HomeMy WebLinkAboutNPEP waste heat design narrative
GVEA NPEP Waste heat Recovery
October 7, 2008
Mechanical Design Narrative
Background
GVEA has 22,000 gpm of 90 degF, 60% ethylene glycol solution available for possible use in space
heating, given an application which is able to utilize the available fluid flow and temperature. It is
desired to use a portion of this fluid (normally routed to a set of dry coolers for cooling using outside
air before returning it to the condensers) to heat the nearby Turbine Building. The Turbine Building
is currently heated with 500 kW (1,700 MBH) of electric unit heaters.
Design Strategy
A common use of heating fluid in the 90 deg F to 110 deg F range is radiant floor heat. Radiant wall
and/or ceiling heat are also possible, although less common. After determining that it was not
feasible to provide radiant floor heat due to current use of existing floor space, and that available
factory-fabricated wall and ceiling panels are expensive architectural products, the use of air handlers
(fan-coil units) and propeller unit heaters were each considered. Unit heaters take up less space and
are the least expensive first-cost option for the heat provided. Unit heaters are typically operated with
an entering fluid temperature in the range of 160 deg F to 200 deg F. However, a preliminary
selection was made by extrapolating from a temperature correction chart, down to the available
temperature of 90 deg F. The basis of design unit heater manufacturer, L.J. Wing, provided a
performance sheet which confirmed performance under the design conditions. The selected model is
HU-44. Product data and a performance data sheet are attached.
Piping Calculations
A calculation report is attached. The existing system pumps operate with a suction pressure of 30 psig
and a discharge pressure of 70 psig. An imaginary expansion tank, set to 30 psig, and an imaginary
pump set with a flow rate equal to the sum of the unit heater flow rates, was used to complete the
circuit where the new piping is to be connected to the existing condenser cooling glycol system. L.J.
Wing’s performance sheet (see below) shows a flow of 30 gm and a temperature change of 16.6 deg
F. However the piping system was designed to allow flow up to 50 gpm per unit heater. The system
pressure loss will be 29 psid with a flow of 50 gpm per unit heater, and only 15 psid with a flow of 45
gpm to each unit heater. This allows flexibility in the selection and operation of the unit heaters.
Sequence of Operation
During heating season, fluid flow to the Turbine Building will “run wild,” i.e. a set of valves at the
new branches from the cooling system piping will be opened either manually or automatically in
response to outside air temperature.
The Turbine Building Unit Heaters are grouped into four zones, each with a wall-mounted space
sensor. When a zone temperature is below set-point of 50 deg F, the VFD-driven unit heater fans in
that zone will start on minimum stable fan speed. A PID logic loop will cause the unit heater fans to
speed up the greater the difference between space set point and the sensed space temperature. A
band-width or acceptable space temperature range of 49 deg F to 51 deg F may be used in the logic
loop.
UNIT HEATERS
TECHNICAL GUIDE FOR:
TGUH-1
HCF – High Ceiling Unit With Fixed Discharge
HCR – High Ceiling Unit With Revolving Discharge
HU – Horizontal Unit
2
In 1875, Mr. L.J. Wing founded the L.J Wing Company with his
invention of a disc fan with variable pitched blades. Mr. Wing
produced many notable inventions and was recognized by the
American Institute for his outstanding achievements. These
include his introduction of the first steam turbine driven fan in
1905; his development of the first floor mounted steam unit
heater in 1917; and also in 1917, a test on the U.S.S. Kimberly
using L.J. Wing ‘pressure type’ fans that resulted in over 200
World War I Navy ships being fitted with those ventilation fans.
In 1920, L.J. Wing revolutionized the heating industry by
producing ‘The Featherweight Heater’ which utilized a light-
weight copper heating coil and became the first overhead unit
heater. This led to the first Door Heater in 1921, the first integral
face and bypass make-up air system (L.J. Wing’s FAS) in 1933,
and the first rotating discharge nozzle in 1939.
During World War II, L.J. Wing’s total manufacturing capacity
was directed to the production of ventilating fans that were
used on virtually all Naval landing and cargo ships of that
period. After World War II, the L.J. Wing Company introduced
the first Integral Face and Bypass Constant Volume Coil in
1961; the Vari-jet discharge in 1963; Gas Assembly Heaters
with mounting heights over 100 feet in 1965; the Genex in 1985
(the first rotary heat exchanger indirect fired gas heater); and
the Door Air Curtains in 1998.
4830 Transport Drive, Dallas, TX 75247 Tel. (214)638-6010 Fax (214) 905-0806
www.ljwing.com
In the interest of product improvement, L.J. Wing reserves the right to make changes without notice.
3
TABLE OF CONTENTS
HCF & HCR Steam Coil Performance. . . . . . . . . . . . . . . . . . . . . .4-5
HCF & HCR Hot Water Coil Performance. . . . . . . . . . . . . . . . . . .6-7
HCF & HCR General Dimensions. . . . . . . . . . . . . . . . . . . . . . . . .8-9
HCF & HCR Discharges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
HCF & HCR Selection & Installation . . . . . . . . . . . . . . . . . . . . . . .12
HCF & HCR Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
HU Steam Coil Performance. . . . . . . . . . . . . . . . . . . . . . . . . . 14-15
HU Hot Water Coil Performance. . . . . . . . . . . . . . . . . . . . . . . 16-17
HU General Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Typical Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Typical Specifications - HCF Series. . . . . . . . . . . . . . . . . . . . . . . .20
Typical Specifications - HCR Series. . . . . . . . . . . . . . . . . . . . . . . .21
Typical Specifications - HU Series. . . . . . . . . . . . . . . . . . . . . . . . .22
16
HOT WATER PERFORMANCE TABLE
Based on 200°F. Ent. Water & 60°F. Ent. Air
Motor
Speed CFM Motor Temp.
SIZE (RPM) at Inlet H.P. Drop °F MBH GPM F.A.T. P.D.
10 36.4 7.4 105 1.1
2.5U 1550 750 1/20 20 27.6 2.8 94 0.2
25 24.8 2.0 90 0.1
10 39.7 8.0 101 1.3
13 1750 885
1/6 20 30.7 3.1 92 0.2
25 27.5 2.2 89 0.1
10 51.6 10.4 100 2.2
15 1150 1200
1/6 20 42.9 4.3 93 0.4
25 38.6 3.1 90 0.2
10 62.2 12.6 101 1.9
17 1150 1400
1/6 20 50.7 5.1 93 0.3
25 45.5 3.7 90 0.2
10 77.6 15.7 102 3.4
18 1750 1700
1/4 20 66.4 6.7 96 0.6
25 60.3 4.9 93 0.3
10 91.7 18.5 102 3.5
19 1150 2000
1/4 20 78.8 8.0 96 0.7
25 71.8 5.8 93 0.3
15 110.6 14.9 100 2.5
20 1750 2550
1/3 20 105.0 10.6 98 1.3
30 90.7 6.1 93 0.4
15 126.3 17.0 102 1.8
22 1150 2750
1/4 20 117.9 11.9 99 0.9
30 99.4 6.7 93 0.3
15 166.0 22.4 103 3.8
23 1150 3600
1/2 20 158.4 16.0 101 2.0
30 140.2 9.5 96 0.7
15 198.8 26.8 103 3.8
25 1150 4300
1/2 20 189.7 19.2 101 1.9
30 167.8 11.3 96 0.7
15 254.2 34.2 103 7.4
26 1150 5500
3/4 20 242.5 24.5 101 3.8
30 223.6 15.1 97 1.4
15 298.3 40.2 102 7.5
28 850 6500
3/4 20 284.5 28.7 100 3.8
30 262.7 17.7 97 1.5
15 309.1 41.5 101 8.0
30 850 7000
3/4 20 295.2 29.8 99 4.1
30 273.5 18.4 96 1.6
15 381.8 51.5 100 14.5
33 850 8700 1
1/2 20 370.9 37.5 99 7.7
30 347.0 23.4 97 3.0
15 449.0 60.3 101 14.3
36 850 10000 1
1/2 20 435.9 44.0 100 7.6
30 408.0 27.5 98 3.0
15 510.8 69.0 96 18.7
38 850 13000 2 20 499.6 50.5 95 10.0
30 469.1 31.6 93 3.9
15 652.9 87.8 96 5.1
40 850 16500 3 20 623.0 63.0 95 2.6
30 565.9 38.1 92 1.0
15 805.2 108.5 95 5.9
43 850 21500 5 20 767.7 77.5 93 3.0
30 705.5 47.5 90 1.1
15 896.7 121.0 91 7.4
44 850 27000 7
1/2 20 857.7 86.5 89 3.8
30 798.0 53 87 1.5
TABLE A
HU UNIT HEATERS
17
HOT WATER CONVERSION FACTORS
HOT WATER CONVERSION FACTORS — BASED ON 200˚F EWT, 60˚F EAT
Entering Entering Air Temperature
Water
Temp. 40 50 60 70 80 90 100
160 .86 .79 .71 .64 .57 .50 .43
170 .93 .86 .79 .71 .64 .57 .50
180 1.00 .93 .86 .79 .71 .64 .57
190 1.07 1.00 .93 .86 .79 .71 .64
200 1.14 1.07 1.00 .93 .86 .79 .71
210 1.21 1.14 1.07 1.00 .93 .86 .79
220 1.29 1.21 1.14 1.07 1.00 .93 .86
230 1.36 1.29 1.21 1.14 1.07 1.00 .93
240 1.43 1.36 1.29 1.21 1.14 1.07 1.00
250 1.50 1.43 1.36 1.29 1.21 1.14 1.07
Notes:
1.To determine BTU at conditions under which heater will operate, multiply
BTU at standard conditons (200° Ent. Water & 60° Ent. Air) by
appropriate factors from table B.
2.To determine equivalent BTU at standard conditions, divide BTU at
conditions under which heater will operate by appropriate factors from
table.
3.New heater capacity is obtained with standard water rate.
Example No. 1
Determine the heating capacity, GPM, water temp. drop, final air
temperature, feet of water, pressure drop of a size 25 HU heater with
220°F entering water and 70°F entering air.
Solution:
Standard capacity = 198,800 BTU/HR. (from Table A)
Conversion factor = 1.07 (from Table B)
Heater Capactiy @ 220°F EWT., 70 F EAT =
1.07 x 198,800 = 212,700 BTU/HR.
GPM = 26.8 GPM (from Table A)
Water Temp. Drop = 212,700 = 16°F
500* x 26.8
Air Temp. Rise = 212,700 BTU/HR. = 46°F
1.085 x 4300 CFM
Final Air Temp = EAT + TR = 70°F + 46 = 116°F
Pressure Drop (from Table A) = 3.8 FT.
Example No. 2
Select a Wing HU heater to deliver 320,000 BTU/HR with 230°F entering
water and 70°F entering air.
Solution:
Refer to Table B for the conversion factor for 230°F entering water and
70°F entering air.
Factor = 1.14
To find standard rating based on 200°F entering ware and 60°F entering
air:
320,000 BTU/HR = 280,702 BTU/HR
1.14
Refer to Table A and select HU heater with capactiy nearest to 280,000
BTU/HR:
TRY SIZE #28 HU HEATER
(Determine actual performance)
MBH = 1.14 x 284.5 MBH (from Table A) = 324 MBH
GPM = 19.2 GPM (from Table A)
Water Temp. Drop = 324,000 = 22.6°F
500* x 28.7
Pressure Drop = 3.8 Ft. (from Table A)
Air Temp. Rise = 324,000 = 45.9°F
1.085 x 6500 CFM
Final Air Temp = EAT + TR = 70°F + 45.9° = 115.9°F
TABLE B
18
UNIT HEATERS (HU)
Dimensions in Inches
SIZE A B D E F G L M P R S U X Y
21/2 16 16
1/2 241/4 57/8 121/2 61/2 147/8 83/8 111
13 16 16
1/2 111/32 41/4 57/8 121/2 103/8 183/4 83/8 —21/2 1
15 193/4 193/4 5/8 21/2 47/16 61/2 361/2 14 22 8 1 1
1/2 11/4
17 193/4 193/4 5/8 21/2 47/16 61/2 361/2 14 22 8 1 1
1/2 11/4
18 223/4 193/4 5/8 21/2 47/16 61/2 361/2 14 22 8 1 1
1/2 11/4
19 223/4 223/4 5/8 21/2 51/8 75/16 361/2 18 27 9 1 1
1/2 11/4
20 273/4 223/4 5/8 21/2 51/8 75/16 361/2 18 27 9 1 1
1/2 11/4
22 273/4 273/4 5/8 25/8 577/16 361/2 18 27 9 1 1
1/2 11/2
23 323/4 273/4 5/8 25/8 577/16 361/2 18 27 9 1 1
1/2 11/2
25 323/4 323/4 5/8 25/8 577/16 361/2 19 28 9 1 1
1/2 11/2
26 391/8 323/4 5/8 25/8 577/16 481/2 19 28 9 1 1
1/2 11/2
28 391/8 391/8 7/8 33/8 795/8 481/2 17 29 12 1
1/2 22
30 391/8 391/8 7/8 33/8 795/8 481/2 17 29 12 1
1/2 22
33 451/8 391/8 7/8 33/8 795/8 481/2 18 30 12 1
1/2 22
36 451/8 451/8 7/8 33/8 795/8 481/2 18 30 12 1
1/2 22
38 451/8 451/8 7/8 33/8 795/8 481/2 18 30 12 1
1/2 22
40 631/8 515/8 7/8 319/16 111/4 151/4 481/2 19 43 24 1
1/2 23
43 631/8 515/8 7/8 319/16 111/4 151/4 481/2 19 43 24 1
1/2 23
44 631/8 515/8 7/8 319/16 111/4 151/4 481/2 21 45 24 1
1/2 23
Steam inlet or
water return
HorizontalVerticalHorizontal & vertical(8) 9/16 Dia.
holes for
mounting
Discharge
furnished
mounted to
this surface
at factory
All discharges are furnished
with adjustable louvers
Steam return
or water inlet
Y-I.P.S. male
pipe connection
PMax
RMax
UTyp
XTyp
DTyp
A S
B
G
F L L M
E
END VIEW ELEVATION ELEVATION
HU UNIT HEATERS
GENERAL DIMENSIONS
MOUNTING HEIGHTS AND THROWS
FOR HORIZONTAL UNIT HEATERS
Effective
Heater Max. Mtg. Heating
Size Height Throw
11/2-U 8 ft. 20 ft.
2-U 9 ft. 25 ft.
21/2-U 9 ft. 30 ft.
13-U 10 ft. 35 ft.
15-U 12 ft. 40 ft.
17-U 12 ft. 45 ft.
18-U 13 ft. 50 ft.
19-U 13 ft. 55 ft.
20-U 13 ft. 60 ft.
22-U 14 ft. 65 ft.
23-U 14 ft. 70 ft.
25-U 15 ft. 75 ft.
26-U 17 ft. 80 ft.
28-U 18 ft. 88 ft.
30-U 18 ft. 92 ft.
33-U 19 ft. 102 ft.
36-U 19 ft. 110 ft.
38-U 20 ft. 122 ft.
40-U 22 ft. 135 ft.
43-U 25 ft. 155 ft.
44-U 28 ft. 180 ft.
MOUNTING HEIGHTS AND THROWS
FOR HORIZONTAL UNIT HEATERS
Effective
Heater Max. Mtg. Heating
Size Height Throw
MOUNTING HEIGHTS AND THROWS FOR HORIZONTAL UNIT HEATERS
Fan motors on Size 21/2 are equipped with internal
thermal overload protection. All other units should be
equipped with either a manual or a magnetic starter
both optional. These may be factory mounted and
wired, or shipped loose. For your convenience we
offer both NEMA and IEC rated starters. Please note
that Size 21/2 units cannot be fitted with a unit-
mounted starter and/or disconnect due to its small
size.
Smaller single phase motors may be controlled with
a line voltage thermostat, while larger single phase
and all three phase motors require a magnetic starter,
with the thermostat controlling the holding coil.
WIRING
19
SCHEMATIC
Models equipped with revolving discharges are
supplied with the “R” Drive motor prewired. Units
supplied for any voltage/phase other than 115/1 or
230/1 are factory equipped with a step down trans-
former.
Many electrical items are available in explosion proof
versions. These generally include fan motors, “R”
Drive motors, room thermostats and door switches.
The required Division, Class and Group must be
known to properly select explosion proof items.
TYPICAL THREE PHASE WIRING
Base Bid Wing Model HU______ Horizontal Unit Heater(s)
designed for indoor suspended application complete with
non-overloading propeller fan, direct drive motor, heating
section, and adjustable horizontal louvers. The unit shall be
factory fabricated, assembled, wired, and tested prior to
shipment in accordance with the specification and equipment
schedule.
CABINET:
The unit casing shall be constructed from heavy gauge
galvanized steel suitably reinforced to insure rigidity. Each
unit and discharge louvers shall be painted with an air dried,
beige colored alkyd enamel, ASTM-B117, 500 hour salt spray
resistant paint finish.
FAN SECTION:
The unit shall be capable of delivering ______ SCFM with a
non-overloading, (direct drive) (optional belt driven for sizes
28 through 44) propeller type fan blade driven by a TEFC,
______ HP, ______ RPM, ______ volt, (3) (1) phase, 60
cycle motor. The propeller fan shall be dynamically balanced
and used in conjunction with an inlet venturi. Direct drive
models shall include OSHA fan guard (optional on sizes 28
through 44).
All electrical components shall carry UL or ETL and/or CSA
listing, certification and/or recognition where applicable. All
wiring shall be color coded in accordance with the NEC. All
wire shall be rated to meet or exceed electrical requirements
for voltage and ampacity, dielectric strength of sheathing and
temperature. Control wiring shall terminate at terminal strip
and include an identifying marker corresponding to the
wiring diagram.
In the interest of product improvement, we reserve the right to make changes without notice.
TYPICAL SPECIFICATIONS – HU Series
HEATER SECTION:
Steam Units – Unit shall be capable of delivering ______
BTU/HR output based on ______˚F Entering Air Temperature
and ______PSIG steam pressure at the heater.
Hot Water Units – Unit shall be capable of delivering ______
BTU/HR output based on ______˚F Entering Air Temperature
and ______GPM of ______˚F Entering Hot Water at the
heater with a ______˚F temperature drop across the heater
element. The water pressure drop across the heater element
shall be ______ft. of water.
Finned heating elements shall be fabricated of 3/8” diameter,
0.028” wall, seamless (copper) (optional CU/NI) (optional
steel) tubing with expanded, rectangular 0.010” thick
aluminum fins. The heating element shall be free to expand or
contract without damage to adjacent tubes or header
connections. Each tube shall be individually secured to the
supply and return headers by a (brazed joint.) (optional
mechanical joint consisting of a nut and flare.) Heating
elements shall be secured by a channel shaped retainer that
permits expansion and contraction. Each heating element
assembly shall be factory tested at 200 PSIG steam and 500
PSIG hydrostatic pressure.
DISCHARGE:
Each unit’s discharge shall be provided with a (set of
adjustable horizontal discharge louvers.) (set of adjustable
horizontal discharge louvers and optional vertical discharge
louvers for 4-way diffusion.) Discharge louvers shall be
fabricated from galvanized steel.
22
List Report
10/07/08 10:41 am
Company: HB Rueter Engineering Inc.
Project: GVEA NPEP Waste Heat Recovery
by: HBR
System: low grade heat pipe
Lineup: <Design Case>
rev: 10/07/08 10:31 am
Atm pressure: 14.7 psi a
Total System Volume: 6914 gallons
Pressure drop calculations: Darcy-Weisbach method, laminar cutoff Re = 2100
Calculated: 1 iteration Avg Deviation: 0 %
Specifications
Specification Material / Schedule Roughness Sizing Design Limits
carbon steel Steel A53-B36.10 / 40 0.0018 in 2 psi loss/100 ft 0.5 to 10 ft/sec
Valves: standard C: 140 5 to 100 psi g
Fluid Zones
Fluid Zone Fluid Temp Pressure Density Viscosity Pv / Pc or k
°F psi g lb/ft³cP psi a
90 degF 60/40 EG 60% Dowtherm 4000 90 30 68.06 3.349 0.4389 / 902.1
PIPE-FLO 2007 pg 1
List Report 10/07/08 10:41 am
Pipelines
Pipeline From To Status Flow Velocity dP HL
US gpm ft/sec psi ft
Specification Fluid Zone Size Length K
in ft
Pipe{002}~N{003}~N{004}540 3.466 11.09 4.48
carbon steel 90 degF 60/40 EG 8 617 5.169
Pipe{003}~N{004}p-1 540 3.466 (0.445)0.057
carbon steel 90 degF 60/40 EG 8 10 0
Pipe{004}~N{005}~N{006}540 3.466 (6.491)4.259
carbon steel 90 degF 60/40 EG 8 604 4.382
Pipe{005}~N{007}~N{003}270 3.001 (17.57)0.811
carbon steel 90 degF 60/40 EG 6 81 2.234
Pipe{006}~N{008}~N{007}225 2.501 0.181 0.383
carbon steel 90 degF 60/40 EG 6 80 0.2979
Pipe{007}~N{009}~N{008}180 2.001 0.042 0.09
carbon steel 90 degF 60/40 EG 6 24 0.2979
Pipe{008}~N{010}~N{009}135 1.501 0.025 0.053
carbon steel 90 degF 60/40 EG 6 24 0.2979
Pipe{009}~N{011}~N{010}90 2.27 0.325 0.688
carbon steel 90 degF 60/40 EG 4 104 0.5265
Pipe{010}~N{012}~N{011}45 1.135 7.611 0.112
carbon steel 90 degF 60/40 EG 4 54 0.6836
Pipe{013}~N{006}~N{020}270 3.001 18.33 0.811
carbon steel 90 degF 60/40 EG 6 81 2.234
Pipe{014}~N{020}~N{019}225 2.501 0.181 0.383
carbon steel 90 degF 60/40 EG 6 80 0.2979
Pipe{015}~N{019}~N{018}180 2.001 0.042 0.09
carbon steel 90 degF 60/40 EG 6 24 0.2979
Pipe{016}~N{017}~N{016}45 1.135 (7.505)0.112
carbon steel 90 degF 60/40 EG 4 54 0.6836
Pipe{017}~N{018}~N{015}135 1.501 0.025 0.053
carbon steel 90 degF 60/40 EG 6 24 0.2979
Pipe{018}~N{015}~N{017}90 2.27 0.322 0.681
carbon steel 90 degF 60/40 EG 4 104 0.4361
Pipe{019}~N{006}~N{021}270 3.001 18.39 0.921
carbon steel 90 degF 60/40 EG 6 137 0.5597
Pipe{020}~N{022}~N{003}270 3.001 (17.51)0.924
carbon steel 90 degF 60/40 EG 6 137 0.5796
Pipe{021}~N{021}~N{023}225 2.501 0.043 0.091
carbon steel 90 degF 60/40 EG 6 14 0.2979
Pipe{022}~N{023}~N{024}180 2.001 0.155 0.327
carbon steel 90 degF 60/40 EG 6 104 0.2979
Pipe{023}~N{024}~N{025}135 1.501 0.025 0.053
carbon steel 90 degF 60/40 EG 6 24 0.2979
Pipe{024}~N{025}~N{026}90 2.27 0.087 0.184
carbon steel 90 degF 60/40 EG 4 24 0.4361
Pipe{025}~N{026}~N{027}45 1.135 (7.459)0.211
carbon steel 90 degF 60/40 EG 4 113 0.2279
Pipe{026}~N{032}~N{022}225 2.501 0.043 0.091
carbon steel 90 degF 60/40 EG 6 14 0.2979
Pipe{027}~N{031}~N{032}180 2.001 0.155 0.327
carbon steel 90 degF 60/40 EG 6 104 0.2979
Pipe{028}~N{030}~N{031}135 1.501 0.025 0.053
carbon steel 90 degF 60/40 EG 6 24 0.2979
Pipe{029}~N{029}~N{030}90 2.27 0.09 0.191
carbon steel 90 degF 60/40 EG 4 24 0.5265
Pipe{030}~N{028}~N{029}45 1.135 7.658 0.211
carbon steel 90 degF 60/40 EG 4 113 0.2279
PIPE-FLO 2007 pg 2
List Report 10/07/08 10:41 am
Pipelines
Pipeline From To Status Flow Velocity dP HL
US gpm ft/sec psi ft
Specification Fluid Zone Size Length K
in ft
Pipe{031}~N{021}~N{033}45 1.135 (7.508)0.106
carbon steel 90 degF 60/40 EG 4 40 1.66
Pipe{032}~N{034}~N{022}45 1.135 7.608 0.106
carbon steel 90 degF 60/40 EG 4 40 1.66
Pipe{069}~N{004}et-1 Limit 0 0 (6.613)0
carbon steel 90 degF 60/40 EG 3 4 0
Pipe{118}p-1 ~N{005}540 3.466 0.027 0.057
carbon steel 90 degF 60/40 EG 8 10 0
Pipe{126}~N{149}~N{028}45 1.955 4.345 0.199
carbon steel 90 degF 60/40 EG 3 5 2.786
Pipe{127}~N{027}~N{148}45 1.955 0.086 0.182
carbon steel 90 degF 60/40 EG 3 2 2.839
Pipe{128}~N{148}~N{149}45 1.955 (4.242)0.02
carbon steel 90 degF 60/40 EG 3 3 0
Pipe{129}~N{153}~N{012}45 1.955 4.345 0.199
carbon steel 90 degF 60/40 EG 3 5 2.786
Pipe{130}~N{016}~N{152}45 1.955 0.086 0.182
carbon steel 90 degF 60/40 EG 3 2 2.839
Pipe{131}~N{152}~N{153}45 1.955 (4.242)0.02
carbon steel 90 degF 60/40 EG 3 3 0
Pipe{132}~N{157}~N{034}45 1.955 4.345 0.199
carbon steel 90 degF 60/40 EG 3 5 2.786
Pipe{133}~N{033}~N{156}45 1.955 0.086 0.182
carbon steel 90 degF 60/40 EG 3 2 2.839
Pipe{134}~N{156}~N{157}45 1.955 (4.242)0.02
carbon steel 90 degF 60/40 EG 3 3 0
Pipe{135}~N{162}~N{011}45 1.955 11.98 0.366
carbon steel 90 degF 60/40 EG 3 30 2.786
Pipe{136}~N{017}~N{158}45 1.135 (2.932)0.043
carbon steel 90 degF 60/40 EG 4 5 1.709
Pipe{137}~N{161}~N{162}45 1.955 (5.862)0.091
carbon steel 90 degF 60/40 EG 3 5 0.969
Pipe{138}~N{158}~N{161}45 1.955 (2.903)0.104
carbon steel 90 degF 60/40 EG 3 15 0.05289
Pipe{139}~N{167}~N{010}45 1.955 11.98 0.366
carbon steel 90 degF 60/40 EG 3 30 2.786
Pipe{140}~N{015}~N{163}45 1.135 (2.932)0.043
carbon steel 90 degF 60/40 EG 4 5 1.709
Pipe{141}~N{166}~N{167}45 1.955 (5.862)0.091
carbon steel 90 degF 60/40 EG 3 5 0.969
Pipe{142}~N{163}~N{166}45 1.955 (2.903)0.104
carbon steel 90 degF 60/40 EG 3 15 0.05289
Pipe{143}~N{172}~N{009}45 1.955 11.98 0.366
carbon steel 90 degF 60/40 EG 3 30 2.786
Pipe{144}~N{018}~N{168}45 1.135 (2.932)0.043
carbon steel 90 degF 60/40 EG 4 5 1.709
Pipe{145}~N{171}~N{172}45 1.955 (5.862)0.091
carbon steel 90 degF 60/40 EG 3 5 0.969
Pipe{146}~N{168}~N{171}45 1.955 (2.903)0.104
carbon steel 90 degF 60/40 EG 3 15 0.05289
Pipe{147}~N{177}~N{008}45 1.955 11.98 0.366
carbon steel 90 degF 60/40 EG 3 30 2.786
Pipe{148}~N{019}~N{173}45 1.135 (2.932)0.043
carbon steel 90 degF 60/40 EG 4 5 1.709
PIPE-FLO 2007 pg 3
List Report 10/07/08 10:41 am
Pipelines
Pipeline From To Status Flow Velocity dP HL
US gpm ft/sec psi ft
Specification Fluid Zone Size Length K
in ft
Pipe{149}~N{176}~N{177}45 1.955 (5.862)0.091
carbon steel 90 degF 60/40 EG 3 5 0.969
Pipe{150}~N{173}~N{176}45 1.955 (2.903)0.104
carbon steel 90 degF 60/40 EG 3 15 0.05289
Pipe{151}~N{182}~N{007}45 1.955 11.98 0.366
carbon steel 90 degF 60/40 EG 3 30 2.786
Pipe{152}~N{020}~N{178}45 1.135 (2.932)0.043
carbon steel 90 degF 60/40 EG 4 5 1.709
Pipe{153}~N{181}~N{182}45 1.955 (5.862)0.091
carbon steel 90 degF 60/40 EG 3 5 0.969
Pipe{154}~N{178}~N{181}45 1.955 (2.903)0.104
carbon steel 90 degF 60/40 EG 3 15 0.05289
Pipe{155}~N{187}~N{029}45 1.955 11.98 0.366
carbon steel 90 degF 60/40 EG 3 30 2.786
Pipe{156}~N{026}~N{183}45 1.135 (2.932)0.043
carbon steel 90 degF 60/40 EG 4 5 1.709
Pipe{157}~N{186}~N{187}45 1.955 (5.862)0.091
carbon steel 90 degF 60/40 EG 3 5 0.969
Pipe{158}~N{183}~N{186}45 1.955 (2.903)0.104
carbon steel 90 degF 60/40 EG 3 15 0.05289
Pipe{159}~N{192}~N{030}45 1.955 11.98 0.366
carbon steel 90 degF 60/40 EG 3 30 2.786
Pipe{160}~N{025}~N{188}45 1.135 (2.932)0.043
carbon steel 90 degF 60/40 EG 4 5 1.709
Pipe{161}~N{191}~N{192}45 1.955 (5.862)0.091
carbon steel 90 degF 60/40 EG 3 5 0.969
Pipe{162}~N{188}~N{191}45 1.955 (2.903)0.104
carbon steel 90 degF 60/40 EG 3 15 0.05289
Pipe{163}~N{197}~N{031}45 1.955 11.98 0.366
carbon steel 90 degF 60/40 EG 3 30 2.786
Pipe{164}~N{024}~N{193}45 1.135 (2.932)0.043
carbon steel 90 degF 60/40 EG 4 5 1.709
Pipe{165}~N{196}~N{197}45 1.955 (5.862)0.091
carbon steel 90 degF 60/40 EG 3 5 0.969
Pipe{166}~N{193}~N{196}45 1.955 (2.903)0.104
carbon steel 90 degF 60/40 EG 3 15 0.05289
Pipe{167}~N{202}~N{032}45 1.955 11.98 0.366
carbon steel 90 degF 60/40 EG 3 30 2.786
Pipe{168}~N{023}~N{198}45 1.135 (2.932)0.043
carbon steel 90 degF 60/40 EG 4 5 1.709
Pipe{169}~N{201}~N{202}45 1.955 (5.862)0.091
carbon steel 90 degF 60/40 EG 3 5 0.969
Pipe{170}~N{198}~N{201}45 1.955 (2.903)0.104
carbon steel 90 degF 60/40 EG 3 15 0.05289
PIPE-FLO 2007 pg 4
List Report 10/07/08 10:41 am
Nodes
Node Elev Status Pressure Grade
ft psi g ft
~N{003}-5 36.37 71.99
~N{004}14 25.28 67.51
~N{005}13 40.71 99.17
~N{006}-5 47.2 94.91
~N{007}33 18.8 72.8
~N{008}33 18.98 73.18
~N{009}33 19.02 73.27
~N{010}33 19.05 73.32
~N{011}33 19.37 74.01
~N{012}17 26.98 74.12
~N{015}33 28.61 93.57
~N{016}17 35.8 92.78
~N{017}33 28.29 92.89
~N{018}33 28.64 93.63
~N{019}33 28.68 93.72
~N{020}33 28.86 94.1
~N{021}33 28.81 93.99
~N{022}33 18.85 72.91
~N{023}33 28.77 93.9
~N{024}33 28.61 93.57
~N{025}33 28.59 93.52
~N{026}33 28.5 93.33
~N{027}17 35.96 93.12
~N{028}17 26.82 73.78
~N{029}33 19.17 73.57
~N{030}33 19.08 73.38
~N{031}33 19.05 73.33
~N{032}33 18.9 73
~N{033}17 36.32 93.88
~N{034}17 26.46 73.02
~N{158}26.75 31.23 92.85
~N{163}26.75 31.55 93.53
~N{168}26.75 31.57 93.58
~N{173}26.75 31.61 93.67
~N{178}26.75 31.8 94.06
~N{183}26.75 31.43 93.29
~N{188}26.75 31.52 93.48
~N{193}26.75 31.55 93.53
~N{198}26.75 31.7 93.86
PIPE-FLO 2007 pg 5
List Report 10/07/08 10:41 am
Pumps
Pump Flow Status Total head dP Speed NPSHa Suction Discharge Suction Discharge
US gpm ft psi rpm ft psi g psi g ft ft
p-1 540 (31.78)(15.01)---84.64 25.72 40.73 13 13
Catalog: Armstrong.60 - Armstrong
Type:4300 Split Coupled Speed:1200 rpm
Size:8x8x11.5 Dia:11.5 in
File:Armstrong.60
Components
Component Flow Status Head Loss dP Inlet Outlet Inlet Outlet
US gpm ft psi psi g psi g ft ft
~N{149}45 1.062 0.501 31.67 31.17 8 8
~N{153}45 1.062 0.501 31.83 31.33 8 8
~N{157}45 1.062 0.501 31.31 30.81 8 8
~N{162}45 1.062 0.501 31.86 31.36 8 8
~N{167}45 1.062 0.501 31.53 31.03 8 8
~N{172}45 1.062 0.501 31.51 31.01 8 8
~N{177}45 1.062 0.501 31.47 30.96 8 8
~N{182}45 1.062 0.501 31.28 30.78 8 8
~N{187}45 1.062 0.501 31.65 31.15 8 8
~N{192}45 1.062 0.501 31.56 31.06 8 8
~N{197}45 1.062 0.501 31.54 31.03 8 8
~N{202}45 1.062 0.501 31.38 30.88 8 8
Controls
Control Set Value Elev Flow Status dP HL Inlet Outlet
ft US gpm psi ft psi g psi g
~N{148}FCV: 45 17 45 22% open 8.446 17.88 35.87 27.43
Cv: 15.5 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
~N{152}FCV: 45 17 45 23% open 8.123 17.2 35.71 27.59
Cv: 17.1 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
~N{156}FCV: 45 17 45 22% open 9.167 19.4 36.23 27.07
Cv: 15.5 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
PIPE-FLO 2007 pg 6
List Report 10/07/08 10:41 am
Controls
Control Set Value Elev Flow Status dP HL Inlet Outlet
ft US gpm psi ft psi g psi g
~N{161}FCV: 45 20.5 45 23% open 8.133 17.22 34.13 26
Cv: 17.1 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
~N{166}FCV: 45 20.5 45 22% open 8.779 18.59 34.45 25.67
Cv: 15.5 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
~N{171}FCV: 45 20.5 45 22% open 8.83 18.69 34.48 25.65
Cv: 15.5 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
~N{176}FCV: 45 20.5 45 22% open 8.914 18.87 34.52 25.6
Cv: 15.5 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
~N{181}FCV: 22%20.5 45 9.276 19.64 34.7 25.42
Cv: 15.5 Fp: 1 QMax: 88.57
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
~N{186}FCV: 45 20.5 45 22% open 8.548 18.1 34.34 25.79
Cv: 15.5 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
~N{191}FCV: 45 20.5 45 22% open 8.725 18.47 34.42 25.7
Cv: 15.5 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
~N{196}FCV: 45 20.5 45 22% open 8.776 18.58 34.45 25.67
Cv: 15.5 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
PIPE-FLO 2007 pg 7
List Report 10/07/08 10:41 am
Controls
Control Set Value Elev Flow Status dP HL Inlet Outlet
ft US gpm psi ft psi g psi g
~N{201}FCV: 45 20.5 45 22% open 9.085 19.23 34.6 25.52
Cv: 15.5 Fp: 1
Vendor:Damien Valve Co. (US sizes)
Body Type:Ball Model:B2000
Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open
Description:Segmented Guide Style:Standard
Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary
PIPE-FLO 2007 pg 8
List Report 10/07/08 10:41 am
Tanks
Tank Surface Pressure Level Bottom Elevation Status Flow Pressure Grade
psi g ft ft US gpm psi g ft
et-1 30 4 0 0 31.89 67.51
Connecting pipelines Flow (US gpm)Pressure (psi g)Grade (ft)
Pipe{069} @ 0 ft 0 31.89 67.51
Horizontal cylinder with spherical heads (convex) Volume: 1565 gallons
Diameter: 6 ft Cylinder: 8 ft Head: 2 ft
PIPE-FLO 2007 pg 9