Loading...
HomeMy WebLinkAboutCraig AK Round 8 REF App - Craig HS BoilerRenewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 1 of 30 7/2/14 Application Forms and Instructions This instruction page and the following grant application constitutes the Grant Application Form for Round VIII of the Renewable Energy Fund Heat Projects only. If your application is for energy projects that will not primarily produce heat, please use the standard application form (see RFA section 1.5). An electronic version of the Request for Applications (RFA) and both application forms are available online at: www.aken ergyauthority.org/REFund8.html.  If you need technical assistance filling out this application, please contact Shawn Calfa, the Alaska Energy Authority Grants Administrator at (907) 771-3031 or at scalfa@aidea.org.  If you are applying for grants for more than one project, provide separate application forms for each project.  Multiple phases for the same project may be submitted as one application.  If you are applying for grant funding for more than one phase of a project, provide milestones and budget for each phase of the project.  In order to ensure that grants provide sufficient benefit to the public, AEA may limit recommendations for grants to preliminary development phases in accordance with 3 ACC 107.605(1).  If some work has already been completed on your project and you are requesting funding for an advanced phase, submit information sufficient to demonstrate that the preceding phases are completed and funding for an advanced phase is warranted.  If you have additional information or reports you would like the Authority to consider in reviewing your application, either provide an electronic version of the document with your submission or reference a web link where it can be downloaded or reviewed.  In the sections below, please enter responses in the spaces provided, often under the section heading. You may add additional rows or space to the form to provide sufficient space for the information, or attach additional sheets if needed. REMINDER:  Alaska Energy Authority is subject to the Public Records Act AS 40.25, and materials submitted to the Authority may be subject to disclosure requirements under the act if no statutory exemptions apply.  All applications received will be posted on the Authority web site after final recommendations are made to the legislature.  In accordance with 3 AAC 107.630 (b) Applicants may request trade secrets or proprietary company data be kept confidential subject to review and approval by the Authority. If you want information to be kept confidential the applicant must: o Request the information be kept confidential. o Clearly identify the information that is the trade secret or proprietary in their application. o Receive concurrence from the Authority that the information will be kept confidential. If the Authority determines it is not confidential it will be treated as a public record in accordance with AS 40.25 or returned to the applicant upon request. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 2 of 30 7/2/14 SECTION 1 – APPLICANT INFORMATION Name (Name of utility, IPP, or government entity submitting proposal) Craig City School District Type of Entity: School District K-12 Fiscal Year End: June 30 Tax ID #92-6000091 Tax Status: ☐ For-profit ☐ Non-profit  Government (check one) Date of last financial statement audit: June 30, 2014 Mailing Address: Physical Address: PO Box 800 100 School Road Craig, Alaska 99921 Craig, Alaska 99921 Telephone: Fax: Email: 907-826-3274 907-826-3322 maintenance@craigschools.com jwalsh@craigschools.com 1.1 APPLICANT POINT OF CONTACT / GRANTS MANAGER Name: Title: Greg Head Maintenance Director Mailing Address: PO Box 800 Craig, AK 99921 Telephone: Fax: Email: 907-826-3274 (work) 907-965-1722 (cell) 907-826-3322 maintenance@craigschools.com 1.1.1 APPLICANT ALTERNATE POINTS OF CONTACT Name Telephone: Fax: Email: Jack Walsh 907-826-3274 907-826-3322 jwalsh@craigschools.com Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 3 of 30 7/2/14 1.2 APPLICANT MINIMUM REQUIREMENTS Please check as appropriate. If you do not to meet the minimum applicant requirements, your application will be rejected. 1.2.1 As an Applicant, we are: (put an X in the appropriate box) ☐ An electric utility holding a certificate of public convenience and necessity under AS 42.05, or ☐ An independent power producer in accordance with 3 AAC 107.695 (a) (1), or ☐ A local government, or  A governmental entity (which includes tribal councils and housing authorities) 1.2 APPLICANT MINIMUM REQUIREMENTS (continued) Please check as appropriate.  1.2.2 Attached to this application is formal approval and endorsement for the project by the applicant’s board of directors, executive management, or other governing authority. If the applicant is a collaborative grouping, a formal approval from each participant’s governing authority is necessary. (Indicate by checking the box)  1.2.3 As an applicant, we have administrative and financial management systems and follow procurement standards that comply with the standards set forth in the grant agreement (Section 3 of the RFA). (Indicate by checking the box)  1.2.4 If awarded the grant, we can comply with all terms and conditions of the award as identified in the Standard Grant Agreement template at http://www.akenergyauthority.org/vREFund8.html. (Any exceptions should be clearly noted and submitted with the application.) (Indicate by checking the box)  1.2.5 We intend to own and operate any project that may be constructed with grant funds for the benefit of the general public. If no please describe the nature of the project and who will be the primary beneficiaries. (Indicate yes by checking the box) Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 4 of 30 7/2/14 SECTION 2 – PROJECT SUMMARY This section is intended to be no more than a 2-3 page overview of your project. 2.1 Project Title – (Provide a 4 to 7 word title for your project). Type in space below. Craig High School Wood Heat Conversion 2.2 Project Location – Include the physical location of your project and name(s) of the community or communities that will benefit from your project in the subsections below. 2.2.1 Location of Project – Latitude and longitude, street address, or community name. Latitude and longitude coordinates may be obtained from Google Maps by finding you project’s location on the map and then right clicking with the mouse and selecting “What is here? The coordinates will be displayed in the Google search window above the map in a format as follows: 61.195676.-149.898663. If you would like assistance obtaining this information please contact AEA at 907-771-3031. The project will be located at the Craig High School, 1.5 mile Craig-Klawock Highway Community Name: Craig, Alaska Lattitude/Longitude: 55º29’19.31”N, 133º7’42.95”W Street Address: 1950 Craig-Klawock Highway (100 Panther Drive) 2.2.2 Community benefiting – Name(s) of the community or communities that will be the beneficiaries of the project. The project will primarily benefit the community of Craig but by allowing more funds to be allocated to education and not the purchase of fossil fuels, children of the communities of Klawock, Hollis, Thorne Bay and Coffman Cove who attend school here will also benefit. 2.3 PROJECT TYPE Put X in boxes as appropriate 2.3.1 Renewable Resource Type ☐ Wind to Heat  Biomass or Biofuels ☐ Hydro to Heat ☐ Solar Thermal ☐ Heat Recovery from Existing Sources ☐ Heat Pumps ☐ Other (Describe) ☐ 2.3.2 Proposed Grant Funded Phase(s) for this Request (Check all that apply) Pre-Construction Construction ☐ Reconnaissance  Final Design and Permitting ☐ Feasibility and Conceptual Design  Construction Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 5 of 30 7/2/14 2.4 PROJECT DESCRIPTION Provide a brief one paragraph description of the proposed heat project. The project will consist of engineering and layout; acquiring machinery and equipment; installation of fuel delivery systems; and acquiring and installing biomass boilers to be integrated into the existing heating system of the Craig High School greatly reducing or eliminating the use of oil for fuel. The system will use dried fuel from the AEA funded dryer at Viking Lumber and benefit Viking Lumber by expanding the market base for dry wood fuel. The installed boilers would heat the 53,319 square foot high school using wood chips generated by operations at a local lumber mill. Feedstock for the mill and the resulting wood chips comes from timber logged from the nearby Tongass National Forest, Southeast Alaska State Forest, Alaska Native Corporation lands and other private lands. The project is similar in scope to the Craig Wood Fired Boiler and will share an existing contract to provide wood chips for the boiler. A Preliminary Feasibility Study for Conversion from Fossil Fuel to Wood Heating for the Craig High School, Craig, Alaska was prepared for the Craig City School District by Robert Deering, Biomass Program Manager, USDA Forest Service, Tongass National Forest. A copy of the study is attached to this application. An Energy Audit has been completed for the facility and is attached to this application. 2.5 PROJECT BENEFIT Briefly discuss the financial and public benefits that will result from this heat project, (such as reduced fuel costs, lower energy costs, local jobs created, etc.) 1. The most important benefit to the community and the district is the elimination of approximately 400,000 gallons of fossil fuel used to heat the Craig High School over the next 20 years. 2. The project will realize approximately $55,000 - $60,000 in annual savings. The project is estimated to have a 1.72 benefit/cost ratio compared to the current oil heating system and will result in fuel cost savings of $2.1 million - $2.6 million over 20 years. 3. In times of fuel shortages wood heat will provide a safe, warm community center. 4. The project will reduce emissions related to the existing oil boiler system and delivery of oil to the area. 5. The project will increase local jobs related to drying and hauling wood chips. 6. The project will help create economy of scale savings for other biomass heating plants on Prince of Wales Island and encourage development of heating systems that reduce reliance on fossil fuels. 7. The project will provide budget relief to the Craig Schools. 8. The project will provide public education in the advantages of wood heat and local fuel sources. 2.6 PROJECT BUDGET OVERVIEW Briefly discuss the amount of funds needed, the anticipated sources of funds, and the nature and source of other contributions to the project. The microchip boiler and installation engineering is estimated to cost $502,850. Energy Efficiency Measures committed or completed provide $82,550 in in-kind match and the district will include $10,000 cash match toward the boiler purchase/installation. 1. AEA Renewable Energy Fund………………………………$492,850 2. Craig City School District…………………………………….$ 10,000 Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 6 of 30 7/2/14 3. Energy Efficiency Improvements (in-kind match)……….$ 176,850 The City of Craig will also include the school district in their fuel delivery contract and will provide any assistance the district may need for equipment, project oversight or manpower. 2.7 COST AND BENEFIT SUMARY Summarize the grant request and the project’s total costs and benefits below. Costs for the Current Phase Covered by this Grant (Summary of funds requested) 2.7.1 Grant Funds Requested in this application $ 493,100 2.7.2 Cash match to be provided $ 10,000 2.7.3 In-kind match to be provided $ 176,850 2.7.4 Other grant funds to be provided $ 2.7.5 Total Costs for Requested Phase of Project (sum of 2.7.1 through 2.7.4) $ 679,950 Other items for consideration 2.7.6 Other grant applications not yet approved $ 2.7.7 Biomass or Biofuel Inventory on hand $ 2.7.8 Energy efficiency improvements to buildings to be heated (upgraded within the past 5 years or committed prior to proposed project completion) $ Project Costs & Benefits (Summary of total project costs including work to date and future cost estimates to get to a fully operational project) 2.7.9 Total Project Cost Summary from Cost Worksheet, Section 4.4.4, including estimates through construction. $ 679,950 2.7.10 Additional Performance Monitoring Equipment not covered by the project but required for the Grant Only applicable to construction phase projects $ 2.7.11 Estimated Direct Financial Benefit (Savings) The economic model used by AEA is available at www.akenergyauthority.org/REFund8.html. This economic model may be used by applicants but is not required. Other economic models developed by the applicant may be used, however the final benefit/cost ratio used will be derived from the AEA model to ensure a level playing field for all applicants. $ 2,234,466 2.7.12 Other Public Benefit If you can calculate the benefit in terms of dollars please provide that number here and explain how you calculated that number in Section 5 below. $ Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 7 of 30 7/2/14 SECTION 3 – PROJECT MANAGEMENT PLAN Describe who will be responsible for managing the project and provide a plan for successfully completing the project within the scope, schedule and budget proposed in the application. 3.1 Project Manager Tell us who will be managing the project for the Grantee and include contact information, a resume and references for the manager(s). In the electronic submittal, please submit resumes as separ ate PDFs if the applicant would like those excluded from the web posting of this application. If the applicant does not have a project manager indicate how you intend to solicit project management support. If the applicant anticipates project management assistance from AEA or another government entity, state that in this section. Greg Head is the anticipated project manager. Mr. Head is the Craig School District Maintenance Director. For the past six years Mr. Head has been the boiler operator for the City of Craig’s wood boiler, which provides heat to the Elementary and Middle Schools. Mr. Head operated co-gen biomass boilers and has been in the lumber and wood business in Alaska since 1969. A full resume is attached. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 8 of 30 7/2/14 3.2 Project Schedule and Milestones Please fill out the schedule below. Be sure to identify key tasks and decision points in in your project along with estimated start and end dates for each of the milestones and tasks. Please clearly identify the beginning and ending of all phases of your proposed project. Please fill out form provided below. You may add additional rows as needed. Milestones Tasks Start Date End Date Let Engineering Bid Advertise and get board approval 1/1/15 1/21/15 Complete Engineering and Inspector Appointment Review and approve 1/22/15 1/31/15 Let Equipment Bid Advertise and Approve 3/1/15 3/14/15 Let Construction Bid Advertise and Board Approval 3/7/15 3/28/15 Equipment Delivery Certify Equipment 6/1/15 6/1/15 Commence Construction Certify qualified contractor with engineering 6/2/15 Inspector Certify In conjunction with engineering firm 6/2/15 Complete Construction Certify quality 6/2/15 9/1/15 Inspector Certify (punch list) operational Check with engineers, inspector and manager that project is operational 9/1/15 Wood delivery and startup All involved 9/1/15 9/14/15 3.3 Project Resources Describe the personnel, contractors, personnel or firms, equipment, and services you will use to accomplish the project. Include any partnerships or commitments with other entities you have or anticipate will be needed to complete your project. Describe any existing contracts and the selection process you may use for major equipment purchases or contracts. Include brief resumes and references for known, key personnel, contractors, and suppliers as an attachment to your application. Personnel: Craig City School District and City of Craig personnel used to accomplish the project include the following persons: 1. Mr. Jack Walsh, Craig City School District Superintendent. Mr. Walsh will oversee all components of the project. He will execute all official documents relevant to the project. 2. Mr. Greg Head, Craig City School District Maintenance Supervisor. Mr. Head will oversee all technical aspects of the siting, purchase, installation and operations of the biomass boiler system. 3. Mrs. Cindy Bennett, Craig City School District Business Manager. Mrs. Bennett will complete required grant reports, oversee issuance of purchase orders, be responsible for grant accounting, will assist with the procurement process and be the point of contact between AEA auditors and the Craig City School District. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 9 of 30 7/2/14 4. Mr. Jim Stevens. Mr. Stevens will assist in communications and coordination to all parties. Mr. Stevens has been with Craig Schools for over nine years and is experienced in construction projects. 5. Mr. Brian Templin, Craig City Planner. Mr. Templin will assist with permitting and environmental documentation needed by the project. Mr. Templin is the primary point of contact for permitting and environmental review issues for the City of Craig and has 11 years experience overseeing permitting and environmental review of city projects. Partners: Project partners will include the following: 1. City of Craig. The City of Craig will partner with the Craig School District on this project. The city will incorporate fuel requirements for the new boiler into its current contract to supply biomass fuel for the city’s biomass boiler. The city will also provide technical assistance as an owner/operator of a 4 MMBTU/hr biomass heating system. The city will provide staff time for the city planner to assist the school district with permitting, environmental documentation and other grant project related items. 2. Viking Lumber. Viking Lumber Co. owns and manages the biomass resource necessary for the project. The resource is available in substantial existing stockpiles and from future milling operations. Nearly all of the logs at the mill originate o n public national forest lands. Viding Lumber has recently installed a chip drying system which will allow them to produce and provide biomass at an optimum moisture content to be burned in the new system. Viking Lumber personnel have the operational experience and ability to install and operate equipment needed to dry the biomass raw material to a condition that makes it ideal for combustion in wood-fired boilers. The company is in an excellent position to manage its wood waste stream to efficiently supply biomass to the drying equipment and subsequently store and deliver the dried product. Contractors: 1. Project Inspector. The project inspector will review the contractor submittals for compliance with requirements listed in the bid documents. The inspector will also make regular on-site visits to ensure proper installation of the boiler and associated mechanical systems. The contractor will also assist with project start up and completion of punch list items. 3.4 Project Communications Discuss how you plan to monitor the project and keep the Authority informed of the status. Please provide an alternative contact person and their contact information. Mr. Head and Mr. Stevens will be at the construction site on a daily basis. Regular construction meeting will be held to ensure adequate channels of communications and progress reporting are available to all concerned. Construction meetings will detail recent accomplishments, anticipated goals for the upcoming one to two week period, review the project budget, address unanticipated problems and attend to other project needs. AEA representatives will be welcome to participate in person or by teleconference. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 10 of 30 7/2/14 3.5 Project Risk Discuss potential problems and how you would address them. With property planning and preparation the risks involved in construction will be minimized. Funding timing is a risk to meet the summer construction window. Equipment delivery is a risk if deadlines are not met. The wood dryer funded by AEA that is to be our fuel source is near completion so fuel supply should not be a risk. The proposed facility is next to the school building so permitting and electrical needs have been met. If oversight is in place it should be a very routine and low risk project. 3.6 Project Accountant(s) Tell us who will be performing the accounting of this Project for the Grantee and include contact information, a resume and references for the project accountant(s). In the electronic submittal, please submit resumes as separate PDFs if the applicant would like those excluded from the web posting of this application. If the applicant does not have a project accountant indicate how you intend to solicit project accounting support. Mrs. Cindy Bennett will be the project accountant. Mrs. Bennett is the business manager for the Craig Schools and is experienced with accounting and grant management/reporting. A full resume is attached. Mrs. Bennett can be contacted at 907-826-3274. 3.7 Financial Accounting System Discuss the accounting system that will be used to account for project costs and who will be the primary user of the accounting system. Craig Schools uses Fund Accounting by Data Team for all accounting. The system allows account coding. A separate account code will be established for this grant. All expenditures to the grant will be tracked with this account code. This will allow complete reporting of expenditures made to the grant. 3.8 Financial Management Controls Discuss the controls that will be utilized to ensure that only costs that are reasonable, ordinary and necessary will be allocated to this project. Also discuss the controls in place that will ensure that no expenses for overhead, or any other unallowable costs will be requested for reimbursement from the Renewable Energy Fund Grant Program. All Purchase Orders related to the project will be signed by Jack Walsh and paid by Cindy Bennett. All grant expenditures will be fully detailed and backup documentation (such as receipts and proof of payment) will be filed with the grant file. Grant accounting will be done within the current accounting system used by the school district and the grant will have a unique account code so that all expenditures can be reported and reviewed by project personnel and the funding agency. Staff is familiar with grant expenditures and will review purchase requests and expenditures to ensure that they are allowed under the grant. The school district will follow established procurement guidelines to ensure that all procurement is reasonable. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 11 of 30 7/2/14 SECTION 4 – PROJECT DESCRIPTION AND TASKS The level of information will vary according to phase(s) of the project you propose to undertake with grant funds. If some work has already been completed on the project and the funding request is for an advanced phase, submit information sufficient to demonstrate that the preceding phases are satisfied and funding for an advanced phase is warranted. 4.1 Proposed Energy Resource Describe the potential extent/amount of the energy resource that is available. Discuss the pros and cons of your proposed energy resource vs. other alternatives that may be available, in the market, to be served by your project. For pre-construction applications, describe the resource to the extent known. For design and permitting or construction projects, please provide feasibility documents, design documents, and permitting documents (if applicable) as attachments to this application. The potential amount of available biomass energy available through this project is significant. The Viking Lumber Mill typically produces more than 13,000 tons of biomass fuel each year. At 35 percent moisture content, local biomass fuel contains about 11.25 million Btu per ton. Drier fuel will result in higher Btu content per ton of fuel. At 35% moisture one tone of fuel can supply the full heating demand of an 11 million Btu system for one hour. For perspective, the City of Craig’s wood boiler system, rated at 4 million Btu per hour is designed to supply the energy needs of 62,000 square feet of floor space and 113,000 gallons of heated pool water. The proposed system for the Craig High School will be approximately a 1 MMBTU/Hr system to heat 52,219 square feet and will burn approximately 194 tons of fuel per year. Viking Lumber Mill’s typical production far exceeds the required amount of biomass fuel necessary for the existing city boiler system and the system proposed in this project. There are many well known benefits of using wood heat in both domestic and public/commercial applications. These include keeping dollars spent on heating fuel in the local community; creation of wood fuel supply jobs in local economies; elimination of sulfur range emissions from combustion of wood fuels versus fossil fuels; elimination of a net increase in greenhouse gas emissions from combustion of wood fuels versus fossil fuels; and use of renewable, locally produced fuels. Viking Lumber, working with the City of Craig and AEA, has installed chip drying facilities that will allow precise control of moisture content and the ability to deliver fuel at optimum moisture content. This will increase Btu/ton of fuel and will result in better operations of biomass heating systems. This project will support the continued use of the drying system which will, in turn, allow Viking to produce dry fuel for other applications and feedstock for biomass fuel applications. The forest industry has always provided some risk here in Southeast in whether it will exist in the future. Demand and the fuel dryer provide as much assurance of a sustained supply of fuel as can be expected. Dryer operation does not depend on a single supplier so fuels can come from any of the operations on the island. Small chippers already in operation for grubbing under power lines and clearing rights of way and even private properties could provide thousands of tons of fuel that today is discarded. There is some risk as to the source of fuels in Southeast but not the volume or availability of the resource. Our potential for fuel independence is great and real. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 12 of 30 7/2/14 4.1.1 For Biomass Project only Identify any wood inventory questions, such as:  Ownership/Accessibility. Who owns the land and are their limitations and restrictions to accessing the biomass resource?  Inventory data. How much biomass is available on an annual basis and what types (species) are there, if known? Please attach any forest inventory reports Craig City School District will utilize a portion of the fuel dried from the AEA equipment at Viking Lumber and will become part of the City of Craig’s fuel delivery contract with Viking. Viking uses mostly federal land forests but also relies on State of Alaska and private timber. There is always some risk of a dependable log supply for Viking but it is possible for other mills and independent fuel suppliers to use the dryer. What is needed now is a larger dry fuel market to ensure continuous dryer operation. 4.2 Existing Energy System 4.2.1 Basic configuration of Existing Heating Energy System Briefly discuss the basic configuration of the existing energy system. Include information about the number, size, age, efficiency, and type of generation. The existing heating system in the Craig High School consists of two Weil-McClain boilers. Each produces 3,270,000 Btu per hour and use 29 gallons of fuel to produce those Btu. The system has 8” circulating pipe and oversized pumps. The rest of the heat system consists of fin tube in all the classrooms that run in conjunction with five AHUs of varying horsepower and a roof m ounted MAU over the auto shop. Heat is moved to the gym using 20 HP in line pump and a 12.5 HP air handler fan. Cool days require a total of 32.5 HP continuously in addition to the fuel needed by the boilers themselves. Changes have been made to the building envelope to increase efficiency but the only real way to change the fuel consumption of the building is to change to an alternative fuel source. 4.2.2 Existing Heating Energy Resources Used Briefly discuss your understanding of the existing energ y resources. Include a brief discussion of any impact the project may have on existing energy infrastructure and resources. With the availability of dry biomass fuel the prospect for energy independence for Prince of Wales Island is becoming a reality. This project is an important piece in the progression toward clean local fuel. The wood boiler for the high school is important in expanding wood use and the market associated with it and in educating the public in what the process is and how it can be as simple, safe as diesel while being cleaner. The project has two important impacts on the community: 1. Lower operating expenses for the district by saving fuel. 2. Promote the expansion of wood heat as a viable alternative to diesel fuel. 4.2.3 Existing Heating Energy Market Discuss existing energy use and its market. Discuss impacts your project may have on energy customers. The existing energy market here on Prince of Wales is truck delivered fuel from tank farms in either Craig or Thorne Bay. Fuel is brought to Prince of Wales by regional barge. Alaska Power and Telephone provides electricity from private hydro projects with diesel backup. None of the energy markets will have any adverse effects from the use of biomass fuels for this project. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 13 of 30 7/2/14 4.3 Proposed System Include information necessary to describe the system you are intending to develop and address potential system design, land ownership, permits, and environmental issues. 4.3.1 System Design Provide the following information for the proposed renewable energy system:  A description of renewable energy technology specific to project location  Optimum installed capacity  Anticipated capacity factor  Anticipated annual generation  Anticipated barriers  Basic integration concept  Delivery methods The proposed system will include a microchip boiler; fuel storage and feed system; electrical installation; and piping to connect to the existing heating system in the high school. The boiler and related equipment will be installed in the rear parking lot of the building and located against the existing east wall of the boiler room. There are several brands of comparable capacity. The new system is expected to have an output of 1 MMBTU. The feasibility study prepared by Bob Deering estimates the following costs: $177,000 for the boiler and related equipment $125,000 for fuel storage and handling $50,000 for installation $25,000 for commissioning the system $60,000 for design services $22,500 for contingency $35,600 for construction management $8,000 for bidding and permits The completed system would be similar to the installation in the Federal Building or Discovery Center in Ketchikan. These two systems use wood pellets as fuel but each can be adjusted to burn dry microchips as well, the same fuel produced by Viking Lumber. The chip consumption is anticipated at 194 dry tons at $125/ton. The exact cost figures are yet to be determined by City of Craig and Viking Lumber negotiations. Craig Schools will be included in the city contract. The biggest barrier might be the dependable supply of fuel in the short term. Timber processing has historically been a boom or bust cycle in Southeast but over the long term there has always been some manufacturing. Additional biomass demand such as this project will help maintain a dependable supply of biomass independent of timber sales and manufacturing. The integration of the wood heat system with the existing boiler is simple and routine. The Craig City wood boiler uses a system of heat exchangers to heat the glycol water in the Elementary and Middle Schools. It is anticipated that this installation will use a similar system to integrate into the existing High School heating system. It is anticipated that this system will use a different fuel delivery process than the one in Craig. The new facility will have two fuel hopper type trailers that will be rotated as needed to deliver and store Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 14 of 30 7/2/14 fuel. Each trailer will have a live bed and as one trailer is emptied the next will replace it, hook up the live bed hydraulics and meter fuel directly into the boiler feed system. This system is in use in many facilities including one in Homer. Craig High School has had an energy audit subsidized by Alaska Housing Finance Corporation and conducted by Alaska Energy Engineering. The total EEMs in the audit total $373,000 but many of the measure overlap. Staff has completed some and some others will become unnecessary if a biomass boiler is installed. Of the recommendations in the energy audit that have been completed many are being applied as in-kind benefit to this project including: 1. EEMs 1, 2, 3 and 6 have been completed but no cost is allocated to them. 2. EEM 4 has been completed using windows already in stock. No cost is allocated to them. 3. EEM 5 Will be accomplished by a contractor and will be an expensive item. This item has not been accomplished at this time. 4. EEMs 7 and 10 have been completed at a $900 credit. 5. EEM 17 has been accomplished and the boiler burners modulated to the lowest settings at a credit of $33,700. 6. EEM 20 has been completed at a credit of $59,700. 7. EEM 22 calls for the reduction of locker room lighting. Craig Schools has gone further and funded (in-house) all exterior lighting being converted to LED at a cost of $81,050. 8. Energy Efficient W ater Heater has been installed at a credit of $1,500. 4.3.2 Land Ownership Identify potential land ownership issues, including whether site owners have agreed to the project or how you intend to approach land ownership and access issues. There are no ownership issues. The project will be placed on developed school property. The Craig High School site is owned by the City of Craig and exclusively used by the Craig City School District. The city has reviewed and agreed to the project. Craig City Resolution 14 -19 was passed unanimously by the Craig City Council on September 4, 2014 supporting the project. 4.3.3 Permits Provide the following information as it may relate to permitting and how you intend to address outstanding permit issues.  List of applicable permits  Anticipated permitting timeline  Identify and discuss potential barriers Given that the project will be done on land that is already developed and is unlikely to require a permit from the State of Alaska or federal agencies, it is unlikely that the project will face potential permitting issues. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 15 of 30 7/2/14 4.3.4 Environmental Address whether the following environmental and land use issues apply, and if so how they will be addressed:  Threatened or endangered species  Habitat issues  Wetlands and other protected areas  Archaeological and historical resources  Land development constraints  Telecommunications interference  Aviation considerations  Visual, aesthetics impacts  Identify and discuss other potential barriers 1. Threatened or endangered species. This project will take place on previously developed upland. There are no known threatened or endangered species within the project area. 2. Habitat issues. This project will take place on previously developed upland. There are no known habitat issues within the project area. 3. Wetlands or other protected areas. This project will t ake place on previously developed upland. There are no wetlands or other protected areas within the project area. 4. Archeological and historical resources. Although there are numerous historical and archeological sites within the region, the project will take place on previously developed upland. The project site is not a catalogued archeological or historical site. If archeological or historical resources are discovered during the course of construction or equipment installation the project manager will immediately notify the State Historical Preservation Office. 5. Land development constraints. The project will take place on land owned by the City of Craig and occupied by the Craig City School District. The area is sufficient for the project scope and will not affect other development in the area. 6. Telecommunications interference. The project will not receive transmission signals that will interfere with telecommunications. The project location is not adjacent to telecommunications facilities. 7. Aviation considerations. The project is not located near existing airports or seaplane bases. The project is not located within flight approaches for existing airports or seaplane bases. The height of the completed project construction and equipment will be similar to surrounding buildings and will not pose any danger or impediment to aviation. 8. Visual and aesthetic impacts. The project will be located at the rear of the existing high school in an area reserved for parking and mechanical systems. The project is consistent with the surrounding uses and will not have a negative visual or aesthetic impact. 9. Identify and discuss other barriers. The only possible barrier could be the proximity of the project to a housing development which could have emissions concerns although none have been voiced thus far. The houses are hundreds of yards away from the project site and are located predominantly upwind during prevailing southeast winds. The exhaust stack will be extended as high as necessary and the boilers that will be purchased will comply with all emission standards. The existing boiler operated by the city is directly adjacent to a housing development and there are no emissions or exhaust issues. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 16 of 30 7/2/14 4.4 Proposed New System Costs and Projected Revenues (Total Estimated Costs and Projected Revenues) The level of cost information provided will vary according to the phase of funding requested and any previous work the applicant may have done on the project. Applicants must reference the source of their cost data. For example: Applicant’s records or analysis, industry standards, consultant or manufacturer’s estimates. 4.4.1 Project Development Cost Provide detailed project cost information based on your current knowledge and understanding of the project. Cost information should include the following:  Total anticipated project cost, and cost for this phase  Requested grant funding  Applicant matching funds – loans, capital contributions, in-kind  Identification of other funding sources  Projected capital cost of proposed renewable energy system  Projected development cost of proposed renewable energy system The total cost of a 1 MMBTU wood boiler for the Craig High School is estimated to be $503,100 $177,000 for the boiler and related equipment $125,000 for fuel storage and handling $50,000 for installation $25,000 for commissioning the system $60,000 for design services $22,500 for contingency $35,600 for construction management $8,000 for bidding and permits 4.4.2 Project Operating and Maintenance Costs Include anticipated O&M costs for any new facilities constructed and how these would be funded by the applicant. (Note: Operational costs are not eligible for grant funds however grantees are required to meet ongoing reporting requirements for the purpose of recording the impacts of AEA projects on the communities they serve.) The anticipated O&M costs would be borne by the operator of the biomass heating equipment using existing staff and cost savings derived from the system. The Craig City School District maintenance supervisor is already responsible for sharing operations duties for the existing city owned biomass boiler used to heat the Middle School, Elementary School and Municipal Aquatic Center. School district staff will operate the proposed facility using existing maintenance personnel. Maintenance costs would be borne by the school district using cost savings by switching from fuel oil to wood chips. O&M Costs Maintenance - $11,740 Oil - $400 Woodchip Cost (estimated) - $24,246 Oil - $3,940 These costs would all be offset by avoided fuel oil purchases. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 17 of 30 7/2/14 4.4.3 Heating Purchase/Sale The heat purchase/sale information should include the following:  Identification of potential energy buyer(s)/customer(s)  Potential heat purchase/sales price - at a minimum indicate a price range  Proposed rate of return from grant-funded project Heat from this system will support the Craig High School and will not be further sold or distributed. The net savings in avoided fuel costs for 2016 is expected to be $51,000 and depending on fuel prices expected to be $215,552 in 2033. The estimated cumulative savings to the school over the 20 year life of the equipment is $2,234,466 4.4.4 Project Cost Worksheet Complete the cost worksheet form which provides summary information that will be considered in evaluating the project. Please fill out the form provided below and provide most recent heating fuel invoice that supports the amount identified in “Project Benefits” subpart b below. Renewable Energy Source The Applicant should demonstrate that the renewable energy resource is available on a sustainable basis. Annual average resource availability. 13,000 tons Unit depends on project type (e.g. windspeed, hydropower output, biomass fuel) Existing Energy Generation and Usage a) Basic configuration (if system is part of the Railbelt1 grid, leave this section blank) i. Number of generators/boilers/other 2 ii. Rated capacity of generators/boilers/other 3,270 MBH iii. Generator/boilers/other type Weil McClain Diesel iv. Age of generators/boilers/other v. Efficiency of generators/boilers/other b) Annual O&M cost (if system is part of the Railbelt grid, leave this section blank) i. Annual O&M cost for labor ii. Annual O&M cost for non-labor c) Annual electricity production and fuel usage (fill in as applicable) (if system is part of the Railbelt grid, leave this section blank) i. Electricity [kWh] ii. Fuel usage Diesel [gal] 1 The Railbelt grid connects all customers of Chugach Electric Association, Homer Electric Association, Golden Valley Electric Association, the City of Seward Electric Department, Matanuska Electric Association and Anchorage Municipal Light and Power. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 18 of 30 7/2/14 Other iii. Peak Load iv. Average Load v. Minimum Load vi. Efficiency vii. Future trends d) Annual heating fuel usage (fill in as applicable) i. Diesel [gal or MMBtu] 19,460 gal. ii. Electricity [kWh] iii. Propane [gal or MMBtu] iv. Coal [tons or MMBtu] v. Wood [cords, green tons, dry tons] vi. Other Proposed System Design Capacity and Fuel Usage (Include any projections for continued use of non-renewable fuels) a) Proposed renewable capacity (Wind, Hydro, Biomass, other) [kW or MMBtu/hr] 1.2 MMBTU Biomass (wood chip) boiler (either single boiler or combination of smaller boilers) b) Proposed annual electricity or heat production (fill in as applicable) i. Electricity [kWh] ii. Heat [MMBtu] 2,185 MMBTU c) Proposed annual fuel usage (fill in as applicable) i. Propane [gal or MMBtu] ii. Coal [tons or MMBtu] iii. Wood or pellets [cords, green tons, dry tons] iv. Other 195 tons of chips (dried to appropriate moisture content) Project Cost a) Total capital cost of new system b) Development cost c) Annual O&M cost of new system d) Annual fuel cost Project Benefits a) Amount of fuel displaced for i. Electricity Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 19 of 30 7/2/14 ii. Heat 18,485 gallons of diesel fuel iii. Transportation b) Current price of displaced fuel $76,527 c) Other economic benefits Local employment and production of fuel d) Alaska public benefits Reduced sulfur emissions, school district cost savings Heat Purchase/Sales Price a) Price for heat purchase/sale Project Analysis a) Basic Economic Analysis Project benefit/cost ratio 1.9 Payback (years) 8.2 Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 20 of 30 7/2/14 4.4.5 Impact on Rates Please address the following items related to the proposed location of the heating project. If more than one building will be impacted, please address this information for each building.  Building name Craig High School  Type or primary usage of the building Education  Location Community Name: Craig, Alaska Latitude/Longitude: 55º29’19.31”N, 133º7’42.94”W Street Address: 1950 Craig-Klawock Highway  Hours of operation 7:00 am – 4:30 pm  Single structure or multiple units Single structure with gym and auditorium  Total square footage 52,219  Electrical consumption per year 304,000 kWh  Heating oil/fuel consumption per year 19,460 gallons per year  Average number of occupants 115  Has an energy audit been performed? When? Please provide a copy of the energy audit, if applicable. Yes. October 2011  Have building thermal energy efficiency upgrades been completed? o If applicable, please provide evidence of efficiency improvements including cost and anticipated savings associated with upgrades. Yes. See Item 4.3.1 o Estimated annual heating fuel savings $55,000 - $60,000  If the building is not yet constructed please provide evidence of the value of planned building envelope efficiency investments beyond typical construction practices. Include anticipated savings associated with efficiency investments if available. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 21 of 30 7/2/14 SECTION 5– PROJECT BENEFIT Explain the economic and public benefits of your project. Include direct cost savings, and how the people of Alaska will benefit from the project. The benefits information should include the following:  Potential annual fuel displacement (gallons and dollars) over the lifetime of the evaluated renewable energy project. In order for the applicant to receive credit for heating fuel displaced the applicant must provide the most recent invoice for heating fuel purchased.  Anticipated annual revenue (based on i.e. a Proposed Heat Purchase Agreement price, RCA tariff, or cost based rate)  Potential additional annual incentives (i.e. tax credits)  Potential additional annual revenue streams (i.e. green tag sales or other renewable energy subsidies or programs that might be available)  Discuss the non-economic public benefits to Alaskans over the lifetime of the project The biggest economic and public benefit will be the elimination of nearly 400,000 gallons of fuel oil that would have otherwise been consumed by the Craig High School over the next 20 years. The education of the public as to the viability of wood heat is important as well. The more facilities that come on line with biomass heating systems, the greater the acceptance of wood fuel and the more developed and stable the market becomes. As the market grows, more and more people are positively affected. More and better fuel supplies, better infrastructure (i.e. fuel deliveries and furnaces) as well as better maintenance people and greater fuel independence all are benefits for Prince of Wales Island. The forest also becomes more utilized and there are fewer emissions associated with fuel oil deliveries to the island. In the past there have been fuel shortages on the island. As more wood fuel is used less outside fuel is needed and in the case of emergency we would have hydro electricity and wood heat. Community safety and energy independence are increased by this project. Job creation is a possibility as we make wood fuel into a small local industry. The kids are the biggest winners as more energy and resources can be applied to their education rather than utilities. SECTION 6– SUSTAINABILITY Discuss the operation of the completed project so that it will be sustainable. Include at a minimum:  Proposed business structure(s) and concepts that may be considered.  How the maintenance and operations of the completed project will be financed for the life of the project  Identification of operational issues that could arise.  A description of operational costs including on-going support for any back-up or existing systems that may be require to continue operation  Commitment to reporting the savings and benefits The completed project will have a great value to Craig School District and will be treated as such. Maintenance personnel do service checks on the existing oil boilers several times a day. With the new equipment these system checks will be formalized with designated times, check lists and Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 22 of 30 7/2/14 readings to be recorded and moving equipment that will be monitored and reported on. All this will be paid for by the avoidance of fuel oil purchases and has been factored in to the cumulative savings. It has been the district’s experience that when dealing with wood as fuel the biggest problems are always associated with the fuel quality. The fuel is too wet or dry, too dirty or the wrong size. Problems with the fuel are immediately transferred to the delivery system and the boiler. Fuel will be the biggest issue. The more wood fuel used by biomass systems the better the fuel quality will become. These systems are not new and are being used at the Coast Guard base and Library in Ketchikan. We are committed to reporting the savings and making them public because we think that alternative heating systems are important on Prince of Wales Island. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 23 of 30 7/2/14 SECTION 7 – READINESS & COMPLIANCE WITH OTHER GRANTS Discuss what you have done to prepare for this award and how quickly you intend to proceed with work once your grant is approved. Tell us what you may have already accomplished on the project to date and identify other grants that may have been previously awarded for this project and the degree you have been able to meet the requirements of previous grants. No previous grants have been awarded on the project. The Craig City School District has multiple grants for operations and capital projects. The district has the personnel, financial accountability and fiscal resources to move forward with this grant. SECTION 8 – LOCAL SUPPORT AND OPPOSITION Discuss local support and opposition, known or anticipated, for the project. Include letters of support or other documentation of local support from the community that would benefit from this project. The Documentation of support must be dated within one year of the RFA date of July 2, 2014. The public has been very supportive of the district’s proposal to transition to a biomass heating system and has supported efforts to find funding for a wood boiler. 100% of the input at public school board meetings has been in favor of less expensive fuel. The Craig City Council is in favor of fuel independence and job creation in addition to savings by the school. The city and the school are excited about a project that will help the school save money as enrollment continues to drop and budgets keep contracting. The school and city have passed resolutions of support that are attached to this application. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 24 of 30 7/2/14 SECTION 9 – GRANT BUDGET Tell us how much you are seeking in grant funds. Include any investments to date and funding sources, how much is being requested in grant funds, and additional investments you will make as an applicant. 9.2 Funding sources and Financial Commitment Provide a narrative summary regarding funding source and your financial commitment to the project We are looking to the State of Alaska as our primary source of funding for this project. 9.3 Cost Estimate for Metering Equipment Please provide a short narrative, and cost estimate, identifying the metering equipment, and its related use to comply with the operations reporting requirement identified in Section 3.15 of the Request for Applications. Metering equipment is not necessary to track this project. Tracking will be done by tracking costs associated with capital installation of the equipment, O&M costs accounted to the system and comparison of heating fuel used before and after installation of the wood heating system. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 25 of 30 7/2/14 Applications MUST include a separate worksheet for each project phase that was identified in section 2.3.2 of this application, (I. Reconnaissance, II. Feasibility and Conceptual Design, III. Final Design and Permitting, and IV. Construction and Commissioning). Please use the tables provided below to detail your proposed project’s budget. Be sure to use one table for each phase of your project. If you have any question regarding how to prepare these tables or if you need assistance preparing the application please feel free to contact AEA at 907-771-3031 or by emailing the Grants Administrator, Shawn Calfa, at scalfa@aidea.org. Milestone or Task Anticipated Completion Date RE- Fund Grant Funds Grantee Matching Funds Source of Matching Funds: Cash/In- kind/Federal Grants/Other State Grants/Other TOTALS (List milestones based on phase and type of project. See Milestone list below. ) $ $ $ Complete engineering and design bid documents 1/1/15 $68,000 $ $68,000 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ TOTALS $68,000 $ $68,000 Budget Categories: Direct Labor & Benefits $ $ $ Travel & Per Diem $ $ $ Equipment $ $ $ Materials & Supplies $ $ $ Contractual Services $68,000 $ $68,000 Construction Services $ $ $ Other $ $ $ TOTALS $68,000 $ $68,000 Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 26 of 30 7/2/14 Milestone or Task Anticipated Completion Date RE- Fund Grant Funds Grantee Matching Funds Source of Matching Funds: Cash/In- kind/Federal Grants/Other State Grants/Other TOTALS (List milestones based on phase and type of project. See Milestone list below. ) $ $ $ Equipment Purchase 3/1/15 $303,250 $10,000 Local funds $313,250 Installation 9/1/15 $96,850 $ $96,850 Commissioning 9/14/15 $25,000 $ $25,000 $ $ $ EEM In-Kind Match $ $900 EEM 7, 10 $900 EEM In-Kind Match $ $33,700 EEM 17 $33,700 EEM In-Kind Match $ $59,700 EEM 20 $59,700 EEM In-Kind Match $ $81,050 LED – local funds $81,050 EEM In-Kind Match $ $1500 Water Heater – local funds $1,500 $ $ $ $ $ $ TOTALS $425,100 $186,850 $611,950 Budget Categories: Direct Labor & Benefits $ $ $ Travel & Per Diem $ $ $ Equipment $303,250 $10,000 Local funds $313,250 Materials & Supplies $ $ $ Contractual Services $121,850 $ $121,850 Construction Services $ $ $ Other (in-kind) $ $176,850 In-kind $176,850 TOTALS $ $ $611,950 Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 27 of 30 7/2/14 Milestone or Task Anticipated Completion Date RE- Fund Grant Funds Grantee Matching Funds Source of Matching Funds: Cash/In- kind/Federal Grants/Other State Grants/Other TOTALS (List milestones based on phase and type of project. See Milestone list below. ) $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ TOTALS $ $ $ Budget Categories: Direct Labor & Benefits $ $ $ Travel & Per Diem $ $ $ Equipment $ $ $ Materials & Supplies $ $ $ Contractual Services $ $ $ Construction Services $ $ $ Other $ $ $ TOTALS $ $ $ Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 28 of 30 7/2/14 Milestone or Task Anticipated Completion Date RE- Fund Grant Funds Grantee Matching Funds Source of Matching Funds: Cash/In- kind/Federal Grants/Other State Grants/Other TOTALS (List milestones based on phase and type of project. See Milestone list below. ) $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ TOTALS $ $ $ Budget Categories: Direct Labor & Benefits $ $ $ Travel & Per Diem $ $ $ Equipment $ $ $ Materials & Supplies $ $ $ Contractual Services $ $ $ Construction Services $ $ $ Other $ $ $ TOTALS $ $ $ Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 29 of 30 7/2/14 SECTION 10 – AUTHORIZED SIGNERS FORM Community/Grantee Name: Craig City School District Regular Election is held: 1st Tuesday in October Date: September 2, 2014 Authorized Grant Signer(s): Printed Name Title Term Signature John J. Walsh Superintendent I authorize the above person(s) to sign Grant Documents: (Highest ranking organization/community/municipal official) Printed Name Title Term Signature Robert Claus Board President Grantee Contact Information: Mailing Address: PO Box 800 Craig, AK 99921 Phone Number: 907-826-3274 Fax Number: 907-826-3322 E-mail Address: jwalsh@craigschools.com Federal Tax ID #: 92-6000091 Please submit an updated form whenever there is a change to the above information. Renewable Energy Fund Round VIII Grant Application – Heat Projects AEA 15003 Page 30 of 30 7/2/14 SECTION 11 – ADDITIONAL DOCUMENTATION AND CERTIFICATION SUBMIT THE FOLLOWING DOCUMENTS WITH YOUR APPLICATION: A. Contact information and resumes of Applicant’s Project Manager, Project Accountant(s), key staff, partners, consultants, and suppliers per application form Section 3.1, 3.4 and 3.6. Applicants are asked to provide resumes submitted with applications in separate electronic documents if the individuals do not want their resumes posted to the project web site. B. Letters or resolutions demonstrating local support per application form Section 8. C. For heat projects only: Most recent invoice demonstrating the cost of heating fuel for the building(s) impacted by the project. D. Governing Body Resolution or other formal action taken by the applicant’s governing body or management per RFA Section 1.4 that: - Commits the organization to provide the matching resources for project at the match amounts indicated in the application. - Authorizes the individual who signs the application has the authority to commit the organization to the obligations under the grant. - Provides as point of contact to represent the applicant for purposes of this application. - Certifies the applicant is in compliance with applicable federal, state, and local, laws including existing credit and federal tax obligations. E. An electronic version of the entire application on CD or other electronic media, per RFA Section 1.7. F. CERTIFICATION The undersigned certifies that this application for a renewable energy grant is truthful and correct, and that the applicant is in compliance with, and will continue to comply with, all federal and state laws including existing credit and federal tax obligations and that they can indeed commit the entity to these obligations. Print Name John J. Walsh Signature Title Superintendent Date 1    Preliminary Feasibility Assessment for Conversion  from Fossil Fuel Oil to Wood Heating   For The Craig High School, Craig, Alaska      Prepared for:    Mr. Jack Walsh,   Superintendent  Craig School  District    Prepared by:    Robert Deering &  Daniel Parrent,  Biomass Program  Managers  USDA Forest Service    Submitted 27 August 2013  This report is provided by the Alaska Wood Energy Development Task Group, supported by the Alaska  Energy Authority and the USDA Forest Service  2      EXECUTIVE SUMMARY:  Two wood heating options were evaluated for the conversion of the Craig High School from oil heat –  wood pellets and microchips (small, partially‐dried wood chips).  A sensitivity analysis was conducted for  the microchip option, analyzing economics at three different chip prices.  In every scenario wood fuel  appears to have a substantially lower lifecycle cost than the oil‐burning status quo.    Status Quo Pellet Chip‐Low Chip‐Medium Chip‐High  Capital Cost 0 $319,790  $502,850  $502,850  $502,850   Oil usage ‐ 20 years (gal) 389,180 973 973 973 973  Oil Price(2014) $4.05  $4.05  $4.05  $4.05  $4.05   Pellet usage ‐ 20 years (tons) N/A 3,133 N/A N/A N/A  Pellet Price N/A $325  N/A N/A N/A  Chip usage ‐ 20 years (tons) N/A N/A 194 194 194  Chip Price N/A N/A $70  $125  $170   Total fuel cost ‐ 20 years $3,139,295  $1,455,776  $503,371  $775,547  $998,237   Fuel cost savings ‐ 20 years) 0 $1,683,519  $2,635,924  $2,363,748  $2,141,059   Simple payback (years) NA 13.3 8.2 9.9 12.0  Cumulative costs (20 years) $3,299,295  $1,993,566  $1,249,021  $1,521,197  $1,743,887   NPV    $787,961  $1,284,378  $1,086,436  $924,483   Benefit/Cost Ratio   1.17   1.72        PROJECT DESCRIPTION:  In late 2012, organizations were invited to submit a Statement of Interest (SOI) to the Alaska Wood  Energy Development Task Group (AWEDTG) seeking grant‐funded pre‐feasibility assessments for the  conversion of their facilities from fossil fuel heating to wood fueled heating.  All of the facilities that  were submitted for assessments will receive them – however, the facilities in Southeast Alaska will  receive ‘truncated’ assessments conducted by Forest Service and AEA staff rather than contracted  consultants, in order to extend the limited available budget.  AWEDTG representatives visited Craig in  March of 2013 and information was obtained for the school facility.  Preliminary assessments were  made and challenges identified.  Potential wood energy systems were considered for the project using  AWEDTG, USDA and AEA objectives for energy efficiency and emissions.  Preliminary findings are  reported.  3    The community of Craig, Alaska is no stranger to wood‐fired boilers in institutional settings.  In 2008  they installed a wood‐fired boiler system which heats the community’s swimming pool, elementary, and  middle schools, utilizing wood chips sourced from the nearby Viking Lumber Company sawmill.    Given that the community is familiar with the wood energy concepts being evaluated in this report, and  that this is a truncated study, many of the typical rudimentary subjects of wood energy will be dispensed  with.  This report will focus in on the key practical and economic elements associated with the  recommendations specific to the Craig High School conversion in accordance with the following Goals  and Objectives:  • Identify the Craig High School facility as a potential candidate for heating with wood   • Evaluate the suitability of the facility and site for installation of a wood‐fired boiler   • Assess the type(s) and availability of wood fuel(s)  • Size and estimate the rough capital costs of suitable wood‐fired system(s)  • Estimate the annual operation and maintenance costs of a wood‐fired system  • Estimate the potential economic benefits from installing a wood‐fired heating system    SITE DESCRIPTION:  The Craig High School is a 52,219 square foot building that contains offices, classrooms, commons,  library, gym, auditorium, shop, and mechanical support spaces. The building is occupied by 95 students  and 10 staff members. Heat is provided by two 3,270 MBH Weil McClain oil‐fired boilers connected to a  hydronic heat distribution system consisting primarily of a number of heating coils in air handling units.   The area around the school is gentle hills and mostly wooded, with a housing development to the  southeast.  Access to the Main Building is unencumbered.  Identifying a suitable location for a wood  fired boiler should not be problematic.    4      Figure 1 ‐ Craig High School  Current Conditions  Building Energy Usage – Energy performance of the Craig High School is substandard compared  to similar schools, according to a recent energy audit conducted under an AHFC program.  The  audit identified numerous energy efficiency measures (EEMs) which could significantly reduce  thermal energy consumption at the school.  For this reason, it’s highly recommended that the  most significant EEMs be addressed prior to boiler replacement.      Boiler room location  5    Heating EEMs –The State of Alaska’s Renewable Energy Fund provides grants for projects such  as the one being considered here on a competitive basis.  Communities that contribute their  own resources toward a portion of the project generally are more competitive for grant funding.   Community investments toward energy efficiency on the same building would be considered ‘in‐ kind’ contributions toward the project, increasing the chances of successful grant selection, as  well as saving money through efficiency measures.  The EEMs most relevant to the heating  system are listed below:  Energy Efficiency Measures  (from  October 2011 AHFC Energy Audit) Cost  25 yr  Savings  25 yr   Net  Oil  Savings  (Gal/year)     EEM‐1 thru 6: Building envelope  $5,000   $125,000     $120,000  1,000 (Estimated values)  EEM‐7: Turn Off Standby Boiler  $200   $78,700   $78,500  674    EEM‐8: Install Pipe Insulation   $900   $46,000   $45,100  394     EEM‐12: Optimize Gym AHU‐5  $55,000   $166,600     $111,600  1,016    EEM16‐: Install Valves on Unit  Heaters  $4,400   $9,500   $5,100  81    EEM‐18: Optimize Auditorium AHU‐3  $62,800   $124,100   $61,300  491    EEM‐20: Optimize Commons AHU‐4  $59,700   $98,200   $38,500  511        $188,000   $648,100  $460,100     4,167       Estimated boiler size & fuel consumption (post‐EEM) – Determining the optimal size of the biomass  boiler is a matter of some uncertainty due to the oversized boilers currently installed in the school and  the extent of heat loss due to poor building envelope efficiency.  The energy audit noted that the  current heating plant is approximate five times larger than would typically be installed in a school this  size.  Biomass boilers are normally sized considerably less than 100% of the peak heating load in order to  assure efficient combustion during the majority of the heating season.  For Craig, Alaska, that size would  likely be approximately 75% of the peak load, which would meet approximately 95% of the school’s  heating energy needs.  A more detailed boiler sizing assessment would need to be performed during the  design phase of the project.  Assuming that the above EEMs are addressed, an appropriately sized  biomass boiler would be approximately 1 million BTU (MMBTU) or less.     An alternative configuration which might be considered is two smaller biomass boilers totaling some 1.2  MMBTU.  This configuration provides for higher system efficiency by allowing the boilers to operate  closer to their peak loads during varying heating load situations, resulting in a higher percentage of the  building’s heating oil usage to be displaced with biomass fuel.  It also provides for additional system  redundancy.  These advantages come at the price of higher capital cost, more space utilization demands,  6    possibly higher O&M expenditures, and more complexity in integrating operations and controls.  While a  multiple‐boiler configuration warrants careful consideration during the design phase of the conversion  project, this study will assume that a single biomass boiler is deployed for purposes of the economic  analysis.        Fuel inflation rates & assumptions – Future fuel prices have a surprisingly large effect on the economic  viability of a biomass project.  No one has a crystal ball when it comes to heating oil prices, and past  prices have been highly unpredictable and have fluctuated widely.  Over the past twenty years (the  timeframe of this feasibility study), heating oil prices in Western states have increased approximately  6.75% faster than the general rate of inflation.  The economic analysis spreadsheet which accompanies  this report allows for alternate inflation assumptions to be input to gauge the impacts on those  assumptions on the overall economics of the project.   Wood energy options ‐ Prince of Wales Island is rich in wood energy alternatives.    Cordwood – The Craig High School is considered to be a poor match for the High School from an  operational labor cost and system integration standpoint.  The High School requires high  temperature water, while cordwood systems integrate best with systems that utilize lower  temperature water in their heating systems.  Trying to meet the demands of a high temperature  system would require frequent stoking of the cordwood boiler to maintain high temperatures, a  labor‐intensive process.  For those reasons cordwood will not be considered further in this  study.   Green chips – Undried wood chips, containing a moisture content of 50% or more (wet basis) are  readily available from the nearby Viking Lumber Company, which manufactures them in large  quantities for the pulp and paper industry.  The City of Craig utilizes these chips for the existing  biomass boiler plant.  Green chips are an appropriate fuel for larger boiler systems, which are configured to ‘pre‐dry’  the fuel prior to combustion.  But smaller boilers, such as are being considered for the Craig  High School, typically are not capable of efficiently burning green chips.  For this reason, green  chips will not be considered further in this study.   Wood pellets – Pellet boilers offer many attractive advantages over green chip boilers, including  smaller form factor, higher efficiency, lower O&M costs, better air emissions, and lower capital  costs.  Bulk pellets are only available from off‐island sources at this time.  Tongass Forest  Enterprises in Ketchikan operates a small pellet mill which is capable of meeting the High  School’s heating fuel needs at a competitive price to heating oil.  Bulk pellets are also available  from suppliers in British Columbia and the Lower‐48.  There has been conjecture regarding the  possibility of a pellet mill being established on Prince of Wales Island in the future which should  7    result in significantly less expensive pellets if such a mill were to ever become a reality.  Tongass  Forest Enterprises quoted a delivered price of $325 per ton ($23.50/MMBTU).  This price can be  modified in the spreadsheet provided with this report.       Microchips – these chips are smaller and drier than a green pulp‐grade chip, typically about 1.25  inches in maximum length and dried to approximately 25% moisture content.  A microchip  offers many significant advantages when used in an application such as the Craig High School  boiler:  a.  The chips can be utilized as an alternate fuel in many pellet boilers that would be  suitable for the High School, with little modification to the boilers, and with most of  the corresponding benefits of high efficiency, low O&M, etc. that pellet boilers  enjoy.  b. While microchips are more expensive than green chips due to the extra energy  involved with drying and processing them to a reduced size, they are significantly  cheaper on a per‐BTU basis than either wood pellets or heating oil.  An estimated  delivered cost for microchips from Viking Lumber is $125 per ton ($12 per MMBTU),  though that cost could vary significantly once the dryer system is operational.  The  drying rates established in the lease with the City of Craig (the owner of the rotary  drum dryer leased to Viking Lumber) is that drying would be provided to the general  public for $85 per ton, in addition to feedstock costs.  With green chips currently  provided to the City for $30 per ton, the combined cost would be at most $115 per  ton.  The price of microchips can be modified in the spreadsheet provided with this  report.    c. Microchips can be sourced from local feedstocks.  Viking Lumber is installing a chip  dryer which will be able to produce a suitably dried chip.  Viking Lumber officials  state that the size of their chips already meet the 1‐1/4” specification, so dried chips  from Viking Lumber should usable in many commercial pellet boilers with little or no  pre‐processing for size.  d. Because microchips have been partially dried, they eliminate problems associated  with freezing into clumps in storage, as well as problems with decomposition from  composting activity.  The additional drying processing and screening results in less  likelihood of foreign debris contaminating the fuel to cause problems with fuel feed  augers and boiler combustion systems.  e. Dried microchips contain higher concentrations of energy than green chips both on  a weight and volume basis.    Microchips do entail certain considerations during design and operation:  a.  Because they are a dried product, they must be protected from the weather once  produced.  At MC20 their moisture content should remain stable when exposed to  8    the atmosphere as long as they’re protected from precipitation or liquid  condensation.  b. Microchips will not have the same ‘flow’ characteristics as pellets when moving  them through the chip storage and boiler feed system, where gravity feed systems  combined with flexible augers have proven to be quite effective for pellets.  This will  typically entail more significant (and expensive) auger systems than a pellet boiler  might use, with less flexibility in configuration and layout of the feed systems.  c. Microchips, with a moisture content of 20% or even higher, have less net energy per  ton than wood pellets, at a moisture content of about 5%, do.  An additional 15% of  that ton is made up of water rather than wood, so less actual fuel is present.   Additionally, the water that’s present must be evaporated during combustion,  which further erodes the available energy in that ton of chips.  The end result of this  is that a pellet boiler must be de‐rated by roughly 20% from its peak load, meaning  that a larger boiler may need to be selected to supply the necessary heating load.  d. Microchips have significantly less net energy per unit volume than do wood pellets  or oil.  The chips are ‘fluffier’ than pellets (roughly 10 lbs/cu. ft. vs. 45 lbs/cu. ft. for  pellets) and come nowhere near the energy density of heating oil.  This will  necessitate larger fuel storage and/or more frequent deliveries.  Fortunately, the  close proximity of Viking Lumber means that relatively frequent deliveries will not  be excessively costly.           Boiler Suppliers – For the purposes of this study, the boiler system will be assumed to be a pellet  boiler(s) which has the capability of also burning a microchip fuel.  This is a competitive landscape in the  boiler market with numerous manufacturers offering suitable boilers in this output range.  Several  boilers already have a presence in Alaska including the KOB/Veissmann from Austria, the Advanced  Combustion Technology Bioenergy (ACT Bioenergy) from Schenectady, NY, and the LEI Bioburner from  Madisonville, KY (no boilers yet in Alaska, but a dealer is established).  Numerous other comparable  boilers are also available on the market.  For the purposes of this analysis, a boiler quote from ACT  Bioenergy was used as it represents a mid‐priced boiler system.  The price of the boiler system can be  modified in the spreadsheet provided with this report.       Boiler Siting and Configuration – The existing boiler room in the High School houses two large oil‐fired  boilers.  If one of these boilers were to be removed, that would provide ample room for one or more  smaller biomass boilers.  Additionally, this would allow the biomass boiler to utilize the existing boiler  exhaust stack and simplify the integration of the boiler(s) with the existing building hot water  distribution system.  It would also negate the need to run glycol in the boiler system and separate it  from the building’s system with a heat exchanger (assuming the building is currently not running glycol)  if the boiler were sited in a separate containerized system.  9    One challenge to siting the boiler in that location is the numerous electrical panels along the exterior  wall which would potentially interfere with any fuel feed system.  Current electrical codes should be  consulted as well to ensure that noncompliance would not result if a boiler was located in front of those  panels.   An alternative site for the boiler would be in the unutilized shop classroom adjacent to the boiler room.   While this room is well located and has ample space for a boiler, it would need to be carefully reviewed  for fire code compliance and exhaust stack siting.  The final option for siting the boiler is to place it inside of a preconfigured containerized system.  This  would allow for the placement of the boiler outside of the building, connecting the boiler to the  building’s hot water distribution system via connecting tubing.  The advantage of this system is that it  consumes virtually no space from inside the school.  The container can serve as both the housing for the  boiler as well as the fuel storage bin.  It also allows for the boiler system to be preconfigured and tested  at the factory and brought on site in a ‘plug‐and‐play’ status.  This can significantly reduce installation  time and costs, and result in a less troublesome commissioning process.   Fuel handling and storage – In any of the boiler configurations, the fuel storage would be located  outside of the boiler room adjacent to the boiler room behind the school.  Pellet storage is handled  rather simply with a vertical metal silo which connects to the boilers fuel feed system via a flexible auger  or pneumatic system.  The pellets would be delivered to this silo in bulk, typically with a truck outfitted  with an auger feed system or with a pneumatic blower unit.  Tongass Forest Enterprises utilizes an  auger‐feed truck.  Chips require a more positive fuel feed system than a silo with a flex auger.  Typically this involves some  sort of chip storage bin with a sweep arm, walking floor, or traveling auger arrangement.  The City of  Craig’s chip boiler utilizes a recessed walking floor bin.  The chips move from the bin via a belt or auger  into the boiler’s fuel feed system.  Chips are often delivered by trucks which dump the chips via gravity or a walking floor into the recessed  chip bin. Such is the configuration with the City’s chip boiler system.  The cost of building a recessed bin  at the High School would be significant, as would the cost of building a ramp for trucks to back up prior  to dumping.    There are a wide variety of approaches to addressing the chip storage and unloading challenge.  The  approach used in this analysis addresses both storage and chip delivery as an integrated system.  It also  addresses the recurring problem of foreign material such as ice, dirt, and rocks contaminating the chips  in the City boiler due to the delivery trucks being used for multiple purposes besides chip hauling.  This  solution relies on standard farm technology since the technologies for handling and storing agricultural  products are often easily transferrable to biomass applications.    10    Farm silage wagons carry significant volumes (30+ cubic yards) of chips and utilize a chain‐drag live floor  to move the chips forward.  At the front of the wagon one or more auger systems are utilized to loosen  the clumps of chips, which fall onto a transverse belt which conveys the chips out a side chute into the  boiler’s chip handling system.  This wagon feed system can be interlocked with the boiler’s feed system  through a simple control connection.  By disconnecting the wagon’s control cable, the wagon would be  freed up to be transported to the Viking Mill (or other supplier on‐island or in Ketchikan) for refilling.  If  the High School owned two trailers, it could always have a full one ready to be ‘hot‐swapped’ with the  empty one, allowing ample time for refilling the empty.  A new farm wagon custom configured for this  application would cost about $50,000.  The price of the wagon can be modified in the spreadsheet  provided with this report.    There are obviously many different ways that fuel storage and delivery can be approached, so various  options should be carefully considered during the design phase of this project.           Project Economics – This analysis attempts to compare the capital and operational costs of the status  quo (oil boilers) option versus pellet and chip boiler options over a 20‐year period.  It assumes that  heating oil costs a reported $4.05 per gallon.  The price of heating oil can be modified in the spreadsheet  provided with this report.  The analysis also performs a sensitivity analysis on the price of chips since the  price of this fuel is somewhat uncertain at this time, comparing the economics at three prices (low,  medium, and high).  The various options are compared by cumulative annual cost as well as by net present value –  representing the aggregated costs over 20 years in a single 2013 value.  The option with the lowest NPV  is the least cost option.   Note that the analysis assumes that biomass only displaces 95% of the oil usage, so 5% of the oil usage is  still included in the biomass option analyses.   11      Figure 2 Present Value of Costs (smaller is better)     $‐      $500,000.00    $1,000,000.00    $1,500,000.00    $2,000,000.00    $2,500,000.00   Existing Oil Boiler ‐ No Change  Option  Wood Pellet Boiler  Wood Microchip Boiler ‐ Low  Cost Chip Option  Wood Microchip Boiler ‐  Medium Cost Chip Option  Wood Microchip Boiler ‐ High  Cost Chip Option   $‐      $500,000.00    $1,000,000.00    $1,500,000.00    $2,000,000.00    $2,500,000.00    $3,000,000.00    $3,500,000.00   20 Year Cumulative Cost Chart  Existing Oil Boiler ‐ No  Change Option  Wood Pellet Boiler  Wood Microchip Boiler ‐  Low Cost Chip Option  Wood Microchip Boiler ‐  Medium Cost Chip Option  Wood Microchip Boiler ‐  High Cost Chip Option  12    As shown in the Cumulative Cost chart, as the price of oil rises faster than the price of the other wood  fuels, the costs rapidly mount up.  A sensitivity analysis was performed on the projected escalation rate  of oil (6.75%), and even when oil escalation approached 1%, it was still the most expensive option.   B/C Ratio – One of the goals of this study is to prepare the recipients to submit an application for a State  of Alaska Renewable Energy Fund grant.  To that end, this analysis calculates the Benefit/Cost Ratio  required for that application.     The B/C Ratio calculation utilizes fuel price escalation assumptions established by the State of Alaska  which are based on U.S. Energy Information Agency price projections.  The EIA price projections have  historically underestimated oil price inflation by a wide margin.  For example, in 2001 oil was $28.21 per  barrel.  At that time EIA was projecting that the price of crude in 2011 would be $27.28 per bbl.  The  actual price turned out to be $102.70.  This was not atypical of EIA’s underestimates.  Therefore, for the  purposes of the B/C Ratio the mandated EIA inflation estimates are used, but for the rest of the analysis  an oil inflation rate of 6.75% is used, which more accurately represents oil inflation over the past 20  years.  However, even if the escalation rate of oil is set to zero percent, some of the microchip options  still have a lower lifecycle cost than the status quo.          Other Considerations – The following issues bear further analysis or investigation during later phases of  this project:  Air Emissions – The Alaska Energy Authority requires that any boilers which receive RE grant  funding must demonstrate independent third party emissions testing for the type of fuel which  will be burned in it.  Before any boiler selection is made, it’s strongly recommended that AEA be  consulted with to confirm that the boiler manufacturer has satisfied the testing requirement.   Testing information must be requested from the boiler manufacturer as AEA does not track  manufacturer‐specific information.   Air Emissions II – While the area surrounding the High School is largely wooded and  undeveloped, there is a residential area to the south of the school which is on the slope above  the school.  Pellet and microchip boilers are clean‐burning devices but they still do produce  some particulate emissions which can be unhealthy at higher concentrations.  Reducing  exposure to these emissions is imperative, and the following strategies can be utilized:  a. Implement all of the EEMs identified in the Energy Audit.  This will reduce the heat  lost from the school, and thus reduce the amount of fuel that needs to be burned to  replace it.  b. Select and install a low‐emitting boiler which has been third‐party tested in  accordance with AEA’s standards.    13    c. Perform an emissions analysis as part of the design.  The design firm can contract  with an emissions specialist which can evaluate the site and the meteorological data  and make recommendations regarding things like boiler exhaust stack height.  d. Operate the boiler in accordance with the manufacturer’s instructions, performing  all scheduled maintenance and using quality fuel.  Fuel Security – Currently Viking Lumber is the obvious source of chip fuel for the school.  But  given the decline of the forest products industry in Southeast Alaska, it’s conceivable that Viking  could shut down at some future time.  Even in that eventuality, a pellet/chip boiler is viable.   Assuming that Tongass Forest Enterprises is still in operation, either chips or pellets can be  sourced from Ketchikan.  Other mills on POW are also capable of producing an acceptable chip  fuel with some investment in equipment.  In the worst case scenario, pellets would need to be  sourced from out of state, but given current price disparities, even imported pellets would enjoy  a significant price advantage over heating with oil.  Project Financing – A project like this typically would be funded one of three ways:  a. Government grants – Similar to the City of Craig biomass boiler, which received a  number of grants totaling in excess of $1,000,000 towards design and construction,  the Craig School District could elect to pursue grants for this project.  The financial  projections for the project are fairly positive and this project may prove to be  competitive for grants from the Alaska Renewable Energy program or elsewhere.   Note that grants are highly competitive and the pool of ‘free’ money is shrinking.   The economic benefits of this project are such that there’s little justification in  waiting – each year lost waiting represents another year of significant lost savings.  b. Bank Loans – The projected cash flows resulting from the savings from this project  are substantial and more than adequate to pay for the amortized costs of a project  loan.    c. AHFC Loans – The EEM portion of this project is likely to be largely eligible for low‐ interest loans for the Alaska Housing Finance Corporation, the same entity that paid  for the energy audit.    In addition to the above financing options, there may be others such as ESCO‐funded  projects which are third‐party financed but paid for from the savings of the project.    Conclusions – Conversion to biomass appears to be an excellent opportunity for the Craig High School.    Every biomass option compares very favorably with the status quo and all of them ‘pay off’ within 5 to 8  years.  The pellet option enjoys a significant early advantage due to its lower capital costs for fuel  storage, but the microchip options all ultimately yield lower costs, even at the extraordinarily high chip  option of $170 per ton.  14    Building efficiency improvements go hand‐in‐hand with converting to biomass fuel.  The recent AHFC  energy audit identified numerous opportunities for improvements to the building’s thermal energy  performance.  Some of these improvements can be accomplished by inhouse staff, and it’s been  reported that many already have been completed; other improvements will require a financial  investment to hire specialized contractors.  Not only will these improvements result in lower energy  costs, but they will also allow for lower capital expenditures on the boiler conversion by reducing the  required size of the boiler and fuel storage.  The energy audit identified many EEMs related to electrical  savings, such as lighting change‐outs, but the focus of the improvements in this context should be on the  EEMs that improve the building’s thermal energy performance, as identified on Page 5 above.   The B/C Ratio suggests that this project would compete well for RE Fund grant money.  With first‐year  savings of between $25,000 and $61,000, in some options those savings exceed the cost of fuel.  The  analysis suggests that microchips yield immediate annual savings adequate to pay for the amortized  costs of borrowing money to finance 100% of the boiler and the EEM improvements.  As the savings of  using chips increase with the growing price of oil, the financial benefits of converting to biomass become  more compelling.  15    Site Photos    Figure 3Existing oil‐fired boilers    Figure 4 Distribution pumps  16      Figure 5 Outside boiler room/Shop classroom ‐ fuel storage location out here?  !!!!! ! Craig High School Craig City School District! ! Funded by: Final Report October 2011 Prepared by: Energy Audit !"#$%&’(&)’*+%*+,& Section 1: Executive Summary 2! Section 2: Introduction 7! Section 3: Energy Efficiency Measures 9! Section 4: Description of Systems 17! Section 5: Methodology 20! Appendix A: Energy and Life Cycle Cost Analysis 23! Appendix B: Utility and Energy Data 33! Appendix C: Equipment Data 39! Appendix D: Abbreviations 44 & -./0+&!%"1& The energy audit is performed by Alaska Energy Engineering LLC of Juneau, Alaska. The audit team consists of: ! Jim Rehfeldt, P.E., Energy Engineer ! Jack Christiansen, Energy Consultant ! Brad Campbell, Energy Auditor ! Loras O’Toole P.E., Mechanical Engineer ! Will Van Dyken P.E., Electrical Engineer ! Curt Smit, P.E., Mechanical Engineer ! Philip Iverson, Construction Estimator ! Karla Hart, Technical Publications Specialist ! Jill Carlile, Data Analyst ! Grayson Carlile, Energy Modeler !"#$%&’$%(&)*(++,-./0"%1&234$5&67*5+80"&9:--; !"#$%&’()( *+"#,$%-"(!,../01( An energy audit of the Craig High School was performed by Alaska Energy Engineering LLC. The investment grade audit was funded by Alaska Housing Finance Corporation (AHFC) to identify opportunities to improve the energy performance of public buildings throughout Alaska. Craig High School is a 52,219 square foot building that contains offices, classrooms, commons, a library, a gym, an auditorium, a shop, and mechanical support spaces. Building Assessment The following summarizes our assessment of the building. Envelope The building ventilation and heating systems are designed to only work efficiently and effectively if the building envelope is tightly sealed. The design and construction of the building envelope and the rooftop ductwork penetrations have resulted in a very poorly sealed building. Significant energy losses and operational concerns exist in the second floor fan room spaces and the unfinished second floor space, including: - An unused 20” diameter opening through the insulated roof on the northwest end of the building for exhaust fan EF-8 which was never installed. - A 6’ x 12’ uninsulated portion of the ceiling with a 1-1/2’ x 3’ opening at the peak of the roof in the fan room adjacent to the auditorium. - Insufficient plenum return openings for AHU-1 through the second floor on the south side. - Unsealed duct work penetrations through the roof of the building. - The building design which utilizes a steel beam and corrugated roofing underlayment adds to the difficulty of sealing the building envelope. Improper roof penetration sealing around exhaust duct penetrations also raises a concern with drawing exhaust from the restrooms back into the second floor space where it can mix with classroom return air and then be redistributed throughout the classrooms by AHU-1. Proper AHU-1 operation for the heating and ventilating of classroom spaces requires that the unfinished second floor acts as a return plenum to move return air from the classrooms to AHU-1. Outside air infiltration through the unnecessary rooftop openings combined with poor ductwork sealing efforts causes mixing of the warm return air with colder outside air, thereby reducing the return air temperature to AHU-1 and increasing the heating demand on the unit. Energy will be saved if the building envelop leakage issues are corrected. When AHU-1 is off and not pulling air from the second floor space, warm air from the second floor is leaking through the unsealed roof penetrations. As the warm air passing through the openings cools, it can condense within the roof penetration space and cause water damage above the corrugated roofing base and below the roof insulation. This appears to be happening at multiple locations in the attic and could reduce the life of the building envelope. !"#$%&’$%(&)*(++,9 ./0"%1&234$5&67*5+80"&9:--; AHU-1 supply and return air flows should be balanced and verified through retro-commissioning once the building envelope is sealed to ensure efficient operations. - The holes cut in the second story floor to provide an air path from the first floor return plenum appear to be too small and may be requiring AHU-1 return fan to operate at an increased electrical demand. Since the building envelope is excessively leaky, the undersized plenum return openings cause more outside air to be being pulled into the second floor space. This was quantified on the DDC by seeing a substantial drop in return air temperature from the first floor to AHU-1, the result of which will increase the heating demand of AHU-1. Larger floor openings will result in reduced flow restrictions on the return air and thereby reduce heating loads of AHU-1 and should decrease the electrical loading of AHU-1 return fan. - The return air silencers in the fan room wall are also undersized, which is causing the return fan to operate at higher speeds and energy consumption. Exterior doors are not thermally broken. Future exterior door replacement selection should include this feature. Weather stripping on exterior doors is in need of replacement throughout. Some exterior wall shingles appeared to be damaged or missing as a result of recent building pressure washing efforts. The roof penetrations around MAU-1 in the shop space are not sealed. Air is flowing through the unsealed opening and condensation is occurring. Exhaust fans are being operated after the AHU’s turn off. This may be putting a negative pressure on the spaces within the building envelope and compounding the outside air infiltration issues. Several of the second floor exhaust fans were not installed and the remaining fans were not installed properly on their concrete bases. A fire sprinkler main passes directly through the center of the EF-6 discharge duct. This is reducing fan efficiency and may be a code violation. The gable awning over the south gym entrance does not have gutters. As a result the drainage path for rainwater is along the wall and down the rock face. Damage may occur to the rock face and grouting as a result. On a positive note, there are very few windows in the north exterior wall and none in the east exterior wall, thus reducing heat loss on walls that have minimal solar gain. Heating System The building is heated by two fuel oil boilers that provide heat to five air handling unit systems, a make-up air unit in the shop, fan coil units, and perimeter hydronic systems. Maintenance staff are very actively managing the boiler run times to minimize fuel consumption where possible due to normal boiler inefficiencies. The boilers are currently being operated at 120°F in an effort to conserve energy, however this will decrease the life of the stack and the temperature should be raised to the normal operating band. Several of the boiler loop circulation pump motors have failed and have been replaced with less efficient models. These should be upgraded to premium efficiency motors. The remainder of the fuel oil boiler heating system appears to be in good condition; however fairly simple improvements, outlined in Section 3, can be made to improve its effectiveness and efficiency. !"#$%&’$%(&)*(++,<./0"%1&234$5&67*5+80"&9:--; Ventilation System The building ventilation systems consists of five large air handling units located in two interior fan rooms and one make-up air roof top unit that provide conditioned air within the building envelope. In addition to the large air handling units there are fifteen exhaust fans mounted throughout the building and on the roof top for the purposes of cooling spaces, improving building air quality, kitchen operations, and fume hood exhaust air flow in the science labs. The building air handling units and the DDC system do not appear to have been properly commissioned following construction. The air handling unit that provides heating and ventilation for the classrooms was brought on-line recently through efforts by maintenance staff and a DDC programmer. The remaining systems should be corrected in a similar fashion and a retro-commissioning effort should be performed for the entire building upon completion of repairs and right-sizing efforts for ventilation requirements. Locker room air handling unit AHU-4 was turned off and under repair during the audit visit. The AHU-5 fan belt shield is off and should be reinstalled. The air handling units are considerably over-sized for Craig, Alaska. The sizing is more appropriate for a warmer, sunny climate that operates through the summer and experiences high solar gain. The air flows should be “right-sized” and the systems rebalanced to save energy. Space Existing CFM/sqft Optimal CFM/sqft % Oversized Auditorium 2.54 1.5 69% Gym 1.72 1.1 56% Commons 2.49 1.6 56% Classrooms Varies 1.0 - Given the oversized ventilation system, consolidation would further optimize air handling and reduce energy costs. Whole-building optimization is beyond the scope of this energy audit but is recommended if the ventilation EEMs are pursued. Domestic Hot Water System An oil-fired hot water heater supplies domestic hot water. When the heater reaches the end of its service life, it is recommended to replace it with an indirect heater connected to the boiler heating system and a smaller oil-fired heater for summer use when the boilers are off. Lighting Interior lighting primarily consists of T8 and metal halide lighting. Exterior lighting consists primarily of metal halide lighting. The interior lighting schedule and all exterior lighting, including parking lot lighting, is controlled by staff. As a result, lighting operational hours and subsequent electrical demand is being kept to a minimum. !"#$%&’$%(&)*(++,=./0"%1&234$5&67*5+80"&9:--; Energy Efficiency Measures (EEMs) All buildings have opportunities to improve their energy efficiency. The energy audit revealed numerous opportunities in which an efficiency investment will result in a net reduction in long-term operating costs. Behavioral and Operational EEMs The following EEMs require behavioral and operational changes in the building use. The savings are not readily quantifiable but these EEMs are highly recommended as low-cost opportunities that are a standard of high performance buildings. EEM-1: Weather-strip Doors EEM-2: Adjust Double Door Closures EEM-3: Repair Window Weather Stripping EEM-4: Replace Failed Window Glazing EEM-5: Seal Building Envelope EEM-6: Server Room Heat Recovery High and Medium Priority EEMs The following EEMs are recommended for investment. They are ranked by life cycle savings to investment ratio (SIR). This ranking method places a priority on low cost EEMs which can be immediately funded, generating energy savings to fund higher cost EEMs in the following years. Negative values, in parenthesis, represent savings. 25 Year Life Cycle Cost Analysis Investment Operating Energy Total SIR High Priority EEM-7: Turn Off Standby Boiler $200 $0 ($78,700) ($78,500) 393.5 EEM-8: Install Pipe Insulation $900 $0 ($46,000) ($45,100) 51.1 EEM-9: Replace Aerators $1,400 $0 ($67,400) ($66,000) 48.1 EEM-10: Perform Boiler Combustion Test $700 $4,600 ($21,200) ($15,900) 23.7 EEM-11: Upgrade Motors to Premium Efficiency $2,700 $0 ($9,400) ($6,700) 3.5 Medium Priority EEM-12: Optimize Gym AHU-5 $55,000 $0 ($166,600) ($111,600) 3.0 EEM-13: Upgrade Transformer $23,600 $0 ($68,100) ($44,500) 2.9 EEM-14: Replace Exit Signs $3,300 ($1,300) ($7,100) ($5,100) 2.5 EEM-15: Increase AHU-1 Return Air Path $4,000 $0 ($10,000) ($6,000) 2.5 EEM16-: Install Valves on Unit Heaters $4,400 $0 ($9,500) ($5,100) 2.2 EEM-17: Install Modulating Boiler Burners $33,700 $15,400 ($84,600) ($35,500) 2.1 EEM-18: Optimize Auditorium AHU-3 $62,800 $0 ($124,100) ($61,300) 2.0 EEM-19: Optimize Heating System $90,600 ($15,400) ($154,800) ($79,600) 1.9 EEM-20: Optimize Commons AHU-4 $59,700 $0 ($98,200) ($38,500) 1.6 EEM-21: Install Boiler Room Heat Recovery $23,100 $4,600 ($41,500) ($13,800) 1.6 EEM-22: Reduce Locker Room Lighting $7,100 ($600) ($8,600) ($2,100) 1.3 Totals* $373,200 $7,300 ($995,800) ($615,300) 2.6 !"#$%&’$%(&)*(++,>./0"%1&234$5&67*5+80"&9:--; * The analysis is based on each EEM being independent of the others. While it is likely that some EEMs are interrelated, an isolated analysis is used to demonstrate the economics because the audit team is not able to predict which EEMs an Owner may choose to implement. If several EEMs are implemented, the resulting energy savings is likely to differ from the sum of each EEM projection. Summary It is the assessment of the energy audit team that the Craig High School staff are very focused on lowering energy consumption at the facility in their daily operations. Unfortunately, energy efficiency is unattainable due to a substandard building envelope and oversized air handling units that are operating with non-optimal control sequences that were not properly commissioned. This has resulted in a situation that cannot be corrected by operational modifications alone. Outlined within the report are recommendations for building envelope sealing efforts, modifications to the air handling systems and control sequences, and subsequent building retro-commissioning. The energy audit revealed other opportunities for improving the energy performance of the Craig High School as well. It is recommended that the behavioral and high priority EEMs be implemented now to generate energy savings from which to fund the medium priority EEMs. Another avenue to consider is to borrow money from AHFCs revolving loan fund for public buildings. AHFC will loan money for energy improvements under terms that allow for paying back the money from the energy savings. More information on this option can be found online at http://www.ahfc.us/loans/akeerlf_loan.cfm. !"#$%&’$%(&)*(++,?./0"%1&234$5&67*5+80"&9:--; !"#$%&’(2( 3’$0&4,#$%&’( This report presents the findings of an energy audit of Craig High School located in Craig, Alaska. The purpose of this investment grade energy audit is to evaluate the infrastructure and its subsequent energy performance to identify applicable energy efficiencies measures (EEMs). The energy audit report contains the following sections: ! Introduction: Building use and energy consumption. ! Energy Efficiency Measures: Priority ranking of the EEMs with a description, energy analysis, and life cycle cost analysis. ! Description of Systems: Background description of the building energy systems. ! Methodology: Basis for how construction and maintenance cost estimates are derived and the economic and energy factors used for the analysis. BUILDING USE Craig High School is a 52,219 square foot building that contains offices, classrooms, commons, a library, a gym, an auditorium, a shop, and mechanical support spaces. The building is occupied by 95 students and 10 staff members. It is used in the following manner: ! Offices and Classrooms: 7:30 am – 3:30 pm (M-F) ! Commons: 7:00 am – 10:00 pm (M-F), 3:00pm – 9:00pm (S-Su) ! Gym 8:00 am – 10:00 pm (M-F) ), 3:00pm – 9:00pm (S-Su) ! Auditorium 12:00 pm – 3:00 pm (M-F) ! Fans: 7:30 am – 4:00 pm (M-F) History This building was constructed in 2000. Energy Consumption The building energy sources include an electric service and a fuel oil tank. Fuel oil is used for the majority of the heating loads while electricity serves all other loads, including domestic hot water and a limited amount of space heating. The following table shows annual energy use and cost. Annual Energy Consumption and Cost Source Consumption Cost Energy, MMBtu Electricity 259,880 kWh $69,100 890 27% Fuel Oil 18,100 Gallons $61,900 2,460 73% Totals - $131,000 3,350 100% !"#$%&’$%(&)*(++,@ ./0"%1&234$5&67*5+80"&9:--; Electricity This chart shows electrical energy use from 2007 to 2010. Use has been fairly consistent over the last four years. The effective cost—energy costs plus demand charges—is 26.6¢ per kWh. Fuel Oil This chart shows heating energy use from 2007 to 2010. The chart compares annual use with the heating degree days which is a measurement of the demand for energy to heat a building. A year with a higher number of degree days reflects colder outside temperatures and a higher heating requirement. Fuel oil use dropped in 2010 due to lower heating degree days and efforts by operating staff to reduce energy consumption. Fuel oil use is likely to increase in 2011 due to bringing AHU-1 into service. The current cost of fuel oil in Craig is $3.89 per gallon. Assuming a fuel oil conversion efficiency of 70%, oil heat costs $40.12 per MMBtu. The current cost of electricity is 26.6¢ per kWh. Assuming an electric conversion efficiency of 95%, electric heat costs $82.00 per MMBtu. As such, fuel oil heat is much less expensive than electric heat. !"#$%&’$%(&)*(++,A ./0"%1&234$5&67*5+80"&9:--; !"#$%&’(5( *’"061(*77%#%"’#1(8"/9,0"9( The following energy efficiency measures (EEMs) were identified during the energy audit. The EEMs are priority ranked and, where applicable, subjected to energy and life cycle cost analysis. Appendix B contains the energy and life cycle cost analysis spreadsheets. The EEMs will be grouped into the following prioritized categories: ! Behavioral or Operational: EEMs that require minimal capital investment but require operational or behavioral changes. The EEMs provide a life cycle savings but an analysis is not performed because the guaranteed energy savings is difficult quantify. ! High Priority: EEMs that require a small capital investment and offer a life cycle savings. Also included in this category are higher cost EEMs that offer significant life cycle savings. ! Medium Priority: EEMs that require a significant capital investment to provide a life cycle savings. Many medium priority EEMs provide a high life cycle savings and offer substantial incentive to increase investment in building energy efficiency. ! Low Priority: EEMs that will save energy but do not provide a life cycle savings. BEHAVIORAL OR OPERATIONAL The following EEMs are recommended for implementation. They require behavioral or operational changes that can occur with minimal investment to achieve immediate savings. These EEMs are not easily quantified by analysis because they cannot be accurately predicted. They are recommended because they offer a life cycle savings, represent good practice, and are accepted features of high performance buildings. EEM-1: Weather-strip Doors Purpose: The weather stripping on most of the singe-wide exterior doors is in poor condition and the double-door weather stripping system on the center support bars is ineffective. Energy will be saved if doors are properly weather-stripped to reduce infiltration. Scope: Replace weather stripping on exterior doors. EEM-2: Adjust Double Door Closures Purpose: The front doors are not completely closing due to weather stripping interference and improper door closure adjustment. Energy would be saved if the automatic closures are properly adjusted following the repair or replacement of the weather stripping to ensure complete door sealing. Scope: Repair or replace weather stripping and adjust double-door automatic closures for proper sealing. !"#$%&’$%(&)*(++,B ./0"%1&234$5&67*5+80"&9:--; EEM-3: Repair Window Weather Stripping Purpose: Weather stripping has been obviously damaged on several of the operable windows. Energy will be saved if all of the operable windows are fully opened to inspect weather stripping and repairs are made as needed. Scope: Inspect and repair operable window weather stripping. EEM-4: Replace Failed Window Glazing Purpose: The glazing has failed on the upper section of a window on the north wall of the northwest classroom. Energy will be saved if the failed glazing is replaced. Scope: Replace failed glazing section. EEM-5: Seal Building Envelope Purpose: The design and construction of the building envelope and the rooftop ductwork penetrations have resulted in a very poorly sealed building. Significant energy losses and operational concerns exist in the second floor fan room spaces and the unfinished second floor space as outlined in the Executive Summery. Energy will be saved and building longevity may be increased if these discrepancies are repaired Scope: Perform the following envelope repairs: i. Seal and insulate the 20” diameter opening through the insulated roof on the northwest end of the building where exhaust fan EF-8 was supposed to be installed. ii. Seal and insulate the 6’ x 12’ uninsulated portion of the ceiling, to include the 1!’ x 3’ opening at the peak of the roof in the main air handler unit space above the auditorium iii. Seal all duct work penetrations through the roof of the building. EEM-6: Server Room Heat Recovery Purpose: The server room contains 3 switches, 1 server, some additional heat generating electrical equipment, and also has heat gain through the floor. Maintenance staff informed the audit team that this space gets too warm. Energy will be saved if the additional heat in this space is delivered to AHU-1 in the adjacent space for recirculation through the school. Scope: Install a grill in the south and north walls of the server space so that second floor plenum return air can be transferred to AHU-1 through the server room. !"#$%&’$%(&)*(++,-:./0"%1&234$5&67*5+80"&9:--; HIGH PRIORITY The following EEMs are recommended for implementation because they are low cost measures that have a high savings to investment ratio. The EEMs are listed from highest to lowest priority. Negative values, in parenthesis, represent savings. EEM-7: Turn off Standby Boiler Purpose: Only one boiler is required to meet the heating load, yet both are operated and kept warm. Energy will be saved by closing the valve in the return main, thus isolating the standby boiler. Scope: Close the valve on the return main and shut off the standby boiler. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DB2EFGCH(DB2EFGCH( B2CC(( BC((DBFGEFCCH(DBFGEICCH( 5J5KI( EEM-8: Install Pipe Insulation Purpose: An 8’ section of 6” pipe, a 12’ section of 4” pipe, and a 12’ section of 2 !” pipe, all on the boiler system expansion U-bends in the second floor space, are uninsulated. Energy will be saved if these sections of boiler supply and return piping are optimally insulated. Scope: Install insulation on uninsulated boiler supply and return piping. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DB)EL2CH(DB)EL2CH( BJCC(( BC((DBMLECCCH(DBMIE)CCH( I)K)( EEM-9: Replace Aerators Purpose: Energy and water will be saved by replacing the aerators on the lavatories and showerheads with low-flow models. Scope: Replace aerators on lavatories and showerheads with water-conserving fixtures. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DB5EM5CH(DB5EM5CH( B)EMCC(( BC((DBLFEMCCH(DBLLECCCH( MGK)( EEM-10: Perform Boiler Combustion Test Purpose: Operating the boiler with an optimum amount of excess air will improve combustion efficiency. Annual cleaning followed by a combustion test is recommended. Scope: Annually clean and perform a combustion test on the boiler. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( B2MC((DBFICH(DBI)CH( BFCC(( BMELCC((DB2)E2CCH(DB)IEJCCH( 25KF( !"#$%&’$%(&)*(++,--./0"%1&234$5&67*5+80"&9:--; EEM-11: Upgrade Motors to Premium Efficiency Purpose: Premium efficiency motors should be used for equipment that operates during school hours. A motor efficiency of 60 % is low enough to warrant replacement before a motor fails. Energy will be saved if pump P-4B and P-7 motors and the AHU-2 return fan motor are all replaced with premium efficiency motors. Scope: Replace pump P-4B and P-7 motors and AHU-2 return fan motor with premium efficiency motors. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DBMGCH(DBMGCH( B2EFCC(( BC((DBJEMCCH(DBLEFCCH( 5KI( MEDIUM PRIORITY Medium priority EEMs require planning and a higher level of investment. They are recommended because they offer a life cycle savings. The EEMs are listed from highest to lowest priority. Negative values, in parenthesis, are savings. EEM-12: Optimize Gym AHU-5 Purpose: The gym AHU-5 is oversized by a factor of 56%, consuming additional energy to run the fan. In addition, the unit supplies more outside air than required, which results in higher heating demands. Energy will be saved if the system controls are optimized. Scope: Perform the following control modifications and retro-commission: i. Install a variable speed drive on the supply fan to reduce air flow and modulate air flow with cooling loads. ii. Add a CO2 sensor to control and reduce outside air flow while maintaining adequate indoor air quality. iii. Reset the supply air temperature with gym temperature. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DBLEL2CH(DBLEL2CH( BIIECCC(( BC((DB)LLELCCH(DB)))ELCCH( 5KC( EEM-13: Replace Transformer Purpose: The 150 kVA transformer in electrical room 137 is not TP-1 rated. Energy will be saved if this less-efficient transformer is replaced with an energy efficient model that complies with NEMA Standard TP 1-2001. Scope: Replace less-efficient transformer with a NEMA Standard TP 1-2001compiant model. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DB5EMFCH(DB5EMFCH( B25ELCC(( BC((DBLGE)CCH(DBMMEICCH( 2KJ( !"#$%&’$%(&)*(++,-9 ./0"%1&234$5&67*5+80"&9:--; EEM-14: Replace Exit Signs Purpose: The exit signs utilize two 7.7 watt tungsten bulbs. Energy will be saved if the exit signs are replaced with self-luminescent signs. Scope: Replace the eleven existing exit signs with self-luminescent exit signs. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( DBFCH(DB5LCH(DBM5CH( B5E5CC((DB)E5CCH(DBFE)CCH(DBIE)CCH( 2KI( EEM-15: Increase AHU-1 Return Air Path Purpose: The return air path for AHU-1 travels through holes in the floor deck above and silencers in the wall of the fan room. The free area of these openings is too small, which is creating high pressure loss and causing the return fan to work harder to pull the air back to AHU-1. This is also causing outside air to be pulled into the building through the leaky envelope. Energy will be saved, and the building pressure will be better regulated, if the return air path openings are increased in size. Scope: Double the size of the return air floor openings. Remove the silencers and double the size of the wall openings. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DBI)CH(DBI)CH( BMECCC(( BC((DB)CECCCH(DBLECCCH( 2KI( EEM-16: Install Automatic Valves on Unit Heaters Purpose: Energy will be saved if the seven wall and ceiling mounted unit heaters have an automatic valve that shuts off the heating flow when heat is not needed. Currently the coils in the unit heaters are continuously hot and the thermostat turns on the fan to supply the heat to the room. When heat is not needed, convective heat loss from the coil occurs; some of the heat loss may be useful, but a large percentage is not. Scope: Install automatic valves in the heating supply to each unit heater and control them from the fan thermostat. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DB55CH(DB55CH( BMEMCC(( BC((DBJEICCH(DBIE)CCH( 2K2( EEM-17: Install Modulating Boiler Burners Purpose: The boiler burners do not incorporate modulating burner controls. Energy will be saved if the boiler firing rate modulated as necessary. Scope: Install modulating burners on the boilers. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BGCC((DB2EJJCH(DB2E)JCH( B55EFCC(( B)IEMCC((DBGMELCCH(DB5IEICCH( 2K)( !"#$%&’$%(&)*(++,-<./0"%1&234$5&67*5+80"&9:--; EEM-18: Optimize Auditorium AHU-3 Purpose: The auditorium AHU-3 is currently operated from 7:30 am to 4:00 pm. However, the auditorium is only used for classes from 12:00 pm to 3:00 pm. AHU-3 is oversized by a factor of 69%, consuming additional energy to run the fan. In addition, the unit supplies more outside air than required, which results in higher heating demands. Energy will be saved if the system controls are optimized. Scope: Perform the following control modifications and retro-commission AHU-3: i. Install a variable speed drive on the supply and return fans to reduce air flow and modulate air flow with cooling loads. ii. Add a CO2 sensor to control and reduce outside air flow while maintaining adequate indoor air quality. iii. Reset the cold deck temperature with auditorium temperature. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DBIEM2CH(DBIEM2CH( BL2EGCC(( BC((DB)2ME)CCH(DBL)E5CCH( 2KC( EEM-19: Optimize Heating System Purpose: The heating system has a capacity of 150 Btuh/sqft which is five times larger than typical for a school building. A heating system optimization analysis is needed to right- size the system and increase its efficiency. Opportunities include reducing the size of the boilers by removing sections and combining the distribution loops into one set of pumps. Scope: Optimize the heating system by recalculating the building heating loads, reducing boiler size and serving the distribution loops into one set of pumps. This should be performed after the AHU EEMs have been implemented, which will reduce heating loads. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( DBGCCH(DBLEM)CH(DBFE2)CH( BJCELCC((DB)IEMCCH(DB)IMEGCCH(DBFJELCCH( )KJ( !"#$%&’$%(&)*(++,-=./0"%1&234$5&67*5+80"&9:--; EEM-20: Optimize Commons AHU-2 Purpose: The Commons AHU-2 is oversized by a factor of 56%, consuming additional energy to run the fan. In addition, the unit supplies more outside air than required, which results in higher heating demands. Energy will be saved if the system controls are optimized. Scope: Perform the following control modifications and retro-commission: i. Install a variable speed drive on the supply and return fans to reduce and modulate air flow with cooling loads. ii. Add a CO2 sensor to control and reduce outside air flow while maintaining adequate indoor air quality. iii. Reset the supply air temperature with commons temperature. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( BC((DBMECLCH(DBMECLCH( BIJEFCC(( BC((DBJGE2CCH(DB5GEICCH( )KL( EEM-21: Install Boiler Room Heat Recovery Purpose: The boiler room uses inlet and outlet grills to exhaust air outside the space. Energy will be saved if the heat generated from the boiler room is transferred to the adjacent shop room. Scope: Install a heat recovery unit to transfer boiler room heat to the adjacent shop space. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( B2MC((DBJCCH(DBLLCH( B25E)CC(( BMELCC((DBM)EICCH(DB)5EGCCH( )KL( EEM-22: Reduce Locker Room Lighting Purpose: Lighting controls for the gym locker rooms are by key switch-only. This requires the space to be lit throughout the entire period the gym is open, regardless of use. Energy will be saved if a motion detector is installed in the shower space and another in the restroom space to minimize unnecessary lighting hours. A 10-minute delay time is recommended for the occupancy sensor. Scope: Install a motion detector in the shower space and in the restroom space to control locker room lighting. :’’,/;(<&9$9(=%7"(<1#;"(<&9$9( >?"0/$%’6( *’"061( @&$/;( 3’-"9$."’$( >?"0/$%’6( *’"061( @&$/;( !3A( DB5CH(DBI5CH(DBILCH( BFE)CC((DBLCCH(DBGELCCH(DB2E)CCH( )K5( !"#$%&’$%(&)*(++,->./0"%1&234$5&67*5+80"&9:--; LOW PRIORITY Low priority EEMs do not offer a life cycle energy savings and are not recommended. EEM-23: Add Arctic Entry Purpose: A significant amount of infiltration and heat loss is occurring because the main entrance does not have an arctic entry. The existing design lends itself well to this addition without compromising building aesthetics. Scope: Install an arctic entry. Analysis: Previous analyses have shown that an arctic entrance is cost effective for new construction. However, adding an arctic entrance is not cost effective for this retro-fit application. !"#$%&’$%(&)*(++,-?./0"%1&234$5&67*5+80"&9:--; !"#$%&’(M( N"9#0%?$%&’(&7(!19$".9( ENERGY SYSTEMS This section provides a general description of the building systems. Energy conservation opportunities are addressed in Section 3, Energy Efficiency Measures. Building Envelope The following table summarizes the existing envelope. Building Envelope R-value Component Description (inside to outside) Existing Optimal Exterior Wall 1/2” Gyp. Bd, 1” Rmax, 6” steel studs w/ R-19 batt, !” plywood R-16 R-26 Roof Corrugated Metal Roof Deck, 8” EPS rigid insulation, metal roofing R-34 R-46 Floor Slab 4” Concrete slab-on-grade R-15 R-10 Foundation 8” concrete with 2” rigid insulation on interior surface R-10 R-20 Windows Fiberglass; double pane R-1.5 R-5 Doors Aluminum along the front entry, remaining doors are steel, all w/o thermal break, glazing where used is double pane R-1.5 R-5 Domestic Hot Water System An oil fired direct hot water heater supplies domestic hot water to the fixtures. The fixtures do not have water-conserving aerators. Automatic Control System The building has a DDC system to control the operation of the heating and ventilation systems, however the systems do not appear to have been properly installed and commissioned following construction. It is recommended that the maintenance staff continue working with DDC programming support to improve heating and ventilation control capabilities as outlined in this report. Lighting Interior lighting primarily consists of T8 and metal halide lighting. Exterior lighting consists primarily of metal halide lighting. The interior lighting schedule and all exterior lighting - to include the parking lot lighting, is controlled by staff. Thanks to staff diligence, lighting operational hours and subsequent electrical demand are kept to a minimum. Electric Equipment Commercial kitchen equipment for food preparation is located in the food prep area. !"#$%&’$%(&)*(++,-@ ./0"%1&234$5&67*5+80"&9:--; Heating System The building is heated by two fuel oil boilers that provide heat to five air handling unit systems, a make-up air unit in the shop, unit heaters, and perimeter hydronic systems. The heating system has the following pumps: ! P-1A and P-1B are the circulation pumps for boilers 1 and 2. ! P-2 is the domestic hot water circulation pump. ! P-3A and P-3B are the perimeter heat pumps. ! P-4A and P-4B are the shop heating pumps. ! P-5A and P-5B are the AHU supply heating coil pumps. ! P-6 is the MAU-1 heating coil pump. ! P-7 is the AHU-1 heating coil pump. ! P-8 is the AHU-2 pre-heating coil pump. ! P-9 is the AHU-2 heating coil pump. ! P-10 is the AHU-3 preheat coil pump. ! P-11 is the AHU-3 hot deck coil pump. ! P-12 is the AHU-4 heating coil pump. ! P-13 is the AHU-5 heating coil pump. !"#$%&’$%(&)*(++,-A ./0"%1&234$5&67*5+80"&9:--; Ventilation Systems :0"/( O/’(!19$".( N"9#0%?$%&’( <;/990&&.9(:PQR)(S/0%/T;"(-&;,."(/%0(U/’4;%’6(,’%$(#&’9%9$%’6(&7(/(U"/$%’6(#&%;E(.%+%’6( T&+E(7%;$"0(9"#$%&’E(9,??;1(7/’E(/’4(0"$,0’(/%0(7/’( <&..&’9(:0"/(:PQR2(<&’9$/’$(-&;,."(/%0(U/’4;%’6(,’%$(#&’9%9$%’6(&7(/(?0"RU"/$%’6(#&%;E( U"/$%’6(#&%;E(.%+%’6(T&+E(7%;$"0(9"#$%&’E(9,??;1(7/’E(/’4(0"$,0’(/%0(7/’( :,4%$&0%,.(:PQR5(<&’9$/’$(-&;,."(/%0(U/’4;%’6(,’%$(#&’9%9$%’6(&7(/(?0"RU"/$%’6(#&%;E( U"/$%’6(#&%;E(.%+%’6(T&+E(7%;$"0(9"#$%&’E(9,??;1(7/’E(/’4(0"$,0’(/%0(7/’( =&#V"0(A&&.((:PQRM(<&’9$/’$(-&;,."(/%0(U/’4;%’6(,’%$(#&’9%9$%’6(&7(/(U"/$%’6(#&%;E(.%+%’6( T&+E(7%;$"0(9"#$%&’E(/’4(/(9,??;1(7/’( W1.’/9%,.((:PQRI(<&’9$/’$(-&;,."(/%0(U/’4;%’6(,’%$(#&’9%9$%’6(&7(/(U"/$%’6(#&%;E(.%+%’6( T&+E(7%;$"0(9"#$%&’E(9,??;1(7/’E(/’4(0"$,0’(/%0(7/’( !U&?(8:QR)(5ELGC(#7.(5(PX(#&’9$/’$(-&;,."(./V"(,?(/%0(7/’( A"9$(A&&.YZ/’%$&0(( *OR)()EM2C(#7.(FII([/$$(#&’9$/’$(-&;,."(%’R;%’"(#/T%’"$("+U/,9$(7/’( =&#V"0(A&&.(*OR2()EI)I(#7.()Y5(PX(#&’9$/’$(-&;,."(T/#V[/04(%’#;%’"4(#"’$0%7,6/;( "+U/,9$(7/’( \%$#U"’(*OR5()JC(#7.(#&’9$/’$(-&;,."(V%$#U"’("+U/,9$(U&&4( :0$(<;/990&&.(*ORM()ELGC(#7.(](PX(#&’9$/’$(-&;,."(T";$(40%-"(0&&7("+U/,9$"0( A"9$0&&.(*ORI()CC(#7.(GC(^(#"%;%’6("+U/,9$(7/’( !#%"’#"(<;/990&&.(( *ORL(ME)JC(#7.(_(PX(#&’9$/’$(-&;,."(T/#V[/04(%’#;%’"4(#"’$0%7,6/;( "+U/,9$(7/’( !#%"’#"(A&&.(O,."(P&&4( *ORF()E2CC(#7.()Y5(PX(#&’9$/’$(-&;,."(T";$(40%-"(0&&7("+U/,9$"0( 8/$U(<;/990&&.(*ORG()EICC(#7.(‘(PX(#&’9$/’$(-&;,."(T/#V[/04(%’#;%’"4(#"’$0%7,6/;( "+U/,9$(7/’(Da&$(3’9$/;;"4H( P&."(*#(<;/990&&.( *ORJ()EJFC(#7.()Y5(PX(#&’9$/’$(-&;,."(T/#V[/04(%’#;%’"4(#"’$0%7,6/;( "+U/,9$(7/’( P&."(*#(<&&V$&?(*+U/,9$( *OR)C()JC(#7.(V%$#U"’(U&&4("+U/,9$( P&."(*#(<&&V$&?(*+U/,9$( *OR))()JC(#7.(V%$#U"’(U&&4("+U/,9$( P&."(*#(<&&V$&?(*+U/,9$( *OR)2()JC(#7.(V%$#U"’(U&&4("+U/,9$( P&."(*#(<&&V$&?(*+U/,9$( *OR)5()JC(#7.(V%$#U"’(U&&4("+U/,9$( X0"99T&+(*OR)M(2IC(#7.(G5([/$$(%’;%’"(#/T%’"$("+U/,9$(7/’( !#%"’#"YX0"?(W"’"0/;(*+U/,9$(( *OR)I(FIC(#7.(‘(PX(#&’9$/’$(-&;,."(T/#V[/04(%’#;%’"4(#"’$0%7,6/;("+U/,9$( 7/’( ^";4%’6(*+U/,9$(O/’( <!R)()GCC(#7.()KI(PX(#&’9$/’$(-&;,."(T/#V[/04(%’#;%’"4(#"’$0%7,6/;( "+U/,9$(7/’( ^";4(!$/$%&’(P&&4( <!R2(GCC(#7.(-"0$%#/;(U&&4( S"U%#;"(*+U/,9$(!19$".( <!R5(GIC(#7.(_(PX(#&’9$/’$(-&;,."(T/#V[/04(%’#;%’"4(#"’$0%7,6/;("+U/,9$( 7/’( !"#$%&’$%(&)*(++,-B ./0"%1&234$5&67*5+80"&9:--; !"#$%&’(I( 8"$U&4&;&61( Information for the energy audit was gathered through on-site observations, review of construction documents, and interviews with operation and maintenance personnel. The EEMs are evaluated using energy and life cycle cost analyses and are priority ranked for implementation. Energy Efficiency Measures Energy efficiency measures are identified by evaluating the building’s energy systems and comparing them to systems in modern, high performance buildings. The process for identifying the EEMs acknowledges the realities of an existing building that was constructed when energy costs were much lower. Many of the opportunities used in modern high performance buildings—highly insulated envelopes, variable capacity mechanical systems, heat pumps, daylighting, lighting controls, etc.— simply cannot be economically incorporated into an existing building. The EEMs represent practical measures to improve the energy efficiency of the buildings, taking into account the realities of limited budgets. If a future major renovation project occurs, additional EEMs common to high performance buildings should be incorporated. Life Cycle Cost Analysis The EEMs are evaluated using life cycle cost analysis which determines if an energy efficiency investment will provide a savings over a 25-year life. The analysis incorporates construction, replacement, maintenance, repair, and energy costs to determine the total cost over the life of the EEM. Future maintenance and energy cash flows are discounted to present worth using escalation factors for general inflation, energy inflation, and the value of money. The methodology is based on the National Institute of Standards and Technology (NIST) Handbook 135 – Life Cycle Cost Analysis. Life cycle cost analysis is preferred to simple payback for facilities that have long—often perpetual— service lives. Simple payback, which compares construction cost and present energy cost, is reasonable for short time periods of 2-4 years, but yields below optimal results over longer periods because it does not properly account for the time value of money or inflationary effects on operating budgets. Accounting for energy inflation and the time value of money properly sums the true cost of facility ownership and seeks to minimize the life cycle cost. Construction Costs The cost estimates are derived based on a preliminary understanding of the scope of each EEM as gathered during the walk-through audit. The construction costs for in-house labor are $60 per hour for work typically performed by maintenance staff and $110 per hour for contract labor. The cost estimate assumes the work will be performed as part of a larger renovation or energy efficiency upgrade project. When implementing EEMs, the cost estimate should be revisited once the scope and preferred method of performing the work has been determined. It is possible some EEMs will not provide a life cycle savings when the scope is finalized. !"#$%&’$%(&)*(++,9:./0"%1&234$5&67*5+80"&9:--; Maintenance Costs Maintenance costs are based on in-house or contract labor using historical maintenance efforts and industry standards. Maintenance costs over the 25-year life of each EEM are included in the life cycle cost calculation spreadsheets and represent the level of effort to maintain the systems. Energy Analysis The energy performance of an EEM is evaluated within the operating parameters of the building. A comprehensive energy audit would rely on a computer model of the building to integrate building energy systems and evaluate the energy savings of each EEM. This investment grade audit does not utilize a computer model, so energy savings are calculated with factors that account for the dynamic operation of the building. Energy savings and costs are estimated for the 25-year life of the EEM using appropriate factors for energy inflation. Prioritization Each EEM is prioritized based on the life cycle savings to investment ratio (SIR) using the following formula: Prioritization Factor = Life Cycle Savings / Capital Costs This approach factor puts significant weight on the capital cost of an EEM, making lower cost EEMs more favorable. Economic Factors The following economic factors are significant to the findings. ! Nominal Interest Rate: This is the nominal rate of return on an investment without regard to inflation. The analysis uses a rate of 5%. ! Inflation Rate: This is the average inflationary change in prices over time. The analysis uses an inflation rate of 2%. ! Economic Period: The analysis is based on a 25-year economic period with construction beginning in 2010. Fuel Oil Fuel oil currently costs $3.42 per gallon for a seasonally adjusted blend of #1 and #2 fuel oil. The analysis is based on 6% fuel oil inflation which has been the average for the past 20-years. Electricity Electricity is supplied by Alaska Power and Telephone. The building is billed for electricity under Alaska Power Company Bulk Power A-3 rate. This rate charges for both electrical consumption (kWh) and peak electric demand (kW). Electrical consumption is the amount of energy consumed and electric demand is the rate of consumption. Alaska Power Company Bulk Power A-3 Rate Electricity ($ / kWh ) $0.0786 Cost of Power Adjustment ($ / kWh) $0.1534 Demand ( $ / kW ) $7.00 Customer Charge ( $ / mo. ) $140.86 !"#$%&’$%(&)*(++,9-./0"%1&234$5&67*5+80"&9:--; Summary The following table summarizes the energy and economic factors used in the analysis. Summary of Economic and Energy Factors Factor Rate or Cost Factor Rate or Cost Nominal Discount Rate 5% Electricity $0.274/kwh General Inflation Rate 2% Electricity Inflation 3% Fuel Oil Cost (2012) $4.12/gal Fuel Oil Inflation 6% !"#$%&’$%(&)*(++,99 ./0"%1&234$5&67*5+80"&9:--; !""#$%&’(!( )$#*+,(-$%(.&/#(0,12#(0345(!$-2,4&4( !"#$%&’$%(&)*(++,9<./0"%1&234$5&67*5+80"&9:--; !"#$%#&’()*+,&’(+-())*-(+&../’()*+,&#(0&.-1)&/,2")&/3$4&!(#",$-$ 56577&!8#"+#&9#*:3*&;3#0&&&&&&<)"=>#?@&&A7BCBDACE55F GH()#HI&!"#$%#&&AAD7E&&&&&&&&&&&&&&J-8K#"#$%#)()*+,CH$ /*#-+&9-+L&M2L33" N#$-$ ’23(38-2 M4H0,&O)*-30&P,)#*$Q 56 R38-(#"&S-$23H(4&;#4) 6T U)()*#"&V(1"#4-3( WT ’()*+, 57EE&X=+#">H)"&V(1"#4-3(57E5&X=+#" >H)"&Y-"XWCDA FT XZCE5 ’")24*-2-4,X=%[L&P57EEQ X=%[&P57EEQ V(1"#4-3(X=%[L&P57E5Q X=%[&P57E5Q \=&S)8#(0&/L#*+)$X7C5W5 XBC77 WT X7C5WA XBC5E \=3&S)8#(0&/L#*+)$X7C5FF ]WT X7C5BZ ] !!"#$%&&’()*&+,,&-./*012&34567) ’()*+,&!(#",$-$ N3-")*V(^H4&_N9 .3$$&T .3$$&_N9 93H*$I&)?-$4 93H*$I&()\%N4H !&:3-")*U#""3($ N]E WIDAW 7C67T EA 6IBF7 5I677 ]FWIZ6Z FDT ]FBZ .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ M4#+)&:3-")*&3^)*#4-3(7 5 )#XE77 X577 !((H#"&/3$4$ _#(H#"",&$)cH)(2)&")#0=$4#(0:,&:3-")*$E&]&56 XF7C77 X7 ’()*+,&/3$4$ >H)"&Y-"E&]&56 ]FBZ +#"XZCE5 PXBDIBZ6Q R)4&O*)$)(4&[3*4L PXBDI677Q !!"#8%&&9*:./66&;5<7&9*:(6/.54* ’()*+,&!(#",$-$ M)*d-2)M-e).)(+4L N#*)&N<b9 V($H"&N<b9 >#243*%N4H !&:3-")*U#""3($ 9)#4-(+ 5C67 E5 55E EA 67T ]E7IFEB FDT ]EEW 9)#4-(+ ZC77 E5 5BA 5W 67T ]EWIZ66 FDT ]EZW 9)#4-(+ FC77 D Z75 W7 67T ]EWI7W6 FDT ]EWD ]WAZ .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ O-^)&V($H"#4-3( 5]E=5f 7 E5 "(14 XEW XE6F Zf 7 E5 "(14 XEB X57Z Ff 7 D "(14 X57 XEF7 ’$4-8#4-(+&23(4-(+)(2,7 E6T XBD Yd)*L)#0&g&^*31-4 7 W7T XEBA S)$-+(&1))$7 E7T XBD O*3J)24&8#(#+)8)(4 7 DT XFD ’()*+,&/3$4$ >H)"&Y-"E&]&56 ]WAZ +#"XZCE5 PXZFI767Q R)4&O*)$)(4&[3*4L PXZ6IE77Q !"#$%&’$%(&)*(++,9=./0"%1&234$5&67*5+80"&9:--; !"#$%#&’()*+,&’(+-())*-(+&../’()*+,&#(0&.-1)&/,2")&/3$4&!(#",$-$ 56577&!8#"+#&9#*:3*&;3#0&&&&&&<)"=>#?@&&A7BCBDACE55F GH()#HI&!"#$%#&&AAD7E&&&&&&&&&&&&&&J-8K#"#$%#)()*+,CH$ /*#-+&9-+L&M2L33" !!"#=%&&>7<6/?7&@7)/.4): ’()*+,&!(#",$-$ >-?4H*)’?-$4-(+O*3^3$)0 b$)$=0#,S#,$[#4)*IU#"$T&9[%N<b %[L ML3\)*L)#0 57C7 E7C7 W7C7 ED7 ]6ZI777 D7T ]5DID5W ]DIZZD .#d#43*-)$ 7CW 7C5 W77 ED7 ]AIB57 D7T ]6IEDD ]EI65E ]FWIB57 ]AIAFD .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ ;)^"#2)&"#d#43*,&#)*#43*$7 EA )#XW6 XFF6 ;)^"#2)&$L3\)*L)#0 7 55 )#XW6 XBB7 ’()*+,&/3$4$ [#4)*E&]&56 ]FZ %+#"$ XE7CAF7 PXEWIB5DQ ’")24*-2&’()*+,&P’11)24-d)&/3$4Q E&]&56 ]AIAFD %[L X7C5BZ PX6WIFDFQ R)4&O*)$)(4&[3*4L PXFFI777Q !!"#AB%&&;7),4)C&34567)&D4C1(:.54*&’7:. ’()*+,&!(#",$-$ !((H#"&U#"T&M#d-(+$M#d-(+$I&U#" EDIE77 ]EC7T ]EDE .-1)&/,2")&/3$4&!(#",$-$ ‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ OH*2L#$)&238:H$4-3(&#(#",e)* 7 E .M XB77 XB77 !((H#"&/3$4$ /38:H$4-3(&4)$4 E&]&56 Z L*$ XF7C77 XZIF5D ’()*+,&/3$4$ >H)"&Y-" E&]&56 ]EDE +#" XZCE5 PX5EIE66Q R)4&O*)$)(4&[3*4L PXE6ID77Q !!"#AA%&&E<F)/07&"4.4):&.4&;)7C5(C&!,,5?57*?2 ’()*+,&!(#",$-$ RH8:)* 9O "3"0 "()\%[ 93H*$ %[L 5 7CWW F7C7T BBC7T ]7C7D EI6W7 ]E5D E W D7C6T DAC6T ]7C57 DIBF7 ]EIBFZ ]7CW ]EIDAW .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$9O ;)^"#2)&8343*7CWW 7 5 .M 667 XEIE77 ;)^"#2)&8343*W 7 E .M EI7D7 XEI7D7 ’$4-8#4-(+&23(4-(+)(2,7 56T X6Z6 ’()*+,&/3$4$ ’")24*-2&’()*+,E&]&56 ]EIDAW %[L X7C5WA PXDIDA7Q ’")24*-2&S)8#(0 E&]&56 ]W %[XBC5E PXZD6Q R)4&O*)$)(4&[3*4L PXFIF77Q U#""3($&^)*&b$) !"#$%&’$%(&)*(++,9>./0"%1&234$5&67*5+80"&9:--; !"#$%#&’()*+,&’(+-())*-(+&../’()*+,&#(0&.-1)&/,2")&/3$4&!(#",$-$ 56577&!8#"+#&9#*:3*&;3#0&&&&&&<)"=>#?@&&A7BCBDACE55F GH()#HI&!"#$%#&&AAD7E&&&&&&&&&&&&&&J-8K#"#$%#)()*+,CH$ /*#-+&9-+L&M2L33" !!"#AG%&&+<.5C5H7&I2C&@JE#K ’()*+,&!(#",$-$ h)(4-"#4-3(&M#d-(+$ /#$)M!&/>_T&YM!YM!&/>_#<93H*$%N4H !&:3-")*U#""3($ ’?-$4-(+ ]EAIW77 E7T ]EIAW7 W7 EI6W7 ]A6IFBZ FDT ]EI7EF R)\ EEI777 6T 667 W7 EI6W7 5BI5F6 FDT 5DA ]EIWD7 ]B5F >#(&M#d-(+$ /#$)/>_#O "!!"#$N9O "!!%&’&(%[93H*$%[L ’?-$4-(+ ]EAIW77 5C7 67T ]E5CE AECBT ]ACA EI6W7 ]E6IEED R)\ EEI777 EC6 67T 6C5 AECBT ZC5 EI6W7 FIZF5 ]6CB ]DIF6F .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ V($4#""&M>&h>S 7 E .M XE6I777 XE6I777 /3(4*3"&830-1-2#4-3($&]&/Y5&$)($3*I&*)d-$)&$)cH)(2)7 E .M XE6I777 XE6I777 /388-$$-3(-(+7 E .M X6I777 X6I777 ’$4-8#4-(+&23(4-(+)(2,7 E6T X6I567 Yd)*L)#0&g&^*31-4 7 E6T XFI7WD S)$-+(&1))$7 E7T XZIF5A O*3J)24&8#(#+)8)(4 7 DT XZI7BW ’()*+,&/3$4$ ’")24*-2&’()*+,E&]&56 ]DIF6F %[L X7C5WA PXZ7IF6AQ ’")24*-2&S)8#(0 E&]&56 ]6E %[XBC5E PXBI5EFQ >H)"&Y-"E&]&56 ]EI7EF +#"XZCE5 PXEEDIBW7Q R)4&O*)$)(4&[3*4L PXEEEIF77Q !!"#AL%&&E<F)/07&’)/*:,4)C7) ’()*+,&!(#",$-$ .32#4-3( %h!"3"0 "()\i[ %[L E67 ABCDT ADCAT ]ECF6 ]EZIZ6Z .-1)&/,2")&/3$4&!(#",$-$ ‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ ;)^"#2)&4*#($13*8)*I&%h!E67 7 E .M XE6IW77 XE6IW77 Yd)*L)#0&g&^*31-4 7 W7T XZI6A7 S)$-+(&1))$7 E7T XEIADA O*3J)24&8#(#+)8)(4 7 DT XEIB67 ’()*+,&/3$4$ ’")24*-2&’()*+,E&]&56 ]EZIZ6Z %[L X7C5WA PXFBIDAFQ ’")24*-2&S)8#(0 E&]&56 ]ECB %[XBC5E PX5WZQ R)4&O*)$)(4&[3*4L PXZZI677Q !"#$%&’$%(&)*(++,9?./0"%1&234$5&67*5+80"&9:--; !"#$%#&’()*+,&’(+-())*-(+&../’()*+,&#(0&.-1)&/,2")&/3$4&!(#",$-$ 56577&!8#"+#&9#*:3*&;3#0&&&&&&<)"=>#?@&&A7BCBDACE55F GH()#HI&!"#$%#&&AAD7E&&&&&&&&&&&&&&J-8K#"#$%#)()*+,CH$ /*#-+&9-+L&M2L33" !!"#AM%&&>7<6/?7&!N5.&-5F*: ’()*+,&!(#",$-$ RH8:)*[#44$I&)?-$4 [#44$I()\%[%[L EE E6 7 ]7C5 ]EIZZ6 .#8^&;)^"#2)8)(4 j&>-?4H*)$j&.#8^$.-1)I&L*$.#8^$==,*X="#8^.#:3*="#8^ EE ]5 57I777 ]E7 X5 X6C77 .-1)&/,2")&/3$4&!(#",$-$ ‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ ;)^"#2)&)?-4&"-+L4 7 EE .M XW77 XWIW77 !((H#"&/3$4$ .#8^&*)^"#2)8)(4 E&]&56 ]E7 XBC77 PXEIW7EQ ’()*+,&/3$4$ ’")24*-2&’()*+, E&]&56 ]EIZZ6 %[L X7C5WA PXFIBA7Q ’")24*-2&S)8#(0 E&]&56 ]5 %[ XBC5E PX5DEQ R)4&O*)$)(4&[3*4L PX6IE77Q !!"#AK%&&9*?)7/:7&@JE#A&>7.()*&@5)&;/.O ’()*+,&!(#",$-$ >#(&M#d-(+$ /#$)/>_#O "!!"#$N9O "!!%&’&(%[93H*$%[L ’?-$4-(+ E5I777 ]5C7 66T ]FCA AECBT ]6CF EI6W7 ]DI6Z6 R)\ E5I777 EC6 66T 6CE AECBT ZC5 EI6W7 FIZ7A ]ECZ ]5IEWF .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ V(2*)#$)&2)-"-(+&3^)(-(+$7 E .M X5I777 X5I777 ;)83d)&$-")($)*$k&-(2*)#$)&\#""&3^)(-(+$7 E .M X5I777 X5I777 ’()*+,&/3$4$ ’")24*-2&’()*+,E&]&56 ]5IEWF %[L X7C5WA PXE7I7W6Q R)4&O*)$)(4&[3*4L PXFI777Q !!"AP#%&&9*:./66&Q/6R7:&4*&E*5.&J7/.7): ’()*+,&!(#",$-$ .3$$I&N<b9 RH8:)*>#243*.3$$I&%N<b N3-")*&’11-2 >H)"I&+#"$ ]EI567 B E7T ]BIFF6 B7T ]DE .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ V($4#""&#H438#4-2&d#"d)$&#(0&23(()24&43&1#(&\-*-(+7 B )#XW67 X5IZ67 ’$4-8#4-(+&23(4-(+)(2,7 E6T XWFD Yd)*L)#0&g&^*31-4 7 W7T XDZ6 S)$-+(&1))$7 E7T XWFF O*3J)24&8#(#+)8)(4 7 DT XW55 ’()*+,&/3$4$ >H)"&Y-"E&]&56 ]DE +#"XZCE5 PXAIZD7Q R)4&O*)$)(4&[3*4L PX6IE77Q !"#$%&’$%(&)*(++,9@ ./0"%1&234$5&67*5+80"&9:--; !"#$%#&’()*+,&’(+-())*-(+&../’()*+,&#(0&.-1)&/,2")&/3$4&!(#",$-$ 56577&!8#"+#&9#*:3*&;3#0&&&&&&<)"=>#?@&&A7BCBDACE55F GH()#HI&!"#$%#&&AAD7E&&&&&&&&&&&&&&J-8K#"#$%#)()*+,CH$ /*#-+&9-+L&M2L33" !!"#A$%&&9*:./66&"40(6/.5*F&34567)&3()*7): ’()*+,&!(#",$-$ !((H#"&U#"T&M#d-(+$M#d-(+$I&U#" EDIE77 ]ZC7T ]B5Z .-1)&/,2")&/3$4&!(#",$-$ ‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ V($4#""&830H"#4-(+&:H*()* 7 5 .M XAI677 XEAI777 ’$4-8#4-(+&23(4-(+)(2,7 E6T X5ID67 Yd)*L)#0&g&^*31-4 7 W7T XFI666 S)$-+(&1))$7 E7T X5IDZE O*3J)24&8#(#+)8)(4 7 DT X5I677 !((H#"&/3$4$ NH*()*&8#-(4)(#(2)E&]&56 5 .M XZ77C77 XE6IZ5B ’()*+,&/3$4$ >H)"&Y-"E&]&56 ]B5Z +#"XZCE5 PXDZIFEDQ R)4&O*)$)(4&[3*4L PXW6IZ77Q !!"#A8%&&+<.5C5H7&@(05.4)5(C&@JE#L ’()*+,&!(#",$-$ h)(4-"#4-3(&M#d-(+$ /#$)M!&/>_T&YM!YM!&/>_#<93H*$%N4H !&:3-")*U#""3($ ’?-$4-(+ ]EWIE77 E7T ]EIWE7 W7 EI6W7 ]FZIAWA FDT ]FA7 R)\ DI777 E7T D77 W7 B57 EDIFF5 FDT EAD ]6E7 ]ZAE >#(&M#d-(+$ /#$)/>_#O "!!"#$N9O "!!%&’&(%[93H*$%[L M>I&)?-$4 ]EWIE77 5C7 67T ]DC5 AECBT ]FCB EI6W7 ]E7I5FE M>I&()\ DI777 EC6 67T WCD AECBT WCE B57 5I5E5 ;>I&)?-$4 ]EWIE77 EC7 67T ]ZCE DAC6T ]WCZ EI6W7 ]6I56B ;>I&()\ DI777 7C6 67T ECW DAC6T EC7 B57 B66 ]FC7 ]E5I66E .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ V($4#""&M>&#(0&;>&h>S 7 5 .M XE7I777 X57I777 /3(4*3"&830-1-2#4-3($&]&/Y5&$)($3*I&^*)$$H*)&$)($3*I&*)d-$)&$)cH)(2) 7 E .M XE6I777 XE6I777 /388-$$-3(-(+7 E .M X6I777 X6I777 ’$4-8#4-(+&23(4-(+)(2,7 E6T XFI777 Yd)*L)#0&g&^*31-4 7 E6T XFIA77 S)$-+(&1))$7 E7T X6I5A7 O*3J)24&8#(#+)8)(4 7 DT XZIF66 ’()*+,&/3$4$ ’")24*-2&’()*+,E&]&56 ]E5I66E %[L X7C5WA PX6DIA6DQ ’")24*-2&S)8#(0 E&]&56 ]6Z %[XBC5E PXBIFDEQ >H)"&Y-"E&]&56 ]ZAE +#"XZCE5 PX6BIZ5AQ R)4&O*)$)(4&[3*4L PXFEI577Q !"#$%&’$%(&)*(++,9A ./0"%1&234$5&67*5+80"&9:--; !"#$%#&’()*+,&’(+-())*-(+&../’()*+,&#(0&.-1)&/,2")&/3$4&!(#",$-$ 56577&!8#"+#&9#*:3*&;3#0&&&&&&<)"=>#?@&&A7BCBDACE55F GH()#HI&!"#$%#&&AAD7E&&&&&&&&&&&&&&J-8K#"#$%#)()*+,CH$ /*#-+&9-+L&M2L33" !!"#A=%&&+<.5C5H7&J7/.5*F&-2:.7C ’()*+,&!(#",$-$ N3-")*&’11-2-)(2, N3-")*$V(^H4&_N9 .3$$&T .3$$&_N9 93H*$I&)?-$4 %N4H !&:3-")*U#""3($ ]5 WIADD 7CB6T ]F7 WIF77 ]5E6IWZE FDT ]5I5DF 5 5I5A5 7CB6T WZ WIF77 E5WIB67 FDT EIWEZ ]56 ]AEI6AE ]ABW OH8^-(+&’11-2-)(2, O*-8#*,&OH8^$ UO_#O "I&^H8^N9O "I&8343*%[93H*$%[L ]6A7 W5 F6T ]ACD AET ]DCE WIF77 ]5DIAAA 55A E6 F6T ECD AET EC6 WIF77 6I5D7 M)23(0#*,&OH8^$ ]FD 5Z F7T ]7CA DFT ]7CD WIF77 ]5IDBW ]ZZ EZ 66T ]7CZ B7T ]7CZ WIF77 ]EIZ6Z ]W67 5F F6T ]ZCB DAT ]ZC7 WIF77 ]EZI5AE 55A 5F 66T WCB DAT WCE WIF77 EEI76A ]DCB ]WEI5BA .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ Y^4-8-e#4-3(&!(#",$-$7 E .M XEZI777 XEZI777 ;)0H2)&:3-")*&$-e)7 D7 L*$XE67 XE5I777 ;)^-^)&L)#4-(+&"33^$7 E .M X56I777 X56I777 ’$4-8#4-(+&23(4-(+)(2,7 E6T XBIF67 Yd)*L)#0&g&^*31-4 7 W7T XEBI6A6 S)$-+(&1))$7 E7T XBIF56 O*3J)24&8#(#+)8)(4 7 DT XFIBE7 !((H#"&/3$4$ OH8^&8#-(4)(#(2)E&]&56 ]Z .M X577C77 PXE6IZ5BQ ’()*+,&/3$4$ ’")24*-2&’()*+,E&]&56 ]WEI5BA %[L X7C7F5 PXWDI56BQ ’")24*-2&S)8#(0 E&]&56 ]E7Z %[XE7CDW PX55I575Q >H)"&Y-"E&]&56 ]ABW +#"XWCZ5 PXAZIWBAQ R)4&O*)$)(4&[3*4L PXBAIB77Q !"#$%&’$%(&)*(++,9B ./0"%1&234$5&67*5+80"&9:--; !"#$%#&’()*+,&’(+-())*-(+&../’()*+,&#(0&.-1)&/,2")&/3$4&!(#",$-$ 56577&!8#"+#&9#*:3*&;3#0&&&&&&<)"=>#?@&&A7BCBDACE55F GH()#HI&!"#$%#&&AAD7E&&&&&&&&&&&&&&J-8K#"#$%#)()*+,CH$ /*#-+&9-+L&M2L33" !!"#GB%&&+<.5C5H7&D4CC4*:&@JE#M ’()*+,&!(#",$-$ h)(4-"#4-3(&M#d-(+$ /#$)M!&/>_T&YM!YM!&/>_#<93H*$%N4H !&:3-")*U#""3($ ’?-$4-(+ ]E7IZB7 E6T ]EI6BE W7 EI6W7 ]BBID6W FDT ]D5B R)\ FI777 E7T F77 W7 EI6W7 5AIBZW FDT WEF ]ABE ]6EE >#(&M#d-(+$ /#$)/>_#O "!!"#$N9O "!!%&’&(%[93H*$%[L M>I&)?-$4 ]E7IZB7 ECD 67T ]6CA AECBT ]ZCD EI6W7 ]BIWDE M>I&()\ FI777 EC5 67T 5CW AECBT ECD EI6W7 5ID57 ;>I&)?-$4 ]E7IZBE 7CD 67T ]5CF DAC6T ]5C5 EI6W7 ]WIWFE ;>I&()\ FI777 7CZ 67T 7CD DAC6T 7CF EI6W7 AFW ]ZC6 ]FIAF7 .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ V($4#""&M>&#(0&;>&h>S 7 5 .M XAI777 XEDI777 /3(4*3"&830-1-2#4-3($&]&/Y5&$)($3*I&^*)$$H*)&$)($3*I&*)d-$)&$)cH)(2) 7 E .M XE6I777 XE6I777 /388-$$-3(-(+7 E .M X6I777 X6I777 ’$4-8#4-(+&23(4-(+)(2,7 E6T X6IB77 Yd)*L)#0&g&^*31-4 7 E6T XFI666 S)$-+(&1))$7 E7T X6I75F O*3J)24&8#(#+)8)(4 7 DT XZIZ55 ’()*+,&/3$4$ ’")24*-2&’()*+,E&]&56 ]FIAF7 %[L X7C5WA PXW5IFA5Q ’")24*-2&S)8#(0 E&]&56 ]ZE %[XBC5E PX6ID75Q >H)"&Y-"E&]&56 ]6EE +#"XZCE5 PX6AIB7WQ R)4&O*)$)(4&[3*4L PXWDI677Q !"#$%&’$%(&)*(++,<:./0"%1&234$5&67*5+80"&9:--; !"#$%#&’()*+,&’(+-())*-(+&../’()*+,&#(0&.-1)&/,2")&/3$4&!(#",$-$ 56577&!8#"+#&9#*:3*&;3#0&&&&&&<)"=>#?@&&A7BCBDACE55F GH()#HI&!"#$%#&&AAD7E&&&&&&&&&&&&&&J-8K#"#$%#)()*+,CH$ /*#-+&9-+L&M2L33" !!"#GA%&&9*:./66&34567)&>44C&J7/.&>7?4R7)2 ’()*+,&!(#",$-$ 9)#4&;)23d)*, N3-")*&+^L G#2%)4&.3$$_N9 93H*$.3$$I&%N4H >#243*;)23d)*,I&%N4H !&:3-")*U#""3($ 5D ]EC7T ]WA ZI777 ]E66IE57 67T ]BBI6F7 DZT ]FFB >#(&’()*+, _N9 #</>_#)"I&1#(j&>#($93H*$%[%[L WA 56 EIZWF EC67 W6T 5 6I777 ECZ BI55E .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ B77&/>_&9;h 7 E .M XBI677 XBI677 SH24\3*%7 E .M XZI777 XZI777 ’")24*-2#"7 E .M XEI677 XEI677 ’$4-8#4-(+&23(4-(+)(2,7 E6T XEIA67 Yd)*L)#0&g&^*31-4 7 W7T XZIZD6 S)$-+(&1))$7 E7T XEIAZZ O*3J)24&8#(#+)8)(4 7 DT XEIBE7 !((H#"&/3$4$ 9;h&8#-(4)(#(2)E&]&56 Z L*$XF7C77 XZIF5D ’()*+,&/3$4$ ’")24*-2&’()*+,E&]&56 BI55E %[L X7C5WA XWWIA5E ’")24*-2&S)8#(0 E&]&56 EBCW %[XBC5E X5IZ6F >H)"&Y-"E&]&56 ]FFB +#"XZCE5 PXBBIAEBQ R)4&O*)$)(4&[3*4L PXEWID77Q !"#$%&’$%(&)*(++,<-./0"%1&234$5&67*5+80"&9:--; !"#$%#&’()*+,&’(+-())*-(+&../’()*+,&#(0&.-1)&/,2")&/3$4&!(#",$-$ 56577&!8#"+#&9#*:3*&;3#0&&&&&&<)"=>#?@&&A7BCBDACE55F GH()#HI&!"#$%#&&AAD7E&&&&&&&&&&&&&&J-8K#"#$%#)()*+,CH$ /*#-+&9-+L&M2L33" !!"#GG%&&>70(?7&S4?T7)&>44C&S5FO.5*F ’()*+,&!(#",$-$ ’")24*-2&M#d-(+$ >-?4H*)RH8:)*93H*$I&)?-$4 93H*$I&()\\#44$I&1-?4H*)%[L 5<D WF 5I777 EI777 BZ ]5IF67 />.EZ 5I777 EI777 W7 ]ZEA ]WI7FD !00)0&9)#4-(+&.3#0 %[L >#243*%N4H !&:3-")*U#""3($ WI7FD Z6T ZIBEE FDT 67 .#8^&;)^"#2)8)(4 <,^)j&>-?4H*)$j&.#8^$.-1)I&L*$.#8^$==,*X="#8^.#:3*="#8^ 5<D WF ]5 WFI777 ]5 XW X6C77 />.EZ ]E DI777 ]5 XF X5C77 .-1)&/,2")&/3$4&!(#",$-$‘)#* a4, b(-4 N#$)&/3$4 ‘)#*&7&/3$4 /3($4*H24-3(&/3$4$ V($4#""&322H^#(2,&$)($3*$7 Z .M XEI777 XZI777 ’$4-8#4-(+&23(4-(+)(2,7 E6T XF77C77 Yd)*L)#0&g&^*31-4 7 W7T XEIWD7C77 S)$-+(&1))$7 E7T X6AD O*3J)24&8#(#+)8)(4 7 DT X65F !((H#"&/3$4$ ’?-$4-(+&"#8^&*)^"#2)8)(4I&5<D E&]&56 ]5 "#8^$XDC77 PXW7AQ ’?-$4-(+&"#8^&*)^"#2)8)(4I&/>.E&]&56 ]5 "#8^$XDC77 PX5B7Q ’()*+,&/3$4$ ’")24*-2&’()*+,E&]&56 ]WI7FD %[L X7C5WA PXEZIZEWQ >H)"&Y-"E&]&56 67 +#"XZCE5 X6IDZF R)4&O*)$)(4&[3*4L PX5I777Q !"#$%&’$%(&)*(++,<9 ./0"%1&234$5&67*5+80"&9:--; !""#$%&’(6( )$#*+,(-$%(75&2&5,(8-5-( !"#$%&’$%(&)*(++,<<./0"%1&234$5&67*5+80"&9:--; !!!"#$%&$!’()*+,!’(+-())*-(+!../ 0-##-(+!1$2$ !34355!"6$#+$!7$*89*!:9$;!!!!!!<)#=>$?@!!A5BCBDACE33F !GH()$HI!"#$%&$!!AAD5E!!!!!!!!!!!!!J-6K$#$%&$)()*+,LH% /*$-+!7-+M!NOM99# ’.’/<:P/!:"<’ "#$%&$!Q9R)*!/96S$(,!0H#&!Q9R)*!"CT /*$-+ 7,;$8H*+ <M9*(!0$, ’#)O2*-O-2,!UV!=!&WM!X V5L5BDF /9%2!9Y!Q9R)*!";JH%26)(2!UV!=!&WMX V5LE4TZ 1)6$(;!U!V!=!&W!X VBL55 /H%296)*!/M$*+)!U!V!=!69!X VEZ5LDF N$#)%!<$?!U![!X 5L5[ ’.’/<:P/".!/\]N^_Q<P\]!"]1!1’_"]1 &WM &W &WM &W &WM &W &WM &W G$( 33ID55 A5 3FID55 A5 34I5Z5 AZ 3ZI5D5 AB 3ZIFD5 >)8 3DIZ55 A5 3DID55 A5 TEIF55 AZ T5I3Z5 DZ 3AIBF5 _$* 33ID55 A5 34I355 A5 3FI555 AB 3TIZZ5 DF 3ZITF5 "S* 34IF55 A5 3FIZD5 D3 34I5Z5 AT 3ZI3Z5 DD 34ITZ5 _$,3ZIZ55 D5 3EIFD5 D4 3FI5D5 DD 3TIF55 D3 3TIAZ5 GH( EFI555 B5 EAI5Z5 D5 EAI435 BA AIF55 B5 EFI5Z5 GH# ETI355 Z5 4IA35 TZ EZIB35 TD DIZ55 4T E5I4F5 "H+DIZ55 T5 FIT35 T5 EZIFZ5 45 DIZ55 4T AIZZ5 N)S EAI355 B5 EFIB35 BZ EEIA35 D4 EZID55 BF E4IFF5 \O2 3TIF55 A5 3TI435 DD 3TIF55 3EIBF5 D4 3TIE35 ]9‘ 3BIF55 D5 3DI5D5 AZ 3DIFZ5 AB TEI3D5 DF 3DIA55 1)O 3FID55 A5 3DIZD5 AF 3AIFD5 AB 3BITF5 A3 3DI5D5 <92$# 34DID55 34BI5Z5 3BFIZD5 3ZBI355 34AIDD5 "‘)*$+) 3EI4FB BF 3EIZ35 BD 3TI5Z5 DT 35IF55 BA 3EIF4B .9$;!>$O29* TA[TD[TD[TF[BA ’.’/<:P/!0P..P]a!1’<"P.N _9(2M ’()*+,1)6$(; /H%2!b!<$? <92$# ’()*+,1)6$(; /H%2!b!<$? <92$# [!/M$(+) G$( V4ID5A VF4A VEZE VFIF5A V4I4DB VFBD VEZE VFIZ54 CTLE[ >)8 VBITTE VF44 VEZE VDIE3B VBI5EF V4DD VEZE VBIBZ4 CZLB[ _$* VFI5T3 VFD3 VEZE VFID4Z V4IZTD VF54 VEZE VFIEDZ CALD[ "S* V4ID5A VFZA VEZE VFI4AA V4IF3Z VFEF VEZE VFITDE CTLT[ _$,VFI54E VFEB VEZE VFID5A V4IZB4 V4BE VEZE VFIEDB CALE[ GH( VZI43A V44Z VEZE V4I33Z V3I33B VZAT VEZE V3IDFE CZ4L3[ GH# VTIZE4 V3FD VEZE VTID3Z VEIAZA VTB5 VEZE V3IZ4A CT4LB[ "H+VTITAF VT4T VEZE VTIDA5 VEIAZA VTB5 VEZE V3IZ4A CTFLD[ N)S V3IBF4 V4A4 VEZE VTI45E VTIZTZ V4T3 VEZE VZIE5F EBLT[ \O2 V4IZB4 V5 VEZE V4IFEF V4I5ZD V4AZ VEZE V4IBDT TL5[ !]9‘ VFIFZZ VFBD VEZE VBIZFT VBI34B VF54 VEZE VDI55T BL3[ 1)O VFIDDF VFBD VEZE VBIB5Z VFITZD VFZZ VEZE VBIET3 CBLZ[ <92$# V!FZIEZT V!FITDB V!EIFA5 V!B3I33E V!4BIT45 V!FIFFZ V!EIFA5 V!F4IB54 CAL5[ "‘)*$+) V!4ITZ4 V!4T3 V!EZE V!FI5ED V!ZIBBA V!444 V!EZE V!4IZB4 CAL5[ /9%2!UV=&WMX V5L3FE DB[ E5[ T[ V5L3FF ELD[ _9(2M 355B 355D 355A "‘)*$+) ’#)O2*-O$#!O9%2%!$*)!8$%);!9(!2M)!OH**)(2!)#)O2*-O!*$2)%L 355A 35E5 35E5 !"#$%&’$%(&)*(++,<=./0"%1&234$5&67*5+80"&9:--; !!!"#$%&$!’()*+,!’(+-())*-(+!../"((H$#!’#)O2*-O!/9(%H6S2-9( !34355!"6$#+$!7$*89*!:9$;!!!!!!<)#=>$?@!!A5BCBDACE33F !GH()$HI!"#$%&$!!AAD5E!!!!!!!!!!!!!J-6K$#$%&$)()*+,LH% /*$-+!7-+M!NOM99# 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecElectric Use (kWh)Month of the Year Electric Use History 2007 2008 2009 2010 0 20 40 60 80 100 120 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecElectric Demand (kW)Month of the Year Electric Demand History 2007 2008 2009 2010 !"#$%&’$%(&)*(++,<>./0"%1&234$5&67*5+80"&9:--; !!!"#$%&$!’()*+,!’(+-())*-(+!../’#)O2*-O!/9%2 !34355!"6$#+$!7$*89*!:9$;!!!!!!<)#=>$?@!!A5BCBDACE33F !GH()$HI!"#$%&$!!AAD5E!!!!!!!!!!!!!J-6K$#$%&$)()*+,LH% /*$-+!7-+M!NOM99#!"#" 1)O)68)*!FI!35EE $ 0 $ 1,000 $ 2,000 $ 3,000 $ 4,000 $ 5,000 $ 6,000 $ 7,000 $ 8,000 $ 9,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecElectric Cost (USD)Month of the Year Electric Cost Breakdown 2010 Electric Use (kWh) Costs Electric Demand (kW) Costs Customer Charge and Taxes 0 20 40 60 80 100 120 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Electric Demand (kW)Electric Use (kWh)Month of the Year Electric Use and Demand Comparison 2010 Electric Use Electric Demand !"#$%&’$%(&)*(++,<?./0"%1&234$5&67*5+80"&9:--; !!!"#$%&$!’()*+,!’(+-())*-(+!../ "((H$#!>H)#!\-#!/9(%H6S2-9( !34355!"6$#+$!7$*89*!:9$;!!!!!!<)#=>$?@!!A5BCBDACE33F !GH()$HI!"#$%&$!!AAD5E!!!!!!!!!!!!!J-6K$#$%&$)()*+,LH% /*$-+!7-+M!NOM99# c)$* >H)#!\-# 1)+*))!1$,% 3I55B EAIZDA BIZT5 3I55D EFIT3E BITD4 3I55A EAIB3B BI4TD 3I5E5 E4I5B3 BITA5 !"### !"!## $"### $"!## %"### %"!## &"### # ’"### ("### $"### &"### )#"### )’"### )("### )$"### )&"### ’#"### ’’"### ’##%’##&’##*’#)#!"#$""!!%&’(%))*+’!*,!-.")!/0)1"%$ 2++.%)!-.")!/0)!3’" +,-.!/0. 1-23--!1456 !"#$%&’$%(&)*(++,<@ ./0"%1&234$5&67*5+80"&9:--; !!!"#$%&$!’()*+,!’(+-())*-(+!../"((H$#!’#)O2*-O!/9(%H6S2-9(!$(;!/9%2 !34355!"6$#+$!7$*89*!:9$;!!!!!!<)#=>$?@!!A5BCBDACE33F !GH()$HI!"#$%&$!!AAD5E!!!!!!!!!!!!!J-6K$#$%&$)()*+,LH% /*$-+!7-+M!NOM99# Energy Cost $/MMBTU Area ECI EUI Fuel Oil $3.89 $40.12 44,492 $2.94 75 Electricity $0.266 $82.00 Source Cost Electricity 259,880 kWh $69,100 890 27% Fuel Oil 18,100 Gallons $61,900 2,460 73% Totals -$131,000 3,350 100% Annual Energy Consumption and Cost Consumption Energy, MMBtu !"#$%&’$%(&)*(++,<A ./0"%1&234$5&67*5+80"&9:--; !""#$%&’(0( )9:&";#$5(8-5-( !"#$%&’$%(&)*(++,<B ./0"%1&234$5&67*5+80"&9:--; MotorHP / Volts / RPM / EfficB-1 Boiler Room BoilerWeil McClain 13883270 MBHB-2 Boiler Room BoilerWeil McClain 13883270 MBHP-1AMechanical 136Boiler Circulation PumpArmstrong 4x4x8 438010 HP/ 208 V/ 1750 RPM/ 90.2%pump running 14 psi in 24 psi outP1-BMechanical 136Boiler Circulation PumpArmstrong 4x4x8 438010 HP/ 208 V/ 1750 RPM/ 90.2%P-2Mechanical 136Domestic Hot Water CirculationArmstrong Astro 50-B100 W/ 115 V/ 3000 RPMP-3AMechanical 136Perimeter Heat Armstrong 2x2x6 43801 HP/ 208 V/ 1725 RPM/ 82.5%P-3BMechanical 136Perimeter Heat Armstrong 2x2x6 43801 HP/ 208 V/ 1725 RPM/ 82.5%P-4AMechanical 136Shop Heat Armstrong 1.5B 1050-0011/3 HP/ 115 V/ 1725 RPM/ 60% no efficiency ratingP-4BMechanical 136Shop Heat Armstrong 1.5B 1050-0011/3 HP/ 115 V/ 1725 RPM/ 60%P-5AMechanical 136AHU Heating Coil Armstrong 4x4x8 43805 HP/ 208 V/ 1725 RPM/ 89.5%P-5BMechanical 136AHU Heating Coil Armstrong 4x4x8 43805 HP/ 208 V/ 1725 RPM/ 89.5%P-6 Shop 141MAU-1 Heating CoilArmstrong No Data1/4 HP/ 115/ 1725 RPMP-7Mechanical 140BAHU-1 Heating CoilArmstrong 1.5B 1050-0021/3 HP/ 115 V/ 1725 RPM/ 60%P-8Mechanical 160-BAHU-2 Preheat CoilArmstrong No Data1/4 HP/ 115/ 1725 RPMCapacityNotesCraig High School - Major Equipment InventoryUnit IDLocation Function Make Model !"#$%&’$%(&)*(++,=:./0"%1&234$5&67*5+80"&9:--; MotorHP / Volts / RPM / EfficCapacity NotesCraig High School - Major Equipment InventoryUnit IDLocation Function Make ModelP-9Mechanical 160-BAHU-2 Heating CoilArmstrong 1.33 1030-003 1/4 HP/ 115/ 1725 RPMP-10Mechanical 160-BAHU-3 Preheat CoilArmstrong No Data1/6 HP/ 115 V/ 1725 RPMP-11Mechanical 160-BAHU-3 Hot Deck CoilArmstrong No Data1/6 HP/ 115 V/ 1725 RPMP-12Mechanical 160-BAHU-4 Heating CoilArmstrong No Data1/6 HP/ 115 V/ 1725 RPMP-13Mechanical 160-BAHU-5 Heating CoilArmstrong No Data3/4 HP/ 208 V/ 1140 RPM/ 75.5%Mechanical 160-BDomestic Hot Water HeaterAO Smith COF 140-255 255,000 BTU/HR 1/7 HP/ 115 V140 gal/ direct fuel oil heaterElectric 137 Transformer Square D 150T85HIS150 KVA 150 degrees C temp risenon TPI ratedAHU-1 Room 203 Classroom AHU Scott Springfield HQ-280-AHU-23400-HSF-1 Room 203 Supply Fan23,420 CFM 30 HP/ 208 V/ 1760 RPM/ 90.7%RF-1 Room 203 Return Fan23,420 CFM 7.5 HP/ 208 V/ 1760 RPM/ 88/5%AHU-2 Room 106-C Commons AHU Scott Springfield H2-125-AHU-10502HSF-2 Room 106-C Supply Fan10,470 CFM 10 HP/ 208 V/ 1760 RPM/ 89.5%RF-2 Room 106-C Return Fan10,470 CFM 3 HP/ 208 V/ 1725 RPM/ 86.5%AHU-3 Room 106-C Auditorium AHU Scott Springfield AQ-150-AHU-13100-H !"#$%&’$%(&)*(++,=-./0"%1&234$5&67*5+80"&9:--; MotorHP / Volts / RPM / EfficCapacity NotesCraig High School - Major Equipment InventoryUnit IDLocation Function Make ModelSF-3 Room 106-C Supply Fan 13,100 CRM 10 HP/ 208 V/ 1760 RPM/ 89.5%RF-3 Room 106-C Return Fan13,100 CRM 3 HP/ 208 V/ 1725 RPM/ 86.5%AHU-4 Room 106-CLocker Room AHUScott Springfield HQ-15-AHU-1200-H 1,250 CFM 3 HP/ 208 V/ 1750 RPM/ 86.5%AHU-5 Room 106-C Gymnasium AHU Scott Springfield HQ-230-AHU-19300-HSF-5 Room 106-C Supply Fan19,300 CFM 15 HP/ 208 V/ 1760 RPM/ 91%RF-5 Room 106-C Return Fan19,300 CFM 7.5 HP/ 208 V/ 1560 RPM/ 88/5%MAU-1 Shop Make-Up Air3,680 CFM 3 HP/ 208 V/1740 RPM/ 86.5%EF-1 Restroom Exhaust1,420 CFM not availableEF-2 Locker Exhaust Loren Cook 165 CPV1,515 CFM 1/2 HP/ 115 V/ 1725 RPM EF-3 Kitchen Exhaust Nutone RL6330WW190 CFM not availableEF-4 Art Room Exhaust1,680 CFM not availableEF-5 Restroom Exhaust100 CFM not availableEF-6 Science Room General Exhaust Loren Cook 245CPV4,190 CFM 3/4 HP/ 208 V/ 1725 RPM EF-7 Seience Room Fume Hood1,200 CFM not available !"#$%&’$%(&)*(++,=9 ./0"%1&234$5&67*5+80"&9:--; MotorHP / Volts / RPM / EfficCapacity NotesCraig High School - Major Equipment InventoryUnit IDLocation Function Make ModelEF-8 Math Room General Exhaust1,500 CFM not availableEF-9Home EconomicsGeneral Exhaust Loren Cook 180 CPV1,970 CFM 1/3 HP/ 115 V/ 1725 RPM EF-10Home EconomicsCooktop Exhaust Nutone190 CFM not availableEF-11Home EconomicsCooktop Exhaust Nutone190 CFM not availableEF-12Home EconomicsCooktop Exhaust Nutone190 CFM not availableEF-13Home EconomicsCooktop Exhaust Nutone190 CFM not availableEF-14 Press Box Ventilation250 CFM not availableEF-15 Science Prep General Exhaust Loren Cook 100 CPV750 CFM 1/2 HP/ 115 V/ 1725 RPM CS-1 Welding Shop Exhaust Fan CAR-MON CMB-201,800 CFM 1.5 HP/ 208 VCS-2 Welding Shop Welding Hood CAR-MON FH-34800 CFM not availableCS-3 Welding ShopVehicle Exhaust SystemCAR-MON LO-X56W850 CFM 3/4 HP/ 208 V !"#$%&’$%(&)*(++,=<./0"%1&234$5&67*5+80"&9:--; !""#$%&’(8( !<<*#=&-5&3$4( ( AHU Air handling unit BTU British thermal unit BTUH BTU per hour CBJ City and Borough of Juneau CMU Concrete masonry unit CO2 Carbon dioxide CUH Cabinet unit heater DDC Direct digital controls DHW Domestic hot water EAD Exhaust air damper EEM Energy efficiency measure EF Exhaust fan Gyp Bd Gypsum board HVAC Heating, Ventilating, Air- conditioning HW Hot water HWRP Hot water recirculating pump KVA Kilovolt-amps kW Kilowatt kWh Kilowatt-hour LED Light emitting diode MBH 1,000 Btu per hour MMBH 1,000,000 Btu per hour OAD Outside air damper RAD Return air damper RF Return fan SIR Savings to investment ratio SF Supply fan UV Unit ventilator VAV Variable air volume VFD Variable frequency drive !"#$%&’$%(&)*(++,==./0"%1&234$5&67*5+80"&9:--;