Loading...
HomeMy WebLinkAboutNPEP waste heat design narrative GVEA NPEP Waste heat Recovery October 7, 2008 Mechanical Design Narrative Background GVEA has 22,000 gpm of 90 degF, 60% ethylene glycol solution available for possible use in space heating, given an application which is able to utilize the available fluid flow and temperature. It is desired to use a portion of this fluid (normally routed to a set of dry coolers for cooling using outside air before returning it to the condensers) to heat the nearby Turbine Building. The Turbine Building is currently heated with 500 kW (1,700 MBH) of electric unit heaters. Design Strategy A common use of heating fluid in the 90 deg F to 110 deg F range is radiant floor heat. Radiant wall and/or ceiling heat are also possible, although less common. After determining that it was not feasible to provide radiant floor heat due to current use of existing floor space, and that available factory-fabricated wall and ceiling panels are expensive architectural products, the use of air handlers (fan-coil units) and propeller unit heaters were each considered. Unit heaters take up less space and are the least expensive first-cost option for the heat provided. Unit heaters are typically operated with an entering fluid temperature in the range of 160 deg F to 200 deg F. However, a preliminary selection was made by extrapolating from a temperature correction chart, down to the available temperature of 90 deg F. The basis of design unit heater manufacturer, L.J. Wing, provided a performance sheet which confirmed performance under the design conditions. The selected model is HU-44. Product data and a performance data sheet are attached. Piping Calculations A calculation report is attached. The existing system pumps operate with a suction pressure of 30 psig and a discharge pressure of 70 psig. An imaginary expansion tank, set to 30 psig, and an imaginary pump set with a flow rate equal to the sum of the unit heater flow rates, was used to complete the circuit where the new piping is to be connected to the existing condenser cooling glycol system. L.J. Wing’s performance sheet (see below) shows a flow of 30 gm and a temperature change of 16.6 deg F. However the piping system was designed to allow flow up to 50 gpm per unit heater. The system pressure loss will be 29 psid with a flow of 50 gpm per unit heater, and only 15 psid with a flow of 45 gpm to each unit heater. This allows flexibility in the selection and operation of the unit heaters. Sequence of Operation During heating season, fluid flow to the Turbine Building will “run wild,” i.e. a set of valves at the new branches from the cooling system piping will be opened either manually or automatically in response to outside air temperature. The Turbine Building Unit Heaters are grouped into four zones, each with a wall-mounted space sensor. When a zone temperature is below set-point of 50 deg F, the VFD-driven unit heater fans in that zone will start on minimum stable fan speed. A PID logic loop will cause the unit heater fans to speed up the greater the difference between space set point and the sensed space temperature. A band-width or acceptable space temperature range of 49 deg F to 51 deg F may be used in the logic loop. UNIT HEATERS TECHNICAL GUIDE FOR: TGUH-1 HCF – High Ceiling Unit With Fixed Discharge HCR – High Ceiling Unit With Revolving Discharge HU – Horizontal Unit 2 In 1875, Mr. L.J. Wing founded the L.J Wing Company with his invention of a disc fan with variable pitched blades. Mr. Wing produced many notable inventions and was recognized by the American Institute for his outstanding achievements. These include his introduction of the first steam turbine driven fan in 1905; his development of the first floor mounted steam unit heater in 1917; and also in 1917, a test on the U.S.S. Kimberly using L.J. Wing ‘pressure type’ fans that resulted in over 200 World War I Navy ships being fitted with those ventilation fans. In 1920, L.J. Wing revolutionized the heating industry by producing ‘The Featherweight Heater’ which utilized a light- weight copper heating coil and became the first overhead unit heater. This led to the first Door Heater in 1921, the first integral face and bypass make-up air system (L.J. Wing’s FAS) in 1933, and the first rotating discharge nozzle in 1939. During World War II, L.J. Wing’s total manufacturing capacity was directed to the production of ventilating fans that were used on virtually all Naval landing and cargo ships of that period. After World War II, the L.J. Wing Company introduced the first Integral Face and Bypass Constant Volume Coil in 1961; the Vari-jet discharge in 1963; Gas Assembly Heaters with mounting heights over 100 feet in 1965; the Genex in 1985 (the first rotary heat exchanger indirect fired gas heater); and the Door Air Curtains in 1998. 4830 Transport Drive, Dallas, TX 75247 Tel. (214)638-6010 Fax (214) 905-0806 www.ljwing.com In the interest of product improvement, L.J. Wing reserves the right to make changes without notice. 3 TABLE OF CONTENTS HCF & HCR Steam Coil Performance. . . . . . . . . . . . . . . . . . . . . .4-5 HCF & HCR Hot Water Coil Performance. . . . . . . . . . . . . . . . . . .6-7 HCF & HCR General Dimensions. . . . . . . . . . . . . . . . . . . . . . . . .8-9 HCF & HCR Discharges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11 HCF & HCR Selection & Installation . . . . . . . . . . . . . . . . . . . . . . .12 HCF & HCR Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 HU Steam Coil Performance. . . . . . . . . . . . . . . . . . . . . . . . . . 14-15 HU Hot Water Coil Performance. . . . . . . . . . . . . . . . . . . . . . . 16-17 HU General Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Typical Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Typical Specifications - HCF Series. . . . . . . . . . . . . . . . . . . . . . . .20 Typical Specifications - HCR Series. . . . . . . . . . . . . . . . . . . . . . . .21 Typical Specifications - HU Series. . . . . . . . . . . . . . . . . . . . . . . . .22 16 HOT WATER PERFORMANCE TABLE Based on 200°F. Ent. Water & 60°F. Ent. Air Motor Speed CFM Motor Temp. SIZE (RPM) at Inlet H.P. Drop °F MBH GPM F.A.T. P.D. 10 36.4 7.4 105 1.1 2.5U 1550 750 1/20 20 27.6 2.8 94 0.2 25 24.8 2.0 90 0.1 10 39.7 8.0 101 1.3 13 1750 885 1/6 20 30.7 3.1 92 0.2 25 27.5 2.2 89 0.1 10 51.6 10.4 100 2.2 15 1150 1200 1/6 20 42.9 4.3 93 0.4 25 38.6 3.1 90 0.2 10 62.2 12.6 101 1.9 17 1150 1400 1/6 20 50.7 5.1 93 0.3 25 45.5 3.7 90 0.2 10 77.6 15.7 102 3.4 18 1750 1700 1/4 20 66.4 6.7 96 0.6 25 60.3 4.9 93 0.3 10 91.7 18.5 102 3.5 19 1150 2000 1/4 20 78.8 8.0 96 0.7 25 71.8 5.8 93 0.3 15 110.6 14.9 100 2.5 20 1750 2550 1/3 20 105.0 10.6 98 1.3 30 90.7 6.1 93 0.4 15 126.3 17.0 102 1.8 22 1150 2750 1/4 20 117.9 11.9 99 0.9 30 99.4 6.7 93 0.3 15 166.0 22.4 103 3.8 23 1150 3600 1/2 20 158.4 16.0 101 2.0 30 140.2 9.5 96 0.7 15 198.8 26.8 103 3.8 25 1150 4300 1/2 20 189.7 19.2 101 1.9 30 167.8 11.3 96 0.7 15 254.2 34.2 103 7.4 26 1150 5500 3/4 20 242.5 24.5 101 3.8 30 223.6 15.1 97 1.4 15 298.3 40.2 102 7.5 28 850 6500 3/4 20 284.5 28.7 100 3.8 30 262.7 17.7 97 1.5 15 309.1 41.5 101 8.0 30 850 7000 3/4 20 295.2 29.8 99 4.1 30 273.5 18.4 96 1.6 15 381.8 51.5 100 14.5 33 850 8700 1 1/2 20 370.9 37.5 99 7.7 30 347.0 23.4 97 3.0 15 449.0 60.3 101 14.3 36 850 10000 1 1/2 20 435.9 44.0 100 7.6 30 408.0 27.5 98 3.0 15 510.8 69.0 96 18.7 38 850 13000 2 20 499.6 50.5 95 10.0 30 469.1 31.6 93 3.9 15 652.9 87.8 96 5.1 40 850 16500 3 20 623.0 63.0 95 2.6 30 565.9 38.1 92 1.0 15 805.2 108.5 95 5.9 43 850 21500 5 20 767.7 77.5 93 3.0 30 705.5 47.5 90 1.1 15 896.7 121.0 91 7.4 44 850 27000 7 1/2 20 857.7 86.5 89 3.8 30 798.0 53 87 1.5 TABLE A HU UNIT HEATERS 17 HOT WATER CONVERSION FACTORS HOT WATER CONVERSION FACTORS — BASED ON 200˚F EWT, 60˚F EAT Entering Entering Air Temperature Water Temp. 40 50 60 70 80 90 100 160 .86 .79 .71 .64 .57 .50 .43 170 .93 .86 .79 .71 .64 .57 .50 180 1.00 .93 .86 .79 .71 .64 .57 190 1.07 1.00 .93 .86 .79 .71 .64 200 1.14 1.07 1.00 .93 .86 .79 .71 210 1.21 1.14 1.07 1.00 .93 .86 .79 220 1.29 1.21 1.14 1.07 1.00 .93 .86 230 1.36 1.29 1.21 1.14 1.07 1.00 .93 240 1.43 1.36 1.29 1.21 1.14 1.07 1.00 250 1.50 1.43 1.36 1.29 1.21 1.14 1.07 Notes: 1.To determine BTU at conditions under which heater will operate, multiply BTU at standard conditons (200° Ent. Water & 60° Ent. Air) by appropriate factors from table B. 2.To determine equivalent BTU at standard conditions, divide BTU at conditions under which heater will operate by appropriate factors from table. 3.New heater capacity is obtained with standard water rate. Example No. 1 Determine the heating capacity, GPM, water temp. drop, final air temperature, feet of water, pressure drop of a size 25 HU heater with 220°F entering water and 70°F entering air. Solution: Standard capacity = 198,800 BTU/HR. (from Table A) Conversion factor = 1.07 (from Table B) Heater Capactiy @ 220°F EWT., 70 F EAT = 1.07 x 198,800 = 212,700 BTU/HR. GPM = 26.8 GPM (from Table A) Water Temp. Drop = 212,700 = 16°F 500* x 26.8 Air Temp. Rise = 212,700 BTU/HR. = 46°F 1.085 x 4300 CFM Final Air Temp = EAT + TR = 70°F + 46 = 116°F Pressure Drop (from Table A) = 3.8 FT. Example No. 2 Select a Wing HU heater to deliver 320,000 BTU/HR with 230°F entering water and 70°F entering air. Solution: Refer to Table B for the conversion factor for 230°F entering water and 70°F entering air. Factor = 1.14 To find standard rating based on 200°F entering ware and 60°F entering air: 320,000 BTU/HR = 280,702 BTU/HR 1.14 Refer to Table A and select HU heater with capactiy nearest to 280,000 BTU/HR: TRY SIZE #28 HU HEATER (Determine actual performance) MBH = 1.14 x 284.5 MBH (from Table A) = 324 MBH GPM = 19.2 GPM (from Table A) Water Temp. Drop = 324,000 = 22.6°F 500* x 28.7 Pressure Drop = 3.8 Ft. (from Table A) Air Temp. Rise = 324,000 = 45.9°F 1.085 x 6500 CFM Final Air Temp = EAT + TR = 70°F + 45.9° = 115.9°F TABLE B 18 UNIT HEATERS (HU) Dimensions in Inches SIZE A B D E F G L M P R S U X Y 21/2 16 16 1/2 241/4 57/8 121/2 61/2 147/8 83/8 111 13 16 16 1/2 111/32 41/4 57/8 121/2 103/8 183/4 83/8 —21/2 1 15 193/4 193/4 5/8 21/2 47/16 61/2 361/2 14 22 8 1 1 1/2 11/4 17 193/4 193/4 5/8 21/2 47/16 61/2 361/2 14 22 8 1 1 1/2 11/4 18 223/4 193/4 5/8 21/2 47/16 61/2 361/2 14 22 8 1 1 1/2 11/4 19 223/4 223/4 5/8 21/2 51/8 75/16 361/2 18 27 9 1 1 1/2 11/4 20 273/4 223/4 5/8 21/2 51/8 75/16 361/2 18 27 9 1 1 1/2 11/4 22 273/4 273/4 5/8 25/8 577/16 361/2 18 27 9 1 1 1/2 11/2 23 323/4 273/4 5/8 25/8 577/16 361/2 18 27 9 1 1 1/2 11/2 25 323/4 323/4 5/8 25/8 577/16 361/2 19 28 9 1 1 1/2 11/2 26 391/8 323/4 5/8 25/8 577/16 481/2 19 28 9 1 1 1/2 11/2 28 391/8 391/8 7/8 33/8 795/8 481/2 17 29 12 1 1/2 22 30 391/8 391/8 7/8 33/8 795/8 481/2 17 29 12 1 1/2 22 33 451/8 391/8 7/8 33/8 795/8 481/2 18 30 12 1 1/2 22 36 451/8 451/8 7/8 33/8 795/8 481/2 18 30 12 1 1/2 22 38 451/8 451/8 7/8 33/8 795/8 481/2 18 30 12 1 1/2 22 40 631/8 515/8 7/8 319/16 111/4 151/4 481/2 19 43 24 1 1/2 23 43 631/8 515/8 7/8 319/16 111/4 151/4 481/2 19 43 24 1 1/2 23 44 631/8 515/8 7/8 319/16 111/4 151/4 481/2 21 45 24 1 1/2 23 Steam inlet or water return HorizontalVerticalHorizontal & vertical(8) 9/16 Dia. holes for mounting Discharge furnished mounted to this surface at factory All discharges are furnished with adjustable louvers Steam return or water inlet Y-I.P.S. male pipe connection PMax RMax UTyp XTyp DTyp A S B G F L L M E END VIEW ELEVATION ELEVATION HU UNIT HEATERS GENERAL DIMENSIONS MOUNTING HEIGHTS AND THROWS FOR HORIZONTAL UNIT HEATERS Effective Heater Max. Mtg. Heating Size Height Throw 11/2-U 8 ft. 20 ft. 2-U 9 ft. 25 ft. 21/2-U 9 ft. 30 ft. 13-U 10 ft. 35 ft. 15-U 12 ft. 40 ft. 17-U 12 ft. 45 ft. 18-U 13 ft. 50 ft. 19-U 13 ft. 55 ft. 20-U 13 ft. 60 ft. 22-U 14 ft. 65 ft. 23-U 14 ft. 70 ft. 25-U 15 ft. 75 ft. 26-U 17 ft. 80 ft. 28-U 18 ft. 88 ft. 30-U 18 ft. 92 ft. 33-U 19 ft. 102 ft. 36-U 19 ft. 110 ft. 38-U 20 ft. 122 ft. 40-U 22 ft. 135 ft. 43-U 25 ft. 155 ft. 44-U 28 ft. 180 ft. MOUNTING HEIGHTS AND THROWS FOR HORIZONTAL UNIT HEATERS Effective Heater Max. Mtg. Heating Size Height Throw MOUNTING HEIGHTS AND THROWS FOR HORIZONTAL UNIT HEATERS Fan motors on Size 21/2 are equipped with internal thermal overload protection. All other units should be equipped with either a manual or a magnetic starter both optional. These may be factory mounted and wired, or shipped loose. For your convenience we offer both NEMA and IEC rated starters. Please note that Size 21/2 units cannot be fitted with a unit- mounted starter and/or disconnect due to its small size. Smaller single phase motors may be controlled with a line voltage thermostat, while larger single phase and all three phase motors require a magnetic starter, with the thermostat controlling the holding coil. WIRING 19 SCHEMATIC Models equipped with revolving discharges are supplied with the “R” Drive motor prewired. Units supplied for any voltage/phase other than 115/1 or 230/1 are factory equipped with a step down trans- former. Many electrical items are available in explosion proof versions. These generally include fan motors, “R” Drive motors, room thermostats and door switches. The required Division, Class and Group must be known to properly select explosion proof items. TYPICAL THREE PHASE WIRING Base Bid Wing Model HU______ Horizontal Unit Heater(s) designed for indoor suspended application complete with non-overloading propeller fan, direct drive motor, heating section, and adjustable horizontal louvers. The unit shall be factory fabricated, assembled, wired, and tested prior to shipment in accordance with the specification and equipment schedule. CABINET: The unit casing shall be constructed from heavy gauge galvanized steel suitably reinforced to insure rigidity. Each unit and discharge louvers shall be painted with an air dried, beige colored alkyd enamel, ASTM-B117, 500 hour salt spray resistant paint finish. FAN SECTION: The unit shall be capable of delivering ______ SCFM with a non-overloading, (direct drive) (optional belt driven for sizes 28 through 44) propeller type fan blade driven by a TEFC, ______ HP, ______ RPM, ______ volt, (3) (1) phase, 60 cycle motor. The propeller fan shall be dynamically balanced and used in conjunction with an inlet venturi. Direct drive models shall include OSHA fan guard (optional on sizes 28 through 44). All electrical components shall carry UL or ETL and/or CSA listing, certification and/or recognition where applicable. All wiring shall be color coded in accordance with the NEC. All wire shall be rated to meet or exceed electrical requirements for voltage and ampacity, dielectric strength of sheathing and temperature. Control wiring shall terminate at terminal strip and include an identifying marker corresponding to the wiring diagram. In the interest of product improvement, we reserve the right to make changes without notice. TYPICAL SPECIFICATIONS – HU Series HEATER SECTION: Steam Units – Unit shall be capable of delivering ______ BTU/HR output based on ______˚F Entering Air Temperature and ______PSIG steam pressure at the heater. Hot Water Units – Unit shall be capable of delivering ______ BTU/HR output based on ______˚F Entering Air Temperature and ______GPM of ______˚F Entering Hot Water at the heater with a ______˚F temperature drop across the heater element. The water pressure drop across the heater element shall be ______ft. of water. Finned heating elements shall be fabricated of 3/8” diameter, 0.028” wall, seamless (copper) (optional CU/NI) (optional steel) tubing with expanded, rectangular 0.010” thick aluminum fins. The heating element shall be free to expand or contract without damage to adjacent tubes or header connections. Each tube shall be individually secured to the supply and return headers by a (brazed joint.) (optional mechanical joint consisting of a nut and flare.) Heating elements shall be secured by a channel shaped retainer that permits expansion and contraction. Each heating element assembly shall be factory tested at 200 PSIG steam and 500 PSIG hydrostatic pressure. DISCHARGE: Each unit’s discharge shall be provided with a (set of adjustable horizontal discharge louvers.) (set of adjustable horizontal discharge louvers and optional vertical discharge louvers for 4-way diffusion.) Discharge louvers shall be fabricated from galvanized steel. 22 List Report 10/07/08 10:41 am Company: HB Rueter Engineering Inc. Project: GVEA NPEP Waste Heat Recovery by: HBR System: low grade heat pipe Lineup: <Design Case> rev: 10/07/08 10:31 am Atm pressure: 14.7 psi a Total System Volume: 6914 gallons Pressure drop calculations: Darcy-Weisbach method, laminar cutoff Re = 2100 Calculated: 1 iteration Avg Deviation: 0 % Specifications Specification Material / Schedule Roughness Sizing Design Limits carbon steel Steel A53-B36.10 / 40 0.0018 in 2 psi loss/100 ft 0.5 to 10 ft/sec Valves: standard C: 140 5 to 100 psi g Fluid Zones Fluid Zone Fluid Temp Pressure Density Viscosity Pv / Pc or k °F psi g lb/ft³cP psi a 90 degF 60/40 EG 60% Dowtherm 4000 90 30 68.06 3.349 0.4389 / 902.1 PIPE-FLO 2007 pg 1 List Report 10/07/08 10:41 am Pipelines Pipeline From To Status Flow Velocity dP HL US gpm ft/sec psi ft Specification Fluid Zone Size Length K in ft Pipe{002}~N{003}~N{004}540 3.466 11.09 4.48 carbon steel 90 degF 60/40 EG 8 617 5.169 Pipe{003}~N{004}p-1 540 3.466 (0.445)0.057 carbon steel 90 degF 60/40 EG 8 10 0 Pipe{004}~N{005}~N{006}540 3.466 (6.491)4.259 carbon steel 90 degF 60/40 EG 8 604 4.382 Pipe{005}~N{007}~N{003}270 3.001 (17.57)0.811 carbon steel 90 degF 60/40 EG 6 81 2.234 Pipe{006}~N{008}~N{007}225 2.501 0.181 0.383 carbon steel 90 degF 60/40 EG 6 80 0.2979 Pipe{007}~N{009}~N{008}180 2.001 0.042 0.09 carbon steel 90 degF 60/40 EG 6 24 0.2979 Pipe{008}~N{010}~N{009}135 1.501 0.025 0.053 carbon steel 90 degF 60/40 EG 6 24 0.2979 Pipe{009}~N{011}~N{010}90 2.27 0.325 0.688 carbon steel 90 degF 60/40 EG 4 104 0.5265 Pipe{010}~N{012}~N{011}45 1.135 7.611 0.112 carbon steel 90 degF 60/40 EG 4 54 0.6836 Pipe{013}~N{006}~N{020}270 3.001 18.33 0.811 carbon steel 90 degF 60/40 EG 6 81 2.234 Pipe{014}~N{020}~N{019}225 2.501 0.181 0.383 carbon steel 90 degF 60/40 EG 6 80 0.2979 Pipe{015}~N{019}~N{018}180 2.001 0.042 0.09 carbon steel 90 degF 60/40 EG 6 24 0.2979 Pipe{016}~N{017}~N{016}45 1.135 (7.505)0.112 carbon steel 90 degF 60/40 EG 4 54 0.6836 Pipe{017}~N{018}~N{015}135 1.501 0.025 0.053 carbon steel 90 degF 60/40 EG 6 24 0.2979 Pipe{018}~N{015}~N{017}90 2.27 0.322 0.681 carbon steel 90 degF 60/40 EG 4 104 0.4361 Pipe{019}~N{006}~N{021}270 3.001 18.39 0.921 carbon steel 90 degF 60/40 EG 6 137 0.5597 Pipe{020}~N{022}~N{003}270 3.001 (17.51)0.924 carbon steel 90 degF 60/40 EG 6 137 0.5796 Pipe{021}~N{021}~N{023}225 2.501 0.043 0.091 carbon steel 90 degF 60/40 EG 6 14 0.2979 Pipe{022}~N{023}~N{024}180 2.001 0.155 0.327 carbon steel 90 degF 60/40 EG 6 104 0.2979 Pipe{023}~N{024}~N{025}135 1.501 0.025 0.053 carbon steel 90 degF 60/40 EG 6 24 0.2979 Pipe{024}~N{025}~N{026}90 2.27 0.087 0.184 carbon steel 90 degF 60/40 EG 4 24 0.4361 Pipe{025}~N{026}~N{027}45 1.135 (7.459)0.211 carbon steel 90 degF 60/40 EG 4 113 0.2279 Pipe{026}~N{032}~N{022}225 2.501 0.043 0.091 carbon steel 90 degF 60/40 EG 6 14 0.2979 Pipe{027}~N{031}~N{032}180 2.001 0.155 0.327 carbon steel 90 degF 60/40 EG 6 104 0.2979 Pipe{028}~N{030}~N{031}135 1.501 0.025 0.053 carbon steel 90 degF 60/40 EG 6 24 0.2979 Pipe{029}~N{029}~N{030}90 2.27 0.09 0.191 carbon steel 90 degF 60/40 EG 4 24 0.5265 Pipe{030}~N{028}~N{029}45 1.135 7.658 0.211 carbon steel 90 degF 60/40 EG 4 113 0.2279 PIPE-FLO 2007 pg 2 List Report 10/07/08 10:41 am Pipelines Pipeline From To Status Flow Velocity dP HL US gpm ft/sec psi ft Specification Fluid Zone Size Length K in ft Pipe{031}~N{021}~N{033}45 1.135 (7.508)0.106 carbon steel 90 degF 60/40 EG 4 40 1.66 Pipe{032}~N{034}~N{022}45 1.135 7.608 0.106 carbon steel 90 degF 60/40 EG 4 40 1.66 Pipe{069}~N{004}et-1 Limit 0 0 (6.613)0 carbon steel 90 degF 60/40 EG 3 4 0 Pipe{118}p-1 ~N{005}540 3.466 0.027 0.057 carbon steel 90 degF 60/40 EG 8 10 0 Pipe{126}~N{149}~N{028}45 1.955 4.345 0.199 carbon steel 90 degF 60/40 EG 3 5 2.786 Pipe{127}~N{027}~N{148}45 1.955 0.086 0.182 carbon steel 90 degF 60/40 EG 3 2 2.839 Pipe{128}~N{148}~N{149}45 1.955 (4.242)0.02 carbon steel 90 degF 60/40 EG 3 3 0 Pipe{129}~N{153}~N{012}45 1.955 4.345 0.199 carbon steel 90 degF 60/40 EG 3 5 2.786 Pipe{130}~N{016}~N{152}45 1.955 0.086 0.182 carbon steel 90 degF 60/40 EG 3 2 2.839 Pipe{131}~N{152}~N{153}45 1.955 (4.242)0.02 carbon steel 90 degF 60/40 EG 3 3 0 Pipe{132}~N{157}~N{034}45 1.955 4.345 0.199 carbon steel 90 degF 60/40 EG 3 5 2.786 Pipe{133}~N{033}~N{156}45 1.955 0.086 0.182 carbon steel 90 degF 60/40 EG 3 2 2.839 Pipe{134}~N{156}~N{157}45 1.955 (4.242)0.02 carbon steel 90 degF 60/40 EG 3 3 0 Pipe{135}~N{162}~N{011}45 1.955 11.98 0.366 carbon steel 90 degF 60/40 EG 3 30 2.786 Pipe{136}~N{017}~N{158}45 1.135 (2.932)0.043 carbon steel 90 degF 60/40 EG 4 5 1.709 Pipe{137}~N{161}~N{162}45 1.955 (5.862)0.091 carbon steel 90 degF 60/40 EG 3 5 0.969 Pipe{138}~N{158}~N{161}45 1.955 (2.903)0.104 carbon steel 90 degF 60/40 EG 3 15 0.05289 Pipe{139}~N{167}~N{010}45 1.955 11.98 0.366 carbon steel 90 degF 60/40 EG 3 30 2.786 Pipe{140}~N{015}~N{163}45 1.135 (2.932)0.043 carbon steel 90 degF 60/40 EG 4 5 1.709 Pipe{141}~N{166}~N{167}45 1.955 (5.862)0.091 carbon steel 90 degF 60/40 EG 3 5 0.969 Pipe{142}~N{163}~N{166}45 1.955 (2.903)0.104 carbon steel 90 degF 60/40 EG 3 15 0.05289 Pipe{143}~N{172}~N{009}45 1.955 11.98 0.366 carbon steel 90 degF 60/40 EG 3 30 2.786 Pipe{144}~N{018}~N{168}45 1.135 (2.932)0.043 carbon steel 90 degF 60/40 EG 4 5 1.709 Pipe{145}~N{171}~N{172}45 1.955 (5.862)0.091 carbon steel 90 degF 60/40 EG 3 5 0.969 Pipe{146}~N{168}~N{171}45 1.955 (2.903)0.104 carbon steel 90 degF 60/40 EG 3 15 0.05289 Pipe{147}~N{177}~N{008}45 1.955 11.98 0.366 carbon steel 90 degF 60/40 EG 3 30 2.786 Pipe{148}~N{019}~N{173}45 1.135 (2.932)0.043 carbon steel 90 degF 60/40 EG 4 5 1.709 PIPE-FLO 2007 pg 3 List Report 10/07/08 10:41 am Pipelines Pipeline From To Status Flow Velocity dP HL US gpm ft/sec psi ft Specification Fluid Zone Size Length K in ft Pipe{149}~N{176}~N{177}45 1.955 (5.862)0.091 carbon steel 90 degF 60/40 EG 3 5 0.969 Pipe{150}~N{173}~N{176}45 1.955 (2.903)0.104 carbon steel 90 degF 60/40 EG 3 15 0.05289 Pipe{151}~N{182}~N{007}45 1.955 11.98 0.366 carbon steel 90 degF 60/40 EG 3 30 2.786 Pipe{152}~N{020}~N{178}45 1.135 (2.932)0.043 carbon steel 90 degF 60/40 EG 4 5 1.709 Pipe{153}~N{181}~N{182}45 1.955 (5.862)0.091 carbon steel 90 degF 60/40 EG 3 5 0.969 Pipe{154}~N{178}~N{181}45 1.955 (2.903)0.104 carbon steel 90 degF 60/40 EG 3 15 0.05289 Pipe{155}~N{187}~N{029}45 1.955 11.98 0.366 carbon steel 90 degF 60/40 EG 3 30 2.786 Pipe{156}~N{026}~N{183}45 1.135 (2.932)0.043 carbon steel 90 degF 60/40 EG 4 5 1.709 Pipe{157}~N{186}~N{187}45 1.955 (5.862)0.091 carbon steel 90 degF 60/40 EG 3 5 0.969 Pipe{158}~N{183}~N{186}45 1.955 (2.903)0.104 carbon steel 90 degF 60/40 EG 3 15 0.05289 Pipe{159}~N{192}~N{030}45 1.955 11.98 0.366 carbon steel 90 degF 60/40 EG 3 30 2.786 Pipe{160}~N{025}~N{188}45 1.135 (2.932)0.043 carbon steel 90 degF 60/40 EG 4 5 1.709 Pipe{161}~N{191}~N{192}45 1.955 (5.862)0.091 carbon steel 90 degF 60/40 EG 3 5 0.969 Pipe{162}~N{188}~N{191}45 1.955 (2.903)0.104 carbon steel 90 degF 60/40 EG 3 15 0.05289 Pipe{163}~N{197}~N{031}45 1.955 11.98 0.366 carbon steel 90 degF 60/40 EG 3 30 2.786 Pipe{164}~N{024}~N{193}45 1.135 (2.932)0.043 carbon steel 90 degF 60/40 EG 4 5 1.709 Pipe{165}~N{196}~N{197}45 1.955 (5.862)0.091 carbon steel 90 degF 60/40 EG 3 5 0.969 Pipe{166}~N{193}~N{196}45 1.955 (2.903)0.104 carbon steel 90 degF 60/40 EG 3 15 0.05289 Pipe{167}~N{202}~N{032}45 1.955 11.98 0.366 carbon steel 90 degF 60/40 EG 3 30 2.786 Pipe{168}~N{023}~N{198}45 1.135 (2.932)0.043 carbon steel 90 degF 60/40 EG 4 5 1.709 Pipe{169}~N{201}~N{202}45 1.955 (5.862)0.091 carbon steel 90 degF 60/40 EG 3 5 0.969 Pipe{170}~N{198}~N{201}45 1.955 (2.903)0.104 carbon steel 90 degF 60/40 EG 3 15 0.05289 PIPE-FLO 2007 pg 4 List Report 10/07/08 10:41 am Nodes Node Elev Status Pressure Grade ft psi g ft ~N{003}-5 36.37 71.99 ~N{004}14 25.28 67.51 ~N{005}13 40.71 99.17 ~N{006}-5 47.2 94.91 ~N{007}33 18.8 72.8 ~N{008}33 18.98 73.18 ~N{009}33 19.02 73.27 ~N{010}33 19.05 73.32 ~N{011}33 19.37 74.01 ~N{012}17 26.98 74.12 ~N{015}33 28.61 93.57 ~N{016}17 35.8 92.78 ~N{017}33 28.29 92.89 ~N{018}33 28.64 93.63 ~N{019}33 28.68 93.72 ~N{020}33 28.86 94.1 ~N{021}33 28.81 93.99 ~N{022}33 18.85 72.91 ~N{023}33 28.77 93.9 ~N{024}33 28.61 93.57 ~N{025}33 28.59 93.52 ~N{026}33 28.5 93.33 ~N{027}17 35.96 93.12 ~N{028}17 26.82 73.78 ~N{029}33 19.17 73.57 ~N{030}33 19.08 73.38 ~N{031}33 19.05 73.33 ~N{032}33 18.9 73 ~N{033}17 36.32 93.88 ~N{034}17 26.46 73.02 ~N{158}26.75 31.23 92.85 ~N{163}26.75 31.55 93.53 ~N{168}26.75 31.57 93.58 ~N{173}26.75 31.61 93.67 ~N{178}26.75 31.8 94.06 ~N{183}26.75 31.43 93.29 ~N{188}26.75 31.52 93.48 ~N{193}26.75 31.55 93.53 ~N{198}26.75 31.7 93.86 PIPE-FLO 2007 pg 5 List Report 10/07/08 10:41 am Pumps Pump Flow Status Total head dP Speed NPSHa Suction Discharge Suction Discharge US gpm ft psi rpm ft psi g psi g ft ft p-1 540 (31.78)(15.01)---84.64 25.72 40.73 13 13 Catalog: Armstrong.60 - Armstrong Type:4300 Split Coupled Speed:1200 rpm Size:8x8x11.5 Dia:11.5 in File:Armstrong.60 Components Component Flow Status Head Loss dP Inlet Outlet Inlet Outlet US gpm ft psi psi g psi g ft ft ~N{149}45 1.062 0.501 31.67 31.17 8 8 ~N{153}45 1.062 0.501 31.83 31.33 8 8 ~N{157}45 1.062 0.501 31.31 30.81 8 8 ~N{162}45 1.062 0.501 31.86 31.36 8 8 ~N{167}45 1.062 0.501 31.53 31.03 8 8 ~N{172}45 1.062 0.501 31.51 31.01 8 8 ~N{177}45 1.062 0.501 31.47 30.96 8 8 ~N{182}45 1.062 0.501 31.28 30.78 8 8 ~N{187}45 1.062 0.501 31.65 31.15 8 8 ~N{192}45 1.062 0.501 31.56 31.06 8 8 ~N{197}45 1.062 0.501 31.54 31.03 8 8 ~N{202}45 1.062 0.501 31.38 30.88 8 8 Controls Control Set Value Elev Flow Status dP HL Inlet Outlet ft US gpm psi ft psi g psi g ~N{148}FCV: 45 17 45 22% open 8.446 17.88 35.87 27.43 Cv: 15.5 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary ~N{152}FCV: 45 17 45 23% open 8.123 17.2 35.71 27.59 Cv: 17.1 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary ~N{156}FCV: 45 17 45 22% open 9.167 19.4 36.23 27.07 Cv: 15.5 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary PIPE-FLO 2007 pg 6 List Report 10/07/08 10:41 am Controls Control Set Value Elev Flow Status dP HL Inlet Outlet ft US gpm psi ft psi g psi g ~N{161}FCV: 45 20.5 45 23% open 8.133 17.22 34.13 26 Cv: 17.1 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary ~N{166}FCV: 45 20.5 45 22% open 8.779 18.59 34.45 25.67 Cv: 15.5 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary ~N{171}FCV: 45 20.5 45 22% open 8.83 18.69 34.48 25.65 Cv: 15.5 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary ~N{176}FCV: 45 20.5 45 22% open 8.914 18.87 34.52 25.6 Cv: 15.5 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary ~N{181}FCV: 22%20.5 45 9.276 19.64 34.7 25.42 Cv: 15.5 Fp: 1 QMax: 88.57 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary ~N{186}FCV: 45 20.5 45 22% open 8.548 18.1 34.34 25.79 Cv: 15.5 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary ~N{191}FCV: 45 20.5 45 22% open 8.725 18.47 34.42 25.7 Cv: 15.5 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary ~N{196}FCV: 45 20.5 45 22% open 8.776 18.58 34.45 25.67 Cv: 15.5 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary PIPE-FLO 2007 pg 7 List Report 10/07/08 10:41 am Controls Control Set Value Elev Flow Status dP HL Inlet Outlet ft US gpm psi ft psi g psi g ~N{201}FCV: 45 20.5 45 22% open 9.085 19.23 34.6 25.52 Cv: 15.5 Fp: 1 Vendor:Damien Valve Co. (US sizes) Body Type:Ball Model:B2000 Char Trim:Equal Percentage Press Rating: Class 300 Flow Dir: to Open Description:Segmented Guide Style:Standard Valve Size:3 Seat Size: 3 Stroke: ---Actuator: rotary PIPE-FLO 2007 pg 8 List Report 10/07/08 10:41 am Tanks Tank Surface Pressure Level Bottom Elevation Status Flow Pressure Grade psi g ft ft US gpm psi g ft et-1 30 4 0 0 31.89 67.51 Connecting pipelines Flow (US gpm)Pressure (psi g)Grade (ft) Pipe{069} @ 0 ft 0 31.89 67.51 Horizontal cylinder with spherical heads (convex) Volume: 1565 gallons Diameter: 6 ft Cylinder: 8 ft Head: 2 ft PIPE-FLO 2007 pg 9