Loading...
HomeMy WebLinkAboutFESS Kodiak Pier Electric Crane - AEA Round VII Grant Application Alaska Energy Authority  Renewable Energy Fund Round VII      Flywheel Energy Storage System for  Kodiak Pier Electric Crane  Grant Application                      Kodiak Electric Association, Inc.  PO Box 787 Kodiak, AK  99615  www.kodiakelectric.com  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Application Page 1 of 32 7/2/2013 SECTION 1 – APPLICANT INFORMATION Name (Name of utility, IPP, or government entity submitting proposal) Kodiak Electric Association, Inc.   (KEA) Type of Entity: Rural Electric Cooperative Fiscal Year End: December 2012 Tax ID # 92-0010172 Tax Status: For-profit X Non-profit Government ( check one) Date of last financial statement audit: March 2013 Mailing Address PO Box 787 Kodiak AK 99615 Physical Address 515 East Marine Way Kodiak AK 99615 Telephone 907.486.7700 Fax 907.486.7720 Email dscottt@kodiak.coop 1.1 APPLICANT POINT OF CONTACT / GRANTS MANAGER Name Darron Scott  Title President/CEO  Mailing Address PO Box 787  Kodiak AK 99615 Telephone 907.486.7707  Fax 907.486.7720  Email dscott@kodiak.coop  1.2 APPLICANT MINIMUM REQUIREMENTS Please check as appropriate. If you do not to meet the minimum applicant requirements, your application will be rejected. 1.2.1 As an Applicant, we are: (put an X in the appropriate box) X An electric utility holding a certificate of public convenience and necessity under AS 42.05, or An independent power producer in accordance with 3 AAC 107.695 (a) (1), or A local government, or A governmental entity (which includes tribal councils and housing authorities); Yes  1.2.2 Attached to this application is formal approval and endorsement for the project by the applicant’s board of directors, executive management, or other governing authority. If the applicant is a collaborative grouping, a formal approval from each participant’s governing authority is necessary. (Indicate Yes or No in the box ) Yes  1.2.3 As an applicant, we have administrative and financial management systems and follow procurement standards that comply with the standards set forth in the grant agreement (Section 3 of the RFA). Yes  1.2.4 If awarded the grant, we can comply with all terms and conditions of the award as identified in the Standard Grant Agreement template at http://www.akenergyauthority.org/veep/Grant-Template.pdf. (Any exceptions should be clearly noted and submitted with the application.) Yes  1.2.5 We intend to own and operate any project that may be constructed with grant funds for the benefit of the general public. If no please describe the nature of the project and who will be the primary beneficiaries. Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 2 of 32 7/1/2013 SECTION 2 – PROJECT SUMMARY This section is intended to be no more than a 2-3 page overview of your project. 2.1 Project Title – (Provide a 4 to 7 word title for your project). Type in space below.   Flywheels ESS for Kodiak Pier Electric Crane    2.2 Project Location – Include the physical location of your project and name(s) of the community or communities that will benefit from your project in the subsections below. 2.2.1 Location of Project – Latitude and longitude, street address, or community name. Latitude and longitude coordinates may be obtained from Google Maps by finding you project’s location on the map and then right clicking with the mouse and selecting “What is here? The coordinates will be displayed in the Google search window above the map in a format as follows: 61.195676.-149.898663. If you would like assistance obtaining this information please contact AEA at 907-771-3031.   The Flywheel Energy Storage Systems (FESS) will be located on the City of Kodiak’s main cargo pier.   Pier III is located at the foot of Pillar Mountain on the southwest side of the City of Kodak,  approximately 57.782˚N, 152.436˚W.  A location and vicinity map is provided in Exhibit C.  2.2.2 Community benefiting – Name(s) of the community or communities that will be the beneficiaries of the project.   This project will directly benefit the cooperative members of Kodiak Electric Association, Inc. (KEA).    KEA’s service area includes approximately 5,800 meters in and surrounding the City of Kodiak, the US  Coast Guard Base Support Kodiak, Chiniak, Pasagshak and Port Lions.  A map depicting KEA’s service  area is included in Exhibit C.  This project will also enhance shipping infrastructure for the entire Kodiak Island archipelago.   Therefore, all other communities of the Kodiak Island Borough outside KEA’s service area (Old Harbor,  Karluk, Larsen Bay, Ahkiok and Ouzinkie) will also benefit from this project.   Additionally, because this project will demonstrate an innovative energy storage technology solution  on a remote micro‐grid powered by variable forms of renewable energy, all other isolated  communities throughout Alaska that look for solutions to integrating variable forms of renewable  energy on their micro‐grids will benefit from this project.    2.3 PROJECT TYPE Put X in boxes as appropriate 2.3.1 Renewable Resource Type Wind Biomass or Biofuels (excluding heat-only) Hydro, Including Run of River Hydrokinetic Geothermal, Excluding Heat Pumps Transmission of Renewable Energy Solar Photovoltaic X Storage of Renewable Other (Describe) Small Natural Gas Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 3 of 32 7/1/2013 2.3.2 Proposed Grant Funded Phase(s) for this Request (Check all that apply) Pre-Construction Construction Reconnaissance Final Design and Permitting Feasibility and Conceptual Design X Construction and Commissioning 2.4 PROJECT DESCRIPTION Provide a brief one paragraph description of the proposed project.   The Flywheel Energy Storage Systems (FESS) for Kodiak Pier Electric Crane is the installation and  integration of two (2) ABB modular PowerStore flywheel energy storage units at the City of Kodiak’s  Pier III.  Modernizing Kodiak’s shipping infrastructure with an electric crane instead of a diesel‐ powered crane requires KEA to install the two new ABB flywheel energy storage systems, each with  one (1) megawatt (MW) of generating capacity, in order to safely integrate the crane’s electrical load  demand onto KEA’s isolated grid.  This project allows KEA to be the energy solution for the  communities of Kodiak Island by making it possible to power a critical component of the City with  locally‐generated, clean renewable energy.  The versatile grid‐stabilizing flywheel generator would  mitigate the sudden increase in electric load caused by the operation of a high‐powered electric cargo  crane, and would also supplement KEA’s existing Battery Energy Storage System (BESS) for system‐ wide electric grid support and conserve water utilized at the hydro facility. By being first‐in‐line to  respond to rapid micro‐second grid frequency fluctuations, the FESS optimizes the range of frequency  and voltage support provided by KEA’s other renewable generation, thereby making KEA’s entire grid  system more robust. This project is the next step in advancing KEA’s renewable energy vision for the  benefit of all Alaskans by bringing renewable energy to more sectors of Kodiak Island and by  demonstrating a new energy storage technology in Alaska.  2.5 PROJECT BENEFIT Briefly discuss the financial and public benefits that will result from this project, (such as reduced fuel costs, lower energy costs, local jobs created, etc.)    Benefits of improving KEA’s grid infrastructure and the City of Kodiak’s Pier III infrastructure with the  FESS for Kodiak Pier Electric Crane include 1) stabilizing the region’s economy with affordable and  reliable shipping costs, 2) eliminating a major source of diesel fuel dependence, 3) optimizing and  stabilizing KEA’s existing grid infrastructure, and 4) providing a working model for Alaskan  communities looking to integrate extreme load demands on their renewably‐powered electric grid  systems with flywheel systems.  This project exemplifies KEA’s renewable energy vision by bringing  cost‐effective renewable energy solutions to the communities we serve.     Pier III is the primary cargo freight port facility for the Kodiak Island region.  Nearly every commodity  imported or exported from Kodiak Island’s communities’ passes across Pier III.  The cost of shipping to  our remote island is a significant factor in the overall cost of living for the region, and improving the  affordability and reliability of shipping in Kodiak is essential to the region’s economy. Without the  FESS for Kodiak Pier Electric Crane, the only other alternative for the City pier is to continue using a  diesel‐powered crane that is smaller, less efficient and slower to operate than a new electric crane. A  smaller and slower diesel‐powered crane restricts the loading capabilities of Pier III to smaller  specialized vessels, and keeps the region vulnerable to limited transportation options and inflated  shipping costs. Modernizing Kodiak’s regional port hub with a bigger, faster, more energy‐efficient  electric crane could allow more local seafood products to be exported to the global market, and  better food and building materials to be brought into Kodiak’s remote island communities.    Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 4 of 32 7/1/2013 This project provides the opportunity to power a key piece of community infrastructure with KEA’s  locally‐generated renewable electricity.  Instead of perpetuating dependence on the 20,000 gallons of  expensive diesel fuel needed each year to run Kodiak’s economic lifeline, the FESS would allow for a  new crane to run Pier III with KEA’s locally‐generated, clean renewable electricity.  This project would  eliminate another major source of diesel dependence in Kodiak and bring Alaska another step closer  toward statewide energy independence.  The financial benefit associated with displacing 20,000  gallons of diesel annually for the 22.5 year life of the project is approximately $2.6 million.      In addition to the FESS’s ability to allow for the installation of a new electric crane at Pier III, the FESS  also benefits KEA’s overall grid system by diversifying KEA’s energy storage capacity and extending the  design life of existing equipment.  Specifically, the FESS would extend the battery cell life of the BESS,  make use of otherwise disturbing surges of wind energy, and conserve water in the Terror Lake  reservoir.  The new tie‐line that will connect the FESS to the KEA grid will also relieve congestion on an  overloaded feeder that currently powers many of Kodiak’s seafood processing plants.      In KEA’s renewable wind‐hydro generation system, energy storage is a critical component to stably  integrating the high (upward to 80%) wind penetration rates.  Currently, Terror Lake provides the  long‐term storage of unpredictable wind energy on an annual basis, and the BESS provides the short‐ term storage of intermittent wind energy on the second‐to‐minute basis.  Based on the past year’s  experience operating the BESS on KEA’s unique wind‐hydro system, most of the BESS’s battery cell  activity is triggered in response to minor, rapid, micro‐second frequency fluctuations rather than  larger frequency disturbances that were of primary concern when designing the high penetration  wind system (refer to Section 4.3.1 for BESS performance data).  These short clips of repeated  frequency stabilization events have diminished the warranty life of the battery cells, and cell  replacement is expected to be needed just eight years of initial startup.    As an alternative to frequent battery cell replacement, a FESS could be first‐in‐line to respond to these  minor frequency disturbances on a micro‐second basis and take that draining task off the BESS cells.  If  KEA had an FESS on its grid system to handle these minor, micro‐second fluctuations in grid frequency,  then the BESS battery cells could be reserved for the more significant frequency disturbances that  require a more powerful injection of energy, as the BESS is better designed to do.  Adding diversity to  KEA’s energy storage portfolio would reduce the cycling wear‐and‐tear on existing equipment by  optimizing the efficiency range settings of each renewable energy asset.  KEA estimates that  optimized energy storage system approach would double the current warranty life of the BESS battery  cells.        The BESS is best designed to handle under‐frequency grid disturbances caused by sudden drops in  wind energy, while the Terror Lake Hydroelectric Facility currently handles the over‐frequency grid  disturbances caused by sudden surges of wind energy.  The Terror Lake governor system is able to  reduce system frequency as needed to maintain 60 hertz stability in wind surge situations by  deflecting water away from the pelton wheel and instantaneously curtailing hydropower output.  This  water deflection technique is very effective at curtailing hydropower output, but at a cost of wasted  water resources.  If the FESS were first‐in‐line to stabilize the over‐frequency grid disturbances by  taking the surge of wind energy to spin its massive flywheel, then every kilowatt of wind energy can  be put to valuable use while every drop of water resources can be conserved within the Terror Lake  reservoir for power generation needs.        This project involves both the installation of two 1 MW flywheel units and the interconnection of the  units to the KEA grid with new distribution tie‐lines.  Without the new tie‐lines, the FESS and the  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 5 of 32 7/1/2013 electric crane would overload KEA’s existing infrastructure.  Adding the new tie‐lines as part of this  project will benefit other aspects of KEA’s grid system because Pier III is adjacent to a large  concentration of seafood processing plants, and the feeder utilized by Pier III serves a major electrical  load demand.  Currently, the feeder supplying this area of seafood processors is approaching an  overloaded condition, reaching its limits on both power and voltage even without the installation of a  new electric crane. Constructing new tie‐lines from High Substation (which is a different substation  that currently powers that area of town) will relieve significant congestions on that portion of the  electrical grid.  The Monashka Creek tie‐line is a necessary component of this project because it  transfers load out of High Substation to free up available capacity for the new electric crane.  The new  tie‐lines provide project benefits both to KEA’s system reliability and to potential growth in these  areas by powering this section of the community with two separate substations.     Lastly, the FESS for Kodiak Pier Electric Crane project provides a working model for other Alaskan  communities looking to integrate extreme load demands on their renewably‐powered electric grid  systems with flywheel systems.  This project is an effective way to capture and store low‐cost  renewable energy, manage new and uncertain changes in load demand, and expand delivery of  renewable energy to a new economic sector.  As energy storage becomes an emerging issue in other  regions of Alaska, KEA can assist Alaska’s statewide efforts in renewable energy development by  successfully demonstrating this technology upgrade on our isolated grid system.  2.6 PROJECT BUDGET OVERVIEW Briefly discuss the amount of funds needed, the anticipated sources of funds, and the nature and source of other contributions to the project. The total capital cost of the FESS for Kodiak Pier Electric Crane project is $3,800,000.  KEA is requesting  $1,900,000 in grant funds for this project.  The remaining funding of $1,900,000 needed to purchase  and install the two 1 MW ABB modular flywheel energy storage generators will be provided through a  cost‐sharing agreement between KEA, the City of Kodiak, and Horizon Lines (the primary cargo vendor  for Pier III).  KEA anticipates that Horizon Lines and the City of Kodiak will each reimburse KEA  $400,000, for a total of $800,000 in other contributions.   2.7 COST AND BENEFIT SUMARY Include a summary of grant request and your project’s total costs and benefits below. Grant Costs (Summary of funds requested) 2.7.1 Grant Funds Requested in this application $1,900,000  2.7.2 Cash match to be provided $1,900,000  2.7.3 In-kind match to be provided $0  2.7.4 Other grant funds to be provided $0  2.7.5 Other grant applications not yet approved $0  2.7.6 Total Grant Costs (sum of 2.7.1 through 2.7.4) $3,800,000  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 6 of 32 7/1/2013 Project Costs & Benefits (Summary of total project costs including work to date and future cost estimates to get to a fully operational project) 2.7.7 Total Project Cost Summary from Cost Worksheet, Section 4.4.4, including estimates through construction. $ 3,800,000  2.7.8 Additional Performance Monitoring Equipment not covered by the project but required for the Grant Only applicable to construction phase projects. N/A  2.7.9 Estimated Direct Financial Benefit (Savings) $ 3,436,937  2.7.10 Other Public Benefit If you can calculate the benefit in terms of dollars please provide that number here and explain how you calculated that number in Section 5 below.      $ 2,596,231  SECTION 3 – PROJECT MANAGEMENT PLAN Describe who will be responsible for managing the project and provide a plan for successfully completing the project within the scope, schedule and budget proposed in the application. 3.1 Project Manager Tell us who will be managing the project for the Grantee and include contact information, a resume and references for the manager(s). In the electronic submittal, please submit resumes as separate PDFs if the applicant would like those excluded from the web posting of this application. If the applicant does not have a project manager indicate how you intend to solicit project management support. If the applicant expects project management assistance from AEA or another government entity, state that in this section.   KEA will construct, own and operate the project, and Darron Scott will manage the project.  Resumes for  the KEA staff involved in the management of the project are presented below.        Darron Scott, President/CEO  Darron Scott, President/CEO of KEA, will serve as Project Manager for the Flywheel ESS for Kodiak Pier  Electric Crane project.  Darron earned a BS degree in mechanical engineering from Texas A&M in 1990  and began his career in 1987 as an engineer at Ingersoll‐Rand Pump Group.  He worked his way up  through the ranks and was promoted to production superintendent at Texas Utilities/TU Electric, a  steam production plant in Monahans, Texas.  After nine years with Texas Utilities, Darron and his wife  Carol looked north to Alaska, and Darron was chosen by the KEA Board of Directors to oversee KEA’s  employees and stand‐alone generation, transmission and distribution electrical grid.  Darron was on  board for a year when the State of Alaska divested the Four Dam Pool projects to the communities they  serve.  He was a Director on the Joint Action Agency governing body for these four hydroelectric  projects, and was a driving force in accomplishing KEA’s long‐term goal of purchasing the Terror Lake  Hydroelectric Project that produces the majority of our Cooperative’s power, with ownership finalized in  February of 2009.  In 2007, Darron was instrumental in creating KEA’s vision statement:  KEA shall  endeavor to produce 95% of energy sales with cost effective renewable power solutions by the year 2020,  and in bringing this vision statement to fruition by planning, developing, and building the Pillar Mountain  High Penetration Wind Project in Kodiak that began operation in July 2009, and was successfully doubled  in generating capacity by September 2012 with the BESS.  Darron has been KEA’s President/CEO for the  past 13 years and has been recognized as a leader by the Alaskan utility industry with the Alaska’s Top 40  under 40 Award by the Anchorage Chamber of Commerce, the Director’s Corporate Stewardship Award  by the US Fish and Wildlife Service, and the Mason Lazelle Achievement Award by the Alaska Power  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 7 of 32 7/1/2013 Association.  He has welcomed invitations to speak at numerous state, national, and international  conferences to share information KEA has learned through experience about integrating renewable  energy sources to power a remote island grid system.    Alice Job, Manager of Finance and Administration  Alice Job is the Manager of Finance and Administration for KEA, a position she has held for 10 years.   Alice and her husband Mark relocated to Kodiak in 2003 from Black Hills Electric Cooperative in Custer,  South Dakota, where she was the Manager of Office Services.  Her background includes 29 years of  experience with rural electric cooperatives, numerous NRECA and USDA financial courses, and a BA  degree in business administration from the University of Alaska Southeast in 2009. Her comprehensive  knowledge of accounting, financial planning, risk management, internal auditing, procurement, and  resource allocation, as well as extensive governmental and financial institution compliance, has firmly  established her proven track record in maximizing the effective and efficient utilization of financial  resources.  Alice is firmly committed to the cooperative philosophy, and she has developed and  maintains outstanding relationships with Co‐Bank, CFC, RUS, NISC, and other electric industry affiliations.    Jim Devlin, Manager of Operations and Engineering  Jim Devlin, PE is the Manager of Operations and Engineering for KEA, and has been a KEA employee for  27 years.  He earned his BS degree in electrical engineering from Portland State University in 1982 before  he and his wife Lynn began their life adventure in Alaska in 1983.  Jim joined the team at KEA in 1986 as  a Staff Engineer, and after earning his State of Alaska professional engineer’s license in electrical  engineering in 1992, was respectively promoted to the positions of Engineering Superintendent and  Engineering Manager. This year, Jim was further promoted to his current position.  His comprehensive  knowledge of RUS construction specifications, National Electrical Safety Code and National Electrical  Code, combined with his attention to precise details of complicated projects and his hands‐on  knowledge of KEA’s land surveying, staking, engineering, inspection needs, operations and maintenance,  and customer service projects provide valuable facets to KEA’s plans for the future, and the design and  maintenance of our electrical transmission and distribution systems to ensure safe reliable power on  demand for our members.       Lloyd Shanley, Manager of Power Generation  Lloyd Shanley is the Manager of Power Generation for KEA.  Lloyd joined the KEA team in 2011 from NC  Power Systems in Anchorage, Alaska, bringing over 30 years of experience in power generation and  equipment maintenance. Through the years, he has consistently walked his talk as a mechanic, field  technician, machine product sales and support liaison, and machine product manager encompassing  design, installation, and operation.  Lloyd is responsible for the overall performance and integration of  KEA’s power generation facilities and equipment, spanning diesel, hydro, and wind generation units, and  for insuring that adequate generation is available at all times to meet the system load requirement.    Jennifer Richcreek, Regulatory Specialist  Jennifer Richcreek is the Regulatory Specialist for KEA, and has been a KEA employee for 7 years.  She  secures permits and administers KEA’s utility‐wide environmental compliance programs including  hydropower licensing, air quality permitting, hazardous material management, wildlife and habitat  mitigation agreements, and occupational safety.  She is experienced at assessing applicability and  requirements of regulations, developing effective compliance strategies, and implementing policies and  work procedures that ensure compliance with federal, state and local regulations.  Jennifer has a  bachelor’s degree in Earth Sciences from Johns Hopkins University, a master’s degree in Environmental  Soil Science from Oregon State University, and is certified by the Institute of Professional Environmental  Practice as a Qualified Environmental Professional (QEP).    Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 8 of 32 7/1/2013 All KEA employees can be reached at (907) 486‐7700.  Section 1 Applicant Information contains  additional contact information.  KEA does not expect project management assistance from AEA or  another government entity.    3.2 Project Schedule and Milestones Please fill out the schedule below. Be sure to identify key tasks and decision points in in your project along with estimated start and end dates for each of the milestones and tasks. Please clearly identify the beginning and ending of all phases of your proposed project. Milestones Tasks Start Date End Date Finalize Purchase  Agreement Terms   • Negotiate cost‐sharing agreement with KEA, the City  of Kodiak and Horizon Lines for the matching portion  of the FESS costs.  Oct 2013 Jan 2014  Purchase FESS • Negotiate purchase and transport of FESS with ABB Jan 2014 Feb 2014  Install FESS and  Tie‐Lines  • Receive FESS shipment in Kodiak  • Install FESS on Pier III  • Construct and interconnect new tie‐lines  • Connect FESS to KEA grid  • Fine‐tune FESS to KEA grid stabilizing requirements  • Commission FESS  Apr 2014 Jan 2015  The timeframes indicated above are critical to the successful implementation. KEA is requesting AEA  allow matching funds be expended prior to the July 1, 2014. The FESS finalized purchase agreement  would need to be completed by January 2014 to meet the time lines of this project.  3.3 Project Resources Describe the personnel, contractors, accounting or bookkeeping personnel or firms, equipment, and services you will use to accomplish the project. Include any partnerships or commitments with other entities you have or anticipate will be needed to complete your project. Describe any existing contracts and the selection process you may use for major equipment purchases or contracts. Include brief resumes and references for known, key personnel, contractors, and suppliers as an attachment to your application. KEA will lead the FESS project design and installation and will be responsible for accounting, contract  negotiation, and any necessary permitting.  KEA’s own powerline crews and engineering personnel will  work with Electric Power Systems, Inc. (EPS) engineers to design and construct the tie‐lines and perform  all material acquisition and associated integration and tie‐line construction.  EPS is an Alaskan  engineering firm that was involved with the successful design of KEA’s Pillar Mountain High Penetration  Wind Project, BESS interconnection, and grid stability engineering.  Exhibit D includes the impact studies  conducted by EPS that confirms that feasibility of connecting an electric crane to the KEA grid with the  utilization of a two 1 MW flywheel configuration, as proposed.      This project is a collaborative partnership with the City of Kodiak and Horizon Lines.  It provides many  benefits to the City of Kodiak and its primary transportation vendor by enhancing transportation  opportunities and economic growth.  KEA anticipates receiving a total of $800,000 from these two cost‐ sharing partners.  Prior to moving forward with the purchase of the FESS, KEA will have formal, written  commitments from Horizon Lines and the City of Kodiak as to their cost‐share.      Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 9 of 32 7/1/2013 ABB, Inc. is the FESS equipment supplier.  Exhibit D includes the Unit Specifications and a Budget  Estimate for the two 1 MW PowerStore Grid Stabilizing 1 MW flywheel energy storage units.       3.4 Project Communications Discuss how you plan to monitor the project and keep the Authority informed of the status. Please provide an alternative contact person and their contact information. To monitor the project’s budget, KEA’s accounting system will assign tracking numbers to the costs  associated to the project.  As project manager, Darron Scott will provide milestone reports to the  Engineering and Technology Committee of the KEA Board of Directors.  KEA will provide updates to the  community through KEA’s E‐News found on KEA’s website (www.kodiakelectric.com).  Lloyd Shanley, KEA’s Manager of Power Generation will serve as the alternate contact for this project.   All KEA employees can be reached at (907) 486‐7700.  Section 1 Applicant Information contains  additional contact information.    KEA will follow all provisions outlined by AEA in the Renewable Energy Fund Grant Agreement and  provide quarterly updates on the project’s status.  The Authorized Signers Form is provided on page 31.  3.5 Project Risk Discuss potential problems and how you would address them. The FESS for Kodiak Pier Electric Crane project involves two aspects: 1) collaborating with community  partners to modernize Pier III’s infrastructure, and 2) stably integrating a new energy storage device onto  KEA’s renewably‐powered electric grid.    Installation of the FESS relies on the new electric crane to first be installed on the rebuilt Pier III, which  makes this project dependent on the successful completion of the City’s separate pier rebuild project  schedule.  There is a potential risk that the City of Kodiak could delay completion of their new Pier III  replacement.  If the Pier III replacement project is delayed, then KEA’s FESS for Kodiak Pier Electric Crane  Project would be delayed.    There is also the potential risk that the cost‐sharing agreement between KEA, the City of Kodiak, and  Horizon Lines could not be finalized.  While KEA would prefer a collaborative cost‐sharing agreement  with these community partners, if necessary, KEA could apply capital credits allocated to the City and  Horizon for their contribution for the FESS project to reap the other significant benefits this project  would provide KEA’s grid system.      For the second aspect of the project, adding a new type of energy storage system to KEA’s grid involves  some risk regarding expectations of performance.  Flywheel systems have been proven multiple times  for supporting large electrical loads and variable energy projects, but KEA’s has a very unique grid  configuration.  There is a potential risk that the FESS may not cover enough of the frequency fluctuations  created by the new electric crane’s operation which would impact KEA’s system.  KEA has modeled our  system with the new electric crane and FESS (refer to the EPS study results provided in Exhibit D) and is  confident that the flywheel technology will prove successful; however, if the FESS does not provide as  much benefit as the model results indicate, then KEA’s systems controls could be modified to fine‐tune  the FESS’s interaction with KEA’s existing BESS and Terror Lake governor responses for optimized grid  stabilizing performance.      Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 10 of 32 7/1/2013 This project will demonstrate pioneering technology for Alaska’s unique isolated grid systems and being  a pioneer is not without risk, yet KEA is prepared to address any of the potential risks that may arise in  this project.    SECTION 4 – PROJECT DESCRIPTION AND TASKS • The level of information will vary according to phase(s) of the project you propose to undertake with grant funds. • If some work has already been completed on your project and you are requesting funding for an advanced phase, submit information sufficient to demonstrate that the preceding phases are satisfied and funding for an advanced phase is warranted. 4.1 Proposed Energy Resource Describe the potential extent/amount of the energy resource that is available. Discuss the pros and cons of your proposed energy resource vs. other alternatives that may be available for the market to be served by your project. For pre-construction applications, describe the resource to the extent known. For design and permitting or construction projects, please provide feasibility documents, design documents, and permitting documents (if applicable) as attachments to this application. The new FESS energy storage system consists of two 1 MW ABB PowerStore Flywheel units supplied by ABB,  Inc. as detailed in the ABB Unit Specifications document provided in Exhibit D.  A flywheel is a large rotating  mass hooked to a generator and a power inverter.  The flywheel captures renewable energy by using KEA’s  hydro‐wind generation supply and the regenerative load of the electric crane when it is dropping its load to  turn the flywheel mass.  When Pier III’s new electric crane exerts a massive load demand to pick up a cargo  container, or when KEA’s system grid frequency suddenly drops from a reduction in wind energy, the energy  provided by the inertia of the flywheel’s spinning mass can be immediately injected onto the grid as needed.  The load profile for the electric crane is shown in the EPS feasibility studies provided in Exhibit D.  As shown  in the study results, these systems can react within milliseconds to system frequency disturbances.    Without a flywheel, KEA’s system is unable to accommodate a new electric crane on Pier III.  The only other  alternative to this project is the no‐action alternative where the City continues to use a diesel‐powered  cargo crane that consumes an average of 20,000 gallons of diesel fuel every year.  The no‐action alternative  keeps the Kodiak Island region at a disadvantage with undersized and outdated shipping infrastructure,  which threatens the viability of the region’s economy and cost of living throughout the Kodiak Island  archipelago.  The no‐action alternative also keeps KEA reliant on the BESS to stabilize the under‐frequency  grid disturbances and on hydropower curtailment for over‐frequency grid disturbances caused by wind  energy variability.  While the BESS and Terror Lake Hydroelectric Facility are well‐equipped to handle these  grid disturbances, it comes at a high cost of frequent battery cell replacements and wasted water resources.     This project is the next necessary step toward KEA’s renewable energy vision.  The FESS for Kodiak Pier  Electric Crane project is the most cost‐effective solution to displace diesel fuel use in Kodiak, increase water  availability within the Terror Lake reservoir for power generation, and stabilize KEA’s grid for future  renewable energy development.  Additional explanations on how this project achieves those system‐wide  benefits and optimizes KEA’s existing renewable energy infrastructure are provided in Section 2.5 – Project  Benefit.     The FESS will be installed at the City of Kodiak’s Pier III.  The City of Kodiak is a partner in this project, and no  separate land use permits are required.    EPS has worked with KEA in assessing feasibility of this project by studying the impact of the electric crane  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 11 of 32 7/1/2013 on the KEA grid, and by designing the best configuration of the FESS for optimization of all of KEA’s energy  resources.  A thorough array of case study iterations was conducted and reported in the EPS Impact Study  reports provided in Exhibit D.    4.2 Existing Energy System 4.2.1Basic configuration of Existing Energy System Briefly discuss the basic configuration of the existing energy system. Include information about the number, size, age, efficiency, and type of generation. KEA operates an isolated electrical grid system.  The main power source is the Terror Lake Hydroelectric  Facility.  KEA’s system configuration is continually being updated with additional renewable energy  generation as KEA strives toward its renewable energy vision.  In 2012, KEA completed the installation of  three additional wind turbines on Pillar Mountain giving a total of 9 MW of wind energy, as well as the BESS  with 3 MW of energy storage.  The Third Unit expansion project that adds 10 MW of hydropower at the  Terror Lake Hydroelectric Facility is scheduled for completion in October 2013.     KEA operates and maintains four independent diesel‐powered generation facilities for emergency backup to  its isolated renewable energy system in case the hydroelectric plant is unavailable.  The diesel‐powered  backup units are a mixture of reciprocating internal combustion engines and a diesel‐fired combined cycle  generation unit.  KEA recently retired two 1968 Fairbanks Morse diesel‐powered generators at the Swampy  Acres Generation Station.      The table on the following page details KEA’s current generation resources.  The capacity numbers listed are  high‐end nominal values.  The efficiency information is for these load points at ideal conditions.                                                  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 12 of 32 7/1/2013     KEA Energy Generation  Type  Efficiency Unit  Installation  Date Capacity  Hydro 1,100 kWh/A‐F Fuji VT1R6N Turbine with Mitsubishi Generator 1984 10.0 MW    1,100 kWh/A‐F Fuji VT1R6N Turbine with Mitsubishi Generator 1984 10.0 MW    1,100 kWh/A‐F 6‐Jet Pelton Turbine with Hyundai Generator 2013 10.0 MW    Terror Lake Hydroelectric Project Total 30.0 MW  Wind N/A GE 1.5 sle Wind Turbine 2009 1.5 MW    N/A GE 1.5 sle Wind Turbine 2009 1.5 MW    N/A GE 1.5 sle Wind Turbine 2009 1.5 MW    N/A GE 1.5 sle Wind Turbine 2012 1.5 MW    N/A GE 1.5 sle Wind Turbine 2012 1.5 MW    N/A GE 1.5 sle Wind Turbine 2012 1.5 MW    Pillar Mountain Wind Project Total 9.0 MW  BESS N/A Containerized Xtreme Power DPR 15‐100C 2012 1.5 MW    N/A Containerized Xtreme Power DPR 15‐100C 2012 1.5 MW    Battery Energy Storage System 3.0 MW  Diesel 12.2 kWh/gal DeLaval DSRS‐12‐3 1976 1.8 MW    15.6 kWh/gal Caterpillar 3616 2005 5.0 MW    15.6 kWh/gal Caterpillar 3616 2005 5.0 MW    14.4 kWh/gal DeLaval DSRS‐16‐4 1980 5.8 MW    Kodiak Generating Station Total 17.6 MW  Diesel 13.8 kWh/gal DeLaval DSR‐48 1978 2.5 MW    14.2 kWh/gal Solar Taurus 60‐T7301S, SoLoNOx 1999 6.5 MW    Nyman Power Plant Total 9.0 MW  Diesel 13.2 kWh/gal Caterpillar 3516B 2002 1.8 MW    13.2 kWh/gal Caterpillar 3516B 2002 1.8 MW    Swampy Acres Generating Plant Total 3.6 MW  Diesel 11.3 kWh/gal Waukesha 28950 1968 0.24 MW    11.5 kWh/gal Waukesha 28950 1979 0.24 MW    11.5 kWh/gal Caterpillar 3406 1970 0.14 MW    11.5 kWh/gal Caterpillar 343 1970 0.14 MW    Port Lions Power Plant Total 0.76 MW  KEA System‐Wide Total Generating Capacity 72.9 MW    KEA owns and operates over 33 miles of transmission line, 199 miles of overhead distribution line, 140 miles  of underground distribution line, and 3 miles of underwater line. KEA has six substation facilities as itemized  in the table on the following page.          Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 13 of 32 7/1/2013               KEA Substation Configuration  Substation Size Voltage  Terror Lake Substation  11.25 MVA 13.8 kV/138 kV  11.25 MVA 13.8 kV/138 kV  11.25 MVA 13.8 kV/138 kV  750 KVA 13.8 kV/12.47 kV  Airport Substation 10 MVA 33 MVA 138 kV/12.47 kV  138 kV/67 kV  Swampy Acres   20 MVA 138 kV/67 kV/12.47 kV  7.5 MVA 67 kV/12.47 winding  7.5 MVA 4.16 kV/67 kV  Hartman Substation 10 MVA 4.16 kV/12.47 kV/67 kV  10 MVA 4.16 kV/12.47 kV/67 kV  10 MVA 67 kV/2.4 kV/12.47 kV  High Substation 5 MVA 67 kV/12.47kV/24.9 kV  5 MVA 67 kV/12.47kV/24.9 kV  Nyman Substation  10 MVA 67 kV/12.47 kV/13.8 kV     4.2.2 Existing Energy Resources Used Briefly discuss your understanding of the existing energy resources. Include a brief discussion of any impact the project may have on existing energy infrastructure and resources. The existing energy resources for KEA as itemized in Section 4.2.1 are hydro, wind and diesel with a battery  energy storage system (BESS) to bridge the gap between a drop in wind production and the pick‐up of hydro  production from Terror Lake.  Terror Lake provides the macro‐scale storage of wind energy on an annual  basis, and the BESS provides the short‐term grid stability to inject power into the KEA grid the moment wind  production drops.      2012 was a very successful year in renewable energy production with 95.7% of energy sales generated by  hydro and wind energy.  Terror Lake generation exceeded 131 million kilowatt‐hours, which is a near‐record  level of production with only an average amount of precipitation received.  The three additional new wind  turbines went online in September 2012 and KEA experienced record wind production of over 16 million  kilowatt‐hours.  KEA strives to continue building upon that success with additional renewable energy  solutions that will optimize the existing infrastructure and delivery renewable energy to new sectors of the  community.        Installation of the FESS will provide a new type of energy storage asset for KEA that could respond on a more  rapid time scale than the BESS or the Terror Lake Hydroelectric reservoir system in support of high  penetration rates of wind energy from Pillar Mountain or other future wind developments. The additional  spinning reserve provided by this diversified energy storage system approach would build a more robust and  flexible electric grid that could allow even more wind energy to be integrated onto KEA’s isolated grid.   (Refer to Section 2.5 – Project Benefits for more information on how the FESS optimizes KEA’s exisiting  energy infrastructure and resources.) KEA’s Vision Statement to “endeavor to produce 95% of energy sales  with cost‐effective renewable power solutions by the year 2020” drives KEA to seek out new renewable  energy solutions, such as this project, to prepare KEA’s grid for additional wind energy that may be needed  to meet Kodiak’s electrical load demand.    Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 14 of 32 7/1/2013   Because the crane would overload the existing powerline feeder to that area, new tie‐lines are required to  transfer loads and relieve system congestion and allow this new renewable energy infrastructure.  One of  the two new tie‐lines will transfer load out of High Substation so that the breaker in High Substation can  become available to the second new tie‐line that will provide power to Pier III.    Refer to Project Location  and Vicinity Map provided in Exhibit C for the location of the new tie‐lines.  This tie‐line configuration will  relieve significant load congestion in the Pier III area in order to accommodate the new electric crane, while  also providing KEA with enhanced grid reliability benefits for the future.  Additional explanations on how  this project benefits KEA’s distribution infrastructure are provided in Section 2.5 – Project Benefit.     4.2.3 Existing Energy Market Discuss existing energy use and its market. Discuss impacts your project may have on energy customers. This project enables KEA to continue being the energy solution for the community.  The new electric crane  on Pier III will provide many long‐term logistical benefits to the Island’s shipping costs for all commodities,  including food and building materials.  This project also enables KEA to deliver renewable energy to the  City’s new electric crane and eliminate 20,000 gallons of diesel fuel consumption annually.  Thanks to the  assistance of AEA through previous Renewable Energy Fund grants, KEA is continuing to stabilize electric  rates with the renewable energy portfolio and does not foresee any rate increases in the future.    In 2012 the community of Kodiak utilized approximately 145 million kilowatt‐hours of electric energy.   However, 2013 year‐to‐date sales indicate a 3.5% reduction in electrical usage from all classes of service,  including residential, commercial and large power canneries. KEA’s membership base consists of 4,689  residential services with an average monthly usage of approximately 626 kWh.  The entire community of  Kodiak is dependent on the fishing industry, and the seafood processing sector accounts for approximately  25% of KEA’s electric sales annually.  KEA’s renewable portfolio provides approximately 161 million kilowatt‐ hours of potential energy each year, which offers sufficient renewable energy resources for the additional  288,000 kilowatt‐hours of electric energy sales needed to operate the new electric crane.      Based on the sales decrease that KEA is currently experiencing, a new load forecast was developed utilizing  three different analyses.  The simple regression analysis labeled “prediction” is based on previous years of  actual sales and 2013 estimated sales at 3.5% lower than the previous year.  To help anticipate Kodiak’s  future electric needs, two additional assumptions were made with one based on a 5% increase from the  2013 estimate and another based on a 5% reduction in sales from the 2013 estimate.  Refer to the graph  located in Section 4.4.4 ‐ Future Trends.  Based on this analysis, KEA can expect to have an excess supply of  renewable generation through 2021, but after 2021 KEA will need to find new sources of renewable energy.   That is only eight years away.       KEA is already pushing the engineering envelope with 80% wind penetration rates.  Adding any more wind  energy to KEA’s isolated system by 2021 requires forward‐thinking innovations to be made now to prepare  the grid for even more variable energy fluctuations.  This FESS project is that next step for preparing KEA’s  grid for the possibility of adding more wind energy onto the system to meet the community’s future  electrical load demands.  Adding diversity to KEA’s energy storage portfolio strengthens the whole system.   KEA wants to pursue this project not only because of the immediate positive impact it will have to the  community’s shipping infrastructure and KEA’s existing equipment, but also because of its opportunity to  develop an innovative solution to our renewable energy future beyond 2020.      Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 15 of 32 7/1/2013 4.3 Proposed System Include information necessary to describe the system you are intending to develop and address potential system design, land ownership, permits, and environmental issues. 4.3.1 System Design Provide the following information for the proposed renewable energy system: • A description of renewable energy technology specific to project location • Optimum installed capacity • Anticipated capacity factor • Anticipated annual generation • Anticipated barriers • Basic integration concept • Delivery methods The proposed system includes two (2) PowerStore Grid Stabilization 1 MW flywheel storage units.  These  units are capable of an ABB‐designed and ANSI‐specified powerhouse rated at 1 MW for grid stabilization.  This FESS will have a flywheel coupled with an inverter system and all of the appropriate grid control and tie‐ follow software.  Included in Exhibit D is detailed information from ABB on the Unit Specifications and the  Budget Estimate for this technology.    The PowerStore flywheel unit is manufactured by ABB and this technology has been successfully utilized in  similar applications around the world.  Flywheels were chosen for the Pier III electric crane application  because of their ability to respond to frequency disturbances on rapid time scales without detrimental  effects on its lifespan due to its mechanical energy design.  The drawback to flywheels is that they do not  store massive amounts of energy; however, massive amounts of energy are not needed to operate the new  Pier III electric crane.  This type of energy storage device meets this specific application very well.  Flywheels  have a long history with large electric equipment, such as electric drag lines.      When the electric crane is in operation the flywheel system will be in tie‐follow mode, which basically means  that it will follow the load of the crane to minimize its effects on KEA’s electrical grid system.  The EPS model  showing the flywheel’s tie‐follow effect on KEA’s system is included in Exhibit D.  When the electric crane is  not in operation, the flywheel system will be in droop control mode similar to KEA’s existing BESS.  The  flywheel’s droop control will be set closer to 60 hertz frequency than the BESS, which will cause the FESS to  be the first responder to frequency issues on KEA’s system.      As shown on the graph of Xtreme Power BESS performance on the following page, there are a large number  of operations made by the BESS.  The majority of the smaller (rapid time frame) system responses will be  taken over by the mechanical FESS, thereby saving the chemical battery life.  This will not decay the  mechanical life of the flywheel and will extend the life of the BESS battery cells.  By allowing the FESS and  the BESS to work together on larger grid frequency issues, the overall system is strengthened without the  need for hydropower curtailment in waste water mode, and water resources can be saved for future  hydropower generation.  Additional explanation on how this project conserves water resources in the Terror  Lake reservoir is provided in Section 2.5 – Project Benefit.      Without the FESS, KEA’s available renewable wind and hydro energy cannot be connected to the new Pier IIII  electric crane, which means that the City of Kodiak would remain dependent on an old diesel crane.      The new electric crane on Pier III will add load demand to KEA’s system.  This new load demand would be  applied to an already highly loaded distribution line and highly loaded area of the system near the seafood  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 16 of 32 7/1/2013 processors on Shelikof Street.  Therefore, in order to make this project feasible on KEA’s existing grid system,  additional tie‐lines must be installed to transfer load and open up available capacity at High Substations for  the new electric crane load.  Without these tie‐line improvements at this region of KEA’s grid, proper voltage  would not be able to be maintained as was demonstrated in the EPS Electric Crane Impact Study dated July  18, 2013, included in Exhibit D.    The graph below illustrates the large number of operations made by KEA’s existing BESS.  The majority of  these smaller (rapid time frame) system responses will be taken over by the mechanical FESS, thereby saving  the chemical battery life of the BESS.       Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 17 of 32 7/1/2013 4.3.2 Land Ownership Identify potential land ownership issues, including whether site owners have agreed to the project or how you intend to approach land ownership and access issues.   The FESS will be installed at the City of Kodiak’s Pier III.  Included in Exhibit C is a map of the two new tie‐ lines that must be constructed to interconnect High Substation to Pier III.  The City of Kodiak is a partner in  this project, and no separate land access issues are involved.  A letter of support from the City Manager on  this project is included in Exhibit A.   4.3.3 Permits Provide the following information as it may relate to permitting and how you intend to address outstanding permit issues. • List of applicable permits • Anticipated permitting timeline • Identify and discussion of potential barriers   This project involves the installation of a self‐contained, mechanical flywheel energy storage system on City  of Kodiak property.  Routine Department of Transportation permits and powerline easements will be  acquired for the two new tie‐lines.  No significant permitting requirements are involved with this project,  and no potential barriers are anticipated.      4.3.4 Environmental Address whether the following environmental and land use issues apply, and if so how they will be addressed: • Threatened or endangered species • Habitat issues • Wetlands and other protected areas • Archaeological and historical resources • Land development constraints • Telecommunications interference • Aviation considerations • Visual, aesthetics impacts • Identify and discuss other potential barriers This project involves the installation of a self‐contained, mechanical flywheel energy storage system on City  of Kodiak property.  There are no land development constraints, as the City of Kodiak is a partner in the  project.  There are no threatened or endangered species, birds, habitats, wetlands, archaeological or  historical resources impacted by this project.  The project area is already developed as an industrial port  with electrical infrastructure installed; therefore, no visual, aesthetic or other potential barriers are  anticipated.                    Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 18 of 32 7/1/2013 4.4 Proposed New System Costs and Projected Revenues (Total Estimated Costs and Projected Revenues) The level of cost information provided will vary according to the phase of funding requested and any previous work the applicant may have done on the project. Applicants must reference the source of their cost data. For example: Applicants records or analysis, industry standards, consultant or manufacturer’s estimates. 4.4.1 Project Development Cost Provide detailed project cost information based on your current knowledge and understanding of the project. Cost information should include the following: • Total anticipated project cost, and cost for this phase • Requested grant funding • Applicant matching funds – loans, capital contributions, in-kind • Identification of other funding sources • Projected capital cost of proposed renewable energy system • Projected development cost of proposed renewable energy system The total capital cost of the FESS for Kodiak Pier Electric Crane project is $3,800,000.  The grant application is  for the construction costs of the project.  KEA has completed the preliminary design work to ensure the FESS  is an appropriate design for the electric crane operations. As the modeling of the project progressed (refer to  EPS Study dated September 17, 2013 in Exhibit D), it was determined that one 1.5 MW flywheel would not  be sufficient to handle the crane loading and cycling through a full load or unload of a shipping vessel.  Therefore, two 1 MW flywheels will need to work in conjunction to optimize performance.  If one of the  flywheels becomes inoperable, KEA’s backup solution will be the BESS.    KEA is requesting $1,900,000 in grant funding with a project match of $1,900,000.  The project is a  partnership with the City of Kodiak and Horizon Lines, and the cost sharing KEA anticipates to receive from  these partners is $800,000.  KEA does not anticipate any additional funding for this project.  As a not‐for‐ profit electric cooperative, the KEA membership will fund all project costs not reimbursed from grant funds  or partner funding.  No development costs have been proposed, and all associated costs are considered  capital costs.    The cost estimates for this project are itemized below:  CONSTRUCTION  PHASE – FESS KODIAK PIER ELECTRIC CRANE AMOUNT  Mobilization, installation, integration and commissioning of flywheels $2,941,096 Construction  of new tie‐lines from High Substation   $858,904 TOTAL $3,800,000 Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 19 of 32 7/1/2013 4.4.2 Project Operating and Maintenance Costs Include anticipated O&M costs for new facilities constructed and how these would be funded by the applicant. (Note: Operational costs are not eligible for grant funds however grantees are required to meet ongoing reporting requirements for the purpose of reporting impacts of projects on the communities they serve.) The FESS and new tie‐lines will have relatively low operations and maintenance requirements.  The type of  inverter on the proposed FESS is the same equipment used on KEA’s existing BESS and GE wind turbines.   KEA staff has ample experience with this type of inverter system.  Maintenance costs on the FESS and new  tie‐lines are expected to be approximately $40,000 per year, and this cost will be covered under KEA’s  current tariff rates.     4.4.3 Power Purchase/Sale The power purchase/sale information should include the following: • Identification of potential power buyer(s)/customer(s) • Potential power purchase/sales price - at a minimum indicate a price range • Proposed rate of return from grant-funded project The sale of the electric power supplied to the new electric crane on Pier III will be charged according to KEA’s  standard tariff.  It is estimated that the new electric crane will increase KEA sales by 288,000 kWh annually  and 400 kW (demand) monthly.  KEA’s annual increased revenue from the crane’s electric usage and demand  will be approximately $71,000.  The revenue estimate was based on a monthly demand of  400 KW  (monthly) at $5.67 per KW and 288,000 kWh (annually) at 15.33 cents per kWh the 2012 average price for  large power sales (includes COPA charges).    Horizon Lines currently utilizes 20,000 gallons of fuel annually on the 50 year old diesel power crane.  This  calculates to $80,000 annually for the fuel usage at $4.00 per gallon.  On KEA’s current cost of electric energy  Horizon Lines will pay approximately $71,366 in electric and demand charges to power the electric crane.   The project benefit to Horizon Lines for electric usage verses fuel is $954,812.70.  This cost has been  calculated utilizing fuel escalation of 3% and forecasting KEA provides stable electric rates in the future to  Horizon Lines for the life of the project.     The NPV of this project (rate of return) for KEA is estimated at $2,140,923.  Refer to Section 5 – Project  Benefit for detailed information on the assumptions used in the NPV analysis.  The total rate of return this  project provides to the community cannot be quantified because the most significant benefit is the quality of  life improvements provided by lower shipping costs and economic stability of the region.                      Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 20 of 32 7/1/2013 4.4.4 Project Cost Worksheet Complete the cost worksheet form which provides summary information that will be considered in evaluating the project. Renewable Energy Source The Applicant should demonstrate that the renewable energy resource is available on a sustainable basis. Annual average resource availability. 98%   This is similar to what we are seen with the BESS,  which is a similar energy storage device on KEA’s  electric system.   Unit depends on project type (e.g. windspeed, hydropower output, biomasss fuel) a) Basic configuration (if system is part of the Railbelt1 grid, leave this section blank) i. Number of generators/boilers/other 23  ii. Rated capacity of generators/boilers/other 72.96 MW (Detail itemized Section 4.2.1)  iii. Generator/boilers/other type See KEA Energy Generation Table (Section  4.2.1)  iv. Age of generators/boilers/other See KEA Energy Generation Table (Section  4.2.1)  v. Efficiency of generators/boilers/other See KEA Energy Generation Table (Section  4.2.1)  b) Annual O&M cost (if system is part of the Railbelt grid, leave this section blank) i. Annual O&M cost for labor $2,241,995  ii. Annual O&M cost for non-labor $2,821,956  c) Annual electricity production and fuel usage (fill in as applicable) (if system is part of the Railbelt grid, leave this section blank) i. Electricity [kWh] 152,608,500 (2012 Actual)  ii. Fuel usage Diesel [gal] 495,779 gallons (2012 Actual)  Other N/A  iii. Peak Load 27.2 MW  iv. Average Load 17 MW  v. Minimum Load 11 MW  vi. Efficiency 14.2 kWh/per gallon of diesel fuel  1The Railbelt grid connects all customers of Chugach Electric Association, Homer Electric Association, Golden Valley Electric  Association, the City of Seward Electric Department, Matanuska Electric Association and Anchorage Municipal Light and Power.    Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 21 of 32 7/1/2013 vii. Future trends Future trends were analyzed using a simple regression analysis.  The  “prediction” is based on nine (9) previous years of actual sales and  2013 estimated sales at 3.5% lower than the previous year. To help  anticipate Kodiak’s future electric needs, two additional assumptions  were made. One is based on a 5% increase from the 2013 estimate and  the other is based on a 5% reduction in sales from the 2013 estimate.   The “HIGH” prediction indicates we will need additional renewable  generation in 2014 and the “LOW” prediction indicates we will have  sufficient renewable generation through 2023.  Another benefit of the  FESS is that if KEA’s sales growth indicates additional renewable is  needed we will have the ability to add two additional wind turbines  utilizing the FESS as the grid stabilization.  The Terror Lake  hydroelectric facility has been handling the over frequency situations  and when the FESS is installed it will be able to handle these high  frequency gird situations more efficient, creating an additional water  resource that can be used for power generation. d) Annual heating fuel usage (fill in as applicable) i. Diesel [gal or MMBtu] N/A  ii. Electricity [kWh] N/A  iii. Propane [gal or MMBtu] N/A  iv. Coal [tons or MMBtu] N/A  v. Wood [cords, green tons, dry tons] N/A  vi. Other N/A      110 120 130 140 150 160 170 180 190 200 210 2003 2010 2017 2024 2031MWH YEARS ANNUAL SYSTEM MWH PREDICTION HIGH LOW KEA’s Existing Renewable  Energy Supply is 161 MWh  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 22 of 32 7/1/2013 Proposed System Design Capacity and Fuel Usage (Include any projections for continued use of non-renewable fuels) a) Proposed renewable capacity (Wind, Hydro, Biomass, other) [kW or MMBtu/hr] Two (2) 1 MW, 36 MW‐sec of energy storage   b) Proposed annual electricity or heat production (fill in as applicable) i. Electricity [kWh] 306,600 kWh annually   ii. Heat [MMBtu] N/A c) Proposed annual fuel usage (fill in as applicable) i. Propane [gal or MMBtu] N/A  ii. Coal [tons or MMBtu] N/A  iii. Wood or pellets [cords, green tons, dry tons] N/A  iv. Other N/A  Project Cost a) Total capital cost of new system $3.8 million  b) Development cost c) Annual O&M cost of new system $40,000  d) Annual fuel cost N/A  Project Benefits a) Amount of fuel displaced for i. Electricity 20,000 gallons annually – 22.5 year life of the project = 450,000 gallons fuel    ii. Heat N/A  iii. Transportation N/A b) Current price of displaced fuel $4.00 per gallon  (current cost for Kodiak Island  residents)  c) Other economic benefits Private Sector Benefit = $954,812.70 (See Section 5)  Also provides unquantifiable boost to community  economic stability provided by improved shipping  infrastructure.     d) Alaska public benefits $2,596,230 (based on $4.00 per gallon fuel escalated at  3% for the life of the project)        Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 23 of 32 7/1/2013 Power Purchase/Sales Price a) Price for power purchase/sale N/A  Project benefit/cost ratio Payback (years) Simple payback on this project is 11 years.  Detailed information on  the assumptions used in the above summary are provided in Section  5 – Project Benefit.  4.4.5 Impact on Rates Briefly explain what if any effect your project will have on electrical rates in the proposed benefit area. If the is for a PCE eligible utility please discus what the expected impact would be for both pre and post PCE. The FESS Kodiak Pier project will lower KEA’s overall costs, and as a cooperative those savings are  passed directly to KEA’s membership.  The electric usage for the crane will be powered by KEA’s  surplus renewable energy supply.  It is anticipated that one of the most significant benefits of this  project is the ability for the Kodiak Island communities to enjoy reliable and affordable shipping of  produce and goods.  With the new electric crane, Pier III can accommodate larger ships which can  shorten shipping times and costs, thereby creating a very positive economic impact to all the  communities of the Kodiak Island archipelago.             Capital Costs ‐ Flywheel ESS Kodiak Pier 3,800,000.00$   Life of Plant 22.5                     AEA Grant for Flywheel ESS Kodiak Pier 1,900,000.00$   Aid to Construction Flywheel ESS Kodiak Pier 800,000.00$       KEA Capital Cost for Depreciation 1,100,000.00$   Total Project Cost Less Grant Funds 1,900,000.00$   Inflation Rate 1.03                     Cost of Fuel 3.500$                KEA Fuel Efficiency (kWh per gallon of diesel) 14.20                  Total Cost Savings 3,436,937.04$   Simple Payback (Years) 11.06                  Net Present Value 2,140,922.96$   Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 24 of 32 7/1/2013 SECTION 5– PROJECT BENEFIT Explain the economic and public benefits of your project. Include direct cost savings, and how the people of Alaska will benefit from the project. The benefits information should include the following: • Potential annual fuel displacement (gallons and dollars) over the lifetime of the evaluated renewable energy project • Anticipated annual revenue (based on i.e. a Proposed Power Purchase Agreement price, RCA tariff, or cost based rate) • Potential additional annual incentives (i.e. tax credits) • Potential additional annual revenue streams (i.e. green tag sales or other renewable energy subsidies or programs that might be available) • Discuss the non-economic public benefits to Alaskans over the lifetime of the project 5.1.1 Public Benefit for Projects with Private Sector Sales Projects that include sales of power to private sector businesses (sawmills, cruise ships, mines, etc.), please provide a brief description of the direct and indirect public benefits derived from the project as well as the private sector benefits and complete the table below. See section 1.6 in the Request for Applications for more information. The FESS for Kodiak Pier Electric Crane project benefits include displacing 20,000 gallons of fuel used  annually by the Kodiak Pier III CAT 3406B diesel generators currently used to operate the existing  crane.  The current crane is over 50 years old and reaching the end of its useful life.  One of the  benefits for Horizon Lines (private sector) is the ability to use renewable electric energy to power the  crane instead of diesel fuel providing them a project benefit of $954,812 for the life of the project.   The 20,000 gallons of fuel annually consumed by Horizon Lines will be replaced with renewable  electric energy.  The private sector benefit is calculated with the assumption that KEA will continue to  provide stable electric rates for the life of the project, and fuel costs will continue to escalate at 3%.     The Alaska Public Benefit that can be quantified is also based on displacing this source of fuel  consumption. Current fuel cost to Kodiak residents is $4.00 per gallon, and the fuel costs have been  escalated at 3% annually to capture a public benefit of $2,596,231 for the life of the project.       In order to operate the electric crane so that this source of fuel consumption may be eliminated, KEA  must install the FESS for electrical grid stability during crane operations (refer to Exhibit D for EPA  Electric Crane Impact Studies).  The table on the following page calculates KEA’s Net Savings as  $3,436,937 and NPV at $2,140,923 as a result of this FESS project.                          Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 25 of 32 7/1/2013   FESS KODIAK PIER ELECTRIC CRANE PROJECT ‐ NET PRESENT VALUE TABLE      The FESS Kodiak Pier Electric Crane Project is assumed to be a 22.5 year project.  Both the life of the  project and the depreciation is calculated by combining the power line investment of $858,904 at 35  years and the Flywheel investment of $2,941,096 at 20 years.  The above NPV table assumes the aid to  construction of $800,000 provided by the City of Kodiak and Horizon Lines is not part of the KEA plant  depreciation.  Therefore, depreciation is based on KEA’s capital cost of $1,100,000.  The project  operation and maintenance costs (O&M) are estimated to be $40,000.  KEA’s experience with its  existing powerline and BESS system indicates minimal O&M will be required.  The inflation rate  applied to the O&M is 3% annually.      It is estimated that the new electric crane will increase KEA sales by 288,000 kWh annually and 400  kW (demand) monthly.  The revenue generated for these additional sales is based on the 2012  average large power rate of 15.33 cents per kilowatt‐hour (includes COPA charges and rate schedule)  plus the demand charges of $5.67 per kW.  Thanks to the financial assistance provided by AEA in  previous Renewable Energy Fund grants, KEA is continuing to stabilize electric rates with the  renewable energy portfolio and does not foresee any rate increases; however, it is anticipated as the  cargo loading and unloading becomes more efficient there may be additional shipping vessels thereby  increasing the electric usage of the electric crane.  Therefore, the revenue has also been escalated at  3% for an assumed increased growth in sales due to expected cargo increases.      Next depicted in the NPV table is the BESS Battery Life Extension.  With our current system design and  the BESS usage, it is estimated that the battery life is now 8 years.  It is forecasted that the FESS will  Year Depreciation  (based on  $1,100,000  capital cost) Flywheel O&M  Cost  KEA Sales (kW &  KWH) Battery Life  Extension Power Line  Savings Terror Lake Water  Savings Net Savings 2014 ‐$48,991 ‐$40,000 $71,366 $75,000 $0 $4,585 $61,960 2015 ‐$48,991 ‐$41,200 $73,507 $77,250 $0 $4,722 $65,289 2016 ‐$48,991 ‐$42,436 $75,713 $79,568 $938,547 $4,864 $1,007,264 2017 ‐$48,991 ‐$43,709 $77,984 $81,955 $0 $5,010 $72,249 2018 ‐$48,991 ‐$45,020 $80,324 $84,413 $0 $5,160 $75,886 2019 ‐$48,991 ‐$46,371 $82,733 $86,946 $0 $5,315 $79,632 2020 ‐$48,991 ‐$47,762 $85,215 $89,554 $0 $5,474 $83,491 2021 ‐$48,991 ‐$49,195 $87,772 $92,241 $0 $5,638 $87,465 2022 ‐$48,991 ‐$50,671 $90,405 $95,008 $0 $5,808 $91,559 2023 ‐$48,991 ‐$52,191 $93,117 $97,858 $0 $5,982 $95,775 2024 ‐$48,991 ‐$53,757 $95,910 $100,794 $0 $6,161 $100,118 2025 ‐$48,991 ‐$55,369 $98,788 $103,818 $0 $6,346 $104,591 2026 ‐$48,991 ‐$57,030 $101,751 $106,932 $0 $6,536 $109,199 2027 ‐$48,991 ‐$58,741 $104,804 $110,140 $0 $6,733 $113,945 2028 ‐$48,991 ‐$60,504 $107,948 $113,444 $0 $6,934 $118,833 2029 ‐$48,991 ‐$62,319 $111,187 $116,848 $0 $7,143 $123,867 2030 ‐$48,991 ‐$64,188 $114,522 $120,353 $0 $7,357 $129,053 2031 ‐$48,991 ‐$66,114 $117,958 $123,964 $0 $7,577 $134,394 2032 ‐$48,991 ‐$68,097 $121,497 $127,682 $0 $7,805 $139,896 2033 ‐$48,991 ‐$70,140 $125,141 $131,513 $0 $8,039 $145,563 2034 ‐$48,991 ‐$72,244 $128,896 $135,458 $0 $8,280 $151,399 2035 ‐$48,991 ‐$74,412 $132,763 $139,522 $0 $8,529 $157,411 2036 ‐$24,495 ‐$76,644 $136,745 $143,708 $0 $8,784 $188,098 TOTAL $3,436,937 $2,316,045 $2,433,966 NPV $2,140,923 Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 26 of 32 7/1/2013 optimize KEA’s renewable energy storage and double the warranty life of the existing BESS.  This is  due to the significant amount of battery usage that can be taken over by the FESS.  The battery life  extension is estimated to be $75,000 per year, and this number has been inflated at 3% annually due  to the replacement cost of the batteries.    The savings provided by the two new tie‐lines in year 2016 is reflective of the fact that KEA will need  to build these tie‐in lines in the future, even if they were not built as part of this project.  The power  and voltage demands by the seafood processing plants in this area are reaching the current feeder  limitations.  The costs to build these tie‐lines in 2014 are estimated to be $858,904.  This cost has been  escalated 3% annually thereby making the power line savings in 2016 to be $938,547.      The final section in the NPV Table, Terror Lake Water Savings, concerns the under‐frequency  situations caused by the wind fluctuations that the Terror Lake Hydroelectric Facility is handling by  deflecting water.  Refer to Section 2.5 – Project Benefit for additional explanation of how hydropower  curtailment achieved by water deflection provides stability in over‐frequency grid disturbances.  The  FESS could handle the high frequency grid situations more efficiently than the hydroelectric  governors, thereby saving the wasted water for power generation.   Based on the past 10 months of  the BESS performance, it is estimated that an additional 18,600 kWh in hydroelectric generation  would be available from water conservation.  Based on the 14.2 kWh per gallon fuel efficiency and  fuel costs of $3.50 this provides a first‐year project benefit of $4,584. This cost is also inflated for fuel  cost increases at 3% annually.      KEA does not anticipate the need for a loan to complete this project; therefore, no interest rate on  borrowed funds has been included in this project analysis.     The following tables summaries the above information and provides the simple payback of 11 years  on this 23 year project.  The Net Present Value of this project is $2,140,923.             In addition to the positive economic value of the FESS for Kodiak Pier Electric Crane, this project also  provides significant public benefits to the Kodiak Island communities and all other isolated micro‐grid  communities throughout Alaska by strengthening Kodiak’s shipping infrastructure, and by  demonstrating innovating renewable energy storage technology.      Capital Costs ‐ Flywheel ESS Kodiak Pier 3,800,000.00$   Life of Plant 22.5                     AEA Grant for Flywheel ESS Kodiak Pier 1,900,000.00$   Aid to Construction Flywheel ESS Kodiak Pier 800,000.00$       KEA Capital Cost for Depreciation 1,100,000.00$   Total Project Cost Less Grant Funds 1,900,000.00$   Inflation Rate 1.03                     Cost of Fuel 3.500$                 KEA Fuel Efficiency (kWh per gallon of diesel) 14.20                  Total Cost Savings 3,436,937.04$   Simple Payback (Years) 11.06                  Net Present Value 2,140,922.96$   Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 27 of 32 7/1/2013 Installing a larger, stronger, electric crane (which is only made possible with the installation of the  FESS) would strengthen Pier III as the premier transportation hub for the Southwest Alaskan region.   The ability for Pier III to accommodate larger ships means that vessels can import and export more  goods in and out of Kodiak at one time, thereby shortening shipping time and stabilizing shipping  costs for local businesses and residents.  Positioning the City of Kodiak as the most efficient freight  port in the region would strengthen Kodiak’s seafood industry, provide more long‐term port jobs, and  boost the overall economy in Kodiak.  Kodiak’s recent disruptions in ferry service, the loss of flight  service by Northern Air Cargo, and the upcoming loss of the Alaska Airlines Boeing 737 jet service  threatens to put Kodiak in a more isolated and vulnerable economic condition.  The FESS for Kodiak  Pier Electric Crane can be the local shipping solution for promoting and sustaining long‐term  commercial development in the region by connecting Kodiak’s local businesses to the rest of the  world.      Installing a new type of rapid‐response energy storage infrastructure on KEA’s grid is also an  innovative solution for optimizing KEA’s existing renewable energy generation system, and will  generate useful information for the Alaska public.  Energy storage solutions are a critical component  to integrating variable forms of renewable energy, and KEA has an opportunity to demonstrate how a  diverse suite of energy storage technologies (FESS, BESS, and hydropower) can work in conjunction  with variable forms of renewable energy to displace costly fossil fuels throughout the State of Alaska.          Renewable energy resource availability (kWh per month) Up to 2 MW as needed by crane or  KEA electric system  Estimated sales (kWh) 288,000 kWh annually   400 KW monthly  Revenue for displacing diesel generation for use at private sector businesses ($) $954,812.70 (life of project)  Estimated sales (kWh) 288,000 kWh annually   400 KW monthly  Revenue for displacing diesel generation for use by the Alaskan public ($) $2,596,231 (life of project)  SECTION 6– SUSTAINABILITY Discuss your plan for operating the completed project so that it will be sustainable. Include at a minimum: • Proposed business structure(s) and concepts that may be considered. • How you propose to finance the maintenance and operations for the life of the project • Identification of operational issues that could arise. • A description of operational costs including on-going support for any back-up or existing systems that may be require to continue operation • Commitment to reporting the savings and benefits The FESS will be additional piece of mechanical‐electrical equipment on the KEA system.  KEA staff is  familiar with the electrical portion of the FESS equipment and is confident in the operations and  maintenance for the life of the project.  Further, the FESS equipment will be purchased from ABB who is  able to provide support services if necessary.    KEA will be the owner of the FESS and will sell its electricity to Horizon Lines according to KEA’s normal  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 28 of 32 7/1/2013 rates per the established tariff.  FESS maintenance costs will be paid from these tariff sales that will  bring in ample revenue to cover the maintenance and operations costs as well as the appropriate  depreciation.      KEA has a record of successfully designing and constructing renewable energy projects, and making  them sustainable for the benefit of the Alaskan public.  KEA also has a proven track record of reporting  the appropriate information back to AEA, which will continue on this project. SECTION 7 – READINESS & COMPLIANCE WITH OTHER GRANTS Discuss what you have done to prepare for this award and how quickly you intend to proceed with work once your grant is approved. Tell us what you may have already accomplished on the project to date and identify other grants that may have been previously awarded for this project and the degree you have been able to meet the requirements of previous grants. The FESS for Kodiak Pier Electric Crane project will move very quickly, as it must stay on schedule to be  ready for operation when the new electric crane is ready to operate on the rebuilt Pier III.  The City of  Kodiak’s schedule for the completion and installation of Pier III and electric crane is late‐2014.  System  modeling has been primarily done (see the EPS modeling reports included in Exhibit D) and the funding  is prepared.  The preliminary concept for the distribution line has been developed as well.        KEA will need permission from AEA to allow our grant match to occur prior to July 1, 2014.  Expenses  for this project will begin in January 2014 when the FESS is ordered from ABB.  KEA has no other grants  that it will be applying for this project.    KEA is very appreciative of support received from AEA for other renewable energy developments,  including the wind turbine installations on Pillar Mountain, the third turbine‐generator installation at  the Terror Lake Hydroelectric Facility, and the BESS installation.  KEA has been in full compliance with  these previous grant agreements, and will continue to be full compliance with this proposed grant.      SECTION 8– LOCAL SUPPORT AND OPPOSITION Discuss local support and opposition, known or anticipated, for the project. Include letters of support or other documentation of local support from the community that would benefit from this project. The Documentation of support must be dated within one year of the RFA date of July 2, 2013. Exhibit A includes letters from the City of Kodiak, the Kodiak Island Borough, and the Kodiak Chamber  of Commerce in support of KEA’s FESS for Kodiak Pier Electric Crane project.      The Kodiak community is extremely supportive of KEA’s efforts in developing renewable energy  solutions.  The continued support provided by the local community of Kodiak and the statewide  community of Alaska has been a major component to KEA’s success.  KEA has received the following  comments of support from our members:   • Thank you for taking care of us and Kodiak residents!  Good job!  James Harrod, June 2013  • We are all proud of KEA’s monumental year!!! You have our thanks and pride.  Gene Sundberg,  February 2010  Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 29 of 32 7/1/2013 • You have done a great job getting the wind mills up and saving fuel.  Keep up the good work.   You’re a good team.  Laurence Anderson, October 2011  • I am proud Kodiak is so forward thinking in terms of energy!  I love it!  Fran March, June 2009  • I’m very impressed with the commitment everyone in Kodiak has for renewable energy in  protecting our island.  Larry Van Daele, June 2009  • Keep up the good work on making Kodiak a better place to live.  It would be good if other  people on the island would do the same thing.  Thank you. Patsy Maher, September 2008  • I’m encouraged we are making every effort we can to be free of diesel – for financial and  environmental reasons.  Craig Baker, June 2009  • AWSOME!! COPA appears to be going down!!  Richard Pestrikoff, October 2012  • Hurray!  This is the first time my bill has been under $100 since I can’t remember!  Leslie G.  Seaton, June  2010  • Sustainable energy in Kodiak is money in the bank.  Jane Eiseman, July 2009    With AEA’s assistance, KEA is viewed as a shining star in implementing sustainable, renewable energy  solutions and has been recognized for its performance by the US Department of Energy and National  Rural Electric Cooperative Association as the 2009 Wind Cooperative of the Year for leadership,  innovation, commitment, project creativity and benefits resulting from Alaska’s first utility‐scale wind  project.  KEA was also awarded with the 2009 Kodiak Chamber of Commerce Cornerstone Award for  developing Kodiak’s renewable energy resources for the betterment of all Kodiak residents.   And just  recently, KEA’s Kodiak High Penetration Wind Project was selected as a finalist for the 2013 Energy  Storage North America Award by the California Energy Storage Alliance.  KEA’s efforts with expanding  its renewable energy generation system continue to draw the attention of media outlets that travel to  Kodiak to learn how even a small rural electric cooperative like KEA could make a huge difference in  our nation’s efforts to develop its renewable energy resources.      There is no known or anticipated opposition to this renewable energy project.   SECTION 9 – GRANT BUDGET Tell us how much you are seeking in grant funds. Include any investments to date and funding sources, how much is being requested in grant funds, and additional investments you will make as an applicant.   KEA is requesting $1,900,000 in grant funding with a project match of $1,900,000.  The project is a  partnership with Horizon Lines and the City of Kodiak, and the cost sharing KEA anticipates to receive  from these partners is $800,000.  KEA does not anticipate any additional funding for this project.  As a  not‐for‐profit electric cooperative, the KEA membership will fund all project costs not reimbursed  from grant funds or partner funding.  No development costs have been proposed, and all associated  costs are considered capital costs included in the $3,800,000 total cost of the project.              Renewable Energy Fund Round VII Grant Application - Standard Form AEA 2014-006 Grant Application Page 30 of 32 7/1/2013   Phase IV.  Construction and Commissioning Proposed Budget Worksheet  Milestone or Task Anticipated Completion Date RE- Fund Grant Funds Grantee Matching Funds Source of Matching Funds: Cash/In-kind TOTALS Mobilization, installation,  integration and commissioning  of flywheels  Jan ‐2015 $ 1,470,548 $ 1,470,548 Cash/Aid to  Construction $ 2,941,096  Construction of new tie‐lines  from High Substation Jan‐2015 $    429,452 $    429,452 Cash/Aid to  Construction $    858,904   TOTALS  $ 1,900,000 $ 1,900,000  $ 3,800,000  Budget Categories:      Direct Labor & Benefits  $    208,675 $    208,675  $    417,350  Travel & Per Diem  N/A N/A  N/A  Equipment  $ 1,300,000 $ 1,300,000  $ 2,600,000  Materials & Supplies  $    124,075 $    124,075  $    248,150  Contractual Services  $    157,250 $    157,250  $    314,500  Construction Services  $    110,000 $    110,000  $    220,000  Other  N/A N/A  N/A  TOTALS  $1,900,000 $1,900,000  $3,800,000  Kodiak Electric Association, Inc.  Renewable Energy Fund Grant – Round VII  List of Exhibits      Exhibit  Document Title       A Letters Demonstrating Local Support   • City of Kodiak  • Kodiak Island Borough  • Kodiak Chamber of Commerce       B Resolution 686‐13 Authorization for President/CEO to  Represent KEA and Apply for a Renewable Energy Fund Grant  through the Alaska Energy Authority       C Maps  • KEA Service Area   • Project Location & Vicinity Map         D Equipment Descriptions and Specifications  • ABB PowerStore Unit Specifications  • ABB Budget Quote for KEA, dated August 30, 2013  • EPS Electric Crane Impact Study, dated July 18, 2013  • EPS Electric Crane Impact Study, dated September 17, 2013              Exhibit A    Letters Demonstrating Local Support     • City of Kodiak  • Kodiak Island Borough  • Kodiak Chamber of Commerce                                        Exhibit B    KEA Board Resolution No. 686‐13  Authorization for President/CEO to Represent KEA   and Apply for a Renewable Energy Fund Grant   through the Alaska Energy Authority                                        Exhibit C    Maps    • KEA Service Area   • Project Location & Vicinity Map                                          Exhibit D    Equipment Descriptions and Specifications    • ABB PowerStore Unit Specifications  • ABB Budget Quote for KEA, dated August 30, 2013  • EPS Electric Crane Impact Study, dated July 18, 2013  • EPS Electric Crane Impact Study, dated September 17, 2013      PowerStore Renewable microgrid stabilization Power Generation 2 PowerStore PowerStore Renewable microgrid stabilization The PowerStoreTM is a compact and versatile grid stabilizing generator. Its main purpose is to stabilize power systems against fluctuations in frequency and voltage. Stabilizing the grid needs highly dynamic power injection and absorption for short amount of time, while common energy storage solutions require slower response and discharge over longer time. It combines a 18 MWs low speed flywheel with solid state converters to provide reliable and high-performance grid stabilization. The PowerStore is able to inject and absorb power up to its nominal power rating and it is available in a range of models from 500 kW to 1.5 MW and can be configured to operate in either a grid support mode for use in multimegawatt grids, or as a virtual generator for use in smaller isolated microgrids. Main components The PowerStore consists of: – Flywheel spinning mass including motor/generator – AC-DC-AC converter system – Operator interface – Container-based building (optional) Flywheel spinning mass The PowerStore is a flywheel based technology that provides grid stabilization and uses a pressurized helium environment to reduce frictional losses. The unit has a lifting magnet that holds the weight of the 3,000 kg flywheel during operation, ensuring a long bearing life, reduced losses and low maintenance. Oversized primary mechanical bearings are also included to hold the weight of the flywheel while it is stationary and below operational speed while catch bearings are installed to provide a fail-safe system. The design incorporates proven technologies in order to deliver worry free years of operation. ABB solutions enable the maximum utilization of renewable energy in remote or isolated areas - enabling efficient, reliable and high quality power supply, while minimizing the fuel consumption. ABB`s microgrids and renewable integration platform provides a modular and scalable solution that integrates renewable power generation into microgrids that previously operated solely on fossil fuel. The key is to design a renewable power plant that can maximize return on investment, while delivering a stable, safe and reliable power supply. ABB`s solution includes grid stabilization technology that enables high penetration of renewable power generation, and distributed control systems that provide intelligent power management and efficient hybrid power plant operation. Our solution achieves 100% peak penetration of renewables in wind/diesel and solar/diesel power systems, maximizing fuel savings and supplying reliable, grid-quality power in remote off-grid locations. PowerStore 3 Grid Customer specific high voltage level 50/60 Hz 1.......16 Modules 1.......16 Modules DC bus++-- 440 V - 50/60 Hz Grid Converter Flywheel Converter Variable Frequency AC 1 16 1 16 Converter system The AC-DC-AC converter system hardware is based on customized PCS100 insulated gate bipolar transistor (IGBT) power converters from ABB. Using these proven modules results in a highly reliable design with an installed base of thousands of units worldwide. The use of back-to-back IGBT converter pairs allows the flywheel to rotate at variable speed enabling the injection and absorption of power. Multiple converter pairs are paralleled to achieve the desired model rating. The PowerStore is able to export and import at maximum power ratings regardless of the state of charge, from 0% to 100% capacity; there is no need to derate the PowerStore for lower state of charge. For example, 100% of power injection until the PowerStore is completely empty, or 100% power absorption until the PowerStore is completely full is possible. This gives the PowerStore its unique fully symmetric power ratings, and the ability to charge with as much power as it can discharge. The converter modules are configured for redundancy which means that the PowerStore will continue to operate despite the failure of one module. Operator interface An operator interface is used to monitor the flywheel and converter components and to provide access to historical data. Historical data recording is provided at two levels: a high resolution (down to 100 ms) recording system for response and performance analysis, and a low resolution (10 minutes) recording system for asset management. A number of variables are recorded such as: – PowerStore active and reactive power – PowerStore state of charge – Mains 3-phase voltage – Mains 3-phase current – Flywheel, container and converter temperatures – Alarms, status and operation mode – Next PowerStore service time – Mains frequency This data can be exported into a wide range of software, including Microsoft Excel for further analysis. The information is also available to be exported to upper level SCADA systems through a MODBUS/TCP communications interface. Through the operator web interface the PowerStore can be remotely started and stopped and alarms remotely monitored and reset. Furthermore, the trending system is capable of displaying multiple types of data at different resolutions simultaneously. The trending package is able to access data from a remote system across a telecommunications path (such as an ordinary modem or a 3G wireless connection) and can display user-defined periods of larger portions of data with ease. Container building (optional) The PowerStore can be factory installed into a purpose built 20 or 40 foot shipping container. The container building includes a fan forced cooling system and other necessary building auxiliaries. These units can be transported and installed on site with a minimum of installation work. PowerStore models The PowerStore can be configured in three different sizes: 500, 1,000 and 1,500 kW. The energy content of the flywheel remains 18 MWs for all three models (see data sheet for dimensions and ratings). PowerStore overview schematic 4 PowerStore PowerStore How it works PowerStore operation Charge control The charge level at which the PowerStore normally operates can be set between full and empty during commissioning. The normal charge level is set to ensure there is both sufficient energy and headroom to carry out the required grid stabilization. Recharging or discharging back to the idle energy level is controlled by a maximum power level that the PowerStore will consume or generate. The maximum power level can be set as a fixed parameter for charging or discharging or adjusted dynamically by an external power management system during operation (eg, the external power management system may only want to recharge, if renewable power is available). Protection The PowerStore has a number of protection systems in place including but not limited to: – Mains overvoltage – Flywheel and converter overtemperature – Flywheel overspeed – Flywheel over/undercharging – Converter overcurrent The PowerStore automatically adjusts its rating in the event the converter system detects a temperature overload. This ensures ongoing operation even during high temperatures. Backup power supply In the event of a mains failure (black station) the flywheel will slowly spin down until standstill. While it is spinning down it provides power to keep the control and operator interfaces alive to monitor the controlled shutdown process. No external UPS backup is required. PowerStore operating modes and applications The PowerStore can be configured according to the special requirements of each site. It is able to operate in either Grid Support Mode (GSM) for large networks or Virtual Generator Mode (VGM) for isolated microgrids. The value of the PowerStore can be increased further through the introduction of the Renewable Microgrid Controller (RMC 600) - the control system especially designed to match the needs of microgrids - which can enable additional features, including: – Spinning reserve reduction (generator overload support) – Renewable Only Mode PowerStore PS 12 scheme Inside view of PowerStore with inverters and flywheel Grid interface cabinet with operator controls PowerStore 5 Grid support mode The PowerStore supports the grid by providing three support functions: – Frequency support – Voltage support – Disturbance feed-forward Frequency support reduces the disturbance in grid frequency by injecting active power based on the grid’s frequency deviation from nominal. If the grid frequency is below nominal then power is injected into the grid, while power is absorbed from the grid if the frequency is above nominal; the magnitude of the injected power is a function of the size of the deviation. A zone or dead-band has been included to allow for a variety of primary grid frequency controllers; the dead-band size and position is adjustable. Voltage support is a method of reducing grid voltage disturbance similar to that of a STATCOM. The PowerStore voltage support function implements a form of reactive droop control. Capacitive VArs (volt-ampere reactive) are injected into the grid if the voltage is lower than desired and inductive VArs if the grid voltage is higher. Changes to the average or nominal system frequency or voltage are allowed to occur to accommodate operation in voltage and/or frequency droop and allow for the presence of a time correction system. The disturbance feed-forward function reduces system disturbances, both in voltage and frequency, by injecting real and reactive power proactively based on fluctuating load or renewable energy source measurements. In essence this function counteracts the effects of a disturbance before it affects the grid frequency and voltage. The above grid support functions are parameter-adjustable to allow for optimization of the system and tuning to the particular application and power system dynamics. Virtual generator mode – Renewable Only Mode In Virtual Generator Mode (VGM) the PowerStore operates as a generator and is especially suited to small isolated grids with a large amount of renewable energy connected. In this mode of operation the PowerStore is capable of operating as the only generator on the grid. For both modes in GSM or VGM in case of loss of plant within a power system (eg, a generator has tripped offline) usually a step in the system load appears which results in a large frequency deviation. Such changes can cause load shedding of consumer feeders. The PowerStore is capable of compensating for this step load by discharging up to its nominal power rating with a fast response. After the PowerStore has picked up the load and discharged its energy into the power system it gradually reduces its power output to pass the load back to the power system. In this event the PowerStore acts like a shock absorber to dampen the step load impact on the system’s frequency and voltage. In the above case a power management system coordinating the schedule of generation plant needs to call replacement capacity to ensure the PowerStore can pass the additional load back to the generators. For this purpose the PowerStore provides an interface that allows other controllers to monitor its status. PowerStore works like an electrical noise filter to smooth power fluctuations and also has the ability to minimize the impact from loss of plant through the shock absorber, making PowerStore the ideal technology to manage the start of large loads, smoothing renewable energy fluctuations, or support system stability after a reclosing event. Spinning reserve reduction Isolated power systems require the provision of spinning reserve to allow for the sudden increase in load or the sudden loss of generation plant. Spinning reserve is usually provided by conventional generators such as diesel or gas-fuelled reciprocating engines. As a result generators are not operated at their rated power output where the fuel efficiency is usually the highest. The PowerStore is able to provide the spinning reserve for the power system and allow generation plant to operate closer to their rated power output. Generator overload support The PowerStore can prevent the diesel/heavy fuel oil (HFO)/ gas generators from going into overload by monitoring their power output. This measurement can be provided by the ABB’s microgrid controllers or a third party upper level control system. In case the charge level of the PowerStore falls below a set parameter, the supervising power management system schedules additional generating capacity to start. 6 PowerStore Fault ride through The PowerStore is able to ride through faults, providing grid stability in case of a loss of a generator or large system disturbance. The PowerStore is capable of providing real and reactive power to support the system – When the system voltage is depressed – During a fast rate of system frequency change – During an instantaneous voltage phase shift The above events usually occur during line faults within the distribution system. The PowerStore has been designed to ride through those distribution faults, provide system stability and support the system recovery after the fault has been cleared. The PowerStore remains connected to the network during line faults. Power management system The PowerStore is able to interface to external power management systems to receive power and reactive power set points that are independent of the voltage and frequency fluctuations of the connected grid. The PowerStore comes with a dedicated interface to the control system from ABB. This allows the PowerStore to interact with the whole power system not only based on electrical fluctuations but also on communication to other equipment like wind turbine generators or solar power plants. Typical use cases/applications – Isolated grids with high renewable energy input – The virtual generator mode provides additional inertia to the network to reduce frequency and voltage disturbances at high renewable penetration levels and power quality – The virtual generator mode allows the network to run without diesel generators – Power systems with huge periodical scheduled loads that cause instabilities – The PowerStore is able to supply nearly limitless short period, high power cycling without detrimental effect on its life-span – Reactive power balancing – The PowerStore is able to inject and absorb reactive power independently of the real power behaviour – General smoothing of load and generation fluctuations – 100% renewable energy microgrids – Stabilization – Management of power flow – Frequency master – Larger grid stabilization – End of grid support applications Frequency variations and PowerStore power output in a high penetration wind diesel system PowerStore 7 PowerStore Data sheet Specifications Design life 20 years Nominal supply voltage 3 ph, 380 - 440 Vac Supply frequency 50/60 Hz Max. mains voltage 480 Vac Aux. AC supply 3 ph + N, 380 - 480 Vac, 50/60 Hz,50 A Under-voltage fault ride through Yes Output short circuit protection Yes Fault current available Yes Paralleling of units Yes Unbalanced current Optional Technical data Nominal kVA rating See table below Overload kVA rating 150% for 30 sec 175% for 2 sec 200% for 2 sec (75% pre-load) Nominal kW rating See table below (max. 1,500 kW) Nominal kVAr rating See table below (Power factor from 0 leading to 0 lagging is possible) Nominal current unbalance 100 A/phase Flywheel energy stored (@3,600 rpm) 18 MWs Estimated discharge/charge time @100 kW 150 s Estimated discharge/charge time @500 kW 30 s Estimated discharge/charge time @1,000 kW 18 s Estimated discharge/charge time @1,500 kW 12 s Flywheel operating speed range 1,800 – 3,600 rpm Minimum power to maintain SOC 15 kW Flywheel power losses 12 kW Power conversion efficiency charge or discharge > 90% Min. charging power spin-up 35 kW Nominal DC-link voltage 750 VDC Altitude above sea level < 1,000 m without derating Communication Supported protocols Modbus TCP/IP Model Nominal Rating (+/-kVA) Building size (optional) Approximate weight (incl. building) @440 VAC Tonnes PS04 458 20 ft 11.47 PS08 915 40 ft 11.96 PS12 1,372 40 ft 14.19 Contact us 9AKK100580A2551 EN A4 12/12© Copyright 2012 ABB All rights reserved. Specifications subject to change without notice. Pictures, schematics, and other graphics contained herein are published for illustration purposes only and do not represent product configurations or functionality. ABB S.A. Power Generation Microgrids and Renewable Energy Integration C/ San Romualdo, 13 28037, Madrid Spain Phone: +34 91 581 938 6 ABB lnc. Power Generation Microgrid and Renewable Energy Integration 1021 Main Campus Drive Raleigh, NC 27606 USA Phone: +011 919 856 2448 ABB Australia Pty Limited Power Generation Microgrids and Renewable Energy Integration Export Drive Darwin Business Park Berrimah NT 0828 Australia Phone: +61 (0)8 8947 0933 www.abb.com/powergeneration ABB Inc. 1021 Main Campus Drive Raleigh, NC 27606 www.abb.com Budgetary quote for: Kodiak Island Grid Stabilization Dear Darron: ABB is pleased to submit this response to your request for a budget quote. This response document has been developed specifically to articulate how ABB’s grid stabilizing PowerStore solution can strengthen the port’s power system to accomodate the future installation of a crane at the port facility. We believe that we provide a best in solution for a number of key reasons. These include: • The Right Company – ABB is focused on the utility industry and has been developing solutions for the utility industry for over 30 years. ABB is leading the way for smart grid solutions. • The Right Solution – ABB solutions were built for the utility industry. They were not designed as a template for all markets and then modified to meet the requirements of the utility market. • The Right Team – ABB has the proven implementation experience, industry knowledge and functional experience to successfully lead your team. • The Right Methodology – ABB will leverage our proven implementation methodology to execute the proposed solution. Our solution methodology mitigates project risk by utilizing best practices and outcomes through knowledge gained from following the same processes over and over again and gauging the results. In closing, our team sincerely appreciates the opportunity to provide budgetary numbers for consideration on your projects. We look forward to proving our capabilities to you while continuing to grow our partnership for the future. Sincerely, Kodiak Electric Association ATTN: Darron Scott From William Galton Phone direct 919-855-2323 E-mail william.galton@us.abb.com Document Ref. No. BQ – WG133008-0001 Page 1/13 Date August 30, 2013 Will Galton Microgrid REC ABB Inc, 1021 Main Campus Drive, Raleigh, NC 27606 We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 2/13 Subject Kodiak Electric Association Budgetary Quote Executive Summary This proposal is gives an overview of a potential grid stabilizing power system that would use the PowerStore flywheel inverter system to mitigate the disturbances on the network caused by the cyclical demand profile of a crane. Morever, the PowerStore can add value to the Kodiak Island port facility even when the crane is offline. In that case, the PowerStore will operate in Grid Support Mode to provide frequency and voltage support to the connected grid. The droop settings on the PowerStore would likely be tighter than the battery system‘s droop deadband so that the PowerStore will serve as the inital response device for system disturbances. ABB has used documents supplied by KEA, including the report titled “Updated Horizon Lines Electric Crane Impact Study” published by Electric Power Systems Inc. and dated July 18, 2013, in developing this proposed solution. ABB will leverage its many years of project experience to deliver a superior solution for a peak lopping application of the new crane yet to be installed. The objective of this proposal is to present the preliminary budget estimates to allow KEA to move forward with an RFQ. Supporting documents have been included in this document and attached. An overview of the conceptual system defines what grid stabilizing integration technologies may be needed to achieve an optimized solution and maximum return on investment. We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 3/13 Subject Kodiak Electric Association Budgetary Quote A. PowerStore Grid Stabilizing Solution A.1 Generic Solution Single Line The below image is a generic single line that has been assumed for the Kodiak Island solution. The system contains the following equipment: - One (1) PowerStore with its RMC600E controller - Ethernet Switch - RMC600 SCADA - Time Server - Gateway We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 4/13 Subject Kodiak Electric Association Budgetary Quote A.2 Overview of the PowerStore Technology The PowerStore is a compact and versatile grid stabilizing generator. Its main purpose is to stabilize power systems against fluctuations in frequency and voltage. It combines an 18 MJ low speed flywheel with solid state converters to provide reliable and high-performance grid stabilization. The PowerStore is able to inject and absorb power up to its nominal power rating and it is available in a range of models from 500 kW to 1.5 MW. The PowerStore can be configured according to the special requirements of each site. It is able to operate in either Grid Support Mode (GSM) for large networks or Virtual Generator Mode (VGM) for isolated microgrids. The value of the PowerStore can be increased further through the introduction of the Renewable Microgrid Controller (RMC 600) - the control system especially designed to match the needs of microgrids - which can enable additional features, including grid support and spinning reserve. The PowerStore supports the grid by providing a number of support functions including: - Frequency support - Voltage support Frequency support reduces the disturbance in grid frequency by injecting active power based on the grid’s frequency deviation from nominal. If the grid frequency is below nominal then power is injected into the grid, while power is absorbed from the grid if the frequency is above nominal; the magnitude of the injected power is a function of the size of the deviation. A zone or dead - band has been included to allow for a variety of primary grid frequency controllers; the dead - band size and position is adjustable. Voltage support is a method of reducing grid voltage disturbance similar to that of a STATCOM. The PowerStore voltage support function implements a form of reactive droop control. Capacitive VArs (volt-ampere reactive) are injected into the grid if the voltage is lower than desired and inductive VArs if the grid voltage is higher. A.3 PowerStore Solution Simulated Performance The PowerStore performance results, data figures, and recommended system configurations were taken from the report titled “Updated Horizon Lines Electric Crane Impact Study”, published by Electric Power Systems Inc. For more information and results, please refer to the aforementioned study. The PowerStore grid stabilization solution was observed in simulation to answer three key system concerns: limiting system power tie-flow to the crane, reducing frequency variations, and limiting the impact on the BESS. We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 5/13 Subject Kodiak Electric Association Budgetary Quote Simulations where the PowerStore was utilized (Cases 1b and 2b) demonstrated a reduced net power flow from the grid to the crane and lessened voltage sag compared to cases where the crane operated without a PowerStore (Cases 1c and 2c). Frequency deviations were shown to be more tightly controlled using the PowerStore either by tie-flow or droop characteristic control schemes when compared to the existing system. The PowerStore is also better equipped than the BESS to supply or absorb short-duration power surges from the crane during its start-up or braking operations. By using the PowerStore in conjunction with the BESS, the lifespan of the BESS will be lengthened. We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 6/13 Subject Kodiak Electric Association Budgetary Quote A.4 SCADA and Remote Access RMC600 SCADA The RMC600 SCADA records the values from the RMC600 controllers and provides one overview webpage of the power system as well as one additional page per RMC600 controller. The individual plant screens are standard however the overview screen needs to be configured as part of the project engineering process. The RMC600 SCADA provides low and high resolution data capturing of all data points. To access the webpages for process visualization and alarm/event recording a separate computer operating a Google Chrome or Firefox web browser is required. To access the historic data separate software called AnyTrends needs to be installed on a Windows 7 PC. In the future the historic data will also be accessible via webpages on the RMC600 SCADA. The RMC600 SCADA also provides a single Modbus TCP Slave connection to an external SCADA system. Time Server The Time Server provides a time reference to the power system based on a signal from the GPS satellite system. It’s used to ensure all that all RMC600 controllers are synchronized to the same time. Ethernet Switch The Ethernet Switch is used to allow the communication of all controllers and oth er communication devices to each other. Cables are not included in the supply. CISCO 3G Router The CISCO 3G Router is used to provide communications and remote monitoring to the DCS network. A.5 PowerStore Functionalities A.5.1 Generator Overload Support In case of generator overloading, the PowerStore provides power support to reduce the load of the generators and allow for synchronization of any fast start diesel generators. The overloading of the generators might cause protection relays to open circuit breakers. The PowerStore intervenes before this protection mechanism gets activated. This functionality only works together with the ABB RMC600G. A.5.2 Generator Over/Under Ideal loading Support The PowerStore is able to support the generators running at their minimum loading. In case of fluctuating wind output, the diesel generators might get pushed below their minimum loading. Reverse power protection algorithms are developed to meet site specific requirements. We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 7/13 Subject Kodiak Electric Association Budgetary Quote To avoid operating below the minimum loading, the PowerStore can operate as an energy sink and therefore increase the output of the generators back above minimum loading. A.5.3 Grid Voltage Support The PowerStore can be setup to support the grid voltage once it operates out of a predefined dead band. The PowerStore will either inject reactive power or act as a sink to correct the voltage back within its limits. For this functionality no communication to other RMC controllers is required. It works purely on the measured grid voltage. A.5.4 Grid Frequency Support The PowerStore can be setup to support the grid frequency once it operates out of a predefined dead band. The PowerStore will either inject power or act as a sink to correct the frequency back to within it limits. For this functionality no communication to other RMC controllers is required. It works purely on the measured grid frequency. A.5.5 Grid Reactive Power Support The reactive power set point is used to adjust the power factor of the power system. By generating or absorbing reactive power, the required power factor for the power station can be achieved, provided it is within the bounds of the operating limits. A.5.6 Peak Lopping / Load Leveling The PowerStore can be used to cut off the peak demand of any cyclical loads connected to the electrical network. The peak could easily be delivered out of the PowerStore instead of providing the spinning reserve and the step load capability for it at the diesel generators. By smoothing this out with the PowerStore, the start-up of the next generator could be delayed by several hundreds of kW and therefore this increased amount can be delivered by the wind farm. A.5.7 Smooth out Loadsteps In case of spikes in solar output, the PowerStore can absorb the first fluctuation of the grid, before it smoothly transfers the load to the generators. In case of line faults where a portion of the load disappears, the PowerStore can act as a sink to absorb the overproduction and smooth out the transition to less generation. We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 8/13 Subject Kodiak Electric Association Budgetary Quote B. Scope of Work and Budget Estimate B.1 PowerStore Grid Stabilizing Generator ABB’s conceptual solution is a conceptual design only based on the report from EPS, emails and phone calls with KEA. ABB has made no allowance to undertake the engineering to validate the concept by way of dynamic modeling and load flow analysis. These studies and engineering will detail the performance levels of the system and determine specific control algorithms. As agreed ABB have made budgetary estimates for two solutions. The two options are: - One (1) x 1.5MW PowerStore - Two (2) x 1MW PowerStore The scope of supply for the proposed solution is as follows: Qty. Description – Option One One (1) PowerStore Grid Stabilization – 1.5MW – with flywheel storage capable in an ABB designed and specified ANSI powerhouse. - Rated at 1.5MW for grid stabilization $1,886,000.00 installed and commissioned Estimate 6 to 8 months for delivery FOB: Ex Works, New Berlin WI Qty. Description – Option Two See desc Budget Price for hardware: Two (2) PowerStore Grid Stabilization – 1MW – with flywheel storage capable in an ABB designed and specified ANSI powerhouse. - Each rated at 1MW for grid stabilization $2,578,000.00 ($1,289,000.00 each) installed and commissioned Estimate 6 to 8 months for delivery FOB: Ex Works, New Berlin, WI We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 9/13 Subject Kodiak Electric Association Budgetary Quote B.2 PowerStore Enclosure General Construction: PDC will be weatherproof NEMA3R design with self supporting / self framing interlocking panels. All exterior seams to be sealed with silicon. Base frame to be fabricated from structural steel channel, wide flange beams and angles forming a self supporting grid to support the floor or brace for shipment as required. Nominal Dimensions: Length: 40’-0” (exterior walls) Width: 7’-8” (exterior walls) Ceiling height: 9’-6” Estimated Shipping Dimensions Length: 40’-0” Width: 7’-8” Height: 11’-0” Shipped in one piece Design: Classification: General Purpose Non-Hazardous Roof load: 30 psf International Building Code (latest revision) Wind load: International Building Code (latest revision) Floor loading: 250 psf Dl + LL Base deflection 240 psf Seismic zone: 4 Roof panels: 12 gauge, Stainless Steel Type 316, ASTM-A240 Exterior wall panels: 14 gauge, Stainless Steel Type 316, ASTM-A240 Interior wall panels: 16 gauge ASTM A653 Ceiling panels: 14 gauge ASTM A653 Floor plate: .250” Base Frame: ASTM A572 (C10 & Larger) ASTM A36 (C8 & smaller) Base Frame Coating: Bitumastic Welding to be in accordance with the latest revision of AWS D1.1 structural welding code. Structural member bolts: per ASTM A-325, 5/8” diameter minimum. Exterior paint finish: White or customer specified Interior paint finish: White or customer specified Floor finish: ANSI 61 gray with anti-skid Insulation: Roof insulation: R-19 Foil lined foam board Wall insulation: R-19 Foil lined foam board Floor insulation: R-19 Closed-cell, spray applied polyurethane foam We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 10/13 Subject Kodiak Electric Association Budgetary Quote Doors: 2 – Personnel Doors, Single Wide  LHRB Door  2- 3'-0" X 7'-0" X 3-1/2" 12ga Stainless Steel Single Door Frame  2- 3'-0" X 7'-0" X 1-3/4" 12ga Stainless Steel, R12 Insulated Door  8- Hager BB1191 NRP - 4-1/2" X 4-1/2" Standard Weight Hinges, Stainless Steel  2- Precision F 2105 X 1705A, 630 Thumb piece Mortise Panic Device  2- Medeco Rim Cylinder, with disposable temporary core  2 - Reese 128CV x 36” Jamb weather stripping at head  3 - Reese 128CV 84” Jamb weather stripping at sides  2 - Reese 377C x 36” Sweeps  2 - Reese S484AV x 36” Threshold  2 – Reese 203C x 36” Interlocking head weather stripping *Personnel and equipment doors will be provided with temporary construction cores only. 2 – Danger High Voltage / Keep Out warning sign (or customer specified) HVAC Equipment: 1 – Bard Manufacturing Company 6 ton HVAC unit or equal Wall mount with 10kW heat  230/208VAC, 1-phase, 60hz  Low pressure switch  High pressure switch  Low ambient control  Compressor anti-cycle relay  Pleated return filter  R410A refrigerant 1 – Bard Thermostats  Automatic or Manual Changeover  Backlit display  5 minute compressor protection  Separate heating and cooling set points  Smart recovery (heating mode)  Non- Programmable Electrical Utilities: 1 – Interior conduit- exposed EMT conduit with set screw fittings as required by NEC 1 – Power wiring: #12 AWG Type THHN / THWN 1 – Control wiring: #12 AWG Type SIS 1 – HVAC controls: #18 AWG thermostat cable 4 - Fluorescent Light Fixtures  4’x 2 lamp x 32 watt,  120Vac, with electronic ballast  Lithonia - LB232MVOLTGEB10IS We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 11/13 Subject Kodiak Electric Association Budgetary Quote 8 – Light bulbs  4’-0” 32 watt, Type T-8  Lithonia - F032741ECO 2 – Exterior Light Fixtures  70 Watt, High Pressure Sodium  Photocell switch  Lithonia - TWS70S120PELPI 2 – Emergency / EXIT lights  Two 1.8W LED lamps for emergency light  Test switch  Status indicator  Nickel-cadmium backup battery, rechargeable  Lithonia ECR LED M6 3 – Switch / Receptacle combinations, 120 Vac, 20amp 1 – Exterior duplex receptacles, 125 Vac, GFCI, 20 amp 1 – Weatherproof mounting box Distribution Panels: 1 – AC panel board  1-phase, 3wire  120/240 V, 100 amp  18 circuit, 10kAIC  Lot breakers as required for utility circuits  NEMA1 box  NEMA1 cover  GE type AQ (or equal) Grounding: 4 – Ground pads, 4-hole stainless steel welded to base frame 1 – Lot ground drops from ground loop to ground pads as required Accessories: 1 – Set of removable lifting lugs with hardware (shipped loose) The Following Items Shipped Loose For Field Installation By Others: - lifting lugs - HVAC units - Fluorescent light bulbs - Exterior lighting We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 12/13 Subject Kodiak Electric Association Budgetary Quote Scope The quoted prices above are budgetary, and as such, are non-binding and are based on ABB’s interpretation of the requirements provided. Validity The quoted budget prices above are for illustration only and as such are not valid for ordering purposes. B.3 Exclusions This budgetary offer does not make any allowance for power flow or dynamic engineering studies, nor does it allow for system engineering that will be required after the completion of the two aforementioned studies. The system engineering is required to determine the correct algorithms for any particular project. This offer assumes a dedicated Ethernet backbone for communication between each RMC600 controller and for remote access diagnostic, monitoring and control. This offer assumes all onsite electrical wiring and communications wiring to each PowerStore is by others. The offer also assumes no modifications to the standard interface as required for individual pieces of equipment. B.4 Terms and Conditions The budget price for equipment quoted is listed above and is FOB destination. The price does not include any Federal, state or local property, license privilege, sales, use, excise, gross receipts or other like taxes such as export and import duties, which may now or hereafter be applicable. Payment by ABB of any such taxes shall be for the account of the Purchaser. Disclaimer: The pricing in this quotation has been developed from verbal and email exchange of requirements. The prices are not firm but are subject to escalation without notice. ABB reserves the right to revise prices if the project scope varies from our interpretation and understanding of the project scope. Typical Delivery Time To be discussed and agreed upon during the award phase. Any project schedule changes have to be mutually agreed upon. All milestones are to be confirmed upon acknowledgment of the order. Typical Payment Schedule -- Negotiable Payable from the date of invoice using the following schedule of payments: 30% in 90 Days 50% on approval Design submission 20% on Shipment We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright by 2013 ABB Inc. Date August 30, 2013 Page 13/13 Subject Kodiak Electric Association Budgetary Quote The above payment shall be secured by a confirmed, divisible, irrevocable letter of credit for 100% of the total value, established by the purchaser at their cost on our bankers within 15 days of order date and valid for the contract period plus 60 days. Typical Cancellation Fee Schedule 30% - Cancellation fees if cancelled within 30 days ARO 70% - Cancellation fees if cancelled within 60 days ARO 100% - Cancellation fees if cancelled within 90 days ARO 4020 148th Avenue NE, Suite C Redmond, WA 98052 Phone: 425.296.5412 July 18, 2013 Mr. Darron Scott President/CEO Kodiak Electric Association, Inc. PO Box 787 Kodiak, Alaska 99615 Updated Horizon Lines Electric Crane Impact Study Summary: EPS has completed an update to the initial crane impact study, dated 5/23/2013. The primary purpose of the update was 1) to determine the impact that the crane will have on the KEA system using a single ABB PS12 flywheel system, and 2) to move the crane and flywheel systems to the heavily loaded Gibson Cove feeder, fed from Swampy Acres Substation. Steady state and dynamic system studies were performed to complete the analysis. The modeling of the feeder serving the crane was not only moved to Swampy Acres Substation, but was also updated to detail the actual Gibson Cove feeder construction and major loading areas. Estimated peak loads we used on this feeder to determine the worst case scenario for voltage impacts. The dynamic model of the flywheel system was updated to utilize the latest model provided by ABB. The results of the steady state analysis indicate that the voltage drop (5.1%) on the Gibson Cove feeder during peak loading and normal conditions exceeds the typical voltage criterion of 3%. 5% is a typical criterion for contingency operations. EPS recommends that the load on the feeder be reduced. EPS anticipates the remedy for this condition to be the addition of a feeder serving the cannery area from High Substation. Although the flywheel can provide reactive voltage support, the intended use of the flywheel is primarily for real power support during transient events. Overall, the steady state reduced voltage on this feeder has very little material impact on the dynamic results of this study. The dynamic study results indicate that a single ABB PS12 flywheel system can minimize the impact of crane operations on the KEA system. The results show that the tie-flow from the KEA system to the crane area and the operations of the BESS are minimized and greatly improved over operations without the flywheel. Using tie-flow control with deadband settings to limit the net flow to the crane to 250 kW and to disallow flow from the crane appears to be the optimum configuration, specifically for crane operations and flywheel energy charging. By completely limiting flow from the crane, the flywheel re-charges at certain times during the crane operating cycle. At the end of the crane operating cycle, the total charge on the flywheel system has been reduced by only 50%, based on our recommended settings. July 18, 2013 Page 2 of 8 Steady State Analysis: The steady state (power flow) analysis focused on the voltage drop on the Gibson Cove feeder. This feeder, along with several others, serves a large portion of the system load mostly consisting of canneries in a relatively small area. Historically, this has been a problem area of the system due to heavy loading (with large daily variations) and difficulty in providing an additional feeder, or other upgrades, to reduce the individual feeder loads. Because of the addition of the crane load and anticipated low voltage problems, two Gibson Cove loading scenarios were used for the power flow and dynamic analysis. The first scenario used the estimated peak loads on the feeder. This included the heavy loading and low power factor expected from the APS/Ocean Beauty load center located at the end of the feeder. The second scenario used the same peak loads, but transferred a portion of the APS/Ocean Beauty load to High Substation. It is anticipated that a new feeder will be constructed from High Substation to the cannery area and the new feeder will reduce the loading on the Gibson Cove feeder. Table 1 shows the summary results of the steady state analysis for each of the two basic loading scenarios and details the case variations. Each scenario includes loading variations for the crane/flywheel systems. Cases 1a/2a represent the system with the crane out of service. Cases 1b/2b place the crane load and flywheel output at the maximum values. Cases 1c/2c represent the worst case scenario with the crane at maximum load and no flywheel. Detailed power flow oneline results can be found at the end of the report in Appendix A. Voltage Drop Feeder Load APS/Ocean Beauty Crane Flywheel System Net to Crane/Flywheel % MW/MVAr MW/MVAr MW MW MW 1a 5.1 4.3/3.4 2.6/2.0 - - 0.1 1b 5.5 4.8/3.7 2.6/2.0 1.9 1.4 0.6 1c 6.2 6.3/3.8 2.6/2.0 1.9 - 2.0 2a 3.2 3.1/2.2 1.5/1.0 - - 0.1 2b 3.7 3.7/2.5 1.5/1.0 1.9 1.4 0.6 2c 4.2 5.1/2.7 1.5/1.0 1.9 - 2.0 Case Table 1: Steady State Analysis Summary Results The results show that the anticipated feeder voltage drop exceeds 5% if the APS/Ocean Beauty load is not reduced (Cases 1a, 1b, 1c). Even without the crane in operation, this voltage drops exceeds the typical planning criteria of 3% for normal conditions and 5% during contingencies. EPS recommends that the load on the Gibson Cove feeder be reduced in order to reduce the overall voltage drop on the feeder. Reducing the load in the APS/Ocean Beauty area is most beneficial due to its location at the end of the feeder. The voltage drop does have some impact on the flywheel system. Although the main transformer serving the crane has its no load tap set to increase the voltage by 2.5%, the voltage at the flywheel remains less than 100%. With a voltage less than 100%, the flywheel system output may become current limited, thus reducing the amount of output power. This is shown in Cases 1b/2b where the flywheel output is 1.4 MW instead of the 1.5 MW rated July 18, 2013 Page 3 of 8 output. It is possible that short-term overload ratings may allow the flywheel to operate at its rated output during these conditions. It should be noted that the actual transmission voltages and subsequent 12.47 kV feeder voltages do not appear to be as low as indicated by the model. This is based on discussions with Jim Devlin. The importance of this is that voltages found along the feeder, such as 91.3% in Case 1a, are far too low to be acceptable. However in this case, the source 12.47 kV bus voltage is 96.4%. This would also be unacceptable. The focus of the steady state analysis is the relative voltage drop, solely on the feeder itself. A typical distribution study would assume the source 12.47 kV voltage to be 100% or higher based on LTC settings. Dynamic Analysis: The dynamic analysis consisted of creating several cases to illustrate the impacts that the flywheel system will have on the KEA system with a focus on frequency response, BESS operations, and system voltages. Two basic flywheel control strategies were studied with an emphasis on tie-flow control. The basic concept was to control the flow from the KEA system to the crane/flywheel area. This approach allows for adjusting the minimum and maximum real power flow to reduce the impact of the crane on the rest of the system as a whole. To a lesser degree, droop frequency based control was also studied. The frequency control can be used in parallel with the tie-flow control. Tie-Flow Control For the tie-flow control strategy, the flow to the crane was measured and used to determine the flywheel power setpoint. When the crane load was inside a configurable deadband, the flywheel setpoint was zero. Above the deadband, the flywheel setpoint increases, attempting to limit the net crane load seen by the KEA system to a fixed value (upper deadband setting). Likewise, a deadband minimum setting controls the charging of the flywheel whenever the crane load becomes negative (lower deadband setting). Inside the deadband, the flywheel does nothing. Outside the deadband, the flywheel supplies or absorbs power, limiting the net impact of the KEA system. Droop Control For the droop control strategy, the flywheel power setpoint is determined using a classical droop characteristic. The droop value was selected to approximately get full flywheel output before the BESS starts providing frequency support (5.0 pu/Hz). Modeling The flywheel model used for the study is the latest available from ABB. The model was setup to represent the PS12 flywheel system with basic rating of 1.5 MW maximum output, 18 MWs of energy storage, and 480 V. To implement the tie-flow control, custom code was created to interface with the ABB model and provide the functionality desired by KEA. The settings used for the model are a combination of ABB typical settings and those determined by EPS. For some of the modeling parameters and functionality that was not clearly documented, EPS made assumptions based on our interpretation of the intended usage and typical control functionality. The parameters and functionality were assessed to the extent practical. An initial charge state of 100% was chosen to show the maximum amount of storage in anticipation of a crane operation. The relative amount of discharge can be used to help determine a more appropriate target charging state for sinking and sourcing power. It is anticipated that a more detailed study would focus on some of the settings and more finely July 18, 2013 Page 4 of 8 tune the model and determine optimal response. For the purposes of this study, a more general response is sufficient to show the potential of the flywheel system. Results Table 2 describes the cases created for the tie-flow control analysis. Table 3 describes the frequency control cases. The two power flow cases used for the dynamic analysis are electrically identical to Cases 1a/2a used in the steady state analysis. Pos Neg MW MW 1000 Existing system reference case 1d On N/A N/A 1001 No tie-flow deadband, unlimited operations 1d On 0 0 1002 250 kW tie-flow deadband 1d On 0.25 -0.25 1003 500 kW tie-flow deadband 1d On 0.5 -0.5 1004 1,000 kW tie-flow deadband 1d On 1 -1 1005 250 kW tie-flow deadband, quick re-charging 1d On 0.25 0 1006 500 kW tie-flow deadband, quick re-charging 1d On 0.5 0 1007 1,000 kW tie-flow deadband, quick re-charging 1d On 1 0 1103 Case 1003 with the BESS offline 1d Off 0.5 -0.5 1105 Case 1005 with the BESS offline 1d Off 0.25 0 2000 Existing system reference case 2d On N/A N/A 2001 No tie-flow deadband, unlimited operations 2d On 0 0 2002 250 kW tie-flow deadband 2d On 0.25 -0.25 2003 500 kW tie-flow deadband 2d On 0.5 -0.5 2004 1,000 kW tie-flow deadband 2d On 1 -1 2005 250 kW tie-flow deadband, quick re-charging 2d On 0.25 0 2006 500 kW tie-flow deadband, quick re-charging 2d On 0.5 0 2007 1,000 kW tie-flow deadband, quick re-charging 2d On 1 0 2103 Case 2003 with the BESS offline 2d Off 0.5 -0.5 2105 Case 2005 with the BESS offline 2d Off 0.25 0 Case Case Description Power Flow Case BESS Status Tie-Flow Deadband Table 2: Tie-Flow Control Case Descriptions pu/Hz 3001 Basic droop frequency control 1d On 5 4001 Basic droop frequency control 2d On 5 Case Case Description Power Flow Case BESS Status Droop Table 3: Frequency Control Case Descriptions A summary of the dynamic simulation results can be found below in Table 4. The table summarizes the primary system impact quantities. The summary results are provided for the Case 1d power flow set of cases. All of the Case 2d simulation results are similar with the July 18, 2013 Page 5 of 8 exception of the voltages which are addressed in the steady state part of the analysis. Overall, the voltage fluctuations caused by the crane are minor due to the relatively high power factor of the crane load. Detailed simulation plot results can be found in Appendices B-D. These plots include the individual results for each case as well as case comparison to help illustrate the characteristics of each configuration. Legends helping to describe the plot results are also included (beginning of Appendix B). Min Final Min Max Min Max Min Max 1000 Existing system reference case N/A N/A 59.61 60.28 -1.10 2.00 -1.50 1.15 1001 No tie-flow deadband, unlimited operations 0 11 59.68 60.04 -0.20 1.20 -0.20 0.70 1002 250 kW tie-flow deadband 10 21 59.84 60.10 -0.75 0.65 -0.45 0.00 1003 500 kW tie-flow deadband 31 35 59.57 60.16 -0.60 0.65 -0.80 0.20 1004 1,000 kW tie-flow deadband 71 71 59.68 60.26 -0.90 1.15 -1.10 0.70 1005 250 kW tie-flow deadband, quick re-charging 10 51 59.83 60.06 -0.20 0.60 -0.25 0.00 1006 500 kW tie-flow deadband, quick re-charging 35 89 59.76 60.95 -0.20 0.65 -0.40 0.20 1007 1,000 kW tie-flow deadband, quick re-charging 78 99 59.68 60.28 -1.10 1.20 -0.95 0.70 1103 Case 1003 with the BESS offline 31 35 59.71 60.37 -0.60 0.65 N/A N/A 1105 Case 1005 with the BESS offline 10 51 59.84 60.18 -0.20 0.60 N/A N/A 3001 Basic droop frequency control 16 97 59.80 60.12 -0.95 0.80 -0.55 0.00 Flywheel Charge State % Case Case Description BESS OutputFrequencySystem Tie- Flow to Crane Hz MW MW Table 4: Dynamic Simulation Results Summary The results show that Case 1005 appears to be case that most greatly reduces the impact of the crane on the rest of the system. The flywheel in this case is configured to limit the system flow to the crane area to 250 kW (upper flow deadband of 250 kW) and disallow flow from the crane (lower flow deadband of 0 kW). Note that the actual flow is offset by the static auxiliary crane load and that flow will be exceeded if the crane load is greater than 1.75 MW (which occurs for a short period of time). Case 1005 excels in all three primary system concerns: reducing frequency variations, limiting system tie-flow to crane, and limiting the impact on the BESS. This case is very similar to Case 1002 that allows flow from the crane system. By limiting this flow, the flywheel is allowed to charge more rapidly when the crane is a negative load. Otherwise, the BESS would absorb the balance of power. Because the flow from the crane system is limited in Case 1005, the flywheel’s final charge is 20% higher than Case 1002. The results for the droop control mode also show favorable results, but to a lesser degree than tie-flow Control case 1005. Figures 1 and 3 illustrate the key comparison results for the optimum tie-flow control case, droop control case, and the response of the existing system with the BESS online. The system frequency and the BESS output comparisons are shown. Figure 2 includes the crane area flows for the optimum tie-flow control case. The cases include Cases 1005, 3001, and 1000. July 18, 2013 Page 6 of 8 Figure 1: Frequency Comparison July 18, 2013 Page 7 of 8 Figure 2: Crane Area Flow Comparison July 18, 2013 Page 8 of 8 Figure 3: BESS OUTPUT Comparison Let us know if you would like to discuss any of the results, conclusions, or assumptions that have been presented. Feel free to call or email Dan Rogers at (907) 646-5121, drogers@epsinc.com, Jim Cote at (425) 296-5411, jcote@epsinc.com, or Randy Miller at (907) 646-5148, rmiller@epsinc.com. Sincerely, Dan Rogers, Jim Cote, and Randy Miller 900CRANE_TAP0.92411.5901CRANE_SWGR0.94811.80.97501.00000.10.0-0.1-0.0902CRANE_HIGH0.94811.80.10.0-0.1-0.0903CRANE_LOW0.9480.51.00001.00000.0-0.0-0.00.0904CRANE_AUX0.9420.50.10.01.00001.00000.10.0-0.1-0.0908CRANE_CAP0.9480.50.0-0.0-0.0909CRANE_LOAD0.9480.5950.00.00.0-0.0-0.00.00.01 0.96412.0900.00.92911.60.8801GC_20.92411.5802GC_30.91311.42.63.52.6-3.4-2.62.62.0-2.6-2.00.1-0.1-0.04.33.4-4.2-3.21 2.00.61 800GC_10.21 0.07SW. ACREkV: <=0.500<=12.470<=12.470<=12.470<=12.470 >12.470910FLYWHEEL0.9480.50.00.0H1 1.00000.00.01.00000.00.0<=2.400Bus - VOLTAGE (kV/PU)Branch - MW/MvarEquipment - MW/MvarKEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1A, EXISTING PEAK LOAD, NO CRANEWED, JUL 10 2013 17:40 <=1.000 900CRANE_TAP0.91111.4901CRANE_SWGR0.93311.60.97501.00000.60.2-0.6-0.2902CRANE_HIGH0.93311.60.60.2-0.6-0.2903CRANE_LOW0.9290.51.00001.00000.50.2-0.5-0.2904CRANE_AUX0.9270.40.10.01.00001.00000.10.0-0.1-0.0908CRANE_CAP0.9290.51.90.1-1.9909CRANE_LOAD0.9290.5951.90.11.90.1-1.9-0.1-0.11 0.95511.9900.00.91611.40.8801GC_20.91111.4802GC_30.90011.22.64.02.9-4.0-2.82.62.0-2.6-2.00.6-0.6-0.24.83.7-4.7-3.41 2.00.61 800GC_10.21 0.27SW. ACREkV: <=0.500<=12.470<=12.470<=12.470<=12.470 >12.470910FLYWHEEL0.9270.41.40.0H1 1.0000-1.40.01.00000.11.4<=2.400Bus - VOLTAGE (kV/PU)Branch - MW/MvarEquipment - MW/MvarKEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1B, EXISTING PEAK LOAD, NET CRANE/FLYWHEELWED, JUL 10 2013 17:58 <=1.000 900CRANE_TAP0.89511.2901CRANE_SWGR0.91511.40.97501.00002.00.2-2.0-0.2902CRANE_HIGH0.91511.42.00.2-2.0-0.2903CRANE_LOW0.9080.51.00001.00001.90.2-1.9-0.1904CRANE_AUX0.9090.40.10.01.00001.00000.10.0-0.1-0.0908CRANE_CAP0.9080.51.90.1-1.9909CRANE_LOAD0.9080.5951.90.11.90.1-1.9-0.1-0.11 0.94511.8900.00.90111.20.8801GC_20.89511.2802GC_30.88311.02.65.42.9-5.4-2.82.62.0-2.6-2.02.0-2.0-0.26.33.8-6.2-3.41 2.00.61 800GC_10.21 0.27SW. ACREkV: <=0.500<=12.470<=12.470<=12.470<=12.470 >12.470910FLYWHEEL0.9080.40.00.0H1 1.00000.00.01.00000.00.0<=2.400Bus - VOLTAGE (kV/PU)Branch - MW/MvarEquipment - MW/MvarKEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1C, EXISTING PEAK LOAD, PEAK CRANEWED, JUL 10 2013 17:49 <=1.000 900CRANE_TAP0.95311.9901CRANE_SWGR0.97812.20.97501.00000.10.0-0.1-0.0902CRANE_HIGH0.97812.20.10.0-0.1-0.0903CRANE_LOW0.9780.51.00001.00000.00.0-0.0-0.0904CRANE_AUX0.9720.50.10.01.00001.00000.10.0-0.1-0.0908CRANE_CAP0.9780.50.00.0-0.0909CRANE_LOAD0.9780.5950.00.00.00.0-0.0-0.0-0.01 0.98012.2900.00.95611.90.8801GC_20.95311.9802GC_30.94811.81.52.31.6-2.3-1.61.51.0-1.5-1.00.1-0.1-0.03.12.2-3.1-2.11 1.00.61 800GC_10.21 0.07SW. ACREkV: <=0.500<=12.470<=12.470<=12.470<=12.470 >12.470910FLYWHEEL0.9780.50.00.0H1 1.00000.00.01.00000.00.0<=2.400Bus - VOLTAGE (kV/PU)Branch - MW/MvarEquipment - MW/MvarKEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2A, EXISTING PEAK LOAD, XFR TO HIGH, NO CRANEWED, JUL 10 2013 17:41 <=1.000 900CRANE_TAP0.94211.7901CRANE_SWGR0.96512.00.97501.00000.60.2-0.6-0.2902CRANE_HIGH0.96512.00.60.2-0.6-0.2903CRANE_LOW0.9610.51.00001.00000.50.2-0.5-0.2904CRANE_AUX0.9590.50.10.01.00001.00000.10.0-0.1-0.0908CRANE_CAP0.9610.51.90.1-1.9909CRANE_LOAD0.9610.5951.90.11.90.1-1.9-0.1-0.11 0.97312.1900.00.94511.80.8801GC_20.94211.7802GC_30.93611.71.52.91.8-2.9-1.81.51.0-1.5-1.00.6-0.6-0.23.72.5-3.6-2.41 1.00.61 800GC_10.21 0.27SW. ACREkV: <=0.500<=12.470<=12.470<=12.470<=12.470 >12.470910FLYWHEEL0.9590.51.40.0H1 1.0000-1.40.01.00000.11.4<=2.400Bus - VOLTAGE (kV/PU)Branch - MW/MvarEquipment - MW/MvarKEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2B, EXISTING PEAK LOAD, XFR TO HIGH, NET CRANE/FLYWHEEWED, JUL 10 2013 18:00 <=1.000 900CRANE_TAP0.92911.6901CRANE_SWGR0.95111.90.97501.00002.00.2-2.0-0.2902CRANE_HIGH0.95111.92.00.2-2.0-0.2903CRANE_LOW0.9440.51.00001.00001.90.2-1.9-0.1904CRANE_AUX0.9450.50.10.01.00001.00000.10.0-0.1-0.0908CRANE_CAP0.9440.51.90.1-1.9909CRANE_LOAD0.9440.5951.90.11.90.1-1.9-0.1-0.11 0.96512.0900.00.93311.60.8801GC_20.92911.6802GC_30.92311.51.54.31.8-4.3-1.81.51.0-1.5-1.02.0-2.0-0.25.12.6-5.0-2.41 1.00.61 800GC_10.21 0.27SW. ACREkV: <=0.500<=12.470<=12.470<=12.470<=12.470 >12.470910FLYWHEEL0.9440.50.00.0H1 1.00000.00.01.00000.00.0<=2.400Bus - VOLTAGE (kV/PU)Branch - MW/MvarEquipment - MW/MvarKEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2C, EXISTING PEAK LOAD, XFR TO HIGH, PEAK CRANEWED, JUL 10 2013 17:51 <=1.000 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1005.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1002.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1105.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1003.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1001.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1000.out60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL, VARIOUS CASES CASE COMPARISONS: 1005,1002,1105,1003,1001,1000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00TERROR FREQUENCY(HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1005.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1002.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1105.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1003.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1001.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1000.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROL, VARIOUS CASESCASE COMPARISONS: 1005,1002,1105,1003,1001,1000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00BESS OUTPUT (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1005.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1002.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1105.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1003.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1001.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1000.out2.5000 -2.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL, VARIOUS CASES CASE COMPARISONS: 1005,1002,1105,1003,1001,1000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00SYSTEM TIE TO CRANE (MW)CHNL# 142: [P-FLYWHEEL]*1FILE: 1005.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1002.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1105.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1003.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1001.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1000.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROL, VARIOUS CASESCASE COMPARISONS: 1005,1002,1105,1003,1001,1000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FLYWHEEL OUTPUT (MW) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1002.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1002.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1002.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1002.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1005.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1002.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1105.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1003.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1001.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1000.out60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL, VARIOUS CASES CASE COMPARISONS: 1005,1002,1105,1003,1001,1000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00TERROR FREQUENCY(HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1005.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1002.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1105.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1003.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1001.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1000.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROL, VARIOUS CASESCASE COMPARISONS: 1005,1002,1105,1003,1001,1000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00BESS OUTPUT (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1005.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1002.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1105.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1003.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1001.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1000.out2.5000 -2.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL, VARIOUS CASES CASE COMPARISONS: 1005,1002,1105,1003,1001,1000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00SYSTEM TIE TO CRANE (MW)CHNL# 142: [P-FLYWHEEL]*1FILE: 1005.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1002.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1105.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1003.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1001.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 1000.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROL, VARIOUS CASESCASE COMPARISONS: 1005,1002,1105,1003,1001,1000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FLYWHEEL OUTPUT (MW) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, NO FLYWHEEL CASE: 1000, LIMIT: N/A, DB: N/A/N/A THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1000.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, NO FLYWHEELCASE: 1000, LIMIT: N/A, DB: N/A/N/A THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1000.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, NO FLYWHEEL CASE: 1000, LIMIT: N/A, DB: N/A/N/A THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1000.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, NO FLYWHEELCASE: 1000, LIMIT: N/A, DB: N/A/N/A THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1000.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1001, LIMIT: 1.5, DB: 0/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1001.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1001, LIMIT: 1.5, DB: 0/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1001.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1001, LIMIT: 1.5, DB: 0/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1001.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1001, LIMIT: 1.5, DB: 0/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1001.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1002.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1002.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1002.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1002.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1003, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1003.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1003, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1003.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1003, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1003.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1003, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1003.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1004, LIMIT: 1.5, DB: 1/-1 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1004.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1004, LIMIT: 1.5, DB: 1/-1 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1004.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1004, LIMIT: 1.5, DB: 1/-1 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1004.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1004, LIMIT: 1.5, DB: 1/-1 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1004.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1005, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1005.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1005, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1005.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1005, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1005.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1005, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1005.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1006, LIMIT: 1.5, DB: 0.5/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1006.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1006, LIMIT: 1.5, DB: 0.5/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1006.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1006, LIMIT: 1.5, DB: 0.5/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1006.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1006, LIMIT: 1.5, DB: 0.5/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1006.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1007, LIMIT: 1.5, DB: 1/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1007.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1007, LIMIT: 1.5, DB: 1/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1007.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1007, LIMIT: 1.5, DB: 1/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1007.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1007, LIMIT: 1.5, DB: 1/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1007.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL, NO BESS CASE: 1103, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1103.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROL, NO BESSCASE: 1103, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1103.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL, NO BESS CASE: 1103, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1103.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROL, NO BESSCASE: 1103, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1103.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1105, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1105.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1105, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1105.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 1105, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1105.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 1105, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 1105.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 2005.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 2002.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 2105.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 2003.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 2001.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 2000.out60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL, XFER TO HIGH, VARIOUS CASE COMPARISONS: 2005,2002,2105,2003,2001,2000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00TERROR FREQUENCY(HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 2005.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 2002.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 2105.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 2003.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 2001.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 2000.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROL, XFER TO HIGH, VARIOUSCASE COMPARISONS: 2005,2002,2105,2003,2001,2000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00BESS OUTPUT (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 2005.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 2002.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 2105.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 2003.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 2001.out2.5000 -2.500 CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 2000.out2.5000 -2.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL, XFER TO HIGH, VARIOUS CASE COMPARISONS: 2005,2002,2105,2003,2001,2000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00SYSTEM TIE TO CRANE (MW)CHNL# 142: [P-FLYWHEEL]*1FILE: 2005.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 2002.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 2105.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 2003.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 2001.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 2000.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROL, XFER TO HIGH, VARIOUSCASE COMPARISONS: 2005,2002,2105,2003,2001,2000 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FLYWHEEL OUTPUT (MW) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, NO FLYWHEEL CASE: 2000, LIMIT: N/A, DB: N/A/N/A THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2000.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, NO FLYWHEELCASE: 2000, LIMIT: N/A, DB: N/A/N/A THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2000.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, NO FLYWHEEL CASE: 2000, LIMIT: N/A, DB: N/A/N/A THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2000.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, NO FLYWHEELCASE: 2000, LIMIT: N/A, DB: N/A/N/A THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2000.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2001, LIMIT: 1.5, DB: 0/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2001.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2001, LIMIT: 1.5, DB: 0/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2001.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2001, LIMIT: 1.5, DB: 0/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2001.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2001, LIMIT: 1.5, DB: 0/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2001.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2002.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2002.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2002.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2002, LIMIT: 1.5, DB: 0.25/-0.25 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2002.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2003, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2003.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2003, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2003.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2003, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2003.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2003, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2003.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2004, LIMIT: 1.5, DB: 1/-1 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2004.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2004, LIMIT: 1.5, DB: 1/-1 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2004.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2004, LIMIT: 1.5, DB: 1/-1 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2004.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2004, LIMIT: 1.5, DB: 1/-1 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2004.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2005, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2005.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2005, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2005.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2005, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2005.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2005, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2005.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2006, LIMIT: 1.5, DB: 0.5/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2006.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2006, LIMIT: 1.5, DB: 0.5/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2006.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2006, LIMIT: 1.5, DB: 0.5/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2006.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2006, LIMIT: 1.5, DB: 0.5/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2006.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2007, LIMIT: 1.5, DB: 1/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2007.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2007, LIMIT: 1.5, DB: 1/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2007.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2007, LIMIT: 1.5, DB: 1/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2007.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2007, LIMIT: 1.5, DB: 1/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2007.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL, NO BESS CASE: 2103, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2103.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROL, NO BESSCASE: 2103, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2103.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL, NO BESS CASE: 2103, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2103.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROL, NO BESSCASE: 2103, LIMIT: 1.5, DB: 0.5/-0.5 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2103.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2105, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2105.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2105, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2105.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 2105, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2105.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 2105, LIMIT: 1.5, DB: 0.25/0 THU, JUL 11 2013 6:11TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 2105.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 1000.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 3001.out60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, FREQUENCY CONTROL, VARIOUS CASES CASE COMPARISONS: 1000,3001 THU, JUL 11 2013 6:19TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00TERROR FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 1000.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 3001.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, FREQUENCY CONTROL, VARIOUS CASESCASE COMPARISONS: 1000,3001 THU, JUL 11 2013 6:19TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00BESS OUTPUT (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 1000.out2.5000 -2.500 CHNL# 74: [P-CRANE TIE FLOW]*-1 FILE: 3001.out2.5000 -2.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, FREQUENCY CONTROL, VARIOUS CASES CASE COMPARISONS: 1000,3001 THU, JUL 11 2013 6:19TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00SYSTEM TIE TO CRANE (MW)CHNL# 142: [P-FLYWHEEL]*1FILE: 1000.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 3001.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, FREQUENCY CONTROL, VARIOUS CASESCASE COMPARISONS: 1000,3001 THU, JUL 11 2013 6:19TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FLYWHEEL OUTPUT (MW) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, FREQUENCY CONTROL CASE: 3001 WED, JUL 10 2013 18:42TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 3001.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, FREQUENCY CONTROLCASE: 3001 WED, JUL 10 2013 18:42TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 3001.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, FREQUENCY CONTROL CASE: 3001 WED, JUL 10 2013 18:42TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 3001.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, FREQUENCY CONTROLCASE: 3001 WED, JUL 10 2013 18:42TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 3001.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 2000.out60.500 59.500 CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 FILE: 4001.out60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, FREQUENCY CONTROL, VARIOUS CASES CASE COMPARISONS: 2000,4001 THU, JUL 11 2013 6:19TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00TERROR FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 2000.out2.5000 -2.500CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*1FILE: 4001.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, FREQUENCY CONTROL, VARIOUS CASESCASE COMPARISONS: 2000,4001 THU, JUL 11 2013 6:19TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00BESS OUTPUT (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 FILE: 2000.out2.5000 -2.500 CHNL# 74: [P-CRANE TIE FLOW]*-1 FILE: 4001.out2.5000 -2.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, FREQUENCY CONTROL, VARIOUS CASES CASE COMPARISONS: 2000,4001 THU, JUL 11 2013 6:19TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00SYSTEM TIE TO CRANE (MW)CHNL# 142: [P-FLYWHEEL]*1FILE: 2000.out2.5000 -2.500CHNL# 142: [P-FLYWHEEL]*1FILE: 4001.out2.5000 -2.500KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, FREQUENCY CONTROL, VARIOUS CASESCASE COMPARISONS: 2000,4001 THU, JUL 11 2013 6:19TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FLYWHEEL OUTPUT (MW) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, XFR TO HIGH, FREQUENCY CONTROL CASE: 4001 WED, JUL 10 2013 18:42TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 4001.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, XFR TO HIGH, FREQUENCY CONTROLCASE: 4001 WED, JUL 10 2013 18:42TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 4001.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 124: [BESS-BCST - BATTERY CHARGE STATU]*1 1.0000 0.0 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LD EXISTING PEAK LOAD, XFR TO HIGH, FREQUENCY CONTROL CASE: 4001 WED, JUL 10 2013 18:42TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 4001.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 2D, EXISTING PEAK LOAD, XFR TO HIGH, VARIABLE CRANE LDEXISTING PEAK LOAD, XFR TO HIGH, FREQUENCY CONTROLCASE: 4001 WED, JUL 10 2013 18:42TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.010.00020.00030.00040.00050.00060.00070.00080.00090.000100.00FILE: 4001.out VOLTAGE (PU) 4020 148th Avenue NE, Suite C Redmond, WA 98052 September 17, 2013 Mr. Darron Scott President/CEO Kodiak Electric Association, Inc. PO Box 787 Kodiak, Alaska 99615 Horizon Lines Electric Crane Impact Study – PS8 Option, Updated Parameters Introduction: EPS has completed an update to the most recent crane impact study, dated 9/4/2013. The primary purpose of the update was to add a flywheel configuration that includes two PS8s. The previous analysis results concluded that a single PS12 configuration would not be a good fit for this application when considering the 400 kW average power limitation and anticipated crane operating cycle. Some relatively minor modeling parameter changes were also included based on correspondence with ABB. Simulations/Results/Conclusions: A total of five simulation cases were run using a simulation time of 180 seconds with the crane loading starting at 5 seconds. Immediately after the completion of the crane loading period (t=85 seconds), the flywheel was set to charge until fully charged. The power level used for charging was held at a constant level until fully charged within the total crane operating cycle (103 seconds). In some cases the tie-flow deadband allowed the flywheel to to fully charge within the total crane operating cycle. For the other cases, the charging level was adjusted to ensure the flywheel was completely charged within the total crane operating cycle time. A tie-flow deadband value of 350 kW was used in three of the five cases based on past study results. For the dual PS8 configuration, tie-flow deadband values of 250 kW and 450 kW were also simulated. Note that the dual PS8 configuration was modeled as a single flywheel resulting in a maximum average power output of 800 kW. In addition to the dual PS8 cases, a single PS8 case has been included. A single PS12 case was also included for comparison purposes only, in part to illustrate the results using the updated modeling parameters. Case descriptions are provided below for all four cases. Case Descriptions  3010 – This case includes a single PS8 flywheel system. The system tie flow deadband and charging level is 350 kW.  3015 – Similar to Case 3010 except a single PS12 flywheel system is used. September 1, 2013 Page 2 of 3  3020 – This case includes a duel PS8 flywheel system. The system tie flow deadband is 350 kW and charging level is 450 kW.  3021 – This case also includes a duel PS8 flywheel system. The system tie flow deadband is 250 kW and charging level is 550 kW.  3022 – This case also includes a duel PS8 flywheel system. The system tie flow deadband is 450 kW and charging level is 350 kW. The summary results for the simulations can be found in Table 1. This table includes the calculated average power level for the entire operating cycle as well as the flywheel configuration and tie-flow and charging parameters. Detailed simulation plots for each case, similar to the previous report, are also attached. Table 1: Case Setup and Results The results show that the dual PS8 configuration is required over the single PS8 or PS12 due to the average power specification of 400 kW. The three dual PS8 cases (3020,3021,3022) are well under the 800 kW combined average power limit and all indicate relatively good frequency response. The impact on the BESS is minimal. It is clear from the results that a balance between the tie-flow parameter and the charging level is necessary to obtain the optimum system response. The optimization includes minimizing the frequency deviations and minimizing the amount of BESS output during the crane operations. Case 3020 illustrates the best balance between the three dual PS8 cases. The balancing is shown as the tie-flow level is decreased, the initial frequency dip (at 5 seconds) is reduced. This reduction is offset by the increase in charging frequency dip (at 85 seconds). It is important to note that the dual PS8 configuration appears to have an abundance of energy storage capacity relative to the crane loading needs, perhaps enough for two full crane cycles. Because of the amount of energy available and the unknowns associated with the actual crane loading cycle times and the power required, it appears that the method of charging may need to be modified as more information is gathered in order to fully optimize the system response. Note that the method of charging used in the simulations is worst case based on the need to fully charge within 103 seconds after each crane cycle. A charging algorithm for actual usage has not been developed or used in the simulations. The method 3010 3015 3020 3021 3022 Flywheel Configuration 1-PS8 1-PS12 2-PS8 2-PS8 2-PS8 Maximum Output (MW) 1.0 1.5 2.0 2.0 2.0 Energy Capacity (MJ) 18.0 14.2 36.0 36.0 36.0 Tie Flow Deadband (kW) 350 350 350 250 450 Crane Charging Level (kW) 350 350 450 550 350 Crane Loading (sec) 80 80 80 80 80 Crane Loading w/Charging (sec) 100 93 103 104 100 Charging Time (sec) 20 13 23 24 20 Crane Loading/Charging Average Power (kW) 484 485 536 592 486 Case Setup/Results September 1, 2013 Page 3 of 3 used for the simulations is considered to be very basic and sufficient for the purpose of these feasibility level studies. Let us know if you would like to discuss any of the results, conclusions, or assumptions that have been presented. Feel free to call or email Dan Rogers at (907) 646-5121, drogers@epsinc.com, Jim Cote at (425) 296-5411, jcote@epsinc.com, or Randy Miller at (907) 646-5148, rmiller@epsinc.com. Sincerely, Electric Power Systems, Inc. CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3010, LIMIT: 1.0, DB: 0.35/0, RECHARGE: 0.35, 1-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3010.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3010, LIMIT: 1.0, DB: 0.35/0, RECHARGE: 0.35, 1-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3010.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3010, LIMIT: 1.0, DB: 0.35/0, RECHARGE: 0.35, 1-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3010.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3010, LIMIT: 1.0, DB: 0.35/0, RECHARGE: 0.35, 1-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3010.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3015, LIMIT: 1.5, DB: 0.35/0, RECHARGE: 0.35, 1-PS12 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3015.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3015, LIMIT: 1.5, DB: 0.35/0, RECHARGE: 0.35, 1-PS12 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3015.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3015, LIMIT: 1.5, DB: 0.35/0, RECHARGE: 0.35, 1-PS12 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3015.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3015, LIMIT: 1.5, DB: 0.35/0, RECHARGE: 0.35, 1-PS12 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3015.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3020, LIMIT: 2.0, DB: 0.35/0, RECHARGE: 0.45, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3020.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3020, LIMIT: 2.0, DB: 0.35/0, RECHARGE: 0.45, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3020.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3020, LIMIT: 2.0, DB: 0.35/0, RECHARGE: 0.45, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3020.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3020, LIMIT: 2.0, DB: 0.35/0, RECHARGE: 0.45, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3020.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3021, LIMIT: 2.0, DB: 0.25/0, RECHARGE: 0.55, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3021.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3021, LIMIT: 2.0, DB: 0.25/0, RECHARGE: 0.55, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3021.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3021, LIMIT: 2.0, DB: 0.25/0, RECHARGE: 0.55, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3021.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3021, LIMIT: 2.0, DB: 0.25/0, RECHARGE: 0.55, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3021.out VOLTAGE (PU) CHNL# 19: 60*[SPD 3[TERR LK. 13.800]1]+60 60.500 59.500 CHNL# 20: 60*[SPD 30[TERR LK2 13.800]1]+60 60.500 59.500 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3022, LIMIT: 2.0, DB: 0.45/0, RECHARGE: 0.35, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3022.out UNIT FREQUENCY (HZ)CHNL# 136: [BESS-PINJ_BES - ACTUAL REAL POWE]*12.5000 -2.500CHNL# 142: [P-FLYWHEEL]*12.5000 -2.500CHNL# 77: [CRANE-WIND LOAD]*12.5000 -2.500CHNL# 1: [POWR 3[TERR LK. 13.800]1]*10015.000 5.0000CHNL# 2: [POWR 30[TERR LK2 13.800]1]*10015.000 5.0000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3022, LIMIT: 2.0, DB: 0.45/0, RECHARGE: 0.35, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3022.out OUTPUTS/CRANE LOAD (MW)CHNL# 74: [P-SYSTEM CRANE TIE FLOW]*-1 2.5000 -2.500 CHNL# 142: [P-FLYWHEEL]*1 2.5000 -2.500 CHNL# 77: [CRANE-WIND LOAD]*1 2.5000 -2.500 CHNL# 106: [CPWSTR-STATE OF STORED CHARGE]*1 1.0000 0.0 KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WIND CASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOAD EXISTING PEAK LOAD, TIE FLOW CONTROL CASE: 3022, LIMIT: 2.0, DB: 0.45/0, RECHARGE: 0.35, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWER TECHNOLOGIES INTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3022.out FLOWS/OUTPUTS/CHARGE (MW)CHNL# 30: [VOLT 4 [TERR LK. 138.00]]*11.0500 0.80000CHNL# 31: [VOLT 5 [AIRPORT 138.00]]*11.0500 0.80000CHNL# 41: [VOLT 18 [HARTMAN 67.000]]*11.0500 0.80000CHNL# 35: [VOLT 9 [SW. ACRE 138.00]]*11.0500 0.80000CHNL# 33: [VOLT 7 [SW. ACRE 12.470]]*11.0500 0.80000CHNL# 59: [VOLT 802 [GC_3 12.470]]*11.0500 0.80000KEA CRANE INTEGRATION STUDY: T1,T2 ON, 3 MW WINDCASE: 1D, EXISTING PEAK LOAD, VARIABLE CRANE LOADEXISTING PEAK LOAD, TIE FLOW CONTROLCASE: 3022, LIMIT: 2.0, DB: 0.45/0, RECHARGE: 0.35, 2-PS8 TUE, SEP 17 2013 6:30TIME (SECONDS)SIEMENS POWERTECHNOLOGIESINTERNATIONAL R 0.018.00036.00054.00072.00090.000108.00126.00144.00162.00180.00FILE: 3022.out VOLTAGE (PU)