Loading...
HomeMy WebLinkAbout1 Alaska Coal Geology, Resources and CoalbedU.S. Department of the Interior U.S. Geological Survey Alaska Coal Geology, Resources, and Coalbed Methane Potential By Romeo M. Flores, Gary D. Stricker, and Scott A. Kinney U.S. Geological Survey, Denver, Colorado 80225 DDS–77 U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2004 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Conversion Factors Multiply By To obtain Length inch (in.) 2.54 centimeter (cm) inch (in.) 25.4 millimeter (mm) foot (ft.) 0.3048 meter (m) mile (mi.) 1.609 kilometer (km) Area acre 4,047 square meter (m2) acre 0.4047 hectare (ha) acre 0.4047 square hectometer (hm2) acre 0.004047 square kilometer (km2) square foot (ft2) 9,290 square centimeter (cm2) square foot (ft2) 0.0929 square meter (m2) square inch (in2) 6.452 square centimeter (cm2) square mile (mi2) 259.0 hectare (ha) square mile (mi2) 2.590 square kilometer (km2) Weight metric ton 1.10 ton, short (2,000 lb) ton, short (2,000 lb) 0.907 metric ton pound (lb) 453.59 gram (gm) gram (gm) 0.0022 pound (lb) Energy Btu per pound (Btu) 0.0022 mega joules per kilogram Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: °F= (1.8x°C) +32 Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows: °C= (°F-32)/1.8 III Contents Abstract ..........................................................................................................................................................1 Introduction ...................................................................................................................................................1 Geological Setting ........................................................................................................................................4 Physiographic Regions ...................................................................................................................4 Regional Geology ............................................................................................................................4 Origin of Alaska Coal ....................................................................................................................................6 Coal Metamorphism, Composition, Rank, and Occurrence...................................................................7 Coal Resource Classification ......................................................................................................................8 Distribution of Coal in Alaska....................................................................................................................10 Northern Alaska-Slope Coal Province ....................................................................................................10 Cretaceous Rocks .......................................................................................................................................10 Nanushuk Group............................................................................................................................10 Colville Group .................................................................................................................................13 Cretaceous-Tertiary Rocks........................................................................................................................16 Jago River Formation....................................................................................................................17 Sagavanirktok Formation .............................................................................................................17 Coal Resource Assessment of the Northern Alaska-Slope Coal Province .......................................22 Cretaceous Rocks .........................................................................................................................22 Coal Quality ....................................................................................................................................23 Tertiary Rocks ................................................................................................................................24 Coal Quality ....................................................................................................................................24 Coal Petrology................................................................................................................................24 Central Alaska-Nenana Coal Province ...................................................................................................25 Tertiary Usibelli Group ..................................................................................................................26 Healy Creek Formation .................................................................................................................27 Sanctuary Formation ....................................................................................................................31 Suntrana Formation......................................................................................................................31 Lignite Creek Formation ...............................................................................................................32 Grubstake Formation ....................................................................................................................32 Nenana Gravel ...............................................................................................................................35 Coal Resource Assessment of the Central Alaska-Nenana Coal Province ......................................35 Coal Quality ....................................................................................................................................39 Coal Petrology................................................................................................................................39 Southern Alaska-Cook Inlet Coal Province ............................................................................................40 Tertiary Rocks ................................................................................................................................42 Lower Tertiary Rocks ....................................................................................................................42 Upper Tertiary Kenai Group .........................................................................................................45 Hemlock Conglomerate ................................................................................................................52 Tyonek Formation ..........................................................................................................................54 Beluga Formation ..........................................................................................................................60 IV Sterling Formation .........................................................................................................................65 Coalfields ........................................................................................................................................68 Matanuska Coalfield .....................................................................................................................68 Susitna-Beluga Coalfield .............................................................................................................74 Broad Pass Coalfield ....................................................................................................................75 Kenai Coalfield ...............................................................................................................................75 Coal Resource Assessment in the Southern Alaska-Cook Inlet Coal Province ...............................76 Matanuska Coalfield .....................................................................................................................78 Susitna-Beluga Coalfield .............................................................................................................78 Broad Pass Coalfield....................................................................................................................79 Kenai Coalfield ............................................................................................................................................79 Coal Quality ....................................................................................................................................79 Coal Petrology................................................................................................................................80 Coalbed Methane Potential ......................................................................................................................80 Northern Alaska-Slope Coal Province .......................................................................................81 Central Alaska-Nenana Coal Province ......................................................................................82 Southern Alaska-Cook Inlet Coal Province ...............................................................................82 Summary ....................................................................................................................................................107 Acknowledgments ....................................................................................................................................112 References Cited ......................................................................................................................................117 Figures 1. Map showing coal ranks in coal basins and coal occurrences in Alaska with emphasis on the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces ........................................................................................................................................2 2. Map showing the coal rank and land ownership of Alaska ...........................................................3 3. Map showing the geology and structure of Alaska .........................................................................3 4. Map showing the physiographic regions of Alaska ........................................................................5 5. Map showing general tectonic framework of the Cook Inlet Basin, associated subduction zone, accreted terranes, and volcanic arc.......................................................................................6 6. Stratigraphic column of the Mesozoic and Cenozoic rocks in the Northern Alaska- Slope coal province...............................................................................................................................9 7. Photograph of a coal bed (about 20 feet thick) in the Nanushuk Group ....................................11 8. Map showing net coal thickness map of the Nanushuk Group in the western part of the Northern Alaska-Slope coal province .......................................................................................11 9. Cross section showing the Nanushuk progradation sequences.................................................12 10. Sandstone percentage contour map in the Northern Alaska-Slope coal province .................13 11. Paleogeographic maps showing the depositional environments of the Nanushuk Group in the central Northern Alaska-Slope coal province. (A) early to middle Albian time; (B) middle to late Albian time; (C) late Albian to Cenomanian (?) time; and (D) Cenomanian time (maximum regression)...........................................................................................................................14 V 12. Photograph of interbedded coal, sandstone, siltstone, and mudstone of the Kogosukruk Tongue of the Prince Creek Formation along the lower Colville River downstream from the mouth of the Anaktuvuk River .........................................................16 13. Paleogeographic map showing the depositional environments of the Jago River Formation in the Arctic National Wildlife Refuge area .......................................................17 14. Photograph of a coal bed underlain by a sandstone in the Sagavanirktok Formation ..............................................................................................................................................18 15. Photograph of fluvial-channel sandstone and associated rocks in the Sagavanirktok Formation....................................................................................................................18 16. Stratigraphic cross section of the Tertiary Brookian sequence in the eastern part of the National Petroleum Reserve Alaska ..........................................................................................19 17. West to east stratigraphic cross section showing variations of the coal beds, conglomerates, sandstones, mudstones, and siltstones in the Staines Tongue of the Sagavanirktok Formation between the National Petroleum Reserve in Alaska and Arctic National Wildlife Refuge ........................................................................................................20 18. Maps showing the (A) depth to top of coal-bearing interval and (B) net coal thickness isopach of the Staines Tongue of the Sagavanirktok Formation .................................................21 19. Map showing the coalfields in the Central Alaska-Nenana coal province ...............................25 20. Generalized stratigraphic and lithofacies column of the Usibelli Group in the Central Alaska-Nenana coal province ...........................................................................................................26 21. Stratigraphic cross section showing the variations of the conglomerates, sandstones, siltstones, mudstones, and coal beds in the lower part of the Usibelli Group in the Healy Creek coalfield on the southern part of the Central Alaska-Nenana coal province ................27 22. Paleogeographic maps showing depositional environments of: (A) Healy Creek Formation, (B) Sanctuary Formation, (C) Suntrana Formation, and (D) Lignite Creek Formation ..............................................................................................................................................28 23. Crossbed-orientation measurements in fluvial-channel sandstones in the Healy Creek, Suntrana, and Lignite Creek Formations in Suntrana area ..........................................................28 24. Stratigraphic cross section showing the basal conglomerates and sandstones in the lower part of the Healy Creek Formation east of Suntrana ..........................................................29 25. Photograph of conglomerates (a few inches to 5 feet thick or a few centimeters to 1.5 meters) and sandstones (6 inches to 8 feet thick or 15.2 centimeters to 2.4 meters) deposited by braided streams in the lower part of the Healy Creek Formation in east of Suntrana ...........................................................................................................................................29 26. Stratigraphic cross section showing the middle, coal-bearing part of the Healy Creek Formation east of Suntrana ...............................................................................................................30 27. Stratigraphic cross section of the uppermost part of the Healy Creek Formation showing the fluvial-channel sandstones and F coal bed, and overlying Sanctuary Formation east of Suntrana ...........................................................................................................................................30 28. Photograph of the uppermost part of the Healy Creek Formation, F coal bed, and overlying mudstones of the Sanctuary Formation in the Lignite Creek coalfield .....................31 29. Photograph of the lacustrine mudstone and lenticular limestone units in the Sanctuary Formation in the Lignite Creek coalfield ......................................................................................... 31 VI 30. Stratigraphic cross section of the Suntrana Formation showing the Nos. 2, 3, and 4 coal beds and interbedded fluvial-channel sandstones west of Suntrana........................................32 31. Photograph of the Suntrana showing the thick No. 3 coal bed, clinker bed of No. 4 coal bed, thin No. 5 coal bed, and interbedded fluvial-channel sandstones and clay plug-overbank deposits west of Suntrana .......................................................................................33 32. Photograph of the abandoned fluvial-channel mudstone or clay plug deposit........................33 33. Stratigraphic cross section of the Nos. 3, 4, and 6 coal beds of the Suntrana Formation in the Poker Flats strip mine of Usibelli Coal Mine ........................................................................34 34. Photograph of the Poker Flats strip mine showing the highwall exposing fluvial-channel sandstones and No. 3 coal bed (lower bench) and No. 4 coal bed (upper bench)...................34 35. Thickness map of the No. 6 coal bed of the Suntrana Formation................................................35 36. Stratigraphic cross section of the lower part of the Lignite Creek Formation showing interbedded fluvial-channel sandstones, crevasse splay flood-plain deposits, and thin coal beds west of Suntrana ...............................................................................................................36 37. Photograph of the interbedded fluvial-channel sandstones, flood-plain deposits, and an interbedded thin coal bed of the Lignite Creek Formation west of Suntrana ......................36 38. Photograph of the coarsening-upward mudstone, siltstone, and sandstone sequence overlain by thin coal beds of the Lignite Creek Formation west of Suntrana ............................36 39. Stratigraphic cross section showing variation of minable Healy Creek coal beds and associated sandstones, mudstones, and siltstones in the Jarvis Creek coalfield ...................38 40. Map showing coalfields in the Southern Alaska-Cook Inlet coal province ...............................41 41. Tectonic and volcanic settings of the Cook Inlet Basin .................................................................42 42. Generalized time-transgressive stratigraphy in the Cook Inlet Basin ........................................43 43. Depositional model of the Kenai Group in the Cook Inlet Basin ..................................................44 44. Generalized chronostratigraphic column of the coal-bearing Kenai Group and related rock units in the Southern Alaska-Cook Inlet coal province ........................................................44 45. A generalized stratigraphic column of the Chickaloon and Wishbone Formations in the Matanuska coalfield ............................................................................................................................45 46. Photograph of coal beds of the Chickaloon Formation in the Wishbone Hill coal district ......46 47. Photograph of the lenticular fluvial-channel sandstone (20 feet or 6.1 meters thick) and associated rocks of the Chickaloon Formation in the Wishbone Hill coal district ...................46 48. Photograph of the tabular crevasse splay sandstone and associated flood-plain deposits of the Chickaloon Formation in the Wishbone Hill coal district ...................................47 49. Vertical and lateral lithofacies variations of the Wishbone Formation in the Wishbone Hill coal district ....................................................................................................................................47 50. Photograph of the braided-stream-deposited conglomerates and sandstones in the Wishbone Formation in the Wishbone Hill coal district ................................................................48 51. Stratigraphic cross section of the lower part of the Chickaloon Formation in the Wishbone Hill coal district .................................................................................................................48 VII 52. Photograph of the lower part of the Chickaloon Formation showing the Midway coal zone and adjoining fluvial-channel sandstones in the Wishbone Hill coal district ..................49 53. Stratigraphic cross section of the middle part of the Chickaloon Formation in the Wishbone Hill coal district .................................................................................................................49 54. Photograph of the upper part of the Chickaloon Formation showing the Premier coal zone (50 feet or 15.2 meters thick), Jonesville coal zone (30 feet or 9.1 meters thick), and associated fine-grained sediments in the Wishbone Hill coal district .......................................50 55. Stratigraphic cross section of the upper part of the Chickaloon Formation in the Wishbone Hill coal district .................................................................................................................50 56. Photograph of the upper part of the Chickaloon Formation showing the Jonesville coal zone overlain by fluvial-channel sandstones (>50 feet or >15.2 meters thick) of the Wishbone Formation in the Wishbone Hill coal district ................................................................51 57. Paleogeographic map showing depositional environments of the Chickaloon Formation in the Matanuska coalfield .................................................................................................................51 58. Map showing lines of stratigraphic cross sections of the Kenai Group in the offshore and onshore Cook Inlet Basin. Map also shows areas of cross sections the Kenai Group in the Chuitna area, Capps Glacier area, along the west coast of Kenai Peninsula, and along the north coast of Kachemak Bay .........................................................................................52 59. Offshore north-south cross section (A–A’) of the Kenai Group along the axis of the Cook Inlet Basin .............................................................................................................................................53 60. Offshore (west) to onshore (east) cross section (B–B’) of the Kenai Group across the Cook Inlet Basin ...................................................................................................................................54 61. Onshore north-south cross section (C–C’) of the Kenai Group along the western part of the Kenai Peninsula or eastern margin of the Cook Inlet Basin .................................................55 62. Photograph of conglomerates in the Hemlock Conglomerate in the Katmai National Park ...56 63. Photograph of sandstones in the Hemlock Conglomerate in the Katmai National Park .........56 64. Photograph of thin coal and carbonaceous shale beds in the Hemlock Conglomerate in the Katmai National Park....................................................................................................................57 65. Photograph of braided stream deposits (conglomeratic lower part) in the Hemlock Conglomerate ........................................................................................................................................57 66. Net coal thickness isopach map of the Tyonek Formation in the Cook Inlet Basin ..................58 67. Photograph of coal beds and interbedded fluvial-channel sandstones and mudstones in the Tyonek Formation in the Chuitna River drainage basin ......................................................58 68. Photograph of fluvial-channel sandstones and Chuitna coal bed in the Tyonek Formation in the Chuitna River drainage basin ..................................................................................................58 69. Net sandstone thickness isopach map of the Tyonek Formation in the Cook Inlet Basin .......59 70. Paleogeographic map (block diagram) showing depositional environments of the Tyonek Formation in the Cook Inlet Basin........................................................................................59 71. Generalized stratigraphic column of minable coal beds in the Tyonek Formation in the Chuitna River drainage basin and adjoining areas ........................................................................60 VIII 72. Three-dimensional cross sections (fence diagram) of the Chuitna coal bed and interbedded erosional-based sandstones deposited by braided streams of the Tyonek Formation in the Chuitna River drainage basin ................................................................61 73. Stratigraphic cross section of the coal beds, fluvial-channel sandstones, and intertidal deposits in the Diamond Chuitna lease area east of the Chuitna River drainage basin .........61 74. Stratigraphic lithofacies sequence in the Tyonek Formation showing tidal sandstone flats facies near Wasilla .....................................................................................................................62 75. Stratigraphic cross section of the coal beds and fluvial-channel sandstones in the Diamond Chuitna lease area east of the Chuitna River drainage area ......................................63 76. Vertical lithofacies and associated geophysical logs of minable coal beds (Reds 1, 2, and 3, and Blue) and interbedded fluvial-channel sandstones, and flood plain claystones and siltstones in the Diamond Chuitna lease area east of the Chuitna River drainage area .............................................................................................................................63 77. Vertical lithofacies of coal beds (Reds 1, 2, and 3) and interbedded tidal and intertidal sandstones, siltstones, and mudstones in the Diamond Chuitna lease area east of the Chuitna River drainage area ..............................................................................................................64 78. Photograph of the Capps Glacier coal bed (50 feet or 15.2 meters thick) and overlying fluvial-channel sandstones in the Capps Glacier area..................................................................64 79. Photograph of the coal beds and interbedded flood-plain/crevasse splay deposits in the Capps Glacier area .............................................................................................................................64 80. Structural cross section (north-south) of the Capps Glacier coal bed and associated rocks of the Tyonek Formation in the Capps Glacier area ............................................................64 81. Stratigraphic cross section (northeast-southwest) of the rocks of the Tyonek Formation at Barabara Point showing lenticular conglomerates, sandstone, and coal beds ..................65 82. Stratigraphic (structural) cross section of the Capps Glacier coal bed and associated rocks of the Tyonek Formation in the Capps Glacier area ............................................................65 83. Photograph of the fluvial-channel sandstones (average 60 feet or 18.3 meters thick), flood-plain mudstone and siltstones, and coal beds of the Beluga Formation along the coastal bluffs in west Homer, Kenai Peninsula ...............................................................................66 84. Photograph of a coal bed (3.5 feet or 1.1 meters thick) and crevasse splay deposits of the Beluga Formation along the coastal bluffs west of Homer, Kenai Peninsula ...........................66 85. Stratigraphic cross section of the Beluga Formation showing thick coal beds (for example, Cooper coal bed), fluvial-channel sandstones, and flood-plain mudstone and siltstone along the coastal bluffs west of Homer, Kenai Peninsula ....................................67 86. Stratigraphic cross section of the Beluga Formation showing interbedded thin to thick coal beds (for example, Cooper coal bed), fluvial-channel sandstones, and flood-plain deposits along the coastal bluffs west of Homer, Kenai Peninsula ............................................67 87. Paleogeographic map (block diagram) showing depositional environments of the Beluga Formation in the Cook Inlet Basin .....................................................................................................68 88. Photograph of fluvial-channel sandstones and thin coal of the Sterling Formation along the coastal bluffs in the Clam Gulch area, Kenai Peninsula..............................................69 IX 89. Photograph of fluvial-channel sandstones overlying thin (3 feet [0.9 meter]) to thick (12 feet [3.6 meters]) coal beds of the Sterling Formation along the coastal bluffs between the Clam Gulch and Ninilchik, Kenai Peninsula ..........................................................69 90. Stratigraphic cross sections showing variations in fluvial-channel architecture in the upper part of the Sterling Formation in the Clam Gulch area, Kenai Peninsula: A, Lower part of Clamgulchian type section; B, Middle part of Clamgulchian type section; C, Upper part of Clamgulchian type section ..................................................................70 91. Stratigraphic cross section showing coal beds, fluvial-channel sandstones, and interbedded flood-plain mudstones and siltstones in the lower part of the Sterling Formation between the Clam Gulch area and Ninilchik, Kenai Peninsula ..............................71 92. Photograph of thin to thick coal beds in the lower part of the Sterling Formation.................72 93. Block diagram showing depositional environments of the Sterling Formation in the Cook Inlet Basin .................................................................................................................................72 94. Map showing the geology and coal districts in the Matanuska coalfield ...............................73 95. Cross section of the Premier and Jonesville coal zones of the Chickaloon Formation in the Wishbone Hill coal district ........................................................................................................73 96. Geologic map of the Wishbone Hill coal district showing doubly plunging syncline disrupted by normal faults ................................................................................................................74 97. Photograph of a 4-foot-thick (1.2 meters) coal bed interbedded with fluvial-channel sandstones and flood plain mudstones and siltstones in the Sterling Formation in the Clam Gulch area .................................................................................................................................76 98. Stratigraphic cross section showing interbedded coal beds, fluvial-channel sandstones, and flood-plain mudstones and siltstones in the lowermost part of the Sterling Formation along the north shore of Kachemak Bay east and west of McNeil Canyon ............................76 99. Photograph of a coal bed with tonstein partings and related rocks of the Beluga Formation along the beach bluffs on the northern shore of the Kachemak Bay ....................76 100. Stratigraphic cross section showing interbedded coal beds, fluvial-channel sandstones, and flood-plain mudstones and siltstones in the uppermost part of the Beluga Formation west of McNeil Canyon ....................................................................................................................76 101. Stratigraphic cross section showing interbedded coal beds, fluvial-channel sandstones, and flood-plain mudstones and siltstones in the uppermost part of the Beluga Formation at the mouth of Fritz Creek ...................................................................77 102. Distribution of surface vitrinite reflectance values at sea level in the Northern Alaska-Slope coal province .............................................................................................................83 103. Map of the Northern Alaska-Slope coal province showing distribution of bituminous and subbituminous coals ..................................................................................................................83 104. Map showing surface vitrinite reflectance values in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces ............................................84 105. Vitrinite reflectance values for the Meade Quadrangle, National Petroleum Reserve in Alaska ............................................................................................................................................106 106. Vitrinite reflectance values for the Tunalik No. 1 well, National Petroleum Reserve in Alaska ............................................................................................................................................106 X 107. Stratigraphic cross section of the Nanushuk Group with superimposed vitrinite reflectance values ...........................................................................................................................108 108. Coalbed methane potential in the Nanushuk Group coals based on the thickness and vitrinite reflectance of the nonmarine part of the group in the Northern Alaska-Slope coal province ....................................................................................................................................109 109. Distribution of surface vitrinite reflectance (Ro) values in the Northern Alaska-Slope coal province ....................................................................................................................................109 110. Map of the Cook Inlet Basin showing distribution of oil and gas fields offshore and onshore ..............................................................................................................................................110 111. Facies profile of the lower part of the Sterling Formation and accompanying downhole logs showing horizons of gas accumulation...............................................................................111 112. Facies profile of the upper part of the Beluga Formation and accompanying downhole logs showing horizons of gas-perforated intervals ...................................................................112 113. Location map of the Kenai gas field in the Kenai Peninsula....................................................112 114. Basinwide and vertical variations of vitrinite reflectance (Ro) values in the Cook Inlet Basin ..................................................................................................................................................113 115. Coalbed methane prospect area and depths to vitrinite reflectance values of 0.6 percent superimposed on the thickness isopach of the Tyonek Formation south of the Castle Mountain fault in the northeastern part of the Cook Inlet .....................................113 116. Downhole geophysical logs, hot wire total gas and methane contents, vitrinite reflectance values, and illite diagenetic values in the Edna Mae Walker drill hole ............114 117. Stratigraphic cross section of the Kenai Group in the offshore Cook Inlet Basin with superimposed vitrinite reflectance values .................................................................................115 118. Stratigraphic cross section of the Kenai Group in the onshore Cook Inlet Basin with superimposed vitrinite reflectance values .................................................................................116 Tables 1. Coal resource estimates for Alaska using the classification system of Wood and others (1983)........8 2. Estimates of hypothetical coal resources for the Cretaceous Nanushuk Group and Tertiary Staines Tongue in the Sagavanirktok Formation in the Northern Alaska-Slope coal province .........23 3. (a) Coal quality of coal deposits in the Cretaceous Nanushuk Group in the Northern Alaska-Slope coal province. (b) Coal quality of coal deposits in the Tertiary Staines Tongue in the Sagavanirktok Formation in the Northern Alaska-Slope coal province ..............24 4. Estimates of coal resources for the Tertiary Usibelli Group in the Central Alaska-Nenana coal province ..........................................................................................................................................37 5. Coal quality of coal deposits in the Tertiary Usibelli Group in the Central Alaska-Nenana coal province..........................................................................................................................................40 XI 6. Estimates of coal resources for the Tertiary Kenai Group in the Matanuska, Broad Pass, Susitna, and Kenai coalfields in the Southern Alaska-Cook Inlet coal province .......................78 7. Range (minimum and maximum values) of quality parameters for Tertiary coal deposits in the Matanuska, Broad Pass, Susitna, and Kenai coalfields in the Southern Alaska-Cook Inlet coal province .................................................................................................................................80 8. (a) Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. (b) Vitrinite reflectance values of coals across the surface in the Northern Alaska Slope, Central-Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces ..............(a) 85, (b) 102 9. Properties of sandstone reservoirs and associated gas in the Sterling and Beluga Formations ............................................................................................................................................110 1 Abstract Estimated Alaska coal resources are largely in Creta- ceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bitu- minous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to sub- bituminous coal with minor amounts of bituminous and semi- anthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaskaʼs coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan- Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large mag- nitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith, 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 – 19, 1995, Tuscaloosa, University of Alabama, p. 1 – 21. Introduction This report is a synthesis of the largely untapped hypo- thetical coal resources of Alaska, which are estimated to be as much as 5,526 billion short (or 5.5 trillion) tons (5,012 billion metric tons). The last coal resource assessment in 1974 for the conterminous United States (coal remaining in the ground) estimated a total coal resource of 3,968 bil- lion short tons (3,600 billion metric tons) or 4 trillion short tons (Averitt, 1975). Thus, the Alaska coal resource estimate surpasses the total coal resources of the conterminous United States by 40 percent. This report focuses on an assessment of the coal resources of the three major coal provinces in Alaska: Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet and makes up 87 percent of the total coal resources of the State (fig. 1). Also, it will concentrate on the origin, geologic setting, and depositional environments of the coal, as well as coal rank, quality, and petrology and the amount of the resources. In addition, this report will sum- marize the coalbed methane potential and prioritize areas for exploration and development in these major coal provinces. The coal resources of Alaska occur in discrete areas (coalfields) and in isolated, unrelated outcrops (occurrences) (fig. 1). A coalfield may contain coal beds of various ranks, shown in figure 2, and different ages and geologic settings, shown in figure 3. Coal resources and geological settings of minor coalfields not reported here may be found in Stricker (1991) and Wahrhaftig and others (1994). Before the arrival of the European immigrants, native inhabitants used coal in Alaska (Chapman and Sable, 1960, p. 159). The Beechey expedition of 1826–1827 reported the presence of coal in Alaska (Huish, 1836; Dall, 1896). Whal- ing shippers mined coal from near Cape Beaufort, north of the Arctic Circle, before the turn of the twentieth century (Con- well and Triplehorn, 1976). The first coal mine was opened Alaska Coal Geology, Resources, and Coalbed Methane Potential By Romeo M. Flores, Gary D. Stricker, and Scott A. Kinney 2 Alaska Coal Geology, Resources, and Coalbed Methane Potential in 1855 and closed in 1867 at Port Graham (fig. 2) on the southwestern part of the Kenai Peninsula (Martin, 1915). The Russians opened and operated this coal mine before the United States took possession of the Alaska Territory. The U.S. Con- gress passed two significant legislative acts in 1914 that led to development of coal resources of Alaska: (1) the Alaska Coal Leasing Act promoted opening mines in the Alaskan coalfields and (2) the Alaska Railroad Enabling Act authorized con- struction of the railroad from Anchorage to Fairbanks, which encouraged the use of coal by the locomotives and by the gold mining operations to power gold dredges and to fuel steam boilers for thawing the frozen ground. Many coal mines in the Nenana and Matanuska coalfields were active after Congress authorized the construction of the Alaska Railroad, which promoted large-scale production, transportation, and marketing. The first coal-lease sale was held in conjunction with an oil-lease sale in 1983. In 1984, export of Alaskan coal began with shipments to South Korea from Nenana coalfield. Other developments included con- struction of a coal terminal at the deep-water port at Seward, new loading facilities at the Usibelli coal mine, and upgrading of the Alaska Railroad to handle hauling coal to Seward. In 1985, coal production increased by 60 percent over 1984, with a gross value on production of 1.4 × 106 short tons (1.27 × 106 metric tons) valued at $39.7 million (Bundtzen and others, 1986). Coal production for the year 2000 was estimated by Szumigala and Swainbank (2001) at 1,473,000 short tons valued at $38.7 million with 708,000 short tons being exported to Korea. An estimate of total coal in place is 10.4 × 1012 short tons (9.4 × 1012 metric tons), or about 50 percent of total of conterminous U.S. resources. The coal resources of Alaska, have been only minimally exploited or developed. Mined coal is presently utilized for domestic electric power-generating plants, and approximately one-half of the production from the Usibelli mine is shipped to Korea and potentially to other countries bordering the western Pacific Rim. Figure 1. Coal ranks in coal basins and coal occurrences in Alaska with emphasis on the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. Compiled and modified from Merritt and Hawley (1986); Barnes (1967a, 1967b); Magoon and others (1976); Plafker (1987). �������������������� ��� ��� ������������ �������������������� NORTH SLOPE Barrow ������������ ����� ������������ Fairbanks ������ Anchorage ������� ��������� Nome ����� �������� ��������������� GULF OF ALASKA Juneau Angoon ALASKA COALFIELDS AND COAL OCCURRENCES Bituminous Anthracite Subbituminous Lignite ��������������� ��������� �������� �������������������� ������������ ��������������� ������������� �������� EXPLANATION ����� ������� ����� ������� ������ ����� ������ ��������� Alaska Railroad and George Parks Highway Figure 2. Map showing the coal rank and land ownership of Alaska Figure 3. Map showing the geology and structure of Alaska. Modified from S.J. Moll, Scott Bie, Devon Peterson, D.C. Pray, F.H. Wilson, J.M. Schmidt, J.R. Riehle, T.P. Miller (unpublished data, 1997, U.S. Geological Survey, Reston, Virginia) after Beikman (1980). Introduction 3 4 Alaska Coal Geology, Resources, and Coalbed Methane Potential Geological Setting The geology of Alaska (fig. 3; Beikman, 1980) is best described by Plafker and Berg (1994) and by various authors in the 1994 Geology of Alaska volume of The Geological Society of America edited by George Plafker and H.C. Berg. These workers have discussed in detail the physiographic, geologic, tectonic, and volcanic evolution of Alaska from the Proterozoic to the present. Thus, this report describes only those physiographic and geologic settings of Alaska that are critical for understanding the coal-bearing rocks that were investigated in this study. Physiographic Regions Alaska is divided into four physiographic regions (fig. 4); from north to south, they are (1) arctic coastal plain, (2) northern Cordillera, (3) interior or intermountain plateau, and (4) southern Cordillera (Plafker and Berg, 1994; Wahrhaftig and others, 1994). The arctic coastal plain region extends from the margin of the Arctic Ocean on the north to the northern margin of the Arctic Foothills Range on the south and consists mainly of Tertiary alluvial deposits. Paleozoic, Mesozoic, and Cenozoic rocks underlie the alluvial deposits. The major coal deposits are in the Cretaceous Nanushuk and Colville Groups and Tertiary Sagavanirktok Formation in this region (Wahrhaftig and others, 1994); minor coals occur in the Lower Mississip- pian Kekiktuk Conglomerate of the Endicott Group (see fig. 3; Tailleur, 1965; Conwell and Triplehorn, 1976; Sable and Stricker, 1987; Wahrhaftig and others, 1994). The northern Cordillera region is dominated by the east-west-trending Brooks Range (see figs. 3 and 4; Plafker and Berg, 1994). During the Pleistocene, ice caps carved the glacial topography of these mountains. Mainly Cretaceous coal-bearing Nanushuk and Colville Groups underlie the Arctic Foothills Range (see fig. 4). The Paleozoic rocks are mainly exposed in the mountains. The interior or intermountain plateau is between the Brooks Range on the north and the Alaska Range on the south (see figs. 3 and 4; Plafker and Berg, 1994). This region is part of the intermountain plateau that extends into Canada and the conterminous United States (Great Basin and Colorado Plateaus). Quaternary alluvial deposits sporadically cover the region from the Bering Sea to the Yukon Flats (fig. 3). Else- where the interior region is composed of plateaus, hills, and uplands, with numerous domes, ridges, and mountains at the higher elevations (Plafker and Berg, 1994). The interior region was generally free of ice during the Pleistocene glaciation. Beneath the loess and vegetation, the interior region contains pre-Cretaceous basement rocks that include displaced and rotated lithotectonic terranes of Proterozoic and Paleozoic age of miogeocline affinity (Plafker and Berg, 1994). The base- ment rocks also contain Devonian-Lower Jurassic terranes of oceanic affinity and Jurassic-Lower Cretaceous intraoceanic arc terranes. Mid-Cretaceous and younger plutonic and related rocks, flysch basins, and basalts conceal these rocks. Tertiary coal-bearing rocks are mainly present in several synclinal basins in the northern foothills of the Alaska Range (fig. 3) and are partly or wholly detached from each other by erosion of coal-bearing rocks from intervening structural highs (Wah- rhaftig and others, 1994). The southern Cordillera region is the northernmost extent of the Pacific Mountain system of North America that rims the Pacific Ocean margin (Plafker and Berg, 1994). The region extends from the Alaska Range on the north to the margin of the Gulf of Alaska on the south (fig. 3). It extends westward to the Aleutian Range and Aleutian Islands, which are a con- tinuation of the Alaska Range (fig. 3). Widespread mountain glaciers and ice fields occur in the mountainous parts of the southern Cordillera region (fig. 3). Glaciers currently extend into tidewaters at numerous bays and fiords (Plafker and Berg, 1994). The southern Cordillera region is underlain by Proterozoic to Cenozoic accreted intraoceanic arc and plateau terranes, arc-related accretionary prisms, and flysch basins (Plafker and Berg, 1994). These terranes were intruded by mid-Cretaceous to Paleogene postaccretion plutons, which are, in turn, overlapped by Upper Cretaceous-Tertiary basinal and volcanic rocks. The Tertiary coal-bearing rocks in this region are mainly found in these basins as typified by the Cook Inlet Basin (fig. 3). Regional Geology Alaska is composed mainly of three crustal rock types: (1) continental crust of the Cordillera miogeocline; (2) amalgamated magmatic arcs, oceanic plateaus, melange, and flysch; and (3) oceanic (including ophiolite) rocks (Plafker and Berg, 1994). These crustal rocks were modified by magmatism and metamorphism, overlapped by Cretaceous and Cenozoic rocks, and affected by Cretaceous and Cenozoic faulting and rotation. These tectonic processes produced the structural trends as expressed by the physiographic features of Alaska (fig. 3). The northern and eastern parts of Alaska were formed by intermittent rifting from the Proterozoic (850 Ma) to the early Paleozoic (Plafker and Berg, 1994). This event was followed by subsidence of the continental margin and deposition of the Proterozoic-Paleozoic rocks, which make up the Cordil- lera miogeocline (Dover, 1994; Grantz and others, 1994). The Cordillera miogeocline rocks were affected episodically by plate tectonism that formed the present Cordillera orogenic belt. Plate convergence during Jurassic-Cretaceous time along the continental margin resulted in a complex of intraoceanic arcs, arcs on rifted continental crust, arc-related accretionary prisms, flysch basins, oceanic plateaus, and oceanic crustal rocks. Structural deformation, metamorphism, magmatism, and erosion, in turn, modified these rock (Dusel-Bacon, 1994). The oceanic crustal rocks define suture zones of either autoch- Figure 4. Map showing the physiographic regions of Alaska. Modified from Plafker and Berg (1994).Geological Setting 5 6 Alaska Coal Geology, Resources, and Coalbed Methane Potential thonous or paratochthonous rocks along which the Alaskan continental margin rocks are adjacent to noncontinental rocks. The Alaskan continental margin developed an Andean- type arc system during mid-Cretaceous to Tertiary time as imposed by the convergence of the Kula and North American plate (Plafker and Berg, 1994; Nokleberg and others, 1994). During this time period, accreted terranes were welded to the continental margin by numerous arc-related volcanic, plutonic, and metamorphic events (Brew, 1994). Arc-related volcanic rocks and terrigenous sediments built much of western Alaska, and the arc-related accretionary prisms formed seaward of the volcanic arc (fig. 5). The present structural trends of Alaska were formed by extensive rotations and translations from Early Cretaceous to early Tertiary time. For example, during the Early Cretaceous, the Arctic Ocean basin developed by counterclockwise rotation of northern Alaska away from the Arctic Canadian continental margin (Plafker and Berg, 1994; Grantz and others, 1994). During Late Cretaceous and early Tertiary time the interior physiographic region was translated west several hundred kilometers along the Tintina and Denali faults (fig. 3). These faults, in turn, were followed by coun- terclockwise rotation that displaced preexisting transcurrent faults. Tectonic movements along the transcurrent faults con- trolled depositional environments of the Tertiary coal-bearing rocks in the interior and southern Cordillera regions (Flores and Stanley, 1995). Movements, particularly along the Denali fault, dammed flow-through fluvial systems that drained alluvial plains north and south of the Alaska Range, where peat precursors accumulated in associated mires. Damming of the fluvial systems created lakes, which in turn drowned peat- forming mires north of the Alaska Range. In addition, dam- ming of fluvial systems shortened their headwaters, promoting erosion, high sediment dispersal, and consequently drowning of peat mires by detritus south of the Alaska Range. Origin of Alaska Coal Coal, containing more than 50 percent by weight and more than 70 percent by volume of organic matter, is com- posed of plant remains deposited as peat (Schopf, 1956). The vegetal remains accumulated under mainly reducing condi- tions beneath the ground-water table in mires or swamps. The high acidity of the water killed bacteria and fungi that would Active volcanoes Cenozoic fore-arc basin deposits ��������� �������� ���� ������������ ������������CANADAALASKA����������� ����� ����������� ������������� ��������������������������������������������������������������������������������������������������������������� ��� ��� ��� ������������������� CANADA UNITED STATES ALASKA Area of map CANADA������������ ��������� �� � � �� Figure 5. General tectonic framework of the Cook Inlet Basin, associated subduction zone, accreted terranes, and volcanic arc. Modified from Swenson (1997). otherwise have digested and completely oxidized the peat (Schopf, 1956). Peat-forming mires developed mainly in alluvial and coastal plains that were drained by fluvial and deltaic distribu- tary channels (Flores and Stricker, 1993a and b). Commonly, the coastal plains were barred seaward by barrier-bar systems that protected back-barrier mires from active marine sedi- mentation, permitting accumulation of peat deposits (Flores, Stricker, and Stiles, 1997; Flores and others, 1999). Aban- doned areas in the coastal plains, which were far removed from active sedimentation, also served as platforms for peat- mire development. In active sedimentation areas of the coastal plains, dense vegetation along margins of the mires juxtaposed with fluvial and distributary channels prevented flood water invasions and permitted peat accumulation. In regions where high rainfall rates existed, mires developed a raised topog- raphy that shielded them from sedimentation from adjoining rivers, particularly during floods. Preservation of these peat mires resulted from rapid subsidence, which promoted accom- modation space and initiated burial of the peat deposits by overlying sediments, which led to subsequent compaction and metamorphism into coal. The alluvial- and coastal-plain areas and associated mires in Alaska were formed from Paleozoic to late Tertiary time. The peat that accumulated in Alaska mires formed low-sulfur (average 0.3 percent) coal deposits, whereas in many other regions of the world, encroachment of the sea over peat-form- ing environments commonly brought sulfate-bearing sedi- ments that transformed the peat into high-sulfur deposits. Additionally, when sediments flood portions of the peat mires, an increased pH typically enhances microbial activity within the top of the peat, which concentrates sulfur through degra- dation of plant material. Flooding of the mires also led to an increase of ash content of the peat due to settling of water- borne sediments. Climate and (or) vegetation types may explain the accu- mulation of low-sulfur coal unique to Alaska, regardless of age. That is, the Alaskan coal contains low sulfur because of accumulation in mires developed in high paleolatitudes and in temperate paleoclimatic conditions (Affolter and Stricker, 1988, 1990). Alternatively, the vegetation may have evolved through time such that tropical or low paleolatitudinal plants became adapted to mires developed in high-paleolatitudinal regions. The Alaskan peat-forming environments formed in depo- sitional basins that were developed in the interior and margins of the State. Riverine plains, in which mires accumulated eco- nomic coal deposits, drained the interior basins (for example, Central Alaska-Nenana coal province; see fig. 1). Fluvial and deltaic coastal plains with associated mires accumulated economic coal deposits in margin basins (Northern Alaska- Slope and Southern Alaska-Cook Inlet coal provinces; see fig. 3). Coal that formed in these basins ranges from Mississip- pian to Miocene in age. The basins underwent detrital infilling after accumulation of the peat deposits followed by tectonic deformation that transformed these deposits into various ranks of coal. The rank of a coal is a measure of the metamorphism that took place since deposition of the peat, due primarily to depth of burial, temperature, time, and pressure (Teichmüller and Teichmüller, 1968). The Earthʼs temperature increases with depth of burial (geothermal gradient), and the temperature necessary to metamorphose the peat to coal probably does not exceed 300˚–390˚F (150˚–200˚C). Time also plays an important role in coal rank because it controls coal composi- tion. For example, peat coal buried for 50–65 Ma will contain higher volatile matter (subbituminous rank) than coal buried for 200 Ma, which contains low volatile matter (bituminous rank). Thus, Tertiary coals are generally subbituminous, and Cretaceous and Carboniferous coals are usually bituminous. This broad generalization, however, is not applicable in many geologic settings in Alaska. Along ancient plate margins and volcanic island arcs, where heat was produced either by igne- ous intrusions and volcanism or by increased pressure caused by tectonic compaction and compression, can increase coal rank, such as in the Matanuska coalfield. Coal Metamorphism, Composition, Rank, and Occurrence Metamorphism of peat results in transformation of plant parts (stems, leaves, and so forth) into macerals in coal. The plant vascular tissue parts such as cell walls (for example, cellulose and lignin of wood, leaves, roots, and humic cell contents) are transformed into a vitrinite (huminite) maceral, initially high in both oxygen and hydrogen. Plant waxes, secretions, resins, spores, and algae are converted into an exinite (liptinite) maceral that is high in hydrocarbons (fats and oils). Carbonized plant parts, the product of oxidation of organic matter, are changed into an inertinite maceral—for example, fossil charcoal or fusinite. Varying degrees of metamorphism produce different maceral types. The vitrinite, exinite, and inertinite, which were formed by intense metamorphism, are unique to high-rank coal (for example, bituminous and anthracite). Low degree of coalification by less intense metamorphism yields a differ- ent physical category of macerals for low-rank coal such as in subbituminous coal and lignite. The vitrinite and exinite macerals may be correlated to huminite and liptinite macerals, respectively, in subbituminous coal and lignite (Stach, 1968; Neavel, 1981; Stach and others, 1982; Stanton and others, 1989). Economic properties of coals depend on the propor- tions of macerals, and the classification into various types is based on these proportions. Rao (1980), Rao and Wolff (1981), and Rao and Smith (1986) performed several petrographic studies of Alaskan coals, which show that coal rank and its suitability for various economic uses depends on moisture content, ash yield, and sulfur content. Origin of Alaska Coal 7 8 Alaska Coal Geology, Resources, and Coalbed Methane Potential The occurrence of different ranks of coal in Alaska may be related to juxtaposition with deformed belts and igneous intrusions. For example, the bituminous coal in the North Slope coalfields, which are juxtaposed to the Brooks Range deformed belt (synclines, anticlines, and thrust and strike-slip faults), is higher rank than the subbituminous coal away from the deformed belt (see fig. 1). In the Southern Alaska-Cook Inlet coalfields, the coal changes from anthracite to bitumi- nous to subbituminous from east to west in the northeast part of the inlet in the Matanuska coalfield (see fig. 1). There, the Matanuska coalfield is bounded by the Talkeetna Mountains and flanked by the Castle Mountain Fault on the north and by the Chugach Mountains on the south (see fig. 3). In addition, numerous volcanic rocks have intruded into the coal-bearing rocks. Coal Resource Classification Wood and others (1983) defined the terminology used in this report for coal resource classification and estimates. The categories of the coal resource classification, arranged in the degree of decreasing geologic assurance as to nearness to points of control and the relative quality and quantity of geo- logic data, are (1) measured, (2) indicated, (3) inferred, and (4) hypothetical. The sum of the measured and indicated resources is termed demonstrated resource. The sum of the measured, indicated, and inferred is termed identified resource. The state of certainty of the existence of a quantity of resource is also based mainly on correlations of coal beds and enclosed rocks in relation to the thickness, overburden, rank, quality, and areal extent of the coal. 1. Measured coal resources have the highest degree of geologic assurance. Resource estimates are based partly on measurements from outcrops, trenches, drill holes, and mine workings and partly on thickness projection of correlatable beds, coal rank, and geologic data (not more than a specified distance and depth). The area of measured coal resources is within 0.25-mi (0.4-km) radius. 2. Indicated coal resources have a moderate degree of geologic assurance. Estimates of resources are based on projection of coal thickness and other geologic data from outcrops, trenches, mine workings, and drill holes for speci- fied distance and depth beyond those used for the measured resources. The area of indicated coal resources is between 0.25 and 0.75 mi (0.4 and 1.2 km) radii. Table 1. Coal resource estimates for Alaska using the classification of Wood and others (1983). [Resource estimates are in millions of short tons (multiply by 0.9072 to convert to metric tonnes)] Resource Classifications Identified Undiscovered Demonstrated Coal province, coalfield, and age Measured Indicated Inferred Hypothetical ���������������� �������������������������������������������������� Total for Northern Alaska-Slope 120,000 3,900,000 �������������������������������� ���������������������������������� ������������������������� �������������������� ������������������ ����������������� ���������������� ����������������������� ���������������������� ����������������������� Total for Central Alaska-Nenana 6,400–7,700 10,000 �������������������������� ������������������������������������� ������������������������������ ������������������������������������������� ����������������� ���������� ������������������������������������� Total for Southern Alaska-Cook Inlet 2,900–12,000 970,000–1,600,000 Total coal resources for Provinces 129,000–140,000 4,900,000–5,500,000 �������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������������������������������������� ������������������������������������� 3. Inferred coal resources have a low degree of geologic assurance. Estimates of resource are calculated by projection of thickness, sample, and geologic data from distant outcrops, trenches, workings, and drill holes for a specified distance and depth beyond those used for indicated resources. The area of inferred coal resources is between 0.75 and 3 mi (1.2 and 4.8 km) radii. Estimates of coal thickness, extent, and quantity are based on inferred continuity, beyond measured and indicated resources, for which there is geologic evidence. 4. Hypothetical or undiscovered coal resources have the lowest degree of geologic assurance of these categories. Esti- mates of coal thickness, extent, and quantity are based on mea- surements and continuity of coal beyond parameters used in the inferred resources. The area of hypothetical coal resources is beyond a 3-mi (4.8-km) radius. Table 1 shows the coal-resource classification system of Alaska using the concepts of Wood and others (1983). The estimates are determined from previous works (Wahrhaftig and Hickcox, 1955; Barnes and Cobb, 1959; Barnes, 1967a; McGee and Emmel, written commun., 1979; Merritt and Belo- wich, 1984; Merritt and Hawley, 1986; Sable and Stricker, 1987; Stricker, 1991; Wahrhaftig and others, 1994), which used different resource categories. For the present study, we analyzed and synthesized the various coal resource assess- ments of these workers and reconstructed them following the coal-resource classification system of the U.S. Geological Sur- vey (Circular 891). The revision of the Alaska coal resource assessments here presented provides (1) a simplified and uni- fied account of the coal resources; (2) a uniform application of the guidelines and principles outlined in Wood and others (1983); (3) standardized coal resource estimates comparable to those by different workers using the same data; and (4) some idea as to economic availability of the coal. Measurements are reported in English units followed by metric units given in parentheses. Coal Resource Classification 9 �������������������������������������� ���������������������������������������������������� ��� �� �� �������������������������������� ������ �������� ������ ��������� ���������� ��������� ����� ����� ���������������� ����������� ��������� � �� ���� � � ������� ������������� ������������� ���������������������� ��������������������� ��������� ���������������������� ������������� ����������������� �������������������� ���������������������������������������������������������������������� ������ �������� ������ ������ ������ ND Nondeposition T Tectonic unconformity �������� �������� EXPLANATION Conglomerate Shale This studySandstone Mudstone Shaly sandstone Figure 6. Stratigraphic column of the Mesozoic and Cenozoic rocks in the Northern Alaska-Slope coal province. Modified from Sable and Stricker (1987). 10 Alaska Coal Geology, Resources, and Coalbed Methane Potential Distribution of Coal in Alaska Wood and Bour (1988) identified 50 coalfields and occur- rences in Alaska (fig. 1). A coalfield is a discrete area that contains coal-bearing strata with one or more coal beds. Coal occurrence is an outcrop that contains one or more coal beds that are isolated and cannot be correlated to other coal-bearing outcrops. The bulk (87 percent) of the known coal resources of Alaska are in the three previously mentioned coal provinces: (1) the Northern Alaska-Slope, (2) Central Alaska-Nenana, and (3) Southern Alaska-Cook Inlet coal provinces (modified from Wahrhaftig and others, 1994; fig. 1). The bulk of the resources in Northern Alaska-Slope coal province are con- tained in the Cretaceous and Tertiary coal-bearing rocks. The coal resources in the Central Alaska-Nenana and the Southern Alaska-Cook Inlet are contained in Tertiary rocks. Northern Alaska-Slope Coal Province The Northern Alaska-Slope coal province (fig. 1) is the largest in the State. It is situated at lat 69°N. and includes about 32,000 mi2 (82,880 km2) underlain by coal-bearing rocks, both near the surface and in the deep subsurface (see figs. 2 and 3). Rocks in this coal province range in age from Precambrian to Holocene; a representative columnar section is shown in figure 6. The Northern Alaska-Slope coal province (fig. 1) consists of Cretaceous and Tertiary sedimentary wedges shed to the north-northeast from the Brooks Range during the Laramide orogeny. Sedimentary wedges were also shed eastward from now-collapsed highlands in the present Chukchi basin, into a deep trough that lay between the Brooks Range and the Bar- row arch. The coal-bearing rocks were deposited in coastal plains drained by fluvial and deltaic distributary channels that flowed into the ancestral Beaufort Sea. Peat coal was depos- ited mainly in mires in highly constructive (river-dominated), progradational delta plains (for example, Corwin and Umiat deltas of Ahlbrandt and others, 1979; Roehler and Stricker, 1979; Huffman and others, 1985). Although these deltas were highly constructional systems, they were increasingly influ- enced by marine transgressions resulting in destructive deltas (Huffman and others, 1985, 1988). Sea-level rise reworked the deltaic sediments into barrier bars forming back-barrier mires. Deltaic sediments grade updip toward the Brooks Range uplift into coarse fluvial sediments (sandstones and conglomer- ates) that were deposited in alluvial fans and braided and meandering rivers. The Cretaceous and Tertiary coal deposits, combined in the Northern Alaska-Slope coal province, are the largest in Alaska. The remoteness of these coal deposits and the formidable logistic and environmental problems that come with their exploitation make them presently uneconomic. However, because of planned infrastructures (for example, gas pipeline), these coal deposits may be targeted for future coalbed methane development. Cretaceous Rocks The most important Cretaceous coal-bearing rocks in the Northern Alaska-Slope province are in the Nanushuk and Colville Groups (Collier, 1906; Tailleur, 1965; Barnes, 1967b; Conwell and Triplehorn, 1976; Bird and Andrews, 1979; Molenaar and others, 1984; Stricker, 1991). It should be noted that coal deposits also occur in Mississippian rocks, but they are of minor importance and are not discussed in this report. Coal at Corwin Bluffs, on the Chukchi Sea north of Cape Lisburne, was mined as early as 1879 for use in whaling ships (Schrader, 1904). Various mining companies have carried out preliminary investigations since 1944. During a fuel shortage in Point Barrow from 1943 to 1944, at least one small mine was in operation on the Meade River (Clark, 1973). Although the Meade River coal mine demonstrated the feasibility of mining under permafrost conditions, active mining has yet to materialize in the Northern Alaska-Slope coal province. Collier (1906) first described the Cretaceous coal depos- its at Corwin Bluff. Later studies showed that coal occurs in outcrops in the foothills belt (Chapman and Sable, 1960) and beneath the Arctic coastal plain (Tailleur and Brosgé, 1976). Cretaceous coal-bearing rocks probably also exist beneath the Chukchi Sea (Grantz and others, 1975; Affolter and Stricker, 1987b) and the Beaufort Sea (Affolter and Stricker, 1987b). Nanushuk Group The Lower Cretaceous Nanushuk Group includes, from bottom to top, the Tuktu, Kukpowruk, Grandstand, Chan- dler, Corwin, and Ninuluk Formations (fig. 6); thickness is as much as 9,800 ft thick (3,000 m). It consists of a marine sequence that includes the Kukpowruk, Tuktu, and Grand- stand Formations and a nonmarine sequence that includes the Corwin Formation and the Killik Tongue of the Chandler Formation (Sable and Stricker, 1987). Approximately 150 coal beds, with individual beds ranging from a few inches (a few centimeters) to 20.2 ft (6.1 m) thick, occur in the middle and upper parts of the Nanushuk Group (Callahan and Sloan, 1978). Rocks exposed at Corwin Bluffs include coal beds from 5.5 to 8.8 ft thick (1.7 to 2.7 m) (fig. 7), and those at Cape Beaufort contain coal beds 11 to 17 ft thick (3.4 to 5.2 m). Along the valley walls of the Kukpowruk River, a coal bed as much 20.2 ft thick (6.1 m) was described by Sand- ers (1981). Barnes (1967b) reported as many as 60 coal beds within a 4,600-ft-thick (1,400-m) sequence in the Koalak area. Many of these coal beds are of bituminous and subbituminous rank. A net coal thickness greater than 350 ft (106 m) in the Nanushuk Group in this area and surrounding western part of the National Petroleum Reserve-Alaska (NPRA) is shown in figure 8. The Nanushuk Group consists of an offlap, postorogenic molasse sequence deposited on a passive continental margin. Distributation of Coal In Alaska 11 Figure 7. Photograph of a coal bed (about 20 feet thick) in the Nanushuk Group. Figure 8. Net coal thickness map of the Nanushuk Group in the western part of the Northern Alaska- Slope coal province. See figure 9 for line of cross section. Modified from Sable and Stricker (1987). 12 Alaska Coal Geology, Resources, and Coalbed Methane Potential The progressive progradational relation of the sedimentary units of the Nanushuk Group is depicted in figure 9. The strata were deposited by fluvial-dominated systems of the Corwin delta in the western part and the Umiat delta in the central part of the Northern Alaska-Slope coal province (Ahlbrandt and others, 1979; Huffman and others, 1985). The Kukpowruk Formation in the western part of the Northern Alaska-Slope coal province consists of delta front- shoreline deposits that grade upward and intertongue with the nonmarine, coal-bearing Corwin and Chandler Forma- tions (fig. 6). The Kukpowruk Formation, composed mainly of delta-front sandstones, ranges in thickness from 2,000 to 3,900 ft (610 to 1,200 m) in the outcrop belt in the northern foothills. The Corwin Formation consists of alluvial and delta- plain shale, sandstone, conglomerate, and coal (Roehler and Stricker, 1979). This formation, although more than 11,300 ft thick (3,450 m) at Corwin Bluffs along the Arctic coast, thins eastward to zero in the subsurface near the Colville River. In the central Northern Alaska-Slope coal province, the rock succession consists of complexes of nonmarine and mar- ginal marine rocks overlying and intertonguing with marine rocks. The marginal marine to marine (basin shelf-slope) Tuktu Formation, more than 8,000 ft thick (2,400 m), inter- tongues with the delta-front and lower delta-plain Grandstand Formation (fig. 6). The Grandstand Formation is overlain by, and intertongues with, the Killik Tongue of the Chandler Formation, which is an upper delta-plain rock unit. In the upper part of the stratigraphic section, a tongue of the Ninuluk Formation, which intertongues with the overlying Niakogon Tongue (fig. 6), overlies the Killik Tongue. Molenaar (1985) indicated that the Seabee Formation of the Colville Group interfingers with both the Ninuluk Formation and Niakogon Tongue of the Chandler Formation. As depicted in figure 9, the vertical stacking of shoreline deposits of the Grandstand Formation marks a progradational sequence that may be correlated with the occurrence westward (landward) of numerous thick coal beds in the Corwin Forma- tion. The progradational or regressive phase led to the stack- ing of shoreline deposits at the regressive maximum, which was described by Fassett and Hinds (1971), Ryer (1981), and Flores and Cross (1991). These studies have shown that most coal beds occur at the top, and landward, of shoreline deposits Dominantly deepmarineshale ��������������� ������������������ ���������������������������� � � � � � � � � �� �� ���� �� ������������������������������ ���� � � � � � � � � � � � � � � ������� ������������������������������������� �� �� � � � � � � � � � � � � ��� � � � ������ � ���� � � � � ���� ��������������� ��������������������������������� ���������� ��������� ������������� ���� � � � � � � � � ������ � � � ��������������� ���������������������������� � � �� � � � �� ��� � � � � ������� ������������� ������������ ����� ����� �������� ��������� ���� ������� ���� ������ �������� ���� ��������� �������� �������� �������� ���� ��������� �������� ����� �������� �������� ������� ����� �������� ���� ������������ ����� ���� ���� ��� ������� ������� ��� �������� ��������� � � � ���� ���������������������������������EXPLANATION Dominantly nonmarine facies Dominantly shallow marinesandstoneandshale Coal beds Well depths are in thousands of feet ���� ����� ���� ��������������� Figure 9. Cross section showing the Nanushuk progradation sequences. Modified from Molenaar, (1985). See figure 8 for location of the cross section. from progradational events. However, the thickest coal, most extensive, and greatest volume of coal occur preferentially in stratigraphic positions where the shoreline deposits of succes- sive progradational events are stacked vertically (Flores and Cross, 1991). The Umiat deltaic sediments reflect a higher degree of reworking than the Colville deltaic sediments as indicated by a larger sandstone percentage (fig. 10; Ahlbrandt and oth- ers, 1979; Huffman and others, 1985). The Umiat delta (fig. 11A–D), probably being derived from a smaller source, also contains a smaller sediment volume than does the Corwin delta. Molenaar (1981, 1985) suggested that the Corwin delta formed earlier than the Umiat delta and that the two merged during Albian time without specific demarcation (fig. 11A–D). The Corwin delta continued to be the dominant depositional feature. The Meade arch, which extended southward from Point Barrow in Brookian time, probably did not play an active part in controlling the depocenters of the deltas. Paleo- geographic interpretations of Nanushuk deposition by Mole- naar (1981, 1985) and Huffman and others (1985) stressed the dominant east-northeast progradation of the Nanushuk prodelta slope sediments. These studies also showed a strong northwestward concentration of sandstone in the upper part of the Nanushuk Group, from Umiat toward Point Barrow and parallel to the paleoshoreline. This concentration also indicates that northwestward longshore currents probably transported sand from the Umiat delta along the active shelf of the Corwin delta front (Huffman and others, 1985). The sand accumula- tion represents offshore bars that shielded coastal plain-back barrier mires from detrital sedimentation, resulting in the most prolific coal-forming Nanushuk deltaic environments in the western Northern Alaska-Slope coal province. Spicer (1987) reported that the paleoclimate of the North Slope during Albian to Cenomanian time was cool temperate with annual temperature varying 5˚–50˚F (3˚–10˚C). Rainfall was sufficient to sustain the vegetation of peat mires, result- ing in thick accumulation of peat deposits. Tree growth rings on the North Slope indicate a rapid change from summer to winter conditions during the Albian to Cenomanian (Spicer, 1987). Precipitation was also distributed throughout the year in a manner to preclude oxidation and loss of organic material in the peat mires. However, Rao (1980) reported that there was a drying upward trend in the peat mires. Colville Group The Upper Cretaceous Colville Group, a Brookian sequence younger than the Nanushuk Group, contains, from bottom to top, the Seabee, Schrader Bluff, and Prince Creek Formations (see fig. 6). The group is as much as 5,000 ft (1,525 m) thick, consists of a marine interval (Seabee Formation), marine interval (Schrader Bluff Formation), and a coal-bearing, nonmarine interval (Prince Creek Formation). The coal beds of the Colville Group in the vicinity of Umiat and Maybe Creek (see fig. 8) vary individually from 13 Distributation of Coal In Alaska 13 Figure 10. Sandstone percentage contour map in the Northern Alaska-Slope coal province. Modified from Huffman and others (1985). 14 Alaska Coal Geology, Resources, and Coalbed Methane Potential ������������������������ ��� ��� ��� ���Well control ������������ ����������������� ����� ������� ��� ������ ���� Barrow � � � � � � � � � ���������������������������� ������������������������������������������������� Ikpikpuk South Simpson Colville delta ����������� MEADE ���������������� �������� Mires Fluvial and delta systems A R C T I C OCEAN EXPLANATION ����������������� ����������������� ������� Area of map UNITED STATESALASKA CANADA � ������������������������ ��� ��� ��� ��� ���������������� �������� Area of map UNITED STATES ALASKA CANADA � Well control ����� ������� ��� ������ ���� Point Barrow � � � � � � � � � ���������������������������� C o r w i n d e l t a �������������������������������������� Kurupa Umiat lobe ����������� EXPLANATION Mires Fluvial and delta systems A R C T I C OCEAN Grandstand-Marmot lobe Longshore drift ����������������� ����������������� ������� ������������ ����������������� Figure 11. Paleogeographic maps showing the depositional environments of the Nanushuk Group in the central North- ern Alaska-Slope coal province. A, Early to middle Albian time. Modified from Huffman and others (1985). Figure 11. Paleogeographic maps showing the depositional environments of the Nanushuk Group in the central North- ern Alaska-Slope coal province. B, Middle to late Albian time. Modified from Huffman and others (1985). Distributation of Coal In Alaska 15 Figure 11. Paleogeographic maps showing the depositional environments of the Nanushuk Group in the central North- ern Alaska-Slope coal province. C, Late Albian to Cenomanian (?) time. Modified from Huffman and others (1985). Figure 11. Paleogeographic maps showing the depositional environments of the Nanushuk Group in the central North- ern Alaska-Slope coal province. D, Cenomanian time (maximum regression). Modified from Huffman and others (1985). � EXPLANATION Mires Fluvial and delta systems �������������������� ��� ��� ��� ���Well control ������������ ����������������� ����� ������� ��� Point Barrow � � � � � � � � � ��������������������������������bo undary���������������������� Umiat delta K u ru p aU m iatlo b eA R C T I C OCEAN Longshore drift ����������������� ����������������� �������Grandstan d -M a rmot Lobe ������ ������������������� Area of map UNITED STATES ALASKA CANADA �������������������� ��� ��� ��� ��� � ����� ��� ����� ����� ������ ���� Point Barrow � � � � � � � � � ���������������������������� ������������������������������������A R C T I C OCEAN Longshore drift ����������������� ������� ����������������� EXPLANATION Mires Fluvial and delta systems ������������ ����������������� Well control Area of map UNITED STATES ALASKA CANADA 16 Alaska Coal Geology, Resources, and Coalbed Methane Potential to 39 ft (4 to 12 m) thick (Brosgé and Whittington, 1966). On the lower Colville River, the coal beds of the Colville Group range from 13 to 39 ft (4 to 12 m) thick (Brosgé and Whit- tington, 1966). Coal beds in the subsurface are typically less than 39 ft (12 m) thick with a 19-ft-thick (6 m) zone of coal interbedded with black shale and bentonite described from the Square Lake Test Well No. 1 core as a bony coal (Collins, 1959). Recent work by R.M. Flores and G.D. Stricker and other geologists from the USGS (Dave Houseknecht and Ken Taka- hashi) and Alaska Division of Oil and Gas Commission (Mark Myers, Don Brizzolara, and Tim Ryherd) in July, 2002 of outcrops of the Kogosukruk Tongue (see fig. 6) of the Prince Creek Formation at the bluffs along the Colville River below the mouth of the Anaktuvuk River (see fig. 8) shows coal beds ranging from a few inches (a few centimeters) to as much as 9 ft (2.7 m) thick (fig. 12). Upstream from this outcrop, the Kogosukruk Tongue is underlain by the upper part of the Sentinel Hill Member of the Schrader Bluff Formation, which is composed of coarsening-upward bentonitic mudstone, siltstone, and sandstone; the sandstone thickens and coarsens upward. The uppermost sandstone bed of the Sentinel Hill Member, which is rooted at the top, in turn, is overlain by a 3.5 ft-thick coal-carbonaceous mudstone bed of the Kogosuk- ruk Tongue, with both beds separated by an erosional surface or probably a sequence boundary. The coarsening-upward Sentinel Hill Member was probably deposited in a delta front. The coal-carbonaceous mudstone bed and overlying interbed- ded coal, bentonitic mudstone and siltstone, and medium- grained to pebbly conglomeratic, stacked erosional-based sandstone of the Kogosukruk Tongue were probably deposited in fluvial environments. Coal beds of the Colville Group have been studied less than those of the Nanushuk Group because they have shown less economic potential; most are thinner, have a high ash yield, and are of lower rank than those in the Nanushuk Group. Many of these coals are described as lignites. Cretaceous-Tertiary Rocks The contact between the Cretaceous and Tertiary rocks in the Northern Alaska-Slope coal province was determined to be gradational or conformable by Molenaar (1983) and Molenaar and others (1984). This led to difficulty in defining a specific contact and also contributed to inclusion of the Upper Cre- taceous formations of the Colville Group with the overlying Tertiary Sagavanirktok Formation. Molenaar (1983) described this contact as diachronous resulting from a depositional continuum from the Cretaceous to Tertiary time. That is, the Cretaceous deltaic systems (for example, Corwin delta) that prograded northeastward also continued this advance seaward during Tertiary time. Thus, the nonmarine and marine deposits Figure 12. Photograph of interbedded coal, sandstones, siltstone, and mudstone of the Kogosukruk Tongue of the Prince Creek Formation along the lower Colville River downstream from the mouth of the Anaktuvuk River. of both deltaic systems blend imperceptibly into one another, and timelines are parallel to their depositional slopes. For example, the delta-front sands of these deltas deposited during the regression cross the sloping timelines and become younger toward the direction of progradation, which is northeastward. The Cretaceous-Tertiary rocks in the Northern Alaska- Slope coal province include the Jago River and Sagavanirktok Formations (see fig. 6; Gryc and others, 1951; Detterman and others, 1975; Molenaar, 1983; Buckingham, 1987). The Jago River Formation was dated as Late Cretaceous to Paleo- cene based on pollen and plant fossils (Palmer and others, 1979; Detterman and Spicer, 1981; Buckingham, 1985). The Sagavanirktok Formation was dated as Paleocene to Plio- cene (and may possibly be as young as Pleistocene) based on palynomorphs and microfossils (Molenaar and others, 1986). The Sagavanirktok Formation intertongues with the Canning Formation of the Colville Group (Molenaar and others, 1986). Jago River Formation The Jago River Formation, which was named and described by Buckingham (1987), is as much as 9,387 ft (2,861 m) thick. It consists of conglomerates, sandstones, siltstones, mudstones, carbonaceous shales, and coals. Buck- ingham (1987) divided the formation into four lithofacies units; from bottom to top these are (1) a delta-plain lithofa- cies—mainly sandstones and siltstones, as much as 928 ft (282 m) thick; (2) a meandering stream lithofacies (lower part)—mainly sandstones and subordinate conglomerates, siltstones, and coals, as much as 5,526 ft (1,685 m) thick; (3) a braided stream lithofacies—predominantly conglomerates and minor sandstones, as much as 2,228 ft (679 m) thick; and (4) a meandering stream lithofacies—mainly carbonaceous shales and minor sandstones conglomerates, as much as 702 ft (214 m) thick. The few coal beds that are in the Jago River Forma- tion are associated with the meandering stream lithofacies and are thin and uneconomic. The lithofacies of the Jago River Formation indicate that the rocks were deposited in a fluvial-dominated delta that was formed in close proximity to the ancestral Brooks Range (fig. 13). Through time the delta was prograded by a fan delta, which was subsequently replaced by a fluvial-dominated delta. This evolution of fluvio-deltaic systems may have been controlled by tectonism of the ancestral Brooks Range and (or) eustatic sea-level rise and fall. These fluvio-deltaic systems prograded to the north-northwest. Most coal-forming mires are related to these fluvial-dominated deltaic systems. Sagavanirktok Formation The Sagavanirktok Formation consists of a thick sequence of sandstones, siltstones, mudstones, conglomerates, carbonaceous shales, and coals (fig. 14). Thickness is as much as 7,500 ft (2,300 m) (Molenaar and others, 1986). Sandstones are the most abundant lithology (fig. 15). The formation is a generally coarsening-upward sequence with the lower part dominated by shaley tongues of the Canning Formation (Molenaar and others, 1986). There are at least three Cretaceous-Tertiary Rocks 17 Figure 13. Paleogeographic map showing the depositional environments of the Jago River Formation in the Arctic National Wildlife Refuge area. Modified from Buckingham (1987). 18 Alaska Coal Geology, Resources, and Coalbed Methane Potential Figure 14. Photograph of a coal bed underlain by a sandstone in the Sagavanirktok Formation. Photograph courtesy of S.B. Roberts. Hammer on the sandstone is 1 foot long for scale. Figure 15. Photograph of fluvial-channel sandstone and associated rocks in the Sagavanirktok Formation. Photograph courtesy of S.B. Roberts. Cretaceous-Tertiary Rocks 19 ����������������������������� S N������������������������������������������������ � ������������������� ? ����������������������� ������������������� ������������������������������������������������������������������������������������������������������������� ���������������� ��������� ������� � �������� ��������� ������ ����������� ����� ���������� ����� ���������� �������������� ������������� ����������������� ��������������� �������� ������� ��������� ������������������������������������ ���������������������������������������� ���������������������������������� ���������������������������������������� ������������������������ ������������ ������������������������ ������������������������������ �������������������������� ������������������������� ������������������ �������������� ������������� ������������� ����������������������� �� ����������� ������������� ������������������ � �� ���������������������������������������������VERTICAL EXAGGERATION 12X ? ������� � ��� ��� ��� ��� � ��������� ��� �� �������� ������������ ����� Figure 16. Stratigraphic cross section of the Tertiary Brookian sequence in the eastern part of the National Petroleum Reserve Alaska. Modified from Molenaar and others (1985). 20 Alaska Coal Geology, Resources, and Coalbed Methane Potential GR,GAMMARAYLOGTRACEDEN,DENSITYLOGTRACES,SONICLOGTRACEDEPTH(INFEET)SHOWNBESIDEEACHDRILL-HOLECOLUMN��������������������������������������������������������?��������������������������EXPLANATIONConglomerateandsandstoneMudstoneandsandstoneCoalMikkelsenTongueoftheCanningFormationCoarsening-upwardsequence���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Figure 17. West to east stratigraphic cross section showing variations of the coal beds, conglomerates, sandstones, mudstones, and siltstones in the Staines Tongue of the Sagavanirktok Formation between the National Petroleum Reserve in Alaska and Arctic National Wildlife Refuge. Modified from Roberts and others (1992). Line of cross section (west to east) is shown in figure 18. Cretaceous-Tertiary Rocks 21 ��CanningRiverCanningRiverPrudhoeBayPrudhoeBay��������������������������DEPTHTOTOPOFCOAL-BEARINGINTERVAL(INMETERS)ISOPACHOFTOTALCOAL(INMETERS)����������������������������������������������������������������������������������������������������������������������������������������������������������������������ShaviovikRiverShaviovikRiver���������Figure 18. Maps showing the (A) depth to top of coal-bearing interval and (B) net coal thickness isopach of the Staines Tongue of the Sagavanirktok Formation. Modified from Roberts and others (1992). 22 Alaska Coal Geology, Resources, and Coalbed Methane Potential Sagavanirktok tongues that intercalate with the Canning shales (fig. 16). The uppermost tongue identified by Molenaar and others (1986) as the Staines Tongue was studied by Roberts (1991) and Roberts and others (1992) and varies from 650 to 2,950 ft (200 to 900 m) in thickness (fig. 17). The lower 330 to 1,640 ft (100 to 500 m), of the Staines Tongue is dominated by coarsening-upward mudstone, siltstone, and sandstone representing parasequence sets. These parasequence sets are overlain by two coal-bearing intervals—the lower and upper coal zones in the middle part of the tongue (Roberts and oth- ers, 1992)—that are separated by interbedded sandstones and mudstones, which are as much as 295 ft (90 m) thick. The lower coal zone is as thick as 850 ft (260 m) and contains 12 coal beds. The upper coal zone is as thick as 360 ft (110 m) and contains seven coal beds. The individual coal beds are as much as 23 ft (7.1 m) thick. The uppermost part of the Staines Tongue is interbedded sandstone and mudstones and is as much as 260 ft (80 m) thick. This interval is, in turn, over- lain by mudstones of the Mikkelsen Tongue of the Canning Formation. Coal beds are distributed over an area of 5,790 mi2 (15,000 km2). Near Prudhoe Bay, a coal-bearing interval as much as 1,310 ft (400 m) thick contains coal beds 1.9–22 ft (0.6–6.7 m) thick (Roberts, 1991); one 6.5-ft-thick (2 m) coal zone has been reported on the lower Shaviovik River (fig. 18; Roberts and others, 1992). Lignite and coaly shale as thick as 19 ft (6 m) occur in the lowermost part of the formation (Det- terman and others, 1975; Molenaar and others, 1984). The Sagavanirktok Formation represents the final infill- ing of the Colville Basin in the eastern part of the Northern Alaska-Slope coal province. The Staines Tongue represents an episode of this infilling by the deposition of fluvio-deltaic sediments. The lower part of the Staines Tongue is domi- nated by parasequence sets representing delta front-prodelta deposits, which grade into the shelf-slope mudstones of the Canning Formation (figs. 17 and 18). The lower coal zone was deposited in an alluvial-delta plain in which the coal beds accumulated in interfluvial and interdistributary mires. The noncoaly interval between the two coal zones reflects a landward advance of the paleoshoreline resulting from a minor transgression or sea-level rise. The coal beds of the upper coal zone were probably formed in lower delta-plain and back-bar- rier mires as the paleoshoreline then regressed. The thin nature of the upper coal zone (fig. 17) and the sandy character of the uppermost part of the Sagavanirktok, which is in turn overlain by the Mikkelsen mudstone tongue of the Canning Formation, indicate a back-stepping paleoshoreline. In this setting, rapid transgression over the peat-forming mires reworked older deposits, probably forming barrier-shoreface deposits prior to a marine flood. The thick and laterally extensive coal beds of the lower coal zone of the Staines Tongue probably reflect a peat accumulation in mires formed during a time of paleoshoreline stability. This event may correspond to a regressive maximum that led to vertical stacking of paleoshoreline deposits, closely similar to that described for the Nanushuk Group. However, unlike the Nanushuk Group, the Staines Tongue of the Sagavanirktok Formation was affected by sea-level fluctua- tions prior to the maximum transgression that deposited the overlying Mikkelsen Tongue of the Canning Formation. Sea-level fluctuations and marine flooding interrupted coal-forming mires, which provided only a brief period of time for peat accumulation. Coal Resource Assessment of the Northern Alaska-Slope Coal Province The coal resource assessments of different workers in the Northern Alaska-Slope coal province vary greatly in magnitude and coal resource categories, resulting in confused reporting of estimates. As a result we reconstructed these different coal resource estimates following guidelines of the coal-resource classification system of Wood and others (1983). This new reporting system of the coal resources of Alaska in general, and of Northern Alaska-Slope coal province in particular, as modified from previous estimates, is summarized in table 1. Following is a historical account of the various coal resource assessments in the coal province. Cretaceous Rocks In an early resource assessment of Cretaceous rocks in the Northern Alaska-Slope coal province, Barnes (1967a) calculated a total of 2.4 × 109 short tons (2.2 × 109 metric tons) of demonstrated coal resources and 117 × 109 short tons (107 × 109 metric tons) of undiscovered (hypothetical) coal resources. Later Tailleur and Brosgé (1976) estimated the coal resources in the coal province by calculating the product of coal-bearing area and coal concentration. Using surface data and two oil and gas test wells, these workers estimated the coal resources in the Northern Alaska-Slope coal province at 120 × 109 short tons (109 × 109 metric tons) of identified coal resources plus 114 × 109 to 37 × 1012 short tons (104 × 109 to 34 × 1012 metric tons) of hypothetical coal resources (see table 1). Later, Sable and Stricker (1987), using all available data for the Nanushuk Group, estimated coal resources for the National Petroleum Reserve in the Alaska portion of the North Slope. Using the methodology described by Wood and others (1983) and all available data for the area of the known Nanushuk Group coal-bearing rocks, Sable and Stricker (1987) estimated the hypothetical coal resources for the Nanushuk Group on the North Slope, which are shown in table 2. In summary, there are 1.3 trillion short tons (1.2 trillion metric tons) of subbituminous coal and 1.9 trillion short tons (1.7 trillion metric tons) of bituminous coal, for a total of 3.2 trillion short tons (2.9 trillion metric tons) of hypothetical coal resources for the Nanushuk Group on the North Slope of Alaska (table 2). Barnes (1967a) estimated about 101 billion short tons (92 billion metric tons) of identified coal resources in this group of rocks. Stricker (1991) indicated that the Nanushuk Group contains an estimated 3.1 × 1012 short tons (2.9 × 1012 metric tons) of hypothetical coal resources for onshore northern Alaska (table 2); of this total, 1.3 × 1012 short tons (1.2 × 1012 metric tons) is subbituminous, and 1.9 × 1012 short tons (1.7 × 1012 metric tons) is bituminous (Stricker, 1983, 1991). In-situ speculative Cretaceous Nanushuk coal that lies under the Chukchi Sea has been estimated at 2.0 × 1012 short tons (1.8 × 1012 metric tons) of lignite A to high-volatile bituminous A coal (Affolter and Stricker, 1987b). Coal Quality The coal beds of the Nanushuk Group in the Northern Alaska-Slope coal province range in apparent rank from lig- nite A to high volatile A bituminous coal with a mean of high- Coal Resource Assessment of the Northern Alaska-Slope Coal Province 23 Table 2. Estimates of hypothetical coal resources for the Cretaceous Nanushuk Group (Stricker, 1991) and Tertiary Staines Tongue of the Sagavanirktok Formation (Roberts and others, 1992) in the Northern Alaska-Slope coal province. [>, greater than] Unit Rank Attitude Overburden (feet)1 Coalresource estimate2 ���������� �������������� ����������������� ��������������������������������������������������� 15°�������� �������� ������������� �������������� ���������������� ������� ���������������15° �������� ����������� ���������� ������������� ��������������� ������� ���������������15° ������� ���������������������Subbituminous total (rounded) ����� ������������� ����������������������������15° �������� ����������� ���������� ����������������������������15° ������� ������������������Bituminous total (rounded)�������������Nanushuk Group total (rounded)����� North Slope Total (rounded)����� 24 Alaska Coal Geology, Resources, and Coalbed Methane Potential volatile C bituminous coal (table 3a). The heating values range from 9,100 to 12,700 Btu/lb (5,050 to 7,060 kilocalories/kilo- gram) with an average of 12,300 Btu/lb (6,830 kilocalories/ kilogram) (State of Alaska, 1993). Total sulfur content ranges from 0.1 to 2.0 percent with a mean of 0.3 percent. The ash yield has a mean of 11.0 percent (Affolter and Stricker, 1987a). The coal is generally subbituminous A under the Arctic coastal plain and high-volatile bituminous in the folded foothills, is low in ash (less than 10 percent) and sulfur (1.4 percent) (Sanders, 1981; Affolter and Stricker, 1987a), and has low concentrations of elements of environmental concern (As, Be, Hg, Mo, Sb, and Se) (Affolter and Stricker, 1987a). The higher rank coal beds in the foothills are probably upgraded in apparent rank by tectonism. Tertiary Rocks Early resource assessment of the coal resources of the Sagavanirktok Formation by Sanders (1976) and Tailleur and Brosgé (1976) estimated 50–60 billion short tons (45–55 billion metric tons) of hypothetical resources. Evaluation of 48 geophysical logs penetrating coal beds of the formation led Roberts and others (1992) to estimate a hypothetical coal resource of 670 billion short tons (610 billion metric tons) (table 2), which is 10 times more than the original estimate. The coal included in the estimate by Roberts and others (1992) occurs mainly in the onshore Northern Alaska-Slope coal province, where the overburden varies from 150 to 1,800 ft (46 to 550 m). As shown in figure 17, the thickest coal is in the southeast part of the coal province. Affolter and Stricker (1987b) estimated the offshore (beneath the Beaufort Sea) hypothetical resources to be 300 billion short tons (270 billion metric tons). Coal Quality A summary of chemical analyses of 55 coal outcrop samples from the Sagavanirktok Formation, as reported by Roberts and others (1992), indicated that the apparent rank of the coal beds ranges from lignite A to subbituminous B coal (3,340–9,740 Btu/lb) (1,860–5,410 kilocalories/kilogram), with a mean of subbituminous C coal (7,780 Btu/lb) (4,320 kilocalories/kilogram) (table 3b). Total sulfur content is low, varying from 0.08 to 2.16 percent with a mean of 0.38 percent. The ash yield varies from 1.2 to 47.1 percent with mean of 11.1 percent. Moisture content ranges from 16.2 to 33 percent with mean of 23.6 percent. Coal Petrology The petrology of the coal beds in the Corwin Forma- tion of the Nanushuk Group was studied by Rao (1980) in the Cape Beaufort region. Forty-eight samples from 14 coal beds showed that the coal is composed mainly of the macerals vitrinite (huminite), liptinite, and inertinite. The percentage of vitrinite varies from 47.1 to 89.5 (average of 74.4), that of liptinite from 0.4 to 10.4 (average of 2.3), and that of inertinite from 1.8 to 33.9 (average of 23.3). The macerals vary from coal bed to coal bed as well as within a coal bed. Many of the beds are high in inertinites (such as fusinite and semifusinite) (charcoals), the proportions of which are lowest at the bottom of the coal bed and increase toward the top. This pattern indi- cates that mires evolved into a drier setting during accumula- tion of peat deposits, which promoted forest fires that created the charcoals (fusinites). This interpretation is supported by Spicer (1987), whose investigation indicated seasonality of the generally humid climate during the development of the peat- forming mires. Platanoid-like leaves are closely associated with fluvial deposits, and gymnosperm and magnoliid-like Table 3a. Coal quality of coal deposits in the Cretaceous Nanushuk Group in the Northern Alaska-Slope coal province. [All analyses except Calorific value (Btu) and Ash-fusion-temperature (°F) are in percent. Values reported on an as-received basis. L after a value means less than the value shown and G after a value means greater than the value shown.Data from U.S. Geological Survey, 1997, USGS Coal Quality Database (USCHEM) [unpublished computer database: Reston, Virginia)] Range Unit Parameter Numberofsamples Minimum Maximum Arithmetic mean Standarddeviation Proximate and ultimate analysis ���������������������������� ������������������������������������ ��������������������������������� ���������������������������� �������������������������� ��������������������������� �������������������������� ��������������������������� ������������������������ Calorific value ����������������������������������� Forms-of-sulfur �������������������������� �������������������������� �������������������������� Ash-fusion-temperatures °F ������������������������������������������ ������������������������������������������������������������������������������������������������������������ Table 3b. Coal quality of coal deposits in the Tertiary Staines Tongue of the Sagavanirktok Formation in the Northern Alaska-Slope coal province. [All analyses except Calorific value (Btu) and Ash-fusion-temperature (°F) are in percent. Values reported on an as-received basis. L after a value means less than the value shown and G after a value means greater than the value shown.Data from U.S. Geological Survey, 1997, USGS Coal Quality Database (USCHEM) (unpublished computer database: Reston, Virginia)] Range Unit Parameter Number ofsamples Minimum Maximum Arithmeticmean Standarddeviation Proximate and ultimate analysis ����������������������������� ������������������������������������ ��������������������������������� ��������������������������� �������������������������� ��������������������������� �������������������������� ��������������������������� ������������������������� Calorific value ������������������������������� Forms-of-sulfur ��������������������������� ��������������������������� ��������������������������� Ash-fusion-temperatures °F ���������������������������������������� ������������������������������������������ �������������������������������������������������������������������������������������������� leaves are associated with lacustrine and mire deposits (Spicer, 1987). Vitrinite reflectance values of the 14 coal beds vary from 0.65 to 0.74 (average 0.70) percent. Central Alaska-Nenana Coal Province The Central Alaska-Nenana coal province (fig. 1) is the smallest, most centrally located, and most thoroughly studied of the coal provinces on the north side of the Alaska Range. It has accounted for more than one-half of the coal mined in Alaska and is the only province in Alaska being currently mined. This coal province is in the northern foothills of the Alaska Range, extending from about 50 mi (80 km) west to 50 mi (80 km) east of the Alaska Railroad (see fig 1). It consists of several synclinal basins partly or wholly detached from each other by erosion of coal-bearing rocks from intervening structural highs. These coal-bearing synclinal basins were rec- ognized as coalfields and include the Jarvis Creek, East Delta, West Delta, Wood River, Mystic Creek, Tatlanika Creek, Lignite Creek, Healy Creek, Rex Creek, and Western Nenana. They extend as a discontinuous belt from 9 mi (14.5 km) wide to 56 mi (90 km) long (fig. 19). The Healy Creek, Lignite, and Suntrana coalfields, where past mining occurred and most current mining occurs lie along the Alaska Railroad and the Anchorage to Fairbanks high- way (see fig. 1; George Parks State Highway 1). The railroad provided the needed transportation for marketing the coal. In 1918, underground coal mining by the Healy River Coal Cor- poration began at Suntrana, 4 mi (6.4 km) east of the conflu- ence of Healy Creek and the Nenana River (Usibelli, 1986). Horse-drawn sleds to the railroad camp in Healy originally transported coal until a railroad spur was built to the mine in 1922. The Healy River coal mine accounted for one-half of the Stateʼs production from 1920 to 1940. The rest of the production was from the Evan Jones mine in the Matanuska coalfield (see discussion of the Southern Alaska-Cook Inlet coal province). The military buildup in Alaska in the 1940s and after World War II provided a new market for coal that resulted in opening more mines to meet the demand (Usibelli, 1986). Usibelli Coal Mine, Inc. (UCM), opened the first strip mine in the coal province east of Suntrana in 1943. In 1961, UCM purchased the Healy River Coal Corporation and continued mining underground. The Arctic Coal Company opened a small mine on Lignite Creek and operated it until 1963. The Vitro Mineral Mine was opened in 1963 east of Suntrana and Central Alaska-Nenana Coal Province 25 �������� ��� ��� ���� � � ��������������� ����������� ���������������������� ������������������ ALASKA Fairbanks ��������� ����� ����� ���� ����� ��������� ����� ����� ���� ����� ����� ������ ����� ����� ������ ����� ����� ������� ������ ����� ��������������� ����������������� Tanana Flats NenanaRi ver Anchorage �������� �������� Healy Suntrana T e l anikaRiverT atlanika CreekTatl a ni kaRiverW o o d RiverDryCreekLittleDeltaRiverDeltaCreekDeltaCreekClearCreekJarvisCreek��� ����� ����� ������ ���������� ������ ������ Figure 19. Map showing the coalfields in the Central Alaska-Nenana coal province. 26 Alaska Coal Geology, Resources, and Coalbed Methane Potential in 1970 was purchased by UCM. Golden Valley Electric Asso- ciation opened a mine-mouth powerplant at Healy in 1968. Since that time UCM has supplied coal to the powerplant and in 1985 entered the international market by supplying coal to South Korea. UCM is the only active coal mine in the State today. Tertiary Usibelli Group The Usibelli Group (Wahrhaftig, 1987), a nonmarine sedimentary sequence of Tertiary age, consists, from bottom to top, of the coal-bearing Healy Creek, noncoaly Sanctu- ary, coal-bearing Suntrana and Lignite Creek Formations and noncoaly Grubstake Formation (fig. 20). It is overlain uncon- formably by the Nenana Gravel. Detailed discussions of the group are summarized from Wahrhaftig and others (1969), Wahrhaftig (1987), Wahrhaftig and others (1994), and Stanley and others (1992). Sanders (1976) recognized as many as 30 coal beds in the Usibelli Group, which are mainly 2.5 ft (0.7 m) thick but can be as much as 30 ft (9.1 m) thick. The vertical and lateral stratigraphic variations of the Healy Creek, Sanctu- ary, and Suntrana Formations, which overlie the lower Paleo- zoic and Precambrian (?) pelitic and quartzose schist sequence (Csejety and others, 1992), are displayed in figure 21. The depositional environments of the Usibelli Group have been interpreted as fluvial and lacustrine deposits (Buffler and Tripplehorn, 1976; Selleck and Panuska, 1983; Merritt, 1986; Stanley and others, 1992; Wahrhaftig and oth- ers, 1994). Flores and Stanley (1995) proposed that the Healy Creek Formation was deposited in an incised paleovalley infilled by sediments of transverse alluvial fans and longitudi- nal braided streams that flowed southward (fig. 22A–D). The paleocurrent directions from crossbeds in the sandstones of the Healy Creek, Suntrana, and Lignite Creek Formations (fig. 23) indicate southward flow of streams. Inactive braid-belt deposits formed platforms for raised mires on which thin to thick peat deposits accumulated. Lacustrine sediments of the Sanctuary Formation succeeded these alluvial environments being deposited in a lake that resulted from coalescing of flood-plain lakes and fluvial channels caused by damming of the downstream extent of the ancestral fluvial system, which flowed southward into the ancestral Cook Inlet Basin. Either uplift of the Alaskan Range or movement along the Denali fault may have caused damming. This tectonic movement caused base level to rise (Flores and Stanley (1995). The lake was filled by alluvial fan deltas, which gradually lowered base level and restored the fluvial systems that continued to flow southward. This led to formation of low-sinuosity streams ��������������� ��Shale-rich unit Shale,siltstone,and sandstone Conglomerate and conglomeratic sandstone Sandstone Coal and carbonaceous shale ���������������� EXPLANATION ��� ������������ ������������������ ���������������� ��������������������� ��������������� ��������������� ������������� ����������������� ���������� �������������� ��� ��������������� ����������� ������������ ���������� �������������� ��� �������������� ������ ������������������ ���������� ������ ������������������� ���������� ���������������������������������������Figure 20. Generalized stratigraphic and lithofacies column of the Usibelli Group in the Central Alaska-Nenana coal province. and related mires during deposition of the Suntrana Forma- tion. These streams evolved into high-sinuosity (meandering) streams and accompanying mires during deposition of the Lignite Creek Formation. Raised mires were associated with these streams, forming on abandoned deposits of alluvial belts and flood basins. These mires were common during the depo- sition of the Suntrana Formation, and topogenous or low-lying mires, where thin peats accumulated, were common during the deposition of the Lignite Creek Formation. Another damming of the downstream extent of these streams by uplift of the Alaskan Range created a lake that was infilled by alluvial-fan delta sediments of the Grubstake Formation. Continued uplift and lowering of base level resulted in northward-flowing alluvial fans to be shed from the Alaskan Range, forming the Nenana Gravel. Healy Creek Formation The Healy Creek Formation is the oldest rock unit in the Usibelli Group (fig. 20). The formation, as much as 445 ft (136 m) thick, consists of interbedded sandstones, conglomer- ates, siltstones, and mudstones, including carbonaceous shale and coal beds. Sandstone is the most common rock type and coal is the least common. It unconformably overlies the pelitic and quartzose schist sequence (Csejety and others, 1992) with erosional relief of as much as a few hundred feet. In most of the synclinal coalfields, the Healy Creek Formation is early to middle Miocene (Wolfe and Tanai, 1980; Wahrhaftig, 1987); but in the Rex Creek coalfield, where the formation was formerly thought to be as old as late Oligocene (Wolfe and Tanai, 1980), it is now regarded to be as old as late Eocene (Wolfe and Tanai, 1987). The Healy Creek Formation consists mainly of fining- upward sequences of conglomerates, sandstones, and silty sandstones (fig. 24). The conglomerates are composed of sedimentary, igneous, and low- to medium-grade metamor- phic rock types (Stevens, 1971). The sandstones are mainly quartz-feldspathic-rich rocks. The lower 130 ft (40 m) consists mainly of amalgamated, basally scoured, lenticular pebble- cobble conglomerates and sandstones (Stanley and others, 1992). The lowermost conglomerate beds rest with sharp, erosional contact on the pelitic and quartzose schist sequence. Conglomerates are normally graded, clast supported, and crudely imbricated (fig. 25). Sandstones exhibit abundant tabular and trough crossbeds in sets generally less than 2.3 ft (70 cm) in height. Ripple and small-scale cross laminations are common. Also present are scour surfaces at the bases of the conglomerates and sandstones with as much as 10 ft (3 m) of erosional relief. Interbedded sandstones, siltstones, mudstones, coals, and carbonaceous shales (fig. 26) overlie the conglomer- atic and sandy interval of the Healy Creek Formation. The sandstones exhibit erosional basal surfaces, fine upward, and are crossbedded (mainly trough and planar crossbeds). Rooted siltstones and mudstones overlie the sandstones and are interbedded with coal and carbonaceous shales. Coal beds have combined thickness of as much as 49–61 ft (15–20 m), and individual beds persist laterally for more than 0.6 mi (1 km). They commonly pinch out, split, and (or) merge. Also, Central Alaska-Nenana Coal Province 27 �������� ������������ ��� ���� �������� �������������������� ������ ����� �������� �������� ����� ����������������������������������������� ���������� ���������� ������ ������������������������������������������������������������ ������� � �������� ������������� �� ����� ���������� Conglomerate and conglomeratic sandstone Conglomerate Sandstone Coal and carbonaceous shale Shale-rich unit Shale,siltstone,and sandstone EXPLANATION �������� Figure 21. Stratigraphic cross section showing the variations of the con- glomerates, sandstones, siltstones, mudstones, and coal beds in the lower part of the Usibelli Group in the Healy Creek coalfield on the south- ern part of the Central Alaska-Nenana coal province. See figure 19 for location of Healy Creek coalfield. 28 Alaska Coal Geology, Resources, and Coalbed Methane Potential ��� ��� �������� ���������� ��������������� Mire Sand Ancestral mountains Flow direction MineBraidedstream M eanderin g stream Crevasse splay Braided stream ? ���������������������� ���������������������� ���������������������� �������������������������������������������� ? ������������Ne nanaRiverNe n a naRi verNe n a n aRiverNe n a n aRiver��������������������� ������ ��������� ������ ��������� Lake Figure 22. Paleogeographic maps showing depositional environments of: (A) Healy Creek Formation, (B) Sanctuary Formation, (C) Suntrana Formation, and (D) Lignite Creek Formation. Adopted from Flores and Stanley (1995). Figure 23. Crossbed-orientation measurements in fluvial-channel sandstones in the Healy Creek, Suntrana, and Lignite Creek Formations in Suntrana area. Modified from Flores and Stanley (1995). ����������� ����� �������� ��������� ���������������� ���� ����������� ����� PALEOCURRENTS AT SUNTRANA ���������� ��������� ����������� ���� ���������������� ���� ������������ ��������� N =Number of measurements Central Alaska-Nenana Coal Province 29 Trough crossbeds Pelitic and quartzose schist sequence (Precambrian Birch Creek Schist) Healy Creek Formation (lower part) � ������ ������ �� Tabular crossbeds Planar crossbeds Ripple lamination Sandstone Conglomerate and conglomeratic sandstone Coal and carbonaceous shale EXPLANATION Figure 24. Stratigraphic cross section showing the basal conglomerates and sandstones in the lower part of the Healy Creek Formation east of Suntrana. Adopted from Flores and Stanley (1995). See figure 19 for location of cross section. Figure 25. Photograph of conglomerates (a few inches to 5 feet thick or a few centimeters to 1.5 meters) and sandstones (6 inches to 8 feet thick or 15.2 centimeters to 2.4 meters) deposited by braided streams in the lower part of the Healy Creek Formation in east of Suntrana. 30 Alaska Coal Geology, Resources, and Coalbed Methane Potential Sandstone Mudstone and siltstone Coal and carbonaceousshale Trough crossbeds Tabular crossbeds Megaforesets Ripple laminations Root marks Healy Creek Formation (middle part)�� EXPLANATION �������������� � ������ �������� Figure 26. Stratigraphic cross section showing the middle, coal- bearing part of the Healy Creek Formation east of Suntrana. See figure 19 for location of cross section. Adopted from Flores and Stanley (1995). HealyCreekFormation(upperpart)Conglomeratic sandstone Sandstone Mudstone and siltstone Limestone Coal and carbonaceous shale EXPLANATION Trough crossbeds Tabular crossbeds Ripple laminations Root marks F Coal Sanctuary Formation �������������� � ������ �������� ��Figure 27. Stratigraphic cross section of the uppermost part of the Healy Creek Formation showing the fluvial-channel sandstones and F coal bed, and overlying Sanctuary Formation east of Suntrana. See figure 19 for location of cross section. Adopted from Flores and Stanley (1995). they interfinger with carbonaceous shales, mudstones, and siltstones. The highest coal bed of the Healy Creek Formation, the F coal bed (figs. 27 and 28), which immediately underlies the Sanctuary Formation, is the only coal bed of sufficiently continuous lateral extent to be analyzed for reserve estimates (Wahrhaftig and others, 1994). The Healy Creek Formation was interpreted to originate as braided to high-sinuosity stream deposits (Buffler and Tripplehorn, 1976; Selleck and Panuska, 1983; Stanley and others, 1992). The streams may have formed on a wet alluvial fan or on a proximal braid plain where the cobbles, pebbles, and sands were likely deposited by migrating longitudinal gravel bars and sandy transverse bars. The interbedded sand- stones, siltstones, and mudstones probably were deposited in low-sinuosity fluvial channels and flood plains. Coal beds and carbonaceous shales may have accumulated in raised mires or abandoned mires built atop abandoned fluvial channels and flood-plain deposits. Sanctuary Formation The Sanctuary Formation is composed mainly of 130 ft (40 m) of gray, thinly laminated, varved mudstone and shale that weather chocolate brown (fig. 29). Mudstones commonly exhibit nondescript vertical animal burrows. The formation also contains minor sandstone, siltstone, and limestone. Sand- stones are rippled and crossbedded and occur as a coarsening- upward sequence with the underlying siltstones. Limestones are found as gray, micritic, lenticular beds. This formation conformably overlies the Healy Creek Formation and was assigned by Wolfe and Tanai (1980) to the middle Miocene. The Sanctuary Formation is interpreted to have accumu- lated in a large, shallow lake. The lake may have originated as a series of flood-plain lakes, which coalesced due to rise of base level either by damming of the streams and (or) by tec- tonic uplift along the path of the streams downstream. Coars- ening upward sandstones and siltstones probably represent lacustrine deltas shed either from the nearby fluvial channels or from fan deltas. Suntrana Formation The Suntrana Formation unconformably overlies the Sanctuary Formation and is as thick as 1,310 ft (400 m) (see fig. 21). The formation, as a whole, thickens gradually southeastward and pinches out in the northwestern part of the coal province. It consists of interbedded sandstones, siltstones, mudstones, carbonaceous shales, and coal. Sandstones are abundant, erosional based, fining upward, mainly trough and planar crossbedded with crossbeds 3.2–6.5 ft (1–2 m) in height, and pebbly at the base (figs. 30 and 31). They grade either into rooted siltstone, mudstones and silty sandstones or are locally unconformably overlain by these deposits (fig. 32). Coal beds are interbedded with carbonaceous shales and have a combined thickness ranging from 1.6 to 65 ft (0.5 to 20 m). Most of the coal beds can be traced laterally over distances of as much as 15 mi (25 km) (Wahrhaftig, 1973). Two of the thicker beds (Nos. 3 and 4) are currently mined in the Usibelli coal mine at Poker Flats (figs. 33 and 34). Thickness of the No. 6 coal bed, the highest coal bed, is shown in figure 35. The Suntrana Formation was assigned by Wolfe and Tanai (1980) to middle Miocene. The fining-upward, erosional-based sandstones of the Suntrana Formation probably were deposited in braided streams by migrating longitudinal bars and transverse side channel bars (Stanley and others, 1992; Flores and Stanley, 1995). An upward decrease in grain size reflects decreasing flow resulting from switching and lateral migration of the stream channels. The erosional-based siltstones, mudstones, Central Alaska-Nenana Coal Province 31 Figure 29. Photograph of the lacustrine mudstone and lenticular limestone units in the Sanctuary Formation in the Lignite Creek coalfield. Hammer on left for scale is 1 foot (0.3 meter) long.������������������ ������������������������ ������� Figure 28. Photograph of the uppermost part of the Healy Creek Formation, F coal bed, and overlying mudstones of the Sanctuary Formation in the Lignite Creek coalfield. Man for scale is 6 feet (1.8 meters) tall. 32 Alaska Coal Geology, Resources, and Coalbed Methane Potential and silty sandstones that scoured into the fining-upward sand- stones represent deposits in abandoned fluvial channels. A thick coal bed commonly overlies the fining-upward sand- stones, which reflect accumulation of peat on raised mires. Abandoned fluvial channel deposits served as platforms on which raised mires could be sustained for a long period of time without drowning by detritus during floods from streams. However, when the mires were formed in low topography, detrital sediments flooded the mires and flood plains by cre- vasse splays and overbank splays, as indicated by interbedded mudstones, siltstones and silty sandstones. The thick crevasse- overbank sequence and associated thin coal beds indicate rapid sedimentation and local subsidence. Lignite Creek Formation The Lignite Creek Formation, which is from 490 to 790 ft (150 to 240 m) thick, overlies and is conformably gradational with the Suntrana Formation (see fig. 20). The Lignite Creek consists of interbedded sandstones, siltstones, mudstones, carbonaceous shales, and coals; sandstones and mudstones are the most dominant. The sandstones are fining-upward pebble to coarse grained in the lower part and fine grained in the upper part. They have an erosional, pebbly base and are trough and planar crossbedded. The fining-upward sandstone is commonly overlain by, and gradational to, interbedded siltstone, mudstone, and coal at the top (figs. 36 and 37). The coal beds are thin, generally less than 3 ft (1 m) thick, woody, and relatively lenticular and interbedded with coarsening- upward mudstones, siltstones, and silty sandstones (fig. 38); they pinch out northward. A noncoal-bearing conglomeratic deposit, as much as 37 ft (11 m) thick, occurs along the north and west margins of the Nenana coal field. Wolfe and Tanai (1980) have assigned the Lignite Creek Formation to the late middle to early late Miocene age. The dominant mudstones and sandstones in the Lignite Creek Formation reflect its deposition in a high-sinuosity or meandering stream setting. Mudstones represent suspended load from these meandering streams, which overtopped the banks of the streams during floods. Continuous overtopping of the streambanks of muds resulted in accumulation of thin coals, mainly <3.2 ft (1 m) thick, in generally low-lying mires. Coal beds are platy and appear to contain mats of branches and twigs unlike the blocky appearance of the coal beds in the Healy Creek and Suntrana Formations. The difference in appearance is probably due to lower apparent rank of the Lignite Creek coal. Grubstake Formation The stratigraphically highest formation assigned to the Usibelli Group is the Grubstake Formation (see fig. 20; Wah-�������������������������� ������� ����Trough crossbeds Tabular crossbeds Planar crossbeds Ripple laminations Root marks �������� �������� �������� ��������������� ����������� ������ Sandstone Mudstone and siltstone Coal and carbonaceous shale Conglomeratic sandstone Clinker Figure 30. Stratigraphic cross section of the Suntrana Formation showing the Nos. 2, 3, and 4 coal beds and interbedded fluvial- channel sandstones west of Suntrana. See figure 19 for location of cross section. Adopted from Flores and Stanley (1995). Central Alaska-Nenana Coal Province 33 �������� ������������������ ������������Figure 31. Photograph of the Suntrana showing the thick No. 3 coal bed, clinker bed of No. 4 coal bed, thin No. 5 coal bed, and interbedded fluvial-channel sandstones and clay plug-overbank deposits west of Suntrana. For scale, the sandstone below No. 3 coal bed is 75 feet (22.8 meters) thick. Figure 32. Photograph of the abandoned fluvial-channel mudstone or clay plug deposit. Note ero- sional basal contact of the clay plug deposits west of Suntrana. Man is 6 feet (1.8 meter) tall for scale. 34 Alaska Coal Geology, Resources, and Coalbed Methane Potential Trough crossbeds Tabular crossbeds Megaforesets Ripple laminations Root marks ������ �������� �������� �������� Sandstone Mudstone and siltstone Coal and carbonaceous shale EXPLANATION �������� ������������� ���������������� ������������������������� ������������ �� Figure 33. Stratigraphic cross section of the Nos. 3, 4, and 6 coal beds of the Suntrana Formation in the Poker Flats strip mine of Usibelli Coal Mine. Here the Nos. 3 and 4 coal beds are mined. See figure 19 for location of cross section. Adopted from Flores and Stanley (1995). �������� �������� Figure 34. Photograph of the Poker Flats strip mine showing the highwall exposing fluvial-channel sand- stones and No. 3 coal bed (lower bench) and No. 4 coal bed (upper bench). For scale, the sandstone between the Nos. 3 and 4 coal beds is 100 feet (30 meters) thick. White dashed line is the contact between the coal and fluvial-channel sandstone. rhaftig and others, 1994). This formation consists of dark gray laminated shale and mudstone that is 590–980 ft (180–300 m) thick in the northeastern part of the Nenana coal province but only 2–6 ft (0.6–1.9 m) thick in the southwestern part. In the eastern part of the coal province, the Grubstake Formation interfingers southward with coarse-grained, dark, unconsoli- dated sandstones similar to those in the overlying Nenana Gravel. A K-Ar age on rhyolitic glass from an ash layer in the lower part of the Grubstake Formation is 8.3±0.4 Ma, which coincides with a late Miocene age based on plant megafossils (Wahrhaftig and others, 1969; Wolfe and Tanai, 1980; Wah- rhaftig, 1987). The Grubstake Formation probably accumulated in a lake closely similar to that of the Sanctuary lake. The lake was formed by the damming of southward-flowing Lignite Creek paleostreams by the rising Alaska Range and may be the result of coalesced flood-plain lakes and fluvial channels due to the rise of base level caused by tectonic damming. Nenana Gravel The Nenana Gravel consists of poorly consolidated, buff to red, pebble- to boulder-size conglomerates overlying the Usibelli Group. It ranges in thickness from 3,940 ft (1,200 m) at the south edge of the Nenana coal province to 980–1,310 ft (300–400 m) along the north edge of the Alaska Range foothills. Gravel detritus was shed northward from the rising Alaska Range that blocked the southward-flowing tributary to the Cook Inlet-Susitna Lowland (Wahrhaftig, 1970). Its age is bracketed between 8.3 and 2.75 Ma, so is contempo- raneous with the Sterling Formation in the Cook Inlet area. The Nenana Gravel is much more widely distributed than the Usibelli Group, which is primarily confined to synclinal basins deformed early in the orogeny that later deposited the Nenana Gravel. Along much of its outcrop length, the formation rests on rocks older than the Usibelli Group, and detritus from the Usibelli Group can be recognized in the Nenana Gravel. Coal Resource Assessment of the Central Alaska-Nenana Coal Province The coal resource assessments of different workers in the Central Alaska-Nenana coal province differ in magnitude and coal resource categories, which result in varying estimates. We reconstructed these different coal resource estimates fol- lowing guidelines of the coal-resource classification system of Wood and others (1983). This new reporting system of the coal resources of the Central Alaska-Nenana coal province, modified from previous estimates is summarized in table 1. Following is a historical account of the diverse coal resource assessments in the coal province. Coal Resource Assessment of the Central Alaska-Nenana Coal Province 35 Measured and indicated coal(<1,000 ft overburden) Inferred coal (<1,000 ft overburden) Measured and indicated coal(1,000 ft overburden) Inferred coal (1,000-3,000 ft overburden) Trace of outcrop of coal bed No.6 � ����Location of measured sectionandnetcoalthicknessinfeet Coal isopach line EXPLANATION � ����������� ������� � � �� Contour interval 5 feet (1.5 meters) (queried where uncertain) T o tatlanika RiverCal i f or ni aC reek L i g n i t e C r e ek DryCreekNena n a Ri v e r Healy Creek � Healy Lignite Ferry � � � � ��� �� ���� �� ���� ������ ������ �������� ���� ���� �������� ���� ���� ���� ������� ������ ���� ���� ������ ���� ����� �� �� �� � � � ��������������� ������ ������� �TatlanikaRiverFigure 35. Thickness map of the No. 6 coal bed of the Suntrana Formation. Modified from Wahrhaftig and others (1994). 36 Alaska Coal Geology, Resources, and Coalbed Methane Potential ������������� � ������� ��������� �������������� ��������������������� ����������� �� Trough crossbeds Tabular crossbeds Planar crossbeds Megaforesets Convolute laminations Ripple laminations Root marks Sandstone Mudstone and siltstone Coal and carbonaceous shale Conglomeratic sandstone EXPLANATION Figure 36. Stratigraphic cross section of the lower part of the Lignite Creek Formation showing interbedded fluvial-channel sandstones, crevasse splay flood-plain deposits, and thin coal beds west of Suntrana. See figure 19 for location of cross section. Adopted from Flores and Stanley (1995). ���� Figure 37. Photograph of the interbedded fluvial-channel sand- stones, flood-plain deposits, and an interbedded thin coal bed of the Lignite Creek Formation west of Suntrana. For scale, the upper coal bed is 3 feet (0.9 meter) thick. Figure 38. Photograph of the coarsening-upward mudstone, siltstone, and sandstone (tabular shape) sequence overlain by thin coal beds of the Lignite Creek Formation west of Suntrana. Ham- mer on lower left for scale is 1 foot (0. 3 meter) long. Coal was first mined in the Nenana coal province in 1918 when the Alaska Railroad reached the town of Lignite near Lignite Creek. The Suntrana Mine was an underground opera- tion in the Healy Creek coalfield from 1922 to the mid-1950ʼs. Strip mining by Usibelli Coal Mine (UCM) in the Healy Creek coalfield began in 1944, eventually replacing the underground mining. Several 10- to 65-ft-thick (3–20 m) coal beds within the Suntrana Formation and Healy Creek Formation are sepa- rated by 32–195 ft (10–60 m) of poorly consolidated sand- stone and are overlain at the surface by sand and gravel with an overburden: coal ratio of < 5:1. Present technologies and economics indicate that essentially all of the strippable coal in the Healy Creek coalfield has been mined. Production from the strip and underground mines in this coalfield since January 1, 1959, was 6.6 million short tons (5.9 million metric tons) (Barnes, 1967a). Approximately 18 million short tons (16 mil- lion metric tons) of coal has been produced from the Lignite Creek coalfield by the UCM from 1977 to 1992. In 1985, 48 percent of this production was consumed in Alaska; the rest was exported to South Korea (Green and Bundtzen, 1989). Coal production has come from proven reserves in the Healy Creek and Suntrana Formations. Lignite Creek Formation con- tains no currently minable reserves within the mine leases. Healy Creek and Lignite Creek coalfields contain most of the coal resources in the Central Alaska-Nenana coal province (table 4), with more than 5.9 × 109 short tons (5.4 × 109 metric tons) of inferred, measured, and indicated resources (Wah- rhaftig, 1973). Wahrhaftig and others (1994) revised this esti- mate to 6.2 × 109 short tons (5.6 × 109 metric tons). About 5.47 billion short tons (4.9 billion metric tons) are in beds more than 2.5 ft (0.76 m) thick (Barnes, 1967a). Coal resources are distributed as follows: 1 billion short tons (0.91 billion metric tons) identified and 2 billion short tons (1.8 billion metric tons) hypothetical for Healy Creek coalfield; 4.9 billion short tons (4.4 billion metric tons) identified and 7 billion short tons (6.4 metric tons) hypothetical for Lignite Creek coal- field (Stricker, 1991). Measured, indicated, and inferred coal resources in beds more than 2.5 ft (0.76 m) thick and from 0 to 3,000 ft (915 m) below the surface, are 4.9 billion short tons (4.4 billion metric tons) (Barnes, 1967a). About 1.36 bil- lion short tons (1.2 billion metric tons) of total coal resources from 0 to 3,000 ft (915 m) below the surface was estimated by Barnes (1967a) in Healy Creek coalfield and 4.1 billions short tons (3.7 billion metric tons) for Lignite Creek coalfield. Summaries of the estimates of coal resources of other coalfields such as Jarvis Creek, Wood River, Rex Creek, Coal Resource Assessment of the Central Alaska-Nenana Coal Province 37 Table 4. Estimates of coal resources for the Tertiary Usibelli Group in the Central Alaska-Nenana coal province. [Resource estimates are in millions of short tons (multiply by 0.907 to obtain metric tons)] Coalfield Source Classification Resource estimate ������������������������������� ����������������������������������������� ������������������������������������������������������� ���������������������������������������������� ������������������������������ ���������������������������������������� �������������������������������������������������������� ���������������������������������������������� ������������������������������������������ �������������������������������������������� ��������������������������� ������������������������ ��������������������������� ������������ ������������������������������� �������������������������� �������������������������� ���������������������������������� �������������������������������� ���������� �������������������������������� ��������������������������� ��������������������������� ������������������������������������������������� ������������������������������������������ ��������������������������� �������������������������� �������������������������������������� ��������������� ���������������������������������������� ��������������������������������������������������������������������������������������������������������� �������������������� ����������������������������������������������������������������������������������������������������������� ��������������������������������������������������������� �������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������� 38 Alaska Coal Geology, Resources, and Coalbed Methane Potential and Tatlanika Creek coalfields in the Central Alaska-Nenana coal province are in table 4. In the Jarvis Creek coalfield, the coal-bearing rocks are as much as 1,970 ft (600 m) thick and underlie an area of about 40 mi2 (103 km2). These coal-bear- ing rocks were correlated with the Healy Creek Formation of the Healy Creek coalfield by Wahrhaftig and Hickcox (1955). Thirty thin, discontinuous coal beds are present throughout the coal-bearing sequence, but most of these beds are less than 2.5 ft (0.75 m) thick. Wahrhaftig and Hickcox (1955) calcu- lated 13 × 106 short tons (12 × 106 metric tons) of indicated and inferred resources of coal in seven beds exposed along the south and east sides of the Jarvis Creek coalfield. These workers suggested that the coalfield might contain as much as 62 × 106 short tons (57 × 106 metric tons) of additional coal resources for which no outcrop evidence is available. Metz (1981) reported that drilling had discovered about 1.1 × 106 short tons (1 × 106 metric tons) of stripping coal in part of the Jarvis Creek coalfield. Barnes (1967a) originally estimated indicated and inferred coal resources based on coal beds greater than 2.5 ft (0.75 m) thick in the Jarvis Creek coalfield to be about 51 million short tons (46 million metric tons) between 0 and 1,000 ft (0–305 m) of overburden and about 26 million short tons (24 million metric tons) between 1,000 and 2,000 ft (305–609 m) of overburden. A small coal strip mine was opened in the center of the Jarvis Creek coalfield in 1958, and mining continued spo- radically for many years; more than 1 million short tons (0.9 million metric tons) was estimated as strippable reserve in a 40-acre site (16 hectares) near the old mine by Metz (1981). At the mine, individual coal beds range from 1 to 10 ft (0.3 to 3 m) thick, and seven beds exceed 6 ft (1.8 m), four of which were mined at the surface (Belowich, 1987). The minable coal beds are plotted in figure 39, which shows an 11-ft-thick (3.4 m) coal separated by a 4-ft-thick (1.2 m) carbonaceous shale parting that, west and east of RGD1, splits this coal into two separate beds (B and C), each averaging 7–8 ft (2.1–2.4 m) thick (Belowich, 1987). The intervening strata are fluvial channel sandstones and flood plain overbank deposits. In the Wood River coalfield (fig. 19), Merritt (1987) mapped the Usibelli Group from the Healy Creek Formation �������������������� ����������������� ��������������������� ���������������� ��������������������������� ��������� ����������������� ���� ����������� ��������������� ��������� ������� ��������� ���� �������� �� �� �� � � � � URC2 RGD1 ���������������������� UC8 UC7 ����� ����� ��� ����� ����� ����� ����� ����������� Figure 39. Stratigraphic cross section showing variation of minable Healy Creek coal beds and associated sandstones, mudstones, and siltstones in the Jarvis Creek coal- field. Modified from Belowich (1987). See figure 19 for location of cross section. to the Grubstake Formation. However, he identified minable coal beds only within a 600-ft-thick (183 m) coal-bearing interval of the Suntrana Formation. The coal-bearing Usibelli Group underlies a >40-mi2 (103-km2) area that makes up the Wood River coalfield, where individual Suntrana coal beds are as much as 12 ft (3.7 m) thick. The coal beds considered as minable include an aggregate coal thickness of 50 ft (15 m) thick of which 30 ft (9.1 m) is recoverable, and overbur- den was limited to less than 500 ft (150 m). Utilizing all coal beds greater than or equal to 2.5 ft (0.75 m), Merritt (1987) estimated indicated coal resources (high assurance) to be 65 million short tons (59 million metric tons) and hypothetical coal resources (low assurance) to be as much as 200 million short tons (181 million metric tons). Barnes (1967a) originally estimated coal resources based on coal beds greater than 2.5 ft (0.75 m) thick in the Wood River coalfield as: 15 million short tons (13.6 million metric short tons) of measured with 0–1,000 ft (0–305 m) of overburden; 12 million short tons (11 million metric tons) of indicated with 0–1,000 ft (0–305 m) of overburden; and 241 million short tons (218 million metric short tons) of inferred with 0–1,000 ft (0–305 m) of overbur- den. Indicated coal resources under 1,000 to 3,000 ft (305–914 m) of overburden were estimated by Barnes (1967a) to be 33 million short tons (30 million metric tons). Barnes (1967a) estimated the indicated and inferred coal resources in the Rex Creek coalfield (see fig. 19) based on coal beds greater than 2.5 ft (0.75 m) thick to be 9.5 and 113.5 million short tons (8.6 and 103 million metric tons) with 0–1,000 ft (0–305 m) of overburden, respectively. Total coal resources, based on coal beds greater than 2.5 ft (0.75 m) thick, are about 123 million short tons (111 million metric tons). Indicated and inferred coal resources of the Tatlanika Creek coalfield (see fig. 19) were estimated by Barnes (1967a) to be about 117 and 77 million short tons (106 and 70 mil- lion metric tons) with 0–1,000 ft (0–305 m) of overburden, respectively. Inferred coal resources from 1,000 to 2,000 ft (305 to 610 m) of overburden are about 76 million short tons (69 million metric tons). Total coal resources based on coal beds greater than 2.5 ft (0.75 m) thick are about 270 million short tons (245 million metric tons) with 0–2,000 ft (0–610 m) of overburden. Coal resources for the 10 coalfields of the Central Alaska-Nenana coal province were estimated by Merritt and Hawley (1986) to be 8 billion short tons (7.2 billion metric tons) identified and 15 billion short tons (14 billion metric tons) hypothetical. Barnes (1967a) estimated about 6.2 billion short tons (5.6 billion metric tons) of identified coal resources in this coal province (table 4). Coal Quality Coal in the Central Alaska-Nenana coal province ranges from lignite to subbituminous but is mainly subbituminous C (table 5). In the Usibelli Coal Mine the coal is subbitumi- nous with 7,570 –9,430 Btu/lb (4,210–5,240 kcal/kg) on an as-received basis, 17.8 percent moisture content, 3.5–13.2 percent ash yield, and 0.1–0.3 sulfur (Barnes, 1967a). The sulfur content of the Usibelli coal ranks among the lowest of any United States coal (Rao and Wolff, 1981; Affolter and oth- ers, 1981). Affolter and others (1994) reported that the Usibelli mine coal contains high concentrations of lead and selenium and low concentrations of beryllium and mercury, all of which are designated as hazardous air pollutants (HAPs) by the 1990 Clean Air Act Amendment. In general, a typical coal in the Healy Creek and Lignite Creek coalfields ranges from 6,130 to 9,210 Btu/lb (3,410 to 5,120 kcal/kg) with a mean of 7,780 Btu/lb (4,320 kcal/kg); ash yield is from 5.2 to 34.5 percent (mean is 9.9 percent); sulfur is from 0.1 to 1.49 percent (mean is 0.27 percent); and moisture content ranges from 14.8 to 32.7 percent (mean is 24.7 percent) (Affolter and others, 1994). Coal in the Jarvis Creek coalfield (see fig. 19) ranges mainly from 7,820 to 9,420 Btu/lb (4,340 to 5,230 kcal/kg); ash yield is from 5.2 to 13.1 percent; sulfur content is from 0.3 to 1.4 percent; and moisture content is from 20 to 23 percent (as-received basis; Barnes, 1967a). However, coal beds in the vicinity of the Jarvis Creek coal mine range, on an as-received basis, from 6,550 to 10,000 Btu/lb (3,640 to 5,560 kcal/kg); ash yield from 2.56 to 32.44 percent; sulfur content from 0.30 to 1.83 percent; and moisture content from 15.90 to 27.62 percent (Belowich, 1987). In addition, the coal beds contain low concentrations of trace elements (for example, chromium, beryllium, cadmiun, and cobalt) recognized as HAPs in the 1990 Clean Air Act Amendment. In the Wood River coalfield (see fig. 19), coals range from 7,240 to 9,380 Btu/lb (4,020 to 5,210 kcal/kg) (as- received basis); ash yield from 1.81 to 16.31 percent (as- received basis); sulfur content from 0.19 to 0.73 percent (as-received basis); and moisture content from 18.03 to 27.57 percent (as received basis) (Merritt, 1987). Coal Petrology Petrology of the coal beds in the Jarvis Creek and Wood River coalfields exhibits three main maceral compositions: huminite (vitrinite), liptinite, and inertinite. At Jarvis Creek, the huminite varies from 62.0 to 88.8 percent, liptinite from 10 to 18.5 percent, and inertinite from 2.2 to 6.5 percent (Belowich, 1987). In contrast, in the Wood River coalfield the huminite varies from 77.7 to 93.9 percent, liptinite from 4.7 to 20.3 percent, and inertinite from 0.2 to 9.1 percent (Merritt, 1987). The abundant woody materials preserved as huminites in the coal beds of the Wood River coalfield suggest that the coal formed mainly from trees. The variable inertinite compo- sition of the coal beds in the Wood River coalfield, indicates that the woody mires were not much affected by forest fires but more by fluctuating ground-water levels and fungal attack (Belowich, 1987). The higher huminite content of the coal beds in the upper part of the coal-bearing interval in the Wood Coal Resource Assessment of the Central Alaska-Nenana Coal Province 39 40 Alaska Coal Geology, Resources, and Coalbed Methane Potential River suggests that the mire vegetation evolved through time with the increase of coniferous trees relative to deciduous trees (Merritt, 1987). Southern Alaska-Cook Inlet Coal Province The Southern Alaska-Cook Inlet coal province is a large coal-bearing region that is as much as 100 mi (161 km) wide and 225 mi (362 km) long and covers an area about 22,500 mi2 (58,275 km2), half of which is beneath the waters of Cook Inlet (fig. 1). Many of the Tertiary coal-bearing rocks in the Southern Alaska-Cook Inlet Basin lie beneath the Cook Inlet, Susitna Lowland, Broad Pass Depression, Matanuska Valley, and Kenai Peninsula. In this coal province, Barnes (1967a) identified four coalfields containing Tertiary coal depos- its—the Broad Pass, Susitna-Beluga, Matanuska, and Kenai coalfields (fig. 40). Although these Tertiary coal-bearing coalfields occur in onshore areas bordering the Cook Inlet, this report will also describe equivalent Tertiary coal-bearing rocks offshore in the Cook Inlet. The Southern Alaska-Cook Inlet coal province is centered on the deep trough in the arc-trench gap between the Aleutian volcanic arc and the Aleutian Trench (Fisher and Magoon, 1978). The Cook Inlet Basin, which includes the onshore coalfields and offshore Cook Inlet, lies in the northwestern- most part of this arc-trench gap. The basin, which contains the Southern Alaska-Cook Inlet coal province, is a subsiding, fore-arc basin that lies on the site of a middle Mesozoic open shelf between a volcanic arc and an ancient Pacific oceanic crust (fig. 41; Wahrhaftig and others, 1994). The Lower Juras- sic Talkeetna Formation and the Middle Jurassic Talkeetna batholith on the north of the basin represent the volcanic arc (fig. 3). The Kenai and Chugach Mountains represent the ancient Pacific oceanic crust south and east of the basin. Thick Tertiary coal-bearing rocks (Paleocene to Pliocene) overlie Table 5. Coal quality of coal deposits in the Tertiary Usibelli Group in the Central Alaska-Nenana coal province. [All analyses except Calorific value (Btu) and Ash-fusion-temperature (°F) are in percent. Values reported on an as-received basis. L after a value means less than the value shown]. Data from U.S. Geological Survey, 1997, USGS Coal Quality Database (USCHEM) (unpublished computer database: Reston, Virginia)] Range Unit Parameter Numberof samples Minimum Maximum Arithmetic mean Standarddeviation Proximate and ultimate analysis �������������������������������� ������������������������������������ ������������������������������������� ����������������������������� �������������������������� ������������������������������ �������������������������� ���������������������������� ������������������������� Calorific value ��������������������������������� Forms-of-sulfur ��������������������������� ��������������������������� ��������������������������� Ash-fusion-temperatures °F ��������������������������������������� ������������������������������������������������������������������������������������������������������ a thick, Middle Jurassic to Upper Cretaceous, terrigenous, epiclastic sequence, which accumulated on this shelf (Kirsch- ner and Lyon, 1973; Fisher and Magoon, 1978). The McHugh Complex and the Valdez Group, which are oceanic crust and deep-sea turbidite sequences, were accreted to southern Alaska during Late Cretaceous time to form the Chugach and Kenai Mountains. This accreted terrane widened the arc-trench gap, which is now about 280 mi (450 km) wide. Irregular subsid- ence of the fore-arc basin began in latest Cretaceous time and continued sporadically throughout Cenozoic time. Basin subsidence, which was interrupted by mild uplift and erosion, was greatest during Neogene time in a 155-mi-long (250-km) segment of Cook Inlet in much of central and southern Alaska. Swenson (1997) proposed, based on studies by Richard Curry, David Doherty, and Joseph McGowen (Atlantic-Rich- field Company, oral commun., 1998), that the Hemlock, Tyo- nek, Beluga, and Sterling Formations of the Kenai Group and the West Foreland Formation are regionally time-transgressive units (fig. 42). In addition, these workers suggested that the rock units are laterally equivalent facies related to a dynamic nonmarine depositional basin. That is, the coarsest facies (con- glomerates and sandstones) were deposited proximal to the source by an alluvial fan system, which transported sediments from the uplifted Aleutian volcanic arc and accretionary com- plex margins (Joseph McGowen, Atlantic-Richfield Company, Southern Alaska-Cook Inlet Coal Province 41 Figure 40. Map showing coalfields in the Southern Alaska-Cook Inlet coal province. 42 Alaska Coal Geology, Resources, and Coalbed Methane Potential oral commun., 1998). The distal depositional system in the basin center consisted of an axial-fluvial system that reworked the alluvial fan deposits and migrated across the basin floor in relation to uplift and sediment input (fig. 43). Mires, where plant material accumulated, developed within the axial fluvial system. The Tertiary coal-bearing rocks in the Southern Alaska- Cook Inlet coal province accumulated in the subsiding Cook Inlet Basin, which was probably drained by a large, fluvial, trunk-tributary and alluvial fan system that flowed into the Pacific (Kirschner, 1988). Alluvial fans drained the basin margins, and the trunk (axial) stream drained a broad alluvial plain now occupied by the Cook Inlet. Two major tributary streams of the trunk river extended northward through the present Susitna Lowland and Broad Pass Depression and east- ward through the present Matanuska Valley. A Susitna-Broad Pass tributary stream probably extended along the north side of the Alaska Range and drained the Central Alaska-Nenana coal province (Flores and Stanley, 1995). The Yukon-Tanana Upland may have been in headwaters of this tributary stream. Thus, all the coal deposits in the Central Alaska-Nenana and Southern Alaska-Cook Inlet coal provinces are thought to have accumulated in mires related to this large, integrated fluvial drainage system. Tertiary Rocks The bulk of the coal in the Southern Alaska-Cook Inlet coal province is of Oligocene to early Pliocene age (fig. 44). These late Tertiary coals are distributed in the Susitna-Beluga, Broad Pass, and Kenai coalfields. However, early Tertiary (Paleocene and early Eocene) coal occurs in the Matanuska coalfield. Lower Tertiary Rocks The lower Tertiary rocks include the Paleocene-Eocene Chickaloon Formation and Eocene Wishbone Formation (fig. 45). The Chickaloon Formation is a 3,280- to 4,920-ft-thick (1,000–1,500 m) Paleocene to lower Eocene sequence of mudstones, siltstones, and sandstones, with minor conglomer- ates and coal beds (figs. 46, 47, and 48; Triplehorn and others, 1984; Flores and Stricker, 1993a). The formation rests uncon- formably on the Cretaceous Matanuska Formation, which is a sequence of marine sandstone and shale (Barnes and Payne, 1956; Grantz and Jones, 1960) and is overlain unconformably by the Eocene Wishbone Formation. The Wishbone consists of 2,950 ft (900 m) of thick, massive conglomerates and sand- stones containing clasts derived from the Talkeetna Mountains to the north (figs. 49 and 50). The formation at the east end of the Matanuska coalfield is unconformably overlain by flat- lying Tertiary basalt. Gabbro sills and dikes and other Tertiary volcanic rocks also intrude the coal-bearing Chickaloon For- mation and increase the coal rank along the intrusive contact. The Wishbone Formation is equivalent to the coal-bearing West Foreland Formation in the south-southwest part of the Cook Inlet Basin. The West Foreland Formation consists of abundant conglomerates and sandstones and minor siltstones, ������������������ ������������� �������� ������������������� ������������� ����������� ����������� �������������������������������������� ���������� Figure 41. Tectonic and volcanic settings of the Cook Inlet Basin. Modified from McGowen and others in Swenson (1997). Southern Alaska-Cook Inlet Coal Province 43 ������������������ ���� �������� ������ ������� �������� ��������� ���� ����������������� ��������������������������������� ������ ������� ������� ������������ ������ ��������� ������ ��������� �� �� �� �� �� �������������������������������� �������� ������������������ ������������������Figure 42. Generalized time-transgressive stratigraphy in the Cook Inlet Basin. Modified from McGowen and others in Swenson (1997). 44 Alaska Coal Geology, Resources, and Coalbed Methane Potential mudstones, and coal beds (Wahrhaftig and others, 1994). Houston (1994) reported a few coal beds as thick as 1 ft (30 cm) in the 4,100-ft-thick (1,259 m) West Foreland Formation in the Cape Douglas-Katmai National Park area west of the Shelikof Strait and southeast of the Cook Inlet (see fig. 40). Flores and Stricker (1993a, 1993d) described and inter- preted the depositional environments of the Chickaloon and Wishbone Formations. Stratigraphic variations of the Chick- aloon sandstones, mudstones, and coal beds in the Wishbone Hill coal district are shown in figures 51, 52, 53, 54, 55, and 56. Sandstones are erosional based and range from lenticular (fig. 47) to tabular shape (fig. 48). Lenticular-shaped sand- stones were deposited in fluvial channels and the tabular- shaped sandstones were deposited in crevasse splays. Coal beds (fig. 46, a photograph of the upper part of the Chickaloon Formation in the Wishbone Hill coal district) of the Chick- Cook Inlet Depositional Systems ����������� �������������� ����������� ��������� ������������������� ������� ������� ����������������� ������� ������ ������ ����� �������� ��������� �������������������� ��������� ����������� ��������� ��������� ������������ ���������������� ������������ ������� ������� ������� ������� Figure 43. Depositional model of the Kenai Group in the Cook Inlet Basin. Modified from McGowen and others in Swenson (1997). ?? ?? ?? ��������� ��������� �������� ������������� ���������������� ��������������������������������������������������������������������������������������������������������������������������������������������������� ����������� ��������������� ��������������� ����� ����������� ��������������� ����������� ����������������� ������������������� ������ ��������������� ������������ ������������ ������������������� ����������������������� ������������� �������� �������������������� ��������������������� ����������������� ����������������������� �������������������� ��������������������� ���������������������� �������� ����������������� ������� ������������ ������������ ��������� ������������ ������������� ��������������������������������������� ���������������� ��������������� Figure 44. Generalized chronostratigraphic column of the coal-bearing Kenai Group and related rock units in the Southern Alaska-Cook Inlet coal province. aloon Formation were deposited in topogenous or low-lying mires associated with low-gradient bedload meandering (fig. 57) and anastomosed (fig. 57) fluvial systems. The low-lying mires formed on abandoned belts of meandering streams dur- ing lateral aggradation influenced by autocyclic processes. In contrast, low-lying mires related to anastomosed streams developed during vertical aggradation controlled by basin sub- sidence. Growth faulting promoted prolonged peat accumula- tion in mires on upthrown blocks and caused stream capture on downthrown blocks. The Wishbone Formation was depos- ited in alluvial fans and braided stream deposits that were shed from the Talkeetna Mountains (see fig. 57; Flores and Stricker, 1993d). The West Foreland Formation, an equivalent of the Wishbone Formation, was interpreted by Houston (1994) as being deposited in braided streams and associated flood plains. The sediments were derived mainly from the Alaska-Aleutian volcanic arc terrane. The West Foreland coal beds were depos- ited in abandoned braid belts and flood plains. Upper Tertiary Kenai Group The upper Tertiary rocks in the Southern Alaska-Cook Inlet coal province include the Kenai Group consisting, from bottom to top, of the Oligocene Hemlock Conglomerate, Oligocene to middle Miocene Tyonek, upper Miocene Beluga, and upper Miocene to Pliocene Sterling Formations (Flores and Stricker, 1993b, 1993c; Flores, Stricker, and Bader, 1997; Flores, Stricker, and Stiles, 1997; Flores and others, 1999). The Kenai Group is more than 25,000 ft (7,620 m) thick. All these formations are coal bearing, with the Tyonek and Beluga Formations containing numerous thick, minable coal beds. In the offshore and onshore Cook Inlet Basin (fig. 58) the Hemlock, Tyonek, Beluga, and Sterling Formations vary in thickness and lithostratigraphy (figs. 59, 60, and 61). Gener- ally, the formations, especially the Tyonek and Beluga, thicken toward the central part of the basin. The Tyonek Formation is generally sandstone dominated toward the western part of the basin, the Beluga Formation is generally sandstone dominated toward the eastern part, and the Sterling Formation appears to be sandy in the central and eastern parts. Southern Alaska-Cook Inlet Coal Province 45 �������� ��������� ��������� ����������� ������������� ���������� �������� ������ ������ �� � ���� ��� � ���� �������� ������ �������� ������� �������� �������� �� ���������� ��������� ��������������� ����������������� Conglomerate Sandstone Mudstone and siltstone Coal and carbonaceous shale ���� Figure 45. A generalized stratigraphic column of the Chickaloon and Wishbone Formations in the Matanuska coalfield. Minable coal zones occur in the uppermost part of the Chickaloon Formation. Modified from Flores and Stricker (1993a). 46 Alaska Coal Geology, Resources, and Coalbed Methane Potential ������������������ ��������������� Figure 46. Photograph of coal beds of the Chickaloon Formation in the Wishbone Hill coal district. For scale, the Jonesville coal zone is 20 feet (6.1 meters) thick. Figure 47. Photograph of the lenticular fluvial-channel sandstone (20 feet or 6.1 meters thick) and associ- ated rocks of the Chickaloon Formation in the Wishbone Hill coal district. Southern Alaska-Cook Inlet Coal Province 47 ��������������������������������� Figure 48. Photograph of the tabular crevasse splay sandstone and associated flood-plain deposits of the Chickaloon Formation in the Wishbone Hill coal district. Hammer in lower left is 1 foot (0.3 meter) long for scale. Figure 49. Vertical and lateral lithofacies variations of the Wishbone Formation in the Wishbone Hill coal district. �������� ������ ������ ���� �������� ��� ���� Conglomerate Sandstone Mudstone and siltstone������������������������������������Normal fault EXPLANATION 48 Alaska Coal Geology, Resources, and Coalbed Methane Potential Figure 50. Photograph of the braided-stream-deposited conglomerates and sandstones in the Wish- bone Formation in the Wishbone Hill coal district. Hammer is 1 foot (0.3 meter) long for scale. ��������� W ish b o n e H illc o a ld is tric t���� ���� ���� ���� ����� ����� Conglomerate Sandstone Channel Mudstone,siltstone and silty sandstone Overbank flood plain Coal,carbonaceous shale, and tonstein Mire ����������������������� } } }���������� �������� � ��� EXPLANATION �� � ���� � � � ������ �������� Covered interval Normal fault Covered Covered Covered ������ ���� ������ �������������� �������� Palmer �� ���� �� �� �� �� �� M ooseCreekEskaCreekGraniteCreek����������������������� ���Matanuska Formation ���Wishbone Formation���Chickaloon Formation ���Tsadaka Formation EXPLANATION CANADACANADA UNITED STATES ALASKA Area of map CANADAFigure 51. Stratigraphic cross section of the lower part of the Chickaloon Formation in the Wishbone Hill coal district. Adopted from Flores and Stricker (1993d). See inset map for location of cross section. Southern Alaska-Cook Inlet Coal Province 49 ������ �������� ������� �������� Figure 52. Photograph of the lower part of the Chickaloon Formation showing the Midway coal zone and adjoining fluvial-channel sandstones in the Wishbone Hill coal district. Jacob staff on the sand- stone (see right side) is 5 feet (1.5 meters) for scale. ������������������ �������� Sandstone Channel and crevassesplay Mudstone,siltstone,and sandstone Coal and carbonaceousshale ��������������� Overbankfloodplain Mire } } } Smectitic mudstone �� � ��� �� � � � EXPLANATION �Covered interval Tree trunks Normal fault ������� ������� ��������� W is h b o n e H illc o a ld is tric t���� ���� ���� ���� ����� ����� ���������� �������� � ��� ������ ���� ������ �������������� �������� Palmer �� ���� ���Matanuska Formation �� �� �� ���Wishbone Formation �� ���Chickaloon Formation �� ���Tsadaka Formation M ooseCreekEskaCreekGraniteCreekEXPLANATION CANADACANADA UNITED STATES ALASKA Area of map CANADAFigure 53. Stratigraphic cross section of the middle part of the Chickaloon Formation in the Wishbone Hill coal district. Adopted from Flores and Stricker (1993b). See inset map for location of cross section. 50 Alaska Coal Geology, Resources, and Coalbed Methane Potential ���������������������������������Figure 54. Photograph of the upper part of the Chickaloon Formation showing the Premier coal zone (50 feet or 15.2 meters thick), Jonesville coal zone (30 feet or 9.1 meters thick) and associated fine- grained sediments in the Wishbone Hill coal district. CANADACANADA UNITED STATES ALASKA Area of map CANADAConglomerate Sandstone Mudstone,siltstone, and silty sandstone Coal,carbonaceous shale, and coal and carbonaceous shale } } }Mire Channel and channel lag Overbank and channel plug ���� ���� Trough crossbeds Point bar surface Rippled laminations Foreset ������������������Rock Interpretation EXPLANATION � �������� ������ � ���� ������� ���� ��������� W is h b o n e H illc o a ld is tric t������ ������������ Palmer �� ���� �� �� �� �� �� M ooseCreekEskaCreekGraniteCreek����������������������������� ���Matanuska Formation ���Wishbone Formation���Chickaloon Formation ���Tsadaka Formation EXPLANATION Figure 55. Stratigraphic cross section of the upper part of the Chickaloon Formation in the Wishbone Hill coal dis- trict. Adopted from Flores and Stricker (1993a). See inset map for location of cross section. Southern Alaska-Cook Inlet Coal Province 51 ������������������ ������� �������� ��������������������������� �� �� ����������� ������ ������������������������������ ��������� �������� ���������������� ������Normal fault;U=up,D=down Mires Sandbars Alluvial fans U D Direction of lateral movement along fault EXPLANATION �������������� ����������� Figure 56. Photograph of the upper part of the Chickaloon Formation showing the Jonesville coal zone overlain by fluvial-channel sandstones (>50 feet or >15.2 meters thick) of the Wishbone Formation in the Wishbone Hill coal district. Figure 57. Paleogeographic map showing depositional environments of the Chickaloon Formation in the Matanuska coalfield. Modified from Flores and Stricker (1993a). 52 Alaska Coal Geology, Resources, and Coalbed Methane Potential Hemlock Conglomerate The Hemlock Conglomerate is unconformable, grada- tional, and interfingering with the West Foreland Formation (fig. 42). It consists mainly of pebble to boulder conglomer- ates containing quartz, chert, metamorphic, volcanic, and plutonic rock fragments. Minor conglomeratic sandstones are interbedded, which are arkosic in composition with sparse heavy minerals, predominantly epidote and garnet (Calder- wood and Fackler, 1972; Magoon and Egbert, 1986). How- ever, the formation contains a few thin coal beds and many siltstone beds and is the main producing horizon for oil in the offshore Cook Inlet (Magoon and Anders, 1990). Detrital rocks are interpreted as deltaic and lacustrine deposits, and apparently the sediments were derived from the north. Most coals formed in interdistributary low-lying mires. Together with the Bell Island Sandstone and the Tsadaka Formation, temporal equivalents at the east end of the Cook Inlet Basin, the Hemlock Conglomerate forms a variable sheet deposit 655 ft (200 m) thick, with a maximum thickness of about 2,772 ft (845 m). The formation is Oligocene in age (Wolfe and Tanai, 1980; Magoon and Egbert, 1986). In the Cape Douglas-Katmai National Park area west of the Shelikof Strait (fig. 40) and southeast of the Cook Inlet, Houston (1994) described the 2,772-ft-thick (845 m) Hemlock Conglomerate as consisting of conglomerates and sandstones Figure 58. Map showing lines of stratigraphic cross sec- tions (see figs. 59–61) of the Kenai Group in the offshore and onshore Cook Inlet Basin. Map also shows areas of cross sections (see figs. 72–73, 75, 85–86, 90–91) of the Kenai Group in the Chuitna area, Capps Glacier area, along the west coast of Kenai Peninsula, and along the north coast of Kachemak Bay. Southern Alaska-Cook Inlet Coal Province 53 ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������EXPLANATIONSterlingFormationBelugaFormationTyonekFormationHemlockConglomeratePre-HemlockConglomerateFigure 59. Offshore north-south cross section (A–A’) of the Kenai Group along the axis of the Cook Inlet Basin. Modified from Alaska Geological Society (1969a). See figure 58 for location of cross section. 54 Alaska Coal Geology, Resources, and Coalbed Methane Potential deposited in meandering streams (figs. 62 and 63). Minor siltstones and mudstones were interpreted to be deposited in overbank and flood-plain environments (figs. 64 and 65). Sparse coal and carbonaceous shale beds, which vary from 2 inches to 2.5 ft (5 cm to 0.75 m) thick, were interpreted to have accumulated in mires developed on abandoned flood plains and meander belts. These streams derived sediments from the Alaska-Aleutian volcanic arc terrane. Hite (1976) interpreted the sandstones of the Hemlock Conglomerate distributed along the central part of the Cook Inlet Basin (figs. 59 and 60) as being deposited in a marine- influenced environment. Based on size analysis and verti- cal variability mapping, 18 percent of the analyzed samples showed evidence of tidal transport by bidirectional currents. Twenty-five percent of the analyzed samples indicate trans- port by turbidity or density suspension currents. Hite (1976) interpreted the coal beds to have accumulated in coastal mires and mapped them as two bands (fig. 66) parallel to the basin margins. Also, Hite (1976) suggested that the paleogeographic setting of the basin during deposition of the Hemlock Con- glomerate was very similar to the modern Cook Inlet, which is composed of coastal plains influenced by tidal estuaries, flats, and marshes. Although the present report agrees with this scenario, the elongate shape and coastal-parallel (northeast- southwest orientation) nature of the Hemlock sandstones in the central part of the Cook Inlet Basin, which were interpreted by Hite (1976) as tidal channel and turbidity deposits, are here reinterpreted as tidal sand-flat deposits. These tidal sand flats were probably derived by reworking of deltaic sediments of the streams that deposited the Hemlock Formation in the Cape Douglas-Katmai National Park area southeast of the basin. Tyonek Formation The Tyonek Formation (Wolfe and Tanai, 1980) consists of a sequence of sandstones, siltstones, mudstones, carbo- naceous shales, and coal beds as much as 7,640 ft (2,330 m) thick (fig. 67; Calderwood and Fackler, 1972). Sandstones, the most common rock type, are basally erosional, crossbedded, thick, and vertically stacked (fig. 68). Individual coal beds are as much as 33 ft (10 m) thick. A sandstone:mudstone ratio map of the formation by Hartman and others (1971) shows more than 50 percent sandstone in an area along the west side ���� ����� ����� ����� ����� ���� ���� ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ������ ������ ������ ������ ������ ���������������������� �������������� �������������� �������������� ������ ������������� ����� ����� ����� ����� ����� ����� ����� ����� ����� ������ ������ ������ ������ ������ ������������ ������������������������� ����� ����� ����� ����� ����� ����� ����� ����� ����� ������ ������ ������ ������ ������ ��������������� ����� ����� ����� ����� ����� ����� ����� ����� ����� ������ ������ ������ ������ ������ ������ ������ ������� ���������������� ������������ ����� ����� ����� ����� ����� ����� �������������� �������������������������������������������� ������� �������� ����� ���� Sterling Formation Beluga Formation Tyonek Formation Hemlock Conglomerate Pre-Hemlock EXPLANATION Figure 60. Offshore (west) to onshore (east) cross section (B–B’) of the Kenai Group across the Cook Inlet Basin. Modified from Alaska Geological Society (1969b). See figure 58 for location of cross section. Southern Alaska-Cook Inlet Coal Province 55 �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������SterlingFormationBelugaFormationTyonekFormationHemlockConglomeratePre-HemlockPost-SterlingEXPLANATIONFigure 61. Onshore north-south cross section (C–C’) of the Kenai Group along the western part of the Kenai Peninsula or eastern margin of the Cook Inlet Basin. Modified from Alaska Geological Society (1969c). See figure 58 for location of cross section.CC' 56 Alaska Coal Geology, Resources, and Coalbed Methane Potential Figure 62. Photograph of conglomerates in the Hemlock Conglomerate in the Katmai National Park. Jacob’s Staff is 5 feet (1.5 meters) long for scale. Photograph courtesy of Frank Ethridge. Figure 63. Photograph of sandstones in the Hemlock Conglomerate in the Katmai National Park. Man is 5.5 feet (1.7 meters) tall for scale. Photograph courtesy of Frank Ethridge. Southern Alaska-Cook Inlet Coal Province 57 Figure 64. Photograph of thin coal and carbonaceous shale beds in the Hemlock Conglomerate in the Kat- mai National Park. Man is 6 feet (1.8 meters) tall for scale. Photograph courtesy of Frank Ethridge. Figure 65. Photograph of braided stream deposits (conglomeratic lower part) in the Hemlock Conglomer- ate. The upper part contains fluvial-channel sandstones and carbonaceous siltstones. Jacob’s staff in the lower part of the photograph is 5 feet (1.5 meters) long for scale. Photograph courtesy of Frank Ethridge. 58 Alaska Coal Geology, Resources, and Coalbed Methane Potential of the Cook Inlet Basin and in the extreme northeastern part of the basin. The sites with higher sandstone content were interpreted as loci of sediment input. An extensive mudstone band containing as little as 10 percent sandstone extends south-southwestward along the western part of the Kenai Pen- insula. Sandstone content increases southeastward of this band of maximum mudstone content. This site of extensive belt of mud represents the distal point of sandstone input. Hite (1976) presented an isolith sand map (net sandstone thickness isopach map) of the Tyonek in the Cook Inlet Basin (see fig. 69) that shows the high concentration of sandstone along the western part of the basin and decreasing toward the eastern part. In addition, on the west side, the contour lines define a lobate concentration of sandstone, which flares as elongate bodies to the northeast and southeast of the basin. We interpret these sandstone concentrations as alluvial-fan delta and tidal-flat deposits (fig. 70). The alluvial-fan delta and tidal-flat lithofacies of the Tyonek Formation were studied by Flores and others (1994) and Flores, Stricker, and Stiles (1997) whose descriptions of the vertical and lateral variations of these facies in the Chuitna River drainage basin, about 10 miles (16 km) northeast of Tyonek, are depicted graphically in figures 71, 72, and 73. The tidal sand flat and intertidal lithofacies as described by Flores and others (1999) 2.6 mi (4.2 km) northwest of Wasilla are shown in figure 74. Sediments of the tidal sand flats may have been sourced from the alluvial-fan delta sediments and reworked by tidal currents. Streams from adjacent areas to the north and east of the Cook Inlet Basin may also have contrib- uted minor amounts of sediment. The net total thickness of coal beds penetrated in wells in the Tyonek Formation increases toward the northwestern part of Cook Inlet Basin (see fig. 66; Hite, 1976; Wahrhaftig and others, 1994). The beds are concentrated along the northwest margin of the basin, from Kalgin Island northeastward along the west shore of the inlet to the Susitna River. In that area, the coal isopach map displays lobe shape with fingerlike extensions oriented to the east and southeast (see fig. 66). Lobe-shaped coal concentrations, which also correspond to the sites of lobate concentrations of sandstones, are interpreted as having been deposited in mires associated with alluvial-fan deltas. At those sites, abandoned alluvial-ridge braid belts of the fan deltas served as raised platforms where mires devel- ��� ��� ����������������������� � � ��� ��������������������� ��� �������� ��� ���� ��� ��� ��� ���� � � � � � � ���������������� Kenai Tyonek Anchorage K nikA rm TurnagainArm KalginIsland CookInletContour Interval =200 Feet UNITED STATES ALASKA Area of map CANADA � ������������ ��������� � �� �� EXPLANATION Isopach Line Figure 66. Net coal thickness isopach map of the Tyonek Formation in the Cook Inlet Basin. Modified from Hite (1976) and Wahrhaftig and others (1994). ������ �������������� Figure 67. Photograph of coal beds and interbedded fluvial-channel sandstones and mudstones in the Tyonek Formation in the Chuitna River drainage basin. The sandstone in the upper part of the outcrop is 75 feet (22.8 meters) thick for scale. Figure 68. Photograph of fluvial-channel sandstones and Chuitna coal bed in the Tyonek Formation in the Chuitna River drainage basin. The sandstone in the lower part of the outcrop is 50 feet (15.2 meters) thick for scale. oped as much as 28 ft (8.5 m) of minable coal (see figs. 72 and 73) as described at the Diamond Chuitna coal-mine lease area by Flores and others (1994) and Flores, Stricker, and Stiles (1997). However, the coal beds are associated with intertidal sediments indicating development in supratidal mires (figs. 75, 76, and 77). The fingerlike pattern of the net coal thickness isopach map (see fig. 66) indicates tidal influence much like the mires along the coast in west-central Sumatra, Indonesia (Flores and Moore, in press). The total coal isopach map (fig. 66) shows thinning to the northeast, southeast, and southwest toward the zone of minimum sandstone content (Hartman and others, 1971; Hite, 1976). The southwest-northeast orientation of the net coal thickness isopach, a trend that is perpendicular to the south- east-oriented deltaic wedges, indicates accumulation of coal in low-lying tidal sand flat and supratidal mires. Tidal influ- ence in the Tyonek Formation in the Barabara Point, south- west of Kachemak Bay (see fig. 40) in the eastern Cook Inlet was described by Stricker and Flores (1996). However, the tidal deposits overlie a sequence of conglomerate, sandstone, siltstone, and mudstone, with coals a few inches to 2 ft (few centimeters to 0.6 m) thick (fig. 77). Mudstones and siltstones are the most abundant lithologies, which are interpreted to be derived from the Chugach metamorphic rock complex. Stricker and Flores (1996) and Myers and others (1998) interpreted this sequence as an alluvial fan drained mainly by anastomosed streams. The thick Capps Glacier coal bed (figs. 78, 79, and 80) and coal beds along the Beluga and Chuitna Rivers (Barnes, 1966; Adkison and others, 1975; Myers and others, 1998) are in the Tyonek Formation (Magoon and others, 1976). Within a single coalfield, correlation of the coal beds from well to well has proved difficult for distances of more than a mile (few kilometers), which indicates considerable lenticularity of the coal seams and the intervening sedimentary rocks. The rapid changes in the lateral and vertical stratigraphy of the coal beds and intervening rocks are shown in figures 81 and 82. In both cross sections, the Capps Glacier coal bed is traceable for a mile or two; however, the coal bed splits and merges laterally as influenced by the thinning, pinching out, and thickening of the intervening fluvial channel sandstones. The pattern of the Southern Alaska-Cook Inlet Coal Province 59 EXPLANATION Isopach line S usitna Riv e r CookInletTurnagain Arm S u s i t n a F l a t s Harriet Point West Foreland East Foreland K a c h e m a k BayKalgin Island Contour interval 100 feet Anchorage Kenai KnikA rm � � � 0 ������ ��� ��� ��� ��� ��� ��� ������������������������������ ������������CANADA UNITED STATES ALASKA Area of map CANADA ��������� ������������ �� ��� ���� ��� ��� ���� Figure 69. Net sandstone thickness isopach map of the Tyonek Formation in the Cook Inlet Basin. Modified from Hite (1976). Tidal flats and sandbars Alluvial fan conglomerates Tidal swamps Mudstone and siltstone Tidal channels EXPLANATIONAncestralCookInlet�������������������������������������� ������������� ��������� ���������� ������ �������������������������������Figure 70. Paleogeographic map (block diagram) showing depositional environments of the Tyonek Forma- tion in the Cook Inlet Basin. Modified from Hite (1976). 60 Alaska Coal Geology, Resources, and Coalbed Methane Potential coal bed wrapping around the sandstones is enhanced by dif- ferential compaction. That is, the sandstones are less compact- ible than adjacent mudstones. In outcrop, however, individual coal beds have been traced for as much as 6.2 mi (10 km) (Barnes, 1966; Ramsey, 1981). Nearly flat-lying outliers of the Tyonek Formation along the southeast shore of Kachemak Bay near Seldovia Bay and at Port Graham (see fig. 40) rest unconformably on metamor- phic rocks of Triassic and Jurassic age and appear in part to fill steep-sided valleys and in part to be downfaulted (Stone, 1906; Martin and others, 1915; Magoon and others, 1976). The occurrence on the northeast side of the entrance to Port Graham was the site of the plant fossils on which Oswald Heer in 1869 (Wahrhaftig and others, 1994) established the “Arctic Miocene” flora of Alaska (see Stone, 1906), and the locality on which the name “Kenai Formation” (now Kenai Group) was established by Dall (1896). Portlock first reported coal there in 1786 (see Stone, 1906, p. 54). Coal (chiefly lignite) was mined at this site by the Russians from 1855 to 1867, but it could not be produced at a profit, and operations ceased when Alaska was sold to the United States in 1867 (Stone, 1906). Beluga Formation The Beluga Formation (fig. 42) is as much as 4,900 ft (1,500 m) thick, is composed of interbedded conglomerates, sandstones, siltstones, mudstones, carbonaceous shales, and coal beds (see fig. 44). The sandstones are the most abundant rock type and coal beds are the least common. The sandstones are erosional based, as much as 50 ft (15 m) thick, cross- bedded, and vertically stacked (figs. 83 and 84; Flores and Stricker, 1993b). Stratigraphic variations of the sandstones and coal beds are shown in figures 85 and 86. These lithic units are drab-gray in color. In the outcrop, the color of the formation is used to distinguish it from the overlying buff to light-brown Sterling Formation (Barnes and Cobb, 1959; Wolfe and others, 1966; Merritt and others, 1987). Abundant heavy minerals (Kirschner and Lyon, 1973) and metamorphic rock fragments in the locally pebbly sandstones led Hayes and others (1976) to interpret the Beluga Formation to be derived mainly from the Kenai and Chugach Mountains. Paleocurrent analysis of crossbeds of the sandstones by Rawlinson (1984) and Kremer and Stadnicky (1985) indicate a westerly transport direction of its sediments. The Beluga Formation is well exposed in beach bluffs along the northwest side of Kachemak Bay and the south-southwest end of the Kenai Peninsula between Homer and Anchor River (Magoon and others, 1976; Merritt and oth- ers, 1987). There it contains numerous coal beds with indi- vidual beds as thick as 6.6 ft (2 m) (Barnes and Cobb, 1959). The formation was dated as middle and late Miocene (Wolfe and Tanai, 1980). Environments of deposition of the Beluga Formation are interpreted to be braided and meandering streams and alluvial fans (fig. 87; Hayes and others, 1976; Hite, 1976; Rawlinson, 1984; Merritt, 1986). Recent studies by Flores and Stricker (1992, 1993b) indicate deposition in an alluvial plain drained by alternating braided streams and crevasse splay-anasto- mosed streams. Through time the braided streams evolved into the crevasse splay-anastomosed streams, which, in turn, evolved into the braided streams. Regional and basin subsid- ence and autocyclic avulsion processes caused these alterna- tions through time. Flores and Stricker (1993b) suggested that the coal beds accumulated in mires on abandoned braid belts and anastomosed stream belts. However, the coal beds formed in mires on braid-belt deposits were thicker and more exten- sive than coal formed in mires developed on crevasse-splay- anastomosed deposits. Hayes and others (1976) suggested that the Beluga For- mation was deposited by meandering streams along the length of the western part of the Cook Inlet Basin. These stream deposits, which are the chronostratigraphically equivalent of the Lignite Creek Formation (Central Alaska-Nenana coal ������� ������������� ������ ������� ���� ���� ���� ������ ���������� ���������� ���������� ����������� ���� ������ ��������� �������������������� ������ ����� ������ ���� ���� ���� ���� ����� ���������� ������������ � ��������� ������� � ����������� ��������� Figure 71. Generalized stratigraphic column of minable coal beds in the Tyonek Formation in the Chuitna River drainage basin and adjoining areas. Modified from Flores and others (1994) and Flores, Stricker, and Bader (1997). Southern Alaska-Cook Inlet Coal Province 61 Conglomerate Sandstone Siltstone and mudstone Coal and carbonaceous shale Clinker (thermally alteredoverburdenbyin-placeburningofcoal) EXPLANATION ����� � ��������������� ������� ��� ����� �� �� � ������������������ ���������������� �� � �� � �� � � ��� ��������������� ������������������� � � � � � � � � � � � � � � � ����������������� � �������� � ��������� ���� ��� ������ ���� ���� ��������������������������� �������� ������������������ �������� ��� ���� ��� ��� ��� ��� �� ���������������������������������� �������� ���������� ������������� �������� ���������������� ��� ������� �������� �������� ��� ��� �� ��� �������������������� ��������� Quaternary deposits ������������� ������������� Coal and carbonaceous shale Conglomeratic sandstone Mudstone,siltstone,and sandstone Mudstone and siltstone Fluvial sandstone EXPLANATION Figure 73. Stratigraphic cross section of the coal beds, fluvial-channel sandstones and intertidal deposits in the Diamond Chuitna lease area east of the Chuitna River drainage basin. See figure 58 for location of the cross section. Adopted by Flores, Stricker, and Stiles (1997). Figure 72. Three-dimensional cross sections (fence diagram) of the Chuitna coal bed and interbedded erosional-based sandstones deposited by braided streams of the Tyonek Formation in the Chuitna River drainage basin. Adopted from Flores and others (1994). See figure 58 for location of the cross section. 62 Alaska Coal Geology, Resources, and Coalbed Methane Potential Figure 74. A, Stratigraphic lithofacies sequence in the Tyonek Formation showing tidal sandstone flats facies near Wasilla. Adopted from Flores and others (1999). B, Explanations of sedimentary structures for figures 74A and 77. ����������� ���������� ��������� ���������� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���������������������������������������������� ����������������������������������������������������� EXPLANATION Very fine to fine-grained sandstone (vf -fss) Medium-grained sandstone (med ss) Coarse-grained sandstone Mudstone and siltstone Coal and carbonaceous shale Lenticular beds Flaserlike beds U-shaped burrows Root marks Thalassinoides-like burrows Synaeresis cracks Southern Alaska-Cook Inlet Coal Province 63 ����������� ��� ������������������� ���������� ������������������ �������� ��� ��� ��� �� ���������������� �������� Coal and carbonaceous shale Sandstone Mudstone,siltstone,and sandstone Mudstone and siltstone ���������� ���� ���� ���� ��� ������� �������� �������� ��� ��� �� ������� ����������������� ������������� �������������������� �������� Congomeratic sandstone ���Quaternary deposits ������ ������� EXPLANATION � ��� ��� ��� ��� ������������������������� ��� ��������������� ��������� �������������� ���������� ��������� ���������� ������������������� �������������� ������������������ ��������������� ������������ �������������� �������������� �������������� �������������� ����� �������������� � ��� ��� ��� ��� ��� �� ��� ��� � ��� ��� ��� ������������������������� ��� ��������������� ��������� �������������� ������������ ����������������� ����������������� ��������������� �������������������� ���������� �������������� ���� ���������� ���������� ���������������� ������������������ ������������ ���������� ������������������� ����� �������������� � ��� ��� ��� �� ��� ������������� Figure 75. Stratigraphic cross section of the coal beds and fluvial-channel sandstones in the Dia- mond Chuitna lease area east of the Chuitna River drainage area. Adopted from Flores, Stricker, and Bader (1997). See figure 58 for location of the cross section. Figure 76. Verti- cal lithofacies and associated geophysical logs of minable coal beds (Reds 1, 2, and 3, and Blue) and interbedded fluvial-chan- nel sandstones, and flood plain claystones and siltstones in the Diamond Chuitna lease area east of the Chuitna River drainage area. Adopted from Flores, Stricker, and Stiles (1997). 64 Alaska Coal Geology, Resources, and Coalbed Methane Potential ���������� ��� ������������������������������� ���������� ����������� �������� �������������� �������������� ������������ ����������������� ������������ �������������� ������������� �������������� ������������ �������������������������� ���������������� ������� ������� ������� ������� ������� �������� �������� ��������� ���������� ������� ������������� ���������������� ������� ������ ����������� ���������� ������� ������������� ������� Sandstone Coal and carbonaceous shale Siltstone Mudstone Coal EXPLANATION ������������������� ��������������������� ���������� Sandstone Coal and carbonaceous shale������������������������������������������������������������ �� �� ����� ������ ������� �������������������������������� ����� ���� ������� ����� ���� ������� ����� ���� ������� ����� ���� ������� ����� ������ ������� ����� ���� ������� ����� ���� ������� ����� ���� ������� ����� ���� ������� ������������ ���� �� ������������� Mudstone and siltstone ���������������� ������������������������ EXPLANATION Figure 78. Photograph of the Capps Glacier coal bed (50 feet or 15.2 meters thick) and overlying fluvial-channel sandstones in the Capps Glacier area. Figure 79. Photograph of the coal beds and interbedded flood-plain/crevasse splay deposits in the Capps Glacier area. Man for scale is about 5.9 feet (1.8 meters) tall. Figure 77. Vertical lithofacies of coal beds (Reds 1, 2, and 3) and interbedded tidal and intertidal sandstones, siltstones, and mudstones in the Diamond Chuitna lease area east of the Chuitna River drainage area. Adopted from Flores, Stricker, and Stiles (1997). See figure 74B for explanation of symbols for sedimentary structures. Figure 80. Structural cross section (north- south) of the Capps Glacier coal bed and associated rocks of the Tyonek Formation in the Capps Glacier area. See figure 58 for location of the cross section. province; Wolfe and Tanai, 1980), have their watershed in the central Alaska interior. The meandering streams were fed by transverse alluvial fans that were better developed along the eastern part of the basin than along the western part. The ancestral Chugach-Kenai uplift was uplifted more than the ancestral Aleutian-Alaska Arc Range (see fig. 87). Sterling Formation The Sterling Formation is as much as 10,990 ft (3,350 m) thick and consists of sandstones, conglomeratic sandstones, siltstones, mudstones, carbonaceous shales, and coal beds (see fig. 43; Kirschner and Lyon, 1973; Hayes and others, 1976; Hite, 1976); Hartman and others, 1971; Calderwood and Fack- ler, 1972). The sandstones are as much as 200 ft (61 m) thick, fining upward, basally scoured, and multistory (figs. 88 and 89); their vertical and lateral variations are exhibited in figures 90 and 91. Tonsteins or volcanic ash units are commonly interbedded with the coal beds. Hornblende and volcanogenic hypersthene are abundant in the sandstones. These heavy min- erals indicate that the Sterling Formation was probably derived from the ancestral Aleutian-Alaska Arc Range to the west (see fig. 58). Coal beds are generally no more than 3 ft (1 m) thick, but a few are as thick as 8 ft (2.5 m) (fig. 92; Barnes and Cobb, 1959; Calderwood and Fackler, 1972). Coal is lignitic throughout much of the formation but is high-volatile subbi- Southern Alaska-Cook Inlet Coal Province 65 � ������� ������ ������� �� � Sandstone Mudstone and siltstone Conglomeratic sandstone Basement rocks,metasedimentary�� ������������������ Coal ���������� ����������� EXPLANATION BARABARA POINT ��������������������������������������� Sandstone Claystone Coal and carbonaceous shale����������������������� EXPLANATION������������������������������������������������������ ���� ������� ����� ���� ������� ����� ���� ������� ����� ���� ������� ����� ���� ������� ����� ���� ������� �� ������ �� ���� �� ������������ ���� ��������� ���� ������������������������������������ ����������������� Figure 81. Stratigraphic cross section (northeast-southwest) of the rocks of the Tyonek Formation at Barabara Point showing len- ticular conglomerates, sandstone, and coal beds. The sandstone and conglomerate in the southwestern part of the cross section represent paleovalley deposits incised into basement rocks. See figure 58 for location of the cross section. Figure 82. Stratigraphic (structural) cross section of the Capps Glacier coal bed and associated rocks of the Tyonek Formation in the Capps Glacier area. See figure 58 for location of the cross section. 66 Alaska Coal Geology, Resources, and Coalbed Methane Potential ������������� ��������������������� Figure 83. Photograph of the fluvial-channel sandstones (average 60 feet or 18.3 meters thick), flood plain mudstone and siltstones, and coal beds of the Beluga Formation along the coastal bluffs in west Homer, Kenai Peninsula. Figure 84. Photograph of a coal bed (3.5 feet or 1.1 meters thick) and crevasse splay deposits of the Beluga For- mation along the coastal bluffs west of Homer, Kenai Peninsula. Southern Alaska-Cook Inlet Coal Province 67 Sandstone Mudstone and siltstone ��������������������� Coal and carbonaceous shale ������������������ ������ ���� ��� � ��������� ���������������� ��������� ������������������� EXPLANATION Sandstone (fluvial channel) Sandstone (interfluve crevasse splay) Siltstone and mudstone (interfluve) Coal and carbonaceous shale (mire) Measured stratigraphic section �������������������������� ���������� A B ������������� ��������� ��������� ��������� ������������� ��������� ��������� �������� ������� Figure 85. Stratigraphic cross section of the Beluga Formation showing thick coal beds (for example, Cooper coal bed), fluvial-channel sandstones, and flood-plain mudstone and siltstone along the coastal bluffs west of Homer, Kenai Peninsula. Adopted from Flores and Stricker (1993b). See figure 58 for location of the cross section. Figure 86. Stratigraphic cross section of the Beluga Formation showing interbedded thin to thick coal beds (for example, Cooper coal bed), fluvial-channel sandstones, and flood-plain deposits along the coastal bluffs west of Homer, Kenai Peninsula. Adopted from Flores and Stricker (1993b). See figure 58 for location of the cross section. 68 Alaska Coal Geology, Resources, and Coalbed Methane Potential tuminous near the base. The Sterling Formation was dated as latest Miocene and Pliocene age by Wolfe and Tanai (1980). Hite (1976) and Hayes and others (1976) interpreted the Sterling Formation as being deposited by meandering and braided streams (fig. 93), with the former mainly draining the basin axis and the latter draining the margins of the basin. The braided streams built alluvial fans that were better developed along the western part of the basin than along the eastern part. Flores and Stricker (1993c) interpreted the Sterling Forma- tion as being deposited in low-sinuosity (braided) streams that evolved into high-sinuosity (meandering) streams. A close facies association exists between thick coal beds and deposits of the low-sinuosity streams. Mires in high-sinuosity streams were commonly choked by overbank and flood-plain sediments. Coalfields: Matanuska Coalfield The Matanuska coalfield is the most important Paleocene coalfield in Alaska because it contains high-rank minable coal beds. This coalfield occupies a graben along the extent of the Matanuska Valley, between the Talkeetna Mountains on the north and the Chugach Mountains on the south (fig. 94). Coal beds of the Chickaloon Formation are distributed in an area about 62 mi (100 km) long, from Moose Creek on the west to Anthracite Ridge on the east (Capps, 1927). Coal districts in the Matanuska coalfield were divided into leases under the Federal Coal Leasing Act of 1915. The Wishbone Hill coal district (about 15 mi2 or 38 km2 in area) is on the north side of the coalfield between Moose and Granite Creeks. More than 20 coal beds, with thicknesses exceed- ing 3 ft (0.9 m), are known in the Wishbone Hill coal district (Belowich, 1994). There, individual coal beds are as much as 23 ft (7 m) thick, but average 8 ft (2.4 m) thick. Mining began in 1917 at the west end of the district. The Federal Govern- ment operated the Eska mine in 1917 and started a second coal mine, the Chickaloon, on the Chickaloon River. At one time or another nine mines operated in the Wishbone Hill coal district between 1917 and 1970, and three or four coal mines operated in the Chickaloon-Castle Mountain coal district during the same period of time. The latter district was about 12 mi2 (31 km2) in the area around the old mining camps in the Chick- aloon River Valley. Annual coal production in both districts averaged about 50,000 short tons (45,360 metric tons) from 1917 to 1940, 160,000 short tons (145,000 metric tons) from 1940 to 1951, and about 240,000 short tons (217,700 metric tons) from 1952 to 1970. A total of 3 × 106 short tons (2.7 mil- lion metric tons) was produced from open pit mines and the rest from underground mines. Total coal production was about 7.7 × 106 short tons (7 × 106 metric tons) between 1915 and 1970, after which production of oil in the State eliminated the market for coal (Merritt and Belowich, 1984). Coal beds within the Chickaloon Formation vary in thickness considerably or pinch out altogether within short distances as shown in figures 51, 53, and 55. Correlation of exposure of the Premier coal zone and associated coal beds Sandstone Conglomerate Mudstone and siltstone Coal and carbonaceous shale Mires Normal fault ������������������������ ������������������ ���������������������� ��������������������������������������EXPLANATION Figure 87. Paleogeo- graphic map (block diagram) showing depositional environ- ments of the Beluga Formation in the Cook Inlet Basin. Modified from Hayes and oth- ers (1976). Southern Alaska-Cook Inlet Coal Province 69 ��������������������� Figure 88. Photograph of fluvial-channel sandstones and thin coal of the Sterling Formation along the coastal bluffs in the Clam Gulch area, Kenai Peninsula. Men are 6 feet (1.8 meters) tall for scale. See figure 58 for location of the cross section. Figure 89. Photograph of fluvial-channel sandstones overlying thin (3 feet [0.9 meter]) to thick (12 feet [3.6 meters]) coal beds of the Sterling Formation along the coastal bluffs between the Clam Gulch and Ninilchik, Kenai Peninsula. 70 Alaska Coal Geology, Resources, and Coalbed Methane Potential �������������� ���������� ����� ���������� ����� ������������ �������� �������������� ������������ �������� �������������� ������������ �������� Conglomeratic sandstone (Channel) Sandstone (Overbank and crevasse splay) Planar crossbeds Megaforesets Root marks Ripple laminations Convolute laminations Bentonitic (Smectitic -volcanic ash) Trough crossbeds Coal and carbonaceous shale (Mire)������������������� �� �� �� ������������������ ���� �� �������� ���������� � �� �� ���� � �� �� ������ �� �� ���� ������ ������ ������ ������ ���������� ���� �� ���� �� ���� �� �� ������� ������� ������� ������� ������� ������� ����������������������������� � � � Rock (Interpretation) EXPLANATION Siltstone }(Overbank,flood-plain,and channel plug)Mudstone Figure 90. Stratigraphic cross sections showing variations in fluvial-channel architecture in the upper part of the Sterling For- mation in the Clam Gulch area, Kenai Peninsula: A, Lower part of Clamgulchian type section; B, Middle part of Clamgulchian type section; C, Upper part of Clamgulchian type section. See figure 58 for location of the cross section. Southern Alaska-Cook Inlet Coal Province 71 ����������������������������������Tickmarkslocatepositionofstratigraphicsections.������������������SandstoneSiltstoneandmudstoneCoalandcarbonaceousshaleEXPLANATIONFigure 91. 72 Alaska Coal Geology, Resources, and Coalbed Methane Potential was performed by Flores and Stricker (1993a) in the Wishbone Hill district where minable coal beds split and merge over short distances laterally as shown in figure 95. In this coal dis- trict, four groups of minable coal beds, one to six beds in each group, are separated by 49–295 ft (15–90 m) of interburden rock in a section 1,180–1,510 ft (360–460 m) thick. Com- bined, 12 minable beds totaled about 49 ft (15 m) in thickness. The thickest coal bed is about 10 ft (3.3 m) thick (Barnes and Payne, 1956; Barnes and Sokol, 1959). Six to 10 coal beds were penetrated by drilling in the Chickaloon coal district, most less than 3 ft (1 m) thick, but one bed is more than 14 ft (4.3 m) thick. The beds are lenticu- lar and vary in thickness within 197–295 ft (60–90 m) later- ally, making correlations, reserve calculations, and prospecting across transverse faults difficult. The Anthracite Ridge coal district covers about 30 mi2 (77 km2) at the eastern end of the coalfield (fig. 94). The number of coal beds in this district is uncertain owing to poor exposures and complex structure. A few beds in the coal dis- trict are as thick as 3.9–6.5 ft (1.2–2.0 m) and one reaches 39 ft (12 m); the coal beds are exceptionally lenticular. The intensity of deformation and abundance of igneous dikes and sills in the Chickaloon Formation increase eastward along the Matanuska coalfield. A few small dikes occur in the Wishbone Hill coal district, and thick sills are abundant in the Anthracite Ridge coal district. Heating induced by the igneous intrusions may be the main reason for the increase in coal rank ������ Figure 92. Photograph of thin to thick coal beds in the lower part of the Sterling Formation. Hammer on left of photograph between lower and middle coal beds is 1 foot (0.3 meter) long for scale. Conglomerate Sandstone Mudstone and siltstone Coal and carbonaceous shale Fault Mire EXPLANATION������������������������������������������� ����� � � � � �������� ������������������������ ���������������� Figure 93. Block diagram showing depositional environments of the Sterling Formation in the Cook Inlet Basin. Modified from Hayes and others (1976). Southern Alaska-Cook Inlet Coal Province 73 GraniteCreekIntrusive rocks (Tertiary) Wishbone Formation (Eocene) Chickaloon Formation (Eocene and Paleocene) Matanuska Formation (Cretaceous) �� W i s h b o n e H i l l C o a l D i s t r i c t C h ic k a lo o n -C a s tle M o u n ta in C o a lD is tric t����������� ������ �������� ����� Ti C a s tle M o u n t a i n HicksCreek�� �� �� �� �� �� �� �� �� �� Palmer �� �� �� �� �� �� �� �� �� �� �� �� ����������� ��������� ������� ��������� �� �� �������������� �� �� ��EskaCreek��� ���������������� �� �� �� ������ ���� Matanuska River M atan u s k a R iv e rChickaloonRiverMooseCreekAnthracite RidgeCoalDistrict Figure 94. Map showing the geology and coal districts in the Matanuska coalfield. �������� ������ ��������� �������� � ��� �������� Sandstone Channel and crevasse splay Mudstone,siltstone, and sandstone Coal and carbonaceous shale Premier coal zone Overbank flood plain Mire}}} Smectitic mudstone ��� � � � EXPLANATION �Covered interval Tree trunks Normal fault { Rocks Interpretation ������� �������� ��������� W ish b o n e H illc o a ld istric t��������� ������ ���� �������������� �������� Palmer �� ���� �� �� �� �� �� M ooseCreekEskaCreekGraniteCreek���Matanuska Formation ���Wishbone Formation���Chickaloon Formation ���Tsadaka Formation EXPLANATION ������ Figure 95. Cross section of the Premier coal zone of the Chickaloon Formation in the Wishbone Hill coal district. Modified from Flores and Stricker (1993d). See figure 96 for location of cross section. CANADACANADA UNITED STATES ALASKA Area of map CANADACANADACANADA UNITED STATES ALASKA Area of map CANADA 74 Alaska Coal Geology, Resources, and Coalbed Methane Potential from subbituminous to anthracite eastward in the coalfield. However, Barnes (1962) suggested that heat generated by tectonic activity was more important than that from igneous intrusions. Merritt (1985) described the natural coking of coal adjacent to an intrusive diabase sill in which the contact tem- perature reached 1,020˚F (550˚C). The coal bed along the con- tact was locally coked and raised to semianthracite, but about 165 ft (50 m) away from the contact, the coal was ranked high-volatile bituminous A. The coal rank in the Anthracite Ridge coal district also changes abruptly from low-volatile bituminous to semianthracite or anthracite within about 196 ft (60 m) toward an intrusion (see fig. 40; Waring, 1936). Structures in the Matanuska coalfield are typically com- plex. The doubly plunging Wishbone Hill syncline, a relatively simple structure, has beds that dip 20˚–40˚ on either flank; the structure is cut by two sets of transverse faults (fig. 96). Structural complications on its northwest flank make the coal beds in some structural blocks difficult to mine and preclude meaningful estimation of reserves (Barnes and Payne, 1956). With the possible exception of the Castle Mountain district, structural complexities increase eastward. In the Chickaloon district, beds dip as much as 90˚; in the Chickaloon mine, coal beds are overturned (Chapin, 1920) and faulted. Large areas of the Chickaloon Formation are covered by a thick mantle of glacial till and crop out only along stream bluffs (Capps, 1927). Anthracite occurrences on the south flank of Anthracite Ridge are bordered on the north by a high-angle fault of large displacement and are in tightly folded and locally overturned synclines cut by many faults. Susitna-Beluga Coalfield The Susitna-Beluga coalfield is situated in the Susitna Lowland (see fig. 40) north of the Cook Inlet between the Talkeetna Mountains on the east and the Alaska Range on the north and west. Glacial and alluvial deposits mainly cover the Susitna Lowland. Coal beds are in the Kenai Group. The rocks are exposed in isolated areas but mainly along the banks and tributaries of the Susitna, Yentna, Beluga, and Chuitna Rivers. These coal-bearing rocks underlie an area of at least 3,440 mi2 (8,910 km2). Barnes (1967a) studied these exposures and concluded that the potentially minable coal beds are located in a 400-mi2 (1,036-km2) area at the southwestern end of the coalfield in the drainage basins of the Chuitna and Beluga Rivers. There, the coal beds range from lignite to subbitumi- nous and range from a few inches (few centimeters) to more than 50 ft (15 m) thick. Barnes (1967a) has traced a few of the thick (30–50 ft or 9.1–15 m) coal beds for distances of more than 7 mi (11 km) along the course of the Chuitna River. Flores and others (1994) and Flores, Stricker, and Stiles (1997) have described the lateral variations of these coal beds, which are shown in figures 73, 74, and 75. Myers and others (1998) traced one 50-ft (15-m) coal for 4 mi (6.4 km) in the Capps Glacier area (see fig. 40). Other thick (10–25 ft or 3–7.6 m) coal beds are exposed along the Beluga, Skwentna, and Yentna Rivers (see fig. 40). Along the southeast margin of the Alaska Range, the Kenai Group rocks lie in downfaulted or down- warped basins (Barnes, 1966; Magoon and others, 1976; Reed and Nelson, 1980). Tc F i g .9 5 Matanuska River �� �� �� �� �������� �� Tsadaka Formation (Oligocene) Syncline Wishbone Formation (Eocene) Chickaloon Formation (Eocene and Paleocene) ��������������PremierCreekM ooseCreekEskaC r e e k ���������� ����� ������������������� �������� �� �� �� Strike-slip fault (U,up;D,down) Direction of plunge ��������� �������� ���������������� ������������������ EXPLANATION Figure 96. Geologic map of the Wishbone Hill coal district showing doubly plunging syncline disrupted by normal faults. Modified from Flores and Stricker (1993a). CANADACANADA UNITED STATES ALASKA Area of map CANADA Reed and Nelson (1980) divided the Tyonek Formation in the Susitna-Beluga coalfield into two members. The basal member consists of 40 percent conglomerate, 20 percent sandstone, and 40 percent siltstone, claystone, and coal; the latter are in beds as much as 56 ft (17 m) thick. The overlying member consists predominantly of sandstones about 558 ft (170 m) thick, composed of repetitive cycles 23–75 ft (7–23 m) thick and grading from coarse-grained, pebbly sand- stone at the base to silt and clay with coal or bony coal at the top. The Tyonek is overlain by the Sterling Formation, consisting of an orange to light gray, massive pebble to boulder conglomerate, as much as 2,525 ft (770 m) thick. Barnes (1966) reported two negative gravity anomalies beneath the Susitna Lowland —one between Johnson Creek and Yenlo Mountain and north of the Skwentna River, and the other between Yenlo Mountain and the Susitna River, centered at the confluence of the Kahiltna and Yentna Rivers (see fig. 40). Barnes interpreted both anomalies as thick fill of the Kenai Group that may contain potential for large deposits of coal. Broad Pass Coalfield The Broad Pass coalfield underlies a narrow trough extending northeastward from south of the divide of the Alaska Range, on the headwaters of the Chulitna River (see fig. 40), to the north end of the Cook Inlet-Susitna Lowland (Wahrhaftig, 1965; Barnes, 1967a). The coalfield is about 5 mi (8 km) wide and is bordered by mountains that rise abruptly to elevations of about 3,300–8,200 ft (1,000–2,500 m). Although Mesozoic and older metamorphic and igneous rocks are mainly exposed in the coalfield, several small areas of coal- bearing rocks of the Kenai Group occur. Only two of these areas are known to contain coal resources: Costello Creek and Broad Pass Station on the Alaska Railroad (see figs. 1 and 40). Only a 7-mi2 (18-km2) area was mapped with coal-bearing rocks in the Costello Creek and a 1.5-mi2 (3.8-km2) area near the Broad Pass Station. A detailed U.S. Bureau of Mines-U.S. Geological Survey investigation in the Costello Creek area disclosed a lower unit of interbedded sandstone, mudstone, and coal beds, 0–85 ft (0–26 m) thick, overlain by an upper, predominantly sandstone unit, as much as 490 ft (150 m) thick, lacking coal beds (Wahrhaftig, 1944). The coal beds at the Broad Pass Station, 8–10 mi (13–16 km) east of the Costello Creek area, are interbedded with white to orange sandstones and gravelly conglomerates (Hopkins, 1951). These coal beds are correlated to the Sterling Formation of the Susitna-Beluga coalfield. Coal has been reported south of these areas along the Chulitna River. The coalfield contains orange to yellow gravels exposed in railroad cuts and streambanks, which resemble the Nenana Gravel in the Central Alaska-Nenana coal province and the Sterling Formation of the Susitna Lowland. Kenai Coalfield The Kenai coalfield lies on the lowland between the Kenai Mountains on the east and the Cook Inlet on the west, in the western part of Kenai Peninsula (see fig. 40). The coalfield contains the thick, coal-bearing Beluga and Sterling Formations of the Kenai Group and is divided into two coal districts: the northern Kenai and southern Homer coal districts (Barnes, 1967a). The northern Kenai coal district includes mainly outcrops of the Sterling Formation, and the coal beds are exposed mainly along the coastal bluff from north of Clam Gulch to south of Ninilchik (see figs. 58 and 97; Merritt and others, 1987). The coal beds are mainly thin in the upper part and thicker in the lower part of the formation. The Homer coal district contains outcrops of both the Beluga and Sterling Formations, which are mainly exposed along the coastal bluffs from north of Anchor Point to Homer and along the north shore of Kachemak Bay (see figs. 58 and 98) on the southern end of the Kenai Peninsula. The coal-bearing rocks are com- pletely concealed by as much as several hundred feet of glacial and alluvial deposits, particularly in the northern Kenai coal district. However, where the Sterling coal beds are exposed along the coastal bluffs, they are as thick as 12 ft (3.8 m) and are laterally continuous for more than 1.75 mi (3 km) (Flores and Stricker, 1992). The Homer coal district (Barnes and Cobb, 1959) is about 1,200 mi2 (3,110 km2) in area and includes as much as 5,000 ft (1,525 m) of the Beluga and Sterling Formations. These formations contain at least 30 coal beds ranging individually from 3 to 7 ft (0.9 to 2.1 m) in thickness (Barnes, 1967a). Flores and Stricker (1993b) reported that Beluga coal beds range from a few inches (few centimeters) to 8.2 ft (2.5 m) thick and average 3.2 ft (1 m) (fig. 99). Thin coal beds, a few inches to 1 ft (a few centimeters to 30 cm) are traceable laterally from a few tens to hundreds of feet. Thicker coal beds, greater than 2 ft (>0.6 m), are traceable laterally as much as a few miles. The thickness-to-length ratio of coal beds indicates they vary from lenticular (1:9) to elongate (1:1,000–3,000). Stratigraphic variations of the coal beds in the Homer coal district are shown in figures 100 and 101. Coal beds of the Beluga Formation are thick and laterally continuous where they are interbedded with thick and extensive sandstones, which were deposited by meandering streams (see fig. 100). Beluga Formation coal beds are thin and discontinuous where interbedded with thin and lenticular sandstones, in which case anastomosed streams (see fig. 101) deposited the sandstones. Coal was mined intermittently since 1888 along the north shore of Kachemak Bay by the Alaska Coal Company at Millerʼs Landing northwest of Homer (Barnes, 1967a). In 1891, the U.S. Navy mined 50 short tons (45 metric tons) from four localities on Kachemak Bay. In 1894, the North Pacific Mining and Transportation Company began development in Eastland Canyon (about 1 mi northeast of Kachemak Bay). At least 650 short tons (590 metric tons) of coal was produced from this underground mine and shipped to San Francisco. Southern Alaska-Cook Inlet Coal Province 75 76 Alaska Coal Geology, Resources, and Coalbed Methane Potential Underground mines were also opened from 1894 to 1897 west of McNeil Canyon. Coal mining shifted to the west of Homer along the beach bluffs of the Cook Inlet from 1899 to 1951. The Cook Inlet Coal Fields Company developed the Cooper coal bed from five mine shafts in the beach bluff on Bidarki Creek, about a mile (1.6 km) west of Homer. The 1899–1902 total coal production from these mines was only a few hundred short tons. In 1915, Bluff Point (see fig. 58) underground mine was opened near Bidarki Creek and produced about 1,400 short tons (1,270 metric tons). Barnes (1967a) reported production from this mine to be about 1,200 short tons (1,090 metric tons) in 1921, 2,700 short tons (2,450 metric tons) in 1922, and 700 short tons (635 metric tons) in 1923. No production records were found for 1924 to 1945. In 1946, the Bluff Point mine was taken over by Homer Coal Corporation, which blocked out reserves of stripping coal. No reported production was recorded from this operation, which operated until 1951. Total production in the Homer coalfield is at least a few thousand tons. Coal Resource Assessment in the Southern Alaska-Cook Inlet Coal Province The coal resource assessments of various workers in the Southern Alaska-Cook Inlet coal province vary in magnitude and coal resource categories, which resulted in different esti- mates. We reconstructed these diverse coal resource estimates following guidelines of the coal-resource classification system of Wood and others (1983). This new reporting system of the coal resources of the Southern Alaska-Cook Inlet coal province modified from previous estimates is summarized in table 1. Following is a historical account of the variable coal resource assessments in the coal province. Figure 97. Photograph of a 4-foot-thick (1.2 meters) coal bed interbedded with fluvial-channel sandstones and flood plain mudstones and siltstones in the Sterling Formation in the Clam Gulch area. Sandstone Mudstone-siltstone Coal and carbonaceous shale Ferruginous sandstone ��������������������������������������������������� �������� � ���� ���� ������������ �������� ������ Root mark EXPLANATION �������� Figure 98. Stratigraphic cross section showing interbedded coal beds, fluvial-channel sandstones, and flood-plain mud- stones and siltstones in the lowermost part of the Sterling Formation along the north shore of Kachemak Bay east and west of McNeil Canyon. See figure 58 for location of the cross section.�������������������������������������� ������� �������� �������� EXPLANATION Conglomerate Sandstone Mudstone and siltstone Coal and carbonaceous shale � ���� ���� ������������ �������� �������������� Figure 99. Photograph of a coal bed with tonstein partings and related rocks of the Beluga Formation along the beach bluffs on the northern shore of the Kachemak Bay. Mat- tock is 2 feet (0.6 meter) long for scale. Figure 100. Stratigraphic cross section showing interbed- ded coal beds, fluvial-channel sandstones, and flood-plain mudstones and siltstones in the uppermost part of the Beluga Formation west of McNeil Canyon. See figure 58 for location of the cross section. �������� Coal Resource Assessment in the Southern Alaska-Cook Inlet Coal Province 77 �������� ��������� Tick marks locate position of measured stratigraphic sections ������ ��������� Conglomerate Sandstone Mudstone and siltstone Coal and carbonaceous shale Figure 101. Stratigraphic cross section showing interbedded coal beds, fluvial-channel sandstones, and flood plain mudstones and siltstones in the uppermost part of the Beluga Formation at the mouth of Fritz Creek. See figure 58 for location of the cross section. 78 Alaska Coal Geology, Resources, and Coalbed Methane Potential Barnes (1967a) estimated identified coal resources in the Southern Alaska-Cook Inlet coal province to be about 2,910 million short tons (2,640 million metric tons). Later, McGee and Emmel (written commun., 1979) estimated the identified coal resources to be about 34,320 million short tons (31,130 million metric tons). Matanuska Coalfield Estimates of coal resources produced by various work- ers for the Matanuska coalfield were reported by Merritt and Belowich (1984) as being as high as 200 × 106 short tons (181 × 106 metric tons) for measured to inferred coal resources and as high as 2.4 × 109 short tons (2.2 × 109 metric tons) for hypothetical coal resources. The most reliable coal- resource estimates are from Barnes (1967a), who reported 137 × 106 short tons (125 × 106 metric tons) of combined measured, indicated, and inferred coal resources, and from Merritt and Belowich (1984) who reported 24 × 109 short tons (22 × 109 metric tons) of hypothetical coal resources (table 6). In the Wishbone Hill coal district, Barnes (1967a) reported total coal resources of 112 million short tons (101 million metric tons), based on apparent rank of bituminous coal with thicknesses greater than 14 inches (35 cm), and between 0 and 2,000 ft (0–610 m) of overburden. Total resources were divided into 6.6 million short tons (6.0 million metric tons) measured coal resources, 51.7 million short tons (47 million metric tons) indicated coal resources, and 53.7 million short tons (49 million metric tons) inferred coal resources. In the Chickaloon-Castle Mountain coal district, Barnes (1967a), reported total coal resources of 25 million short tons (23 million metric tons), based on apparent rank of bituminous coal, with thicknesses greater than 14 inches (35 cm), and between 0 and 2,000 ft (0–610 m) of overburden. Total resources were divided into 0.0 measured coal resources, 0.7 million short tons (0.6 million metric tons) indicated coal resources, and 24.3 million short tons (22 million metric tons) inferred coal resources. In the Anthracite Ridge coal district, the only identified minable bed of anthracite, 4.2 –6.6 ft (1.3–2.0 m) thick, under- lies an area of no more than 2.5 acres (1 hectare) and totals no more than 22,000 short tons (20,000 metric tons) (Waring, 1936; Merritt and Belowich, 1984). One other reported anthracite occurrence (Merritt and Belowich, 1984), too thin to be mined, is on a large active landslide (Detterman and others, 1976). Susitna-Beluga Coalfield Barnes (1967a) reported identified coal resources of the Susitna-Beluga coalfield as 2.4 billion short tons (2.2 billion metric tons) (table 6). Total resources were estimated for subbituminous coal beds greater than 2.5 ft (0.76 m), with overburden to 1,000 ft (0–305 m) in the drain- age basins of the Yentna, Skwentna, Beluga, and Chuitna Rivers, the Capps Glacier coal district, and an area southwest of Tyonek. Indicated coal resources are 56 million short tons (51 million metric tons) in the Yentna River Basin, 123 million short tons (116 million metric tons) in the Skwentna River Basin, 260 million short tons (236 million metric tons) in the Beluga River Basin, 1.54 billion short tons (1.4 billion metric tons) in the Chuitna River Basin, 406 million short tons (368 billion metric tons) in the Capps Glacier district, and 9.4 million short tons (8.5 million metric tons) southwest of Tyonek. Wahrhaftig and others (1994), based on Barnesʼ 1966 report, calculated indicated coal resources of (1) 4.5 × 106 short tons (4.1 × 106 metric tons) in beds less than 6.5 ft (2 m) thick in the Peters Hills; (2) about 44 × 106 short tons (40 × 106 metric tons) of coal mainly in beds more than 10 ft (3 m) thick in the Fairview Mountain area; (3) 20 × 106 short tons (18 × 106 metric tons) of coal mainly in beds more than 6.5 ft (2 m) thick in the Johnson Creek area; and (4) 110 × 106 short tons (100 × 106 metric tons) of coal in the downfaulted half graben along Canyon Creek area. A drilling program by Mobil Oil Corporation resulted in estimates of 500 × 106 short tons (450 × 106 metric tons) of coal within 250 ft (76 m) of the surface in beds 10 to 50 ft (3 to 15 m) thick, in two leased areas totaling 23,000 acres (9,300 hectares). One area includes the Canyon Creek drain- age basin and the other extends from the Skwentna River northward across Johnson Creek (Blumer, 1981). Table 6. Estimates of coal resources for the Tertiary Kenai Group in the Matanuska, Susitna, Broad Pass, and Kenai coalfields in the Southern Alaska-Cook Inlet coal province.[Resource estimates are in millions of short tons (multiply by 0.907 to obtain metric tons)] Coal field Source Classification CoalResource estimate ������������������������������� ��������������������������������������������� ������������������������������������������ ������������������������������� ����������������������������������������������� ������������������������������ ����������������������������� ������������������������������������������������������ ���������������������������������������������� ������������������������������� ���������������������������������������������������������� �������������������������������������������� ��������������������������� ��������������������������� �������������������������������������� ����������������������������������������� ������������������������������������������ ����������� ������������������������������������������ ������������������������������������������������������������������������ ������������������������������������������ ���������������������������������������� ����������������������������������������������������������� ����������������������������������������������� ����������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������� �������������������� �������������������������������������������������������������������������������������������� ���������������������������������������� ��������������������������������������������������������������������������������� �������������������������������������������������������������������������������� Broad Pass Coalfield The hypothetical and identified coal resources of the Broad Pass coalfield reported by Wahrhaftig and others (1994) were 13.3 × 106 short tons (12 × 103 metric tons) of coal com- bined for two beds with a maximum thickness of 10 ft (3 m). According to Barnes (1967a), 64 × 103short tons (58 × 103 metric tons) of coal was mined from 1940 to 1954, and the rest was unminable (table 6). Hopkins (1951) estimated that at least 13 x 106 short tons (12.2 × 106 metric tons) of coal exist beneath the area of known exposures of Tertiary rocks at Broad Pass Station, but only 300 × 103 short tons (270 × 103 metric tons) of lignite with an ash yield of 8–25 percent was actually measured. Barnes (1967a) reported total coal resources of the Broad Pass coalfield as 64 million short tons (58 million metric tons). Based on coal-bed thickness of 2.5 ft (0.75 m) for subbitu- minous rank and overburden of 0–1,000 ft (0–305 m), Broad Pass Station area contains as much as 0.3 million short tons (0.27 million metric tons) indicated coal resources, 63.3 million short tons (57 million metric tons) inferred coal resources, or a total coal resource of 63.6 million short tons (57.4 million metric tons). Costello Creek area contains 0.3 million short tons (0.27 million metric tons) indicated coal resources. Kenai Coalfield Coal resources of the Kenai coalfield are mainly con- centrated in the Homer coal district. Barnes and Cobb (1959) calculated indicated coal resources of 400 × 106 short tons (360 × 106 metric tons) for coal beds greater than 2 ft (0.6 m) thick, of which 50 × 106 short tons (45 × 106 metric tons) are in beds more than 5 ft (1.5 m) thick. These coal beds are covered by <990 ft (300 m) of overburden. Barnes and Cobbʼs investigation indicated that all except the extreme northern and northeastern parts of the Homer coal district, about 750-mi2 (1,940-km2) area, is underlain by coal beds greater than 2 ft (0.6 m) thick. Thus, the potential coal resources of the Homer coal district may be several billion short tons. Barnes (1967a) reported the total coal resources of the Homer coal district to be more than 318 million short tons (290 million metric tons). McGee and Emmel (written commun., 1979) reported Kenai coalfield onshore resources as 0.2 million short tons (0.18 million metric tons) measured coal resources, 318 million short tons (290 million metric tons) identified coal resources, and 34 billion short tons (31 billion metric tons) hypothetical resources (table 6). Based on geophysical logs from drill holes throughout the Cook Inlet Basin, McGee and OʼConnor (1975) calculated a hypothetical resource of 1.2 × 1012 short tons (1.1 × 1012 metric tons) of coal of apparent lignite rank to a depth of 10,000 ft (3,048 m) and 110 × 109 short tons (100 × 109 metric tons) to a depth of 2,000 ft (610 m). McGee and Emmel (written commun., 1979) reported about 34.32 billion short tons (31 billion metric tons) of hypothetical coal resources in the offshore Cook Inlet Basin. Affolter and Stricker (1987b) estimated a hypothetical resource of 0.8 × 1012 short tons (0.7 × 1012 metric tons) of the Kenai Group coal to lie beneath the waters of Cook Inlet. Coal Quality Coal in the Southern Alaska-Cook Inlet coal province ranges from lignite to anthracite (table 7). The lignite with heat values of 5,410–8,020 Btu/lb (3,010–4,460 kcal/kg) and subbituminous coal with heat values of 8,060–9,520 Btu/lb (4,480–5,290 kcal/kg) are mainly in the Broad Pass, Susitna- Beluga, and Kenai coalfields (Barnes, 1967a). Bituminous coal with heat values of 10,390–14,380 Btu/lb (5,770–7,990 kcal/kg) and semianthracite with heat values of 10,720–13,420 Btu/lb (5,960–7,460 kcal/kg) coal are mainly in the Matanuska coalfield (Barnes, 1967a). In the Matanuska coalfield, the ash yield varies from 2.4 to 21.7 percent, sulfur from 0.2 to 1.0 percent, and moisture content from 1.1 to 20.3 percent (as-received basis; Barnes, 1967a). Run-of-the-mine coal quality in the Wishbone Hill coal district varies from 9 to 29 percent ash, 0.3 to 0.4 percent sulfur, and 4.0 to 6.0 percent moisture content (as-received basis; Germer, 1986; Belowich, 1994). In the Susitna-Beluga coalfield, coal varies from 2.1 to 30.5 percent ash yield, 0.1 to 0.3 percent sulfur, and 11.3 to 33.1 percent moisture contents (as-received basis; Barnes, 1967a). In the Chuitna River drainage basin, Affolter and Stricker (1994) reported ash yield that varies from 4.83 to 38.67 percent, sulfur content from 0.08 to 0.18 percent, and moisture content from 19.19 to 26.15 percent. In the Beluga River drainage basin, the ash yield varies from 3.59 to 29.87, sulfur content from 0.08 to 0.32, and moisture content from 16.78 to 7.49 percent. In the Capps Glacier district the coal beds contain ash yield of 9.3–40.3 percent, sulfur 0.12–0.33, and moisture 4.8–26.0 percent (as-received basis; Affolter and Stricker, 1986). Flores and others (1994) suggested that the higher sulfur content in coal beds in the Chuitna River drain- age basin was influenced by tidal incursions into mires. In the Broad Pass coalfield, the ash yield varies from 6.0 to 21.2 percent, sulfur from 0.2 to 0.6 percent, and moisture content from 8.7 to 35.8 percent (as-received basis; Barnes, 1967a). In the Kenai coalfield, with emphasis on the coal beds in the Homer coal district, ash yield varies from 3.8 to 22.0 percent, sulfur content from 0.1 to 0.4 percent, and moisture content from 16.5 to 30.4 percent (Barnes and Cobb, 1959; Barnes, 1967a). Affolter and Stricker (1994) reported ash yield ranging from 4.80 to 26.90 percent, sulfur content from 0.20 to Coal Resource Assessment in the Southern Alaska-Cook Inlet Coal Province 79 80 Alaska Coal Geology, Resources, and Coalbed Methane Potential 1.30 percent, and 11.0 to 26.50 percent moisture content from the Kenai coalfield. Coal Petrology The coal petrology of the Tyonek coal beds in the Chuitna River drainage area was investigated by Rao and Smith (1986). Vitrinite (or huminite) is the most abundant maceral and varies from about 66 to 92 percent. Minor liptinite varies from 4 to 18 percent and inertinite from 0 to 9 percent. The woody or huminite maceral is composed mainly of cypress trees (Rao and Smith, 1986). However, oak, beech, hickory, elm, walnut, alder, and birch trees are represented in the peat- forming mires. The huminite maceral is either unevenly dis- tributed vertically throughout the coal beds or it increases in the upper and lower parts of the coal beds. Liptinite macerals in some coal beds increases in the upper part of the coal beds. Inertinite appears to be less preferentially distributed verti- cally in the coal beds than the huminite and liptinite macerals. However, local peak occurrences of inertinite indicate genera- tion of fusinite or charcoal that is formed by forest fires during dry periods. High occurrence of liptinite suggests differential decomposition of the more resistant exinite from vegetal matter. The high concentration of huminite in the lower part of coal beds indicates that the mires were initially vegetated by abundant trees, which evolved into less woody vegetation through time. The high concentration of huminite in the upper part indicates that the mire supported more woody vegetation through time. Coalbed Methane Potential The coal resources of Alaska (about 5,526 billion short tons; see table 1) contain significant potential economic coalbed methane resources. Methane derived from coal, which has migrated and is stored in interbedded sandstone reservoirs in the Cook Inlet Basin, is presently being developed. Coal- bed gas or methane-rich gas is stored (adsorbed) in the coal along fractures, cleats, and pores and (or) within (absorbed) the molecular structure of the coal. Gas is stored in the coal by molecular attraction on the surfaces of the structures of the coal. Methane is a by-product of fermentation during deposi- tion and coalification during burial of peat. The ability of the coal to store gas is a function of rank or grade of coalification (for example, lignite, subbituminous, bituminous) and tem- perature and pressure. Generally, more methane is stored in higher rank coal and at high pressure whereas higher tempera- ture decreases storage capacity. Methane generated in higher rank coal (for example, bituminous) is thermogenic in origin, and methane produced in lower rank coal (lignite and subbitu- minous) is biogenic in origin. Biogenic gas is generated during bacterial activity by methanogens or anaerobes that produced methane as a by-product of their metabolism. In most cases methanogens do this by reducing carbon dioxide with hydro- gen to produce methane. Biogenic gas generated from lignites in Alaska was determined from a 1994 U.S. Geological Survey test well in the Yukon Basin (Flats), where the coal beds are more than 21 ft (6.4 m) thick. A major by-product of development of coalbed meth- ane, especially for subbituminous coal, is coproduced water. Volumes of water produced in major methane-producing Table 7.Range (minimum and maximum values) of quality parameters for Tertiary coal deposits in the Matanuska, Broad Pass, Susitna, and Kenai coalfields in the Southern Alaska-Cook Inlet coal province. [All analyses except Calorific value (Btu) are in percent. Values reported on an as- received basis. Modified from Merritt, 1984] Area Moisture Volatile matter Fixed carbon Ash yield Total sulfur CalorificvalueBtu per pound ������������������������������������������������������������ ������������������������������������������������������ ���������������� ������������������������������������������������������������������� ���������������������������������������������������������������� ������������������������������������������������������������������� ���������������������������������������������������������������� basins in the conterminous United States vary significantly between bituminous and subbituminous coal. The volume of coproduced water from bituminous coal ranges in average from 48 to 240 barrels (7,632 to 38,160 liters) of water per day per well and from the subbituminous coal the average is about 440 barrels (91,600 liters) (Flores, 2000). Hence, the water: gas ratio for the bituminous coal ranges from 0.029 to 0.51 barrel per thousand cubic feet (16.3 to 286 liters per 100 m3) and from the subbituminous coal is 2.88 barrels per thousand cubic feet (21,360 liters per 100 m3) (Flores, 2000). In order to produce the methane from the coal, the reservoir needs to be dewatered, which results in the depressurization of the reser- voir. This water can be disposed of either on the surface, into ponds or existing drainages, or reinjected below the surface. Regulations, quality, and amount of the coproduced water influence the choice of a disposal system. Coproduced water from subbituminous coal of the Tertiary Fort Union Forma- tion being developed in the Powder River Basin of Wyoming is freshwater. It contains concentrations of dissolved solids mainly of bicarbonate, and trace elements and pH values that are generally below and within recommended drinking-water standards (Flores, 2000). Thus gas operators in that basin are permitted to dispose of the coproduced water on the surface; however, the large volume of water being disposed of is affect- ing the environment (for example, biota, ephemeral drainages, ground-water supply). Water-disposal problems may influence potential development in Alaska where the permafrost (for example, Northern Alaska-Slope coal province) is thick (Fer- rians, 1965), and freezing temperatures at the surface for much of the year may curtail surficial disposal by ponding or along preexisting drainages. The quality of water such as concen- tration of total dissolved solids and location of coalbed gas production where recharge areas are juxtaposed to brackish- marine bodies of water (sea, ocean, bay) may prevent surface disposal or reinjection, which may contaminate ground-water supply. Smith (1995) reported that Alaskaʼs in-place coalbed methane resources might be as much as 1,000 trillion cubic feet (tcf) (28 trillion cubic meters [tcm]) based on estimates of the gas content of as much as 245 standard cubic feet per ton (scf/t) for the coals. The high coalbed-methane resource esti- mate of Smith (1995) utilized 200 scf/t for both the subbitumi- nous and bituminous coals in the Northern Alaska-North Slope coal province and 152 scf/t for the subbituminous coal in the offshore area in the Southern Alaska-Cook Inlet coal province. Our investigations of the subbituminous coals in the Powder River coals indicate gas content ranging from 0 to 99 scf/t, averaging 25 scf/t (Stricker and others, 2001). If the Powder River Basin coalbed-methane content is applied for the Alaska subbituminous coal, Smithʼs estimate will be reduced to about one-half the volume. Northern Alaska-Slope Coal Province The voluminous lignite, subbituminous, and bituminous coal of the Northern Alaska-Slope coal province indicates a high potential for large biogenic and thermogenic gas resources. The abundance of bituminous coal with 1,910 bil- lion short tons (1,732 billion metric tons) and subbituminous coal with 1,960 billion short tons (1,778 trillion metric tons) in the Northern Alaska-Slope coal province (fig. 102) indi- cates a high potential for thermogenic and biogenic methane resources. Outcrop and surface-projected mean vitrinite reflectance values in the Northern Alaska-Slope coal province range from 0.31 to 1.71 percent, which corresponds to lignite to low volatile bituminous coal ranks (figs. 103 and 104; table 8a and 8b). Coal rank generally increases southward toward the Brooks Range where the vitrinite reflectance values exceed 1.71 percent (see table 8a and 8b). Thus, the vitrinite reflectance values suggest a range of coal maturation in which coalbed methane, both biogenic and thermogenic, may be gen- erated from subbituminous and bituminous coals, respectively. Tyler and others (2000) and Clough and others (2000) evaluated the potential coalbed methane for the rural com- munities in the Northern Alaska-Slope coal province. They suggested that based on depth, coal thickness, and depositional systems, primary coalbed methane targets and potential explo- ration fairways occur mainly in the Cretaceous Nanushuk Group. These workers identified the area between the east- ern boundary of the National Petroleum Reserve of Alaska (NPRA) to Chukchi Sea (see figs. 8 and 10) as containing the highest coalbed methane potential because of the thickest net coal, which is >300 ft (91 m) (see fig. 8). Potential methane development in this area may be from most of the coal beds that lie at an average depth of 2,000 ft (610 m). Drilling depths for coalbed methane are recommended below the permafrost zone, which is as much as 2,000 ft deep (610 m) (Ferrians, 1965), to 6,000 ft (1,830 m). McKee and others (1986) suggested that permeability is very low below the 6,000-ft (1,825-m) threshold. The Meade Test Well No. 1 and Kaolak Test Well No. 1 have related gas shows with coal beds as much as 30 ft (9.1 m) thick as well as interbedded sandstones at depths between 1,240 and 2,200 ft (378 and 670 m) (Collins, 1959). Here, Barnes (1967a) reported that there are as many as 60 coal beds with a net coal thickness of 350 ft (107 m) within a 4,600-ft (1,400-m) interval. Methane gas shows associated with coal beds in the Nanushuk Group and Corwin Formation were recorded at depths between the surface to about 1,420 ft (430 m) by Husky Oil NPR, Opera- tions, Inc. (1982–83). The presence of high gas content in sub- bituminous coal beds in the Nanushuk and Colville Groups in the NPRA was also reported by Claypool and Magoon (1988). These investigators also noted that the shallow, immature nature of the coal beds make for an unfavorable thermogenic gas source. However, similar subbituminous coal beds of the Fort Union Formation in the Powder River Basin of Wyoming are currently producing coalbed gas from depths of 250– 1,500 ft (76–460 m). Kenai Coalfield 81 82 Alaska Coal Geology, Resources, and Coalbed Methane Potential The vitrinite reflectance values of the Cretaceous coal- bearing rocks (Corwin-Chandler, Grandstand, Torok Forma- tions, the Pebble shale unit, and underlying Jurassic-Devonian rocks) in the Northern Alaska-Slope coal province are shown in figures 105 and 106. The vitrinite reflectance values down to 6,000 ft (1,830 m) range from about 0.30 to 0.66 percent, which corresponds mainly to lignite to subbituminous coal through subordinate high-volatile bituminous C coal (Stach and others, 1982). Vitrinite reflectance values are superim- posed on the cross section of the Nanushuk Group and under- lying rocks (fig. 107). Here, the vitrinite reflectance values of the coal-bearing Corwin-Chandler Formations range from <0.5 to >0.7 percent in the western part (updip) of the North- ern Alaska-Slope coal province and from <0.5 to <0.6 percent in the eastern part (downdip). This indicates that the coal beds may have generated mixed biogenic and thermogenic methane in the western part of the coal province and mainly biogenic methane in the eastern part. The extent of Nanushuk coal beds and the high-potential coalbed methane resources in the western part of the Northern Alaska-Slope coal province is shown in figures 108 and 109. In figure 108, the depths to the vitrinite reflectance value of 0.6 percent are superimposed on the base of Nanushuk Group and the net coal thickness of the Nanushuk Group. When the vitrinite reflectance contours are merged with the extent of the Nanushuk coal and where the Nanushuk coal beds have a net thickness of >400 ft (192 m), the area of highest coalbed methane potential is in the south- western part of the Northern Alaska-Slope coal province. Callahan (1979) suggested that the North Slope gas is biogenic and generated by a microbial activity. Carbon isotopic analyses of near-surface (0–4,920 ft, 0–1,500 m) gas- hydrate- and coal-bearing units by Collett (1993) yielded car- bon isotopic values averaging about –49 permil. This indicates that the methane in near-surface strata is from mixed biogenic and thermogenic origin. However, based on vitrinite reflec- tance values (0.30–0.66), the gas-hydrate and coal-bearing rocks probably were not subjected to high temperatures; thus, the thermogenic gas may have migrated from greater depths. Tyler and others (2000) suggested that in addition to tar- geting coal beds for conventional methane exploration, strati- graphic and structural traps should be explored for coalbed methane potential. Conventional play for thermogenic gas in the coal that migrated updip and was trapped below the perma- frost was also recommended for exploration. The permafrost zone serves as a seal for trapping migrating gas. Stratigraphic traps were suggested by Tyler and others (2000) where coal beds pinch out updip behind progradational shoreline sequences (for example, delta-front, barrier-shoreface sand- stones) in the Nanushuk Group. Structural traps may be found in fault-cored anticlines (for example, Meade and Wainwright arches) (see fig. 8; Tyler and others, 2000). Central Alaska-Nenana Coal Province The coalbed methane potential for the Central Alaska- Nenana coal province is not as high as the Northern Alaska- Slope coal province. The coal beds in this coal province are mainly subbituminous, range from 50 to 66 ft (15 to 20 m) in thickness, and occur to depths of 3,000 ft (910 m). In addi- tion, the Healy Creek Formation is sealed by thick mudstones of the overlying Sanctuary Formation. Exploration targets for potential coalbed methane are along the axes of large synclinal basins such as the Healy Creek and Lignite Creek Basins. In these basins, most of the coal resources in the Healy Creek and Suntrana Formations are thick (as much as 65 ft or 20 m thick) and found from 1,000-to 3,000-ft (305 to 914 m) depths (Wahrhaftig and others, 1994). Although the rank of the Healy Creek, Suntrana, and Lignite Creek coals is mainly subbituminous, Affolter and Stricker (1994) reported heating (calorific) values ranging from 6,130 to 9,210 Btu/lb (3,410 to 5,120 kcal/kg), which correspond to lignite to subbituminous coal. Outcrop and surface-projected vitrinite values of the coal-bearing Usibelli Group in the Central Alaska-Nenana coal province range from 0.21 to 0.48 percent, which corresponds to lignite to subbituminous C coal ranks (fig. 104). Coal ranks generally increase south-southeast toward the Alaska Range, indicating that methane generated in these mainly subbituminous coal deposits is biogenic. The rank and quality (low ash and sulfur) of the Healy Creek, Suntrana, and Lignite Creek coals beds are very similar to the subbituminous coal beds of the Fort Union Formation in the Powder River Basin of Wyoming, which are producing economic biogenic methane at an average of 25 scf/t. In that basin, coalbed methane is produced as close as 1–2 miles (1.6–3.2 km) from coal strip mines (Stricker and others, 2001). However, the strip mining has liberated gas by pressure reduction. Because the Fort Union coal beds have high water saturation, depressurization from dewatering dur- ing strip mining releases and subsequently causes migration of gas by desorption and diffusion through the microstructures in the coal. Thus, success in developing the coalbed methane for the Healy Creek and Suntrana coal beds should probably be focused on areas removed from old underground coal mines and current strip mines. Southern Alaska-Cook Inlet Coal Province The coalbed methane potential for the Southern Alaska- Cook Inlet coal province is high. This resource potential varies from the Kenai, Broad Pass, and Beluga coalfields, which contain lignite and subbituminous coal, to the Matanuska coal- field, which contains bituminous and semianthracite coals. Magoon and Anders (1990) reported that the gas pro- duced from the Kenai Group in the Cook Inlet is biogenic. Gas is mainly derived from the Tyonek and Beluga Forma- tions. This gas is produced primarily from gas-driven–sand- stone reservoirs (table 9) in the Tyonek, Beluga, and Sterling Coalbed Methane Potential 83 BITUMINOUS COAL Barrow B R O O K S R A N G E SUBBITUMINOUS COAL � ������������� ���������� �� �� ����� CANADAUNITEDSTATES ALASKA Area of map UNITED STATESALASKA CANADA ARCTI C O C E A N Beaufort Sea ������������������������ ��� ��� ��� ��� ��� ��� �������� Figure 103. Distribution of surface vitrinite reflectance values at sea level in the Northern Alaska-Slope coal province. Figure 102. Map of the Northern Alaska-Slope coal province showing distribution of bituminous and sub- bituminous coals. Modified from Sable and Stricker (1987). 84 Alaska Coal Geology, Resources, and Coalbed Methane Potential Formations (Brimberry and others, 1997; Flores and others, 1998). Figure 110 shows the distribution of gas and oil fields in the Cook Inlet Basin producing mainly from the Tyonek, Beluga, and Sterling sandstones. Figures 111 and 112 show the vertical distribution and occurrence of gas in the Sterling and Beluga sandstone reservoirs; gas accumulations in associated coal beds in the Kenai field are shown in figure 113 (Brim- berry and others, 1997; Flores and others, 1998). Since 1958, when gas production from the Cook Inlet was first recorded by the Alaska Department of Natural Resources, Division of Oil and Gas (1997), the total (gross) production from these sandstone reservoirs was about 7,993 billion cubic feet. This gas is thought to be derived from the Tyonek, Beluga, and Sterling coal beds (Kelly, 1968). Coal mines in the Matanuska coalfield have emitted methane from the Chikaloon coal beds, which has caused several mine explosions in 1937 and 1957 (Barnes and Payne, 1956; Smith, 1995). Thirteen out of 18 coal beds in the Tyonek Formation in the upper Cook Inlet Basin (northwest of Wasilla) were determined to contain coalbed methane by Smith (1995). Gas content ranges from 63 ft3 per short ton (1.97 scm3/gm) at stan- dard temperature and pressure (STP) for coal beds at a shallow depth of 500 ft (152 m) to 245 ft3 per short ton (7.6 scm3/gm) at STP for coal beds at a depth of 1,200 ft (366 m). Vitrinite reflectance values range from 0.47 to 0.58 percent and gener- ally increase with depth. The carbon isotope composition of the coalbed gases range from –49.3 to –43.3 permil δ13C with slightly heavier isotope values at depth (Smith, 1995). In general, biogenic methane is isotopically light with methane δ13C values ranging from –55 to –90 permil (Rice and Clay- pool, 1981; Rice, 1993). However, biogenic methane can be as heavy as –40 permil, which can be produced by reduction of isotopically heavy carbon dioxide (Jenden and Kaplan, 1986). Thus, the gas from the Tyonek coal beds may be slightly bio- genic but mostly thermogenic. Chemical composition is 98–99 percent methane with minor amounts of carbon dioxide and nitrogen (see table 9; Flores and others, 1998). Attempts to develop Tyonek coal beds by energy com- panies (Union and Ocean Energy) in the Wasilla area were affected by coproduced water problems. Large amounts of ground water were encountered, which posed production problems in separating the coalbed methane from the copro- duced water as well as water-disposal problems by reinjection. Similar problems were met by gas operators in developing the coal beds of the Fort Union Formation in the Powder River Basin of Wyoming. However, the gas operators in that area are permitted to dispose of coproduced water at the surface. Other targets for coalbed methane development in the Upper ARCTICO C E A N Beaufort Sea 0.1 -0.5 0.51 -0.75 0.76 -0.99 1.0 -1.97 1.98 -4.75 EXPLANATION (Vitrinite reflectance) Anchorage Juneau Barrow ALASKA ������������ �������������������� ��� ��� �������������������� ��������������� ��������� �������� �������������������� ������������ ��������������� ������������� �������� Figure 104. Map showing surface vitrinite reflectance values in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. Coalbed Methane Potential 85 Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. [Modified from Johnsson and others, 1992] Record number Quadrangle scale of 1:250,000 North latitude Westlongitude Formation Mean Ro (%) ������������������������������������������������ ������������������������������������������������ ���������������������������������������� ��������������������������������������������� ���������������������������������������� ���������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ������������������������������������������������ ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� 86 Alaska Coal Geology, Resources, and Coalbed Methane Potential Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ��������������������������������������������� ������������������������������������������������� ������������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������������������� ��������������������������������������������������������� ��������������������������������������������� ��������������������������������������������������������� ��������������������������������������������������������� ��������������������������������������������������������� ��������������������������������������������������������� ��������������������������������������������������������� ��������������������������������������������������������� ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ���������������������������������������������������� ��������������������������������������������� ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ��������������������������������������������� ��������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������ ������������������������������������������������������������� �������������������������������������������������� ��������������������������������������������������� Mean Ro (%) Coalbed Methane Potential 87 ������������������������������������������������� ������������������������������������������������� ����������������������������������������������������� ��������������������������������������������������� ������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ����������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) 88 Alaska Coal Geology, Resources, and Coalbed Methane Potential ������������������������������������������� ������������������������������������������������������� ��������������������������������������������� ������������������������������������������ ������������������������������������������������� ��������������������������������������������� �������������������������������������������� ���������������������������������������������� ���������������������������������������������� ����������������������������������������������� ����������������������������������������������� ���������������������������������������������� �������������������������������������� �������������������������������������� ������������������������������������������ ������������������������������������������ �������������������������������������� ������������������������������������������ ������������������������������������������ ��������������������������������������� ������������������������������������������ ����������������������������������������� �������������������������������������� ������������������������������������������ �������������������������������������������� ������������������������������������������� ��������������������������������������� ����������������������������������������� �������������������������������������� ��������������������������������������� ����������������������������������������� ��������������������������������������� ����������������������������������������� ����������������������������������������� ��������������������������������������� ������������������������������������������ ������������������������������������������ ������������������������������������������ ������������������������������������������ ������������������������������������������ �������������������������������������� ����������������������������������������� ��������������������������������������� ����������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) Coalbed Methane Potential 89 �������������������������������������� ����������������������������������������� �������������������������������������� �������������������������������������� ����������������������������������������� ��������������������������������������� ������������������������������������������ ������������������������������������������ ����������������������������������������� ����������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������ ���������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ������������������������������������������������ ����������������������������������������������������� ������������������������������������������������� ������������������������������������� ��������������������������������������� ��������������������������������������� ������������������������������������ �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� ����������������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� �������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) 90 Alaska Coal Geology, Resources, and Coalbed Methane Potential ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ����������������������������������������������������� ����������������������������������������������������� ����������������������������������������������������� ����������������������������������������������������� ����������������������������������������������������� ����������������������������������������������������� ��������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� �������������������������������������������������� ������������������������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) Coalbed Methane Potential 91 ����������������������������������������������������� ����������������������������������������������������� ����������������������������������������������������� ����������������������������������������������������� ����������������������������������������������������� ����������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� �������������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) 92 Alaska Coal Geology, Resources, and Coalbed Methane Potential ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������������������ ������������������������������������������������������������������ ������������������������������������������������������������������ ������������������������������������������������������������������ ������������������������������������������������������������������� ������������������������������������������������������������������ ������������������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ������������������������������������������������������ ��������������������������������������������������������� ��������������������������������������������������������� ��������������������������������������������������������� ������������������������������������������������������ �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) Coalbed Methane Potential 93 ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ���������������������������������������������� ������������������������������������������ ������������������������������������������ ������������������������������������������ ������������������������������������������ ������������������������������������������ ������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������ ������������������������������������������ ������������������������������������������������ ����������������������������������������� ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ��������������������������������������������� ��������������������������������������������� ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) 94 Alaska Coal Geology, Resources, and Coalbed Methane Potential ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������ ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ��������������������������������������������� ����������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������������ ������������������������������������������ ������������������������������������������ ������������������������������������������ ������������������������������������������ ��������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������ ���������������������������������������������������� ���������������������������������������������������� ����������������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ���������������������������������������������������� ���������������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) Coalbed Methane Potential 95 ���������������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ����������������������������������������������� ������������������������������������������������������ ����������������������������������������������� ����������������������������������������������� ������������������������������������������������������ ������������������������������������������������������ ����������������������������������������������� ����������������������������������������������� ������������������������������������������������������ ����������������������������������������������� ����������������������������������������� ��������������������������������������� ��������������������������������������� ���������������������������������������� ������������������������������������������ ��������������������������������������� ���������������������������������������� ��������������������������������������� ����������������������������������������� ���������������������������������������� ������������������������������������������� �������������������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� �������������������������������������� ��������������������������������������� ��������������������������������������� �������������������������������������� ��������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) 96 Alaska Coal Geology, Resources, and Coalbed Methane Potential ��������������������������������������� ��������������������������������������� ������������������������������������� ������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ������������������������������������� ��������������������������������������� ��������������������������������������� ��������������������������������������� ���������������������������������������������� ������������������������������������������ �������������������������������������� �������������������������������������� �������������������������������������� �������������������������������������� �������������������������������������� �������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ������������������������������������������� ���������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) Coalbed Methane Potential 97 ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ��������������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ��������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� �������������������������������������������� ��������������������������������������������������� �������������������������������������������� �������������������������������������������� ��������������������������������������������������� �������������������������������������������� ��������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) 98 Alaska Coal Geology, Resources, and Coalbed Methane Potential ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ���������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� �������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) Coalbed Methane Potential 99 ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) 100 Alaska Coal Geology, Resources, and Coalbed Methane Potential ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) Coalbed Methane Potential 101 ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ Table 8a. Vitrinite reflectance values of coals across the surface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Northlatitude Westlongitude Formation Mean Ro (%) 102 Alaska Coal Geology, Resources, and Coalbed Methane Potential Table 8b. Vitrinite reflectance values of coals across the subsurface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. [Modified from Johnsson and others, 1992] Record number Quadrangle scale of 1:250,000 Well name North latitude West longitude MeanRo (%) �������������������������������������������������������������� ��������������������������������������������������������������� ��������������������������������������������������������� ����������������������������������������������� ����������������������������������������������������� ���������������������������������������������� ���������������������������������������������� ��������������������������������������������������� �������������������������������������������������������� ���������������������������������������� ������������������������������������������������� ������������������������������������������������ ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������� ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ �������������������������������������������� ������������������������������������������� ������������������������������������������� �������������������������������������������������������� ��������������������������������������������������� ���������������������������������������������������� ���������������������������������������������������������������� ������������������������������������������������������������������ ������������������������������������������������������� ������������������������������������������������������������ ������������������������������������������������������������ ����������������������������������������������������������� �������������������������������������������������������������� ����������������������������������������������������������������� ������������������������������������������������������� Coalbed Methane Potential 103 Table 8b. Vitrinite reflectance values of coals across the subsurface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Well name North latitude West longitude ���������������������������������������������������������� ������������������������������������������������������������ ������������������������������������������������������������������� �������������������������������������������������������������� ���������������������������������������������������������� ����������������������������������������������������������� �������������������������������������������������������������� ������������������������������������������������������������ ����������������������������������������������������������������� ������������������������������������������������������������ ������������������������������������������������������������ ����������������������������������������������������� ����������������������������������������������������� ��������������������������������������������������������������� ���������������������������������������������������������� ���������������������������������������������������������� ���������������������������������������������������������� ������������������������������������������������������������ ������������������������������������������������������������� ������������������������������������������������������������ �������������������������������������������������������������� ��������������������������������������������������������������� ������������������������������������������������������ ��������������������������������������������������� ����������������������������������������������������������� ��������������������������������������������� ���������������������������������������������������������� ����������������������������������������������������������� ����������������������������������������������������������� ������������������������������������������������������������� ����������������������������������������������������������������� ��������������������������������������������������������������� ������������������������������������������������������������������ ��������������������������������������������������������������������� ����������������������������������������������������������������� ������������������������������������������������������������ ����������������������������������������������������������� ���������������������������������������������������������� ��������������������������������������������������������������� �������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������������ MeanRo (%) 104 Alaska Coal Geology, Resources, and Coalbed Methane Potential ����������������������������������������������������� �������������������������������������������������������������� �������������������������������������������������� ������������������������������������������������������� ��������������������������������������������������������� ����������������������������������������������������������� ��������������������������������������������������������������� ���������������������������������������������������������������� ����������������������������������������������������������� �������������������������������������������������������������� ������������������������������������������������������� ���������������������������������������������������������� �������������������������������������������������������� ������������������������������������������������������� �������������������������������������������������������� ��������������������������������������������������������������� ���������������������������������������������������� �������������������������������������������������������� ���������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� �������������������������������������������������� ��������������������������������������������������� �������������������������������������������������������� ���������������������������������������������������� ���������������������������������������������� ��������������������������������������������� �������������������������������������������������� ������������������������������������������������� ���������������������������������������������������������� ���������������������������������������������������������� ������������������������������������������������ ��������������������������������������������������������� ������������������������������������������������������������ ��������������������������������������������������� ����������������������������������������������������������� ������������������������������������������������������ ������������������������������������������������ ������������������������������������������������� ����������������������������������������������� ������������������������������������������������������� ������������������������������������������������������������������ Table 8b. Vitrinite reflectance values of coals across the subsurface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Well name North latitude West longitude MeanRo (%) Coalbed Methane Potential 105 ������������������������������������������������������������������ ��������������������������������������������������� ���������������������������������������������� ���������������������������������������������������� ������������������������������������������������������� �������������������������������������������������������� �������������������������������������������������������� ���������������������������������������������������������� ������������������������������������������������� ������������������������������������������������������ ������������������������������������������������������� �������������������������������������������������������� ���������������������������������������������������������� ������������������������������������������������������ �������������������������������������������������� ����������������������������������������������������� ��������������������������������������������������������� �������������������������������������������������������� ��������������������������������������������� ��������������������������������������������������������� �������������������������������������������������������� ���������������������������������������������������������������� ��������������������������������������������������������������� �������������������������������������������������������������� ������������������������������������������������� ��������������������������������������������������� ��������������������������������������������������� ����������������������������������������������������� ����������������������������������������������� ��������������������������������������������� ��������������������������������������������������� ���������������������������������������������� ���������������������������������������������������� ������������������������������������������������ ������������������������������������������������ ������������������������������������������������ ������������������������������������������������������� �������������������������������������������������������� ������������������������������������������������������ ���������������������������������������������� ������������������������������������������������ ������������������������������������������������� Table 8b. Vitrinite reflectance values of coals across the subsurface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Well name North latitude West longitude MeanRo (%) 106 Alaska Coal Geology, Resources, and Coalbed Methane Potential ������������������������ ������������������������� ��������������������� ���������������������� � ����� ����� ����� ����� ������ ������ ������������������������� ��������������������������������������������������������������������� ������� ������ ������ ������ ������ ������ ������ ����� ����� ����� ����� � �������������������� ��������� ������������������������� ��������������� ��������� ���������������� ��������� ���������������� ��������� �������� ���������������Figure 105. Vitrinite reflectance values for the Meade Quadrangle, National Petroleum Reserve in Alaska. Modified from Magoon and Bird (1988). Figure 106. Vitrinite reflectance values for the Tunalik No. 1 well, National Petroleum Reserve in Alaska. Modified from Magoon and Bird (1988). ��������������������������������������������� ��������������������������������������������� ������������������������������������������������������ ���������������������������������������������������� �������������������������������������������������� ���������������������������������������� ���������������������������������������� ������������������������������������������������ ����������������������������������������� ���������������������������������������� ����������������������������������������� ���������������������������������������� ������������������������������������������������� ��������������������������������������������� ����������������������������������������������� Table 8b. Vitrinite reflectance values of coals across the subsurface in the Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces. — Continued Record number Quadrangle scale of 1:250,000 Well name North latitude West longitude MeanRo (%) Coalbed Methane Potential 107 Cook Inlet are in the Tyonek area where the coal beds in the Tyonek are as much as 50 ft (15 m) thick occurring at shallow depths of less than 2,000 ft (610 m). Also, the infrastructure (for example, pipeline) of existing petroleum development is readily available in the area. A basinwide variation in thermal maturity of the Cook Inlet Basin was determined by Johnsson and others (1993) from vitrinite reflectance values of 30 offshore and onshore wells (fig. 114). Reflectance values range from 0.24 to 0.95 percent with high values (0.6–0.8 percent) occurring at increasing depths in the northeastern and southwestern parts of the Cook Inlet Basin (see fig. 114). This indicates that tec- tonic deformation and volcanism along the Aleutian volcanic arc influenced the high reflectance values in the northeastern part of the basin, particularly in the Matanuska Valley. The localized upgrading of the thermal maturity in the Matanuska Valley, based on reflectance values of the Tyonek coal beds, is shown in figure 115 (Smith, 1995). Here, the Tyonek coal beds are mainly subbituminous, but the older coal beds in the east- ern part of the valley range from bituminous to semianthracite. The central part of the basin maintains reflectance values from 0.4 to 0.6 percent, which indicate burial influence by thick sedimentary rock sequences of 12,000–13,000 ft (3,660– 3,960 m) (see figs. 58, 59, and 60) along the basin center. Thermal maturity measured from vitrinite reflectance data is relatively low. Shi-Ming (1996) suggested, in a study of clay mineral diagenesis, that temperatures never exceeded 167°F (75°C) (fig. 116). Rapid rate of subsidence and sedimentation of the Cook Inlet Basin probably controlled the low thermal maturity of the Tyonek, Beluga, and Sterling coal beds. Gener- alized vitrinite reflectance lines are superimposed on the cross sections in figures 117 and 118. Coal beds identified in lithologic logs of the Tyonek and Beluga Formations in the Edna Mae Walker No. 1 well in Kenai Peninsula (see fig. 116) are directly associated with the high gas shows indicated on the mud logs (fig. 116). These coal beds contain as much as 2.5 percent by volume of coalbed methane marked by high gas kicks (see fig. 116). However, based on the downhole hot wire total gas results (see high gas kicks in fig. 116), the coal beds in the upper part of the Tyonek Formation contain by far the most coalbed methane resources. Coal beds in the lower part of the Beluga Formation consist of moderate amounts of coalbed methane resources. Coal beds of the Sterling Formation contain very low coalbed methane concentrations. The difference in the coalbed methane content between the Beluga and Sterling coals may be related to the variation in their rank, beds in the Sterling Formation being mainly lignite and those in the Tyonek and Beluga beds being mainly subbituminous (Barnes and Cobb, 1959). Vitrinite reflectance values of the Sterling Formation coal beds range from 0.32 to 0.44 percent, the Beluga coal beds from 0.42 to 0.58 percent, and the Tyonek Formation coal beds from 0.45 to 0.66 percent; all values increase with depth (fig. 117). These vitrinite reflectance values are closely similar to the subbitu- minous Paleocene Fort Union coal beds (0.31–0.49 percent) in the Powder River Basin of Wyoming and Montana, which have an average gas content of 25 scf/t. Also, the gas content (based on the hot wire total gas and methane in mud logs; see fig. 116) of the Powder River Basin coal beds appears to increase with depth, from below 6,000 ft (1,830 m) to more than 13,000 ft (3,960 m). However, producibility of gas from coal-bed reservoirs at these depths may be negligible due to low permeability below 6,000 ft (1,830 m) (McKee and others, 1986). Thus, by comparison, coal beds of the upper Tyonek and lower Beluga Formations contain the best coalbed methane potential in the Kenai Peninsula, especially reser- voirs less than 6,000 ft (1,830 m) deep. The upper part of the Beluga Formation is mainly exposed along the beach bluffs in the southern Kenai Peninsula. Thus, the targeted coal beds of the lower Beluga and upper Tyonek occur in subcrop and at shallower depths than in the Edna Mae Walker well along the south coast of the Kenai Peninsula. The hypothetical coal resources of the coal-bearing Kenai Group in the Cook Inlet Basin were estimated to be as much as 1.55 trillion short tons (1.45 trillion metric tons) (see table 1). As much as 1.5 trillion short tons (1.36 trillion short tons) of these coal resources is offshore (see table 1). Based on the gas contents of the Tyonek coal beds in the upper Cook Inlet by Smith (1995), which range from 63–245 scf/t (1.97– 7.6 scm3/gm) at STP, the in-place methane resources in that part of the basin may be high. However, based on the sub- bituminous and lignite ranks and the similarity of the vitrinite reflectance values of the Tyonek, Beluga, and Sterling coal beds in the central and southern parts of the basin to those of the Fort Union coal beds in the Powder River Basin, these coals may provide a lower-end estimate of the gas content in the Cook Inlet Basin. Summary Nearly all the coal resources calculated for Alaska are in Cretaceous and Tertiary rocks distributed in three major coal provinces. The Cretaceous coal resources, generally of bituminous and lignite rank, are mainly in the Northern Alaska-Slope coal province with 3,200 billion short tons (2,902 billion metric tons) of hypothetical resources. A minor amount of Tertiary coal resources are in the Northern Alaska- Slope coal province with 670 billion short tons (608 billion short tons) of hypothetical resources. Most of the Tertiary coal resources, mainly lignite to subbituminous with minor bituminous and semianthracite, are in the Central Alaska- Nenana and Southern Alaska-Cook Inlet coal provinces with more than 1,600 billion short tons (1,451 billion metric tons) of combined measured, indicated, inferred, and hypothetical resources. These three coal provinces contain about 87 percent of the total coal resources and represent most of the minable coal beds of Alaska. Combined coal resources (measured, indicated, inferred, and hypothetical resources) in the North- ern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet coal provinces are about 5,526 billion short 108 Alaska Coal Geology, Resources, and Coalbed Methane Potential Pebble shale unitPre-pebble shale45612345SP R111098654321SP RSP R123456SP R1234SP R12312345621 SP RSP R345SP R67SP R123Dominantly nonmarine faciesEXPLANATIONDominantly shallow marinesandstone and shaleBottomsets of westerly derived Torok deposited onbottomset turbidite facies of southerly derivedTorok and Fortress Mountain Formations at some horizon belowForesets projected fromseismic line 68E-77in syncline to southBottomsets (basinal)Base of pebble shale unit fromwell and seismic data andadjusted for tectonic thickening of Torok FormationPre-pebble shale unitFormationKukpowrukFormationCorwin Formation1,700-ft Torok removedto account for tectonicthickeningTopsets (shelf)Arbitary location of nomenclature changeGrandstand FormationNanushuk Group NinulukFormationSeabee Formation , Colville Group Chandler FormationNanushuk GroupGR TT1234567891011SP R13456Foresets(slope)????6.7°6°??WESTTunalikNo. 1KaolakNo. 143 km107 km MeadeNo. 162 kmOumalikNo. 118kmEastOumalikNo. 157 kmTitalukNo. 140 kmWolf CreekNo. 346 kmUmiatNo. 1UmiatNo. 2McCullochCol. U. 2GubikNo. 110km9km18km35 kmEASTB.P. ItkillikNo. 1Torok Pebble shale unitTorok-SeabeeFormations, undivided550 ft of fault repetition removed760 ft of fault repetition removed Torok Formation2°1.8°GR = Gamma raySP = Spontaneous potentialR = Resistivity.70.61.57.62.56.54.57360 (.57)488429 (.37)460(.43).60.57.52.60.65.64.700.50.60.52.63.62.75.62.60.7.60.66.57.49.45.55.66.75.69.63.56.58.71.63.55.56.59.64.52.53.60.49.52.65.47.52.58.62.58.60.58.63.60.73.61.53.58.53.51.51.49.73.82.86.450.70Foreset (slope)Figure 107. Stratigraphic cross section of the Nanushuk Group with superimposed vitrinite reflectance values. See figure 8 for location of cross section. Summary 109 Figure 108. Coalbed methane potential in the Nanushuk Group coals based on the thickness and vitrinite reflectance of the nonmarine part of the group in the Northern Alaska-Slope coal province. Adopted from Smith (1995). Figure 109. Distribution of surface vitrinite reflectance (Ro) values in the Northern Alaska-Slope coal province. 110 Alaska Coal Geology, Resources, and Coalbed Methane Potential Figure 110. Map of the Cook Inlet Basin showing distribution of oil and gas fields offshore and onshore. CBM #1 is the well studied by Smith (1995). Table 9. Properties of sandstone reservoirs and associated gas in the Sterling and Beluga Formations. Modified from Brimberry and others (1997). Reservoir data of Kenai field ��������������������������������������������������������������������� ����������������������� ������������������� ��������������������������� ���������������������������������������������������������������������������������������� ��������������������� tons (5,012 billion metric tons). Of this total, 13.5 billion short tons (13.2 billion metric tons) are identified coal resources mainly from the Central Alaska-Nenana and Southern Alaska- Cook Inlet coal provinces. Thus, only a small fraction of the total coal resources of Alaska is known, and a large amount is undiscovered. Coal mining has been intermittently attempted in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces. A dozen or more underground and strip mines in these two coal provinces have produced over 40 million short tons (36 million metric tons). Thus, only a small fraction of the identified resources has been produced of the more than 13.5 billion short tons (billion metric tons) that are estimated to occur in these coal provinces. Alaskan coal resources have low sulfur content (averaging 0.2–0.4 percent) compared to the coal in the conterminous United States. This low-sulfur coal is within or below the minimum value mandated by the 1990 Clean Air Act amendments. The extremely large identified coal resources are located near existing infrastructure, which should aid in their development, transportation, and market- ing. The short distance of these resources to countries in the western Pacific would appear to make them more marketable there than in the conterminous United States. An untapped resource is coalbed methane. With more than 5,500 billion short tons (5,012 billion metric tons) of combined coal resources of Alaska coal, the in-place gas resource is an exceedingly large volume. A large part of the measured, indicated, inferred, and hypothetical coal resources, about 5,482 billion short tons (4,972 billion metric tons), is in the Northern Alaska-Slope and Southern Alaska-Cook Inlet coal provinces where in-place and planned infrastructure (pipelines, highways, and so on) can assist in the transporta- tion and marketability of coalbed gas. The shallow depths to a large portion of the methane-bearing coal beds in onshore areas make the gas more accessible for future development. Summary 111 �������������������� ��������� ������������������������ ��������������������������� ��������������������� ������������ ����������������� �������������������� ��������������� ��� ����������� ������� �������� ������� �������� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ��������������������������������������������� ����������������������������������� �������������������������������� ��������� ����� ��� Figure 111. Facies profile of the lower part of the Sterling Formation and accompanying downhole logs showing horizons of gas accumulation. The Sterling facies include fluvial-channel sandstones and flood-plain mudstones and siltstones. 112 Alaska Coal Geology, Resources, and Coalbed Methane Potential Acknowledgments The authors acknowledge Heather Mitchell, Dean Han- cock, Jennifer Goldsmith, and Steve Dunn for their assistance in generation of the digital illustrations for this paper. The data for this study were collected from 1988 to 2002 with the help of numerous geologists, too many to mention here, from the U.S. Geological Survey, Alaska Department of Natural Resources Division of Oil and Gas and Division of Geological and Geophysical Surveys, Alaska Geologic Materials Center, and Bureau of Land Management. Funding for part of this study from the Division of Oil and Gas is very much appreci- ated. Finally, we thank the Usibelli Coal Mine Inc., Beluga, Diamond Alaska, and Placer Dome coal companies, ARCO Alaska Inc. and International ARCO, and Marathon Oil Com- pany, Anchorage, Alaska and Littleton, Colorado, for sharing information and permission to describe their core data. ��������������������������� ��������������������� ������������ ����������������� �������������������� ����������������������� ��� ����������� ������� �������� ������� �������� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����������������������������� �������������������� ������������������������ ����������� ������������������������������������ ������������������������������ ��� ���� Figure 112. Facies profile of the upper part of the Beluga Formation and accompanying downhole logs showing horizons of gas-perforated intervals. ����������������� ����������������� ����������������� ��������������� ����������������� ������������������������ ����������������������������� CANADA UNITED STATES ALASKA Area of map CANADA ��������� ���������������� ������� ������� ������� ������� ���� �����Kenai����� ��� �����CookInlet������������������R i v e r � �������������������������������Figure 113. Location map of the Kenai gas field in the Kenai Peninsula. Gas accumulations in the Beluga and Sterling Formations occur on a doubly-plunging anticline. KTU 43- 6X is the well described in figures 110 and 111. Acknowledgments 113 Anchorage Seward �������� ���������� ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������0.2 -0.3 0.3 -0.4 0.4 -0.5 0.5 -0.6 0.6 -0.7 0.7 -0.8 Cook Inlet Basin Subsurface perspective Mean Ro (%) EXPLANATION Oil well Fault Castle MountainFaultBruinBayFault Border RangeFault CANADA UNITEDSTATES ALASKA Area of map CANADAFigure 114. Basinwide and vertical variations of vitrinite reflectance (Ro) values in the Cook Inlet Basin. Modified from Johnsson and others (1993). ������������������� � � ���� ������������������������������������SusitnaRiverAnchorage Palmer Depth to 0.6 vitrinite reflectance in thousands of feet (km) Tyonek Formation isopach in thousands of feet (km) Tyonek Formation Chickaloon Formation EXPLANATION ������������ ��� ��� C in thousands of feet (kilometers) ����������� ��������������� Tyonek Formation Prospective area Figure 115. Coalbed methane prospect area and depths to vitrinite reflectance values of 0.6 percent superimposed on the thickness isopach of the Tyonek Forma- tion south of the Castle Mountain fault in the northeastern part of the Cook Inlet. Adopted from Smith (1995). CANADACANADA UNITED STATES ALASKA Area of map CANADA 114 Alaska Coal Geology, Resources, and Coalbed Methane Potential Figure 116. Downhole geophysical logs, hot wire total gas and methane contents, vitrinite reflectance values, and illite diagenetic values in the Edna Mae Walker drill hole. SP=spontaneous potential; mV=millivolt; SN=sonic; Ro=vitrinite reflectance; %=percent. Ipf=illite peak profile at 10 angstroms; Ic= illite crystallinity. Modified from Shi-Ming (1996). ������������ �������������������� ����������� ����������� ������ ������ ������������������ ����� ������������������������������������� ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ������ ������ ������ ������ ������ ������ ������ ����������������� �� ����� ����� ����� ����� ����� ����� ����� ����� ����� ������ ������ ������ ������ ������ ������ ������ ������ � ����� ����� ����� ����� ����� ����� ����� ����� ����� ������ ������ ������ ������ ������ ������ ������ �������������� ���������� ���� Acknowledgments 1150.40.31,0002,0003,0004,0005,0006,0007,0008,0009,00010,00011,00012,000SP(mV)-10025SN(ohmm)SP(mV)SN(ohmm)SP(mV)SN(ohmm)SP(mV)SN(ohmm)SP(mV)SN(ohmm)SP(mV)SN(ohmm)SP(mV)SN(ohmm)SP(mV)SN(ohmm)SP(mV)SN(ohmm)-25100OLD MANS BAY No 11,0002,0003,0004,0005,0006,0007,0008,0009,00010,00011,00012,00013,00014000-1250-25150KALGIN ISLAND1,0002,0003,0004,0005,0006,0007,0008,0009,00010,00011,00012,00013,00014,000-10025-25300REDOUBT SHOALS No 11,0002,0003,0004,0005,0006,0007,0008,0009,00010,00011,000-10025-25200KUSTATAN No 11,0002,0003,0004,0005,0006,0007,0008,0009,00010,000-15025-25300GRAYLING No 1-A10002000300040005000600070008000900010000-1750-25225McARTHUR POINT No 1100020003000400050006000700080009000100001100012000-1250-25150TYONEK STATE No 1100020003000400050006000700080009000100001100012000-15025-25175TOWER No 1?????????10002000300040005000600070008000900010000-12500200TRADING BAY No 1A SOUTHA' NORTHEXPLANATION0.60.50.60.50.4Sterling FormationBeluga FormationTyonek Formation Hemlock ConglomeratePre-Hemlock FormationFigure 117. Stratigraphic cross section of the Kenai Group in the offshore Cook Inlet Basin with superimposed vitrinite reflectance values. See figure 58 for location. 116 Alaska Coal Geology, Resources, and Coalbed Methane Potential (ft)Depth(ft)Depth(ft)(ft)1,0002,0003,0004,0005,0006,0007,0008,0009,00010,00011,00012,000SP(mV)-100 25SN(ohmm)SP (mV)SN(ohmm)SP (mV)SN (ohmm)SP (mV)SN(ohmm)SP (mV)SN (ohmm)-25 100OLD MANS BAY No 11,0002,0003,0004,0005,0006,0007,0008,0009,00010,00011,00012,00013,00014,000-100 75-25 225NINILCHIK No 1-125 25-25 27501,0002,0003,0004,0005,0006,0007,0008,0009,00010,00011,00012,00013,00014,000DEEP CREEK No 12001,0002,0003,0004,0005,0006,0007,0008,0009,00010,00011,00012,00013,00014,00015,00016,000-125750EDNA MAE WALKER No 1-25 300-150 001,0002,0003,0004,0005,0006,000ANCHOR RIVER No 1SECTION B TO B' (WEST TO EAST SOUTH PART OF STUDY AREA)B (WEST)B' (EAST)DepthSterling FormationBeluga FormationTyonek FormationHemlock Formation Pre-Hemlock 0.60.50.40.30.30.40.50.6Depth(ft)DepthEXPLANATIONFigure 118. Stratigraphic cross section of the Kenai Group in the onshore Cook Inlet Basin with superimposed vitrinite reflectance values. See figure 58 for location. References Cited Adkison, W.L., Kelley, J.S., and Newman, K.R., 1975, Lithol- ogy and palynology of Tertiary rocks exposed near Capps Glacier and along Chuitna River, Tyonek quadrangle, southern Alaska: U.S. Geological Survey Open-File Report 75–71, 57 p., 1 plate. Affolter, R.H., Simon, F.H., and Stricker, G.D., 1981, Chemi- cal analyses of coal from the Healy, Kenai, Seldovia, and Utukok River 1:250,000 quadrangles, Alaska: U.S. Geologi- cal Survey Open-File Report 81–654, 88 p. Affolter, R.H., and Stricker, G.D., 1986, Variations in element distribution of coal from the Usibelli mine, Healy, Alaska, in Rao, P.D., ed., Focus on Alaska coal 1986, proceedings of the conference: Fairbanks, University of Alaska Mineral Industry Research Laboratory Report 72, p. 91–99. Affolter, R.H., and Stricker, G.D., 1987a, Geochemistry of coal from the Cretaceous Corwin and Chandler Formations, National Petroleum Reserve in Alaska (NPRA), in Tailleur, I. L., and Weimer, Paul, eds., Alaskan North Slope geology: Bakersfield, Calif., Pacific Section, Society of Economic Paleontologists and Mineralogists Special Publication 50, p. 217–224. Affolter, R.H., and Stricker, G.D., 1987b, Offshore Alaska coal, in Scholl, D.W., Grantz, Arthur, and Vedder, J.G., eds., Geology and resource potential of the continental margin of western North America and adjacent ocean basins—Beau- fort Sea to Baja California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6, p. 639–647. Affolter, R.H., and Stricker, G.D., 1988, Effects of paleolati- tude on coal quality—a model for organic sulfur distribution in United States: American Association of Petroleum Geolo- gists Bulletin, v. 73, p. 326. Affolter, R.H., and Stricker, G.D., 1990, Paleolatitude—A pri- mary control on the sulfur content in United States coals, in Carter, L.M.H., ed., USGS Research on Energy Resources 1990: U.S. Geological Survey Circular 1060, p. 1. Affolter, R.H., and Stricker, G.D., 1994, Quality of Alaskan coal B—A statewide summary, in Rao, P.D., and Walsh, D.E., eds., Focus on Alaska coal 1993, (proceedings of the conference): Fairbanks, University of Alaska Mineral Indus- try Research Laboratory Report 94, p. 190–227. Affolter, R.H., Stricker, G.D., Flores, R.M., and Stanley, R.G., 1994, Geochemical evaluation of coal from the Tertiary Usi- belli Group, Usibelli coal mine, Alaska B one of the lowest sulfur coals mined in the United States, in Rao, P.D., and Walsh, D.E., eds., Focus on Alaska coal 1993, proceedings of the conference: Fairbanks, University of Alaska Mineral Industry Research Laboratory Report 94, p. 167–182. Ahlbrandt, T.S., Huffman, A.C., Jr., Fox, J.E., and Pasternak, Ira, 1979, Depositional framework and reservoir quality studies of selected Nanushuk Group outcrops, North Slope, Alaska, in Ahlbrandt, T.S., ed., Preliminary geologic, pet- rologic, and paleontologic results of the study of Nanushuk Group rocks, North Slope, Alaska: U.S. Geological Survey Circular 794, p. 14–31. Alaska Department of Natural Resources, Division of Oil and Gas, 1997, Historical and projected oil and gas consump- tion: Department of Natural Resources, Division of Oil and Gas, 67 p. Alaska Geological Society, 1969a, North to south stratigraphic correlation section, Kalgin Island to Beluga River, Cook Inlet Basin, Alaska: Prepared by Alaska Geological Society Stratigraphic Committee Year 1968–69, 1 sheet. Alaska Geological Society, 1969b, Northwest to southeast stratigraphic correlation section, Drift River to Anchor River, Cook Inlet Basin, Alaska: Prepared by Alaska Geo- logical Society Stratigraphic Committee Year 1968–69, 1 sheet. Alaska Geological Society, 1969c, South to north stratigraphic correlation section, Anchor Point to Campbell Point, Cook Inlet Basin, Alaska: Prepared by Alaska Geological Society Stratigraphic Committee Year 1968–69, 1 sheet. Averitt, Paul, 1975, Coal resources of the United States, Janu- ary 1, 1974; U.S. Geological Survey Bulletin 1412, 131 p. Barnes, F.F., 1962, Variation in rank of Tertiary coals in the Cook Inlet basin, Alaska: U.S. Geological Survey Profes- sional Paper 450–C, p. C14–C16. Barnes, F.F., 1966, Geology and coal resources of the Beluga- Yentna region, Alaska: U.S. Geological Survey Bulletin 1202–C, p. CI–C34, plates 1–7. Barnes, F.F., 1967a, Coal resources of Alaska: U.S. Geological Survey Bulletin 1242–B, B1–B36, plate 1. Barnes, F.F., 1967b, Coal resources of the Cape Lisburne- Colville River region, Alaska: U.S. Geological Survey Bul- letin 1242–E, p. EI–E37. Barnes, F.F., and Cobb, E.H., 1959, Geology and coal resources of the Homer District, Kenai coal field, Alaska: U.S. Geological Survey Bulletin 1058–F, p. 217–258, plates 17–28. Barnes, F.F., and Payne, T.G., 1956, The Wishbone Hill Dis- trict, Matanuska coal field, Alaska: U.S. Geological Survey Bulletin 1016, 88 p., 20 plates. Barnes, F. F., and Sokol, D., 1959, Geology and coal resources of the Little Susitna District, Matanuska coal field, Alaska: U.S. Geological Survey Bulletin 1058–D, p. 121–138, plates 7–11. References Cited 117 118 Alaska Coal Geology, Resources, and Coalbed Methane Potential Beikman, H.M., 1980, Geologic map of Alaska: U.S. Geologi- cal Survey, scale 1:2,500,000. Belowich, M.A., 1987, Basinal trends in coal, petrographic, and elemental composition with implications toward seam correlation, Jarvis Creek coal field, Alaska, in Rao, P.D., ed., Focus on Alaska coal: 1986 Proceedings of the confer- ence, Fairbanks, University of Alaska Mineral Industry Research Laboratory Report 72, p. 300–335. Belowich, M.A., 1994, Geology, mine development, and mar- keting for Evan Jones coal, in Rao, P.D., and Walsh, D.E., eds., Focus on Alaska coal: 1993 Proceedings of the confer- ence, Fairbanks, University of Alaska Mineral Industry Research Laboratory Report 94, p. 132–139. Bird, K.J., and Andrews, Jack, 1979, Subsurface studies of the Nanushuk Group, North Slope, Alaska, in Ahlbrandt, T.S., ed., Preliminary geologic, petrologic, and paleontologic results of the study of Nanushuk Group rocks, North Slope, Alaska: U.S. Geological Survey Circular 794, p. 32–41. Blumer, J.W., 1981, Review of Mobil coal leases—Yentna region, Alaska, in Rao, P.D., and Wolff, E.N., eds., Focus on Alaskaʼs coal ʻ80 (conference proceedings), Fairbanks, University of Alaska, October 21–23, 1980: University of Alaska Mineral Industry Research Laboratory Report no. 50, p. 122–126. Brew, D.A., 1994, Latest Mesozoic and Cenozoic magmatism in southeastern Alaska, in Plafker, G., and Berg, H.C., eds., The geology of Alaska: Geological Society of America, The geology of North America, v. G–1, p. 621–656. Brimberry, D.L., Gardner, P.S., McCullough, M.L., and Trudell, S.E., 1997, Kenai field, the Kenai Peninsulaʼs larg- est gas field, in Karl, S.M., Vaughn, N.R., and Ryherd, T.J., eds., 1997 Guide to the geology of the Kenai Peninsula, Alaska: Alaska Geological Society, p. 28–35. Brosgé, W.P., and Whittington, C.L., 1966, Geology of the Umiat-Maybe Creek region, Alaska: U.S. Geological Sur- vey Professional Paper 303–H, p. H501–H638. Buckingham, M.L., 1985, Stratigraphy, petrology, and depo- sitional environments of Upper Cretaceous and Lower Tertiary Sabbath Creek section, Arctic National Wildlife Refuge (ANWR), Alaska: American Association of Petro- leum Geologists Bulletin, v. 69, no. 4, p. 659. Buckingham, M.L. 1987, Fluvio-deltaic sedimentation pat- terns of the upper Cretaceous to lower Tertiary Jago River Formation, Arctic National Wildlife Refuge (ANWR), northeastern Alaska, in Tailleur, I.L. and Weimer, Paul, eds., Alaskan North Slope geology, the Pacific section: Society of Economic Paleontologists and Mineralogists and Alaska Geological Society, v. 1, p. 529–540. Buffler, R.T., and Triplehorn, D.M., 1976, Depositional envi- ronments of the Tertiary coal-bearing group, central Alaska, in Miller, T.P., ed., Proceedings of the Alaska Geological Society Symposium held April 2–4, 1975, Anchorage: Alaska Geological Society, p. H1–H10. Bundtzen, T.K., Eakins, G.R., Green, C.B., and Lueck, L.L., 1986, Alaskaʼs mineral industry, 1985: Alaska Division of Geological and Geophysical Surveys Special Report 39, 68 p. Burk, C.A., 1965, Geology of the Alaska Peninsula-island arc and continental margin: Geological Society of America Memoir, v. 99, p. 1–250. Calderwood, K.W., and Fackler, W.C., 1972, Proposed strati- graphic nomenclature for Kenai Group, Cook Inlet basin, Alaska: American Association of Petroleum Geologists Bul- letin, v. 56, p. 739–754. Callahan, J.E., 1979, Clathrates associated with coals, Work- shop on clathrates (gas hydrates) in the National Petroleum Reserve, July 17, 1979: U.S. Geological Survey Open-File Report 81–1298, p. 9–10. Callahan, J.E., and Sloan, E. G., 1978, Preliminary report on analyses of Cretaceous coals from northwestern Alaska: U.S. Geological Survey Open-File Report 78–319, 29 p., 1 plate. Capps, S.R., 1927, Geology of the Upper Matanuska Valley, Alaska: U.S. Geological Survey Bulletin 791, 92 p., 16 plates. Chapin, Theodore, 1920, Mining developments in the Mata- nuska Coal Field: U.S. Geological Survey Bulletin 712, p. 131–167, plates 4–6. Chapman, R.M., and Sable, E.G., 1960, Geology of the Utu- kok-Corwin region, northwestern Alaska: U.S. Geological Survey Professional Paper 303–C, 167 p. Clark, P.R., 1973, Transportation economics of coal resources of northern slope coal fields, Alaska: Anchorage, University of Alaska Mineral Industry Research Laboratory Report 31, 134 p. Claypool, G.E., and Magoon, L.B., 1988, Oil and gas source rocks in the National Petroleum Reserve in Alaska: U.S. Geological Survey Professional Paper 1399, p. 451–481. Clough, J.G., Barker, C.E., and Scott, A.R., 2000, Alaska methane remains untapped: American Association of Petro- leum Geologists, Explorer, August, 2000, v. 21, no. 8, p. 54–55. Collett, T.S., 1993, Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska: American Association of Petroleum Geologists Bulletin, v. 77, p. 793–812. Collier, A.J., 1906, Geology and coal resources of the Cape Lisburne region, Alaska: U.S. Geological Survey Bulletin 278, 54 p. Collins, F.R., 1959, Test wells, Square Lake and Wolf Creek areas, Alaska, with micropaleontology of Square Lake and Wolf Creek wells, northern Alaska, by H.R. Bergquest: U.S. Geological Survey Professional Paper 305–H, p. 423–484. Conwell, C.N., and Triplehorn, D.M., 1976, High-quality coal near Point Hope, northwestern Alaska, in Short notes on Alaskan geology, 1976: Alaska Division of Geological and Geophysical Surveys Geologic Report 51, p. 31–35. Csejety, Béla, Jr., Mullen, M.W., Cox, D.P., and Stricker, G.D., 1992, Geology and geochronology of the Healy quadrangle, south-central Alaska: U.S. Geological Survey Map I–1961, scale 1:250,000, 2 sheets. Dall, W.H., 1896, Coal and lignite in Alaska: U.S. Geological Survey Annual Report 17, p. 763–908. Detterman, R.L., Plafker, George, Tysdal, R.G., and Hudson, Travis, 1976, Geology and surface features along part of the Talkeetna segment of the Castle Mountain Caribou fault system, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF–738, scale 1:63,360. Detterman, R.L., Reiser, H.N., Brosgé, W.P., and Dutro, J.T., Jr., 1975, Post-Carboniferous stratigraphy, northeastern Alaska: U.S. Geological Survey Professional Paper 886, 46 p. Detterman, R.L., and Spicer, R.A., 1981, New stratigraphic assignment for rocks along Igilatvik (Sabbath) Creek, Wil- liam O. Douglas Arctic Wildlife Refuge, Alaska, in Albert, N.R.D., and Hudson, Travis eds., The United States Geo- logical Survey in Alaska —Accomplishments during 1979: U.S. Geological Survey Circular 823–B, p. B11–B12. Dover, J.H., 1994, Geology of part of east-central Alaska, in Plafker, George, and Berg, H.C., eds., The geology of Alaska: Geological Society of America, The geology of North America, v. G–1, 153–204. Dusel-Bacon, Cynthia, 1994, Metamorphic history of Alaska, in Plafker, George, and Berg, H.C., eds., The geology of Alaska: Geological Society of America, The geology of North America, v. G–1, p. 495–534. Fassett, J.E., and Hinds, J.S., 1971, Geology and fuel resources of the Fruitland Formation and Kirkland Shale of the San Juan Basin, New Mexico and Colorado: U.S. Geo- logical Survey Professional Paper 676, 76 p. Ferrians, O.J., Jr., 1965, Permafrost map of Alaska: U.S. Geo- logical Survey Miscellaneous Geologic Investigations Map I–445, scale 1:2,500,000. Fisher, M.A., and Magoon, L.B., 1978, Geologic framework of Lower Cook Inlet, Alaska: American Association of Petroleum Geologists Bulletin, v. 62, p. 373–402. Flores, R.M., 2000, Biogenic gas in low-rank coal—A viable and economic resource in the United States: Jakarta, Indo- nesia, June 19–20, 2000, Southeast Asian Coal Geology Conference Proceedings, p. 1–7. Flores, R.M., and Cross, T.A., 1991, Cretaceous and Tertiary coals of the Rocky Mountains and Great Plains regions, in Gluskoter, H.J., Rice, D.D., and Taylor, R.B., eds., Economic geology, U.S.: Boulder, Colorado, Geological Society of America, The geology of North America, v. P–2, p. 547–571. Flores, R.M., and Moore, T.A., in press, An evaluation of Southeast Asian peat mires as coal-forming models, in Moore, T.A., and Flores, R.M., eds., Southeast Asian Coal Geology—From peat to hydrocarbon generation: Develop- ments in sedimentology series, Elsevier, Amsterdam. Flores, R.M., Myers, M.D., Stricker, G.D., and Houle, J.A., 1999, Core lithofacies analysis and fluvio-tidal environ- ments in the AK 94 CBM-1 well, near Wasilla, Alaska, in Dumoulin, J.A., and Gray, J.E., eds., Geologic studies in Alaska by the Geological Survey, 1997: U.S. Geological Survey Professional Paper 1614, p. 57–72. Flores, R.M., and Stanley, R.G., 1995, Tertiary Usibelli Group of Suntrana, Alaska— Fluctuating base-level deposits in a fluvial pathway to Cook Inlet: Geological Society of America, Abstracts with Programs, v. 27, p. 18. Flores, R.M., and Stricker, G.D., 1992, Some facies aspects of upper part of Kenai Group, southern Kenai Peninsula, in Bradley, D.C., and Dusel-Bacon, Cynthia, eds., Geologic studies in Alaska by the Geological Survey, 1991: U.S. Geo- logical Survey Bulletin 2041, p. 160–170. Flores, R.M., and Stricker, G.D., 1993a, Early Cenozoic depo- sitional systems, Wishbone Hill District, Matanuska coal field, Alaska, in Dusel-Bacon, Cynthia, and Till, A.B., eds., Geologic studies in Alaska by the Geological Survey, 1992: U.S. Geological Survey Bulletin 2068, p. 101–117. Flores, R.M., and Stricker, G.D., 1993b, Interfluve-chan- nel facies models in the Miocene Beluga Formation near Homer, South Kenai Peninsula, Alaska, in Rao, P.D., and Walsh, D.E., eds., Focus on Alaska coal ´86 (proceedings of the conference): Anchorage, May, 1993, University of Alaska Mineral Industry Research Laboratory Report 94, p. 140–166. References Cited 119 120 Alaska Coal Geology, Resources, and Coalbed Methane Potential Flores, R.M., and Stricker, G.D., 1993c, Reservoir framework architecture in the Clamgulchian type section (Pliocene) of the Sterling Formation, Kenai Peninsula, Alaska, in Dusel- Bacon, Cynthia, and Till, A.B., eds., Geologic studies in Alaska by the Geological Survey, 1992: U.S. Geological Survey Bulletin 2068, p. 118–129. Flores, R.M., and Stricker, G.D., 1993d, Responses of coal splitting and associated drainage pattern to syntectonism in the Paleocene and Eocene Chickaloon Formation, Mata- nuska coal field, Alaska, in Rao, P.D., and Walsh, D.E., eds., Focus on Alaska coal ʼ86 (proceedings of the conference): Anchorage, May, 1993, University of Alaska Mineral Indus- try Research Laboratory Report 94, p. 113–131. Flores, R.M., Stricker, G.D., and Bader, L.R., 1997, Strati- graphic architecture of the Tertiary alluvial Beluga and Ster- ling Formations, Kenai Peninsula, in Karl, S.M., Vaughn, N.R., and Ryherd. T.J., eds., 1997 Guide to the geology of the Kenai Peninsula, Alaska: Alaska Geological Society, p. 36–53. Flores, R.M., Stricker, G.D., and Bader, L.R., 1998, Predict- ing subsurface reservoir architecture of Sterling and Beluga fluvial sandstones from outcrop models, Kenai Peninsula, Alaska, in Karl, S.M., ed., Anchorage, April, 1993, Cutting edge in Alaska: The Geological Society of Alaska, p. 7. Flores, R.M., Stricker, G.D., and Roberts, S.B., 1994, Miocene coal-bearing strata of the Tyonek Formation—Braided- stream deposits in the Chuit Creek-Chuitna River drainage basin, southern Alaska, in Till, A.B., and Moore, T.E., eds., Geologic studies in Alaska by the Geological Survey, 1993: U.S. Geological Survey Bulletin 2107, p. 95–114. Flores, R.M., Stricker, G.D., and Stiles, R.B., 1997, Tidal influence on deposition and quality of coals in the Miocene Tyonek Formation, Beluga coal field, upper Cook Inlet, Alaska, in Dumoulin, J.A., and Gray, J.E., eds., Geologic studies in Alaska by the Geological Survey, 1995: U.S. Geo- logical Survey Professional Paper 1574, p. 95–114. Germer, D.E., 1986, Geology, mine plan, and potential utiliza- tion of coal from the Wishbone Hill district, Matanuska field, Alaska, in Rao, P.D., ed., Focus on Alaska coal ʼ86 (proceeding of conference): Anchorage, October, 1986, University of Alaska Mineral Industry Research Laboratory Report No. 72, p. 229–237. Grantz, Arthur, Holmes, M.L., and Kososki, B.A., 1975, Geologic framework of the Alaskan continental terrace in the Chukchi and Beaufort Seas, in Yorath, C.J., Parker, E.R., and Glass, D.J., eds., Canadaʼs continental margins and off- shore petroleum exploration: Canada Society of Petroleum Geologists Memoir 4, p. 669–700. Grantz, Arthur, and Jones, D.L., 1960, Stratigraphy and age of the Matanuska Formation: U.S. Geological Survey Profes- sional Paper 400–13, p. B347–B351. Grantz, Arthur, May, S.D., and Hart, P.E., 1994, Geology of the Arctic continental margin of Alaska, in Plafker, George, and Berg, H.C., eds., The geology of Alaska: Geological Society of America, The geology of North America, v. G–1, p. 17–48. Green, C.B., and Bundtzen, T.K., 1989, Summary of Alaskaʼs mineral industry in 1988: Alaska Division of Geological and Geophysical Surveys Public Data File 89–7, 6 p. Gyrc, George, Patton, W.W., Jr., and Payne, T.G., 1951, Present Cretaceous stratigraphic nomenclature of northern Alaska: Journal Washington Academy Sciences, v. 41, p. 159–167. Hartman, D.C., Pessel, G.H., and McGee, D.L., 1971, Pre- liminary report, Kenai Group of Cook Inlet, Alaska: Alaska Division of Geological and Geophysical Surveys Special Report 5, 4 p., 11 plates. Hayes, J.B., Harms, J.C., and Wilson, T., Jr., 1976, Contrasts between braided and meandering stream deposits, Beluga and Sterling Formations (Tertiary), Cook Inlet, Alaska, in Miller, T.P., ed., Recent and ancient sedimentary environ- ments in Alaska: Proceedings, Alaska Geological Society Symposium, April 2–4, 1975, Anchorage, Alaska Geologi- cal Society, p. J1–J27. Hite, D. M., 1976, Some sedimentary aspects of the Kenai Group, Cook Inlet, Alaska, in Miller, T.P., ed., Recent and ancient sedimentary environments in Alaska: Proceedings, Alaska Geological Society Symposium, April 2–4, 1975, Anchorage, Alaska Geological Society, p. I1–I23. Hopkins, D.M., 1951, Lignite deposits near Broad Pass Sta- tion, Alaska: U.S. Geological Survey Bulletin 963–E, p. 187–191, 1 plate. Houston, W.S., 1994, Lower Tertiary stratigraphy in Katmai National Park, Alaska—A lithologic and petrographic study: Fort Collins, Colorado State University, Masterʼs thesis, 244 p. Huffman, A.C., Jr., Ahlbrandt, T.S., Pasternack, Ira, Stricker, G.D., and Fox, J.E., 1985, Depositional and sedimentologic factors affecting the reservoir potential of the Cretaceous Nanushuk Group, central North Slope, Alaska, in Huffman, A.C., Jr., ed., Geology of the Nanushuk Group and related rocks, central North Slope, Alaska: U.S. Geological Survey Bulletin 1614, p. 61–74. Huffman, A.C., Jr., Ahlbrandt, T.S., and Bartsch-Winkler, Susan, 1988, Sedimentology of the Nanushuk Group, North Slope, Alaska, in Gryc, George, ed., Geology and explora- tion of the National Petroleum Reserve in Alaska, 1974 to 1982: U.S. Geological Survey Professional Paper 1399, p. 281–298. Huish, R., compiler, 1836, Voyages of Captain Beechey to the Pacific 1825–28 and of Captain Back to the Arctic Sea: London, William Wright, 704 p. Husky Oil NPR Operations, Inc., 1982–1983, Geological reports of test wells in National Petroleum Reserve in Alaska: Unpublished reports of Husky Oil NPR Operations Inc. Copies of these reports are available for purchase from the National Geophysical and Solar-Terrestrial Data Center, NOAA, Boulder, Colorado 80303. Jenden, P.I., and Kaplan, I.R., 1986, Comparison of microbial gases from the Middle America Trench and Scripps sub- marine canyon—Implications for the origin of natural gas: Applied Geochemistry, v. 1, p. 631–646. Johnsson, M.J., Howell, D.G., and Bird, K.J., 1993, Thermal maturity patterns in Alaska—Implications for tectonic evo- lution and hydrocarbon potential: American Association of Petroleum Geologists Bulletin, v. 77, p. 1874–1903. Johnsson, M.J., Pawlewicz, M.J., Harris, A.G., and Valin, Z.C., 1992, Vitrinite reflectance and conodont color altera- tion index data from Alaska: U.S. Geological Survey Open- File Report 92–409, 3 disks. Kelly, T.E., 1968, Gas accumulations in nonmarine strata, Cook Inlet Basin, Alaska, in Beebe, B.W., and Curtis, B.F., eds., Natural gases of North America: American Association of Petroleum Geologists Memoir 9, p. 49–64. Kirschner, C.E., 1988, Map showing sedimentary basins of onshore and continental shelf areas, Alaska: U.S. Geological Survey Miscellaneous Investigations Series Map 1– 1873, scale 1:2,500,000. Kirschner, C.E., and Lyon, C.A., 1973, Stratigraphic and tectonic development of Cook Inlet Petroleum Province, in Pitcher, M.G., ed., Arctic geology: American Association of Petroleum Geologists Memoir 19, p. 396–407. Kremer, M.C., and Stadnicky, George, 1985, Tertiary stratig- raphy of the Kenai Peninsula, Cook Inlet region, in Sisson, Alexander, ed., Guide to the geology of the Kenai Penin- sula, Alaska: Alaska Geological Society, p. 24–42. Magoon, L.B., Adkison, W.L., and Egbert, R.M., 1976, Map showing geology, wildcat wells, Tertiary plant fossil locali- ties, K-Ar age dates, and petroleum operations, Cook Inlet Area, Alaska: U.S. Geological Survey Miscellaneous Inves- tigations Series Map 1–1019, 3 sheets, scale 1:250,000. Magoon, L.B., and Anders, D.E, 1990, Oil-source rock cor- relation using carbon isotope data and biological marker compounds, Cook Inlet, Alaska peninsula, Alaska: Ameri- can Association of Petroleum Geologists Bulletin, v. 63, p. 711. Magoon, L.B., and Bird, K.J., 1988, Evaluation of petroleum source rocks in the National Petroleum Reserve in Alaska, using organic-carbon content, hydrocarbon content, visual kerogen, and vitrinite reflectance, in Gryc, George, ed., Geology and exploration of the National Petroleum Reserve in Alaska, 1974 to 1982: U.S. Geological Survey Profes- sional Paper 1399, p. 381–450. Magoon, L.B., and Egbert, R.M., 1986, Framework geology and sandstone composition, in Magoon, L.B., ed., Geologic studies of the Lower Cook Inlet COST No. I Well, Alaska outer continental shelf: U.S. Geological Survey Bulletin 1596, p. 65–90. Martin, G.C., 1915, The western part of Kenai Peninsula, in Martin, G.C., Johnson, B.L., and Grantz, Arthur, U.S., eds., Geology and mineral resources of Kenai Peninsula, Alaska: U.S. Geological Survey Bulletin 587, p. 41–112. Martin, G.C., Johnson, B.L., and Grant, U.S., 1915, Geology and mineral resources of Kenai Peninsula, Alaska: U.S. Geological Survey Bulletin 587, 243 p. McKee, C.R., Bumb, A.C., Way, S.C., Koenig, R.A., Reverand, J.M., and Brandenburg, C.F., 1986, Using permeability-vs-depth correlations to assess the potential for producing gas from coal seams: Gas Research Institute, Quarterly review of methane from coal seams technology, v. 4, p. 15–26. McGee, D.L., and OʼConnor, K.M., 1975, Cook Inlet Basin subsurface coal reserve study: Alaska Division of Geologi- cal and Geophysical Surveys Open-File Report 74, 24 p., 3 plates. Merritt, R.D., 1984, Alaska´s coal data base: Alaska Division of Geological and Geophysical Surveys Public-data File 85–22, 76 p. Merritt, R.D., 1985, Review of coking phenomena in relation to an occurrence of prismatically fractured natural coke from the Castle Mountain mine, Matanuska Valley, Alaska: International Journal of Coal Geology, v. 4, p. 281–298. Merritt, R.D., 1986, Paleoenvironmental and tectonic controls in major coal basins of Alaska, in Lyons, P.C., and Rice C.L., eds., Paleoenvironmental and tectonic controls in coal- forming basins of the United States: Geological Society of America Special Paper 210, 173–200. Merritt, R.D., 1987, Geology and coal resources of the Wood River field, Nenana Basin, in Rao, P.D., ed., Focus on Alaskaʼs coal ʼ86 (proceedings of the conference): Anchor- age, October, 1986, University of Alaska Mineral Industry Research Laboratory Report No. 72, p.116–126. References Cited 121 122 Alaska Coal Geology, Resources, and Coalbed Methane Potential Merritt, R.D., and Belowich, M.A., 1984, Coal geology and resources of the Matanuska Valley, Alaska: Alaska Division of Geological and Geophysical Surveys Report of Investiga- tions 84–24, 64 p., 3 plates. Merritt, R.D., and Hawley, C.C., compilers, 1986, Map of Alaskaʼs coal resources: Fairbanks, Alaska Division of Geo- logical and Geophysical Surveys, scale 1:2,500,000. Merritt, R.D., Lueck, L.L., Rawlinson, S.E., Belowich, M.A., Goff, K.M., Clough, J.G., and Reinick-Smith, L.M., 1987, Southern Kenai Peninsula (Homer District) coal resource assessment and mapping project-Final report: Alaska Divi- sion of Geological and Geophysical Surveys Public Data File 87–15, 125 p., 15 sheets. Metz, P.A., 1981, Mining, processing, and marketing of coal from Jarvis Creek Field [abs.], in Rao, P. D., and Wolff, E. N., eds., Focus on Alaskaʼs coal ʼ80 (conference proceed- ings, University of Alaska, Fairbanks, October 21–23, 1980): University of Alaska Mineral Industries Research Laboratory Report no. 50, p. 171. Molenaar, C.M., 1981, Depositional history and seismic stratigraphy of Lower Cretaceous rocks, National Petroleum Reserve in Alaska and adjacent areas: U.S. Geological Sur- vey Open-File Report 81–1084, 42 p. Molenaar, C.M., 1983, Depositional relations of Cretaceous and Lower Tertiary rocks, northeastern Alaska: American Association of Petroleum Geologists Bulletin, v. 67, p. 1066–1080. Molenaar, C.M., 1985, Subsurface correlations and deposi- tional history of the Nanushuk Group and related rocks, North Slope, Alaska, in Huffman, A.C., Jr., ed., Geology of the Nanushuk Group and related rocks, North Slope, Alaska: U.S. Geological Survey Bulletin 1614, p. 37–60. Molenaar, C.M., Bird, K.J., and Collett, T.S., 1986, Regional correlation sections across the North Slope of Alaska: U.S. Geological Survey Miscellaneous Field Study Map MF– 1907, 1 sheet. Molenaar, C.M., Kirk, A.R., Magoon, L.B., and Huffman, A.C., Jr., 1984, Twenty-two measured sections of Cret- aceous-lower Tertiary rocks, eastern North Slope, Alaska: U.S. Geological Survey Open-File Report 84–695, 19 p. Myers, M.D., Flores, R.M., Stricker, G.D., and Houle, J.A., 1998, Depositional environments and reservoir character- istics of the Tertiary Tyonek Formation, Upper Cook Inlet, Alaska, in Karl, S.M., ed., Cutting edge in Alaska: The Alaska Geological Society, p. 20. Neavel, R.C., 1981, Origin, petrography, and classification of coal, in Elliott, M.A., ed., Chemistry of coal utilization (sec- ond supplementary volume): New York, Wiley-Interscience, p. 91–158. Nokleberg, W.J., Plafker, George, and Wilson, F.H., 1994, Geology of south-central Alaska, in Plafker, George, and Berg, H.C., eds., The geology of Alaska: Geological Society of America, The geology of North America, v. G–1, p. 311–366. Palmer, I.F., Bolm, J.G., Maxey, L.R., and Lyle, W.M., 1979, Petroleum source rock and reservoir quality data from outcrop samples, onshore North Slope of Alaska east of Prudhoe Bay: U.S. Geological Survey Open-File Report 79–1634, 52 p. Plafker, George, 1987, Regional geology and potential of the northern Gulf of Alaska continental margin, in Scholl, D.W., Grantz, Arthur, and Vedder, J.G., eds., Geology and resource potential of the continental margin of western North America and adjacent ocean basins—Beaufort Sea to Baja California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6, p. 229–268. Plafker, George, and Berg, H.C., 1994, Introduction, in Plafker, George, and Berg, H.C., eds., The geology of Alaska: Geological Society of America, The geology of North America, v. G–1, p. 1–16. Ramsey, J.P., 1981, Geology-coal resources and mining plan for the Chuitna River field, Alaska, in Rao, P.D., and Wolff, E.N., eds., Focus on Alaskaʼs coal ʼ80 (conference pro- ceedings, University of Alaska, Fairbanks, October 21–23, 1980): University of Alaska, Mineral Industries Research Laboratory Report no. 50, p. 111–121. Rao, P.D., 1980, Petrographic, mineralogical and chemical characterization of certain Arctic Alaskan coals from the Cape Beaufort region: Fairbanks, University of Alaska Min- eral Industry Research Laboratory Report No. 44, 66 p. Rao, P.D., and Smith, J.E., 1986, Characterization of Chuitna coal from deep drill core with possible applications to seam correlation, in Rao, P.D., ed., Focus on Alaskaʼs coal ʼ86 (conference proceedings, University of Alaska, Fairbanks, October 27–30, 1986): University of Alaska, Mineral Indus- tries Research Laboratory Report no. 72, p. 157–182. Rao, P.D., and Wolff, E.N., 1981, Petrological, mineralogi- cal, and chemical characterizations of certain Alaskan coals and washability products, in Rao, P.D., and Wolff, E.N., eds., Focus on Alaskaʼs coal ʼ80 (conference proceedings, University of Alaska, Fairbanks, October 21–23, 1980): University of Alaska, Mineral Industries Research Labora- tory Report No. 50, p. 194–235. Rawlinson, S.E., 1984, Environments of deposition, paleocur- rents, and provenance of Tertiary deposits along Kachemak Bay, Kenai Peninsula, Alaska: Sedimentary geology, v. 38, p. 421–442. Reed, B.L., and Nelson, S.W., 1980, Geologic map of the Tal- keetna quadrangle, Alaska: U.S. Geological Survey Miscel- laneous Investigations Series Map I–1174, scale 1:250,000, 15 p. Rice, D.D., 1993, Composition and origins of coalbed gas, in Law, B.E., and Rice, D.D., eds., Hydrocarbons from coal: American Association Petroleum Geologists Studies in Geology #38, p. 159–202. Rice, D.D., and Claypool, G.E., 1981, Generation, accumula- tion, and resource potential of biogenic gas: American Asso- ciation of Petroleum Geologists Bulletin, v. 65, p. 5–25. Roberts, S.B., 1991, Cross section showing subsurface coal beds in the Sagavanirktok Formation, vicinity of Prudhoe Bay, east-central North Slope, Alaska: U.S. Geological Sur- vey Coal Investigations Map C–139A, 1 sheet. Roberts, S.B., Stricker, G.D., and Affolter, R.H., 1992, Reeval- uation of coal resources in the Late Cretaceous-Tertiary Sagavanirktok Formation, North Slope, Alaska, in Bradley, D.C., and Ford, A.B., eds., Geologic studies in Alaska by the Geological Survey, 1990, U.S. Geological Survey Bul- letin 1999, p. 196–203. Roehler, H.W., and Stricker, G.D., 1979, Stratigraphy and sedimentation of the Torok, Kukpowruk, and Corwin Formations in the Kokolik-Utukok River region, National Petroleum Reserve in Alaska: U.S. Geological Survey Open-File Report 79–995, 80 p. Ryer, T.A., 1981, Deltaic coals of Ferron Sandstone Member of Mancos Shale—Predictive model for Cretaceous coal- bearing strata of Western Interior: Geological Society of America Bulletin, v. 65, p. 2323–2340. Sable, E.G., and Stricker, G.D., 1987, Coal in the National Petroleum Reserve in Alaska (NPRA)—Framework geol- ogy and resources, in Tailleur, I.L., and Weimer, Paul, eds., Alaskan North Slope geology: Bakersfield, Calif., Pacific Section, Society of Economic Paleontologists and Mineralo- gists Special Publication 50, p. 195–215. Sanders, R.B., 1976, Geology and coal resources of the Bering River field, in Rao, P.D., and Wolff, E.N., eds., Focus on Alaskaʼs coal ʼ75 (conference proceedings, University of Alaska, Fairbanks, October 15–17, 1975): University of Alaska Mineral Industries Research Laboratory Report no. 37, p. 54–58. Sanders, R.B., 1981, Coal resources of Alaska, in Rao, P.D., and Wolff, E.N., eds., Focus on Alaskaʼs coal ʼ80 (confer- ence proceedings, University of Alaska, Fairbanks, October 21–23, 1980): University of Alaska Mineral Industries Research Laboratory Report no. 50, p. 11–31. Schopf, J.M., 1956, A definition of coal: Littleton, Colo., Economic geology, Bulletin of the Society of Economic Geologists, v. 51, p. 521–527. Schrader, J.M., 1904, A reconnaissance in northern Alaska, across the Rocky Mountains, along Koyukuk, John, Anak- tuvuk, and Colville Rivers, and the Arctic Coast to Cape Lisburne, in 1901: U.S. Geological Survey Professional Paper 20, 139 p., map. Selleck, B.W., and Panuska, Bruce, 1983, Sedimentological models for the coal-bearing group (Oligocene-Miocene), central Alaska Range [abs.] Geological Society of America Abstracts with Program, v. 15, no. 6, p. 683. Shi-Ming, Ma, 1996, Clay geology, provenance, and tecton- ics of Tertiary basins in Alaska and New Zealand: Liege, Belgium, Universitè de Liège, Ph.D. dissertation, 210 p. Smith, T.N., 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15–19, 1995, Tuscaloosa, University of Alabama, p. 1–21. Spicer, R.A., 1987, Late Cretaceous floras and terrestrial environment of northern Alaska, in Tailleur, I.L., and Weimer, Paul, eds., Alaskan North Slope geology: Society of Economic Paleontologists and Mineralogists and Alaska Geological Society Book 50, p. 497–512. Stach, Erich, 1968, Basic principles of coal petrology—Mac- erals, microlithotypes, and some effects of coalification, in Murchison, D.G., and Westoll, T.S., eds., Coal and coal- bearing strata: New York, Elsevier, p. 3–17. Stach, Erich, Mackowsky, M.-Th., Teichmüeller, Marl- ies, Taylor, G.H., Chandra, D., and Teichmüeller, Rolf, 1982, Stachʼs textbook of coal petrology (3rd ed.): Berlin, Gebrüder Borntraeger, 535 p. Stanley, R.G., Flores, R.M., and Wiley, T.J., 1992, Fluvial facies architecture in the Tertiary Usibelli Group of Sun- trana, central Alaska, in Bradley, D.C., and Ford, A.B., eds., Geologic studies in Alaska by the U.S. Geological Survey, 1990: U.S. Geological Survey Bulletin, 1999, p. 204–211. Stanton, R.W., Moore, T.A., Warwick, P.D., Crowley, S.S., and Flores, R.M., 1989, Comparative facies formation in selected coal beds of the Powder River Basin: 28th Interna- tional Congress Field Trip Guidebook T132, p. 19–27. State of Alaska, 1993, Alaskaʼs high rank coals: Alaska Divi- sion of Geological and Geophysical Surveys, Information Circular 33, 36 p. Stevens, C.C., 1971, A provenance study of the Tertiary sand- stones in the Healy and Lignite Creeks coal basins: Fair- banks, University of Alaska, Masterʼs thesis, 122 p. References Cited 123 124 Alaska Coal Geology, Resources, and Coalbed Methane Potential Stone, R.W., 1906, Coal fields of the Kachemak Bay region: U.S. Geological Survey Bulletin 277, p. 53–73. Stricker, G.D., 1983, Coal occurrence, quality, and resource assessment, National Petroleum Reserve in Alaska, in U.S. Geological Survey polar research symposium—Abstracts with program: U.S. Geological Survey Circular 911, p. 32–33. Stricker, G.D., 1991, Economic Alaskan coal deposits, in Gluskoter, H.J., Rice, D.D., and Taylor, R.B., eds., Eco- nomic geology, U.S.: Boulder, Colorado, Geological Society of America, The geology of North America, v. P–2, p. 591–602. Stricker, G.D., and Flores, R.M., 1996, Miocene fluvial-tidal sedimentation in a residual forearc basin of the northeast Pacific Rim—Cook Inlet, Alaska case study: American Association of Petroleum Geologists Annual Convention, Abstracts with Program, San Diego, Calif., p. A–135. Stricker, G.D., Flores, R.M., and Ochs, A.M., 2001, The draining of coalbed methane by surface mining in eastern Powder River Basin, Wyoming [abs]: 2001 International Coalbed Methane Symposium, May 14–18, 2001, Tusca- loosa, Alabama, 1 p. Swenson, R.F., 1997, Introduction to Tertiary tectonics and sedimentation in the Cook Inlet Basin, in Karl, S.M., Vaughn, N.R., and Ryherd, T.J., eds., 1997 Guide to the geology of the Kenai Peninsula, Alaska: Anchorage, Alaska Geological Society, p. 18–27. Szumigala, D.J., and Swainbank, R.C., 2001, Alaskaʼs mineral industry 2000—A summary: Alaska Division of Geological and Geophysical Surveys Information Circular 47, 14 p. Tailleur, I.L., 1965, Low-volatile bituminous coal of Mis- sissippian age on the Lisburne Peninsula, northwestern Alaska: U.S. Geological Survey Professional Paper 525–B, p. B34–B38. Tailleur, I.L., and Brosgé, W.P., 1976, Coal resources of north- ern Alaska may be nationʼs largest, in Rao, P.D., and Wolff, E.N., eds., Focus on Alaskaʼs coal ʼ75 (conference pro- ceedings, University of Alaska, Fairbanks, October 15–17, 1975): University of Alaska Mineral Industries Research Laboratory Report no. 37, p. 219–226. Teichmüeller, Marlies, and Teichmüeller, Rolf, 1968, Geologi- cal aspects of coal metamorphism, in Murchison, D.G., and Westoll, T.S., eds., Coal and coal-bearing strata: New York, Elsevier, p. 233–267. Triplehorn, D.M., Turner, D.L., and Naeser, C.W., 1984, Radiometric age of the Chickaloon Formation of south-cen- tral Alaska—Location of the Paleocene-Eocene boundary: Geological Society of America Bulletin, v. 95, p. 740–742. Tyler, Roger, Scott, A.R., and Clough, J.G., 2000, Coalbed methane potential and exploration targets for rural Alaska communities: Alaska Division of Geological and Geophysi- cal Surveys, Preliminary Interpretive Report 2000–2, 169 p. Usibelli, J.E., 1986, Coal transportation from pit to railcar at the Usibelli coal mine, in Rao, P.D., ed., Focus on Alaskaʼs coal ʼ86, proceedings of the conference: Fairbanks, Univer- sity of Alaska Mineral Industry Research Laboratory Report No. 72, p. 53–58. Wahrhaftig, Clyde, 1944, Coal deposits of the Costello Creek Basin, Alaska: U.S. Geological Survey Open-File Report 8, 8 p. Wahrhaftig, Clyde, 1965, Physiographic divisions of Alaska: U.S. Geological Survey Professional Paper 482, 52 p., 6 plates. Wahrhaftig, Clyde, 1970, Late Cenozoic orogeny in the Alaska Range: Geological Society of America Abstracts with Pro- grams, v. 7, p. 713–714. Wahrhaftig, Clyde, 1973, Coal reserves of the Healy Creek and Lignite Creek coal basins, Nenana coal field, Alaska: U.S. Geological Survey Open-File Report 73–355, 6 p., 28 sheets. Wahrhaftig, Clyde, 1987, The Cenozoic section at Sun- trana, Alaska, in Hill, M.L., ed., Cordilleran section of the Geological Society of America: Boulder, Colo., Geologi- cal Society of America, Centennial Field Guide, v. 1, p. 445–450. Wahrhaftig, Clyde, Bartsch-Winkler, Susan, and Stricker, G.D., 1994, Coal in Alaska, in Plafker, George, and Berg, H.C., eds., The geology of Alaska: Geological Society of America, The geology of North America, v. G–1, p. 937–978. Wahrhaftig, Clyde, and Hickcox, C.A., 1955, Geology and coal deposits, Jarvis Creek coal field, Alaska: U.S. Geologi- cal Survey Bulletin 989–G, p. 353–367, plates 10–12. Wahrhaftig, Clyde, Wolfe, J.A., Leopold, E.B., and Lanphere, M.A., 1969, The coal-bearing group in the Nenana coal field, Alaska: U.S. Geological Survey Bulletin 1274–D, p. DI–D30. Waring, G.A., 1936, Geology of the Anthracite Ridge coal district, Alaska: U.S. Geological Survey Bulletin 861, 57 p., 14 plates. Wolfe, J.A., Hopkins, D.M., and Leopold, E.B., 1966, Ter- tiary stratigraphy and paleobotany of the Cook Inlet region, Alaska: U.S. Geological Survey Professional Paper 398–A, A1–A29. Wolfe, J.A., and Tanai, Toshimasa, 1980, The Miocene Seldo- via Point flora from the Kenai Group, Alaska: U.S. Geologi- cal Survey Professional Paper 1105, 52 p., 25 plates. Wolfe, J.A., and Tanai, Toshimasa, 1987, Systematics, phy- logeny, and distribution of Acer (maples) in the Cenozoic of western North America: Journal of the Faculty of Science of Hokkaido University, ser. 4, v. 22, p. 1–246. Wood, G.H., Jr., and Bour, W.V., III, 1988, Coal map of North America: U.S. Geological Survey Special Geologic Map, scale 1:5,000,000. Wood, G.H., Jr., Kehn, T.M., Carter, M.D., and Culbertson, W.C., 1983, Coal resource classification system of the U.S. Geological Survey: U.S. Geological Survey Circular 891, 65 p. References Cited 125 Fairbanks Anchorage JUNEAU NORTH SLOPE BOROUGH NORTHWEST ARCTIC BOROUGH LAKE & PENINSULA BOROUGH KODIAK ISLAND BOROUGH KENAI PENINSULA BOROUGH MATANUSKA-SUSITNA BOROUGH CITY & BOROUGH OF YAKUTAT DENALI BOROUGH ALEUTIANS EAST BOROUGH FAIRBANKS NORTH STAR BOROUGH CITY & BOROUGH OF SITKA HAINES BOROUGH CITY & BOROUGH OF JUNEAU MUNICIPALITY OF ANCHORAGE KETCHIKAN GATEWAY BOROUGH ALEUTIANS EAST BOROUGH BRISTOL BAY BOROUGH 180˚170˚160˚150˚140˚130˚120˚110˚160˚170˚ 50˚ 60˚ EXPLANATION Coal rank Anthracite Bituminous Lignite Subbituminous Ownership U.S. Forest Service U.S. Fish and Wildlife Wild and Scenic Rivers Bureau of Land Management Military land Native-owned land State-owned land State-and Native-owned lands Private land Borough boundary 0 190 380 570 76095 MILES02805608401,120140 KILOMETERSARCTIC OCEANGulf of Alaska B ea ufort Sea BRISTOL BAY KOTZEBUE SO U N D KUSKOKWIM BAY NORTON SOUND A L E U T I A N I S L A N D S River RiverRiver Riv e r RiverRiverKobuk YukonYukonColville NoadakRiver River Kuskokwim River Koyukuk Tanana SusitnaPoint Hope Barrow Harrison B a y Cook InletY akutat B ayPrince William Sound Port Graham Figure 2. Map showing the coal rank and land ownership of Alaska STRATIFIED SEDIMENTARY SEQUENCE Mainly marine. Includes some volcanic rocks. In part metamorphosed HOLOCENE DEPOSITS—Alluvial, glacial, lake, estuarine, swamp, landslide, flood- plain, and beach deposits PLEISTOCENE DEPOSITS—Alluvial, glacial, dune sand, loess, and reworked sand and silt deposits QUATERNARY DEPOSITS—Alluvial, glacial, lake, eolian, beach, and volcanic depos- its. Includes the marine Bootlegger Cove Clay MIOCENE ROCKS—Sandstone, siltstone, conglomerate, ar---gillite, graywacke, and basal- tic rocks. Includes the Bear Lake Formation on the Alaska Peninsula, the Narrow Cape For- mation (Oligocene or Miocene) on Kodiak and Sitkinak Islands, and the Chuniksak Forma- tion (Miocene?) on Attu Island OLIGOCENE ROCKS-—Volcanic conglomerate, sandstone, volcanic breccia, shale, and siltstone. As shown, includes the Meshik Formation and Stepovak Formation on the Alaska Peninsula and the Sitkinak Formation on Sitkalidak, Sitkinak, and Chirikof Islands TERTIARY ROCKS—Sedimentary rocks concealed beneath Quaternary cover on Point Hope and volcanogenic sedimentary rocks and flows, dikes, and sills on the Alaska Peninsula and Umnak Island CRETACEOUS ROCKS—Volcanic graywacke, mudstone, and sandstone with some coal-bearing rocks in the Yukon-Koyukuk province; graywacke and shale of the Kuskokwim Group in the Kuskokwim Mountains; and shelf deposits of sandstone, siltstone, shale, and limestone of (1) the Kennicott, Moonshine Creek, Schulze, Chititu, and MacColl Ridge For- mations in the southern Wrangell Mountains; (2) the Matanuska Formation in the Matanuska Valley; and (3) the Kaguyak Formation on the Alaska Peninsula UPPER CRETACEOUS ROCKS—Shale, sandstone, and conglomerate of the Ninuluk Formation of the Nanushuk Group and the Seabee and Schrader Bluff Formations of the Col- ville Group in the Arctic 0151 Coastal Plain and Foothills; nonmarine and marine clastic rocks, siltstone, and shale of the Chignik and Hoodoo Formations on the Alaska Peninsula; graded beds of sandstone and slate of the Kodiak Formation on Kodiak and Afgonak Islands; sandstone and mudstone of the Shumagin Formation on Shumagin and Sanak Islands LOWER CRETACEOUS ROCKS—Graywacke, sandstone, shale, siltstone, and con- glomerate of part of the Tiglukpuk Formation of former usage, and the Okpikruak, Fortress Mountain, Torok, and Kukpowruk Formations in the western Arctic Foothills; the Kongakut Formation, Bathtub Graywacke, and Tuktu and Grandstand Formations in the eastern Brooks Range and Arctic Foothills; unnamed graywacke, argillite, conglomerate, and minor lime- stone southeast of the mouth of the Kuskokwim River; interlayered submarine and subaerial andesitic fragmental volcanic rocks, flows, tuffs, and volcanic clastic rocks of the Chisana Formation north of the Wrangell Mountains; and unnamed graywacke, argillite, and minor andesite on Etolin Island UPPER TERTIARY ROCKS—Sandstone, siltstone, shale, mudstone, and conglomer- ate of Miocene and Pliocene age. Includes upper part of the Sagavanirktok Formation on the Arctic Coastal Plain, and the Yakataga Formation in the Gulf of Alaska area MIDDLE TERTIARY ROCKS—Siltstone, sandstone, organic shale, and, locally, vol- canic rocks. Includes the Poul Creek, Katalla, and Topsy Formations ranging from Oligocene to Miocene age in Gulf of Alaska area LOWER TERTIARY ROCKS—Interbedded sedimentary, volcanogenic, and volcanic rocks of Paleocene, Eocene, and Oligocene age on the Alaska Peninsula and Aleutian Islands and intensely deformed marine and continental clastic rocks of Paleocene and Eocene age in the Gulf of Alaska area. Includes the Tolstoi and Belkofski Formations of Burk (1965) in the Alaska Peninsula; the Ghost Rocks Formation on Kodiak Island; the Amchitka and Banjo Point Formations on Amchitka Island; the Gunners Cove Formation on Rat Island; the Kru- gloi Formation on Agattu Island; and the Kulthieth, Kushtaka, and Tokun Formations and clastic rocks of the Orca Group in the Gulf of Alaska area CRETACEOUS AND JURASSIC ROCKS—Argillite, shale, graywacke, quartzite, con- glomerate, lava, tuff, and agglomerate almost barren of fossils; probably includes rocks ranging in age from Early Jurassic to Late Cretaceous. In places moderately to highly metamorphosed (amphibolite facies) CRETACEOUS AND UPPER JURASSIC ROCKS—Graywacke, slate, argillite, minor conglomerate, volcanic detritus, and interbedded mafic volcanic rocks. Includes the Valdez Group and part of the Yakutat Groups and Sitka Graywacke. Mildly metamorphosed, locally to greenschist LOWER CRETACEOUS AND UPPER JURASSIC ROCKS—Shallow and deep-water clastic deposits (Oxfordian to Barremian) north of the Wrangell Mountains; in- cludes sandstone, arkose, siltstone, and limestone of the Staniukovich Formation (Burk, 1965) and the Herendeen Limestone on the Alaska Peninsula; and slate, graywacke, and con- glomerate of the Seymour Canal Formation on Admiralty and Kupreanof Islands LOWER CRETACEOUS AND UPPER JURASSIC(?) ROCKS—Melange of flysch, greenstone, limestone, chert, granodiorite, glauco----phane-bearing greenschist, and lay- ered gabbro and serpentinite. Melange consists of Upper Jurassic(?) and Lower Cretaceous pelitic matrix enclosing blocks several kilometers in dimension of Permian to Lower Jurassic rocks. Includes the Uyak Formation, McHugh Complex, melange within the Yakutat Group, and the Waterfall Greenstone and Khaz Formation of the Kelp Bay Group JURASSIC ROCKS—Shale, siltstone, and sandstone. Includes the Kingak Shale along the northern front of the Brooks Range, the Glenn Shale (which includes rocks of Triassic and Cretaceous age) in the east-central part of the State, the Nizina Mountain Formation and Kot- sina Conglomerate along the southern Wrangell Mountains, and unnamed slaty detrital rocks on Gravina and Annette Islands UPPER JURASSIC ROCKS—Sandstone, siltstone, shale, and conglomerate on the Alaska Peninsula, Cook Inlet area, and southern flank of the Talkeetna Mountains. Includes the Chinitna and Naknek Formations MIDDLE JURASSIC ROCKS—Argillite, graywacke, and conglomerate southeast of the Kuskokwim River and sandstone, shale, siltstone, and conglomerate on the Alaska Penin- sula and Cook Inlet area where it includes the Kialagvik and Shelik Formations and Tuxedni Group LOWER JURASSIC ROCKS—Sandstone and argillite interbedded with volcanic flows and pyroclastic rocks of the Talkeetna Formation in the Cook Inlet area and southern Talkeetna Mountains JURASSIC AND (OR) TRIASSIC ROCKS—Chert and argillite north of the Porcu- pine River; limestone with minor dolomite, shale, and chert of the Chitistone Limestone, Ni- zina Limestone, McCarthy Formation, and Lubbe Creek Formation along the southern Wran- gell Mountains; and hornfels and phyllite of the Hazelton(?) Group in southeast Alaska TRIASSIC ROCKS—Shale, chert, and limestone of the Shublik Formation and quartzitic sand- stone of the Karen CreekóSandstone on the north flank of the Brooks Range UPPER TRIASSIC ROCKS—Limestone, shale, and chert of the Kamishak Formation in the Cook Inlet area; a shelf facies of limestone, tuff, tuffaceous conglomerate and breccias at the southern tip of the Kenai Peninsula (west of the Border Range's fault) and equivalent rocks on Shuyak, Afognak, and Kodiak Islands; a deep-water flysch and melange facies of chert, pillow basalt, and associated graywacke, argillite, and minor ultramafic rocks (east of the Border Ranges fault) on the southern Kenai Peninsula; and chert, limestone, sandstone, and greenstone of the (1) Whitestripe Marble and Pinnacle Peak Phyllite (both Triassic?) on Chichagof and Baranof Islands, (2) Hyd Group on Admiralty Island and Keku Straits area, and (3) Nehenta and Chapin Peak Formations on Gravina Island TRIASSIC AND PERMIAN ROCKS—Sandstone, siltstone, and shale of the Sadlero- chit Group on the north flank of the Brooks Range; mafic volcanic rocks, red beds, lime- stone, andcalcareous argillite in the Chulitna River area; argillite, limestone, siltstone, con- glomerate, and abundant gabbroic sills in the east-central Alaska Range where it includes the upper part of the Mankomen Group; and schist, graywacke, slate, conglomerate, phyllite, and andesite flows and tuffs on Admiralty Island where it includes the Barlow Cove Formation JURASSIC, TRIASSIC, AND PERMIAN ROCKS—Shale, siltstone, chert, and gray- wacke in the Brooks Range. Includes upper part of the Nuka Formation and the Siksikpuk and Shublik Formations MESOZOIC AND PALEOZOIC ROCKS—Sandstone, shale, chert, dolomite, and conglomerate, in a discordant rock sequence of unknown provenance that includes rocks of Mississippian, Triassic, Jurassic, and Cretaceous age in the western Brooks Range (includes Nuka Formation); Lower Jurassic, Pennsylvanian, and Permian rocks, in part covered by Ter- tiary sedimentary rocks and intruded by granitic rocks of Tertiary age, in north-central Chu- gach Mountains; and slate, quartzite, schist, and phyllite with interlayered beds of marble, layered gneiss, and amphibolite of Ordovician to Jurassic or Cretaceous age along the west flank of the Coast Mountains PERMIAN ROCKS—Chert, shale, and siltstone of the Siksikpuk and Echooka Formations in the central Arctic Foothills and volcanic argillite and graywacke with local chert, pillow flows, limestone, and dolomite of the Cannery, Pybus, and Halleck Formations on Admiralty, Kuiu, and Kupreanof Islands PERMIAN AND PENNSYLVANIAN ROCKS—Basaltic to andesitic lavas and deriv- ative volcaniclastic rocks, tuffs, minor gabbro, and local shallow-water sedimentary rocks metamorphosed to greenschist facies and, locally, amphibolite facies of unnamed phyllite, slate, schist, greenschist, amphibolite, gneiss, and migmatite in St. Elias Mountains PENNSYLVANIAN ROCKS—Siltstone, sandstone, and limestone of the Klawak Forma- tion and Ladrones Limestone on Prince of Wales Island PENNSYLVANIAN AND MISSISSIPPIAN ROCKS—Limestone, conglomerate, shale, dolomite, and chert of the Kekiktuk Conglomerate and Kayak Shale (both of Missis- sippian age) of the Endicott Group and the Alapah and Wahoo Limestones of the Lisburne Group MISSISSIPPIAN ROCKS—Conglomerate, shale, limestone with subordinate chert, and dolomite of the Kekiktuk Conglomerate and Kayak Shale of the Endicott Group and the Utu- kok Formation and Wachsmuth and Alapah Limestones of the Lisburne Group on the north- ern flank of the Brooks Range. Limestone, dolomite, and interbedded chert of the Iyoukeen Formation on Chichagof Island and Peratrovich Formation on Prince of Wales Island JURASSIC TO MISSISSIPPIAN ROCKS—Unnamed slate and quartzite northwest of Porcupine River and the Lisburne and Sadlerochit Groups and Kingak Shale at northeast front of Brooks Range TRIASSIC TO DEVONIAN ROCKS—Radiolarian chert, slate, and argillite [These geologic unit descriptions are modified from Beikman (1980, Geologic map of Alaska: U.S. Geological Survey Special Map, scale 1:2,500,000, 2 sheets). Several rock units were combined to simplify and reduce the size of the digital files] PALEOZOIC ROCKS—Limestone, marble, dolomite, and chert on Seward Peninsula and St. Lawrence Island; limestone, slate, and conglomerate in central Alaska Range; argillite and graywacke slightly metamorphosed west of Chulitna River; flysch, conglomerate, lime- stone, and pillow basalt southwest of Mount McKinley; marble, in places containing tremo- lite, in Wrangell Mountains where it includes parts of a Devonian section designated the Kaskawulsh Group in the Yukon Territory (Canada); and sedimentary, metasedimentary, and metavolcanic rocks in southeastern Alaska UPPER PALEOZOIC ROCKS—Argillite, chert, shale, limestone, and siltstone. Greenstone, limestone, shale, clastic sedimentary rocks, schist, gneiss, and undifferentiated metamorphic rocks east of Juneau MISSISSIPPIAN AND (OR) DEVONIAN ROCKS—Sandstone, graywacke, quartz- ite, and conglomerate. Includes the Noatak Sandstone in western Brooks Range and the Ke- kiktuk and Kanayut Conglomerates in eastern Brooks Range DEVONIAN ROCKS—Phyllite, hornfels, graywacke, and sandstone on the Seward Penin- sula; pyroclastic rocks and ash flows interbedded with sedimentary rocks metamorphosed to schist and gneiss on north-central flank of Alaska Range; limestone east of Kuskokwim Bay; clastic rocks and limestone of the Kennel Creek Limestone (which may also include Silurian rocks) and Cedar Cove Formation on Chichagof Island; schist, phyllite, marble, and amphib- olite of the Retreat Group and Gambler Bay Formation on Admiralty and Kupreanof Islands and equivalent rocks to the north and south; and limestone, shale, graywacke, conglomerate, and basaltic rocks of the St. Joseph Island Volcanics (Devonian?), Wadleigh Limestone, and Port Refugio Formation on Prince of Wales Island UPPER DEVONIAN ROCKS—Shale, sandstone, chert, conglomerate, and quartzite in eastern and central Brooks Range and limestone and dolomite in western Brooks Range. In- cludes the Hunt Fork Shale, Kanayut Conglomerate, Kugururok Formation, and Eli Lime- stone (Middle and Upper Devonian) DEVONIAN AND SILURIAN ROCKS—Limestone, dolomite, marble, and shale of the Katakturuk Dolomite and Skajit Limestone in Brooks Range and the Karheen Formation in Prince of Wales Island SILURIAN ROCKS—Graywacke, shale, siltstone, limestone, sandstone, and argillite. In- cludes siltstone, mudstone, limestone, conglomerate, sandstone, graywacke, minor red beds, and volcanic rocks of the Rendu Formation and Willoughby Limestone in Glacier Bay area; the Point Augusta Formation on Chichagof Island; the Bay of Pillars Formation on Admiral- ty, Kuiu, and Prince of Wales Islands; and the Kuiu Limestones and Heceta Limestone on Prince of Wales Island ORDOVICIAN ROCKS—Limestone and shale on Seward Peninsula; argillite, chert and limestone of the Hood Bay Formation on Admiralty Island SILURIAN AND ORDOVICIAN ROCKS—Graywacke, conglomerate, shale, silt- stone, tuff, lava, and local limestone of the Descon Formation on Prince of Wales Island CAMBRIAN ROCKS—Siltstone, sandstone, and phyllite ORDOVICIAN, CAMBRIAN, AND PRECAMBRIAN ROCKS—Phyllite, sand- stone, siltstone, limestone, chert, and quartzite PALEOZOIC AND (OR) PRECAMBRIAN ROCKS—Sandstone, limestone, shale, chert, phyllite, argillite, and quartzite of the Neruokpuk Formation in the northeast Brooks Range; quartz mica schist, mafic greenschist, calcareous schist, chloritic schist, phyllite, and quartzite along south flank of Brooks Range and southwest through Kokrine-Hodzana High- lands; schist and quartzite of the Birch Creek Schist of former usage in Yukon-Tanana High- lands; highly metamorphosed clastic rocks including the Keevy Peak Formation in north flank of Brooks Range; and volcanogenic greenschist with interstratified marble in Prince of Wales, Long, and Dall Islands, where it includes the Wales Group and possibly the Descon Formation LOWER PALEOZOIC ROCKS—Rocks of Cambrian through Devonian age, in pla- ces metamorphosed to greenschist and amphibolite facies. Sedimentary rocks include lime- stone, dolomite, argillite, chert, and graywacke; metasedimentary rocks include schist, quartzite, slate, greenstone, carbonate rocks, and phyllite. Includes the Holitna Group in Kus- kokwim Mountains; the Tonzona Group along Kuskokwim River; rocks formerly included in the Birch Creek Schist in Yukon-Tanana Upland; and unmetamorphosed rocks of the Funnel Creek, Adams, Hillard, Road River, McCann Hill, and Hillard Formations and Puppets For- mation on Gravina and Annette Islands LATE PROTEROZOIC ROCKS—Siltite, phyllite, graywacke, quartz schist, and graph- itic schist of slate of the York region on Seward Peninsula; schist, gneiss, and small amounts of amphibolite and marble east of Kuskokwim Bay; quartz wacke, semischist, phyllite, and argillite of the Neruokpuk Formation in northeastern Brooks Range; phyllite, slate, and silt- stone east of Fort Yukon; and limestone, dolomite, sandstone, shale, and basalt of the Tindir Group north of Tintina fault YOUNGER LATE PROTEROZOIC ROCKS—Schistose, argillaceous, dolomitic limestone and tactite on Seward Peninsula OLDER LATE PROTEROZOIC ROCKS—Schist, gneiss, and migmatic and meta- morphic rocks, including rocks equivalent to slate of the York region, in the Kigluaik and Bendeleben Mountains on the Seward Peninsula Tm To TpPLIOCENE ROCKS—Sandstone, siltstone, and conglomerate. Includes the Tachilni For- mation on the Alaska Peninsula and the Tugidak Formation on Tugidak and Chirikof Islands Qh Qp K KJ J D DS S O SO TERTIARY CONTINENTAL DEPOSITS—Sandstone, siltstone, claystone, shale, conglomer- ate, and coal beds. Include the Sagavanirktok Formation in the Arctic Coastal Plain; the Gakona Forma- tion in east-central Alaska Range; the Healy Creek, Suntrana, Sanctuary, Lignite Creek, and Grubstake Formations and Nenana Gravel and related unnamed rocks in west-central Alaska Range; the Chicka- loon, Wishbone, and Tsadaka Formations in the Matanuska Valley; and the Kenai Group (Hemlock, Tyonek, Beluga, and Sterling Formations) in Cook Inlet area. It also includes the Kootznahoo Forma- tion on Admiralty, Kuiu, Kupreanof and Zarembo Islands; the Frederika Formation in Wrangell Moun- tains; and the Cantwell Formation in central Alaska Range. Rocks range in age from Paleocene through Pliocene TERTIARY AND CRETACEOUS CONTINENTAL DEPOSITS—Conglomerate, brec- cia, sandstone, arkose, mudstone, shale, tuffaceous rocks, and lignite beds. Includes the Arkose Ridge Formation (Cretaceous?) in Matanuska Valley CRETACEOUS CONTINENTAL DEPOSITS—Sandstone and conglomerate, siltstone, claystone, shale, coal, coaly shale, ironstone, and bentonite beds. Includes the Corwin Formation (Lower and Upper Cretaceous) of Nanusuk Group and Killik Tongue of Chandler Formation of Nanusuk Group, the Niakogon Tongue of Chandler Formation of the Nanushuk Group, and the Prince Creek Formation of Colville Group on the Arctic Coastal Plain and in the Yukon-Koykuk Basin, and margins of the basin ó Jd dD JM M hM h P Ph scg JP dP d T Q g MD gpe e Ope fg UPPER AND (OR) MIDDLE DEVONIAN ROCKS—Conglomerate, graywacke, phyllite, shale, sandstone, siltstone, and limestone. Includes the Nanook Limestone in Shu- blik Mountains sSa DESCRIPTION OF MAP UNITS CONTINENTAL DEPOSITS SCALE 1: 3,800,000 Anchorage Fairbanks 180˚ 171˚ 162˚ 153˚ 144˚ 135˚ 72˚ 171˚ 162˚ 153˚ 144˚ 135˚ 72˚ 63˚ 63˚ 54˚54˚ Ice Water Fault—Dotted where concealed Coastline Contact 180˚ EXPLANATION UNDIFFERENTIATED METAMORPHIC, IGNEOUS, ULTRAMAFIC, AND VOLCANIC ROCKS METAMORPHIC AND IGNEOUS ROCKS—Small masses of metamorphosed sedimentary, volcanic, and igneous rocks largely of pre-Cretaceous age scattered throughout the Aleutian Range batholith and amphibolite facies schist along north side of Matanuska Valley. Includes intercalated blueschist, quartz mica schist, greenschist with subordinate am- phibolite, and marble; metachert at southern tip of Kenai Peninsula and on Afognak Island; and metasedimentary, metaplutonic, and metavolcanic rocks near Anchorage and along south side of Matanuska Valley. Also includes hornfels, schist, amphibolite, minor marble, and un- divided metamorphic rocks north of Icy Strait in southeastern Alaska; gneiss, schist, phyllite, and undifferentiated metasedimentary and metaigneous rocks in the Yukon-Tanana Upland; and metasedimentary and metaigneous rocks, including schist and gneiss of many different compositions, primarily of the greenschist and amphibolite facies, in the Yukon-Tanana Up- land (formerly included in the Birch Creek Schist). Rocks range in age from Mesozoic through Paleozoic ULTRAMAFIC AND IGNEOUS ROCKS—Granite to granodiorite, gabbro, and syenite to diorite. Rocks range in age from Cenozoic through Precambrian VOLCANIC ROCKS—Trachyte to andesite, basalt, and rhyolite to dacite. Rocks range in age from Cenozoic to Paleozoic Kc TKc Tc CENOZOIC AND LATE PROTEROZOIC ROCKS Figure 3. Map showing the geology and structure of Alaska. Modified from S.J. Moll, Scott Bie, Devon Peterson, D.C. Pray, F.H. Willson, J.W. Schmidt, J.R. Riehle, and T.P. Miller (unpublished data, 1997, U.S. Geological Survey, Reston, Virginia). After Beikman (1980). KALTAG FAULTSHAW CREEKFAULTTINTINA FAULT STRAND DENALI FAULT FAREWELL FAULT MC KINLEY TOTSOHU N D A FA U LT STRAND IDITAROD-NIXON FORK FAULT ANIAK-THOMPSON CREEKCHIROSKEYFAULTMULCHATNA FAULTCASTLE MOUNTAINFAULT BRUIN BAYCONTACT FAULT BORDER RANGES FAULTEAGLE RIVERFAULTS T R A I CLA RE N CFAULT F A U L TTOGIAK- TIKCFAULTHIKHOLTINAFAULTFAULTHINES CREEK F AI RWE A T H E R F A U L T C A T HAM STRAI T FAULTPERIL STRAIT LT 0 ARCTIC OCEAN GULF OF ALASKA MILES One inch = approximately 60 miles 150 CANADA 300 0KILOMETERS One centimeter = approximately 97 kilometers 241483 Port Graham fg fg fg fg fg fg fg fg fg fg fg fg fg fg fg fg fg fg fg fgfg gpe fg fg fg fg fg fg fg fgfg fg fg fg S e w a r d P e n i n s u l a N u i a t o H i l l sA L A S K A R A N G EK U S K O W I M M O U N T A I N SChugach Mountains B R O O K S RANGE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN QUATERNARY TERTIARY CRETACEOUS JURASSIC TRIASSIC PERMIAN PENNSYLVANIAN MISSISSIPPIAN DEVONIAN SILURIAN ORDOVICIAN CAMBRIAN PRECAMBRIAN CENOZOIC AND LATE PROTEROZOIC ROCKS Kc Kc Kc Kc Q Q Q Q Q Q Q Q Q Q Tm Tm Tm To To To T T T T T T T T T K K K K K K K K K K K K KJ KJ KJ KJ KJ KJ KJ KJ KJ KJ J J J J J J J J JPJP P P P hM hM M M MJM JM dD g g g g MD MD D D D D D D D D DS DS DS DS S O SO SO Qh Qh Qh Qh Qp Qp Qp Qp d g Q Qp K Z D Qp K Qh Q T T T Qh S S D KJ g D K DS KJ K ALEUTIAN TRENC H Bristol BayKotzebue Sound Beaufort Sea Kuskokwim Bay Norton Sound TESHEKPUK LAKE Harrison B a y Point Barrow COLVILLERIVERIcy Cape Cape Lisburne Point Hope Bering Strait St. Lawrence Island Norton B a y KOBUK RIVER KOYUKUK RIVER YUKONRIVERYUKONRIV E R PORCUPINE RIVER.TANANA RIVER Cook InletILIAMNA LAKE Kodiak Island Yakutat Bay Lituya BayProjection: Albers Equal Area Central meridian: 153˚ W. St. Matthew Island Nunivak Island St. Paul Island St. George Island Umnak Island Unalaska Island Amlia Island Atka Island Adak Island Tanaga Island Kanaga Island BERING SEA Unimak IslandA L E U T I A N I S L A N D S KUSKOKWIMRIVERSUSITNARIVER Prince William Sound Montague IslandUnga Island Seguam Island Trinity IslandsShelik of StraitA L E X A N D E R A R C H I P E L A G O Cross SounDixon Entrance Prince of Wales Island Baranof Island Admiral Island Tp Tp TKc TKc TKc TKc ee e dP dP g KJ M dP dD QQh g Jd Ph Ph dP Qp Q P scgQp Qh cg cg cg cg KJ pe gpe gpe gpe gpe gpe gpe gpe pe pe T Tc Tc Tc Tc Tc g g pepe Ope Ope Ope Ope Ope d Ph g g cg cg dP h cg cg gpe gpe d P d pe U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Digital Data Series-77 Jd Juneau This map shows generalized geology in Alaska and therefore a number of features that are listed in the map unit descriptions are not indicated on the map due to space limitations. Also the data that are on this CD-Rom do not duplicate this graphic, only the generalized geology and faults. The other data that are represented on this graphic (rivers, coastline, and cities) are available from the Department of Natural Resources of Alaska on the web at http://www.asgdc.state.ak.us/ homehtml/pubaccess.html. CORRELATION OF MAP UNITS CONTINENTAL DEPOSITS QhQ P S OSO MD JM JP KJ D M h g PPh hM Qp Tp Tm To J K T d e Jd dP dD DS cg fg Ope gpe sSa STRATIFIED SEDIMENTARY SEQUENCE Mainly marine. Includes some volcanic rocks. In part metamorphosed Kc TKcTc Port Graham River RiverRiver Riv e r RiverRiverKobukYukonYukonColvilleNoadakRiver River Kuskokwim R i ver Koyukuk Tanana Susitna1000 200 MILES50 0 100 200 300 KILOMETERS Physiographic Map of Alaska IceARCTIC OCEANGulf of Alaska B ea ufort Sea ALASKACANADAARCTIC COASTAL PLAIN ARCTIC FOOTHILLS RANGE Y U K O N F L A T S C E N T R A L & E A S T E R N B R O O K S R A N G E INTERIO R O R IN T E R M O U N T A IN P L A T E A U SOUTHERN CORDILLERA NORTHERN CORDILLERA 135˚144˚153˚162˚171˚72˚ 63˚ 54˚ Anchorage JUNEAU Fairbanks Hope Point Barrow B R IS T O L B A Y KOTZEBUE SO U N D K U S K O K W I M B A Y N O R T O N S O U N D Harrison B a y Cook InletA L E U T I A N I S L A N D S D IX O N E N T R A N C E Y akutat B ayPrince William Sound Figure 4. Map showing the physiographic regions of Alaska. Modified from Plafker and Berg (1994).