Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Anchorage Faribanks Transient Network Analyzer Study#2-APA-83-C-0051 6-1984
TRANSIENT NETWORK ANALYZER STUDY #2 Alaska Power Authority Anchorage - Fairbanks Intertie with 138 kV Pt. Mackenzie Area Transmission Study No: B100-1-0659-090000 Conducted By: H. Elahi R. O’Keefe Report Prepared By: _ H. Elahi February 1984 W. Neugebauer S. Miske FINAL REPORT ISSUED JUNE 1984 Electric Utility Systems Engineering Department General Electric Company Schenectady, N.Y. 12345 GENERAL @@ ELECTRIC Introduction Table of Contents Conclusions and Recommendations Basis of Study Discussion of Results Appendix A - Appendix Appendix Appendix Appendix B Cc D Index to Cases Test Result Sheets Description and Explanation of Test Result Sheets Surge Arrester Types and Protective Characteristics System Parameters Description and Application of the Transient Network Analyzer 1. INTRODUCTION Studies have been performed on the Transient Network Analyzer of General Electric's Electric Utility Systems Engineering Department in Schenectady, New York. The studies performed using the Analyzer were the _ load rejection, short circuit, TNA and control system studies as required by Contract No. APA-83-C-0051. Also included are the results from the speed of response tests to satisfy paragraph 2.10 of Section 6.3.1 of the specification. Reports of these individual studies have been combined to form this report. In this study, the Pt. Mackenzie transmission area was represented as 138 kV. As required in each case, a model of a strong or a weak Pt. Mackenzie 138 kV equivalent was used. This study complements the first study, where Pt. Mackenzie transmission area was represented as 230 kV. Those cases which were not affected by the Pt. Mackenzie transmission area representation were not repeated in this study. 2. CONCLUSIONS For the conditions studied and excluding the Cantwell to Watana line: a. The SVS operated effectively to control the dynamic and temporary overvoltages that follow load rejection. However, load rejection at the Gold Hill 138 kV, with the Healy generator and SVS off, resulted in high temporary overvoltages. b. The SVS operated effectively to restore system voltage following system faults. Gs d. £. The application of special zinc oxide arresters in parallel with the SVS thyristor controlled reactors at Teeland, Healy and Gold Hill is required to limit the voltage across the thyristors. The arresters would have a temporary power frequency overvoltage capability similar to that given in Figure 1 of GET-6460, General Electric TRANQUELL® Station Surge Arrester Application Guide. The switching surge duty on the Intertie line and transformer arresters was found to be within their capabilities. Speed of response tests were. performed to show the capability of the SVS to go from full lag to full lead in 3 cycles and from full lead to full lag within a consecutive 3 cycles. Results of the control study showed stable system operation with SVS time constant of 150 ms. Cantwell-Watana Line In Service gS. Healy SVS operates at the limit of its control range, following load rejection at Gold Hill 138 kV. 3. BASIS OF STUDY a. System Representation The Intertie was modeled in detail using miniature model techniques from the Pt. Mackenzie 138 kV bus to the Gold Hill 69 kV bus where inductive equivalent impedances were used to represent the Anchorage and Fairbanks systems. In all cases, the Gold Hill 69 kV equivalent was for the minimum generation condition. The Pt. Mackenzie 138 kV equivalent was represented either as a weak equivalent or as a strong equivalent. 138 kV submarine cables from Pt. Mackenzie to Pt. Woronzof were modeled as an equivalent capacitor bank at Pt. Mackenzie 138 kV bus. The data for the system was derived from the specification and from several letters from Commonwealth Associates. The system diagram is shown in Figure A-l of Appendix A, on page A-5. The parameters for the lines and transformers are shown in Appendix D. b. SVS Models All three SVS's were modeled with a high degree of detail. Actual SVS electronic controls were used to control the firing of the thyristors of the controlled reactors. These controls were implemented on the TNA by the HVDC Projects Operation of General Electric in King of Prussia, Pennsylvania, the responsible product section for SVS. The power thyristors, reactors and filter banks were modeled with miniature model elements. In general, unless otherwise noted, the gain of all three SVS's were set to 20 (full range of MVAR change for a 5% voltage change) and with reference setpoints as indicated. Associated Voltage Control ee Reference Range Voltage Location Setpoint (pu) (pu) Teeland =e to Bon T.00 -975 to 1.025 Healy -33 to +22 1.02 1.00 to 1.05 Gold Hill -5 to 33 1.02 ~9/5 ito 12025 (It is not intended to imply that the reference setpoints used in service must be identical to the values shown.) Also, unless otherwise indicated, the time constants for all SVS's were set at 150 ms. Cs Thyristor Voltage Limitation and Thyristor Controlled Reactor Arresters The TNA cases presented in this report are based on the application of special zinc oxide arresters connected line-to-line in parallel with the thyristor controlled reactors of the Teeland and Healy SVS. The TCR arresters limit the voltage to approximately 31 kV which is 1.59 pu for Teeland and 1.83 pu for Healy. These arresters will consist of a number of parallel columns of zinc oxide disks. The number of parallel columns required is dependent upon the discharge duty encountered during system disturbances. The duty requirements are defined further in the case discussion. Following the results of filter energization at Healy SVS, ‘application of zine oxide arresters were also recommended at Gold Hill TCR in order to limit the overvoltages during filter energization. Possibility of the restrike of the SVS breaker could result in substantial TCR arrester discharge. All TCR arresters, at all three locations, have been rated to withstand such a restrike. The final TCR arrester designs are as follows: Switching Surge TCR Arrester No. Of Energy Capability Location kV_Rating Columns MW-Sec. Teeland 16.1 5 -467 Healy 16.3 6 Loe L Gold Hill 16.5 8 743 The voltage-current characteristic used to model the Healy TCR arresters in this study was higher in voltage than that used in the first study, more closely representing the final arrester design. This higher characteristic resulted in lower arrester energy absorption during system switching events. d. 138 kV Intertie Line and Transformer Arresters As a simplifying assumption, all arresters applied to the 138 kV Intertie line sections and transformers were modeled with a 108 kV rating for convenience, even though some are rated 120 kV on the actual system. The results are, therefore, slightly pessimistic for the 120 kV arresters which would absorb less energy than the TNA predicts. This fact does not change the overall conclusions. e. Load Modeling The loads on the Intertie (at Teeland, Douglas, Cantwell, Watana, Healy and Nenana) were assumed out of service. The overvoltages found are, therefore, slightly higher than actual. It was presumed that there is no significant temporary ''backfeeding'' from the load that can occur when the associated 138 kV line section is isolated from the rest of the system. Such backfeeding could result in high overvoltages if breaker relaying allows large motors to remain connected to an isolated line section. 4. DISCUSSION OF CASES The cases have been divided up into five categories: a. load rejection, b. fault initiation and clearing, c. line energizing, d. speed of response and e. control study. The requirements of short circuit study of the specification have been fulfilled in category b. The individual case descriptions and oscillograms of selected voltages and currents are contained in Appendix A. =5< a. Load Rejection Load rejection cases were performed with the Gold Hill - Ft. Wainwright line in service and Healy generator and transformer out of service. The Cantwell-Watana line was in service only in Case 402. In all cases, there was approximately 70 MW of power flow from Anchorage to Fairbanks. The summary of the results is presented in Table 1. Listed in Table 2, are the three phase rms voltage measurements at various locations and under a variety of open breaker combinations. Case 400 In this case, the strong equivalent representation of the Pt. Mackenzie area was used. The opening breaker was the 138 kV breaker at Gold Hill, on the Gold Hill-Nenana line (Breaker Q). After opening the breaker, the maximum temporary power frequency overvoltage was 1.08 pu at the open end of the Gold Hill-Nenana _ line. The SVS maintained temporary overvoltage control. The arrester duty at the open end of the Gold Hill-Nenana line was 0.02 MW-sec. Healy TCR arrester duty was 0.03 MW-sec. Case 401 This case was the same as Case 400, except the weak equivalent representation of the Pt. Mackenzie was utilized. Results were very similar to those discussed in Case 400. The arrester duty at the open end of the Gold Hill-Nenana line was 0.05 MW-sec. Healy TCR arrester duty was low. Case 402 Case 401 was repeated after Cantwell-Watana line was put in service. After opening the breaker, the maximum temporary power frequency overvoltage was 1.10 pu at the open end of the Gold Hill-Nenana line. The Healy SVS was operated at the limit of its control range. The arrester duty at the open end of the Gold Hill-Nenana line was 0.06 MW-sec. Healy TCR arrester duty was again low. Case 403 The strong equivalent representation of the Pt. Mackenzie area was used. The opening breaker was the 138 kV breaker at Gold Hill, on the Gold Hill-Nenana line. After opening the breaker, the maximum temporary power frequency overvoltage was 1.09 pu at the open end of the Gold Hill-Nenana line. The arrester duty at open end of the Gold Hill-Nenana line was 0.06 MW-sec. Healy TCR arrester duty was 0.01 MW-sec. Case 404 Case 401 was repeated with Healy SVS out of service. After opening the breaker, the maximum temporary power frequency overvoltage was 1.5 pu, at the open end of the Gold Hill-Nenana line. Based on Figure 1 of GET-6460 General Electric TRANQUELL 108 kV arrester, this temporary overvoltage has a Station Surge Arrester Application Guide, for a permissible duration of 90 seconds. Nevertheless, since the actual arrester rating at this location is 120 kV, the permissible duration is approximately 30 minutes. Case 405 Weak equivalent representation of the Pt. Mackenzie area was used. The opening breaker was the 138 kV breaker at Healy on the Healy-Nenana line (Breaker J). After opening the breaker, the maximum temporary power frequency overvoltage was 1.02 pu at Cantwell 138 kV bus. The arrester duty at Healy-Douglas line entrance was 0.01 MW-sec. Healy TCR arrester duty was low. bs Fault Initiation and Clearing In all the cases studied, the Healy generator and transformer were out of service. Except for Case 501, the weak equivalent representation of the Pt. Mackenzie area was used. The Cantwell-Watana line was in service for Case 503 only. In addition, approximately 70 MW of power flow was simulated from Anchorage to Fairbanks. The summary of the results is presented in Table 3. Case 500 In this case, Cantwell-Watana line as well as Ft. Wainwright-Gold Hill line were out of service. A _ single line-to-ground fault was simulated on the 138 kV bus at Gold Hill. The 138 kV breaker at Gold Hill on the _ Gold Hill-Nenana line (Breaker Q) was opened in approximately 4 cycles and the 69 kV Gold Hill breaker (Breaker Z) was opened in 6 cycles. The fault initiation angle was varied statistically 50 times and the duty to the arresters at the open end of the Gold Hill-Nenana line was recorded. The maximum energy per phase was 0.13 MW-sec. The attached case sheets contain numerous oscillograms of voltages at various locations of interest. Also included are, oscillograms of the total fault current, fault current contributions from Nenana and from Gold Hill transformer and the TCR currents. The maximum transient overvoltage on the Intertie line is 1.6 pu at Gold Hill end of the Gold Hill-Nenana line. The Teeland and Healy SVS operated appropriately to control the 60 Hz voltage. Case 501 The strong equivalent representation of the Pt. Mackenzie area was used in this case. The Cantwell-Watana line was out of service, while the Gold Hill-Ft. Wainwright line was in service. A single line-to-ground fault was simulated on the 138 kV bus at Healy. This fault initiation was followed by opening the 138 kV breaker at Healy on the Healy-Nenana line (Breaker J) in 4 cycles and opening of the 138 kV breaker at Healy on the Healy-Cantwell line (Breaker I) in 6 cycles. The maximum energy per phase for the arrester at the Healy end of the line from Cantwell was 0.08 MW-sec. The maximum transient overvoltage of 1.8 pu was recorded also at the Healy end of the line from Cantwell. The Healy TCR arrester duty for this case was 0.06 MW-sec. Case 502 Case 501 was repeated with the weak equivalent representation of the Pt. Mackenzie area. The maximum energy per phase for the arrester at the Healy end of the line from Cantwell was 0.11 MW-sec. In general, results were very similar to those in Case 501. Case 503 This was the repeat of Case 502 after Cantwell-Watana line was put in service. Again, results were similar to the previous two cases. The maximum energy per phase for the arrester at Healy end of the line from Cantwell was 0.12 MW-sec. Case 504 In this case a single line-to-ground fault at Teeland 138 kV bus was simulated with Cantwell-Watana line out of service and Gold Hill-Ft. Wainwright line in service. The fault was cleared in 6 cycles by opening the 138 kV breakers at Teeland 138 kV bus (Breakers B and M). The maximum transient overvoltage on the Intertie line was 1.6 pu at Teeland end of line from Douglas. The line arrester duty at that location was 0.11 MW-sec. The TCR arrester duties at Healy and Teeland were low. Healy and Gold Hill SVS provided the proper power frequency voltage control. Case 505 Gold Hill-Ft. Wainwright line was taken out of service and Case 504 was repeated. The maximum energy per phase for the arrester at Teeland end of line from Douglas was 0.20 MW-sec. The TCR arrester duties at Healy and Teeland were low again. Case 506 A single line-to-ground fault was applied on Pt. Mackenzie 138 kV bus, with Gold Hill-Ft. Wainwright line in service and Cantwell-Watana out of service. Fault initiation was followed by opening the 138 kV breaker at Pt. Mackenzie on the Pt. Mackenzie-Teeland line (Breaker A) in 4 cycles. The maximum energy per phase at Teeland TCR arrester was 0.11 MW-sec. The arrester duties at 138 kV intertie line and Healy TCR were low. =10= Case 506A This case repeated the previous case (Case 506) after the Gold Hill-Ft. Wainwright line was taken out of service. The maximum energy per phase at Teeland TCR arrester was 0.09 MW-sec. Oscillograms showed no significant difference between this case and Case 506. Case 507 A three phase to ground fault was simulated at the 138 kV Gold Hill bus. The 138 kV breaker at Gold Hill on the line to Nenana (Breaker Q) was opened in 4 cycles. The 69 kV Gold Hill breakers (Breaker B) opened in 6 cycles. There were no significant energy to the Healy TCR arresters as well as the line arresters at Gold Hill on the line from Nenana. Teeland and Healy TCR currents exhibited no dc offset, as was indicated in Case 205 of the first study. Cis Line Energizing The energizing cases were performed with a model breaker whose closing angles were computer controlled to fall within the desired closing span of 8.33 milliseconds in a statistical manner. When an open line was being energized, a distribution of the overvoltages at the end of that line was recorded with no line arresters present. If the highest overvoltage event exceeded the line arrester voltage protection level, a model arrester was placed at the line end and its maximum energy requirements were investigated. However, an important comment must be made with regard to the above procedure. In cases where a line or capacitor and a transformer are being switched as a unit, the TNA results can be non-repeatable due to the unpredictable residual flux levels in the iron of the transformer. It is, =l1= therefore, difficult to capture the precise waveform that the random distribution found to be the maximum. In any event, the maximum energy found in the random distribution is taken to be a measure of the maximum arrester duty. In all cases, Cantwell-Watana line was out of service. The strong Pt. Mackenzie area equivalent was used only in Case 600. The summary of the results is presented in Table 4. Case 600 In this case, the Douglas-Healy line was energized from Douglas with Healy SVS out of _ service. The strong representation of the Pt. Mackenzie area equivalent was used. The maximum transient overvoltage at Healy end of the energized line was 2.77 pu. Maximum arrester energy at this location was 0.06 MW-sec. There were no arrester operations at Teeland TCR. Oscillograms shown in the case sheets were recorded with the line-end arresters applied. Case 601 Case 600 was repeated with the weak Pt. Mackenzie area equivalent. Maximum transient overvoltage at Healy end of the line was 2.69 pu. Maximum line-end arrester duties were 0.05 MW-sec. Case 601A Case 601 was repeated with the Teeland SVS out of service. The following results were recorded at the Healy end of the energized line: =1 96 Maximum temporary 60 Hz overvoltage of 1.17 pu. Maximum transient overvoltage of 2.44 pu. Maximum 108 kV arrester duty of 0.06 MW-sec. Case 602 In this case, Douglas-Healy line together with Healy SVS transformer were energized from Douglas. Healy SVS was not connected. The maximum transient overvoltage at Healy end of line was 2.37 pu. There, the maximum arrester energy was 0.07 MW-sec. Case 603 This case was similar to Case 602, except here Healy SVS was in_ service. The Douglas-Healy line, Healy SVS transformer and Healy SVS were all energized in one operation. The effect of the status of the actual TCR gate energy prior to energization was not investigated. Maximum transient overvoltage and maximum arrester duty at Healy end of the line were 2.49 pu and 0.08 MW-sec, respectively. Healy TCR arrester energy recorded was 0.11 MW-sec. Case 604 In this case, the Healy SVS transformer was energized from Healy end of line from Douglas with Healy SVS out of service. Maximum transient voltage at Healy SVS _ transformer. Primary was 1.70 pu. Cases 605, 606 - Ramp up Healy TCR and Energize Filters These two cases were performed in order to exhibit the startup performance of the SVS at Healy. In both cases, Healy SVS transformer was connected to the Healy end (open end) of the line from Douglas. == The procedure for performing each case was as follows: first, with the filter bank switched off, the Healy TCRs were ramped up to approximately 22 MVAR. Then, the filter bank was switched on (energized). Oscillograms showing the voltages and TCR currents during and after the completion of this procedure are included for further clarification. The voltage distortion during the Healy SVS ramp up is less at Teeland, if the Teeland SVS is in service. A random distribution of the overvoltages at Healy 12 kV bus were taken for the filter bank energizing using a closing span of 360 degrees for the filter bank switch. In Case 605, where Teeland SVS was in service, the maximum transient overvoltage at Healy 12 kV bus was 2.19 pu. Healy TCR arrester duty for this case was 0.04 MW-sec. In Case 606, where Teeland SVS was not in service, the maximum transient overvoltage at the Healy 12 kV bus was 2.29 pu. Healy TCR arrester duty for this case was 0.01 MW-sec. Case 650 The Healy-Douglas line was energized from Healy with Healy SVS operating from the Healy 138 kV bus. The Gold Hill-Ft. Wainwright line was out of service. The maximum transient overvoltage at Douglas end of the energized line was 2.60 pu. There, the maximum arrester duty was 0.05 MW-sec. Case 651 This case was the repeat of Case 650 after Gold Hill SVS was taken out of service. This change in the system did not prove to be significant and the results obtained were effectively the same as those in Case 650. ee d. Speed of Response These cases were performed in order to show the capability of each SVS to go from full lag to full lead in 3 cycles and from full lead to full lag within a consecutive 3 cycle time period. Two sets of results corresponding to SVS voltage regulator lag time constants of 150 ms and 88 ms were documented. Case SVS1 With Cantwell-Healy line opened at Cantwell end, a three-phase fault was applied at the Cantwell end of the line from Watana. This fault was cleared in 3 cycles by opening the Cantwell-Watana line. The oscillograms show the speed of response of the Teeland SVS. Case SVS2 The Healy SVS's speed of response was tested using the three-phase fault at Cantwell end of the line from Watana again. The Cantwell-Douglas line was opened at Cantwell end, and the Ft. Wainwright-Gold Hill line was out of service. svs3 In order to investigate the speed of response at the Gold Hill SVS, a three-phase fault was placed at the Gold Hill end of the line from Nenana, with Nenana end of the line open. This fault was cleared in 3 cycles by opening the 138 kV breaker at Gold Hill. e. Control Study The purpose of this study was to investigate the range of SVS time constants for which stable or unstable operation of SVS would result. -15- The circuit condition studied was load rejection at the Teeland 138 kV via opening the 138 kV breaker on _ the Teeland-Pt. Mackenzie line. The Cantwell-Watana, Healy generation and transformer and the Gold Hill-Ft. Wainwright line were all out of service. There was approximately 70 MW of power flow from Anchorage to Fairbanks. The first control study for the power system with the 230 kV Pt. Mackenzie transmission area had shown that the condition with the Teeland 230 kV breaker open was decisive for the SVS regulator time constant. For the 138 kV Pt. Mackenzie transmission area conditions, the opening of the Teeland 138 kV breaker on the Teeland-Pt. Mackenzie line produces a similar decisive condition for the SVS regulator time constant. As shown by the oscillograms, unstable operation of the Teeland SVS results when its time constant is reduced from 150 ms to 53 ms. This test confirmed that the 150 ms time constant was appropriate. -16- APPENDIX A Index to Cases Test Result Sheets I-¥ Table 1. Load Rejection Max imum Post-Swi tch SVS Maximum Arrester Duties Pt. Mackenzie Operating Open 60 HZ Voltages Out of ne Arresters rresters Case Load Flow Equivalent Breaker Breakers Location Per tntt Service LocatTon MW-Sec Cocatton MW-Sec Remarks 400 70 MW to Fairbanks Strong Q FSKet 27 1.08 None 27 0.02 Healy 0.03 401 70 MW to Fairbanks Weak Q FKL 27 1.08 None 27 0.05 Healy Low 402 70 MW to Fairbanks Weak Q K,L 27 1.10 None 27 0.06 Healy Low Cantwell-Watana line in service 403 70 MW to Fairbanks Strong Q Fi Kelnil 27 1.09 Teeland 27 0.06 Healy 0.01 404 70 MW to Fairbanks Weak Q F,K,L,U er 1.5 Healy 27 0.03* - - 405 70 MW to Fairbanks Weak J FKL 5 1.02 None 25 0.01 Healy Low *Permissible duration time = 90 sec. for 108 kV arresters. = 30 min. for 120 kY arresters. Table 2 Three-Phase 60 Hz rms Voltage Measurements for Selected System Conditions Pt. Mackenzie Open Breakers _Equivalent Location x Location x 99.7 99.5 Es KG. R Weak 100.0 98.9 99.5 98.1 99.6 99.3 Fs Ke LC Weak 99.9 98.7 99.5 98.0 101.3 101.8 Fk. C, 0 Weak 102.8 103.0 102.0 101.9 96.7 98.7 Ge ik, LC, O Strong 97.6 98.6 96.9 98.2 a 106.3 B, F, K, t Weak 113.3 105.2 113.1 104.5 V5.5 106.7 B, F, K, L, R Weak 113.9 105.7 112.4 103.8 96.4 Stal Bs ik; UT Strong 97.4 98.7 96.7 98.0 96.8 98.8 IE, Re Cnr hes 0 Strong 97.8 99.9 97.0 99.3 106.6 103.8 Ds Fa Kn ty R Weak 105.1 102.5 103.7 102.4 106.1 102.3 0, F, Ko Weak 104.6 101.2 104.3 101.8 24 24 101. 100. 102. 103. 105. 102. 104. 105. 103. 102. 101. 101. 103. 102. 102. 101. 102. 101. 109. 109. 109. 113. WI. 110. 113. MW. Wi. MOo OCON= =-CwW $—-OY VSR NUW WHY COHN SH NNW 23 23 25 25 98. 98. 100. 99. 98. 100. 105. 107. 104. 106. 107. 105. 115. 113. 113. WS. 114. Ve. 100. 101. 101. 109. 109. 109. MOY NNR BY SY BND SHH DOW UAn Cwos 27 27 100.3 “5 101.6 99 106. 108. 105. 107. 108. 106. Location x Location x Location x 101. 101. 102. wn —~2o Table 3. Fault Initiation and Clearing Significant Arrester Duties Fault Pt. Mackenzie Opening Open* Line Arresters TR Arresters Case Type Fault Location Equivalent Load Flow Breakers Breakers Location Mu-sec Location MW-sec 500 = Gold Hill 138 kV Bus Weak 70 MW to Fairbanks 0,72 FK,L,R G.H. end of 0.13. Healy 0.01 line from Nenana 501 Ag-G Healy 138 kV Bus Strong 70 MW to Fairbanks I,J FKL Healy end of 0.08 Healy 0.06 from Cantwell 502 Ag-G Healy 138 kV Bus Weak 70 MW to Fairbanks I,J F,K,L Healy end of 0.11 Healy 0.03 line from Cantwell 503 AQ-G Healy 138 kV Bus Weak 70 MM to Fairbanks I,J K,L Healy end of 0.12 Healy 0.02 line from Cantwell 504 AQ-G Teeland 138 kV Bus Weak 70 MW to Fairbanks B,M F,K,L Teeland end 0.11 Healy 0.02 of line from Teeland 0.04 Douglas 505 AQ-G Teeland 138 kV Bus Weak 70 MW to Fairbanks B,M F,K,L,R Teeland end 0.20 Healy 0.01 of line from Teeland 0.05 Douglas 506 AQ-G Pt. Mackenzie 138 kV Bus Weak 70 MW to Fairbanks A FKL Pt.Mackenzie 0.01 Healy 0.05 end of line Teeland 0.11 from Teeland 506A Ag-G Pt. Mackenzie 138 kV Bus Weak 70 MH to Fairbanks A FK,L.R. Pt.Mackenzie Healy 0.01 end of line 0.02 Teeland 0.09 from Teeland 507 30-G Gold Hill 138 kV Bus Weak 70 MW to Fairbanks Q,Z F,K,L,R G.H. end of 0.04 Healy 0.02 from Nenana *Breaker AA was open in all cases. 7-V Table 4. Summary of Energizing Cases Operating Open Pt.Mackenzie Maximum Transient Overvol tage Line Arresters TCR Arresters Case From To Breaker Breakers Equivalent Location Per TocatTon MW-sec Location MW-sec 600 Douglas 138 kV Healy 138 kV D F,1,0 Strong Healy End of Line 2.77 Healy End of Line 0.06 Teeland 0. 601 Douglas 138 kV Healy 138 kV D F,1,0 Weak Healy End of Line 2.69 Healy End of Line 0.05 Teeland 0. 601A Douglas 138 kV Healy 138 kV D F,1,0,T Weak Healy End of Line 2.44 Healy End of Line 0.06 - - 602 Douglas 138 kV Healy 12 kV D F,I,U,AA Weak Healy End of Line 2<37 Healy End of Line 0.07 Teeland 0. 603 Douglas 138 kV Healy 138 kV D F,I,AA Weak Healy End of Line 2.49 Healy End of Line 0.08 Healy 0.11 604 Healy 12 kV Healy Transformer 0 F,I,AA,U Weak Healy SVS Trans.Primary 1.70 Healy End of Line Low - - 605 Healy 12 kV Healy SVS TCR, X F,I,AA Weak Healy SVS Trans.Secondary 2.19 - - Healy 0.04 606 Healy 12 kV Healy SVS TCR, X F,I,AA,T Weak Healy SVS Trans.Secondary 2.29 - - Healy 0.01 650 Healy 138 kV Douglas 138 kV I pet sOeKs - Douglas End of Line 2.60 Douglas End of Line 0.05 Healy Low 651 Healy 138 kV Douglas 138 kV I aie - Douglas End of Line 2.56 Douglas End of Line 0.07 Healy Low S-V Pt. Mackenz Teetand Douglas Cantwe1l Ft. Wainwright 138 kV 5 138 kV (10 28 ar }{e M 20-5-wi_}{ S$} us Gold Hill 69 kV é a © Watana 138 kV Gold Hill 13.8 kV Teeland eM ino kv 13.8 kV Figure A-1. System Diagram for 138 kV Intertie Between Anchorage and Fairbanks PLEASE NOTE: The DC offset seen on some of the TCR current oscillograms (e.g., Oscillogram No. 11, Case 400) are caused by the data acquisition system. The actual TCR currents, as viewed by the oscilloscope, showed no such offset. In those cases where arrester energy was maximized, the data acquisition system also shows the number of arrester operations. This number only applies to silicon-carbide, series gap type arresters and is meaningless for the metal-oxide arresters used in this study. Pt. Mackenzj Douglas 138 ") Cantwell 138 kV Nenana 138 kV Gold Hi 138 kV T30_mi 4 i oa “pee SUN el kv + i Watuna 138 kV Hin Healy » 12.0 kV re Ft. Wainwright t (fora {3+ 138 Gold Hill 69 kV tg Gold Hill — 13.8 kV AgooP1 OPERATING BREAKER © OPEN BREAKERS F,L,K il CLOSING RESISTOR @.0@ cOHMS> CASE NO. 400 FROM! GOLD HILL 138 KU INSERTION TIME 8.00 (NS) OPERATION! LOAD REJECTION TO: NENANA 138 KU Max. CL. SPAN 8.33 (ms) wT DESCRIPTION OF SYSTEM | CANTUELL WATANA LINE OUT OF SERVICE HEALY GENERATOR OUT OF SERVICE 70 MU LOAD FLOU TO FAIRBANKS DESCRIPTION STRONG PT. MACKENZIE AREA REPRESENTATION MaADID w MODrv Db MADrDv oOo A4geU1 LOCATION: . 3. _ TEELAND 138 KU. PER UNIT VOLTAGE @.5 8.0 ~8.5 “1.8 CASE NO. 400 20.8 MS/DIV OSCILLOGRAM NO. f LOAD REJECTION 2 G. HILL 1398KU mMODrv DvD mMnDrIa w Mwyprsw Oo Asoove LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE CASE NO. 400 20.8 MS/DIV OSCILLOGRAN NO. 2 LOAD REJECTION @ G. HILL 138KY MoODrWw ow MADrV YD MHDIB Oo A48003 LOCATION: 27 .. GOLD HL. END OF LINE FROM NEN. PER UNIT VOLTAGE CASE NO. 400 26.8 MS/DIV .. OSCILLOGRAM NO. 3 . LOAD REJECTION @ G. HILL 138K aa 4 MoYpiro wo MODE F Mworpry Oo -.. R4BOUS LOCATION: -8. GOLD HILL 138 KU PER UNIT VOLTAGE CASE NO, 420 OSCILLOGRAM NO. 4 LOAD REJECTION @ G. HILL 138KU 20.8 MS/“DIV BA MoHoDxrV A400UE6 ‘LOCATION: 11 TEELAND 13.8 KU PER UNIT VOLTAGE CASE NO. 480 OSCILLOGRAM NO. 5S LOAD REJECTION @ G. 28.0 MS/DIV HILL 138KYU A-B Marprs B~C MwHprv MnDpxryv 40007 A4OGUB LOCATION: 12 LOCATION? 13 HEALY 12.@ KV GOLD HILL 13.8 KU PER UNIT VOLTAGE PER UNIT VOLTAGE 3 1.5 e a-p 1:8 1 Pp 6.5 H @ 4 8.8 “4 S 9. E -@.5 -2 “1.0 -3 ~1.5 3 1.5 2 p-c 1-8 1 P a5 H @ A 0.8 ~1 S -a.5 E -2 “1.0 -3 “1.5 3 1.5 2 c-A 1.8 1 Pp 9.8 H @ a 2.0 ~1 S -@.5 E @ -2 “1.8 3 “1.5 CASE NO. 400 20.0 MS/DIV OSCILLOGRAM NO. 8 LOAD REJECTION @ G. HILL 138KU CASE NO. 498 20.8 MS/DIV OSCILLOGRAM NO. 7 LOAD REJECTION @ G. HILL 138KU 91a MwoDrios wo MnAvoiIv »Y mMonDrrv oOo PAIGE is LOCATION: if TEELAND TCR CURRENT SYSTEM KLLOAMPERES “CASE NO. 400 OSCILLOGRAM NO, 9 LOAD REJECTION @ G. HILL 138KU 20.0 MS/DIV mMonrD wo MaDprvo Dd MyDrv oOo HAYVI2 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 400 28.8 MS/DIV OSCILLOGRAM NO. 10 LOAD REJECTION @ G. HILL 138KY mMopxrv Dd MODIrIvD w MoDpxryv © Ate 73 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 400 20.8 MS/DIV OSCILLOGRAM NO. 11 LOAD REJECTION @ G. HILL 138KV 4 MODI MOHDIU w@ B P H a E S$ ~9.05/ -8,10- -0.15- A400E1 2. VACATION: 27 ‘S. HILL END OF LINE FROM NENAN PER UNIT VOLTAGE SYSTEM KILO-AMPERES O.157 . en} @.e5+ 8.ee at 4—-F-4 4 4+ + HH =9.05 -8.18 ~8.15 SYSTEN MEGA-JOULES 2,10 9.05 aa @.004-—f—4—-t 4} ‘CASE NO. 480 26.0 MS/DIV OSCILLOGRAM NO. {2 LO4D REJECTION @ G. HILL 138KY MODIVD D Moap>irow DvD MODDED D $$90E2 LOCATION: 12 HEALY 12.8 KU PER UNIT VOLTAGE SYSTEM KILO-AMPERES £.5 1.8 e.5 9.0 -6.5 “1.0 1.5 SYSTEM MEGA-JOULES @.15 @.10 2.05 0.08 -8.905 8.10 -8.15 CASE NO. 400 20.0 MS/DIV OSCILLOGRAM NO. 13 LOAD REJECTION @ G.HILL 138 KU Tes bond “n Watana 138 kV 13.8 av Q cor! Will 138 PP Lal pg EO 3 Fe. Maman ight QA . eee alm eo ah er 44 OPERATING BREAKER Q OPEN BREAKERS F,L,« CLOSING RESISTOR @.09 COHNS) CASE FROM: GOLD HILL 198 KU INSERTION TIME @.02 (MS) CPERATION? LOAD REJECTION TO: NENANA 138 KU MAX, CL. SPAN 8.33 (Ms) DESCRIPTION OF SYSTEM ELL UATANA LINE OUT OF SERVICE aa CENERATOR OUT OF SERUICE 20 My LCAD FLOW TO FAIRBANKS — ica DESCRIPTION WERK FT.MACKENZIE AREA REPRESENTATION ee 637 zt Moprv w Morrow mMnpvrse 92 1.57 1.@- a.5 8.2 5 -O.5-4 “1.8 “1.5 1.5 1.0 @.5-] a.0 -8.5- 1.0 “1.5 “1.5 40101 LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE CASE NO. 401 OSCILLOGRAM NO. 2 LOnD REJECTION @ G.HILL 138KU 20.0 MS/DIV MODID D MoODrv w MHODPrVW Oo A4aive LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE CASE NO. 401 20.0 MS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION @ G.HILL 138KU Marrow ea MHDID D MADED Oo A40103 LOCATION? 27 GOLD HL. END OF LINE FROM NEN. - PER UNIT VOLTAGE CASE NO. 401 20.8 MS7DIV OSCILLOGRAM NO. 3 LOAD REJECTION @ G.HILL 138KU ave R481 U4 LOCATION: 1% “TEELAND 13.8 KU ~ PER UNIT VOLTAGE 1.5 1.8 a5 0.8. -8.5 -1,- 15 1.5 1.04 @.5 0.2: -2.5 f ee) “4:5 caSE NO. 401 «20. IS /DIU OSCILLOGRAM NO. 4 LOAD REJECTION @ G.HILL 138KU A c mMuDprs c MaDrD A mMupxry A401 5 LOCATION? 12 HEALY 12.0 KU PER UNIT VOLTAGE - oOo = Mw Ww © CASE NO. 481 22.0 MS/DIV OSCILLOGRAR NO. 5 LOAD REJECTION @ G.HILL 138KU Movrw & mopiv > Moprp o A4O111 LOCATION? 14 “<4 “TEELAND TCR CURRENT SYSTEM KILQAMPERES “CASE NO. 401 20,8 MS/DIU QSCILLOGRAM NO. 6 LOAD REJECTION @ G. HILL 138KU MnaDrD wo MoDiID Dd MwHprv 2 aseii2 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 401 20.0 MS/DIV OSCILLOGRAM NO. 7? LOAD REJECTION @ G. HILL 138KV 380 — ASOLEL LOCATIONS 27 « HELL-END: OF LINE, FROM. RENAN “A. 2 PER UNIT VOLTAGE SYSTEM KILO-AMPERES @.15 c @.10 p 0-85 # 4 Ay ty hd a @.08 ’ — 8 ~9. 08 E @ Co -0.10 ~@,15- SYSTEM MEGA-JOULES @.15 0.10 0.054 0.00 ~0.05 -@.18 0.15 MOnDXrVD Oo CASE NO. 401_ 20.0 MS/DIV OSCILLOGRAM NO. .8 LOAD REJECTION @ G. HILL 138KY A4O1ES LOCATION: 12 HEALY 12.8 KU PER UNIT VOLTAGE MOnoxryv ww SYSTEM KILO-AMPERES 8.15 B @.19 @.05 4 9,00 S -9,05 0.10 6.15 SYSTEM MEGA-JOULES 6.15 @.10 0.85 0.88 -0.05 MaADPrID w -0.10 0.15 CASE NO. 401 20.0 NS/DIV OSCILLOGRAM NO. LOAD REJECTION @ G. HILL 138KU 394 Tec land , TN Usa by ! 139 FY Ve yy? () , vee esr 19-4 4p atc Gold Will Fe. Warmer tight Be Voce | Gord Will 13.8 av = — seen my Heal; ine kv AACRPY OPERATING BREAKER @ OPEN BREAKERS L,K CLOSING RESISTOR @.90 (OHMS) CASE NO. 402 FROM: GOLD HILL 138 KU INSERTION TINE @.00 (MS) NENANA 138 KU MAX. CL. SPAN 8.33 (ms) CFERATLON: LOAD REJECTION TO: ~ DESCRIPTION OF SYSTEM CANTWELL UATANA LINE IN SERVICE HEALY GENERATOR OUT CF SERVICE 7S NU LOAD FLOW TO FAIRBANKS DESCRIPTLON UEAK PT.MACKENZIE AREA REPRESENTATION A402UL LOCATION: 3 “TEELAND 138 KY FER UNIT VOLTAGE | MoODIrv w MOPIV Oo “1.8 1.5 1.54 1.0 @.5 @.0 F414 8.5 ~1.0- “1L.5>- CASE NO. 402 GSCTLLOGRAM NO. 1 26.@ MS/D1V LGAD REJECTION @ G. HILL 138KU MoDpxrs w moprv Dd MoDpDres Oo As@2v2 LOCATION? 6 HEALY 138 KY PER UNIT VOLTAGE CASE NO. 402 20.0 MS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION @ G. HILL 138KY MoOpdrs w MOD=rv D MOHPrD oO A402U3 LOCATION: 27 GOLD HL. END OF LINE FROM NEN. PER UNIT VOLTAGE CASE NO. 402 20.0 MS/DIV OSCILLOGRAM NO. 3 LOAD REJECTION @ G. HILL 138KY ANa mMoOD>rv C-A Moyvre 440204 LOCATION: 11° TEELAND 13.8 KU. PER UNIT VOLTAGE 1.5 1.0 @.5 0.0 -0.5 “1,0 “1.5 CASE NO. 49a 20.0 MS/DIV OSCILLOGRAM NO. 4 LOAD REJECTION @ G. HILL 138KY A-B MaDpxry B-C MmMoODID Manprv A492U5 LOCATION: 12 HEALY 12.0 KY PER UNIT VOLTAGE CASE NO. 402 26.0 MS/DIV OSCILLOGRAN NO. 5 LOAD REJECTION @ G. HILL 138KU a moOpvro Ww mMapre Oo (nee It “LOCATION? © 11 -TEELAND. TCR CURRENT *. SYSTEM, KILOAMPERES CASE NO. 402 OSCILLOGRAM NO. 6 LOAD REJECTION @ G. HILL 138KU 20.0 MS/DIV Monoryv w MuDpDrIv Db Marry o A4sezTe LOCATION! 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 402 2@.@ NS/DIV OSCILLOGRAM NO. 7 LOAD REJECTION @ G. HILL 138KU MOADYD OO c p H 4 s E c Pp H A $ E AAOzEL b. LocaTION® 27 GOLD HL END OF LINE: FROM NEN. ‘ { PER UNIT VOLTAGE SYSTEM KILO-AMPERES @.15 @.10 Fe i -@.18 ~@.1S- SYSTEM MEGA-JOULES @.415 @.19 8.05 @.00 0.05 -0.104- -0.15+ CASE NO. 402 20.@ MS/DIV OSCILLOGRAM NO. 8B LOAD REJECTION @ G. HILL 138KY A4e2zE2 LOCATION: 12 HEALY 12 KV PER UNIT YOLTAGE Movirisw w SYSTEM KILO-AMPERES ®.15 @.1e @.aS 0.00 ~6.05 ~8.10 -®.15 mMnDiIos w SYSTEM MEGA-JOULES. 6.15 @.10 8.05 0.20 S -9,05 -0.10 Pro “8.15 CASE NO. 402 20.9 NS/DIY¥ OSCILLOGRAM NO. LOAD REJECTION @ G, HILL 138KYV aA Gol! Hill Fu. Warrertsst Qe _te |p as Dovg tas Bet yO$9 ws ») Nese area G+ Pre Macbonsig Tec land W 3 Wotana fs aL Gord Hi1T aoe 18 QQ = ney | Q = [=] [a<oaPt OPERATING BREAKER @ OPEN BREAKERS F,K.U,T lease wo. 3 Feon goup sa 133 KY Ghgenrionerine’™ 8088 “Une ASE . s 3 a CrERATION? LOAD REJECTION Tot NENANA 138 KU Max. CL. SPAN 8.33 (mS) DESCRIPTION OF SYSTEM {CANTWELL-UATANA LINE OUT OF SERVICE HEALY GENERATOR OUT OF SERVICE 73 NY LOAD FLOU TO FAIRBANKS DESCRIPTION STRONG PT.MACKENZIE AREA REPRESENTATION TEELAND SUS GUT OF SERVICE QP mapre MaAapxrv AMAPRPIe 9 1.@ HABBVA ie LOCATION: = 3 - ~TEBLAND 198 KV sow k PER UNIT VOLTAGE. “CASE NO. 403 20.0 MS/DIU OSCILLOGRAN NO. 4 LOAD RESECTION @ G. HILL 13BKYU mMHDrv D MADD w MADID Oo AASW! LOCATION? 6 “HEALY 138 KU PER UNIT VOLTAGE CASE NO. 463 20.8 MS/DIV OSCILLOGRAM NO, 2 LORD REJECTION @ G. HILL 138KY MnDrD w MADID Dd MADIUV O 40303 LOCATION: © a7” GOLD HL. END OF LINE FROM NEN. PER UNIT VOLTAGE — CASE NO. 403 80.0 MS/DIU OSCILLOGRAM NO. 3 a LOAD REJECTION @ &. HILL 138KY o-n 168 maDpxryv. 6.6 4 i.¢ @.5 4 a.e -O.5-5- “1.8 -1.6+ FAIS ” LOCATION: ti TEELAND 13.8 KU ~ PER UNIT. VOLTAGE CASE NO, 403 26.6 MS/DIV OSCILLOGRAM NO. 4 LOAD REJECTION @ G. HILL 138KU A B mMopxres c MoODxrv A403US LOCATION: 12 HEALY 12.@ KU PER UNIT VOLTAGE CASE NO. 403 20.¢ MS/DIY OSCILLOGRAM NO. § LOAD REJECTION ® G. HILL 138KV MADIVD w MODIVD D MHAYTrVv oOo A4O3I1 : LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 403 20.0 MS/DIU OSCILLOGRAM NO. 6 LOAD REJECTION @ G. HILL 138KU ': TCR ARRESTER OPERATION 478 _ ASOZER .. LOCATION: 27 “"S.@0LD HL END OF LINE FROM NEW. MODry a. 8.15 @.1@ 0.05 4- e.e0 0.05 -@.12 “0.154 mMmoprw oO 8.15 PER UNIT VOLTAGE. _ SYSTEM KILO~AMPERES SYSTEM MEGR-JOULES “CASE NO. 403 20.0 NS/DIV OSCILLCGRAM NO. 7 LOAD REJECTION @ u. HILL 138KU A4Q3E2 LOCATION: 12 HEALY 12 KY PER UNIT VOLTAGE oa MnNDroD w SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES CASE NO. 403 20.0 NS/DIV OSCILLOGRAM NO. & LOAD REJECTION ® G. HILL 138KU TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: ©.@@ COUL. EVALUATION FOR TYPE 3t @.81 479 Pro Macbentre, Teeland Gol? Will Fe. Naver ight ssav (4 Wh Cy 23 Isa nv (, tea o)(as Meant Ass WY yg iss av(is oa fo OP PP _ "PP @ "LP | (— > ager} [H i foam} Hoa) } fifeontus 2 [eee Cry <j * | Gols itt bo bs Watena ; ary w paseo |__3 PH 3 3 Cord Wild a 13.0 WV OPERATING BREAKER @ OPEN BREAKERS F,«,L,U CLOSING RESISTOR @.08 (OHMS) INSERTION TIME @.00 (ms) MAX. CL. SPAN 8.93 (mS) A4O4PL CASE NO. 404 FROM: GOLD HILL 138 KV OPERATIONS LOAD REJECTION Tor NENANA 138 KV DESCRIPTION OF SYSTEM CANTWELL-WATANA LINE OUT OF SERVICE HEALY GENERATOR OUT OF SERVICE 78 Mw LOAD FLOU TO FAIRBANKS DESCRIPTION UEAK PT.MACKENZIE AREA REPRESENTATION HEALY SUS OUT OF SERVICE MADD MYDIvD w Merry oOo 187 .1,@ O.5+ @.0 ~8.5 ~1.0 ~1.54 , eee | 1.0 e.5 @.0- -0.5 71.84 ~1.5- 1.8, 1.@ @.S ®.e 0.5 A404U1 LOCATION: 3. TEELAND 138 KU “PER UNIT VOLTAGE CASE NO. 404 OSCILLOGRAM NO. 1 LOAD REJECTION @ G. HILL 138KV 20.0 MS/DIVU MODIVD w MnDxrvDv Dd MADD Oo A4sB4V2e LOCATION: & HEALY 138 KY PER UNIT VOLTAGE CASE NO. 404 20.6 NS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION @ G. HILL 138KV MPppDrv w mMOoDIrV D MADD Oo A40403 LOCATION: 27 GOLD HL. END OF LINE FROM NEN. PER UNIT VOLTAGE ~~ CASE NO. 404 20.8 MS/DIU OSCILLOGRAM NO. 3 LOAD REJECTION @ G. HILL 138KV_ 488 40404 LOCATION: 11 *. TEELAND 13.8 KU ‘PER UNIT. VOLTAGE. A-B Mavis B-C mMaDxrv c-A " GASE NO. 404 20.0 MS/DIU OSCILLOGRAM NO. 4 LOAD REJECTION @ Gs HILL 138KU Movxrv A404US LOCATION: 12 HEALY 12.6 KU PER UNIT VOLTAGE CASE NO. 404 20.0 MS/DIV OSCILLOGRAM NO. 5 LOAD REJECTION @ G. HILL 138KV 488 MOrDxrD w MODxXrG Dd: MOPDxXrBW oO s- CASE NO. 404 OSCILLOGRAN NO. 6 LOAD REJECTION @ G. HILL 138KU “Aart LOCATION: 11 TEELAND TCR. CURRENT SYSTEM KILOAMPERES 28.0 MS/DIV MurprD w MoDrv Dv mMornpxrs A40412 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES 1,5 1.@ @.S 9.8 -@.5 “1.0 “1.5 1.5 1.0 e.5 0.2 -O.5 “1.8 1.5 1.5 1.¢@ @.5 0.04 -0.5 “1.8 “1.5 CASE NO. 404 OSCILLOGRAM NO. 7 LOAD REJECTION @ G. HILL 138KU 20.0 MS/DIV | -A4O4EL (7) LOGATION? «27 “> GOLD. HL END OF LINE FROM NEN. PER. UNIT VOLTAGE MHDID w- SYSTEM KILO-ANPERES 0.15 : e8] 0.95 - H i 4 e.00 thy ty ty ttt the § ~9.05 + -0.10 8.15 SYSTEM MEGA-JOULES @.15 B 2.18 2.85 H z —t-+-+-+$ -+H4 9.00 $ -@.e5 — -@.104- ~8.18 CASE NO. 484 20.8 MS/Div CSCILLOGRAMN NO. 8 LOAD REJECTION @ G. HILL 138KU ARRESTER OPERATION EVALUATION FOR TYPE 2% 6.@@ COUL. EVALUATION FOR TYPE 3: @.0@ 50n Gold Nill Fu. Warouright 138 bY (io Pe. Mackenzie, re lanl 7" Newly Nenana ; u ny 138 4G) assay (4 os 23 yr €) | ) - : 4 Gord MIND ase kV —-Teeland 12,0 ty = he rs co | A40S01 OPERATING BREAKER J OPEN BREAKERS F,L,K CLOSING RESISTOR @.¢9 (OHMS) CASE NO, 405 FROM? HEALY 138 KU INSERTION TIME @.02 (MS) OPERATION? LOAD REJECTION TO! NENANA 138 KU MAX. CL. SPAN 8.33 (ms) DESCRIPTION OF SYSTEM CANTUELL WATANA LINE OUT OF SERVICE HEALY GENERATOR OUT OF SERVICE 72 MU LOAD FLOW TO FAIRBANKS WEAK PT.MACKENZIE AREA KEPRESENTATION 645 Morro w MHP YD: Mowrxryv o ise Le} 1.5 1.0 @.5- 8.0 -@.5 “1.8 ~1.6 CASE NO. 405 OSCILLOGRAM NO. 1 LOAD REJECTION AT HEALY 138 KU agesui LOCATION: 3 \ TEELAND 138 KU '. PER UNIT VOLTAGE 20.0 NS/DIV Mopriv w MoDrvD D MOD>rIU oOo A4eSVe LOCATION? 6 HEALY 138 KY PER UNIT VOLTAGE CASE NO. 405 80.0 MS/DIV OSCILLOGRAM NO. 2 LOAD REJECTION AT HEALY 138 KU MHovrvD D MoDpDrv w Marprv oO A4O5U3 LOCATION: 26 HEALY END OF LINE FROM NENANA PER UNIT VOLTAGE CASE NO. 405 20.@ MS/DIV OSCILLOGRAM HO. 3 LOAD REJECTION AT HEALY 138 KU. O65 “1,04 “1.8 _ AAOBUS LOCATION? 11 TEELAND 713.8. KY - - PER UNIT VouTaAcE. - 20.8 MS/DIV CASE NO. 485 GSCILLOGRAM NO. 4 LOAD REJECTION AT HEALY 138 KV mMmaDry B-¢ mMoprv C-A MoOYDPrVD A4Q5US LOCATION? 12 HEALY 12.0 KV PER UNIT VOLTAGE CASE NO. 40S 20.0 NS/DIV QOSCILLOGRAM NO. S LOAD REJECTION AT HEALY 138 KU MoOpxrv w MUPrD Dv. mMorpiriw Oo A4OST1 “LOCATION? 14 > TEELAND TCR. CURRENT SYSTEM KILOAMPERES Qe CASE NO. 405 20.0 NSvDIV GSCILLOGRAM NO. G LOAD REJECTION AT HEALY 138 KY MoDprow w MODrvVD D MADrV oO A4esi2 LOCATION: 12 HEALY FCR CURRENT SYSTEM KILOAMPERES CASE NO. 405 20.8 MS/DIV OSCILLOGRAM NO. 7 LOAD REJECTION AT HEALY £38 KU Mosxrvd wo MHYDrD D MoDrIvD oOo A49ST3 | LOCATIONS {13 GOLD HILL. TCR CURRENT SYSTEM KILOAMPERES CASE NO. 485 #0. MS/DIV OSCILLOGRAM NO. 8& LOAD REJECTION AT HEALY 138 KU “a Marry o Madxro MororIy oOo A405E1 “LOCATION? 6. HEALY 138 KU 5). PER UNET VOLTAGE L5r- jj Asese2 LOCATION: 12 HEALY 12 KU PER UNIT VOLTAGE 3 1.8 A 2 @.5 p 1 a 7 “ae i @ 70.5 Sn ia : -1,0 -2 -1.5 -3 SYSTEM KILO-AMPERES SYSTEM KILO-AMPERES @.15- : 0.15 8.194 a e108 0.05: p 2-0 2,20 @.00 -0. 05 5 § -9.05 . E -2.18 “8.10 ~0.15: -0.15 SYSTEM MEGA-JOULES SYSTEM MEGA-JOULES @.15 a.15 @.19- a 0-10 0.05 p 205 0.004 a 4 9.28@ -2,.05 , e -0.05 -0.10 ~9.10 “8.15 -@.15 CASE NO. 405 20.0 MS/DIV CASE NO. 405 20.0 MS/DIV - OSCILLOGRAM NO. 9 : OSCILLOGRAM NO. 1¢ LOAD REJECTION AT HEALY 138 KU LOAD REJECTION AT HEALY 138 KY ARRESTER OPERATION TOR ARRESTER OPERATION EVALUATION FOR TYPE 21 @.@@ COUL. EVALUATION FOR TYPE 2: @.8@ COUL. EVALUATION FOR TYPE 3: 2.08 EVALUATION FOR TYPE 31 @.00 Gold Wilh Ft. Warowr ight wa 1 a | mH eomefaceto face i Curtwell 138 kV Gold Winl 13.3 AV oe) al tz [as OPERATING BREAKER Q,Z > Bi OPEN BREAKERS F.R.K,L . 530 » FROM! SOLD HILL 138KU,PH-A CHI FAULT INITIATION TO? GROUND TESCRIPTION OF SYSTEM CANTUELL, VATANA LINE OUT OF SERVICE GOLD HILL FT. WAINURICHT LINE OUT OF SERVICE © 70 NU LOAD FLOW FROM ANCHORAGE TO FAIRBANKS {oo VERK PT. MACKENZIE AREA REPRESENTATION as 224 26° r6°e Tee 42 26° £6'@ ao°@ 8 16°2 . 96°O =k bare 2 x 68'S Berl. & eS". 9 x 28°8 EO°r =X B50 $ 68° 20't =k 88° y 26° EOL =k 26°O é 66° TO°T eo°t t “o @ 98 NOTL¥901 $39¥L10N LInvs a3NI¥LsSNS CIBIOSNNIS-NON S3LON3q=%) S3ILTLNYND LINN Y3d 19340 BOVL1GN ‘TVYLNEN-3NT1 ANVAOdNaL ~ Bieesy = 2 -314L ees 13as¥0 66‘ 66°e 66°9 2 66° 86° 68°2 8 86°0 86°2 86°0 2 86°9 10°T TO°T 3 56° 66°0 86°0 § x 26° 96° - 86° y. 68°0 2670 eo't € @0°T 86° 2O°F t 9 @ (TOCIOSNNTS-NON: SALONId=x) - -S3ILTINUNOG LINIT 83d-19389 BOULION .10YLNS! ode 8Sses8ss SOSooes wee eee ee Het viet Det oe EMMIS FE TOMOVOWE WOSeeeos SS Sant | FERED oF UTLOOTTKF. [SQVOnWnHOa ~ eee eee e ‘Hert rtetaOwt NE-NEUTRAL VOLTAGE PER ANTITIES DENOTES NON-SINUSOTBAL >. OST FAULT. ‘UNIT QUANTITIES . ‘VOLTAGES. “CREST: “heberag MOrPrs ww MODIrV Db mMoprrs oO ASOOVL LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE CHSE NO. 520 OSCILLOGRAN NO. 1 5.@ MSv/DIU POST FAULT S.S. VOLTAGES BREAKERS @ AND Z ARE OPEN MOHDID w MoOorrv D> moaprv 9 “1.5 1.5 1.0 8.5 0.0 -8.5 ~1.0 ~1.5 1.5 1.6 @.5 8.8 -8.5 71.6 “1.5 Aseeva LOCATION! 6 HEALY 138 KY PER UNIT VOLTAGE CASE NO. 500 OSCILLOGRAM NO. 2 POST FAULT S.S. VOLTAGES BREAKERS @ AND Z ARE OPEN 5.8 MS7DIV MOD>rv w mMmopxrv D Moorv 3 AS@OU3 LOCATION? 27 GOLD HL. END OF LINE FROM NEN, PER UNIT VOLTAGE 1.5 1.0 @.5 0.8 -®.5 “1.0 “1.5 1.5 1.0 @.5 0.0 -@.5 1.0 “1.5 1.5 1.8 @.5 8.8 -0.5 1.8 “1.5 CASE NO. S00 OSCILLOGRAN NO. 3 POST FAULT $.S. VOLTAGES BREAKERS @ AND Z ARE OPEN 5.6 MS/DIV Aan a mMopirv ww MoODprVD oO Monro O65 @.9 -0.5- ~1.04 -1.5- “CASE NO. See CSCILLOGRAN NO. 4 A5OCU4 LOCATION: 3 -TEELAND, 138 KY ~ PER UNIT VOLTAGE 5.0 MS/DIU SUSTAINED FAULT S.S, VOLTAGE BREAKERS Q@ AND Z ARE CLOSED MnDrD w MovxrDs D Mupxrs oO 1.5 1.0 9.5 @.8 -@.5 -1.0 “1.5 1.5 1.0 8.5 e.e -8.S AS9OUS LOCATION: 5S CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. S08 OSCILLOGRAM NO. 5 SUSTAINED FAULT S.S. YOLTAGE BREAKERS @ AND Z ARE CLOSED 5.0 MS/DIV Mondeo w MADIrIVD D MODIrID Oo ASOaUE LOCATION? 6 HEALY 138 Ky PER UNIT YOLTAGE 1.5 1.8 ®.S 0.8 ~0.5 -1,0 “1.5 1.5 1.0 @.5 8.0 8.5 ~1.8 ~1.5 1.5 1.0 @.8 e.0 -8.S 1.9 “1.6 CASE NO. 508 5.0 MS/DIU OSCILLOGRAM NO, 6 SUSTAINED FAULT S.S. VOLTAGE — BREAKERS @ AND Z ARE CLOSED DAD TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF MAX A 8 c MU-SEC PHASE OP. KA. 172.8 172.8 172.8 6.13 6 0.146 57.6 S?.6 S7.6 O11 6 9.140 21.6 24.6 21:6 @.11 ¢ 6 0.149 14.4 1404 14-4 @.tt G 2 Q.148 22 7 ; ca $13 187.2 182.2 187.2 @.19 c 1 @.154 8.8 NO. POINTS = 5a 93:6 93:6 93:6 18 ¢ 6 o.tt4 8 28:8 208:8 20818 e190 ¢ & 0.178 136.8 136.8 136.8 .10 6 6 9.154 = 194.4 194.4 19414 6:10 ¢ 6 ¢.155 2 6.5 I a 151.2 151.8 451.2 @.10 ¢ 2 0.15% a 2818 28.8 28:8 0.110 6 6 6.182 a. 86.4 86.4 8.4 0.10 5 e164 E a. {4 ia | 158.4 158.4 158.4 0.10 ¢ 6 8.150 i 4 189.2 i88.¢ 180.@ @.e9 6¢ 6 6.150 36.9 36:9 36:9 9.09 «¢ 2 1154 & 29:28 7912 79:2 6.09 «OG 6 6.138 W a3 ~+ tt 72.8 72:0 72:0 4«691e3) 2 e@:t4i a 144.0 «444.0 © 144.008) 6 9.160 129-6 129.6 29:6 9.08 ¢ 2 0.098 ree i tt. B44,8 9 244B 0448 OBC & @.139 Bi a. | tO 108.0 108.0 $08.8 Ba § 9.157 n 366.4 266.4 14 9108 @.19 w 50.4 50.4 50.4 @.08 ¢ 6 0.138 = 6.1 + 144} 230.4 230.4 230.4 8.0? c 6 @.174 7 201.6 801:6 e01.6 e187 C 1 0.166 7438 43.2 42.2 0.027 6 6 ¢@.1es5 2.2 | 44 f | Sra Ss oracg te ae € & 2-258 O01 B.1 12 18 2038 50 7aB8 Sa 93 99.5 99.93 252.0 258.0 252.0 9.07 ¢ & 9.192 PERCENTAGE 64.8 64.8 64.8 8.07 6 6 6.106 ma Wii: bel: & Se ; 165. ; : é 6 8.144 237-6 237.6 837-6 e107 6 S 0.136 PHse NOs See iiss fists fi88 olee OE i zi : , 2 9.115 100.8 100:8 100:8 a.a6 ¢ 6 9.135 TRONQUELL (ARRESTED ee a a a 2Re. : : 3 ¢ 2 9.157 : 362.4 30214 302.4 9105 6 @.150 RATING ¢ 198,¢' KY 288.0 288.0 28816 0.05 ¢ 6 o.144 295.2 8952 295.2 @.95 ¢ 1 o.1sa 309.6 309.6 309:6 o.64 ¢ 6 e147 Sigs | Stace | Suace| gree |S ic, e:838 LOCATION 87, ANALYSIS FOR TRANQUELL ARRESTER 352.8 352.8 352.8 9.00 3 é 369.8 360.0 360.8 8:28 é 8 0.828 CLOSING SPAN @.@ DEGREES : 338. 38. ‘ee @ 4:03 345.6 345,:6 345.6 6.00 ¢ 6 8.014 Semue bate esoahe 331-2 331.2 392.2 9.08 6 9.038 @.7Q0E OL 3.600E 92 O.00CE-01 @.900F-01 5.000E C1 1.800€ 88 3.560E @3 1.00GE D2 3.OGDE 6@ 1.e00¢E CO 1,Q80F 92 1.380£ 02 1.00@F G2 G6.394E 02 G.PGBE 01 8,330E 09 5.@09E-01 1.300F 61 O@.89GE-91 &.G80E-O1 aaa Morro Fb moprn MoODpDrg Oo ASOOU7T LOCATION: 3 ’ TEELAND 138 KU FER UNIT VOLTAGE CASE HO. S00 $0.9 MSvDIV CSCILLOGRAM NO. 7 Mad. EvENT FROM DISTRIBUTION Mopru ww MoNrpirvd D> mMppryv oO ASCeUB LOCATION? 5S CANTWELL 138 KYU PER UNIT VOLTAGE CASE NO. See 50.8 MS/DIV OSCILLOGRAM NO. & MAX. EVENT FROM DISTRIBUTION MODIVD w MoDpxryv Dv Moadxrv Oo ASBOUS LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE CASE NO. 5Se0 50.0 NS/DIU OSCILLOGRAM NO. MAX. EVENT FROM DISTRIBUTION DTM movry py - mMonvio w MADry oO _ ABQO10 - LOCATION: 27 ~ GOLD HL. END OF LINE FROM NEN. PER UNIT VOLTAGE “CASE NO. 500 50.@ MS/DIU CBCILLOGRAM NO. 10 MAK. EVENT FROM DISTRIBUTION mMoprv w MaDprv Dd Morrv oOo AS@O11 LOCATION: 8 GOLD HILL 138 KV PER UNIT YOLTAGE CASE NO. S08 5@.@ NS/DIV OSCILLOGRAN NO. 11 MAX. EVENT FROM DISTRIBUTION MHory D mMwHprIDn w MOoorv oO Asee12 LOCATION? 9 GOLD HILL 69 KU PER UNIT VOLTAGE CASE NO. S80 58.8 NS/DIV OSCILLOGRAM NO. 12 MAX, EVENT FROM DISTRIBUTION | P7A AS50013 LOCATION? 11 “TEELAND 13.8 KV "- PER UNIT VOLTAGE B-C ve at ii Hi ee AA HAN iii ae CASE NO. 500 OSCILLOGRAM NO. 13 _ MAX, EVENT FROM DISTRIBUTION 50.9 MS/DIV B-C mMapvxrv c-A mMmopxrs AS@O14 LOCATION: 12 HEALY 12.8 KY PER UNIT VOLTAGE CASE NO. S80 OSCILLOGRAM NO. 14 MAX. EVENT FROM DISTRIBUTION 50.0 MS/DIU B-C moor ASe@15 LOCATION: 13 . GOLD HILL 13.8 KU . PER UNIT VOLTAGE CASE NO. 580 50.@ MS/7DIV OSCILLOGRAM NO. 15 MAX. EVENT FROM DISTRIBUTION q9an _ AS@OEL “LOCATION! 27 “GOLD HL.END OF LINE. FROM NENAN FER UNIT VOLTAGE mMupro B P R a s E SYSTEM KILO-~AMPERES SYSTEM KILO-ANPERES @.45 T 8.3 c eet B @.2 Pp 2.054 p ei H 4 A 9,0e A e.0 § -2.05- e -O.4 ~@.10 -8.2 -@.15 -0.3 SYSTEM MEGA-JOULES SYSTEM MEGA-JOULES @.45 B 9.10 Pp 8,05 H A 8.00 s “Oe E 8.05 ~8.19 -@.15 CASE NO. $06 50.0 MS/DIV CASE NO. 500 50.0 MS/DIV CSCILLOGRAM NO. 16 OSCILLOGRAM NO. 17 MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION ARRESTER OPERATION TCR ARRESTER OPERATION EVALUATION FOR TYPE 2! @.8@ COUL. EVALUATION FOR TYPE 2@t @.2@ COUL. EVALUATION FOR TYPE 3% @.03 ASQGEL LOCATION: 12 HEALY 12 KU PER UNIT VOLTAGE EVALUATION FOR TYPE 3% 9.05 a2 monpirna Pb MoODIrD O TODro w AS@eCIt LOCATION: 14 », TEELAND TCR CURRENT . SYSTEM KILOAMPERES CASE NO. 508 50.8 MS/DIV OSCILLOGRAM NO. 19 MAX. EVENT FROM DISTRIBUTION maDpiriw Dd MODrIVD w Monyvxrvw Oo Aseote LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 506 52.8 SS/7DIV OSCILLOGRAM NO. 22 MAX. EVENT FROM DISTRIBUTION MoHDSrD w Mapxrv D> MoDrs oO ASSOI3 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. S00 50.0 MS/DIV OSCILLOGRAM NO. 21 MAX. EVENT FROM DISTRIBUTION a MOPrse w MaDxre Dd Marrs Oo ASCOL4 LOCATION: 8 TOT. FAULT CURR. AT G.H. 138KU ~ .S S¥BTEN KILOAMPERES 3- CASE NO. 508 OSCILLOGRAM NO. 23 MAX. EVENT FROM DISTRIBUTION SO.@ MS/DIV MonDIrID YD MODro w MmMwurpro 2 1.S 1.0 @.5 2.0 ~@.5 1.8 “1.5 1.5 1.0 @.S e.2 -@.5 -1.0 “1.5 1.5 1.0 AS8@IS LOCATION: 8& FAULT CUR. CONTR. FROM NENANA SYSTEM KILOAMPERES CASE NO. S6@ OSCILLOGRAN NO. 24 MAX. EVENT FROM DISTRIBUTION 50. MS/DIV MADrID w MHDIrD D MonDrIs oO ASOCLE LOCATION: 8 FAULT CUR. CONTR, FROM GOLD HL SYSTEM KILOAMPERES CASE NO. 500 SO.@ MS/DIV QSCILLOGRAM NO, 2S MAX. EVENT FROM DISTRIBUTION Pe. Macheon-y, Tee land 13a (1) = 23 i] (7 | j BoE aH 7 F i i i ASOLPL CASE NO. S02 30h GRERATIONY. FAULT INITIATION TOA CANTUELL WATANA LINE OUT OF SERVICE CONTINGENCIES water serene STRONG FT. hacKENztE AREA REPRESENTATION FROM: HEALY LSBKY, PH-A GROUND 72 MU LoaD FLOU FROM ANCHORAGE TO FAIRBANKS Fe. Warren ht Nenana Gold Wilh elas —_— 13a hv @) a TRIG 133 V7 ISR Y Cy ase av (ic yf Q” a iy | | | h Wirt ahaa | . Watana 130 kV aun OPERATING BREAKER I,J _ OPEN BREAKERS F,K,L . 229 MPORARY . LINE -NEU AL VOLTAGE: = CREST PER: UNIT. QUANTITIES ~~ SaeDENOTES NOW Ones INUSOTD t ‘Loca ton - “¢ . OL. : “1.00 AF Bre 1.00 0.98 0.98 es. - 1.01 - 1.028 1.01 6 1.04 1,01 1.014 26 1.02 1.01 1.00 8° 1.@0- 1.01 1.04 CASE? S01 “TABLE 2 asoite . TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES Ck*DENOTES NON-SINUSOIDAL ) POST-FAULT VOLTAGE, BREAKERS I,J OPEN LOCATION a 8 c 1 1.03 1.03 1.03 3 1.03 1.04 1.04 8S. 1,06 x 1.05 & 1.03 ¥ 6 8.01 8.01 @.81 26 1.05 1.06 1.07 & 1.02. 1.03 1.03 MODXrV w MOrxty D> MwHPros oO AS > ASOIUL LOCATION: 2S HEALY END OF LINE FROM CANTUEL “PER UNIT VOLTAGE 1.04 @.5 ~1,28 si CASE NO. SOL 5.0 MSvDIYV OSCILLOGRAN NO. 1 STEADY STATE POST-FAULT VOLTAG TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF MAX 8 B c MU-SEC PHASE OP. Ka, 79.2 79.2 79.2 0.08 20.177 122.4. 182.4 12814 O18 ¢ 18 @.169 72.0 72.0 72.0 0.08 ¢ 28 0.173 90:2 90.0 90:¢@ 08 6 is orlBy 90:0 @. 90. : ; 75.6 75.6 75.6 2.07 c 18 Q.181 ais NO. POINTS = 58 111-6 4111.6 11.6 @.02 ¢ 1 8.175 84 T T | 1 50.4 50.4 50.4 @.07— 2 0.162 po ee ee ce 2 a he g 1. 61.2 ls . . a5 4 57.6 5716 57.6 0.07 ¢ 2 @.167 Wi “| 4 TT 118:8 118:8 118:8 oe? C¢ 17 0.169 ic 39:6 38:6 39:6 0.07 ¢ 2 0.145 = gat | 97.2 97.2 97.e 490.e7 OE 18 @.182 & 6. 86.4 BE .4 86.4 8.07 6 18 9 @.185 a5 18.0 18.2 18:@ 9.07 ¢ 20 0.116 & 82.8 82:8 82.8 @.e7 C 2 9.179 i a.a H+ TH }-— 4 64.8 64.8 64.8 06.07 C 17 9.173 Gi 28.8 23.8 28:8 0.07 ¢ 13 0.1@8 126.0 186.8 126.0 0.07 & 1B 9.167 wae { 4 3:6 3:6 36 6.07 ¢ 12 @.182 HI a. t 212 Te 72 e102 48 8.177 ‘a e800 4518 = 4818 Blog, GsCtstee = ot 4 . 46. « . . x= 8. .7 a = 32.4 32.4 32:4 0.06 ¢ 2 0.114 c Ph S: Gf St te a] 8 he Ll | : ; : : 4 ia Lt 21:6 24.6 21.6 0.06 ¢ 28 0.106 0.05 ry o : a 98 eee 21-8 ee 6s fe. genes 8.0. Bi 12 18 2830 SQ 7a82 38 ©6093-9899 98.93 54.0 54.0 54.9 0.06 c 22 «6.142 PERCENTAGE 102-8 100:8 10@:8 0.05 ¢ 1 @.116 Sd (A44 444 9108 18 0.093 ; " : 0.05 1 @.1¢6 115.2 115-2 115:2 105 ¢ 1 110 ene mosses itera ifa'e «192'8 oles GE: 28k8 x i : 2.8 ¢ 2 0.049 is1.2 151.2 151.2 a1 ¢ 17 0.048 TRANQUEEE RRESTER 140.4 140-4 140.4 a1 12 9.047 : ; 154. 01 @.047 162.0 168.0 162.0 01 ¢ 2 9.046 RATING = 10820 KV 165.6 165.6 165.6 o:01 6 3 9.043 158.4 158.4 15814 @.01 ¢ 12 9.949 144.6 144.9 144.0 O01 3 0.044 fags | Gace res co 6S io a ey LOCATION 25, ANALYSIS FOR TRANQUELL ARRESTER 129.6 129.6 129:6 ef ¢ 17 @.e31 ea tsela toed lee 18 9.043 CLOSING SPAN = 0. DEGREES ; fh ; (00S 18 0.02 136.8 198-8 136:8 9.00 ¢ 1? 6.025 ete wath RS02DK 180.0 180.0 189.0 0.08 ¢ 18 0.027 2.SQ0E 91 1.800F 02 9.G90E-21 0.000E-G1 5.Q00E Of 1.@08E @O J3.509E €2 3.000F 2 3.600E OG 1.990E 09 1.08@E @2 1.380F Ge 1.@00E 62 G6.394E O2 6.00GE @1 &.338£ 08 2.808E-O1 1.3008 C1 O.0900£-01 2, e00E~-O1 muop>ru w mMapxrv &-: mMopre o aseive LOCATION! 3 “TEELAND 138. KY PER UNIT UOLTAGE CASE NO. 501 50.8 MS/DIV OSCILLOGRAM NO. 2 Max, EVENT FROM DISTRIBUTION mMoprw w MmMaDroD D mMyoprv 2 ASO1U3 LOCATION: 25 HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE CASE NO. 5SOt OSCILLOGRAM NO. 2 MAX. EVENT FROM DISTRIBUTION 58.0 NSvDIV MYSPrD w Mapirv D> Maprwe Oo ASO@14 LOCATION: 6 HEALY 138 Kv PER UNIT VOLTAGE” 1.5 1.0 @.5 2.0 -0.5 -1.0 “1.5 1.5 1.8 6.5 6.8 0.5 1.0 -1.5 1.5 1.8 ®.5 8.8 8.5 1.8 CASE NO. SOL 50.0 MS/DIV OSCILLOGRAM NO. 4 MAX, EVENT FROM DISTRIBUTION -ASOLUS AS@IVE aoe LocaTroN: 26 —~ : LOCATION: 8 “ - HEALY END OF LINE FROM. NENANA GOLD HILL 138 KU Co. . PER UNIT VOLTAGE = * PER UNIT VOLTAGE MaADrVv Dd MoODryu w Moprow w Morprys oOo Morro oOo CASE NO. SOL 50.8 MS/DIV . CASE NO. 50t BO.@ MS7DIV OSCILLOGRAN NO. S OSCILLOGRAM NO. & MAX... EVENT FROM DISTRIBUTION MAX, EVENT FROM DISTRIBUTION a5 @1U7 A501U8 ASo1U9 - LocATION? 41 7 : LOCATION: 12 LOCATION? 13 _ 9) JEELAND 132.8°KU | E HEALY = 12.0 KU GOLD HILL 13.8 KU PER UNIT VOLTAGE , PER UNIT VOLTAGE PER UNIT VOLTAGE Mapirow i mMYHvIv ' . : = 1. CASE NO. 501 58.0 MS7DIU CASE NO. 5Q1 58.0 MS7DIV CASE NO. SOL $0.8 MS/DIV . GSCILLOGRAN NO. 7 OSCILLOGRAM NO. 8 OSCILLOGRAM NO. 9 "ak. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION - co aseses co BOCATION® | 25 "HEALY END OF LINE FROM CANTUEL " - (PERCUNET VOLTAGE - mMaDEV oO |: _ SYSTEM KILO-AMPERES Q.37 @.2 eat 8.0 ~O.1-4 MODIrD “0,24 -@.3- SYSTEM MEGA-JOULES @.18 @.10 0.05 0:00 § -0.054 “0.404 ~0,15t PxrVo CASE NO. SOL $0.0 MS/DIV CSCILLOGRAM NO. 12 Maa. EVENT FROM DISTRIBUTION ARRESTER OPERATION EVALUATION FOR TYPE @: @.0@ COUL. EVALUATION FOR TYPE 3: @.04 MnAPIV DvD MoD>ru D> Marxrv Dd AS@1Ea LOCATIONS 12 -HEALY 12.0 KU PER UNIT VOLTAGE SYSTEM KILO-AMPERES 1.5 1.0 @.5 0.0 ~0.5 71.2 71.5 SYSTEM MEGA-JOULES @.15 0.10 @.0S 8.00 —6.05 0.18 ~@.15 CASE NO. 501 $0.6 MS/DIV OSCILLOGRAM NO. 11 MAX. EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: .@0 COUL. EVALUATION FOR TYPE 3: @.81 ART Merry w Munrwe. Bo mMmoprse oO c= CASE NO. 501 OSCILLOGRAM NO. 12 Max. EVENT FROM DISTRIBUTION ASe1IL LOCATFON: | 11. _.. TEELAND TCR’ CURRENT: SYSTEM KILOANPERES 50.8 MS/DIV MoHDIVD & MHDIrV D MHDED O&O asoil2 LOCATION: 12 | HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 501 58.8 MS/DIV OSCILLOGRAM NO. 13 MAX. EVENT FROM DISTRIBUTION MADLVU w MHDIVY D MaADEV O aSe113 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. SOL SO.@ MS/DIV. OSCILLOGRAM NO. 14 MAX, EVENT FROM DISTRIBUTION - #. “Pp ft 6 $ £ Manarvprs w AMNDrV oO CASE NO. SOL OSCILLOGRAN NO. 15 TOTAL FRULT CURRENT _.. #B@n14 LOCATION? 6° HEALY 138. KU SYSTEM KILOAMPERES ~ 50.8 MSvDIV MoOrvprIw w Moprv vo MoDra o - aSOLIS LOCATION! 6 HEALY 138 KU ; SYSTEM KILOAMNPERES 3 2 1 e =% -2 -3 3 2 1 Ce @ -4 -2 -3 3 2] i @ “1 -2 ~F oASE NO. Set 58.0 NS/DIV OSCILLOGRANM NO. 16 FAULT CUR. CONTR. FROM CANTUEL Morvrv w MoODrU D MADD O €50116 LOCATION: 6 ~~ HEALY 138 KU SYSTEM KILOAMPERES 1.5 1.8 a.5 8.0 0.5 “1.8 ~1.5 1.5 1.0 8.5 2.0 -8.S “1.8 “1.5 CASE NO. Set 50.0 MS-DIU OSCILLOGRAM NO. 17 FAULT CUR. CONTR.. FROM NENANA’ 5293 Pre Macbontig, Tee land waa. Usa i Q 1 4 | i esright Nenana Gol? Mitt Fu. Warren igh 138 bi IY Cg 438 BV (10 4 feces (| or | Soe aoa e aH HG if ty . Gos nny . Bi At U ( ie} oe Q Gold Hild = Mealy, Nee eee -Tevland so remeremeieceas Nace (NBs ok : ae 13.6 1V T TT < F BP L OPERATING BREAKER 1,J CASE NO Dee 502... : FROME HEALY. 238KU,PH-A OSERATIO 1 FAULT INTTEATION. Tor GROUND 7 DESCRIPTION GF SYSTEM Teagreeet.wstawa LINE OUT OF SERUICE / [8 ty LORD FLOW FROM ANCHORAGE, TO FAIRBANKS PRESENTAT 10N WEAK PT. MACKENZTE AREA. | wee rene LINE NEUY ‘RAL, UCLTPSt CREST: PER UNIT QUANTITIES “DENOTES “NON~SINUSOLDAL D CoHoone ct +98. . O69 1.01 1.00.° 0.9 ®.99 1:00... @.9 @.99 1.08 9.3: ®.98 * @.99° 8.9) 2.98 %.99 @.9 1.08 CASE! 502 TABLE @ asoete TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES _ CHSDENOTES NON-SINUSOTDAL ) POST-FAULT VOLTAGE, BREAKERS I,J OPEN LOCATION A B c 4 4,08. 1.04 1.02 3 1104 4.04% © 1,01 2. bev k 1.03% Lies 6 1.04 - 1.04. 41.85 8g 4 2.04 4.04 41.05 . ery! 1.04 1.03 ae = 533 Mapxrv ip: “4.5 Moro wo MaPpxrv Oo Ase2UL : LOCATION? 25 +, HEALY END“ OF -LINE FROM: CANTUEL FER UNIT VOLTAGE - 1.04 o.5+ 0.0: -0.6 -1.0 1.54 1.5 1.04 6.5 e.3 ~O.5 “1.04 “4.5 4.5 1.0 @.5 @.8 + -8.$ 1.04 -1.5 CASE NO. 582 5.0 MS/DIV CSCILLOGRAMN NO. 1 STEADY STATE POST FAULT VOLTAG BREAKERS 1,J OPEN FAR TABLE OF ARRESTER ENERGIES sig ioe ANG 3.6 54,9 43.2 79.8 111.6 96.0 97.2 108.@ 122.4 93.6 118.8 122,38 AANOKDHNWVVOVAUSUVANANADGOIVsLH+OM~; VOVUUBALAANHDOHSVOWONWSWMAADAAH WUHNMWIANANATHON SVE VU GeO aADN De eS he eh Rt hk Pe Re he B 3.6 54.0 43.28 ~ ~ hwy ro eee ee - VSD VK ONG IS-ONSu © OQSONVVITISA§NVSBUND VS HAADUVAHUNDVAOGHOOMSLOSMOHDW wy _ n 68.4 21.6 a a wo 16) 18) 16 cee WUROrRAHWDSOVAUOD VOUVUAAALOMHAHSS® PARA RA Re ee VGUOTHOINIAVAUY eee erecoe ree LE FOR PHASE c 58.4 46.8 21.6 14.4 32.4 10.8 28.8 36.0 25.2 18. 172.8 144.8 162.8 180.0 165.6 154.8 147.6 129.6 140.4 158.4 176.4 136.8 151.2 169.2 126.0 133.2 ENERGY NO.OF MU-SEC PHASE OP. O.i1 c 18 @.19 c 18 8.19 c 20 8.09 C 18 9.09 c 18 Q.99 c 2 9.08 Cc 1 8.08 c 18 2.08 Cc 45 9.08 c 18 0.88 c 2 2.88 ¢ 18 2.08 c 18 2.08 c 18 8.08 c 12 8.07 c 18 8.97 Cc 18 Q.07 c 18 9.07 c 18 8.97 Cc 2 2.07 Cc 18 8.87 Cc 18 @.07 c 18 8.87 c 18 @.207 c 18 8.06 c 18 @.86 c 2 8.05 c 2 0.5 Cc S 2.85 c 18 8.05 c 18 8.a5 c 18 2.05 c i8 @,04 c 13 @.03 c ae 0.03 c 18 2.03 c 18 2.03 c 18 %.03 c 18 0.93 c 3 8.03 c 2 @.03 c 18 8.02 c 18 9.92 c 18 8.82 c 18 8.02 c @ @.02 c 18 @.81 c 18 @.01 ct 18 Q.01 ¢ 1S MAX KA. @.179 B.174 0.144 @.187 9.200 @,199 @.211 @.212 @.216 2.804 @.207 2.205 @.187 @.194 @.178 @.182 8.199 6.194 @.182 @.184 @.168 8.202 @.147 @.154 DOSOODOSS DOM ee pe ee TOM meee HOWVHVRIOT PROBABILITY DISTRIBUTION 2 a NO. POINTS = 5@ Ss wn 8.2 4 ll T —- tt 4 4 + + + ARRESTER ENERGY (MW -SEC) a Fett | | 0.0.2 Get Br 82 CASE NO. S02 mis Nena T {@ 2638 5B 7@Be 3d PERCENTAGE TRANGUELL ARRESTER RATING = 188.0 KY 4. 39° «33.9 39.39 LOCATION 25, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 9.8 ASe2DL SETUP DATA 2.590CE G1 1.800E a2 1.QQ0E 80 3,.5@0E 03 1.@2@E @2 1.380E G2 B.338E 02 2,900E-S1 9.880E-91 3.600E 02 1,Q008E 62 1.300E 01 DEGREES 9. @80E-O1 3.@90E 08 6.394E 92 9. Q00E-O1 S.O08E O1 1,0026 23 G.G80E Oi @.OG0E-81 c MODIrD D- MoDro w Moroxrv 3 aseave LOCATION? 3 - TEELAND 138 KU PER UNIT VOLTAGE CASE NO. 582 OSCILLOGRAM NO. @ MAX. EVENT FROM DISTRIBUTION 50.8 MS/DIV MYpro Dd Morpirvo ww mMopxryv Oo ASe2U3 LOCATION: 25 HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE CASE NO. $02 OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION 5@.¢@ MS/DIV Manpxrv D> MonnDiris w MOHDID OO ASC2U4 LOCATION? 6 HEALY 138 KU PER UNIT VOLTAGE 1.5 1.0 8.5 8.2 -®.5 “1.9 71.5 1.5 1.8 8.5 8.0 -8.5 71.8 -1.5 1.5 1.8 8.5 e.8 8.5 “1.8 CASE NO. 502 58.8 NS/DIV OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION Re1 MnorIv w mMADrU Oo AS@zUS LOCATION? 26 HEALY END OF LINE FROM NENANA "PER UNIT VOLTAGE “CASE NO. S02 OSCILLOGRAM NO. 5 Mx. EVENT FROM DISTRIBUTION 50.0 MS/DIV MoODID w MaDro D> MuUDrs Oo ASO2VE LOCATION? 8 GOLD HILL 138 KU PER UNIT VOLTAGE CASE NO. S@2 OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION 50.0 MS/DIV 5ea1 ASOZU7 : AS@2UB ASe2U9 " LOCATION: 11 a LOCATION: 12 LOCATION: 13 TEELAND 13.8-KU : HEALY 12.8 KY GOLD HILL 13.8 KU PER UNIT VOLTAGE PER UNIT VOLTAGE PER UNIT VOLTAGE tebe A-B 1.0- A-B p &5 P H H 4 @.0 X S -@.5 $ E E “1.0 “1.8 1.5 B~o 1+ B-C esa AA HA NK P P Fe MMT 8 4 2 6 TMV 8 EET ed E -1.04 “1.5 c-A P H a s E -3 5 CASE NO. 502 50.0 MS/DIV CASE NO. Sea 50.@ mSvDIV CASE NO. S02 50.0 MS/DIV OSCILLOGRAM NO. 7 OSCILLOGRAM NO. & OSCILLOGRAM NO. 9 aX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION qR2 AS@2ZEL LOCATION: 25 "HEALY “END OF LINE -FROM CANTWEL MoHnprv Oo PER ‘UNIT VOLTAGE B P # a $ E SYSTEM KILO-AMPERES B P H a $s — SYSTEM MEGA~JOULES B P H A $s E CASE NO. S02 S@.@ MS/DIV CSCILLOGRAM NO. 18 Maa. EVENT FROM DISTRIBUTION A@RRESTER GPERATION EVALUATION FOR TYPE 2t @.@@ COUL. EVALUATION FOR TYPE 3+ 2.02 ASezE2 LOCATION? 12 HEALY 12.0 KV PER UNIT VOLTAGE 1.5 1.0 @.5 a.2 ~8.5 1.8 “1.5 6.45 0.10 @.e5 9.80 -@.@S 8.10 ~-@.15 SYSTEM KILO-AMPERES SYSTEM MEGA-JOULES CASE NO. See 50.0 MSvDIU OSCILLOGRAM NO. 41 MAX. EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: @,0@ COUL. EVALUATION FOR TYPE 3t 8.27 581 Morrow w MODID Y Morrv oo PSOBR4 “LOCATION? 41 TEELAND TCR CURRENT SYSTEM KILOAMPERES CHSE NO. $02 OSCILLGGRAM NO. 12 Max. EVENT FROM DISTRIBUTION 50.8 MS/DIV MnrPxrs w MonoxrvD Dd Morrv oO ASS2I2 LOCATION: 12 HEALY ‘ TCR CURRENT SYSTEM KILOAMPERES it CASE NO. S02 50.@ NS/DIV OSCILLOGRAM NO. 13 Max, EVENT FROM DISTRIBUTION MHDIrIV © Moprs Dd MOYPrIV oO Reis 1S HOCaylot: 13 GOLD: HILL TOR CURRENT SYSTEM “ITLORMPERES “HILAL afl il i ll IN CASE NO. S02 S0.® MS/DIV QOSCILLOGRAM NO. 14 MAX. EVENT FROM DISTRIBUTION 9 L MOnDID w Moprv oO} mMaorT p aseat4 LOCATION: 6 HEALY. 138 KU _ SYSTEM KILOAMPERES CASE NO. 502 '5@.@ MS/DIU OSCILLOGRAN NO. 15 Max, EVENT FROM: DISTRIBUTION TOT. FAULT CURRENT MOoDrv @ mMOHDIB D MODIU oO 1 Ase215 LOCATION: 6 HEALY 138 KV SYSTEM KILOAMPERES CASE NO. 5¢2 50.8 MS/DIV OSCILLOGRAN NO. 16 MAX. EVENT FROM DISTRIBUTION FAULT CURR. CONT. FROM CANTUEL MODrvD w MODIrDV D Maris Oo AS@216 LOCATION: 6 HEALY 138 KU SYSTEM KILOAMPERES 1.5 1.8 e.5 9.8 ~®.S 71,8 1.5 1.5 1.8 e.5 8.8 -8.5 -1.8 “1.5 1.8 @.S 0.8 2.5 “1.6 “1.5 CASE NO. Se2 Se.0 MS/DIV OSCILLOGRAM NO. 17 MAX. EVENT FROM DISTRIBUTION FAULT CURR. CONT. FROM NENANA 601 hr. Machonsye Gol? Wilk Fu. Sarewrig ht p. Newly Nenant baugta. “Cuntwetl 134 kV ie kv, 133 KY 138 *O) 7 138 " 138 i @) Cai} Co TAH GH i} i A280] HE nA [ ee fl NN poe i Gold Mi13 ween 13.6 VY n) ak On ~\ ns er ere Se Oo ee ae ie hv ~] «@ Ce] —} os — > ASESAL OPERATING BREAKER I,J OPEN BREAKERS K,L 2 f CASE NG. 583° 7 FROM? HEALY 238KU,PH-A ‘ 7 OPERATION! FAULT INITIATION | TOt ; GROUND : | DESCRIPTION OF SYSTEM [x MY LOAD FLOW FROM ANCHORAGE TO FAIRBANKS Tons a CONTINGENCIES WEAK PT. NACKERZYE "AREA REPRESENTATION R27 TEMPORARY LINE-NEUTRAL 0 CREST PER UNIT QUANTITIES. ¥SBENOTES -NON-SINUSOIDAL). eterna ee BE 2999990 SVAVSS * CASE: 503 TABLE 2 —-AS@3T2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES CK*DENOTES NON-SINUSOIDAL) FOST-FAULT VOLTAGES, BREAKERS I&J OPEN LOCATION A B c 1 1.03 1.83 1.02 3. 1.84 1.03 3.03 as 4:07 1.06 4.85 6 @.e2 x 0.03% =. 84 26 1.04 1.05 1.07 8 _ f.e8: 1.03 1.03 an? TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF max a B c mU-SEC PHASE OP. KA, 21.6 - 21.6 21.6 012 ¢ 18 9.200 14.4 14.4 14.4 6.11 c 28 @.2e?7 as.2 25.2 a.2 6.41 «CC 2 .199 ce ae 18.0 13.8 18.0 0.10 c 26 80.200 a8 NO. POINTS = 58 169.2 169:2 169.2 18 ¢ 2 0.246 : = 180.8 180.0 180.0 0.18 Cc a @.243 165-6 165.6 165.6 @.10 ¢ 18 © 0.235 - 158.4 158.4 158.4 @.10 ¢ 18 9.225 i @.5 + 4 8.8 28.8 28:8 9.10 «¢ 20 0.184 a 32.4 32.4 32:4 0.10 G 18 0.185 x 136.8 136.8 136.8 Q.198 c 18 @.2a15 = a.4 4 447.6 147.6 147.6 @.10 ¢ B 9.216 =? = 4 172.8 172.8 172-8 @.10 ¢ 18 0.244 25 162.0 162.0 162.8 0.09 ¢ 17 «0.234 & 149.4 140.4 140.4 0,09 2 6.215 Wi a.3 + 1 jj} 154.8 154.8 154.8 0.09 ¢ 18.222 a 39.6 39.6 39.6 0.09 ¢ 18 0.174 151.2 151.2 «9151.2 «8.89 18 0.229 5 a2 + | | 72 72 7200 8.e9 st 10 @.206 Ee 8. 144.0 144.9 144.0 09 18 0.217 Do 19.8 19.8 10.8 09 ¢ 20 8.201 & 133:@ 133.2 133.2 @.09 ¢ 18 0.228 © O14 ee i ie es — +——+ 93.6 93.6 93.6 6.08 ¢ 18 9.199 © 58. 50.4 50.4 9.08 ¢ 18 0.185 feo Sete «= S88 los G3 BS hae 9.0 es a . . 36. . . . 2. 23.2 43.2 43.2 2.08 ¢ > 0.176 8.8L B.1 C2 1@ 2838 S@ 768 98 93 99.9 95.99 46.8 45.8 46.8 0.08 ¢ 2@ 8.175 PERCENTAGE 57.6 57.6 57.6 0.08 C 18 8.188 Ho os SE Se Fg te . : , ¢ 18 0.196 68.4 68.4 68.4 0.07 c 18 @.195 ose ees ei i: oH ER bog gas . . . . 185 79.2 79:2 79:2 0.06 € 16 @:199 TROHGUELE GRRESTER Bh be BS fe fi Me 97. : : : 17 0.200 P 99:0 98:0 90.0 0:06 C 18 0:190 RATING 5208-0 —tV 64.8 64.8 64.8 0.06 ¢ 2@ 8.187 72.8 72.0 72.0 0.05 ¢ 18 0.184 118.8 118.8 118.8 02 18 9.038 ; id 126. Qe 8 ¢ 18 3.040 teed teard feala ler 2-248 LOCATION 25, ANALYSIS FOR TRANQUELL ARRESTER 111. 1. 111.6 O.01 ¢ 5S @.035 - : igo'g bare jae bier 3 Stee CLOSING SPAN @.0 DEGREES a i : ‘ 0.03 {22:4 1282.4 i22:4 0.0 G 18 0,934 SETUP “DATE te > (15.2 115.8 115.2 0.00 ¢ 18 6.032 B.SOCE O1 1.8@0F 02 @.CQCE-91 @.000E-01 5.QQ0E Ot 1.@C30E 00 J3.SOCE 93 F.Q0CE C2 3.000E 09 1.0QVE 29 1.@80E 82 1.980E 02 1.0@CE @2 6.394E 02 6.O02E OL R.SGCE 00 1.0Q0E-O1 1.308E 01 0.000E-01 9. 080E-O1 C7 MopxrDv w mwM DID »D MoOrvxrv Oo ASeQUL LOCATION? 3 TEELAND 198 KV PER UNIT VOLTAGE 1.54 CASE NO. 503 OSCILLOGRAM NO. 1 MAX. EVENT FROM DISTRIBUTION $@.8 MS/DIV mMonpxru Dd MnrDrD w mMoprv oo HEALY END OF LINE FROM CANTYEL CASE NO, 583 OSCILLOGRAN NO. 2 EVENT FROM DISTRIBUTION MAX, ASO3V2 LOCATION: 2S PER UNIT VOLTAGE 50.6 MS-DIV MnDriVv w# Moprv D> MuDrtv oO ASO3U3 LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE 1.5 1.0 eS 8.8 ~@.5 “1.0 “1.5 ~1.5> CASE NO. 503 OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION 50.8 MS/DIV. R22 MODrD Mapore > MOaPDID 2 Aaso3u4 _ -ROGATION: 26 HEALY END OF LINE FROM NENANA - PER. UNIT VOLTAGE CASE NO. S03 56.0 MS/DIV OSCILLOGRAM NO. 4 Mex, EVENT FROM DISTRIBUTION MoHpvrvp w Monpxrv MHYPiIVs Oo ASOIUS LOCATION: 8 GOLD HILL 138 KV PER UNIT VOLTAGE CASE NO. 503 50.8 MS/DIV OSCILLOGRAM NO. 5 MAX. EVENT FROM DISTRIBUTION ROB ASOIUE ASO3U7 ASe3UB LOCATION? 14 LOCATION: 12 LOCATION? 13 ~ TEELAND 13.8 KY HEALY 12.8 KU GOLD HILL 13.8 KU FER UNIT VOLTAGE PER UNIT VOLTAGE PER UNIT VOLTAGE a.5 Pp P is ae a HAW F A : ATTA a ; & E -t.04 i -1.5+ 5S CHsE NO, 503 50.0 MS-DIV CASE NO. 503 $0.06 MS/DIV CASE NO. 503 $0.0 MS-DIV OSCILLOGRAM NO. 6 OSCILLOGRAM NO, 7 OSCILLOGRAN NO. 8 MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION R25 aaxsT OK, Sed MADIrU mMopoxrvo MODIrU Oo e.3 @.2- OL a.0 “0.1 A5O3E1 LOCATION: 2S HEALY END.OF LINE FROM CANTUEL PER UNIT VOLTAGE “0.24 -®,3- @.15 8.190 @.95 @.00 70.95. ~0.1e 0.154 B Pp H a Ss E SYSTEM KILO-AMPERES B Pp H a 5 E SYSTEM MEGA-JOULES B P # a $ E CASE NO. S03 50.8 MS/DIV OSUTLLOGRAM NO. Max. EVENT FROM DISTRIBUTION APRESTER OPERATION EVALUATION FOR TYPE 2t @.@@ COUL. EVALUATION FOR TYPE 33 8.06 AS@3E2 LOCATION: 12 HEALY 12.0 KV PER UNIT VOLTAGE SYSTEM KILO-ANPERES 1.5 1.8 @.S @.0 8.5 “1.0 “1.5 SYSTEM MEGA-JOULES. @.15 0.18 8.05 9.00 8.05 -0.10 9.15 CASE NO. 563 5O.@ MS/DIV OSCILLOGRAN NO. 10 MAX. EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: 9.90 COUL. EVALUATION FOR TYPE 3: @.2@1 643 MnHpxrs >. Moors w mMADITV Oo ASO3I1 -LOCATIONS 114 TEELAND TCR. CURRENT SYSTEM KILOAMPERES CASE NO. 503 58.0 MSvDIV OSCILLOGRAM NO. if MAX. EVENT FROM DISTRIBUTION MoaDrow w MODID Dd MoODrv Oo A5e3I2 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 583 50.8 NS/DIV OSCILLOGRAN NO. 12 MAX. EVENT FROM DISTRIBUTION Monrvrv ww MoDrv D> MOADrB oOo AS@3I3 LOCATION? 13 GOLD HILL TCR CURRENT © SYSTEM KILOANPERES CASE NO. 503 58.0 MS7DIV OSCILLOGRAM NO. 13 MAX. EVENT FROM DISTRIBUTION 649 mnpxrvy w MODLV 'D:— MODPIrTG oO 3 " CASE NO. 503 QSCILLOGRAM NO, 14 Max. EVENT FROM DISTRIBUTION » ASOII4 - LOCATION: 6 - “TOTAL FAULT CURRENT a a SYSTEM KILOAMPERES 50.0 NS/DIV MoDdDiIVv we MonDrv D MoODIVDV 92 1.5 1.0 e.5 2.0 -@.5 ASO3IS LOCATION: 6 FAULT CUR. CONTR. FROM NENANA SYSTEM KILOAMPERES 1.04 “1.5 1.5 1.0 CASE NO. 503 50.6 MS/DIV OSCILLOGRAM NO. 15 MAX. EVENT FROM DISTRIBUTION Map>riDvs w MoODIV D MoHpviw oO ASTALE LOCATION: 6° FAULT CUR. CONTR. FROM CANTUEL SYSTEM KILOAMPERES 1.5 1.0 @.S 6.6 -O.5 1.0 “1.5 1.5 1.0 @.S 8.8 8.5 “1.0 1.6 1.0 @.S 0.8 ~8.5 1.0 ~1.5 CASE NO. 503 * 50.0 MS/DIV OSCILLOGRAM NO. 16 MAX. EVENT FROM DISTRIBUTION 653 Mealy Nenana Gol? Will Fe. Worewraght = iG) 13: yo IP ae 7) © “eO 9) loa oe hoa pace BY BC — He <f | Gott etd 1 ogee aes ae HED QA Geld Hild 13.6 av a Hoaly. eave Tgodand = = ee ee [x TR OPERATING BREAKER 8B, it OPEN BREAKENS F,K,L ENG. S84.” FROM: TEELAND 196 KU,PH-& RATION! FAULT INITISTION = TO: GRGUND ‘TION OF SYSTEM CANTUECL-UATANA LINE OUT OF SERVICE 72 AU LOAD FLOU FROM ANCHORAGE TO FAIRBANKS r TEMPORARY "CREST PER UNIT QUANTITIES ~ “2 OkeDENOTES NON-SINUSOTDALS. _ LOCATION - B c. 1 1.00 1.0 3 2.93 1.80 - 83 8.99 2.99 6. e.99 1.01 8B 1.80 1.81 CASE: 504 TABLE 2 ase4Te TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X*DENOTES NON-SINUSOIDAL ) POST-FAULT VOLTAGES, BREAKERS B&M OPEN LOCATION a 8 c i 1.01 1.01 1.01 - 3 1.01 1.02 1.08 3 1.18 1.15 1.14 6 1.07 1.05 1.05 8 1.02 1.02 1.02 oat Manxryv oO | Aso4UE LOCATION! | 23 a ELAND-END OF: LINE FROM DOUG. > PER: UNIT. VOLTAGE. 1.8 9.5- 0,8- -0.5 “1.0 “1.5 CASE NO. S@4 S.®@ MS/DIV OSCILLOGRAM NO, 2 STEADY STATE VOLTAGE - BREAKERS. B & M ARE OPEN wae TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF MAX a 8 c MU-SEC PHASE OP, KA. 104.4 104.4. 104.4 02 130 (1.265 126.0 126.0 $968.9 @.62 ¢ 29 8.522 120.8 100.8 100.8 0.02 ¢ 22 1.177 fe he vee fe § 8 hae Mic6 9 4414, tit. z : 3.6 3.6 3.6 9.91 c 20 8.672 0.8 NO. POINTS = 5 172.8 172.8 172.8 @.61 ¢ a2 9.768 : T Ty 7 147.6 147.6 147.6 0.01 ¢ 18 8.878 151-2 151.2 151.2 9.01 ¢ 1? 8.876 - 158.4 158.4 158.4 @.01 c 22 0.499 0.5 f{——}—f ft =| 115.2 115.2 115.2 01 ¢ 22 0.522 B 133:2 133/2 133:2 olet ¢ 24 «9.230 a 64.8 64:2 64.8 «0.01 20 0.081 = oa 1 ss 50.4 52.4 S¢.4 0.01. 25 9.178 S 8. = 1 90.2 90.0 90. 0.04 G 12 9.633 25 72.0 72.0 72:9 0.016 22 @.611 f 82.8 82.8 82.8 @.@1 ¢ 24 «0.640 Wa.3 Palette =a 165.6 165.6 165.6 @.01 ¢ 20 ©0283 a 144.0 144.0 «144.9 OL 18 1.022 75.6 75:6 75.6 O01 ¢ 24 0.376 Tie id ae 32.4 32.4 32:4 eet 24 «8.168 H 7 ro i { 39.6 39.6 39.6 01 ¢ 1@ 0.315 9 i 19.8 10.8 10.8 0.61 ¢ 22 0.364 w 180:9 180:@ ©6180. = gots 18 @.529 & Ol - —+—}- 4+} - - ity Bi Be ER GOB Ee . : ; 36: : 1421 154.8 154.8 154.8 @.00 ¢ 12 9.317 48 Poet 79.2 79.2 79.2 6.20 ¢ 24 «0.624 rte 3 gee ee i a rs B48 -Gei 2.01 8.1 12 18 2038 58 7aBa 92 33 99.9 93.99 46.8 46:8 46.8 0.0@ ¢ 20 6.192 PERCENTAGE 129-6 129.6 129.6 2.00 ¢ 24 0.290 43-8 43-2 43.2 9.08 ¢ 20 «0.856 : ; 5 20: ¢ 8 0.296 $7.6 S?.6 57.6 8.20 c 1S @.843 CASE NOs 04 118-8 118-8 118.8 8.80 1@ 8.869 " ‘ 4 102 19 0.074 93.6 93:6 93:6 0.00 ¢ 24 9.129 . TRANGUEUEEPRRESTER 82-2 {82-2 97-2 Btg@ 8 0.044 : 76.4 76.4 @.00 ¢ 19 g.e42 86.4 86.4 26.4 0:00 GC 20 8.989 RATANG = 15:0 _ KY 7.2 7.2 2.2 0.00 ¢ 18 0.245 36.9 36.8 36.0 -0:00 ¢ a2 © @.169 122.4 122.4 128.4 -0.ea ¢ 20 9.104 igace —_489 6 —_1200 oy oe — ee ¢.e48 LOCATION 12, ANALYSIS FOR TRANGUELL ARRESTER 1908, 462-6 —_180-6 abe —6 ce _9.133 CLOSING SPAN = 6.0 DEGREES : : : ; 2 108 18.9 12.8 18.0 -0.00 ¢ 20 «9.043 5 162.0 162.0 162.9 -e.00 ¢ 24 0.199 SETUP DATA Aseans BS.2 25.2 z5.8 -@.08 ¢ Fa 0.061 1,290E 01 1.80@E @2 @.9@0E-01 8.@QCE-91 5.002E O1 1.902E 09 3.SGCE 03 3.Q00F 02 3.00CE 98 1.0008 03 1,500F 01 2.OR0E OL 4.75 B.C17E 939 6.9@0E OL B.338E 20 2.CGPE-01 1. 306E 9.809E-O1 G.00R£-O1 mypruw w muoprn pv” MAPryV © AS04u2 LOCATION? 3 . TEELAND 138 KU - PER UNIT. VOLTAGE CASE NO. S04 50.0 MS/7DIV OSCILLOGRAM NO. 2 MAK. EVENT FROM DISTRIBUTION ' Morro Dd mMmnaDro w& MoDxrV Oo ASO4U3 LOCATION: 23 TEELAND END OF LINE FROM DOUG. PER UNIT VOLTAGE CASE NO. 54 OSCILLOGRAN NO. 93 MAX, EVENT FROM DISTRIBUTION $8.0 MS/DIV MaprD Dd MODID w MHDEVD O ASO4N4 LOCATION: 6 HEALY 138 KU PER UNIT VOLTAGE CASE NO, 584 OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION 5@.e@ MSYDIN c mMoDxrov w Marry D> - MOHDILIG oO ; ase4ys “ . -LOCATIONES &-- - "GOLD HILL 138 KY "BER UNIT VOLTAGE 1.5 CASE NO. 5Q4 50.0 NS/DIV OSCILLOGRAN NO. 5 . Mer. EVENT FROM DISTRIBUTION v72 _ ASO406 ASO4U? , A5O4U8 LOCATION: 12.0. : LOCATION? 12 LOCATION! 13. ~ TEELAND 13.8 KU HEALY 12,0 KY GOLD HILL 13.8 KV PER UNIT VOLTAGE : , "PER UNIT VOLTAGE PER UNIT VOLTAGE . A-B c-A P H a s E “1.54 -: 3 ~1.5 bss CASE NO. 504 52.@ MS/DIU CASE NO. S04 50.0 NS/DIV CASE NO. 504 50.0 NS/DIY CSCILLOGRAN NO. 6 OSCTLLOGRAN NO. 7 OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION Max. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION — ee EAA Q74 MYDxrvD oO MODxrBw ©: MoOnrw Oo @.15 8.10 8.05 - 0.80 ~@.85 -0.10 -@.15-4 " ASOAEL / “LOCATIONS 12 UHEALY. “42.0 KU. | PER UNIT VOLTAGE c Pp H A $ E SYSTEM KILO-AMPERES c Pp H a s E SYSTEM MEGA~JOULES c P H 4 s E CASE NO. 504 S0.@ MS/DIV OSCILLOGKAM NO. 9 MAX. EVENT FROM DISTRIBUTION TUR ARRESTER OPERATION EVALUATION FOR TYPE 2: .@@ COUL. EVALUATION FOR TYPE 3: 9.29 8.3 a.2 B.1 a.0 “0.1 0.2 -6.3 6.15 @.10 2.05 2.80 0.05 “6.16 “015 ASO4ES LOCATION: 23 TEELAND END OF LINE FROM DOUG. PER UNIT VOLTAGE MopxrD SYSTEM KILO-AMPERES MonDrvDv w SYSTEM MEGA-JOULES MaDrys w CASE NO. 504 50.0 MS/DIU OSCILLOGRAM NO. 11 Max. EVENT FROM DISTRIBUTION ARRESTER OPERATION EVALUATION FOR TYPE 2: EVALUATION FOR TYPE 3% @.00 COUL. 0.06 AS@4E3 LOCATION: 14 TEELAND 13.8 KU PER UNIT VOLTAGE” 1.5 1.0 Q.5 8.0 -8.5 1.0 1.5 SYSTEM KILO-AMPERES 1.5 1.0 @.5 0.0 -8.5 1.8 “1.5 SYSTEM PEGA-JOULES @.1S @.18 0.85 0.88 6.05 ~0.18 -@.15 CASE NO. 504 oe @ MS/DIV OSCILLOGRAM NO. MAX. EVENT FROM se sbeanibas : TCR ARRESTER OPERATION EVALUATION FOR TYPE 2t EVALUATION FOR TYPE 3: @.@0 COUL. 0.47 QRO 7@ MoHpxrv w MODrD £ RAPIB Oo 3+ “CASE NO. 504 OSCILLOGRAM NO. 18 MAX. EVENT FROM DISTRIBUTION - ASC4T1 LOCATIONt 14 a . TEELAND TCR CURRENT. . SYSTEM KILOAMPERES Monvis ws MODI D Marrw oOo 50.0 MS/DIV ASOT? LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES ti CASE NO. 504 OSCILLOGRAM NO. 13 MAX. EVENT FROM DISTRIBUTION | 50.0 MS/DIV MOarpvirw ww Moarrv D> MpHrPrDs oO Ase413 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. 504 5@.8 MS/DIV OSCILLOGRAM NO. 14 MAX. EVENT FROM DISTRIBUTION — ao mMoporyvu w MopdxrvD oD. Marxrs Oo ' ASO4TS LOCATION: - 3 TEELAND -138 KU SYSTEM. KILOAMPERES “CASE NO. 504 50.@ MS/DIU OSCILLOGRAM NO. 15 Max, EVENT FROM DISTRIBUTION TOTAL FAULT CURRENT mMoprv w MoODrv D MHpxrs a5e415 LOCATION: 3 TEELAND 138 KY SYSTEM KILOAMPERES CASE NO. SO4 50.¢ MS/DIV OSCILLOGRAM NO. 16 MAX, EVENT FROM DISTRIBUTION FAULT CUR. CONTR. FROM PT. MAC Mnaprv w MHPxrvDv D MAHDry Oo 1.5 1.8 8.5 8.0 -8.5 1.8 “1.5 1.5 1.0 @.5 e.0 8.5 1.9 1.5 1.0 8.5 8.0 ~@.5 ~1.0 “1.5 ASO4IE LOCATION? 3 TEELAND 138 KU SYSTEM KILOAMPERES CASE NO. 504 S@.@ MS7DIV. OSCILLOGRAN NO. 17 MAX. EVENT FROM DISTRIBUTION FAULT CUR. CONTR. FROM DOUGLAS Contwell ass e) 24 138 iv y Dw \/ poe | al is saries Asa «V Tewland chaser: Tr. av % z ©. TCR @ ~ eh Hoaly Gord Wild sone rereeneea a lmeeace 13-0 WV meceece (13.8 WV @Q x [=] ¥ 7 T asosri a CASE NO... 805 OPERATING BREAKER B,f _ 7 FROM? TEELAND 492 KU,PH-A OPERATION: FAULT INITIATION TO: GROUND . Ss. DESCRIPTION OF SYSTEM COLD HILL-FT. VAINURIGNT LINE QUT OF SERVICE CANTUELL-UATANA LINE OUT OF SERVICE © [72 MU LOAD FLOW FRO! ANCHORAGE TO FAIRBANKS — TST ET CONTINGENCIES i eer pee pr, mackengie Ane REPRESENTATION OPEN BREAKERS | rsaas 8.99 e.99 “3 * @.99 @.98 @.98 23. - 99 9.97 ®.98 6 1,01 @.99 1.02 8 6.99 @.99 1.02 ~CASE? S65 -. TABLE 2 AS@STe TEMPORARY LINE~NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES Ck*DENOTES NON-SINUSOIDAL} POST-FAULT VOLTAGE, BREAKERS B,M OPEN LOCATION a B Cc en -) asst Ss | Mhocarron:. 23 “TEELAND. END. OF LINE FROM DOUG. PER UNIT VOLTAGE | Moors wo mMnp rd Mwoprisv oO CASE NO. SOS 5.8 NS/DIV OSCILLOGRAM NO. 1 fax, EVENT FROM DISTRIBUTION TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF max A B c MU-SEC PHASE OP. KA. 324.0 324.0 324.0 28 © 20 0.148 56.4 50.4 50.4 @.18 CC 2@ 159 36.8 36:0 36.0 0.118 C 20 9.172 aa a3glaoaaela ola 30 orto 338. : ; 114 2 345.6 345.6 345.8 @.13 c Be 9.140 re NO. POINTS = 5@ 28.8 23:8 28:8 @.13 ¢ 26 0.136 . 7 T 187.2 187-2 187-2 @.13 ¢ 20 8.116 194.4 19414 194.4 112 20 @.095 - 331.2 331.2 3314.2 118 ¢ S 01136 Oo as 1 86.4 86.4 86.4 @.11 C 20 «9.122 B 352.8 352.8 352:8 O11 ¢ 280.135 x 57.8 57.6 57.6 @.41 18 @,154 = 9. 1 72.8 72.0 72.0 11 ¢ 2@ 9-9. 166 & 6. 43.2 43.2 43.2 O41 ¢ 3 @.t4t & 295:2 295.2 295.2 @.10 ¢ 2@ 9.115 @ 64.8 64.8 64.8 19 ¢ 18 9.185 Ww a.3 |} - 360.8 360.@ 360.0 @.10 ¢ § 6.164 5 ie) fee] cee lee? |e oe t | 129:6 129:6 129.6 9.09 G¢ 20 0.106 B 0.2 Tt 74 223.0 288.0 288:0 0.09 ¢ 3 0.127 n 201.5 201.6 @01.6 0.99 C¢ 20 8.413 ms i 316.8 316-8 316.8 e198 ¢ 20 @.112 = 6.1 a 230.4 230.4 B30:4 @.e8 ¢ 20 8.147 xc 302.4 302.4 302:4 @.08 ¢ 20 0.121 79/2 79:2 75.2 0.07 ¢ 20 8.140 a2 + {fp | oae8 ee Gee Sos ‘ : gee ““@.Ot B.2 £2 18 2838 5a 7a86 30 33 99.9 99.99 144.0 144.0 144.2 2.06 c 18 @.875 PERCENTAGE 3e9:6 309.6 3¢9:6 0.06 ¢ 1S 0.992 ma ies oer Eee ee : : : : 20.117 165.6 165.6 165:6 @.95 3 0.895 GAGE 'NGs (See i fa) ee eee |e ae : i : 15 8.118 273.6 273.6 27356 0.05 ¢ 20 e.it4 TRANQUELE, ARRESTER 203-8 208.8 208.8 = 0.05 G 28 8.853 : 16. 16.0 0.04 ¢ Be 0.149 . 237.6 237.6 237.6 0.04 ¢ 13.074 RATING) =| 398-0 jk 136;8 136.8 136.8 0.03 ¢ 22 @.ia1 259.2 a59:2 259:2 0.03 ¢ 3 0.979 266.4 266.4 266.4 6.03 6 2 0.065 eee‘, Sears || Ssaes ||2729 ‘ 33 2-078 LOCATION 23, ANALYSIS FOR TRANGUELL ARRESTER 172.8 172.8 172:8 @.e2 ¢ 28 4.103 : ea | 244\8 baal Bee is 9.008 CLOSING SPAN @.0 DEGREES : i i let 20 0.119 $08.0 © 10810 «10816 -0.01 «= G(s 1B SETUP DATE pseene 182.4 182.4 128.4 -@.02 © 20 8.120 2.R00E 01 3.600E 02 @.000E-01 2.000E-~01 S.O00E 01 1,.000E 99 3.S5@GE 03 3.0@0E C2 2.000E 0A 1,000E 00 1,@80E 02 1.3R80E C2 1,6@0F 02 G.394E 02 G.OOCE O1 8.338£ 90 S.6Q@0E-@1 1.300F @1 %.000E-01 8.600E-O1 (8 se “ASOSYA . ASSU3 asesu4 ‘Location: -3° “le : LOCATION: 23 . LOCATION: 6 | TEELAND 438 KY TEELAND END OF LINE FROM DOUG. HEALY . 198 KU “S23 PER UNIT VOLTAGE : : "PER UNIT YOLTAGE PER UNIT VOLTAGE ot : 3 ; a a 2 Pp. p ? H H A A @ $ s E E 8 B B Pp P Pp H H H a a a 5 § $ E E E c c c Pp Pp P H 4 H A A A $ S$ § & E JE w152 Pa / -3 . -3 ai rea : CASE NO. 50S 50.0 NS/DIV CASE NO. 505 50.0 MS-DIV CASE NO. 505 50.0 NSzDIU GSCILLOGRAMN NO. @ OSCILLOGRAM NO. 3 / OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION - B P 4 A 5 2& Morxrvw io -0.5-4 1.0 -1.5- Neca 1.04 e.s-t O48 0.5 “148 -1.6+ a i i in a A He l - Wa WH CASE NO. 505 50.0 MS7DIV OSCILLOGRAM NO. 5S "MAX, EVENT FROM, DISTRIBUTION Jagesug : ‘ AS@SU? _ - asebua “LOCATION: - “£1 ett LOCATION: 12 . + LOCATIONS 13. =TEELAND. TRB KU a _ HEALY = 12.0 KV : . GOLD HILL 13.8 .KU- “PER-UNIT VOLTAGE |” a PER UNIT VOLTAGE PER UNIT VOLTAGE — al 1.8 vol a a on TTA Morprs -6.S5 1.8 “1.5 1.5 1.04 c-A H | asd i a Hi A a ae iii Hi i “1.0 ul MADrD 1.5~ ; 3 . i |e CASE NO. 5e5 50.9 NSvDIV CASE NO. 505 5@.@ MS/DIV CASE NO. 50S S@.0MS/DIV OSCILLOGRAMN NO. 6 : . OSCILLOGRAM NO, 7 OSCILLOGRAN NO. & Max. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION . MAX. EVENT FROM DISTRIBUTION oy maps | Morvxrv o MwuDprwo AS@SEL ‘LOCATION? 23 TEELAND END OF LINE FROM DOUG. PER UNTT VOLTAGE MADIBD O SYSTEM KILO-AMPERES @.15- 0.10 0.05 4. 0.00; -@,054- -0.10 MODIrBV OO -@.15 SYSTEM MEGA-JOULES @.15 @.10: 8.@5 @.00 ~0.05 -0.10 4 0:15 > Monors Oo CASE NO. 505 OSCILLOGRAM NO. 9 EVENT FROM DISTRIBUTION ARRESTER GPERATION 50.0 MS/DIV MWA» EVALUATION FOR TYPE 2: EVALUATION FOR TYPE 3t @.0@ COUL. 2.80 -9.2 @.45 8.18 8.85 8.00 -0,85 -8.10 -O.15 AS5@SEa LOCATION: 12 HEALY 12.0 KU PER UNIT VOLTAGE c P 4 A s E— SYSTEM KILO-AMPERES c Pp H 4 Ss E SYSTEM MEGA-JOULES c Pp H a $ E CASE NO. S85 58.0 MS/DIV OSCILLOGRAM NO. 10 MAX. EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: %.80 COUL, EVALUATION FOR TYPE 32 0.08 ASOSES LOCATIONS $14 TEELAND 13.8 KU PER UNIT VOLTAGE 1.5 1. 0.5 0.8 -8.5 ~1.0 “1.5 SYSTEM KILO-AMPERES 1.5 1.0 @.5 8.8 -8.S5 “1.8 -1.5 SYSTEM MEGA-JOULES @.15 @.10 8.85 @.98 -%.85 -@.18 -O.15 , me petit 58.0 MNS/DIV ii MAX, EVENT FROM DISTRIBUTION TCR -ARRESTER OPERATION EVALUATION FOR TYPE @: EVALUATION FOR TYPE 3? CASE NO. S05 OSCILLOGRAM NO. @.00 COUL. 0.96 D> MOHDLD w mo pte MoODdDID oO “ASOSI1 | LOCATION: 11 : . -TEELAND.TCR CURRENT Lo. SYSTEM: KILOAMPERES CASE .NO.. 585 CSCILLOGRAN NO. 12 max, EVENT FROM DISTRIBUTION SO. MSvDIV. monpxrwow wo MOorIv D Mapnpruv Oo HEALY © CASE NO. 505 asesia LOCATION: 12 TCR CURRENT SYSTEM KILOAMPERES 5@.0 MS/DIV OSCILLOGRAM NO. 13 MAR, EVENT FROM DISTRIBUTION MONDro w MOUDrBW Oo MODDED D_ ASOSIZ LOCATION: 13 GOLD HILL TCR CURRENT _ SYSTEM KILOANPERES ow MR Ww 3 2 i 2 =4 CASE NO. SOS OSCILLOGRAM NO. _ MAX. EVENT FROM DISTRIBUTION eee @ms/DIu.- - moprn w mopeds “D>” mMuorvxrb o STS ASOSI4 “ MOcaTions 35° oy TEELAND- 138 KU ~~~ _-, SYSTEM, KILOAMPERES CASE..NO. 505 OSCILLOGRAM NO. 15 50.0 NS/DIU MAX. EVENT FROM DISTRIBUTION TOTAL FAULT CURRENT ™ Mapryw w MnyDxro D MOHDIrD Oo asesis LOCATION: 3 TEELAND 138. KV SYSTEM KILOANPERES CASE NO. S85 58.0 MS/DIV OSCILLOGRAM NO. 16 MAX. EVENT FROM DISTRIBUTION FAULT CUR. CONTR. FROM-PT. MAC MODID wo MYHDrV D Morro Oo AS@SIE LOCATION: 3 TEELAND 138 KY SYSTEM KILOAMPERES 1.6 1.0 @.5 0.0 -0.5 ~1.0 “1.5 1.5 1.6 a.5 8.8 ~-8.5 1.8 -1.5 1.5 1.0 8.5 8.9: -6.5 “1.8 ~1.5 a 1? CASE NO. SeS OSCILLOGRAN NO. MAX. EVENT FROM DISTRIBUTION FAULT CUR. CONTR. FROM DOUGLAS Fe. warenr ight Cantwell} ys "D i i “=13.08 AV ~ epi. OPERATING BREAKER A OPEN BREAKERS F,K,L 1. B06 FROM! PT.MACKENZIE 2138 KU Nz: FAULT INITIATION TOL GROUND DESCRIPTION OF SYSTEM CANTUELL-UATANA LINE GUT OF SERVICE 72 MU LOAD FLOU FROM ANCHORAGE TO FAIRBANKS CONTINGENCIES i t ee ane we om -—— ASCETI L_ VOLTAGE _CREST PER UNIT QUANTITIES (ks DENOTES NON-SINUSOIDAL )° " PRE-FAULT VOLTAGE, BREAKER CLOSED. LOCATION. c -! 8.99 1.00 - BB 8.99 1.80 3 @.98 8:99 ar 0:99. 1.04 8 1.90 1.01 CASE! 506 TABLE 2 © AS@STA TEMPORARY LINE~NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (K=DENOTES NON-SINUSOIDAL POST-FAULT VOLTAGES, BREAKER @ OPEN LOCATION A B c 1. 2.04 0.04 8.01 28 1:29 * 1.05% 1.05 3 1.25% 0.98% 1.02 6 1166 % 01540 K 1105 8 1.03% 2.06% t.e4 ASeGY1 a5o6v2 , ASOEUS LOCATIONS 28 - ea - LOCATIONt 3 LOCATIONS 3 PT... MAC. END OF LINE FROM TEEL TEELAND 138 KV "HEALY 138 KU PER UNIT VOLTAGE : PER UNIT VOLTAGE PER UNIT VOLTAGE 1.5 1.5 a 18 a 1:0 Pp 8.5 F @.S H H A 0:8 A 08 8. Ss -0.5 e 72:5 -1.0 -1.0 71.5 “1.5 1.5 1.5 8 p 1:0 p 1:0 P p oS p 2s H H H A a 2.8 A 2.0 4 $. S -9, S$ -¢. E e “es § -2.5 -1.0 “1.0 “1.5 1.524 1.6 1.5 1.5 ¢ 1:0 ¢ 10 c 1:0 p 2-55 p 25 p 25 H H H 2 2.8 nh o0 nh 2 -2.5 S -@. S -@.5 E gE “es E 71.0 ~1.8 -1.0 -1.54 “1.5 ~1.5 CASE NO. 506 5.0 MS/DIV CASE NO. 506 5.0 NS/DIV CASE NO. S06 5.0 NS/DIV OSCILLOGRAM NO. 1 OSCILLOGRAM NO. 2 OSCILLOGRAM NO. 3 PAST-FAULT VOLTAGE, POST-FAULT VOLTAGE, POST-FAULT VOLTAGE, BREAKER A OPEN BREAKER A OPEN BREAKER A OPEN Maprve w MoODIrD D MoODIVD Oo ASCGYS LOCATION? 28 PT. MAC. END OF LINE FROM TEEL PER UNIT VOLTAGE wu . | 1.57 1.8- 0.5- 9.0 0.54 “1.04 “1.54 1.8- 1.04 %.54 8.0 - -0.5 | =1.0- “1.5 1.54 1.0 OS FANT Ath 9.0-4} ¢ hy I} i So TTTATTT -1.04 aii: CASE NO. 506 OSCILLOGRAM NO, 5 MAX. EVENT FROM DISTRIBUTION 50.8 MS/DIV MHDprv D MODrIv w MaDrPrv Oo ASGEUG LOCATION? 3 TEELAND 138 KV PER UNIT VOLTAGE 58.0 MS/DIV CASE NO. S66 OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION MHDroD w MALOTDW BD: MADPID O ASe6u7 Location: 6 HEALY = :138 KY. PER UNIT VOLTAGE it i i a ft: feassiastgecd eases Ss ’ e Protedapind intents a iti CASE NO. S06 50.0 NS/DIV OSCILLOGRAN NO. 7 Max. EVENT FROM DISTRIBUTION MHoryw Hs MADID D MOPIrs Oo ASSES LOCATION: 8 GOLD HILL 138 KV PER UNIT VOLTAGE 1.0 o.S 8.8- ~6.5 -1.8 “1.5 1.5 1,8 6.5 0.8 “8.5 ~1.0 “1.5 1.5 1.0 @.5 9.8 ~-@.5 ~1.0 “2.5 $8.86 MS/DIV CASE NO. 506 OSCILLGGRAM NO. 8 Max. EVENT FROM DISTRIBUTION AS@HEL / LOCATIONS 14 TEELAND 13.8 KU PER UNIT VOLTAGE EVALUATION FOR TYPE 3t 2.42 ar 3 2° RF c a i a | i i Ko OATH 4 ai Win S$ -t $ E E -2-4-. a4 SYSTEM KILO-SMPERES 2 c el c P 14 | Pp BO Oh Pen fmfomapanfemferen pen} a S agh S E E -2@ 3h SYSTEM MEGA-JOULES O.1S + C @.10+4 ae c p 8.85 Pp 9.00} ptt q S$ -9,05-4- $ E 8.05 E 0.19 “8.15 CALE NO. 586 58.0 MS/DIV SCILLOGRAM NO. 12 MAX, EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE 23 2.64 COUL. 1.5 1.9 @.5 @.8 “8.5 ~1.0 “1.5 8.15 ASOBEa LOCATION? e8 PT. MAC. END OF LINE FROM TEEL PER UNIT VOLTAGE 8.104 0.85 2.00 9.85 ~@.10 ~8.15 8.15 6.10 8.85 8.08 ~9,85 ~9.19 ~@.15 a P H a ! s E SYSTEM KILO-AMPERES A pP H a s E SYSTEM MEGA-JOULES Rr Pp ay H a s E CASE NO. 5@6 50.0 MS/DIV OSCILLOGRAM NO. 13 MAX. EVENT FROM DISTRIBUTION ARRESTER OPERATION EVALUATION FOR TYPE 2t @.88 COUL. EVALUATION FOR TYPE 31 9.80 ASOSES LOCATION: 12 HEALY = 12.0 KY PER UNIT VOLTAGE SYSTEM KILO-AMNPERES 1.6 1.9 ' 8.5 0.0 -0.5 71.0 -1.54 SYSTEM MEGA~JOULES 0.15 8.18 @.e5 8.90 -6.05 ~@.10 -@,15 * CASE NO. 508 50,0 NS/DIV OSCILLOGRAM NO. 14 MAX, EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: @.908 COUL.. EVALUATION FOR TYPE 3+ ®.96° aan MoODIrID Bw MeDiIe Oo Mad xm. _ -ABQEIL “LOCATION! 14 _ TEELAND TCR CURRENT - SYSTEM KILOAMPERES or a frerspiened “pu: “CASE NO. S06 OCILLOGRAM NO. 1S Max, EVENT FROM DISTRIBUTION - TCR ARRESTER OPERATION 50. MS/DIV MuDpDxrBp D MOoDrv w MunDrv oO ASeEr2 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. S86 $0.8 MS/DIV OSCILLOGRAM NO. 16 MAX, EVENT FROM DISTRIBUTION MoDiUv ww MOoDrv Dv MnNDrs oO AS@6I3 LOCATION? 13 .. GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. S@6 50.0 MS/DIV OSCILLOGRAN NO. 17 : MAX. EVENT FROM DISTRIBUTION MADIV Dp Mapirwo Aa @ W'S Ww. Maprw w. _ eu 9 MADIV w _ ASOBIA . LOCATION® 2 Q PT. MACKENZIE 138 KU “SYSTEM KILOAMPERES a 1 a moe Ag wn ee woe piste! “CASE NO..5S06 CSCILLOGRAM NO. 418 50,0 NS/DIU MAX. EVENT FROM DISTRIBUTION “TOTAL FAULT CURRENT MaADrw oO Myp>xry Dd ASO6IS LOCATION? 4 PT. MACKENZIE 138 KU . SYSTEM KILOAMPERES 7 1.0 0.5 e.e -8.5 mea ~1.5 1.5 1.8 e.S 9.0- ~@.5- 1.0 “1.5 4.5 1.0 a5 8.8 -0.5 -1.9 “1.5 CASE NO. S06 OSCILLOGRAM NO. 19 $8.6 MS/DIV MAX. EVENT FROM DISTRIBUTION FAULT CUR. CONTR. FROM TEELAND MHopro w MoOpDrv DvD MoDxrv oOo ASO616 LOCATION: 1 PT. MACKENZIE 138 KU SYSTEM KILOAMPERES 50.0 MS/DIU CASE NO, 506 OSCILLOGRAM NO. 20 MAX. EVENT. FROM DISTRIBUTION FAULT CUR. CONTR. FROM SOURCE an1 } ‘ |‘ WEAK FT, MACKENZIE AREA REPR RESENTATION UL-UATANA LINE QUT GF SERVICE ee Pro Mactonere Tee land Dovytas 133 re “y 5 ise ky 1) a >| HAE pe 3 15 [e} Watana 3 138 kV > Cuntwell 138 kV y t | =) y Lee C eee a” Foo NO. soer j ~ FROM? PT.MACKENZIE 138 KV ATION? FAULT _INITIATION TO. GROUND ‘DESCRIPTION OF SYSTEM NURIGHT-GOLD HILL LINE OUT OF SERVICE OAD FLGU FROM ANCHORAGE TO FAIRBANKS OPERATING BREAKER A Gold Wild Fe. Warmer ight 138 PP iss bv (is if t } | IL <ej Cold Hill ee et Bal OPEN BREAKERS F,K,L,R CASE: SOGA.”. TABLE 1°. BS@6TI “TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k*DENOTES NOM-SINUSOIDAL ) “pre- FAULT. VOLTAGES, BREAKER & CLOSED LOCATION - 1 1.00 238 1.00 3 @.99 6 1.90 g 1.00 CASE? 5Q6A TABLE 2 RBSOST2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (K*DENOTES NON~SINUSOIDAL) POST-FAULT VOLTAGES, BREAKER A OPEN LOCATION 8 B Cc Qe mMADID w mMoarrv MADIEVW O BSO6VI : LOCATION: 22 . PT. MAC. END OF LINE FROM TEEL PER UNIT VOLTAGE 1.84 1.0- CASE NC. SOBA CSCILLOGRAM NO. 1 5.@ MS/DIV POST-FAULT VOLTAGE, BREAKER A OPEN MMDro D MonDprv w& mnnprv oO 1.5 1.2 8.5 @.9 3.5 1.8 “1.5 1.5 1.0 2.5 9.8 -0.5 1.8 “1.5 1.5 1.0 @.S 2.0 -0.5 “1.8 “1.5 BSe6Va LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE CASE NO. S@EA OSCILLOGRAM NO. 2 S.@ NS/DIV POST-FAULT VOLTAGE, BREAKER @ OPEN MoaDrv w Moprs MOADIVB O 1.5 1.0 @.S 0.8 -@.5 “2.8 “1.5 1.5 1.8 6.5 2.8 ~8.S “1.0 “1.5 i.s 1.8 a5 8.8 8.5 “1.2 -1.5 poeeefoses B5e6U3 LOCATION: 6 HEALY 138 KY PER UNIT VOLTAGE CASE NO. S@6A OSCILLOGRAM NO. 3 POQST-FAULT VOLTAGE, BREAKER A OPEN 5.0 MS/DIV Q7Nn ‘TABLE OF ARRESTER ENERGIES CLOSING ANGEE FOR PHASE A 172.8 158.4 28.8 46.3 154.8 126.0 32.4 ee ne WO MOON bE NOR DOYWODNSAOM OWOWMESVUYUADAM» 14 172.8 158.4 28.8 46.8 154.8 126.9 32.4 $7.6 165.6 50.4 36.8 140.4 68.4 39.6 14.4 176.4 43.2 11.2 180.0 64.8 61.2 136.8 147.6 162,0 2.2 79.2 22.0 133.2 75.6 90.8 129.6 3.6 $4. 100.8 118.8 104.4 21.6 93.6 169.2 18.0 82.8 115.2 86.4 141.6 ¢ 172.8 158.4 28.8 46.8 154.8 126.6 32.4 57.6 165.6 $0.4 36.0 140.4 68.4 ENERGY NO.OF MU-SEC PHASE OP. @.89 c 18 9.08 c 2 8.07 c 18 8.0? Cc 20 2.07 Cc 18 Q.07 Cc 2e 2.06 c 13 8.06 c 20 2.06 c 18 9.06 c 18 8.06 Cc 18 2.06 c 20 @.05 Cc 26 8.05 Cc 20 @.0S Cc i5 2.05 c 1? 9.05 Cc 2 @.05 c 2e @.05 c 18 8.05 Cc 3 @.04 ct 20 0.04 c 8 2.04 ¢ 3 9.04 Cc 18 @.04 Cc 20 8.04 c 12 @.04 c 2e 0.04 c ee @.03 c 3 @.@3 c 18 @.03 Cc i? 2.03 c 20 2.03 c 2 8.83 c 18 2.03 c 1? 2.83 c 18 2.03 Cc 20 @.03 Cc 20 @.03 Cc 3 @.03 c 20 8.02 Cc 18 @.%2 Cc e2 2.02 c 13 2.62 Cc 8 2.02 c 20 9.02 Cc 5 2.02 c 17 2,00 Cc 5 8.08 c 2d -8,.01 Cc a7 MAX KA. 2.037 2.183 2.395 2.684 1.755 1.683 1.816 2.105 1.310 2.102 1.894 1.162 1.879 1.702 1.340 1.551 1.549 1.198 1.252 1.826 1.910 1.249 1.900 1.119 1.119 1.628 1.693 1.590 1.650 @.983 1.395 @.822 1.497 1.226 1.004 1,261 @.999 8.898 1.118 1.333 1.106 @.856 @.944 ®.939 1.042 @.879 @.579 9.295 @.563 0.442 PROBABILITY DISTRIBUTION NO. POINTS = 58 8.6 ] 5 6.5 w : = = a4 2 Wa.3 = ig & jo 0.2 {| wn we = 8.1 F t —}+— 8.8l 8.1 t2 1@ 28036 S@ 7488 98 33 499.9 99.99 PERCENTAGE CASE NO. S@6A TRANQUELL ARRESTER RATING « 15.@ KY LOCATION 11, ANALYSIS FOR TRANGUELL ARRESTER CLOSING SPAN = @.0 DEGREES SETUP DATA BS@6D1 1.100E 01 1.800£ 02 O.0QCE-G1 9,AQ0E-OL 5.Q00E O1 1.00@E @@ 3.S5Q6E 03 3,000F C2 3.Q000E 00 1.000E 30 1.500E 01 2.390F @1 4,75G£ 91 1.754E G3 6.C00E 01 8.3936E @@ $,@Q@CE-01 1.300F 01 O.@0@E-O1 .980E-01 MoOvpru w MHbDED oO wo + 7 SB neil Pestelascebi nents ttt e ened oe Mpprno b BSO6US LOCATION? 28 PT. MAC. END OF LINE FROM TEEL PER. UNIT VOLTAGE ist) ' te 1 a mo we rete} tow feeaegh tor ceses === == = —— == —z ' Cs) peer etbmere t w 5 “CASE NO. SO6A 50.8 NS/DIU OSCILLOGRAM NO. 5 MAX. EVENT FROM DISTRIBUTION MGDxrv Dd MOHPrID Ww MwHpxrvw Oo BS@6U6 LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE CASE NO. 506A $8.0 MSvDIV OSCILLOGRAM NO. 6 MAX, EVENT FROM DISTRIBUTION BSQ6U7 . | LOCATION! 6 LOCATION? 8 HEALY .1398 KY GOLD HILL 138 KU “PER UNIT UCLTAGE | | yok im Ui | he ‘nh i m xzrv ow cena 7 4 I Mm CASE NO. SO6A 58.8 NS/DIV CASE t oe OSCILLOGRAM NO. 7 Qs crLuo GRAM N0. : SS =: = a BS@6EL “LOCATION? 24. TEELAND 13.8 KU “PER UNIT SOLTAGE moODpxro Sy | -§ a 1:9 c @.8- Pp p H 0.04 0.5 S$ E ~1.8. of Sito 1.5 @.15 ¢ 19| ¢ 9:18 p a p 2-2 H pa H a 6.9 f sf a 8.80 $ 19, $-@, z o.5 E @.8S -1.0+ -8.10 “1.54 -@.45 SYSTEM MEGA-JOULES @.15 ecinanionare? c¢ O18 f - || p @.@5 sl ence se Fa peoercrendfonel a 8.08 i ir ; S$ -8.05 E -@.10 ; 8.15 CASE NO. S@6R 5@.9 MS/DIV CECTLLOGPAM NO... 12 "AX. EVENT FROM. DISTRIBUTION TOR ARRESTER OPERATION EVALUATION FOR TYPE @t @.08 COUL. EVALUATION FOR TYPE 3% 1.41 BSOGE2 LOCATION: 288 PT.MACK. END OF LINE FROM TEEL PER UNIT VOLTAGE A Pp H A $s E SYSTEM KILO-AMPERES a / . : Pp fon pon pone i s € SYSTEM MEGA~JOULES I ; Pp ttt i $ E CASE NO. S@6A 50.0 NS/DIU eSCILLOGRAM NO. 43 | MAX, EVENT FROM DISTRIBUTION ARRESTER OPERATION EVALUATION FOR TYPE 22 8.¢@@ COUL. EVALUATION FOR TYPE 3: 0.09 BSS6E3 LOCATIONS 12. HEALY 12 KY. PER UNIT VOLTAGE SYSTEM KILO-AMPERES @.6 8.4 e.2 9.6 ~O.2 9.4 ~0.6 SYSTEM MEGA~JOULES 0.15 @.10 9.85 8.92 ~@.8S 8.18 ~@.15 : 50.0 MS/DIV CASE NO. SAGA OSCILLOGRAM NO, 14 MAX. EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: - 8.08 COUL. EVALUATION FOR TYPE 3+ Q.14 a 34 Murxrds w MOHDILIVD BD MaDrUyo n ererererren, eo ma BSOBIL LOCATION: 14 TEELAND TCR CURRENT SYSTEM KTLOAMPERES CASE NO. SO6A 50.0 MS/DIV OSCILLOGRAM NO. 15 MAX. EVENT FROM DISTRIBUTION Monro w MoODxXVD D MmMorrv oa B5e6i2 LOCATION? 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. SOGR 58.0 MS/DIVU OSCILLOGRAM NO. 16 MAX, EVENT FROM DISTRIBUTION MaEDrv Dv MnarvprD w MOHDIrB Oo BS0613 LOCATION? 43 GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. SO6A S@.@ MSv-DIY OSCILLOGRAM NO. 17 MAX. EVENT FROM DISTRIBUTION mOnrrvw sy MADIV oO BSOS14 “Location: = 1 PT. MACKENZIE 133. KU SYSTEM KILOAMPERES cast NO. S@6A 50.0 MS/DIV OSCILLOGRAM NO. 18 MAX. EVENT FROM DISTRIBUTION TOTAL FAULT CURRENT MyYDrID w Marpos MoadDrIVv oO BSO615 LOCATION: 14 PT.MACKENZIE 138 KY SYSTEM KILOAMPERES 1.5 1.8 @.S 0.8 + 8.5 1.8 “1.5- = 1.5 1.0 0.5 8.0 ~@.5 “1.0 ~2.5 1.5 - 1.6 @.5 8.0 -0.5 1.04. “1.5 CASE NO. S@6A $0.0 MS/DIV OSCILLOGRAM NO. 19 MAX. EVENT FROM DISTRIBUTION FAULT CUR, CONTR. FROM TEELAND Moapxrvs D> Maprvw w Morprrv oO BSO616 LOCATION: = £ PT.MACKENZIE 138. KU SYSTEM KILOAMPERES CASE NO. 506A 50.8 NS/DIY OSCILLOGRAM NO. 20 MAX. EVENT FROM DISTRIBUTION FAULT CUR. CONTR. FROM SOURCE aa " BSOGE7 SoLOCATIONT’ f4 ¢ TEELAND 13.8 KU... “PER UNIT VOLTAGE MOHDIDV Oo : SYSTEM KILO-ANPERES MPoOrPxrs D : -_ & steers} t aq t abe 4 { wo SYSTEM MEGA-JOULES r ela Pp a a mah dobbs 8 E “CASE NO. SO6A 2.0 mSvDIV OSCILLOGRAM NO. 21 - MAX. EVENT FROM. DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE a2 4.37 COUL. EVALUATION FOR TYPE 33 4.70 & vn Doe moriuc iw MmuPpPrye o BSOG17 * Location: 11 . TEELAND. TOR CURRENT SYSTEM KTLOAMPERES CASE NO, SOEA 5.@ mS/DIy OSCTLLOGRAM NO. 22 POST-FAULT $.S.U0LTAGE mMurxrd Db MHDPID w mMaprv 9 850618 LOCATION: 12 HEALY TCR CURRENT SYSTEM KTLOAMPERES ry CASE NO. SOGA S.0 MS/D1V OSCILLGOGRAM NO. 23 POST-FALILT $.5.UOLTAGE Mealy Nenana Gol? Nitl Pep Man nn eRe "OO a 7 ©) uss “O ise ww(ie lager | a0 lag WE es a bvisesn Oo aH < . 20 cord WIS ie hy Q 13.8 AY [RSOTPS ~ _ ~ OPERATING BREAKER 0,2 OPEN BREAKERS K,F,LR SEPERATION FAULT INITIATION TO: GROUND TY *28KY43-PH 7 DESCRIPTION OF SYSTEM TUELL UATANA 138 KU LINE, HEALY GEN. & SUBSTATION XEMR OUT < PT. MACKENZIE AREA REPRESENTATION i OAD FLOW FROM ANCHORAGE TO FAIRBANKS GENCIES TEMPORARY LINE-NEUTRAL “VOLTAGE QREST-PER UNIT QUANTITIES | NOTES. eee Ae Rnnn? if si _ i 1, 2 der @.98 @.9 - 6 fa tee 2.99 1.0 a 1.80 @.98 1.0 8s @.99 8.98 1.2 14 1.01 1.00 1.9) CASE? 58? TABLE e- Ase?tT2 TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES CX=DENOTES NON-SINUSOIDAL} POST-FAULT UCLTAGE, BREAKERS @,2 OPEN LOCATION B c t 1.04 1.03 £.03 3 1.04 1.04% 1.03 6 1.08% 1.05% 1.05 27 | 2.86 1.09 1.04 8 1.86 2.08 1.04 44 » 2.84. R75 MODED wm MODzTD oO. 5.0 MS/DIV: 4 STEADY STATE VOLTAGE, - POST-FAULT! BREAKERS Q,2 OPEN TABLE OF ARRESTER ENERGIES CLOSING ANGLE FOR PHASE A e7.i 103.5 212.2 265.8 111.9 142.6 98.2 es9.7 37.1 $6.6 121.6 278.9 68.8 99.8 204.3 274.2 116.2 177.9 360.2 283.4 200.8 222.1 233.9 254.8 272.3 193.1 235.2 B 152.0 58.1 334.7 357.2 407.8 261.6 154.3 363.1 104.8 75.8 352.7 392.8 141.8 164.4 333.8 360.3 410.2 263.3 454.7 285.8 467.6 359.@ 305.1 268.5 c 259.6 110.6 215.7 206.8 19$.7 244.3 123.0 231.6 181.3 83.4 238.8 189.4 118.7 352.9 72.9 199.4 215.1 477.8 454.6 346.1 308.8 322.4 144.3 335.1 503.0 156.8 342.2 448.6 449.7 311.2 426.5 491.4 $02.0 337.2 363.7 419.4 298.2 133.4 157.3 290.2 327.1 298.0 146.9 335.4 119.6 459.¢ 65.2 283.7 189.0 114.90 134.4 308.3 278.5 ENERGY NO.OF MU-SEC PHASE OP. 9.82 A 18 0.82 A 3 8.01 a 20 e.01 a 3 @.04 a S 0.01 A 2e @.@1 A 24 6.01 a 18 9.01 a 2@ @.81 a 2e @.01 A 20 @.04 A 20 @.01 A 18 Q.01 A 18 @.01 A 3 @.O2 a 18 @.O1 A 18 @.8t A 20 Q.e1 A 18 8.01 a 18 @.01 A 13 @.e% a 18 8.01 a 13 @.01 a 2a 2.0L A 6 @.e1 A 17 8.01 A 24 9.01 aA 2 @.01 A 18 @.e1 A 20 @.01 A 1? Q.01 A 24 8.01 A 18 @.01 Aa 2 %.00 a 2e 2.08 A 22 0.00 A 17 2.0@ A 6 2.08 a 18 8.00 A 12 @.00 a 18 9.80 A 18 2.00 A 18 8.00 A 2? 8.00 A 18 0.08 A 18 8.80 a 18 2.90 a 18 @.20 A S 8.00 A 18 %.00 a 18 2.00 a 18 8.08 a 18 MAX KA, 2.218 1.946 2.158 2.027 1.913 1.678 1.627 2.179 1.609 2.217 1.657 2.116 © 1.283 2.21? 2.225 41.956 1.733 2.226 1.124 1.547 1.376 2.223 1.569 2.234 1.051 1.312 2.e31 Q.877 ®.994 2.215 9.702 1.021 1.505 @.861 @.949 2.232 4.119 @.S91 @.S63 6.776 @.726 8.674 @.793 1.605 2.610 @.768 ®.582 ©.488 9.835 @,489 @.718 @.634 @.954 PROBABILITY DISTRIBUTION NO. POINTS = a 0.6 + 8.5 + | 4 a.4 jf @.3 a ~ ARRESTER ENERGY (MW -SEC) @.01 B.1 12 18 2838 Sa 7288 9a 99 99.9 99,99 PERCENTAGE CASE NO. 507 TRANGUELL ARRESTER RATING = 15.0 KU LOCATION 12, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 360.6 DEGREES SETUP DATA ASOTDI 1.200E 01 1.808E C2 O.060E-01 3.600E G2 1.Q00F b2 1.000E 00 3.5@0EF 03 3.8G9E 02 3.000E 0B 1,000E 92 1.500E 81 2@.080£ 61 4.750E O1 2,017E 03 6.Q00E 61 8.330E 03 2.@09E-01 1.100E 01 @.000F-01 0.G00E-01 Moor DB! MoOorvD ow MaPrw oOo AS87V2 LOCATION? 3 TEELAND 138 KU . PER UNIT VOLTAGE. 1.54 4 A i A ° 9 e.s4 NH Hi va “1.5-+ CnSE NO. 507 50.8 MS/DIV OSCILLOGRAN NO. @ fiak. EVENT FROM DISTRIBUTION MOorD Dv MwHDpiriv wD MoHprw oO A5e7U2 LOCATION: 6 HEALY £38 KY PER UNIT VOLTAGE CASE NO. 507 OSCILLOGRAN NO. 3 Max, EVENT FROM DISTRIBUTION $8.0 MS/DIV MoDprv ww MoDrv Dd MHDID oO A574 LOCATION? 27 GOLD HL END OF LINE FROM NENAN PER UNIT VOLTAGE _ $8.@ MS/DIV CASE NO. S07 OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION 701° mMwHyryv © _ ABO7US LOCATION! 8 . GOLD HILL 138 KV PER UNIT VOLTAGE “CASE NO. 507 50.0 NS/DIV OSCILLOGRAM NO. 5 Max. EVENT FROM DISTRIBUTION Mopro w MOHDIV D MoOrrv 9° ASO7VE LOCATION: 14 GOLD HILL TRANSFORMER @NDARY PER UNIT VOLTAGE 1.5 1.8 oS 0.8 8.5 1.0 “1.5 1.5 1.8 es 2.8 8.5 1.8 “1.5 1.5 1.8 a. 2.0 -8.5- 71.0 CASE NO. 507 $8.8 MS/DIV OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION 709 _ AS59707 So A5O7U8 ASe7US LOCATIONS 44 LOCATION: 12 LOCATION? 13 ; _. TEELAND 13.8 KU, HEALY 12 KU GOLD HILL 13.8 KY “PER UNIT VOLTAGE PER UNIT VOLTAGE PER UNIT VOLTAGE 1.5 1.5 4.0 = ap 1-0 0.5 ee p 5 : H H 0.0 4 H @.@ sd $ 3 -9. 3S E 8 -0.5 oF 1.0 5 1.5 1.5 B-C pc 1: Pp Pp @.5 H H : : H 0.0 $ S$. 8 § -0.5 ~1.0 “1.5 1.5 c-A c-a 1 P P 9.5 H 4 i H @.0 $ 5. 8 § -e.8 -1.0 3 “1.5 CASE NO. SO? 50.0 MS/DIV CASE NO. 50? 50.0 NS/DIU CASE NO. Se? 50.0 MS/DIU OSCILLOGRAM NO. ? OSCILLOGRAM NO. 8 OSCILLOGRAM NO. 9 MAX. EVENT FROM DISTRIBUTION MAK. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION ASO7ER LOCATIONS 27 G.H. END OF LINE FROM NENANA PER UNIT VOLTAGE “HHH SYSTEM KILO-AMPERES ph t MHDpDIrIvD w S @.15 + B @.10-f p 0-05 Fh 0100 pnp mn mnfernnpmn pnp pnd S -0.05-++- E 8.10 + -oisd SYSTEM MEGA-JOULES @.15-; 0.104 @.05 9.00 £ -2.0s -0.10- ~0.15 Sofft PxrvD we CASE NO. 507 50.6 MS/DIV OSCILLOGRAM NO. 41 MAX. EVENT FROM DISTRIBUTION ARRESTER OPERATION EVALUATION FOR TYPE 2! @%.@@ COUL. EVALUATION FOR TYPE 3% 0.92 - AS@?14. | ; ase712 ASO713 “LOATION:. 11200 | LOCATIONS 12 ; LOCATIONS 13 TEELAND “TCR CURRENT HA If HEALY | TCR CURRENT alk ; GOLD HILL TCR CURRENT “Sas SYSTEM -KILOAMNPERES i SYSTEM KILOAMPERES ; SYSTEM KILOAMPERES ra 37. -: . 6 1.5 “9. 8 : A 4 q 0 wp OM | Pp at p os Ho. i q t i H A: @ i | a @ | 8 8.8 ¢ " S$ -2 -0.5 £ : E E -24+ ~4 -1.0 -3 il) : : “6 “1.5 re 6 1.5 B 2 B 4 gp 1-8 . 14 | | ||| p oS i 4 L H H H 9, al \|° A H 0.0 Ss - Ss -2 S$ -9.5 E 4 — E -at+ -4 ~1.6 -32 ; ~6 “1.5 3 6 1.5 ¢ at. c 4 g 1-0 p 1 | P 2 p 05 H H i H 9, Aan Hi a | WY = 8 ee e | Whe) ira —E -2 ~4 ~1.¢6 “3 og “1.5 : UB CASE NO. 507 100.0 MS/DIU CASE NO. 5S? 100.0 NS/DIV CASE NO. S07 100.0 MS/DIV. OSCILLOGRAM NO. 12 _OSCILLOGRAM NO. 13 OSCILLOGRAM NO. 14 MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION. a a" MOaDErv w* MoODIV oO ASO714 “LOCATION? CASE NO. 507 CSCILLOGRAM NO. MAX. EVENT FROM DISTRIBUTION SYSTEM KILOAMPERES 8 OTAL-FAULT CURRENT 5@,0 "s/ptu 1s MoDruwu w MOHDXIVD D MoOrvrIvs Oo 1.5 1.0 8.5 0.9 8.5 1.0 “1.5 1.5 ASO?TIS LOCATION: 8 FAULT CUR. CONTR. FROM NENANA SYSTEM KILOAMPERES 1.0 9.5 0.8 ~O.5 71.8 -1.5 1.5 “4.0 8.5 9.8 6.5 71.0 “1.5 CASE NO. S@7 $8.0 MS/DIV OSCILLOGRAM NO. 16 MAX, EVENT FROM DISTRIBUTION MoDrv wo MODID D MYDIDB Oo AS 6 LOCATION? 8 FAULT CUR. CONTR. FROM GOLD HL SYSTEM KILCAMNPERES tt CASE NO. 5e7 OSCILLOGRAM NO. 17 MAX. EVENT FROM DISTRIBUTION. . 50.0 MévDIV. 7423 Pe. Machen: eu Lon ovglnn nann old Wi arourigh ere ie ie Wy (0) 24 eave 5 ise ” os DP ia ra i i ) ' , Y ! Q | A = 7) - aa — |-{, YI} YP as = femme < 1 Wotana ) 136 kv Gold MID HCH 33.8 2v 12,0 kV AEBOP 2 CPERATING BREAKER D OPEN BREAKERS F,1I,0 CLOSING RESISTOR @,@8 (OHNS) CASE NO. 680 FROM! DOUGLAS 138 KY INSERTION TIME 6.03 (MS) OERATIONS ENERGIZATION Tor HEALY 138 KU MAX. Cl. SPAN B.33 «(MS) t— “TESCRIPTION OF SYSTEM | CANTWELL UATANA LINE OUT OF SERVICE REALY SUS GUT OF SERVICE STRONG PT. MACKENZIE AREA REFRESENTATICN ie CASE? 600 TABLE i AGOOTI TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES €¥=DENOTES NON-SINUSOIDAL) PRE-SUITCH VOLTAGES, BREAKER D IS OPEN LOCATION a B. c 1 g.98° 8.98 @.98 3 @.99 8.99 8.99 4 1.00 1.80 1.00 S @.01 8.01 8.01 26 @.01 9.01 8.01 CASE: 680 TABLE 2 AGCETe TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES Ck*= DENOTES NON-SINUSOIDAL) POST-SUITCH VOLTAGES,BREAKER D IS CLOSED LOCATION A B c i 9.99 8.399 @.99 3 1.02 1.61 1.01 4 1.95 1.84 1.04 S 1.32 4-14 1.42 es 1.44 1.412 1.12 TABLE OF HIGHEST OVERVOLTAGES PROBABILITY DISTRIBUTION CLOSING ANGLES FOR PHASE = PER UNIT OVERVOLTAGE max 4 B c 4 B c P.U. 471.5 484.3 381.8 1.77 2.72 2.47 2.27 63.4 151.2 182.4 1.64 2,62 1.87 2.62 MAX OF ALL PHASES 41.6 157-1 147.8 1.55 2.46 2.18 2.46 2.3 NO. POCNTS = 188 243.4 191.9 311.6 4.85 28.03 2.41 2.44 Bag TT T a 413.0 363.8 479.3 4.81 28.12 1.69 Quit I | 51.4 113.8 167.6 4.64 2.09 1,83 2.09 2.7 451.9 5281.9 429.5 1.64 2.88 1.40 2.08 227.4 161.8 123.9 4.81 2.02 1.91 2.02 tu 2.5 146.@ 137-6 113.9 1.314 1.85 2.84 2.01 oo 190.5 24.8 193.2 1.84 2.08 1.42 2.00 = 2.3 460.7 534.5 411.4 1.56 2.00 1.47 2.08 a T 288.5 201.1 291.6 1.74 1.65 2.80 2.00 S 398.2 273.7 374.2 1.99 1.84 1.44 1.99 & 2-1 + 186.1 174.3 142.3 1.46 4.99 1.98 1.98 ww 87@.2 217.5 2888.6 1.68 1.97 1.48 1,97 ae ba 330.3 365.8 285.4 1-46 1.96 1.95 1.96 438.6 449.4 373.6 1.66 4.95 1.86 1.95 bi 365.9 371.8 agt.2 1.36 1.95 1.76 1.95 3° 164.3 148.6 92.4 1.37 1.95 1.68 1.95 5 166.5 203.6 296.9 1.44 1,68 1.94 1.94 we i 328.4 384.4 223.7 1.5@ 1.85 1.94 1.94 uy 292.9 198.1 162.7 1.57 1.69 1.93 4.93 © 1.3 | 323.9 328.2 376.3 1.68 1.939 1.51 1.93 iis 71:3 feere ils, tlae tide Tea ta hs . . . . . . . . 389.8 328.5 2831.4 1380 tight lee i!3t 8G B.1 12 18 2838 58 7888 38 $3 99.9 99.99 32.1 65.9 104.1 1.85 1.41 1.90 1.98 PI NTAGE 303.7 317.6 372.0 1.76 1.90 1.64 1.90 ERTENTA 301.2 390.1 354.7 1.9@ 12.51 1.88 1.90 130.6 130.5 98.8 1.42 1.88 4.9¢ 1.99 280.1 187.5 192.3 1.60 1.56 1.98 1.98 420.2 303.1 417.2 1.89 1.45 1.30 1.89 119.2 94:9 192.6 1.77 1.82 1.64 1.87 CASE NO. 60 348.8 311.6 282.9 1.36 1.67 1.87 1.87 366.5 350.5 486.7 1.95 1.86 1.74 1.86 313.2 276.4 a9i.2 1.37 1.68 1.86 1.86 136.2 128.4 39.0 1-41 1.82 = 1.86 1.86 X WAVEFORM HAS 4 PEAKS ABOVE 190.9 KU(1.69 P.U.) 203.9 350.9 253.3 1.59 14.86 1.49 1.86 424.9 483.6 356.3 1.77 1.86 1.69 1.86 THIS IS 1.25 * 1@8.0 KU (SA RATING) ¥ 1.414 383.4 428.2 407.4 1.85 1.49 1.81 1.85 282.8 e11.4 282.7 1.71 1.62 1.85 1.85 THERE WERE 8 SUCH WAVEFORMS is9.8 166.7 199.9 169 0 1685 1.43 1.85 ige.3 0 lass9 tags?) tl48otiesotlga tla LOCATION 26, ANALYSIS FOR TRANQUELL ARRESTER 302.9 436.3 356.9 1.84 1.74 1.64 1.84 138.7 134.3 128.3 iat 1:84 Lee iia CLOSING SPAN = 180.0 DEGREES . ‘ 7 > : 1.47 7 228.2 343.7 286.8 1:79 «4.830 1.78 1°83 SETUP DATA neoeDt qa0-8 ies «oases 60 dtgs, Steg Steg tes 2.5OQE 01 3.600E 02 9,Q00E-01 1.B00E 02 1.000 o2 beaca 309.60 0815 1:80 4:40 i.RB i138 1.QQ0E 00 3.520F 03 1.000F 02 3,000E 00 2.000E 08 59:8 435.7 «44218 1166 «1.63 —«L RB tig 1,@80E G2 1.38@E 92 1.000E 62 6.394E 02 6.0005 01 $96.6 393.7 366.8 tl7t0o tease 1182 Bl330E OO 1.900F 08 @.000E-01 @.000E-01 9. 000E-01 TABLE OF ARRESTER ENERGIES CLOSING ANGLE FOR PHASE a 41.6 471.5 63.4 51.4 451.9 460.7 243.4 330.3 @27.4 186.1 159.8 389.8 161.3 366.5 106.8 382.2 278.2 438.6 365.9 203.0 Ure Whee VOOR OFAS FOVNBWHORW WMSLVOHVSY B 157.1 484.3 151.2 4113.8 Set.9 534.5 191.9 365.8 161.8 171.3 166.7 328.5 148.6 398.5 c 147.8 381.0 182.4 167.6 429.5 411.4 311.6 285.4 123.9 142.3 199.9 231.4 92.4 486.7 117.2 235.2 288.6 373.6 281.2 256.8 ENERGY NO.OF MW-SEC PHASE OP. @.O1 BPOSNOIDWIS OOS HSHHHGHHDIGHHOHD OG OS SHOBHSHSOSOS SOS OSSD OOD SD a ree ee ae ee ee eee be ne BOOS PD POS VSS VS SPO ASV SPP POS OSS OGSVVesesssggoeoese oseeerresse OW UIUMW WNDU NOUNNWONONNKONWOWOKONNO CUO CTU UTE RU UTS TU OT UU UIE eR OMU DURE MUR HE OUMIMUH UNM UUM MMH OM MAX KA. @.256 @,2e52 @.257 @.155 9.123 8.168 @.e98 @.101 @.892 8.072 @.069 8.068 @.068 2.972 0.045 @.071 @.@87 9.074 8.865 @.e87 9.665 @.e82 9.084 2.825 ®.128 @.054 2 1 i 8 PROBABILITY DISTRIBUTION NO. POINTS = 180 8.6 1 Gas + }_ 1 Eo. + + ia 8.3 | | + +. us fb 9.2 +— po t—+ & 0.1 t 4 val — 8.0L Bl 12 18 2838 SB 7a80 92 PERCENTAGE CASE NO. 600 TRANQUELL ARRESTER RATING = 108.0 KV — 933 «99.9 $9.99 LOCATION @5, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN * 180.0 DEGREES SETUP DATA ABeeD!S +SQGE OL 3.600E 02 @.0@GE-01 1.800E 02 -800E @2 3.500E 03 1.000E G2 3.000E 60 -@80E C2 1.380E G2 1.000E 92 6.394E 02 +330E OO 1.@0@E 60 1.200£ G1 @.000E-O1 1.@Q8E 02 1.Q08E 00 6.@00E O1 @.000E-01 MapED w MODE D- MODrvD Oo AGOOV1 AGSBV2 RSet / LOCATION: © 4 LOCATION: 3 Lecatict: 4 i ea o % JOT. MACKENZIE 138 KY TEELAND 138 KY DOUGLAS 122 KYU ‘ BER“UNIT VOLTAGE PER UNIT VOLTAGE PER UNIT VOLTAGE MoODro Dd MaAPxIrID D ABS. : 1.5 1.5 me 1.O+4. 1.0 1.0 8.5" @.5 @.s 8.0: 8.0 0.0 - -0.5 8.5 ~8.5 -1.0 ! -1.0 -1.0 -1.52 “1.5 ; ~1.5 1.57 1.5 1.5 1.04 gp 140 g 1:2 8.5 p oS p oS 4 H @.0 N @.8 R 0.0 Jeu Sie! Sie. @.5 $ -0.5 $ -0.5 -1.0- -1.0 -1.8 -1.5 -1.5 “1.5 1.5 | 1.5 1.5 1.8 ¢ t@ co 18 0.5 p 25 p O58 8 feb H H 9, 0.8 4 @.8 B 0.0 -0, S ~@, S -@.5 @.5 g -e.5 E “1.0 ~1.8 Tie “4.5 “1.5 ae CASE NO. 600 20.@ mS/DIV CASE NO. 600 20.6 MS/DIV CASE NO. 600 20.@ MS/DIV OSCILLOGRAM NO: OSCILLOGRAM NO. 2 OSCILLOGRAM NO. 3 Max. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION Max. EVENT FROM DISTRIBUTION ns MOrpPrv w MOD. - MnrpiIv Oo /, ABORU4 BOCATION:. 5° “CANTWELL 138° KU PER UNIT VOLTAGE 20.0 MS/DIV CASE NO. 600 CSCILLOGRAM NO. 4 Max. EVENT FROM DISTRIBUTION mMaprw D> MHOpDIrBD w mMoeDproe Oo AGOOUS LOCATION: 2S HEALY END OF LINE FROM CANTWEL PER UNIT VOLTAGE CASE NO. 600 20.0 MS/DIV OSCILLOGRAM NO. & MAX. EVENT FROM DISTRIBUTION REOSUE LOCATION? 41 TEELAND. 13.8 KU PER UNIT VOLTAGE 1.5 aap 1-8 0.5 0.0 -0.5 Mupxre 1.0 ~1.5 1.5 pc 1:8 @.5 9.8 MornoDxrz ~@.5 “1.8 "1.5 1.5 c-a 18 @.s 8.0 ~6.5 Muarpirs “1.8 CASE NO. 60@ 20.8 MS/DIV - OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION Qag7e MnDiIv s? mMyrrwv bv Moprrevwe o _ @60011 _., “LOCATION? 14 TEELAND TCR CURRENT. SYSTEM KILOAMPERES CASE NO. 60e 20.0 MS/DIU CSCILLOGRAM NO. 7? MAX. EVENT FROM DISTRIBUTION a mMoeprau w moprv o mMnNoiruw w ABQCEL LOCATION: | 25 "LL HEALY END-OF LINE FROM .CANTUEL PER UNIT. VOLTAGE wow! | Robo ve Om 1 w SYSTEM KILO-ANPERES e.3 @.2 8.1 9,8- -@.1- -0.2- -0.3- SYSTEM MEGA-JOULES @.15 B.18F @.85 4. 0.80 ~@.05 -9.12- tt ttt -@,15 CASE NO. 680 20.0 MS/DIU GSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION Ft. Mavmuright 138 b¥(lo Watana 136 kv ia) @) Gord Mat ~ eee 15.8 cease nace Tevland ohare iT ise hv AGOIPA OPERATING BREAKER D OPEN BREAKERS CLOSING RESISTOR @.00 (OHMS) CASE NO. 601 FROM: DOUGLAS 138 KU INSERTION TIME @.60 (MS) OFERATION? ENERGIZATION Tot HEALY 1398 KY MAX. CL. SPAN 8,339 (mS) a DESCRIPTION OF SYSTEM CANTRELL WATANA LINE OUT CF SERVICE HESLY SYS CUT OF SERVICE WEAK PT.MACKENZTE AREA REPRESENTATION S77 CASE! 604 TABLE ABO1T TEMPORARY LINE-NEUTRAL VOLTAGE “VCREST PER UNIT QUANTITIES (=DENOTES NON-SINUSOIDAL PRE-SWITCH VOLTAGES, BREAKER D IS OPEN CASE? 681 ABLE 2 AGOIT TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT GUANTITIES (&*DENOTES NON-SINUSOIDAL ) POST-SUITCH VOLTAGES, BREAKER D IS CLOSED LOCATION t 9.99 @.99 3 21.01 1.00 4 1.03 1.94 S 1.44 1.4% 2S 1.42 1.12 TABLE OF HIGHEST OVERVOLTAGES - . tgsine ANOLES: FOR Pyase A725 63.4 24354 473.8 227.4 451.9 398.2 146. ow 2 WW & bee CHENNAKANVYUIWNG RARONMUIUGNSEDASUDSENDMTBUWVEVUIWHOUHO TOWING WO SWUNOUVVD SH DVODVIOOUIN- HIIVVUMWVUSSOK WHS VQeUMSBDW —~HUVMVUNME A WMERWS*OM Re PRUE MW ao wo @ a 288.5 tire), ow > Oth TWNUD w | © SUSAN SWM+ UNDOWONGAVNISUNIWODT19DH + GSL+VNDUHMHUHWAS w 2 oe tore D uw wv ww an = bNWIOUTISUGDON AW We HK BADGIOUVVOK-H-AHWHOV0NND0ON cee eee ee seer ee wa aS wry inl a wW SHVNUGCSHOWD~) J nl re wo ~) wD oo 381.2 182.4 311.6 479.3 123.9 429.5 374.2 113.9 193.2 92.1 373.6 354.7 296.9 93.8 285.4 376.3 372.8 286.8 104.1 283.7 e8i. 183 OWI b> rOrosay UU WEHUAUMA Wrreer Bagi " o ONWNUWORNWOY a B 2.03 2.69 1.55 a.51 1.88 1.84 1.79 2.02 1.81 1.95 1.56 1.94 1.94 1.75 1.64 1.78 1.80 £91 1.55 1.89 1.56 1.89 1.86 1.89 1.33 1.56 41.78 1.75 1.47 1.89 1.74 1.88 1.88 1.82 1.72 1.88 1.77 1.69 1.35 1.75 1.287 1.87 1,62 1.68 1.85 1.86 1,68 1,42 1.84 1.8@ 1.73 1.83 1.7@ 1.83 1.68 1.83 1.58 1.83 1.73 1.72 1.82 41.41 1.67 1.82 1.81 1.62 1.58 1.81 1.63 1.81 1.67 1.81 1.51 1.80 1.53 1.71 1.57 1.88 1.38 1.38 1.64 1.76 1.57 1.66 1.74 1.71 1.72 1.48 1.7? 1.78 Datt, 1.35 1.46 1.77 1.77 1.66 1.66 1.67 1.76 1.68 1.65 1,76 1.76 1.58 1.56 1.76 PER UNIT RyERUOLT AGE 1.85 1.92 2.40 1.76 1.83 1.36 1.73 1.91 1.73 1-68 1.83 1.77 1.89 1.89 1.86 1.78 1.68 1,76 1.87 1.87 1.67 1.87 1.86 1.86 1.46 1.83 1.67 1.65 1.44 1.83 1.36 1.57 1.76 1.68 1.54 1.65 1.49 max PU. a.69 e.Si 2.48 2,02 1.95 1.94 1.94 1. 91 1 91 1.89 i. +89 +89 89 +89 +88 88 -88 +87 1. +87 +87 a i i i 1 1 1 1 4 4 89 87 1,86 i 1 1 1 i i 1 1 L. de 1. 1. i. i. i 1 1 z 1 1 i 1 1 1 a i i 27. “7 +86 +84 1. «83 +83 1. +83 «82 +82 1. +81 83 83 gi 81 81 86 EM 38 79 29 8 78 rae 7 7? 7? er 6 76 7 7 an PROBABILITY DISTRIBUTION MAX GF ALL PHASES - 29 NO. TTT = 198 PER UNIT GVYERVOLTAGE | “"O.@L Bi 12 1@ 2038 50 = PERCENTAGE CASE NO. 601 % WAVEFORM HAS 4 PEAKS ABOVE 183.3 KV(1.63 P.U.) THIS IS 1.2 % 108.0 KY (SA RATING) & 1.414 THERE WERE @ SUCH UAVEFORMS LOCATION 25, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN + 188.0 DEGREES SETUP DATA ABO1D2 T1898 63 31808 03 Ieee of reece 96 1.000E 08 i a -@80E 82 1.380E 02 1.000E C2 6.394E C2 G.OCKE Gi -330E @@ 1.00@E @@ 8,000E-21 @.@00F-01 6.620E-31 ann a a + w muni mur WIN AD ® OO! GBWIAHAVDOYWWHY ONS H+ Ha am oF OP OLAV AVOGU ID IUANHOKVGWIWROM- OH UCAHADHVVAIOATHHaGY wer ROwoo - a OVAVVIOUNRK ODI Mow | GID SOP OVGse SONG Ha ws a be w TM De Were WU Lieu Ws > wOowwo QVYNO wAWHen senor wy wo to a QO AWUMrAMeE AWM M HOVVAWIVOWOTONONO WW Wide Ane WMEBIBouuew AAGSADUNSOWVAKH ORM TOU - uUMO Ube VhAVOM BO aos VOWOONUAIDOK HMO sIVOTVOsnn cot ent eee eee ee ae eo rete » w@ ~ 100 Lad Woe WOSaHOaO POV OV MD BOA UVUOGE MOS VOD Ve OLUHGWHWAVOSUNVADGAVOWOWODN TIO» cu ate geese neowe ee ee eeeroee wrtaco Orso VIBVSONNOGvIaw TABLE OF ARRESTER ENERGIES c CLOSING ANGLE FoR PHASE ENERGY So MUSE PHASE OP. NO.OF eee e eter ete tt cee eee teste et es SSVGISODS VD PGND POV I DOSS GOOG HO SHS GGGOIGSSOHOSHHOOOSS' SSYSSSSSSSLOSIISSOSSSISIIS9E BS9DS9 99 9999 FBG BOG GDDISSG DD Dl he nt ee 8 BP OT Os GI OO OO 0 OOF Oo OY OO od BOO OP OO OD 1 1 he UT PU UT TD OT TT ee UU DOH MUTUR UNUM to oe 8 oe 8 8 6 6 6 ee 8 6 DIS eesesoseosses PROBABILITY DISTRIBUTION — 9.6 8.5 8.4 a3 8.2 NO. POINTS = 198 ARRESTER ENERGY (MW -SEC) 6 8.8L B.t CASE NO. 1a S@ 7088 38 PERCENTAGE TRANQUELL ARRESTER RATING « LOCATION @5, ANALYSIS FOR TRANGUELL ARRESTER 180.0 DEGREES A6@1D3 4 :80ee oe 6.394E e2 — 8. 8Q0E-6t 2.500E 61 1.0Q8E 08 - 2.esee a2 B.330E 80 CLOSING SPAN «= SETUP DATA 3.606E 2 3.5@0E 03 2.380€ 02 1,800E 0@ 108.8 KU @.G00E-@1 1,000E 02 1.@80E 82 1.2@0E @1 1.Q@0E 42 1.008E 0¢ .. 6.Q@0E Ot @.@Q0E-@1 a MnyPprn YD mopro w MoOprs Oo A601U1. / LOCATION: 1 “. PT. MACKENZIE 138 KV FER UNIT VOLTAGE - CASE NO. 624 CSCILLOGRAM NO. 1 MAX. EVENT FROM DISTRIBUTION 20.8 MS/DIV MOpry w MHDprv Db MADIrD O 1.5 1.8 @.5 8.9 -9.5 ~1.0 “1.5 1.5 1.9 e.5 0.0 -8.5 “1.0 “1.5 1.0 ABO1V2A LOCATION: 3 TEELAND 138 KV PER UNIT VOLTAGE CASE NO. 601 20.0 MS/DIV OSCILLOGRAN NO. 2 MAX. EVENT FROM DISTRIBUTION Moprsa w MHNrnry Dd MHPDEB O AGO1UZ LOCATION: 4 DOUGLAS 138 KU PER UNIT VOLTAGE 1.5 1.@ @.5 o.8 ~@.$ -1.0 ~1.5 1.5 1.0 8.5 @.0 -@.5 “1.8 “1.5 1.5 1.0 e.S 8.8 ~8.5 ~1.8 “4.5 CASE NO. 661 20.0 MS/DIV OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION muDpisvw o mMwoprv b> moOnpryu OO | ABOLV4 LOCATION: .§ “CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. 601 20.8 MS/DIV OSCILLCCRAM NO. 4 MAX. EVENT FROM DISTRIBUTION mMopro w MOrPID Db Morrv Oo AGOL1US LOCATION! eS HEALY END OF LINE FROM CANTHEL AGO1UE LOCATIONS it TEELAND 13.8 KV. PER UNIT VOLTAGE PER UNIT VOLTAGE ' 1.5 y A-B 1.0 1 Pp @.5 H & 8.8 S -9. E 5 -2 “1.8 73 71.5 1.5 Bec 1:0 0.5 2.0 0.5 “#4 1.0 -3 1.5 41.5 a mMyunvryv 1.8 6.5 0.8 8.5 “103 ~1.5 CASE NO. 601 OSCELLOGRAM NO. & MAX. EVENT FROM DISTRIBUTION 28.8 MS/DIV CASE NO. 6et OSCILLOGRAM MO. S MAX. EVENT FROM DISTRIBUTION 26.8 MS/DIV mMOHDLrB oO LOCATIONS © it TEELAND -TCR CURRENT Ls SNSTEN, KILOANPERES CASE NO. 661 20.0 Ms/DIV OSCILLOGRAM NO. ? MAX, EVENT FROM DISTRIBUTION an Mnrxrvw w MOHODIID w SDro wo § - RBOLEL = i LOCATION: 25 “HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE SYSTEM KILO-AMPERES Q.2 8.0 ~@.14 -®.24 0.3 SYSTEM MEGA-JOULES @.15 8.10 0.05 2.00 PAA 0.05 4 -0.10 -@,15 : CASE NO. GOL 2@.@ MS/DIV OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION i coi mit Fe. Warourtsht OQ " isa ay (io Ch eucies Con —— Pt Machen: (i) ie Land pp feteale Watena 138 kV Gold WiIE 13.6 Av T AGIAPL OPERATING BREAKER D OPEN BREAKERS F.1,0,T CLOSING RESISTOR @.00 (ORNS) CASE NO. 601A FROMt DOUGLAS 138 KY INSERTION TINE @.00 (M5) OPERATION: ENERCGIZATION TOt HEALY 138 KY MAX. CL. SPAN 8.33 «ms) DESCRIPTION OF SYSTEM > CASE? 661A” TABLE 2 AGIATE Oh ae ewe Swine nem te aiming ween TEMPORARY LINE-NEUTRAL ‘VOLTAGE CREST PER UNIT. QUANTITIES C&*DENOTES NON-SINUSOIDAL) POST-SUITCH VOLTAGE, BREAKER D CLOSED LOCATION. sag a c 4 1.04. 1.04 1.04 3. 1.07 = f.aa gaz 4 1.18 i516¢ 1.1@ 5_8 1.16 1.16 1:17 85 AMG 40g 1.47 DY Bet P07 13 LP 1. L) @ Be 3.0) ML Vd MUU WH ROMS WEE we wee fa os ~ 3B eS SE DBWOVOGHSAGD HH AD DAWIMVOWY OAD» eee cee eesbo eee eee eee eee ee et PHWUNAHGOWVOOUMOOMAUVOK OOM NM [ANGLES .FOR. PHASE. eB ese _ 232. 90.7- >. : . 286.8 494.8 | 41702 © {84.8 481.6 113.6 147.8 182.4 123.9 304.5 - 341.6 ° 84.7. 70.2 521.9. 429.5 353.0 368.3 370.8 488.7 350,9 253.3 278.2 |. 282.8 413.9 .| 474.3 166.7 199.9 (481.8 495.3 “S345 0 44404 317.6 372.0 - 2e3.6°° 396.9 333.5 0 -Be7.8 219.7. 315.0 163-6 147.9 350.5 486.7 471.3 142.9 296.2 322.9 363.8 479.3 191-9 311-6 328:5 231.4 65.9 104.4 371.8 881.2 116.6 132.0 443.9. 387.1 _ 222.3 236.6 888.4. - 233.6 382.9° 334.0 171.3. 162.6 314.6. 888.9 445-9 149.7 11.4 282.7 375.4 854.3 308.6 308.5 217.5 88.6 $4BiB S “9B4 201.1 291.6 PPB BAO: 378.8 ... 375.8 365.8 285.4 - 130.4 98.8 384.4 283.7 J 1.?h 2.04 2.04 1,82 PER UNIT QVERVOL a B 1.86 2.15 B.44 1.87 ose * 1.79 ° 2.00 ~ wn ny Pe eee et eee ett eee el eet et etet et tet tote t totetes Seer ses ersesrecc ser sensor eesreserseee BOR SS eR SOO RNS SESS SSeS Sates ver ese Ssea3g2 VAVALUVUUUIAAANOVUNAIGUHVOHODUSUOSVNWVHOAWDAUNUOOS ed ood old od od od oe TAGE - c 2.08 1.64 2.08 1.89 1.52 1.88 2.88 1.57 1.4% 1.97 1.95 1.65 1.67 1.58 1.87 1.49 1.81 1.88 1.61 1.74 1.73 41.87 1.84 1.44 1-78 1.54 1.82 1.85 1.85 1.81 1.72 1.79 1.82 1.84 1.72 1.82 1.67 1.76 1.60 1.53 1.79 1.48 1.82 1.65 +82 Yeynne sa QSOounr nn ose oe eet eet et etd tetera Troll tor ys) ABLE: OF HIGHEST. OVERVOLTAGES 3 x PLU. »~ - «AS « . eos 220 eoseo ANNAGCOSKWVNNIDSOwM sober ee ee ees RBSVoagesnnonuwooe aw wo a - oo o 1.86 1.86 1.85 1.85 1.85 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.83 +82 +83 »83 +82 +82 +82 82 Abert et epee 1.81. 4.84 1.80 1.80 1.80 1.80 1.79 SETUP DATA — ABLADL Lane _2.5Q0E @1 3.60@E @2 O.000E-01 1.8@0E 62°. 1,082E -02: 1,@0@E 80 3.500E 03 2.000E C2 3.000E 00 1. 000E 00 1.,@B@E G2 1.380E 2 1.000E @2 6.394E G2 6.000E 01 B.330E @@ 1.0@0F 0@ @.000F-01 O.000E-C1 6.0@0E-@1- PROBABILITY. DISTRIBUTION - MAX OF ALL. PHASES | : ‘___NO. POINTS = 100 e ny = ny eo Be |e Nn 2 n a PER UNIT OVERVOLTAGE 5 . = 1@ 2838 53 7888 98 PERCENTAGE O81 Bl 12 $3 $9.9 99.99 CASE NO. 681A % UAVEFORM HAS 4 PEAKS ABOVE 183.3 KUCL.63 PULP THIS IS 1.2 % £@8.0 KU (SA RATING) K 1.414 , THERE WERE @ SUCH WAVEFORMS =~ : LOCATION aS, ANALYSIS FOR TRANQUELL ARRESTER . - ' CLOSING SPAN © 180.0 DEGREES: -° » TABLE. OF ARRESTER ENERGIES ENERGY NO.OF MU-SEC PHASE. OP. 8.86 B 13 @.06 B 12 2.96 B 20 8.85 B e @,e5 B 13 @.04 B le- 9.04 B 12 9.03 B 20 @.83 B ié 8.03 B 13 @.03 B 12 @.03 B 12 9.03 B te @.02 B 17 8.02 B 20 @.e2 B 1e @.02 B 13 e.02 B 412 2.02 B 12 9.2 B 20 e.02 B te @.02 B 13 2.62 B 12 @.02 B 5 @.028 B 10 @.02a B ie @.02 B 12 e.e2 B 18 8.62 8 12 ®.01 B 12 9.01 8B 6 @.01 B 12 8.01 B 2 0.01 B 6 @.e1 B 13 ®.e1 B O.OL B 6.0L B @.01 B .01 B . 8.01 B @.01 B 8.0L B @.81 B @.01 Bg @.e@1 B 8.89 8 8.08 B 8.00 B 0.8@ 8 0.00 8 2.08 B 9.00 B MAX Ka, @.104 @.87S @.045 @.154 @.938 8.057 2.082 2.074 8.079 0.086 2.029 2.046 0.032 @.032 8.933 @.027 @.026 0.028 @.027 8.034 0.046 @.e82 8.033 8.878 @.117 8.036 @.059 @.07S 9.063 0.046 @.058 @.068 @.064 @.074 @.639 8.026 @.088 @.029 2.037 ®.058 @.034 2.038 8.063 @.0428 @.032 2.059 9.069 @.071 8.83 @.e64 6.033 0.657 &.0a3 8.8 ARRESTER ENERGY (MW -SEC) NO. POINTS = 1828 - CASE NO. 601A PERCENTAGE TRANQUELL ARRESTER RATING = 1e8.0 KU LOCATION 25, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 188.8 SETUP DATA 2@.500E ei 1.008E 00 1.080€ 62 8.330E ee 3. 3. i. 1. GOCE e2 S@@E 83 3B0E e2 BOSE CO DEGREES ABLAD!S @.0Q0CE-C1 1.800E 62. 2.@00E @2 3.000E. 00 1.900E 02 6.394E 02 1.208E @1 0. 00@E-01 RRE MnNpiv w MOrruw oo ABLAUL “ “EOCATION? 1 PT; MACKENZIE 138 KY PER UNIT VOLTAGE “CASE NO. GOLA OSCILLOGRAM NO. 1 MAX. EVENT FROM: DISTRIBUTION 20.8 MS/DIV MopoDrv w MoDrvs Db mMaADprD Oo 1.5 1.0 8.5 a.e 8.5 -1.0 “1.5 1.5 1.8 @.5 e.@ -8.5 1.8 “1.5 1.5 1.8 e.5 @.8 -8.5 1.9 Astava LOCATION: 3 TEELAND 138 KY PER UNIT VOLTAGE CASE NO. G@iA 20.0 MS/DIV OSCILLOGRAN NO. 2 MAX. EVENT FROM DISTRIBUTION Monvrs D> MNDroD w MODID O AGIAVS LOCATION: 4 DOUGLAS 138 KU. PER UNIT VOLTAGE 1.5 1.0 @.5 9.0 8.5 “1.0 -1.5 1.5 1.0 e.5 e.8 -O.5 -1.8 1.5 1.5 1.8 @.5 a.8 -6.5 ~1.0 CASE NO. 601A 20.8 MS/DIV OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION - rac MHviry ® mwpru w MmMnNrDrV oO AGIAVG . AG1AUS LOCATION! 5 wm * LOCATION: a5 “-GANTMELL 138 KU” HEALY END OF LINE FROM CANTUEL SRER UNIT VOLTAGE : PER UNIT VOLTAGE a 2 p. } H a ° 5 é 4 -2 -3+ 3 8 mI P 4 H 4 @ Smt E : -2 -3 . 3 ; - l b r 4 ® *; Ss i -2- “2 - : -3 CASE NO. 601A 20.9 NS/DIV CASE NO. 601A 20.0 MS/DIU OSCILLOGRAM NOs. 4 OSCILLOGRAM NO. 5 MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION Mapivw wm - ABIAEL Se LOCATIONS 925 - HEALY END. OF LINE..FROM, CANTUEL PER UNIT VOLTAGE SYSTEM KILO-ANPERES SYSTEM MEGA-JOULES -CASE HO, 6O1A 20.8 MS/DIV OSCILLOGRAM NO. 6 Max, EVENT FROM DISTRIBUTION ARRESTER OPERATION EVALUATION FOR TYPE 2: 6.@@ COUL. EVALUATION FOR TYPE 31 8.80 Ana Gor min Ft. Warmer tsht 138 Pr. Machen: © Tee land 133 ke DN / 2 }>-2 + i Watenn Aga kv Cold HIS 13.8 Av Teeland 13.0 av neaePtSOS—SSC“S~SsSS OPERATING BREAKER D OPEN BREAKERS F,1I,U CLOSING RESISTOR 8.08 OHMS? CASE NO. G02 FROM! DOUGLAS 138 KU INSERTION TINE @.0@ (NS) |ereeartons ENERGIZATION TO! HEALY 12 KU MAX. CL. SPAN 2.33 (mS) DESCRIPTION OF SYSTEM CANTWELL WATANA LINE OUT OF SERVICE HEALY SYS OUT OF SERVICE VLAX PT.MACKENZIE AREA REPRESENTATION a CASE? 602 TABLE 1 AGGETA TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON~SINUSOIDAL) PRE-SWITCH VOLTAGES,BREAKER D IS @PEN LOCATION A B c 1 8.98 @.98 @.98 3 8.99 @.98 8.99 4 @.99 8.99 1.90 s Q.0L @.91 @.01 es 9.01 @.04 8.04 CASE! 602 TABLE 2 AGCATI TENPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (¥*DENOTES NON-SINUSOIDAL >) POST-SWITCH VOLTAGES, BREAKER D IS CLOSED LOCATION & B c si @.98 %.99 8.99 3 1.04 1.01 1,00 4 1.04 1.04 1.94 5 1.11 1.41 1.42 es 1.12 1.11 1.13 TABLE OF HIGHEST OVERVOLTAGES CLOSING ANGLES FOR PHASE A 63.4 243.4 354.4 28e.8 288.5 262.1 228.2 203.9 41.6 301.2 376.4 111.8 324. -u wu - QMO WM ewe KRONVNOOWISK-DOoO VMEWHVPWHHDWINOW &aAVwW~ a EREE RL ERK. QUITUO M+ &BOINDJIHOOWNGE DOxeVAWARKYP OVS a0 VOKsUVONUTTIHO DAWOUMNHVO+OHrMOMe SOHKVUK+VUUEUUIRH RBAVUIVWUWIOAH~) c 182.4 Pd so 4 os AOCHOVOCHOWUNKSVADSUNDOSONWOHO WMewewW wo VSURowvwue WRU PER UNIT a 1.57 1,47 1.52 1,61 1.46 1.38 1.43 1.33 1.60 1.95 1.36 1.67 1.57 1.30 1.78 1.84 1,5? 1.42 1.47 1.828 1.38 1.79 1.68 1.31 1.78 1.77 1.76 1.42 1.72 1.52 1.26 1.42 1.66 1.66 1.6 1.68 1.64 1.63 1.63 1.46 1.62 1.61 1.22 1.61 1.60 1.28 OVERVOLTAGE B c 2.37 4.41 1.48 2.31 1.63 2.22 1.61 2.18 1.56 2.15 2.89 1.46 2.08 1.53 2.06 1.50 2.05 1.28 2.90 1.47 1.41 i972 1.97 1.39 1.94 1.21 1.90 1.37 1.19 1.86 1.428 1.60 1.62 1.83 1.82 1.68 1.82 1.40 1.48 1.53 1.81 1.47 1.31 1.66 1.45 1.78 1.50 1.78 1.42 1.49 1.46 1.34 1,54 1.56 1.93 41.73 1.25 1.54 1.72 1.43 1.70 1.57 1.69 1.55 1.65 41.285 1.29 1.45 1.25 1.59 1.65 1.5 1.54 1.4@ 1.28 1.$1 1.25 1.85 1.62 1.25 1.44 1.34 1.36 1.47 1,61 1.54 1.21 1.16 1.24 1.42 1.60 1.32 1,68 1,60 1.42 1.14 1.58 1.96 1.34 1.45 1.46 1.31 1.25 1,4? 1.59 1.56 cheer COSsssorrn NNOUDVONAM eee MUMMUMNMN o > 1.90 PROBABILITY DISTRIBUTION MAX OF ALL PHASES NO. POINTS = 94 wv N ny co) nN oo iw w “ PER UNIT OVERVOLTAGE PERCENTAGE CASE NO. 602 X WAVEFORM HAS 4 PEAKS ABOVE 183.3 KY(1.63 P.U.) THIS IS 1.2 ® 108.0 KU (SA RATING) ¥ 1.414 THERE WERE @ SUCH WAVEFORMS LOCATION 2S, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 180.0 DEGREES SETUP DATA AGeeDL 2.S0GE C1 3.60@E C2 O.O00E-81 1.800E O2 1.000E 02 avoeee @@ 3.SQGE OF 1.Q00E 02 3.000E OO 1.000E 00 8 +O8GE C2 1.398CE O2 1,.000E C2 6.394E 02 6.0QGE O1 +330E OO S.AGGHE-O1 O.Q00E-~G1 G,.000E-O1 %.020E-O1 TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE. FOR PHASE ENERGY NO.OF max A B c MU-SEC PHASE OP, KA. 63.4 151.2 182.4 @.07 B 2 0.283 111.8 171.3 1626 2.03 B 5 0.140 262.1 353.8 368.3 02 8B 1 0.187 ciré 11:8 «= tere oles 1.4 113. e . . 185:5 993:5 2275 oer 8B 1 9.125 lie NO. POINTS = 100 228:2 343/77 286.8 O.0t B 2 0.158 - 276.5 2896.2 322.9 e.o1 8B 6 2.031 203.9 350.9 253-3 @.01 8B § 6.124 - 227.4 161.8 123.9 @.et B 5 0.022 Sas 324.2 390.4 379.6 @.a1 8B 2 0.120 a 164:9 206.6 155.8 @.01 B 5 0.030 ce 301.2 390:1 354.7 @.01 8B 1 9.432 = gy 206.0 267.2 207.7 9.01 B 6 9.023 =i: 269.3 244.7 250.8 0.01 8 6 2.0228 371.7 413.9 474.3 @.01 B 5 2.830 & 243.4 191.9 311.6 0.01 8B 6 2.033 W @.3 159.8 166.7 199.9 @.00 B 5 0.033 a 358:2 370.8 488.7 @.¢0 8B B 0.037 a 328.5 375.8 375:8 0.00 B 2 0.078 8.2 41:6 157.1 147.8 0.00 B 1 9.993 #! 6. 333.2 391.0 388:7 06.00 B 5 9.058 2 270.2 2817.5 288.6 @.0@ B 2 9.032 w 313-2 276.4 291.8 0.082 B & 0.029 @.! 95.7 95.5 158.3 8.88 B 8 0.034 ba 282.8 211:4 282.7 @.00 B 2 0.031 ee ME EY ge bd ste es . . a1 . . . 254.2 309:6 308.5 0:00 8 S 0.022 . emiie-t) tle || te eeee lee eee e 89:9/99:59 371.2 3728.4 4@2.5 8.08 B S$ 9.031 PERCENTAGE 135.5 163.6 147.9 0.00 B 1.035 me es 382:8 425.8 34514 0.00 B 2 0.022 CASE NOs \Gee 4aacg 43:6 «0 ees} OleOle : 423. ‘ £89 ‘eat 354.4 219.7 315.0 e.e0 B 5 9.030 THANGHELL CRRESTEr me oo Be EB GOT Oe ‘ ‘ IS . @. . " 135.2 134.3 179:3 9.00 B S 0.021 en $30.6 130.1 98:8 0.00 B 5 2.019 376.4 385.4 491.8 e@.¢2 B 3 9.019 Bees fiss «itsie oles BC le . . : : : . RRESTER foerg ike?) aS Beg i 8934 LOCATION 25, ANALYSIS FOR TRANQUELL ARRES . . . . . . , RI ees Gare If Ben i 9.824 CLOSING SPAN « 180.8 DEGREES . , . + +208 A De 3 BEE HEE Sb S Seee Then 4 : : : : : @.SQGE C1 3.GQ0E G2 @.Q00F-01 1.800E 02 1.000E 2 B37-1 318.5 194.8 8.09 B i 9.019 1.000E 00 3.5Q0E 03 1.020E G2 3.000E 02 1.000 00 386.9 497-2 997-8 = 8.00 B @ 8.200 1.@80E @2 1.380E 02 1.000E 02 6.394E 02 6.QQ0E Ot 308.2 (245.7 235-2 8.88 B ® %.000 B.93@E O@ 1.@00E OO 1.800E G1 9.20@E-01 8.000E-01 mMoDroe w mMmwpro Df Muprs a ~ CASE NO. 608 OSCILLOGRAM NO. 1 MAX. EVENT FROM DISTRIBUTION agoaut LOCATION: 3 TEELAND 198.KU PER UNIT VOLTAGE 26.8 MS/DIV mMoBerpro @ MoOrnvxrs Dd MoODpDrIvw oOo af 1.5 1.0 6.5 8.8 -8.5 “1.8 “1.5 1.5 1.8 8.5 8.90 -8.5 -1.8 Age2zve LOCATION: 4 DOUGLAS 138 KYU PER UNIT UGLTAGE CASE NO. 682 20.9 MS/DIV OSCILLOGRAN NO. 2@ MAX. EVENT FROM DISTRIBUTION MorPxrs » MHDrDU Dd MMNDpxrVvo AES2UZ LOCATION? 5 CANTWELL 138 KU PER UNIT VOLTAGE CASE NO. 602 20.8 MS/DIV OSCILLOGRAN NO. 3 MAX. EVENT FROM DISTRIBUTION 7a9 mopre ww MODIoM D morris Oo he ‘ Lh AGBEV4 a LOCATION? 25 | HEALY END OF LINE FROM CANTWEL PER UNIT VOLTAGE HANA eM ww aodantond td tet ts. 2. Sa -2 3 3 2 1 @ “CASE NO, 682 28.9 MS-DIV OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION MHNDpiv Cc MYHDID mnrpxry ABE2US LOCATION: 11 TEELAND 13.8 KV PER UNIT VOLTAGE 1.5 1.8 @.5 8.8 -@.5 ~1.2 1.5 1.6 @.5 @.8 -8.5 -1.6 1.5 1.8 @.5 2.8 8.5 -1.0 “1.5 CASE NO. 602 20.8 MS/D1Y OSCILLOGRAM NO. 5 Max. EVENT FROM DISTRIBUTION 7aaq muprn 2 MODrD. wa mMnPrLe oOo ABe2I1 LOCATION: 41 TEELAND TCR CURRENT SYSTEM KI LOAMPERES CASE NO. 602 20.8 MSvDIV OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION a marr w mo DEO! MoODra wo ageREL - (LOCATION: 25 “HEALY END. OF LINE FROM CANTUEL PER UNIT ‘VOLTAGE- SYSTEM KILO-AMPERES SYSTEM MEGA~JOULES @,15 @.1@ 8.05 9.00 enfeeeeeiporeneorenpinrenpeenifeoon Fosneloeil 76.05 -@.10 0.15 - CASE NO. 602 26.8 MS/DIV OSCILLOGRAM NO. 7 MAX. EVENT FROM. DISTRIBUTION 168 KU ARRESTER OPERATION EVALUATION FOR TYPE 2: @.0@ COUL. EVALUATION FOR TYPE 3t @.07 Rn Gold Will Fu. Warmer ight Pro Mactonzig, Tee land Dovetn : Ise by 2 BEeW GY) (Gy cone | | iY ” a4 =H - Cold Hild 13.8 Vv OPERATING BREAKER D OPEN BREAKERS F,I AECIFL CLOSING RESISTOR @.88 (OHNS) case NO. 623 FROM? DOUGLAS 138 KU INSERTION TIME @.00 (MS) CFERATION! ENERGIZATION Tor HEALY 138 KU MAX, CL. SPAN 8.33 (MS? “DESCRIPTION OF SYSTEM CANTVELL WATANA LINE OUT OF SERVICE WEAR PT.MACKENZIE AREA REPRESENTATION i <)4 “TABLE 1 ABOBTL TEMPORARY LINE-NEUTRAL VOLTAGE ~ CREST PER UNIT QUANTITIES (*=DENOTES NON-SINUSOIDAL) PRE-SUITCH VOLTAGES, BREAKER D IS. OPEN LOCATION .. 4 8 c 1 6.99 @.99 1.08 gic 1.0@ 8.99 1.00 4 18t 1:00 1.20 S$ @:a1 @:01 0.93 25 0.at 0.04 0.01 CASE: 603 TABLE 2 ABOSTA TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k*DENOTES NON-SINUSOIDAL > POST-SWITCH VOLTAGES, BREAKER D 1S CLOSED LOCATION A B c i 1.0L 1.04 1.88 3 1,03 1.82 1.20 4 1.85 1.05 1.83 5 1.06 % 1.05 * 1,83 ¥ 2s 1.04 2% 1.04 ¥ 1.01 * 22a MwMDpDxro w mnprs Db Morr Oo 1.5 1.0 @.5 0.2 ~8.5 1.2 71.5 AGO3V1 LOCATION: 5- CANTUELL 138 KU PER UNIT VOLTAGE CASE NO. 603 10.8 MS/“DIV OSCILLOGRAM NO. 1 STEADY STATE VOLTAGE BREAKER D 1S CLOSED mMonrpxrvw w MoHrvpirIv Dd Monrprs oO AGOBVe LOCATION: eS HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE 1.5 1.0 @.5 8.8 -@.5 “1.8 “1.5 1.5 1.0 @.5 @.8 ~@.5 1.0 2.5 1.5 1. @.5 0.0 -8.5 1.8 “1.5 CASE NO. 683 10.0 MS/DIV OSCILLOGRAM NO. 2 STEADY STATE VOLTAGE BREAKER D IS CLOSED TABLE OF HIGHEST OVERVOLTAGES CLOSING ANGLES FOR PHASE A 332.2 328.4 359.7 rw + MOwWe he aWO na en 354.4 368.3 32.1 420.2 203.8 51.4 $14.6 226.5 376.4 276.5 328. 116. 196. 161. 302. 396. 386. 435, 424, 382. 230. 44. 471. 123. 266. 166. 156. aso. 303, we s we @. NWO ION weNoOnawvening B 374.6 384.4 405.4 137.8 116.6 381.0 372.4 370.8 429.2 134.3 350.5 390.4 433.3 178.6 157-1 328.5 161.8 239.7 232.0 237.2 136.7 449.4 137.6 219.7 350.9 c 481.6 283.7 330.2 184.8 132.8 388.7 402.5 488.7 347.8 179.3 486.7 379.6 415.0 229.1 147.8 231.4 123.9 185.3 98.7 300.1 118.9 373.6 113.9 315.0 253.3 405.3 104.1 417.2 PER UNIT QUERVOLT AGE A 1.55 1.85 2.32 1.70 1.42 1.86 2.20 2.20 1.58 4.54 1.86 1.54 2.18 1.95 2.08 2.08 1.74 2.06 2.06 1.47 1.56 1.57 1.84 1.35 1.70 2.03 2.02 2.02 1.53 1.82 1.55 1.62 1.62 1.95 1.83 1.78 1.96 1.98 1.96 1.86 2. 1. ~64 a. +69 2. +65 1 1 1 1. 2. 2. 1. 1. 1 1 1 1 ris 172 144 4. ‘67 2. 2. :) +83 1. 63 4. 1. 1 4 iS 1 1 1 1 e 1 t 1 1 1 i 1 1 1 1 4 1 1 4 1 1 1 1 i 49 82 32 ai st 16 1S $s S6é 54 +84 78 +57 33 80 o6 e6 Si 83 98 89 +88 62 +99 72 +97 ott -50 4. +61 +96 +77? 1. 96 6? +94 +87 +63 i. 54 Si +83 S51 +83 +8? 67 6? ¢ 2.91 2.35 1.75 1.57 Be NUNUNNMMUNANNMONNNNNMUNNAMNN MAX PU. 2.49 2.35 2.32 ~M wy i) eee ee ate eee Lee e666 8 6 6 69 © DWASVSPSSOSPS VPS OVOV POV SP OKrrKeKe UUM BDGOOCOKUNVAVUNHHOOHMNONNDHOCSTKrKUHDOrU tre wo No 1.97 1.96 1.96 1.96 1.96 1.95 1.94 1.94 1.93 1.93 1.91 1.94 1.91 1.94 1.98 1.87 1.87 1.86 2.7 PROBABILITY DISTRIBUTION MAX OF ALL PHASES 2.5 2.3 2.4 1.9 1.7 1.5 1.3 PER UNIT OVERVOLTAGE if + Lie POINTS = 188 a = - {jit @.3 +t 4—+-—+- | _| 4 8.0L 8.1 12 18 2838 50 7888 38 $s 99.9 99.99 PERCENTAGE CASE NO. 603 % WAVEFORM HAS 4 PEAKS ABOVE 183.3 KU(1.63 P.U.) THIS IS 1.2 ® 108.@ KV (SA RATING) & 1.414 THERE WERE @ SUCH WAVEFORMS LOCATION 25, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 180.0 DEGREES SETUP DATA 3.600E 2 3.5@0E 03 2.5Q0E O1 1.600E 00 1.Q@80E 82 B.330E ee i. +O@8E 60 1 380E e2 a. 4. i. ea. AGB3D2 QGOE-C1 1.800E G2 @8CE G2 3.080E 90 OSCE 92 2.2393E 63 Q@O0E-O1 9.090E-01 1.Q900E 2 1.Q80E 90 6.GQ0E O41 @.G30E-@1 TABLE OF ARRESTER ENERGIES PROBABILITY DISTRIBUTION CLOSING ANGLE FOR PHASE ENERGY NO.OF MAX a B c MU-SEC PHASE OP. KA. 413.0 363.8 479.9 0.08 B 2 9.193 32.7 137.8 184.8 0.06 B 3 6.240 328.5 375.8 375.8 @.06 8B 6 0.23! Bee Het See Ee bb gue . 4438. . . . 420.2 303.1 417.2 0.03 B S 6.133 a NO. POINTS = 180 303:7 317.6 372.0 0.63 B 1 9.289 : 323-1 428.2 487.4 0.03siB 2 0.133 116.2 1@2.1 75.3 8.03 B 2 @.151 =~ 136.2 128.4 39.8 2.02 B 1 0.084 S 6.5 — 254.2 309.6 308.5 o.02 B 2 oii & 85.7 95.5 155.3 @.@2 B 1 9.098 = 44.8 81.7 70:2 @.02 B 5 9.119 = aa 269:8 435.7 442.8 @.02 B B 9.063 = 8. 51.4 113.8 167.6 9.e2 8B 1 @.131 324:2 390.4 37916 o:02 B 5 9.158 & 249.4 191.9 311.6 0.02 B 2 e@tat Wi a.3 276.5 296.2 322.9 9.02 8B 2 0.085 a 146.@ 137.6 113.9 @.ot B 1 9.100 | {14:8 171.3 168:6 @.e1 8B 2 0.2628 & a2 | 309.8 328.5 231.4 @.01 B 5 @.054 BR 382.8 425.8 345.4 @.01 B 1 9.267 n 266.8 288:4 833.6 0.01 B 1 9.982 w 135.7 134.3 179:3 0:01. B 6 0.977 @.1 : 259.4 278.2 282.8 9.01 B 3 0.067 = 237.1 310.5 194.8 er B 5 0.037 | 358-6 493-7 36:8 Oot «BOO 0.8 365.3 371.8 381.2 0.01 B 2 8.042 @.81 8.1 12 1@ 2832 58 7886 90 39 99.9 99.99 368.3 481.2 485.3 @.01 8B S 9.030 PERCENTAGE 186.1 171.3 142,39 8.01 B 5 0.960 me ge Be ge FOF be : : 8:01 1 9.95 262.1 353-0 368.3 «801i 2 0.075 ence Oa \G02 ue eS HEE SS Ob Ob Re : , +8 1 9,066 119.2 94.9 192.0 0.01 8B { 0.051 TRANGUELL QRRESTER ee mas gr Ge gd Bie ; . ; . 1 0.04 : . 301-2 39051 354.7 o.101 8B § 9.031 RATING = 108.8 (Ky 333.2 391.0 388,7 @.¢1 8B 5 9.027 41.6 157.1 147-8 6.01 B 5 @.023 206-0 267-2 207.7 8-84 B 5 @.031 : : al 120 6 8.075 ee oe a eee LOCATION 25, ANALYSIS FOR TRANQUELL ARRESTER ‘ ; : :e 1 0.266 . ’ ead 18il2 Teed glee g 8.838 CLOSING SPAN = 180.0 DEGREES . . . . 204 ee SS BEE ESRB Bes qe MeN 18 : . ‘| . 8.030 2.500E 01 3.600E 02 9,000E-01 1.800F 02 1.000E 02 449-6 214.3 131.5 @.00—B 4 0.054 1,0Q0E @0 3.500E @3 1.000E @2 3.000E 00 1.000F 20 323.9 328.2 = 37643 G80 iB 2 0.049 1:O80E @2 1.380E OZ 1.000E @2 6.394 O2 G.000E O1 434.2 443.9 387.1 8.00 BB 1.030 B.330E G0 1.900E 00 1.200F 01 0.000E-01 @.000E-01 MPAPrrD MmMorrv oO MnrrD w 1. oF 1.@- 1 ee 2 8 & oe es eo vie no oe mH ne on AGO3V1 LOCATION: 1 PT, MACKENZIE 138 KU "PER UNIT VOLTAGE ae ll Me i a 1.5-+- CASE NO. 603 56.9 MS/DIV OSCILLOGRAM NO. 3 Max. EVENT FROM DISTRIBUTION Morpirv w MaDrwv DvD Moarpxrv Oo AGO3U2 LOCATION? 3 TEELAND 138 KU PER UNIT VOLTAGE "CASE NO. 683 50.0 MS/DIV OSCILLOGRAM NO. 4 MAX, EVENT FROM DISTRIBUTION MOoDrIDw w& Monpry oO AGO3U3 LOCATION: 4 DOUGLAS 138 KU PER UNIT VOLTAGE 1.5 CASE NO. 603 5@.6 MS/DIV OSCILLOGRAM NO. 5S MAX, EVENT FROM DISTRIBUTION mMNpxry w MOHorD Tr MoDprv Oo AGOau4 LOCATION: 5S ~ “4 * CANTVELL 138 KY PER UNIT VOLTAGE 1 2 3 tn a HU ; UYU UV TUN f i CASE NO. 603 50.0 MS/DIV OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION MoHDpDxrDv w MuprDs Dd MADIEV O AGO3VS LOCATION? 25 HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE CASE NO. 683 OSCILLOGRAM NO. 7 MAX. EVENT FROM DISTRIBUTION 50.0 MS/DIV _ .AGO3UE - . LOCATIONs 11 " -TEELAND 13.8 KU PER UNIT VOLTAGE hi ~1.0- CASE -NO. 603 5@.0 MS/DIV SSCILLOGRAM NO. 8 “MAR. EVENT FROM DISTRIBUTION MaDrn ° ° MarPxIrID AGO3U7 LOCATION: 12 HEALY 12.0 KV PER UNIT VOLTAGE CASE NO. 603 50.0 MS/DIV OSCILLOGRAM NO. 9 MAX. EVENT FROM DISTRIBUTION 2no ‘muapxrv w MODI w AGOREL LOCATION: 25 HEALY END OF LINE-FROM CANTUEL PER UNIT VOLTAGE SYSTEM KILO-AMPERES @.15- @.10- 0.05 8.00 b—th-+-—p- 4-4-4 ++ 4H -0.05 4 ~0.10- ~8.15 SYSTEM MEGA~JOULES O.15 @.19-+ 0.25: CASE NO. 603 OSCILLOGRAM NO. 9 MAX. EVENT FROM DISTRIBUTION 50,0 MSvDIU MADD w Moprow ww AGOIER LOCATION: 12 HEALY 12.0 KY PER UNIT VOLTAGE SYSTEM KILO-AMPERES SYSTEM MEGA- JOULES CASE NO, 603 Se. MS/DI¥ OSCILLOGRAM NO. 10 MAX. EVENT FROM DISTRIBUTION TCR ARRESTER OPERATION EVALUATION FOR TYPE 2: EVALUATION FOR TYPE 3: ®.93 COUL. 2.41 mMonDxrv w@ MnDIrDvD Db MoOrPIrD oOo AGO3I1 LOCATION: 14 TEELAND TCR CURRENT - SYSTEM KILOAMPERES “CREE NO. 603 5e.@ MS/DIV OSCILLOGRAM NO. 8 MAX. EVENT FROM DISTRIBUTION MAP D MaADIV w MOoHYPITID Oo Abe3T2 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 683 $0.0 MS/DIV OSCILLOGRAM NO, Y MAX. EVENT FROM DISTRIBUTION Ca Th. Warmaright 138 bv (LS Pr. Machonig, Tectond say ea Dorp tn. . ase wv at 5 Gold Wild 43.8 Av OPERATING BREAKER 0 OPEN BREAKERS F,',U AGO4PL CLOSING RESISTOR @.@8 COHNS) CASE NO. 604 FROM: HEALY 138 KU INSERTION TIME @.09 (MS> OPERATION: ENERGIZATION TO! HEALY TRANSFORMER MAX. CL. SPAN 8.33 (NS) DESCRIPTION OF SYSTEM CANTUELL UATANA LINE OUT OF SERVICE HEALY SUS QUT CF SERVICE LEAK PT. MACKENZIE AREA REPRESENTATION TABLE: Les | ABOATL TEMPORARY LINE=NEUTRAL: VOLTAGE REST. UNLT QUANTITIES ¢ iets aNON-STHUSOIDAL 1 1.00... 4,00 1.00 3 - 1.¢2 ° 1.2 1.01 4 1.05 . 1.05 4.04 5 tat3 dred 1.42 2s 1.14 1.18 1.14 22. 8.81 Q.a1 0.01 CASE: 604 TABLE 2 _-AGO4TA TEMPORARY LINE- NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (X=DENOTES NON-SINUSOIDAL ) Post-surtcH VOLTAGE, BREAKER O IS CLOSED LOCATION A B c 1 1,00 1.00 1.00 3 1.02 1.02 1.01 4 1.05 1.05 1.04 5 1,19 1.12 1.43 2s 1.14 1.18 1.14 22 4.13 1.12 1.14 : TABLE OF HIGHEST OVERVOLTAGES CLOSING ANGLES FOR Se a B 471.5 484.3 414.6 382.9 358-7 405.4 328.4 384.4 330.3 365.8 365.9 |. 371.8 396.8 429.2 424.9 423.6 382.8 425.8 396-6 393.7 323.9 328.2 328.5 375.8 379-1 383.5 435.2 304.5 376.4 325.4 324.2 390.4 420.2 303.1 333.2 391.0 323.1 428.2 413.8 363.8 371.2 372.4 300.9 - 375.4 32.4 65.9 301.2 390.1 358.2 370.8 161.3 148.6 371.7 413.9 366.5 350.5 364.8 433.3 434.2 © 443.9 44.8 81.7 348.8 311.6 303.7 317.6 203.9 350.9 97.6 75.8 345.5 315.9 302.9 436.3 386.9 437.1 146.0 137.6 227.4 161.8 262.1 353.0 116.2 i1@2.1 41.6 157.1 190.5 24.8 119.2 94.9 332.0 374.6 269.8 © 435.7 106.0 837.8 368.3. 481.2 228.2 343.7 460.7 534.5 32.7 9137.8 438.6 449.4 PER UNIT OVERVOLTAGE a B c 1.70 1.18 1.25 1.59 1.24 1.31 1.56 1.21 1.32 1.55 1,17 1.27 1.55 1.16 1.27 1.55 1,18 1.33 41.54 1.16 1.30 1.53 1.21 1.33 1.53 41.21 1.32 1.50 1.21 1.34 1.48 1.17 1.29 1.48 4.11 1.34 1,31 1.29 1.47 1.46 et? 1.32 1.30 1.23 1.46 1.46 1.12 1.34 1.27 1.25 1.45 1.45 1.14 1.35 1.45 1.12 1.29 1.2a1 1.32 1.44 1.44 1.20 1.39 1.43 Li? 1.27 1.20 1.29 1.43 1.42 1.23 1.18 1.25 1.26 1,42 1.42 1.32 1.28 1.24 1.27 1.42 1.23 1.286 1.42 1.32 1.21 1.42 1.42 1.18 1.37 1.19 1.32 1.42 1.41 1.20 1.23 1.41 1.22 1.18 1.28 1.41 1.18 1.19 1.30 1.46 1.40 1.22 1.25 1,40 1.23 1.16 1.39 1.21 1.40 1.40 1.32 1.27 1.40 1.21 1.21 1.39 1.25 1.14 1.19 1.30 1.38 1.289 1.37 1.27 1.37 1.17 4.23 1.21 1.32 1.36 1.33 1.19 1.36 1.24 1.18 1.36 1.32 1.36 1.25 1.35 4.18 1.34 1.35 1-31 1.14 1.17 1.289 1.34 1.ea1 1.34 1.29 1.34 1.18 1.30 MAX P.U. 1.70 1.59 1.56 1.55 1.55 1.55 41.54 1.53 1.53 1.5@ 1.48 1.48 1.47 1.46 1.46 1.46 1.48 1.45 1.45 1.44 1.44 1.43 1.43 1.42 1.42 1.42 1.42 1.42 1.42 i.42 1.42 1.41 1.41 1.41 1.40 1.40 1.48 1.48 1.48 1.40 1.39 1.38 1.37 1.37 1.36 1.36 1.36 1.36 1.35 1.35 1.34 1.34 1.34 PER UNIT OVERVOLTAGE -20CE 01 3.600E G2 O -@0GE GG 3.500E 03 3.000E 82 -OB0E G2 1.380E C2 1 +330E 0@ 1.000F 06 @ PROBABILITY DISTRIBUTION MAX OF ALL PHASES Le NO. POINTS = 183 at 8 @.0L Bl 12 1@ 2038 50 7888 92 PERCENTAGE 33 (99.9 99.99 CASE NO. 604 % WAVEFORM HAS 4 PEAKS ABOVE 183.3 KU(1.63 P.U.) THIS IS 1.2 & 108.@ KU (SA RATING) & 1.414 THERE WERE @ SUCH WAVEFORMS LOCATION 22, ANALYSIS FOR TRANGUELL ARRESTER 18@.0 DEGREES AGe4DL -@@0E-O1 1.800E G2 1.000E G2 3.@Q08E 08 1.000E 00 ,@@GE @2 6.394E G2 6.@G0E O1 +@0GE-01 @.08@E-O1 6.000E~-O1 CLOSING SPAN = SETUP DATA moDpru D> MoDproo w Morpxrw oo @.5- 0.0 | -0.5 4H i i EA aaeaut _ LOCATION: “4 . PT.. MACKENZIE: 138 KU PER UNIT VOLTAGE LAA LVVTHCCCH VATE TT TATUOHTHHT 1.5 CASE NO. 604 50.8 MS/DIV OSCILLOGRAM NO. 1 MAX, EVENT FROM DISTRIBUTION MoanDxro w MonDxrv Dv MnDrB oO ABesU2 LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE 1.5 CASE NO. 604 $8.0 MS/DIV OSCILLOGRAN NO. 2 MAX. EVENT FROM DISTRIBUTION MnnDiyv w Mopopxrv D> MnDxrD Oo AGO4U3 LOCATION? 4 DOUGLAS 138 KU PER UNIT VOLTAGE 1.5 CASE NO. 604 58.0 MNS/DIV OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION mnHDry D> MODI w MHDIV oO 1.54 1.0 e.c Hil ve “1.04 ' A6e4u4 LOCATION: 5 — “CANTUELL 138. KU PER UNIT YOLTAGE ee ir ae aii CASE NO. 604 CSCILLOGRAM NO. 4 MAA. EVENT FROM DISTRIBUTION 50.0 MS/DIV MoDIrD D Movrv w Morpis o AGG4US LOCATION: 25 HEALY END OF LINE FROM CANTHEL PER UNIT VOLTAGE 1.5 v= ll nt Ha a i nT 1.0 “1.5 1.5 ATA 7 FTAA 4 1.5 1.8 EE Mi «TTT Tn “1.04 “1.5 CASE NO. 604 50.0 NS/DIV OSCILLOGRAN NO. & MAX. EVENT FROM DISTRIBUTION MODroD w MADPID DB mMyHDpDrIv oO “3 CASE NO. 604 OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION AGO4UG LOCATION: e@2 HEALY SUS TRANSFORMER PRIMARY PER UNIT VOLTAGE 50.0 MS/DIV AGO4U7 AGO4UR AGO4I1 LOCATION? 14 LOCATION: 12 LOCATION: 11 TEELAND 13.8 KU HEALY 12.8 KU TEELAND TCR CURRENT PER UNIT VOLTAGE PER UNIT VOLTAGE SYSTEM KILOAMPERES 3 A 2 e 1 H A @ Ss = E 1 -2 -3 1.5 3 p-c 1:8 B 2 HARK AARVERAT GAAS eA i me TT TTT ATV : Ep OSH URHUUHU UKHO HL H | | € ~1.04 -2: feos -3 3 c 2 : 1 H A ® $ -1 E -2 “1.5 -3 CASE NO. 604 5.0 MS/DIV CASE NO. 604 50.0 MS/DIV CASE NO. 604 50.0 NS/DIV . OSCILLOGRAM NO. ? OSCILLOGRAM NO. 8 OSCILLOGRAM NO. 9 MAX, EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION 4 a Pro Machen, Tec and Gold ill Fe. Wareertsht 135 EY fg ase av (id ean ~ CurtwelL 13e wh) a Iss kv. N\ Watana 138 kv Gold Hilt 13.6 Av ABOSPL OPERATING BREAKER X OPEN BREAKERS F,I,L,K CASE NO. 60s FROM! HEALY 12 KV OPERATION? SUS RAMP UP TOS HEALY SUS DESCRIPTION OF SYSTEM CANTUELL WATANA LINE OUT OF SERVICE TEELAND SVS _IN SERVICE WEAK PT.MACKENZIE AREA REPRESENTATION Munpruw w MOpDIB Pp Maprive oO (60514 “LOCATION: 14 “TEELAND TCR CURRENT SYSTEM -KILOAMPERES CASE NO. 605 OSCILLOGRAM NO. 1 50.0 MS/DIV RAMP UP OF HEALY TCR TEELAND SUS IN SERVICE MnDnDro w@ Mnpxrs Dd MODI Oo AGOSI2 LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 605 5@.@ MS/DIV OSCILLOGRAM NO. 2 RAMP UP OF HEALY TCR TEELAND SUS IN SERVICE MoDrvd w Mwpxrs oO 565V14 LOCATION! 3 “= TEELAND 138. KU PER UNIT UOLTAGE ae NP ha vA i VUTEC a 1.54 1. “8, wi. ® 5 s- Hn os il | i A ORSE NO. 605 50.08 MS7DIV OSCILLOGRAM NO. 2° RAMP UP OF HEALY TCR TEELAND SUS IN SERVICE MoDrD w MOHDIV D MODrD oO Aagesve LOCATION: eS HEALY END OF LINE FROM CANTWEL PER UNIT VOLTAGE 5@.@ MS/DIU CASE NO. 60S OSCILLOGRAM NO. 4 RAMP UP OF HEALY TCR TEELAND SUS IN SERVICE AGBOSY3 a AGESU4 "LOCATION! 41.0 | LOCATION: 12 TEELAND 13.8 KU HEALY 12.0 KU PER UNIT. VOLTAGE 3 PER UNIT VOLTAGE CASE NO. 69S 50.8 MS/DIV . CASE NO. 68S 5@.0 MS/DIU OSCILLOGRAM NO. S OSCILLOGRAM NO. 6 RANP UP OF HEALY TCR RAMP UP OF HEALY TCR TEELAND SUS IN SERVICE TEELAND SUS IN SERVICE MoDxry. Db mMopro ow Movrw oOo “LOCATION! 25 “HEALY END OF. LINE FROM CANTUEL “4.5 1.5 1.0 a.5- - 0.8 2.5 ~1.8 “4.5 o2 SPER. UNIT MOLTAGE 18.0 MS/DIU CASE NO. 605 OSCILLOGRAN NO. 7 $s. $. VOLTAGE, HEALY.SUS FLTR QUT, TEELAND SUS IN SERVICE morrvw w MADD D Moroxrs oO . 0.8 AGOSUG LOCATION? 3 TEELAND 138 KU PER UNIT VOLTAGE 1.5 1.0 B.S 0.8 -O.5 “1.8 “1.5 1.5 1.8 6.5 6.e -8.S 1.8 “1.5 1.5 1.2 @.5 a -8.5 “1.0 “1.5 : CASE NO. 685 10.8 MS/DIV OSCILLOGRAM NO. 8 S. $. VOLTAGE, HEALY SUS FLTR OUT, TEELAND SUS IN SERVICE 1.8 “CASE NO. 605 12.0 MS/DIV OSCILLOGRAM NO. 16 $.S. VOLTAGE, FILTERS ARE. OFF “ TEELAND SVS IN SERVICE. “TABLE “OF HIGHEST OVERVOLTAGES CLOSING ANGLES FOR PHASE PER UNIT OVERVOLTAGE MAX ee | BE c “oA B c P.U. 178:2- - 157.3. - 2.19 1.73 1.46 2.19 5B+4 140.6 ~ 1.27 2.13 1.68 2.13 153.5 95.6 2.20 1.13 2.11 241i 92.1 308,3 . 1.00 2.29 1.69 2.09 209.5 |. 289.5 2.e9 1.98 1.43 2.09 169.5 . 98.7 2.06 1.24 2.08 2.28 261.2 95.5 1.83 1.24 2.06 2.06 366.0- 97.3 1.51 1.50 2.06 2.06 494.7 454.6 1.2¢ 2.04 1.73 2.04 263.3 477.2 1.13 2.83 1.64 2.03 183.2 187.5 2.02 1.15 2.¢3 2.9 177.8 449.7 1.99 1.79 1.78 1.99 156.4 109.8 1.97 1.23 1.99 1.99 147.5 290.e 1.05 1.99 1.49 1,99 214.7 445.6 1.98 1.72 1.41 1.98 114.3 $1.9 1.32 1.26 1.98 1,98 154.3 123.0 1.97 1.0% 1.85 1.97 76.4 65.2 1,19 1.48 1.95 1.95 462.3 440.6 1.18 1.48 1.93 1.93 191.1 . 392.0 1.92 1.65 1.48 1.92 141.8 118.7 1.92 1.13 1.87 1.92 227.8 114.8 1.91 1.it 1.9 1.91 220.0 310.1 1.90 1.81 1.38 1.98 17@,.3 $@3.0 1.90 1.44 1.34 1.990 250.5 279.9 1.38 1.88 1.38 1.88 75.8 83.4 1.21 1.88 1.83 1.88 90.8 164.4 350.9 1.88 1.83 1.23 1.88 198.8 223.1 459.0 1.85 1.82 1.63 1.85 188.5 355.9 73.3 1.49 1.56 1.84 1.84 315.4 431.1 426.5 1.42 1.52 1.84 1.84 204.3 333.8 72.9 1.46 1.58 1.84 1.84 301.4 344.6 235.6 1.43 1,31 1.83 1.83 215.8 173.6 274.6 1.82 1.24 1.26 1.82 197.8 224.8 333.6 1.82 1.78 1.31 1.82 392.2 158.0 386.3 1.84 1.58 1.20 1.81 » 323.3 148.3 329.3 1.68 1.79 1.45 1.79 296.7 103.6 134.4 1.35 1.79 1.14 1.79 152.2. 103.4 ° - 297.7 1.02 4,78 1.62 1.78 145.4 472.3 491.4 1.34 1.78 1.44 1.78 216.2 188.0 134.3 1.76 1.03 1.35 1.76 261.5 246.8 67.3 1.09 1.48 1.74 1.74 442.6 383.3 298.2 1.45 1.41 1.73 1.73 160.0 241.9 311.2 1.58 1.72 1.05 1.72 e2.1 152.@ 269.6 1.68 1.14 1.22 1.68 193.1... 143.7 156.0 . 1.30 1.67 1.00 1.67 412.8. 334.7. 215.7 1.34 1.32 1.66 1.66 89.0 264.6 3a?7.4 0. 1.287 1.66 1.43 1.66 319.1 - 213.7 355.7 1.61 @.88 1.64 1.64 Bee.i. 359.0 328.4 $164 4:52 1012 1.64 377.65 371.7 317.8 1.62 1.08 1.24 1.62 181.6 358.7 238.8 1,5? 1.58 1.38 1.58 135.9 173.1 182.1 1.58 @.99 1.33 1.58 272.9 381.7 379.3 1.58 0.98 1.26 1.58 PROBABILITY DISTRIBUTION MAX OF ALL PHASES ee NO. POINTS = 180 2 mT LE TT eg ETT ETON LET OS ia a a A ECE OC 2 *7'e1 Bl 1 16 2030 S@ 7ase oe 33 99,3 95,99 PERCENTAGE PER UNIT OVERVOLTAGE N CASE NO. AGOSD2 X UAVEFORM HAS 4 PEAKS ABOVE 21.4 KUC1.26 P.U.) THERE WERE @ SUCH WAVEFORMS LOCATION 12, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN = 36@.@ DEGREES SETUP DATA AGOSDX ae OSE G2 1,B00E @1 1.800E 02 9.000E-G1 3.G600E G2 1.0 1,.000E 0@ 3,.S5@@E 03 1.000E G2 3.80QE O@ 1,.000E OO - 1.260E @1 2.080E 01 4.750E 01 2.017E 03 6.@Q0E O1 8.33GE O@ 1.@000F 0@ @.800E-01 9.800E-01 4. 0G0E-01 - “A mManDdxro mopxrovo c-A marx : AGOSVE LOCATION: 120 HEALY 12.8 KU “PER UNIT VOLTAGE CASE NO. 60S 20.8 MS/DIV QSCILLOGRAN NO. 13 MAX. EVENT FROM DISTRIBUTION TEELAND SUS IN SERVICE Monpryw w MADIVD D mMupxrs oO ABeSUS LOCATION? eS HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE CASE NO. 605 26.8 NS/DIV OSCILLOGRAM NO. 14 MAX. EVENT FROM DISTRIBUTION TEELAND SUS IN SERVICE MorvxrD w mMHSTrv v- Monvxrv oO AGOS1O LocaTIoN: 3 TEELAND 138 KU PER UNIT VOLTAGE AEOS11 LOCATION? 11 TEELAND 13.8 KU PER UNIT VOLTAGE Lez 1.5 1.04 ap 1:0 0.5 p os 2.0 4 ee -0.5 § -@.5 -1.@ -1.0 “165 H165 1.5 1.5 1.0 pec 1:8 0.5 p 05 @.8 u e.e -@.5: e “0.5 ~1.8 ~1.0 n1.5 -1.8 1.5 1.5 1.8 on te a5 p oS @.8 R e.0 “0.5 £ -e.5 -1.0 -1.@ “tS case NO. 685 20.0 Ms/DIV tS case NO. 605 20.0 NS/DIU OSCILLOGRAN NO. 15 OSCILLOGRAN NO. 16 MAX. EVENT FROM DISTRIBUTION TEELAND SVS IN SERVICE Max. EVENT FROM DISTRIBUTION TEELAND SUS IN SERVICE MnDIOD w Masxrv © le, ABOSI3 - LOCATION? 11 | _CTEELAND TCR CURRENT SYSTEM KILOAMPERES CASE NO. 62S OSCILLOGRAM NO. 17 20.0 NS/DIV MAX. EVENT FROM DISTRIBUTION TEELAND SUS IN SERVICE mMaDbprp D> MoHenvrwu w mMoprse ao AgeSI4 LOCATION? 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. 685 20,0 NS/DIV OSCILLOGRAM NO. 18 MAX, EVENT FROM DISTRIBUTION TEELAND SUS IN SERVICE MYDD. Db MnoxrD DB mwovxrv D> _ AGOBEL LOCATION: 12 HEALY: 12.0 KU PER UNIT VOLTAGE ft bearttin nes SYSTEM KILO-AMPERES 1.5 1.6 9.5 2.9 8.5 ~1.8 “1.5 SYSTEM MEGA-JOULES @.15 @.18 8.e5 @.08 +- ttt =0,05 “0.18 9.45 CASE NO. 605 20.0 MS/DIU OSCILLOGRAM NO. 19 MAX. EVENT FROM DISTRIBUTION ARRESTER OPERATION EVALUATION FOR TYPE 2: .@@ COUL. EVALUATION FOR TYPE 3: 2.54 2°x°1°I'3 ~SYBXYRNE NAdO Nest = Titn plod x _ waNv3NT ONTLYY3d0 ouad sat 8) aa ect Vs pewtem Ws Tit Pleo ___ ah NOTLVLNES34d35e VBYY BIZNSROUN Ld AYEN BOINGSS 4O LN0 SAS dHvVgaSL 39INN3S JO LNO SNIT YNYLON TW13rLNYS W3LSAS 40 NOITLd1NO53C SAS AIVBH tGh dM aWbe SNS tNoFLye AA St AIWBH sWONs 903 Au OCT f wueiey ean poe | 6) zp h}} i y 4 it QZ S J ot #60 s? eo wt U ) a8 ect # Leng pMep oy Silussoen sag mMopivw MOD Boe mMapirv Oo “) -ABO6IL : AGOEUL AGeGUZ .: , LOCATION! = 12 LOCATION: 3 LOCATIONt 25 — oo HEALY. --TCR CURRENT — : . TEELAND 138 KU HEALY END OF LINE FROM cme “aS: SYSTEM -KELOAMPERES PER UNIT VOLTAGE PER UNIT VOLTAGE 3 : , : 1.5 “y at: a a 10 1 : 4 l 1) A q ont au on P OFAN RS REA AAO Hl Hoe AMM LEA i} f 2 SST TT E E AVEO TAU TUTE “1.8 “1.5 1.5 B a Modi esd a, PAWN Ahh Ce A 3 3 os OVTVVTVTHTWHHTWVVAVVNANNHHANA “1.0 “1.5 1.5 c ce te 8.5 ‘ Ss edlll : oe | E £ -0.5 -1.04 case NO: 606 50.0 Nis/pIu ** CASE NO. 606 50.8 MSvDIV we case NO. 606 ©” «S0.@ AS/DIU OSCILLOGRAN NO. 1 OSCILLOGRAM NO. 2 OSCILLOGRAM NO. 3 Rane UP OF. HEALY. TCR RAMP UP OF HEALY TCR RAMP UP OF HEALY TCR TEELAND SvS OUT OF SERVICE TEELAND SUS OUT OF SERVICE TEELAND SUS OUT OF SERVICE - AGOGU2 . Asesu4 Sin <SbOCATIONS. 11 z° . LOCATION: 12 * TEELAND $3.8 KY 2. HEALY = 12.8 KU "1 BER. UNIT) VOLTAGE: PER UNIT VOLTAGE : : _— 1.5 a-p 18 i we nh \\ Hh | HH nnn cen -s.04 “1.5 1.5 Ht sil os] il HH oy ie -@.5 WA WH) 11.5 con 2+9 a 4 @.¢ ei ah -1.04 “Ase Auee NO, Gt 5. NSDIV 165 CASE NO. 606 50.0 nsvDIV OSCILLOGRAM NO. 4 OSCILLOGRAM NO. S ‘RANP UP OF HEALY TCR : RAMP UP OF HEALY TCR TEELAND SUS OUT OF SERVICE TEELAND SUS OUT OF SERVICE MODrv map r MoDre Oo AseGUS LOCATION? 2 ~ HEALY END-OF LING FROM CANTUEL "PER UNET VOLTAGE: ee 1.6 @.s e.e4- -e.sd “1.6 “1.5 1.5 1.8 8.5 2.8 0.5 ~1.04- ~1.64- 1.6 1.0 0.5 0.0 -O.5 1.0 “1.54 CASE NO. 606 16,9 MS/DIV OSCILLOGRAM NO. 6 &.$. VOLTAGE, HEALY SVS FLTR OUT, TEELAND ‘SUS OUT OF SERVICE MoODrD w Mnnpxryw Dd Mopxrv Oo AGOBUE LOCATION: 3 - TEELAND 138 KV PER UNIT VOLTAGE 1.5 1.8 8.5 8.8 -8.5 71.0 “1.5 1.5 1.0 @.5 2.0 “0.5 “1.0 “1.45 1.5 1.0 @.5 8.0 ~@.5 “1.0 “1.5 CASE NO. 606 10.0 MS/DIV OSCILLOGRAM NO, 7 $.S,. VOLTAGE, HEALY SUS FLTR OUT, TEELAND SVS OUT OF SERVICE CASE NO. 608 «=. NEvDTU OSCILLOGRAN NO. 13 - SVS\UOLTAGE, FILTERS. ARE OFF TEELAND SUS ‘NOT -IN SERVICE: Hl ~ .TABLE OF HIGHEST OVERVOLTAGES CLOSING ANGLES FOR. PHASE a 291.2 197.8 222.9 183.1 359.8 222.1 96.6 we ~ - Bae ea ea eR seen waSs 0 OUOVISW+ 1 O-VODS TW) BGO BL NVOSHVISOMNNUAYVO Ree ey oe ee tev er ce enews reo e et un nis ae PMUAOVUT AUTH HOH WUD ONDUIVMOENDWOUVEDOM-SUMHAIGAOCWAMWINH SD - ” s 2e9. B 178.2 224.8 220.0 183.5 169.5 359.9 75.8 366.8 258.5 355.9 233.5 183.2 156.4 214.7 431.1 i91.1 363.1 47.8 383.3 352.7 462.3 162.4 263. 26 RADAR OD NOOr Gore coer ees are wu to a VOONEHUWUHKVYITVWONDWH-~] NOW UM) bo ¢c 187.3 333.6 310.1 95.6 PER UNIT OVERVOLTAGE a B c 2.29 1.53 1.45 2.28 2.03 1.35 2.2? 1.82 1.31 2.07 1.14 2.21 1.66 1.38 2.21 2.20 1.72 1.27 1.40 1.29 2.28 1.97 1.60 2.16 4.41 2.16 1.78 1.89 1.52 2.14 2.12 1.85 1.26 1.92 1.45 2.12 1.87 1.12 2.18 2.08 1.95 1.38 1.29 1.27 2.08 2.08 1.67 1.43 1.84 1.42 2.06 2.04 1.63 1.50 2.02 1.33 1.89 1.54 1.22 2.01 1,20 1.17 2.08 1.20 1.99 1.68 1.24 1.41 1.94 1.36 . 1.91 1.98 . 1.35 1.89 . 1.17 1.41 . 1.88 1.88 1.13 1.47 @.97 1.287 1.84 1.44 @.95 1.56 8.99 1.82 1.39 1.82 1.32 1.79 1.00 1.76 1.e0 1.24 1. i + nr~ om 1.20 1.66 1.65 1,65 1.65 1.34 1.28 1.55 1.63 1.16 1.63 1.83 1.38 63 1.19 . 1.45 . + ” . ivy wu Pe ep ee ee ne he et pe nk th eh ep he RE he pee Dies ee SB eee Da Be re 0 a os O00 OB OO Ove A oe UNVVADOVHONDS LOTVHVGOVID TIVO HUDG eee eee ee he eee eee eee eet eee SNNOOOHW veer a he ee ee CsTuoeonn Feb Re PARA EAA bED Deh ROR ROO ERE RO REO ERE RODEO REE UMUUUMUUNMUMUUMMUD max P.U. 2.29 2.28 2.27 2.et . BASUUMANAOD ose ee eee wee eer ee oer eenrreeed ste eee eee eae se eee Rg SCR SO eee eee ee sess shwenosse MMNANODWWVHWAUMNHOWANOVNNWWADWDNHVDO-aADSHUSA eee PROBABILITY DISTRIBUTION - n a nn = ny nN ~ a t.B > = PER UNIT OVERVOLTAGE wv - 2 8 Oar Bt 12 CASE NO. 666 % WAVEFORM HAS 4 PEAKS ABOVE THERE WERE MAX OF ALL PHASES NO. POINTS = 188 16 2038 53 7888 98 PERCENTAGE 39 93.5 33.99 21.4 KUC1.86 P.UL) @ SUCH UAVEFORNS LOCATION 12, ANALYSIS FOR TRANQUELL ARRESTER CLOSING SPAN ~ 360.0 DEGREES SETUP DATA 1.200E 01 1.800E 2 1,.80@E 0@ 3.500E 03 1.260E @1 2.080E O1 8.330E 08 1.000E 06 AGOEDX @.@00E-01 3.600E 02 1.00@E e2 1.000E 62 3,.000E 80 1.008E 00 4.750E @1 2.017E 03 6.80CE Of @.090E-G1 @.@O08E-61 %.800E-01 er MwpDPIVv sa MODrIG Dp Mondor Oo aseeys LOCATIONS 3 TEELAND 138 KU PER. UNIT VOLTAGE 157 1.0 0.5 0.0 -@.5 ~1.0 “1.5 1.5 1.8 @.5 2.0 0.55 -1.0 “1.54 CASE NO. 606 OSCILLOGRAM NO. 10 MAX, EVENT FROM DISTRIBUTION TEELAND SUS OUT OF SERVICE 26.0 MS/DIV ManvirIn w MODIrD D MODIrD Oo AGOE1E LOCATION: 25 HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE CASE NO. 606 20.0 MS/DIV OSCILLOGRAM NO. 11 MAX. EVENT FROM DISTRIBUTION TEELAND SUS OUT OF SERVICE A-B marry B-C mMopxrs mond 1.5 1.0 O05 2.0 0.5 ABCG11 LOCATION: 11 “TEELAND 13.8 KU PER UNIT VOLTAGE -1.07 ~1.5 1.5 1.04 71,0 5+ “CASE NO. 606 20.0 MS-DIV OSCILLOGRAN NO. 12 MAX. EVENT FROM DISTRIBUTION TEELAND SUS OUT OF SERVICE A-B MOnDID MoHrvxrs Morvdr 60612 LOCATION: 12 HEALY 12.0 KV PER UNIT VOLTAGE CASE NO. 606 20.0 MS/DIVU OSCILLOGRAM NO. 13 MAX. EVENT FROM DISTRIBUTION TEELAND SUS OUT OF SERVICE mMyrpxrv Morprv Dv MOADPIWV oO ABesI3 LOCATIONt 12 .. “HEALY... TCR CURRENT SYSTEM KILOAMPERES CASE NO. 606 20.8 MS/DIV OSCILLOGRAM NO. 14 MAX. EVENT FROM DISTRIBUTION TEELAND SUS OUT OF SERVICE Qo 1 MoHDxrV >P MODIVD D ANPrv D _«RBOGEL ‘LOCATION: 12 HEALY 12.0 Kv -PER: UNIT UOLTAGE SYSTEM KILO-AMPERES @.3 2 Qt 2.0 “0.1 -8.2 “ -@.3 SYSTEM MEGA-JOULES 0.15 @.10 2.05 8.08 -@,05 -0.18 ~@.15 CASE NO. 606 28.0 MS7DIV OSCILLOGRAM NO. 16 MAX. EVENT FROM DISTRIBUTION TEELAND SYS OUT OF SERVICE EVALUATION FOR TYPE 2t @.@@ CQUL. EVALUATION FOR TYPE 3% @.@2 Fe. Warewrigat isa by(i0 ABSOPL OPERATING BREAKER I OPEN BREAKERS D,F,0,K,L,R CLOSING RESISTOR 9.20 (OHMS) CASE NO. 652 FROM! HEALY 138 KY INSERTION TIME @.99 (MS) OPERATION? ENERGIZATION Tor DOUGLAS 138 KU MAX. CL. SPAN 8.33 (mS) DESCRIPTION OF SYSTEM CANTWELL WATANA LINE OUT OF SERVICE HEALY SUS ON BUS 7103 ‘ UTRAL_VOLTA _ . CREST. PER UNIT QUANTITIES. ~ CsDENOTES * NON-SINUSOIDAL) - Roa 34 419 eBSe. WAW WS BWOO orf ID HD WII OOO O UI W OY eee ew ee eee er ee ee eee MUSH UM DOU HO-» OUH Mon CLOSING ANGLES FOR“ PHASE: 26 7 ® 1 2 i ‘3 S 1 7 SRUTIMHVO~ OONUHMWNSLIINAOD ra Cr UN me LI UeLhODVeorr eosencesere sce el € “268 1.39 1.54 1.47 1.62 1.46 1,90 1.79 1.44 1.65 1.94 1.59 1.89 1.73 1.63 1.29 1.69 1.51 1,S5 1.54 1.68 1.79 1.43 1.46 1.77 1.76 -76 +24 244 +74 32 -65 1.27 1.44 1.72 +72 rh te he he rm oa QOONWKD ne «eee re eeee CO RT Fee Bae ~ aAVUDD ee lad >» 1.77 1.53 1.5 1.37 2.23 4.41 1.83 1.67 1.98 1.95 1.58 1.91 1.44 1.88 1.85 1.84 1.82 1.8@ 1.79 1.79 1.79 1.57 1.78 1.77 1.38 TABLE OF HIGHEST OVERVOLTAGES “PER UNIT QueRvoL.taGe c 2.60 2.56 2.40 2.35 1.58 2.07 PROBABILITY DISTRIBUTION MAX OF ALL PHASES ala | NO. POINTS = 10 Nn. = 2.2 N a - = PER UNIT OVERVOLTAGE 1.2 PERCENTAGE CASE NO. &5¢ X WAVEFORM HAS 4 PEAKS ABOVE 183.3 KU(1.63 P.U.) THIS IS 1,2 & 108.0 KU (SA RATING) ¥ 1.414 THERE WERE @ SUCH UAVEFORMS LOCATION 24, ANALYSIS FOR TRANGUELL ARRESTER CLOSING SPAN = 19¢.0 DEGREES SETUP DATA _ABSODI some on see et S.t0eras jeter at eaee 8 3 1.@80E G2 1.398CE 2 1.00@E G2 6.394E 02 G6.OORE O1 8.330E 0@ 1.600F 08 8.CQ0E-O1 @,.800E-01 &.00GE~O1 POE. ORES STRR ENERGIES CLOSING ANGLE FOR PHASE. ¢ VHKVHeWUMWsA Wy 300,1 356.9 376.3 491.8 8 345.4 8 123.9 9 273.3 { 2 105.3 396.8 429.2 347.8 228.2 343.7 286.8 292.9 198.1 162.7? 106.0 237.8 117.2 197.4 249.1 183.3 63.4 151.2 182.4 302.2 245.7 235.2 301.8 390.1 354.7 3248.8 311.6 282.9 158.3 249.2 233.9 313.2 276.4 291.2 324.2 399.4 379.6 414.6 382.9 334.8 328.4 384.4 283.7 359.7 405.4 33@.28 330.3 365.8 285.4 226.5 119.2 113.6 161.3 148.6 92.1 41.6 157.1 147.8 44.8 81.7 70.28 @3.7 ° 312.6 ° 372.8 88.4 187.5 192.3. 33+2° 391.2 388.7 Si.4 113.8 167.6 20.8 303.1 417.28 74.7 413.9 474.3 62.1 353.0. 368.3 85.5 . 303.4 234.9 66.9. 371.8 281.2 30.6 130.1 98.8 88.6. 201.1. 291.6 98.6 74.8. 193.2 @6.0° 867.2 207.7 298 9O99HSHSHOD SHOOH HOH VDOOGS OAS HOSOHDOSVSSHOHSOD ENERGY NO.OF MSEC PHASE OP. 8.05 2.84 @.83 wee eet en ee ee th ee Oe oe he Ss BSVVOOocossss ese ssssssssesssssssssasssseseeceese sees secees seer ee SIVISSSS9U9E9 2 Volatotolelelrictoleiclolicleicloelsizicieivievisieleleselsivisielelclclelsielvlelolelelelelvlelsicleleleleley AVMHNMNAHOOHOK- MGMAUANHNWMUDGDVUUHMNOMONUKHSUHOHMWANHSHOHUAHNHSVHHUHWOH max KA, 8.230 8.229 9.188 @.184 @.179 8.068 9.124 @.084 @.083 8.087 +849 +878 047 829 +048 PROBABILITY. DISTRIBUTION ©. NO. POINTS = 190 = a Pt TTT TT Tt PPLE TY | 8.81 8.1 12 1@ 2638 5@ 7888 90 $9 $3.9 39,99 PERCENTAGE 2 wn ARRESTER ENERGY (MW -SEC) e we 8.8 CASE NO. 658 TRANQUELL ARRESTER RATING = 108.0 KV LOCATION 24, ANALYSIS FOR TRANGUELL ARRESTER CLOSING SPAN = 180.@ DEGREES SETUP DATA assep2 ose ate f00e Se soar es fueneren Lane Se Leer ee. 3 g bie 1.080E @2 1.380E O2 1.800F O2 6.394E 02: 6.0005 01: © B.330E 00 2.0@0E-@1 1.3@0E O1 0.000E-01 0. 000-01 D> Monvrv w ‘urd x0 MODxrs oO ce . CASE -NO. 650 OSCILLOGRAM.NO. 1 MAX. EVENT FROM. DISTRIBUTION & HeLaCATLOS: a4 SLAS. END. OF SLIDE FROM CANT. PER UNIT VOLTAGE 20.0 MSVDIV MOrPIrID wo MOnDIrID D> MoDrsw oO AGSOVva LOCATION? CANTUELL 5 138 KU PER UNIT VOLTAGE CASE NO. 650 OSCILLOGRAM NO. 2¢.0 MSvDIV @ Wax. EVENT FROM DISTRIBUTION > MAvpIrU w MOornpxrD MYDD O 4.5 1.04 @.5 8.0 -@.5 “1.8 -1.S5 1.5 1.0 @.5 8.0 -9.5 1.0 “1.5 460099 LocniTion: 25 HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE CASE NO. 659 OSCILLOGRAM NO. 3 MAX. EVENT FROM DISTRIBUTION. © - 20.8 MS/DIV - B&7A ABSOU4 ; A6SeUS : agseus LOCATION: 6. inant +. LOCATION! 7 : LOCATION? 8 HEALY 138 KU ial __NENANA 138 kU ; GOLD HILL 138. KU “BER UNIT VOLTAGE ir : PER UNIT VOLTAGE i PER UNIT VOLTAGE - ir 1.5 iT 1.5 He a 10 a 1:0 pe 5 ws p oS a Sea Ree 4.0 eek $ -0.5 8-05 : -1.0 -1.8 -1.5 a5 1.5 1.5 B. B 1.8 B 1.0 Pp p %S p 5 4 4 @.0 K e.0 F § -0.5 2 -0.5 “1.0 -1.0 “1.5 1.5 1.5 1.5 . co Le gg 10 7 p 28 p os 4 4 0.0 R 9.04 : 2 ~0.5 : -0.5 -1.0 1.8 CASE NO..65¢@ 20.0 MS/DIU “1S CASE NO. 650 ze.ems/piv SS CASE NO. GSO. BO.@ MSHI OSCILLOGRAM NO. 4 OSCILLOGRAN NO. 5 OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION MAX. EVENT FROM DISTRIBUTION . MAX. EVENT FROM DISTRIBUTION MoOpoxrv B-¢c MHoxrv c-A MwMHpirv ABSOU7 LOCATION? 12 HEALY 12.@ kv PER UNIT VOLTAGE 1.5 O.54 9.9- =@.5 -1.0 “1.5 1.5 1.0 9.5 8.2 + -8.5 ~1.0+ “1.5 1.5 1.0 Q.5 8.8 -8.5 “1.0 1.5 CASE NO. 650 20.8 MS/DIV OSCILLOGRAM NO. 7 MAX. EVENT FROM DISTRIBUTION Mossy » MaADrD oa muasxiv o Locations ia. SYSTEM KILOAMPERES | CASE NO. 650° 2030 MS/DIU OSCILLOGRAM MO. 10 Max. EVENT FROM DISTRIBUTION MADD DP Marpro w MaDxrv o / . RESOI2 LOCATION: 13 GOLD HILL TCR CURRENT SYSTEN KILOANPERES CASE NO. 658 — 20.0 MSvDIV QSCILLOGRAN NO. if MAX. EVENT FROM DISTRIBUTION ons LOCATION: 24 . ~ DOUGLAS END. OF LINE FROM CANT. _ © PER UNIT VOLTAGE ° ee mn w mMaDry, | ‘SYSTEM KILO-AMPERES moprdw oO SYSTEM MEGA-JOULES CASE No. 650 20:0 MSvDIU OScILLoGkam No. 9 Néix. EVENT FROM DISTRIBUTION Gold Hin]. fe. Warmer isnt Ie ws 138 BV {aC a iV mrt <I Cuntwell 138 kV Gols itd eo ky 4a Wotana 136 kV Gold Hilt 13.8 Av ABSIPL OPERATING BREAKER I OPEN BREAKERS D,F.0,K,L,R,V CLOSING RESISTOR @.89 (OHMS) CASE NO. 651 FROM:t HEALY 138 KU INSERTION TINE @.86 (MS) OPERATION? ENERGIZATION TOr DOUGLAS 138 KV MAX. CL. SPAN 8.33 (NS) DESCRIPTION OF SYSTEM CANTWELL WATANA LINE OUT OF SERVICE HEALY SUS ON BUS GOLD HILL SUS OFF TABLES OF -HLGHEST OVERVOLTAGES PROBABILITY DISTRIBUTION: ©.) 3.88 CES FOR PHASE PER UNIT OVERVOLTAGE max eB =e A B c P.uU. °363:8.° 479.3. 1.64 i.62 B.56 2.56 . - "5805... 486.7 8 45e@. £Se@) | 53 2.53 MAX OF ALL PHASES (.363ie0 0 3e8:3° se 2149-446 2.49 2.8 NO. POINTS = 100 374-6 | 481.6 1:98 1:51 2.48 248 : 3 370.8 488.7 1148 «4.478137 2:37 383.5° °° 499.4 1.45 1.47 2.04 2.04. 2.8 435.7. 442.8 1.94 1.99 2.01 2.01 428.2 407.4 1.59 1.91 2.00 2.00 ty 2.8 161.8 123.9 1:88 1.64 1.95 1.95 a 350.9 253.3 1.45 1.94 1.34 1.94 = 2.2 191.9 311.6 1.63 1.69 9 1.91 1.91 ie 303:1 447.2 1.91 1.50 1.528 3.91 5 343.7 286.8 1.66 1.87 1.74 1.87 Re 2-8 148.6 92.4 1.74 4.85 01.56 1.85 ti 119.2 113.6 1.85 1.52 1.60 1.85 Be 214.3 131.5 1.84 1.65 1.58 1.84 304:5 341.6 1.84 4.31 1.33 1.84 Ste 534.5 411.4 1.45 1.79 1.87 1.79 z 81.7 70.2 1.791.666 01.35 1.79 La 151.2. 182.4 1.78 1.600 1..47 1.78 et 134.3 179.3 1:46 1:77 «1.58 1.77 i] 249.1 © 183.3 1.25 1:76 1.36 1.76 D 1.2 "448.6 = BB6.8 1.63 1:74 © 1.62 1.74 igs.s 338 bers tise lta tiak 194 1a 333-2 391.0 388.7 1.24 1.49 1.49 1.74 $2 18 2058 58 7008 3 32.7 137.8 184.8 1.52 1.73 1.48 1.73 PERCENTAGE 159.8 166.7 199.9 1.44 1.72 © 1.54 1.78 51.4 119.8 167.6 1.72 1:50 1.49 1.72 166.5 203.6 296.9 1.38 1.36 1.72 1.72 130.6 130.1 98.8 [ors ree) mers l 1.74 345-5 315:9 273.3 1.70 1.60 1.67 1.70 348.8 311.6 282.9 1.721454 1.65 1.78 CASE NO, 651 330.3 365.8 285.4 1:64 1.78 1.55 1.70 398.2 873.7 374.2 1.69 1.63 1.60 1.69 386.9. 497.1 397.8 1.50 1.68 1,35 1.68 371.2 © 372.4 © 40215 1.29 1.68 1.39 1.68 % WAVEFORM HAS 4 PEAKS ABOVE 183.3 KUC1.63 P.U.) 97:6 2 75.8 104-2 1.68 1.38 1.42 1.68 Ds 376.4. 986.4. 491-8 | 1.420 11560 1.68 1.68 THIS IS 1.8 & 108.0 KU (SA RATING) € 1.414 837-1 310.5 194.8 4.62 1.68 1.32 1.68 396.6 393.7 366.8 1.32. 1.68 1.25 1.68 THERE UERE @ SUCH UAVEFORMS ae et Get be be be bg a tame wots . BB. ; : : : 1. i. > iieg leat 8.3 ier ide i126 ier LOCATION 24, ANALYSIS FOR TRANQUELL STER fee aes dee GR be ER EE ine 5 anh © 433.3. 8. 1. + . . ‘Sit ed Gee 15S Eb ORB EEE eek Sent, . 446.0: “S-. 33 ‘ ae 48 dS * 4,@80E 00 3.600E 02 @.000E-01. 1. 800E 02. $9658. 489.8 347.8 486 1.65 1548 4668 1900 68° 3.S00E O32 1.0806 O2 3.000E 00 seieg BRE See meee, «tee tee a eGe 1.980E O2 1-380E @2 1.900E 92 8.394E G2 343.2 276.4 agt.2 1164 11330104716 8.330E 0G E.C08E-O1 0.G00E-01 0.0008: » te WhLHKSODNID» wee. SO at 6 ese! si bl a sp eS 8 168, me Ld) VOOWLAHW 00 GIT) TG) FELON O bev a4 se 6 0s mis & @ els 8 eo 6 aeuw UOaAD AMAVOHYOROVMAUNAYSAVHUGRH COMNGWHONDS» “w bUL Oragcsas. ABLE OF ARRESTER ENERGIES WwW Vee wee AISMHAVAD PFW BLIND 0 Bi clei es Slsrerene: a9 Wr ons woo ww on ow 350. 65. 371. * rw. Wwe xe . MR SRWIMI Wajwer 064+ MWS ODN WH eu) - Pod Be soo L TSK asaese ~@ w “ Bg eo sie) Se A le = eee le (elie! ¢ TAI DO GHOD NW & IONGWVWNDHSNVOCHAHGSBHOWH OO: ‘ ie TO oo 7 NERGY | ._—NO.OF SEC” PHASE 1 t ' DS POVSOPTVSVSSS VS SODISSOG§S VP Sos ssgossssseoss:s SSSSSSSSSSTSSIIIIOSOSI OM HL ee ee ee OD wa w eliar g OF & o 6:6) 6 Sie. @ 1etibs al ol 21 0. 0.6.2. 101 4 6 ob @9 16: 8S © «o_o. rane POWMHN MHSOUNH HH MAVOVY AUN GOAN AAAAAIA ANA IH AHOWAAINOUHVANWAIAHANVINBHDOND sow alo © eesocen 29999 9000060000009006090029000008990062090000920900800000 SLOSS GOSSSODSISOBNSHHSNSOS OSS SOSHSSHSSOSSHNSSHSHESSS max. KA. @.276 @.289 @.281 8.225 2.076 °@,122e @.094 @.887 9.136 @.116 @.076 @.061 9.047 ®.062 @.068 %,033 @.051 0.047 0,044 0.045 @.047 8.0428 @.@29 @.0528 8.0428 @.047 @.250 ®.854 @.031 8.039 @.924 @.055 @.0S1 0,035 @.039 @.027 0.042 @.047 @.02eS @.908 @.037 @.044 8.012 %.027 8.0528 - 0.807 8.006 ~ 8.037 9.006 8.019 @.0a9 . @.027 8.024 PROBABILITY DISTRIBUTION 8.3 ARRESTER ENERGY (MW-SEC} 8.8 G.0l Bi 12 1@ 2838 S@ 7888 S@ 33 «93.3 99.99 LOCATION 24, ANALYSIS FOR TRANGUELL ARRESTER 2.400E 01 3.600E 02 0 1,000E @@ 3.S@0E 03 1 " 1.@80E G2 1.380E G2 1 8.330E @6 a.080E-O1 1 PERCENTAGE CASE NO. 651 TRANGQUELL ARRESTER RATING = 108.6 KU CLOSING SPAN = 180.6. DEGREES SETUP DATA sRGB” QOGE-61 1. R00E 8 OO0E Q00E 02 6.394E 02 6 3O@E O1 @.@00E~Ot “GASel 681° TABLE 1° agS1TA TEMPORARY: LINE-NEUTRAL VOLTAGE " OREST. PER UNIT QUANTITIES: (4*DENOTES. HON-STNUSOTDAL } “PRE=SUITCH VOLTAGE, BREAKER I OPEN 24 @-81 8.01 0.01 s @.01 0.01 2.1L 6 1.02 1.82 O.97— 7 1.¢2 1.02 9.9? g 1,01 1.01 8.98 9 ®.98 8.99 @.98 10 1.01 1.06 ®.99 GASES est TABLE 2 AGSITa oa ee re ee rl a ae te ee ee ee TEMPORARY LINE-NEUTRAL VOLTAGE CREST PER UNIT QUANTITIES (k=DENOTES NON-SINUSOIDAL ) POST-SUITCH YOLTAGE, BREAKER I CLOSED LOCATION A B c 24 4.15 4.13 1.99 5 1.09 1.69 1.04 6 1.07. 1.06 1.02 ? 1.04 1.03 1.0L 8 1.02... 1.03: 1.80 8: 1.80 1.01 @.99 “18. 1.01 1.01 1,00 mind DB: MADrW w MUDIIR Oo LOCATION: 24 ” “DOUGLAS END OF LINE FROM ‘CANT. “PER UNIT VOLTAGE... . CASE NO. 654 OSCILLOGRAM NO. 1 MAX. EVENT FROM DISTRIBUTION 20.9 MS7DIVU MaDIV w MaADID D> MoPxrv oOo agsivea LOCATION? 5S CANTWELL 138 KV PER UNIT VOLTAGE CASE NO. 65t 20.0 MS/DIV OSCILLOGRAM NO. 2 MAX. EVENT FROM DISTRIBUTION MoDrUY D MADID w MoDpro o ABS1U3_ LOCATION: 25 — HEALY END OF LINE FROM CANTUEL PER UNIT VOLTAGE 1.5 1.8 8.5 9.8 -8.5 1.0 “4.5 1.5 1.6 a.5 e.8 -8.5 -1.8 “1.5 ets 20.0 NS/DIV. - CASE..NO. 651 QSCILLOGRAN NO. 3 MAX. EVENT FROM DISTRIBUTION: ° Monxrsw w mopro Dd moerprs o _ ° aeeiu4 LocaTION: 6 HEALY” = 138 KU PER UNIT, VOLTAGE... CASE NO. 651 20.8 MS/DIV OSCILLOGRAM NO. 4 MAX. EVENT FROM DISTRIBUTION MoOprv w MODIrGW Db MaADXVD Oo ABS1US LOCATION: 7 NENANA 238 KU ‘PER UNIT VOLTAGE CASE NO. 651 20.0 NS/DIV OSCILLOGRAM NO. S MAX. EVENT FROM DISTRIBUTION MAPID w MHDPry D> MAPDLUW O AGSIVE LOCATION: 8 GOLD HILL 138 KU PER UNIT VOLTAGE Fi “20.0 MS/DIU CASE NO. 654i OSCILLOGRAM NO. 6 MAX. EVENT FROM DISTRIBUTION ee AeSiv? “ LOCATION? 12 HEALY | 12.8 KY PER UNIT VOLTAGE gt . _ CASE NO. 691 20.0 MS/DIV OSCILLOGRAM NO. 7 MAX, EVENT FROM DISTRIBUTION B ABSLUB LOCATION? 13 GOLD HILL 13.8 KYU PER UNIT VOLTAGE 1.5 cg 18 8.5 0.8 -@.5 1.8 “1.5 mMmnDvrey 1.5 1.0 @.5 8.8 “8.5 “1.8 “1S CASE NO. 651 22.0 MS/DIV OSCILLOGRAM NO. B MAX. EVENT FROM DISTRIBUTION 742 ‘@,.ay “manne o MeDxrw Oo. ff ROM Cont. hoe SYSTEM. KILO-AMPERES @.2 @.4 0.0" “O.4 -0.24 -@.3 co SYSTEM MEGA-JOULES e.18 0.10 e054 | -@.004+—4 ~9.05-4. “tenet. et. - oe : “CASE NO. 6S1. 20.0 MS/DIU OSCILLOGRAM NO. 9 max. EVENT FROM. DISTRIBUTION * ARRESTER OPERATION ~ - EVALUATION FOR TYPE 2: 9,96 COUL. _ EVALUATION FOR TYPE 33 0.04 “moprd Dp! Morrow w MODIV 2 AeSIIt LOCATION? 42... | HEALY « » TCR CURRENT: eysTen KILOAMPERES CASE NQ. 651 OSCILLOGRAN NO. 18° MAX. ‘EVENT FROM DISTRIBUTION 28.9. MS/DIV 72 Gord Wild Fae Mareen ht =e ass av (ie Pr. Ma boney, “ eden! ie foGnnss } 7 | Tew Land 15K bW Gold HITS 13.8 OV OPEN BREAKERS. H OPERATING BREAKER F CASE NG. SUS1- Vo ee ss BROML CANTUELL 138° KU OPERATION! 3-PH. FAULT. © | TO: CANT. END OF LINE _ DESCRIPTION OF SYSTEM UEAK PT, MACKENZIE AREA REPRESENTATION 3-PHASE FAULT AT CANTUELL END OF LINE FROM UATANA FEELAND SUC IN FULL CONDUCTIONCFULL LAG) a ee a enna eaters tet DESCRIPTION SPEED OF RESPONSE TEST FOR TEELAND SUS. ~ naa Marra ww MADIVD O SUSi0L susive SUSEIL LOCATION? 3 . : LOCATION? 41 LOCATIONS it . TEELAND 138 KY . TEELAND 13.8 KU TEELAND TCR CURRENT ae PER UNIT VOLTAGE / PER UNIT VOLTAGE SYSTEM KILOAMPERES capt Ge 3s i. - 1205 A-B A 8.87 Pp Pp @.044- k # : : 0:6 4} s : Ee E “1.0 =agGee SS 1.5 34 1.0- p-c 1-0 z 2 ‘i p @5 P | 2 th. H H 9.2 i a e.8 8 2 ~O.§- -8.5 =! i E - E 1.24 1.2 ~2@ =i.6 “1.5 -3 1.5 1.5 1.0 c-a 3-0 c 0.5 Pp 8.5 Pp H # 8.9 4 8.9 a -0.5-5 S$ -a.s ° 4 € | E id “1.0 : “1.54 =1.5 3: - CASE NO. SUSL 20.9 MS/“DIV CASE NO. SUSt 2.8 MS/DIV CASE NO. SVS1 28.0 MS/DIV OSCILLOGRAM NO. OSCILLOGRAM NO. 2 OSCILLOGRAM NO. 3 : S-PH. FLT. @ CANT. END OF LINE 3-PH, FLT. @ CANT. END OF LINE 3-PH. FLT. @ CANT. END OF LINE TINE CONST.©1S@MNS, BRKR H OPEN TIME CONST.©156MS,. BRKR H OPEN TIME CONST. «1S6MS, BRKR H OPEN mary MoeDxrg oO 1.0- 9.5 | 9.0 -0.5 -t.0+ “1.54 AS 1.049 @.5 “a -8.5 -1.0 =1.5 case NO. SUSI «BS. @ MS7DIV QSCILLOGRAM NO. 4 3-PH. FLT. @ CANT. END OF LINE TINE CONST. «88.5MS,BRKR.H OPEN 8.5 -8.5 “1.5 1.5 1.0 @.5 2.8 “8.5 ~1.8 “1.5 _ SUSTU4 LOCATIONt 11 TEELAND 13.8 .KU PER UNIT VOLTAGE ee CASE NO. SUS 20.0 MS/DIV OSCILLOGRAM NO. 3-PH. FLT. @ CANT. END OF LINE TIME CONST.<«88.5M5,BRKR.H OPEN MODrv wo MaAnrs Oo MuDrDv Dv syst la LOCATION: 44 : TEELAND TCR CURRENT .. SYSTEM KILOAMPERES © CASE NO. SUSL 20.0 Ms/DIV OSCILLOGRAM NO. 6. 3-PH. FLT. @ CANT. END OF LINE TIME CONST.=88.SMS,BRKR.H OPEN na CASE NO. SUST 28.6 MS/DIY OSCILLOGRAM NO. 7 3-PH. FLT. @ CANT. END OF LINE TIME CONST. *255MS ,BRKR.H OPEN FL. Warmer ight 138 by (ie rhs kv eG Wa oe Val Watana 138 AV uw Q ; \ Tyeland a : @ 4 a Qt me : oe S20 FROM! CANTUELL 198 KU 3-PH. FAULT TO: CANT. END OF LINE DESCRIPTION OF SYSTEM FT.WAL? MURIGHT= coun BILL LINE OUT OF SERVICE 3-SHASE FAULT AT CANTUELL END OF LINE FROM WATANA MEALY SUC IN FULL CONDUCTION(FULL LAG) " CONTINGENCIES GOLD HILL sus, OUT. .OF SERYICE Gord Wild 13.8 AV OPERATING BREAKER F OPEN BREAKERS €,R,V.K.L DESCRIPTION SPEED OF RESPONSE TEST FOR HEALY sys nad moore w mMapry > Marpxrs oO 78.5 oot -1.8- f “1.52 J: SNSeut LOCATIONS .6 ’ HEALY 438 KY “Le .PER UNIT VOLTAGE “i CASE NO. SUS2 20.0 MS/DIU OSCILLOGRAM NO. t 3-PR. FLT. & CANT. END OF LINE TIME CONST#ISOMS,BRKR.ERU OPEN £4 eos mw feeeetens: syseve LOCATION? 12 HEALY 12.@ KV PER UNIT VOLTAGE CASE NO. SUS2 20.9 MS/DIV OSCILLOGRAM NO. 2@ 3-PH. FLT. @ CANT. END GF LINE TIME CONST=150MS,BRKR.E&U OPEN MYPxryv w MoDrD D MADED oO suseli LOCATION: 12 HEALY TCR CURRENT SYSTEM KILOAMPERES CASE NO. SSB. 20.0 MS/DIU OSCILLOGRAM NO. 3 : 3-PH. FLT. @ CANT. END OF LINE TINE CONST=1S0MS,BRER.ERU OPEN: . aca MOeDry w maps y MoaDxrD oO svsey3 | LOCATION: © 6 “HEALY 13R KU - PER UNIT VOLTAGE CASE NO. SUS2 = 0.8 MS/DIY OSCILLOCRAM NO. 4 9-PH. FLT. @ CANT, END OF LINE TIME CONS*88.5MS, BRKR ESV OPEN MODY 157 1,04 965 8.2 -0.5 ~1.8 1.5 1.0 8.5 a. 0.5 “1.0 “1.5— suseu4 LOCATION: 12 HEALY 12.8 Ky PER UNIT VOLTAGE CASE NO. Suse 20.9 mSvoIV QSCILLOGRAM NO. S 3-PH. FLT. @ CANT. END OF LINE TIME CONS*B8.S9S,BRKR E&Y OPEN MYDzY > Mapovn MHPry o sus2iz LOCATION: 12° — HEALY | TCR ‘CURRENT SYSTES KILOGAMPERES CASE NO. SVS2 «2028 NEYO. OSCILLOGRAN NO. & |... 3-PH. FLT. @ CANT. END OF LINE TIME CONS*88.5NS,BRKR E&Y OPEN a74 Pe. Macbonsia Dovstn. runtwel Mealy Gore mun Fe. wareur taht 133 2 1s fo ay 5 ay 4 3 \? io >| 2} bom oma oH or} [aca Hi-1-<G if . ‘ £ Q oui a b &) 3 Fo 5 ((4) i 138 kV 9 i= i At - eps Gold Hilt mown 1368 AV + RE FH oe “ts hed a — — SUSSPi CASE NO. .§U83°- - - FROM? GOLD HILL 138 KY OPERATION: 3-PH, FAULT TO!” GH. END OF LINE an “DESCRIPTION UF SYSTEM OPERATING BREAKER @ OPEN BREAKERS P,R. 3-PHASE FAULT AT ‘GOLD HILL END OF LINE FROM NENANA, GOLD HILL Svc IN. FULL CONDUCTION(FULL LAG) DESCRIPTION MUDD D- Morpry. w Mopxry oO O.6 “0.5 eh ~1i.S- _ $Us3u3 LOCATION: 9 GOLD HILL 69°KU “FER. UNIT VOLTAGE GaSk NO. $US2 80.8 MS-DIYV OSCILLOGRAM NO. 4 3-PH. FLT. @ GLD HL END OF LIN TIME CONST.°88.5MS,BRKR P OPEN A-B MOHDIVD MoODxrv AnADpDxos SUS3U4 LOCATION: 13 GOLD HILL 43.8 KY PER UNIT VOLTAGE 1.5 1-04 e.54| @.0 -0.5 1.0 m1.5 1.5 1.8 2.0 ~@.5 ~1.6 “1.5 1.5 CASE NO. SUS3 20.8 MS/DIU OSCILLOGRAM NO. 5 3-PH. FLT. @ QLD HL END OF LIN TIME CONST.+88.5MS,BRKR P OPEN MADD w MADIBD D MAHDIEVD OO “CASE NO. SUS3 sus3t2 LOCATION? 13 GOLD HILL TCR CURRENT SYSTES KILOAMPERES 20.6 MS7DIV OSCILLOGRAM NO. 6 3-PH. FLT. @ GLB HL END OF LIN TIME CONST.*88,.5M5,BRKR P OPEN 'y, man Dre mina x °0 marry oO suswt ~ LocaTron: 9 GOLD WILL 69 KU PER UNIT UCLTAGE in _ ° seietens > it be oe 8 ' n> an primed ee eed i s o an = & a ' 2° 8 ’ be oS oon a Leo tehaicth he teeh oracle ceed —<— 6 ! a brrechenn beans feomegamee} ames > in & ae ae Sapien eo 8 YF = , a wy <=. 1 Pe co t - + ay se SCILLOGRAM NO. t Px aa Oo susave LOCATION: GOLD HILL 13.8 Ku PER UNIT VOLTAGE MoDxov MAPRrv D Manxrs MYDoO w MoODov MOrvrD Oo NO. SUS 20.0 NSD CASE NO. $US3 OSCILLOGRAN NO. 3-PH, 28.6 MS7DIU PH, FLT. $ GLD HL END OF LIN INE CONST. ©15¢.MS,BRKR P OPEN 8 GLD HL END OF LIN TINE CONST.*158.85,SRKR P OPEN SUS3I1 LOCATION? . 13 GOLD HILL TCR.CURRENT ~ SYSTEM KILQAMPERES fr CASE NO. SUS3 23.9 MS/DIV GSCILLOGRAN 10. 3 3-PH. FLT. 8 GLD HE END OF LIN TIME CONST.=150.S,BRER.P OPEN. Mobo w AODEU Morro o _ -SUS3UE LOCATION: 143 GOLD HILL 19.8 KU _ S¥SBUS / .. LOCATION? 9 ' GOLD HILL 69 KU PER UNIT VOLTAGE PER UNIT VOLTAGE o fF gS et we os we 8 tH OB Aw mH ? Moprw mM le ott al > -1.52 CHSE NO. SUSZ 56.8 MS/DIu OSCILLOGRAM NO. 4 S-PH. FLT. @ SLD HL END OF LIN TIME CONST. -88.5M5,BRKR P OPEN CASE NO. SYUS3 OSCILLOGRAM NO. 5S 58.6 MS/DIV 3~PH. FLT. 8 GLD HL END GF LIN TIME CONST.*88.5MS,BRKR P OPEN MHnHdIW w Marrv > MODIDVD Oo SUS3I3 LOCATION! 13 . GOLD HILL TCR CURRENT SYSTEM KILOAMPERES CASE NO. SUS3 58.0 MSvDIV OSCILLOGRAN NO. 6 3-PH, FLT. @ GLD HL END OF LIN TINE CONST. -88.5MS,BRKR P OPEN Pre Masten, 25 Contsel l= Heal amin o Water ip BaD ene, nae a) : Ps arene ! ! I z $4 hoe o-oo wel <Z Tee Lond Dowe ta i mae Ve me Fy i> ste i qd & | 3 i Gold Will i3s.8 kv cited mn Nunn : OPERATING BREAKER B OPEN BREAKERS ane le CASE NOe Tete | -~ FROM: TEELAND 198 KU . ; aes |e OFERATION: LOAD REJECTION "TO! END OF LIKE A “DESCRIPTION oF SYSTEM WEAK PY. MACKENZIE AREA REPRESENTATION Wi LOAD FLOU TO FAIRBANKS . JELL~UVATANA LINE OUT OF SERVICE .. — = an CONTINGENCIES DESCRIPTION s jer. UAINURIGHT-GOLD- HILL LINE OUT OF SERVICE 7 TIME CONSTANT TEST : : Vee st ym Moore w MOLeU Db” mMoaprv oO Tetris “ "LOCATION: 14 . TEELAND TCR CURRENT: __ SYSTEM KTLOAMPERES MopDrsve w MHaADrID D MHODRDIDB oO -8.5 ~1.8 1.5 TCiv4i LOCATION: 3 TEELAND 138 KU PER UNIT VOLTAGE 1.S 1.0 @.5 9.8 1.5 1.0 a ts th ec dllitl Nii Te1ve LOCATION! 14 TEELAND 13.8 KU PER UNIT YOLTAGE MarDtv we" GABE HO. Tet 50.0 NS/DIV ee CASE NO. Tet 56.0 NS/DIU ee CASE NO. TCL 50.0 NS/DIU OSCILLOCRAN NO. 4 OSUILLOGRAN NO. 2 OSCILLOGRAM NO. 3 LOAD REJECTION AT TEELAND 138 LOAD REJECTION AT TEELAND £38 LOAD REJECTION AT TEELAND 138 TIME CONSTANT*S3 Ns TIME CONSTANT=53 MS TIME CONSTANT=S3 MS DIN D mu 4p MoLpro w MODVIrDT Oo CoM Tere LOCATION: 14. - TEELAND TCR CURRENT £YSTEM KILOAMPERES t wr a ay og ’ i we CASE NO. TCL 58. NS/DIV CSCILLOGRAM NO. 4 LOAD REJECTICN AT TEELAND 138 TINE SONSTANT<150 MS manavDiuv w MOBDID D> MaPIrD oO FCIU3 LOCATION? 3 TEELAND 138 KY PER UNIT VOLTAGE “CASE NO. TCA 50.9 NS/DIU OSCILLOGRAM NG. & LOAD REJECTION AT TEELAND 138 TIME CONSTANT=150 MS cA mMnnDrIya TC1V4, LOCATION? 14 TEELAND 13.2 KU PER UNIT VOLTAGE CASE NO. TC1 58.0 MNS/DIV OSCILLOGRAN NO. & LOAD REJECTION AT TEELAND 138 TIME CONSTANT*150 NS APPENDIX B Description and Explanation of Test Result Sheets APPENDIX B Description and Explanation of Test Result Sheets There are two or more pages for each case investigated. The first page shows the circuit diagram for that portion of the system studied. Circuit breakers and switches are indicated by lettered squares; system locations which were monitored are identified by numbered circles. The system operation is defined and the results are summarized therein. The second page tabulates the system voltages recorded for the various system conditions as identified in the table headings. They include both the temporary pre-switch and post-switch voltages. The succeeding pages display the statistical distribution curves of the transient voltages and/or the oscillograms of the voltage, current and/or energy waveforms taken during the test. The following is a description of the various lines and column headings in the order of their occurrence. FIRST PAGE - UPPER HALF DIAGRAM - The upper half shows a one-line diagram for that portion of the system being investigated. FIRST PAGE - LOWER LEFT QUARTER CASE NO. - The number of each case appears in this space. B-1 OPERATION Pre-Switch Post-Switch Sustained Fault Energizing Energizing into a Fault De-Energizing The following nomenclature is used. The voltages on the system before the circuit breaker operates, and no fault on the system. The voltages on the system after the circuit breaker operates and after all transients have subsided. The voltages on the system with the operating circuit breaker closed and with a fault on the system; all transients have subsided. Energization of a portion of the system; no trapped charge present. Energizing a portion of the system with a bolted fault present; no trapped charge exists on the system. Investigation of transients incurred when switching off (isolating) a portion of the system without current-chopping by the operating circuit breaker. B-2 Load Rejection Restrike Fault Initiation Fault Clearing Fault Initiation and Clearing FROM TO With a specified load flow all three poles of the line breaker are opened. The interruption of load flow of this investigation does not include any reaction due to machine overspeed and/or any excitation system response. A single or multiple phase restrike across the opening contacts of the breaker during a de-energizing operation. Investigation of the transients when a fault occurs. Three phase de-energization of a portion of the system suffering from a fault. A fault is initiated and subse- quently de-energized by opening of the appropriate circuit breakers. Station bus at which the switching is performed. Location of the remote (receiving) end of the line, cable, transformer or other terminal apparatus being switched. B-3 DESCRIPTION OF SYSTEM CONTINGENCIES Comments describing the system will appear here. Comments describing system contingencies or other pertinent information will appear here. FIRST PAGE - LOWER RIGHT QUARTER OPERATING BREAKER OPEN BREAKERS The location of the circuit breaker or switch performing the switching operation. Indicates the location of open breakers and switches. The parameters of the operating breaker or switch are then listed as follows: CLOSING RESISTOR, OPENING RESISTOR INSERTION TIME MAXIMUM CLOSING SPAN, OPENING SPAN The ohmic value of the resistor inserted in the closing or opening sequence. Minimum time that the resistor is inserted. Maximum possible pole misalign- ment during the closing or opening operation. RESULTS - The magnitude of the highest voltage observed during this particular investigation is recorded here. The existing and applicable arrester ratings, types and constructions at the indicated locations are specified herein. CONCLUSIONS - Any other pertinent information or conclusions appear here. SUBSEQUENT PAGES The following pages may display the tabulated system voltages for various system conditions, the statistical distribution curves of the transient voltages, and the oscillograms of the voltage, current and energy waveforms pertaining as required by the specific case. B-5 APPENDIX C Surge Arrester Types and Protective Characteristics The three types of surge arresters considered in a TNA study are: Type 1. General Electric Alugard (R) I Arrester_ or Equivalent 1; 312 kV and below (Model 9L11L) a. The arresters can sustain 1.10 x rating for 10 cycles. b. The voltage impressed on the arrester must not exceed rating for more than 20 cycles. 2. 336 through 444 kV (Model 9L16A) a. The arrester can sustain: 1.3 x rating for 5 cycles, or 1.25 x rating for 10 cycles. b. The voltage should drop to 1.1 x rating within 20 cycles. Type 1 arresters are essentially obsolete and _ the manufacturer should be consulted for more specific capabilities. Type 2. General Electric Alugard (R) II Arrester_ or Equivalent Ls All ratings (Model 9L11M or 9L16B) can sustain: a. One-half cycle at 2.0 x rating followed by an envelope of 1.3 x rating of 10 cycles, followed by 1.2 x rating for the next 10 cycles and 1.15 x rating for the next 40 cycles (1 second total on a 60 Hz basis). b. Two one-half cycles at 1.6 x rating followed by an envelope of 1.25 x rating at 10 cycles, 1.2 x rating for the next 10 cycles and 1.15 x rating for the next 40 cycles (1 second total on a 60 Hz basis). C-1 Type 3. General Electric Tranquell (R) or Equivalent This type of arrester is constructed from disks of metal-oxide which act as a highly nonlinear resistor to limit the overvoltages at locations to be protected. The arrester may be gapless or be equipped with either a series or shunt gap. The manufacturer of the arrester should be consulted for specific application rules regarding gapped arresters. In general, metal-oxide arresters have a maximum continuous operating voltage (MCOV) which corresponds to the maximum RMS voltage that may be impressed on the arrester continuously. This type of arrester can be damaged if the temperature of the metal-oxide is changed too rapidly or exceeds approximately 180 degrees Celsius. Since the temperature is directly related to the energy dissipated by the arrester, application rules are generally given in terms of a normalized energy density such as MW sec/kV of rating. The energy densities associated with standard Tranquell station class arresters are given in Table C-l. In addition, applicability of such arresters in temporary overvoltage situations is given by voltage-time curves which may be obtained from the manufacturer. Table C-1 Table of Tranquell Arrester Energy Absorption Capability Arrester Maximum Energy Ratings (kV) Capability (MW sec/kV) 2.7-48 -004 54-360 -0072 396-588 -0132 c-2 The design of gapless metal-oxide arresters is very flexible in that matched multiple columns may be applied in situations where the dissipated energy is very high. In certain circumstances they may also be operated above MCOV if special cooling can be provided. Arrester Protective Characteristics The protective characteristics of series gapped, silicon-carbide arresters are given in the test and application guides published by the American National Standards Institute. The standards suitable for arrester application are ANSI C62.1-1981 and ANSI C62.2-1981. The protective characteristics of metal-oxide arresters have not been tabulated in the ANSI standards. The manufacturer of these arresters should be consulted for such characteristics as are given in Table C-2 for General Electric Tranquell station class arresters. c-3 able C-2 Tranqueil Arrester Characteristics a) (2) (3) (4) (5) MAXUM MAXIMUM MAXIMUM CONTINUGUS EQUIVALENT MAXIMUM DISCHARGE VOLTAGE (kV CREST) SWITCHING VOLTAGE | FRONT-OF-WAVE | AT INDICATED IMPULSE CURRENT USING SURGE ARRESTER | CAPALILITY | PROTECTIVE AN & x 20 MICROSECOND CURRENT WAVE PROTECTIVE RATING oN) LEVEL LEVEL kV RMS kV RMS. kV CREST OkA ISkA |10kKA 115 kA kV CREST 27 2.20 8.1 : 64| 67] 7.2: 7.9] 85] 1023 5.6 3.0 2.54 9.3 69] 7.3] 7.7] 62! 90] 97] 11.7 6.4 45 3.70 13.5 - 10.0} 105] 11.0] 119] 128] 138] 164 92 5A 4.20 15.2 11.3] 118] 125] 134, 145] 155] 184 10.4 6.0 5.08 18.4 136] 144] $5.0] 161] 17.4) 186] 22.0] 12.6 75 6.10 22.1 16.4] 17.2] 12.0] 193] 209| 224] 265 15.1 85 6.90 25.0 185/ 195] 204] 21.8| 236] 25.2] 25.7 17.9 9.0 7.62 27.6 20.4) 21.5) 225) 24.0; 26.0] 27.7) 32.7! 188 10 8.47 30.6 22.7] 23.9] 249) 26.7) zee; 307] 361 20.9 12 10.16 36.7 27.2] 28.6] 299] 329! 2.5] 36.9] 43.4) 25.0 15 12.70 45.9 34.0} 35.7] 37.3} 395! 430) 459] 539 31.3 18 15.24 55.1 40.7) 428) 44.7] 478! 515; S49] 65.4 75 21 74 61.8 457| 480! coz} 38] 578! ss! 721 42.1 246 19.5 705 S21] 548/ 57.2] 21.2] 659] 703) S24 £8.0 27 21.9 79.1 585] 615| 64.3] €86/ 740; 789] 92.3 53.9 30 24.4 88.2 65.2) 685! 71.5] 764] 82.3) 87.7] 1025 0.1 36 29.3 106 78.2] 82.3) 85.9} 91.7! $8.7} 105 | 123 72.1 33 31.7 ns 84.5! €9.0] 92.9] $9.2! 107 | 114 | 122 78.0 45 36.5 132 97.4] 102 | 107 | 114 | 323 | 131 | 187 | 69.8 48 35.9 141 103.8] 109 | 114 | 122 | 121 | 130 | 10 95.7 54 43.7 142 105 | 110 | 115 | 122 | 129 | 135 | 157 106 60 43.6 158 117 | 123 | 128 | 136 | 144 | 150 | 174 118 66 535 174 128 | 135 | 141 | 150 | 158 | 168 | 192 130 72 53.3 183 140 | 147 | 153 | 163 | 172 | 180 | 209 142 80 72.9 237 175 | 184 | 192 | 204 | 215 | 225 | 261 177 96 776 253 187 | 196 | 204 | 218 | 230 | 281 | 27 189 108 875 284 210 | 220 | 230 | 245 | 258 | 271 | 313 213 120 97.2 315 233 | 245 | 255 | 272 | 287 | 300 | 348 236 132 105 347 256 | 269 | 281 | 2 316 | 331 | 383 250 144 110 380 280 | 295 | 307 | 327 | 345 | S62 | 419 234 168 119 441 326 | 342 | 357 | 380 | 01 | 420 | 487 331 172 139 451 333 | 350 | 365 | 389 | 410 | 420 | 493 338 180 146 474 350 | 368 | 383 | 40s | 431 | 451 | 523 355 192 152 506 374 | 393 | 410 | 436 | 460 | 482 | 555 379 228 164 600 443 | 465 | 486 | 517 | 545 | 572 | 662 449 240 71 629 465 | 488 | 509 | 542 | 572 | Sco | 694 471 258 208 678 500 | 526 | 549 | 584 | 616 | 646 | 748 508 264 214 694 512 | 539 | 562 | §s8 | 631 | 661 | 766 520 276 224 726 536 | 564 | 588 | 626 | 660 | 692 | 801 544 288 228 756 558 | 586 | 612 | 651 | 687 | 720 | 834 566 294 232 772 570 | 599 | 625 | 665 | 702 | 735 | B52 578 300 26 788 582 | 611 | 638 | 679 | 716 | 751 | 869 590 312 236 820 606 | 637 | 664 | 707 | 746 | 782 | 905 615 - 3001S)* 243 788 582 | 611 | 638 | 679 | 716 | 751 | S09 590 31218)" 253 820 6c6 | 637 | 664 | 707 | 745 | 732 | COS 615 3236 265 882 651 | esa | 714 | 760 | G02 | Bs0 | 973 651 360 275 47 699 | 735 | 766 | B16 | 861 | G2 {1045 709 396 321 1078 782 | 1B | s49 | 897 | 20 | 955 | ORS 779 1420 340 1142 629 | 857 | e799 | 950 | 985 {1012 | aI119 825 444 350 1209 877 | 917 | 952 ]1006 | 1043 J¥071 fates B74 688 476 1645 Wer f1215 [1261 | 13N | 1280 1418 | 4557 | 1197 males J are ple aes 300 and 312 kV ratings for 400 AV system application designated by BLTIFHS Or OLITRHS_ __ movel numbers, WOONDUNHWHH oe APPENDIX D System Parameters Equivalent Source Impedances Transmission Lines Transformer Parameters Thyristor Controlled Reactors Filters Arresters Load Flows Considered Breakers Svc D-1 1. Equivalent Source Impedances A. Gold Hill The equivalent source impedances for maximum and minimum generation at Gold Hill are given in Figures D-1 and D-2. These impedances are in percent on a 100 MVA base. B. Generation at Healy 29.4 MVA 13.8 kV 1 X, = 0.215 p.u. d Xq = 0.146 p.u. Per unit on above bases at rated voltage. Cc. Equivalent Impedance at Pt. MacKenzie 138 kV in percent on 100 MVA. STRONG WEAK X, = 6.6427 11.0012 Xo = 6.315% 7.120% D-2 Minimum Generation Condition Ft. Wainwright Z, ™ 21.2456.56 138 kv Healy 2, = 4.69+517.88 Gold Hil [ | 25 #16.37+579.1 138 kv j9.19 69 kv : 3 Gold z, wll.944+j71.4%5 2 526.43 Hill 2 1 . 13.8 kV 2 =B.624+559.72) = 0.69+5312.26 Figure D-1 D-3 Maximum Generation Condition ; . Ft. Wainwright Zz, = 1.14+56.56 138 °kV WWI To Healy < 5.674+3520.43 Gold Hill | Z, <17-57+584.1 138 kv 59.19 69 kv Gold ; . 2, =6+531.38 = . = 3 Hill lL J ra ji5.65 13.8 kv Zq =8+554.4 2) = 9-71+512.06 Figure D-2 D-4 2. Transmission Lines The 138 kV transmission lines between Teeland and Gold Hill were modeled as non-transposed with parameters computed from the construction data given in Figure D-3 and the accompanying dimensions. The remaining lines, including Cantwell-Watana, were modeled as transposed. D-5 9-a Overhead Transmission Line Data Voltage Ohms/Mile mH/Mile nH/Mile Line/Cable (kV) ies Ry Ro Ly Lo Cy Co 1. Pt. MacKenzie-Teeland 138 6.0 .120 0.398 2.072 6.717 14.577 8.946 2. Teeland-Willow 138 = -170 0.448 2.110 6.808 14.282 8.723 3. Willow-Healy* 138/345 170.0 .052 0.521 1.658 5.278 18.364 12.779 4. Healy-Nenana 138 56.0 .172 0.766 2.108 5.686 14.343 9.876 5. Nenana-Gold Hill 138 47.0 .172 0.766 2.108 5.686 14.343 9.876 6. Gold Hill-Ft. Wainright 138 17.0 .123 0.657 1.950 6.260 15.700 9.270 7. Cantwell-Watana 138 60.0 .123 0.657 1.950 6.260 15.700 9.270 * Intertie designed for 345 kV but initially operated at 138 kV. ENTS | 7-0" AO’ To_@5' IN 5:0 INCREM mA Figure D-3 Healy-Gold Hill 138 kV Line D-7 138 kV Tangent Tower Shield Wire - 7 #9 Alumoweld Single Conductor - 556.5 kcemil 26/7 ACSR dove Average Span - 1200 ' Average Height to Conductor at Tower - 63' Clearance to Ground - 28' @ 60°F Line Data for Douglas-Healy Line (345 kV Construction) Height of Conductor at Tower - 75' Conductor Sag - 45' Height of Shield Wire at Tower - 101' Conductor Sag - 31.5' Phase Conductors - Twin Bundle 954 kemil, 45/7 ACSR rail @ 18" separation Shield Wire - 3/8", 7 strand, EHS steel Phase Separation - 31.5' Shield Wire Separation - 49.5' D-8 6-d 3. Transformer Parameters Sat. Percent on Transformer MVA Base Transformer Voltages Type of Intercept xX X xX xX xX xX Location kV Connection MVA HL HT LT ACH ACL ACT (Percent) Gold Hill 138/69/13.8 YYA 100 13.05 23.43 8.0 41.0 28.0 20.0 120 Healy 138/12 Y A 20 Lied 37* 12* 130* Teeland 230/138/13.8** Y YA 100 17.67 28.53 9.07 47 29 16 7 Healy GSU 138/13.2 Y A 30 11.4 11.4* 117* Healy Sub. 138/24.9 A Y 20 12.5 15* 125* * Assumed values. ** Not connected. 5. SVS Filters Xo and xX values represent 60 Hz ohms. A. Gold Hill (2 filters) Harmonic MVAR Xo a, Healy (2 filters) Harmonic MVAR Be %, Teeland (3 filters) Harmonic MVAR Xo x, 10 -19.84 0.794 -16.67 0.667 -24.80 0.992 D-10 7 23 -8 0 1 -1 7 7 -27.77 0.567 +45 -173 3 1.31 0.231 11 -27.43 0.227 TI-d 6. Alaska Tieline Surge Arresters Station Equipment Location Mfgr. Type Design Rating Gold Hill Healy Line Line Entrance -- -- Conventional 121 kV Gold Hill 138/69 Trf. HV W SMX Metal Oxide 120 kV Gold Hill 138/69 Trf. LV W SMX Metal Oxide 60 kV Gold Hill 138/69 Trf. TV W SMX Metal Oxide 15 kV Healy Gold Hill Line Line Entrance -- -- Conventional 121 kV Healy Gen. Step-Up HV Assume Same as Line Entrance Healy Douglas Line Line Entrance OB VS Metal Oxide 98 MCOV Douglas Healy Line Line Entrance OB VI Metal Oxide 98 MCOV Douglas Teeland Line Line Entrance OB VI Metal Oxide 98 MCOV Douglas Trans former HV W SMX Metal Oxide 132 kV Teeland Douglas Line Line Entrance OB VI Metal Oxide 98 MCOV Teeland 230/138 Trf. HV W SMX Metal Oxide 180 kv Teeland 230/138 Trf. LV W SMX Metal Oxide 120 kV Teeland 230/138 Trf. TV W SMX Metal Oxide 15 kV Healy Trans former LV, L-N GE Tranquell Metal Oxide 15 kV Healy Transformer HV GE Tranquell Metal Oxide 108 kV Load Flows Considered 70 MW Anchorage to Fairbanks 70 MW Fairbanks to Anchorage D-12 8. Breakers - 138 kV System No Resistor Pre-Insertion Closing Span = 8.33 ms D-13 9. SVC each unit Gain = 20 Time Constant = 150 ms Control Range Location MVAR_ Range Teeland -22 to 20 Healy -33 to 22 Gold Hill -5 to 33 D-14 APPENDIX E Description and Application of the Transient Network Analyzer APPENDIX E Description and Application of the Transient Network Analyzer (TNA) and the Data Acquisition System (DAS) General Objectives of a TNA Study I. To predict and describe the nature of transient and harmonic overvoltages which can occur for any realistic switching operation. II. To seek out any abnormal duties imposed upon equipment by such switching operations. III. To devise solutions within the capabilities of equipment by: A. Exploring the influence of various system or apparatus design alternates. B. Establishing acceptable operating procedures. IV. To provide this information in a form suitable for use in: A. Establishing the insulation requirements of transmission lines. B. Establishing the data for insulation coordination; e.g-., BIL, SIL. Typical System Phenomena Which Can be Investigated on the TNA Les The occurrence and magnitude of system overvoltages have a direct bearing on the electrical design of a transmission system. A few of the more important causes of overvoltages, the magnitude and severity of which can be established by a TNA study are: E-1 A. Transient overvoltages caused by: L. Normal energization of uncharged transmission lines with or without connected transformers. Transient voltages will be produced in each phase as it is energized and by coupling as the other phases are energized. The zero sequence impedance may be a predominant factor governing the transient overvoltages occurring during the energization of a _ transformer terminated line. In cases of arrester protected cables and cable terminals, energization transient causing surge arrester operation may produce severe current discharges through the surge arrester. On many systems, the thermal limit of the surge arrester may be a critical factor in the system design. Energization of particular line/transformer combinations may also cause overvoltages lasting many cycles due to the nonlinear characteristics of the transformers. Harmonics generated by the magnetizing characteristics of the transformers interact with the parameters of the system (line capacitance and system inductances) and cause in-rush and nonlinear oscillations. In some instances, these oscillations may be sustained. Since these types of transient overvoltages persist for a relatively long time duration, they may impose overly severe duties on the surge arrester; hence, they are important factors in the specification of terminal equipment such as transformers. Operations which may lead to such nonlinear oscillations are: E-2 a. Energization of an autotransformer and a high voltage transmission line from the circuit breaker on the low voltage side of the step-up transformer, and b. Energization of a high voltage transmission line which is terminated with a transformer. High speed reclosing of a high voltage circuit breaker onto a transmission line which has retained a charge from a previous de-energizing operation by circuit breakers at each end of the line. If inductive shunt devices such as transformers, shunt reactors, or potential transformers are connected to the transmission line, the trapped charge will either be completely dissipated during the interval that the circuit breakers are open, or an oscillating charge of less than one per unit will exist at the time of reclosure. In general, therefore, the most severe transient overvoltages imposed on line insulation will occur when an open-ended line is reclosed. Restriking across the opening contacts of a circuit breaker during a de-energizing operation. Since restriking is similar to reclosing, restriking will cause transient overvoltages in the same order of magnitude as reclosing. Most modern’ oilless circuit breakers for transmission lines are designed so that they will not produce severe overvoltages if a restrike occurs. II. III. 4. The sudden disconnection of a _ generating station and its associated lines, cables, and/or transformers from the rest of the system (load), causing the terminal voltage to rise abruptly. Also, the machine speed and voltage will undergo transient variations, the magnitude and duration of which are functions of various parameters, such as number of machines and_ loading, line and/or cable remaining connected, excitation system performance, and transformer saturation. The resulting temporary overvoltages must’ be maintained below surge arrester reseal. 5. Switching capacitive kVA (capacitive banks or cable) causing magnification in some remote part of the connected low voltage system. B. Temporary overvoltages caused by: Ls A transmission line or cable’ remaining energized by a generating station or through a transformer, resulting in: a. Voltage rise along the line or cable (Farranti effect). b. Voltage rise through the source reactance. The TNA can also be used to study the effects of in-rush current characteristics when energizing lines and transformers. In general, these transients or dynamic overvoltages can be modified by various means. The TNA can be used IV. to study the effectiveness of the following means of modifying overvoltages: A. Surge arresters. B. Shunt reactors. C. Intermediate switching stations. D. Transfer trip relay schemes. E. Transformer tertiary design. F. Circuit breaker design - that is, resistor pre-insertion schemes and control of relative pole closing span. G. Static var systems. Results of TNA studies can form the basis for defining: A. Switching arrangements (high side vs. low side switching). B. Ratings and locations of arresters. C. Apparatus BIL requirements. D. Size and location of reactors. E. Advisability of furnishing tertiaries on terminal transformers. F. Approximate statistical switching surge data for transmission tower electrical design studies. G. Relay settings from standpoint of in-rush currents. General Classifications of Overvoltages I. Transient Overvoltages Depending upon system parameters, the point upon the source sine wave at which the operating circuit breaker operates and the relative position and sequence of operation of the individual poles of the operating circuit breaker, the transient voltages that might be E-5 encountered at a particular location due to a system switching operation can, in general, be classified according to wave shapes as defined below: A. Maximum Transient The transient voltage wave with the highest possible transient voltage crest after circuit breaker operation is referred to as the Maximum Transient. B. Maximum Surge Arrester Transient 1. Silicon-Carbide, Series Gap Arresters This type of transient voltage is characterized by the first or second voltage crest after circuit breaker operation being sufficiently high (but not necessarily the maximum value possible) that it might cause an operation of the surge arrester being considered for the location being investigated and one or more successive voltage crests above the reseal rating of the arrester before the arrester operates. If any subsequent transient voltage crests (after modification by the operation of the arrester) are above the reseal rating of the arrester, the arrester probably will be subject to multiple operations and _ possible failure. 2. Metal-Oxide Arresters The maximum surge arrester transient is characterized by the highest energy dissipation in the arrester. II. Temporary Overvoltages In addition to the transient overvoltages described above, systems may also be subject to longer term E-6 overvoltages caused by faults on the system or by load rejection. System Representation The system to be studied is represented in miniature on the Transient Network Analyzer (TNA). The TNA is a three-phase analog device used for real time simulation of the power system. Power for the model is supplied from a three-phase low impedance sine wave generator, which appears as an infinite bus to the miniature systen. System equivalents are represented by equivalent linear reactances connected to an infinite bus, in the positive, negative, and zero sequence systems. Nonlinear, low loss shunt or tertiary reactors are modeled with an electronic circuit which exhibits’ the correct terminal behavior. The inductance below and above saturation, the level of saturation, and the quality factor (Q) of these model reactors can be set to desired values. Transmission lines and cables under study are represented by three-phase, L-section equivalents composed of series resistance and inductance, and shunt capacitors connected to simulate positive and zero sequence susceptance of the line. At least five sections connected in tandem are used in the representation of each line or cable under consideration in order to maintain an accurate traveling wave model. Proper impedance base changes are introduced to match the TNA model line section parameters to those of the actual transmission lines or cables being studied. For those parts of the system wherein the effect of zero sequence mutual induction between parallel lines is to be investigated, the electromagnetic and electrostatic coupling is included in the model representation as required by the objectives of the study. E-7 Transfer impedance between buses of the underlying system are represented where they are considered significant. Power transformers are represented by model multiple winding transformers, such that the magnetizing characteristics (both positive and zero sequence) are rigorously represented, as are all other’ transformer impedances. The circuit breakers are represented by an electronic switch capable of separate and accurate angular adjustment on both the opening and closing contacts between phases and with respect to the driving voltage sine wave. The opening contacts are adjusted to open on successive current-zeros, just as on an actual circuit breaker. The opening and the closing contacts of the switch are so arranged that resistor pre-insertion is accurately modeled (both resistor magnitude and pre-insertion time). The surge arrester is modeled completely electronically with Zener diodes, thyristors, and high quality operational amplifiers. Sparkover is controlled by an adjustable comparator circuit which fires a thyristor to start the arrester conduction period. A current-limiting gap arc voltage of adjustable waveform duration can be easily modeled when necessary. The nonlinear volt-ampere characteristic of arresters is simulated with resistors and zener diodes to give a ten segment piecewise linear approximation of the actual arrester. The arrester model ceases conduction when the current reaches the thyristor holding value, which is essentially zero compared with the currents encountered in the simulation. The arrester model has an "off" impedance of 20 megohms, which is lower than actual arresters, but this value does not cause any significant draining of charge from the transmission systen. Oscilloscope probes are used to directly monitor the voltages at various points around the system. Copies of all the waveforms are obtained using the TNA-PRIME Computer Data Acquisition System. Study Procedures I. Manual Control of Circuit Breaker Operation For energizing, reclosing, or restriking investigations, the position of the individual closing contacts of the three phases of the switch representing the operating circuit breaker are varied and adjusted both with respect to the driving voltage sine wave and with respect to each other, within circuit breaker operating criteria of maximum allowable span between poles, to produce the most severe transient voltages for each system configuration and switching operation studied. For investigations of overvoltages following circuit breaker opening operations, the model system is first energized, and then, after all energizing transients have subsided, the contacts of the TNA switch are adjusted to open on successive current zeros, just as on an actual circuit breaker. TNA Model Surge Arrester is applied whenever it is believed that its operation would influence the transient conditions. For arresters with current limiting gaps, the model is sparked over at some point between reseal rating and maximum guaranteed sparkover voltage of the arrester to give maximum magnitude to successive voltage crests in the modified transients voltage wave. Arrester discharge currents and the modified transients are observed and recorded. For the analysis of metal-oxide arresters, the voltage, the current, and the dissipated energy are recorded. Such records are examined to determine the minimum applicable surge arrester rating consistent with reasonable system operating procedures. E-9 II. Computer Controlled Statistical Circuit Breaker Operations The generation of a statistical overvoltage distribution on the TNA is accomplished through the use of the digital computer data acquisition system associated with the TNA facility. The computer controls the TNA circuit breaker in a statistical manner to simulate the natural variations in actual breaker closing angles and closing span, and processes the resultant overvoltages and currents. Closing angle is the angle on the power frequency wave at which the breaker closes. Closing span is the difference in electrical angle or time between the first phase of the breaker to close and the last phase to close. In the simulation, the individual phases of the breaker are made to close with equal probability anywhere within the closing span guaranteed by the breaker manufacturer. Since the maximum closing span is generally smaller than a complete cycle of a power frequency wave, the mean value (in time) of the random closings also must be _ evenly distributed over a full cycle. This is accomplished by uniformly stepping the mean of the closing span over an integral number of cycles. When investigating transient overvoltages, the waveforms occurring for each event are processed by the computer, which detects the peak voltage for each of the three phases, sorts the events in order of decreasing per unit overvoltage, and plots the probability distribution. For further analysis, a table of events with the highest overvoltages is printed, showing the overvoltages and breaker closing angles for the three phases. When arrester energies are being measured, the digital computer multiplies voltage and current for each phase, integrates these products over a specific time span, and again plots the results. E-10 The reported distribution curves directly indicate the probability of a given overvoltage or arrester energy. The higher the overvoltage level, the less likely it is to occur. This information can be used with the METIFOR programs to determine the flashover probability of transmission lines. E-11