85 1.1 48 0.6 0 0.00 CH 200 2.50 139 Vestibule 130 130 13 12.5 10.0 2.5 163 0 0 0 85 0.7 48 0.4 0 0.00 CH 300 2.31 140 Vestibule 50 50 25 12.5 10.0 2.5 306 0 0 0 170 3.4 96 1.9 0 0.00 CH 150 3.00 141 Vestibule 70 70 17 12.5 10.0 2.5 209 0 0 0 170 2.4 96 1.4 0 0.00 CH 150 2.14 142 Vestibule 120 120 23 12.5 10.0 2.5 288 0 0 0 85 0.7 48 0.4 0 0.00 CH 250 2.08 143 Vestibule 110 110 11 12.5 10.0 2.5 133 0 0 0 85 0.8 48 0.4 0 0.00 CH 250 2.27 201 Fan room, multipurpose 3,450 3,450 122 12.5 10.0 2.5 1,525 0 35 10 3,052 0.9 1,620 0.5 863 0.25 SF17 3,200 0.93 202 Fan room 990 990 154 18.0 18.0 0.0 2,772 0 0 0 290 0.3 240 0.2 248 0.25 CH 850 0.86 203 Fan room 210 210 120 19.0 19.0 0.0 2,160 0 1 5 291 1.4 241 1.1 263 1.25 CH 250 1.19 Building Input Form - Trace 700 Misc Plug LoadsLights (Existing)Lights (Proposed) Bldg:Ben Eielson Jr/Sr High Zone Zone Floor Roof Total Floor Ceiling Plenum Grs Wall Window #Occ Design Design Number Name Area Area Perimeter to Floor Height Ht Area Area of per Total Watts Total Watts Total Loads System Airflow Cfm Sf Sf Lgth, Ft Ht Ft Ft Ft Sf Sf People 1000 sf Watts Per SF Watts Per SF Watts Watt/Sf Cfm SF Building Input Form - Trace 700 Misc Plug LoadsLights (Existing)Lights (Proposed) 204 Fan room 840 840 120 18.0 18.0 0.0 2,160 0 0 0 58 0.1 48 0.1 210 0.25 CH 850 1.01 205 Fan room 530 530 104 18.0 18.0 0.0 1,872 0 0 0 58 0.1 48 0.1 133 0.25 CH 850 1.60 106,360 100,870 2,991 45,531 2,225 2,242 163,357 1.5 119,929 1.1 100,685 0.95 122,915 Percent Windows 5%27%Diversity Vestibules 1,230 Exterior Lts 17130 5097 Total Student Enrollment 602 AIR HANDLING UNITS TAG SERVES AREA CFM CFM/SF SF03 JR HIGH GYM 10,050 7,300 0.73 SF10 MAIN BUILDING 38,970 36,420 0.93 SF11 2000 CLASS ADDITION 3,300 4,620 1.40 SF12 HIGH SCHOOL SCIENCE 20,820 29,190 1.40 SF16 HIGH SCHOOL GYM 9,780 13,500 1.38 SF17 MAT ROOM 3,450 3,200 0.93 SF18 JR HIGH CLASSROOMS 16,190 22,885 1.41 CH VESTIBULES 1,230 3,000 2.44 CH MECHANICAL 2,570 2,800 1.09 106,360 122,915 1.16 Bldg:Ben Eielson Jr/Sr High Wall Direction:North = 0, East = 90, South = 180, West =270 Zone Zone Number Name Wall Gross Wall Wall Glass Glass Wall Wall Gross Wall Wall Glass Glass Wall Wall Gross Wall Wall Glass Glass Wall Length Ft Sq Ft Type Area Type Direction Length Ft Sq Ft Type Area Type Direction Length Ft Sq Ft Type Area Type Direction 101 Art, Science Classrooms 38 475 1 270 188 2350 1 310 2 0 0 102 Classrooms 265 3313 1 300 2 180 26 325 1 270 0 103 Corridors 0 0 0 104 Boys/Girls restrooms 35 438 1 180 0 0 105 Boys/Girls locker rooms, storage 0 0 0 0 106 Junior High Gymnasium 37 1073 1 270 72 2085 1 0 0 107 Applied tech, metals, woods 43 538 1 180 43 538 1 270 0 108 ISS reception, ISS 35 438 2 132 2 180 36 450 2 62 2 270 0 109 Faculty lounge, workroom 48 600 2 66 2 180 7 88 2 270 0 110 Principal, VP, secretary 7 88 2 62 2 90 23 288 2 99 2 180 0 111 VP, conf, recp, councel, career 0 0 0 112 Corridors 0 0 0 113 Library, offices, Computer lab 0 0 0 114 Mens/Womens restrooms 0 0 0 115 Cafeteria 90 1350 1 324 1 270 45 675 1 180 90 1350 1 90 116 Corridors 0 0 0 117 Scullery, storage, elect 0 0 0 118 CADD classroom, weight rm, train 0 0 0 119 Gym storage 25 313 2 270 38 473 1 0 0 120 Custodian, general, service 32 401 2 270 26 320 2 0 4 50 2 90 121 Storage 84 840 1 0 0 0 122 Senior High Gymnasium 10 287 1 270 105 3045 1 0 67 1943 1 123 Mens/Womens locker room 0 0 0 124 Language arts, math 13 163 1 270 178 2225 1 430 1 0 0 125 Corridors 0 0 0 126 Foreign language, physics, biotech 0 0 0 127 Art Class 50 625 1 200 1 90 20 250 1 50 625 270 128 Math, social studies 25 313 1 0 132 1650 2 192 2 90 25 313 1 180 129 Computers, health, social studies 67 838 1 48 2 180 0 0 130 Theater, stage, office, storage 0 0 0 131 Music 26 320 1 90 78 975 1 180 0 132 Vestibule 9 113 1 90 18 220 1 180 0 133 Vestibule 8 100 1 180 0 0 134 Vestibule 9 113 1 90 0 0 135 Vestibule 9 113 1 90 0 0 136 Vestibule 17 213 1 0 0 0 137 Vestibule 11 138 1 0 9 113 1 90 0 138 Vestibule 10 125 1 270 11 138 1 0 0 139 Vestibule 13 163 1 0 0 0 140 Vestibule 9 109 1 180 7 89 1 270 9 109 1 0 141 Vestibule 8 100 1 270 9 109 1 0 0 142 Vestibule 6 75 1 180 11 138 1 270 6 75 1 0 143 Vestibule 11 133 1 180 0 0 201 Fan room, multipurpose 31 388 1 270 60 750 1 180 31 388 1 90 202 Fan room 59 1062 1 270 36 648 1 0 59 1062 1 90 203 Fan room 10 190 2 270 21 399 2 180 21 399 2 90 204 Fan room 32 576 1 270 56 1008 1 180 32 576 2 90 205 Fan room 18 324 1 270 68 1224 1 180 18 324 1 90 Wall 1 Wall 2 Wall 3 Building Input Form - Trace 700 - Wall Data Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Max Percent OA:100%"On"Point:Dry BulbType:°F Available (100%)Schedule: Type:Direct efficiency:Indirect efficiency:None 0%0%Available (100%)Available (100%) Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Peak Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design Capacity 150.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal const vol None None None FC Centrifugal const vol None None 0.00032 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW/Cfm-in wg kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) FB Fan Eielson Available (100%) Available (100%) 80 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 1.3 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 1 Entered Values Systems page 1 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 5.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 1 Entered Values Systems page 2 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 4.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 1 Entered Values Systems page 3 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None FC Centrifugal var freq drv None None None None 0.00035 0.00000 0.00035 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW/Cfm-in wg kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 3.5 in. wg 0.0 in. wg 1.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 1 Entered Values Systems page 4 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Cooling Capacity 150.0 % of Design Capacity 100.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 1 Entered Values Systems page 5 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Type:Fixed-membrane HX (OA precondition)Available (100%)Exh-side deck:Schedule:Sup-side deck: 55%Clg effectiveness at 100%airflow: Clg effectiveness at 75%airflow:58% Sensible Htg effectiveness at 100%airflow: HTg effectiveness at 75%airflow: 55% 58% Htg effectiveness at 100%airflow:Clg effectiveness at 100%airflow: Clg effectiveness at 75%airflow: Latent HTg effectiveness at 75%airflow: 25% 31% 45% 50% Ventilation upstream Room exhaust Supply Side Options Design air leaving dry bulb: Design air leaving humidity ratio: Static pressure drop: Bypass dampers: Coolant type: Coolant approach: Economizer lockout: Part load control: 0.7 in. wg No Modulated Yes N/A N/A 0.0 kWParasitic energy: Exhaust Side Options Percent airflow: Heat source:0 °F Fan static pressure drop: Integral heat recovery: Evap precooler type:None Evap precooler Eff: 0.7 in. wg Bypass dampers: Fan static pressure :0.0 in. wg Frost prevention type:Outdoor air preheat Frost prevention set point: OA frost threshhold:No No -5 °F -5 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Peak Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design Capacity 150.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 1 Entered Values Systems page 6 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal const vol None None None FC Centrifugal const vol None None 0.00032 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW/Cfm-in wg kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) FB Fan Eielson Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 1.8 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 1 Entered Values Systems page 7 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None FC Centrifugal var freq drv None None None None 0.00035 0.00000 0.00035 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW/Cfm-in wg kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 3.5 in. wg 0.0 in. wg 1.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 1 Entered Values Systems page 8 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: ROOMDK Supply Return Draw Thru No Fan Return Air No Coil Room Return/Outdoor Deck Fan mechanical efficiency :75% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer: Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 0.0 % of Design Capacity by adjusting airflow 100.0 % of Design Capacity 100.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency None FC Centrifugal const vol None None None None None 0.00000 0.00032 0.00000 0.00000 0.00000 0.00000 0.00000 kW kW/Cfm-in wg kW kW kW kW kW Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 90 85 90 90 85 90 85 Static Press.Demand Limiting Priority 0.0 in. wg 0.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 1 Entered Values Systems page 9 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Max Percent OA:100%"On"Point:Dry BulbType:°F Available (100%)Schedule: Type:Direct efficiency:Indirect efficiency:None 0%0%Available (100%)Available (100%) Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Peak Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design Capacity 150.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal const vol None None None FC Centrifugal const vol None None 0.00032 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW/Cfm-in wg kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) FB Fan Eielson Available (100%) Available (100%) 80 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 1.3 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 2 Entered Values Systems page 10 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 5.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 2 Entered Values Systems page 11 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 4.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 2 Entered Values Systems page 12 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None FC Centrifugal var freq drv None None None None 0.00035 0.00000 0.00035 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW/Cfm-in wg kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 3.5 in. wg 0.0 in. wg 1.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 2 Entered Values Systems page 13 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Cooling Capacity 150.0 % of Design Capacity 100.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 2 Entered Values Systems page 14 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Type:Fixed-membrane HX (OA precondition)Available (100%)Exh-side deck:Schedule:Sup-side deck: 55%Clg effectiveness at 100%airflow: Clg effectiveness at 75%airflow:58% Sensible Htg effectiveness at 100%airflow: HTg effectiveness at 75%airflow: 55% 58% Htg effectiveness at 100%airflow:Clg effectiveness at 100%airflow: Clg effectiveness at 75%airflow: Latent HTg effectiveness at 75%airflow: 25% 31% 45% 50% Ventilation upstream Room exhaust Supply Side Options Design air leaving dry bulb: Design air leaving humidity ratio: Static pressure drop: Bypass dampers: Coolant type: Coolant approach: Economizer lockout: Part load control: 0.7 in. wg No Modulated Yes N/A N/A 0.0 kWParasitic energy: Exhaust Side Options Percent airflow: Heat source:0 °F Fan static pressure drop: Integral heat recovery: Evap precooler type:None Evap precooler Eff: 0.7 in. wg Bypass dampers: Fan static pressure :0.0 in. wg Frost prevention type:Outdoor air preheat Frost prevention set point: OA frost threshhold:No No -5 °F -5 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Peak Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design Capacity 150.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 2 Entered Values Systems page 15 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal const vol None None None FC Centrifugal const vol None None 0.00032 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW/Cfm-in wg kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) FB Fan Eielson Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 1.8 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 2 Entered Values Systems page 16 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None FC Centrifugal var freq drv None None None None 0.00035 0.00000 0.00035 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW/Cfm-in wg kW kW kW kW FB Fan Eielson Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 3.5 in. wg 0.0 in. wg 1.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 2 Entered Values Systems page 17 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: ROOMDK Supply Return Draw Thru No Fan Return Air No Coil Room Return/Outdoor Deck Fan mechanical efficiency :75% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer: Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 0.0 % of Design Capacity by adjusting airflow 100.0 % of Design Capacity 100.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency None FC Centrifugal const vol None None None None None 0.00000 0.00032 0.00000 0.00000 0.00000 0.00000 0.00000 kW kW/Cfm-in wg kW kW kW kW kW Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 90 85 90 90 85 90 85 Static Press.Demand Limiting Priority 0.0 in. wg 0.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 2 Entered Values Systems page 18 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Max Percent OA:100%"On"Point:Dry BulbType:°F Available (100%)Schedule: Type:Direct efficiency:Indirect efficiency:None 0%0%Available (100%)Available (100%) Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Peak Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design Capacity 150.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal const vol None None None FC Centrifugal const vol None None 0.00032 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW/Cfm-in wg kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Fan Eielson 20 Available (100%) Available (100%) 80 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 1.3 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 3 Entered Values Systems page 19 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 5.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 3 Entered Values Systems page 20 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 4.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 3 Entered Values Systems page 21 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None FC Centrifugal var freq drv None None None None 0.00035 0.00000 0.00035 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW/Cfm-in wg kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 3.5 in. wg 0.0 in. wg 1.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 3 Entered Values Systems page 22 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Cooling Capacity 150.0 % of Design Capacity 100.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 3 Entered Values Systems page 23 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Type:Fixed-membrane HX (OA precondition)Available (100%)Exh-side deck:Schedule:Sup-side deck: 55%Clg effectiveness at 100%airflow: Clg effectiveness at 75%airflow:58% Sensible Htg effectiveness at 100%airflow: HTg effectiveness at 75%airflow: 55% 58% Htg effectiveness at 100%airflow:Clg effectiveness at 100%airflow: Clg effectiveness at 75%airflow: Latent HTg effectiveness at 75%airflow: 25% 31% 45% 50% Ventilation upstream Room exhaust Supply Side Options Design air leaving dry bulb: Design air leaving humidity ratio: Static pressure drop: Bypass dampers: Coolant type: Coolant approach: Economizer lockout: Part load control: 0.7 in. wg No Modulated Yes N/A N/A 0.0 kWParasitic energy: Exhaust Side Options Percent airflow: Heat source:0 °F Fan static pressure drop: Integral heat recovery: Evap precooler type:None Evap precooler Eff: 0.7 in. wg Bypass dampers: Fan static pressure :0.0 in. wg Frost prevention type:Outdoor air preheat Frost prevention set point: OA frost threshhold:No No -5 °F -5 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Peak Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design Capacity 150.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 3 Entered Values Systems page 24 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal const vol None None None FC Centrifugal const vol None None 0.00032 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW/Cfm-in wg kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Fan Eielson 20 Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 1.8 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 3 Entered Values Systems page 25 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None FC Centrifugal var freq drv None None None None 0.00035 0.00000 0.00035 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW/Cfm-in wg kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 3.5 in. wg 0.0 in. wg 1.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 3 Entered Values Systems page 26 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: ROOMDK Supply Return Draw Thru No Fan Return Air No Coil Room Return/Outdoor Deck Fan mechanical efficiency :75% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer: Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 0.0 % of Design Capacity by adjusting airflow 100.0 % of Design Capacity 100.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency None FC Centrifugal const vol None None None None None 0.00000 0.00032 0.00000 0.00000 0.00000 0.00000 0.00000 kW kW/Cfm-in wg kW kW kW kW kW Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 90 85 90 90 85 90 85 Static Press.Demand Limiting Priority 0.0 in. wg 0.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 3 Entered Values Systems page 27 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Max Percent OA:100%"On"Point:Dry BulbType:°F Available (100%)Schedule: Type:Direct efficiency:Indirect efficiency:None 0%0%Available (100%)Available (100%) Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Block Return Air Block Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 100.0 % of Design Cooling Capacity 100.0 % of Design Capacity 100.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency AF Centrifugal var freq drv None None None FC Centrifugal const vol None None 0.00022 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW/Cfm-in wg kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Fan Eielson 20 Available (100%) Available (100%) 80 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 1.3 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 4 Entered Values Systems page 28 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 5.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 4 Entered Values Systems page 29 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 4.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 4 Entered Values Systems page 30 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None FC Centrifugal var freq drv None None None None 0.00035 0.00000 0.00035 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW/Cfm-in wg kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 3.5 in. wg 0.0 in. wg 1.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 4 Entered Values Systems page 31 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Cooling Capacity 150.0 % of Design Capacity 100.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None None None None None None 0.00035 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 4 Entered Values Systems page 32 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Type:Fixed-membrane HX (OA precondition)Available (100%)Exh-side deck:Schedule:Sup-side deck: 55%Clg effectiveness at 100%airflow: Clg effectiveness at 75%airflow:58% Sensible Htg effectiveness at 100%airflow: HTg effectiveness at 75%airflow: 55% 58% Htg effectiveness at 100%airflow:Clg effectiveness at 100%airflow: Clg effectiveness at 75%airflow: Latent HTg effectiveness at 75%airflow: 25% 31% 45% 50% Ventilation upstream Room exhaust Supply Side Options Design air leaving dry bulb: Design air leaving humidity ratio: Static pressure drop: Bypass dampers: Coolant type: Coolant approach: Economizer lockout: Part load control: 0.7 in. wg No Modulated Yes N/A N/A 0.0 kWParasitic energy: Exhaust Side Options Percent airflow: Heat source:0 °F Fan static pressure drop: Integral heat recovery: Evap precooler type:None Evap precooler Eff: 0.7 in. wg Bypass dampers: Fan static pressure :0.0 in. wg Frost prevention type:Outdoor air preheat Frost prevention set point: OA frost threshhold:No No -5 °F -5 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Peak Zone Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design Capacity 150.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 4 Entered Values Systems page 33 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal const vol None None None FC Centrifugal const vol None None 0.00032 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 kW/Cfm-in wg kW kW kW kW/Cfm-in wg kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Fan Eielson 20 Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 2.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 1.8 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 4 Entered Values Systems page 34 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: PLENUM Supply Return Draw Thru Peak Return Air Block System Return/Outdoor Deck Fan mechanical efficiency :70% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer:100 % Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System Wall Convector No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 150 % of Design Capacity 150.0 % of Design Capacity by adjusting airflow 150.0 % of Design minus Aux Capacity 150.0% of Design Capacity 150.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency FC Centrifugal var freq drv None FC Centrifugal var freq drv None None None None 0.00035 0.00000 0.00035 0.00000 0.00000 0.00000 0.00000 kW/Cfm-in wg kW kW/Cfm-in wg kW kW kW kW Fan Eielson 20 Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 88 85 90 90 85 90 85 Static Press.Demand Limiting Priority 3.5 in. wg 0.0 in. wg 1.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 4 Entered Values Systems page 35 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Cooling supply: Leaving cooling coil: Heating supply: Max Min Design humidity ratio diff: Min room relative humidity:Reheat Temperature diff: Supply duct temperature diff:0.0 °F 0.0 °F Reset per worst case room schedule: Night purge schedule: Optimum start schedule: Optimum stop schedule: Off (0%) Off (0%) Off (0%) Supply fan sizing: Supply fan motor location: Return fan motor location: Supply fan cofiguration:Block cooling airflow: Supply duct location: Return air path: Cooling coil sizing method: Cooling coil location: Ventilation deck location: System ventilation flag: ROOMDK Supply Return Draw Thru No Fan Return Air No Coil Room Return/Outdoor Deck Fan mechanical efficiency :75% Sum Room OA Reqs Off (0%) Apply Std62 People Avg:No Std62 Max Vent (Z)Ratio: CO2-based DCV:None Max reset: YesUse system default outside air reset: Supply air path /duct location:Return Air Space convective gains to occupied layer: Underfloor plenum height:0.0 ft Conductive resistance of raised floor:0.8 hr·ft²·°F/Btu Upstream nominal leakage fraction:0 % Downstream constant leakage fraction:0 % Aux cooling coil losses to plenum:0 % Activate After Primary System None Activate After Primary System None No Fan Auxiliary cooling coil Auxiliary heating coil Auxiliary fan Control Method Control Type Capacity Schedule Main cooling: Aux cooling: Main heating: Aux heating: Preheat: Reheat: Humidification: 0.0 % of Design Capacity by adjusting airflow 100.0 % of Design Capacity 100.0% of Design Capacity 100.0 % of Design Capacity 100.0 % of Design Capacity Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Diversity People Lights Misc loads 100% 100% 100% Primary Secondary Return System Exhaust Room Exhaust Optional ventilation Auxiliary Type Full Load Energy Rate Schedule Efficiency None FC Centrifugal const vol None None None None None 0.00000 0.00032 0.00000 0.00000 0.00000 0.00000 0.00000 kW kW/Cfm-in wg kW kW kW kW kW Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) Available (100%) 90 85 90 90 85 90 85 Static Press.Demand Limiting Priority 0.0 in. wg 0.5 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg 0.0 in. wg LEED Fan Power Adjustment 0.0 in. wg TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Project Name:Ben Eielson Jr/Sr High School Alternative - 4 Entered Values Systems page 36 of 36Dataset Name:C:\Users\Ray\Documents\TRACE 700 Projects\ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - December Cooling design Utilization Midnight 7 a.m.0.0 7 a.m.8 a.m.50.0 8 a.m.11 a.m.100.0 11 a.m.noon 80.0 noon 1 p.m.20.0 1 p.m.3 p.m.100.0 3 p.m.5 p.m.30.0 5 p.m.Midnight 0.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 0.0 Start time End time PercentageJanuary - May Weekday Utilization Midnight 7 a.m.0.0 7 a.m.8 a.m.50.0 8 a.m.11 a.m.100.0 11 a.m.noon 80.0 noon 1 p.m.20.0 1 p.m.3 p.m.100.0 3 p.m.5 p.m.30.0 5 p.m.Midnight 0.0 Start time End time PercentageJune - August Weekday Utilization Midnight 7 a.m.0.0 7 a.m.8 a.m.5.0 8 a.m.3 p.m.5.0 3 p.m.5 p.m.5.0 5 p.m.Midnight 0.0 Start time End time PercentageSeptember - December Weekday Utilization TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 5 of 28Dataset Name:ben_eielson.trc Midnight 7 a.m.0.0 7 a.m.8 a.m.50.0 8 a.m.11 a.m.100.0 11 a.m.noon 80.0 noon 1 p.m.20.0 1 p.m.3 p.m.100.0 3 p.m.5 p.m.30.0 5 p.m.Midnight 0.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization Midnight Midnight 0.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 6 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - May Cooling design to Weekday Utilization Midnight 7 a.m.5.0 7 a.m.8 a.m.50.0 8 a.m.11 a.m.100.0 11 a.m.noon 80.0 noon 1 p.m.20.0 1 p.m.3 p.m.100.0 3 p.m.5 p.m.30.0 5 p.m.Midnight 5.0 Start time End time PercentageJanuary - May Saturday Utilization Midnight Midnight 5.0 Start time End time PercentageJanuary - May Sunday Utilization Midnight Midnight 5.0 Start time End time PercentageJune - August Cooling design to Weekday Utilization Midnight 7 a.m.5.0 7 a.m.8 a.m.10.0 8 a.m.3 p.m.30.0 3 p.m.5 p.m.10.0 5 p.m.Midnight 5.0 Start time End time PercentageJune - August Saturday Utilization Midnight Midnight 5.0 Start time End time PercentageJune - August Sunday Utilization Midnight Midnight 5.0 Start time End time PercentageSeptember - December Cooling design to Weekday Utilization Midnight 7 a.m.5.0 7 a.m.8 a.m.50.0 8 a.m.11 a.m.100.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 7 of 28Dataset Name:ben_eielson.trc 11 a.m.noon 80.0 noon 1 p.m.20.0 1 p.m.3 p.m.100.0 3 p.m.5 p.m.30.0 5 p.m.Midnight 5.0 Start time End time PercentageSeptember - December Saturday Utilization Midnight Midnight 5.0 Start time End time PercentageSeptember - December Sunday Utilization Midnight Midnight 5.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 0.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 8 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time Setpoint °FJanuary - May Cooling design to Weekday Thermostat Midnight 9 a.m.95.0 9 a.m.4 p.m.80.0 4 p.m.Midnight 95.0 Start time End time Setpoint °FSeptember - December Cooling design to Weekday Thermostat Midnight 9 a.m.95.0 9 a.m.4 p.m.80.0 4 p.m.Midnight 95.0 Start time End time Setpoint °FJune - August Cooling design to Weekday Thermostat Midnight 7 a.m.95.0 7 a.m.6 p.m.95.0 6 p.m.Midnight 95.0 Start time End time Setpoint °FJanuary - December Saturday to Sunday Thermostat Midnight 9 a.m.95.0 8 a.m.5 p.m.75.0 4 p.m.Midnight 95.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 9 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - December Cooling design Utilization Midnight Midnight 100.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 0.0 Start time End time PercentageJanuary - May Weekday Utilization Midnight 7 a.m.0.0 7 a.m.8 a.m.50.0 8 a.m.3 p.m.100.0 3 p.m.5 p.m.50.0 5 p.m.7 p.m.20.0 7 p.m.Midnight 0.0 Start time End time PercentageJune - August Weekday Utilization Midnight 7 a.m.0.0 7 a.m.3 p.m.10.0 3 p.m.Midnight 0.0 Start time End time PercentageSeptember - December Weekday Utilization Midnight 7 a.m.0.0 7 a.m.8 a.m.50.0 8 a.m.3 p.m.100.0 3 p.m.5 p.m.50.0 5 p.m.7 p.m.20.0 7 p.m.Midnight 0.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization Midnight Midnight 0.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 10 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - May Cooling design to Weekday Utilization Midnight 6 a.m.0.0 6 a.m.4 p.m.100.0 4 p.m.Midnight 0.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 100.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization Midnight 11 a.m.0.0 11 a.m.2 p.m.100.0 2 p.m.Midnight 0.0 Start time End time PercentageJune - August Cooling design to Weekday Utilization Midnight 10 a.m.0.0 10 a.m.2 p.m.100.0 2 p.m.Midnight 0.0 Start time End time PercentageSeptember - December Cooling design to Weekday Utilization Midnight 6 a.m.0.0 6 a.m.4 p.m.100.0 4 p.m.Midnight 0.0 Reset / Lockout 30 -20.00 ░FOutdr DB <% if And 30 68.00 ░FHtg Setpt <% if TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 11 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time Setpoint °FJanuary - May Cooling design to Weekday Thermostat Midnight 5 a.m.65.0 5 a.m.6 a.m.66.0 6 a.m.7 a.m.67.0 7 a.m.8 a.m.68.0 8 a.m.9 a.m.69.0 9 a.m.5 p.m.70.0 5 p.m.Midnight 65.0 Start time End time Setpoint °FSeptember - December Cooling design to Weekday Thermostat Midnight 5 a.m.65.0 5 a.m.6 a.m.66.0 6 a.m.7 a.m.67.0 7 a.m.8 a.m.68.0 8 a.m.9 a.m.69.0 9 a.m.5 p.m.70.0 5 p.m.Midnight 65.0 Start time End time Setpoint °FJune - August Cooling design to Weekday Thermostat Midnight 7 a.m.65.0 7 a.m.6 p.m.65.0 6 p.m.Midnight 65.0 Start time End time Setpoint °FJanuary - December Saturday to Sunday Thermostat Midnight 7 a.m.65.0 7 a.m.8 a.m.65.0 8 a.m.5 p.m.65.0 5 p.m.6 p.m.65.0 6 p.m.Midnight 65.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 12 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - March Cooling design to Sunday Utilization Midnight 9 a.m.100.0 9 a.m.4 p.m.0.0 4 p.m.Midnight 100.0 Start time End time PercentageHeating Design Utilization Midnight 7 a.m.100.0 7 a.m.6 p.m.0.0 6 p.m.Midnight 100.0 Start time End time PercentageApril - September Cooling design to Sunday Utilization Midnight 5 a.m.100.0 5 a.m.8 p.m.0.0 8 p.m.Midnight 100.0 Start time End time PercentageOctober - December Cooling design to Sunday Utilization Midnight 8 a.m.100.0 8 a.m.6 p.m.0.0 6 p.m.Midnight 100.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 13 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - May Weekday Utilization Midnight 6 a.m.0.0 6 a.m.4 p.m.100.0 4 p.m.Midnight 0.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 100.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization Midnight 11 a.m.0.0 11 a.m.2 p.m.100.0 2 p.m.Midnight 0.0 Start time End time PercentageJune - August Weekday Utilization Midnight 10 a.m.0.0 10 a.m.2 p.m.100.0 2 p.m.Midnight 0.0 Start time End time PercentageSeptember - December Cooling design to Weekday Utilization Midnight 6 a.m.0.0 6 a.m.4 p.m.100.0 4 p.m.Midnight 0.0 Start time End time PercentageJanuary - December Cooling design Utilization Midnight Midnight 100.0 Reset / Lockout 100 -10.00 ░FOutdr DB <% if TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 14 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageHeating Design Utilization Midnight Midnight 100.0 Start time End time PercentageJanuary - December Cooling design to Sunday Utilization Midnight 8 a.m.75.0 8 a.m.5 p.m.100.0 5 p.m.Midnight 75.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 15 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - May Weekday Utilization Midnight 6 a.m.0.0 6 a.m.4 p.m.100.0 4 p.m.Midnight 0.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 100.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization Midnight 11 a.m.0.0 11 a.m.2 p.m.100.0 2 p.m.Midnight 0.0 Start time End time PercentageJune - August Weekday Utilization Midnight 10 a.m.0.0 10 a.m.2 p.m.100.0 2 p.m.Midnight 0.0 Start time End time PercentageSeptember - December Cooling design to Weekday Utilization Midnight 6 a.m.0.0 6 a.m.4 p.m.100.0 4 p.m.Midnight 0.0 Start time End time PercentageJanuary - December Cooling design Utilization Midnight Midnight 100.0 Reset / Lockout 100 -20.00 ░FOutdr DB <% if TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 16 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - December Cooling design Utilization Midnight 7 a.m.10.0 7 a.m.8 a.m.20.0 8 a.m.9 a.m.50.0 9 a.m.11 a.m.20.0 11 a.m.1 p.m.100.0 1 p.m.3 p.m.20.0 3 p.m.Midnight 10.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 0.0 Start time End time PercentageJanuary - May Weekday Utilization Midnight 7 a.m.10.0 7 a.m.11 a.m.20.0 11 a.m.1 p.m.80.0 1 p.m.3 p.m.20.0 3 p.m.Midnight 10.0 Start time End time PercentageJune - August Weekday Utilization Midnight 7 a.m.0.0 7 a.m.1 p.m.10.0 1 p.m.Midnight 0.0 Start time End time PercentageSeptember - December Weekday Utilization Midnight 7 a.m.10.0 7 a.m.8 a.m.20.0 8 a.m.9 a.m.50.0 9 a.m.11 a.m.20.0 11 a.m.1 p.m.100.0 1 p.m.3 p.m.20.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 17 of 28Dataset Name:ben_eielson.trc 3 p.m.Midnight 10.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization Midnight Midnight 10.0 Simulation type:Reduced year Start time End time StatusJanuary - December Cooling design to Sunday Equipment operation Midnight Midnight Off TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 18 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - May Cooling design to Weekday Utilization Midnight 6 a.m.0.0 6 a.m.4 p.m.100.0 4 p.m.Midnight 0.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 100.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization Midnight 11 a.m.0.0 11 a.m.2 p.m.100.0 2 p.m.Midnight 0.0 Start time End time PercentageJune - August Cooling design to Weekday Utilization Midnight 10 a.m.0.0 10 a.m.2 p.m.100.0 2 p.m.Midnight 0.0 Start time End time PercentageSeptember - December Cooling design to Weekday Utilization Midnight 6 a.m.0.0 6 a.m.4 p.m.100.0 4 p.m.Midnight 0.0 Reset / Lockout 30 -10.00 ░FOutdr DB <% if And 30 68.00 ░FHtg Setpt <% if TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 19 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - December Cooling design to Weekday Utilization Midnight 7 a.m.10.0 7 a.m.8 a.m.30.0 8 a.m.5 p.m.100.0 5 p.m.6 p.m.30.0 6 p.m.7 p.m.10.0 7 p.m.Midnight 10.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 0.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization Midnight Midnight 10.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 20 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - December Cooling design Utilization Midnight 7 a.m.10.0 7 a.m.8 a.m.50.0 8 a.m.11 a.m.100.0 11 a.m.noon 80.0 noon 1 p.m.20.0 1 p.m.3 p.m.100.0 3 p.m.5 p.m.30.0 5 p.m.Midnight 10.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 0.0 Start time End time PercentageJanuary - May Weekday Utilization Midnight 7 a.m.10.0 7 a.m.8 a.m.50.0 8 a.m.11 a.m.100.0 11 a.m.noon 80.0 noon 1 p.m.20.0 1 p.m.3 p.m.100.0 3 p.m.5 p.m.30.0 5 p.m.Midnight 10.0 Start time End time PercentageJune - August Weekday Utilization Midnight 7 a.m.0.0 7 a.m.8 a.m.10.0 8 a.m.3 p.m.30.0 3 p.m.5 p.m.10.0 5 p.m.Midnight 0.0 Start time End time PercentageSeptember - December Weekday Utilization TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 21 of 28Dataset Name:ben_eielson.trc Midnight 7 a.m.10.0 7 a.m.8 a.m.50.0 8 a.m.11 a.m.100.0 11 a.m.noon 80.0 noon 1 p.m.20.0 1 p.m.3 p.m.100.0 3 p.m.5 p.m.30.0 5 p.m.Midnight 10.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization Midnight Midnight 10.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 22 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - December Cooling design Utilization Midnight 7 a.m.0.0 7 a.m.9 a.m.50.0 9 a.m.3 p.m.100.0 3 p.m.5 p.m.50.0 5 p.m.Midnight 0.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 0.0 Start time End time PercentageJanuary - May Weekday Utilization Midnight 7 a.m.0.0 7 a.m.9 a.m.50.0 9 a.m.3 p.m.100.0 3 p.m.5 p.m.50.0 5 p.m.Midnight 0.0 Start time End time PercentageJune - August Weekday Utilization Midnight 7 a.m.0.0 7 a.m.8 a.m.20.0 8 a.m.3 p.m.50.0 3 p.m.5 p.m.20.0 5 p.m.Midnight 0.0 Start time End time PercentageSeptember - December Weekday Utilization Midnight 7 a.m.0.0 7 a.m.9 a.m.50.0 9 a.m.3 p.m.100.0 3 p.m.5 p.m.50.0 5 p.m.Midnight 0.0 Start time End time PercentageJanuary - December Saturday to Sunday Utilization TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 23 of 28Dataset Name:ben_eielson.trc Midnight Midnight 0.0 Simulation type:Reduced year Start time End time PercentageJanuary - December Cooling design to Sunday Utilization Midnight Midnight 100.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 100.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 24 of 28Dataset Name:ben_eielson.trc Simulation type:Reduced year Start time End time PercentageJanuary - May Cooling design to Weekday Utilization Midnight 8 a.m.100.0 8 a.m.4 p.m.25.0 4 p.m.Midnight 100.0 Start time End time PercentageJanuary - May Saturday Utilization Midnight Midnight 100.0 Start time End time PercentageJanuary - May Sunday Utilization Midnight Midnight 100.0 Start time End time PercentageJune - August Cooling design to Weekday Utilization Midnight Midnight 100.0 Start time End time PercentageJune - August Saturday Utilization Midnight Midnight 100.0 Start time End time PercentageJune - August Sunday Utilization Midnight Midnight 100.0 Start time End time PercentageSeptember - December Cooling design to Weekday Utilization Midnight 8 a.m.100.0 8 a.m.4 p.m.25.0 4 p.m.Midnight 100.0 Start time End time PercentageSeptember - December Saturday Utilization Midnight Midnight 100.0 Start time End time PercentageSeptember - December Sunday Utilization Midnight Midnight 100.0 Start time End time PercentageHeating Design Utilization Midnight Midnight 100.0 TRACE® 700 v6.2.8Project Name:Ben Eielson Jr/Sr High School Page 25 of 28Dataset Name:ben_eielson.trc APPENDIX H –TRACE 700 OUPUT DATA Total Building Consumption ElectricityStand-alone Base Utilities ElectricityReceptacles-Conditioned ElectricityFans-Conditioned ElectricityPumps Purchased SteamSpace Heating ElectricityLighting-Conditioned Alt-4 VAr Speed on Jr GymAlt-3 Adjust Cold Run On PointAlt-2 Lighting Modifications*Alt-1 Existing Building Energy 10^6 Btu/yr Proposed /Base % Peak kBtuh Energy 10^6 Btu/yr Proposed /Base % Peak kBtuh Energy 10^6 Btu/yr Proposed /Base % Peak kBtuh Energy 10^6 Btu/yr Proposed /Base % Peak kBtuh 1,006.4 11 568 733.1 73 414 733.1 73 414 733.1 73 414 6,957.8 73 6,072 7,151.4 103 6,117 7,011.7 101 6,117 6,948.8 100 6,202 13.3 0 15 13.7 103 15 13.3 100 16 13.3 100 16 756.5 8 328 751.7 99 300 666.3 88 300 603.3 80 281 557.7 6 408 557.7 100 408 557.7 100 408 557.7 100 408 261.0 3 58 77.7 30 17 77.7 30 17 77.7 30 17 9,552.8 9,285.3 9,059.9 8,933.9 Project Name: Ben Eielson Jr/Sr High School Weather Data: Fairbanks, AlaskaCity: Eielson Air Force Base, Alaska May 29, 2012Date: Note:The percentage displayed for the "Proposed/Base %" column of the base case is actually the percentage of the total energy consumption. *Denotes the base alternative for the ECB study. Total Purchased Steam Electricity Alt-4 VAr Speed on Jr GymAlt-3 Adjust Cold Run On PointAlt-2 Lighting Modifications*Alt-1 Existing Building Energy 10^6 Btu/yr Cost/yr $/yr Energy 10^6 Btu/yr Cost/yr $/yr Energy 10^6 Btu/yr Cost/yr $/yr Energy 10^6 Btu/yr Cost/yr $/yr 2,595.0 167,451 2,133.9 139,762 2,048.2 135,744 1,985.2 132,009 6,957.8 118,283 7,151.4 121,573 7,011.7 119,199 6,948.8 118,130 9,553 285,734 9,285 261,336 9,060 254,943 8,934 250,138 Total Alt-4 VAr Speed on Jr GymAlt-3 Adjust Cold Run On PointAlt-2 Lighting Modifications*Alt-1 Existing Building Number of hours heating load not met Number of hours cooling load not met 68 10 88 5 92 5 92 0 Ben Eielson Jr/Sr High School Dataset Name: Project Name: Energy Cost Budget Report Page 1 of 1 TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012 ben_eielson.trc 760,33197,31368,24871,34863,56829,62027,39728,75669,25363,22684,59163,65893,354On-Pk Cons. (kWh) 360359351356359350350350360356352352350On-Pk Demand (kW) 69,57814,0177,7954,5652,8459847517763,8144,7789,3827,49512,376On-Pk Cons. (therms) 61614531237432734474854On-Pk Demand (therms/hr) 89,479 159,825 ft2 Btu/(ft2-year) 106,760 26,987,798 lbm/year 27,836 gm/year 87,954 gm/year Btu/(ft2-year) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 1 Monthly Energy Consumption report Page 1 of 4 625,22484,72855,52657,96052,77621,98220,28221,39057,71152,58469,87951,00079,404On-Pk Cons. (kWh) 311311304308308305305305309308305305309On-Pk Demand (kW) 71,51414,2788,0624,8272,9261,0008098463,9334,9049,7137,62212,593On-Pk Cons. (therms) 61614531237772734484854On-Pk Demand (therms/hr) 86,973 149,283 ft2 Btu/(ft2-year) 106,760 22,192,186 lbm/year 22,890 gm/year 72,325 gm/year Btu/(ft2-year) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 2 Monthly Energy Consumption report Page 2 of 4 600,10678,39055,52657,96052,77621,98220,28221,39057,71152,58460,97351,00069,533On-Pk Cons. (kWh) 311311304308308305305305309308305305309On-Pk Demand (kW) 70,11714,2108,0624,8272,9261,0008098463,9334,9049,0557,62211,922On-Pk Cons. (therms) 61614531237772734514854On-Pk Demand (therms/hr) 84,862 145,130 ft2 Btu/(ft2-year) 106,760 21,300,654 lbm/year 21,970 gm/year 69,420 gm/year Btu/(ft2-year) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 3 Monthly Energy Consumption report Page 3 of 4 581,64674,58454,10756,49751,40421,28519,60020,71456,24651,21859,46149,72166,809On-Pk Cons. (kWh) 305305298302302299299299303302299299303On-Pk Demand (kW) 69,48813,9747,9624,8292,9491,0088098463,9524,8818,9827,56511,731On-Pk Cons. (therms) 62624530247772733504754On-Pk Demand (therms/hr) 83,683 142,573 ft2 Btu/(ft2-year) 106,760 20,645,394 lbm/year 21,295 gm/year 67,284 gm/year Btu/(ft2-year) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 4 Monthly Energy Consumption report Page 4 of 4 25,315.5 30,645.0 26,647.8 29,312.6 15,022.7 13,657.0 15,705.6 26,647.8 29,312.6 27,980.2 294,875.027,980.2 26,647.8Electric (kWh) 166.6 166.6 166.6 166.6 166.6 166.6 166.6 166.6 166.6 166.6 166.6 166.6 166.6Peak (kW) 16,122.0 19,516.1 16,970.5 18,667.5 1,314.6 1,195.1 1,374.4 16,970.5 18,667.5 17,819.0 163,406.717,819.0 16,970.5Electric (kWh) 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5Peak (kW) 0.0 0.0 0.0 0.0 0.2 1.7 0.7 0.1 0.0 0.0 2.60.0 0.0Recoverable Water (1000gal) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0Peak (1000gal/Hr) 8,153.9 9,027.5 4,625.1 4,779.3 4,625.1 4,779.3 4,779.3 4,625.1 7,434.4 7,194.6 76,485.49,027.5 7,434.4Electric (kWh) 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1Peak (kW) 874.5 1,039.5 924.0 1,003.2 427.9 413.6 445.0 924.0 1,003.2 960.3 9,912.7966.9 930.6Proc. Hot Water (therms) 5.5 5.5 5.5 5.5 5.5 1.7 1.7 1.7 5.5 5.5 5.5 5.5 5.5Peak (therms/Hr) 596.3 708.8 630.0 684.0 291.8 282.0 303.4 630.0 684.0 654.8 6,758.6659.3 634.5Proc. Hot Water (therms) 3.8 3.8 3.8 3.8 3.8 1.1 1.1 1.1 3.8 3.8 3.8 3.8 3.8Peak (therms/Hr) 5,474.3 6,819.1 3,445.0 2,693.7 466.7 452.5 649.5 1,941.5 3,250.3 5,641.5 50,223.39,077.4 10,311.8Purchased Steam (therms) 40.4 35.1 35.8 24.4 19.0 1.9 4.1 5.9 17.3 22.2 32.7 45.8 45.8Peak (therms/Hr) 317.8 403.5 155.2 125.8 49.0 47.7 53.0 102.7 133.9 320.8 2,989.4592.0 688.0Electric (kWh) 2.8 2.8 2.8 1.8 1.4 0.2 0.4 0.4 1.3 1.7 2.6 3.5 3.5Peak (kW) 2,021.2 2,562.8 1,333.1 1,120.5 308.9 298.5 334.6 903.4 1,315.2 2,153.1 19,354.73,298.3 3,705.3Purchased Steam (therms) 13.1 12.8 12.2 9.7 8.3 1.2 1.2 1.2 6.4 8.8 12.1 14.9 14.9Peak (therms/Hr) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 1 Equipment Energy Consumption report page 1 of 12 74.3 103.4 50.7 61.4 29.8 29.0 30.2 56.3 55.0 76.1 920.3160.2 193.9Electric (kWh) 0.7 1.0 0.8 0.7 0.6 0.1 0.1 0.1 0.4 0.6 0.9 0.8 1.0Peak (kW) 1,502.0 2,782.5 1,592.0 1,709.6 775.2 782.1 802.9 1,592.0 1,709.6 1,640.4 24,336.24,298.3 5,149.6Electric (kWh) 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9Peak (kW) 133.4 147.6 169.8 296.9 243.3 192.6 206.6 211.6 142.3 130.7 2,126.7125.4 126.5Electric (kWh) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.8Peak (kW) 4,197.5 7,752.3 4,672.7 5,113.7 2,311.3 2,394.4 2,247.0 4,956.7 5,041.9 4,556.8 69,076.011,744.3 14,087.5Electric (kWh) 20.0 21.7 22.0 24.9 28.8 33.6 35.6 23.9 30.7 27.0 22.1 21.5 35.6Peak (kW) 420.1 778.3 445.3 478.2 216.8 218.8 224.6 445.3 478.2 458.8 6,806.81,202.2 1,440.4Electric (kWh) 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9Peak (kW) 2,064.5 3,824.5 2,189.4 2,352.4 1,074.7 1,083.2 1,103.6 2,196.2 2,350.3 2,254.7 33,479.55,907.9 7,078.1Electric (kWh) 9.5 9.6 9.7 10.1 10.1 10.7 10.3 9.5 10.2 9.7 9.5 9.5 10.7Peak (kW) 910.9 1,642.2 996.0 1,188.7 657.3 611.0 629.8 1,039.1 1,027.7 979.9 15,132.32,479.6 2,970.3Electric (kWh) 4.3 4.3 4.3 4.3 4.3 4.7 4.5 4.3 4.5 4.3 4.3 4.3 4.7Peak (kW) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 1 Equipment Energy Consumption report page 2 of 12 805.3 1,491.8 853.5 916.6 415.6 419.3 430.5 853.5 916.6 879.5 13,239.62,304.4 2,953.2Electric (kWh) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 13.7 13.7Peak (kW) 917.1 1,698.9 972.0 1,043.9 473.3 477.6 490.2 972.0 1,043.9 1,001.6 14,859.32,624.5 3,144.3Electric (kWh) 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2Peak (kW) 265.6 352.5 291.3 354.0 175.6 161.2 171.4 323.4 306.8 291.1 3,452.1371.9 387.4Electric (kWh) 2.0 2.0 2.0 2.0 2.0 2.1 2.0 2.3 2.3 2.0 2.0 2.0 2.3Peak (kW) 1,618.5 2,998.4 1,715.5 1,842.3 845.9 858.0 865.2 1,715.5 1,842.3 1,767.7 26,250.44,631.8 5,549.2Electric (kWh) 7.5 7.5 7.5 7.9 7.8 9.9 9.9 7.5 8.7 7.5 7.5 7.5 9.9Peak (kW) 716.2 1,289.4 783.8 939.4 525.0 489.0 500.4 816.9 807.5 769.8 11,911.81,944.8 2,329.6Electric (kWh) 3.4 3.4 3.4 3.4 3.4 4.4 4.3 3.4 3.7 3.4 3.4 3.4 4.4Peak (kW) 124.0 137.4 95.3 70.9 0.9 1.4 5.2 43.5 77.9 126.0 983.6139.5 161.7Electric (kWh) 0.9 0.7 0.7 0.5 0.3 0.0 0.0 0.1 0.3 0.4 0.7 1.0 1.0Peak (kW) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 1 Equipment Energy Consumption report page 3 of 12 18,440.8 22,323.1 19,411.4 21,352.5 10,943.2 9,948.3 11,440.6 19,411.4 21,352.5 20,381.9 214,798.820,381.9 19,411.4Electric (kWh) 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3Peak (kW) 16,122.0 19,516.1 16,970.5 18,667.5 1,314.6 1,195.1 1,374.4 16,970.5 18,667.5 17,819.0 163,406.717,819.0 16,970.5Electric (kWh) 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5Peak (kW) 0.0 0.0 0.0 0.0 0.2 1.8 0.7 0.1 0.0 0.0 2.80.0 0.0Recoverable Water (1000gal) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0Peak (1000gal/Hr) 2,427.6 2,687.7 1,377.0 1,422.9 1,377.0 1,422.9 1,422.9 1,377.0 2,213.4 2,142.0 22,771.52,687.7 2,213.4Electric (kWh) 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1Peak (kW) 874.5 1,039.5 924.0 1,003.2 427.9 413.6 445.0 924.0 1,003.2 960.3 9,912.7966.9 930.6Proc. Hot Water (therms) 5.5 5.5 5.5 5.5 5.5 1.7 1.7 1.7 5.5 5.5 5.5 5.5 5.5Peak (therms/Hr) 596.3 708.8 630.0 684.0 291.8 282.0 303.4 630.0 684.0 654.8 6,758.6659.3 634.5Proc. Hot Water (therms) 3.8 3.8 3.8 3.8 3.8 1.1 1.1 1.1 3.8 3.8 3.8 3.8 3.8Peak (therms/Hr) 5,573.2 7,116.5 3,543.3 2,795.5 537.1 510.6 661.3 2,010.6 3,482.5 5,878.6 51,892.49,252.9 10,530.4Purchased Steam (therms) 40.8 35.1 36.2 24.4 18.9 5.6 5.5 6.0 17.4 22.3 32.9 46.1 46.1Peak (therms/Hr) 326.0 425.8 159.7 125.6 49.6 48.0 52.1 102.1 146.1 338.3 3,080.4603.6 703.7Electric (kWh) 2.9 2.8 2.9 1.8 1.4 0.2 0.4 0.4 1.3 1.7 2.6 3.5 3.5Peak (kW) 2,049.0 2,596.4 1,360.8 1,138.0 308.9 298.8 338.7 915.9 1,344.1 2,183.4 19,621.43,339.8 3,747.7Purchased Steam (therms) 13.2 12.8 12.3 9.7 8.3 1.2 1.2 1.3 6.5 8.8 12.1 15.0 15.0Peak (therms/Hr) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 2 Equipment Energy Consumption report page 4 of 12 75.5 105.0 51.0 61.5 29.8 28.9 30.1 56.2 54.0 77.5 927.7163.3 195.1Electric (kWh) 0.7 1.0 0.8 0.7 0.6 0.1 0.1 0.1 0.4 0.6 0.9 0.8 1.0Peak (kW) 1,502.0 2,782.5 1,592.0 1,709.6 775.2 782.1 802.9 1,592.0 1,709.6 1,640.4 24,336.24,298.3 5,149.6Electric (kWh) 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9Peak (kW) 133.4 147.6 169.8 296.9 242.5 192.6 206.6 207.1 142.3 130.7 2,121.3125.4 126.5Electric (kWh) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8Peak (kW) 4,128.0 7,674.6 4,508.8 4,888.5 2,280.6 2,352.6 2,230.5 4,672.2 4,820.9 4,463.1 67,724.911,694.4 14,010.7Electric (kWh) 18.8 20.4 20.4 22.8 23.8 30.5 30.7 22.7 26.9 24.3 19.1 18.8 30.7Peak (kW) 420.1 778.3 445.3 478.2 216.8 218.8 224.6 445.3 478.2 458.8 6,806.81,202.2 1,440.4Electric (kWh) 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9Peak (kW) 2,064.5 3,824.5 2,188.1 2,349.9 1,073.6 1,081.8 1,103.6 2,190.7 2,349.9 2,254.7 33,467.05,907.9 7,078.1Electric (kWh) 9.5 9.5 9.5 9.7 9.8 10.6 10.3 9.5 10.0 9.5 9.5 9.5 10.6Peak (kW) 910.9 1,642.2 995.5 1,187.7 656.8 610.4 629.8 1,036.8 1,027.5 979.9 15,127.22,479.6 2,970.3Electric (kWh) 4.3 4.3 4.3 4.3 4.3 4.7 4.5 4.3 4.4 4.3 4.3 4.3 4.7Peak (kW) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 2 Equipment Energy Consumption report page 5 of 12 805.3 1,491.8 853.5 916.6 415.6 419.3 430.5 853.5 916.6 879.5 13,190.32,325.2 2,883.2Electric (kWh) 8.9 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 11.4 11.4Peak (kW) 917.1 1,698.9 972.0 1,043.9 473.3 477.6 490.2 972.0 1,043.9 1,001.6 14,859.32,624.5 3,144.3Electric (kWh) 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2Peak (kW) 265.6 352.5 291.3 354.0 173.3 161.2 171.4 309.6 306.8 291.1 3,436.0371.9 387.4Electric (kWh) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.3 2.0 2.0 2.0 2.0 2.3Peak (kW) 1,618.5 2,998.4 1,715.5 1,842.3 843.1 853.7 865.2 1,715.5 1,842.3 1,767.7 26,243.34,631.8 5,549.2Electric (kWh) 7.5 7.5 7.5 7.5 7.5 9.4 9.3 7.5 7.7 7.5 7.5 7.5 9.4Peak (kW) 716.2 1,289.4 783.8 939.4 523.8 487.2 500.4 816.9 807.5 769.8 11,908.81,944.8 2,329.6Electric (kWh) 3.4 3.4 3.4 3.4 3.4 4.1 4.0 3.4 3.4 3.4 3.4 3.4 4.1Peak (kW) 127.2 141.2 98.6 74.6 1.0 1.6 6.9 47.2 81.5 129.5 1,017.5143.0 165.1Electric (kWh) 0.9 0.7 0.7 0.5 0.3 0.0 0.0 0.1 0.3 0.5 0.7 1.0 1.0Peak (kW) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 2 Equipment Energy Consumption report page 6 of 12 18,440.8 22,323.1 19,411.4 21,352.5 10,943.2 9,948.3 11,440.6 19,411.4 21,352.5 20,381.9 214,798.820,381.9 19,411.4Electric (kWh) 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3Peak (kW) 16,122.0 19,516.1 16,970.5 18,667.5 1,314.6 1,195.1 1,374.4 16,970.5 18,667.5 17,819.0 163,406.717,819.0 16,970.5Electric (kWh) 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5Peak (kW) 0.0 0.0 0.0 0.0 0.2 1.8 0.7 0.1 0.0 0.0 2.70.0 0.0Recoverable Water (1000gal) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0Peak (1000gal/Hr) 2,427.6 2,687.7 1,377.0 1,422.9 1,377.0 1,422.9 1,422.9 1,377.0 2,213.4 2,142.0 22,771.52,687.7 2,213.4Electric (kWh) 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1Peak (kW) 874.5 1,039.5 924.0 1,003.2 427.9 413.6 445.0 924.0 1,003.2 960.3 9,912.7966.9 930.6Proc. Hot Water (therms) 5.5 5.5 5.5 5.5 5.5 1.7 1.7 1.7 5.5 5.5 5.5 5.5 5.5Peak (therms/Hr) 596.3 708.8 630.0 684.0 291.8 282.0 303.4 630.0 684.0 654.8 6,758.6659.3 634.5Proc. Hot Water (therms) 3.8 3.8 3.8 3.8 3.8 1.1 1.1 1.1 3.8 3.8 3.8 3.8 3.8Peak (therms/Hr) 5,573.2 6,607.5 3,543.3 2,795.5 537.1 510.6 661.3 2,010.6 3,482.5 5,878.6 50,828.38,740.3 10,487.8Purchased Steam (therms) 41.0 35.1 37.6 24.4 18.9 5.6 5.5 6.0 17.4 22.3 32.9 46.1 46.1Peak (therms/Hr) 326.0 385.7 159.7 125.6 49.6 48.0 52.1 102.1 146.1 338.3 2,994.0562.0 699.0Electric (kWh) 3.6 2.8 3.1 1.8 1.4 0.2 0.4 0.4 1.3 1.7 2.6 3.5 3.6Peak (kW) 2,049.0 2,447.5 1,360.8 1,138.0 308.9 298.8 338.7 915.9 1,344.1 2,183.4 19,288.83,181.7 3,722.1Purchased Steam (therms) 13.2 12.8 13.5 9.7 8.3 1.2 1.2 1.3 6.5 8.8 12.1 15.0 15.0Peak (therms/Hr) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 3 Equipment Energy Consumption report page 7 of 12 75.5 92.3 51.0 61.5 29.8 28.9 30.1 56.2 54.0 77.5 900.9150.8 193.4Electric (kWh) 0.9 1.0 1.0 0.7 0.6 0.1 0.1 0.1 0.4 0.6 0.9 0.8 1.0Peak (kW) 1,502.0 1,758.1 1,592.0 1,709.6 775.2 782.1 802.9 1,592.0 1,709.6 1,640.4 21,443.03,163.2 4,416.0Electric (kWh) 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9Peak (kW) 133.4 141.3 169.8 296.9 242.5 192.6 206.6 207.1 142.3 130.7 2,105.5117.7 124.6Electric (kWh) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8Peak (kW) 4,128.0 4,887.8 4,508.8 4,888.5 2,280.6 2,352.6 2,230.5 4,672.2 4,820.9 4,463.1 59,853.58,606.0 12,014.6Electric (kWh) 18.8 20.4 20.4 22.8 23.8 30.5 30.7 22.7 26.9 24.3 19.1 18.8 30.7Peak (kW) 420.1 491.7 445.3 478.2 216.8 218.8 224.6 445.3 478.2 458.8 5,997.6884.7 1,235.1Electric (kWh) 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9Peak (kW) 2,064.5 2,416.5 2,188.1 2,349.9 1,073.6 1,081.8 1,103.6 2,190.7 2,349.9 2,254.7 29,490.44,347.7 6,069.7Electric (kWh) 9.5 9.5 9.5 9.7 9.8 10.6 10.3 9.5 10.0 9.5 9.5 9.5 10.6Peak (kW) 910.9 1,057.3 995.5 1,187.7 656.8 610.4 629.8 1,036.8 1,027.5 979.9 13,472.11,829.5 2,550.1Electric (kWh) 4.3 4.3 4.3 4.3 4.3 4.7 4.5 4.3 4.4 4.3 4.3 4.3 4.7Peak (kW) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 3 Equipment Energy Consumption report page 8 of 12 805.3 942.6 853.5 916.6 415.6 419.3 430.5 853.5 916.6 879.5 11,639.21,716.6 2,489.8Electric (kWh) 8.9 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 11.4 11.4Peak (kW) 917.1 1,073.5 972.0 1,043.9 473.3 477.6 490.2 972.0 1,043.9 1,001.6 13,092.81,931.4 2,696.3Electric (kWh) 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2Peak (kW) 265.6 332.6 291.3 354.0 173.3 161.2 171.4 309.6 306.8 291.1 3,386.2347.6 381.9Electric (kWh) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.3 2.0 2.0 2.0 2.0 2.3Peak (kW) 1,618.5 1,894.5 1,715.5 1,842.3 843.1 853.7 865.2 1,715.5 1,842.3 1,767.7 23,125.63,408.6 4,758.6Electric (kWh) 7.5 7.5 7.5 7.5 7.5 9.4 9.3 7.5 7.7 7.5 7.5 7.5 9.4Peak (kW) 716.2 830.9 783.8 939.4 523.8 487.2 500.4 816.9 807.5 769.8 10,611.31,435.1 2,000.2Electric (kWh) 3.4 3.4 3.4 3.4 3.4 4.1 4.0 3.4 3.4 3.4 3.4 3.4 4.1Peak (kW) 127.2 141.2 98.6 74.6 1.0 1.6 6.9 47.2 81.5 129.5 1,017.5143.0 165.1Electric (kWh) 0.9 0.7 0.7 0.5 0.3 0.0 0.0 0.1 0.3 0.5 0.7 1.0 1.0Peak (kW) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 3 Equipment Energy Consumption report page 9 of 12 18,440.8 22,323.1 19,411.4 21,352.5 10,943.2 9,948.3 11,440.6 19,411.4 21,352.5 20,381.9 214,798.820,381.9 19,411.4Electric (kWh) 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3 121.3Peak (kW) 16,122.0 19,516.1 16,970.5 18,667.5 1,314.6 1,195.1 1,374.4 16,970.5 18,667.5 17,819.0 163,406.717,819.0 16,970.5Electric (kWh) 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5Peak (kW) 0.0 0.0 0.0 0.0 0.3 1.8 0.7 0.1 0.0 0.0 3.00.0 0.0Recoverable Water (1000gal) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0Peak (1000gal/Hr) 2,427.6 2,687.7 1,377.0 1,422.9 1,377.0 1,422.9 1,422.9 1,377.0 2,213.4 2,142.0 22,771.52,687.7 2,213.4Electric (kWh) 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1Peak (kW) 874.5 1,039.5 924.0 1,003.2 427.9 413.6 445.0 924.0 1,003.2 960.3 9,912.7966.9 930.6Proc. Hot Water (therms) 5.5 5.5 5.5 5.5 5.5 1.7 1.7 1.7 5.5 5.5 5.5 5.5 5.5Peak (therms/Hr) 596.3 708.8 630.0 684.0 291.8 282.0 303.4 630.0 684.0 654.8 6,758.6659.3 634.5Proc. Hot Water (therms) 3.8 3.8 3.8 3.8 3.8 1.1 1.1 1.1 3.8 3.8 3.8 3.8 3.8Peak (therms/Hr) 5,566.5 6,601.1 3,540.5 2,793.8 537.1 510.6 661.3 2,011.0 3,480.8 5,874.3 50,789.08,732.5 10,479.4Purchased Steam (therms) 40.9 35.1 37.6 24.4 18.9 5.6 5.5 6.0 17.4 22.2 32.8 46.1 46.1Peak (therms/Hr) 325.4 385.1 159.5 125.4 49.6 48.0 52.1 102.1 146.0 338.0 2,991.0561.4 698.4Electric (kWh) 3.6 2.8 3.1 1.8 1.4 0.2 0.4 0.4 1.3 1.7 2.6 3.5 3.6Peak (kW) 1,998.9 2,380.8 1,340.4 1,157.8 308.9 298.8 346.9 938.0 1,348.6 2,087.3 18,699.02,998.2 3,494.4Purchased Steam (therms) 13.8 13.3 14.1 10.2 8.7 1.2 1.2 2.3 7.1 9.2 12.7 16.0 16.0Peak (therms/Hr) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 4 Equipment Energy Consumption report page 10 of 12 77.5 93.7 54.6 64.2 30.8 30.0 31.7 59.5 56.7 78.0 903.6143.0 184.1Electric (kWh) 1.1 0.8 0.9 0.6 0.5 0.1 0.1 0.2 0.4 0.5 0.8 1.0 1.1Peak (kW) 218.4 246.0 219.4 235.7 106.9 107.8 110.7 219.5 236.9 226.1 2,972.1436.0 608.7Electric (kWh) 1.0 1.5 1.1 1.0 1.6 1.0 1.0 1.0 1.0 1.2 1.0 1.0 1.6Peak (kW) 137.0 144.1 175.5 302.1 240.3 190.3 205.5 209.2 150.2 131.6 2,152.7129.0 138.1Electric (kWh) 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.7 0.7 0.7 0.6 0.7Peak (kW) 4,128.0 4,887.8 4,508.8 4,888.5 2,280.6 2,352.6 2,230.5 4,672.2 4,820.9 4,463.1 59,853.58,606.0 12,014.6Electric (kWh) 18.8 20.4 20.4 22.8 23.8 30.5 30.7 22.7 26.9 24.3 19.1 18.8 30.7Peak (kW) 420.1 491.7 445.3 478.2 216.8 218.8 224.6 445.3 478.2 458.8 5,997.6884.7 1,235.1Electric (kWh) 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9Peak (kW) 2,064.5 2,416.5 2,188.1 2,349.9 1,073.6 1,081.8 1,103.6 2,190.7 2,349.9 2,254.7 29,490.44,347.7 6,069.7Electric (kWh) 9.5 9.5 9.5 9.7 9.8 10.6 10.3 9.5 10.0 9.5 9.5 9.5 10.6Peak (kW) 910.9 1,057.3 995.5 1,187.7 656.8 610.4 629.8 1,036.8 1,027.5 979.9 13,472.11,829.5 2,550.1Electric (kWh) 4.3 4.3 4.3 4.3 4.3 4.7 4.5 4.3 4.4 4.3 4.3 4.3 4.7Peak (kW) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 4 Equipment Energy Consumption report page 11 of 12 805.3 942.6 853.5 916.6 415.6 419.3 430.5 853.5 916.6 879.5 11,639.21,716.6 2,489.8Electric (kWh) 8.9 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 11.4 11.4Peak (kW) 917.1 1,073.5 972.0 1,043.9 473.3 477.6 490.2 972.0 1,043.9 1,001.6 13,092.81,931.4 2,696.3Electric (kWh) 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2Peak (kW) 265.1 329.6 288.6 354.7 166.6 154.3 165.3 305.0 305.9 285.5 3,349.5348.6 380.2Electric (kWh) 2.0 2.0 2.0 2.0 2.0 1.9 1.9 1.9 2.0 2.0 2.0 1.9 2.0Peak (kW) 1,618.5 1,894.5 1,715.5 1,842.3 843.1 853.7 865.2 1,715.5 1,842.3 1,767.7 23,125.63,408.6 4,758.6Electric (kWh) 7.5 7.5 7.5 7.5 7.5 9.4 9.3 7.5 7.7 7.5 7.5 7.5 9.4Peak (kW) 716.2 830.9 783.8 939.4 523.8 487.2 500.4 816.9 807.5 769.8 10,611.31,435.1 2,000.2Electric (kWh) 3.4 3.4 3.4 3.4 3.4 4.1 4.0 3.4 3.4 3.4 3.4 3.4 4.1Peak (kW) 127.2 141.2 98.6 74.6 1.0 1.6 6.9 47.2 81.5 129.5 1,017.5143.0 165.1Electric (kWh) 0.9 0.7 0.7 0.5 0.3 0.0 0.0 0.1 0.3 0.5 0.7 1.0 1.0Peak (kW) Project Name:TRACE® 700 v6.2.8 calculated at 08:18 PM on 05/29/2012Ben Eielson Jr/Sr High School Dataset Name:ben_eielson.trc Alternative - 4 Equipment Energy Consumption report page 12 of 12 APPENDIX I –TREND LOG INFORMATION 5.0% 25.0% 45.0% 65.0% 85.0% 20 30 40 50 60 70 80 90 100 OAT MAT RAT PHT OA % Ben Eielson Jr/Sr High -SF12 -Jan 12 -Jan 15, 2012 Outside Air Percentage Return Air Temperature Mixed Air Temperature Preheat Coil Temperature -75.0% -55.0% -35.0% -15.0% -40 -30 -20 -10 0 10 21:4023:0000:2001:4003:0004:2005:4007:0008:2009:4011:0012:2013:4015:0016:2017:4019:0020:2021:4023:0000:2001:4003:0004:2005:4007:0008:2009:4011:0012:2013:4015:0016:2017:4019:0020:2021:4023:0000:2001:40OA % Linear (PHT) Outside Air Temeprature 5.0% 25.0% 45.0% 65.0% 85.0% 20 30 40 50 60 70 80 90 100 OAT MAT RAT Avg PHT Avg Osa Ben Eielson Jr/Sr High School -SF12 With Averaged Preheat Coil Temps Preheat Coil Discharge Temp Averaged over 2 Hour Periods Unoccupied Hours with OSA at 25% -75.0% -55.0% -35.0% -15.0% -40 -30 -20 -10 0 10 21:4023:0000:2001:4003:0004:2005:4007:0008:2009:4011:0012:2013:4015:0016:2017:4019:0020:2021:4023:0000:2001:4003:0004:2005:4007:0008:2009:4011:0012:2013:4015:0016:2017:4019:0020:2021:4023:0000:2001:40Avg Osa 15% 20% 25% 30% 80 100 120 140 160 180 200 220 240 OAT HWS Stm Valve Ben Eielson Sr High Steam/Heating Water System -Jan 13-Jan 15, 2012 Heating Water Supply TemperatureShowing Correct ResetBased on OSA Temp 0% 5% 10% -40 -20 0 20 40 60 21:2022:4000:0001:2002:4004:0005:2006:4008:0009:2010:4012:0013:2014:4016:0017:2018:4020:0021:2022:4000:0001:2002:4004:0005:2006:4008:0009:2010:4012:0013:2014:4016:0017:2018:4020:0021:2022:4000:0001:20 APPENDIX J –FLOOR PLANS