Loading...
HomeMy WebLinkAboutTogiak Water Cooling Radiators 1988our ow es wre & b> j CATALOG 1779 « . e@ Supersedes Catalog 1777 cee & “\ on t . -~r-¢ Ree : a "Cs i # te STANDARD HC WATER COOLING RADIATORS with OSHA guards OQ Teer wre DULE Z ea. | me HC 33D5Q waa (Plumbed m series e 49 models in 10 frame sizes e available from stock e heavy duty industrial construction (100 mph 45 m/s wind) e -Q quiet option e “two circuit” ‘ variation e Ye YOUNG RADIATOR COMPANY 2825 Four Mile Road e Racine, Wisconsin 53404 Plants at: Racine, WI, Mattoon, IL and Centerville, IA ——_ a ~ © 1979 — Young Radiator Company young STANDARD HC featur 1 OSHA guards) FEATURES © copper fins and solder coated yellow brass tubes resist corrosion. ¢ airfoil, aluminum fan rides on fixed center bearing allowing precision tip clearance in shroud and minimum fan horsepower. ¢ deep plenum chamber is braced allow- ing even air distribution without sheet- metal vibration. ® vertical air discharge minimizes ap- parent sound level and provides con- stant performance independent of wind direction. © specially designed, Q-quiet versions of all STANDARD HC series are available. all-steel structure is capable of with- standing 100 mph wind load. * core is pitched to allow draining with standard vents and drains. e slotted mounting holes allow cooling Coils to expand freely with temperature change. e industrial guards are provided for belts, fan and core in accordance with OSHA. ¢ standard connections are male NPT with screw-on flange optional. ¢ lifting lugs are supplied with unit. ¢ removable manifolds allow core in- spection. Fig. 2 Ratings of all radiator models have been established by computer using wind tunnel and unit test data. Sound levels are predicted from extensive tests. 15m /applications S Fig. 3 Clean design and sturdy construction characterize STANDARD HC Radiators. Assembly from stock components assures quick delivery for all models except “two circuit” versions which require a core made to order. APPLICATIONS STANDARD HC is designed for low Pressure water cooling systems. ENGINES e jacket water © aftercooler water AIR COMPRESSORS e jacket water © aftercooler water SECONDARY CIRCUITS ® quench tanks reduction gears torque converters INDUSTRIAL SYSTEMS © eddy current couplings © dynamometers ¢ intermediate coolant for process heat machinery exchangers hydraulic circuits ¢ induction furnaces lube oil Fig. 4 Vertical air discharge on all STANDARD HC models provides consistent radiator performance independent of wind direc- tion. Temperature control can be accomplished by thermo- static motor starter, manual or automatic shutters. Design Patent No. 235,347 STANDA ) HC drives/access ies Young DRIVES Fig. 5 DIRECT MOTOR DRIVE (series 11D through 54D) Smaller models utilize fan mounted directly on a motor shaft to simplify construction and eliminate belt main- tenance. Universal motor mounts permit field uprating of many models using the standard, variable pitch fan. The entire fan drive system is frame mounted for low cost radiator installation. Wire fan guard conforms to OSHA. Fig. 6 VEE-BELT DRIVE (series 55V through 116V) Larger models have fans which are belt driven to main- tain acceptable fan tip speeds using stock motors. The aluminum airfoil fan is centered in a tight shroud which combines with a deep plenum chamber to provide even air distribution and efficient fan operation. Guard screens on four sides of unit conform to OSHA. ACCESSORIES SHUTTERS —to limit air flow, especially in winter, to prevent freezing, accelerate warm-up, and increase cycle time of temperature control systems; thereby prolonging core life. AUTOMATIC SHUTTER CONTROLS—electrically mod- ulated shutters controlled by a sensitive element at the STANDARD HC inlet or outlet maintain a stable tem- perature of the circulating fluid. AUTOMATIC MOTOR CONTROLS — thermostatically operated electric motors (one or two speed) minimize fan power used and provide simple operation. Superior temperature control can be achieved when used in con- junction with shutters or a by-pass type thermostat. PRESSURIZED SURGE TANK — for water systems to contain temperature induced volume changes. Avail- able in 8, 20 and 28 gallon sizes with sight glass and NPT connections for remote mounting or factory as- sembly on a STANDARD HC. FLANGE CONNECTION — screw-on type for compati- bility with existing or planned plumbing systems. MOTOR — 3@-60Hz-230/460V one speed, class B in- sulation, enclosed type is standard but other configura- tions are available with non-standard frequencies, volt- ages, speeds, insulation or enclosure based on com- patibility of motor frame size. _ Young s~“NDARD HC technir~| data TABLE 1 METRIC CONVERSIONS | VARIABLE PREFERRED ALTERNATE CONVERSION ‘St_UNIT ABBREVIATION} UNIT ABBREVIATION |MULTIPLIER® * length metre m millimetre mm 0.001 kilogram kg gram & 0.001 second s hour* hr 0.0002777 energy joule J calorie* cal 4.187 force newton N kilogram-force* . ket 9.81 power watt Ww joule/second J/s 1.0 pressure newton /metre? N/m? kilopascal kPa 1000 volume flow rate |“USe ong m/s litres \ 0.001 volume flow rate |“Ubic centimetre/ cm?/s _|litre* ' 1000 acceleration metre/second? m/s? _ - _ Explanation of Metric Nomenclature This cation is dual dimensioned with the primary units being U. 8. customary (bold face type) and the ondary dimensions being SI ‘ic as defined in ASTM Designation: E380. Strict conformance to the SI metric standard produces some unfamiliar units in the tables and charts. Particular note should be made of the SI metric units of CAPACITY FACTOR (J/s-C = W/C) and SHIPPING WEIGHT (N). In the former case, the Joule (J) is the preferred unit of heat energy instead of the calorie and the preferred unit of weight or force is the Newton instead of the kilogram-force. Mass is related to force by the formula: force (N) = mass (g) x acceleration (9.8 m/s?). For refer- ence, a tabulation of the metric units used in this catalog is provided as well as selected conversions to other metric units some of which do not conform to the SI standard. *does not conform to S| metric standard **to convert to preferred, multiply alternate by CONVERSION MULTIPLIER TABLE 2 STANDARD HC PERFORMANCE AND DESCRIPTION T CAPACITY SOUND WATER | SHIPPING STANDARD| FACTOR WATER FLOW, gpm I/s FAN LEVEL VOLUME WEIGHT Btu_ J | DERATE AIR FLOW | POWER | TIP SPEED [ROTATION] dB(A) @ eae min-F s-C 10% min max cim m/s [hp kw rpm 25 ft 8m | 94! | » N 2 18 | 80 51 | 290 183 os 2040 | 28) 68) | caey (os) | a0) (os)| 7400 35] 2 1.5 | 12370 628] 1750 74 | 8/16 30/60 |700 3120 2ap3.| 130 ~<4110| 36 23 | 100 63 | 360 227 | 10300 49/3 22 80 22D | 170 5440 |(18) (1.1) | (50) (3.2) | 180 11.4 | 13800 65| 5 3.7 | 14660 74.5) 1750 82 |12/20 45/75 | 900 4000 ( || sans] 215 6700 17600 83/5 37 35 pee 3307 ; || 240 7700} 42 26 | 115 7.3 | 420 265 | 20400 96/75. 56| 16490 63.8] 1750 a6 | 17/25 64/95 [1100 4900 iC 33010" | 265 8400 le 22700 10.7| 10 7.5 88 w 44p7__| 295 9300 24500 116/75 56 79 = Wy | 4ap7 | 295 9800 | gz 3.0 | 130 8.2 | 480 303] 36000 123| 10 75 | 12750 64.8] 1160 go (| 22/30 83/110 1600 7120 Mor oe 54D7__| 350 11100 29000 137/75 5.6 81 sapi0 | 385 12200|50 3.2 | 140 88 | 500 31.5| 32000 151/10 7.5 | 14580 74.1| 1160 83 | 28/36 110/140 2400 10680 54D15 | 430 13600 37000 175|15 11 85 S5v15 | 470 14900 40000 169/15 11 85 ssv20 | 510 16100|57 3.6 | 155 9.8 | 570 36.0| 44000 208/20 15 | 15000 76.2) 1061 86 | 31/51 120/200|2700 12020 55v25 | 550 17400 48000 227 | 25 19 87 we [ie set mes i 19000 1 k 1 8 G5V20 | 600 19000 | 57 3.6 | 155 9.8 | 570 36.0| S500 260| 28 19 | 18000 76.2) 954 be | 39/59. 150/220 |8200 14240 65V30 | 680 21600 59000 279| 30 22 87 | elo ae aie E 5 22800 6 ry 19 gsv2s | 720 22800 |s7 36 | 155 98 | 570 36.0| 64000 302| 30 22 | 18000 76.2] 984 8 | 47/67 180/250|3500 15580 85v40 | 820 26000 71000 33.5| 40 30 88 oe |S oe meals g : 200 z 2 seyee e358 29289 | 60 3.8 | 210 13.4 | 770 49.3| B7000 411] 40 30 | 18000 76.2) 707 85 _| 79/107 300/400|5500 23400 gevso__|1080 34100 | 93000 43.9| 50 37 87 | | 116v30 [1180 37500 86000 40.6| 30 22 85 116v40 {1300 41300 | 80 5.1 | 280 17.9 | 1030 66.0 | 95500 45.1] 40 30 | 15000 76.2| 707 86 | 92/120 350/450|6300 28040] 11650 |1370 43300 104000 49.1] 5037 87 NOTE A: STANDARD HC will operate on 3-50Hz-380V electricity. CAPACITY FACTOR is NOTE E: To estimate sound level at distance other than 25 feet 8 metres from radiator, add OTE B: NOTE C: NOTE D: reduced by 15%, AIR FLOW by 20%, POWER by 40%, ROTATION by 17% and SOUND LEVEL by 5 dB(A). . Motors are totally enclosed 39-60Hz-230/460V. 200V and 575V are optional. 120/208V is available. WATER FLOW figures in parentheses refer to units piped for two pass water flow. Two WATER VOLUME figures refer to radiator without and with surge tank respectively. TABLE 3 dB(A) for each halving of distance or subtract 6 dB(A) for each doubling of distance. Add 5 dB(A) for observer located directly above or below radiator. NOTE F: CAPACITY FACTOR, WATER FLOW and WATER VOLUME are roughly proportioned by face area for ‘‘two circuit’’ variations of STANDARD HC. Model suffix of * nd a ‘percent core area for the primary circuit’’ designates a ‘‘two circuit'’ model variation such as T60 in model 65V15QT60. All models are available with T40, T50, 160, 167, T75 and T83 splits. WATER PRESSURE LOSS (with 50% EG @ 180F 82C)—psi kPa | ne WATER FLOW, gpm |/s .2 [100 63 [150 95 | 200 126 75.8 | 300 19.0 | 400 25.2] 500 31.5 | 600 37.8 | 800 50.4 [1000 63.0 a 07 [06 41 [12 63| 22 15 | 33 48. 33 | tip-2P [05 34/18 12 [40 26 220-4P | 01 0705 34] 41 76 my ai 2 [4a 30 eat a LAL et 22p-2P_ [04 28115 10 [32 22 39 33D O1 07 [02 14 [05 34 62| 14 tO [21 15 [36 25 44D O01 o7 [02 14 [05 34 62/13 90/19 13/33 23 54D o1 o7 [02 14[05 34] 62|14 10|20 14 (34 23 [53 37 | Z 55V 02 14/05 34 55/12 63/18 12/31 21 [| 48 33 65V Water [02 14 [05 34 62|14 10/19 13 | 34 23 | 52 36 @5V___pressureloss 0.3 21 [06 4.1 69| 15 10,21 15|37 2 57 39 96V-1C is fib area 02 #14 (04 28 49] 11 77 [16 11[28 19/43 30/61 42 96V-2C | 0.1 psi0.7 15 10| 23 16/32 22/56 39 T16V-1C kPa Ot o7 [02 i4] 04 28706 42709 63/15 i023 16133 23/57 40 (C tiev-2c 15 10,20 14|35 25| 53 37 NOTE G: For 0% EG, multiply WATER PRESSURE LOSS by 0.8. For 120F 49C water NOTE K: 1 psi = 2.3 ft water; 1 kPa = 0.00098 kg/cm?. multiply WATER PRESSURE LOSS by 1.2. NOTE M: Models with ‘'-1C’’ and ‘'-2C'’ refer to units with inlet and outlet connections NOTE H: Models with ‘‘-IP’’ and ‘‘-2P'’ suffixes refer to units piped respectively for one pass and two pass water flow. See Fig. 7 for details of configuration. respectively unmanifolded and manifolded. See Fig. 9 for details of configuration. j Q STANDARD HC-O technical eta young _ Zoe -243- 3/23 STANDARD HC-Q PERFORMANCE AND DESCRIPTION CAPACITY ] SOUND WATER | SHIPPING STANDARD] FACTOR | paren FLOW, gpm I/s | 1 FAN LEVEL VOLUME | WEIGHT Btu J | DERATE AIR FLOW | POWER | TIP SPEED [ROTATION| dB(A) @ MODEL sc 10% MIN MAX ctm m7/s|hp kW] ft/min m/s Tpm 25 tt 8m| 98! : te 2 18 | 80 5.1| 200 183 sp1a_ | 60 1900] 2%) 68 | doy os|casy ‘os | 4500 21/1 08] 8200 41.7| 1160 64 8/16 30/60 | 700 3120 36 23 | 100 6.3| 960 227 22D2Q | 105 = 3320} (4g) 41 | (50) 3.2] (180) 11.4 | 8000 38) 2 1.5) 9720 49.44 1160 69 12/20 45/75 | 900 4000 € 33D3Q | 185 5800 14700 69| 3 922 73 gapsq | 24 ceo] 42 26 | 115 7.3] 420 265 | $2600 Sadness] 10990"55.5| 1160 73 17/25 64/95 |1100 4900 aapsaq_| 235 7500| 47 3.0 | 130 6.2| 480 303 | 19000 90}6 37| 9620 489| 675 72 [22/30 _83/110|1600 7120 s4D5Q | 310 9800 25000 11.8| 5 37 74 bap7q_| 330. 19800] 59 3.2 | 140 8.8] 500 31.5] 39509 i> | 75 34| 10990. 55.8} 875 75 |28/36 110/140]2400 10680 S5V7 380 12100 31000 14.6| 7.5 wes e @ 74 Sevioa | a0 1a000| 87 36 | 155 9.8| 870 960| 34000 161/40, 7s| 110007ss.0| 778 76 |31/51 120/200]2700 1202 55V15Q | 470 14900 40000 189}.145. 11 78 65v10Q | 485 15400 40000 169] 10 7.5 75 I 65Vi5Q | 525 16700| 57 3.6 | 155 98] 570 36.0 44000 208/15 11/ 11000 559} 700 77 —|39/59 150/220|3200 1424 65v20Q | 580 18400 49000 23.1| 20 15 : 78 asvi0a | 545 17200 44000 20.8|.40 7.5 75 a5visq | 615 19500] 57 36 | 155 9.8] 570 36.0 | 50000 236] 15 11] 11000 559] 700 77 |47/67 180/250]3500 15580, 85V20Q | 645 20400 53000 25.0|:20° 15 78 96v20a | 820 25900 67000 316|20 15 76 gevesa | eee creob] co 38 bse 13.4] 770 49.3 | 99800 33:3| 28 19 | 11000 55.9] 518 75 _|79/107 300/400|5500 23400 116v20@ [1090 34600 74000 35.0|20 15 76 416v250 [1140 36200] 8 5.1 | 280 17.9|1030 66.0 | 37009 36325 jo| 11000 559| 518 7$ 2/120 350/450 |6300 28040 TABLE 2 NOTES apply to TABLE 4 STANDARD HC selection example (single circuit application) 1. Calculate CAPACITY FACTOR REQUIRED: heat load Tmax — Tamb heat load = Btu/min J/s Tmax = maximum water temperature, F C Tamb = ambient air temperature, F C 2. Increase CAPACITY FACTOR REQUIRED: 1% for each 10F 5C above 70F 21C ambient air temperature 2% for each 1000 ft 300 m elevation above sea level 3% for each 10% anti-freeze concentration Select STANDARD HC or STANDARD HC-Q with CAPACITY FACTOR from Table 2 or 4 larger than required. Include 5-10% age/safety factor if design data is not conservative. 4. Check water flow against MIN and MAX for model selected in Table 2 or 4. DERATE CAPACITY FACTOR 10% if water flow is below MIN but greater than DERATE 10% value. 5. Determine WATER PRESSURE LOSS from Table 3. 6. Check validity of selection method which is limited to cases in which radiator leaving water temperature, Tlw, is more than 15F 8C higher than leaving air temperature, Tla. CAPACITY FACTOR = Select remote radiator to remove 50,000 Btu/min 880,000 J/s heat load from 400 gpm 25 I/s water flow at 200F 93C maxi- mum temperature. Ambient air temperature = 100F 38C Elevation = 1000 ft 300 m Anti-freeze concentration = 50% _ _50,000 880,000 1. CAPACITY FACTOR = 200 93 — 100 38 2. Increase CAPACITY FACTOR by 3% for ambient air temperature 2% for elevation 15% for anti-freeze concentration total correction = 20% CAPACITY FACTOR (corrected) = 500 16,000 x 1.20 = 600 19,000 3. Select STANDARD HC model 65V20 with CAPACITY lasune rating of 600 19,000 (or 85V15Q with rating of 615 19,500). 4. 400 gpm 25 |/s is within WATER FLOW limits of 155 9.78 and 570 36.0. 5. WATER PRESSURE LOSS is 3.4 psi 23 kPa from Table 3. _ 50,000 880,000 _ 6. Tiw = 200 93— oPnoe SO8 SOO. = 189F 840 50,000 880,000 _ [018 1200 x 51,000 24.1 x 0.91091 ~ 180F 71C Tiw —Tla = 183 84 -160 71 = 23F 13C which is greater than 15F 8C = 500 16,000 Tla = 100 38 + Tlw = Tmax — heat load a 7.4 3900 x water flow TABLE 5 Tla = Tamb + heat load DENSITY RATIO +018 1200 x AIR FLOW x DENSITY RATIO ELEVATION AMBIENT AIR TEMPERATURE, F GC AIR FLOW is in Table 2 or 4 ft m 70 21] 100 38 }110 43/120 49/130 54 DENSITY RATIO is in Table 5 0 0 1.00 0.95 0.93 0.91 0.90 NOTE N: Consult Young Representative or factory for sizing i ao pre oe oe Gas ne IWo/eee hit! models. 3000 900] 0.89 | 0.84 | 0.83 | 0.81 | 0.80 NOTE P: Selection using CAPACITY FACTOR method is ap- 5000 1500} 0.83 0.78 0.77 0.75 0.74 proximate. A more rigorous selection method is available to Young Radiator Company Representa- tives through time-sharing computer terminals in major cities. — Young st. ward HC dimensi_s TYPE D 4.00 101.6 Ri Al 2.00 50.8 LIFTING HOLES IK PTIONA' 15.50 re All dimensions are inches millimetres. Use certified dimension drawings for in- stallation. All foot mounting holes are 0.75 19.1 dia. through 0.50 12.7 material. . Fan guard screen conforms to OSHA. Ener SHUTTER ns Maxi tin is 35 pst 241.3 DIRECT (OPTIONAL) 0.38 9.5 { Nea (is. pal 103.4 KPa with surge tank and ~-—--——--, VCORE GUARD __}" pressure cap). Maximum operating temperature is 250 F DRIVE [ } 121. Finish is a single coat of grey, semi-gloss enamel paint suitable for outdoor duty in non-critical applications, and as a base i for subsequent coats for severe duty or extended life. Vents and drains are ¥2” NPT H Special note for Models 11D & 22D. 2 pass — use low end tank connections for inlet and outlet. 1 pass — use high end tank connection for inlet. Manifold low end tank connections for | outlet. 3.00 76.2 >| 3.00 76.2 1.50 38.1 +—D—>< 1.50 38.1 B NOTE: Connection size and location may be different for ‘two circuit” models. Fig. 7 TABLE 6 pM-9002 SERIES A B c D E F 6 H J K L M iD 136.00 914.4/38.00 965.2|41.00 1041.4|17.50 431.8 [16.50 419.1] 3 | 9.63 244.5 |45.38 1152.5/5.81 147.6|46.19 1173.2|6.63 168.3 5.50 139.7 22D 143.00 1092.2 146.00 1168.4/41.00 1041.4/21.50 546.1|20.00 508.0| 3 | 9.75 247.7 |45.38 1152.5|5.81 147.6 |46.34 1177.1] 6.63 168.3 | 6.50 165.1 > |_33D_|47.50 1206.5 |50.25 12764|53.00 1346.2|23.63 600.1|22.25 565.2| 4 | 9.88 250.8|57.38 1457.3|7.19 182.6|58.50 1485.9/8.00 203.2 | 7.50 190.5 44D 153.50 1358.9 56.50 1435.1|53.00 1346.2|26.75 679.5 |25.25 641.4] 4 |10.00 254.0 |57.38 1457.3|7.00 177.8 58.63 1489.17.81 198.4| 8.50 215.9 [sap 5.25 1657.4 |61.63 1565.3|53.00 1346.2|29.31 744.5|31.13 790.6| 4 |12.88 327.0 |58.69 1490.7|7.13 181.0) 60.16 1528.0] 7.94 201.6 10.00 254.0 TYPE V vE NP SURGE TANK (OPTIONAL) 15.50 393.7 101.6 4.00 T SHUTTER 2 (OPTIONAL) [0.38 9.5 mF i CORE GUARD REM LIFT LUGS VEE.BELT DRIVE Aad L. All dimensions are inches millimetres. Use certified dimension drawings for in- stallation. All foot mounting holes are 0.75 19.1 dia. through 0.50 12.7 material. Fan guard screen conforms to OSHA. Maximum operating pressure is 35 psi 241.3 kPa (15 psi 103.4 kPa with surge tank and pressure cap). Maximum operating temperature is 250 F 121. Finish is a single coat of grey, semi-gloss enamel paint suitable for outdoor duty in non-critical applications, and as a base for subsequent coats for severe duty or extended life. Vents and drains are 2” NPT 3.00 76.2 3.00 76.2 1.50 38.1 1.50 38.1 NOTE: Connection size and location may be different for ‘two circuit” models. Fig. 8 TABLE 7 DM-9003, SERIES] A B C D E F G H J K L M 55V | 66.00 1676.4 |67.38 1711.3|65.00 1651.0/32.19 817.6|31.50 800.1) 4 |12.88 327.0|70.69 1795.5|6.75 171.5|72.16 1832.8|7.56 192.1 /12.00 304.8 65V | 80.00 2032.0 67.38 1711.3|65.00 1651.0/32.19 817.6 |38.50 977.9] 4 |13.19 335.0|70.69 1795.5|7.28 184.9|72.47 1840.7|8.06 204.8 |12.00 304.8 85V |102.00 2590.8 |67.38 1711.3/65.00 1651.0/32.19 817.6 /49.50 1257.3] 4 [13.56 344.5|70.69 1795.5|5.63 142.9|72.84 1850.2|6.44 214.3 |12.00 304.8 _ STANDARD Vf systems/specificagpns Young ( eee divin JF TING iS All dimensions are inches millimetres. > Use certified dimension drawings for in- M stallation. cy BASE PLAN VIEW hy . sy All foot mounting holes are 0.75 19.1 dia. through 0.50 12.7 material. << To) Fan guard screen conforms to OSHA. 1? Maximum operating pressure is 35 psi 241.3 kPa (15 psi 103.4 kPa with surge tank and 2 | & pressure cap). Maximum operating temperature is 250 F ~ VEE BELT 4.00 101.6 prive {estas (CON'T) CORE GUARD. t — ft a a + Ot = | | | 121. Lbs Finish is a single coat of grey, semi-gloss enamel! paint suitable for outdoor duty in non-critical applications, and as a base for subsequent coats for severe duty or extended life. H aL |S ¢ Vents and drains are 14” NPT we One connection on each end is capped. Manifold tank connections where low pres- sure loss is desired. . 4 | le = 118.00 457.2 4.00 101.6 100 —_ 4.00 101.6 2.00 50.8 el 457.2 ~<—D. H+-2.00 50.8 A B——+ ; Fig. TABLE 8 NOTE: Connection size and location may be different for ‘two circuit” models. he DM-9405 SERIES A B c D E F G H J kK L M 96V | 100.00 2540.0 | 92.00 2336.8 | 78.00 1981.2 | 44.00 1117.6] 48.00 1219.2] 4.00 101.6 | 14.63 371.6 | 84.88 2155.9 | 5.63 142.9 | 86.97 2209.0 | 5.38 136.6 | 22.00 558.8 116V_ | 128.00 3251.2 | 92.00 2336.8] 78.00 1981.2| 44.00 1117.6] 62.00 1574.8] 5.00 127.0 16.88 428.7 | 84.88 2155.9 | 5.63 142.9 | 87.53 2223.2 | 5.38 136.6| 22.00 558.8 TYPICAL COOLING SYSTEMS CLOSED SYSTEM WITH INTEGRAL PUMP CLOSED SYSTEM WITH EXTERNAL PUMP OPEN SYSTEM WITH RESERVOIR f - eerie 2 caten { ENGINE. eonl | ei PUMP ’ \ ) OR OTHER RADIATOR OR OTHER| 7 [RADIATOR el ee | MACHINE. - MACHINE L__] = 4 Ul | | RCULATI T PUMP Li Li Fig. 10 Fig. 11 pum Fig. 12 a cLosED DUAL LOOP SYSTEM CLOSED “TWO CIRCUIT” SYSTEM CLOSED SYSTEM WITH “TRIM COOLER” —>——_ aon CHARGE AIR ‘nt bess Cooter [—?Jexcnancer oo lcompressor| [RADIATOR | of aome || | ENGINE Facer SiAchane 4 | wrH | | RaowToR | Ld rs Pree | tall PUMP Taal sea 1 *| Fig. 13 Mee ee Fig. 15 O NOTE: See Form 2776 for Installation and Maintenance Instructions. GENERAL CONSTRUCTION: Remote radiator shall include Design ambient air temperature is FC at ft m welded and bolted steel frame suitable for 100 mph 45 m/s elevation. Water pressure loss through radiator shall not wind load, plenum chamber, rolled venturi (applies to 6 ft. exceed (__psi kPa) (engine manufacturer's recommendation). and smaller fans) fan ring, lifting lugs, core guard, OSHA fan guard and fan drive supported by channels integral to frame. Core shall be noone for vertical eon with or FOR A “TWO CIRCUIT” RADIATOR: tinuous copper plate fins, solder-bonded to flat brass tubes. . Manifold tanks shall be removable to allow access to tube add to GENERAL CONSTRUCTION: F d ends for inspection and cleaning. Thermal expansion and Separate water circuits shall have their own vents ani contraction differential be’ n and drains and be leakproof one to the other by means of a frame supports s| sated fe bolted, gasketed partition in each manifold. holes 7h-supporting side members, Core shall be pitched an change DUTY to: ave suitable connections to allow complete drainage. Fan Radiator shall be capable of removing Btu/min shall be forced draft, fixed center, airfoil section type with J/s from gpm |/s of (water) ( % aqueous aluminum blades. Motor shall be totally enclosed type with ethylene glycol) with a maximum temperature of __F C 3Q-60Hz- ______ V_ characteristic. Maximum allowable and, in a second circuit, removing___ Btu/ min J/s motor power is hp kw. (Mounted surge tank shall from gpm |/s of (water) (___% aqueous ethylene have sight glass, vent and drain connections and 15 psi glycol) with a temperature leaving the radiator of 103 kPa filler cap with integral, 0.25 psi 1.7 kPa vacuum relief F C. Design ambient air temperature is ______ F._ C. at valve). ______ ft m elevation. Water pressure loss through the DUTY: Radiator shall be capable of removing Btu/min radiator shall not exceed (__ psi kPa in the primary J/s from_____ gpm I/s of (water) (___% aqueous ethy- circuit and_______ psi kPa in the secondary circuit) lene glycol) with a maximum temperature of _______ F C.. (engine manufacturer’s recommendation). Fig. 16 STANDARD MWC Water Cooling Radiator (stock) Catalog 1578 MWC Custom Units Catalog 1378 Fig. 18 Fig. 17 STANDARD MONO-WELD Radiators (stock) Catalog 1880 Fig. 21 Fig. 22 OCS Oil Cooler (stock) Catalog 1078 Fig. 23 CI Industrial F Fixed Tube Water Cooler (stock) Catalog 3079 Catalog 1278 INDUSTRIAL PRODU AV Watercooler & Compressed Air Aftercooler (stock) Catalog 1478 Bundle Heat Exchanger (stock) . ’ nae Fig. 20 a STANDARD HC MOC Mobile Oil Water Cooling Radiator (stock) Cooler (stock) Catalog 2479 Catalog 1777 HC Custom Units Catalog 1378 Fig. 24 Fig. 25 OCH Oil Cooler (stock) Catalog 3579 R Removable Tube Bundle Heat Exchanger Catalog 1178 WARRANTY The Young Radiator Company, hereinafter referred to as the “Company” warrants its commercial or industrial products against defects in material and workmanship under normal use and service for a period of one year from date of shipment from its plants of manufacture. All obligations and liabilities under this warranty are limited to repairing or replacing, at the Company's option, such alleg- edly defective products or parts as are returned, carrier charges prepaid, to the plant designated by the Company: 2825 Four Mile Road, Racine, WI 53404; 120 North 14th Street, Mattoon, IL 61938; or Dewey Road, Centerville, [A 52544. All such repairs or replacements are made subject to inspection by the Company of the returned products or parts at the Com- pany’s plant. No liability is assumed for costs relating to de- installation or reinstallation. Warranty on components or accessories furnished by sup- pliers to the Company shall be limited to the warranty of the respective component or accessory supplier. 4, The Company shall not be liable for any contingent, inciden- “tal or consequential damages for alleged failure or failure of any of its products, components or accessories. If field service at the request of the Buyer is rendered by the Company, and the alleged fault is found not to be with the Company’s product, component or accessory, the Buyer shall pay for the time and expenses of the field representative. Bills for service, labor or other expenses that have been incurred by the Buyer, their customer or agent without approval or authorization by the Company, will not be accepted. This warranty does not cover failure resulting from improper installation, mounting design or application; nor does it cover failure due to corrosion. The Company’s products are not packaged or protected for long periods of storage in generally corrosive atmospheric conditions. Changes or repairs attempted or made in the field without written authorization from the Company automatically void this warranty. The Company, whose policy is one of continuous improve- ment, reserves the right to improve its products through changes in design or material as it may deem desirable with- out being obligated to incorporate such changes in products of prior manufacture. SALES AND ENGINEERING OFFICES See Yellow Pages listing under Heat Exchangers. *Alabama, Birmingham *California, Los Angeles *California, San Francisco *Colorado, Denver *Georgia, Atlanta “Illinois, Chicago Indiana, Indianapolis *Louisiana, New Orleans Maryland, Baltimore *Massachusetts, Boston *Michigan, Detroit *Minnesota, St. Paul *Missouri, Kansas City *Missouri, St. Louis *New York, Buffalo *New York, New York North Carolina, Charlotte *Ohio, Cincinnati *Ohio, Cleveland *Oklahoma, Oklahoma City *Pennsylvania, Philadelphia *Pennsylvania, Pittsburgh *Tennessee, Memphis *Texas, Dallas “Texas, Houston Utah, Salt Lake City Virginia, Richmond *Washington, Seattle *Wisconsin, Milwaukee *Wisconsin, Racine Alberta, Calgary *Ontario, Toronto *Computer terminal installed for accessing Young Radiator Company stock status and design programs. 2825 Four Mile Road e Racine, Wisconsin 53404 ¥e YOUNG RADIATOR COMPANY Plants at: Racine, WI, Mattoon, IL and Centerville, IA TELEPHONE: 414-639-1011 15M-1079-M ® @ TWX: 910-271-2397 @ TELEX: 26-4435 Litho in U.S.A. CATALOG 1278 Toe Ai REE Buu 2 Toeithk = MorucE / () a F+g06-TR—-4P att: SHELL) ) "ONE PASS 2 TWO PASS FOUR PASS F HF SSF FIXED TUBE BUNDLE HEAT EXCHANGERS YOUNG RADIATOR COMPANY 2825 Four Mile Road e Racine, Wisconsin 53404 ® Plants at: Racine, WI, Mattoon, IL and Centerville, IA —so—_ COPYRIGHT 1978 YOUNG RADIATOR COMPANY Young fixed tube bundle heat exchangers Young fixed tube bundle heat exchangers are available in two basic types, copper base alloy and stainless steel construction, to cover virtually any application. These heat exchangers are capable of satisfying var- ious cooling requirements — from simple cooling of oil or water to the more complex cooling and heating requirements of exotic liquids or gases. One of the many advantages Young heat exchangers offer is economy, both in initial cost and in operation. Savings are possible because stock models are con- structed of standard components. Economy is possible because their multi-pass, close packed construction permits a reduction in cooling liquid requirements. In addition, the tube side is readily accessible for cleaning and inspection. The use of inhibited admiralty tubing and zinc anodes in F and HF exchangers provides a high degree of corrosion resistance. When salt or brackish water is used in the tubes, the use of 90-10 copper nickel tubes is recommended. Bonnets provide smooth flow with minimum impact on the tube ends and tube sheets. F fixed tube bundle heat exchangers are nonferrous except the 10 SHELL F DIAMETER CODE units which have steel shells. The tubes are high temperature bonded into the headers, allowing minimum tube pitch and permitting a greater HEAT EXCHANGER of space. number of tubes, resulting in maximum cooling surface area per unit volume Applications range from cooling of engine jacket water and lube oil, torque converter fluid and hydraulic fluid, to the heating or cooling of process fluids. HF HF fixed tube bundle heat exchangers are specially designed for higher shell (high pressure) HEAT EXCHANGER side are possible. pressures. The HF line is identical to the F dimensionally, however, due to construction differences, operating pressures of 250 psi 1725 kPa on the shell HF exchangers are used with hydraulic fluids, process fluids and other similar applications where high pressures are encountered. The shell and tube passages of SSF fixed tube bundle heat exchangers are SSF constructed mainly of 316 stainless steel (18% chromium, 14% nickel, 3% molybdenum) for corrosion resistance and strength. They are used for heating and (stainless steel) HEAT EXCHANGER cooling of liquids and gases where a high degree of corrosion is encountered. Tubes are rolled into tube sheets by an electronically controlled process, making high-strength, leakproof joints. The corrosion resistant properties of SSF fixed tube bundle heat exchangers make them suitable for applications in the chemical, food, pharmaceutical, refining and petro-chemical industries. IMMEDIATE DELIVERY To meet your immediate requirements, an adequate stock of heat exchangers is maintained in standard sizes. Young Radiator Representatives have access via computer terminals to current status of all stock heat exchangers. Temperature control is provided on this packaged hydraulic power system by a Model HF-806-ER-4P heat exchanger. One Model F-604-AR-2P-CNTB heat ex- changer cools the hydraulic drive winch unit used aboard a 1200 ton tuna purse seine vessel. A Model HF-806-AR-2P heat exchanger controls the temperature of the coolant for this eddy current drive. Fig.6 Fig. 5 1977 — Young Radiator Company U.S.A. Ca) F HF SSF basic informatio CONSTRUCTION FEATURES STURDY BRACKET Made of heavy gauge steel . . adjustable for instal- lation in various positions. Rotatable through 360 de- SMOOTH FLOW BONNET Distributes fluid to tubes with minimum turbu- lence. One, two or four pass interchangeability. TUBES On F and HF, tubes are high temperature bonded into tube sheets. On SSF, tubes are rolled into tube sheets by electronic control. END HUB End hub is high quality forg- ing and/or casting. Full-flow opening is designed for mini- fa a RE IS a mum pressure drop. <a> BAFFLES Segmented baffles avail- able in five spacings for maximum heat transfer sure drop. Fig. 7 with minimum fluid pres- grees. FINISH Single coat of grey, semi-gloss enamel paint suitable for outdoor duty in non-critical ap- plications, and as a base for subsequent coats for severe duty or extended life. SHELL AND TUBE BUNDLE ASSEMBLY Baffles precision stamped to close tolerances. Clear- ances between baffles and tubes, baffles and shell are FULL FACE GASKET Asbestos-neoprene FULL-FLOW bonded gasket for minimum—to obtain maximum heat transfer. Available OPENINGS maximum pressure in various size combinations to suit heat transfer ZINC ANODE Adequately sized for and temperature. requirements. minimum pressure All F and HF heat exchangers are furnished with zinc anodes. These protect the tube metal through sacri- fical corrosion. The protective value of the zinc decreases in time due to metal loss. It is recommended they be inspected on a regular basis and be replaced when required. TABLE 1 drop. Flexible connec- tions are recommend- ed when vibration is present. MODEL IDENTIFICATION SHELL SHELL BAFFLE TUBE TYPE CODE DIAMETER LENGTH SPACING DIAMETER PASS CODE OPTION CODE CODE CODE CODE ___CODE F= fixed tube bundle with | 2=2.13 in 01= 9in | H=1.13 in Y=0.250 in OD] 1P=one pass | CN=90-10 copper nickel 150 psi 1040 kPa shell | 3—3.63 in | 02=18in | D—2.25in | R=0.375 in OD} 2P=two pass tube - HF = fixed tube bundle with | 5—5.13 in £=4.50 in |C—0.625 in OD| 4P= four pass| CNT=90-10 copper nickel 250 psi 1725 kPa shell 2a _ tube and tube sheet eer a Sie win | C= O73 in A=9.00 in B-braee bonnet = F0 pel 2070 Pa snell 8=8.38 in T=15in CNB=90-10 copper nickel and stainless steel 10=10.75 in (approx.) tube and brass bonnet materials CNTB=90-10copper nickel! tube, tube sheet and LL brass bonnet NOTE A: F TYPE CODE not available in 2 and 8 SHELL DIAMETER NOTE F: MODEL EXAMPLE — CODE. NOTE B: Ea TYPE CODE not available in 10 SHELL DIAMETER F-604-AR-4P-CNT ODE. NOTE C: HF-2 TYPE CODE, SHELL DIAMETER CODE not available in 2P or 4P PASS CODE. NOTE D: SSF-3-R TYPE CODE, SHELL DIAMETER CODE and TUBE DIAMETER CODE not available in 4P PASS CODE. NOTE E: CN OPTION CODE available with 10 SHELL DIAMETER CODE only, all others are CNT OPTION CODE. TABLE 2 36 in. nominal shell length 0.375 in. tube 9.00 in. baffle spacing | T0-10 copper nickel tube fixed tube bundle and tube sheet option 6.13 in. shell diameter four pass METRIC CONVERSIONS r wae | PREFERRED ALTERNATE conversion) EXPLANATION OF METRIC NOMENCLATURE PLIER®4 SL UST eee Eee ABBREVIATION |MULTIPLIER This catalog is dual dimensioned with the primary units being U. S. length metre m millimetre mm 0.001 customary (bold face type) and the secondary dimensions being SI mass kilogram kg gram g 0.001 metric as defined in ASTM Designation: E380. Strict conformance to time second s hour’ hr 0.0002777 the SI metric standard produces some unfamiliar units in the tables heat energy joule J calo . cal 4.187 and charts. Particular note should be made of the SI metric units of force newton N kilogram-force ket 9.81 CAPACITY FACTOR (J/s-C = W/C) and SHIPPING WEIGHT (N). In bower watt w joule/second J/s 1.0 the former case, the Joule (J) is the preferred unit of heat energy pressure newton /metre? N/m? kilopascal kPa 1000 instead of the calorie and the preferred unit of weight or force is the volume flow rate | cubic metre/ m/s litre* ! 0.001 Newton instead of the kilogram-force. Mass is related to force by the second a formula: force (N) = mass (g) x acceleration (9.8 m/s?). For reference, volume flow rate | cubic centimetre/ cm?/s fitre® ' 1000 a tabulation of the metric units used in this catalog is provided as well . second as selected conversions to other metric units some of which do not acceleration metre/second? m/s? — _ — seatorm to the st standard. “does not conform to S! metric standard **to convert to preferred, multiply alternate by CONVERSION MULTIPLIER _ Young F iF SsF technical data TABLE 3 TECHNICAL SPECIFICATIONS MECHANICAL DESIGN DATA PHYSICAL DATA SHELL OUTSIDE TUBE RAT TYPE CODE DIAMETER| SHELL rue SURFACE ft? m? SHIPPING TINGS enn | VOLUME VOLUME TUBE DIA, CODE be F HF SSF CODE [ gal | gal | Y R Maximum operating Shell | 150 1040 | 250 1725 | 300 2070 pressure psi kPa Tube | 150 1040 | 150 1040 | 150 1040 | 201 | 0.10 0.98 | 0.10 0.38) 1.52 014 )/— —| 7 31 Test Shei! | 250 1725 | 500 3450 | 500 3460 202/015 057/015 057| 3.04 0.28}/— —!| 10 44 Pressure psi kPa Tube Maximum operating 301 /0.20 0,76 | 0.15 0.57/ 3.74 0.33 |266 0.24] 17 75 temperature F C 302 0.50 19 |0.30 1.1 | 7.47 0.69 15.31 0.48] 25 110 MATERIAL DATA 303 |0.70 26 | 040 1.5] 11.4 1.03 |7.97 0.73] 30 130 Component |. SuMerER TYPE CODE 502 | 1.0 38 ]}050 19] 181 168 [41.2 1.04] 40 180 CODE F HF SSF 503/15 57/075 28] 271 252/168 1.56] 50 220 Dand6 = brass 504 {20 76/10 38] 36.1 3.35 |224 208] 60 270 a SSand6 brass Steet soz [12 45 |090 34] 269 250/175 1.63] 55 240 535.6 ands sy ae 603 | 19 7.2] 13 49] 40.2 3.73 |26.2 243] 70 310 Baffle 70 steel stainless 604 | 25 95 | 16 6.1] 536 498 |34.9 3.24] 90 400 Tube admiralty (Cu-Ni if steel 606 | 3.7 14 | 24 9.1 | 808 7.51 |52.7 4.90] 130 580 . in OPTION CODE includes CN) 608 | 50 19 | 31 12 | 108 10.0 |702 652] 170 750 brass (Cu-Ni if Tube sheet All OPTION CODE includes NT} so2 | 24 91/148 68] — — | 341 3.17] 155 690 Bonnet All cast iron (cast brass if 316 803 3.6 14 24 94 — — |506 4.70} 180 800 OPTION CODE includes B) eo 804 | 47 18 | 31 12) — — |671 6.23] 205 910 Hub All brass forging casting 805 | 58 22 | 37 14] — — |e36 7.77] 230 1000 Pipe [Shell All brass 316 soe | 69 26 | 44 17| — — | 100 9,29] 265 1200 steel (brass if stainless 08 . ss af 1 iB 2514 eo . CE HON.COBE includes €)) nea a a : 69 26 c io i - ia [Mounting Brkt. All steel steel z : NOTE G: The differential between the shell fluid average temperature and tube 1005 W 42 7.1 27 | 74.0 6.87 | 130 12.1] 670 3000) Sheat TASH Soot anc 0 Gteerteaa, Pateamerate tines | 1006 | 13 49 | 65 52 | eso ear| sr tae) 720. seo0 ences exceeding these limits, heat exchangers should be furnished with expan- 1008 18 68 1 42 119 W441 210 19.5 820 3600 sion joints. To eliminate high pressure surges a pressure relief valve, accu- mulator or other suitable device should be used with a hydraulic system. toio | 22 83 | 14 53] 149 138 | 263 24.4] 920 4100 NOTE H: One pass heat exchangers should be used for steam service. Pres- sures to 75 psig 520 kPa (maximum) and temperatures to 350F 177C (maximum) may be used. Steam should be admitted through the tube side, with the ex- changer mounted vertically to permit condensate to drain. A trap of proper type and size should be used. Horizontal installation can be accomplished if the TABLE 4A heat exchanger is pitched at least 0.5 in/ft 4 cm/m of tube length. 7 OIL VISCOSITY TABLE 4 CENTIPOISES = CENTISTOKES X SPECIFIC GRAVITY Fi 1C rsion: 1 kg/m-s = 1 ipoi CORRECTION TO CAPACITY FACTOR REQUIRED or SI Conversion: 1 kg/m-s = 1000 Centipoises Tsi (temperature of shell liquid at inlet) F_C éulavee VISCOSITY @ 100 F 37.8 C VISCOSITY @ 210 F 98.9 G} 120 _49 | 150_66 | 200 93] 250121 sus | Centistokes|Centipoise | SUS | Centistokes|Centipoise SAE 5 oil 1.03 SAE 10 oil 1.10 SAE 5 110 24 22 41 4.5 4.0 SAE 20 oil 1.19 SAE 10 160 35 32 44 5.5 5.0 SAE 30 oi 1.27 SAE 20 270 60 55 50 75 7.0 soegeat a SAE 30 500 110 100 63 1 10 : SAE 40 750 170 155 76 14.5 13 cli neal nee polyglycol | 210 45 47 | 52 77 7.8 50% ethylene 0.64 phosphate | 250 56 66 43 54 5.8 glycol in water eter Ll TABLE 5 LMTD (Logarithmic Mean Temperature Difference) F or C Tsi—Tto | Tso — Tti F or C Forc 5 7 | 10 | 15 | 20] 25 | 30] 40] 50] 60 | 80 | 100 | 120 TABLE 6 5 5.0 | 60 ]7.2]9.1]11]12/[14] 17] 20] 22] 271 321 36 7 6.0 | 7.0 | 8.4] 10 | 12] 14] 16] 19] 22] 25| 30 | 35 | 4o Liauip TYPE LIQUID CONSTANT 10 7.2/ 84/10] 12 | 14] 16] 18] 22] 25] 28] 34 | 39] 44 Btu/gal-F[ _J/I-C 15 9.1} 10 | 12 | 15 | 17] 20 | 22] 26] 29] 32] 39 | 45] 51 20 11 | 12 | 14 | 17 | 20] 22 | 25] 29] 33] 36] 43 50 56 SAE 5oil 3.5 1800 25 12 | 14 | 16 | 20 | 22] 25] 27] 32] 36] 40] 47 | 54] 61 SAE 10 oil 35 1800 30 14 | 16 | 18 | 22 | 25) 27] 30] 35] 39] 43] 51 | 58| 65 SAE 20 oil 35 1800 35 15 | 17 | 20 | 24 | 27] 30] 32] 37| 42] 46] 54] 62] 69 f : * 40 17 | 19 | 22 | 26 | 29] 32] 35] 40] 45] 49] 58 | 66] 73 SAE 30 oil 3.5 1800 45 18 | 20 | 23 | 27 | 31 | 34] 37] 42] 47] 52] 61 | 69] 77 SAE 40 oil 3.5 1800 50 20 | 22 | 25 | 29 | 33] 36 | 39] 45| 50] 55] 64 | 72] 80 olyglycol 7.2 3600 go | 22 | 25 | 28 | 32 | 36] 40| 43| 49| 55] 60| 70 | 78| 87 ee a5 aan 70 25 | 27 | 31 | 36 | 40] 44] 47| 54] 60] 65| 75 | 84] 93 Phos : 80 27 | 30 | 34 | 39 | 43] 47] 51| 58] 64] 70] 80 | 90] 99 water 8.3 4200 100 32 | 35 | 39 | 45 | 50] 54 | 58] 66] 72] 78] 90 | 100 | 110 50% ethylene glycol 8.1 4100 120 36_| 40 | 44 | 51 | 56} 61 | 65} 73| 80 | 87] 99 | 110 | 120 in water SELECTION (for cooling liquids with water as coolant in tubes) 1. Specify: Ft = cooling water flow in tubes, gpm I/s Tti = temperature of cooling water at inlet, F C Operating pressure of liquid in shell, psi kPa and specify 3 of the following 4 variables: Q = heat load, Btu/min J/s (1 hp = 42.4 Btu/min; 1 kW = 1000 J/s) Fs = liquid flow in shell, gpm |/s Tsi = temperature of shell liquid at inlet, F C Tso = temperature of shell liquid at outlet, F C 2. Derive the unspecified variable value using the LIQUID CONSTANT from TABLE 6 in the following equation: Q = Fs x (Tsi — Tso) x LIQUID CONSTANT 3. Calculate temperature of cooling water at outlet, Tto, from the following formula: Q To = Ti+ SG ax Ft 4. Determine LMTD (logarithmic mean temperature differ- ence) F or C from the temperature relationships Tsi — Tto and Tso — Tti using TABLE 5. 5. Calculate uncorrected CAPACITY FACTOR REQUIRED: uncorrected CAPACITY FACTOR REQUIRED = @Q LMTD 6. Determine CAPACITY FACTOR REQUIRED for SHELL LIQUID TYPE and Tsi by multiplying uncorrected CAPA- CITY FACTOR REQUIRED by CORRECTION from TABLE 4. 7. Select heat exchanger BASE MODEL from TABLE 9. Start- ing at the top, select a BASE MODEL with an adequate CAPACITY FACTOR at Fs with the desired tube diameter. 8. Calculate pressure loss of shell liquid, Pls, using Fs; RATED FLOW and RATED PRESSURE LOSS from TABLE 9; and CORRECTION TO PRESSURE LOSS from TABLE 7 using the following formula; Pls — Fs - RATED : CORRECTION TO ~~ | RATED FLOW PRESSURE LOSS PRESSURE LOSS If Pls is excessive, select a BASE MODEL with wider BAFFLE SPACING CODE or larger SHELL DIAMETER CODE and repeat steps 7 and 8. 9. Select PASS CODE from TABLE 8 based on MINIMUM FLOW and MAXIMUM FLOW. If Ft exceeds MAXIMUM FLOW for PASS CODE 1P, select BASE MODEL with larger SHELL DIAMETER CODE. 10. Calculate pressure loss of tube liquid, Plt, using Ft; MAX- IMUM FLOW, PRESSURE LOSS AT MAXIMUM for 01 SHELL LENGTH CODE from TABLE 8; and SHELL LENGTH CODE in the BASE MODEL from the formula: i Ft 2 PRESSURE LOSS AT MAXIMUM , SHELL [ = (aman ral “FOR 01 SHELL LENGTH CODE * LENGTH TABLE 7 CORRECTION TO PRESSURE LOSS INLET LIQUID TEMPERATURE F C eee 120 49] 150 66] 200 93] 250 121 SAE 5 oil 1.20 1.07 0.89 0.74 SAE 10 oil 1.34 1.20 1.00 0.83 SAE 20 oil 148 | 1.33 1.10 0.92 SAE 30 oil 1.56 1.39 1.15 0.96 SAE 40 oil 1.64 1.47 1.22 1.01 polyglycol 1.64 1.58 1.31 1.14 phosphate ester 1.85 1.57 1.27 1.05 water 0.68 0.65 0.58 0.53 50% ethylene glycol 0.93 0.86 0.75 0.65 in water NOTE J: CAPACITY FACTORS are approximate. They are based on a modest cooling water velocity in the tubes and a fouling factor of 0.002 min-ft?-F/Btu 0.0058 m?-C/kW. Pressure loss calculations are also approxi- mate. A rigorous sizing and pressure loss calculation method is available to Young Radiator Company Representatives through time-sharing computer terminals in most offices. 10. F HF SSF selection/example YOUNG EXAMPLE . Select a stock heat exchanger to remove 2100 Btu/min 38 250 J/s from 150 psi 1040 kPa SAE 30 oil at 150F 65.5C, cooling to 135F 57C using 25 gpm 1.6 |/s of cooling water at 70F 21C. Maximum allowable pressure loss of shell liquid, Pls, is 10 psi 69 kPa. Maximum allowable pressure loss of cooling water in tubes, Plt, is 5 psi 35 kPa. . Calculate liquid flow in shell: Qa a (Tsi — Tso) x LIQUID CONSTANT Fs = 2100 38250 = 40 gpm 2.51/s (150 65.5 — 135 57) x 3.5 3.5 Calculate temperature of cooling water at outlet: 2100 38250 To =70 21+ 3°35 4000 x25 1.6 — 80F 27C Determine LMTD: Tsi — Tto = 150 66 — 80 27 = 70F 39C Tso — Tti = 135 57—70 21 = 65F 36C LMTD = 68F 37C Calculate uncorrected CAPACITY FACTOR REQUIRED: Uncorrected CAPACITY FACTOR REQUIRED = 2100 38250 “a7 = 31 Btu/min-F 1000 J/s-C . Determine CAPACITY FACTOR REQUIRED: CAPACITY FACTOR REQUIRED = 31 1000 x 1.27 = 39.4 1270 . Select BASE MODEL: 502-DY has adequate CAPACITY FACTOR; however, Pls is too high. 502-EY has adequate CAPACITY FACTOR, appears to have a satisfactory Pls and is a normally stocked BASE MODEL in TYPE CODE F which is adequate for operating pressure in shell of 150 psi 1040 kPa. . Calculate Pls for 502-EY: Pls =(#-25)" x 3.1. 21x 1.39 1.39 = 5.6 psi 38 kPa =|\35 2.2 oe . Select PASS CODE: Because the 25 gpm 1.6 I/s flow is close to the MINIMUM FLOW for 1P and close to the MAXIMUM FLOW for 4P; use 2P. Calculate Plt for 2P: 25 1.6)\? é Plt =|70 45 x 2.1 15x2 2= 0.5 psi 3.8 kPa DISCUSSION: Select MODEL F-502-EY-2P If 0.375 in. instead of 0.250 in. tubes are required, select MODEL F-503-ER-2P using steps 7 through 10. If seawater is the coolant, select MODEL F-502-EY-2P-CNTB. If oil pressure ex ceeds operating pressure of TYPE CODE F, consider MODEL HF-502-EY-2P. If stainless steel construction is desired, con- sider MODEL SSF-502-EY-2P. TABLE 8 FLOW LIMITS & PRESSURE LOSS IN TUBES PRESSURE, SHELL | MAXIMUM LIQUID FLOW LOSS AT DIAMETER| LIQUID | pass IN TUBES MAX. PER CODE | FLOW IN | cope 01 SHELL SHELL Minimum | Maximum| LENGTH CODE gpm l/s gpm i|/s |gpm i/s| psi kPa 2 110.69 1P 3.5 0.22] 28 18] 12 83 1P 9.0 0.57) 71 45/12 83 3 340 24 2P 4.5 0.28) 31 . 23 16 4p 2.2 0.14| 17 68 47 1P 20 «1.3 | 120 06 4.1 4P 5.0 0.32] 31 41 28 1P 30 «61.9 | 250 11 7.6 6 120 7.6 2P 15 0.95 | 120 2.7 19 2.0 1.4 76 5 72 45 2P 10 063/ 72 45] 24 15 2.0 15 7.6 4P 7.5 047| 61 38] 67 46 1P 57 36 |460 29) O06 4.1 8 220 «14 2P 29 : 180 11) 14 7.6 1157.2) 4.1 28 1.8 0.88 1P 100 63/680 43] 06 4.1 10 590 37 2P 50 3.2 |340 21/1 15 10 161170 11] 37 26 1 NOTE K: Maximum liquid flows, gpm |/s, in TABLE 8 correspond to liquid velocity of 8 ft/s 2.4 m/s. ve aey Capacity tactor and pressure oss ei nc aha aa aa ier i NE it a NNR ai sla Na L 1 CAPACITY FACTOR and RATED PRESSURE LOSS of SHELL LIQUID RATED PRESSURE NORMALLY BASE CAPACITY FACTOR Btu/min-F J/s-C LOSS OF SHELL LIQUID STOCKED TYPE MODEL @ liquid flow in shell, Fs, gpm I/s psi kPa F | HF] SSF*{CNT I @ RATED FLOW gpm I/s Fsgpmi/s || 20 0.13 | 40 0.25 | 60 0.38 | 80 0.50 10 ©—0.63 6.0 0.38 elele 201-HY 29 92 3.6 114 3.9 123 | 42 133 44 139 45 32 ele 202-HY 58 183 | 7.2 228 7.9 250 «| 83 ~—.262 87 275 9.41 63 ] Fsgpmi/s || 30 0.79 | 60 038 | 90 0.57 12 0.76 15 0.95 9.0 0.57 elel ele 301-HY 63 199 | 7.7 243 87 275 | 94 297 99 313 26 18 e ele 302-HY 13 420 16 518 18 579 19 610 20 638 8.3 57 e e 303-HY 20 635 25 777 27 863 30 935 31 980 14.2 98 Fsgpmi/s || 6.0 0.38 | 12 0.76 18 1A 24 15 30 19 18 TA e 301-DY 69 218 | 84 265 9.3 294 | 99 313 11 332 3.0 21 ° 302-DY 14 439 17 531 19 588 20 629 21 657 6.0 42 303-DY 21 657 25 796 28 882 30 942 31 989 9.3 62 Fsgpmi/s || 10 063 | 15 0.95 20 1.3 25 16 30 19 20 13 . . 301-EY 64 202 | 7.3 231 8.0 253 | 85 269 8.9 281 05 4 elelele 302-EY 13 408 15 465 16 506 17 547 18 566 1 8 Le 303-EY 20 619 22 695 24 758 26 815 27 844 1.6 "1 wt Fsgpmi/s || 50 0.32 | 10 0.63 15 0.95 20 1.3 25 1.6 15 0.95 ele 502-HY 33 ©1060 | 41 1310 | 46 1440 | 49 1540 | 51 1600 15.7 109 e 503-HY 51 1610 | 63 1990 | 69 2170 | 73 2300 | 76 2420 26.7 185 Le | 504-HY 69 2170 | 84 2670 | 93 2940 | 98 3090 | 104 3290 37.9 262 Fsgpmi/s || 10 0.63 | 20 1.3 30 19 40 25 50 3.2 30 19 ele 502-DY 35 1120 | 43 1340 | 47 1480 | 50 1570 | 52 1650 11.3 78 e 503-DY 52 1650 | 64 2020 | 71 2230 | 75 2360 | 78 2450 174 118 504-DY 69 2190 | 85 2690 | 94 2970 | 100 3150 | 104 3290 22.8 157 Fsgpmi/s || 15 0.95 | 25 16 35 2.2 45 28 55 35 35 2.2 elelele 502-EY 32.1000 | 38 (1190 | 41 1290 | 44 1400 | 46 1460 2.2 15 ° ele 503-EY 481510 | 57 1790 | 61 1940 | 66 2070 | 69 2790 86, ee e e 504-EY 64 2010 | 74 2340 | 82 2580 | 87 2760 | 92 2890 43 30 Fsgpmi/s || 30 1.9 40 25 50 3.2 60 3.8 70 44 50 3.2 502-AY 32 1000 | 35 1100 | 38 11909 | 39 1240 | 41 1310 0.1 05 503-AY 53 1670 | 57 1800 | 60 1910 | 63 2000 | 66 2090 2.0 13 504-AY 63 2000 | 70 2210 | 75 2360 | 78 2480 | 82 2600 12 8 Fsgpmi/s || 50 0.32 | 10 0.03 15 095 | 20 1.3 25 1.6 15 0.95 e 602-HY 45 1410 | 56 1750 | 62 1960 | 67 2120| 70 2220 8.8 61 x 603-HY 70 2200 | 86 2710 | 97 3070 | 105 3290 | 110 3440 17.8 123 6 604-HY 95 3000 | 115 3670 | 130 4110 | 140 4390 | 145 4610 27.2 188 606-HY 140 4460 175 5590 195 6190 210 6570 — 40.6 280 Fsgpmi/s || 10 0.63 | 20 13 35 2.2 50 3.2 6 ai 35 22 ° 602-DY 45 1420 | 56 1760 | 65 \ 2040 | 71 2260 | 75 2370 5.7 40 e 603-DY 70 2220 | 87 2750 | 100 \3150 | 110 3410 | 115 3600 11.8 81 604-DY 94 2970 | 115 3670 | 135 4230 | 145 4580 | 155 4830 17.9 124 606-DY 145 4550 | 175 5560 | 205 6480 | 220 6950 | 230 7330 30.5 211 | 608-DY 190 — _|2 7490 | 275 8630 | 300 9480 | — = 43.3 299 Fs gpm i/s || 20 1.3 25 60 38 80 5.0 700 63 60 — 38 e ——-—}-—= 602-EY 50. 1560 1930 | 67-2110 | 72 2260] 75 2360 5.0 34 e 603-EY 74 2330 92 2910 100 3220 110 3440 110 3540 7A 50 e 604-EY 99 3110 120 3820 135 4230 145 4520 | 150 4770 i 68 e 606-EY 150___ 4710 6760 | 225 7110 : 102 ° 608-EY 1966190 | 240 7650 | 270 8560 [285 9010 | 305 9610 19.7 136 Fs gpm i/s || 40 25 60 38 80 5.0 | 100 63 | 120. 76 80 5.0” se 602-AY 49 1550 | 56 1760 | 61 1920 | 64 2020] 68 2130 12 8 4 (603-AY 81 2550 | 92 2900 | 97 3070 | 105 3250 | 110 3440 4.0 27 e -604-AY 98 3100 | 110 3540 | 120 3860 | 130 4040 | 135 4230 2.4 16 f e 606-AY 150 4680 | 165 5280 | 185 5810 | 195 6160 | 200 6350 3.6 25 0 e 608-AY 195 6190 | 225 7080 | 240 7620 | 255 8090 | 270 8470 48 33 Fsgpmis || 20 0.13 | 50 O32 | 80 0.50 1 0.69 14 0.88 8.0 0.50 e 301-HR 37 117 | 50 158 | 58 183 | 6.3 199 6.6 207 16 1 e e 302-HR 78 246 11 332 12 379 13 417 14 433 5.0 35 303-HR 12 373 16 515 19 585 20 626 21 664 8.6 60 Fsgpmi/s || 10 063 | 15 0.95 20 13 25 16 30 7) 20 13 301-DR 55 174 | 64 193 | 65 205 | 7.0 221 7.1 224 27 19 302-DR 11 348 12 386 13 414 14 436 14 452 55 38 303-DR 16 518 | 19 588 20 619 21 651 22 679 8.2 57 Fsgpmi/s || 10 063 | 15 0.95 20 i 25 16 30 19 20 73 ° 301-ER 45 142 | 5.0 158 55 174 58 183 62 196 0.4 3 ° 302-ER 88 278 | 10 319 11 348 12 370 12 389 0.8 6 e 303-ER 13 417 15 474 16 518 16 553 18 578 12 8 Fsgpmi/s || 40 0.25 | 80 0.50 12 0.76 16 1.0 20 13 72 0.76 ° e 502-HR 18 581 23 736 26 806 28 872 29 910 7.9 55 e 503-HR 28 go4 | 35 1110 | 39 1230 | 42 1320 | 44 1390 13.4 93 504-HR 381210 | 47 ~=+1490 | 53 1670 | 56 1760 | 59 1850 19.1 132 Fsgpmi/s || 8.0 0.50 | 18 11 28 1.8 38 24 48 3.0 28 18 a“ ° 502-DR 20 616 25 787 27 866 29 926 31 970 75 52 é 503-DR 29 913 37 «1170 | 42 1320 | 44 1390 | 46 1460 11.3 78 i 504-DR 39 1220 | 490 (1548 | 55 1740 | 59 1850 | 62 1940 15.1 104 j Fsgpmi/s || 15 095 | 25 16 35 22 45 28 55 35 35 22 u ° ele 502-ER 19 504 | 22 705 24 771 26 825 27 866 1.6 11 e 503-ER 29 904 | 33 1060 | 37 1150 | 39 1240] 41 1300 25 17 504-ER 381190 | 44 1400 | 49 1550 | 53 1660 | 55 1720 3.2 22 “SSF 4P PASS CODE not available from stock. capacity factor and pressure loss OUNG TABLE 9 (continued) CAPACITY FACTOR and RATED PRESSURE LOSS of SHELL LIQUID *SSF 4P PASS CODE not available from stock. **Stocked 10 SHELL DIAMETER CODE are CN OPTION CODE. CNT OPTION CODE not available. T RATED PRESSURE NORMALLY BASE CAPACITY FACTOR Btu/min-F J/s-C LOSS OF SHELL LIQUID STOCKED TYPE MODEL @ liquid flow in shell, Fs, gpm I/s psi kPa F [HF] SSFCNT*}_ {| @ RATED FLOW gpm I/s Fsgpmi/s || 25 1.6 35 2.2 45 28 | 55 35 65 44 45 28 502-AR 18 562 | 20 632 | 21 679 | 23 720 | 24 752 0.4 3 503-AR 29 40926 :| 33° +1030 | 35 1120 | 37 1170 | 39 1220 1.2 8 504-AR i 36 1130 | 40 1250 | 43 1360 | 46 1440 | 48 1530 22 15 Fsgpmi/s || 5.0. 0.02.| 10 0.63 | 15 095 | 20 13 25 16 15 0.95 602-HR 28 694 | 35 1120 | 39 1250 | 43 1350 | 45 1410 6.6 46 603-HR 44 1399 | 55 1740 | 60 1910 | 65 2060 | 68 2160 13.3 92 604-HR 59 1870 | 74 2340 | 82 2600 | 89 2800 | 93 2950 20.3 140 606-HR a9 2810 | 110 ©3510 | 125 3890 | 135 4200 | 140 4360 || _—30.5 210 Fsgpmi/s || 10 0.63 | 20 13 30 1.9 40 2.5 50 3.2 30 19 602-DR 28 46 a85—«|«85~—Ss«dttt0.:«|:«399~=Ss« 1240 «| «42©~=— 1330 | 44 = 1400 3.3 23 603-DR 44 1380 | 54 1710 | 61 1910 | 65 2050 | 69 2170 6.6 46 604-DR 59 1870 | 73 2310 | 82 2600 | 89 2810 | 92 2910 10.2 70 606-DR 91 2890 | 110 3540 | 125 3920 | 135 4230 | 140 4420 173 120 608-DR 420 3820 | 150 4710 | 170 5340 | 180 5660 | 190 5970 24.6 170 Fs gpm i/s || 20 13 40 25 60 3.8 80 5.0 | 100 63 60 38 . 602-ER 31 gas | 39 1220 | 42 1340 | 46 1440 | 48 1510 3.7 26 ° 603-ER 47 1490 | 57 1800 | 64 2010 | 68 2130 | 71 2250 55 39 e 604-ER 62 1970 | 77 2440 | 85 2690 | 92 2890 | 96 3020 7.4 51 606-ER 93 2940 | 115 3600 | 125 4010 | 135 4270 | 145 4520 iA 76 608-ER 125 3950 | 155 4870 | 170 5340 | 180 5720 | 190 8070 14.7 102 Fs gpm i/s || 30 19 | 50 3.2 70 44 90 57 | 110 69 70 44 e 602-AR 29 900 | 33 1050 | 37 1170 | 39 1250 | 42 1310 07 5 603-AR 47 1480 | 54 1710 | 60 1900 | 64 2010 | 66 2100 23 16 . 604-AR 56 1770 | 66 2100 | 73 2310 | 79 2480 | 83 2610 1.4 9 606-AR 84 2660 | 100 3190 | 110 3480 | 120 3730 | 125 3920 24 15 e 608-AR 410 3540 | 135 4200 | 145 4610 | 160 5020 | 165 5210 2.8 20 Fsgpmi/s|| 15 0.95 | 30 19 45 2.8 60 3.8 75 47 45 2.8 802-DR 55 1720 | 68 2140 | 75 2390 | 81 2570 | 85 2690 46 32 803-DR as 2730 | 105 3350 | 115 3670 | 125 3950 | 135 4200 9.4 65 804-DR 115-3670 | 145 4520 | 160 5020 | 170 5440 | 175 5560 14.3 99 805-DR 445 4580 | 180 5690 | 200 6260 | 215 6790 | — — 19.4 134 806-DR 475 5530 | 215 6790 | 240 7550 | 260 8180 | — —_ 245 169 808-DR 235 7430 | 290 9130 | 320 10100 | — — - = 34.8 240 Fs gpm /s || 25 16 50 3.2 75 47) 10063 | 12579 47 e 802-ER 57 1800 71 2230 78 2470 84 2640 88 2780 3.7 26 803-ER 90 2850 | 105 3320 | 120 3730 | 125 3950 | 135 4200 56 39 ° e 804-ER 4153570 | 140 4460 | 160 4990 | 165 5250 | 175 5500 74 52 e 805-ER 440 4460 | 175 5560 | 195 6190 | 210 6670 | 220 6890 9.4 65 806-ER 470 5370 | 210 6600 | 235 7360 | 255 7990 | 265 8340 11.2 77 808-ER 225 7140 | 285 8940 | 315 9890 | 335 10500 | 350 11000 15.0 104 - 810-ER 285 8970 | 350 11000 | 390 12400 | 420 13200 | — = 18.8 130 Fs gpm i/s || 50 32 | 90 57 1130. 82 | 170 107 | 210 13.2 130 8.2 e 802-AR 57 1790 | 68 2150 | 75 2370 | 81 2540 | 85 2670 14 10 803-AR 94 2970 | 110 3510 | 120 3860 | 130 4080 | 135 4230 48 34 804-AR 415 3570 | 1385 4300 | 150 4770 | 160 5060 | 170 5310 29 20 805-AR 150 4800 | 180 5690 | 195 6190 | 210 6600 | 220 6920 6.0 41 . 806-AR 470 5400 | 205 6410 | 225 7170 | 240 7580 | 250 7960 43 30 ° 808-AR 225 7140 | 270 8560 | 300 9450 | 325 10300 | 335 10600 5.8 40 810-AR 300 9510 | 360 11300 | 390 12400 | 420 13200 | 440 13800 12.1 83 > Fs gpm i/s || 60 38 | 100 63 1140 66 | 180 11.3 | 220 139 140 8.8 e ° 805-TR 440 4390 | 165 5180 | 180 5690 | 195 6100 | 200 6380 22 15 -4P 4 485 5880 | 210 6570 _| 225 7080 | 230 7330 16 4 808-TR 2206950 | 260 8250 | 285 9070 59570 | 320 10100 2.9 20 e 810-TR 250 7960 | 305 9570 | 335 10500 | 360 11300 | 380 11900 20 14 Fs gpm i/s || 50 32 | 1400 63 .-|150. 94 | 200 126 | 250 158 150 94 1005-AR 215 8630 | 265 8440 | 295 9350 | 325 10200 | 335 10600 68 47 1006-AR 250 7840 | 305 9610 | 345 10800 | 370 11800 | 390 12200 49 34 1008-AR 320 10000 | 410 12900 | 460 14600 | 490 15500 | 520 16500 6.4 44 1010-AR 440 13700 | 550 17200 | 600 18900 | 640 20300 | 680° 21600 13.3 92 Fsgpmi/e || 150.95 | 200 12.6 | 250 158 |300 189 | 350° 221 250 15.8 . e | 1005-2R 245 7740 | 270 8530 | 285 8970 | 300 9390 | 310 9730 2.5 17 1005-TR 270 ©8470 | 290 9200 | 305 9640 | 320 10100 | 330 10500 55 38 . 1006-TR 305 9640 | 335 10600 | 360 11200 | 370 11600 | 390 12200 4.0 27 1008-TR 420 13300 | 460 14400 | 440 15300 | 510 16200 | 520 16500 73 50 e e | 1010-TR 500 15600 | 540 17000 | 570 18000 | 610 19200 | 620 19700 49 34 Fs gpm i/s || 50 32 | 100 63 1150. 94 | 200 126 | 250 158 150 94 1005-AC 410 3410 | 135 ©4300 :«| 150 «© 4740 :| 165 ©5180 | 170 5440 4.0 28 1006-AC 420 3860 | 155 4870 | 175 5500 | 190 5940 | 195 6230 28 19 1008-AC 465 5180 | 205 6480 | 230 7270 | 250 7930 | 265 8440 3.8 26 14010-AC 215 6790 | 270 8530 | 305 9640 | 325 10300 | 345 10900 78 54 Fsgpmi/s|| 150.95 | 200 126 | 250 158 | 900 189 | 350 221 250 15.8 1005-TC 435 4300 | 150 4710 | 155 4900 | 165 5210 | 170 5370 3.2 22 1006-TC 455 4870 | 165 5280 | 180 5720 | 185 5910 | 195 6190 23 16 1008-TC 215 6760 | 230 7300 | 245 7740 | 260 8250 | 270 8470 42 29 1010-TC 250 7960 | 270 8560 | 290 9160 | 305 9610 | 320 10000 2.8 23 _ Young ' HF SSF dimensions SHELL } DIA. CODE 1 PASS CODE DM-8844 Fig. 8 Sht 11 of 11 1 NPTF- SHELL % NPTF DIA. CODE ZING t <—OUT ¢c © PASS 1P CODE % NPTF 4 0.88 22.23" 0.88 22. SLOTS DM-8844 Fig. 9 Sht 1 of 11 SHELL 1 NPTF 3 DIA. CODE NPTF. 2P cove ne Cc CODE ¥% NPTF / 0.44 11.11x 0.88 22.23 SLOTS a Fig. 10 Sht 4 of 11 SHELL 3 bia. cove eet *s PASS ¥% NPTF 4P cove masts 0.44 11.11x {3 : 0.88 22.23 SLOTS Sht 7 of 11 TABLE 10 Fig. 11 DiAMETER ALL UNITS ONE PASS & SHELL [ 7 im | A | c | p [| G | J cL {[mIf[n]|s B —E | F + 201 [2.12 53.8] 2.50 63.5] 7.62 193.5 | 1.56 39.6 |11.06 280.9|1.88 47.7 | 2.50 63.5 22.3| 9.00 29.4 | 13.38 339.8 |2.88 73.1 | 2.88 73.1 202 |2.12 53.8 | 2.50 63.5]16.62 422.1 | 1.56 39.6/20.06 509.5] 1.88 47.7 | 2.50 63.5 22.3] 18.00 29.4 | 22.38 568.4 |2.88 73.1] 2.88 73.1 301 [3.62 91.9 | 4.88 123.9| 7.00 177.8| 2.50 63.5|1238 314.4] 3.25 82.5 | 5.00 127.0 38.1| 9.25 20.5 | 13.88 352.5 |3.44 87.3| 3.44 87.3 302 | 3.62 91.9 | 4.88 123.9|16.00 406.4 | 2.50 63.5|21.38 543.0] 3.25 82.5 | 5.00 127.0 38.1| 18.25 20.5 | 22.88 581.1 | 3.44 87.3| 3.44 87.3 303 |3.62 91.9 | 4.88 123.9]25.00 635.0| 2.50 63.5|30.38 771.6] 3.25 82.5 | 5.00 127.0 38.1| 27.25 20.5 | 31.88 809.7 | 3.44 87.3] 3.44 87.3 502 |5.12 130.0 | 6.50 165.1] 15.50 393.7] 3.31 84.0]21.62 549.1| 4.00 101.6 | 6.25 158.7 50.8 | 18.50 26.9 | 23.62 599.9 | 4.06 103.1] 4.06 103.1 503 |5.12 130.0 | 6.50 165.1] 24.50 622.3 | 3.31 84.0]30.62 777.7] 4.00 101.6 | 6.25 158.7 50.8 | 27.50 26.9 | 32.62 828.5 | 4.06 103.1| 4.06 103.1 504 |5.12 130.0 | 6.50 165.1|33.50 850.9] 3.31 84.0/39.62 1006.3] 4.00 101.6 | 6.25 158.7 50.8 | 36.50 26.9 | 41.62 1057.1 | 4.06 103.1] 4.06 103.1 602 | 6.12 155.4 | 7.50 190.5] 14.62 371.3] 3.81 96.7]21.50 546.1| 4.75 120.6 | 7.25 184.1 63.5| 18.38 33.2 | 24.00 609.6 | 4.69 119.1] 4.69 119.1 { 603 | 6.12 155.4 | 7.50 190.5] 23.50 596.9| 3.81 96.7|30.38 771.6] 4.75 120.6 | 7.25 184.1 63.5] 27.25 33.2 | 32.88 835.1 | 4.69 119.1] 4.69 119.1] __ 604 | 6.12 155.4 | 7.50 190.5] 32.38 822.4] 3.81 96.7]39.25 996.9] 4.75 120.6 | 7.25 184.1 63.5| 36.12 33.2 | 41.76 1060.7 | 4.69 119.1] 4.69 119.1) 606 | 6.12 155.4 | 7.50 190.5| 50.50 1282.7] 3.81 96.7|57.38 1457.4] 4.75 120.6 | 7.25 184.1|2.50 63.5] 54.25 1377.9 33.2 | 59.88 1520.9 | 4.69 119.1] 4.69 119.1 608 | 6.12 155.4 | 7.50 190.5] 68.38 1736.8] 3.81 96.7]75.25 1911.3] 4.75 120.6 | 7.25 184.1]2.50 63.5) 72.12 1831.8 33.2 | 77.76 1975.1 | 4.69 119.1] 4.69 119.1 (All dimensions are inches millimetres) (Certified drawings are available upon request) 0 F HF SSF dimensions ng 14(500 series) se series) 2(600 series) B 34(500 series} (600 series) NPTF. i ¥%(500 series) 14(600 sores} NPT i NPTF ¥a(600 series) ZINC SHELL ZINC l 5 «6 bia. cove 4a <+— OUT. IN Cc : HT 1P PASS NPTF CODE ¥%4(500 series) ¥ (600 series) ¥( sone ) series, 0.44 11.11 H ‘i ‘©: DM-8844 0.88 22.23, SLOTS ¥(600 series) sht2of11 Fig. 12 144 (500 series) 1% (500 series) 2 (600 series) B 2 (600 series) % (500 a —| (500 series SHELL Ya (600 saree) 5 «6 bia cove ZINC NPTF- 2p PASS ¥% (500 series) CODE ¥/ (600 series) 0.44 11.11 x 0.88 22.23 SLOTS -H M sht Sof 11 Fig. 13 B——___—__+ Be NPTE 1NPTF F oO E- ZINC 7 K\ IN OR OUT IN OROUT IN OR OUT- IK INOROUT SHELL 1% NPTF rT é ta 5 DIA. CODE . ee 7 A-DIA Tt i PASS v. ey % vines : Oz) 4 4P cote ¥% NPTF Ni s % NPTE SIN 0.44 11.11x ZINC DM-8844 0.88 22.23 SLOTS J H Sht8of 11 Fig. 14 2 NPTF 1% NPTF IN OR OUT SHELL % NPTF : DIA. CODE % NPTF P Pass ZINCS 4 CODE 0.44 11.11x DM-8844 0.88 22.23 SLOTS Sht 9 of 11 Fig. 15 TWO PASS FOUR PASS AMETE at H B E F K H B E F K Y | ‘Sbse" - - - ee - - - - - - _ - - - - - —|- —-| 201 - - - -|- - - - - - - - - - - - - - —|- — | 202 0.81 20.5 | 13.38 339.8 | 3.44 87.3] 2.94 74.6 | 0.88 0.81 20.5 | 13.62 345.9 | 3.31 984.0 | 3.31 84.0 | 0.75 19.0 | 0.62 15.7| 301 0.81 20.5 | 22.38 568.4 | 3.44 87.3] 2.94 74.6 | 0.88 0.81 20.5 | 22.62 574.5 | 3.31 84.0 | 3.31 84.0 | 0.75 19.0 | 0.62 15.7| 302 0.81 20.5 | 31.38 797.0 | 3.44 87.3] 2.94 74.6 | 0.88 0.81 205 | 31.62 803.1 | 3.31 84.0 | 3.31 84.0 | 0.75 19.0 062 15.7} 303 1.06 26.9 | 23.12 537.2 | 4.06 103.1 | 3.56 90.4 | 1.18 1.06 26.9 | 23.62 599.9 | 4.06 103.1 | 4.06 103.1 | 1.34 34.0] 0.75 19.0) 502 1.06 26.9 | 32.12 815.8 | 4.06 103.1 | 3.56 90.4 | 1.18 1.06 26.9 | 32.62 828.5 | 4.06 103.1 | 4.06 103.1 | 1.34 34.0/ 0.75 19.0] 503 1.06 26.9 | 41.12 1044.4 | 4.06 103.1 | 3.56 90.4 | 1.18 1.06 26.9 | 41.62 1057.1 | 4.06 103.1 | 4.06 103.1 | 1.34 34.0] 0.75 13.0} 504 1.31 33.2 | 23.50 596.9 | 4.69 119.1 | 4.19 106.4 | 1.50 2.18 55.3 | 25.38 644.6 | 5.56 141.2 | 5.19 131.8] 1.41 35.8] 1.06 26.9| 602 1.31 33.2 | 32.38 822.4 | 4.69 119.1 | 4.19 106.4 | 1.50 2.18 55.3 | 3425 869.9 | 5.56 141.2 | 5.19 131.8] 1.41 35.8] 1.06 269] 603 1.31 33.2 | 41.26 1048.0 | 4.69 119.1 | 4.19 106.4] 1.50 2.18 55.3 | 43.13 1095.5 | 5.56 141.2 | 5.19 131.8] 1.41 35.8] 1.06 269) 604 1.31 33.2 | 59.38 1508.2 | 4.69 119.1 | 4.19 106.4] 1.50 2.18 55.3 | 61.25 1555.7 | 5.56 141.2 | 5.19 131.8] 1.41 35.8] 1.06 269) 606 1.31 33.2 | 77.26 1962.4 | 4.69 119.1 | 4.19 106.4 | 1.50 2.18 55.3 | 79.13 2009.9 | 5.56 141.2 | 5.19 131.8] 1.41 35.8| 1.06 26.9] 608 (Certified drawings are available upon request) 9 ig ¥F HF SSF dimensions Ca aa iia alt is NT ial a ileal si SHELL DIA. CODE 1P PASS CODE Sht 3 of 11 Fig. 16 8 3NPT SHELL NPTF DIA. CODE IN REAR c PASS 2P Cone Ye NPTE r ZINC ag naa . DM-8844 SLOTS Sht 6 of 11 Fig. 17 : B = 3 NPT IN OR OUT | INOR OUT) IN OR OUT SHELL RS % NETF DIA. CODE TIL Tag PASS Y_ NPTF- CODE ZINC. 0.44 11.11x 0.88 22.23 SLOTS Sht 10 of 11 Fig. 18 Diner ALL UNITS ONE PASS & SHELL T tem | A | OC D G J cL | mM |N s H g E F BO2 | 8.25 209.5 |11.00 279.4 |12.00 304.8| 5.62 142.7| 22.75 577.8| 6.50 165.1 | 10.00 254.0] 4.00 101.6| 19.12 485.6] 2.25 57.1| 27.24 691.8] 7.62 193.5| 7.62 193.5 803 | 8.25 209.5 |11.00 279.4 |21.00 533.4] 5.62 142.7| 31.75 806.4 6.50 165.1 | 10.00 254.0] 4.00 101.6] 28.12 714.2] 2.25 57.1| 36.24 920.4] 7.62 193.5] 7.62 193.5 804 | 8.25 209.5|11.00 279.4 |30.00 762.0] 5.62 142.7| 40.75 1035.0] 6.50 165.1] 10.00 254.0| 4.00 101.6] 37.12 942.8] 2.25 57.1| 45.24 1149.0] 7.62 193.5] 7.62 193.5 805 | 8.25 209.5|11.00 279.4]39.00 990.6] 5.62 142.7| 49.75 1263.6] 6.50 165.1] 10.00 254.0| 4.00 101.6] 46.12 1171.4] 2.25 57.1] 54.24 1377.6] 7.62 193.5] 7.62 193.5 806 | 8.25 209.5|11.00 279.4 | 48.00 1219.2] 5.62 142.7] 58.75 1492.2] 6.50 165.1| 10.00 254.0] 4.00 101.6] 55.12 1400.0] 2.25 57.1| 63.24 1606.2| 7.62 193.5| 7.62 193.5 808 | 8.25 209.5 |11.00 279.4 |66.00 1676.4] 5.62 142.7| 76.75 1949.4] 6.50 165.1 | 10.00 254.0 4.00 101.6] 73.12 1857.2] 2.25 57.1] 81.24 2063.4| 7.62 193.5] 7.62 193.5 —+ $10 | 8.25 209.5|11.00 279.4 | 84.00 2133.6| 5.62 142.7| 94.75 2406.6) 6.50 165.1 | 10.00 254.0] 4.00 101.6] 91.12 2314.4] 2.25 57.1| 99.24 2520.6|) 7.62 193.5| 7.62 193.5 1005 |10.75 273.0] 14.88 377.9|34.12 866.6] 10.75 273.0| 25.00 635.0] 8.00 203.2 | 12.25 311.1 | 5.00 127.0] 46.12 1171.4] 17.38 441.4] 59.88 1520.9] 12.88 327.1| 12.88 327.1 1006 |10.75 273.0| 14.88 377.9 | 43.12 1095.2| 10.75 273.0] 34.00 863.6] 8.00 203.2 | 12.25 311.1| 5.00 127.0] 55.12 1400.0]17.38 441.4| 68.88 1749.5| 12.88 327.1| 12.88 327.1 1008 |10.75 273.0] 14.88 377.9 | 61.12 1552.4] 10.75 273.0] 52.00 1320.8] 8.00 203.2 | 12.25 311.1] 5.00 127.0] 73.12 1857.2 ]17.38 441.4] 86.88 2206.7|12.88 327.1] 12.88 327.1 1010 }10.75 273.0 | 14.88 377.9 | 79.12 2009.6] 10.75 273.0| 70.00 1778.0] 8.00 203.2 | 12.25 311.1 | 5.00 127.0] 91.12 2314.4} 17.38 441.4 | 104.88 2663.9] 12.88 327.1| 12.88 327.1 {All dimensions are inches millimetres) pF-B/d TRAD (Certified drawings are available upon request) I 10 / 832 Q F HF SSF dimensions Young f 5 ASA FLANGE Ye ete KI] Sree 10 SHELL DIA. CODE 1P PASS CODE DM-9382 —- Fig. 19 cy) 5 ASA FLANGE 1 "ame % were 3 nete IN OR OUT 10 SHELL DIA. CODE 2P PASS CODE Yo were zinc 0.75 19.05 ji Yo werk D1. HOLES DM-9383 Fig. 20 5 ASA FLANGE - % were 2%anerr 1N OR OUT 1 SHELL 4 DIA. CODE 1 Ta ¥ 4P PASS CODE Dm-9384 ~—- Fig. 21 TWO PASS FOUR PASS DIAMETER 7 & SHELL H B | E F K H B E F K Y | ‘ener CODE 1.75 44.4 | 26.24 666.4 | 7.12 180.8 | 7.12 180.8] 1.88 47.7] 1.75 44.4] 26.24 666.4 | 7.12 180.8 | 7.12 180.8 | 1.88 47.7| 1.38 35.0} 802 1.75 44.4 | 35.24 895.0 | 7.12 180.8] 7.12 180.8] 1.88 47.7] 1.75 44.4| 35.24 895.0] 7.12 180.8] 7.12 180.8 | 1.88 47.7| 1.38 35.0} 803 1.75 44.4 | 44.24 1123.6 | 7.12 180.8 | 7.12 180.8] 1.88 47.7] 1.75 44.4] 44.24 1123.6 | 7.12 180.8] 7.12 180.8 | 1.88 47.7| 1.38 35.0] 804 1.75 44.4 | 53.24 1352.2 | 7.12 180.8 | 7.12 180.8] 1.88 47.7] 1.75 44.4] 53.24 1352.2 | 7.12 180.8] 7.12 180.8 | 1.88 47.7| 1.38 35.0] 805 a 1.75 44.4 | 62.24 1580.8 | 7.12 180.8 | 7.12 1808] 1.88 47.7] 1.75 44.4 | 62.24 1580.8 | 7.12 180.8 | 7.12 180.8 | 1.88 47.7 | 1.38 35.0} 806 EY 1.75 44.4 | 80.24 2038.0 | 7.12 180.8 | 7.12 180.8] 1.88 47.7] 1.75 44.4] 80.24 2038.0 | 7.12 180.8| 7.12 180.8 | 1.88 47.7] 1.38 35.0) 808 ie 1.75 44.4 | 98.24 2495.2 | 7.12 180.8 | 7.12 180.8] 1.88 47.7] 1.75 44.4| 98.24 2495.2 | 7.12 180.8] 7.12 180.8 | 1.88 47.7| 1.38 35.0| 810 Ly 15.38 390.6 | 55.63 1413.0 | 10.88 276.3 | 10.63 270.0] 2.50 63.5] 15.38 390.6 | 55.63 1413.0 | 10.88 276.3 | 10.63 270.0 | 2.00 50.8] 1.75 44.4) 1005 15.38 390.6 | 64.63 1641.6 | 10.88 276.3 | 10.63 270.0| 2.50 63.5] 15.38 390.6 | 64.63 1641.6 | 10.88 276.3 | 10.63 270.0 | 2.00 50.8 | 1.75 44.4) 1006 15.38 390.6 | 82.63 2098.8 | 10.88 276.3 | 10.63 270.0] 2.50 63.5] 15.38 390.6 | 82.63 2098.8 | 10.88 276.3 | 10.63 270.0 | 2.00 50.8 | 1.75 44.4] 1008 15.38 390.6 | 100.63 2556.0 | 10.88 276.3 | 10.63 270.0| 2.50 63.5] 15.38 390.6 | 100.63 2556.0 | 10.88 276.3 | 10.63 270.0 | 2.00 50.8 | 1.75 44.4) 1010 (Certified drawings are available upon request) tt YOUNG INDUSTRIAL PRODUCTS 2 or a: Fig. 22 = aie } STANDARD MWC ; Fig. 26 i Water Cooling Fig. 24 STANDARD HC Fig. 23 STANDARD MONO-WELD Radiators (stock) Catalog 1878 Radiator (stock) Catalog 1578 MWC Custom Units Catalog 1378 AV Watercooler & Compressed Air Aftercooler (stock) Catalog 1478 Fig. 25 : ” Water Cooling Radiator (stock: MOC Mobile Oil Catalog 1777" (stock) Cooler (stock) HC Custom Units Catalog 2478 Catalog 1378 i Ne ict Fig. 27 CI Industrial Water Cooler (stock) OCS Oil Cooler (stock) Fig. 29 F Fixed Tube Bundle Heat Exchanger (stock) Catalog 1278 WARRANTY Fig. 30 R Removable Tube Bundle Heat Exchanger Catalog 1178 Fig. 28 Fig. 31 OCH Oil Cooler (stock) Catalog 3078 Catalog 3577 Catalog 1078 The Young Radiator Company warrants its products against defects in material or workmanship under normal use and service for a period of one year from date of shipment from its plants at Racine, Wisconsin, Mattoon, Illinois or Centerville, lowa. All obligations and liabilities under this warranty are limited to repairing or replacing at our option f.o.b. Racine, through the alleged failure or failure of any of its products or their accessories. If field service at the request of the Buyer is rendered and the fault is found not to be with the Young Radiator Com- pany’s products, the Buyer shall pay the time and expense of . ee ts the field representative. Bills for service, labor, or other ex- £) econ Mattoon, Illinois or emer ine, lowa, he such al- penses that have been incurred by the Buyer, their customer < legedly defective units as are returned, carrier charges pre- or agent without approval or authorization by manufacturer paid. All repairs or replacements are made subject to factory will not be accepted inspection of returned parts at company plant. No liability is : i . : i accepted for consequential damage or reinstallation labor. cole werranty does Sen failure seauiing om improper Warranty on accessories furnished by outside manufacturers eo MORES ClRE Wiuon paras Sxceenve shall be limited to the warranty of the respective accessory oa ohare cauees failure or breakage of parts due to manufacturer for such units. gue. 7 . The Young Radiator Company, whose policy is one of con- Our one year warranty period does not cover failure due to tinuous improvement, reserves the right to improve its prod- corrosion. Our commercial products are not packaged or pro- ucts through changes in design or materials as it may deem tegten for long periods of storage in general corrosive at- desirable without being obligated to incorporate such changes mospheric conditions. in products of prior manufacture. The Young Radiator Com- Changes or repairs attempted or made in the field without “.pany will not assume responsibility for contingent liability authorization from the factory automatically void this warranty. oO See Yellow Pages listing under Heat Exchangers. *Alabama, Birmingham *Massachusetts, Boston *Ohio, Cleveland *Washington, Seattle *California, Los Angeles *Michigan, Detroit *Oklahoma, Oklahoma City *Wisconsin, Milwaukee *California, San Francisco *Minnesota, St. Paul *Pennsylvania, Philadelphia *Wisconsin, Racine *Colorado, Denver “Missouri, Kansas City *Pennsylvania, Pittsburgh *Georgia, Atlanta Missouri, St. Louis *Tennessee, Memphis *Illinois, Chicago *New York, Buffalo *Texas, Dallas Indiana, Indianapolis *New York, New York *Texas, Houston __ *Louisiana, New Orleans *North Carolina, Charlotte Utah, Salt Lake City Alberta, Calgary Maryland, Baltimore *Ohio, Cincinnati Virginia, Richmond *Ontario, Toronto “Computer terminal installed for accessing Young Radiator Company stock status and design programs. ; 4 tae J 2825 Four Mile Road e Racine, Wisconsin 53404 Plants at: Racine, WI, Mattoon, IL and Centerville, IA oon ® ye YOUNG RADIATOR COMPANY TELEPHONE: 414-639-1011 @ TWX: 910-271-2397 @ TELEX: 26-4435 20M-1178-M. Litho in U.S.A.