Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Cold Bay Report & Concept Design Waste Heat Recovery 1991
REPORT AND CONCEPT DESIGN COLD BAY WASTE HEAT RECOVERY February 12, 1991 Rap Frank Moolin & Associates, Inc. A Subsidiary of ENSERCH Alaska Services, Inc. * COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY 2.0 INTRODUCTION 3.0 DESCRIPTION OF SITE VISIT 4.0 POWER PLANT DESCRIPTION 5.0 POTENTIAL WASTE HEAT USER BUILDING DESCRIPTIONS 5.1 State DOT/PF Buildings Seid Shop 5.1.2 Warm Storage 5.1.3. Warm Sand Storage 5.1.4 Fire Station S52 Cold Bay School 5.3 Cold Bay Community Buildings 5.3.1 City Building (Community Center) Medical Clinic ES wi 2 5.4 Buildings oa Shop -2. Flight Service Building -3 Water Plant 525) . Fish and Wildlife Main Office/Shop/Storage Bunkhouse and Housing 5.6 ther Buildings Post Office Pavlof Services - Hotel/Bar/Store and Restaurant Reeve Airlines Buildings - Terminal and Shop uo ano anc Cuonoy sy uo a aos ann pe ne w Nes 6.0 RIGHT -OF -WAY/EASEMENT 7.0 CONCEPT DESIGN 8.0 ECONOMIC DATA 9.0 FAILURE ANALYSIS 10.0 CONCLUSIONS AND RECOMMENDATIONS WTHTCB/RCD/2-12-91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 LIST OF FIGURES AND TABLES Power Plant Photographs Power Generation AK DOT/PF Shop Photographs AK DOT/PF Shop Fuel Data AK DOT/PF Warm Storage Photographs AK DOT/PF Warm Storage Fuel Data AK DOT/PF Warm Sand Storage Heat Loss School Photographs School Fuel Data City Building Photographs City Building Fuel Data FAA Shop Photographs FAA Shop Fuel Data U.S. Fish & Wildlife Main Office Photographs U.S. Fish & Wildlife Main Office Fuel Data U.S. Fish & Wildlife Housing Photographs U.S. Fish & Wildlife Housing Fuel Data Fire Station Fuel Data Clinic Fuel Data Figure 1 - Legend Figure 2 - System Site Plan - Figure 3 - Power Plant Floor Plan - Figure 4 - Power Plant Schematic - Figure 5 - Scenario #1 System Schematic - Figure 6 - FAA Shop Floor Plan - Figure 7 - FAA Shop System Schematic - Figure 8 - AK DOT/PF Shop Floor Plan - Figure 9 - AK DOT/PF Shop System Schematic Figure 10 - AK DOT/PF Warm Storage Floor Plan Figure 11 - AK DOT/PF Warm Storage System Schematic Figure 12 - AK DOT/PF Warm Sand Storage Floor Plan Pb WW WW WW WMD MND ND PD HH BE BE EE HW RYN REE EEE HOUND EPWWP Se NN SN SN S NS SN SS SS SNS SNS NS NSN NSN NNN ONO. WNYANMNHLPWMHKHOWOONAMNPWHYKH DWOONAMLWNMHYKHNHWOMPHKHOWONMNEP MH Figure 13 - AK DOT/PF Warm Sand Storage System Schematic Figure 14 - Scenario #2 System Schematic - Figure 15 - City Building Floor Plan - Figure 16 - City Building System Schematic - Figure 17 - U.S. Fish & Wildlife Main Office Floor Plan - Figure 18 - U.S. Fish & Wildlife Main Office System Schematic - Figure 19 - U.S. Fish & Wildlife Bunkhouse Floor Plan - Figure 20 - U.S. Fish & Wildlife Bunkhouse System Schematic - Figure 21 - U.S. Fish & Wildlife Housing Floor Plan - Figure 22 - U.S. Fish & Wildlife Housing System Schematic - Figure 23 - Scenario #3 System Schematic - Figure 24 - School Floor Plan - Figure 25 - School System Schematic - Figure 26 - Arctic Pipe/Trench Cross Section - Graph 1 0 Graph 2 0 WTHTCB/RCD/2-12-91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 APPENDICES 1. Calculations ae Cost Estimates 3. Raw Data WTHTCB/RCD/2-12-91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 1.0 EXECUTIVE SUMMARY A potential for waste heat recovery exists in the community of Cold Bay. Cold Bay is a community of approximately 150 people, located 40 miles from the western tip of the Alaska Peninsula, 630 air miles from Anchorage, and 180 air miles from Unalaska. The waste heat from the coolant of the diesel engine-generator set owned and operated by G&K, Inc., could be recovered and circulated to heat buildings in the community. A waste heat recovery system can provide enough heat to heat virtually all of the publicly owned buildings in the general vicinity of the power house and several publicly owned and private commercial buildings further from the power house as well. However, these buildings are spread out and can not be served on an equal cost basis. Also, varying ownership and planned future use of the buildings makes some buildings more attractive for providing waste heat to. Therefore, policy makers will have to choose between alternatives. Several scenarios have been evaluated and are presented here. Scenario #1 provides waste heat to the four (4) public buildings nearest the power house. This includes the FAA shop, State Department of Transportation / Public Facilities (DOT/PF) shop, State DOT/PF warm storage, and the future State DOT/PF warm sand storage to be constructed summer 1990. Estimated Project Cost $199,926 Total Fuel Oi] Savings 25,900 Gallons Total Annual Fuel Cost Savings $ 28,500 (0&M Cost $ 7,600) Scenario #2 includes the buildings in Scenario #1 and extends a heating loop to the north to serve the city building and the U.S. Fish & Wildlife complex. This complex includes the main office/shop/storage building, the bunkhouse, and four (4) separate housing buildings. This scenario would be an expansion of Scenario #1. Values below are inclusive of Scenario #1 values. A further revision would be to just include the city building if Fish and Wildlife declines to participate. Estimated Project Cost $1,271,053 Total Fuel Oi] Savings 35,900 Gallons Total Annual Fuel Cost Savings $ 39,500 (O&M Cost $ 13,700) Scenario #3 includes the buildings in Scenario #1 and extends a heating loop to the south to serve the Cold Bay school. This scenario would be an expansion of Scenario #1. Values below are inclusive of Scenario #1 values. WTHTCB/RCD/2-12-91 1-1 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Estimated Project Cost $777,021 Total Fuel Oi] Savings 31,700 Gallons Total Annual Fuel Cost Savings $ 34,900 (O&M Cost $ 11,700) Scenario #4 includes all of the buildings listed above (essentially it is Scenario #1 expanded to the north to include the additional Scenario #2 buildings and to the south to include the additional Scenario #3 building). Estimated Project Cost $1,614,728 Total Fuel Oi] Savings 41,400 Gallons Total Annual Fuel Cost Savings $ 45,500 (O&M Cost $ 16,800) Scenario #4a is identical to Scenario #4 with distribution main pipe sizes increased to allow for future expansion to the south. Annual fuel and dollar savings are identical. Estimated Project Cost $1,788,642 Scenario #5 expands the system further by extending a heating loop south past the school to serve the clinic, the airport buildings and buildings in between. This is the longest piping run considered. Besides the clinic, it would serve the State DOT/PF fire station, FAA flight service, FAA water plant, Post Office, Reeve Airlines complex (2 buildings), and Pavlof Services complex (2 buildings). There is not enough waste heat to serve Scenario #5. Scenario #5 is considered a low probability for waste heat recovery due to high construction costs, piping heat losses, complexity and uncertain future of some of these users. Scenario #5 is presented here only to the extent required to identify its potential for possible future expansion. No cost estimate was performed for Scenario #5. A possible 6th scenario would extend a branch from the scenario #5 loop to serve eighteen (18) FAA and DOT/PF buildings consisting of 10 single housing units and 8 duplex housing units. This study did not analyze providing waste heat to the housing units. | Decision Criteria Economic and public policy decisions will consider some or all of the following factors: 1.1.1. Proximity and piping loops. The cost of running the waste heat recovery piping and the individual heat exchangers in each client’s building may make the pay back period too long for a particular WTHTCB/RCD/2-12-91 1-2 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 client. This factor may limit this project to the buildings in the immediate area of the power plant. If this consideration is overriding, the FAA shop and the DOT/PF’s shop, warm storage building, and new warm sand storage facility will be the highest priority users. If other users are considered, the grouping of facilities on a piping loop will become a significant factor. The City Building is approximately half way to the U.S. Fish and Wildlife site, but the school and clinic are in a different direction. Waste heat piping to the clinic would open up the possibility of providing waste heat to the State DOT/PF fire station, FAA flight service, FAA operated water plant, Post Office, Reeve Aleution complex, and Pavlof Services complex, and other private users adjacent to the runway. Subject to the above decisions, FAA and DOT/PF family housing units could be waste heat users, but it would require another long loop on the waste heat piping layout and multiple exchangers in the housing hot air furnaces. 1.1.2 Potential Long Term Users and Expansion. At the time of this report (March 1990), the FAA and National Weather Service (which shares the FAA flight service building) plan to significantly reduce their respective staffs over the next four years. Certainly decisions about capital investments in waste heat must consider this planned reduction. U.S. Fish and Wildlife appears to have a long term commitment to Cold Bay and the Izembek National Wildlife Refuge. This fact, combined with the proximity to the power house, should make Fish and Wildlife a prime candidate for waste heat use. Federal decision making may make utilization difficult, as will the difficulty of hooking up waste heat to six relatively small buildings. The DOT/PF Shop and Storage Facilities will be utilized as long as DOT/PF is responsible for the maintenance of the airport. there are no current plans to close the airport. The state shop, warm storage, and warm sand storage are excellent candidates for waste heat recovery because of their proximity to the power station. The Mayor and City Council are negotiating with the Trawlers Association to make Cold Bay a center for fishing crew changes. This would increase local seasonal air traffic and increase the possibility for the continuing or even the expansion of Cold Bay as an airport. Also, the air carriers in Cold Bay expect to be in business for an indefinite period, and with expanding guiding/tourist activity in the area, air WTHTCB/RCD/2-12-91 1-3 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 traffic could increase. Private potential waste heat users such as Reeve and Pavlof Services (which is operated by Reeve) and others around the airport are interested in any savings in heating costs. This potential for stability and even growth makes providing waste heat to the airport area attractive. The Post Office has a new building and will be in Cold Bay indefinitely. If the installation costs have a reasonable payback, the Post Office is a potential customer. The State Hatchery at Russell Creek is under utilized, and its future will have a small effect on air traffic at Cold Bay but because of distance, no effect on waste heat recovery unless the extra hatchery staff were housed in Cold Bay proper. 1.1.3 Community Desires/State Priorities The Mayor and City Council members, that were interviewed, indicated a strong preference for using waste heat in the city building (community center) and medical clinic. A major portion of this interest has to do with a limited city budget and significant fuel bills. They were supportive of using waste heat at the school. A summary of the construction cost estimates along with design and SIOH costs is included in the Cost Estimate Appendix for each alternative and scenario. The local DOT/PF and FAA Personnel were generally supportive of utilizing waste heat in order to save operating cost and lower maintenance cost. The ultimate decision will probably be made at a higher administrative level based on Ist cost and operating cost reduction. WTHTCB/RCD/2-12-91 1-4 2.0 Zak 2.8 Zao COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 INTRODUCTION Objective The objective of the field investigation and report is to ascertain the viability of waste heat recovery use in the community of Cold Bay. It has been established that there is a potential source and use for the heat energy, and that the community is interested in pursuing this project. Methodology The investigation and analysis were approached as follows: lis Pre-site Visit: Information collection consisted of telephone contact with community officials, owners/operators of potential user buildings, power plant operators, and gathering land use/ownership information. Ze Field Investigation: Coordination with the G&K power utility owner/operator, building owner/operators and local elected officials was performed. Photographs were taken of the potential user buildings as well as the boiler/furnace equipment. The power plant was photographed and sketches were made of the coolant piping connections. Available fuel costs and heating records were obtained from each interested potential recipient of waste heat. Se Office Analysis: Additional information regarding weather and historical trends were collected. Calculations were performed to fill in missing fuel use data for several of the potential users. This information was used to produce a model to predict the system performance and the amount of energy recovered. 4. Report Preparation: A draft report was prepared for the prospective clients prior to final report preparation to ascertain the correctness of the assumptions made and obtain approval of the approach taken. Community Description Cold Bay is a community of approximately 150 people 40 miles from the western end of the Alaskan Peninsula. The community centers around the Airport with FAA, National Weather Service, State of Alaska Department of Transportation and Public Facilities (DOT/PF), and ancillary staff. A smaller population of U.S. Fish and Wildlife staff work at the nearby Izembek National Wildlife Refuge and State of Alaska Department of Fish and Game .staff work at the Russell Creek Hatchery. In addition, several airlines and charter companies have smal] WTHTCB/RCD/2-12-91 omit COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 resident staffs and there is a school, post office, community center, medical clinic, store, hotel, restaurant, and bar. The land is flat and rolling. Diesel fuel cost at Cold Bay were $1.18 in February 1990 and were scheduled to fall to $1.10 on March 1. Diesel is used for heat and power generation. 2.4 Applicable Codes and Regulations The most recently State of Alaska adopted editions (1985 for all except as noted) of the following codes and regulations have been used in the preparation of the concept design. These are listed below: Uniform Plumbing Code (UPC-1979) Uniform Mechanical Code (UMC) Uniform Building Code (UBC) Uniform Fire Code (UFC) National Electrical Code (NEC-1990 - Pending adoption) National Fire Protection Association (NFPA) WTHTCB/RCD/2-12-91 2-2 3.0 DESCRIPTION OF SITE VISIT COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Two engineers from Frank Moolin & Associates, Inc. visited Cold Bay from January 31 to February 2, utility and visited every facility listed in this report and obtained available copies of fuel usage records and copied or sketched floor plans and piping diagrams. Contacts: . Jack Fey Linda Kremer Gerry Dias Ludell Hutchings Gary Ferguson Teresa Mercer Hal Kremer Rick Schlichten Denton Chambers Mark Chase Ken Kreitzer Annette Alexander Mary Beth Hennessy Steleen Turner WTHTCB/RCD/2-12-91 252-2507 532-2401 532-2466 532-2443 532-2407 532-2409 532-2406 532-2437 532-2472 532-2445 532-2451 532-2481 532-2413 532-2464 3-1 1990. They met with the Mayor, National Weather Service City Clerk Airport Manager, Flight Service DOT/PF FAA Field Office Manager Power Plant Owner/Operator Head Teacher, Cold Bay School School and City Maintenance Man Manager Hotel, Restaurant, Bar Manager Reeves Airline U.S. Dept. of Fish and Wildlife Head of Airport Security, City Council Community Health Nurse Practitioner U.S. Post Office 4.0 4.1 4.2 4.3 4.4 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 POWER PLANT DESCRIPTION Narrative Description The power plant is housed in a 40’ by 96’ metal skinned building with an adjacent switchgear/office building and shop building. Power is generated by three (3) Catapillar generators rated for continuous load as follows: 1-Model 3512 - 650 Kw 1-Model 3512 - 845 Kw 1-Model 3512 - 650 Kw These engines are utilizing the same block, and have different configurations and turbo’s. The generators use number 2 fuel oil year round. Cooling for the generators is provided by external horizontal radiators with automatic controls. Piping is uninsulated, resulting in large heat loss to the building. The plant is piped for waste heat recovery with a Young RC-1616-TC-1P shell and tube heat exchanger. A waste heat manifold is installed and waste heat is being used to heat the power plant, the switch gear/office building and the new office shop building. The heating load for ancillary structures was calculated and deducted from the total waste heat available because these structures are scheduled to be torn down. The other wooden structures on site will be torn down. Under present conditions, one generator is able to maintain the village load and the other two are kept on warm stand-by using return coolant from the radiators. At the time of this report (March 1990), the Cold Bay Power Plant is negotiating with Mark Air to provide power to an expanded Mark Air facility in Cold Bay. This expanded load will increase the amount waste heat available in the future. Floor Plan and Schematics See the Figures 3 and 4 for a simple floor plan and schematic of the system (located in Section 7). Photographs See the attached copies of the original color photographs of the power plant and coolant piping. Load information Attached Table 1 contains the utility load data for 1988 and 1989. ; WTHTCB/RCD/2-12-91 4-1 Cold Bay Power Plant Buildings Power Plant Waste Heat Recovery Equipment Frank Moolin & Associates, Inc. COLD BAY POWER GENERATION AVERAGE LOAD (KW) PRODUCTION (KWH) MIN. LOAD (KW) 348,840 292,080 435 20822! 297,600 400 21571 288,600 401 20992! 279,000 375 20489! 249,120 346 18266 241,440 325 18485 277,080 372 20457 275,280 382 19827 285,840 384 21217 307,320 427 21884 312,600 Notes: 1) Average load is calculated from KWH production divided by hours in month. 2) Min. load in estimated as 1/2 of average load. 2/7/91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.0 POTENTIAL WASTE HEAT USER BUILDING DESCRIPTIONS During the site visit, all major buildings within a reasonable distance of the power plant were considered. Also, some groups of buildings remote from the power plant were considered. The buildings were visited and information about them gathered. The information is presented below. WTHTCB/RCD/2-12-91 5-1 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Sle State DOT/PF Buildings Seyler Shop Steel insulated paneled slab on grade building of approximately 2950 square feet with an oil fired forced air furnace serving a 380 square foot office and an oil fired unit heater serving the majority of the shop. It is located approximately 440 feet west of the power plant (440 feet piping run). The furnace and unit heater are rated at approximately 185 and 250 MBH output respectively. A minimal amount of domestic hot water use is provided by an electric hot water heater. The preferred method of waste heat use in this building is a single horizontal unit heater serving the shop only, independent of the existing systems. The annualized fuel consumption is 5,886 gallons based on delivery records. WTHTCB/RCD/2-12-91 5-2 Cold Bay AK/DOT Shop AK/DOT Shop Furnace Frank Moolin & Associates, Inc. Cold Bay: DOT/PF SHOP HEATING FUEL CONSUMPTION DATA FUEL NUMBER DAILY HEATING AVERAGE (Gal) OF DAYS CONSUMPTION DEGREE MONTHLY Gal DAYS CONSUMPTION TOTAL FUEL ANNUALIZED DELIVERED AVERAGE CONSUMPTION Eales 11,788] 731] 16.13] *Mar 1988 records show 5201 gal. but it is assumed to include vehicle tank fill of approx. 80%. 2/7/91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.1.2 Warm Storage Insulated steel paneled slab on grade building of approximately 5400 square feet with two oil fired ceiling mounted unit heaters rated at 300 MBH output each. It is located approximately 150 feet north of the power plant (180 feet piping run). The preferred method of waste heat use in this building is a_ single horizontal unit heater, independent of the existing systems. The annualized fuel consumption is 7,818 gallons based on delivery records. WTHTCB/RCD/2-12-91 5-5 Cold Bay AK/DOT Warm Storage Warm Storage Unit Heaters Frank Moolin & Associates, Inc. Cold Bay: DOT/PF WARM STORAGE HEATING FUEL CONSUMPTION DATA FUEL NUMBER DAILY (Gal) OF DAYS CONSUMPTION HEATING AVERAGE DEGREE MONTHLY DAYS CONSUMPTION ANNUALIZED AVERAGE CONSUMPTION eee eee HEATLOSS CALCULATION BASIC PROJECT INFORMATION PROJECT: |COLD BAY PROJ NO: |495-306 CALC FOR: |DOT/PF WARM SAND STORAGE DATE: |2/15/90 TEMPERATURES HEATING DEGREE DAYS INTERIOR: 65|°F 9877|°F DAYS EXTERIOR: 9)°F ROOM: HEIGHT=' 20 AREA= 4200 WIDTH= 60 VOLUME= 84000 LENGTH= 70 AC/HR= 0.5 SURFACE AREA| * U-VALUE | * (Ti - Te) = BTU/HR TOTAL COMMENTS WALL 1 1200) 0.12 56 8064! WALL 2 1400) 0.12) 56 9408) FLOOR 56 0 CEILING 4200) 0.12 56 28224) GLASS 56 0 DOORS | 56 0 PERIMETER LENGTH * F-VALUE | * (Ti- Te) | =BTU/HR BASEMENT WALL 56 0 SLAB 260 0.65) 56 9464 AIR EXCH. CFM| * FACTOR | * (Ti- Te) | =BTU/HR INFILT. 700 1.08 56 42336 97496) ; TOTAL BTU/HR= 97,496 TOTAL BTU/YR BASED ON HEATING DEGREE DAYS=/| 412,700,568 TOTAL GAL/YR @ 140,000 BTU/GAL, 70% EFFICIENCY= 4,211 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.1.3 Warm Sand Storage Insulated steel paneled slab on grade building of approximately 4200 square feet. Heat will be provided by a oil fired furnace capable of burning heating oil or waste oil from vehicles with an output of approximately 155 MBH. It will be located approximately 210 feet SW of the power plant (210 feet piping run). This is a new building scheduled for construction in 1990. The preferred method of waste heat use in this building is a single horizontal unit heater, independent of the existing systems. Because no historical records exist, the fuel consumption was estimated from heat loss calculations. The annualized fuel consumption is 4,211 gallons based on heat loss calculations. WTHTCB/RCD/2-12-91 5-9 5.2 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Cold Bay School Well insulated wood frame structure of approximately 10,400 square feet approximately 710 feet SW from the power plant (1020 piping run). The school is heated by two oil fired boilers, each rated at 552 MBH output, with domestic hot water provided by a single oil fired hot water heater in the boiler room rated at 433 MBH output. The boiler supply water temperature was originally reset based on outside air temperature from 60 degree F water at 60 degree F air up to 200 degree F water at -20 degree F air. Waste heat recovery would not be effective at the higher water temperatures though this should only occur a small part of the year. The present operating mode has the return water aquastat set point at 152°F. The supply water is arbitrarly limited to 178 . The preferred method of waste heat use in this building is to provide a plate heat exchanger on the boiler system with a second heat exchanger to provide domestic hot water. Some repiping of the boiler room will be required. The annualized fuel consumption is 5,770 gallons per year based on delivery records. WTHTCB/RCD/2-12-91 5-10 pee: { ees Cold Bay School School Boilers Cold Bay SCHOOL HEATING FUEL CONSUMPTION DATA DATE FUEL NUMBER (Gal) OF DAYS 1988 DAILY CONSUMPTION Gal HEATING DEGREE DAYS 0 (578) 0 (448) 0 (416) (9733) TOTAL FUEL DELIVERED [S77] 8S] 15.81] Frank Moolin & Associates, Inc. AVERAGE MONTHLY CONSUMPTION ANNUALIZED AVERAGE CONSUMPTION “Annual fuel quantity provided was distributed to each month of the 9-month school year by heating degree days. 2/7/91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5:3 Cold Bay Community Buildings 5.3.1 City Building (Community Center) Well insulated wood frame structure of approximately 2880 square feet consisting of offices, library, meeting room, racquetball court, and ancillary spaces. No showers are provided. It is located approximately 460 feet NNE of the power plant (1300 feet piping run). Heat is provided by a oil fired boiler rated at 173 MBH output. Domestic hot water is provided by an instantaneous electric hot water heater. The preferred method of waste heat use in this building is to provide a plate heat exchanger on the boiler system. The annualized fuel consumption is 2,305 gallons based on delivery records. WTHTCB/RCD/2-12-91 5-13 Cold Bay City Building City Building Boiler Frank Moolin & Associates, Inc. Cold Bay: CITY BUILDING | HEATING FUEL CONSUMPTION DATA HEATING AVERAGE DEGREE MONTHLY DAYS CONSUMPTION NUMBER OF DAYS DAILY CONSUMPTION Gal 4.57 1.93 8.82 6.22 19.59) 21.00 10.06 17.69 11.00 4.10 10.39} 6.11 §.15 8.39 6.88) 3.75 TOTAL FUEL DELIVERED Ca ee ANNUALIZED AVERAGE CONSUMPTION 2/7/91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.4 FAA Buildings 5.4.1 FAA shop Poorly insulated steel panel slab on grade building of approximately 3950 square feet approximately 380 feet west of the power plant (670 feet piping run). Heat is provided by a single oil fired boiler rated at 442 MBH output. A minimal amount of domestic hot water use is provided by an electric hot water heater. The preferred method of waste heat use in this building is to provide a plate heat exchanger on the boiler system. The annualized fuel consumption is 8,024 gallon per year based on delivery records. WTHTCB/RCD/2-12-91 5-16 Cold Bay FAA Shop FAA Shop Mechanical Room Frank Moolin & Associates, Inc. Cold Bay: FAA SHOP HEATING FUEL CONSUMPTION DATA NUMBER DAILY HEATING AVERAGE OF DAYS CONSUMPTION DEGREE MONTHLY Gal DAYS CONSUMPTION ANNUALIZED AVERAGE CONSUMPTION | * Fuel figures as shown on Frosty Fuel delivery records. * No. of days for Jan 90 estimated by 744 gal/ 26 gal/day. 2/7/91 : COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 525 U.S. Fish and Wildlife. 5.5.1 Main Office/Shop/Storage Building Moderately insulated 3610 square feet wood frame building consisting of office, shop and slab on grade vehicle storage areas. It is located approximately 940 feet (1460 feet piping run) NNE of the power plant. The users would like to add three (3) additional bays to the vehicle storage area. The additions would likely require an additional heater. Currently the building is heated by an oil fired boiler with an output of approximately 120 MBH. Domestic hot water is provided by an electric hot water heater. The preferred method of waste heat use in this building is to provide a plate heat exchanger on the boiler system. The annualized fuel costs are 2,544 gallons based on delivery records. WTHTCB/RCD/2-12-91 5-19 Cold Bay Fish and Wildlife Office Building Fish and Wildlife Mechanical Room Frank Moolin & Associates, Inc. Cold Bay: F&W OFFICE HEATING FUEL CONSUMPTION DATA DAILY HEATING AVERAGE CONSUMPTION DEGREE MONTHLY Gal DAYS CONSUMPTION FUEL NUMBER (Gal) OF DAYS 7.74 4.97 5.65 17.77 5.74 2.57 16.90 4.77 9.13 4.35 11.32 9.18) 8.94 8.00 6.74 5.23 5.16) 3.65 5.73 10.16 7.70 5.94) TOTAL FUEL ANNUALIZED DELIVERED AVERAGE CONSUMPTION Po OAT] E25 2/7/91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.5.2 Bunkhouse and Housing One (1) wood frame single story bunkhouse of approximately 1600 square feet and four (4) frame housing units of approximately 2100 square feet each including basements and single garages. They are located approximately 1200-1600 feet (1350-1750 feet piping run) from the power plant. Heating in each building is provided by an oil fired hot air furnace with an approximate output of 110 MBH in the bunkhouse and 95 MBH in the houses. The furnaces in the houses are located in the basements. Hot water in each is provided by an electric hot water heater. The preferred method of waste heat use in each building is a single coil in the return air duct above the furnace. The annualized fuel costs for the five structures is 5,149 gallons based on fuel delivery records. WTHTCB/RCD/2-12-91 5-22 Frank Moolin & Associates, Inc. Cold Bay: F&W BUNKHOUSE HEATING FUEL CONSUMPTION DATA FUEL NUMBER DAILY HEATING AVERAGE (Gal) OF DAYS CONSUMPTION DEGREE MONTHLY Gal DAYS CONSUMPTION TOTAL FUEL ANNUALIZED DELIVERED AVERAGE CONSUMPTION a 7 <x) 2/7/91 Cold Bay Fish and Wildlife Housing Units Fish and Wildlife Furnace Frank Moolin & Associates, Inc. Cold Bay: F&W HOUSING (4 UNITS) HEATING FUEL CONSUMPTION DATA FUEL NUMBER (Gal) OF DAYS HEATING AVERAGE DEGREE MONTHLY DAYS CONSUMPTION DAILY CONSUMPTION Gal TOTAL FUEL ANNUALIZED DELIVERED AVERAGE CONSUMPTION ee Ee aaa ae Ae 2/7/91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.6 Other potential waste heat users 5.6.1 Post Office Recently constructed, well insulated 4000 square feet wood frame building with two oil fired hot air furnaces of 100 MBH each. It is located approximately 1290 feet south (1500 feet piping run) from the power plant. The preferred method of waste heat use is a single coil in the common furnace return air duct. WTHTCB/RCD/2-12-91 5-26 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.6.2 Pavlof Services (hotel/store/bar and restaurant) The entire Pavlof Services complex consists of single story, insulated wood frame structures of approximately 25,000 square feet total, about 920 feet SSE (1040 feet piping run) of the power plant. Monthly fuel consumption for the complex remains fairly constant at 1175 gallons per month total since the summer population increase provides increased room/building utilization and significantly increased hot water usage. The complex consists of an H shaped modular structure that houses the hotel/store/bar, the separate restaurant building, a 10,000 foot shop, a 16 unit bunkhouse of 2,300 square feet, and 4 modular homes. Each unit has oil fired forced hot air heat and oil fired domestic hot water heating. (Note the present electric domestic hot water heaters in the modular homes are being replaced by oil fired domestic hot water heaters.) The expense and complexity of supplying waste heat to the housing units and shop as well as their somewhat uncertain future use precludes giving them consideration for waste heat at this time. The buildings would require coils in return air ducts for waste heat recovery. WTHTCB/RCD/2-12-91 5-27 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.6.3 DOT/PF Fire Station Poorly insulated metal frame slab on grade two story building of approximately 5200 square feet. It consists of garage and administrative areas on the ground floor and an apartment on the second floor. It is located adjacent to the airport and approximately 1750 feet from the power plant. Because of the distance, the facility was not included in the present waste heat plan. Heat is provided by two oil fired boilers rated at 391 MBH output each. Domestic hot water is provided by a coil off of the boilers. The preferred method of waste heat use in this building is a plate heat exchanger on the common boiler return system. WTHTCB/RCD/2-12-91 5-28 Frank Moolin & Associates, Inc. Cold Bay: FIRE STATION HEATING FUEL CONSUMPTION DATA FUEL NUMBER DAILY HEATING AVERAGE (Gal) OF DAYS CONSUMPTION DEGREE MONTHLY Gal DAYS CONSUMPTION TOTAL FUEL ANNUALIZED DELIVERED AVERAGE CONSUMPTION [| 29,534 731 40.40 2/7/91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.6.4 Reeve Airline terminal and hangar Two insulated steel Quonset hut type buildings 50’ x 50’ Terminal and 50’ x 100’ Hanger approximately 1920 feet south (2460 feet piping run) from the power house. Waste heat recovery would require mounting a single coil in the return air ducts of each of two furnaces in the terminal and one unit heater in the shop/hanger. WTHTCB/RCD/2-12-91 5-30 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.6.5 Medical Clinic Well insulated frame slab on grade building of approximately 3050 square feet. It is located approximately 1750 feet SSW from the power plant (2290 foot piping run). This facility was not considered because of the distance. Heat is provided by an oil-fired counterflow furnace rated at 85 MBH output. Domestic hot water is provided by an oil-fired hot water heater with an output of approximately 83 MBH. The preferred method of waste heat use in this building is a single coil in the return air duct above the furnace. WTHTCB/RCD/2-12-91 5-31 Frank Moolin & Associates, Inc. Cold Bay: CLINIC HEATING FUEL CONSUMPTION DATA FUEL NUMBER DAILY HEATING AVERAGE (Gal) OF DAYS CONSUMPTION DEGREE MONTHLY Gal DAYS CONSUMPTION TOTAL FUEL ANNUALIZED DELIVERED AVERAGE CONSUMPTION a 2879] 34a 8.37 Only the furel records for the 344 days shown were reliable enough to use. 2/7/91 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.6.6 Flight Service Building Marginally insulated two story wood frame building of approximately 5080 square feet located approximately 1710 feet SSW of the power plant (2270 feet piping run). It is heated by a single oil fired boiler with approximately 233 MBH output with a coil for generating domestic hot water. The preferred method of waste heat use in this building is to provide a plate heat exchanger on the boiler system. This facility was not considered for waste heat recovery because of the distance. WTHTCB/RCD/2-12-91 5-33 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 5.6.7 Pump House/Water Plant Insulated steel panel building of approximately 890 square feet located approximately 800 feet south of the power plant (2200 feet piping run). Heat is provide by multiple oil fired unit heaters, and averages 250 gallons of fuel per month. The preferred method of waste heat use in this building is a single horizontal unit heater, independent of the existing systems. This facility was not considered for waste heat recovery because of the distance. WTHTCB/RCD/2-12-91 5-34 6.0 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 RIGHT OF WAY/EASEMENT There are apparently no right of way problems with running waste heat piping to the proposed buildings. Virtually all of the land is owned by the State of Alaska and leased to the other users. The exceptions to this are the U.S. Fish and Wildlife property and several small private holdings. Proposed routing for the heat pipes will be along the existing road systems for the most part. The new powerlines were buried along the road system when they were installed several years ago. Running the heat lines along the same routes would take advantage of existing informal easements and current knowledge of existing buried utility locations. The powerlines were reported to be buried to a depth of three feet or less. The waste heat liens should be buried parrallel to and deeper than the power lines to get below the frost. The routings shown on the pipe routing plan deviate from the formal road boundaries shown as the existing roads do not follow them in many places, and the actual routing should follow the existing roads/power line easement. There are paved road surfaces at the F&W property. To prevent trenching across the pavement and not being able to cost effectively repair it, the heat pipes were routed behind the buildings. WTHTCB/RCD/2-12-91 6-1 10 fea COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 CONCEPT DESIGN System Narrative A large number of scenarios are possible for the distribution of the waste heat from the power plant. The resulting system will have to take political, economic and future outlook factors into account. Four scenarios have been developed as the most probable. The Pipe Routing Site Plan shows pipe routing to all of the buildings in the Scenarios #1 - #4, but only that piping which is required to service the buildings selected will actually be constructed. 7.1.1 Scenario #1: Served buildings include: FAA SHOP DOT/PF SHOP DOT/PF WARM STORAGE DOT/PF WARM SAND STORAGE This scenario is based on supplying the closest buildings to the power plant. This will reduce the cost by minimizing the required piping and provide for the fastest system payback. 7.1.2 Scenario #2: Served buildings include: FAA SHOP DOT/PF SHOP DOT/PF WARM STORAGE DOT/PF WARM SAND STORAGE CITY BUILDING U.S. FISH & WILDLIFE MAIN OFFICE/SHOP/STORAGE U.S. FISH & WILDLIFE BUNKHOUSE AND HOUSING (4 BUILDINGS) This scenario was developed around long’ range commitment considerations. The system schematic shows the city building and the Fish and Wildlife buildings on the system. Both the Fish and Wildlife complex and city building have a long range commitment to the city and capable of a long term payback is required. 7.1.3 Scenario #3: Served buildings include: FAA SHOP DOT/PF SHOP DOT/PF WARM STORAGE DOT/PF WARM SAND STORAGE COLD BAY SCHOOL This scenario simply shows the school added to the basic system. The school could be the primary target for the waste heat because of its proximity, long term commitment to the community and the volume of fuel consumed. WTHTCB/RCD/2-12-91 7-1 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 7.1.4 Scenario #4: Served buildings including all of those listed above. Scenario #4a: Same as #4 with pipe sizes increased to allow for future expansion to the south. 7.1.5 Scenario #5: Served buildings include all of those listed above plus: MEDICAL CLINIC DOT/PF FIRE STATION FAA FLIGHT SERVICE FAA WATER PLANT POST OFFICE REEVE ALEUTION COMPLEX (2 BUILDINGS) PAVLOF SERVICES COMPLEX (2 BUILDINGS) This scenario is presented here only to identify its potential for possible future expansion. There is currently not enough waste heat to serve scenario #5. This scenario is for the group of buildings that are located the farthest from the power plant. Running lines to these buildings will be the most costly, but if service to one of them is required, jt would be more economical to service as many of the others shown in the Site Plan as possible. Ta2 Primary and Secondary Piping Jacket water piping will be valved to recover heat from whichever 3512 gen-set is on line. The exisiting power plant heat exchanger will be utilized for expanded waste heat recovery. The in-plant cooling piping will not be altered and the existing waste heat recovery will not be changed. The power plant owner/operator is agreeable to increase waste heat recover subject to negotiated contracts. Unlike other heat exchangers, which will be flat plate type, the current existing installation includes one shell and tube heat exchanger to recover engine heat. The heat exchanger is a single - pass counterflow arrangement with temperature cross-over capability and more than adequate capacity to recover all of the waste heat currently generated. The flow is without any booster pump on the engine side of the system. Since the actual operating points of the engine-mounted pumps are not known it is assumed that the existing system is properly designed with some allowance for the low pressure drop heat exchanger. On the primary loop, a main circulation pump will be designed for the pressure drop of the furthest connected building. The pump’s design flow rate will be for the maximum heat required at a 20 degree temperature drop. An air separator will be added and the existing expansion tank and glycol make-up system will be upgraded. WTHTCB/RCD/2- 12-91 7-2 7.3 7.4 7.5 7.6 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 The piping to each of the connected buildings will be through arctic pipe buried underground to protect it from damage from passage of vehicles. Two separate arctic pipes are envisioned, one for supply to the building, and one for return to the power plant. See the attached Figures 5, 14, and 23 for the system schematics for scenarios #1, #2, and #3. Scenario #4 is simply a combination of Scenarios #2 and #3. A system schematic is not included for scenario #5. Balancing valves are used at the connection to existing piping for two reasons. The first is to allow balancing of the flow to the heat exchanger; the second is to provide a means of measuring the flow rate at that point in the piping. Building Piping All connections to the user’s buildings will be at a single heat exchange point either by using flat plate heat exchangers to connect to the boiler systems, by single unit heaters, or by return air coils where furnaces are existing. This will limit problems associated with damage of distribution piping and interconnection of systems and will enable the existing building heating system to function normally in the event of a failure of the waste heat system. One exception to this is the School, where a second heat exchanger will be used for domestic water. This will be of the double-wall type to provide additional separation between the distribution system and potable water. Precautions must be taken to prevent overcooling of the generator jacket water and to prevent building system boilers from heating the waste heat distribution system. The simplest method is to not connect more users than the system can normally provide heat for. Each of these issues can also be addressed with controls and valving. They can also be automated to some degree but the solutions must be carefully balanced with the need for system simplicity. Site Plan/Routing The routing will be as shown on Figure 2. Generator Room Plans/Schematics See the attached Figures 3 and 4 for the design concept for changes to the power plant. User Building Plan/Schematics See the attached Figures 6 through 13, 15 through 22, and 24 through 25 for proposed changes to each of the potential user buildings considered in scenarios #1, #2, #3, and #4. Building plans and schematics are not included for scenario #5 buildings. WTHTCB/RCD/2-12-91 7-3 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Tad Arctic Pipe/Utilidor Section A cross section of the anticipated trench and arctic pipe configuration is shown in Figure 26. 7.8 Outline Specifications The outline specifications for the major components of the system are shown below. 15010 15050 15120 15250 15750 Approximate sizes are shown following the specifications. GENERAL CONDITIONS The system shall be balanced by the Contractor to the flow specified in the construction documents. BASIC MATERIALS AND METHODS Valves: Valves for isolation use shall be gate type rated for 150 psig. Gaskets and materials shall be compatible with glycol and with hydrocarbons on engine primary circuits. Isolation valves on engine primary circuits may be butterfly type. Piping: Piping inside buildings shall be type ’L’ copper or steel schedule 40 with dielectric unions at connection points of dissimilar metals. Steel pipe will be welded. ARCTIC PIPE Arctic Pipe: Pressure pipe shall be schedule 40 steel. Insulation shall be foamed polyurethane with .25" maximum voids. Thickness of insulation to be minimum of 2 inches. Jacketing shall be steel or high density polyethylene. Arctic pipe system shall include kits or fittings for take-off connections to main line that provide water- tight seal. MECHANICAL INSULATION Piping insulation: Pipe insulation shall be fiberglass with an all- service jacket. Minimum insulation thickness shall be 1-1/2 inches. HEAT TRANSFER Heat Exchangers: Heat exchangers shall be plate and frame type with minimum 20 gage stainless steel plates, painted steel frame with head and end support, top carrying bar, bottom guiding bar, and ASME rating. Ports shall be international pipe thread or flanged. Capacity shall be as specified. Acceptable manufacturers are Bell & Gossett, APV, Tranter, and Alfa Laval. Double Wall Heat Exchangers: Potable water heat exchangers shall have two walls separating the fluids with a vented air space in WTHTCB/RCD/2-12-91 7-4 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 between They shall be ASME rated, tube within a tube type such as Bell & Gossett Diamondback or nested welded plate type such as Tranter Double Wall Design. Unit Heaters: Horizontal unit heaters shall have minimum .025" seamless copper coil tubes mechanically expanded into aluminum fins. Header connections brazed or welded. Casing shall provide rigid support for coil and be galvanized, painted and fitted with louver and venturi. Provide direct drive propellor fan with totally enclosed motor for ductless installations and centrifugal fan for ducted installations. Air Coils: Coils shall have minimum 5/8" seamless copper tubes mechanically expanded into aluminum fins. Header connections brazed or welded. Casing shall be double flanged minimum 16 gauge galvanized steel to provide rigid support for coil. Flanges for slip-and-drive fasteners on duct coils. Heat Transfer Medium It is unlikely that the operator(s) will agree to stocking and utilizing two types of Glycol there for Ethylene Glycol will probably be utilized. Propylene Glycol is non toxic but costs more, is higher viscosity, requires higher concentrations, and may cause inhibitors to break down at higher temperatures. 15900 CONTROLS & INSTRUMENTATION Controls will be electric with the exception of AMOT valves in the power plant, which are self-contained. Controls on the primary system in the power plant are existing. Flow of fluid in the secondary system is not automatically controlled. In buildings, unit heater fans are cycled by wall thermostats. With duct coils on furnaces, 2-stage wall thermostats first start the fan and secondly start the burner if necessary. 16000 ELECTRICAL All electric equipment and installation shall comply with the National Electric Code specified. WTHTCB/RCD/2-12-91 7-5 7.9 Major Equipment List 7.9.1 Scenario #1 Heating Elements Locations DOT/PF Sand Storage DOT/PF Warm Storage DOT/PF Shop FAA Shop Generator Plant Pumps Service Gen. Plant Secondary Buried Piping Size 1-172" 2" se WTHTCB/RCD/2-12-91 7-6 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Item TO 160 unit heater 160 ducted unit heater 160 ducted unit heater 160 heat exchanger existing shell & tube heat exchanger Capacity (Hot Side) MBH GPM sO 117 13 180 217 24 180 163 18 180 223 24 180 GPM HD HP 79 35’ 1.5 LF 140 920 820 QTY 2 Uae Heating Elements Pumps Buried Piping WTHTCB/RCD/2-12-91 Scenario #2 Locations DOT/PF Sand Storage DOT/PF Warm Storage DOT/PF Shop FAA Shop F & W Housing (typ 4) F & W Bunkhouse F & W Office City Building Generator Plant Service Gen. Plant Secondary Size 1" 1-1/4" 1-1/2" ae 3" 4" 7-7 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Item unit heater ducted unit heater ducted unit heater heat exchanger duct coil duct coil heat exchanger heat exchanger Capacity (Hot Side) MBH GPM so TO 117 13 180 §=160 (ay 24 180 160 163 18 180 160 223 24 180 160 30 3 180 160 24 3 180 §6160 71 8 180 160 64 7 180 160 existing shell & tube heat exchanger GPM HD HP QTY 109 SSS One LF 1000 1120 1140 2060 2340 340 Uc bes! Heating Elements Pumps Buried Piping WTHTCB/RCD/2-12-91 Scenario #3 Locations DOT/PF Sand Storage DOT/PF Warm Storage DOT/PF Shop FAA Shop School Boilers School Hot Water Htr. Generator Plant Service Gen. Plant Secondary Size Reyer Q" 3" 4" 7-8 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Item unit heater ducted unit heater ducted unit heater heat exchanger heat exchanger dbl-wall ht. exch. Capacity (Hot Side) MBH GPM so TO 17 13 180 160 217 24 180 160 163 18 180 160 223 24 180 §=160 139 15 180 160 70 8 180 160 existing shell & tube heat exchanger GPM HD HP QTY 102 507 7250! ieee LF 140 3060 720 100 79.4 Heating Elements Pumps Buried Piping WTHTCB/RCD/2-12-91 Scenario #4 Locations DOT/PF Sand Storage DOT/PF Warm Storage DOT/PF Shop FAA Shop F & W Housing (4) F & W Bunkhouse F & W Ofice City Building School Boilers School Hot Water Htr. Generator Plant Service Gen. Plant Secondary Size 1" 1-1/4" 1-1/2" os 3" 4" 7-9 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Item unit heater ducted unit heater ducted unit heater heat exchanger duct coil duct coil heat exchanger heat exchange heat exchanger dbl-wall ht. exch. Capacity (Hot Side) MBH GPM siTI TO 117 13 180 160 217 24 180 160 163 18 180 160 223 24 180 160 30 3 180 =160 24 3 180 §=160 71 8 180 160 64 7 180 =160 139 15 180 160 70 8 180 160 existing shell & tube heat exchanger GPM HD HP QTY 132 §3¢ 2 3.0.2 LF 1000 1129 1140 4200 2340 340 T3939 Heating Elements Pumps Buried Piping WTHTCB/RCD/2-12-91 Scenario #4a Locations DOT/PF Sand Storage DOT/PF Warm Storage DOT/PF Shop FAA Shop F & W Housing (4) F & W Bunkhouse F & W Ofice City Building School Boilers School Hot Water Htr. Generator Plant Service Gen. Plant Secondary Size ie 1-1/4" 1-1/2" as ge qe 5" 7-10 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN FEBRUARY 12, 1991 Item unit heater ducted unit heater ducted unit heater heat exchanger duct coil duct coil heat exchanger heat exchanger heat exchanger dbl-wall ht. exch. Capacity (Hot Side) MBH GPM so TO 117 13 180 160 217 24 180 160 163 18 180 160 223 24 180 160 30 3 180 160 24 3 180 160 71 8 180 160 64 7 180 160 139 15 180 160 70 8 180 160 existing shell & tube heat exchanger GPM HD HP QTY 132 55) -3..0' 52 LF 1000 1120 1140 2660 2340 240 1640 BALANCE/ISOLATION VALVE ISOLATION VALVE NC=NORMALLY CLOSED (ALL OTHERS NORMALLY OPEN) 2-WAY CONTROL VALVE 3—-WAY CONTROL VALVE 6X X oS SF AMOT 3—WAY VALVE CHECK VALVE STRAINER CIRCULATING PUMP FLOW METER THERMOMETER TEMPERATURE SWITCH AIR SEPERATOR WITH AUTO AIR VENT FLOW ARROW PIPE DOWN PIPE UP NEW RETURN LINE NEW SUPPLY LINE EXISTING RETURN LINE EXISTING SUPPLY LINE NEW EQUIPMENT EXISTING EQUIPMENT PRIMARY (GENERATOR) PIPING SECONDARY (DISTRIBUTION) PIPING BUILDING PIPING “©0470 &® NON ELECTRIC VALVE NON ELECTRIC TEMPERATURE SENSOR Frank Moolin & Osn. By ee . oare:_ 2/13/91 y_)) Associates, Inc. LEGEND blue epee rae JOB_NO. ENGINEERING @ DESIGN @ PROJECT MANAGEMENT An Ebasco Services Incorporated Engineering ond Construction Company CHK, BY. Eesoy 0 495LEGND.0WG 7-11 FIGURE 1 COMMON DISTRIBUTION PIPE SIZES SYSTEM SITE PLAN COLD BAY, AK 7-12 FIGURE 2 Frank Moolin & Associates, Inc . ENGINEERING © DESIGN e PROJECT MANAGEMENT ( Boewee Surtees neopereted Ongrearng and Coretrwstier Onrwory MAA TF acci Associates, Inc. ENGINEERING @ DESIGN @ PROJECT MANAGEMENT Ar Qrasee Sertoss Incorporeted Engineering ond Construction Campary BURY NEW WASTE HEAT RECOVERY ee TO USER'S HEAT EXCHANGER WASTE HEAT RECDVER DLB Sh. EXPANSION TANK po -bos0 WITH PRES. CAP PLANT HEAT No GEN SET CODLANT RADIATOR: 24'-6" POWER PLANT FLOOR PLAN COLD BAY, AK 7-13 FIGURE 3 Se ESL ore == ate _J y ie EXPANSION TANK & GLYCOL EXISTIN MAKE-UP STATION HEAT D> DQ DQ DY ba Frank Moolin & POWER PLANT Associates, Inc. PIPING SCHEMATIC ais Rid Keipeeeayng aNEOR BUeEN COLD BAY, AK 7-14 FIGURE 4 RADIATOR RADIATOR RADIATOR rz) HR 7 y looryer warwl | 4 power PLANT | | | | | | Sel oct fot teked elele tat * SEE SITE PLAN Frank Moolin & SCENARIO #1 Associates, Inc. SYSTEM SCHEMATIC otter teteothevpesed tagioany oo emecant mags COLD BAY, AK BOILER—————__ PROPOSED SPACE FOR FUTURE EQUIPMENT——+ scace: NONE bb Frank Moolin & FAA SHOP ore. 2/13/91 Associates, Inc. FLOOR PLAN ENGINEERING @ DESIGN @ PROJECT MANAGEMENT 0 An Ebasco Services Incorporated Engineering ond Construction Company COLD BAY, AK REVISION o 495300SS.OWG 7-16 FIGURE 6 TO / FROM ARCTIC PIPE HEATING RETURN —> — a Ww Oo yA <x = oO x< Ww - < Ww 9 HEATING BOILER SUPPLY ¢ —— 4baA Frank Moolin & FAA SHOP Associates, Inc. SYSTEM SCHEMATIC I acta Seas open Oona ex aeaee oe COLD BAY, AK CEILING Zz MOUNTED HEATER —_] ~= PROPOSED UNIT HEATER WITH S/A DUCT. FLOOR MOUNTED HEATER 44 Frank Moolin & AK DOT/PF SHOP care 2/13/91 Associates, Inc. FLOOR PLAN woa no. 495 ENGINEERING @ DESIGN e PROJECT MANAGEMENT An Ebasco Services Incorporated Engineering ond Construction Company Cc Oo LD B A Y ‘ A K REVISION 0 7-18 FIGURE 8 NEW SUPPLY AIR DUCT TO / FROM ARCTIC PIPE NEW UNIT HEATER hba Frank Moolin & AK DOT/PF SHOP Associates, Inc. SYSTEM SCHEMATIC Sa as ences koopa Ogaceng aur nies aso COLD BAY, AK 7-19 FIGURE 9 HEATERS PROPOSED UNIT HEATER WITH S/A DUCT SCALE: NONE oare: 2/13/91 4b Frank Moolin & AK DOT/PF WARM STORAGE Associates, Inc. FLOOR PLAN LP Tog yo, 495 ENGINEERING DESIGN PROJECT MANAGEMENT An Eboace Services ieee ee end Construction Company co LD B A Mv, AK REVISION: 495300WS.OWG FIGURE“10 NEW SUPPLY AIR DUCT TO / FROM ARCTIC PIPE NEW UNIT HEATER 4ba Frank Moolin & DOT/PF WARM STORAGE Associates, Inc. SYSTEM SCHEMATIC ENGINEERING @ DESIGN @ PROJECT MANAGEMENT 7-21 FIGURE 11 PROPOSED 4 UNIT HEATER 275 GAL. DAY TANK 2000 GAL. FUEL “| WASTE OIL FURNACE 44. Frank Moolin & JDOT/PF WARM SAND STORAGE)» Tf. a713/0: Associates, Inc. FLOOR PLAN pwo. av WIHT og wo, 495 | ENGINEERING e DESIGN @ PROJECT MANAGEMENT % An Ebasco Services incorporated Engineering ond Construction Company COLD B AY, AK CHK. BY REVISION 9 495300SD.D0WG 7-22 FIGURE 12 Ta / FROM ARCTIC PIPE NEW UNIT HEATER ba Frank Moolin & | DOT/PF WARM SAND STORAGE Associates, Inc. SYSTEM SCHEMATIC amore ale Ricameshecncinarsil COLD BAY, AK 7-23 FIGURE 13 lus. ron WILDLIFE = HOUSE #4 ln FISH & t=. 7 WILDLIFE oe HOUSE #3 Tey ee lus. rish a wuoure) Ld a us. risu & | | MAIN OFFICE 4 Vv WILDLIFE HOUSE # | - FISH & ——7 | -1/2" WILDLIFE = ——— = | House #1 “| {__ US. FISH & | ———— = Vv WILDLIFE BUNK wouse| ae a — * SEE SITE PLAN Frank Moolin & SCENARIO #2 Associates, Inc. SYSTEM SCHEMATIC jae tepelanbaghody ach nena COLD BAY, AK ye BOILER T-PROPOSED SPACE FOR FUTURE EQUIPMENT 4b Frank Moolin & CITY BUILDING 13/91 Associates, Inc. FLOOR PLAN WHT jog no: 495 ENGINEERING e@ DESIGN e PROJECT MANAGEMENT sn EboncaSardces ncorperted Engineering ond Construction Comoany COLD BAY, AK ——|sewsiow 495300CY.OWG 7-25 FIGURE 15 TO / FROM ARCTIC PIPE HEATING RETURN 2 —(}--- a WwW uo Zz <x as oO x< W K <x WwW = HEATING a alee BOILER hha Frank Moolin & CITY BUILDING Associates, Inc. SYSTEM SCHEMATIC Fang Rca he as arn oll COLD BAY, AK BOILER — HWH O O 1 ae PROPOSED SPACE FOR 1 FUTURE EQUIPMENT SHOP Pama nine VEHICLE STORAGE Ks scace: NONE AA Frank Moolin & US F & W MAIN OFFICE oare:_2/13/91 Associates, Inc. FLOOR PLAN Rw, 495 Bates ae A bast . Soe eae COLD BAY AK : REVISION: ° rnc 2 , 7-27 FIGURE 17 TO / FROM ARCTIC PIPE HEATING RETURN = —- an HEATING SUPPLY 4A Frank Moolin & Associates, Inc. ENGINEERING @ DESIGN © PROJECT MANAGEMENT Ae Breese Serdem: mocrperuted (ngiearhg ond Construction Compary BOILER U.S. F. & W. MAIN OFFICE SYSTEM SCHEMATIC COLD BAY, AK a W Oo Zz <x ae Oo x< WwW ~ x Ww a bb Frank Moolin & Associates, Inc. ENGINEERING @ DESIGN e PROJECT MANAGEMENT ‘An Ebasco Services incorporated Engineering and Construction Company PROPOSED HEATING COIL IN FURNACE RETURN AIR DUCT U.S. F. &W. BUNKHOUSE FLOOR PLAN COLD BAY, AK 7-29 FIGURE 19 SCALE: NONE bare. 2/13/91 JOB_NO.: 495 REVISION: oO 4953008K.DWG NEW COIL IN HOT- AIR FURNACE RETURN AIR DUCT SUPPLY AIR HOT AIR FURNACE TO / FROM ARCTIC PIPE sha Frank Moolin & Associates, Inc. ENGINEERING @ DESIGN e PROJECT MANAGEMENT ‘An Bheuse Serdoes noorporuted inginsering and Construction Compory U.S. F. & W. BUNKHOUSE SYSTEM COLD 7-39 FIGURE 20 SCHEMATIC BAY, AK BURNER NOTES: 1) FIRST FLOOR PLAN SHOWN — UNITS HAVE FULL BASEMENTS 2) + CHIMNEY SHOWN. FURNACE IS IN BASEMENT. 3) TYPICAL OF FOUR (4) UNITS. PROPOSED HEATING COIL IN FURNACE RETURN AIR DUCT IN BASEMENT er a Ge ate PIPING IN BASEMENT SCALE: NONE tA Frank Moolin & U.S. F. & W. HOUSING (TYP.) pare: 2/13/91 Associates, Inc. FLOOR PLAN ay BWP 09 no. 495 | ENGINEERING @ DESIGN # PROJECT MANAGEMENT da tacts nacparks ay cs eas ica ee) COLD BAY, AK REVSION: __O 495300RS.DWG 7-31 FIGURE 21 SUPPLY AIR NEW COIL IN HOT- AIR FURNACE RETURN AIR DUCT HOT AIR FURNACE BURNER NV TO / FROM ARCTIC PIPE ba Frank Moolin & U.S. F. & W. HOUSING Associates, Inc. SYSTEM SCHEMATIC Sr eer piathgg sa SRS UE COLD BAY, AK Ne - Les | pis" FI Le* Fy | - 7 COLD BAY SCHOOL od * SEE SITE PLAN ba Frank Moolin & SCENARIO #3 lem 2nare | Associates, Inc. SYSTEM SCHEMATIC ow sen: 406] Denman c Cemen eon wenn COLD BAY, AK Jeena 0 | ‘An Ehanee Seroes nooporeted Engveering ond Construction Compory 7-33 PROPOSED SPACE FOR oT FUTURE EQUIPMENT Tn ST ee ce CI OFFICE HOME EC | ASESSESSEneEE 44 Frank Moolin & SCHOOL van Associates, Inc. FLOOR PLAN owe, ay RWP_ ENGINEERING @ DESIGN @ PROJECT MANAGEMENT An Ebesca Serdcen incorporated Engineering ond Construction Compony COLD BA Y, AK CHK. BY__ 1495300SC.OWC 7-34 FIGURE 24 DOMESTIC HOT WATER HEATER TO / FROM ARCTIC PIPE DOUBLE-WALL HEAT EXCHANGER HEATING RETURN > > —t- HEATING SUPPLY fsba Frank Moolin & Associates, Inc. ENGINEERING @ DESIGN @ PROJECT MANAGEMENT Ae Qasce Sertows neorporuted ingieering ond Constructor Compory a Ww o = <= as oO x< W - <x WwW = BOILER — BOILER SCHOOL SYSTEM SCHEMATIC COLD BAY, AK 7-35 FIGURE 25 EXISTING GRADE BACKFILL WITH EXCAVATED NOMINAL 3° MATERIAL — COMPACT AS . AS SPECIFIED OURING SPECIFIED SYSTEM FINAL DESIGN WASTE HEAT SUPPLY AND RETURN PIPES — ARCTIC PIPING (SIZES VARY AS SPECIFIED) BEDDING MATERIAL — EXCAVATED MATERIAL WITH 1" TOP SIZE = KNX ore: 2/13/91 4A Frank Moolin & - OSN. BY Associates, Inc. TYPICAL TRENCH SECTION Owe. ey WHY jog no: 495 ENGINEERING DESIGN © PROJECT MANAGEMENT cee ay REVISION: An Ebasco Services incorporated Engineering and Construction Company 49STRNCH.OWG 7-36 FIGURE 26 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN March 4, 1991 8.0 ECONOMIC DATA Economic Data in Appendix 2. WTHTCB/RCD/ 10-24-90 8-1 9.0 9.1 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN March 4, 1991 FAILURE ANALYSIS Cold Bay is at least a full day away from resupply of parts out of Anchorage, and the delay might be several days longer if weather is bad. Although the heat recovery systems are relatively simple and straight forward mechanically, the ‘system will require some Maintenance and a knowledgeable person to trouble shoot the system. Lack of attention may render the system inoperative. It is also possible for inexperienced people to alter the system configuration by opening and closing valves or turning off pumps. Therefore, access to the system valves and controls must be limited to knowledgeable and responsible people. The control valves must work to maintain system temperatures and the proper functioning of these valves must be checked periodically. Reports on soil conditions indicate that buried pipes should not be damaged by soil heaving or settlement if the pipes are buried correctly. The system is susceptible to mechanical damage from being hit by equipment and machinery that is used for excavation. Subsurface leaks or spills have a significant potential for soil contamination. Because of the cold temperatures, the waste heat recovery system must be filled and maintained with 30% glycol. Water without glycol must not be introduced into the system. All waste heat recovery recipients must keep their respective building heating systems on line and in proper’ functioning condition to heat the building in case the waste heat recovery system fails or if the power plant is not rejecting enough heat to its cooling system. Subsurface Pipe Rupture 9.1.1 Worst Case - Pipe fails underground from subsidence, earthquake, corrosion, fatigue, or material fault. Glycol/water mixture seeps unnoticed into the formation or under the snow. Fluid loss continues until the pump loses suction. This problem could go unnoticed until: 1 A power plant operator notices the inlet and outlet temperatures on the primary side of the waste heat recovery heat exchanger are nearly identical or, as A waste heat user determines that his building is too cold or his buildings heating system is running and that the waste heat recovery system is inoperative or, WTHTCB/RCD/10-24-90 9-1 9.2 951.2 9.1.3 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN March 4, 1991 3. Some operator or maintenance person notices the secondary temperature indicating devices are not registering proper temperatures or he notices the circulating pump(s) are running dry or, 4. Someone notices glycol/water surfacing somewhere. LY A low pressure alarm is indicated. A further complication could arise if other controls failed concurrently. If the secondary system lost fluid and then the control valve failed to by-pass water to the generator radiators, then the engines would trip off on high temperature, producing a village black-out. A further problem could arise if the engine high temperature shut downs failed and the engine ran until over temperature failure. Repair The ruptured pipe section must be located and either repaired, replaced or by-passed. Unless the glycol surfaces, the location of the rupture may be difficult to find. Excavation will almost always be required and this may involve steam thawing the soil in winter. The alternative of by-passing the failed section with temporary surface waste heat piping may be necessary. An inventory of arctic pipe may be stocked at the Alaska Energy Authority Facility in Anchorage. If pipe supplies must be flown out of Anchorage, the delay could be as follows: Locating the leak, mobilizing excavating equipment, excavating leak site 2-3 days, locating pipe, ordering pipe, arranging payment and shipping 1 day, shipping 2 days, and installation of new pipe or by-pass 2-days. Total 6-7 days downtime at best. The generators could function uninterrupted. Freezing/Earthquake Damage/Differential Settlement - Care must be taken to minimize potential piping damage due to differential earth movement. The sub-surface piping must be properly bedded and allowances made for known transition zones. Above Ground Pipe Failure Leaking pipe or connection located, isolated, repaired, clean-up, 2-10 hours downtime. WTHTCB/RCD/ 10-24-90 9-2 923 9.4 9:5 9.6 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN March 4, 1991 Clean-up Of Spilled Glycol Glycol clean up from facilities may be relatively easy but glycol is a health hazard and care must be taken to ensure that no one ingest the glycol mix. Glycol that spills on the ground or subsurface must be cleaned up before it enters the ground water or surface run off. The glycol must not contaminate wells, streams, lakes or salt water. Vibration, Thermal, And Corrosion Damage To Piping 9.4.1 Vibration Insulation Devices - Must protect piping from vibration transmission particularly adjacent to vibration exciters like the diesel engines. Inadequate vibration isolation will produce cracked, broken, and leaking piping and gaskets. 9.4.2 Thermal Expansion - Joints must be installed to allow for pipe growth from thermal expansion. Inadequate provision for thermal growth will stress the system and result in strain on piping, pumps, and the heat exchangers. 9.4.3 Corrosion - Contaminates in the system or soils can accelerate the Corrosion of the piping. Additional corrosion inhibitors may be required. Care must be utilized to avoid dissimilar piping materials that could accelerate the Corrosion process. Particular attention must be paid to areas around welds and whenever there is a pressure drop in the system. Primary Heat Exchanger Failure Glycol leaks from heat exchanger - Operator finds leak, valves off heat exchanger and the gen-sets utilize radiators for cooling. Operators order new exchanger. If the exchanger is an "off the shelf" item, a new one could be on site in a week or 10 days. If not, it could take 10 weeks or more. Should this leak go unnoticed, gen-sets will shut down on low pressure or high temperature. The leaking area can be valved off immediately but the system must be recharged and air bled out before restarting the gensets. Downtime of gensets 2-3 hours. This potential problem currently exists and will not be exacerbated by adding additional waste heat recovery. Secondary Heat Exchanger Failure Leaking or plugged secondary heat exchanger is identified, valved off, and by-passed. A replacement is ordered and the building is heated by the buildings heating plant. Down time 5 days to 6 weeks. WTHTCB/RCD/10-24-90 9-3 9.7 9.8 9.9 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN March 4, 1991 Heat Exchanger Failure Modes 9.7.1 Mechanical Damage - Heat exchangers can be made to leak if damaged by dropping or by impacting them with power equipment, cranes, pipes, etc. Proper care must be exercised to limit exposure to mechanical damage. 9.7.2 Chemical Damage - The water/glycol fluid must be monitored to prohibit developing a corrosive’ mixture. Also particular attention must be paid to piping gaskets and valve seat material to ensure that the materials are compatible with glycol. Dissimilar metals are to be avoided or insulated from each other. Water quality must be maintained to prevent scaling. Pump Failures The pumps are subject to thermally induced casing stress, seal failure, over-heating, voltage fluctuations, and frequency droop. The pump alignment must be checked with the piping at operative temperature. The air circulation/cooling around the pumps must not be impaired. The pump must be protected by circuit breakers from low voltage, frequency droop, and overload. The pumps must be in parallel pairs and capable of individual isolation for replacement. The coolant in the system must not contain contaminants that will destroy the seals. Recharging the system must be done with contaminate free water and glycol. When a pump fails from any one of a variety of causes, the stand-by pump is activated and the failed pump valved off and repaired/replaced. System down time 0-12 hours. Replacement pump replaced 2 hrs. to 1 week. Control Failures Controls must be protected from power fluctuations and mechanical damage. Unauthorized persons must be precluded from adjusting control set points. Authorized persons must be familiar with the system and the inter-relationships of the components. In some cases it is possible for the waste heat customers to over- cool the waste heat recovery secondary piping and thermally shock the heat exchanger. It is also possible to have the waste heat customers actually heating the secondary loop coolant and then heating the generator coolant. These potential problems can be avoided by properly operating controls. Controls must be maintained and protected from corrosion and/or scaling. WTHTCB/RCD/10-24-90 9-4 COLD BAY WASTE HEAT RECOVERY REPORT AND CONCEPT DESIGN March 4, 1991 10.0 CONCLUSION AND RECOMMENDATIONS The final economics will be completed by the Alaska Energy Authority so a definitive conclusion is not made at this time concerning the feasibility of a waste heat installation at Cold Bay. Some conclusions that can be made are that the project is technically feasible, that the people and agencies in the community seem quite enthusiastic about the project, and that if the economics prove acceptable, a waste heat system for the community can be recommended. To make this project more economically attractive on option would be to include this project with the construction of other waste heat systems in neighboring communities. This would help to reduce the mobilization charges.. Shipping, travel and other supervision and management costs could also be combined and pro- rated for lower cost to each village. Economics are not the only yardstick by which this project should be measured. The political and social problems involved in our nations oi] supply should motivate us to actively seek out ways like this to reduce our oi] consumption. Environmental costs are also present with the consumption of any fossil fuel, granted they are small but present. The communities enthusiasm to participate is an important factor in the final decision to go with the project or delay until the economic situation changes to a more favorable one. WTHTCB/RCD/10-24-90 10-1 COLD BAY WASTE HEAT RECOVERY - GRAPH 1 HEAT AVAILABLE VS. HEAT REQUIRED BY MONTH HEATING FUEL EQUIV. (GAL.) MONTH OF THE YEAR HB AVAILABLE COHEATREQD- @HEATREQD- © HEATREQD- #& HEAT REQD- SCENARIO #1 SCENARIO #2 SCENARIO #3 SCENARIO #4 COLD BAY WASTE HEAT RECOVERY - GRAPH 2 HEATING FUEL DISPLACED HEATING FUEL EQUIV. (GAL.) May Jun. Jul. MONTH OF THE YEAR Mi SCENARIO #1 LI SCENARIO#2 @ SCENARIO#3 © SCENARIO «| APPENDIX 1 CALCULATIONS WASTE HEAT UTILIZATION SIMULATION WORK SHEET. BASIC PROJECT DATA: Location: Cold Bay - Scenario #1 CBAY_#1.XLS PROGRAM RESULTS: Date: May 1, 1990 Savings, year O, fuel gallons: Savings, year 0, fuel cost: Annual pumping elec. cost: 2600 $/year. Annual other O&M cost: 5000 $/year. Construction cost estimate: 199926 $ Fuel high heat value: 137500 Btu/gallon Fuel cost: 1.10 $/gallon GENERATOR DATA: SYSTEM LOSS DATA: Heat rate at kw-load above: 0 3017 Btu/kwh Constant losses: Heat rate at kw-load above: 85 2852 Btu/kwh Plant piping: 27000 Btu/hr. Heat rate at kw-load above: 170 2711 Btu/kwh Subsurface piping: 35000 Btuw/hr. Heat rate at kw-load above: 255 2593 Btu/kwh Engine preheating: 0 Btu/hr. Heat rate at kw-load above: 340 2498 Btu/kwh Total constant: 62000 Btu/hr. Heat rate at kw-load above: 425 2428 Btu/kwh Heat rate at kw-load above: 510 2381 Btu/kwh Variable losses: Heat rate at kw-load above: 595 2357 Btu/kwh Surface piping: 200 Btu/hr.xF Heat rate at kw-load above: 680 2357 Btu/kwh Plant heating: 1900 Btu/hr.xF Heat rate at kw-load above: 765 2357 Btu/kwh Radiator losses: 0 Btu/hr.xF Heat rate at kw-load above: 850 2357 Btu/kwh GENERATION DATA: WEATHER DATA: Kwh/month: HDD/Month: January 348,840 1126 February 292,080 1055 March 297,600 1098 April 288,600 952 May 279,000 782 June 249,120 578 July 241,440 448 August 277,080 416 September 275,280 517 October 285,840 779 November 307,320 907 December 312,600 1075 3454800 9733 BUILDING DATA: SAND WARM AK/DOT FAA Fuel use, gal/mon. STOR. STOR. SHOP SHOP Wa a Wa Wa Wa Wa TOTAL January 487 904 681 928 3001 February 456 847 638 870 2812 March 475 882 664 905 2926 April 412 765 576 785 2537 May 338 628 473 645 2084 June 250 464 350 477 1540 « July 194 360 271 369 1194 August 180 334 252 343 1109 September 224 415 313 426 1378 October 337 626 471 642 2076 November 392 729 549 748 2417 December 465 863 650 886 2865 4211 7818 5886 8024 0 0 0 0 0 0 25939 Hig. Efficiency: 0.75 0.75 0.75 0.75 0.75 POWER PRODUCTION VARIATION: Assumed hourly variation: CBAY_#1.XLS Hour: January February March April May June July August Sept. October November December 1 0.038 0.038 0.038 0.038 0.043 0.043 0.043 0.043 0.043 0.043 0.038 0.038 2 0.036 0.036 0.036 0.036 0.038 0.038 0.038 0.038 0.038 0.038 0.036 0.036 3 0.034 0.034 0.034 0.034 0.035 0.035 0.035 0.035 0.035 0.035 0.034 0.034 4 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 5 0.033 0.033 0.033 0.033 0.034 0.034 0.034 0.034 0.034 0.034 0.033 0.033 6 0.034 0.034 0.034 0.034 0.036 0.036 0.036 0.036 0.036 0.036 0.034 0.034 7 0.038 0.038 0.038 0.038 0.036 0.036 0.036 0.036 0.036 0.036 0.038 0.038 8 0.042 0.042 0.042 0.042 0.038 0.038 0.038 0.038 0.038 0.038 0.042 0.042 9 0.042 0.042 0.042 0.042 0.043 0.043 0.043 0.043 0.043 0.043 0.042 0.042 10 0.047 0.047 0.047 0.047 0.045 0.045 0.045 0.045 0.045 0.045 0.047 0.047 11 0.048 0.048 0.048 0.048 0.041 0.041 0.041 0.041 0.041° 0.041 0.048 0.048 12 0.047 0.047 0.047 0.047 0.046 0.046 0.046 0.046 0.046 0.046 0.047 0.047 13 0.045 0.045 0.045 0.045 0.048 0.048 0.048 0.048 0.048 0.048 0.045 0.045 14 0.047 0.047 0.047 0.047 0.050 0.050 0.050 0.050 0.050 0.050 0.047 0.047 15 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 16 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 17 0.049 0.049 0.049 0.049 0.043 0.043 0.043 0.043 0.043 0.043 0.049 0.049 18 0.046 0.046 0.046 0.046 0.045 0.045 0.045 0.045 0.045 0.045 0.046 0.046 19 0.043 0.043 0.043 0.043 0.048 0.048 0.048 0.048 0.048 0.048 0.043 0.043 20 0.040 0.040 0.040 0.040 0.043 0.043 0.043 0.043 0.043 0.043 0.040 0.040 21 0.040 0.040 0.040 0.040 0.039 0.039 0.039 0.039 0.039 0.039 0.040 0.040 22 0.041 0.041 0.041 0.041 0.039 0.039 0.039 0.039 0.039 0.039 0.041 0.041 23 0.040 0.040 0.040 0.040 0.039 0.039 0.039 0.039 0.039 0.039 0.040 0.040 24 0.040 0.040 0.040 0.040 0.041 0.041 0.041 0.041 0.041 0.041 0.040 0.040 1.000 1.000 1.000 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Days: 31 28 31 30 31 30 31 31 30 31 30 31 HDD: 1126 1055 1098 952 782 578 448 416 517 779 907 1075 9733 Kwh: 348840 292080 297600 288600 279000 249120 241440 277080 275280 285840 307320 312600 3454800 HEAT DEMAND VARIATION: Assumed hourly variation: Hour: Winter” Summer” 1 0.039 0.039 2 0.038 0.038 3 0.038 0.038 4 0.038 0.038 5 0.038 0.038 6 0.039 0.039 7 0.041 0.041 8 0.043 0.043 9 0.044 0.044 10 0.044 0.044 11 0.044 0.044 12 0.044 0.044 13 0.045 0.045 14 0.044 0.044 15 0.043 0.043 16 0.043 0.043 17 0.043 0.043 18 0.043 0.043 19 0.043 0.043 20 0.043 0.043 21 0.042 0.042 22 0.042 0.042 23 0.040 0.040 24 0.039 0.039 1.000 1.000 * Winter: Nov. - Apr. * Summer: May - Oct. Page 2 HEAT GENERATED PER HOUR BY MONTH, BTU'S Hour: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Day: 27253274 25600594 23818522 23868144 22480265 21034987 19915390 22389605 22919879 23031394 25225843 24891420 January 1038114 1012121 955892 955892 927778 955892 1038114 1147389 1147389 1259051 1285840 1259051 1229345 1259051 1285840 1285840 1312628 1232263 1174708 1092751 1092751 1120070 1092751 1092751 February 990359 938235 886111 886111 860049 886111 990359 1063628 1063628 1190251 1215575 1190251 1139602 1190251 1215575 1215575 1216805 1164926 1088953 1042484 1042484 1038304 1042484 1042484 March 911424 863454 846257 846257 821367 846257 911424 1007363 1007363 1095383 1118689 1095383 1048771 1095383 1118689 1118689 1141995 1072077 1031348 959393 959393 983378 959393 959393 April 913322 865253 848020 848020 823079 848020 913322 1009462 1009462 1097665 1121019 1097665 1050956 1097665 1121019 1121019 1144374 1074310 1033496 961392 961392 985427 * 961392 961392 May 966889 854460 816701 793366 793366 840035 840035 854460 966889 1011860 921917 1034346 1048771 1092470 1048771 1048771 966889 1011860 1048771 966889 876945 876945 876945 921917 CBAY_#1.XLS June 892116 818132 753542 732013 732013 775072 775072 818132 892116 933610 850622 954356 995850 1037344 995850 995850 892116 933610 995850 892116 839661 839661 839661 850622 July 868297 767332 706753 686560 686560 726946 726946 767332 868297 875640 827911 895098 934016 972933 934016 934016 868297 875640 934016 868297 787525 787525 787525 827911 August 960235 880601 811080 787906 787906 834254 834254 880601 960235 1004897 915573 1027228 1041553 1084951 1041553 1041553 960235 1004897 1041553 960235 870911 870911 870911 915573 Sept. 985797 871169 832672 808881 808881 856462 856462 871169 985797 1031648 939946 1054573 1069280 1113833 1069280 1069280 985797 1031648 1069280 985797 894095 894095 894095 939946 October November December 990593 875408 836723 812816 812816 860629 860629 875408 990593 1036667 944519 1059704 1074483 1119253 1074483 1074483 990593 1036667 1074483 990593 898445 898445 898445 944519 972565 921377 870190 870190 876467 870190 972565 1044517 1044517 1168865 1193734 1168865 1119126 1168865 1193734 1193734 1218604 1143995 1069387 1023753 1023753 1049346 1023753 1023753 957362 906975 856587 856587 862767 856587 957362 1058137 1058137 1150594 1175074 1150594 1101632 1150594 1175074 1175074 1199555 1126113 1052671 1007750 1007750 1032944 1007750 1007750 Month: 8.45E+08 7.17E+08 7.38E+08 7.16E+08 6.97E+08 6.31E+08 6.17E+08 6.94E+08 6.88E+08 7.14E+08 7.57E+08 7.72E+08 8.59E+09 Equivalent Gallons: 8192 6951 7160 6943 6758 HEAT LOST FROM SYSTEM PER HOUR BY MONTH, BTU'S Hour: ONOADkWNH = B®SSaisarsnrso 23 24 January 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 159277 February 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 162125 March 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 157381 April 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 149640 May 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 135974 Day: 3822658 3891000 3777135 3591360 3263381 Month: 1.19E+08 1.09E+08 1.17E+08 1.08E+08 1.01E+08 88891200 84331200 82718400 85816800 1.01E+08 1.05E+08 1.16E+08 1.22E+09 Equivalent Gallons: 1149 1056 1135 1045 981 6119 June 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 123460 5987 July 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 113348 2963040 _ 2720361 862 818 Page 3 6730 August 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 111181 6668 Sept 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 119190 6923 7338 7483 October November December 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 155823 135771 146490 _ 155823 2668335 2860560 3258503 3515760 3739742 802 832 980 1023 1124 83253 11807 CBAY_#1.XLS HEAT DEMAND BY HOUR BY MONTH, BTU'S Hour: January February March April May June July August Sept. October November December 391321 405930 381590 341879 271770 207569 155694 144573 185663 270727 325719 373597 383335 397646 373803 334902 266224 203333 152517 141623 181874 265202 319071 365973 381338 395574 371856 333157 264837 202274 151723 140885 180927 263821 317409 364066 374351 388326 365042 327052 259984 198568 148942 138304 177611 258987 311593 357395 381338 395574 371856 333157 264837 202274 151723 140885 180927 263821 317409 364066 387328 401788 377696 338390 268997 205451 154106 143098 183769 267965 322395 369785 410288 425605 400086 358450 284943 217630 163241 151581 194662 283849 341506 391705 432250 448387 421501 377637 300195 229279 171979 159695 205082 299043 359786 412672 435245 451493 424422 380253 302275 230868 173170 160801 206503 301115 362279 415531 438240 454600 427342 382869 304355 232456 174362 161907 207924 303187 364772 418390 438240 454600 427342 382869 304355 232456 174362 161907. 207924 303187 364772 418390 441234 457707 430262 385486 306435 234045 175553 163014 209345 305259 367264 421250 445228 461849 434156 388974 309208 236163 177142 164489 211239 308022 370588 425062 435245 451493 424422 380253 302275 230868 173170 160801 206503 301115 362279 415531 429255 445280 418581 375020 298115 227691 170787 158588 203661 296971 357293 409813 432250 448387 421501 377637 300195 229279 171979 159695 205082 299043 359786 412672 426260 442174 415661 372404 296035 226102 169596 157482 202240 294900 354801 406954 432250 448387 421501 377637 300195 229279 171979 159695 205082 299043 359786 412672 432250 448387 421501 377637 300195 229279 171979 159695 205082 299043 359786 412672 429255 445280 418581 375020 298115 227691 170787 158588 203661 296971 357293 409813 419273 434925 408847 366299 291182 222396 166815 154900 198925 290065 348984 400282 416278 431818 405926 363682 289102 220807 165624 153794 197504 287993 346491 397423 400305 415250 390351 349728 278010 212335 159269 147893 189926 276943 333197 382174 24 391321 405930 381590 341879 271770 207569 155694 144573 185663 270727 325719 373597 Day: 9983679 10356388 9735417 8722271 6933603 5295665 3972192 3688464 4736780 6907003 8309979 9531487 Month: 3.09E+08 2.9F+08 3.02E+08 2.62E+08 2.15E+08 1.59E+08 1.23E+08 1.14E+08 1.42E+08 2.14E+08 2.49F+08 2.95E+08 2.68E+09 Equivalent Gallons: 3001 2812 2927 2537 2084 1541 1194 1109 1378 2076 2417 2865 25942 OnNOnRWON = BR@PBPssstgeraxzre N= COMONDAMShWNH$ COO HEAT DELIVERED BY HOUR BY MONTH, BTU'S Hour: January February March April May June July August Sept. October November December 1 391321 405930 381590 341879 271770 207569 155694 144573 185663 270727 325719 373597 2 383335 397646 373803 334902 266224 203333 152517 141623 181874 265202 319071 365973 3 381338 395574 371856 333157 264837 202274 151723 140885 180927 263821 317409 364066 4 374351 388326 365042 327052 259984 198568 148942 138304 177611 258987 311593 357395 5 381338 395574 371856 333157 264837 202274 151723 140885 180927 263821 317409 364066 6 387328 401788 377696 338390 268997 205451 154106 143098 183769 267965 322395 369785 7 410288 425605 400086 358450 284943 217630 163241 151581 194662 283849 341506 391705 8 432250 448387 421501 377637 300195 229279 171979 159695 205082 299043 359786 412672 9 435245 451493 424422 380253 302275 230868 173170 160801 206503 301115 362279 415531 10 438240 454600 427342 382869 304355 232456 174362 161907 207924 303187 364772 418390 11 438240 454600 427342 382869 304355 232456 174362 161907 207924 303187 364772 418390 12 441234 457707 430262 385486 306435 234045 175553 163014 209345 305259 367264 421250 13 445228 461849 434156 388974 309208 236163 177142 164489 211239 308022 370588 425062 14 435245 451493 424422 380253 302275 230868 173170 160801 206503 301115 362279 415531 15 429255 445280 418581 375020 208115 227691 170787 158588 203661 296971 357293 409813 16 432250 448387 421501 377637 300195 229279 171979 159695 205082 299043 359786 412672 17 426260 442174 415661 372404 296035 226102 169596 157482 202240 294900 354801 406954 18 432250 448387 421501 377637 300195 229279 171979 159695 205082 299043 359786 412672 19 432250 448387 421501 377637 300195 229279 171979 159695 205082 299043 359786 412672 20 429255 445280 418581 375020 298115 227691 170787 158588 203661 296971 357293 409813 21 419273 434925 408847 366299 291182 222396 166815 154900 198925 290065 348984 400282 22 416278 431818 405926 363682 289102 220807 165624 153794 197504 287993 346491 397423 23 400305 415250 390351 349728 278010 212335 159269 147893 189926 276943 333197 382174 24 391321 405930 381590 341879 271770 207569 155694 144573 185663 270727 325719 373597 9983679 10356388 9735417 8722271 6933603 5295665 3972192 3688464 4736780 6907003 8309979 9531487 Days: 31 28 31 30 31 30 31 31 30 31 30 31 3.09E+08 2.9F+08 3.02E+08 2.62E+08 2.15E+08 1.59E+08 1.23E+08 1.14£+08 1.42E+08 2.14E+08 2.49E+08 2.95E+08 2.68E+09 Equivalent Gallons: 3001 2812 2927 2537 2084 1541 1194 1109 1378 2076 2417 2865 25942 Page 4 WASTE HEAT UTILIZATION SIMULATION WORK SHEET. CBAY_#2.XLS BASIC PROJECT DATA: Location: Cold Bay - Scenario #2 Date: May 1, 1990 Savings, year O, fuel gallons: 35941 Savings, year 0, fuel cost: $39,535 Annual pumping elec. cost: 5700 $/year. Annual O&M increase cost: $13,700 Annual other O&M cost: 8000 $/year. Total Savings, year 0: Construction cost estimate: 777021 $ i Fuel high heat value: 137500 Btu/galion Fuel cost: 1.10 $/gallon GENERATOR DATA: SYSTEM LOSS DATA: Heat rate at kw-load above: 0 3017 Btu/kwh Constant losses: Heat rate at kw-load above: 85 2852 Btu/kwh Plant piping: 27000 Btu/hr. Heat rate at kw-load above: 170 2711 Btu/kwh Subsurface piping: 131000 Btu/hr. Heat rate at kw-load above: 255 2593 Btu/kwh Engine preheating: 0 Btu/nr. Heat rate at kw-load above: 340 2498 Btu/kwh Total constant: 158000 Btu/hr. Heat rate at kw-load above: 425 2428 Btu/kwh Heat rate at kw-load above: 510 2381 Btu/kwh Variable losses: Heat rate at kw-load above: 595 2357 Btu/kwh Surface piping: 200 Btu/hr.xF Heat rate at kw-load above: 680 2357 Btu/kwh Plant heating: 1900 Btu/hr.xF Heat rate at kw-load above: 765 2357 Btu/kwh Radiator losses: 0 Btu/hr.xF Heat rate at kw-load above: 850 2357 Btu/kwh GENERATION DATA: WEATHER DATA: Kwh/month: HDD/Month: January 348,840 1126 February 292,080 1055 March 297,600 1098 April 288,600 952 May 279,000 782 June 249,120 578 July 241,440 448 August 277,080 416 September 275,280 517 October 285,840 779 November 307,320 907 December 312,600 1075 3454800 9733 BUILDING DATA: SAND WARM AK/DOT FAA Faw Faw Faw CITY Fuel use, gal/mon. STOR. STOR. SHOP SHOPHOUSING BUNKH OFFICE BLDG wa January 487 904 681 928 496 99 204 267 February 456 847 638 870 465 93 276 250 March 475 882 664 905 484 97 287 260 April 412 765 576 785 420 84 249 225 May 338 628 473 645 345 69 204 185 June 250 464 350 477 255 51 151 137 July 194 360 271 369 198 39 117 106 August 180 334 252 343 183 37 109 99 September 224 415 313 426 228 46 135 122 October 337 626 471 642 343 69 204 184 November 392 729 549 748 400 80 237 215 December 465 863 650 886 474 95 281 255 4211 7818 5886 8024 4291 858 2544 2305 ° Htg. Efficiency: 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 Wa TOTAL 4158 3895 4054 3515 2887 2134 1654 1536 1909 2876 3349 3969 0 35937 0.75 POWER PRODUCTION VARIATION: Assumed hourly variation: Hour: January February March 1 0.038 0.038 0.038 2 0.036 0.036 0.036 3 0.034 0.034 0.034 4 0.034 0.034 0.034 5 0.033 0.033 0.033 6 0.034 0.034 0.034 ? 0.038 0.038 0.038 8 0.042 0.042 0.042 9 0.042 0.042 0.042 10 0.047 0.047 0.047 11 0.048 0.048 0.048 12 0.047 0.047 0.047 13 0.045 0.045 0.045 14 0.047 0.047 0.047 15 0.048 0.048 0.048 16 0.048 0.048 0.048 17 0.049 0.049 0.049 18 0.046 0.046 0.046 19 0.043 0.043 0.043 20 0.040 0.040 0.040 21 0.040 0.040 0.040 22 0.041 0.041 0.041 23 0.040 0.040 0.040 24 0.040 0.040 0.040 1.000 1,000 1.000 Days: 31 28 31 HDD: 1126 1055 1098 Kwh: 348840 292080 297600 HEAT DEMAND VARIATION: Assumed hourly variation: Hour: Winter” Summer” 1 0.039 0.039 2 0.038 0.038 3 0.038 0.038 4 0.038 0.038 5 0.038 0.038 6 0.039 0.039 Z 0.041 0.041 8 0.043 0.043 9 0.044 0.044 10 0.044 0.044 1 0.044 0.044 12 0.044 0.044 13 0.045 0.045 14 0.044 0.044 15 0.043 0.043 16 0.043 0.043 17 0.043 0.043 18 0.043 0.043 19 0.043 0.043 20 0.043 0.043 21 0.042 0.042 22 0.042 0.042 23 0.040 0.040 24 0.039 0.039 1,000 1,000 * Winter: Nov. - Apr. * Summer: May - Oct. April 0.038 0.036 0.034 0.034 0.033 0.034 0.038 0.042 0.042 0.047 0.048 0.047 0.045 0.047 0.048 0.048 0.049 0.046 0.043 0.040 0.040 0.041 0.040 0.040 1.000 30 952 May 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1.000 31 782 CBAY_#2.XLS June 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1.000 30 578 July 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1,000 31 448 288600 279000 249120 241440 August 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 31 416 277080 Sept. 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 517 275280 October November December 0.043 0.038 0.038 0.038 0.036 0.036 0.035 0.034 0.034 0.034 0.034 0.034 0.034 0.033 0.033 0.036 0.034 0.034 0.036 0.038 0.038 0.038 0.042 0.042 0.043 0.042 0.042 0.045 0.047 0.047 0.041 0.048 0.048 0.046 0.047 0.047 0.048 0.045 0.045 0.050 0.047 0.047 0.048 0.048 0.048 0.048 0.048 0.048 0.043 0.049 0.049 0.045 0.046 0.046 0.048 0.043 0.043 0.043 0.040 0.040 0.039 0.040 0.040 0.039 0.041 0.041 0.039 0.040 0.040 0.041 0.040 0.040 1.000 1.000 1.000 31 30 31 779 907 1075 9733 285840 307320 312600 3454800 HEAT GENERATED PER HOUR BY MONTH, BTU'S Hour: 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 AT 18 19 20 21 22 23 24 Day: 27253274 25600594 23818522 23868144 22480265 21034987 19915390 22389605 22919879 23031394 25225843 24891420 January 1038114 1012121 955892 955892 927778 955892 1038114 1147389 1147389 1259051 1285840 1259051 1229345 1259051 1285840 1285840 1312628 1232263 1174708 1092751 1092751 1120070 1092751 1092751 February 990359 938235 886111 886111 860049 886111 990359 1063628 1063628 1190251 1215575 1190251: 1139602 1190251 1215575 1215575 1216805 1164926 1088953 1042484 1042484 1038304 1042484 1042484 March 911424 863454 846257 846257 821367 846257 911424 1007363 1007363 1095383 1118689 1095383 1048771 1095383 1118689 1118689 1141995 1072077 1031348 959393 959393 983378 959393 959393 April 913322 865253 848020 848020 823079 848020 913322 1009462 1009462 1097665 1121019 1097665 1050956 1097665 1121019 1121019 1144374 1074310 1033496 961392 961392 985427 961392 961392 May 966889 854460 816701 793366 793366 840035 840035 854460 966889 1011860 921917 1034346 1048771 1092470 1048771 1048771 966889 1011860 1048771 966889 876945, 876945, 876945, 921917 CBAY_#2.XLS June 892116 818132 753542 732013 732013 775072 775072 818132 892116 933610 850622 892116 933610 995850 892116 839661 839661 839661 850622 July 868297 767332 706753 686560 686560 726946 726946 767332 868297 875640 827911 895098 934016 972933 934016 934016 868297 875640 934016 868297 787525 787525 787525 827911 August 960235 880601 811080 787906 787906 834254 834254 880601 960235 1004897 915573 1027228 1041553 1084951 1041553 1041553 960235 1004897 1041553 960235 870911 870911 870911 915573 Sept. 985797 871169 832672 808881 808881 856462 856462 871169 985797 1031648 939946 1054573 1069280 1113833 41069280 1069280 985797 1031648 1069280 985797 894095 894095 894095 939946 October November December 990593 875408 836723 812816 812816 860629 860629 875408 990593 1036667 944519 1059704 1074483 1119253 1074483 1074483 990593 1036667 1074483 990593 898445 898445 898445 944519 972565 921377 870190 870190 876467 870190 972565 1044517 1044517 1168865 1193734 1168865 1119126 1168865 1193734 1193734 1218604 1143995 1069387 1023753 1023753 1049346 1023753 1023753 957362 906975 856587 856587 862767 856587 957362 1058137 1058137 1150594 1175074 1150594 1101632 1150594 1175074 1175074 1199555 1126113 1052671 1007750 1007750 1032944 1007750 1007750 Month: 8.45E+08 7.17E+08 7.38E+08 7.16E+08 6.97E+08 6.31E+08 6.17E+08 6.94E+08 6.88E+08 7.14£+08 7.57E+08 7.72E+08 8.59E+09 Equivalent Gallons: 8192 6951 7160 6943 6758 HEAT LOST FROM SYSTEM PER HOUR BY MONTH, BTU'S Hour: 1 2 3 4 5 6 7 8 9 10 "1 12 13 14 15 16 17 18 19 20 21 22 23 24 January 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 255277 Day: 6126658 Month: Equivalent Gallons: 1.9E+08 1842 February 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 258125 6195000 1.73E+08 1682 March 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 253381 6081135 1.89E+08 1828 April 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 245640 5895360 1.77E+08 1715 May 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 231974 5567381 1.73E+08 1674 6119 June 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 219460 5267040 1.58E+08 1532 5987 July 209348 209348 209348 Page 3 6730 August 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 207181 4972335 1.54E+08 1495 6668 Sept. 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 215190 5164560 1.55E+08 1502 6923 7338 7483 October November December 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 = 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 231771 242490 251823 5562503 5819760 6043742 1.72E+08 1.75E+08 1.87E+08 1672 1693 1817 83253 2.06E+09 19962 CBAY_#2.XLS HEAT DEMAND BY HOUR BY MONTH, BTU'S Hour: January February March April May June July August Sept. October November December 542153 562393 528671 473654 376522 287575 215706 200298 257226 375077 451264 517597 531089 550915 517882 463987 368838 281706 211303 196210 251976 367423 442055 507034 528323 548046 515185 461571 366917 280239 210203 195188 250664 365509 439753 504393 518641 538003 505744 453112 360193 275104 206351 191612 246071 358811 431694 495150 528323 548046 515185 461571 366917 280239 210203 195188 250664 365509 439753 504393 536621 556654 523277 468820 372680 284641 213505 198254 254601 371250 446660 512316 568431 589651 554296 496611 394772 301514 226161 210006 269693 393257 473137 542685 598858 621214 583966 523194 415903 317653 238267 221248 284129 414307 498463 571734 603007 625518 588012 526819 418785 319854 239917 222781 286098 417178 501917 575695 607156 629822 592058 530444 421666 322055 241568 224313 288067 420048 505370 579656 607156 629822 592058 530444 421666 322055 241568 224313 288067 420048 505370 579656 611305 634126 596104 534069 424548 324256 243219 225846 290035 422919 508824 583617 616837 639865 601499 538902 428390 327190 245420 227890 292660 426746 513428 588899 603007 625518 588012 526819 418785 319854 239917 222781 286098 417178 501917 575695 594709 616910 579920 519569 413021 315453 236616 219715 282161 411437 495010 567772 598858 621214 583966 523194 415903 317653 238267 221248 284129 414307 498463 571734 590559 612606 575874 515944 410140 313252 234965 218182 280192 408566 491556 563811 598858 621214 583966 523194 415903 317653 238267 221248 284129 414307 498463 571734 598858 621214 583966 523194 415903 317653 238267 221248 284129 414307 498463 571734 594709 616910 579920 519569 413021 315453 236616 219715 282161 411437 495010 567772 580878 602563 566434 507486 403416 308116 231113 214605 275599 401869 483498 554568 576729 598259 562388 503861 400535 305916 220462 213072 273630 398998 480044 550607 554600 575305 540809 484528 385166 294178 220658 204897 263131 383689 461625 529481 24 542153 562393 528671 473654 376522 287575 215706 200298 257226 375077 451264 _517597 Day: 13831815 14348183 13487863 12084208 9606110 7336840 5503244 5110156 6562537 9569258 11513000 13205330 Month: 4.29E+08 4.02E+08 4.18E+08 3.63E+08 2.98E+08 2.2E+08 1.71E+08 1.58E+08 1.97E+08 2.97E+08 3.45E+08 4.09E+08 3.71£+09 Equivalent Gallons: 4158 3896 4055 3515 2888 2134 1654 1536 1909 2877 3349 3970 35941 @OnNOa kwon — BAL SHIS © BRBSsar HEAT DELIVERED BY HOUR BY MONTH, BTU'S Hour: January February March April May June July August Sept. October November December 542153 562393 528671 473654 376522 287575 215706 200298 257226 375077 451264 517597 531089 550915 517882 463987 368838 281706 211303 196210 251976 367423 442055 507034 528323 548046 515185 461571 366917 280239 210203 195188 250664 365509 439753 504393 518641 538003 505744 453112 360193 275104 206351 191612 246071 358811 431694 495150 528323 548046 515185 461571 366917 280239 210203 195188 250664 365509 439753 504393 536621 556654 523277 468820 372680 284641 213505 198254 254601 371250 446660 512316 568431 589651 554296 496611 394772 301514 226161 210006 269693 393257 473137 542685 598858 621214 583966 523194 415903 317653 238267 221248 284129 414307 498463 571734 603007 625518 588012 526819 418785 319854 239917 222781 286098 417178 501917 575695 607156 629822 592058 530444 421666 322055 241568 224313 288067 420048 505370 579656 607156 629822 592058 530444 421666 322055 241568 224313 288067 420048 505370 579656 611305 634126 596104 534069 424548 324256 243219 225846 290035 422919 508824 583617 616837 639865 601499 538902 428390 327190 245420 227890 292660 426746 513428 588899 603007 625518 588012 526819 418785 319854 239917 222781 286098 417178 501917 575695 594709 616910 579920 519569 413021 315453 236616 219715 282161 411437 495010 567772 598858 621214 583966 523194 415903 317653 238267 221248 284129 414307 498463 571734 590559 612606 575874 515944 410140 313252 234965 218182 280192 408566 491556 563811 598858 621214 583966 523194 415903 317653 238267 221248 284129 414307 498463 571734 598858 621214 583966 523194 415903 317653 238267 221248 284129 414307 498463 571734 594709 616910 579920 519569 413021 315453 236616 219715 282161 411437 495010 567772 580878 602563 566434 507486 403416 308116 231113 214605 275599 401869 483498 554568 576729 598259 562388 503861 400535 305916 229462 213072 273630 398998 480044 550607 554600 575305 540809 484528 385166 294178 220658 204897 263131 383689 461625 529481 542153 562393 528671 473654 376522 287575 215706 200208 257226 375077 451264 _517597 13831815 14348183 13487863 12084208 9606110 7336840 5503244 5110156 6562537 9569258 11513000 13205330 Days: 31 28 31 30 31 30 31 31 30 31 30 31 4.29E+08 4.02E+08 4.18E+08 3.63E+08 2.98E+08 2.2E+08 1.71E+08 1.58E+08 1.97E+08 2.97E+08 3.45E+08 4.09E+08 3.71E+09 Equivalent Gallons: 4158 3896 4055 3515 2888 2134 1654 1536 1909 2877 3349 3970 35941 CHOMNOANMSLAND = RBRBXSsaeraarane CBAY_#3.XLS WASTE HEAT UTILIZATION SIMULATION WORK SHEET. BASIC PROJECT DATA: Location: Cold Bay - Scenario #3 Date: May 1, 1990 ‘Savings, year O, fuel gallons: Savings, year 0, fuel cost: Annual pumping elec. cost: 4700 $/year. Annual O&M increase cost: Annual other O&M cost: 7000 $/year. Total Savings, year 0: $23,217 Construction cost estimate: 777021 $ Simple pay back time, years: 22.3) Fuel high heat value: 137500 Btu/gallon Fuel cost: 1.10 $/gallon GENERATOR DATA: SYSTEM LOSS DATA: Heat rate at kw-load above: 0 3017 Btu/kwh Constant losses: _ Heat rate at kw-load above: 85 2852 Btu/kwh Plant piping: 27000 Btu/hr. Heat rate at kw-load above: 170 2711 Btu/kwh Subsurface piping: 94000 Btu/hr. Heat rate at kw-load above: 255 2593 Btu/kwh Engine preheating: 0 Btu/hr. Heat rate at kw-load above: 340 ~~ 2498 Btu/kwh Total constant: 121000 Btu/hr. Heat rate at kw-load above: 425 2428 Btu/kwh Heat rate at kw-load above: 510 2381 Btu/kwh Variable losses: Heat rate at kw-load above: 595 2357 Btu/kwh Surface piping: 200 Btu/hr.xF Heat rate at kw-load above: 680 2357 Btu/kwh Plant heating: 1900 Btu/hr.xF Heat rate at kw-load above: 765 2357 Btu/kwh Radiator losses: 0 Btu/hr.xF Heat rate at kw-load above: 850 2357 Btu/kwh GENERATION DATA: WEATHER DATA: Kwh/month: HDD/Month: January 348,840 1126 February 292,080 1055 March 297,600 1098 April 288,600 952 May 279,000 782 June 249,120 578 July 241,440 448 August 277,080 416 September 275,280 517 October 285,840 779 November 307,320 907 December 312,600 1075 3454800 9733 BUILDING DATA: SAND WARM AK/DOT FAA Fuel use, gal/mon. STOR. STOR. SHOP SHOP Wa Wa Wa Wa SCHOOL Wa TOTAL January 487 904 681 928 869 3870 February 456 847 638 870 750 3562 March 475 882 664 905 725 3651 April 412 765 576 785 498 3035 May 338 628 473 645 283 2367 June 250 464 350 477 140 1680 July 194 360 271 369 105 1299 August 180 334 252 343 151 1260 September 224 415 313 426 251 1629 October 337 626 471 642 484 2560 November 392 729 549 748 669 3086 December 465 863 650 886 876 3741 4211 7818 5886 8024 0 0 0 0 5801 0 31740 Htg. Efficiency: 0.75 0.75 0.75 0.75 0.75 0.75 Page 1 POWER PRODUCTION VARIATION: Assumed hourly variation: Hour: January February March 1 0.038 0.038 0.038 2 0.036 0.036 0.036 3 0.034 0.034 0.034 4 0.034 0.034 0.034 5 0.033 0.033 0.033 6 0.034 0.034 0.034 z 0.038 0.038 0.038 8 0.042 0.042 0.042 9 0.042 0.042 0.042 10 0.047 0.047 0.047 1 0.048 0.048 0.048 12 0.047 0.047 0.047 13 0.045 0.045 0.045 14 0.047 0.047 0.047 15 0.048 0.048 0.048 16 0.048 0.048 0.048 17 0.049 0.049 0.049 18 0.046 0.046 0.046 19 0.043 0.043 0.043 20 0.040 0.040 0.040 21 0.040 0.040 0.040 22 0.041 0.041 0.041 23 0.040 0.040 0.040 24 0.040 0.040 0.040 1.000 1.000 1.000 Days: 31 28 31 HDD: 1126 1055 1098 Kwh: 348840 292080 297600 HEAT DEMAND VARIATION: Assumed hourly variation: Hour: Winter” Summer" 1 0.039 0.039 2 0.038 0.038 3 0.038 0.038 4 0.038 0.038 5 0.038 0.038 6 0.039 0.039 7 0.041 0.041 8 0.043 0.043 9 0.044 0.044 10 0.044 0.044 1 0.044 0.044 12 0.044 0.044 13 0.045 0.045 14 0.044 0.044 15 0.043 0.043 16 0.043 0.043 17 0.043 0.043 18 0.043 0.043 19 0.043 0.043 20 0.043 0.043 21 0.042 0.042 22 0.042 0.042 23 0.040 0.040 24 0.039 0.039 1.000 1.000 * Winter: Nov. - Apr. * Summer: May - Oct. April 0.038 0.036 0.034 0.034 0.033 0.034 0.038 0.042 0.042 0.047 0.048 0.047 0.045 0.047 0.048 0.048 0.049 0.046 0.043 0.040 0.040 0.041 0.040 0.040 1.000 30 952 288600 May 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1.000 31 782 279000 CBAY_#3.XLS June July 0.043 0.048 0.038 0,038 0.035 0,035 0.034 0.034 0.034 0.034 0.036 0.036 0.036 0.036 0.038 0.038 0.043 0.043 0.045 0.045 0.041 0.041 0.046 0.046 0.048 0.048 0.050 0.050 0.048 0.048 0.048 © 0.048 0.043 0.043 0.045 0.045 0.048 0.048 0.043 0.043 0.039 0.039 0.039 0.039 0.039 0.039 0.041 __0,041 1.000 1.000 30 31 578 448 249120 241440 Page 2 August 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1.000 31 416 277080 Sept. 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 — 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1.000 30. 517 275280 October November December 0.043 0.038 0.038 0.038 0.036 0.036 0.035 0.034 0.034 0.034 0.034 0.034 0.034 0.033 0.033 0.036 0.034 0.034 0.036 0.038 0.038 0.038 0.042 0.042 0.043 0.042 0.042 0.045 0.047 0.047 0.041 0.048 0.048 0.046 0.047 0.047 0.048 0.045 0.045 0.050 0.047 0.047 0.048 0.048 0.048 0.048 0.048 0.048 0.043 0.049 0.049 0.045 0.046 0.046 0.048 0.043 0.043 0.043 0.040 0.040 0.039 0.040 0.040 0.039 ~~ 0.041 0.041 0.039 0.040 0.040 0.041 0.040 0.040 1.000 1.000 1.000 31 30 31 779 907 1075 9733 285840 307320 312600 3454800 HEAT GENERATED PER HOUR BY MONTH, BTU'S Hour: 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 Day: 27253274 25600594 23818522 23868144 22480265 21034987 19915390 22389605 22919879 23031394 25225843 24891420 January 1038114 1012121 955892 955892 927778 955892 1038114 1147389 1147389 1259051 1285840 1259051 1229345 1259051 1285840 1285840 1312628 1232263 1174708 1092751 1092751 1120070 1092751 1092751 February 990359 938235 886111 886111 860049 886111 990359 1063628 1063628 1190251 1215575 1190251 1139602 1190251 1215575 1215575 1216805 1164926 1088953 1042484 1042484 1038304 1042484 1042484 March 911424 863454 846257 846257 821367 846257 911424 1007363 1007363 1095383 1118689 1095383 1048771 1095383 1118689 1118689 1141995 1072077 1031348 959393 959393 983378 959393 959393 April 913322 865253 848020 848020 823079 848020 913322 1009462 1009462 1097665 1121019 1097665 1050956 1097665 1121019 1121019 1144374 1074310 1033496 961392 961392 985427 961392 961392 May 966889 854460 816701 793366 793366 840035 840035 854460 966889 1011860 921917 1034346 1048771 1092470 1048771 1048771 966889 1011860 1048771 966889 876945, 876945, 876945, 921917 CBAY_#3.XLS June 892116 818132 753542 732013 732013 775072 775072 818132 892116 933610 850622 954356 995850 1037344 995850 995850 892116 933610 995850 892116 839661 839661 839661 850622 July 868297 767332 706753 686560 686560 726946 726946 767332 868297 875640 827911 895098 934016 972933 934016 934016 868297 875640 934016 868297 787525 787525 787525 827911 August 960235 880601 811080 787906 787906 834254 834254 880601 960235 1004897 915573 1027228 1041553 1084951 1041553 1041553 960235 1004897 1041553 960235 870911 870911 870911 915573 Sept. 985797 871169 832672 808881 808881 856462 856462 871169 985797 1031648 939946 1054573 1069280 1113833 1069280 1069280 985797 1031648 1069280 985797 894095 894095 894095 939946 October November December 990593 875408 836723 812816 812816 860629 860629 875408 990593 1036667 944519 1059704 1074483 1119253 1074483 1074483 990593 1036667 1074483 990593 898445 898445 898445 944519 972565 921377 870190 870190 876467 870190 972565 1044517 1044517 1168865 1193734 1168865 1119126 1168865 1193734 1193734 1218604 1143995 1069387 1023753 1023753 1049346 1023753 1023753 957362 906975 856587 856587 862767 856587 957362 1058137 1058137 1150594 1175074 1150594 1101632 1150594 1175074 1175074 1199555 1126113 1052671 1007750 1007750 1032944 1007750 1007750 Month: 8.45E+08 7.17E+08 7.38E+08 7.16E+08 6.97E+08 6.31E+08 6.17E+08 6.94E+08 6.88E+08 7.14E+08 7.57E+08 7.72E+08 8.59E+09 Equivalent Gallons: 8192 6951 7160 6943 6758 HEAT LOST FROM SYSTEM PER HOUR BY MONTH, BTU'S Hour: ONAN wWH = BRBRSesawsaarSBHzASo 24 January 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 218277 February 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 221125 March 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 216381 April 208640 208640 May 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 194974 Day: 5238658 5307000 5193135 5007360 4679381 Month: 1.62E+08 1.49E+08 1.61E+08 Equivalent Gallons: 1575 1441 1561 1457 1407 6119 June 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 182460 5987 July 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 172348 4379040 4136361 1.5E+08 1.45E+08 1.31E+08 1.28E+08 1.27E+08 1.28E+08 1.45E+08 1.48E+08 1274 1243 Page 3 6730 August 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 170181 6668 Sept. 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 178190 6923 7338 7483 October November December 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 194771 205490 214823 4084335 4276560 4674503 4931760 5155742 1.6E+08 1.73E+09 1228 1244 1405 1435 1550 83253 16819 CBAY_#3.XLS HEAT DEMAND BY HOUR BY MONTH, BTU'S Hour: January February March April May June July August Sept. October November December 1 504641 514211 476133 408984 308674 226434 169387 164264 219485 333843 415866 487830 2 494343 503717 466416 400638 302375 221813 165930 160912 215006 327030 407379 477874 3 491768 501093 463986 398551 300800 220658 165066 160074 213886 325326 405258 475386 4 482757 491911 455484 391248 295288 216614 162041 157141 209967 319365 397831 466674 5 491768 501093 463986 398551 300800 220658 165066 160074 213886 325326 405258 475386 6 499492 508964 471274 404811 305524 224124 167658 162588 217246 330436 411623 482852 7 529101 539135 499210 428808 323635 237409 177597 172226 230124 350024 436023 511475 8 557423 567993 525932 451761 340959 250117 187103 181445 242442 368760 459363 538853 9 561285 571929 529576 454891 343321 251850 188399 182702 244122 371315 462545 542587 10 565147 575864 533220 458021 345684 253583 189696 183959 245801 373870 465728 546320 11. 565147 575864 533220 458021 345684 253583 189696 183959 245801 373870 465728 546320 12 569009 579799 536864 461151 348046 255316 190992 185216 247481 376425 468911 550053 13 574158 585046 541722 465324 351196 257627 192721 186892 249721 379831 473154 555031 14 561285 571929 529576 454891 343321 251850 188399 182702 244122 371315 462545 542587 15 553561 564058 522288 448631 338597 248385 185807 180188 240762 366205 456180 535120 16 557423 567993 525932 451761 340959 250117 187103 181445 242442 368760 459363 538853 17 549699 560123 518644 445501 336234 246652 184511 178931 239082 363650 452997 531386 18 557423 567993 525932 451761 340959 250117 187103 181445 242442 368760 459363 538853 19 557423 567993 525932 451761 340959 250117 187103 181445 242442 368760 459363 538853 20 553561 564058 522288 448631 338597 248385 185807 180188 240762 366205 456180 535120 21 540687 550940 510142 438198 330722 242608 181486 175997 235163 357689 445571 522675 22 536825 547005 506498 435068 328360 240875 180189 174740 233483 355134 442388 518942 23 516228 526017 487064 418374 315761 231633 173276 168036 224525 341507 425414 499030 24 504641 514211 476133 408984 308674 226434 169387 164264 219485 333843 415866 487830 Day: 12874794 13118941 12147452 10434317 7875128 5776963 4321521 4190833 5599678 8517245 10609896 12445891 Month: 3.99£+08 3.67E+08 3.77E+08 3.13E+08 2.44E+08 1.73E+08 1.34E+08 1.3E+08 1.68E+08 2.64E+08 3.18E+08 3.86E+08 3.27E+09 Equivalent : Gallons: 3870 3562 3652 3035 2367 1681 1299 1260 1629 2560 3087 3741 31743 HEAT DELIVERED BY HOUR BY MONTH, BTU'S Hour: January February March April May June July August Sept. October November December 504641 514211 476133 408984 308674 226434 169387 164264 219485 333843 415866 487830 494343 503717 466416 400638 302375 221813 165930 160912 215006 327030 407379 477874 491768 501093 463986 398551 300800 220658 165066 160074 213886 325326 405258 475386 482757 491911 455484 391248 295288 216614 162041 157141 209967 319365 397831 466674 491768 501093 463986 398551 300800 220658 165066 160074 213886 325326 405258 475386 499492 508964 471274 404811 305524 224124 167658 162588 217246 330436 411623 482852 529101 539135 499210 428808 323635 237409 177597 172226 230124 350024 436023 511475 557423 567993 525932 451761 340959 250117 187103 181445 242442 368760 459363 538853 9 561285 571929 529576 454891 343321 251850 188399 182702 244122 371315 462545 542587 10 565147 575864 533220 458021 345684 253583 189696 183959 245801 373870 465728 546320 11 565147 575864 533220 458021 345684 253583 189696 183959 245801 373870 465728 546320 12 569009 579799 536864 461151 348046 ‘255316 190992 185216 247481 376425 468911 550053 13. 574158 585046 541722 465324 351196 257627 192721 186892 249721 379831 473154 555031 14 561285 571929 529576 454891 343321 251850 188399 182702 244122 371315 462545 542587 15 553561 564058 522288 448631 338597 248385 185807 180188 240762 366205 456180 535120 16 557423 567993 525932 451761 340959 250117 187103 181445 242442 368760 459363 538853 17 549699 560123 518644 445501 336234 246652 184511 178931 239082 363650 452997 531386 18 557423 567993 525932 451761 340959 250117 187103 181445 242442 368760 459363 538853 19 557423 567993 525932 451761 340959 250117 187103 181445 242442 368760 459363 538853 20 553561 564058 522288 448631 338597 248385 185807 180188 240762 366205 456180 535120 21 540687 550940 510142 438198 330722 242608 181486 175997 235163 357689 445571 522675 22 536825 547005 506498 435068 328360 240875 180189 174740 233483 355134 442388 518942 23 516228 526017 487064 418374 315761 231633 173276 168036 224525 341507 425414 499030 24 504641 514211 476133 408984 308674 226434 169387 164264 219485 333843 415866 487830 12874794 13118941 12147452 10434317 7875128 5776963 4321521 4190833 5599678 8517245 10609896 12445891 Days: 31 28 31 30 31 30 31 31 30 31 30 31 3.99E+08 3.67E+08 3.77E+08 3.13E+08 2.44E+08 1.73E+08 1.34E+08 1.3E+08 1.68E+08 2.64E+08 3.18E+08 3.86E+08 3.27E+09 Equivalent Gallons: 3870 3562 3652 3035 2367 1681 1299 1260 1629 2560 3087 3741 31743 OnNOnnwn — Page 4 WASTE HEAT UTILIZATION SIMULATION WORK SHEET. BASIC PROJECT DATA: Location: Cold Bay - Scenario #4 Date: May 1, 1990 Annual pumping elec. cost: Annual other O&M cost: Construction cost estimate: Fuel high heat value: Fuel cost: GENERATOR DATA: Heat rate at kw-load above: Heat rate at kw-load above: Heat rate at kw-load above: Heat rate at kw-load above: Heat rate at kw-load above: Heat rate at kw-load above: Heat rate at kw-load above’ Heat rate at kw-load above: Heat rate at kw-load above: Heat rate at kw-load above: Heat rate at kw-load above: GENERATION DATA: Kwh/month: January 348,840 February 292,080 March 297,600 April 288,600 May 279,000 June 249,120 July 241,440 August 277,080 September 275,280 October 285,840 November 307,320 December 312,600 3454800 BUILDING DATA: SAND Fuel use, gal/mon. STOR. January 487 February 456 March 475 April 412 May 338 June 250 July 194 August 180 September 224 October 337 November 392 December 465 4211 Htg. Efficiency: 0.75 CBAY_#4.XLS PROGRAM RESULTS: ‘Savings, year 0, fuel gallons: Savings, year O, fuel cost: xe XF er 869 750 725 498 283 140 105 151 251 484 669 876 6800 $/year. Annual O&M increase cost: 10000 $/year. Total Savings, year 0: 1614728 $ Simple pay back time, years: 137500 Btu/gallon 1.10 $/gallon SYSTEM LOSS DATA: 3017 Btu/kwh Constant losses: 2852 Btu/kwh Plant piping: 27000 Btu/hr. 170 2711 Btu/kwh Subsurface piping: 190000 Btu/hr. 255 2593 Btu/kwh Engine preheating: 0 Btu/hr. 340 2498 Btu/kwh Total constant: 217000 Btu/hr. 425 2428 Btu/kwh 510 2381 Btu/kwh Variable losses: 595 2357 Btu/kwh Surface piping: 200 Btu/hr. 680 2357 Btu/kwh Plant heating: 1900 Btu/hr. 765 2357 Btu/kwh Radiator losses: 0 Btu/nr. 850 2357 Btu/kwh WEATHER DATA: HDD/Month: 1126 1055 1098 952 782 578 448 416 517 779 907 1075 9733 WARM AK/DOT FAA Faw Faw Faw CITY STOR. SHOP SHOPHOUSING BUNKH OFFICE BLDG SCHOOL 904 681 928 496 99 294 267 847 638 870 465 93 276 250 882 664 905 484 97 287 260 765 576 785 420 84 249 225 628 473 645 345 69 204 185 464 350 477 255 51 151 137 360 271 369 198 39 117 106 334 252 343 183 37 109 99 415 313 426 228 46 135 122 626 471 642 343 69 204 184 729 549 748 400 80 237 215 863 650 886 474 95 281 255 7818 5886 8024 4291 858 2544 2305 5801 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 Wa TOTAL 5027 4645 4779 4013 3170 2274 1759 1687 2160 4018 0 41738 0.75 POWER PRODUCTION VARIATION: Assumed hourly variation: Hour: January February March 1 0.038 0.038 0.038 2 0.036 0.036 0.036 3 0.034 0.034 0.034 4 0.034 0.034 0.034 5 0.033 0.033 0.033 6 0.034 0.034 0.034 t 0.038 0.038 0.038 8 0.042 0.042 0.042 9 0.042 0.042 0.042 10 0.047 0.047 0.047 11 0.048 0.048 0.048 12 0.047 0.047 0.047 13 0.045 0.045 0.045 14 0.047 0.047 0.047 15 0.048 0.048 0.048 16 0.048 0.048 0.048 17 0.049 0.049 0.049 18 0.046 0.046 0.046 19 0.043 0.043 0.043 20 0.040 0.040 0.040 21 0.040 0.040 0.040 22 0.041 0.041 0.041 23 0.040 0.040 0.040 24 0.040 0.040 0.040 1.000 1.000 1.000 Days: 31 28 31 HDD: 1126 1055 1098 Kwh: - 348840 292080 297600 HEAT DEMAND VARIATION: Assumed hourly variation: Hour: Winter” Summer” 1 0.039 0.039 2 0.038 0.038 3 0.038 0.038 4 0.038 0.038 5 0.038 0.038 6 0.039 0.039 a 0.041 0.041 8 0.043 0.043 9 0.044 0.044 10 0.044 0.044 1 0.044 0.044 12 0.044 0.044 13 0.045 0.045 14 0.044 0.044 15 0.043 0.043 16 0.043 0.043 17 0.043 0.043 18 0.043 0.043 19 0.043 0.043 20 0.043 0.043 21 0.042 0.042 22 0.042 0.042 23 0.040 0.040 24 0.039 0.039 1.000 1.000 * Winter: Nov. - Apr. * Summer: May - Oct. April 0.038 0.036 0.034 0.034 0.033 0.034 0.038 0.042 0.042 0.047 0.048 0.047 0.045 0.047 0.048 0.048 0.049 0.046 0.043 0.040 0.040 0.041 0.040 0.040 1.000 952 288600 May 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1.000 31 782 279000 CBAY_#4.XLS June July 0.043 0.043 0.038 0.038 0.035 0.035 0.034 0.034 0.034 0.034 0.036 0.036 0.036 0.036 0.038 0.038 0.043 0.043 0.045 0.045 0.041 0.041 0.046 0.046 0.048 0.048 0.050 0.050 0.048 0.048 0.048 0.048 0.043 0.043 0.045 0.045 0.048 0.048 0.043 0.043 0.039 0.039 0.039 0.039 0.039 0.039 0.041 0.041 1.000 1.000 30 31 578 448 249120 241440 August 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1.000 31 416 277080 Sept. 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 - 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1.000 517 275280 October November December 0.043 0.038 0.035 0.034 0.034 0.036 0.036 0.038 0.043 0.045 0.041 0.046 0.048 0.050 0.048 0.048 0.043 0.045 0.048 0.043 0.039 0.039 0.039 0.041 1.000 31 779 285840 0.038 0.036 0.034 0.034 0.033 0.034 0.038 0.042 0.042 0.047 0.048 0.047 0.045 0.047 0.048 0.048 0.049 0.046 0.043 0.040 0.040 0.041 0.040 0.040 1.000 30 907 307320 0.038 0.036 0.034 0.034 0.033 0.034 0.038 0.042 0.042 0.047 0.048 0.047 0.045 0.047 0.048 0.048 0.049 0.046 0,043 0.040 0.040 0.041 0.040 0.040 1.000 31 1075 9733 312600 3454800 HEAT GENERATED PER HOUR BY MONTH, BTU'S Hour: 1 2 3 4 5 6 7 8 9 10 W 12 13 14 15 16 17 18 19 20 21 22 23 24 Day: 27253274 25600594 23818522 23868144 22480265 21034987 19915390 22389605 22919879 23031394 25225843 24891420 January 1038114 1012121 955892 955892 927778 955892 1038114 1147389 1147389 1259051 1285840 1259051 1229345 1259051 1285840 1285840 1312628 1232263 1174708 1092751 1092751 1120070 1092751 1092751 February 990359 938235 886111 886111 860049 886111 990359 1063628 1063628 1190251 1215575 1190251 1139602 1190251 1215575 1215575 1216805 1164926 1088953 1042484 1042484 1038304 1042484 1042484 March 911424 863454 846257 846257 821367 846257 911424 1007363 1007363 1095383 1118689 1095383 1048771 1095383 1118689 1118689 1141995 1072077 1031348 959393 959393 983378 959393 959393 April 913322 865253 848020 848020 823079 848020 913322 1009462 1009462 1097665 1121019 1097665 1050956 1097665 1121019 1121019 1144374 1074310 1033496 961392 961392 985427 961392 961392 May 966889 854460 816701 793366 793366 840035 840035 854460 966889 1011860 921917 1034346 1048771 1092470 1048771 1048771 966889 1011860 1048771 966889 876945 876945 876945 921917 CBAY_#4.XLS June 892116 818132 753542 732013 732013 775072 775072 818132 892116 933610 850622 954356 995850 1037344 995850 995850 892116 933610 995850 892116 839661 839661 839661 850622 July 868297 767332 706753 686560 686560 726946 726946 767332 868297 875640 827911 895098 934016 972933 934016 934016 868297 875640 934016 868297 787525 787525 787525 827911 August 960235 880601 811080 787906 787906 834254 834254 880601 960235 1004897 915573 1027228 1041553 1084951 1041553 1041553 960235 1004897 1041553 960235 870911 870911 870911 Sept. 985797 871169 832672 808881 808881 856462 856462 871169 985797 1031648 939946 1054573 1069280 1113833 1069280 1069280 985797 1031648 1069280 985797 894095 894095 894095 October November December 990593 875408 836723 812816 812816 860629 860629 875408 990593 1036667 944519 1059704 1074483 1119253 1074483 1074483 990593 1036667 1074483 990593 898445 898445 898445 915573 939946 944519 972565 921377 870190 870190 876467 870190 972565 1044517 1044517 1168865 1193734 1168865 1119126 1168865 1193734 1193734 1218604 1143995 1069387 1023753 1023753 1049346 1023753 1023753 957362 906975 856587 856587 862767 856587 957362 1058137 1058137 1150594 1175074 1150594 1101632 1150594 1175074 1175074 1199555 1126113 1052671 1007750 1007750 1032944 1007750 1007750 Month: 8.45E+08 7.17E+08 7.38E+08 7.16E+08 6.97E+08 6.31E+08 6.17E+08 6.94E+08 6.88E+08 7.14E+08 7.57E+08 7.72E+08 8.59E+09 Equivalent Gallons: 8192 6951 7160 6943 6758 HEAT LOST FROM SYSTEM PER HOUR BY MONTH, BTU'S Hour: ONO kwWn = Se key al | cs al jk 24 Day: 7542658 7611000 7497135 7311360 6983381 6683040 6440361 6388335 6580560 6978503 7235760 7459742 January 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 314277 February 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 317125 March 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 312381 April 304640 304640 304640 May 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 290974 Month: 2.34E+08 2.13E+08 2.32E+08 2.19E+08 2.16E+08 Equivalent Gallons: 2267 2067 2254 2127 2099 6119 June 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 278460 2E+08 1944 5987 6730 August 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 266181 6668 Sept. 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 274190 6923 7338 7483 October November December 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 310823 290771 301490 _ 310823 83253 2E+08 1.98E+08 1.97E+08 2.16E+08 2.17E+08 2.31E+08 2.58E+09 1936 Page 3 1920 1914 2098 2105 2242 24974 HEAT DEMAND BY HOUR BY MONTH, BTU'S Hour: @OnNOOhWND = 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 Day: 16722931 17110736 15899898 13796254 10547635 7818138 5852574 5612524 7425436 11179499 13812918 16119734 January 655473 642096 638752 627047 638752 648785 687244 724031 729047 734063 734063 739080 745768 729047 719014 724031 713998 724031 724031 719014 702293 697276 670522 655473 February 670674 656987 653565 641588 653565 663830 703181 740821 745954 751086 751086 756219 763063 745954 735688 740821 730555 740821 740821 735688 718579 713446 686072 670674 March 623214 610495 607315 596187 607315 616854 653420 688397 693166 697936 697936 702705 709065 693166 683627 688397 678858 688397 688397 683627 667729 662959 637522 623214 April 540759 529723 526964 517308 526964 535241 566969 597318 601457 605595 605595 609733 615251 601457 593180 597318 589041 597318 597318 593180 579385 575246 553174 540759 413426 404989 402879 395497 402879 409207 433464 456667 459831 462995 462995 466159 470377 459831 453503 456667 450339 456667 456667 453503 442956 439792 422918 413426 CBAY_#4.XLS June 306440 300186 298623 293151 298623 303313 321293 338492 340837 343182 343182 345527 348654 340837 336146 338492 333801 338492 338492 336146 328329 325984 313476 306440 July 229398 224716 223546 219450 223546 227057 240517 253391 255147 256902 256902 258658 260999 255147 251636 253391 249880 253391 253391 251636 245784 244028 234665 229398 August 219989 215499 214377 210449 214377 217744 230652 242998 244682 246365 246365 248049 250294 244682 241314 242998 239631 242998 242998 241314 235702 234019 225040 219989 Sept. October November December 291048 285108 283623 278426 283623 288078 305155 321489 323717 325944 325944 328171 331141 323717 319262 321489 317034 321489 321489 319262 311837 309610 297730 291048 438193 429250 427014 419189 427014 433721 459431 484024 487377 490731 490731 494084 498556 487377 480670 484024 477317 484024 484024 480670 469492 466139 448253 438193 541412 530363 527601 517933 527601 535888 567654 598040 602183 606326 606326 610470 615995 602183 593896 598040 589753 598040 598040 593896 580085 575941 553843 541412 Month: 5.18E+08 4.79E+08 4.93E+08 4.14E+08 3.27E+08 2.35E+08 1.81E+08 1.74E+08 2.23E+08 3.47E+08 4.14E+08 Equivalent Gallons: 5027 4646 4780 4013 HEAT DELIVERED BY HOUR BY MONTH, BTU'S Hour: OMBNOAHDEWNH = 10 "1 12 13 14 15 16 17 18 19 20 21 22 23 24 16690509 16671918 15387542 13787728 10547635 7818138 5852574 5612524 7425436 11179499 13812918 15809037 Days: January 655473 642096 638752 627047 613500 641615 687244 724031 729047 734063 734063 739080 745768 729047 719014 724031 713998 724031 724031 719014 702293 697276 670522 655473 31 February 670674 621110 568986 568986 542924 568986 673234 740821 745954 751086 751086 756219 763063 745954 735688 740821 730555 740821 740821 725359 718579 713446 686072 670674 28 March 599043 551073 533877 533877 508987 533877 599043 688397 693166 697936 697936 702705 709065 693166 683627 688397 678858 688397 688397 647013 647013 662959 637522 623214 31 April 540759 529723 526964 517308 518439 535241 566969 597318 601457 605595 605595 609733 615251 601457 593180 597318 589041 597318 597318 593180 579385 575246 553174 540759 30 3171 May 413426 404989 402879 395497 402879 409207 433464 456667 459831 462995 462995 466159 470377 459831 453503 456667 450339 456667 456667 453503 442956 439792 422918 413426 31 2274 June 306440 300186 298623 293151 298623 303313 321293 338492 340837 343182 343182 345527 348654 340837 336146 338492 333801 338492 338492 336146 328329 325984 313476 306440 30 1759 July 229398 224716 223546 219450 223546 227057 240517 253391 255147 256902 256902 258658 260999 255147 251636 253391 249880 253391 253391 251636 245784 244028 234665 229398 31 1687 August 219989 215499 214377 210449 214377 217744 230652 242998 244682 246365 246365 248049 250294 244682 241314 242998 239631 242998 242998 241314 235702 234019 225040 219989 31 2160 Sept. 291048 285108 283623 278426 288078 305155 321489 323717 325944 325944 328171 331141 323717 319262 321489 317034 321489 321489 319262 311837 309610 297730 291048 30 3361 4018 631830 618936 615712 604430 615712 625383 662455 697915 702750 707586 707586 712421 718868 702750 693079 697915 688244 697915 697915 693079 676961 672126 646337 631830 5E+08 4.3E+09 4846 October November December 438193 429250 427014 419189 427014 433721 459431 484024 487377 490731 490731 494084 498556 487377 480670 484024 477317 484024 484024 480670 469492 466139 448253 438193 31 541412 530363 527601 517933 527601 535888 567654 598040 602183 606326 606326 610470 615995 602183 593896 598040 589753 598040 598040 593896 580085 575941 553843 541412 30 631830 596152 545765 545765 551944 545765 646540 697915 702750 707586 707586 712421 718868 702750 693079 697915 688244 697915 697915 693079 676961 672126 646337 631830 31 41742 5.17E+08 4.67E+08 4.77E+08 4.14E+08 3.27E+08 2.35E+08 1.81E+08 1.74E+08 2.23E+08 3.47E+08 4.14E+08 4.9F+08 4.27E+09 Equivalent Gallons: 5017 4527 4626 4011 3171 2274 1759 Page 4 1687 2160 3361 4018 4752 41363 ee CALCULATION | BASIC PROJECT INFORMATION PROJECT: |COLD BAY PROJ NO: |495-306 CALC FOR: |NEW POWER HOUSE BLDG DATE: |2/15/90 | | eMBERATURES HEATING DEGREE DAYS INTERIOR: 70|°F 9877/°F DAYS EXTERIOR: 9/°F ROOM: HEIGHT= 22 AREA= 3200 WIDTH= 40 VOLUME= 70400) LENGTH= 80 AC/HR= 0.5 SURFACE AREA| * U-VALUE | * (Ti- Te) | = BTU/HR TOTAL COMMENTS | WALL 1 880 0.12 61 6442 WALL 2 1760 0.12 61 12883, FLOOR 61 0 CEILING 3200 0.12 61 23424 GLASS 61 0 DOORS 61 0 PERIMETER LENGTH| * F-VALUE | * (Ti- Te) | =BTU/HR BASEMENT WALL : : 61 0 SLAB 240 0.65 61 9516) AIR EXCH. CFM| * FACTOR | * (Ti- Te) | =BTU/HR INFILT. 587 1.08 61 38650 90914: TOTAL BTU/HR= 90,914 TOTAL BTU/YR BASED ON HEATING DEGREE DAYS=| 353,296,339 TOTAL GAL/YR @ 140,000 BTU/GAL, 70% EFFICIENCY= 3,605 FEATOSS CALCULATION BASIC PROJECT INFORMATION PROJECT: [COLD BAY PROJ NO: (495-306 CALC FOR: [POWER HOUSE DATE: [2/15/90 TEMPERATURES HEATING DEGREE DAYS INTERIOR: 70|°F 9877|°F DAYS EXTERIOR: 9PF ROOM: HEIGHT= 16 AREA=| 3840 WIDTH= 40 VOLUME=| 61440 LENGTH= 96 AC/HR= 0.5 SURFACE AREA| * U-VALUE | *(Ti-Te)| = BTU/HA TOTAL COMMENTS WALL 1 640 0.12 61 4685 WALL 2 1536 0.12 61 11244 FLOOR 61 0 CEILING 3840 0.12 61 28109 GLASS 61 0 DOORS 61 0 PERIMETER LENGTH] * F-VALUE | *(Ti-Te)| =BTUHA BASEMENT WALL 61 0 SLAB 272 0.65 61 10785 AIR EXCH. CFM * FACTOR | *(Ti-Te)| =BTUHR INFILT. 512 1.08 61 33731 88552 TOTAL BTU/HR= 88,552 TOTAL BTU/YR BASED ON HEATING DEGREE DAYS=| 344,117,841 TOTAL GAL/YR @ 140,000 BTU/GAL, 70% EFFICIENCY= 3,511 HEATLOSS CALCULATION BASIC PROJECT INFORMATION PROJECT: |COLD BAY PROJ NO: |495-306 CALC FOR: | POWER HOUSE CONTROL BLDG (1 OF 2) DATE: |2/15/90 TEMPERATURES HEATING DEGREE DAYS | INTERIOR: 70|°F 9877|°F DAYS EXTERIOR: 9|°F ROOM: HEIGHT= 18 AREA= 300) WIDTH= 15 VOLUME= 5400 LENGTH= 20 AC/HR= 0.5 SURFACE AREA| * U-VALUE | * (Ti - Te) = BTU/HR TOTAL COMMENTS WALL 1 270 0.12 61 1976 WALL 2 360 0.12 61 2635 FLOOR 61 0 CEILING 300 0.12) 61 . 2196) GLASS 61 0 DOORS 61 0 PERIMETER LENGTH| * F-VALUE | * (Ti- Te) | =BTU/HR BASEMENT WALL 61 0 SLAB 70 0.65 61 2776) AIR EXCH. CFM| * FACTOR | * (Ti- Te) | = BTU/HR INFILT. 45 1.08} 61 2965 12548 TOTAL BTU/HR= 12,548 TOTAL BTU/YR BASED ON HEATING DEGREE DAYS= 48,760,774 TOTAL GAL/YR @ 140,000 BTU/GAL, 70% EFFICIENCY= 498 HEATLOSS CALCULATION BASIC PROJECT INFORMATION PROJECT: |COLD BAY PROJ NO: |495-306 CALC FOR: | POWER HOUSE CONTROL BLDG (2 OF 2) DATE: |2/15/90 TEMPERATURES HEATING DEGREE DAYS INTERIOR: 70|°F 9877|°F DAYS EXTERIOR: 9|°F ROOM: HEIGHT= 8 AREA= 600 WIDTH= 20 VOLUME= 4800 LENGTH= 30 AC/HR= 0.5) _| SURFACE AREA| * U-VALUE | * (Ti - Te) = BTU/HR TOTAL COMMENTS WALL 1 160 0.084 61 820 WALL 2 240 0.084 61 1230 FLOOR 61 0 CEILING 600 0.084 61 3074) GLASS 61 0 DOORS 61 0 PERIMETER LENGTH| * F-VALUE | * (Ti- Te) | = BTU/HR BASEMENT WALL 61 0 SLAB 100 0.65 61 3965) AIR EXCH. CFM| * FACTOR | * (Ti- Te) | = BTU/HR INFILT. 40 1.08 61 2635 11724 TOTAL BTU/HR= 11,724 TOTAL BTU/YR BASED ON HEATING DEGREE DAYS= 45,560,626 TOTAL GAU/YR @ 140,000 BTU/GAL, 70% EFFICIENCY= 465 7 | APPENDIX 2 COST ESTIMATES Cold Bay waste heat report 2/20/91 Simple Payback Ignores O&M costs Scenario #1 Scenario#2 Scenario #3 Scenario #4 Scenario #4a Prodject cost $ 199,926 1,271,053 777,021 1,614,728 1,788,642 Fuels cost Savings $ 28,500 39,500 34,900 45,500 45,500 Years for payback 7.0 32.2 22.3 35.5 39.3 Fuel cost savings based on $1.10 per gallon Price of fuel required for 10 year payback Prodject cost $ 199,926 1,271,053 777,021 1,614,728 1,788,642 Gallons fuel saved 25,900 35,900 31,700 41,400 41,400 Cost of fuel per gallon for 10 year payback $0.77 $3.54 $2.45 $3.90 $4.32 HMS 9119 CONSTRUCTION COST ESTIMATE WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA COST CONSULTANT ENGINEER HMS Inc. 4103 Minnesota Drive Anchorage, Alaska 99503 Frank Moolin & Associates, Inc. 550 W. 7th Avenue Anchorage, Alaska 99501 (907) 561-1653 February 20, 1991 (907) 562-0420 FAX WASTE HEAT RECOVERY SYSTEM PAGE 1 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 NOTES REGARDING THE PREPARATION OF THIS COST ESTIMATE This study has been prepared from a February 13, 1991 report, including a concept design dated March 14, 1990, by Frank Moolin & Associates. Unit prices and costs indicated in this estimate are based on current knowledge. The possible effects of current hostilities in the Middle East have not been considered in the preparation of this estimate. This estimate is a statement of probable construction cost only, and is priced using A.S. Title 36 prevailing labor rates and current materials, freight and equipment prices, and to reflect a competitive bid in Spring 1992. Removal of hazardous material has not been considered in this cost estimate. SCENARIO #1 - FAA Shop, DOT/PF Shop, Warm Storage, Warm Sand Storage SCENARIO #2 - FAA Shop, DOT/PF Shop, Warm Storage, Warm Sand Storage City Building, U.S. Fish and Wildlife Main Office/Shop/Storage, Bunk House and Housing (4 Buildings) SCENARIO #3 - FAA Shop, DOT/PF Shop, Warm Storage, Warm Sand Storage and School SCENARIO #4 - All Buildings Listed Above SCENARIO #4(A) - All Buildings Listed Above With Larger Diameter Pipes For Future Expansion SCENARIO #5 - All Buildings Listed Above Plus Medical Center, DOT/PF, Fire Station, FAA Flight Service, FAA Water Plant, Post Office, Reeve Aleutian Complex (2 Buildings), Paxlof Service Complex (2 Buildings) - Future Only WASTE HEAT RECOVERY SYSTEM PAGE 2 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SUMMARY SCENARIO SCENARIO SCENARIO SCENARIO SCENARIO #1 #2 #3 #4 #4A CONSTRUCTION COST ESTIMATE 01 - General Conditions, Overhead and Profit 138,878 270,737 184,638 328,562 347,913 02 - Sitework 65,443 402,731 212,444 541,832 621,372 15 - Mechanical 51,892 90,878 68,845 101,548 107,709 16 - Electrical 3,430 3,430 3,430 3,430 3,430 SUBTOTAL 120,765 767,776 469,357 975,372 1,080,424 Estimate contingency for elements of project not determined at this early level of design 10.00% 12,077 76,778 46,936 97,537 108,042 Escalation at .50% per month to Spring 1992 7.50% 9,963 63,342 38,722 80,468 89,13 TOTAL CONSTRUCTION COST: 142,805 907,895 555,015; 1,153,372) 1,277,602 PROJECT COST Design 10.00% 14,280 90,790 55,501 115,338 127,760 SIA (Supervision, Inspection and Administration) 20.00% 28,561 181,579 111,003 230,675 255,520 Project Contingency 10.00% 14,280 20,790 55,501 115,338 127,760 TOTAL PROJECT COST: 199,926 1,271,053 777,021 1,614,728 1,788,642 PAGE 3 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #1 WASTE HEAT RECOVERY SYSTEM PAGE 4 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #1 QUANTITY UNIT RATE ESTIMATED COST Mobilization 1 LOT 6,500.00 6,500 Freight 58,000 LBS 0.45 26,100 Supervision, equipment, utilities, clean site, tools and protection a2 WKS 3,500.00 42,000 Per diem 280 "DAYS 95.00 26,600 Travel costs, including time in travel 8 RT 1,110.00 8,880 SUBTOTAL 110,080 Bond and insurance 2.25 % 5,194 Profit 10.00 x 23,604 TOTAL ESTIMATED COST: ‘ 138,878 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY SCENARIO #1 02 - SITE WORK Piped Utilities Excavate trench for arctic pipe, including backfilling and spread and level surplus 3" diameter Schedule 40 pipe with insulation and arctic pipe protection 2" ditto 1 1/2" ditto 3" bend 2" bend 1 1/2" bend 3" tee 2" tee TOTAL ESTIMATED COST: QUANTITY 940 820 920 140 18 UNIT UNIT RATE B EEE Ss 12.50 55.15 41.50 35.10 215.25 167.00 151.00 231.00 176.25 PAGE 5 2/20/91 ESTIMATED COST 11,750 45,223 4,914 861 604 1,386 705 65,443 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY QUANTITY UNIT UNIT RATE PAGE 6 2/20/91 ESTIMATED COST Exchanger and Connections Connection to existing piping from exchanger system Form hole through existing wall for heating pipes Black steel welded pipe: 3" diameter pipe 3" diameter fittings 3" diameter gate valve 3" diameter check valve Balance valves Control valves Insulation to Pipes: 3" diameter Pump, 79 GPM, 35/0" head, 1.5 HP 220 24 220 BB BEE & 5 5 5 72.50 195.00 26.22 46.35 325.00 325.00 121.00 89.00 7.10 925.00 145 390 5,768 1,112 2,275 "650 242 89 1,562 1,850 WASTE HEAT RECOVERY SYSTEM PAGE 7 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #1 QUANTITY UNIT RATE ESTIMATED COST Cc er_and Connections Continued Gauges 4 EA 68.50 | 274 Air separator with vent at EA 495.00 495 Glycol 110 GALS 8.80 968 look- Form hole through existing wall for heating pipes 8 EA 195.00 1,560 - Unit heaters, 117 MBH, 13 GPM 1 EA 660.00 660 Duct unit heater, 217 MBH, 24 GPM a EA 880.00 880 Ditto, 163 MBH, 18 GPM a EA 725.00 725 Heat exchanger, 223 MBH, 24 GPM 1 EA 3,920.00 3,920 Supply air galvanized metal duct 1,400 LBS 6.25 8,750 Air outlet 4 EA 75.00 300 PAGE 8 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST S''UDY 2/20/91 QUANTITY UNIT UNIT RATE ESTIMATED COST Hook-Up ___ (Continued) Black Steel Pipe and Fittings: 2" diameter pipe 140 LF 21.50 3,010 1 1/2" ditto 70 LF 17.97 1,258 2" gate and check valves 5 EA 181.00 905 1.) 1/72" (aitto i EA 134.90 135 Connect to Existing: 2" diameter 6 EA 35.00 210 1 1/2" diameter 2 EA 30.00 60 Insulation: 2" diameter 140 LF 6.25 875 1 1/2" diameter 70 LF 5.20 364 Control valves s) EA 89.00 _ 267 Temperature switch 3 EA 147.50 443 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY SCENARIO #1 QUANTITY UNIT UNIT RATE PAGE 9 2/20/91 ESTIMATED COST ook-U) Co Test and balance system 50 HRS 75.00 0. Sa Ss ent ° Generator building a LOT 2,000.00 Hook-up inter ties 4 Lots 1,500.00 TOTAL ESTIMATED COST: 3,750 2,000 6,000 51,892 0 WASTE HEAT RECOVERY SYSTEM ean 4 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 16 - ELECTRICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Motor Connections Breaker in existing power panel 5 EA 175.00 875 Connection to motor 5 EA 115.00 575 Disconnect switch 2 EA 330.00 660 3/4" EMT conduit 200 LF 3.20 ' 640 #8 copper 800 LF 0.85 680 TOTAL ESTIMATED COST: 3,430 =? Ld : = 11 WASTE HEAT RECOVERY SYSTEM PAGE COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #2 |< | —_ -~ o> 63 = WASTE HEAT RECOVERY SYSTEM PAGE 12 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #2 QUANTITY UNIT RATE ESTIMATED COST Mobilization a LoT 6,500.00 6,500 Freight 168,000 LBS 0.45 75,600 Supervision, equipment, utilities, clean site, tools and protection 14 WKS 3,500.00 49,000 Per diem 480 DAYS 95.00 45,600 Travel costs, including time in travel 8 RT 1,110.00 8,880 SUBTOTAL 185,580 Bond and insurance 2.25 % 15,359 Profit 10.00 % 69,798 TOTAL ESTIMATED COST: 270,737 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 02 - SITE WORK QUANTITY UNIT UNIT RATE PAGE 13 2/20/91 ESTIMATED COST Piped Utilities Excavate trench for arctic pipe, including backfilling and spread and level surplus 4" diameter Schedule 40 pipe with insulation and arctic pipe protection 3" ditto 2" ditto 1 1/2" ditto 1 1/4" ditto 1" ditto 4" bend 3" bend 2" bend 1 1/2" bend 1 1/4" bend 4,000 340 2,340 2,060 1,140 1,120 1,000 LF LF LF BO Fy BB EE § 12.50 75.63 55.15 41.10 35.10 31.90 28.70 293.50 215.25 167.00 151.00 132.50 50,000 25,714 129,051 84,666 40,014 35,728 28,700 1,174 861 334 604 1,060 <=> =D - — _ am , 4 WASTE HEAT RECOVERY SYSTEM Rape COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 #2 02 - SITE WORK QUANTITY UNIT UNIT RATE ESTIMATED COST Piped Utilities (Continued) 1" bend 20 EA 105.00 2,100 4" tee 2 EA 315.00 630 3" tee 2 EA 231.00 462 2" tee 2 EA 176.25 353 1 1/4" tee 8 EA 160.00 1,280 TOTAL ESTIMATED COST: 402,731 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY SCENARIO #2 15 - MECHANICAL QUANTITY UNIT UNIT RATE PAGE 15 2/20/91 ESTIMATED COST Exchanger and Connections Connection to existing piping from exchanger system Form hole through existing wall for heating pipes Black steel welded pipe: 4" diameter pipe 4" diameter fittings 4" diameter gate valve 4" diameter check valve Balance valves Control valves Insulation to Pipes: 4" diameter Pump, 109 GPM, 55’0" head, 3 HP 220 24 220 5 E BBB ES 72.50 195.00 35.30 60.00 520.00 520.00 121.00 89.00 7.70 1,585.00 145 390 7,766 1,440 3,640 1,040 242 89 1,694 3,170 PAGE 16 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 a —_ QUANTITY UNIT UNIT RATE ESTIMATED COST Exchanger and Connections (Continued) Gauges 4 EA 68.50 274 Air separator with vent 1 EA 495.00 495 Glycol 110 GALS 8.80 968 Hook-Up Form hole through existing wall for heating pipes 22 EA 195.00 4,290 Unit heaters, 117 MBH, 13 GPM 1 EA 660.00 660 Duct unit heater, 217 MBH, 24 GPM 1 EA 880.00 880 Ditto, 163 MBH, 18 GPM i EA 725.00 725 Duct coil 30 MBH, 3 GPM to new installation 4 EA 825.00 3,300 Ditto, 24 MBH, 3 GPM * EA 770.00 770 Heat exchanger, 223 MBH, 24 GPM 1 EA 3,920.00 3,920 Ditto 71 MBH, 8 GPM a EA 1,400.00 1,400 ' | => _> 4a» > = WASTE HEAT RECOVERY SYSTEM PAGE 17 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Hook-' t. Heat exchanger 64 MBH, 7 GPM a EA 1,005.00 1,005 Supply air galvanized metal duct 1,400 LBS 6.25 8,750 Air outlet 4 EA 75.00 300 Black Steel Pipe and Fittings: 2" diameter pipe 140 LF 21.50 3,010 1 1/2" ditto 70 LF 17.97 1,258 1 1/4" ditto 100 LF 12.05 1,205 1" ditto 240 LF 11.10 2,664 2" gate and check valves 5 EA 181.00 905 1 1/2" ditto aL EA 134.90 135 1 1/4" ditto 6 EA 105.00 630 1" ditto 10 EA 77.00 770 =: > = =: =_ WASTE HEAT RECOVERY SYSTEM PAGE 18 COLD BAY, ALASKA CONSTRUCTION COST STUDY . 2/20/91 SCENARIO #2 QUANTITY UNIT UNIT RATE ESTIMATED COST 15_- MECHANICAL Hook-Up __ (Continued) Black Steel Pipe and Fittings: (Continued) Connect to Existing: 2" diameter 6 EA 35.00 210 1 1/2" diameter 2 EA 30.00 60 1 1/4" diameter 4 EA 30.00 120 1" diameter 10 EA 27.50 275 Insulation: 2" diameter 140 LF 6.25 875 1 1/2" diameter 70 LF 5.20 364 1 1/4" diameter 100 LF 4.70 470 1" diameter 240 LF 4.50 1,080 Control valves 9 EA 89.00 801 Temperature switch 3 EA 147.50 443 Test and balance system 130 HRS 75.00 9,750 PAGE 19 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Controls and Instrumentation Generator building 1 LOT 2,000.00 2,000 Hook-up inter ties 11 LOTS 1,500.00 16,500 TOTAL ESTIMATED COST: 90,878 = WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 16 - ELECTRICAL C5 QUANTITY UNIT UNIT RATE PAGE 20 2/20/91 ESTIMATED COST Moto connec Ss Breaker in existing power panel Connection to motor Disconnect switch 3/4" EMT conduit #8 copper TOTAL ESTIMATED COST: 200 800 & BE SB 175.00 115.00 330.00 3.20 0.85 875 575 660 640 680 3,430 PAGE 21 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #3 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST S'TUDY SCENARIO #3 01 - GENERAL CONDITIONS QUANTITY UNIT UNIT RATE PAGE 22 2/20/91 ESTIMATED COST Mobilization Freight Supervision, equipment, utilities, clean site, tools and protection Per diem Travel costs, including time in travel SUBTOTAL Bond and insurance Profit TOTAL ESTIMATED COST: 84,000 14 320 2.25 10.00 WKS DAYS RT 6,500.00 0.45 3,500.00 95.00 1,110.00 184,638 WASTE HEAT RECOVERY SYSTEM ae COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #3 02 - SITE WORK QUANTITY UNIT UNIT RATE ESTIMATED COST Piped Utilities Excavate trench for arctic pipe, including backfilling and spread and level surplus 2,010 LF 12.50 25,125 4" diameter Schedule 40 pipe with insulation and arctic pipe protection 100 LF 75.63 7,563 3" ditto 720 LF 55.15 39,708 2" ditto 3,060 LF 41.10 125,766 1 1/2" ditto 140 LF 35.10 4,914 4" bend 4 EA 293.50 1,174 3" bend 4 EA 215.25 861 2" bend 24 EA 167.00 4,008 1 1/2" bend i 4 EA 151.00 604 4" tee 2 EA 315.00 630 3" tee 6 EA 231.00 1,386 2" tee 4 EA 176.25 705 TOTAL ESTIMATED COST: 212,444 PAGE 24 -WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 15 - MECHANICAL QUANTITY UNIT UNIT RATE - ESTIMATED COST Exchanger and Connections Connection to existing piping from exchanger system 2 EA 72.50 145 Form hole through existing wall for heating pipes 2 EA 195.00 390 Black steel welded pipe: 4" diameter pipe 220 LF 35.30 7,766 4" diameter fittings 24 EA 60.00 1,440 4" diameter gate valve 7 EA 520.00 ‘3,640 4" diameter check valve 2 EA 520.00 1,040 Balance valves 2 EA 121.00 242 Control valves 1 EA 89.00 89 Insulation to Pipes: 4" diameter 220 LF 7.70 1,694 Pump, 102 GPM, 50’0" head, 2 HP 2 EA 1,355.00 2,710 PAGE 25 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA : CONSTRUCTION COST STUDY 2/20/91 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Exchanger and Connections (Continued) Gauges 4 EA 68.50 274 Air separator with vent 1 EA 495.00 495 Glycol 110 GALS 8.80 — 968 Hook-Up Form hole through existing wall for heating pipes 10 EA 195.00 1,950 Unit heaters, 117 MBH, 13 GPM 1 EA 660.00 660 Duct unit heater, 217 MBH, 24 GPM aL EA 880.00 880 Ditto, 163 MBH, 18 GPM 1 EA 725.00 725 Heat exchanger, 223 MBH, 24 GPM 1 EA 3,920.00 3,920 Heat exchanger 139 MBH, 15 GPM 2 EA 1,350.00 1,350 Heat exchanger, double wall, 70 MBH, 8 GPM 1 EA 3,700.00 3,700 Supply air galvanized metal duct 1,400 LBS 6.25 8,750 PAGE 26 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Exchanger and Connections (Continued) Air outlet 4 EA ' 75.00 300 Black Steel Pipe and Fittings: 2" diameter pipe 220 LF 21.50 4,730 1 1/2" ditto 70 LF 17.97 1,258 2" gate and check valves 9 EA 181.00 1,629 1 1/2" ditto 1 EA 134.90 135 Connect to Existing: 2" diameter 10 EA 35.00 350 1 1/2" diameter 2 EA 30.00 60 Insulation: 2" diameter 220 LF 6.25 1,375 1 1/2" diameter 70 LF 5.20 364 Control valves 7 EA 89.00 623 7 WASTE HEAT RECOVERY SYSTEM = COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #3 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Exchanger _ and Connections (Continued) Temperature switch 3 EA 147.50 443 Test and balance system 70 HRS 75.00 5,250 Cont S_an t entatio Generator building ZL LOT 2,000.00 2,000 Hook-up inter ties 5 Lots 1,500.00 7,500 TOTAL ESTIMATED COST: 68,845 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 16 - ELECTRICAL QUANTITY UNIT UNIT RATE PAGE 28 2/20/91 ESTIMATED COST Motor Connections Breaker in existing power panel Connection to motor Disconnect switch 3/4" EMT conduit #8 copper TOTAL ESTIMATED COST: 200 800 B BB SE Go *y 175.00 115.00 330.00 3.20 0.85 875 575 660 640 680 3,430 PAGE 29 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4 WASTE HEAT RECOVERY SYSTEM PAGE 30 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4 QUANTITY UNIT RATE ESTIMATED COST Mobilization 1 LOT 6,500.00 6,500 Freight 210,000 LBS 0.45 94,500 Supervision, equipment, utilities, clean site, tools and protection 18 WKS 3,500.00 63,000 Per diem . 500 DAYS 95.00 47,500 Travel costs, including time in travel 8 RT 1,110.00 8,880 SUBTOTAL 220,380 Bond and insurance 2.25 % 19,512 Profit 10.00 % 88,670 TOTAL ESTIMATED COST: 328,562 WASTE HEAT RECOVERY SYSTEM Page a COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4 02 - SITE WORK QUANTITY UNIT UNIT RATE ESTIMATED COST ed _U tie Excavate trench for arctic pipe, including backfilling and spread and level surplus 5,070 LF 12.50 63,375 4" diameter Schedule 40 pipe with insulation and arctic pipe protection 340 LF 75.63 25,714 3" ditto 2,340 LF 55.15 129,051 2" ditto 4,200 LF 48.30 202,860 1 1/2" ditto 1,140 LF 35.10 40,014 1 1/4" ditto 1,129 LF 31.90 36,015 1" ditto 1,000 LF 28.70 28,700 4" bend 4 EA 293.50. 1,174 3" bend 8 EA 215.25 1,722 2" bend 24 EA 167.00 4,008 1 1/2" bend 4 EA 151.00 604 1 1/4" bend 8 EA 132.50 1,060 WASTE HEAT RECOVERY SYSTEM PAGE 32 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4 02 - SITE WORK : QUANTITY UNIT UNIT RATE ESTIMATED COST xz es ontinued 1" bend 20 EA 105.00 2,100 4" tee 4 EA 315.00 1,260 3" tee 8 EA 231.00 1,848 2" tee 8 EA 176.25 1,410 1 1/2" tee 4 EA 160.00 640 1 1/4" tee 2 EA 138.50 277 TOTAL ESTIMATED COST: 541,832 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY 15 - MECHANICAL QUANTITY UNIT UNIT RATE PAGE 33 2/20/91 ESTIMATED COST Exchanger and Connections Connection to existing piping from exchanger system Form hole through existing wall for heating pipes Black steel welded pipe: 4" diameter pipe 4" diameter fittings 4" diameter gate valve 4" diameter check valve Balance valves Control valves Insulation to Pipes: 4" diameter Pump, 132 GPM, 530" head, 3 HP 220 24 220 BB EBE Ee & 5 i 5 72.50 195.00 35.30 60.00 520.00 520.00 121.00 89.00 7.70 1,355.00 145 390 7,766 1,440 3,640 1,040 242 89 1,694 2,710 4 WASTE HEAT RECOVERY SYSTEM —— COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Exchanger and Connections (Continued) Gauges 4 EA 68.50 274 Air separator with vent iz EA 495.00 495 Glycol 110 GALS 8.80 968 ok-U Form hole through existing wall for heating pipes 24 EA 195.00 4,680 Unit heaters, 117 MBH, 13 GPM x EA 660.00 660 Duct unit heater, 217 MBH, 24 GPM a EA 880.00 880 Ditto, 163 MBH, 18 GPM 2 EA 725.00 725 Duct coil 30 MBH, 3 GPM to new installation 4 EA 825.00 3,300 Ditto 24 MBH, 3 GPM 1 EA 770.00 770 Heat exchanger, 223 MBH, 24 GPM 1 EA 3,920.00 3,920 Ditto 71 MBH, 8 GPM si EA 1,400.00 1,400 WASTE HEAT RECOVERY SYSTEM FAGH U5 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Hook-Up __(Continued) Heat exchanger 64 MBH, 7 GPM aL EA 1,005.00 1,005 Ditto 139 MBH, 15 GPM 1 EA 1,350.00 1,350 Heat exchanger, double wall, 70 MBH, : 8 GPM a EA 3,700.00 3,700 Supply air galvanized metal duct 1,400 LBS 6.25 8,750 Air outlet 4 EA 75.00 300 Black Steel Pipe and Fittings: 2" diameter pipe 220 LF 21.50 4,730 1 1/2" ditto 70 LF 17.97 1,258 1 1/4" ditto 100 LF 12.05 1,205 1" ditto 240 LF 11.10 2,664 2" gate and check valves 9 EA 181.00 1,629 1 1/2" ditto 1 EA 134.90 135 1 1/4" ditto 6 EA 105.00 630 1" ditto 10 EA 77.00 770 WASTE HEAT RECOVERY SYSTEM PAGE 36 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4 a a QUANTITY UNIT UNIT RATE ESTIMATED COST Hook-Up ___ (Continued) Connect to Existing: 2" diameter 10 EA 35.00 350 1 1/2" diameter 2 EA 30.00 60 1 1/4" diameter 4 EA 30.00 120 1" diameter 10 EA 27.50 275 Insulation: 2" diameter 220 LF 6.25 1305 1 1/2" diameter 70 LF 5.20 364 1 1/4" diameter 100 LF 4.70 470 1" diameter 240 LF 4.50 1,080 Control valves 13 EA 89.00 17357 Temperature switch 3 EA 147.50 443 Test and balance system 140 HRS 75.00 10,500 WASTE HEAT RECOVERY SYS'I'EM PAGE 37 COLD BAY, ALASKA CONSTRUCTION COST S'TUDY 2/20/91 SCENARIO #4 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Contro d_ Inst: entatio: Generator building 1 LOT 2,000.00 2,000 Hook-up inter ties 12 LoTS 1,500.00 18,000 TOTAL ESTIMATED COST: 101,548 WASTE HEAT RECOVERY SYSTEM oak 3 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4 16 - ELECTRICAL QUANTITY UNIT UNIT RATE ESTIMATED COST or Conne s Breaker in existing power panel 5 EA 175.00 875 Connection to motor 5 EA 115.00 575 Disconnect switch 2 EA 330.00 660 3/4" EMT conduit 200 LF 3.20 640 #8 copper 800 LF 0.85 680 TOTAL ESTIMATED COST: 3,430 WASTE HEAT RECOVERY SYSTEM HAGE 3° COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4A WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY SCENARIO #4A QUANTITY UNIT UNIT RATE PAGE 40 2/20/91 ESTIMATED COST 01 - GENERAL CONDITIONS Mobilization Freight Supervision, equipment, utilities, clean site, tools and protection Per diem Travel costs, including time in travel SUBTOTAL Bond and insurance Profit TOTAL ESTIMATED COST: a: 225,000 18 510 2.25 10.00 LOT LBS WKS DAYS RT 6,500.00 0.45 3,500.00 95.00 1,110.00 6,500 101,250 63,000 48,450 347,913 WASTE HEAT RECOVERY SYSTEM siceieadliaias COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4A 02 - SITE WORK QUANTITY UNIT UNIT RATE ESTIMATED COST Piped Utilities Excavate trench for arctic pipe, including backfilling and spread and level surplus 5,070 LF 12.50 63,375 5" diameter Schedule 40 pipe with insulation and arctic pipe protection 1,640 LF 94.50 154,980 4" ditto 240 LF 75.63 18,151 3" ditto 2,340 LF 55.15) 129,051 2" ditto 2,660 LF 48.30 128,478 1 1/2" ditto 1,140 LF 35.10 40,014 1 1/4" ditto ‘ 1,120 LF 31.90 35,728 1" ditto 1,000 LF 28.70 28,700 5" bend 8 EA 390.00 3,120 4" bend . 4 EA 293.50 1,174 3" bend 24 EA 215.25 5,166 2" bend 8 EA 167.00 1,336 “= WASTE HEAT RECOVERY SYSTEM PAGE 42 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4A 02 - SITE WORK QUANTITY UNIT UNIT RATE ESTIMATED COST Piped Utilities (Continued) 1 1/2" bend 4 EA 151.00 604 1 1/4" bend 8 EA 132.50 1,060 1" bend 20 EA 105.00 ‘2,100 5" tee 4 EA 410.00 1,640 4" tee 8 EA 315.00 2,520 3" tee 8 EA 231.00 1,848 2" tee 8 EA 176.25 1,410 1 1/2" tee 4 EA 160.00 640 1 1/4" tee 2 EA 138.50 277 TOTAL ESTIMATED COST: 621,372 WASTE HEAT RECOVERY SYSTEM COLD BAY, ALASKA CONSTRUCTION COST STUDY SCENARIO #4A UNIT UNIT RATE PAGE 43 2/20/91 ESTIMATED COST 15 - MECHANICAL QUANTITY nger a onnections Connection to existing piping from exchanger system Form hole through existing wall for heating pipes Black steel welded pipe: 5" diameter pipe 5" diameter fittings 5" diameter gate valve 5" diameter check valve Balance valves Control valves Insulation to Pipes: 5" diameter Pump, 132 GPM, 53/0" head, 3 HP 220 24 220 BB BSB ES & 5 Ry 5 72.50 195.00 44.30 79.20 ~ 860.00 860.00 121.00 89.00 8.50 1,355.00 145 390 9,746 1,901 6,020 1,720 242 89 1,870 2,710 WASTE HEAT RECOVERY SYSTEM PAGE 44 COLD BAY, ALASKA © CONSTRUCTION COST S'TUDY 2/20/91 SCENARIO #4A 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST Exchanger and Connections (Continued) Gauges 4 EA 68.50 274 Air separator with vent 1 EA ‘495.00 495 Glycol 165 GALS 8.80 1,452 Hook-Up Form hole through existing wall for heating pipes 24 EA 195.00 4,680 Unit heaters, 117 MBH, 13 GPM 1 EA 660.00 . 660 Duct unit heater, 217 MBH, 24 GPM aL EA 880.00 880 Ditto, 163 MBH, 18 GPM 1 EA 725.00 725 Duct coil 30 MBH, 3 GPM to new installation 4 EA 825.00 3,300 Ditto 24 MBH, 3 GPM 2 EA 770.00 770 Heat exchanger, 223 MBH, 24 GPM 1 EA 3,920.00 3,920 Ditto 71 MBH, 8 GPM Zz EA 1,400.00 1,400 WASTE HEAT RECOVERY SYSTEM PAGE 45 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4A 15 - MECHANICAL QUANTITY UNIT UNIT RATE ESTIMATED COST look-U. Cont. e Heat exchanger 64 MBH, 7 GPM 1 EA 1,005.00 1,005 Ditto 139 MBH, 15 GPM x EA 1,350.00 1,350 Heat exchanger, double wall, 70 MBH, 8 GPM 1 EA 3,700.00 3,700 Supply air galvanized metal duct 1,400 LBS 6.25 8,750 Air outlet 4 EA 75.00 300 Black Steel Pipe and Fittings: 2" diameter pipe 220 LF 21.50 4,730 1 1/2" ditto 70 LF 17.97 1,258 1. 174%" ditto 100 LF 12.05 1,205 1" ditto 240 LF 11.10 2,664 2" gate and check valves 9 EA 181.00 1,629 1172" ditto L EA 134.90 235 1 1/4" ditto 6 EA 105.00 630 1” ditto 10 EA 77.00 770 WASTE HEAT RECOVERY SYSTEM PAGE 46 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4A 15 - MECHANICAL QUANTITY | UNIT UNIT RATE ESTIMATED COST Hook-Up __ (Continued) Connect to Existing: 2" diameter 10 EA 35.00 350 1 1/2" diameter 2 EA 30.00 60 1 1/4" diameter 4 EA 30.00 120 1" diameter 10 EA 27.50 275 Insulation: 2" diameter 220 LF 6.25 1,375 1 1/2" diameter 70 LF 5.20 364 1 1/4" diameter 100 LF 4.70 470 1" diameter 240 LF 4.50 1,080 Control valves 13 EA 89.00 1,157 Temperature switch 3 EA 147.50 443 Test and balance system 140 HRS 75.00 10,500 WASTE HEAT RECOVERY SYSTEM PAGE 47 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4A QUANTITY UNIT UNIT RATE ESTIMATED COST Controls and Instrumentation Generator building az LOT 2,000.00 2,000 Hook-up inter ties 12 LoTS 1,500.00 18,000 TOTAL ESTIMATED COST: 107,709 WASTE HEAT RECOVERY SYS'TEM PAGE 48 COLD BAY, ALASKA CONSTRUCTION COST STUDY 2/20/91 SCENARIO #4A QUANTITY UNIT UNIT RATE ESTIMATED COST Motor Connections Breaker in existing power panel 5 EA 175.00 875 Connection to motor 5 EA 115.00 575 Disconnect switch 2 EA 330.00 660 3/4" EMT conduit 200 LF 3.20 640 #8 copper . 800 LF 0.85 680 TOTAL ESTIMATED COST: 3,430 APPENDIX 3 RAW DATA H_D_DAY.XLS HEATING DEGREE DAY WEATHER DATA Note: Community names in lower case are close to site and are used when actual info is not available. MONTH [HDD [HDD [HDD MONTH [HDD [HDD [HOD MONTH [HDD [HOD [HOD MEAN | _1988| 1989 MEAN | 1988] 1989) MEAN | 1988] 1989) HOONAH COLD BAY CORDOVA Juneau > JAN 1087/ 1217| JAN 1126 1318 JAN 1157 1255| FEB 1002} 1144 FEB 1055 a) FEB 967| 1017| MAR 936| 1097| MAR 1098 1034 MAR 1001 1024! APR 768 663} APR 952] 917 APR 809 708 MAY 639] 491 MAY 782 751] MAY 637| 584 JUN 412| 283 JUN 578 564 JUN 434 403 JUL 301] 338] 159 JUL 448, 427| 432! JUL 356] _315| 202 AUG 375| 338,210 AUG 416] 423 359 AUG 360| 324] 236 SEP 520} 497] 370; SEP 517| 537) 447) SEP 503) 481 400 oct 75th e4i| 713 OCT 779|___755|__ 695 OCT 737|___ 665717 NOV 40[ 855) NOV 907|___970| __975| NOV 927|___873| 990 DEC 1034] 1040 DEC 1075| 1050| __1054["__—[DEC 1115| 950] 868 TOTAL 8855 TOTAL 9733} 9374 TOTAL 9003 8404] ANVIK, RUSSIAN MISSION, & LOWER KALSKAG C Holy Cross —-----------> f Aniak ——--------------> St. Marys ------------------> JAN 2018 JAN 1958 2508 JAN 1739 2370 FEB 1740 FEB 1617 i) FEB 1627 1128] MAR 1683 MAR 1605 7 MAR 1541 1418 1157 APR 1163 APR 1185 1087 656). MAY 715 764 MAY 697, 868 325| JUN | __380 338[ [JUN 422] 361 243| JUL 310] ‘112 JUL 200[143[ 367 350 AUG 305| 425 AUG 357|__3i7| 380 583 SEP 619] 697|__—Sit SEP 601] _554{__527 1123 Oct 1121] 1247 OCT 1072| 1180] 1047 1552 NOV 1488[__ 1823 NOV 1436| 1671] 1650 2033 DEC 1986 DEC 1810] 1756] 1566 13463 TOTAL 13357| TOTAL 12786 12769 Note: for analysis, use Holy Cross Data ‘| WHITE MOUNTAIN ie Unalakleet -------—--------> Nome -----—---------> JAN 1855) _ [JAN 1809] | | FEB 1727 FEB 1701] MAR 1692| MAR 1767| APR 1294] APR 1424 |MAY 834 MAY ss JUN 532] JUN 565 JUL 386| JUL 430 [i i AUG 393 AUG 463] SEP 662] SEP 676 OCT 1164) ocT 1140) NOV 1505| NOV [1447 pee ae __|DEC 1818| oT 13919] [ TOTAL 14138) Note: St. Marys is closer than Unalakleet to Kotlik but has less HDD than typical coastal communities. Unalakleet is the closest listed coastal commi to Kotlik. Nome is the closest listed coastal community to White Mountain. Engine Heat balance charts for modern diesel engines indicate one-third of fuel required for engine operation results in heat absorbed by the jacket water. This heat must be totally removed to assure dependable engine performance. FUEL % LOAD TYPICAL HEAT BALANCE DIESEL ENGINE (PRECOMBUSTION CHAMBER — TURBO-CHARGED AFTERCOOLER) Figure 101 The amount of heat removed is regulated by engine thermostats. They permit efficient engine operation by disconnecting the exter- nal cooling system until jacket water temper- atures exceed 175°F (79°C). Never operate without thermostats when utilizing the nor- mal 175°F (79°C) cooling system. EXCERPT FRom “CATERPILLAR APPLICATION AND IWSTALLATION ” MANUAL (AUG. ‘gs) - PC. CC. DEMONSTRATES THAT BETWEEN 607, £ 1007, LOAD , PERCEWT OF EWERLY “To JACKET WATER IS ESSENTIALLY CONSTANT . PERCENTAGES OBTAWED FRon PRIME Load DATA SHOULD BE APPLICAGLE IN “THIS RACE. GENSETS.XLS (GENSET DATA psd LOCATION _|GENSET _ HOONAH, __|CATAPILER 3512 @ 851 KW PRIME (W/O FAN) - NOTE 1 C. BAY INPUT: Te: 143198] btu/min OUTPUT: | Work: 52320| 36% Exhaust: | 52832} 37% [ Radiation: — 6369| 4% Water: 32075] 22% Aftercooler:| [__3697|btumin _| (included in jacket water) —-> Ol Oilcooler: 7166|btu/min {ireuded in jacket water) —> ) Total: 143596] btu/min = WATER _| % LOAD | KW | GPH |KWH/GAL| BTU/HR |BTU/KWH| BTU/GAL 100] 851/620 13.7, __1924500| __2261 31049] 75| 638 50) 426) | uf a C. BAY CATAPILER 3512 @ 683 KW PRIME (W/O FAN) - NOTE 2 INPUT: 121417|btu/min OUTPUT: |Work: 43392| 36% Exhaust: 44984 37% Radiation: 6028] 5% Water: : 27070 22% Attercooler: 1934[btu/min _| (included in jacket water) ----> ie 0 Oilcooler:_| 6085|btu/min | (included in jacket water) —-> 0 Total: 1 121474} btu/min WATER |_ % LOAD | _KW_| GPH |KWH/GAL| BTU/HR |BTU/KWH| BTU/GAL 7 tool 683|_—52.6 13.0[ 1624200] 2378] 30906) =I : 75| 512 50] 342 L HOONAH CATAPILER D398 @ 600 KW PRIME (W/O FAN) INPUT: 48.2| gph * 19590] btu/b hhv * 7.076|Ib/gal / btu/min OUTPUT: |Work: 636]kw engine * 3412|btu/kwh / 33% Exhaust: 34% Radiation: 5% Water: 29% Total: * 111067] btu/min WATER % LOAD | KW | GPH [KWH/GAL] BTU/HR |BTU/KWH| BTU/GAL 113] 675] «56.1 12.0| _ 2190000 3244) 39037, too] 600] 48.2 12.4] 1932000) 3220) 40083} 75] 450| 36.1 12.5] 50| 300] _—25.3) 11.9] L. KALSKAG [CATAPILER 3406 TA @ 210 KW PRIME (W/O FAN) - NOTE 3 INPUT: 16.5] gph * 19590] btu/b hhv * 7.076] Ib/gal / : 60|minfhr =| 38120|btu/min OUTPUT: [Work: 224|kw engine * 3412] btu/kwh / 60| min/hr = 12738] 33% Exhaust: | 13700 36% Radiation: 1900] 5% Water: 10000) 26% Total: 38338) btu/min WATER % LOAD | KW | GPH |KWH/GAL| BTU/HR |BTU/KWH| BTU/GAL |__| 124[ 260] 20.6 12.6] 726000 27921 as24a|_ | 100{ 210] —«16.5| 12.7| 600000) 2857| 36364) Ti 75| 158] —«12.6 12.5] j 50| 105] 9.0) 11.7| GENSETS.XLS L. KALSKAG |CATAPILER D342 T @ 160 KW PRIME (W/O FAN) - NOTE 4 INPUT: 12.5[gph *. 19590] btu/b hhv * 7.076 Ib/gal / 60|min/fnr =| 28879] btu/min OUTPUT: |Work: 235|bhp engine * 2545|btu/ohp-hr/ | _60[min/nr = 9969] 34% Exhaust: 1340|CFM @ 710) F > 8157, 28% Radiation: 2100 7% Water: 9400 32% Total: 4 _| i Eee 29626) btu/min WATER |_| % LOAD | KW | GPH |KWH/GAL] BTU/HR_ |BTU/KWH| BTU/GAL 143] 229) tool t60o|_12.5 12.8| _564000| 3525] —~—=—«45120) T_ 75| 120 9.8 12.2 50/80) 7.0 11.4 KOTLIK CATAPILER 3306 TA @ 155 KW PRIME (W/O FAN) - NOTE 5 =| INPUT: 12.3] gph * 19590] btu/b hhv * 7.076] Ib/gal / | 60] 28417|btu/min OUTPUT: [Work: 167|kw engine * 3412|btu/kwh / 60| min/hr = 9497| 52% Exhaust: | 10500) 57% Radiation: 1700} 9% Water: 6800| 37% Total: 28497] btu/min WATER _|_ % LOAD | KW | GPH |KWH/GAL| BTU/HR |BTU/KWH| BTU/GAL 116] _180/_—«*14.5) 12.4 468000] 2600! 32276 tool 155] «12.3 12.6 408000] 2632) 33171 75|__116| 9.3] 125 _ 50] 78| 65 11.9) R. MISSION [CATAPILER 3304T @ 90 KW PRIME (W/O FAN) - NOTE 6 INPUT: 7.6[gph * 19590] btu/lb hhv * 7.076| 7 60|min/nr = 17558] btu/min OUTPUT: |Work: ‘99|kw engine * 3412|btu/kwh / 60|min/nr = 5630| _31%| “_|Exhaust: | 5801 31% Radiation: _f | 1990[ _11%| Water: 5005 27%) Total: 18426) btu/min WATER % LOAD | KW | GPH [KWH/GAL] BTU/HR |BTU/KWH| BTUu/GAL | | | 117|__ 105 9.2 11.4] 341220| 3250 37089) oo] 90) 76 11.8 300300] 3337 39513| 75] _—68 5.6 12.1 50) 45) 3.9] 11.5 | R. MISSION, |CUMMINS LTA 10 @ 110 KW PRIME (W/O FAN) - NOTES 7 & 8 7 WHITE MT. _|INPUT: 8.0} gph * 19590] btu/b hhv * 7.076} Ib/gal / min/hr = 18536] btu/min g OUTPUT: |Work: 166/bhp engine * 2545] btu/bhp-hr / 60] min/hr = 7042) 38% Exhaust: 9382) * 166} / 235) = 6627 36% Radiation: 745) * 166) / 235) = al 526) 3% Water: 6251] * 166} / 235) = 4416 24%) Total: L 18611] btu/min WATER % LOAD | KW | GPH |KWH/GAL| BTU/HR_ |BTU/KWH| BTU/GAL a i too] 110 8.0 13.8] 264936 2409) 33117, [ 75|___83 | 5o|_55 — ANVIK ALLIS CHALMERS 11000 @ 100 KW PRIME (W/ FAN) - NOTE 9 _| INPUT: 8.5|gph * 19590) btu/Ib hhv * 7.076) Ib/gal / 60| min/hr = 19638] btu/min OUTPUT: |Work: 150} bhp engine * 2545) btu/bhp-hr / 60] min/hr = |_ 6363 32% Exhaust: i | 4 Radiation: 2 Water: 150|bhp engine * 32|btu/bhp-min = 4800] 24% Total: Page 2 GENSETS.XLS WATER a % LOAD | KW | GPH [KWH/GAL] BTU/HR |BTU/KWH| BTU/GAL 125] 125 ea 12.1] _360000[ _2880|_— 34951 100; 100/85 11.8| 288000 2880 33882 75) 75| 6.7| 11.2] i 50| 50) 5.0| 10.0] | i= | | ANVIK ALLIS CHALMERS 3500 @ 60 KW PRIME (W/ ra NOTE 10 |" aT TINPUT: 5.1/9 9590]btulb hhv* | _7.076|Ib/gal / 60|minfnr =| __11783|btu/min OUTPUT: |Work: 87|bhpengine*|___2545|btuohp-hr/ | 60|minihr=| 3691 31% Exhaust: 2 Radiation: 2 Water: 87|bhp engine * 32|btu/ohp-min = 2784 24% is Total: ?2|btu/min =a WATER % LOAD | KW | GPH |KWH/GAL| BTU/HR |BTU/KWH| BTU/GAL 125] 75 SiG. 7 11.2) 208800|_—-2784 31164) [100] 60] 5.2 11.5] __167040| __2784 32123] 75| _45|—S3.8 11.8 mr) 27] 14.1 ili ANVIK ALLIS CHALMERS 2900 @ 50 KW PRIME (W/ FAN) - NOTE 10 INPUT: .26] gph * 19590] btub hhv * 7.076||b/gal / 60|min/hr = 9842|btu/min OUTPUT: |Work: 73| bhp engine * 2545|btwbhp-hr/ | 60|min/hr = 3097; 31% Exhaust: | am al Radiation: 7 Water: 73|bhp engine * 32|btu/ohp-min = 2336] 24% Total: ?\btu/min WATER I % LOAD | KW | GPH |KWH/GAL| BTU/HR |[BTU/KWH| BTU/GAL 120 60] 5.2 11.5) 168192 2803 32345] - 100 50| 4.26 11.7 140160) 2803 32901 75| 383.23 11.6 so] as] Sa 10.9] ail al: | ISUMMARY RESULTS: WEIGHTED SITE LOCATION |GENSET BTU/KWH| BTU/GAL| WGHT % |BTU/KWH] BTU/GAL ps eae = HOONAH __|CAT D398 3220| 40083) _ 3|___ 2387] 31953) CAT D398) [3220] 40083 5| CAT 3512 ( KW) 2261| 31049) 90 a C. BAY CAT 3512 (683 2378| 30905] 33] 2339) 30953) CAT 3512 (851 KW) 2261| 31049) 33 CAT 3512 (683 2378] 30905] 33 L._KALSKAG |CAT 0342T 3525] 45120] of 2024 37239] t CAT 3406TA 2857| __ 36364) 90] CAT D342T 3525| __ 45120 10] titi: |i | esse | R. MISSION [CUMMINS LTA10 2409[ __ 33117| 50] =a 36315) =| CAT 3304T 3337] 39513) 25] CAT soft 3337| 39513) a a ANVIK ‘AC 11000 | 2p80| 33882 33| 2822) 32969) ‘AC 3500 2784) 32123] 33] ‘AC 2900 2803] 32901 33] | KOTLIK [CAT 3306TA 263233171] sol 2632] 33171 CAT 3306TA 2632| 33171 50 aft Page 3 GENSETS.XLS CUMMINS LTA10 DETROIT 4-71T 0 DETROIT 371 Engine input and output are from manufacturer's data except as shown. KWH/GAL, BTU/KWH, and 1) Fuel use is listed in manufacturer's data as 143198 btu/min input. Fuel use in gph is calculated as btw/min / BTU/GAL are calculated. 19590 btub hhv / 7.076 Ib/gal * 60 min/nr_= gph. 2) Fuel use is listed in manufacturer's data as 121417 btu/min input. Fuel use in gph is calculated as btu/min / 19590 btu/b hhv / 7.076 Ib/gal * 60 min/hr_= gph. 3) Nameplate info recorded on engine #2 as 3406DI however AVEC data lists 375HP/257KW for this genset which corresponds to a 3406TA. A 3406DITA is rated at 433HP/310KW. Generator nameplate data lists 350KW prime. 3406TA data is used here. ie | 4) One genset nameplate info recorded as D342turbo and one as D342PC. They have a skid mounted fan and remote radiator, respectively. Typical AVEC data for D342T with fan is 335HP/223KW peak and without fan is 335HP/229KW peak. This corresponds to a D342T. D342T data without fan is used here. 5) Nameplate info recorded on engines as 3306DI and on generators as 15OKW prime. Both gensets have skid mounted fan, 150 KW. with fan corresponds to a 3306TA. 3306TA data without fan is used here. 8) Two gensets nameplate info recorded as 3304DT however AVEC data lists 3304B at 192HP/128KW peak which exceeds manufacturer's standby data. Both gensets have skid mounted fan. 3304T data without fan is used here. : | — rr At Russion Mission, nameplate info recorded on engine as Cummins LTA10 and on generator as 5 110KW prime. Typical AVEC data for LTA10 is 276HP/189KW and for LTA10L (low speed 1200 rpm) is 184HP/126KW peak. Only output data available for fuel & power is from one publication and heat output at 1800 rpm only from another. They are very questionable. Values used are all calculated from 1800 rpm values reduced proportionally from 235HP to 166HP (which corresponds to 110KW prime). 8) This is a 1200 rpm genset. Values used are the same as described above. 9) { amaclabe i icandod oiceiaiae me AC11000 and on generator as 1SOKW ._ 7 AVEC data for ‘AC11000 is 195HP/130KW peak. This is an 1800 rpm genset. Only output data available is for fuel vs. generated KW electrical power from one publication and heat output at 2200 rpm only from another (constant 32 btu/ohp-min.). Fuel vs. engine power is given in the 2nd publication and does not correlate well with tst_| At White Mountain, nameplate info recorded on engine as Cummins LTA10 and on generator as 140KW prime. publication. All values are questionable. Except for fuel vs. generated KW electrical power, all values used are calculated. | | | [ | | | | I 10) Nameplate info recorded on engines as AC2900 and AC3500. These are 1800 rpm gensets. Typical AVEC data for AC3500 is 159HP/105KW peak however this genset reportedly does not meet normal weekday loads which peak at less than 90OKW. The AC2900 is even smaller. For purposes of this report the gensets are 2600 rpm only and 2400 rpm only , respectively from another (constant 32 btu/bhp-min.). Fuel vs. line power is given in the 2nd publication and does not correlate well with 1st publication. All values are vi questionable. Except for fuel vs. generated KW electrical power, all values used are calculated. t {treated DES-60 and DES-50, respectively, These gensets use the AC2900 ine. For each ‘ont output data available is for fuel vs. generated KW electrical power from one publication and heat output at PIPELOSS.XLS PIPE HEAT LOSS| [iit BURIED PIPING, SINGLE PIPE, 3° PU INSULATION K=|_ 0.014] Bustthr-°F| R=|in(Do/Dpy/2-Pi-K Qh=|(Tp-ToyR Dp (in) Rifthr°F| _QA(Btu 7Btu) Tart) =| L 1.32 7.32| 19.5 9.2 EE 1.66 7.66 17.4) 10.4 Te [ S|IPS 1.9] 79 y 11.1 2|IPS 2.38) 8.38 14.3 12.6 3|IPS 3.5 95 11.4 15.9 4(IPS 45 10.5) 96 18.7| 5|IPS 5.56] 11.56) 83 21.6 6|IPS 6.63] 12.63) 73 24.6) alIPS 8.63] 14.63) 6.0 30.0 aah BURIED PIPING, SINGLE PIPE, 2° PU INSULATION iIPS 1.32 5.32| 15.8 11.4 1.25/IPS 1.66 5.66| 13.9 12.9 15iIPs | 1.9 5.9 12.9 14.0) 2iIPs 2.38 6.38 11.2 16.1 SIPS 3.5 7.5| 87 20.8) 4liPs 45 85] 7.2 24.9) 5|IPS 5.56 9.56 6.2 29.2! | 6IPS 6.63| 10.63 5.4 33.5 | i | ABOVE GRADE PIPING, SINGLE PIPE, 1.5" FG INSULATION | K=|_ 0.023] Btu/tt-hr-°F| R=|In(Do/Dpy/2:Pi:K Q-=|(Tp-Toy/R To=|__80|°F (room) | Tp=|_180|°F (fluid) TIPS 1.32 4.32 8.2 12.2 1.25|IPS 1.66 4.66 74 14.0) | 1.5|IPS 1.9) 49 6el (15.3) 2iIPS 2.38] 5.38 5.6) 17.7 SIPS 3.5 65 43 23.3) 4lIPS 45] 75 35 28.3} [ SIPS 5.56 8.56 3.0 33.5 6IPS 6.63 9.63 26 38.7| BIPS e63| 11.63 24 48.4 ABOVE GRADE PIPING, SINGLE PIPE, NO INSULATION Q/ from ASHRAE Fundamentals (1989), Chapter 22, Table 9 & 10 To=| _80|°F (room) T [ Tp=|_180|°F (fiuid) | On(Btu