Loading...
HomeMy WebLinkAboutRailbelt Intertie Reconnaissance Study Vol. 7 Railbelt Stability Study 1989 RAILBELT INTERTIE RECONNAISSANCE STUDY Volume 7 Railbelt Stability Study January / May 1989 Power Technologies, Inc. Alaska Power Authority a RAILBELT INTERTIE RECONNAISSANCE STUDY VOLUME 7 RAILBELT STABILITY STUDY Prepared for Alaska Power Authority Anchorage, Alaska Prepared by Power Technologies, Inc. Roseville, California January/May 1988 RAILBELT INTERTIE RECONNAISSANCE STUDY VOLUME NUMBER 1 10 a2 LIST OF VOLUMES VOLUME TITLE Economic and Demographic Projections for the Alaska Railbelt: 1988-2010 Forecast of Electricity Demand in the Alaska Railbelt Region: 1988-2010 Analysis of Electrical End Use Efficiency Programs for the Alaskan Railbelt Fuel Price Outlooks: Crude Oil, Natural Gas, and Fuel Oil Anchorage-Kenai Transmission Intertie Project Anchorage-Fairbanks Transmission Intertie Expansion and Upgrade Project Railbelt Stability Study Northeast Transmission Intertie Project Estimated Costs and Environmental Impacts of Coal-Fired Power Plants in the Alaska Railbelt Region Estimated Costs and Environmental Impacts of a Natural Gas Pipeline System Linking Fairbanks with the Cook Inlet Area Benefit/Cost Analysis RAILBELT STABILITY STUDY PHASE I Prepared for Alaska Power Authority Contract No. 2800122 PTI Project No. 30.2608 Prepared by: Harrison K. Clark POWER TECHNOLOGIES, INC. Roseville, CA January 27, 1989 Report No. R11-89 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 TABLE OF CONTENTS INTRODUCTION re rsee op apemston eros eee oe 9 Se Le 3 STPABICIT Ye O VER VUE W Srvc scccerts eorow on swopo ner enenien opie teaer ope ees 6 INQ P23 OF V2 ISIN eects ee crete orn ore nie ool epee mses elena some ecm ete on ao 10 3-1— 120 ;MW-AT BRADLEY LAKE ica gee coo ee ee ee cms 10 3; 131 = Base: Case Power BO Wooten or ay ates) oon ame tet eugene te—soeeas 10 3.1.2 No Bradley Lake Power Runback .................---- 13 3.1.3. With Bradley Lake Power Runback ..............--.44. 16 3.1:4 = With "Bernice: @& Cooper Ofte rreseqeo cops oo sei ene seen ons woniemente 17 52-90 / MWA BRADLEY. AKER Secgencreen isso eee ease ase tess 20 3251 Base: Case Power POW nono oriente en heie ye tons to toa 20 3.2.2, No Bradley Lake Power Runback...................4. 21 3.2.3. With Bradley Lake Power Runback ................... -22 AA ld Ws (71) 9,10) 6 || Ofer ereererere areca nse arian ate Se Cirn sOtce Surlace cu Carlac ce Sarinececenacec 25 @:1\— —120SMW_-AT-BRADLEW- LAKE oxo ec ep eperton ey ee) oe se ayy ee eres 25 4.1.1 Base Case Power Flow ..... Bones e ese ech eet eres 25 4.1.2 No Bradley Lake Power Runback ....................-. 27 4.1.3 With Bradley Lake Power Runback ................... 30 4°2—— 90:MWOAT BRADLEY GAKE menses te 9) oe es Ae een ener 31 4.2.1 No Bradley Lake Power Runback ..................050. 31 4.2.2 With Bradley Lake Power Runback ................... 32 4.3. Fault and Trip of the 230 kV Line .....................0.0. 32 OTHER FAULT LOCATIONS - LOSS OF LOAD - INADVERTENT BRAKE APPLICATION reece eases ote soils) Saeco ices stesso 33 SUMMER LOW PEAK CONDITIONS ...................-0055 BT NO LINE FROM BRADLEY LAKE TO FRITZ CREEK ............ 38 LOSS OF KENAI - ANCHORAGE TIE ........................ 43 RELIABILITY DIFFERENCES BETWEEN 115 kV AND 230 kV ANISTIESRNA EDV IES Sree ctor operons cise op sic obee se shoe oom be eons te once se eee 48 APPENDIX I FIRST-SWING, STEADY STATE, DYNAMIC STABILITY APPENDIX II POWER FLOW AND STABILITY CASES APPENDIX IIT BRAKING RESISTORS APPENDIX IV SERIES CAPACITORS APPENDIX V GLOSSARY APPENDIX VI STABILIZERS APPENDIX VII PROTECTION NOTES APPENDIX VIII TURBINE DEFLECTOR CONSIDERATIONS Power Technologies, Inc. Page 1 RAILBELT STABILITY STUDY PHASE I 10 INTRODUCTION This report covers the first part of a three-part study with the following goals: Phase I Phase II Phase III Define alternative system equipment additions to facilitate delivery of Bradley Lake power to the Anchorage. Select the most cost-effective alternatives proposed in Phase I and optimize to meet all criteria with lowest cost equipment compliment. Prepare preliminary specifications for the series and shunt compensation recommended in Phase II and outline computer and simulator studies required to complete the specifications. The scope of the Phase I studies was fully defined in a meeting in APA offices in Anchorage on December xx attended by Railbelt utilities interested in the project. At this meeting it was agreed that the alternative transmission improvements to be defined in Phase I studies should meet the following requirements: ° Deliver 120 MW from Bradley Lake without power reductions that could cause load shedding when there is little or no spinning reserve. ° Deliver 75 MW from the Kenai area to the Anchorage area, measured on the Dave’s Creek to Portage line. ° Accommodate fault-caused loss of load in the Kenai area. ° Use a three-phase, normally cleared fault as the disturbance criteria. Power Technologies, Inc. Page 2 It was also agreed that the Phase I study would concentrate on development of a transmission plan utilizing only the existing 115 kV lines, but would briefly examine an alternative utilizing a new 230 kV line in order to assess the performance, cost, and reliability differences between 115 and 230 kV alternatives. The analysis to develop a 115 kV plan to meet the above goals was completed in early January, three weeks following receipt of system data. However, the analysis did not provide the desired multiple transmission plan alternatives as had been desired. A complement of series capacitors (3), SVSs (2), a braking resistor, and stabilizers at Bradley Lake was shown to meet the criteria nicely, but left essentially no options for alternatives. With the basic goals of the Phase I study complete, attention was tumed to alternatives involving lower Bradley Lake power levels (90 MW), use of the deflector to improve stability, and a look at the 230 kV option. The stability cases described in this report show that all of the above options are workable, and that there are differences in reliability and cost. 2.0 STABILITY OVERVIEW The most severe disturbance insofar as Kenai stability is concerned is a three-phase fault near Bradley Lake on the Bradley Lake - Soldotna line. The problems it causes include first-swing stability, damping, and steady state stability (See Appendix I for a description of these stability problems). The root cause of these problems is the long transmission path between Bradley Lake and Anchorage that remains following loss of the Bradley Lake to Soldoma line. First-swing stability can be achieved by installation of series capacitors, SVSs, high ceiling - high initial response excitation, braking resistors, generator dropping and generator power reduction (deflector). The deflector and the braking resistor have both been examined for use at Bradley Lake. The braking resistor is very effective. The deflector is less effective in that it "cuts-in" over a period of time rather than being applied suddenly and completely. However, it may be suitable where loading is not much beyond the point of first-swing stability, or where it can supplement the braking resistor. Generator dropping is also a candidate for Bradley Lake, but has been ruled out for frequent use because of the load shedding that is likely to result. Power Technologies, Inc. Page 3 Steady state stability can be reliably and economically provided by use of the deflector. The deflector can bring power down to within the steady state stability limit before the system approaches a steady state condition. However, an SVSs and three series capacitors can provide steady state stability without power reduction and possible consequent load shedding. SVSs have been considered at Anchor Point and Quartz Creek, while series capacitors have been considered between Bradley Lake and Fritz Creek, between Anchor Point and Kasilof, and between Soldotna and Quartz Creek. These are the three longest line sections in the path between Bradley Lake and Anchorage when the Bradley Lake Soldotna line is open. The three lines are well distributed along the path, though this is a secondary consideration. Series capacitors can also be considered for the line from Dave’s Creek to University, even though there are load taps on this line. However, in that instability occurs between Bradley Lake and Soldotna in most cases, the most effective location for series capacitors is between Soldoma and Bradley Lake. Dynamic stability can be improved most economically by stabilizers on the Bradley Lake generators. Where this is not sufficient, SVSs will contribute significantly to dynamic stability, and can be equipped with a stabilizer for maximum benefit. Series capacitors also improve dynamic stability significantly. Where damping is a problem only in the first few seconds of large power swings, the deflector can also contribute to dynamic instability by holding power down for several seconds until the large oscillations have subsided and the oscillations are within the capability of the Bradley Lake stabilizers and the SVSs. Once the large oscillations have subsided (3 to 5 seconds), Bradley Lake power can be ramped up gradually over several seconds.’ The temporary runback can result in load shedding if spinning reserve is low when it is used. Unless otherwise noted, all stability cases discussed below address fault and trip of the Bradley Lake to Soldotna line. The fault is three-phase close to Bradley Lake, and the line is cleared in 4 cycles (.06667s). Power flow plots for base case and post-fault conditions and stability case plots are presented in Appendix II for all cases referenced in the following sections. It is not unusual for nonlinearities in a system to result in dynamic instability for large oscillations and dynamic stability for smaller oscillations. Power Technologies, Inc. Page 4 3.0 NO 230 KV LINE 3.1 120 MW AT BRADLEY LAKE 3.1.1 Base Case Power Flow The base case power flow has the following conditions: ° Bradley Lake at 120 MW ° Bernice Lake # 3 on at 24 MW ° Cooper Lake units on at 15 MW ° Tesoro unit on at 4.5 MW ° Kenai export to Anchorage area 70 MW measured just above Dave’s Creek ° Fairbanks import 70 MW measured just above Cantwell ° Tesoro to Kenai 69 kV line closed ° University to Anchorage 115 kV line closed ° Two University 115-138 kV transformers with reduced tertiary load (load shifted to a new 115-34.5 kV transformer). ° All International Plant units off-line ° Shunt capacitors at Anchor Point, Soldotna, and Quartz Creek The original study plan was to consider a Kenai export of 75 MW measured above Dave’s Creek. However, a second generating unit would have been needed at Bernice Lake to provide the additional 5 MW. I felt that the extra unit, even the small #1 unit, might contribute to stability as much as the extra 5 MW would degrade it, so left the export at 70 MW. In the most difficult cases, the instability tends to occur between Power Technologies, Inc. Page 5 Bradley Lake and Soldotna, so that adding generation at Bernice probably does improve stability. Once this stability problem is solved, faults that threaten instability between all Kenai generation and Anchorage are no longer a problem (that is, the fixes applied to the Bradley Lake problem also fix any stability problem between Kenai and Anchorage areas). Optimization studies to finalize the compensation should consider various Kenai dispatches, load levels, and export levels. 3.1.2 No Bradley Lake Power Runback The equipment requirements to provide stability at the 120 MW level without a new 230 kV line and without use of the Bradley Lake deflector or unit tripping are: ° 13.8 kV resistor capable of 30 MW for .75 seconds (only .4 or .5 seconds would normally be used). ° Stabilizers on each Bradley Lake unit. ° An SVS with a 30 MVAR dynmiie range at Anchor Point.” ° An SVS with a 15 MVAR dynamic range at Quartz Creek ° Additional switched capacitors are Quartz Creek. o 50% series capacitors in three lines.’ Stability case 116B demonstrates the performance of the above equipment for three- phase fault at the Bradley Lake end of the Bradley Lake Soldotna line. Stabilizers are included on Cooper Lake, Bernice Lake, Bradley Lake, and the SVS at Anchor Point. The Cooper Lake and Bernice Lake stabilizers are later shown to not be essential. The cost of this SVS can be reduced by allowing the SVS control to switch on a capacitor bank (about 15 MVAR) when a power swing is detected, and applying a thyristor controlled reactor with 15 MVAR steady state capability and 25 MVAR short-time overload capability. * About 4 MVAR between Bradley Lake and Fritz Creek, and 6 MVAR between Anchor Point and Kasilof, and between Soldotna and Quartz Creek. Because fault levels are low, it may be possible to avoid bypassing equipment on these units, thus reducing cost. Power Technologies, Inc. Page 6 Stability case 117 has a stabilizer on the Anchor Point SVS only, and shows growing oscillations. Because Bradley Lake power is not run back, no load shedding should be necessary with this scenario. In case 116B the frequency drops .5 Hz over 4 seconds, but only because there is no spinning reserve in the case and because of the energy absorbed by the braking resistor (partially offset by load depression during the fault) and the increased line losses in the Kenai that occur with the Bradley Soldotna line out (later runs show the increased line losses cause most of the frequency decay). There is little room for optimization of the compensation equipment in this scenario (e.g. size, location, etc.). Essentially all of the equipment listed is needed. The only substantial opportunity to reduce cost is in the design of the SVSs to make maximum use of mechanically switched capacitors and short-time rated reactors.* 3.1.3 With Bradley Lake Power Runback If, in the scenario outlined above, the deflector is run in and left in to reduce Bradley Lake power, the compensation required for steady state stability and damping can be reduced. The braking resistor size may also be reduced somewhat because of the contribution of the deflector to first-swing stability. The amount of compensation equipment required would depend on the level of Bradley Lake power runback that is desired. Running back to somewhat less than 60 MW would almost totally eliminate the need for series and shunt compensation because the power through Fritz Creek would be only slightly higher in the post-disturbance period than it is before the disturbance. Running back to an intermediate level, say 90 MW, would require some compensation equipment to be installed, primarily to provide dynamic stability. A relatively small SVS, perhaps as small as +10/-5 MVAR may suffice. Running the deflector in to cut Bradley Lake power back will cause load shedding if spinning reserve is below the amount of runback. In addition, some excess load shedding may occur because of the frequency swings that occur in the first seconds after a disturbance. In case 121A the frequency is down to 58 Hz in 6 seconds with no spinning * A reactor with, for instance, a 15 MVAR continuous rating and a 25 MVAR (or more) temporary rating, can be used where the normal operating point, before and after disturbances, is in the range 0 two 15 MVAR, and higher reactive power need be absorbed only for a second or two following load rejection, or to control backswing overvoltages. Power Technologies, Inc. Page 7 reserve and Bradley Lake power cut to 60 MW and held there. The deflector could be used to bring power back to some intermediate level, say 90 MW to 100 MW in this case because of the series capacitors. This would reduce the load shedding, but would eliminate it only if there is significant spinning reserve. Stability case 121A has just three series capacitors (no SVS). The system is stable in all respects. This case would be dynamically unstable (growing oscillations) without Bradley Lake stabilizers or with improperly tuned stabilizers. 3.1.4 With Bernice & Cooper Off The system may be less stable with Bernice and Cooper units off-line because of the loss of voltage support they provide. However, if exports are high (70 MW or more) these units are likely to be off only when Kenai load is low. Reducing the load also affects stability, and may offset the effect of taking a unit off-line. Cases 140 and 140A were run to examine the impact of Kenai load and Bernice generation level on stability. Case 140 has Bernice #2 operating with Kenai load at 50 MW and Bradley at 120 MW. Anchorage and Fairbanks areas are represented with summer low peak loads and generation.’ Export is 68.2 MW. Case 140A is identical except Bernice #3 is also on and Kenai load is increased to 70 MW. Export is 68.1 MW in this case. The Anchor Point SVS is at -5 MVAR in both cases. The Quartz Creek SVS is at 19.75 MVAR in case 140 and 23.3 MVAR in case 140A. Comparing the cases indicates the condition with Bernice #3 on and heavier load to be only very slightly more stable from both first-swing and damping points of view. However, the difference is so small that it need not be of concern as the system is planned. Though the load level and the number of Bernice units operating may affect stability for some other fault locations more than it does fault and trip of the Bradley to Soldotna line, it is clear that the stability of the Kenai region is primarily a function of the export level and the Bradley Lake power level. Cases 140B can also be compared with case 116B. These two cases are very similar with two exceptions. Case 116B has stabilizers on Bernice and Cooper units, and Tepresents winter peak conditions in the Anchorage and Fairbanks areas. First-swing stability is almost identical, but damping is much better in case 116B. The damping difference is probably due almost wholly to the Bernice and Cooper stabilizers, because a change in load and dispatch in the Anchorage area would not be expected to have a 5 70 MW Kenai load may not be representative of summer conditions, but is used in these cases to provide a comparison rather than an absolution evaluation of summer or winter stability. Power Technologies, Inc. Page 8 significant affect on damping. These cases show the greatest impact of Bernice and Cooper stabilizers of any of the cases done so far in this study, but do not indicate that they are worth the investment they would require. The most important observation from a comparison of cases 116B and 140B is that differences between winter and summer conditions in Anchorage do not affect Kenai stability significantly. 3.2 90 MW AT BRADLEY LAKE Reducing Bradley power level reduces first-swing, dynamic, and steady state stability problems. The deflector can contribute to all three, but increases the risk of load shedding. The following cases explore stability at 90 MW with and without use of the deflector. 3.2.1 Base Case Power Flow The base case power flow has the following conditions: ° Kenai export at 76 MW ° Bradley Lake at 90 MW oO Bernice Lake at 58 MW (units 2, 3 & 4 on) ° Tesoro at 4.5 MW and Cooper at 15 MW ° Lines closed and second University transformer ° 14.4 MVAR capacitor banks at Anchor Point, Soldotna, and Quartz Creek in SVS cases, 3.2.2. No Bradley Lake Power Runback With no Bradley Lake power runback, a braking resistor can provide first-swing stability, but some compensation is required for dynamic stability. The series of cases 123 through 123D explore the options. These cases show that three series capacitors or a single +15/-10 MVAR SVS at Soldotna will do the job. Power Technologies, Inc. Page 9 The three series capacitors are probably less costly than the single SVS. Also, the amount of switched shunt capacitors at Anchor Point, Soldotna, and Quartz Creek can be reduced if the series capacitors are installed (some switched shunt capacitors are required in the SVS case in addition to the shunt capacitors associated with the SVS). Series capacitors are also likely to be more reliable in that they require no operator involvement, no control, and the system is likely to be stable (though marginally so) with any one of the three banks out of service. 3.2.3. With Bradley Lake Power Runback The base case power flow used to examine 90 MW with power runback has no series capacitors or SVSs. It is otherwise identical to the case used for the SVS case discussed in section 4.2 (It has the three 115 kV 14.4 MVAR capacitor banks). Stability cases 124 through 124C show: ° Stable with 30 MW brake and 30 MW runback (124 & 124A) ° Stable with no brake and 50 MW runback (124B) ° First-swing stable for no brake and 30 MW runback, but second swing- unstable for quick deflector pullout (124C) Cases 124 and 124A are different only in that 124 has Bernice and Cooper stabilizers while 124A does not. The additional stabilizers make a measurable difference, but are not at all essential. Cases 124B and 124C indicate that power need only be run back 30 MW to provide first-swing stability, and that the power cannot be ramped back up quickly to prevent load shedding. The power can be ramped back up to some intermediate level, probably 70 or 80 MW without high risk of dynamic or steady state instability, but the rate at which power is raised should be no more than about 5 MW per second. Power Technologies, Inc. Page 10 Case 126 (see section 7.0) is similar to the above cases except Bradley Lake is run back only to 60 MW, and 20 MW of load is dropped in the Kenai area during the fault. The case is stable, though the first-swing is large and damping is light. However, the appearance of light damping is partly due to the ramp up of Bradley Lake power in this tun. Bradley Lake is back to about 83 MW at the end of this 5 second run. This case supersedes case 124B in that it is stable with less runback and otherwise similar or worse conditions. Also, this case indicates loss of load does not affect stability dramatically. Power flow cases can show the steady state limit. A trial case showed that ramping back up to 90 MW does not cause excessively low voltages or push Bernice Lake and Cooper generators dangerously close to maximum reactive limits. However, it is quite possible for the dynamic stability limit to fall below the steady state stability limit. Further simulations are necessary to confirm that the maximum safe power transfer following loss of the Bradley Lake to Soldoma line is 90 MW. Extending case 126 out to 10 seconds should accomplish this. 4.0 WITH 230 KV LINE 4.1120 MW AT BRADLEY LAKE 4.1.1 Base Case Power Flow The 230 kV line was added between Soldotna and University using data from the SEI report. The Soldotna 115-230 kV transformer reactance is about 2% on a 100 MVA base, and seems low. A 35 MVAR reactor was placed on the Soldotna end of the 230 kV line. This reactor provides about 88% compensation for the line. It is necessary to prevent low voltage in the Kenai following trip of the line. Without the reactor, charging current from the line would flow into the Kenai 115 kV system, forcing shunt capacitors to be switched out to keep voltages down. With the 230 kV reactor on, there is some reactive flow into the 230 kV line at Soldotna, so that upon trip of. the line, this reactive power is available to help supply the suddenly higher 115 kV reactive losses as the power that was flowing over the 230 kV lines shifts to the 115 kV line. Power Technologies, Inc. Page 11 The Kenai export is 80 MW in this case. Kenai generation is unchanged. The 115 kV metering point remains just above Dave’s Creek. The export increase from 76 MW to 80 MW is apparently due to lower losses between Soldota and Dave’s Creek, though this seems high. I believe the export metering point is at the Soldoma end of the 230 kV line, but will double check this for the final report. 4.1.2 No Bradley Lake Power Runback On the assumption that the 230 kV line would make a substantial contribution to Bradley Lake stability, the following series of cases was run so determine the maximum Bradley Lake power that could be generated (no change in Kenai export) without additional compensation or runback. Case 127 was run with the 230 kV line and Bradley Lake at 90 MW (see section 6.0) and forms the starting point for the cases with increased Bradley Lake loading. Cases 127A through 127C are similar to 127 except that Kenai generation dispatch is changed to increase Bradley Lake power and decrease Bernice Lake power as shown in the table below. All three are first-swing unstable. Case Bernice Lake (MW) Bradley Lake (MW) #2 #3 #4 127 16 21 21 90 127A 16 0 21 113 127B 0 24 24 100 127¢€ 13 18 18 100 Case 127C was an attempt to improve stability between Bradley Lake and Soldotna by increasing the inertia and strengthening the Soldotna bus. Because in these cases Bradley Lake pulls away from the other plants, this should help. But, it was not enough to do the job. The maximum Bradley Lake schedule with no equipment additions except the 230 kV line is 90 MW or very slightly above 90 MW (but less than 100 MW). No load dropping was represented in these cases. Case 127 may be unstable or marginally stable with load dropping assumed to occur. Power Technologies, Inc. Page 12 Two cases were run in an attempt to increase Bradley Lake power by using a braking resistor to provide first-swing stability. The fault is on the Bradley Lake to Soldotna line. The Kenai export is 80 MW. Bernice Lake #3 (21 MW) is off and Bradley Lake is increased 23 MW to 113 MW (to cover an additional 2 MW of loss). In case 129A, a 30 MW brake is applied for .33 seconds (the best combination in many previous cases), but does not achieve first-swing stability. A longer brake time (.43s) does provide first-swing stability in case 129B, but the large subsequent oscillations lead to loss of synchronism on the third swing. It is clear from these cases that the 230 kV line does not significantly improve stability for fault and trip of the Bradley Lake to Soldotna line. The system can be made first-swing stable, but requires significant additional compensation to be dynamically stable. The amount of compensation required will be somewhat short of that shown to be required if the 230 kV line is not build. The 230 kV line improves Kenai stability significantly, but improves Bradley Lake stability only minimally because it does not eliminate the large impedance between Bradley Lake and Soldoma following tip of the Bradley Lake to Soldoma line. Series capacitors or an SVS can compensate for the length of these lines. 4.1.3 With Bradley Lake Power Runback Just one case (129) was mun to assess the possibility of using the deflector to increase Bradley Lake power output above 90 MW with the 230 kV line in. The case is first-swing unstable, with Bradley Lake pulling out of step with Bernice Lake and Cooper in spite of a 40 MW power reduction by the deflector. A combination of a braking resistor and runback would provide stability for up to 120 MW at Bradley Lake and 80 MW Kenai export. The loop from Bradley Lake to Soldotna is limiting. The 230 kV system improves stability of Bradley Lake somewhat, but does not solve the problem of the long distance from Bradley Lake to Soldotna. As in cases without the 230 kV line, reducing the power with the deflector can solve the problem of the long path from Bradley Lake to Soldoma via Fritz Creek. Without the 230 kV line, Bradley Lake was stable at 120 MW with the braking resistor and runback applied, or just a large runback applied (cases 124 -124C). The 230 kV line will reduce somewhat the size of the braking resistor or the depth of the runback, but will not eliminate it. Power Technologies, Inc. Page 13 4.2 90 MW AT BRADLEY LAKE 4.2.1 No Bradley Lake Power Runback The system is stable with no SVS, no series capacitors, no brake, and no use of the deflector for a Bradley Lake to Soldotna line fault when Bradley Lake is operating at 90 MW (case 127). Note, however, that only one Kenai dispatch was examined to formulate the above conclusion. Some cases should be run for various load and generation configurations to ensure that this conclusion is always true. 4.2.2 With Bradley Lake Power Runback Runback need not be considered for this power level if the 230 kV line is installed, as the system will be stable without it. 4.3 Fault and Trip of the 230 kV Line Case 128 was run to test stability for a three-phase fault on the 230 kV line near Soldotna. It was run with 80 MW export, three Bernice Lake units on at 58 MW otal, Cooper on at 15 MW, and Bradley Lake on at 90 MW. The first swing is marginally stable, and damping is very light. No load was dropped in this case. Because the first- swing is vary marginal, any loss of load would likely make the case unstable. This case shows that the system can remain stable upon loss of the 230 kV line without use of the braking resistor or deflector with export at 80 MW (and somewhat below 80 MW with some loss of load assumed to occur). This would indicate that a brake and/or deflector could be used to make the system stable for the same disturbance at somewhat higher export. Power Technologies, Inc. Page 14 5.0 OTHER FAULT LOCATIONS - LOSS OF LOAD - INADVERTENT BRAKE APPLICATION Several stability cases were run to be sure that fault locations other than the Bradley Lake end of the Bradley Lake to Soldotna line is the worst-case fault location. These cases were run with 90 MW at Bradley Lake, 76 MW Kenai export, no series compensation, no SVSs, no braking resistor, and no us of the deflector. Only Bradley Lake has a stabilizer in these cases. The first three are for 115 kV transmission to Anchorage, the last one is for 230 kV. Case 125 is for a three-phase four cycle fault near Soldotna on the Soldotna to Ski Hill line. This fault weakens the system between Soldoma and Bradley Lake, as well as accelerating all Kenai area generation. The system is easily first-swing stable, and is damped, though the damping is somewhat on the marginal side. Case 125B is for a three-phase four cycle fault on the 115 kV line from Dave’s Creek to Lawing. This fault accelerates Kenai area generation and drops load from the system, thus increasing the power flow up to Anchorage. Because this fault, like any other in the Kenai are, would also cause some other Kenai load to drop from the system, an additional 20 MW of load spread uniformly across the Kenai was dropped. In addition, somewhat arbitrarily, the Dave’s Creek 25 kV load was dropped. The total load dropped is thus 31.1 MW (11.1 MW for Lawing and Dave’s Creek 25 kV, and 20 MW elsewhere). The case is first-swing stable, but is very poorly damped. The higher angle between Kenai generation and Anchorage generation, caused by the loss of load, puts the system very near the dynamic stability limit (with Bradley Lake stabilizers operating -- the system would be dramatically unstable without the Bradley Lake stabilizers). The problem of dynamic instability for disturbances that are not otherwise a threat should be considered further. For example, a case should be run with a more complex load model (i.e. including dynamic models of induction motors) in the Kenai area. If this case shows that the load model presently being used (constant current real part, constant impedance imaginary part) is quite pessimistic, then such cases may be deemed adequate. If damping remains a problem, then additional consideration should be given to stabilizers on Bernice Lake and Cooper units or a modest sized SVS. Case 126 was run primarily to check stability of the Bradley Lake plant with the assumption that the three-phase four cycle fault near Bradley Lake on the Bradley Lake to Soldotna line will drop load in the Kenai area. 20 MW of load is dropped at the instant of line trip (motor contactors open in about 3 cycles, and thus may actually precede line clearing by a cycle). The case is otherwise similar to case 124B (the deflector is used to Power Technologies, Inc. Page 15 run power back to 60 MW). The first-swing is large but stable (slightly better than "marginally stable"), and damping is marginally adequate. Case 136 is a test of stability for a fault at the Soldoma end of the Soldoma - Bradley Lake line with the 230 kV line in and no other compensation added. A fault at this location will accelerate Cooper and Bernice more than will a fault close to Bradley, but will accelerate Bradley lake less. The first-swing is large, but the case is stable. Damping was not checked, but should be the same as for a fault at the Bradley Lake end of the line if the first swing is not significantly larger (a large first swing can initiate oscillations that are too large for the stabilizer to handle). Since the first-swing is quite large, this case could be a problem. However, series capacitors or an SVS would solve the damping problem and would likely be installed to take care of other faults. Inadvertent braking resistor application was investigated in case 138. This case includes no SVSs, and no series capacitors. Though the brake is expected to be applied at 30 MW for .33 seconds, this case was run with the brake held on for .5 seconds, the case is stable, indicating little risk of instability for inadvertent brake application. Occasional testing of the brake is recommended if it is found that it will operate less than about once per year due to disturbances. Stability cases should be run to pick the conditions under which the brake will cause the least disturbance (and risk of loss of customer load). 6.0 SUMMER LOW PEAK CONDITIONS The summer low peak case is similar to the Winter Peak case except that Bernice generation and load is reduced throughout the system. A number of shunt capacitors are removed in the Anchorage area. Because of the heavy export, Kenai shunt compensation is not changed significantly. With these being the only differences, stability is shown to be almost the same as for the Winter Peak. Case 140 shows that the system is stable for fault and trip of the Bradley Lake to Soldotna line with Bradley Lake at 120 MW, export at 68.2 MW, Kenai load at 50 MW. Like similar winter cases, there are series capacitors in three locations and two SVSs. A 30 MW brake is used at Bradley Lake, but the deflector is not used. The results are similar to Winter cases. See previous explanation of cases 140 and 140A in section 3.1.4. Power Technologies, Inc. Page 16 7.0 NO LINE FROM BRADLEY LAKE TO FRITZ CREEK (& No 230 kV Line) Without a line between Bradley Lake and Fritz Creek, the most critical fault location is the Soldotna Ski Hill line. Faults on this line will accelerate Kenai area generation and remove all load served by this line (39 MW at the Winter Peak) from the system. Most of the power that was flowing to this load will transfer to the Quartz Creek - University line, thus contributing to a large power swing as Kenai generation swings ahead to a higher angle to ship over 100 MW from Soldotna to Anchorage. The large increase in line loading between Soldotna and University causes a large increase in reactive losses between Soldotna and University. In addition, the line to Ski Hill is delivering 9.8 MVAR‘ to Soldotna which must be replaced. With Cooper and Bernice Lake generation at maximum reactive output, an additional 38 MVAR is required. Also important is the post-disturbance angle between Bradley Lake and Anchorage which is over 70 degrees. Such a high angle requires that some form of continuous voltage control be provided between Bradley Lake and Anchorage. The system could be made first-swing stable with a braking resistor at Bradley. An SVS at Quartz Creek or Soldoma would provide the large increase in reactive power to maintain steady state stability. Damping would be acceptable, but would be improved by an SVS that is somewhat larger than necessary for steady state stability. Also, because of the high angle, an SVS should be sized to remain below ceiling in the post-disturbance steady state period. Because the fault on the Soldotna to Ski Hill line will remove load from the system (38 MW at Winter Peak), it is reasonable to run the Bradley Lake deflectors in for this disturbance. Running the deflectors in by the amount of load loss would not cause load shedding, but would hold the loading of the lines from Soldoma to University at or close to the predisturbance loading, and thus avoid the need for an SVS,’ or at least limit the size of the SVS to that required for stability. § 115 kV capacitors (14.4 MVAR) were added at Anchor Point to hold voltages on the line to Homer. Reactive flow northward is necessary to offset resistive voltage drop from the southward power flow on the relatively high resistance 115 kV lines. q Trip of the Ski Hill line will remove a 10 MVAR from the Soldoma bus, but this will be more than compensated by the reduced reactive load imposed by the Bradley Lake line when its loading is reduced from 120 MW to 80 MW. Power Technologies, Inc. Page 17 Use of a braking resistor and the deflectors alone (no SVS or series capacitors) was found to be insufficient for stability. The large backswing following the first swing of the three Kenai plant caused excitation to drop on all three plants, so that the "synchronizing power" on the second upward swing was very low, insufficient to maintain synchronism. The backswing voltages are high because of the amount of shunt capacitors on line to support voltage. To rectify this, an SVS was added with 10 MVAR reactive capability to pull voltages down and relieve the need for generator voltage regulators to do so. Stability case 122A shows the performance of a 30 MW braking resistor applied for .33 seconds, the deflector run in 40% over a .4 second period, and a +15/-10 MVAR SVS at Quartz Creek, stabilizers on both Cooper units, Bernice Lake #3, and Bradley Lake, and a three-phase fault on the Soldotna Ski Hill line near Soldotna. Bernice Lake #1 (8 MW) is operating, but does not have a stabilizer. The system is stable in all respects, though it is not well damped. A stabilizer on the SVS would improve damping somewhat. Series capacitors in the Soldotna Quartz Creek line would help stability and reduce the size of the SVS. Quartz Creek is the optimum SVS location, but an SVS at Soldotna (possibly larger) may be satisfactory. The brake and deflectors could be triggered by distance protection looking from Bradley lake toward Soldotna, by acceleration of the Bradley generators, or by direct transfer trip from fault relays at Soldotna. Faults between Quartz Creek and University will separate Kenai and Anchorage areas, and thus are not a stability hazard. Faults between Bradley Lake and Soldotna will isolate the Bradley Lake plant, and thus are not a stability problem. Single pole reclosing should be considered for the Bradley Lake Soldotna line, and the lines between Soldoma and University if transient single-phase faults are expected on these lines. Single pole reclosing would allow the system to ride through transient single phase to ground faults. 8.0 LOSS OF KENAI - ANCHORAGE TIE Trip of any of the lines between Soldotna and Anchorage (not followed by successful reclosing) will isolate the Kenai area with much excess generation if the trip occurs during heavy Kenai export. The resulting overspeed can be damaging to customer loads and turbine-generating equipment if not controlled. Power Technologies, Inc. Page 18 The Bernice combustion turbines have an overspeed trip at 63 Hz, so a frequency excursion above this level could trip one or more of these units. Trip of these units would leave Kenai frequency control in the hands of the Bradley Lake units, which cannot provide adequate speed control when operating under needle-valve control. Though overspeed above 5% does not appear likely for the export levels considered in this study (see following paragraphs), a higher overspeed trip would be highly desirable to minimize risk of CT trip. The 5% overspeed trip is quite conservative, and a higher setting should not measurably increase risk of turbine-generator damage. It is recommended that the manufacturer be consulted regarding a higher setting, perhaps closer to 7 or 8% (there is an “overspeed bolt," a mechanical overspeed trip set at 10% on most CTs which is backup to this electrical overspeed trip circuit). The Bradley Lake deflectors can provide rapid power runback upon loss of the Kenai-Anchorage tie under export conditions. Case 134 shows loss of the Kenai- Anchorage tie under an export of 83.5 MW with the deflectors assumed to be the only means of reducing power, and assumed to be runback by the amount of the export. The deflector is assumed to start the runback .2 seconds after the loss of the tie and have a .05 second actuator time constant. At .2 seconds the Kenai frequency is up to 60.7 Hz and is rising at the rate of 3 Hz/s. The conditions under which runback should be triggered needs further consideration, but the assumptions used for case 134 are probably quite practical and close to those that will be implemented in the Bradley Lake governor programmable controller. The Bernice Lake combustion turbines can be tripped on reverse power if Bradley Lake does not ramp back sufficiently to allow the combustion turbines to settle at partial output. This will require coordination of the droop characteristics of the two plants, and, possibly, consideration of the dynamic response of the respective governor systems. Properly set reverse power relays at Bernice Lake (i.e. not overly sensitive) will also be essential to keeping the Bernice Lake units on-line following loss of the Kenai - Anchorage tie. In case 134 the voltages go quite high between .5 and 1.5 seconds after loss of the Kenai-Anchorage tie. The high voltage is due primarily to the loss of the export load, but also partly due to reaction of the Bradley Lake stabilizer to the overspeed. Loss of line loading due to loss of export is the biggest problem. The reactive current from capacitors added to support the line reactive losses flows to the generators, and thereby causes high voltage. The SVS at Anchor Point is at +2.3 MVAR before the separation, and with a -5 Power Technologies, Inc. Page 19 MVAR lower limit, absorbs little of the excessive capacitor current. In fact, it can be seen that the angle between Bradley and Bernice generation is increasing toward the end of the tun. This is because the excitation at Bernice and Cooper is being pushed down by voltage regulators trying to hold down voltage (the voltages are all 3 to 5% high in the final seconds of the run). The low excitation requires a higher generator angle to produce power, and will lead ultimately to loss of synchronism in case 134. It is essential that the following loss of the Kenai - Anchorage tie. In case 134 this could be achieved by increasing the underexcited range of the SVS or by tripping shunt capacitor banks with overvoltage relays (time delay in these relays would be critical). Where possible, the shunt capacitors should be controlled by the SVS controller. The Bradley Lake stabilizer modeled in this case is set to respond to accelerating power. Because accelerating power remains high until the overspeed is halted, the stabilizer boosts Bradley excitation, compounding the overvoltage problem. The Bradley stabilizer can be switched to operate from electrical power at the generator terminals to reduce its response to the overspeed without significantly affecting performance under other conditions. This will be done in later cases. If an SVS is included in the final recommended compensation package, it will be sized to control separation overvoltages or will be supplemented by shunt capacitor controls to do so. Series capacitors inherently contribute less to overvoltages than shunt capacitors. They are series elements in the lines, and generate less reactive power when line power drops. 9.0 RELIABILITY DIFFERENCES BETWEEN 115 Kv AND 230 Ky ALTERNATIVES For disturbances in the Kenai area, the alternatives with and without the new 230 kV line are similar. Both alternatives depend on equipment such as stabilizers, braking resistors, deflectors, or series capacitors and SVSs. For faults between the Kenai and Anchorage areas on the lines between Soldotna and the Anchorage area, the 115 kV alternative is at a disadvantage. With a 230 kV line, fault and trip of the 115 kV line is not a problem. Fault and trip of the 230 kV line is a threat at higher export levels, but application of the Bradley Lake brake and/or deflector can solve this problem. Power Technologies, Inc. Page 20 If the 115 kV lines form the only tie between the Kenai and Anchorage areas, reliability can be improved by applying single-pole or three-pole reclosing on the 115 kV lines. Reclosing can be used to maintain stability for transient faults. Reclosing will be successful at low transfers but may require use of the Bradley Lake brake to be successful at higher transfers (e.g. in the vicinity of 80 MW). The prospects for use of reclosing on the 115 kV lines between Kenai and Anchorage will be investigated in the optimization phase of the study (Phase II). Power Technologies, Inc. APPENDIX I FIRST-SWING, STEADY STATE, DYNAMIC STABILITY Power Technologies, Inc. APPENDIX I FIRST-SWING, STEADY STATE, DYNAMIC STABILITY First-Swing Stability First-swing stability or "transient stability" refers to the first second or so after fault and trip of a line. Faults depress generator electrical output, forcing power delivered by the turbine to be stored as kinetic energy in the turbine and generator rotors. With the exception of the deflector at Bradley Lake (which can be "triggered to run power back quickly), governors do not change turbine power significantly in the critical first half second after a fault, so the energy storage is quite large. The rotors accelerate as the energy is stored in them, making the generator(s) near the fault "pull ahead" of other system generators. A system is first-swing stable if these generators continue running faster than other generators. The power out of a generator (once the fault is removed) rises as a generator pulls ahead of other system generators. This rise in power will slow the accelerated generator and bring it back to synchronous speed if the generator is strongly tied to other generators through short lines. In the case of Bradley Lake, the lines are long so there is very little natural increase in generator power after the fault is removed. The power out of the generator can be increased by shortening the lines with series capacitors which offset the line reactance, by holding voltage up along the line with an SVS, raising generator voltage through increased excitation voltage, or by applying a braking resistor near the generator. The braking resistor removes the kinetic energy by taking a large amount of power for a fraction of a second. Running in the deflector reduced the kinetic energy stored by reducing turbine power. If generator speed is restored to the average speed of all other generators in the system before it "pulls out of step,” it will be first-swing stable. Dynamic Stability The electromechanical system formed by turbine-generators and the electrical network depends heavily on control systems. The most important controls are the governors and voltage regulators. When a long transmission system is heavily loaded, and the gain of excitation systems is increased to improve first-swing stability and provide good control of voltage, systems typically become oscillatory. The power oscillations, if sustained, cause wear and tear on governing systems and voltage fluctuations that bother customers. If the oscillations grow, the usual case, the system becomes unstable and Power Technologies, Inc. separates into islands with likely collapse or at least heavy load shedding in generation deficient islands. Circuitry must be added to ensure such oscillations do not occur, or are quickly damped when initiated by a fault and/or line trip. This is done by adding damping at the natural system frequency (usually around 1 Hz). The least costly and most effective stabilizing circuitry is the "PSS" or power system stabilizer applied to the excitation system of generators that are most heavily involved in the oscillations. The PSS modulates generator excitation and in doing so provides a sinusoidal component of power that leads the natural power swings, thus providing damping. Series capacitors help by strengthening the network. SVSs help by combating the natural voltage oscillations that accompany the power oscillations. In systems where large oscillations are poorly damped or will build up while smaller ones are damped, a temporary power reduction can bring the oscillations under control. The deflector on the Bradley Lake turbine can do this. Steady State Stability A stable system must not only survive the first swing and be subsequently damped, it must also be able stable when voltage regulators and governors have settled out at new operating points. A system is stable when small changes in load or power do not case the "voltage angle" across the system to increase to the point that power transfer necessary to satisfy governor settings is not achieved. Additionally, the steady state is affected by the changes in system loads that occur in the minutes after a disturbance. Motors dropped by the fault will be returned to service, and LTCs will restore voltage on distribution loads when the bulk system voltage is low. Loads where voltage remains low will tend to return to their initial power level as thermostats and manual controls. adjust to the lower voltage. Also, generation dispatches may be changed after a disturbance. For a system to be declared steady state stable, it must be stable throughout the 5 to 10 minute period after a disturbance when these changes are occurring. Power Technologies, Inc. APPENDIX II POWER FLOW AND STABILITY CASES Power Technologies, Inc. APPENDIX II POWER FLOW AND STABILITY CASES The cases that are important to the conclusions presented in this report and referenced in this report are presented on the following pages. Each case includes a descriptive sheet, a plot of the base case and post-fault power flow if not previously presented, and plots of selected variables. Power Technologies, Inc. CASE 116B Power Flow WP91C Transmission: 115 kV SVS(s) +25/-5 at Anchor Pt, +25/-5 at Quartz Cr Series Capacitors Three locations Bradley Lake: 120 MW Export: 70 MW Bernice Lake 48 MW Disturbance 3 phase 4 cycle fault at B.L., trip B.L. - Soldotna Brake applied 30 MW for .33s Deflector runback 0 MW Results Stable Notes Recommended system for 120 MW at B.L. without runback and new 230 kV line S2 S3AN0 = ONIMUT as 9666 2 s- oa « ° av So Ro 3 3% uy <2, 25 bu 3 Se ae 8s 8% a °S as ao serfioer — evet-fe-eu'st-|lo-n sat Ve-flre 0°9-Hr-o1 2°9- bez Stbtus- 6 S|}2"esd -a5|/6 es Shh So Ss -99l]c-99- Cis|e-et- 6 6L Slovo “ |,- 8 w 5 8 = fea & $ z s 5 >wi s*et- = ao we wo} go zo 3 = = 2 Sa] ss Zor Zo Sn Sq) So zo as 5a zs! 3S 23 2s Sal oree i ver 2 8 Oo 4 sy re 8 “"T[s-o1 iy za] ree > a = |. oa = ra = oO > « 5m a ” ye aw > “ we Ed 1 oc 6 A e rw = Nn on g z flo Sa am AR, g'2- ais oe =zmN Zk ez a Re gy! oa Sa = 0 iT ae 22 TUN oe ohe- 33] a: ZO az 1c aw Rew 2 So wos 8, Si iiss z in no a= Si Vie 7 x > "sce wu r rE B fever =U ° O+O Bs au eg Or ts Zuo Se Se at, ar ae ' 9°6 { + SD O° he] C $2 69 10s aon yee aw 2bbb > us — rd e 00% Anz 3 oe 8 ats zs 7 a Ww S Kw - g ‘el ZWD Zo is sar o Se qq" ZzOF 3] mer zope-2 gaye > (= WINTER PEAK 1991 TWO SVSS (ANCH+QRTZ) CHNL#‘S 4,10: BASE CASE -- GEN/LOAD ANO THREE SERIES CAPACITORS FILE: OUTPUT116B CA-COOP_ 13-CA-MLP_ 73 150.00 Meeeteeeead= x =50.00 CHNL#'S 3,10: CA-BERN 33-CA-MLP 73 150.00 bse ogee eee snaee a -50.00 CHNL#'S 1,10: CA-BLUG 3I-CA-MLP 73 150.00 eseaeeaseos= ° -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 7] 150.00 = = -50.00 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 7] | 150.00 . =SEEEReEELEESEEES. -50.00 | co oS S co SS “ we v s 7 oY ee vQde &% 2 oo oo x 0 s = ox Sg eet ft ou! to 1 ¢ : <= | {3 : Io : - 4 fae i! : 1 4 | ' . i : \ a : | s {\eee! . cs ' 7 o — \ 1 i | oe i} : 2 = - | ' 1 i i 5 r _ iy “1 4 i \-—\2 / ' Ss = ae \ N 1 fee ! | Lo a | *y : / Ty ol S if ie S 1 / 4 s ‘2 8 — a \ ole a = \ \ \ : ' ] = of j= =a ru 2 fy : \ t ‘ . o | eg | IS = ic ae 9 0 S & = oe eee + 4 4.5000 5000 2.5000 ao TIME 1.5000 0.5000 JAN 05 1989 16:09 ANGLES REL TO MLP #7 THU, WINTER PEAK 1991 -- BASE CASE -- GEN/LOAD TWO SVSS (ANCH+QRTZ) AND THREE SERIES CAPACITORS FILE: OUTPUT116B CHNL# 22: CV-PORTGEIJ 16:10 VOLTAGES 1989 JAN 0S THU, 1.3000 te nh a 0.3000 CHNL# 18: CV-SOLOTAI 1.3000 i mn s 0.3000 CHNL# 15: CV-ANCHPTI 1.3000 ae = 0.3000 CHNL# 19: CV-QRTZCAI 1.3000 aS = ° 0.3000 CHNL# 11; CV-ET-BAOI 1.3000 a= aie oo 0.3000 CHNL* 12: CV-BRADLYI 1.3000 oe 0.3000 | ! | 5.0000 1.0000 2.0000 3.0000 4.9000 0.5000 1.5000 2.5000 3.5000 4.5000 TIME 20 0 WINTER PEAK TWO SVSS 1991 -- BASE CASE -- GEN/LOAD (ANCH+QRTZ) AND THREE SERIES CAPACITORS FILE: OUTPUT116B CHNL® 45: CB-ANCHPTI ET i ie wedi a ne oe oe ee i 0.4000 eee eee x -0.100 CHNL# 44: CB-QRTZCAI 0.4000 eS ate -0.100 CHNL# 43: CB-HEALYI 0.4000 e2-25------- ° -0.100 CHNL# 42: CB-GLOHLLI 0.4000 ee -0.100 CHNL* 41: CB-TEELNOIJ 0.4000 ———a4 -0.100 corel } bias oy 7 = - rr ol & S ae - = 2 = < "oof y = & 3 E = — o = x +. £ al : \ . | > | : i j 4 | / ' | i \ ‘ a 2.0000 5.0000 4.5000 4.0000 3.0000 1.0000 0 0. 2.5000 3.5000 TIME 1.5000 0.5000 JAN 0S 1989 16:09 SVS ADMITTANCES THU, WINTER PEAK 1991 -- BASE TWO SVSS (ANCH+QRTZ) AND CASE -- GEN/LOAD THREE SERIES CAPACITORS FILE: QUTPUT116B | CHNL# 50: CST-BERNLI Fo. 1000 <oSE SSR REE ES x -0.900 CHNL® 49: CST-COOPRI 0.3000 SSS + -0.700 CHNL# 48: CST-BRADLI 0.5000 eS5ss=5s===— ° -0.500 CHNL# 47: CST-ANCHPI 0.7000 = = -0.300 CHNL# 46: CST-QATZCI 0.9000 —————a -0.100 si | | | aL + & r ¥ sy a N va s 3 ot S a iat [ vg Vy 6 ou sw $_J z- e Th sO 8 > ¢ s 0 3 YW ay 5s > S a ~ \) 8 y g 4 U =) x v <= | x t ° ' a — “le = \ a { ote \ ¢ \ 1 Sl 4 ; 1 Tt td) | | eee be), t I = 7 1 Al | eoeee iar 1 ~--, ' | eo el) | | ~] ee 7 ae \ re Le ! a, | i | is </° ey ” Lo > a \ LL J eahy | | ‘ 4 ia 7 ! 2 Ai ‘ bees LU oe 7 { — i \ t / : ---? glee) ( | ee < ) aa f — 1 so) 0615) SS SS FO oro ewe ae © cm et ne, -L LL 2 \ | 4 d 5.0000 4.5000 4.9000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 10 STABILIZERS JAN 05 1989 16: THU, Juv AA10uus 60791 6861 SO NUFr wo c oO e a oO a aa aa O00 ae Nw ae ||\|2 wo or ben WwW “4 Mill | ee w 2 wi ha ow am Ge 5 OF wo a oz oy aa = ao mu w iN te ac “4G oO + or “i z So a= uw aw o c> Ww fu zo 4 zr ‘AHL SWIL 000S"h 0005" 000S"2 00051 0005°0 ml 0000°S 0000°h 0000°€ 00002 l 0000°1 0°0 o/ Tle ile | . . Oo J oOo oOo Oo I ‘ a ' ; ' ' }— 4 "iT ll preter paride ~ 7 u 1 }—— POOL{ON VaflIox=z ' | IF 4! 2 ! : i ' | ' [ ' ' §) || TI ' ' ' ' a a 4 oO oa oO | q q a c c c ' Fall cea Oo = w ' Pare 3B Ni i Faiwoyrewy ) i Ne) ~ | es ' Ww] w Ww} ar ms ' ‘ il Hl home, aVIqQnal Mi \ 1 well ~ J . ol \ : yo OF OL Lie Lae a Ee =a « & we eee cel meer Mee TM aT Ths ' ‘ ' \ ! et a) ‘. 4 i erred ' 29 ALI0( =) if if AI I ie 1 ! |) ' ae sl feat) o oO o o ad o o @ o Oo w ° ; 2 lo ie ||| "Eas ||| || if SMO14 JNI1 OF SIT Ww Cc © — 4 oO c oo. cer Ou ay NW Ae) es ie] ox a uw _ ara iles me lu ji oo = Ga = Jie wo oz A aa = oo fia mm iE oc “OC + or —-O 7 <@ aS Ww aw Ww o> Wo = Zo —~ = <q= bi 6861 SO NUP “NHL | anit 0008 h ooos’e 000S‘2 000s‘I 000S°0 0000°S 0600°h 0000°€ 0000°2 0000°1 0°0 Se a ee Hy | | Jaw 001 Oo Oo Oo Oo Oo oO o oO Oo oO 1 A AHR AA x + ° Y . ' - ! 1 ; ! ' | : ' ‘ tu 4 : I ‘ | : ' ' | . ! ' . ' x 4 o 4 n n mn n n iE ny H ny bt ip [a oO} KB oa a uw ' oO} « ' ' Qa} Qj ' qc oll Sy Sy Cc YU Re SACL bce ania a oO a a a. uy UI uy uy uy = SMe etait Rprongy oO - onjop\os a 2 * * 2 a ? ea See es A meee AM l oO oO oO} vO Yo 7 5, ONT a | Neo I a PAO ro ep i ee LO ee eae a sree MI NUUL a ve mi L Aawou 4 iN lis bd) AMO MA * Me SAN IE NOMNON Gea Noy el ale oe il se ori in i y ~400/ repay PAIN) ; 7MPOAeY x at slat SUEDE bso al Pe . BUN sf o o °o o o F ill Oo o oO Oo Oo o oS sos |so lo w w w w wo WINTER PEAK 1991 -- BASE CASE -- GEN/LOAD TWO SVSS (ANCH+QRTZ) AND THREE SERIES CAPACITORS FILE: OUTPUT116B CHNL# 35: CF-HWYPRKI 0.0167 Meese ee x -0.067 CHNL# 34: CF-HEALYI 0.0167 Tint mil + -0.067 IL CHNLs 33: CF-UNIVERI [0.0167 weet aera ° =0.067 CHNLs 32: CF-SOLDOTI 0.0167 -- >To -0.067 CHNL# 31: CF-FRITZCI 0.0167 =o -0.067 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 3.5000 2.5000 1.5000 0.5000 ae « G35 Lz > Sa Sw oc Su a c “> = = ica} Ze = Power Technologies, Inc. CASE 117 Like case 116B except no stabilizers on Bradley Lake excitation systems and SVSs reduced to +15/-5. WINTER PEAK 1991 -- KENAI-ANCH 70 Mh, CASE NPS LD) ==) -15/—-5) SVS) (ANGH | 4) |QRinz. PEE CHNL#‘S 4,10: OUTRUTLL7 CA-COOP_13-CA-MLP 73 ANCH-FAIR 70 MW 3) SERTES CAPACITORS 150.00 De aera Te alae x -50.00 CHNL#'S 3,10: CA-BERN 33-CA-MLP 73 150.00 aoe * -50.00 CHNL#'S 1,10: CA-BLUG 33-CA-MLP 77 150.00 === === ° -50.00 | CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 150.00 Sl nalltcrdsar abn -50.00 | CHNL*‘S 8,10: CA-BRAD 15-CA-MLP 7] 150.00 ——a =50.00 pu x : LA} \ \ ee | pee \s \ \ an / Zo — / — { \ \ an Ne 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 ANGLES REL TO MLP #7 WINTER PEAK 1991 -- KENAI-ANCH 70 MW, ANCH-FAIR 70 MW FILE: OUTPUT117 iF CASE WP91D -- +15/-S SVS ANCH & QATZ, 3 SERIES CAPACITORS CHNL# 56: CPG-BAAD1I 2.0000 = = e 0.0 CHNL# 57: CPM-BRAD1LI 1.5870 = = -- = = 0.0 CHNL# 58: CEF-BRADLI 19.000 SS -1.000 fae q . 7 oh | ee es eal sl oo \ 4 ns » || It = _| t | S| me ‘a _| | ‘a, 4 et [— a. _| bese “ly ; ] | ee 3 | ale : | wee ~"pd-------- beo----- qearenase feet or pee ag 5.0000 4.5000 4.Q000 3.0000 2.0000 1.0000 0.0 1989 16:59 BRADLEY LAKE JAN 06 FRI, 2.5000 3.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 70 MW, ANCH-FAIR 70 MW CASE WP91D -- +15/-S SVS ANCH & QRTZ, 3 SERIES CAPACITORS Ew £6 FILE: OUTPUTL17 ee CHNL# 22: CV-PORTGEI a 3000 eee ASS > 0.3000 3 = CHNL® 18: CV-SOLOTAI “> 3000 Meee re x 0. 3000 2 CHNL# 15: CV-ANCHPTI a . 3000 = S356 + 0. 3000 = CHNL# 19: CV-QRTZCAI . 3000 Ceara Tr s 0.3000 ed CHNL# 11: CV-ET-8ROI fe 3000 ===> 4 0. 3000 CHNL# 12: CV-BRADLYIJ 3000 -———a3 0. 3000 S o we Ss cs wo 7 = cs so oc oa 7s cs Ss Ss wo 4 So cs J so So i=] —J _| 2% Nee ‘a cs J s sai cs cs Ss ia Ss Ss i] = cs Ss Ss w 6 i i] ! o I z= L res WINTER PEAK 1991 -- KENAI-ANCH 70 MW, ANCH-FAIR 70 MW CASE WP91D -- +15/7-S5S SVS ANCH & QRTZ, 3 SERIES CAPACITORS a wn 24 FILE: OUTPUT1I7 = oo & co - Fh CHNL® 4S: CB-ANCHPTI pms - 4000 Mearns x -0.100 2= CHNL® 44: CB-QATZCAI -2 ~ 4000 = = SS - -0.100| EO CHNL® 43: CB-HEALYI wh ~ 4000 @222 522 2--=- ° -0.100 |- I> CHNL® 42: CB-GLOHLLI aw - 4000 -—-> -0.100 CHNL# 41: CB-TEELNOJ - 4000 ee -0.100 | | 3 so wo cs co wo ss cs co. cs : S 3 as es N a + 6 S 4 3 S 8 _| * 5 a a 3 é : | Ss ss co J | 84 NN me = Ss So Ss o ai cs So cs ae Ss co cs ~— So cs co wo 15 is WINTER PEAK 1991 -- KENAI-ANCH 70 MW, ANCH-FAIR 70 MW CASE WP91D -- +15/-5 SVS ANCH & QATZ, FILE: OUTPUT LI7 3 SERIES CAPACITORS 3.0000 S.0000 4.5000 4.90000 2.0000 1.0000 CHNL# SO: CST-BERNLI 0.1000 SoS aeTee ec oe “300 | CHNL# 49: CST-COOPRI 0.3000 =e = 00 CHNL# 48: CST-BRADLI | 0.5000 @=ss-2-eese— 7500 CHNLs 47: CST-ANCHPI 0.7000 SS ee 300 CHNL#* 46: CST-QATZCI 0.9000 eA ~ 100 Ww z > u y — — _ — > a S ~s $ g | : 3 = a < < [_ a 7 v “SL e 7 x 1 ee f I ! 5 i | = ; 1 + = = = | ‘ \ 1 ‘ 1 ! \ : 1 : \ ' \ a L : f \ a : 1 i \ ) ‘ 1 : J i x i ; / i= : \ ! , _| 1 + \ I ' \ ! ' ~“ eS \ ie a ls ; 1 / | ‘ y [— | ' = _*, — | ' ' \ ) I ! ee , — eee 4 0.0 2.5000 3.5000 TIME 1.5000 0.5000 16:59 STABILIZERS JAN 06 1989 FRI, WINTER PEAK 1991 -- KENAI-ANCH 70 Mh, CASE WP91D -- +15/-S SVS ANCH & QATZ, ANCH-FAIR 70 MW 3 SERIES CAPACITORS , FILE: QUTPUT117 CHNL® 55: CP-8L-FTZI 150.00 Meeeee ss oo x =100. CHNL# S4: CP-TLO-CTI 150.00 es -=--- + =100. CHNLs 53: CP-SLOQTZI 150.00 ae ° =100. CHNL# S2: CP-OR-APTI 150.00 “> =100. CHNL# Sl: CP-OCR-HPI 150.00 ——— -100. 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0 0. 2.5000 3.5000 TIME 1.5000 0.5000 1989 17:00 LINE FLOWS JAN 06 FRI, Power Technologies, Inc. CASE 121A Power Flow Transmission: SVS(s) Series Capacitors Bradley Lake: Export: Bernice Lake Disturbance Brake applied Deflector runback Results WP91I 115 kV no at Anchor Pt, no at Quartz Cr Three locations 120 MW 70 MW 48 MW 3 phase 4 cycle fault at Bradley, trip Bradley - Soldotna 30 MW .33s 60 MW over .75s period starting at time of fault clearing. Stable in all respects. PLT2 3565 UNIV 230 1.019 ancuorce il 2006 9977 =-1.0 tht -2.0 ae ajo TT INT.138 1,015 - 614 eS NUITES . e a S 42 = INT 34.5 ‘al % UNV 34.5 7 = =o = als INOTRN gi eee ~ Vv sta S| a GIROWOOD g 42 Ei 7 cy 3} elm HOPE nie 1.008 49 Si? 10.5 —-_ == : sis o> a : SO % 7 2 “lw = . 3.8 =3.8 as? aps 4,029 -3.3 1S) Hf alo ag _ DAVES CRala 1.014 = we souner 9986 3" 14.3 , 3369 a= ale ao olan olen gle sl= 22 as diss als ’ ———3 8 38 Sia Fz 7 7? s an 2 ~— = on =o KENAT SmI ILI 1.031 $0LO 69 1.031 QUARTZ3| 5 les 1,023 70 3 24.5 3992 23.2 3987/8 a 18.0 1s bar jar sa es el 3 gs gis ails 9 a -2.0 s2 Vv go =4.3 & o Vv #3 — 2 KASILOF 74 — OAM At 1,034 9999 32.3 == s|r S| BAAO HS pee BRAD ot FATZ CA 1.030 9397 2 a> sls a2 ' =15.0]}, 37.6 45.3 ancy ~Y fo WINTER PEAK 1991 -- KENAI-ANCH. 70 MW, ANCH-FAIR. 70 MW CASE WPS91I -- NO SVS, THREE SERIES CAPACITORS THU, JAN 26 1989 11:48 WINTER PEAK 1991 -- KENAI-ANCH. 70 MW, ANCH-FAIR. 70 MW CASE WP91LI -- NO SVS, THREE SERIES CAPACITORS Sat FILE: OQUTPYT121A - CHNLs'S 4,10: CA-COOP _13-CA-MLP 7] 150.00 ee m -50.00 CHNL#'S 3,10: CA-BERN 33-CA-MLP 73 150.00 Se eee + =50.00 CHNL®'S 1,10: CA-BLUG 3J-CA-MLP 73 150.00 ee ° =50.00 CHNL='S 6,10: CA-CHENASI-CA-MLP 73 150.00 is -50.00 a CHNLs'S 8,10: CA-8ARO 13-CA-MLP 73 150.00 2) | -50.00 3.6000 2.4000 10 10 1989 00: JAN TUE., ANGLES REL TO MLP #7 6.0000 4.8000 5.4000 4.2000 1.2000 0.6000 1.8000 3.0000 TIME 0.0 WINTER PEAK 1991 -- KENAI-ANCH. 70 MW, -- NO SVS, THREE SERIES CAPACITORS CASE WP91LI FILE: OUTPUT121A CHNL# S4: CPG-BRAD1I 2.0000 CHNL# SS: CPM-B8RAD1I 1.5870 CHNL* S56: CEF-B8RAD1I 19.000 ANCH-FAIR. 70 MW 6.0000 5.4000 3.6000 2.4000 1.2000 4.8000 4.2000 3.0000 1.6000 0.6000 Sl a = S> say) J ca ze Sa w = uJ = WINTER PEAK CASE WPQ1I 1991 NO SVS, THREE -- KENAI-ANCH. 70 MW, ANCH-FAIR. 70 MW SERIES CAPACITORS FILE: QUTPUT1l21 CHNL# 22: CV-PORTGEI 1.3000 Beis BIS isis ste = 0.3000 CHNL# 18: CV-SOLOTAI 1.3000 Boa e ei a x 0.3000 CHNL«® 15: CV-ANCHPTI 1.3000 a a 0.3000 CHNL# 19: CV-QATZCRI 1.3000 SS ° 0.3000 CHNL# 11: CV-ET-B8A0I 1.3000 eames 0.3000 CHNL* 12: CV-BRADLYI 1.3000 a 0.3000 ° So So Ss 3 So so Ss a ss ° =) s o se ° Ss Ss - TA ° = Ss x | ° i —==-+ ZS) 3.0000 4.2000 5.4000 TIME 1.8000 0.6000 10 1989 00:13 VOLTAGES JAN TUE, WINTER PEAK 1991 -- KENAI-ANCH. 70 MW, ANCH-FAIR. 70 MW CASE WP91I -- NO SVS, THREE SERIES CAPACITORS FILE: QUTPUT121A CHNL* 43: CB-HEALYI 0.4000 enn -0.100 CHNL# 42: CB-GLOHLLI 0.4000 —=-_- = -0.100 CHNL# 41: CB-TEELNOI 0.4000 <= -0.100 —— < 4 | | 2.4000 6.0000 S.4000 4.8000 3.6000 1.2000 0 0. 3.0000 4.2000 TIME 1.6000 0.6000 10 1989 00:11 SVS ADMITTANCES JAN TUE, WINTER PEAK 1991 -- KENAI-ANCH. 70 MW, ANCH-FAIR. 70 MW CASE WP9S1I -- NO SVS, THREE SERIES CAPACITORS FILE: OUTPUT121A CHNL® 48: CST-BEANLI 0.5000 ae. ° =0.500 CHNLs 47: CST-COOPRI 0.7000 = = lr =0. 300 CHNL® 46: CST-BRAOLI 0. 9000 ———s__—--0. 100 SSS Sia 6.0000 5.4000 4.000 3.6000 2.4000 00:11 STABILIZERS JAN 10 1989 TUE, 3.0000 4.2000 TIME 1.6000 0.6000 WINTER PEAK 1991 CASE WPS9LI -- KENAI-ANCH. 70 MW, ANCH-FAIR. 70 MW -- NO SVS, THREE SERIES CAPACITORS FILE: OUTPUT1L21€A CHNL# S53: 150.00 CHNL*® S2: 150.00 CHNL# S1: 150.00 CHNL# SO: 150.00 CHNL® 49: 150.00 CP-BL-FTZ3 0° <i tS Ie aS -100.0 CP-TLO-CTI i * -100.0 CP-SLOOTZ3 ae oo CP-OR-APTI | ==> — 7 -100.0 CP-OCR-HPI ——S a -100.0 3.6000 6.0000 5.4000 4.8000 2.4000 1.2000 0.0 1989 10 LINE FLOWS 00:11 JAN TUE, 3.0000 4.2000 TIME 1.6000 0.6000 WINTER PEAK 1991 -- KENAI-ANCH. 70 MW, ANCH-FAIR. 70 MW CASE WP91I -- NO SVS, THREE SERIES CAPACITORS > 5 Lid FILE: OUTPUT121A ILE: OUTPUT121 —— om” [ ud CHNLs 35: CF-HWYPRKI “ee 0167 Messer ee x -0.067 cu CHNL* 34: CF-HEALYI s ~0167 SSS ae -0.067 e x CHNL# 33: CF-UNIVERJ 0167 @2==sSsses== ° -0.067 7 CHNLs 32: CF-SOLDOTI = 0167 = -0.067 CHNL® 31: CF-FRITZCI 0167 —————— =0.067 Ss = co so cs wo Ss Ss - cs S S. 3 : ° os cs sy lo Io = wo 0 J S S =| 2 = a= eS Ss cs cs : e cs oS = | ao ae So 2 cs _ i=} S cs wo THe 0 Power Technologies, Inc. CASE 122A Power Flow Transmission: SVS(s) Series Capacitors Bradley Lake: Export: Bernice Lake Disturbance Brake applied Deflector runback Results WP91J 115 kV, No Fritz Creek Line 0 at Anchor Pt, - +15/-5 at Quartz Cr none 120 MW 72 MW 48 MW (units 3 & 4) Faulty Trip B.L. - Soldotna 30 MW , 33s 48 MW Stable BERN 69 8 9992 SOLD 69 ANCHPTSV B01 FRTZ CR 9997 UNIV 230 9977 INT 138 1 42 INT 34.5 UNV 34.5 38 . guaatzS| a9a7_? 19.6 oe 019 ANCHORGE 5S +6 9966 ‘ 20.717.4 INOIAN 46 GIRowooO 47. -67.7//62.561.9]/61.6 15.9]]-17. 08. 6]! -16.9 68.4 -13.7 o 2 2 a PORTAGE 48 = -69.3 13.5 e a -70.7)170.5 ORVES CR 9986 84.2 BAAD HS S00 56 DAVES 25 9996 LAHING WINTER PEAK 1991 -- KENAI-ANCH 72 Mh, CASE WP91J -- QATZ SVS +15/-10, NO S.C., THU, JAN 26 1989 11:49 ANCH-FAIR 70 MW BL120 NO FRITZ CR LINE WINTER PEAK CASE WPS91J 1991 -- KENAI-ANCH 72 MW, ANCH-FAIR 70 MW BL120 QRTZ SVS +15/-10, NO S.C., NO FRITZ CR LINE FILE: cureyfiaae ) —— CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 eae x -50.00 CHNL#'S 3,10: CA-BEAN 35-CA-MLP 73 150.00 SSS == - -50.00 CHNL#'S 1,10: CA-BLUG 33-CA-MLP 7] 150.00 ie eee ° -50.00 CHNL#*S 6,10: CA-CHENASI-CA-MLP 7] 150.00 SS =50.00 CHNL#"S 8,10: CA-BRAD 13-CA-MLP 7] 150.00 ———— -50.00 a et / ( \ a a \ \ a ieee / 7 i ae ( “ \ \ % | 4 J / ie go 7 / \ \ \ 5.0000 4.5000 4.0Q00 3.0000 2.0000 1.0000 0.0 3.5000 2.5000 1.5000 0.5000 o~ vo S si st a o Ve Z4 Siw _c D> zw WW _ oO z c ea} = 0°0 000s‘t 000S‘0 0000°2 0000°T SWIL 000s ‘2 000S"E 0000°h 0000°E 000S*h 0000°S 000°I1- gs : 000°61 Tiosue-Jad +85 * INHO pe ees oes‘! TTOuHa-Wd] *LS *INHO eae 0000°2 “NHI CTO8u8-3dj *9S * INH Nur el BeeTlNdlnoO +3114 d¥v71 Ad 10bud O€*60 6861 “OI-/ST+ SAS Z1YD -- F16dM 3Sbd T661 Mb3d Y3SLNIM 3NI7 83 Z1lI¥4 ON 02118 MW OZ YIBS-HINE “*3°S ON “MW eL HINB-IUN3Y -- WINTER PEAK 1991 -- KENAI-ANCH 72 Mh, ANCH-FAIR 70 MW BL120 CASEY WEIL IS —— GAT Z=SVSi 157210, NO S.Ga, NO ERI Tz CR EINE PILE; >CUTRUTT22A CHNL® 22: CV-PORTGEJ 1.3000 ee ran = 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 Mieceisip shehors) ga x 0.3000 CHNL® 15: CV-ANCHPTI 1.3000 aad = 0.3000 CHNL® 19: CV-QATZCAI 1.3000 noses ase ° 0.3000 CHNLs 11: CV-ET-8ADI 1.3000 ae 0.3000 CHNL® 12: CV-BAADLYI 1.3000 ae 0.3000 J - cs —J Ss we cs cs wo bis 7 = cs cs cs & a és cs Ss So wo ie ss cS cs Ss Ss e Fs +e s cs wo E& Fa cs cs cs Ss a a Ss so s [Hes = cs s cs | =e co cs so w ne alae Se | oy -=---b------- 4-55-48 1989)/110953)1 VOLTAGES JAN 12 THU, TIME WINTER PEAK 1991 -- KENAI-ANCH 72 MW, ANCH-FAIR 70 MW BL120 CASE WP91J -- QRTZ SVS +15/-10, NO S.C., NO FRITZ CR LINE nw Lid oO FILE: OUTPUT122A = Sk Lh CHNL® 45: CB-ANCHPTI pt 74000 Moses x 0.100] VS CHNL* 44: CB-QATZCAI -2 ~4000 ------- + -0.100 c x CHNL® 43: CB-HEALYJ wn ~4000 oo aaa =a ° 0.100 s> CHNL® 42: CB-GLOHLLI zw -4000 -- >To 0.100 CHNL® 41: CB-TEELNOJ 74000 ——_——a =0.100 T 2 cs So wo co Ss — 4 cs S$ o 2 cs s % cs cs cs ie cs cs Se Nee = cs Ss cs a cs cs 3 cs cs cs 3 cs cs Ss wo 2 a WINTER PEAK 1991 -- KENAI-ANCH 72 Mh, CASE WP91J -- QRTZ SVS +15/-10, NO S.C., ANCH-FAIR 70 MW BL120 NO FRITZ CR LINE FILE: QUTPUT122A CHNL* S50: CST-BERNLI . 1000 Meese testes x -0.900 CHNL® 49: CST-COOPRI . 3000 So SSS ss > -0.700 CHNL# 48: CST-BRADLI - 5000 @ sos ecac sa - ° =0.500 CHNL® 47: CST-ANCHPI | . 7000 oe ae -0.300 CHNL® 46: CST-QATZCI 9000 ——— -0.100 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 09:31 le 1989 STABILIZERS JAN THU, WINTER PEAK 1991 -- KENAI-ANCH 72 MW, ANCH-FAIR 70 MW BL120 CASE WP91J -- QRTZ SVS +15/7-10, NO S.C., NO FRITZ CR LINE FILE: QUTPUT122A CHNL® SS: CP-BL-FTZI 150.00 DG min is teow Seen x -100. CHNL® S4: CP-TLO-CTI 150.00 Sess 5 * -100. CHNL# 53: CP-SLOQTZI 150.00 iii ° -100. CHNL# S2: CP-OR-APTI 150.00 SS -100. CHNL® S1: CP-OCR-HPI 150.00 ——3 =100. TO Tt 3.0000 5.0000 4.5000 4.0000 2.0000 1.0000 0.0 1989 09:31 JAN 12 LINE FLOWS THU, 2.5000 3.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 72 MW, ANCH-FAIR 70 MW BL120 CASE WP91J -- QRTZ SVS +15/-10, NO S.C., NO FRITZ CR LINE FILE: QUTPUT122A CHNL# 35: CF-HWYPRKI 0167 Mie Ga eieieieeis x -0.067 | CHNL® 34: CF-HEALYI -0167 A ein - -0.067 CHNL# 33: CF-UNIVERI 0167 PEt ert se rere bad -0.067 CHNL# 32: CF-SOLDOTI 0167 See -0.067 CHNL# 31: CF-FRITZCI .0167 3 -0.067 e 4 P\ i ae MY _ ay / j \ /®, a iat \ it ' if ‘y A 4 i rx ya eed ya 7 s NU Y 7 Fa hi ae ie Niet f ie me HALTS =] doe i } \; 7 v z# \ ae ak Kent == L 09:32 1989 FREQUENCY JAN 12 THU, 5.0000 1.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 0.5000 0.0 Power Technologies, Inc. CASE 124, 124A, 124B, 124C Power Flow WP9IL Transmission: 115 kV SVS(s) 0 at Anchor Pt, 0 at Quartz Cr Series Capacitors none Bradley Lake: 90 MW Export: 76.1 MW Bernice Lake 58 MW Disturbance Fault, trip B.L. - Soldotna Brake applied see notes Deflector runback see notes Notes 124 - reference case, brake and runback 30 MW (stable) 124A - like 124 except no stabilizers at Bernice and Cooper (stable) 124B - like 124 except no brake, only runback 40 MW (stable) 124C - like 124 except no brake, only 30 MW runback, deflector pulled out quickly (unstable). siz zi ANCHORGE 9966 3019 1 i =o. S2 S3AN0 — ONTMUT 9s 9666 = « Ze fin Se a S. f $e zs S oa] “0 E01 oa, ao o-ot|e-ez ru acht-flevn h6-[fn-6 27s-|le6 S*Shls“ho- it Wec|feet- chile “he- Vo |fe-ce- <2 2 Hl: w & zu = figcee- = ” “3 or | = £ w Sol z =3] 3 = = ty zo Zo So So ze x Eta zs! 2s 251 Sol 33 =" ihs-62- \( z | o = = 5 2 $ z ols 3! ni o e+ is > ze am 8 ° oz an “a s Et 5 = 2 3° 0 a8 Oh- e’or 8°8 @ |loe- = ou 33} 1UNa¥ ae ae ° Br Le 208 as o| q s0- a \ertt- | = he xo rei Be 69 Glos 2666 oe slo B00 1.016 25.9 8 °e~ b'hi- COOP LK 9991 coop 1.2 79 anaes 37.4 712.6 hohd h’0) o'st Vv ANCH PT > a er @ = gs: z = e7he- o o a) o = = °o 6 w co oa ao w 1H rw Ge Zo cw “ xo =z wo - Kw > rw oO zo az 1 « Z=r Ww om xOe BL © 90 Mh, 14 1991 1989 JAN 26 WINTER PEAK CASE WP9IL THU, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WPSLK -- Gaur GvVeunlier-1lé,- NO SERIES CAPS FILE: OUTPUT124 CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 14326 13989 JAN 13 FAT 150.00 Boo ceee x -50. CHNL#"S 3,10: CA-BERN 33-CA-MLP 7] 150.00 ileal z -S0. — CHNL#'S 1,10: CA-BLUG 3J-CA-MLP 7] 150.00 SSSSaSSSass ° -50. CHNL#'S 6,10: CA-CHENASI-CA-MLP 7) 150.00 et oe =O. CHNL#‘S 8,10: CA-BAAD 13-CA-MLP 7] 150.00 Se -50. 2 . S Sere z x Ee E a =, =! . ZI Se = \ Nee u eae } z 3 a) 0 ~-Q@ 7 al S s je - N Ww < _ Qo o uy I) z Or So My ps a ae eZ. > S 4 ~ -— is 5 4 d= a — z ve > = 4 = 8 v . Cy ag a. x # LE Cae ae fl x ~ a < 9 + 8 1 : ! Se eet Cael) | a ) ' ¢ \ 9 ° s 9 1 \ \. . : — 4 a \ a nN ' i jt Zi / [ we oe 4 at 5 \ a \ 3 | Pal ae © | ANGLES REL TO MLP #7 5.0000 2.0000 3.0000 4.0000 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 0.0 2.0000 CF e 0.0 CHNLs 57: CPM-B8AADII 1.5870 ----H 0.0 CHNL* 58: CEF-BRADII 19.000 a——4 -1.000 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP9LK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT124 CHNL# S56: CPG-B8RADII 3.0000 2.0000 S.0000 4.5000 4.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 Mst25) 1989 13 JAN BRADLEY LAKE FRI WINTER PEAK 1991 -- KENAI-ANCH 76 MW, CASE WPSIK -- SOLD ‘SVS ¥1S7= FILE: OUTPUT124 ANCH-FAIR 70 MW BL 90 10, NO SERIES CAPS CHNL® 22: CV-POATGEI 1.3000 EIST > 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 Movereescres x 0. 3000 CHNL* 15: CV-ANCHPTI 1.3000 i i + 0.3000 CHNL® 19: CV-QATZCAJ 1.3000 eresassasses ° 0. 3000 CHNL® 11: CV-ET-8AOI 1.3000 ie 0. 3000 CHNL® 12: CV-BAAOLYI 1.3000 a 0. 3000 J Ss —J Ss wo Ss Ss J Ss} | 7 cs cs Ss cs 3 2.0000 1.0000 0.0 26 VOLTAGES 14 JAN 13 1989 FRI. 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, FILE: OUTPUT1L24 CHNL# 45: CB-ANCHORI ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS u 3 & ( Oolwe ‘Se 0.4000 ieee c civics x -0.100 CHNL# 44: CB-SOLOTNI 0.4000 fii = =I + -0.100 CHNL® 43: CB-HEALYI 0.4000 eee ° -0.100 CHNL# 42: CB-GLOHLLI 0.4000 “>> -0.100 CHNL® 41: CB-TEELNOJ 0.4000 —————a -0.100 1989 SVS ADMITTANCES 5.0000 4.5000 1.0000 2.0000 3.0000 4.0000 0 2.5000 3.5000 TIME 1.5000 0.5000 14:26 JAN 13 FRI, WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, ANCH-FAIR 70 MW BL 90 CASE WP9IK -- SOLD SVS *15/-10, NO SERIES CAPS FICE? OUTPUTLeY CHNL# S50: CST-BERNLI 0.1000 ane Re x -0.900 CHNL«# 49: CST-COOPRI 0. 3000 SSS == ars =07700 CHNL# 48: CST-BRADLI 0.5000 esas ° -0.500 CHNL# 47: CST-ANCHPI 0.7000 ae hat ae -0.300 CHNL® 46: CST-QRTZCI 0.9000 Se -0.100 a x oe Ee 4 a 4 : ; j e a 1 | ond Us We i ine | ee Phil if wes, | a = ; Cn ell - é ! \ @ ini I \ | TInt LTT) | i \ ‘ae | x a: : oh rea a ' | err LL eee ae P eo iow Te — dike ees r= Sak | \ o | — Lis 7 ii) \ercorcee eae 4 Tt ee era JS ' | = \ | \ | | | | 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 14:26 STABILIZERS JAN 13 1989 Fil WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K --| SOLD SVS +157-10., NO SERIES GAPS RICE OUnRUTT es CHNLs SS: CP-BL-FTZI 150.00 MUSTESSESTES i = TO0 CHNL® S4: CP-TLO-CTI 150.00 a a Sr CHNLs 53: CP-SLDQTZI 150.00 SS ZS BTIG0 | CHNL® S2: CP-OR-APTI 150.00 ie -100. CHNL® Si: CP-DCR-HPI 150.00 -————3 100 1.0000 5.0000 4.5000 4.0000 3.0000 2.0000 0.0 1989 LINE FLOWS 13 i JAN FRI 2.5000 3.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 390 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS N25 +3 FILE: OUTPUTL24 = SG Su CHNL® 35: CF-HWYPRKI Maree 0.0167 Mees x 0.067] iL CHNL# 34: CF-HEALYI z 0.0167 Se mn oe > -0.067 & CHNL® 33: CF-UNIVERIJ 0.0167 aT 2 -0.067 _ CHNL® 32: CF-SOLDOTI i 0.0167 = =—\i— = -0.067 CHNL# 31: CF-FRITZCI 0.0167 | -0.067 So cs cs co le s w I 4: co —J co. co ul ss cs cs cs wo Uae | ae co os cs so Tice cs cs 1) = ee = cs cs cs cs Tan i] cs cs 8 co cs i] Ss cs Ss cs w aie | | ll at co WINTER PEAK 1991 -- KENAI-ANCH + 76 MW, ANCH-FAIR 70 MW BL 90 CASE ais > NO SERIES CAPS FILE: OUTPUf CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 heres eee cy =50.00 CHNL*'S 3,10: CA-BERN 33-CA-MLP 73 150.00 pSSSec= es -50.00 CHNL#'S 1,10: CA-BLUG 37-CA-MLP 7] 150.00 ¢sseeee=s=s= ° -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 77 150.00 -—-- -50.00 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 —— -50.00 ' cs | | | | | | 3 co re) — + Ss 7 4 a+ 9 vs =] vy wu ¥ S. = x << a f 7 Y v -N J | +c 4 L J _| a3 fs ! + -- vw | \) s tie | s v Ss 9 s — x u 8 | Ta ze 2 py & | 3 < \ L , 4 \ 8 = He / oe = ft / ! o co \ 3 [ \ = \ \ oy } | 1 \ ° Lo 3 4.5000 3.5000 2.5000 1.5000 0.5000 ay oo SE or “eo 2 Zo Sig oc art _ oO z x lu _ 7 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP9LK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: QUTPUT124A CHNL* S6: CPG-BRADILI 2.0000 _—— 7 = CHNL® 57: CPM-8RAD1I 1.5870 a nen CHNLw S8: CEF-BRADII 19.000 ——a =1.000 2.0000 5.0000 4.5000 4.0900 0 0 2.5000 3.5000 TIME 1.5000 0.5000 JAN 13 1989 14:52 BRADLEY LAKE RR 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 30 CASE WP9LK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT124A CHNL# 22: CV-PORTGEI See aes > . 3000 CHNL*® 18: CV-SOLDTAI ee Tria x - 3000 CHNL® 15: CV-ANCHPTI SSS So = . 3000 CHNL® 19: CV-QATZCAI Sa ° . 3000 CHNL# 11: CV-ET-8ADI — lS alee . 3000 CHNL® 12: CV-BRADLYI —4 . 3000 2.0000 5.0000 4.5000 4.0000 3.0000 1.0000 0.0 1989 VOLTAGES 14s 53) 13 JAN FRI, 2.5000 3.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, CASE WP9LK -- SOLD SVS +15/- FICE: GUTPUTL2SA ANCH-FAIR 70 MW BL 90 10, NO SERIES CAPS CHNL# 4S: CB-ANCHORI 0.4000 Mev ee eres x -0.100 CHNL# 44: CB-SOLOTNI 0.4000 SSS ==—— oe -0.100 CHNL# : -HEALYI 0.4000 C-a-=-- = - ° -0.100 CHNL# 42: CB-GLOHLLI 0.4000 = SS = -0.100 CHNL*# 41: CB-TEELNOI 0.4000 — So -0.100 so cs cs s wo _ =| Ss so a cs = cs Ss cs i | 3 cs cs cs so a os so sc “ s s 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 14:53 SVS ADMITTANCES JAN 13 1989 FRI, WINTER PEAK 1991 CASE WP9LK -- SOLD SVS +15/-10, -- KENAI-ANCH 76 MW, NO SERIES CAPS FILE: OUTPUT124A CHNL# 50: CST-BEANLI 0.1000 CHNL# 49: CST-COOPRI 0.3000 CHNL# 48: CST-B8RADLI 0.5000 CHNL# 47: CST-ANCHPI 0.7000 CHNL#* 46: CST-QATZCI 0.9000 a t : : | ! . 1 ' \ t ; \ 1 pi ‘ \ ' 1 1 | ‘ : ' By ‘ | ro = : | awe : | ‘ . 1 ' 4 ; I ee i : ' “ey : \ oes : \ 1 : | ‘ a I ‘ : I \ le TEL teeta : : 1 ae" : 1 Fol 3 ! x \ 1 aT + = 1 I \ | \ i \ \ \ \ i ! - 1 ANCH-FAIR 70 MW BL 90 Meese x eed + @----------- ° oe — — — -<« 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0 2.5000 3.5000 TIME 1.5000 0.5000 14353 13 1989 STABILIZERS JAN FRI, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS PILE: OUTPUTI23A CHNL® SS: CP-BL-FTZI 3 CP-TLO-CT) CHNL# 53: CP-SLOQTZI CHNL® S52: CP-OR-APTI CHNL®# 51: CP-OCR-HPI | 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 Uo JAN 13 1989 LINE FLOWS FRI: 2.5000 3.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WPS1K -- SOLD SVS +1S/-10, NO SERIES CAPS i> 22 FILE: OUTPUTI24A ud o= om” S Wd CHNL# 35: CF-HWYPRKI a= saiee ain x -0.067 7 CHNL# 34: CF-HEALYI =z 0167 Pe === + -0.067 < CHNL*® 33: CF-UNIVERIJ | 0167 ea aa aaaaaan ° =0.067 a CHNL® 32: CF-SOLDOTI c 0167 === = -0.067 CHNL# 31: CF-FRITZCI 0167 ———— =0.067 cs | | | DA TTNTEAMIT INTIME NTN ET TTIT IFA So we cs so wo To | is os s cs S 7s ° $ co wo al le co cs J cs 6 Ss $ | 8% Nee i cs =] =] o sai ° 3 3 7" cs =] cs S so co co 3 At lie ° s WINTER PEAK 1991 CASE WP9LK -- SOLE S¥S-t145<-1& NO SERIES CAPS RIES OUTPU CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 \nw | 90 pw > SO mw -4s 150.00 CHNL#'S 3,10: CA-BERN 3J-CA-MLP 73 150.00 <== + -50.00 CHNL#'S 1,10: CA-BLUG 33-CA-MLP 7] 150.00 Saas ° -50.00 CHNL#'S 6,10: CA-CHENASJ-CA-MLP 73 150.00 <== -50.00 CHNL#'S 8,10: CA-BRAD 1J-CA-MLP 73 150.00 ————_————4 =50.00 | | | \ | \ ; S — om 2 + v — _—— oO \ So | = wu} No rg? | s \ or \ S = 9S iy L$ Ay 8 =0 7 + == J Y £ Lo, Vv a -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 13 1989 15:48 JAN ANGLES REL TO MLP #7 FRI, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS *157-10, NO SERIES CAPS FILE: OUTPUT124B CHNL# 56: CPG-B8RADLI 2.0000 ¢-----=====— es 0.0 CHNL# S57: CPM-B8AAD1I | 1.5870 = aon ae ie 0.0 CHNL* $8: CEF-B8RADLI 19.000 ane, -1.000 4.0000 3.0000 2.0000 0. 48 BRADLEY LAKE 153 13 1989 JAN 5.0000 2.5000 3.5000 4.5000 FRI TIME , 1.5000 0.5000 0 WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, SOLD SVS +15/-10, NO SERIES CAPS CASE WP91K FILE: OUTPUT124B ANCH-FAIR 70 MW BL 90 CHNLs 22: CV-PORTGEI : 1.3000 re > 0.3000 CHNL# 18: CV-SOLOTAI 1.3000 OSE Ieiiai iia x 0.3000 CHNL* 15: CV-ANCHPTI 1.3000 eo -- + 0.3000 CHNL# 19: CV-GATZCR 1.3000 eee Series . 0.3000 CHNE# 11; CV-ET-8A0I 1.3000 cain, 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 ———— 0.3000 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 15:49 13-1989 VOLTAGES JAN FRI 2.5000 3.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT124B CHNL# 45: CB-ANCHORI 0.4000 xe Ss os cee ee x -0.100 CHNL* 44: CB-SOLOTNI 0.4000 te pee -0.100 CHNL# 43: CB-HEALYI 0.4000 SSS rrr i? -0.100 CHNL# 42: CB-GLOHLLI 0.4000 a -0.100 CHNL#* 41: CB-TEELNOI 0.4000 SS -0.100 2.0000 49 SVS ADMITTANCES FRI, JAN 13 1989 15: 5.0000 1.0000 3.0000 4.9000 0.5000 1.5000 2.5000 3.5000 4.5000 TIME 0.0 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, CASE WPOIK =- SOLO -SVS +15/7=10, ANCH- NO SERIES CAPS FAIR 70 MW BL 90 FILE: QUTPUT124B CHNL# SO: CST-BERNLI . 1000 eee eee x -0.900 CHNL* 49: CST-COOPRI . 3000 tie = -0.700 CHNL* 48: CST-BRADLI ~5000 . ee eee ° -0.500 CHNL® 47: CST-ANCHPI . 7000 aS -0.300 CHNL* 46: CST-QATZCI 9000 ———a =0.100 x t ° t a an i‘ | ' : é : \ Looe ; \ ‘ 4 ; | . | 4 a g ; \ ; | cS | = x ; ‘ | . 1 fo tae = | i ~~ 7A “Te | a \ \ ‘ 4 \ \ | 3 1 ‘ @ ; 1 =a | a | : I ee : | ! | x ae | + i | 7 ; = SSS | i es ee 7 ‘ ‘ ! \ | = ; \ ‘ a ; os: | . eae : ' ' | : ! i | 4 3 7 P| ; ' 1 | 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 49 15: STABILIZERS JAN 13 1989 FRI, WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, ANCH-FAIR 70 MW BL 90 CASE WP91LK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT124B CHNL# 55: CP-BL-FTZI 150.00 aT nh x -100.0 CHNL* S4: CP-TLO-CTI 150.00 fis SSSeo sh -100.0 CHNL# 53: CP-SLOQTZI 150.00 ci Me 2 -100.0 CHNL# S2: CP-OR-APTI 150.00 Ti nT -100.0 CHNL* S1: CP-OCR-HPI 150.00 ae -100.0 ane | 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0. 2.5000 3.5000 TIME 1.5000 0.5000 13.1989 15:49 LINE FLOWS JAN FRI, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT124B CHNL®# 35: CF-HWYPRKI 0.0167 Mra Sr iisions in a -0.067 | CHNL# 34: CF-HEALYI 0.0167 BS er -0.067 CHNL# 33: CF-UNIVERJ 0.0167 eee aaa a © -0.067 CHNL# 32: CF-SOLOOTI 0.0167 -—— — 4 -0.067 CHNL«® 31: CF-FRITZCI 0.0167 aaa -0.067 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 15:50 FREQUENCY JAN 13 1989 FRI, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT L24C CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150,00 Moone x 250.00 CHNL®'S 3,10: CA-BEAN 33-CA-MLP 73 150.00 Foss = =50.00 CHNL®'S 1,10: CA-BLUG 3]-CA-MLP 73 150,00 aaa > =50,00 CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 150.00 i aT CHNL®'S 8,10: CA-BRAD 13-CA-MLP 73 750.00 0-00 cs [iS eee | rT ©«(s cs cs ’ cs oa cs co -- —: cs cs cs cs | =a < \4 co cs s AS f 4 a \ cs \ s \ Ee \ | joao | | C ._ie ot S 5 SE an _o 2 ZW Siw c S wn = uw = o z « 3 3 g eS = 3 WINTER PEAK 1991 -- KENAI-ANCH CASE WP91K -- SOLD SVS +15/-10, 76 MW, ANCH-FAIR 70 MW BL 90 NO SERIES CAPS FILE: OUTPUT124C CHNL# 56: CPG-BRAD1LI 2.0000 eoacssareces © 0.0 CHNL# S7: CPM-BRADII 1.5870 -—--- AH 0.0 CHNL# $8: CEF-BRAD1I 19.000 Se -1.000 ! | < - bt | eee 1" K, Hs Veen, ON \ } y’ oi ‘4 Pes! eee heeserrr iii \ Co \ i 4 os TS a Pe PSs Pg nnn Sp 5.0000 4.0900 3.0000 2.0000 1.0000 0.0 © ox a ay a o- Sf ud oa °a -< ec 50 z So = cs cs cs w x cs o co wo a cs S ee) a= Ne rae so Ss Ss wo cs cs cs wo o WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT124C CHNL® 22: CV-PORTGE . 3000 oe 2 0.3000 CHNL® 18: CV-SOLOTAI . 3000 Ko ee sia iine x 0.3000 CHNL* 15: CV-ANCHPTI | . 3000 qt Sl ot 0.3000 CHNL® 19: CV-QRTZCRI . 3000 Ce ° 0.3000 CHNL# 11: CV-ET-BROI . 3000 = > = 0.3000 | CHNL® 12: CV-BRADLYI . 3000 ————4 0.3000 lo Th | | mi fi om) ie cs bs $ s 4 a - cs s = cs as ° 3 & Hl es cs cs J cs Fa J x S sil eset im cs —J J co Fa e $ s 8 - cs co EB 2 s $ 3 mal es 09 VOLTAGES 09; 1989 JAN 16 MON, TIME WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, FILE: OUTPUT124C CHNL# 45: CB-ANCHORI ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS - 4000 hase eee x -0.100 CHNL# 44: CB-SOLOTNI - 4000 oa i de = -0.100 CHNL# 43; CB-HEALYI +4000 SSS a ain ° -0.100 CHNL# 42: CB-GLOHLLI +4000 Se =] |S |= -0.100 CHNL* 41: CB-TEELNOI - 4000 S—— -0.100 5.0000 4.5000 4.0000 3.0000 2.5000 3.5000 TIME 1.5000 0.5000 1989 09:09 16 JAN SVS ADMITTANCES MON, WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, ANCH- FAIR 70 MW BL 90 CASE WP9LK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT124C CHNL# S50: CST-BERNLI .1000 Me iar eiecin ees x -0.900 CHNL# 49: CST-COOPRI - 3000 st st -0.700 CHNL# 48: CST-8RADLI -5000 Te ° -0.500 CHNL# 47: CST-ANCHPI . 7000 Tie nT -0.300 CHNL® 46: CST-QATZCI 9000 oe -0.100 x a g : | aul ; 4 ; ] : | ; | 70 | x | | + : | . 4 : | sail ; | a | | _ : | | ll ao ‘ 5.0000 4.5000 4.0900 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 JAN 16 1989 09:09 STABILIZERS MON, WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, CASE WP91K -- SOLD SVS +15/7- FIEEs OUTPUT TeaG ANCH-FAIR 70 MW BL 90 10, NO SERIES CAPS CHNL# SS: CP-BL-FTZI 150.00 eee x -100.0 CHNL «S42. CP-TLO-CTI 150.00 frase ee ae -100.0 CHNL* 53: CP-SLOOTZI 150.00 aaa ae Y -100.0 CHNL«# S2: CP-OR-APTI 150.00 gee -100.0 CHNL® Si: CP-OCR-HPI 150.00 Se -100.0 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 3.5000 2.5000 1.5000 0.5000 2 a o wh Co ot = Dm — z < “> = = = lu a = WINTER PEAK 1991 CASE WPSLK SOLD SVS +15/-10, -- KENAI-ANCH 76 Mh, FILE: OUTPUT124C CHNL# 35: CF-HWYPRKI ANCH-FAIR 70 MW BL 390 NO SERIES CAPS 0.0167 eters x =0. 067 CHNL® 34: CF-HEALYI 0.0167 ese a= ~~ 0.067 CHNL® 33: CF-UNIVERI 0.0167 aa ° =0.067 CHNL® 32: CF-SOLOOTI 0.0167 Se =0. 067 CHNL® 31: CF-FRITZCI 0.0167 ae -0.067 —_ 5.0000 4.5000 4.0Q00 3.0000 2.0000 1.0000 0.0 09:10 FREQUENCY JAN 16 1989 MON, 2.5000 3.5000 TIME 1.5000 0.5000 Power Technologies, Inc. CASE 125 Power Flow WP91L Transmission: 115 kV SVS(s) 0 at Anchor Pt, 0 at Quartz Cr Series Capacitors none Bradley Lake: 90 MW Export: 76.1 MW Bernice Lake 58 MW (units 2, 3, 4) Disturbance Fault, trip Soldotna - Ski Hill Brake applied no Deflector runback no Results Stable WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 —s~ FILE: OUTPUT125 CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 09:43 1989 16 JAN MON, 150.00 Moores * =50.00 CHNL#'S 3,10: CA-BERN 3]-CA-MLP 7] 150.00 == + =50.00 CHNL#'S 1,10: CA-BLUG 33-CA-MLP 73 150.00 @2---------- ° 50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 150.00 =-—-—-— =50.00 CHNL®'S 8,10: CA-BRAD 1J-CA-MLP 73 150.00 sj ———————a -50.00 JS] “| z ~ ZN “ e a v ad as 30 o : WN ~~ Pea <i ¢@¢. Te 2 > h @ ~ a 3 | 8 a 8 a 9 2 2 > we nr ANGLES REL TO MLP #7 5.0000 1.0000 2.0000 3.0000 4.0000 0.5000 1.5000 2.5000 3.5000 4.5000 TIME 0 0 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT1L25 | CHNL# S6: CPG-BRADII 2.0000 Was eseseeseS ° 0.0 CHNLs S7: CPM-BAAD1I 1.5870 Sa 0.0 CHNL*® 58: CEF-BAADII 19.000 oo -1.000 L_ 4 _ : 1 al 4 = I — ; | i is fee fo = ' i am a fp! _| oe = 7 | MI EE 7 I co | s Si ra asain " LI wee | _ \ | S| pronfeveeeofo 5.0000 4.5000 2.0000 1.0000 0.0 16 JAN 09:43 1989 BRADLEY LAKE MON, 2.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUTS CHNL® 22: CV-PORTGEI 1.3000 pais eee > 0. 3000 CHNL#® 18: CV-SOLOTAI 1.3000 pee eee x 0.3000 CHNL® 15: CV-ANCHPTI 1.3000 Tes ae * 0. 3000 CHNL# 19: CV-GATZCA 1.3000 es oe eee ° 0.3000 CHNL® 11: CV-ET-BADI 1.3000 Se 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 —— 0. 3000 i. S.0000 4.5000 4.9000 3.0000 2.0000 1.0000 0 0 2.5000 3.5000 TIME 1.5000 0.5000 VOLTAGES 16 1989 09:44 JAN MON, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS 2w ve Lod oS FILE: OUTPUT125 « an orf O Hae CHNL® 4S: CB-ANCHORI pe 0.4000 Meceesee nee x =0.100 LS CHNL® 44: CB-SOLOTNI oS 0.4000 ------- + =0.100 a= CHNL# 43: CB-HEALYI wn 0.4000 @2ss=5=-"==> ° -0.100 s> CHNLs 42: CB-GLOHLLI ‘ en 0.4000 --S> To -0.100 CHNL® Yi: CB-TEELNOJ 0. 4000 -———a =0.100 Ss Ss cs co we cs cs w a ae cs cs co oa tet s BS cs Ss wo at es cs cs so co a * cs 3 - By Nee = co cs cs cs ae a cs cs S — 2 cs 7 co — 3 cs cs cs S = S So S WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, CASE WP9LK -- SOLD SVS +15/- FILE: OUTPUT125 ANCH-FAIR 70 MW BL 90 10, NO SERIES CAPS CHNL# SO: CST-BERNLI 0.1000 Pee x -0.900 CHNL*® 49: CST-COOPRI 0.3000 = SSS = e -0.700 CHNLs 48: CST-BRADLI 0.5000 Ca = =n oa= a= ° -0.500 CHNL® 47: CST-ANCHPI 0.7000 —_—=— —] — = -0.300 CHNL# 46: CST-QATZCI 0.9000 — -0.100 J J Ss cs w J Ss ‘Ss cs = t ¢ 1 po TS : 1 na ; ! 2 | : I 2 : I 4 — : \ . | b : | ; ! ' | S r 1 ! sis = : I ' | sa x ‘ I to. : i te 3 ! . | i | ~ | — . ' ’ : I ! 4 : \ ' : \ ' a s } s : ; 1 | Ss — . ' oumma = ! \ | = . 1 “7 ' \ a | : ! a * ! c | co 4 = | — | \ 1 ¢ | | tr 1 g La | 3 cee \ “te, | —ia \ es! a i | \ ' SS | L \ ee | —| 1 — \ | ! | 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 a4 JAN 16 1989 09: STABILIZERS MON, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP9LK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT1L25 CHNL# 55: CP-BL-FT2Z] 09:44 LINE FLOWS JAN 16 1989 MON, 150.00 ayy Series oe x =100. CHNL# S54: CP-TLO-CTI 150.00 ss SSS= = q100- CHNL* 53: CP-SLOQTZI 150.00 eas aasaaaa ° -100. CHNL# 52: CP-DR-APTI 150.00 = 7 100. CHNL® Si: CP-OCR-HPI 150.00 a4 -100. 5.0000 1.0000 2.0000 3.0000 4.0000 0.5000 1.5000 2.5000 3.5000 4.5000 TIME ao 0 WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, FILE: OQUTPUTL25 CHNLs# 35: CF-HWYPAKI ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS 0.0167 MASsaGeRCeee x -0.067 CHNL® 34: CF-HEALYI 0.0167 Pirin bi -0.067 CHNL* 33: CF-UNIVERI 0.0167 Cra Rees so aes ° -0.067 CHNL® 32: CF-SOLOOTI : 0.0167 Sa -|— -0.067 CHNL® 31: CF-FRITZCI 0.0167 -0.067 5.0000 4.5000 4.9000 3.0000 2.0000 1.0000 0 0 2.5000 3.5000 TIME 1.5000 0.5000 1989 09:44 FREQUENCY JAN 16 MON, Power Technologies, Inc. CASE 126 Power Flow WP91L Transmission: 115 kV SVS(s) 0 at Anchor Pt, 0 at Quartz Cr Series Capacitors none Bradley Lake: 90 MW Export: 76.1 MW Bernice Lake 58 MW (units 2, 3, 4) Disturbance Fault, trip B.L. - Soldotna Brake applied no Deflector runback 30 MW (runback to 60, hold 1.5s, slow ramp back to 90 MW) Results stable 150.00 WINTER PEAK i FILE: OUTPUT126 CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 Sala anana * -50.00 CHNL#'S 3,10: CA-BEAN 31-CA-MLP_ 73 150.00 aie aa a -50.00 CHNL#'S 1,10: CA-BLUG 31-CA-MLP 73 150.00 CS ee © -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 -—--- CHNL#'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 2.0000 5.0000 4.5000 4.0900 3.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 07 ANGLES REL TO MLP #7 JAN 16 1989 11 MON, WINTER PEAK 1991 CASE WP91K -- SOLD SVS +15/-10, 2.0000 1.5870 -- KENAI-ANCH 76 Mh, FILE: OUTPUT126 CHNL* 56: CPG-8RAD1I CHNL# 57: CPM-BRADLI CHNL# S58: CEF-BRADII A 19.000 ANCH-FAIR 70 MW BL 90 NO SERIES CAPS -1.000 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 3.5000 2.5000 1.5000 0.5000 sy = ce _ a> Sw J LQ 2¢ Sa z Go = WW ay = WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: QUTPUTI26 CHNL® 22: CV-PORTGEI 1.3000 ae > 0.3000 CHNLs 18: CV-SOLDTAI 1.3000 Mace ope eels x 0. 3000 CHNL® 15: CV-ANCHPTI 1.3000 SSS + 0.3000 | CHNLs 19: CV-QATZCAI 1.3000 aaa ° 0.3000 CHNL® 11: CV-ET-8ADI 1.3000 a 0. 3000 CHNL® 12: CV-8RADLYI 1.3000 —s 0. 3000 ] $s cs cs B —J J sc. cs = J J cs cs 76 al Ss J J so a J cs J 3 = es 08 11 JAN 16 1989 VOLTAGES 2.5000 3.5000 4.5000 TIME MON, 1.5000 0.5000 0.4000 0.4000 0.4000 0.4000 0.4000 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WPS1K -- SOLD SVS +15/-10, NO SERIES CAPS = FILE: OUTPUT126 a eo ao CHNL# 45: CB-ANCHORI i Mensisl sree oes tere x -0.100 2 CHNL* 44: CB-SOLOTNI - i + -0.100 < CHNL# 43: CB-HEALYI S227 =5 ae ° -0.100 = CHNL® 42: CB-GLOHLLI S —_—-— — = -0.100 CHNL® 41: CB-TEELNOJ —————— =0.100 oc os cs J we s wo - J co iJ oa = so cs cs w os iJ Ss S o « cs S aw Ne = cs so J os a so So s 2 =] co =] = cs cs oso Z s so s SVS ADMITTANCES CHNL# S50: CST-BEANLI 0. 1000 hear x -0.900 CHNL#* 49: CST-COOPR 0. 3000 eS eer eee - -0.700 HNL# 48: CST-BRAD 0.5000 erat doa e -0.500 CHNL® 47: CST-ANCHPI 0.7000 eee Pert eee -0.300 CHNLw# 46: CST-QATZCI 0.9000 Ce -0.100 : . . ! ' jils 1 ' | aa : | ' | . I ' ; \ ' | : ; ' ce 1 ' mm : + -- | — + . 1 ut . \ ios \ 2 | anal ; 1 ” it | (ear tt : | . 1 Met del — ‘ ‘ | = - 1 | ; + | : I ee ; ! | | : I : 1 4 \ : \ /- 4 1 | eel : ! | : I : I | p \ * | + | ! | ' \ 4 — 1 | 4 1 1 | 1 | / | aa | i | —_ i ' | ! ' | WINTER PEAK 1991 CASE WP91K -- SOLD SVS. +15/-10, --_KENAI-ANCH 76 MW, NO SERIES CAPS PILE: OUTPUT126 ANCH-FAIR 70 MW BL 90 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 :08 JAN 16 1989 11 STABILIZERS MON, WINTER PEAK 1991 -- SOLD SVS +15/- CASE WP9LK -- KENAI-ANCH 76 Mh, FILE: OQUTPUT126 CHNLs SS: CP-B8L-FTZ] 150.00 CHNL# S54: CP-TLO-CTI 150.00 CHNL# 53: CP-SLOQTZI 150.00 CHNL# S52: CP-OR-APTI 150.00 CHNL# 51: CP-OCR-HPI 150.00 ANCH-FAIR 70 MW BL 930 10, NO SERIES CAPS Moses x we oce ee + @----------- ° --- To en 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0 0 2.5000 3.5000 TIME 1.5000 0.5000 :08 LINE FLOWS 16 1989 11 JAN MON, 0.0167 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, FILE: OUTPUT126 CHNL® 35: CF-HWYPARKI CHNL* 34: CF-HEALYI 0.0167 0.0167 0.0167 0.0167 CHNL# 33: CF-UNIVERI ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS CHNL«# 32: CF-SOLDOTI CHNL®# 31: CF-FRITZCI Messe ce eee x tee + @----------- ° -—--- a —————4 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 11:08 FREQUENCY JAN 16 1989 MON, Power Technologies, Inc. CASE 127, 127C Power Flow WP910, WP91P Transmission: 230 kV SVS(s) 0 at Anchor Pt, 0 at Quartz Cr Series Capacitors none Bradley Lake: 90 MW in 127 100 MW in 127C Export: 80.6 MW Bernice Lake 58 MW Disturbance Fault, trip B.L. - Soldoma Brake applied no Deflector runback no Results Stable at 90 MW, unstable at 100 MW BERNICE 9992 SOLD 69 ANCHPTSY SKI MILI 38 gouooTwA =27.0 0.6) SOLOOTNI 3969 =~ o> er) QIAN AOG 1.039 3999 FRTZ CR] 1.038 9997 2.9 nl slo 7 SOLD 69 LOCI OL. OK bu KENAL PLT2 ges “|o uty 230 3 1.028 ANCHORAGE S]5 1.016 9972 1s ~i0.S 9966 Ty? 12.7 INT 138 1,022 UNIV }38 tov iy 3984 -i153 9963 side! abies a == o— ge sled ty ols as ; in 0.9750 : — ole UNIV 11S ale 1.019 FY yuzvouny | 1-983 san == se =i. =~ oN 2 T 34.5 ale 9. inte aN aig ie and ale ries UNV 34.5 1.043 71" UNVS4.SB 1.024 38 =i2.3 860 =i6.s = 2 =J2 ol- ais GeOren te 192% gis ois =o sl< — Vv a Vv GIROWOOD s]® 1.027 42 S}o -i173 =] alT w PORTAGE —/% 1.030 48 X= -i0.6 SSS me al a7 Hi = s 2 a % 8 s 20 ao OAVES CR 1,042 = 998 -8.1 s 2 2 = ee se s 7 sin 1,016 guaatz2|2 i she 987 eel = je ai ‘oa ss sles oie ! 0.4 ' Se] — yy SOLO svs 1,023 1,036 1 sa: 33.9 ele ele alo zlo T coor LK 1,036 9991 -3.2 coor 1.2 1.040 79 o:4 ole alo BARRO HS sz.7f° BRAD «1 = S01 90.0 1) 36.91] 2.6 -7 D1 O40 1,011 Ts 13.2 WINTER PEAK 1991 -- 250 KV LINE, JAN 20 1989 WP910 FRI, KENAI-ANCH 80 MW, ANCH-FAIR 70 MW BL 90 34 MVAR SHUNT REACTOR © SOLD 230 10:11 KV: s69 ,$138 , «230 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR ® SOLD 230 BILE: OUTRUTIT27 CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 ‘erst Se x -50.00 CHNL#‘S 3,10: CA-BEAN 33-CA-MLP 73 150.00 SSS 2 -50.00 CHNL#*S 1,10: CA-BLUG 31-CA-MLP 7) 150.00 = SSeS 2 -50.00 CHNL#‘S 6,10: CA-CHENASI-CA-MLP 73 150.00 SS -50.00 | CHNL*#'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 Se -50.00 5.0000 4.5000 4.0000 2.0000 1.0000 0.0 2.5000 3.5000 UME 1.5000 0.5000 JAN 17) 1989)" 082/17 TUE, ANGLES REL TO MLP #7 WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 FILE: OUTPUT127 CHNL# 56: CPG-BRAD1I 2.0000 CHNL# 57: CPM-B8AADLI 1.5870 CHNL# 58: CEF-BRAD1I 19.000 ANCH-FAIR 70 MW BL 90 @ 55 - === ° -- To _—— 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 17 JAN 1989 08:16 BRADLEY LAKE TUE, 2.5000 3.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 WP910 -- 230 KV LINE, -- KENAI-ANCH 76 Mh, FILE: OUTPUT1L27 ANCH-FAIR 70 MW BL 90 34 MVAR SHUNT REACTOR © SOLD 230 ‘ CHNL® : CV-PORTGEI 1.3000 ei > 0.3000 CHNL® 18: CV-SOLDTAI 1.3000 Miss eee x 0.3000 CHNL* 15: CV-ANCHPTI 1.3000 Se * 9.3000 CHNL® 19: CV-QATZCAJ _ 1.3000 ea == a ee a= ° 0. 3000 CHNL® 11: CV-ET-B8ADI 1.3000 Se ee 0.3000 CHNL# 12: CV-BRAOLYI 1.3000 ———— a 0.3000 s J cs “ cs cs cs 8. = PE ss un * 1 nya nq =| utd why 3 utd 3 Le x 1 1 —* ly fac yy wf i oid =| nia wd 3 ny 3 = why Sa Hh ' . “ 4 L_ hee — wf # 1 = hd 3 é= yd se utd rated it j . ae | hed ny ° co 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 VOLTAGES JAN 17 1989 08:18 TUE, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR @ SOLD 230 FILE: OQUTPUT127 CHNL# 45: CB-ANCHORI 0.4000 iain x -0.100 CHNL* 44: CB-SOLOTNI 0.4000 Sri re -0.100 CHNL# 43: CB-HEALYI 0.4000 a Tai ° -0.100 CHNL# 42: CB-GLOHLLI 0.4000 Ti mls -0.100 CHNL* 41: CB-TEELNOI 0.4000 Tne -0.100 Ss sc —J so wo Ke 2.5000 3.5000 TIME 1.5000 0.5000 08:17 SVS ADMITTANCES JAN 17 1989 TUE, WINTER PEAK 1991 WP910 -- 230 KV LINE, -- KENAI-ANCH 76 MH, FILE: OUTPUT127 ANCH-FAIR 70 MW BL 90 34 MVAR SHUNT REACTOR ® SOLD 230 CHNL# 50: CST-BERNLI 0.1000 ——— : a CHNL# 49: CST-COOPRI 0.3000 —E - <a CHNL# 48: CST-BRADLI oo eaaa=aSeeaa= . 97500 CHNL# 47: CST-ANCHPI 0.7000 SS 500 | CHNL# 46: CST-QATZCI 0.9000 aT . * t ? 1 a _| ‘ 1 i : I + | : ; h : | SS J : I te, | _| | : 4 : ; ' t : ' | ro | = 1 * I ae | t 7 | { = ‘ = | =| ; | ; 4 : 1 Ma | : ; = ‘ 1 j= | ; I 7 | — : j : 1 \ | x ' \ - 1 \ | t ——— prone ] ' 3 | | ' | ’ } Es an | fo TFET Re , b I ! | ! ' | ' | [ ; | _| I 1 I \ | ! ' | a ; | \ —<—— =i L | S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 3.5000 2.5000 1.5000 0.5000 ro = om = poccal Dt a ~ ce = Zw < wi = =— re) ze = CHNL® SS: CP-BL-FTZ 150.00 aol Eis * -100.0 CHNL® S4¥: CP-TLO-CTI 150.00 2 + -100.0 CHNL® $3: CP-SLDQTZI 150.00 ee ° -100.0 CHNL® 52: CP-OR-APTI 150.00 a -100.0 CHNL® Si: CP-OCR-HPI 150.00 —4 -100.0 = <a — i | ft 1 ; ‘ I . | 1 4 —- 1 ° q — \ a ' \ ; 1 ! 1 1 ‘ ' __ 1 a x} 4 : 1 t H Es ' ; 4 4 i E { 1 ; 4 I ‘ 4 1 . 1 ie ' T ' ' ; i ~] ! ; \ \ ; { ; : \ | | iy t 14 ‘| 4 1 . 1 ‘| 4 = | : i| . st \ | ' ; i ! : i I! : ' is 1 : | ao I P ' : ‘ ! a i | . : ' WINTER PEAK 1991 WP910 -- 230 KV LINE, -- KENAI-ANCH 76 Mh, 34 MVAR SHUNT REACTOR © SOLD 230 FILE: OUTPUT127 ANCH-FAIR 70 MW BL 90 5.0000 4.5000 4.0900 3.0000 2.0000 1.0000 0.0 17 1989 08:18 LINE FLOWS JAN TUE; 2.5000 3.5000 TIME 1.5000 0.5000 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 FILE: QUTPUT127 CHNL® 35: CF-HWYPAKI 0.0167 Rr x -0.067 CHNL* 34: CF-HEALY 0.0167 ail at -0.067 CHNL® 33: CF-UNIVERIJ 0.0167 Se e -0.067 CHNL#* 32: CF-SOLOOTI 0.0167 = = S8 -0.067 CHNL* 31: CF-FRITZCI 0.0167 —————4 -0.067 cs cs cs oc “ —J J J 7 7+ cs cs —J so “ s s a cs cs sc fe cs s WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 08:18 JAN 17 1989 FREQUENCY TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91Q -- 203 KV LINE, BERNL 13,18,18 8.L. 100 FILE: OUTPUT127C CHNL#'S 4,10: CA-COOP_ 13-CA-MLP 73 150.00 MS Tlsascikeks = -50.00 CHNL#'S 3,10: CA-BERN 33-CA-MLP 7] 150.00 eet SS + -50.00 CHNL#'S 1,10: CA-BLUG 33-CA-MLP 7] 150.00 SSS ° -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 150.00 ------ -50.00 CHNL#'S 8,10: CA-BRAD 1IJ-CA-MLP 7] 150.00 ————4 -50.00 os co =] os wo so 2 oS o Ls 7+ cs co J so ,_ Ja Ss cs o cs [ Ja i) - 4* t 2 \ of ‘~ a b ‘ - * F 204 11 ANGLES REL TO MLP #7 JAN 17 1989 TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW 4.0000 3.0000 2.0000 WP91Q -- 203 KV LINE, BERNL 13,18,18 B.L. 100 FILE: OUTPUT127C CHNL® 56: CPG-BRADII 2.0000 C2se oa ° 0.0 CHNL® 57: CPM-B8AADII 1.5870 ——— 4 0.0 CHNL# 58: CEF-8RADII 19.000 a——————a =1.000 - 4 1.0000 biso4 JAN 17 1989 BRADLEY LAKE 5.0000 2.5000 3.5000 4.5000 TIME UES 1.5000 0.5000 0.0 WINTER PEAK 1991 -- KENAI-ANCH 80 Mh, ANCH-FAIR 70 MW WP91Q -- 203 KV LINE, BERNL 13,18,18 8.L. 100 FILE: OQUTPUTL27C CHNLs 22: CV-PORTGEI 1.3000 peeciews ss * 0. 3000 CHNL# 18: CV-SOLOTAI 1.3000 Device ssieseefeisig = x 0. 3000 CHNL® 15: CV-ANCHPTI 1.3000 == S + 0. 3000 CHNL® 19: CV-QATZCAI 1.3000 @ersscsasss= ° 0. 3000 CHNLs 11: CV-ET-BADI 1.3000 -—-- > 0.3000 CHNL® 12: CV-8AADLYI 1.3000 ———s 0. 3000 TTT 204 11 1989 VOLTAGES JAN 17 TUE, 5.0000 . 2.0000 3.0000 4.0000 000 1.5000 2.5000 3.5000 4.5000 TIME 0.5 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91Q -- 203 KV LINE, BERNL 13,18,18 B8.L. 100 at ~ i FILE: OUTPUT127C = Se Se CHNL# 45: CB-ANCHORI pt 0.4000 Meese % -0.100| sx HNL® 44: CB-SOLDTNI | 2 0.4000 eo > >>> = =0.100 ao CHNL® 43: CB-HEALYI wn 0.4000 ; == 25 23s = == ° -0.100! u> CHNL® 42: CB-GLOHLLI = 0.4000 ----- -0.100 CHNL® 41: CB-TEELNOJ 0.4000 ——s =0.100 $ cs os we cs cs w Ee = so o J o ae ie cs cs cs w Se 4a So cs cs oc -— ss os cs ia | & 4 Ne Fa s Ss os Fe 5 cs oso so aie os o cs so t— 3 cs cs cs w a 3 so Ee iS WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91Q -- 203 KV LINE, BERNL 13,18,18 B.L. 100 oo = WJ FILE: OUTPUTL27C ~ ’ So jie Drm CHNL* 50: CST-BEANLI ~ a 0.1000 Meee saee eee x -0. 300 re CHNL® 49: CST-COOPRI an 0.3000 Pe = “F500 z w”n CHNL® 48: CST-BRADLI 0.5000 a aaa ° -0.500 i CHNL® 47: CST-ANCHPI = 10. 7000 7 -0.300 CHNL® 46: CST-QATZCI 0.9000 -——a -0.100 | | | fmercliiriiriit co we Ss cs wo i 7 = cs cs cs os i ss cs cs co w int aa cs cs So co kis 5 cs J te _|8y ON - cs cs co os ie 0 cs cs cs "| cs co oso S cs Ss cs wo 3 cs 3 WINTER PEAK 1991 -- KENAI-ANCH 80 Mh, WP91Q -- 203 KV LINE, BEANL 13,18,18 8.L. 100 FILE: OUTPUTL27C CHNL® SS: CP-BL-FTZI 150.00 Arisa Sees = SR x -100.0 CHNL* S4: CP-TLO-CTI 150.00 Se > -100.0 CHNL# 53: CP-SLOQTZI 150.00 errs sr Se -100.0 CHNL® S2: CP-OR-APTI 150.00 == === -100.0 CHNL* Si: CP-OCR-HPI 150.00 ——— 2 -100.0 Las 4 ANCH-FAIR 70 MW 5.0000 4.5000 4.9000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 11:05 LINE FLOWS JAN 17 1989 TUE, WINTER PEAK 1991 -- KENAI-ANCH 80 Mh, WP91Q -- 203 KV LINE, BERNL 13,18,18 FILE: OUTPUT127C CHNL# 35: CF-HWYPRKI ANCH-FAIR 70 MW B.L. 100 0.0167 0.0167 0.0167 0.0167 0.0167 CHNL# 34; CF-HEALYI CHNL# 33: CF-UNIVERI CHNL# 32: CF-SOLDOTI CHNE* 31: CF-FRITZCI 5.0000 Moses x =0.067 Ss .SS-= = 9,067 | = . 97067 ee 07067 ————4 -0.067 cs cs co w 7 = cs So co so —7= cs cs sc wo 45 o cs Ss oso Ja cs 3 cs w 4: Ss =] cs s Hs cs cs cs wo + % cs so cs = J cs cs w 3 11:05 FREQUENCY JAN 17 1989 TUE, TIME Power Technologies, Inc. CASE 128 Power Flow Transmission: SVS(s) Series Capacitors Bradley Lake: Export: Bernice Lake Disturbance Brake applied Deflector runback Results WP910 230 kV 0 at Anchor Pt, 0 at Quartz Cr none 90 MW 80.6 MW 58 MW (units 2, 3, 4) Fault, trips 230 kV line, fault at Soldotna end no no Marginally stable, not well damped WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW BL 90 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 FILE: OUTPUT128 CHNL#*S 4,10: CA-COOP _13-CA-MLP 73 150.00 Maia ie iter x -50.00 CHNL«#*S_ 3,10: CA-BERN 3J-CA-MLP 73 150.00 ih Mn w -50.00 CHNLs'S 1,10: CA-BLUG 33-CA-MLP 7 = 150. 00- oan aaa aaa ° =50.00 CHNL#'S 6,10: CA-CHENASIJ-CA-MLP 7] 150.00 Th hin -50.00 CHNL#"S 8,10: CA-BRAD 11-CA-MLP 7) 150.00 ee -50.00 J J Ss Ss B So S cs ss 3.0000 2.0000 1.0000 -0 0 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 11:49 JAN 17 1989 ANGLES REL TO MLP #7 TUE, WINTER PEAK 1991 -- KENAI-ANCH 80 MW, WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 FILE: OUTPUT128 ANCH-FAIR 70 MW BL 90 CHNL# 56: CPG-BRADII 2.0000 a ° 0.0 CHNL# 57: CPM-B8RADLI 1.5870 a | 0.0 CHNL* 58: CEF-B8RAD1LI 19.000 e——— -1.000 q 7 ; ; 4 ‘ — ‘ — 1 i |? 3 La wt — i i ‘ ' 1 1 { x | J iS 4 \ | ; a | _| bs, \ a || lb ; = K | onal | ‘| ! { an a os | ie | 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 3.5000 2.5000 1.5000 0.5000 a oc a! o> S uw a ra ze Sa wi ow _ Ww = fa 1.3000 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, FILE: OUTPUT128 CHNL#* 12: CV-8RAOLYI ANCH-FAIR 70 MW BL 390 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 CHNLs 22: CV-PORTGEI 1.3000 a me 0.3000 CHNL# 18: CV-SOLOTAI 1.3000 ee eee x 0.3000 CHNL* 15: CV-ANCHPTI 1.3000 5 eee = 0.3000 CHNL# 19: CV-QATZCAI 1.3000 at a aie e 0.3000 CHNLs# 11: CV-ET-8ADI 1.3000 = 0.3000 3.0000 5.0000 4.5000 4.0000 2.0000 1.0000 0.0 249 1989 VOLTAGES JAN 17 11 TUES 2.5000 3.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 WP910 -- 230 KV LINE, -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW BL 90 34 MVAR SHUNT REACTOR © SOLD 230 FILE: OUTPUT128 CHNL# 45: CB-ANCHORI 0.4000 MPR Rays tases -0.100 CHNL* 44: CB-SOLOTNI 0.4000 aaa a -0.100 CHNL* 43: CB-HEALYI 0.4000 Se ° -0.100 CHNL® 42: CB-GLOHLLI 0.4000 SS Ss = -0.100 CHNL* 41: CB-TEELNOI 0.4000 a -0.100 5.0000 4.5000 2.0000 1.0000 0.0 249 SVS ADMITTANCES 11 TUE, 2.5000 TIME 1.5000 0.5000 JAN 17 1989 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW BL 90 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 os 7 = WwW FILE: OUTPUT128 Sa TD met | CHNL® S50: CST-BERNLI “wo 0.1000 Mmicieeietieisi x -0.90| “e& HNL® 49: CST-COOPRI == 0.3000 +> >>> + “0.7001 & n CHNL® 48: CST-BRADLI 0.5000 ae ° -0.500 a CHNL® 47: CST-ANCHPI = 0.7000 ————— =0. 300 CHNL* 46: CST-QATZCI 0.9000 a——————s -0.100 —<< So o be s wo L_ | Se cs cs cs L x , =| i ¢ I = : : w | e ; 1 ' 4 3 fe : I ' 4 . | 4 a ; \ i | : | t | $s ! a 3 t- ; os, | 4 me \ ' | ‘ + ' | sc 3 — : ' o | —_| _£ ‘ 1 ' ue . | ' 4 - zs 1 ee | : | | : | e | s . 1 ed sa . 1 a | ; a £ | x ' 4 S : I ‘ rr) [—_ if t \ =| 1 (==552 \ a= | 1 SS Ss 4 3 b— ! ! | b ees I I ——— ‘ | ! a | = | fe s = \ 5 | 4 2 ; 5 1 ees \ | \ i | WINTER PEAK 1991 WP910 -- 230 KV LINE, -- KENAI-ANCH 80 Mh, | | ANCH-FAIR 70 MW BL 90 34 MVAR SHUNT REACTOR @ SOLD 230 FILE: OUTPUTL28 CHNL# SS: CP-B8L-FTZI 150.00 a tas -100.0 CHNL# S4: CP-TLO-CTI 150.00 = a ie -100.0 CHNL# 53: CP-SLOQTZI 150.00 = 7 -100.0 CHNL# S2: CP-OR-APTI 150.00 = | — -100.0 CHNL# 51: CP-OCR-HPI 150.00 = 1 hr -100.0 rr. TIVPaal 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 :50 11 1989 LINE FLOWS JAN 17 TUE, WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW BL 90 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR @ SOLD 230 FILE: OUTPUT128 CHNL® 35: CF-HWYPAKI 0.0167 Meseeee reece x =0.067 CHNL® 34: CF-HEALYI 0.0167 lr + -0.067 CHNL® 33: CF-UNIVERI 0.0167 CE ° -0.067 CHNL® 32: CF-SOLDOTI 0.0167 a -0.067 CHNL# 31: CF-FRITZCI 0.0167 ———— -0.067 cs cs J co w cs Ss cs os > 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 :50 FREQUENCY JAN 17 1989 11 TUE, Power Technologies, Inc. CASE 129A, 129B Power Flow Transmission: SVS(s) Series Capacitors Bradley Lake: Export: Bernice Lake Disturbance Brake applied Deflector runback Results WP91P 230 kV 0 at Anchor Pt, 0 at Quartz Cr no 112 MW 80.5 MW 37 MW (units 2, 3) Fault, trip B.L. - Soldotna 129A - 30 MW for .33s 129B - 30 MW for .43s 0 MW 129A - Marginally unstable 129B - 3rd swing unstable 1, GQ a my 2 3) len Sis ele sic BERN 59 1,030 3588 xi yor z|- Y BERNICE 1,026 3990 =2.1 ANCHPTSY WINTER PEAK 1991 WPSILP THU, JAN 26 1989 -- KENAI-ANCH 80 MW, LIKE WP910 EXCEPT BERNICE #3 OFF, 11:50 nla UNIY 230 Bla 9977 ae 138° 1,021 UNIV }38 ny -i1.3 9983 ae ain ae ge silat sles ais <9 ; a 0.9750 g — we untvouny | 1.053 Int 34.8 att” a: UNV 34.5 to4g 71% 38 —|_-i2.3 =e as Vv ANCH-FAIR 70 MW 8.L. AT 112 MW ANCHORGE 9966 Grrowaoo PORTAGE 48 HOPE 49 DAVES cA 398) -15.6917.9 15.6 016.0) 16 ~21.2 21.029 = -ior6 -22.19}21.3 -1.2) -22.4)/22.3 Sb DAVES 25 -33.6}/22. 9996 LAWING ao giv 1,042 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91P -- LIKE WES+@ EXCEPT BERNICE #3 OFF, weatlP FILE: OUTPUT129A B.L. AT 112 MW CHNL#'S 4,10: CA-COOP _13-CA-MLP 73 150.00 Defoiasisieislongisials x -50.00 CHNL*'S 3,10: CA-BERN 33-CA-MLP 73 150.00 oi + =50.00 CHNLs'S 1,10: CA-BLUG 3J-CA-MLP 7 150.00 ae ° =50.00 CHNLs'S 6,10: CA-CHENASJ-CA-MLP 73 150.00 a_i. =50.00 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 72 150.00 —__—_4 =50.00 cs cs —J cs “ co os >. oso | == J cs Ss cs — — nm = _ cs cs cs cs | = cs cs cs ° cs s 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 PSN T9B9 este JAN ANGLES REL TO MLP #7 THU, WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WPS1P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B8.L. AT 112 MW FILE: OUTPUT129A CHNL® 56: CPG-BRADII -[2.0000 = ; 7 CHNL® 57: CPM-B8RA01I 1.5870 >> 0.0 CHNL® 58: CEF-8RA01I 19.000 a =1.000 cs cs S $ | = S | _|s s s cs s = 3 T4244 BRADLEY LAKE JAN 19 1989 THU, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91P -- LIKE WP910 EXCEPT BERNICE #3 OFF, FILE: QUTPUT129A CHNL# 22: CV-PORTGEI CHNLs 18: CV-SOLOTAI CHNL® 15: CV-ANCHPTI CHNL#® 19: CV-QATZCAI CHNL# 11: CV-ET-BROI CHNL#* 12: CV-B8RAOLYI B.L. AT 1l2 MW wr ste esse > Meteec sree x eee eee + @----------- ° --- To 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 14:45 VOLTAGES JAN 19 1989 THU, WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WPS1P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B.L. AT 112 MW =n 26 FILE: OUTPUT129A a Se fa CHNL® 45: CB-ANCHOAI i ~ 4000 Meese x 1001 os CHNL® 44: CB-SOLDTNI a - 4000 e=====— + =0.100 = c CHNL® 43: CB-HEALYJ wn - 4000 Oana aaa ° 0.10! S> CHNL® 42: CB-GLOHLLI zn - 4000 ie 0.100 CHNL® 41: CB-TEELNDJ | 74000 se 0.100 oc $ co we cs co wo 7 = co cs so S 7+ cs cs 5 cs cs s 0 $ |@y Nee — co s So ai o co | 3 co s 3 co co co w 7 cs iS WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B.L. AT 112 MW 2 = ul FILE: OUTPUT129A = ao oa D met CHNL® 50: CST-BEANLI Eieo 0.1000 Moose x -0.900| TE CHNL® 49: CST-cOOPAI = = 0.3000 --- >> = -0.700| & CHNL® 48: CST-BRADLI : [0.5000 Ona saa ea ee ° 0.5001 3 CHNL® 47: CST-ANCHPI = 0.7000 -—- =0. 300 CHNL® 46: CST-OATZCI 0.9000 ns =0.100 $ co we cs Ss w ee === cs 3 a == = S cs “ Ss Ss cs so | ei s | _| 8 Nee Ea cs co cs cs ES ai s Ee % so cs J eS x + ° 4q =| 5 : i. I See | ! ‘ | s | i s ea = Seen a | Seay a eae a ! | I 1 ‘ ' | (eee i | |e = a =f al al 4 2 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B.L. AT 112 MW Lu - =S FILE: QUTPUT129A cn Ue o S i CHNLs 55: CP-BL-FTZI ~ > 150.00 Aaa EE x -100.0 or foo CHNL® 54: CP-TLO-CTI oa 150.00 iS=SS=e2 2 -100.0 < i CHNL# 53: CP-SLDQTZI 150.00 O==siss=ss==< ° -100.0 s CHNL# S52: CP-OR-APTI - 150.00 eS -— >= -100.0 CHNL# S51: CP-OCR-HPI 150.00 —! -100.0 3 s oS we Ss i] wo = =|—s i=] s So so = = e cs s wo = Fa So So So oc [ les cs —J = ey Nee = =] J =] so [— FWA cs So s Li —_| 8 cs cs os {| |: Ss cs s & [ ss ° LL oS WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B.L. AT 112 MW = 7 Sie FILE: OUTPUT129A _ ao o li CHNL# 35: CF-HWYPRKI oe 0.0167 Magee eee = x -0.067 Tuk CHNL* 34: CF-HEALYI a 0.0167 PaaS + -0.067 e CHNL#® 33: CF-UNIVERI 0.0167 C=2====-"5=> ° -0.067 = CHNL® 32: CF-SOLDOTI = 0.0167 == =a -0.067 CHNL® 31: CF-FRITZCI 0.0167 ——— a -0.067 | = os wo So So w = =) So 3 { 7+ J cs cs a — co Ss cs so L Fa so J | |%¥% Ne = cs J cs o [— FA os co | % o co s — yr - h | s L | 5 L o o WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91P -- LIKE WeSt® EXCEPT BERNICE #3 OFF, B.L. AT 112 MW QqQ S FILE: OUTPUT129B CHNL#'S 4,10: CA-COOP 1]-CA-MLP 73 150.00 RR i Ce x -50.00 CHNL#®'S 3,10: CA-BERN 3]-CA-MLP 73 150.00 i cf -50.00 CHNL#'S 1,10: CA-BLUG 33-CA-MLP 7] 150.00 CSS Sas ° -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 7] 150.00 ——— i -50.00 | CHNL®'S 8,10: CA-BRAD 13-CA-MLP 73 | 150.00 a———4 -50.00 + “<_) 7 F al a 7 ( \ | } | / i] | \ ‘| \ | | 7 oe 7 | | \ | 4 2.0000 5.0000 4.5000 4.0000 1.0000 248 ANGLES REL TO MLP #7 JAN 17 1989 14 TUE, 2.5000 3.5000 TIME 1.5000 0.5000 2.0000 1.5870 19.000 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91P -- LIKE WP910 EXCEPT BERNICE #3 OFF, FILE: OQUTPUT1298 CHNL# 56: CPG-B8RADII CHNL® S7: CPM-BRADLI CHNL®* S58: CEF-BRADLI B.L. AT 112 MW @----------- ° --- To oe 0.0 0.0 -1.000 | 3.0000 2.0000 1.0000 0.0 14:48 BRADLEY LAKE JAN 17 1989 TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B.L. AT 112 MW a0 ve Lid =, FILE: OUTPUT129B = CHNL# 22: CV-PORTGEI } oh 1.3000 IE mnieieioimie's > 0.3000 2 5 CHNL* 18: CV-SOLOTAI ~ > 1.3000 2 cateeceaectree ere x 0.3000 > CHNL# 15: CV-ANCHPTI = 1.3000 pS === + 0.3000 c CHNL® 19: CV-QRTZCAI | 1.3000 2227 enna ° 0.3000 ul CHNL® 11: CV-ET-8R0I = 1.3000 -—-- = 0.3000 CHNL® 12: CV-BRADLYI 1.3000 ——— 0. 3000 | a | | 2 o us cs Ss wo = cs J oc c- = cs cs cs w 3 so cs J So a co 3 me Ne = cs cs cs co les cs cs cs . cs oso o « cs J co w é so ls WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WP91P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B.L. AT 112 MW FILE: OUTPUT129B CHNL# 45: CB-ANCHOR 0.4000 Cae x =0.100 HNLw 44: CB-SOLOTN 0. 4000 ———= = =oRI00 CHNL® 43: CB-HEALYI 0.4000 ae ° =0.100 CHNL#® 42: CB-GLOHLLI 0, 4000 a =0.100 CHNL® 41: CB-TEELNOI 0.4000 —a -0.100 5.0000 4.5000 4.9000 2.0000 1.0000 0.0 se 49) JAN 17 1989 SVS ADMITTANCES TUE, 2.5000 3.5000 TIME 1.5000 0.5000 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 WP91P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B.L. AT 112 MW FILE: OUTPUT1298 CHNL# 50: CST-BERNLI 0.1000 Mores x -0.900 CHNL#* 49: CST-COOPRI 0.3000 SSS ==— = -0.700 CHNL# 48: CST-BRADLI 0.5000 : C2fSesralSs= ° -0.500 CHNL# 47: CST-ANCHPI 0.7000 -----4 -0.300 CHNL#* 46: CST-QRTZCI 0.9000 ———————a -0.100 co sc cs os wo x S x iS . co , ; —s= ‘ cs 4 co . cs . cs fas : Ja x : cs . cs s | me x So co . cs | _|s | : s 171989 14:49 STABILIZERS JAN TUE, WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WPS1P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B.L. AT 112 MW 5wW a =S F : ILE: QUTPUT129B ~ oo SF uw CHNL® SS: CP-BL-FTZI sz 150.00 Moose x -100.0 CHNL# S4: CP-TLD-CTI -- 150.00 ------- + -100.0 = CHNL® 53: CP-SLOQTZI : 150.00 R32 === 255 ° 100.0 wo CHNL# 52: CP-OR-APTI — 150.00 ---- -100.0 CHNL® Sl: CP-OCR-HPI 150.00 a -100.0 | s co ws cs co wo | =| So —J cs S. | co cs os cs = =|—2 . cs s cs on cs cee == Ss cs | | 3% Nee 7 cs Ss Ss Li et ba s | | 5 cs Ss = ats Ss 3 | =—s 3 WINTER PEAK 1991 -- KENAI-ANCH 80 MW, ANCH-FAIR 70 MW WPS1P -- LIKE WP910 EXCEPT BERNICE #3 OFF, B.L. AT 112 MW ao «= & Se FILE: OUTPUT129B = so SF Wd CHNLs 35: CF-HWYPRKI | “Ee 0.0167 pi sete ecsee res x -0.067 ~h CHNL* 34: CF-HEALYI = 0.0167 === - -0.067 e CHNLs 33: CF-UNIVERI 0.0167 ¢aacs=se=7s= ° -0.067 wi CHNL® 32: CF-SOLDOTI = [0.0167 --- = -0.067 CHNL* 31: CF-FAITZCI 0.0167 oS -0.067 ! E S s we $ s 5 = 2 cs sc. s = 2 cs | cs 8 S05 3 |S js ic = 2 3 | 38% Nee 2 s \o {je Fa | | cs 3 x ls \s 4° e s S S sé | | ° 3 ‘ower Technologies, Inc. ‘ASE 134 Power Flow Transmission: SVS(s) Series Capacitors Bradley Lake: Export: Bernice Lake Disturbance Brake applied Deflector runback Results Notes WESIT: 115 kV +20/-5 at Anchor Pt, 0 at Quartz Cr none 120 MW 83.5 MW 40 MW (units 2 & 3) fault & trip Soldotna to Quartz Creek 115 kV, then trip Soldotna to Quartz Creek 69 kV no 80 MW runback Overspeed to just over 62 Hz Bernice and Cooper governors assumed not to respond to overspeed. 4.5000 THU, 2.5000 3.5000 TIME 1.5000 0.5000 ey JAN 19 1989 ANGLES REL TO MLP #7 KASILOF ™ 3969 =e rie 7 SKI HTL a se le sei cle Y ‘ “1S 1.00% 29.2 0 oy $309? ANCHPTSY ein jn alo FRTZ CR WINTER PEAK WPOLT 1991 230, 2 SVS, JAN 21 14;50 36 OAVES 25 9996 LAWING 81.9 MW, BRAOLEY AT 120 MW BASE FOR ISLANO CASE -- KENAI-ANCH NO S.C., WINTER PEAK 1991 WP91T -- NO 230, CHNL® 35: CF-HWYPAKI 0.0667 eects Pia x -0.017 CHNL® 34: CF-HEALYI 0.0667 Foe + -0.017 CHNL# 33: CF-UNIVERI 0.0667 Sassesea=aes o_=0.017 CHNL® 32: CF-SOLDOTI 0. 0667 --- oH -0.017 CHNL® 31: CF-FARITZCI 0. 0667 as -0.017 = * = { > { { i [_ Y } = > s i \- { 4 a L i _| i = > 4 { ‘ i { 1 { — ’ =| { { { i i | { — i } . i i 1 _ ! _| { i 1 ‘ 4 1 i _| N s = i N mM { = LN mS —_| -- KENAI-ANCH 81.9 Mh, FILE: OUTPUT134 BRADLEY AT 120 MW 2 SVS, NO S.C., BASE FOR ISLAND CASE 60 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 JAN 20 1989 14:48 FREQUENCY FRI, WINTER PEAK 1991 -- KENAI-ANCH 81.9 MW, BRADLEY AT 120 MW WP91T -- NO 230, 2 SVS, NO S.C., BASE FOR ISLAND CASE FILE: OUTPUT134 CHNL®'S 3,8: CA-BERN 3J-CA-BAAD 13 150.00 ———a 100.0 cs J s S cs s cs cs 2.5000 3.5000 4.5000 FRI TIME , ANGLE, 1.5000 0.5000 14:50 JAN 20 1989 BERNICE REL TO BRA WINTER PEAK 1991 -- KENAI-ANCH 81.9 MW, BRADLEY AT 120 MW WPS1T -- NO 230, 2 SVS, NO S.C., BASE FOR ISLAND CASE oa = FILE: OUTPUT134 = CHNL® 22: CV-PORTG er 1.3000 Pao ae = 0.3000 = oS CHNL* 18: CV-SOLDTAI "> 1.3000 Meese x 0.3000| CHNL® 15: CV-ANCHPT = 1.3000 -- >>> = 0.30001 & CHNL® 19: CV-QATZCR 1.3000 @oesae aaa ° 0.30001 CHNL® 11: CV-ET-BADI ie 1.3000 | 0.3000 CHNL* 12: CV-BRADLYI 1.3000 SS 0.3000 cs | | | T | s so inte cs J wo er les cs cs S ie Te cs wo 4 3 co os —J oOo ds cs S wi wo Seale kevilas = cs cs cs i] 7 cs cs cs B > co cs So = cs J cs w les so aia f= WINTER PEAK 1991 WP91T -- NO 230, -- _KENAI-ANCH 81.9 MW, BRADLEY AT 120 MW 2 SVS, NO S.C., BASE FOR ISLAND CASE FILE: OUTPUT134 CHNL# 56: CPG-BRADLI 2.0000 ——— = 0.0 CHNL# 57: CPM-BAADLI 1.5870 —S= 0.0 CHNL* 58: CEF-8RAD1I 19.000 SS -1.000 J cs J i rr) s cs J S- = J cs J Ss “ sc cs J Ss a cs J cs x! cs s 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 14347 BRADLEY LAKE JAN 20 1989 FRI, WINTER PEAK 1991 -- KENAI-ANCH 81.9 MW, BRADLEY AT 120 MW WPS1T -- NO 230, 2 SVS, NO S.C., BASE FOR ISLAND CASE ay =O FILE: OUTPUT134 = oe % -_ c= CHNLs 4S: CB-ANCHORJ —_ 0.4000 Moses x 1.1001 SS CHNL® 44: CB-SOLOTNI -2 0.4000 ---- > + 0.1001 & x CHNL® 43: CB-HEALYI wo 0.4000 Oona saeae ae ° -0.100| <> CHNL® 42: CB-GLOHLLI rw 0.4000 ----_-S =0.100 CHNL® 41: CB-TEELNDI 0.4000 Se 0.100 os cs J co wo co cs w -— les cs cs s — 1 t t * +? | ’ | + ; | : 3 4 ' I 6 oS | | | { ! ; a ; io | ' \ : 3 1 : — ' I . la a | t 1 x | t g ] $ ay = i | ==] 9 ts ‘ ' | = i 1 a | f 1 s ' 1 | ' | - ' ! s | i \ be 8 = t 4: | > I 1 1 So 1 cs + ' ! Ss | a | | | 2 = | 8 | ! \ © | tae aperen Reece a " LS eS WINTER PEAK 1991 -- KENAI-ANCH 81.9 MW, BRADLEY AT 120 MW WPS91T -- NO 230, 2 SVS, NO S.C., BASE FOR ISLAND CASE 2 wn Ze FILE: OUTPUT134 N o pod ® onl me CHNL* 50: CST-BEANLI | “2 0.1000 Maar x -0.900| SCE CHNL® 49: CST-COOPRI | ~& 0.3000 SSS SsS = “1.7001 & no CHNL® 48: CST-BRADLI 0.5000 Oa aaa aaa ° 70.500] CHNL# 47: CST-ANCHPI ri 0.7000 —-—- a -0.300 CHNL® 46: CST-QATZCI 0.9000 ——a =0.100 | S cs wo cs cs wn = a s co 3 _ * t ° f 7 7+ i i ' : ! > | : : | i 5 : ; ! a : ' | | 3 |— : \ ' | = : 7 i | t | 3 ~ | ; | 3-2 ; Po ' 4 = a \ r | a ‘ I t a s —_ : 1 _ \ s f 1 “> TWA 1 ! : GO eae : I ° ¥ ‘ a i \ : | \ =|8 I + | | : s I : d Ss — | rT a | \ ' | a - \ ' \ | 1 o — : : L_ / sé I \ ' ‘ i ! So S WP91T -- NO 230, 2 SVS, NO S.C., BASE FOR ISLAND CASE FILE: OUTPUT134 CHNL# SS: CP-BL-FTZ 150.00 Mee 9s x -100.0 CHNL® S54: CP-TLO-CTI 150.00 SSS * -100.0 CHNL# 53: CP-SLDQTZI 150.00 esas es==S==7 ° =100.0 CHNL® 52: CP-OR-APTI 150.00 >= -100.0 CHNL# S51: CP-OCR-HPI 150.00 ———— =100.0 cs s cs “ cs Ss cs |__ x 18 7= 1} ‘ 4 = : ' =| ‘ | : | s 3 = | == x | : \+ = : 1 =] (od : Ih s Ls : | S : | 7 : \ x \ | a 4 /¢ oc 4 3 | | —|% a / / |__ / al i : | |g be ---b-- ~ sho -b 2 WINTER PEAK 1991 -- KENAI-ANCH 81.9 MW, BRADLEY AT 120 MW 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 14:48 LINE FLOWS JAN 20 1989 FRI, | | jee es} es} se} oe] 2 Z e| s| &| &l «a SIFZAL ICAHA Dei iit oe z_ ae == bt LL z= - sas oz A a Fault Saldetna 3-¢ Pa 163 Hz 1~ — Tvip Sold -Qet2 15 ¢ 64 Sn Ox a. | Geltehy | shaaly | as late, Vamps ry = +o SCMmW over ls. iL So r mt i on 7TH) AL. 2beeee 2 G&A (it, BlL.at 3bme | — F FE EE F 82 . a . * Inievaton sistiblia (bit iw fw few : tw a7 . #) =) | oe = e ° D higher than lose ae a E wz 7 , vU cr — wWe qeverwoe on Geruiee CT 5 atte fed te ee c : Ste tie = =m Lic — lo < 2 -o Oo ow- Covers peed would be <G2He : 5 = By < Fa + po . \ ms Devise) Gaal Geve Vneovs modeled ) an So 3 t * t * no i aie | [ : ; Dm ' | . i og | “a Ras aretha rm Sw Grn werner pene aan a eae ogo ws ee etme ner el ares oer ee { ' i on | 1 ' ‘ D ' 1 : On i ° + x aes a a 1 ' 1 1‘ ' o o o o o o| of of of o | | | | SS) St eS 0.0 1.0000 2.0000 3.0000 4.9000 5.0000 0.5000 -5000 ae < ~500 bea TTT ~~ FRI, JAN 20 1989 14:48 FREQUENCY Power Technologies, Inc. CASE 136 Power Flow WP910 Transmission: 230 kV SVS(s) 0 at Anchor Pt, 0 at Quartz Cr Series Capacitors none Bradley Lake: 90 MW Export: 80.6 MW Bernice Lake 58 MW Disturbance Fault, trip B.L. -Soldotna, fault at Soldotna end Brake applied no Deflector runback no Results Stable WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 WPS910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 ‘~~ a * : ve FILE: OQUTPUT136 all ® = CHNL#'S 4,10: CA-COOP 1]-CA-MLP 7] “o°o 150.00 Meee errors x =50.00 Te CHNL#'S 3,10: CA-BERN 3J-CA-MLP 7] 150.00 ----- + =50.00 ery CHNL#'S 1,10: CA-BLUG 3J-CA-MLP 73 c 150.00 _, ¢2s=seeseeao ° 50.00 oS CHNL#'S 6,10: CA-CHENASJ-CA-MLP 7] aw 150.00 >> -50.00 “ CHNL#'S 8,10: CA-BRAD 13-CA-MLP 7] oO 150.00 —— -50.00 > | | | | 3 «= co we — SoS 3 {_ 5 s 5 —_ % - — Va} — . ~ co = 35 : 3 / ’ i c- L QR Ww oo ; 3 = Cc oe a 4. yu <> 2 S ~” = 4 2» 3 3 | + . 9 —| % § 34 ¥* #& 6 8 = 3 = 8 - @ 2e ~s 3 -° oe v — = — cs | 05 $ co LE jie — co So s |_ ls Ss S LL =| § co x 3 s -— \ =. \ ‘ “| 2 cs \ a a ¢ ) Z\o — | < o WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR @ SOLD 230 ~ WwW FILE: OUTPUT136 od o> & us J ai Gl ae So CHNL® 56: CPG-8RA01I 2.0000 ease sea * 0.0 — CHNL® 57: CPM-BRADII | & 1.5870 >> 0.0 | CHNU# $8: CEF-BRADII 19.000 ————4 =1.000 | s S we so cs wo [ 7 = Ss cs 3. s co | & 1. i co cs Ss | sn s | 82 Nee = oc cs Ss S | | cs | cs | 3 |—~ as: | | les iS fs _is ame= \~ \ i) \ cs ‘\ 8 3 WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, ANCH-FAIR 70 MW BL 90 A WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 FILE: OUTPUT136 CHNL# 22: CV-PORTGEI | 3000 ae a 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 esses x 0.3000 CHNL® 15: CV-ANCHPTI 3000 a) ai a 0.3000 CHNL® 19: CV-QRTZCRI “3000 ¢---=-- ° 0.3000 CHNL® 11: CV-ET-B8ADI 1.3000 a? 0.3000 CHNL* 12: CV-B8RAOLYI 3000 ——a 0.3000 i g J os G os S cs 3. al ma] ° s J so = Fa Ss cs os S a aie o S o S is rs - = apa) EES 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 13 le: 1989 VOLTAGES JAN 21 SAT, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 30 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR @ SOLD 230 sw if FILE: OUTPUT136 = o & of D CHNL® 45: CB-ANCHORI _—) 0.4000 Moose x 7.101 -= nN CHNL® 44: CB-SOLOTNI -2 0.4000 ------- + 0.100] & a CHNLs 43: CB-HEALYI w 0.4000 ea eeee eee ° -0.100 -> CHNLs 42: CB-GLOHLLI aw 0.4000 -- >To =0.100 CHNL® 41: CB-TEELNDJ 0.4000 — =0.100 S J cs neo cs cs w | 4 = co cs 3. S cs a cs cs cs we So cs | |3y2 Nee = cs cs cs S cs cs 8 =] oS = o cs 8 eS WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, ANCH- FAIR 70 MW BL 90 WPS910 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 FIEES OUTRUTLS6 | CHNLs 50: CST-BEANLI | “0.1000 Meieicre ete ge oia iets x -0.900 | CHNL® 49: CST-COOPRI | 0.3000 = + -0.700 : CHNL® 48: CST-BRADLI 0.5000 ee ° -0.500 | CHNL® 47: CST-ANCHPI "0.7000 2 -0.300 CHNL® 46: CST-QATZCI | | 0.9000 s——————4 =0.100 | | | | | = sl ti ‘ 3 ) | eS oo onan | an ' ‘ a \ : | | | | 1 | ' | | ot 1 ‘ | | | | ' | ’ | | | ' | (eed | ru 5.0000 4.5000 4.0000 2.0000 0 2.5000 3.5000 TIME 1.5000 0.5000 12 12: JAN 21 1989 STABILIZERS SATs WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 1S a LoS FILE: OUTPUT136 wd pais FS uw CHNL# 55: CP-BL-FTZI —- 150.00 IEEE x =100.0 = jm NM CHNL® S4: CP-TLO-CTI | 150.00 SSS = ce 00.0 | = CHNL® 53: CP-SLDOTZ] ° 150.00 CSSSSSSESSSS ° -100.0| ,° | CHNL# S2: CP-OR-APTI | & [150.00 Sa -100.0 | CHNL® 51: CP-OCR-HPI 150.00 a——————a =100.0 | T ls iS wus cs cs | wo — = ls iS | s | . =| 3 jo jc 5 | rr i ool mess | Nee s LL _8 iss | | | S | 3 lo |S —— js is | | | 8 RE sé | | | |e WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 WP910 -- 230 KV LINE, 34 MVAR SHUNT REACTOR © SOLD 230 °C > 28 FILE: OUTPUT136 uu co omW Ont CHNL® 35: CF-HWYPRKI “ea 0.0167 Mitsrsterc Steesseis as -0.067 ay Ue CHNL® 34: CF-HEALYI > 0.0167 - > >>> + 0.0071 & < CHNL® 33: CF-UNIVERJ | 0.0167 ria * -0.067 | CHNL® 32: CF-SOLDOTI a 0.0167 ----S =0.067 CHNL® 31: CF-FRITZCI 0.0167 ————s =0.067 cs co 3 So wo cs cs w | — 2 So so oc. cs = ss co cs So w | ss cs co s co = sa cs 3 ~ 3 Nee 2 cs cs cs S ae cs 3 . 4 | 7 cs cs = sal cs Ss Ss 3 | 4 sé = zs Power Technologies, Inc. CASE 138 Power Flow WP9I1L Transmission: 115 kV SVS(s) 0 at Anchor Pt, 0 at Quartz Cr Series Capacitors none Bradley Lake: 90 MW Export: 76.1 MW Bernice Lake 58 MW (units 2, 3, 4) Disturbance Inadvertent Brake application Brake applied 30 MW for .5s Deflector runback none Results Stable WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS in 2 b a. FILE: OUTPUT138 a ® = CHNL#'S 4,10: CA-COOP _13-CA-MLP 73 | 306 150.00 EE ele x 50.00] = bh CHNL#'S 3,10: CA-BERN 37-CA-MLP 73 = 150.00 --=---- + -50.00| & cj CHNL#'S 1,10: CA-BLUG 33-CA-MLP 7] | cc 150.00 @----------- ° rs CHNL#'S 6,10: CA-CHENASJ-CA-MLP 7] awn 150.00 —— — — -50.00 | = CHNL«*'S 8,10: CA-8AAOD 13-CA-MLP 73 | oO 150.00 ————————o -50.00 | = | = | js & J y “ so 27 3 0 . oe <f 3 : S. [_ 2.8 4 5 Sor — _— \ - $ cs 5 -£ , | 3 -— >= 9 ‘T]3 — 5 \ 2 oF i lg == +s / 8 | 6 / J $ Sw | f/ 3: fl = \ cs \ is = \ ea \ \ | e | so | ps) ee I ~ /\e < |g | pe / | cs i \ e | \ 4 \ ; fe {| | ds WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WPSILK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT138 CHNL# 56: CPG-BRADII 2.0000 easaas==s55 ° CHNL# S7: CPM-BRADLI 1.5870 = == S= = CHNL# S8: CEF-BRADLI 19.000 Ss -1.000 L_ 1? at / 4 L_ A 1 Nd | ‘I * IN, | | “ey 4 | 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0 0. 2.5000 3.5000 TIME 1.5000 0.5000 12:53 1989 JAN 21 BRADLEY LAKE AT, 5 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT138 CHNL# 22: CV-PORTG 1.3000 2 ihe toadae a 0.3000 CHNL®# 18: CV-SOLOTAI 1.3000 MESES Ss 322 * 0.3000 CHNL* 15: CV-ANCHPTI 1.3000 es i elicalioy eee 0.3000 CHNL# 19: CV-QATZCRI 1.3000 aaa © 0.3000 CHNL# 11: CV-ET-8ROI 1.3000 eX 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 o——_# 0.3000 1.0000 754 te 1989 VOLTAGES JAN 21 SAT, 5.0000 2.0000 3.0000 4.0000 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 a) WINTER PEAK 1991 -- KENAI-ANCH 76 Mh, ANCH-FAIR 70 MW BL 90 CASE WP9OLK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: OUTPUT138 CHNL® 45: CB-ANCHORI - 4000 Moses Sean x =0.100 CHNL® 44: CB-SOLDTNI ~ - 4000 ------- + -0.100 CHNL# 43: CB-HEALYI 4000 === ° =0.100 CHNL® 42: CB-GLOHLLI 4000 >> -0.100 CHNL® 41: CB-TEELNDJ 4000 ————a -0.100 cs cs cs cs a cs cs cs S. = 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 JAN 21 1989 12:54 SVS ADMITTANCES SAT, WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91K -- SOLD SVS +15/-10, NO SERIES CAPS oe 0 : ~ FILE: OUTPUT138 a ; © oad DS CHNLs 50: CST-BERNLI i320 0.1000 De esiak=Eaicenicion-e=ie x -0.900 -eC N CHNL® 49: CST-COOPAI ae 0.3000 Sa Ee 07700 z wn CHNL® 48: CST-BRADLI [0.5000 SSeS ° -0.500 = CHNL# 47: CST-ANCHPI a 0.7000 a -0.300 CHNL® 46: CST-QATZCI 0.9000 ——— -0.100 2 s co we cs cs wo E& =—=|—" J cs cs S | " . SS : t to 1 ] = 1 —— | 1 ' | e ! i 4 3 — ! ' | = ao a \ _eet | 5: | i | 2 \ Ss [— ; ; = | Fa = ! at | t | 3 = =xZ==x=zZz= s | | ey 5 1 ‘ ue : ! 4 = : | t | ° . 1 en s ‘a cesse. Ss ' 1 Se | s [ : I wh, TWA : —_—_— j | | | | o Ds ! 7 | Ss : | =! a [—_ + i 7-4 I ses | ' eo | \ i 2 1 Bs i S a 1 | TI 1 1 | 1 | | | 8 | io i =, | | 4 2 I \ | | | os “ | 1 + co WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP91LK -- SOLD SVS +15/-10, NO SERIES CAPS Bw ag FILE: OUTPUT138 <a oo Ue 1 S ud CHNLs 55: CP-BL-FTZIJ == 150.00 Moores x =100.0 | = N CHNL® 54: CP-TLO-CTI a 150.00 eo + “100.01 & CHNL® 53: CP-SLDQTZI 150.00 Ce aietataiaie ° -100.0] (Sf CHNLs 52: CP-OR-APTI a 150.00 -- SSH 100.0 CHNL® Si: CP-OCR-HPI 150.00 =—————a 100.0 | s s cs neo cs Ss w | a = cs J cs S. | as cs cs cs wo -— 4s cs co cs cs | 6 cs cs | _| 2 Nee S cs cs cs co | ai cs cs s * cs = co = cs cs co 3 -— sé 7 o WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WPS1K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: QUTPUT138 CHNL# 35: CF-HWYPRKI 0.0167 Korres esses x -0.067 CHNL* 34: CF-HEALYI 0.0167 S=SSS== + -0.067 CHNLs 33: CF-UNIVERI 0.0167 @ ass 5sernnnH ° -0.067 . CHNL® 32: CF-SOLDOTI 0.0167 === 4 -0.067 CHNL* 31: CF-FRITZCI 0.0167 a -0.067 \ vi ‘4 ut rc 'y — if v 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 JAN 21 1989 12:55 FREQUENCY SAT, Power Technologies, Inc. CASE 140, 140A Power Flow SP91B, SP91C respectively Transmission: 115 kV SVS(s) +25/-5 at Anchor Pt, +25/-5 at Quartz Cr Series Capacitors Bradley-Fritz, Anchor-Kasilof, Soldotna-Quartz Bradley Lake: 120 MW Export: 68.2 and 68.1 MW respectively Bernice Lake 140 - Unit #2 140A - Units #2 & #3 Disturbance Fault, trip Bradley-Soldotna Brake applied 30 MW for .33s Deflector runback Not used Results Both stable T 16 30L0 69 7 3992 SS = =) ol- ale g2— = ANCHPTSY QIAN ROG 1 9999 2 FATZ CR 9997 SUMMER LOW PEAK SP918 NO 230, FRI, JAN 27 1989 B INT 138 1.015 UNIV 9984 -i4.8 9983 so ala 42 INT 34.5 UNV 34.5 38 w 1,022 QUARTZ¢) 12.0 3987_~ 7.7 2.7 = z coor LK 9991 hse Pure 3965 “ln ANCHORGE “]4 1.009 9966 thee ae > ie 2! 1.010 -i4.3 19.9 3 UNV34. SB 860 226 -i7.0 an ols 1.3 -18.8 so Ps 2a INOTAN 46 —_——— Rowooo 62 62. F61.6) -17.08.6) a o, in | 65.7 16.2 PORTAGE 48 -b6.9]] 66.4 mel 68.1 -b8.2 Sb OAVES 25 OAVES CA 9986 69.3 7. -1b.1 7.3) 9996 LAHING n.2 -3.7 QaTz sve 1.092 300 sia —— i oo sic KENAI-ANCH 70 MW, L AT 120 MW, BERN#2 08:S4 ANCH-FAIR 33 MW L1MW, ALL OTHER OF nV SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91B -- NO 230, BL AT 120 MW, BERN#2 11MW, ALL OTHER OFF 2 Led FILE: OUTPUT14O a a eel o = a CHNL#'S 4,10: CA-COOP _13-CA-MLP 73 “°o 150.00 ae x =50.00| Se CHNL®'S 3,10: CA-BEAN 33-CA-MLP 72 “ 150.00 ------- + “50.00| & 7 CHNL®'S 1,10: CA-BLUG 33-CA-MLP 73 o 150.00 ooo aaa ° -50.00| 3 CHNL#'S 6,10: CA-CHENASI-CA-MLP 7] ; =n” 150.00 —i—o—a——< -50.00 = CHNL#'S 8,10: CA-B8RAD 1J-CA-MLP 73 oO 150.00 oS =50.00 > | | 3; je luo cs cs w ps 7 = o 3 a S re 7s ° \y 3 2 5 aoe = t ra 3 i N : = x a ease WS S 2 BW == ——9 =eleaes oS _ 2 ” Q s X s { =a zt i Sie cs cs cs = z\— 8 cs cs cs = =o cs cs cs S Es = Fs lo Es SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91B -- NO 230, BL AT 120 MW, BERN#2 11MW, ALL OTHER OFF 7 ing ~ = ~c FILE: OUTPUT14O -! o> Suis 28 -& c a CHNL# 56: CPG-BRADLI > 2.0000 Sessss=2=55= © 0.0 Ss CHNL# 57: CPM-BRADLI _ 1.5870 oe -— — = 0.0 CHNL#* S58: CEF-BRAD1I 19.000 E28 -1.000 | 3 co we so cs w L_ a co 3 — * Pa + ' e L A 5 1 | 1 s : Ss Ioan \ | = \ | , 3 | le = 4 - Al e v | 3 | | <i i | cs L \ : | “ ‘a ( 2 = ios s | , ee 3 Pee So | 4 | 3 porta saee | [i =eaees b------- {es-no-7- feasoee {asso |e SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91B8 -- NO 230, BL AT 120 MW, BERN#2 11MW, ALL OTHER OFF =n 2g FILE: OUTPUT14O = CHNL® 22: CV-PORTGEI o 1.3000 eases * 0.30001 2 = [__ CHNL® 18: CV-SOLDTAI -~> 1.3000 Asses senses ss x 0.3000 o CHNL* 15: CV-ANCHPTI = 7.3000 = ->>>S + 0.30001 & CHNL® 19: CV-QATZCRI 1.3000 $---------> 3 0.30001 5 CHNL® 11: CV-ET-BADI = 1.3000 -- >= 0.3000 | CHNL* 12: CV-BRADLYI | 1.3000 ee 0.3000 | s 3 co ae cs sc w | = s co 2 co So | ss cs cs cs wo | 4 oa co cs s cs | —s co cs | | 8% Ne S co g cs so | sa co So 3 | _| 3 So 2 i] | _|s cs Ss cs 3 LL . ss és + | |e d I ls SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91B -- NO 230, BL AT 120 MW, BERN#2 11MW, ALL OTHER OFF is wn a FILE: OUTPUTLYO =. eo & ' ok fb CHNL# 45: CB-ANCHORI et 0.4000 2 ete Maisssssees x -0.100 L= CHNL® 44: CB-SOLBFNI -2 0.4000 +------ + -0.100| €& < CHNL® 43: CB-HEALYI wo 0.4000 eaae-eaeseso ° -0.100 o> CHNL® 42: CB-GLOHLLI =n 0.4000 -=---=4 -0.100 CHNL® 41: CB-TEELNDI 0. 4000 3——— =0.100 l s co we cs cs L a! * cs J S. L_ t 7 { ae / \ Py 1 cs \ 4 S 1 I | 7 a ' 0 | | | ! ! 3 1 \ + \ s ! Ss ivi L \ _ “ = I 4 e | | is 1 = L_ l; / s / : | I | 2 & * / \ 3 E Trt e - meee 1: 1 TFN \: s | , : je eae 1: - on ccenveninaneenndtrives {oo 2 eaonane seers see cr) bu-seer geen | 5 [_ | 4 és \ J \ cs Loe Lo Po ee EE SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91B -- NO 230, BL AT 120 MW, BERN#2 11MW, ALL OTHER OFF 5m om FILE: OUTPUT14O ~ Sa De CHNL# 50: CST-BEANLI co 0.1000 DC aicie sioninicieis x =0. 900 Lec CHNL® 49: CST-COOPRI -- ee wn 0.3000 + + -0. 700 = CHNL® 48: CST-BRADLI 0.5000 === === == ° -0.500 = CHNL# 47: CST-ANCHPI == 0.7000 eS -0.300 | CHNL# 46: CST-QRTZCI 0.9000 a————as =0.100 s J co we cs co 2 co S co [— - t 2 \ 2 7 2 \ e : 1 = \ 3 Sassen ' \ Roe o es / as a ' | ‘ ga : | ! | | s | / ss x | 4 i | o | ; s ! > \ = = | d Nee | \ : ~ \ te) | a S ' cs = ! : / =i 1 ' Nu ‘ 1 ' \ : oT TTT / ° x = = ; | 1 | wo . + } — | 1 ) | o 3 f g ! = { : Lo ss ae =k I r a | 1 s ! So L_ 5 | | . | | i a SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91B -- NO 230, BL AT 120 MW, BERN#2 11MW, ALL OTHER OFF 0 cs FILE: OUTPUT140 — o le e uJ CHNL# 55: CP-BL-FTZ] = =z 150.00 ieee fete 187 o8 Si eter Si * -100.0 — — CHNL* S4: CP-TLO-CTI -- 150.00 oss = + -100.0 xc = CHNL# 53: CP-SLOOTZI 150.00 CS ra 2 -100.0 Ss CHNL® 52: CP-OA-APTI = 150.00 SS 4 -100.0 CHNL# S1: CP-OCR-HPI 150.00 2 -100.0 =] cs Ss co nwo So co w {_ — = cs cs a a x 4 —|"- : a | cs Z 8 = / 7 an | | 8 co 1 | TH * \ \ S | \ _| y = { - . / s fl / S : I | : | ; \ 8 : - \ cs cs tet . NL _|s . ; a ce 4 e* —_ cs oT S | =| 2 | ie hg a a cs | I +. 3 SUMMER LOW PEAK -- KENAI-ANCH 70 Mh, ANCH-FAIR 33 MW SP91B -- NO 230, BL AT 120 MW, BERN#2 11MW, ALL OTHER OFF FILE: OUTPUT14O CHNL# 35: CF-HWYPRKI 0.0167 Minin oie Teiac er aren x -0.067 CHNL* 34: CF-HEALYI 0.0167 ssh S a= + -0.067 CHNL® 33: CF-UNIVEAI 0.0167 @ === aa a=an= ° -0.067 CHNL® 32: CF-SOLDOTI 0.0167 -—-- = -0.067 CHNL® 31: CF-FRITZCI 0.0167 ————a -0.067 cs TT | | 3 co wo cs so so so 7 cs cs J os 0 So cs =] so sa cs cs cs e os s 17:54 JAN 26 1989 FREQUENCY THU, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 PLT2 | ages } “lw uNI¥ 230 1.019 ANCHORGE ae 1.009 tad Lt oie 17.5 UNIV 11S 3i ul PORTAGE 3/= 1.000 4 SIF 8.1 . = BERN 59 1,030 ; 9988 4a lz mn ui si ala lei V BERNICE: 1.027 3390 4.1 2 3 3.4% oe? J a “ls é 5/% 1.020 ai 139% ar = als alo 2 TESO-GEN 1.010 a 2 22 Sizes] 1839 | sz om = z= ' a KENAT 1,017 quaatz=| 1" o20 FON oL lu itaag, a) $907 18 ay $: ze <=> = mies = x2 2 4 =3.3 33 ANCHPTSY 1.01 20.0 ARO HS FRTZ CR SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91C -- NO 230, BL AT 120 MW, BERN 243 3SMW, OTHERS OFF FAI, JAN 27 1989 08:58 SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91C -- NO 230, BL AT 120 MW, BERN 2&3 3SMW, OTHERS OFF A es ee N FILE: OUTPUT140A * ox CHNL#'S 4,10: CA-COOP_13-CA-MLP 7] “oO 150.00 DRE ste x -50.00 ok CHNL#'S 3,10: CA-BERN 37-CA-MLP 73 = 150.00 eo >>> + 530.00] Go 5 Ww CHNL#'S 1,10: CA-BLUG 33-CA-MLP 73 ec 150.00 a ° -50.00 s CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 [Eo 150.00 | =50.00 | aa CHNL#'S 8,10: CA-BRAD 13-CA-MLP 73 oO 150.00 ———4 -50.00 = Pere eerie eRe HATE HL EEE beer Hear HrniSig ere ioe aabH hh Rar ae os we cs cs w aL lise cs cs io — f —lss vu ° P. | os 5 4 3 aa teas \ aloes Be v \ N Ss o cero) \ s Las = liane ae | 7s x ni | ! 2 | 2 3 Ss Ww a g | = NZ 4 — ’ \ ° i cs iss oeeeng \ s eran] a rma 4 cs | a ' Es / s 4 s tn \ a En \ | hs “a /— / 4 é I yy a - co SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91C -- NO 230, BL AT 120 MW, BERN 2&3 3SMW, OTHERS OFF 2 uy S& FILE: OUTPUTIL4¥OR ond o> Sd 28 -< c c a CHNL# 56: CPG-B8RADII = 2.0000 ee 2 0.0 > CHNL® S7: CPM-SRADII eS 1.5870 = = == 0.0 CHNL# 58: CEF-B8RAD1I 19.000 Se -1.000 | 3 cs cs wo J cs | _| 8 cs 2 [ ' _|§ + 7 3 a A 5 i | 3 \ cs | | ale ml ‘ 3 ‘ cs L 4 %2 4 | e Ji s ie jl S i : | J ‘ cs = 7 |38 ‘I * a| : g L_ h . is je g eo 3 prrccccceee ’ | Ss —— | [oo ss2 ifete=s= {-------- be==---- t2--= [Tt ------ AE SUMMER LOW PEAK -- KENAI-ANCH 70 Mh, ANCH-FAIR 33 MW | 5 SP91C -- NO 230, BL AT 120 MW, BERN 2&3 3S5MW, OTHERS OFF FILE: QUTPUT140A CHNL# 22: CV-PORTGEI 1.3000 Pessina = . 3000 CHNL# 18: CV-SOLOTAI 1.3000 Neos sorSuooe x . 3000 CHNL*® 15: CV-ANCHPTI | 1.3000 PeSaSs= + . 3000 CHNL® 19: CV-QATZCAI 1.3000 Cee a SS aa ° .3000 CHNL# 11: CV-ET-8A0I 1.3000 eo = — =9 - 3000 CHNL® 12: CV-BRADLYI 1.3000 anne - 3000 T a | | + | | | | + + a) Zz 3.0000 1.0000 5.0000 4.5000 4.9000 2.0000 0 2.5000 3.5000 TIME 1.5000 0.5000 36 26 1989 20: VOLTAGES JAN THU, SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91C -- NO 230, BL AT 120 MW, BERN 2&3 35MW, OTHERS OFF 2 Oe Ud Su N FILE: OUTPUTL4OA = 2 fae CHNL# 4S: CB-ANCHORI eet Meee ese eee x - wo 0.4000 Sonat 0.100 L= CHNL® 44: CB-SOLOTN -2 0.4000 ------- + -.100| £€@& < CHNL® 43: CB-HEALYJ wn 0.4000 O22 === HoH ° =0. 100 s> CHNL® 42: CB-GLOHLLI =W 0.4000 -----= 0.100 CHNL® 41: CB-TEELNDI 0.4000 —————a4 =0.100 | T T 3 cs we oc i] — a So 3 — be —o: t { ! | ¢ | S L_ 4 5 | Lo \ | | 3 | | sa | ™, \ i \ 3 Lb i \ 3+ %Ss I Nee \ 4 = | \ ! 1S {| ! / S ~ | | x | 2 L ! | 3 t of. A me ; | Ran ig L 5 4 3 — | i= = 3 S_—_6epgabaqena pprvanan~ anaes naseee ers VO 3 _ N eaaean =" { { ( | — J? woud. |, | = 4s SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91C -- NO 230, BL AT 120 MW, BERN 2&3 35MW, OTHERS OFF ea ou Ni FILE: OUTPUT14OAR o _— Oo ad = _— CHNL® SO: CST-BERNLI co 0.1000 DSSS iii oar x -0.900 le N CHNL® 49: CST-COoPRI Cube 0.3000 aioe + -0.700 = on CHNL® 48: CST-BRADLI 0.5000 ae ° -0.500 Ss CHNL# 47: CST-ANCHPI - 0.7000 i -0.300 CHNL® 46: CST-QRTZCIJ | 0.9000 ————a -0.100 ic ae J o we cs s wo a 4 = co os co os SS x a se : 2 . cs : s eS . seta : - ‘ J . cs 2 so ‘ so | ; als x ; ° : $ L_ |e . | Nae : | - : | : lo ; P \s . o 1 1 | 3 ° | D [— : ees cs 3 co L a= b i | } o | cs | 3 ae el J * o SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91C -- NO 230, BL AT 120 MW, BERN 2&3 35MW, OTHERS OFF sw — a) FILE: OUTPUT140A — ILE: OUTPUT140 > co Sf ud CHNLs 55: CP-8L-FTZI = 150.00 Mace sees x =100.0 Smt CHNL® 54: CP-TLO-CTI -— 150.00 fssoe== + =100.0 c CHNL® 53: CP-SLOQTZI 150.00 aaa aaa ° -100.0 = CHNL® 52: CP-OR-APTI = 150.00 --— =a =100.0 CHNL® 51: CP-OCR-HPJ 150.00 s———a =100.0 < cs | T 3 co we co cs w | a = co S S co | x = S S g Me 2 3 S . cs L_ : 0 x ; cs 7 | | 2¥ Nee = ba =] . cs » cs . so | ; = x s < |3 S e 3 Ss 3 s 3 a EE =4 452 o | try | = SUMMER LOW PEAK -- KENAI-ANCH 70 MW, ANCH-FAIR 33 MW SP91C -- NO 230, BL AT 120 MW, BERN 2&3 35MW, OTHERS OFF 25 ar FILE: OUTPUT1L40OA > © oa Sus CHNL# 35: CF-HWYPRKI c 0.0167 EEE ESE EC x -0.067 OFS, CHNL* 34: CF-HEALYI = 0.0167 a + -0.067 = CHNL® 33: CF-UNIVERI 0.0167 @=<=2=s-===5 ° -0.067 Ss CHNL# 32: CF-SOLDOTI = 0.0167 Si -0.067 CHNL® 31: CF-FRITZCI 0.0167 =—————"_4 -0.067 T 3 s wo cs cs wo [— Fs =] s coc. cs 7s cs | s wo | 4 s co Ss S o Ss TF cs s | j|8e2 NN ee = J cs cs so fas Fa cs cs s 1 = 3 ° cs cs ee Is J J Ss w — =| a | co s Power Technologies, Inc. APPENDIX III BRAKING RESISTORS Power Technologies, Inc. APPENDIX III BRAKING RESISTORS Braking Resistor Consi ion Application considerations include: ° Inadvertent energization or test energizations should not cause instability or intolerable voltage excursions. ° The circuit breaker should be rated well above nominal system voltage since it must continuously operate with line potential on one side and ground potential (through the resistor) on the other. ° A test energization should be run at the end of any 6 month period in which it has not been tested and has not operated in response to a disturbance. ° Triggering options include: - undervoltage relays (e.g. any two or more phases to detect multi-phase faults) - relays that initiate clearing of lines in the local substation - signals from remote relays via carrier - back contacts on line circuit breakers - rotor acceleration detector (rotor speed calculated from generator terminal voltage, current, and frequency) The triggering can consist of a combination of the above. Power Technologies, Inc. ° Braking resistors do not necessarily have to be located at the generating plant where the angular acceleration is the greatest. A remote location may require a somewhat larger resistor, but control may be simplified and reliability improved. A remote location may be optimum if the resistor is to serve more than one plant. Power Technologies, Inc. APPENDIX IV SERIES CAPACITORS Power Technologies, Inc. APPENDIX IV SERIES CAPACITORS A series capacitor installation will usually include the main components shown in the following sketch. Sometimes the capacitors are broken down into several "modules" to improve protection. If the amount of series compensation needs to be changed from time to time, each module can have its own bypassing equipment and bypass switch.* 115 kV capacitors in the Kenai region would likely consist of a single module as shown in the sketch. CB to clear gap Gaps to protect Mov This equipment can he \ to protect capacitors woided if fault level is low. Overcurrent protection Figure 1 -- Typical Series Capacitor If fault levels are no more than about 3 times the maximum continuous current the capacitors will be called on to carry, the bypassing equipment can be limited to the switches necessary to take the capacitors out of service for maintenance. A preliminary For instance, if the Bradley Lake to Soldotna line and lines between Bradley Lake and Soldotna via Fritz Creek were to both be series compensated, losses might be reduced by varying the level of compensation in steps. All capacitors would be switched in when a fault is detected. Power Technologies, Inc. fault study indicates that without the 230 kV line, all the series capacitor banks considered it this study can probably be most economically constructed without the usual bypassing equipment.’ When series compensation at levels exceeding about 40% are considered, it is usually necessary to locate the capacitors near the center of the line or split them into two banks, one at each end of the line. This is done to limit the voltage stress on line and station equipment caused by the voltage rise caused by reactive power flow through the bank. However, at lower voltages (230 kV and below), the reactive flow may be low enough, or the line voltage withstand capability high enough, to allow 50% or more at one end. i Subsynchronous Oscillations The series capacitors between Soldoma and Quartz Creek may pose some risk of subsynchronous oscillation for the Soltdotma generator. Such oscillations could occur if a disturbance were to leave the Soldoma CT alone on the 115 kV lines from Soldotna to University. If the series capacitors between Soldoma and Quartz are resonant with the line impedance at a frequency that translates across the air-gap of the generator to a torsional frequency that is at the natural frequency of the turbine-generator shaft or the turbine- compressor shaft, electromechanical oscillations involving the two systems could build up, ultimately failing the shaft. This possibility should be checked before installing the Soldotna Quartz series capacitors. An SSO relay on the Soldotna generator may be sufficient protection against SSO damage. SSO is also a remote possibility for the Bradley Lake machines, and this too should be checked. However, it is quite unlikely that electrical and shaft torsional frequencies will coincide. The high system impedance makes the electrical resonant point very high. This high electrical resonant point translates to a low shaft torsional frequency which is usually quite far from the normally high shaft natural frequency of the shaft between a low inertia turbine and high inertia generator. ° Standard capacitors can withstand 2.6 times rated current for 15 cycles. Higher currents can be withstood for shorter periods of time. Even if higher fault currents capability is required, it may be less costly to install higher rated capacitors than to install the bypass protection. Power Technologies, Inc. APPENDIX V GLOSSARY Power Technologies, Inc. APPENDIX V GLOSSARY ili To be fully stable the system must meet all of the following criteria for all credible "first contingency" disturbances: First-swing The system must survive the angular excursion following energy storage in machine inertial due to fault or a sudden drop in power transfer as might be caused by line trip. Dynamic Oscillations initiated by a fault or line trip must damp out within 10 to 15 seconds, and must not arise spontaneously some minutes after a disturbance. Steady State The system must remain in synchronism not only in the first seconds following a disturbance, but in the 5 to 10 minutes after a disturbance and before operators can take action to reduce excessive transfers. Voltage The system must not experience voltage collapse immediately after a disturbance or in the 5 to 10 minutes after a disturbance and before operators can take corrective action to restore voltage and line loadings. Power Technologies, Inc. APPENDIX VI STABILIZERS Power Technologies, Inc. APPENDIX VI STABILIZERS Bradley Lake Power System Stabilizers (PSS) on the Bradley Lake voltage regulators are essential. All early stability cases that were first-swing stable were dynamically unstable until stabilizers were added at Bradley Lake. In the optimization stage, the final recommended system will be tested with and without the stabilizers, and with one stabilizer out of service to confirm the need for stabilizers and to determine if transfer constraints will be necessary when one stabilizer is out of service. The stabilizer applied to Bradley Lake has the form and settings shown in the sketch below. This is the most modern type of stabilizer in that it is a free-standing unit that calculates accelerating power from terminal voltage and current, and thus avoids the problems of developing a clean shaft speed signal. 2H 201+. Ss)(1+. 15") Tap nent Selection -—————> (1+ 2)€1+.8S9) Table P * Accelerating power derived From generator power and speed as calculated from current & voltage Power Technologies, Inc. V. m_Stabili The SVSs contribute to damping by providing fast voltage control. Since much of the damping problem comes from the changes in system voltage seen by generator voltage regulators, the action of the SVS to reduce voltage excursions improves stability by reducing the magnitude of the voltage variations at the generators. However their contribution can be increased further if they are used to modulate the system voltage in phase with sending end generator speed. Since the Bradley Lake sinusoidal speed variations lead the corresponding sinusoidal power variations by 90 degrees, a stabilizer i that takes through power as input, applies a 90 degree lead circuit, and feeds the result to the SVS voltage regulator will improve damping. The stabilizer used in the study has the following form and time constants shown in the sketch below. Line Power 83 © (i+ .2e) AUR aoe OSE 22) ee (1+ .83e) (1+ .ie) (1+ .838) 7 ” CAnchor Pt to Kasilof) 6.1 Power Technologies, Inc. APPENDIX VII PROTECTION NOTES Power Technologies, Inc. APPENDIX VII PROTECTION NOTES Because the system is stability limited and will depend heavily on devices such as SVS and braking resistor for stability, there are likely to be occasional cases of instability. Instability will cause line fault protection relays near the “electrical center" of the weakened system to operate. If such relays are allowed to trip upon an out-of-step condition, load may be unnecessarily removed from the system or exposed to very high voltage or high frequency. Circuit breakers, insulators, and substation equipment can also be damaged by the inherent response of relays to out-of-step conditions. The impact of an out-of-step condition can be minimized by installing relays that will trip circuit breakers to isolate the out-of-step portions of the system at specific locations. For instance, trip of the Soldoma-Bradley line would be preferable to trip between Soldoma and Anchorage (for loss of the Bradley-Fritz Creek line), and trip between Bradley and Fritz Creek would be preferable to trip between Fritz Creek and Soldotna (for loss of the Bradley-Soldoma line). The lines which would trip upon out-of-step can be identified from stability studies. Stability work to design the system may reveal the electrical center for a range of disturbances. If such studies do not provide a complete picture, additional unstable cases can be run. The selection of the best locations for out-of-step tripping, and the timing of the trip, can often be identified from these same cases, though additional simulations of the post-separation period may be required to confirm desirable system response to the separation (i.e. in terms of voltage and frequency excursions). Power Technologies, Inc. APPENDIX VIII TURBINE DEFLECTOR CONSIDERATIONS Power Technologies, Inc. APPENDIX VIII TURBINE DEFLECTOR CONSIDERATIONS Turbine Deflector The turbine deflector offers stability benefits quite similar to a braking resistor. The deflector can be triggered in essentially the same way as a braking resistor. The difference is that the deflector "cuts-in" over a period of time rather than being suddenly fully engaged like a braking resistor. However, to the extent that the deflector can reduce power applied to the generator within about the first .5 second after a disturbance, it will improve stability. It can thus reduce investment in the braking resistor or other equipment such as SVSs that are needed solely to improve first swing stability. RAILBELT STABILITY STUDY PHASE II ALTERNATIVES AND RECOMMENDATIONS VOLUME I -- TEXT Prepared for Alaska Power Authority Contract No. 2800122 PTI Project No. 30.2608 Prepared by: Harrison K. Clark POWER TECHNOLOGIES, INC. Roseville, CA March 30, 1989 PTI Report No. R35-89 Power Technologies, Inc. TABLE OF CONTENTS LINER ODUCTION aerate ce aia orte oe ot eel sear es Sere oie wil ees a ey ee el oO 1 EXECUTIVE SUMMARY. (irc) ileus le feselsleh We a illite lat lie oot wel ales lel dl 2 BS KV UPGRADE hoa chet leg [els w elie) dle ate ee alate ele ite ele ye ele Hee ae a 4 69 KV Faults 32. ss sae ck sa awe a yee Sa sae tee New cla we eos 5 DSC) Peat yy oleh lah tbe soot felch ee lsl ti lend op ot fatal oa, lool od ee] split fe ose leet bs Sh) et he 7 Other, Disturbances) 5a) Jon kd hoiele lela cle olds lel flac wt ales ae cla +s 8 Kenai-Anchorage 115 kV Reclosing ........... 2.2.0... 0. eee eee eet 9 Backswing Overvoltages 2... 10... ee ee ee ee 11 SO°'MW Expott iio ceesec skew de em Bae eae wl dw ele us eae laa 13 Reduced Runback ....... 0... ee eee 14 Loss Of Anchorage Tie During Export ..............0 2.0.00 00005 Tatts LS Use Of TSC Rather Than TCR/MSC ......... 2.20.0... 0002s 24 Line/Transformer Drop Compensation ............ 00.0000 eee eee 25 SVS¢Size:.and-Design= sii *sisc5 6 RS ee eer ow ete ew ae we eee 26 Load Rejection Overvoltages .. 2.2... ee eee 26 Brake! Control. isis aces eee ee ee ee ee ee ew De ee 28 BRADLEY LAKE LIMITED TO 90 MW ..... 2... 20... 2 ee ee 31 DVS: ALTERNATIVE) |i teliese lata elas lor at ectolhe os fy er be cot eal falas be feciel ee cell 5 delet lol es 31 SVS - Series Capacitor Comparison ........ 0.0... 0c cece eee eee eee 33 230 KV LINE ALTERNATIVE ............. 0.2. ce eee eee eee eee eee 35 IEA sce teh a a tei tsaes october ticle te lerear ae talhg or lar ald teste tart eer ber gl bette ete la 38 APPENDIX -- Load Models RAILBELT STABILITY STUDY PHASE I ALTERNATIVES AND RECOMMENDATIONS INTRODUCTION Phase I of the Railbelt Stability Study explored a number of options for solving stability problems. These included: ° Bradley maximum operating power level ° Various levels of power runback following disturbances ° Various combinations of SVS and series capacitors ° Use of a braking resistor at Bradley Lake ° Use of stabilizers for dynamic stability Phase I work was based largely on 75 MW export with intermediate to high Kenai load levels, and generation on-line at Bernice and Cooper. The Phase I studies showed that it would be feasible to provide stability without the installation of a 230 kV line from Soldotna to University. Phase II of the Railbelt Stability Study was originally intended to select and optimize one transmission scheme to meet Bradley Lake power transmission objectives. However, as completed, it provides several alternatives addressing different Bradley Lake power limitations and Kenai export levels. Only one (combination of one SVS and three series capacitors) has been tested for a range of operating conditions sufficient to support the subsequent analysis necessary to prepare equipment specifications. Power Technologies, Inc. EXECUTIVE SUMMARY The several alternatives examined in Phase II are summarized in the following paragraphs. One alternative that was considered in Phase I but not examined further in Phase II is also included to complete the range of alternatives that are available. ° ; a _ - ration Bradley Lake. The equipment consists of braking resistors (with associated communications and controls) and stabilizers at Bradley Lake. The braking resistors (two 25 MW units) are complemented by runback to 60 MW upon loss of the Bradley to Soldotna line to provide stability. Other disturbances will not require runback but may require braking. Kenai export limits have not been fully defined for this alternative, but the cases that have been run indicate export is limited only by Kenai load and losses when Bernice and Cooper generators are off (i.e. just over 40 MW). In Phase I this alternative was found to be stable at 76 MW export with Bernice and Cooper providing the additional power for export. Higher exports may be possible under some conditions. This alternative can be extended to handle somewhat higher Bradley Lake power levels, but would require correspondingly greater runback. This alternative does not address heavy Kenai import conditions under which voltage control is a known problem. ° Equipment additions to allow 120 MW operation at Bradley. This alternative was studied most thoroughly in Phase II. The investment is limited by running Bradley back to 90 MW immediately following loss of the Bradley to Soldotna line. The equipment required includes the two braking resistors and stabilizers at Bradley, one SVS at Soldotna and three series capacitors. It has been tested at maximum export when Bernice and Cooper are off and Kenai load is low (40 MW). It was also tested and found to be stable at 90 MW export with Bernice and Cooper units on, but such operation is very close to stability limits and the alternative was not designed for such operation on a normal basis (i.e. though the system may be stable at this export under ideal conditions, reliability will be lower when it is operated at this export). nN Power Technologies, Inc. Use _ of two SVSs_ rather than one SVS and three series capacitors. This alternative is otherwise similar to the one just described. Two SVS will be more costly than one SVS and three series capacitors. There are also technical advantages and disadvantages, but two SVS will offer about the same capability for Bradley Lake power generation and Kenai export. Two SVS and three series capacitors. This alternative, explored only in Phase I, requires higher investment but does not require Bradley Lake power runback. Though it was not pursued further in Phase II, it bears mention here to complete the array of alternatives. Like all other options, it requires braking resistors and stabilizers at Bradley. This alternative requires upgrading of the 115 kV line from Soldotna to Diamond Ridge to carry the higher power following loss of the Bradley-Soldotna line. New transmission line from the Anchorage area to the Kenai area. A new line from the University substation to the Soldotna substation was considered. Though a very expensive alternative, such a line can eliminate one series _ capacitor and the SVS if rmunback from 120 MW to 90 MW is retained. If Bradley is to be held at 120 MW following loss of the 230 kV line, a small SVS is required at Soldotna. This SVS is also required if the level of dynamic stability performance and margin provided by the 115 kV alternatives is to be achieved. The most attractive feature of this alternative is a reduction in the number of incidents that will separate the Kenai area from the Anchorage area. The compensation package consisting of one SVS and three series capacitors was most thoroughly studied in Phase II. It requires: ° Three series capacitors, 50% each in the lines from Bradley to Fritz Creek, Anchor Point to Kasilof, and Soldotna to Quartz. One SVS +30/-25 MVAR at Soldoma with stabilizer and with control over the existing Soldotma mechanically switched capacitors. Two 25 MW braking resistors with sensitive triggering and a controller to remove them based on Bradley rotor speed. Power reduction to 90 MW by the deflector for loss of the Bradley to Soldotna line. Power Technologies, Inc. ° Power System Stabilizer on each Bradley Lake machine exciter/voltage regulator. ° Bradley automatic voltage regulator line/transformer drop compensation with slow response (optional). The SVS size requirement is based on a number of considerations including first-swing stability, damping, steady state stability, backswing overvoltages, and voltage control during and following islanding. The casework in Phase II makes extensive use of detailed Kenai load models. The model includes large and small motor models .and includes the loss of motor load that occurs during faults. The load model is discussed in some detail in Appendix I. The following sections focus on major considerations in selecting the size and location of compensation and control equipment, and on the various equipment and operating options that can be used to solve the Bradley Lake stability limitations. 115 KV UPGRADE The goal of the Phase II work was to select the best 115 kV transmission upgrade alternative from among those considered in Phase II and test it for a wide range of disturbances and add or modify the recommendations as necessary to provide an optimum system. The alternative consisting of one SVS and three series capacitors was both the least costly and the best performing of the alternatives examined in Phase II, and was selected for further study. The cases discussed in the remainder of this section address a number of aspects of the combination SVS - Series capacitor alternative: ° stability for various 69 and 115 kV faults. ° response to other disturbances ° control of voltage during and following stability swings and separation from Anchorage. ° ability to handle higher export or reduced Bradley runback. Power Technologies, Inc. ‘ ’ In addition, a number of other planning and operating options and considerations are discussed. Because construction of a second Kenai to Anchorage line would require much of the same equipment as is required without a new line, much of the discussion in the following subsections regarding equipment characteristics and selection apply also to that alternative. 69 kV Faults A number of 69 kV faults were examined. In all cases the critical clearing time for three-phase faults is between 6 and 9 cycles. Fault clearing times, including relay and breaker times, must be under the critical clearing time at the source (115 kV) end of radial 69 kV lines, and at both ends of looped lines (e.g. the Soldotna-Quartz 69 kV line). The following table summarizes the results of stability cases 182 though 192. FAULT Stable at: . Unstable at: Cases Soldotma area 6 7 184, 185 Diamond Ridge 7 9 187, 188 Bernice 7 9 191, 192 Lawing 8 9 189, 190, 190A Dave’s Creek 25 kV 20 -- 186 The above clearing times were determined with the braking resistor assumed not to respond to these faults. The braking resistor can make the system stable for 69 kV faults up to several cycles above the critical clearing time without brake use. The voltages at Bradley were recorded for each of these faults, and are below 70% for all cases except the 25 kV fault (which is stable without fast clearing or use of the brake). Hence application of the brake for most close-in 69 kV faults is feasible. Hence where the existing clearing time is not too much above the critical clearing time, the brake may eliminate the need for communications based protection. On radial lines, presumably close-in faults can be cleared within 6 to 8 cycles by zone 1 distance protection. On looped lines, mid-line faults should be cleared promptly at both ends without carrier, and line-end faults will be cleared quickly at the near end and in second zone time at the far end. Power Technologies, Inc. ‘ Only two cases have been run to assess use of the brake for 69 kV faults. The first is case 201 which simulates a three-phase fault adjacent to the Soldoma 69 kV bus on the line from Soldotna to Quartz Creek. The Soldotna end is assumed to be cleared at 6 cycles (zone 1 distance protection) the Quartz Creek end is assumed to be cleared in 24 cycles (zone 2 distance protection). The case is unstable. However, this is probably the worst 69 kV fault in that it removes a section of 69 kV line that parallels the 115 kV tie to Anchorage, and the fault depresses transfer to Anchorage significantly both during the first 6 cycles and during the additional 18 cycle line-end fault period in that both faults are directly off the 115 kV path off the line to Anchorage. This case should not discourage a search for locations where communications might be avoided by depending on the brake. The second case demonstrating use of the brake for 69 kV faults is case 212. This i case examines reclosing on the 115 kV line from Dave’s Creek to Lawing for downstream 69 kV faults. Since the fault clearing time is known only to be between 8 and 10 cycles, a 10 cycle clearing time was used. Because the 10 cycle fault is beyond the critical switching time (see above table and cases 189, 190 and 190A), the braking resistor is used. Reclosing dead times are 18 cycles, 4 seconds, and 20 seconds.. Because faults separated by 4 seconds or more are essentially separate events from a stability standpoint, if stability is achieved for one, all will be stable. However, the 18 cycle dead time for the first reclose places the first unsuccessful reclosing within the "swing period" of the initial fault, making it necessary to consider the two in the same simulation. In case 212 the brake circuit breaker is assumed to close at the instant of fault clearing (this is a conservative assumption, the brake should engage well before the fault is cleared). The brake is removed about .2 seconds later, about .1 second before reclosing again energizes the fault. The brake is not needed for the second fault application because the second fault occurs during the early part of the Bradley angular backswing, and thus only serves to reduce the extent of the backswing. If the reclosing delay were greater, on the order of .7 seconds or more (i.e. just ahead of or around the peak of the "second swing"), the braking resistor would have to be applied to maintain stability. The second brake application would likely be longer than the first (about .3 seconds) if it occurs near the peak of the second swing. Subsequent brake applications for the 4 second and 20 second reclose attempts would each require about .2 seconds of brake time. The total brake time for the four faults would be about .9 seconds, somewhat greater than the .7 seconds selected based on other disturbances. Since the brake will be triggered by most severe 69 kV multi-phase faults (whether essential for stability or not), it must be capable of handling the reclosing that can occur. Also, in order for the brake to be applied several times in rapid succession, its circuit breaker must be able to provide the required sequence of operations. A magnetic type circuit breaker (e.g. GE Magnablast) is capable of rapid close-open operation, but must "recharge" after several close-open operations. This recharge limitation may be less Power Technologies, Inc. significant with a vacuum breaker. Close-open capability of the breakers intended to be used on the braking resistors should be checked to ensure that it will match the fastest 69 kV reclose pattern. The 69 kV clearing times and fault locations that can be accommodated without transfer trip or directional comparison protection (i.e. systems requiring line carrier) by a 40 MW brake must be determined in further exploratory stability cases. Also required for this option is a check of the effects of 69 kV phase-to-phase faults on stability and on the voltage at Bradley Lake. If the brake must be applied for unbalanced 69 kV faults, then the voltage relay logic must be arranged to trigger the brake for such faults (this should not be a problem since the brake must be triggered for unbalanced 115 kV faults also. 115 kV Faults A number of 115 kV faults were examined in addition to a fault on the line from Bradley to Soldotna. Those examined were: ° Fault at Bradley, trip Bradley - Fritz Creek -- unstable without brake, stable with brake (cases 174 & 175). ° Fault at Soldoma, trip Soldotna - Ski Hill -- unstable without brake, stable with brake (cases 176 & 177). ° Fault at Dave’s Creek, trip Dave’s Creek - Lawing -- stable without brake (case 178). These cases show that 115 kV faults in general are a threat to stability, but can be overcome by use of the brake. These cases emphasize the need for brake triggering that is sensitive to all area faults. These faults cause very low voltage at the Bradley 115 kV bus and are thus easily observed from Bradley. Undervoltage relays thus can be used for brake triggering. It is clear that the Bradley brake should be triggered for multi-phase faults. However, a decision must be made as to whether the brake should be triggered for single-phase faults. Single-phase faults on the Bradley to Soldoma line must trigger the brake, but this is easily done from line relays at Bradley. If the brake is to be triggered by ground faults remote from Bradley, the triggering must be based on a one-out-of-three operation of three single-phase voltage relays. There is also the question of Bradley operating level. At Power Technologies, Inc. some low plant output level, the brake will be needed only for faults on the line from Bradley to Soldotna. At low output the brake will not be needed if two units are operating. With one unit operating the brake may be needed when it is near full output. Other Disturbances Three stability cases were run for two miscellaneous disturbances. One is inadvertent braking resistor application, and the other is nuisance trip of a Bradley generating unit under full output. Case 179 is for inadvertent 40 MW brake application at low export. In this case the Bradley angle is low compared to the Anchorage area, so the plant is most susceptible to a disturbance that would slow it and thus take it out of step in a lagging direction (faults accelerate the plant and in an unstable case cause it to pull ahead of the remainder of the system). The brake slows the plant, and thus is a potential threat primarily when the plant angle is initially low. The case shows that the brake is very unlikely to cause instability under any credible operating condition. In fact, the Bradley angle is "turning around" even before the brake is removed at .7 seconds, indicating that the plant is probably stable even if the brake is not removed. If the brake thermal rating is .75 seconds, backup protection would remove the brake within .75 seconds. Case 213 is for inadvertent application of a 50 MW brake under heavy import conditions with one Bradley Lake unit operating in the Kenai. The Kenai load is 75 MW, the Bradley unit is producing 20 MW, and import is 43 MW. The brake is applied for .7 seconds. The case is stable. However, it does show large voltage excursions. Some voltages drop below 50%, and backswing overvoltages reach 120%. The Kenai frequency swings to a high of 60.75 Hz and a low of 59.2 Hz (above the 59 Hz underfrequency relay setpoints). Though the frequency swings are large, and the voltages violate criteria, inadvertent brake application is unlikely to occur because: ° the brake should be disabled during import conditions (and low export conditions). oO if a local (Bradley) control failure occurs, it should only affect one of the two brakes (i.e. 25 MW instead of 50 MW). ° if the braking resistors are energize erroneously by local voltage relays or via carrier from relays on the Kenai-Anchorage lines, it should be removed quickly Power Technologies, Inc. (about .2 seconds) by the same control that will remove it when it is properly applied. Based on the above, inadvertent application of the braking resistors to the extent represented in case 213 is very unlikely to occur, and is thus suggested to not be a problem. Case 180 is for trip of one of two Bradley Lake generating units when the plant is operating at 120 MW. It shows no stability threat or other potential problems. Kenai-Anchorage 115 kV Reclosing Cases 169 though 173 and 202 and 203 address the question of reclosing on 115 kV lines north of Soldotna. Reclosing on the line from Soldotma to Quartz Creek and the line north of Dave’s Creek was examined. The Soldoma to Quartz Creek line has the benefit of the underlying 69 kV line, though this advantage is minimal because of the high impedance of the line and associated transformers (also, the results are slightly conservative because the Quartz Creek transformer was not replaced with the Bernice Unit before cases 169 through 173 were Tun). Faults further north affect the Kenai area load less, and thus would be expected to be somewhat more stable than those examined below. The cases are summarized in the following table. Case 169 64.3 MW export, Bradley at 120 MW, Bernice & Cooper off, 4 cycle single- phase fault at Soldotna, three-pole reclosing, 15 cycle dead time, no brake, no tunback, no load drop. Unstable. Case 170 Same as 169 except brake applied. Stable. Case 172' Same as 169 except single-pole reclosing with 25 cycle dead time. Stable. ‘Case 171 is similar except it represents 15 cycle dead time and was, of course, stable. Power Technologies, Inc. Case 173 Same as 169 except 41.8 MW export, Bradley at 90 MW. Stable. Case 202 64.3 MW export, Bradley at 120 MW, Bernice & Cooper off, 4 cycle single- phase fault at Dave’s Creek, single-pole reclosing on Dave’s Creek - University line, dead time 25 cycles, no brake, no runback, no load drop. Unstable. Case 203 Same as 202 except 15 cycle dead time. Stable. These cases show that three-pole reclosing on the Soldotna to Quartz Creek line is feasible at low export levels (below about 50 MW) without runback or brake operation at Bradley. At higher export levels the Bradley brake can be used to make the system stable. Runback may also provide stability but was not examined. The brake would be more effective and is the method of choice since it represents less risk of load shedding. Single-pole reclosing is stable for dead times up to and including 25 cycles on the Soldoma to Quartz Creek line. Case 172 appears quite stable thus indicating that an even longer dead time could likely be used. Cases 202 and 203 bracket the allowable dead time for single-pole reclosing between Dave’s Creek and University. The limit is in the vicinity of 20 cycles. The Bradley brake could be used to extend the allowable dead time for this fault if communications is available to ensure that the brake will be triggered. The single-phase faults and the single-pole-open transfer impedances used in the above cases are based on very rough assumptions of the zero sequence impedances at Soldotna, Quartz, and Dave’s Creek, and thus the above results must be considered to be approximate. However, since even the 25 cycle dead time cases are quite stable, the error in zero sequence impedance would have to be quite large to invalidate the above conclusions. Load dropping was not simulated in these cases. Load dropping would make the cases less stable. However, single phase faults north of Soldoma should not cause significant loss of load, and thus would only have a secondary effect on the results. 10 Power Technologies, Inc. Backswing Overvoltages Backswing overvoltages are always a problem when measures such as SVSs, series capacitors, high performance excitation systems, braking resistors, and deflectors are used to provide first-swing stability. The voltages go high as the angle across the system approaches zero degrees during the back swing. At this instant the power flow across the system is very low so that line and transformer reactive losses approach zero. Reactive power from capacitors and lines must flow to generators, and thus causes a voltage rise during this short time period. The overvoltage is compounded by the high flux in generators that remains from the first swing, or is pushed up by stabilizers attempting to provide damping. Loss of load during the fault also compounds the overvoltage problem. The backswing overvoltages in the Kenai are most severe when Bradley Lake is the only generation operating (case 161) and area load is low (40 MW). A number of 115 kV voltages exceed 110% for about .5s. Anchor Point and Fritz Creek voltages peak just over 118% (Fritz Creek voltage is not plotted), while Soldotna and Quartz Creek voltages peak at about 116%. When Bernice and Cooper generators are on-line, they absorb reactive power during the backswing, measurably reducing the backswing overvoltages (case 163). With one Cooper and one Bernice unit operating (and Kenai load at 60 MW), the backswing overvoltages are somewhat lower, with the highest 115 kV load bus reaching 117%, and others reaching about 113%. Changing the reactive dispatch among the Bernice and Cooper plants and the Soldotna SVS so that the pre-disturbance plant reactive loadings are lower the SVS output is higher pulls the voltages down 2 to 3% (compare cases 163 and 164). The cases discussed in the above paragraph are all based on an SVS at Soldotna with a +20/-15 MWVAR dynamic range. Additionally, there is a 30 MVAR capacitor bank operating at Soldoma and a 7.2 MVAR bank operating at Quartz Creek. The -15 MVAR SVS lower limit does not allow the SVS to absorb all reactive power from these capacitor banks. The remaining 22.2 MVAR is a significant contributor to the backswing overvoltages. Case 162 shows that increasing the SVS lower limit by 10 MVAR reduces the overvoltages by 3 to 4 percent. Case 162A shows that reducing the SVS lower limit by yet another 10 MVAR provides an additional 3 to 4% reduction. However, note that 2 The capacitor bank at Quartz Creek was added to improve the voltage profile between Soldoma and University. It agreed in the Phase II preliminary report meeting in Anchorage on March 2 to remove this capacitor bank and adjust the SVS size or Soldoma capacitors to compensate for it Cases above number 205 do not represent this capacitor bank. The drop in voltage is partly offset by raising the 138-115 kV University transformer tap 2.5% and by increased SVS output at Soldoma. 11 Power Technologies, Inc. the drop in overvoltages is most pronounced at and near Soldotna, with voltages closer to Bradley, such as Fritz Creek and Diamond Ridge less improved. Overvoltages will be less severe for less severe faults. The cases discussed above all focus on a three-phase fault near Bradley. Case 165 is similar in all respects to case 161 except that it represents a phase to phase fault near Bradley. The backswing overvoltages are all 112% or less at all buses except Bradley Lake. Moving a three-phase fault some distance from Bradley, say 5 to 10 miles, would have a similar effect. Only three-phase faults near Bradley will cause the backswing overvoltages exhibited in cases 161-164. The backswing overvoltages are aggravated by the drop in generator power caused by use of the deflector. Delaying cut-in of the deflector will require a larger braking resistor, but will reduce backswing overvoltages. The Bradley stabilizers also aggravate backswing overvoltages. Stabilizers "see" the acceleration of the plant during and immediately after the fault as part of an oscillation, and increase excitation beyond the increase caused by the fault and post-fault power swing, thus driving machine flux up so high that the voltage regulator cannot pull it down during the backswing. Case 205 was run to explore these two effects (it also does not have new shunt capacitors at Quartz Creek). The stabilizer was removed and the deflector is delayed .5 secorids. The highest load bus backswing overvoltage is Fritz Creek, and it is just over 115%. Other voltages are under 115%. Only Fritz Creek voltage is above 110% for more then .5 seconds. The deflector was delayed only one half second in this case, not enough to fully remove its impact on backswing overvoltages. Additional delay could be used. The stabilizer was disabled for this case, but its effect on backswing overvoltages could be limited by cutting stabilizer output to zero when voltage is above some threshold, or reducing stabilizer gain as voltages rise above some threshold (e.g. 108%). This capability is not normally provided in stabilizer circuitry, but can be added if necessary. The backswing overvoltages can alsa be reduced by increasing the size of the TCR at Soldomma. Case 206 is similar to 205 except the TCR is increased by 10 MVAR to give the SVS an overall range of +30/-35 MVAR (65 MVAR TCR). In this case only Diamond Ridge and Fritz Creek (and Bradley) voltages go above 110% during the backswing (to a maximum of about 115%). If the SVS “underexcited range" is increased beyond -15 MVAR to control backswing overvoltages,. the reactors and thyristors need only be designed to operate briefly in this range. Power Technologies, Inc. 90 MW Export Export levels as high as 90 MW are feasible with one SVS, three series capacitors, two 25 MW braking resistors, and stabilizers at Bradley. However, there is little stability margin at 90 MW export, and backswing overvoltages will be somewhat higher than desired, but if the system is healthy, it will withstand a three-phase fault close to Bradley Lake on the Bradley Lake to Soldoma line. The ability to export 90 MW comes primarily from the fact that the compensation is designed to allow Bradley Lake to operate at 120 MW with Bernice and Cooper generation off. Adding units at Cooper and Bernice is necessary to increase export to 90 MW, and improves stability enough to allow such operation without exhausting the margin built into the reference case (Bradley at 120 MW, low Kenai load, Bernice and Cooper off). At 90 MW export, the system is closest to its first-swing stability limit. Dynamic and steady state stability margins are reduced at 90 MW, but are more substantial than the first swing margin. This difference occurs because the Bernice and Cooper generation contribute somewhat more to dynamic and steady state stability than they do to first swing stability. However, at 40 MW the Bradley brake is adequaté for this operating condition. Though case 168 shows that the system may be operated at 90 MW export with one Bernice unit and one Cooper unit on-line, the results cannot necessarily be extrapolated to all conditions under which high export might be achieved. For example, the system stability may be different with Bradley Lake supplemented by just Bernice units or just Cooper units, or with a different dispatch in the Anchorage area. Though these differences should not cause dramatic differences, there may be some under which 90 MW export would be less stable than shown in case 168. If operation at 90 MW export is to occur frequently or must occur under conditions substantially different from those examined in case 168, additional cases for those conditions should be run to ensure that they are stable. Though operation at 90 MW export will be feasible with the compensation equipment outlined above under at least one operating condition, an increased compensation level should be considered if operation at 90 MW is to occur on a regular basis. That is, if it is to occur under emergency or unusual operating conditions that will exist for only a few hours or over a period of a few days each year, then additional compensation is not warranted. However, if such operation is to occur every season for a period of some weeks, then the SVS upper limit should be increased to 25 MVAR. The SVS low limit of -25 MVAR as justified elsewhere in this report should be retained. 13 Power Technologies, Inc. Reduced Runback With Bradley Lake power runback from 120 MW to 90 MW or less following tip of the line from Bradley to Soldotna brings loading on the lines from Diamond Ridge to Soldoma within the summer overload capability of these lines. During the winter, however, the rating is higher, and a lower Bradley Lake power runback could be accommodated if stability can be maintained. Case 166 was run to assess equipment requirements to do this. Power flow case P2CA was first run to check post-disturbance conditions with Bradley Lake run back 11 MW to bring loading on the Diamond Ridge to Anchor Point line within its winter emergency rating (assumed to be 110% of the 91.2 MVA continuous winter rating -- 100.3 MVA) under low Kenai load (40 MW)’ As shown in power flow case P2CA, the Soldoma SVS must provide 25.3 MVAR to hold Soldotna voltage under this condition. To provide margin for dynamic stability and to ensure steady state stability, the SVS was increased to +30/-15 MVAR for the stability test outlined below. Stability case 166 shows that the system will survive fault (three-phase) and trip of the line from Bradley to Soldotna with runback limited to 11 MW when the Soldotna SVS range is +30/-15 MVAR. However, note that the SVS is close to ceiling in the seconds after the large first-swing. In earlier cases with runback to 90 MW (case 161), the SVS was 10 to 15 MVAR from ceiling in the final seconds of the simulation. Case 166 thus is closer to stability limits than previous similar cases (e.g. case 161). Note particularly that the oscillations between 2 and 5 seconds in case 166 are lightly damped because the SVS is on ceiling for a total of about 1 second between 2 and 4 seconds (i.e. it has only limited ability to provide damping in this period). An additional 5 to 10 MVAR would be required for case 166 to be as secure as similar cases with Bradley power run back to 90 MW. However, if case 166 represents a condition that will be observed infrequently, the lower margin may be acceptable. Because, as noted above, the steady state SVS output some minutes after the disturbance will be at 25.3 MVAR, and the simulations show poor damping with a 30 MVAR SVS, the SVS upper limit should be increased to 35 MVAR if runback is to be limited to 11 MW. To be fully comparable (i.e. to have the same margin) as the cases with runback to 90 MW, the case with runback to 109 MW would require an SVS with an upper limit of 40 MVAR. 2 Loading on the 115 kV line north of Diamond Ridge is highest when load at Diamond Ridge and Fritz Creek is lowest. 14 Power Technologies, Inc. Loss Of Anchorage Tie During Export In order to minimize risk of dropping Kenai load following tip of any of the several line sections between Soldotna and University, the Railbelt utilities have determined that Kenai frequency must remain between 59 and 61.5 Hz following separation from the Anchorage area. Keeping frequency in this range requires: ° ° prompt governor action at Bradley to run the deflectors in at the maximum rate. similar governor action on any Bernice and Cooper units that are on-line at the time of separation. coordination of governor characteristics to minimize motoring and the risk of unit tip (by reverse power relays) during power runback (keeping the combustion turbines on-line reduces the risk of collapse of the Kenai island). droop settings that will allow power sharing among on-line units at the reduced plant loadings. a change in governor speed reference to bring post-separation frequency into the range 60 to 61 Hz. frequency regulation capability to accommodate normal load variations and restoration of any load that is dropped by separation (e.g. the fault that initiates separation). control of voltage sufficient to not cause generator trip by loss of excitation protection or loss of load due to low voltage. Most of these requirements are associated with the dynamic response of the power plants, the system loads, and the SVS. Simulations are essential, for instance, to show that CTs are not "motored" off the line (tripped by reverse power relays) during the power runback. Initial Overspeed The first task is to limit the initial overspeed. A fault that causes loss of the tie will, itself, cause rapid Kenai generator acceleration by momentarily depressing load and export, 15 Power Technologies, Inc. and by causing motor contactors to open thereby reducing Kenai load. Once the tie is open, the power flow to Anchorage is interrupted, and there is further acceleration. It is desired that the overspeed be limited to 61.5 Hz if practical. The cases described in the following paragraphs examine the basic overspeed problem, and the use of the Bradley brake and Bradley unit tripping options individually and in concert to limit overspeed. All explore a very high export level. Case 181 is for loss of the tie to Anchorage when export is at 90 MW and Kenai load is low (42 MW). With export high and Kenai load low, the Kenai area overspeed will be the greatest. Survival of the Kenai area is most likely if generators at Bernice and Cooper remain on-line through the disturbance because they increase area inertia and will provide better frequency regulation following the initial speed excursion. Case 181 represents a worst-case condition in that the separation is preceded by a three-phase fault at Soldotna (on the line to Quartz). This fault depresses area voltage and accelerates the Kenai generation even before the separation occurs. The overspeed is further aggravated by loss of 20% of the Kenai load (south of Soldotna) during the fault. The load is modelled as 60% motors to ensure accuracy of the simulation (1/3 of the motors are dropped during the fault). In case 181 one Bernice generator is on-line and has a typical combustion turbine governor. Because the Bradley governor is not yet defined, and because it would surely Tamp down at the maximum rate once the overspeed is detected, it is represented as a linear ramp from 120 MW down to 30 MW over a 1.2 second period. The actual governor would probably overshoot somewhat, and hold turbine power low until frequency is closer to its droop characteristic (depending on whether the governor is proportional or integral type). If all of the machines have a droop setting of 5%, and are operating near full rated power before the disturbance, the Kenai system frequency will settle at about 62.4 Hz (for the situation of case 181). In case 181 the Bradley Units are ramped back to 30 MW, just 2 or 3 MW below the total area post-disturbance load. As a result, the frequency is dropping only very slowly after the overspeed condition is arrested. The combustion turbine is limited to just a couple of megawatts of reverse power with the model data used in this case, while the actual control is likely to go further negative (because of the large compressor load on the turbine). The SVS is on its lower limit through most of the run, but the output is rising near the end of the run, indicating that the SVS and associated Soldotna capacitors may be able to handle the voltage in such a case without tripping of Soldotna mechanically switched capacitors. However, note that the Bernice Lake excitation is quite low, so tipping some of the capacitors may be a good idea. This can be done under SVS conrol 16 Power Technologies, Inc. (i.e. if the SVS remains on its lower limit for more than 2 or 3 seconds, it should initiate trip of some of the Soldotna capacitors). The Bradley Lake stabilizers remain fully active in case 181, and contribute significantly to the high voltages in the first second after the separation. To the stabilizer the overspeed looks like the first of a series of speed oscillations due to poor damping. It is possible to remove stabilizers from service during large speed excursions, but has always been undesirable because it is difficult to distinguish between speed excursions due to damping and those due to other causes. It is also difficult to define logic to bring the stabilizer back on-line. For instance, it is quite possible to have overall system frequency tise rapidly and remain high without loss of interconnections so that the system is in a state in which the damping from stabilizers is essential. Digital stabilizers offer a solution to this problem. The stabilizer output can be clipped when voltage at the plant rises above some threshold such as 110%. This can be done without taking the stabilizer off-line. Since high voltages are momentary (1 to 2 seconds) while the damping problem is a longer-term problem (2 to 10 or 20 seconds), the temporary loss of stabilizer action is not a problem. Also, if the reduction in stabilizer output is made proportional to the voltage excursion above some threshold such as 110%, the stabilizer output is only totally suppressed if the voltage exceeds about 115%. With the duration of total loss of stabilizer effectiveness is very short. Case 181A is similar to 181 except that the Bradley brake is used to reduce the overspeed. The brake is applied 6 cycles after the fault is applied (2 cycles after the fault is cleared). A severe fault at Soldotna would trigger the brake somewhat more quickly than this, but an overspeed trigger might be somewhat slower (an overspeed tigger would be needed to apply the brake when separation from Anchorage does not follow a fault). The brake is left on for .7 seconds because at this time the brake is planned to have a thermal duty cycle of just .75 seconds. A longer duty cycle could be provided if the brake is deemed useful in limiting overspeed following separation from Anchorage. Case 181B is also similar to 181 except that one Bradley Lake unit is tipped about .3s after the fault is applied. The frequency is about 61.4 Hz when the unit trip occurs. The remaining unit is run back to 20 MW and held at that level. The final frequency will be under 62 Hz in this case if the two machines (Bernice and Bradley) have the same droop and start at about the same loading (in percent of rated power). 17 Power Technologies, Inc. To demonstrate the use of the brake, unit tipping, and governor speed reference change, case 211 was run. The following were simulated in this case: oO A simple governor with 1.1 second time constant is modeled at Bradley. Its response to overspeed is delayed .4 seconds to conservatively represent the initial delay in the deflector mechanism. Soldoma switched capacitors (MSC) are taken off 15 MVAR at .4 second and 15 MVAR at .8 seconds (assumed to be under control of the Soldotna SVS). The Bradley brake is 50 MW (2 X 25 MW) and is applied at .2 seconds and removed at .8 seconds (.1 seconds less than the presently planned thermal capability). One Bradley unit is tripped at .4 seconds (its brake is left on). 7.5 MW (about 20%) of Kenai load is dropped during the fault. The fault is three-phase at Soldotna and causes immediate trip of the 115 and 69 kV lines to Quartz Creek (conservative assumption since the 69 kV line tip would be delayed and would reduce initial acceleration somewhat). The export is 90 MW when the fault occurs. Bernice unit 3 is operating at 24 MW. Bradley is at 120 MW. Governor speed references are dropped 50% at .4 seconds (this would restore the island to 60 Hz if the loading on remaining machines drops to 50% of initial loading). The Bradley Lake stabilizers are not disabled and do not have gain reduced during the period of overvoltage. The result of these assumptions is overspeed limited to just over 61.4 Hz, voltages below 110% except for two .2s excursions to about 111%, and Bernice combustion turbine power reversal of less than 1 MW, lasting less than .5 seconds. Though many assumptions were made for this case, and all may not be conservative, it is clearly possible to limit Kenai overspeed to less than 61.5 Hz when Kenai export is below 90 MW. 18 Power Technologies, Inc. Case 211 is based on the assumption that three-phase reclosing will not be used on the Kenai-Anchorage tie, or will not be used at the export levels that will require unit tripping to control overspeed. When three-phase reclosing is in use, Bradley unit tip must be delayed and then implemented only if the reclose is not successful. The controls necessary to limit overspeed to 61.5 Hz or less include: ° Carrier or microwave signals from relays on the Kenai-Anchorage tie to Bradley and Bernice. Bradley unit trip and/or brake switching and governor speed reference changes should be initiated by relays that will open the tie due to faults or loss of synchronism -- when export is above some threshold. The speed reference change should vary with Kenai export if practical. ° Local control that will apply the braking resistors when frequency reaches about 60.5 Hz and is rising at a rate of 2 Hz per second or more, and will remove the brake when frequency falls below 60.5 Hz or the brake reaches its thermal capacity. This control should not interfere with the brake controls that apply and remove the brake for faults that initiate stable power-angle swings (such swings do not cause frequency to exceed 60.5 Hz). Planning studies should be sufficient to ensure that the equipment necessary to achieve the desired control will be in place. Operating studies should be conducted to determine how the controls should be set and used under various operating conditions. Unbalanced Dispatch The division of power among the units following the initial overspeed period is important. If all units operating at the time the tie is lost are to remain on the system, all must be at positive output following the initial overspeed. Any units operating at negative power will be tripped after several seconds by reverse power relays. The operating point of each unit after runback to control overspeed will depend on droop settings, initial operating points, and the amount of runback required. If all units have about the same droop, any unit operating substantially below the other units (in percent of rated maximum power), is likely to be tipped by its motoring protection when a large power runback occurs. The droop can be adjusted to give equal loading or some desired distribution of loading after runback for a given initial set of 19 Power Technologies, Inc. loadings and amount of runback. However, this requires software at a central location with access to the present loading on each unit, and the ability to reset the droop on each unit to accommodate the present operating condition (i.e. give desired loadings after loss of the tie). The PC based Bradley governor could easily accommodate this novel system. The Bernice Lake CTs may not be amenable to such control. If the CTs can accept this control or be modified to accept it, it is suggested consideration be given to such a system. Frequency Regulation If the Kenai area is to survive islanding when only Bradley Lake is in operation, the Bradley governing system must be able to follow load with sufficient response to keep frequency within a reasonable band (59 to 61.5 or better). In addition to normal load variations, there are two phenomena that will impose significant load changes on the system after islanding (loss of the tie to Anchorage). If the Anchorage tie is lost as the result of a fault that is either severe or close to Kenai loads, some motors in the Kenai will be dropped from the system. These motors will be restarted over a five to 10 minute period following loss of the te. If 10 MW of motors is dropped, and return over a five minute period (pessimistic assumption), the load rise may be as much as 2 MW per minute. If voltages in the Kenai drop as the result of loss of the tie, residential and commercial loads will be reduced. LTCs will restore distribution voltages, thereby causing an increase in load over a period of 2 or 3 minutes after the disturbance. Similar loads not served by LTCs will be partially restored over a period of 10 to 15 minutes by the action of thermostats and similar controls and some manual control actions. In order to keep frequency from falling below 59 Hz as a result of these load increases, the needle valves at Bradley must be able to “follow” the load with only a modest time lag. The needle valves have a full-stroke time of 90 seconds. Hence one Bradley unit can provide .67 MW per second to meet load changes. Two units can provide 1.33 MW per second. This capability should allow the Bradley unit to follow all normal load variations and natural load restoration following faults without excessive frequency variations. However, step changes in load may be troublesome. A sudden large increase in load will cause the needle valves to begin moving quickly, and may cause a momentary drop in pressure at the nozzles. This drop in pressure will momentarily reduce the power produced by the Bradley turbine, and thus will contribute to the frequency decay caused by the step increase in load. This phenomena may limit the size of load step that can be 20 Power Technologies, Inc. accommodated without allowing frequency to drop below 59 Hz. More information on the turbine-penstock system and appropriate modeling (including system effects noted in the next paragraph) is required to determine precisely the limit to the step load that Bradley can handle while avoiding load shedding. The Bradley plant will have the assistance of load-frequency characteristics in preventing large frequency changes when loads increase. The loads themselves will drop with frequency, thereby helping to offset load increases. For instance, if the over-all load- frequency characteristic is 1% drop in load for 1% drop in frequency (it may be more than this), a 1 MW increase in a 50 MW load will cause frequency to drop only 1.2 Hz even without help from generator controls or the natural damping characteristic of the turbine. The benefit of load-frequency characteristics will not be available when the load is low or near zero. When loss of the intertie causes load shedding, restoring loads dropped by load shedding relays could impose sizeable step increases in load (including the cold-load-pickup effect). Restoring any feeders that would hit the system with more than about 2 MW are likely to cause additional or repeated load shedding (detailed simulations mentioned above are needed to provide accurate prediction of the maximum step load that can be accommodated without dropping frequency below 59 Hz.)* It may be necessary to restore loads at lower voltages (i.e. in smaller steps) when Bradley is the only generation operating in the Kenai island. Frequency Control Following loss of the tie and runback, the frequency will settle well above the pre- disturbance frequency. If the droop settings are 5% and generator power must be reduced by 60% of rated power to balance load, the speed will increase 3% (to 61.8 Hz). If one Bradley unit is tripped, the final frequency will be about 61 Hz. If one Bradley generator is not tripped when runback of more than about 40% of the Kenai on-line generating capacity is required, the governor speed reference settings on all generators will have to be reduced to keep final frequency under 61.5 Hz. Even when unit tripping will bring the frequency to about 61 Hz without speed reference changes, the reference changes are advisable to get the system as close to 60 Hz (but not below 60 Hz) as practical. ‘ Operators can reduce the risk of frequency excursions below 59 Hz following islanding by setting system frequency somewhat above 60 Hz until all loads are restored. Power Technologies, Inc. The speed reference settings can be set quickly from a central location where there is sufficient information to calculate the new settings. The settings must be changed within quickly if the change is to prevent frequency from going over 61.5 Hz. Alternatively, the speed references can be changed based on the initial overspeed event. That is, the initial overspeed could trigger the change in speed references. A risk with this approach is that a system-wide frequency excursion of similar proportions could trigger the change in speed reference, thereby reducing power produced by Kenai generation until the settings can be restored through SCADA or by operator action. However, it is extremely unlikely that the whole system could reach 61 Hz and sustain a rate of rise at that frequency comparable to the Kenai generation following loss of the tie to Anchorage, making this approach worth considering. Bradley Lake Governor The Bradley Lake governor consists of a deflector and needle valves in each jet. At maximum closing rate the deflector can reduce turbine power by 100% in 1.5 seconds. At maximum closing rate the needle valves can reduce turbine power by 100% in 90 seconds. The deflector thus must be used when fast control is required, and the more efficient and precise needle valves can provide steady state regulation. The deflector and needle valves are to be controlled by a programmable controller that is being prepared by Woodward. This control must be designed to take maximum advantage of the deflector response characteristics in order to meet the goal of keeping Kenai frequency within the range 59 to 61.5 Hz following loss of the Anchorage tie. The digital control can be very precise, limited only by its speed sensing circuit and limitations and limitations associated with the deflector linkage and the turbulence of the stream. One control strategy is to supplement needle valve control with the deflector control when frequency rises above the needle valve droop characteristic by more than some amount such as .25 Hz, then return the deflector to the edge of the water stream when frequency returns to within .25 Hz of the droop curve under needle valve control. This requires that both the needle valve control and the deflector control be simultaneously active in some operating conditions, and also requires that the deflector control be idle when it is not needed, and activated when necessary to limit overspeed. To achieve the full potential of the PC based controller, it is essential that the deflector and needle valve operating characteristics be well known and taken into account in its design. Final design should be based on simulations of the complete plant and the associated electrical system. Power Technologies, Inc. Specification and Operations Planning Studies Though the basic mechanisms to limit risk of frequency and voltage problems upon separation between the Kenai and Anchorage areas are well defined above from a planning standpoint, additional power flow and stability cases are essential to specify contol equipment to meet all the various system operating conditions that can occur. Beyond this, yet additional simulations are needed to define operating procedures and control equipment settings that will make best use of the available equipment under an even wider range of operating conditions. Such studies must be repeated from time to time as system conditions change. Examples of the details that need attention include: ° Calculation of load sharing among the several remaining machines based on droop characteristics. The droop characteristics should each be adjusted specifically to ensure sharing of load when there is a sudden reduction of up to 70% of area generation. These are essentially hand calculations, but demonstration of the load sharing following the initial overspeed can be confirmed in the simulations outlined below. Simulations of the dynamic response of the three plant governing systems to ensure coordinated response to the overspeed and reasonable sharing of the load drop. If loading is not well balanced the CTs may see sufficient reverse power to develop flame stability problems during the runback. Adjustment of reverse power relays so they will ride through temporary reverse power following loss of the Anchorage tie (based on simulations listed above). Simulation of the voltage excursions following loss of the Anchorage tie for several Kenai load levels and generation dispatches to ensure that the SVS controls designed to improve stability will also accommodate islanding. Voltages must be sufficiently well controlled to ensure that generator loss-of- excitation protection will not operate during the initial voltage excursions or later in the post-disturbance steady state condition (SVS control of the Soldotna MSCs will be important). Simulation to select settings for controls such as the overvoltage and overspeed cutout on the Bradley Lake stabilizers. Simulations to select settings for controls on the Bradley braking resistors (for both turn-on and turn-off) and Bradley unit tripping. The relay and associated 23 Power Technologies, Inc. carrier or microwave communication details between Soldotna/Quartz Creek/Dave’s Creek and Bradley also need to be defined. The maximum overspeed reached in case 181 is about 3.6 Hz, or about 6% above rated speed. The Bernice Lake CTs have an overspeed trip set at 5% above rated speed. Though the overspeed can be reduced to less than 5% by use of the brake and/or unit tipping even at 90 MW export, it would be desirable to raise the Bernice CT overspeed trip settings to 6% to increase the margin between expected overspeed and the trip settings. Doing so will reduce the risk of nuisance trip should the system not be fully healthy at the time of separation, or some control equipment not function quite as desired following separation. Use Of TSC Rather Than TCR/MSC Early Phase II studies included a look at the ASEA 7.2 MVAR Minicomp. This is essentially a small SVS in the form of a group of thyristor switched capacitors (TSC). The potential benefits of such a unit would include: ° Reasonable cost and high reliability because it is a factory built unit. ° Improved performance from distributing the compensation across 4, 5 or 6 substations (several small SVSs are typically more effective than fewer large ones -- though the cost per kVAR increases dramatically as the size is reduced). The minicomp was also considered because in all scenarios examined, the net shunt compensation is positive. That is, even when a +20/-25 MVAR unit is applied at Soldoma, the net compensation is capacitive because the unit is in parallel with a 30 MVAR mechanically switched capacitor (MSC) bank. Note however, that to avoid need for any thyristor controlled reactor (TCR) capacity, the MSC equipment at Soldotna would have to be replaced with a minicomp. Power flow cases 2HA and 2HB show, however, that an optimum distribution of the minicomps is not one per substation along the 115 kV system, but four units (28.8 MVAR) at Kasilof and two at Soldotna. These cases are based on steady state conditions following loss of the Bradley - Soldotna line. Additional TSC capacity at either or both locations would be necessary for stability. Cases 2HA and 2HB show that reactive sources are best placed at Kasilof and Soldotna, though other casework shows Quartz creek to be a 24 Power Technologies, Inc. somewhat more advantageous location. The need to lump the reactive sources as shown in power flow cases 2HA and 2HB comes about largely from the high resistance lines between Diamond Ridge and Soldotna. Because of the resistance, northerly power flow causes a voltage drop that is offset by southerly reactive flow. Reactive power injected at Quartz Creek and Kasilof flows largely southward. Stability cases showed that the minicomp was no more effective than two large SVSs, and in fact was essentially just that when several 7.2 MVAR units were grouped at Kasilof and Quartz Creek. Additionally, to use the minicomps effectively, some or all of the MSC equipment at Soldotna would have to be replaced with one or more minicomps. Replacing some of the MSC equipment at Soldoma with TSC equipment may be a good idea if doing so is more cost effective than adding a large TCR to offset the capacitors during backswings, oscillations, etc. However, a single large package of appropriate equipment is sure to be less costly than replacing existing MSC with several minicomps. Line/Transformer Drop Compensation Voltage control in the Kenai can be improved by using the Bradley Lake voltage regulator to control voltage well out on the Bradley-Soldotna and Bradley-Fritz Creek lines. This can be done by adjusting the voltage regulator line/transformer drop compensation for an impedance greater than the stepup transformer impedance. This benefit can also be provided manually if the operators are instructed to raise Bradley 13.8 kV voltage when the reactive power out of the plant his high (i.e. indicating low voltages in the Kenai 115 kV system). However, if it is provided automatically by a line/transformer drop compensator circuit, the regulator will not only hold voltage away from the plant in the steady state condition, but will be somewhat more responsive to reactive power swings. This can help first-swing stability. Unfortunately, it pushes up the machine flux during the first-swing, and this flux is sustained during the backswing by the stabilizer. The net effect is backswing overvoltages 2 to 3% higher than they are without the line/transformer drop compensator (compare cases 157 and 159 respectively). Hence line/transformer drop compensation is recommended at Bradley Lake only if it can be provided with its own slow time constant, or is set only to reach into the stepup transformer. It would be highly advantageous to apply the line/transformer drop compensation through a time-lag that would prevent it from responding at first-swing and damping frequencies, but would allow it to adjust the exciter operating point slowly to accommodate steady state conditions. Aside from improved voltage regulation in the Kenai area, the line/transformer drop compensation would improve steady state stability of the plant measurably. Power Technologies, Inc. The series capacitors and the SVS at Soldotna are designed to ensure steady state stability with the Bradley Lake voltage regulator holding Bradley 13.8 kV bus voltage. However, the stability margin will be increased if the Bradley voltage regulators can hold voltage out on the 115 kV lines. Also, extending the voltage control point out on the lines may maintain steady state stability during some operating conditions (unusually high export) or equipment outages (SVS outage) that might otherwise be unstable. An additional note: The system can be expected to be steady state unstable under moderate to high Bradley Lake generation and/or high Kenai export when the Bradley units on “hand control" -- i.e. with regulators off and voltage controlled manually. Such operation must be avoided. SVS Size and Design The SVS recommended in this study is to have a dynamic range of 55 MVAR (from +30 to -25). However, the SVS need not be capable of continuous operation over this complete range. Operation below 0 MVAR can and should be made infrequent by proper control over the MSC at Soldotna. Operation below 0 MVAR will be temporary as it will occur during backswing overvoltages and loss of load or system breakup. Hence this portion of the dynamic range can be provided by short-time rated components, or by component overload capability. This opportunity will be covered further in the Phase II report. Load Rejection Overvoltages The large amount of capacitors at Soldotna present some risk of “load rejection overvoltages." The potential for damaging overvoltages has only been examined briefly in Phase II, but needs to be considered further before Soldoma substation equipment changes to accommodate the SVS are finalized. This problem will be considered further in Phase Il Preliminary Specifications), but some consideration of the problem at this time is useful in that it may affect decisions regarding the SVS size and placement. Load rejection overvoltages occur when line tipping, often involving operation of backup protection, leaves line or cable charging or capacitors connected to a weak source. In the case of the Soldoma capacitors, a problem that opens the lines to Ski Hill, Bernice Lake, and Bradley would leave the SVS and capacitors on the long radial line from University to Soldoma. The line loading will drop, leaving the reactive power from the 26 Power Technologies, Inc. capacitors to flow all the way to the Anchorage area to be absorbed by load or generators. The voltage at Soldotna would be very high, possibly high enough to cause arrestor failure or flashover of the 115 kV line or bus. If the high voltage does not cause a fault the system, it can cause a breaker to fail if that breaker attempts to open under the high voltage and high leading current The overvoltage would be particularly severe if the SVS is operating at maximum output at the instant the system lands in the radial load rejection situation. With the SVS TCR gated off, the capacitors associated with the SVS (20 MVAR) plus the existing capacitors (30 MVAR) would total 50 MVAR. The voltage would be brought down only after 1 or 2 cycles when the SVS overvoltage protection gates the thyristors into full conduction. Flashover or arrestor failure can occur during this brief period of excessive voltage.° The existing system is probably at higher risk of these potentially damaging load rejection overvoltages than the system will be in the future. The SVS and added line to Bradley will reduce risk of overvoltages. However, the risk may still be excessive, and it is prudent to begin now to determine if the problem will remain, and if it does, to define solutions. Possible solutions include: ° Increase the size of the TCR (though this will not help the first cycle overvoltage when the SVS is on ceiling).° ° Apply metal oxide varistor (MOV) type surge protection to absorb energy and thus hold voltages down until capacitors can be switched off. ~ ° Arrange the substation (breakers and protection) so that radial load rejection is very unlikely. 5 The SVS controls can be designed to gate the TCR on full when a fault occurs, and then return to the voltage regulation mode when the fault is removed in order to avoid high voltage upon fault clearing. § Where an SVS driven to ceiling by faults presents potential overvoltages immediately following fault removal (or resonance problems during the fault), it may be necessary to gate the TCR thyristors full on during the fault, and then resume voltage control following fault clearing. Power Technologies, Inc. ° Initiate trip of the capacitors for any relay or breaker operations that are likely to leave the system in a situation wherein voltages would be excessive. ° Locate the capacitors so they are unlikely to become isolated with a weak source. Two power flow cases were run as a preliminary assessment of the potential for damaging overvoltages at Soldotna. With all lines into Soldotna opened, the 30 MVAR of capacitors left on line, and the Quartz 115 to 69 kV transformer removed, the Soldotna voltage is 147% and the University 115 kV bus voltage is 106%. Under the same condition with 50 MVAR on the Soldotna bus, the voltage is 184% at Soldotna and 110% at University 115 kV bus. The Soldotna capacitors could also cause high voltage if isolated with less than 40 to 50 MVA of Bernice Lake generation. The Bradley generators are large enough to avoid a high voltage problem should one of them become isolated with Soldotna capacitors. Brake Control Considerable detail on the application and control of the Bradley braking resistor will be presented in the Phase III report (Preliminary Specifications). However, several cases were run to determine how critical the brake application time is in terms of stability, backswing overvoltages, and inadvertent brake application. These cases are discussed in this section. Early removal will result in first-swing instability. Late removal will result in large backswing overvoltages, and may cause large power oscillations that the SVS and Bradley stabilizers cannot overcome (i.e. they will be undamped instead of damped). Cases 193 through 196 explore the consequences of inappropriate brake application times for the worst-case operating condition (low Kenai load, Bradley at 120 MW, and Bernice and Cooper off) for the worst-case fault (fault and tip of the line from Bradley to Soldotna) with results as follows: Power Technologies, Inc. DURATION RESULT 3s first-swing unstable 4s near optimum in all respects (.39s is optimum for this system condition) oS large but tolerable back swing overvoltages .6s excessive backswing overvoltages and large but damped post-first- swing oscillations Though the .3s case (193) is clearly unstable, removing the brake at anything less than the optimum time is risky. Cases 154 and 155, though not otherwise exactly the same as cases 193-196, show the results of removing the brake early but not so early that first- swing instability occurs. In case 154 the brake is too small and is removed too soon, in case 155 the brake size and switching time are optimum. Rather, the subsequent large oscillations result in dynamic instability. The brake duration should be optimum or greater than optimum, but not less than optimum. The .6s case (196) shows large post-first-swing oscillations, but they are well damped at the export level examined in this case (damping may be a problem at higher exports if an excessive brake application time initiates large oscillations). It thus does not appear that moderately excessive brake durations carry high risk of dynamic instability as was suspected from some early casework. The improved tuning of stabilizers and other minor differences seem to have reduced this risk. However, leaving the brake on longer than necessary does give rise to larger backswing overvoltages. Some voltages exceed 120% in this case. It should be noted that these cases were run with a detailed load model that includes saturation in motors, transformers, customer loads, and discharge lighting, so the voltages observed are not pessimistic: They are quite representative. Case 204 provides additional information. This case is for trip of the line from Bradley to Soldotna without a fault, and with the brake applied for 0.5s. The deflector is also run in to 90 MW. This case was selected because, the brake, if needed for this case, would have an optimum duration of just .1 or .2 seconds while the duration, if it is to be fixed, must be .4s or more to ensure stability for more severe faults. This case shows that a longer duration is not a problem for this disturbance. Power Technologies, Inc. Case 179 was run for inadvertent application of the brake during low export. Inadvertent application of the brake will cause the largest swing under this condition. This case shows that the brake is not a threat under such conditions. Case 197 shows similar results under heavier export conditions. These cases show that a sensitive brake trigger can be used without risk of causing instability for minor disturbances such as lower voltage faults. The above cases show a relatively large tolerance for the brake duration so long as it is equal to or greater than the optimum time. However, the tolerance is really just .1 seconds or 6 cycles if high backswing overvoltages are to be avoided. The duration will be more critical for higher exports such as 90 MW. That is, extra brake duration will cause increasingly high backswing overvoltages and oscillations as the export is increased. The brake time will also vary somewhat depending on the level of runback. It must remain on longer when runback is reduced to take advantage of the winter Diamond Ridge line overload capability. To ensure that the brake is not removed too quickly, and does not stay on so long that it causes dynamic instability or troublesome backswing overvoltages, it is highly recommended that provision be made to remove it 3 cycles after the peak of the angular swing. This can be done by digital controls at Bradley. The computer would monitor Bradley rotor speed continuously, and each time the brake is applied by undervoltage relays, the computer would send a trip signal to the brake circuit breaker when the rotor speed returns to its pre-disturbance value (or .7 seconds, the maximum brake duration). The logic of the brake controller can be modelled and tested in the same simulation environment used for this study. If digital stabilizers are used at Bradley, the brake control function can be implemented in the same cpu or a tandem cpu in the same equipment. This will be a reliable approach because there will be two stabilizers at Bradley, one on each unit, either of which can control the brake. Power Technologies, Inc. BRADLEY LAKE LIMITED TO 90 MW A stability case was run to extend the conclusions drawn from cases 123A through 123D in the Phase I report. Those cases indicated that with Bradley Lake power at 90 MW and Bernice and Cooper machines on-line, the system would be stable with only the Bradley brake and the Bradley deflector as stability aids. Case 200 was run to determine if stability could also be maintained with just these aids if Bradley Lake is the only generation operating in the Kenai area. The base case includes only Bradley Lake in operation in the Kenai, 40 MW Kenai load, 42.5 MW of export, and all but 10 MVAR of the Soldoma shunt capacitors switched off. Case 200 includes detailed load models and loss of load during the fault. The disturbance is a three-phase fault near Bradley Lake on the line to Soldotna followed by trip of the line at 4 cycles. A 40 MW brake is used, and the deflector is used to run power back to 60 MW over 0.4 seconds starting at the instant of fault clearing. The case is stable. The brake is removed at .35 seconds, indicating some margin for a longer duration fault or a higher bradley Lake power level. The system is shown to be lightly damped, but since the system model includes detailed motor models the simulation should be accurate enough to justify accepting the light damping. Voltages in the Kenai all appear likely to settle between 95 and 100% in the seconds after the fault. The voltages will be even lower after a minute or two when distribution voltages have been restored by LTCs. In order to ensure continued stability in this case, Soldotna shunt capacitors would have to be switched on within about 1 minute after the fault occurs. This would be the case regardless of the cause of tip of the line from Bradley to Soldotna. Altematively, Bradley could be ramped to a lower level such as 50 Mw. SVS ALTERNATIVE Fifty percent series compensation of three of the longer lines in the Kenai area, combined with one SVS at Soldoma has been shown to meet Bradley Lake stability objectives. Hence this solution to the stability problems associated with the existing 115 kV system is recommended for consideration. However, a second alternative utilizing two SVSs and no series capacitors will also meet stability requirements, and may have advantages important to the railbelt utilities. 31 Power Technologies, Inc. Several cases were run to explore an all-SVS option. This option may become important if it is found that the lower cost series capacitor option presents design or operating difficulties associated with subsynchronous resonance. The cases focus on SVS size and damping controls, and address only the worst-case disturbance; fault and tip of the line from Bradley to Soldotna. In these cases it is assumed that the deflector will not cut in quickly enough to aid first-swing stability (the deflector is assumed to reduce power by 30 MW between .6 and 1.5 seconds). Stabilizers are not used on the SVS in these cases. The MSC at Soldotna are set at 15 MVAR and is unchanged in the simulations. Case 208 shows that two +50/-10 MVAR SVSs, one at Quartz Creek and the other at Soldotna, will provide complete stability. However, the full range of SVS capability is not used at either location. Case 209 shows stability with two +35/-0 MVAR SVSs. Neither SVS reaches ceiling during the first-swing, indicating the possibility of further size reduction (if allowed by damping and steady state stability). The Quartz Creek SVS peaks at about 33 MVAR while the Anchor Point SVS reaches about 27 MVAR (both hit ceiling during the fault, but reactive supply during this period has negligible impact on stability). Case 209 was also used to assess need for stabilizers on the SVS. SVSs contribute significantly to damping without stabilizers, so the cost of stabilizers can often be avoided. However, it is highly desirable to have some margin, or redundancy, so that the system will remain stable during forced outages and maintenance outages of stabilizing equipment. Case 209 was run without the Bradley stabilizers to determine if the two SVSs alone would provide adequate damping. Oscillations build quickly even though both SVS are well below ceiling, and thus are providing maximum contribution to damping (ie. the maximum possible without stabilizers). Two additional cases would be useful, one with just one Bradley stabilizer, and one with stabilizers working at Bradley and one SVS out of service. However, even if both of those cases show positive damping, it would be prudent to apply stabilizers to the two SVS to ensure that the system will not be subject to growing oscillations and instability upon loss of a stabilizing device during outage or maintenance of another. Case 210 is similar to 209 except that the Bradley stabilizers are working. The case is well damped. This case shows that +35/0 MVAR is close to an optimum size for the two SVSs. Both peak at close to their 35 MVAR ceiling, and both settle just under 20 MVAR. The zero lower limit is adequate to keep backswing overvoltages under 110%. Power Technologies, Inc. The two-SVS option does not exhibit large backswing overvoltages that a series compensated system does. The reason is that the post-disturbance system angle is much lower in the series compensated system, and the Bradley machines must swing back down to this angle after the brake is removed. The machines accelerate downward as they move back toward the final angle, thus overshooting it and momentarily pushing transfer down close to zero. With SVSs the final angle is much closer to the angle the Bradley machines are at when the brake is removed. Hence there is much less deceleration following brake removal, and little overshoot. With SVSs the modest drop in angle that does occur is largely due to the power reduction provided by the deflector. SVS - Series Capacitor Comparison Though all alternatives for raising the stability limits to Bradley Lake power level and Kenai export involve at least one SVS, the decision between an all SVS solution and one making use of a combination of SVS and series capacitors (SC) should not be based totally on costs and the ability to meet deterministic criteria.’ Some other considerations are presented in this section, and some details will be found in the Phase II report (Preliminary Specifications). These other considerations can affect reliability in ways that are not revealed by tests outlined in deterministic criteria. One of the most important considerations is the ability to handle disturbances beyond the deterministic criteria. Such disturbances are often called “possible but improbable" events or "PBIs.". Though most planning criteria that addresses PBIs indicates that the effects of such disturbances need not be fully mitigated, but should be reduced to the extent practical with modest additional attention to detail or additional equipment. However, when there are two competing alternatives, it is useful to test them against PBIs as a measure of inherent robustness (i.e. the ability to hold together beyond the basic criteria tests). If two alternatives are otherwise equal, the one that is inherently more robust should be selected. The benefit of a more robust alternative may also be judged to have monetary value, and thus offset the high It is usually the case that SC based systems or systems using SCs will survive a wider range of more severe disturbances and operator errors than SVS based systems. Flexibility to accommodate future network expansion or upgrade are also attributes that should be considered in the selection of a transmission alternative. In this regard, the SVS 7 Deterministic criteria is a set of specific and well defined tests that a system plan must pass to be deemed acceptable and fully designed. 33 Power Technologies, Inc. based alternative may be judged to have a small advantage. SVSs, though likely not ideally located for some future system, will usually be useful whatever future development occurs. Series capacitors, on the other hand, may need to be moved or adjusted in size because of line load balancing or SSR problems. The series capacitors require little maintenance, little operator attention, and are very reliable. The absence of controls and the almost total lack of operator attention are probably the most attractive features of series capacitors in the APA system. An SVS, on the other hand, does require adjustment by operators on an hourly or more frequent basis, unless some relatively sophisticated controls are provided to keep the units operating in a mode that will ensure maximum contribution to stability when the system is hit by a fault and line trip. While SVSs have potential harmonic and control problems that must be dealt with in specification studies, series capacitors have their own potential problems. The most significant one is subsynchronous resonance (see the Phase III report for additional detail). It is unlikely, but possible, that subsynchronous resonance problems will rule out use of series capacitors in some or all of the candidate lines in the Kenai. Whether or not this is the case can be determined only after analysis of the potential for subsynchronous resonance, and the possible use of remedial measures to solve the problem. One possible remedial measure is increasing or decreasing the level of series compensation, or remove it from just those lines where it is troublesome. Until such analysis is conducted, it is suggested that the use of two SVSs be considered as a fallback option, and that the economic impact of having to go to this option be recognized as a possibility. If series capacitors cannot be used, then additional study work will be needed to finalize the sizes of the two SVSs and their locations. The locations -- Anchor Point and Quartz Creek -- are fairly well defined and are unlikely to change, however, the sizes, indicated to be +35/-0 in case 208, 209 and 210, should be confirmed by further stability cases (only fault and trip of the line from Bradley to Soldotna was examined in cases 208, 209 and 210 -- 69 kV faults and other 115 kV faults should also be run to confirm the +35/0 MVAR size). If the series capacitor level need only be reduced to avoid SSR problems, then it may be feasible to increase the size of the Soldotna SVS to provide the desired stability performance. It is also possible that increasing series compensation will avoid an SSO problem in which case the Soldotna SVS size can be reduced. 34 Power Technologies, Inc. 230 KV LINE ALTERNATIVE The focus of the Railbelt Stability Study is on alternatives to a new transmission line from the Kenai region to the Anchorage area. However, some analysis of the stability performance of a new 230 kV line has been included as a point of reference from which stability performance of the less costly 115 kV upgrade can be judged. Installing the 230 kV line will allow a reduction in the compensating equipment that would be required for the 115 kV alternative. However, much of the equipment must be retained simply to meet the same stability criteria upon which the 115 kV plan is based. Additionally, if the full potential benefits of a second line are to be realized, some of the compensation equipment that may not be essential to meet the 115 kV system stability criteria, must be retained. With the 230 kV line added to the system, there are two relatively severe disturbances that dictate compensation requirements. One is fault and trip of the line from Bradley to Soldotna. The second is fault and trip of the 230 kV line. First-swing, dynamic (damping), and steady state stability for the worst-case fault (fault and trip of the Bradley to Soldotna line) require that the braking resistor and two series capacitors between Bradley and Soldotna be retained. Runback is not required for stability for exports up to about 75 MW, but may be required at higher exports.* The series capacitor between Soldotma and Quartz and the SVS at Soldotna are not essential. Case 167 shows that the system is first-swing stable for fault and trip of the line from Bradley to Soldotna without the SVS and Soldota-Quartz series capacitor. The braking resistor and runback are essential in making this case stable.? Cases 198 and 198A show that the system is also first-swing stable for fault and trip of the 230 kV line if the braking resistor is applied. Since the 230 kV fault is remote from Bradley, the brake will have to have sufficiently sensitive triggering based on voltage, or be triggered from 230 kV line protection via carrier. Runback may also be sufficient to provide first-swing stability for the 230 kV fault, but since the brake is required for other faults and avoids runback, it is 5 Runback will be required to avoid thermal overload of the Diamond Ridge to Soldoma line under some Bradley power levels, Kenai load levels, and seasons. ° As shown in cases on the 115 kV alternative, the braking resistor size can be increased so that runback is not essential for first-swing stability. Runback may be needed for dynamic or steady state stability, but can meet these requirements, but can be delayed and still meet them. 35 Power Technologies, Inc. the better choice. Also, the speed of response of the deflector is in question at this time and may not allow the deflector to contribute significantly to first-swing stability. Steady state stability is not a problem for either of the two worst-case disturbances (loss of the Bradley-Soldotna line and loss of the 230 kV line), but damping is a problem. It was first observed in case 198A which was extended to 5 seconds to check damping. This case shows essentially zero damping, a totally unacceptable situation if it is accurate. Because this case was run with a conventional simplified algebraic load model, and could be the deciding factor in whether or not an SVS is needed with the 230 kV line, it was rerun (case 199) with the complex load model (includes large and small motors, discharge lighting, saturable exciting current model, etc.). This case shows growing oscillations that will lead to loss of synchronism within 20 to 30 seconds after loss of the 230 kV line. The Bradley Lake stabilizers are active in these cases, but are not adequate to handle the damping problem. Adding series capacitors between Soldotna and Quartz will reduce the damping problem, but is not likely to solve it. Running Bradley Lake power back to 90 MW or less will solve the problem as shown in case 207. An SVS at Soldotna, probably limited to +10/-10 MVAR, would also solve the damping problem. SVSs have been used simply for this purpose in a number of systems, so it is not surprising to have to do so in this case. Though a large SVS would not be required to provide damping, it would have to be operating well within its dynamic range following loss of the 230 kV line. Power flow cases discussed below show that a modest size SVS would go to ceiling or close to ceiling for loss of the 230 kV line. The controller on a small SVS would thus have to be especially designed to provide damping while sacrificing steady state voltage control. If runback is used to solve the problem, it must be triggered within several seconds of loss of the 230 kV line, and should reduce power within several additional seconds. That is, immediate and rapid power reduction is not necessary, but it must be done within about 5 seconds. The amount of runback required is difficult to estimate. Additional stability cases will have to be run to make this assessment. An SVS is the most effective and reliable means to solve the damping problem. While damping will vary with transfer, and reducing transfer can be used avoid damping problems, because damping is so heavily dependent on machine and load characteristics and on the complement of machines that are on-line, studies to define transfer limits (or runback) to achieve damping cannot be highly reliable. An SVS, on the other hand, if 36 Power Technologies, Inc. properly controlled (i.e. not allowed to sit on ceiling) and sized (i.e. with some margin), will easily handle the damping problem for any credible transfer level, dispatch, and assumptions about generating plant and load characteristics. There may be additional justification for providing at least a modest size SVS at Soldotna along with the 230 kV line. Power flow cases P2DA through P2DE cover a range of conditions as follows: P2D Base case with 230 kV line, 25 MVAR 230 kV shunt line reactor at Soldotna, no shunt capacitor bank at Quartz, no series capacitor between Soldotna and Quartz, and the SVS supplying just .4 MVAR (in addition to the 30 MVAR of MSC at Soldotna). P2DA Like P2D except Bradley reduced to 90 MW and the Bradley - Soldoma line open. The SVS is supplying 17.4 MVAR. P2DB Like P2DA except the SVS removed. Soldoma voltage drops from 102.0% to 99.0% P2DC Like P2D except the 230 kV line is out (Bradley remains at 120 MW). SVS is at 9.3 MVAR. P2DD Like P2DC except SVS removed. Soldotna voltage drops from 102.0% to 99.9%. P2DE Like P2D except 230 kV line open at University end. The SVS is absorbing 9.4 MVAR. P2DF Like P2DE except SVS removed. Soldotna voltage rises to 104.2%. Though these voltage variations do not argue strongly for an SVS at Soldotna if the 230 kV line is constructed, they do show that there will be some voltage variations if the line is installed and an SVS is not. If an SVS is not installed, operators can maintain voltages by switching Soldoma capacitors via the SCADA system. In this respect, voltages will be better regulated in the 115 kV alternative. 37 Power Technologies, Inc. If an SVS is to be used to regulate voltage at Soldotna in situations such as those examined in the above power flow cases, it must be sized to provide the voltage regulation and allow for modulation to provide damping. To do this, the SVS would have to have an upward dynamic range of about 20 MVAR, 10 to cover the voltage drop, and an additional 10 for damping. : The above power flow cases were done neglecting any cables that will be required for marine sections of the 230 kV line. This should have little impact on the above conclusions so long as the additional charging from the cable sections is fully compensated by additional shunt reactor capacity on the line. Backswing overvoltages are shown in case 167 to be quite close to the Railbelt voltage criteria. 115 kV load bus voltages swing to about 116%, and are above 110% for about .5 seconds (the criteria allows a maximum of 115% and above 110% for no more than .5 seconds). If an SVS is used to provide damping, it should also reduce the backswing overvoltages somewhat (depending on size and initial operating point). The 230 kV reactor size was selected based on just one load flow case, and does not consider charging from submarine cables along the line route. The actual reactor size and location may thus be different from that assumed for this study. However, since the reactor will largely offset charging, and the two have the same voltage and frequency characteristics, adding the 230 kV cable and changing reactor size and location will have only a very insignificant effect on Kenai stability, but may be important from a steady state voltage control standpoint. The charging current not absorbed by the reactor, taking into account the ferranti effect, must be within the capability of Kenai area reactive control equipment (generators and SVS). This will be especially important during 230 kV line energization, following nuisance trip of the University terminal, separation due to instability, etc. RELIABILITY The 230 and 115 kV transmission alternatives require about the same compensation equipment to provide stable operation, and both will be affected by outages of that equipment. In both cases, the system as planned does not ensure stability for outages of the stabilizing equipment. That is, outage of the SVS, any one of the series capacitors, or the braking resistor, would make the system unstable for fault (three-phase) and trip of the line from Bradley Lake to Soldoma, and possibly for some other severe faults when Bradley Lake power level is high and/or export is high. The SVS and the brake are the 38 Power Technologies, Inc. two most critical items. Outage of one series capacitor would present a problem only for the most severe disturbance (multi-phase fault close to Bradley Lake on the line from Bradley to Soldotna), while an SVS or brake outage may leave the system unstable for loss of the line from Bradley to Soldoma even without a fault. Of the two, the brake is the most critical. The consequence of not designing for redundancy in the critical stability aids is that Bradley Lake power will have to be reduced during such outages to ensure stability, or to reduce the impact on the system if instability does occur. Alternatively, Bradley Lake power level and Kenai export can remain at or close to the desired level at the risk of instability for major disturbances. There are backup measures that can be applied to support increased transfer during outages of critical components. Two examples are increased Bradley runback, and application of generator tripping. Both of these options can be readily implemented when and if operations planning studies show they are beneficial (that is, the hardware and controls that are outlined in this report can be easily expanded to implement these options). The restrictions that must be applied to meet the normal criteria or a reduced criteria during outage of critical components must be established in operating studies or "operations planning" studies. These studies should consist of power flow and. stability studies based on the equipment and conditions that are expected for the future period for which the studies are being conducted. 39 Power Technologies, Inc. APPENDIX I Load Models To ensure accuracy, most of the simulations done in Phase I are based on a detailed Kenai load model consisting of 30% small motors, 30% large motors, 5% discharge lighting and 35% load varying with the 1.5 power of voltage. The reactive load includes a saturable exciting current model set at 5% of the bus real power. Loss of one third of the motors (10% small motors and 10% large motors is simulated in most cases in which there is a widespread drop in voltage during a fault. RAILBELT STABILITY STUDY PHASE II ALTERNATIVES AND RECOMMENDATIONS VOLUME II -- CASE PLOTS Prepared for Alaska Power Authority Contract No. 2800122 PTI Project No. 30.2608 Prepared by: Harrison K. Clark POWER TECHNOLOGIES, INC. Roseville, CA March 30, 1989 PTI Report No. R35-89 READING PSS/E PLOTS The horizonal axis is the variable time in seconds in all cases in this report. The scale is .5 seconds per division in most cases (using a constant scale makes comparison of cases easier). The vertical axis varies, and may represent several variables on any given plot. The several variables, or the several similar variables from different stability cases or different pieces of equipment are detailed in the legend along the right side of the plot. The legend shows the scale limits. To get values for the 10 divisions, divide the total range from lower to upper limits, and work up from the horizontal axis. For instance, voltage is plotted from .3 to 1.3 per unit, so the divisions along the vertical axis represent 10% steps, starting at 30%. Note that the downward voltage excursions may look larger than actual because the vertical axis scale cuts off the lower 30%. Base values may be either machine base (e.g. for PMECH) or system base (e.g. for PE, generator electrical power). Per unit values can be multiplied by 100 to convert to percent. Voltage bases are 115 kV and 230 kV. Most generator rotor angles are plotted relative to ML&P unit number 7. That is, the angle that is plotted is the difference between the generator rotor angle of the identified machine and the ML&P #7 machine. This is used to show the angular swings on the Kenai peninsula relative to the Anchorage area. The channel labels in the legend are as follows: A = generator rotor angle in electrical degrees Vv = voltage in per unit of 115 or 230 kV E = bus frequency deviation from 60 Hz, in per unit of 60 Hz (multiply by 60 to get deviation in Hz) SP = generator rotor speed deviation from nominal in per unit of nominal rotor speed B = SVS admittance in per unit of 100 MVA system base (multiply by 100 to get MVAR) stabilizer output voltage in per unit (amount by which voltage regulator input voltage is biased) P = line real power in MW (from and to buses follow, P-DR-APT is from Diamond ridge to Anchor Point) ST Q = line reactive power in MVAR PE = generator terminal voltage, per unit PG = generator terminal power, per unit on 100 MVAR base QG = generator reactive power, per unit on 100 MVAR base PM = turbine power, per unit of generator MVA rating (e.g. 63 MVA for Bradley units). EF = Field voltage in per unit of no-load airgap Efd STABILITY CASE LIST The cases are listed below under the same headings used in the text report (Volume 1). A short description is provided for each case. All cases run with Bernice and Cooper off unless otherwise noted. 115 kV UPGRADE 69 KV FAULTS 184 Fault (3 phase) at Soldotna end of Soldotna Quartz 69 kV line, clear both ends of line at 7 cycles. Motors not modeled in detail and load not dropped. Unstable. 185 Like 184 but clear both ends at 6 cycles. Stable. 186 Fault (3 phase) close to Dave’s Creek 25 kV bus. Drop Dave’s creek area load. Stable at 20 cycles. 187 Fault (3 phase) on Diamond Ridge 69 kV bus, drop Diamond Ridge load. Clear at 9 cycles. Unstable. 188 Like 187 but clear at 7 cycles. Stable. 189 Fault (3 phase) on Lawing 69 kV bus. Clear at 7 cycles, drop area load. Stable. 190 Like 189 but clear at 8 cycles. Stable. 190A Like 189 but clear at 9 cycles. Unstable. 191 Fault (3 phase) at Bernice end of Bernice Tesoro line. Drop Tesoro load. Clear at 7 cycles. Stable. (not plotted because plot file was overwritten by case 192). 192 Like 191 but clear at 9 cycles. Unstable. 212 Like cases 189, 190, 190A except fault duration is 10 cycles, unsuccessful reclosing occurs after 18 cycles dead time, and the brake is used to provide stability. The brake is applied only on the first fault because the second occurs during the backswing and is thus stable without the brake. 115 KV FAULTS 174 175 176 177 178 Fault (3 phase) at Bradley, trip Bradley to Fritz Creek line at 4 cycles. No brake, no runback. Unstable. Like 174 except apply brake. No runback. Stable. Fault (3 phase) near Soldotna on the Soldoma to Ski Hill line. Clear at 4 cycles, no brake, no runback. Unstable. Like 176 except 40 MW brake applied. Fault (3 phase) on Dave’s Creek radial 115 kV line. Drop area load, drop 20% load in Kenai, clear in 4 cycles. No brake or runback. Stable. OTHER DISTURBANCES LTS 213 180 Inadvertent brake application at low export (9.4 MW). 15 MVAR capacitors at Soldotna switched off, SVS is floating. 40 MW brake on for .7 seconds. Stable. Like 179 except Kenai is importing 42 MW and there is one unit at Bradley operating at 20 MW (Kenai load is 70 MW). Stable. Fault (3 phase) and trip of one Bradley Lake unit plus deflector run in to 75% on remaining unit. Case is pessimistic because 13.8 kV bus tie is closed in the model while it will not be in practice. KENAI-ANCHORAGE 115 KV RECLOSING 169 170 171 172 173 202 203 Three-phase reclosing between Soldotna and Quartz for a line to ground fault near Soldoma. 64.3 MW export. No brake, no runback, no load drop. 15 cycle dead time. Unstable. Like 169 with brake applied. Very stable. Like 169 except single-pole reclosing. Stable. Like 171 except 25 cycle dead time. Stable. Like 169 except export reduced to 41.8 MW (Bradley at 90 MW). Stable. Single-pole reclosing between Dave’s Creek and University for single-phase fault near Dave’s Creek. Dead time 25 cycles. 64.3 MW export. No brake, no tunback, no load drop. Unstable. Like 202 except 15 cycle dead time. Stable. BACKSWING OVERVOLTAGES 161 162 162A 163 164 165 166 205 206 Fault, trip Bradley to Soldotna line, brake removed at optimum point in time, SVS +20/-15 MVAR, 3 SCs, deflector run in to 90 MW. Stable but troublesome backswing overvoltages. Like 161 but SVS at +20/-25 MVAR. Backswing overvoltages reduced 3 to 4%. Like 161 and 162, but SVS at +20/-35 MVAR. Backswing overvoltages reduced an additional 3 to 4%. Like 161 but one Bernice and one Cooper unit on, export at 75.1 MW. BAckswing overvoltages lower. Like 163 but Bernice and Cooper voltages decreased to reduce their initial VAR loading. 1 to 2% improvement in backswing overvoltages. Like 161 but phase-to-phase fault on Bradley to Soldotna line. Much lower backswing overvoltages. Like 161 but reduced runback (SVS size increased to compensate). All backswing overvoltages under 113%. Like 161 but no Bradley stabilizer, deflector delayed .5s, SVS +20/-25 MVAR, no Quartz Creek capacitor bank, 50 MW Bradley brake. Backswing overvoltages only slightly above 115%, but first-swing voltages dip below 70%. Like case 205 except SVS at +30/-35. Upper limit increased to limit first-swing voltage excursion. Both first-swing and back swing voltage excursion reduced and SVS lower limit not fully used. 90 MW EXPORT 168 Export 90 MW, Kenai load 42 MW, one Bernice unit (24 MW), one Cooper unit (8 mw) on. SVS at +20/-15 MVAR. Fault (3 phase) near Bradley on Bradley to Soldotma line. Brake used. Stable. REDUCED RUNBACK 166 Fault, trip Bradley to Soldotna line, SVS increased to +30/-15, Runback limited to 11 MW. SVS near ceiling in post-fault period and damping is poor. Otherwise stable. . LOSS OF ANCHORAGE TIE DURING EXPORT 181 181A 181B 211 Separate Kenai and Anchorage areas north of Soldotna after a three phase 115 kV fault at Soldoma end of Soldotna to Quartz line. 69 kV tipped along with 115 kV line. Export at time of tip is 90 MW (case P2E). One Bernice and one Cooper unit on. 20% load drop due to fault. Bradley assumed to runback to 30 MW. 30 MVAR dropped at Soldotna at .3 seconds. Overspeed reaches 63.6 Hz. Like 181 except 40 MW brake applied for .7 second. Overspeed reaches 62.4 Hz. Like 181 except one Bradley unit tripped at 61.4 Hz. Overspeed reaches 62.6 Hz. Like 181 except apply 50 MW brake, trip one Bradley unit, reduce governor speed references, trip Soldotna capacitors in two steps (.4 and .8 seconds). Overspeed is less than 61.5 Hz, voltages do not exceed 111%. USE OF TSC RATHER THAN TCR/MSC 2HA 2HB Power flow case showing voltages following loss of Bradley-Soldotna line with single 7.2 MVAR ASEA Minicomp TSCs at six locations. MSC capacitors are located at Soldoma (20 MVAR) and Anchor Point (14.4 MVAR). Note low voltages. Like 140 except TSCs located at Kasilof (four 7.2 MVAR units) and Soldotna (two 7.2 MVAR units). Note also some reactive supply at Quartz that should have been removed. LINE/TRANSFORMER DROP COMPENSATION 157 159 Fault and trip of Bradley to Soldoma line, no line/transformer drop compensation on Bradley Lake voltage regulator. Like 157 but 18% (machine base) line/transformer drop compensation. Reduces downward voltage excursion during first swing, but also pushes up backswing overvoltages. SVS SIZE & DESIGN no cases LOAD REJECTION OVERVOLTAGES no cases BRAKE CONTROL 193 194 195 196 197 154 155 179 204 Like case 161 (fault, trip of Bradley to Soldotna line) except brake off 6 cycles early. Unstable. Like 193 except brake off at correct time (essentially identical to case 161). Like 194 except brake off 6 cycles late. Stable. Larger backswing overvoltages. Like 194 except brake off 12 cycles late. Stable. Trip of Bradley to Soldotna line without fault, brake on for .5 seconds (longer than necessary). Brake off too early, results in large oscillations that cannot be damped by stabilizers. Similar to 154. Case shows inadvertent brake application is not a threat and does not dictate brake size or timing. Similar to case 197. BRADLEY LAKE LIMITED TO 90 MW 200 Bradley Lake at 90 MW, no SVS, no SC, 40 MW brake, runback to 60 MW. Stable in all respects. Shows no line compensation required for 90 MW operation at Bradley. Stabilizers and brake and deflector control are required. SVS ALTERNATIVE 208 209 210 Fault and tip of line from Bradley to Soldoma with two SVS and no series capacitors. SVSs 45/-10 MVAR, no SVS stabilizers. Stable, very low backswing overvoltages. Similar to 208 except SVSs 35/0 MVAR and no SVS or Bradley Stabilizers. First-swing stable, low backswing overvoltages, negative damping (growing oscillations). Similar to 209 except with Bradley stabilizers operating. Stable in all respects. Shows two +35/0 MVAR SVS are adequate with runback to 90 MW and a 50 MW brake. 230 kV LINE ALTERNATIVE 167 Fault, trip Bradley to Soldotna line, reference case, stable. 198 Fault, trip 230 kV line. Unstable 198A Like 198 except brake applied. First-swing stable, shows negative damping. 199 Like 198A except detailed load models. Significantly less damping than case 198A. : 207 Like 198A except Bradley ramped back to 90 MW. Stable (though damping is poor). UNIY 230 9977 INT 138 1.002 8! -0.8 ” UNIV 115 ale 1,010 9986S SIS ole HOPE ig 1.008 49 SIP ti.g ale alo cr 2 & 22 - 82 OAVES CAG = 3966 3 s 3 2 = 22 o ; 22 los SE QATZCAB |S 1.020 “ go2 | 18.3 — 1.014 QuaRTz Te 7% x . “ 1.0 at. 3987 § tag? 6.9 alts 1, KASILOF l= L012 a 74 S{T__3iea ow 3 sis % COOP LK 1eo1t 3991 13.3 | S| = coor LK 1.011 3 19.3 ajo slo OIAM AOG 1.031 9999 38.7 Se == gn ° pv SAAD #1 FATZ cn 1.032 501 9997 40.1 120 = 3.5 _ 1,022 Ss \ S oO =40.1 $2.6 =; 1: 632 40.1 CASE P2SVS: 2 SSMVAR TCR, NO SC, 1SMVAR@® SOLDOTNA if BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 100%_RATEA P2svs.SAV FRI, MAR 31 1989 14:00 if BEAN 69 3012 UNIY 230 9977 INT 138 1,001 =1.0 42 INT 34.5 BR2 -33.91131.4 717.9 19.0]}-19.5 wv FATZ CA . 9997 38.9 a -46.7 at £3084 33.2 BL © 120, BEAN & COOP OFF, CASE P2A': CASE P2A.SAV FRI, MAR 31 BRAD #1 S01 120 =3.9 1,007 46.9 ANCHORGE 9966 UNIV 115 9985 3 ed > OAVES CR 9986 5 23 7 -5|f24.2 3 o Sb DAVES 25 9996 LAWING 4O M +20/-2S5 SVS e SOLD, 1989 Ww 3 KENAI LOAD, $0%, SC, 14:02 64.3 MW EXPORT NO QRTZ CAPS 100%_ RATES 56 DAVES 25 9996 LAWING PLT2 ages ancnonce $|/% 1.019 3966 ts -3.8 a= 75 yury us a2 ——— INT 34.5 fod ° UNV 34.5 38 SS a Biss 15089 ol ae = PORTAGE Z| . 4a ' 4 "is ale Sle ge 1S 08 —S as DAVES cA S| 1.928 3986 5 -i7.5 ale ele z vr est os QUARTZ 50" aS 1,031 9987 |= -19.5 ed is KASILOF Z]4 1.019 74. Tis -23.5 oy = alc 7 ? coor UK 1,094 9991 -20.0 coor LK + 1.094 79 =20.0 ae sic ®O IAM AOS 1,026 9999 =23.6 7 BARRO HS fata BRAD «1 FATZ cn 1,030 S01 9997 =23.2 s. meer] 14878 [ TD r -15.9 -22. vis, Tfo% P A R n2421 BL © 30, BERN&COOP OFF, 70 MW KENAI LOAD. 43 MW IMPORT 100%_AATEAR CASE P2AD: 1 SVS, 3 SC, NO QRTZ CAPS CASE P2A0. SAV FRI, MAR 31 1989 14:48 BERN 69 17.4 Pura uf UNIY 230 1.010 ANCHORAGE Z/< 0.993 3977 110 93966 TIM Olt a" ol= zis ul- Zia $ INT 138 1.904 sii NUITES, ie = 9.994% ' 0.2 42 INT 34.5. 2 T29. 9 iS 15 UNV 34.5 UNV34.S8 | 0.961 38 - 860 83 z a2 ele a 9. 982 gis cic : x +977 ol PORTAGE «j= 0.975 48. RIT 9°68 i ayo ale ac oS HOPE 977 49 z 24 =— ™ als 2 a 20 ale 3g DAVES CA oi 0.984 € 3986 air 19.3 s is cic ts ~ a2 mk 22 Io . se QRTZCAR | 5 1.021 a 902 17.4 — QUARTZ — sO”, Slo 9.992 9987 al? 23.6 tT o— xb.1 0.9 — ol? 1,000 KASILOF ni/S tora g6-2 74 fi 33.0 coor ux 1,004 26.6 = 1.009 306 33.9 ey gor ox 1,020 aucn pF] S 1.098 37.2 OIAM AOG 1.035 9999 33.3 BRAD HS eo BRAO et FATZ CR 1,032 SOL 9997 41.1 120 2.1 SO 44.5 5300" -48.8 . ° oS? P2B BL 120MW, BERN 24MW, COOP 8MW, 60MW KENAI LOAD. 75.2MW EXPOR 100%_ RATER | | CASE P2B: +20/-15 SVS@SOLDOT, 3 S0Z% S$.C., 30/7.2 SHUNT CAPS | | CASE P2B.SAV FRI, MAR 31 1989 14:03 BERN 69 OIAM ROG 9999 FATZ CR 9997 -46.7 $30s4 307 UNIY 230 BL © 120, BERN & COOP OFF, P20: 230 KV, CASE P20.SAV 2xSoz% SC, FAL. MAR 31 40 MW KENAI LOAD, 3OMVAR®SOLD, +20/-15SVS, 1989 14:05 UNITY 115 wiles 3ses__ = Ss Sb OAVES 25 9996 LAWING 69.0 MW EXPORT 2SMVARON230 UNIY 230 1 I UNIV 1156 umtvouny | 1.949 2388 8so =17.5 ~5.6)/24.6 29.2 o>. UNV34.S8 | 0.976 860 -23.4 az & 3 2 | 4 yes he Bo i 1,031 z= i -18.0 s 7 ese gg # 1 ' ' a|> ' Shes 1.930 1 : 21703 1 ale = ' 3 -! : — ° als 1,027 KASILOF 3% 0,993 \ — _<i7-0 5 i 5] an ' sis 3? t coor Lx 1,027 - ' 9991 17.0 Snipe + wo 8% ANCH PT Loz 9:1 ' — a | ae 1 i ' ' 1 O1AK AOS ! Loss| 9999 ais 1 ' 1 \ BARD HS ! eee! BAAD et FATZ cn 9997 I CS A -85.4 p Ps80 os L | 2:8 J BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT 100%_AATEA | | LIKE P20 EXCEPT BL-SOLD OUT AND BL AT 90 MW | CASE P2DA. SAV FRI, MAR 31 1989 14:18 | PLT2 wae UNIY 230 1,015 ANCHORAGE 41 1.003 9977 “17.1 9966 ‘ht 19.4 = 2\~ alz sis / =e sie / INT 138 908 aly os 2:8 wires PE iS Hot Sle 1.011 49 o}f -ia.3 — ale s\s 2 8 22 3g OAVES CA %_: = 3986 o s q 32 t Sz ' om ' ' ' > — ' s99t QuaRTZ <= 0% 1,008 1 is. 9987 ie ~17.0 ' slo ' a|o 1 1 1 1 ay f +00) -is. ' ' ' ' ' +003 1 -i6.7 ' ' 2 1.003 . -16.7 ' 1 1 ' ' ' ' | ' ' ' 1 1 IAM ROG 1.024 1 9999 5:0) 1 ' 1 1 1 1 BARD HS y hase RAD ot FRTZ CA 4619) | Lesteem aaa aeo= Sot 9997 le x — [90.0 : sic slclliclilaaleem 1.040 1.004 [ { ihe 13.9 } P 4 D =) Fate 12 ie { (femal P20B - LIKE P20A EXCEPT SVS OFF-LINE (REMOVED) CASE P208.SAV FRI. MAR 31 1989 14:19 if BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT 10Q%_ RATER | PLT2 8s UNIY 230 2011 ANCHORAGE i 0.995 3977 i2.3 9966 Taide 12 ies 0.996 td =i3.3 lo Too. “la 29.2 is 6 = UNV34.s8| 0. ie 860 E i =o or T 0, 307 Slo cle io. aie PORTAGE «| 3 a 48 3 — = se rf Hop ive 3 ———__ 7 ale 7 a n 9.0 3.1 SEE 15°}8 Tire ot “ ae ale ORVES CA ils 9.987 = an ie cose 3966 3 2:8 s s|= SIF 17.2 = 2 Me = = 2 Fz en ol eet 1,015 SKI HILY 1,017 SOLO 69 QUARTZ ZIT aie 9.990 20 15.5 38 17.4 2 9987 |e at 8:4 ——— aye on alm T ole =|6 Z l= gis Rm ais =3. s° ; =11.8 | 71.8 Sa 2.5 — Vv *3 ' | 9-983 8.8 coor UK ges coor ux +983 ” . OAM ADG 1,039 9999 26.5 = aye ac aie spe M4 BRAO et FATZ CR 1.035 a 9997 26.2 73.7 ee S——— L$ — 20 CAP 47.9 =3. =16.2 1.040 1,007 =46.7 3i.e 33.2 —= eo 70K | re 25.5 =~ C P2O0C - LIKE P2A EXCEPT 230 OUT, SVS AT 9.3 MVAR tit BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT 100%_AA CASE P20C.SAV FRI, MAR 31 1989 14:20 3740-0 00 S2 S3AU0 (ONT MUT 9s 9666 ———=7 e 9°01 oo 1 8S Q; = 22 oly &, £ ( | o"gis 58 fo AY | [ NO w on i BS Bn OY eS v 1 ho} h'se b*22- 2° t2-H2"02 chi Late ‘ we “2 ee iS ze zg Fr EH 0-0 |( zo v0 z z 234,.9, i Ho" so, de, UNIVOUMY 850 QUARTZ 9987 * ac 2 t a @- glo 3° 2, go “oO z Es Sis 3s 5 OIAM AOG 9999 , 2 ot 2 e ® =o z se fe Bes 2 Sc S¢ Pe = aS of | thew {( aE . S*hE g e*Oh- 4 FATZ CA 9997 Kb c oO oa x< wW = = o a wo a a oO Jw w HOn a Nu ZW wu>t xn =z. oe 20 ooo xo o “Mm Lum Ww or-e ac awst ou Ox + OWr c wsOW a zu <6. Ww > owc x<w ojo nu a a IN a e@ow aw Inve mao Ip Tin UNIY 230 1.911 ANCHORGE 9977 ~12.3 f INT 138 1,904 4 -i2.8 / ait 2S 0.99 i Ale 25393 42 ~ / INT 34.5 S|e T29, 2 Bla 30 UNV 34.5 UNv34.58 | 0,963 38 860 =i7.4 =j2 ojo gic sie ToL “ 3 a \ = # nu - ol% PORTAGE «/2 0.982 48 ol -S.4 es aye ale aie Lo 2 HOP wwe 3| 2 % -|e 82 DAVES CR 0.987 z 3966 3 2:8 s =" |= aie “dd : Fé s 2 of =|= 9.990 a 4 he =|% KASTLOF =|= 74 mt Le! ae ole ale ale | Re | o Wrencnes| INCHCABS| = 1.012 900 mis 27.1 ANCH PT 1.039 75 24.2 omy aie sis — | DIAM ROG 1.039 9999 26.4 Se “ j 4 | a | 1 SRAD HS neal? BARD #1 FRTZ cA 1.035 = S01 9997 26.1 3.7 L$ — p20 47.9 16-20) ovo 1,007 46.7 3i.s 39.1 $208 25.4 P2OE - LIKE P20 EXCEPT 230 OPEN AT UNIV END, SVS ON Tit BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT ' CASE P2D0E.SAV FRI, MAR 31 1989 14:22 yp’ Gu vy uty 230 9977 a iM Ui Z=ZA if tnt Su.s / UNV 34.5 38 SERN 69 if CASE Pedr. SAV FRI, MAR 31 1989 14:23 P2OF - LIKE P20E€ EXCEPT SVS REMOVED | a2 OAVES CR 1.003 = 9966 2.3 s Po #8 1.908 | S27 | | 3 | = on | 3\o | coor ux 1.002 | 9991 3 coor ux 1.002 | ” 8.0 | ae | ® | | sag "ee sett go ds | zis | | 5503" 3,099 sor *! | 120 | CAP =12.9 1 5.9 30.5 Sarat — ———— | ~45. js is =. i aaex| Be P2CF) | BL © 120, BERN & COOP OFF. 40 MW KENAI LOAD, 69.0 MW EXPORT 10Q0%_RAATEAR | | IS 1.007 tT 13.3 UNIY 230 Ao 1,009 ~13.3 ae — SS INT 34.5 Coie pe 29.2 Boe~ ahs 4.58 | ora7z : eo To j Heiss gig os =—— g = i/S 1,015 ~i2.2 —— SERN 69 8 2 2 elo a2 OAVES CRoic * = goon SF | 2308? 5 Se = = nie iesier a a* “tt_38 ez =} 027 =8.4 KASILOF 74 QIAN AOG 9999 FATZ CR 1. 9997 6. ai [p2tc) A BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, | P20G: 230 KV, 2XS50Z% SC, 3OMVAReSOLD, NO SVS, CASE P20G.SAV FRI, MAR 31 1989 14:15 BEAN 69 18.4 UNIV 230 93977 INT 138 KENAL 1.016 20 36.1 * © sate a e 3.0 3 3.4 = Vv 3 KASILOF 013 74 39.6 OIAM AOG 1,039 9999 46.2 SS Gate ss 1. a5 4593 33 46.1 =16.0 46.9 tod4 45.2 120M2, BERN 24MW, COOP 8M2, BL CASE P2eE: CASE P2E.SAV +20/-15 SVSeSOLD, MAR 31 42M2 KENAI LOAD, 3.50% SC, 1.001 O.1 coor LK 9991 coor ux 79 2 os BRAO et S01 120 73.7 1.007 58.9 9985 PORTAGE 4a OAVES CR 9986 UNIV 11S -97.8 5.4 9996 LAWING 30/7.2 SH CAPS 14:13 90 MW EXPORT Sb DAVES 25 Pur ¥ UNI 230 1,019 ancnonce S/S 1.010 9977 2.2 3966 +}! 3.9 — a > sia <i INT 138 1,013 = oe : 3964 a.4 wires o UNIV 115 2le5 1,012 2K -3.9 42 3 INT 34.5 = lS clot 26.3 “j= i Wy is UNV34.SB | 0.984 38 : 860 7.5 ““y7 oye INOTAN =I 1.016 sé cla x gle sic 46 ale -3.8 — GIROWODO “/S 1.019 v7 silos -3.7 — me olen @ | ele . sis PORTAGE 4s BERN 69 1,002 3988 zi.s oe == a6 sles HOPE Vv 49 BEANIC! 1.010 3930 | _-9.4 % =13.7 13.8 —e ~a. 4 “se OAVES CAMS 1,030 <= - 3986 tio. -2.4 Ss =e = cle ole 22 [Es0-GEN 0.989 oh, = # Sh tes #9 QATZCRE|.5 1.048 a 902 |= -3.0 50% nle KENAT 7: . 1,030 55 3987 sl -i.5 a= oo s|- e oly -10. y? -0.5 V 5s 33 0.9 — 1,028 KASILOF <i.¥ a ow 33 COOP LK 1,028 g991_ | i coor ux 1,028 3 <i. sje s|o OIAN ROG 1.031 3999 2 BRAD HS jae BRAD «1 FRTZ CR 1.030 9997 78 16.0 Es " P26 a BL © 90, BERN & COOP OFF, 7S MW KENAI LOAD, 9.4 MW EXPORT 100%_RATES | | CASE P2G: LOW EXPORT CASE FOR INADVERTANT BRAKE TEST CASEP2G.SAV FRI, MAR 31 1989 14:47 9977 +001 43.1 8.3 0.3 9989 ae ola cla ols a= FF 20 9-907) 98 0.908 aye oy. == a6 l= gg “4. 2 Vv a e lm 2 ls 28 74. Zi? __o.913 2 ale ajo sl ala = ely VO Ge ole 900 _#|7 0.979 1.000 Fogo 9992 — soo 20% 1.007 9966 “IN 0.992 1 a “ 48. Ei he me zs ee SS 43 7 ~42.19/42.0 lo 2 a e sb 2 z & e 2.940 = 6 |= 210 0.940 hemp: eo ee o|o ols =— ols # single 72 mve mM) nicome locations CASE \4O 1 | | | WINTER PEAK OISTRIBUTED MINICOMS, MON, MAR 27 1991 1989 KENAI 16:17 LOAO 40 MW NO SERIES COMP BERN&COOPER UNITS OFF L = 1.012 ge 59° = Atha 2 3 s 1.000 4.5 0.9) elo 0.996 0.998 ale or, a> dig =4.6 Vv “1.8 alt - ot \astlot 2/7 1.000 aya ayer ajo o\~ s\5 a= @|* ols SI? 1.003 1.012 o am o ¢ ae 0 1.008 se sje + a5 2 =112 Plode Foor 0.992 Minicomep @ ' ' 1 1 1 ' 1 ' 1 1 ' ' ' ' ' ' ' ' ' 1 1 1 0.992 ' ' ' ' ' ' ' i ' 1 ' 1 t ' ' ' ' t ' ' ' ' 41.2 8.7 415 1.001 12.5 s 49.4 ~48.9)/43.4 Ui. ~N2.3 CASE 14) WINTER PEAK 1991 -- KENAI LOAD 40 MW BERN&COOPER UNITS OFF L NO SERIES COMP, 7 MINI COMS MON, MAR 27 1989 16:06 ] BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT F P2A -- +35/-10 SVS @ SOLD, 3 50% S.C., CAPS 30@SOLD, 7.2eGRT FILE: OUTPUTIS4 CHNL*#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 Dei seoieieieiicini x =50.00 CHNL*'S 3,10: CA-BEAN 33-CA-MLP 73 150.00 it + -50.00 CHNL®'S 1,10: CA-BLUG 3J-CA-MLP 7 150.00 escasss2scs ° 50.00 CHNLs'S 6,10: CA-CHENASI-CA-MLP 73 150.00 ad =50.00 CHNL#'S 8,10: CA-BRAD 1J-CA-MLP 73 150.00 ———__ 50.00 Ss sc —J oa B Ss Ss cs so LL 7 2.5000 3.5000 TIME 1.5000 0.5000 ny, ANGLES REL TO MLP #7 FEB 08 1989 15: WED, 4.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A == +357-10 SVS @ SOLO. 3 SOZ% S.C.. CAPS 30@SOLD, 7.2eQRT RILE: OUTPUTISY CHNLs 22: CV-PORTGEI 1.3000 asians ~ 0.3000 CHNLs 18: CV-SOLOTAI 1.3000 Di x 0. 3000 CHNLw# 15: CV-ANCHPTI 1. 3000 Soe = 0.3000 CHNL* 19: CV-QATZCAI 1.3000 Onn - 5255-2 ° 0.3000 CHNL® 11: CV-ET-8A0I 1.3000 4 0. 3000 CHNL* 12: CV-BAAOLYI 1.3000 —¥+4 0. 3000 — — 0.0 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 248 198915 VOLTAGES FEB 08 WED, BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +35/-10 SVS © SOLO, 3 50% S.C., CAPS 306SOLD, 7.2eQAT FICE: OUTPUTS? CHNL# 4S: CB-ANCHORI 0.4000 eh ce -0.100 HNL* 44: CB-SOLOTN 0.4000 ics Wille + -0.100 CHNLs 43: CB-HEALYI 0.4000 +o 7 -<<S Soo ° -0.100 _CHNL® 42: CB-GLOHLLI 0.4000 ee ili ce -0.100 CHNU# 41: CB-TEELNOI 0.4000 TT -0.100 5.0000 4.5000 4.0000 2.5000 3.5000 TIME 1.5000 0.5000 47 SVS ADMITTANCES 1S: FEB 08 1989 WED, PeA -- +35/-10 SVS © SOLD, 3 S0% S.C.. CAPS 30eSOLD. 7.2eQRT FILE: OUTPUTIS4 CHNL® 35: CF-HWYPARKI 0.0167 ee ts SSS x -0.067 CHNL# 34: CF-HEALYI 0.0167 SS SS * -0.067 CHNL# 33: CF-UNIVER) 0.0167 eSSS2=5===S= ° -0.067 CHNLs 32: CF-SOLOOTI 0.0167 SS ae ae -0.067 CHNL# 31: CF-FRITZCI 0.0167 Ce -0.067 lo S S ) wo 3 rr) = 7 = o o Ss 3 = 7 cs Ss oS a ” ° S Ss o a e s 3 a “a ° s Ss s a ° 3 S a BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 1.0000 0.5000 0 0 48 FREQUENCY FEB 08 1989 15: WED, TIME BL e@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- *35/-10 SVS © SOLD, 3 50% S.C., CAPS 30¢SOLD, 7.2eQRT ~~ FICE: QUTERUTLSS CHNLs‘S 4,10: CA-COOP 1°-CA-MLP 73 150.00 Gerais x =50.00 CHNL®* 10: CA-BEAN 33-CA-MLP 7] | 150.00 ir + -50.00 HNL« ‘S$ 10: CA-BLUG -CA-MLP 7 150.00 Ceo H acm | ° -50.00 CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 5 150.00 Se, | oe ee -50.00 CHNL«#*S 8,10: CA-8RAD 13-CA-MLP 7] 150.00 SS ae -50.00 \ s 1 d S : / s w ' \ Ee i ‘lean { \ 1 x \ \ s 1 i) 18 Me ' => ‘ 7 ’ the 4 — v “canal > ' \ 3 i s ' ; o s 1 bt o cs = ' \ s x \ a ‘ | t ; / ¥ i 7 i > } ZA 4 1 iH 4 a } \ a a i \ S 9 1 s -— \ \ =a t \ oe \ ) ino ' Ze = Fag oe Z| aaa he r 7, oP) del . g ee =<, ‘ © lam 5 \ +S \ vs “oS, ‘ — \ ie 5 ™ > : \, \ os 2 ; \ eel _— é \ ' \ | 4 \ \ \ \ \ iN ° SY cs 2:58 ANGLES REL TO MLP #7 1 2.5000 3.5000 4.5000 hai ‘fier TIME ti 1.5000 0.5000 FEB 09 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT PeA == #35/=10' SVS) © SOLO; 3|50% S.C... GAPS S0eSOLD, 7./20eqAT FILE: OUTPUTISS HNL® 56: CPG-BAA 2.0000 os ° 0.0 CHNL® 57: CPM-BAADII 1.5870 | 0.0 CHNL® S58: CEF-BAADII 19.000 ee 1.000 co cs Ss “ cs s so = cs s os a s =] oso 3 cs s = so s 4.5000 13:06 BRADLEY LAKE FEB 09 1989 THU, 2.5000 3.5000 TIME 1.5000 0.5000 1.3000 BL © 120, wu BERN & COOP OFF, 40 MW KENALI LOAD, 64.3 MW EXPORT P2A == +94/-10 SVS © SOLO; 3 50% S.C... FICES CHNL# OUTPUT1SS 2: CV-PORTGES aie CHNE# 18: CV-SOLOTAI CHNL®* 15: CV-ANCHPT CAPS 30@SOLD, 7.2eQRT HNLs 19: CV-QATZCA 1.3000 ee a © 0.3000 CHNL® 11: CV-ET-BA0I 1.3000 SRS hells 0.3000 CHNL®# 12: CV-BRAOLYI 1.3000 ee 0.3000 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 12:59 VOLTAGES FEB 09 1989 THU, 2.5000 3.5000 TIME 1.5000 0.5000 0.1000 BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +8§/-10 SVS © SOLD, 3 50% S.C., CAPS 30°@SO0LD, 7.2eQRT Q aq FILE: OUTPUTISS CHNL® S50: CST-B8EANLI CHNE® 49; CST-COOPR 0.3000 oa e 20.100 HNL® 48: CST-BRA 0.5000 oS = ° -0.500 CHNL® 47: CST-ANCHPI | 0.7000 SSS 2 ales 0.300 CHNL® 46: CST- 5 0.9000 =———— =0.100 2.5000 3.5000 TIME 1.5000 0.5000 12:59 STABILIZERS FEB 09 1989 THU, BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +35/-10 SVS © SOLO, 3 50% S.C., CAPS 30@SOLD, 7.2eQRT Q x FILE: OUTPUTLSS CHNL# 45: CB-ANCHORI 0.4000 Be iet -Yrisieiigiilicitate x -0.100 CHNL# 44: -SOLOTNI 0.4000 aa rr -0.100 CHNLs 43: HEALY 0.4000 eS © -0.100 : CHNLs 42: CB-GLOHLLI 0.4000 SS -0.100 CHNL® 41; CB-TEELNOI 0.4000 ens -0.100 3.0000 0.0 5.0000 4.5000 4.0000 2.'5000 TIME 3.5000 1.5000 0.5000 “FEB 09 1989 SVS ADMITTANCES 2358 THU, BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +3%/-10 SVS @ SOLD, 3 50% S.C., CAPS 30@SOLD, 7.2eQRT Q N FILE: OUTPUTISS CHNL# SS: CP-8L-FT2) 150.00 Bair ioceteieiare arose x =100.0 CHNL® S4: CP-TLO-CTI 150.00 wT * =100.0 CHNL® 53: CP-SLOQTZI 150.00 sens SSS e -100.0 CHNL® S2: CP-OR-APTI | 150.00 i. ~100.0 CHNL® Si: CP-OCR-HPI 150.00 ——— 100.0 399 THU, FEB 09 1989 12 5.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 LINE FLOWS BL_©@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +38/-10 SVS © SOLD, 3 50% S.C., CAPS 30@SOLD, 7.2eQRT 2 N FILE; OUTPUTISS CHNL®s 35: CF-HWYPAKI 0.0167 a x -0.067 CHNL® 34: CF-HEALY 0.0167 ee, el es etm + -0.067 HNLs 33: CF-UNIVERI 0.0167 CF lr rs s2s2s= iS -0.067 [oN 32: SOLO, 0.0167 a -0.067 CHNL® 31: CF-FRITZCI 0.0167 _—————. -0.067 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 13:07 FREQUENCY FEB 09 1989 THU, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +20/-15 SVS @ SOLD, 3 50% S.C., SHUNT 30SLD 7.2QRTZ FILE: OUTPUT1S7 CHNL#*S 4,10: CA-COOP _1]-CA-MLP 7] 150.00 eI E or x -50.00 CHNL®'S : CA-BERN 3]-CA-MLP 73 150.00 SSS SSS = es -50.00 CHNLs‘S 10: CA-BLUG 33-CA-MLP 7] 150.00 © =~ ~~~ ~~~ ° -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 150.00 SS -50.00 CHNL#'S 8,10: CA-8RAD 13-CA-MLP 7) 150.00 ——"4 -50.00 s cs cs wo =] s s iS fy t i s ° , i s 1 Le n ' 4 4 “2 ! \ \ , : 2 3 ' \ s Cc y | Ja — ‘ / a8 ) ' / UG ' te + / — Oo ' \ ' \ | : . : \ s ——— 4 ‘ \ 4a J s$ ' co o on - & =i SE na o a oy CW _c ah _l o z « J 3 a 3 g aw Nee = cs cs 8 g co 8 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT PeA -- +207-15 SVS © SOLO, 3/|\S0% SC.. SHUNT 30SLO 7.20ATZ PIECE: (OUTPUTIST CHNL® 63: CO-BL-FTZI 50.000 MES EEEEG aaa 5 =O0RO HNL® 61; 50.000 a fas ae toate ces * -200.0 HNL # PG-BRA 2.0000 : o==c255==-=5 > 0.0 ee CN eS 7 GENO RRO a ee isle 1.5870 iad 0.0 CHNL® 58: CEF-BRADL 19.000 aed -1.000 cs cs J os | “ im _— 4.5000 0.5000 748 11 BRADLEY LAKE FEB 10 1989 ERI 2.5000 3.5000 TIME 1.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +20/-15 SVS @ SOLO, 3 50% S.C., SHUNT 30SLD 7.2QRTZ go wn a ad =o FILE: OUTPUTIS7 c CHNL® 22: CV-PORTGE J ok 1.3000 Pose cs 0.3000| & S CHNL®* 18: CV-SOLOTAI ~ > 1.3000 MER IRie (sisi) x 0. 3000 2 HNL® :_ CV-ANCHPT ao 1.3000 eee see Si ae ae + 0.3000 Ww CHNL® 19: CV-QATZCA * 1.3000 e2=--=-===-=— ° 0.3000 _ CHNL® 11: CV-ET-8A03 ia 1.3000 ie 0. 3000 CHNL® 12: CV-BRADLYI 1.3000 -————a 0. 3000 cs cs J cs ve $ w — 7 = J so s — + . cs i \ s Pe w . \ Ay : er s | > , a 2 J in ° = 3 w wo == _ Sales as v _ 3 } L_ + a ale 0 y Ts. cs so cs 5 cs J cs iS cs cs cs wo é J o BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +20/-15 SVS @ SOLD, 3 50% S.C., SHUNT 30SLD 7.2QRTZ 20M =O FILE: OUTPUTLS7 = o & ‘ ok Sb CHNL® 4S: CB-ANCHORI 0.4000 MI hk hth lotta x -0.100 c= CHNL® 44: CB-SOLOTN - a 0.4000 +> + -0.100| w& CHNL® 43: CB-HEALY EH 0.4000 a . -0.100 aS CHNLs 42: CB-GLOHLL Wee 0.4000 5 iid -0.100 CHNL® 41: CB-TEELNOI 0.4000 ———o -0.100 J J os cs ws cs cs w > s s sc > cs cs Ss 7% So cs Ss co o so cs ey Nee = J cs cs so “ cs J J ™ J cs s cs Ss So w s co so BL_e@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +20/-15 SVS © SOLO, 3 50% $.C., SHUNT 30SLD 7.2QRTZ Zh we =u FILE: OUTPUTIS7 ~N o _— ‘ © and SZ CHNL® SO: CST-8EANLI fea] 0.1000 Moers x 0.900] CE CHNL® 49: CST-COOPR = 0.3000 --- > = 7.700] a we CHNL® 48: T-BRA 0.5000 @-ss<<$<=-=- ° -0.500 i CHNL® 47: CST-ANCHPI = 0.7000 “7-7-7 = -0.300 CHNL® 46: CST-SOLOTI p—______ CHIN 6s CST SOLOTI 0.9000 ; | ane -0.100 J Ss sc 4 ae rs % — ” —- 3 * 7 s . s s s —_ =] [_ x t a ‘ ° _|* 1 { if t S a ' “me? ' y nv 2 \ , } S \ q x 1 | 1 1 1 1 1 ; 2 ! — 1 Nee 1 -_ 1 ' 1 1 1 | \ $ \ 5 1 ms 1 1 1 1 ! 1 | \ $ 3 3 | | | BL_e@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +20/-15 SVS e@ SOLD, 3 50% S$.C., SHUNT 30SLD 7.2QRTZ Ae oe ly mr = FILE: OUTPUTIS7 ud o= oo i CHNL® 35: CF-HWYPAKI fe 0.0167 ae x 0.067] Sl CHNLs : CF-HEALY a 0.0167 ------- + -0.067| wW CHNL® F-UNIVER 3 0.0167 Coe aa eae ° =0,067N| CHNL® 32: CF-soLooT] rr 0.0167 --—---= =0.067 CHNL® 31: CF-FAITZCJ 0.0167 ———— -0. 067 S kk 4 $ $ S$ ¢ & Ze 3 IL ss - of sc cs co a sc cs cs w zs os cs cs cs c s so Bw Nee = J cs cs so cs cs So Ss ia J cs s s cs w 3 cs 3 BL © 120, BERN & COOP OFF, Pea) -—| 207-15 SVS © SOLD; FILE: OUTPUT159 CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 ie lial Seer x -50.00 CHNL#'S 3,10: CA-BEAN 3J-CA-MLP 7] 150.00 a al + -50.00 CHNL#'S 1,10: CA-BLUG 33-CA-MLP 7 150.00 Gass SSReaas ° -50.00 CHNL#‘S 6,10: CA-CHENASI-CA-MLP 7] 150.00 i) ae -50.00 CHNL*#'S 8,10: CA-BAAD 13-CA-MLP 73 150.00 4 -50.00 — atl nm mail — = | 40 MW KENAI LOAD, 64.3 MW EXPORT 3 S0% S.C., SHUNT 30SLD 7.2QATZ 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0 0. 2.5000 3.5000 TIME 1.5000 0.5000 10:03 FEB 14 1989 ANGLES REL TO MLP #7 TUE, BL © 120, 50.000 Raa sSseee i SS aORO CHNL® 61: -BRA 0.3968 ae st 1.907 HNL : CPG-BRA 2.0000 .----------> > 0.0 CHNL«* S7: CPM-BRADLI 1.5870 Ss 0.0 CHNL«# S58: CEF-8RADII 19.000 ——— -1.000 [— + = =| BERN & COOP OFF, P2A -- +20/-15 SVS e SOLO, FICE, OUTRUTISS CHNL# 63: CO-8L-FTZ] 40 MW KENAI LOAD, 3 S04.S.C., 64.3 MW EXPORT SHUNT 30SLO 7.2QRTZ 5.0000 4.5000 4.0000 3.0000 2.5000 3.5000 TIME 1.5000 0.5000 10:03 1989 BRADLEY LAKE FES ye TUE, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +20/-15 SVS @ SOLD, 3 S0% S.C., SHUNT 30SLD 7.2QATZ a su FILE: OUTPUTIS9 = CHNL® 22: CV-PORTGE oe T, 3000 Soria eiok 0.3001 Fa CHNL® 18: CV-SOLOTAI ~ > 1.3000 Moses x 0.3000] = CHNL® 15: CV-ANCHPTI o 1.3000 -o ooo > 0.30001 wW ue HNLs 19: CV-QATZCA 1.3000 Oraaa a oeeee ° 0.3000] ut CHNL® 11: CV-ET-8A0I = 1.3000 -- >So 0.3000 CHNL® 12: CV-BRADLYJ PE 1.3000 ——— = 0.3000 =] cs $s Se s w | 4: cs cs cs cs L 4; cs Qa csc w | ss co co cs So L 3s so J L |2y Nee — Q cs x = = 3 ~ ~ ~ ae ci So cs cs = cs cs cs = cs cs cs wo Ss so ie BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD. 64.3 MW EXPORT PeA -- +20/-15 SVS © SOLD. 3° 50% SiG.-,: SHUNT S0SUD 7% 2QRTZ aS ~ Lu So FILE: OUTPUT1S9 z= oo & of Sh L - CHNL® 45: CB-ANCHORI ~ 0.4000 Mooeee eens x -0.100| = CHNL® 44: CB-SOLOTN — 0.4000 ------- = -0.100| w& CHNLs 43: CB-HEALYI EH 0.4000 Ora es aa aaa ° -0.100| us CHNL® 42: CB-GLOHLLI =W 0.4000 ---T-o =0.100 CHNL® 41: CB-TEELNOJ 0.4000 Cee -0.100 so cs cs co Ae cs cs w ee | ate so cs cs cs Ens ss cs cs & Et — 3 co co s os io =e co cs i jay Ne ia cs cs cs cs ja lcs cs Ss co a so cs s = cs so co w a os Ss BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT Pen =— *207—15_ SVS @-SOL0, 3 507 S.C... SHUNT -30SE0 7-20RTZ asc = = Wd FILE: OUTPUTIS9 mM a ad CO od DZ mt CHNLs SO: CST-BEANLI _| "a 0.1000 Ce toed) #6) 9} aire x -0.900 = a CHNL* 49: CST-COOPAI ae 0.3000 ------S + -0.700| wW CHNL*® 48: CST-BRADLI pe 0.5000 CSS see ase) ° -0.500 ah CHNL® 47: CST-ANCHPI = 0. 7000 -->-- =0.300 CHNL® 46: CST-SOLOTI 0.9000 a =0.100 === aS Se aa ea SS ee 3 co no cs cs w Bs =| co Ss cs J ES ss cs so co BH J cs —J cs ie =a a ; S WwW LH == = s s — Ic cs —J cs 7 J cs so S cs co cs w a so So BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A -- +20/-15 SVS @ SOLD, 3 50% S.C., SHUNT 30SLD 7.2QRTZ zw s FILE: OUTPUT1S9 aool Pa eo ites CHNL#® SS: CP-BL-FTZ) =z 150.00 SE Ec iiaill x =100.0 | = ome HNL® S4: P-TLO-CT a =) 150.00 Ti) | Ee ae -100.0 Wu we HNL# 53: CP-SLOQT 150.00 CSS ° -100.0 “ CHNL® S2: CP-OR-APTI = 150.00 = =| = | 7 -100.0 CHNL# 51: CP-OCR-HPI 150.00 = -100.0 J 3 cs neo cs cs wo ia 4 3 os S o fe ome fo cs cs 3 foo eel li co co S — Ta cs cs i | 8 Nee = os cs 3 7s cs J cs 8 i] iS S cs cs cs 8 so oS BL © 120, BERN & COOP OFF, 40 MW KENAI LORD, 64.3 MW EXPORT P2A -- +20/-15 SVS © SOLD, 3 50% S.C., SHUNT 30SLD 7.2QRTZ i> 29 FILE: OUTPUTISS = Sa sco Fa) CHNLs 35: CF-HWYS3KI ~ec 0.0167 Moo x 07] i CHNL# 34: CF-HEALYI ao 0.0167 ee tame et ie -0.067 WW a CHNLs 33: CF-UNIVERI 0.0167 arrears 70.0671 3 CHNL« 32: CF-SOLDOTI = 0.0167 TT =0.067 CHNL® 31: CF-FAITZCI 0.0167 ——————s 0.067 Se i] so sc ie $ w LL 4 3 cs 2 cs s | 5 E cs & L_ ss cs os so = _|s nm cs 2 = | 8% Ne = i] cs s Le ei cs 2 cs w cs cs co Ss Es g 3 3 E is 3 BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FACE: OUTPUT LOL CHNLEs*S 4,10: CA-COOP_13-CA-MLP 73 150.00 MisrSsraer rae aie 5.0000 4.5000 3.0000 CHNLw*S 3,10: CA-BEAN 33-CA-MLP 7 150.00 Sa + -50.00 CHNL®*S 1,10: CA-BLUG 33-CA-MLP 73 150.00 ae ° -50.00.| CHNLs'S 6,10: CA-CHENASI-CA-MLP 73 150.00 ——i— 77 -50.00 CHNL®'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 =——a -50.00 ! a 4 2.0000 1.0000 0.0 ANGLES REL TO MLP #7 4.0000 2.5000 3.5000 TIME 1.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@CSOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT161 CHNE* SS: CP-B8L-FTZ3 150.00 DO Heatiel iia ais oS -100.0 HNL« P-TLO-CT 150.00 == * -100.0 HNL# 53: CP-SLOOT 150.00 ¢-~~ sa seSee= e -100.0 CHNL«® S2: CP-OR-APTI 150.00 i a -100.0 CHNLw# S51: CP-OCR-HPI 150.00 a -100.0 Lams —_ S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 1989 13:27 LINE FLOWS FEB 14 TUE, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSCSOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS os =n FILE: OUTPUT161 tu CHNL® 18: CV-SOLOTA a 1.3000 aie fe 0.3000 on = CHNL® 17: CV-SKIHLLI Si) 1.3000 Mei cisicioreisiaisicls x 0. 3000 LO CHNL® 16: CV-KASILF = 1.3000 ee + 0. 3000 ti ue HNL# 15: CV-ANCHPT 1.3000 O22 222322 H ° 0.3000 us CHNL® 13: CV-FRITZCJ = 1.3000 ——— = 0. 3000 CHNL® 14: CV-DIAMAG 1.3000 ———————o 0. 3000 we S wo = loss J s cs s = oe cs s © 3 — a | ° ~ ” 8 . = > _ co - Q s 3 4 3 — (L = AH o 3 ; I~ a& ot 8 “ if =o Oo ~ Q V5) SS o x < s } e 3 I 3 | 3 ae 3 | . x | = $ ‘ w / J s =] . s s cs w é so s 1.3000 1.3000 1.3000 SoS = 0.3000 HNL® 19: CV-QATZCR 1.3000 === 235-2 === ° 0. 3000 CHNL® 11: CV-ET-8R0I 1.3000 iia 4 0.3000 CHNLw 12: CV-BRAOLYI 1.3000 ———4 0. 3000 1 Le 4 | pp | — J} = 3Y - Seek e SY _— Re ws 9 —_ ~ Q a a “ ; 4 nN wv ! ig > os a £ 3 < — — | + Ny 9 NS {_ 4 BL © 120, CASE P2A: Anchor Soldotnea—-~ BERN & COOP OFF, +20/-15 SVSeSOLDOT, 3 50% S.C., FILE: OUTPUT161 CHNLs 22: CV-PORTGEI CHNE# 18: CV-SOLOTAI CHNL®# 15: CV-ANCHPT 40 MW KENAI LOAD, 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1989 VOLTAGES FEB 14 i3e27 TUE; 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSESOLDOT, 3 50% S§.C., 30/7.2 SHUNT CAPS Tw =o FILE: OUTPUT161 - (on core ZS poms CHNL® 50: CST-BEANLI 2a 0.1000 Deeg Reticf=saksa * -0.900 =a HNL® 49: CST-COOPAI ; : = a 0.3000 SSS SE -0.700 ld Le CHNL# 48: CST-BAADLI 0.5000 2c-s5==-5-" ° -0.500 Ff CHNL® 47: CST-ANCHPI = 0. 7000 SE -0. 300 CHNL* 46: CST-SOLOTI 0.3000 ————a =0.100 cs cs os so wes s w L_ = s os s — —7= cs cs cs # co cs —J cs = =e cs cs 18 — Name i= cs cs s = =n = ° cs 3 a cs sc S 3 3 BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-25 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OQUTPUT162 CHNL#'S 4,10: CA-COOP_13-CA-MLP 7 150.00 Mice x =50700 HNL «* 10: CA-BERN =CA=MEP 7 150.00 a ae -50.00 CHNLs* -CA-MLP 7 150.00 e-=-=--—--—— ° =50.00 CHNL®'S 6,10: CA-CHENASJ-CA-MLP 73 150.00 --—----= =50.00 CHNL#"S 8,10: CA-BRAD 13-CA-MLP 73 150.00 ————a =50.00 — —e 5.0000 4.0000 3.0000 2.0000 1.0000 0.0 un in = « & ry a. oad os a So Oo a aa wu od .c = = 2 uJ = oO =z « J sc cs w = s cs cs w * J S WW “= Nie - J cs cs w cs s so w o BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-25 SVSeSOLDOT, 3 50% $.C., 30/7.2 SHUNT -CAPS FILE: OUTPUT162 4.5000 2.5000 TIME CHNL® 63: CO-B8L-FTZ3 50.000 << e <= CHNL® : COG-BRA 0.3968 ------- + =1.587 HNL« PG-BAA 2.0000 @---s--eeo-=- ° 0.0 CHNL® S7: CPM-8AADL 1.5870 == >= 0.0 CHNL® S8: CEF-B8RADL 19.000 SS -1.000 J J oS os _ |e _ == cs —J s cs cs s so - ——_ ° nm -_ — cs J s — nol 10:59) BRADLEY LAKE FEB 16 1989 THU, 3.5000 1.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-t8 SVSeSOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS 25 FILE: OUTPUT162 CHNL® 18: CV-SOLOTA 1.3000 Sai ey se > 0.3000 CHNL® 17; CV-SKIHLLI 1.3000 I chic) Sar GS BS == x 0.3000 CHNL® 16: CV-KASILF 1.3000 iu isbn ene tis = 0.3000 CHNL® : CV-ANCHPT 1.3000 Ce ° 0.3000 CHNL® 13: CV-FARITZCI 1.3000 == Sa 0.3000 CHNL* 14; CV-OITAMAGI 1.3000 Se 0.3000 |e +4 = 4 ~Y a t— 8 ay | m Q x < Q S ja “ ss FEB 16 1989 10:57 VOLTAGES 2 THU, S.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 BL © 120, BERN & COOP OFF, CASE P2A: +20/-£$ SVSeSOLOOT, 3 50% S.C., 2° FILE: OUTPUT162 CHNL® 22: CV-PORTGEI 1.3000 eT ls e 0.3000 CHNL# 18: CV-SOLOTAI 1.3000 Deel iets Geis ye * 0.3000 CHNL®# 15: CV-ANCHPTI 1.3000 my i 0.3000 HNL# 19: CV-QATZCA 1.3000 a : 0.3000 i CHNL# 11: CV-ET-BROI 1.3000 S| > 0.3000 CHNL# 12: CV-8RAOLYI 1.3000 SF. 0.3000 Ss s cs cs wo cs s cs — 7 x 3 ay os = “ ww x» Ja ~ 7 8 ~ x s s t Ja 4O MW KENAI LOAD, 64.3 MW EXPORT 30/7.2 SHUNT CAPS 1.0000 0.0 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 FEB 16 1989 10:56 VOLTAGES THU, BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-f& SVSeSOLOOT, 3 50% S.C., 30/7.2 SHUNT CAPS as FILE: OUTPUT162 CHNL* SS: CP-BL-FTZI 150.00 ene aes x STOORO CHNL* S4: CP-TLO-CT 150.00 er ieieie + -100.0 CHNL* 53: CP-SLOQT 150.00 erecsssasece ° -100.0 CHNL® S2: CP-OA-APTI 150.00 Sant -100.0 CHNL® Si: CP-OCR-HP 150.00 nS -100.0 10:56 LINE FLOWS FEB 161989 THU, S.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 0.1000 0.3000 CHNL® 47: CST-ANCHPI 0.7000 aLiTi i111) ae -0.300 CHNL® 46: CST-SOLOTI 0.9000 =——a4 -0.100 cs cs cs co “ | =e = cs J s ye ss al Lo pa cs S$ cs LL I05 cs cs s s joa 0 BL © 120, CASE PA: BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-*5 SVSCSOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS 2s FILE: OUTPUT162 CHNL# SO: CST-B8ERNLI HNL«# 49; CST- PRI 0.5000 2 ry » C Su NY — a | Z nme = ao oe co - Ly 03 we = = _— os s s wm. = cs cs os w ” cs s Ww a Nee = cs cs cs w 0.0167 0.0167 CHNL«# 32: CF-SOLOOTI 0.0167 eee -0.067 CHNL®# 31: CF-FRITZCI 0.0167 a -0.067 Recs — - = BL © 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SVSeCSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: QUTPUT162 CHNL# 35: CF-HWYPRKI CHNL# : CF-HEALYI 10:56 FREQUENCY THU, FEB 16 1989 5.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-45 SvVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT1L62] CHNL* 4S: CB-ANCHORI 10:56 0.8000 DCI io 4 te fe sets! 8% 2h 2 x -0.200 HNL#® 44: = IN 0.3000 ——— SaaS > 0.700 HNL# ~HEALY 0.8000 eee aoa ° =0.200 HNL® 41: CB-TEELNOJ 0.8000 Se -0.200 J J s co wo os s cs = as i—] Ss Ss cs = J" $s s cs je —~l 1.0000 0.0 4.5000 3.5000 1.5000 0.5000 2.5000 TIME FEB <l6- 1969 SVS ADMITTANCES THU, BE) 0)) Lor, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-35 SVSeESOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: QUTPUT162A CHNL®#'S 4,10: CA-COOP_13-CA-MLP 73 150.00 ei x -50.00 CHNLw'S 3,10: CA-BEAN 33-CA-MLP 73 150.00 Se a a -50.00 CHNLs'S 1,10: CA-BLUG 33-CA-MLP 7] 150.00 Sai malt call e -50.00 CHNL®#'S 6,10: CA-CHENASI-CA-MLP 73 150.00 (ad -50.00 CHNL®#'S 8,10: CA-BAAD 13-CA-MLP 7 150.00 ee -50.00 cs s cs sc “ -— 4 s cs s | 7 cs cs cs s |— Fa cs cs cs Ss fe Fa s cs ° cs o 1989 15:35 FEB 27 ANGLES REL TO MLP #7 MON, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPCART CASE P2A: *20/-435 SVSeSOLDOT, 3 S0% §.C., 30/7.2 SHUNT CAPS FILE: OUTPUT162A CHNL® 63: CQ-8L-FT2Z) $0.000 aaa « -200.0 CHNL® 2 0.3968 _—_s 7 -1.587 CHNL* 56: CPG-B8RADII ----------- ° 2.0000 0.0 CHNL# 57: CPM-8RA01I 1.5870 —— er 0.0 CHNL# 58: CEF-B8RADII 19.000 6 -1.000 CTT TT L | — 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1'5%/35 BRADLEY LAKE FEB! 27) 1989 MON, 2.5000 3.5000 TIME 1.5000 0.5000 BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-35 SVS@SOLODOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OQUTPUT162A CHNL® 22: CV-PORT 1.3000 pe wie wre Sa vere - 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 areas CCRMeES x 0.3000 CHNL® 15: CV-ANCHPT 1.3000 weer + 0.3000 CHNL® 19: CV-QATZCA 1.3000 Sew aa eS 0.3000 CHNL® 11: CV-ET-BADI 1.3000 = — — 0.3000 CHNL# 12: CV-B8AAODLYI 1.3000 carne ameanaetan 0.3000 J so cs J wo cs cs w = —s = ' cs ; cs ! cs i =|s ' a | S i & J J S — FA cs ‘ cs | i a — { | j nt id ' ' i | $ i s — : sa cs J cs 2 cs cs cs fd cs J cs w o cs aN a ae oes | 15:36 VOLTAGES FEB 27) 1969 MON, TIME BERN & COOP OFF, 4207-45 SVSSSOLDOT. 3 S024 S.1G., 40 MW KENAI LOAD, FILE: OUTPUT162A 64.3 MW EXPORT 30/7.2 SHUNT CAPS CHNL® 18: CV-SOLOTAI 1.3000 ES aes > 0. 3000 CHNL® 17: CV-SKIHLLI 1.3000 Mo EP ener = x 0.3000 HNU# 16: CV-KASILF 1.3000 iad alae * 0.3000 HNLs : CV-ANCHPT 1.3000 Cecicscsis=== 2 0.3000 CHNL® 13: CV-FRITZCI 1.3000 i 0. 3000 CHNL# 14: CV-OLAMAGI 1.3000 aR 73000 ‘oo | — = 5.0000 4.0000 3.0000 2.0000 1.0000 0.0 = 2109 uJ or oe D me ~ =a a o Ww a z So = cs cs cs w > cs cs cs wo o cs $ Ww bys Nee = cs cs cs w cs cs csc w oe BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-35 SVSCSOLDOT. 3 50% S.C.. 30/7.2 SHUNT CAPS FILE: OUTPUT162A CHNL® 4S: CB-ANCHOAI 0.8000 MeSeeere rr - x -0.200 HNL* 44: CB-SOLOTN 0. 3000 SSS SSS sa 07700 CHNL® 43; CB-HEALY 0.8000 ¢==-=--=--—- ° -0.200 CHNL® 42: CB-GLOHLLI 0.8000 i i-8 -0.200 CHNL® 41: CB-TEELNOJ 0.8000 ————a =0.200 — = — a 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 FEB 271989) 115335 SVS ADMITTANCES MON, BL © 120, BERN & COOP OFF, 40 MW KENAL LOAD, 64.3 MW EXPCAT CASE P2A: +20/-35 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS ut FILE: OQUTPUT162A CHNL® SO: CST-BEANLI 0.1000 Dem ecrcii sai i et ohs x -0.900 CHNL* 49: CST-COOPRI 0.3000 ------ ee -0.700 HN T-8RAD 0.5000 e-=-=-----—= > CHNL® 47: CST-ANCHPI 0.7000 = ae -0.300 CHNL® 46: CST-SOLOT 0.9000 ee -0.100 iT] — ee — 5.0000 4.5000 4.0000 3.0000 2.0000 15235 HEB 727771989 STABILIZERS MON, 2.5000 3.5000 TIME 1.5000 0.5000 CASE P2A: +20/-35 SVSeSOLOOT, 3 50% 5.C., 30/7.2 SHUNT CAPS FILE: OUTPUT162A CHNL#® 55: CP-8L-FTZ) 150.00 Mee ose ee * -100.0 HNL® S4: CP-TLO-CT 150.00 ee ee = -100.0 CHNL# 53: CP- TZ4 150.00 Oneal ° -100.0 CHNL# S2: CP-OR-APTI 150.00 = = -100.0 CHNL®# S1: CP-OCR-HPI 150.00 ese -100.0 Ss os os so “ = — cs cs cs o — + so cs so os | oo 7 cs cs 3 [ees sa cs 3 3 cs o BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 15:36 LINE FLOWS FEB 27 1989 MON, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-35 SVSeSOLDOT. 3 50% $.C., 30/7.2 SHUNT CAPS FILE: OUTPUT162A CHNL# 35: CF-HWYPRK] 0.0167 see recrs oer * =0.067 | CHNL® 34: CF-HEALYI 0.0167 ao = + -0.067 CHNL® 33: CF-UNIVERI 0.0167 ee 2 -0.067 CHNL® 32: CF-SOLOOTI 0.0167 = = = -0.067 CHNL® 31: CF-FRITZCI 0.0167 o——a =0.067 J 3 o “ — | cs cs cs o in le - =] =] Ss cs = 6 s s Ll sa s$ cs . So ° 15:36 FREQUENCY FEB 27 1989 MON, 2.5000. 3.5000 4.5000 TIME 1.5000 0.5000 150.00 150.00 BL 120MW, CRSE R28: BERN 24MW, COOP 8MH, +20/7-15 SVSeSOLDOT, 60MW KENAL 3 50% S.C., FILE: OUTPUT163 CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 LOAD, 75.2MW EXPOR 30/7.2 SHUNT CAPS CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 WG SISTSSIRLE Religie x -50.00 CHNL&'‘S 10: CA-BEAN -CA-MLP 73 150.00 eR s -S0.00 CHNLs* See a -50.00 FEB! 4) 1989 |) S20) NUE? ANGLES REL TO MLP #7 5.0000 1.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 0.5000 0.0 BL_120MW, BERN 24MW, COOP 8MW, 60MW KENAI LOAD, 75.2MW EXPOR CASE P2B: +20/-15 SVSeSOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS FIEE: OUTRUTIGS CHNL®# 63: CQ-8L-FTZ3 4.5000 50.000 Wesccascss =. x —30020 HNL® 61: -BRA 0.3968 Se a > -1.S87 HNL # : CPG-BRAD 2.0000 eee eeoae > 0.0 ree |e a 1.5870 SS ee 0.0 CHNL* S8: CEF-B8RA01I 19.000 Se -1.000 co J s co w cs cs s - s ama] a j | 3.0000 2.0000 | 19 Se 1989 FEB 14 BRADLEY LAKE NUE. 2.5000 3.5000 TIME 1.5000 0.5000 BL 120MHW, CASE P2B: BERN 24MW, COOP 8MW, 60MW KENAI +20/-15 SVSeSOLDOT, 3 50% S.C., FILE: OUTPUT163 LOAD, 75.2MW EXPOR 30/7.2 SHUNT CAPS CHNL® 22: CV-PORTGEI 1.3000 Dace ct el aI > 0.3000 CHNL® 18: CV-SOLDTAI 1.3000 cir seiiae Ese x 0.3000 CHNL« V-ANCHPT 1.3000 IST Si c 0.3000 CHNL® 11: CV-ET-8A0I 1.3000 id 0.3000 CHNL® 12: CV-BAADLYI 1.3000 Le 0.3000 J os cs S xz x " f— = 5S 4 2€ > ws * 3 C 3 = * ~ 1 ; \ *) *« = # 9 “% =| \ ‘es 5 Nn = J 5 s i i® onde no ! wer ate Ooh, eee ! J co ' J ! so — ~~" J so so ee = 15:20 VOLTAGES 2.5000 3.5000 4.5000 TIME TUE, FEB 14 1989 1.5000 0.5000 BL _120MW, BERN 24MW, COOP 8MW, 60MW KENAI LOAD, 75.2MW EXPOR CASE P2B: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT163 CHNL® 45: CB-ANCHORI 0. 4000 eters * =0.100 HNL® 44: CB-SOLDTNI 0.4000 SSS + -0.100 HNL® 43: CB-HEALY 0.4006 a ° -0.100 CHNL® 42: CB-GLOHLLI 0. 4000 ----- =0.100 CHNL® 41: CB-TEELNOJ 0. 4000 -———a =0.100 GEB 1921989 15:20 SVS ADMITTANCES TUES 5.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 BL 120MW, BERN 24MW, COOP 8MW, 60MW KENAI LOAD, 75.2MW EXPOR CASE P2B: +20/-15 SVSeSOLOOT, 3 50% $.C., 30/7.2 SHUNT CAPS FILE: QUTPUT163 CHNL# SO: CST-BERNLI 0.1000 Patek aaa x -0.900 CHNL# 49: I- PR 0.3000 SS Sl a Bs -0.700 CHNL® 48: T-BRA 0.5000 ae ° =0.500 CHNL# 47: CST-ANCHPI 0.7000 he ahi ae -0.300 CHNL# 46: CST-SOLOTI 0.9000 5 -0.100 - os cs cs cs a cs Ss cs ae ss J cs s lt oo TE it $ $ jul ale 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 15:20 STABILIZERS FEB 14 1989 TUE, BL_120MW, BERN 24MW, COOP 8MW, 60MW KENAI LOAD, 75.2MW EXPOR CASE P2B: +20/-15 SVS@SOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS nw 33 FILE: OUTPUT163 — o & WwW CHNL® SS: CP-BL-FTZ] “z 150.00 Meee x =100.0 | =" wm HNL* S¥: CP-TLO-cT aw 150.00 => >---S * -100.0] wW CHNL® 53: CP-SLOQT a 150.00 Cr-2<===55=> ° -100.0 Ww CHNLs® 52: CP-DR-APTI = 150.00 -- >So =100.0 CHNL® Si: CP-OCR-HPI 150.00 ——s =100.0 so co Ss o ie cs cs w [ bee Ss 3 = “= co co cs w | ss co Ss so oso | Se sc Sw w | =| a= = o cs s | 0 =a co cs cs 8 co s iS J cs cs w 3 o 3 BL 120MW, BERN 24MW, COOP 8MW, 6OMW KENAI LOAD, 75.2MW EXPOR CASE P2B: +20/-15 SVSeSOLDOT, 3 50% S§.C., 30/7.2 SHUNT CAPS ‘alien «QO bz FILE: OUTPUTI63 ud o= om oi CHNL® 35: CF-HWYPRKI ee 0.0167 Meeks = sare x -0.067 =k CHNL® 34: F-HEALY o 0.0167 ----- >> + =0.0671 WwW CHNL® 33: CF-UNIVER ia 0.0167 ie nite ° -0.067 wW CHNL«® 32: CF-SOLOOTI = 0.0167 -----= =0.067 CHNLw 31: CF-FAITZCI 0.0167 —— =0.067 - cs cs cs so ie 3 cs w mu aoe cs 2 cs cs jal oles 5 S 3 jee | os S —J o cM Sei cs S Ww Le —_ 4 = Nee 2 $ cs co i 13 cs Ss 2 a cs 2 so Ss cs 2 3 3 5 iS rs BL_120MW, BERN 24MW, COOP 8MW, 60MW KENAI LOAD, 75.2MW EXPOR CASE P2B: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: QOUTPUT1L64 CHNL#'S 4,10: CA-COOP_13-CA-MLP 7) 150.00 ee er Tats i -50.00 CHNL#*S 3,10: CA-BEAN -CA-MLP 73 150.00 ceil rr a elie ie ad -50.00 HNL#*S 1,10: CA- 33-CA-MLP 7 150.00 a = -50.00 CHNL#‘S 6,10: CA-CHENASI-CA-MLP 73 150.00 Gunlhiwd awe wclien., -50.00 CHNL#'S 8,10: CA-BAAO 13-CA-MLP 73 150.00 oi} ee a calerere -50.00 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 3.5000 2.5000 1.5000 0.5000 oT ae o a Ss a oe > aly ci ec Ww Pia _ oO z c Ww >t = BL 120MW, CASE P2B: BERN 24MW, COOP 8MW, 60MW KENAI LOAD, +20/-15 SVSeSOLDOT, 3 50% S.C., FILE: OUTPUTTEY 75.2MW EXPOR 30/7.2 SHUNT CAPS CHNLs 63: CQ-BL-FTZI 50.000 SEE A CHNL* 61: CQG-BAADI 0.3968 So SSS= = STRSET CHNL* S6: CPG-BRA 2.0000 oe si oE0 CHNL# S7: CPM-BRADLI 1.5870 SSSS= 0.0 CHNL* 58: CEF-8RAD1I 19.000 ===; =Tm000 5.0000 4.5000 4.0000 0.0 3.5000 2.5000 TIME 46 1989 16: BRADLEY LAKE FEB 14 TUE, HNL# 18: CV-SOLOTAI 1.3000 Pea eee > 0.3000 CHNL# 17: CV-SKIHLLI 1.3000 Moree see eee * 0.3000 CHNL®# 16: CV-KASILFI 1.3000 a ee ee al 0.3000 1.3000 1.3000 BL 120MW, CASE P2B: BERN 24Mh, COOP 8MW, 60MW KENAI LOAD, 75.2MW EXPOR +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS BLEES OUTRUTICY CHNL® 13: CV-FAITZCI SH = = 0.3000 CHNL® 14: CV-OLAMAGI 5.0000 4.5000 co cs cs os : : “ 9 = 3 Vv so = $ = ss a Y — cs = 3 am sa ¢ x 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 10:28 VOLTAGES 2 FEB 161989 THU, BL 120MW, BERN 24MW, COOP 8MW, 60MW KENAI LOAD, 75.2MW EXPOR CASE P2B: +20/-15 SVSeSOLDOT, 3 50% §.C., 30/7.2 SHUNT CAPS SF au FILE: OUTPUT164 a CHNL® 22: CV-PORTGEI oe 1. 3000 SE > 0.3000] @& = CHNL® 18: CV-SOLOTAI ~ > 1.3000 Mowers x 0.3000] = CHNL® 15: CV-ANCHPT o 1.3000 ----- > 9.30001 CHNL® 19: CV-QATZCA 1.3000 G5 e 0.3000 w CHNL® 11: CV-ET-8A0 = 1.3000 Ss = = 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 ——s 0. 3009. cs cs s nel S w i cs J cs cs Bs s os w a J J s J Ne sc cs ay Nm = s J so es J cs co 7 J J s cs cs cs w S 2 BL 120MW, CASE P2B: BERN 24MW, COOP 8MH, +20/-15 SVSCSOLDOT, 3 50% S.C., FILE: OUTPUT164 60MW KENAI LOAD, 75.2MW EXPOR 30/7.2 SHUNT CAPS LL CHNLs SS: CP-B8L-FTZI 150.00 MER Rt eRe is x 100.0 CHNL® SY: CP-TLO-CT 150.00 ala a -100.0 HNL# 53: CP-SLOQT 150.00 Srcsccsess=2 eS -100.0 CHNL® S2: CP-OA-APTI 150.00 8 -100.0 CHNL® Si: CP-OCR-HPI 150.00 = -100.0 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 49 16: 1989 LINE FLOWS FEB 14 TUE. BL_120MW, BERN 24MW, COOP 8MW, 60MW KENAI LOAD, 75.2MW EXPOR CASE P2B: +20/-15 SVSeSOLDOT. 3 50% $.C., 30/7.2 SHUNT CAPS FILE: OUTPUT164 CHNL® SO: CST-BEANLI 0.1000 PCTS EKER EE)? x -0.900 HNL# 49: CST-COOPR 0.3000 ry a -0.700 CHNL# 48: CST-BAA CHNL# 47: CST-ANCHPI CHNL* 46: CST-SOLOT 1989 16:49 STABILIZERS FEB 14 TUE, 1.5000 0.5000 TIME BL _120MW, BERN 24MW, COOP 8MW, 60MW KENAI LOAD, 75.2MW EXPOR CASE P2B: +20/-15 SVSCSOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS a wn oH FILE: OUTPUTLO64 = o & of- ce CHNL® 4S: CB-ANCHOAI — 0.8000 Mosse x 200] CHNL® 44: CB-SOLDTN | 0.3000 + >> >>> + 7.700] De ue HNUs 43: CB-HEALY wn 0.8000 re ° -0.2001 > CHNLs 42: CB-GLOHLLI aw 0.8000 | =0.200 CHNL® 41: CB-TEELNOJ 0.8000 Ss 0.200 cs co cs cs ie i] cs w cs cs cs cs Ey cs cs cs ie os Ss cs os Rs cs cs BW Nee = s s so if cs cs co Fe co cs cs = s cs w es cs E; BL 120MW, CASE P2B: BERN 24MW, COOP 8MW, 60MW KENAI LOAD, +20/-15 SVSeSOLDOT, FILE: OUTPUT164 CHNL# 35: CF-HWYPRKI 3 50% S.C., 75.2MW EXPOR 30/7.2 SHUNT CAPS 0.0167 Lay a aps x -0.067 CHNL# 34: CF-HEALYI 0.0167 ee = -0.067 CHNL® 33: CF-UNIVER 0.0167 rary ° -0.067 CHNL«® 32: CF-SOLOOTI 0.0167 rll re -0.067 CHNL® 31: CF-FRITZC 0.0167 Se -0.067 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 16:50 FREQUENCY FEB 14 1989 TUE, 150.00 ies x -50.00 CHNL#'S : CA-BEAN 33-CA-MLP 73 150.00 STi melita = -50.00 CHNL®'S 1,10: CA-BLUG 33-CA-MLP 73 150. 00 Recess °=50.00 CHNL#*S 6,10: CA-CHENASI-CA-MLP 7) 150.00 aa o000 CHNL*'S 8,10: CA-BRAD 13-CA-MLP 73 150. 00 o—s___—-50.00 a aut -— om a 4 a a = — ra | BL ® 120, CASE PeA: BERN & COOP OFF, 40 MW KENAI LOAD, +207-115 ISVSCSOLDOT. 3/504 SuGn, FILE: OUTPUT165 CHNL#'S 4,10: cA-coopP 15-CA-MLP_ 73 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 THU, 2.5000 3.5000 TIME 1.5000 0.5000 10:22 FEB 16 1989 ANGLES REL TO MLP #7 a BL ie 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT165 CHNL® 22: CV-PORTGEI 1.3000 S- aacn 0.3000 -— 4 — rn ie =| x ~ » aE: 8 | S —_ ; 4 1.3000 eee) - 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 Rec pk x 0.3000 CHNL® 15: CV-ANCHPTJ 1.3000 aia a i 0.3000 HNL® 19: CV-QATZCRI 1.3000. eae ° 0.3000 CHNLs 11: CV-ET-8A0I 1.3000 =e 0.3000 ee SS CHNL® 12: CV-B8RADLYI 0.0 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 1OE23 VOLTAGES FEB 16 1989 THU, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE Pe2A: +20/-15 SVSeSOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS FILE: OUTPUT165 CHNL# 18: CV-SOLOTA ‘ 1.3000 Bo) Fai ier ies) IIs Se) = 0.3000 CHNL® 17: CV-SKIHLLI 1.3000 es * 0.3000 HNL« 16: CV-KASILF 1.3000 Se reat ae 7 0.3000 HNL# V-ANCHPT 1.3000 Coase eoeeoe ° 0.3000 CHNL«® 13: CV-FARITZCI 1.3000 Se 0.3000 CHNL®# 14: CV-OLAMAG 1.3000 4 0.3000 cs cs ' J cs | we cs 5 Dea ; , s = J s =] os [— 7s ‘ cs [_ N sa N » , , 8 3 bs} 3 — _ 9 =< —{ N = | 3 8 3 = 2 ro Ss fs s a} | Hs NV s! | N yi t - ! ° 7 | 5 — uw ar —= = as: a 12 ot so i cs cs _ cs cs Ss wo s so So 10:28 VOLTAGES 2 FEB 16 1989 THU, TIME BL © 120, BERN & COOP OFF, CASE P2A: +20/-1S SVSeSOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS FILE: OUTPUT165 CHNL® 63; CO-BL-FTZ 50.000 MERE SATIS x -200.0 HNL® 61: CQG-8RADL 0.3968 Sess = a =1.587 HNL® 56: CPG-B8RADL 2.0000 ese e. 0.0 CHNL*® S7: CPM-BRAD1I 1.5870 eB — 4 0.0 CHNL» 58: CEF-8RAD1I 19.000 -————-94 =1.000 PTT 8 sc s | wo cs v & 3 LL sy _= “ 3 * Nv YX . os t ™~ v — ~S SS — 8 - Y s s -— NS ; Ta \ NN — 4 os s cs SZ { ss 4O MW KENAI LOAD, 64.3 MW EXPORT 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 10:22 BRADLEY LAKE FEB 16 1989 THU, FILES /OUTRUTTSS CHNL# 45: CB-ANCHOAI 0.8000 Nita eee x -0.200 HNL® 44: -=SOLOTN 0.3000 oe eet at bh = -0.700 CHNL# 2 HEALY 0.8000 TT Th Tie . -0.200 CHNL# 42: CB-GLOHLLI 0.8000 Pee erie -0.200 CHNL«# 41: CB-TEELNOI 0.8000 eT eee -0.200 if in he — BL © 120, BERN & COOP OFF, CASE P2A: +20/-15 SVSeSOLDO 40 MW KENAI LOAD, 64.3 MW EXPORT Maal SO4 See 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 FEB 16 1989 10:23 SVS ADMITTANCES THU, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 SO0% §.C., 30/7.2 SHUNT CAPS FICE? OUTPUT IES CHNLs SS: CP-8L-FTZI 150.00 belts bre dell x -100.0 CHNL® S4: CP-TLO-CTI 150.00 Se + -100.0 CHNL#® S53: CP-SLOQTZ 150.00 ee * -100.0 CHNL# S2: CP-OR-APTI 150.00 ee ae -100.0 CHNL® Si: CP-OCR-HPI 150.00 oJ) URUSUORSSEERLe -100.0 3 Ss co wo — — e J cs s — ee > Ss cs J cs fae Ta oo — 3 s = 7" Ss s Ss El os o 1989 LINE FLOWS 16 10:23 FEB THU, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 0.1000 0.7000 0.9000 BL © 120, CASE P2A: BERN & COOP OFF, PILE? F, 40 MW KENAI LOAD, 64.3 MW EXPORT Ha0i=lo-_oOVGOSULD ON d_ 507 SiGe, OUTPUT165S CHNL# S50: CST-BEANLI CHNL# 47; CST-ANCHPI CHNL® 46: T-SOLOTI 30/7.2 SHUNT CAPS Dessert reioiarece x -0. 900 aaa =0. 300 Ss) -0.100 5.0000 4.5000 4.0000 3.0000 2.5000 3.5000 TIME 1.5000 0.5000 LO23) STABILIZERS FEB 161) 1965 THU, BL e@ 120, CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT165 CHNL# 35: CF-HWYPRK 0.0167 ASF *) Seok eo x -0.067 HNLs :_ CF-HEALY 0.0167 eos >'>> + -0.067 HNL« : CF-UNIVER 0.0167 —_ * -0.067 CHNLs 32: CF-SOLOOTI 0.0167 —— = = -0.067 CHNL«# 31; CF-FAITZCI 0.0167 —_ -0.067 cs cs Ss “ la | s s s = 7 = vl S Ss —— | o — ood cs cs s Le ta cs S s ° o BERN & COOP OFF, 4O MW KENAI LOAD, 64.3 MW EXPORT 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 10:23 FREQUENCY FEB 16 1989 THU, BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT166 CHNLs‘S_ 4,10: CA-COOP 13-CA-MLP 73 150.00 Moos x =50.00 CHNL«* 3 A-BERN -CA-MLP 7 150.00 Sot atta oe =50.00 CHNLs' : CA-8 -CA-MLP 7 150.00 Caan ase aoae ° =50.00 CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 150.00 ea =50.00 CHNL®'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 —————4 =50. 00 Lan ove ct , - uien j / ! / oo of f 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 i 1S: FEB 16 1989 ANGLES REL TO MLP #7 THU, BL © 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SVS@SOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT166 CHNL# 63: CQ-8L-FTZI 50.000 Meee ononas 7 300-0 HNL* 61: CQG-BRADLI 0.3968 -- === = Sreey CHNLs 56: CPG-BRADLI 2.0000 es<eoc==o=o . m0 CHNLs 57: CPM-8RAD1I 1.5870 Si, om 0.0 CHNL» 58: CEF-B8RADII 19.000 —_— T0060 3.0000 2.0000 1.0000 0.0 Ws4] FEB 16 1989 BRADLEY LAKE THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL e@ 120, CASE P2A: 1.3000 eS Sate 53 0.3000 CHNL# 18: CV-SOLOTAI 1.3000 Sa x 0.3000 CHNL® 15: CV-ANCHPTI 1.3000 Pa eis # 0.3000 CHNL# 19: CV-QATZCAR 1.3000 Cee aaa ~ 0.3000 CHNL# 11: CV-ET-8A0I 1.3000 Se aaa 0.3000 CHNL® 12: CV-BAADLYI 1.3000 Ss 0.3000 BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SVSeSOLDOT, 3 50% S.C.,. 30/7.2 SHUNT CAPS FILE: OUTPUT166 CHNL# 22; CV-PORTGE 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 TIME 3.5000 1.5000 0.5000 1S:42 VOLTAGES FEB 16 1989 THU, BL © 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, +20/7=1\5 SVSCSOLDOMN; 3 S04 SCs, FILE: OUTPUT166 64.3 MW EXPORT 30/7.2 SHUNT CAPS CHNLs : CV-SOLOTA 1.3000 ae 2) SF stn =i ai = 0.3000 CHNL® 17: CV-SKIHLLI 1.3000 Ge ie eet Sear ae 3 0.3000 CHNL*® : CV-KASILF 1.3000 elo ie ala in + 0.3000 CHNL#® 1 CV-ANCHPT 1.3000 CT ee e 0.3000 CHNL® 13: CV-FRITZCI 1.3000 Sai (aehie lire 0.3000 CHNL® 14: CV-OLAMAGI 1.3000 ine 0.3000 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 19343 VOLTAGES 2 FEB 16 1989 THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS 20 ai FILE: OUTPUT166 ™~ o — CO amd met CHNL® SO: CST-BEANLI “a 0.1000 EG i “0.900; SE HNL® 49; CST-COOPA r= 7.3000 a 7 -0.70| OW HNL«® T-8RA “ 0.5000 eae ra awie Ta cs -0.500 5 CHNL® 47; CST-ANCHPI = 0.7000 SS a -0.300 CHNL*® 46: CST-SOLOTI 0.9000 =——————as =0.100 Re. cs i $ s wt 7 t | ve . 1 =. s : ' 1 | 3 ‘a i | 1 | 7 ‘ 1 4 : 1 ' | = x : ! | s ‘ ' °° Ss [— + , 7 ‘ \ 6 | ‘i 1 iu S| ; \ ’ 4 3 ee : 4 : | ss r ; ' ' | S . 1 1 Ss S 1 Ss Paes . | 1 —— os x ' i ' ' t g | wo — & = 1 t Nee \ -_ ' 1 | ' 1 i 1 1 + I I | 1 ' ' ' | | ' ' ' ' BL © 120, CASE P2A: 150.00 ee x -100.0 CHNL® S4; CP-TLO-CTI 150.00 ESI * 100.0 CHNL® S53: CP-SLOOTZI 150.00 5 ae © -100.0 CHNL«® S2: CP-OR-APTI 150.00 a -100.0 CHNL®* Si: CP-OCR-HPI 150.00 a -100.0 BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SVSESOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT166 CHNL# 5S: CP-8L-FT2I 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 15:42 LINE FLOWS FEB 16 1989 THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-15 SVSCSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS = 3 fe FILE: OUTPUT166 x o & of ce CHNL® 4S: CB-ANCHOAI a 0.8000 Moores eee x =0.200 Ls HNL® 44: CB- IN a 0.3000 eos >S te + 0.700) a HNLs 43: CB-HEALY “EF 0.8000 @= == 53 252-5- ° -0.200 s> CHNL® 42: CB-GLOHLLI zm 0.8000 =< =0. 200 CHNL® 41: CB-TEELNOJ 0. 3000 —————o =0.200 cs cs s ie s wo * S$ cs cs cs Ss cs wo a s cs so o i} s ay Nee = s s 0 cs cs cs Os cs cs =] 3 s cs 2 cs 3 BL © 120, CASE P2A: BERN & COOP OFF, T207- Von SOVSCSOLD ON iSino UA 6 Gor FREES IO 40 MW KENAI LOAD, UTPUT166 CHNL# 35: CF-HWYPRKI 64.3 MW EXPORT 30/7.2 SHUNT CAPS 0.0167 et ee -0.067 CHNE® 34: CF-HEALY 0.0167 Peg bee seer ed = -0.067 HNL« : CF-UNIVER 0.0167 TUE ° -0.067 CHNL# 32: CF-SOLOOTI 0.0167 a a ele -0.067 CHNL® 31: CF-FAITZC 0.0167 SS ae -0.067 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 bas €2 FEB 16 1989 FREQUENCY THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, Ped: 230 KV, BERN & COOP OFF, 40 MW KEN 2X50% SC, 30MVAR@SOLD, FILE: OUTPUT167 CHNL# 62: CO-8L-FTZ3 Al LOAD, 69.0 MW EXPORT +20/-15SVS, 2S5MVARON230 50.000 Ree Seas bs -200.0 CHNL# 60: CQG-BRADLI 0.3968 SS = -'t) S817 HNL# 55: CPG-8AA 2.0000 aaa ° 0.0 CHNL# S56: CPM-8RAD1I 1.5870 Ss == = 0.0 CHNL*# S57: CEF-B8RADLI 19.000 — 2 -1.000 S.0000 4.5000 4.0000 3.0000 0.0 12:06 FEB 17 1989 BRADLEY LAKE FRI, 3.5000 2.5000 TIME 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAIL 69.0 MW EXPORT P2D: 230 KV, 2X50% SC, 30MVAReESOLD, 25MVARON230 sob d Ce 5e FILE: OUTPUT167 CHNL#® 22: CV-PORTGEI 1.3000 ee ae 0.3000 CHNEs 18: CV-SOLOTAI 1.3000 MEE cita2 ae eee x 0.3000 CHNL*® 15: CV-ANCHPTI 1.3000 oe aii aa 0.3000 HNL# 19: CV-GATZCAI 1.3000 eee ae © 0.3000 CHNL«# 11; CV-ET-B8ADI 1.3000 Se) ee eee 0.3000 CHNL«® 12: CV-BAAODLYI 1.3000 ern 0.3000 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 706 11 FEB 17 1989 VOLTAGES FBT: 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40. MW KENAI LOAD, 69.0 MW EXPORT P20: 230 KV, 2XS0% SC, 30MVAR®SOLD, +20/-15SVS, 2S5MVARON230 FILE: QUTPUT167 CHNL* 18: CV-SOLOTAIJ 1.3000 Peeeeieoa se oe > 0.3000 CHNL#* 17: CV-SKIHLLI 1.3000 oie eure teres x 0.3000 CHNL* 16: CV-KASILFI 1.3000 Sai se 0.3000 CHNL# 15: CV-ANCHPTI 1.3000 ersss2sss==2 c 0.3000 CHNL® 13: CV-FRITZCI 1.3000 SS 0.3000 CHNL# 14: CV-OLAMAGI 1.3000 ——_———o 0.3000 cs cs —J Ss wo Ss Ss wo + cs cs cs so > cs Ss Ss w a cs cs Ss Ss Io cs J cs wo a cS Ss Ss So ai Ss J Ss os cs os sc i cs cs cs wo s ee :07 VOLTAGES 2 REBT OB On FRI, TIME BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT P2D: 230 KV, 2XS50% SC, 3OMVAR®SOLD, +20/-15SVS, 2SMVARON2Z30 FILE: OUTPUT167 CHNL*® SO: CST-S8EANLI 0.1000 Miiipsssereee x -0. 900 CHNL® 49: CST-COOPAI 0.3000 == + -0. 700 CHNL® 48: CST-BRADL 0.5000 ae ° -0.500 CHNL«® 47: CST-ANCHPI 0.7000 SN ahi -0.300 CHNL® 46: CST-SOLOTI 0.9000 TT) -0.100 : ¥ , Mi : “| je i nl ] is |2 i boy nl | 3 y 3 mn + > 2lu 4 34/2 aot 7 eae i : f a : '; ee hr 2 ain ; 5 y - ii : | ------- + - - - t-te S.0000 4.5000 4.0000 3.0000 1.0000 0.0 205 STABILIZERS 11 FEB 17 1989 FRI, 2.5000 3.5000 TIME 1.5000 0.5000 8L_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT P2D: 230 KV, 2X50% SC, 30MVAReSOLD, +20/-1SSVS, 2SMVARON2Z30 Bw > ac FILE: OUTPUT167 = on oe fh CHNL® 4S: CB-ANCHORI et 0.8000 Meese x 70.2001 “= CHNL® 44: CB-SOLOTN —— 0.3000 == + -0.700| w& CHNUs 43: CB-HEALY EH 0.8000 O ~~ m enn nnn ° -0.200| <I> CHNL® 42: CB-GLOHLLI cw 0.8000 >So =0.200 CHNL® 41: CB-TEELNDI 0.8000 ———— =0.200 J s = wus cs @ 3 =< = > = ° so y+ s$ he ‘ = _ ‘ 3 S : S ¥ o ed 3 ey a = 2 cs é ay ’ N ae 4 So $ y s " a f) cs =] cs ed Ss cs cs s s cs wo z so E 150.00 BL © 120, BERN & COOP OFF, 40 MW KEN P2D: 230 KV, 2XS0% SC, 30MVARCSOLD, FILE: OUTPUT167 CHNLs# SS: CPG-8RADII AIT LOAD, +20/-15SVS. 69.0 MW EXPORT 2SMVARON230 HNL® 53: -TLO-CTI 150.00 So e -100.0 CHNL«® S2: CP-OR-APTI 150.00 <The ile ae -100.0 5 CHNL*# Si: CP-OCR-HPI 150.00 ae -100.0 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 :06 11 LINE FLOWS FEB 17 1989 Fal. 2.5000 3.5000 TIME 1.5000 0.5000 BL e 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT P20: 230 KV, 2XS0Z% SC, 3OMVAR@®SOLD, +20/-15SVS, 2SMVARON230 FILE: OUTPUT167 CHNLs 35: CF-HWYPRKI 0.0167 Monee eens x 0.067 CHNL* 34: CF-HEALY 0.0167 al a -0.067 HNL® 33: CF-UNIVER 0.0167 eee serasaas= ° 0.067 CHNL® 32: CF-SOLOOTI | 0.0167 es -0.067 CHNL® 31: CF-FAITZCI 0.0167 es -0.067 3.0000 5.0000 4.0000 4.5000 3.5000 1.0000 2.0000 1.5000 2.5000 TIME 0.5000 0 0. : 06 FEB tiv 1969! 911 RRL: FREQUENCY 50.000 BL 120M2, CASE P2E: Oia ics eh sreY isla * =200.0 CHNL* 61: COG-BRAD1I 0.3968 SS sSS55 + -1.587 CHNL® 56: CPG-BRA 2.0000 e--5=--=--—- ° 0.0 CHNL® 57: CPM-BRADII 1.5870 oS 00 CHNL* S58: CEF-B8AAD1I 19.000 ———————a -1.000 BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT +20/-15 SVS@SOLD, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUT168 . CHNL® 63: CQ-B8L-FTZI 3.0000 1.0000 0.0 FEB :56 11 17 1989 BRADLEY LAKE FRI, 2.5000 3.5000 TIME 1.5000 0.5000 1.3000 BL 120Me, CASE Pee: BERN 24Mh, +20/-15 SVS@SOLO, 3 S0% SC, 30/7.2 SH CAPS COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT FILE: OUTPUT168 CHNL® 22: CV-PORTGEI sees > 0. 3000 CHNLs 18: CV-SOLDOTAI 1.3000 Miele = fc x 0. 3000 CHNL® 15: CV-ANCHPTI 1.3000 i + 0. 3000 CHNL® 19: CV-QATZCR 1.3000 e---==255-25 ° 0. 3000 CHNL® 11: CV-ET-BADI 1.3000 e+ >-TH 0. 3000 CHNL® 12: CV-BRADLYI 1.3000 ———— 0. 3000 0.0 $.0000 4.5000 4.0000 3.0000 2.0000 1.0000 :57 VOLTAGES 2.5000 3.5000 TIME 1.5000 0.5000 11 FEB 17 1989 FRI, BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: +20/-15 SVS@SOLOD, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUTL68 CHNL® 18: CV-SOLOTAI 1.3000 SSS aa 0.3000 CHNL* 17: CV-SKIHLLI 1.3000 MISsaeesees x 0.3000 HNLw 16: CV-KASILF 1.3000 a = 073000 CHNL® 15: CV-ANCHPT 1.3000 CS ° 0.3000 CHNL® 13: CV-FRITZCI ; 1.3000 nf Rg RS Gi 2 wanes Teme ee md 0.3000 CHNL* 14: CV-OTAMAGI 1.3000 ——————a 0.3000 cs J s we $ w > J J cs os > cs cs Ss & cs Ss s cs « cs cs cs wo ai s s a cs s cs i 1.0000 0.5000 :58 11 VOLTAGES 2 FEB 17 1989 FRI, TIME BL _120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: +20/-15 SVSeSOLO, 3 S0% SC, FILE: OUTPUT168 CHNL® 50: CST-BEANLI ‘-------@ 3077.2 ‘SH (CAPS 0.1000 M -ciriioeeeee x =0. 300 CHNL» 49: CST-COOPAI 0.3000 aaa * =0. 700 HNLs 4 T-8RAD 0.5000 CoS eeceer ° -0. 500 CHNLs 47; CST-ANCHPI 0.7000 iii =0. 300 CHNL* 46: CST-SOLOTI 0.9000 — =0.100 3.0000 2.0000 0.0 3.5000 2.5000 TIME oe FEB 17 1989 11 STABILIZERS FR. BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: +20/-15 SVS@CSOLD, 3 50% SC, 30/7.2 SH CAPS nw arian =O FILE: OUTPUT168 = oo & of Sb CHNL® 4S: CB-ANCHORI ome 0.8000 Messen x 0.200] = CHNL® 44: CB-SOLDTNI So 0.3000 ------- > 0.7001 uo& we HNLs 43; CB-HEALY wo 0.8000 eee = ° -0.200| I> CHNL® 42: CB-GLOHLLI cw 0.8000 | 0. 200 CHNL® 41: CB-TEELNOJ 0.8000 =——a 0.200 o o os so ae cs cs w = cs so cs co = cs cs 8 J so os co a cs cs ay NN me = cs so s & cs cs so = os co cs i: cs cs cs wo 3 co Es BL _120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: +20/-15 SVSeSOLD, 3 S0% SC, 30/7.2 SH CAPS nw 2= =S FILE: OUTPUT168 oo Ue e CHNLs SS: CP-8L-FTz3 7 > 150.00 eer: x 100.0 | > ome CHNL® S54: CP-TLO-cTJ l 150.00 => >>> + 100.0] w HNL* $3: CP-SLOQTZI * 150.00 @aasseaaaaee ° =100.0] CHNL® S52: CP-OR-APTI i 150.00 Sa ae hae ee -100.0 CHNL* S1: CP-OCR-HPI 150.00 a 100.0 so J cs so no i] 3 me cs so cs cs > co cs cs wo m cs cs co Ss & Ss cs 3 Ne = Ss so Ss al co os Ss a cs cs cs S =] sos cs wo = os s BL _120Me, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: +20/-15 SVS@SOLD, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUT168 CHNUs 35: _CF-HWYPRKI 0.0167 Beis x -0. 067 CHNL® 34: CF-HEALY 0.0167 oo =0. 087 HNL» 33: CF-UNIVER 0.0167 Cer ° =0. 067 CHNU* 32: CF-SOLOOTI 0.0167 =< =0. 067 CHNL® 31: CF-FAITZCI 0.0167 ——— =0. 067 —J Ss J Ss B cs J cs co = cs cs J cs a s s a cs cs J S cs 6 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 1 i i6 FREQUENCY FEB 17 1989 FR. BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@CSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT1L69 CHNL® 63: CO-BL-FTZI 50.000 SS x CHNL® : CPG-BAA 2.0000 re > 7 CHNL® S57: CPM-BAADLI 1.5870 ----—- A 0.0 CHNL® S8: F-BAAO1I 19.000 aan -1.000 a 4 Zz set a a lac — $.0000 4.5000 4.0000 3.0000 2.0000 1.0000 S7 16: FEB 17 1989 BRADLEY LAKE FRI, 2.5000 3.5000 TIME 1.5000 0.5000 BL ® 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT169 CHNL* 50: CST-BEANLI 0.1000 Bea Pare eam or * -0.900 HNL«# 49: T-COOPR 0.3000 SS = 7 ai -0.700 CHNL# 48: T-BRADL 0.5000 . Se * -0.500 CHNL® 47: CST-ANCHPI 0.7000 at lin ai -0.300 CHNL® 46: CST-SOLOTI 0.9000 Se -0.100 Ss cs Ss cs w [ Ti s cs Ss co bas 7 — 4 cs so s os pt qa . ~| s s Le TA cs —J cs = FEB 16:58 17 1989 STABILIZERS FRI, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSe®SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS fr a Ud eieS FILE: QUTPUT169 z= o & of a CHNL® 4S: CB-ANCHORI i 0.8000 Movers x =0.200 ‘= CHNL* 44; CB-SOLDTN im a 0. 3000 - > >>> + 70.700) u& CHNL® 43: CB-HEALY * wn 0.8000 2+ == =-==- ° =0.200 ao CHNL® 42: CB-GLOHLLI nw 0.8000 ———)— 4 -0.200 CHNL® 41: CB-TEELNOJ 0.8000 ———o =0.200 J ~ S$ J we s w — 7 = os cs J cs — T= cs J 8 fo ——l ies so cs so sos La a cs cs | | 8 Ne = s cs so _ TW" cs cs cs as | *% cs cs =] cs | 15 cs cs so w é BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-1S5 SVSCSOLDOT, 3 S0% $.C., 30/7.2 SHUNT CAPS aw as FILE: OUTPUT169 wd o Ue co Sf WwW CHNL® $5: CP-BL-FTZI “sz 150.00 Ei alee x =100.0 ~ CHNL* S54: CP-TLO-CT aw 150.00 Ss SSS so -100.0 Ko CHNL® 53: CP-S 150.00 Seas=5 5-5 ° -100.0| = CHNLs S52; CP-DR-APT ros 150.00 is -100.0 CHNL®# S51: CP-OCR-HPIJ 150.00 : ——as =100.0 cs s cs Ue cs B L_ 4 s =] so $ = ss cs cs & | | er cs sc J o = 155 J s {_ |e Nee = s s LL 3 eel cs cs cs wo = js cs cs Ss e cs cs 3 aS BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS 58 VOLTAGES lo; PELE?) OUTPUTIE9S CHNL® 22: CV-PORTGEJ Z 1.3000 ae > 0.3000] & CHNL® 18: CV-SOLOTAI - 1.3000 Moree x 0.3000] CHNL® 15: CV-ANCHPT a 1.3000 + ->---- + 0.3000] w uw CHNL® 19: CV-QATZCA 1.3000 i O22 3222252 ° 0.3000] an CHNL® 11: CV-ET-BAOI ie 1.3000 -- >So 0.3000 CHNL® 12: CV-BRADLYI 1.3000 -———a 0. 3000 J J J os we cs cs wo i Fl) cs cs J co — — 2s > so so cs w J cs s so _ 7a cs S Wu HN i) — cs cs cs co ll sa s So Ss wo — Soul tes co co cs so cs cs cs wo 5 CHNLs# 35: CF-HWYPAKI 0.0167 Pais tetacishehehehene x -0.067 CHNL® 34: CF-HEALY 0.0167 Ss eae ne -0.067 HNL«® 33: CF-UNIVER 0.0167 & a aia cre © -0.067 CHNLs# 32: CF-SOLODOTI 0.0167 eS SS -0.067 CHNL# 31: CF-FRITZCI 0.0167 —_—_————— 7) -0.067 J cs cs J wo = 4 J s $ ee ss cs s ae im ” J cs J sos = Ta [ess al J Ss 3 BL © 120, CASE PeA: BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT169 16:58 FREQUENCY FEB 17 1989 ABI 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OQUTPUT170 CHNL# 4S: CB-ANCHORI 0.8000 BPR BIGE Ss -/i-f-i x -0.200 HNL« : CB-SOLOTN 0.3000 (sinensis St -0.700 CHNL# 43: -HEALYI 0.8000 Ca2s-ss2=- => © -0.200 CHNL® 42: CB-GLOHLLI 0.8000 a aaa -0.200 CHNL# 41: CB-TEELNOI 0.8000 orn -0.200 S s cs Ss “ cs Ss cs cs as 7+ Ss Ss J cs = Ja s s — TA —J cs s iS so s 56 SVS ADMITTANCES 16: 2.5000 3.5000 4.5000 FRI, 1989 TIME Al 1.5000 0.5000 FEB 17 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3.50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT170 CHNL#'S 4,10: CA-COOP 1I-CA-MLP 73 150.00 Ie Hoven sicte tei rm -50.00 CHNL«* : CA-BERN 33-CA-MLP 7 150.00 aaa a Si -50.00 CHNL#'S A-BLUG 33-CA-MLP 7 150.00 — © -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 7] 150.00 --—-—— “4 -50.00 CHNL®#"S 8,10: CA-BRAD 13-CA-MLP 73 150.00 -———4 -50.00 ia —| — — _ — 16:55 FEB 17 1989 FRI, ANGLES REL TO MLP #7 5.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 BL e@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT170 CHNL# 63: CQ-8L-FTZI 50.000 allele tal i x -200.0 HNL» 61: CQG-BRA 0.3968 FSS ~ =1.587 CHNLs S6: CPG-BRADL 2.0000 ae ° 0.0 CHNLs 57: CPM-BRADII 1.5870 =i 0.0 CHNL® S8: CEF-BRADII 19.000 —— =1.000 | _ od — — as 5.0000 4.5000 4.0000 3.0000 2.0000 16355 FEB 17 1989 BRADLEY LAKE FRI, 2.5000 3.5000 TIME 1.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSESOLDOT, 3 50% §$.C., 30/7.2 SHUNT CAPS 2 26 FILE: OUTPUT170 ~ a mn Ce a] CHNL® 50: CST-BEANLI “a SEE re HNLs 49: CST-COOPA pants 0.3000 -=>---- + -0.700] WwW HNL : T-BAA = 0.5000, @= R= 5322522 ° -0.500 | Gi CHNi&s “47: EST-ANCHPI Ee 0.7000 ----- =0. 300 CHNL® 46: CST-SOLOTI 0.9000 e—_————a -0.100 co co cs cs vie co so w | —— [ie o J J cs 1 — cs os cs “ cs cs s | ss s - ae ee = $s s = las sc cs J - cs cs os eS cs cs co w a so é BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSESOLOOT, 3 50% S.C.. 30/7.2 SHUNT CAPS nD 25 FILE: OUTPUT170 —! o Ue oO or lad CHNL® SS: CP-BL-FTZJ =z 150.00 ee x =100.0 | 7 wm HNL® S¥: CP-TLO-cT aw 150.00 ----- + -100.0] w wu CHNL® $2: CP-DR-APTI te 150.00 i -100.0 CHNL® 51: CP-OCR-HP 150.00 = TE Te -100.0 cs cs cs cs veo cs —J w ae alles cs cs =] cs = 7 cs so 8 so J cs sc 1d Fe cs os | | 2% Nee ee s s = 0 cs sc so = co s iS cs cs 8 3 cs é BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-1S5 SVSeCSOLDOT, 3 50% §.C., 30/7.2 SHUNT CAPS sw 20 FILE: OUTPUT170 x CHNL® 22: CV-PORTG ' ok 1.3000 reese = 0.3000| & = CHNL® 18: CV-SOLOTAI -> 1.3000 Mees x 0.3000] %. CHNL® 1S: CV-ANCHPTI wo 1.3000 - >>> >> + 0.3000] CHNL* 19: CV-QATZCR 7.3000 @ssaae eae ° 0.30001 CHNL® 11; CV-ET-BR0I = 1.3000 - > >So 0.3000 CHNL# 12: CV-BRADLYJ 1.3000 rl 0.3000 cs co cs cs ie cs 8 L_ te cs s cs L_ ss cs cs sc w L_ sa cs J os so | 8 —] cs | | 8% Nee a cs Ss s | sai cs cs cs 8 so $s Ss J s co w sf so B BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS B25 oe FILE: OUTPUT170 us om oo os CHNL® 35: CF-HWYPAKI “ea 0.0167 Mewes x 0.0671 Ti CHNL® 34: CF-HEALY 5 0.0167 ------S = =0.0671 wW Qe CHNLs 33: CF-UNIVER 0.0167 Ona see eee ° -0.0671 CHNL® 32: CF-SOLDOTI ce 0.0167 SST 0.067 CHNL® 31: CF-FRITZCI 0.0167 SS =0.067 cs cs cs so ie S w es es S$ cs so | = cs sc cs w 4 si cs cs cs cs | 5 $ | | 8% Nee = J cs J cs io 1c cs —J s 2 J cs cs iw cs cs cs wo 3 so 3 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3 50% $.C.,. 30/7.2 SHUNT CAPS FILE: OUTRUTI 71 CHNL#'S 4,10: CA-COOP 13-CA-MLP 7] a 150.00 Masses + Asres « -50.00 CHNL#'S 3,10: CA-BEAN 33-CA-MLP 7 150.00 ee ear a -S0.00 HNL#"S 1,10: CA-BLUG 33-CA-MLP 7 150.00 CoS sees - -S0.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP_ 73 | 150.00 Se er el -50.00 CHNL#'S 8,10: CA-BAAD 13-CA-MLP 73 150.00 Ss -50.00 cs J J so w cs Ss cs s — —_ = cs Ss Ss oso ta TJ. cs Ss s pe 8 so cs J ws s s D1 ANGLES REL TO MLP #7 Ib: 1989 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 FEB 17 FRI, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, CASE P2A: +20/-15 SVSeSOLOOT, 3 50% S.C., FILE: QUTPUTL71 CHNLs 63: CQ-8L-FTZI 50.000 SESonaaa x =200.0 HNL® 56: CPG-BRADL 2.0000 CoSSSooe ° 0.0 CHNLs $7: CPM-8RADII 1.5870 — 4 0.0 CHNL*® $8: CEF-8RAD1I 19.000 ——s_—-1.000 Ss J cs So 8 Le I s cs cs fa as co cs J Ss [ a Ss s s = ai cs sc cs S s s 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5) lo: 1989 BRADLEY LAKE FEB 17 FRI, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 CHNL# SS: CP-BL-FTZ2] 150.00 MRIS Sees i: ees x -100.0 CHNL# S4: CP-TLO-CT 150.00 Sess oo> + -100.0 CHNL* 53: CP-SLOOTZI 150.00 sstcaiiiiiiaiaieaiehaintiniie ° -100.0 CHNL# S2: CP-OR-APTI 150.00 eo = — = -100.0 CHNL® Si: CP-OCAR-HPI 150.00 4 -100.0 = 4 BL ® 120, CASE PA: BERN & COOP OFF, +20/-15 SVSe@SOLDOT, 40 MW KENAI LOAD, 3 504 $.C., FILE: OUTPUT171 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 17 1989 16:52 LINE FLOWS FEB FRI, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS a 26 FILE: OUTPUTI71 c CHNL® 22: CV-PORTGEI oe 1.3000 wee = 0.3000| & = CHNL® 18: CV-SOLOTAI ~*~ > 1.3000 Moose x 0.3000] CHNL® 15: CV-ANCHPT oO 1.3000 ">> >>S + 0.3000 | Ww CHNL® 19: CV-QATZCA = 1.3000 @oaaeaa ae ° 0.3000 | CHNL® 11: CV-€T-8ADI = 1.3000 -- > o 0.3000 CHNL® 12: CV-8RADLYI 1.3000 ——— 0.3000 J J cs so Ee cs cs wo ie less cs os S ke tes cs cs cs ja aaa co so cs o -— =a J s cs =? Nee = cs cs cs So i ale J J Ss wa cs oso so = $ cs w 5 co fe BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE Pe2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT171 CHNL# S50: CST-BEANLI 0.1000 ee Breer Eee * -0.900 CHNL# 49: T-COOPRI 0.3000 ieee > 0.700 CHNLs : T-BARAD 0.5000 ona e -0.500 CHNL« 47: CST-ANCHPI 0.7000 SS -0.300 CHNL«# 46: CST-SOLOTI 0.9000 —————4 -0.100 lo S J o wo o So =) Ss fonne 7 o So s so = coats 2 J s = , 3 — 4 52 16; 17 FEB 1989 STABILIZERS BRIS 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSCSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS ns au FILE: OUTPUT171 = o & ' ok fh CHNL® 45: CB-ANCHORI ~ 0.8000 Meese eee x 0.2001] tS CHNL® 44: CB-SOLDTN o@ —= oe CHNLs 43: CB-HEALY EH 0.8000 aaa eae ae ° -0.200| => CHNLs 42: CB-GLOHLLI nn 0.8000 ----- =0.200 CHNL® 41: CB-TEELNDJ 0.8000 =————s =0. 200 cs cs cs o we cs So el w 4 = $ so fe a3 a cs J cs w z 4s So iJ Ss an 15 cs J | _| a8 Nee = o so s so a aol; co cs cs i Le) o so o 7 cs cs —] wo 3 Ss 5 0.0167 0.0167 ESS SS >= eu -0.067 CHNL® 33: CF-UNIVERI 0.0167 Casasses = Sse . -0.067 CHNL# 32: CF-SOLOOTI 0.0167 _— ——_— _—* -0.067 CHNL® 31: CF-FRITZCI 0.0167 a -0.067 | = BL © 120, CASE PeA: BERN & COOP OFF, +20/-15 SVSeSOLDO FIEES—0 CHNLs 35: 40 MW KENAI LOAD, ite SS007SSeCar, UTPUT171 CF-HWYPAKI CHNL# 34: 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 oe FREQUENCY AEB MISS Gr: FAL BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSESOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS FILE: OUTPUT172 CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 Miss $8 sists SSIS x -50.00 CHNL#*S 3,10: CA-BERN 33-CA-MLP 73 150.00 eS SS SSS * -50.00 HNLs* 1 A-BLUG 33-CA-MLP 7 150.00 2 (SSSsesesses 2 -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP_ 73 150.00 aaa ae -S0.00 150.00 Se -50.00 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 12 17: ANGLES REL TO MLP #7 2.5000 3.5000 TIME 1.5000 0.5000 FEB 17 1989 FRE, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS ees ce FILE: OUTPUTI72 - > SF ud CHNL® 63: CO-8L-FTZJ aay 50.000 Moonee eee x -200.0| “OQ CHNL* 61: CQG-BRADL x 0.3968 a ~ age |e a HNL® S6: CPG-BRA 7 2.0000 _—— > |) | ls CHNL# 57: CPM-BAADLJ 7a 1.5870 ——)|—|—)| 0.0 CHNL* 58: CEF-BRADLI 19.000 ———a =1.000 s s ies cs cs w ie Sat cs cs ‘a s - 9. s cs J 7 co cs os cs & cs Ss Sw on a= = $s $s Hie ss cs J cs 2 cs s w E BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS 2 28 FILE: OUTPUTL72 = oo & cof D hoe CHNL® 45: CB-ANCHORI et 0.8000 lillies eailion: x “0.200; TZ HNLw® 44; = IN a 0.3000 ->>>>> + 0.700] oe ue CHNL® 43; CB-HEALY wn 0.8000 rs ° -0.2001 <> CHNL® 42: CB-GLOHLLI cw 0.8000 -_----— =0. 200 CHNL® 41: CB-TEELNDJ 0.8000 —— 0.200 cs S cs wo s w i, — = s S$ a aaa cs s MB J s co ae sa J cs alll I a Nu ae - s s Mh <5 cs cs 3 so cs Ss 2 cs s wo a so S BL 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C... 30/7.2 SHUNT CAPS 2 cs FILE: OUTPUT172 fal cp bbe o Si CHNL® 55: CP-8L-FTZI 2 150.00 SSS x a CHNL® 54: CP-TLO-CTI | aoa 150.00 SSS EE Tn] 3 CHNL® 53: CP-SLOOTZ a 150.00 S==45==6s=— ° -100.0 ce CHNL# 52: CP-OR-APTI aa 150.00 -———— = 100.0 CHNL® Si: CP-OCR-HPI 150.00 ——a 100.0 cs cs J cs ne 3 cs wo in ees cs cs cs cs er _- S > S S z; z cs %, Ss 3 = 3 3 & 9 3 = 282 Nee | e ' cs cs - cs ! so ct a | cs | s | wo — | a4 : J cs cs 4 cs cs cs w 3 J E BL e@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS Low cf FILE: QUTPUT172 ie a _— coo | LD CHNL# SO: CST-BERNLI “a 0.1000 oe x 0.9001 “E CHNL® 49: CST-COOPR 9, 3000 lalakaanliaia 0.700 | 0 CHNL® 48: CST-BAAD 0.5000 Ooaaaaeeeeee = -0.500] CHNL® 47: CST-ANCHPI i 0.7000 - >>> RET 0.9000 70-100 Ss so Ss so ve cs i] w pill aay iat s Ss sos wu ss s os cs 5 cs cs s cs — We Ss . s Bi _| &e Nee = J Ss cs cs pl \c8 cs sc s “ Pecan: ind ~ S cs - BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSCSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS Ont £6 FILE: OUTPUT172 c HNL® 22: CV-PORTGE oe T3000 ae > 0.3000] & = CHNL* 18: CV-SOLOTAI > 1.3000 epee os ere A 0.3000 | HNL® 1S: CV-ANCHPT rs 1.3000 => >>> = 0.3000] w HNL® V-QATZCR = 1.3000 Osea ee aae ee ° 0.30001 2 CHNL® 11; CV-ET-BADI ie 1.3000 -- >So 0.3000 HNL® 12: CV-BRADLY 1.3000 — 0.3000 cs os os so ue s s > Sues aa —| (ees s os so _ 7s co cs 3 eH a cs cs cs cs | Se co cs = | ay Nee = cs cs 3 ies let $ J a r=} cs s io cs cs co w xt So Es BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: *20/-15 SVSeSOLDOT, 3 S0% S$.C., 30/7.2 SHUNT CAPS FILE: OUTPUT172 CHNL® 3S: CF-HWYPAK 0.0167 DE Sir soiio ie a 1S iS a -0.067 CHNLs 1 CF-UNIVER 0.0167 Cees aoa 2 -0.067 CHNL® 32: CF- oor 0.0167 eS = = -0.067 CHNL® 31: CF-FAITZC 0.0167 ——————5 -0.067 s cs cs sc “ fm 4 cs Ss cs so = 7s os os Ss = aie o = —| J s cs os L_— 7a cs co J * so 3 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 17:13 FREQUENCY FEB 17 1989 FRI, BL_@ 90, BERN & COOP OFF, 40 MW KENAI LOAD, 41.8 MW EXPORT CASE PeF: LIKE P2A EXCEPT EXPORT REDUCED TO 41.8 MW FILE: QUTPUT173 CHNL#'S 4,10: CA-COOP 13-CA-MLP 7] _| 150.00 fase SS EEeEre s -50.00 CHNE*#'S 3,10: CA-BEAN 33-CA-MLP 73 150.00 = =e -50.00 CHNL#'S 10: CA-BLUG 33-CA-MLP_ 73 150.00 eee ses s= ===) ” -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 7] 150.00 eo = = | -50.00 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 4 -50.00 —— —_— = — -— = Li | 1.0000 5.0000 4.5000 4.0000 3.0000 2.0000 2.5000 TIME 1989 ANGLES REL TO MLP #? 3.5000 1.5000 0.5000 10:54 FEB 21 TUE, BL © 90, BERN & COOP OFF, 40 MW KENAI LOAD, 41.8 MW EXPORT CASE P2F: LIKE P2A EXCEPT EXPORT REDUCED TO 41.8 MW FILE; OUTPUTI7S CHNL* 63: CO-8L-FTZI 50.000 SCE IRISIE)E/ieiteilai t= a -200.0 CHNL® 61: -BRADL 0.3968 SaaS = “T7587 CHNL* S6: CPG-BAAD! 2.0000 a ° 0.0 CHNLs 57: CPM-BAAD1I 1.5870 SS 0.0 CHNL* 58: CEF-BAADLI 19,000 ——s__—-- 1.000 cs cs 3 “ s s _ as L 4 s S a Fs cs cs s = Fei cs s 2 10:54 1989 FEB 21 BRADLEY LAKE TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 CHNUs 45: CB-ANCHOAI 0.8000 oka x =0.200 CHNL® 44: CB-SOLDTN 0.3000 2S a =0. 700 HNL® 43: CB-HEALY 0.8000 @scccsecrscs ° -0.200 CHNL® 42: CB-GLOHLLI 0.8000 ida -0.200 CHNL® 41: CB-TEELNOJ 0.8000 —a 0.200 — — | = ml — —_ BL © 90, CASE NPE: BERN & COOP OFF, 40 MW KENAI PILES OUTPUT ITS LOAD, 41.8 MW EXPORT LIKE P2A EXCEPT EXPORT REDUCED TO 41.8 MW 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 1989 SVS ADMITTANCES TUE, 2.5000 3.5000 TIME 1.5000 0.5000 10:54 FEB 21 BL_@ 90, BERN & COOP OFF, 40 MW KENAI LOAD, 41.8 MW EXPORT CASE P2F: LIKE P2A EXCEPT EXPORT REDUCED TO 41.8 MW 5m ae FILE: QUTPUTL73 a CHNL® 22: CV-PORT ot 1.3000 wes = 0.30001 & a CHNL® 18: CV-SOLOTAI ~* > 1.3000 Meese ee x 0.3000] = a ua ae w —_ Poe ts cveermppspg T. 3000 ----o 0.3000 CHNL® 12: CV-8RADLYI 1.3000 > 0.3000 = cs cs s se s w | 4 = cs $ [_ ss cs cs cs e cs cs s LL sea cs cs BY | sak a cs =] J so t— I. cs cs Ss wo i Fis oe Ss s cs FF Ss Ss 3 eS 150.00 150.00 150.00 ae . -100.0 CHNL® 52: CP-OR-APTI 150.00 i. -100.0 CHNL® Si: CP-OCR-HPI 150.00 ————4 -100.0 oa | BL @ 90, CASE Per: BERN & COOP OFF, 40 MW KENAI LOAD, 41.8 MW EXPORT LIKE P2A EXCEPT EXPORT REDUCED TO 41.8 MW FILE: QOUTPUT173 CHNL# SS: CP-BL-FTZI HNL«® S4: CP-TLO-CTI HNL 53: CP-SLOQTZ 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 10:55 1989 LINE FLOWS FEB 21 TUE, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 90, CASE Pek: BERN & COOP OFF, 40 MW KENAI 1.8 M LIKE P2A EXCEPT EXPORT REDUCED TO 41.8 MW FLEE: OUTPUT LZ3 LOAD, 4 W EXPORT 5.0000 4.5000 4.0000 3.0000 2.0000 CHNL# 35: CF-HWYPAKI 0.0167 PSPS sapere cee * -0.067 CHNL® 34: CF-HEALYI 0.0167 ee eaten = -0.067 CHNL# F-UNIVER 0.0167 Caress s2 55) 2 -0.067 CHNL# 32: CF-SOLOOTI 0.0167 = -0.067 CHNL# 31: CF-FAITZCI 0.0167 So -0.067 i — :—- eae Es — 1.0000 1989 REBn2n HO) 35) FREQUENCY TUE, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FLEES OUTPUT ITY CHNL®'S 4,10: CA-COOP 1J-CA-MLP 73 150.00 Malis = x =50.00 CHNL®* 0: CA-BERN 3]-CA-MLP 7 150.00 Cite oe + -50.00 CHNL®* 10: CA- 3]-CA-MLP_73 150.00 Coo == ° -50.00 CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 150.00 —<—s—5— 4 -50.00 CHNL#'S 8,10: CA-BRAD 1]-CA-MLP 73 150.00 ————as =50.00 cs cs cs s wo = a cs so cs cs — ss cs cs so cs L_ SP I | 2.0000 | | | It T [ 1.0000 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 5 ANGLES REL TO MLP #7 1989 10:5 FEB 21 TUE, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT174 CHNL® 63: CQ-BL-FTZIJ 50.000 Eaton re Se aORO CHNL*® 61: -BRADLI 0. 3968 SaaS = ae HNL® PG-8RADII 2.0000 Sweet > om CHNLs 57: CPM-8RADII 1.5870 - >t 0.0 CHNL® S8: CEF-BAADII 19.000 —————————— -1.000 J cs Ss x s cs s so i ss i 4 Ss co cs so ii 155 cs so s 1a alas co cs s S a — 1989 10:55 FEB 21 BRADLEY LAKE TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 CHNL® 45: CB-ANCHORI 0.8000 Miia Ia i= ay x =0.200 CHNL® 44: CB-SOLOIN 0.3000 Se SS = -0.700 CHNL® 43: CB-HEALY 0.8000 @2s2==SsSs== ° -0.200 CHNL® 42: CB-GLOHLLI 0.8000 Si — — -0.200 CHNL® 41: CB-TEELNDIJ 0.8000 . ———4 -0.200 h — L_ 4 jo — BL © 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, +20/-15 SVSeSOLDOT, 3 S0% S.C., FILE: QOUTPUT174 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 1989 TUE, 2.5000 3.5000 TIME 1.5000 0.5000 10:56 SVS ADMITTANCES FEB 21 BL © 120, BEAN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 2.5000 TIME CASE P2A: *20/-15 SVS@SOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS FILE: OUTPUTL74 CHNL® 22: CV-PORTGEI 1.3000 PRIS Rei > 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 Sisesseuees* x 0.3000 : CV-ANCHPTI 1.3000 aiid = 0.3000 CHNLs 11: CV-ET-BA0I 1.3000 , eae eae 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 = li 0.3000 cs cs cs Ss w — 4 s S — = L 4 So Ss cs co — Fa 3 S = Ta cs sc S | oh 10:56 VOLTAGES FEB 21 1989 TUES 4.5000 3.5000 1.5000 0.5000 HNL®# SS: CP-BL-FTZ] 150.00 Miss 7 Si2iBi sists aS -100.0 HNL® S4: CP-TLO-CT 150.00 ieee = -100.0 HNL# 53: CP- iT 150.00 ¢--- = © -100.0 CHNL# S2: CP-OR-APTI 150.00 (Sia -100.0 CHNL*# S51: CP-OCR-HPI 150.00 3 -100.0 — — — + -— — a —= BL © 120, CASE PeA: BERN & COOP OFF, +20/-15 SVSeSOLDO 40 MW KENAI LOAD, Tis S040S iG. FILE: OUTPUT174 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 1989 LINE FLOWS 10:56 FEB 2] TUE, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 S0% S.C... 30/7.2 SHUNT CAPS FILE OUTPUT LY: CHNL® 3S: CF-HWYPRKI 0.0167 sees x -0.067 CHNLs 34: CF-HEALYI 0.0167 et a + -0.067 CHNL* 33: CF-UNIVER 0.0167 aa ° -0.067 CHNL* 32: CF-SOLDOTI 0.0187 in LY CHNL® 31: CF-FRITZCI 0.0167 Sa 02087 — — = 4 = + f a il 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1989 FREQUENCY FEB 2l 10:56 TUE, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, CASE PA: BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT *20/-15 SVSe@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: QUTPUTL7S CHNL®#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 Te x -50.00 CHNL®'S 3,10: CA-BERN 33-CA-MLP 73 150.00 > SaaS + -50.00 CHNL#®'S 1,10: CA-BLUG 33-CA-MLP 7 150.00 e<=---===--= ° -50.00 CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 150.00 i? -50.00 CHNL#'S 8,10: CA-BAAD 1J-CA-MLP 73 150.00 ————— -50. 00 [ ~ | =| 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 S57 ANGLES REL TO MLP #7 2.5000 3.5000 TIME 1.5000 0.5000 FEB 21 1989 10: TUE, BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-15 SvVSeSOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS FILE: OUTPUT175 CHNL® 63: COQ-8L-FTZ]9 50.000 OE nieiiniaie x -200.0 HNL« : CQG-B8RAI 0.3968 ieee anal + -1.587 CHNL® : CPG-BRA 2.0000 amma . 0.0 CHNLs® S57: CPM-BRADII 1.5870 = = =" -4 0.0 CHNLw# 58: CEF-BRADII 19.000 eee -1.000 $ s =} wo — 4 co s oso a “7 — =| so s o tess ss i] cs cs o i sa 1989 10:57 BRADLEY LAKE FEBr2l TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 1.3000 Peeia Irena > 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 Se x 0.3000 CHNL® 15: CV-ANCHPT 1.3000 SSS = =e 0.3000 CHNL® V-QRTZCA 1.3000 —_ © 0.3000 CHNL* 11: CV-ET-8AD 1.3000 oe eS 0.3000 CHNL# 12: CV-BRAOLYI 1.3000 —————— 0.3000 [ | = — — — BL © 120, BERN & COOP OFF, CASE P2A: +20/-15 SVSeSOLDO FILE: 0 CHNL® t 40 MW KENAI LOAD, I» 3.504 5.6... UTPUT1L75 V-PORTGEI 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1989 VOLTAGES FEB 21 LOso7 TUE, 2.5000 3.5000 TIME 1.5000 0.5000 CASE P2A: +20/-15 SVSeSOLDOT., 3 50% S.C., 30/7.2 SHUNT CAPS ia Oo SO : OUTPUT175 = PILE na o- Se CHNL® 4S: CB-ANCHOAI ~ 0.8000 Meee e sees x 0.200] == HNL# 44: CB-SOLOTN a®@ 0. 3000 ---- > + 0.700) uo & we nn uD CHNLs 42: CB-GLOHLLI rea, 0.8000 ---_-S =0.200 CHNL® 41: CB-TEELNOJ 0.8000 oo =0.200 So cs s es cs 8 $s s L_ 150 s cs e so cs —J So i 3 s ee | 8 NN me = s cs s = a cs s cs w L as: cs s Se so $ BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS an s2 FILE: CsTPUTL75 — oy Ue ao tes CHNL® 55: CP-BL-FTZI “Zz 150.00 SSE ™ =100.0 | =o N HNL 54: CP-TLO-cT a7 150.00 aS + -100.0] w CHNL® 53: CP-SLOQTZI 7 150.00 Onsseean eee ° -100.0| WJ CHNL* 52: CP-DR-APTI = 150.00 --- SH -100.0 CHNL® 51: CP-OCR-HPI 150.00 =————a =100.0 o cs Ss we s w = a so co So |e aire Fd cs so 8 = 4 8 co o Ss a la o s lu w = — a5 rae $ $ en => N sc cs so w t 7 - o cs so - s cs w ES o ES CASE P2A: +20/-15 SVS@SOLDOT, 3 S0% S$.C., 30/7.2 SHUNT CAPS FILE: OUTPUTI7S CHNLs# 35: CF-HWYPRKJ 0.0167 eee x -0.067 HNL® 34: F-HEALY 0.0167 a = TE, HNLs : CF-UNIVER 0.0167 SS ° -0.067 CHNLs 32: CF-SOLOOTI 0.0167 esas sae eae id -0.067 CHNL# 31: CF-FRITZCI 0.0167 eee | -0.067 - cs so Ss co uo $ w = | a co cs $ = — cs $ fs —|—-4 co co s — 5 J cs cs wo [eas 7a s s = sa So os cs = srs co $s iS s —J wo so BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 0.0 1989 °--10:'58 FREQUENCY FEB 21 TUE, TIME CHNL#'S 4,10: CA-COOP 1J-CA-MLP 7] 150.00 Movers x =50.00 CHNLe* 0: CA-BERN 3J-CA-MLP 73 150.00 ea + -50.00 CHNL®'S 1,10: CA-BL -CA-MLP 7] 150.00 Onn e=2----= ° -50.00 CHNL®'S 6,10: CA-CHENASI-CA-MLP 7] 150.00 --- a -50.00 CHNL®'S 8,10: CA-BRAD 1J-CA-MLP 7] 150.00 ——a =50.00 = =| Le =| — — BL ® 120, CASE P2A: BERN & COOP OFF, +20/- 15 SVS@SOLODOT, 3 S0% S.C., FILE: OQUTPUT176 40 MW KENAI LOAD, 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 2.5000 3.5000 TIME 1.5000 0.5000 41 1989 09: ANGLES REL TO MLP #7 FEB) 21 TUE, 50.000 0.3968 1.5870 oe => = 0.0 CHNL«# S8: CEF-B8RADLI 19.000 ——— -1.000 ft aaa — 4 BL © 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: QUTPUT176 CHNL# 63: CQ-B8L-FTZ] CHNL# 61: CQG-B8RADLI CHNL® 56: CPG-BRADLI CHNL*# S7: CPM-BAA01I a 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 1989 09:40 BRADLEY LAKE FEB 21 TUE, BL e@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT176 CHNL = : CV-PORTG 1.3000 Se eee = 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 DO cticheniete ais 212i x 0.3000 CHNL® 15: CV-ANCHPTI =| 1.3000 SSS = on 0.3000 CHNL® 19; CV-QATZCAR 1.3000 SSS © 0.3000 CHNL# 11: CV-ET-8A0I 1.3000 SS 0.3000 CHNL# 12: CV-B8RADLYI 1.3000 a4 0.3000 e S J S wo — = ° J S S = 7s = 4 ° S S S — Ta 2 S S S = 7a — —_ 2 J S S — — 41 09: 1989 VOLTAGES FEB) 2 TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT176 CHNL# SS: CP-B8L-FTZ] 150.00 Resear 7 SOONG CHNL® S4: CP-TLO-CT 150.00 SSS SS = = -100.0 CHNL® 53: CP-SLDQTZ 150.00 Seer > = 1000 150.00 Fe ee -100.0 CHNL®# 51: CP-OCR-HPJ 150.00 a4 -100.0 cs s cs cs “ E — cs s s [- 43 _ =| ° s s oS THs = —| eo s S s —™ — — ° S S s ai 09: 1989 FEB 21 LINE FLOWS TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 2.5000 TIME CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT176 CHNL®s 45: CB-ANCHORI 0.8000 AEs Sess x -0.200 HNL® : = IN 0.3000 SE + -0.700 CHNL® 4 CB-HEALY 0.8000 eSsesscesees ¢ -0.200 CHNL# 42: CB-GLOHLLI 0.8000 eS =— — — ~ -0.200 CHNL* 41: CB-TEELNOI 0.8000 ——————_2 -0.200 cs Ss cs so a s s — 4 co J s | Je L_ _ $s s I S sc S S 09:41 1989 FEB jell SVS ADMITTANCES NUER, 4.5000 3.5000 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., FILEs) QUEPUTI 76 CHNL# 50: CST-BERNLI 64.3 MW EXPORT 30/7.2 SHUNT CAPS 0.1000 Pash so te oS x -0.900 T-COOPAR 0.3000 ert ee a -0.700 HNL# 48: T-BRA 0.5000 eee ° -0.500 CHNL® 47: CST-ANCHPI 0.7000 Sl ere -0.300 CHNL# 46: CST-SOLOTI 0.9000 SS ae -0.100 bs a te 4 -— = 5.0000 4.5000 4.0000 3.0000 2.0000 1989 09:41 STABILIZERS FEB P21 TUE, 2.5000 3.5000 TIME 1.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@ESOLDOT, 3 50% §.C., 30/7.2 SHUNT CAPS v= mS as FILE: OUTPUTI76 uJ b= oW Sr tas CHNL® 35: CF-HWYPAKI nice 0.0167 Moves eee ee x 0.0671 ib HNU® 34: CF-HEALY in 0.0167 ------- + -0.0e7| wW CHNL® 33: il ee) CHNLs 32: CF-SOLooTI = 0.0167 -----A4 =0.067 CHNL® 31: CF-FRITZCI 0.0167 ———a =0.067 J J cs cs we 3 Ss a mill |= J S cs so ie 7s o cs S er _| # a cs Ss laa 0 s cs a +e: E cs cs cs cs a ae Ss os z wns Ss cs cs - cs cs cs 2 CASE P2A: +20/-15 SVSCSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS So Bas # FILE: OUTPUT177 a oa ost oa CHNLe‘'S 4,10: CA-COOP_13-CA-MLP_73 =O 150.00 Meee x =50.00 | = CHNL®*S 3,10: CA-BERN 33-CA-MLP 7] 150.00 ------S > 0.001 Od uw LJ HNLs* 10: CA- -CA-MLP_ 7 (om 150.00 asso eo =o ° =50.001 CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 2M 150.00 iE =i =50.00 - CHNL®'S 8,10: CA-BRAD 1J-CA-MLP 73 oO 150.00 a——s =50.00 s S ce cs so wo cs s w ne es =] os cs cs [ee ss J cs 8 cs J —J os | ss J cs = 22 Nee i s cs os oS 1s cs cs cs 5 cs cs J ‘os J cs cs w SS so 3 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 2.5000 TIME CASE P2A: +20/-15 SVSeSOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS EIEBs OUTPULL77 CHNL® 63: CQ-8L-FTZ] 50.000 Ms PS eS Ses * -200.0 HNL « : -BRA 0.3968 SSS SS ny -1.587 HNL # PG-BRA 2.0000 eae ° 0.0 CHNL® S7: CPM-BRADLI 1.5870 =_—S— — = 0.0 CHNL*# 58: CEF-B8AADII 19.000 See -1.000 S s “ — — cs Ss s — 7s J Ss s — 7" s s cs so = sa = ~ 1.5000 - 10:58 BRADLEY LAKE FEB 21 1989 TUE, 4.5000 3.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT177 3.0000 2.0000 CHNL® 22: CV-PORTGE 1.3000 DRESS ci h atm oymie > 0.3000 CHNE# 18: CV-SOLOTAI 2 1.3000 2ST eraser i 0.3000 CHNL# 15: CV-ANCHPT 1.3000 aaa +s 0.3000 HNL 19: CV-QATZCR 1.3000 wr ° 0.3000 CHNL# 11: CV-ET-BADI 1.3000 SSS 0.3000 CHNL* 12: CV-BRAOLYI 1.3000 Se 0.3000 setae — a bn a — — 1.0000 10:59 1989 VOLTAGES FEB! TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-15 SVSeCSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT177 CHNL® 4S: CB-ANCHORI 0.8000 BR ish) wtiaiiniis ike tis x -0.200 HNE® 44: CB-SOLOTN 0.3000 a esti ae -0.700 HNLs : HEALY 0.8000 Cass 855 — >>> 2 -0.200 CHNL# 42: CB-GLOHLLI $$ SSSFSSSSSSSSSsF 0.8000 Ce) -0.200 CHNL® 41: CB-TEELNOI 0.8000 4 -0.200 i | ] | 4.0000 I | l | 5.0000 3.0000 2.0000 1.0000 0.0 Cw Ud 26 & Sk Sf — ae ~o 2c we 0 u> = (09 cs cs 3 z 3 cs 3 g & Nee = J cs 8 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS os nn sg FILE: QUTPUT177 ~d o o Sts CHNL® SS; CP-B8L-FTZ]) =z 150.00 peer x =100.0 | = N CHNL® SY: CP-TLO-CTI aa 150.00 aS == -100.0 WwW HNL® 53: CP-SLOQTZI * 150.00 @ssae eae ° =loon0e| ai CHNL® 52: CP-OR-APTI = 150.00 | =100.0 CHNL® S1: CP-OCR-HPI 150.00 a nrc -100.0 co os Ss J Bo cs 3 | 4 s s cs s [ ss cs J Ss = = co co co co | Sa s Sw wo | sa az = s $ te Sa cs cs cs = —|-% s S $s —] w s o 3 BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: *20/-15 SvSeSOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT177 3.0000 2.0000 CHNL# 35: CF-HWYPRKI 0.0167 MS Tease seiteeee x -0.067 CHNL® 34: CF-HEALY | 0.0167 = 32s'= * -0.067 CHNL* 33: CF-UNIVERI 0.0167 Sa eee © -0.067 Po HN 32: CF-SOLOOTA 0.0167 =. > = =4 -0.067 CHNL* 31: CF-FRITZCI 0.0167 a) -0.067 1 =f oa — 579 FREQUENCY 10; FEB 21 1989 TUE, 5.0000 4.0000 4.5000 3.5000 2.5000 TIME 1.0000 1.5000 0.5000 0.0 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, CASE P2A: +20/-15 SVS®SOLDOT, 3 50% S.C., FILE: OUTPUT178 CHNL#'S 4,10: CA-COOP _13-CA-MLP 7] 150.00 Meese x =50.00 CHNL#'S 3,10: CA-BERN 33-CA-MLP 7 150.00 lot ras + -50.00 HNLs* : CA- -CA-MLP 7 150.00 5255 5===-=5 ° -50.00 CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 150.00 id -50.00 CHNL#'S 8,10: CA-BRAD 1J-CA-MLP 73 150.00 —— =50.00 J J s so “ eam — co sc os cs | ss os cs Ss jae sa Ss cs cs o jes sa cs so cs S 64.3 MW EXPORT 30/7.2 SHUNT CAPS 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 1:00 1 1989 FEB: 21 ANGLES REL TO MLP #7 TUE; CHNL® 63: CQ-BL-FTZ] 50.000 SEE EGGEESESe x a CHNL«# 2 -BRA 0. 3968 sSSasSs = =H CHNL# : CPG-BRADL 2.0000 ——---- oso > 020 CHNL® 57: CPM-BAADII 1.5870 == = 0.0 CHNL# S58: CEF-8AADII 19.000 ——"s -1.000 [_ 4 r — [— —_— BL @ 120, CASE PeA: BERN & COOP OFF, 40 MW KENAI LOAD, +20/-15 SVS@SOLDOT, 3 50% S.C., FILE: QUTPUT178 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 700 1] 1989 BRADLEY LAKE FEB 21 TUE, 2.5000 3.5000 TIME 1.5000 0.5000 8L_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS®SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS ae =@® FILE: OUTPUTI78 = o & ok oe CHNL® 4S: CB-ANCHOAI me 0.8000 Mo x 0.200| -—= NA CHNL® 44: CB-so a 0.3000 --- >> + =0.700 | ui a CHNL® 43: CB-HEALYI w 0.8000 Orseesea ee ° -0.200| w> CHNL® 42: CB-GLOHLLI zw 0.8000 —_ _ -0.200 CHNL® 41: CB-TEELNOI 0.8000 —— =0.200 co o cs —] ie s w fs 4 s so sos cs co = 7s cs cs rd [ 4s co So os o | ei co J | | 84 Ne = s s pe Wi cs cs cs = so cs co = i] cs cs wo a CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OQUTPUT178 CHNL® 22: CV-PORTGE 1.3000 alah acai 2 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 eee x 0.3000 HNL# 15: CV-ANCHPT 1.3000 aera ei cS 0.3000 CHNL# 11: CV-ET-8A0I 1.3000 —E—i— -E—¢ 0.3000 CHNL# 12: CV-BRAOLYI 1.3000 ——— 0.3000 8 cs cs w cs s 3 = 7s cs cs S — qa ie —| oc J s s = Ts foe os cs cs cs —|% BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 200 11 1989 VOLTAGES FEB rel 2.5000 3.5000 4.5000 Tue TIME , 1.9000 0.5000 BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT178 CHNLs SS: CP-B8L-FTZ9 150.00 2 * -100.0 HNE® S4: CP-TLO-CTI 150.00 SS ae ae * -100.0 CHNL®# S53: CP-SLOOT 150.00 Cs=S-SSssee— S -100.0 CHNL«® S2: CP-OR-APTI fa 150.00 SS -100.0 CHNL*® 51: CP-OCR-HPJ a aS a | 150.00 ———— -100.0 | | 3.0000 5.0000 4.5000 4.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 201 LINE FLOWS 11 FEB 2i*s1'989 TUE, BL © 90, BEAN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT CASE P2G: LOW EXPORT FOR BL UNIT TRIP ANDO BRAKE-ON TEST FILE: OUTPUT179 CHNL#'S 4,10; CA-COOP 13-CA-MLP 7] 150.00 Sa CIS io loi iol rd -50.00 CHNL#"S_ 3,10: CA-BERN _33-CA-MLP 73 150.00 Te oe -50.00 CHNL#‘S 1,10: CA-BLUG 33-CA-MLP 73 150.00 a 2 -50.00 CHNL#'S 6,10: CA-CHENASIJ-CA-MLP 73 150.00 =— = | — -50.00 CHNL#'S 8,10: CA-B8AAD 13-CA-MLP 73 | 150.00 —_ -50.00 a ee ee ee ee ee ee eee ee bvake off 1.0000 5.0000 4.5000 4.0000 3.0000 2.0000 0.0 1989 MON, 2.5000 3.5000 TIME 1.5000 0.5000 10:31 FEB 27 ANGLES REL TO MLP #7 age BL @ 90, CASE P2G: BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST FILE: OUTPUT179 CHNL® 63; CO-BL-FTZ] 50.000 Mo x =200.0 CHNL® 61: CQG-BRADLI 0. 3968 — * ~1.587 CHNL s. PG-BRAD 2.0000 cineca : 0.0 CHNL® 57: CPM-BAAD1I __| 1.5870 ————-49 0.0 CHNL® 58: CEF-BAAD13 19.000 —————A -1.000 sc cs cs So “ s cs cs cs — 7 oo —_— cs sc Ss J - Fs Ss Ss Ss Ss La a L =| 10:30 FEB 27 1989 BRADLEY LAKE MON, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 T=—\ 8L_9 90, BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW =XPOR Ti CASE P2G: LOW EXPORT FOR BL UNIT TRIP ANDO SRAKE-ON TEST - FILE: OUTPUT179 CHNLs 18: CV-SOLOTAI 1.3000 mom me > 0.3000 CHNL® 17: CV-SKIHLLI __| 1.3000 Mis iscie se 0 iwi x 0.3000 CHNL® 16: CV-KASILFI 1.3000 == + 0.3000 CHNL® 15: CV-ANCHPTI 1.3000 S22 25 2a © 0.3000 CHNL# 13: CV-FRITZCI 1.3000 er == = 0.3000 CHNL# 14: CV-OLAMAGI 1.3000 s——— 0.3000 — am e —_= — = 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 32 10: 1989 VOLTAGES 2 FEB 27 MON, 2.5000 3.5000 TIME 1.5000 0.5000 FILE: OUTPUT179 CHNLs 22: CV-POATG SS aaa a aa eI BS ee CHNLs 18: CV-SOLOTAI 1.3000 DIaTec arp yee creat he x 0.3000 HNL# 1S: CV-ANCHPT. 1.3000 ae a = 0.3000 HNL# 19: CV-QATZCA 1.3000 Saas ° 0.3000 CHNL# 11: CV-ET-BADI 1.3000 eS —— — 0.3000 CHNL® 12: CV-BRADLYI 1.3000 ee 0.3000 cs cs cs Ss wo cs 8 — — 2 rad cs «|e |S = ss co J 5 = a tes Ss / s so = sa J J —J wo = ce Ss cs s fs sa J cs cs 2 cs cs cs a cs s cs w o BL e 90, CASE P2G: BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST 0.0 1989 10:31 VOLTAGES FEBee7 MON, TIME BL @ 90, BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPCART Tif CASE P2G: LOW EXPORT FOR BL UNIT TRIP ANO BRAKE-ON TEST CHNL® SS: CP-8L-FTZJ 150.00 ae x =100.0 HNL S4: CP-TLO-CTI 150.00 — a -100.0 CHNLs 53: CP-S 150.00 C2 - sao =~ 22 ° -100.0 CHNL® 52: CP-OR-APTI 150.00 ----- 100.0 “CHNU® 51: CP-OCR-HPJ 150.00 ———a =100.0 cs cs —J s w . Sa os J cs cs Ps 7 —e — cs cs s | 6 canis — cs cs cs cs — TA cs cs sc 7 co é FILE: QUTPUTL79 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 3) LINE FLOWS FEB 27 1989 10: MON, BL © 90, BEAN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT 4 CASE P2G: LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST a Fe 8 FILE: OUTPUT179 z co & oF op CHNL® 4S: C8-ANCHORI — 0.8000 Meese x =0.200] Se CHNL® 44: CB-SOLOTNI ae 0.3000 =->> >> + -0.700) Ww CHNL® 43: CB-HEALY ~ 0.8000 @osaeeeeeeee ° -0.200| >> CHNL® 42: CB-GLOHLLI Ln 0.6000 | =0.200 CHNL® 41: C8-TEELNO 0.8000 oo =0.200 i] os cs so wo cs 3 L es Ss Ss s L . —. cs cs _| 8 o o Ss co | ah so —J | | 8 ee = s s {i sa cs cs 3 o o s $ cs w 3 so 3 BL @ 90, BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT 4 d CASE P2G: LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST nw | - || Si FILE: OUTPUT179 ™~ o = Oho TD tmp CHNL# 50: CST-SEANLI “wo 0.1000 Les gee ltt oe has x -0.900 ye CHNL® 49: CST-COOPAJ ag = 0.3000 SS = =ORI00 2H wu z CHNL® 47: CST-ANCHPI Se 0.7000 == —/— = -0,300 CHNL® 46: CST-SOLDTI 0.9000 -———4 =0.100 cs cs J cs ve Ss 3 ae 4 = sc cs —J cs ba ss cs cs & aa 44 cs cs so cs L Sales J s fs a = eo = cs J s pa 7" os so os * BL © 90, BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT a CASE P2G: LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST {> FILE: OUTPUT179 Wu oa ‘ co = | ott CHNL# 35: CF-HWYPRKI ee 0.0167 MII sip ls leiayo iis x -0.067 Si HNL® 34: CF-HEALYI a 0.0167 ->----- + -0.067 i oa z CHNL® 32: CF-SOLOOTI 2 0.0167 —j— "= = -0.067 CHNL® 31: CF-FRITZC 0.0167 a=——4 -0. 067 J s cs vie $ wo — = a s s pe oo cs cs cs ve cs s cs es sa so cs it #8 Nee ja $s cs s jal 5 cs cs J wo fo — 2 s cs a cs cs cs wo SI co o BL © 90, a CASE P2G: LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST FILE: OUTPUT180 CHNL®'S 4,10: CA-COOP _13-CA-MLP 73 100.00 Ee x BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPOAT CHNL#*S 3,10: CA-BERN 33-CA-MLP 73” 100.00 SRS Si Sai a CHNL#'S 1,10: CA-BLUG 33-CA-MLP 7 100.00 [dentist ° -100.0 CHNL#'S 6,10: CA-CHENASIJ-CA-MLP 79 100.00 LS. -100.0 CHNL®#®'S 8,10: CA-BRAD 13-CA-MLP 7) 100.00 8 -100.0 cs J iJ co wo — —T so cs cs co cen “= Cc a x g : 3 L- = = g 2.0000 1.0000 0.0 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 FEB 27 1989 11:21 ANGLES REL TO MLP #7 MON, BL e 90, CASE Pec: BERN & COOP OFF, 75 MW KENAI LOAD, FILE: OUTPUT180 CHNL# 63: CQ-8L-FTZI 9.4 MW EXPORT LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST 50.000 TT oS x -200.0 CHNL* 61: CQG-8RADLI 0.3968 ------- > 7587 CHNL® S56: CPG-8RAD1I 2.0000 @rnnenaroccne ° -0 CHNLs S7: CPM-B8RADII 1.5870 SS = +0 CHNL«® S8: CEF-BRADII 19.000 -1.000 LY Lo S = WS \’ ~ SN | a 4 Y v x ww — \ — gj xs 2 os We N ~ 8 R — r \ — ~ ‘ — \ — 5.0000 4.5000 4.0000 3.0000 2.0000 sel 11 FEB 27 1989 BRADLEY LAKE MON, 2.5000 3.5000 TIME 1.5000 0.5000 BL e 90, CASE P2G: BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST FILE: QUTPUT180 1.3000 1.3000 CHNL# 11: CV-ET-8A0I CHNL® 12: CV-BAAOLYI CHNL® 22: CV-PORTGEI 1.3000 Deak = 0.3000 CHNL*® 18: CV-SOLOTAI 1.3000 Dc costecereretetT Ts x 0.3000 HNU® 15: CV-ANCHPT 1. 3000 in * 2713000 CHNL* 19: CV-QATZCAI 1.3000 Ccccceaesane * 0, 3000 eee ee | eS SSS ——t $.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0 0. 2.5000 3.5000 TIME 1.5000 0.5000 322 1989 11 VOLTAGES FEB) 27 MON, BL e 90, BERN & COOP OFF, 75 MW KENAI LORO, 9.4 MW EXPORT 0.5000 A CASE PeG: LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST a3 “oo FILE: OUTPUT180 ™~ o — (CO) eae ao] CHNL® 50: CST-BERNLI “ea 0.1000 Moonee eee x 0.9001 TE CHNL® 49: CST-COOPR one 0.3000 - >>> + 7.7001 wu CHNL* 48: CST-8RA a 0.5000 aaa ° -0.500| = CHNL® 47: CST-ANCHPI = 0.7000 ----o 0.300 CHNL® 46: CST-SOLOTI 0.9000 ———a =0.100 Ss so cs co ve s ue ss 8 Fad $s $s es 1a cs co cs = cs so cs co ell ry o os wn =) a Nee eat cs 3 bolld saa $ & BL © 90, BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT CASE P2G: LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST FILE: OUTPUT1L80 CHNL® SS: CP-8L-FTZI 150.00 ee: x -100.0 CHNL® S4¥: CP-TLO-CTI 150.00 Simi ~ -100.0 CHNU* 53: CP-SLOOT 150.00 eee © -100.0 CHNL® 52: CP-OR-APTI 150.00 =_—oeooroo -100.0 CHNL® Si: CP-OCR-HPI 150.00 Sa -100.0 cs cs S “ cs s co }— = _— — cs =] J cs = qa cs cs cs J Lani 7s Lis22 FEB 27 1989 LINE FLOWS MON, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 CASE P2G: LOW EXPORT FOR BL UNIT TRIP AND BRAKE-ON TEST FILE: OUTPUT1L80 CHNL® 45: CB-ANCHOAI 0.8000 Resets ate x -0.200 CHNL® 44; =S NI 0.3000 fe eee + -0.700 CHNLs ~HEALY 0.8000 Cre>--====== e -0.200 CHNL® 42: CB-GLOHLLI 0.8000 SS a -0.200 CHNL® 41: CB-TEELNOI 0.8000 ——————__4 -0.200 s + s wo $ w — =| = so s so o La ss cs os & 2 $ so = at) Ss s cs w _ 7 a cs cs cs co — 7a cs cs cs Mm os co cs 5 So J cs w so J s BL © 90, BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT 322 11 FEB 27 1989 SVS ADMITTANCES MON, TIME F BL @ 90, BERN & COOP OFF, 75 MW KENAI LOAD, 9.4 MW EXPORT age CASE P2G: LOW EXPORT FOR BL UNIT TRIP ANO BRAKE-ON TEST nel al FILE: OUTPUT180 | CHNLs 35: CF-HWYPRKI OO GSA Ma aE HEIN FS esa paca g x -0.067 CHNLs 34: CF-HEALYI 0.0167 OR ONC SS OS ¢ -0.067 CHNL# 32: CF-SOLOOTI 0.0167 ae ei -0.067 CHNL« 3): CF-ERITZE3 0.0167 ——————— -0.067 fae | — — = Ta _ 4 1.0000 sac FREQUENCY 1 FEB 27) S89 MON, 5.0000 3.0000 4.0000 2.5000 3.5000 4.5000 TIME 2.0000 1.5000 0.5000 0.0 BL_120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: +20/-15 SVSeESOLD, 3 50% SC, 30/7.2 SH CAPS TP a 29 ff : uu ILE: OUTPUT181 -D co = | ay a Cc ay Ue De Lo ee w Us CHNL® 32: CF-SOLDOTI = 0.0667 ea aed =0.017 CHNL® 31: CF-FRITZCI 0.0667 —— a -0.017 cs J Ss ve cs i & ‘and | \ ram] lita $ i 3 Bs | i s 8 + ‘9 d i NO a) re 98 N \s s os ile 4s cs S lu as = s s a J s “ $s cs s s 3 co é CASE P2E: +20/-15 SVSeSOLD, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUT181 CHNL® 63: CO-B8L-FTZ2] s0.000 2s -200.0 HNL# 61: COG-BRADLI 0.3968 aasiaia ie =l.967 CHNL* S6: CPG-B8RADII 2.0000 eo Sees nic 0.0 CHNLs S7: CPM-BAADLI 1.5870 —_— =] | - 0.0 CHNL«* S8: CEF-B8RADII 19.000 SS -1.000 J s 9 s >) " = The = vw | 3 L 3 cH: . ¢ 90 s >. = > =/5 , ae — = - s 5 sn s sc u y =< 4 s ay, — v Ss. & — _ € > To > o 3s ~ \ z & ° yy ial . 3 — Ta cs Ss cs wo a $s J cs a J cs cs ie cs cs J = cs cs cs wo s BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT 3 Q 2 x 69 40 0.0 FEB 21 1989 13:26 BRADLEY LAKE TUE, TIME BL _120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: +20/-15 SVSeSOLD, 3 50% SC, 30/7.2 SH CAPS aa FILE: OUTPUT181 x HNL® 22: CV-PORTGEJ ok 1, 3000 Poste > 0.3000] & = CHNL® 18: CV-SOLOTAI ~* > 1.3000 Meese eres x 0.3000] = HNL«& : CV-ANCHPT ao 1.3000 ------- + 0.3000] wW wu HNLs V-QATZCA 1.3000 ea aa aw aa aaa ° 0.30001 CHNL® 11: CV-ET-BAD = 1.3000 -----= 0. 3000 CHNL® 12: CV-8RAOLYI 1.3000 =—————a 0.3000 J cs J So 1 aie co { wo | = | 3 | s bee | ss ’ cs cs ' cs ! $e ie cs Ss cs so | 0 cs i Sw wo ees = J cs cs 7 cs cs cs w ES BL_120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD. 90 MW EXPORT CASE P2E: +20/-15 SVS®SOLD, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUT181 | CHNL* 4S: CS-ANCHOAI 0.8000 een nell * -0.200 CHNL# 44: - IN 0.3000 im i a -0.700 HNL# 43: HEALY 0.8000 eee ee © -0.200 CHNL# 42: CB-GLOHLLI 0.8000 ee | ae nee te -0.200 CHNL# 41; CB-TEELNDI 0.8000 ae -0.200 Ss J os cs “ y s cs i Z Hs 8 x = ~ mel a ~~ A 3 oc oes sa + g < ¢. x : ¥ | ' ; \ t : = \ + : 4 Se. ' . ' i ' i 1 | ' : ° ! 9 \ : s ae uae ‘ : mee ! E nu 1 | ' : ! | ' ‘ x i t | ' | 1 | + ; ' ' ; 2 ! 4 ' ; s Leon \ ' : a ' Q i : a \ f : \ ' ‘ ‘ ' : ley aril ; : isl “i | Uae eT | i ET RIL : scneos balay Ra Se a ees 1989 SVS ADMITTANCES TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 13:26 FEB 21 BL _120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: +20/-15 SVSe®SOLD, 3 50% SC, 30/7.2 SH CAPS Peng: = FILE: OUTPUTL81 ~ co — <9 ad —s CHNL® SO: CST-BERNLI “a 0.1000 es x =0. 900 ce CHNL® 49: CST-COOPA Pal oy 0.3000 - = >>> + -0.70| wW HNL 48: CST-BAA ie 0.5000 Ona R= 25 222- ° -0.500 uf CHNL® 47: CST-ANCHPI = 0.7000 | =0. 300 CHNL® 46: CST-SOLOTI 0.9000 ———— =0. 100, $ —r..* $s 5 :. .N 3 i = as 3 9 e : 2 % =a s cL Ee | | | eta S Wy cs = ee : ee ii 3 eli Le 8 Ss os ae / = x + Be < | i | | zl . w a ' 785 : ' ; 4 7. ‘ ! i ° ‘ I ' 9 $ ' \ i | s ley : ! ante | 7 " 1 1 ; \ a * LITE = qi ! i TR | : 1 J s iE NH a | e 1 ‘ | { g | ‘ & = \ \ | se 1 ‘ ' I BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: 207-15 ‘SVSESOLO), 350% SC. 30/7752 SH CAPS FILE: QUTPUT181 CHNL® SS: CP-8L-FTZI | 150.00 isso ier oer x =100.0 HNL*# S4: CP-T 150.00 att = -100.0 HNL# S53: CP-SLOQT 150.00 escssess— ° -100.0 CHNL* 52: CP-OA-APTI 150.00 ees serie -100.0 CHNL® Si: CP-OCR-HPI 150.00 ————a -100.0 cs co s wo cs 3 aoe Ce] en s J cs =e ss s 5 cs s oS = 7 x < : | $ ‘ | ¢ a = 3 ea 74 ene. g | 3 os a ] 3 * | 3 — et ees I ¢ 2 j & | 4 = 3 w = ; — s \ ea Nois 1989 13:27 LINE FLOWS REBT2i TUE, TIME 2.0270 0.6000 SS -0.400 CHNL® 59: CEF-BEAN3I 18.000 —————s =2.000 J x 3 — a Q wil | Z | 7 3 my . & ~ u * a) yn v u Ni — 2 Oo \ 7 Z ; ' : 7 | eS LL 4 ~——aale — 4 ils L f | A} an Vt SN it \ Ad L_ ee \ I of | \ | BL 120Me, CASE P2E: BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, +20/-15 SVS@SOLD, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUT181 CHNL® 65: CPM- CHNLs 64: CPE-B8EAN3I 90 MW EXPORT “1.351 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 45 BERNICE LAKE #3 3s 1989 2.5000 3.5000 TIME 1.5000 0.5000 FEB 2 TUE, BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT sid CASE P2E: +20/-15 SVSeSOLD, 3 50% SC, 30/7.2 SH CAPS a FILE: OUTPUT181A CHNL# 32: CF-SOLOOTI 0.0667 SS -0.017 CHNL# 31: CF-FRITZCI 0.0667 eens -0.017 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1989 2.5000 4.5000 TIME 1.5000 0.5000 13:58 REBT 27 KENAI FREQUENCIES MON, BL 120M2, BERN 24MW, COOP 8Me, CASE P2E: +20/-15 SVSeSOLO, So S078 SG. FILE: OUTPUT181A 42M2 KENAI LOAD, 3077.2 SH CAPS 90 MW EXPORT CHNL®# 63: CO-8L-FTZ] 50.000 Pra as cet tS ns -200.0 CHNL* 61: CQG-8AA01I 0.3968 a) he | et 7 = hao67 CHNL# S56: CPG-8RADII 2.0000 CHNLs 57: CPM-8RAD1I 1.5870 ee at ioe 0.0 CHNL* S58: CEF-BAADLI 19.000 See -1.000 — 4 5.0000 4.5000 4.0000 0.0 13: 55 FEB 27 1989 BRADLEY LAKE MON, 3.5000 1.5000 0.5000 TIME CASE P2E: +20/-15 SVSeSOLO, 3 50% SC, 30/7.2 SH CAPS ie BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT | | FILE: OQUTPUT181A CHNL® 59: CEF-BEAN3J 18.000 oa ae ° =2.000 CHNL# 67: CPM-BERN3I 2.0270 eed =1.351 CHNL® 64: CPE-BEAN3I 0.6000 —s =0. 400 Ss cs Ss Ss 4 s J J cs = cs cs Ss i a J J cs so a J cs Ss a so S 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 14:00 FEB 27 1989 BERNICE LAKE #3 MON, ep Ti BL 120M2, BERN 24MW, COOP 8M2, CASE PeE: *20/-15 SVSeSOLD, 31) 90% ISG FILE: OUTPUT181A CHNL* 19: 42M2 KENAI LOAD, 30/7.2 SH CAPS 90 MW EXPORT V-QRTZCAI CHNL® 22: CV-PORTGEJ poe 1.3000 DIREMo sors > 0. 3000 CHNL® 18: CV-SOLDTAI 1.3000 aT Ty iil re 0.3000 CHNL® 15: CV-ANCHPT 1.3000 aS + 0.3000 1.3000 aT ake © 0.3000 CHNL® 11: CV-ET-B8ROI 1.3000 | 0.3000 CHNL® 12: CV-8RAOLYI 1.3000 SSS TT re 0.3000 5.0000 4.5000 4.0000 sa00 2.0000 -L 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 D0 VOLTAGES FEB 27 1969 #13: MON, 8L_120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT A CASE P2E: +20/-15 SvSeSOLD, 3 50% SC. 30/7.2 SH CAPS awn Ud if se ae FILE: OUTPUT181A oe oO fh CHNL® 4S: CB-ANCHORI Te} 0.8000 Merce eee x -0. 200 ~ Ss N CHNL* 44: CB-SOLOTNI a G oe OcS eas > 0.7001 OBE CHNLs 43: CB-HEALYI maT.) 0.8000 e--eeeaa == = ° =0.200 s> CHNL® 42: CB-GLOHLLI ew 0.8000 a -0.200 CHNL® 41: CB-TEELNOI | 0.8000 ———a -0.200 J cs cs J ve cs & L 4? U4 s 3 s 9 Ss 3 - t t ; = et | ; 2 = ! ' e s Bee ' ‘ ' ; B — : \ i ; aa V 4 i ; 3 ~>)\ ' i‘ [— \ | 3 \ ‘ \ | i x ‘, | Hq 3 = | + |" { m4 a= t i ' — | | \ 2 | o ' Ss ! | ' s 1 | i == : 1 so ! oI : ® 2 5 t | ‘ as i iy = | ¢ = ) eet | BS oo = \ | ' ' 1 o \ | ! S \ 1 4 te \ | 1 lio ' | ' | y BL_120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT 2.5000 3.5000 4.5000 TIME 1.5000 4 CASE P2E: +20/-15 SVSeSOLO, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUT181A CHNL«® $5: €P-8L-FT2Z] 150.00 ie SS * -100.0 CHNL® $4: CP-TLO-CTI 150.00 SS = -100.0 CHNL® 2 CP- OT 150.00 Seco ssSSse== © -100.0 CHNL® S2: CP-DAR-APTI 150.00 = =. -100.0 CHNL® Si: CP-OCR-HPI 150.00 SS -100.0 Ss J so co wo Ss Ss f— x 1? 7s : 1¢ ‘4 a ny : | s Ce r 3 ; Ta = ai a : Le = oa ae 3 , ey s — i ss ‘| | / / ¢ = 4 s = \ 4 ~ | te / —= 55) LINE FLOWS FEBS27 1989. - 13: MON, 0.5000 CHNL® 32: CF-SOLOOTI 0.0667 = |= ==| = -0.017 CHNL# 31: CF-FAITZC) 0.0667 Se -0.017 J J J cs “ mm 4 cs cs cs cs ‘ ml ED BL 120M, GASE | P2E: BERN 24MW, COOP 8M2, +20/-15 SVSeSOLD, 3 50% SC. FILE: OUTPUT181B 30/7.2 SH CAPS 42M2 KENAI LOAD, SO MW EXPORT 3.0000 2.0000 1.0000 0 0. 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 FEB 27 1989 14:33 MON, KENAI FREQUENCIES GS BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPOAT 5 CASE P2E: +20/-15 SVS@SOLD, 3 S0Z% SC, 30/7.2 SH CAPS 2 | -« & FILE: OUTPUT1818 a Se a CHNL® S59: CEF-BEAN3I 18.000 Mise erence eine x =2.000 ~ uw CHNL* 67: CPM-BEAN Gi Oo 2.0270 Le a -1.351 Ww > CHNL® 64: CPE-BEAN ns c 0.6000 aaa 2 “0.400 | 2>uy CHNL» 67: CPM-BEAN3I 2a 0.0 -----H =1.351 CHNL® 64: CPE-BEAN3J 0.6000 ——a =0. 400 cs Ss cs so “ie cs cs wo L = cs cs sS = 5 cs sc sc BH cs cs os so a Ss cs a Ne rm cs cs cs cs a cs cs os . cs cs 3 cs cs cs wo s os o BL _120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: +20/-15 SVSeSOLO, 3 50% SC, 30/7.2 SH CAPS ~ Ud . i ae FILE: OUTPUT1818 as S > [ uw CHNL® 63: CO-BL-FTZI | “ly 50.000 Mose x 20001 ° aE N CHNL® 61: COG-8RAD1I ont (9, 3968 aaa wars] a CHNL® 56: CPG-8ARDII ~ 2.0000 nia i 20} Zs CHNLs S7: CPM-BRADLI < 1.5870 al 0.0 CHNL® 58: CEF-B8AADII 19.000 1.000 = 3 ly < = 2 “3 wo - 2 § 43 an s ‘ ~~» $ < s cs) s Z 0 Ss — Ss 3 = ss ~—s ¥ 37 Ss e & SS a J cs cs cs & cs Ss Ww a= = Ss cs s so a sc cs sc wy cs cs $ s sc w e Ss sé 1D “ BL 120M, CASE) P2E: BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT +20/7-15 SVSeSOLO. 3 50% SC, FILE: OUTPUT181B 3077.2 SH CAPS CHNL® 22: CV-PORTGEI 11.3000 este ys > 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 a iariine rial x 0. 3000 = CHNL® 15: CV-ANCHPTI 1.3000 a ae = 073000 CHNL® 19: CV-ORTZCAI 1.3000 . ea ° 0.3000 CHNL® 11: CV-ET-B8ADI 1.3000 SP Pl 4 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 ne 0.3000 cs cs cs so “ J cs s L 4: 2.5000 3.5000 4.5000 TIME 0.5000 32 as 1989 VOLTAGES FEB 27 MON, y BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 9O MW EXPCAT 5 CASE P2E: +20/-15 SVSeSOLD, 3 50% SC, 30/7.2 SH CAPS = 4 Wd = 62 FILE: OUTPUT1818 = o G&G o- LS CHNL® 4S: CB-ANCHOAI ~~ me 0.8000 Ee x -0.200| TS N CHNL® 44: CB-SOLOTNI | ~2 0.3000 -- >>> + -0.700| w& CHNLs 43: CB-HEALY ~ 0.8000 , O25 252-8 == ° 0.2001 ss CHNL® 42: CB-GLOHLLI en 0.8000 rll aa ae limlie -0.200 CHNL® 41: CB-TEELNOI 0.8000 ——as =0.200 $ $ we $ wo Un ts cs cs J os = en cs cs 8 ue t ; 1 ° x tls ! ' ] s ; | ' . Ss ' . co L : | ' ; Fa ‘ | - s | ' 3 \ . wo WwW — Sele | . a = 1 4 ' i | | ' ° oa. ae 3 J ' - _— 1 ! at es 1 | i I | ' a ill \t x 3 a in + | lis | 1 We g ; 4 ' 3 a \ : aimless 1 4 4 1 | \ ' cs ; | S — \ | ' e \ | ' I | BL 120Me, Ay CASE P2E: 0.7000 BERN 24Mh, +20/=1'5 SVSOSOLD; COOP 8M2. 42M2 KENAI LOAD, SOO VOCs FILE: OUTPUT1818B CHNLs SO: CST-BEANLI CHNL® 47: CST-ANCHPI CHNL®# 46: CST-SOLOTI - —--—-— ~ 90 MW EXPORT 30/7.2 SH CAPS 0.1000 —————. = | CHNL® 49: CST-COOPA 0.3000 Se = ae CHNL® 48: CST-BAA 0.5000 ——-— C EORSOD eee 0.9000 — ae -0.100 — — — ~— bene x + ° q = . 1 ‘ : I ' | ° 5 : I! ory | — ; ! ' | 4 : ! = \ 2. ' t | — : “> | | i on ' 1 4 \ i | \ ‘ Q \ | a 1 a el ' | | | I ! | + i | ! | ! \ 4 1 | \ \ | \ | \ | 1 i | | | $.0000 4.5000 4.0000 3.0000 2.0000 32 ee 1989 STABILIZERS f EBu eW MON, 2.5000 3.5000 TIME 1.5000 0.5000 BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, SO MW EXPCRT CASE P2E: +20/-15 SVSCSOLD, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUT1818 | CHNL® SS: CP-8L-FTZI [150.00 Ores aia af ph=]- x -100.0 | CHNLs 54: CP-TLO-CTI 150.00 : als ol oe la ie -100.0 | CHNL® 53: CP-SLOQTZI 150.00 esssssSsa >= ° -100.0 CHNL# 52: CP-OR-APTI 150.00 =) = = == -100.0 CHNL® S51: CP-OCAR-HPI 150.00 ——————4 -100.0 — = Ee. x ‘9 ml sill Pl = | — Tl a7 aoe a itie == es | ol a 7 7? _| | ‘| eae ee ald ml | ¢ 4 — | — 1 | a i ul 2.0000 S.0000 4.5000 4.0000 3.0000 1.0000 2.5000 4.5000 TIME 1.5000 0.5000 3e Ts 1989 LINE FLOWS FEB 27 MON, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SvSeSOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS CHNL# 15: CV-ANCHPTI 1.3000 FILE: OUTPUTIAS EEE > 0. 3000 CHNL# 12: CV-BRADLYI area a 1.3000 FILE: OUTPUTI8S Moses e eee x 0. 3000 HNL®'S 8,10: CA-BRAD 1J-CA-MLP 73 175.00 FILE: OUTPUTIBS Saat + -25.00 HNL® 15: CV-ANCHPT 1.3000 - FILE: OUTPUTI84 e-=====-= ==> ° 0. 3000 CHNLs 12: CV-BRADLYI 1.3000 FILE: OUTPUTIA4% << —)— i= 0. 3000 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 7] 175.00 FILE: OUTPUT164 a———4 =25.00 J J J wo a 2 ° _ s = 0 Ma) = $5 ete — & 8 = > = a 4 2 3 = & * g () 3 V ls L 2 < x N ~s 1.2500 TIME 0.2500 09:02 VOLTAGES FEB 22 1989 WED, ANGLES, 1.7500 0.7500 CASE PeA: +20/-15 SVS@ESOLDOT, 3 S0% S.C... 30/7.2 SHUNT CAPS FILE: OUTPUT186 HNL 20: CV-OAVECA 1.3000 wos ¥ 0.3000 CHNL® 18: CV-SOLOTAI T. 3000 ee x 0.3000 HNL® 16: CV-KASILF 1.3000 ---- > > 0.3000 CHNL® 14: CV-DIAMAGI 1.3000 ae ° 0.3000 CHNL® 12: CV-8AADLYI 1.3000 >> 0.3000 CHNL®'S 8,10: CA-BAAD 13-CA-MLP 73 175.00 = =25.00 -_ x = a =e] + ae v= v. 2 eal > Vw ae » “ =] wv a z 0 A . 9 “ — — BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 09:16 FEB 22 1989 VOLTAGES ANGLES, WED, 2.5000 0.5000 1.0000 1.5000 2.0000 0.7500 1.2500 1.7500 2.2500 TIME 0.2500 0.0 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 S0% $.C., 30/7.2 SHUNT CAPS CHNL# 15: CV-ANCHPTI 1.3000 FILE: OUTPUT188 Pet es apie eis ad 0.3000 CHNL# 12: CV-BRADLYI 1.3000 FILE: OUTPUT188 qo seek etree x 0.3000 CHNL#"S 8,10: CA-BRAD 13-CA-MLP 7] 175.00 FILE: OUTPUT188 Se + -2S.00 HNL® :_ CV-ANCHPTI 1.3000 FILE: OUTPUT187 @essesesisse= > 0.3000 CHNL® 12: CV-B8RADLYI 1.3000 FILE: OUTPUT187 e--—=— = 0.3000 CHNLw#'S 8,10: CA-BRAD 13-CA-MLP 7) 175.00 FILE: OUTPUT187 Se -25.00 J s w > nu x pene i — Ne) a cs ° + i 3 heme a x _ = 9 : + v) v= ¢ £ US s _ . LY ~ - uw 3 + Pa e 3 a | _ s }— 3 E > “= 2 6 Oo OG g g Oe N 7 $s cs . cs Ss sos w sc so s 1.2500 1.7500 2.2500 TIME 0.7500 0.2500 09:03 FEB 22 1989 ANGLES, VOLTAGES WED, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS CHNL®'S 8,10: CA-BAAD 1]-CA-MLP 7 150.00 FILE: OUTPUTI90A oss oaae aaa ° =50.00 CHNL®'S 6,10: CA-BAAD 1J-CA-MLP 73 150.00 FILE: OUTPUT190 | 50.00 CHNL#'S 8,10: CA-BRAD 11-CA-MLP 7] 150.00 FILE: OUTPUT1I09 7 : =——s_—-50.00 cs + 3 — fo” . > v . : =~ a a ti v x = se 4 . 2 es i) 4 3 -— x ” a = ~ a < x v - _ 3 + SoS WH we) Mine = ~ y + | ss a a 7) oon s u v N 4 “i 3 L 5 v — _ mele 3 - v 0 “Ss = 6 v i = a B) 7 v v ss Nv 6 s | nS $ _ o ® 3) i] J L * 2 = a = =” SH cs s w Bs ES 09:20 ANGLES « FEB 22 1989 1.2500 1.7500 2.2500 TIME 0.7500 0.2500 WED, BL © 120, BERN & COOP OFF, 4O MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS CHNL® 15: CV-ANCHPT 1.3000 FILE: OUTPUTI90A or Sy SS ee = 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 FILE: OUTPUT190A Regt 4s * 0.3000 CHNL*# 15: CV-ANCHPT 1.3000 FILE: OUTPUTI190 Fela se eee er fail 0.3000 CHNL® 12: CV-BRADLYI 1.3000 FILE: OUTPUT190 aa ay ° 0.3000 CHNLs 15: CV-ANCHPTI 1.3000 FILE: OUTPUT189 = 3 = Si 0.3000 CHNL* 12: CV-BRADLYI 1.3000 FILE: OUTPUT189 Ss 0.3000 cs v 3 Ss a es e rs n” fi | s~ uU é ~ 3 2h ar : i" = d we + si v = 2 2 Vv 3 s 5 $+ 3 § 4 = UO e 3 u 3 7 3 Ee ”2 4 3 1 8 re) a1 x zal v i ft © oe — | | : cs s i i So os So wo is oso S 09:07 VOLTAGES FEB 22 1989 WED, 1.2500 1.7500 2.2500 TIME 0.7500 0.2500 CHNL® 15: CV-ANCHPT 1.3000 FILE: OUTPUT192 cai a iaiiaes = 0.3000 CHNL# 12: CV-8AAOLYI 1.3000 FILE: OUTPUTI192 ake E EE s 0.3000 HNL#*S 8,10: CA-BAA -CA-MLP 7 175.00 FILE: OUTPUT192 ae ee ZS -25.00 CHNL# V-ANCHPT 1.3000 FILE: OUTPUTI91 eS aaa © 0.3000 CHNL#® 12: CV-8AAOLYI 1.3000 FILE: OUTPUTI91 SS 0.3000 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 7) 175.00 FILE: OUTPUTI91 4 -25.00 = | = a BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT GASE Pea: +20/7=15 SVSeESOLDOT. 3 S0% S.C, GAKV Fav It Bevunice 30/7.2 SHUNT CAPS 2.5000 2.2500 2.0000 1.5000 1.0000 0.5000 1.2500 1.7500 WED, aii ANGLES, 0.7500 0.2500 09333 FEB 22 1989 VOLTAGES BL © 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, +20/-15 SVSeSOLDOT, 3 SOZ% S.C., CHNL#*S 8,10: CA-8RAD 13-CA-MLP 73 64.3 MW EXPORT 30/7.2 SHUNT CAPS 150.00 FILE: OUTPUTI96 i * -50.00 CHNL#'S :_ CA-BRAD 13-CA-MLP 7] 150.00 FILE: OUTPUTI9S ee ee aaa © -50.00 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 FILE: OUTPUT194 = >= = — = -50.00 CHNL*#'S 8,10: CA-8RAD 13-CA-MLP 73 150.00 FILE: OUTPUTI93 S—————s -50.00 pl we) lo a") , 2 3 — §é 4 4 _ a u y 8 * y x Uv “ 8 No * Hess . ~ : _ i 23 8 , f 32 , s “7 L 5 z ee t= > oon a 4 e So \ Il 2 u ves s s bh \ Ss — ~ 3 Z \ en — “ Vv s s OO es) 5.0000 4.5000 4.0000 3.0000 2.5000 3.5000 TIME 1.5000 0.5000 09:02 BRAKE ON-TIME COMPARISON FEB .235.1989 THU, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@CSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS , FILE: OUTPUTI9S CHNL#'S 4,10: CA-COOP 13-CA-MLP 7] 150.00 PE Sa SEIS SSE x -50.00 CHNL«#*S 3,10: CA-BERN 3J-CA-MLP 7 150.00 oS —— + -50.00 CHNL®'S 1,10: CA-BLUG 3J-CA-MLP 7 150.00 CaaS aaa ° -50.00 CHNL®'S 6,10: CA-CHENASI-CA-MLP 73 150.00 ---- = -50.00 CHNL®'S 8,10: CA-BRAD 1J-CA-MLP 73 150.00 ———3 -50.00 so Ss so o “ cs J cs co | —s cs cs s — , js x ' ' / T ' / ' = ° / $ i] so a cs so so 2 0.0 2.5000 3.5000 4.5000 TIME WED, 1989 1.5000 0.5000 14:08 ANGLES REL TO MLP #7 FEB! 22 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-15 SVSeSOLDOT. 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT19S CHNLs# 63: CQ-B8L-FT23 50.000 ee x a CHNL*® 61: G-BRA 0.3968 PS r=) SS ee Sl + -1.587 HNL« PG-BRAD 2.0000 essere = 7 CHNL® 57: CPM-BRADII 1.5870 TTS 0.0 CHNL® S8: CEF-8AADL 19.000 =, -1.000 so 3 co % in aT so 3 os - ss o Ss os o ms 2.0000 0.0 14:08 FEB 22 1989 BRADLEY LAKE WED, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS FILE: QUTPUT19S CHNLs 22; CV-PORTG 1.3000 a a SI SIers > 0.3000 CHNL# 18: CV-SOLOTAI 1.3000 MEGS nse * 0.3000 CHNL# 15: CV-ANCHPTI 1.3000 aaa aa + 0.3000 CHNL® 19; CV-QATZCR 1.3000 ISS © 0.3000 CHNL# 11: CV-ET-8A 1.3000 oe => >= = 0.3000 CHNL# 12: CV-BRADLYI 1.3000 —————“o 0.3000 ° 3 J ° B ° s s == Hs — 4 i ° 2 S 3 “ 2 S ° 3 a ° Se ° S 0.0 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 14:09 VOLTAGES FEB 22 1989 WED, BL © 120, BERN & COOP OFF, 4O MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSCSOLDOT, 3 S0% §.C., 30/7.2 SHUNT CAPS Sw ~ = WJ FILE: OUTPUT195 ™~ o _ CO amd TZ met CHNLs 50: CST-BEANLI “a 0.1000 ae x 0.9001 NE CHNL® 49: CST-COOPA =m 0.3000 =——=——— + -0.700| wW wu a CHNL® 47: CST-ANCHPI = 0.7000 -- >A =0. 300 CHNL® 46: CST-SOLOTI 0.9000 =———a =0. 100 o cs so o ve cs 3 | =| co cs so so L_ 2 co co & | 4 a os o cs o 7 cs so oy Nee = so so s$ ai so so Ss " so so co iS i] =] cs wo 3 so é 0.8000 GeEpssaanne x =0.200 CHNL® 44: CB-SOLOTN 0.3000 aaa a =0. 700 CHNL® 43: CB-HEALY 0.8000 ae * -0.200 CHNLs 42: CB~GLOHLLI 0.8000 Sas -0.200 CHNL® 41: CB-TEELNOJ 0.8000 ——s___—-0.200 Ti sail jet mel ie ae BL © 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: QUTPUT1L9S CHNLs 45: CB-ANCHOAI 5.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 14:08 SVS ADMITTANCES FEB 22 1989 WED, 150.00 CHNL«* S2: CP-OR-APTI 150.00 eS = -100.0 CHNL® S1: CP-OCR-HPI 150.00 = =: -100.0 BL ® 120, CASE P2A: BERN & COOP OFF, +20/-15 SVSeSOLDO 40 MW KENAI LOAD, T, 3.50% S.C., FILE: OUTPUTI19S CHNL# SS: CP-BL-FTZ) 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 14:09 FEB 22 1989 LINE FLOWS WED, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, CASE P2A: CHNL® 35: CF-HWYPRKI 0.0167 Xr lai x -0.067 CHNL* 34: CF-HEALY 0.0167 Sioa peak Set lee ef -0.067 CHNL# : CF-UNIVERI 0.0167 ee Se ¢. -0.067 CHNL® 32: CF-SOLOD0TI 0.0167 a -0.067 CHNL# 31: CF-FAITZC3 0.0167 So -0.067 Estee —s LL — BERN COORSOFE, +20/-15 SVS@SOLDOT, FIEE: -OUTPUTISS B00Lach Cais 40 MW KENAI LOAD, 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 3.5000 2.5000 1.5000 0.5000 £5 ie uJ aS oW 2 ud A i+ a Cy) bbe a a uw a uw a WwW = = BL © 120, CASE PA: BERN & COOP OFF, 40 MW KENAI LOAD, £207 =15|iSVSCSOLOON,) 3) S04 S.C. FILE: OUTPUT196 64.3 MW EXPORT 30/7.2 SHUNT CAPS HNL#* 0: CA-8 -CA-MLP 7 150.00 eA aie aie © -50.00 CHNL®'S 6,10: CA-CHENASI-CA-MLP 7] 150.00 so eae -50.00 CHNL#'S 8,10: CA-BRAD 13-CA-MLP_ 73 150.00 See -50.00 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 THU, 2.5000 3.5000 TIME 1.5000 0.5000 09:03 FEB 23 1989 ANGLES REL TO MLP #7 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS FILE: OQUTPUT196 Po HN 8: COBerTZI 50.000 aSSSEREGEGE SET CHNL® 61: COG-8AA 0.3968 SSS Sas = =ecaT CHNL# 56: CPG-BRAD 2.0000 easasa2Seses x a CHNL® 57: CPM-BRADI 1.5870 ia 0.0 CHNL® 58: CEF-BRADII 19.000 ——a =1.000 3.0000 BRADLEY LAKE FEB 23 1989 09:03 THU, 2.5000 3.5000 .TIME 1.5000 0.5000 0.0 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FICE:, OUTPUTTISE CHNL# : CV-PORTG 1.3000 Se eee > 0.3000 CHNL# 18: CV-SOLOTAI T, 3000 Meiciggsaseses x 0.3000 CHNL« : CV-ANCHPT 1.3000 fe SsaS— ee 0.3000 HNL#s 19: CV-QATZCA 1.3000 C20 -s-===S= © 0.3000 CHNLs 11: CV-ET-BAD 1.3000 =, —-S-4 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 —— 8 0.3000 09 VOLTAGES 5.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 O4 FEB423 1989 THU, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-15 SVS@SOLDOT, 3 50% S$.C.,. 30/7.2 SHUNT CAPS FILE: OUTPUT196 CHNLs 18: CV-SOLOTA 1.3000 tra a 0.3000 CHNL® 17: CV-SKIHLLI 1.3000 POS sisi x 0.3000 CHNL® 16: CV-KASILF 1.3000 Tare 7 0.3000 CHNL# 15: CV-ANCHPT 1.3000 aires ee © 0.3000 CHNL# 13: CV-FAITZCI 1.3000 mee ee oe 0.3000 CHNL® 14: CV-OLAMAGI 1.3000 een rENN 0.3000 5.0000 4.5000 3.0000 2.0000 1.0000 0.0 4.0000 09:21 FEB 23 1989 VOLTAGES 2 THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, CASE P2A: +20/-15 SVSeCSOLDOT, 3 50% S.C., FILE: OUTPUT196 CHNL* 45: CB-ANCHORI 0.8000 ay Scene ee a -0.200 CHNL« : - IN 0.3000 —---=-— Es 0.700 HNLs 43: HEALY 0.8000 on1/52 imme ani linia ° -0.200 CHNLs 42: CB-GLOHLLI 0.8000 od -0.200 CHNL* 41; CB-TEELNOI 0.8000 ee ee -0.200 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 THU, 2.5000 3.5000 TIME 1.5000 0.5000 09:04 FEB‘23 1989 SVS ADMITTANCES BL @ 120, BERN & COOP OFF, 40 MW KENAL LOAD, FILE: OUTPUT196 CHNLs S50: CST-BERANLI 0.1000 x 0.5000 64.3 MW EXPORT CASE P2A: +20/-15 SVSeESOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS 0.3000 oa © ae a 0.7000 el eel FEB 23 1989 09:04 STABILIZERS THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeCSOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS FILE: OQUTPUT196 CHNEs SS: CP-8L-FTZI 150.00 Oana x =100.0 5 CHNL« : CP-TLO-CT 150.00 Pisa S= = -100.0 HNLs 53: CP- T 150.00 CSsssSsscsrs e -100.0 CHNL® S2: CP-OR-APTI 150.00 = -100.0 CHNL® Si: CP-OCR-HPJ 150.00 Sse -100.0 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 09:04 LINE FLOWS FEB) 123° 1989 THU, BL © 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SvSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: -OUTPUTL96 CHNL# 35: CF-HWYPAKI 0.0167 REBE REE Gi) x -0.067 CHNL« : CF-HEALY 0.0167 RSS S\== a -0.067 CHNL® F-UNIVER 0.0167 Cena * -0.067 CHNL«# 32: CF-SOLOOTI 0.0167 | -0.067 CHNL® 31: CF-FRITZCI 0.0167 — ee -0.067 S.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 FREQUENCY FEB 23 1989 09:05 THU, BL @ 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD, +20/-15 SVSCSOLO0T.. 350% SaCa. FILE: CHNLs‘S 4,10: OUTPUT197 CA-COOP_13-CA-MLP 73 64.3 MW EXPORT 30/7.2 SHUNT CAPS 150.00 ea x -S0.00 CHNL«#*S_ 3,10: CA-BEAN 33-CA-MLP 73 150.00 fan me eee ek a2 -30.00 CHNL#‘S 1 A- J-CA-MLP 7 150.00 Se eee © -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 7] 150.00 SSS -50.00 CHNL«#'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 ——_o -50.00 ia a | — — ry SS r— — SS as 3.0000 5.0000 4.5000 4.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 10:03 ANGLES REL TO MLP #7 FEB 23 1989 THU, BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUTL97 CHNL# 57: CPM-BAADII 1.5870 ee CHNL®# S58: CEF-B8RADLI ] CHNL* 63: CO-8L-FTZI 50.000 REESE Eee 5 =e CHNL» 61; COG-BRADLI 0. 3968 Sear = ST ESaT CHNL* S56: CPG-BRA 2.0000 Saaceeaseoee . or | 19.000 i -1.000 5.0000 4.5000 4.0000 10:03 BRADLEY LAKE FEB 23: 1989 THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSESOLDOT, 3 50% S$.C., 30/7.2 SHUNT CAPS 3 on S06 FILE: OUTPUT197 = oo & o- Se — ae oe 0.3000 ----- > = 0.700] ao we wn o> CHNL® 42: CB-GLOHLL zw 0.8000 ---- =0. 200 CHNL® Yi: CB-TEELNO 0.8000 ———s =0.200 cs $ So wo s = a) so Ss = ZF $ 8 Le tes cs Ss s es s co ra s cs cs es $ 3 so $ a s 8 2 BL © 120, CASE PeA: HNL# 18: CV- TA 1.3000 Pesci isiereinak= > 0.3000 CHNL® 17: CV-SKIHLLI 1.3000 MST cisicinieiniei x 0. 3000 HNL*# 16: CV-KASILF 1.3000 << Be 073000 HNL# 15: CV-ANCHPT 1.3000 = 552 = ° 0.3000 CHNL® 13: CV-FRITZCJ 1.3000 => >= 0.3000 CHNL® 14: CV-OLAMAGI 1.3000 Cn) 0.3000 BERN & COOP OFF, +20/-15 SVSeSOLDOT, FILE: OUTPUT197 40 MW KENAI LOAD, 3904S). Gos 64.3 MW EXPORT 30/7.2 SHUNT CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 FEB 23 1989 10:04 VOLTAGES 2 THU, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: *+20/-15 SVSESOLDOT, 3 50% §.C., 30/7.2 SHUNT CAPS sw 8 FILE: OUTPUT197 c HNL® 22: CV-PORT ot T3000 eos > 0.3000} & = CHNL® 18: CV-SOLOTA ~* > 1.3000 Meese x 0.3000] © HNL 15: CV-ANCHPT ‘l 1.3000 ----- + 0.3000 | wW HNL® 19: CV-QATZCR a 1.3000 ee ° 0.3000| CHNL® 11: CV-ET-8AD = T. 3000 -----— 0.3000 CHNL® 12: CV-8RADLYJ 1.3000 SS 0.3000 so os o os ie =] cs w oe —4 3 cs os $ L _le al cs cs 8 So so os co es J so By Nee = J J s so cs cs 5 os Ss "7 J cs 8 3 so eS BL © 120, BERN & COOP OFF, CASE P2A: +20/-15 SVSeSOLDOT, FILE: OQUTPUT197 CHNL# SO: CST-BERNLI 0.1000 as Bs -0.900 CHNL#® 49: T-COOPR 0.3000 a i a * -0.700 CHNL#® 48: T-BAA 0.5000 aia <1 -0.500 CHNLs 47: CST-ANCHPI 0.7000 = = = -0.300 CHNL# 46: CST-SOLOTI 0.9000 ee -0.100 S cs s “ cs —J cs so — 7+ x ° cs , | 3 = i | at) 5 | | , ' | | ¢ | = ' | | - ] 3 8 Nu 4O MW KENAI LOAD, 64.3 MW EXPORT 3.50% S.C., 30/7.2 SHUNT CAPS 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 10:03 STABILIZERS FEB 23 1989 THU, BL_ © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +*20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FICE: | CUTPUTIO7 CHNL# SS: CP-BL-FTZI 150.00 partake x -100.0 HNL® 54: CP-TLO-CT 150.00 Soo. oe -100.0 150.00 CHNL® S2: CP-OR-APTI 150.00 See sel aera ore -100.0 He eee eee eee ee ee eT ee ee ee eRe ee ieee ey 150.00 4 -100.0 me 4 ie ae po _ 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 10:04 FEB 23 1989 LINE FLOWS THU, 2.5000 3.5000 TIME 1.5000 0.5000 Be i 0.0167 0.0167 BL © 120, CASE PeA: BERN & COOP OFF, 40 MW KENAI LOAD, £207-15 SVS@SOLDOT, 3 S04 S.C... FILE: OUTPUT197 CHNL# 35: CHNLs 34: CHNL# : CF-UNIVERI CF-HWYPRKI F-HEALYI 64.3 MW EXPORT 30/7.2 SHUNT CAPS 0.0167 Coe Sao ° =0.067 CHNLs 32: CF-SOLO0TI 0.0167 05067 CHNL® 31: CF-FRITZCI 0.0187 ———s__—--0. 067 & = — 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 10:04 FEB 23,1989 FREQUENCY THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT P20G: 230 KV, 2XS0Z% SC, 30MVAR®SOLD, NO SVS, 2SMVAR 230KV SH FILE: QUTPUT198 CHNL#'S 4,10: CA-COOP_13-CA-MLP 7] 150.00 Mir] est ear cesar * =50.00 | CHNL®'S 3,10: CA-BERN 3J-CA-MLP 77 150.00 as ee ee + -50.00 CHNL#'S 1,10: CA-BLUG 3J-CA-MLP 73 150.00 eas 5 Sasso ° -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 | 150.00 |= oll -50. 00 CHNL®'S 8,10: CA-BAAD 13-CA-MLP 73 150.00 ———a -50.00 ae _= | L- mae 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 17235 FEB 23 1989 ANGLES REL TO MLP #7 THU, CHNLs 35: CF-HWYPAKI 0.0167 rs * =0.067 CHNL* 34: CF-HEALY 0.0167 ----- + -0.067 HNL® 33: CF-UNIVER 0.0167 On == sea e ee ° -0.067 CHNL® 32: CF-SOLDOTI 0.0167 i | 0.067 CHNUs 31: CF-FAITZC 0.0167 ————s -0. 067 cs J os cs a — = cs cs s ES ones i a cs J os co | 08 cs cs s o & 3 cs cs sc So — 7- BL @ 120, P20G: 230 KV, BERN & COOP OFF, 40 MW KENAI LOAD, 2X50% SC, 30MVAR@SOLO, FILE: OUTPUTL98 69.0 MW EXPORT NO SVS, 2SMVAR 230KV SH 1989 FREQUENCY FEB! 23 17:36 THU, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 P20G: 230 KV, 2X50% SC, 30MVAR®SOLD, NO SVS, 2S5MVAR 230KV SH FILE: OUTPUT198 CHNL®# SS; CP-BL-FTZI 150.00 DRG oriee rl * =100.0 CHNL® S4: CP-TLO-CT 150.00 eat + =100.0 HNL P- F 150.00 eae - -100.0 CHNL& :_ CP-OAR-APTI 150.00 | = a -100.0 CHNL®# 51: CP-OCR-HP 150.00 aOR Scher, -100.0 s s so wo L— + cs J s i 3 cs s oso pl sj" s cs os er 7" so $ | BL e 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT 7239 FEB 23 1989 LINE FLOWS THU, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT P20G: 230 KV, 2X50% SC, 30MVAR@SOLD, NO SVS, 2S5MVAR 230KV SH FILE: QUTPUT198 HNL® 22: CV-POATG | 1.3000 Pn inie Siena ste a 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 ee eae x 0.3000 CHNL#® 15; CV-ANCHPT 1.3000 ——— at 0.3000 CHNL# 19: CV-GATZCA 1.3000 ——ESESE = 0.3000 CHNLs 11: CV-ET-8ROI 1.3000 Se 0.3000 CHNL® 12: CV-BRADLYI 1.3000 a—————4 0. 3000 cs Ss cs os “ = 4 J s cs sc = 7 -— = cS Ss cs so tL a) $s s — 7" o cs s S I7e35 VOLTAGES FEB 23) 1989 THU, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL oe P20G; 120, BERN & COOP OFF, 40 MW KENAI LOAD, 230 KV, 2XS0% SC, 30MVAR@SOLD, NO SVS, FILE: OUTPUT196 69.0 MW EXPORT 2SMVAR 230KV SH HNL# SO: CST-BERNL 0.1000 Jere) ete ars ® -0.900 CHNL«® 0.3000 eel Tee a -0.700 HNL# : T-BAA 0.5000 ar er ary |, © -0.500 CHNL# 47: CST-ANCHPI 0.7000 ae Ten | it -0.300 CHNL®# 46: CST-SOLOTI 0.9000 SS ae ee -0.100 = Til = a — — — — z= i 5.0000 4.5000 4.0000 3.0000 2.0000 7335 STABILIZERS FEBS2351989 THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, P20G: 230 KV, 2XxS0% SC, 30MVARC@SOLD, FILE: QUTPUT1L98 CHNL# 4S: CB-ANCHORI 0.8000 eee as * -0.200 HNL# 44; ~SOLOTN 0.3000 SS a -0.700 HNLs 43: -HEALY 0.8000 eae es 2 -0.200 CHNL# 42; CB-GLOHLLI 0.8000 SS -0.200 CHNL# 41: CB-TEELNOI 0.8000 SSS -0.200 cs cs J so “ cs s s = ss — =| J J Ss cs — sa cS 4 s s —s ee N = | sc —J Ss 7 69.0 MW EXPORT NO SVS, 2SMVAR 230KV SH 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 FEB 23/1989) 17: 35 SVS ADMITTANCES THU, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT BRADLEY LAKE P20G: 230 KV, 2XS50% SC, 30MVAR@SOLD, NO SVS, 2SMVAR 230KV SH ia = FILE: OUTPUT198 a eo Co CHNL® 63: CO-BL-FTZI =f 50.000 Movs ee eee x -200.0] © HNL» 61: -BRA a 0.3968 F= > =SS- + -1.587 | wW ue HNLs PG-BRA 2.0000 = > m1 S CHNLs 57: CPM-8AADLI = 1.5870 | 0.0 CHNL® S8: CEF-BRADL 19.000 a————as =1.000 J os os o vie s w = 7? s cs o = ss sc cs & cs =] cs s Es 0 cs S Ww re “| aS = s s L = cs cs cs wo = oe S s * s So cs wo S S BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT | P20G: 230 KV, 2X50% SC. 30MVAR@SOLD, NO SVS, 2S5MVAR 230KV SH | FILE: OQUTPUT198 4 CHNLs'S 4,10: CA-COOP_13-CA-MLP 73 150.00 ences a eee En -50.00 CHNL#"S 3,10: CA-BERN 33-CA-MLP 73 150.00 2a eee ae -50.00 CHNL#'S 1,10: CA-BLUG 3]-CA-MLP 73 150.00 Cae e -50.00 CHNL#'S 6,10: CA-CHENASJ-CA-MLP 73 150.00 ett 505100 CHNL#*S 8,10: CA-B8RAD 13-CA-MLP 73 150.00 a -50.00 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 1 ANGLES REL TO MLP #7 REBT en SE SOS: FRI, BE ©) 120; P20G: 230 KV, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT 2XxS0% SC, 30MVAR@SOLD. NO SVS, 2S5MVAR 230KV SH FILE: OUTPUTL984 CHNL# 63: COQ-8L-FT2I 50.000 rr x ES OOaG HNL® 61: COG-8AA 0.3968 Sooo = = TSoT HNU® 56: CPG-BRADL 2.0000 << > oad CHNL® 57: CPM-BRAOL 1.5870 ----- 0.0 CHNL® 58: CEF-BAADL 19.000 =——a =1.000 5.0000 4.5000 4.0000 3.0000 2.0000 0.0 1989 BRADLEY LAKE 09:11 FEB: 24 GRIT. 2.5000 3.5000 TIME 1.5000 0.5000 BL @ 120, P20G: 230 KV, BERN & COOP OFF, 2xs0z% SC, FTEs: CHNLs 3OMVAR@SOLD, OUTPUT198A : CV-PORTGE 40 MW KENAI LOAD, NO SVS, 69.0 MW EXPORT 2SMVAR 230KV SH 1.3000 ei ee hse = > 0.3000 18: CV-SOLOTAI 1.3000 Mees Sa x 0.3000 HNL® :_ CV-ANCHPT 1.3000 e----- > 0.3000 HNL®# 19: CV-QATZCR 1.3000 OS aie Sess Sit 2 0.3000 CHNL# 11: CV-ET-8A0I 1.3000 Tiiiee millipe eae 0.3000 CHNL# 12: CV-BRAOLYI 1.3000 ne 0.3000 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 OS) 12 VOLTAGES FEB 24 1989 FRI. 2.5000 3.5000 TIME 1.5000 0.5000 0.1000 0.3000 BL © 1 P20G 2 2 0 a 0 B K ERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT NO SVS, 2SMVAR 230KV SH Vv, 2X50% SC, 30MVAR@SOLD, FILE: QUTPUTL9B8/A CHNL® SO: CST-BEANLI ST-COOPR CHNL® 47: CST-ANCHPI 0.7000 0.9000 CHNL® 46: CST-SOLOTI as ere -—— — -< | | 1.0000 5.0000 4.5000 4.0000 3.0000 2.0000 2.5000 3.5000 TIME 1.5000 solic FEB 24 1989 09 STABILIZERS FRI, 0.8000 BL oe P20G: 120, BERN & COOP OFF, 40 MW KENAI LOAD, 2X50% SC, 30MVAR@SOLD, 230 KV, FILE: QUTPUTL98 / HNL«® 4S: CHNLs : CHNL# 42: CHNL# 41: CB-ANCHORI HEALY C8-GLOHLLI CB-TEELNOI NO SVS, 69.0 MW EXPORT 2SMVAR 230KV SH 5.0000 4.5000 0000 3.0000 4.0000 2 1.0000 0.0 2.5qbo 3.5000 TIME! 1.5000 0.5000 iil 09 FEB 24 1989 SVS ADMITTANCES FRI, 0.0167 0.0167 0.0167 0.0167 0.0167 BL © 120, P2oG: 230 KV, BERN & COOP OFF, 2XS0% SC, 30MVAR@SOLD, FILE: OUTPUT1984 CHNL® 35: CF-HWYPRKI HNLs 34: CF-HEALY HNL# 33: CF-UNIVER CHNL® 32: CF-SOLOOTI 40 MW KENAI LOAD, 69.0 MW EXPORT NO SVS, 2SMVAR 230KV SH -—-—— -< $.0000 4.5000 0000 3.0000 4.0000 2. 1.0000 0.0 ie 09 FEB 24 1989 FREQUENCY FRI, 3.5000 2.5000 TIME S000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT P20G: 230 KV, 2X50% SC, 30MVAR@SOLD, NO SVS, 2S5MVAR 230KV SH FILE: OUTPUTL9B4 CP-8L-FTZ 1S0.00 ee x -100.0 150.00 Srl te oe Be -100.0 150.00 Sanaa © -100.0 | CP-OAR-APTI 150.00 or ae ie ale -100.0 P-OCR-HPJ 150.00 ae -100.0 cs cs cs os “ ° cs s cs > J J cs So o ° J Ss os a J cs s Ss co s ie: LINE FLOWS FEB 24 1989 09 FRI, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, P20G: 230 KV, 2X50% SC, 30MVAR@SOLD, NO SVS, FILE: OUTPUT199 CHNE#'S 4,10: CA-COOP 13-CA-MLP 73 69.0 MW EXPORT 2SMVAR 230KV SH 150.00 SIE x =50.00 CHNL«'S A-BEAN 150.00 ra + =50.00 150.00 ae °* -50.00 CHNL®*S 6,10: CA-CHENASI-CA-MLP 73 150.00 sae -50.00 CHNL«#'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 3.5000 2.5000 1.5000 0.5000 ay cS Q | ox ao oS a= oP) 2 WW ce eg oul Oo = Cc uw a = BL_© 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT P2DG: 230 KV, 2X50% SC, 30MVAR@SOLD, NO SVS, 2S5MVAR 230KV SH FILE: OUTPUTL99 CO-BL-FTZI 50.000 cian x -200.0 2.0000 earaasSaesee > —s PM-BARAOL 1.5870 — oo 0.0 CHNL* S58: CEF-B8AADL 19.000 ———— -1.000 25 10 BRADLEY LAKE FRI, FEB 24 1989 5.0000 1.0000 2.0000 3.0000 4.0000 , 1.5000 2.5000 3.5000 4.5000 TIME 0.5000 0.0 CHNL® SO: CST-BEAN 0.1000 as be -0.900 HNL«# 48; T-B8ARA 0.5000 Sea e -0.500 CHNL® 47: CST-ANCHP 0.7000 Se is 0.300 CHNL® 46: CST-SOLOT 0.9000 a -0.100 cs ' cs : I ! s : \ a ; : \ ' w : ! ; ' i" o ' 1 ‘ Ss * ' s [— + s | ; ! Pe ' ! + | ‘ 1 ' 4 laa 5 ! 1 eee ' \ Ke ; \ Ss ' i; s : \ 1 s : | “s =e i + 3 | ‘ 4 ’ \ ; 4 | i ° \ Si s {| I ' 5 \ 7 “i 1 ' ! vl | x — ' =| t =e ; 1 bx So ’ cs I ' 4 s Lae ! Ss, | Ne \ ' ' ' \ \ 1 ° so BL oe P20G: l 2 2 0 3 0 BERN & COOP OFF, 40 MW KENAI LOAD, 69 K Vv, 2XS0% SC, 30MVAR@SOLD, FILE: OUTPUT199 -0 MW EXPORT NO SVS, 25MVAR 230KV SH 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 :26 10 STABILIZERS FEB 24 1989 FRI. BL_ © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT P20G: 230 KV, 2X50% SC, 3O0MVAR@SOLD, NO SVS, 2S5MVAR 230KV SH FILE: OUTPUT199 CHNL# V-PORTGEI 1.3000 Ba ae ae = 0.3000 CHNE# 18: C¥-SOLOTAI 1.3000 Paes Ds 0.3000 V-ANCHPT 1.3000 a aie or © 0.3000 V-QRTZCAI 1.3000 Cais ial ec: 0.3000 CHNLs 11: CV-ET-BAOI 1.3000 7 a 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 aaa eoeey 0.3000 5.0000 4.5000 4.0000 3.0000 - 0000 2 0000 26 10 1989 VOLTAGES FEB 24 FRI, 2.5000 3.5000 TIME 1.5000 0.5000 BL e P20G 150.00 150.00 150.00 150.00 150.00 120 BERN & COOP OFF 4O MW KENAI LOAD, 69.0 MW EXPORT 230 KV, 2XS0% SC, 30MVAR@SOLD. NO SVS, 25MVAR 230KV SH PeREEs CHNL® CHNLs CHNL® S1: CP-OCA-HPI SS: OUTPUT199 SS = -100.0 S2: CP-OR-APTI =a =100.0 —— -100.0 226 FRI, FEB 24 1989 10 S.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 0.0 LINE FLOWS r BL_@ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT Ti P20G: 230 KV, 2X50% SC, 30MVAR@SOLO, NO SVS, 2S5MVAR 230KV SH FILE: OUTPUT199 CHNEs 35; CF-HWYPRKI 0.0167 Mo si FSS SSE « -0.067 CHNL# 34: CF-HEALY 0.0167 Si a al a -0.067 CHNL# 32: CF-SOLOD0TI CHNE«# 31: CF-FRITZC 0.0167 _ | -0.067 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 27 10 FEB 24 1989 FREQUENCY FRI, 2.5000 3.5000 TIME 1.5000 0.5000 B BL © 120, P20G: 230 BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT KV, 2x50% SC. 3OMVAR@SOLD, FILE: OUTPUT199 CHNL® 45: CB-ANCHOARI NO SVS, 2SMVAR 230KV SH 0. 8000 CCR Sct ECE * =0.200 CHNL® 44: 0.3000 steele + -0.700 CHNL® -HEALY 0.8000 Ce ° -0.200 CHNL® 42: CB-GLOHLLI 0.8000 i -0.200 CHNL® 41: CB-TEELNOI 0.8000 ——————4 -0. 200 5.0000 4.5000 4.0000 3.0000 2.0000 +0000 1 2.5000 3.5000 TIME 1.5000 0.5000 26 SVS ADMITTANCES FEB 2. 1989 - 510 FRI mm SL © 90, BERN & COOP OFF, 40 MW KENAI LOAD, 42.5 MW EXPORT Th CASE P2H: NO SVS, NO SC, SOLDOTNA CAPS AT 10 MVAR lt T FILE: OUTPUT200 CHNL#'S 4,10: CA-COOP 13-CA-MLP 7) CHNL#'S 3,10: CA-BERN 33-CA-MLP 73 CHNL#‘S 1,10: CA-BLUG 33-CA-MLP 7) CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 7) we pV nove 3.0000 off Ay 2.0000 7:04 FEB 28 1989 1 ANGLES REL TO MLP #7 TUE, S.0000 4.0000 4.5000 3.5000 2.5000 TIME 1.5000 1.0000 0.5000 0.0 BL_ © 90, BERN & COOP OFF, 40 MW KENAI LOAD, ten0 MN EXPORT AS CASE P2H: NO SVS, NO SC, SOLDOTNA CAPS AT 10 MVAR I FILE: OUTPUT200 | CHNL® 63: CQ-8L-FTZ] _| | 50.000 SSeS TSTaS = SO0RG CHNL® 61: CQG-8RADL 0.3968 SSS SS ore “587 CHNL® 56: CPG-BRAD 2.0000 a > 00 CHNL® S7: CPM-8RADLI 1.5870 CHNL* S8: CEF-8RAD1I 19.000 ee 4.0000 3.0000 0.0 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 704 17 BRADLEY LAKE FEB 28 1989 TUE, BERN & COOP OFF, 40 MW KENAI LOAO, 42.5 MW EXPORT : NO SVS, NO SC, SOLOOTNA CAPS AT 10 MVAR FILE: OQUTPUT200 CHNL# 4S: CB-ANCHOARI 0.8000 Miz o sacle el x =0.200 CHNL» 44: CB-SO 0.3000 oe ES = omIOd CHNLs 43: CB-HEALY 0.8000 ¢ sresessssss ° =0.200 CHNLs 42: CB-GLOHLLI 0.8000 ie 0.200 CHNL«® 4 CB-TEELN 0.8000 one -0.200 3.0000 0000 2. 1.0000 0.0 O4 SVS ADMITTANCES TUE, FEB 28 1989 17 5.0000 4.5000 4.0000 2.5000 3.5000 TIME 1.5000 0.5000 BL © 90, BERN & COOP OFF, 40 MW KENAI LOAD, 42.5 MW EXPORT 4 CASE P2H: NO SVS, NO SC, SOLDOTNA CAPS AT 10 MVAR FILE: OQUTPUT200 CHNL® 22: CV-PORTGEJ 1.3000 aE n= * 9, 3000 | CHNLs 18: CV-SOLOTAI 1.3000 Rea i 0.3000 CHNE® 15: CV-ANCHPTI CHNL# 19: CV-QRT 1.3000 aaa on *, 0.3000 CHNL# 11: CV-ET-8A0I 1.3000 SS Ss 0.3000 CHNL® 12: CV-BRADLYI 1.3000 es 0.3000 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 05 17 FEB 28 1989 VOLTAGES TUE, 2.5000 3.5000 TIME 1.5000 0.5000 90, BERN & COOP OFF, 4O MW KENAI LOAD, 42.5 MW EXPORT P2H: NO SVS, NO SC, SOLDOTNA CAPS AT 10 MVAR FILE: OUTPUT200 CHNUs SO: CST-BERNLI 0.1000 Boe Tihs x -0.900 CHNU® 49: CST-COOPAI 0.3000 a a - -0.700 CHNL® T-BRADL 0.5000 Saas eee e -0.500 CHNL® 47: CST-ANCHPI 0.7000 Satine titer -0.300 CHNL# 46: CST-SOLOTI 0.9000 se -0.100 cs cs cs cs “ co cs cs cs > J Ss s cs “ J 3 co a Ss cs cs Se os s 0S Ue 1989 STABILIZERS FEB 28 TUE, 4.5000 3.5000 2.5000 TIME -5000 1 0.5000 FILE: OUTPUT200 CHNL* SS: CP-8L-FTZ2] 150.00 150.00 150.00 CHNL# S2: CP-OR-APTI 150.00 CHNL* 51: CP-OCR-HPI 150.00 30, BERN & COOP OFF, 40 MW KENAI LOAD, 42.5 MW EX P2H: NO SVS, NO SC, SOLOOTNA CAPS AT 10 MVAR a= aad -100.0 -100.0 -100.0 -100.0 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 ie Le 2 0 FEB 28 1989 LINE FLOWS TUE, 2.5000 3.5000 TIME 1.5000 0.5000 T=—\ 8L 9 90, BERN & COOP OFF, 40 MW KENAI LOAD, 42.5 MW EXPORT a) CASE P2H: NO SVS, NO SC, SOLDOTNA CAPS AT 10 MVA al FILE: OUTPUT200 | CHNL# 35: CF-HWYPRKI 0.0167 Re Seeieiiae * -0.067 | | CHNL® 34: CF-HEALYI _| 10.0167 = ain Won 7H -0.067 CHNLs 33: CF-UNIVERI 0.0167 Or Sores s esa ° -0.067 CHNL# 32: CF-SOLOOTI 0.0167 ala allat -0.067 CHNL*® 31: CF-FAITZCI | 0.0167 eae -0.067 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 a] 0 OS FREQUENCY 1/ 1989 FEB 28 TUE, 3.5000 2.5000 TIME -5000 0.5000 L © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT ozs CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C.. 30/7.2 SHUNT CAPS FIEEs OUTPUT2O1 CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 MISIENSI isiaier sere x -50.00 CHNL®'S 3,10: CA-BEAN 33-CA-MLP 7) 150.00 Sl cr rl i - -50.00 | CHNL#'S 1,10: CA-BLUG | 150.00 e2Ss<225-S55 ° -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 eee ee J cs so “ [— wal cs cs cs cs — 7s J cs cs cs cs cs cs = co ae 7A ae —s cs cs co so — Ts oé = ros eel ot an ~o Se 3 ly Ld 3 5 =a ay o z c cs cs & 3 3 $ cs cs 3 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +*20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT201 CHNL® 63: CQ-8L-FTZ] 50.000 MisTiSTTerg NGS nia * =200.0 | = CHNL#* 61: CQG-BRADLI 0.3968 CHNL* S56: CPG-8RADLI 5.0000 4.5000 4.0000 3.0000 2.0000 CHNL# 57: CPM-B8RADLI 1.5870 = = = Sd 0.0 CHNL* 58: CEF-B8RADLI 19.000 —— a -1.000 r Sas | = 2.0000 1.0000 0.0 20 09 BRADLEY LAKE FEB 27 1989 MON, 2.5000 3.5000 TIME 1.5000 0.5000 BL @ 120, CASE PA: BEAN +20/ & COOP OFF, 40 MW KEN -15 SvSeSOLDOT, 3 50% FILE: OUTPUT201 CHNL® 22: CV-PORTGE) 1.3000 aes = 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 DG Siac stenosis «x 0.3000 CHNL® 15: CV-ANCHPTI 1.3000 ga ueeva ue iemeueas - 0.3000 CHNL® 19: CV-QATZCAI 1.3000 ——— . 0.3000 CHNL# 11: CV-ET-BA0I 1.3000 —— 0.3000 CHNL# 12: CV-BRAOLYI 1.3000 SS 0.3000 /— | a — wD » 64.3 MW EXPORT 0/7,2 SHUNT CAPS 00 VOLTAGES 10 FEB 27.1989 MON, $.0000 2.0000 3.0000 4.0000 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVSeSOLDOT, 3 S0% $.C., 30/7.2 SHUNT CAPS FILE: OUTPUT201 CHNL# 18: 1.3000 Bees ssh eneiatie| a 0.3000 CHNEs 17: CV-SKIHLLI 1.3000 eae ara « 0.3000 HNLw# 16: CV-KASILF 1.3000 a * 0.3000 HNEs 15: CV-ANCHPT 1.3000 ie cian 2 0.3000 CHNL# 13: CV-FAITZCI 1.3000 -— = = =4 0.3000 CHNL® 14: CV-OLAMAGI 1.3000 —————4 0.3000 |e 4 = + [ el a — | — 5.0000 4.5000 4.0000 3.0000 2.0000 00 10 FEB 27 1989 VOLTAGES 2 MON, 2.5000 3.5000 TIME 1.5000 0.5000 8L_© 120, BERN & COOP OFF, 40 MW KENAI LOAD. 64.3 MW EXPORT 4 CASE P2A: +20/-15 SVSeSOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS tI FILE: OUTPUT201 | CHNLs 50: CST-BEANLI 0.1000 MERGeR ee = - x -0.900 CHNLs 49: CST-COOPAI 0.3000 ae + -0.700 CHNL# 48: CST-BRA CHNL# 47: CST-ANCHPI 0.7000 ae -0.300 CHNL* 46: CST-SOLOTI 0.9000 — -0.100 cs cs J o wo cs s wo — =] = cs $ cs so Pas 7s —J cs s wo = sa J cs s co eo, FAA cs s wo — oe cs cs s = 1c cs cs cs 2 J cs J Ss 0.5000 Bie) 09 1989 STABILIZERS FEB 27 MON, TIME BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EX PORT CHNLs 43: CB-HEALY 0.8000 ess oS 7 -0.200 CHNL® 42: CB-GLOHLLI 0.8000 a Ce -0.200 CHNE# 41; CB-TEELNOI 0.8000 So -0.200 CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: QUTPUT201 CHNLs 4S: CB-ANCHOAI 0.8000 Miels rie? FSS eS x =0.200 | CHNL® 44: CB-SOLOTNI 0.3000 sea + -0.700 | 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 9 SVS ADMITTANCES 1989 09:5 FEB 27 MON, BE) ei) 120 BERN & COOP OFF, 4Q MW KENAI L OAD, 64.3 MW EXPORT Th CASE P2A: +207—15 JSVSCSOLDOT. 3 SOZ% S.C!.) 3077.2) SHUNT GAPS FILE: OUTPUT201 CHNLs SS: CP-8L-FTZI 150.00 a aaa « -100.0 CHNLe® S4; CP-TLO-CTI 150.00 ; ale ri iri rd -100.0 150.00 See = 5 = rae en ~ -100.0 CHNL® S2: CP-OR-APTI 150.00 ae ene -100.0 CHNL# 51: CP-OCA-HPI 150.00 Shae -100.0 L— canal — — fe — ee 4 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 00 LINE FLOWS 10 FEB 27 1989 MON, 2.5000 3.5000 TIME 1.5000 0.5000 0.0167 0.0167 BL e CASE 120, P2A: BERN & COOP OFF, 40 MW KENAI LOAD, 64 +20/-15 SVS@SOLDOT, 3 S0Z% S.C FILE: OUTPUT201 CHNLs 35: CF-HWYPRKI CHNL# 32: CF-SOLOOTI CHNL«® 31: CF-FAITZCI .3 MW EXPORT 30/7.2 SHUNT CAPS 0.0167 AiG 2 = 2aae s -0.067 CHNL# 34: CF-HEALYI 0.0167 SS ~ -0.067 CHNL# 33: CF-UNIVERI 0.0167 see = ==) © -0.067 ---- = is _L S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 10:00 1989 FEB 27 FREQUENCY MON, 2.5000 3.5000 TIME 1.5000 0.5000 Le ASE Oowm le Re 0. BERN & COOP OFF, A: +20/-15 SvSeSOLOOT, 40 MW KENAL LOAD, 64.3 MW EXPORT SES 0 Aso Ge » 30/7.2 SHUNT CAPS 150.00 FILE: OUTPUT203 Sotelo st -50.00 CHNLs'S 150.00 FILE: OUTPUT203 ee © -50.00 CHNL®‘S 1,10: CA-BLUG 3J-CA-MLP 7] 150.00 FILE: OUTPUT202 Se -50.00 CHNL®'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 FILE: OUTPUT202 4 -50.00 | | ae 3 wo ss a } ° as ~ Ay Sel =| as . - is J . ie bya 3 — Cree as 7a ey m + g \y M L ve 5 a ed N s a x ie 2 ) gy ee A N — N _ vy 8 N g 3 = Saag + Be \ a \ 0.5000 0.0 701 1 ae an fone TUE, FEB 28 1989 ANGLES REL TO MLP#7 0.7500 0.2500 BERN & COOP OFF, 40 MW KENAI LOAD, 6%.3 MW EXPCRT +20/-15 SVSeSOLDOT. 3 50% §.C., 30/7.2 SHUNT CAPS AO, LZoOZ | CHNL® 21: CV-HOPEJ | [1.3000 FILE: OuTPUT202 Sr + 0.3000 | CHNL# 20: CV-DAVECAI 1.3000 FILE: QUTPUT202 ee x 0.3000 CHNL# 18: CV-SOLOTAI | 1.3000 FILE: OUTPUT202 Sat a 0.3000 CHNL# 1: CV-HOP 1.3000 FILE: OUTPUT203 aia ° 0.3000 CHNL® 20: CV-OAVECRI 1.3000 FILE: OUTPUT203 = S = = 0.3000 CHNL# 18: CV-SOLOTAI 1.3000 FILE: OUTPUT203 eo) 0.3000 TTT TT cs cs wn “ + = s Lo s v iY s ~ = 7" Ts io + Se > = y y s — LL Saeed a — TY ™ hb > s ° N 3 — ~ on vy ; “ N La S 8 _| v x CoC So \ 3 i er s- Ss ee NJ 0.5000 0.0 2.2500 - 7800 1 1.2500 TIME 0.7500 0.2500 sO M1 1989 VOLTAGES FEB 28 TUE, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPCAT CASE PeA: *207-15 SVSCSOLDOT, 3 50% S.C., 3077.2 SHUNT CAPS aD PIEE: OUTPUT20u CHNL«#‘S 4,10: CA-COOP 13-CA-MLP 150.00 Sige ea eae * -50.00 CHNL«#*S_ 3,10; CA-BEAN 33-CA-MLP 73 150.00 Tilt a ae ili ome - -50.00 CA-BLUG 33-CA-MLP CHNL#*S 6,10: CA-CHENASIJ-CA-MLP 73 CHNL#‘S 8,10: CA-BAAD 13-CA-MLP 73 $.0000 4.5000 3.0000 2.0000 1.0000 0.0 4.0000 2.5000 3.5000 TIME 1.5000 0.5000 sie el ANGLES REL TO MLP #7 1989 FEB)-28 TUE. BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT Tih CASE -PeA; t2e0/-15 SVSeSOLOOT, 3/507 °S.C., 3077.2 SHUNT CARS | ELEEG: OUTPUT 20S CHNL® 63: CO-B8L-FTZI $0.000 Be i te nate x -200.0 CHNL* 61: COG-BAADLI | 0.3968 EAS at aa ail -1.$87 CHNL# 56: CPG-BRA CHNL# 57: CPM-B8RADLI CHNL# S58: CEF-BAADLI 19.000 tat ree -1.000 5.0000 4.5000 4.0000 3.0000 2.0000 0.0 2.5000 TIME 3.5000 0.5000 le 1989 21 FEB 28 BRADLEY LAKE TUES BL e@ 120, CASE P2A: BERN & COOP OFF, 40 MW KENAI LOAD +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7 FILE: OUTPUT204 CHNL® 18: CV-SOLOTAI CHNL® 17: CV-SKIHLLI ;_ CV-KASILFED 1.3000 fr. 3000 See =~ 0.3000 CHNL® 15: CV-ANCHPT 1, 3000 a ° 0.3000 CHNL* 13: CV-FAITZC] 1.3000 Ss 0.3000 CHNL® 14: CV-OLAMAG » 64.3 MW EX .2 SHUNT CAPS PORT ror 4.0000 3.0000 2.0000 1.0000 -0 0 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 aks) el FEB 28 1989 VOLTAGES 2 TUE, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-15 SVS@ESOLDOT, 3 50% $.C., 30/7.2 SHUNT CAPS FICE: -OUTPUTZO" CHNL® 22: CV-PORTGEJ 1.3000 ee 2 0.3000 CHNLs 18: CV-SOLOTAI 1.3000 icles sis senna x 0. 3000 CHNL® 15: CV-ANCHPTI | 1.3000 as + 0.3000 CHNL® 19: CV-QATZCR [1.3000 ee ° 0.3000 CHNL® 11: CV-ET-8ADJ 1.3000 SS Ss = 0.3000 CHNL® 12: CV-BRADLYI 1. 3000 — 0. 3000 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 NS al FEB 28) 1989 VOLTAGES TUE, 2.5000 3.5000 TIME 1.5000 0.5000 BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT204 CHNL® 45: CB-ANCHOAI 0.8000 Mise aioe ers x -0.200 CHNL® 44: OTN) 0. 3000 a = SOS T00 _——————— = CNN 0- 0.8000 aa -0.200 CB-GLOHLLI CHNL* 41; CB-TEELNOI EEE SSS $.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 13 TUE, 2.5000 3.5000 TIME 1.5000 0.5000 FEB) 26) 198Sirel SVS ADMITTANCES A BL e . BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT AS CASE 2) He07=15) SVSESOLOOT, 350% S.Cs, 30/722 SHUNT GAPS i FILE: OUTPUT204 | CHNL# SO: CST-B8EANLI 0.1000 Aare sem ae =e x -0.900 CHNL# 49: CST-COOPRI 0.3000 it eal ear f -0.700 CHNL# 48: CST-BAADLI 0.5000 eS Sia ata ° -0.500 CHNLs 47: CST-ANCHPI 0.7000 oe or a hr om -0.300 CHNL* 46: CST-SOLOTI 0.9000 SSS -0.100 laa * : i 77 ¢ | 4 ee ] Pel 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 3 1 2) ic 1989 STABILIZERS FEB 28 TUE, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +*20/-15 SVSeSOLDOT, 3 S0% S.C., 30/7.2 SHUNT CAPS FILE: CUTPUTeOS CHNUEs 35: CF-HWYPRKI 0.0167 Pa Fs Is ie Ss) 6/918) 5 x -0.067 CHNL® 34: CF-HEALY 0.0167 -====-- + =0.067 HNL# 33: CF-UNIVER 0.0167 Cann naa aaa ° -0.067 i CHNL® 32: CF-SOLDOTI 0.0167 ---To -0.067 CHNL® 31: CF-FRIT 0.0167 —— =0.067 cs cs co co “ — 4 co J J so > 3.0000 2.0000 1.0000 -0 0 14 el 1989 FEB 28 FREQUENCY TUE, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 TIME BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE) Fen: -207=15)/SVSeSOLOOT.. 3)/S04/S.C55 S0/7.2)/SHUNT CAPS ee nN PIEE: OUTRUT20" an a a CHNL® 5S: CP-BL-FTZI NN 150.00 ST or x -100.0| ©& N CHNL® S4: 150.00 aaa = “100.01 w a CHNL® 53: CP-SLOQTZ 150.00 a aeee as Tso ° -100.0] uf : CHNUs 52: CP-OR-APTI = CHNL# Si: CP-OCR-HPIJ 150.00 aii -100.0 Ss cs cs so ve s cs w > Ss J cs so > cs Ss s w a cs Ss J so o cs cs cs wn ai 3 cs cs ai J Ss cs 2 cs cs cs 2 J cs s me cs s LINE FLOWS FILE: OUTPUT205 CHNL® 2: CA-EKLT 2] 200.00 <a rd oF CHNL® 1: CA-BLU 200.00 =SSSSoe = m0 CHNL® 9: CA-MLP 63 200.00 a 0.0 CHNL® 8: CA-BARO 1 | 200.00 ——— 0.0 cs cs s wo _ — J S cs fe am, [_ = J J r : ; ¢ Fa + 3 cad [ 3 - — $ —~ S 3 3 5 b = 3 L_ co eo a. . iS x = =] J BL_ © 120, BERN & COOP OFF, 40 MW KENAL sia CASE PeA': +20/-25 SVS © SOLD, 3 50% SC, I LOAD, 64.3 MW EXPORT NO QRTZ CAPS a 15s WED, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 MAR 08 1989 ANCHORAGE AREA ANGLES (ABSOLUTE ) 150.00 BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT : +20/-25 SVS ®© SOLD, 3 50% SC, NO QATZ CAPS FILE: QUTPUT20S CHNL®'S 4,10: CA-COOP _13-CA-MLP 73 SE -50.00 CHNLw'S 3,10: CA-BEAN 33-CA-MLP 73 150.00 SSS a -50.00 CHNL#'S 1,10: CA-BLUG 33-CA-MLP 73 CHNL#'S 6,10: CA-CHENASI-CA-MLP CHNL#'S 8,10: CA-BRAD 13-CA-MLP tel 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 703 15 MAR 08 1989 ANGLES REL TO MLP #? WED, BL © 120, BERN & COOP OFF, 40 MW KENAI LORD, 64.3 MW EXPCRT CASE P2A*: +20/-25 SVS @ SOLD, 3 50% SC, NO @ATZ CAPS FILE: OUTPUT205 CHNL# 22: CV-PORTGEI | 1.3000 Paneeceeee eerie 2 0.3000 CHNL# 18: CV-SOLOTAI 1.3000 20 eee Berea Ee x 0.3000 CHNL® 15: CV-ANCHPTI 1.3000 eS = =s == Be 0.3000 CHNL#® 1.3000 CSS 2 0.3000 1.3000 eS 0.3000 CHNL® 12: CV-BAAOLYI 1.3000 —— a 0.3000 eo s e ° “ ! — : 4 | t | $ | s — | ss . | = A = NS e —J 5 _s — mo Ss ° i gs & =~ { = N i — | 2.0000 1.0000 1989 VOLTAGES MAR 08 1S: 04 WED, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 ae I BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: *207=25)|SVS ‘6)))SOED, |3)/S07)/SE% NO GRTZ CAPS FICE: OUTPUT 20S CHNL# 63: CQ-B8L-FT2I 50.000 Paice ite x -200.0 | CHNL* 61: CQG-8RAD1I [0.3968 lcs e =1.587 | CHNL® S56: CPG-BRADL [2.0000 aa ° 0.0 CHNL® 57: CPM-BRADII 1.5870 ane 0.0 CHNL* 58: CEF-BRADII 19.000 ——§as =1.000 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 03 15 1989 MAR 08 BRADLEY LAKE WED, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE Rea: tc0/=25_SV5 6. SOLD. 3.507 SG,_NO|_ Ganz CARS stp) eS tl “8 FILE: OUTP ILE: OUTPUT205 se oe Se CHNL® 4S: CB-ANCHORI me SB CHNL® 44: CB-SOLOTNI oc 2 on o> CHNL® 42: CB-GLOHLLI =n” CHNL® 41: CB-TEELNOJ 0.8000 ———a =0.200 cs cs s we s wo aS |e J S cs cs — Ts cs cs _| S = cs co cs s ie Jes cs cs g |e Ne = $ s a s cs S i J S =] S s cs wo a ° 3 120, BERN & COOP OFF, 40 MW Peas +a0/-25)/SVS @)\SOLD!, 3 FILE: OUTPUT20S CHNL# 18: CV-SOLOTAJ CHNELs 17: CV-SKIHLLI CHNE* 16: CV-KASILF V-ANCHPTI i 1.3000 R532 22225 == ° 0.3000 CHNUs 13: CV-FAITZCJ ~ 3000 a 0.3000 CHNL® 14: CV-OLAMRGI 1, 3000 s———a4 0.3000 LL ~ 4 2 Q ¢ yx Ml s bes au = 9 Saas 5.0000 4.5000 4.0000 3.0000 2.0000 0000 1. 0.0 1989) 15:eb VOLTAGES 2 MAR 08 WED, 2.5000 3.5000 TIME 1.5000 0.5000 CHNL® SO: CST-BEANLI 0.1000 Mowers x =0.900 PR 0.3000 i + 0.700 CHNL® T-BRAD 0.5000 O= 25 =255-==- ° -0.500 CHNL® 47: CST-ANCHPI 0.7000 —_— ii i—4 -0. 300 CHNL® 46: CST-SOLOTI 0.9000 ————a =0.100 = 4 aa i — x ° < : : ' | : | : | ; | a ; i \ ' : ! ¢ | . 1 1 : ' i 4 — \ ' | : ! ! ; \ | | ' = \ t | ; ' 1 ' | \ \ | nan 120, BERN & COOP OFF, 40 MW KENAI LGAD BL e@ I CASE P2A*: +20/-25 SVS @ SOLD, 3 50% SC. NO FILE: OUTPUT205 » 64 MW EXPORT QRTZ CAPS 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1989) 15:04 STABILIZERS MAR 08 WED, 2.5000 3.5000 TIME 1.5000 0.5000 » BERN & COOP OFF, 40 MW KENA 10. 64.3 MW EXPORT i207 2a SV. SNCS OLDE 131/507 O QRTZ CAPS FICES OUTPUTS CHNUs SS: CP-8L-FTZI 150.00 ae aad at x -100.0 CHNL® SY: CP-TLO-CTI 150.00 Se Slae ot -100.0 CHNLs 53: CHNL# S2: CHNL® Si: CP-SLOOT CP-OR-APTI CP-OCR-HPJ 4.0000 3.0000 2.0000 1.0000 -0 0 1S 1989 LINE FLOWS O4 MAR 08 WED, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2A™: +207-25 SVS © SOLD.;-3 507% -SG,- NO’ ORT2 CAPS FILE: QUTPUT205 | CHNL# 35: CF-HWYPRKI | [0.0167 Moses x =0.067 | | CHNL® 34: CF-HEALYJ 0.0167 SS + -0.067 CHNL® 33: CF-UNIVER 0.0167 Cr lt TTT sisisa ° -0.067 | CHNLs 32: CF-SOLOOTI 0.0167 Seo -0.067 | CHNL* 31: CF-FRITZC) | 0.0167 =e -0.067 = aol | $.0000 4.5000 4.0000 3.0000 2.0000 - 0000 3.5000 2.5000 TIME 5000 0.5000 FREQUENCY BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT AQ CASE P2A': +20/-25 SVS © SOLD, 3 50% SC, NO QRTZ CAPS FILE: OUTPUT206 CHNL# 63: CO-8L-FTZI 50.000 Meee eee x =200.0 CHNL* 61: COG-BAADLI 0.3968 += -S--- + =1.587 CHNL® S6: CPG-BRADLI 2.0000 <a ; ORO CHNL® S7: CPM-B8AADLI 1.5870 -- >So 0.0 CHNL«# S58: CEF-BAADIJ 19.000 =———a =1.000 | | | $.0000 4.5000 3.0000 4.0000 2.0000 0.0 16 1989 1b MAR 08 BRADLEY LAKE WED, 2.5000 3.5000 TIME 1.5000 0.5000 150.00 150.00 BERN & COOP OFF, 5 Q MW KENAI LOAD, 64.3 MW EX 7207 -25)/SV.9 9)(SOL0))|/3) S07) SGINO |ORTz,| GAPS FILE: OUTPUT206 CHNL#'S 4,10: CA 150.00 150.00 CHNL#*S 6,10: CA-CHENASI-CA-MLP 73 | CHNL#'S 8,10: CA COOP _11-CA-MLP 7) CHNL#*S 3,10: CA-BEAN 33-CA-MLP_ 73 BRAO 13-CA-MLP 7) ee or PO RT -S0.00 -50.00 -50.00 -50.00 S.0000 4.0000 3.0000 2.0000 1.0000 0 0. 26 al = OW ae) ot 32 oe mu Sw oc own = Ww pag oO z ic =] 3 w = 2 3 3 Fai co s 3 3 I LOE OGE 119% [00% 5.0000 4.5000 20, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 2A 4207-25 SVS 6 SOLD, 3 50% SC; NO QRizZ CAPS FILE: OUTPUT206 CHNL® 18: CV-SOLOTA 1.3000 hilar > 0.3000 CHNL® 17: CV-SKIHLLI 1.3000 Mies a eee x 0. 3000 CHNL® 16: CV-KASILFI 1.3000 a + 0.3000 | CHNL® 15: CV-ANCHPTJ 1.3000 eee aaa ° 0.3000 CHNL® 13: CV-FAITZCI 1.3000 ----AaA 0.3000 CHNL® 14: CV-OIAMAGI 1.3000 =—4 0.3000 3.0000 4.0000 2.0000 1.0000 0.0 1989 16:18 VOLTAGES 2 MAR 08 WED, 2.5000 3.5000 TIME 1.5000 0.5000 BL @ 120 BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 5 a CASE P2A': +20/-25 SVS @ SOLD, 3 50% SC, NO QATZ CAPS | ul FILE: OUTPUT206 CHNL# 22: CV-PORTGEI 1.3000 Pa SEs =alS me 0.3000 CHNE# 18: CV-SOLOTAI 1.3000 56 95 = x 0.3000 CHNL® 15: CV-ANCHPTI 1.3000 len elnino + 0.3000 CHNL#* 19; CV-QATZCAI 1.3000 aaa < 0.3000 CHNL# 11: CV-ET-B8ROI 1.3000 _— | =] 0.3000 CHNL# 12: CV-BRAOLYI 1.3000 ————a 0.3000 J cs cs i 5 “ $ s — 7+ LL =I cs my s Ss = . s —— = SS ss SS Q . < x a a fi SS —S cs s s “a 1.0000 2.5000 TIME 4.5000 3.5000 1.5000 0.5000 1/ VOLTAGES MAR 08 1989 16 WED, aoe if CHNL® 50: CST-BERNLI 0.1000 ST iiT i -0.900 CHNL® 49: CST-COOPRI 0.3000 Pri da a a -0.700 CHNL® 48: CST-BRAD 0.5000 @resposssss= ° -0.500 CHNL® 47: CST-ANCHPI 0.7000 i -0.300 CHNL* 46: CST-SOLOTI ay SE-V- VY E S— eeee| 0.9000 ee -0.100 S J cs - “ J s cs cs — la cs cs s so —_ |e cs cs HL) | 1 | t : ’ : ! ' | i . 1 ' : 1 ' | : ' x ; : | — 1 aa + : | : ' : | + | o . 1 1 cs ep 1 ti 4 $s —— ! ! | Sales ! 1 ! i ! ! | ' a \ H | a ; ' \ ' | \ ‘ | so o BE ie) 120. CASE, Pears BERN & COOP OFF, 40 MW KENAI LORD, 64.3 MW EXPORT *+20/-25 SVS © SOLO; 3 50% SC. NO QRIzZ CAPS FILE: OUTPUT206 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 ai? 16 STABILIZERS MAR 08 1989 WED, BERN & COOP OFF, 40 MW KENAI Laman LUAU, 64, A NO GRTZ CAPS 10 - \ +20/-25 SVS e SOLO, 3 50% SC, FILE: OQUTPUT206 CHNL® 4S: CB-ANCHORJ 0.8000 DRI x -0.200 CHNL® 44; =SOLOTNI 0.3000 i pone ot -0.700 HNL# 43: CB-HEALY 0.8000 @2osSereeres ° -0.200 CHNL® 42: CB-GLOHLLI 0.8000 See ie -0.200 CHNL# 41: CB-TEELNOJ 0.8000 Se -0.200 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 MAR 08 1989 16:1/ SVS ADMITTANCES WED, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT : +20/-25 SVS e SOLD, 3 50% SC, NO QRTZ CAPS FILE: OUTPUT206 CHNL® 3S: CF-HWYPRKI 0.0167 MSGS GiE ee a3 x -0.067 CHNU® 34: CF-HEALYJ 0.0167 Tt Pale cs -0.087 CHNL®# 33: CF-UNIVER) | 0.0167 Sart . -0.067 CHNL# 32: CF-SOLOOTI 0.0167 SS tay law lal a -0.067 CHNL®# 31: CF-FAITZCI 0.0167 —————— -0.067 1 ia SH — aan = 4 $.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1/ FREQUENCY 1b MAR 08 1989 WED, 3.5000 e 5000 TIME 1.5000 0.5000 3.0000 ASB BL e 120, BERN & COOP OFF, 40 MW KENAI LORD, 64.3 MW EXPORT “36 CASE P2A': +20/-25 SVS © SCLO, 3 S0% SC, NO QATZ CAPS “I FILE: QUTPUT206 CHNL® SS: CP-8L-FTZI 150.00 MeIcane iii x -100.0 CHNL® S4¥: CP-TLO-CT 150.00 a es -100.0 P-SLDQT 150.00 CoS ceises= ° -100.0 CHNL® S2: CP-OR-APTI 150.00 _S >= 3 -100.0 CHNL®# Si: CP-OCR-HPI 150.00 a———s -100.0 0000 2. 1.0000 1/ LINE FLOWS MAR 08 1989 1b WED, 4.0000 4.5000 3.5000 2.5000 TIME -5000 0.5000 0 P20G: 230 KV, 2Xx50% $0.000 0.3968 1.5870 19.000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPCRT SC, 30MVAR@SOLO, NO SVS, 2S5MVAR 230KV SH FILE: OUTPUT207 CHNL# 63: CHNL« S7: CHNL® S58: CQ-8L-FTZ] | CQG-8RAOL CPM-BRADLI CEF-BRAOLI 4.0000 3.0000 2.0000 5] 09 1989 BRADLEY LAKE MAR 09 THU, 4.5000 3.5000 2.5000 TIME -5000 1 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPORT P20G: 230 KV, 2X50% SC, 3O0MVAR@SOLD, NO SVS, 2SMVAR 230KV SH FILE: QUTPUT207 | CHNL#'S 4,10: CA-COOP 13-CA-MLP 7] [150.00 an x" =50.00 CHNL®#'S 3,10: CA-BERN 33-CA-MLP 150.00 eS >a * -50.00 | CHNL#‘S 1,10: CA-BLUG 33-CA-MLP_73 a | 150.00 Sr ° -50.00 CHNL#'S 6,10 CHNL®#'S 8,10 CA-CHENASI-CA-MLP CA-BRAD 13-CA-MLP i i ' “Ss ---@ uy 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0 0. 3.5000 2.5000 TIME S000 0.5000 sa) MAR 09 1989 09 ANGLES REL TO MLP #7 THU, 120, BERN & COOP OFF, 40 MW KENAI LOAD, 69.0 MW EXPCRT 230 KV, 2XS50% SC, 30MVAR@SOLD, NO SVS, 2SMVAR 230KV SH FLEES) OUTPUT2O7 Senet oe CHNL® 45: CB-ANCHOAI 0.8000 Te x -0.200 CHNL® 44: CB-Satstyj [0.3000 Si = ae = -0.700 CHNL® 43: CB-HEALYI 0.8000 CaaS aaa ° -0.200 CHNL® 42: CB-GLOHLLI 0.8000 oS -0.200 CHNL# 41: CB-TEELNDJ 0.8000 —— =0.200 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 D1] 09 THU, 2.5000 3.5000 TIME 1.5000 0.5000 MAR 09 1989 SVS ADMITTANCES BL © 120, BERN & COOP OFF, 40 MW KENAI LORO, 69.0 MW EXPCRT P20G: 230 KV, 2xS0Z% SC, 30MVAR@SOLD, NO SVS, 2SMVAR 230KV SH Dah + Lod Sc FILE: OUTPUT207 a CHNL® 22: CV-PORTGEIJ fae 1, 3000 eee = G.a000| oe CHNL® 18: CV-SOLDTAI "> 1.3000 Mosse x 0.30001 CHNL® 15: CV-ANCHPTI a: 1.3000 =------ os 0.30001 & CHNL® 19: CV-QATZCR 1.3000 es ° 0.30001 3 CHNLs 11: CV-ET-BADI = 1.3000 ----~ 0.3000 1.3000 SSS 0.3000 cs co cs cs Be cs cs w 2 o s So s = cs s cs wo 4 co So s co : co Ss 3 Nee = J so cs so Rs so cs so = cs $ Go $ co w 3 o E Bue! 120, BERN < COOP_ORE. => 4Q MW KENAI LOAD, 69.0 MW EXPORT AR P20G: 230 KV, 2xXS0% SC, 30MVARSSOLD, NO SVS, 2S5MVAR 230KV SH FILE: OUTPUT207 CHNL® SS: CP-BL-FTZI 150.00 Pei cee eles x -100.0 CHNL® S4: CP-TLO-CTI 150.00 SSS ei + -100.0 HNL® 150.00 Cte ° -100.0 CHNL® S2: CP-OR-APTI 150.00 <a -100.0 CHNL® Si: CP-OCAR-HPI 150.00 -———a -100.0 cs cs cs so a $ cs co = J cs cs cs o cs cs s « J Ss cs iS so 3 09:3 Se LINE FLOWS MAR 09 1989 2.5000 3.5000 4.5000 a TIME i 1.5000 0.5000 = BL © 120, BERN & COOP OFF, 4 a4 P Q MW KENAL LOAD. 69.0 MW EXPORT zi 20G: 230 KV, 2X50% SC, 3O0MVAR@SOLD, NO SVS, 2SMVAR 230KV SH FILE: OUTPUT207 CHNL# SO: CST-BEANLI 0.1000 RETR eeseias ie) 9 os 5a x -0.900 CHNL«# 49: T-COOPAI 0. 3000 Takes = . -0.700 CHNL® 48: CST-B8RADL 0.5000 SS oe © -0.500 CHNL® 47: CST-ANCHPI 0.7000 - —>= >= -0.300 CHNL® 46: CST-SOLOTI 0.9000 aa -0.100 rT COUF™~<CS:téi‘zL!T!C~;*dSCOCSY TOT 8 ; ' = . ! ' ° : \ i | a w : 1 i | [— i : | 7” ; | c x ! ; 3 : | u | s [— ‘ ; | 7 ‘ ' + I ' \ ' 4 = } : I 1 4 ; \ 4 | ’ \ ! | 3 L__ : | Ar | mee ee ‘ 7 ; I “ | : t c | es ; ! + | 4 i I ie : \ “ie 4 ; ' “he f ' i 2 3 ‘ | TT | s — i ! \ | 0 : 1 : ! ea | rs \ al | — 4 Saal \ | Il > | \ esos S$ \ Se~ aa 4 s — 1 (oe | |= \ ' 9 \ _ae--! | \ \ | \ _f | \ 4 | _ wees) ' ! 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 ie 1989 09 STABILIZERS MAR 09 THU, 0.0167 BERN & 2XxS0z% ee et CCOP OFF, 40 MW KENAI LOAD, 69.0 MW EX2CRT SC, 30MVAR@SOLD, NO SVS, 2SMVAR 220XV SH FILE: OUTPUT207 CHNL® 3S: CF-HWYPAKI _| riers * -0.067 | CHNL® 34: CF-HEALYI | H+ -=— + =0.067 | CHNL® 33: CF-UNIVERIJ es=s==---= = ° -0.067 CHNL®# 32: CF-SOLOOTI CHNL# 31: CF-FRITZCI . - 4.0000 0.0 1989 Ur Fis yea FREQUENCY MAR 09 THU, 2.5000 TIME 1.5000 0.5000 BL e CASE 120, BERN & COOP OFF, 40 MW KENAI Peovse FILE: OUTPUT208 LOAD, 64.3 MW EXPCAT 2 SSMVAR TCR, NO SC, 1SMVAR@ SOLDOTNA | CHNL® 63: CQ-BL-FTZJ | 50.000 rE Ee x “30070 CHNL® 6 -BRAD1I | | 0.3968 a a SSay CHNL* 56: CPG-BAADLI 2.0000 ===-==-- === r 0.0 CHNL® S7: CPM-BRADII 1.5870 aid 0.0 CHNL* 58: CEF-BAADLI 19.000 ——a -1.000 J cs cs cs “ cs so J so > cs J —J so « cs cs cs cs “i cs cs cs cs J s 4.5000 3.5000 2.5000 1.5000 0.5000 Sw rN =< zi S> 2 uw 23 ae =a > = uw ey a 150.00 150.00 Pesve: 120. BERN & COOP OFF, &0 MW KEN SSMVAR TCA, NO SC 5 2 Ee <D M FILE: OUTPUT208 HNL#'S 4,10: CA-COOP 13-CA-MLP 73 CHNL#"S 3,10: CA-BEAN 33-CA-MLP 73 [ LOAD, 64.3 MW EXPC AR@ SOLDOTNA CHNL&s* 10: CA-BLUG 33-CA-MLP 73 150.00 OS aa ae eS. -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 150.00 aii -50.00 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 73 150.00 —_ + -50.00 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 40 ANGLES REL TO MLP #7 lb: MAR 09 1989 THU, 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT P2SVS: 2 SSMVAR TCR, NO SC, 1SMVAR@ SOLOOTNA FILE: OUTPUT208 CHNL®# 18: CV-SOLOTAJ [1.3000 pote lciSisters = 0.3000 CHNE# 17: CV-SKIHLLI 1.3000 eee x 0.3000 CHNL®* 16: CV-KASILF 1.3000 i Sa ite 1.3000 ———e————E © 0.3000 CHNL#® 13: CV-FRITZCI 1.3000 eee 0.3000 CHNL# 14: CV-OLAMAGI —$— $ $< $ $a $< Ee ee 1.3000 So 0.3000 FF S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 16:41 VOLTAGES 2 MAR 09 1989 THU, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT S: 2 SSMVAR TCR, NO SC, LSMVAR@ SOLDOTNA FILE: OUTPUT208 CHNL® 22: CV-PORTGE] | 1.3000 aia T Ee = 0.3000 CHNL® 18: CV-SOLOTAI 1.3000 ot x 0.3000 | CHNL® 15: CV-ANCHPTI 1.3000 sss + 0.3000 CHNL# 19: CV-QRTZCRI CHNL# 11: CV-ET-8R0I CHNL® 12: CV-8RADLYI cs cs —J so o J $ J cs > cs cs Ss cs o cs cs s a cs cs cs 2 co a ce ee me gee sae cena go cas | 16:41 1989 VOLTAGES MAR 09 THU, 4.5000 3.5000 2.5000 TIME -5000 0.5000 A&B) cASE P2SVS: 2 SSMVAR TCR, NO SC. 1SMVARE SOLOOTNA i FILE: OUTPUT208 CHNL* SS: CP-8L-FT2Z3 150.00 oO x -100.0 CHNL«® S4: CP-TLO-CT 1150.00 = SS = F -100.0 | CHNL* 53: CP-SLOQTZ 150.00 CSS =e 2 -100.0 CHNL# S2: CP-OR-APTI 150.00 C= SS SS) -100.0 CHNL* Si: CP-OCR-HPI 150.00 Se -100.0 S$.0000 4.0000 3.0000 2.0000 1.0000 0.0 = = = — oo Ue o S ud oH Lm —s ad « = = Se = Ss J s w > e $ os w a cs s wey Ee NN me = s cs J w sc os os w oe BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2SVS: 2 SSMVAR TCR, NO SC, 1SMVAR@ SOLOOTN FILE: OUTPUT208 CHNL# 45: CB-ANCHORI 0.8000 CHNL# 44: CHNL# 43: CB-HEALY | 0.8000 oa ae © -0.200 CHNL®# 42: CB-GLOHLLI 0.8000 eel -0.200 CHNL® 41: CB-TEELNOI 0.8000 inn -0.200 ee ee cs Ss Ss wo — — cs cs s os = CB- SOE 1.0000 2.0000 .- 3.0000 0 0 2.5000 3.5000 4.5000 » TIME 1.5000 0.5000 Los40 SVS ADMITTANCES 1989 MAR 09 THU, 3L_@ 120. BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPCAT CASE P2SVS: 2 SSMVAR TCR, NO SC, ISMVAR@ SOLDOTNA FILE: OUTPUT208 CHNL# 35: CF-HWYPRKI 0.0167 a i al x -0.067 CHNL® F-HEALY 0.0167 Sie sie a -0.067 F-UNIVERI 10.0167 sae 2 -0.067 CHNL* 32: CF-SOLOOTI 0.0167 See -0.067 CHNL* 31: CF-FRITZCI 0.0167 i -0.067 $.0000 4.5000 4.0000 3.0000 2.0000 1.0000 2.5000 3.5000 TIME 1.5000 0.5000 MAR 09 1989 16:41 FREQUENCY THU, DD & COOP OFF, 40 MW KENAI LOAD. 64.3 MW EXPCAT SMVAR TCR, NO SC, ISMVAR® SCLOOTNA FILE: OUTPUT208 CHNLs SO: CST-BEANLI 0.1000 RS AS a -0.900 CHNL# 49: CST-COOPRI 0.3000 allied ~ -0.700 CHNL#® 48: T-BRAD 0.5000 ___—_—— © -0.500 CHNL# 47; CST-ANCHPI 0.7000 ae ee ee ae -0.300 CHNL# 46: CST-SOLOTI 0.9000 renee -0.100 TT * i ’ ’ , L . ; ' =| i | \ I ; | ° | ; | 7 I! 4 -— : \ \ | = : I i a ; 1 a ; ' ' | : ! i — : I ! | — * | ' : | = ' > | 4 \ ’ \ 1 4 | e | 4 \ 2 | ; \ / | _ : ' “ | . \ 1 ; 4 lon | : ; | _| t 3 ! \ e | ! <= ' ae 4 — \ m2. | I ' % 2 \ ' | ! ' | ! ' , — 1 ia — a. — ' ' 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 lost MAR 09 1989 STABILIZERS THU, 2.5000 3.5000 TIME 1.5000 0.5000 BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD. 64.3 MW EXPORT CASE P2SVS‘*: 2 35 MVAR TCR, NO SC, 1SMVAR © SOLDOTNA I FILE: OUTPUT209 CHNLs 63: CO-8L-FTZI 50.000 ee al -200.0 CHNL® : CQG-BRA 0.3968 ------- + =1.587 CHNL® 5S CPG-8RA i CHNL«# S7: CPM-BRADII | 1.5870 Se 0.0 CHNL® S58: CEF-B8RADLI 19.000 —=__ = -1.000 3.3000 2.2000 0.0 2.7500 3.8500 TIME 1.6500 0.5500 of BRADLEY LAKE 1989 18 11 MAR SAT, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2sSvS': 2 35 MVAR TCR, NO SC, 15MVAR © SOLOOTNA FILE: OUTPUT209 CHNL#'S 4,10: CA-COOP 13-CA-MLP 73 150.00 MEE SSS esl aa x -50.00 CHNL#"S 3,10: CA-BERN 33-CA-MLP 73 150.00 | r -50.00 CHNL#'S 1,10: CA-BLUG 3J-CA-MLP 7) 150.00 > ===---——- ° -50.00 po HNL S610: CAMCHENASI-“CA-MLP 79 150.00 a | ie -50.00 CHNL#®'S 8,10: CA-BARO 1J-CA-MLP 7] 150.00 e—————a -S0.00 cs cs $ w wo cs cs o $ > oc so 3 om o cs os so N nu J cs s rl o ad 18 1989 ANGLES REL TO MLP #7 SAT, 2.7500 3.6500 4.9500 TIME 1.6500 0.5500 MAR 11 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 BL © 120, BERN & COOP OFF, CASE PeSVS': 2 35 MVAR TCR, FILE: 0 CHNL®# 18: CHNL® 17: CHNL* 16: CHNL# 15: 40 MW KENAL L ORO, 64.3 MW EX NO SC, 1SMVAR © SOLOOTNA UTPUT209 V-SOLOTAI CV-SKIHLLI CV=KASILE: V-ANCHPT CHNL#® 13: CV-FRITZCI CHNL«# 14: CV-OLAMAGI 77+ -—---= Pp 9 uy RT a Ee S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 sie 18 1989 VOLTAGES 2 MAR 11 SAT, r BL © 120, BERN & COOP OFF, 40 MW KENAL LOAD. 64.3 MW =XPORT T CASE P2SVS‘: 2 35 MVAR TCR, NO SC, 1SMVAR © SOLDOTNA FILE: OUTPUT209 | CHNLs 22: CV-PORTGEI | [1.3000 SSS > 0.3000 CHNL* 18: CV-SOLOTAI | 1.3000 Reman t x 0.3000 1S: CV-ANCHPT 1.3000 sie Seah caniresemales > 0.3000 19: CV-GATZCR 1.3000 Cee iit mili © 0.3000 CHNL® 11: CV-ET-8R0I 1.3000 i 0.3000 CHNL«# 12: CV-BRADLYI $.5000 4.9500 4.4000 3.3000 2.2000 1.1000 0.0 SU 18 1989 VOLTAGES MAR 11 Shiki 2.7500 3.8500 TIME 1.6500 0.5500 OOP OFF, 4 BL e120, BEAN’ C GB) CASE P2SvS': 2 35 MVAR TCA, 0 MW KENAI LOAD, 64.3 MW EXPORT NO SC, 1SMVAR © SOLODOTNA FILE: OUTPUT209 CHNL® 4S: CB-ANCHORI 0.8000 Moo x =0. 200 CHNL® 44: Ce-Seree Quav-z 0.3000 ------ = =9. 700 CHNL® 43: CB-HEALYI CHNLs 42: CB-GLOHLLI 9.8000 SST =0, 200 CHNL® 41: CB-TEELNOJ S$.5000 4.9500 4.4000 3.3000 2.2000 1.1000 Vow 2.7500 3.8500 TIME 1.6500 0.5500 18:57 1989 MAR 11 SVS ADMITTANCES SANs LOAD, 64.3 MW EXPCAT NO SC, 1SMVAR © SOLODOTNA BL @ 120, BERN & COOP OFF, 40 MW KENAI AEG) Case P2svs': 2 35 MVAR TCA, | FILE: QUTPUT209 | CHNL# 55: CP-B8L-FTZI | 150.00 CHNL® S4: CP-TLO-CTI 150.00 CHNL# CHNL# S2: CHNL«® S51: CP-SLOQTZI CP-OR-APTI CP-OCR-HPI S.S000 4.9500 4.4000 3.3000 2.2000 1.1000 0.0 2.7500 3.8500 TIME 1.6500 0.5500 18:58 1989 LINE FLOWS 11 MAR Allie BL © 120, BERN & COOP OFF, + CASE PeSvVS*': 2 35 MVAR TCR, il 40 MW KENAI LCAD, 64.3 MW EXPORT NO SC, 1SMVAR © SOLDOTNA FILE: OUTPUT209 HNL# 35: CF-HWYPAKI 0.0167 ISIS gS Rael gi ai aioe x -0.067 HNis 34: CF-HEALY 0.0167 Se SE * -0.067 HNLs 33: CF-UNIVER 0.0167 ee <) -0.067 CHNL®# 32: CF-SOLOOTI 0.0167 aa al ee -0.067 CHNL# 31: CF-FRITZCI 0.0167 —S—S -0.067 $.5000 4.9500 4.4000 3.3000 2.2000 1.1000 0.0 2.7500 3.8500 TIME 1.6500 0.5500 18:58 1989 FREQUENCY MAR 11 SAT, BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPCRT ase CRSE P2SVS': 2 35 MVAR TCR, NO SC, 1SMVAR © SOLDOTNA if PIECE: OUTPUT2093 CHNL® SO: CST-BEANLI | 0.1000 Tsao x -0.900 | CHNL® 49: CST-COOPRI 0. 3000 ieee as se -0.700 “8: CST-BAAD 0.5000 esaeseaaes 7 aa CHNL#® 47: CST-ANCHPI 0.7000 <7? Suit CHNL® 46: CST-SOLOTI 0.9000 eae -0.100 1 ' | ' | os : ! : | ; | ; ! 1 | ; ; : ie | 7 : , ; ' + | ; \ ' ; | ‘ 4 — : \ ‘ | = : \ i ; | ' | ; ' ' : ! i ee ; \ | 4H ¥ 1 sa \ ' | ' 3 ' | | eee: 5 ' \ I 4 ; ! { | i I ' i ; \ ' | | : } : ! ; ' ' | : ; ' x i ' | pisess q 1 ' | “4 : \ : | ¢ | i | 1 7 1 i 4 nes : 1 ' | — i 1 ' | ' | : \ ! : | ' | ay ; 1 ! | = ; i ' ; | ' | : ' ' | S.S000 4.9500 4.4000 3.3000 2.2000 1.1000 0.0 MAR S/ 18 11 1989 . STABILIZERS SAU, 2.7500 3.8500 TIME 1.6500 0.5500 i BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT 5 CASE PeSVS': 2 35 MVAR TCR, NO SC, 1S5MVAR © SOLDOTNA FILE: OUTPUT210 CHNULs 63: CQ-BL-FTZI 50.000 Se SS OOED : CQG-BRADLI 0.3968 er = STSSaT 2.0000 assess a a0 CHNL® 57: CPM-BRADLI 1.5870 =e 00 CHNL® S8: CEF-BRAD1I 19.000 =——— =1.000 S.0000 4.5000 4.0000 3.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 100) 1S 1989 le MAR BRADLEY LAKE SUN, » BERN & COOP OFF, VS's 2 35 MVAR TCR, 40 MW KENAI NO SC, LOAD. 64.3 MW 1SMVAR © SOLDOTNA FILE: OUTPUT210 CHNLa'S 4,10: CA-COOP_13-CA-MLP 150.00 MESSE TT sss x -50.00 CHNL®‘S 3,10: CA-BERN 33-CA-MLP 150.00 te ae eel ae + -50.00 | CHNL#'S 1 A-BLUG 33-CA-MLP 150.00 22-2 === 2 ° 50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 73 150.00 == — = -50.00 CHNL*'S 8,10: CA-BRAD 1J-CA-MLP 73 150.00 Sw -50.00 cs cs J so wo cs cs cs co = J cs —J cs “ cs cs s a s J cs - J o 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 Sb ho) ANGLES REL TO MLP #7 12 1989 MAR SUN, BL @ CASE Pesvs’: 120, BERN & COOP OFF, 40 MW KENAI LOAD, FILE: OUTPUT2Z10 CHNL# 45: CB-ANCHORI 0.4000 Qvavtz e Puchov Powt 64.3 MW EXPORT 2 35 MVAR TCR, NO SC, 1SMVAR © SOLOOTNA O MVAR -—- Mei wares x -0.600 CHNL® uu: CB-sepeN] Quartz 10.4000 ToT tri it - -0.600 CHNL® 43: CB-HEALYI 0.8000 TT Titi ? -0.200 CHNL# 42: CB-GLOHLLI 0.8000 ee ee ie -0.200 CHNL* 41: CB-TEELNOI 0.8000 eT cea Tl, -0. 200 2.0000 S.0000 4.5000 4.0000 3.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 16:21 MAR 12 1989 SVS ADMITTANCES SUN, BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW CASE PesvS': 2 35 MVAR TCR, NO SC, ISMVAR @ SOLOOTNA m ~< Vv ce DD 1 aoe FILE: QUTPUT210 CHNL® 22: CV-PORTGEI {1.3000 hii = 0.3000 | CHNL# 18: CV-SOLOTAI 1.3000 Miss sf sisieisei x 0.3000 CHNL* 15: CV-ANCHPTI | 1.3000 ii mi + 0.2000 CHNL# 19: CV-QRTZCAI 1.3000 hel i ° 0.3000 CHNL# 11: CV-ET-8ROI 1.3000 a = =? 0.3000 CHNL# 12: CV-BRAOLYI 1.3000 ————4 0.3000 S.0000 4.5000 3.0000 2.0000 1.0000 0. a 1S 1989 VOLTAGES MAR 12 4.0000 2.5000 3.5000 SUN TIME , 1.5000 0.5000 0 BL © 120, BERN & COOP OFF, 40 MW KENAI GAYA CASE P2SVS': FILE: OUTPUT210 CHNL® SS: CP-BL-FTZ2I 150.00 CHNL«# S4: CP-TLO-CTI l U AO, 64.3 MW E 2 35 MVAR TCR, NO SC, 1SMVAR @ SOLDOTNA x 150.00 SS SS >. -100.0 | CHNL#® 53: CP-SLOQTZI 150.00 eee ° -100.0 CHNL«# S2: CP-OR-APTI 150.00 2 === = -100.0 CHNL® S51: CP-OCR-HPI 150.00 2 -100.0 POST -100.0 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1989 LINE FLOWS le asaloyy/ MAR SUN, 2.5000 3.5000 TIME 1.5000 0.5000 COOP OFF, 40 MW XENAI LGAD, 64.3 MW EXPORT MVAR TCA, NO SC, 1SMVAR © SOLOOTNA FLEES) OUTPUT210 CHNL® SO: CST-BERNLI | 0.1000 eee x =0.900 | CHNL® 49: CST-COOPAJ 0.3000 ------- + =0.700 | CHNL# 48: CST-BRADLI 0.5000 a aaa oi eae | CHNL® 47: CST-ANCHPI [0.7000 -----H4 =0. 300 CHNL® 46: CST-SOLOTI [0.9000 ——a 0.100 i . 1 : | | ! a ‘Ta \ | | 1 ii 1 | \ | 1H 4 Ia i | I | i 1 4 — ! | eH 1 Q | | 1 } ! ee \ | dal | ' | + | 1 | ! ual ' 4 | 1 a 1 | wal | ' | r fi | 1 ' | zu } : Li I > | | = \ on 4 — | % | | ; ! | 1 ! I 1 ! 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 b Hoe 2 1989 STABILIZERS MAR SUN, 3.5000 2.5000 TIME +5000 0.5000 PASS "3 0.0167 | 9.0167 120, BERN & COOP OFF, 40 MW KENATL 2 35 MVAR TCR, NO SC, 1SMV FILE: OUTPUT210 CHNE# 35: CF-HWYPRKI ay Go CHNEs 34: CF-HEALY CHNLs 32: CF-SOLOOTI CHNL® 31; CF-FRITZCD 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 - 5000 2.5000 3.5000 0.5000 >> «tS ae lu ea o@ Std Cc wi c = z 5 wn Qs = BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE P2E: *20/-15 SvSseSsoLoD, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUT211 CHNL® 63: 50.000 CHNL# 61: 0.3968 aa ee a ‘+ -1.587 CHNL# : CPG-BAA 2.0000 aa - 0.0 CHNL# S57: CPM-BAADLI 1.5870 -<——— 0.0 CHNL# $8: CEF-8RAD1I 19.000 s+ -1.000 — — CO-8L-FTZ3 CQG-B8RA0L S.0000 4.5000 4.0000 3.0000 1.0000 0.0 06 BRADLEY LAKE 1969 i MAR 29 WED, 3.5000 1.5000 0.5000 TIME BL_120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD CASE P2E: +20/-15 SvSeSOLO, 3 50% SC FILE: OUTPUT211 CHNLs 32: CF-SOLOOTI 0.0667 CHNL«® 31: CF-FAITZCI 0.0667 ] GAZHz G/ HZ 30/7.2 SH CAPS ---_--_-S ————____- 6OH2 » 9O MW EXPORT -0.017 -0.017 Ss ee a ae ae a a a ee ee $.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 224 11 2.5000 3.5000 TIME 1.5000 0.5000 MAR 29 1989 FREQUENCIES WED, BL 120M2, BERN 24MW, COOP 8M2, CASE P2E: +20/-15 SVSe@SOLD, 3 50% SC, FILE: OUTPUT211 4OM2 KENAI LOAD, 90 MW EXPORT 30/7.2 SH CAPS CHNL# 22: CV-PORTGEI 1.3000 SE See > 0.3000 CHNL# 18: CV-SOLOTAI ay 1.3000 Sh ne ms 0.3000 CHNL# 15: CV-ANCHPTI 1.3000 an * 0.3000 CHNL# 19; CV-QATZCAI 1.3000 Tho nh ° 0.3000 CHNL® 11: CV-ET-8R0I Li 1.3000 Nh, Wn 0.3000 CHNL* 12: CV-BRADLYI 1.3000 | 0.3000 S.0000 4.5000 4.0000 — 2.0000 1.0000 0.0 L12a7 1989 VOLTAGES MAR 29 WEO, 2.5000 3.5000 TIME 1.5000 0.5000 aan BL _120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, $0 Mw =xPOR7 5 CASE P2E: +20/-15 SVSeSOLD, 3 S0% SC, 30/7.2 SH CAPS | FILE: OUTPUT211 CHNL® 59: CEF-BEANSI 18.000 SS ° -2.000 CHNL#® 67: CPM-BEAN3I 2.0270 | =1. 351 CHNL* 64: CPE-BERN3] 0.6000 ———2 -0.400 [ 1 7 Wi \ + ’ ' \ , \ t 7 3 \ x \ i ' L \ : ¢ | $ | : \ 2 \ : z " : 2 | 3 Wi » y ‘ ns | $ : | s ; _| uw + a’ \ | \ 4 SJ / : f | a ath) S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1989 BERNICE LAKE #3 WED, 2.5000 3.5000 TIME 1.5000 0.5000 its2? MAR 29 150.00 150.00 150.00 150.00 BL_120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT CASE Rebs *207-—15 SVSSSOLD,_3_507.'SC PIEEs OUTPUT CHNL# SS: CP-8L-FTZ] CHNE* S4: CP-TLO-CTI CHNL# 53: CP-SLOOTZ CHNL® S2: CP-OR-APTI CHNL® 51: CP-OCR-HPI » 3077.2. SHIGRPS 1989 5.0000 2.0000 3.0000 4.0000 1.5000 2.5000 3.5000 4.5000 TIME 1.0000 0.5000 11:07 MAR 29 LINE FLOWS WED, CASE Pee: *20/-I5 ‘SVSeSOLO. 3] 50% ST, FICE OUTPUT | CHNLs 18: CV-SOLOTAI BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPORT 30/7.2 SH CAPS 1.3000 ial 3 0.3000 CHNL® 17: CV-SKIHLLI 1.3000 ire x 0.3000 CHNL# 16: CV-KASILFI 1.3000 ea = 0.3000 V-ANCHPT | 1.3000 aaa ada . 0.3000 CHNL#® 13: CV-FRITZCI | 1.3000 elie Real sala 0.3000 CHNL# 14: CV-OLAMAGI 1.3000 ——— 0.3000 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 08 VOLTAGES 2 1969) Di lie MAR 29 WED, y BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW =XPCAT 4 CASE P2E: +20/-15 SVSeSOLO, 3 50% SC, 30/7.2 SH CAPS FILE: OQUTPUT211 CHNL#* S50: CST-SERNLI 0.1000 mine tees See Se « -0.900 CHNL* 49: CST-COOPAI 0.3000 ere + -0.700 CHNL# 48: CST-B8RADLI 0.5000 es a aici moe ° -0.500 CHNL# 47: CST-ANCHPI 0.7000 eT 7 -0.300 CHNL® 46: CST-SOLOTI 0.9000 Ss -0.100 T | re i ee J cs “ Ss s s En x ‘ 1 9 ss + | -. 1 i | 9 2 ‘ | $ | : ' | |= . 1 o x I | ' | 1 = + | =e] \ a! | J 32) a Ss rr | s = saa pot ttt tt tt rr rh He HH Ht 1.0000 0 0. 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 20/7 MAR 29 1989 11 STABILIZERS WED, y BL 120M2, BERN 24MW, COOP 8M2, 42M2 KENAI LOAD, 90 MW EXPCART 4 CASE P2E: +20/-15 SVSeSOLD, 3 50% SC, 30/7.2 SH CAPS FILE: OUTPUT211 CHNL# 45: CB-ANCHORI 0.8000 x- * -0.200 CHNL® 44: -SOLOTNI {0.3000 SF roe ert geet rene a -0.700 CHNLs 43: CB-HEALYI 0.8000 = === == === ° =0. 200 CHNL® 42: CB-GLOHLLI CHNL® 41; CB-TEELNOI 0.8000 Ler: Ta | -0.200 — = — Ee g 1 ? x —| 1 —o ! | ¢ ‘ \ 4 i’ _ { o =| | _— \ ' : \ | _—=4 & \\ | iS =| SN | i x N 1 : + | rt N 1 . | are | — =| N ' . SS 4 1 ot SS | tt Ss 9 | tt . ae = N 1 7 — \ | 1 . ! 1 / | ' ' _—§<— | 1% bee - 1 . — a” | == “7 ‘ a | ? a 5 4 —— —- ie . | ' . — = TS 3 ! | — ' — = 1 | 1 = | | _— [Ss — | 1 5.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 2.5000 3.5000 TIME 1.5000 0.5000 11:07 SVS ADMITTANCES MAR -29 1989 WED, 4.3 MW EXPOAT BL © 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64. 30/7.2 SHUNT CAPS 4 CASE=PeAt 220/41 S=sVSe@SOLD0T.. 3=S0/4-5.iC.., FLCE: CUTPUTete CHNL#'S 4,10: CA-COOP 13-CA-MLP 7] 150.00 eee * -50.00 CHNL«#'S 10: CA-BERN 33-CA-MLP 73 150.00 =e + -50.00 CHNL#'S 1,10: CA-BLUG 33-CA-MLP 7] 150.00 -50.00 CHNL#'S 6,10: CA-CHENASI-CA-MLP 7] 150.00 = -50.00 CHNL#'S 8,10: CA-BAAD 13-CA-MLP 73 150.00 ae -50.00 o S S so “ o se s —) bac 7 — — so So Ss 3 1 Ta a = es S S so — Ja ° o ° 3 so 3 1989 aD WE 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 14248 MAR 29 ANGLES REL TO MLP #7 BL_© 120, BERN & COOP OFF, 40 MW KENAI LORO, 64.3 MW EXPORT a CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS | FILE: OUTPUT212 CHNL® 63: CO-BL-FTZI 50.000 DSR isis x _=200.0 caG-sAao13 0.3966 oa = -1.587 2.0000 WN Cse ss aoo os ° 0.0 CHNL® 57: CPM-BAAD1I _| 1.5870 nin oo CHNL® S8: CEF-BAADIJ 19,000 ———_-1.000 J sc cs cs 8 s s L ss cs cs s | a $ Ss So | si cs 3 - cs 3 cs S 1989 BRADLEY LAKE Pie MAR 29 WED, 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 3.0000 2.0000 Y BL © 120, BERN & COOP OFF, 40 MW KENAI LORD, 64.3 MW EXPORT A CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT212 CHNL® 22: CV-PORTGE = 1.3000 eee > 0. 3000 CHNL® 18: CV-SOLOTAI 1.3000 Sea x 0. 3000 CHNL® 15: CV-ANCHPTI 1.3000 SSS + 0. 3000 CHNL® 19: CV-GATZCRI 1.3000 $n a E e 0.3000 CHNL® 11: CV-ET-8R0I 1.3000 I —_—E 0. 3000 CHNL® 12: CV-8RADLYI 1.3000 ——— 0. 3000 L 4 om al [_ 7 1.0000 19869" 14249 VOLTAGES MAR 29 WED, 5.0000 4.0000 4.5000 2.5000 3.5000 TIME 1.5000 0.5000 0.0 BL © 120, BERN & COOP OFF. 40 MW KENAI LOAD, 64.3 MW EXPORT CASE PeA: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS = 1009 mz 3 FILE: OUTPUT212 ares oO S Wd CHNL* SS: CP-B8L-FTZI ee 150.00 Des rcrare retracts x =100.0 TD ome N CHNL® S4: CP-TLO-CTI oa 150.00 SS eb -100.0 < = HNL® : CP-SLOQT 150.00 i na ° -100.0 a CHNL® 52: CP-DR-APTI = 150.00 —— | -100.0 CHNL® Si: CP-OCR-HPI 150.00 ——43 -100.0_ cs cs Ss Ss ao s 3 | s: cs s J S ss 7s ° sc cs wo /-— « cs cs cs So — a cs cs | ay Nee = cs cs cs os -— a s cs Ss ie cs cs cs S cs cs cs S e e so BL @ 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT CASE P2A: +20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: QUTPUT212 CHNL® 4S: CB-ANCHORI 0.8000 RSGseeereee x =0.200 CHNL® 44: CB-SOLDTNI 0. 3000 = S252 + -0.700 CHNL® 43: CB-HEALYI 0.8000 easeseasassa ° =0.200 CHNL® 42: CB-GLOHLLI 0.8000 -—- > -0.200 CHNL* 41: CB-TEELNOJ 0.8000 oo -0. 200 [_ “TT. |. +. &-T Tg is B cs cs cs co L 7+ cs cs Ss Ss L ss cs Ss s | A cs cs cs : 3 3 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 MAR 29 1989) 19:49 SVS ADMITTANCES WED, BL e 120, BERN & COOP OFF, 40 MW KENAI LOAD, 64.3 MW EXPORT A CASE P2A: +20/-15 SVSeSOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS FILE: OUTPUT212 CHNL®# SO: CST-BEANLI 0.1000 AE in si Sg ES s -0.900 HNL» 49: CST-COOPRI 0.3000 a + -0.700 0.5000 ins ae 2 -0.500 CHNL® 47: CST-ANCHPI 0.7000 aan lanl are -0.300 CHNL® 46: CST-SOLOTI 0.9000 a -0.100 co cs cs cs a = 4 cs Ss Ss Ss — 7 — — J s J — J" -_— 4 J cs s | sai cs cs _|s — x + ? 4 a ' 1 | \ ' | ! 1 | = I i | \ ' \ ' | 249 STABILIZERS 29 “11989 MAR WED, 2 «000 3.5000 4.5000 TIME 1.5000 0.5000 S.0000 4.5000 3.0000 2.0000 BL e 120, BERN & COOP OFF, 40 MW KENAL LORD, 64.3 MW EXPORT ase CASE P2A: *20/-15 SVS@SOLDOT, 3 50% S.C., 30/7.2 SHUNT CAPS i{] } FILE: OUTPUT212 CHNL# 35: CF-HWYPRKI 0.0167 Ee x -0.067 CHNL* 34: CF-HEALYI _| 0.0167 ee eee ~ -0.067 CHNL® 33: CF-UNIVERIJ 0.0167 saree eee rine 2 -0.067 CHNL# 32: CF-SOLDOTI 0.0167 a a -0.067 | CHNL® 31: CF-FRITZCI 0.0167 Se -0.067 — oe L_ a | _ 1.0000 0 FREQUENCY WES MAR 29 1989 WED, 4.0000 3.5000 2.5000 TIME - 5000 0.5000 J BL © 30, BERN&COOP OFF, 70 MW KENAI LOAD, 43 MW IMPORT CASE P2AD: 1 SVS, 3 SC, NO QATZ CAPS FILE: OUTPUT213 10: CA-BLUG 33-CA-MLP 73 50.000 a aca . -150.0 | CHNL®#'S 6,10: CA-CHENASI-CA-MLP 73 50.000 = >"> = -150.0 50.000 CHNL#'S 8,10: CA-BRAD 13-CA-MLP 73 S$.0000 4.5000 4.0000 3.0000 2.0000 tortG 1989 MAR 29 ANGLES REL TO MLP #7 WED, 2.5000 3.5000 TIME 1.5000 0.5000 5 50.000 0.3968 CHNLs S56: CPG-8RADL 3.0000 -1.000 CHNL# S57: CPM-B8AADLI 2.5870 SS -1.000 CHNL# S58: CEF-BAADLI 19.000 — 2 -1.000 — — }— 4 BL @ 30, BERN&COOP OFF, 70 MW KENAI LOAD CASE P2AD: ! SVS; 3 SC, NO QRTZ CAPS FICE: GUTPRUTSI3 CHNL® 63: CO-BL-FTZ] CHNL*® 61: CQG-8RADL 43 MW IMPORT S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 50 1989 BRADLEY LAKE ) 1 MAR 29 WED, 2.5000 4.5000 TIME 1.5000 0.5000 y BL © 30, BERN&COOP OFF, 70 MW KENAI LOAD, 43 MW IMPORT T CASE P2AD: 1 SVS, 3 SC, NO QRTZ CAPS FILE: QUTPUT213 CHNL® 22: CV-PORTGEI | 4 1.3000 eee > 0.3000 | CHNLs 18: CV-SOLOTAI | 1.3000 CIRO RR ARE x 0.3000 CHNL® 15: CV-ANCHPTI 1.3000 isis ss + 0.3000 L CHNL® 19: CV-QATZCAI 1.3000 eS oeaa ee ° 0.3000 CHNL# 11: CV-ET-8A0I 1.3000 eS SS" =e 0.3000 CHNL® 12: CV-BRAOLYI 1.3000 7 0.3000 cs J J cs “ cs s cs so = => J —J —J cs { Fa | | 2.0000 1.0000 0.0 2.5000 TIME 4.5000 3.5000 1.5000 0.5000 1969) ||) 5::36 VOLTAGES MAR 29 WED, BL © 30, BERN&COOP OFF, 70 MW KENATI CASE P2AD: 1 SVS, 3 SC, NO QRTZ.CAPS FILE: OUTPUT213 LOARO, 43 MW IMPORT CHNL# 4S: CB-ANCHOAI 0.8000 Moree rer F * -0.200 CHNL® 44: CB-SOLDTNI 0.3000 Winn A 0.700 CHNL® 43: CB-HEALYI 0.8000 eT ° -0.200 CHNLs 42: CB-GLOHLLI ui 0.8000 le a ane -0.200 CHNL® 41: CB-TEELNOIJ 0.8000 eT Tis 0.200 L- a i 4 S.0000 4.5000 4.0000 3.0000 2.0000 1.0000 0.0 1989 SVS ADMITTANCES WED, 3.5000 2.5000 TIME -5000 0.5000 15336 MAR 29 BL @ 30, BERN&COOP OFF, 70 MW KENAI LOAD, CASE Pe2A0: l SVS) -----------A tH 3 SC, NO QRTZ CAPS FLEE? OUEPUTSIS CHNLs SO: CST-BEANLI CHNL* 49; CST-COOPR CHNL* 46: CST-SOLOTI ------------------#---¢ 43 MW IMPORT 0.3000 SS = - -0.700 CHNL* 48; CST-8RA 0.5000 ania Se -0.500 CHNL® 47: CST-ANCHPI 0.7000 SS a ae -0.300 5.0000 4.5000 4.0000 3.0000 2.0000 2.5000 3.5000 TIME 1.5000 0.5000 152.30 STABILIZERS MAR 29 1989 WED, CHNL® SS: CP-BL-FTZI 150.00 Rees us -100.0 CHNL#® S4: 150.00 eee => = -100.0 P-SLOOTZI 150.00 ae °-100.0 CHNL® S2: CP-OR-APTI 150.00 >> = =100-0 CHNL#® Si: CP-OCR-HPI 150.00 ean -100.0 cs J cs cs a — + cs sc cs cs = 4s cs cs cs cs a 4s cs sc S = a2 Nu BL @ 30, BERN&COOP OFF, 70 MW KENAI CASE P2AD: ] SVS; LOAD 3 SC, NO QRTZ CAPS PIEE: OUTPUTS 3 4&3 MW IMPORT 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 15536 1989 LINE FLOWS MAR 29 WED, BL © 30, BERN&COOP OFF, 70 MW KENAI LOAO. 43 MW IMPORT CASE P2AD: 1 SVS; 3 SC, NO GRTZ CAPS FILE: OUTPUT213 | CHNL® 3S: CF-HWYPRKI 0.0167 De orm iota eh Se x -0.067 CHNL® 34: CF-HEALYI 0.0167 wo ==" + -0.067 CHNL® 33: CF-UNIVER 0.0167 — © -0.067 CHNL# 32: CF-SOLOOTI | 0.0167 = SS = St -0.067 CHNL# 31: CF-FAITZC) 0.0167 2 -0.067 J J J cs “ J J cs Ss r_ 7s — a J os Ss Ls N sa G Ss J cs cs — FA cs cs cs « lo eee) i) 3G LS 1989 ag FREQUENCY MAR 2.5000 3.5000 4.5000 TIME 1.5000 0.5000 WED, PREPARED BY: G.C. Brownell H.K. Clark POWER TECHNOLOGIES, Roseville, California PTI Report R34-89 May 5, 1989 RAILSELT STABILITY STUDY ANCHORAGE TO FAIRBANKS UPGRADE PREPARED FOR: ALASKA POWER AUTHORITY INC. TABLE OF CONTENTS INTRODUCTION ... cece ccc cece rr erence rere esse eseesssens PRESENT SYSTEM UPGRADE ....... eee e eer e cree e ese eeeeeece MAXIMUM SERIES COMPENSATION — cw. ee ee ee ce eee eee NO SERIES CAPACITORS ....... cece cece eee eee ee eee eee ennes COMBINATION SERIES CAPACITORS AND SVS ..... 2... cece eee eeee LIGHT LOAD CONDITIONS .......- cece cece ccc e creer ener eeenaes OUTAGE OF GOLD HILL - FT. WAINWRIGHT LINE ................. TEELAND 230-138 KV TRANSFORMER LOADING ............--0 220 ee LOSSES: o20 cs ccs cc ee tewnnee recta eee erecerecesecscreess TEELAND AND GOLD HILL TRANSFORMER ADDITIONS ............. APPENDIX RAILBELT STABILITY STUDY ANCHORAGE TO FAIRBANKS UPGRADE This study addresses an increase in power delivery from the Anchorage area to Fairbanks. Two alternative were considered, an increase from 70 to 100 MW measured at Douglas on the line to Cantwell and an increase from 85 to 115 MW measured at the Gold Hill end of the line from Nenana. Increasing 30 MW at Douglas provides only 22.6 MW at Gold Hill after losses. Increasing Fairbanks import by 30 MW at Gold Hill requires 42 MW at Douglas. The transmission upgrade options considered were: ° Increase SVS sizes (no series capacitors), ° Add series capacitors, ° A combination of SVS and series capacitor equipment. We did not look at new SVS locations, however, it appears that the existing locations would be adequate. A second transformer was assumed to be in place at both the Teeland and Gold Hill substations. The new transformers were assumed to be identical to the existing units. In the cases representing an additional 30 MW measured at Douglas (22.6 MW at Gold Hill), the Chena 5 generator is operating at 8 MW. It’s reactive output is near zero in the base case and does not change appreciably because the Gold Hill SVS effectively isolates it from the line reactive losses. Note however, that acceptable performance following loss of the Gold Hill transformer and SVS will require some Fairbanks area "spinning reactive reserve." In the cases representing an additional 30 MW measured at Gold Hill the Chena 5 generator is on-line at zero MW. The reactive output of the machine varies by only 2 or 3 MVAR in the cases. It is effectively off-line, and could have been so in these cases. In all cases with increased power flow to Fairbanks, loss of the Healy generator is the worst- case for setting the SVS capacity at the three SVS locations, and the series capacitor requirements when considered. This contrasts with the present day condition wherein loss of Chena 5 dictates the SVS capacity requirements at the three locations. Power Technologies, Inc. Page 2 While the results reported below appear to be based only on power flow cases, the SVS sizes do in fact include about 5 MVAR to cover dynamic system requirements. This increment is based on several simulations included in Appendix I. These simulations show that a margin of 5 to 10 MVAR over steady state requirements at each SVS site will meet first-swing and damping requirements. These cases did not include detailed motor models for the motor load, and may thus be somewhat optimistic. Simulations with detailed load models are recommended before compensation levels are finalized. Present System Upgrade The present system, operating at 70 MW (measured at Douglas), does not meet the criteria selected for the upgrade. The criteria requires the system to withstand 138 kV faults followed by loss of the Healy generator or loss of Chena 5. To meet the criteria at 70 MW, the following two additions are required: ° Douglas - Cantwell -- 70% series compensation ° Gold Hill SVS -- add 22 MVAR These additions are dictated by loss of Chena 5. Without these additions the loss of Chena 5 causes voltages to swing down to about 55% in the Fairbanks area, and return only to about 90% (without representing loss of load). However, in the following period (2 to 3 minutes after the fault) voltage collapse will occur as distribution LTCs and loads adjust to the low voltage. Even if some load is lost from the 55% voltage swing, it would eventually return to the system and eventually pull voltages down. There may also be line tripping from the low voltage, taking down part or all of the Fairbanks area. Without the series capacitors, approximately 122 MVAR of new SVS capacity would be required to meet the post-disturbance steady state requirement. Maximum Series Compensation -- Increased Transfer The case with maximum series capacitors has 70% series compensation in each of the six lines between Point MacKenzie and Gold Hill. In this scenario the Gold Hill SVS must be upgraded to a 55 MVAR upper limit (an addition of 22 MVAR) to support an additional 30 MW measured at Gold Hill. The additional SVS could be placed on the tertiary of the new Gold Hill transformer. If the power increase is to be 30 MW measured at Douglas, the Gold Hill SVS upgrade is the same, and the series capacitor between Nenana and Gold Hill is eliminated (Including this series capacitor does not appreciably reduce the Gold Hill SVS upgrade requirement). Power Technologies, Inc. Page 3 No Series Capacitors -- Increased Transfer Without series capacitors, the SVS upgrades to supply an additional 30 MW measured at Douglas (22.6 MW at Gold Hill), and meet criteria, the SVS additions are: ° Teeland -- add 51 MVAR ° Healy -- add 66 MVAR ° Gold Hill -- add 5 MVAR Without series capacitors, the SVS upgrades to supply an additional 30 MW at Gold Hill, and meet criteria are: ° Teeland -- add 87 MVAR ° Healy -- add 104 MVAR ° Gold Hill -- add 5 MVAR These sizes do not include a margin for dynamic requirements. Such SVS sizes would be very costly and would present very difficult control problems. It is presumed that an all SVS upgrade will not be considered further. Combination Series Capacitors and SVS A set of cases was run with a 70% series capacitor in the line from Douglas to Cantwell supplemented by additional SVS capacity to provide 30 MW additional transfer measured at Douglas. The SVS additions are: ° Teeland -- add 18 MVAR ° Healy -- add 28 MVAR ° Gold Hill -- add 22 MVAR A similar set of cases was not run with the transfer increased 30 MW measured at Gold Hill. Power Technologies, Inc. Page 4 Light Load Conditions Several cases were run to assess light load conditions and restoration problems. With loads reduced to zero north of Douglas, voltages rise to about 106% with the existing SVS underexcited limits and 70% series capacitors in six lines. Without the series capacitors the voltages are about 2% higher. These cases include some line charging from the Fairbanks area that presumably would not be connected when the load in Fairbanks is zero (i.e. during system restoration). These cases show that the existing underexcited limits on the SVSs are adequate and need not be changed. Also, the series capacitors improve control of light-load voltages. Outage of Gold Hill - Fort Wainwright line A case was run to show the real and reactive loading on the Gold Hill transformer during outage of the line from Gold Hill to Fort Wainwright. The case was run with just one transformer at Gold Hill. The transformer loading with an increase of 30 MW delivered at Gold Hill, and the line outage, is 123 MVA. Teeland 230-138 kV Transformer Loading A case was run to show the real and reactive loading on the Teeland transformer during outage of the Healy generator. The case was run with just one transformer at Teeland. The transformer loading with an increase of 30 MW delivered at Gold Hill, and the generator outage, is 151 MVA. Losses The losses are quite high for the additional transfers examined in this study. The incremental losses between Douglas and Gold Hill are 7.4 MW for delivering 22.6 MW at Gold Hill and 12 MW for delivering 30 MW at Gold Hill. The incremental losses are 33% and 40% respectively. The increase from 22.6 to 30 (7.4 MW) causes losses of 4.6 MW, or 62% incremental losses. Teeland and Gold Hill Transformer Additions Power flow cases were run to check the SVS size requirements without transformer additions at Gold Hill and Teeland. These cases were done with maximum use of series capacitors. Upgrade to provide the additional 30 MW import at Gold Hill included 70% series compensation in the six lines between Point Mackenzie and Gold Hill. Upgrade to provide the additional 30 MW measured at Douglas included 70% series compensation in the five lines between Point Mackenzie and Nenana. Power Technologies, Inc. Page 5 If the additional 30 MW is measured at Douglas, an increase in shunt reactive support from Teeland of approximately 15 MVAR will be required to maintain voltages following loss of the , Healy generator. Further analysis may show switched shunt capacitors to be adequate for this 15 MVAR. If the additional 30 MW is measured at Gold Hill, the base case loading in the Teeland 230- 138 kv transformer is 122 MVA. Therefore this import level wasn’t studied with one transformer at Teeland. There is a negligible effect on the Healy and Gold Hill SVS size requirements when comparing cases with one and two 138-69 KV transformers at Gold Hill. Greg Brownell Harrison K. Clark May 5, 1989 APPENDIX 1 STABILITY CASES ANCHORAGE TO FAIRBANKS TRANSFER =70 MW MEASURED AT DOUGLAS LOSS OF HEALY GENERATOR FOLLOWING 138 KV FAULT ‘ge ANCH-FA TLNOZAAE BASE CA GQnTHeLe ggucias =O gygnreve +2878 £2874 +1878 Miz JOG) | (tN 28!8 +3878 23838 = C= So = = ug = — << a ao 22 OY, NPOLEI30 +8873 gopmuera aie! BORAINES +0878 gyonesee set s a3 gpgneeve a8os = ac a = = ua = = = ao oO 14873 14838 2a8P2 sgnrmene 14898 gRetnosy 6S 2a878 | BgUSLRS S5E5NNo er nacnrs|= 1,92 9969 aiaiel -i?. ANCH-FAIABANKS 100 MW, 70% SEAIES COMP OC LINE TLNOZHEAIY7GLO HILI SVS = 22722755 MVAAR = HE ou 1s M 21 26s 1. WPOLEISB 1,022 209 =66.2 x ra eo = — ern tee y > se a wo ne gin HEALY e/© 1.020 ol 370 sic “43.4 WEALY| 1.020 37 43.4 — HEALYSYS: 1.056 399 _ 43.5 == git gr alS alZ sis oo CANTWELL 1,011 36 -36.5 = =] als es mln bb Bid = TEELNDSV 1,054 DOUGLAS 34 —7i7.7 35 S] 3] 7 TEELAND 1.020 TLND ise 9968 “17.7 1s = at a PT mackzR| = Soeg ELS i IMPORT 70% SERIES COMP DOUGLAS TO CANTWELL LINE ERLY/GOLD HILL SVS = 22/22/50 MVAR Cut FRI. MAR 03 1989 12:42 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP9LK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: WPAF CHNL® 71: C227] 30.000 eo > -270.0 ——— CHNL® 69: C??] 90.000 Pesaro x -270.0 CHNL#® 22: CA-COFMUS123 30.000 ————. = Sn CHNL* 14: CA-NTH POLEI 90.000 SSS s==-=== ° -270.0 CHNL# 10: CA-GOLOHLLI 90.000 = S70c0 CHNL# 2: CANG-O0UGI 90.000 ——— -270.0 | ! am 1.9990 1.7991 1.5992 1.1994 0.7996 0.3998 0.0 58 FEB 09 1989 09 ANGLES THU, 0.9995 1.3993 TIME 0.5997 0.1999 WINTER PEAK 1991 KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP9LK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: WPAF CHNL# 67: C7? CHNLs 66: CHEALY SVSI CHNL* 65: CGOLOHL SVSI 357 THU, FEB 09 1989 09 1.9990 0.7996 1.1994 1.5992 0.5997 0.9995 1.3993 1.7991 TIME 0.3998 0.1999 0.0 SVS PU Y WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 CASE WP9LK -- SOLD SVS +15/-10, NO SERIES CAPS FILE: WPAF CHNL®# 3: CV-CANTI 1.4000 Ss ote a2 0.4000 HNL® 1: CV-OD0UG 1.4000 Cee ee © 0.4000 Se 1.4000 SSS 0.4000 Sse 1.4000 4 0.4000 + " iw " pf = it — it \ Ta *\ +\ =] [_ V\ Vt Ve \. Vi L it — ! 1 Mt fey it = i = Vy 4! i le Lace i aan ht ry Vy —— , \ _| \ \ \ VN =i = RN 4 er ’ ra top — toe — la hae i " 4 = i | nt iy eS ae Lo 1.9990 1.7991 1.5992 1.1994 0.7996 0.3998 0.0 OS)3}577/ FEB 09 1989 VOLTAGES THU, 1.3993 0.9995 TIME 5997 0 0.1999 1.4000 1.4000 1.4000 1.4000 WINTER PEAK 1991 -- KENAI-ANCH 76 MH, SOLED SVS2e157=10, NOUSERTES CAPS CASE WP9LK ETCESNeAre CHNL* 11; CV-FTWAINI CHNL# 9: CV-GOLOHLLI CHNL# 7: CV-NENANAD ANCH-FAIR 70 MW BL 90 CHNL#® S: CV-HEALYI ———— + 0.4000 == =—=— =a ° 0.4000 -—---- 0.4000 0.4000 1.9990 1.7991 1.5992 0.7996 1.1994 0.3998 0 0. De 09 FEB 09 1989 VOLTAGES THU, 0.9995 1.3993 TIME 0.5997 0.1999 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 90 -- SOLD SVS +15/-10, NO SERIES CAPS CASE WPSLK FILE: WPAF CHNL® 64: CPGEN-HEALYI 1.0000 a A ORG CHNL® 63: CPGEN-CHEN2J 1.0000 ae ° 0.0 CHNL® 53: CGLOH-FTWN PI 100.00 Se 0.0 CHNL® S1: CGLO138-TAT PI 100.00 1.9996 7991 1.5992 1.1994 0.7996 0.3998 0.0 a7 FEB 09 1989 09 POWER FLOWS THU, 0.9995 1.3993 1 TIME 0.5997 0.1999 WINTER PEAK 1991 -- KENAI-ANCH 76 MW, ANCH-FAIR 70 MW BL 930 CASE WP9S1K -- SOLD SVS +15/-10, NO SERIES CAPS FILE: WPAF NEN-GLOH 200.00 i = on CHNL® 47: CHLY-NNAL38 PI 200.00 SS ° 0.0 CHNL® 45: CCNT-HLY138 PJ 200.00 ls 0.0 CHNL® 43: COUG-CNT138 PI 200.00 Ta 0.0 1.9990 1.7991 1.5992 .1994 0.7996 0.3998 0.0 657 09 FEB 09 1989 POWER FLOWS THU, 0.9995 1.3993 TIME 0.5997 0.1999 ANCHORAGE TO FAIRBANKS TRANSFER =70 MW MEASURED AT DOUGLAS LOSS OF CHENA GENERATOR FOLLOWING 138 KV FAULT NOTE: LOW FIRST SWING VOLTAGES (55-60%) IN THE FAIRBANKS AREA ANCH- FAIR 70 MW BASE CASE FILE: WPAF2 CHNL*# 4: CA-CANTI 30.000 CHNL® 2: CANG-D0UGI 90.000 ===2os =e — CHNL® 68: CANG-TEELNOIJ 90.000 -—- -270.0 CHNL® 70: CA-PT MAC1383 30.000 ———a -270.0 3.2000 2.4000 1.6000 0.8000 0.0 el 13 FEB 09 1989 ANGLES THU, 2.0000 2.8000 3.6000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW BASE CASE FILE: WPAF2 CHNLs 14: CA-NTH POLE 30.000 Rosters > 270.0 CHNL® 12: CA-FTWAINI 30.000 Mia sivieisieseinie x =270.0 CHNL* 10: CA-GOLOHLLI 30.000 PsSssss + =270.0 CHNL® 8: CA-NENANAI 90.000 ea nana naa aaH ° =270.0 CHNL® 6: CA-HEALYI 30.000 SS Ee CHNL# 4: CA-CANTI 30.000 ——S =270.0 [ OUMTC«S TT 3.2000 2.4000 1.6000 0.8000 0.0 el 13 FEB 09 1989 ANGLES THU, 2.0000 2.8000 3.6000 TIME 1.2000 0.4000 1.5000 1.5000 ANCH- FAIR 70 MW BASE CASE FILE: WPAF2 CHNL#® 64: CGOLOHL SVSI CHNLs 66: CTEELNO SVSIJ CHNL# 65: CHEALY SVSI een SSS 1.5000 wan--Geeae--s = Oaeeee ~ -0.500 -0.500 -0.500 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 13:20 FEB 09 1989 SVS PU Y THU, 2.0000 2.8000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW BASE CASE FILE: WPAF2 CHNL«* 3: CV-CANTI 1.4000 iy ae wie a 0.4000 CHNLs 1: CV-DOUGI 1.4000 ST * 0.4000 CHNLs 69: CV-PT MAC138) 1.4000 a 0.4000 CHNL*® 67: CV-TEELNDI 1.4000 . a 0.4000 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 20 13 FEB 09 1989 VOLTAGES THU, 2.0000 2.8000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW BASE CASE FILE: WPAF2 CHNL# 13: CV-NTH POLE | 1.4000 ahaa x 0.4000 CHNL# 11: CV-FTWAINI 1.4000 SS + 0.4000 CHNL# 9: CV-GOLDHLLI 1.4000 Sesras= ===" - 0.4000 CHNLs 7: CV-NENANAI 1.4000 eS = = = 0.4000 CHNL«* S: CV-HEALYI 1.4000 Se 0.4000 Ss Ss J co = co cs os N “ J cs cs 7 a co s so 2 J cs cs o s ° so 2.0000 2.8000 3.6000 TIME 1.2000 0.4000 19 13s VOLTAGES FEB 09 1989 THU, ANCH- FAIR 70 MW BASE CASE FILE: WPAF2 CHNL® 39: CF-HWY PRK69I 0.0250 ae > -0.025 CHNL® 3S: CF-UOFA 693 0.0250 Dee eerie x -0.0e5 CHNL® 34: CF-GOLOHLL 693 0.0250 aT + -0.025 CHNL® 33: CF-NTH POLE 0.0250 Coos ° -0.025 CHNL® 32: CF-FTHAINI 0.0250 i -0.025 CHNL® 31: CF-GOLOHLLI ee ee —— 0.0250 Se -0.025 3.2000 1.6000 4.0000 3.6000 2.4000 0.8000 0.0 19 13 FEB 09 1989 FREQUENCY THU, 2.0000 2.6000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW dyA BASE CASE FILE: WPAF2 CHNL® 63: CPGEN-HEALYI 1.00000 ns 0.0 CHNL® 62: CPGEN-CHEN2I 1.00000 EER nes 0.0 CHNL* S8: CNP-NP12 PJ 100.00 Pie ss + 0.0 CHNL# S6: CFTHN NTPLE PJ 100300 ene eee eS 0.0 CHNLs S4: CFTWN-69KV PJ 100.00 ea 0.0 CHNL* S2: CGLOH-FTHN PI 100.00 4.0006 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 2.8000 2.0000 1.2000 0.4000 Zn = aS — oo Ue oa coc o uu =5 co QL 5 7 Ww = ANCH- FAIR 70 MW Ga BASE CASE Duy 2 2S FILE: WPAF2 | o We ce = uu 5 = CHNL* SO: CGLO138-TAT PJ | {2 200.00 ------- = 0.0] Ww Oem oa CHNL® 48: CNEN-GLOHLL PJ 200.00 @=22--2----- ° 0.0 Ss CHNL® 46: CHLY-NNAI38 PJ = 200.00 —i—s— a4 0.0 CHNL® 44: CCNT-HLY138 PJ | 200.00 | i] os 3 co zo cs 3 Iceman . nm cs cs s N L_ 3 5 co cs o L * cs so S > E& a co cs K Sy Nee = cs cs cs oi cs co cs - ‘ cs cs cs o L 3 sc cs cs : | 3S SI é ANCHORAGE TO FAIRBANKS TRANSFER =70 MW MEASURED AT DOUGLAS LOSS OF CHENA GENERATOR FOLLOWING 138 KV FAULT 70% SERIES COMPENSATION DOUGLAS TO CANTWELL LINE 50 MVAR SVS @ GOLD HILL NOTE: OSCILLATIONS IN SVS OUTPUT q ates gygncevs WUOMLIN AY 69 SENTHELL 22872 o G STO) /GCANTHELL LINE or e OUGLA 2722750 MVAR Le2143) ANCH- FAIR 70 MW 70% SC DG-CNTWLL SO MVAR SVS GLOHLL FILE: |NPAFS CHNL* 4: CA-CANTI 30.000 ANG-00UGI 30.000 SSS ° -270.0 CHNL® 68: CANG-TEELNDI 30.000 | at =270.0 CHNL® 70: CA-PT MAC1383 30.000 —4 -270.0 | | | = | 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 le 1989 FEB 09 96 ANGLES THU, 2.0000 2.6000 TIME 1.2000 0.4000 90.000 90.000 ANCH- FAIR 70 MW 70% SC OG-CNTWLL SO MVAR SVS GLDHLL FICE: INRAFS CHNL® 14: CA-NTH PO CHNL® 6: CA-HEALYI CHNL* 4: CA-CANTI 90.000 [Sars sosae OTRO CHNL® 12: CA-FTWAINI 30. 000 Se ear aaaa=o TORO CHNL® 10: CA-GOLOHLLI 90.000 SSS Re: 37020 CHNL# 8: CA-NENANAI 30.000 Ce aE=27 080 8 eo =| — — =< Fn ae -270.0 -270.0 4.0000 3.6000 3.2000 1.6000 0.8000 a0) 0 l2s56 1989 FEB 09 ANGLES THU, 2.0000 2.6000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW 70% SC OG-CNTWLL SO MVAR SVS GLOHLL FILE: WPAF3 1.5000 Soe ° -0.500 CHNL® 66: CTEELNO SVSJ 1.5000 ——i— is =0.500 CHNL® 65: CHEALY SVSI 1.5000 ———s -0.500 cs J sc cs z cs cs os N _ las —_ —_— 2.4000 1.6000 0.6000 0.0 56 le FEB 09 1989 SVS PU Y 2.0000 2.8000 3.6000 THU TIME , 1.2000 0.4000 ANCH- FAIR 70 MW 70% SC OG-CNTWLL SO MVAR SVS GLOHLL FILE: WPAF3 CHNL* 3: CV-CANTI 1.4000 == >—-— © 0.4000 CHNL# 1: CV-00UGI | 1.4000 Soreessces= oa 0.4000 CHNL® 69: CV-PT MAC138 1.4000 4 0.4000 CHNL* 67: CV-TEELNOI 1.4000 Ss 0.4000 cs ! 18 J Ss = J s Nu = Ja cs J J cad Ja s Ss a Ss J os eo 7s | = s 12:56 VOLTAGES 1989 FEB 09 THU, 2.0000 2.6000 3.6000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW 70% SC DG-CNTWLL SO MVAR SVS GLDHLL FILE: WPAF3 CHNL# 13: CV-NTH POLEI 1.4000 ae eee Gee oe 0.4000 CHNLw# 11: CV-FTWAINI 1.4000 Fo a i 0.4000 CHNL# 9: CV-GOLOHLLI 1.4000 et te oT e 0.4000 CHNL# 7: CV-NENANAD 1.4000 =| aS 0.4000 CHNL«* S: CV-HEALYI 1.4000 SSS Te 0.4000 «a2 Z Li _ I al — = ee —_ —== eit -_-== = cas — —=—=" aaa} —=a. —_—== rl — — — —_—_ — —_——=— 7 = —_——s all i rd 7 —== ax! = 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 2.0000 2.8000 TIME 1.2000 0.4000 759 1989 12 VOLTAGES FEB 09 THU, ANCH- FAIR 70 MW 70% SC OG-CNTWLL SO MVAR SVS GLOHLL FILE: WPAF3 CHNL® 39: CF-HWY PRK69J 0.0250 Deisizieiais Siviz= ~ =0.025 CHNLs 35: CF-UOFA 693 0.0250 Deiehckekche retorts x -0.025 CHNL® 34: CF-GOLOHLL 693 0.0250 ie + =0. 025 HNLs 33: CF-NTH POLEJ 0.0250 ae ° -0.025 CHNLs 32: CF-FTHAINI 0.0250 Se =0.025 CHNL® 31: CF-GOLOHLLI 0.0250 —4 -0.025 So cs cs cs = — — cS cs Ss N = Fa D cs J Ss = = FA 9 o cs cs = cs cs J o 1 . Ts Aafia ° bee Le : 2.0000 2.8000 3.6000 TIME 1.2000 0.4000 Nels S9) FREQUENCY FEB 09 1989 THU, 12:54 ANCH- FAIR 70 MW iit 70% SC DG-CNTWLL SO MVAR SVS GLOHLL FILE: WPAF3 POWER FLOWS FEB 039 1989 CHNL#* 50: CGLO138-TAT PI 200.00 --- SS > 0.0 CHNLE# 48: CNEN-GLOHLL PI 200.00 === ° 0.0 Ss = CHNLs 46: CHLY-NNAL38 PJ = 200.00 ee — = 0.0 CHNL# 44: CCNT-HLY138 PI 200.00 ——————s 0.0 ! s cs o xo co cs 2 Lo 7a =] J os nN | Ja co cs cs o ti 7a 4 ° + > o am *Aap _ ms So - Ser <= re E a i 7 Te => a = 3 —~8S532.. mas Su [ = Se => 7] a 5 - 3 we SS -—>> = — = safer eS a TSS Sz <= 2 ~ eis 8 , eS <2~ a eS =>? ~ SSS mn =r < Tle “<5 3 = “Grn — KK -=eoo* a —_ % —) i alate = or << errs TS ce S <2 SS he oS = eS SSS -<s=7 cease - <-ea-SSS -= 7 o Sa SS <= iS ae, ee ee are o — SS - = 3 SS -=2 $ SS = ° — surest See nes ~t = a= t= = - eee - “2 re sz. ls | t [lO We ANCH- FAIR 70 MW 70% SC OG-CNTWLL SO MVAR SVS GLOHLL 4.0000 3.6000 3.2000 FILE: WPAF3 CHNL® 63: CPGEN-HEALYI 1.0000 PEPER EI )=i: + 0.0 CHNL® 62: CPGEN-CHEN2I 1.0000 Teo Ecr Io -TIs x 0.0 CHNL® 58: CNP-NP1 100.00 Sai + 0.0 FIWN NTP | 100.00 SS ° 0.0 CHNL® 54: CFTWN-69KV PI 100.00 ii —7— 0.0 CHNL® 52: CGLDH-FTWN PI 100.00 ————a3 0.0 & _| a 4 ob ' 0 4 ’ + iy Ny 2.40 1 i . h A it \ \ yas { \ wi v 1.6000 0.8000 A IARAAMAL ANS Air lyeVAAL AAMAS VAY OMA 0 4 ‘ 0. SY 12 1989 FEB 09 POWER FLOWS THU, 2.0000 2.8000 TIME 1.2000 0.4000 ANCHORAGE TO FAIRBANKS TRANSFER =70 MW MEASURED AT DOUGLAS LOSS OF CHENA GENERATOR FOLLOWING 138 KV FAULT 70% SERIES COMPENSATION DOUGLAS TO CANTWELL LINE 50 MVAR SVS @ GOLD HILL SVS CONTROL GAIN REDUCED FROM 20 TO 10 NOTE: CHENA GENERATION POORLY DAMPED ANCH- FAIR 70 MW 70% SC OG-CNTWLL SO MVAR SVS GLOHLL FILE: WPAFY CHNL® 4: CA-CANTI 30.000 a = 00 CHNLs 2: CANG-DOUGI 30.000 <= 7 00 CHNLs 68: CANG-TEELNOI 90.000 -----1t -270.0 CHNL# 70: CA-PT MAC1389 90.000 Sa -270.0 cs cs cs os = co —J rd L_ As o cs oso = | hoi s 3 cs cs So o iS So ie 2.0000 2.6000 3.6000 TIME 1.2000 0.4000 234 is ANGLES FEB 09 1989 THU, ANCH- FAIR 70 MW 70% SC DG-CNTWLL SO MVAR SVS GLDHLL FILE: WPAFY CHNL® 14: CA-NTH POLEJ 90.000 Sees re aa | CHNL® 12: CA-FTWAINI 30.000 eee 5 =70R0 CHNL# 10: CA-GOLOHL 30.000 er z = onORO CHNL* 8: CA-NENANAJ 90.000 Sas o—~s7 CHNL® 6: CA-HEALYI 30.000 = SST ORD CHNL# 4: CA-CANTI 30.000 =———a -270.0 cs cs os So = , 4 cs cs cs N ti _ cs cs —J cal Ss _- 1.6000 0.8000 0 0. 2.0000 2.6000 3.6000 TIME 1.2000 0.4000 iste 13 ANGLES FEB 09 1989 THU, ANCH- FAIR 70 MW 70% SC DG-CNTWLL SO MVAR SVS GLOHLL 1.5000 Cee Seer © -0.500 CHNL# 66: CTEELNO SVSI 1.5000 bed rel rere -0.500 CHNL#* 6S: CHEALY SVSI 1.5000 - See -0.500 — ay | e 4 FIVE TS NPARS CHNL#s 64: CGOLDHL SVS 0.8000 4.0000 3.6000 3.2000 2.4000 1.6000 0.0 b3is34 FEB 091989 avo Fu Y THU, 2.0000 2.6000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW 70% SC DG-CNTWLL SO MVAR SVS GLOHLL FILE: WPAFY CHNL«* 3: CV-CANTI 1.4000 : aie mana > 0.4000 CHNL# 1: CV-OOUG 1.4000 Orr r mannan ° 0.4000 CHNL# 69: CV-PT MAC138I 1.4000 — = 0.4000 CHNL* 67: CV-TEELNOI 1.4000 a 0.4000 cs J Ss J = cs cs Ss N . Ja cs Ss cs t- = a J s $ . cs S s o s Ss s 1989 VOLTAGES FEB 09 13233 THU, 2.0000 2.68000 3.6000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW 70% SC OG-CNTWLL SO MVAR SVS GLDHLL FILE: WPAFY CHNL® 13: CV-NTH POLE 1.4000 Reet teeece > sat 0.4000 CHNL# 11; CV-FTWAINI 1.4000 rat + 0.4000 CHNL* 9: CV-GOLDHLLI 1.4000 esssssnssess © 0.4000 CHNL# 7: CV-NENANAI 1.4000 SS = 0.4000 CHNL«# S: CV-HEALYI 1.4000 e————4 0.4000 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 1989 VOLTAGES FEB 09 13:33 THU, 2.0000 2.8000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW 70% SC OG-CNTWLL SO MVAR SVS GLOHLL FILE: WPAFY CHNL® 39: CF-HWY PRK69I_ 0.0250 eee = -0.025 CHNLs 35: CF-UOFA 693 0.0250 oie Sata SeaTac x -0.025 CHNL® 34: CF-GOLOHLL 693 0.0250 Se ze -0.025 CHNL# 33: CF-NTH POLEI 0.0250 . SS . -0.025 CHNL# 32: CF-FTWAINI 0.0250 —S -0.025 CHNL® 31: CF-GOLOHLLI 0.0250 a -0.025 Ss cs cs So = cS J Ss Si pe Fa Sc cs cs ad |— FA s cs ” co cs Ss oa s so so 2.0000 2.8000 3.6000 TIME 1.2000 0.4000 FEB 09 1989 13:33 FREQUENCY THU, ANCH- FAIR 70 MW 70% SC OG-CNTWLL SO MVAR SVS GLOHLL 100.00 el 0 J cs J cs = cs J cs N r 7a — “ ~~ = o s - > i TJ, > . a ~ | 3 + ~ 3, ! oe 9 = Ss I 3 [— | | 2 an | : | ' f t . J . } iS . o L . 4: é i] | = = | =— CHNL# S2: CGLOH-FTWN PI FILE: WPAF4Y : CHNL® 63: CPGEN-HEALYI 1.0000 See a = CHNL® 62: CPGEN-CHEN2IJ 1.0000 SEES = CHNL® 58: CNP-NP12 PI 100.00 SS = = 100.00 ———— . =A CHNLs SY: CFTHN-69KV PI 100.00 <= =a 0.0 32 13 FEB 09 1989 POWER FLOWS THU, 2.0000 2.8000 3.6000 TIME 1.2000 0.4000 ANCH- FAIR 70 MW SMO14 YWAMOd 7 ‘ SWIL e€tel 6861 60 834 “NHL 0009°E 0008°2e 0000°2e o00e 000h"0 0000°h _ 0002"E o000h'2 0009°1 0008°0 7 0°0 o o o So ° 3 °o ° roy oo ' 1 ' ' | ' 1 = ' ' | ' i | 1 ' ' + 4 4 mn mn nm my a] a a a b as | o - | = o a) = x _ | st ' a « > we | J z = « |S} FT a o 2 > bE =x I uy} ~| 2 = oO} Z| = oO} iS u ul u ul iW «| o- «| “ a So oO} 0} | — uw) x on = w * * * 2 = aj a 2) ‘— z z z z x = x x Oo oO oO Oo 70% SC OG-CNTWLL SO MVAR SVS GLOHLL 200.00 200.00 200.00 200.00 ANCHORAGE TO FAIRBANKS TRANSFER =100 MW MEASURED AT DOUGLAS LOSS OF CHENA GENERATOR FOLLOWING 138 KV FAULT 70% SERIES COMPENSATION DOUGLAS TO CANTWELL GOLD HILL/HEALY/TEELAND SVS SIZES = 50/50/40 MVARS CONTROL SYSTEM GAINS SET TO 10 (ALL THREE) eer. 15924 alm ale +5874 Soyarne _ gyoneiae 1928 39 72.7 asgnrave 9908 4 cc ao = = lus = => — ao =) 1808 14938 . 2492 gQNTHece 1393 beetwony, S/H igte | ggucuns 2878 aeesene i82P Thane tee SIF 378 =198. jE ss.grerss 3 ANCH-FATABANKS 100 MW, 70% SERIES COMP OC LINE OO HATER TLNOZHEALY’GOLD SVS = #8O7SO/4SO MVAR Q.980UY 1.050 Oy BASE FAT, MAR 03 °1989 12:58 ANCH-FAIRBANKS 100 TLND/HEALY/GOLD SVS MW, 70% SERIES COMP OC LINE = 40/50/50 MVAR , FILE: WP92AF CHNL«* 4: CA-CANTI 90.000 SS * -270.0 CHNL# 2: CANG-DOUGI 90.000 @nrnnenrnnnen ° -270.0 CHNL# 68: CANG-TEELNOJ 90.000 er - = -270.0 CHNL* 70: CA-PT MAC138]9 90.000 Ss -270.0 [ ~ 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 FEB 09 1989 15:41 ANGLES THU, 2.0000 2.6000 TIME 1.2000 0.4000 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DC LINE TLNO/HEALY/GOLD SVS = 40/50/50 MVAR = Ld ory i FILE: WPS92AF SS CHNL* 14: CA-NTH POLE ce 90.000 Selecesees > STON © CHNL® 12: CA-FTWAINI a 90.000 OG piielinitaiin te sin ea x -270.0 os CHNL® 10: CA-GOLOHLLI | = 90.000 i en ae + -270.0 wi uw CHNL# 8: CA-NENANAI 30.000 ieee iaciaat ° -270.0 Ss CHNLs 6: CA-HEALYI = 90.000 aaa EE ae aE OT CHNL® 4: CA-CANTI 90.000 ————4 =270.0 = cs cs cs cs zo J cs eo = — « cs cs S Le 3 cs cs 3 | —| a cs cs cs . a cs 3 _ |é&¥ Nee es cs cs cs aa 8 J cs os ° cs s o s cs cs Ss zo sé so s ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DC LINE TLNO/HEALY/GOLD SVS = 40/50/50 MVAR o> | FILE: WP92AF a Sw a > wo an o a uu we CHNL# 64: CGOLDHL SVSJ 1.5000 —————— - -0.500 Ss CHNL# 66: CTEELNOD SVSJ aa 1.5000 eo i= -0.500 CHNL* 65: CHEALY SVSI ———| 1.5000 S— -0.500 cs cs —J os xo cs cs o L Fa J s so & — Fa —J Ss 3 bs a a cs Ss cs a . FA 2 3 — |? Ne = J cs cs 2 So Ss — x Ss s Ss o Ez 3 2 s S a i s J 2 os ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLD SVS = 40/50/50 MVAR FILE: WP92AF CHNL® 3: CV-CANTI 1.4000 i er 0.4000 CHNL# 1: CV-00UGI 1.4000 Coo ° 0.4000 CHNL® 69: CV-PT MAC1383 1.4000 i 0.4000 CHNL® 67: CV-TEELNOI 1.4000 ———3 0.4000 cs cs J s x ee =| —J cs cs N = Js cs cs J = [ 7" . ~ s cs = ala J cs cs o o o so 40 1S; FEB 09 1989 VOLTAGES 2.0000 2.6000 3.6000 TIME THU, 1.2000 0.4000 ANCH-FAIRBANKS TLND/HEALY/GOLOD SVS 100 Mh, = 40/50/50 MVAR 70% SERIES COMP OC LINE FILE: WPS2AF CHNL# 13: CV-NTH POLEJ 1.4000 MSsecsias eee 7 0.4000 CHNL*# 11: CV-FTWAINI 1.4000 —_—_———- ~ 0.4000 CHNL# 9: CV-GOLDHLLI 1.4000 oe2-26--S-== ° 0.4000 CHNL# 7: CV-NENANAI 1.4000 SS —— 0.4000 CHNL*® S: CV-HEALYI 1.4000 Pee 0.4000 Loos md 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 15:40 FEB 09 1989 VOLTAGES THU, 2.0000 2.6000 TIME 1.2000 0.4000 TLNO/HEALY/GOLD SVS = 40/50/50 MVAR FILE: WP92AF . CHNL# 39: CF-HWY PRK69) 0.0250 RIS sees ses > -0.025 CHNLs 35: CF-UOFA 69) 0.0250 Slee x -0.025 CHNL# 34: CF-GOLOHLL 69) 0.0250 SS SS SSS = -0.025 CHNL# 33: CF-NTH POLE) 0.0250 C3 © -0.025 CHNL# 32: CF-FTWAINI 0.0250 Se > = = =< -0.025 CHNL# 31: CF-GOLDHLLI 0.0250 ee -0.025 So So cs co > cs —J Ss a N TH cs =] cs -. Le TW =] co 3 -— 7 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE 0.8000 0.0 15:40 FEB 09 1989 FREQUENCY THU, 2.0000 2.6000 3.6000 TIME 1.2000 0.4000 1.0000 1.0000 100.00 100.00 100.00 100.00 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLOD SVS = 40/50/50 MVAR FILE: WP92AF CHNL® 63: CPGEN-HEALYI CHNL# 62: CPGEN-CHEN2) CHNL«# S8: CNP-NP12 PI CHNL# 56: CFTWN NTPLE PJ CHNL# S4: CFTWN-69KV PI CHNL# S2: CGLOH-FTWN PJ west se oe > Mie bare eral rane ote x ---- He + @----------- ° --—--—- oH oes 2.4000 4.0000 3.6000 3.2000 1.6000 0.8000 0.0 15:40 FEB 09 1989 POWER FLOWS THU, 2.0000 2.6000 TIME 1.2000 0.4000 ANCH-FAIRBANKS 100 MW, TLNO/HEALY/GOLD SVS = 40/50/50 MVAR 70% SERIES COMP OC LINE FILE: WP92AF CHNL* SO: CGLO138-TAT PJ 200.00 === = = CHNL® 48: CNEN-GLOHLL PJ 200. 00: —==-s52-== . 00 CHNL® 46: CHLY-NNA138 PI 200.00 --- = 0.0 CHNL® 44: CCNT-HLY138 PJ 200.00 -————<*a 0.0 0.8000 4.0000 3.6000 3.2000 2.4000 1.6000 0.0 19:39 FEB 09 1989 POWER FLOWS THU, 2.0000 2.8000 TIME 1.2000 0.4000 ANCHORAGE TO FAIRBANKS TRANSFER =100 MW MEASURED AT DOUGLAS LOSS OF HEALY GENERATOR FOLLOWING 138 KV FAULT 70% SERIES COMPENSATION DOUGLAS TO CANTWELL GOLD HILL/HEALY/TEELAND SVS SIZES = 50/50/40 MVARS CONTROL SYSTEM GAINS SET TO 10 (ALL THREE) ° coFMusi2 FTWAINIZ %) = 1.024 ain 206 = ~86.9 GuoMLize = 1.020 39 = -85.3 Tle : het a sis c =— = a ets 3 = se a wo 2920 -$7.7 1.020 ~87.7 HEALYSVS 2163 399 -58.0 CANTWELL 0.99 is ~i8. a " TEELNOSY 4 TEELANO 9966 | PT MACK 9969 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE 100%_ RATER TLNO/HEALY/GOLD SVS = 40/50/50 MVAR Q.S8OUV 1,050 Ov | HEALY OUT ERI MAR 03-1989" 12259 | ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLD SVS = 40/50/50 MVAR FILE: WP92AF1 CHNL«# 4: CA-CANT 90.000 rin irim aelill a -270.0 CHNL® 2: CANG-DOUGI 90.000 al 2 -270.0 CHNL# 68: CANG-TEELNOIJ 90.000 Se yal fore oat la -270.0 CHNL® 70: CA-PT MAC138) 90.000 8) -270.0 =] cs J sc = cs Ss co x a 8 > C4 cs cs cs = _ 7" s 3 S cs 2 Hs alo. ' a ' i if ant i | 1 cl at =) o s 16 FEB 09 1989 29 ANGLES THU, 2.0000 2.6000 3.6000 TIME 1.2000 0.4000 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLD SVS = 40/50/50 MVAR FILE: WPS2AF! HNL# 14: CA-NTH PO 30.000 STener eae > ee CHNL# 12: CA-FTWAINI 90.000 MEE x STOnD HNL# 10: CA-GOLDHLLI 30.000 So = a5 CHNL® 8: CA-NENANA 30. 000 — al 30.000 ——— = 30.000 —4 -270.0 T_ —_ 4.0000 3.6000 3.2000 2.0000 2.8000 TIME 1.2000 0.4000 1989 16:29 ANGLES FEB 09 THU, 1.5000 1.5000 1.5000 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLD SVS = 40/50/50 MVAR FILE: WP92AF1 CHNL# 64: CGOLOHL SVSI CHNL# 66: CTEELNO SVSI CHNLw# 65: CHEALY SVSI es=s65525555 ° -0.500 -- -0.500 | ———a -0.500 5D | 3.6000 3.2000 2.4000 4.0000 1.6000 0.8000 0.0 1989 ave FU Y 16229 FEB 09 THU, 2.0000 2.6000 TIME 1.2000 0.4000 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLD SVS = 40/50/50 MVAR FILES WRICAEL CHNL* 3: CV-CANTI 1.4000 Se ee ae 0.4000 CHNL® 1: CV-00UGI T. 4000 eae = 0.4000 CHNL® 69: CV-PT MAC1382 1.4000 eee TO 000 CHNL® 67: CV-TEELNOJ 1.4000 ee ONA000 ae =a 2.4000 4.0000 3.6000 3.2000 1.6000 0.8000 2.0000 2.8000 TIME 1.2000 0.4000 16:29 VOLTAGES FEB 09 1989 THU, CHNL® 13: CV-NTH POLEJ 1.4000 <i rineaing x 0.4000 CHNL® 11: CV-FTWAINI 1.4000 Shoe + 0.4000 CHNL® 9: CV-GOLDHLL 1.4000 =e ° 0.4000 CHNL® 7: CV-NENANAZ 1.4000 a 0.4000 CHNL® S: CV-HEALYI 1.4000 —— 0.4000 (a — < Tyh ' jain \ | | Ty ' nfl ( | -—- I + a] | 4 4 | wl \ jet 0 — i i $ i" ( r! i nfl hn ~ ANCH-FAIRBANKS 100 Mh, TLND/HEALY/GOLD SVS = 40/50/50 MVAR FICE WESeRF 70% SERIES COMP OC LINE 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 1989 VOLTAGES FEB 09 16:28 THU, 2.0000 2.8000 TIME 1.2000 0.4000 0.0250 ANCH-FAIRBANKS 100 MW, TLND/HEALY/GOLD SVS = Cc HNL# 31: CF-GOLDHLLI 70% SERIES COMP OC LINE 40/50/50 MVAR FILE: WP92AF1 CHNL* 39: CF-HWY PRK69I 0.0250 aaa aa -0.025 CHNL# 35: CF-UOFA 693 0.0250 Beek ikea tale x -0.025 CHNL* 34: CF-GOLOHLL 69 0.0250 SSS SS— a -0.025 CHNL* 33: CF-NTH POLE 0.0250 Cee ee CS -0.025 CHNL® 32: CF-FTWAINI 0.0250 lie ll es -0.025 ne ee —— 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 2.0000 2.8000 TIME 1.2000 0.4000 16:28 FREQUENCY FEB 09 1989 THU, ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DC LINE TLNO/HEALY/GOLD SVS = 40/50/50 MVAR FILE: WP92AF1 CHNL® 63: CPGEN-HEALY 1.0000 SSeS = = CHNL® 62: CPGEN-CHEN2I 1.0000 Eola tetas x 7) CHNL® 58: CNP-NP12 PJ 100.00 Sa + .0 CHNL® S6: CFTWN NTPLE PJ 100.00 ; Sr ° -0 CHNL® S4: CFTWN-69KV PJ 100.00 SSS 7 CHNL® S2: CGLOH-FTWN PJ 100.00 ss 70 J =] cs sc = bee — cs cs cs Ss x + + Lo 2.8000 2.4000 FEB 09 1989 16:28 POWER FLOWS THU, 3.6000 2.0000 TIME 1.2000 0.4000 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLD SVS = 40/50/50 MVAR FILE: WPS92AF1 CHNL* SO: CGLO138-TAT PI 200.00 -------— Es CHNL# 48: CNEN-GLOHLL PI 200.00 easa=aeaee—o > CHNL® 46: CHLY-NNAI38 PI 200.00 ee lime mene CHNL® 44: CCNT-HLY138 PI 200.00 Sn) 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 16:27 FEB 09 1989 POWER FLOWS THU, 2.0000 2.8000 TIME 1.2000 0.4000 ANCHORAGE TO FAIRBANKS TRANSFER =100 MW MEASURED AT DOUGLAS FAULT TRIP PT. MACKENZIE TO WEST TRM LINE 70% SERIES COMPENSATION DOUGLAS TO CANTWELL GOLD HILL/HEALY/TEELAND SVS SIZES = 50/50/40 MVARS CONTROL SYSTEM GAINS SET TO 10 (ALL THREE) ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLNO/HEALY/GOLO SVS = 40/50/50 MVAR FILE: WP92AF3 CHNL# 14: CA-NTH POLE 270.00 a dee aa -90.00 CHNL# 12: CA-FTWAINI 270.00 6 aie * -90.00 CHNL# 10: CA-GOLOHLLI 270.00 SSS Ba -90.00 CHNL# 8: CA-NENANAD 270.00 Co ia 2 . 790.00 CHNL® 6: CA-HEALYI 270.00 Sd -90.00 CHNL® 4: CA-CANTI 270.00 8 -90.00 fr UTT™~dSC<(iti‘“ SO | | 3.2000 4.0000 3.6000 2.4000 1.6000 0.8000 0.0 1989 FEB 24 18:42 ANGLES FRI, 2.0000 2.8000 TIME 1.2000 0.4000 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLOD SVS = 40/50/50 MVAR FILE: WP92AF3 CHNL# 4: CA-CANTI 270.00 hots - -90.00 CHNL® 2: CANG-00UGI 270.00 ie ° =90.00 CHNLs 68: CANG-TEELNOJ 270.00 eS S==—- -90. 00 CHNL*® 70: CA-PT MACI38I 270.00 = =90.00 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0 0. 2.0000 2.8000 TIME 1.2000 0.4000 18:42 ANGLES FEB 24 1989 FRI, ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLD SVS = 40/50/50 MVAR FILE: WP92AF3 CHNLs 39: CF-HWY PRK69) [0.0250 Seo > 0.025 CHNL# 35: CF-UOFA 69) 0.0250 Prat x -0.025 CHNL® 34: CF-GOLDHLL 693 0.0250 ea + =0.025 CHNU® 33: CF-NTH POLEJ 0.0250 Te s=—======—— ° =0.025 CHNLs 32: CF-FTWAINI [0.0250 i -0.025 CHNL® 31: CF-GOLDHLLI 0.0250 oS -0.025 LT weit tees cs cs co a cs cs cs N a se 2.4000 1.6000 0.8000 0.0 2.0000 2.6000 3.6000 TIME 1.2000 0.4000 18:41 FREQUENCY FEB 24 1989 FRI. ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLNO/HEALY/GOLD SVS = 40/50/50 MVAR PILE: WPS2AFS CHNLs 64: CGOLOHL SVS 4.0000 3.6000 1.5000 - CaS Saas ° =0.500 CHNL® 66: CTEELNO SVS3 1.5000 SS >= =0. 500 CHNL* 65: CHEALY SvSJ 1.5000 ———s___—-0.500 — _ L =| 3.2000 FEB 24 1989 18:42 SVS PU Y FRI. 0.8000 1.6000 2.4000 1.2000 2.0000 2.8000 - TIME 0.4000 0.0 J ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE 7A TLND/HEALY/GOLD SVS = 40/50/50 MVAR 1h] | li FILE: WP92AF3 CHNL® 13: CV-NTH POLEJ 1.4000 ee x 0,4000 CHNL# 11: CV-FTWAINI 1.4000 Payless * 0.4000 CHNL® 9: CV-GOLOHLL 1.4000 aoe = 0.4000 CHNL# 7: CV-NENANAI 1.4000 Sas 0. 4000 CHNL® S: CV-HEALYI 1.4000 aa anne 0.4000 cs cs cs cs + co Ss J N = 5 Co Sc cs > “i 3 co ee So S oe 3 0.0 1989 VOLTAGES FEB 24 iGe4%2 FRI, 2.0000 2.8000 3.6000 TIME 1.2000 0.4000 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLD SVS = 40/50/50 MVAR FILE: WP92AF3 [_ CHNU® 3: CV-CANTI 1.4000 SSS ae 0.4000 CHNL# 1: CV-00UGI 1.4000 \ diesicineiealaniianatannins ° 0.4000 CHNL# 69: CV-PT MAC138I | 1.4000 = 0.4000 CHNL# 67: CV-TEELNOI 1.4000 a 0.4000 ! | | | | | | s J cs = Ss cs Ss N L 9 cs co cs = L lou sc cs cs eo cs —J cs o [_ S eee g 3 Nese 1989 VOLTAGES REBAu 2.0000 2.8000 3.6000 FRI TIME 5 1.2000 0.4000 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLND/HEALY/GOLD SVS = 40/50/50 MVAR = C2 . = 21 FILE: WP92AF3 cr CHNL® 63: CPGEN-HEALYI c 1.0000 Dei oe- > 0.0 = c | CHNL#® 62: CPGEN-CHEN2I ~ WwW T.0000 Meese ee renee x 00o| == N CHNL® $8: CNP-NP12 PI — Ssocole a 100.00 = + oo] w cm CHNL® 56: CFTWN NTPLE PJ 100.00 a ° oo] CHNLs S4: CFTWN-69KV PJ aa 100.00 ----- 0.0 CHNL® 52: CGLOH-FTWN PJ 100.00 ———s 0.0 —|o I | 3 oS so s o | es cs so os N iad a cs cs Ss o es co cs os _ a cs Ss ey Nee = $s Ss 7 =] Ss s yy cs Ss cs o 3 cs cs Ss al é so S ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE 1Ga¥A TLNO/HEALY/GOLD SVS = 40/50/50 MVAR If FILE: WP92AF3 CHNL* 50: CGLO138-TRT PI CHNL# 48: CNEN-GLOHLL PJ CHNL# 46: CHLY-NNAL38 PI CHNL# 44: CCNT-HLY138 PI 200.00 - >> 0 200.00 === aa 0 200.00 -—- 0 200.00 -———_—§—a | | 4.0000 3.6000 3.2000 2.4000 1.6000 0.8000 0.0 a US3 1989 FEB 24 POWER FLOWS ART. 2.0000 2.8000 TIME 1.2000 0.4000 Case Import Outage Series Comp Level SVS Output Comments Name ® Base ** 1 2 3 4 5 6 TLND HLY GLD Healy Chena ‘ WP92SC7-1S +30D 0 070 0 0 0 14 #10 49 40 43 49 23. #17 = «#50 WP92SC7-2S * 0 07070 0 0 9 8 49 29 34 49 16 14 50 WP92SC7-3S te 0 0707070 0O 9 -4 50 29 8 50 16 1 50 WP 92AF2 " 0 070 70 70 70 10 -20 50 31 -12 50 17 -7 50 WP92SC7-3SA " .70 70 70 70 70 O “3 -3' 50 14 10 #50 3 3 50 WP92SC7-2SA +30G 70 70 70 70 O O -3 #12 «40 13 44 40 WP92SC7-3SB " 70 70 70 70 70 #O 3 2 5 23. 22 51 3 z &1 WP92SC7-4SB " 70 70 70 70 70 70 -7 -3 51 12 9 51 ~7 ~-3 5&1 7 30D -- ADDITIONAL 30 MW MEASURED AT DOUGLAS 30G -- ADDITIONAL 30 MW DELIVERED TO GOLD HILL oe 1 -- TEELAND - PT MACKENZIE 230 KV LINE 2 -- TEELAND - DOUGLAS 138 KV LINE 3 -- DOUGLAS - CANTWELL 138 KV LINE 4 -- CANTWELL- HEALY 138 KV LINE 5 -- HEALY - NENENA 138 KV LINE 6 -- NENANA - GOLD HILL 138 KV LINE Case Name WP92SCO WP92SCOB WP92SCOC WP 92SCOD WP92SCOE WP92SCOF WP92SCOG WP 92OUT1 * 30D -- kkk keKK Import Outage Series Comp Level * He Tee: k*K* kkKK wkKK 30D 30G +30G Base **1 2 3 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 Healy Chena 0 0 0 70 70 #O 0 0 0 0 0 0 Gold Hill Transformer & Gold Hill to FT. Wain 138 KV LINE Svs TLND 109 12 -22 -22 73 39 Output HLY GLD 126 38 9 $1 -25 -5 -26 -5 88 29 40 38 ADDITIONAL 30 MW MEASURED AT DOUGLAS ADDITIONAL 30 MW DELIVERED TO GOLD HILL RANGE ON SVS UNITS ALL FAIRBANKS AREA GENERATION OFF LINE Comments 115 MW measured at Gold Hill 1.08PU V Gold Hill 1.06 PU Gold Hill To Check Teeland AutoTrans Loading (151 MVA) To Check Gold Hill Auto Trans Loading (123 MVA) FAIRBANKS AREA LOAD SCALED TO ZERO TO CHECK ABSORBTION Case Import Outage Series Comp Level SVS Output Comments NAME * Base ** 1 2 3 4 5 6 TLND HLY GLD Healy Chena WP92SC7-3SA1 30D 70 70 70 70 70 O 10 -3 50 (1) 33. 10 50 19 2 50 WP92SC7-4SB1 30G 70 70 70 70 70 70 -7 -3 50 (2) 11 #11 #«50 * 30D -- ADDITIONAL 30 MW MEASURED AT DOUGLAS ADDITIONAL 30 MW DELIVERED TO GOLD HILL (1) -- EXISTING TRANSFORMERS AT TEELAND AND GOLD HILL ONLY ONE 230/138 @ TEELAND ONE 138/69 @ GOLD HILL (2) -- TWO 230/138 TRANSFORMERS AT TEELAND AND ONE 138/69 TRANSFORMER AT GOLD HILL WP92SC7-1S WP92SC7-15S a WUOMLIN AX 69 +828 NrOLeise = uw = z or ww on ~ oe oa oa o” nw ~ 4 - 4 a -j f vo Qa bee vel ore 9H o ell rs ory fear sar ole xo 4 ° ° ait oe a c a 2 : joc £ 3 Q C Zo on 20 o> oa a we [= ml ro wu ON a7 ON Ino zn! = a O>u, jou} |- } a oe IXxOq| jZ0Q| aN a> ci ie | |Cwn} ut jIN |z0 JUZo! |Z4a] je Tit 9968 PT MACKZ 9963 NPOLEL38 1,024 209 a7. OG a9 ° FTWAINI3 % |< 1.024 206 =| -86.9 a si 7 GLOML138 1.020 39 85.9 NENA! 0.997 37 -73.7 CANTWELL 0.99 36 48. “if = 49. cormusi2 211 69 KV NETWORK ANCH-FAIRBANKS 100 MW, TLNO/HEALY/GOLO SVS = WP92SC7-1S HEALY OUT 70% SERIES COMP OC LINE 40/S0/S0 MVAR MON, FEB 27 1989 _ 13:36 PTE e N 3 H-FATRBANKS OZHEALY 7 GOLD a cr SONTHELL gignieves o1 taf08 <= cS Ss = = uu = => = a oO WP92SC7-2S yoguerse 14974 gornusia arn guyninss ta8?d wo or OnLI3e 929 gygnecevs 69 KV NETHORK 2s8hd 13878 +93°8 SeNtTHece 13923 ggeotas fl +2874 TSERPNO HH Ty 1s) 12872 OMP OC LINE | LOO% _AATEAR 1989 1S OS WPOLELS® 1.024 209 -80.2 lo FTWAINIS 7) 1,024 206 80.0 cOFMUsI2 211 GLOHLIS8 39 7901 x= Cc oO = _ Ww =z > =< an oO HEALYSVS 399 CANTWELL 1 36 = er -122 A 12 49.9 TeeLnosy Sle DOUGLAS t 4 3s - TEELAND 1,020 TLNO 138% 9966 =23.0 15 = PT MACKZS 9969 | ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DC LINE | 100%_ RATER TLNO/HEALY/GOLD SVS = 40/50/50 MVAR | eG2sCi-2S HEALY OUT MON, FEB 27 1989 13:20 MPOLELSS 1,020 209 eed TEELNOSY 4 TEELAND 9968 3,020 TgNO 1365) 5 S PT MRCKZS |S 1.025 9969 ae -16.9 i> ANCH-FAIRBANKS 100 MW. 70% SERIES COMP DOC LINE TLND/HEALY/GOLO SVS = 40/50/50 MVAR “w+: WE92SC7-2S CHENA OUT MON. FEB 27 1989 13:06 \0 = c So = — Ww = > <= a oO WP92SC7-3S TEELNOSY uM 9968 PT MACKZ, 9969 NPOLEL38 1,014 209 -59.1 a0 | rie | *|¢ — | FTWAINI3 7] 1,014 206 Bi i“ sis s\5 | : | GLOHL13€ = o/Z 1,009 | 39 =| -57.8 = 3% 78 2 << 2k = = MENAI 0.981 ar 371 =45.2 > <= oa 2 MEALYSYS: 399 ANCH-FAIRBANKS 100 Mh, WP92SC7-3S BASE CASE TLUNO/HEALY/GOLO SVS = 40/50/50 MVAR 70% SERIES COMP OC LINE MON, FEB 27 1989 14:00 1 ESpAINID gyontae gONTHaeee PQ’ ygernosy fz’) 1,309 gguowas aes5rne g322)|)|/|/Tase)2sei8 =|= 1 T= las Re fr nacnes|= 1,02 9969 2 4 -i9. SS) |) O10) | (MIA). ) | PSM Silom 70% SEAIES COMP oC O74 S07 SO INV AA MON JEEG 2i7) liges +4871 23573 878 tee Dies Lees Or <= ca = = i ug = == =< a eo NPOLEL38 1,002 209 65 -65.2 =—S——_— ayo slo ” FTWAINIZ NI} 1,003 206 =64.9 m zie z= GLOMLI38 IZ 0.998 34 27 -63.8 69 KV NETWORK { 1 oe} a 2 : Mealy Fle 1.024 at 370 Ric 3003 = Secs HEALY 1,020 37 -4402 oes HeALrsvs 1,028 399 -44.2 == a an a3 a: a ais ® sr =e CANTWELL, 1,02 36 a4 a se si: Tle 9968 PT MACKZ 9969 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLNO/HEALY/GOLD SVS = 40/50/50 MVAR WP92SC7-3S CHENA OUT MON, FEB 27 1989 14:03 WP 92AF2 NPOLELSS 0.985 209 -52.6 2 a <= c Oo = _— Ww mat > = oe wo wEALY 37 HEALYSVS 0.937 399 ~40.2 = a alg ° oe ait Sin — CANTWELL 1,024 36 -38.1 -a7.9f 33.5] TEELNOSY 4 TEELANO 9968 PT MACKZ S| a3 a i. ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DC LINE TLNO/HEALY/GOLD SVS = 40/50/50 MVAR BASE CASE. 70% SERIES COMP ¥L MON, FEB 27 1989 12:14 NPOLEL38 0. 98: 09 =64 = FTWAINIS © 206 = =]~ eis ss 7 * 2 3 ft ee = zz = see So NENANI 7 371 = | > sa =— a = j o =z a ti : 7/3 ee | i i (g--4 ais HEALY 12 1.020 =ae 370 sic -$1.7 6 - WEALYSVS 0.973 399 aie We e ae — CANTWELL 1.o2t 36 =4808 (seca se ate =e a2 aS 13 ls 2¢ ale = TEELNOSY 104 goucias 1.022 “ -23.6 3s -36.% alt Th TEELANO 3020 © TLNo 1385/8 1.028 9966 =2:4 15 si =30:2 [——_ Pr macnzs|4 399 =o ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE 100%_RATES TLNO/HEALY/GOLO SVS = 40/50/50 MVAR Q.S80UvY 1,050 dv 70 % SERIES COMP 4 LINES HEALY MON, FEB 27 1989 12:17 NPOLE138 0.966 209 ~57.5 206 69 KV NETWORK 0.996 -39.2 MERLY| 1.020 37 -44.6 | MEALYSVS 0.994% 399 -44.5 oe 1 Eh | 7 Is | ac | ait | CANTWELL 1,023 6 42.1 —_—_— | — 32 | Sea rs TEELNOSY 1,027 AD) -33.2 TEELANO = ; 1,028 9968 -20. 26.2 100%_AATEA ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DC LINE TLNO/HEALY/GOLD SVS = 40/50/S0 MVAR 70% SC 4L CHEN GEN OUT MON, FEB 27 1989 12:24 WP92SC7-3SA 20 ¢| FTWAINI3 7] 206 = GLOWL138 34 NPOLEL38 1,014 19 53.2 ~ ? © <= c So = e Ww =z > =< a oO a2 sy _ Ghai 1,020 -33.8 MEALYSVS 1.O1L 399 -33.8 > =" gist ols alt gree | =a als ® ale 3 TEELNOSY os 1,012 QOUGLAS 1,025 a) ol 16.2 3s -23.6 aKa Ta TEELANO 1.020 TLNO ise alg 1,039 9968 =16.2 is =e 21.4 PT wacxzz|= 1,027 9969 =} -1S.3 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DC LINE TLNO/HEALY/GOLD SVS = 40/50/50 MVAR WP92SC7-3SA BASE CASE MON, FEB 27 1989 14:39 100%_ RATER NPOLEL38 1,014 209 62.7 ae alt Frwarni3 7}— 1.01% 206 i 62.5 SS =~ sis 2 a2 GLOHL1386 j@ 1,009 39 Fy -61.5 = c So = — Ww = > = a oO CANTWELL 1,020 36 -40°5 ot | ae | Se “| | | | irs Si= | =— | TEELMOSY 1,989 DOUGLAS 1,019 4 =20.8 33 =30.1 | an | Wa | F | TEELANO 2020 TLNO 1383/5 1,038 9968 20.7 1s a8 <27.4 PT MACKZ= is aes ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DOC LINE TLNO/HEALY/GOLO SVS = 40/50/50 MVAR WPS92SC7-3SA HEALY OUT MON, FEB 27 1989 14:40 100%_ARLER TEELNOSY “ TEELANO 9968 ~16.t PT MACKZS, a9 ANCH-FAIRBANKS 100 Mb, TLNO/HEALY/GOLD SVS = WP92SC7-3SA CHENA OUT NPOLELS8 1,002 209 -58.6 aie i” FTWAINIS ™) = 1,002 206 om ~S8.4 es =|= zc z= ols GLOHL136 |Z 0.998 39 37 -57.3 CANTWELL 1,022 3 -35.1 = cle sie Sis v|> - lz =|7 +029 ooucLAS 1,023 -is.o 38 26.2 2s Tes fe 020 . TLNO 1382/5 1,039 -i8.0 1s =" =23.8 ! 1 3 Ls oe oS Sted 31.3 1,027 =17.0 <= c So = e WwW =z > <= a oO 70% SERIES COMP OC LINE 40/S0/S0 MVAR MON, FEB 27 1989 14:41 190%_ABTER WP92SC7-2SA +9898 BgyAinis Sle 15904 o.4 eLoniise 1,000 39 =71.6 +5928 aepmeve 25878 = \: = Ss = = uo = > = = oOo 24378 24872 *aats 8 =! genrwece 1388 2122) . geueune 13838 Ee TRNO 1390 B/S 13993 2 ae i IME sed - — 5478 5sesrenz S| 1822 ANCH-FATRBANKS TEN ZHE A! Y/ GO we > WUOHLIN AY 69 on ne 08) om © eo. o J oN on oo on on “e ee) at aod 1 y5guerse SantTHece 1537905 OMe OC (live 1969 oS ie VAR = wro WP 92SC7-3SB NPOLEL38 1,005 209 -58.5 ] t FTWAINIZ © 206 ~ GLOHL136) 5 39 2 = c So =R -— Ww eet > = a oO 1,028 -32.4 HEALY) 1,020 37 37.6 HEALYSVS 3029 399 ~37.6 —= 32 Wk sls 7 = CANTWELL 1,022 36 -38.1 —_—— — se s|* Sls Ed TEELNOSY 1.030 QOUGLAS 1,023 4 -18.0 35 26.2 TEELANO 1.020 TLwO 1382 2039 3968 -i8.0 1s -23.8 I 3 o om lO) ies9® 31.3 PT MACKZ 1.027 9969 -17.0 TLNO/HEALY/GOLD SVS = 40/S0/S0 MVAR Q.S80UV 1,050 WP92SC7-3SB8 BASE CASE MON, FEB 27 1989 16:00 iif ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE 100% RATES | Vv NPOLELS8 1,005 209 -68.5 FTWAINIS 206 1,005 =68.2 GLOHL138 38 HEALYSVS 399 =< c So = - uw = > <= a oO ee ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLNO/HEALY/GOLO SVS = 40/50/50 MVAR WP92SC7-3SB8 HEALY OUT MON, FEB 27 1989 16:03 100%_ RATES Q.380UV 1,050 Ov NPOLEL38 1,005 209 -58.6 FTWAINI3 % 1,005 206 ° =|" zie zs 0 se 1,900 1H = : yee isis -57.3 HLS: 1,049 Sehts¥S 238% -1S Gree i $3.6 = c oO = e wien 378 y - 7 = a 7 6 ” 3 egg at HEALY] 1.020 37 -37.6 MEALYSVS 1,029 399 -37.6 a a7 ak ols CANTWELL 1,022 0 tes! we TEELNOSY ~029 M -18.0 TEELANO 1.020 9968 -18.0 lie 8 716.9" PT MACKZ .027 9969 -17.0 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DC LINE |. 100% RATES ; TLNO/HEALY/GOLD SVS = 40/50/50 MVAR Q.380UN 1.050 Vv WP92SC7-3SB CHENA OUT MON, FEB 27 1989 16:05 WP 92SC7-4SB NPOLEL38 1.008 209 -43.8 —— ale alo ” FTWAINIZ “| = 1,008 206 ol 49.6 =] zie 25 * a\% GLOHL138 |Z 1.000 39 7 -48.5 GLOHLSVS 080 201 ~49.9 flrze y 63.9 " =< c oO = NENANI 1.021 — a1 -43%6 od > = ote. a ale i a. 73 flint |-23t -32.5 HEALY| 1,050 37 -37.6 fA en a, HEALYSVS 1,037 LS 399 -37.5 wees mje sa a= Sle ola “1g ; ee. ait © a CANTWELL 1,048 36 -35.1 = Sha 718 a TEELNOSY +000 QOUGLAS 1,035 ery 18.0 38 -26.3 ee ae =e “is ra TEELANO 2020 TLNO 1362 > 1,048 9968 18.1 1 ait 23.8 St a | Us s.¢- — —-usy =29,0 3 41.9 PT MACKZ, 1.027 9969 -17.4 TLNO/HEALY/GOLO SVS = 40/50/50 MVAR 1.050 QV WPS92SC7-4SB BASE CASE MON, FEB 27 1989 16:29 Tit ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DOC LINE ” FTWAINIS %) 206 * 1 o °S a 44.2 -44.1116 “19.4 19.2 GLOHML138 39 WP92SC7-4SB HEALY OUT MON, FEB 27 1989 16:32 = c Oo = _ w = _ <= an oO CANTWELL 1.045 36 44.2 ale in TEELNOSY 1,083 oouGLAS 1,028 M4 -22.8 s -33.0 ~ 3g same say yee as SS ! 3 <i ie ~a48 arty PT nackz3|S 1.02" g969 = =21.5 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE 100%_RATEA TLNO/HEALY/GOLO SVS = 40/50/50 MVAR Q.980UV 1.050 OV Bogrerse 1,9°8 20) 49. si sls EIWRINIS wnusis 15898 - Ph = a 24898 gygneeve 1,893 x ce ao = = Ww = => = ao wo 13292 13958 13328 sonrmene teas 21898 ggvecrs +2823 Zl Ts 21829 Tame 190 S15 13848 spiel 18. sd - — He 24377 Tp. | ANC 100 MW, 70% SERIES COMP DC LINE LOO%_RATEA (I 0 SVS = 40750750 MVAR O28 OUVY L-Q5Q 0v \ ENA OUT MON. FEB 27 1989 16:35 POWER FLOW CASES WP 92SCO NPOLELS8 1. 209 - -0.3) = 9 FTWAINIS 206 = =| = z| 7 o 2 GLOHL138 39 | TLNO/HEALY/GOLD SVS = 40/50/50 MVAR i NO SERIES COMP, NO FAIRBANKS G TUE, FEB 28 1989 15:40 2 < ' gic c <7 oO = NENAN| 0.995 i 371 =id0.9 7 > = =—= a Eig = 1.050 -84.5 HEALY 1.980 7 =4.5 HEALYSVS 1.398 399 |__ 882 a = 33 ; e a3 — CANTWELL 0.972 36 =14.8 | | = Fs | | ae TEELNOSY 277 QoUGLAS 0.937 34 =25.8 38 33.5 ' ay | wa | ute re megs san | | 3 . ln 338s — ~ =e! PT MACKZS|S 1,027 a9e9 1 =21.3 | ANCH-FAIRBANKS 100 MW, 70% SERIES COMP DC LINE 10Q0%_AATER | os rT a: "ar 3s wi sé iw AY ONO" T ANod o BUAN LsvO0GrUN = snS Uda dA ones WI ZOOT ion SNIW 90 dWOO SSIYAS “OL “MW OOT SMNYUEGHYTIYS-HINY 9°82- hal N x a « —EEE aranines Bashy S/S HRS a ao = = = ma — = So =o a ots 6°t9 bn8%r sas 1Ha%8 261 S"bI- on ° oo o ele ea a z « Ie ro wi co 2" ong ay AAT 2 9GROLY, <— YYOMLIN AY 69 100% oO see! OD w z e r ~ Gn ito Qo. os wl - — - | u | \Q Alley stern ne jes Vie} frst. zl fre ul jest ja ere rele 20 yee "9 fre roy pre Fo) a Oe jz ce 7 4 g a Os ze z a u Pi - or ~ a z 8 a . 5 3 z ao z ro zr co on 28 n> un a. va We on _ cc as "TS wt be a. “1 Go xo ON ne | ae al — xa | gyre x | is 5S “e OON WP92SCOD TEELNOSV 4 2 GLOHL138 Nig 39 ot 69 KV NETWORK : ol” sls = NENANR 1,071 371 - Set el ee = = s HEALY 37 CANTWELL 1,068 36 -2.0 wt “lor a Ho TEELAND 1.026 9968 et) Te 3.0 8 =3.0 =18.6 18.9 Pr mackza|= 1.029 3963 let ai.2 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLNO/HEALY/GOLO SVS = NO SERIES COMP, ZERO LOAD CASE 40/50/50 MVAR FEB 28 1989 TUE. 12:18 1007%_AATER Q380UY Ces WP92SCOE NPOLEL38 1.003 209 =102.1 FTWAINIS “15, 1.003 206 ° GLOML138 39 r <= c So = — Ww =z > wg a oO ia 3 e 2 7 — | CANTWELL 0.99% 36 =64.6 = < si< ss 7|> 9966 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE 100%_AATEA | TLND/HEALY/GOLD SVS = 40/50/50 MVAR Q.980UV 1,050 av NO SERIES COMP, HEALY QUT TUE, MAR 21 1989 10:28 WP 92SCOF NPOLEL38 1,003 209 32. of FTWAINI3 7 206 ~ = = o 7 -16.2 16.0) | GLOHL136 39 = CANTWELL 1,015 3 Tes | | | lt | =|? oa TEELNOSY OOUGLAS 0.983 4 35 -25.8 | a" a¢ TEELANO 920 TEND 138 5/7 1,910 9968 <i7.9 1s =l- -23.7 -151 PT MACKZ; 9969 oe om ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE TLNO/HEALY/GOLD SVS = 40/50/S0 MVAR NO SERIES COMP CHENA OUT TUE, MAR 21 10:31 100%_ RATES QSBOUN 1.050 dv 1989 WP92SCO0G TEELNOSY ” TEELANO 9968 PT macKzs|/S 3969 ANCH-FAIRBANKS 100 MW, SIX LINES SERIES COMPENSATED, 70% SERIES COMP OC LINE TLNO/HEALY/GOLD SVS = 40/50/50 MVAR NPOLEL38 1,004 209 59.4 —=—— ~ o at é z a 3 1 o 3S 2 44.30 -44. 1118. 19.2 “| as ‘ GLOHL138 39 GLOHLSVS 201 -37.7 62.9 69 KV NETWORK 100%_AATES TUE, MAR 21 1989 10:33 NPOLEL38 1 209 =! ——= ar olen FTWAINI3 #7 206 2 T 1 ' i ' ' GLOHLSVS 2066 201 54.2 — z= =l8 73 0 sc gis x a7 So = —_ NENAN 1.009 271 -43.4 y _ =< =— a ae wo Shas T ® = o| ale HEALY nj2 «1,067 =F 370 Kix _-32.9 bo eS NEALT 1.050 37 -37.7 —=——— HEALYSVS 1.067 L_ 399 37.8 ceils = a7 ole 8 ol> Mo # 27 CANTWELL 1,048 36 -107/ 55.5] 2 24.2 ” Da TEELNOSY SO} 1.001 goucLas 1,035 4 ol? __-i8.i 35 -26.4 SS 22 as 2 TEELANO 1.020 TLNO 138 S/S 1,048 9968 -i8.t 1s =F -23.9 ——— 16.5 o S S PY MACKZS | 9969 ANCH-FAIRBANKS 100 MW, 70% SERIES COMP OC LINE 100% RATES TLNO/HEALY/GOLO SVS = 40/50/50 MVAR Q.380UN 1.050 Iv GLO HLL-FT WAIN LINE OUT TUE, FEB 28 1989 11:42 WP92SC7-3SA1 NPOLE138 1,011 23 sree oo = ™o ] |= ” coFMusi2 FTWAINI3 “lay 1.011 244 206 sit 57.9 SS an ule ee ” GLOHL136 sie 1,003 39 2% -56.7 5 A we Sr 3% Se 7|3 emer wy) fy a 69 KV NETWORK -N3 ges sg0e HEALY! 1.020 37 -38.6 = HEALYSVS 1.007 399 -38.5 ais 5 a2 ® CANTWELL 1,025 36 36.4 = als a TEELNOSV 22 1.050 OOUGLAS 1,032 4 o\=— -16.2 33 -28.5 — TEELANO +020 TLNO seals 1,047 9968 16.2 is =|! -26.5 = PT mca 9969 =|! ANCH-FAIRBANKS ADDITIONAL 30 MW MEAS AT DOUG 100%_AATES | LINES BETWEEN PT. MK ANDO NENANA COMPENSATED Q.980UV 1.050 OV BASE CASE FRI, MAR 17 1989 08:30 if NPOLEL38 1,011 209 69.3 ac} s\- ” FTWAINIZ Tay 1,011 206 s|0 =69.1 a" wis 2a 7 <j GLOHL138 Sik 1,003 39 3% -87.3 as = | S | = = | uJ i = > } =a | a | oO | | HEALY] 1.020 | ret *9*? | HEALYSVS 1.055 | 399 —|_ _-49.8 = = ae a | ais ® | aol | gears, 1.eai. 46. | He | i | ale | TEELNOSY 1.023 «4 -36.6 S | E | TEELANO is 1,043 | 9968 . =34.0 | | pT mACKZ= |S | 9969 =|" | | ANCH-FAIRBANKS ADDITIONAL 30 MW MEAS AT DOUG 100%_AATEAR LINES BETWEEN PT. MK ANO NENANA COMPENSATED HEALY GENERATOR OUT FRI, MAR 17 1989 08:38 NPOLE138 1,003 209 64.3 32 | 2 COFMUSI2 | FTWAINIS Thay 1,003 ait 206 =|" 64.0 | ae 9.0 | iS 0.0 ctomise 2S 0.995 | 39 at ~62.7 1.028 ~65.3 | se c oO = e Ww = = = = a ae 2 1,025 -37.8 920 -43.0 HEALYSVS 026 399 ~43.0 aie 78 = CANTWELL 1,023 36 -40°8 a TEELNOSY 4 TEELANO 99668 PT wackzals a69 S17 ANCH-FAIRBANKS ADDITIONAL 30 MW MEAS AT OOUG 100% AATES LINES BETWEEN PT. MK ANO NENANA COMPENSATED Q.98O0UV 1.050 OV CHENA GENERATION OUT FRI, MAR 17 1989 08:39 WP 92SC7-4SB1 NPOLEL38 1,006 209 -53.6 => s — 2 FIWAINIZ They 1,006 206 =|: -53.3 ——— -26.1 26.3 $0.3 -50.1 GLOML136 38 | 2 x ga c 020 ia NENAN| lL. WW 37 -53.2 = > Ss — a ac wo 7 © 0 als HEALY S12 1.050 ‘ 370 sic -47.2 =— =e HEALY| 1,950 7 47.2 HEALYSVS 1.090 | 399 -47.3 = === | == alm | alt ie 73 ei - se NNR SF | Sure, 1,045 e .2 -i4 SSS — =e ae Ts | | " | =| a7 a TEELNOSY 9 083 OOUGLAS 1,028 4 s 22.8 33 =33.0 == | Ze \ Zs | 7 0 TEELANO 1.020 TLNO 138 S/F 1,046 9968 ~22.7 1s =F =30.0 2 | liye §. — Ny ~24.85 5 PT MACKZ: 9969 ANCH-FAIR ADDITIONAL 30 MW DELIVERED AT GOLO HILL LINES BETWEEN PT MK ANO GOLD HILL COMPENSATED HEALY GENERATOR OUT FRI, MAR 17 1989 09:00 10Q%_RATEB