Loading...
HomeMy WebLinkAboutAnchorage Fairbanks Transient Network Analyzer Study#1-APA-83-C-0051 6-1984TRANSIENT NETWORK ANALYZER STUDY #1 Alaska Power Authority Anchorage - Fairbanks Intertie with 230 kV Pt. Mackenzie Area Transmission Study No: B100-1-0659-040000 Conducted By: W Neugebauer H. Elahi Report Prepared By: W. Neugebauer January 1984 H. Elahi S. Miske FINAL REPORT ISSUED JUNE 1984 Electric Utility Systems Engineering Department General Electric Company Schenectady, N.Y. 12345 GENERAL @@ ELECTRIC Introduction Table of Contents Conclusions and Recommendations Basis of Study Discussion of Results Appendix A - Appendix Appendix Appendix Appendix Index to Cases Test Result Sheets Description and Explanation of Test Result Sheets Surge Arrester Types and Protective Characteristics System Parameters Description and Application of the Transient Network Analyzer 1. INTRODUCTION Studies have been performed on the Transient Network Analyzer of General Electric's Electric Utility Systems Engineering Department in Schenectady, New York. The studies performed using the Analyzer were the load rejection, short circuit and TNA studies as required by Contract No. APA-83-C-0051l. Reports of these individual studies have been combined to form this report. In these studies, the Pt. Mackenzie transmission area was represented as 230 kV. The Cantwell-Watana and Gold Hill-Ft. Wainwright lines were represented in selected cases. 2. CONCLUSIONS For the conditions studied and excluding the Cantwell to Watana line: a. The SVS operated effectively to control the dynamic and 60 Hz voltages that follow load rejection. The maximum 60 Hz voltage on the Intertie occurred after the opening of the Teeland 138 kV breaker. This voltage was 1.15 pu. b. The SVS operated effectively to restore system voltage following system faults. Bs The application of special 15 kV zinc oxide arresters in parallel with the SVS_ thyristor controlled reactors at Teeland and Healy is required to limit the voltage at the thyristors. TNA Study #2 also recommends TCR arresters for the Gold Hill SVS. The arresters would have a temporary power frequency overvoltage capability similar to that given in Figure 1 of GET-6460, General Electric TRANQUELL® Station Surge Arrester Application Guide. The switching surge duty on the Intertie line and transformer arresters was found to be within their capabilities. Energizing the Healy-Douglas line from Healy, with the Healy generator and SVS off, is not recommended because of the high 60 Hz voltage that results. Energizing of the Healy SVS with the Healy-Douglas line is not recommended. However, the Healy-Douglas line can be successfully energized from Douglas without the Healy SVS in service. TNA Study #2 shows that this line can also be energized successfully when the Teeland SVS is out of service. The post-switch voltage at the Healy end of the line in this case is 1.17 per unit. The loss of TCR conduction at Healy or at Teeland occurring at the same time as load rejection can result in very high overvoltages requiring coordinated operation of the SVS and HV breakers at the SVS location. A similar condition can occur if there is loss of TCR conduction on the Healy SVS occurring at the same time as the Healy generator and the Intertie become isolated from Teeland and Gold Hill. Cantwell-Watana Line In Service h. The 60 Hz voltages following load rejection at Teeland 138 kV reaches 1.24 pu at Douglas. The Healy SVS operates at the limit of its control range. Additional compensation will be required when this line is put in service. 3. BASIS OF STUDY a. System Representation The Intertie was modeled in detail using miniature model techniques from the Pt. Mackenzie 230 kV bus to the Gold Hill 69 kV bus where inductive equivalent impedances were used to represent the Anchorage and Fairbanks systems. In all cases the Gold Hill 69 kv equivalent was for the minimum generation condition. The data for the system was derived from the specification and from several letters from Commonwealth Associates. The system diagram is shown in Figure A-l. The transfer impedance between Ft. Wainwright and Gold Hill is not shown in this figure but was represented on the TNA. The parameters for the lines and transformers are shown in Appendix D. ~ Note: It should be noted that because of the large number of voltage points of interest, voltage point number 14 was moved from case to case and does not have the same location in each case. The first page of each case sheet states the location of number 14 for that particular case. b. SVS Models All three SVS's were modeled with a high degree of detail. Actual SVS electronic controls were used to control the firing of the thyristors of the controlled reactors. These controls were implemented on the TNA by the HVDC Projects Operation of General Electric in King of Prussia, Pennsylvania, the responsible product section for SVS. The power thyristors, reactors and filter banks were modeled with miniature model elements. In general, unless otherwise noted, the gain of all three SVS's were set to 20 (full range of MVAR change for a 5% voltage change) and with reference setpoints as indicated. Associated Voltage Control Specified Reference Range Voltage Location MVAR Setpoint (pu) (pu) Teeland -22 to +22 1.00 ~975 to 1.025 Healy -33 to +22 1.0/2) 1.00 to 1.05 Gold Hill -5 to 33 1.02 3975 to, 1.025 (It is not intended to imply that the reference setpoints used in service must be identical to the values shown.) Also, unless otherwise indicated, the time constants for all SVS's were set at 150 ms as suggested in the control study. * Re Thyristor Voltage Limitation and Thyristor Controlled Reactor Arresters The TNA cases presented in this report are based on the application of special zinc oxide arresters connected line-to-line in parallel with the thyristor controlled reactors of the Teeland and Healy SVS. Initial load rejection cases showed thyristor voltages significantly in excess of 1.3 pu. The TCR arresters limit the voltage to approximately 31 kV which is 1.59 pu for Teeland and 1.83 pu for Healy. These arresters will have aerating of *"Alaska Power Authority, Control System Study", Contract APA-83-C-0051 approximately 15 kV rms and consist of a number of parallel columns of zinc oxide disks. The number of parallel columns required is dependent upon the discharge duty encountered during system disturbances. The duty requirements are defined further in the case discussion. The load rejection cases did not point to high voltages for the Gold Hill SvS thyristors. This stems from the guidance provided by Commonwealth Associates that it is impractical to consider the opening of both 69 kV circuit breakers at Gold Hill (with the Gold Hill-Ft. Wainwright line out of service). Thus, for all of the load rejection cases, such as breaker opening at Gold Hill 138 kv, the Gold Hill SvS remains connected to the Fairbanks system. As a result, all system disturbance cases in this report have been performed with the presumption that special arresters are not applied in parallel with the Gold Hill SVS TCR. This is reviewed further in the case discussion and in the conclusions. d. 138 kV_Intertie Line and Transformer Arresters As a simplifying assumption, all arresters applied to the 138 kV Intertie line sections and transformers were modeled with a 108 kv rating for convenience, even though some are rated 120 kV on the actual system. The results are, therefore, slightly pessimistic for the 120 kv arresters which would absorb less energy than the TNA predicts. This fact does not change the overall conclusions. e. Load Modeling The loads on_ the Intertie (at Teeland, Douglas, Cantwell, Watana, Healy and Nenana) were assumed out of service. The overvoltages found are, therefore, slightly higher than actual. It was presumed that there is no significant temporary "backfeeding" from the load that can occur when the associated 138 kv line section is isolated from the rest of the system. Such backfeeding could result in high overvoltages if breaker relaying allows large motors to remain connected to an isolated line section. 4. DISCUSSION OF CASES The cases have been divided up into three categories: a. load rejection, b. fault initiation and clearing, and c. line energizing. The requirements of short circuit study of the specification have been fulfilled in category b. The individual case descriptions and oscillograms of selected voltages and currents are contained in Appendix A. In those cases where arrester energy was maximized, the data acquisition system also shows the number of arrester operations. This number only applies for .silicon-carbide, series gap type arresters and is meaningless for the metal-oxide arresters used in this study. a. Load Rejection All of these cases were performed with the Gold Hill- Ft. Wainwright line out of service. The Healy generator and the Cantwell-Watana line were also out of service except for selected cases, as will be noted. The results for these cases are summarized in Table 1. Load rejection at Gold Hill 69 kV was not investigated because of the unlikely occurrence of opening of both 69 kV breakers while the Gold Hill-Ft. Wainwright line is not in service. Case 300 With approximately 70 MW of power flow north, the 138 kv breaker at Gold Hill on the Nenana-Gold Hill line was opened. The SVS operated to control the dynamic and sustained overvoltage. After separation, the maximum crest 60 Hz voltage was 1.09 pu. at the open end of the Gold Hill-Nenana 138 kV line at Gold Hill. The only observable arrester duty was for the Healy TCR. This, however, was quite low. There was no significant 138 kV Intertie arrester duty. The voltage at the Gold Hill 69 kV bus as_ shown in oscillogram 16 after breaker opening is slightly higher than it would actually be. The Gold Hill equivalent source consisted of a voltage source of fixed angle and magnitude behind an equivalent impedance. Case 301 With approximately 70 MW of power flow north, the 138 kv breaker at Teeland was opened. The maximum 60 Hz voltage was 1.15 pu at the open end of the Teeland-Douglas line at Teeland. No significant TCR or 138 kV Intertie arrester duty was found. Case 302 Again, with 70 MW of power flow north, the 230 kV transformer breaker at Teeland was opened. The maximum 60 Hz voltage was 1.06 pu at Cantwell. The only arrester duty was at the Teeland TCR and this was 0.040 MW sec. Case 303 The load flow was reversed from Case 302 and set to be 70 MW south. The opening breaker was still the 230 kv transformer breaker at Teeland. The Healy generator is in service. The sustained overvoltage and arrester duty was similar to that of case 302. Case 304 This case has a load flow set at 70 MW south with the Gold Hill SVS out of service. The 60 Hz voltage is less 1.10 pu. The only arrester duty is with the Teeland TCR arresters and is 0.075 MW sec. Case 305 The case was the same as Case 301 except that the power flow was 70 MW. south. The opening breaker was Teeland 138 kv. The maximum sustained overvoltage was 1.15 pu at the open end of the Teeland-Douglas line at Teeland. Arrester duty was observed at both the Healy TCR and at the Teeland end of the Teeland-Douglas line with 0.03 MW sec. per phase. Case 306 The Healy generator was connected to the line sections to the south but unloaded. The line sections to the north were not connected. The generator was modelled as a fixed magnitude, angle, and frequency voltage source behind an equivalent impedance equal to the generator subtransient reactance. The disturbance was the opening of the Teeland 138 kV breaker. The opening of the Teeland 138 kV breaker causes the Teeland-Healy line sections and the Healy SVS to be isolated with the Healy generator from the rest of the power system. The SVS maintained voltage control. Case 307 The case was the same as Case 305 except that the Cantwell-Watana line is in service. The result of Cantwell-Watana line being in service following the load rejection was a 60 Hz voltage of 1.24 pu at Douglas. The Healy SVS was operated at the limit of its control range. The Healy TCR arrester energy was 0.07 MW sec. The power system does not allow addition of this line without additional compensation to reduce load rejection overvoltages. Case 308 This case was the same as Case 300 except the Teeland SVS was out of service. The maximum 60 Hz voltage was 1.09 pu at Nenana. The Healy TCR arrester duty was 0.04 MW sec. Case 309 This case illustrates the system overvoltages when the Teeland 138 kV breaker opens and the Healy TCR is not in operation. The maximum temporary overvoltage of 1.7 pu is observed at Teeland at the open end of the line from Douglas. This voltage is limited by the arrester there and by transformer’ saturation. The voltage is also high, 1.6 pu, on the Healy SVS bus. If the Gold Hill to Ft. Wainwright 138 kv line is in service, the overvoltage condition is basically unchanged. The arrester duty at Teeland is slightly reduced. Case 310 This case is similar to Case 309 except the Teeland 230 kV breaker opens and the fTeeland TCR is not in operation. Distorted overvoltages with a crest value of 1.4 pu exist at the Teeland 230 kV, 138 kv and 13.8 kV buses. In both this and the previous case, the overvoltage condition will persist until some switching action takes place. For these circumstances and other similar conditions, coordinated operation of the SVS and HV breakers at the SVS location is recommended. One such similar condition could arise if there is loss of TCR conduction on the Healy SVS occuring at the same time as the Healy generator and the Intertie become, through breaker opening, isolated from Teeland and Gold Hill. b. Fault Initiation and Clearing All of these cases were performed with the Healy generator and transformer out of service and with the Gold Hill to Ft. Wainwright line out of service. In addition, 70 MW of power transfer was simulated from Anchorage to Fairbanks. The Cantwell-Watana line was not in service. The results for these cases are summarized in Table 2. Case 200 In this case, a single line to ground fault was simulated on the 138 kV bus at Gold Hill. The 138 kv breaker at Gold Hill on the Gold Hill-Nenana line was opened in approximately five cycles and the two 69 kv Gold Hill breakers assumed to open in 30 cycles. The fault initiation angle was varied statistically 300 times and the duty to the Healy TCR arresters documented. The maximum energy per phase was 0.42 MW sec. The maximum current was 4.1 KA. Typical oscillograms of arrester operations are shown in oscillograms 18, 19, and 20. Shown in the case sheets are numerous oscillograms of voltages at various locations of interest. The maximum transient overvoltage on the Intertie line is 1.7 pu at the Gold Hill end of the Gold Hill-Nenana line section. This is not high enough to cause significant line arrester duty. -10- The Teeland and Gold Hill SVS operate appropriately to control the 60 Hz voltage. Also shown is the fault current and its contributions from Nenana and from the Gold Hill transformer. Case 201 This case is similar to Case 200, except the single line to ground fault was at the Healy end of the Healy-Nenana line section. The Healy end line breaker cleared in five cycles and the Gold Hill end breaker was cleared in 30 cycles. The maximum energy per phase for the Healy TCR arresters was .31 MJ. The maximum current was 3.48 kA. Case 202 A single line to ground fault was simulated on the Healy 138 kV bus. The line breakers at the Healy end of the Healy-Douglas line and Healy-Gold Hill line open in approximately five cycles. The maximum energy per phase for the Healy TCR arresters was .18 MW-sec. The maximum current was 3.654 kA. The overvoltage at the Gold Hill 138 kV SVS bus is only 1.25 pu. TCR arrester duty at Teeland would be low. The voltage decay in oscillogram 9 is due to instrumentation and does not represent the actual voltage remaining on the cleared bus. Case 203 A single line to ground fault was simulated on the Douglas end of the Healy-Douglas line. The breaker at Douglas on_ the Douglas-Teeland line was opened in approximately five cycles, while the breaker at the Healy end was opened in approximately 30 cycles. The maximum energy per phase for the Healy TCR arrester was only 0.05 MW-sec. =1- Case 204 A single-line-to-ground fault was simulated on the Teeland end of the Douglas-Teeland line. The 138 kv breakers at Teeland and Healy opened in five cycles. The maximum energy per phase for the Healy TCR arresters was 0.1 MW-sec. The 138 kV line arrester duties were low. Case 205 A three-phase-to-ground fault was simulated at the 138 kV Gold Hill bus. MThe 138 kV breaker at Gold Hill on the line to Nenana opened in approximately five cycles. The 69 kV Gold Hill breakers opened in 30 cycles. The energy to the Healy TCR arresters was not significant. The energy to the line arrester at Gold Hill on the line from Nenana was .21 MW-sec. This is well within the arrester's capabilities. The apparent voltage offset at the Healy 138 kV bus is due to waveform distortion caused by transformer inrush currents. This voltage does not contain a DC component. The ordinate scale in oscillogram 10 is incorrect - the numbers should be multiplied by 1.732. Case 206 A three-phase-to-ground fault was applied on the Healy 138 kV bus. The line end breakers opened in approximately five cycles. No significant duty was found for either the SVS TCR arresters or 138 kv Intertie arresters. The high-frequency transient voltage on the Healy 12 kv bus (oscillogram 10) is due to the ringdown of the filter bank through the SVS transformer. This is not thought to be a problem for the Svs. -12- G. Line Energizing The energizing cases are performed with a model breaker whose closing angles are computer controlled to fall within the proper closing span of 8.33 milliseconds in a statistical manner. When an open line is being energized, a distribution of the overvoltages at the end of that line is recorded, assuming that no line arresters are present. For the highest overvoltage event, a model arrester is placed at the line end and its energy requirements are investigated. In all cases but number 37, the duty on the 138 kV line arresters was found to be light. In those cases where the Healy static VAR system is energized together with the transmission line, the energy in the Healy TCR arresters was monitored for the maximum event. The results from all the energizing cases are summarized in Table 3 where the system conditions, overvoltages, and arrester energies are listed. Cases 27 and 34 - Energizing from Gold Hill to Healy In these cases the energization of the 138 kv line from Gold Hill to Healy is investigated with and without the 138 kv line between Gold Hill and Ft. Wainwright in service. The result of 300 energization events shows that the maximum voltage at the Healy end of the line reaches 2.4 per unit without the line arrester. When the line arrester is placed in service, its duty is found to be light. The voltage at the 13.8 kV bus at Gold Hill remains below 1.1 per unit during this energizing event. Case 35 - Energizing from Healy to Gold Hill The maximum transient overvoltage at the Gold Hill end of the line is 1.87 per unit without the line arrester. -13- Comparison with line arrester duty in case 34 indicates that its duty in the present case is light. The voltage at the TCR remains below 1.1 per unit at both Teeland and Healy for this operation, and the TCR arresters are not called on to conduct. The steady state voltage imbalance shown in Tables 1 and 2 of this case is due to some waveform distortion and peak reading instrumentation. The RMS voltages show a _ better balance except for unusual circuit conditions. Refer to Table 2 of the TNA Study #2 report for RMS measurements. Cases 36, 37, and 38 - Energizing Healy to Douglas In case 38 the Healy static VAR and transformer are not connected when the line to Douglas is being energized. The maximum line-end transient overvoltage without arresters is 2.76 per unit. When a zinc-oxide line-end arrester is applied, it is subject to an energy of 0.05 MW sec. and a continuous power dissipation due to the high temporary overvoltages equal to 1.39 per unit. A 108 kV Tranquell arrester could withstand such an overvoltage for approximately 12 minutes. Because of the high power frequency overvoltage that results, this line switching is not recommended without compensation at Healy. In Case 37 the Healy generator was also off, but the Healy SVS (including TCR, filters and transformer) was energized with the line. The SVS operates to reduce the sustained overvoltage following line energizing from the 1.39 pu of Case 38 to an average value of 1.13 pu. In some instances, the Healy TCR does not achieve full conduction for a number of cycles after it is energized. The TCR arrester energy was maximized at Healy, and the line end arrester energy was maximized at Douglas. The results for the worst duty on the TCR arrester indicate that a minimum of 6 arrester columns are needed per phase. The duty on the -14- line arrester is acceptable if it is of the metal-oxide construction. As may be seen in oscillograms 27 through 29, the line arresters are subject to multiple operations which commonly appear when a line and transformer are switched as a unit. If this type of switching operation is intended for the system, any silicon-carbide arresters on the Healy to Douglas 138 kV system should be replaced with metal-oxide types. This switching operation is not recommended. However, alternate solutions are investigated in cases 650 and 651 of the TNA Study #2 report. In Case 36, the Healy SVS was also switched with the line but the Healy generator was in service and as a result, the transient activity was somewhat reduced. It was found that the line end arrester is subject to only light duty as shown on oscillogram 18, while the TCR arresters are subject to energy and current that would require a minimum of 2 columns of zinc-oxide. Energizing the SVS with the transmission line is not recommended as is documented in separate correspondence from the SVS product section. Comment on TNA Procedures: In cases where a line or capacitor and a transformer are being switched as a unit, the TNA results can be non-repeatable because of unpredictable residual flux levels in the iron of the transformer. This phenomenon can also be observed in digital simulations when the system differential equations exhibit strange attractors (1). On the TNA it is therefore sometimes difficult to capture the precise waveform that the random distribution found to be the maximum. In some instances three events corresponding to the same closing angles were taken to indicate the lack of repeatability. In any event, the maximum energy found in the distribution is taken to be a measure of the arrester duty. =115= Cases 39 and 40 - Energization of Healy Svs In case 39 the Healy transformer and the SVS are energized with the SVS in a standby condition. The line to Teeland is still open at Douglas. The temporary overvoltage at Cantwell before energization of the SVS is high at 1.33 per unit. The results of the case indicate that the energy dissipation in the TCR arresters can reach a high of .66 MW sec. This is an unacceptable level and is the consequence of many arrester operations at current levels of 2 kA or more. On the basis of this case it is not recommended that the SVS be energized in this manner. The TCR current offset in oscillogram 6 (phase c) is incorrect due to a misoperation of the SVS model. Case 40 shows the energization of the Healy SVC transformer and TCR's while the filter bank is off. The maximum arrester energies are now acceptable. However, the voltage waveforms on the 138 kv system are distorted because of the filter's absence. Cases 42 and 43 - Energization of Healy from Douglas Case 43 shows that the energization of the line from Douglas to Healy by itself presents no particular switching problem. The arrester duties on both the 138 kV and 13.8 kv systems are light. This conclusion is also true for the weaker systems studied in TNA Study #2. The energization of the line between Douglas and Healy, when the Healy SVS is connected and on standby, again leads to very high energy requirements for the TCR arrester. In case 42 this energy is shown to be due to multiple operations of the arrester. Oscillogram 11 and records 1l, 2, and 3 also show that the Healy SVC has some delay (approximately 7 cycles) before it begins to fire on a =16> regular basis. It appears that the arrester operates during this period because of the high voltages present on the 12 kV bus. The maximum TCR arrester energy found in case 42 is .22 MW sec. As mentioned earlier, the TNA simulation of these switching transients is not repeatable because of the transformer non-linearities and flux behavior. In such cases several oscillograms of nominally identical events are taken in an attempt to capture a record of the waveforms depicting the worst transient found by the Monte Carlo method. Case 44 - Energization from Douglas to Teeland The energization of the 26 mile line between Douglas and Teeland yields a maximum transient overvoltage of 1.53 per unit and no significant arrester duties. Cases 45 and 46 - Energizing from Teeland to Douglas These cases investigate the energization of the 138 kv line from Teeland to Douglas. Since this line is only 26 miles long, no severe transients are observed. The duty on the line arresters is found to be light and the voltages at the Teeland TCR indicate that the TCR arresters would not operate. In case 46 the Teeland SVS is out of service and the transient overvoltage at Douglas is lower than before. Case 50 - Energization of the Cantwell to Watana Line The maximum transient overvoltage at Watana is 1.57 per unit when this 138 kV line is energized from Cantwell. There are no arrester operations. Case 51 - Energization into SLGF at Nenana from Gold Hill The maximum transient overvoltage at the Healy end of the line from Gold Hill is 2.26 per unit when an A phase to ley ground fault at Nenana is energized from Gold Hill. When the line end arrester is applied for this transient, its duty is found to be light as may be seen from oscillogram 7. Case 52 - Energization into SLGF on Douglas to Healy Line In this case, the Douglas-Healy line is energized from Douglas with a permanent single line to ground fault on the Douglas end. The Healy transformer and SVS are connected to the line. Under these conditions the maximum TCR arrester energy is .120 MW sec., again with multiple operations but moderate currents below 1.3 kA. The voltage transients show the typical envelope behavior associated with the energization of a line and transformer as a unit. Reference: (1) R. Sugarman & Pall Wallich, "The Limits to Simulation", IEEE Spectrum, April 1983, pp. 36-41. -18- Maximum Arrester Duties Table 1. Load Rejection Maximum Post-Disconnect SVS Operating Open 60 HZ Voltages Out of Line Arresters Case Load Flow Breaker _Breakers Location Per Unit Service Location 300 70 MW > Fairbanks Q F,L,K,R Gold Hill End of 1.09 None 138 kV Line from Nenana 301 70 MW + Fairbanks B F,L,K,R Teeland End of Line 1.15 None 138 kV 302 70 MW + Fairbanks A F,L,K,R 5 1.06 None 138 kV 303 70 MW + Anchorage A FLLR 3,4 1.08 None 138 kV 304 70 MW > Anchorage A F,L,K,R,V 4 1.11 Gold Hi11 138 kV 305 70 MW > Anchorage B F,L,K,R, 4 1.15 None Teeland End of Line 306 0 MW + Anchorage B F,L,J 4 1.14 None 138 kV 307 70 MW » Anchorage B R,K,L 4 1.24 None 138 kV 308 70 MW + Fairbanks Q R,K,L,F,T 7 1.09 Teeland 138 kV 309 70 MW + Fairbanks B R,K,L,F Teeland End of Line 1.70 Healy-TCR Teeland End of Line 310 70 MW » Fairbanks A R KL F 3 1.40 Teeland-TCR 138 kV MW-Sec Location MW-Sec Low Low Low Low Low 03 Low Low Low 0.22* 0.4* TCR Arresters Healy 02 Teeland/ low Healy Teeland .04 Teeland .04 Teeland .08 Healy .03 Healy Low Healy .07 Healy -05 Healy Low Teeland .07* Remarks Healy generator on Healy generator on Cantwell-Watana Line in service *High TOV *High TOV Table 2. Fault Initiation and Clearing Fault Opening Open * Case Type Fault Location Load Flow 200 A@-G Gold Hil] 138 kV Bus 70 MW to Fairbanks Q,Z F,K,L,R 201 A@-G Healy End of Line from Gold Hil] 70 MW to Fairbanks J,Q F,K,L,R 202 A@-G Healy 138 kV Bus 70 MW to Fairbanks I,J F,K,L,R 203 A@-G Douglas End of Line from Healy 70 MW to Fairbanks 0,I F,K,L,R 204 A@-G Teeland End of Line from Douglas 70 MW to Fairbanks 8,0) F,K,L,R 205 38-G Gold Hil) 138 kV Bus 70 MW to Fairbanks Q,Z F,K,L,R 206 30-G Healy 138 kV Bus 70 MW to Fairbanks I,J F,K,L,R Cantwell-Watana 138 kV line out of service. Healy generator and substation transformer out of service. Gold Hil1-Ft. Wainwright line out of service. Significant Arrester Duties _Line Arresters Breakers Breakers Location MW-Sec Location MW-Sec kA Gold Hil] Low Low Low Low Low «el Low TCR Arresters Healy Healy Healy Healy Healy 42 -31 -18 -05 Low Low 4.1 3.5 2.5 -18 2.1 Remarks Summary of Energizing Cases Table 3. Maximum Transient Voltage Significant Arrester Duties Operating Open Per Line Arresters TCR Arresters Case From To Breaker _Breakers Location Unit Location MW-Sec Location MW-Sec Remarks 27 =Gold Hill 138 kV Healy 138 kV Q J,R Healy End of Line 2.22 Healy End of Line Low -- -- 34 =Gold Hill 138 kV Healy 138 kV Q J Healy End of Line 2.39 Healy End of Line 01 = -- 35 Healy 138 kV Gold Hill 138 kV J F,L,K,Q Gold Hill End of Line 1.87 Gold Hill End of Line Low 11,12 0 36 «Healy 138 kV Douglas 138 kV I OFF.b Douglas End of Line 1.9* Douglas End of Line .03 12 -03 Two column min. at 12 37 Healy 138 kV Douglas 138 kV I D,F,L,K,R Douglas End of Line 1.9* Douglas End of Line .70 12 -260 Six column min. at 12 38 Healy 138 kV Douglas 138 kV I 0,F,L,K,0,R Douglas End of Line 2.76 Douglas End of Line .07 ** = -- -- **High TOV - Okay for 20 min. 39 Healy 138 kV Healy SVS 0 D,F,L,K,R 12 -660 ~ 18 col. TCR arrester required 40 Healy 138 kV Healy SVS 0 D,F,L,K,R,X Douglas End of Line Low 12 -080 42 Douglas 138 kV Healy 138 kV 0 I,F Healy End of Line Low 12 -220 8 columns required for TCR arrester 43 Douglas 138 kV Healy 138 kV D 1,F,0 Healy End of Line 2.20 Healy End of Line -03 W Low Healy SVS out of service 44 Douglas 138 kV Teeland 138 kV c B,L,K,F,R Teeland End of Line 1.53 Teeland End of Line 0 12 0 45 Teeland 138 kV Douglas 138 kV B c Douglas End of Line 1.92 Douglas End of Line Low VW 0 46 Teeland 138 kV Douglas 138 kV B c,T Douglas End of Line 1.73 Douglas End of Line 0 -- -- Teeland SVS out of service 50 Cantwell 138 kV Watana 138 kV F K,L,R Watana 1.57 138 kV 0 12 0 51 Gold Hill 138 kV Healy 138 kV Q J,R Healy End of Line 2.26 Healy Low -- -- A@® - Ground fault at Nenana 52. Douglas 138 kV Healy 138 kV 0 I,R,F,K,L Healy Low 12 -120 A® - Ground fault at *Transient as limited by arresters. Douglas end of line APPENDIX A Index to Cases Test Result Sheets PT. MacKenzie 230 kV Teeland Teeland Douglas Fr. Wainwright 138 kV (0) Gold Hill 138 kV Cantwell 138 kV 130 Mi. © 230 kV 138 kV 138 kV L\ Watana 138 kV Figure A-1. TCR Qs) x loa , Gold Hill 13.8 kV (21) TCR TCR System Diagram for 138 kV Intertie between Anchorage and Fairbanks PT. MacKenzie 230 Vv Teeland pee Teo)and Dougies " yi 136 kV Contweld Mealy Wearea Gold Hit i ny ; * ve a> fea eee item) HOHE] 16 T wie — LL. Teetand v a4 : 4 Ws. kV TCR (>) RATION? oe OPERATING BREAKER OPEN BREAKERS F,L,K,R CLOSING RESISTOR 0.88 (OHS) O. 390 - FROM: INSERTION TINE @.00 (ms) ON? LOAD REJECTION TO: max. CL. SPAN 8.33 (m5) ee RIPTION OF SYSTEM RESULTS WELL-UATANA 138 KY LINE OUT OF SERVICE, YGEN. AND SUBSTATION TRANSFORMER ARG OFF. Healy TCR arrester energy is 0.02 MW Sec. COD HILL-FT.UAINURICHT LINE OUT OF SERVICE. Line arrester energy is low. Wnrmmmrns somo “CONTINGENCIES OOOO ~ BEECRIPTION ” *tocaTron 14 IS AT THE GOLD HILL END OF THE LINE FROM RENANA. _ CASEt 300 - TABLE 1 A300T1 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON~SINUSOIDAL ) PRE-SUITCH. VOLTAGES BREAKER GIS CLOSED. LOCATION A B c 3 @.97 @.98 8.99 4 @.98 @.98 8.98 Ss 1.02 1.20 1.04 6 1.02 1.01 1.02 2 1.01 1.01 1.03 8 1.00 1.01 1.03 14 1.00 1.01 1.03 CASE! 300 TABLE 2 A3¢0T2 TEMPORARY L TRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL) POST-SUWITCH VOLTAGES. BREAKER @ IS OPEN. LOCATION A B c 3 @.97 x @.99 & 1.01 4 1.03 1.02 1.63 Ss 1.07 1.06 1.0S 6 1,05 1.05 1.04 ? 1.08 * 1.08 1.05 8 1.028 1.02 1.02 14 1.09 1.08 1.07 MwMrdxron YH Mwnpxrv w MoDrIVw o AZBOV1 LOCATION? 3 TEELAND 138 KU PER UNIT VOLTAGE CASE NO. 3e@ OSCILLOGRAM NO. 4 POST SWITCH VOLTAGES BREHKER G 13 OPEN S.6 MS/DIV Mapirow wo MnorDs D MnHPpxrsw Oo AZ8eV2 LOCATION: 7 NENANA 138 KU PER UNIT VOLTAGE 1.5 1.9 8.5 9.8 -8.S 1.6 “1.5 1.5 1.0 8.5 8.0 -3.5 1.8 71.5 1.5 1.@ a. e.2 -6.5 1.0 1.5 CASE NO. 386 OSCILLOGRAM NO. 2 POST SWITCH VOLTAGES BREAKER @ IS OPEN 5.8 MS/DIV MoDpDrvD DvD mMwpru w Morpxrv oa AZBeVU3 LOCATION: 3 TEELAND 138 KV PER UNIT VOLTAGE CASE NO, 300 QOSCILLOGRAM NO. 3 LOAD RESECTION AT GOLD HILL 20.8 MS/DIV MODID D MmMwoDpDiowo w MOoDIrID oO 1.5 1.0 6.5 @.8 -0.5 1.0 1.5 1.5 1.8 @.S 9.8 ~8.5 -1.8 -1.5 1.5 1.0 AIBOVA LOCATION: 4 DOUGLAS 138 KV PER UNIT VOLTAGE CASE NO. 300 20.8 MS/DIV OSCILLOGRAM NO. 4 LOAD REJECTION AT GOLD HILL MoHopDrv D> MnDxrDB w MoDrV oO AZO8US LOCATION: 5 CANTWELL 138 KU PER UNIT VOLTAGE 1.5 1.9 @.5 8.9 -@.5 -1.8 1.5 1.5 1.0 a. 8.8 -8.5 ~1.8 1.5 1.5 1.8 8.5 2.8 8.5 1.8 “1.5 CASE NO. 380 20.8 MS/DIV OSCILLOGRAM NO. 5S LOAD REJECTION AT GOLD HILL 2 mMmopDru wy mMubprwe Oo ABOVE LOCATION: .6 HEALY 138 KY PER UNIT VOLTAGE CASE NO. 300 OSCILLOGRAM NO. 6& TMAN REJECTION AT GOLD HILL 20.0 MS/DIV MoODIrVD D MODIvD w MnrPrv oO A3@OU? LOCATION: 7 NENANA 138 KY PER UNIT VOLTAGE CASE NO. 300 20.0 MS/DIV OSCILLOGRAM NO. 7? LOAD REJECTION AT GOLD HILL Marvin w mMyprvs Db MADITUV O AZ6OUB LOCATION: 8 GOLD HILL 138 KU PER UNIT VOLTAGE 1.S 1.0 a.5 8.8 -6.5 -1.8 “1.5 1.5 1.8 @.5 8.8 -8.5 ~1,.8 “1.5 1.5 1.8 @.5 0.8 0.5 -1,8 -1.S “CASE NO. 300 20.8 MSvDIV OSCILLOGRAM NO. 8 LOAD REJECTION AT GOLD HILL 924 mMaPpxro Lt mMHpirv w oO mMunrvxie AI0BUS LOCATION? 14 G.H. END OF LINE FROM NENANA PER UNIT VOLTAGE CASE NO. 300 OSCILLOGRAN NO. 9 LORD REJECTION AT GOLD HILL 20.0 MS7DIV Moprow wo MODI MADIrV O&O A38015 LOCATION: 9 GOLD HILL 69 KY PER UNIT VOLTAGE 1.5 1.8 @.5 8.0 -8.5 =1.0 "1.5 1.5 1.0 @.5 9.8 =@, 5 “1.8 CASE NO. 300 20.0 MS/DIV OSCILLOGRAM NO. 16 LOAD REJECTION AT GOLD HILL A30810 LOCATION: 41 TEELAND 13.8 KU FER UNIT VOLTAGE 1.5 A-B a-p 1:0 p p 25 H H A Hee $ S -9.5 E E 1. “1.5 Ley 1.5 pec 1-4 p-c 1°? Pp a.5 p 8.5 H 4 H R 0.0 Nee S -0.s- 2 -@.5 1.0 -1.9 -1.5- 1.5 1.5- 1.5 c-a 1-8 cen 1:0 p 25 p O58 A oot Kee ES -0.5+ : 0.5 “1.8 -1.8 “1.5 “1.5 ~ CASE NO. 300 OSCILLOGRAM NO. 10 LOAD REJECTION AT GOLD HILL 20.0 MS/DIV A30011 LOCATION: 12 HEALY 12.8 KV PER UNIT VOLTAGE CASE NO. 360 20.8 MS/YDIV OSCILLOGRAM NO. it LOAD REJECTION AT GOLD HILL A30012 LOCATION? 13 GOLD HILL 13.8 KV PER UNIT VOLTAGE 1.5 A-B 1.8 e.5 8.0 mMoprd ~8.5 1.8 “1.5 1.5 pec 1-8 0.5 0.8 -@.5 Movdxrv -1.8 1.5 1.5 c-a 1°? @.5 0.8 -8.5 mMopxrs ~1.0 -1.5 CASE NO. 380 20.0 MS/DIV OSCILLOGRAM NO. ie LOAD REJECTION AT GOLD HILL DA MoODIrD VL MOornrrT w 2 ANDPrs 3- CASE NO. 300 OSCILLOGRAM NO, 13 LOAD REJECTION AT GOLD HILL LocRTIonK: 43 TEELAND TOR CUD RENT SYSTEM KILOANP URES 20.9 MS/DIV MODIvD w MODI Oo Loc. (OH: Le saLy TCR CURRENT SYOTHT KILOAMPERES CASE NO. 360 29.0 MS/DIV OSCILLOGRAM NO. 14 LOAD REJECTION AT GOLD HILL AvDxrD D m MnHDrIv w MHoDrDp 3 Heat od? Ly GOLD HITE TOR Cuery SYSTEM S07 MPERES CASE NO. 300 26.0 MS/DIV OSCILLOGRAM NO. 1S LOAD REJECTION AT GOLD HILL u MODIrVD D mMonorv Db D> MmMADIv A3@0E1 LOCATION: 12 HEALY 12.0 KU PER UNIT VOLTAGE SYSTEM KILO-AMPERES @.2- -0.5 -1,0- “1.5 SYSTEM MEGA-JOULES 8.15 @.104 @.05-4- 9.80 -8.05 0.18 “0.154 CASE NO. 300 20.0 MS/DIV OSCILLOGRAM NO. 15 ARRESTER L-L AT HEALY SVS EVALUATION FOR TYPE 2% @.@8 COUL. EVALUATION FOR TYPE 3¢ 8.45 O9RA Pt. Mackenzie zoe by Tealand Teoand Dougles 230 AV a oe Ex Contwell = Dane eabeemae es reaof Mealy Gold Hill Nenana eee Gold mann 09 by Seat i Watana Teeland i KO a Sea 13.8 kV ue | 7 if E 60 Mi. : 20 TcR : 4 — a TCR t T T = OPERATING BREAKER B OPEN BREAERS F,L.K,R CLOSING RESISTOR 9.8 (OHS) SSE NG. 308 FROM INSERTION TIME @.08 (mS) OPERAT: ON: LORD REJECTION T01 Max. CL. SPAN 8.33 (mS) DESCRIPTION OF SYSTEM TWELL-KATSNA 198 KY LINE OUT OF SERVICE, vLY GEN. @™D SUBSTATION TRANSFORMER ARE OFF. eee _ { CONT INGENCIES DESCRIPTION TIME CONSTANT © iso” MSEC. *LOCATION i4 IS THE TEELAND END OF THE LINE FRGM LCUCLAS. RENCE SETTINGS. LCU NORTH. CASE? 304 “TABLE 1 °° AQ@1TL TEMPORARY LINE-NEUTRAL. VOLTAGE CREST PER UNIT QUANTITIES (X*DENOTES NON-SINUSOIDAL ) PRE~SWITCH VOLTAGES, BREAKER BIS CLOSED. LOCATION a B Cc 3 1.80 1.20 2.99 4 1.80 @.99 8.99 S 1.04 1.02 1.02 6 1.93 1.02 1.02 ? 1.02 1.04 1.02 8 1.04 1.¢28 1.02 CASE: 301 TABLE 2 AIe1T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (&*DENOTES NON-SINUSOIDAL } POST-SUITCH VOLTAGES. BREAKER B IS OPEN. LOCATION a B c 14 1.14 * 1.15 4.43 4 1.14 ¥ 1.14 1.13 5 1.41 1.89 1,08 6 1,07 1.05 1.04 ? 1.06 1.05 1.05 8 1.05 1.05 1.04 20m Moprv w MODIrIvVv Lb MnDrv oOo AB@1V4 LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE 1.87 1.04 @.5 Q.047- 8.5 “1.0 -1.54 1.5 1.0- @.5 4 9.0 -0.5- “1.0 “1.5 1.5 1.0 @.S e.e ~@.54 “1.0 “1.54 CASE NO. 301 OSCILLOGRAM NO. 1 20.8 MS/DIV LOAD REJECTIGN AT TEELND 138KY MopDrw w& MoODIvD Dd MODIrD O AIe1ve LOCATION? 14 TEELAND END OF LINE FROM DGLS PER UNIT VOLTAGE CASE NO. 301 20.6 MNS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION AT TEELND 138KU MOADID & MoODxrVD D MonDrv oO A301U3 LOCATION: 4 DOUGLAS 138 KY PER UNIT VOLTAGE CASE NO. 301 20.0 MS/DIV OSCILLOGRAM NO. 3 LOAD REJECTION AT TEELND 138KU 9a Manors MYrProD w MADPILV O 1.Sa 1.0 @.5- @.e -8.5 1.04 <1.45> 1.0 Q.5 @.9 “0.5 “1.0 “1.5 A3O104 LOCATION: S&S CANTWELL 138 KV PER UNIT VOLTAGE CASE NO. 301 20.8 MS/DIV OSCILLOGRAM NO. 4 LOAD REJECTION AT TEELND 138KU MOHorIv Dd Monro w MODrs O 1.5 1.8 @.S 8.9 -@.5 1.0 “1.5 1.5 1.8 8.5 2.0 -8.5 1.0 71.5 1.5 1.0 @.5 e.8 ~8.5 1.8 1.5 A3O1VU5 LOCATION? 6 HEALY 138 KV PER UNIT VOLTAGE CASE NO. 3@1 20.6 MS/DIU OSCILLOGRAM NO. S LOAD REJECTION AT TEELND 138KU MADID w MwMHpxrv MoDrv Oo A301V6 LOCATION: 7 NENANA 138 KY PER UNIT VOLTAGE 1.5 1.0 @.S 8.0 -0.5 -1.0 ~1.5 1.5 1.8 @.5 6.8 6.5 -1.8 “1.5 1.5 1.¢@ a.5 9.0 -@.5 “1.8 “1.5 CASE NO. 301 20.0 MS7DIV OSCILLOGRAM NO. 6 LOAD REJECTION AT TEELND 138KV Qn mMopDro w Monpre Oo A30107 LOCATION: .& GOLD HILL 138 KYU PER UNIT VOLTAGE -0.5- 71.0 =1,.5' ae 1.6 9.5 8.2- -8.5- “1.0 “1.54 CASE NO. 301 26.8 NS/DIV OSCILLOGRAM NO. 7 LOAD REJECTION AT TEELND 138KU MYrprv wo Mwpxrv MHODrvy oO A3@1U8 LOCATION: 9 GOLD HILL 69 KY PER UNIT VOLTAGE 1.5 1.0 @.5 e.8 9.5 1.0 “1.5 1.5 1.9 @.S 2.2 -@.5 1.0 “1.5 1.5 1.8 @.5 8.8 -@.5 1.0 “1.5 CASE NO. 381 22.0 MS7DIV OSCILLOGRAM NO. 8 LOAD REJECTION AT TEELND 138KVU 222 AI@LU9 LOCATION: 11 TEELAND 13,8 KU PER UNIT VOLTAGE CASE NO. 301 QSCILLOGRAM NO. 9 LOAD REJECTION AT TEELND 138KU 20.8 MS/DIV i a s E mMoDpiv c-A Mopvxrs A3G110 AB@111 LOCATION! 12 LOCATION: 13 HEALY 12.0 KU GOLD HILL 13.8 KU PER UNIT VOLTAGE PER UNIT VOLTAGE 4.5 1.5 ate a-p 18 @.5 p os @.0 fh 0.0 -@.5 : -0.5 ~1.9 “1.0 -1.5 “1.5 1.5 1.5 1.8 pc 1-8 0.5 p os 8.08 7 2.0 -8.5 e -@.5 “1.0 -1.08 bic “1.5 1.5 1.5 1. ca 1-0 8.5 p 25 0.8 i 2.8 -@.5 € -8.5 -1.0 “1.0 “1. 1, CASE NO. 381 20.8 MS7DIV OSCILLOGRAM NO. 11 LOAD REJECTION AT TEELND 138KU CASE NO. 301 20.8 MS/DIV OSCILLOGRAM NO. 10 LOAD REJECTION AT TEELND 138KU A Moprvd w mMwopPry Db m@nprIv oOo ABOLTL “LOCATION: 11 TEELAND TCR CURRENT SYSTEM KILOANPERES CASE NO. 304 CSCILLOGRAM NO. 12 CAD REJECTION AT TEELND 138KYV 20.8 NS/“DIV mMopiv Dd Monoru w MHOPDrD oO A30112 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 301 20.8 NS/DIV OSCILLOGRAM NO. 13 LOAD REJECTION AT TEELND 138KU MoHrpirv ws mMwopiv Dd MoprDp o A30113 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 301 20.6 MS/DIV OSCILLOGRAM NO. 14 LOAD REJECTION AT TEELND 138KY 25a PT. Mackenric 230 bv Teeland Teoland [efor fee Douglas OH130 Hi ] Contweld Westy fT; Warowright 136 7) BAR IRY. ase ay leanne Gold Hild sey 138 kv a ans [Hse HH He Ha Ha} Hic Hs} @. | o = Pe | [otro ‘nity L\ Gold Hidl 13.8 av KO. 302 FRoMs ATIONS LCAD REJECTION 108 DESCRIPTION OF SYSTEM CONTUELL-WATANA 13S KY LINE OUT OF SERVICE. HESLY GEN. 4ND SUBSTATION TRANSFORMER ARE OFF. | | CONTINGENCIES | SAIN «20, TENE CONSTANT © 150 NSEC. | RD MEFERENCE SETTINGS. 72 MY LOAD FLOU NORTH. OPERATING BREAKER A CLOSING RESISTOR INSERTION TINE MAX, CL. SPAN OPEN BREAKERS F,L,K,R 8.60 COHNS) @.0®@ (mS) 8.33 (MS) CASE! 302 “TABLE 1° A3eaTI TEMPORARY LINE~NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES CX¥"DENOTES ‘NON~SINUSOIDAL ) ~ALOAD REJECTION. AT. TEELAND 230 KU. PRE=SUITCH “VOLTAGES © BREAKER AIS. CLOSED LOCATION, AB c 3 1.00 1,06 %.98 4 1.20 0.99 0.98 5 1:03 1:01 1.01 6: 1.03 1.02 1,02 1g 1.02 1,2 1.02 8 1.04 1.02 1.63 9 1.02 1.02 1.02 case: 302 TABLE 2 a302T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES CX«DENOTES NON-SINUSOIDAL) LOAD REJECTION AT TEELAND 23@ KV. POST SWITCH VOLTAGES BREAKER A IS OPEN LOCATION A B. c 3 1.01 1.02 @.97 4 1.04 1.04 @.99 5 1.03 1.06 1.04 6 1.0L 1.05 1.85 7 1,04 1.04 1.04 8 1.04 1.04 1,05 3 1.62 1.02 1,03 ® Ann mMoyvrv w mMyprDyp FT mMuprv Oo A3B2V4 LOCATION: 3 TEELAND 138 KV PER UNIT VOLTAGE CASE NO, 302 OSCILLOGRAM NO. 1 LOHD REJECTION AT TEELND 236KU 28.8 MS“DIV Mnapru w MADD D Morprv Oo A362U2 LOCATION: 4 DOUGLAS 138 KU PER UNIT VOLTAGE CASE NO. 3¢2 20.8 MS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION AT TEELND 230KV MADIV w Morpxrv Dd MHPrD Oo e 3 LOCATIONS 5 CANTHELL £33 KY PER UNIT YOLTAGE CASE NO. 302 20.8 MS/DIV OSCILLOGRANM NO. 3 LOAD REJECTION AT TEELND 2@30KU 28e mMoarrov bv MmoprUvU ww Mnrprse oO AIC2V4 ‘LOCATION: 6 HEALY 238 KY PER UNIT VOLTAGE -34 CASE NO. 3¢2 20.0 MS/DIV OSCILLOGRAM NO. 4 LOAD REJECTION AT TEELND 230KU MODIDBD Dd MnnviIv w MoOrpirIa 3} Aze2uS LOCATION: 7 NENANA 138 KU PER UNIT VOLTAGE CASE NO. 302 2¢.0 MS/DIV OSCILLOGRAM NO. §& LOAD REJECTION AT TEELND 230KU MnADdiIv sa MYHDIrIB D MoOvprIv oOo AI*2VE LOCATION: & GOLD HILL 138 KU PER UNIT VOLTAGE 1.5 1.0 eS 8.8 -8.5 -1.5 1.5 1.0 @.5 8.8 8.5 “1.8 “1.5 1.5 1.8 8.5 2.8 8.5 1.0 “1.5 CASE NO. 302 20.8 MSvDIV OSCILLOGRAM NO. 6 LOAD REJECTION AT TEELND 230KY P # & s — MwHviv ss MonDPrVwe oOo | A362V7 LOCATION: 9 > GOLD ‘HILL 69 KU PER UNIT VOLTAGE -9.5 “1.0 “1.5 CASE NO. 302 20.8 MS/DIV QOSCILLOGRAM NO. 7 LOAD REJECTION AT TEELND 230KU 2a A302U8 LOCATION: 11 TEELAND 13.8 KU PER UNIT VOLTAGE CASE NO. 302 OSCILLOGRAM NO. & LOAD REJECTION AT TEELND 230KU 20.8 MS/DIU MODIV Aze2VU9 LOCATION: 12 HEALY 12,8 KU PER UNIT VOLTAGE CASE NO, 302 20.8 NS/DIV OSCILLOGRAM NO. 9 LOAD REJECTION AT TEELND 23@KV a-B Manprs Moors MoODxrv A3@218 LOCATION: 13 GOLD HILL 13.8 KU PER UNIT VOLTAGE 1.5 2 ®.5 8.8 “8.5 1.0 “1.5 1.5 ac 10 a. 9.8 8.5 1.8 71.5 1.5 cnn 28 @.S a.8 8.5 “1.8 -1.5 CASE NO, 302 20.8 MS7DIV OSCILLOGRAM NO. 10 LOAD REJECTION AT TEELND 230K 374 mMonorv w mMOADrv DvD Mopxrv od o Dp t+ Hn ps Y SM B DH A3O8 I LOCATION! 11 TEELAND TCR CURRENT SYSTEM KILOAMPERES CASE NO. 302 20.6 MS/DIV OSCILLOGRAM NO. 11 LOAD REJECTION AT TEELND 230KU MoOpxrvw wo MnAorv D Moarprv o AzeeTa LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 302 26.0 MS/DIV OSCILLOGRAM NO. 12 LOAD REJECTION AT TEELND 230KY¥ mMyYpDrD w MnoDxrv DP MYHpDrIDv 2 ABVLI3 LOCATION? 43 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 302 20.8 MS/DIV OSCILLOGRAM NO. 13 LOAD REJECTION AT TEELND 23@KU ARN MoDrDxrv v MHPrv Dd: MoDxrVv Dv AB02E1 LOCATION: 11 ~TEELAND 13.8. KU PER UNIT VOLTAGE - SYSTEM KILO-AMPERES SYSTEM MEGA~JOULES @.15 @.18 8.85 %.20 ti ~@.05 -0.10 ~8.15 CASE NO. 302 18.0 MS/DIU OSCILLOGRAM NO. 14 LOAD REJECTION AT TEELND 230@KYU TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: 1.36 COUL. EVALUATION FOR TYPE 3% 1.64 aon PT. MacKenzie esr ; 230 wv Teciand Teel and Dougles os Mealy, Nenana Cole) Mira Wainwright ipfem , repeats staat lacoul . ex on of On ° aa mH pS =— wl, [HEAD a Reg 2 wy 2 OF peste rere rs es aay Gara Min) 1] = —————s f TCR Av TcR T T a ‘| GPERATING BREAKER A OFLN BREAKERS F,L,R CLOSING RESISTOR 9.08 (OHS) CATE NO. . 303 FROM INSERTION TINE @.20 (Ns) OPERATION! LOAD REJECTION TO: MAX. CL. SPAN 8.33 (45) DESCRIPTION OF SYSTEN ELLOWATA: 4 a8 KU LINE OUT OF SERVICE. GN ON. ATION TRANSFORMER OFF, = = CONTINGENCIES = 20, TIME CONSTANT » 150 MSEC. NOE SETTINGS. Qu SOUTH. _ CASE? 303 TABLE 1 A3Z03T1 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (kX=DENOTES NON-SINUSOIDAL ) LOAD REJECTION AT TEELAND 23@ KV. PRE~SWITCH VOLTAGES : BREAKER A IS CLOSED LOCATION a B c 3 2,98 1.01 1.00 4 1.08 1.02 4.00 5 1.02 1.02 1.08 6 1.03 1.02 1.01 ? 1.00 1.20 2.99 8 1.02 1.02 1.00 9 1,02 1.62 1.02 CASEt 303 TABLE 2 A303T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X*DENOTES NON-SINUSOIDAL) LOAD REJECTION AT TEELAND 236 KY. POST SUITCH VOLTAGES BREAKER A IS @PEN LOCATION a B c 3 1.08 * 1.08 ®.96 & 4 1.08 % 1.02 @.99 x s 1.00 1.04 1.05 x 6 @.98 x 1.04 1.06 x ? 1.04 * 1.65 1.05 * 8 1.05 * 1.04 1.04 & g 1.03 1.93 1.83 430 MHDrU yr MOHPrD ww ManvprBs oO AO3VL LOCATION! 3 TEELAND 138 KU PER UNIT VOLTAGE 28.8 MS/DIV CASE NO. 303 OSCILLOGRAM NO. 1 LUAD REJECTION @ TEELAND 230KU MODID w MoDoDirwv D Moproe o AIe3V2 LOCATION: 4 DOUGLAS 138 KY PER UNIT VOLTAGE CASE NO. 303 26.0 MS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION @ TEELAND 23@KV Moprv w mMnopro D MARPID Oo A333 LOCATION: 5 CANTWELL 138 KU PER UNIT VOLTAGE 1.5 1.0 8.5 1.5 1.8 6.5 9.8 -8.5 1.0 “1.5 1.5 1.8 8.5 8.8 -@.$ “1.8 ~ CASE NO. 363 20.0 NSvDIU OSCILLOGRAN NO. 3 LOAD REJECTION @ TEELAND 230KY 439 Monrire A303U7 LOCATION: 11 TEELAND 13.8 KV PER.UNIT VOLTAGE CASE NO. 303 GSCILLOGRAM NO. 7 LOAD REJECTION @ TEELAND 230KU 20.0 MS/DIV A: MoODrIv c-a mMopxrD 1.5 @.5 1.5 1.0 a.5 0.9 -O.S “1.6 1.5 A3O3UB LOCATION: 12 HEALY 12.0 KV PER UNIT VOLTAGE CASE NO. 303 20.0 MS/7DIV OSCILLOGRAM NO. 8 LOAD REJECTION @ TEELAND 230KU AI63V9 LOCATION: 13 GOLD HILL 13.8 KV PER UNIT VOLTAGE 1.5 ap 1°? p 0S H i 0.0 S -9.5 E -1.0 “1.5 41.5 pc 1:8 p 05 H 4, 02 S -@.5 E -1.0 “1.5 1.5 c-n 1°0 p 5 H ee S -@.5 E -1.0 “1.5 CASE NO, 303 26.8 MS/DIV OSCILLOGRAN NO. 9 LOAD REJECTION @ TEELAND 230KYU 454 Morprv mwprvp w Moprov AIB3U4 LOCATION: 6 HEALY 138 KYU PER, UNIT. VOLTAGE - 8.0 ~ -0.5- 1.0 “1.54 CASE NO. 303 20.0 MS/DIV OSCILLOGRAM NO. 4 LGAD REJECTION @ TEELAND 230KU Mnprv wo Mypxrvwe Db MaDprv oOo 1.5 1.0 8.5 0.8 8.5 =£.0 “1.5 1.5 1.0 8.5 8.0 -@8,5 “1.0 “1.6 1.5 1. @.5 8.0 ~O.5 ~1.8 “1.5 A3O3U5 LOCATION: 7 NENANA 138 KV PER UNIT VOLTAGE CASE NO. 303 20.0 MS/DIV OSCILLOGRAM NO. S LOAD REJECTION @ TEELAND 230K MoDrv sas MoDrv D> MoaDrprso A303V6 LOCATION: 8 GOLD HILL 138 KU PER UNIT VOLTAGE 1.5 1.0 8.5 0.8 ~8.5 “1.8 “1.5 1.S 1.5 1.8 @.S e.8 -@.S 1.0 “1.5 CASE NO, 303 20.8 NS/DIV OSCILLOGRAM NO. 6 LOAD REJECTION @ TEELAND 2@30KU 445 Morovrv w MoDiIDs Dd Morpxrvw oa A3O318 LOCATION: 9 GOLD HILL 69 KU PER UNIT VOLTAGE 1.5 1.0 @.5+ 2.2 -8.5 71.0 “1.5 1.57 1.0- Q.5 @.0 -O.54 “1,0 2.5 CASE NO. 303 26.8 MS/DIV OSCILLOGRAM NO. 10 LOAD REJECTION @ TEELAND 230KY 457 Moprv Db MOpDrVv ws MoODprv oO AIOZIL LOCATION? 14 TEELAND TCR CURRENT SYSTEM KILOAMPERES CASE NO. 303 OSCILLOGRAM NO. 11 LOAD REJECTION @ TEELAND 230KU 20.9 MS/DIV mMmoDproa @ Morxrv DvD MHDLID Oo A303I12 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 303 20.8 NS/DIV OSCILLOGRAM NO. 12 LOAD REJECTION @ TEELAND 230KU MOADIVD w MorPxrv Dd MOrPrv Oo A30313 LOCATION! 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES wo oP Y&§ oY YM WwW om tw CASE NO. 363 20.0 MS/DIVU OSCILLOGRAM NO, 13 LOAD REJECTION @ TEELAND 230KU MopDrv D mMoHnoprsv dD A303E1 LOCATION: tf TEELAND 13.8 KU PER UNIT VOLTAGE 1.0 “1.5 SYSTEM KILO-AMPERES SYSTEM MEGA- JOULES “CASE NO. 303 20.9 MS/DIV OSCILLOGRAM NO. 14 LOAD REJECTION @ TEELAND 230eKU TCR ARRESTER OPERATION EVALUATION FOR TYPE et @.64 COUL. EVALUATION FOR TYPE 3: 1.36 ART PT, Mackenzie 230 Av Teeland waaiaud pougies Fr. 230 kV ise a¥ Nenana Gold Hitt Majowright (1) 138 RY ase by 138 kV le (26 Hi.) H oui.) 56 Mi, PH47 Mi. Gold Hill 13.8 kv ST OPERATING BREAKER A OPEN BREAKERS F,L,K,R,U vo : CLOSING RESISTOR — @.0 (OHMS) VASE WO, 204° — : ce a FROME INSERTION TIME @.e9 (15) OFERATION? LOAD REJECTION Tor MAX. CL. SPAN 8.33 (nS) ~ DESCRIPTION OF SYSTEM CENTWELL-UATANA 138 KY LINE OUT OF SERVICE. | GILD MILL SU3 OFF. HEALY GSU AND SUBSTATION TRANSFORMER ARE OFF. CONTINGENCIES SVS GAIN « 2@, TIME CONSTANT = 150 MSEC, STANDARD REFERENCE SETTINGS. : 73 Ms LOAD FLOW SOUTH. a he ee ete AZ04T LINE-NEUTRAL VOLTAGE CREST. PER UNIT. QUANTITIES (DENOTES NON-SINUSOIDAL ) LOAD REJECTION AT .TEELAND 230 KY. PRE-SUITCH. VOLTAGES | BREAKER A TS CLOSED ~ LOCATION 5 A, BO ¢ 3 8.99 1.01 1.0 4 1.01 1.02 1.00 5 1.04 1.80 @.98 6 1.92 1.08 Q.98 ? 1.06 8.98 8.96 8 1.03 1.00 8.98 9 1.03 1.02 1.00 CASE: 304 TABLE 2 © A3@4T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES CX=DENOTES NON-SINUSOIDAL) LOAD REJECTION AT TEELAND 230 KU. POST-SUITCH VOLTAGES BREAKER A IS OPEN LOCATION R B c 3 1.10 x 1.01 ®.96 4 1.11 % 1.03 @.98 5 1.02 * 1.07 1.18 6 1.01 x 1.27 1.¢e9 a: 1.04 * 1.89 * 1.18 8 1-07 % 1.07 * 1.08 9 1.04 1.05. 1.07 Pt 24 4 ee 483 >» MMNDID mMmnDru w oO MYPs €304Ui LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE i i CASE NO. 304 CSCILLOGRAM NO. 1 LOAD REJECTION @ TEELAND 230KU 20.6 MSvDIV MnaPIrIGD w MnaD=rvD D Morprv oO A384V2 LOCATION: 4 DOUGLAS 138 KV PER UNIT VOLTAGE CASE NO. 304 20.8 MS/DIV OSCILLOGRAM NO, 2 LOAD REJECTION @ TEELAND 230KYU MaDIrD D Moprvov w MONDPID Oo AZB3SIIZ LOCATION: 5S CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. 304 28.8 MS/DIV OSCILLOGRAM NO. 3 LOAD REJECTION @ TEELAND 230KYU 489 Mario w MOHDrBV YL» MoDnprv o Az04U4 LOCATION? 6 HEALY 138 KU PER UNIT VOLTAGE CASE NO, 304 OSCILLOGRAM NO. 4 LOAD REJECTION @ TEELAND @30KU 20.8 MS/DIV MODro w MoOD>rwv Dd MaDrs 3 A304US LOCATION? 7 NENANA 138 KU PER UNIT VOLTAGE CASE NO. 304 20.8 MS/DIV OSCILLOGRAN NO. & LOAD REJECTION @ TEELAND 230KU Monorv w MOHDrD D MOPrIvD Oo A3Z@4U6 LOCATION: 8 GOLD HILL 138 KV PER UNIT VOLTAGE 1.5 1.8 ®.5 9.0 -8.S ~1.8 1.5 1.5 1.9 8.5 0.8 -8.S -1.8 “1.5 1.5 1.8 @.S a.0 ~8.S “1.0 “1.5 CASE NO. 304 26.8 NS/DIV OSCILLOGRAM NO. 6 LOAD REJECTION @ TEELAND 230KY 495 mMorpvrv w mMyopDrs wD Moarrv oOo AZ04VU7 LOCATION? 3 GOLD HILL 69.KU PER UNIT VOLTAGE CASE NO. 304 OSCILLOGRAM NO. 7? LOAD REJECTION @ TEELAND 230KY 20.8 MS/DIV c Mopxrv A304UB LOCATION: 11 TEELAND 13.8 KU PER UNIT VOLTAGE CASE NO. 304 20.8 MS“DIV OSCILLOGRAM NO. 8 LOAD REJECTION @ TEELAND 230KU A-B mMODre c MoDxro c-A MOHDxry A304U9 LOCATION: 12 HEALY 12.@ KU PER UNIT VOLTAGE CASE NO. 304 2¢.8 MS/DIV OSCILLOGRAM NO. 9 LOAD REJECTION @ TEELAND 230KU 503 A304T1 LOCATION? 11 TEELAND TCR CURRENT SYSTEM KILOAMPERES Mopivw w MHYDrv Oo CASE NO. 304 20.0 MS/7DIV OSCILLOGRAM NO. 18 LOAD REJECTION @ TEELAND 230KU MoDxrvo Dd MHDrV wz MHNDPDrv oO A30412 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 304 26.0 MS/DIV OSCILLOGRAM NO. 11 LOAD REJECTION @ TEELAND 230KU 507 a BP iy A § E MOPRrVv DvD MMHpDxry Dd A304E1 “LOCATION? © 11 TEELAND 13.8 KU a PER. UNIT VOLTAGE 1.5 1.0 Q.5 9.2 -8.5 ~1.0- “1.5 SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES @.15-7 8.10 @.85 @.0@ aera a ~®.05 8.10 70.154. CASE NO, 304 20.8 MS/DIVU OSCILLOGRAM NO. 12 LGAD REJECTION @ TEELAND 23@KU TCR ARRESTER OPERATION EVALUATION FOR TYPE @t 2,13 COUL, EVALUATION FOR TYPE 3: &@.99 fT. Mackenzie 230 kV e fe vi. + .3PL CASE NO. 305° OPERATION: LOAD REJECTION Teeland 230 kV - FROM: Teoland Dougles 138 kv 138 kV, Cantwell? Pur feofommol ag Watena 138 kV 21 FT. Wainwright 1380) Gold Hill 138 kV 1G) QF = (13.8 kV [rex T T OPERATING BREAKER B CLOSING RESISTOR INSERTION TINE MAX. CL. SPAN 2.02 TO: 8.33 OPEN BREAKERS F.L,K.R @.00 (OHMS) cns) cns) CANTWELL~WATANA 138 KU LINE OUT OF SERVICE. HEALY GSU AND SUBSTATION TRANSFORMER ARE OFF. CONTINGENCIES SUS GAIN = 20, TIME CONSTANT = 15@ MSEC. SVANDARD REFERENCE SETTINGS. 72 MU LOAD FLOW SOUTH. Lecpeenaital eh taelinnigiel CASE! 305 TABLE 1 AOSTA TEMPORARY LINE-NEUTRAL “VOLTAGE CREST PER UNIT QUANTITIES (k=DENOTES NON~SINUSOIDAL > LOAD REJECTION AT TEELAND 138 Ku PRE-SWITCH VOLTAGES : BREAKER B IS CLOSED LOCATION a B c 3 @.99 6.99 1.01 4 1.92 1.01 1.03 S 1,02 1.00 2.99 6 1.03 1.00 0.98 @ 1,01 1.00 0.96 8 1.03 1.02 2.99 9 1.63 1.03 1.02 CASE! 3¢5 TABLE 2 A3205T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k*DENOTES NON-SINUSOIDAL ) LOAD REJECTION AT TEELAND 138 KV POST-SUITCH VOLTAGES BREAKER B IS OPEN LOCATION A B Cc 3 ©1928 1.00 1.00 4 1.1 1.15 8 1.13 Ss 1.1 1.09 * 1.97 6 1.08 1.06 1.04 ie 1.08 1.07 1.05 8 1.0? 1.07 1.05 9 1,05 1.05 1.04 MODI w& Mnnprr yD Moprvy oO 1.5- 1.0- @.5 @,0- “8.5 1.0 -1.5- 4.5 1.2- 0.5- 8.8- -9.5- | “1,5 1.8 AZOSVL - LOCATION? 3 TEELAND 138 KU FER UNIT VOLTAGE CASE NO. 305 OSCILLOGRAM NO. 1 LOAD REJECTION @ TEELAND 138KV 20.8 MS/DIV MOHDIrB w MODLDV D Marrs o A3zesSuUa LOCATION: 4 DOUGLAS 138 KU PER UNIT VOLTAGE CASE NO. 30S 20.8 NS/DIV OSCILLOGRAN NO. 2 LOAD REJECTION @ TEELAND 138KU MODxrID w MODIV D MAPIV oO AZ@SU3 LOCATION? 5S CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. 305 20.0 NS/DIU OSCILLOGRAM NO. 3 LOAD REJECTION @ TEELAND 138KU movxv >. Morvprv oo Moadiv wo AZ05U4 LOCATION: 6 HEALY 198 KU PER UNIT VOLTAGE “20.8 MS/DIV CASE NO. 305 OSCILLOGRAM NO. 4 LOAD REJECTION @ TEELAND 138KU MOHPLO w MoOprxrov oO MODID D A36SUS LOCATION? 7 NENANA. 138 KU PER UNIT VOLTAGE CASE NO. 305, 2¢.8 MS/DIU OSCILLOGRAN NO. 5S LOAD REJECTION @ TEELAND 138KV MHDiVv Dd Monprs w MoDrvyio AZ@SUG LOCATION? 8 GOLD HILL 138 KY PER UNIT VOLTAGE 1.5 1.6 @.5 2.0 6.5 1.8 “1.5 1.5 1.8 8.5 e.8 ~8.5 ~1.8 “1.5 1.5 1.0 @.s 6.0 -6.5 -1.0 =1.5 CASE NO. 385 28.0 MS/DIV OSCILLOGRAM NO. 6 LOAD REJECTION @ TEELAND 138KU 4 A Pp H aA § & MODIUV w morxrde o e Le. "Lee “=1.0 A305U7 “LOCATION: = g “GOLD- HILL: 69, KU “PER UNIT “VOLTAGE 6.5: 8.8 He} “0.5 “0.5 -1.0 “1,54 1.5 1.2 @.5 @.8- 8,5 “1.8 4.5 CASE NQ. 305 20.8 MS/DIVU OSCILLOGRAN NO. 7 LOAD REJECTION @ TEELAND 138KV eM ane A A-B mwoprvo Manpro mMoDoy AZBSVB LOCATION: ~ 14 TEELAND 13.8 KY PER UNIT VOLTAGE A38SV9 LOCATIONS HEALY 12 12.8 KU PER UNIT VOLTAGE 1.57. : 1.5 ret : pcp 1-0 ae ost P e.5 p 0.04 - K 2.8 K -0.54 2 -0.5 : -1.04 -1.0 “1.54 -tst 1.5 1,5 “| p-c 1-8 B-C 9.5- p @5 a 2.0 - A 2.8 i “5 z -8.5 ° ~1.0 -1.0 “usd “1.5 4.5 1.5 1.0 c-a 1:8 c-A @.5 p 25 7 0.0 wl 0.0 2 ~0.5 : -0.5 2 ~1.0- ~1.0 -1.5 ~1.5 CASE NO. 365 26.8 MS/DIV OSCILLOGRAM NO, 8 LGaD RESECTION @ TEELAND 138KY CASE NO. 30S 20.9 MS/DIV OSCILLOGRAM NO. 9 LOAD REJECTION @ TEELAND 138KU #30518 LOCATION? 43 GOLD HILL 13.8 KU PER UNIT VOLTAGE 1.5 1.8 @.5 9.@ -8.8 1.8 ~1.5 1.5 1.8 @.5 9.8 -6.5 -1.08 ~1.5 1.5 1.6 8.5 2.8 -0.5 -1.@ 2.5 CASE NO. 385 20.0 MS/DIVU OSCILLOGRAN NO. 18 LOAD REJECTION @ TEELAND 138KU Aa Mwnprv w mypryv > MwHrpxrDv oOo A3@SI1 LOCATION: 11 TEELAND TCR CURRENT SYSTEM KILOAMPERES “CASE NO. 30S 20.0 MS/DIU OSCILLOGRAM NO. 114 LOKD REJECTION @ TEELAND 138KU Moore w MHODpdrv D mMopxrv Oo AZOST2 LOCATION: 12 HEALY TCR CURRENT SYSTEM. KILOAMPERES CASE NO. 30S 20.0 NS/DIV OSCILLOGRAM NO, 12 LOAD REJECTION @ TEELAND 138KU mMoDpru ww MODrV Dv MOHDIvD oOo A30513 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 305 26.0 MS/DIV OSCILLOGRAM NO. 13 LOAD REJECTION @ TEELAND 138KU Q7a _ 7 AROSEL vip LOCATIONS 12. OS HEBLY 12.8 KY PER UNIT UOLTAGE MODrv DP SYSTEM KILO~AMPERES mMOPDITD D SYSTEM MEGA-JOULES @.15 9.10 8.05 2.00 -%.85 -0.10- -@.15 mwoprv D> CASE NO, 20S 20.0 MS/DIV OSCILLOGRAM NO, 14 LOAD REJECTION @ TEELAND 138KU TGR. ARRESTER OPERATION EVALUATION FOR TYPE et @.08 COUL. EVALUATION FOR TYPE 3! 1.62 mMonorwv & Mwupxrv w Monviso w AZOSES LOCATION? 14 TEELAND END OF LINE FROM DOUG. PER UNIT VOLTAGE SYSTEM KILO-AMPERES ~6.3 SYSTEM MEGA~JOULES 0.00- poh bs CASE NO. 38S 20,8 MS7D1U OSCILLOGRAM NO. 15 LOAD REJECTION @ TEELAND 138KV 192 KY ARRESTER OPERATION EVALUATION FOR TYPE 8: @.0@ COUL. EVALUATION FOR TYPE 3: 0.02 CWA Pt. MacKenzie 230 kV Teeland FT. Wainwright 138 ky Gold Hill 136 bv Cantwell Nenane 138 kV 10 TCR a 4 at TCR i) T busoaPt “OPERATING BREAKER B OPEN BREAKERS F.L,J CLOSING RESISTOR 0.68 (OHS) le 306 FROM: THSERTION TIME @.e0 (ms) ic tax. CL. SPAN 8.33 (MS) a IONt LOAD REJECTION Tor | as —— DESCRIPTION OF SYSTEM PNTUELL-USTANA 138 KY LINE OUT OF SERVICE. Y GENERATION ON. BLY SUBSTATION TRANSFORMER .OFF. CONTINGENCIES SYS GAIN = 20, -TIME CONSTANT ». 150 MSEC. STANDARD REFERENCES SETTINGS, _ CASE: 306 TABLE 1 A306T1 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (keDENOTES NON-SINUSOIDAL } LOAD REJECTION AT TEELAND 138 KV. PRE-SWITCH VOLTAGES. BREAKER J OPEN; BREAKER B CLOSED. LOCATION a R 1 1,01 9.99 1.02 2 1.02 8.99 1.03 3 1.02 ®.99 * 1.01 4 1.03 * 1.01 x 1.01 * 5 1.04 * 1.04% @.99 x 6 1.03 * 1.04% @.99 x CASE: 306 TABLE 2 A3¢6T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X= DENOTES NON-SINUSOIDAL ) LOAD REJECTION AT TEELAND 138 KV. POST-SUITCH VOLTAGES. BREAKER J OPEN; BREAKER B OPEN. LOCATION a B ¢ 1 9.99 1.01 1.01 2 @.99 1.01 2.01 3 0.98 1.98 8.99 4 i 1-06 x 1.06 x 5 is 1.05% 1,04 6 1.06 1,04 * 1,02 SRA Morpro w MoODIrD D mMmoaprv oO LUCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE CASE NO. 306 OSCILLOGRAM NO. 1 LOAD REJECTION @ TEELAND 138KY 20.8 MS/DIV MYDrIvD Bw MYUDrv D> MoDpDrIso yrs Loon Wats 4 DOUG LAS 138 KU PER UNTT VOLTAGE ‘a rar) Cn ' i w wv t ~ Peereprnerererbesanttorrineie| CASE NO. 306 20.8 MS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION @ TEELAND 138KU ModxrID w MAHDID O dee We CABTUCLL 138 KY PER UST VOLTAGE 1.5 1.0 8.5 8.0 “8.5 -1.8 “1.5 CASE NO. 306 20.8 MS/DIV OSCILLOGRAM NO. 3 LOAD REJECTION @ TEELAND 138KV Rano mMyprvo wo Marrp Yr MnYDrs oO gi CASE NO..306 OSCILLOGRAM NO. 4 LOAD REJECTION @ TEELAND 138KU asesu4 : A306U5 LOCATION: 6 LOCATIONS 11 HEALY 138 KU TEELAND 413.8 KU PER UNIT VOLTAGE PER UNIT VOLTAGE 1.5 a-p 1-8 @.5 @.0 -8.5 MHDoxrv 1.0 —1.5 1.5 1.0 B-C 6.5 8.0 -6.5 mMopvr “1.0 1.5 1.5 1.0 a.5 @.8 -@.5 1.6 “1.5 20.@ MS/DIV GASE NO. 306 29.0 MS/DIV OSCILLOGRAM NO. 5 LOAD REJECTION @ TEELAND 138KV a-p MmMovxrv Mapruv AZO6UE LOCATION? 12 HEALY 12.8 KU PER UNIT VOLTAGE 1.5 @ @.S 0.0 -@.5 1.8 “1.5 1.5 1.8 9.5 0.8 8.5 “1.0 “1.5 1.5 c-n 1-0 MADIV @.S5 @.e -@.5 “1.0 “1.5 CASE NO. 306 28.0 MS/DIV QSCILLOGRAM NO. 6 LOAD REJECTION @ TEELAND 138KV ANo mMonpro w Mopxruw Lr MoaPrTV oO 3-1. AI0GI1 LOCATION: 11 TEELAND TCR CURRENT SYSTEM KILOAMPERES “CASE NO. 306 20.0 NS/DIU OSCILLOGRAN NO. 7 LOAD REJECTION @ TEELAND 138KU MoHDrID ww Mwyprv Dd MoODrsw Oo Aze6I2 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 306 20,8 MS/DIV OSCILLOGRAM NO. 8 LORD REJECTION @ TEELAND 138KV Rne PT. Mackenzie 230 4V Tes} Shed) Teeland > fen fay 230 iO ise ney Teel ana Cantwed? 138 LV may ™ ase av IH 56 wi. AEs Nosema ea FT. mtn Waiowright se ky e 335 Av 0K (27 xi. Hoh }-GHia es Cold Wadd ms = 1S. ky 21, } TCR —s FROMM To: SANTHELL-UATANA 133 KU LINE IN SERVICE. REALLY GENERATION AND SULSTATION TEGNEEORPER OFF. CONTINGENCIES E_GONSTANT © 150 MSEC. SETTINGS. u 79 ANCHORAGE, OPERATING BREAKER B CLOSING RESISTOR 8.89 te CL. SPAN SERTION TIME 9.08 2.33 OPEN BREAKERS R,KsL COHLS 9 . (mis) . ais) ; . | - . t : | CASES 307 = TABLE 1. AB@7TI TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X= DENOTES” NON-SINUSOIDAL) LOAD REJECTION AT TEELAND 138 KV PRE-SUWITCH VOLTAGES BREAKER B CLOSED LOCATION A B c 3 8.99 8.98 1.02 4 1:01 1.00 1.02 5 1.03 1.00 @.99 6 1.03 tes 0.98 7 1.02 1.00 0.97 8 1.04 1.03 1.08 CASE: 307 TABLE 2 = AB07T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL ) LOAD REJECTION AT TEELAND 138 KV POST-SUITCH VOLTAGES BREAKER B OPEN LOCATION 4 B c 3 @.98 1.00 1.00 4 1.24 1.23 * 1.20 s 1.28 1.18 % 1.17 6 1.14 1.13 1.12 7 1.12 doit 1.18 8 1.09 1.08 1.68 622 MororID ww mMwprw DvD mMoerrv Oo 1.57 1.0 @.5 @.0 ~O.5 1.0 ebefeneebnne “1.5 1.5 1.0 @.5 @.0 -8.5- “1.2 ~1.8- 1.5 1.8 @.5+4 e.8 ~9.5- ~1.8 -$aF A3e7U1 LocaTION: 3 TEELAND 138 KV PER UNIT VOLTAGE CASE NO. 307 OSCILLOGRAM NO. 1 LOAD REJECTION @ TEELAND 138Ky 20.9 MS/DIU MorDiv » Morprov Oo MOoOPIrD D AZe7N2 LOCATION: 4 DOUGLAS 138 KU PER UNIT VOLTAGE CASE NO. 307 28.8 MS/DIV OSCILLOGRAM NO. @ LOAD REJECTION @ TEELAND 138KU Monrorv w MnaDrIvDv D> MnHDxrID oO A36703 LOCATION: 5& CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. 307 20.8 MS/DIV OSCILLOGRAM NO. 3 LOAD REJECTION @ TEELAND 138KV 640 MODI Dp Morrv ww MHD Oo 3 CASE NO. 307 GSCILLOGRAM NO. 4 LUAD REJECTION @ TEELAND 138K AIB7V4 LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE 20.0 MS/DIV MHoprso w mMmoODprse D> Morris Oo A3O7US LOCATION: 7 NENANA 138 KY PER UNIT VOLTAGE CASE NO. 307 20.9 MS/DIV OSCILLOGRAM NO. S LOAD REJECTION @ TEELAND 138KY MAPDID w mMaDPrv Dd MOaDrovUvo A307U6 LOCATION: 8 GOLD HILL 138 KU PER UNIT VOLTAGE 1.5 1.8 9.5 a.0 -0.5 “1.8 -1.5 1.5 1.0 0.5 6.8 -@.5 1.0 “1.5 1.5 1.6 8.5 e.8 0.5 -1.@ CASE NO. 307 28.8 NS/DIV OSCILLOGRAM NO. 6 LOAD REJECTION @ TEELAND 138KU RAT MorPrvo ww MODrDB Db MonDryv oO A367U7 LOCATION: 15 UATANA END OF LINE FROM CANT. PER UNIT VOLTAGE “A CASE NO. 307 20.0 MS/DIV OSCILLOGRAM NO. 7 LOAD REJECTION @ TEELAND 138KU 653 A307U8 LOCATION: 11 TEELAND 13,8 KU PER UNIT VOLTAGE 157, 1.0- 0.5 8.0 -0.5- “1.0 Tega “A-B MADD 1.5 pec 1:2: @.5- a.2 -0.5 -1.04 movi “1.5 CASE NO, 307 OSCILLOGRAM NO. 8 LOAD REJECTION @ TEELAND 198KU 28.8 MS/DIV MaYvID Moprv MoDxry Cc A A307U9 LOCATION: {2 HEALY 12.0 KU PER UNIT VOLTAGE 1.5 ap 1+ @.5 2.0 -6.5 -1.9 1.5. 1.5 1.8 9.5 e.9 -6.5 1,0 1.5 1.5 1.8 @.5 e.@ CASE NO. 307 28.0 MS/DIV OSCILLOGRAN NO, 9 LOAD REJECTION @ TEELAND 138KU A-B MoYDxrv MnDIV P H Aa $ £ A38719 LOCATION: 13 GOLD HILL 13.8 KU PER UNIT VOLTAGE 1.5 1.0 @.5 2.8 -@.5 1.0 1.5 1.5 nena B-c 1-8 8.5 9.8 8.5 ~1.8 “1.5 1.5 c-a 1-¢ @.5 2.8 -O.5 ~1.6 1.5 CASE NO. 387 26.8 NS/BIV OSCILLOGRAM NO. 10 LOAD REJECTION @ TEELAND 138KU mMopirt DvD Mopro ww Mypxrw Oo AZ67I1 LOCATION? 11 TEELAND TCR CURRENT SYSTEM KILOAMPERES CASE NO. 307 28.8 MS/DIV OSCILLOGRAN NO. 11 LOAD REJECTION @ TEELAND 138K MODxrIvD w MODIrID D Morrdv © A3e712 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 307 20.0 MS7DIU OSCILLOGRAM NO. 12 LOAD REJECTION @ TEELAND 138KV Mopvpxro w mMwrpxrv Dd MoHDxro Oo A30713 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 307 20.8 MS/DIV OSCILLOGRAN NO. 13 LOAD REJECTION @ TEELAND 138KYU Cae mMnDrv Dv a MoOrprIDp DPD A307E4 LOCATION: 12 HEALY 12.@ KU PER UNIT VOLTAGE 1.5 1.0 8.5 8.8 0.5 1.0 “1.5 SYSTEM KILO-AMPERES os» » wW | haa SYSTEM MEGA-JOULES @,1S+ @.10 2.05 2.00 -0.05 0.10 8.15 + CASE NO, 307 20.8 MS/DIV OSCILLOGRAM NO. 14 LOAD REJECTION @ TEELAND 138KU TCR ARRESTER OPERATION EVALUATION FOR TYPE 2t 41.99 COUL. EVALUATION FOR TYPE 32 3.14 | rt. MacKenzie 230 bv Teeland 230 Av Teoland Douglas . Fr. Healy Nonane Gold Hill Wainwright > fam fait fraarey = er arsxxafoama) ool () © | — eet} © ae : | ata 138 kv Gold Hild 13.8 bv ] L\ wt BPL OPERATING BREAKER Q OPEN BREAKERS R,K,L,F,T CLOSING RESISTOR @.88 (OHMS) CRSE NO. . 308 FROM: INSERTION TINE 0.08 (MS) OPERATION! LOAD REJECTION Tor MAX. CL. SPAN 8.33 (M3) en DESCRIPTION OF SYSTEM CANTUELL-UATANA 125 KU LINE NOT IN SERVICE. KEALY GEU AND SUBSTATION TRANSFORMER ARE OFF. TEELAND SUS OFF CONTINGENCIES 8, TIME CONSTANT » 150 MSEC. ERENCE SETTINGS. LOW TO FAIRBANKS. DESCRIPTION $US GAIN © *LOCATION 44 IS THE GOLD HILL END OF LINE FROM NENANA. STANDARD FI TO Mul LOD e : - CASE: 308 TABLE 1 AZO8T1 TEMPORARY LINE-NEUTRAL VOLTAGE _ CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL) LOAD REJECTION AT GOLD HILL 138 KV PRE-SUITCH VOLTAGES BREAKER G@ IS CLOSED LOCATION A B c 3 @.93 2.99 9,98 4 6.98 8.99 @.96 S 1.01 1.01 @.99 6 1,02 1.81 1.01 7 1,04 1.60 1.02 8 1.01 41.01 1.03 g 1.03 1.02 1.04 14 1,01 1.01 1,03 CASE 308 TABLE 2 AI@8T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL ) LOAD REJECTION AT GOLD HILL 138 KU POST-SUITCH VOLTAGES BREAKER @ IS OPEN LOCATION a B Cc 3 1.04 1.@5 1.04 4 1.06 1.06 1.05 5 1.08 * 1.06 1,05 6 1.07 % 1.05 1.04 2 1.09 ¥ 1.08 * 1.05 8 1.03 1.02 1.03 9 1.03 1.02 1.03 14 1.11 % 1.10 x 1.05 mMapro w mMunpro D Marry Oo 1.5 1.0 @.S e.8 “8.5 1.8 1.5 1.5 1.0 @.s 8.0 ~0.5 1.0 “Sie5 1.5 AZOBV1 LOCATION: 3 TEELAND 138 KV PER UNIT VOLTAGE 7 Wit 1.04: @.S 8.e -@.5 “1.0 “1.5 t CASE NO. 308 OSCILLOGRAM NO. 1 LOAD REJECTION AT G.H. 20.8 MS/DIV 138 KU MoprDv w MonoDrDd Dd MHPrVv Oo 1.5 1.8 @.5 0.8 -8.5 -1.8 1.5 1.5 1.6 0. e.8 6.5 1.0 1.5 1.5 1.0 @.5 @.8 8.5 “1.8 “1.5 CASE NO. 308 OSCILLOGRAM NO. 2 LOAD REJECTION AT G.H. AI8BVe LOCATION: 4 DOUGLAS 138 KV PER UNIT VOLTAGE 26.8 MS/DIV 138 KU MoadDxrDV Dd mMnprv w MaADPIrDW oO AI08YU3 LOCATION: 5 CANTWELL i138 KV PER UNIT VOLTAGE CASE NO. 308 20.8 NS/DIV OSCILLOGRAM NO. 3 LOAD REJECTION AT G.H. 138 KU 7M” mMornpivs w MaDpDin Db Mopryv oO AIORV4 LOCATION: 6 HEALY 138 KV PER UNIT VOLTAGE CASE NO. 368 20.8 MS/DIV OSCILLOGRAN NO. 4 LOAD REJECTION AT G.H, 138 KY mMwnHpvpiv wo MoODxrIv Dd MorDryv Oo AZOBUS LOCATION: 7 NENANA 138 KV PER UNIT VOLTAGE CASE NO. 308 OSCILLOGRAM NO. 5 LOAD REJECTION AT G.H, 26.8 MS/DIV 138 KU Maprow w mMHDrIV MoDxrUw oO AZ@BUE LOCATION: 8 GOLD HILL 138 KYU PER UNIT YOLTAGE 1.5 1.0 ®.5 @.0 -8.S 1.8 1.5 1.5 1.0 @.5 8.0 -8.5 -1.8 “1.5 1.5 1.8 o.5 0.8 8.5 ~1.0 ~1.5+ CASE NO. 308 28.8 MS/DIV QOSCILLOGRAM NO. 6 LOAD REJECTION AT G.H. 138 KY Ne morro w MODLD D mMworrsve o AIQBU7 LOCATION: 9 GOLD HILL 69 KU PER UNIT VOLTAGE 1.5 1.8 @.5 + 8.2 -@.5 “1.9 1.5 CASE NO. 308 OSCILLOGRAM NO. 7 LOAD REJECTION AT G.H. 138 KU 20.8 MS/DIV MODIGD & MHDIrV D MaDpxrov o A3e@8U8 LOCATION: 14 GOLD HILL END OF LINE FROM NE. PER UNIT VOLTAGE CASE NO. 308 20.8 NS“DIV QOSCILLOGRAM NO. 8 LOAD REJECTION AT G.H. 138 KU 1.5 pec 1-0 MoDndDxrv c-a 10 Morir @.5 9.8 78.5 1.0 “1.5 Hreeterentes. 1.5 a.5 A3Z68VS LOCATION: 114 - TEELAND 13.8 KU PER UNIT VOLTAGE 8.8 FF “8.5 ~1.0- “1.57 29,0 MS/DIV CASE NO, 308 OSCILLOGRAM NO. G LOAD REJECTION AT G.H. 138 KV B-C MaADrV c-A Maviriv A38810 LOCATION? 12 HEALY 12.8 KY PER UNIT VOLTAGE CASE NO. 308 20.0 MS/DIV OSCILLOGRAM NO. 18 LCAD REJECTION AT G.H. 138 KV AZ08114 LOCATION: 13 GOLD HILL 13.8 KV PER UNIT VOLTAGE 1.5 g 1-0 0.5 A 0.8 Mopxryv -6.5 1.8 “1.5 1.5 Bc 1+8 8.5 9.8 Moroxrv 8.5 “1.8 “1.5 1.5 c-a 3:2 6.5 8.0 -9.5 ~1.8 Morxrv CASE NO. 368 20.0 MSvDIV OSCILLOGRAM NO. it LOAD REJECTION AT G.H. 138 KV mMonpDprvo w MOnnopirv D> Mworprwo AZO8I1 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 308 20.8 MS/DIV OSCILLOGRAM NO. 12 LOAD REJECTION AT G.H, 138 KV MnaDvrDo Dd MoHp>xro ww MnDxrD oO AZe81e LOCATION? 43 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES wovore fF = YM Ww CASE NO. 368 20.8 MS/DIV OSCILLOGRAM NO. 13 LOAD REJECTION AT G.H. 138 KU A mopxrsvw Dd MoODPDIrB Dd MoDIv DP AZO8E1 LOCATION: 12 HEALY 12.@ KU PER UNIT VOLTAGE 1.53 1<@'2 8.5 9.0 ~-0.5- “1.0 lear SYSTEM KILO-AMPERES 1.5 1.0 @.5 @.0- -@.S “1.8 2.5 SYSTEM MEGA~JOULES @.15 @.18 8.05 2.00 ee ee 0.85 -8.10 0.154. CASE NO. 308 20.8 MS/DIV OSCILLOGRAM NO. 14 LOAD REJECTION AT G.H. 138 KV TCR ARRESTER OPERATION EVALUATION FOR TYPE 2 .@@ COUL. EVALUATION FOR TYPE 3: 1.63 Tain LORS tT. MacKenzre 230 kv Veeland fee hot Deuples 158 kY O Terdand iss Wy Watone 136 kv SUB STATI ON TRANSFGRNE FIRING 7 TO FAIRBE FLoY ARE OFF. = iSS MSEC. C neal Paha catal neh ere arenes er onenennemnetees omens? Mealy rsa "C) Y? ‘antwell asa i" 1 |ni-@ oe Hendy Nenana 330 1 oc=afomma loca] [2 4 DL Ra on ay ©. Gold Hil) yes ky Fr. Werovright Coid With [ire] ds.8 av OPERATING BREAKER B “OPEN BREAKERS RAKo uF aa CLOSING RESISTOR —--@.06. (OIINS) INSERTION TINE 9.00 (113) MAX. ol. SPAM £.33 «4$) LOCATION 14 15 THE TEGLAND END OF LINE FROM DOUGLAS ManRrrnI Oo AIL LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE CASE NG. 309 COCILLOGRAM NO. 1 LOAD RESECTION @ TEEL. 138KU HEALY Sv5 NOT FIRING 10.0 MS/DIV MnvprIsd w MoPpxov Dd MYrPrID oO AIs92 LOCATION: 14 TEELAND END OF LINE FROM HEALY PER UNIT YOLTAGE "CASE NO. 309 20.0 NS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION @ TEEL. 138KU HEALY SUS NOT FIRING Mopnprao w MOHDIEVD D MoODrIU oO AIIYIZ LOCATIGN: 4 DOUGLAS 138 KU PER UNIT VOLTAGE CASE NO. 309 20.8 NS/DIV OSCILLOGRAM NO. 3 LOAD REJECTION @ TEEL. 198KV HEALY SUS NOT FIRING 918 MuNPpPrse w MADIG D MmMwupiwvws od case NO. 309 OSCILLOGRAM NO. 4 LOAD REJECTION @ TEELAND 138KYU HEALY SUS NOT FIRING #399U4 LOCATION! § SANTWELL. 198 KU "PER UNIT VOLTAGE 20.0 MS/DIV mMoODpDrID wo MnDIrIvD YD MOoDoDrv oOo A309US LOCATION: 6 HEALY 138 KY PER UNIT VOLTAGE CASE NO. 369 28.0 MS/DIV OSCILLOGRAM NO. S LOAD REJECTION @ TEELAND 138KY HEALY SUS NOT FIRING MoDpDrv wo MHo>rv D> Morpryv Oo AZESVE LOCATION: 7 NENANA 138 KYU PER UNIT VOLTAGE ae CASE NO. 309 20.8 MS7DIU OSCILLOGRAMN NO. 6 LOAD REJECTION @ TEELAND 138KV HEALY SUS NOT FIRING CO mMnyvis ws MOoODIVD FD Marrs o A309U7 LOCATION: 3 GOLD HILL 138 KU PER UNIT VOLTAGE CASE NO. 309 OSCILLOGRAM NO. 7 20.8 MS/7DIV LOAD REJECTION @ TEELAND 138KV HEALY SUS NOT FIRING 590 MmaADrvVD bv Moayxrv oo Mwnrrso AZe9I1 LOCATION: 14 TEELAND TCR CURRENT SYSTEM KILOAMPERES CASE NO, 309 20.8 MS/DIV OSCILLOGRAM NO. 8 LOAD REJECTION @ TEELAND 138KY HEALY SUS NOT FIRING MoprD w MODIGW D MaDIrID O a3zegI2 LOCATION? 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 309 26.8 MS/DIV OSCILLOGRAM NO. 9 LOAD REJECTION @ TEELAND 138KU HEALY SUS NOT FIRING P24 a-B mMnpre B c MODI c 4 MoOnprs A309UB LOCATION: 1 TEELAND 195.8 KU FER UNIT VOLTAGE “CASE NO. 3¢9 QOSCTLLOGRAM NO. 16 LOAD REJECTION @ TEELAND 138KU HEALY Sv¥5 NOT FIRING 20.8 MS/DIV B-C MnDIrD AZe9U9 LOCATION? 12 HEALY 12.8 Ku PER UNIT VOLTAGE P H a $ E 3 = B-C af P H 4 A =f $ E -2 -3 3 e c-A : P 4 e Aa - $ 7 E -2 -3 CASE NO. 309 20.4 MS/DIV OSCILLOGRAM NO. 11 LOAD REJECTION @ TEELAND 138KV HEALY SUS NOT FIRING A30916 LOCATION? 13 GOLD HILL 23.8 KU PER UNIT VOLTAGE 1.5 a-p 1-2 8.5 1 8.0 7 -O.5 “1.8 mek 1.5 1.0 e.5 @.0 ~0.5 -1.8 ~1.5 1.5 1.8 8.5 2.8 — -9.5 -1.8 “1.65 CASE NO, 309 26.0 MS7DIV OSCILLOGRAM NO, 12 LOAD PEJECTION @ TEELAND 138KY HEALY SUS NOT FIRING DAK AZO9E1 LOCATION: 14 TEELAND END OF LINE FROM DOUG. PER UNIT VOLTAGE 74 a+ A P 4 C4 HEP + $ E SYSTEM KILO-AMPERES q % p 0-0S- { H = 4 0.00 +--+ $ E SYSTEM MEGA-JOULES “CASE NO. 309 20.0 MS/DIV OSCILLOGRAM NO. 13 LUAD RESECTION @ TEELAND 138KU 198 KY ARRESTER OPERATION EVALUATION FOR TYPE 2% @.08 COUL. EVALUATION FOR TYPE 32 @.03 MOHDID D MonDdDIrO D MoODIIrV D A3IB9E2 LOCATION: 12 HEALY 12.0 KV PER UNIT VOLTAGE SYSTEM KILO-AMNPERES 9.6 @.4 0.2 0.0 -@.2 -0.4 0.6 SYSTEM MEGA-JOULES @.15 @.104 @.05 9.00- ~8.05 -@.10 -0.15 CASE NO. 309 20.8 MS/DIV OSCILLOGRAM NO. 14 LOAD REJECTION @ TEELAND 138KU TCR ARRESTER OPERATION EVALUATION FOR TYPE at @.@@ COUL. EVALUATION FOR TYPE 3: O11 2NRQ AZOIES LOCATION: 14 TEELAND END OF LINE FROM DOUG. PER UNIT VOLTAGE 3+ mMnprrv DvD MADrIs vo SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES fot Ht CASE NO. 309 20.0 MS/DIV OSCILLOGRAM NO. 15 LOAD REJECTION @ TEELAND 138KU 108 KV ARRESTER OPERATION EVALUATION FOR TYPE 2: @.@@ COUL. EVALUATION FOR TYPE 37 0.80 375 ev MocKeprie ie ae vey “fy crvee hey tame ne maaan l S © aN : T Gs) oa (60 Hi F- es oe. as fr pore eee as Neely - ie TCR . “> [en T T — a OPERATING BREAKER AL OPEN BREAKERS R,XLF. | CLOSING RESISTOR 0.82 CONNS> Cae, can FROM? TLELAND 230 KU INSERTION TIME @.00 (mS) tiax. CL. SPAN 8.33 (M5) DESCRI ON -- LOCATION 44 16 THE 836 KY SIDE OF TEELAND TRANSFORMS D> MOrpxrs w MODI. mADIrY 2 AZ10V1 LOCATION? 14 230 KU SIDE OF TEELAND XFMR PER UNIT VOLTAGE CASE NO. 318 OSCILLOGRAM NO. 1 20.8 MS/DIV LOAD REJECTION @ TEELAND @30KY TEELAND SVS NOT FIRING MOHdpxrv D> MoapDrvw ws MHprn Oo AZLEVe LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE CASE NO. 318 20.8 MS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION @ TEELAND 230KV TEELAND SUS NOT FIRING mMorprv Dd MYNDID w MODrV Oo A310U3 LOCATION: 4 DOUGLAS 138 KY PER UNIT VOLTAGE CASE NO. 318 20.0 MS/DIV OSCILLOGRAM NO. 3 LOAD REJECTION @ TEELAND 2@36KU TEELAND SUS NOT FIRING .9C7 Movin w MHPxrD D mMwHriris oO A31004 LOCATION? 5 CANTWELL 138 KV » PER UNIT VOLTAGE 0.84 4H + 5 ~1.@- 1.5- 1.2- @.5 2.04 -@.5 “1.0- 71.62 Case NO. 318 20.9 MS/DIV OSCILLCGRAM NO. 4 LOAD REJECTIGN @ TEELAND 230KU TEELHND SVS NOT FIRING MAPIrD w MApoprv D> MOrrw oO A318US LOCATION: 6 HEALY 138 KV PER UNIT VOLTAGE > CASE NO. 31@ 26.8 MS/DIV OSCILLOGRAM NO. 5 LOAD REJECTION @ TEELAND 230KU TEELAND SUS NOT FIRING mMnaDxro MuDrD w Mupxrvse o 1.5 sed 1.0 8.5 8.8 ~8.5 —1.64 -1.5 1.5 1.8 8.S 9.0 -8.5 “1.9 “1.5 1.5 1.0 @.5 e.8 -8.5 ~1.8 “1.5 A316U6 LOCATION: 7 NENANA 138 KY PER UNIT VOLTAGE —_— CASE NO. 318 20.0 MS/DIV OSCILLOGRAM NO. 6 LOAD REJECTION @ TEELAND 230KY TEELAND SUS NOT FIRING moriruvw w maAnDPIrn Db Mwopirivs oo AZLAY7 LOCATION: 8 GOLD HILL 138 KU ' PER UNIT VOLTAGE 1.5 1.8 @.5 8.8 -@.5 “1.0 “1.5 CASE NO. 310 20.8 NS/DIV OSCILLOGRAM NO. 7? LOAD REJECTION @ TEELAND 230KU TEELAND SVS NOT FIRING 9Kna 1.5 jNee A318U8 LOCATION: 11 TEELAND 13.8 KV -PER UNIT VOLTAGE “CASE NO. 318 26.8 ms/DIU QSCILLCCRAM NO, 8 LOAD PEJECTION @ TEELAND 2@30KU TEELAND SYS NOT FIRING A310U9 LOCATION? 12 HEALY 12.0 KYU PER UNIT VOLTAGE 1.5 a-p 1:0 c MODIV c MoaADspxowv a MHnvorv 8.5 a. -0.5 “1.0 “1.5 1.5 1.0 8.5 8.8 jo -8.5 “1.8 “1.5 CASE NO. 310 20.0 MS/DIV OSCILLOGRAM NO. 9 LOAD REJECTION @ TEELAND @3@KU TEELAND SUS NOT FIRING MaPDrv B-C Mopvrov c-8& Morvre A3Z1019 LOCATION? 13 GOLD HILL 138 KV PER UNIT VOLTAGE 1.5 1.0 @.5 8.8 0.5 “1.0 “1.5 -8.5 -1.8 -1.5 1.5 1.8 e.5 0.8 ~-O.5 “1.8 “2.5 CASE NO, 310 20.0 MS/DIV OSCILLOGRAM NO. 12 LOAD REJECTION @ TEELAND @38KY TEELAND SVS NOT FIRING DA MADP>IrCDM YD MoDdrv Marrs qo A31011 | LOCATION? 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO, 318 20.0 MS/DIV OSCILLOGRAM NO. 41 LOAD REJECTION @ TEELAND 230KU TEELAND SUS NOT FIRING MuDrv Dv MaAruvD w Moprv oOo AaLer2 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 310 20.8 MS/DIV OSCILLOGRAM NO. 12 LOAD REJECTION @ TEELAND 230KV TEELAND SUS NOT FIRING O7E MODIrD MHoxrD w MoOprv w 1.5 ABZ16£E1 LOCATION: 11 TEELAND 13.8KU PER UNIT VOLTAGE B \ P H } a s E SYSTEM KILO-AMPERES B Pp H a s € SYSTEM MEGA-JOULES B Pe H A s E CASE- NO. 310 20.8 MS/DIV OSCILLOGRAM NO. 13 LOAD REJECTION @ TEELAND 230KV TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: %.98 COUL. EVALUATION FOR TYPE 3% 1.30 1.5 1. 8.5 @.8 -@.5 1.8 “1.5 @.15 9.10 8.985 2.80 ~8.05 -8.10 “8.15 8.15 8.10 8.05 2.80 -8.a5 -8.18 ~@.45 AZ19ER LOCATION: 12 HEALY £2. KU PER UNIT VOLTAGE i \ \ ° P H aA $ & SYSTEM KILO-AMPERES A P H a $ € SYSTEM MEGA-JOULES MOoODIG D CASE NO. 318 20.8 MS/DIV OSCILLOGRAN NO. 14 LOAD REJECTION @ TEELAND 230KU TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: EVALUATION FOR TYPE 3: @.80 COUL. 2.80 A318E3 LOCATION: 3 TEELAND 138 KY PER UNIT VOLTAGE 1.5 1.8 f 8.5 ‘ 8.0 -6.5 -1.8 =1.5 SYSTEM KILO-AMPERES ®.157 0.10 8.85 8.80 -@.95 -@.18 8,15 poses. SYSTEM MEGA-JOULES 8.15 8.10 8.05 6.00 -8.85 -8.18 -8.15 CASE NO. 318 20.0 MS/DIV OSCILLOGRAM NO. 15 LOAD REJECTION @ TEELAND 23eKU 188 KU ARRESTER OPERATION EVALUATION FOR TYPE 2: @ EVALUATION FOR TYPE 32 @ 256 MHPDrIVv w MoropviVv wo Marprvw ws AZ1CE7 LOCATION: 41 TEELAND £3.8 KU PER UNIT VOLTAGE SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES CASE NO. 318 OSCILLOGRAM NO, 13 GOLD HILL-FT.WAIN, IN TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: EVALUATION FOR TYPE 3! MoDro w 20.0 MS/DIV @.0@ COUL. @.91 A3Z10E8 LOCATION! 12 HEALY 12.9 KU PER UNIT VOLTAGE SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES CASE NO. 310 OSCILLOGRAM NO. 14 GOLD HILL-FT. WAIN. IN TCR ARRESTER OPERATION EVALUATION FOR TYPE 2? EVALUATION FOR TYPE 31 MnoDxrv DvD mMApirwv Dd MOHODOIrV Dd 20.0 MS/DIV @.96 COUL. 8.90 AZ10ED LOCATION: 3 TEELAND 138 KY PER UNIT VOLTAGE 1.5 1.0 @.5 2.0 -@.5 =120 ~1.5 SYSTEM KILO-AMPERES @.15 @.10 @.e85 @.80 -8.05 -8.10 -@.15 SYSTEM MEGA-JOULES @.1S @.10 8.85 9.06 -8.05 -8.18 -@.15 CASE NO. 310 20.0 MS7DIV OSCILLOGRAM NO. 15 GOLD HILL ~ FT. WAIN. IN 1@8 KY ARRESTER OPERATION EVALUATION FOR TYPE 2: EVALUATION FOR TYPE 32 @.@8 COUL. 8.80 3hQ PT. MacKentie 230 bv Tecland Teelend Douglas FT. Nenana ie ; cle Wild Wainwright 138 bv ise Go) Ha} eo) > We of, Gord iad T T / © eee 136 Av 5) 138 ‘~) Sahl | en 4 EH a0] Watane ase ww OPERATING BREAKER @, 2 OPEN BREAKERS K,F.L.R B09 FROM! GOLD HILL 13&KY, Ad : FAULT INITIATION | TO: “GRGUND ~~ DESCRIPTION OF SYSTEM ° am RESULTS Arrester energy at Healy TCR is .42 MW SEC. Line arrester energy is low. DESCRIPTION GENLY GEN, AND SUBSTATION TRANSFORMER ARE OFF. ic KLOCATION 14 15 THE GOLD KILL END OF THE LIne FROM eenwe qe wn a eam whey een enw nem wen nese TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (*=DENOTES NON-SINUSOIDAL ) PRE-FAULT VOLTAGES LOCATION a B c 3 ' @.39 9.99 8.98 4 8.98 @.97 @.96 § ; 1.01 1.08 1.90 6 1.01 1.01 1.02 7 1.00 1.00 1.01 8 @.99 1.00 1.01 14 @.99 1.08 1.01 CASE: 200 TABLE 2 Az00T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL) SUSTAINED FAULT VOLTAGES LOCATION A B ¢c 3 @.91 1.0? @.93 4 8.85 1.07 @.91 S 2.58 1.09 @.96 6 0.48 1.89 9.99 7 %.24 1,03 1,01 8 @.01 ¥ 9.93 1.01 44 @.01 * @.99 1.01 331 CASE: 200 “TABLE 1 = A2BETI TEMPORARY LINE=NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (E=DENOTES NON=SINUSOIDAL 3 POST-FAULT VOLTAGES BREAKER G AND GOLD HILL 69KY ARE OPEN LOCATION - A B c 3 1.01 1.02 @.99 4 1.04 1.64 1,01 5 1.06 * 1.05 1.03 6 1.06 x 1.05 1.83 it 1.09 % 1.07 1.04 8 2.@1 8.01 @.91 14 1.09 * 1.08 % 1.04 % 37 Mopre Db MonDrv w MaPrrv o eS. Led } SiS" ‘peoovt LOCATION! 6 HEALY 138. KY PER UNIT VOLTAGE “CASE NO. 200 5.0 MS/DIU CSCILLOGRAM NO. 1 STEADY STATE VOLTAGES BREAKER G&GOLD HILL 69 KU OPEN MADID w MHNrory D MOoDxrD Oo Aazeove LOCATION: 14 GOLD HILL END OF THE LINE PER UNIT VOLTAGE 1.5— 1.04 a.5 0.0 -8.5 “1.0 -1,5+5 1.5 1.0 8.5 8.0 ~8.S “1.8 71.5 1.5 1.0 e@.S 0.0 8.5 1.0 1.5 CASE NO. 200 $.@ MsvDIU OSCILLOGRAM NO. 2 STEADY STATE VOLTAGES BREAKER Q&GOLD HILL 69 KU OPEN Q2A2 as TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF MAX rs &B c MU-SEC PHASE OP. KA. 202.8. 202.8 . 202.8 @.42 A 3 4,101 172.8 178.8 172.8 0.34 A 133.991 36.0 36.2 36:0 0.34 A 3 31044 He wee ee gd tee . : . . . A . 156.0 156.@ 156.0 ®.33 a 13. 4.106 86+ NO. POINTS = 382 {51.2 151.2. .151.2 - 0.33 A 132 4.164 . 180.0 180.0 180.0. @.33 A 6 3.974 34.8 34.8 34.8 8.32 A 3 3.036 = 178.8 178-8 178.8 @.32 A 3 3.813 2 6.5 38.4 38.4 38.4 9.32 A 5 3.203 B 150.@ 150.@ 150.8 0.32 A 13 3.913 : 186.0 186.@ 186.@ 0.32 A 2 3.981 = a. 188-4 188.4 188.4 @.32 A 2 4.152 ee 165.6 165.6 165.6 @.32 A B 3.917 157-2 157-2 157.2 @.31 A 3 3.929 & 183-6 183.6 183.6 @.31 A 3 3.988 Wi a3 37.2 37.2 37.2 @.31 A 3 3.284 a 190.8 190.8 196.8 9.31 A 3 4.020 43.2 43.2 43.2 @.31 A 13 2.776 al 201.6 201.6 201.6 0.31 A 13° -4.016 # @. 42.0 42.0 42.0 @.320 A 3. 2.807 Ra 357.6 357.6 357.6 9.38 A 4300 2.411 e 360.0 360.0 360.0 0.32 & 3 2.455 ct 8.t 189.6 189.6 189.6 Q.3e 868A B 4,187 e 164.4 164.4 164.4 0.30 2A 8 3.902 ee ge ee ge gg te 152.4 152.4 152.4 @.29 A 2 3.774 @.8t B.1 12 1@ 2838 S@ 7888 98 99 39.9 $9.93 192.0 192.0 192.0 @.29 a 13 3.61e PERCENTAGE 33.6 33.6 33-6 0.29 A 13 2.986 aa PE ER god Ee : : ‘ 3.94 6.0 6.0 6:0 e239 OA 3 al560 CASE! HOSE EO 48.9 48.0 48.¢ 0.29 A 3 2.766 235.2 835.2 235:2 0.29 A 3 4.311 234.0 234.0 834.0 0.289 A 1300 4.128 39.6 39.6 39:6 0.29 A 3. 2.793 2.2 2.2 2.2 «60.288 «=A 13 2.583 20:8 79.8 70:8 8.28 A 15- 3.084 200.4 200.4 «208.4 eB 13 3.550 368.8 368.8 sees orse Baa . . . . +51 Healy TCR Arrester 32.4 32.4 32.4 0.28 A 13 2.754 M 204.0 284.0 204.0 828A 2 3-738 ‘ 5 - +87. 2.459 5 5 148 ghee Ber 3 Bees CLOSING SPAN @.0 DEGREES . . . . 3 57 oe Bb Be $e 8 3 BS Sense 4 aac st : 6 . : “4 1.500E 91 3.600E @2 @.000E-01 @.000E-01 3.000E 02 97.28 97-8 $7.2 0.26 & § 3.596 1,009E 80 3.5Q0E 03 2.000E 02 3.000E 20 1.000E 00 181-2 181.2 181.2 @.c6 A 2 3.596 1:260E 1 2.080E 01 4.750E O01 2.0L7E 03 6.QQ2E Oi 30.8 30.8 30.8 0.260 A 18 2.495 B.330E G2 1.080E OB 1.100E 01 6.020E-81 @.000E-01 319 MmMapra zs mMaADPro w Mopiriv o A2OBV3 LOCATION: 3 “TEELAND 138 KV PER UNIT VOLTAGE “CASE NO. 200 5@.0 MSDIV CSCILLOGRAMN NO. 3 MAX. EVENT FROM DISTRIBUTION MoDru w MnDp>xrsw Dp MwHprIv o A2BV4 LOCATION: §& CANTUELL 138 KY PER URIT VOLTAGE case wo,200 50.0 MS/DIU OSCILLOGRAM NO. 4 MAX, EVENT FROM DISTRIBUTION Mnoxrv Dd MuHUDxrVv ww MnDrv Oo a2eous LOCATION: 6 HEALY 138 KY PER UNIT VOLTAGE CASE NO. 200 50.0 NS/DIV QSCILLOGRAM NO. S MAX. EVENT FROM DISTRIBUTION 351 Monrrv w MoOrprsw Oo ALOOVE LOCATION: 7? NENANA 138 KU PER UNIT VOLTAGE S@.0 MS/DIV “CASE NO. 2e0 OSCILLOGRAM NO. 6 MAX, EVENT FROM DISTRIBUTION Moovrv Dd MOoDdron w MHDrIs oO ALZWY? LOCATION: 8 GOLD HILL 138 KU PER UNIT VOLTAGE CASE NO. 200 OSCILLOGRAM NO. 7 MAX, EVENT FROM DISTRIBUTION 50.9 MS/DIV MoDrD w MonpDrIv Dd MHpxryw a A2COUB LOCATIONS 14 GOLD HILL END OF LINE FROM NEN PER UNIT VOLTAGE CASE NO. 200 OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION 58.0 MS/DIU 25/7 MonnpDiwv A2dEVUS LOCATION: 12 ’ HEALY 12.0 KV PER UNIT VOLTAGE “CASE NO. 280 50.8 MS/DIV OSCILLOGRAM NO. 9 Max. EVENT FROM DISTRIBUTION MnADPxrD oO A20819 LOCATION? 13 GOLD HILL 13.8 KV PER UNIT VOLTAGE CASE NO. 260 50.0 MS7DIV OSCILLOGRAM NO. 10 MAX. EVENT FROM DISTRIBUTION 387 MoDre w maprow bt MOrPrTIs Oo _ ABGOT1 “LOCATION! 24... TEELAND TCR CURRENT SYSTEM KILOAMPERES “CASE NO. 200 S@.@ MS/DIV OSCILLOGRAM NO. 11 MAX. EVENT FROM DISTRIBUTION 379 Maviv Pv MmMyrprrD Ww Morxrvs Oo Aa0e14 LOCATION: 8 TOT. FAULT CURR: ‘AT G.H. 138KV SYSTEM KILOAMPERES “CASE NO. 200 100.0 Hs/DIU OSCILLOGRAM NO. 14 MAX. EVENT FROM. DISTRIBUTION MODrvD Dd mMODiIs ww mMwoprv Oo AzeeIS LOCATION: 8 TOT. FAULT CURR. AT G.H. 138KU SYSTEM KILOAMPERES os uM ke mH CASE NO. 200 50.0 MS/DIV QOSCILLOGRAM NO. 15 MAX. EVENT FROM DISTRIBUTION 432 mMoOnpirv MORDrV pL mMNrrVv a AzeeI6 LOCATION: 8 FAULTCUR. CONTRIB. FROM G.H. 138 KV SYSTEM KILOAMPERES CASE NO. 200 “50.0 MS/DIV OSCILLOGRAM NO. 16 MAX, EVENT FROM DISTRIBUTION mMannpxrv Dd Monro w MoHPprvw oO ALOBI? LOCATION: 14 FAULT CUR. CONTRIB. FROM TEEL. SYSTEM KILOAMPERES 1.5 1.0 8.5 @.8 8.5 -1.0 “1.5 1.5 1.0 g.5 8.9 -6.5 “1.0 1.5 1.5 1.@ @.5 2.0 8.5 1.8 CASE NO. 200 S@.8 MS/DIV OSCILLOGRAM NO. 17 MAX. EVENT FROM DISTRIBUTION 428 > mMYDpDXrB DvD mMaDpiwv mMOroxrv Dv AZOCEL LOCATION! 12 HEALY 12.8 KU PER. UNIT VOLTAGE SYSTEM MEGA-JOULES @.15 @.10 0.85 + 8.00 \ -0.05 8,10 -@.152 CASE NO. 208 5.8 MS/DIV OSCILLOGRAM NO. 18 MAX. EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION moDirIv D> monru D> MOoDID D A2QER LOCATION: 12 HEALY 12.8 KU PER UNIT VOLTAGE 1.5 1.0 8.5 e.8 1 iJ nt -1.8 “1.5 SYSTEM KILO-ANPERES SYSTEM MEGA-JOULES e.3 @.2 @.1 2.8 “8.1 -@.2 "8.3 CASE NO. 280 5.@ NS/DIV OSCILLOGRAM NO. 19 MAX. EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION MODrv D MaDxXrIU D MoNDryu Dd A20CE3 LOCATION: 12 HEALY 12.8 KU PER UNIT VOLTAGE 1.5 1.8 a.S @.9 8.5 ' a s 4 ” n SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES e.3 @.2 @.t @.8 “8.1 -@.2 -6.3 CASE NO. 208 S.6 MS/DIV OSCILLOGRAM NO. 26 MAX. EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION 448 PT. MacKenzie 230 kV Teeland Teoland Douglas Fr. 230 “Oy ea "G) ae Cantwell Wealy Nenana Gora mite Wetowright (*) 138 —_ Nauk ise ey nsoay ise NO) pen fo Js a — a loam = pemnfem onal Gold — ©~ a. | Bu a Cold mie ase by OPERATING BREAKER J,@ OPEN BREAKERS K,F,L,R ORI grr rn tr tcc te rene ! i SE 10. aot FROM: HEALY END OF LINE BRATION? FAULT INITIATION TOL GROUND DESCRI@ TION OF SYSTEN RESULTS Arrester energy at Healy TCR is,31 MW SEC. : Arrester energy at Location 14 is low. ; ees —_ Description CENTUCLL-UATANA 228 KY LINE OUT OF SERVICE AHEALY GEN, AND SUBSTATION TRANSFORIER ARE OFF. : LOCATION 14 IS THE HEALY END CF LINE FROM CANTUELL 70 MU LOAD FLOU FROM ANCH: CONTI AGE TG FAIRBANKS SENCTES { iPr A TO GROUND FAULT AT KEALY END OF LINE FROM NENANA. “TABLE 1 °° ABOtTI IN e NEUTRAL VOLTAGE OREST PER UNIT QUANTITIES (k= DENOTES "NON-SINUSOIDAL) PRE-FAULT VOLTAGES LOCATION _. A . 8 ¢ 3 @.99 e.99 @.97 4 8.98 2.97 8.95 s 1.02 1.00 1.06 6 1.92 1.08 1.02 2 1.00 2.99 1.01 8 8.99 2.99 4.04 14 1.02 1.04 1.04 CASE? 201 TABLE 2 Ae1T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X*DENOTES NON-SINUSOIDAL) SUSTAINED FAULT VOLTAGES BREAKERS J AND N ARE CLOSED LOCATION 4 B c Derm cad Ss : o a ROVOMNAW 2S9e9s0 QHVOr 3 VIHKH IOS Peer ene eltsris (stiel's! si SEessee ate » +e pe oe eS Soo aU rw re 458 CASE? 201 TABLE 1 A201T3 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X* DENOTES NON-SINUSOIDAL ) POST-FAULT VOLTAGES BREAKERS J AND GARE OPEN LOCATION - A B c 3 41.01 % 1,02 1.04 4 1,04 * 1.92 ® 1.04 s 1.07 * 1.00 xX 1.08 6 1.02 * @.98 % 1.03 7 @.0 8.01 @.@1 8 1,08 1.01 1.01 414 1.85 ® 1.06 x 1.04 eee mo Monro w Movirs © MAPCD D t-S-p ab est @.e- -9.5 1.54 1.5 1.8 ALCLV1 LOCATION: 6 HEALY £38 KY * PER UNIT VOLTAGE CASE NO. 20% OSCILLOGRAM NO. 1 5.@ MS/DIV SUSTAINED FAULT VOLTAGES BREAKERS J AND @ ARE CLOSED Myprv w Morrow MAPID OO 1.5 1.8 o.5 o.@ -0.5 1.0 =1.5 1.5 1.9 @.5 9.9 8.5 -1.8 =1.5 1.5 1.2 @.5 8.8 “6.5 “1.0 =1.5 refines fone} A2e1Vve LOCATION? 7 NENANA 138 KU PER UNIT VOLTAGE CASE NO. 201 OSCILLOGRAM NO, 2 SUSTAINED FAULT VOLTAGES BREAKERS J AND @ ARE CLOSED 5.8 MS/DIV MODID w Manor MoprDv oo A2zO1U3 LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE 1.5 1.0 9.5 2.0 -8.5 “1.8 =1 5 1.5 1.0 e.5 8.8 ~O.5 -1,0 1.8 1.5 1.0 @.5 2.8 8.5 “1.8 1.5 CASE NO. 261 OSCILLOGRAM NO. 3 POST-FAULT YOLTAGES BREAKERS J AND Q@ ARE OPEN 5.0 MS/DIV 421 -TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF Max a B c MU-SEC PHASE OP. KA. 78.0 78.0 72.0 0.31 A 5 3.484 25.6 75.6 75:6 0.30 A 5 31250 76.8 76.8 76.8 0.30 A 2 3.576 ee et a te fo: ke 14 74, 4.4 ‘2 66.0 66.0 66.2 @.29 A 3. 3.050 re NO. POINTS = 398 67.2 67.2 6720 0.88 A 3 31084 8 r rt [4 T 73.2 73.28 73.2 0.22 A 6 3.287 87.6 87.6 87.6 9.28 A 8 3.223 = 70.8 78.8 70.8 0,28 A 3 3.189 9 4.5 85.2 85.2 85.2 8188 OA 5 3.114 a 68.4 68.4 68.4 @.28 A 5 3.086 2 72.0 72.8 72.0 @.28 A 3 3.395 = gy 84.9 84.0 84.0 4.88 A 2 3.162 a 82.8 82.8 82.8 @.27 A 8 3.006 86.4 86.4 86.4 e272 A 2 3.239 & 69.6 69.6 69.6 0.27 A 5 3:281 Bea + 62.4 62.4 62.4 0.27 A 3 3.108 a 81.6 81.6 81.6 @.2a7 A 2 3.123 90.8 90.0 99.@ @.27 A 10° -3.297 5 9.2 80.4 80.4 80:4 0.27 A 3 2.967 Fe 8-2 5 64.8 64.8 64.8 22 A 5 3.152 a 63.6 63.6 63:6 9.27 A 8 2.954 Y 92.4 92.4 92.4 0.268 =A 3 31334 c Ol 4 60.0 60-0 60:0 9.26 A 3. 2.997 c — 88.8 $8.8 88.8 0.26 A 3 3.263 a fi gi te: fim wp tH ti il| | The . . . . . . eeed eora a se eee O.8 B.: 12 18 2038 SQ 7a S65 )©699 99.9 99.99 31:2 91:2 91:2 0.85 A 3 32318 PERCENTAGE 273.6 873.6 273.6 0.25 aA B 3.419 ee aed amt Se fd Be : 74, 3 1240O« 2 3. 276.0 876.0 276.8 @:84 A 2 3.449 CASE NO. 201 g7i.2 71.2 = a7kc2 eae 2@ 31196 av2.4 872402724 les 2 31207 270:0 876.0 270.0 0:23 A 2 3.143 51:6 51.6 St.6 0:83 A 1302.64 55.28 55.2 $5.2 9.23 A 13 2.644 52.8 52.8 52.8 0.23 A 13 2.653 54.0 $4.8 54.0 0.22 A 13° 2.588 268/82 268:8 268:8 e282 A 1@ 8.977 ee ‘ ‘ i a ; ei ot SE Ge fo Eee a . . . ° a : = . GREES we Gh $B Rg ER ee —— ov — ; i : 220 ere Me MEE RB 2 ees ee er ' : . +1 i +62 1.5Q0E 01 3.60@E Q2 9.0@0E-O1 @.0Q0E-01 3.000E 02 260.4 2860.4 260.4 0.19 4 15 2.698 1.008E 09 3.SQGE 03 2.200E G2 3.000E 00 1.2e@0E 00 48.8 48.0 48.0 0.19 & {3 2.553 1.260E 01 BLOBGE Oi 4.758E 01 2.017E 039 6.2G0E at e66-4 266.4 266.4 0.19 43 2.674 B.33GE G@ 1.000F 0G 1.10GE Of @.0@0E-01 O.000E-91 559 MADIUV w Moore Oo azetu4 LocaTION: 3 TEELAND © 138 KU PER UNIT YOLTAGE 1,84 CASE NO. 202 QOSCILLOGRAM NO. 4 50.6 MS/DIV MAX. EVENT FROM DISTRIBUTION MnDpiv w Moyvxro Dv Marrs oOo Ae2eLUS LOCATION: 5 CANTWELL 138 KU PER UNIT VOLTAGE Ll CASE NO, 201 56.0 MSvDIV OSCILLOGRAM NO. S MAX. EVENT FROM DISTRIBUTION MaADro w MODrv DPD MADIrIvD a A2C1UE LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE 50.0 MS/DIVU CASE NO. 201 OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION S77 mMopDrvw w Moyporse yb MoOrxrwe oo 1.55 1.04 oe a @ -9.5- “1.9 ~1.52 8201V7 LOCATION: ?. NENANA 138. KY FER UNIT MOLTAGE CASE NO. 201 $@.8 MS/DIV OSCILLOGRAM NO. 7 MAX. EVENT FROM DISTRIBUTION MOnDIrID w Mop>rvw Dd Marrs o ALB1UB LOCATION: 8&8 GOLD HILL 138 KV PER UNIT VOLTAGE CASE NO. 201 OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION 50.8 NS/DIV 583 “. pze1US A20110 LOCATION? 11 LOCATION: 12 TEELAND 13.8 kU HEALY 12.8 KU PER UNIT UGLTAGE PER UNIT VOLTAGE a-s. *° ms H A € E B-c ** Pp Hq A $ E 1.8 c-a 1°? p oS Hq A 20 S -9.5 E -1.0 -1.5+ am CASE NO. 201 50.@ NS/DIU CASE NO. 201 50.0 MSvDIV OSCILLOGRAM NO. 9 OSCILLOGRAN NO. 10 Max. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION 587 MADrv w MADID FT MPonpDrv oO AzeO1T! LOCATION? 11 TEELAND-. TCR: CURRENT SYSTEM KILOAMPERES “CASE NO. 204 OSCILLOGRAM NO. 12 MAX, EVENT FROM DISTRIBUTION 50.8 MS/DIV MoaADrD wo Mnp>rvd Dd MODPIrV Oo Aev1T2 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 201 $8.0 MS/DIU OSCILLOGRAM NO. 13 MAX. EVENT FROM DISTRIBUTION MOaDrU MaDxruw D> MODIrvV Oo A20113 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOANPERES 1.5 1.0 @.S 8.0 -@.5 -1.8 -1.5 1.5 1.8 8.5 @.2 -0.5 -1.8 71.5 1.5 1.8 8.5 9.0 0.5 1.8 CASE NO. 201 58.0 MS/DIV OSCILLOGRAN NO. 14 MAX. EVENT FROM DISTRIBUTION 593 MODrIVv wo MOHDLD PD mMoOpris oO a2o1t4 LOCATION: FAULT HEALY END OF LINE FROM G.H. SYSTEM KILOAMPERES CASE NO. 201 50.8 MS/DIU QOSCILLOGRAM NO. 15 MAX. EVENT FROM DISTRIBUTION TOTAL FAULT CURRENT MoDpDxrvsv w MnDrsw D Morris 3° A2e@1IS LOCATION! FAULT HEALY END OF LINE FROM G.H. SYSTEM KILOAMPERES CASE NO. 201 100.0 MS7DIV OSCILLOGRAM NO. 16 MAX. EVENT FROM DISTRIBUTION TOTAL FAULT CURRENT 6n1 MwHNviriv ww mMyprv Dv Morpxrse oOo ABO1IG LOCATION: FAULT FAULT CUR. CONTRIB. FROM G.H. SYSTEM KILOAMPERES -.S- “1.0 1.54 CASE NO. 204 50.0 NS/DIV OSCILLOGRAM NO, 17 MAK, EVENT FROM DISTRIBUTION MYHDpDrIv w MnOpDrv Dd mMyrprs © ACOLI7 LOCATION: FAULT FAULT CUR. CONTRIB. FROM TEEL, SYSTEM KILOAMPERES 1.5 1.0 Q.5 0.8 1.0 1.5 1.5 Let @.5 e.0 -0.5 1.8 “1.5 1.57 1.8 8.5 8.8 -8.5 1.0 “1.5 CASE NO. eet 50.@ MS/DIY OSCILLOGRAM NO. 18 MAX. EVENT FROM DISTRIBUTION 607 PT. MecKenzie 230 hv Tecland 230 kV Teoland Pougles ise kv 238 Ay = ci li in TcR CASE NO, 222 FROM: HEALY 138 KU BUS OPERATION: FAULT INITIATION TOs GROUND Fr. Centwell Nenana Coralia Weiowright 138 i ise yO ase ay 138 kv (0) za a ee HGH He HaHa} HoH HEHE | ,o ae ~) & ee OPERATING BREAKER 1,J OPEN BREAKERS K,F-L, Ro Hitt DESCRIPTION OF SYSTEM [7@ MU LOAD FLOW FROM RACHCRAGE TO FAIRBANKS Tenino eer ~~ CUNTTRENCIES | ' PH. @ TO SROUND FAULT AT HEALY 138 KV BUS aa RESULTS Arrester energy at Healy TCR is .18 MW SEC. Line arrester energy is low. iti Hf DESCRIPTION CANTUELL-UATANA 138 KU LINE OUT OF SERVICE - HEALY GEN. AND SUBSTATIGN TRANSFORMER ARE OFF. ~ - : XLOCATION 14 IS THE HEALY END OF LINE FROM CANTUELL ~ va gna CASE: 202 TABLE 1 AzeeT1 TEMPORARY _LINE~NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL) PRE~FAULT VOLTAGES BREAKERS I AND J ARE CLOSED LOCATION. a B c 3 0.93 0.99 0.98 4 0.99 Q.97 0.96 5 1.02 1.00 1.80 6 4.02 1:00 1.0t 7 1:90 1.00 1:04 g 1:20 1.08 1101 14 1:02 1:04 1704 CASE: 202 TABLE 2 © AzeaTA TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k=DENOTES NON-SINUSOIDAL) SUSTAINED FAULT VOLTAGES BREAKERS I AND J ARE CLOSED LOCATION a B c SDIAGTAW @eeooeosoo SHU JO VaIDeorw a MMe Ft 34 9 Ht 9 EE eS ” Pe 94 26 Ht 94 90 - 617 -CASEt 222 «TABLE 1. AaeaTS TEMPORARY LINE-NEUTRAL VOLTAGE . CREST PER UNIT QUANTITIES (HeDENOTES NON-SINUSOIDAL ) POST-FAULT. VOLTAGES BREAKERS. I. AND J ARE OPEN LOCATION a B c 3 1.02 * 1.04 @.99 xk 4 1.05 Xx 1.e5 1.03 Ss 1.08 ¥ 1.07 & 1.04 * 6 @.01 ¥ @.03 * 6.03 ? 1.05 X 1,85 1.08 * 8 1.03 x 1.85 1.05 14 1.06 * 1.04 *¥ 1.01 * 621 MODID w MnHvDiIV PInpryv oO Aze2UL ‘LOCATION! 3 TEELAND . 138 KU PER UNIT VOLTAGE CASE NO. 20a OSCILLOGRAM NO. 1 5.8 MSvDIV SUSTAINED FAULT VOLTAGES BREAKERS I AND J CLOSED MODIrID D Mapxrwvow w mMoprv oo ALB2Ve LOCATION: 6 HEALY 138 KY PER UNIT YOLTAGE 1.5 1.9 e.5 8.8 “O65 1.0 “1.5 1.5 1,0 8.5 8.0 ~0.5 ~1.0 “1.5 CASE NO. 202 OSCILLOGRAM NO. 2 SUSTAINED FAULT VOLTAGES BREAKERS I AND J CLOSED 5.8 MS/DIV Mnnrro w mMaADIVD Morrow so. R223 LOCATION: 8 GOLD HILL 138 KU PER UNIT VOLTAGE 1.5 1.8 @.5 9.0 ~O.5 ~1.0 -1.5 15> 1.0 8.5 0.8 -0.5 1.0 1.5 1.8 1.0 8.5 9.8 ~@.5 “1.8 1.5 CASE NO. 202 OSCILLOGRAM NO. 3 SUSTAINED FAULT VOLTAGES BREAKERS I AND J CLOSED 5.0 MS/DIV 630 MODIDGD w moDrDrv Dd MOrrIv 2 “1.5 1.5- 1.904 9.S- .0 ~0.54 -1.0 “1.5 Aze2U4 LOCATION: 5S CANTWELL 138 KU . PER UNIT VOLTAGE CASE NO, 202 OSCILLOGRAM NO. 4 5.8 MS/DIV POST-FAULT VOLTAGES BREAKERS I AND J OPEN > MODID w MaADdDIVD MADID 1.5 1.8 @.5 0.8 -8.5 -1.8 Hosefanes “1.5 1.5 1.0 @.S 8.0 8.5 “1.0 “1.5 4.5 1.9 0.54 @.8 -@.S- “1.0 “1.5 Az2e2US LOCATION: 7 NENANA 138 KU PER UNIT VOLTAGE CASE NO. 202 OSCILLOGRAM NO. §& POST-FAULT VOLTAGES BREAKERS I AND J OPEN 5.8 MS7DIV MADD D MOoDIrIvD w MoprIv oO A202VE LOCATION: 14 HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE 1.5 1.0 @.S 0.0 -8.5 ~1.8 1.8 1.8 a.S .e -@.5 1.9 1.S 1.8 @.5 8.0 ~8.S ~1.0 -1.5 CASE NO. 202 OSCILLOGRAM NO. 6 POST-FAULT VOLTAGES BREAKERS I AND J OPEN 5.0 MS/DIV 636 PROBABILITY DISTRIBUTION TABLE OF ARRESTER ENERGIES KA. ENERGY. NO.OF MAX. MU-SEC PHASE OP. Cc CLOSING = FOR PHASE LyY 33 99.9 39.99 1.000E 90 §.600E @1 @.6@0E-O1 @.0Q0E-01 3,002E 02 NO. POINTS = 308 18 2838 58 7088 90 PERCENTAGE @.@ DEGREES azeeD1 9. 0Q0E-01 2.@17E 03 ©. 000E-O1 -5Q@0E 03 2.,00GE 02 3.000E 00 4.7S@E @1 1.100E 01 iz ee2 -600E 02 -@80E O1 -808E 20 3 3 2 1 CLOSING SPAN = SETUP DATA O.8L Bi CASE NO. Healy TCR Arrester a 8 8 a ® 8.1 8.8 (J3S- AW) ADYANS YALS3Yuy 1.500E O01 1.800E 00 1.e60E O1 8.33@E ee QYVUSOVUHUMDMUMOMIM MNS MOS - Ht tte ete Hed wtrtet att ae taccrccrcr¢ccrdcarcetdcacqrccarcdartrrdcerCarrcrrtrcrrierreeerreIrIecs AHOWDO-EKNEEEEEOWDVOVOOVUDVODDU YUH NYYHYHHHHYHDHMMHinhnnHnnTtT Ts ebrhehehehehehehelehehehenearhehrhrnrhrhihetehr ab hehe aehPirne hehe near hear kenene hear hehe tent aPar hehe ae hears 252 es is: 6 0 0 e 6 @ ee os SS SS ie LS b SK Sw DH Os OT 4 SE OY 8 ee ee 6 8 SSSSS5S95S5 5S OSS SSS SEE SSSSSESSSSESSSSSSSSSSSESSHSSSSSSSSS HOT TOV TOONS ONMSUOUOUUYTAUNSOUNNT TONTTTOONNNS TETSODUSHONOO a 616 iol a 8 8 ee le 1s 918 © se) Ie fa cee) lS ee et we eer ee Oe ee ° USUGCDSHUNGOMATHOGGOROTGOTTOONOONVSTUDHUUSGUNTOSHSGHYNA GEOR ONCE E00 00 1) 00 ES C8 IO, F— C) 00 CD IY S63 0) CE OY eek OOO ONY CI CI ES Oe FSO OD 1 UTS ea vs -“ tet ttt et eteteintetetet Ho Metter ne ROT THUTOSONSOKONOUY UVTAOUGSOUNTTYNTTTOUVDUNOTS TONDVNSSONOW USuaos SuNHGMATNUHoOMOTES TITAONHOLOSOTUDHUNSOUOUTDOMSON TH « RAADGMY HOM Ow Or ee) ANS MAATUSANTADOTOVUNTAHTE OAL OOMNAUUS Oete A ttt et tet et et ett A etter wet DOT T OUT OSHDOGHOONOUOUUT HUNDOUN TT ONT TTOONUNMS TOTANUSOWNUY USUOUOGHUNDDHOUTHHMO HITT OOT TADODOWOL COS TUN UNSOUUTOSDW SON T& + DAOW—L DOMOE ATO MDAAMIEIMOATVSHUTOHOTNUYT ATE HA ODM HA UUL WO wt rt - “ ~~ tt etet et let etetetes et et etetetet Peed Mupro w mMYoDIrYV Db Monpxrv o A282U1 LOCATION: 3 TEELAND 138 KV PER. UNIT VOLTAGE CASE NO. 202 S5@.@ MS/DIV QSCILLOGRAM NO. 7 MAX. EVENT FROM DISTRIBUTION MonDxrwv Dp MoHnDryw Moprvw oO Reeeve LOCATION: S$ CANTWELL 138 KV PER UNIT VOLTAGE CASE NO, 202 OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION 58.0 MS/DIV MADD ww MnAHDoUg Dd MADIrB O A2ORU3 LOCATION: 6 HEALY 138 KY PER UNIT VOLTAGE CASE NO. 262 SO.@ MS/DIV OSCILLOGRAN NO. 9 MAX. EVENT FROM DISTRIBUTION c74 MaADPLVB wo MADIV D> MnApre oO ABC2V4 LOCATION: 7 NENANA 138 KU PER UNIT VOLTAGE S: CASE NO. 282 SO. MS/DIV OSCILLOGRAM NO. 198 MAX. EVENT FROM DISTRIBUTION MODIrD w Mnoprv D> Monprvs oO A2B2VS LOCATION: 8 GOLD HILL 138 KU PER UNIT VOLTAGE “la “1.0 ~1.5 EY «5 HT CASE NO. 202 58.6 MS/DIV OSCILLOGRAN NO. 11 MAX. EVENT FROM DISTRIBUTION MaADprov w Mnapxrvy Dd MODID OO A2e2UE LOCATION? 14 HEALY END OF LINE FROM CANTWEL PER UNIT VOLTAGE gt CASE NO. 202 50.8 NS/DIV OSCILLOGRAM NO. 12 MAX. EVENT FROM DISTRIBUTION 7a " A2Q2U7 “LOCATION: — it TEELAND 13.8 KY PER UNIT VOLTAGE eg CHSE NO. 202 50.0 MS-DIU OSCILLOGRAM NO, 13 MAX. EVENT FROM DISTRIBUTION A-B T° moaDpxrs B-C Mopvrv c-A mMorvxrv 1.5 1.0 oll 1.5 “| Wi a | -e.54 “1.0 =i.5 = A2B2VB LOCATION: 12 HEALY 12.9 KY PER UNIT VOLTAGE ee Hi th ie wie oll ~t.5 iH {lV TAPE CASE NO. 282 58.8 MS/BIV OSCILLOGRAM NO. 14 MAX. EVENT FROM RISTRIBUTION 1.5 a-p ft @ mMnopxrv 0.S me HH ; | ii an -1.04 “1.5 1.5 pc 1-8 P ia) x oer S -a.5 € e.5 wi. od “1.5 1.5 c-a 1:9 Morrow @.5 a. oF -1.0 “1.5 NEAL i i} A2e2Ug LOCATION: 13 GOLD HILL 13.8 K¥ PER UNIT VOLTAGE a ae Ha TT cin i: : ai < | i He iu mani CASE NO. 202 SQ.eMS/DIV OSCILLOGRAM NO. 15 MAX. EVENT FROM DISTRIBUTION MONDxrD w mmnnoiv Moprv oOo Azo2I1 LOCATION: 11 TEELAND. TCR. CURRENT SYSTEM KILOAMPERES “CASE NO. Bez OSCILLOGRAM NO. 18 MAX. EVENT FROM DISTRIBUTION 58.08 MS/DIV mMHDrD DvD mMorprov w MoaDrD oO Ae2eeT2 LOCATION: 12 HEALY TCR CURRENT CASE NO. 202 SYSTEM KILOAMPERES $8.8 MS/DIV OSCILLOGRAM NO. 17 MAX. EVENT FROM DISTRIBUTION MODID w MoDre D> MYHrprv Oo Aze2z13 LOCATION: 132 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 202 58.8 MS/DIV OSCILLOGRAM NO. 18 MAX. EVENT FROM DISTRIBUTION taa myvirs w MnHDrs > MorPxrv oO Aze2TE LOCATIONt FAULT FAULT CUR. CONTRIB. FROM TEEL. 1.53 1.04 ost @.2- ie Sh “1.0 @.0- =0.5- “1,0 “1.5 ~ CASE NO. 202 SYSTEM KILOAMPERES $8.8 NS/DIV CSCILLOGRAM NO. 21 MAX. EVENT FROM DISTRIBUTION mapvxrvo w MADID D MHrDrrVv oO Aeee2I7 LOCATION: FAULT FAULT CUR. CONTRIB. FROM G.H. SYSTEM KILOAMPERES 1.5 1.0 @.S @.0 -@.5 1.0 “1.5 1.5 1.8 @.5 8.a ~8.5 “1.0 ~1.5 CASE NO. 202 50.8 MS/DIV OSCILLOGRAM NO. 22 MAX. EVENT FROM DISTRIBUTION Mopxrwv ws MyYpDrvD DvD mMoODoDrvw Oo Aze2TZ LOCATION: FAULT FAULT CUR. FROM HEALY TRANS. SYSTEM KILOAMPERES 0.6 6.4 @.2 8.8 -8.2 -@.4 -8.6 -9.2 6 le CASE NO. 202 58.8 MS7DIU OSCILLOGRAM NO. 2&3 MAX. EVENT FROM DISTRIBUTION ae Pt. MecKenrie x aay Teoland Teotand Douglas fo oH ae | eae fi Wacane Teotand ase iby aes 13.0 kv TCR re , lense wo, . 203 FROM: DOUGLAS END OF LINE ERATION: FAULT YHITIATION To: | GROUND DESCRIPTION OF SYSTEM ee 70 [ili LOAD FLOW FRO ANCHORAGE. TO FATRBANKS CONTINGENCIES Fh~A TO GROUND FAULT AT DOUGLAS END OF LINE FROM HEALY 138 KY ! + eee Centwell - Nenana ise kv aS cores FT. Meaty Gold Hild Weiowright a] OPERATING BREAKER D,T OPEN BREAKERS K,F,U,R Arrester energy at Healy TCR is .05 MW SEC. Line arrester energy is low. TT DES CANTUELL-WATAHA 138 KY) LINE OUT OF SERVICE HEALY GEN. AND SUBSTATION TRANSFORMER ARE OFF. Sear et ta ALOCATION 14 19 THE DOUGLAS END OF THE LINE FROM HEALY i220. 0009" + oe DNS, Uabsles Te CASE:. 203 TABLE 1 A203T1 win re eee fee pe nw ne ete ee nn on nnn n= TEMPORARY _LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X¥=DENOTES NON-SINUSOIDAL ) PRE-FAULT. VOLTAGES BREAKERS I AND D ARE CLOSED LOCATION — a7? B Cc 3 2.99 1.00 9.98 4 8.98 @.98 8.96 s 1.01 1.00 1.00 8 1.02 1.01 1.01 7 1.01 1.08 1.02 8 1,20 1.01 1,03 14 @.97 8.98 2.96 CASE! 2¢3 TABLE 2 ALO3TS TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X*DENOTES NON-SINUSOIDAL) SUSTAINED FAULT VOLTAGES BREAKERS I AND D ARE CLOSED LOCATION ) B ¢ 3 0.45 8.98 8.98 4 @.82 1.08. 1.07 5 @.52 * 2.98 1.11 6 ®.67 ®.98 1.14 Ad @.79 * @.97 1.13 8 Q.89 x 1.00 1,10 14 @.01 % @.99 1,08 TABLE 1 A203T3 CREST PER UNIT QUANTITIES (4=DENOTES NON-SINUSOIDAL ) POST-FAULT . VOLTAGES BREAKERS. I. AND D ARE OPEN a B c 3 @.98 1,08 1.00 4 9.99 1.01 1.06 Ss 8.01 2.01 0.01 6 1.0? x 1.69 1.11 ® 2 1.06 * 1.06 1.09 g 1.04 1.06 1.06 14 @.O1 @.e@1 @.81 7 ve Morro ww mMonpre DvD Moprvw o -@.5° 71.0 =1 5: 1.5 1.8 a. @.0 0.5 “1.8 ~1.5- 1.5 1.8 @.5 0.9 -@.5- ~1.0 w1.5 AZO3V1 - LOCATION? §& CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. 203 OSCILLOGRAM NO. 1 S.@ MS/DIV SUSTAINED FAULT VOLTAGES BREAKERS D & I CLOSED MOHDID w MuUDIrID D MODPIrVD 2 1.5 1.8 @.5 6.0 -8.5 -1.@ 1.5 1.5 1.8 2.5 9.0 8.5 -1.05 “1.5 1.5 1.8 9.5 9.0 -0.5 ~1.0 1.5 A203V2 LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE CASE NO. 203 OSCILLOGRAM NO. 2 SUSTAINED FAULT VOLTAGES BREAKERS D & I CLOSED $.@ MS/DIV MuHprv D> MoODro w MoHPIVv Oo A203U3 LOCATION: 14 DOUGLAS END OF LINE FROM HEALY PER UNIT VOLTAGE 1.5 1.8 6.5 9.0 0.5 1.0 “1.5 1.5 1.8 8.5 8.8 ~@.5 -1.8 “1.5 1.5 1.8 e.S 0.0 8.5 1.8 -1.5 CASE NO. 203 S.@ NS/DIV OSCILLOGRAN NO. 3 SUSTAINED FAULT VOLTAGES BREAKERS D & I CLOSED 7TR7 MADxKD ® mMoprv > MoODIrID oO 920304 LOCATION: 6 HEALY 138 KU- PER UNIT VOLTAGE +H CASE NO. 203 5.@ MS/DIV OSCILLOGRAM NO. 4 POST-FAULT VOLTAGES BREAKERS D & I OPEN MopDxroD w MopxrvD Dd Morpiv 9 A2e3US LOCATION? ? NENANA 138 KY PER UNIT VOLTAGE 1.5 1.8 a.5 8.8 -8.5 “1.8 =1.5 1.5 1. @.5 8.0 8.5 1.0 “1.5 1.5 1.8 @.5 8.9 a -@.5 “1.0 “1.5 CASE NO. 283 5.9 MS/DIV OSCILLOGRAM NO. S POST-FAULT VOLTAGES BREAKERS D & I OPEN 7Q2 TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION “CLOSING ANGLE-FOR PHASE ENERGY NO.OF MAX A B.. ¢ NU-SEC PHASE OP. KA. 79.8 70.8 70.8 0.05 A 56.104 339.6 339.6 339.6 0.03. aA 44 8.122 25.4 26.4 26.4. 0.02 A 56 @.187 33a'3Boale | 374!3 lesa a74. 274. . . 8a . 338.4 338.4 338.4 0.02 a 38 4960. 109 a8 NO. POINTS = 388 205.2 205.2 205.2 .e2 0 42 9.117 . 121.2 121.28 121-2 9.02 A 55.118 115.2 - 415.2 | 215.2° @ea A 490.127 3 133-2 133:2 133:2 o.¢2 & 55 0.143 8.5 PRS: BBEG = BELG ee 37.108 B S768! 76.8 76.8 0.02 A 54 0.119 g : 40.8 40.8 40.8 - 8.21 A 42 113 = on 312.6 312.0 312.6 61 A 42 8.104 ce 19.2 19.2 19.2 6.01 A 5S @.18t 2a 114.6 114.8 114:¢ 01 & 43. (0.155 & 192.6 192.0 192.8 @.01 35 0.107 W @.3 264.0 264.0 264.6 oer A 38° Os tth a 244.8 244.8 244.8 0.01 A 42 8.119 Pe 138.0 138.0 1398.0 e.e1 A 56.178 Sa 2328 232:8 232.8 e281 a 42 O.1i1 os 63.6 69.6 69.6 0.01 & 53 0.176 a 352-8 352.8 352.8 @.¢1 A 3? @. 182 © 75.6 75.6 75:6 9.01 A 55 0.173 = Ql 356.4 356.4 356.4 @.01 A 38 «1184 x 96.0 96.9 $6.0 0.01 A&A 37.1144 mo mee mee bef fs . . 126. : . . 147-6 147.6 147-6 0.01 @& 86 9.163 SOUS Let 2 ee te) 26.20 50 7a Dee oe 246.8 246.8 246.8 9.91 A 40 9,128 PERCENTAGE $2.8 $2.8 52.8 @.¢1 A 35 9.109 160.8 160:8 «= t6008 «et kB 334.8 334.8 334.8 @.OL a 40 8.108 CASE NO. 203 273.6 273-6 273:6 @.0e1 4 29 2.095 18:0 18.0 18.2 «8.81 52 0.163 156. 156.0 156.0 @.¢: 4 40.1283 132.2 132.@ 132:0 161 A 51 8.136 109.2 109.2 109:2 0.01 A 44 0.140 32.4 32.4 32.4 @.e1 A 560.177 2.6 3.6 2.6 8.01 4 S2 9.158 146.4 146.4 146.4 ®t 568.174 248.4 248.4 «2484 OLA 35 0.894 169.2 169.2 169.2 @.01 a 32 oO. 1d Healy TCR Arrester mee bee Ge rg ie . . ‘ . 41 . - +® DEGREES el BED EL $3 2 8 Sts naa . . * Be . ry wee ies eS SB SS ae a8 ai , . : : . 1.500E 61 3.600E @2 0.@0@E-01 @.000E-01 3.000E 02. 260.4 260.4 260.4 0.01 34 0.10? 1.Q0@E @@ 3.5906 63 5.G00E G2 3.200E OO 1.000E 00 {$1.2 151-¢ 154.2 9.01 $3 8.172 1.260E @1 2.08@E 01 4.750E 01 2.017E 03 6.0Q0E e1 B56.8 256.8 256.8 @.e1 4 33. 108 8.330E @@ 1.000E OG 1.100F 01° @.0Q0E-01 %.000E-01 ant » Monprv w MADIOV moroxrVv o ACO3VE LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE CASE NO. 203 OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION 100.0 MS/DIV MHUrprto w MODIrD > MOHDID Oo A263U7 LOCATION? 5 CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. 203 106.0 MS/DIV OSCILLOGRAM NO. 7 MAX. EVENT FROM DISTRIBUTION Morpivd w& MoODID D MHPIV oO A2O3UB LOCATION: 6 HEALY 138 KYU PER UNIT VOLTAGE 162.8 NS/DIV CASE NO. 203 OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION a A MADD w moDpxrws oOo 9.54 0.8 -0.S- “1.8 -1.5- ALB3VS LOCATION? 7 NENANA 138 KU PER UNIT VOLTAGE CASE NO. 283 10@.6 MS/DIV OSCILLOGRAM NO. 9 max. EVENT FROM DISTRIBUTION MODrD w MADIV O CASE NO. 203 OSCILLOGRAM MO. 10 MAX, AOI1O LOCATION: 8B GOLD HILL 138 KV PER UNIT VOLTAGE 108,06 MS/DIV EVENT FROM DISTRIBUTION MODIVD w MADrv Db MOADIrD O ALO311 LOCATION? 14 DOUGLAS END OF LINE FROM HEALY PER UNIT VOLTAGE = } | CASE NO. 203 10@.8 MS/DIV OSCILLOGRAN NO. 11 MAX. EVENT FROM DISTRIBUTION Qee c muDrryv i Cc -MHDoxrv A moODrw “CASE NO. 203 OSCILLOGRAM NO. 12 max, 420312 LOCATION: 41 TEELAND 13.8 KV PER UNIT YOLTAGE 100.@ MS/DIV EVENT FROM DISTRIBUTION B-¢c MaDpDID 8.8 -@.S- -1.8 ~1.5- A2O313 LOCATION: 12 HEALY 12.0 KY PER UNIT VOLTAGE CASE NO. 283 19@.@ MS/DIV OSCILLOGRAM NO. 13 MAX. EVENT FROM DISTRIBUTION a-B MnApre c mMarvirv c-A MADD ALO314 LOCATION: 13 GOLD HILL 13.8 KU PER UNIT VOLTAGE 1.5 = 2. “1.5 1.5 " “fl “1.5 mi CASE NO. 203 108.0 MS/D1U OSCILLOGRAM NO. 14 MAX. EVENT FROM DISTRIBUTION RA1 MoDro w MoODrvVv D Moore oO ALO3TA LOCATION: 11 TEELAND TCR CURRENT SYSTEM KILOANPERES TASE NO, 203 100.0 MS/DIV CSCILLOGRAM NO, 15 MAX. EVENT FROM DISTRIBUTION MoDprv w MADrIv Dd Moprv Oo Aee3T2 LOCATION? 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 283 106.0 MS/DIU OSCILLOGRAM NO. 16 MAX. EVENT FROM DISTRIBUTION MoOoDrDw w MODID D> MOdrV Oo A20313 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 203 1886.0 MS/DIV OSCILLOGRAM NO. 17 MAX. EVENT FROM DISTRIBUTION 20a mMODrID Db MODIrUV w& MODIrGB Oo 3 CASE NO. 203 OSCILLOGRAM NO. 18 TOTAL FAULT CURRENT DOUGLAS END OF LINE FROM HEALY A2O314 LOCATION: 14 SYSTEM KILOAMPERES 100.8 MS/DIV mMoprv D Monorsw ese mMnNPrVv oO A2E3IS LOCATION: 14 DOUGLAS END OF LINE FROM HEALY SYSTEM KILOAMPERES CASE NO. 203 50.0 MS/DIV OSCILLOGRAM NO. 19 TOTAL FAULT CURRENT Q7 7 MaADIV Morro MYprD oO 34 A2O3I6 LOCATION? 4 DOUGLAS 138 KY SYSTEM KILOAMPERES CASE NO. 203 100.0 MS/DIV OSCILLOGRAM NO. 20 FAULT CUR. CONTR. FROM TEELAND MnpoDiriVv & MoDIrIBv D MHPrvDd oO A2O317 LOCATION: 6 HEALY 138 KY SYSTEM KILOAMPERES 0.6 0.4 8.2 8.8 -6.2 -6.4 -6.6 @.6 0.4 6.2 @.8 -8.2 0.4 -@.6 O.6 @.4 e.2 9.0 “0.2 -0.4 -o.64 CASE NO. 203 108.8 MS/DIVU OSCILLOGRAN NO. et FAULT CUR. CONTR. FROM GOLD HL aan PT. MacKenzie 230 kV Teeland Focioad Douglas ; FT, Cantwell Nenana Gore Mit) Weiowright aes, 138 6) 138 G) 138 kV 138 kV, ase 138 (0) : fee [EH HOH HH HaHa) GH sem HHH Gold Hill 33.8 kV [fsesPe oo _ _ ~ OPERATING BREAKER B.D OPEN BREAKERS K,F,L,R 204 FROM TEELAND END OF LINE FRULT INITIATION TOs OUND DESCRIPTION OF $vs - RESULTS Arrester energy at Healy TCR is 0.1 MW SEC. Line arrester energy is low. DE SCRIPT ith STANA £33 KW LINE out OF SERVICE CONTING CANTUSLL: REALY GEN. AND SUBS pee TRANSFORMER ARE OFF,” FPR-A TQ GROUND FAULT 8 TEELAND END OF LINE FrcmM DOUGLAS 138 KV #LOCATION 14 1S THE TEZLAND END OF THE LINE FROM Doustas E i { | = MU LOAD FLOU FROM AYCHORASE TO FA } i CASE: 204 TABLE 1 ALCATI TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES («DENOTES NON-SINUSOTDAL) PRE-FAULT VOLTAGES BREAKERS B AND D ARE CLOSED LOCATION a B c 3 8.99 @.99 0.98 4 8.98 2.98 8.96 5 1.85 x 1.08 8.99 6 1.12 1.02 1.02 ? 1.02 1.04 1.01 8 4.01 1.01 1.02 14 6.99 8.99 8.98 CASE: 204 TABLE 2 A204T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k*DENOTES NON-SINUSOIDAL) SUSTAINED FAULT VOLTAGES BREAKERS B AND D ARE CLOSED * OCATION 8 B c 3 8.83 @.92 @.98 4 @.14 * 8.88 1.00 5 @.54 * @.88 4.12 & @.66 *¥ @.91 1.416 7 @.77 8.93 1.43 8 2.88 x 8.97 1.10 14 @.04 @.91 @.99 ana CASE! 204 «= TABLE 1 «= A@OATS. TEMPOR@RY LINE-NEUTRAL VOLTAGE . CREST PER UNIT QUANTITIES (£=DENOTES NON-SINUSOIDAL } POST-FAULT VOLTAGES BREAKERS 8 AND D ARE OPEN LOCATION a. 8B c 3 @.97° - @.99 1.00 4 0.04 @.94 .01 & test 1.08 1.86 & 41.07 1.05 1.04 ? 1.06 1.05 1.03 8 1.05 1.05 1.03 14 0.04 o.01 @.01 nN a1 MnHpiriv w mMaprv MopoprITw a AZO4AV1 LOCATION: 4 DOUGLAS © 138 KU PER UNIT VOLTAGE CASE NO. 204 OSCILLOGRAM HO. 2 S$. MSvDIV SUSTAINED FAULT VOLTAGES BREAKERS B AND D ARE CLOSED MoDirv w MYDrvD Dd MODrIDV oo 1.5 1.0 9.5 9.0 -9.5 1.9 “1.6 1.5 1.0 @.S 0.0 -8.5 “1.0 “1.5 1.5 1.0 @.5 a.® 0.5 1.8 “1.5 Aze4u2 LOCATION: S CANTWELL 138 KY PER UNIT VOLTAGE CASE NO. 204 OSCILLOGRAM NO. 2 SUSTAINED FAULT YOLTAGES BREAKERS B AND D ARE CLOSED S.@ MS/DIV MoapriDp ws mMaDxrU D MOADIB Oo A204U3 LOCATION! 6 HEALY 138 KU PER UNIT VOLTAGE 1.5 1.0 a. 8.8 ~6.5 1.9 ~1.5 1.5 1.0 @.5 8.8 -0.5 -1.e “1.5 1.5 1.8 @.5 %.0 ~0.5 “1.0 “1.5 CASE NO. 204 OSCILLOGRAM NO. 3 SUSTAINED FAULT VOLTAGES BREAKERS B AND D ARE CLOSED 5.0 MS/DIV Q1& mMyapLD Dd MapDrD w mapiv oO AZB4U4 : LOCATION: & GOLD HILL 138 KU PER UNIT VOLTAGE CASE NO. 204 S.@ MS/DIV CSCILLOGRAM NO. 4 SUSTAINED FAULT VOLTAGES BREHKERS B AND D ARE CLOSED mMnapres mMyYD>rvD w MOYDIV Oo R204US LOCATIONS 14 TEELAND END OF LINE FROM DOUG. PER UNIT VOLTAGE 1.5 1.0 @.S e.@ “6.5 -1.0 “1.5 1.5 1.0 @.S 8.8 -@.5 1.8 “1.5 1.2 CASE NO. 204 5.0 MS/DIV OSCILLOGRAM NO. 5 SUSTAINED FAULT VOLTAGES BREAKERS B AND D ARE CLOSED ido '>: TABLE OF ARRESTER ENERGIES CLOSING ANGLE FOR PHASE a DURA ae ee pene eee Pee Ge Meum BPO GOW WOANHOIDHHKNYVROMARASIMWIUTIED ne UM FPORUIDUIMTIOOUTAIVSS AVNAWDWIAY=$LOMOUUsTweD Miu ow a od wo VIADVSAVMHAHHUVMUSSGOHNDS ASV SLAAUAOSUMSOHCANMLAUNS agi. 18. 306, 8 75. 115. 82. 97. 147, 208, 154. 104, hear wr HOQIWMN* 4 VTACHGHAGSUNWUUSY Oa QODVAVH ADHVUNUNSSOHHD AGS AAWRAHSUHSHADMAANOSAOHOHAVADVONH BREW MWe) Bremer meee Ww a HOQaRWOUVINOONUIAUSS ATSLBWOYSOHOWUNGBVBGVE ~ Wo wm Qen wor wo c 28.6 115.2 82.8 97.2 147.6 2e3.8 18 be MNMMUMVUSOSAHMSSLSSSLIVMAsAGOUASHAVMVAABDWOAOH TOAD CU ee eee ee ea en ee te Umer ew OSM WVOANYSDOY SUNS GHOYASYRWOVHIH OAD WHRUATIAINMAUVNDVSSAVAUHUN VK sASHVWNENVAVOENH tor 194 ENERGY NO.OF MU-SEC PHASE OP. @.16 c 12 2,09 Cc 35 2.09 c 1? 9.09 c 33 8.08 c 1S 8.88 Cc 34 8.88 c 1S 9.08 Cc 33 2.08 Cc 8 9.09 c 16 8.0? c ee 9.07 Cc 10 9.07 Cc 12 @.07 c 18 Q.87 c 8 @.07 c 19 @.97 c 8 9.06 c 20 0.06 c 22 9.06 c 12 8.86 Cc 8 9.06 Cc 2? 8.66 c 24 8.96 c 13 9.86 Cc 8 @.06 c 2g 8.06 Cc 32 2.96 c 32 8.95 c 35 @.85 ¢ 33 8.85 c 1@ 8,85 c 8 @.e5 c 1@ @.85 c e4 8.85 c 20 0.05 c 13 2,05 c 2g 8.85 c 35 8.05 c 2? 2.05 c 33 8.95 c 8 2.85 c 19 8.85 Cc 32 9.04 c 8 @.04 c 8 Q.04 c 6 0.04 c g 8.94 c 35 Q.04 c 1S Q.04 c 3S 2.04 c 8 @.04 c 8 @.04 c 8 MAK KA, 2.122 1.857 41.723 1.632 1.166 9.959 1.158 1.101 1.1287 1.167 1.146 1.194 1.080 4.419 1.978 1.093 1.144 1,126 1.132 1.986 4.065 1.449 1,126 PROBABILITY DISTRIBUTION NO. POLNTS = 188 a5 8.4 8.3 8.2 ARRESTER ENERGY (MW -SEC) 8.1 2.8 4 8.01 | Ih $+} + | IT a \ { + { a i 1. 1H t—~-f one mt Rr 42 CASE NO. 284 ee 12 2038 50 70 Be 3¢ PERCENTAGE Healy TCR Arrester 1.500E @1 1.00@E 00 1.BRCE O1 8,338E 6e CLOSING SPAN = SETUP DATA 3.698E a2 3.598E @3 2.O8GE 91 1.000E 06 9.@ DEGREES A2CADI @.090E-O1 S.@00E 62 4.75@E OL 1,.30@E 901 Q. OOE-O1 3.080E 89 2.0L7E 03 @, @Q00E~O1 33 «98.9 39.99 1.800E @2 1,@80E 90 6.8G0F O1 ©. Q00E-O1 GARG A2Q4UG BDAY ities ! t / et Mi ; | eT MEARNS AEE i al iota ts i a itp i 4 CANTWELL 138 KY = Hg $ Hi i Ga SS EES SS LSS Mopiro w MODrIDT D t rok a uF oS e YW Ww von,Y*§ OO WM W 9 ~ 8er m ° a S58 ec D> S$ 2a = 86S 7 a 2 7 < S 2 308 @ mam oR <¢ : : ee roe : a — th ail ia i pilin : 954 MnNDIrVv @ MADD »D mMuPrs © “CASE NO. 204 OSCILLOGRAM NO. 9 MAX, EVENT FROM DISTRIBUTION A204US LOCSTION: 6 HEALY i38 KV PER UNIT VOLTAGE 108.9 MS/DIV mMmoDro w Murprv a CASE NO. 204 A20410 LOCATION? 8 GOLD HILL 138 KU PER UNIT VOLTAGE 180.0 MS/DIV OSCILLOGRAM NO. 1 MAX. EVENT FROM DISTRIBUTION MOHDrv DvD Morro w MoOrPIrD Oo A2C411 LOCATION: 14 TEELAND END OF LINE FROM DOUG. PER UNIT VOLTAGE iF CASE NO. 2e4 189.6 MS/DIVU OSCILLOGRAM NO. 11 MAX. EVENT FROM DISTRIBUTION aca » cH oH SF H HEH SH FSH HSH DB YH 8 WH a nT N aH Eno cp cas aL cag ged gre orate gf 1g LS lg el Gli, Lele “~ 4 © 8S FS wt ww =a + FT Se | Se fee) (SO) 160) Nee) v9 ae ee eel es ie ie ots z= 3 = ra SI a o & wn m a 5 5 & ire ui > ij x < = mMopxrDn w MHvrac Dd DB Manprvu oo TEELAND “CASE NO. 204 A2O4T1 LOCATION? 11 TCR CURRENT SYSTEM KILOAMPERES 100.8 MS/DIV OSCILLOGRAM NO. 15 MAX. EVENT FROM DISTRIBUTION mMOorpDro w MoapDrsw DvD MHODIDBD a Aaz04Ta LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES ‘a CASE NO. 204 100.8 MS/DIV OSCILLOGRAM NO, 16 MAX, EVENT FROM DISTRIBUTION MaDrv Mopxrv Dd MoODrIvwe oOo ACO413 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES mn a CASE NO. 204 100.8 MS/DIV OSGILLOGRAM NO. 17 MAX. EVENT FROM DISTRIBUTION 974 MADD w MoOrDIrD DvD Mnrprv oOo A20414 LOCATION: 14 TEELAND END OF LINE FROM DOUG. SYSTEM KILOAMPERES CASE NO. 204 100.0 MS/DIVU OSCILLOGRAM NO. 18 TOTAL FAULT CURRENT MoDro wo MHDxrvT Dd MADIrIB oO A2041S LOCATION! 14 TEELAND END OF LINE FROM DOUG. SYSTEM KILOAMPERES a CASE NO. 204 50.0 MS/DIV OSCILLOGRAN NO. 19 TOTAL FAULT CURRENT 9380 Mapxro w MoMHDrD Dv MoODprwB Oo A204TE LOCATION! 3 TEELAND 138 KU SYSTEM KILOAMPERES CASE NO. 204 100.8 MS/DIVU OSCILLOGRAM NO. 20 FAULT CUR. CONTR. FROM TEELAND MADID w Monprv Mnnvxrs Oo Ae204i7 LOCATION: 4 DOUGLAS 138 KU SYSTEM KILOAMPERES 1.5 1.@ 9.5 0.8 -8.S5 “te =169> 1.5 1.0 8.5 9.8 -@.S 1. -1.5 1. 1.2 8.5 0.8 -0.5 ~1.0 “1.5 CASE NO. 204 108.0 MS/DIV OSCILLOGRAM NO. 21 FAULT CUR. CONTR. FROM GOLD HL 988 3 PT. MacKenzie 230 AV Teeland Teoland Douglas ise av 138 © O)-foa TH O)-foa TH Sem isa FROM? GOLD HILL 138KV,3-PH ue GROUND DESCRIPTION CF SYSTEM 170 MU LOAD FLOU FROM ANCHORAGE TO FAIRBANKS CONTINGENCIES THREE PHASE TO GROUND FAULT AT GOLD HILL £33 KV BUS nr . Fr. Contweld ea ealy, Nenana Gone win3 Weinwright ase hy, meee 13s (0) <I Gold Hill a3.8 kv OPERATING DREAKER 0, 2 OPEN BREAKERS K,F,L,R RESULTS i SVS TCR energy is low. ; Arrester energy at location 14 is .21 MW SEC. DESCRIPTION CANTUELL-UATKNA $38 KU LINE OUT OF SERVICE. . HEALY GEN. AND SUBSTATION TRANSFORNER ARE OFF. - - LOCATION 14 1S THE GOLD HILL END GF THE LINE FROM ‘WENANA : 992 CASE? 205 TABLE 1 ALOSTL TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES Oke DENOTES NON-SINUSOIDAL) FRE-FAULT UOLTAGES BREAKER G AND GOLD HILL 69 KY ARE CLOSED LOCATION = OA B c 3 8.97 ®.98 8.98 4 2.95 2.95 8.96 S 0.98 Q.397 9.98 6 1.00 1,08 1.02 ? 3.29 1,93 1.02 8 4.02 1.01 1.03 14 1.04 1.04 1,03 CASE: aes TABLE 2 Aze5T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES CAeDENOTES NON-SINUSOTDAL D SUSTAINED FAULT VOLTAGES BREAKER @ AND GOLD HILL 69 KY ARE CLOSED LOCATION a B c 3 9.98 8.98 @.99 4 2.87 @.87 Q.88 5 @.54 @.55 * @.55 * 6 @.43 % @.43 *% 0.42 * ite @.21 x Q.21 k @.at ® 8 @.84 @.4 @.O4 14 @.01 ® @.01 k 8.01 * 993 CASE 205 TABLE 1 — A2OSTS TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (&=DENOTES NON-SINUSOLDAL) POST-FAULT VOLTAGES BREAKER Q-& GOLD HILL 69 KU ARE OPEN LOCATION a B c 3 2.98 1.08 1.00 4 1.02 1.02 1.02 Ss 1.07 1.06 1.04 6 1.05 1.05 1.04 ? 1.08 1.08 1.05 8 @.01 @.01 @.01 14 1.09 x 1.09 1.06 032 > Mourprs9 Mnvprv » MaDIV O AZOSV1 LOCATION: 6 HEALY 138 KV PER UNIT VOLTAGE “CASE NO. 205 5.@ NS/DIV OSCILLOGRAM NO. 1 SUSTAINED FAULT VOLTAGES BREAKER @ & G.H. 69 KU CLOSED MODIvD w MoODrD D Mopiriyg o Aezesua LOCATION: 7 NENANA 138 KU PER UNIT VOLTAGE e.3 e.2 @.1 0.0 -@.1 -@.2 -0.3 e.3 e.2 @.1 e.0 -@.1 6.2 -@.3 @.3 @.2 @.1 @.9 -O.1 -6.2 ~0.3 - CASE NO. 205 5.6 MS/DIV OSCILLOGRAM NO. 2 SUSTAINED FAULT VOLTAGES BREAKER @ & G.H. 69 KV CLOSED O22 MODrD Fv mMonrrvw Ww Morpirw o 1.0 “1.5 A2OSU4 LOCATION: 7 MNENANA. 138 KY PER UNIT VOLTAGE ” CASE NO. 205 5.0 MS/DIV OSCILLOGRAM NO. 4 POST-FAULT VOLTAGES BRESKER @ & G.H. 69 KV OPEN MODID D MuDpDirv w MoHrprIVv oO A2OSUS LOCATION: 14 G-H. END OF LINE FROM NENANA PER UNIT VOLTAGE 1.5 1.9 e.5 9.8 -@.S5 -1.0 “1.5 1. 1.2 @.S 8.2 -8.5 “1.0 1.5 1.5 1.0 @.5 8.0 ~8.5 “1.8 “1.5 CASE NO, 20S 5.8 MS/DIV OSCILLOGRAM NO. 5 POST-FAULT VOLTAGES BREAKER @ & G.H. 69 KU OPEN i ee TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF MAX A B c MU-SEC PHASE OP. KA. $42.4 $64.1 412.4 @.e2 A 310.075 46.14 113.8 190.3 0.02 A 27 0.972 239.0 236.3 326.3 @.02 A 31 0.079 weg SG HS gk See 407.9 : 413. ; : 294.1 441.0 209.6 0.01 A 29 0.871 a8 NO. POINTS = 189 265.1 249.6 70.9 01 A 29 0.066 : 392:9 287.5 429.5 @.01 A 31 0.087 276.4 - 290.1 356.7 B01 A 29 e066 = 339-9 42@5.3 639.2 @.01 A 29 0.100 5 4.5 304.7 408.1 276.7 2.01 AB 25 0.068 B 470.8 396.3 339.0 @.01 A 24 0.068 ui 4¢4.9 516.8 315.4 @.01 A 22 0.066 = oa 459.5 274.3 283.9 @.e1 A 22 0.065 es 390.7 475.8 595:7 @.e1 A 25 0.065 350.1 460.9 458.5 @.00 aA 18 0.087 @ 424.9 351.2 380.7 9.60 A 1S @,.068 wes 333-8 361.6 470.4 00 A 2@ 8.063 fa 485.8 586.2 507.7 @.e@ A 15 @.063 308.2 490.8 520.7 0.00 a 5 @.064 £5 6.2 417.0 SQB.4 35810 0.00 A 1 9.064 i 6. 212.2 394.4 363.4 @.20@ A 12 0.076 a 383.8 351.8 624.3 @.0@ A 1 .66 ir 155.8 212.0 180.6 0.00 A @ 2.200 = Ql 544.6 307.4 635.7 0.00 A 2 0.000 c 278.8 401.3 882.3 e@.0@ A @ 9.000 27s.3Beo:4 © iatia bree 888 8.0 = = . 58. s : +00) 2 18:8 132.2 326:5 0.002 A 0.008 OBL Be Ae 29820 70 20 o —33.8 95:39 484.9 548.8 386.0 9.80 a 1 0.06e PERCENTAGE 939.9 146.8 177.6 9.00 A @ 8.000 cry GE ss ge 2} ees . 4 . . +20! 432.5 330.5 663-1 e@.0@ A @ 2.200 CASE NOs: 205 558.8 3@9.9 510.8 0.00 A @ 2.000 211.0 294.3 192.8 00 A ® 6.008 310.5 207.5 446.9 ae @ e.eee 187-5 317.0 151.3 @.00 a @ 0.008 233.2 464.3 350.4 @.00 A @ e.a00 Sidz.3 524.1 342:9 @.00 A ®@ 0.000 360.6 509.6 267.5 0.00 A @ 0.000 378.8 422.0 312.4 @.00 aA @ 0.000 224.5 391.9 109.5 @.00 A @ 2.200 576.8 596.2 482.7 8.20 a @ 8.880 Healy TCR Arrester ae Bee ER Rg RR lesa Seas eis glee @ 8.908 CLOSING SPAN = 360.0 DEGREES i 466, j ‘ 2.00 el Gel She $8 fg SB Tene aaa ‘ 6S» . . +00 1.500E @1 3.608E 02 O.@00E-01 3.600E 02 1.000E 02 451.2 403.8 135.1 8.00 A 2 9.000 1.@Q0E @@ 3.500E 03 5.800E C2 3.000E 02 1.000E 00 e77-0 = 234.7 = 335-8 8.8 & 9.280 1:260E @1 2.@80E O1 4.750F O1 2.017E 83 6.900F Of 629-8 655-5 448.7 8.00 A @ 2.900 B.330E @@ 1,000E G8 1.100E 01 0@.000E-01 0.000F-01 TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF MAX a B ¢ MU-SEC PHASE OP. KA. 198.9 ..494.2 282.1 @.21 A 12 0.168 629.8 655.5 448.7 @.12 A 31 0.123 $43.8 683.8 498.9 0.09 A 31 9999 508.2 «49010 «S201? leh - 308: 30. x : 304.7 408.1 276.7 2.88 A 32 -@,031 ar NO. POINTS = 180 iSS.8 212.0 180.6 @.e8 A 31 «8.049 : 239.0 236.3 326.3 8.06 A 32 0.056 294.1 441.0 «209.6 0.06 32 ©0038 = 169.6 288.6 271.3 @.06 a 31 8.043 O a5 576.8 596.2 482.2 0.05 A 31 0.e58 wo 246.1 216.5 158:6 @.05 A 29 «9.037 i 436.1 568.5 S46.8 6.05 A 3 0.046 = oa 404.9 Si6.8 315.4 9.05 A 3 0.855 a 565.1 712.7 466.4 @.04 A 3. 9.123 171.0 245.4 431.9 0.04 A 3 0.047 & 370.8 395.9 631.7 0.04 A 3. 0.963 ° re) 276.8 608.7 622.8 6.04 A 17 «0.037 a 265.1 249:6 70.9 0.04 A 12 0.074 339.9 425.3 639.2 0.64 A 32. 0.047 Bes 52.3 177-2 284.8 .04 A 5 2.043 We. 378.8 422.0 312.4 84 A 29 0.034 2 391.3 528.2 491.6 0.04 A 17.849 we 224.5 391.9 109:3 @.e4 4 2 0.136 = 6.1 46.1 113.8 196.3 8.04 a 2 @.839 c 428.8 466.3 272.1 0:63 4 13 0.038 ee 2 BS EB 2 OE Ree z . ° 493. 2 . ? y iSi.2 403.8 135.1 0.03 A 2 9.0388 ee esa) Ele ||) tt cee ee eee, oe | Se eee 365.7 405.1 458.7 6.03 a 3 9.936 PERCENTAGE 390.27 475.8 «595.7883 3 0.045 vs re gee Se gg Bes 212.28 394.4 363.4 @.03 A 2 @.857 CASE NO. 265 601.4 598.8 464.3 @.03 A 2 8.088 383.8 351.8 624:3 2.03 A 3 0.043 43.7 254.1 348.8 8.03 A 2 9.060 cee ws 3 ge fe ge 147.3 410.9 16916 @.08 A 12 0.068 eee | ee 310.5 207:5 446:9 e.02 A 2 0.040 376.1 447.2 286.5 @.02 aA 20 0.081 wi Mel mee fe of 3 gee tae | sea, (Se lege |e) |e [siete ri ia : . < . a 8.043 < 7 R ee Mea RED Ge 8B Sey ances | | [accel . . 1$1. . A . 0 fo) G82 BEE Se Og SR ‘eons te “ . . . : a +@3' 1.40@E @1 3.600E 02 @.000E-@1 3.6@0E 02 1.900E 02 361.2 230.0 154.3 0.02 A 1? @.040 1.@Q@E @@ 3.500E 03 5.QQ0E G2 3.000E G2 1.000E 06 277.0 = 234.7 935.8 = 8.02 A 2 @.e35 {.O80E 02 1.380E 02 1.@00E 02 6.394E 92 6.0O0E a1 444.4 477-3 340.3 0,02 A 1 0.034 B.330E GO 1.@00E O@ 1.100 01 9.000E-01 @.90eE-01 060 mMmonvirv w» mnmpDiIv YP MmMorrv oO “CHSE NO. 205 OSCILLOGRAM NO. 6 MAK. ARR. AZO5UG LOCATION: 3 TEELAND 138 KU PER UNIT YOLTAGE 100.0 MS/DIV EVENT FROM DISTRIBUTION HT LOC. 14 & 12 mMaDre Dv MoODxrD ww moapxrvw Oo 1.5 1.8 2.5 0.04 -0.5 “1.6 =1.5 1.5 1.04 0.5 i 0.0 Me -~2.5- ~1.8 -1.5 A2OSU7 LOCATION: 6 HEALY 138 KV PER UNIT VOLTAGE CASE NO. 205 OSCILLOGRAM NO. 7 Max. ARR. 160.0 MS/DIV EVENT FROM DISTRIBUTION AT LOC. 14 & 12 MOrpiv » mMyODIrID D MOoDLTW Oo A2ESUB LOCATION: 14 G.H. END OF LINE FROM NENANA PER UNIT VOLTAGE eld et 1 bil + q a Ace ne a ea 180.8 MS/DIV CASE NO. 205 OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION ARR. AT LOC. 14 & fa 072 ¢ c mMaADxrU A mMopxryo A2O5U9 LOCATION: 12 HEALY 12.0 KU FER UNIT VOLTAGE CASE NO, 205 108.9 MS/DIV OSCILLOGRAM NO. 9 MAX. EVENT FROM DISTRIBUTION ARR. AT LOC. 14 & 12 @.5 0.0-# -O.5 -2.0 “1.5 1.5 1. @.5 @.8 -®.5 “1.8 “1.5 ALOS1O LOCATION: if TEELAND 13.8 KU PER UNIT VOLTAGE CASE NO. 205 OSCILLOGRAM NO. 18 MAX. EVENT FROM DISTRIBUTION ARR. AT LOC. 109.0 MS/DIU 14 & le c mMODrD ' > AzO511 LOCATION: 13 GOLD HILL 13.8 KU PER UNIT VOLTAGE 0.8 -O.S -1.0 “1.5 1.5 1.8 ®.5 0.0 -2.5 “1.0 “1.5 CASE NO. 2e5 100.6 MS/DIV OSCILLOGRAM NO. 11 MAX, EVENT FROM DISTRIBUTION ARR. AT LOC. 14 & 12 MODI D D Moprrv w MoOpxrseo _ ABesTI LOCATION! 12 HEALY - TCR CURRENT SYSTEM KILOAMPERES CASE NO, 205 108.0 MS/DIU OSCILLOGRAM NO, 12 MAX. EVENT FROM DISTRIBUTION ARR. AT LOC. 14 & 12 MOpvxrD w MnODxrs D> Moprgw 9. orn w Ae2eSI2 LOCATION: 11 TEELAND TCR CURRENT SYSTEM KILOAMPERES CASE NO. 285 100.8 MS/DIV OSCILLOGRAM NO. 13 MAX. EVENT FROM DISTRIBUTION ARR. AT LOC. 14 & 12 MynDrv Dd MODIrIV w MOrry oO A2OST3 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES 1.5 1.8 B.S 8.0 ~@.5 -1.0 -1.6 1.5 1.6 @.5 8.8 -0.5 “1.0 “1.5 1.5 1.0 8.S 8.0 9.5 ~1.8 “1.5 CASE NO. aes 102.0 MS/DIV OSCILLOGRAM NO. 14 MAX. EVENT FROM DISTRIBUTION ARR. AT LOC. 14 & 12 084 MODrTD w MADIrDW D MOQrxrvo RACS14 LOCATION! 8 GOLD HILL 138 KU BUS SYSTEM KILOAMPERES CASE NO. 25 100.8 MS/DIV OSCILLOGRAM NO. 15 TOTAL FAULT CURRENT ARR. AT LOC. 14 8 128 MODID wo ModDxryu Dd Mupryv oO ACOSIS LOCATION: 8 GOLD HILL 138 KU BUS SYSTEM KILOAMPERES CASE NO. 20S $8.8 MS/DIV OSCILLOGRAM NO. 16 TOTAL FAULT CURRENT ARR. AT LOC. 14 & 12 O91 AZeSIE ALAST? LOCATION: 8 LOCATION: 8 GOLD HILL 138 KV BUS GOLD HILL 138 KU EUS SYSTEM KILOAMPERES SYSTEM KILOAMPERES MNDrV DVD mMopvrv » MnrrVv 03} CASE NO. 20S 108.0 MS/7DIV OSCILLOGRAM NO. FAULT CUR. CONTR. 1? FROM G.H, ARR. AT LOC, 14 & te MoDrv Dd mMoDIrVv w Monprs oOo 1.5 1.6 @.S 0.2 Arve} om pactcst ond -8.5 -1.¢ “1:5 1.5 1.8 @.5 e.8 0.5 1.8 “1.5 1.5 1.28 @.5 8.0 “8.5 "1.8 “1.5 CASE NO. 285 100.0 MS/DIV OSCILLOGRAN NO. 18 FAULT CUR. CONTR. FROM TEELAND ARR. AT LOC. 14 & 12 O01 Sl Pr. Mackenzie ayo ay Teeland Teoland Douglas 230 AV 13s vo) 138 ) Eénives) i> fs fot oaeefom Paks se Tn FY fs Li * st I ste SSS 1S oy L\ Ce G) Oh 12 4 o* Gold Hill Nonane oleuctiie TCR 4 ai ch T + a TV OPERATING BREAKER 1,d OPEN BREAKERS K,F.L,R CASE NO. © Bae - * "FROM! HEALY 138KU BUS,3-PH OFE ROT TON: FAULT INITIATION TOL GROUND “DESCRIPTION OF SYSTEM RESULTS TCR and line arrester energy was low. 70 MU LO“D FLOW FROM ANCHORAGE TO FALRBANKS CONTINGENCIES RIPTION CANTUELL-WATANA 133 KU LINE OUT OF SERVICE . HEALY GEN. AND SUBSTATION TRANSFORMER GRE OFF. v : * LOCATION 14 IS THE HEALY END OF LINE FROM CANTWELL “3° THREE PHASE TO GROUND FAULT AT HEALY 138 KY BUS 109 CASE: 206 TABLE 1 A2CET1 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k=<DENOTES NON-SINUSOIDAL} PRE-FAULT VOLTAGES BREAKERS I AND J ARE CLOSED LOCATION Aa B c 3 0.98 @.98 8.99 4 g.97 8.96 2.97 5 2.99 @.97 2.98 6 1.08 ®.99 1.91 7? @.99 @.99 1.01 g 8.99 1.08 1.03 14 1.00 1.00 1.02 CASE? 206 TABLE 2 A266TA TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X*DENOTES NON-SINUSOIDAL) SUSTAINED FAULT VOLTAGES BREAKERS I AND J ARE CLOSED LOCATION Aa B c 3 ®.96 ®.96 2.97 4 @.78 9.78 @.80 S 8.20 8.20 @.21 6 @.a1 @.0L @.01 2 8.35 @.34 8.35 8 @.65 ®.63 @.64 i4 @.04 ®.01 &.e1 123 CASE: 26 TABLE 1 A2OET3 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (4@DENOTES NON-SINUSOIDAL) POST-FAULT VOLTAGES BREAKERS f AND J ARE OPEN LOCATION A B c 3 8.98 ® 1.00 * 1.00 4 1.83 1.04 1.04 S 1,07 & 1.09 * 1.07 x 6 @.01 @.01 8.01 im 1,05 * 1.07 1.07 g 1.03 1.07 1.06 14 1.05 * 1.06 * 1.04 & mMoHprv w MNDrV YD MOPIrV oO 1.5 1.0- @.5 8.0 -O.54 71.0- sasSe 1.5 1.0 A206V1 LOCATION: 3 TEELAND 138 KU PER UNIT. VOLTAGE CASE NG. 286 OSCILLOGRAM NO. 1 FOST FAULT VOLTAGES BREAKERS I AND J OPEN 5.0 MS/DIU MnAPIrD Dd Moris w MOHDIrD OO 1.5 1.0 @.5 8.0 -@.5 -1.0 “1.5 1.S 1.8 9.5 @.e -0.S “1.0 1.5 1.5 1.9 8.5 0.8 -6.5 -1.¢8 1.5 Reo6U2 LOCATION: § CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. 266 OSCILLOGRAM NO. 2 POST FAULT VOLTAGES BREAKERS I AND J OPEN 5.0 MS/DIV MoHDIDV w MoODdDIrIDVD Dd Moprw 9 A2E6VU3 LOCATION? 14 HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE 1.5 1.8 @.5 8.0 8.5 ~1.8 =1.5 1.5 1.6 8.5 9.0 -8.S -1.0 “1.5 1.5 1.0 @.S 8.8 9.5 “1.0 “1.5 CASE NO. 206 OSCILLOGRAM NO. 3 POST FAULT VOLTAGES BREAKERS I AND J OPEN 5.@ MS/DIV 138 TABLE OF ARRESTER ENERGIES CLOSING ANGLE FOR PHASE ENERGY NO.OF MAX A B c MU-SEC PHASE OP. KA. 318.5 207.5 446.9 @.01 A 12 8.106 417.@ 508.4 358.0 @.01 a 1a ¢.092 171. 245.4 431.9 @.01 A 8 2.e9@ 360.6 $909.6 267.S %.80 a 10) @.a92 995.6 282.6 261.7 2.08 A 1@ =. 698 333.8 361.6 470.4 2.00 A & 0.678 345.1 128.4 119.2 8.80 a S 0.864 558.8 309.9 510.8 8.00 A 8 2.685 278.8 4O1.3 282.3 8.80 A 8 6.083 198.3 494.2 282.1 @.00 Aa 1@ 8, a92 629.8 655.5 448.7 2.20 a 5 @.081 335.8 602.6 443.8 8.00 Aa S 6.077 541.6 307.4 $35.7 9.00 a 6 ¢.084 392.9 237.5 429.5 8.03 4 S 0.874 212.2 394.14 363.4 2,90 a 6 .069 438.0 $24.1 363.2 9.00 A 6 8.983 $12.3 524.1 342.9 8.00 A 12 8 @.096 $03.6 234.3 424.93 8.98 A 6 9.679 233.28 464.3 350.4 8.20 A 5 6.675 423.8 466.3 272.1 8.80 A 8 4.698 376.2 447.2 286.5 8.82 a 5 @.e69 404.9 516.8 315.4 9.00 A 12 9.885 213.4 $07.4 312.3 @.08 A 5 0.877 434.6 245.1 174.3 8.60 a S 4.¢?2 604.8 342.7 416.7 2.00 a 12 @.e9¢ 543.8 683.8 498.9 8.00 a S 0.066 365.7 485.1 458.7 9,80 Aa 8B 8.990 350.4 466.9 458.5 0.80 a S @.076 426.9 435.3 667.5 2.08 A S 0.064 263.4 300.8 309.9 8.98 A 5 2.857 212.8 196,.@ 148.6 @.09 & S 9.078 S6S.1 712.7 466.4 9.00 a S 6.863 211.8 ag4.3 192.8 2.00 a S @.0S52 312.6 $1.2 317.9 9.80 A 2 4.853 378.8 395.9 631.7 2.00 A S 0.054 441.4 477.3 340.3 8.00 A S 0.064 18@.8 132.2 326.5 &.90 A 2 ¢,.e57 378.2 361.8 388.5 2.08 & 1 @.052 221.6 193.4 139.7 8.98 a 1 6.052 434.0 385.7 616.6 8.38 A 1 = 8.957 187.5 317.@ 151.3 8.08 a ® 9.009 169.6 288.6 271.3 0.80 A 2 @.85S 438.5 338.5 663.1 8.98 A @ 2.020 419.8 645.8 493.8 8.08 A @ 9.880 394.7 408.3 276.7 8.90 a S .8S59 339.9 146.8 177.6 8.00 a 2 8.808 101.6 277.2 339.7 8.80 A @ 8.080 147,3... 418.9 169.6 0.00 A S@ 0.008 75.8 149.0 125.9 @.80 a 1 8.052 224.5 391.9 109.3 2.80 a 2 8.80¢ 351.0 $61.2 519.5 2.00 aR 5 @,958 134.1 88.7 141.28 2.00 a @ 9.808 155.8 212.9 180.6 2.00 A ® 4.008 PROBABILITY DISTRIBUTION # 1 NO. POINTS = 188 8.3 ARRESTER ENERGY (MW -SEC) 9.8L 8.1 12 : 18 28038 50 7888 38 39 «493.9 939.99 PERCENTAGE CASE NO. 206 Gold Hill TCR Arrester LOCATION 15, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 36@.@ DEGREES SETUP DATA ALE LSE 5 S.GREE GE Cees .GHHE OS Lee og 1.450E 01 2.390E O1 4.750E O1 1.754 O3 6.000E Of B.330E 08 1,000EF 86 1,108E 01 G.@00E~O1 %.800E-O1 i48 erg rie ante FOR PHASE . 438.8 162.9 645.8 . $96.2 307.4 33@.5 655.5 586.2 485.0 254.1 $61.2 $08.4 548.8 447.2 230.8 277.2 $24.1 274.3 212.0 425.3 518.3 318.6 385.7 361.6 Cc -: 499.1 1200.5 493.8 482.7 $35.7 663.1 448.7 507.7 387.3 348.0 $19.S ENERGY MU-SEC PHASE OP. DVVSDDEPPOPPPDDDOSO DD ODDD DP PDD DPD OV OD DP PPP P YO PHO DP DY YP DY MIOHYPD BBS OMW DY OF GF TT TS TT) TO) OF TT TTT TD TF TO} 0 TT OO DBOVP OS SSS SSSSP VS HOS OHSS PSOs OVP SVSGTOUsSO SOSOaseooes So. 68 8) OL 8 QOVOVOS SSS SSSSSseseosoosoos SSOSSSSVVPOSSSOUSIHHgssgoss TABLE OF ARRESTER ENERGIES NO.OF MAX KA. 8.889 8.085 8.088 9.084 9.884 9.087 @.885 @.082 1.500E ©1 3.6@@E 02 @.Q@0E-01 3.G600E 82 1 1.Q@@E 00 3,.S500E 03 1.0Q00E G2 3.800E 0@ 1 1.26@E Of 2.088E @1 4.750E @1 2.017E 03 6 8.330E 6@ 1.800F GO 1.100F 01 @.800E-01 @ PROBABILITY DISTRIBUTION #2. NO. POINTS = 183 ARRESTER ENERGY (MW -SEC) oP aL Bat 12 ta 2038 5¢ 7ae 8 $8 99.3 93.99 PERCENTAGE CASE NO. 206 Healy TCR Arrester LOCATION 15, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN © 360.8 DEGREES SETUP DATA AaeEDe +80@E e2 sO08E OC -OB0E G1 +O86E-01 158 MooviIvs w MODIrDW Db Mwaprs oO -1.0+4 =1,.5+ Hey 1.0 RACE LOCATION: 3 TEELAND 138 KY PER UNIT VOLTAGE SEL Si -1.0F “1.5 "°" CASE NO. 206 50.0 MS/DIV CSCILLOGRAM NO. 4 MAX, EVENT FROM DISTRIBUTION #2 ARR. AT LOC.12 & 14 MADPDITID w mMoDoDirwvD DvD mMonprvs Oo A286US LOCATION: S CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. 206 50.8 NS/DIV OSCILLOGRAM NO. S MAX.EVENT FROM DISTRIBUTION #2 ARR. AT LOC.12 & 14 MANprD w Mnaprvwe Dd MOHDErD O ALVENH LOCATION: 8 GOLD HILL 138 KY PER UNIT VOLTAGE CASE NO. 286 50.0 MS/DIV OSCILLOGRAM NO. 6 MAX.EVENT FROM DISTRIBUTION #2 ARR. AT LOC.12 & 14 168 mMoDnrvD DS mMOYPiv oO MnrvrDv ww A2OBV7 LOCATION: 14 HEALY END OF LINE TO CANTWELL PER UNIT VOLTAGE 1.5 1.0 @.5 0.0 -@.5 1.0 “1.5 CASE NO. 206 50.6 MS/DIV OSCILLOGRAM NO. 7 MAaX.EVENT FROM DISTRIBUTION #2 ARR. AT LGC.12 & 14 MnAnDrIw w mMuDprvw D Manprv Oo AzCbUB LOCATION: 6& HEALY 138 KV PER UNIT VOLTAGE 1.5 1.0 @.5 2.9 -@.5 -1.8 “1.5 1S 1.0 a5 @.8 -8.5 -1.0 ~1.5 1.5 1.8 @.5 a.0 ~@.5 1.8 ~1.5 CASE NO. 206 $@.@ MS/DIV OSCILLOGRAM NO. 8 MAX.EVENT FROM DISTRIBUTION #2 ARR. AT LOC,12 & 14 17a A2CEYG A2CE19 . A20611 LOCATION: 114 LOCATION: 12 LOCATION: 13 TEELAND 13.8 KU HEALY 12.8 ky GOLD HILL 13.8 KV PER UNIT VOLTAGE : PER UNIT VOLTAGE PER UNIT VOLTAGE ie HAMANN TAT 1.5 o-n 1-8 p 5 H } 6 8.2 $ -e.5 E -1.0+' a a - CASE NO. 206 50.8 MS/DIV CASE NO. 206 58.0 NS/DIV CASE NO, 206 56.0 NS/DIV OSCILLOGRAN NO. 9 OSCILLOGRAM NO. 18 OSCILLOGRAM NO. 11 MAK.EVENT FROM DISTRIBUTION #2 MAX.EVENT FROM DISTRIBUTION #2 MAX.EVENT FROM DISTRIBUTION + 2 14 ARR. HT LOC.12 & 14 ARR. AT LOC.12 & 14 ARR. AT LOC.1i2 & 129 > mMwoOrPrs ® Monpro Morviry 0. A206I1 LOCATION? 11 TEELAND TCR CURRENT ~ CAZE NO. 206 OSCILLOGRAN NO. 12 SYSTEM KILOAMPERES 50.@ MS/DIU MAX.EVENT FROM DISTRIBUTION #2 BRR. AT LOC.12 & 14 MaDIvD D MoDryw & MoODpirivw oO Aae6ta LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 206 58.0 MS/DIV OSCILLOGRAM NO. 13 MAX.EVENT FROM DISTRIBUTION # 2 ARR, AT LOC.12 & 14 MOHODIrIDVD w mMOoDoDrv D> MnDxrIDB oO A20613 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 206 50.0 MS/DIV OSCILLOGRAM NO. 14 MAX, EVENT FROM DISTRIBUTION #2 ARR. AT LOC.12 & 14 99 co MOPIrU Db Mnprvo w oO Morxrs “CASE NO. 206 ABOGIS LOCATION: 6 TOTAL FAULT CURRENT SYSTEM KILOAMPERES 50.0 MS/DIV OSCILLOGRAM NO. 15 MAX.EVENT FROM DISTRIBUTION + 7 ARR. aT LOC.12 & 14 MoOpxrv w MoDxrv > Mopxrv 9 A2C6IE LOCATION: 6 FAULT CUR. CONTR. FROM TEELAND SYSTEM KILOAMPERES 1.5 1.0 8.5 0.0 -@.5 “1.8 -1.5 1.5 1.8 @.S e.8 -O.5 “1.9 “1.5 CASE NO. 206 50.0 MS/DIV OSCILLOGRAM NO. 16 MAX.EVENT FROM DISTRIBUTION # 2 ARR. AT LOC.12 & 14 MoODpDrv w MoODrv MnADrv Oo AZCE17 LOCATION: 6 FAULT CUR. CONTR. FROM G.H. SYSTEM KILOAMPERES 1.S 1.0 ®.S 9.8 -@.S -1.0 “1.5 1.5 1.8 @.5 2.8 -@.5 1.8 “1.5 i.5 1.@ 8.S @.8 8.5 1.8 ~1.5 CASE NO. 206 S6.@ NS/DIV OSCILLOGRAM NO. 17 MAX.EVENT FROM DISTRIBUTION # 2 ARR. AT LOC.12 & 14 200 rt. Mackenzie 230 kV Teeland Teedand Douglas 230 "*) 138 RV, 138 iV Coutverd o* Nenane Gold Hilt iia 138 bv be ey ase ky tan ky 138 kv 30 1 fiex by ay ww, . aM] inne, Gold : mn 63 by Teelend ou erat Caf TCR ‘i Gold Hild 3 33,8 kV T 7 R , TI GPERATING BREAKER OFEN CREAKERS JR CLOSING RESISTOR 9.09 COINS) ¢ 1. 2? FROM? GOLD HILL 138 KU INSERTION TIME 6:03 (15) OFERATION: ENERGIZING TO! HEALY 138 KU TAX. Cl. SPAN 8.33 (NS) }. DESCRIPTION OF SYSTEM 1108 KU TRANGUELL ARRESTERS AT THE END OF THE LINE FROM igctp HILL AT HEALY, FT. MATNe en GOLD HILL 138 KU LINE OUT OF SERVICE. co NTINGENCIES GOLD HILL $US IN OPERATION, STANDARD REFERENCE SETTING. ail A LOCATION 14 TS THE HEALY END OF THE LINE. Tae "TABLE OF HIGHEST OVERVOLTAGES CLOSING ANG ott een 413. 246. 227, 17, 80, 14, as aD ao ~ an Tite x man es %. WRBAVOWDOWVIVSU SID wvawDw NOS areUW WKAWUWSHYK UUM BOWDASJI-VADQUONOOOUHW) Sa oi, 3), otal s isieedseu Sica, =) shistiia! BSANDGOJSOSOBROVUNNS ite fo) Bi sis) is |, VAHKH GOV PH SAVUHUOHCAHAHNGSAIHIDOOKH SNNWVOOrKABNHTAWOR 49.9 39347 my a NRO UTR OO PIOVEADeEOU 22 454, LES: FOR. PHASE c $3.7 350.8 128.9 162.9 316.1 * 186.4 324.2 451.5 444.3 394.3 289.7 198.8 146.8 eee NOOWONVNLAONNY wea WQWWW OMrKs VYMOSVSVONsAWUVOAIY a wo a CSVSVAUVUBAANM SITE NHS PER UNIT a 2.22 2,00 1.97 2.19 2.17 2.16 ne CGRVOWUNVIDH SVISHODONMSSHDJO“OQONWWWAN ENGR E Ron eh eRe ee ol olomee Ree i eae WOMWNNMOVODHNSSBODEKDNHH ROum mr Pe URE RRR UE He UE NEN HVUMMUMUUND XS a OVERVOLTAGE B Cc 1.72 1.34 2.19 1.80 1.64 2,19 2.19 1,721 1.82 1.79 1.61 1.39 1.79 1.80 1.66 1.39 1.75 1.43 1.62 1.37 1.84 1.98 1.69 1.62 e.14 1.85 1.64 a.11 1.83 1,72 1,62 1.78 2.10 1.54 1.52 2.10 2.07 1.57 1.68 1.46 1.85 2.89 1.91 1.64 1.35 2.09 1.84 1.38 1.84 1.79 2.08 1.18 2.08 1.91 1.55 2.07 1.87 1.89 2.05 1.54 1.62 1.39 1.85 2.04 2.e3 2.04 2.03 1.69 1.51 8.02 1.21 1.69 2.01 1.65 1.51 2.01 1.52 8,01 2.01 1.91 2.01 1.289 1.28 1.80 1.90 2.00 1.50 1.99 1.30 1.97 1.98 1.22 1.98 1.42 1.90 1.97 1.49 1.97 1.42 1.96 1.96 1.83 1.96 1,84 1.65 1.45 MAX P.U. 2.22 2. Sijel Olle 6 <6) s) nw isl ser sis RRR eee MUMUMUUMUUUUMUNUUUNVUNVUMUUUUUUUUNUNMNNNMMUNMMYMNMY DON HOVVOWDNDCSOH Ke HH VNYWAUTYH DIDHNGGOOSSSSSH UH VINWANDIOCO SOLOOO DO OOP SPSS VSF SD PP OPS OSG PS BD SOD MH hee ee ee 1 1 1 8 PROBABILITY DISTRIBUTION MAX OF ALL PHASES 2.7 NO. PO[NTS = 380 : “OINTS 2.5 ly 2.3 | Oo - 24 | || aie NY w | B17 S LS | 3 3 | | pee) Ba, | 8.9 i 6.81 Bt 12 18 2038 50 796098 89 99.9 93.99 PERCENTAGE CASE NO. 27 WAVEFORM HAS 4 PEAKS ABOVE 183.3 KV(1.63 P.U.) THIS IS 1.2 ¥ 108.@ KU (SA RATING) & 1.414 THERE WERE @ SUCH WAVEFORMS LOCATION 14, CLOSING SPAN = 180.0 DEGREES SETUP DATA A27D1 -40GE @1 3,600E C2 @.0Q00E-@1 1.800E 02 3,000E B62 +QQ0E OG 3.5Q00E @3 S.C0CE 01 3.000E OO 1.000E OO -O80E 02 1.38GE 62 1.000E G2 6.394E 02 6.000E O1 -330E 00 1.0@CE O@ @.G00E-O1 0.000E-01 6. 080E-01 80n aA P H a $ E mMoarxrs w MYHDrve oO Aa7V4 LOCATION: °14 _ HEALY END OF UINE(138 KU) PER UNIT VOLTAGE CASE NO, 2? " S.@ MS7DIV CSCILLOGRAN NO. 1 ENERGIZING FROM GOLD HILL NO HRRESTORS MnrPiru w MonpDrD D Mnnrv Oo AB?Ve LOCATION? ? NENANA 138 KU PER UNIT VOLTAGE CASE NO. 27 OSCILLOGRAM NO. 2 ENERGIZING FROM GOLD HILL NO ARRESTORS 5.8 MS/DIV MHporov w MHprv > MnDdDrv oa AZT LOCATION: 8 GOLD HILL 138 KU PER UNIT VOLTAGE CASE NO. 27 5.0 mS/DIU QSCILLOGRAM NO. 3 ENERGIZING FROM GOLD HILL NO ARRESTORS gana PT. Mackenzie 230 iV Teeland | pho Teeland Douglas FT Cantwell Mealy Gold Hild 138 bv Watowright 238 kv 130 (0) TMi. 0.6 & Hf Gold " 7 Mall 69 kV, =< Teeiand 1 @ t 13.8 kV H iY . iS = ge TO T as 4 = Set fassei ~ OPERATING BREAKER @ OPEN BREAKERS J ae CLOSING RESISTOR 8.20 (GHNS) CASE NO. 34 FROM! GOLD HILL 138 KU INSERTION TINE @.08 (NS) OPERATION? ENERGIZING TO! HEALY 138 KU ax. CL. SPAN 8.33 (MS) J DESCRIPTION OF SYSTEM RESULTS ENERGIZING GOLD-HILL TO HEALY 138 KV FULL SYSTEN AT GOLD HILL ARRESTER RATING AT LOCATION 14 IS 108.@@ KU-TYPE 3 “CONTINGENCIES SOLD HILL SvVS_IN OPERATION : #ILOcaTioi 14 IS THE HEALY END OF THE GOLD HILL TO HEALY LINE ' CASES 34 “TABLE 10 AB4TL TEMPORARY LINE-NEUTRAL VOLTAGE - CREST PER UNIT QUANTITIES k= DENOTES NON-SINUSOIDAL) PRE-SUITCH VOLTAGES, BREAKER Q@ OPEN. LocaT Ion A B c 8 1.00 4.00 1.01 7 101 e:01 @:01 14 @. @.01 0.01 case: 34 TABLE 20 A3AT2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k=DENOTES NON-SINUSOIDAL) POST-SWITCH VOLTAGES, BREAKER @ CLOSED, LOCATION a 8B c 8 1.00 1.01 1.02 x 1,02 1.03 1.04 14 1.02 1.04 1.04 418 TABLE OF HIGHEST OVERVOLTAGES PROBABILITY DISTRIBUTION CLOSING ANGLES FOR PHASE PER UNIT OVERVOLTAGE MAX 8 B c A B c P.U. 449.9 410.0 = 359.1 2.39 2.12 1.56 2.39 274.8 234.7 194.4 2.35 1.89 1.38 2.35 MAX OF ALL PHASES 413.4 393.7 350.9 1.89 2.23 1.73 2.23 2.7 NO. POINTS = 380 227.4 195.7 = 146.8 2.03 2.82 = 1.94 2.22 i ai HD TRE GP ie be Ee CCI EP 235.1 205.5 162.9 2.15 28.22 1.80 2.22 2.5 262.7 275.6 172.2 2.19 1.21 1.66 2.19 112-1 198.5 74.8 2.69 2:18 1.27 2.18 ly 2.3 257.6 127.0 164.0 215 1.23 1..88 2.15 @ 303.9 368:2 337.2 1:63 2.15 2.09 2.15 rw 335.0 260.4 330.6 4:42 1.452413 2.13 1% 353.7 9414.7 365.8 1.32 2.42 91.41 2.12 3 309.3 378.7 239.7 1.62 2.12 1.28 2.12 & :3 75.8 135.3 126.6 1.90 2:13 2.11 2.11 w 264.8 402.4 366.3 1.93 2.42 1.64 2.10 BL? 354.1 454.7 $1303 1:40 1.32 2.10 2.10 69.3 69.1 128.9 1.88 1.48 2.10 2.18 is 62.8 194.6 74.0 1.91 2.09 1.29 2.99 z 453.3 509.1 452.9 2.09 91.30 = 1.38 2.09 = 45 406.4 386.2 620.2 1:78 1.96 = 2.09 2.09 wel 436.9 330.2 486.5 2.02 1.24 2.99 2.09 io 79.4 194.9 198.0 1.99 2.05 2:99 2.09 © 11 437.4 312.4 335.6 2.09 1,30 1.94 2.09 240.8 201.8 322.4 2.08 1.90 2.93 2.08 alls aae19 ites ag? = Stes = ilgs tion Blea sac Bt 12 18 2038 90 7ae@ 98 $399.9 99.98 268.5 288.6 308.0 1.93 1.21 2.08 2.08 PERCENTAGE 270.4 263.1 186.4 2.08 861.57 1.35 2.08 100.2 © 183.9 42.7 1.86 2.87 1.31 2.07 7@.3 218.3 112.3 1.8? 2.07 2.20 2.07 163-6 185.2 130.4 1.12 2.07 ~=—-1.94 2.07 397.4 390.7 = 394.5 4.29 8061.17 2.06 415.6 376.2 307.3 1.89 2.06 1.92 2.06 CASE NO. 34 39.2 154.7 14504 1.53 1.27 2.06 2.06 118-1 97.0 147.5 1.61 1.55 2.86 2.06 448.4 426.3 451.5 2.06 1.63 1.36 2.06 253.2 304.8 303.7 1.87 1.08 2.06 2.06 X UAVEFORM HAS 4 PEAKS ABOVE 183.3 KU(1.63 P.U.) 460.3 301-4 356.4 206 1.12 1.75 2.06 137.4 189.1 123.3 1.43 2.83 2.06 2.06 THIS IS 1.2 ¥ 168.6 KY (SA RATING) & 1.414 467.0 483.6 365.3 2.06 1448 1.45 2.06 74.3 221.3 12327 1.89 2.05 2.05 2.95 THERE VERE 9 SUCH WAVEFORMS 242.3 176.9 210.0 2-05 1.72 1.48 2.05 Been laeet) oagee| oe (bee ees | ieee LOCATION 14, ANALYSIS FOR TRANQUELL ARRESTER 273.7 © 423.5 «300.5 1.93 1.93 2.04 2.04 : i4ed 112.2 187.2 3-85 1.41 2.04 2-04 CLOSING SPAN = 180.0 DEGREES : : ; ; ; 1.41 : aoe ded BEE RS OPE OTR OEE iste oh patie Ac . . . 1. 1. a. : 1-49@E @1 3.600E 02 0.0Q0E-01 1.800E 02 3.000E 02 tee-al) lisve-all lavecs free || Stes! lincer || Bces 1,080E 0 3.508E 93 S.GOCE G1 3:000E 02 1-000E 00 aac call \issiee|| laoacs Bcee || Gese| || tres Soe 1:@80E 02 1-380E 02 1.000E 02 6.394E G2 6.000E 01 Sca°9)| |aagia| seice Tose ||| peal ligtes Bon 8.339E 0@ §.Q00E-81 @.000E-21 0.000E-01 0.000E-01 426 mMoprso w mMmovIVv > mMODrIVe ao A34V1 LOCATION: 14 HEALY END OF LINE PER UNIT VOLTAGE CASE NO. 34 QSCILLOGRAM NO. 1 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 5.0 MSvDIV MAPID D myrpriv ww Maris 3° Az4u2a LOCATION: 7 NENANA 138 KV PER UNIT VOLTAGE CASE NO. 34 OSCILLOGRAM NO. 2 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 5.0 MS/DIV MadD=rs MHYDrIv w MODry oO A34U3 LOCATION: 8 GOLD HILL 138 KU PER UNIT VOLTAGE 1.5 1.0 0.5 8.0 -@.S -1.0 “1.5 1.5 1,0 8.5 8.8 -8.5 ~1.8 “1.5 1.5 1.0 e.5 0.8 0.5 -1.8 “1.5 CASE NO. 34 5.0 MS/DIU OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 428 MOnprv D> 0.65 @.4 0.0 0.2 0.4 -8.6 i 0.24 A34I1 LOCATION? 13 GOLD HILL PH. A TCR CURRENT SYSTEM KILOAMPERES CASE NO. 34 OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION NO WRRESTERS 5.8 MS/DIV MonDrID Dd 0.6 @.4 ° ° 1 . J wu i Ss » ' a n . o A3412 LOCATION? 13 GOLD HILL PH. B TCR CURRENT SYSTEM KILOAMPERES CASE NO. 34 S.0 MS7DO1U OSCILLOGRAM NO. §S MAX. EVENT FROM DISTRIBUTION NO ARRESTERS MOoODIVD D @.6 9.4 6.2 e.8 -0.2 0.4 —0.6 A3413 LOCATION? 13 GOLD HILL PH. C TCR CURRENT SYSTEM KILOAMPERES CASE NO. 34 5.@ MS/DIV OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 436 p34E1 :. LOCATION: 14 HEALY END OF LINE 138 KU PER UNIT VOLTAGE. moprd v-° SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES CASE NO. 34 $. MS/DIVU OSCILLOGRAM NO. 7 MAX. EVENT FROM DISTRIBUTION 108 KV, TYPE 3 ARRESTER OP. EVALUATION FOR TYPE 2! @.@06 COUL. EVALUATION FOR TYPE 3: 2.00 442 A344 LOCATION: 193 GOLD HILL 13.8 KYU PER UNIT VOLTAGE 1.5 ap) tee p os i" 2.0 2 -0.5 -1.0 “1.5 “8.5 “1.0 ~1.54 CASE NO. 34 5.9 MS/DIU OSCILLOGRAN NO. 8& MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 499 é PT. MacKenzie 230 kV Teeland> Teeland 230 bv c Douglas 138 kV FROM: HEALY 128 KU TOt GOLD HILL 138 KU FT Wainwright Cantwell meehy) 338 Av Manan Gold Hill 38 kV 133 AV 338 1V Heat : 20 Geid Kill = 33.8 kv UPERATING BREAKER J CPEN BREAKERS F,K,L,Q@ CLOSING RESISTOR @.03 (GHMS) Us ON QN 14 IS GOLD HILL END CF THE LINE ~CONTIPGENCIES THREE SVS ARE IN OPERATION, STANDARD REFERENCE SETTINGS. | INSERTION TIME @.80 (Sd MAX. CL. SPAN 8.33 (MS) RESULTS ARRESTER RATING AT LOCATION 14 IS 1€8.03 KU-TYPE 3 ce :CASEF 35°. TABLE 4. AISTL TEMPORARY. LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (K=DENOTES’ NON-SINUSOIDAL ) "PRE-SUITCH VOLTAGES, BREAKER J OPEN. LOCATION. A BO c 1 @.96 8.95 9.95 2 0,96 8.95 8.96 3 1.02 1.01 8.99 4 1.03 1.03 1.82 5 1.08 x 1.04% 1.05 % 6 1.06 X 1.03% 1.03% 7 @.01 @.01 @.01 14 @.0t @.81 8.04 CASE: 3S TABLE 2 AST TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES CR=DENOTES NON-SINUSOIDAL) POST-SUITCH VOLTAGES, BREAKER J CLOSED. LOCATION B c t 8.95 8.95 8.95 a 8.95 @.96 0.95 3 1.04 1.20 1.20 4 1:04 1.9% 1.02 5 1.08 1.284 1.04 6 1.09 1.03% 4.04% ? 4.12 1:05 % 1.07 & 14 1122 $107 x Leek 456 mMorvirivs w mMmwnrpxrw Oo 1.5 1.@ @.5 2.8 -0.5 ~1.0 “1.5 ABS LOCATION: 6 HEALY 138 KY PER UNIT VOLTAGE “CASE NO. 35 OSCILLOGRAM NO. 4 5.0 MS/DIV SSTEADY STATE, BREAKER J OPEN PRE-SUITCH VOLTAGES MoDro D Mnpvrv ww Monpxrs © 1.5 1.0 0.5 0.8 -8.S5 “1.0 “2.5 1.5 1.0 8.5 2.0 8.5 “1.8 1.5 1.5 1.6 a.5 8.8 0.5 “1.0 1.5 AISVa LOCATION: 6 HEALY 138 KV PER UNIT VOLTAGE CASE NO. 35 QSCILLOGRAM NO. 2 STEADY STATE, BREAKER J CLOSED POST~-SUITCH VOLTAGES 5.0 MS/DIV Morpxrv D> mMADdDxrDU w MAPIV OO A3SV3 LOCATION: 14 GOLD HILL END OF LINE PER UNIT VOLTAGE 1.5 1.8 8.5 1.5 1.8 @.5 9.8 -O.5 ~1.0 -1.S CASE NO. 35 OSCILLOGRAM NO. 3 STEADY STATE, BREAKER J CLOSED POST-SWITCH VOLTAGES S.@ MS/DIV 462 _ TABLE OF HIGHEST OVERVOLTAGES CLOSING ANGLES FOR PHASE a 248.8 253.9 62.8 442.3 63.9 413.4-- 396.9 266.4 197.6 268.7 79.4 406.4 244.0 273.4 425.7 246.9 158.1 407.8 45 18 a4 oO & UUM be Arn MONK BWV SLAVIVGAITO MO PAM GOHsSUVUOSKYOVIOSasAMavl SG. 8 9 © Gite 6 Bs ie 01 8) as S| el site B 201.8 378.3 194.6 333.9 3 207, PER UNIT A 1.66 1.67 1.62 1.83 1.58 1.30 1.46 1.77 1.45 1.75 1.58 1.36 1.73 1.56 1.69 1.69 1.37 1.53 1.63 1.68 1.68 3.68 1.68 1.68 1.36 1.34 1.68 1.32 1.47 1.67 1,67 1.45 1.66 1.66 1.66 1.46 1,65 1.46 1.60 1.47 1.64 1.61 1.64 1.63 1.63 1.49 1.68 1.38 1.62 1.42 1.60 1.62 1.45 QVERVOLTAGE B c 1.68 1.87 1,87 1.514 1.84 1.32 1.49 1.51 1.81 1.35 1.80 1.61 1.93 tone 1.14 1,62 1.45 1.76 1,36 1.58 1.74 1.87 1.73 1.51 1.286 1.28 4.71 1.20 1.36 1.31 1.66 1.34 1.47 1.69 1.33 1.69 4.69 1.52 1.20 1.38 1.81 1.54 1.46 1.26 1,52 1.45 1.45 1.62 1.68 1.46 1.62 1.68 1.48 1.43 1.42 1.67 1.67 1.21 1.34 1.49 1.38 1.51 1.67 1.35 1.42 1.42 1,58 1.41 1.14 1.14 1.65 1.43 1.21 1.33 1.65 1.38 1.65 1.428 1.64 1.47 1.27 1.22 1.23 1.64 1.47 1.53 1.41 1.1? 41.39 1.S3 1.63 1.62 1.63 1.38 1.63 1-58 1.30 1.34 1.59 1.62 1.628 1.56 1.55 1.22 1.49 1.62 MAX P.uU. 1.87 1.87 1.84 1.83 1.81 1.86 1.77 1.77 1.76 41.75 1.74 1.73 1.73 1.71 1.69 1.69 1.69 1.69 1.69 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.67 1.67 1.6? 1.67 1.67 1.66 1.66 1.66 1.65 1.65 1.65 1.65 1.64 1.64 1.64 1.64 1.63 1.63 1.63 1.63 1.63 1.62 1.62 1.62 1.62 1.62 PER UNET OVERVOLTAGE ~ PROBABILITY DISTRIBUTION MAX OF ALL PHASES 6.3 @.0L 8.4 12 16 2838 58 788A $3 $9.9 99. PERCENTAGE CASE NO. 35 WAVEFORM MAS 4 PEAKS ABOVE 183.3 KV(1.63 P.U.? THIS IS 1.2 * 108.@ KU (SA RATING) & 1.414 THERE WERE @ SUCH WAVEFORMS LOCATION 14, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 180.8 DEGREES SETUP DATA A35D1 1.400E 01 3.600E G2 @.0@@E-O1 1,800E 02 3.808E 02 1.@0@E @@ 3.S@@E 63 S.Q0GE @1 3. i 1.080E @2 1.380E 2 1.80@E G2 6.394E 92 6.000E G1 8.330E @@ 5S.0G0E-@1 @.000E-@1 @. @ @QVE OO 1.000E 8d @@0E-O1 -O00E-81 466 mMwopro wo mnprv Db MOHDroryu o AISU4 LOCATION: 3 TEELAND 138 KV PER UNIT VOLTAGE CASE NO. 35 CSCILLOGRAM NO. 4 MAX. TRANSIENT FROM DISTRIB. NO oRRESTERS 5.@ MS/DIU MornpxrDvd Db MoODdDirv & MoOnvrv Oo 1.5 1.@ @.5 8.8 -O.5 -1.8 “1.5 1.5 1.0 8.5 8.8 -8.5 “1.0 “1.5 1.5 1.0 o.5 8.0 8.5 ~1.8 “1.5 A35US LOCATION? HEALY 6 133 KY PER UNIT YOLTAGE CASE NO, 35 &.6 MS/DIU OSCILLOGRAM NO. S MAX. TRANSIENT FROM DISTRIB. NO ARRESTERS Mopro ww MnDrIVv D Mopxrv Oo AISVE LOCATION: 14 GOLD HILL END OF LINE PER UNIT VOLTAGE CASE NO. 3S OSCILLOGRAM NO. 6 MAX. TRANSIENT FROM DISTRIB. NO ARRESTERS 5.8 MS/DIV 478 A-B mMopry ASU? . LOCATION: 11 “TEELAND 13.8 KU PER UNIT VOLTAGE 45 1.0 @.5- @.0- -0.s+ CASE NO. 35 S.@ Ms/pIv OSCILLOGRAN NO. 7? MAX. TRANSIENT FROM DISTRIB. NO ARRESTERS A-B A35UB LOCATION: 12 HEALY 12 KV PER UNIT VOLTAGE 4.5 1.0 1.9 1.5 1.8 2.5 2.0 8.5 “1.8 “1.5 CASE NO. 35 5.0 NS/DIV OSGILLOGRAM NO. B&B MAX. TRANSIENT FROM DISTRIB. NO ARRESTERS 485 MODroD @ Moprw D Mopis Oo ABSI2 LOCATION: 12 HEALY TCR CURRENTS - “SYSTEM KILOAMPERES CASE NO. 35 5.8 MS/DIU OSCILLOGRAM NO. 18 MAX, EVENT FROM DISTRIBUTION NO ARRESTERS MuDprv w@ mMoOsorv Db MODrD 2 A3ZST1 LOCATION: 11 TEELAND TCR CURRENTS SYSTEM KILOAMPERES CASE NO. 35 5.@ MS/DIV OSCILLOGRAM NO. 9 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 495 PT. Mackenzie 230 kV L mf Teeland | 230 AV e Teeland Douglas La —— Q__f ety T +2 — TF ay 138 O fe B}-fs wi. [c P{eo Hi) Watane 138 kV Q eo fj fH pe | Heal = 12k TCR (1) ° rr Cantwell Wealy Nenana Gold Hill awa 138 kV © ase ky, 136 hy, aarey isa lt THEY ee! Gee eH. ena (s) — Gold Wall fost Ra Gold Hild is.8 kV & Tch OPERATING BREAKER Tf CLOSING RESISTOR @.80 COHNS) OPEN BREAKERS D,F,L ING REALY TO DOL (LD HILL SVS ON - CN FER THE DOUGLAS FROM? KERLY 238 KYU INSERTION TINE 8.03 (ms) TOr DOUGLAS 138 KV MAX. CL. SPAN 8,33 ims) "RESU TS ENCE SETTINGS END OF THE LINE FROM HEALY ARRESTER RATING AT LOCATION 14 1S 108.00 KU-TYPE 3 SO3 CASE! 36.0 0 STABLE 1 A36TL. © TEMPORARY LINE-NEUTRAL UOLTAGE © GREST PER UNIT QUANTITIES Cf*DENOTES: NON-SINUSOIDAL ? PRE-SUITCH VOLTAGES BREAKER T OPEN LOCATION ©. AL: Be ¢ 14 @.91 . @.04 O04 S 2.01 0.81 @.0% . 6 1.83 1.03 1.04 2? 1.02 1.03 1.94 8 1.08 1,01 1.02 CASE! 36 TABLE 2 AZ6T2 TEMPORARY LINE~NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL ) POST-SWITCH VOLTAGES BREAKER I CLOSED LOCATION A B c 581 Monro @ mMaDpro Dv Marry oOo “CASE NO. 36 OSCILLOGRAM NO. 15 A36U12 LOCATION: 14 DOUGLAS END OF THE LINE PER UNIT VOLTAGE 10.0 MS/DIV MAK. EVENT FROM DISTRIBUTION ARRESTERS AT DOULAS&HEALY MoHDprvw s® Moors D> Morrsw © A36V13 LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE 1.5 1.0 @.5 0.8 -8.S 1.0 “1.5 1.5 1.0 9.5 0.0 -0.S5 71.9 “1.5 1.5 1.8 8.5 @.0 -8.5 1.0 “1.5 CASE NO. 36 10. MS/DIV OSCILLOGRAM NO, 16 MAX, EVENT FROM DISTRIBUTION ARRESTERS AT DOULAS&HEALY Moors B-C Modi MoDxrv A36U14 LOCATION: 12 HEALY 12.0KU PER UNIT VOLTAGE CASE NO, 36 10.0 MS/DIV QSCILLOGRAN NO. 17 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT DOULASSHEALY 35; MnDxrv oO MoOrrR oO Merrzw o 0.34 @.2~ @.1 e.0 “0.1 + 0.2 -@.3 A36E1 Moe LOCATIONS 14 8 DOUGLAS -END OF THE LINE <> > PER-UNIT VOLTAGE B Pp H Aa Ss E SYSTEM KILO-AMPERES B Pp = H Aa s E SYSTEM MEGA-JOULES B Pp H a $ € CASE NO. 36 5.0 MS/DiU OSCILLOGRAM NO. 18 MAX. EVENT FROM DISTRIBUTION 108 KY TYPE 3 ARRESTER OP, EVALUATION FOR TYPE 2? @.00 COUL. EVALUATION FOR TYPE 3¢ 0.04 1.5 1.0 0.5 8.8 -@.S ~1.0 =1.5 @.45 .16 6.05 8.08 ~8.05 8.10 ABIES LOCATION: 12 HEALY 12.8 KV (B-C) PER UNIT VOLTAGE LA SYSTEM KILO-AMPERES bon SYSTEM MEGA-JOULES MnHnpDrs oO Mapro Oo rer er ree ear MOrPIEV oO ~O.154 CASE NO. 36 S.0 MS/DIV OSCILLOGRAM RO. 19 MAX. EVENT FROM DISTRIBUTION TYPE 3 ARRESTER OP. EVALUATION FOR TYPE @t 2.01 COUL. EVALUATION FOR TYPE 3¢ 1.99 4 te LOCAYION? 12 HEALY 12.0 KU Con? 'teee ER UNIT V i.o} 2.5 8.8~ -O.5 -1.0 ~1.5 SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES @.15 @.10 @.05 @.08 0.05 + ~8.10 ~@.1S CASE NO. 36 5.@ MS/DIV OSCILLOGRAN NO. 26 NAX. EVENT FROM DISTRIBUTION ~ TYPE 3 ARRESTER OP. - EVALUATION FOR TYPE 22... 1.76 CQUL. EVALUATION FOR TYPE 3: 1.78 563 MAprvw w MADLY. D MOADIrD O- - 43613. “SLOGATION 12° =e HEALY. TCR CURRENT "|. SYSTEM KILOAMPERES - 6+ . CASE NO. 36 10.@ MS/DIU QSCILLOGRAM NO. 22 MAX. EVENT FROM DISTRIBUTION MODIGD w MwnDpDrp Db mMuprv oO A3614 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES ww o CASE NO. 36 10.0 MS/DIV OSCILLOGRAM NO. 22 MAX. EVENT FROM DISTRIBUTION 569 PT. Mackenzie 230 kv Teeland Teelsnd Douglas on fT. 230 AV 130 av 338 AV Cantwodd ene, Nonana Gols mun Werowri ght ‘ ise f ©) ase "© Ase hy, ase ay 13a WO) IL | | spf ft e Hea Ha foam Hae EEE all oc a) <I / Q Qf of } joqea 2D ow by by, pew if ~<<if Watane Teeland ase - 3.8 kv Cold Mid 7CR CE | OPERATING BREAKER £ CLOSING RESISTOR INSERTION TIME FROMS HEALY £33 KU TO: © DOWGLAS 153 KV Max. CL. SPAN ~ ON OF SYSTEN a SIPING HEALY To POUaLAS 130 KU zz LD HILL $US ON alte | sie f,PT.WAINGIGHT“GOLD KILL LINE OUT ARRESTER RATING AT LOCATION 14 IS 108.63 KV-TYPE 3° ; | v nee On $ REFERENCE SE 418 The DOuGLA Aa?TL Se ae es hen dk men ae ag an ene ap ye oa pee meee “TERPORARY LINE-NEUTRAL: VOLTAGE CREST PER UNIT QUANTITIES . Ok DENOTES “NON-SINUSOIDAL ) pie ~SuItcH YOLTAGES BREAKER I OPEN Locati Ne g rem oe” 10 Ges ae - VQVsoo oe » GASES 37 TABLE 2 AZ?T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES C4=DENOTES NON-SINUSOIDAL ) POST-SUITCH. VOLTAGES BREAKER I CLOSED LOCATION Aa 8 c 14 ot ” . _ wm ” BVO 585 MODrv w MoDdDxro Dd MoDPID oO 1.35 £0} O.5> @.0- -0,S° 71.0 <1a5= 1.5 1.6- 8.5 8.0. “8.5 ~1.0 “248 > “CASE NO. 37 OSCILLOGRAM NO. 1 Ag7ul LOCATION: 6 HEALY 138 KY PER UNIT VOLTAGE S.0 MSvDIVU STEADY STATE VOLTAGES BREAKER I IS OPEN MOHoiVv ow mMnDprs MAprwe o AZ?We LOCATION? § CANTWELL 138 KV PER UNIT VOLTAGE 1.5 1.8 9.5 9.0 -@.5 ~1.0 penteferes “1.5 1.5 1.0 @.5 @.9 -8.5 “1.0 ~1.5 1.5 1.0> @.5- 8.0- -8,5 “1.0 “1.5 CASE NO. 37 OSCILLOGRAM NO. 2 STEADY STATE VOLTAGES BREAKER I IS CLOSED 5.0 MS/DIU MOrozrvd D MADIT @ MoDb>rs oO AI?20Z3 LOCATION: 14 DOUGLAS END OF LINE-138 KU PER UNIT VOLTAGE 1,5 1.0 @.5 0.0 the. 1.8 1.5 1.8 9.5 8.0 nfo -6.5 “1.0 “1.5 1.5 1.9 8.5 Al 8.8 = 9.5 1.0 1.5 CASE NO. 37 S.@-Ms/DIV OSCILLOGRAM NO. 3 STEADY STATE VOLTAGES BREAKER I IS CLOSED mopruo w ManDrwe DvD MoaDpDID oO AZ7VU9 LOCATION: 14 DOUGLAS END OF THE LINE PER UNIT VOLTAGE CASE NO, 37 10.0 MS/DIV OSCILLOGRAM NO, 15 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLAS&HEALY MaDiLIVv w MODIVDV D MaDrPrv o AZTVIO LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE CASE NO. 37 16.0 MS/DIV OSCILLOGRAM NO. 16 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLAS&HEALY a-p 1-8 mMapiv Mopxrs MnrDre Pace Ut LOCATIGN: 1a HEALY 42 KU PER UNTT YOLTAGE 1.5 8.5 0.2@ -6.5 “1.0 “1.5 1.5 peo 160 @.5 9.0 -O.5 1.0 “1.8 1.5 c-a 18 @.S 8.8 = aes 8.5 “1.2 “1.5 CASE NO. 37 16.@ MS/DIU OSCILLOGRAM NO. 17 MAX. EVENT FROM DISTRIBUTION _ ARRESTERS AT DOUGLASBHEALY 673 TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF MAX A , B. ¢. MU-SEC PHASE OP, KA. 338.7 301.2. 313.8 0.26 A 25 3.227 382:3 274.0 324.5 0.23 A 20 3.094 437.4. 312.4. 335.6 0.23 A {8 3.303 er ee BE ER ft og OLE . ee 48. . . 375.7 306.5 305.7 8.20 A 25 «3,586 #8 NO. PO(NTS = 380 361.6 311.8 313.0 0.208 A 1%? 3.259 . 288:8 319:3 302.6 @.20 A 1? 3.820 384.7 318:7 302.0 0.19 A 17 3.542 = 322:5 334.1 358.8 0.18 A ze 3.810 S 4.5 299:5 81:2 194:1 0117, 24 4.936 B 368.5 299-2 309.0 @.16 A 1S 2.958 at 377.8 272.1 313.7 @.16 A 1$ 2.876 = oa 407.9 315.3. 491.6 @.16 A 1? 3.083 =e 288:6 348.6 305.0 @.15 A 13 3.724 273,27 4232.5 -300:5 115A 15 3.813 2 343:6 356.7 273-4 0.14 A 25 3.397 W 9.3 293.@ 318.6 287.0 14 A 24 3.670 a 264.8 402.4 366.3 @.139 A 5 4.498 873-1 395.6 407.5 0.13 A 5 3.690 a> h 442.3 333.9 316.7 0.12 A 1@ 3.322 B 8. 267.3 391.1 370.0 «=a 2 4.524 B 436.9 330.2 486.5 @.12@ A 243.172 2 344.3 386.6 e89:.2 @.12 A 133.335 8.1 = 79:8 353.2 244.0 @.f1 A 13 3.750 x L_ | 215.4 226.2 150.4 @.11 A 2 3.591 i it fer TRS gH Pe Ee ea : 117.1 196.5 74.8 8.41 A 5 2!963 8.8L B.1 t2 18 2838 SQ 7888 38 33 $9.9 $3.99 290.0 458:2 457.8 @.1f aA 5 3.097 PERCENTAGE 148.7 204.0 202.9 11 A 5 2.308 198:1 Rive siaes lta OS 197:7 38i/5 isle = elie 15 41802 CASELNG 21127, me Mee NR te 8 & tee andy Te Tete 2 . . . . . 483.5 406.4 311.4 @:1@ A 48 2.691 Healy TCR Arrester 286.8 426.6 358.5 0.18 A 3. «3.744 = 227.4 195.7 146.8 0.e9 A 3 3.263 289-0 891-4 131.3 9.09 A 3 3.203 154.1 265.4 195.8 @.09 A 3 2.318 117.2 178.4 119.6 e029 A 6 2.815 elise 00:0 taato es Blen a . . . . «S14 . REST! iis? “Sig 12 bee 2 2 2es LOCATION 1S, ANALYSIS FOR TRANGQUELL ARRESTER ‘ ¥ 4 A A 4.659 a . izeg age'3re'S 883 2 eee CLOSING SPAN = 180.0 DEGREES 47, . . . 71 A37D2 So es ofl ft 2 of bee ee : : ile, ’ : 1.50E @1 3.600E G2 @.00CE-01 1.800E G2 3.000E 02 219.5 225.4 134.8 8.09 A 20 2.864 1.Q@@E 8@ 3.5@0E 03 3.900E 02 3.000E 06 1.200E 40 463.7 457.8 = 380.8 = 0.09 ee 3.441 L1260E G1 2.08CE Oi 4.75eE Of B.017E 03 6.GQ0E at 89.0 187.8 112.4 @.89 A 2@ 2.873 B.390E 90 5.000E-01 1.100E 01 @.@80E-01 0.0@0E-01 687 MHDED Dd MorprDd »D 15 0.85 AI7E1 LOCATION: 12 HEALY > 12.KU (A-B) PER UNIT YOLTAGE 1.04 8.0 -0.5 -1.0 ~1.5 SYSTEM KILO-AMPERES SYSTEM MEGA~JOULES ee ee CASE NO. 37 20.8 MS/DIV OSCILLOGRAM NO. 19 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLASB&HEALY 12K EVALUATION FOR TYPE 2! 14.69 COUL. EVALUATION FOR TYPE 3: 15.06 703 mnpxrd4s » Moprys o MOpivDv w A3713 LOCATION: .t2 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 37 OSCILLOGRAM NO. 20 Max, EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLAS&HEALY 58.6 MS/DIV mMoODirvw w MODIrVD D Marprise Oo w ove © * mM Ww A3?7IT4 LOCATION: ~— 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 37 OSCILLOGRAM NO. ef MAX. EYENT FROM DISTRIBUTION ARRESTERS AT DOUGLASBHEALY 58.0 MS/DIU 711 MYDTrOVW w Mnyvro Db mMOrrv oO AZ?VLS A3B7V1LG AZW17 LOCATION: 14 LocaTIon: § LOCATION? 6 DOUGLAS END OF THE LINE CANTWELL 138 KU HEALY 138 KU PER UNIT UOLTAGE PER UNIT VOLTAGE PER UNIT VOLTAGE 3 a A 2 Pp p ? | H H i A Aa e ‘ $s SL £ E 7 -2 -3 a B B it Pp P 4 # ° \ a $ 7 -1 s $ — € -2 . ~3 - 3 c ¢ # P Pp i H H i a Rg ° s s = E E 1 -2 - -3 CASE NO. 3? 5.8 MS/DIV CASE NO. 37 58.8 MS7DIV CASE NO. 37 50.6 MS/D1Y OSCILLOGRAM NO. 2@2 OSCILLOGRAM NO, 23 OSCILLOGRAN NO. 24 MAX. EVENT FROM DISTRIBUTION — _ MAX. EVENT FROM DISTRIBUTION 7 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLASBHEALY ARRESTERS AT DOUGLASSHEALY ARRESTERS AT DOUGLAS&HEALY 721 c P AR A 8 E AB?VIB LOCATION? 12 HEALY 12.0 KV PER UNIT VOLTAGE an HU a “CASE NO. 3? 50.0 MS-DIV OSCILLOGRAMN NO. 25 MAX, EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLAS&HEALY c c MODI R MOrDrs . . ee eee | le . voyesg#sma ao onsyns w . + oow*seugw#gsss ABWVID LOCATION? 13 GOLD HILL 13.8 KU PER UNIT VOLTAGE et ee STE CASE NO. 37 50.8 MS/DIV OSCILLOGRAM NO. 26 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLAS&HEALY 723 TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF Max A B c MU-SEC PHASE OP. KA. 389.6 286:1 348.2 0.70 A 58 9.126 413.4 393.7 350.0 0.70 A 55 9.132 414.4 296.7 364.3 0.68 A 58 0.112 fee. f0tl4 aves alee 8B 384. 01.4 3 3 : 415.4 320.9 366.0 9.60 A 52 0.106 8.3 NO. POINTS = 380 340.3. 332.3 433-5 @.59 A 56 0.096 341.8 363.4 3732.2 0.55 A 56 @.125 8.0 361-6 311.8 313.0 9.52 a 58.138 - @ 368.7 293.7 351.2 @.51 A 57 0.119 o 413-0 341.8 388.7 @.5@ A 57 0.119 B 8.7 364.8 305.8 388.2 @.49 A Ss? @.112 = 428.2 355.4 409.7 0.46 A 58 0.118 Fas 322.5 334.1 358.8 0.46 A 57 0.118 S 377.8 2727.1 313.7 @.45 A 55 0.103 25 4.5 343.6 356.7 273.4 0.44 @ 58 9.156 @ % 388.4 405.4 426.9 0.49 A 56 0.123 wy 382:3 274.0 324.5 42 A 5? 9.198 i 8.4 437.4 312.4 335.6 @41 a 57 0.144 288.8 319.3 302.6 9.40 A 56 0.153 & 6.3 342-1 872.8 316.5 @.31 A 55 0.127 # 288.6 348.6 305.0 0.30 A 56 @.101 Dao 393.8 317.5 407.9 @.30 A 59 0.093 7s 293.0 318.6 287.0 @.e8 A 53 0.168 a 312.5 282.0 289.4 @.24 A 58 @.111 © at 407.@ 315.9 491.6 @.23 a 58.129 re et a re ee es « . . . @. ; + 305.4 35011 297-2 8121 Asis 1B OU BS 2 20 20 ee sce ee ao ieeste oi 102.0 87.3 58.3 Q.21 Ss S?7 %.204 PERCENTAGE 425.4 349.6 371.2 21 A 52 8.92 “fet is0:a | “ee'f81Bo kee . i . . . A @.191 396:0 3441041751 0:28 Asti«S 7s CASE "NO: 37 ie BS BE FR 2 OB OR | . . . . of 391.1 339-5 391.4 @.20 A 57.093 RRONAUE LLY ARBESTER ues Ge 88 $8 2B Sel . 368. . re A . . 457.6 448.6 426.0 0:19 A S9 0.257 RATING Le e103 .O),KY 93.2 84.8 61.1 0.19 A 55 8.240 457.0 483.6 365.3 @.19 A 59 0.277 ee wi ee Sk Se A ‘ 5 x +295 46:2 44.8 4058 a:i3 a es @ 1236 LOCATION 14, ANALYSIS FOR TRANQUELL ARRESTER . . r ad a +114 « i REES ae. Be.8 it 81188 8 eieel CLOSING SPAN = 180.@ DEGREE! . . « . 14 ue 52 BE SB Ee |siaee 9 pipers : : : : 9.106 1.400E @1 3.600E 02 @.Q00E-@1 1.800E @2 3.000E 02 338-2 = 301-2 313.8 O18 S6 0.083 1,000E @9 3.SQ0E 03 5.QGCE G2 3.000E BO 1.020E 00 {171.2 334.3 299.0 @.18 A 53 0.204 2.@80E 02 1.380E @2 1.000E 2 6.394E 02 6.000E O1 197.7 321.5 188-2 @.18 A 59 -@.262 B.330E 0 2.@0@E-01 1,100E Of 8.000E-G1 9.000E-01 745 MADID D MoDiIDv DvD @.15 0.10 - @.05 9.00 -0.05 4 -0.10 “0.15 O.34 e.e4- ®.1- -@.2 4 ATES LOCATION: 14 DOUGLAS -END OF THE LINE PER -UNIT VOLTAGE SYSTEM KILO~AMPERES SYSTEM MEGA-JOULES MHDrvD D MONDID D> Mooxrv Dd CASE NO..37 $0.8 MSvDIV QSCILLOGRAM NO, 27? Max. EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLAS&HEALY EVALUATION FOR TYPE @! EVALUATION FOR TYPE 33 @.2@ COUL. 9.03 8.15 8.10 8.85 8.00 -8.85 8.10 ~@.15 @.3 @.2- @.1 e.8 0.1 0.2 0.3 A3I7TE3 LOCATION: 14 DOUGLAS END OF THE LINE PER UNIT VOLTAGE A P H A $ e SYSTEM KILO-AMPERES A Pp H a s E SYSTEM MEGA-JOULES a Pp ttt tt i i A $ E CASE NO. 37 50.8 MS/DIV OSCILLOGRAM NO. 28 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLAS&HEALY EVALUATION FOR TYPE 2? @.98 COUL. EVALUATION FOR TYPE 32 8.06 A3Z7E4 LOCATION: 14 DOUGLAS END OF THE LINE PER UNIT VOLTAGE @.15 @.10 9.85 0.00 -8,85 -@.1@ —@.15 9.3 @.2 @-1 e.8 -@.1 -8.2 -0.3 SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES CASE NO. 37 5@.@ MS/DIV OSCILLOGRAM NO. 29 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT DOUGLASBHEALY EVALUATION FOR TYPE 23 EVALUATION FOR TYPE 3: @.0@ COUL. @.03 15:9 ft. Mickenrice 230 kV Teeland _ Teohand Douglas a Fr. 230 kV asain aa ") Cantwell 6 only Nenana erences Wornwright 13a i ase "G) asa iV asaliky 4H pag i cao a Sean a CHa a 0 Mi. Wetane ase kv Teeland 13.8 kv 3 FRO? HEALY 138 KU Tor DOUGLAS noe KU RIBTION CF sys en 1¢ go. = s2- i } i i | ENERGIZING HEAL 1 GOLD HILL | MEALY Ge OF SERVICE SUS REF ERE 1 STANDARD fod 14 Tu THE LoOcaT T TAR hk a; ~ Cold Hill 4 = = i308 Av aL ron | T T 7 OPERATING BREEKER 1 OPEN BREAKERS D,F,L,K,0,8 CLOSING RESISTOR ; INSERTION TIME MAX. CL. SPAN @.88 (OHMS) 8.09 «M"S) 8.33 (NS) ARRESTER RATING AT LOCATION 14 IS 108.06 KU-TvPE 3 esis Ragiouei CASE 38 “TABLE 10 ABSTL TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (¥=DENOTES NON-SINUSOIDAL ) PRE-SWITCH VOLTAGES,BREAKER I IS OPEN LOCATION... A. B ¢ 8 1.02 *° 1.05 1 7 1.83 x 1.85 1.98 * 6 1.04% 1.e8 fs 5 @.at 8:01 8.84 14 8.01 0.0L e. CASE: 38 TABLE 2 9 ABT2 TEMPORARY UINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k*DENOTES NON-SINUSOTDAL) POST-SWITCH VOLTAGES, BREAKER I IS CLOSED LOCATION Aa B ¢ 8 1.43 1.12 1.41 ? t.at 1.49 1.49 6 1.23 1.26 1.26 5 1.33 1.30 1.30 14 1,39 1.35 1,36 775 TABLE OF HIGHEST OVERVOLTAGES CLOSING ANGLES FOR PHASE PER UNIT OVERVOLTAGE MAX a 5 G A B c Pou, 74.3 221.3 123.7 2.76 2.23 2.18 2.76 436.9 333.2 486.5 | 2.71 1.97 1.93 2.71 94.6 260.5 267.6 2.78 1.64 1.83 2.7¢ 273.7? 423.5 308.5 2.67 @.t1 2.03 2.67 70.3 218.3 i12.3 2.66 2.23 2.06 2.66 278.5 437.2 301.3 2.65 2,04 1,85 2.68 AAG 331.5 404.3 2.63 1.93 1.53 2.63 453.5 325.3 425.8 2.63 1.88 1.57 2.63 286.8 426.6 352.5 2.63 1.89 2.19 2,63 483.5 406.4 BiL.4 2-O1 2.43 2.63 2.63 290.9 453.2 457.8 2.64 1.53 1.89 2-68 455.9 365.28 954.7 2.59 2.13 1.65 2.59 78.8 4135.3 126.6 2.58 1.58 2.18 2.58 274.4 196.9 254.5 2.$? 1.88 1.57 2.57 69.3 69.4 128.9 2.56 1,94 2.26 2.56 79.4 194.9 138.8 2.54 2.05 2.28 2.54 469.9 373.4 456.6 2.$3 2.16 1.71 2.53 465.3 374.2 438.3 2.53 2-27 4.71 2.53 254.8 482.4 366.3 2.53 2.02 2.19 2.53 268.5 288.6 398.8 2.52 1.61 2.07 2.92 249.5 335.4 308.1 2.54 1.49 2.02 2.51 248.8 201.8 322.4 2.a9 2.51 2.83 2.51 256.3 122.0 216.9 2.58 2.09 1.67 2.S8 278.1 261.5 ee1.e 2.48 2.29 1.72 2.48 463.7 4S7.8 320.8 2.89 2.10 2.43 2.48 261.5 269.3 294.1 2.48 1.86 1.86 2.48 253.2 304.8 303.7 2.48 1.49 2.82 2.48 89.8 107.8 112.4 2.46 1.65 1.92 2.46 479.8 473.7 337.6 2.05 4.91 2.45 2,45 468.3 301.2 356.4 2.45 1.87 2.88 2.45 144.9 29.2 147.6 2.2) Bas 2.01 2.45 257.6 127.@ 164.8 2.45 1.80 2.12 2.45 443.4 426.3 451.5 2.44 2.23 1.58 2.44 28.7 179.6 164.3 2.44 1.94 2.89 e.44 257.4 311.2 339.6 2.43 1.64 2.22 8.43 e71.4 SE? .4 342.1 2.43 1.7% a1? 2.43 449.9 410.9 329.4 2.42 2.34 2.22 2.42 253.9 378.3 291.6 2.42 2.06 1.93 2.42 233.6 2065.9 252.8 2.428 2.33 1.71 2.42 85.7 187.3 76.6 2.42 1.55 1.62 2.42 158.4 216.4 115.7 1.63 2.428 g.28 2.42 452.2 487.3 424.9 2.42 1.56 1.68 2.42 81.6 1128.7 94,9 e.4i 1.48 1.62 2.44 406.4 386.8 $20.2 2.10 2.41 @.39 a.4i 7Se4 139.9 S?.L a.41 1.53 1.64 2.41 449.3 $03.0 429.4 2.41 1.53 1.58 2.44 428.7 355.4 409.7 a.4t 2.01 1.54 24h 268.7 317.2 284.4 2.40 4.54 1.73 2.48 182.6 201.3 104.2 1.538 2.40 2.87 2.48 259.3 253.2 190.8 2.42 1.97 2.02 2.40 394.7 397.3 $33.4 1.79 2.48 2.12 2.49 eg7.t 173.6 288.5 2.46 2,028 1.73 2.49 457.6 448.6 426.0 2.40 2.02 1.76 2.46 PROBABILITY DISTRIBUTION MAX OF ALL PHASES a NO. POINTS = 3ad tte 4 L | ge T 2.5 — ot + LL 223 | i a us 5B 2t [ = = 1a tt | a? ~| t pt o us | { | | 3 + }—} + | t——+}——} 8.0L 1.1 12 18 2830 5a 7aBa Se 83 99.9 39.99 PERCENTAGE CASE NO. 38 R WAVEFORM HAS 4 PEAKS ABOVE 183.3 KY¥C1.63 P.U.) THIS IS 1.2 % 108.4 KU (SA RATING) & 1.414 THERE WERE @ SUCH WAVEFORMS LOCATION 14, ANALYSIS FOR TRANGUELL ARRESTER CLOSING SPAN = 180.0 DEGREES SETUP DATA 3801 tagse 02 S:S00 03 {1000E o2 4100CE Oe 1.0C0E 08 1.080E O92 L.3R@E G2 1.080E 92 G.394E G2 G.OGGE O1 B.33GE 00 S.POGE-G1 O.QBQE-81 O.O00E-O1 O.080E-01 785 mMmoproe ws mMoprDp FF Mynre o AIBVL “LOCATION! 6 HEALY 438 KU PER UNIT YOLTAGE CASE NO. 38 OSCILLOGRAM NO. 1 10.0 MS/DIU MAX. EVENT FROM DISTRIBUTION NO ARRESTERS mopiw ws MoDrvw D> Moprv o ABBVA LOCATION? = § CANTUELL 138 KY PER UNIT VOLTAGE CASE NO, 38 10.8 MS/D1IU OSCILLOGRAM NO. 2 MAX, EVENT FROM DISTRIBUTION NO ARRESTERS mMOorprd ®@ MODI D 1 i 1 wow ov = S&S &— YH Ww MHnDrPrDp o AABYS LOCATION? 14 DOUGLAS END OF THE LINE PER UNIT VOLTAGE CASE NO. 38 18.0 MS/DIU OSCILLOGRAM NO. 3 MAX, EVENT FROM DISTRIBUTION NO ARRESTERS 793 c Moris ABBUS LOCATION: 43 GOLD HILL 13.8 KV PER UNIT VOLTAGE CASE NO. 38 10.0 MS/DIV OSCILLOGRAN NO. 5 Max, EVENT FROM DISTRIBUTION HO ARRESTERS mMorprs w MODrICD Dd mMoDpris oO AIBI1 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES 1.5 Let ost 0.0 te -@.5° 1.90 “ts 1.5 1.8 o.5 2.0 -8.5 -1.8 “1.54 1.5 1.9 @.S 0.8 tom 6.5 “1.8 1.5 CASE NG. 38 10.0 MS7DIV OSCILLOGRAM NO. 6 MAX, EVENT FROM DISTRIBUTION NO ARRESTERS 797 > MODrV DvD MoaDID MorvxiriDv Dv AgsEL LOCATION: 14 DOUGLAS END OF LINE. £98 KU PER UNIT VOLTAGE SYSTEM KILO~AMPERES SYSTEM MEGA-JOULES @.iS 8.10 @.05 ®.00 “8.05 9.18 ~6.154 CASE NO. 38 18.0 MS/DIV OSCILLOGRAM NO. 7 MAX. EVENT FROM DISTRIBUTION 198 Ki) TYPE 3 ARRESTER OP. EVALUATION FOR TYPE 2? @.0@ COUL. EVALUATION FOR TYPE 37 9.03 Phe pnp ppp 805 98 0 foe AIVAH WOH4 3NIT 3HL 40 GN2 SyIONOG SHL SI Hy KOTLYCOT | oc ' SONTLLIS JONSUSIRY SNS ANCINYLS an nn er — een erntwewere ne € 3dAL-NW 09° BOT ST +t NOILYO01 LY SNILYY AalSayuy 4NO 3NI1 TUH QOO-LHDISHIYM 84d 6 4J0 “NSO ATYSR E 3dAL-Ay 09°23 ST @t HOTLYOOT LY ONTLYd YSLSSvuY ONTLYYSdO 3a¥ S/SAS eg ort s19H a ns SAS AIV3H Z219u3! Seema WHISAS JO NOFLdTYOS3d $1534 - ae See on GR ARS! Sth. NE LES > 90° 1WOed ge oN’ S389 (SHO) 60°O YOLSIS3¥ DNISO19 i afati'sd SuatvaaE N3d0 0 _UIAVIUa SNTLYYIdO tse L ab averse a tt, ute n u = 1 WL v L er (4 («) (°) . ni 109 OF a Motes = AN Oct Av oct AY act AV oct AX BCt AY acl AM of? TiMtinuteg insu ienen eueuoy . (leniueg 44 S51 fnog Puetoos puepoay AY 08? ayruayorw “hd AY 69 uit TABLE 1 ~ agers TEMPORARY _L LINE-NEUTRAL VOLTAGE CREST. PER UNIT QUANTITIES (CRXDENOTES NON-SINUSOEDAL) - re suiteH VOLTAGES, BREAKER 0 IS OPEN Location. 4 3 ¢ 8 1.13 1.142 1.12 ?- 1.2L 1.19 1.19 6 1.29 1.27 1.26 5 1.33 1.3¢@ 1.29 14 1,48 1.37 1.34 CASE? 39 TABLE 2 azste TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES Ck*DENOTES NON-SINUSOIDAL) POST-SWITCH VOLTAGES, BREAKER 0 IS CLOSED LOCATION a& B c 8 1,04 1.03 1.02 it 1.06 1.04 1.03 & 1.08 1.03 1.03 s 1.12 1.06 ¥ 1.06 14 1.15 41.10 ® 1.09 32.5 = TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF max A B c fiJ-SEC PHASE OP. KA. 377.7 306.1. 387.9 A 49 2.677 384.8 349:7° 324.2 a 36 -2:739 353:4 342,14 422.2 a 34.0 3.38 391.1 339.5 391.4 a 36a. 89 349.3. 332.3 433.5 a 22 2.785 414.4 296.7 364.3 A 18 2.523 407.0. 315.3 491.6 a 39° 2.597 396.0 34450 41704 4 320 2.677 415.1. 320.9 366.0 4 35 2.478 3 413.0 341.8 388.7 a 18 9 2.737 BS 393-8 317.5 427.9 a 18 2.622 a 384:0 . 301:4 372.8 a 35 2.215 a 322.5 334.1 358.8 a 34 2.653 = 288:8 319:3 302.6 A 24 3.171 = 343.6 356.7 273.4 a 35 -B.368 2a 293:0 318.6 = 287.8 a 35 2.629 be 425.2 320.1 2877.4 a 320 «3.964 wy 294:8 311:8 265.5 a 29 2.651 Ss 384:7 348.7 322.0 a 22 2.290 344.3 326.6 = 889.2 A 35 2.276 fie 436.9 330.2 486.5 A 35 2.027 pu 305.4 350.1 297.8 a 31 «3.2288 w 311.3 261.3 239.1 A 12 3.116 w ° ; ; } 368.5 299:2 309.0 a 34 2.628 te i 371-2 280.7 2a?.2 a 23 2.883 © at 4 tel — 273.1 395.6 497.5 a 31 0 -3.125 ad el Mes Sf OER gi ties oe : G4. 402. . . 2156 . peel 197;?7 321-5 88:2 @.21 A 5 3.070 OO ore eae cea) ee aaah tooo 429.6 278.3 428.6 8.18 a 34-0. 764 PERCENTAGE $14.4 118.7 187.7 11? 6 2.463 ae ee ; f 13. Bi a : 88:7 179:6 164:3 e116 A 32 81775 cea Se 483:2 48713 agai Olig SRB aa — . . 4. . «34 r a 117.2 «17814 «119:sda 27 2.456 Healy TCR Arrester 143.7 204.0 22:9 o.14 A 32 2.080 508.8 516.3 S17.8 14 A 32 0 «2.483 212.9 120.3 25:1 e414 A 32 2.450 470.8 473.7 337.6 0:14 A 31 02.102 453.3 S@9.1 452.9 0.13 8A 3200 Bl 4et wy Ge ee ERR 8 ES: . . . . +64 Ri LL AR! TER 24:8 223.0 30412 a se ivfee LOCATION 15, ANALYSIS FOR TRANQUELL ARRESTE 445. j ” ‘ 67 ie i : ite Bd 0088 33 Bes CLOSING SPAN = 18@.0 DEGREES 125. . o4, : a 2.172 168.8 ga7.@ ai7-4 0.12 a a e.918 SETUP DATA a39p4 cs ig. 412.3 +t a 1 2.717 1.S0@E @1 3.60CE O2 9,9G0E-S1 1.800F 02 3.000E 02 79-4 194.9 138. Qt a 31 1.998 1.C@2E CO 3.50CE 03 5.000E 92 3.CQ0E Cd 1.000E 00 137-4 189-1. 123.30 11 A 8 2.c88 {.262E 01 B.ORCE 1 4. 750E 21 B.C17E 03 G.0G0E Of 502.6 429.3 426.8 O44 a e7 2.603 8.3306 03 1.000 09 1.109F O1 O.e00E-01 9, 900E-01 813 D> Morprxru w mMorrv MOrDIIV Oo A3B9VL LOCATION: 6 HEALY 138 KV PER. UNIT VOLTAGE “CASE NO. 39 OSCILLOGRAM NO. 1 Max. EVENT FROM DISTRIBUTION 50.8 NS/DIV MODIXrD D Movxirou w Mopxrv oO A39ve LOCATION: S CANTUELL 138 KU PER UNIT VOLTAGE q 2 1 i t @ F ~1 -2 -3 CASE NO. 39 50.6 MS/DIV OSCILLOGRAN NO. 2 PAX. EVENT FROM DISTRIBUTION Morro w MADIUV D MYDIV oOo AISU3 LOCATION: 14 DOUGLAS END OF THE LINE PER UNIT VOLTAGE CASE NO. 39 5@.8 MS/DIV OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION ; 835 AIGU4 LOCATION: 12 Hi 1 FER UNIT VOLTAGE i a ll a ay vi | oe ii a-B SSS B-C mopxr | ela Bi “1.54 CASE NO. 39 50.8 MS/DIV OSCILLOGRAM NO. 4 terete: Murpirs Max. EVENT FROM DISTRIBUTION A39US LOCATION: 13 GOLD HILL 13.8 KY PER UNIT VOLTAGE B-C. = Mapvrs c-A EE Bae ii HT MODIrVD 1.5 CASE NO. 39 $8.0 MS/DIV OSCILLOGRAM NO. S MAX. EVENT FROM DISTRIBUTION 843 MoDirIv w mwMpru YF Morprv so n o Ma wpt}pena qe weed AISI1 LOCATION: 12 HEALY TCR CURRENT CASE NO. 39 OSCILLOGRAN NO. 6 MAX. SYSTEM KILOAMPERES 50.0 MS/D1U EVENT FROM DISTRIBUTION Mypirivow Dd Mnriv w Mnnorsw oO aggre LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 39 5.8 MS/DIV OSCILLOGRAM NO. 7 __MAX, EVENT FROM DISTRIBUTION 849 PT. MacKenrie 230 Av Teedand Toe land 2s0 bv 138 Av i> |em-fo3y QP Te 1 is| 'e1 3 ck vd vo faaePt CASE KO. 48 FROM: HEALY $38 KU OFERATION? ENERGIZING TOr HEALY SUS DESCRIPTION OF SYSTEM ENERGIZING HEALY SUS TRANSFORMER AND TCR’S [eEauy & GOLD HILL SUS/S GRE OPERATING { HEALY GEN. OFF, FT. UAINRIGHT-GOLD HILL LINE OUT CONTINGER IES [2 ee eee ere ee | me 1 eC GRIN|23, TINE CONSTANT? MPARD SUS REFERENCE SETTINGS Lo C2XkO. I7UF Location $4 IS THE DOUGLAS END OF THE LINE FROM HEALY Douglas 138 kv Watane 336 kv Cantwell ass bv Newly * Nonana (:) © EI ase ky ae HEH) ee He 1 | Hse (3) fHa Epa} @). ah. [HED a Gol! mil asa ay Fr. Watouright 138 by Gold Hild 3.8 av OPERATING BREAKER 0 CLOSING RESISTOR INSERTION TLE 8.08 (Sd SPAN 8.33 (MS) MAX. CONCLI OPEN BREAKERS U0,F,L,K,R,X @.88 (OHNS) CONCLUSIONS OCOC~“—~SS~S~SOSS HEALY FILTER BANK IS OFF. CASE! 48 TABLE 1 A4OTL TEMPORARY LINE~NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (¥=DENOTES NON-SINUSOIDAL) PRE-SUITCH VOLTAGES, BREAKER O IS OPEN BREAKER X IS OPEN. LOCATION a B c 8 1.13 1.12 1.12 2? 1.21 1.19 1.19 6 1.29 1.27 1.26 S 1.33 1.38 1.30 14 1.48 1.37 1.35 CASE: 48 TABLE 2 A4eT2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES CX*DENOTES NON-SINUSOIDAL) POST-SUITCH VOLTAGES, BREAKER 0 IS CLOSED BREAKER X IS OPEN. LOCATION 8 -O1 % 1.08 * ? 1.04 * 1,01 x 6 1.00 x ®.99 x 5 1.01 *% @.97 x 14 1.24 * 1.19 x agec TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF Max 4 8 ¢ fU-SEC PHASE OP. KA, 39.2 154.7. 145.4 06 A 29 0.558 35.2 72.4 60.5 0.06 4 35 98.446 408.9 427.4 405-4 @.96 A 38 «8.509 3 ofS 1S SO Bets i i 112. i i . 58.7 86.8 V1 8.04 a 29 8.388 9.8 NO. POINTS = 382 199-1 217.8 «148.5 0.03 32 © 0.637 . 7 86.8 56.5 153.7 @.03 A 32 6.619 62.8 194.6 74.0 9.03 A 32 8.472 - 154.6 42.2 41.6 0.03 A 12 0.663 O a.5 {4 81.6 112.7 94:9 9:03 A 3381449 Be 1 74.3 BB1.9 123.7 eee 8 @.5it ay 160.4 89.6 162.3 @.e2 A 5 0.553 = as 155.5 59.9 74.4 8.02 A 8 @.779 = 6. t17.1 190.5 74.8 0.02 A 32 60.823 25 111.8 57.4 165.6 @.@2 A 8 0.516 & 452.2 487.9 424.9 @.02 A 48 0.300 YW o.3 | 267.9 391.1 370.8 @.e2 A 18 8,432 io 453.7 530.4 449.5 8.02 A 2 0.466 i 46.6 134.4 165.6 @.e2 8A 31 8.473 £5 g:2 | $3.0 189.3 54.9 @.02 4 2@ 8.554 K t 508.8 516.3 517.8 9:02 A 5 0.582 a 235.4 205.5 162.9 82 A 33 0.602 x 134.3 123.6 34.2 6.02 A 31 08.492 & @.4 + a73.1 385.6 407.5 e022 A 33 0.439 © 117-2 «178.40 119-@ = 82 32 6.443 pee ied ME OS 8 SS aH 104. 5 : ! A 1 2362 Beads || sears Ill eaace (ll eieell ie ae || grace @.81 Bt i 2 18 2038 Sa 7aB8 92 $9 99,5 39.99 137.4 189.1 423.3 @.o1 a 34 9 8.333 PERCENTAGE 482.6 456.7 382.3 0.01 A 18 0.484 tie? «Poke *8aB oer kk Bea . . * @.e1 8.264 535.9 $14.2 SiB.2 O01 A 12 @.317 CAE) NO. 46 ‘ea “ef Ge SS Rk aR , 460:2 454.0 495.9. Oat 3 0.368 Healy (TCR “Arrester, 249.8 201.8 322.4 @.e1 A 34 0.259 228.8 335.9 253.6 0.01 A 35 9.973 197.7 321.5 188.20 1A 34 8.247 85.7 9 127.3 76.6 0.0: A 2 0.403 449.3 S@8.@ 429.4 @.01 A 34° @.143 ae eS Be gk bee . 4. ‘ +01 4 ' Ll Fi INQUELL ARRESTER e616 534.3 §35.5 oat it esas LOCATION 15, ANALYSIS FOR TRANQUE 448. ‘ : Oi : . +® DEGREES aes HES BEE ggh of 2 ke ari . is. , Ot A +439 8 A4QD. fee G2 BEE OEE OR ee ewe 1 . 483. . . . 1.500E @1 3.600E @2 @.000E-G1 1.800E 02 3.008E ea 487.6 448.6 426.0 0.01 fA 120,393 1.0@0E 60 3.S@0E 03 S.0Q0E 02 3.000F 0@ 1.000E 00 274.8 234.7 194.4 2.01 a 36 8.070 1.26@E 61 2.080E @1 4.750E O1 2.O17E 03 6.000E Ot 89.0 107.8 112.4 0.@1 A 29 0.183 8.3306 08 5.Q@QE-01 1.100E 01 @.000E-01 @.000E-01 272 MODrU w Mnrnprs PF MmMnADrv oOo A4OUL LOCATION: 14 DOUGLAS END OF THE LINE PER UNIT VOLTAGE CASE NO, 40 OSCILLOGRAM NO. 1 MAX. EVENT FROM DISTRIBUTION S.8 MSvDIV 1.57 | cal @.5 @.0 -8.5 1.8 P H A $s E “1.5 1.5 1.@ 0.5 2.8 -8.5 mMopro wo -1.0 “1.5 1.5 1.8 @.S 2.0 -@.5 Myprow -t.0- “1.5 A4av2 LOCATION: 6 HEALY 138 KV PER UNIT VOLTAGE CASE NO. 40 OSCILLOGRAM NO, 2 MAX. EVENT FROM DISTRIBUTION 5.8 NS/DIV Muprvo w MHDrvd Dd Myyprv o A4OU3 LOCATION: & GOLD HILL 138 KU PER UNIT VOLTAGE 1.5 1.0 @.5 \ 0.8 -6.5 er “1.5 1.5 t Q.5 8.% ~@.S re -1.5 1.5 1.0. o.5 0.0 -8.5 -1.0 ~1.5 CASE NO. 48 GSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION - 5.0 MS/DIV 279 mMwproe w Moprryvy oO A4OU4 LOCATION: 8 _ GOLD HILL 138 KY PER UNIT VOLTAGE | AA “1.54 “CASE NO. 40 50.0 MS/D1Y OSCILLOGRAM NO. 4 _ MAX. EVENT FROM DISTRIBUTION Morro w Mupirs D mMopnrvs oa 1. 1.0 @.5 8.9 -8.5 -1.0 “1.5 1.5 1.0 8.5 e.2 -8.5 1.0 71.5 1.5 1.8 8.5 o.8 -8.54 -1.8 “1.5-- A4GUS LOCATION: 6 HEALY 138 KV PER UNIT VOLTAGE CASE NO. 40 SO.@ MS/DIV OSCILLOGRAM NO. S NAX. EVENT FROM DISTRIBUTION MnDrD D MODrUV w Maprn Oo A4OUE LOCATION: 14 DOUGLAS END OF THE LINE PER UNIT VOLTAGE CASE NO. 48 50.6 MS/DIV OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION aan R407 RABUB LOCATION: 12 LOCATION? 13 HEALY 12.0 KY GOLD HILL 13.8 KV PER UNIT VOLTAGE PER UNIT VOLTAGE CASE NO. 40 50.8 MS-DIYV . CASE NO. 40 50.0 MS7DIV OSGILLOGRAM NO. 7 OSCILLOGRAM NO. 8 __MAX. EVENT FROM DISTRIBUTION MAX, EVENT FROM DISTRIBUTION at MODIVUV w mMnAPprze Db MOHDPDIrIV Oo A401) LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 40 S8.@ MS/DIV OSCILLOGRAM NO, G9 MAX. EVENT FROM DISTRIBUTION MADID w& moDro D Morris oO A4612 LOCATION? 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES “CASE NO. 48 SO.@ MS/DIV OSCILLOGRAM NO, 18 MAX. EVENT FROM DISTRIBUTION ann PT. Mackenzie 230 iv Teelond — rt. Teeland Douglas 230 4V as Cantwell a) Gola: HATE Woiowright feo fry Pax MT RE cacrafoene) coo) a0 “a “2 Watana 136 kV 13.0 kV {7} j f L\ Heal . (20) (13) lv) apm, a8 Gold Hial 33.8 bv s 1 42PL OPERATING BREAKER D OPEN BREAKERS I,F CLOSING RESISTOR @.08 (CHINS) a CSSE_NO. 42 F FROM’ DOUGLAS 138 KY INSERTION TIME @.00 (M5) JOR ERATION? ENERGIZING Tor HEALY 138 KU MAX. CL. SPAN 8.93 «1S) RESULTS DESCRIPTION OF SYSTEM NERGIZING DOUGLAS TO HEALY EELAND AND HEALY 5V9’S OPERATING E T CONTINGENCIES ig GAIteRC, TIME CONSTANT*4caKxO.37UF AND SUS REFERENCE SETTINGS | LOCATION a4. IS THE HEALY END OF LINE FROM DOUGLAS eee casei 42 “TABLE 1° aati TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON~SINUSOIDAL) PRE-SWITCH VOLTAGES, BREAKER D IS OPEN LOCATION B Cc 2 @.96 @.96 0.97 3 ®.98 1.20 1.01 4 @.99 1.01 1.02 5 @.01 @.e1 @.01 14 @.01 @.01 @.01 CASE: 42 TABLE 2. A4eT2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL ) POST-SWITCH VOLTAGES, BREAKER D IS CLOSED LOCATION a 8 ¢ 2 9.97 6.96 @.97 3 1.02 1.01 1.01 4 1.04 1.04 1,03 5 1.07 x 1.05 & 1.05 x 4 1.06 1.04 * 1,64 & aaa MODIEDo Dd Moririv w MoORrVv oO A4aVL LOCATION: 5 CANTWELL . 138 KY PER UNIT VOLTAGE “CASE NO. 42 5.@ NS/DIU OSCILLOGRAM NO. 1 STEADY STATE VOLTAGES GRRESTERS AT HEALY END OF LINE Mnpvxrv D> MovrIsw w MyYrrs oOo A4ave LOCATIONS 14 HEALY END OF THE LINE PER UNIT VOLTAGE 1.5 1.8 8.5 8.8 aL -O.5 -1.0- tS 1.5 1.0 @.S %.8 -8.5 “1.0 “1.5 1.5 1.0 e.5 8.8 CASE NO. 42 5.8 MS/DIV OSCILLOGRAM NO. 2 STEADY STATE VOLTAGES ARRESTERS AT HEALY END OF LINE aan _ TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION “CLOSING ANGLE FOR PHASE ENERGY NO.OF max Ae LB c MU-SEC PHASE OP. KA. 437.4.-..312.4. 335.6 0.22 A 27 «1.943 270-5 4137.2 301.3 O21 - A 27 «1.981 455.9 365-2 454.7 0.20 aA 20 «1.944 foe.g geere «Seale rid SAL 406.4 386. 5 i: : 353.4 342-1 422.2 @.19 a 2@ 1.940 ae NO. POINTS = 303 270.4. «258.1 394.3 0.19 A 18 1.904 . 311-8 325.8 278.7 19 A 20 1.954 419.2 ° 420.3 382.7 @.18 «A 4@ 1.918 5 437.1 418.2 «444.3018 48 1.947 6.5 388.4 405.4 426.9 @.18 A 22 1.931 oe 469.9 373-4 456.6 @.18 A 29 1.986 a 404.7 307.7 279.7 8.18 A 42 1.846 = ga 413.4 393:7 350.6 «= 4B 42 1.854 gee 393.7 460.4 462.2 9.18 A 32 1.898 197.27 321.5 188.2 18 A 371.871 2 297.1 178.6 @88:5 @.18 A 32 1.873 2.3 379.8 353-2 244.0 @.18 aA 31 0 1.924 oi 154.1 265.4 195.8 @.12 A 29 1.921 oo 324.27 346.7 230-4 0.17 A 18 1,942 5 0.2 i 449.9 410.0 359-1 117 A 35 1.875 : ee et a Sa g PN . . Vor . . 17.7 80.2 134.0 @.17 a 22 1.866 & 8.1 {es 453.3 508.1 452.9 @.17 a 20 1.950 a 242.3 176.9 210:0 @.16 A 29 1.904 ee va 449.3 508.0 429.4 16 A 2@ 1.938 CO eee ee Ogee ees 92s 426.6 534.3 532.5 @.16 a 17 1.896 PERCENTAGE 253.9 378.3 291.6 16 aA 18 1.881 Ser. eds aoa) ste sth Lae ; i : at i 177.2 235.0 232.8 0.16 A 32 3.589 CASES se 361.6 311.8 313.0 @.16 A 28 1.899 ae . 496.5 362:1 365.3 0:16 A 22 1.885 Healy TCR Arrester 350.0 204.86 343-9 15 A 12 1.874 235.1 205.5 162.9 15 A 17 1.903 315.2 315-3 320.1 @.15 A 22 1.900 410.1 270.6 272.8 15 A 1? 1.916 203.9. 255.7 210.1 15 A 1? 1.859 310.0 270.5 28¢.2 @.15 A 17? 1.878 eee eee . . . ol 1 1. R TI 30013 S81? Bat] BS i ase LOCATION 1S, ANALYSIS FOR TRANQUELL ARRESTER vee Sap Gee 8 8 REE Sia * . . . . A4 eo et et 8 ee eps i | ; . : : : 1.5Q0E 01 3.600E 02 @.000E-01 1.800E 02 3.00eE 02 318.5 882.0 = 289.4 8.14 A 2S 1.882 1100GE @@ 3.S0@E @3 S.@00E C2 3.900E GO 1.600E 00 109. 94.9 68.1 0.14 A 32 3.584 L126CE O1 2.Q8@E O1 4. 75@E Q1 2.917E 03 6.G00E Ot 309.0 853.7 258-@ tS 24 1.863 Bl33GE 00 1.@0@E 0@ 1.1@0F 01 @.000E-01 0. 000E-01 ana MOpvrvw L Maprv w mMorprvs Oo a “ay -34 A42V3 LOCATION: 14 HEALY END OF THE LINE PER UNIT VOLTAGE & 1 e MU Ae DA AANA Y -14- CASE NO. 48 50.0 MS/DIV OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT HEALY END OF LINE MoprIsv w MOvrs D Marrs Oo Aa2U4 LOCATION? 14 HEALY END OF THE LINE PER UNIT VOLTAGE CASE NO. 42 58.0 MS/DIV OSCILLOGRAM NO. 4 MAX, EYENT FROM DISTRIBUTION ARRESTERS AT HEALY END OF LINE MODIrD D Mooprv wo MHODIwo A42US LOCATION: 14 HEALY END OF THE LINE PER UNIT VOLTAGE CASE NO. 42 5@.8 MS/DIV OSCILLOGRAN NO. 5 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT HEALY END OF LINE 025 A42QUG AALU7 LOCATION: 12 LOCATION: 11 “HEALY i 42.0 KY TEELAND 13.8 KY PER UNIT VOLTAGE PER UNIT VOLTAGE 1.5 a-p 1:0 So Tt ha va iii ih ‘ “1.0 . 71.5 i. Sie 1.5 peo 10°F p-c 1 °F "| meee KAMAL i ! a H 9, H ont Sn “1 wi. ed “1.5-% ~1.5 1.5 c-a 1:07 FA MR “ii ‘i ii an “1.6 , CASE NO. 42 58.0 MS/DIV 7 CASE NO. 42 $0.@ MS/DIU OSCILLOGRAM NO. 6 OSCILLOGRAM NO. 7 MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION ARRESTERS AT HEALY END OF LINE ARRESTERS AT HEALY END OF LINE 031 A4ZEL LOCATION? 12 “HEALY %- 12.0 KY PER UNIT VOLTAGE et a ised: * Pp @.5 Pp K H h @.0 i S ~a. s E e E 1.8 -1.5 SYSTEM KILO-AMPERES Aa a H | \ fi A ptf pind i" s s E E SYSTEM MEGA-JOULES & . P pel jon mpapanlnget 4 B * A $ E CASE NO. 42 50.0 MS/DIU OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT HEALY END OF LINE EVALUATION FOR TYPE 2t §.42 COUL. EVALUATION FOR TYPE 3: 4.87 -8.85 AAZES LOCATION: 12 HEALY 12.8 KY PER’ UNIT VOLTAGE 1.5 1.0 @.5 8.8 MaDxrUu Dd & -1.8 “1.5 SYSTEM KILO-AMPERES Mnroxrso Dd SYSTEM MEGA-JOULES @.15 8.194 8.05 8.08 Mwupryw bv -@.18 ~@.15 CASE NO. 42 50.6 MS/DIV OSCILLOGRAM NO. MAX. EVENT FROM DISTRIBUTION ARRESTERS AT HEALY END OF LINE EVALUATION FOR TYPE @: 3.00 COUL. EVALUATION FOR TYPE 3: 2.09 R42ES LOCATION? 12 HEALY 12.0 KY PER UNIT VOLTAGE 1.5 1.0 8.5 Cr) -@.5 -1.8 is SYSTEM KILO-AMPERES 6 4 2 @ -2} “4 -6 SYSTEM MEGA-JOULES @.3 8.2 @.1 i 8.8 -0.1 ~8.2 83 cASE NO. 42 01 «50. Ms/DIU OSCILLOGRAM NO. 10 MAX, EVENT FROM DISTRIBUTION ARRESTERS AT HEALY END OF LINE EVALUATION FOR TYPE 2: 21.@9 COUL.. EVALUATION FOR TYPE 3: 20.46 O37 Marre D Mwpros w MoDprv oO A4eI1 ~ LOCATIONt® 12 ’ HEALY TCR CURRENT SYSTEM KILOANPERES CASE NO. 42 50.0 MS/DIV OSCILLOGRAM NO. 11 MAX. EVENT FROM DISTRIBUTION RRRESTERS AT HEALY END OF LINE Mnvnxro w Marpxrwu yD Mwypiv so A4ale LOCATION: 1! TEELAND TCR CURRENT SYSTEM KILOAMPERES wu seo] CASE NO, 48 S@.@ MS/DIV OSCILLOGRAM NO. 12 MAX. EVENT FROM DISTRIBUTION ARRESTERS AT HEALY END OF LINE n2a PT. MacKenzie 230 bv Teeland | Teoland Dougies uel Et 230 AV +6 asa ky Cantwell jeoly Nenana ot Pe Wainwright ea oot : 7 ( ) ) ase ky H: (76 Wi.) a oe -0| G God mn 16 T o9 av Teeland 13.0 kV f TcR Gold Wiad 13.0 kV 43h 4 OPERATING BREAKER D OPEH BREAKERS 1,F,0 CLOSING RESISTOR @.0@ COHNS) CASE NO. 43 * FROMt NOUGLAS 138 KV INSERTION TINE @.00 (NS) OPERATIONS ENERGIZING TO: HEALY 138 KYU MAX. CL. SPAH 8.33 (mS) DESCRIPTION OF SYSTEM ENERGIZING DOUGLAS TO HEALY TEELAND SUS OPERATING ,HEALY SUS OFF RESULTS oe ARRESTER RATING AT LOCATION 14 TS 108.00 KU-TYPE 3 CONTINGENCIES 18 GAIN®20, TIME CONSTANT= AQ2KKO. 37UF TANDARD SUS REFERENCE SETTINGS OCATION 14 IS THE HEALY END OF LINE FROM DOUGLAS eae | eo Ie CASE: 43 . TABLE 1 A43TL TEMPORARY: LINE-NEUTRAL VOLTAGE ' * CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL) PRE-SUITCH VOLTAGES, BREAKER D 1S OPEN, LOCATION A B c 2 0.96 0.96 @.97 3 8.98 1.00 1.04 4 ®.98 1.00 1.¢2 5. 8.01 8.@1 0.01 14 @.04 @.04 2.04 CASE: 43 TABLE 2 = a43T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (4=DENOTES NON-SINUSOIDAL) POST-SWITCH VOLTAGES, BREAKER D IS CLOSED LOCATION. A B c 053 TABLE OF HIGHEST OVERVOLTAGES CLOSING ANGLES FOR PHASE B c £@.8 56.5 153.7 286.8 426.6 352.5 415.6 376.2 307.3 413.0 341.8 - 388.7 1411.8 57.4 168.6 242.3 176.9 212.8 428.7 355.4 409.7 239.8 118.3 215.8 225.3 143.6 206.5 227.4 195.7 146.8 343.6 356.7 273.4 256.3 182.0 210.9 253.9 373.3 291.6 121.3 135.2 183.6 294.5 256.4 368.6 393.7 460.4 462.2 154.1 265.4 195.8 163.6 18.2 130.4 331.5 443.3 386.4 333.9 368.2 337.2 70.3 218.3 112.3 353.7 414.7 365.8 357.2 458.9 362.4 299.5 281.2 194.1 271.4 327.4 342.2 138.8 226.9 191.5 329.7 4$$.1 363.1 217.6 83.9 178.2 312.8 234.8 229.3 122.8 es6.3 176.9 415.6 365.9 468.7 248.8 201.8 3e2.4 379.8 353.2 244.0 455.9 365.@ 454.7 140.7 176.2 98.8 160.4 216.4 115.7? 433.5 406.4 311.4 131.0 137.9 Prick 125.8 24.3 194.6 425.7 320.1 277.4 151.7 171.4 198.1 264.8 42.4 366.3 426.6 534.3 $32.5 298.5 2895.5 216.6 244.2 264.8 347.9 249.5 335.4 302.1 79.4 194.9 138. 221.0 103.9 218.0 126.3 231.4 210.6 290.0 458.28 487.8 aS3.2 304.8 303.7 PER UNIT OVERVOLTAGE a B Cc 2.26 1.78 1.81 2.16 1.76 1.84 1.91 2.13 1.80 2.07 1.68 1.62 2.07 1.97 1.81 2.905 1.83 1.61 2.@3 1.72 1.60 2.03 1.46 1.53 2.02 1.61 1.63 1.57 2.00 1.84 1.57 2.00 1.65 1.99 1.86 1.58 1.96 1.99 1.83 1,97 1.78 1.74 1.95 1.85 1.62 1.62 1,62 1.95 1.94 1.68 1.85 1.45 1.93 1.75 1.85 1.76 1.93 1.93 1.33 1.65 1.92 1.76 1.84 1.61 1.92 1.70 1.78 1.23 1.91 1.78 1.84 1.91 1.91 1.60 1.46 1.98 1.55 1.82 1.98 1.18 1.67 1.Bi 1.90 1.78 1.98 1.74 1.86 1.89 1.83 1.72 1.65 1.89 1.59 1.89 1.76 1.84 1.89 1.89 1.83 1.89 1.86 1.76 1.51 1.88 1.58 1.88 1.78 1.48 1.67 1.88 1.86 1.43 1.64 1.88 1.76 1.87 1.78 1.8? 1.63 1,85 1.87 1.83 1.78 1.87 1.63 1.77 1,75 1.87 1.68 1,88 1.87 1.64 1,77 1.39 1.87 1.71 1.87 1.76 1.71 1.66 1.87 1.78 1.57 1.87 1.72 1.85 1.86 1.86 1.55 1.56 1.86 1.79 1.71 1.54 1.62 1.86 1.78 1.46 1.86 MAX Pou. PROBABILITY DISTRIBUTION MAX OF ALL PHASES 2.8 NO. POINTS = 308 2.4 2.2 - NS o ea PER UNIT OVERVOLTAGE t.2 ‘feel @-1 12 19 2030 50 7068 30 $9 99,2 99.99 PERCENTAGE CASE NO. 43 VAVEFORM HAS 4 PEAKS ABOVE 183.3 KUC1.63 P.U.? THIS IS 1.2 % 168.8 KU (SA RATING) & 1.414 THERE WERE @ SUCH WAVEFORMS LOCATION 14, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 18@.0 DEGREES SETUP DATA A43D1 1.400E 61 3.600E G2 8.8@GE~O1 1,808E G2 3.8@00E O02 1.@00E 00 3.5Q0E O03 1.@00E G2 3.00@E 02 1.000F 00 1.08@E @2 1.380E G2 1.000E G2 6.394E 02 6.OQGE O1 8.330E 00 1.660E G0 0,000E-01 @.000E-01 %.000E-O1 059 monprv D> MonDrvD w NnHrpry Oo A4zVi LOCATION: 14 HEALY END OF. THE LINE PER UNIT VOLTAGE iw ” on CASE NO. 43 CSCILLOGRAMN NO. 1 MAX, EVENT FROM DISTRIBUTION 10.0 MS/DIV Monvirv w mMnHprvw D> MwHrrv a A432 LOCATION: 5 CANTWELL 138 KY PER UNIT VOLTAGE CASE NO. 43 10.8 MS/DIV OSCILLOGRAM NO. 2 _MAX. EVENT FROM DISTRIBUTION MODxrVD w MyHDsrv MODPDID O A4BUZ LOCATION: 4 BOUGLAS 138 KU PER UNIT VOLTAGE 1.5 1.0 8.5 8.8 -8.5 -1.0 -1.5 1.55 1.8 @.5 8.8 8.5 “1.0 “1.5 4.5 1.8 @.5 @.8 -0.5 “1.8 1.5 CASE NO. 43 10.8 MS/DIV OSCILLOGRAM NO. 3 max. EVENT FROM DISTRIBUTION 063 MOD w MOrDrs oO A43N4 LOCATION? 3 TEELAND 138 KY PER UNIT VOLTAGE CASE NO. 43 OSCILLOGRAM NO, 4 WAX. EVENT FROM DISTRIBUTION 10.0 MS/DIV 1.5 ap 1-0 p 25 H KH @.@ S -o. £ -0.5 -1.0 “1.5 1.5 p-e 1-8 p O5 H h 08 S -a, z 5 -1.8 =-1.5 1.5 c-a 1:0 p 5 H i @.0 S -9. § -0.5 -1.0- -1.5- A43US LOCATION? 12 TEELAND 13.8 Ky PER UNIT VOLTAGE CASE NO. 43 10.0 MS/DIU OSCILLOGRAM NO, & MAX. EVENT FROM DISTRIBUTION MHOvDrvD wp MoDxrvD D MoODIDV Oo RAS LOCATION? 11 TEELAND TCR CURRENT SYSTEM KILOAMPERES CASE NO. 43 10.0 MS-DIV OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION O71 MwMHpDrVv DS “ MODID=. Dd MaDrU D _ ASBEL ‘LOCATION? | 14 HEALY END OF THE. LINE 138 KU PER: UNIT VOLTAGE SYSTEM KILO-AMPERES @.3 e.2 0.1 Q.e ~O.4 -0.24 -0.3 SYSTEM MEGA-JOULES @.15 9.10 2.05 0.00 ~0.95 0.10 0.15 CASE NO. 43, “S.0 MS/DIV OSCILLOGRAM NO. 7 MAX. EVENT FROM DISTRIBUTION 108 KV TYPE 3 ARRESTER OP, EVALUATION FOR TYPE 2? 9.08 COUL. EVALUATION FOR TYPE 3: @.@1 081 PT. Mackenzie 230 AV Teeland 230 hv Teoland 138 kv >| na | &_ FF ere Douglas Centwell FT. o* Nenane Gold Hill Wetnwright n38; EY, ase 7) ase ay 1M ay (0) pont (iba Hal} HEH) Gold “YO = ste “Pt / CASE NO. 44 FROM: DOUGLAS 138 KU OPERATION! ENERGIZING Tot TEELAND 138 KY DESCRIPTION OF SYSTEM e 402KKO.97 UF. ST IDARD REFERENCE SETTINGS. “CONTINGENCIES ~ SUBSTATION TRANSFORMER ARE OFF. GOLD HILL = FT. WAINURIGHT LINE OUT OF SERVICE MAX. CL. HEALY PND COLD HILL CUS IN OPERATION, GAIN © 20, TIME CONST. . . : ARRESTER RATING AT LOCATION 14 LOCATION 14 IS THE TEELAND END.OF THE LINE FROM DOUGLAS. ¢ 8 CANTUELL-UATANA LINE _IS cut “OF SERVICE. HEALY GENERATION AND Heal . “wien (2 Gold Hill 13.6 bv OPERATING BREAKER © OPEN BREAKERS B,K,L,F.R CLOSING RESISTOR 8.8 COHNS) INSERTION TIME @.00 (15) SPAN 8.33 (NS) RESULTS IS 108.00 KU-TYPE 3°: 2 “CASE: 44 / TABLE 1 = A44TI eA ee a np ne tn nnn oe ee ee " TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (&*DENOTES NON~SINUSOTDAL » PRE-SWITCH VOLTAGES, BREAKER © IS OPEN “LOCATION a - B c 14 @.01 ®.e1 @.01 a4 1.17 1.11 % 1.11 * Ss 1.12 1.07 & 1.06 6 1.08 1.04 1.03 iv 1.07 1.04 1,.@3 8 1.04 1.@3 1.02 CASE! 44 TABLE 2 A44T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k=DENOTES NON-SINUSOIDAL) POST-SWITCH VOLTAGES, BREAKER C-1S CLOSED LOCATION é B c 14 1.20 * 1.45 & 1.13 4 1.19 * 1.14% 1.12 * 5 1.12 1.08 1.07 6 1.07 1.04 1.04 a 1.05 1.04 1.04 8 1.03 . 1.03 1.03 089 Marre w mMODrD > Maprv o A44U1 LOCATION: 14 TEELAND END OF LINE FROM. DOUG. PER UNIT VOLTAGE CASE NO. 44 5.@MS/DIV OSCILLOGRAM NO. 1 STEADY STATE VOLTAGE BREAKER C IS CLOSED mMnDpro MnaDIvD Bw MorpDrDs Oo A44u2e LOCATION’ 4 DOUGLAS 138 KU PER UNIT VOLTAGE 1.5 1.0 @.5 9.8 8.5 ~1.0 -1.5 1.5 1.0 @.5 6.0 0.5 “1.0 71.5 1.5 1.0 eS 2.0 “8.5 “1.0 “1.5 CASE NO. 44 5.8 mSvDIV OSCILLOGRAM NO. 2 STEADY STATE VOLTAGE BREAKER C IS CLOSED 095 TABLE OF HIGHEST OVERVOLTAGES PROBABILITY DISTRIBUTION ' CLOSING ANGLES FOR PHASE PER UNIT OUERVOLTAGE max a B Cc a B c P.U. 253.9 «378.3. 291.6 1.31 1.32 1.53 1.53 125.8 74.3 194.0 1.51 1.36 1.30 1.51 MAX OF ALL PHASES 225.3 143.6 206.5 1.51 t.31 1.22 1.51 NO. POINTS = 308 287.6 180.8 221.7 1.49 1.22 1.28 1.49 1.8 457.@ 483.6 365.3 1.49 1.18 1.39 1.49 121.3 135.2 189.6 1.49 1.25 1.32 1.49 405.3 408.5 445.0 1.48 1.30 1.25 1.48 LS oe 221.8 103.9 218.0 1.48 1.29 iam 1.48 w rm] 270.4 = 263.1 186.4 1.43 1.23 1.48 1.48 ra} LY 148.7 204.0 202.9 1.48 41.43 t.at 1.48 x L 140.7 176.2 95.8 1.31 4.31 1.47 1.47 — '.8 Tl 449.9 410.0 359.1 1.47 1.33 1.38 1.47 3 460.3 301.1 356.4 1.47 4.22 129% 1.47 z rN 262.2 275.6 172.2 1.47 1.20 4.41 1.47 Wi 1,3 ht | 298.5 235.5 216.6 1.34 1.46 1.27 1.46 a 139.2 207.7 189.4 1.46 1.30 1.22 1.46 276.7 878.8 398.9 1.46 1.34 1.16 1.46 a 297.1 178.6 288.5 1.45 4.17 1.42 1.45 zl. 257-6 127.0 164.0 1.45 4.21 1.28 1.45 5 428.7 365.4 489.7 1.33 1.45 1.26 1.45 274.4 136.9 254.5 1.45 1.19 1.32 1.45 rare) 394.7 397.3 $33.4 1.45 1.28 1.33 1.45 a. 335.0 260.4 330.6 1.239 1.45 = 1.29 1.45 ees BE ed ES OEM OER OES us 457.6 448.6 © 426. 1.44 1.21 1.40 1.44 Rea ee eee ee aCe soso soa 413.0 341.8 388.7 1.44 41.395 1.22 1.44 PERCENTAGE 278.1 201.5 221.0 1.43 1.28 1.31 1.43 294.6 256.4 368.6 1.43 1.36 1.29 1.43 93.2 84.8 61.1 1:43 1.22 1.36 1.43 470.8 473.7 337.6 1.42 1.28 1.287 1.42 460.2 454.0 405.9 1.42 1.24 1.35 1.42 437.4 318.4 335.6 14.42 1.3@ 1.25 1.42 CASE NO. 44 500.6 429.3 486.8 1:42 1.397 1.23 1.42 357.1 450.9 362.4 1.34 1.3@ 1.42 1.42 281.9 309.9 406.4 1.42 14.18 4.16 1.42 286.8 426.6 2352.5 1.40 1.40 1.42 1.42 % WAVEFORM HAS 4 PEAKS ABOVE 183.3 KUC1.63 P.U.) 294.8 311.8 265.5 1.414 1.28 4.29 1.41 211.9 2881.9 189.5 1.41 1.23 1.22 1.44 THIS IS 1.2 % 108.@ KU (SA RATING) & 1.414 194.9 245.1 205.9 1.29 1.41 1.23 1.4L 310.0 870.5 280.0 1.41 1.29 1.36 1.44 THERE WERE © SUCH WAVEFORMS ee Mee es ER GR OLE Ed 164.9 240.4 200-8 1134 iat 1:88 iat LOCATION 14, ANALYSIS FOR TRANQUELL ARRESTER Gee jee Bes ER TM EB OES mm °° ay . . 5 . 1. * . ie fies fee EB i Ee LR vjeeee 02 9.0006-81 1. . . . 1 1.2 . 1.40@E @1 3.600E 02 0.@00E-01 1.800E 02 3.000E 02 Suit (4GC<4| 562-8 Tee CCoReae AC 1.000E Q@ 3.500E 03 1.00E @2 3.000E 00 1.0@0E 00 oa: 8 ee cecrc messars A eACH icy aces nae 1.QB0E @2 1:380E 92 1-000E 02 6.394 02 G-000E O1 3ist2 315.9 Resd ii26 1.4@ «i lae 1.48 B.33GE O@ S.@00E-01 8.000E-01 0.000E @.0@0E-03 193 MmMnrpPrvs w mMwMDpDrD D MOHDICV oO ASA LOCATION: 14 TEELAND END OF LINE FROM DOUG. ' PER UNIT VOLTAGE CASE NO. 44 OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 5.@ MS/DIV MnADID w MnADRDID D mManvrv oO 1.5 1.0 @.5 e.e -@.5 “1.0 “1.5 1.5 1.8 8.5 0.0 -8.5 1.98 “1.5 1.5 1.8 2.5 0.0 ~@.S “1.0 “1.5 A444 LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE CASE NO. 44 OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS S.@ MS/DIU MnHDdDxrVD D MoODrID w MoOvxrIDv Oo A44US LOCATION: § DOUGLAS 138 KU PER UNIT VOLTAGE 1.5 1.8 9.S 0.9 0.5 ~t.9 Poeefete -1.5 1.5 1.8 8.5 9.8 -8.S “1.8 “1.5 1.5 1.0 @.5 8.8 ~@.S “1.0 “1.5 CASE NO. 44 5.0 MS7DIV OSCILLOGRAM NO, 5S MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 1215 _ A44U6 LOCATION: 12 HEALY 12.8 KU PER UNIT VOLTAGE "CASE NO. 44 5.@ NS/DIV OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS a Modrw Cc MoanDrv A44U7 LOCATION: 13 GOLD HILL 13.8 KU PER UNIT VOLTAGE 1.5 1.0 @.5 8.0 -8.5 1.0 “1.5 1.5 1.0 9.5 9.0 -8.5 ~1.0 1.5 1.6 8.5 2.0 -0.5 - 1.0 “1.5 CASE NO. 44 5.8 NS/DIV OSCILLOGRAM NO, 7 MAX,EVENT FROM DISTRIBUTION NO ARRESTERS 141 4 r) H A S$ £ Mopvpiriwvw @ MoODro oO ASSIA - LOCATION: 13 | GOLD HILL TCR CURRENT . SYSTEM KILOAMPERES CASE NO. 44 S.0 MS/DIV OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS MADD w& Morprw D MNHDIETW O A44I2 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 44 S.@ MS/DIV OSCILLOGRAM HO. 9 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 135 or. MacKenzie 230 bv Teeland Fr. Teeland Douglas 230 hv 130 v asarky Cantwell ip-fenfors ++ aH oc ocemeforams GiaEh< ; } Hu-jf- : LY Goid ee e, a ja ae ihe a ob. FED ajHT-< [FFs Nesty Gold Hild Nenana Watowr ight 12k Gold Hild ‘I eee ( a45Ph OPERATING BREAKER B OPEN BREAKERS D F CLOSING RESISTOR @.0@ COHNS) CeSE NO. 45°. . ; FROM: TEELAND 138 KV INSERTION TINE 2.00 (NS) | CFERATION? ENERGIZING Tor DOUGLAS 128 KV MAX, CL. SPAN 8.33 (NS) RESULTS DESCRIPTION OF SYSTEM TEELAND SUS IN OPERATION, GAIN*2@, TIME CONST. =402KX0.37UF. {STANDARD REFERENCE SETTING LOCATION 14 1S THE DOUGLAS END OF THE 138 KY LINE FROM TEELAND CASE! 45 «STABLE 1.0 4574 CREST PER UNIT QUANTITIES (£*DENOTES MON-SINUSOIDAL ) PRE-SUITCH VOLTAGES, BREAKER B 1S OPEN LOCATION = A B ¢c 2 @.95 * 6.95 t 0.96 3 0.98 0.98 9.99 14 0.01 @.01 0.8 CASE! 45 TABLE 2 = A45TB TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (¥=DENOTES NON-SINUSOI DAL) POST-SUITCH VOLTAGES, BREAKER B IS CLOSED LOCATION A B c 2 2.96 0.96 8.97 3 0.98 @.99 1.00 14 @.98 1.08 1.814 145 TABLE OF HIGHEST OVERVOLTAGES PROBABILITY DISTRIBUTION CLOSING ANGLES FOR PHASE PER UNIT QUERUOLTAGE MAX a B c 6 B c PU. 267.3 391.1 370.0 1.24 1,92 1.36 1.92 219.4 | 226.2 150.4 1.02 1.89 1.3¢ 1.89 MAX OF ALL PHASES 463.7 457.8 320.8 1.88 1.01 1.29 1.88 NO. POINTS = 308 264.8 402.4° 366.3 1.24 1.87 1.10 1.87 2.8 190.4 228.8 141.4 1:03 1:87 1,30 1.87 140:1 214.6 93.6 1:06 1:86 0.98 1:86 160.4 216.4 115.7 1:03 1.86 «1.35 1:86 1.8 483.5 406.4 311.4 1:52 2:85 9 1.25 1:85 wy 199:1 217-0 148:5 1104 1.85 01:28 1185 74:3 221.3 1283.7 4.66 1.83 1:29 1:83 = 182.6 201.3 104.2 1.04 1.82 1.08 1.82 a 1.6 164.4 207.4 187.0 1:08 1.82 1.24 1.82 S 460.2 454.6 405.9 4:82 1:03 1.02 1:82 z= 158.1 203:8 128.6 1:09 1.82 4.85 1.82 i.e 70:3 218.3 112.3 1:63 1.82 4.44 1:32 3 273.1 395.6 407.5 1:25 1:82 4.03 1:82 448.4 426.3 451.5 1.79 1:56 41.69 1:79 ahs 205.5 217.2 245.4 1:01 14.78 0.93 1.78 Zt 219.5 225.4 134.8 @:98 1.78 = 1.28 1:78 5 457.6 448.6 426.8 1:78 1451.03 1:78 x 286.8 426.6 352.5 1:23 4.784125 41:78 1.0 449-9 410.0 359.3 1:77 1.731618 1:7? a 93.2 84.8 61-1 1:77. 8.99 1.@2 1:77 lee bal sale 42. . . Le . . 1. . 188.3 214.7 253.0 1:83 1:76 0.99 1.76 @.et 8.1 12 18 2632 58 7aba 8 $9 99.9 99.59 388.4 405.4 426.9 1:00 1.76 = 0.98 1:76 PERCENTAGE. 139:2 2@7:2 189.4 i:f2 1,75 1.87 1:75 453:5 325.3 425.8 1:75 8.97 4.08 1:75 378.6 393.9 5ee.3 1.94 1.75 1.32 1.75 455.9 365.2 454.7 1:75 1:46 198 1:75 298.7 403-1 484:7 111? 1:74 8.98 1:74 575.3 398.1 424.2 8:98 1.74 8.98 1.74 CASE NO. 45 6.3 49.9 $3.7 1.74 1:57 1.04 1:74 177:6 207:8—a43.2 1:02 «1.74 6.99 1.74 460.3 301-:1 356.4 1:74 1:08-1:18 1.74 353.2 414:7 365.8 @:99 1.74 4.93 4.74 X WAVEFORM HAS 4 PEAKS ABOVE 183.3 KU(1.63 P.U.) 397.4 390.7 394.5 4-12 4:23 4.08 1:23 1ig.1 209.9 Bad.4 HS2 1.73 8.98 1.73 THIS I$ 4.2 % 108.8 KU (SA RATING) ¥ 1.414 62-8 194.6 74.8 1.57 1.73 1.03 41.73 THERE WERE @ SUCH WAVEFORMS 80.8 $6.5 153.7 1.72 4:51 1.38 1:73 tec ||| ‘eecs || Satea || f226 173 areel || dea LOCATION 14, ANALYSIS FOR TRANQUELL ARRESTER 396:0 388:1 492.5 1:09 1:73 «4.88 1:73 a eo re ee 45. : x ; : a wet fee 2 be Ee Re be Tae | 117: 190. i a : : _ 1.400E 01 3.600E 02 0.000F-0f 1.800E G2 3.000E 02 geeg | 3esca | S88'S 198 TI8B tiles tise 1.0@0F G0 3.SQE 03 5.@00E O01 3.920E 6 1.002E 00 ‘9847-8 BBS. 7 i900 il?es1134 reer 1:OB80E O2 1.380E 02 1.000E @2 6.394E 02 G.000E Ot ape OR ae aos (laos || aces ee B.330E 0@ 5.Q@0E-01 0.900E-01 9.200E-01 @.900F-01 200 mMmopxry mMvaDLV w@ MoDdDxrv oO ~@.5 -1.2 71.5 CASE NO. 45 OSCILLOGRAM NO. 2 MAX. ASSUL LOCATION: 3 TEELAND 138 KU ~ PER UNIT YOLTAGE 5.0 MS/DIV EVENT FROM DISTRIBUTION HO GBRRESTERS MADIVD w mnopvro DP mMoprv o Assve A45U3 LOCATION: 14 LOCATIONS 11 DOUGLAS END OF LINE FROM TEEL. TEELAND 13.8 KV PER UNIT VOLTAGE PER UNIT VOLTAGE 1.5 3 2 ag 1-@ 1 a.5 @ 2.8 -O.5 -2 “1.8 oc } “1.5 MoaDrv 4.5 B-c 1.8 0.5 8.0 8.5 -2 “1.8 MoDdDrIv -3 1.5 41.5 @.S 9.9 ~8.5 -2 “1.8 3 2 cn 1-0 1 e Mwoprs “3 “1.5 CASE NO. 45 5.0 MS/DIU OSCILLOGRAM NO. 2 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS CASE NO. 45 5.0 MS/DIV OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 202 mMonproD w mMoprv b& MOoOrPrrUu oO AMSIL | LOCATION? 14 TEELAND TCR CURRENT SYSTEM KILOAMPERES CASE NO, 45 5.0 MS/DIV OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION NO-ARRESTERS 212 PT. MacKentie 230 kV Teelend Teedend iosglas Mealy Gold Hill Nenane 230 kV Cantwell al iss “© 138 10 138 Lome" 138 kv 13s 1 13a kv {> He Phe a HE} Hee HO ae ai mnt Watana 138 kV L\ Gold Hill 13.8 kV AKEPL OPERATING BREAKER B QPEN BREAKERS f CLOSING RESISTOR @.08 COHNS) CASE NO. 46 FROM: TEELAND 138 KU INSERTION TIME 8.08 (MS) OPERATION? ENERGIZING TOr DOUGLAS 138 KY MAX. Cl. SPAN 8.33 (MS) DESCRIPTION OF SYSTEM TEELAND SUS OUT OF SERVICE LOCATION 14 IS THE DOUGLAS END OF THE 138 KU LINE FROM TEELAND RESULTS CASE: 46 = TABLE 1 A4GTL TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (£=DENOTES NON-SINUSOIDAL ) PRE-SUITCH VOLTAGES, BREAKER B IS OPEN LOCATION A B c 2 @.95 295 3 @.98 @.97 ®.98 14 @.01 . . CASE: 46 TABLE 2 A46T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X*DENOTES NON-SINUSOIDAL) POST-SUITCH VOLTAGES, BREAKER B IS CLOSED LOCATION a B c @ -96 8.95 @.95 3 @.99 8.98 @.98 14 9.99 9.99 9.98 167 TABLE OF HIGHEST OVERVOLTAGES CLOSING ANG! a 267.3 $3.2 463.7 215.4 460.2 449.9 413.4 ess.t 483.5 60.3 169.4 446.4 ue a Satsec tae athe 3? 45 DOME HVVSAHAnNDY ACBUNHVWVUSBSUDAHVOWNY 43 pane ~ TGS 3) to SOHIOWHNWGWONTAHVAOUH and B 391.1 84.8 457.8 226.2 454.0 410.0 393.7 228.4 406.4 49.9 216.4 331.5 207.7 217.8 214.6 325.3 222.8 eas.4 301.1 127.3 231.4 427.4 487.3 201.3 405.4 - am xooneg YQNOS WWW WMHs WUre Ue MaAaw - VIWOVUIVDOVDO“UVUOHSHKKSISO QHNVOCUOHSOWUNIUM-IVI—-sNOONavon-~) VOIVOOVAGANVNIBWWIWVOGNAWNIKHOBOWUM rm _ LES FOR PHASE Cc 370.8 61.4 320.3 150.4 408.9 359.1 350.0 197.4 311.4 53.7 118.7 404.3 189.4 148.5 93.6 425.8 141.4 134.8 356.4 13) 1e baATIN HR URE WhLOADSRM COCOUO MUI) WoO Ri dial 6 ale ts 6) i o olas Gaapw Wore NOND 191. 238. PER UNIT QVERVOLTAGE Aa 1.09 1.69 1.67 1.28 1.67 1.65 1.34 1.18 1.55 1.63 1.23 1.62 1.41 1.22 1.16 1.68 1.21 1.23 1.59 1.59 1.29 1.29 1.58 1,08 1.17 TO UTUTS UIC CT TU GIT UI TT VNAADVUALVDOVDOSMNMNOMWAH B 1.73 1.01 @.99 1.67 ®.98 1.44 1.65 1.63 1.63 1.48 1.63 8.99 1.61 1.61 eae PAA DAE He he hh hh he he he eh Re DEE DM DHE ADEA EAE LAD re Eh DEA Re Ee He ANSGNNVSATANON AVI GNOVOSBOWURUNONNOKHNDO n AAWEAMODVOANAURGNOGINOBHOVAKSISVAINVNDNNUVOSAS im) Ss) she! ofl oll el ollie Le toltel 0) «| 6) (eG le) eireria corel ielionis) elalla) miele c 1.14 1.15 1.15 1.08 1.14 1.34 8.99 1.05 4.13 1.06 1.08 1.06 9.98 1.08 1.03 COHKOKVSH“$DOOGOHHHDOHKKHDODSH HH OHO DSO OM & eee DO HDDDOWHOSDADIV®AOOVUOVVNHHOUNVOSJSOODVONK WOW OO ee te ee Oe ne Oe be ee ee De Dt eh Oe te nee MAX P.U. 4.73 1.61 PROBABILITY DISTRIBUTION MAX OF ALL PHASES NO. POINTS = 380 2.8 (1.8 lu oo = 7; 1.6 a > ta. 5 7 fe SS 1.2 = a ne 1.8 | 8.8 + O.8i Bil Lz 14 2838 SA 78B8 39a $9 99.9 99.99 PERCENTAGE CASE NO. 46 % WAVEFORM HAS 4 PEAKS ABOVE 183.3 KYU(1.63 P.U.) THIS IS 1.2 & 108.8 KU (SA RATING) & 1.414 THERE WERE ® SUCH WAVEFORNS LOCATION 14, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 188.@ DEGREES SETUP DATA A46D1 1.400F @1 3.600E @2 @.000E-O1 1.800E 62 3.008E 02 1.00@E @@ 3,50@E @3 5S.OGQE G1 3.000E 00 1.000E 20 1,@080E @2 1.38@E O62 1.000F 02 6.394E 02 6.O00E O1 8.330E 08 S.CQ0E-G1 8.0G0E-01 6,000E-91 0.0@0E-O1 186 MYvDirs w MoDIrBs DvD mMnNnors 2 i.5 1.@- @.54 .9- 8.5 “1.04 =tagil- AAGUL LOCATION: 3 TEELAND 138.KY PER UNIT VOLTAGE S.0 MS/DIV CASE NO. 46 OSCILLOGRAM NO. 1 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS mMovirs w MOodDrv Dd MaADrID 2 1.5 1.0 9.5 0.0 ~O.5 -1.8 -1.5- 1.57 1,04 @.5 8.0 -@.5 1.8 “1.5 1.5 1.0 9.S- 8.8 ~@.5 71.8 =4.5 Aa46ue LOCATION? 2 TEELAND 230 KU PER UNIT VOLTAGE CASE NO. 46 S.0 MS/DIV OSCILLOGRAM NO. 2 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS Moriv w MaDIVD D MoODrw Oo A4BU3 LOCATION? 14 DOUGLAS END OF LINE FROM TEEL. | PER UNIT VOLTAGE ww CASE NO. 46 5.8 MS/DIV OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION NO ARRESTERS 192 eeland 230 a fem fe Tealand ise hy Douglas 138 bv (|| sa - Fr. ora ni Warowr ight WW 13a (0) SD os Wesly Wonane ase WV 138 ore=rafome ne Cantwell 136 kV Gold Hild 13.6 bv OPERATING BREAKER F OPEN BREAKERS K,L,R Toe CLOSING RESISTOR My uth, Sle epee @.80 (OHS) os FROM? CANTUELL 138 KY INSERTION TIME 8.00 ° (NS) TO! WATANA 138 KY max. CL. SPAN 8.33 (m3) PIFTION CF SYSTEM ° ETO UMTANA 7 FROM CANTUELL NCIES DESCRIPTION NT « 156 MSEC, TINGS. HILL TO FT,UAINWRIGHT IS OUT OF SERVICE HEALY GEM. AND SUBSTATION TRANSFORMER ARE OFF - CASE: SB- °°. TABLE 1 = ASOT | TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (£=DENOTES NON-SINUSOIDAL .PRE~SUITCH. VOLTAGES BREAKER F IS. OPEN LOCATION a B c 2 @.95 @.95 @.95 3 @.99 1.01 6.97 4 2.98 @.99 @.96 14 @.01 @.01 @.e1 5 1.02 1.01 * 1.00 6 1,02 1.01 1,01 t 1.01 1.00 1.02 g 1.00 1.00 1.02 CASE: SO TABLE 2 ASCTA TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL ) POST-SUWITCH VOLTAGES BREAKER F IS CLOSED LOCATION A B c 2 @.94 8.95 @.9S 3 @.99 1.200 8.98 4 @.98 1.00 @.96 14 1.04 1.03 1.02 3 1.03 1.02 1.02 6 1.02 1.01 1.¢2 v 1.01 1.08 1.02 8 1.00 1.01 1,03 908 TABLE OF HIGHEST OVERVOLTAGES PROBABILITY DISTRIBUTION CLOSING ANGLES FOR PHASE PER UNIT OUERVOLTAGE max A B C A 8 c PU. 203.0 148.6 256.8 1.57 1.35 1.42 1.57 230.5 222.9 235.6 1.50 1.18 1.09 1.50 MAX OF ALL PHASES 199.2? 178.6 = 229.1 1.30 91.50 1.13 1.5 1.8 NO. POINTS = 188 366.5 350.5 486.7 1.22 1.48 4.288 1.48 : 345.5 315.9 273.3 1.85 1.30 1.48 1148 226.5 119.2 113.6 1.47 1.21 1.33 Side (7 164.9 206.6 | 155.8 1.46 1.06 1.14 1.46 146.0 137.6 113.9 1-23 1.46 © ©= 1.33 1.46 Ly 1.6 113.4 239.7 105.3 1.25 1.04 1.46 1.46 o 348.8 311.6 282.9 1124 1.45 9 1333 1.45 fis 161.3 148-6 92.1 1.29 1.45 = 1.24 1.45 5 203.9 350.9 253.3 1.45 1.32 1.32 1.45 S$ 130.6 130.1 98.8 1,29 1.44 1.29 1.44 me iA 95.7 95.5 155.3 1.07 1.42 1.05 1.42 iG 371.2? 413.9 474.3 1.42 41019104 1.42 les 32:1 65.9 104.4 1.90 1.25 1.428 1.42 413.0 363.8 © 479.3 1.29 94.87 «4.44 4141 5 12 376.4 325.4 491.8 1.41 1.95 1:20 1.41 zs 243.4 191.9 311.6 1.92 1.16 1.41 1.41 5 232.4 310.5 194.8 1.32 1.36 1.49 1.40 ate! 116.2 108.1 75.3 114 1:89 1148 1.40 ire 2282 343.2 286.8 1:36 1.401.933 1.42 a 1.8 379.1 3835 94994 1.39 dia 1048 1.39 186.1 171.3 142.3 1.19 1.39 1:18 1.39 - | “Ae «testo dagie a? EIES oligo #01 8.1 12 10 2030 52 7880 S993 99.3 99.99 30:9 «375.4 -8S4.3 4.2300 1042 ©1537 1.37 PERCENTAGE 63.4 151.2 182.4 1.37 1.28 © 1.18 1.37 396-6 393.7 366.8 1.37 4.21 1.12 1.37 262.1 353:0 368.3 1.28 1.37 4.12 1.37 396.8 4289.2 347.8 1:36.01?) 155 1.36 471.5 484.3 381.08 1.42 1.36 4.18 1.36 269.3 244.7 250.8 1.16 1.36 1.83 1.36 CASE NO. Se 197.4 849,21 183.3 1.36 1:10 ©1018 1.36 269.8 435.7 442:8 1.26 9 1.22 ©1135 1.35 364.8 433.3 415.0 4.95 4.11 9 f.at 1.35 $1.4 113.8 167.6 1.35 1.88 «1.12 1.35 % UAVEFORM HAS 4 PEAKS ABOVE 183.3 KU(1.63 P.U.) eB5.5 303.4 234:9 4:10 91.227 1.35 1.35 227.4 161.8 123.9 1.35 1.26 1.32 1.35 THIS IS 1.2 ¥ 108.0 KY (SA RATING) & 1.414 330.3 365.8 285.4 1.30 1.31 ©1034 41.34 44:8 81.7 70.2 4.340 1,17) LB? 1.34 THERE WERE @ SUCH WAVEFORMS HS ie oe OE Ese be ES . 4 . + . ’ 234 ae84 84:4 28307 Hes 11g 134 134 LOCATION 14, ANALYSIS FOR TRANQUELL ARRESTER . " 2 t t 1. a . fee Ha ed OEY be ORE OLS <a gee Be Bee ba bi EH ER aie eee . + Ze . . ol 31 La Behe ee enum acees Lo iGueetgaueeteat aes 1.4Q0E Q1 3.600F 02 8.000E-01 1.800F 02 1.000E e2 1.0@@E 00 3.5Q00E @3 1.000E @2 3.000E 00 1.000F 0 105.6 136.7 118.9 1.24 41.31 1.20 1.31 5 is:9 0 gahco 0 aaoce ABBA Sai nas iar 1-980 Q2 1.380 02 1.000 02 6.394 02 G.900E OI agale) Sivse) Saace en aeae toe M5 B.330E 02 1.000F 00 @.000E-01 0.000E @.000E-01 mMonpxrvw w MOHDID Dd MODrv oO ' oso - uM WwW yoy o wm ASOUI LOCATION: 14 UATANA 138 KY PER UNIT VOLTAGE 34 CASE NO. 5@ 10.0 MS-DIV QSCILLOGRAM NO. 1 Max. EVENT FROM DISTRIBUTION MoDro w MADPIVD D MaDp>xrv o 4.5 1.0 8.5 8.0 -8.5 -1.68- “1.5 1.5 1.8 a. 2.0 -8.5 1.8 “1.5 1.5 1.0 @.5 @.0 -6.5 1.6 ~1.5 CASE NO. 56 + aseve LOCATION: S CANTUELL 138 KU PER UNIT VOLTAGE 10.0 MS/DIV OSCILLOGRAM NO. & MAX, EVENT FROM DISTRIBUTION Mopriv w MoDrv D> mMopry o ASeU LOCATION: 6 HEALY 138 KV PER UNIT VOLTAGE 1.5 1.8 6.5 e.8 -8.5 -1.0 1.5 1.6 e@.S 8.8 ~8.5 -1.0 =1,.5 1.5 1.8 eS 8.8 -8.S ~1.@ 1.5 CASE NO. 5@ 10.@ MS/DIV OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION 320 ASOU4 LOCATION: 12 HEALY. 12.0 KV PER UNIT VOLTAGE CASE NO. 50 10.9 MS/DIV OSCILLOGRAM NO. 4 MAK. EVENT FROM DISTRIBUTION Movro wo MoDpxrv Dd MHODry Oo AS@IL LOCATION: 12 HEALY TCR CURRENTS SYSTEM KILOAMPERES CASE NO. 58 18.0 MS/DIV OSCILLOGRAM NO. 5 MAX. EVENT FROM DISTRIBUTION 7 rt. Mackenzie 230 4s Teel: ao ee nd Teelaud Donglas ~, eeky 133 Ly 132 a ti a) ie & ay ©) 134k rae 136 by i> ea A i fouso [a 130 Mi. rT ay {TH se mi. PHarm. He A 3 @) 4 : Cantwell ay Heasne Cold Hill PEI a er CHI-D | aay oo Gold Hild TCR = 13.8 kV [Tea qj Ti ron i i im ot Well ” “GPERATING BPECKER Q. ” OPEN BREAKERS LR i ea CLOSING RESISTOR o.¥3 (OHNS) CASE NO. SL FROM! GOLD MILL 198 KU INSERTION ‘TIME 0.29 (iS) OPERATION: u Tor SLG FAULT AT NENANA { Meg. CL. SPAT 8.33 (#5) | s ENERGIZING GOLD HILL TO HZALY ,LOF AT # Loc. 14 1S THE HEALY £70 SVS GAIN = 20,,TIME CONS STANDARD REFERENCE SETTINGS. 1138 KY LINE Fa; PULLL TO FT,UATHURIGHT £5 OUT OF SERUICE | h+ meetin ceveetabenemerenenching henewmeoninntasd § CASE: 51 - TABLE 1° ASITi- ae hat a a ia Chbd teh ee db as nr a cre ea an ep mm ete meta TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL }? PRE+SUITCH VOLTAGES BREAKER Q@ IS OPEN SLG FAULT AT NENANA 138 KU (PH-A) LOCATION a B c re @.O1 @.01 @.¢1 & 1.et 1.82 1.02 14 O.82 @.01 . CASE: Si TABLE 2 a5i1T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL ) POST-SWITCH VOLTAGES BREAKER Q IS. CLOSED SLG FAULT AT NENANA 138 KY (PH.AY LOCATION a B Cc a, @.9t 1.13 1,22 8 @.S7 1.03 1.09 14 2.e1 1.ea1 1.23 937 PROBABILITY DISTRIBUTION. " PER UNIT OVERVOLTAGE MAX a B c “163.6°. 147.9 0.18226 1BR kG 157.1... 147.8 © @.21 2.25 1.97 2.285 MAX OF ALL PHASES “ 171.3 162.6 9.25 2.22 1.70 2.22 NO. PGENTS = 180 - . 393.7 366.8 @.26 2.20 1.65 2.28 2.4 i 350.9 °° 253.3 @.14 2.18 1.21 2.18 4174.3. 142.3 @.29 2.17 1.87 2.17 374.8 | 281.2 9.19 2.41 1.64 2.11 2.8 365.8 285.4 6.12 2.89 1.72 2.89 lw 161.8 123.9 0.416 2.07 1.91 2.07 o 390.4 354.7 8.25 2.04 1.55 2.04 = 178.6 229.1 6.18 2.03 1.32 2.03 a 1.6 9 375.4 254.3 @.23 2.03 1.49 2.03 9 2 370.8 488.7 9.20 2.03 1.98 2.03 z ; 9 193.1 162.7 @.19 2.02 1.70 2.02 ww 1.2 ? 188.5 58.9. @.17 2,02 1.28 2.¢2 S 328.4 384.4 283.7 8.21 2.02 1,68 2.ea 366.5 358.5 486.7 @.13 1.92 2.81 2.01 ae 371-2 372.4 402.5 8.17 2.91 1.34 2.01 = 4. 164.9 206.6 155.8 0.23 2.01 1.82 2.01 5 332.2 374.6 - 481.6 @.15 2.08 1.82 2.08 le 228.2 343.7 286.8 9.15 1.99 1.76 1.99 Wi @.a 354.4 219.7 315.0 @.28 1.56 1.99 1.99 a 388.5 375.8 375.8 9.23 1.99 1.52 1.99 149.6 214.3 131.5 @.18 1.79 1,98 1.98 aa ail, fio Sse 4a9sa Blige?) tee Lge Oe1 8.1 12 18 2030 52 7a88 58 6-98 $9.9 59,99 243.4 191.9 311.6 8.17 1.89 1.96 1.96 PERCENTAGE 318.9 237.2 300.1 @.21 1.72 1.95 1.95 468.7 534.5 411.4 @.4t 1.95 1.24 1.95 413.0 363.8 479.3 @.16 1.95 1.85 1.95 376.4 3859.4 491.8 8.15 1.54 1.94 1.94 324.2 390.4 379.6 @.24 1.94 1.50 1.94 288.5 2e1.1 291.6 @.16 1.81 1.93 1.93 CASE NO. 51 333.2 391.9 388.7 @.22 1.93 1.44 1.93 166.5 203.6 296.9 @.16 1.92 1.91 1.92 313.2 276.4 291.2 @.13 1.38 1.91 1.91 i 7 105.6 136.7 118.9 9.15 1.64 1.90 1.90 X WAVEFORM HAS 4 PEAKS ABOVE 183.3 KY(1.63 P.U.) 213.2 116.6 132.0 8.15 1.39 1.98 1.92 106.0 237.8 117.2 8.23 1.57 1.89 1.89 THIS IS 1.2 % 108.0 KU (SA RATING) % 1.414 254.2 309.6 3@8.5 ®.28 1.40 1.89 1.89 185.5 333.5 227.5 @.4k 1.88 1.29 1.88 THERE VERE @ SUCH WAVEFORMS 371.7 413.9 474.3 6.82 1.71 1.88 1.88 fee's 6 (Cfees «GCs hGCU llc CUCU LOCATION 14, ANALYSIS FOR TRANQUELL ARRESTER 276.5 296.2 322.9 @.25 1.39 1.88 1.88 7 e6g:1 353.9 368-3 .28 1:87 1:39 1:87 CLOSING SPAN 180.0 DEGREES . . ‘ . + . 1. Ges tee 1s fo be EE OEE Gece he 146, 137, : al . : i Li ; sor 369.7 ~~ 4as04 | 33a02 eis) olen olge tise 1.4006 Q@1. 3.600E. 02. O.00RE-A1 1.RQQE A2 1. QGRE Oe 1.000E 08 3.5Q0E 03 1.000 G2 3.000F CO 1.000E G0 270.2 217.5 288.6 Q.17 1.57 1.84 1.84 Qe0E 95.7 osc is5.3 wis 1138 ilB4 iiR4 1.@B0E G2 1.3980F G2 1.00@E G2 2.233E 03 6.,0@0E G1 1Be3 148.9 148.7 0.27 11a? i 84 i 1R4 B.330E @@ S.O@@E-@t @.000E-@1 0.0@@E-81 0.000E-01 961 MOrirv w mMmorviwv Oo “1.0 = ior AS1U4 LOCATION! 9 GOLD HILL ~ 69 KU PER UNIT VOLTAGE CASE NO. S51 OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION 10.0 MS/DIY A-B Morpxr B-C mMmoarpxrv 1.5 1.0 @.5 8.0 ~@.5 -1.0 “1.5 1.5 1.0 @.5 @.8 “8.5 “1.0 “1.5 1.5 1.0 @.5 0.8 -8.5 “1.8 “1.5 ASIUS LOCATION: 13 GOLD HILL 13.8 KY PER UNIT VOLTAGE CASE NO. 51 OSCILLOGRAM NO. 5 MAX. EVENT FROM DISTRIBUTION 10.0 MS/DIV MoD>xrvdv Dd MHDrv w MoeDPpIrIvo ASIIL LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. Si 10.@ MS/7DIV OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION Dn MuUDprIse w MADID z mMaprwv oa ASIVI LOCATION? 14 HEALY END OF LINE FROM G.H. PER UNIT VOLTAGE CASE NO. St OSCILLOGRAM NO. max, EVENT FROM 10.8 MS/DIV 1 DISTRIBUTION MADIVD w MODpDrv Dd mMoprv a CASE NO. Si AS1V2 LOCATION: 7 NENANA 138 KU PER UNIT VOLTAGE 10.@ MS/DIV OSCILLOGRAM NO. 2 MAX. EVENT FROM DISTRIBUTION Moprv ss Muopxrov Dd MOHDIrD OO AS1V3 LOCATION: 8 GOLD HILL 138 KYU PER UNIT VOLTAGE 1.5 vel @.5 @.8 9.5 1.0 -1.5 1.5 1.8 @.5 8.9 8.5 1.0 ~1.5 1.5 1.8 8.5 8.8 ~8.5 ~1.8 CASE NO. S1 10.8 MS/DIV OSCILLOGRAMN NO. 3 MAX. EVENT FROM DISTRIBUTION S17. mMnNDIrID w mMnprs w ASTEL LOCATION? . 14 : HEALY. END OF LINE FROM G.H. Ae « PER UNIT VOLTAGE “1 a+ SYSTEM KILO-AMPERES @.194+ @,65 - 0.00} ~8.05 + -0.10 -@.iS SYSTEM MEGA-JOULES CASE NO. Si 10.0 MS/DIV OSCILLOGRAM NO. 7 MAX, EVENT FROM DISTRIBUTION 188 KU ARRESTER OPERATION EVALUATION FOR TYPE 2: @.0@ COUL. EVALUATION FOR TYPE 3! 9.00 983 er. MacKenzie 230 kV Teeland Teoiand Douglas 230 "O 138 av 138 kV pf Pifeammofe x Werane Teeland aseiky —oigeicaaickicatg TPE #4 FROM: DOUCLAS 138 KV Tor HEALY SYSTEM E HERLY END OF LINE FRO DOUGLAS FT. Caniwedd a ely Nenane Gord Ws22 Weinwraght Ww (*) 138 ky ne ky 138 kV 1 P Har Ha} Ha Ht} . t Goid SOUGLAS 133 XV TO HEALY 138 KU UITH SLOF @ DOUGLAS CONTINGENCIES: po cr i ¢ 2@@, TIPE CONSTANT © 159 NSEC. REFERENCE SETTINGS. aan TCR Sir OPERATING BREAKER D OPEN BREAKERS CLOSING RESISTOR @.00 (ORNS) INSERTION TIME G,eo (MS> MAX, CL. SPAN © 8.33 GIS) TREK bee 15 kv rated arrester at Healy TCR. nna aioe eee RENT x Set x 6c'@ tt xT ¥ Shot x 16°38 & x EET ¥ RETF K 23°0 e * eo't Ter x Gre € — = (B-Hd) AN BET SYIONOU Le U3S019 St SSOVATIOA HOLES 213 eae ae SHILTLH BOVLiOn We 10°9 sore b 19°0 5270 730 S Tort zert 86°93 b ont Tet 8S°8 é Toe teal ie ieee HO teas? : ceca AY Bet s¥toane de wane. 333 N3e0 §2 dye wee sa9ul10a AOLINS "CTVGTOSFNIS-NON. S32 SSULTANUG LINDA gad Jeol} n >; ag at} eeacios 282.7 7. 291.2 235.6 282.8 315.0 Ss 441.4 { 6... 372.8 o 20 90.7 ~ 9 104.1 Be ee) ABGeL 174.3 142.3 ~ 96645 386.5 486.7 243.4 191.9 311.6 158.3 249.2 233.9 :. 886.5 119.2 113.6 “398.2 273.7 374.2 424.9 423.6 356.3 348,8 311.6 282.9 283.5 201.1 291.6 146.2 137.6 113.9 269.3 244.7 250.8 292.9 198.1 162.7 130.6 13@.1 98.8 213.8 4116.6 132.0 285,85. 303.4 234.9 123.7 188.5 58. 166.5 203.6 296.9 228.2 343.7 286.8 270.2 at7.5 288.6 136.2 128.4 39.¢ 254.2 369.6. 308.5 203.9 148.6 256.8 371.2 372.4 402.5 227.4 163.8 123.9 97.6 25.9 101.2 359.7 405.4 330.2 23.9 328.28 376.3 @5.6 136.7 118.9 323.1 428.2 487.4 135.5 163.6... 147.9 461.9. $21.9 429.5 . 161.3... 148.6 92et 33853 365.8 285.4 “ 268.1 353.8 368.3" 837.1 318.5 194.8 358.2 370.8. . 488.7 a?6.5 296.2 322.9 345.5 315.9 273.3 300.9 °° 375.4 254.3 185.5 3328 :- 827.5 113.4 239.7 188.3 24258--5:272.63 162.6 164.9% 206.6: 5155.8 “ea. 1.5 SPPSPPVDSHS AHH DHPVOSSOGIPOSSSSSSIoIsEsegoooes "ENERGY NO.OF MW-SEC PHASE OP. Liane eee @.12 @.12 8.09 @.e9 9528 %.08 22oo0s AA os ae 105 8999800508985 WUUIaSsAs.iddsdooan ao Bw SPXososeoooss USUGUUUOUwUNw PSIWVVIWTWOO OOM TWWMWO MOOD SUDO OC TONMNWNWT BNWT MNO TNO TKN DON 8 ee S 20 5 27 24 2? 12 s 3? - Oo ey = ANOIVBQWVIGK ULAUUUVSUVNGWNWUNNHWNAOe Wu ~ wo 0 os = = w& NO. POINTS = ° 18a ARRESTER ENERGY (MW -SEC} sa 8.1 CLOSING SPAN * SETUP DATA 3.600E 82 3.500E 03 4.000E 2.@80E 01 4.7S@E 1.900E @6 1.200€ 1.500E @1 1.0@0E 90 1.260E OL 8.330 Oe Ra 16 2038 50 JL 38 ~ 39 33.9 99:99 PERCENTAGE CASE NO. S2 Healy TCR Arrester LOCATION 15, ANALYSIS FOR TRANQUELL ARRESTER 18@.@ DEGREES AseDL 8,000E-81 ee eL @L 1.800E 02 ~ 3.908E ed 2.017E 03. @.@89E-91° 062 mMoDbprIv Dd Morviryv #s MOPrD Oo AS2VI LOCATION: 4 DOUGLAS 138 KU PER UNIT VOLTAGE CASE MQ. Se OSCILLOGRAM NO, 1t MAX. EVENT FROM DISTRIBUTION 20.0 MS/DIV Mnrrs @ mMopro oOo Aseue LOCATION: 5 CANTWELL 138 XU PER UNIT VOLTAGE Tea CASE NO. S2 20,8 MS/DIU OSCILLOGRAM NO, 2 MAX. EVENT FROM DISTRIBUTION MODrD DvD MYpYDrIwv w MNoDrIVv AaS2U3 LOCATION? 14 HEALY END OF LINE FROM DOUGLAS PER UNIT VOLTAGE 20.9 MS/DIV 3- CASE NO. S2 OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION » mwHpxrs w maADIT nD MADErEB oO Asav4 - LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE “1.8 CASE NO. S2 20.8 MS/7DIV OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION mMNDIV B c mapxrws c-A mMmoOrxrv AS2US AaS2UE LOCATION: 22 LOCATION: 12 TEELAND 13.8 KYU HEALY 12.@ KY PER UNIT VOLTAGE PER UNIT VOLTAGE 1.5 3 1.9 ap 2 @.5 Pp 1 8.0 H 7 ot lalla “0.5 + S$ 44 } E ~1.04- ~2 -1.5 ~3 1.54 1.0 5-6 @.5 é 0.0 H a -0.5 S$ E “1.0 “1.5 3 ca ° t H L | H A e S$ -1 | é -2 -3 CASE NO. 52 20.0 MS/DIV CASE NO. 52 2e.6 "S/D1U OSCILLOGRAM NO. 5 OSCILLOGRAM NO. 6 max. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION 114 Mepvre w ‘ope Re ABVLA- OCATION:f8 00 0). EALY. TCR. CURRENT ” CASE NO. 52° OSCILLOGRAM NO. 7 SAX. EVENT. FROM DISTRIBUTION 20.8 ms/DIu N86 mwrpro ww Morro D> MOPRPIrIB O HEALY END OF LINE FROM DOUGLAS AS2U7 LOCATION: 14 PER UNIT VOLTAGE CASE NO. S2 50.9 MS/DIV OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION c c Moprs ' > Moors CASE NO. 52 OSCILLOGRAM NO. 6 MAX, aSeus LOCATION: 12 HEALY 12.0 KU PER UNIT VOLTAGE 50.0 MS/DIV EVENT FROM DISTRIBUTION MoODxrvD Dd mMopxrv w® MoDpDrUw oO asel4 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. S2 59.6 MS/DIV OSCILLOGRAN NO. 7 MAX, EVENT FROM DISTRIBUTION 156 meg oy, ABBEL Bette, | LOCATION! -:.22 mS Se MEAL 12.28) KY “PER UNTT.VOLTAGE - SYSTEM KILO-AMPERES 8 . Pp « 4 ponpefe pe = $ ¥ Eg SYSTEM MEGA-JOULES O.45y 8 8.19 p 0-054 H i: 2.00 § ~9,05- E “O15 bots CASE NO. S2 20.@ MS/DIV OSCILLOGRAN NO. 8 Max, EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: @,6@ CQUL. EVALUATION FOR TYPE 3: @.22 nac APPENDIX B Description and Explanation of Test Result Sheets APPENDIX B Description and Explanation of Test Result Sheets There are two or more pages for each case investigated. The first page shows the circuit diagram for that portion of the system studied. Circuit breakers and switches are indicated by lettered squares; system locations which were monitored are identified by numbered circles. The system operation is defined and the results are summarized therein. The second page tabulates the system voltages recorded for the various system conditions as identified in the table headings. They include both the temporary pre-switch and post-switch voltages. The succeeding pages display the statistical distribution curves of the transient voltages and/or the oscillograms of the voltage, current and/or energy waveforms taken during the test. The following is a description of the various lines and column headings in the order of their occurrence. FIRST PAGE - UPPER HALF DIAGRAM - The upper half shows a one-line diagram for that portion of the system being investigated. FIRST PAGE - LOWER LEFT QUARTER CASE NO. - The number of each case appears in this space. B-1l OPERATION Pre-Switch Post-Switch Sustained Fault Energizing Energizing into a Fault De-Energizing The following nomenclature is used. The voltages on the system before the circuit breaker operates, and no fault on the systen. The voltages on the _ system after the circuit breaker operates and after all transients have subsided. The voltages on the system with the operating circuit breaker closed and with a fault on the system; all transients have subsided. Energization of a portion of the system; no trapped charge present. Energizing a portion of the system with a bolted = fault present; no trapped charge exists on the systen. Investigation of transients incurred when switching off (isolating) a portion of the system without current-chopping by the oeprating circuit breaker. Load Rejection Restrike Fault Initiation Fault Clearing Fault Initiation and Clearing FROM TO With a specified load flow all three poles of the line breaker are opened. The interruption of load flow of this investigation does not include any reaction due to machine overspeed and/or any excitation system response. A single or multiple phase restrike across the opening contacts of the breaker during a de-energizing operation. Investigation of the transients when a fault occurs. Three phase de-energization of a portion of the system suffering from a fault. A fault is initiated and subse- quently de-energized by opening of the appropriate circuit breakers. Station bus at which the switching is performed. Location of the remote (receiving) end of the line, cable, transformer or other terminal apparatus being switched. DESCRIPTION OF SYSTEM CONTINGENCIES Comments describing the system will appear here. Comments describing system contingencies or other pertinent information will appear here. FIRST PAGE - LOWER RIGHT QUARTER OPERATING BREAKER OPEN BREAKERS The parameters of the listed as follows: CLOSING RESISTOR, OPENING RESISTOR INSERTION TIME MAXIMUM CLOSING SPAN, OPENING SPAN The location of the circuit breaker or switch performing the switching operation. Indicates the location of open breakers and switches. operating breaker or switch are then The ohmic value of the resistor inserted in the closing or opening sequence. Minimum time that the resistor is inserted. Maximum possible pole misalign- ment during the closing or opening operation. RESULTS : - The magnitude of the highest voltage observed during this particular investigation is recorded here. The existing and applicable arrester ratings, types and constructions at the indicated locations are specified herein. CONCLUSIONS - Any other pertinent information or conclusions appear here. SUBSEQUENT PAGES The following pages may display the tabulated system voltages for various system conditions, the statistical distribution curves of the transient voltages, and the oscillograms of the voltage, current and energy waveforms pertaining as required by the specific case. APPENDIX C Surge Arrester Types and Protective Characteristics The three types of surge arresters considered in a TNA study are: Type 1. General Electric Alugard (R) iT Arrester or Equivalent 1s 312 kV and below (Model 9L11L) a. The arresters can sustain 1.10 x rating for 10 cycles. D's The voltage impressed on the arrester must not exceed rating for more than 20 cycles. 25 336 through 444 kV (Model 9L16A) a. The arrester can sustain: 1.3 x rating for 5 cycles, or 1.25 x rating for 10 cycles. De The voltage. should drop to 1.1 x rating within 20 cycles. Type 1 arresters are essentially obsolete and the manufacturer should be consulted for more specific capabilities. Type 2. General Electric Alugard (R) ey Arrester or Equivalent ka All ratings (Model 9L11M or 9L16B) can sustain: a. One-half cycle at 2.0 x rating followed by an envelope of 1.3 % rating of 10 cycles, followed by 1.2 x rating for the next 10 cycles and 1.15 x rating for the next 40 cycles (1 second total on a 60 Hz basis). b. Two one-half cycles at 1.6 x rating followed by an envelope of 1.25 x rating at 10 cycles, 1.2 x rating for the next 10 cycles and 1.15 x rating for the next 40 cycles (1 second total on a 60 Hz basis). Type 3. General Electric Tranquell (R) or Equivalent This type of arrester is constructed from disks of metal-oxide which act as a highly nonlinear resistor to limit the overvoltages at locations to be protected. The arrester may be gapless or be equipped with either a series or shunt gap. The manufacturer of the arrester should be consulted for specific application rules regarding gapped arresters. In general, metal-oxide arresters have a maximum continuous operating voltage (MCOV) which corresponds to the maximum RMS voltage that may be impressed on the arrester continuously. This type of arrester can be damaged if the temperature of the metal-oxide is changed too rapidly or exceeds approximately 180 degrees Celsius. Since the temperature is directly related to the energy dissipated by the arrester, application rules are generally given in terms of a normalized energy density such as MW sec/kV of rating. The energy densities associated with standard Tranquell station class arresters are given in Table C-l. In addition, applicability of such arresters in temporary overvoltage situations is given by voltage-time curves which may be obtained from the manufacturer. Table C-1 Table of Tranquell Arrester Energy Absorption Capability Arrester Maximum Energy Ratings (kV) Capability (MW_sec/kV) 2.7-48 -004 54-360 -0072 396-588 -0132 The design of gapless metal-oxide arresters is very flexible in that matched multiple columns may be applied in situations where the dissipated energy is very high. In certain circumstances they may also be operated above MCOV if special cooling can be provided. Arrester Protective Characteristics The protective characteristics of series gapped, Silicon-carbide arresters are given in the test and application guides published by the American National Standards Institute. The standards suitable for arrester application are ANSI C62.1-1981 and ANSI C62.2-1981. The protective characteristics of metal-oxide arresters have not been tabulated in the ANSI standards. The manufacturer of these arresters should be consulted for such characteristics as are given in Table C-2 for General Electric Tranquell station class arresters. 9-9 “suaquunu jepow ——— SHY L116 20 SHd L116 Aq pereubisap uo! ediidde warsas Ax Oy 40} sOules AX ZLE PUL COE, ett coat] atvi| oger] oer] tozt] cizi] tom Svat 9Ly 88g 78 vett} izou} evar} goot] zs6 | cig | we 60zt ose vey szB BbiL} zior} see | ose | 668 | coe | 6zB aa ove Ooze: 6LL 9901} ce | ccs | cea | 68 | gia | zee 820L ize 96e 604 Swot} zos | i98 | o18 | goc | sec | 669 Lv Lz oge 199 £26 | ove | zoe | ogc | vic | veo} ico 788 9% gee sig soe | zac | ge | coc | v9 | cea | 909 oz8 esz .(SIZLE 06s eo | isc | gic | 69 | ge9 | 119 | 28g 88L vz «(S)00€ s19 soe | zac | ove | coc | vag | Leg} 909 oz8 9€z ze 06s 69a | isc | gic | 69 | geo | 119 | zag crys vez ooe 84g zs8 | sec | zoe | s99 | S79 | 66s | Og ZuL zez v6z 99g ves | ozz | 499] 199] zig | 98g | eas 9g azz 88z vs tog | ze9 | o99 | 9z9 | seg | vag | ges 922 vez uz ozs go | 199 | te9 | ses | z9g | oes | zig v69 viz v9z 80S gvc | 99 | 919 | vas | 6yS | 9zS | OOS 829 60z asz lly veg | 66S | zs | zg | 60g | sey | Sop 6z9 vay Ove ory zg | 7S | ses | cis | 9@y | 99% | ep 009 vat 8zz 6le ass | zev | ogy | oev | olw | eee | we 903 zst z6L Sse ezs | sy | tey | Boy | eee | age | ose vey opt oat see e6y | ocy | otw | eee | soe | ose | eee isp 6eL aay lee tev | ozy | tov | og | sse | zve | oze ley 6LL g9L vez 6ty | zoe | Sve | cze | coe | sez | o8z oge ou at gz ese | ice | oie | 6ez | iez | e9z | gaz lve sot zen 9€z ave | ooe | saz | zz | soz | sez | cez gle 716 ozt £12 ele | wz | esz | sez | oez | ozz | o1z v8z o18 80L eat 6iz |} twz | oez | siz} voz | 961 | cet esz ale 96 “ut woz | szz | siz | voz | zor | var | sat ez 6zL 06 zy eoz | oat | zt} cor | est | cot | om eat e8g zl cet ze | got | act | ost | te | ser | ez vit ses 99 gut ver | ost | vet | ger | gaze | eze | ctr ast oey 09 908 cst | ser | ozt | zzt | sue | ou | sor zee vey *S “se eo | get | ter} zz} wit | oor | sear bee 68 8 68 est | ter} ezt | vie | cor | cor joes zeL S98 Sy oe. eer | vit | cor |zee |eze joes | ove sub ce 6E v2L ezt | sor jcae |cie |ese jeze | zac 901 £62 9 vo9 gzor jews jews |roe |aiz |e |zs9 788 vee oe ees eze |eec jove [989 jee |sig joes vez 61z iz ogy v7a jeoe jeso [zig |zus [evs |izs g0L g6L vz vey vz |otg jazs |ges |z0s joey | cay a19 va 12 ole vva jeva [ois |ezy |cve |ezy | cov ss ve'Sh at ele 6ts |ece joey jess jeve [vse |ove 6cy ovzt St osz vey |ege |ove joze jeez |oez | zuz Loe gvoL z 60z voe |coe jeez jeez jeve jeez | cz 9'0e lv'8 ob set eze [cue jose jove jez |siz | voz oz ze o6 ou “ez |zsz jgez jeiz | voz |e. joer osz 06'9 8 vst g9z |wzz |eoz jeer joa [za |ror v7 og oe gz oz joa ra [ror jose |wwt joer ver 80'S o9 vot vat [ost joe [wer joze jou jeu zs Oz'y vs 76 vor jeer jeze jeu jouw |sor joo get ove sy v9 cu fee joe jee jee jee feo e6 voz oe ry ceo. joss jee jee |eo9 [vg jig a 0zz Lt 1H 1s3yo AX | w4O~) wxOZ] WAS] WHOL] WIS) WIOE| WIST 1S349 At SWH AM SWH AX 13A31 73A31 (N-1) ONILVE 3AILO3LOUd 3AWM LN3YYND GNOD3SOYDIW 02 * 8 NV BAILOSLOWd | ALITISVdvo | yauszuuv 39uNS ONISN LNIBYND 3SINdWI G3SLVOIGNI LY JAVM'4O-LNOWS | 3DVLIOA ONIHOLIMS (1S3H9 AX) SDVLIOA 3DUVHOSIC WOWIXVIN AN3TWAINOZ =| SNONNILNOD WOWIXvW WOIWIXVIN WOWIXVN (g) (v) (€) (2) (t) SOILSINSLOVYVHS Y3ALSAYYV TISNONVEL Z-O 9TIPL SY3LSAYYV IDYHNS NOILVLS U0120}04d 968}/0A18AQ UI }de2u0D MEN Y IAAT APPENDIX D System Parameters Equivalent Source Impedances Transmission Lines Transformer Parameters Thyristor Controlled Reactors Filters Arresters Loads Breakers Svc 1. Equivalent Source Impedances A. Gold Hill The equivalent source impedances for maximum and minimum generation at Gold Hill are given in Figures D-1l and D-2. These impedances are in percent on a 100 MVA base. B. Generation at Healy 29.4 MVA 13.8 kV ' X, = 0.215 p.u. q Xq = 0.146 p.u. Per unit on above bases at rated voltage. GC. Equivalent Impedance at Pt. MacKenzie 230 kV in percent on 100 MVA. X, = 5.583% 2.956% ~ W To Healy Goid Hill 138 kv Minimum Generation Condition Ft. Wainwright 59.19 69 kv 3 Gold 2, z :.8 | 29 =8.62+559. 722 Figure D-1 2, = 4.69+517.88 1 0 138 kv = 326.43 = 0.69+512.26 Maximum Generation Condition eT Ft. Wainwright 2, = telsS 138 “kV Z, = 5-87+J21.07 To Healy 5.67+5320.43 Z) =17-57+j84.1 . 69 kv 39.19 Gold Z, =6+j31.38 ; 3 ai7 3, =6t5 Zz, = 415.65 . c . 13.8 kv 2, =8+354-4 Z) = 0.71+512.06 | | - Gold Hill | { | Figure D-2 D-4 2. Transmission Lines The 138 kV transmission lines between Teeland and Gold Hill were modeled as non-transposed with parameters computed from the construction data given in Figure D-3 and the accompanying dimensions. The remaining lines, including Cantwell-Watana, were modeled as transposed. 9=-¢ Overhead Transmission Line Data . Voltage Length eae J ———— pnemtiat Line/Cable (kV) (Miles) 1 oO 1 oO 1 0 1. Pt. MacKenzie-Teeland 230 26.0 .120 0.398 2.072 6.717 14.577 8.946 2. Teeland-Willow 138 26.0 .170 0.448 2.110 6.808 14.282 8.723 3. Willow-Healy* 138/345 170.0 .052 0.521 1.658 5.278 18.364 12.779 4. Healy-Nenana 138 56.0 .172 0.766 2.108 5.686 14.343 9.876 5. Nenana-Gold Hill 138 47.0 .172 0.766 2.108 5.686 14.343 9.876 6. Gold Hill-Ft. Wainright 138 17.0 .123 0.657 1.950 6.260 15.700 9.270 7. Cantwell-Watana 138 60.0 .123 0.657 1.950 6.260 15.700 9.270 * Intertie designed for 345 kV but initially operated at 138 kv. i. 7-0" 40' To 85° IN S-O INCREMENTS Figure D-3 Healy-Gold Hill 138 kV Line Drawn DY M_ CHECKED. REVIEWED APPROVED‘ = tue SPANLeY ENGINEERING COMPANY Sieben imines REVISIONS pate [ownl ape |oate 4-127 G4 Consiting Caqureers GAIHNCTON OE. GOLDEN VALLEY ELECTRIC ASSN. ° TY-10 NO. REV, FAIRBANKS, ALASKA ASSEMBLY GUIDE 3859-X35 e 138 kV Tangent Tower Shield Wire - 7 #9 Alumoweld Single Conductor - 556.5 kcmil 26/7 ACSR dove Average Span - 1200 ' Average Height to Conductor at Tower - 63' Clearance to Ground - 28' @ 60°F Line Data for Douglas-Healy Line (345 kV Construction) Height of Conductor at Tower - 75' Conductor Sag - 45' Height of Shield Wire at Tower - 101' Conductor Sag - 31.5' Phase Conductors - Twin Bundle 954 kcmil, 45/7 ACSR rail @ 18" separation Shield Wire - 3/8", 7 strand, EHS steel Phase Separation - 31.5' Shield Wire Separation - 49.5' 6-a Transformer Location Gold Hill Healy Teeland Healy GSU Healy Sub. " Assumed Voltages kv 138/69/13.8 138/12 230/136/13.8 138/13.2 138/24.9 values. 3 Transformer Parameters Type of ; Percent on Pransformet HVA Base tnhecuane Connection MVA HL HT LT ACH ACL ACT (Percent) yyA 100 13.05 23.43 8.0 41.0 28.0 20.0 120 ¥; A 20 7.5 30 1Z* 130% yyYA 100 17.67 28.53 9.07 47 29 16 117 Y 4 30 11.4 11 .4* 1) 7* 4 Y 20 12.5 15* 125* 5. SVS Filters Xo and xX, values represent 60 Hz ohms. A. Gold Hill (2 filters) Harmonic MVAR Healy (2 filters) Harmonic MVAR x xX Cc L Teeland (3 filters) Harmonic MVAR X xX Cc L 10 -19.84 0.794 -16.67 0.667 -24.80 0.992 D-10 7 25 -8.45 0.173 @ 13 =o 0.231 7 rT: 7 7 -27.77 -27.43 0.567 0.227 tt=d 6. Alaska Tieline Surge Arresters Station. _ Bauiprent Location. so Nfar, _ Type Design _Rating Columns Gold Hill Healy Line Line Entrance -- ~- Conventional 121 kV Gold Hill 138/69 Tr€. HV Wi SMX Metal Oxide 120 kV Gold Hill 138/69 Trf. LV W SMX Metal Oxide 60 kV Gold Hill 138/69 Trf. TV W SUX Metal Oxide 18 kV Healy Gold Hill Line Line Entrance -- -- Conventional 121 kV Healy ‘Gen. Step-Up HV Assume Same as Line Entrance Healy Dougias Line Line Entrance OB VS Metal Oxide 98 MCOV Douglas Healy Line Line Entrance OB VI Metal Oxide 98 MCOV Douglas Teeland Line Line Entrance OB VI Metal Oxide 98 MCOV Douglas Transformer HY Wo OSMX Metal Oxide 132 kV Teeland Douglas Line Line Hntrance OB VI fetal Oxide 98 MCOV Teeland 230/138 Tré. HV y SMX Metal Oxide 180 kV Tecland 250/138 Tre. LV W SMX Metal Oxide 120 kV Teeland 230/138 Trf. TY W SHX Metal Oxide 15 kV Teeland Thyristors SVC, Line to Line GE Tranquell Metal Oxide 15.0 kV 4 Healy Thyristors SVC, Line to Line GE Tranquell Metal Oxide 15.0 kV 4 Healy Transformer LV, L-N GE Tranquell Metal Oxide 15 kV Healy Transforwer HY GE Tranquell Metal Oxide 108 kV 7. Loads Teeland 230 kv 23 MW + 2 MVAR or 58 MW + 10 MVAR or none Load Flows Considered 0 70 MW Anchorage to Fairbanks 70 MW Fairbanks to Anchorage D-12 8. Breakers - 138 kV System No Resistor Pre-Insertion Closing Span = 8.33 ms D-13 9. SVC each unit Gain = 20 Time Constant = 150 ms Control Range Location MVAR Range Teeland -22 to 20 Healy -33 to 22 Gold Hill -5 to 33 D-14 APPENDIX E Description and Application of the Transient Network Analyzer APPENDIX E Description and Application of the Transient Network Analyzer (TNA) and the Data Acquisition System (DAS) General Objectives of a TNA Study Te To predict and describe the nature of transient and harmonic overvoltages which can occur for any realistic switching operation. II. To seek out any abnormal duties imposed upon equipment by such switching operations. III. To devise solutions within the capabilities of equipment by: A. Exploring the influence of various system or apparatus design alternates. B. Establishing acceptable operating procedures. IV. To provide this information in a form suitable for use in: A. Establishing the insulation requirements of transmission lines. B. Establishing the data for insulation coordination; e.g.. BIL, SIL. Typical System Phenomena Which Can be Investigated on the TNA Is The occurrence and magnitude of system overvoltages have a direct bearing on the electrical design of a transmission system. A few of the more important causes of overvoltages, the magnitude and severity of which can be established by a TNA study are: A. Transient overvoltages caused by: 1. Normal energization of uncharged transmission lines with or without connected transformers. Transient voltages will be produced in each phase as it is energized and by coupling as the other phases are energized. The zero sequence impedance may be a predominant factor governing the transient overvoltages occurring during the energization of a _ transformer terminated line. In cases of arrester protected cables and cable terminals, energization transient causing surge arrester operation may produce severe current discharges through the surge arrester. On many systems, the thermal limit of the surge arrester may be a critical factor in the system design. Energization of particular line/transformer combinations may also cause overvoltages lasting many cycles due to the nonlinear characteristics of the transformers. Harmonics generated by the magnetizing characteristics of the transformers interact with the parameters of the system (line capacitance and system inductances) and cause in-rush and nonlinear oscillations. In some instances, these oscillations may be sustained. Since these types of transient overvoltages persist for a relatively long time duration, they may impose overly severe duties on the surge arrester; hence, they are important factors in the specification of terminal equipment such as transformers. Operations which may lead to such nonlinear oscillations are: E-2 a. Energization of an autotransformer and a high voltage transmission line from the circuit breaker on the low voltage side of the step-up transformer, and b. Energization of a high voltage transmission line which is terminated with a transformer. High speed reclosing of a high voltage circuit breaker onto a transmission line which has retained a charge from a previous de-energizing operation by circuit breakers at each end of the line. If inductive shunt devices such as transformers, shunt reactors, or potential transformers are connected to the transmission line, the trapped charge will either be completely dissipated during the interval that the circuit breakers are open, or an oscillating charge of less than one per unit will exist at the time of reclosure. In general, therefore, the most severe transient overvoltages imposed on line insulation will occur when an open-ended line is reclosed. Restriking across the opening contacts of a circuit breaker during a de-energizing operation. Since restriking is similar to reclosing, restriking will cause transient overvoltages in the same order of magnitude as reclosing. Most modern oilless circuit breakers for transmission lines are designed so that they will not produce severe overvoltages if a restrike occurs. The sudden disconnection of a _ generating station and its associated lines, cables, and/or transformers from the rest of the system (load), causing the terminal voltage to rise abruptly. Also, the machine speed and voltage will undergo transient variations, the Magnitude and duration of which are functions of various parameters, such as number of machines and loading, line and/or cable remaining connected, excitation system performance, and transformer saturation. The resulting temporary overvoltages must be maintained below surge arrester reseal. Switching capacitive kVA (capacitive banks or cable) causing magnification in some remote part of the connected low voltage system. B. Temporary overvoltages caused by: 1. A transmission line or cable remaining energized by a generating station or through a transformer, resulting in: a. Voltage rise along the line or cable (Farranti effect). b. Voltage rise through the source reactance. II. The TNA can also be used to study the effects of in-rush current characteristics when energizing lines and transformers. III. In general, these transients or dynamic overvoltages can be modified by various means. The TNA can be used E-4 IV. to study the effectiveness of the following means of modifying overvoltages: A. Surge arresters. B. Shunt reactors. C. Intermediate switching stations. D. Transfer trip relay schemes. E. Transformer tertiary design. Fo Circuit breaker design - that is, resistor pre-insertion schemes and control of relative pole closing span. G. Static var systems. Results of TNA studies can form the basis for defining: A. Switching arrangements (high side vs. low side switching). B. Ratings and locations of arresters. C. Apparatus BIL requirements. D. Size and location of reactors. E. Advisability of furnishing tertiaries on terminal transformers. F. Approximate statistical switching surge data for transmission tower electrical design studies. G. Relay settings from standpoint of in-rush currents. General Classifications of Overvoltages I. Transient Overvoltages Depending upon system parameters, the point upon the source sine wave at which the operating circuit breaker operates and the relative position and sequence of operation of the individual poles of the operating circuit breaker, the transient voltages that might be Ere encountered at a particular location due to a system switching operation can, in general, be classified according to wave shapes as defined below: A. Maximum Transient The transient voltage wave with the highest possible transient voltage crest after circuit breaker operation is referred to as the Maximum Transient. B. Maximum Surge Arrester Transient ss Silicon-Carbide, Series Gap Arresters This type of transient voltage is characterized by the first or second voltage crest after circuit breaker operation being sufficiently high (but not necessarily the maximum value possible) that it might cause an operation of the surge arrester being considered for the location being investigated and one or more successive voltage crests above the reseal rating of the arrester before the arrester operates. If any subsequent transient voltage crests (after modification by the operation of the arrester) are above the reseal rating of the arrester, the arrester probably will be subject to multiple operations and possible failure. 2. Metal-Oxide Arresters The maximum surge arrester transient is characterized by the highest energy dissipation in the arrester. Temporary Overvoltages In addition to the transient overvoltages described above, systems may also be subject to longer term E-6 overvoltages caused by faults on the system or by load rejection. System Representation The system to be studied is represented in miniature on the Transient Network Analyzer (TNA). The TNA is a three-phase analog device used for real time simulation of the power system. Power for the model is supplied from a three-phase low impedance sine wave generator, which appears as an infinite bus to the miniature system. System equivalents are represented by equivalent linear reactances connected to an infinite bus, in the positive, negative, and zero sequence systems. Nonlinear, low loss shunt or tertiary reactors are modeled with an electronic circuit which exhibits the correct terminal behavior. The inductance below and above saturation, the level of saturation, and the quality factor (Q) of these model reactors can be set to desired values. Transmission lines and cables under study are represented by three-phase, L-section equivalents composed of series resistance and inductance, and shunt capacitors connected to simulate positive and zero sequence susceptance of the line. At least five sections connected in tandem are used in the representation of each line or cable under consideration in order to maintain an accurate traveling wave model. Proper impedance base changes are introduced to match the TNA model line section parameters to those of the actual transmission lines or cables being studied. For those parts of the system wherein the effect of zero sequence mutual induction between parallel lines is to be investigated, the electromagnetic and electrostatic coupling is included in the model representation as required by the objectives of the study. Transfer impedance between buses of the underlying system are represented where they are considered significant. Power transformers are represented by model multiple winding transformers, such that the magnetizing characteristics (both positive and zero sequence) are rigorously represented, as are all other’ transformer impedances. The circuit breakers are represented by an electronic switch capable of separate and accurate angular adjustment on both the opening and closing contacts between phases end with respect to the driving voltage sine wave. The opening contacts are adjusted to open on successive current-zeros, just as on an actual circuit breaker. The opening and the closing contacts of the switch are so arranged that resistor pre-insertion is accurately modeled (both resistor magnitude and pre-insertion time). The surge arrester is modeled completely electronically with Zener diodes, thyristors, and high quality operational amplifiers. Sparkover is controlled by an adjustable comparator circuit which fires a thyristor to start the arrester conduction period. A current-limiting gap arc voltage of adjustable waveform duration can be easily modeled when necessary. The nonlinear volt-ampere characteristic of arresters is simulated with resistors and zener diodes to give a ten segment piecewise linear approximation of the actual arrester. The arrester model ceases conduction when the current reaches the thyristor holding value, which is essentially zero compared with the currents encountered in the simulation. The arrester model has an “off" impedance of 20 megohms, which is lower than actual arresters, but this value does not cause any significant draining of charge from the transmission system. Oscilloscope probes are used to directly monitor the voltages at various points around the system. Copies of all the waveforms are obtained using the TNA-PRIME Computer Data Acquisition System. Study Procedures I. Manual Control of Circuit Breaker Operation For energizing, reclosing, or restriking investigations, the position of the individual closing contacts of the three phases of the switch representing the operating circuit breaker are varied and adjusted both with respect to the driving voltage sine wave and with respect to each other, within circuit breaker operating criteria of maximum allowable span between poles, to produce the most severe transient voltages for each system configuration and switching operation studied. For investigations of overvoltages following circuit breaker opening operations, the model system is’ first energized, and then, after all energizing transients have subsided, the contacts of the TNA switch are adjusted to open on successive current zeros, just as on an actual circuit breaker. TNA Model Surge Arrester is applied whenever it is believed that its operation would influence the transient conditions. For arresters with current limiting gaps, the model is sparked over at some point between reseal rating and maximum guaranteed sparkover voltage of the arrester to give maximum magnitude to successive voltage crests in the modified transients voltage wave. Arrester discharge currents and the modified transients are observed and recorded. For the analysis of metal-oxide arresters, the voltage, the current, and the dissipated energy are recorded. Such records are examined to determine the minimum applicable surge arrester rating consistent with reasonable system operating procedures. II. Computer Controlled Statistical Circuit Breaker Operations The generation of a statistical overvoltage distribution on the TNA is accomplished through the use of the digital computer data acquisition system associated with the TNA facility. The computer controls the TNA circuit breaker in a statistical manner to simulate the natural variations in actual breaker closing angles and closing span, and processes the resultant overvoltages and currents. Closing angle is the angle on the power frequency wave at which the breaker closes. Closing span is the difference’ in electrical angle or time between the first phase of the breaker to close and the last phase to close. In the simulation, the individual phases of the breaker are made to close with equal probability anywhere within the closing span guaranteed by the breaker manufacturer. Since the maximum closing span is generally smaller than a complete cycle of a power frequency wave, the mean value (in time) of the random closings also must be evenly distributed over a full cycle. This is accomplished by uniformly stepping the mean of the closing span over an integral number of cycles. When investigating transient overvoltages, the waveforms occurring for each event are processed by the computer, which detects the peak voltage for each of the three phases, sorts the events in order of decreasing per unit overvoltage, and plots the probability distribution. For further analysis, a table of events with the highest overvoltages is printed, showing the overvoltages and breaker closing angles for the three phases. When arrester energies are being measured, the digital computer multiplies voltage and current for each phase, integrates these products over a specific time span, and again plots the results. E-10 The reported distribution curves directly indicate the probability of a given overvoltage or arrester energy. The higher the overvoltage level, the less likely it is to occur. This information can be used with the METIFOR programs to determine the flashover probability of transmission lines. E-1l1l