Loading...
HomeMy WebLinkAboutStebbins Rnd 7 ALL FINAL 09242013Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/St. Michael Wind Energy Design and Permitting AEA 2014-006 Application Page 1 of 26 7/2/2013 SECTION 1 – APPLICANT INFORMATION Name (Name of utility, IPP, or government entity submitting proposal) Alaska Village Electric Cooperative, Inc. Type of Entity: Not-for-profit Fiscal Year End: December 31 Tax ID # 92-0035763 Tax Status: For-profit X Non-profit Government ( check one) Date of last financial statement audit: March 8, 2013 Mailing Address 4831 Eagle Street Anchorage, AK. 99503 Physical Address 4831 Eagle Street Anchorage, AK. 99503 Telephone 800.478.1818 Fax 800.478.4086 Email sgilbert@avec.org 1.1 APPLICANT POINT OF CONTACT / GRANTS MANAGER Name Steve Gilbert Title Manager, Projects Development and Key Accounts Mailing Address 4831 Eagle Street Anchorage, AK. 99503 Telephone 907.565.5357 Fax 907.561.2388 Email sgilbert@avec.org 1.2 APPLICANT MINIMUM REQUIREMENTS Please check as appropriate. If you do not to meet the minimum applicant requirements, your application will be rejected. 1.2.1 As an Applicant, we are: (put an X in the appropriate box) x An electric utility holding a certificate of public convenience and necessity under AS 42.05, or An independent power producer in accordance with 3 AAC 107.695 (a) (1), or A local government, or A governmental entity (which includes tribal councils and housing authorities); Yes 1.2.2 Attached to this application is formal approval and endorsement for the project by the applicant’s board of directors, executive management, or other governing authority. If the applicant is a collaborative grouping, a formal approval from each participant’s governing authority is necessary. (Indicate Yes or No in the box ) Yes 1.2.3 As an applicant, we have administrative and financial management systems and follow procurement standards that comply with the standards set forth in the grant agreement (Section 3 of the RFA). Yes 1.2.4 If awarded the grant, we can comply with all terms and conditions of the award as identified in the Standard Grant Agreement template at http://www.akenergyauthority.org/veep/Grant-Template.pdf. (Any exceptions should be clearly noted and submitted with the application.) Yes 1.2.5 We intend to own and operate any project that may be constructed with grant funds for the benefit of the general public. If no please describe the nature of the project and who will be the primary beneficiaries. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 2 of 26 7/1/2013 SECTION 2 – PROJECT SUMMARY This section is intended to be no more than a 2-3 page overview of your project. 2.1 Project Title – (Provide a 4 to 7 word title for your project). Type in space below. Stebbins/St. Michael Wind Energy Final Design/Permitting 2.2 Project Location – Include the physical location of your project and name(s) of the community or communities that will benefit from your project in the subsections below. The proposed project is located near the village of Stebbins on St. Michael Island. Stebbins is located approximately 430 miles northwest of Anchorage, on the south side of Norton Sound. Stebbins is 8 air miles from the village of St. Michael. This project will benefit both the communities of Stebbins and St. Michael as an intertie to connect the two communities and a new joint power plant will be constructed by 2015. 2.2.1 Location of Project – Latitude and longitude, street address, or community name. Latitude and longitude coordinates may be obtained from Google Maps by finding you project’s location on the map and then right clicking with the mouse and selecting “What is here? The coordinates will be dis played in the Google search window above the map in a format as follows: 61.195676.-149.898663. If you would like assistance obtaining this information please contact AEA at 907-771-3031. The location of Stebbins is as follows: 63.51722, -162.28444. (Sec. 02, T. 23 S, R. 19 W, Kateel River Meridian). 2.2.2 Community benefiting – Name(s) of the community or communities that will be the beneficiaries of the project. This project will benefit the communities of Stebbins (2010 population 585) and St. Michael (2010 population 401), which are connected by an eleven-mile gravel road. 2.3 PROJECT TYPE Put X in boxes as appropriate 2.3.1 Renewable Resource Type X Wind Biomass or Biofuels (excluding heat-only) Hydro, Including Run of River Hydrokinetic Geothermal, Excluding Heat Pumps Transmission of Renewable Energy Solar Photovoltaic Storage of Renewable Other (Describe) Small Natural Gas Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 3 of 26 7/1/2013 2.3.2 Proposed Grant Funded Phase(s) for this Request (Check all that apply) Pre-Construction Construction Reconnaissance x Final Design and Permitting Feasibility and Conceptual Design Construction and Commissioning 2.4 PROJECT DESCRIPTION Provide a brief one paragraph description of the proposed project. Building on the results of the wind resource assessment and Homer modeling (V3 Energy LLC) and a conceptual design report (Hattenburg Dilley and Linnell LLC), Alaska Village Electric Cooperative, Inc., (AVEC) is proposing to complete the final design and permitting to install two Aeronautica AW33-225 turbines to supplement the existing diesel-fired power generation system in Stebbins. AVEC is currently constructing a new power plant and bulk fuel facility in Stebbins, which will also power the village of St. Michael via an 11-mile intertie that is currently funded and designed in a right-of-way along the road that connects the two villages. AVEC has completed the final design and obtained permits and funding for the intertie between St. Michael and Stebbins. A new power plant is under construction to serve both communities. Once final design and permitting of the turbines are completed as described in this grant application, AVEC will seek funding to construct the turbines to serve both communities. 2.5 PROJECT BENEFIT Briefly discuss the financial and public benefits that will result from this project, (such as reduced fuel costs, lower energy costs, local jobs created, etc.) This project will provide the following benefits, which are listed here and described in further detail in Section 5 of this application: The primary benefit of this project is to stabilize energy costs in Stebbins and St. Michael by providing a renewable energy resource. This project is expected to provide 40% of the two communities’ combined electric power needs by generating 1,360,237 kWh per year. It is estimated to generate an additional 228,699 kWh per year of excess energy available for thermal loads. Assuming 80% turbine availability, this project could save $321,084 during its first full year of operation and $5,241,559 over the 20 year (discounted at 3%) lifetime of the project. In addition, the following important benefits will be realized:  Reduced diesel fuel use for power generation in Stebbins and St. Michael by about 74,443 gallons/year resulting in a $321,084 savings in the first year or $5,241,559 over twenty years (based on ISER fuel costs; 2015).  Reduced diesel fuel use for heat in Stebbins and St. Michael by about 5,846 gallons/year or $491,672 over twenty years (based on ISER fuel costs; 2015).  Reduced energy costs through reduced fuel use for both villages.  Reduced energy costs for non-PCE community institutions, which may allow for increased or improved community or social services. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 4 of 26 7/1/2013  Reduced energy costs to other non-PCE commercial energy customers such as stores that may pass along savings to residents.  Increased opportunity for local economic development.  Income to the Stebbins Native Corporation in the approximate amount of $65,000 from gravel sales during the project’s construction phase.  Local hire during project construction.  Increased access to subsistence areas.  Increased longevity of the PCE fund through a reduction in PCE payments for Stebbins and St. Michael residents and PCE-eligible community facilities.  Information on a turbine type presently not used in Alaska through the installation of Aeronautica turbines.  Reduced fossil fuel emissions, which results in improved air quality and decreased contribution to global climate change.  Reduced fuel consumption, which reduces the volume of fuel transported and the potential for fuel spills and contamination. This project will take a big step forward in achieving local, state, and federal renewable energy goals in Stebbins and St. Michael. Please see Section 5 for detailed information on project benefits. 2.6 PROJECT BUDGET OVERVIEW Briefly discuss the amount of funds needed, the anticipated sources of funds, and the nature and source of other contributions to the project. The total project cost for final design and permitting of the two Aeronautica AW33-225 turbines in Stebbins is $360,000 of which $342,000 is requested in grant funds from AEA. The remaining $18,000 will be matched in cash by AVEC. 2.7 COST AND BENEFIT SUMARY Include a summary of grant request and your project’s total costs and benefits below. Grant Costs (Summary of funds requested) 2.7.1 Grant Funds Requested in this application $342,000 2.7.2 Cash match to be provided $18,000 2.7.3 In-kind match to be provided $ 2.7.4 Other grant funds to be provided $ 2.7.5 Other grant applications not yet approved $ 2.7.6 Total Grant Costs (sum of 2.7.1 through 2.7.4) $360,000 Project Costs & Benefits (Summary of total project costs including work to date and future cost estimates to get to a fully operational project) Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 5 of 26 7/1/2013 2.7.7 Total Project Cost Summary from Cost Worksheet, Section 4.4.4, including estimates through construction. $3,946,050 (Includes turbines, controls, transmission lines and gravel trail) 2.7.8 Additional Performance Monitoring Equipment not co vered by the project but required for the Grant Only applicable to construction phase projects. $ 2.7.9 Estimated Direct Financial Benefit (Savings) $321,084 (first year) $5,241,559(20-year life) 2.7.10 Other Public Benefit If you can calculate the benefit in terms of dollars please provide that number here and explain how you calculated that number in Section 5 below. Heat saving: $491,672 (20- year life) $ 65,000(gravel sales) SECTION 3 – PROJECT MANAGEMENT PLAN Describe who will be responsible for managing the project and provide a plan for successfully completing the project within the scope, schedule and budget proposed in the application. 3.1 Project Manager Tell us who will be managing the project for the Grantee and include contact information, a resume and references for the manager(s). In the electronic submittal, please submit resumes as separate PDFs if the applicant would like those excluded from the web posting of this application. If the applicant does not have a project manager indicate how you intend to solicit project management support. If the applicant expects project management assistance from AEA or another government entity, state that in this section. AVEC, as the electric utility serving Stebbins and St. Michael, will provide grant administration and project management and oversight. Steve Gilbert, Manager, Project Development and Key Accounts Steve Gilbert is manager of energy projects development for AVEC where he leads a team focused on lowering the cost of energy in rural Alaskan villages through improved power plant efficiency, wind and other renewable power and interties between villages. Previously, Mr. Gilbert worked at Chugach Electric for 17 years managing three power plants and serving as lead electrical engineer for a 1 MW fuel cell and micro-turbine projects and wind energy project development. Mr. Gilbert is recognized as an industry leader on wind energy and has been active on a national level in operation and maintenance of wind power plants. He was Alaska’s Electrical Engineer of the Year in 2000 and for the 12 western states in 2001. He has been a regular lecturer at schools and universities on renewables, especially wind. He also worked with BP Wind in London assessing European wind prospects. To better evaluate investment opportunities for his employer, Mr. Gilbert recently completed his MBA. Meera Kohler, President and CEO of AVEC Ms. Kohler has more than 30 years of experience in the Alaska electric utility industry. She was appointed Manager of Administration and Finance at Cordova Electric Cooperative in 1983, General Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 6 of 26 7/1/2013 Manager of Naknek Electric Association in 1990, and General Manager of Municipal Light & Power in Anchorage in 1997. Since May 2000, Ms. Kohler has been the President and CEO of AVEC and in this position has ultimate grant and project responsibilities. 3.2 Project Schedule and Milestones Please fill out the schedule below. Be sure to identify key tasks and decision points in in your project along with estimated start and end dates for each of the milestones and tasks. Please clearly identify the beginning and ending of all phases of your proposed project. The key tasks and their completion dates are: Grant Award Announcement: May 2014 Authorization to Proceed: June 2014 Complete Permitting: February 2015 Complete Site Control: February 2015 Complete Final Design: May 2015 Complete Final Business and Operational Plan: July 2015 The schedule organized by AEA milestones is as follows: Milestones Tasks Start Date End Date Project Scoping and Contractor Solicitation The engineering contractor will be selected and a task order will be prepared for work planned for this phase. June 1, 2014 Aug 1, 2014 Permit Applications Permit applications, such as FAA, wetlands, and migratory birds/endangered species consultations, will be prepared and submitted. Aug 1, 2014 Oct 31, 2014 Final Environmental Assessment and Mitigation Plans Working with regulatory agencies, environmental documents will be prepared as needed. Aug 1, 2014 Feb 1, 2015 Resolution of Land Use, ROW Issues (surveying) Working with the communities and corporations, AVEC will secure site control for the wind turbines. Aug 1, 2014 Feb 1, 2015 Permitting, rights-of-way, site control Permits will be issued from the Federal Aviation Administration, the U.S. Army Corps of Engineers, and the U.S. Fish and Wildlife Service. Feb 1, 2015 Final System Design The engineering contractor will complete final design of the wind system. The design will be reviewed by AVEC personnel prior to final approval. May 1, 2015 Final Cost Estimate Using the final design, the engineers will prepare the cost estimate for the project. June 1, 2015 Updated Economic and Financial Analysis Using the number developed in the cost estimate, an updated economic assessment July 1, 2015 Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 7 of 26 7/1/2013 and financial analysis will be prepared. Power or Heat Sales Agreements N/A N/A Final Business and Operational Plan AVEC will work with the all the communities to finalize an Operational Plan. July 1, 2015 3.3 Project Resources Describe the personnel, contractors, accounting or bookkeeping personnel or firms, equipment, and services you will use to accomplish the project. Include any partnerships or commitments with other entities you have or anticipate will be needed to complete your project. Describe any existing contracts and the selection process you may use for major equipment purchases or contracts. Include brief resumes and references for known, key personnel, contractors, and suppliers as an attachment to your application. AVEC will use a project management strategy that it has used to successfully design and construct wind turbines throughout rural Alaska. That strategy includes a team of AVEC staff and external consultants. AVEC staff and their role on this project include:  Meera Kohler, President and Chief Executive Officer, will act as Project Executive and will maintain ultimate authority programmatically and financially.  Steve Gilbert, Project Development Manager, will act as Program Manager and will lead the project management team consisting of AVEC staff, consultants, and contractors.  Debbie Bullock, Manager of Administrative Services, will provide support in accounting, payables, financial reporting, and capitalization of assets in accordance with AEA guidelines.  Bill Stamm, Manager of Engineering, leads AVEC’s Engineering Department which is responsible for in-house design of power plants, distribution lines, controls and other AVEC facilities. Mr. Stamm has worked at AVEC since 1994. Mr. Stamm was an AVEC line superintendent before he was appointed to Manager of Engineering in 2012. Mr. Stamm’s unit will provide engineering design and supervision.  Mark Bryan, Manager of Operations, is a Certified Journeyman Electrician and supervises the AVEC’s line operations, generation operations and all field construction programs. He has worked at AVEC since 1980, was appointed Manager of Construction in May 1998 and was promoted to Manager of Operations in June 2003. Mr. Bryan’s unit will oversee operation of this project as part of the AVEC utility system.  Anna Sattler, Community Liaison, will communicate directly with Stebbins and St. Michael residents to ensure the community is informed. An AVEC project manager, working under the direction of the Program Manager, will lead this project and ensure that deliverables are on time and within budget. He or she will be responsible for site control and community involvement, working with AVEC’s Community Liaison. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 8 of 26 7/1/2013 The project manager will be responsible for selecting, coordinating, and managing the geotechnical, engineering, and environmental permitting consultants listed below:  Geotechnical consultant. AVEC will select and employ an experienced geotechnical consultant who will conduct a detailed geotechnical and natural hazards field study and report of the project area.  Engineering consultant. AVEC currently has an on-call contract with Hattenburg Dilley and Linnell LLC (HDL) for engineering services. HDL drafted the CDR and preliminary design for this project and will provide final design, engineering specifications, and a cost estimate for the wind turbines.  Environmental Consultant. HDL will consult with agencies and develop and submit permit applications for the wind farm.  Wind Resource Consultant. Under an existing on-call contract, V3 Energy, LLC prepared the wind resource report and provided technical assistance on previous phases of this project. V3 will continue to provide assistance on an as needed basis. Resumes are included under Tab A. 3.4 Project Communications Discuss how you plan to monitor the project and keep the Authority informed of the status. Please provide an alternative contact person and their contact information. AVEC has systems in place to accomplish reporting requirements successfully. In 2012, AVEC successfully met reporting requirements for 56 state and federal grants. An independent financial audit and an independent auditor’s management letter completed for AVEC for 2012 did not identify any deficiencies in internal control over financial reporting that were considered to be material weaknesses. In addition, the letter stated that AVEC complied with specific loan and security instrument provisions. The project will be managed out of AVEC’s Project Development Department. For financial reporting, the Project Development Department’s accountant, supported by the Administrative Services Department, will prepare financial reports. The accountant will be responsible for ensuring that vendor invoices and internal labor charges are documented in accordance with AEA guidelines and are included with financial reports. AVEC has up-to-date systems in place for accounting, payables, financial reporting, and capitalization of assets in accordance with AEA guidelines. AVEC will require that monthly written progress reports be provided with each invoice submitted from contractor(s). The progress reports will include a summary of tasks completed, issues or problems experienced, upcoming tasks, and contractor’s needs from AVEC. Project progress reports will be collected, combined and supplemented as necessary and forwarded as one report to the AEA project manager each month. Quarterly face-to-face meetings will occur between AVEC and AEA to discuss the status of all projects funded through the AEA Renewable Energy Grants program. Individual project meetings will be held, as required or requested by AEA. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 9 of 26 7/1/2013 Meera Kohler, AVEC’s President and CEO, may be contacted as an alternative manager. 3.5 Project Risk Discuss potential problems and how you would address them. Site Control/Access and Environmental Permitting. Sometimes site control for the placement of turbines is difficult; however, because Stebbins and St. Michael support the project it is expected that gaining site control will proceed smoothly. Letters of support have been received from community leaders (see Tab B). Environmental Permitting. Preliminary reviews of the proposed site reveal high likelihood of receiving all necessary permits. Field surveys have been conducted near the proposed site for both cultural resources and bird movements. Both studies revealed little data for concern that the area posed high risk to cultural resources or birds. HDL will continue to consult with agencies in order to flesh out location, natural and social environment, specific species, and mitigation issues. The consultant will work in concert with the agencies and conduct studies as appropriate. Weather. Weather could delay getting consultants from getting into the community to conduct site visits and/or the geotechnical survey; however, HDL is familiar with Alaskan weather conditions. AVEC is a cooperative and follows the International Co-operative Alliance’s Seven Principles of Cooperatives. One of the most important of those principles is titled Democratic Member Control and refers to the men and women who serve as representatives being accountable to the membership. AVEC’s member communities, especially the community involved in a grant program such as the REF, have expectations for projects regarding outcomes, schedule, budget, and quality of work. AVEC member communities and Board of Directors receive regular project status updates. When problems are reported, either formally through status reports or informally through other communications, member communities expect solutions. SECTION 4 – PROJECT DESCRIPTION AND TASKS  The level of information will vary according to phase(s) of the project you propose to undertake with grant funds.  If some work has already been completed on your project and you are requesting funding for an advanced phase, submit information sufficient to demonstrate that the preceding phases are satisfied and funding for an advanced phase is warranted. 4.1 Proposed Energy Resource Describe the potential extent/amount of the energy resource that is available. Discuss the pros and cons of your proposed energy resource vs. other alternatives that may be available for the market to be served by your project. For pre-construction applications, describe the resource to the extent known. For design and permitting or construction projects, please provide feasibility documents, design documents, and permitting documents (if applicable) as attachments to this application. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 10 of 26 7/1/2013 Based on the Concept Design Report by HDL and a Wind Feasibility Study completed by V3 Energy (TAB G), the wind resource measured at both St. Michael and Stebbins is very good. The Stebbins Site 1 area was chosen as the best wind turbine site based on the wind modeling results and other factors such as accessibility to roads and planned power infrastructure. The site is located in a Class 6 (outstanding) wind resource. It is located 200 feet from the new intertie and within 1.25 miles of the new power plant in Stebbins. AVEC selected three wind turbine configurations for evaluation and, based on the technical analysis, determined that two Aeronautica AW33-225 wind turbines will provide the best results as an alternative energy resource for Stebbins and St. Michael. Aeronautica AW33-225 turbines are a 40-meter hub height, 225 kW capacity, induction generator machines. The blades are aerodynamically designed to stall during extreme wind events (22 m/s) in order to maintain a safe operating speed. These turbines are made in America and have a long track record of success in Europe and North America. Based on the technical evaluation of our engineers, AVEC believes these turbines have high potential to be an effective alternative to other models that have been used in Alaska. Installation of these turbines in Stebbins will not only benefit the communities, but will also provide for an opportunity to compare and contrast a turbine model, new to Alaska, against other projects around the state., New information is valuable to future wind energy projects. Other energy resources are not feasible for the following reasons:  The installed cost of photovoltaic solar arrays will be higher per kW produced than the installed costs of wind.  Generating power from the ocean tidal motion is not yet an established technology or commercially available technology.  Hydropower resources are not available in the area.  Biomass resources are limited by the lack of resources near the communities. Wind energy as a supplement to diesel generators for electricity generation is considered the most viable and developable source of renewable energy for St. Michael and Stebbins. 4.2 Existing Energy System 4.2.1 Basic configuration of Existing Energy System Briefly discuss the basic configuration of the existing energy system. Include information about the number, size, age, efficiency, and type of generation. AVEC currently provides power to the communities of Stebbins and St. Michael with separate diesel generators. After the communities are connected by a planned intertie, the St. Michael plant will be closed, and a backup generator module will be installed. Currently, a new power plant in Stebbins, of sufficient capacity to power both communities, is scheduled for completion by November 2013. Intertie funding has been received from the Denali Commission, and it is expected to be constructed by September 2015. The existing diesel power plant in St. Michael consists of three generators: a 499 kW Cummins, a 314 kW Detroit Diesel, and a 207 kW Detroit Diesel. These generators were installed or overhauled in 2005, 2006, and 2006, respectively. St. Michael’s plant generated 1,853,882 kWh (total from 2012 PCE report) of Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 11 of 26 7/1/2013 electricity with 131,689 gallons of diesel in 2012. The plant efficiency was 14.08 kWh/gal in FY2012. The existing diesel power plant in Stebbins consists of three generators: a 499 kW Cummins, a 350 kW Cummins, and a 250 kW Cummins. These generators were installed or overhauled in 2007, 1992, and 2006, respectively. The Stebbins’ power plant generated a total of 1,428,234 kWh (total taken from 2012 PCE report) with 104,466 gallons of diesel in 2012. The average plant efficiency was 13.67 kWh/gal in FY2012. A new power plant with capacity to power both Stebbins and St. Michael is now under construction. When construction is complete in late 2013, the plant will operate four Caterpillar 3456 diesel engine generators each with the capacity of 450kW and at an expected efficiency of 15.2 kWh/gal. 4.2.2 Existing Energy Resources Used Briefly discuss your understanding of the existing energy resources. Include a brief discussion of any impact the project may have on existing energy infrastructure and resources. St. Michael and Stebbins use diesel fuel for electrical power generation, heating oil for boiler (thermal) and home heating, and diesel and gasoline fuel for transportation needs. Diesel fuel consumption for power generation in Stebbins in FY2012 was 104,466 gallons; in St. Michael diesel fuel consumption was 131,689 gallons. The electric power generation and fuel use will change once the new power plant is installed. Installation of two Aeronautica AW33-225 turbines and an intertie, at the same time decommissioning the existing St. Michael power plant, will decrease the amount of diesel fuel used for power generation. Diesel generator load will be decreased thereby reducing generator operations and maintenance costs. 4.2.3 Existing Energy Market Discuss existing energy use and its market. Discuss impacts your project may have on energy customers. Currently, both communities have stand-alone electric power systems with no intertie or connection beyond the villages; however, funding has been acquired and construction is underway for a joint power plant and an intertie to connect the communities in 2015. The electricity generated in FY2012 in Stebbins was 1,428,234 kWh, and 1,853,882 kWh in St. Michael. The load is highest during the winter months, when the communities experience high winds and extended periods of darkness. With no renewable energy systems in place, both communities rely completely on diesel fuel to meet their energy needs. The 20-year average cost of diesel in the communities is estimated to be approximately $5.28/gal (ISER 2012, medium projection plus social cost of carbon). The addition of the wind turbines to the electric generation system will reduce the amount of diesel fuel used for power generation. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 12 of 26 7/1/2013 4.3 Proposed System Include information necessary to describe the system you are intending to develop and address potential system design, land ownership, permits, and environmental issues. 4.3.1 System Design Provide the following information for the proposed renewable energy system:  A description of renewable energy technology specific to project location  Optimum installed capacity  Anticipated capacity factor  Anticipated annual generation  Anticipated barriers  Basic integration concept  Delivery methods Description of renewable energy technology. Wind power is the renewable energy option of choice for Stebbins and St. Michael. Three wind turbine configurations—Four Northern Power 100 Arctic turbines, five Vestas V17s, and two Aeronautica AW33-225s—were evaluated by AVEC. Hattenburg Dilley Linnell, LLC, (authors of the Conceptual Design Report) and V3 Energy (author of the Feasibility Study) have recommended the two Aeronautica AW33-225s for this project. The Aeronautica AW33-225 is an IEC Class III wind turbine with 225 kW rated capacity. The generator will be controlled using a simple inverter with soft start and soft braking capabilities or a more complex variable speed drive (VFD) inverter at each turbine. The turbine blades are designed to aerodynamically stall during high wind events (22 m/s or greater) leading to automatic shutdown. The AW33-225 is fully arctic-climate certified to -40° C. Optimum installed capacity. Two AW33-225 wind turbines will have a combined 450 kW generation capacity. Anticipated capacity factor. According to V3 Energy, the capacity factor for the Aeronautica AW33-225s at the project site is 34.5% (80% turbine availability). Anticipated annual generation. AVEC can expect the two Aeronautica AW33-225 wind turbines to supply 1,360,237 kWh annually (assuming 80% availability), with 228,699 kWh/yr of this as excess energy for thermal loads. Basic integration concept. The wind energy will be integrated into the new power plant in Stebbins, which will be constructed to accommodate wind energy. A simple one‐line diagram of the integration between the new power plant and the wind turbines is included in the CDR’s Sheet E.1, Appendix A. Delivery Method. Power generated by the wind turbines will be distributed via the new intertie between communities and the existing electrical distribution system in both communities. 4.3.2 Land Ownership Identify potential land ownership issues, including whether site owners have agreed to the project or how you intend to approach land ownership and access issues. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 13 of 26 7/1/2013 The proposed turbine site is owned by the Stebbins Native Corporation. Although formal site control is not yet in-hand, problems are not anticipated. The community of Stebbins supports this project and supports the selection of the project site as does the leadership of the Stebbins Native Corporation. AVEC has initiated land agreement negotiations and expects to have site control before the end of 2013. Recent face-to-face meetings between AVEC and the Stebbins leadership confirm that site control is forthcoming. 4.3.3 Permits Provide the following information as it may relate to permitting and how you intend to address outstanding permit issues.  List of applicable permits  Anticipated permitting timeline  Identify and discussion of potential barriers FAA Air Navigation Hazard Permitting. AVEC will seek a no-hazard determination from FAA once the final layouts of the turbines have been determined. AVEC will do this early in the process to ensure that adequate time and resources are allocated to this effort. It is expected to take about 3 months to obtain the FAA determination for the turbines. Endangered Species Act/Migratory Bird Treaty Act Consultation. Consultation with the U.S. Fish and Wildlife Service (USFWS) in compliance with the Endangered Species Act and Migratory Bird Treaty Act will be required to construct the wind turbines. A finding letter will be drafted and submitted to the USFWS stating that the constructed project is not expected to impact threatened or endangered species or birds. It is expected that AVEC would receive concurrence from USFWS within one month. Clean Water Act (Section 401) Permit. A U.S. Army Corps of Engineers (Corps) Wetlands Permit may be needed for the placement of the turbines. The pre-construction notice (PCN) would be submitted to the Corps once funding is assured, and the permit would be issued prior to initiating work. To permit the turbine, an individual wetland permit would be sought from the Corps. The application would be submitted once final design has been completed. It is expected that the permit would be issued within 3 months. National Historic Preservation Act. Compliance with the National Historic Preservation Act through the State Historic Preservation Officer will be conducted prior to construction of the wind turbines. 4.3.4 Environmental Address whether the following environmental and land use issues apply, and if so how they will be addressed:  Threatened or endangered species  Habitat issues  Wetlands and other protected areas  Archaeological and historical resources  Land development constraints  Telecommunications interference Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 14 of 26 7/1/2013  Aviation considerations  Visual, aesthetics impacts  Identify and discuss other potential barriers Threatened or Endangered species. The U.S. Fish and Wildlife Service will be consulted to ensure that the construction of the wind turbines will have no harmful impact on threatened or endangered species. Construction will be timed to avoid impacts to migratory birds in compliance with the Migratory Bird Treaty Act. A survey of avian movement was conducted by ABR, Inc. in 2006 in the area along the proposed intertie between Stebbins and St. Michael and areas of proposed wind turbine locations. ABR concluded the risk of injury to birds posed by turbines in the area would be low. (The intertie was permitted without issues from the USFWS.) The proposed wind project site is also located at an elevation above nesting areas. Habitat issues. During permitting, the project team will work with agencies to ensure that the project will not impact any State refuges, sanctuaries, or critical habitat areas, federal refuges or wilderness areas, or national parks. A publication resource produced by the Alaska Department of Fish and Game was reviewed and revealed that no Refuges, Critical Habitat Areas, or Sanctuaries are located in the area. Wetlands and other protected areas. It is likely that the wind turbines could be placed in designated wetland locations. A U.S. Army Corps of Engineers’ wetlands permit likely will be needed. Archaeological and historical resources. Cultural Resource Consultants, LLC (CRC) conducted a review of the Alaska Heritage Resource Survey (AHRS) files for the site. According to the AHRS files there are no known AHRS sites within the project areas at the site. However, there are known sensitive sites located adjacent to the project areas of interest, including one site listed on the National Register of Historic Places. Per the recommendation of Cultural Resource Consultants, LLC, the undertaking will need to be reviewed by the State Historic Preservation Office, but further field surveys will likely not be required. Land development constraints. Negotiations with the Corporation to obtain site control have been initiated and site control is expected by the end of 2013. Since the location of the existing met tower (on a site neighboring the proposed site for the wind turbine) was accepted by the community, and since the community supports this project, it is expected that there will not be any land issues associated with the project. Aviation considerations. A finding of “Determination of No Hazard” will be sought from the FAA. The proposed project site was already issued a “Determination of No Hazard to Air Navigation” for installation of the met tower. Based on the finding issued for the met tower at the project site, AVEC foresees no issues with obtaining this determination for the turbines. AVEC will work with FAA to obtain the needed determination. AVEC will do this early in the process to ensure that adequate time and resources are allocated to this effort. It is expected to take about 3 months to obtain the determination for the turbines. (See also FAA Air Navigation Hazard Permitting in Section 4.3.3.) Visual, aesthetics impacts. The turbines will be constructed outside the community; therefore, it is likely that there will be little concern for visual or aesthetic impacts. Communities often note that turbines offer a helpful visual guide point when traveling outside the village. AVEC will conduct community meetings to discuss visual impacts and how they could be minimized, in the unlikely event that visual issues arise. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 15 of 26 7/1/2013 4.4 Proposed New System Costs and Projected Revenues (Total Estimated Costs and Projected Revenues) The level of cost information provided will vary according to the phase of funding requested and any previous work the applicant may have done on the project. Applicants must reference the source of their cost data. For example: Applicants records or analysis, industry standards, consultant or manufacturer’s estimates. 4.4.1 Project Development Cost Provide detailed project cost information based on your current knowledge and understanding of the project. Cost information should include the following:  Total anticipated project cost, and cost for this phase  Requested grant funding  Applicant matching funds – loans, capital contributions, in-kind  Identification of other funding sources  Projected capital cost of proposed renewable energy system  Projected development cost of proposed renewable energy system Total anticipated project cost, and cost for this phase/requested grant funding/matching funds. This application is for the final design and permitting of two Aeronautica AW33-225 wind turbines in Stebbins. This phase of the project will cost $360,000 to complete. AVEC is requesting $342,000 from AEA through the REF grant program, and AVEC will provide $18,000 as a cash match for this phase. Identification of other funding sources. AVEC expects the final construction and commissioning phase of the project to cost $3,946,050. It is possible that the funding for this work will come from AEA’s Renewable Energy Fund program, the USDA Rural Utility Service Program, or another grant program, supplemented by AVEC funds. Projected capital cost of proposed renewable energy system/projected development cost of proposed renewable energy system. The final phase of this project will be Construction and Commissioning. AVEC estimates this phase could cost $3,946,050. AVEC will provide a 10% cash match for the construction project. 4.4.2 Project Operating and Maintenance Costs Include anticipated O&M costs for new facilities constructed and how these would be funded by the applicant. (Note: Operational costs are not eligible for grant funds however grantees are required to meet ongoing reporting requirements for the purpose of reporting impacts of projects on the communities they serve.) Once the turbines are installed, AVEC estimates the cost of operating and maintaining to be around $55,445/yr. These estimates are based on AEA’s default cost of wind energy of $0.049/kWh. AVEC will provide the funds for operation of the turbines. 4.4.3 Power Purchase/Sale The power purchase/sale information should include the following: Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 16 of 26 7/1/2013  Identification of potential power buyer(s)/customer(s)  Potential power purchase/sales price - at a minimum indicate a price range  Proposed rate of return from grant-funded project AVEC, the existing electric utility serving Stebbins and St. Michael, is a member-owned cooperative electric utility and typically owns and maintains the generation, fuel storage, and distribution facilities in the villages it serves. No power purchase or sale will be needed for this project. 4.4.4 Project Cost Worksheet Complete the cost worksheet form which provides summary information that will be considered in evaluating the project. Renewable Energy Source The Applicant should demonstrate that the renewable energy resource is available on a sustainable basis. Annual average resource availability. Class 6 (outstanding) by WPD; 7.13 m/s mean wind speed, 497 W/m2 WPD at 30 meters. Unit depends on project type (e.g. windspeed, hydropower output, biomasss fuel) Existing Energy Generation and Usage a) Basic configuration (if system is part of the Railbelt1 grid, leave this section blank) i. Number of generators/boilers/other 6 ii. Rated capacity of generators/boilers/other Stebbins: 1,099 kW; St Michael: 1,020 kW (New power plant: 1,800 kW) iii. Generator/boilers/other type Diesel generators iv. Age of generators/boilers/other Stebbins: 5.8 years, 21.2 years, 22.1 years St. Michael: 7.6 years, 2.9 years, 17.5 years v. Efficiency of generators/boilers/other Stebbins: 13.67 kWh/gal St. Michael: 14.08 kWh/gal b) Annual O&M cost (if system is part of the Railbelt grid, leave this section blank) i. Annual O&M cost for labor Stebbins: $383,946 St. Michael: $429,583 labor and non-labor (FY2012 PCE Report) ii. Annual O&M cost for non-labor 1 The Railbelt grid connects all customers of Chugach Electric Association, Homer Electric Association, Golden Valley Electric Association, the City of Seward Electric Department, Matanuska Electric Association and Anchorage Municipal Light and Power. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 17 of 26 7/1/2013 c) Annual electricity production and fuel usage (fill in as applicable) (if system is part of the Railbelt grid, leave this section blank) i. Electricity [kWh] Stebbins: 1,428,234 kWh (2012 PCE report total); St Michael: 1,853,882 kWh (2012 PCE report total) ii. Fuel usage Diesel [gal] Stebbins: 104,466 gallons; St Michael: 131,689 gallons (2012 PCE report) Other iii. Peak Load Stebbins: 299 kW St. Michael: 414 kW iv. Average Load Stebbins: 164 kW St. Michael: 209 kW v. Minimum Load vi. Efficiency Stebbins: 13.67 kW/gallon St. Michael: 14.08 kW/gallon vii. Future trends d) Annual heating fuel usage (fill in as applicable) i. Diesel [gal or MMBtu] ii. Electricity [kWh] iii. Propane [gal or MMBtu] iv. Coal [tons or MMBtu] v. Wood [cords, green tons, dry tons] vi. Other Proposed System Design Capacity and Fuel Usage (Include any projections for continued use of non-renewable fuels) a) Proposed renewable capacity (Wind, Hydro, Biomass, other) [kW or MMBtu/hr] Wind, 450 kW capacity (two Aeronautica AW33-225 turbines) b) Proposed annual electricity or heat production (fill in as applicable) i. Electricity [kWh] 1,131,538 kWh (@80% availability) ii. Heat [MMBtu] 780 MMBtu/228,699 kWh (@ 80% availability) c) Proposed annual fuel usage (fill in as applicable) i. Propane [gal or MMBtu] ii. Coal [tons or MMBtu] iii. Wood or pellets [cords, green tons, dry tons] iv. Other Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 18 of 26 7/1/2013 Project Cost a) Total capital cost of new system $3,946,050 b) Development cost c) Annual O&M cost of new system $55,445/yr. (Based on AEA’s $0.049/kWh for wind energy) d) Annual fuel cost Project Benefits a) Amount of fuel displaced for i. Electricity 74,443 gal/yr (Based on the new power plant efficiency of 15.2kWh/gal) ii. Heat 5,846 gal/yr iii. Transportation b) Current price of displaced fuel Stebbins: $4.26/gallon (2012 PCE + ISER SCC cost) St. Michael: $4.58/gallon (2012 PCE + ISER SCC cost) c) Other economic benefits $65,000 (purchase of gravel) d) Alaska public benefits Power Purchase/Sales Price a) Price for power purchase/sale Project Analysis a) Basic Economic Analysis Project benefit/cost ratio 1.50 Payback (years) 10.1 4.4.5 Impact on Rates Briefly explain what if any effect your project will have on electrical rates in the proposed benefit area. If the is for a PCE eligible utility please discus what the expected impact would be for both pre and post PCE. AVEC is a PCE-eligible utility. As a design and permitting project there will be no impact on rates; however, upon completion of the Stebbins/St. Mary’s Wind Energy Project (post construction) there will be a reduction of electrical rates. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 19 of 26 7/1/2013 For Stebbins and St. Michael, AVEC received PCE payments of $240,161 and $281,950, respectively, for providing power to 138 PCE-eligible Stebbins residents and 12 Stebbins community facilities customers and 101 PCE-eligible St. Michael residents and 10 St Michael community facilities customers in FY2012. Power sales that are eligible for PCE will see 5% of the benefit of reduced electric costs in their electric rates, with the other 95% accruing to the state of Alaska through reduced PCE credits to end users. PCE customers using an excess of 500kWh per month could see a decrease in the +500 kWh per month electrical rate, since the PCE credit does not apply. In FY2012, Stebbins had 18 non-PCE customers and St. Michael had 22 non-PCE customers. Non-PCE customers pay the pre-PCE rate and will receive the entire benefit of reduced power costs through their electric rates. SECTION 5– PROJECT BENEFIT Explain the economic and public benefits of your project. Include direct cost savings, and how the people of Alaska will benefit from the project. The benefits information should include the following:  Potential annual fuel displacement (gallons and dollars) over the lifetime of the evaluated renewable energy project  Anticipated annual revenue (based on i.e. a Proposed Power Purchase Agreement price, RCA tariff, or cost based rate)  Potential additional annual incentives (i.e. tax credits)  Potential additional annual revenue streams (i.e. green tag sales or other renewable energy subsidies or programs that might be available)  Discuss the non-economic public benefits to Alaskans over the lifetime of the project Potential annual fuel displacement Integration of wind turbine power into the proposed electrical power generation system will offset diesel consumption in Stebbins and St. Michael by 74,443 gallons per year (based on new power plant efficiency of 15.2 kWh/gallon and 80% turbine availability). The project will displace 5,846 gallons/year for heat. Based on ISER’s 2015 estimated fuel costs for these communities, this project could save $321,084 for both heat and electricity during its first full year of operation and $5,241,559 over the 20- year lifetime of the project. (The projected fuel cost number was derived from ISER’s 2015 medium fuel cost projection for Stebbins plus the mid-price of social cost of carbon per gallon). Anticipated annual revenue/Potential additional annual incentives/Potential additional annual revenue streams Tax credits are not expected to be beneficial to the project due to AVEC’s status as a non-profit entity. Nonetheless, in addition to saving the direct cost of fuel, AVEC could sell green tags from the project. Additional economic benefits Stebbins and St. Michael are traditional Yup’ik Eskimo villages with most residents supported by subsistence activities. Local economies are a mix of commercial fisheries and local wage positions at the Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 20 of 26 7/1/2013 schools, cities, and Native corporations. According to the 2007-2011 American Community Survey (ACS), the average unemployment rate for those years was 32.2% in Stebbins and 28.9% in St. Michael. In Stebbins, 42.6% of the population was living below the poverty level and in St. Michael that average percentage was 45.9%. The median household income was $33,462 in Stebbins and $34,821 in St. Michael. A comparison demonstrating that residents of Stebbins and St. Michael pay more for power with significantly less income than the average Alaskan is shown below. Average Household Unemployment Household Non-PCE Rate Income Rate Electricity Rate For Electricity Stebbins $33,462 32.20% $0.2177/kWh $0.5945/kWh St. Michael $34,821 28.90% $0.2177/kWh $0.5944/kWh Alaska $69,014 9.50% $0.1805/kWh* United States $52,762 8.70% *June 2012 average residential rate from U.S. Energy Information Administration. The high cost of electricity in Stebbins and St. Michael at $0.2177/kWh, even considering Power Cost Equalization credits, is an extreme hardship for these low income families; therefore, the stabilization to the cost of power and any other direct or indirect economic benefits associated with this project will be very beneficial to these two communities. It is likely that energy costs for PCE customers will be reduced. As stated in Section 4.4.5, power sales that are eligible for PCE will see 5% of the benefit of reduced electric costs in their electric rates, with the other 95% accruing to the state of Alaska through reduced PCE credits to end users. It is likely that energy costs for non-PCE community institutions will be reduced allowing for better community services. Once the wind project is constructed and wind-to-heat systems are in place, costs to operate important community facilities (e.g. schools, health clinics, tribal offices, etc.) will be decreased, enabling managing entities (e.g., city governments, tribe, school district) to operate more economically. With these savings, community governments will be able to better focus on providing important community services and functions. It is likely that energy costs for non-PCE commercial energy customers will be reduced and savings will be passed along to residents. Commercial enterprises in the communities are excluded from the PCE program. Once this project is constructed, these entities will see a savings in the cost of electricity. Local businesses, especially the stores, may pass this savings along to their customers. Two reindeer meat companies operate in Stebbins and pay a very high cost for power to run their freezers. The development and growth of local businesses like these are crippled by the high cost of energy. Decreases in electricity costs make small businesses more viable in rural Alaskan communities like Stebbins and St. Michael, which in turn makes economic development and the addition of local jobs more likely. Reduced commercial energy costs will benefit the entire community by increasing opportunities for local economic development. Lower costs of energy may allow local businesses to start and flourish. The anticipated benefits of installation of the wind turbines will be reducing the negative impact of the cost of energy by providing a renewable energy alternative. This project could help stabilize energy Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 21 of 26 7/1/2013 costs and provide long-term, socio-economic benefits to village households. Locally produced, affordable energy will empower community residents and could help avert rural-to-urban migration. Project construction will benefit local businesses and residents. This project will purchase the gravel needed as fill from the local gravel borrow source that is owned by the Stebbins Native Corporation. The estimated amount of fill needed for this project is 2,600 cubic yards, which has an approximate value of $65,000. Also during construction, equipment could be rented from the City and local labor will be employed for some work. It is likely that from three to seven people from the communities will be hired. In addition, construction workers will likely purchase goods from the local stores. The temporary increase in local spending will provide positive short-term benefits to both communities. The State of Alaska will pay less in PCE subsidies. The State could see 95% of the benefit of reduced electric costs once this project is constructed. Non-economic public benefits The access road to the turbines will provide increased access to subsistence, especially berry picking, areas. This is especially important for the elderly and disabled residents. Installation of Aeronautica turbines will provide technical information. The AW33-225 is fully arctic- climate certified to -40° C; however, this technology has not yet been installed in Alaska. This project will provide valuable operational information for future Alaskan wind energy projects. Note: The Aeronautica turbine’s technology has been well proven with 30 years of documentation but outside of Alaska. The wind turbine will provide a visual landmark for sea, air, and overland travelers, which will help navigation in the area. Wind turbine orientation and rotor speed will provide visual wind information to residents. The project will also bring reduced fossil fuel emissions, which results in improved air quality and decreased contribution to global climate change. This project will advance state and federal renewable energy goals in both communities. 5.1.1 Public Benefit for Projects with Private Sector Sales Projects that include sales of power to private sector businesses (sawmills, cruise ships, mines, etc.), please provide a brief description of the direct and indirect public benefits derived from the project as well as the private sector benefits and complete the table below. See section 1.6 in the Request for Applications for more information. This project will not provide power to any large private sector businesses. By reducing the cost of power production, small businesses in Stebbins and St. Michael, including the stores (not eligible for PCE) will see a cost savings that may be passed along to residents in the form of lower product or services prices. Renewable energy resource availability (kWh per month) n/a Estimated sales (kWh) n/a Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 22 of 26 7/1/2013 Revenue for displacing diesel generation for use at privet sector businesses ($) n/a Estimated sales (kWh) n/a Revenue for displacing diesel generation for use by the Alaskan public ($) n/a SECTION 6– SUSTAINABILITY Discuss your plan for operating the completed project so that it will be sustainable. Include at a minimum:  Proposed business structure(s) and concepts that may be considered.  How you propose to finance the maintenance and operations for the life of the project  Identification of operational issues that could arise.  A description of operational costs including on-going support for any back-up or existing systems that may be require to continue operation  Commitment to reporting the savings and benefits AVEC has the capacity and experience to administer this grant and manage this project, if funded. As a local utility that has been in operation since 1968, AVEC is completely able to finance, operate, and maintain this wind energy project for its design life. It has, with financial assistance from the State of Alaska, the Rural Utilities Service and the Denali Commission, installed 34 turbines in eleven communities with interties to three other communities. In 2012, wind turbines generated 4.487,594 kWh (net) and displaced an estimated 341,886 gallons of diesel fund, saving more than $1,315,000 in diesel generating costs. Business Plan Structures and Concepts which may be considered: The wind turbines will be incorporated into AVEC’s power plant operation. Local plant operators provide daily servicing. AVEC technicians provide periodic preventative or corrective maintenance and are supported by AVEC headquarters staff, purchasing, and warehousing. How O&M will be financed for the life of the project: The costs of operations and maintenance will be funded through ongoing energy sales to AVEC’s member-owners in the villages. Operational issues which could arise: Integration of the wind power into the new diesel power plant will require a large secondary load controller to prevent overloading the grid with excess energy and tripping the wind generator offline. This will be incorporated into the new power plant in Stebbins. Operating costs: Using AEA’s default cost of wind energy, estimated O&M will cost $55,445 (based on AEA’s $0.049/kWh for wind energy). Commitment to reporting the savings and benefits: AVEC is fully committed to sharing the savings and benefits accrued from this project information with its members and sharing information regarding savings and benefits with AEA. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 23 of 26 7/1/2013 SECTION 7 – READINESS & COMPLIANCE WITH OTHER GRANTS Discuss what you have done to prepare for this award and how quickly you intend to proceed with work once your grant is approved. Tell us what you may have already accomplished on the project to date and identify other grants that may have been previously awarded for this project and the degree you have been able to meet the requirements of previous grants. AVEC is ready to move ahead with this project. The wind resource report, conceptual design, analysis of current cost of energy and future markets, and the economic and financial analyses are complete. HDL prepared the Stebbins Wind Project Concept Design Report and it was provided to AEA (Tab G). AVEC and HDL addressed AEA’s comments on the document and are ready to move forward with final design and permitting. SECTION 8 – LOCAL SUPPORT AND OPPOSITION Discuss local support and opposition, known or anticipated, for the project. Include letters of support or other documentation of local support from the community that would benefit from this project. The Documentation of support must be dated within one year of the RFA date of July 2, 2013. Both Stebbins and St. Michael support this project and are interested in moving forward with the installation of the turbine. Letters of support have been received by all governing entities. Please see Tab B. Another important demonstration of support is the real commitment of the communities through their contributions of their land to past and future AVEC capital projects. Stebbins Native Corporation contributed the land necessary for the power plant, bulk fuel farm, and intertie. It intends to contribute the land for the wind turbines as an in-kind match for the project construction phase. A joint resolution (attached) from the cities, Native corporations, and tribes involved in this project demonstrates a willingness to go well beyond a letter of support. These entities committed to assist AVEC in the serious and difficult work of obtaining project funding in the past as they worked with the Denali Commission for intertie design funds. They are willing to cooperatively seek construction funding from the Denali Commission and their regional CDQ group. SECTION 9 – GRANT BUDGET Tell us how much you are seeking in grant funds. Include any investments to date and funding sources, how much is being requested in grant funds, and additional investments you will make as an applicant. AVEC plans to complete final design and permitting of a new wind project in Stebbins/St. Michael. This work will cost $360,000. AVEC requests $342,000 from AEA and will provide $18,000 as a cash contribution. A detail of the grant budget follows. Renewable Energy Fund Round VII Grant Application - Standard Form Stebbins/Saint Michael Wind Energy Final Design/Permitting AEA 2014-006 Grant Application Page 24 of 26 7/1/2013 AVEC received $137,750 through a Round 4 REF grant award for feasibility and conceptual design report work (Tab G). AVEC expects the final construction and commissioning phase of the project will cost $3,946,050. AVEC will seek outside funding for this project after it is designed and permitted. AVEC will likely provide a 10% cash match for construction of the project. Milestone or Task Anticipated Completion Date RE- Fund Grant Funds Grantee Matching Funds Source of Matching Funds: Cash/In- kind/Federal Grants/Other State Grants/Other TOTALS Project Scoping and Contractor Solicitation Aug 1, 2014 $2,375 $125 Cash $2,500 Permit Applications Oct 31, 2014 $14,250 $750 Cash $15,000 Final Environmental Assessment and Mitigation Plans Feb 1, 2015 $6,650 $350 Cash $7,000 Resolution of Land Use, ROW Issues (surveying) Feb 1, 2015 $36,575 $1,925 Cash $38,500 Permitting, rights-of-way, site control Feb 1, 2015 $11,875 $625 Cash $12,500 Final System Design May 1, 2015 $ $ Cash $ Turbine Layout, Wind Resource Assistance $17,242 $908 Cash $18,150 Geotech Study $86,212 $4,538 Cash $90,750 Geotech Engineering $26,125 $1,375 Cash $27,500 Civil Design $47,975 $2,525 Cash $50,500 Structural Design $28,738 $1,513 Cash $30,250 Electrical Design $40,233 $2,118 Cash $42,350 Final Cost Estimate June 1, 2015 $9,500 $500 Cash $10,000 Updated Economic and Financial Analysis July 1, 2015 $7,125 $375 Cash $7,500 Power or Heat Sales Agreements N/A Final Business and Operational Plan July 1, 2015 $7,125 $375 Cash $7,500 TOTALS $342,000 $18,000 $360,000 Budget Categories: Direct Labor & Benefits $47,500 $2,500 Cash $50,000 Travel & Per Diem $9,500 $500 Cash $10,000 Equipment $ $ $ Materials & Supplies $ $ $ Contractual Services $285,000 $15,000 Cash $300,000 Construction Services $ $ $ Other $ $ $ TOTALS $342,000 $18,000 $360,000 Tab A Resumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  V3 Energy, LLC Douglas Vaught, P.E. 19211 Babrof Drive Eagle River, AK 99577 USA tel 907.350.5047 email dvaught@mtaonline.net Consulting Services : • Wind resource analysis and assessment, including IEC 61400-1 3 rd ed. protocols • Wind turbine siting, FAA permitting, and power generation prediction • Wind-diesel power plant modeling and configuration design • Cold climate and rime icing environment analysis of wind turbine operations • Met tower/sensor/logger installation and removal (tubular towers 10 to 60 meters in height) Partial List of Clients: • Alaska Village Electric Cooperative • NANA Pacific, LLC • enXco Development Corp. • Bristol Bay Native Corp. • Naknek Electric Association • Kodiak Electric Association • Barrick Gold • Alaska Energy Authority • North Slope Borough • Manokotak Natives Ltd. Representative Projects: • Alaska Village Electric Cooperative. Site selection, FAA permitting, met tower installation, data analysis/wind resource assessment, turbine energy recovery analysis, rime icing/turbine effects analysis, powerplant system modeling. Contact information: Brent Petrie, Key Accounts Mgr, 907-565-5358 • Kodiak Electric Association. Met tower installation, data analysis and modeling for Alaska’s first utility scale turbines (GE 1.5sle) on -line July 2009. Contact information: Darron Scott, CEO, 907 -486-7690. • NANA Pacific, LLC. Site reconnaissance and selection, permitting, met tower installation, wind resource assessment and preliminary power system modeling for Northwest Arctic Borough villages and Red Dog Mine. Contact information: Jay Hermanson, Program Manager, 907-339-6514 • enXco Development Corp. Met tower installation documentation, site reconnaissance , analysis equipment management for utility-sca le wind projects, including Fire Island near Anchorage. Contact information: Steve Gilbert, Alaska Projects Manager, 907-333-0810. • Naknek Electric Association. Long -term wind resource assessment at two sites (sequentially), including site selection, met tower installation, data analysis, turbine research, performance modeling, and project economic analysis. Contact information: Donna Vukich, General Manager, 907-246-4261 • North Slope Borough (with Powercorp Alaska, LLC). Power system modeling, site reconnaissance and selection, FAA permitting, wind turbine cold climate and icing effects white paper. Contact information: Kent Grinage, Public Works Dept., 907-852-0285 Recent Presentations: • Wind Power Icing Challenges in Alaska: a Case Study of the Native Village of Saint Mary’s, presented at Winterwind 2008, Norrköping, Sweden, Dec. 8, 2008. Tab B Letters of Support Tab C Heat Project Information No information provided in this section. Not applicable to this project. Tab D Authority Tab E Electronic Version of Application Tab F Certification Tab G Additional Materials         STEBBINS WIND PROJECT  CONCEPT DESIGN REPORT                Prepared For:  Alaska Village Electric Cooperative  4831 Eagle Street  Anchorage, Alaska 99503          Prepared By:  Mark Swenson, P.E.    3335 Arctic Blvd., Ste. 100  Anchorage, AK  99503  Phone: 907.564.2120  Fax:  907.564.2122      September 6, 2013  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative           September 6, 2013 i       1.0 EXECUTIVE SUMMARY    This report has been prepared for the Alaska Village Electric Cooperative (AVEC) to provide a  conceptual design and cost analysis for the development of wind power generation in the  community Stebbins, Alaska. Stebbins is a rural, coastal community of approximately 585  residents located on St. Michael Island, 125 air miles south of Nome. AVEC is currently  constructing a new power plant and bulk fuel facility in Stebbins to accommodate the combined  electrical loading for Stebbins and the neighboring community of St. Michael. An 11‐mile long  electrical intertie is planned along the road that connects the two villages. Integration of wind  turbine power into the proposed electrical power generation system will offset diesel  consumption and provide a renewable energy resource for the two rural communities. A  Project Layout Plan (Sheet G1.03 of Appendix A) shows the project location, components, and  proposed intertie route.    On July 11, 2010, a meteorological (met) tower was installed on a steep volcanic rock outcrop,  or cinder cone, approximately midway along the intertie route between Stebbins and St.  Michael. The met tower was equipped with instrumentation and data loggers to evaluate and  record the wind resource on St. Michael Island. The met tower was functional until September  19, 2011. In the winter of 2011, the met tower was relocated to a potential wind tower  location closer to Stebbins, near the intersection of the Stebbins Landfill Access Road and the  Stebbins‐St. Michael Road. The tower was relocated to better correlate the recorded wind data  on the cinder cone site to the potential wind tower location near Stebbins. The met tower is  still recording data at the new location at the time of this report. The results of the data  acquisition and analysis of the wind resource are included in the Stebbins‐St. Michael Wind‐  Diesel Feasibility Analysis dated September 2013 (Appendix B).    On September 19, 2011, AVEC, Hattenburg Dilley & Linnell (HDL), and V3 Energy performed a  site visit to St. Michael Island to identify possible wind turbine locations. Multiple wind turbine  sites were investigated along the intertie route and one site was selected for evaluation for this  report. The site (Stebbins Site 1) is located north of Stebbins on a ridgeline near the  intersection of the Stebbins landfill access road (near the Stebbins met tower). The site is  located in a Class 6 wind resource and is approximately 1.25 miles from the new power plant in  Stebbins.    For this report, AVEC selected three wind turbine configurations for evaluation.    • The first configuration includes (4) Northern Power 100 Arctic turbines (NP100), formerly  known as the Northwind 100. The Northern Power 100 Arctic turbine is a 37 meter (121‐  foot), 100 kW permanent magnet, direct drive wind power generator that AVEC previously  installed in 10 other villages in rural Alaska. The (4) Northern Power 100 Arctic tower array  has a maximum power generation output of 400 kW.    • The second turbine configuration consists of (5) Vestas V17 turbines. The Vestas V17  turbine is a 26 meter (85‐foot), 90 kW, induction generator. This configuration has a  maximum power generation output of 450 kW and requires a cold weather kit modification  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative           September 6, 2013 ii     for use in Stebbins.  The generators will be controlled using a simple inverter with soft start  and soft breaking capabilities or a more complex variable speed drive (VSD) inverter at each  turbine. The turbine blades are fixed pitch.    • The third turbine configuration consists of (2) Aeronautica AW33‐225  turbines. The  AW33‐225 turbine is a 40 meter (131‐foot), 225 kW, induction generator. This configuration  has a maximum power generation output of 450 kW. The generators will be controlled  using a simple inverter with soft start and soft breaking capabilities or a more complex  variable speed drive (VSD) inverter at each turbine. The turbine blades are stall  regulated to limit rotation in extreme wind events.    Each turbine would be installed on a monopole tower with precast concrete and rock anchor  foundation. A comparison of the three turbine configurations installed at Stebbins Site 1  presented in Tables EX‐1 and EX‐2 below.    Table EX‐1: Turbine Alternative Comparison Summary        Alt        Turbine Selection        Site      Generation  Capacity (kW)      Estimated  Capital Cost  Estimated  Capital Cost  per Installed  kW    Estimated  Annual Energy  Production    @ 100 %  Availability    1    (4) NP100s    Stebbins 1 400 $4.03 M $10,077    1,383 MWh    2    (5) V17s    Stebbins 1 450 $3.79 M $8,420    1,178 MWh    3    (2) AW33‐225s    Stebbins 1 450 $3.95 M $8,769    1,700 MWh    Source: Annual Energy Production data taken from V3 Energy’s September 2013 Draft Stebbins‐St. Michael  Wind‐Diesel Feasibility Analysis      Table EX‐2: Economic Analysis Summary        Alt      Annual Wind  Generation @  80% Availability    (kWh)      Wind Energy For  Power (kWh/yr)    Wind  Energy For  Heat  (kWh/yr)    Wind as %  Total Power  Production (%)    Wind as %  Total Thermal  Production (%)      Heating Fuel  Displaced By  Wind Energy  (gal/yr)    1    1,106,920 1,009,590 97,330 33 2.9    2,488    2    942,572 855,585 86,987 29 2.6    2,224    3    1,360,237 1,131,538 228,699 40 6.6    5,846    Source: Annual Energy Production data taken from V3 Energy’s September 2013 Draft Stebbins‐St. Michael  Wind‐Diesel Feasibility Analysis    Based  on  the  analysis  presented  above,  we  recommend  AVEC  proceed  with  design  and  permitting for installation of two AW33‐225 turbines at Stebbins Site 1.      Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative           September 6, 2013 iii       Table of Contents    1.0 EXECUTIVE SUMMARY ............................................................................................................ i  2.0 INTRODUCTION ................................................................................................................ 1  2.1   BACKGROUND ..................................................................................................................... 1  2.2 LOCATION ........................................................................................................................ 2  2.3 CLIMATE ........................................................................................................................... 3  2.4 EXISTING ELECTRICAL POWER SYSTEMS ............................................................................ 3  2.5 NEW ELECTRICAL POWER SYSTEMS .................................................................................. 4  2.6 ELECTRICAL DEMAND ....................................................................................................... 5  2.7 STEBBINS RECOVERED HEAT POTENTIAL ........................................................................... 6  2.8 CONTRIBUTORS AND SOURCES OF INFORMATION ............................................................ 7  2.9 LIMITATIONS .................................................................................................................... 7  3.0 WIND DATA ACQUISITION AND MODELING ............................................................................ 7  3.1 DATA ACQUISITION .......................................................................................................... 7  3.2 WIND MODELING RESULTS ............................................................................................... 8  4.0 STEBBINS WIND SITE ANALYSIS ............................................................................................... 9  4.1 WIND SITE INVESTIGATION ............................................................................................... 9  4.1.1 St. Michael Site 1 .................................................................................................. 10  4.1.2 St. Michael Site 2 .................................................................................................. 10  4.1.3 Stebbins Site 1 ...................................................................................................... 11  4.1.4 Stebbins Site 2 ...................................................................................................... 12  5.0 WIND TURBINE SYSTEM ALTERNATIVES ............................................................................... 13  5.1 STEBBINS WIND TURBINE ANALYSIS ............................................................................... 13  5.1.1 Northern Power 100 Arctic ................................................................................... 13  5.1.2 Vestas V17 ........................................................................................................... 14  5.1.3 Aeronautica AW33‐225 ........................................................................................ 15  5.2 ALTERNATIVE 1 ‐ (4) NP100 TURBINES INSTALLED AT STEBBINS SITE 1 ........................... 15  5.3 ALTERNATIVE 2 ‐ (5) V17 TURBINES INSTALLED AT STEBBINS SITE 1 .............................. 15  5.4 ALTERNATIVE 3 ‐ (2) AW33‐225 TURBINES INSTALLED AT STEBBINS SITE 1 .................... 16  5.5 ALTERNATIVE COMPARISON SUMMARY ......................................................................... 16  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative           September 6, 2013 iv     6.0 ECONOMIC EVALUATION ..................................................................................................... 17  6.1 METHODOLOGY AND APPROACH ................................................................................... 17  6.2 ECONOMIC EVALUATION RESULTS .................................................................................. 17  7.0   PREFERRED ALTERNATIVE .................................................................................................... 17  8.0 ENVIRONMENTAL REQUIREMENTS ....................................................................................... 18  8.1 HISTORIC AND ARCHAEOLOGICAL: ALASKA STATE HISTORIC PRESERVATION OFFICE  (SHPO)............................................................................................................................ 18  8.2 WETLANDS: DEPARTMENT OF THE ARMY (DA) ............................................................... 18  8.3 FEDERAL AVIATION ADMINISTRATION (FAA) .................................................................. 19  8.4 BIOTIC RESOURCES AND FEDERALLY LISTED THREATENED AND ENDANGERED SPECIES:  UNITED STATES FISH & WILDLIFE SERVICE (USFWS) ........................................................ 19  8.5 CONTAMINATED SITES, SPILLS, AND UNDERGROUND STORAGE TANKS .......................... 20  8.6 ANADROMOUS FISH STREAMS ....................................................................................... 20  8.7 STATE REFUGES, CRITICAL HABITAT AREAS AND SANCTUARIES ....................................... 20  8.8 LAND OWNERSHIP .......................................................................................................... 20  8.9 SUBSISTENCE ACTIVITIES ................................................................................................ 21  8.10 AIR QUALITY ................................................................................................................... 21  8.11 NATIONAL ENVIRONMENTAL POLICY ACT REVIEW (NEPA) .............................................. 21  8.12 ENVIRONMENTAL SUMMARY AND RECOMMENDATIONS .............................................. 21  9.0 CONCLUSIONS AND RECOMMENDATIONS ............................................................................ 23  10.0 REFERENCES ................................................................................................................... 24    Figures    Figure 1:  AEA Wind Resource Map ................................................................................................................... 1  Figure 2:  Site Map ............................................................................................................................................. 2  Figure 3:  Stebbins Met Tower ........................................................................................................................... 8  Figure 4:  Alternative Site Locations................................................................................................................... 9  Figure 5:  St. Michael Site 1 .............................................................................................................................. 10  Figure 6:  St. Michael Site 2 .............................................................................................................................. 11  Figure 7:  Stebbins Site 1 (Stebbins Met Tower) .............................................................................................. 12  Figure 8:  Stebbins Site 2 .................................................................................................................................. 13  Figure 9:  NP100 Turbine Installed in Emmonak .............................................................................................. 14  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative           September 6, 2013 v       Tables  Table 1:  Energy Consumption Data FY 2012 ..................................................................................................... 6  Table 2:  Alternative Comparison Summary .................................................................................................... 16  Table 3:  Economic Evaluation Summary ......................................................................................................... 17  Table 4:  Environmental Summary Table ......................................................................................................... 22    Appendices    Appendix A: Wind Project Conceptual Design Drawings (12 sheets)    Appendix B: V3 Energy’s September 2013 Draft Stebbins‐St. Michael Wind‐Diesel Feasibility  Analysis    Appendix C: Stebbins, Alaska Heat Recovery Study    Appendix D: Preliminary Office Research Memo and Site Investigation Trip Report  Appendix E: Capital Cost Estimates  Appendix F: CRC Memo titled “Known Archaeological and Historical Sites in the Stebbins Area”  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative           September 6, 2013 vi         ABBREVIATIONS  AAC Alaska Administrative Code  ADEC Alaska Department of Environmental Conservation  ADF&G Alaska Department of Fish and Game  ADNR Alaska Department of Natural Resources  AEA Alaska Energy Authority  AVEC Alaska Village Electric Cooperative  B/C Benefit‐to‐Cost Ratio  CRC Cultural Resource Consultants, LLC  DA Department of Army  EA Environmental Assessment  ER Environmental Review  FAA Federal Aviation Administration  FY Fiscal Year  FONSI Finding of No Significant Impact  °F Degrees Fahrenheit  HDL Hattenburg Dilley & Linnell  ISER Institute for Social and Economic Research  kW Kilowatt  kWh Kilowatt Hour  M Million  Met Meteorological  Mph Miles per hour  MWh Megawatt hour  NLUR Northern Land Use Research  NP100 Northern Power 100 Arctic  NWI National Wetlands Inventory  NWP Nationwide Permit  OEAAA Obstruction Evaluation/Airport Airspace Analysis  PCE Power Cost Equalization  PCN Pre‐Construction Notification  PLC Programmable Logic Controller  PM Particular Matter  SCADA Supervisory Control and Data Acquisition  Sec Section  SMNC St. Michael Native Corporation  USFWS United States Fish & Wildlife Services  USGS United States Geological Services  WAsP Wind Atlas and Application Program  Yr Year  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  1      2.0 INTRODUCTION  2.1   BACKGROUND   This report has been prepared for the Alaska Village Electric Cooperative (AVEC) to evaluate  alternatives for incorporating wind power into the new power generation system in Stebbins,  Alaska.    Upgrades to AVEC’s power generation facilities are currently underway in Stebbins. The  upgrades include construction of a new tank farm and power plant with sufficient storage and  capacity to accommodate electrical loading from Stebbins and the neighboring community of  St. Michael. An electrical intertie between Stebbins and St. Michael is planned to follow the  alignment of the 11‐mile long road connecting the two villages. The new power plant and tank  farm will be collocated in Stebbins and configured to accommodate future wind turbine  generators installed in the preferred location along the intertie route. The wind turbines are  necessary to reduce AVEC’s dependence on imported diesel fuel and provide an alternate  source of renewable energy to rural communities. Preliminary findings included in the Alaska  Energy Authority (AEA) Alaska high resolution wind resource map (Figure 1) indicate that the  Stebbins region has a Class 3 wind regime suitable for wind power development.    The purpose of this report is to provide AVEC with alternative conceptual design and cost  information for developing the wind energy resource in Stebbins. This report includes an  assessment of the wind resource, investigation of potential wind turbine locations, wind  turbine generator comparison, and economic analysis of the turbine alternatives.                                          Figure 1:  AEA Wind Resource Map  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  2      2.2 LOCATION    The proposed wind turbine project is located near the village of Stebbins on St. Michael Island.  Stebbins is located approximately 430 miles northwest of Anchorage, on the south side of  Norton Sound on Alaska’s west coast. It lies 8 air miles northwest of the village of St. Michael  and approximately 125 air miles southeast of Nome. Stebbins is situated at approximately  63°31’02.16” North Latitude and ‐162°17’04.57 West Longitude (Sec. 02, T023S, R019W, Kateel  River Meridian). Year‐round access between Stebbins and St. Michael is provided by an 11‐mile  long gravel road (See Figure 2). Stebbins is accessible by barge service between June and  October. Year‐round aircraft access is also available via a 3,000‐foot long by 60‐foot wide  gravel runway in Stebbins and a 4,000‐foot long by 75‐foot wide gravel runway in St. Michael.  Both runways are owned and maintained by the Alaska Department of Transportation and  Public Facilities (ADOT&PF).    Stebbins has a population of 585 residents (2010 U.S. Census Population), with 95.3% being  Alaska Native or American Indian. St. Michael has a slightly smaller population of 401 residents  (2010 U.S. Census Population). The local residents of both communities depend heavily on the  subsistence harvest of fish, seals, beluga whales, walrus, and reindeer. Local economies are  based on a mix of commercial fisheries and local wage positions at school, City, and Native  Cooperation facilities.    Figure 2:  Site Map  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  3      2.3 CLIMATE    Stebbins and St. Michael have a maritime‐influenced subarctic climate. Norton Sound is ice‐free  from June to November and average summer temperatures range from 40 to 60°F. The record  high temperature for the region is 77°F. Winters are typically cold and dry; however, wind and  blowing snow can create the potential for icing conditions at higher elevations. Average winter  temperatures range from ‐4 to 16°F, with an extreme low temperature of ‐55°F. Annual  precipitation averages 12 inches, with 38 inches of snowfall.    2.4 EXISTING ELECTRICAL POWER SYSTEMS    Existing Stebbins Power Plant    AVEC’s existing Stebbins power plant is located south of the community on the  Stebbins  Airport. The Stebbins airport is owned and maintained by ADOT&PF. The plant was first  energized in 1970 and consists of a 15‐foot by 36‐foot “Butler Building”, wood dock, control  module, storage van, crew module, and three pad‐mounted transformers. The building and  modules are constructed on a mixture of elevated timber post, grade beam, and crib  foundations. The “Butler Building” contains the following Cummins generator sets:    (1) Cummins 499 kW diesel generator ‐ (Overhauled in 2007)    (1) Cummins 350 kW diesel generator ‐ (Age unknown)    (1) Cummins 250 kW diesel generator ‐ (Overhauled in 2000)  1,099 kW Total Generation Capacity    The power plant also includes generator appurtenances, day tank, miscellaneous tools and  equipment, transfer pump, starting batteries, and station service equipment. The building  contains an exhaust hood and radiator stand for each generator. The control module contains  switch gear, generator controls, desk, and file storage. According to historic AVEC records and  Power Cost Equalization (PCE) data, the power plant generated a total of 1,316,100 kWh in  2011 with an average efficiency of 13.75 kWh per gallon of diesel consumed.    The existing power plant is old, out‐dated, and located on airport property. ADOT&PF is  planning an expansion of the existing Stebbins airport and requires the AVEC power plant to be  removed from the airport as soon as possible. AVEC has begun construction of a new power  plant adjacent to their newly constructed tank farm on the eastern edge of the community.  The old power plant and tank farm are scheduled to be decommissioned in the fall of 2013.    Existing St. Michael Power Plant    The St. Michael power plant is centrally located in the community along Baker Street and the  coast of St. Michael’s Bay. The plant consists of three modular power generators, separate  crew quarters module, and a storage module constructed on wooden sleeper foundations. The  power plant generators consist of the following:    (1) Cummins 499 kW diesel generator ‐ (7 years old)    (1) Detroit Diesel 314 kW diesel generator ‐ (Overhauled in 2006) Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  4    (1) Detroit Diesel 207 kW diesel generator ‐ (Overhauled in 2006)        1,020 kW Total Generation Capacity    The power plant was first energized in 1970, and the last major generator upgrade occurred  when the generators were overhauled in 2006. The power plant generated 1,683,181 kWh of  electricity in 2011 with an average efficiency of 14.26 kWh per gallon of diesel consumed.  There  is no recovered heat loop associated with this power plant.    The St. Michael power plant was inspected by Hattenburg Dilley & Linnell (HDL) and AVEC  representatives on July 11, 2012. The exterior metal surfaces of the modules, pipes, and tanks  were aged, pitted, and showed signs of corrosion. The existing power plant and associated tank  farm are planned for decommissioning in 2014 once the new Stebbins power plant and  electrical intertie are operational. A new standby module will be installed near the existing  school to provide temporary power generation for St. Michael in the event of a disruption in  the Stebbins power intertie.    2.5 NEW ELECTRICAL POWER SYSTEMS    New Stebbins Power Plant  The new Stebbins power plant will consist of a 30‐foot by 72‐foot prefabricated metal building  on an elevated steel pipe pile foundation with a concrete slab‐on‐deck floor system. The plant  will be initially equipped with four Caterpillar 3456 diesel generators. The engines are rated at  450kW for prime power and have the highest fuel efficiency in their class. Two of the engines  will be retrofit with a marine manifold and turbocharger. The marine conversion approximately  doubles the amount of recoverable jacket water heat. The system will be configured to run the  marine conversion engines in the winter and the other two engines in the summer. The plant  structure has been designed to allow future replacement of up to two of the 3456 engines with  1,050kW rated Caterpillar 3512 units.  The power plant is under construction and is scheduled to  come online in the fourth quarter of 2013.    The new switchgear will have a total of six sections ‐ one for each diesel generator; one for  master control; and one for distribution feeder breakers. The switchgear will be fully automatic  with paralleling capability and will utilize a programmable logic controller (PLC) to automatically  match the running generator(s) to the community load, including monitoring the wind  generation. The new switchgear will include a SCADA system for remote monitoring of the  generation and distribution systems. A fiber optic data communication cable from the remote  wind turbine will allow monitoring and control of the power generation.    The new switchgear will provide automatic paralleling and load control of the four generating  units. The load control system will monitor the electrical demand on the generators along with  wind generation output and automatically select the number of generating units required to  meet the demand. The switchgear will automatically start the most efficient combination of  engines, bring them up to speed, automatically synchronize the units, and close the generator  circuit breakers. When a unit is taken off line, either for maintenance or due to a reduction in  electric load, the switchgear will automatically remove the unit from the bus and allow the  engine to cool down before shutdown. Generator controls and relaying will provide complete     Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  5    protection and monitoring of each engine‐generator and the feeders.  A simplistic one‐line  diagram of the integration between the new power plant and the wind turbines is included  on Sheet E.1, Appendix A.    Intertie    The proposed electrical intertie between Stebbins and St. Michael consists of approximately 11  miles of new overhead installed parallel to the existing road alignment. The line will be  designed and built to 24.9 / 14.4 kV standards and energized at 12.47 / 7.2 kV as is  standard for AVEC operations.   Approximately 170 new direct‐set power poles will be  constructed along 6 miles of the road from the new Stebbins power plant to the existing fresh  water pump house located at the St. Michael water source, approximately 1.9 miles west of  the St. Michael Airport. The intertie will connect to the existing power poles at the pump  house that extend to the St. Michael power grid. New line poles are anticipated to be  40‐foot high, Class 1, timber poles embedded 8 feet below grade to resist movement from  seasonal frost jacking. New dead‐end or riser poles are anticipated to be 45‐foot high, Class 1,  timber poles embedded to a depth of 9 feet below grade. The poles will be spaced  approximately 200 feet apart and will be equipped with 8‐foot cross arms to accommodate  the new conductors. The existing power poles extending from the pump house to the St.  Michael power grid will be retrofitted with new cross arms and braced as required to carry the  new conductors. The intertie design is currently 95% complete and construction grant funding  has been dedicated by the Denali Commission. The project is anticipated to be bid in fall 2013  with construction beginning in the spring 2014.    St. Michael Stand‐by Generator    The proposed intertie project also includes installation of a new standby generator adjacent to  the existing St. Michael School tank farm. The standby unit will provide temporary power to St.  Michael in the event of a disruption in power through the Stebbins intertie. The proposed  generator is anticipated to be a 750 kW, 1020 Hp genset with appropriate switch gear, heat  exchanger, radiator, and exhaust system. The generator will connect to an existing 30,000  gallon diesel, double‐walled, skid‐mounted tank located in the school district’s tank farm. Use  of this tank is shared between the Bering Strait School District (BSSD) and AVEC per a 2008  Memorandum of Understanding. The memorandum stipulates that 15,000 gallons of diesel in  the tank is available for AVEC’s stand‐by generator.    2.6 ELECTRICAL DEMAND    Historical data from AVEC and the AEA Alaska Power Cost Equalization Program (PCE) report  was analyzed to determine trends in the Stebbins and St. Michael energy consumption. The PCE  program is a reliable source of historic power, fuel consumption, and energy cost information  for rural communities throughout the state. The PCE program provides funding subsidies to  electric utilities in rural Alaskan communities in order to lower energy costs to customers. This  program pays for a portion of the kilowatt hours sold by the participating utility. The exact  amount paid varies per location and is determined by the amount of energy generated and  sold, the amount of fuel used to generate electricity, and fuel costs.    Each year, AEA publishes PCE program information including fuel consumption, power  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  6    generation and sales, and electricity rates for eligible communities. During the fiscal year 2012  (July 1, 2011 to June 30 2012), 150 residential and community facilities in Stebbins were eligible  to receive PCE assistance. Stebbins customers received funding for 46.5% of kilowatt hours  sold and had electricity rates reduced from an average of $0.62 per kilowatt hour to $0.22 per  kilowatt hour. St. Michael customers received funding for 40.9% of kilowatt hours sold and had  electricity rates reduced from an average of $0.65 per kilowatt hour to $0.22 per kilowatt hour.    V3 Energy further analyzed the electrical loading in their Stebbins‐Saint Michael Wind‐Diesel  Feasibility Analysis (Appendix B). The analysis included review of AVEC’s 15 minute interval  loading data for Stebbins and St. Michael from January 2012 to August 2013. See Appendix B  for loading profiles. The calculated average load was 367 kW, with a peak recorded load of 662  kW, and an average daily demand of 8,806 kWh.  Table 1 provides additional energy  consumption data for both communities. Assuming that the combined community demand for  power will increase linearly with a 2% average population growth rate, it is estimated that the  power generation system will experience an average power demand of 547 kW, a peak power  demand of 983 kW, and an average daily energy demand of 13,086 kWh in the year 2032.       Table 1:  Energy Consumption Data FY 2012    Community    Gross  KWhs  Generated    Diesel Fuel Used Average kWh Load  Peak kWh  Load  Customers  (Residential  and  Community  Facilities)    Gallons    Cost ($) Average  Fuel Price  ($/gallon)  Diesel  Efficiency  (kWh/gallon)    Stebbins    1,428,234    104,466    403,015 3.86 13.67 165    299    150    St. Michael    1,853,882    131,689    515,108 4.18 14.08 210    414    111    *Source: 2012 AVEC Annual Generation Report, AVEC Operations Personnel,and Annual PCE Report FY 2012    2.7 STEBBINS RECOVERED HEAT POTENTIAL    The Alaska Native Tribal Health Consortium (ANTHC), in cooperation with AVEC, has  investigated the existing and proposed thermal loads for community facilities within 600 feet of  the new Stebbins power plant. ANTHC modeled the thermal loads and prepared a study for  heat recovery from the new power plant. ANTHC’s Heat Recovery Study is included in Appendix  C. A summary of the average, minimum, and maximum thermal loads is included in V3 Energy’s  Stebbins‐Saint Michael Wind‐Diesel Feasibility Analysis (Appendix B) and is used as the basis for  the cost projections included in the economic modeling. Below is a summary description of the  proposed heat recovery system.    • The heat recovery system will capture jacket water heat generated by the AVEC diesel  generators that would otherwise be rejected to the atmosphere by the radiators. The  heat will be used to offset heating fuel consumption at community facilities, referred to  as end‐user buildings.    • The proposed system will provide recovered heat to a total of six end‐user buildings,  including the existing water treatment plant, new water treatment plant, washeteria,  clinic, headstart building, and school.  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  7      • Hot engine coolant will be pumped through heat exchangers located at the power plant.  Heat will then be transferred to the recovered glycol heat loop.    • Heat recovery supply and return arctic pipe will be routed above and below grade as  required to reach the end user buildings. The arctic pipe will have a 4‐inch diameter  fluid pipe while the branch piping will have a 2‐inch diameter fluid pipe. Arctic pipe will  consist of steel fluid pipes insulated with polyurethane foam and covered with an HDPE  or corrugated steel jacket.    • The connection at each end user building will consist of a heat exchanger between the  recovered heat loop and the building hydronic system. The connection point will be at  the heating return main, upstream of the boiler, to allow the system to “pre‐heat” boiler  return water. Each end user connection will also include isolation valves, controls,  instrumentation, and an energy meter to measure and record the heat transfer.    Based on the analysis performed by ANTHC, the six end‐user buildings have a total estimated  fuel consumption of approximately 69,000 gallons per year and it is estimated the proposed  heat recovery system can offset approximately 57,000 gallons of fuel per year.    2.8 CONTRIBUTORS AND SOURCES OF INFORMATION    Physical site information contained in this report was gathered by HDL during field  investigations and through the use of GPS data, United States Geological Survey (USGS)  topographic maps, and aerial imagery. Power plant controls, integration assistance, and  historical electrical load data was provided by AVEC Engineering and Operations departments.  V3 Energy provided the Stebbins‐Saint Michael Wind‐Diesel Feasibility Analysis. ANTHC  provided the Stebbins, Alaska Recovered Heat Study. Thermal load conversions and power  plant engineering assistance was provided by Alaska Energy and Engineering. Economic analysis  was provided by V3 Energy. St. Michael and Stebbins Community data was obtained from the  Alaska Community Database available at www.commerce.state.ak.us/dca/commdb/CF_CIS.htm    2.9 LIMITATIONS    This report, titled Stebbins Wind Project Concept Design Report, was prepared in support of  a grant funding request for design and permitting a wind tower project in Stebbins, Alaska.  Design information contained herein is conceptual for planning and budgetary cost estimation  purposes only.       3.0 WIND DATA ACQUISITION AND MODELING    3.1 DATA ACQUISITION    On July 21, 2010, AVEC installed a 30 meter tall meteorological (met) tower on top of a steep  volcanic rock outcrop, or cinder cone, located adjacent to the road at the approximate midpoint  between Stebbins and St. Michael (See Sheet G1.03, Appendix A). The met tower location is  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  8    owned by St. Michael Native Corporation (SMNC) and is used as a gravel source for St. Michael.  The tower collected wind data at this location until September 19, 2011 (14 months). The met  tower was equipped with three separate anemometers, a wind  vane,  and  a temperature  sensor. Two of the anemometers were installed 28.4 meters above ground level and one was  installed 18.6 meters above ground level. The collected data was stored on a data logger  mounted to the base of the met tower. Stored data was downloaded every 3 to 6 months  during site visits to inspect the equipment. The quality of the data was generally good with  above 95% data recovery. AVEC contracted with V3 Energy to analyze the collected wind and  temperature data and calculate wind speed, air density, prevailing wind direction, wind shear,  and other factors effecting wind energy production.    In January 2012, the met tower was reinstalled at the potential turbine location at the  intersection of the Stebbins‐St. Michael Road and the Stebbins Landfill Access Road (Stebbins  Site 1). The met tower was relocated because the St. Michael met tower site is used as a gravel  source by SMNC and the corporation is unwilling to release the land for wind farm  development. At the time of this report, the met tower is still recording data. The quality of the  data was generally good with above 95% data recovery. The data collection process and  modeling results are further defined in V3 Energy’s September 2013 Stebbins‐St. Michael  Wind‐Diesel Feasibility Analysis (Appendix B).                                  Figure 3:  Stebbins Met Tower      3.2 WIND MODELING RESULTS    The results of V3’s wind modeling are presented in the Stebbins‐St. Michael Wind‐Diesel  Feasibility Analysis (Appendix B). The collected wind data depicted a Class 6 (outstanding) wind  resource at the Stebbins met tower site. The modeling was done with WAsP modeling software  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  9    to predict the quality of the wind resource at other nearby locations on St. Michael Island by  analyzing the characteristics of the topography and terrain. This information is used to identify  optimal locations for wind tower construction and to analyze the effectiveness of wind turbine  alternatives on the proposed power generation system.      4.0 STEBBINS WIND SITE ANALYSIS    4.1 WIND SITE INVESTIGATION    On September 19, 2011, Mark Swenson (HDL), John Thornley (HDL), Matt Metcalf (AVEC), and  Doug Vaught (V3 Energy) traveled to Stebbins to investigate alternative wind tower sites for  turbine installation. The purpose of the site visit was to investigate potential wind sites  identified through an office evaluation of site access, permit requirements, land ownership, and  the potential strength of the wind resource using aerial imagery and topographic maps. During  the reconnaissance, three sites were preliminarily evaluated for access, terrain, surface  geology, and wind patterns. The three sites investigated include St. Michael Site 1, St. Michael  Site 2, and Stebbins Site 1, as shown on Sheet G1.03, Appendix A. A memo summarizing the  preliminary office research and the trip report for the site investigation is included in Appendix  D.    Following the field investigation, a fourth site was identified by the wind modeling as having a  strong potential wind resource. This site is located on the Cape Stephens Bluff  north  of  Stebbins and is shown as Stebbins Site 2 on Sheet G1.03, Appendix A. An office evaluation of  this site was performed to identify the wind turbine construction, permitting, and site control  feasibility, but no field investigation was performed. Below is a summary of the investigation at  each potential wind turbine site.      Figure 4:  Alternative Site Locations  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  10    4.1.1 St. Michael Site 1    St. Michael Site 1 is located at 63˚30’09.56” north latitude, 162˚11’23.81’ west longitude, at an  elevation of approximately 130 feet. This site is located on a rise of land to the south of the  Stebbins–St. Michael Road, approximately 0.70 miles southeast of the St. Michael met tower.  Ground cover consists of tundra and sparse low alders on dry ground. Subsurface conditions  may include shallow to significant soil deposits with warm permafrost. Any rock encountered  would likely be frost fractures to varying depths below the surface and may be weathered and  friable to depth. Possible foundation types for wind towers at this site include mass gravity mat  foundations. Rock anchors may be necessary if volcanics are encountered at shallow depths.  Access to the site from the Stebbins‐St. Michael road could be easily constructed with no deep  fills or significant terrain features to overcome. Wind modeling depicts a potential Class 2/3  wind resource at this site. See V3 Energy’s September 2013 Stebbins‐St. Michael Wind‐Diesel  Feasibility Analysis (Appendix B) for wind modeling information.   The relatively low potential  wind  resource  at  this  site  makes  it  an  undesirable  wind  farm  location. Therefore, no  construction alternatives were analyzed for St. Michael Site 1.                                Figure 5:  St. Michael Site 1      4.1.2 St. Michael Site 2    St. Michael Site 2 is located at 63˚30’46.54” north latitude, 162˚10’56.31’ west longitude, at an  elevation of approximately 175 feet. The site is located on a ridge line extending northeast from  the cinder cone (St. Michael original met tower location). The ridge was likely formed by a  basalt flow from past volcanic events. The reconnaissance group viewed the site from the  SMNC gravel source at the top of the cinder cone. The ridge is likely composed of shallow  organics and soils above basalt and other volcanics. The underlying rock may be frost fractured  at varying depths below the surface and may be weathered and friable to depth. A possible  foundation for wind towers at this site includes a mass gravity mat foundation. Rock anchors  may be needed if volcanics are encountered at shallow depths. Construction at this site also  includes clearing dense patches of alders and constructing a 0.5 mile access trail from the top of  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  11    the cinder cone to the proposed site. Access trail development requires filling a 20‐foot deep  ravine between the cinder cone and the ridge line. Also, access easements are required with  SMNC for shared use of the existing road to the SMNC material source to the top of the cinder  cone.                                Figure 6:  St. Michael Site 2    Wind modeling depicts a potential Class 4/5 wind resource at this site. See V3 Energy’s  September 2013 Stebbins‐St. Michael Wind‐Diesel Feasibility Analysis (Appendix B) for wind  modeling information. The wind resource was sufficient for power generation. This site is not a  preferred wind farm location due to the variable terrain and the additional fill volumes required  for access trail construction. Therefore, no construction alternatives were analyzed for this site.    4.1.3 Stebbins Site 1    Stebbins Site 1 is located at 63˚31’56.58” north latitude, 162˚16’50.64” west longitude, at an  elevation of approximately 155 feet. The site is located on a ridgeline adjacent to the existing  Stebbins‐St. Michael Road, near the intersection of the Stebbins‐St. Michael Road and the  Stebbins Landfill Access Road. Gravel for wind tower road and pad construction is readily  available at the Stebbins Native Corporation gravel source, approximately 0.85 miles west of  the proposed site. The reconnaissance group walked the terrain and inspected the site. The  ground cover at the site is composed of tundra and no ponding or excess moisture was  observed. The subsurface conditions may consist of organics and shallow soils overlying basalt  and other volcanics. Frost‐fractured rock could be encountered at varying depths below the  surface and may be weathered and friable to depth. A mass gravity mat foundation may be a  viable alternative at this site. Rock anchors may be necessary if the volcanics are encountered  at shallow depths.  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  12                                    Figure 7:  Stebbins Site 1 (Stebbins Met Tower)    Stebbins Site 1 was selected as the preferred site for wind farm construction due to the even,  dry terrain, close proximity to the power plant and gravel source, and easy access trail  construction. Alternatives 1 through 3 presented in Section 5.0 below include wind turbine  options installed at this site. The extrapolated wind data from the St. Michael Met Tower  depicted a potential Class 3/4 wind resource at Stebbins Site 1, which is sufficient for power  generation. The new met tower erected at the sited data measured a  Class 5/6 wind  resource at this location which exceeded the modeled results.  See V3 Energy’s  September 2013 Stebbins‐St. Michael Wind‐Diesel Feasibility Analysis (Appendix B) for wind  modeling information.    4.1.4 Stebbins Site 2    Following the site visit, Stebbins Site 2 was selected as another potential wind turbine location  based on the findings of the preliminary wind modeling. The site is located at 63˚32’10.43”  north latitude, 162˚18’14.52” west longitude, and at an approximate elevation of 140 feet. The  site is located along the Cape Stephens Bluff on the northwestern tip of St. Michael Island,  approximately 0.20 miles west of the Stebbins Gravel Source. Access to the site is from an  existing gravel trail extending from the Stebbins Gravel Source to the bluff. An easement or  lease will be required from the landowner, the Stebbins Native Corporation.    The wind modeling results show that Stebbins Site 2 is an optimal wind turbine location to  maximize the available wind resource. The extrapolated wind data from the St. Michael Met  Tower depicted a potential Class 5 wind resource for the Stebbins Site 2. No site investigation  has occurred and there has been no preliminary geotechnical analysis of the area. Aerial  photography depicts the site as dry with tundra and low brush ground cover. The site appears  feasible for wind farm construction due to the dry terrain, close proximity to the power plant  and gravel source, and easy access trail construction. However, discussions with Alaska Region  of United States Fish and Wildlife (USFW) indicated that a avian study would be required prior  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  13    to development in this location and the turbines would likely be required to shutdown during  Stellar Eider migration periods.  Since the migration periods coincide with some of the typically  windy times of the year, the seasonal shutdown would have a large affect on wind energy  production. Therefore, no construction alternatives were analyzed for this site.                            Figure 8:  Stebbins Site 2    5.0 WIND TURBINE SYSTEM ALTERNATIVES    5.1 STEBBINS WIND TURBINE ANALYSIS    AVEC selected the following three turbine alternatives for evaluation at Stebbins Site 1:  Northern Power 100 Arctic, Vestas V17, and Aeronautica AW33‐225. These configurations are  classified as medium wind‐diesel penetration systems having a goal to offset 20% to 50% of the  community’s energy demand with wind power. A medium penetration system provides a  balance between the amount of energy provided and the complexity of the wind generation  and integration systems.    5.1.1 Northern Power 100 Arctic    The first turbine configuration consists of (4) Northern Power 100 Arctic (NP100) turbines. The  NP100’s are manufactured by Northern Power Systems in Barre, Vermont. The NP100 is a  37‐meter high, 100 kW, permanent magnet, synchronous, direct drive wind power generator,  with a 21‐meter rotor diameter and 3 blades that AVEC has previously installed in the following  rural Alaska villages:    • Chevak ‐400 kW  • Emmonak – 400 kW  • Gambell – 300 kW  • Hooper Bay – 300 kW  • Kasigluk – 300 kW  • Mekoryuk – 200 kW  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  14    • Quinhagak – 300 kW  • Savoonga – 200 kW  • Shaktoolik – 200 kW  • Toksook Bay – 400 kW  AVEC Total = 3,000 kW    Each turbine is equipped with active yaw control, but does not have blade pitch control  capability. The (4) proposed Northern Power100 Arctic generators have a maximum cumulative  power generation output of 400 kW at a wind speed of 32.4 mph. The turbines are equipped  with a 21‐meter diameter rotor.                              Figure 9:  NP100 Turbine Installed in Emmonak    5.1.2 Vestas V17    The second option is installing (5) remanufacturer Vestas Wind Systems A/S V17 turbines. The  V17 is a 90 kW, fixed pitch turbine with active yaw and a high speed rotor with three blades.  Vestas is an international turbine manufacturer based in Denmark, with their American  operations based in Portland, Oregon. The V17’s were commonly used as small scale industrial  wind turbines in the 1980’s and 1990’s. More recently, these turbines have been replaced in  wind farms with new large scale turbines with 1 megawatt capacity or greater. The  decommissioned V17s were sold to independent contractors, such as Halus Power Systems in  San Leandro, CA, for refurbishment and resale. The V17 is a 26‐meter (85‐foot) high, 90 kW,  induction generator. The turbines are equipped with a 17‐meter diameter rotor. Installing five  V17s in Stebbins would produce a maximum output of 450 kW at a wind speed of 15 mph. The  generator power output can be controlled using a simple inverter and soft breaking or a  variable speed drive (VSD) complex inverter. V17 turbines have been previously installed in  Alaska at Kokhanok.        Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  15    5.1.3 Aeronautica AW33‐225    The third turbine option is installing two Aeronautica AW33‐225 turbines. Aeronautica  Windpower Inc. started in 2008 as a turbine refurbishment company. In 2010 they purchased  the rights to manufacture and sell the Norwin 225 and Norwin 750 turbines under their name.  The AW33‐225 turbine is a 40‐meter (131‐foot) high, 225 kW, induction generator.  The  turbines are equipped with a 33‐meter diameter rotor. This configuration has a  maximumpower generation output of 450 kW. The blades are fixed pitch and stall regulated at  high wind speeds. The blades are aerodynamically designed to stall during extreme wind  events in order to maintain a safe operating speed. This method of control eliminates the  mechanical and electric blade control systems involved with pitch controlled turbines.  There are no Aeronautica turbines installed in Alaska at this time.    5.2 ALTERNATIVE 1 ‐ (4) NP100 TURBINES INSTALLED AT STEBBINS SITE 1    This alternative proposes installation of (4) NP100 turbines at Stebbins Site 1 for a total  cumulative generation capacity of 400 kW. The project includes construction of 1,300 feet of  16‐foot wide gravel access trail and (4) 2,600  square foot gravel  pads  at the wind tower  locations. The proposed trail and wind tower pads are anticipated to be 4 feet thick and consist  of locally available sands and gravels compacted to 90% maximum density. The drivable surface  of the embankment is constructed with 6‐inches of crushed aggregate surface course. Topsoil  and seed is planned for the embankment slopes to minimize erosion of the placed fill. The  turbines are installed on a 37‐meter high, conical, monopole tower. The tower foundation is  anticipated to include precast concrete gravity above shallow volcanic bedrock. Power from  the wind turbines will be connected to the grid through the new Stebbins‐St. Michaels intertie  which is scheduled for construction in 2014.  Reference Sheet C1.02, Appendix A for a site plan of  Alternative 1.    The wind farm modeling included V3 Energy’s September 2013 Stebbins‐St. Michael Wind‐  Diesel Feasibility Analysis (Appendix B) predicts that this alternative will add 1,106 MWh/year  of annual energy production to the Stebbins and St. Michael power generation system at 80%  turbine availability. The construction cost for this alternative is estimated to be $10,077 per  installed kW assuming the new power plant is complete and operational. See Capital Cost  Estimate included in Appendix E.    5.3 ALTERNATIVE 2 ‐ (5) V17 TURBINES INSTALLED AT STEBBINS SITE 1    This alternative proposes installation of (5) V17 turbines at Stebbins Site 1 for a total cumulative  generation capacity of 450 kW. The project includes construction of 1,600 feet of 16‐foot wide  gravel access trail and (5) 2,600 square foot gravel pads at the wind tower locations. The  proposed trail and wind tower pads are anticipated to be 4 feet thick and consist of locally  available sands and gravels compacted to 90% maximum density. The drivable surface of the  embankment is constructed with 6‐inches of crushed aggregate surface course. Embankments  and foundations are anticipated to be the same as previously described in Alternative 1.  The  turbines are anticipated to be installed on monopole towers.  Lattice towers will also be  considered for these turbines if this alternative is advanced to final design.  Reference  Sheet C1.03,  Appendix A for a site plan of Alternative 2.  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  16      The wind farm modeling included V3 Energy’s September 2013 Stebbins‐St. Michael Wind‐  Diesel Feasibility Analysis (Appendix B) and predicts that this alternative will add 943 MWh/year  of annual energy production to the Stebbins and St. Michael power generation system at 80%  turbine availability. The construction cost for this alternative is estimated to be $8,419 per  installed KW assuming the new power plant is complete and operational. See Capital Cost  Estimate included in Appendix E.    5.4 ALTERNATIVE 3 ‐ (2) AW33‐225 TURBINES INSTALLED AT STEBBINS SITE 1    This alternative proposes installation of (2) AW33‐225 turbines at Stebbins Site 1 for a potential  generation capacity of 450 kW. The project includes construction of a 750‐foot gravel access  trail and (2) 2,600 square foot wind tower pads. The proposed trail and wind tower pads are  anticipated to be 4 feet thick and consist of locally available sands and gravels compacted to  90% maximum density. The drivable surface of the embankment is constructed with 6‐inches of  crushed aggregate surface course. Topsoil and seed is planned for the embankment slopes to  minimize erosion of the placed fill. The turbine is installed on a 40‐meter high, conical,  monopole tower. The tower foundation is anticipated to include precast concrete gravity mats  with rock anchors to resist the increased overturning moment. The AW33‐225 towers are  anticipated to require larger foundations than the NP100 turbines due to larger reaction forces  from the increased tower weight, longer blade diameters, and increased swept area.  Reference Sheet C1.05, Appendix A, for a site plan of Alternative 3.    The wind farm modeling included V3 Energy’s September 2013 Stebbins‐St. Michael Wind‐  Diesel Feasibility Analysis (Appendix B) and predicts that this alternative will add 1,360  MWh/year of annual energy production to the Stebbins and St. Michael power generation  system at 80% turbine availability. The construction cost for this alternative is estimated to be  $8,769 per installed KW assuming the new power plant is complete and operational and 450  kW of power is delivered from the new turbine. See Capital Cost Estimate included in Appendix  E.    5.5 ALTERNATIVE COMPARISON SUMMARY  Table 2 below summarizes the capital costs and estimated annual energy production for each  turbine alternative.         Table 2:  Alternative Comparison Summary            Alt            Turbine Selection            Site      Generation  Capacity (kW)      Estimated  Capital Cost    Estimated Capital  Cost per Installed  kW    Estimated Annual  Energy Production    @ 80 %  Availability    1    (4) NP 100s    Stebbins 1 400 $ 4.03 M $10,077    1,107 MWh    2    (5) V17s    Stebbins 1 450 $ 3.79 M $8,420    943 MWh    3    (2) AW33‐225    Stebbins 1 450 $3.95 M $8,769    1,360 MWh    *Source: Annual Energy Production data taken from V3 Energy’s September 2013 Draft Stebbins‐St. Michael Wind‐Diesel  Feasibility Analysis  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  17      6.0 ECONOMIC EVALUATION      6.1 METHODOLOGY AND APPROACH    The Stebbins‐St. Michaels Wind Diesel Feasibility Analysis prepared by V3 Energy (Appendix B)  includes a wind power analysis of the combined Stebbins‐St. Michael power generation system  using HOMER energy modeling software with the previously described wind turbine  alternatives. The software was configured for a medium to high penetration system, with the  first priority to meet the community’s electrical demands and the second priority to serve the  recovered heat system through a secondary load controller (electric boiler). The analysis  considered an average diesel fuel price of $5.23 per gallon for the projected 20‐year project life.  The modeling assumptions and results of V3’s analysis are presented in Appendix B.    V3 inserted the power generation and fuel consumption results from the HOMER modeling into  the economic modeling program developed by the Institute for Social and Economic Research  (ISER). AEA uses the ISER economic model as the standard approach for scoring wind project  design and construction grant applications. The ISER model considers the capital cost of  construction and annual cost of operating and maintaining the wind turbines and weighs them  against the benefit cost savings realized from the volume of displaced diesel fuel required for  power generation and heating public facilities. The analysis develops a benefit/cost ratio that  can be used to compare wind turbine alternatives. See V3’s economic analysis results in  Appendix B.      6.2 ECONOMIC EVALUATION RESULTS    Table 3 below summarizes the findings of the V3’s economic evaluation for each turbine  alternative.      Table 3:  Economic Evaluation Summary            Alt    Annual  Wind  Generation  @ 80%  Availability  (kWh)        Wind  Energy  For Power  (kWh/yr)        Wind  Energy  For Heat  (kWh/yr)    Wind as %  Total  Power  Production  (%)    Wind as %  Total  Thermal  Production  (%) Power  Generation:  Fuel  Displaced by  Wind Energy  (gal/yr)  Thermal  Generation:  Heating Fuel  Displaced by  Wind Energy  (gal/yr)          Benefit/ Cost  Ratio    1    1,106,920    1,009,590    97,330 33 2.9 68,908 2,488    1.24    2 942,572    855,585    86,987 29 2.6 58,512 2,224    1.12    3    1,360,237    1,131,538    228,699 40 6.6 80,289 5,846    1.50  *Source: V3 Energy’s September 2013 Draft Stebbins‐St. Michael Wind‐Diesel Feasibility Analysis    7.0 PREFERRED ALTERNATIVE    Based on the findings of the site analysis, wind modeling, and economic evaluation, Alternative  3 is the preferred alternative for Stebbins wind turbine development. This alternative consists  of construction of (2) AW33‐225 turbines at Stebbins Site 1. Each turbine has the potential to  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  18    generate 225 kW, for an aggregate total power generation of 450 kW. The AW33‐225 turbine is  the preferred alternative because it maximizes power output while minimizing the amount of  turbines that need to be operated and maintained.  Also, the larger swept area of the turbine  allows for efficient power generation through a wide range of wind speeds. The two turbine  installation would allow for redundancy in the system and the ability to perform turbine  maintenance without eliminating wind power generation from the system. The economic  evaluation above assumes that the turbine array operates at the 450 kW energy output level.  However, for better system performance, the turbine should be modulated using a VSD down  to an energy output level that provides medium penetration to the Stebbins‐St. Michael grid  and adequate excess energy to meet recovered heat demands. The recommended energy  output level will be determined during final design of the control system.      8.0 ENVIRONMENTAL REQUIREMENTS    8.1 HISTORIC AND ARCHAEOLOGICAL: ALASKA STATE HISTORIC PRESERVATION OFFICE  (SHPO)     Cultural Resource Consultants, LLC (CRC) conducted a review of the Alaska Heritage Resource  Survey (AHRS) files at Stebbins Site 1 (Ridge Site). According to the AHRS files there are no  known AHRS sites within the project areas for these sites. However, there are known sensitive  sites located adjacent to the project areas of interest, including one site listed on the National  Register of Historic Places. In 2009 Northern Land Use Research (NLUR) completed an  archaeological survey of potential materials sources in Stebbins and St. Michael. Their research  included two sites located north of Stebbins in the immediate vicinity of the project areas of  interest. According to NLUR’s findings, no known cultural resources were found in the sites  investigated. Based on existing AHRS information and the findings of NLUR’s site investigation,  there is a relatively low probability of undiscovered archaeological and historic sites within the  actual project areas of interest. Per the recommendation of Cultural Resource Consultants, LLC,  the undertaking would need to be reviewed by the State Historic Preservation Office, but  further field surveys will likely not be required at either of these two sites. CRC Analysis is  included in Appendix F.    8.2 WETLANDS: DEPARTMENT OF THE ARMY (DA)    Section 404 of the Clean Water Act requires a permit for placement of fill in wetlands and  waters of the United States. The National Wetlands Inventory (NWI) database does not have  data for the Stebbins area.    Satellite imagery and notes from field reconnaissance of three sites (Stebbins Site 1 and St.  Michael Sites 1 & 2) in September, 2011 indicate those sites are drier than surrounding tundra.  Stebbins Site 2 was not investigated at that time, but topography and satellite imagery suggest  relatively dry conditions. However, the DA will likely require a wetlands delineation  with  current wetland data before providing a Jurisdictional Determination. If the DA concludes the  project site contains wetlands under their jurisdiction, a new Nationwide Permit (NWP) issued  in 2012 for Land Based Renewable Energy Generation Facilities (NWP 51) authorizes discharge  of fill for wind tower construction if loss of wetlands does not exceed 1/2 acre. Submittal  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  19    requirements for NWP 51 include a Pre‐Construction Notification (PCN) and wetland  delineation report documenting project impacts. NWP 51 also covers utility lines, roads, and  parking lots within the wind generation facility. Access roads and transmission lines not within  the facility and used to connect the facility to existing infrastructure require separate  permitting. NWP 12 (Utility lines) and 14 (Linear transportation) may be used for this purpose if  loss of wetlands does not exceed one‐half acre for each permit type.    If a wetlands delineation is required, the DA recommends that it is completed within the  designated growing season for specific regions. Stebbins is located within Alaska’s Subarctic  Coastal Plains Eco‐region, which has a growing season that begins on May 23rd and ends on  October 3rd.    8.3 FEDERAL AVIATION ADMINISTRATION (FAA)    Based on preliminary review of the online Obstruction Evaluation/Airport Airspace Analysis  (OEAAA) tool, all sites under consideration exceed CFR Title 14 Part 77 Notice Criteria for slope  ratio. Part 77 regulations require an airspace study and filing form 7460‐1 for the proposed  tower locations to determine that there is no hazard to air navigation. Preliminary coordination  has already occurred with the FAA concerning the met tower at Stebbins Site 1. The FAA issued  a “Determination of No Hazard to Air Navigation for a Temporary Structure” on October 27,  2011 for the Stebbins met tower. Further coordination will be required and may include  modifications to the published traffic procedures at the Stebbins Airport to keep patterning  aircraft south of the airport and away from the proposed tower locations.    8.4 BIOTIC RESOURCES AND FEDERALLY LISTED THREATENED AND ENDANGERED  SPECIES: UNITED STATES FISH & WILDLIFE SERVICE (USFWS)    The USFWS lists the spectacled eider as a threatened species. Review of the USFWS Endangered  Species Act Consultation Guide indicates all wind tower sites under consideration are located in  a zone designated as spectacled eider breeding habitat; however, no sites are within the zone  designated as Critical Habitat. Spectacled eiders typically nest on coastal tundra near shallow  ponds or lakes, usually within 10 feet of the water. Stebbins Site 1 and 2 are located in upland  habitat at elevations above nesting areas. A 2006 report prepared by ABR for AVEC studied bird  movements along a proposed powerline intertie corridor between the villages of Stebbins and  St. Michael and potential wind turbine locations. The report concluded low risk of injury or  death to birds at the Stebbins Site 1 (Ridge Site), which is approximately one mile southeast of  Stebbins Site 2 (Bluff Site). Bird movement in this area consists primarily of low flying (<20  meters above ground) passerines and high flying (>50 meters above ground level) cranes and  swans, which is above and below the proposed tower height. Tower construction at St. Michael  Site 1 and 2 are not recommended due to their proximity to eider habitat in Clear Lakes area.  Tower construction at Stebbins Site 2 is not recommended due to the proximity to the St.  Stephens Bluff and possible eider fly ways.    Tower construction at Stebbins Site 1 would require informal consultation with USFWS to  identify potential effects to listed species and determine whether measures to avoid and  minimize effects are necessary. Because an avian survey has been completed for the Stebbins‐  St. Michael intertie route area it is unlikely USFWS will request additional surveys documenting  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  20    avian species presence and flight patterns at Stebbins Site 1.    St. Michael Site 1, St. Michael Site 2, and Stebbins Site 2 would require formal consultation,  which may include a Biological Assessment and Biological Opinion from the USFWS. Preliminary  discussions with USFW indicated that the existing avian survey that has been completed for the  Stebbins‐St. Michael Intertie does not provide sufficient information for bird activity in these  areas. Additional avian surveys would be required at these sites.    The proposed Stebbins wind tower locations are also adjacent to polar bear critical habitat. The  probability of encountering polar bear is low, but the USFWS would likely advise maintaining a  voluntary polar bear monitoring plan.    USFWS recommends avoiding vegetation clearing for regions throughout the state of Alaska.  For the Yukon‐Kuskokwim Delta region the following avoidance periods apply:    • Shrub and Open Habitat – May 5th through July 25th (except in habitat that supports  Canada geese, swan, and black scoter)  • Canada geese and swan habitat – April 20th through July 25th  • Black scoter habitat – May 5th through August 10th    8.5 CONTAMINATED SITES, SPILLS, AND UNDERGROUND STORAGE TANKS    A search of the Alaska Department of Environmental Conservation’s (ADEC) contaminated sites  database revealed no contaminated sites within any of the sites considered.    8.6 ANADROMOUS FISH STREAMS    There are no cataloged anadromous streams located between the villages of Stebbins and St.  Michael, according to the Alaska Department of Fish and Game (ADF&G) Anadromous Waters  Catalog.    8.7 STATE REFUGES, CRITICAL HABITAT AREAS AND SANCTUARIES    A review of the ADF&G’s publication regarding State of Alaska Refuges, Critical Habitat  Areas, and Sanctuaries, found that no such areas are located in the vicinity of any of the sites  considered.    8.8 LAND OWNERSHIP    The Alaska Division of Community and Regional Affairs Stebbins Area Use Map and Alaska  Department of Natural Resources (ADNR) Special Management Lands Division indicate Stebbins  Site 1 and 2 are located on land owned by the Stebbins Native Corporation within the Stebbins  City boundary. St. Michael Site 1 and 2 are located on land owned by St. Michaels Native  Corporation. AVEC has negotiated a draft lease agreement with the Stebbins Native Corporation  for wind tower construction on Stebbins Site 1.  The lease agreement is being circulated for both  party’s signature and is anticipated to be recorded by the end of 2013.          Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  21    8.9 SUBSISTENCE ACTIVITIES    Coordination with Stebbins community members will be needed to ensure there is little to no  disruption  of  hunting  and  harvesting  activities  from  wind  farm  development.    Preliminary  discussions with community members indicate that Stebbins Site 1 is not used for subsistence  activities. There is reported berry picking activities in the area of Stebbins Site 2. The final  location of the towers will be coordinated with the community during design to minimize  impacts to subsistence activities.    8.10 AIR QUALITY    According to Alaska Administrative Code (AAC) 18 AAC 50, the communities of Stebbins and St.  Michael are considered Class II areas. As such, there are designated maximum allowable  increases for particulate matter 10 (PM‐10) micrometers or less in size, nitrogen dioxide, and  sulfur dioxide. Activities in these areas must operate in such a way that they do not exceed  listed air quality controls for these compounds. The nature and extent of the proposed project  is not likely to increase emissions or contribute to a violation of an ambient air quality standard  or cause a maximum allowable increase for a Class II area.    8.11 NATIONAL ENVIRONMENTAL POLICY ACT REVIEW (NEPA)    An Environmental Review (ER) document will be required if federal funding is used for  construction of the wind turbine project. Similar to an Environmental Assessment (EA), an ER  will provide an assessment of potential environmental impacts and identify avoidance,  minimization, and mitigation measures. A Finding of No Significant Impact (FONSI)  determination by the funding agency will be needed.    8.12 ENVIRONMENTAL SUMMARY AND RECOMMENDATIONS    Table 4 below summarizes environmental data and permit requirements for development of  wind turbines on each site investigated.    Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  22        Table 4:  Environmental Summary Table     Stebbins Site 1  (Ridge)  Stebbins Site 2  (Bluff)    St. Michael Site 1      St. Michael Site 2      Historic and Archaeological  Low potential for impact;  SHPO review required  No AHRS info;  SHPO review required      Wetlands    Wetland delineation and Jurisdictional Determination needed;    NWP 12, 14, & 51 if wetlands impacted and impacts less than ½ acre. An individual  permit will be required for impacts greater than ½ acre.      Federal Aviation Administration  Form 7460‐1;   Traffic patterned altered to  accommodate MET tower    Form 7460‐1      Threatened & Endangered Species    Low risk to flying  birds; Informal  consultation  required  Moderate to high risk to birds;  Will require formal consultation      Contaminated Sites      None located within project areas      Anadromous Fish Streams      None between villages of Stebbins and St. Michael    State Refuges, Critical Habitat, and  Sanctuaries      None located near project areas      Land Ownership    Stebbins Native Corporation St. Michael Native Corporation      Subsistence    AVEC will coordinate with communities to identify areas important to subsistence  activities.      Air Quality    Class II area; Project not likely to increase emissions, contribute to a violation of  ambient air quality standards, or cause maximum allowable increases for Pm‐10 and  nitrogen and sulfur dioxide.      National Environmental Policy Act    Environmental Assessment and Finding of No Significant Impact needed from  funding agency    Permit Recommendations  1. Initiate Section 106 consultation for preferred site, in accordance with the National  Historic Preservation Act, as soon as possible.    2. File FAA form 7460‐1 for wind towers at least 45 days prior to construction.    3. Perform wetlands delineation and obtain Jurisdictional Determination for the preferred  site to determine whether Section 404 permitting is necessary.    4. Initiate consultation with USFWS to identify potential effects at the preferred site to  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  23    threatened or endangered species and possible mitigation.    5. Schedule vegetation clearing activities outside appropriate time periods of avoidance,  per the USFWS’s recommendations.    9.0 CONCLUSIONS AND RECOMMENDATIONS    The high cost of diesel fuel and strong wind resource on St. Michael Island makes wind power  an attractive component of AVEC’s new combined electrical power generation system for  Stebbins and St. Michael. The wind site investigation and subsequent wind modeling analysis  determined that Stebbins Site 1 has a Class 6 wind resource and is well‐suited for wind power  generation. Economic evaluation of the turbine alternatives presented in this  report and  discussions with AVEC Operations personnel resulted in a preferred turbine configuration of (2)  AW33‐225 turbines installed at Stebbins Site 1. The economic evaluation projected that this  preferred alternative will contribute to approximately 40% of total power production and will  offset approximately 80,000 gallons of fuel for power generation and 6,000 gallons of heating  oil per year. Wind power could provide approximately 6.6% of the energy needed for heat  recovery.    The following actions are recommended to continue the progress of wind turbine development  in Stebbins:    Recommendations      1. Consult with Stebbins community leaders to minimize the impacts to subsistence activities  from wind project development at Stebbins Site 1.    2. Proceed with permitting per the permitting recommendations included in Section 8.    3. Perform a site specific geotechnical investigation of the proposed turbine location.     4. Design should include VSDs at each turbine along with a secondary load controller and  associated controls at the new Stebbins Power plant.    5. If complications resulting from site control, permitting, or the geotechnical investigation  make development of Stebbins Site 1 not feasible, relocate the proposed wind turbine  project to Stebbins Site 2 and reinitiate the actions stated above.    6. Coordinate with wind tower manufacturer for site specific environmental, power control,  and power quality requirements to ensure selected wind turbines are warranteed to  perform as anticipated.    7. Perform final design of the preferred alternative and apply for construction grant funds.        Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  24    10.0 REFERENCES    Alaska Community Database, Community Information Summaries (CIS)  http://www.commerce.state.ak.us/dca/commdb/CIS.cfm?Comm_Boro_Name=Stebbins,   accessed on 11/15/2011    Western Regional Climate Center, http://www.wrcc.dri.edu/CLIMATEDATA.html, accessed on  12/5/2011    Alaska Energy Authority (AEA). 2012. Statistical Report of the Power Cost Equalization Program,  Fiscal Year 2011. Twenty Third Edition. April 2012.    Alaska Department of Environmental Conservation (ADEC). 18 AAC 50 Air Quality Control: As  Amended through August 1, 2012.  http://dec.alaska.gov/commish/regulations/pdfs/18%20AAC%2050.pdf. Last accessed  on September 8, 2012.    ADEC. Division of Spill Prevention and Response. Last accessed on September 6, 2012.  http://dec.alaska.gov/applications/spar/CSPSearch/results.asp.    Alaska Native Tribal Health Consortium (ANTHC) Division of Environmental Health and  Engineering. Stebbins, Alaska Heat Recovery Study. September 10, 2012.    Alaska Department of Fish & Game (ADF&G). Wildlife Action Plan Section IIIB: Alaska’s 32 Eco‐  regions http://www.adfg.alaska.gov/static/species/wildlife_action_plan/section3b.pdf.  Last accessed on September 6, 2012.    ADF&G. Anadromous Waters Catalog. http://www.adfg.alaska.gov/sf/SARR/AWC/. Last  accessed on September 6, 2012.    ADF&G. Refuges, Sanctuaries, Critical Habitat Areas and Wildlife Refuges.  http://www.adfg.alaska.gov/index.cfm?adfg=protectedareas.locator. Last accessed on  September 7, 2012.    ADNR. Division of Special Management Lands.  http://www.navmaps.alaska.gov/specialmanagementlands/. Last accessed on  September 7, 2012.    CRC. Known Archaeological and Historical Sites in the Stebbins Area. August 28, 2012.    FAA. Obstruction Evaluation/Airport Airspace Analysis (OE/AAA).  https://oeaaa.faa.gov/oeaaa/external/portal.jsp012. Last accessed on August 26, 2012.    USACE. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska  Region (Version 2.0).  http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/reg_supp/erdc‐el_tr‐  07‐24.pdf. Last accessed on September 6, 2012.    USFWS. United States Fish and Wildlife Service Endangered Species: Listed and Candidate  Species in Alaska, Spectacled Eider (Somateria fischeri).  http://alaska.fws.gov/fisheries/endangered/species/spectacled_eider.htm. Last  accessed on September 6, 2012.  Stebbins Wind Project Concept Design Report Alaska Village  Electric Cooperative       September, 6 2013  25      USFWS. Yukon Delta National Wildlife Refuge.  http://www.fws.gov/refuges/profiles/index.cfm?id=74540. Last accessed on September  6, 2012.    USFWS. U.S. Fish and Wildlife Service Land Clearing Guidance for Alaska: Recommended Time  Periods to Avoid Vegetation Clearing.  http://alaska.fws.gov/fisheries/fieldoffice/anchorage/pdf/vegetation_clearing.pdf. Last  accessed on September 7, 2012.    USFWS. U.S. Fish and Wildlife Service National Wetlands Inventory.  http://107.20.228.18/Wetlands/WetlandsMapper.html#. Last accessed on September 6,  2012.    V3 Energy. Stebbins‐St. Michael Wind Diesel Feasibility Analysis. September 6, 2013.              Appendix A  Stebbins Wind Project Concept Design Drawings     STEBBINS WIND PROJECTCONCEPT DESIGN DRAWINGSSTEBBINS, ALASKA4831 Eagle Street Anchorage, Alaska 99503 4831 Eagle Street Anchorage, Alaska 99503 EXISTINGLANDFILLEXISTINGSEWAGELAGOONNORTONSOUNDNORTONSOUNDEXISTINGSTEBBINS / ST.MICHAEL ROADST. MICHAEL MET TOWER(CINDER CONE)ST. MICHAELSITE 2ST. MICHAELSITE 1PROPOSEDELECTRICALINTERTIEST. MICHAELAIRPORTN O R T O N S O U N DNORTONSOUNDST. MICHAELBAYSTEBBINSAIRPORTEXISTINGSTEBBINSPOWER PLANTNEW STEBBINSPOWER PLANTSTEBBINS LANDFILLACCESS ROADSTEBBINSGRAVELSOURCESTEBBINSSITE 1STEBBINSMET TOWEREXISTING ST.MICHAELPOWER PLANTNEW ST. MICHAELSTAND BYGENERATORST. MICHAELWATER SOURCEPUMP HOUSEN O R T O N S O U N DSTEBBINSSITE 24831 Eagle Street Anchorage, Alaska 99503 4831 Eagle Street Anchorage, Alaska 99503 WIND ACCESS TRAILEXISTINGSEWAGELAGOONNP 100WIND TOWER 2NP 100WIND TOWER 4NP 100WIND TOWER 3ALTERNATIVE 1:NP 100'sSITE 1BLUFF ACCESS TRAILNP 100WIND TOWER 14831 Eagle Street Anchorage, Alaska 99503 4831 Eagle Street Anchorage, Alaska 99503 WIND ACCESS TRAILEXISTINGSEWAGELAGOONBLUFF ACCESS TRAILALTERNATIVE 2:V-17'sV-17WIND TOWER 1V-17WIND TOWER 2V-17WIND TOWER 3V-17WIND TOWER 4V-17WIND TOWER 54831 Eagle Street Anchorage, Alaska 99503 4831 Eagle Street Anchorage, Alaska 99503 EXISTINGSTEBBINSLANDFILLTO STEBBINSTO SAINT MICHAELSN O R T O N S O U N DN O R T O N S O U N DWIND ACCESS TRAILEXISTINGSEWAGELAGOONAW33-225WIND TOWER #2ALTERNATIVE 3:AW33-225STEBBINS SITE 1STEBBINS LANDFILLACCESS ROADEXISTINGSTEBBINSGRAVELSOURCESTEBBINSMET TOWERSITE BBLUFF ACCESS TRAILAW33-225WIND TOWER #14831 Eagle Street Anchorage, Alaska 99503 4831 Eagle Street Anchorage, Alaska 99503 4831 Eagle Street Anchorage, Alaska 99503             Appendix B  Stebbins‐Saint Michael Wind‐Diesel Feasibility Study  Stebbins-Saint Michael Wind-Diesel Feasibility Analysis AVEC Photo September 6, 2013 Douglas Vaught, P.E. dvaught@v3energy.com V3 Energy, LLC Eagle River, Alaska Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | i This report was prepared by V3 Energy, LLC under contract to Alaska Village Electric Cooperative, Inc. to assess the technical and economic feasibility of installing wind turbines in the village of Stebbins to serve a combined Stebbins-St. Michael load. This analysis is part of a conceptual design report funded by the Renewable Energy Fund, which is administered by the Alaska Energy Authority. Contents Introduction .................................................................................................................................................. 1 Stebbins and Saint Michael ....................................................................................................................... 1 Stebbins Wind Resource ............................................................................................................................... 2 Measured Wind Speeds ............................................................................................................................ 3 Temperature and Density ......................................................................................................................... 4 Wind Roses ................................................................................................................................................ 5 Extreme Winds .............................................................................................................................................. 6 Wind-Diesel Hybrid System Overview .......................................................................................................... 6 Low Penetration Configuration ................................................................................................................. 7 Medium Penetration Configuration .......................................................................................................... 7 High Penetration Configuration ................................................................................................................ 8 Wind-Diesel System Components ............................................................................................................. 9 Wind Turbine(s) .................................................................................................................................... 9 Supervisory Control System .................................................................................................................. 9 Synchronous Condenser ....................................................................................................................... 9 Secondary Load ................................................................................................................................... 10 Deferrable Load .................................................................................................................................. 10 Interruptible Load ............................................................................................................................... 11 Storage Options .................................................................................................................................. 11 Wind Turbine Options ................................................................................................................................. 12 Northern Power Systems 100 ARCTIC..................................................................................................... 12 Vestas V17 ............................................................................................................................................... 13 Aeronautica 33-225 ................................................................................................................................ 13 Homer Software Wind-Diesel Model .............................................................................................................. 14 Diesel Power Plant .................................................................................................................................. 14 Wind Turbines ......................................................................................................................................... 14 Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | ii Electric Load ............................................................................................................................................ 15 Thermal Load .......................................................................................................................................... 16 Diesel Generators ................................................................................................................................... 16 Economic Analysis ....................................................................................................................................... 17 Wind Turbine Costs ................................................................................................................................. 17 Fuel Cost .................................................................................................................................................. 17 Modeling Assumptions ........................................................................................................................... 18 Economic Valuation ................................................................................................................................ 19 Sensitivity Analysis ...................................................................................................................................... 22 Conclusion and Recommendations ............................................................................................................ 22 Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 1 Introduction Alaska Village Electric Cooperative (AVEC) is the electric utility for the City of Stebbins and the City of Saint Michael. AVEC was awarded a grant from the Alaska Energy Authority (AEA) to complete conceptual design work for installation of wind turbines, with planned construction in 2015. Stebbins and Saint Michael Stebbins has a population of 585 people while Saint Michael has a population of 401 people (2010 census). Both villages are located on Saint Michael Island in Norton Sound, 125 miles southeast of Nome and 48 miles southwest of Unalakleet. The villages have a subarctic climate with maritime influences during the summer. Summer temperatures average 40° to 60 °F; winters average -4° to 16 °F. Extremes from -55° to 70 °F have been recorded. Annual precipitation averages 12 inches, with 38 inches of snow. Summers are rainy and fog is common. Norton Sound is typically ice free from early June to mid-November. A fortified trading post called "Redoubt St. Michael" was built by the Russian-American Company at Saint Michael in 1833; it was the northernmost Russian settlement in Alaska. The Native village of "Tachik" stood to the northeast. When the Russians left Alaska in 1867, several of the post's traders remained. "Fort St. Michael," a U.S. military post, was established in 1897. During the gold rush of 1897, it was a major gateway to the interior via the Yukon River. As many as 10,000 persons were said to live in Saint Michael during the gold rush. Saint Michael was also a popular trading post for Eskimos to trade their goods for Western supplies. Centralization of many Yup'iks from the surrounding villages intensified after the measles epidemic of 1900 and the influenza epidemic of 1918. The village remained an important trans-shipment point until the Alaska Railroad was built. The city government was incorporated in 1969. A federally-recognized tribe is located in Saint Michael, the Native Village of Saint Michael. In Stebbins, the analogous entity is the Stebbins Community Association. Stebbins’ and Saint Michael's population is largely Yup'ik Eskimo and many residents are descendants of Russian traders. Seal, beluga whale, moose, caribou, fish, and berries are important staples. The sale and importation of alcohol is banned in both villages. Stebbins and Saint Michael are accessible only be air and sea but are connected to each other with a 10.5 mile road. Both villages have airports and a seaplane base is available. Regular and charter flights are available from Nome and Unalakleet. Saint Michael is near the Yukon River Delta and has a good natural harbor but no dock. Lighterage service is provided on a frequent basis from Nome. Both villages receive at least one annual shipment of bulk cargo. At present Saint Michael and Stebbins are not connected electrically with a power distribution intertie, but a project to do so is planned for the near future. The electrical intertie will follow the road connecting the two villages. Note: Information above obtained from Alaska Community Database Community Information Summaries at www.commerce.state.ak.us/dca/commdb/CF_CIS.htm. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 2 Stebbins Wind Resource A met tower was installed on a plateau area located on Stebbins Native Corporation land near the road that connects Stebbins to the village of Saint Michael to the east. The site is large enough to accommodate several or more wind turbines and in many respects is ideal for wind power development with close proximity to an existing road and planned new electrical distribution connecting Stebbins to Saint Michael. Additionally, geotechnical conditions at the site appear to be highly suitable for turbine foundation construction. Note that the Stebbins met tower is the second wind site in the Stebbins-Saint Michael area studied. A met tower had been in service from July 2010 to September 2011 on the summit of an old, eroded cinder cone nearer Saint Michael. This met tower was removed in September 2011 and re-located to the Stebbins site where it has been in service since January 2012. A synopsis of Stebbins met tower data is presented below. The wind project site will be at or very near this location. For reference, a synopsis of the Saint Michael met tower data is also presented below. Both sites exhibit outstanding potential for wind power development. Stebbins (Site 0070) met tower data synopsis Data dates 1/19/2012 to 8/13/2013(19 months; in service) Wind power class Class 6 (outstanding) Power density mean (MoMM), 30 m 490 W/m2 Wind speed mean (MoMM), 30 m 7.08 m/s Max. 10-min wind speed average 25.9 m/s Maximum wind gust 30.6 m/s (Feb. 2012) Weibull distribution parameters k = 1.77, c = 7.55 m/s Wind shear power law exponent 0.236 (moderate) Roughness class 3.02 (many trees) IEC 61400-1, 3rd ed. classification Class III-C Turbulence intensity, mean 0.081 (at 15 m/s) Calm wind frequency, 30 m 26% (wind speeds <4 m/s) Saint Michael (Site 0021) met tower data synopsis (for reference) Data dates 07/21/2010 to 09/19/2011 (14 months) Wind power class Class 5 (excellent) Power density mean (MoMM), 30 m 435 W/m2 Wind speed mean (MoMM), 30 m 6.73 m/s Max. 10-min wind speed average 24.7 m/s Maximum wind gust 29.8 m/s (Feb. 2011) Weibull distribution parameters k = 2.03, c = 7.70 m/s Wind shear power law exponent 0.116 (low) Roughness class 0.60 (snow surface) IEC 61400-1, 3rd ed. classification Class III-C Turbulence intensity, mean 0.081 (at 15 m/s) Calm wind frequency, 30 m 26% (wind speeds <4 m/s) Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 3 Topographic map Google Earth image Measured Wind Speeds Anemometer data collected from the Stebbins met tower, from the perspectives of mean wind speed and mean wind power density, indicates an outstanding wind resource. Note that cold temperatures contributed to a higher wind power density than otherwise might have been expected for the mean wind speeds. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 4 Anemometer data summary Variable Speed 30 m A Speed 30 m B Speed 21 m Measurement height (m) 30 30 21 Mean wind speed (m/s) 6.73 6.72 6.19 MoMM wind speed (m/s) 7.08 7.06 6.51 Max 10 min avg wind speed (m/s) 25.9 25.9 25.0 Max gust (m/s) 30.2 30.6 29.8 Weibull k 1.77 1.80 1.79 Weibull c (m/s) 7.55 7.56 6.97 Mean power density (W/m²) 428 425 343 MoMM power density (W/m²) 490 487 396 Mean energy content (kWh/m²/yr) 3,747 3,724 3,005 MoMM energy content (kWh/m²/yr) 4,291 4,264 3,469 Energy pattern factor 2.16 2.16 2.22 Frequency of calms (%) 27.4 27.7 32.2 Time series graph Temperature and Density The Stebbins met tower site experiences cool summers and cold winters with a resulting air density that is higher than standard for that altitude. Calculated air density during the met tower test period exceeds standard air density at 46 meters elevation (1.220 Kg/m3) by 6.0 percent. The winter of 2012/2013 was colder than average, however, and it’s likely that long term average air density at the Stebbins met tower site is slightly less than measured. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 5 Temperature and density table Temperature Density Month Mean Min Max Mean Min Max (°C) (°C) (°C) (kg/m³) (kg/m³) (kg/m³) Jan -13.1 -34.1 5.2 1.350 1.219 1.468 Feb -12.2 -33.3 5.1 1.346 1.261 1.463 Mar -12.7 -31.0 4.6 1.349 1.264 1.449 Apr -5.5 -21.2 6.7 1.312 1.254 1.393 May 1.3 -14.3 18.0 1.280 1.206 1.356 Jun 10.2 -0.6 28.6 1.239 1.163 1.288 Jul 13.7 6.4 23.0 1.224 1.185 1.256 Aug 13.8 5.1 21.3 1.223 1.176 1.261 Sep 7.5 -1.6 14.9 1.251 1.218 1.293 Oct 2.4 -4.9 13.1 1.274 1.226 1.308 Nov -8.1 -18.3 -1.1 1.325 1.290 1.377 Dec -13.4 -30.6 2.8 1.352 1.272 1.447 -1.3 -34.1 28.6 1.294 1.163 1.468 Wind Roses Wind frequency rose data indicates highly directional northeasterly winds at the project site with a minor occurrence of southwesterly winds. The wind energy rose indicates that for wind turbine operations the majority of power-producing winds will be north-northeast to northeast. Calm frequency (percent of time that winds at the 30 meter level are less than 4 m/s) was 26 percent during the met tower test period. Wind Frequency Rose Total Value (power density) Rose Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 6 Extreme Winds The relatively short duration of Stebbins met tower data should be considered minimal for calculation of extreme wind probability, but nevertheless it can be estimated with a Gumbel distribution analysis modified for entry of monthly versus annual data. Analysis indicates that the Stebbins met tower site experiences relatively low extreme wind events and by reference to International Electrotechnical Commission (IEC) 61400-1, 3rd edition (2005), classifies as IEC Class III for extreme wind probability, the lowest defined. All wind turbines are designed to meet this criterion. Extreme wind speed probability table Vref Gust IEC 61400-1, 3rd ed. Period (years) (m/s) (m/s) Class Vref, m/s 2 25.8 30.9 I 50.0 10 30.8 36.9 II 42.5 15 32.0 38.4 III 37.5 30 34.2 40.9 S designer- specified 50 35.8 42.8 100 37.9 45.4 average gust factor: 1.20 Wind-Diesel Hybrid System Overview Wind-diesel power systems are categorized based on their average penetration levels, or the overall proportion of wind-generated electricity compared to the total amount of electrical energy generated. Commonly used categories of wind-diesel penetration levels are low penetration, medium penetration, and high penetration. The wind penetration level is roughly equivalent to the amount of diesel fuel displaced by wind power. Note however that the higher the level of wind penetration, the more complex and expensive a control system and demand-management strategy is required. Categories of wind-diesel penetration levels Penetration Penetration Level Operating characteristics and system requirements Instantaneous Average Low 0% to 50% Less than 20% Diesel generator(s) run full time at greater than minimum loading level. Requires minimal changes to existing diesel control system. All wind energy generated supplies the village electric load; wind turbines function as “negative load” with respect to diesel generator governor response. Medium 0% to 100+% 20% to 50% Diesel generator(s) run full time at greater than minimum loading level. Requires control system capable of automatic generator start, stop and paralleling. To control system frequency during periods of high wind power input, system requires fast acting secondary load controller matched to a secondary load such as an electric boiler augmenting a generator heat recovery loop. At high wind power levels, secondary (thermal) loads are dispatched to absorb energy not used by the primary (electric) load. Without secondary loads, wind turbines must be curtailed to control frequency. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 7 Penetration Penetration Level Operating characteristics and system requirements Instantaneous Average High (Diesels-off Capable) 0% to 150+% Greater than 50% Diesel generator(s) can be turned off during periods of high wind power levels. Requires sophisticated new control system, significant wind turbine capacity, secondary (thermal) load, energy storage such as batteries or a flywheel, and possibly additional components such as demand- managed devices. Low Penetration Configuration Low-penetration wind-diesel systems require the fewest modifications to a new or existing power system in that maximum wind penetration is never sufficient to present potential electrical stability problems. But, low penetration wind systems tend to be less economical than higher penetration systems due to the limited annual fuel savings compared to a relatively high total wind system installation costs. This latter point is because all of the fixed costs of a wind power project – equipment mobilization and demobilization, distribution connection, new road access, permitting, land acquisition, etc. – are spread across fewer turbines, resulting in relatively high per kW installed costs. Medium Penetration Configuration Medium penetration mode is very similar to high penetration mode except that no electrical storage is employed in the system and wind capacity is designed for a moderate and usable amount of excess wind energy that must be diverted to thermal loads. All of AVEC’s modern wind power systems are designed as medium penetration systems. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 8 High Penetration Configuration Other communities, such as Kokhanok, are more aggressively seeking to offset diesel used for thermal and electrical energy. They are using configurations which will allow for the generator sets to be turned off and use a significant portion of the wind energy for various heating loads. The potential benefit of these systems is the highest, however currently the commissioning for these system types due to the increased complexity, can take longer. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 9 Wind-Diesel System Components Listed below are the main components of a medium to high-penetration wind-diesel system: • Wind turbine , plus tower and foundation • Supervisory control system • Synchronous condenser • Secondary load • Deferrable load • Interruptible load • Storage Wind Turbine(s) Village-scale wind turbines are generally considered as 50 kW to 250 kW rated output. This turbine size once dominated with worldwide wind power industry but has been left behind in favor of much larger 1,000 kW plus capacity turbines for utility grid-connected projects. Conversely, many turbines are manufactured for home or farm application, but generally these are 10 kW or smaller. Consequently, few new manufacture village size-class turbines are on the market, although a large supply of used and/or remanufactured turbines are available. The latter typically result from the repower of older wind farms in the Continental United States and Europe with new, larger wind turbines. Supervisory Control System Medium- and high-penetration wind-diesel systems require fast-acting real and reactive power management to compensate for rapid variation in village load and wind turbine power output. The new Stebbins power plant, designed to serve both Stebbins and Saint Michael, will be equipped with a new, wind-ready supervisory control system (per Brian Gray of Gray Stassel Engineering). Synchronous Condenser A synchronous condenser, sometimes called a synchronous compensator, is a specialized synchronous electric motor with an output shaft that spins freely. Its excitation field is controlled by a voltage regulator to either generate or absorb reactive power as needed to support the grid voltage or to maintain the grid power factor at a specified level. This is necessary for diesels-off wind turbine operations, but generally not required for wind systems that maintain a relatively large output diesel generator online at all times. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 10 Synchronous condenser in Kokhanok Secondary Load To avoid curtailing wind turbines during periods of high wind/low load demand, a secondary or “dump” load is installed to absorb excess system (principally wind) power beyond that required to meet the electrical load. The secondary load converts excess wind energy into heat via an electric boiler typically installed in the diesel generator heat recovery loop. This heat can be for use in space and water heating through the extremely rapid (sub-cycle) switching of heating elements, such as an electric boiler imbedded in the diesel generator jacket water heat recovery loop. As seen in Figure 16, a secondary load controller serves to stabilize system frequency by providing a fast responding load when gusting wind creates system instability. An electric boiler is a common secondary load device used in wind-diesel power systems. An electric boiler (or boilers), coupled with a boiler grid interface control system, inside the new Stebbins power plant building, would need to be able to absorb up to 450 kW of instantaneous energy (full output of the wind turbines). The grid interface monitors and maintains the temperature of the electric hot water tank and establishes a power setpoint. The wind-diesel system master controller assigns the setpoint based on the amount of unused wind power available in the system. Frequency stabilization is another advantage that can be controlled with an electric boiler load. The boiler grid interface will automatically adjust the amount of power it is drawing to maintain system frequency within acceptable limits. Deferrable Load A deferrable load is electric load that must be met within some time period, but exact timing is not important. Loads are normally classified as deferrable because they have some storage associated with them. Water pumping is a common example - there is some flexibility as to when the pump actually operates, provided the water tank does not run dry. Other examples include ice making and battery charging. A deferrable load operates second in priority to the primary load and has priority over charging batteries, should the system employ batteries as a storage option. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 11 Interruptible Load Electric heating either in the form of electric space heaters or electric water boilers should be explored as a means of displacing stove oil with wind-generated electricity. It must be emphasized that electric heating is only economically viable with excess electricity generated by a renewable energy source such as wind and not from diesel-generated power. It is typically assumed that 41 kWh of electric heat is equivalent to one gallon of heating fuel oil. Storage Options Electrical energy storage provides a means of storing wind generated power during periods of high winds and then releasing the power as winds subside. Energy storage has a similar function to a secondary load but the stored, excess wind energy can be converted back to electric power at a later time. There is an efficiency loss with the conversion of power to storage and out of storage. The descriptions below are informative but are not currently part of the planned design. Flywheels A flywheel energy system has the capability of short-term energy storage to further smooth out short- term variability of wind power, and has the additional advantage of frequency regulation. However, the flywheel system is designed for much larger load systems and would not be economical for Stebbins. Batteries Battery storage is a generally well-proven technology and has been used in Alaskan power systems including Fairbanks (Golden Valley Electric Association), Wales and Kokhanok, but with mixed results in the smaller communities. Batteries are most appropriate for providing medium-term energy storage to allow a transition, or bridge, between the variable output of wind turbines and diesel generation. This “bridging” period is typically 5 to 15 minutes long. Storage for several hours or days is also possible with batteries, but this requires higher capacity and cost. In general, the disadvantages of batteries for utility- scale energy storage, even for small utility systems, are high capital and maintenance costs and limited lifetime. Of particular concern to rural Alaska communities is that batteries are heavy and expensive ship and most contain hazardous substances that require special removal from the village at end of service life and disposal in specially-equipped recycling centers. There are a wide variety of battery types with different operating characteristics. Advanced lead acid and zinc-bromide flow batteries were identified as “technologically simple” energy storage options appropriate for rural Alaska in an Alaska Center for Energy and Power (ACEP) July, 2009 report on energy storage. Nickel-cadmium (NiCad) batteries have been used in rural Alaska applications such as the Wales wind-diesel system. Advantages of NiCad batteries compared to lead-acid batteries include a deeper discharge capability, lighter weight, higher energy density, a constant output voltage, and much better performance during cold temperatures. However, NiCads are considerably more expensive than lead-acid batteries and one must note that the Wales wind-diesel system had a poor operational history and has not been functional for over ten years. Because batteries operate on direct current (DC), a converter is required to charge or discharge when connected to an alternating current (AC) system. A typical battery storage system would include a bank of batteries and a power conversion device. The batteries would be wired for a nominal voltage of Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 12 roughly 300 volts. Individual battery voltages on a large scale system are typically 1.2 volts DC. Recent advances in power electronics have made solid state inverter/converter systems cost effective and preferable a power conversion device. The Kokhanok wind-diesel system is designed with a 300 volts DC battery bank coupled to a grid-forming power converter for production of utility-grade real and reactive power. Following some design and commissioning delays, the solid state converter system in Kokhanok should be operational by late 2013 and will be monitored closely for reliability and effectiveness. Wind Turbine Options Several village-scale wind turbines are considered suitable for Stebbins/St. Michael. The guiding criteria are turbine output rating in relation to electric load, simplicity of design, AVEC Operations department preferences, redundancy, and cost considerations. The turbines chose for review in this CDR are the Northern Power Systems NPS 100, the Vestas V17, and the Windmatic WM17S. Northern Power Systems 100 ARCTIC The Northern Power 100 ARCTIC (NPS100), formerly known as the Northwind 100 (NW100) Arctic, is rated at 100 kW and is equipped with a permanent magnet, synchronous generator, is direct drive (no gearbox), and is equipped with heaters and has been tested to ensure operation in extreme cold climates. The turbine has a 21 meter diameter rotor and is available with a 30 meter or 37 meter monopole tower. The rotor blades are fixed pitch for stall control but the turbine is also and inverter regulated for maximum 100 kW power output. For Stebbins, the NPS100 will be equipped with an arctic package enabling a minimum operating temperature of -40° C. The Northern Power 100 ARCTIC is the most widely represented village-scale wind turbine in Alaska with a significant number of installations in the Yukon-Kuskokwim Delta and on St. Lawrence Island. The Northern Power 100 ARCTIC wind turbine is manufactured in Barre, Vermont, USA. More information can be found at http://www.northernpower.com/. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 13 Vestas V17 The Vestas V17 was originally manufactured by Vestas Wind Systems A/S in Denmark and is no longer in production. It is, however, available as a remanufactured unit from Halus Power Systems in California (represented in Alaska by Marsh Creek, LLC) and from Talk, Inc. in Minnesota. The V17 is a higher output version of the two Vestas V17 wind turbines installed in Kokhanok in 2011. The V17 has a fixed- pitch, stall-regulated rotor coupled to an asynchronous (induction) generator via a gearbox drive. The original turbine design included low speed and high speed generators in order to optimize performance at low and high wind speeds. The two generators are connected to the gearbox with belt drives and a clutch mechanism. In some installations though – especially sites with a high mean wind speeds – the low speed generator is removed to eliminate a potential failure point. Vestas V17 wind turbines in Kokhanok Aeronautica 33-225 The Aeronautica AW33-225 wind turbine is manufactured new by Aeronautica in Durham, New Hampshire. This turbine was originally designed by the Danish-manufacturer Norwin in the 1980’s with a 29 meter rotor diameter and had a long and successful history in the wind industry before being replaced by larger capacity turbines for utility-scale grid-connect installations. The original 29 meter rotor diameter design is available as the AW29-225 for IEC Class IA wind regimes, which the AW33-225 is a new variant designed for IEC Class II and III winds. The AW225 turbine is stall-regulated, has a synchronous (induction) generator, active yaw control, is rated at 225 kW power output, and is available with 30, 40, or 50 meter tubular steel towers. The AW33-225 is fully arctic-climate certified to -40° C and is new to the Alaska market with no in-state installations at present. While the AW29-225 has a typical cut-out wind speed of 25 m/s, the larger rotor diameter AW33-225 is designed for a cut-out speed of 22 m/s. More information can be found at http://aeronauticawind.com/aw/index.html and in Appendix D of this report. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 14 Aeronautica AW 33-225 wind turbine (29-225 version shown) Homer Software Wind-Diesel Model Homer energy modeling software was used to analyze the new Stebbins powerplant presently under construction, serving a combined Stebbins and Saint Michael load which will be realized when an electrical intertie connecting the two villages is complete. Homer software was designed to analyze hybrid power systems that contain a mix of conventional and renewable energy sources, such as diesel generators, wind turbines, solar panels, batteries, etc. and is widely used to aid development of Alaska village wind power projects. It is a static energy balance model, however, and is not designed to model the dynamic stability of a wind-diesel power system, although it will provide a warning that renewable energy input is potential sufficient to result in system instability. Diesel Power Plant Electric power (comprised of the diesel power plant and the electric power distribution system) in Stebbins is provided by Alaska Village Electric Cooperative. A new powerplant is presently under construction in Stebbins with four identically configured Caterpillar 3456 diesel generators, rated at 450 kW each maximum electrical power output. The new generators will be equipped with wet turbochargers and after-coolers for a high efficiency co-generation power system. The new powerplant is considered “wind ready” in that it will be equipped with a new Kohler SCADA that can be readily programmed to accommodate wind turbines. Also, the powerplant heat recovery system was designed for eventual installation of an electric boiler to absorb excess wind energy. Wind Turbines This CDR evaluates installation of four new Northern Power Systems Northern Power 100 ARCTIC turbines for 400 kW installed capacity, five remanufactured Vestas V17 turbines for 450 kW installed capacity, or five remanufactured Windmatic WM17S turbines for 450 KW installed capacity. Standard temperature and pressure (STP) power curves are shown below. Note that for the Homer analysis, power curves were adjusted to reflect the measured site mean annual air density of 1.294 kg/m3. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 15 Northern Power 100 ARCTIC power curve Vestas V17 Power Curve Aeronautica AW33-225 Electric Load Stebbins and Saint Michael load data, collected from December 2010 to December 2011, was received from Mr. Bill Thompson of AVEC. These data are in 15 minute increments and represent total electric load demand during each time step. The data were processed by adjusting the date/time stamps nine hours from GMT to Yukon/Alaska time, multiplying each value by four to translate kWh to kW (similar to processing of the wind turbine data), and creating a January 1 to December 31 hourly list for export to HOMER software. The resulting load is shown graphically below. Average load is 367 kW with a 662 kW peak load and an average daily load demand of 8,806 kWh. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 16 Electric load Thermal Load The new Stebbins power plant will include recovered heat to serve thermal loads which will include the village water plant. The thermal load was described by Brian Gray of Alaska Energy and Engineering, Inc. in the table below and incorporated into the Homer model. Stebbins thermal load (planned) Month Max Avg Temp, °F Min Avg Load, kW Mean Temp, °F Mean Load, kW Min Avg Temp, °F Max Avg Load, kW Jan 9.9 323 3.1 363 -3.7 403 Feb 10.3 321 2.9 364 -5.1 411 Mar 16.9 282 8.2 333 -0.5 384 Apr 29.3 209 21 258 12.7 307 May 45.8 113 38.1 158 30.4 203 Jun 54.6 61 48 100 41.4 138 Jul 61 23 54.3 63 47.6 102 Aug 59.8 30 52.9 71 46.1 111 Sep 51.2 81 43.9 124 36.7 166 Oct 33 188 26.9 223 20.8 259 Nov 19.1 269 13.2 304 7.3 338 Dec 8.4 332 1.8 370 -4.8 409 Diesel Generators The HOMER model was constructed with the four new Stebbins generators that will eventually power both Stebbins and Saint Michaels once the intertie connecting the two villages is complete. Diesel Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 17 generator information pertinent to the HOMER model is shown below. Cat 3456 fuel curve information from Alaska Energy Authority was used in the Homer model. Diesel generator HOMER modeling information Diesel generator Caterpillar 3456 Power output (kW) 450 Intercept coeff. (L/hr/kW rated) 0.007307 Slope (L/hr/kW output) 0.2382 Minimum electric load (%) 11.0% (50 kW) Heat recovery ratio (percent of waste heat that can serve the thermal load); data point from Brian Gray of Gray Stassel Engineering, Inc. 40% Intercept coefficient – the no-load fuel consumption of the generator divided by its capacity Slope – the marginal fuel consumption of the generator Economic Analysis Installation of four Northern Power Systems NPS100 ARCTIC wind turbines, five remanufactured Vestas V17 wind turbines, or two Aeronautica AW33-225 wind turbines in medium-to-high penetration mode without electrical storage are evaluated to demonstrate the economic benefit of the project options. Note that in the analyses turbines are connected to the electrical distribution system with first priority to serve the electrical load, and second priority to serve the thermal load via a secondary load controller and electric boiler. For this CDR, Homer modeling is used to determine system performance and energy balance, but economic valuation is accomplished with use of the Renewable Energy Fund Round 7 economic valuation spreadsheet developed by University of Alaska’s Institute for Social and Economic Research (ISER) for use by the Alaska Energy Authority. Wind Turbine Costs Project capital and construction costs for the three evaluated wind turbines were obtained from HDL, Inc. and are presented below. Detailed information regarding HDL’s cost estimates is available in their portion of this conceptual design report. Project cost estimates Turbine Project Cost Installed kW Cost per kW Capacity Tower Type Tower Height (meters) Northern Power NPS100 ARCTIC $4,030,650 400 $10,076 Monopole 37 Vestas V17 $3,788,750 450 $8,419 Monopole 26 Aeronautica AW33-225 $3,946,050 450 $8,769 Monopole 40 Fuel Cost A fuel price of $5.23/gallon ($1.40/Liter) was chosen for the initial HOMER analysis by reference to Alaska Fuel Price Projections 2013-2035, prepared for Alaska Energy Authority by the Institute for Social Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 18 and Economic Research (ISER), dated June 30, 2103 and the 2013_06_R7Prototype_final_07012013 Excel spreadsheet, also written by ISER. The $5.23/gallon price reflects the average value of all fuel prices between the 2015 (the assumed project start year) fuel price of $4.34/gallon and the 2034 (20 year project end year) fuel price of $6.36/gallon using the medium price projection analysis with an average social cost of carbon (SCC) of $0.61/gallon included. By comparison, the fuel price for Stebbins (without social cost of carbon) reported to Regulatory Commission of Alaska for the 2012 PCE report is $3.86/gallon ($1.02/Liter), without inclusion of the SCC. Assuming an SCC of $0.40/gallon (ISER Prototype spreadsheet, 2013 value), the 2012 Stebbins fuel price was $4.26/gallon ($1.13/Liter). Heating fuel displacement by excess energy diverted to thermal loads is valued at $6.32/gallon ($1.67/Liter) as an average price for the 20 year project period. This price was determined by reference to the 2013_06_R7Prototype_final_07012013 Excel spreadsheet where heating oil is valued at the cost of diesel fuel (with SCC) plus $1.05/gallon, assuming heating oil displacement between 1,000 and 25,000 gallons per year. Fuel cost table (SCC included) ISER medium cost projection 2015 (/gal) 2034 (/gal) Average (/gallon) Average (/Liter) Diesel fuel $4.34 $6.29 $5.23 $1.38 Heating oil $5.39 $7.34 $6.28 $1.66 Modeling Assumptions As noted previously, HOMER energy modeling software was used to analyze a combined the Stebbins wind-diesel hybrid power plant that will also serve the nearby village of Saint Michael. HOMER is designed to analyze hybrid power systems that contain a mix of conventional and renewable energy sources, such as diesel generators, wind turbines, solar panels, batteries, etc. and is widely used to aid development of Alaska village wind power projects. Modeling assumptions are detailed in the table below. Assumptions such as project life, discount rate, operations and maintenance (O&M) costs, etc. are AEA default values and contained in the ISER spreadsheet model. Other assumptions, such as diesel overhaul cost and time between overhaul are based on general rural Alaska power generation experience. The base or comparison scenario is the new Stebbins power plant presently under construction that will be equipped with four identically configured Caterpillar 3456 diesel engines with 450 kW generators. Although the existing Stebbins does not have a heat recovery loop to offset thermal loads in the village, the new powerplant will have this capability. Note that wind turbines installed in Stebbins will operate in parallel with the diesel generators. Excess energy will serve thermal loads via a secondary load controller and electric boiler. Installation cost of wind turbines assumes construction of three phase power distribution to the selected site, plus civil, permitting, integration and other related project costs. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 19 Homer and ISER modeling assumptions Economic Assumptions Project life 20 years (2015 to 2034) Discount rate 3% (reference: ISER 2013 Prototype spreadsheet) Operating Reserves Load in current time step 10% Wind power output 100% (Homer setting to force diesels on) Fuel Properties (no. 2 diesel for powerplant) Heating value 46.8 MJ/kg (140,000 BTU/gal) Density 830 kg/m3 (6.93 lb./gal) Price (20 year average; ISER 2013, medium projection plus social cost of carbon) $5.23/gal ($1.38/Liter) Fuel Properties (no. 1 diesel to serve thermal loads) Heating value 44.8 MJ/kg (134,000 BTU/gal) Density 830 kg/m3 (6.93 lb./gal) Price (20 year average; ISER 2013, medium projection plus social cost of carbon) $6.28/gal ($1.66/Liter) Diesel Generators Generator capital cost $0 (new generators already funded) O&M cost $0.02/kWh (reference: ISER 2013 Prototype spreadsheet) Minimum load 50 kW; based on AVEC’s operational criteria of 50 kW minimum diesel loading with their wind-diesel systems Schedule Optimized Wind Turbines Availability 80% O&M cost $0.049/kWh (reference: ISER 2013 Prototype spreadsheet) Wind speed 7.08 m/s at 30 m, 100% turbine availability 6.22 m/s at 30 m, 80% turbine availability Density adjustment 1.293 kg/m^3 (mean of monthly means of 19 months of Stebbins met tower data); note that standard air density is 1.225 kg/m^3; Homer wind resource elevation set at -590 meters to simulate the Stebbins air density Energy Loads Electric 8.80 MWh/day average combined Stebbins-Saint Michael power plant load Thermal 5.44 MWh/day average new Stebbins thermal load Economic Valuation Homer software was used in this feasibility analysis to model the wind resource, wind turbine energy production, effect on the diesel engines when operated with wind turbines, and excess wind energy that could be used to serve thermal loads. Although Homer software is designed to evaluate economic valuation by ranking alternatives, including a base or “do nothing” alternative by net present cost, AEA Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 20 economic valuation methodology differs somewhat in its assumptions of O&M costs, fuel costs each year of the project life, and disposition of excess energy. In an effort to align economic valuation of project alternatives with Alaska Energy Authority methods, this feasibility analysis uses AEA’s economic evaluation methods. Although ISER developed the cost evaluation spreadsheet, AEA determined the assumptions and methods of the model. The model is updated every July in preparation for the next round of Renewable Energy Fund requests for proposals in the form of an explanation report and an Excel spreadsheet. The latest version of the spreadsheet has a file name of 2013_06-R7Prototype_final_07012013 and is available on ISER’s website. Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 21 Project Economic Valuation Homer Model Input ISER Model Results Turbine Type Wind Capacity (kW) Diesel Efficiency (kWh/gal) Wind Energy (kWh/yr) Excess Electricity (kWh/yr Net Wind Energy (kWh/yr) Project Capital Cost NPV Benefits NPV Capital Costs Diesel #2 Displaced (gal/yr) B/C Ratio NPV Net Benefit NPS100 400 15.2 1,106,920 97,330 1,009,590 $4,030,650 $4,447,229 $3,581,180 68,908 1.24 $866,049 V17 450 15.2 942,572 86,987 855,585 $3,788,750 $3,778,522 $3,366,255 58,512 1.12 $412,267 AW33 450 15.2 1,360,237 228,699 1,131,538 $3,946,050 $5,241,559 $3,506,014 80,289 1.50 $1,735,545 Note: wind energy at 80% availability Note: NPV benefits and capital costs at 3% discount rate; base year is 2012 (ISER spreadsheet) Additional Information Turbine Type Hub Height (m) No. Turbines Wind Energy to Thermal (kWh/yr) Heating Fuel Equiv. (gal) Wind Penetration (% electrical) Wind Penetration (% thermal) Excess thermal (%) NPS100 37 4 97,330 2,488 33.0 2.9 0.5 V17 26 5 86,987 2,224 29.0 2.6 0.5 AW33 40 2 228,699 5,846 40.0 6.6 1.9 Note: wind energy at 80% availability Stebbins-Saint Michael Wind-Diesel Feasibility Analysis Page | 22 Sensitivity Analysis In general, the economic valuation (benefit-to-cost ratio) of a project increases when, all other things being equal, project capital cost decreases, fuel price increases, fuel displacment increases, or wind turbine annual energy production (AEP) increases. Wind energy projects in rural Alaska are expensive compared to Lower 48 or urban Alaska projects for several reasons, principally difficult logistics, isolation of the project villages, relatively high expense of small compared to large wind turbines, and complex powerplant integration requirements. The reality is that project costs are high and opportunities for significant reduction are constrained. The amount of fuel displaced by wind energy and the value of that fuel significantly impacts the economic valuation of a project. For Stebbins, the wind resource was measured at the proposed turbine site and hence accurate within the confines of the relatively short study timeframe of 19 months. The wind resource dictates, for a given type and number of turbines, the annual energy production of the turbines and this energy displaces fuel that otherwise would be burned by the diesel engines to meet the load demand. Wind turbine energy production cannot of course be higher than 100 percent availability (wind turbines on-line and available to produce power 100 percent of the time), but adoption of a historic turbine availability is problematic as comprehensive data from existing rural Alaska projects is difficult to obtain. For this reason, this feasibility analysis adopts the Alaska Energy Authority’s default 80 percent wind turbine availability assumption. If wind turbine availability greater than 80 percent is accomplished, then the economic value of the project will increase. Conclusion and Recommendations Three wind turbine project alternatives were presented in this feasibility analysis: four Northern Power Systems NPS100-21 wind turbines, five Vestas V17 wind turbines, or two Aeronautica AW33-225 wind turbines. Modeling shows that over a 20 year project life all three alternatives would have a benefit-to- cost ratio greater than unity. Of the three, however, clearly the Aeronautica AW33-225 alternative presents the superior economic benefit as reflected by a benefit-to-cost ratio of 1.50 and a net present value net benefit over the 20 year project life that exceeds $1.7 million. The AW33-225 is a solid turbine based on a proven design with a long track record in Europe and North America and should perform well at Stebbins. For this reason, a two turbine Aeronautica AW33-225 configuration is the recommended project alternative for Stebbins and Saint Michaels.             Appendix C  Heat Recovery Study  STEBBINS, ALASKA HEAT RECOVERY STUDY PREPARED BY: Alaska Native Tribal Health Consortium Division of Environmental Health and Engineering 1901 Bragaw St, Ste 200, Anchorage AK 99508 Phone (907) 729-3600 / Fax (907) 729-4090 September 10, 2012 EXECUTIVE SUMMARY The future Stebbins power plant, new water treatment plant (WTP), existing WTP, washeteria, clinic, and head start building and School were evaluated for heat recovery potential. The total estimated annual heating fuel used by all six buildings is approximately 57,000 gallons. The expected annual savings is $240,000 in fuel costs. The payback is based on a 2011 fuel price of $4.21/gallon and an estimated 2011 project cost of $1,243,000. Assuming construction in 2014, the design and construction cost with 2 years of 3% escalation is $1,319,000. The AVEC power plant is currently in design with site work already started. It is expected to provide most of the recovered heat necessary to serve the nearby public buildings. An expected intertie to St. Michael is currently in planning. AVEC is considering integration of wind power generation into its new power plant at some point in the future. The impact of the wind power is unknown at this point, but with an intertie to St. Michael (necessary for wind power), it is expected that there will still be substantial recoverable heat available. 1.0 INTRODUCTION The Alaska Native Tribal Health Consortium (ANTHC) reviewed the feasibility of providing recovered heat from the future AVEC power plant (construction beginning in 2012) to the new WTP (construction beginning in 2013), existing WTP, community school, and adjacent community buildings in Stebbins. ANTHC also developed a budgetary project cost estimate based on Force Account Construction, including Engineering and Construction Administration. The new WTP is designed to integrate recovered heat to heat the building, preheat the incoming raw water, and heat two water storage tanks (WSTs). Space has been allocated for a heat recovery heat exchanger and pumps, piping connections have been provided, and the control system is designed for easy integration. The existing WTP provides heat to the circulating water lines and heat to one of the WSTs. The system was not designed for waste heat and will require controls and installation of new heat transfer equipment, including a new heat exchanger and new circulating pumps. Once the water treatment functions have been moved to the new WTP, space will be available for new equipment to be added. The existing washeteria building is hydronically heated. The city reports fuel consumption of 7,400 gallons/year and importantly, much of this load is present in the summer as well as winter. New equipment will include a large brazed plate heat exchanger, a new circulator pump, and controls to prevent back feeding of heat to the generator facility. The existing head start building and community clinic also are hydronically heated. It is anticipated that recovered heat could also be used in these buildings as well. The existing school has a reported fuel consumption of approximately 46,500 gal / year and is hydronically heated with oil fired boilers. A site investigation of the facility has not been done at this time, but it is anticipated that space can be found for a heat recovery heat exchanger, associated pumps and controls. This report assumes that space for heat recovery equipment at the power plant will be included in the construction of the power plant, with necessary controls and heat exchangers in place. Additional assumptions have been made in the development of this report, including, but not limited to, the proposed arctic piping route, building heating loads, and flow rates and pressure drops of the power plant heat recovery system. It is anticipated that refinements in arctic pipe size and routing, pump and heat exchanger sizing, and other design elements will be required as the project progresses to final design. Available as-built information was obtained from AVEC regarding the 2011 power plant electrical loads. End-user annual fuel use was obtained from a variety of sources, including the City, Alaska Rural Utility Cooperative (ARUC), and engineering estimates. Where possible, reported fuel consumption was used to validate engineering estimates. Site visits were made to the existing WTP and washeteria to confirm accuracy of information obtained. 2.0 OVERVIEW The purpose of this study is to provide an estimate of the heat that can be recovered from the AVEC power plant diesel engines and used to offset heating oil consumption at the nearby public buildings. Useable recovered heat is quantified in gallons of heating fuel saved using a gross heating value of 134,000 BTU per gallon of #1 arctic diesel fuel and an overall boiler efficiency of 75% for a net heating value of 100,000 BTU per gallon. The public buildings eligible for heat recovery are located within 600-foot radius of the AVEC power plant. This analysis evaluates the potential to provide recovered heat to the nearby public buildings. The estimated average annual heating fuel consumption for the nearby public buildings is 22,800 gallons. 3.0 ESTIMATED RECOVERED HEAT UTILIZATION A heat recovery utilization spreadsheet has been developed to estimate the recoverable heat based on monthly total electric power production, engine heat rates, building heating demand, washeteria loads, heating degree days, passive losses for power plant heat and piping, and arctic piping losses. The spreadsheet utilizes assumed time-of-day variations for electric power production and heat demand. Power generation data from AVEC for fiscal year 2011 is used in the spreadsheet. The estimated heat rejection rate for the power plant gensets, Caterpillar 3456 series with marine jackets, were used to estimate available recovered heat. Heating degree-days for Stebbins were utilized for this site. All arctic piping is assumed to be routed below grade. All power plant hydronic piping is assumed to be insulated with 2 in of insulation. The proposed conceptual generator plant design was used to estimate the heating load for the power plant, which includes the power house, an insulated storage module, and one living quarters module. The spreadsheet uses monthly heating degree-days to distribute annual fuel consumption by month. The washeteria commercial heating loads are field verified as approximately 80% of maximum utilization for 8 hours a day, 5 days a week. The end-user hourly heat load is compared to the hourly available heat from the power plant, less power plant heating loads and parasitic piping losses, and the net delivered heat to the end-user is determined. Following is a summary of annual fuel use and estimated heat utilization in equivalent gallons of fuel for each building: Facility Estimated Annual Fuel Use (Gallons) Estimated Heat Delivered W/ Intertie (Gallons) Old Water Treatment Plant 4,815 4,815 New Water Treatment Plant 5,318 5,318 Washeteria 7,452 2,653 Stebbins School 46,474 39,437 Clinic 2,353 2,353 Head Start Building 2,353 2,353 Total 68,765 56,929 4.0 HEAT RECOVERY SYSTEM DESCRIPTION AND OPERATION: The heat recovery system captures jacket water heat generated by the AVEC power plant that is typically rejected to the atmosphere by the radiators. The recovered heat is transferred via below-grade arctic piping to the end users. The objective is to reduce the consumption of expensive heating fuel by utilizing available recovered heat. Although heat recovery is an excellent method of reducing heating fuel costs, recovered heat is a supplementary heat source and it is imperative that the end-user facility heating systems are operational at all times. Hot engine coolant is piped through a plate heat exchanger located at the power plant. Heat is transferred from the engine coolant to the recovered heat loop without mixing the fluids. Controls at the power plant are used to prevent subcooling of the generator engines and reducing electric power production efficiency. The recovered heat fluid is pumped through buried insulated pipe to the end-user facilities, and is typically tied into the end-user heating system using a plate heat exchanger. 4.1 AVEC PLANT TIE-IN Because the AVEC plant is being designed for recovered heat, no modifications to the AVEC power plant cooling system are included or anticipated, except those required to connect the arctic piping to the power plant heat exchangers. All heat recovery piping will be insulated with a minimum of 2-in insulation and have an aluminum jacket where exposed to the weather. All valves will be either bronze ball valves or lug style butterfly valves with seals compatible with 50/50 glycol/water mixtures at 200F. Air vents, thermometers, pressure gauges, drain valves, and pressure relief valves will also be provided. 4.2 ARCTIC PIPING (Recovered Heat Loop) The proposed arctic piping is based on Rovanco’s Rhinoflex preinsulated pipe design with a 4-in PEX-A carrier pipe, 1-in polyurethane foam insulation, and HDPE outer jacket. The piping will be buried approximately 2 ft deep and run from the AVEC plant within existing rights-of-way to the end-user buildings. Because multiple users are connected to the system, a variable speed pump located at the new power plant will circulate heating fluid to each user from the AVEC facility. When users are not actively consuming recovered heat, their systems will throttle down heating fluid flow to minimize power consumption. Electric charges for the circulation pump will be shared based on use of recovered heat. The recovered heat fluid will be a 50/50 Propylene Glycol/Water solution to provide freeze protection to the piping. 4.3 END-USER BUILDING TIE-INS End-user building tie-ins typically consist of brazed plate heat exchangers with motorized bypass valves to prevent back feeding heat to AVEC or other users. Plate heat exchangers located in the end-user mechanical rooms will be tied into the boiler return piping to preheat the boiler water prior to entering the boiler. Where required, a heat injection pump will be used to avoid introducing excessive pressure drop in the building heating system. The maximum anticipated delivered recovered heat supply temperature is about 190F. When there is insufficient recovered heat to meet the building heating load, the building heating system (boiler or heater) will fire and add heat. Off the shelf controls will lock out the recovered heat system when there is insufficient recovered heat available. Typical indoor piping will be type L copper tube with solder joints. Isolation valves will be solder end bronze ball valves or flanged butterfly valves. All piping will be insulated with a minimum of 1-in insulation with an all-service jacket. Flexibility will be provided where required for thermal expansion and differential movement. Air vents, thermometers, pressure gauges, drain valves, and pressure relief valves will also be provided. Each facility will also receive a BTU meter to provide recovered heat use totalization and instantaneous use. 4.4 PRIORITIZATION OF RECOVERED HEAT Recovered heat prioritization is accomplished by setting the minimum recovered heat temperature for each user, with successive load shedding as the recovered heat loop temperature falls. The user with the highest allowable recovered heat temperature will be removed from the system first. The user with the lowest allowable recovered heat temperature will be removed from the system last. The system will also provide freeze protection in the event a user’s boiler system temperature falls below a minimum temperature, typically 50-100 degrees F. 4.5 RIGHTS-OF-WAY ISSUES There are no apparent conflicts with rights-of-ways for the arctic piping between the power plant and the end-user buildings, as the route is entirely within existing road rights-of-ways and on city, school and AVEC property. A Heat Sales/Right-of-Entry Agreement will be required between AVEC and the end users to define the parties’ responsibilities, detail the cost of recovered heat, and authorize the connection to the power plant heat recovery equipment. 4.1 POTENTIAL RISKS AND UNKNOWNS The location of heating pumps and organization of the piping system is dependent on community, school and AVEC negotiating maintenance and rate structures. The cost estimate included in this feasibility study assumes that there will be two independent heating loops, one for the school and one for the community buildings. This is a conservative approach since a single district heating system would be preferred. If a single heating system can be agreed upon, the benefit would be substantially better than reflected by the costs and fuel savings used in this feasibility study. The AVEC power plant may incorporate wind power but a final determination has not been made. Incorporation of wind turbines to reduce generator power consumption would most likely reduce the amount of recovered heat available, though if marine jacketed engines are used, there is still likely to be sufficient recovered heat available to provide a benefit for the facilities proposed in this study. 5.0 PRELIMINARY EQUIPMENT SELECTIONS The following initial equipment selections are sized and selected based on preliminary data and will require minor modifications to reflect final design. 5.1 Heat Exchangers Based on initial selected flow rates, brazed plate heat exchangers appear to be adequate for all locations. Initial heat exchanger selections are as follows. HX-1: (Power Plant). 1800 MBH capacity Primary: 200 GPM 195F EWT (50% ethylene glycol), 2.0 PSI max WPD Secondary: 200 GPM 190F LWT (50% propylene glycol) 2.0 PSI max WPD HX-2: (Old WTP). 150 MBH capacity. Primary: 17 GPM 185F EWT (50% propylene glycol), 1.0 PSI max WPD Secondary: 17 GPM 180F LWT (50% propylene glycol) 1.5 PSI max WPD HX-3: (New WTP). 150 MBH capacity. Primary: 17 GPM 185F EWT (50% propylene glycol), 1.0 PSI max WPD Secondary: 17 GPM 180F LWT (50% propylene glycol) 1.5 PSI max WPD HX-4: (Washeteria). 500 MBH capacity. Primary: 55 GPM 185F EWT (50% propylene glycol), 1.0 PSI max WPD Secondary: 55 GPM 180F LWT (50% propylene glycol) 1.5 PSI max WPD HX-5: (Clinic). 100 MBH capacity. Primary: 11 GPM 185F EWT (50% propylene glycol), 1.0 PSI max WPD Secondary: 11 GPM 180F LWT (50% propylene glycol) 1.5 PSI max WPD HX-6: (Head Start Building). 100 MBH capacity. Primary: 11 GPM 185F EWT (50% propylene glycol), 1.0 PSI max WPD Secondary: 11 GPM 180F LWT (50% propylene glycol) 1.5 PSI max WPD HX-7: (Stebbins School). 850 MBH capacity. Primary: 95 GPM 185F EWT (50% propylene glycol), 1.0 PSI max WPD Secondary: 95 GPM 180F LWT (50% propylene glycol) 1.5 PSI max WPD 5.2 Arctic Piping The round trip length of heat recovery loop piping between the power plant and most distant facility is approximately 1,100 ft. The arctic piping utilizes 4-in carrier pipe to minimize pressure drop and reduce pumping energy. The pipe itself consists of a 4-in PEX-A carrier pipe with 1-in polyurethane foam insulation and an HDPE outer jacket. The specified product is durable enough for direct bury. The piping and excavated soil will be will be wrapped in geotextile fabric to hold the pipe in the ground in the event of flooding (a big concern in Stebbins). 5.3 Circulating Pumps P-HR1A & 1B: Heat recovery loop to end-user buildings Flow = 200 GPM, Head = 45 ft Initial Selection: Grundfos TPE series with integrated VFD and differential pressure controller. Approximately 3 HP P-HR2: Heat injection loop in Old WTP Flow = 17 GPM, Head = 15 ft Initial Selection: Grundfos UPS 26-99. P-HR3: Heat injection loop in New WTP Flow = 17 GPM, Head = 15 ft Initial Selection: Grundfos UPS 26-99 P-HR4: Heat injection loop in Washeteria Flow = 55 GPM, Head = 15 ft Initial Selection: Grundfos Magna. P-HR5: Heat injection loop in Clinic Flow = 11 GPM, Head = 15 ft Initial Selection: Grundfos UPS 26-99 P-HR6: Heat injection loop in Head Start Building Flow = 11 GPM, Head = 15 ft Initial Selection: Grundfos UPS 26-99 P-HR7: Heat injection loop in School Building Flow = 95 GPM, Head = 15 ft Initial Selection: Grundfos Magna series 5.4 Expansion Tanks Total heat recovery loop volume is approximately 1000 gallons. Pressure relief at the power plant heat exchanger will be 45 PSIG and the maximum normal operating pressure will be 40 PSIG. ET-1, ET-2, ET-3: System requirements: 200 gallon tank and 100 gallon acceptance Select: three Extrol AX-144V, 77 gallon tank and 34 gallon acceptance 5.5 GLYCOL MAKEUP A glycol make-up system at the new power house will be provided to accommodate filling the system and adding additional glycol. GT-1: Select AXIOM SF100 55 Gal Glycol make-up tank. 5.6 CONTROLS Heat recovery system in each building will use an off the shelf differential temperature controller to actuate a 3-way valve and start/stop heat injection pump (if used). Control will provide load shedding, freeze protection, and prevent backfeeding of boiler heat into heat recovery system. In addition, A BTU meter will be provided at each facility using recovered, displaying instantaneous temperatures and heat transfer, as well as totalizing BTUs used. Differential Controllers: 6 required Tekmar Model 155 differential temperature control Control Valves: CV-1, CV-2: Old & New WTP-: 1-1/2” 3-way motorized control valve with 24v Actuator CV-3: Washeteria 2-1/2” 3 way motorized control valve with 24v Actuator. CV-4, CV-5: Clinic & Head Start-: 1-1/4” 3-way motorized control valve with 24v Actuator CV-6: School Building: 3” 3 way motorized control valve with 24v Actuator BTU Meters: BTU-1,2 Old & New WTP,: KEP BTU meter with 1-1/2” magnetic flow meter and matching temperature elements. BTU-3 Washeteria: KEP BTU meter with 2-1/2” magnetic flow meter and matching temperature elements. BTU-4,5 Clinic & Head Start: KEP BTU meter with 1-1/4” magnetic flow meter and matching temperature elements. BTU-6 School: KEP BTU meter with 3” magnetic flow meter and matching temperature elements. 6.0 CONCLUSIONS AND RECOMMENDATIONS Estimated construction costs were determined based on prior recent heat recovery project experience, and include materials, equipment, freight, labor, design, construction management, and startup and testing. All work at the power plant and WTP, along with design and construction management/administration for the complete project, is included in the Base Project cost. Incremental costs for arctic pipe, end-user building renovations, and overhead and freight are estimated individually for each of the other end-user buildings (refer to attached cost estimate). The estimated project cost is $1,243,000. Estimated fuel savings are:  56,900 gallons ($237,700) for a simple payback of 5.2 years. Payback is based on a 2011 fuel price of $4.21/gallon. Funding for design and construction isn’t expected before fall 2013, with construction occurring summer of 2014. With 2 years of escalation at 3%, the estimated project cost in 2014 is $1,319,000. 6008001000120014001600MBTU/HRStebbins Recovered Heat Utilization W/ Intertie0200400January February March April May June July Aug Sept Oct Nov DecMONTHWasheteria Commercial Load (MBH)Washeteria Seasonal Heating Demand (MBH)Head Start Heating Demand (MBH)Clinic Heating Demand (MBH)New WTP Heating Demand (MBH)Old WTP Heating Demand (MBH)School load (MBH)Available Recovered Heat 50006000700080009000LStebbins Recovered Heat Utilization W/ IntertieGal avoided fuel useGal fuel use01000200030004000January February March April May June July Aug Sept Oct Nov DecGALMONTH $TCICY5VTGGV5WKVG #0%*14#)'#.#5-#Ä  Ä #NCUMC0CVKXG 6TKDCN*GCNVJ%QPUQTVKWO &KXKUKQPQH'PXKTQPOGPVCN *GCNVJCPF'PIKPGGTKPI #06*%4'%18'4'&*'#6567&; 56'$$+05#- 4755+# #0%*14#)' 01/' -16<'$7' $#4419 ,70'#7 (#+4$#0-5 %#0#&# -1&+#- $'6*'. 70#.#5-# 56'$$+05 56'$$+05#.#5-# #06*%4'%18'4'&*'#6567&; 5*''6.+566#$.' 5*''607/$'4 5*''66+6.' $TCICY5VTGGV5WKVG #0%*14#)'#.#5-#Ä  Ä #NCUMC0CVKXG 6TKDCN*GCNVJ%QPUQTVKWO &KXKUKQPQH'PXKTQPOGPVCN *GCNVJCPF'PIKPGGTKPI #06*%4'%18'4'&*'#6567&; 56'$$+05#- *'#64'%18'4;2+2+0)5%*'/#6+%065$TCICY5VTGGV5WKVG #0%*14#)'#.#5-#Ä  Ä #NCUMC0CVKXG 6TKDCN*GCNVJ%QPUQTVKWO &KXKUKQPQH'PXKTQPOGPVCN *GCNVJCPF'PIKPGGTKPI #06*%4'%18'4'&*'#6567&; 56'$$+05#- *'#64'%18'4;2+2+0)5%*'/#6+%065$TCICY5VTGGV5WKVG #0%*14#)'#.#5-#Ä  Ä #NCUMC0CVKXG 6TKDCN*GCNVJ%QPUQTVKWO &KXKUKQPQH'PXKTQPOGPVCN *GCNVJCPF'PIKPGGTKPI #06*%4'%18'4'&*'#6567&; 56'$$+05#- $TCICY5VTGGV5WKVG #0%*14#)'#.#5-#Ä  Ä #NCUMC0CVKXG 6TKDCN*GCNVJ%QPUQTVKWO &KXKUKQPQH'PXKTQPOGPVCN *GCNVJCPF'PIKPGGTKPI #06*%4'%18'4'&*'#6567&; 56'$$+05#- ANTHC DEHEDivision of Environmental Health & EngineeringAlaska Native Tribal Health Consortium1901 Bragaw Street, Suite 200oject Name:Stebbins Heat Recovery ProjectANCHORAGE, AK 99503ct Number:TBD(907) 729-3609Engineer:WLFChecked:________FAX (907) 729-3729vision Date:e-mail: william.fraser@anthc.orgPrint:File: C:\Documents and Settings\william.fraser\Application Data\OpenText\DM\Temp\[DEHE-#199326-v1-Stebbins_Heat_Recovery_Feasibility_Calcs.XLSX]Sheet1Find:Feasibility of Heat Recovery from Stebbins Generator Facility to existing WTP, new WTP, Clinic, Washeteria, and Head Start residenceGiven:Monthly KWH produced by existing Stebbins generator plant in 2011Washeteria reported Fuel consumption 7,400             Gal / YearSchool reported fuel consumptioin46,500          Gal / YearHeating Degree days for StebbinsAssumptions:Estimated Peak heat loss for 3 WSTs: 90,000BTU/Hr Estimated peak Heat loss for Clinic80,000BTU/HrEstimated Peak heat loss for Old WTP120,000BTU/HrEstimated peak heat loss for Washeteria80,000BTU/HrEstimated Peak heat loss for New WTP80,000Btu/Hr Estimated peak heat loss for School1,580,000BTU/HrDesign Air Temperature:-40Deg FEstimated peak Washeteria Dryer Airflow1,200CFMDesign Water Temperature40Deg FEstimated Dryer Air Temperature180Deg FWTP Space Temperature60Deg FEstimated peak Washeteria Hot water load110,000BTU/Hr (40 GPH x 4)Public Bldg Space Temperature72Deg FClinic Space Temperature72Deg F3000 BTU to radiators / KW Power Generated (Based on Marine Deisel jackets)Estimated Boiler AFUE:75%(Optimistic)New power Plant will serve Stebbins (St. Micheal in future)Community Estimated Fuel Price:$4.21per galHeat loss per below calculationsAVEC Estimated Fuel Price$4.21per galHeat loads per below calculationsAVEC Heat Sales Agreement:30%Avoided fuel cost at AVEC's PriceRaw water production occuring in summer months only (seasonal water supply)Frozen Soil Conductivity0.12(Between 0.05 & 0.15 BTUH/Ft)Above Ground Heat Recovery System in Arctic PipeCalculations:Existing Water Plant Heat Loss:Generator Module Heat LoadsBuilding design heating loss:120,000         BTU/HHeat loss / degree of OSA temp1,200.0          BTH/H* Deg FNew Water Plant Heat Loss:Building design heating loss:80,000           BTU/HHeat loss / degree of OSA temp800.0              BTH/H* Deg FLiving quarters design heat loss 30000BTU/HrControl module Heat Loss0BTU/HrExisting Washeteria Heat Loss:Storage modules Heat Loss30000BTU/HrBuilding design heating loss:80,000           BTU/HGenerator Modules Heat Loss0BTU/HrHeat loss / degree of OSA temp714.3              BTH/H* Deg FTotal 60000 BTU/HrHeat loss / degree of OSA temp:545 BTU/Hr* deg FExisting Clinic Heat Loss:Building design heating loss:80,000           BTU/HHeat loss / degree of OSA temp714.3              BTH/H* Deg FExisting Head Start Heat Loss:Building design heating loss:80,000        BTU/HExisting School Heat Loss:Heat loss / degree of OSA temp714.3          BTH/H* Deg FBuilding design heating loss:1,580,000        BTU/HHeat loss / degree of OSA temp14,107.1        BTH/H* Deg F09-Sep-129-Sep-12The heating load from storage buildings is approximate.  A design load of approximately 50 BTU / SF at design conditions was assumed based on small footprint buildings with poor insulation and high infiltration.  Design conditions were based on OSA temp of ‐50F ANTHC DEHEDivision of Environmental Health & EngineeringAlaska Native Tribal Health Consortium1901 Bragaw Street, Suite 200oject Name:Stebbins Heat Recovery ProjectANCHORAGE, AK 99503ct Number:TBD(907) 729-3609Engineer:WLFChecked:________FAX (907) 729-3729vision Date:e-mail: william.fraser@anthc.orgPrint:File: C:\Documents and Settings\william.fraser\Application Data\OpenText\DM\Temp\[DEHE-#199326-v1-Stebbins_Heat_Recovery_Feasibility_Calcs.XLSX]Sheet109-Sep-129-Sep-12Calculations (Continued) Buried Water Main Heat Loss:Parasitic Generator Cooling System LossesDesign Air Temperature‐40Degrees FDesign Air Temperature:‐40Deg FDesign Ground Surface Temperature‐10Degrees FAMOT valve leak Rate (average) May not apply0GPMDesign Circulating Water Loop Temp40Degrees FHot CoolantTemperature180Deg FInsulation:4Inch foam ins.Design Heat Loss:0 BTU/HrCarrier Pipe:6Pipe OD (Inches)Heat loss / Degree of OSA temp:0.0Insulation K value0.0133BTUH  / (ft x Deg F)Ground K value0.12BTUH  / (ft x Deg F)Above Ground Heat Recovery Pipe Heat Loss:R value =10.140 Ft x hr x Deg F Depth of Bury =2.0feetDesign Heat Recovery loop Temperature180Degrees FBuried Pipe2000FtDesign Air Temperature:‐40Degrees FDesign Heat Loss:10,515             BTU/hrInsulation:4Inch foam ins.Heat Loss / Degree OSA temp131                   BTU/hrPipe:4Pipe OD (Inches)Insulation K value0.16BTU x in / (ft^2 x hr x Deg F)R value =13.114 Ft^2 x hr x Deg F Peak Storage Tank Heat Loss (3 storage Tanks): 90,000BTU / HrLength of Above ground Pipe200FtHeat Loss / degree of OSA temp:1125 BTU / HrDesign Heat Loss:10,540       BTU/hrHeat Loss / Foot52.70         BTUH / FtRaw Water Heating Load (June through September Only)Heat Loss / Degree OSA temp47.9 BTUH / Deg FRaw water anticipated flow rate19.3GPMRaw water temperature:35Deg FBuried Heat Recovery Pipe Heat Loss:Treatment Process Temperature40Deg FDesign Air Temperature‐40Degrees FRaw water heating load:48250 BTU /HrDesign Ground Surface Temperature‐10Degrees FInsulation:1.05Inch foam ins.Washeteria Commercial LoadsCarrier Pipe:4Pipe OD (Inches)Washeteria Loads reflect operation for 8 hours a day, 5 days a week, with average load atInsulation K value0.017BTUH  / (ft x Deg F)80% of design.  It's worth noting that loads will approach 100% of design if usersGround K value0.12BTUH  / (ft x Deg F)from St. Michael come to Stebbins for cheaper laundry use.Pipe R value =3.951 Ft x hr x Deg F Peak Washer Load (for waste heat capacity estimation:Depth of Bury =2.0feetPeak Dryer load (for waste heat capacity estimation):286,440 BTUHBuried Pipe3000FtService Factor75%Design Heat Loss:138,936     BTU/hrDryer load per Design degree day (with service Factor)1074 BTUH/DegFHeat Loss / Foot46.31         BTU/hrHot water load (with service factor)82500 BTUHHeat Loss / Degree OSA temp632             Average hours per month (for fuel savings estimation:160 ANTHC DEHEDivision of Environmental Health & EngineeringAlaska Native Tribal Health Consortium1901 Bragaw Street, Suite 200oject Name:Stebbins Heat Recovery ProjectANCHORAGE, AK 99503ct Number:TBD(907) 729-3609Engineer:WLFChecked:________FAX (907) 729-3729vision Date:e-mail: william.fraser@anthc.orgPrint:File: C:\Documents and Settings\william.fraser\Application Data\OpenText\DM\Temp\[DEHE-#199326-v1-Stebbins_Heat_Recovery_Feasibility_Calcs.XLSX]Sheet109-Sep-129-Sep-12Calculations (Continued)MonthKWH / Month (Stebbins)KWH / Month (St Michael) Days / Month Av KWHtg Degree Days / Month (40F)Htg Degree Days / Month (60F)Htg Degree Days / Month (180F)Heat rejected W/O intertie (MBH)Heat rejected W/ intertie (MBH)Parasitic Cooling System Losses (MBH)Available Heat W/O Intertie (MBH)Available Heat W/ Intertie (MBH)January136550 19245731442 1,243              1,863             5,583            551             1327‐                  551                1,327         February 132756 16788029404 1,148              1,728             5,208            535             1212‐                  535                1,212         March 118303 17055430388 1,077              1,677             5,277            477             1165‐                  477                1,165         April 119721 14774430359 711                 1,311             4,911            483             1078‐                  483                1,078         May 107014 13715031328 205                 825                4,545            432             985‐                  432                985            June83575 11054930261‐                  513                4,113            337             783‐                  337                783            July97029 11515431285‐                  320                4,040            391             856‐                  391                856            Aug99037 12157231297‐                  373                4,093            399             890‐                  399                890            Sept 109701 1319713032524                   624                4,224            442             974‐                  442                974            Oct119668 14258931352 558                 1,178             4,898            483             1057‐                  483                1,057         Nov 130086 16767730400 945                 1,545             5,145            525             1201‐                  525                1,201         Dec134112 17547731416 1,218              1,838             5,558            541             1248‐                  541                1,248         MonthAVEC Facility Heating load (MBH/Hr)Buried Pipe Loss (MBTUH)Above Ground Pipe Loss (MBTUH)Sum Transmission Losses (MBTUH)New WTP Building Heat Loss (MBH/Hr)Old WTP Building Heat Loss (MBH/Hr)WST Heat Loss (MBH / Hr)Raw Water Heat Add (MBH /Hr)Circ Loop Heat Add (MBTU/H)Sum Heat DemandJanuary33                114                  9                        155                4872 45                05171                February33                113                  9                        155                4872 45                05169                March30                111                  8                        150                4567 40                05157                April24                103                  8                        135                3552 27                03117                May15                93                    7                        114                21327                  0162                  June9                  87                    7                        102                1421‐              48.25082                  July6                  82                    6                        94                   812‐              48.25069                  Aug7                  83                    6                        96                   1014‐              48.25072                  Sept11                89                    7                        107                17251                  48.25091                  Oct21                100                  8                        128                3046 20                0299                  Nov28                108                  8                        145                4162 35                04143                Dec32                113                  9                        154                4771 44                05168                Recovered Heat Transmission Losses:AVEC Available Recovered Heat EstimateWTP Heating Demand ANTHC DEHEDivision of Environmental Health & EngineeringAlaska Native Tribal Health Consortium1901 Bragaw Street, Suite 200oject Name:Stebbins Heat Recovery ProjectANCHORAGE, AK 99503ct Number:TBD(907) 729-3609Engineer:WLFChecked:________FAX (907) 729-3729vision Date:e-mail: william.fraser@anthc.orgPrint:File: C:\Documents and Settings\william.fraser\Application Data\OpenText\DM\Temp\[DEHE-#199326-v1-Stebbins_Heat_Recovery_Feasibility_Calcs.XLSX]Sheet109-Sep-129-Sep-12Calculations (Continued)MonthBuilding Heat LossDryer Load (MBH)Washer Load (MBH) Total (MBH)January48 193                  82.5324                February48 193                  82.5323                March45 189                  82.5316                April35 176                  82.5293                May21 157                  82.5261                June14 147                  82.5243                July8 140                  82.5231                Aug10 142                  82.5234                Sept17 151                  82.5250                Oct30 170                  82.5283                Nov41 184                  82.5308                Dec47 193                  82.5323                MonthAvailable Heat W/O Intertie (MBH/ Hr)Available Heat W/ Intertie (MBH/ Hr)Old WTP Heating Demand (MBH)New WTP Heating Demand (MBH)Clinic Heating Demand (MBH)Head Start Heating Demand (MBH)School Heating Demand (MBH)Washeteria Seasonal Heating Demand (MBH)Washeteria Commercial Load (MBH)Total Heat Demand (MBH)Recovered Heat Benefit W/O Intertie (MBH)Recovered Heat Benefit W/ Intertie (MBH)January 395              1,171               92784343 848 48 2761428 395 1171February 381              1,058               92774343 841 48 2751418 381 1058March327              1,015               85724040 789 45 2711342 327 1015April348              943                  64533131 616 35 2581089 348 943May317              870                  35261919 375 21 240736 317 736June235              680                  21621212 241 14 230592 235 592July297              761                  125777 1468 222460 297 460Aug303              793                  145899 170 10 224493 303 493Sept335              867                  25651515 293 17 234664 335 664Oct354              929                  55442727 536 30 252972 354 929Nov380              1,056               78653737 727 41 2671251 380 1056Dec387              1,094               91774242 836 47 2751412 387 1094Total:Washeteria Commercial LoadsAvailable Recovered Heat  ANTHC DEHEDivision of Environmental Health & EngineeringAlaska Native Tribal Health Consortium1901 Bragaw Street, Suite 200oject Name:Stebbins Heat Recovery ProjectANCHORAGE, AK 99503ct Number:TBD(907) 729-3609Engineer:WLFChecked:________FAX (907) 729-3729vision Date:e-mail: william.fraser@anthc.orgPrint:File: C:\Documents and Settings\william.fraser\Application Data\OpenText\DM\Temp\[DEHE-#199326-v1-Stebbins_Heat_Recovery_Feasibility_Calcs.XLSX]Sheet109-Sep-129-Sep-12Calculations (Continued)MonthOld WTP (Gal)New WTP  (Gal) Clinic (Gal)Head Start (Gal) School (Gal)Washeteria (Gal)Total Fuel Demand (gal)Recovered Heat Fuel Savings (Gal)Recovered Heat Fuel Savings (Dollars)Recovered Heat Charges (Dollars)Savings to Community (Dollars)Recovered Heat Fuel Savings (Gal)Recovered Heat Fuel Savings (Dollars)Recovered Heat Charges (Dollars)Savings to Community (Dollars)January684 579318 318 6,276 7958970 7069$29,761 $8,928 $20,8321324$5,574$1,672 $3,902February634 536295 295 5,821 7698349 5856$24,655 $7,397 $17,2591168$4,918 $1,476 $3,443March611 513286 286 5,650 7538098 5757$24,238 $7,271 $16,967830$3,496 $1,049 $2,447April462 378224 224 4,417 6626365 5319$22,395 $6,718 $15,6761051$4,426 $1,328 $3,098May261 194141 141 2,779 5404056 4056$17,076 $5,123 $11,953955$4,021 $1,206 $2,814June147 4448888 1,728 4642958 2958$12,452 $3,736 $8,716400$1,683 $505 $1,178July92 4185555 1,078 4152113 2113$8,894 $2,668 $6,226906$3,816 $1,145 $2,671Aug107 4286464 1,257 4282348 2348$9,883 $2,965 $6,918940$3,958 $1,187 $2,771Sept182 469106 106 2,102 4913457 3457$14,555 $4,367 $10,1891100$4,631 $1,389 $3,242Oct405 325201 201 3,969 6275727 5415$22,796 $6,839 $15,9571158$4,877 $1,463 $3,414Nov557 464264 264 5,205 7207473 6079$25,595 $7,678 $17,9161236$5,202 $1,561 $3,642Dec674 569314 314 6,192 7898851 6502$27,372 $8,212 $19,1611264$5,320 $1,596 $3,7244815 5318 2353 2353 46474 7452 68765 56929 $239,672 $71,902 $167,770 12333 $51,922 $15,577 $36,345Fuel Savings With IntertieFuel Savings Without IntertieEstimated Fuel SavingsEstimated Fuel Demand Qty Rate130 106 117 115 127 126 85 108 35 35 35 Labor Civil200 8 25.020,000$ Site Visit 1 1,100$ 1,100$ Mechanical500 8 62.550,000$ Site Visit 2 1,100$ 2,200$ Electrical200 8 25.020,000$ Site Visit 1 1,100$ 1,100$ DesignTotal hours 771.7 628.3 196.2 76.5 155.0 608.8 34.0 0.0 #### 195.7 613.3MobilizationEquipment Shipping0.0 1-$ -$ -$ Camp set up1 0.2 5.0 16,500$ -$ -$ Shop Set up1 1 1.0 11,300$ -$ -$ Takeoffs1 1 1.0 11,300$ -$ -$ Training1 1 1.01350$ -$ -$ Materials Receiving and Inventory 2 1 2.0 0.50.2 0.5 0.5 0.24,630$ -$ -$ Set up Materials Storage/Yard 2 1 2.0 0.510.225,380$ -$ -$ Expediting to Const Site 0.0-$ -$ -$ -$ -$ -$ 0.0-$ -$ -$ ## of feet200 200 1.0 11 0.1213,695$ Pipe 200 50$ 10,000$ 2,000$ 12,000.00$ Bridge Crossing0.0-$ Fittings 20 200$ 4,000$ 600$ 4,600.00$ Supports200 200 1.0 10.122,085$ Materials-$ -$ Road Crossings0.0-$ Clamps/ Ins 20 75$ 1,500$ 1,000$ 2,500.00$ -$ -$ -$ -$ -$ -$ ## of feet2000 300 6.7 1 0.2 11 122,547$ -$ -$ Bridge Crossing0.0-$ -$ -$ Bedding Material 0.0-$ Gravel-$ -$ Road Crossings6 2.5 2.4 0.5 0.51 14,644$ -$ -$ Geo-textile2000 400 5.02 15,250$ Geotextile 5000 5$ 25,000$ 1,000$ 26,000.00$ -$ -$ -$ -$ ## of feet2200 400 5.5 11 1 0.1 0.12 0.525,883$ Pipe 2200 38$ 83,600$ 8,000$ 91,600.00$ Bridge Crossing0.0-$ Fittings 100 100$ 10,000$ 1,500$ 11,500.00$ Bedding Material 0.0-$ -$ -$ Road Crossings4 2 2.0 0.3124,520$ -$ -$ -$ -$ -$ ## of feet1000 400 2.5 1 0.5 0.2 0.5 0.10.57,513$ Pipe 1000 30$ 30,000$ 500$ 30,500.00$ Bridge Crossing0.0-$ Materials 80 75$ 6,000$ 500$ 6,500.00$ Bedding Material 0.0-$ Road Crossings2 2 1.0 0.3122,260$ -$ -$ -$ -$ ## of feet2000 400 5.0 0.10.12 16,325$ Insulation 5000 4$ 20,000$ 2,000$ 22,000.00$ No. Cost Ea Total Cost90,000$ Fixed estimate @ 100 /hr.FreightMaterials+ FreightFixed estimate @ 100 /hr.Production Rate*Note2" Rino-flex (buried)PlumbershippingELEMENTTrench Excavation and BackfillEngineerDesignOperatorAbove Ground Arctic PipeFixed estimate @ 100 /hr.Local PlumberTotalLocalLabor Local OperatorInsulation "Blueboard layer"4" Rino-flex (buried)Crew LeadStebbins Heat Recovery Cost EstimateMechanicItemElectricianStebbins Heat Recovery Cost EstimateMATERIALSLABORDays(60hr. Week)Super -$ -$ -$ Cooling sys modifications2 0.15 13.3 0.2 0.21127,760$ Pipe & Fittin 1 20,000$ 20,000$ 1,500$ 21,500.00$ HX installation0.01-$ HX2 7,000$ 14,000$ 3,000$ 17,000.00$ Controls2 1 2.00.50.52,330$ Controls 2 10,000$ 20,000$ 200$ 20,200.00$ Make-up / Expansion Tanks2 1 2.0113,220$ Tank4 3,500$ 14,000$ 800$ 14,800.00$ Insulation Upgrades1 0.3 3.30.2512,050$ Insulation 500 5$ 2,500$ 100$ 2,600.00$ Pump4 2,000$ 8,000$ 400$ 8,400.00$ Air Sep 2 3,500$ 7,000$ 300$ 7,300.00$ -$ -$ -$ Heating sys modifications1 0.1 5.0 0.51111,300$ Pipe & Fittin 1 6,500$ 6,500$ 1,000$ 7,500.00$ HX installation1 1 1.01 0.111,695$ HX1 4,000$ 4,000$ 400$ 4,400.00$ Controls1 0.5 2.0113,240$ Controls 1 2,000$ 2,000$ 350$ 2,350.00$ Insulation Upgrades1 1 1.02700$ Pump3 2,000$ 6,000$ 900$ 6,900.00$ -$ Insulation 600 3$ 1,800$ 150$ 1,950.00$ -$ -$ Heating sys modifications1 0.25 4.0 0.511110,440$ Pipe & Fittin 1 8,000$ 8,000$ 1,000$ 9,000.00$ HX installation1 1 1.01 0.111,695$ HX1 4,000$ 4,000$ 400$ 4,400.00$ Controls1 0.5 2.0113,240$ Controls 1 2,000$ 2,000$ 350$ 2,350.00$ Insulation Upgrades1 1 1.01350$ Pump1 1,000$ 1,000$ 150$ 1,150.00$ -$ Insulation 200 3$ 600$ 50$ 650.00$ -$ -$ Heating sys modifications1 0.25 4.0 0.511110,440$ Pipe & Fittin 1 10,000$ 10,000$ 1,000$ 11,000.00$ HX installation1 1 1.01 0.111,695$ HX1 3,000$ 3,000$ 400$ 3,400.00$ Controls1 0.5 2.0113,240$ Controls 1 2,000$ 2,000$ 350$ 2,350.00$ Insulation Upgrades1 1 1.01350$ Pump1 1,000$ 1,000$ 150$ 1,150.00$ -$ Insulation 100 3$ 300$ 50$ 350.00$ -$ -$ Heating sys modifications1 0.25 4.0 0.511110,440$ Pipe & Fittin 1 10,000$ 10,000$ 1,000$ 11,000.00$ HX installation1 1 1.01 0.111,695$ HX1 3,000$ 3,000$ 400$ 3,400.00$ Controls1 0.5 2.0113,240$ Controls 1 2,000$ 2,000$ 350$ 2,350.00$ Insulation Upgrades1 1 1.01350$ Pump1 1,000$ 1,000$ 150$ 1,150.00$ -$ Insulation 100 3$ 300$ 50$ 350.00$ -$ -$ Heating sys modifications1 0.2 5.0 0.511113,050$ Pipe & Fittin 1 15,000$ 15,000$ 2,000$ 17,000.00$ HX installation1 1 1.01 0.111,695$ HX1 6,000$ 6,000$ 400$ 6,400.00$ Controls1 0.5 2.0113,240$ Controls 1 2,000$ 2,000$ 350$ 2,350.00$ Insulation Upgrades1 0.5 2.01700$ Pump1 1,500$ 1,500$ 150$ 1,650.00$ -$ Insulation 200 5$ 1,000$ 100$ 1,100.00$ -$ -$ Heating sys modifications1 0.1 10.0 0.511126,100$ Pipe & Fittin 1 20,000$ 20,000$ 2,000$ 22,000.00$ HX installation1 1 1.01 0.111,695$ HX1 6,000$ 6,000$ 400$ 6,400.00$ Controls1 0.5 2.0113,240$ Controls 1 2,000$ 2,000$ 350$ 2,350.00$ Insulation Upgrades1 0.5 2.01700$ Pump3 2,000$ 6,000$ 900$ 6,900.00$ -$ Insulation 500 5$ 2,500$ 150$ 2,650.00$ -$ -$ Connection and install6 2 3.0 0.20.5 0.5 0.1116,930$ BTU Meter 6 3,500$ 21,000$ 500$ 21,500.00$ Programming and interface6 2 3.0 0.1 13,570$ Flow meter 7 1,700$ 11,900$ 500$ 12,400.00$ AVEC Link 6 3,000$ 18,000$ 300$ 18,300.00$ -$ -$ Surveying / SHIPO1 0.1 10.0110,600$ -$ -$ Glycol1 1 1.00.2170$ Glycol 30 1,100$ 33,000$ 33,000.00$ Old WTP ConnectionHead Start ConnectionSchool Building ConnectionWasheteria Building ConnectionWTP ConnectionSupport ActivitiesClinic ConnectionBTU Meter installPower Plant connections Equipment Maintenance5 2 2.50.41,150$ -$ -$ Fuel and Lubricants5 10 0.50.51 1638$ Fuel 1500 6$ 9,000$ 9,000.00$ Fusing Machine5 8 0.61219$ -$ -$ -$ -$ -$ Literature and References6 0.25 24.0125,440$ Publishing 4 500$ 2,000$ 100$ 2,100.00$ Training1 0.25 4.0 1 1212,240$ -$ -$ -$ -$ -$ -$ Preliminary Clean Up1 0.2 5.0 0.20.2526,375$ -$ -$ Final Inspection Punch List1 0.3 3.3 1 3217,267$ -$ -$ Final Clean Up1 0.2 5.0 1210,000$ -$ -$ -$ -$ -$ Pack Up and Crate1 0.1 10.0 1220,000$ 1 1 5,000$ 5,000$ 5,000.00$ Shipping1 0.5 2.0 124,000$ -$ 10,000$ 10,000.00$ -$ -$ -$ -$ -$ Financial Close out/ Auditing1 0.5 2.012,120$ -$ -$ As builting1 0.25 4.0 1 10.2510,700$ -$ -$ -$ -$ -$ 385,489$ 506,000$ M+F total 556,250.00$ 479,889$ 941,739$ 1,036,139$ 1,243,367$ 2 years escalation @ 3% / year 75,721$ Total 1,319,088$ $239,672.005.19 yrsEstimated annual savings (W/ Intertie)Simple PaybackAssumptions: - Construction team is mobilized and on site for adjacent project. - Trenching with associated project was not included, but availability of equipment, mechanics and operators was for purposes of mobilization and staging.- Civil site visit as part of adjacent project.Superintendant will split time with adjacent work.- Power plant is mostly configure and equiped.- System control can be accomplished w/o a panel.- Crew leader functions will be accomplished by Superentendant, or in lieu of Super.- De-mobilization not required due to adjacent project.With DesignDe-MobeJob Clean Up/ Final InspectionFinal*NoteStartup and Operator Training.All + 20% contingencyLabor + Materials + FreightTotal MatLabor + Mat + Frgt + DesignTotal Labor             Appendix D  September 16, 2011 Memo   September 19, 2011 Trip Report      3335 Arctic Boulevard Suite 100 • Anchorage Alaska 99503 • Phone: 907.564.2120 • Fax: 907.564.2122 202 W. Elmwood Avenue Suite 1 • Palmer Alaska 99645 • Phone: 907.746.5230 • Fax: 907.746.5231   CIVIL ENGINEERING GEOTECHNICAL ENGINEERING TRANSPORTATION ENGINEERING ENVIRONMENTAL SERVICES PLANNING MEMORANDUM  DATE: September 16, 2011 File No:  11‐013 TO: Matt Metcalf, Project Manager  Alaska Village Electrical Cooperative    FROM: Mark Swenson, P.E., Project Engineer  Hattenburg Dilley & Linnell Engineering Consultants  RE: Preliminary Research for Wind Turbine Siting in Stebbins       At the request of the Alaska Village Electrical Cooperative (AVEC), Hattenburg Dilley &  Linnell (HDL) Engineering Consultants performed preliminary research for two possible sites  for wind turbine construction in Stebbins, Alaska.  HDL and AVEC selected two wind tower  locations for the feasibility study to analyze for potential environmental effects, land use,  accessibility to the site, constructability of the site, and available wind resources.  See Figure  1 for the wind tower locations.  These sites will be evaluated by HDL and V3 Energy during  our upcoming site visit to Stebbins.  Also, during our site visit we will meet with community  members to get local feedback about the proposed locations and hear suggestions about  any alternative wind tower sites.  Feasible sites suggested by the village will also be  investigated.  Background Information  Relocation of the existing AVEC's power plant and construction of a new AVEC bulk fuel  storage facility is currently ongoing in Stebbins.  These Upgrades are necessary to move the  power plant off State‐owned lands, elevate the facility above the flood plain, and increase  tankage to provide adequate capacity for a future 10‐mile intertie to the neighboring  community of St. Michaels.  As part of the intertie project, a new primary power plant is  planned in Stebbins with switch gear and controls configured to accommodate future wind  turbine power generators.  A future wind turbine project is planned in Stebbins to reduce  the community's dependence on imported diesel fuel and provide an alternate source of  renewable energy.  According to the AEA Alaska high resolution wind resource map, the Stebbins region has a  class 3 wind regime.  A meteorological (met) tower was installed on St. Michael's Native  Corporation (SMNC) land between Stebbins and St. Michaels in 2010.  The met tower is  currently collecting wind data that suggests the existing wind regime is this location is  suitable for wind power generation.  However, the met tower is located close to SMNC's  gravel source and the Corporation is unwilling to release the land for wind farm  development.  Therefore, two alternate wind tower sites have been selected for research of  accessibility, constructability, land use, and environmental permitting and concerns.    RE: Preliminary Research for Wind Turbine Siting in Stebbins September 16, 2011 Page 2 of 4     Wind Tower Site 1  The following sub‐sections discuss the site location, available access, environmental  documentation necessary for the site and the land use for the wind tower site 1.  Location and Description  Tower site 1 is located approximately 1.2‐miles north of the Stebbins Airport area (Latitude  63˚ 32’ 01” N, Longitude 162˚ 16’ 40” W) as shown in Figure 1.  The site is located  approximately 150‐feet above sea level, on a plateau adjacent to the Norton Sound.  The  terrain surrounding the tower site is relatively flat with grades that are approximately 0‐6%.     Access and Constructability  Tower site 1 is currently located adjacent to the road that travels from Stebbins to St.  Michaels.  If tower site 1 is developed, an estimated 200‐foot long access road would have  to be developed from the existing roadway to the site.  The access road would be  approximately 16‐feet wide.  Currently there are three potential gravel sources located on  St. Michaels Island as shown on Figure 1. The grade of the proposed road would range  between 0 and 6 percent.  Land Use  Tower site 1 is located on a lot owned by the Stebbins Native Corporation.  AVEC will  request permission from the Stebbins Native Corporation to visit and evaluate the wind  tower site on St. Michaels Island.  Upon receipt of an approved Statement of Non‐Objection  AVEC, HDL and V3 Energy will complete a site visit and evaluation the site.  Permitting and Environmental Concerns  The following lists the environment documentation is required to construct a wind tower on  site 1:   Submit a letter to SHPO requesting a decision on archaeological resources in the  project area.   Submit a Jurisdictional Determination with the Corps of Engineers (COE) regarding  wetlands at the project site. Due to the upland location it is unlikely that the site is a  wetland area.   File form 7460‐1 to the Federal Aviation Administration (FAA) at least 45 days before  construction or when construction permits are filed, whichever is earliest.   Submit a consultation letter to the US Fish and Wildlife Services (USFWS) outlining  the project with a request for a biological opinion.          RE: Preliminary Research for Wind Turbine Siting in Stebbins September 16, 2011 Page 3 of 4     Wind Tower Site 2  The following sub‐sections discuss the site location, available access, environmental  documentation necessary for the site and the land use for the wind tower site 2.  Location and Description  Tower site 2 is located approximately 2.1‐miles southeast of the Stebbins Airport (Latitude 63˚ 30’  25” N, Longitude 162˚ 12’ 57” W) as shown in Figure 1.  The site is located approximately 80‐feet  above sea level, adjacent to the Clear Lakes.  The terrain surrounding the tower site is  relatively flat with grades that are approximately 0 to 6 percent.  Access and Constructability  Tower site 2 is currently located adjacent to a roadway access to the Clear Lakes.  If tower  site 2 is developed, an estimated 100‐foot long access road would have to be developed  from the existing roadway to the tower site.  The access road would be approximately 16‐ feet wide.  Currently there are three potential gravel sources located on St. Michaels Island  as shown on Figure 1.  The grade of the proposed road would range between 0 and 6  percent.  Land Use  Tower site 2 is located on a lot owned by the St. Michaels Native Corporation.  AVEC will  request permission from the St. Michaels Native Corporation to visit and evaluate the wind  tower site on St. Michaels Island.  Upon receipt of an approved Statement of Non‐Objection  AVEC, HDL and V3 Energy will complete a site visit and evaluation the site.  Permitting and Environmental Concerns  The following lists the environment documentation required to construct a wind tower on  site 2:   Submit a letter to SHPO requesting a decision on archaeological resources in the  project area.   Submit a Jurisdictional Determination with the Corps of Engineers (COE) regarding  wetlands at the project site. Due to the upland location it is unlikely that the site is a  wetland area.   File form 7460‐1 to the Federal Aviation Administration (FAA) at least 45 days before  construction or when construction permits are filed, whichever is earliest.   Submit a formal Section 7 consultation letter to the USFWS.  Due to the location of  wind tower site 2 being near wetlands, mitigation and avoidance measures for  impacts to threatened and endangered species and migratory birds will likely be  required.      RE: Preliminary Research for Wind Turbine Siting in Stebbins September 16, 2011 Page 4 of 4     Summary and Recommendations  AVEC, HDL and V3 Energy will travel to Stebbins to evaluate the two wind tower sites.  HDL will have  a geotechnical engineer to determine potential conflicts with the in‐situ soil at the tower sites, and a  civil engineer to determine potential access to the sites.  V3 Energy will have an aerospace engineer  specializing in wind resources to assess the available wind resources.  Once the tower location is  selected a met tower will be constructed to collect data and determine if a wind tower is feasible for  the location.   Attachments: Figure 1 ‐ Wind Tower Site 1 & 2 Locations                                                                                                            H:\jobs\11‐013 Stebbins Wind Feasibility Study (AVEC)\Memo\Stebbins Wind Study Memo_9‐12‐2011.doc  3335 Arctic Boulevard Suite 100 • Anchorage Alaska 99503 • Phone: 907.564.2120 • Fax: 907.564.2122 202 W. Elmwood Avenue Suite 1 • Palmer Alaska 99645 • Phone: 907.746.5230 • Fax: 907.746.5231 CIVIL ENGINEERING GEOTECHNICAL ENGINEERING TRANSPORTATION ENGINEERING ENVIRONMENTAL SERVICES PLANNING SURVEYING CONSTRUCTION ADMINISTRATION MATERIAL TESTING MEMORANDUM DATE: September 22, 2011 TO: Matt Metcalf, AVEC Project Manager FROM: Mark Swenson, P.E. RE: September 19, 2011 Stebbins Wind Site Investigation Report On Monday September 19, 2011, Mark Swenson (HDL), John Thornley (HDL), Matt Metcalf (AVEC), and Doug Vaught (V3 Energy) flew to Stebbins to investigate two proposed preliminary wind tower sites. We departed Anchorage via Security Aviation charter at 8:00 AM and arrived in Stebbins at approximately 9:40 AM. Also on the charter were Janie Dusel (HDL), Dana Keene (AVEC) and Mark Teitzel (AVEC), who were traveling to Stebbins to inspect the progress of the AVEC and Community bulk fuel facilities that are currently being constructed by STG, Inc. Kirk with STG met us at the airport with a truck and a 6-wheeler. We drove to STG’s camp and then walked to the AVEC bulk fuel farm to inspect the construction. Matt, Doug, John and I left the AVEC site at approximately 10:00 AM and drove to the existing met tower site located on an elevated cinder cone rock formation between Stebbins and St. Michaels. See attached Site Map for met tower location. Doug inspected the met tower while John, Matt, and I inspected the top of the cinder cone. We sampled and inspected the exposed rock and viewed the surrounding terrain. Doug informed us that the met tower baseline settings were different than he initially anticipated and the wind data would have to be adjusted to reflect the field conditions. The cinder cone is not a viable wind tower site because it is a gravel source owned and operated by the St. Michaels Village Corporation. The Corporation has stated that it will not relinquish a viable and profitable material source for wind farm development. From the cinder cone, we identified two alternative wind tower sites with flat or gently sloping terrain and good north/south exposure. The sites are identified below and shown on the attached site map:  St. Michaels Site 1: Lat: N 63°30'09.56" Long: W 162°11'23.81” Elev:±130'  St. Michaels Site 2: Lat: N 63°30'46.54" Long: W 162°10'56.31" Elev:±175' St. Michaels Site 1 is located on a bluff to the south of the road, approximately 0.70 miles southeast of the met tower. We parked along the road and walked the site. The terrain was dry and ground cover consisted of tundra with the occasional low alder bush. Subsurface conditions at the site are anticipated to include shallow to significant soil deposits with warm permafrost. It should be anticipated that any rock encountered will be frost fractured to depths of 8 to 10 feet below the surface and may be weathered and friable to depth. The most likely foundation types for wind turbines at this location are a mass gravity mat foundation or deep foundation consisting of driven piles or helical piers. This site lies within the Part 77 airspace of St. Michaels’ Runway 02/20 and further coordination with the FAA is RE: September 19, 2011 Stebbins Trip Report September 22, 2011 Page 2 of 2 required prior to erection of a met tower or wind turbines in this location. See attached preliminary FAA Notice Criteria worksheets. St. Michaels Site 2 is located approximately 0.4 miles east of the existing met tower. The site is located on a ridge line extending from the cinder cone that appears to be an old basalt flow. We viewed the site from the top of the cinder cone but did not walk the terrain. It is likely that shallow organics and soils overlie basalt and other volcanics in this location. It should be anticipated that the underlying rock is frost fractured to depths of 8 to 10 feet below the surface and may be weathered and friable to depth. Possible foundation types for wind towers at this site include mass gravity mat foundations and rock anchors if the volcanics are encountered at shallow depths. Construction would also include clearing dense patches of alders and constructing a 0.5 mile road from the cinder cone access road to the proposed site. This site lies within the Part 77 airspace of St. Michaels’ Runway 02/20 and further coordination with the FAA is required prior to erection of a met tower or wind turbines in this location. See attached preliminary FAA Notice Criteria worksheets. We traveled from St. Michaels Site 2 to Stebbins Site 1 at approximately 12:00 PM. The Stebbins site is located on a plateau near the city landfill. The location is identified below and shown on the attached site map:  Stebbins Site 1: Lat: N 63°31'56.58" Long: W 162°16'50.64” Elev:±155' We walked the terrain and inspected the site. The site is located adjacent to the existing road to St. Michaels and gravel is readily available nearby. The ground cover was composed of tundra and no ponding or excess moisture was observed. The site subsurface is likely composed of organics and shallow soils overlying basalt and other volcanics. Frost fractured rock is anticipated to depths of 8 to 10 feet below the surface and may be weathered and friable to depth. Possible wind tower foundation types include mass gravity mat foundations and rock anchors if the volcanics are encountered at shallow depths. Doug identified this site as the preferred location for a met tower, and AVEC agreed. An existing rebar stake is located in the tundra at the preferred met tower location. Icing and wind resources will be measured at the met tower to determine the suitability of the site for wind generation. AVEC plans to have STG install the met tower at the site this fall. The Stebbins site lies within the Part 77 airspace of Stebbins’ Runway 05/23 and further coordination with the FAA is required prior to erection of a met tower or wind turbines. FAA coordination is likely to include petitioning the Stebbins Airport Manager to change the traffic pattern to “right traffic” for Runway 05. See attached preliminary FAA notice criteria work sheets. We departed Stebbins at approximately 1:00 PM. On the way back to Anchorage we stopped in Shaktoolik to inspect two recently erected wind turbines. We also circled Elim and Koyuk to get a preliminary view of the landscape for future wind tower siting work in those communities. The plane refueled in Unalakleet and we arrived back in Anchorage at approximately 5:00 PM. H:\jobs\11-013 Stebbins Wind Feasibility Study (AVEC)\Correspondence\September 19, 2011 Stebbins Trip Report.docx             Appendix E  Capital Cost Estimate  Concept Level EstimateStebbins Wind Farm ConstructionAlternative Cost Summary 7/26/13SUMMARYDescription Estimated Construction Installed kW Estimated Construction Tower TypeCostCost/ Installed kWAlternative 1 - (4) Northern Power 100 Arctic's on Ridge Site $ 4,030,650.00 400 $ 10,076.63 Monopole Alternative 2 - (5) V17's on Ridge Site $ 3,788,750.00 450 $ 8,419.44 Monopole Alternative 3 - (2) AW33-225's on Ridge Site $ 3,946,050.00 450 $ 8,769.00 Monopole Concept Level Estimate Stebbins Wind Farm Construction Alternative 1 6/26/13 Item Estimated  Quantity Unit Price ($) Subtotal ($) Alternative 1 ‐ (4) Northern Power 100 Arctic's on Ridge Site 1 6,000 CY Borrow 25                   150,000          2 610 CY Surfacing Course 75                   45,750             3 49,500 SF Geotextile 2                      99,000             4 350 CY Topsoil 25                   8,750               5 3,500 SY Seed 5                      17,500             64 Each Concrete Gravity Mat Foundations 104,000         416,000          74 Each Northern Power 100 Arctic Wind Turbines 375,000         1,500,000       8 1,350 LF Electrical Spur Line to Intertie 37                   49,950             91 Sum Wireless Communication System 75,000            75,000             10 1 Sum Wind Turbine Power  Integration 100,000         100,000          11 1 Sum Labor 175,000         175,000          12 1 Sum Equipment 150,000         150,000          13 1 Sum Freight 518,000         518,000          14 1 Sum Indirects 200,000         200,000          Subtotal Construction 3,504,950$     Land Acquisition $0 Project Contingency @ 15%   525,700$        0 Years Inflation @ 2%   $0 Total 4,030,650$     Installed Generation Capacity 400 kW Total Cost 4,030,650$     Cost/Installed kW $10,077 Description Concept Level Estimate Stebbins Wind Farm Construction Alternative 2 6/26/13 Item Estimated  Quantity Unit Price ($) Subtotal ($) Alternative 2 ‐ (5) V17's on Ridge Site 1 7,600 CY Borrow 25                   190,000          2 770 CY Surfacing Course 75                   57,750             3 62,300 SF Geotextile 2                      124,600          4 440 CY Topsoil 25                   11,000             5 4,400 SY Seed 5                      22,000             65 Each Concrete Gravity Mat Foundations 81,000            405,000          75 Each Vestas V17 Wind Turbines 200,000         1,000,000       8 1,600 LF Electrical Spur Line to New Intertie 37                   59,200             91 Sum Wireless Communication System 75,000            75,000             10 1 Sum Wind Turbine Power  Integration 350,000         350,000          11 1 Sum Labor 225,000         225,000          12 1 Sum Equipment 150,000         150,000          13 1 Sum Freight 410,000         410,000          14 1 Sum Indirects 215,000         215,000          Subtotal Construction 3,294,550$     Land Acquisition $0 Project Contingency @ 15%   494,200$        0 Years Inflation @ 2%   $0 Total 3,788,750$     Installed Generation Capacity 450 kW Total Cost 3,788,750$     Cost/Installed kW $8,419 Description Concept Level Estimate Stebbins Wind Farm Construction Alternative 3  7/25/13 Item Estimated  Quantity Unit Price ($) Subtotal ($) Alternative 3 ‐ (2) AW33‐225's on Ridge Site 1 2,600 CY Borrow 25                   65,000             2 260 CY Surfacing Course 75                   19,500             3 21,000 SF Geotextile 2                      42,000             4 110 CY Topsoil 25                   2,750               5 1,500 SY Seed 5                      7,500               62 Each  Concrete Gravity Mat and Rock Anchor Tower Foundations 275,000         550,000          72 Each Aeronautica AW33‐225 Wind Turbines 600,000         1,200,000       8 800 LF Electrical Spur Line to New Intertie 37                   29,600             91 Sum Wireless Communication System 75,000            75,000             10 1 Sum Wind Turbine Power  Integration 300,000         300,000          11 1 Sum Labor 225,000         225,000          12 1 Sum Equipment 150,000         150,000          13 1 Sum Freight 550,000         550,000          14 1 Sum Indirects 215,000         215,000          Subtotal Construction 3,431,350$     Land Acquisition $0 Project Contingency @ 15%   514,700$        0 Years Inflation @ 2%   $0 Total 3,946,050$     Installed Generation Capacity 450 kW Total Cost 3,946,050$     Cost/Installed kW $8,769 Description             Appendix F  CRC Memo  CULTURAL RESOURCE CONSULTANTS LLC 3504 East 67th Avenue Anchorage, Alaska 99507 (907) 349-3445 August 28, 2012 Known Archaeological and Historical Sites in the Stebbins Area The information below is summarized from the Alaska Historic Resources Survey (AHRS). There are no known sites within either the Bluff or Ridge site areas of interest for the Stebbins Wind Power Feasibility Study, although there is one site—Atrivik (SMI-017)—just south of the Bluff Site. Atrivik, a large former Yup’ik village, was occupied about 200 to 500 years ago. On the bluff to the east of Atrivik is a cemetery (SMI-053) that may be the first Russian Orthodox cemetery associated with Stebbins. There is another known site, Teq’errlak (SMI-019), on the coast between the Bluff and Ridge site areas. Determined eligible for listing on the National Register in 2007, Teq’errlak consists of an extensive midden, numerous house and cache pits, and at least 24 burials. East of the Ridge Site, on the northern coast of St. Michael Island, is Cingikegglirmiullret (SMI-020). There is no information in the AHRS about this site. In the general area and north of Stebbins village are Armory Stebbins (SMI-098) and the modern Stebbins cemetery (SMI-090). Stebbins Village (SMI-012) was first mentioned in 1898 by the U.S. Coast and Geodetic Survey. Its Eskimo name is reported to be “Atroik.” In 1950, there were about 80 people living in the village whose main livelihood was hunting, fishing, and reindeer herding. Within the village are the Assembly of God Church (SMI-101), Old Johnson’s House (SMI-084), two BIA Territorial Schools (SMI-108 and SMI-109), and several historic houses (SMI-099, SMI-100, SMI-102, SMI-103, SMI-104, SMI-105, SMI-106, SMI-107, and SMI- 110). About 200 meters (m) east of Stebbins is SMI-050—a series of 500-year old house depressions located near the northern and northwestern ends of Stebbins Lake. Located near the western/southwestern corner of Stebbins Lake are four small, shallow, circular depressions (SMI-051) that date to approximately 1,750 years ago and fall within the Norton Phase of the Arctic Small Took tradition. On the eastern side of the lake are 13 features (SMI-052) that are roughly 2,500 years old and range in size from 40 feet in diameter to cache pit size. Along the beach at the south/southeastern end of the lake are several shallow features (SMI-085), some of which might be associated with road construction. Three, large, rectangular house features (SMI-086) are on a beach ridge south of the lake. One has a distinctive long entry tunnel. Located on the same beach ridge as SMI-051 and at the southwestern corner of the lake are three very shallow features (SMI-087) of indeterminate age. CULTURAL RESOURCE CONSULTANTS LLC 3504 East 67th Avenue Anchorage, Alaska 99507 (907) 349-3445 About 0.5 mile south of Stebbins is Pengurmiullret (SMI-018), the initial settlement of migrants from the south (from Nelson Island and other areas) who came around the first decade of the 20th century and whose descendants comprise the majority of the contemporary population of Stebbins. Previous Survey in the Immediate Project Area In 2009, Northern Land Use Research (NLUR) archaeologist Andy Higgs conducted an archaeological survey of potential material sources in the Stebbins/St. Michael area, including two north of Stebbins in the immediate vicinity of the two wind tower site alternatives (Higgs 2009). One, the Stebbins Rock quarry, is just east of the Bluff Site, adjacent to the Stebbins landfill. This quarry had also been surveyed in 2005 by NLUR archaeologist Carol Gelvin- Reymiller (et al. 2005). Higgs examined the active quarry and a 15-acre expansion area to the south in 2009 and concluded “No known cultural resources exist here and there is no indication that expansion of the quarry would impact unknown historic resources” (Higgs 2009:7). Higgs also surveyed the Stephens Hill Quarry, located approximately 0.7 mile east of the Ridge Site. He noted: Native place name research for Stephens Hill identifies the general area as “Cingikeggliq” translated as "point or tip" referring more to the coastal areas north of the prominent hilltop. In 1988, [Gary] Navarre indicates he examined Stephens Hill as a potential resource for the Stebbins-St. Michael (BIA) road but he found no cultural resources. Navarre recommended it for clearance and SHPO concurred (Higgs 2009:7). Higgs looked at this 0.2 mile long quarry area along the southern margin of the St. Michael- Stebbins Road that is used by the City of Stebbins as their main gravel source. He found no cultural resources and concluded “there is no indication that expansion of the quarry would impact unknown historic resources” (Higgs 2009:7-8). Assessment There are no known cultural resources within the Bluff or Ridge site areas of interest for the Stebbins Wind Power Feasibility Study, although Atrivik (SMI-017) is just south of the Bluff area and Teq’errlak (SMI-019) is on the coast between the two areas. However, based on NLUR’s surveys of material sources in the vicinity, it would seem that there is a relatively low probability of undiscovered sites within the actual project areas. With the understanding that this undertaking would still need to be reviewed by archaeologists at the State Office of History and Archaeology, and the proviso that any previously undiscovered cultural remains should be immediately reported to the State Historic Preservation Officer, Cultural Resource Consultants LLC does not recommend a field survey for the Stebbins Wind Power Feasibility Study. CULTURAL RESOURCE CONSULTANTS LLC 3504 East 67th Avenue Anchorage, Alaska 99507 (907) 349-3445 References Cited Gelvin-Reymiller, Carol, Sarah McGowan, and Ben A. Potter 2005 Cultural Resource Survey for Proposed Airport Improvements at Stebbins, Alaska. Report Prepared for DOWL Engineers, Anchorage. Northern Land Use Research, Inc., Fairbanks. Higgs, Andy 2009 St. Michael and Stebbins Material Source Cultural Resource Survey, St. Michael Island, Alaska. Report prepared for Bristol Environmental & Engineering Services Corporation, Anchorage. Northern Land Use Research, Inc., Fairbanks.