Loading...
HomeMy WebLinkAboutMarshall Rnd 7 ALL FINAL 09242013Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Application Page 1 of 26 7/2/2013 SECTION 1 – APPLICANT INFORMATION Name (Name of utility, IPP, or government entity submitting proposal) Alaska Village Electric Cooperative, Inc. Type of Entity: Not-for-profit Fiscal Year End: December 31 Tax ID # 92-0035763 Tax Status: For-profit X Non-profit Government ( check one) Date of last financial statement audit: March 8, 2013 Mailing Address 4831 Eagle Street Anchorage, AK. 99503 Physical Address 4831 Eagle Street Anchorage, AK. 99503 Telephone 800.478.1818 Fax 800.478.4086 Email sgilbert@avec.org 1.1 APPLICANT POINT OF CONTACT / GRANTS MANAGER Name Steve Gilbert Title Manager, Projects Development and Key Accounts Mailing Address 4831 Eagle Street Anchorage, AK. 99503 Telephone 907.565.5357 Fax 907.561.2388 Email sgilbert@avec.org 1.2 APPLICANT MINIMUM REQUIREMENTS Please check as appropriate. If you do not to meet the minimum applicant requirements, your application will be rejected. 1.2.1 As an Applicant, we are: (put an X in the appropriate box) X An electric utility holding a certificate of public convenience and necessity under AS 42.05, or An independent power producer in accordance with 3 AAC 107.695 (a) (1), or A local government, or A governmental entity (which includes tribal councils and housing authorities); Yes 1.2.2 Attached to this application is formal approval and endorsement for the project by the applicant’s board of directors, executive management, or other governing authority. If the applicant is a collaborative grouping, a formal approval from each participant’s governing authority is necessary. (Indicate Yes or No in the box ) Yes 1.2.3 As an applicant, we have administrative and financial management systems and follow procurement standards that comply with the standards set forth in the grant agreement (Section 3 of the RFA). Yes 1.2.4 If awarded the grant, we can comply with all terms and conditions of the award as identified in the Standard Grant Agreement template at http://www.akenergyauthority.org/veep/Grant-Template.pdf. (Any exceptions should be clearly noted and submitted with the application.) Yes 1.2.5 We intend to own and operate any project that may be constructed with grant funds for the benefit of the general public. If no please describe the nature of the project and who will be the primary beneficiaries. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 2 of 26 7/1/2013 SECTION 2 – PROJECT SUMMARY This section is intended to be no more than a 2-3 page overview of your project. 2.1 Project Title – (Provide a 4 to 7 word title for your project). Type in space below. Marshall Wind Energy Final Design and Permitting Project 2.2 Project Location – Include the physical location of your project and name(s) of the community or communities that will benefit from your project in the subsections below. 2.2.1 Location of Project – Latitude and longitude, street address, or community name. Latitude and longitude coordinates may be obtained from Google Maps by finding you project’s location on the map and then right clicking with the mouse and selecting “What is here? The coordinates will be displayed in the Google search window above the map in a format as follows: 61.195676.-149.898663. If you would like assistance obtaining this information please contact AEA at 907-771-3031. This project will be located near the community of Marshall (population 414) which is located on the north bank of Polte Slough, north of Arbor Island, on the east bank of the Yukon River in the Yukon- Kuskokwim Delta. It lies on the northeastern boundary of the Yukon Delta National Wildlife Refuge. It lies at approximately 61.877780, -162.081110. (Sec. 27, T021N, R070W, Seward Meridian.) 2.2.2 Community benefiting – Name(s) of the community or communities that will be the beneficiaries of the project. This project will benefit the community of Marshall, Alaska. 2.3 PROJECT TYPE Put X in boxes as appropriate 2.3.1 Renewable Resource Type X Wind Biomass or Biofuels (excluding heat-only) Hydro, Including Run of River Hydrokinetic Geothermal, Excluding Heat Pumps Transmission of Renewable Energy Solar Photovoltaic Storage of Renewable Other (Describe) Small Natural Gas 2.3.2 Proposed Grant Funded Phase(s) for this Request (Check all that apply) Pre-Construction Construction Reconnaissance X Final Design and Permitting Feasibility and Conceptual Design Construction and Commissioning Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 3 of 26 7/1/2013 2.4 PROJECT DESCRIPTION Provide a brief one paragraph description of the proposed project. Building on the results of the completed Conceptual Design Report (attached in Tab G), Alaska Village Electric Cooperative, Inc. (AVEC) is proposing to complete the final design and permitting to install three Northern Power Systems NPS 100-24 turbines, each with a 95 kilowatt (kW) installed wind capacity (aggregate generating capacity of 285 kW), to the existing diesel power generation system in Marshall. Once work done under this grant is completed, AVEC will seek funding to construct the turbines. A met tower in the proposed turbine site has collected 21 months of data. A wind resource report has been completed based on data from the met tower and has revealed a Class 4 (good) wind resource at the site with an average wind speed of 6.30 m/s. 2.5 PROJECT BENEFIT Briefly discuss the financial and public benefits that will result from this project, (such as reduced fuel costs, lower energy costs, local jobs created, etc.) Project benefits are summarized here and further explained in Section 5. The primary financial benefit of this project is to reduce the long term cost of energy in the community of Marshall by offsetting the diesel fuel usage by the power generators. The Concept Design Report conducted for this project (Tab G) shows that three Northern Power Systems NPS 100-24 turbines could offset 45,678 gallons of diesel fuel per year while generating 592,895 kilowatt hours per year (kWh/yr) at 80% efficiency. The energy generated from this project will produce approximately 35% of the total energy demand of the community. Assuming 80% turbine availability, this project could save $190,273 during its first full year of operation and $3,078,220 over the 20-year lifetime of the project. In addition, the following important benefits will be realized:  Stabilized energy costs into the future for Marshall through decreased fuel use.  Reduced energy costs for non-PCE community institutions, which may allow for increased or improved community or social services, in particular at the new school.  Reduced energy costs to other non-PCE commercial energy customers, such as the store, which may pass along savings to residents.  Reduced diesel fuel use for heat (thermal loads) by 3,286 gallons/year or about $17,141 (based on ISER fuel costs; 2015).  Increased opportunity for local economic development.  Increased revenue for local businesses during the construction phase.  Local hire during project construction.  Increased access to subsistence areas.  Increased longevity of the PCE fund through a reduction in PCE payments for residents and PCE- eligible community facilities.  Reduced fossil fuel emissions, which results in improved air quality and decreased contribution to global climate change.  Reduced fuel consumption, which reduces the volume of fuel transported and the potential for fuel spills and contamination. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 4 of 26 7/1/2013 This project will take a big step forward in achieving local, state, and federal renewable energy goals in Marshall. Please see Section 5 for detailed information on project benefits. 2.6 PROJECT BUDGET OVERVIEW Briefly discuss the amount of funds needed, the anticipated sources of funds, and the nature and source of other contributions to the project. The total project cost for final design and permitting of three turbines in Marshall is $372,000 of which $353,400 is requested in grant funds from AEA. The remaining $18,600 will be matched in cash by AVEC. 2.7 COST AND BENEFIT SUMARY Include a summary of grant request and your project’s total costs and benefits below. Grant Costs (Summary of funds requested) 2.7.1 Grant Funds Requested in this application $353,400 2.7.2 Cash match to be provided $ 18,600 2.7.3 In-kind match to be provided 2.7.4 Other grant funds to be provided 2.7.5 Other grant applications not yet approved 2.7.6 Total Grant Costs (sum of 2.7.1 through 2.7.4) $372,000 Project Costs & Benefits (Summary of total project costs including work to date and future cost estimates to get to a fully operational project) 2.7.7 Total Project Cost Summary from Cost Worksheet, Section 4.4.4, including estimates through construction. $3,214,875 2.7.8 Additional Performance Monitoring Equipment not covered by the project but required for the Grant Only applicable to construction phase projects. $ 2.7.9 Estimated Direct Financial Benefit (Savings) $ 190,273 (first year) $3,078,220 (20-year life) 2.7.10 Other Public Benefit If you can calculate the benefit in terms of dollars please provide that number here and explain how you calculated that number in Section 5 below. $ 17,141 (first year) (displaced fuel for heat) SECTION 3 – PROJECT MANAGEMENT PLAN Describe who will be responsible for managing the project and provide a plan for successfully completing the project within the scope, schedule and budget proposed in the application. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 5 of 26 7/1/2013 3.1 Project Manager Tell us who will be managing the project for the Grantee and include contact information, a resume and references for the manager(s). In the electronic submittal, please submit resumes as separate PDFs if the applicant would like those excluded from the web posting of this application. If the applicant does not have a project manager indicate how you intend to solicit project management support. If the applicant expects project management assistance from AEA or another government entity, state that in this section. AVEC, as the electric utility serving Marshall, will provide overall project management and oversight. Steve Gilbert, Manager, Project Development and Key Accounts Steve Gilbert is manager of energy projects development for AVEC where he leads a team focused on lowering the cost of energy in rural Alaskan villages through improved power plant efficiency, wind and other renewable power and interties between villages. Previously, Mr. Gilbert worked at Chugach Electric for 17 years managing three power plants and served as lead electrical engineer for a 1 MW fuel cell and micro-turbine projects and wind energy project development. Mr. Gilbert is recognized as an industry leader on wind energy and has been active on a national level in operation and maintenance of wind power plants. He was Alaska’s Electrical Engineer of the Year in 2000 and for the 12 western states in 2001. He has been a regular lecturer at schools and universities on renewables, especially wind. He also worked with BP Wind in London assessing European wind prospects. To better evaluate investment opportunities for his employer, Mr. Gilbert recently completed his MBA. Meera Kohler, President and CEO of AVEC Ms. Kohler has more than 30 years of experience in the Alaska electric utility industry. She was appointed Manager of Administration and Finance at Cordova Electric Cooperative in 1983, General Manager of Naknek Electric Association in 1990, and General Manager of Municipal Light & Power in Anchorage in 1997. Since May 2000, Ms. Kohler has been the President and CEO of AVEC and in this position has ultimate grant and project responsibilities. 3.2 Project Schedule and Milestones Please fill out the schedule below. Be sure to identify key tasks and decision points in in your project along with estimated start and end dates for each of the milestones and tasks. Please clearly identify the beginning and ending of all phases of your proposed project. The key tasks and their completion dates are: Grant Award Announcement: May 2014 Authorization to Proceed: June 2014 Complete Permitting: February 2015 Complete Site Control: February 2015 Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 6 of 26 7/1/2013 Complete Final Design: May 2015 Complete Final Business and Operational Plan: July 2015 The schedule organized by AEA milestones is as follows: Milestones Tasks Start Date End Date Project Scoping and Contractor Award for Planning and Design The engineering contractor will be selected and a task order will be prepared for work planned for this phase. June 1, 2014 Aug 1, 2014 Permit Applications Permit applications, such as FAA, wetlands, and migratory birds/endangered species consultations, will be prepared and submitted. Aug 1, 2014 Oct 31, 2014 Final Environmental Assessment and Mitigation Plans Working with regulatory agencies, environmental documents will be prepared as needed. Aug 1, 2014 Feb 1, 2015 Resolution of Land Use, ROW Issues (surveying) Working with the communities and corporations, AVEC will secure site control for the wind turbines. Aug 1, 2014 Feb 1, 2015 Permitting, rights-of-way, site control Permits will be issued from the Federal Aviation Administration, the U.S. Army Corps of Engineers, and the U.S. Fish and Wildlife Service. Feb 1, 2015 Final System Design The engineering contractor will complete final design of the wind system and intertie. The design will be reviewed by AVEC personnel prior to final approval. May 1, 2015 Final Cost Estimate Using the final design, the engineers will prepare the cost estimate for the project. June 1, 2015 Updated Economic and Financial Analysis Using the number developed in the cost estimate, an updated economic assessment and financial analysis will be prepared. July 1, 2015 Power or Heat Sales Agreement N/A N/A Final Business and Operational Plan AVEC will work with the all the communities to finalize the Operational Plan. July 1, 2015 3.3 Project Resources Describe the personnel, contractors, accounting or bookkeeping personnel or firms, equipment, and services you will use to accomplish the project. Include any partnerships or commitments with other entities you have or anticipate will be needed to complete your project. Describe any existing contracts and the selection process you may use for major equipment purchases or contracts. Include brief resumes and references for known, key personnel, contractors, and suppliers as an attachment to your application. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 7 of 26 7/1/2013 AVEC will use a project management strategy that has been used to successfully design and construct its wind turbines throughout rural Alaska. The strategy includes a team of AVEC staff and external consultants. AVEC staff and their role on this project include:  Meera Kohler, President and Chief Executive Officer, will act as Project Executive and will maintain ultimate authority programmatically and financially.  Steve Gilbert, Project Development Manager, will act as Program Manager and will lead the project management team consisting of AVEC staff, consultants, and contractors.  Debbie Bullock, Manager of Administrative Services, will provide support in accounting, payables, financial reporting, and capitalization of assets in accordance with AEA guidelines.  Bill Stamm, Manager of Engineering, leads AVEC’s Engineering Department which is responsible for in-house design of power plants, distribution lines, controls and other AVEC facilities. Mr. Stamm has worked at AVEC since 1994. Mr. Stamm was the AVEC line superintendent before he was appointed to Manager of Engineering in 2012. Mr. Stamm’s unit will provide engineering design and supervision.  Mark Bryan, Manager of Operations, is a Certified Journeyman Electrician and supervises the AVEC’s line operations, generation operations and all field construction programs. He has worked at AVEC since 1980, was appointed Manager of Construction in May 1998 and was promoted to Manager of Operations in June 2003. Mr. Bryan’s unit will oversee operation of this project as part of the AVEC utility system.  Anna Sattler, Community Liaison, will communicate directly with Stebbins and St. Michael residents to ensure the community is informed. An AVEC project manager will lead this project. The project manager will be responsible for:  Selecting, coordinating, and managing the geotechnical, engineering, and permitting consultants and ensuring that their deliverables are on time and within budget; gain site control.  Working with AVEC’s Community Liaison to involve the community in the project and gain site control.  Geotechnical consultant. AVEC will select and employ an experienced geotechnical consultant who would conduct a detailed geotechnical and natural hazards field study and report of the project area.  Engineering consultant. AVEC currently has an on-call contract with Hattenburg Dilley and Linnell LLC (HDL) for engineering services. HDL will provide final design, engineering specifications, and a cost estimate for the wind turbines.  Environmental Consultant. HDL will consult with agencies and develop and submit permit applications for the wind farm.  Wind Resource Consultant. Under an existing on-call contract, V3 Energy, LLC prepared the wind resource report and provided technical assistance on previous phases of this project. V3 will continue to provide assistance on an as needed basis. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 8 of 26 7/1/2013 Resumes are included under Tab A. Selection Process for Contractors/Vendors: The contractor selection will be made from a list of pre- qualified contractors with a successful track record with AVEC. Pre-qualified contractors have been selected based upon technical competencies, past performance, written proposal, quality, cost, and general consensus from an internal AVEC technical steering committee. The selection of contractors will occur in strict conformity with AVEC’s procurement policies, and conformance with OMB circulars. 3.4 Project Communications Discuss how you plan to monitor the project and keep the Authority informed of the status. Please provide an alternative contact person and their contact information. AVEC has systems in place to accomplish reporting requirements successfully. In 2012, AVEC successfully met all reporting requirements for 56 state and federal grants. An independent financial audit and an independent auditor’s management letter completed for AVEC for FY 2012 did not identify any deficiencies in internal control over financial reporting that were considered to be material weaknesses. In addition, the letter stated that AVEC complied with specific loan and security instrument provisions. The project will be managed out of AVEC’s Project Development Department. For financial reporting, the Project Development Department’s accountant, supported by the Administrative Services Department, will prepare financial reports. The accountant will be responsible for ensuring that vendor invoices and internal labor charges are documented in accordance with AEA guidelines and are included with financial reports. AVEC has up-to-date systems in place for accounting, payables, financial reporting, and capitalization of assets in accordance with AEA guidelines. AVEC will require that monthly written progress reports be provided with each invoice submitted from contractor(s). The progress reports will include a summary of tasks completed, issues or problems experienced, upcoming tasks, and contractor’s needs from AVEC. Project progress reports will be collected, combined, and supplemented as necessary and forwarded as one package to the AEA project manager each quarter. Quarterly face-to-face meetings will occur between AVEC and AEA to discuss the status of all projects funded through the AEA Renewable Energy Grants program. Individual project meetings will be held, as required or requested by AEA. Meera Kohler, AVEC’s President and CEO, may be contacted as an alternative manager. 3.5 Project Risk Discuss potential problems and how you would address them. Site Control/Access and Environmental Permitting. Currently, AVEC has a lease from Maserculiq, Inc., for the met tower site. Site control has not been established for the turbines; because the community supports the project, however, it is expected that gaining site control will proceed smoothly. Letters of support have been received from community leaders (see Tab B). Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 9 of 26 7/1/2013 Environmental Permitting. AVEC has hired HDL, an engineering consultant familiar with permitting wind projects in Alaska. HDL will begin consultation with agencies in order to flesh out location, natural and social environment, specific species, and mitigation issues. The consultant will work openly with the agencies and conduct studies as appropriate. Weather. Weather could delay getting consultants into the community to conduct site visits and/or the geotechnical survey. However, an experienced consultant, familiar with Alaskan weather conditions, will be selected. AVEC is a cooperative and follows the International Co-operative Alliance’s Seven Principles of Cooperatives. One of the most important of those principles is titled Democratic Member Control and refers to the men and women who serve as representatives being accountable to the membership. AVEC’s member communities, especially the community involved in a grant program such as the REF, have expectations for projects regarding outcomes, schedule, budget, and quality of work. AVEC member communities and Board of Directors receive regular project status updates. When problems are reported, either formally through status reports or informally through other communications, member communities expect solutions. SECTION 4 – PROJECT DESCRIPTION AND TASKS  The level of information will vary according to phase(s) of the project you propose to undertake with grant funds.  If some work has already been completed on your project and you are requesting funding for an advanced phase, submit information sufficient to demonstrate that the preceding phases are satisfied and funding for an advanced phase is warranted. 4.1 Proposed Energy Resource Describe the potential extent/amount of the energy resource that is available. Discuss the pros and cons of your proposed energy resource vs. other alternatives that may be available for the market to be served by your project. For pre-construction applications, describe the resource to the extent known. For design and permitting or construction projects, please provide feasibility documents, design documents, and permitting documents (if applicable) as attachments to this application. AVEC was awarded a grant from the AEA to complete wind feasibility and concept design work in Marshall. A met tower was installed at the proposed wind turbine site in Marshall on December 18, 2008 and was in continuous operation until October 10, 2009 when an anchor failed during an exceptionally strong wind storm and the tower collapsed. The met tower was re-established in the same location in September 2012 and continues to collect data. A wind resource report was completed using the available 21 months of data and revealed a Class 4 (good) wind resource with a mean annual wind speed of 6.30 m/s at 30 meters. Other aspects of the wind resource are also promising for wind power development. By International Electrotechnical Commission (IEC) 61400-1 3rd edition classification, Marshall is Category III-c, indicating low turbulence (mean turbulence intensity (TI) at 15 m/s = 0.095) with a low probability of extreme winds. The latter measure is more difficult to quantify with only twenty-one months of data, but the site clearly is not energetic enough to be IEC extreme wind Class I. The Northern Power Systems NPS 100-24 is designed for IEC Class III conditions, so the Marshall site is well within the design parameters of the turbine. Icing has also proven not to be a significant issue in the met tower data. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 10 of 26 7/1/2013 Please refer to the Marshall Wind-Diesel Feasibility Study (Tab G) for more detailed wind resource information. Wind energy as a supplement to diesel generators for electricity generation is considered the most viable and developable source of renewable energy for Marshall. AVEC has looked at other common renewable energy sources for Marshall but none are feasible at this point. Solar power is limited by the high cost and low capacity factor. Hydropower potential has not been fully investigated in Marshall, but is not likely to be viable unless a run-of-the-river system is considered. Biomass derived energy potential is limited by the lack of resources near Marshall. 4.2 Existing Energy System 4.2.1 Basic configuration of Existing Energy System Briefly discuss the basic configuration of the existing energy system. Include information about the number, size, age, efficiency, and type of generation. AVEC’s power plant is located within the community of Marshall. The plant was first energized in 1971 and consists of a “Butler Building,” wood dock, control module, storage van, crew module, and pad mounted transformers. The building and modules are constructed on a mixture of elevated timber post, grade beam and crib foundations. The “Butler Building” contains the following generator sets: (1) Cat 3456 with Cat 1C6 Generator, rated at 505KW (1) Detroit Series 60 DDEC4 with Kato 6P4-1450, rated at 363KW (1) Detroit Series 60 DDEC4 with Kato 6P4-1450, rated at 207KW 1,075 kW Total Generation Capacity In 2012, the aggregate generator efficiency was 13.13 kW/gal. The generator ages are 2.8 years, 7.7 years, and 19.1 years respectfully. The power plant also includes generator appurtenances, day tank, miscellaneous tools and equipment, transfer pump, starting batteries, and station service equipment. The building contains a combined cooling system for all three generators with two remote radiators. Power is generated at 277/480 V three phase and there are five fused distribution switches that distribute power to the village: one switch is a low voltage feed to the water plant, one is a single phase switch feeding the west part of town, and the other three are “A, B, and C” switches feeding the east part of town, the school, and airport respectively. Distribution voltage is 7,200 V. 4.2.2 Existing Energy Resources Used Briefly discuss your understanding of the existing energy resources. Include a brief discussion of any impact the project may have on existing energy infrastructure and resources. Marshall uses diesel fuel for electrical power generation, heating oil for boiler (thermal) and home heating (with limited wood burning), thermal heat recovery from the diesel engines at the power plant, and diesel and gasoline fuel for transportation needs. Between January and December 2012, 126,539 gallons were consumed to generate 1,663,112 kWh (gross) at the AVEC facility. One of the anticipated effects of this project is decreased usage of diesel fuel for electrical power generation. Another is the decreased use of heating fuel for boiler operations due to injection of excess Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 11 of 26 7/1/2013 wind power to the thermal heat recovery loop. Both will decrease diesel generator operations and maintenance costs. 4.2.3 Existing Energy Market Discuss existing energy use and its market. Discuss impacts your project may have on energy customers. Currently, Marshall has a stand-alone electric power system with no intertie or connection beyond the village itself. The electricity consumption (sold) in Marshall in FY2012 was 1,576,449kWh. The load is highest during the winter months, when the community experiences heavy winds and extended periods of darkness. According to a 2007-2011 American Community Survey (ACS) about 12% of Marshall residents live below the poverty line, with a median household income of $38,333. As a comparison, the mean household income for all Alaskans is $69,014. The addition of the wind turbines to the electric generation system will reduce the amount of diesel fuel used for power generation and will reduce the cost to produce power in Marshall. 4.3 Proposed System Include information necessary to describe the system you are intending to develop and address potential system design, land ownership, permits, and environmental issues. 4.3.1 System Design Provide the following information for the proposed renewable energy system:  A description of renewable energy technology specific to project location  Optimum installed capacity  Anticipated capacity factor  Anticipated annual generation  Anticipated barriers  Basic integration concept  Delivery methods Renewable Energy Technology. Wind power is the renewable energy option of choice for Marshall. Of the wind turbine options available on the market, the Northern Power Systems NPS 100-24, formerly known as the Northwind 100, at a 48-meter height, is considered most appropriate for the load profile of Marshall. When installed at the project site, this turbine is expected to have a benefit/cost ratio of 1.08 and produce a total of 721,365 kWh/yr. More details on the proposed wind technology are included in the CDR under Tab G. Optimum installed capacity. AVEC proposes to install three Northern Power turbines to operate as a wind-diesel hybrid power system that will supply wind-generated electricity to Marshall. The aggregate installed wind capacity would be 285 kW. Anticipated capacity factor. HOMER software was used to estimate capacity factor and system penetration (or renewable fraction) of three Northern Power Systems NPS 100-24 turbines in a power system for Marshall. Using the wind data discussed in the CDR under Tab G, at 80% availability the turbine capacity factor is predicted to be 22.5%. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 12 of 26 7/1/2013 Anticipated annual generation. HOMER software estimates wind production with three Northern Power Systems NPS 100-24 turbines at 592,895 kWh annually (at 80% turbine availability). Basic integration concept. No barriers to successful installation and integration of wind turbines in Marshall are expected. The project will be designed and modeled using knowledge of previous successful wind-diesel projects. Delivery Method. Power generated by the wind turbines will be distributed via the existing electrical distribution system in Marshall. 4.3.2 Land Ownership Identify potential land ownership issues, including whether site owners have agreed to the project or how you intend to approach land ownership and access issues. The proposed turbine site in Marshall is noted in the Google Earth image below. It is on the high spot of the road between the village and the airport, and very near the intersection of the new road leading to a communication tower on Mt. Pilcher (off-screen, upper center). This site was selected during a site reconnaissance visit in 2007 due to its proximity to Marshall, distance from the airport, good exposure to the prevailing winds, village corporation ownership, and ease of access. At the present time, AVEC has a lease agreement for the met tower, which is in the same location as the proposed turbine site. The project has enthusiastic and positive community support. (See letters of support from the community in Tab B.) AVEC will secure site control for the project upon approval of AEA REF Round 7 grant funding. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 13 of 26 7/1/2013 4.3.3 Permits Provide the following information as it may relate to permitting and how you intend to address outstanding permit issues.  List of applicable permits  Anticipated permitting timeline  Identify and discussion of potential barriers FAA Air Navigation Hazard Permitting: On November 13, 2012, a Determination of No Hazard to Air Navigation from the FAA was issued for two NPS 100 turbines (Reference Nos. 2012-WTW-7872-OE and 2012-WTW-7873-OE) at the met tower site. This determination will need to be modified based on the final tower configuration determined during design, but no issues with receiving this modification are expected. Endangered Species Act/Migratory Bird Treaty Act Consultation: Consultation with the U.S. Fish and Wildlife Service (USFWS) in compliance with the Endangered Species Act and Migratory Bird Treaty Act will be required to construct the wind turbines. A finding letter will be drafted and submitted to the USFWS stating that the constructed project would not be expected to impact threatened or endangered species (including Spectacled Eiders) or birds. It is expected that AVEC would receive concurrence from the Service within one month. Additional details on wildlife resources within the project vicinity can be found in the CDR. Clean Water Act (Section 401) Permit: To permit the turbines, an individual nationwide wetland permit will be sought from the U.S. Army Corps of Engineers. The application will be submitted once conceptual design has been completed. It is expected that the permit will be issued within 3 months. National Historic Preservation Act Consultation: According to the Alaska Heritage Resource Survey (AHRS) files, there are no known historic or archaeological sites within the proposed project site. According to existing research and the findings of previous investigations, there is a relatively low probability of undiscovered archaeological and historic sites within the area proposed for development. In accordance with the National Historic Preservation Act, the undertaking will need to be reviewed by the SHPO. During formal Section 106 consultation, the SHPO will determine whether additional surveys and mitigation will be required. 4.3.4 Environmental Address whether the following environmental and land use issues apply, and if so how they will be addressed:  Threatened or endangered species  Habitat issues  Wetlands and other protected areas  Archaeological and historical resources  Land development constraints  Telecommunications interference  Aviation considerations  Visual, aesthetics impacts  Identify and discuss other potential barriers Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 14 of 26 7/1/2013 Threatened or Endangered species: The U.S. Fish and Wildlife Service will be consulted to ensure that the construction of the wind turbines would have no harmful impact on threatened or endangered species. Construction will be timed to avoid impacts to migratory birds in compliance with the Migratory Bird Treaty Act. Initial research indicates threatened and endangered species will not be affected by this project. Habitat issues: During permitting, the project team will work with agencies to ensure that the project will not impact any State refuges, sanctuaries or critical habitat areas, federal refuges or wilderness areas, or national parks. Wetlands and other protected areas: It is likely that the wind turbines could be placed within areas classified as wetlands. A U.S. Army Corps of Engineers’ wetlands permit will be needed. Archaeological and historical resources: Compliance with the National Historic Preservation Act with the State Historic Preservation Officer will be conducted prior to construction of the wind turbines. Land development constraints: Negotiations with Maserculiq, Inc. (the Native corporation for Marshall) to obtain site control will be needed. Since the location of the met tower was accepted by the community, and the community supports this project, it is expected that there will not be any land issues associated with the project. Aviation considerations: If needed, an FAA Determination of No Hazard to Air Traffic will be sought for the installation of the wind turbines. This determination has already been received for two NPS 100’s (Reference Nos. 2012-WTW-7872-OE and 2012-WTW-7873-OE) at the met tower site. This determination will need to be modified based on the final tower configuration determined during design, but no issues with receiving this modification are expected. Visual, aesthetics impacts: The turbines will be constructed outside the community and it is likely that there will be little concern for visual or aesthetic impacts. Communities often note that the turbines offer a helpful visual guide point when traveling outside the village. AVEC will conduct community meetings to discuss visual impacts and how they could be minimized, in the unlikely event that visual issues arise. 4.4 Proposed New System Costs and Projected Revenues (Total Estimated Costs and Projected Revenues) The level of cost information provided will vary according to the phase of funding requested and any previous work the applicant may have done on the project. Applicants must reference the source of their cost data. For example: Applicants records or analysis, industry standards, consultant or manufacturer’s estimates. 4.4.1 Project Development Cost Provide detailed project cost information based on your current knowledge and understanding of the project. Cost information should include the following:  Total anticipated project cost, and cost for this phase  Requested grant funding  Applicant matching funds – loans, capital contributions, in-kind  Identification of other funding sources  Projected capital cost of proposed renewable energy system  Projected development cost of proposed renewable energy system Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 15 of 26 7/1/2013 Total anticipated project cost, and cost for this phase/requested grant funding/matching funds. This application is for the final design and permitting of three Northern Power Systems NPS 100-24 turbines in Marshall. AVEC is requesting $353,400 from AEA through the REF grant program, and AVEC will provide $18,600 as a cash match for this phase. Identification of other funding sources. AVEC expects the final construction and commissioning phase of the project will cost $3,214,875. It is possible that the funding for this work will come from AEA’s Renewable Energy Fund program, USDA Rural Utility Service Program, or another grant program. Projected capital cost of proposed renewable energy system/projec ted development cost of proposed renewable energy system. The final phase of this project will be Construction and Commissioning. AVEC estimates this phase could cost $3,214,875. AVEC will provide a 10% cash match for the construction project. 4.4.2 Project Operating and Maintenance Costs Include anticipated O&M costs for new facilities constructed and how these would be funded by the applicant. (Note: Operational costs are not eligible for grant funds however grantees are required to meet ongoing reporting requirements for the purpose of reporting impacts of projects on the communities they serve.) Once the turbines are installed, AVEC estimates the cost of operating and maintaining to be around $29,052 annually. These estimates are based on AEA’s default cost of wind energy of $0.049/kWh. AVEC will provide the funds to maintain consistent operation of the turbines. 4.4.3 Power Purchase/Sale The power purchase/sale information should include the following:  Identification of potential power buyer(s)/customer(s)  Potential power purchase/sales price - at a minimum indicate a price range  Proposed rate of return from grant-funded project AVEC, the existing electric utility serving Marshall, is a member owned cooperative electric utility and typically owns and maintains the generation, fuel storage, and distribution facilities in the villages it serves. No power purchase or sale will be needed for this project. Identification of potential power buyer(s)/customer(s). Energy produced from the completed wind project will be sold to AVEC’s existing customer base in the community of Marshall. In FY2012, Marshall had 110 households and 16 PCE-eligible and approved community facilities and 24 non-PCE customers with purchase power from AVEC. Potential power purchase/sales price/Proposed rate of return from grant-funded project. The sales price for the wind-generated electricity will be determined by the Regulatory Commission of Alaska as is done in all AVEC villages. The delivered cost of energy will be reduced as much as possible for customers within Marshall under current regulations. Currently, AVEC villages with wind power systems experience the lowest electricity cost within the utility (55 villages). Similar energy cost reductions are expected upon project completion, as proposed in this application. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 16 of 26 7/1/2013 4.4.4 Project Cost Worksheet Complete the cost worksheet form which provides summary information that will be considered in evaluating the project. Renewable Energy Source The Applicant should demonstrate that the renewable energy resource is available on a sustainable basis. Annual average resource availability. Mean annual wind speed of 6.30 m/s at 30 meters was measured, with a wind power density of 400 W/m2 (Class 4 wind resource) Unit depends on project type (e.g. windspeed, hydropower output, biomasss fuel) Existing Energy Generation and Usage a) Basic configuration (if system is part of the Railbelt1 grid, leave this section blank) i. Number of generators/boilers/other 3 ii. Rated capacity of generators/boilers/other CAT=505kw; DD=363kW; DD=207kW Total=1,075kW iii. Generator/boilers/other type Diesel generators iv. Age of generators/boilers/other 2.8 years; 7.7 years; 19.1 years v. Efficiency of generators/boilers/other b) Annual O&M cost (if system is part of the Railbelt grid, leave this section blank) i. Annual O&M cost for labor $399,130 ($0.25kWh sold) labor and non-labor (FY2012 PCE report) ii. Annual O&M cost for non-labor c) Annual electricity production and fuel usage (fill in as applicable) (if system is part of the Railbelt grid, leave this section blank) i. Electricity [kWh] 1,663,112 kWh (2012 gross) ; 1,576,449 kWh sold ii. Fuel usage Diesel [gal] 126,539 gal (2012 actual) Other iii. Peak Load 339 kW (2012 actual) iv. Average Load 189 kW (2012 actual) v. Minimum Load 1 The Railbelt grid connects all customers of Chugach Electric Association, Homer Electric Association, Golden Valley Electric Association, the City of Seward Electric Department, Matanuska Electric Association and Anchorage Municipal Light and Power. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 17 of 26 7/1/2013 vi. Efficiency 13.13 kWh/gallon vii. Future trends d) Annual heating fuel usage (fill in as applicable) i. Diesel [gal or MMBtu] ii. Electricity [kWh] iii. Propane [gal or MMBtu] iv. Coal [tons or MMBtu] v. Wood [cords, green tons, dry tons] vi. Other Proposed System Design Capacity and Fuel Usage (Include any projections for continued use of non-renewable fuels) a) Proposed renewable capacity (Wind, Hydro, Biomass, other) [kW or MMBtu/hr] Wind, 285 kW capacity(three Northern Power Systems NPS 100-24 turbines on 48-meter lattice towers) b) Proposed annual electricity or heat production (fill in as applicable) i. Electricity [kWh] 592,895 kWh/year; 80% avail ii. Heat [MMBtu] 128,470 kWh/year; 438 MMBtu c) Proposed annual fuel usage (fill in as applicable) i. Propane [gal or MMBtu] ii. Coal [tons or MMBtu] iii. Wood or pellets [cords, green tons, dry tons] iv. Other Project Cost a) Total capital cost of new system $3,214,875 b) Development cost c) Annual O&M cost of new system $29,052 (based on $0.049/kWh for wind energy) d) Annual fuel cost Project Benefits a) Amount of fuel displaced for i. Electricity 45,678 gallons ii. Heat 3,286 gallons iii. Transportation Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 18 of 26 7/1/2013 b) Current price of displaced fuel c) Other economic benefits d) Alaska public benefits Power Purchase/Sales Price a) Price for power purchase/sale N/A Project Analysis a) Basic Economic Analysis Project benefit/cost ratio 1.08 Payback (years) 13.3 4.4.5 Impact on Rates Briefly explain what if any effect your project will have on electrical rates in the proposed benefit area. If the is for a PCE eligible utility please discus what the expected impact would be for both pre and post PCE. As a design and permitting project there will be no impact on rates; however, upon completion of the Marshall Wind Energy Project (post construction) there will be a reduction of electrical rates from the reduced use of generator fuel. Marshall is a PCE eligible community. Marshall consumers received $227,075 in FY12 in PCE credits for eligible kWh sales (663,289 kWh) to 110 residences and 16 community facilities. About 58% of sales in Marshall were not eligible for PCE and, as a result, those consumers will receive the entire benefit of reduced power costs through their electric rates. Power sales that are eligible for PCE will see 5% of the benefit of reduced electric costs in their electric rates, with the other 95% accruing to the state of Alaska through reduced PCE credits to end users. SECTION 5– PROJECT BENEFIT Explain the economic and public benefits of your project. Include direct cost savings, and how the people of Alaska will benefit from the project. The benefits information should include the following:  Potential annual fuel displacement (gallons and dollars) over the lifetime of the evaluated renewable energy project  Anticipated annual revenue (based on i.e. a Proposed Power Purchase Agreement price, RCA tariff, or cost based rate)  Potential additional annual incentives (i.e. tax credits)  Potential additional annual revenue streams (i.e. green tag sales or other renewable Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 19 of 26 7/1/2013 energy subsidies or programs that might be available)  Discuss the non-economic public benefits to Alaskans over the lifetime of the project Potential annual fuel displacement Placing three NPS 100 turbines (a 300kW capacity) in Marshall could decrease diesel fuel use by 45,678 gallons per year, and 979,232 gallons over a project lifetime of twenty years (based on preliminary numbers and 80% turbine availability). Based on ISER’s 2015 estimated fuel costs for Marshall, this project could save $190,273 during its first full year of operation and $3,078,220 over its 20-year lifetime. The project will also displace 3,286 gallons/year for heat. This project could save an additional $17,141 in its first year (ISER model; 2015) of operation. Anticipated annual revenue/Potential additional annual incentives/Potential additional annual revenue streams Tax credits are not expected to be beneficial to the project due to AVEC’s status as a non-profit entity. Nonetheless, in addition to saving the direct cost of fuel, AVEC could sell green tags from the project. Additional economic benefits Marshall, population 414 (Alaska DCCED 2012), is a traditional Yup’ik Eskimo village with most residents supported by subsistence activities. During the summer season, fishing, fish processing, and BLM jobs are available. Long-term positions are limited to positions with the city, school and few local businesses. According to the 2007-2011 American Community Survey (ACS), 32.7% of the population was unemployed, with 12% living below the poverty level. The median household income was $38,333, compared to the median household income for all Alaska of $69,014. Reducing the reliance on diesel fuel power generation will provide long-term socio-economic benefits to village households. The high cost of energy is an extreme hardship for the low income families of Marshall, even considering Power Cost Equalization credits, at $0.22/kWh. It is likely that energy costs for PCE customers will be reduced. As stated in Section 4.4.5, power sales that are eligible for PCE will see 5% of the benefit of reduced electric costs in their electric rates, with the other 95% accruing to the state of Alaska through reduced PCE credits to end users. It is likely that energy costs for non-PCE community institutions will be reduced allowing for better community services. Once the wind project is constructed and wind-to-heat systems are in place, costs to operate important community facilities (e.g. school, health clinic, tribal office, etc.) will be decreased (see Section 4.4.5), enabling managing entities (e.g., city governments, tribe, school district) to operate more economically. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 20 of 26 7/1/2013 With these savings, community governments will be able to better focus on providing important community services and functions. For example, a new K-12 school was constructed in Marshall in 2011. The new facility is 32,577 ft2 and contains the first kitchen to meet the Lower-Yukon School District’s new food service program requirements. The school also includes space for future teacher housing. The school was designed so that the classroom wing can be easily separated from the gym and public areas to allow for community gatherings after regular school hours. The expanded school and increased use as a meeting place for community gatherings will likely result in an increase in energy use. Stabilizing the cost of energy in Marshall will allow the new facilities to be utilized by the community, without placing additional strain on the school’s budget. In addition, this project will help AVEC to determine if recovered heat is an option. If it proves feasible, potential locations to be served by recovered heat will be evaluated and agreements will be negotiated. Once the wind project is constructed, costs to operate important community facilities (e.g. clinics, schools, washeteria) will be decreased, enabling managing entities such as city governments, tribes, and school districts to operate more economically. It is likely that energy costs for non-PCE commercial energy customers will be reduced and savings will be passed along to residents. Commercial enterprises in the communities are excluded from the PCE program. Once this project is constructed, these entities will see a savings in the cost of electricity. Local businesses, especially the store, may pass this savings along to customers. The development and growth of local businesses are crippled by the high cost of energy. Decreases in electricity costs make small businesses more viable in rural Alaskan communities like Marshall which in turn makes economic development and the addition of local jobs more likely. Reduced commercial energy costs will benefit the entire community by increasing opportunities for local economic development. Lower costs of energy may allow local businesses to start and flourish. The anticipated benefits of installation of the wind turbine will be reducing the negative impact of the cost of energy by providing a renewable energy alternative. This project could help stabilize energy costs and provide long-term socio-economic benefits to village households. Locally produced, affordable energy will empower community residents and could help avert rural-to-urban migration. Project construction will benefit local businesses and residents. During construction the local economy could benefit through the project’s purchase of local services (workers’ housing, for example) and goods (food, for example) and construction materials (sand or gravel, for example). In most AVEC construction projects some local hire takes place and this project would not be an exception. The State of Alaska will pay less in PCE subsidies. The State could see 95% of the benefit of reduced electric costs once this project is constructed. Non-economic public benefits The anticipated benefits from the installation of wind turbines will be reducing the negative impact of the cost of energy by providing a renewable energy alternative. This project could help stabilize energy costs and provide long-term socio-economic benefits to village households. Marshall residents’ health and safety will be enhanced by the environmental benefits resulting from a reduction of hydrocarbon use, including: Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 21 of 26 7/1/2013  Reduced potential for fuel spills or contamination during transport, storage, or use (thus protecting vital water and subsistence food sources);  Improved air quality; and  Decreased contribution to global climate change from fossil fuel use. The wind turbines will provide a visual landmark for sea, air, and overland travelers, which will help navigation in the area. Wind turbine orientation and rotor speed will provide visual wind information to residents. See also section 2.5 Project Benefits Summary. 5.1.1 Public Benefit for Projects with Private Sector Sales Projects that include sales of power to private sector businesses (sawmills, cruise ships, mines, etc.), please provide a brief description of the direct and indirect public benefits derived from the project as well as the private sector benefits and complete the table below. See section 1.6 in the Request for Applications for more information. This project would not provide power to any large private sector businesses. By reducing the cost of power production, small businesses in Marshall, including the Store (not eligible for PCE) will see a cost savings which may be passed along to residents in the form of lower product or services prices. Renewable energy resource availability (kWh per month) n/a Estimated sales (kWh) n/a Revenue for displacing diesel generation for use at private sector businesses ($) n/a Estimated sales (kWh) n/a Revenue for displacing diesel generation for use by the Alaskan public ($) n/a SECTION 6– SUSTAINABILITY Discuss your plan for operating the completed project so that it will be sustainable. Include at a minimum:  Proposed business structure(s) and concepts that may be considered.  How you propose to finance the maintenance and operations for the life of the project  Identification of operational issues that could arise.  A description of operational costs including on-going support for any back-up or existing systems that may be require to continue operation  Commitment to reporting the savings and benefits As a local utility that has been in operation since 1968, AVEC is completely able to finance, operate, and maintain this project for the design life. It has, with financial assistance from the State of Alaska, the Rural Utilities Service and the Denali Commission, installed 34 turbines in eleven communities with interties to three other communities. In 2012, wind turbines generated 4.487,594 kWh (net) and displaced an estimated 341,886 gallons of diesel fund, saving more than $1,315,000 in diesel generating costs. Business Plan Structures and Concepts which may be considered: The wind turbines will be incorporated Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 22 of 26 7/1/2013 into AVEC’s power plant operation. Local plant operators provide daily servicing. AVEC technicians provide periodic preventative or corrective maintenance and are supported by AVEC headquarters staff, purchasing, and warehousing. How O&M will be financed for the life of the project: The costs of operations and maintenance will be funded through ongoing energy sales to the villages. Operational issues which could arise: The Northern Power Systems turbine has a proven performance record in rural communities and is rated for arctic climates. Operating costs: Using AEA’s default cost of wind energy, estimated O&M will cost $29,052 (based on $0.049/kWh for wind energy). Commitment to reporting the savings and benefits: AVEC is fully committed to sharing all information accrued from this project with their members and to sharing information regarding savings and benefits with AEA. SECTION 7 – READINESS & COMPLIANCE WITH OTHER GRANTS Discuss what you have done to prepare for this award and how q uickly you intend to proceed with work once your grant is approved. Tell us what you may have already accomplished on the project to date and identify other grants that may have been previously awarded for this project and the degree you have been able to meet the requirements of previous grants. AVEC is ready to move forward on this project. The wind report, geotechnical work, analysis of current cost of energy and future market, the economic and financial analyses, and conceptual design was provided to AEA (Tab G). AVEC and HDL will address AEA’s comments on the document once received. AVEC and HDL stand ready to move forward with final design and permitting. All required permitting will be completed prior to initiation of construction. SECTION 8 – LOCAL SUPPORT AND OPPOSITION Discuss local support and opposition, known or anticipated, for the project. Include letters of support or other documentation of local support from the community that would benefit from this project. The Documentation of support must be dated within one year of the RFA date of July 2, 2013. The community of Marshall supports this project and is interested in moving forward with this project and ultimately, the installation of wind energy facilities. Letters of support have been received by all governing entities. Please see Tab B. Another important demonstration of support is the real commitment of the community through its contributions of Native land to past and future AVEC capital projects. The Marshall Native corporation, Maserculiq, Inc., contributed the land necessary for the met tower with a no-cost lease. It intends to contribute the land for the wind turbines as an in-kind match for the project in the construction phase. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 23 of 26 7/1/2013 SECTION 9 – GRANT BUDGET Tell us how much you are seeking in grant funds. Include any investments to date and funding sources, how much is being requested in grant funds, and additional investments you will make as an applicant. AVEC plans to complete final design and permitting of a wind farm in Marshall. This work will cost $372,000. AVEC requests $353,400 from AEA and will provide $18,600 as a cash contribution. A detail of the grant budget follows. Renewable Energy Fund Round VII Grant Application - Standard Form Marshall Wind Design and Permitting Project AEA 2014-006 Grant Application Page 24 of 26 7/1/2013 Milestone or Task Anticipated Completion Date RE- Fund Grant Funds Grantee Matching Funds Source of Matching Funds: Cash/In- kind/Federal Grants/Other State Grants/Other TOTALS Project Scoping and Contractor Solicitation August 1, 2014 $2,375 $125 Cash $2,500 Permit Applications October 31, 2014 $12,968 $682 Cash $13,650 Final Environmental Assessment and Mitigation Plans February 1, 2015 $9,500 $500 Cash $10,000 Resolution of Land Use, ROW Issues (surveying) February 1, 2015 $36,575 $1,925 Cash $38,500 Permitting, rights-of-way, site control February 1, 2015 $12,825 $675 Cash $13,500 Final System Design May 1, 2015 Turbine Layout, Wind Resource Asssistance $17,243 $907 Cash $18,150 Geotech Study $86,212 $4,538 Cash $90,750 Geotech Engineering $26,125 $1,375 Cash $27,500 Civil Design $47,975 $2,525 Cash $50,500 Structural Design $37,620 $1,980 Cash $39,600 Electrical Design $40,232 $2,118 Cash $42,350 Final Cost Estimate June 1, 2015 $9,500 $500 Cash $10,000 Updated Economic and Financial Analysis July 1, 2015 $7,125 $375 Cash $7,500 Power or Heat Sales Agreements Not Applicable N/A N/A N/A Final Business and Operational Plan July 1, 2015 $7,125 $375 Cash $7,500 TOTALS $353,400 $18,600 $372,000 Direct Labor & Benefits $49,400 $2,600 Cash $52,000 Travel & Per Diem $9,500 $500 Cash $10,000 Equipment $ $ $ Materials & Supplies $ $ $ Contractual Services $294,500 $15,500 Cash $310,000 Construction Services $ $ $ Other $ $ $ TOTALS $353,400 $18,600 $372,000 Tab A Resumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  V3 Energy, LLC Douglas Vaught, P.E. 19211 Babrof Drive Eagle River, AK 99577 USA tel 907.350.5047 email dvaught@mtaonline.net Consulting Services : • Wind resource analysis and assessment, including IEC 61400-1 3 rd ed. protocols • Wind turbine siting, FAA permitting, and power generation prediction • Wind-diesel power plant modeling and configuration design • Cold climate and rime icing environment analysis of wind turbine operations • Met tower/sensor/logger installation and removal (tubular towers 10 to 60 meters in height) Partial List of Clients: • Alaska Village Electric Cooperative • NANA Pacific, LLC • enXco Development Corp. • Bristol Bay Native Corp. • Naknek Electric Association • Kodiak Electric Association • Barrick Gold • Alaska Energy Authority • North Slope Borough • Manokotak Natives Ltd. Representative Projects: • Alaska Village Electric Cooperative. Site selection, FAA permitting, met tower installation, data analysis/wind resource assessment, turbine energy recovery analysis, rime icing/turbine effects analysis, powerplant system modeling. Contact information: Brent Petrie, Key Accounts Mgr, 907-565-5358 • Kodiak Electric Association. Met tower installation, data analysis and modeling for Alaska’s first utility scale turbines (GE 1.5sle) on -line July 2009. Contact information: Darron Scott, CEO, 907 -486-7690. • NANA Pacific, LLC. Site reconnaissance and selection, permitting, met tower installation, wind resource assessment and preliminary power system modeling for Northwest Arctic Borough villages and Red Dog Mine. Contact information: Jay Hermanson, Program Manager, 907-339-6514 • enXco Development Corp. Met tower installation documentation, site reconnaissance , analysis equipment management for utility-sca le wind projects, including Fire Island near Anchorage. Contact information: Steve Gilbert, Alaska Projects Manager, 907-333-0810. • Naknek Electric Association. Long -term wind resource assessment at two sites (sequentially), including site selection, met tower installation, data analysis, turbine research, performance modeling, and project economic analysis. Contact information: Donna Vukich, General Manager, 907-246-4261 • North Slope Borough (with Powercorp Alaska, LLC). Power system modeling, site reconnaissance and selection, FAA permitting, wind turbine cold climate and icing effects white paper. Contact information: Kent Grinage, Public Works Dept., 907-852-0285 Recent Presentations: • Wind Power Icing Challenges in Alaska: a Case Study of the Native Village of Saint Mary’s, presented at Winterwind 2008, Norrköping, Sweden, Dec. 8, 2008. Tab B Letters of Support Tab C Heat Project Information No information provided in this section. Not applicable to this project. Tab D Authority Tab E Electronic Version of Application Tab F Certification Tab G Additional Materials DRAFT  MARSHALL WIND PROJECT  CONCEPT DESIGN REPORT                                                                                                                                                       Prepared By:  Mark Swenson, PE  3335 Arctic Blvd., Ste. 100    Anchorage, AK   99503   Phone:    907.564.2120    Fax:      907.564.2122   August 29, 2013 Prepared For:  Alaska Village Electric Cooperative  4831 Eagle Street  Anchorage, Alaska  99503     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  i    1.0   EXECUTIVE SUMMARY  This report has been prepared for the Alaska Village Electric Cooperative (AVEC) to provide  conceptual design and cost analysis for development of wind power generation in the  community of Marshall, Alaska.  Marshall is a rural community of approximately 407 year– round residents located on the north bank of Polte Slough, north of Arbor Island, on the east  bank of the Yukon River in the Yukon‐Kuskokwim Delta.  Integration of wind generated power  into the existing electrical power generation system will offset diesel consumption costs and  provide a renewable energy resource for this rural community.   On December 18, 2008, a meteorological (met) tower was installed along the airport access  road approximately 0.8 miles from Marshall.  The met tower collapsed on October 12, 2009 due  to an anchor failure during a strong wind event.  The met tower was reinstalled at the same  location during September 2012 to obtain additional wind data.  The met tower is equipped  with instrumentation and data loggers to evaluate and record the wind resource.  The wind  data collected during the met tower operation suggests that the existing wind regime is suitable  for wind power generation.  The results of the data acquisition and analysis of the wind  resource are included in the “Marshall Wind‐Diesel Feasibility Study” dated August 29, 2013  (Appendix A).   On August 7, 2012 AVEC, Hattenburg Dilley & Linnell (HDL), and V3 Energy performed a site visit  to Marshall to investigate three separate locations near the community, where computer  modeling identified good wind resource potential. During the site visit it was confirmed that the  site where the met tower was installed is the most  suitable location for installing wind  turbines.  For this report, AVEC selected three wind turbine configurations for evaluation.   • The first configuration includes (3) Northern Power 100 Arctic turbines (NP100), formerly  known as the Northwind 100. The Northern Power 100 Arctic turbines installed in Marshall  will include 48 meter (158‐foot) lattice towers and 24‐meter blades.  The 24‐meter blades  reduce the maximum energy production to 95 kW instead of the 100 kW normal rating but  increase energy production a lower wind speeds to better fit Marshalls wind regime.  The  NP100s are permanent magnet, direct drive wind power generator that AVEC previously  installed in 10 other villages in rural Alaska.  The (3) Northern Power 100 Arctic tower array  has a maximum power generation output of 285 kW.   • The second turbine configuration consists of (3) Vestas V20 turbines.  The Vestas V20  turbine is a 32 meter (105‐foot), 120 kW, induction generator.  This configuration has a  maximum power generation output of 360 kW and requires a cold weather kit modification  for use in Marshall.  The generators will be controlled using a simple inverter with soft start  and soft breaking capabilities or a more complex variable speed drive (VSD) inverter at each  turbine. The turbine blades are fixed pitch.  • The third turbine configuration consists of (1) Aeronautica AW33‐225 turbine.  The AW33‐ 225 turbine is a 40 meter (131‐foot), 225 kW, induction generator.  This configuration has a     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  ii    maximum power generation output of 225 kW.  The generator will be controlled using a  simple inverter with soft start and soft breaking capabilities or a more complex variable  speed drive (VSD) inverter at each turbine. The turbine blades are stall regulated to limit  rotation speed and torque in extreme wind events.   It is anticipated that the Northern Power 100 turbines and the V20 turbines would be installed  on lattice towers and the AW33‐225 turbine would be installed on a monopole tower.   Foundations will likely include precast concrete gravity mats with rock anchors, if additional  resistance is required to counteract the overturning moment of the turbines.  A comparison of  the three turbine configurations installed at preferred location in Marshall is presented in  Tables EX‐1 and EX‐2 below.         Table EX‐1: Turbine Alternative Comparison Summary  Alt Turbine Selection Site    Generation  Capacity (kW)  Estimated  Capital Cost  Estimated  Capital Cost  per Installed  kW  Estimated  Annual Energy  Production  @ 100 %  Availability  1 (3) NP 100s Met Tower 285 $ 3.2 M $11,280 901,731 kWh  2 (3) V20s Met Tower 360 $ 2.9 M $8,029 724,601 kWh  3 (1) AW33‐225 Met Tower 225 $ 2.7 M $11,824 619,828 kWh  Source: Annual Energy Production data taken from V3 Energy’s August 2013 Marshall Wind‐Diesel Feasibility Analysis           Table EX‐2: Economic Analysis Summary  Alt  Annual Wind  Generation @  80% Availability  (kWh)  Wind Energy For  Power (kWh/yr)  Wind  Energy For  Heat  (kWh/yr)  Wind as %  Total Power  Production (%)  Power  Generation:   Fuel Displaced  by Wind  Energy (gal/yr)  Heating Fuel  Displaced By  Wind Energy  (gal/yr)  1 721,385 592,895 128,470 40 48,962 3,284  2 579,681 471,050 108,631 32.5 39,067 2,777  3 520,692 462,698   58,264 30 37,136 1,489  Source: Annual Energy Production data taken from V3 Energy’s August 2013 Marshall Wind‐Diesel Feasibility  Analysis  We recommend AVEC proceed with design and permitting for installation of Alternative 1  (three Northern Power 100 Arctic turbines with 24 meter blades) in Marshall. This alternative is  recommended because it maximizes the power output for Marshall’s wind regime.  Also, as  described in detail in the report, the NP100 option results in a Benefit/Cost (B/C) Ratio of 1.08,  meaning that the savings from fuel saved by wind power generation outweigh the costs of  construction and maintenance of the wind system for the 20 year design life.      DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  iii      Table of Contents  1.0 EXECUTIVE SUMMARY ........................................................................................................... i  1.0 INTRODUCTION .................................................................................................................... 1  1.1 BACKGROUND ....................................................................................................................... 1  1.2 LOCATION .............................................................................................................................. 2  1.3 CLIMATE ................................................................................................................................ 2  1.4 ELECTRICAL DEMAND ........................................................................................................... 2  1.5 EXISTING ELECTRICAL POWER SYSTEMS ............................................................................... 3  1.6 MARSHALL RECOVERED HEAT POTENTIAL ........................................................................... 3  1.7 TRANSMISSION LINE EXTENSIONS ........................................................................................ 4  1.8 REQUIRED POWER PLANT IMPROVEMENTS ......................................................................... 4  1.9 GEOTECHNICAL INFORMATION ............................................................................................ 4  1.10 LIMITATIONS ....................................................................................................................... 5  2.0 MARSHALL WIND SITE ANALYSIS ......................................................................................... 5  2.1 WIND TURBINE SITE INVESTIGATION ................................................................................... 5  2.1.1 METEOROLIGICAL (MET) TOWER SITE ...................................................................... 6  2.1.2 ALTERNATIVE SITE 1 .................................................................................................. 7  2.1.3 ALTERNATIVE SITE 2 .................................................................................................. 7  2.1.4 ALTERNATIVE SITE 3 .................................................................................................. 7  3.0 WIND DATA ACQUISITION AND MODELING ........................................................................ 8  3.1 MARSHALL WIND RESOURCE ................................................................................................ 8  4.0 WIND TURBINE SYSTEM ALTERNATIVES .............................................................................. 9  4.1 MARSHALL WIND TURBINE ANALYSIS .................................................................................. 9  4.1.1 NORTHERN POWER 100 ARCTIC ............................................................................... 9  4.1.2 Vestas V20 ............................................................................................................... 10  4.1.3 Aeronautica AW33‐225 ........................................................................................... 10  4.2 ALTERNATIVE 1   ‐  (3) NP100 TURBINES ............................................................................ 11  4.3 ALTERNATIVE 2  ‐  (3) V20 TURBINES .................................................................................. 11  4.4 ALTERNATIVE 3  ‐  (1) AW33‐225 TURBINES ....................................................................... 11     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  iv    4.5 ALTERNATIVE COMPARISON SUMMARY ............................................................................ 12  5.0 ECONOMIC EVALUATION ................................................................................................... 12  5.1 METHODOLOGY AND APPROACH ....................................................................................... 12  5.2 ECONOMIC EVALUATION RESULTS ..................................................................................... 13  6.0 PREFERRED ALTERNATIVE .................................................................................................. 13  7.0 PERMITTING, ENVIRONMENTAL, AND LAND OWNERSHIP ............................................... 14  7.1 FEDERAL AVIATION ADMINISTRATION (FAA) ..................................................................... 14  7.2 US FISH AND WILDLIFE SERVICE (USFWS) .......................................................................... 14  7.3 STATE HISTORIC PRESERVATION OFFICE (SHPO) ................................................................ 15  7.4 DEPARTMENT OF THE ARMY (DA) ...................................................................................... 16  7.5 CONTAMINATED SITES, SPILLS, AND UNDERGROUND TANKS ........................................... 16  7.6 AIR QUALITY ........................................................................................................................ 16  7.7 NATIONAL ENVIRONMENTAL POLICY ACT REVIEW (NEPA) ................................................ 16  7.8 LAND OWNERSHIP .............................................................................................................. 17  8.0 CONCLUSIONS AND RECOMMENDATIONS ........................................................................ 17  9.0 REFERENCES ....................................................................................................................... 18     FIGURES  Figure 1: AEA Wind Resource Map ................................................................................................. 1  Figure 2: Wind Tower Site Alternatives .......................................................................................... 6  Figure 3:  Airport Access Road Adjacent to Met Tower Site and Alternative Site 1 ....................... 7  Figure 4:  Alternative Site 2 ............................................................................................................. 7  Figure 5: UUI Access Road and Utility Poles on Approach to Alternative Site 3 ............................ 8  Figure 6:  NP100 Turbine Installed in Emmonak .......................................................................... 10      TABLES  Table 1:  Energy Consumption Data ............................................................................................... 3  Table 2: Alternative Comparison Summary .................................................................................. 12  Table 3: Economic Evaluation Summary ....................................................................................... 13           DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  v        APPENDICIES  Appendix A: V3 Energy’s August 2013 Marshall Wind‐Diesel Feasibility  Appendix B: ANTHC Marshall Alaska Heat Recovery Study  Appendix C: August 3, 2012 Marshall Wind Site Investigation Report  Appendix D: Marshall Wind Project Feasibility Design Drawings  Appendix E: Concept Level Capital Cost Estimate        DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  vi      ABBREVIATIONS    AAC  Alaska Administrative Code   ADEC  Alaska Department of Environmental Conservation  ADF&G  Alaska Department of Fish and Game  ADNR  Alaska Department of Natural Resources  AEA  Alaska Energy Authority  AHRS  Alaska Heritage Resource Survey  AVEC  Alaska Village Electric Cooperative  B/C  Benefit‐to‐Cost Ratio  CRC  Cultural Resource Consultants, LLC  DA  Department of Army  EA  Environmental Assessment  ER  Environmental Review  FAA  Federal Aviation Administration  FY  Fiscal Year  FONSI  Finding of No Significant Impact  °F  Degrees Fahrenheit  HDL  Hattenburg Dilley & Linnell  ISER  Institute for Social and Economic Research  kW  Kilowatt  kWh  Kilowatt Hour  M  Million  MBTA  Migratory Bird Treaty Act  Met  Meteorological   Mph  Miles per hour  MWh  Megawatt hour  NLUR  Northern Land Use Research  NP100  Northern Power 100 Arctic  NWI  National Wetlands Inventory  NWP  Nationwide Permit  OEAAA  Obstruction Evaluation/Airport Airspace Analysis  PCE  Power Cost Equalization  PCN  Pre‐Construction Notification  SCADA              Supervisory Control and Data Acquisition  Sec  Section  USFWS  United States Fish & Wildlife Services  USGS  United States Geological Services  WAsP  Wind Atlas and Application Program   Yr  Year     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  1    1.0   INTRODUCTION  1.1 BACKGROUND  This report has been prepared for the Alaska Village Electric Cooperative (AVEC).  The purpose  of this report is to provide AVEC with conceptual design and cost information for the feasibility  of developing the wind energy resource in Marshall. Analysis in this report includes an  assessment of the wind resource, investigation and selection of wind turbine installation  locations, evaluation of permitting required for site development, preliminary wind turbine  generator comparison, and economic analysis of selected turbine alternatives.  The wind turbines are necessary to reduce AVEC’s dependence on diesel fuel and provide a  source of renewable energy.  Preliminary findings included in the Alaska Energy Authority (AEA)  Alaska high resolution wind resource map indicate that the Marshall region has a borderline  Class 4 wind regime suitable for wind power development.                                                                                               Figure 1: AEA Wind Resource Map       DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  2      1.2 LOCATION  The proposed wind turbine project is located near the village of Marshall. Marshall is a rural  community located on the north bank of Polte Slough, north of Arbor Island, on the east bank  of the Yukon River in the Yukon‐Kuskokwim Delta.  It lies approximately 75 air miles northeast  of Bethel at approximately 61.878° North Latitude and ‐162.081° West Longitude (Sec. 27,  T021N, R070W, Seward Meridian). Marshall is located in the Bethel Recording District.  No  roads connect Marshall to the rest of the state, so access is primarily by air or water.  Marshall  has a state‐owned gravel airstrip providing year‐round access on a 3,200’ long and 100’ wide  runway.  Barge service is available seasonally from approximately mid‐June through October.    Marshall has a population of 407 year‐round residents (2010 U.S. Census Population), with  94.7% being Alaska Native or American Indian. The local residents depend heavily on the  subsistence harvest of fish, moose, bear, and waterfowl. The economy is based on a mix of  commercial fisheries and public sector jobs.   1.3 CLIMATE  Marshall has a maritime climate with extreme temperatures ranging from ‐54°F to 86°F.  Average annual precipitation measures 16 inches.   Average summer temperatures range from  40 to 60°F. Winters are typically cold and dry with average winter temperatures ranging from ‐5  to 15°F.  1.4 ELECTRICAL DEMAND  Historical AVEC and AEA Power Cost Equalization Program (PCE) report data was analyzed to  determine trends in Marshall’s energy consumption. The Alaska PCE program is a reliable  source of historic power, fuel consumption, and energy cost information for rural communities  throughout the state. The PCE program provides funding subsidies to electric utilities in rural  Alaskan communities for the purpose of lowering energy costs to customers. This program pays  for a portion of kilowatt hours sold by the participating utility. The exact amount paid varies per  location, and is determined by the amount of energy generated and sold, the amount of fuel  used to generate electricity, and fuel costs.  Each year, AEA publishes PCE program information including fuel consumption, power  generation and sales, and electricity rates for eligible communities. During the fiscal year 2012  (July 1, 2011 to June 30 2012), 126 residential and community facilities in Marshall were eligible  to receive PCE assistance.  Marshall customers received funding for 42.3% of kilowatt hours  sold and had electricity rates reduced from an average of 58 cents per kilowatt hour to 22 cents  per kilowatt hour.  Table 1 provides FY 2012 PCE and AVEC generated diesel and electricity  statistics for Marshall.           DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  3        Table 1:  Energy Consumption Data  Community Gross  KWhs  Generated  Diesel Fuel Used Average  kWh Load  Peak kWh  Load  Customers  (Residential  and  Community  Facilities)  Gallons Cost ($) Average  Fuel Price  ($/gallon)  Diesel  Efficiency  (kWh/gallon)  Marshall 1,643,535 126,625 408,268 3.22 12.97 190 339 150  *Source: 2012 AVEC Annual Generation Report, AVEC Operations Personnel, and Annual PCE Report FY 2012  AVEC recorded data from December 2011 to December 2012 shows Marshall’s average load  was 190 kW with a peak load at 339 kW.  Winter electrical demands increase approximately  50% compared to summer demand, with data showing the average load in June and July was  approximately 150 kW compared to approximately 220 kW in January and February.    1.5 EXISTING ELECTRICAL POWER SYSTEMS  Existing Marshall Power Plant:  AVEC’s power plant is located within the community of Marshall. The plant was first energized  in 1971 and consists of a “Butler Building”, wood dock, control module, storage van, crew  module, and pad mounted transformers. The building and modules are constructed on a  mixture of elevated timber post, grade beam and crib foundations.  The “Butler Building”  contains the following generator sets:  (1) Cat 3456 with Cat LC6 Generator, rated at 500KW  (1) Detroit Series 60 DDEC4 with Kato 6P4‐1450, rated at 363KW  (1) Detroit Series 60 DDEC4 with Kato 6P4‐1450, rated at 236KW   1,099 kW Total Generation Capacity    The power plant also includes generator appurtenances, day tank, miscellaneous tools and  equipment, transfer pump, starting batteries, and station service equipment.  The building  contains a combined cooling system for all three generators with two remote radiators.  Power  is generated at 277/480V three phase and there are five fused distribution switches that  distribute power to the village, one switch is a low voltage feed to the water plant, one is a  single phase switch feeding the west part of town and the other three are “A, B, and C”  switches feeding the east part of town, the school, and airport.  Distribution voltage is 7200V.  According to historic AVEC records, the power plant generated a total of 1,644,176 kWh and  sold a total of 1,594,247 kWh in 2011 with an average of 14.44 kWh per gallon of diesel  consumed.    1.6 MARSHALL RECOVERED HEAT POTENTIAL  The Alaska Native Tribal Health Consortium (ANTHC) Division of Environmental Health and  Engineering prepared a Heat Recovery Study dated July 16, 2012.  The report provides the     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  4    findings for utilizing recovered heat from the existing power plant to heat the existing  community store and water treatment building.  According to the report, a heat recovery  system was installed in 2007 in the existing power plant but it did not work as designed.   Funding to repair the existing recovered heat system is not currently programmed and there  are no plans to get the system operational at this time.  The report shows thermal load demand  in Marshall is far less than available heat from the existing generators and the all heat demand  could be met if the existing recovered heat system was operational.  See Appendix B for the  ANTHC heat recovery study.  Since the current heat recovery system is not operational, a better option to use excess wind  energy from wind turbines is to install an electric boiler secondary load controller remotely at  the water treatment plant facility.  Therefore, excess wind power could by‐pass the existing  recovered heat system and be used to offset approximately 3,200 gallons of the 6,200 gallons  of fuel oil currently used to heat the facility.   1.7 TRANSMISSION LINE EXTENSIONS  Currently three phase transmission lines are installed from the AVEC power plant to the existing  school which is approximately 0.6 miles from the Met Tower Site.  Utility poles with  communication wires are already in place along the airport access road, which extends beyond  the Met Tower Site to the United Utilities Inc. (UUI) communication tower.  These existing  utility poles will likely accommodate the future wind power transmission lines.  1.8 REQUIRED POWER PLANT IMPROVEMENTS  Upgrades to the existing power plant switch gear and control panels are anticipated in order to  accommodate wind turbine energy.  AVEC is currently evaluating the power plant and will  provide recommendations for necessary upgrades in the early stages of the design phase.  The  preliminary cost estimate included in this report considers the costs for replacement of the  existing switch gear and upgrades to the control panels.    1.9 GEOTECHNICAL INFORMATION  The Alaska Department of Transportation performed a geotechnical investigation in 1997 along  the alignment of what is now the existing airport access road. The results of their findings are  published in the July 1998 Geotechnical Report for Marshall Airport Runway Relocation. Two of  the boreholes from that investigation were advanced on August 28, 1997 within approximately  400 feet of the met tower installation location. These boreholes indicate ice‐rich fine‐grained  soils to a depth of 9’ and 11.5’ below ground surface. The drill encountered refusal in both  boreholes, interpreted as bedrock.  From the above‐referenced report, bedrock in the Marshall area is known to consist of both  Permio‐Triassic metavolcanic and metasedimentary rocks, and Cretaceous igneous rocks. The  metamorphic rocks have been recrystallized locally to hornfels by contact metamorphism  where they are near igneous intrusive rocks. The metamorphic rocks are mostly gray and green,  fine‐ to medium‐grained, and massive to schistose. The Cretaceous igneous rocks are medium‐ grained, light gray to greenish gray and weakly foliated. Small bodies of intrusive granitic rock     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  5    have been mapped on the surrounding mountains, and a small light green‐gray granodiorite is  exposed in the material site near the abandoned former runway at Marshall.   Due to the presence of different rock types and variable degrees of hornfelsing around the  intrusive rocks, the metavolcanic and metasedimentary rocks probably exhibit variable degrees  of competence in the project area. A site specific geotechnical investigation is needed to  support the selection of a wind turbine foundation type and to formulate a detailed foundation  design. Based on existing information a mass gravity foundation with rock anchors will likely be  utilized.   1.10 LIMITATIONS  This report, titled Marshall Wind Project Concept Design Report, was prepared in support  of a grant funding request for design and permitting a wind tower project in Marshall,  Alaska. Design information contained herein is conceptual for planning and budgetary cost  estimation purposes only.   2.0   MARSHALL WIND SITE ANALYSIS  2.1 WIND TURBINE SITE INVESTIGATION  On August 3, 2012, Brent Petrie (AVEC), Matt Metcalf (AVEC), Doug Vaught (V3 Energy), and  Ryan Norkoli (HDL) traveled to Marshall.  The purpose of the site visit was to investigate the  Met Tower Site (described below) and three additional potential wind sites that had been  identified through WAsP wind modeling software as possible alternatives to the Met Tower  Site, see Figure 1 for locations of the Met Tower Site and three alternative sites.  A memo  summarizing preliminary office research and the trip report for the site investigation is included  in Appendix C.  Upon completion of the site investigation, the existing Met Tower Site was  determined to be the most cost effective location for installing wind turbines near Marshall.   Below is a summary of each potential wind turbine site.      DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  6      Figure 2: Wind Tower Site Alternatives    2.1.1 METEOROLIGICAL (MET) TOWER SITE  The met tower site is located at 61˚52’33.3” North Latitude, 162˚03’55.98” West Longitude. At  this location a met tower was installed to record data starting on December 18, 2008 and  collapsed October 12, 2009 due to an anchor failure.  Low‐lying tundra vegetation covers the  area and the topography is generally flat.  The site is adjacent to the existing airport access road  and communication wires are strung across utility poles adjacent to the airport access road.   These existing poles would likely accommodate transmission lines to route power to the plant.  A 1998 geotechnical report developed by the Alaska Department of Transportation (ADOT)  provides borehole information within 400 feet of this location. Upon review of other available     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  7    sites, the met tower site was the preferred site for wind tower development.   Figure 3:  Airport Access Road Adjacent to Met Tower Site and Alternative Site 1  2.1.2 ALTERNATIVE SITE 1  Alternative Site 1 is located at 61˚52’22.78” North Latitude, 162˚04’07.79” West Longitude. This  location was identified though wind modeling to have 7% greater annual energy production  (AEP) than the Met Tower Site.  Although the site development costs would be comparable to  the Met Tower Site, Alternative Site 1 is located within an existing Native Allotment (NA) and  due to property ownership limitations, the location was eliminated from further consideration.   2.1.3 ALTERNATIVE SITE 2  Alternative Site 2 is located at 61˚53’09.58” North Latitude, 162˚02’59.58” West Longitude.   Alternative Site 2 wind modeling indicates 3% less AEP compared to the Met Tower Site.  The  site is located approximately 1 mile further from the AVEC power plant than the Met Tower  Site.  Alternative 2 site development would result in additional transmission line costs and site  development costs for a lower quality wind source compared to the Met Tower Site.   Alternative Site 2 was eliminated from consideration.                              Figure 4:  Alternative Site 2  2.1.4 ALTERNATIVE SITE 3  Alternative Site 3 is located at 61˚53’43.99” North Latitude, 162˚03’08.6” West Longitude.   Alternative Site 3 was identified through wind modeling to have 14% greater AEP than the Met  Tower Site.  The site is located approximately 1.5 miles from the existing maintained road     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  8    system.  The area is accessed via a rough single lane gravel trail which follows the existing  United Utilities Inc. (UUI) communication lines alignment to a communication tower on a  nearby mountain top.  The existing utility poles that route communication lines back to  Marshall would likely be able to accommodate power transmission lines. However, some of the  existing utility poles are leaning over due to inadequate foundation soil support.  The utility  poles were installed within the last 5 years and considering the amount of movement that has  already taken place, maintenance costs and useful life are significant concerns with this site.   Due to the following considerations, Alternative Site 3 was not selected for further evaluation:  higher initial construction costs, increased maintenance concerns for transmission lines, line  losses due to additional transmission length, and lack of year‐round overland access to the site.          Figure 5: UUI Access Road and Utility Poles on Approach to Alternative Site 3  3.0   WIND DATA ACQUISITION AND MODELING  3.1 MARSHALL WIND RESOURCE  On December 18, 2008, a meteorological (met) tower was installed along the airport access  road approximately 0.8 miles from Marshall.  The met tower collapsed on October 12, 2009 due  to an anchor failure during a strong wind event.   The met tower was reinstalled at the same  location in September 2012 to obtain additional wind data and fill in data gaps for the portion  of the year that no site specific data exists.  It should be noted that the met tower failed in 2009  during a strong wind event and the months which no data exists for are likely conducive to     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  9    power generation.  The met tower is equipped with instrumentation and data loggers to  evaluate and record the wind resource.  The wind data collected during met tower operation  suggests that the existing wind regime in this location is suitable for wind power generation.   The results of the data acquisition and analysis of the wind resource are included in “Marshall  Wind‐Diesel Feasibility Study” dated August, 2013 (Appendix A).         4.0   WIND TURBINE SYSTEM ALTERNATIVES  4.1 MARSHALL WIND TURBINE ANALYSIS  Three types of wind turbines were selected by AVEC for preliminary cost analysis to assess cost  feasibility: Northern Power Systems Arctic (NP100) turbines; Vestas V20 turbines; and the  Aeronautica AW22‐225.  These turbines were selected because they can be installed in  configurations that provide 225 kW to 360 kW to the existing power generation system and  have fixed pitch blades. These configurations are classified as medium wind‐diesel penetration  systems having a goal to offset 20% to 50% of the community’s energy demand with wind  power. A medium penetration system provides a balance between the amount of energy  provided and the complexity of the wind generation and integration systems.     4.1.1 NORTHERN POWER 100 ARCTIC  The analyzed turbine configuration consists of (3) NP100 turbines on 48 meter lattice towers.  The NP100’s are manufactured by Northern Power Systems in Barre, Vermont. The NP100  turbine is normally rated at 100 kW.  However, the Marshall installation is anticipated to  include 24 meter rotor diameter, which reduces the maximum energy rating to 95 kW per  turbine. The 24 meter blades have a larger swept area and can generate more power at lower  wind speeds, which better matches Marshall’s wind regime.  The NP‐100s are permanent  magnet, synchronous, direct drive wind power generators.  AVEC has previously installed  similar turbines with hub heights ranging 22 to 30 meters, in the following rural Alaska villages:   Chevak ‐400 kW  Emmonak – 400 kW  Gambell – 300 kW  Hooper Bay – 300 kW  Kasigluk – 300 kW  Mekoryuk – 200 kW  Quinhagak – 300 kW  Savoonga – 200 kW  Shaktoolik – 200 kW  Toksook Bay – 400 kW  3,000 kW AVEC’s Existing Total NP100 Power Generation Capacity      DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  10    Each turbine is equipped with active yaw control, but does not have blade pitch control  capability.          Figure 6:  NP100 Turbine Installed in Emmonak  4.1.2 Vestas V20  The second option is installing (3) remanufacturer Vestas Wind Systems A/S V20 turbines. The  V20 is a 120 kW rated, fixed pitch turbine with active yaw and a high speed rotor with three  blades. Vestas is an international turbine manufacturer based in the Denmark, with their  American operations based in Portland, Oregon.  The V20s were commonly used as small scale  industrial wind turbines in the 1980’s and 1990’s. More recently, these turbines have been  replaced in wind farms with new large scale turbines with 1 megawatt capacity or greater.  The  decommissioned V20s were sold to independent contractors, such as Halus Power Systems in  San Leandro, CA, for refurbishment and resale.     The V20 is a 32‐meter (85‐foot) high, 120 kW,  induction generator.  The turbines are equipped with a 20‐meter diameter rotor. Installing  three V20s in Marshall would produce a maximum output of 360 kW at a wind speed of 15  mph. The generator power output can be controlled using a simple inverter and soft breaking  or a variable speed drive (VSD) complex inverter.  V20 turbines are the same wind turbines as  the Vestas V17 (except that the blades are 20 meters long instead of 17 meters long).  V17  turbines have been previously installed in Alaska at Kokhanok.   4.1.3 Aeronautica AW33‐225  The third turbine option is installing one Aeronautica AW33‐225 turbine. Aeronautica  Windpower Inc. started in 2008 as a turbine refurbishment company.  In 2010 they purchased  the rights to manufacture and sell the Norwin 225 and Norwin 750 turbines under their name.  The AW33‐225 turbine is a 40‐meter (131‐foot) high, 225 kW, induction generator.  The  turbines are equipped with a 33‐meter diameter rotor. This configuration has a maximum  power generation output of 225 kW.  The blades are fixed pitch and stall regulated at high wind     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  11    speeds. The blades are aerodynamically designed to stall during extreme wind events in order  to maintaining a safe operating speed.  This method of control eliminates the mechanical and  electric blade control systems involved with pitch controlled turbines.  There are no  Aeronautica turbines installed in Alaska at this time.    4.2 ALTERNATIVE 1   ‐  (3) NP100 TURBINES   This alternative proposes installation of (3) NP100 turbines at met tower for a total cumulative  generation capacity of 285 kW.  The project includes construction of 900 feet of 16‐foot wide  gravel access trail and (3) 2,600 square foot gravel pads at the wind tower locations.  The  proposed trail and wind tower pads are anticipated to be 4 feet thick and consist of locally  available sands and gravels compacted to 90% maximum density. The turbines are installed on  a 48‐meter high, lattice tower. The tower foundation is anticipated to include precast concrete  gravity above shallow volcanic bedrock.  Power is delivered from the wind turbines to the  Marshall power plant by a 0.8 mile long transmission line. Reference Sheet C1.02, Appendix D  for a site plan of Alternative 1.    The wind farm modeling included V3 Energy’s August, 2013 Marshall Wind‐Diesel Feasibility  Analysis (Appendix A) predicts that this alternative will add 721 MWh/year of annual energy  production to the Marshall power generation system at 80% turbine availability. The  construction cost for this alternative is estimated to be $11,280 per installed kW assuming the  new power plant is complete and operational. See Capital Cost Estimate included in Appendix E.   4.3 ALTERNATIVE 2  ‐  (3) V20 TURBINES   This alternative proposes installation of (3) V20 turbines at the met tower site for total  cumulative generation capacity of 360 kW.  The project includes construction of 900 feet of 16‐ foot wide gravel access trail and (3) 2,600 square foot gravel pads at the wind tower locations.   The proposed trail and wind tower pads are anticipated to be 4 feet thick and consist of locally  available sands and gravels compacted to 90% maximum density.  The turbines are installed on  a 32‐meter high lattice tower. The tower foundation is anticipated to include precast concrete  gravity above shallow volcanic bedrock.  Power is delivered from the wind turbines to the  Marshall power plant by a 0.8 mile long transmission line. Reference Sheet C1.03, Appendix D  for a site plan of Alternative 2.    The wind farm modeling included V3 Energy’s August, 2013 Marshall Wind‐Diesel Feasibility  Analysis (Appendix A) and predicts that this alternative will add 579 MWh/year of annual  energy production to the Marshall power generation system at 80% turbine availability . The  construction cost for this alternative is estimated to be $8,029 per installed KW assuming the  new power plant is complete and operational. See Capital Cost Estimate included in Appendix E.   4.4 ALTERNATIVE 3  ‐  (1) AW33‐225 TURBINES   This alternative proposes installation of (1) AW33‐225 turbines at met for a potential  generation capacity of 225 kW.  The project includes construction of a 300‐foot gravel access  trail and (1) 2,600 square foot wind tower pads.  The proposed trail and wind tower pads are     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  12    anticipated to be 4 feet thick and consist of locally available sands and gravels compacted to  90% maximum density. The turbine is installed on a 40‐meter high, conical, monopole tower.   The tower foundation is anticipated to include precast concrete gravity mats with rock anchors  to resist the increased overturning moment. The AW33‐225 towers are anticipated to require  larger foundations than the NP100 turbines due to larger reaction forces from the increased  tower weight, longer blade diameters, and increased swept area.  Power is delivered from the  wind turbines to the Marshall power plant by a 0.75 mile long transmission line.  Reference  Sheet C1.04, Appendix D, for a site plan of Alternative 3.    The wind farm modeling included V3 Energy’s August 2013 Marshall Wind‐Diesel Feasibility  Analysis (Appendix B) and predicts that this alternative will add 520 MWh/year of annual  energy production to Marshall power generation system at 80% turbine availability . The  construction cost for this alternative is estimated to be $11,824 per installed KW assuming the  new power plant is complete and operational and 225 kW of power is delivered from the new  turbine. See Capital Cost Estimate included in Appendix E.  4.5 ALTERNATIVE COMPARISON SUMMARY     Table 2 below summarizes the capital costs and estimated annual energy production for each  turbine alternative.      Table 2: Alternative Comparison Summary       Alt      Turbine Selection      Site    Generation  Capacity (kW)    Estimated  Capital Cost  Estimated Capital  Cost per Installed  kW  Estimated Annual  Energy Production  @ 80 %  Availability  1 (3) NP 100s Met Tower 285 $ 3.2 M $11,280 721,365 kWh  2 (3) V20s Met Tower 360 $ 2.9 M $8,029 579,681 kWh  3 (1) AW33‐225 Met Tower 225 $ 2.7 M $11,824 520,962 kWh  *Source: Annual Energy Production data taken from V3 Energy’s August 2013 Marshall Wind‐Diesel Feasibility Analysis    5.0   ECONOMIC EVALUATION   5.1 METHODOLOGY AND APPROACH  The Marshall Wind Diesel Feasibility Analysis prepared by V3 Energy (Appendix A) includes a  wind power analysis of the Marshall power generation system using HOMER energy modeling  software with the previously described wind turbine alternatives.  The software was configured  for a medium, with the first priority to meet the community’s electrical demands and the  second priority to serve the recovered heat system through a secondary load controller (electric     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  13    boiler). The analysis considered an average diesel fuel price of $4.99 per gallon for the  projected 20‐year project life.   The modeling assumptions and results of V3’s analysis are  presented in Appendix A.   V3 inserted the power generation and fuel consumption results from the HOMER modeling into  the economic modeling program developed by the Institute for Social and Economic Research  (ISER). AEA’s uses the ISER economic model as the standard approach for scoring wind project  design and construction grant applications. The ISER model considers the capital cost of  construction and annual cost of operating and maintaining the wind turbines and weighs them  against the benefit cost savings realized from the volume of displaced diesel fuel required for  power generation and heating public facilities.  The analysis develops a benefit/cost ratio that  can be used to compare wind turbine alternatives. See V3’s economic analysis results in  Appendix A.   5.2 ECONOMIC EVALUATION RESULTS  Table 3 below summarizes the findings of the V3’s economic evaluation for each turbine  alternative.   Table 3: Economic Evaluation Summary      Alt  Annual  Wind  Generation  @ 80%  Availability  (kWh)    Wind  Energy  For Power  (kWh/yr)    Wind  Energy  For Heat  (kWh/yr) Wind as %  Total  Power  Production  (%)  Power  Generation:   Fuel  Displaced by  Wind Energy  (gal/yr)  Thermal  Generation:   Heating Fuel  Displaced by  Wind Energy  (gal/yr)      Benefit/ Cost  Ratio  1 721,365 592,895 128,470 40 48,962 3,284 1.08  2 579,681 471,050 108,631 32.5 39,067 2,777 0.96  3 520,962 462,698   58,264 30 37,136 1,489 0.98  *Source: Annual Energy Production data taken from V3 Energy’s August 2013 Marshall Wind‐Diesel Feasibility Analysis    6.0  PREFERRED ALTERNATIVE  Based on the findings of the site analysis, wind modeling, and economic evaluation, Alternative  1 is the preferred alternative for Marshall wind turbine development.  This alternative consists  of construction of (3) NP100 turbines at the Met Tower Site. Each turbine has the potential to  generate 95 kW, for an aggregate total power generation of 285 kW. The NP100 turbine is the  preferred alternative because it has the highest benefit/cost ratio and matches AVEC’s existing  turbine fleet so that maintenance and operational procedures are consistent among AVEC  turbine installations. The three turbine installation would allow for redundancy in the system  and the ability to perform turbine maintenance without eliminating wind power from the  system.  The economic evaluation above assumes that the turbine array operates at the 285 kW     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  14    energy output level. However, for better system performance, the turbine should be modulated  by occasionally shutting down turbines to consistently provide medium penetration to the  Marshall grid and adequate excess energy to meet recovered heat demands.    7.0   PERMITTING, ENVIRONMENTAL, AND LAND OWNERSHIP  7.1 FEDERAL AVIATION ADMINISTRATION (FAA)   The FAA requires an Obstruction Evaluation/Airport Airspace Analysis (OE/AAA) and submittal  of a Notice of Proposed Construction or Alteration (45‐days prior to construction) for projects  proposing construction or alteration of any of the following:  1. A structure that exceeds 200 feet above ground level  2. A structure located in proximity to an airport and will not exceed the slope ratio  3. A structure involving construction of a traverse way  4. A structure emitting frequencies, and does not meet the conditions of the FAA Co‐ location Policy  5. A structure located in an instrument approach area that might exceed part 77 Subpart C  6. A structure located on an airport or heliport  On November 13, 2012, a Determination of No Hazard to Air Navigation from the FAA was  issued for two Northern Power 100 wind turbines (Reference No. 2012‐WTW‐7872‐OE and  2012‐WTW‐7873‐OE) at the met tower site.  This determination will have to be modified based  on the final tower configuration determined during design.    7.2 US FISH AND WILDLIFE SERVICE (USFWS)   Marshall is located within the Yukon‐Kuskokwim Delta Ecoregion and lies on the northeastern  boundary of the Yukon Delta National Wildlife Refuge.  According to Alaska’s 32 Ecoregions:   “The area is characterized by lakes, streams, tidal flats, wet tundra, and sedge flats that support  an abundant population of waterfowl and shorebirds; providing breeding grounds for more  than 20 species of waterfowl and 10 species of shorebirds.  The Yukon‐Kuskokwim Delta  supports 50% of the world’s black brant, the majority of the world’s emperor geese, all of North  America’s nesting cackling Canada geese, and the highest density of nesting tundra swans.  The  long‐tailed duck, scaup, common eider, spectacled eider, northern pintail, green‐winged teal,  and northern shoveler can also be found here.”    The USFWS lists the spectacled eider as threatened.  Spectacled eiders typically nest on coastal  tundra near shallow ponds or lakes, usually within 10 feet of the water.  The current range map  does not depict spectacled eider use of the area.  However, since historic use has been  documented, informal consultation with USFWS is encouraged in order to identify the  likelihood of spectacled eider presence within the project area, define potential effects, and  determine whether measures to avoid and minimize effects are necessary. USFWS  recommends avoiding vegetation clearing for regions throughout the state of Alaska.  For the  Yukon‐Kuskokwim Delta region the following avoidance periods apply:       DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  15    1. Shrub and Open Habitat – May 5th through July 25th (except in habitat that supports  Canada geese, swan, and black scoter)  2. Canada geese and swan habitat – April 20th through July 25th  3. Black scoter habitat – May 5th through August 10th   Under the Migratory Bird Treaty Act (MBTA):  “It is illegal for anyone to “take” migratory birds, their eggs, feathers or nests.  “Take” includes  by any means or in any manner, any attempt at hunting, pursuing, wounding, killing, possessing  or transporting any migratory bird, nest, egg, or part thereof.  Take and possession under MBTA  can be authorized through regulations, such as hunting regulations, or permits (e.g., salvage,  research, depredation, or falconry).  The MTBA does not distinguish between intentional and  unintentional take.  In Alaska, all native birds except grouse and ptarmigan (protected by the  State of Alaska) are protected under the MBTA.”  The Yukon Delta National Wildlife Refuge also supports spawning and rearing habitat for 44  species of fish including all five North American Pacific Salmon.  A review of ADF&G’s  Anadromous Waters Catalog lists Poltes Slough (AWC Code: 334‐20‐11000‐2375) as the closest  fish‐bearing stream to the project area.  The Slough supports the presence of chum, coho, and  king salmon and connects to the main stem of the Yukon River (AWC Code: 334‐20‐11000).  The  project is located far enough from the Slough that secondary indirect impacts from construction  related activities are unlikely to impact water quality.  Informal consultation with USFWS is recommended to identify potential impacts to threatened  and endangered species, such as eiders, define potential strike impacts to general avian species  and determine whether measures to avoid and minimize effects are necessary.  USFWS may  recommend an avian survey to identify which species are present in Marshall and general flight  patterns in relation to the proposed wind tower sites.  7.3 STATE HISTORIC PRESERVATION OFFICE (SHPO)  Preliminary research by Cultural Resource Consultants, LLC was performed on the Met Tower  Site.  According to the Alaska Heritage Resource Survey (AHRS) files there are no known historic  or archaeological sites within the proposed project area.  In addition, the project area is located  outside of an area defined as “highest potential for cultural resources” which extends two to  three blocks from the river and includes a cemetery and two other areas of reported graves.   This high potential area does not include the proposed wind tower locations.  An historic and  archaeological survey was conducted along the roadway from the town site of Marshall to the  airstrip.  Results of the survey suggested that, although the airport access road had been  constructed prior to the survey, it appeared to have no impact on historic or prehistoric sites.  Preliminary research results did reveal one known historic resource within the proposed project  area, the Paimute‐Marshall Trail (RST 168). The Paimute ‐ Marshall Trail is an historic trail used  as a connecting route from the Yukon River at Paimute through Russian Mission to Marshall.  The trail is shown in the 1973 Department of Transportation and Public Facilities trails  inventory, on Maps 73 and 74 (Russian Mission Quadrangle), as Trail #18.  The trail does not     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  16    have an AHRS number, but since it is listed as a qualified RS2477 right‐of‐way, it is very likely  eligible for the National Register of Historic Places.  Based on existing AHRS information and the findings of previous investigations, there is a  relatively low probability of undiscovered archaeological and historic sites within area proposed  for development.  In accordance with the National Historic Preservation Act, the undertaking  will need to be reviewed by the SHPO.  During formal Section 106 consultation the SHPO will  determine whether additional surveys and mitigation will be required.  7.4 DEPARTMENT OF THE ARMY (DA)  Section 404 of the Clean Water Act requires a permit for placement of fill in wetlands and  waters of the United States. The National Wetlands Inventory (NWI) database does not have  data for the Marshall area.  However, current wetland mapping in adjacent areas with similar  habitat and landform features indicates the area contains wetlands under DA jurisdiction.  A new Nationwide Permit (NWP) issued in 2012 for Land Based Renewable Energy General  Facilities (NWP 51) authorizes discharge of fill for wind tower construction if loss of wetlands  does not exceed 1/2 acre.  This permit also covers other associated work, including utility lines,  parking lots, and roads inside of the wind generation facility.  Access roads and transmission  lines used to connect the facility to existing infrastructure require separate permitting (NWP 12  or 14).  Submittal requirements for NWP 51 includes Pre‐Construction Notification (PCN) and  PCN requires a wetlands delineation documenting project impacts.   Completion of wetlands delineation for the area proposed for development is recommended.   The DA recommends that wetlands delineation is completed within the designated growing  season for specific regions.  Marshall is located within Alaska’s Interior Forested Lowlands and  Uplands Ecoregion, which has a growing season that begins on May 3rd and ends on October  3rd.  7.5 CONTAMINATED SITES, SPILLS, AND UNDERGROUND TANKS  A search of the Alaska Department of Environmental Conservation’s (ADEC) contaminated sites  database revealed three active contaminated sites within the Village of Marshall.  No known  contaminated sites are located within the area proposed for development.  7.6 AIR QUALITY  According to Alaska Administrative Code (AAC) 18 AAC 50, the community of Marshall is  considered a Class II area.  As such, there are designated maximum allowable increases for  particulate matter 10 (PM‐10) micrometers or less in size, nitrogen dioxide, and sulfur dioxide.   Activities in these areas must operate in such a way that they do not exceed listed air quality  controls for these compounds.  The nature and extent of the proposed project is not likely to  increase emissions or contribute to a violation of an ambient air quality standard or cause a  maximum allowable increase for a Class II area.  7.7 NATIONAL ENVIRONMENTAL POLICY ACT REVIEW (NEPA)     DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  17    The federal government’s role in regulating wind power development is limited to projects  occurring on federal lands or projects that have some form of federal involvement.  The federal  nexus for the proposed wind tower site in Marshall is likely with the DA for placement of fill in  wetlands.  Construction of the wind towers at the proposed development site would require  preparation of an Environmental Review (ER) document.  Similar to an Environmental  Assessment (EA), an ER will provide an assessment of potential environmental impacts and  identify avoidance, minimization, and mitigation measures.  A Finding of No Significant Impact  (FONSI) determination by the funding agency will be needed.  Results from a preliminary environmental review are summarized below:  1. In accordance with the National Historic Preservation Act, Section 106 consultation will  be required for the project.    2. A wetlands delineation of the proposed site is necessary to obtain a preliminary  jurisdictional determination and Section 404/10 DA Permit.    3. Informal consultation with the USFWS is recommended to identify potential effects to  threatened or endangered species and possible avoidance and minimization measures.  4. Vegetation clearing shall be scheduled to take place outside appropriate recommended  time periods of avoidance, per the USFWS’s recommendations.  5. File FAA form 7460‐1 at least 45 days prior to construction.  This has been filed for  NP100 turbines.  7.8 LAND OWNERSHIP  The Alaska Department of Natural Resources (ADNR) Special Management Lands Division  indicates the proposed tower site is located within the designated city boundary of Marshall.   The Alaska Division of Community and Regional Affairs (DCRA) Area Use Map for Marshall  indicates the proposed tower site is located on land owned by Maserculiq, Inc.  AVEC and  Maserculiq, Inc. have an existing lease agreement in place June 1, 2012 through July 31, 2013  for the installation of the meteorological tower.   8.0   CONCLUSIONS AND RECOMMENDATIONS  The high cost of diesel fuel and available wind resource near Marshall makes wind power an  attractive component to the electrical power generation system.  A wind site investigation and  subsequent wind modeling analysis determined that Marshall has a Class 4 wind resource and is  suited for wind site development.  Economic analysis of the turbine alternatives presented in  this report included a configuration of three NP100 turbines installed at the Met Tower Site.   The economic analysis projected that three NP100 turbines could offset approximately 42,846  gallons of diesel fuel per year while generating 721,365 kWh/yr.   The following actions are recommended to continue the progress of wind turbine development  in Marshall:      DRAFT      Alaska Village  Marshall Wind Project   Electric Cooperative  Concept Design Report  18    Recommendations 1. Enter into negotiations with Maserculiq, Inc. for site control and access for a  geotechnical investigation and wind project development at the Met Tower Site.  2. Consult with Marshall community leaders to understand and minimize the impacts to  subsistence activities from wind project development at the Met Tower Site.  3. Perform wetland delineation at the Met Tower Site and proceed with permitting per the  recommendations included in Section 5 of this report.  4. Perform a geotechnical investigation at the Met Tower Site to develop wind tower  foundation design.  5. Perform additional investigation and design of improvements to incorporate wind  power into the existing power plant at Marshall.  6. Continue to evaluate turbine alternatives, perform detailed design of a selected  alternative, and apply for construction grant funds.   9.0   REFERENCES  Alaska Community Database, Community Information Summaries (CIS)  http://www.commerce.state.ak.us/dca/commdb/CF_CIS.html, accessed on 9/12/2012  Alaska Energy Authority (AEA). 2012. Statistical Report of the Power Cost Equalization Program,  Fiscal Year 2011. Twenty Third Edition. April 2012.  Alaska Department of Environmental Conservation (ADEC).  18 AAC 50 Air Quality Control: As  Amended through August 1, 2012.  ADEC.  Division of Spill Prevention and Response.  Last accessed on September 6, 2012.   http://dec.alaska.gov/applications/spar/CSPSearch/results.asp.  State of Alaska Department of Transportation (ADOT) Northern Region Technical Services  Geology.  Geotechnical Report, Marshall Airport Runway Relocation.  July 1998.   Alaska Native Tribal Health Consortium (ANTHC) Division of Environmental Health and  Engineering.  Marshall, Alaska Heat Recovery Study. July 16, 2012.  Alaska Department of Fish & Game (ADF&G).  Wildlife Action Plan Section IIIB: Alaska’s 32  Ecoregions  http://www.adfg.alaska.gov/static/species/wildlife_action_plan/section3b.pdf.  Last  accessed on September 6, 2012.  ADF&G.  Anadromous Waters Catalog.  http://www.adfg.alaska.gov/sf/SARR/AWC/.  Last  accessed on September 6, 2012.   ADF&G.  2012c.  Refuges, Sanctuaries, Critical Habitat Areas and Wildlife Refuges.   http://www.adfg.alaska.gov/index.cfm?adfg=protectedareas.locator.  Last accessed on  September 7, 2012.  ADNR. 2012.  Division of Special Management Lands.  http://www.navmaps.alaska.gov/specialmanagementlands/.  Last accessed on  September 7, 2012.  DRAFT    Alaska Village Marshall Wind Project   Electric Cooperative Concept Design Report  19  Alaska Department of Commerce, Community, and Economic Development; Division of  Community and Regional Affairs. Marshall Area Use Map.  2006.  FAA.  Obstruction Evaluation/Airport Airspace Analysis (OE/AAA).  https://oeaaa.faa.gov/oeaaa/external/portal.jsp012.  Last accessed on August 26, 2012.  USACE.  Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska  Region (Version 2.0).   http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/reg_supp/erdc‐el_tr‐ 07‐24.pdf.  Last accessed on September 6, 2012.  USFWS.  United States Fish and Wildlife Service Endangered Species: Listed and Candidate  Species in Alaska, Spectacled Eider (Somateria fischeri).   http://alaska.fws.gov/fisheries/endangered/species/spectacled_eider.htm.  Last  accessed on September 6, 2012.  USFWS.  Yukon Delta National Wildlife Refuge.   http://www.fws.gov/refuges/profiles/index.cfm?id=74540.  Last accessed on September  6, 2012.    USFWS.  U.S. Fish and Wildlife Service Land Clearing Guidance for Alaska: Recommended Time  Periods to Avoid Vegetation Clearing.  http://alaska.fws.gov/fisheries/fieldoffice/anchorage/pdf/vegetation_clearing.pdf.  Last  accessed on September 7, 2012.  USFWS.  U.S. Fish and Wildlife Service National Wetlands Inventory.   http://107.20.228.18/Wetlands/WetlandsMapper.html#. Last accessed on September 6,  2012.   V3 Energy.  Marshall Wind‐Diesel Feasibility Study.  September 14, 2012.   Northern Economics.  Proposed Wind Project in Marshall: Economic Evaluation Report.   September 17, 2012.  Appendix A V3 Energy's August 2013 Marshall Wind-Diesel Feasibility Analysis Marshall Wind-Diesel Feasibility Analysis August 29, 2013 Douglas Vaught, P.E. dvaught@v3energy.com V3 Energy, LLC Eagle River, Alaska Marshall Wind-Diesel Feasibility Analysis Page | i This report was prepared by V3 Energy, LLC under contract to Alaska Village Electric Cooperative to assess the technical and economic feasibility of installing wind turbines in Marshall. This analysis is part of a conceptual design project funded in Round IV of the Renewable Energy Fund administered by the Alaska Energy Authority. Contents Introduction .................................................................................................................................................. 1 Village of Marshall .................................................................................................................................... 1 Wind Resource .............................................................................................................................................. 2 Measured Wind Speeds ............................................................................................................................ 4 Wind Roses ................................................................................................................................................ 4 Wind Frequency Rose ........................................................................................................................... 5 Total Value (power density) Rose ......................................................................................................... 5 Extreme Winds .............................................................................................................................................. 5 Wind-Diesel Hybrid System Overview .......................................................................................................... 5 Low Penetration Configuration ................................................................................................................. 6 Medium Penetration Configuration .......................................................................................................... 7 High Penetration Configuration ................................................................................................................ 7 Wind-Diesel System Components ............................................................................................................. 8 Wind Turbine(s) .................................................................................................................................... 8 Supervisory Control System .................................................................................................................. 8 Synchronous Condenser ....................................................................................................................... 9 Secondary Load ..................................................................................................................................... 9 Deferrable Load .................................................................................................................................. 10 Interruptible Load ............................................................................................................................... 10 Storage Options .................................................................................................................................. 10 Wind Turbine Options ................................................................................................................................. 11 Northern Power Systems 100-24 Arctic .................................................................................................. 11 Vestas V20 ............................................................................................................................................... 12 Aeronautica 33-225 ................................................................................................................................ 13 Homer Software Wind-Diesel Model .............................................................................................................. 13 Diesel Power Plant .................................................................................................................................. 13 Marshall Wind-Diesel Feasibility Analysis Page | ii Wind Turbines ......................................................................................................................................... 14 Electric Load ............................................................................................................................................ 14 Thermal Load .......................................................................................................................................... 15 Diesel Generators ................................................................................................................................... 15 Economic Analysis ....................................................................................................................................... 16 Wind Turbine Costs ................................................................................................................................. 17 Fuel Cost .................................................................................................................................................. 17 Modeling Assumptions ........................................................................................................................... 17 Conclusion and Recommendations ............................................................................................................ 21 Marshall Wind-Diesel Feasibility Analysis Page | 1 Introduction Alaska Village Electric Cooperative (AVEC) is the electric utility for the City of Marshall. AVEC was awarded a grant from the Alaska Energy Authority (AEA) to complete feasibility work for installation of wind turbines, with planned construction in 2015. Village of Marshall Marshall is located on the north bank of Polte Slough, north of Arbor Island, on the east bank of the Yukon River in the Yukon-Kuskokwim Delta. It lies on the northeastern boundary of the Yukon Delta National Wildlife Refuge. The climate of Marshall is maritime with temperatures ranging between -54 and 86 °F. Average annual rainfall measures 16 inches. Heavy winds in the fall and winter often limit air accessibility. The Lower Yukon is ice-free from mid-June through October. An expedition came upon an Eskimo village called "Uglovaia" at this site in 1880. Gold was discovered on nearby Wilson Creek in 1913. "Fortuna Ledge" became a placer mining camp, named after the first child born at the camp, Fortuna Hunter. Its location on a channel of the Yukon River was convenient for riverboat landings. A post office was established in 1915, and the population grew to over 1,000. Later, the village was named for Thomas Riley Marshall, Vice President of the United States under Woodrow Wilson from 1913-21. The community became known as "Marshall's Landing." When the village incorporated as a second-class city in 1970, it was named Fortuna Ledge but was commonly referred to as Marshall. The name was officially changed to Marshall in 1984. A federally-recognized tribe is located in the community -- the Native Village of Marshall. Marshall is a traditional Yup'ik Eskimo village. Subsistence and fishing-related activities support most residents. Members of the Village of Ohogamiut also live in Marshall. The sale, importation, and possession of alcohol are banned in the village. According to Census 2010, there were 108 housing units in the community and 100 were occupied. Its population was 94.7 percent American Indian or Alaska Native; 2.7 percent white; 0.2 percent Asian; 2.4 percent of the local residents had multi-racial backgrounds. Additionally, 0.2 percent of the population was of Hispanic descent. Water is derived from five wells. Approximately 70% of the city (60 homes) is served by a piped circulating water and sewer system and has full plumbing. The remainder of the city must haul water and use honey buckets. An unpermitted landfill is available, and the city has a refuse collection service. Electricity is provided by Alaska Village Electric Cooperative. There is one school located in the Marshall Wind-Diesel Feasibility Analysis Page | 2 community, attended by 133 students. Local hospitals or health clinics include Agnes Boliver Health Clinic (Marshall). Emergency Services have river and air access. Emergency service is provided by a health aide. Marshall has a seasonal economy with most activity during the summer. Fishing, fish processing, and BLM firefighting positions are available seasonally. In 2010, 39 residents held commercial fishing permits. Subsistence activities supplement income. Salmon, moose, bear, and waterfowl are harvested. Trapping provides some income. No roads connect Marshall to other communities, so access to Marshall is primarily by air or water. The city has a State-owned 3,201' long by 100' wide gravel airstrip. The community is also serviced by barge. Many residents have boats and in winter they rely on snow machines and dog teams for travel. Wind Resource A met tower was installed at the proposed wind turbine site in Marshall on December 18, 2008 and was in continuous operation until October 10, 2009 when an anchor failed during a wind storm and the tower collapsed. The met tower was replaced in September 2012 and is presently operational. With the data through July 2013, an average wind speed of 6.30 m/s was measured, with a wind power density of 400 W/m2 (Class 4 wind resource). Other aspects of the wind resource also are promising for wind power development. By IEC 61400-1 3rd edition classification, Marshall is category IIIC, indicating low turbulence (mean TI at 15 m/s = 0.095) and a low probability of extreme wind events. The latter measure is more difficult to quantify with only 21 months of data, but the site clearly is not energetic enough to be IEC Class I. All three wind turbines profiled in this report are certified for IEC Class III conditions. Marshall met tower data synopsis Data start date December 18, 2008 Data end date Operational (data gap from Oct. 2009 to Sept. 2012); data thru July 2013 for analysis Wind power class (by WPD) Class 4 (good) Wind speed average (30 meters) 6.30 m/s measured Maximum 10-min average wind speed 30.8 m/s Maximum wind gust 37.8 m/s (January 2009) IEC 61400-1 3rd ed. extreme winds Class III (note: 21 months data) Wind power density (30 meters) 400 W/m2 Weibull distribution parameters k = 1.60, c = 7.02 m/s Roughness Class 0.65 (lawn grass) Power law exponent 0.118 (low wind shear) Frequency of calms (4.0 m/s threshold) 34% Mean Turbulence Intensity 0.090 (IEC 61400-1 3rd ed. turbulence category C) Marshall Wind-Diesel Feasibility Analysis Page | 3 Topographic map Google Earth image Marshall Wind-Diesel Feasibility Analysis Page | 4 Measured Wind Speeds Measured wind speeds in Marshall are excellent for an inland site and very promising for wind power development. Wind Speed Sensor Summary Variable Speed 30 m A Speed 30 m B Speed 22 m Measurement height (m) 30 30 22 Mean wind speed (m/s) 6.30 6.35 6.09 MoMM wind speed (m/s) 6.26 6.30 6.04 Max 10-min wind speed (m/s) 26.7 30.8 26.6 Weibull k 1.60 1.57 1.58 Weibull c (m/s) 7.02 7.05 6.77 Mean power density (W/m²) 392 413 360 MoMM power density (W/m²) 380 400 347 Mean energy content (kWh/m²/yr) 3,434 3,615 3,151 MoMM energy content (kWh/m²/yr) 3,333 3,502 3,041 Energy pattern factor 2.39 2.48 2.44 Frequency of calms (%) 33.3 33.4 35.2 Marshall Wind speed graph Wind Roses Winds at the Marshall met tower test site are primarily east-northeast, north-northwest with occasional winds from south-southeast (wind frequency rose), with the strongest winds east-northeast (mean value rose). The power density rose indicates that the power producing winds at the site are predominately east-northeast. Multiple wind turbines should oriented an axis north-northeast to south-southwest to provide good exposure to ENE and SSE winds and avoid tower shadowing. Marshall Wind-Diesel Feasibility Analysis Page | 5 Note that a wind threshold of 4.0 m/s was selected for the definition of calm winds. With this threshold, the Marshall met tower site experienced 34 percent calm conditions during the test period. Wind Frequency Rose Total Value (power density) Rose Extreme Winds The relatively short duration (21 months) of collected Marshall met tower data should be considered minimal for calculation of extreme wind probability, but nevertheless it can be estimated with a reasonable level of confidence with a Gumbel distribution analysis modified for entry of monthly data versus annual data. Analysis indicates that the Marshall met tower site experiences relatively few extreme wind events and by reference to International Electrotechnical Commission (IEC) 61400-1, 3rd edition (2005), classifies as IEC Class III for extreme wind probability, the lowest defined and typical of many wind power sites. All wind turbines are designed to meet this criterion. Extreme wind speed probability table Vref Gust IEC 61400-1, 3rd ed. Period (years) (m/s) (m/s) Class Vref, m/s 2 26.6 33.4 I 50.0 10 31.5 39.5 II 42.5 15 32.7 41.0 III 37.5 30 34.8 43.6 S designer- specified 50 36.3 45.6 100 38.4 48.2 average gust factor: 1.25 Wind-Diesel Hybrid System Overview Wind-diesel power systems are categorized based on their average penetration levels, or the overall proportion of wind-generated electricity compared to the total amount of electrical energy generated. Commonly used categories of wind-diesel penetration levels are low penetration, medium penetration, Marshall Wind-Diesel Feasibility Analysis Page | 6 and high penetration. The wind penetration level is roughly equivalent to the amount of diesel fuel displaced by wind power. Note however that the higher the level of wind penetration, the more complex and expensive a control system and demand-management strategy is required. Categories of wind-diesel penetration levels Penetration Penetration Level Operating characteristics and system requirements Instantaneous Average Low 0% to 50% Less than 20% Diesel generator(s) run full time at greater than minimum loading level. Requires minimal changes to existing diesel control system. All wind energy generated supplies the village electric load; wind turbines function as “negative load” with respect to diesel generator governor response. Medium 0% to 100+% 20% to 50% Diesel generator(s) run full time at greater than minimum loading level. Requires control system capable of automatic generator start, stop and paralleling. To control system frequency during periods of high wind power input, system requires fast acting secondary load controller matched to a secondary load such as an electric boiler augmenting a generator heat recovery loop. At high wind power levels, secondary (thermal) loads are dispatched to absorb energy not used by the primary (electric) load. Without secondary loads, wind turbines must be curtailed to control frequency. High (Diesels-off Capable) 0% to 150+% Greater than 50% Diesel generator(s) can be turned off during periods of high wind power levels. Requires sophisticated new control system, significant wind turbine capacity, secondary (thermal) load, energy storage such as batteries or a flywheel, and possibly additional components such as demand- managed devices. Low Penetration Configuration Low-penetration wind-diesel systems require the fewest modifications to a new or existing power system in that maximum wind penetration is never sufficient to present potential electrical stability problems. But, low penetration wind systems tend to be less economical than higher penetration systems due to the limited annual fuel savings compared to a relatively high total wind system installation costs. This latter point is because all of the fixed costs of a wind power project – equipment mobilization and demobilization, distribution connection, new road access, permitting, land acquisition, etc. – are spread across fewer turbines, resulting in relatively high per kW installed costs. Marshall Wind-Diesel Feasibility Analysis Page | 7 Medium Penetration Configuration Medium penetration mode is very similar to high penetration mode except that no electrical storage is employed in the system and wind capacity is designed for a moderate and usable amount of excess wind energy that must be diverted to thermal loads. All of AVEC’s modern wind power systems are designed as medium penetration systems. High Penetration Configuration Other communities, such as Kokhanok, are more aggressively seeking to offset diesel used for thermal and electrical energy. They are using configurations which will allow for the generator sets to be turned off and use a significant portion of the wind energy for various heating loads. The potential benefit of these systems is the highest, however currently the commissioning for these system types due to the increased complexity, can take longer. Marshall Wind-Diesel Feasibility Analysis Page | 8 Wind-Diesel System Components Listed below are the main components of a medium to high-penetration wind-diesel system: • Wind turbine , plus tower and foundation • Supervisory control system • Synchronous condenser • Secondary load • Deferrable load • Interruptible load • Storage Wind Turbine(s) Village-scale wind turbines are generally considered as 50 kW to 250 kW rated output. This turbine size once dominated with worldwide wind power industry but has been left behind in favor of much larger 1,000 kW plus capacity turbines for utility grid-connected projects. Conversely, many turbines are manufactured for home or farm application, but generally these are 10 kW or smaller. Consequently, few new manufacture village size-class turbines are on the market, although a large supply of used and/or remanufactured turbines are available. The latter typically result from the repower of older wind farms in the Continental United States and Europe with new, larger wind turbines. Supervisory Control System Medium- and high-penetration wind-diesel systems require fast-acting real and reactive power management to compensate for rapid variation in village load and wind turbine power output. A wind- diesel system master controller, also called a supervisory controller, would be installed inside the Marshall Wind-Diesel Feasibility Analysis Page | 9 existing Marshall power plant or in a new module adjacent to it. The supervisory controller would select the optimum system configuration based on village electric load demand and available wind power. Synchronous Condenser A synchronous condenser, sometimes called a synchronous compensator, is a specialized synchronous electric motor with an output shaft that spins freely. Its excitation field is controlled by a voltage regulator to either generate or absorb reactive power as needed to support the grid voltage or to maintain the grid power factor at a specified level. This is necessary for diesels-off wind turbine operations, but generally not required for wind systems that maintain a relatively large output diesel generator online at all times. Synchronous condenser in Kokhanok Secondary Load To avoid curtailing wind turbines during periods of high wind/low load demand, a secondary or “dump” load is installed to absorb excess system (principally wind) power beyond that required to meet the electrical load. The secondary load converts excess wind energy into heat via an electric boiler typically installed in the diesel generator heat recovery loop. This heat can be for use in space and water heating through the extremely rapid (sub-cycle) switching of heating elements, such as an electric boiler imbedded in the diesel generator jacket water heat recovery loop. As seen in Figure 16, a secondary load controller serves to stabilize system frequency by providing a fast responding load when gusting wind creates system instability. An electric boiler is a common secondary load device used in wind-diesel power systems. An electric boiler (or boilers), coupled with a boiler grid interface control system, in a new module outside the Marshall power plant building, would be sized to absorb up to 200 kW of instantaneous energy (full output of the wind turbines). The grid interface monitors and maintains the temperature of the electric hot water tank and establishes a power setpoint. The wind-diesel system master controller assigns the setpoint based on the amount of unused wind power available in the system. Frequency stabilization is another advantage that can be controlled with an electric boiler load. The boiler grid interface will Marshall Wind-Diesel Feasibility Analysis Page | 10 automatically adjust the amount of power it is drawing to maintain system frequency within acceptable limits. Deferrable Load A deferrable load is electric load that must be met within some time period, but exact timing is not important. Loads are normally classified as deferrable because they have some storage associated with them. Water pumping is a common example - there is some flexibility as to when the pump actually operates, provided the water tank does not run dry. Other examples include ice making and battery charging. A deferrable load operates second in priority to the primary load and has priority over charging batteries, should the system employ batteries as a storage option. Interruptible Load Electric heating either in the form of electric space heaters or electric water boilers should be explored as a means of displacing stove oil with wind-generated electricity. It must be emphasized that electric heating is only economically viable with excess electricity generated by a renewable energy source such as wind and not from diesel-generated power. It is typically assumed that 41 kWh of electric heat is equivalent to one gallon of heating fuel oil. Storage Options Electrical energy storage provides a means of storing wind generated power during periods of high winds and then releasing the power as winds subside. Energy storage has a similar function to a secondary load but the stored, excess wind energy can be converted back to electric power at a later time. There is an efficiency loss with the conversion of power to storage and out of storage. The descriptions below are informative but are not currently part of the overall system design. Flywheels A flywheel energy system has the capability of short-term energy storage to further smooth out short- term variability of wind power, and has the additional advantage of frequency regulation. However, the flywheel system is designed for much larger load systems and would not be economical for Marshall. Batteries Battery storage is a generally well-proven technology and has been used in Alaskan power systems including Fairbanks (Golden Valley Electric Association), Wales and Kokhanok, but with mixed results in the smaller communities. Batteries are most appropriate for providing medium-term energy storage to allow a transition, or bridge, between the variable output of wind turbines and diesel generation. This “bridging” period is typically 5 to 15 minutes long. Storage for several hours or days is also possible with batteries, but this requires higher capacity and cost. In general, the disadvantages of batteries for utility- scale energy storage, even for small utility systems, are high capital and maintenance costs and limited lifetime. Of particular concern to rural Alaska communities is that batteries are heavy and expensive ship and most contain hazardous substances that require special removal from the village at end of service life and disposal in specially-equipped recycling centers. There are a wide variety of battery types with different operating characteristics. Advanced lead acid and zinc-bromide flow batteries were identified as “technologically simple” energy storage options Marshall Wind-Diesel Feasibility Analysis Page | 11 appropriate for rural Alaska in an Alaska Center for Energy and Power (ACEP) July, 2009 report on energy storage. Nickel-cadmium (NiCad) batteries have been used in rural Alaska applications such as the Wales wind-diesel system. Advantages of NiCad batteries compared to lead-acid batteries include a deeper discharge capability, lighter weight, higher energy density, a constant output voltage, and much better performance during cold temperatures. However, NiCads are considerably more expensive than lead-acid batteries and one must note that the Wales wind-diesel system had a poor operational history and has not been functional for over ten years. Because batteries operate on direct current (DC), a converter is required to charge or discharge when connected to an alternating current (AC) system. A typical battery storage system would include a bank of batteries and a power conversion device. The batteries would be wired for a nominal voltage of roughly 300 volts. Individual battery voltages on a large scale system are typically 1.2 volts DC. Recent advances in power electronics have made solid state inverter/converter systems cost effective and preferable a power conversion device. The Kokhanok wind-diesel system is designed with a 300 volts DC battery bank coupled to a grid-forming power converter for production of utility-grade real and reactive power. Following some design and commissioning delays, the solid state converter system in Kokhanok should be operational by late 2013 and will be monitored closely for reliability and effectiveness. Wind Turbine Options Several village-scale wind turbines are considered suitable for Marshall. The guiding criteria are turbine output rating in relation to electric load, simplicity of design, AVEC Operations department preferences, redundancy, and cost considerations. The turbines chose for review in this CDR are the Northern Power Systems NPS 100, the Vestas V17, and the Windmatic WM17S. Northern Power Systems 100-24 Arctic The Northern Power 100-24 Arctic (NPS100-24), formerly known as the Northwind 100 (NW100) in the more common earlier A and B model versions, is rated at 95 kW and is equipped with a permanent magnet, synchronous generator, is direct drive (no gearbox), can be equipped with heaters and insulation, and has been tested to ensure operation in extreme cold climates. The turbine has a 24 meter diameter rotor and is available with a 30 or 37 meter monopole towers, or a 48 meter lattice tower. The rotor blades are fixed pitch for stall control but the turbine is also inverter regulated for maximum 95 kW power output. For Marshall, the NPS100-24 will be equipped with an arctic package enabling a minimum operating temperature of -40° C. The Northern Power 100 is the most widely represented village-scale wind turbine in Alaska with a significant number of installations in the Yukon- Kuskokwim Delta and on St. Lawrence Island. The Northern Power 100 wind turbine is manufactured in Barre, Vermont, USA. More information can be found at http://www.northernpower.com/. Marshall Wind-Diesel Feasibility Analysis Page | 12 Vestas V20 The Vestas V20 was originally manufactured by Vestas Wind Systems A/S in Denmark and is no longer in production. It is, however, available as a remanufactured unit from Halus Power Systems in California (represented in Alaska by Marsh Creek, LLC) and from Talk, Inc. in Minnesota. The V20 is rated at 120 kW and is a higher output version of the two Vestas V17 wind turbines installed in Kokhanok in 2011. The V20 has a fixed-pitch, stall-regulated rotor coupled to an asynchronous (induction) generator via a gearbox drive. The original turbine design included low speed and high speed generators in order to optimize performance at low and high wind speeds. The two generators are connected to the gearbox with belt drives and a clutch mechanism. In some installations though – especially sites with a high mean wind speeds – the low speed generator is removed to eliminate a potential failure point. Vestas V17 wind turbines in Kokhanok Marshall Wind-Diesel Feasibility Analysis Page | 13 Aeronautica 33-225 The Aeronautica AW33-225 wind turbine is manufactured new by Aeronautica in Durham, New Hampshire. This turbine was originally designed by the Danish-manufacturer Norwin in the 1980’s with a 29 meter rotor diameter and had a long and successful history in the wind industry before being replaced by larger capacity turbines for utility-scale grid-connect installations. The original 29 meter rotor diameter design is available as the AW29-225 for IEC Class IA wind regimes, which the AW33-225 is a new variant designed for IEC Class II and III winds. The AW225 turbine is stall-regulated, has a synchronous (induction) generator, active yaw control, is rated at 225 kW power output, and is available with 30, 40, or 50 meter tubular steel towers. The AW33-225 is fully arctic-climate certified to -40° C and is new to the Alaska market with no in-state installations at present. While the AW29-225 has a typical cut-out wind speed of 25 m/s, the larger rotor diameter AW33-225 is designed for a cut-out speed of 22 m/s. More information can be found at http://aeronauticawind.com/aw/index.html. Aeronautica AW 33-225 wind turbine (29-225 version shown) Homer Software Wind-Diesel Model Homer energy modeling software was used to analyze the existing Marshall power plant. Homer software was designed to analyze hybrid power systems that contain a mix of conventional and renewable energy sources, such as diesel generators, wind turbines, solar panels, batteries, etc. and is widely used to aid development of Alaska village wind power projects. It is a static energy balance model, however, and is not designed to model the dynamic stability of a wind-diesel power system, although it will provide a warning that renewable energy input is potential sufficient to result in system instability. Diesel Power Plant Electric power (comprised of the diesel power plant and the electric power distribution system) in Marshall is provided by AVEC with the following diesel configuration. Marshall Wind-Diesel Feasibility Analysis Page | 14 Marshall powerplant diesel generators Generator Electrical Capacity Diesel Engine Model Generator 1 500 kW Caterpillar 3456 Cat LC6 2 363 kW Detroit Series 60 DDEC4 Kato 6P4-1450 3 236 kW Detroit Series 60 DDEC4 Kato 6P4-1450 Wind Turbines This CDR evaluates installation of three new Northern Power Systems NPS100-24 turbines for 285 kW installed capacity, three remanufactured Vestas V20 turbines for 360 kW installed capacity, or one new Aeronautica AW33-225 turbines for 225 KW installed capacity. Standard temperature and pressure (STP) power curves are shown below. Note that for the Homer analysis, site elevation was adjusted to reflect the measured site mean annual air density of 1.294 kg/m3. Northern Power 100-24 Arctic Vestas V20 Aeronautica AW33-225 Electric Load Marshall load data, collected from December 2010 to December 2011, was received from William Thompson of AVEC. These data are in 15 minute increments and represent total electric load demand during each time step. The data were processed by adjusting the date/time stamps nine hours from GMT to Yukon/Alaska time, multiplying each value by four to translate kWh to kW (similar to processing of the wind turbine data), and creating a January 1 to December 31 hourly list for export to HOMER software. The resulting load is shown graphically below. Average load is 191 kW with a 299 kW peak 0 5 10 15 20 25 300 20 40 60 80 100 Power (kW)Power Curve Wind Speed (m/s) 0 5 10 15 20 25 300 20 40 60 80 100 120 140 Power (kW)Power Curve Wind Speed (m/s) Marshall Wind-Diesel Feasibility Analysis Page | 15 load and an average daily load demand of 4,582 kWh. This compares to a 185 kW average load reported to the RCA for the 2012 PCE report. Electric load Thermal Load Powerplant heat recovery in Marshall is non-functional at present with fairly long distances to relatively large heat loads. Homer modeling indicates that excess wind energy from the wind turbine combinations considered would be large enough to warrant construction of a recovered heat system or remote placement of a secondary load controller/electric boiler in a building with high thermal demand, such as the new school or the water plant. Due to the relatively modest amount of predicted excess energy from wind turbine operation, it is assumed that the school and/or water plant can use this excess energy to displace heating oil usage. Diesel Generators The HOMER model was constructed with all three Marshall diesel generators. For cost modeling purposes, AEA assumes a generator O&M cost of $0.020/kWh. For HOMER modeling purposes, this was converted to $1.00/operating hour for each diesel generator (based on Marshall’s modeled average electrical load of 191 kW). Other diesel generator information pertinent to the HOMER model is shown below. Individual generator fuel curve information is available but Homer modeling with generator- specific fuel curves indicated fuel efficiency of 15.3 kWh/gal in the base case (no wind turbines). This is higher than AVEC’s reported fuel efficiency of 12.98 kWh/gal to Regulatory Commission of Alaska for the 2012 Power Cost Equalization Report, and the 14.44 kWh/gal efficiency for Marshall documented in AVEC’s 2011 annual generation report. Marshall Wind-Diesel Feasibility Analysis Page | 16 Diesel generator HOMER modeling information Diesel generator Caterpillar 3456 Detroit Series 60 DDEC4 Detroit Series 60 DDEC4 Power output (kW) 500 363 236 Intercept coeff. (L/hr/kW rated) 0.00651 0.0195 0.0146 Slope (L/hr/kW output) 0.2382 0.2122 0.2384 Minimum electric load (%) 5.0% (25 kW) 6.9% (25 kW) 10.6% (25 kW) Heat recovery ratio (% of waste heat that can serve the thermal load) 22 22 22 Intercept coefficient – the no-load fuel consumption of the generator divided by its capacity Slope – the marginal fuel consumption of the generator Cat 3456 fuel efficiency curve DD60 DDEC4 Gen 2 DD60 DDEC4 Gen 3 Economic Analysis Installation of wind turbines in medium penetration mode is evaluated in this report to demonstrate the economic impact of these turbines with the following configuration: turbines are connected to the electrical distribution system with first priority to serve the electrical load, and second priority to serve the thermal load via a secondary load controller and electric boiler. Marshall Wind-Diesel Feasibility Analysis Page | 17 Wind Turbine Costs Project capital and construction costs for the three evaluated wind turbines were obtained from HDL, Inc. and are presented below. Detailed information regarding HDL’s cost estimates is available in their portion of this conceptual design report. Project cost estimates Turbine No. Turbines HDL Estimated Project Cost Installed kW Cost per kW Capacity Tower Type Tower Height (meters) Northern Power NPS100-24 Arctic 3 $3,441,275 285 $12,074 Lattice 48 Vestas V20 3 $3,102,175 360 $8,617 Monopole 32 Aeronautica AW33-225 1 $2,808,025 225 $12,480 Monopole 40 Fuel Cost A fuel price of $4.99/gallon ($1.32/Liter) was chosen for the initial HOMER analysis by reference to Alaska Fuel Price Projections 2013-2035, prepared for Alaska Energy Authority by the Institute for Social and Economic Research (ISER), dated June 30, 2013 and the 2013_06_R7Prototype_final_07012013 Excel spreadsheet, also written by ISER. The $4.99/gallon price reflects the average value of all fuel prices between the 2015 (the assumed project start year) fuel price of $4.17/gallon and the 2034 (20 year project end year) fuel price of $5.98/gallon using the medium price projection analysis with an average social cost of carbon (SCC) of $0.61/gallon included. By comparison, the fuel price for Marshall (without social cost of carbon) reported to Regulatory Commission of Alaska for the 2012 PCE report is $3.32/gallon ($0.88/Liter), without inclusion of the SCC. Assuming an SCC of $0.40/gallon (ISER Prototype spreadsheet, 2013 value), the Marshall’s 2012 diesel fuel price was $3.72/gallon ($0.98/Liter). Heating fuel displacement by excess energy diverted to thermal loads is valued at $6.32/gallon ($1.67/Liter) as an average price for the 20 year project period. This price was determined by reference to the 2013_06_R7Prototype_final_07012013 Excel spreadsheet where heating oil is valued at the cost of diesel fuel (with SCC) plus $1.05/gallon, assuming heating oil displacement between 1,000 and 25,000 gallons per year. Fuel cost table (SCC included) ISER med. projection 2015 (/gal) 2034 (/gal) Average (/gallon) Average (/Liter) Diesel Fuel $4.17 $5.98 $4.99 $1.32 Heating Oil $5.22 $7.03 $6.04 $1.60 Modeling Assumptions As noted previously, HOMER energy modeling software was used to analyze a wind-diesel hybrid power plant to serve Marshall. HOMER is designed to analyze hybrid power systems that contain a mix of Marshall Wind-Diesel Feasibility Analysis Page | 18 conventional and renewable energy sources, such as diesel generators, wind turbines, solar panels, batteries, etc. and is widely used to aid development of Alaska village wind power projects. Modeling assumptions are detailed in the table below. Assumptions such as project life, discount rate, operations and maintenance (O&M) costs, etc. are AEA default values and contained in the ISER spreadsheet model. Other assumptions, such as diesel overhaul cost and time between overhaul are based on general rural Alaska power generation experience. The base or comparison scenario is the existing power plant with no functional heat recovery loop. Note that wind turbines installed in Marshall will operate in parallel with the diesel generators. Excess energy will serve thermal loads via a secondary load controller and electric boiler (to be installed). Installation cost of wind turbines assumes construction of three phase power distribution to the selected site, plus civil, permitting, integration and other related project costs. Homer modeling assumptions Economic Assumptions Project life 20 years (2015 to 2034) Discount rate 3% Operating Reserves Load in current time step 10% Wind power output 100% (Homer setting to always force diesels on) Fuel Properties (no. 2 diesel for powerplant) Heating value 46.8 MJ/kg (140,000 BTU/gal) Density 830 kg/m3 (6.93 lb./gal) Price (20 year average; ISER 2013, medium projection plus social cost of carbon) $4.99/gal ($1.32/Liter) Fuel Properties (no. 1 diesel to serve thermal loads) Heating value 44.8 MJ/kg (134,000 BTU/gal) Density 830 kg/m3 (6.93 lb./gal) Price (20 year average; ISER 2013, medium projection plus social cost of carbon) $6.04/gal ($1.60/Liter) Diesel Generators Generator capital cost $0 (new generators already funded) O&M cost $0.02/kWh (reference: ISER 2013 Prototype spreadsheet) Diesel generator efficiency (Homer) 15.2 kWh/gal (from diesel fuel curves) Diesel generator efficiency (ISER) 13.0 kWh/gal (from 2012 PCE report) Minimum load 25 kW; based on AVEC’s operational criteria of 25 kW minimum diesel loading with their wind-diesel systems Schedule Optimized Wind Turbines Availability 80% O&M cost $0.049/kWh (reference: ISER 2013 Prototype spreadsheet) Wind speed 6.30 m/s at 30 m, 100% turbine availability Marshall Wind-Diesel Feasibility Analysis Page | 19 5.60 m/s at 30 m, 80% turbine availability Density adjustment 1.242 kg/m^3 (mean of monthly means of 18 months of Marshall met tower data; Homer wind resource elevation set at -150 meters to simulate the Marshall air density Power law exponent 0.118 (met tower data) Hub height/tower type NPS100-24 Arctic: 48 meter lattice V20: 32 meter lattice AW33-225: 50 meter monopole Energy Loads Electric 4.58 MWh/day average Marshall power plant load Thermal Undefined at present; assumed large enough to absorb excess wind energy Marshall Wind-Diesel Feasibility Analysis Page | 20 Project Economic Valuation Additional Information Turbine Type Wind Capacity (kW) Diesel Efficiency (kWh/gal) Wind Energy (kWh/yr) Excess Electricity (kWh/yr Net Wind Energy (kWh/yr) Project Capital Cost Diesel Efficiency (kWh/gal) NPV Benefits NPV Capital Costs Diesel #2 Displaced (gal/yr) B/C Ratio NPV Net Benefit NPS100 285 15.2 721,365 128,470 592,895 $3,214,875 13.0 $3,078,220 $2,856,375 48,962 1.08 $221,845 V20 360 15.2 579,681 108,631 471,050 $2,890,575 13.0 $2,459,217 $2,568,238 39,067 0.96 ($109,021) AW33 225 15.2 520,962 58,264 462,698 $2,660,400 13.0 $2,315,288 $2,363,731 37,136 0.98 ($48,443) Note: wind energy at 80% availability Diesel efficiency for ISER model per 2012 PCE Report Homer Model Input ISER Model Results Turbine Type Hub Height (m) No. Turbines Wind Energy to Thermal (kWh/yr) Heating Fuel Equiv. (gal) Wind Penetration (% electrical) Excess Energy (%) NPS100 48 3 128,470 3,284 40.0 7.1 V17 32 3 108,631 2,777 32.5 6.1 AW33 40 1 58,264 1,489 30.0 3.4 Note: wind energy at 80% availability Marshall Wind-Diesel Feasibility Analysis Page | 21 Conclusion and Recommendations Marshall has a very good wind resource for wind power development, especially considering its distance from the Bering Sea coast. Wind behavior is desirable with low turbulence, low wind shear, low extreme wind probability, and little evidence of severe icing conditions. The analysis in this report considered construction of three Northern Power 100-24 wind turbines, three remanufactured Vestas V20 wind turbines, and one Aeronautica AW33-225 wind turbine, all in a medium penetration configuration no electrical storage and a presumed thermal load at the school or the water plant. It is recommended that this project proceed to the design phase. Further analysis and discussion may better highlight advantages and disadvantages of each option considered, but at present a wind project with three Northern Power NPS100-24 wind turbines on 48 meter lattice towers is recommended. Appendix B ANTHC Marshall Alaska Heat Recovery Study Appendix C August 3, 2012 Marshall Wind Site Investigation Report Marshall WAsP Site Options Analysis July 23, 2012 Using ten months of wind data collected from the Marshall met tower (Site 0050), WAsP software was used to model the wind regime of Marshall and to predict mean wind speed and turbine performance at the met tower site and three possible alternative wind power sites, shown in the maps below. Topographic maps Google Earth map WAsP wind speed map Predicted site wind speed and turbine performance Wind speed and turbine annual energy production (AEP) are calculated by the WAsP software. Turbine AEP is based on the NW100B turbine at a 30 meter hub height, the height of the met tower upper level anemometers. Turbine hub height is 37 meters, hence actual turbine AEP would be better than indicated below, but setting turbine hub height at anemometer height simplifies the analysis and the purpose here is comparative, not actual. Once a site is chosen and the CDR written, turbine type and actual hub height will be adjusted to obtain true predicted performance. Site comparison table Mean wind speed Mean power density AEP AEP compared to met tower site m/s W/m² MWh/yr % Met tower site 6.19 336 239.5 100% Alternate Site 1 6.44 388 255.7 107% Alternate Site 2 6.09 330 231.9 97% Alternate Site 3 6.72 441 274.2 114% Recommendation The wind site options in Marshall, in a general sense, are good considering Marshall’s distance upriver from the coast. The met tower site is roughly comparable to alternate site 2, but nearby alternate site 1, just 315 meters straight downhill from the met tower site toward the Yukon River, is predicted at 7 percent higher energy production. Alternate site 3, located on a rise on the road leading to the UUI tower on Pilcher Mountain, is the best of the four sites with predicted 14 percent higher turbine energy production than at the met tower site. It is recommended that all four possible wind sites be investigated for landownership and access issues. Distribution line construction costs should be compared to turbine performance over time to determine highest net present value; this will help determine the preferred turbine site for development. H:\jobs\12-025 Marshall Wind Project\Site Visit 8-3-12\PHOTOLOG.docx Page 1 Photo 1: Met Tower Site Photo 2: Seasonal Access Road to Alternative Sites 2 and 3 Photo 3: Existing UUI Communication Pole Settlement Photo 4: Access Road to Airport, between Marshall and Wilson Creek H:\jobs\12-025 Marshall Wind Project\Site Visit 8-3-12\PHOTOLOG.docx Page 2 Photo 5: Native Allotment near Alternative Site 1 Photo 6: Inside Existing AVEC Power Plant             Appendix D  Marshall Wind Project Feasibility Design Drawings     MARSHALL WIND PROJECTMARSHALLFEASIBILITY DESIGN DRAWINGSMARSHALL, ALASKASHEET INDEX NOT FOR CONSTRUCTION 4831 Eagle Street Anchorage, Alaska 99503 ABBREVIATIONS LEGEND EARTHWORK TUNDRA PROTECTION NOT FOR CONSTRUCTION 4831 Eagle Street Anchorage, Alaska 99503 NOT FOR CONSTRUCTION 4831 Eagle Street Anchorage, Alaska 99503 NOT FOR CONSTRUCTION 4831 Eagle Street Anchorage, Alaska 99503 NOT FOR CONSTRUCTION 4831 Eagle Street Anchorage, Alaska 99503 NOT FOR CONSTRUCTION 4831 Eagle Street Anchorage, Alaska 99503 NOT FOR CONSTRUCTION 4831 Eagle Street Anchorage, Alaska 99503 NOT FOR CONSTRUCTION 4831 Eagle Street Anchorage, Alaska 99503             Appendix E  Concept Level Capital Cost Estimate  Concept Level EstimateMarshall Wind Farm ConstructionAlternative Cost Summary 8/12/13SUMMARYDescription Estimated Construction Installed kW Estimated Construction Tower TypeCost Cost/ Installed kWAlternative 1 - (3) Northwind 100's $ 3,441,275.00 300 $ 11,470.92 Monopole Alternative 2 - (3) V20's $ 3,102,175.00 360 $ 8,617.15 Monopole Alternative 3- (1) AW29-225 $ 2,808,025.00 225 $ 12,480.11 Monopole Concept Level Estimate Marshall Wind Farm Construction Alternative 1 8/12/13 Item Estimated  Quantity Unit Price ($) Subtotal ($) Alternative 1 ‐ (3) Northwind 100's  1 4,123 CY Borrow 25                   103,075          2 530 CY Surfacing Course 75                   39,750             3 24,000 SF Geotextile 2                      48,000             4 270 CY Topsoil 65                   17,550             5 2,500 SY Seed 5                      12,500             63 Each Concrete Gravity Mat Foundations 104,000         312,000          73 Each Northwind 100B Wind Turbines 375,000         1,125,000       8 3,500 LF Electrical Spur Line to New Power Plant Location 37                   129,500          91 Sum Wireless Communication System 75,000            75,000             10 1 Sum Wind Turbine Power  Integration 250,000         250,000          11 1 Sum Labor 130,000         130,000          12 1 Sum Equipment 150,000         150,000          13 1 Sum Freight 450,000         450,000          14 1 Sum Indirects 150,000         150,000          Subtotal Construction 2,992,375$     Land Acquisition $0 Project Contingency @ 15%   448,900$        0 Years Inflation @ 2%   $0 Total 3,441,275$     Installed Generation Capacity 300 kW Total Cost 3,441,275$     Cost/Installed kW $11,471 Description Concept Level Estimate Marshall Wind Farm Construction Alternative 2 8/12/13 Item Estimated  Quantity Unit Price ($) Subtotal ($) Alternative 2 ‐ (3) V20's 1 4,123 CY Borrow 25                   103,075          2 530 CY Surfacing Course 75                   39,750             3 24,000 SF Geotextile 2                      48,000             4 270 CY Topsoil 65                   17,550             5 2,500 SY Seed 5                      12,500             63 Each Concrete Gravity Mat Foundations 104,000         312,000          73 Each Vestas V20 Wind Turbines 225,000         675,000          8 3,100 LF Electrical Spur Line to New Power Plant Location 37                   114,700          91 Sum Wireless Communication System 75,000            75,000             10 1 Sum Wind Turbine Power  Integration 375,000         375,000          11 1 Sum Labor 150,000         175,000          12 1 Sum Equipment 100,000         150,000          13 1 Sum Freight 332,000         400,000          14 1 Sum Indirects 175,000         200,000          Subtotal Construction 2,697,575$     Land Acquisition $0 Project Contingency @ 15%   404,600$        0 Years Inflation @ 2%   $0 Total 3,102,175$     Installed Generation Capacity 360 kW Total Cost 3,102,175$     Cost/Installed kW $8,617 Description Concept Level Estimate Marshall Wind Farm Construction Alternative 3 8/12/13 Item Estimated  Quantity Unit Price ($) Subtotal ($) Alternative 3‐ (1) AW29‐225 1 1,400 CY Borrow 25                   35,000             2 175 CY Surfacing Course 75                   13,125             3 8,000 SF Geotextile 2                      16,000             490 CY Topsoil 65                   5,850               5 850 SY Seed 5                      4,250               61 Each Concrete Gravity Mat Foundations 275,000         275,000          71 Each Vestas V20 Wind Turbines 600,000         600,000          8 2,500 LF Electrical Spur Line to New Power Plant Location 37                   92,500             91 Sum Wireless Communication System 75,000            75,000             10 1 Sum Wind Turbine Power  Integration 400,000         400,000          11 1 Sum Labor 25,000            175,000          12 1 Sum Equipment 150,000         150,000          13 1 Sum Freight 525,000         400,000          14 1 Sum Indirects 200,000         200,000          Subtotal Construction 2,441,725$     Land Acquisition $0 Project Contingency @ 15%   366,300$        0 Years Inflation @ 2%   $0 Total 2,808,025$     Installed Generation Capacity 225 kW Total Cost 2,808,025$     Cost/Installed kW $12,480 Description 9/3/13 Tur bine site repor t for 'M tn Villag e 4th Site, met tower ' file:///C:/Users/Doug /AppData/Local/Temp/WaspRepor ting TemporaryFile.html 1/3 'Mtn Village 4th Site, met tower' Turbine site P ro d u ce d o n 9 /3 /2 0 1 3 a t 1 2 :3 0 :4 3 P M b y lice n ce d u s e r: Do u g la s J. Va u g h t, V3 En e rg y, U SA u s in g W As P Ve rs io n : 1 0 .0 2 .0 0 1 0 Site information Locati on i n the map T h e tu rb in e is lo ca te d a t co -o rd in a te s (5 7 3 6 1 4 ,6 8 8 5 4 2 8 ) in a m a p ca lle d 'KW I G A4 '. T h e s ite e le va tio n is 8 1 .2 m a .s .l. Site e ffe cts Se c to r Angle [°]Or .Spd [%]Or.Tur [°]Obs.Spd [%]Rgh.Spd [%]Rix [%] 1 0 7 .0 1 -1 .4 0 .0 0 0 .0 0 0 .0 2 1 0 6 .2 0 -1 .0 0 .0 0 0 .0 0 0 .0 3 2 0 5 .7 3 -0 .4 0 .0 0 0 .0 0 0 .0 4 3 0 5 .6 6 0 .2 0 .0 0 0 .0 0 0 .0 5 4 0 5 .9 8 0 .8 0 .0 0 0 .0 0 0 .1 6 5 0 6 .6 7 1 .3 0 .0 0 0 .0 0 0 .1 7 6 0 7 .6 3 1 .6 0 .0 0 0 .0 0 0 .0 9/3/13 Tur bine site repor t for 'M tn Villag e 4th Site, met tower ' file:///C:/Users/Doug /AppData/Local/Temp/WaspRepor ting TemporaryFile.html 2/3 8 7 0 8 .7 4 1 .7 0 .0 0 0 .0 0 0 .0 9 8 0 9 .8 6 1 .6 0 .0 0 0 .0 0 0 .0 1 0 9 0 1 0 .8 6 1 .4 0 .0 0 0 .0 0 0 .0 1 1 1 0 0 1 1 .6 3 0 .9 0 .0 0 0 .0 0 0 .0 1 2 1 1 0 1 2 .0 8 0 .4 0 .0 0 0 .0 0 0 .0 1 3 1 2 0 1 2 .1 5 -0 .2 0 .0 0 0 .0 0 0 .2 1 4 1 3 0 1 1 .8 4 -0 .7 0 .0 0 0 .0 0 1 .9 1 5 1 4 0 1 1 .1 9 -1 .2 0 .0 0 0 .0 0 2 .5 1 6 1 5 0 1 0 .2 6 -1 .6 0 .0 0 0 .0 0 2 .1 1 7 1 6 0 9 .1 7 -1 .7 0 .0 0 0 .0 0 1 .9 1 8 1 7 0 8 .0 4 -1 .7 0 .0 0 0 .0 0 1 .5 1 9 1 8 0 7 .0 1 -1 .4 0 .0 0 0 .0 0 1 .7 2 0 1 9 0 6 .2 0 -1 .0 0 .0 0 0 .0 0 1 .5 2 1 2 0 0 5 .7 3 -0 .4 0 .0 0 0 .0 0 1 .6 2 2 2 1 0 5 .6 6 0 .2 0 .0 0 0 .0 0 1 .8 2 3 2 2 0 5 .9 8 0 .8 0 .0 0 0 .0 0 2 .0 2 4 2 3 0 6 .6 7 1 .3 0 .0 0 0 .0 0 1 .2 2 5 2 4 0 7 .6 3 1 .6 0 .0 0 0 .0 0 0 .9 2 6 2 5 0 8 .7 4 1 .7 0 .0 0 0 .0 0 0 .4 2 7 2 6 0 9 .8 6 1 .6 0 .0 0 0 .0 0 0 .0 2 8 2 7 0 1 0 .8 6 1 .4 0 .0 0 0 .0 0 0 .0 2 9 2 8 0 1 1 .6 3 0 .9 0 .0 0 0 .0 0 0 .0 3 0 2 9 0 1 2 .0 8 0 .4 0 .0 0 0 .0 0 0 .0 3 1 3 0 0 1 2 .1 5 -0 .2 0 .0 0 0 .0 0 0 .0 3 2 3 1 0 1 1 .8 4 -0 .7 0 .0 0 0 .0 0 0 .3 3 3 3 2 0 1 1 .1 9 -1 .2 0 .0 0 0 .0 0 0 .0 3 4 3 3 0 1 0 .2 6 -1 .6 0 .0 0 0 .0 0 0 .0 3 5 3 4 0 9 .1 7 -1 .7 0 .0 0 0 .0 0 0 .0 3 6 3 5 0 8 .0 4 -1 .7 0 .0 0 0 .0 0 0 .0 T h e a ll-s e cto r R I X (ru g g e d n e s s in d e x ) f o r th e s ite is 0 .6 % The pre dicte d wind climate at the turbine s ite -T o ta l Wind a t ma x imum powe r de nsity dis tributio n Me a n wind s pe e d 7 .6 0 m /s 1 2 .0 4 m /s Me a n po we r de nsity 5 0 7 W /m ²4 9 (W /m ²)/(m /s ) 9/3/13 Tur bine site repor t for 'M tn Villag e 4th Site, met tower ' file:///C:/Users/Doug /AppData/Local/Temp/WaspRepor ting TemporaryFile.html 3/3 Re s ults Site Loc a tion [m]T ur bine He ight [m]Ne t A EP [MWh]Wa k e los s [%] Mtn Villa g e 4 th Site , m e t to we r (5 7 3 6 1 4 , 6 8 8 5 4 2 8 )AW 2 9 -2 2 5 5 0 7 1 1 .1 7 5 0 .0 T h e co m b in e d (o m n id ire ctio n a l) W e ib u ll d is trib u tio n p re d icts a g ro s s AEP o f 7 1 4 .4 6 3 M W h a n d th e e m e rg e n t (s u m o f s e cto rs ) d is trib u tio n p re d icts a g ro s s AEP o f 7 1 1 .1 7 5 M W h . (T h e d if fe re n ce is 0 .4 6 % ) Proje ct parame te rs T h e s ite is in a p ro je ct ca lle d M o u n ta in Villa g e . All o f th e p a ra m e te rs in th e p ro je ct a re d e f a u lt va lu e s . Data origins information T h e m a p wa s im p o rte d b y 'Do u g ' f ro m a f ile ca lle d 'C :\U s e rs \Do u g \Do cu m e n ts \AVEC \M o u n ta in Villa g e \W As P \KW I G A4 .m a p ', o n a co m p u te r ca lle d 'V3 ENER GY AC ER -P C '. T h e m a p f ile d a ta we re la s t m o d if ie d o n th e 8 /2 8 /2 0 1 3 a t 1 1 :4 3 :1 2 AM T h e re is n o in fo rm a tio n a b o u t th e o rig in o f th e win d a tla s f ile . T h e win d tu rb in e g e n e ra to r wa s im p o rte d b y 'Do u g ' fro m a file ca lle d 'C :\U s e rs \Do u g \Do cu m e n ts \W in d T u rb in e s \W As P tu rb in e cu rve s \AW 2 9 -2 2 5 , 5 0 m .wtg ', o n a co m p u te r ca lle d 'V3 ENER GY AC ER -P C '. T h e win d tu rb in e g e n e ra to r file we re la s t m o d if ie d o n th e 9 /3 /2 0 1 3 a t 1 2 :1 2 :1 4 P M