Loading...
HomeMy WebLinkAboutAPA179DATE DUE II I.. ~-u~~~7'i':"-_--J--~-~-+---- -:ir l ntn.· -;;.-,.IT I,;J~·V-u .. HIGHSMl TH 45-220 lIAR i'l 1982 Rr TTl< I '-IdS ,S8 I1d3 179 ~~W',"lff~h~RAu.s./.\~}fIE'~~I erio \.ANCHORAGE,ALASKA ) J:jSLJ,),)/~ )')0 SUSITNA HYDROELECTRIC PROJECT FEASIBILITY REPORT VOLUME 4 APPENDIX A HYDROLOGICAL STUDIES FINAL DRAFT Prepared by:ARLIS • Alaska Resources Library &Information Services Anchorage Alaska ALASKA POWER AUTHORITY , I '. \ -, A2 -Probable Maximum Flood A2-I -... r -r i SUSITNA HYDROELECTRIC PROJECT APPENDIX A TABLE OF CONTENTS APPENDIX Al -Water Resources Studies A3 -Reservoir Hydraulic Studies AI-I A3-I -I i r r - A4 -Reservoir and River Thermal Studies A4-I A5 -Climatic Studies for Transmission Lines A5-I r APPENDIX Al WATER RESOURCES STUDIES 1 -STREAMFLOW EXTENSION Historical streamflow data is available for several gaging stations on the Susitna River and its tributaries.The longest period of record is available for the station at Gold Creek (32 years from September 1949).At other sta- tions,the record length varies from 8 to 25 years. An Acres'in-house computer program has been used for filling in the incomplete streamflow d at a sets.It is based on the program FILL!N developed by the Texas Water Development Board (December 1970)(1).The procedure adopted is a multi- site regression technique which analyzes monthly time series data (streamflow, rainfall or evaporation data)and fills in missing portions in the incomplete records.The program evaluates statistical parameters which characterize the data set (i.e.,seasonal means,seasonal standard deviations,lag-one auto- correlation coefficients and multi-site spatial correlation coefficients)and creates a filled-in data set in which these statistical parameters are pre- served.For the analysis,all streamflow data up to September 1979 have been used (30 years data at Gold Creek). A brief description of the steps involved in the program is presented in the following sections. (a)Program Uescription The fill in procedure comprises the following steps: The data sets pertaining to individual sites are arranged in descending order of the length of record in each set. -Sample skewness is removed by a Gaussian transformation.The procedure chosen is a logastitimic transformation of each data item. -The mean and standard deviation of the transformed data sets are com- puted. -Each value of the transformed data is normalized by subtracting the monthly mean "and dividing the remainder by the monthly standard devia- tion.This transformation renders the time series data stationary to the second order. -The 1 inear pr"edictor equations for each site are estimated.The depen- dent variable at time step i at site s is a function of time step i,and variables at several other sites. The general form of the predictor equation.i is: s=.I: k=1 +1 s-1+.I: k=l Al-l bs,k +e s, ARLIS Alaska Resources Library &Information SerVices Anchorage,Alaska where As k and bs k are the regression coefficients and e s i is a random Gaussian process with the covariance function equal to'the multiple correlation coefficient matrix. -The predictor equations are used to synthesize data for the gaps.The voids are filled in a reverse direction going from the denser to the sparser data. -The synthesized values are adjusted in order to avoid abrupt transitions which sometimes occur at the interfaces of the synthesized and available data.This smoothing procedure uses the left-hand edge of the gap to set up a linear corrector which introduces it into the analysis as a maximum probable upper (or lower)bound of the process. -The inverse transforms are carried out on the data to convert it back to the original units. The fill-in procedure preserves the statistical parameters of the original time series:mean,variance,autocorrelation and cross correlation co- efficients. (b)Data and Computer Runs Mean monthly flow data obtained from the USGS was used as input.A subrou- tine which interfaces the FILLIN program with the USGS data format was set up by Acres.Table Al.l shows the available historical data at the gaging stations.Tables A1.2 to A1.9 summarize infilled recorded data.All the missing data are identified as -1 for computation reasons. Records of all eight gaging sites were used in the first model run.Lack of overlapping data between Cantwell,Chulitna and Susitna stations result- ed in a zero correlation which aborted the fi11-in procedure.The exten- sion of data for the Susitna station was therefore,carried out without the Cantwell and Chulitna station records. The mean and standard deviation of the filled data sets (Table Al.lO)are within the limits of the confidence interval of 5 percent.The lag-one correlation coefficients show similar limits (Table Al.ll)for the unfilled data sets. The spatial correlation matrix shows a good correspondence of the values in winter and fall and a fair correspondence in spr-ing and summer.Spatial correlation coefficients for utilized and filled data sets are given in Tables Al.12 and Al.13,respectively.Filled-in data sets for the seven gaging sites are presented in Tables Al.14 to Al.2l. The fill-in procedure used appears superior to other existing regression procedures which have difficulties in preserving autocorrelation and spat- ial correlation.Probably the smoothing procedure used in this program has an important contribution to the fitness of the model. Al-2 r- I, (c)Estimate of Streamflow at Damsites On the Susitna River Estimate of mean monthly flows at the sites was made adopting a linear drainage area relationship between the gaging stations and the damsites. For Denali site,such a relation could not be used due to lower unit runoff from the lake louise area.Since the local area at the damsite is similar to that below Cantwell station,the streamflow was directly related to the unit flows measured at Gold Creek,Cantwell and Denali gages.The follow- ing relationships were used to calculate streamflows at the damsites: QDC 0.827 (Qg Qc )+Qc QHDC =0.802 (Qg Qc )+Qcr-Qw =0.515 (Qg Qc )+Qc QSIlI =0.042 (Qg lQc)+Qc Qv =Qc QD 0.153 (Qg =lJc )+Qd OM 0.429 (Qc Qd)+Q where:Q Streamflow in !t3/~2c-A =Drainage area , n m, - ,.... i - (d) Subscript DC,HDC,W,SIll,V,D and M stand for damsites at Devil Canyon, High Devil Canyon,Watana,Susitna III,Vee,Denali and Maclaren,respec- tively. Subscripts g,c,and d stand for gaging stations at Gold Creek,Cantwell and Denali,respectively. The computed mean monthly flows for the 30 year period at each damsite are given in Tables A1.22 to Al.28 and were used in estimating the hydroelec- tricenergy potential of the sites and in selection of the best Susitna developments (1981). Analysis of Watana Streamflow Records An automatic water level recorder was established two miles downstream of the proposed Watana damsite in June 1980.A river discharge rating curve was developed based on ten discharge measurements taken during the 1980 and 1981 summers. Estimated daily streamflow has been calculated for the record period along with peak instantaneous discharges (see Reference Report 2).Data is availab~e only for the period with open water in the river (June through September)• The observed data at Watana along with simultaneous records observed at Cantwell and Gold Creek stations were analyzed in order to verify estimates of historical flow at the damsite (section (c)above).Table Al.29 com- pares the observed and calculated monthly flows at Watana for the two peri- ods of record.It may be noted that the observed flow is somewhat hi gher than that calculated (average 4 percent).The results essentially confirm the historical estimates made in section (c).However,it is recommended that the streamflow gaging be continued at the Watana station to verify and improve the flow estimates used in this study with longer-term records. I AI-3 2 -EVAPORATION STUDIES Evaporation from the proposed Watana and Devil Canyon Reservoirs has been evalu- ated to determine its significance.Evaporation is influenced by air and water temperatures,wind,atmospheric pressure,and dissolved solids within the water. However,the evaluation of these factors'effects on evaporation is difficult because of their interdependence on each other.Consequently,more simplified methods were preferred and have been utilized to estimate evaporation losses from the two reservoirs. Evaporation pans are widely used for directly measuring evaporation.Unfortun- ately,there are few evaporation pans in Alaska.None were located within the upper Susitna River basin until a U.S.Weather Bureau Class A pan was installed near the proposed Watana damsite in May 1981.Evaporation pans near the Susitna River basin include one located at McKinley Park,with 12 years of data (Table A1.30),and one at the Matanuska Agricultural Experiment Station,with 31 years of data (Table A1.31).Evaporation is reported as total evaporation,with daily changes in water level adjusted for precipitation. The Matanuska station has a long-term average evaporation of 17.94 inches for May through Septernber (3).In 1981,the evaporation at Matanuska was slightly below average at 15.34 inches.During this same period in 1981,the Watana pan recorded 14.85 inches of evaporation.A review of the monthly totals at the two stations (Table A1.32)showed a close comparison,with Matanuska slightly higher than Watana during all months except June.The June anomaly,with Watana's 5.15 inches exceeding Matanuska's 4.24 inches,cannot be explained.The climatic data for all three sites (including McKinley)are compared in Table A1.34,which shows similar trends in the climatic parameters for each of the months. Comparison was also attempted between the McKinley pan and the Watana pan.His- torically,McKinley data are only available for June,July and August although some evaporation does occur during May and September.For this reason,June through August val ues were the only ones compared.McKi nl ey has along-term average evaporation of 9.54 inches for June through August.This compares to a long-term June through August evaporation at Matanuska of 11.58 inches.A similar difference occurred during 1981 with McKinley recording 7.30 inches and Matanuska recording 9.31 inches.During this same period,Watana recorded 9.42 inches. Evapotranspiration estimates for Alaskan locations have been computed by Patric and Black (4).Estimates for locations in and near the Susitna River basin are summarized in Table A1.35.Patric and Black used the Thornthwaite equation (5) to compute potential evapotranspiration,which is the water loss from fully vegetated land surfaces always abundantly supplied with soil moisture.The Thornthwaite equation uses only temperature data to estimate the potential evap- ortranspiration (PET),so estimates could be made for any station with monthly temperature values. Al-4 - - - Hargreaves (6)indicated a high degree of correlation between U.S.Weather Bureau pan evaporation and vegetation consumptive use.The potential evapo- transpiration estimate at Matanuska is about 10 percent higher than the longterm average pan evaporation for May through September.Patrie and Black compared monthly potential evapotranspiration at the University Experiment Station in Fairbanks,using the Penman (7)and Thornthwaite equations and pan evaporation. The annual potential evapotranspiration agreed fairly closely (Penman,15.70 inches;evaporation pan,18.68 inches;Thornthwaite,17.87 inches).Comparisons from other regions usually report Thornthwaite estimates as being higher than other estimates.In the comparison at the University Experiment Station in Fairbanks,relative humidity strongly influenced the Penman and evaporation pan estimates of potential evapotranspiration,but did not affect the Thornthwaite estimate,which is dependent solely on temperature.Based on these limited data,it would appear that the Thornthwaite estimates from Patric and Black would be slightly higher than pan evaporation estimates. Patric and Black compared estimates of PET between high-elevation stations and nearby low-elevation sites.Their data suggested a decrease of about 1 inch of PET per year per 500 feet of elevation increases.As there is about a 2,000- foot difference in elevation between the Matanuska pan and the maximum pool level at Watana Reservoir,this would result in a difference of 4 inches of annual PET between the two sites.Similarly,the 1200-foot elevation difference between Matanuska and the full Devil Canyon Reservoir would result in a differ- ence of about 2.4 inches of annual PET.The Thornthwaite estimate of PET at Matanuska is 19.76 inches.Using the elevation relationship,this results in an estimate of 15.8 inches of annual PET at Watana,and 17.4 inches at Devil Canyon. Comparing the Thornthwaite estimate of PET to the actual historic evaporation at Matanuska,it is seen that the evaporation is less than the PET estimate.Thus the estimate of evaporation at Watana should be reduced by a similar propor- tion. Estimated pan evaporation at Watana = Pan evaporation at Matanuska PET at Matanuska [PET at WatanaJ - =(17.94/19.76)(15.8) =14.3 inches evaporation per year Similarly,Devil Canyon's estimated pan evaporation would be reduced from 17.4 to 15.8 inches per year.The monthly distribution of evaporation at both sites is assumed to follow that at the Matanuska station. The rate of evaporation from small areas is greater than that from large areas Consequently,a pan coefficient of 0.7 is normally recommended for converting from pan evaporation to lake or reservoir evaporation,although observed values have been reported to vary from 0.6 to 0.8.The resulting monthly evaporation estimates are tabulated in Table A1.36,along with nearby monthly air tempera- tures for comparison. Al-5 3 -RESERVOIR OPERATION FOR POWER GENERATION 3.1 -Introduction The energy potential of the Susitna Hydroelectric developments has been assessed using a monthly energy simulation model.This model determines the energy pro- duction given historical streamflow at the damsites and physical characteristics of the sites,such as storage-elevation relationships and tailwater levels. The monthly simulation has been carried out for the 32 years of streamflow re- cords available for the Sustina River at Gold Creek.Streamflows at the various damsites have been synthesized using a statistical and drainage area proration technique as explained in Section 1.Streamflow data at the damsites are given in Section 1.The storage-elevation relationships are presented in Volume 3 of main report.Tailwater discharge relationships were developed based on field discharge and stage measurements and river cross section surveys (see Reference Reports 2 and 8). Model runs for each of the power developments identified in the earlier phases of this study have been made to assess the most desirable development.This analysis is reported in detail in the Development Selection Report,Section 8. Only the later model analyses for the selected Watana and Devil Canyon develop- ments are reported here. 3.2 -Simulation Model The model is essentially a monthly simulation of reservoir operation under his- torical streamflow conditions and physical parameters of the development These include installed capacity,dam height,and tailwater elevations.The model was used to determine optimum drawdown and dam height configuration for Watana. Devil Canyon's maximum water level is set by average tailwater level for Watana. Optimum drawdown at Devil Canyon has also been addressed using the model. The model is driven by three criteria.They are,in order of their applica- tion: Monthly pattern required, -Downstream flow requirement;and -Reservoir rule curve. (a)Energy Pattern The energy pattern used in the model is based on monthly load forecasts developed by ISER and Woodward-Clyde Consultants and more recently by Battelle.This pattern is imposed as demand on the Susitna hydroelectric developments and reservoir operation is iteratively simulated to yield max- imum energy production,thus yielding almost constant thermal energy demand throughout the year.The energy pattern is critical during periods of low inflow,particularly when drawdown limits are set.The assumed energy pat- tern is presented in Figure Al.l. Al-6 -,, ~ I - (b)Downstream Flow Requirement Environmental considerations require the release of mlnlmum flows during critical fish spawning periods and protection of the mitigation efforts associated with the project.The minimum flow required is a variable monthly value reaching a maximum in August,coincident with salmon spawning peaks. The simulation model checks downstream flow requirements against the sum of the total powerhouse flow and spillage from the most downstream damsite. For the operations considered,generally the outflow exceeds the downstream flow requirement in the winter months of Uctober through April.In the summer months,the outflow is at the lowest level because of low energy de- mand and the retention of river runoff in storage for release during the following winter.The exception to this is in late summer,usually September,when reservoirs can be full and spills could occur.When the required downstream flow is greater than the power flow simulated,addi- tional discharge is made through outlet facility to meet the downstre~TI re- quirement. (c)Reservoir Rule Curve The energy pattern described above controls the reservoir operation and energy production during critical low inflow periods.During other per- iods,it is apparent that additional energy could be produced because of larger river flows and greater reservoir storage available. Essentially;with a reservoir rule curve which establishes minimum reser- voir levels at different times during the year,it would be possible to produce more energy in wetter years during winter than by following a set energy pattern.At the same time,the rule curve ensures that low flow sequences do not materially reduce the energy potential below a set minimum or firm annual energy.Several sets of rule curves for the Watana and Devil Canyon sites were modeled and selected ones presented in Figure A1.2. r - (d)Model Alogrithm The energy simulation firstly determines the amount of flow required to meet the demand for power.For single reservoirs,the power output is given by Equation 1.For two reservoirs in cascade,the power output is given by Equation 2. (1) where:P =Power produced in kilowatts (KW) K1 =Unit Conversion Constant =0.084773 H =Average monthly head in feet (ft) Q =Mean monthly powerhouse flow in cubic feet per second (cfs) E =Overall hydraul ic;,mechanical and electrical efficiency (dimensionless) Al-7 (2 ) where:TP =Total power output (KW) =Average monthly head in upper and lower reservoir, respectively (ft) =Mean monthly powerhouse flow plus spillage from upper reservoir (cfs) =Contribution flow from intervening drainage area between dams ites (cfs) K1 =Unit Conversion Constant =0.084773 E =Efficiency The model procedure iteratively solves for powerhouse flow given power demand and ch ange ins tor age. Storage inflow. through storage is depleted or replenished depending upon the magnitude of monthly Generally,storage is depleted during the months of October May and replenished from June to September.The conversion from to flow is by Equation 3. (3) where:QA =Discharge (cfs) 4.S =Change in storage (acre feet) K2 =Constant (cfs days to acre feet)-1.984 OM =Number of days in month M. For power computations using equation (1)or (2),monthly head is used and is determined from the average water surface elevation at the beginning and end of each month less tailwater elevation.A constant tailwater elevation of 1455 and 850 has been assumed for Watana and Devil Canyon,respectively. This is considered acceptable as the variation in tailwater elevation for the range of flows expected is +5 feet from the assumed values and is with- in the reasonable limit of accuracy of the tailwater elevation discharge curves. The water surface elevation is determined by linear interpolation of the storage-elevation curves input to the model.The power potential deter- mined is effectively the average power during the month.Multiplying this power by the number of hours in each month results in monthly energy in kilowatt-hours. The model next checks downstream flow requirement with total outflow (powerhouse plus spillage).If no flow deficit occurs,no action is taken. When outflow is below flow requirements,either further powerhouse flows are released or spillage occurs depending on demand for additional energy. This will deplete storage or replenish it more slowly depending upon inflow. Al-8 - r -i r r-, , The final procedure in the model is to determine if further drawdown could occur to produce more usable energy particularly in winter months.The rule curve followed has been derived from several iterations of the reser- voir operation and is believed to be close to the best fit for the energy produced up to the year 2010 and with the forecast developed by Battelle. In practice,with increase in system demand,the rule curve could be modi- fied to yield energy that would fit into the system demand in a more eco- nomical manner. The model procedure allows the reservoir to be drawn down in each month to the given levels when the water surface ~elevation at the start of the month is above these levels.Starting elevations below the target suggests that a dry sequence is experienced. When the reservoir is being refilled during high streamflows,a further condition specifies the amount of surplus water that should be placed into storage.This is to ensure that during the early months of the filling se- quence (May and June)the reservoir does not end up full too early in the summer.If filling occurred quickly,it is possible that spillage would be high in August and September.Preventing such spillage results in the pro- duction of more energy in May,June and July and a reduction in spillage amounts later on. 3.3 -Energy Simulation of Watana/Devil Canyon Development The simulation model has a facility to determine the production of energy from a single or a two reservoir system.The operation of Watana or Devil Canyon alone and Devil Canyon with Watana upstream,have therefore been analyzed. Energy production from Watana and from Watana/Devil Canyon has been determined to establish the optimum normal maximum pool elevation and reasonable drawdown hence live storage amounts.In addition,an assessment of the impact of down- stream flow requirements on energy production has also been made using the model. (a) (b) Optimum Normal Maximum Water Surface Elevation The normal maximum water surface elevation of 2185 for Watana has been established as the optimum water level with respect to energy production, project cost and total system economy.This level has been established based on the analysis of model energy simulation runs for three dam heights for Watana set at 2215,2165 and 2115. In all cases,the normal maximum operating level of Devi 1 Canyon was as- sumed constant at 1455 feet.A detailed discussion of the selection of the optimum water level along with the OGP5 results are given in Sections 9 and 10 of the main report. Assessment of Impact on Energy Potential of Downstream Flow Requirements Fishery mitigation efforts have been directed at assessing the impact of Watana and Devil Canyon developments on fish populations downstream of the damsites.To aid in this analysis,downstream flow requirements ranging from flow releases giving no serious impact to best power operation have been analyzed.The best power operation and intermediate flow conditions Al-9 would require in-stream and remedial work at tributary confluences to pre- vent serious fishery damage. The cases investigated have been called A,B, C,and D.Case A is the best power operation,Case Band C intermediate flow and power conditions and Case D the st acceptable operation with respect to impact on fisheries. The latter has also been termed the case with "avo idance flow"(avoiding impacts on fisheries).During the analysis,Case Band C were found to differ only in minor details and it was decided to eliminate Case B from further study. Case D flows were derived from discussions with fisheries study groups and agencies and represent almost no fishery impact due to project operation. The monthly required flow at Gold Creek for the three cases (A,C and D) are given in Table A1.37.The flows required immediately downstream of the damsites have been calculated to reflect the contribution to flow from the drainage area between the damsite and Gold Creek. Monthly energy production with Klatana maximum water level at 2215, 2165, and 2115 for the three flow conditions are summarized in Tables A1.38 to A1.40 for the period when Watana is operating alone and in Tables A1.41 to A1.47 for the total Watana/Devil Canyon development.Annual average and firm energy are summarized in Table A1.48 for the seven cases when Watana is alone and in Table A1.49 for Watana/Devil Canyon. The energies given in Tables A1.38 to A1.49 represent the total energy pro- duction from the powerplants without any constraints to maximum energy de- mand of the system.As such,the energies represent the potential of the developments gi ven the constrai nts of only pl ant capacity and required flows.In most cases,there is an excess of energy produced over system demand in the early years of the development.This production of unusable energy is duly considered in the generation planning analyses and is re- flected in the overall system costs (Section 18 of the Main Report). Generally,the higher downstream flow requirement cases result in "dumping" of large quantities of unusable energy,particularly during summer months. Monthly energies for the optimum water level of 2185 are given in Tables A1.50 to A1.52 for Watana alone,Case A,C and D and in Tables A1.53 to A1.58 for Watana and Devil Canyon.Several options for Watana operation have been investigated in an attempt to improve energy production.These represent a change in Watana operation when Devil Canyon comes on line and impact the energy production for Case C and D. Tables A1.53,A1.55 and AI.57 present the best estimates of energy produc- tion from Watana/Devil Canyon for Cases A,C and D,respectively.These energies have been used in the generation planning and economic analyses (Section 18 of the Main Report). (c)Reservoir Drawdown For the assessment of fisher flows an energy production,it was assumed that no drawdown limit would be imposed on Watana or Devil Canyon.This, A1-10 r"", ,- ! i r howeve ,would not necessarily be the best operation for the development given ntake costs and energy production but is valid in determining the impact of fishery flows on energy production.Drawdown limits for Watana were established using the normal maximum operating level of 2185 feet. Generally,the governing criteria in establishing the drawdown was to maxi- mize Winter energy production and to reduce spillage while maintaining rea- sonable costs for intake structures and acceptable temperatures in flow re- leases.Specifically,115,165,190,and unlimited drawdown cases were investigated.Generally,the greater the drawdown results,the greater amount of annual f"irm energy produced.This is due to additional storage utilized in producing energy during critical low inflow periods.However, as firm energy increases,average energy decreases due to the longer period the reservoir is drawn down.As the economic analysis utilizes the average energy to estimate system costs and the firm energy to estimate system rel iabil ity,it is advantageous to produce the best combination of firm and average energy. The increase in cost of the larger intake structure for greater drawdowns and additional costs for thermal generation to makeup production deficit is offset by additional system reliability.From Figures A1.3 to A1.5 and Tables A1.59 to A1.61,it appears that the most desirable drawdown is be- tween 115 and 165 feet.Consequently,further analysis resulted in a draw- down of 140 feet as the optimum drawdown for Watana. This drawdown of 140 feet is only required for two years in the 32 year period of simulation.For the other 30 years,the maximum drawdown is around 100 feet. Detailed optimization studies for Devil Canyon reservoir was not undertaken dUe to the relatively smaller reservoir size and a potential single level of power intake from the reservoir.A drawdown of 50 feet has been select- ed as maximum permissible drawdown consistent with structUr'al requirements of the arch dam. (d)Final energy of WatanalDevil CanyontJevelopment The potential energy production based on3~years of simulation of ~atana alone with a constraint in drawdown of 140 feet is an average approximately 3459 GW per year and would produce an annUal firm energy of 2631 GW. Watana and Devil Canyon combined has an average annual energy production potential of 6793 GW,and a firm energy production of 5394 GW.The monthly energy production for average and firm years are given in Table A1.62. The energy product ion useable from the development,cons ideri hg the fore- cast ahnualenergy developed bYBaHelle and the monthly distribution de- termined by WCC/ISER are given in Tables A1.63 and A1.64 for the aVerage and firm years respectively. Computer output sheets g1Ving inflow,powerhouse flow,spillage,water sur- face elevation,heads,power and storage for each month in the simulation are given in Attachment 1 for the selected Watana/Devil Canyon Develop- ment. REFERENCES 1.Texas Water Development Board.1970.A Completion Report on Stochastic Optimization and Simulation Techniques for Management of Regional Water Resource Systems -Volume lIB -fILLIN-l Program Description. 2.R&M Consultants,Susitna Hydroelectric Project.Field Data Collection and Processing,December 1981. 3.U.S.Department of Commerce.Annual.Climatological Data,Alaska.Annual Summary.Environmental Sci ence Servi ces Adnri ni strat ion.Ashevi 11 e. North Carolina. 4.Patric.J.H.and Black.P.E.1968.Potential Evapotranspiration and Climate in Alaska by Thornthwaite's Classification.Pacific Northwest Forest and Range Experiment Station,U.S.Department of Agriculture. Forest Service.Research Paper.PNW-71,Juneau.Alaska.28 p.. 5.Thornthwaite.C.W.1948.An Approach Toward a Rational Classification of Climate,Geogr.Rev.38:55-94. 6.Hargreaves.G.H.1958.Closing Discussion on Irrigation Requirements Based on Climatic Data.Proc.Am.Soc.Civil Engineers,J.Irrigation and Drainage Division,Volume,No.IRI.pp.7-8.January. 7.Penman.H.L.1948.Natural Evaporation from Open Water,Bare Soil.and Grass.Proc.Roy.Soc.London.sere A••vol.193.pp.120-145. 8.R&M Consultants.Susitna Hydroelectric Project.Hydrographic Surveys. October 1981. AI-12 LIST OF TABLES Number AI.I AL2 AI.3 Titl e Available Mean Monthly Streamflow Data Denali Unfilled Data Set Maclaren Unfilled Data Set AI.4 Cantwell Unfilled Data Set AI.5 Gold Creek Unfilled Data Set AI.6 Chulitna Unfilled Data Set AI.7 Talkeetna Unfilled Data Set r-- I I r - AL8 AI.9 ALIO AI.II ALl2 ALl3 AI.14 ALl5 AI.16 Al.l7 AI.18 AI.19 AL20 AI.21 AL22 AI.23 Skwentna Unfilled Data Set Susitna Station Unfilled Data Set Mean and Standard Deviation Before and After Filling In Lag-One Correlation Coefficient Spatial Correlation Matrix Unfilled Transformed Data Set Spatial Correlation Matrix Filled Transformed Data Set Denali Filled Data Set Maclaren Filled Data Set Cantwell Filled Data Set Gold Creek Filled Data Set Chulitna Filled Data Set Talkeetna Filled Data Set Skwentna Filled Data Set Susitna Station tilled Data Set Computed Streamflow at Denali Computed Streamf10w at Maclaren LIST OF TABLES (Cont'd) Number AI.24 AI.25 AI.26 Al.27 A1.28 AI.29 AI.30 A1.31 AI.32 A1.33 A1.34 A1.35 A1.36 AI.37 Al.38 AI.39 A1.40 Al.41 A1.42 AI.43 AI.44 AI.45 A1.46 AI.47 Title Computed Streamflow at Vee Computed Streamflow at Susitna III Computed Streamflow at Watana Computed Streamflow at Hi gh Devil Canyon Computed Streamflow at Devil Canyon Observed and Calculated Streamflows at Watana Damsite Historical Evaporation -McKinley Park Historical Evaporation -Matanuska Agricultural Experiment Station 1981 Pan Evaporation Summer 1981 Climatic Comparison -Watana.Matanuska.McKinley Sites Comparison of 1981 and Historical Evaporation Data Potential Evapotranspiration by Thornthwaite Method Estimated Evaporation Losses -Watana and Devil Canyon Reservoirs Monthly Flow Requirements Monthly Energy Production Case A -Watana Alone Monthly Energy Production Case C -Watana Alone Monthly Energy Production Case D -Watana Alone Watana (2215)jDevi 1 Canyon Monthly Energy Pr oduct i on -Case A Watana (2165)jOevil Canyon Monthly Energy Production -Case A Watana (2215)jOevi 1 Ca nyon Monthly Energy Production -Case A Watana (2215)jOevi 1 Canyon Monthly Energy Production -Case C Watana (2165)jOevil Canyon Monthly Energy Production -Case C Watana (2115)jDevil Canyon l'1ont hly Energy Production -Case C Watana (2215)jOevil Ca nyon Monthly Energy Production -Case 0 LIST OF TABLES (Cont'd) -I ..... ,..... Number A1.48 A1.49 A1.50 A1.51 A1.52 A1.53 A1.54 A1.55 A1.56 A1.57 A!.58 A1.59 A1.60 A1.61 A1.62 A1.63 AI.64 Title Watana Annual Average and Firm Energy Production Watana/DeVil Canyon Annual Average and Firm Energy Production Watana (2185)Alone Monthly Energy Production -Case A Watana (2185)Alone Monthly Energy Production -Case C Watana (2185)Alone Monthly Energy Production -Case D Watana (2185)/Devil Canyon Monthly Energy Production -Case A Watana (2185)/Devil Canyon Monthly Energy Production -Case C Watana (2185)/Devil Canyon Monthly Energy Production Modified - Case C Watana (2185)/Devil Canyon Monthly Energy Production Watana (2185)/Devil Canyon Monthly Energy Production -Case 0 Watana (2185)/Devil Canyon Monthly Energy Production Modified - Case D Watana/DeVil Canybn Annual Energy With Variable DrawdoWn Watana Average Monthly Energy with Variable Drawdown Watana Firm Monthly Energy with Variable Drawdown Watana/Devil Canyon Development Monthly Energy Produttion Potential Watana/Devil Canyon Deveiopment Monthly Energy Production Watana/Devil Canyon Development Firm Monthly Energy Production LIST OF FIGURES Number Title AI.I Monthly Energy Pattern AI.2 Monthly Target Minimum Reservoir Levels AI.3 Watana Annual Energy versus Drawdown AI.4 Devil Canyon Annual Energy versus Drawdown .- r- ! i . A!.5 December Energy versus Drawdown I"'" I - TABLE Al.1:AVAILABLE MEAN MONTHLY STREAMfLOW DATA USGS Gage YEA R 5 Sites Number r:f:>U 1':1 :1:1 I ':IOU 1':10:1 1970 J ':1/:1 1':1/':1 1980 191:l1* Gold Creek (15292000)1950 1981 DenalI (15291000)1957 1981 Maclaren (15291200)1958 1981 Skwenta (15294300)1960 1979 Talkeetna (15292800)1964 1981 Cantwell (15291500)1961 1972 1981 Chulitha (15292400)1958 1972 1981 Susltna (15294350)1973 1981 *Streamflow data for years 1980-81 have not been used in the correlation analysis. TABLE A1.2:DENALI UNFILLED DATA SET YEAR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP CAL H, 1 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1950 2 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1.9:i1 3 -1.0 -1.0 -1.0 -1.0 -'1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1 .0 1.']52 4 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1',0 -1.0 -1.0 -1.0 19~j3 5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1954 6 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1 .0 1.9S~; 7 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 19 ~;6 8 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 12210.0 11170.0 9769.0 4017.0 1957 9 1277.0 610.0 288.0 219.0 150.0 120.0 210.0 1163.0 8367.0 9150.0 6536.0 1879.0 1958 10 939.0 390.0 170.0 119.0 81.0 41.7 43.0 1782.0 8891.0 8333.0 7882.0 2498.0 1959 11 1577.0 760.0 575.0 444.0 321.0 275.0 265.0 3349.0 5237.0 9039.0 7910.0 4817.0 1960 12 1781.0 660.0 483.0 331.0 271.0 281.0 415.0 2959.0 6412.0 8078.0 7253.0 2695.0 19b1. 13 1290.0 680.0 440.0 280.0 240.0 220.0 200.0 2197.0 9087.0 10220.0 9454.0 3649.0 1962 14 1079.0 510.0 310.0 250.0 230.0 200.0 210.0 3253.0 6763.0 10500.0 10210.0 3949.0 1963 15 925.0 290.0 185.0 140.0 140.0 110.0 130.0 910.0 11630.0 7577.0 6552.0 2633.0 l,9b4 16 1468.0 702.0 279.0 220.0 200.0 208.0 320.0 2464.0 4647.0 6756.0 5764.0 6955,0 1965 17 920.0 300.0 240.0 210.0 200.0 200.0 280.0 1629.0 6850.0 8287.0 6432.0 3200.0 1 S'66 18 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1967 19 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 11840.0 9825.0 2192.0 1968 20 700.0 304.0 172.0 145.0 140.0 145.0 229.0 1768.0 8146.0 9445.0 3919.0 '2213.0 1969 21 1002.0 501.0 339.0 265.0 221.0 193.0 319.0 2210.0 5013.0 8454.0 6216.0 1946.0 1970 22 528.0 395.0 276.0 170.0 125.0 120.0 135.0 629.0 8099.0 10410.0 10400.0 3288.0 1971 23 1039.0 478.0 380.0 339.0 307.0 286.0 270.0 3468.0 6562.0 10450.0 8664.0 2778.0 1972 24 l,b7.0 323.0 211.0 178.0 164.0 153.0 153.0 1042.0 5741.0 8346.0 7268.0 2445.0 197:3 25 876.0 462.0 366.0 310.0 271.0 23510 262.0 2541.0 5642.0 9547,0 9292.0 5452.0 1974 26 2135.0 673.0 381.0 300.0 200.0 200.0 200.0 1640.0 7040.0 12110.0 7295.0 3571.0 1975 27 1539.0 375.0 169.0 112.0 97.0 90.0 123.0 1805.0 5939.0 8558.0 10080.0 1822.0 197(, 28 894.0 467.0 331.0 266.0 240.0 231.0 246.0 1498.0 8253.0 10010.0 10180.0 3707.0 1977 29 1148.0 652.0 439.0 348.0 300.0 246.0 263.0 2031.0 5250.0 8993.0 8644.0 3622.0 1.978 30 865.0 463.0 312.0 263.0 229.0 203.0 250.0 2791.0 7650.0 9504.0 9178.0 4512.0 1979 ~l '.1 \-:~ -1 '---1 --1 1 --1 1 --1 'c -I 1 --1 ---1 -,'-1 TABLE A1.J:MACLAREN UNFILLED DATA SET YEAR O.GT NOV nEG JAN FEB MI\R APR HM JUN JUL AUG SE F'C1\L'(r.: ---y 1.0 --l.o 1.0 Lo----r~--1.6 1.0 -1.0 -1.0 1.0 1.0 --1.0 H"50~' 2 -1.0 -l.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -··1.0 1.951 3 -1.0 '-LO -1.0.··1.0 -1.0 -boO -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 195:~ 4---1.0 -1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -=-r;-o 1.0 -1.o------r<tS3 5 -1'.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1..0 -1.0 -1.0 -1.0 -1.0 --La 1954 6 -1.0 -1~0 -1.0 -1.0 -L~O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1955 '7 -L.O -L.O -t.O -t ..o -----1-:0 ·-L.O -1.0 -1.0 -1.0 -1.0-1.0 --1.0 1956 B --1.0 -1.0.-1.0 -1.0 -1..0 -1.0 -1.0 -l.0 -1.0 -1.0 -1.0 -·1.0 1957 9 -1 .•0 -1.0 -1.0 --LtO -1.0 ··1.•0 -1.0 --1.0 3532.0 3525.0 2699.0 784.0 1.958 28 302 •.0 toIL a 11.9.0 97.:r----------v2.0 90.0 92.9 366.0 3912~834.0 3394;"0__T297.0 1977 29 512.0 265.0 lab.O 162.0 140.0 121.0 134.0 709.0 2317.0 3196.0 2356.0 924.0 1978 JO s07.0 192.0 142 •.0 122.0 110.0 100 .•0 I1bO 63.4.0 2430.0 3056.•0 2223.0 lL37.0 1979 ---"-"-"~'-..-.-~-----_.---"-.-•._-_..•_..._---_....---~~._-_...~--_._--_._-------_.._--_._---~-~---------~---_... TABLE A1.4:CANTWELL UNFILLED DATA SET YEAIl 'nCT NOV nFC IAN FEB MAR APR MAY JUN JUL AUG SEF'CALYR 1 '-j,.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 ."1 •0 -1.0 -1.0 -1.0 -1.0 1950 2 -I..o·-1.0 -1 •Q......_~-·_·1~_-!!0 -1.0 -1.0 -1.0 -1.0 -1.0 -1!0 -1.0 19 ~.!_1____-3-----1.0 -1.0 -·1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 --1.0 -1.0 1952 4 --1.0 -"1.0 "1.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 1953 5 -1.0 -1.0 --1.0 -1.0 -1.0 --1.0 ·-1.0 --1.0 -1.0 -1.0 ··1.0 --1.0 1954 6 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -100 -1.0 -1.0 -1.0 1?~5~5 7 ·'1.0 --1.0 -1.0 --1.0 -1.0 -1.0 ·,1.0 -1.0 -1.0 -1.0 --1.0 .1.0 1956 8 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1;0 -1.0 -1.0'-1.0 1957 't 1.0 1.0 1.0 1.0 "To 0 1.0 1.0 1.0 1.0 (.0 -1.0 --1.0 1958 JO --1.0 -1.0 -1.0 -1.0 ".1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 1959 11 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 --1.0 ..1.0 ·-1.0 --1.0 -1.0 --1.0 1960 12 -1.0 -1.0 -1.0 -1.0 -.1.0 -1.0 -1.0 9688.0 15710.0 14820.0 16700.0 6725.0 1961 13 3~81.0 1800.0 1400.0 1300.0 1000.0 940.0 1200.0 10000,0 28320.0 20890.0 16000.0 9410.0 1962 14 4326.0 2200.0 1400.0 1000.0 ~~Q..!il..__7 {;>0 •0 720.0 11340.0 15000.0 22790.0 18190.0 9187.0 1963 1"3B48.0 1300.0 877.0 644.0 586.0 429.0 465.0 -2806.0 34630.0 17040.0 11510.0 5352.0 1964.-'16 31.34.0 1911.0 921.0 760.0 680.0 709.0 1097.0 8818.0 16430.0 18350.0 13440.0 12910.0 1965 17 3116.0 1000.0 750.0 700.0 650.0 650.0 875.0 4387.0 18500.0 12220.0 12680.0 6523.0 1966 18 ;'~322.0 780.0 720.0 680.0 640.0 560.0 513,0 9452.0 19620.0 16880.0 19190.0 10280.0 1967 19 3084.0 1490.0 1332.0 1232.0 1200.0 1200.0 1223.0 9::'68.0 19500.0 17480.0 10940.0 5410.0 1968 20 2406.0 1063.0 618.0 508.0 485.0 548.0 998.0 7471.0 12330.0 13510.0 6597.0 3376.0 1969 21 1638.0 815.0 543.0 437 ~'-0---426 •0 463.0 887.0 7580.0 --"9909.013900 ~o-12320.0 5211.0 1970 22 2155.0 1530.0 1048.0 731.0 503.0 470.0 ~29.0 1915.0 21970.0 18130.0 22710.0 9800.0 1971 23 4058.0 2050.0 1371.0 1068.0 922.0 881.0 876.0 9694.0 20000.0 16690.0 15620.0 9423.0 1972 24 -1.0 -1.0 -1.0 --1.0 ..1.0 -1.0 --1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1973 ')'1="-1.0 ·,1.0 -1.0 ·,,1.0 -1.0 .-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1974......J 26 -1.0 -1.0 -1.0 -1.0 -1.O'-"1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1975 27 _.1.0 --1.0 "-1.0 --1.0 =1-:-0--::r.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 1976 28 -1.0 -·1.0 --1.0 -1.0 -t .0 -1.0 -1.0 -l.Q -1.0 -1.0 -1.0 -1.0 1977 29 -1.0 ·-1.0 -1.0 -"1 •0 -1.0 ..1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 1978 30 -1.0 -1.0 -1.0 ---1.0 1979-1.0 -1.0 --1.0 -1.0 --1.0 -1.0 -1.0 -1.0 -_._....---_.- j "!1 1\1 ~-'J '--]~"-l "~l -'~'l '},~'--l -'-"J -]~-l "-1 1 '}'--j -"J ']}] TABLE 11.1.5:GOLDCR£EK UNFILLED DATA SET YEAH OCT 'NOV [lEC J'AN FEB MAR AF'R MAY J@ JUL AUG SEF'CALYR 6335.0 258J~D 1439~0 1027.0 7BB.D 726~0 870.0 11510.0 19600.0 22600.0 19880.0 8301.0 1950 2~~3848.0 1300-.;01100.0 960.0820.0 740;0 1617.0 14090.0 20790;0 2257();O--T9670.0~I:r40.0 1(~~i1 3 5571.0 2744.0 19'00.01600.0 1.'000.0 MO.O 920.0 5419.0 32370.0 26390.0 20920.0 14480.0 1952 48202.0 3'497.0 170,0.0 1100.0820.0 820.0 161'5.0 19270.0 21'320.0 20200.0 20610.0 15270.0 195:3 5 5604.0 2100.0 1500.01300.0 1000.0 780.0 1235.0 17280.0 25250.0 20360.0 26100.0 12920.0 19:54 6 5370.0 2760.0 2045.0 1794.0 1400.0 1100.0 1200.0 9319.0 29860.0 27560.0 25750.0 14290.0 1955 7 4951.0 1900.0 1300.0 980.0 970,.0 940.0 950.0 17660.0 33340.0 31090.0 24530.0 18330.0 1956 '~906.0 30~----2T4~'I~l>1500.0 120().()~1200.lJ--T3750.0 30160';0'233n)~O-2Q540.0~~19EjOO.O 1957 99212.03954.0 3264.0 1965.0 1307.0 1148.0 j~33.0 12900.0 2!'i700.0 22880.0 22540.0 7550.0 1958 10 4811.0 2150.0 1513.0 1449.0 1307.0 980.0 1250.0 15990.0 23320.0 25000.0 31180.0 16920.0 1959 ---':;'11 6558.0 2850.0 2200.0 11345.01432.0 1197.0 1300.0 15790.0 15530.0 22980.0 23590.0 20510:0 1960 12 7794.0 3000.0 2694.0 2452.0 1754.0 1810.0 2650.0 17360.0 29450.0 24570.0 22100.0 13370.0 1961 13 5916.02700.0 21'00.0 1900.0 1500.0 1400.0 1700.0 12590.0 43270.0 25850.0 23550.0 15890.0 19(,2 14 6723.0 2800.0 2000.0 1600.0 1500.0 1000.0 830.0 19030;0 2600o;()34400.0 23670.0 12320.0 196;3 15 6449.0 2250.0 1494."0 1.04B.0 966.0 713.0 745.0 4::107.0 50590.0 22950.0 16440.0 9571.0 1964 16 6291.0 2799.0 1211.0 960.0860.0 900.0 1360.0 12990.0 25720.0 27B40.0 21120.0 19350.0 1965 17 720S.0 2098.0 1631.0 1400.0 IJOO.o 1300.0 1775.0 9645.0 32950.0 19860.0 21830.0 11750.0 1.966 18 4163.0 1600.0 1500.0 1500.0 1400.0 1200.0 1167.0 15480.0 29310.0 26800.0 32620.0 16870.0 1967 19 4900.0 2353.0 20'55.0 1981.0 1900.0 1900.0 1910.0 16180.0 31550.0 26420.0 17170.0 8816.0 1968 20 3822.0 1630.0 882.0 724.0 723.0 B16.0 1510.0 11050.0 15500.0 16100.0 8879.0 5093.0 IS'69 21 3124.0 1215.0866.0 824.0 768.0 776.0 1080.0 11::180.0 lB630.0 22660.0 19980.0 9121.01970 22 '5288.0 3407.0 2290.>0 1442.0 ;1036.0 950.0 1082.0 3745.0 32930.0 23950.0 31910.0 14440.0 1971 23 5847.0 3093~n-25io-;O---2239-;'O 2028.0 18i3'.-O-17i'O:O·21890.0 34430.0 22770.0 19290.0 ·U40Cl.'O--T9n---- 24 4826.0 22~i3.01465.0 1200.0 1200.0 1000.0 1027.0 8235.0 27800.0 18250.0 20290.0 9074.0 1973 25 3733;0 1523.0 1034.0 874.0 777.0 724.0 992.0 16180.0 17870.0 18800.0 16220.0 12250.0 1974 26 3739.0 1700.0 1603.0 1516.0 1471.0 1~00.0 1593.0 153~0.0 32310.0 27720.0 18090.0 16310.0 1975 27 7739.0 1993.01081.0974.0 950.0 '7'00.0 1373.0 12620.0 24380.0 18940.0 19800.0 6881.0 1976 28 3874.0 2650.0 2403.0 1829.0 1618.0 1500.0 1680.0 12680.0 37970.0 22870.0 19240.0 12640.0 1977 29 ~7:i-;~O 3525·:-O~589-;O--'202"9:o'--166tf.0-'·__·-1 6'o5:o~--'l702:-o-iT950~-19 050 :O--'ilo 20 -;0'163'90;-0-8 (,0 7~9 'if)' 30 4907.0 25J5~0 l~el.0 1397.0 1286.0 1200.0 1450.0 13870.0 24690.0 28880.0 20460.0 10770.0 1979 TABLE A1.6:CHULITNA UNFILLED DATA SET YEAR OCT NOV [IEC JAN FEB MAR APR MAY JUN JUL AUG SEF'CALYR 1 1.0 1.0 --1.0 -1.0 ---=-r:0 --=r;(5 -1.0 1.0 -I.0 -I.t>I.0 -1.0 n"5(j----- 2 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1951 3 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1952 4 -1.0 1.0 -1.0 -1.0 1.0 -=-r.O '-1.0 -1.0 -1.0 -1.0 ------=-I~~~~-~\I~-P153 5 -1.0 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1954 6 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1955 7 -1.0 -·1.0 -1.0 -1.0 -1.0 -·1.0"-1.0 -1.0 -!"-;O -1.0 1.0 1.0 19~6'~-' 8 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1957 9 -1.0 -1.0 -1.0 -1.0 1044.0 948.0 1220.0 10460.0 23170.0 25010.0 20760.0 8000.0 1958ro-4197.0 1883.0 1262.0 1097.0 1049.0 738.0 890.0 7413.0 23660;0--25650~O 2~Ioo.o 9957.0 1959 11 4723.0 2283.0 1700.0 1448.0 1103.0 933.0 1000.0 13890.0 17390.0 23650.0 19320.0 12420.0 1960 12 5135.0 1950.0 1745.0 1452.0 1100.0 1079.0 1600.0 10100.0 20490.0 27420.0 24580.0 16030.0 1961----~1~5777.0 24"00.0 1500.0 1300.0 1~0 930~--rI70.0 7743.0 20620.0 27220.0 21980.0 13490.0 1962 14 3506.0 1500.0 1552.0 1600.0 1300.0 846.0 700.0 11060.0 17750.0 28950.0 18390.0 11330.0 1963 15 8062.0 2300.0 1000.0 1007.0 820.0 770.0 1133.0 2355.0 40330.0 24430.0 20250.0 9235.0 1964 16 5642.0 2900.0 2100.0 1600.0 1400.0 1300.0 1400.0 7452.0 20070.0 23230.0 22550.0 22260.0 1965 17 6071.0 1620,0 1350.0 1200.0 1100.0 1100.0 1300.0 3971.0 21740.0 23750.0 27720.6 12200.0 1966 18 4682.0 1680.0 1500.0 1458.0 1257.0 1045.0 972.0 12400.0 25520.0 35570.0 33670.0 12510.0 1967 ----.-19,.,--------::r ~S 3 •0 1 nO'•0 13 97 •0 r~r:r5 •0 n~ulT411_;-"O-~--r:r 4'-:ll~V4\r.-"1l"____;T·;>000 •0 30 1 40 •0'2071 0 •0 73 75 •0 19 Mr---- 20 2898.0 1480.0 1139.0 974.0 900.0 824.0 1333.0 6001.0 18560.0 20820.0 11300.0 6704.0 1969 21 4578.0 1887.0 1316.0 1200.0 1154.0 1100.0 1437.0 9643.0 19670.0 26100.0 24660.0 11330.0 1970 :1:T--3826.0 2210.0 1403.0 1113.0 950.0 934.0 982.0 4468.0 22180.0 27'280.0 23810.0 H080.0 1971 23 5439.0 2157.0 1432.0 1174.0 1041.0 939.0 893.0 9765.0 17900.0 25770.0 20970.0 12120.0 1972 24 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1973---25 1.0 ·T;-o----=f;-o----=L·o-~-----=T;O------=t-;-o~---:::T~------1.0 ::T~o----=T;0 -1.0 -1.0 1974"' 26 ··1.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 --1.0 -1.01975 27 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1976 28 -l.0 -1.0 -1.0 -1.0 ··1.0 -·1.0 100 1.0 1.0 1.0 1.0 -1.0 Pin Z9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1978 30 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1979 ---~--------_.-.------~._-_.~-__-_.._-_._----_.~-.,-,,--,_._._.._-,--._"._,-._-_._-----»_..-----------_.~--------------------...---------~~- e-j '_CO]-------1 -1 1 ---]----1 ~--'--]~----'J '~--l .---]'~-J ---]"'1 "----J -J TABLE A1.7:TALKEETNA UNFILLED DATA SET YEAR OCT NOVIIEC JAN FEB MAR APR MAY JUN JUL AUG SEF'CAL YR -1.0 -1.0 ·'1.0 -1.0 -1.0 -1.0 -j.O -1.0 ~1.0 -1.0 -1.0 -1.01950 2 "1.0 -1.0 -1.0 -1..0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 "-1.0 -1.01951r--1.0 --i.{)"1.0 -1.0 -1-;-0--1,.0 --1.0 -t.O -1.0 -1.0 --1.0 1.0 1952 4 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 -140 -1.0 -1.0 -1.0 1953 5 ··1.0 ··1.0 ...:1.0 -1.0 --1.0 -1.0 -1.0 -'-1.0 -1.0 ·-1.0 -1,0 -1.01954 6 -1.0 -1.0 --1.0'------l--;O---.::1~()-1.0 -r.-O------::-r~()-1.0 --1.0 -1.0 -1.0 l'?5~j 7 "':1.0 ...:1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1956 8 -1.0 -1.0 -1.b -1.0 -1.0 -Lo -1.0 -1.0 -1.0 -1.0 -1.0 -1.01957 9 -1.0 -l:-o---:T:O-..----T;o-----.::i:o------·~~l.O'-1.0 -1.0 "1.0 --=1;0------1.0 -1.o'-TIW·---- 10 -1.0 -1.0 -'1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.01959 11 -1.0 -LdL :-..l .•.~---=-1.0 __-,,-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.01960 12 -~.O -1.0 -1.0 -140 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 1961 13 -1.0 '·1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 ~1.0 -1.01962 14 -1-.0 -l.b -1.0 -1.0 -1.0-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 ··1.01963 .t~)"1.0 -1''-:O~-1.0 -1-.-o--·-::1-.o----T:o--'..·-1.0 --1.0 17080:0 9820.0 8396.0 3B15.0 1964 It>3115.0 1568.0 noO'o 720.0 620.0 5>\0.0 580.0 31\74.0 11090.0 12180,0 11150.0 10610.0 1'lt>5 17 4438.0 1460.0 87-6.0 711.0 526.0 39'5.0 422.0 2"10.0 12970.0 10100.0 10730.0 5370.0 1966 :fg 23118.0 --g91.b 750.0 637.0 546.0 47:LO 427;-b 4l12.0 9286.0 12600.0 11160.0 6971.0 1967 19 2029.0 1253.0 9137.0 851.0 777.0 743.09'83.0 BB40.0 14100.0 11230.0 7:':;46.0 4120.01968 20 1637.0 827.0 556.0 459.0 4<)1.0 380.0::;19.0 3fl69.0 5207.0 7080.0 3787-.0 2070.0 1969---.~·H 1450.0 765.0 587.0 504.0 fl,58d):4'40.0 -545.0 3950.0 7979.0 10320.0 8-752.0 5993.0 1'1'7-0---- 22 2B17.~1647.0 1103.0 679.~45~.0 402.0 503.0 2j45.~19040.0 11760.0 16770,0 5990.0 1971 23 2632.0 1310.0 845.0 727.0 628.0 481.0 519.0 3~16.0 12700.0 12030.0 9576.0 8709.0 -:,1~9-=7-:::-2__ 24 3630.0 1373.0 889.0 748.0 654.0 574.0 577.0 3860.0 12210.0 7676.0 9927.0 3861.0 1973 25 1807.0 960.0 745.0 645.0559.0 482.0 535.0 5678.0 8030.0 7755.0 7104.0 4763.0 1974 26 1967.0 1002.0 774.0 694.0 586.0 508.0 522.0 4084.0 13180.0 12070.08487.0 7960.0 1975 272884.0 773.0 "558.0 524.-0---480:(1-47M-'--t:Ti:-o ---3~39':O--To580'-0 9026.0 8088.0 3205.0 1976. 28 1.857.0 1105.01069.0 700.0 549.0 506.0 548.0 4244.0 18280.0 9344.0 8005.0 5'826.0 1977 2,9 3268.0 1121.0860.0 746.0576.0 485.0 534.0 2950.0 7429.010790.0 7001.0 3567.019'78 30 1660.0 1138.0 932.0 762.0 652.0 577.0 710.0 7790.0 12010.0 14440.0 8274.0 4039.0 1979 --_._._--------,_..•-.-,-----_.--~------._._----.-.._---_.._...~.--"'~---~---'-'~'--"-' TABLE A1.8:SKWENTNA UNFILLED DATA SET YEAR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL (iUG SEP CALYR -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1950 2 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.~-1.0 1951 3 -liO -1.0 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 -1.0 ~1.0 1952 4 -1.0 -1.0 -1.6 -1.0 -1.0 -1.0 -1.0 -1.0 -1,0 -liO -1.0 -1.0 1953 5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1954 6 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1955 7 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1956er--------=r.o -1.0 -1.0 -1.0 ··1.0 -1.0 ":1.0 -1.0 -1.0 -1.0 -1.0 -'-1.-0 1957 9 -1.0 -1.0 -1.0 -1.0 -liD -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1958 10 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -i.o -1.0 -1.0 1959 Ii 3532.0 l§SO.O 1400.0 1097.0 961.0 843.0 835.0 10480.0 13440.0 16690;0 15990.0 9171.0 1960 12 3889.0 1600.0 1597.0 1403.0 1154.0 1155.0 1700.0 11210.0 20570.0 16480.0 13910.0 12020.0 1961 13 4605.0 2200.0 1400.0 1200.0 860.0 760.0 1000.0 6613.0 15630.0 14930.0 12080.0 6723.0 1962 14 ----2IfOT;0 1 250 i 0 11 00 •0 1000 •0 810 •6 --:7 00 •0 650 •0 n 65 •0 14050 •0 20430 •0 1 2020 •0 71 80 •0 1963 15 5355.0 1550.0 840.0 970.0 750,0 600.0 840.0 Ib35.0 27250.0 16480.0 12680.0 6224.0 1964 16 4425.0 1790.0 1300.0 920.0 800.0 740.0 770.0 4810.0 17160.0 19370.0 14010.0 13090,0 1965 17 4122.0 1575.0 1150.0 1100.0 1100.0 1100.0 1300.0 4502.0 19550.0 14180.0 17320.0 9812.0 1966---~ 1El 5576.0 1400.0 900.0 720.0 650.0 650.0 780.0 1794.0 14430.0 14740.0 15760.0 9517.0 1967 19 3832.0 1560.0 1181.0 1023.0 1000.0 950.0 1293.0 13460.0 20770.0 17480.0 10560.0 3855 .•0 1968 20 1929.0 678.0 624.0 600.0 600.0 626.0 1487.0 11070.0.19580.0 13650.0 7471.0 3783.0 1969 21 5654~0 1607.0 832.0 766.0 700.0 650.0 728.0 11710.0 22880.0 21120.0 13030.0 6665.0 1970 22 2919.0 2023.0 1184.0 865.0 721.0 613.0 607.0 5963.0 25400.0 20600.0 15920.0 6024.0 1971 23 3020.0 1327.0 1103.0 989.0 898;-0----811.0 742.0 8045.0 15330.0 16840.0 13370.0 9256.0 1972 24 4551.0 2340.0 1316.0 910.0 702.0 606.0 727.0 6~49.0 15200.0 13850.0 9874.0 6164.0 1973 25 3340.0 1700.0 1265.0 1023.0 902.0 811.0 1005.0 6765.0 10650.0 11670.0 10480.0 11800.0 1974 26 4557.0 2328.0 919.0 800.0 750.0 750.0 767.0 7852.0 19060.0 19520.0 11710.0 8471.0 1975 27 4704.0 1973.0 1258.0 971.0 897.0 800.0 1270.0 8806.0 15120.0 14580.0 11120.0 8165.0 1976 28 6196.0 2880.0 2871.0 2829.0 1821.0 1200.0 1200.0 8906.0 36670.0 25270.0 20160.0 10290.0 1977 29 5799.0 2373.0 1548.0 1213.0 944.0 841.0 1023,0 9006-.-0-1J840.0 18100.0 13740.0 7335.0 1978 30 4936.0 1380.0 1555.0 1165.0 1036.0 981,0 1597.0 11660.0 14980.0 15830.0 16210.0 7448.0 1979 1 'J 'I .1 -)~'--1 ,-'--"1 '-1 ,----,--'.---1 -----]----I ---1 -1 -1 -~-]_--1 ~""-'-J TABLE Al.9:SUSlTNA STATION UNfILLED DATA SET --TEAR -,---ocr --NOV ----'--:1.TE:c-------:JA~--------FT1t-'-'--1"I'AR--'---ffF'F\-'--rrn-Y'---~~:rUfT:---------JUt------1IUb~----S~LHCITl---- 1 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 '-1.0 lS'~;O .~--1.0 -1.0 -1.0 1.0 -1.0 -1,.0 --1.0 -1.0 ,..1.0'-1.0 -1.0 ~~'i'51 3 -1.0 -1~0 -1.0 -1.0 -1.0 -1.0 -l.Q -1.0 -1.0 -1~0 -1.0 -1.0 1952 4 -1.0 -t.Q -t.O -1.0 -1.0 -t.O -1.0 -1.0 ~1.0 ~1.0 -1.0 -1.0 1953 .~_..1.0 1.0 ~Lo --1.0 -1.0 1,0---=1-.-0--1.0 --100 -1.0 1.0 --J.,0 19::.4 6 -1.0 -1.0 -1.0 -1.0 -1.0 -I.Q -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1955 7 -1.0 -t.O .:.1.0 -1.,0 -1.0 -1.0 -1.0 -1.0 -1.0 -·1.0 -1.0 --1.01S'5f, IS _i .h _,_h __i .Ii _i .n ....i _h ....1 .h 1" ']10 -1 •.0 ----!1 -1.0 12 -1.0 13 --1.0 -1.0 -1.0 -1.0 -1.0 -t.O ~t.O -t.Q -1.0 ~1.0 ~I.O -1.0 -1.0 195B -1.0 -t.O -t.O -l.~-t.O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1959 -·1.0 ··1.0 -1.-o------:::-r-.-u -1.0 -1.0 -1.0 .1.0 1.0 I.0 -1~T'7~-- -1.0 -1.0-1.~-1.0 -l.Q -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 1961 -t.O -1.0 -1.0 -l.Q -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1962 _. _ _~......._~u--_·.._·-·_·~--.\)..~1 t 0 l\j'~2 ()1.()-1 •0 *1 • __'_ _ . _ 14 -1.0 "1.0 -1.0 l.O --1.0 -l.O -1.0 -1.0 -1.0 -1.0 ··1.0 --1.01'''(',.3 15 -t.O -1.0 -1.0 -1.0 -1.0 -1.0 -i.o -1.0 -1.0 -1.0 -1.0 -1.0 1964 16 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1965 --.~1 •OL(}----1 •(}i.e --t •()1'70---=10~'-'~1o'(}--=1-.-o-------r;--o---1.•0 --1 ~9(';1.l-- 18 -1.0 -1.0 -1.0 -1.,0 --1.0 -·1.0 --1.0 --1.0 ..1.0 -1.0 -1.0 -,1.01967 19 -1.0 -lAO -1.0 --t.O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1968 t)=1-.0 -,1 .0'I.,0 -,I.(j I •tl --I.tl 21 -1.0 -1.0 -1.0 -l.Q --1.0 -t.O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1970 22 -1.0 -1.0 -~.O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 1971 ---~1 •0 -..l • 0 _.1·.0 -1 •0 ---"'1-;1)-1 • 0 ..~-;-ry----'-"l';"(}---1 •0 I •0 --=-t~..1 •a T77T-- 24 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1973 25 -1.0 -·1.0 -1..0 --1.0 ..·1.0 -1.0 -1.0 -1.0 -1.0 --1.0 ,·1.0 -1.01974 26 19~20.0 10400.0 9419.,0 8::;9/.0 71m"1r.o 7048.0 6867.0 4/5'l0.0 L!8800.0 13::'700.0 91360.0 77740.0 IS'?:,--- 27 31550.0 9933.0 6000.0 6529.0 5614.0 5368.0 7253.0 70460.0 107000.0 115200.0 ';'9650.0 48910.0 1'.'76 28 30140.Q 18270.0 t3100.0 10100.0 8911.0 6774.0 6233.0 56180.0 165900.0 143900.0 125500.0 83810.0 1977 -"~~n0'3~/~~.0 e ~7'1'70-----57 i:r-;-O-o'70~-v---nr:n;v-4lr57\T-;v-'7'ttt;''3'O~-v-n76'O\),,;v10 <.1 ()(,• v "5S;rO-tr:V---1'771:r-- 30 36310.0 15000.0 9306.0 8823.0 7?46.0 7032.0 8683.0 81260.0 119900.0 142500.0 128200.0 74340.0 1979 ....>....r-fn"~ Ii.....<i~~l,~f Vi ~c:i~::1;;<'0~Jt<:-..:::::t::J-<'-- TABLE Al.l0:MEAN AND STANDARD DEVIATION BEFORE AND AFTER FILLING IN Before(B) Site St atist ical or M0 NTH (No.of Data)Parameter AftedA)lU II II 1 2 3 4 5 6 7 8 OJ Gold Creek Mean B 5639 2467 1773 1454 1236 1114 1368 13317 27928 23B53 21479 13171 (360)A 5639 2467 1773 1454 1236 1114 136B 13317 27928 23853 21479 13171 SD B 1422 678.5 571.2 446.3 356.5 340.3 392.6 4236 7740 3921 4775 4235 A 1422 67B.5 571.2 446.3 356.4 340.3 392.6 4236 7740 3921 4775 4235 Maclaren Mean B 408.9 177.0 117.8 96.2 B4.1 76.4 87.2 802.7 2920 3181 2573 1149 (256)A 408.6 172.8 110.3 94.5 78.7 73.0 B6.4 B18.3 2913 3217 2600 1177 SO B 110.8 49.8 39.7 31.5 25.6 22.4 26.3 462.0 611.1 496.0 609.9 460.3 A 107.3 49.0 37.2 29.1 25.7 22.5 26.9 486.7 597.8 482.4 610.9 434.6 Skwentna Mean B 4297 1779 1267 lO7B 902.B 809.4 1016 7920 1B578 17091 13371 8150 (240)A 41B8 1762 1258 1039 875.9 804.9 1024 7985 18044 16463 13212 83B2 B 1101 477.0 447.6 440.8 256.4 178.7 321.6 3139 5B54 3147 2871 2453 A 1063 560.5 416.4 3B3.0 219.2 155.5 328.5 4115 6329 2B8o 2693 3260 Denall Mean B 1132 499.8 317.3 245.5 206.4 187.9 230.2 2056 7306 9399 8124 3356 (247)A 1127 478.7 302.3 240.1 199.3 187.2 230.0 2297 7582 9547 8354 337B SO B 391 146.4 109.2 84.7 67.9 65.1 B1.B B05.1 1973 1320 1719 1243 A 367 148.4 102.2 77.8 68.3 71.8 77.0 1081 2436 1479 1943 1269 Talkeetna Mean 8 2505 1147 842.1 673.8 564.7 496.9 569.1 4291 11948 10514 9272 5429 (184)A 2702 1194 849.9 678.9 562.9 482.0 554.5 4115 11578 10882 10426 6163 SO B B25.9 273.7 176.8 102.3 92.0 86.9 129.1 1777 3801 1955 2879 2180 A 729.4 263.9 169.3 100.8 97.0 72.1 114.6 1526 3754 2016 302B 2304 Cantwell Mean B 3033 1449 99B.2 823.6 722.0 691.8 853.0 7702 19327 16892 1465B 7Bol (137)A 3072 1426 927.3 B22.0 689.5 650.7 B22.6 7317 17962 16620 14334 7901 SO B 802 476 314.5 272.1 230.8 227.8 257.4 2911 6462 2906 4126 2649 A 732.4 361.4 245.2 215.4 179.4 193.8 240.6 2683 5118 2508 3216 2528 ChulItna Mean 8 4859 1994 1457 1276 1095 975.6 1158 8511 22537 26333 22185 11736 (176)A 4972 2009 1461 1269 1072 961.8 1167 9516 22921 26687 22449 12oBo SO B 1276 389 261 198 147.7 147.8 240.2 3159 5648 3363 4674 3671 A 1045 389.5 234.4 185.7 155.0 128.7 249.8 4546 5245 3500 4476 3418 ~~1 ,~~~~J ~ilJl! .... r !""'" I r I - Gold Creek DenalI Maclaren Skwentna Talkeetna Cantwell Chulitna TABLE A1.11:LAG-ONE CORRELATION COEFFICIENTS Before Fillina After Fillinq .612 .612 .567 .597 .594 .600 .602 .587 .664 .616 .645 .616 .4'16 .527 TABLE Al.12:SPATIAL CORRELATION MATRIX UNFILLED TRANSFORMED DATA SET Gold Creek i 1.000 0.589 0.621 0.612 0.593 0.299 0.486 0.546 0.384 0.449 0.256 0.247 0.097 0.275 Denali i 1.000 0.726 0.619 0.464 0.718 0.873 0.207 0.625 0.445 0.242 0.170 0.437 0.549 Maclaren i 1.000 0.337 0.504 0.587 0.733 0.426 0.540 0.714 0.156 0.306 0.371 0.517 Skwentna 1 1.000 0.424 0.527 0.519 0.193 0.311 0.131 0.396 0.060 0.187 0.236 Talkeetna i 1.000 0.407 0.550 0.307 0.307 0.375 0.261 0.551 0.230 0.372 Cantwell i 1.000 0.730 0.039 0.376 0.390 0.123 0.127 0.587 0.413 Chul itna i 1.000 0.177 0.555 0.478 0.213 0.278 0.481 0.663 Gold Creek 1 1.000 0.550 0.611 0.570 0.571 0.224 0.438 Denali i-l 1.000 0.724 0.588 0.436 0.699 0.860 Maclaren i-1 1.000 0.304 0.495 0.583 0.721 Skwentna i-l 1.000 0.391 0.475 0.481 Talkeetna i-1 1.000 0.380 0.524 Cantwell i-1 1.000 0.705 Chulitna i-l 1.000 q 1: -1 ,._•..]-1 1 --1 ~~1 -1 fA8LE A1.13:SPATIAL ·GORRElATIONMATRIX FILLED TRANSFORMED DATA SET Gold Creek i Denali i-1 Maclaren i -1 Skwentna 1-1 Talkeetna i-1 Cantwell i-l Chulitna i-1 GoldCree.k Denali 'Mac:laren Skwentna Talkeetna CanbweH Chul.itna i i 1 i i i i 1.:ooon.~16 0.5340.552 0.500 0.2'58 0.486 1.000 0 .•728 U.5i65 n.398 U..639 0;833 1.:000 :0.31 'I :n.3'66nA59'O~7Tl. '1.,;UOO U•.353 0.490 0.506 ',;:000 0.445 0.476 l~onO 0.650 1.UOO 0.525 0.315 0~350 0.312 0.241 0.210 0.615 0.415 0.286 0.196 0.281 0.4'64 0.615 0.148 0.212 0.285 0.360 0.167 0.597 fJ.t60 0.243 0.229 0.211 0.253 0."586 0.072 0.357 0.252 0,249 0.256 n.2tO 0.511 0.422 0.286 0.261 1.000 0.516 0.534 0.-551 0.501 1.000 0.727 0.564 0.398 1.000 0.307 11.366 1.000 0.353 1.000 0.047 0.266 0.358 0.474 0.239 0.440 0.238 0.307 0.250 0.285 0.598 0.370 0.407 0.611 0.258 0.486 0.639 0.833 0.458 0.733 0.490 0.505 0.446 0.476 LOUD 0.651 t.OOO TABLE A1.14:DENALI FILLED DATA SET YEAF(OCT NOV [IEC JAN FEB MAR AF'R MAY JUN JUL AUG SEF'SUMYR CALYR 27 23 24 ~5 2.', 1272.9 591.5 321.0 382.5 251.2 230.7 258.8 ~i52.1 6977.0 9185.2 7934.9 1794.5 31352.3 1950 2 711.1 242.1 152.4 122.9 113.9 101.8 315.8 IS60.0 6i55.5 8022.1 5167.0 2860.2 25524.6 1951 3 1084.4 549.7 336.5 297.5 198.9 170-:9-~178:4 1367.48032.89411.07715.63092.5 32435.71952----- 4 1028.2 391.1 232.2 238.7 134.7 77.9 216.0 1601.3 6270.8 8950.7 6349.5 2255.9 27747.2 1953 5 914.7 192.2 145.5 84.8 64.3 88.7 217.3 2593.9 5077.0 7864.5 6286.8 2287.0 25816.8 1954 6 1120.6 546.8 450.0 299.3 229.1 146,6 164.2 1380.0 7192.5 10378.4 10047.8 2831.5 34786.8 1955 7 1455.2 373.7 247.4 196.5 300.4 275.0 249.3 4259.3 9754.7 9449.4 5~06.8 3242.2 35109.9 1956 8 1057.7 475.1 439.7 650.9 422.4 287.1 291.9 3017.3 12210.0 11170.0 9769.0 4017.0 43808.1 1957 '1 1277.0 610.0 288.0 219.0 15o:0----r2o.o~10:0--i163.0 8367.0 9150.0 6536.01879.0 29969.01958 10 939.0 390.0 170.0 119.0 81.0 41.7 43.0 1782.0 8891.0 8333.0 7882.0 2498.0 31169.7 1959 11 1577.0 760.0 575.0 444.0 371.0 275.0 265.0 3349.0 5237.0 9039.0 7910.0 4817.0 34569.0 1960 12 1781.0 660.0 483.0 331.0 271.0 281.0 415.0 2959.0 6412.0 8078.0 7253.0 2695.0 31619.0 1961 13 1290.0 680.0 440.0 280.0 240.0 2~0.0 280.0 2197.0 9087.0 10220.0 9454.0 3649.0 38037.0 1962 14 1079.0 510.0 310.0 250.0 230.0 200.0 210.0 3253.0 6763.0 10500.0 10210.0 3949.0 37464.0 1963 I.~)925.0 290.0 185.0 140.0 i40'~0 110~0 130.0 ---910.OT163~7577~6552.-02633:0-31222.019~·-· 16 1468.0 702.0 279.0 220.0 200.0 208.0 320.0 2464.0 4647.0 6756.0 5764.0 6955.0 29983.0 1965 17 920.0 300.0 240.0 210.0 200.0 200.0 280.0 1629.0 6850.0 8287.0 6432.0 3200.0 28748.0 1966 18 920.0 300.0 240.0 210.0 200.0 200.0 280.0 1629.0 6850.0 8287.0 6432.0 3200.0 28748.0 1967 19 973.5 616.9 323.6 189.0 266.9 266.7 325.0 1495.3 6138.2 11840.0 9825.0 2192.0 34452.1 1968 20 700.0 304.0 172.0 145.0 140.0 145.0 229.0 1768.0 8146.0 9~45.0 3919.0 2213.0 27326.0 1969 21 1002.0 501.0 339.0 '265.0 221.0 193:-0-319.02210-:0--5013;-08454.06216.01946.0 26679.01970 22 528.0 395.0 276.0 170.0 125.0 120.0 135.0 629.0 8099.0 10410.0 10400.0 3288.0 34575.0 1971 1039.0 478.0 380.0 339.0 307.0 286.0 270.0 3468.0 6562.0 10450.0 8~64.0 2778.0 35021.0 1972 667.0 323.0 211.0 178.0 164.0 133.~153.0 1042.~5741.0 8346.0 7268.0 2445.0 26691.0 1973 876.0 462.0 366.0 310.0 271.0 235.0 262.0 2541.0 5642.0 9547.0 9292.0 5452.0 35256.0 1974 2135.0 673.0 381.0 300.0 200.0 200.0 200.0 1640.0 7040.0 12110.0 7295.0 3571.0 35745.0 1975 1539.0 375.0 169~O-112.0 97;~0--90.0--123-:-01805-~O-·-5939.0 8558.0 10080~0 1822.0 30709.0 1976 28 894.0 467.0 331.0 266.0 240.0 231.0 246.0 1498.0 8~53.0 10010.0 10180.0 3707.0 36323.0 1977 29 1148.0 652.0 439.0 348.0 300.0 246.0 263.0 2031.0 5250.0 8993.0 8644.0 3622.0 31936.0 1978 30 865.0 463.0 312.0 263.0 229:0--203'.0 250.0 2791.0 7"'~50.0 9504.0 9178.0 4512.0 36220.01979 )·1 !;l :,J -~~_J a ; -~I ~_..-._..')-,e~el J J 1 ~-l .e-l e 1 -"~l ~1 C-e ,]------1 ~'-'-1 el J TABLE A1 4 15;'MACLA'REN FILLED DATA SET YEAR on NOV [fEe .:liM FEf<'M""'!';:APR 1'\;IIY lJU:N JUl.AUG SEF'SUMYR CAl.YR 1 50:;.2 U'''.b '9,~"e'9I)'.2~_-'110.B iS5".7 63,.4 7'05..~,n-4:li~_3:D29.7 2394.7 5'::;'5.,6 10T57.2 1950 ;:)2£16,.9 '97,,8 '50.'9 '4El.3 50.7 315.:8 '9&.•3 7BJA 23BO.22966.1 2530.5 20BZ.A.11412.0 1951 :3 381.7 160.9 11'5.399,,'{'66.:13 50.751.6322.-9 2752.2 3~33.1 3:0'92.9 1692.7 12320.5 ,1952 --~4---Jl49,J 1t;,6.~":'!T_2---_M.6 4 .....:.0 504l,_~82.'Fl52'!hiL..?403 .•2 1'924.6 200!.9 979.1 1034~.13 1953 5370.7 131.4'8'5.7100.356,,3 -4~,.~'8.6:a.7 70,8,3.7 3332.7 3132.4 27·97.8 885.9 13091.4 19~)4 6 368.2 1'59.9 102,.9 97 .•3 lD7.0 73.072.'8 3'97.92:889.5 3137.6 3741.1 1748.4 12895.7 1955 '7 604·.3:2-4,6,.21'02.6 .6:6.:5 105.2 ;83.4 103,.3 ]:549••83303.3 3415.6 2178.4 1080.7 12839.4 1956 n 287.5 125.8 9'6.1 £18",4 70.5 '92~4 71.,5 682,.S 3158.5 ,32'71.5 2246.0 1528.9 11719.8 ~7 9 430.3 171.1 lUI.•,6 1!Hil.7 8'0 .•B -64.0 l1'8.1.S28.0 3832.03525.0 2(,99.0 7B4.0 12459.8 1958 1037'8.0 11'5·.0 123.0 J.Z9.0 93.4 .02.5 77;5 '!iB7.0 2'879.02f1BD.,O 20'B.3.0 B'56.0 1006.5.41959 115'41;)40 25:0.0 190.'0 !-50 .D 1'I'O.O 9-4,.3'91.,5 1'7'42.·0 21"24.0 3,559.0 3048.0 2439.0 141J1l>.B 1960 12 '6'97,.0 195.0 1'49.0110.093,.9'1'6,.01"15.•01237.02.678.03369.0 3299.01168.0 1'3226.91961 13:381 .•,0210.0 170.0 120.0 1;0'0.0'92.0 12'0.iO ,632.:0 2916.0 32h'5.0 29·27.0 1127.0 12060.0 1962 14 3,'85.,0 :210.0 130.0 100.0 9'1.0 eo,.°<83.021;31.03110.0 4649.0 31Ui.O 1'213.,015316.01963 15 416.0 140.0 'P:B.'O :B'5.0 'B9.,,0 7L'O 72,,0 ,3Bl>.O 4797,.'02764.0 2224.0 B71.0 11'512.0 1964 1637'9.0147'4,1)4'9,.3 44.'042,.';04'1.0 '62.0 ''9:B ..!I.'O ,'2268.'03223.,024;0'9.0 2'0'9,8.0 111'4,6.3 1965 U'5~!2.0 180.0 5'5.0 45.0 4S;0113 .,0 51hO 265.0 2'990.0 25,05.0 20'95.0954.0 9749.0 1S'66 l'B 36'9.0 '9'5 .•.0 7;0,.0 :6'$.•0 -60.0 $:;;,.05:3.•3 1023,.:03:634.0 325'5403,,05.0 1416/0 13700.3 1967 19 417.0 130.0 liO'O.n ''97.495.0 '9'S.09.5.0 2'08.0 3::''45·."0 3427.,0 21.29.0 680.0 10718.4 1968 :2 0 ,265.0 l::n.O 68.558.2 55.'0 S 7 •.6 95.3 B49.0 2[\13.0 2692.09 74 •0 470.0 B3113 ,zi 1 969 21 249.0 117.0 7,3 ..:2 '5'9.~~:O.'4 52.7 69.2 746.0 :17'51.'021\41.0 2367.0 7T3.0B74'8.9 1970 22 :3-01.01924 0 '131 .•:083",4 604455,0 66 •.0 36~,"03414 .03-:'028.•0 3,(,:59.0 116.5.0 .1'301'9.8 1971 ;~;5 375 .0 ~12i.o U'5:1}107';·1)--'-".498 .5 ~;~5l>9.0 '325S-;;O 2 67,"'0 1366 .0 12 6'55.9 19'72 2'4 5S0.0243.0 136.:0 874465.253.4 51.2 576.:0 290640 28:56.0 2271.0 821.0 10616.2 1973 25 307.0 123.0B2.6 68,.51>:1,•.8 56.6 56.7649.0 2069.0 2.634.,0 243'9.0 1543.0 10090.2 1S'74 2,613'85.'0232.0 140.0 1[5.011040 100.0 103.0 76:8.03178.036-49.61982.0157440 12336.01975 27553.0 23'5.013-9.0 106.:0 94.190...010'5.0 7'B1.02B70.0 2810.0 2604.0 600.0109'87.1 1976 28302·.0 16'B.0 119.0 ''97 •.392.0 '90.'0 92.9 366.0 3942.0 3B344 I)3:r94.0 1297.0 13794.2 1977 2951240 265.0 186,.'0 162:.0--liiO:'O----12I:;'O':134.6---709.0-2317.0 3196.0 2356.0 924 .•0 11022.0 197B 30 3:07 .•0 192.0 142.0 '122,,,0 -11040100.0 :111.0 ,634.0 2430.0 3056.0 2223.0 1137,.0 1056<1.0 1979 TABLE A1.16:CANTWELL FILLED DATA SET YEM~OCT NOV DEC JAN FEll MAR APR MAY JUll JUL AUG SEF'SUMYR CALYR '1 J 4218.3 1824.1 924.6 828.3 662.6 562.7 618.3 7827.5 15670.4 16690.4 13901.9 5631.6 69360.7 1950 2 2710.0 889.0 710.7 556.2 494.8 409.5 999.4 6194.6 12003.0 1~652.4 11642.8 11693.5 62955.8 1951 3 3255.8 1575.1 956.5 740.4 492.3 560.5 639.3 2642.7 16465.7 17394.7 13705.1 8185.0 66613.1 1952 4 3431.2 1668.6 932.4 731.2 511.6 476.7 833.7 5960.2 13671.0 13140.8 11158.3 5876.8 58392.4 1953 5 2334.1 916.8 794.1 708.4 482.6 443.3 638.4 7852.1 16795.4 16371.9 19033.7 9832:6 76203.3 1954 6 3293.4 1784.7 1105.3 930.6 797.6 491.0 563.2 3014.7 1~675.8 16621.7 12900.7 6064.7 62243.4 19;:;5 7 2465.1 1075.3 855.2 684.3 727.2 614.7 569.2 8231.9 20082.3 18916.4 14164.8 8487.2 76873.6 1956 S--2547~-4-T279.1 902.1988.4 943.4 851.3 802.6--8230.5 19438.8 16361.0 13422.6 8899.4 74466.8 1957 9 3410.4 2051.9 1096.8 876.9 592.2 454.1 689.9 3004.9 13973.2 15743.3 12723.2 4464.4 59081.3 1958 10 2b90.1 969.6 733.6 661.7 644.9 501.2 671.2 7894.5 16362.3 15620.2 16790.6 8063.5 71603.4 1959 11 3711.0 1718:7 1187.7 1042.0 826.4 695.6 785.6 13750.5 11108.1 16291.3 170~6.1 12704.7 80877.7 1960 12 4625.6 2012.7 1534.8 1207.4 984.7 1056.1 1701.7 9688.0 15710.0 14820.0 16700.0 6725.0 76766.0 1961 13 3281.0 1800.0 1400.0 1300.0 1000.0 940.0 1200.0'10000.0 28320.1 20890.0 16000.0 9410.0 95541.1 1962 14 4326.0 2200.0 1400.0 1000.0 850.0 760.0 720.0 11340.0 15000.0 22790.0 18190.0 9187.0 87763.1 1963 15 3848.0 1300.0 877.0 644.0 586.0 429.0 465.0 2806.0 34630.0 17040.0 11510.0 5352.0 79487.0 1964 16 31lli.!Lti!.!~~.L'-.L-,-760._.0 __~8Q-,O_~Z09!._Q_--.1.Q.22!~!8.016430.0 18350.0 13.440.0 1291.0.0 7916001 1965 17 3116.0 1000.0 750.0 700.0 650.0 630.0 875.0 4387.0 18500.0 12220.0 12680.0 6523.0 62051.0 1966 18 2322.0 780.0 720.0 680.0 640.0 560.0 513.0 9452.0 19620.0 16880.0 19190.0 10280.0 81637.1 1967 19 3084.0 1490.0 1332.0 1232.0 1200.0 1200.0 1223.0 9268.0 19500.0 17480.0 10940.0 5410.0 73359.1 1968 20 2406.0 1063.6 619.0 509.0 495.0 549.0 999.6 7471.0 12330.0 13510.0 6597.6 3376.0 49910.6 196~ 21 1638.0 815.0 543.0 437.0 426.0 463.0 887.0 7580.0 9909.0 13900.0 12320.0 5211.0 54129.0 1970 22 2155.0 1530.0 1048.0 731.0 503.0 470.0 529.0 1915.0 21970.0 18130.0 22710.0 9800.0 81491.1 1971 23 4058.0 2650.0 1371.0 i061r;~~~8lIT-;()-1f76:o-9f;9"4.020000.016690.0 15620.0 9413.0 8~'653.0 197:'"'--- 24 3619.2 1962.0 1138.5 895.6 778.9 638.9 723.2 4763.6 Ib762.6 12619.1 12379.8 5037.5 61318.9 1973 25 2037.4 929.4 651.2 583.7 467.7 407.8 553.0 9163.1 12544.9 13434.2 11833.3 7888.1 60493.8 1974 26 --21(Hr~9-1191.4 929.8 812.5 779.6 669.5 807.2 5583.5 19277.4 20912.114971.9 106413.4 78492.2 1975 27 3879.3 1052.1 564.4 549.6 529.7 496.4 628.4 4788.3 16571.4 14057.3 1~468.0 4585.6 62170.6 1976 28 2198.5 1195.9 1150.1 848.6 689.9 777.8 996.2 9619.2 30705.6 16666.4 1~242.6 7~20.0 84510.7 1977 29 3968.8 1833-:'7---U63.7 119201 1034.4 1272:7-r368~8--7819:--4--P)655-.316812.8 10181.5 5488.6 67891.8 1~ 30 2345.0 1288.6 1032.3 878.5 808.3 746.7 870,6 6209.9 15598.4 18493.7 12750.7 7320.9 68343.7 1979 1 ,--1 -~7--1 ~--l ]-J -1 ~~~l ]--1 --~--l -~-]~-~J ]-1 ~'7-1 ----1 TABLEA1.17:GOLD CREEK FILLED DATA SET YEAR OCT NOV REC JAN rEB HAR APR HAY JUN JUL AUG SH'SUHYR CALYR 1 2 3 6335.0 2585:-0 1439.01027.0 788.0 726.0 1370.0 11510.019600.0 22600.(Y T'r13Efo.o 13301.0 95659.1 1950 3848.0 1300.0 1100.0 .9.60.0 820.0 740.0 1617.0 14090.020790.022570.0 19670.021240.0 108745.1 19:il 5571.0 2744.0 1900.0 1600.0 1000.0880.0 920.0 5419.032.370.1 26390.020920.014480.0 114194.1 1952 4 5 8202.03497.0 1700.0 1100.0820.0 820.0 1615.0 19270.0 27320.1 20200.0 20610.0 15270.0 120424.1 1953 5604.02100.0 1500.0 1300.0 1000.0 780.0 1235.0 17280.02:'025.0.02'0:360.0 26100.012920.0 115429.1 1954 6 5370.0 27.60.0 '.2045.0 1794.0 1400.0 1100.0 1200.0 9319.0 29860.0 27560 •.0 2575.0.0 14290.0 122448.1 1955 -----7-4951.0 1900.0 1300-.0 980.0 970.0-940;0--950.01-7660;0 33340.0 31090-:1-'-24530.0-18330-;0--136941:2 ---r9'56 B 5806.0 3050.0 2142.0 1700.0 1500.0 1200.0 1200.013750.030160.023310.020540.019800.0 124158.1 is'57 9 8212.0~954.~0 3264'(L19~.0 13020..0 1148.0 1533.0 12900.0 2.5700.0 2;:>880.0 22540.0 7550.0 112953.1 1958 10 4.811.0 2150.0 1513.0 1448.0 1307.0 980.0 1250.0 15990.0 23320.0 25000.0 31180.0 16920.0 125869.1 1959 11 6558.0 2850.0 2200.0 1845.0 1~52.0 11~7.0 1300.0 15780.0 15530.0 22980.0 23590.0 20510.0 115792.1 1960 12 7794.0 3000.0 2694.0 2452.0 1754.0 1810.0 2650.0 17360.029450.024570.·0 2:!100.0 13370.0 129004.1 1961 13 591(,.0 2700.0 2100.0 19,00.0 150o;(f-i400~·olioo.0 12590.0 43270.0 25850.0 23'550.0 15890.0 138366.0 1962 14 6723.0 280040 2000.0 1400.0 1500.0 1000.0 830.0 19030.0 26000.0 34400.0 23670.0 12320.0 131873.0 1963 15 64~9.0 2250.0 1494.0 1048.0 ~66.0 713.0 745.0 4307.0 50580.0 22950.0 16440.0 9571.0 117513.1 1964 16 6291.0 2799.0 1211.0 960.0 .860.0 900.0 1360.0 12990.0 25720.0 27840.0 21120.0 19350.0 121401.1 f9~-- 17 7205.0 2098.0 16:31.0 1400.0 13/00.0 1300.0 1775.0 9645.032950.019860.021830.011750.0 11274401 1966 18 4163.0 1600.0 1500.0 1500.0 1400.0 1200.0 1167.0 15480.0 29510.0 26800.0 32620.0 16870.0 133810.1 1967 19 4900.0 2353.0 2055.0 1981.0 1900~O~1900~Ol9io:01b18-O::-0-3f550.0 26420.0 17170:08816':0 117135.1 -1960---- 20 3822.0 16.30.0 882.0 724.0 723.·0 816.0 1510.0 11050.0 15500.016100.0 BH79.0 5093.0 66729.0 1969 21 3124.0 12.15.0 866.0 824.0 768.0 776.0 10130.0 11380.0 18630.0 22660.0 19980.0 9121.0 90-124.1 1970 22 5288.0 3407.0 2290.0 1442.0 1036.0 950.0 1082.0 3745.0 32930.0 23950.0 31910.0 14440.0 122470.1 1971 23 5847.0 3093.0 2510.0 2239.0 2028.0 lB23.0 1710.0 21890.0 34430.0 22770.0 19290.0 12400.0 130030.1 1.972 24 4826.0 2253.0 1465.0 1200.0 1200.0 1000.0 1027.0 8235.0 27800 •.0 18250.0 20290.0 9074.0 96620.1 197:3 -'~25 3733.0 1523~034 :0 874.0 i77:O--724:·O--992~T-T6I80:0l.78io-;()I880o;o16220 .0-12250.0 90977.1 -1 974'--- :!6 3739.0 1700.0 1603.0 1516.0 1471.0 1400.0 1593.015350.032310.027720.018090.016310.0 122802.1 1975 27 773~.0 1993.0 1081.0 974.0 950.0 900.0 1373.0 12620.0 24380.0 18940.0 19800.0 6881.0 97631.1 1976 2B 3874.0 2650.0 2403.0 1829.0 1618.0 1500.0 1680.0 12 ....80.0 37970.0 22870.0 19240.0 12640.0 120954.1 1977 29 7571.0 3525.0 2589.0 2029.0 1668.0 1605.0 1702.0 11950.0 19050.0 21020.0 16390.0 8607.0 97706.1 1978 3_0 4907 .0 _253~_•.~~_.!.~_1.~.9_1_397.0__l2~A_~0__.!.200..~2_.14.:JQ._.9_J}l:l?0_.(L_2.~t~__~Q..!..L?5L8_::l.~.1 204.6_Q •.o~LOJ.z.Q~._J 13126.L..!...979 _. TABLE A1.18:CHULITNA FILLED DATA SET YEAR OCT NOV [IEC JAN FEB MAR APR MAY JUN JUL AUG SlOP SUMYR CALYR 1 9314.0 3276.9 2142.9 1588.2 117i-;S;-1029.9 1143.2 19888.0 27251.6 33669;325265.0 6424.4 132165.4 i9~.)0 2 3268.1 1236.0 890.7 979.9 911.6 845.4 1282.5 6100.5 19759.9 24160.5 20960.9 14192.6 94588.8 1951 3 6525.7 2406.5 1770.8 1385.3 1165.7 1074.5 1408.9 11664.4 28489.4 26546.6 19652.6 11001.1 113091.3 1952 4 6Tljfl926~5 1495.9 1597.1 --1140.5 955.;>-1266;6 9575.0 I9571~o-22848;3--17478.3 10756.5 94873.1 1953 5 4380.8 1680.2 1287.2 1220.5 1042.8 833.6 1054.4 16617.6 22528.3 2S827.2 27063.5 11887.7 115423.6 1954 6 4668.2 2303.5 1436.6 1148.3 893.6 861.1 1046.7 7928.7 26568.4 34255.7 31861.7 12604.0 125576.6 1955 7 6086.8 -2005.1 1476.3 1323.2 1295.7 lI04~30-;3 20025.433241.0 31196.3 23329.2 23259.6 145373.1 1Y~j6----- 13 6516.1 3013.7 1741.2 1673.3 1298.1 1237.5 1305.9 8447.2 24913.7 28654.7 26519.3 14016.7 119337.4 1957 9 5718.3 2752.0 1419.0 1305.9 1044.0 948.0 1220.0 10460.0 23170.0 25010.0 20760.0 8000.0 101807.2 1958 10 4197.0 1883.0 1262.0 1097.0 1049.0 738.0 890.0 7413.0 23660.0 25650.0 22100.0 9957.0 99896.1 1959 11 4723.0 2283.0 1700.0 1448.0 1103.0 933.0 1000.0 13890.0 17390.0 23650.0 19320.0 12420.0 99860.1 1960 12 5·135.0 1950.0 1745.0 1452.0 1100.0 1079.0 1600.0 10100.0 20490.0 27420.0 24580.0 16030.0 112681.1 1961---n 5777.0 2400.0 1500.0 1300.0 l000;-O~~930;-0-TI7();0774:r;020620~O27220.0 21980.0 13490.0 105130.1 1962 14 3506.0 1500.0 1552.0 1600,0 1300.0 846.0 700.0 11060.0 17750.0 28950.0 18390.0 11330.0 98484.0 1963 15 8062.0 2300.0 1000.0 1007.0 820.0 770.0 1133.0 2355.0 40330.0 24430.0 20250.0 9735.0 111692.1 1964 16 5642.0 2900.0 2106.0 1600.0 1400.0 1300.0 1400.0 7452.0 20070.0 23230.0 22550;O-22260.0-TIT904;i·--i9,S5 17 6071.0 1620.0 1350.0 1200.0 1100.0 1100.0 1300.0 3971.0 21740.0 23750.0 27720.0 12200.0 103122.1 1966 IB 4682.0 1680.0 1500.0 1458.0 1257.0 1045.0 972.0 12400.0 23520.0 35570.0 33670.0 12510.0 132264.1 1967 ---"19 34B3.0 1660.0 1397.0 1235.0 1200;O-rr48.0 1347;()10940~O-29000.0 30140.0 20710.0 7375.0 109635.1 19613---- 20 2898.0 1480.0 1139.0 974.0 900.0 824.0 1333.0 6001.0 18560.0 20820.0 11300.0 6704.0 72933.1 1969 21 4578.0 1887.0 1316.0 1200.0 1154.0 1100.0 1437.0 9643.0 19670.0 26100.0 24660.0 11330.0 104075.1 1970 22 3826.0 2210.0 1403.0 1113.0 950.0 934.0 982.0 4468.0 27180.0 27280.0 23810.0 11080.0 100236.1 1971 23 5439.0 2157.0 1432.0 1174.0 1041.0 939.0 893.0 9765.0 17900.0 25770.0 20970.0 12120.0 99600.1 1972 24 6461.2 2174.9 lS08.4 1160.2 1031.1 888.7 1105.6 4896.2 20005.4 22760.7 18676.2 7112.0 87780.8 1973 2~,4474.7 I~o-nV7~3~6'----9::4-:6--90S:-7-12f8-:-rT5330;t\-2094L 2 -26818;"8 2'1748.5-12526.5 112545.1 1974 26 4841.1 1782.9 1371.2 1286.5 1055.7 1060.5 1345.2 6927.6 25243.9 33978.6 22306.8 12169.9 113369.9 1975 27 5525.1 1525.2 1091.1 1120.1 1076.9 892.9 1168.2 10429.5 22642.0 25394.9 24290.7 10334.7 105491.4 1976 28 620E1.8 2537.2 2090.5 1497.5 989.0 962.0 1446.8 8159.6 33629.0 2::,801.8 20186.2 12388.3 115896.7 f~--- 29 5429.0 2113.0 1640.7 1458.4 1122.9 986.6 1052.1 4702.3 15587.2 24832.7 15322.5 10350.5 84597.9 1978 30 4899.8 2184.4 1651.0 1405.5 1116.9 935.6 1275.6 11395.8 19615.5 27739.8 22897.4 11233.5 106350.8 1979 ~1 ~11 ~-~ !1 J 'I -)e---l ,-'-1 ---'j 1 -'--1 -1 --]~---)-J '1 ""1 1 .-..] TABLE Al.19:TALKEETNA FILLED DATA SET YEAr;OCT NOV [IEC JAN FEB MAR APR /'lAy JUN JUL AUG SEF'SUMH(CALYf~ 3895.S 1576.9 1026.9 '14.5 ~68~1 396.S 384.i ~31a.5 8918.1 11734.6 10605.3 5210.9 49150.8 1~50 2 2319.4'770.3 514.5 536.1 402,6 378.6 607.0 3155.9 75~2.5 10122.6 9355.4 8464.7 441&9.7 1951 3 2387.B 1094.B 779.B 582.5 466.5 412.B 489.3 2638.3 11366.8 9476.0 8289.7 7047.8 45034.1 1952 4 3188.0 1554.7 931.0 635.0 470.4 453.2 652.5 4946.2 9B67.~9499.4 8028.7 5615.6 45B42.6 1953 5 2023.6 1134.0 693.2·648.6 472.1 366.2 429.2 3563.7 9554.B 10044.6 18033.2 6924.8 53908.1 1954 6 24~~6.0 926.2 632.4 59'f;T'-'S22.0 -444.2 450.1 2529-;err02{)6;'6-1234.().61420611 6302.3 51580.8 1955 7 2290.7 1033.4 789.1 029.9 621:1.2 502.4 497d 6414.7 14813.5 11720.6 12931.5 8179.4604!O.4 1956 8 !Ol,7.4 1766.3 1034.0 707.3 605.6 501.6 52~L4 ,4355.4'12778.8 10847.8 11373.2 9326.5 5685e.4 19S7 9 3662.4 168B.5 1014.7 822.1 609.3 515.3 705.2 4462.716038.613653.512199.7 4513.8 59885."-195B----- 10 2424.2 820.8 614.B 578.9 '526.5 436.2 5!-8.5 4173.6 749B.7 10509.2 13065.2 7053.4 48270.0 1959 11 2946 •.6 932.5 802.8 623.0 47.8.5 411.7 496.4 3826.25317.6 9181.212318.5 7648.0 44983.2 1960 12 3264.0 1485.1 1239.1 1001.4 804.9 62I;o 741.9 4106.815161.412515.914030.1 7879.3 62850.7 1961 1:{3095.2 1554.6 1033.9814.9 734.5 569.1 648.2 3259.9 169'92.5'9664.8 9289.7'5663.1 53320.4 1962 14 3576.4 1377.5 1107.3 776.7 700.4 537.3 454.84327.7 994903 13023.0 10087.2'3777.5 49695.1 1963 is 2839.9 916.2693.0 528.9 440.3 383.6 371.2 1.694.3 17080.09820.0 8396.0 3815.0 46978.4 1964 1(,3115.'0 156c8.!)1100.'0 720.0 620.0 .540.0 580.03474.011090.012180.0 1l150.0 10610.0 56747.0 1965 17 4438.0 1460.0 876.0 71f.0 526.~395.0 422.0 241~.0 12970.0 10100.0 10730.0 5370.0 50408.0 1966 18 2.388.0 897.0 750.0 637.0 546.0 471.0 4<.'7.0 4H2.0 9286.012600.0 14160;0---6''i71.0 53240.0 196'7 19 2029.0 1253.0 987.0 8S1.0 7'77.0 74.3.0 983.0 81340.014100.0 11230.0 75,46.0 4120.0 53459.0 1968 20 11,37.0 827.0 556.0 459.0 401.0 380.0 519.0 3869.0 5207.0 7080,0 3787.0 2070.0 26792.0 1969 21 1450.0 765.0 587.0504.0 4~;8.0 4-;;0.0 545.0 3950.0 7979.010320.0 8752.0 5993.0 41743.0 1970 22 2817.0 1647.0 1103.4 679.0 459.0 402.0 563.0 214.5.0 19040.0 117~0.0 16770.0 5990.0 63315.0 1971 23 2632.0 1310.0 845.0 727.0 628.0 481.0 519.'0 3516.0 12700.0 12030.0 9576.0 8709.0 5~673.0 1972 24 3630.0 1373.()889.0 748.0 654.0 S74.0 577.0 3860.0 12210.0 7676.0 9927.0 3861.0 45979.0 1973 25 1807.0 960.0 745.0 645.0 559.0 482.0 53.5.0 5678.0 8030.0 7755.0 7704.0 476J.O 39663.0 1974 26 1967.0 1002.0 774.0 694.0 586.0 508.0 522.0 40B4.0 13180.0 12070.0 8487.0 7960.0 5183~.O 1975 ~-2884.0 773:0558.0 524.0 480-;-0--470.0 613.0'3439.0 10580.0 9026.0 B088.0 3205~0 40640.0 1976 28 1857.0 1105.0 10.69.0 700.0 549.0 506.0 548.0 4244.0 18280.0 9344.0 8005.0 5B26.0 52033.0 1977 29 3268.0 1121.0 860.0 746.0 576.0 485.0 534.0 2950.0 7429.0 10790.0 7001.0 3567.0 39327.0 1978 30 16&0.0 1138.0 932.0 762.0 652.6 577.0 710.0 7790.0 12010.0 14440.0 8274.0 4039.0 52984.0 1979 ._---_..'_.__.•_-------~,-~--,_..-..-,-,----,-,---- TABLE A1.20:SKWENTNA FILLED DATA SET YEAR OCT ,wv nEe JAN FEB MAR APR HAY JUN JUL AUG SE~'SUI1YR CI\LYR ~4120tr.1 1012.1 720.8 695.;J 75;J.7--V:!:r~Y-io8n~1l17i'583.816325.412895.4 5176.6 71052.2 1950 2 2741.5 747.5 628.3 733.7 891.9 768.4 1460.6 10775.6 13874.9 15583.3 11340.5 7822.1 67368.3 1951 3 3116.0 1552.9 924.2 1074.9 822.8 696.0 864.9 8077.6 22948.5 17793.5 11668.3 5492.4 75032.1 1.952 ---4 4024.5 Il06.4 824.1 1013.5 828.6 775.4 1018.4 8743.6 13573.8 14073.4 9533.7 4786.8 60302.1 1953 5 2723.1 1228.7 69B.8 687.2 490.2 562.7 766.2 11172.8 19246.9 12761.3 17702.9 10650.8 78691.7 1954 6 4211.4 1223.2 1202.3 1191.9 686.6 732.0 911.7 11900.3 40356.0 2~B16.5 20590.6 9652.0 117474.5 1955 -----,;;;--'5923.6 2831.9 1506.0 854.4 996.2---707.1 943;517845.334533.923137.71"854.513371.3 117505.5 1956 8 4936.3 3094.2 1989.7 2165.8 1130.2 1144.0 900.7 5015.3 29642.6 19122.7 13917.9 8835.0 91894.4 1957 9 5544.7 2174.4 976.2 600.4 613.5 761.4 1253.5 12067.6 19677.0 17800.6 15359.6 6205.8 83034.6 1958 10 4038.4 1184.7 761.1 1091.1 629.9 522.0 759.8 41'98.4 13830.5 15086.5 11729.1 4937.1 59268.6 195~ 11 3532.0 1850.0 1400.0 1097.0 961.0 843.0 835.0 10480.0 13440.0 16690.0 15990.0 9171.0 76289.0 1960 12 3889.0 1600.0 1597.0 1403.0 1154.0 1155.0 1700.0 11210.0 20570.0 16480.0 1391-0.0 12020.0 86688.0 1961 rr--'f6"05.0 2200.0 14<50.0 1200.0 860~~0~-n(f;()-Tooo;-o--uT3~O-T~630.014930.0 12080.0 6723.0 68001.0 196,~ 14 2801.0 1250 .•0 1100.0 1000.0 810.0 700.0 650.0 7765.0 1~050.0 20430.0 12020.0 7180.0 69756.1 1963 15 5355.0 1550.0 840.0 970.0 750.0 600.0 840.0 1635.0 27250.0 16480.0 12680.0 6224.0 75174.1 1964 16 4425.0 1790.0 1300.0 920.0 800.0 7~O.0 770.0 4810.0 17160.0 19370.0 14010.0 13090.0 79185.1 1965 17 4122.0 1575.0 1150.0 1100.0 1100.0 1100.0 1300.0 4502.0 19550.0 141BO.0 17320.0 9812.0 76811.1 1966 18 5576.0 1400.0 900.0 720.0 650.0 650.0 780.0 1794.0 1~430.0 14740.0 15760.0 9517.0 66917.0 1967 ~--19--3832-.0--1560 ~0-ii8i •o~ioi3;O 1000:6 950;6 --1:i"93:-01346---O:o 20770.0 17480.6 f0560-;0-3855~O--76964~.1-J.S'60--- 20 1929.0 678.0 624.0 600.0 600.0 626.0 1487.0 11070.0 19580.0 13650.0 7471.0 3783.0 62098.1 1969 21 5654.0 1607.0 832.0 766.0 70Q~~~28.0 1171~22880.0 21120.0 1303~665.0 86342.1 1970 22 2919.0 2023.0 1184.0 865.0 721.0 613.0 607.0 5963.0 25400.0 20600.0 15920.0 6024.0 82839.1 1971 23 3020.0 1327.0 1103.0 989.0 898.0 811.0 742.0 8045.0 15330.0 16840.0 13370.0 9256.0 71731.0 1972 24 4551.0 2340.0 1316.0 910.0 702.0 606.0 727.0 6349.0 15200.0 13850.0 9874.0 6164.0 62589.0 1973 --2~)·------3540.0 1700.0 1265.0 1023.0 902;-0-~8rLo-ro05.0-·6765;-O-io65O-:-011670.0 10480.0 11800.0 61611.0 1974 26 4557.0 2328.0 919.0 800.0 750.0 750.0 767.0 7852.0 19060.0 19520.0 11710.0 8471.0 77484.1 1975 27 4704.0 1973.0 1258.0 971.0 897.0 800.0 1270.0 8806.0 15120.0 11580.0 11120.0 8165.0 69664.0 1976 28 6196.0 2880.0 2871.0 2829.0 1821.0 ~200.0 1200.0 8906.0 36670.0 25270.0 20160.0 10290.0 120293.1 1977 29 5799.0 2373.0 1548.0 1213.0 944.0 841.0 1023.0 9006.0 13840.0 18100.0 13740.0 7335.0 75762.0 1978 30 493~-,-0 151l_Q-,-9 ·1_~_~5_,~~6~.~~__19J_~~Q }?}_'O_!_~_?;:_~9_1 !66Jl-,S>_142'8g_~_!-~~:lQ-,-~J_62LQ.~.L_~8.0 789~§--,~0_1J2L_ ~~1 j ,-,I 1 ,.,,-3 -]1 -1 - 1 ---1 -)--1 ~J ---1 1 1 ..,------)'---1 -1 ~---l -~l TABLE Al.ll:SUSITNA STATION FILLED DATA SET ocr----'-NOV ----nEC-JtlN ..",FEB -I'Ii\R '---~--APR -.MY----JUW------JUL---~-'Aurr--.5EP -------SUMYR CALYF: 26869.4 11367.1 6197.0 6071.9 5255.5 5376.7 5&56.9 66293.5 101615.7 124889.8 106431.8 39331.2 505356.5 1950 HI021,.1 6932.g-·-S<t8U.9--70n.o"-7294.9 638];5-7354.2 592n.5·82254;6 123164;1 100946.9 73471:0'498153.1 1951 31052.6 16363.8 6988.5 a27 ••3 7036.4 5853.0 5985.1 45294.3 132547.3 137321.8 116186.1 82076.3 594979.5 1952 44952.4 16289.1 9746.0 806W.7 6774.5 6349.8 7992.6 88840.0 130561.3 125949.2 97610.0 44167.7 587301.3 1953 ,--'7,0168;S'"11829 ;T----S:27T;c;--7202;l/""4-993;1 4979 ;7--6305.5 58516;4 108881.U--116 73 L6 I?85Rb;7 0li275;'3--'----539740.5 .1954 23895.7 9167.8 6183.0 7254.6 5845.1 5315.6 6412.4 58164.0 169044.8 148876.5 120120.0 53504.2 61.3783.7 19~;5 19923.4 10521.9 7294.7 6179.2 6830.8 6324.4 7182.2 82485.8 161346.1 168814.6 131619.5 104218.4 712741.0 1956 ·41.821;6 21547;5-14'140;3 -10600;1 8356.1'7353.1'7705.3 63204.4 176218;8 140318;3"1211812.9 87825;l/....703909.4 195] 52636.0 1988b.6 10635.3 7552.9 6386.9 667S.8 8098.6 70:520.5 J.12896.8 122280.2 99608.5 5:3053.3 5]00:".4 19~;8 30543.1 9528.4 4763.4 ]795.1 6564.3 5665.5 6467.8 56601.4 110602.3 146216.8 138334.3 6]903.5 590985.9 1959 ---z:j75l\.1--''''101'''64.-S--/o0'l.5--5715,'3--'O-:31 0.0 "56SL',,·--S8Z9.-O"SOOiH;is - -84134 ';4 'I'29403.q~1.T3971;o''''1315bS;'II'-'--5265M;91960 33782.3 12914.2 13768.2 12669.1 10034.0 9192.6 9802.6 85456.7 151715.1 138968.5 116696.5 62504.3 657504.1 1961 29028.7 13043.3 8976.6 9050.1 6182.5 5950.6 6635.2 54553.8 163049.0 143441.3 121220.5 74806.4 635938.0 1962 -77716;2-1075·1;S ---Stl"(,l\;o~-""Bi570.7 -7853 ;;ti'b058 •1"-556'1;7 ...53903.2 "85647;9 146 '120.1-1 00706;S'--70782;.,....----538942 ;1"--1953 37846.3 11701.6 5626.0 6351.1 5761.6 4910.4 5530.8 35536.2 153126.4 124805.8 92279.5 461.09.8 529585.5 1964 28746.9 10458.0 6126.6 6951.9 6195.8 6169.9 7120.1 49485.4 110074.6 138406.5 111845.9 89944.3 571525.9 1965 -----;3'6'553 ;T-12312;S--9Ts'r;T--B1J30 .8--7489.4 7090;5--'8048C;3'-"'52311;4"125182-;13n70U7;'4--Tr8729"·3-o'3"8~--'507.i"11\12'-;7."'--'1965 26396.2 12962.6 8321.9 8028.5 7726.1 6683.2 7280.6 58106.6 134880.9 136306.3 137318.0 89527.0 633537.9 1967 37724.5 15872.8 15081.0 11604.2 11532.2 8772.0 8762.6 94143.2 137867.2 130513.6 86874.5 42384.8 601132.6 1968 ~-T5939 ;Fr'6605;7 --427lj1.T~'·;;;032;'5"'5137.2 5171 ;9-'-6'15'2;·"---""lIl317.3tl;:\22S;''5'''1 U21.2T;2"'onlirr~2'-'~3"'f085;4"-'-'''-:Fl\736.2 -"-'1969 226B3.4 6]99.3 5016.4 6G74.2 5581.3 5731.6 5769.1 53036.2 94612.1 132984.7 117728.0 80584.8 536601.1 1970 32817.3 16607.2 8633.2 6508.7 6253.8 5882.6 5787.5 29809.3 122258.2 139183.4 133310.1 69021.2 576072.5 1971 --:327['T;'2'''''1l\92r;'T~~B7lj1U';11--'9379.7..~-...trl\5'R;3--66'4S-;lj-"b8'94 ;'T-7'1l/6:T;'U-"TnOZT;TT;<f27Bo-;tfl0759~-o1Y220.11 6413"51J4;T~-l'n2 26]81.9 14852.9 8147.1 7609.2 ]476.7 6312.6 7688.2 64534.0 122'797.1 123362.2 i07260.8 45226.8 542049.6 1973 20975.7 10113.3 608~.0 7401.6 6747.3 629~.7 6962.8 61457.8 67838.0 102184.3 80251.5 56123.5 432430.5 1974 -'~J:9520;O'''T01J0(r;O~'~V1fT9-;(J''-8597;0"-7804;0 '7048;06867;o 47540';'U "T28Boo-;-;:r"I :r570'()';'O'--gDOU·;T--77711v;-r--':iS-079S."1975 31550.0 9933.0 6000.0 6529.0 5614.0 5368.0 7253.0 70460.1 107000.0 115200.1 99650.1 48910.0 513467.3 1976 30140.0 18270.0 13100.0 10100.0 8911.0 6774.0 6233.0 5~180.0 165900.3 143900.0 125500.1 83810.1 668818.6 197] ----;m230;'012630;'O'--,'52'9';U-697 Jl ;1.)",is 771.0 6590;0'7033.0 48670;0-90930;0"'n760U>rT021 00.2 -55500";'0 ----'-"'500557.3 1978 36810.0 15000.0 9306.0 8823.0 7946.0 7032.0 86B~.0 81260.1 119900.0 142500.0 128200.0 ]4340.0 639800.1 1979 TABLE AI.22:COMPUTED STREAMFLOW AT DENALI OCT NOV DEC JAN FEB MAF;:APR MAY JUN ,JUL.(-lUG SEF' 1493.5 618.9 398.2 219.4 220.1 149.6 218.8 2531.9 6232.7 10078.0 B01!S.0 2478.8 899.0 310.2 250.8 173.1 147.9 151 .8 363.7 3456.3 7189.2 10352.8 8506.8 5878.0 1216.4 488.0 338.6 359.1 309.3 282.9 :;~98.1 206~).4 9767.3 11392.7 8965.7 3758.~) 1600.3 780.5 362.2 269.1 193.9 166.9 456.8 5754.4 9952.4 9773.4 7960.8 3494.4 1485.8 442.3 309.4 351.6 251.6 215.9 262.5 3757.7 7509.7 9467.0 941b.6 3189.B 1247.9 680.9 371.8 341.6 248.0 237.1 264.7 2669.5 9680.5 9760.9 12473.6 5239.0 12<.n.5 396.4 305.'7 296.6 172.0 212.7 224.6 6666.0 18527.2 15779.2 15313.5 7290.9 2000.2 972.3 573.3 342.6 301.4 221.9 338.7 4577.1 13750.6 12230.0 10785.2 5580.9 1963.6 931.1 605.1 371.8 233.7 175.0 294.4 2090.9 9503.0 10136.3 7701.8 2374.6 1299.5 522.6 295.5 234.7 193.9 131.9 157.9 3626.7 10464.8 9754.3 10165.1 3902.4 2016.2 960.7 741.4 584.2 419.7 349.4 337.6 4211 .8 ~j961.3 10134.5 9255.6 6212.3 2331.2 872.0 710.3 543.0 412.6 432.1 631.0 4132.8 B514.2 9569.8 8079.2 3711.7 1693.2 817.7 547.1 3'71.8 316.5 290.4 356.5 2593.3 11374.3 10978.9 10609.2 4<:.40.4 1445.7 601.8 401.8 341.8 329.5 236.7 226.8 4429.6 8446.0 12276.3 11048.4 4428.3 1323.0 435.4 279.4 201.8 198.1 153.5 172.8 :1.139.7 14070.3 84B1.2 7306.3 32'78.:") 1951.0 837.9 323.4 250.6 227.~:)237.2 360.2 :n 02.3 6068.4 8208.0 6939.0 7940.3 154~:L6 468.0 374.8 317.1 299.5 29?5 417.7 2433.5 9060.8 9455.9 7832.0 3999.7 :1.8~jO.3 655.9 461.4 465.1 356.1 430.2 348.6 5020.6 10672.6 12672.4 11778.1 3946.0 1912.1 634.8 460.8 371.0 422.1 446.4 322.7 1850.2 8846.9 13207.8 10778.2 2713.1 <116.6 390.8 212.4 178.0 17().4 186.0 307.3 231~5.6 8631.0 9841.3 4268.1 2475./ 1229.4 :;62 +2 388.4 324.2 273.3 240.9 348.5 2791.4 6347.3 9794.3 /'388.0 2544.2 1007.3 682.2 466.0 278.B 206.5 193.4 219.6 909.0 9775.9 11300.5 11807.6 399'7,.<1 :1.312.'7 637.6 5~j4.3 518.2 476.2 430.1 397.6 ::'j334.0 8769.8 11380.2 9225.5 3233.::) 832.5 409.8 279.9 231.2 227.0 192.8 lHB.c)1341..0 6983.8 8944.8 7984.9 27~)2+3 1089.4 515.1 3<78.3 337.6 2913.5 265+5 299.9 3~:i78.<i 6616.3 10438.?10142.3 6229.0 2340.1 1'44.1 483.<7 394.7 313.7 313.1 320.4 :n99.9 8812.6 13462.8 8229.6 4591.1 2188.6 4?8.6 23~5.6 180.2 162.2 156.0 221.8 2965.9 7322.2 9165.0 10523.6 2190.B 1:1.78.0 695.1 5~j6.6 417.5 370.9 35:L/,396.3 2794.4 10339.8 11007.4 10947.2 4346.2 1/'08.4 929.4 631.2 490.3 426.3 355.9 355.6 2257.I.)5809.1 9823.9 9583.1 4087.0 1222.3 649.1 428.2 345.1 301./'234.2 291.7 3264.3 8213.0 10755.5 10373.0 5039.7 ..,,"-]'1 -1 1 1 '1 "-""]-'J ,."']"J '-1 ~.,'J "'-1 TABLE AI.23:COMPUTED STREAMFLOW AT MACLAREN OCT NOV DEC JAN FEB MAF'~APR MAY JUN JUL AUG SEP 1851.5 930.0 557.2 340.3 308.0 229.9 296.0 3345.8 8595.6 11824.2 9947.8 3932.9 1579.9 529.7 408.8 348.9 279.7 276.2 566.3 5420.9 10605.6 12631.5 9898.4 8174.3 2043.6 845.0 5E13.8 544.9 436.3 384.7 441.3 2224.2 12442.8 13272.1 10301.1 5261.9 2392.9 1158.0 490.4 326.4 240.8 288.2 705.7 7047.4 11176.5 11218.7 9206.1 4547.9 1778.3 620.8 483.7 532.7 363.1 307.0 368.5 :~616.3 8975.5 10546.4 10528.9 3368.0 1408.2 8j.8.3 562.2 532.8 370.2 379.6 390.1 2753.9 13038.6 13381.9 15813.8 8~~1::-C"","~.J+~ 1961.5 709.6 454.1 416.2 285.3 263.4 289.2 6372.9 18316.8 16750.4 13544.8 6560.6 1932.0 1040.5 783.2 576.9 484.6 359.4 436.9 4708.5 15590.9 13406.0 11540.4 6402.9 2327.0 1144.3 675.6 539.7 411.7 406.7 541.0 3596.5 12617.6 12274.8 10132.9 2922.4 1589.4 773.2 394.3 364.6 290.4 191.3 238.7 2704.8 10668.2 11497.9 11475.1 4747.3 2482.5 1093.8 805.5 651.9 529.3 462.0 505.6 6262.8 7621.9 11947.9 10863.7 7637.0 2817.8 1069.4 794.1 646.6 510.0 513.4 768.1 5845.7 10400.8 10970.3 11305.8 4423.9 2144.1 1160.5 851.8 717.6 566.0 528.9 674.7 5544.5 17338.0 14797.4 12262.2 6120.5 2472.0 1235.0 777.6 571.8 496.0 440.2 428.8 6722.3 10296.7 15772.4 13633.4 6196.1 2179.0 723.3 481.9 356.2 331.3 246.9 273.7 1723.4 21497.0 11636.6 8679.0 3799.5 21.82.7 1220.7 554.4 451.7 405.9 422.9 653.3 5189.9 9701.9 11729.8 90~57.0 9509.7 1862.1 600.3 458.8 420.2 393.1 393.1 535.3 2812.2 11847.9 9974.3 9112.4 4625.6 1891.8 637.5 504.2 485.6 411.5 430.0 362.0 6395.0 13647.0 13610.8 13784.5 6087.5 2256.2 926.3 771.4 674.9 b94.7 708.5 648.9 4428.6 12364.3 14259.6 10303.3 3572.5 1431.9 629.6 363.3 300.7 288.0 317.9 558.9 4214.6 9940.9 11188.9 5067.9 2711.9 1274.8 635.7 426.5 338.a 308.9 308.8 562.7 4513.7 7113.4 10790.3 8834.6 3346.7 1226.0 881.9 607.2 410.7 287.2 270.1 304.0 1180.7 14049.7 13721.9 15681.0 6081.6 2334.2 1152.4 805.1 651.7 570.8 541.3 530.0 6139.0 12326.9 13127.0 11648.1 5628.7 1987.2 907.7 555.7 467.4 431.8 404"9 428.1 3289.5 11719.7 10915.7 10844.3 4427.3 1503.4 768.3 562.1 474.5 411.1 359.3 469.0 5482.0 8156.0 11015.7 9879.9 6189.7 2248.1 914 t1 (l16.7 556.2 426.3 397.7 460.0 4269.4 12910.5 15013.6 9305.6 6175.7 2377.3 722.6 379.2 290.6 280.1 252.4 382.3 3189.5 9971.8 11309.9 13006.1 2958.2 1376.1 763.9 587.2 511.8 464.1 431.3 439.8 2660.2 15150.2 12730.3 11915.6 5747.0 2332.1 11 06.6 822.6 670.2 532.9 521.0 620.7 5650.9 9602.5 11822.7 9333.7 4456.8 1597.1 830.1 573.6 519.4 478.5 543.3 648.0 6216.9 13381.5 14307.2 10667.2 5717.0 TABLE A1.24:COMPUTED STREAMfLOW AT VEE OCT NOV DEC JAN FEB MAR APF.:MAY JUN JUL AUG SEP 3005.9 1553.7 882.3 590.2 486.4 402.6 478.5 5627.1 13070.3 15578.3 13765.5 6279.13 2'716.6 902.8 700.5 646.7 517.0 492.3 968.1 9060.2 16106.6 16832.8 13090.5 12924.0 3555.0 1561.0 1077.6 929.0 672.2 581.1 680.7 2940.3 18772.9 17569.8 13574.4 8483.9 4252.1 1971.2 836.8 520.6 :~90.6 512.3 1134.8 10545.2 15261.4 14336.5 12512.6 752'7.() 2749.0 1068.5 848.3 862.7 594.1 487.8 632.4 5771.8 13349.9 13400.4 14393.4 5181.2 2255.8 12913.8 1023.7 957.7 679.6 659.1 665.7 3958.0 19598.0 19784.9 21188.5 12554.0 3201.6 1257.2 761.2 643.8 526.4 433.8 472.5 7958.4 20625.9 20250.5 13447.6 7744.3 2512.1 1455.9 1245.3 1025.9 858.9 653.8 674.6 6383.6 20090.9 16382.1 13898.2 9578.6 3724.5 1855.4 1191.4 966.5 760.1 788.4 981.5 6835.5 18275.1 16433.9 14920.4 4311.1 2455.1 1283.2 692.8 691.5 569.0 390.5 499.1 3933.0 13033.6 15710.3 16257.6 7741.2 3687.7 1538.0 1112.2 928.6 806.6 710.8 825.8 10141.0 10796.2 15819.6 14795.0 11390.4 4197.7 1614.4 1208.2 1066.6 828.2 822.7 1238.1 9688.0 15710.0 14820.0 16700.0 67~~~5.0 3281.0 1800.0 1400.0 1300.0 1000.0 940.0 1200.0 10000.0 28320.1 20890.0 16000.0 9410.0 4326.0 2200.0 1400.0 1000.0 850.0 760.0 720.0 11340.0 15000.0 22790.0 18190.0 9187.0 3848.0 1300.0 877.0 644.0 586.0 429.0 465.0 2806.0 34630.0 17040.0 11510.0 5352.0 3134.0 1911.0 921.0 760.0 680.0 709.0 1097.0 8818.0 16430.0 18350.0 13440.0 12910.0 3116.0 1000.0 750.0 700.0 650.0 650.0 875.0 4387.0 18500.0 12220.0 12680.0 6523.0 2322.0 780.0 720.0 680.0 640.0 560.0 513.0 9452.0 19620.0 16880.0 19190.0 10280.0 3084.0 1490.0 1332.0 1232.0 1200.0 1200.0 1223.0 9268.0 19500.0 17480.0 10940.0 5410,.0 2406.0 1063.0 618.0 508.0 485.0 548.0 998.0 7471.0 12330.0 13510.0 6597.0 3376.0 1638.0 815.0 543.0 437.0 426.0 463.0 887.0 7580.0 9909.0 13900.0 12320.0 5211 .0 2155.0 1530.0 1048.0 731.0 503.0 470.0 529.0 1915.0 21970.0 18130.0 22710.0 9800.0 4058.0 2050.0 1371.0 1068.0 922.0 881.0 876.0 9694.0 20000.0 16690.0 15620.0 9423.0 3744.3 1686.0 1014.6 852.6 788.2 740.1 794.3 6281.0 19677.3 14336.0 15604.3 706~.).B 2338.5 1176.0 823.0 693.5 597.5 524.7 744.5 9396.5 11502.1 12970.6 10662.4 717:L.6 2398.7 1235.0 930.5 897.3 727.6 660.8 806.1 7769.2 20724.2 18878.2 11981.7 9642.5 3493.1 1185.2 658.9 528.4 523.8 468.5 727.5 5032.2 15339.4 14972.8 16900.8 4470.5 2017.8 1159.1 928.2 838.9 762.3 697.8 697.7 4207.1 24330.5 16351.0 14225.7 8462.2 3908.1 1711.7 1333.1 1099.1 842.8 887.0 1096.8 10469.1 15395.8 15589.1 10251.8 5568.0 2571.5 1318.7 921.7 860.6 810.6 996.3 1177.7 10776.8 21010.2 20700.3 12649.3 '7320.9 1 ,4 ~"l 11 T\ J :J :1 1 ~-l --~l ---~l --]'~""l ---]---)]-1 -~-l '-'1 ~-''-1 -) TABLE A1.25:COMPUTED STREAMFLOW AT SUSITNA III OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF' 3137.7 1594.5 904.3 607.5 498.3 415.4 494.0 5860.1 13328.9 15856.4 14007.7 6359.8 2"761.4 918.5 716.3 659.1 529.0 502.1 993.8 9259.4 16292.1 17060.0 13351.1 13253.3 3634.8 1607.9 1110.2 955.6 685.2 592.9 690.2 3038.5 19311.4 17919.1 13865.3 8721.4 4408.5 2031.6 871.0 543.5 407.6 524.5 1153.8 10890.7 15739.0 14568.7 12833.3 7833.7 2862.1 1109+4 874.1 880.0 610.2 499.4 656.3 6227.6 13821.2 13676.0 14857.0 5487.7 2379.1 1356.7 1064.1 990.8 708.1 676.6 686.9 4170.3 20004.4 20092.8 21369.2 12622.8 3270.9 1282.·7 782.5 657.1 544.0 453.8 491.4 8342.6 21129.4 20679.8 13886.5 8163.:') 2642.6 1519.0 1280+8 1052.6 884.3 675.4 695.4 6675.3 20489.7 16656.5 14161.2 9983.4 3902.2 1938.5 1273.5 1006.0 781.8 802.6 1003.3 7075.7 18569.2 16689.2 15222.2 4439.4 2548.4 1317.5 725.3 721.5 598.2 413.8 528.8 4410.5 13441.0 16078.2 16848.6 8104.7 3801.4 1590.0 1155.3 964.9 832.2 730.1 844.6 10364.3 10983.7 16103.2 15143.3 11751.6 4340.1 1669.3 1267.0 1121.5 864.9 861.8 1294.0 ,9991.8 16254.2 15206.1 16913.9 69813.2 3385.4 1835.6 1427.7 1323.8 1019.8 958.2 1219.8 10102.6 28912.2 21086.4 16299.0 9666.6 4420.9 2223.8 1423.8 1023.8 875.7 769.5 724.4 11644.6 15435.6 23249.8 18407.0 9311.1 3951.0 1337.6 901.4 660.0 601.0 440.2 476.1 2865.4 35261.7 17274.1 11705.2 5519.1 3259.0 1946.2 932.5 767.9 687.1 716.6 1107.4 8983.2 16797.9 18725.8 13744.2 13165.0 3277.9 1043.5 784.9 727.7 675.7 675.7 910.6 4595.2 19072.3 12522.6 13042.4 6730.0 2394.9 812.5 750.9 712.5 670.1 585.3 :':)38.9 9690.7 20011.7 17272.9 19721.9 10541.0 3155.9 1524.2 1360.6 1261.7 1227.7 1227.7 1250.2 9541.7 19977.2 17834.1 11186.7 5544.7' 2462.1 1085.5 628.5 516.6 494.4 558.6 1018.3 7612.7 12455+5 13612.6 6687.4 3444.0 1696+9 830.8 555.8 452.3 439.5 475.4 894.6 7730.5 10254.4 14246.9 12623.4 5365.9 2279.1 1604.3 1097.2 759.2 524.1 489.0 550.9 1987.5 22404.1 18360.5 23074.4 998~L 8 4128.9 2091.3 1416.1 1114.4 965.8 918.3 909.0 10177+0 20571.5 16930.8 15765.3 9540.9 3787.1 1708.5 1032.4 866.4 804.5 750.4 803.5 6358.4 19999.0 14491.0 15789.9 714::'i.3 2393.7 1189.7 831.4 700.6 604.6 532.6 754.3 9665.2 11754.3 13201.5 10882.5 7372.7 2451.8 1253.4 957.1 921.8 757.0 690.1 .837.3 8069.4 21183.0 19228.4 12223.6 9906.6 3661.3 1217.2 675.6 546.0 ~i40.7 485.6 753.1 5332.7 15697.4 15129.9 17015.6 4566.0 2091.3 1218.1 986+6 878.1 796.2 729.6 736.6 4542.7 24870.7 16609.2 14424.3 8627.7 4053.2 1783.5 1382.8 1135.9 875.5 915.4 1120.8 10527.7 15540.5 15804.2 10494.9 5688.4 2664.0 1366.9 951.8 881.8 829.4 1004.4 1188.5 10899.3 21155.9 21024.3 12958.6 7457.5 TABLE Al.26:COMPUTED STREAMFLOW AT WATANA OCT NOV DEC JAN FEB MAR AF'f~MAY JUN JUL AUG !~EP 4719.9 2083.6 1168.9 815.1 641.7 569.1 680.1.8655.9 16432.1 19193.4 16913.6 '7:320.4 3299.1 11 07.3 906.2 808.0 673.0 619.B 1302.2 11649.8 18517.9 19786.6 16478.0 17205.5 4592.9 2170.1 1501.0 1274.5 841.0 735.0 803.9 4216.5 25773.4 22110.9 17356.3 11571.0 6285.7 2756.8 1281.2 818.9 611.7 670.7 1382.0 15037.2 21469.8 17355.3 16681.6 11513.5 4218.9 1599.6 1183.8 1087.8 803.1 638.2 942.6 11696.8 19476.7 16983.6 20420.6 916~;.5 3859.2 2051.1 1549.5 1388.3 1050.5 886.1 9-40.8 671f3.1 24881.4 23787.9 23537.0 13447.8 4102.3 1588.1 1038.6 816.9 754.8 694.4 718.3 12953.3 27171.8 25831.3 19153.4 13194.4 4208.0 2276.6 1707.0 1373.0 1189.0 935.0 945.1 10176.2 25275.0 19948.9 17317.7 14841.1 6034.9 2935.9 2258.5 1480.6 1041.7 973.5 1265.4 9957.8 22097.8 19752.7 18843.4 5978.7 3668.0 1729.5 1115.1 1081.0 949.0 694.0 885.7 10140.6 18329.6 20493.1 23940.4 12466.9 5165.5 2213.5 1672.3 1400.4 1138.9 961.1 1069.9 13044.2 13233.4 19506.1 19323.1 16085.6 6049.3 2327.8 1973.2 1779.9 1304.8 1331.0 1965.0 13637.9 2278-4.1 19839.8 19480.2 10146.2 4637.6 2263.4 1760.4 1608.9 1257.4 1176.8 1457.4 11333.5 36017.1 23443.7 19887.1 12746.2 5560.1 2508.9 1708.9 1308.9 1184.7 883.6 776.6 15299.2 20663.4 28767.4 21011.4 10800.0 5187.1 1789.1 1194.7 852.0 781.6 575.2 609.2 3578.8 42841.9 20082.8 14048.2 7524.2 4759.4 2368.2 1070.3 863.0 772.7 807.3 1232.4 10966.0 21213.0 23235.9 17394.1 16225.6 5221.2 1565.3 1203.6 1060.4 984.7 984.7 1338.4 7094.1 25939.6 16153.5 17390.9 9214.1 3269.8 1202.2 1121.6 11 02.2 1031.3 889.5 849.7 12555.5 24711.9 21987.3 26104.5 13672.9 4019.0 1934.3 1704.2 1617.6 1560.4 1560.4 1576.7 12826.7 25704.0 22082.8 14147.5 7163.6 3135.0 1354.9 753.9 619.2 607.5 686.0 1261.6 9313.7 13962.1 14843.5 7771.9 4260.0 2403.1 1020.9 709.3 636.2 602.1 624.1 986.4 9536.4 14399.0 18410.1 16263.8 7224.1 3768.0 2496.4 1687.4 1097.1 777.4 717.1 813.7 2857.2 27612.8 21126.4 27446.6 12188.9 4979.1 2587.0 1957.4 1670.9 1491.4 1366.0 1305.4 15973.1 27429.3 19820.3 17509.5 10955.7 4301.2 1977.9 1246.5 1031.5 1000.2 873.9 914.1 7287.0 23859.3 16351.1 18016.7 8099.7 3056.5 1354.7 931.6 786.4 689.9 627.3 871.9 12889.0 14780.6 15971.9 13523.7 ?786.2 3088.8 1474.4 1276.7 1215.8 1110.3 1041.4 1211.2 11672.2 26689.2 23430.4 15126.6 13075.3 5679.1 1601.1 876.2 757.8 743.2 690.7 1059.8 8938.8 19994.0 17015.3 18393.5 5711.5 2973.5 1926.7 1687.5 1348.7 1202.9 11.10.8 1203.4 8569.4 31352.8 19707.3 16807.3 10613.1. 5793.9 2645.3 1979.7 1577.9 1267.7 1256.7 1408.4 11231.5 17277.2 18385.2 13412.1 7L~2.6 3773.9 1944.9 1312.6 1136.8 10~:;5.4 1101.2 1317.9 12369.3 22904.8 24911.7 16670.7 9096.7 '?i ~l 1 ~l "1 "l~"]'-~J ·:-~l···")····]·-··l .--.1 -'-1'~)1 1 TABLE A'I.2l:COMPUTED STREAMfLOW AT HIGH DEVIL CANYON OCT NOV DEC JAN FEB MAF~APR MAY JUN JUL AUG SEF' :'5675.8 2379.2 1328.8 940.5 728.3 662.0 792.5 10345.1 18307.0 21209.6 18669.2 7900.8 3624.0 1221.3 1020.9 898.0 760.0 691.0 1488.5 13094.0 19862.6 21433.9 18367.1 19593.3 5171.8 2509.7 1737.1 1467.1 935.:I.820.8 872.6 4928.2 29677.6 24643.4 19465.4 13292.7 7419.8 3194.9 1529.1 985.3 735.0 759.1 1519.9 17542.3 24932.2 19038.9 19006.6 13736.7 5038.7 1895.7 1371.0 1213.4 919.6 722.1 1115.7 15001.1 22893.5 18981.9 23781.9 11387.6 4'753.3 2470.7 1842.8 1628.4 1257.3 1012.7 1094.2 8257.4 27827.9 26020.4 24846.7 13946.2 4604.6 1772.7 1193.3 913.4 882.2 839.8 855.4 15738.9 30822.4 28943.6 22335.5 16233.8 5153.7 2734.3 1964.4 1566.5 1373.0 1091.8 1096.0 12291.3 28166.1 21938.1 19224.8 17776.0 7323.4 3538.4 2853.6 1767.3 1198.7 1076.8 1423.8 11699.1 24229.7 21603.5 21031.2 6908.6 4344.5 19'78.4 1350.6 1298.2 1160.9 863.3 1101.3 13602.5 21283.1 23160.5 28225.1 15:1,02.4 5989.6 2590.2 1984.6 1663.5 1324.2 1100.7 :1,206.1 14663.4 14592.6 21562.1 21848.4 18704.1 7081.9 2725.6 2399.8 2177.7 1570.7 1614.5 2370.4 15840.8 26729.2 22639.3 21030.7 12054.2 5394.2 2521.8 1961.4 1781.2 1401.0 1308.9 1601.0 12077.1 40309.6 24867.8 22055.0 14606.8 6248.3 2681.2 1881.2 1481.2 1371.3 952.5 808.2 17507.2 23821.8 32101.0 22584.9 11699.6 5934.0 2061.9 1371.8 968.0 890.8 656.8 689.6 4009.8 47421.6 21779.7 15463.8 8735.6 5665.9 2623.2 1153.6 920.4 824.4 862.2 1307.9 12163.9 23880.4 25960.8 19599.2 18074.8 6395.3 1880.6 1456.5 1261.4,1171.3 1171.3 1596.8 8603.8 30088.6 18347.1 20018.1 10715.0 3798.4 1437.6 1345.5 1337.6 1249.5 1073.3 1037.5 14286.3 27551.6 24835.6 29960.6 15565.0 4540.4 2182.1 1911.8 1832.7 1761.4 1761.4 1774.0 14811.3 29163.9 24649.7 15936.3 8141.5 3541.6 1517.7 829.7 681.2 675.9 762.9 1408.6 10341.3 14872.3 15587.1 8427.1 4753.0 2829.7 1135.8 802.0 747.4 700.3 714.0 1041.8 10627.5 16903.1 20925.3 18463.2 8346.7 4667.6 3035.3 2044.1 1301.2 930.5 855.0 972.5 3382.6 30759.7 22797.5 30088.2 13521.2 5492.7 2886.5 2284.5 2007.1 1809.0 1636.5 1544.9 19475.0 31572.6 21566.0 18563.3 11810.5 4611.8 2140.7 1375.8 1131.2 1118.5 948.5 980.9 7848.1 26191.5 17475.0 19362.1 B676.~5 3456.9 1454.3 992.2 838.3 741.5 684.5 943.0 14836.7 16609.0 17645.7 15119.5 11244.4 3473.6 1607.9 1469.8 1393.5 1323.8 1253.6 1437.2 13848.9 30015.8 25969.1 16880.4 14989.7 6898.2 1833.0 997.4 885.8 865.6 814.6 1245.2 11117.5 22589.8 18154.4 19225.9 6403.7 3506.4 2354.8 2111.0 1632.9 1448.6 1341.1 1485.5 11002.2 35269.1 21579.1 18247.1 11812.7 6845.7 3165.9 2340.3 1844.9 1504.6 1462.8 1582.2 11656.8 18326.4 19944.6 15174.5 8005.2 4444.5 2294.1 1530.6 1290.8 1191.9 1159.7 1396.1 13257.5 23961.3 27260.3 18913.3 10087.0 TABLE Al.28:COMPUTED STREAMFLOW AT DEVIL CANYON OCT NO\'!DEC JAN FEB MAR APR MAY JUN JUL AUG SEF' 5758,,2 2404.7 1342.5 951.3 735.7 670.0 802.2 10490.7 18468.6 21383.4 18820.6 7950.B 3652.0 1231.2 1030.8 905.7 767.5 697.1 1504.6 13218.5 19978.5 21575.9 18530.0 19799.1 5221.7 2539.0 1757.5 1483.7 943.2 828.2 878.5 4989.5 30014.2 24861.7 19647.2 13441.1 7517.6 3232.6 1550.4 999.6 745.6 766.7 1531.8 17758.3 25230.7 19184.0 19207.0 13928.4 5109.3 1921.3 1387.1 1224.2 929.7 729.4 1130.6 15286.0 23188.1 19154.1 24071.6 11579.1 4830.4 2506.8 1868.0 1649.1 1275.2 1023.6 1107.4 8390.1 28081.9 26212.8 24959.6 13989.2 4647.9 1788.6 1206.6 921.7 893.1 852.3 867.3 15979.0 31137.1 29212.0 22609.8 16495.8 5235.3 2773.8 1986.6 1583.2 1388.9 1105.4 1109.0 12473.6 28415.4 22109.6 19389.2 18029.0 7434.5 3590.4 2904.9 1792.0 1212.2 1085.7 1437.4 11849.2 24413.5 21763.1 21219.8 6988.8 4402.8 1999.8 1370.9 1316.9 1179.1 877.9 1119.9 13900.9 21537.7 23390.4 28594.4 15329.6 6060.7 2622.7 2011.5 1686.2 1340.2 :1.112.8 1217.8 14802.9 14709.8 21739.3 22066.1 18929.9 7170.9 2759.9 2436.6 2212.0 1593.6 1638.9 2405.4 16030.7 27069.3 22880.6 21164.4 12218.6 5459.4 2544.1 .1978.7 1796.0 1413.4 1320.3 1613.4 12141.2 40679.7 24990.6 22241.8 14767.2 6307.7 2696.0 1896.0 1496.0 1387.4 958.4 810.9 17697.6 24094.1 32388.4 22720.5 11777.2 5998.3 2085.4 1387.1 978.0 900.2 663.8 696.5 4046.9 47816.4 21926.0 15585.8 8840.0 5744.0 2645.1 1160.8 925.3 828.8 866.9 1314.4 12267.1 24110.3 26195.7 19789.3 18234.2 64(,6.5 1907.8 1478.4 1278.7 1187.4 1187.4 1619.1 8734.0 30446.3 18536.2 20244.6 10844.3 3844.0 1457.9 1364.9 1357.9 1268.3 1089.1 1053.7 14435.5 27796.4 25081.2 30293.0 15728.2 4585.3 2203.5 1929.7 1851.2 1778.7 1778.7 1791.0 14982.4 29462.1 24871.0 16090.5 B225.9 3576.7 1531.8 836.3 686.6 681.8 769.6 1421.3 10429.9 14950.7 15651.2 8483.6 4795.~:.'i 2866.5 1145.7 810.0 756.9 708.7 721.8 1046.6 10721.6 17118.9 21142.2 18652.8 8443.5 4745.2 3081.8 2074.8 1318.8 943.6 866.8 986.2 3427.9 31031.0 22941.6 30315.9 13636.0 5537.0 2912.3 2312.6 2036.1 1836.4 1659.8 1565.5 19776.8 31929.8 21716.5 18654.1 11884.2 4638.6 2154.8 1387.0 1139.8 1128.6 955.0 986.7 7896.4 26392.6 17571.8 19478.1 8726.0 3491.4 1462.9 997.4 842.7 745.9 689.5 949.1 15004.6 16766.7 17790.0 15257.0 11370.1 3506.8 1619.4 1486.~i 1408.8 1342.2 1271.9 1456.7 14036.5 30302.6 26188.0 17031.6 15154.7 7003.3 1853.0 1007.9 896.8 876.2 825.2 1261.2 11305.3 22813.6 18252.6 19297.7 6463.3 3552.4 2391.7 2147.5 1657.4 1469.7 1361.0 1509.8 11211.9 35606.7 21740.5 18371.2 11916.1 6936.3 3210.8 2371.4 1867.9 1525.0 1480.6 1597.1 11693.4 18416.8 20079.0 15326.5 8080.4 4502.3 2324.3 1549.4 1304.1 1203.6 1164.7 1402.8 13334.0 24052.4 27462.8 19106.7 10172.4 1 1 ,~,-;~i 1 '1 ~ I , TABLE A1.29:OBSERVED AND CALCULATED STREAMFLOWS AT WATANA DAMSITE i' l r- I Month July 19BO August 1980 September 1980 June 1981 July 1981 August 1981 1 See Section (C) 2 Partial records were averaged Average Monthly Streamflow ln cfs 1ObservedCalculated 28133 2 26743 18490 18006 11557 10996 17323 15911 27890 26592 31435 316B3 TABLE A1.30:HISTORICAL EVAPORATION*(INCHES)-MCKINLEY PARK June July August 1967 3.97 3.20 2.42 1968 3.31 3.67 2.25 1969 3.48 2.39 1970 3.35 2.20 1971 6.38 3.75 2.06 1972 3.97 4.10 2.61 1973 3.37 3.25 1.55 1974 1975 1976 p-- 1977 3.77 4.02 3.37 1978 3.02 3.46 3.31 1979 2.81 2.97 2.73 1980 4.04 2.92 lo88 1981 3.24 1.89 2.18 1fS""J\ Average 3.78 3.35 2.41 MaxImum 6.38 4.02 3.37 MInlmUm 2.81 1.89 1.55 r-1\~·'i\ *From NOAA Climatological Data Reports ,.... TABLE A1.31:HISTORICAL EVAPoRATIoN*(INCHES) MATANUSKA AGRICULTURAL EXPERIMENT STATION,.., i May June July August September 1951 4.16 2.21 1.79 1952 4.45 2.98 1.64 1953 3.99 4.96 4.88 2.58 1.71 1954 4.74 4.80 4.10 3.03 2.23 .~1955 3.48 4.91 3.96 2.50 1956 4.83 4.32 4.44 1.47 1957 6.41 5.45 4.80 3.59 2.03 1958 4.35 5.00 3.97 3.53 2.00,...1959 4.76 5.23 2.79 2.82 1.46 1960 3.76 4.44 3.59 2.47 1.08 I 1961 5.18 4.17 3.40 2.41 1.62 1962 3.66 4.09 3.85 2.81 1.66 1963 3.56 3.42 2.50 1.48,....1964 4.04 3.06 1.60 1965 4.18 7.19 4.34 1966 3.56 4.08 4.36 2.60 2.25 1967 4.35 3.07 3.99 2.91 1.76 r-196B 4.57 3.56 3.30 1.66 1969 5.42 4.38 3.53 2.07 1970 5.03 3.13 2.36 1971 5.34 4.93 4.90 2.68 1.57 1972 3.43 4.06 4.90 3.79 2.63 1973 5.05 3.56 4.38 3.52 1974 5.06 4.96 3.96 3.79 2.20 1975 4.20 3.56 3.16 3.17 1.73 1976 4.22 5.34 4.55 3.21 2.13 ~1977 4.11 5.20 5.24 3.18 1.84 1978 4.60 3.01 3.33 3.23 1.70 1979 4.84 3.90 4.01 3.73 2.54 1980 3.72 2.98 3.27 2.74 1981 4.41 3.98 2.82 2.25 Average 4.48 4.30 4.18 3.10 1.88 Maximum 6.41 5.45 7.19 4.34 2.63-Mmimum 3.43 2.98 2.82 2.21 1.08 *From NOAA Climatological Data Reports If!II'II1II4, r-- TABLE Al.32:1981 PAN EVAPORATION (INCHES) 1PanLocationMay(8-31)June July August Watana 2.10 (.1 S)5.1 S (.17)2.44 (.08)1.83 (.06) McKInley 1.64 (.12)3.23 (.11)1.89 (.06)2.18 (.07) Matanuska 1.99 (.14)4.24 (.14)2.B2 (.09)2.25 (.07) Note:Values in parentheses are average dally evaporation for the month. Values for the full record were 4.24 inches (.18 inches per day)for May 8-31 at Watana and 4.41 inches (.14 Inches per day)for May 2-31 at Matanuska ')....)'}'····..1 .......]""']'J ~-1 ..),.......,)')""1 'J --1 ) T"ll.BLE 7Al.JJ:SUMMER 19B1 CLlMATICCDMPARlSON -WATANA,MATANUSKA,MCKINLEY SITES Monthly 'Evaporation '(!Lndhes) JUne ,1 July 1 August 'Watana '1 5.151 2.441 1.'83 Matanus:J<a ]1 4.24 j 2.i82 '1 2.25 Mc iKmley 3.2),1 1.8-9 .I 1.18 A~eiage Daily Temp.Preclp!LtatTOr'i Wind7Run (OF)(lnches)(mles) June Jl July IbiQust June July August June July Auqust 49 1 51 501 5.11 6.6.0 6.34 4670 46982 ..4994 2 54 56 54 1.93 4.57 3.65 627 463/680 50 i 52 I 49 I 3.75 4.18 3.B3 306 263 262 ,1 Half of August temperature data at Watana was nadand not included. 2 ,July Bl'ld -August 'W!Lndrunsat Watal'laare prellminary,approximate fl.gures. H\'BLE A134:'COMPARISON OF 1981 AND HISTORICAL EVAPORATION DATA 1981 Evapor,ation (lnches) June~lfiiiiust T98'1lMav~september19lfl Average HlstorTcal Evaporat.i,on (inches) Juoe-Auqusf-r Mav-September Watana 'Mataouska McKmley 9.42 9.31 7.30 14.85 15.34 11458 9.54 17 .94 TABLE A1.35:POTENTIAL EVAPOTRANSPIRATION BY THORNTHWAITE METHOD* Elevation Latltude Longitude Mean Annual Mean Annual Potentlal StatlOn Name (F eet)(North)(West)Temperature (OF)PreclPltation (in.)Evapotransplratlon (In.) Black Rapids 2128 63°32'145°51'29.9 18.58 17.24 Broad Pass 2127 63°12'149'15'28.3 11.40 16.69 Caswell 290 61'58'150'01'31.0 25.06 18.66 Chickaloon 929 61'48'148'27'32.7 14.00 18.11 Curry 516 62°37'150°02'34.9 43.67 18.94 Eureka 3326 61'57'147"'10'24.0 17.09 12.33 Glenallen 1456 62'07'145'32'22.9 8.21 15.57 Gulkana 1572 62'17'145'27'26.9 11.70 17 .44 Hlgh Lake Lodge 2760 62'54'149°05'27.1 24.50 14.18 Indian RlVer 735 62'45'149'50'31.1 36.70 16.97 Matanuska Exp.Station 150 61'34'149°16'35.5 15.40 19.76 McKwley Park 2092 63'42'149°00'27.5 14.44 14.61 Palmer 220 61'37'149°06'35.6 16.61 19.72 Paxson 2697 63'03'145'27'24.3 19.65 14.53 Sheep Mountain 2280 61'48'147'41'28.8 11.01 16.42 Skwentna 153 61°57'151 '10'32.6 29.87 18.46 Snowshoe lake 2500 62'02'146'40'21.5 11.60 12.58 Stampede 2500 63'44'150'22'26.6 19.28 15.85 Summlt 2401 63'20'149'09'25.8 22.25 15.51 Susitna 40 61'30'150°40'36.0 28.60 19.76 Talkeetna 345 62°18'150'06'33.2 28.85 18.70 Tr lms Camp 2408 63°26'145'46'26.5 36.11 17.29 WasBla 400 61°35'149°28'35.0 17.21 17.79 Willow 600 61'45'150°00'32.4 29.16 17.28 Wonder Lake 2000 63°28'150'52'31.8 19.50 18.48 *Patric and Black (1968) }1 ~ ')__c]'J ~l J ~-]'~'-"l '~'1 ."]]'.)) fABLE Al.3.6:ESTIMATED EVAPOHAfIONLOSSES-WATANA AND DEVIL CANYON RESERVOIRS WJ\TANA AveraqeMonthlv Au Temperature CUC) Month January February March April May J'une July August September .october .November Deeember Annual [vap. Pan Evaporation (inches) n.D 0.0 0.0 0.0 3.b 3.4 3.3 2.5 1.5 0.'0 0.•-0 0.0 l4.3 Re:se-rvoir Evaporat Ion (inanes) 11.:0 0.'0 O~O 0.0 L.S 2 .•4 L.3 1.B 1.0 0.0 o..D {j).0 m.o D £V I 1 Pan Evaporation (indlles) 0.'0 .0.0 0.0 I!J.D 3.9 3.'8 3.7 2.7 1I~7 O.D 0.•.0 0.0 15.'8 CA'NYON Reservoir Ev apo rat Ion (inches) 0.0 0.'0 0.:0 0.0 2.7 2.7 2.6 1.9 1.2 '0.0 0.0 0.0 11.1 Watana 1 -2.5 -7.3 -l.B -1.8 8.7 lO.O 13.7 12.5 N/A 0.2 -5.1 -17.9 Dev 11 Canyon2 -4.5 -5.0 -4.3 -2.5 6.1 9.2 11.9 N/A 4.8 -1.8 -7.2 -21.1 Talkeetna3 -13.0 -9.3 -6.7 0.7 7.0 12.6 14.4 12.7 7.8 0.2 -7.B -12.7 ~Based on data -Apr H 19BO-Jul1le 1981 Based -on data -July 19BO-June 1981 3 Based on dat a·-Januar y 1941-December ·198'0 - - r ! " - - TABLE A1.38:MONTHLY ENERGY PRODUCTION CASE A -WATANA ALONE I:.NEHGY tli W.H) 2215 2165 2115 Month Average Firm Averaae Firm Average Fum Oct 311 312 277 277 244 243 Nov 366 366 327 327 287 287 Dec 427 427 381 381 335 335 Jan 375 375 335 335 294 294 Feb 311 311 278 278 244 244 Mar 311 311 278 278 244 244 Apr 256 256 228 228 201 201 May 234 232 209 209 184 183 Jun 206 201 185 185 164 157 Jul 203 195 190 168 182 147 Aug 221 59 272 52 303 44 SeP 292 43 320 44 295 39 Ann 3513 3085 3280 2762 2977 2418 TABLE A1.39:MONTHLY ENERGY PRODUCTION CASE C -WATANA ALONE ENE R G Y (G W H) Case C1 (2215)1 Case C2 (2165)Case 3 (2115 ) Month Averaqe Firm Averaqe Firm Average Firm Oct 268 269 239 249 211 211 Nov 315 316 281 282 247 248 Dec 368 368 328 328 289 289 Jan 324 324 289 289 254 254 Feb 268 268 240 240 211 211 Mar 268 268 240 240 211 211 Apr 221 221 197 197 173 173 May 202 202 181 180 159 158 Jun 178 177 160 154 145 136 Jul 289 222 306 193 321 172 Aug 467 324 491 285 499 258 Sep 374 220 370 236 351 213 Ann 3542 3179 3322 2864 3071 2534 (1)Normal maximum operatmg level (feet). re""" !""'" I - TABLE A1.4o:MONTHLY ENERGY PRODUCTION CASE 0 -WATANA ALONE ENE R G Y fG WHJ Month Averaqe Firm Oct 230 2~!3 Nov 267 268 Dec 311 312 Jan 274 274 Feb 228 228 Mar 228 228 Aor 187 187 Mav 172 172 Jun 168 147 Jul 480 349 Auq 614 578 Sep 400 269 Ann 3559 3240 TABLE A1.41:WATANA (2215)!DEVIL CANYON MONTHLY ENERGY PRODUCTION CASE A1 ENE R G Y (G W H) A V ERA G E FIR M Month Watana Uev 11 l anyon lotal Watana uev11 Canyon lotal Oct 311 280 591 312 287 599 Nov 366 329 695 367 319 686 Dec 427 381 808 427 380 807 Jan 375 335 710 376 334 710 Feb 311 280 591 311 278 589 Mar 311 280 591 311 271 582 Apr 256 232 488 256 230 486 May 234 230 464 232 213 445 Jun 206 239 445 201 187 388 Jul 203 235 438 195 177 372 Auq 221 224 445 56 103 159 Sep 292 265 557 43 77 120 Ann 3513 3310 6823 3087 2856 5943 TABLE Al.42:WATANA (2165)/DEVIL CANYON MONTHLY ENERGY PRODUCTION CASE A ENE R G Y (G WH) A V ERA G E FIR M Month Watana Devil Canyon Total Watana Devil Canyon Total Oct 277 270 547 280 271 551 Nov 327 318 645 327 317 644 Dec 381 369 750 381 367 748 Jan 335 325 660 335 324 659 Feb 278 270 548 278 258 536 Mar 278 270 548 278 265 543 Apr 228 222 450 228 224 452 Mav 209 216 425 209 205 414 .Jun 185 225 410 186 185 371 Jul 190 231 421 ,168 195 363 Aua 272 263 535 52 93 145 Sep 320 300 620 44 64 108 Ann 3280 3279 6559 2766 2768 5534 TABLE A1.43:WATANA (2115)!DEVIL CANYDN MONTHLY ENERGY PRODUCTION CASE A ENE R G Y (G W H) A V ERA G E FIR M Month Watana LJev l.l Canyon lotal Watana LJevll Canyon Total Oct 244 262 506 243 264 507 Nov 287 310 597 288 308 596 Dec 335 358 693 335 356 691 Jan 294 316 610 295 314 609 Feb 244 263 507 244 261 505 Mar 244 267 511 244 262 506 Apr 201 221 422 201 209 410 May 184 216 400 183 200 383 Jun 164 209 373 157 172 329 Jul 182 223 405 147 166 313 Auq 303 286 589 44 59 103 Sep 295 295 590 39 59 98 Ann 2977 3226 6203 2420 2630 5050 -,KT'-'· r - - - - TABLE A1.44:WATANA (2215)!DEVIL CANYON MONTHLY ENERGY PRODUCTION CASE C E N E R G Y (G WH) A V E R A G E f I R M Month watana lJev il Canyon lotal Watana Dev il Canyon Total Oct 311 220 531 314 166 480 Nov 366 251 617 367 185 552 Dec 427 308 735 427 221 648 Jan 375 294 669 376 194 570 feb 311 263 574 312 160 472 Mar 311 ?76 587 312 2Z4 536 Apr 256 235 491 256 244 500 May 234 271 505 235 288 523 Jun 206 282 486 201 248 449 Jul 203 267 470 188 261 449 AUQ 221 345 566 56 317 373 Sep 292 264 576 45 Z1.z 257 Ann 3513 3296 6809 3089 2720 5809 TABLE A1.45:WATANA (2165)!DEVIL CANYON MONTHLY ENERGY PRODUCTION CASE C ENE R G Y (G W H) A V ERA G E FIR M Month Watana Dev il Canyon Total Watana lJevil Canyon lotal Oct 277 217 494 280 141 421 Nov 327 253 507 327 165 492 Dec 381 306 687 381 194 575 Jan 335 293 628 335 170 505 Feb 278 259 537 278 211 489 Mar 278 272 550 278 275 553 Apr 228 232 460 228 233 461 May 209 268 477 209 233 442 Jun 185 276 461 186 263 449 Jul 190 270 460 168 259 427 Aug 272 357 629 52 310 362 Sep 320 303 623 44 181 225 Ann 3380 3306 6586 2766 2635 5401 "... i i TABLE A1.46:WATANA (2115)/DEVIL CANYON MONTHLY ENERGY PRODUCTION CASE C .. ENERGY (G W H) A V ERA G E FIR M Month Watana Devil Canyon lotal Watana Devil Canyon lotal Oct 244 213 457 245 144 389 Nov 287 238 525 288 161 449 Dec 335 289 624 335 190 525 Jan 294 283 577 295 166 461 feb 244 255 499 244 211 455 Mar 244 270 514 244 282 526 Apr 201 232 433 201 244 445 May 184 270 454 184 246 430 Jun 164 277 441 167 275 442 Jul 182 277 459 148 259 407 Aug 303 371 674 44 310 354 Sep 295 312 607 40 181 221 Ann 2977 3287 6264 2435 2669 5104 TABLE A1.47:WATANA (2215)/DEVIL CANYON MONTHLY ENERGY PRODUCTION CASE D E N ERG Y (G W H) AVERAGE FIR M Month Watana DevIl Canyon Total Watana Devil Canyon Total Oct 230 215 445 232 228 460 Nov 267 234 501 267 239 506 Dec 311 270 581 309 270 579 Jan 274 241 515 274 241 515 Feb 228 203 431 228 203 431 Mar 228 204 432 228 204 432 Apr 187 171 358 187 169 356 May 172 207 379 172 165 337 Jun 168 245 413 150 173 323 Jul 480 468 948 403 385 788 Auq 614 561 1175 536 503 1032 Sep 400 382 782 285 265 550 Ann 3559 3401 6960 3271 3045 6316 ~ I ! r- I 1 TABLE A1.4B:WATANA ANNUAL AVERAGE AND FIRM ENERGY PRODUCTION ENE R G Y (G WH) Watana Case A Case C Case D Elevation Averaqe Firm Averaqe Firm Averaqe Firm 2215 3513 3085 3542 3179 3559 3240 2165 3280 2762 3322 2864 -- 2115 2977 2418 3071 2534 -- TABLE A1.49:WATANA!DEVIL CANYON ANNUAL AVERAGE AND FIRM ENERGY PRODUCTION ENE R G Y (G WH) Watana Case A Case C Case D Elevation Averaqe Firm Averaqe Firm Averaqe ~irm 2215 6823 5943 6809 5809 6960 6316 2165 6559 5534 6586 5401 -- 2115 6203 5050 6264 5104 - - J~' - - - TABLE A1.50:WATANA (2185)ALONE MONTHLY ENERGY PRODUCTION CASE A ENE R G Y (G W H) Month Iweraqe Firm Oct 263 262 Nov 302 303 Dec 361 361 Jan 318 318 Feb 256 256 Mar 264 264 Apr 224 224 May 202 203 Jun 189 184 Jul 247 191 Aug 413 181 Sep 361 177 Ann 3400 2752 TABLE A1.51:WATANA (2185)ALONE MONTHLY ENERGY PRODUCTION CASE C ENE R G Y (G WH) Month Averaqe Fum Oct 249 248 Nov 292 294 Dec 341 341 Jan 300 300 Feb 249 249 Mar 249 249 Apr 205 205 May 188 187 Jun 166 161 Jul 304 200 Auq 494 295 Sep 373 243 Ann 3410 2972 I, r -! TABLE A1.52:WATANA (2185)ALONE MONTHLY ENERGY PRODUCTION CASE D ENE R G Y (G WH) Month Averaqe Firm Oct 218 215 Nov 252 254 Dec 295 295 Jan 260 260 Feb 216 216 Mar 216 216 ADr 177 177 Mav 163 163 Jun 161 139 Jul 471 332 Auo 602 551 SeD 384 256 Ann 3415 3074 TABLE Al.53:WATANA (2185)/DEVIL CANYON MONTHLY ENERGY PRODUCTION CASE A ENE R G Y (G W H) AVERAGE FIR M Month watana Uev il Lanyon Total Watana Devil Canyon Total Oct 263 251 514 262 248 510 Nov 302 289 591 303 287 590 Dec 361 340 701 361 341 702 Jan 318 300 618 318 300 618 Feb 256 242 498 256 242 498 Mar 264 249 513 264 248 512 Apr 224 211 435 224 211 435 May 202 198 400 201 191 392 Jun 189 207 396 184 175 359 Jul 247 259 506 200 182 382 Aug 413 343 756 181 171 352 Sep 361 326 687 177 168 345 Ann 3400 3215 6615 2931 2764 5695 -I ( f"'I. I TABLE A1.54:WATANA (2185)/DEVIL CANYON MONTHLY ENERGY PRODUCTION CASE C ENE R G Y (G W H) A V ERA G E FIR M Month Watana lJevil Canyon lotal Watana Devil Canyon Total Oct 249 233 482 248 220 468 Nov 292 261 553 294 258 552 Dec 341 303 644 341 302 643 Jan 300 268 568 300 266 566 Feb 249 225 474 249 219 468 Mar 249 227 476 249 219 468 Apr 205 192 397 205 180 385 May 188 223 411 188 166 354 Jun 166 240 406 161 157 318 Jul 304 311 615 215 247 462 AUQ 494 399 893 312 320 632 Sep 373 340 713 257 255 512 Ann 3410 3222 6632 3019 2809 5828 TABLE A1.55:WATANA (2185)!DEVIL CANYON MONTHL't ENERGY PRODUCTION MODIfIED CASE C ENE R G Y (G W H) A V ERA G E fIR M Month Watana Devil Canyon Total Watana Devll Canyon Total Oct 272 234 506 272 199 471 Nov 321 265 586 322 235 557 Dec 374 311 685 374 274 648 Jan 329 281 610 329 239 568 feb 273 241 514 273 199 472 Mar 273 247 520 273 198 471 Apr 225 208 433 225 163 388 May 206 245 451 204 152 356 Jun 181 261 442 182 199 381 Jul 210 280 490 165 258 423 AUQ 364 374 738 146 317 463 Sep 355 317 672 186 232 418 Ann 3383 3264 6647 2951 2665 5616 (I )1 D5 foot drawdown at Dev il Canyon. -I - TABLE A1.56:WATANA (2185)/DEVIL CANYON MONTHL 1ENERGYPRODUCTIONMODIFIEDCASEC ENE R G Y (G W H) A V ERA G E FIR M Month Watana Dev il Lanyon Total Watana Devil Canyon Total Oct 291 209 500 292 139 431 Nov 344 246 590 344 163 507 Dec 400 300 700 400 189 589 Jan 352 293 645 352 217 569 Feb 292 269 561 292 274 566 Mar 292 278 570 292 278 570 Apr 240 238 478 240 234 474 May 220 274 494 220 223 443 Jun 194 282 476 193 215 408 Jul 194 269 463 182 260 442 AUQ 229 348 577 52 315 367 Sep 289 289 578 45 196 241 Ann 3337 3295 6632 2904 2703 5607 (1)Unlimited drawdown at Devil Canyon. TABLE A1.57:WATANA (2185)/DEVIL CANYON MONTHLY ENERGY PRODUCTION MODIFIED CASE D ENE R G Y (G W H) A V ERA G E FIR M Month Watana lJevil Canyon lotal Watana lJevi!Canyon lotal Oct 249 189 438 248 221 469 Nov 293 216 509 294 253 547 Dec 341 260 601 341 296 637 Jan 300 242 542 300 265 565 Feb 249 218 467 249 225 474 Mar 249 22B 477 249 229 478 Apr 205 194 399 205 194 399 May 18B 233 421 18B 209 397 Jun 166 247 413 161 177 33B Jul 322 405 727 251 363 614 Auq 466 521 987 282 255 537 Sep 368 332 700 155 144 299 Ann 3396 32B5 6681 2923 2831 5754 (1)Unlimited drawdown at Devil Canyon. -i -.. ! TABLE A1.58:WATANA (2185)/DEVIL CANYON MONTHL¥ ENERGY PRODUCTION MODIFIED CASE D ENE R G Y (G WH) A V ERA G E FIR M Month Watana Uevil Canyon Total Watana Dev il Canyon Total Oct 226 201 427 225 175 400 Nov 264 223 487 263 207 470 Dec 309 264 573 309 240 549 Jan 272 239 511 272 213 485 Feb 225 201 426 225 176 401 Mar 225 203 428 225 176 401 Apr 185 170 355 185 145 330 May 170 210 380 169 153 322 Jun 160 238 398 149 165 314 Jul 439 444 983 334 367 701 Auq 557 547 1004 453 527 980 Sep 389 366 755 308 252 560 Ann 3421 3306 6727 3117 2796 5913 (1)DevIl Canyon drawdown limIted to 55'. TABLE A1.59:DEVIL CANYON ANNUAL ENERGY WITH VARIABLE DRAWDOWN ANNUAL ENE R G Y.(G W H) Drawdown Average Lowest 2nd Lowest WATANA:--- Un1J.mited (227)3395 2924 2935 190 3443 2797 2824 165 3452 2717 2741 140 3459 2611 2632 115 3471 2372 2896 DEVIL CANYON:1 90 3315 2384 2697 55 3334 2503 2745 0 3405 2776 2807 NOTES: (1)With Watana at 140 feet drawdown. !"'.-, ~! I ,... I i - - - TABLE A1.60:WATANA AVERAGE MONTHLY ENERGY WITH VARIABLE DRAWDOWN A V ERA G E ENE R G Y (G W H) D RAW DOW N (F E E T) Umlimited Month 115 140 '165 190 (227) Oct 278 281 284 287 286 Nov 351 34B 348 349 344 Dec 453 445 437 436 425 Jan 38B 383 377 376 370 Feb 317 31B 311 309 301 Mar 274 276 276 274 274 Apr 197 203 208 213 224 May 164 180 188 193 202 Jun 162 175 180 185 192 Jul 263 25B 256 248 240 Auq 374 344 338 327 305 Sep 250 24B 249 245 234 Ann 3471 3459 3452 3443 3397 TABLE A1.61:WATANA FIRM MONTHLY ENERGY WITH VARIABLE DRAWDOWN FIR M ENE R G Y (G W H) D RAW DOW N (F E E T) Umlimited Month 115 140 165 190 2627) Oct 213 234 243 250 262 Nov 318 270 281 290 303 Dec 446 321 335 345 361 Jan 377 283 295 303 318 Feb 310 228 238 245 256 Mar 271 235 244 252 264 Apr 203 199 208 214 224 May 164 180 188 193 201 Jun 149 170 178 183 184 Jul 155 182 191 197 200 Auq 146 170 178 183 181 Sep 144 158 164 169 177 Ann 2896 2630 2743 2824 2931 -I i """'.I TABLE AI.62:WA TANA/DEVIl CANYON DEVELOPMENT MONTHLY ENERGY PRODUCTION POTENTIAL ENE R G Y (G W H) A V ERA G E fIR M Month Watana Devll Canyon lotal Watana I)evil Canyon fotal Oct 281 230 511 234 203 437 Nov 348 295 643 270 232 502 Dec 445 373 818 322 276 598 Jan 383 332 715 283 257 540 feb 318 281 599 228 224 452 Mar 276 256 532 235 235 470 Apr 203 248 451 199 261 460 May 180 285 465 180 262 442 Jun 175 303 478 170 322 492 Jul 258 263 521 182 205 387 Auq 344 253 597 170 151 321 Sep 248 215 463 158 135 293 Ann 3459 3334 6793 2631 2763 5394 TABLE A1.63:WATANA/DEVIL CANYON DEVELOPMENT AVERAGE MONTHLY ENERGY PRODUCTION A V E RAG E ENERGy 1 Forecast 2 Watana/Forecast 3 Month Watana 2000 .'DevIl Canyon 2010 .''.'. Oct 281 416 68 507 617 82 Nov 348 490 71 634 723 88 Dec 445 535 83 749 787 95 Jan 383 485 79 684 715 96 Feb 318 462 69 599 680 88 Mar 276 412 67 532 609 87 ADr 203 371 55 451 546 83 May 180 331 54 461 493 94 Jun 175 321 55 461 481 96 Jul 224 307 73 412 461 89 Aua 270 329 82 430 493 87 SeD 237 364 65 405 541 75 Ann 3459 4823 72 6325 7146 89 NOTES: (1)Average energy from Watana and Watana/Devil Canyon adjusted to reflect overproduct lOn. (2)Battelle forecast less small hydroelectrIc productIon for 2000. (3)Battelle forecast less small hydroelectric productlOn for 2010. p:-~" r - -i r TABLE A1.64:WATANA/DEVIL CANYON DEVELOPMENT fIRM MONTHLY ENERGY PRODUCTION A V ERA G E ENE R G y1 Forecast 1 Watana/Forecast.2 Mont.h Wat.ana 2000 .'Dev il Canyon 2010 ., '0 '" Oct 234 416 56 437 617 71 Nov 270 490 55 502 723 69 Dec 322 535 60 598 787 76 Jan 283 485 58 540 715 76 feb 228 462 49 452 680 66 Mar 235 412 57 470 609 77 Apr 199 371 54 460 546 84 .Mav 180 331 54 442 493 90 Jun 170 321 53 461 481 96 Jul 182 307 59 387 461 84 Auq 170 329 52 321 493 65 Sep 158 364 43 293 541 54 Ann 2631 4823 55 5363 7146 75 NOTES: (1 )Battelle forecast less small hydroelectric product.ion for 2000. (2)Battelle forecast less small hydroelectric production for 2010. 15 r'"" I 1""'" Ir :"",,,-:>0-l- e> Q: I.LI Z I.LI r'...J cl ;:) Zz 10cl Ll-e I-z LLJ U Q: LLJa. f""" i l-I ,-, 1 r 5 0 N 0 J F M A M J J A S MONTH -i MONTHLY ENERGY PATTERN FIGURE AI.l r- 2190 NORMAL MAXIMUM ,OPERATING LEVEL 2185 I I -I I I I-I - - I -I 2095 I I I I 1 I I I I I I I WATANA RESERVOIR MONTHS - NORMAL MAXIMUM OPERATING LEVEL 1455 - - - - - 1400- I I I I I I I I I I I I 2200 2180 t-= IL.2160 -I llJ >2140 llJ .J a:: 0 2120 >a:: llJ Ul llJ 2100a:: i"""".2080 ,- ~1460 1450 t-=1440,~IL. [ -I W >1430w -I a:: 0 1420 >,..,a:: ;.w Ulw 1410a::-.1 f 1400 1390 o o N N o o J J F F M M A A M M J J J J A A S S MONTHS DEVIL CANYON RESERVOIR MONTHLY TARGET MINIMUM RESERVOIR LEVELS FIGURE AI.2 -( !""'" I, "'-' 250150200 DRAWDOWN (FT) - rAVERAGE t - . ";;;k~--::::-~,-~~/(- -/LOWEST / / / 2500 4000 3500 2000 100 x::r:-(!) I !, L >(!)30000= ~W Z W WATANA ANNUAL ENERGY YS.DRAWDOWN FIGURE AI.3 r - I'"'"' I 4000 -( I I P" I[-3500 fI""" r z ~ (!) >-3000 !""" (!) Ir W Z W r 2500 '[ I"""I I l !"""'2000 I'"'"' I I I---.~.--AVERAGE ~ ~--¥'.--FIRM-'...................._-------- .......... I-'~.--LOWEST, "'-................ '-. 50 100 DRAWDOWN (FT) 150 r r NOTE: WATANA UPSTREAM:DRAWDOWN LIMITED TO 140 DEV IL CANYON ANNUAL ENERGY V5.DRAWDOWN FIGURE AlA [iii] FIGURE AI.5 250 --150 AVERAGE FIRM DRAW DOWN FIRM AVERAGE 200 - 150 DRAWOOWN (FT) WATANA DECEMBER ENERGY vs L------~~=:::_~~,,~OOO00 N (FT)2 DRAWDOW o DEVIL CANYON >- ffizw >-(!I II:: W Z W NOTE:WITH WATAN~ DEVIL CANY~~ITED TO 140DRAWDOWN i" I -, - -i - -I i - ATTACHMENT 1 --1 -~--l 1 _1 -1 -1 ~-)-~~--1 -~]--~ SUSITNA HEF'i DEVIL CANYON 1455 600 MW (NO FLO REQ) START WSEL=1455.0 TWEL=850.0 PMAX=,60000E+06 EL STORAGE !125.0 0.0 1000.0 7500.0 1050.0 25000.0 1150,0 85000.0 1200.0 132000.0 1250.0 195000.0 1.300.0 292000,0 1350.0 456000.0 •.......I'l.n.~I /'!,."';11\J'i<.l'\r-. ....'\.I'w 'I'""...~..'"-.- 1450.0 1048000.0 1500.0 1484000.0 MINIMUM STORAGE=707000.0 MAXIMUM P.H.Cl =13763.2 MONTHLY BASEL DAD DEMAND MAXIMUM STORAGE 1092000.0 0.275940Et06 0.234360Et06 0.317520E+06 0.378000E+06 0.211680E+06 O.192780E+06 0.332640E+06 O.200340Et06 0.268380Et06 O.189000Et06 0.275940£+06 O.185220Et06 MONTHLY DISCHARGE REQUIREMENT 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 2000.0 2000.0 2000.0 2000.0 MONTHLY WATER LEVEL 1455.0 1455.0 1455.0 1455.0 1455.0 1455.0 1440.0 1420.0 1390.0 1390.0 1420.0 1440.0 MONTHLY FLOW DISTRIBUTION 1.0 1,0 1.0 MONTHLY L.F.=0.630 LO 1.0 1.0 1.0 1.0 0.9 1.0 0.8 0.6 NO.YEARS OF SIMULATION =32 PDS=0 NSEC=366 NDEF=18 NDEF1=0 NDSFL=0 YEAR TOTE TOT SEC TOTDEF 1 0.30636£+10 0.82971E+09 O.OOOOOE+OO 2 0.27479E+10 0.51817E+09 0.41083E+07 3 0.33050£+10 o.10711E+10 O.OOOOOE+OO 4 0.34637£+10 0.12299£+10 O.OOOOOE+OO 5 0.33023E+10 0.10684£+10 O.OOOOOE+OO 6 o.35615E+10 0.13276E+10 O.OOOOOEtOO 7 0.39289£+10 0.16950Etl0 O.OOOOOEtOO 8 0.35837E+10 0.13498£+10 O.OOOOOEtOO 9 0.34136E+10 0.11797E+10 O.OOOOOE+OO 10 0.33928E+10 0.11589£+10 O.OOOOOE+OO 11 0.33646E+10 O.11307E+10 O.OOOOOEtOO 12 0.37060E+10 o.14721E+10 O.OOOOOEtOO 13 0.40400E+10 O.18062E+10 O.OOOOOE+OO 14 0.38602£+10 0.16263E+10 O.OOOOOE+OO 15 0.35069E+l0 o.12730E+10 O.OOOOOE+OO 16 0.34395E+10 o.12056E+10 O.OOOOOE+OO 17 0.32877E+10 o.10538E+10 O.OOOOOEtOO 18 0.37335E+10 o.14996Etl0 O.OOOOOEtOO 19 0.35242Etl0 0.12903Etl0 O.OOOOOEtOO 20 0.27755E+10 0.54259E+09 o.10020Et07 21 0.25031E+l0 0.27054Et09 0.13586E+07 22 0.27624E+l0 0.52850Et09 O.OOOOOE+OO 23 0.35625E+10 o.13286E+10 O.OOOOOEtOO 24 0.30442Etl0 0.81034Et09 O.OOOOOE+OO 25 0.27452E+10 0.51336Et09 0.20380Et07 26 0.31224E+10 0.89052Et09 0.19818E+07 27 0.31528E+10 0.91891E+09 O.OOOOOE+OO 28 0.31084E+10 0.87559E+09 0.11140Et07 29 0.32181E+l0 0.98421E+09 O.OOOOOEtOO 30 0.29489E+l0 0.71611E+09 o.11287Et07 31 0.36469E+10 o.14130Etl0 O.OOOOOEtOO 32 0.38651Etl0 o.16312E+10 O.OOOOOE+OO 1 -~-]-)-1 -_._)~_.J ·--1 '1 _c-J C___)·'1 "-)1 .~-'1-'-1 --]] AVERM;~Nl1NTHI..Y F.NER(iY MlD POWER MONTH TOTAL POWER MW OCT 315.461 NOI)<'HH ,~-;?(l DEC 510.842 ,JAN 454.507 FEB 385.348 MAF:3:'jO,?n APR 339.680 i1M 390.322 JUN 1j.:j,~l'lj. JUL 360.~'45 AUG ~q/>()/!. SEF'294.Jf·2 PEM: :':'OWEF: MW 315.461 <l ()~~~'j /() 510.842 454.507 385.348 :~~'j c)I !19 ~~ 339./180 390.322 '\:I.:';,)?1. "!.t.O.945 \'~tl?Jol)i'l :::9"~t~62 OFFF'E,t.ll( POWER MW 315.461 -1 0 i)•:;;.~() 510.8'1:~ .~~)':r 507 385.318 3:)().rr~ 339.680 39('J,3;~? 4:l.:'i t ?/l 3()O.945 ~'i 7.0 n. 294.562 TOTAL F.NERrl'( GWH ::'30.161 2,';),1.3B "r'O'""'-1 i,~I <:•!~... 331.608 281.j;:;0 :.2~;j~·j -)9 \~8 247.830 284.779 :1():~y '7:j:? 263.345 2 ~'~i \~.)):.~\~ )j<1.9:l? f1FFF'EM ENf:F:(;Y G~JH 230.161 29!1~138 372.711 33J.608 281.150 2;:.::..938 )·1/.830 ;:8.'{to 7"79 3():~~982 /6:~,y3/~5 25~:+223 2:i i:{9l~:J f'E:ti ~: fNF:RG'( GWH 0.000 0.000 0,000 0.000 0,000 0.000 0,000 0.000 (},.OOO 0.000 0.000 0.000 J:tEFtCT.T MW 0.084 0~2)O ()~22~ 0.020 ()iOO(J 0.000 0.000 0.000 O.()()O (~iOO(~ ()t()()O Of 000 SEC plW ~9 \.t.O/·} 87,)19 J.:;>:~of 0 (.1 4 J21v887 116r968 74t8~;2 ·1 'fl"":,'....,.~1...\',""\~.I.., 178+6":12 222v·191 :i.60 ii f,05 1 "j 8 ,0/1 :i.0 9 ~3 /}~! AVERAGE MONTHLY DISCHARGES AND HEAD MONTH ocr NO'.) DEC JANFEB MAR APR 1\11;Y ..JUi'! JUl. I~UG SEP INFLOW f;l ~~?;,06 9517(00 12245.78 1.0HlLH8 919;;.31 8136.16 MHO.:q 71lt.•8S 80~i9.03 9,~'}.;\.-1·1) 11467.28 B:I.H.7:;; P.H.FLOW /1)()~J.n 9·<:24 t 62 1)864.40 :!.():';1.i),<\() 8883.18 8072.30 /'J o:~•'?:~ 9343.79 10287.59 if0\~I;1 f /4 8.477.~jO /;97J..7i' PFAI( 7-10~,/.:~ 9 /124 t 62 HRA4.40 !.0 ':')~.Ii ,.<\0 R883.18 son.30 7903,~~,,~ 9:H3.79 1 ()~·.:R7 +~9 9069,n 8477.50 h971.,// OFFF'EAK 7'H2.n 9 11:~4 +fl? ])864.40 1.0 ;)!.'i ,,:\0 8883.18 B07~t30 7'103.~~:.~ 9343.79 1(:<~~8'l,59 '1069./~ R.Il77.50 /;97n.n HFAfi 390.48 r:{"t '1 '7 1\.1 ••'I,'i"I .1 ~",~+t.j :)98.44 60t,0,l, 602.74 596.12 ~~;?9 (58 560.15 3::;1.51 565.02 ~j8'2~43 SPILL !JfOO OirOO t 1.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 H::/.52 0.00 HLilSS 0.00 f\~~Iv'(1,..JIJ 0700 0.00 OtOO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 flVERt;GE MJNlIM.ENFRGY ...0.333378E+10 KWH DELMI~ISS .- STORE/HI :;:: STORSH,RT ... INFLf)(~MASS ClUTFL.11ASS -0,1.:;893'101E+05 O,10757076F.+07 0.10920000£+07 0,,H6H98YOEt07 O.34b92513E+07 INFLOW CFS YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL r~UG SEP 1 7159.0 8895.0 12572.0 10738.0 8909.0 7821.0 6009.0 7153.0 6783.0 7121.0 6235.0 479;5.0 2 6535.0 7334.0 8848.0 8600.0 8940.0 7848.0 62:31.0 .S882.0 6288.0 6656.0 7308.0 14009.0 3 8224.0 10430.0 12987.0 11270.0 9116.0 7979.0 5960.0 6146.0 9134.0 7683.0 9557.0 8119.0 4 10519.0 11124.0 12780.0 10786.0 8918.0 7918.0 6258.0 8035.0 8564.0 6626.0 11137.0 898f:l.O 5 8111.0 9812.0 12616.0 11011.0 9103.0 7881.0 6072.0 8905.0 8542.0 6854.0 10623.0 6521.0 6 7492.0 10398.0 13097.0 11436.0 9448.0 8175.0 6051.0 6988.0 8069.0 7511.0 17730.0 9160.0 7 7650.0 9680.0 12436.0 10708.0 9066.0 8004.0 6035.0 8344.0 8790.0 16756.0 17477.0 11666.0 8 8237.0 10665.0 13216.0 11370.0 9562.0 8257.0 6048.0 7613.0 7982.0 7272.0 12179.0 13200.0 9 10436.0 11481.0 14134.0 11579.0 9385.0 8237.0 6164.0 7205.0 7155.0 6875.0 11024.0 5128.0 10 6857.0 7334.0 12593.0 11103.0 9352.0 8029.0 6119.0 9077.0 8051.0 7791.0 15103.0 10500.0 11 9063.0 10514.0 13241.0 11473.0 9513.0 8264.0 6031.0 7073.0 6177.0 7118.0 7202,0 12632.0 12 10173.0 10651.0 13666.0 11999.0 9766.0 8790.0 7132.0 7706.0 9098.0 9029.0 14182.0 7389.0 13 8461.0 10435.0 13208.0 11583.0 9586.0 8472.0 6340.0 6121.0 12575.0 16842.0 17386.0 9938.0 14 9310.0 10587.0 13125.0 11283.0 9560.0 811 0.0 5920.0 7716.0 8238.0 16079.0 17356.0 6948.0 15 9000.0 9976.0 12616.0 10765.0 9073.0 7815.0 5975.0 5851.0 11498.0 14166.0 10259.0 5467.0 16 7209.0 10536.0 12390.0 10712.0 9002.0 8018.0 6041.0 6615.0 7730.0 8264,0 12624.0 13405.0 17 9498.0 9799.0 12708.0 11065.0 9360.0 8339.0 6346.0 6954.0 9368.0 7046.0 8387.0 5741.0 18 6662.0 8883.0 12594.0 11144.0 9441.0 8240.0 6089.0 7197.0 7910.0 11218.0 21298.0 13444.0 19 7587.0 10094.0 13159.0 11638.0 9952.0 8930.0 6518.0 7469.0 8577.0 12251.0 10182.0 5175.0 20 6548.0 7472.0 12066.0 10473.0 8855.0 7921.0 6148.0 6430.0 5736.0 5604.0 5150.0 4885.0 21 6914.0 7703.0 9321.0 8438.0 6979.0 7333.0 6345.0 6863.0 7779.0 7988.0 6974.0 5618.0 22 7504.0 8210.0 9634,0 8545.0 7036.0 7379.0 6453.0 6339.0 8673.0 7078.0 7518.0 5605.0 23 6694.0 8472.0 13542.0 11823,0 10009.0 8811.0 6292.0 9117.0 9297.0 13455.0 13079.0 7055.0 24 7640.0 10046.0 12616.0 10926.0 9301.0 8106.0 5957.0 5925.0 7397.0 5909.0 5930.0 4744.0 25 6542.0 7262.0 12227.0 10629.0 8919.0 7841.0 5962.0 7432.0 6681.0 6550.0 6080.0 5771.0 26 6616.0 7375.0 8952.0 8415.0 9515.0 8423.0 6183.0 7678.0 8441.0 13158.0 11152.0 10325.0 27 10005.0 9744.0 12237.0 10683.0 9049.0 7976.0 6084.0 7681.0 7668.0 5947.0 5346.0 4891.0 28 6733.0 7572.0 10452.0 11444.0 9643.0 8512.0 6236.0 7956.0 9104.0 10688.0 12052.0 7087.0 29 9938.0 11102.0 13601.0 11654.0 9698.0 8632.0 6324.0 5776.0 5970.0 6575.0 6229.0 5U7.0 30 6919.0 7522.0 8940.0 10177.0 9376.0 8316.0 6129.0 6278.0 5970.0 11674.0 12904.0 ~5343.0 31 9902.0 11846.0 13508.0 11436.0 9556.0 8472.0 6302.0 6551.0 7694.0 12453.0 14003.0 7513.0 3'")10248.0 11590.0 12783.0 11074.0 9262.0 8148.0 6017.0 6584.0 6950.0 8785.0 23287.0 13493,0.. ry i),'1 1 111,~~~"1 ,'1 J 4 " 1 -l~-')]-1 1 INFLOW TO SECOND RESERVOIR YF:OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF' 5758.2 2404.7 1342.5 951.3 735.7 670.0 802.2 10490.7 18468.6 21383.4 18820.6 "7950.f.l 3652.0 1231.2 1030.8 905.7 767.5 697.1 1504.6 13218.5 19978.5 21575.9 18530.0 19799.1 5221.7 2539.0 1757.5 1483.7 943.2 828.2 878.5 4989.5 30014.2 24861.7 19647.2 13441.1 7517.6 3232.6 1550.4 999.6 745.6 766.7 1531.8 17758.3 25230.7 19184.0 19207.0 13928.4 5109.3 1921.3 1387.1 1224.2 929.7 729.4 1130.6 15286.0 23188.1 19154.1 24071.6 11579.1 4830.4 2506.8 1868.0 1649.1 1275.2 1023.6 1107.4 8390.1 28081.9 26212.8 24959.6 13989.2 4647.9 1788.6 1206.6 921.7 893 .1 852.3 867.3 15979.0 31137.1 29212.0 22609.8 16495.8 5235.3 2773.8 1986.6 1583.2 1388.9 1105.4 1109.0 12473.6 28415.4 22109.6 19389.2 18029.0 7434.5 3590.4 2904.9 1792.0 1212.2 1085.7 1437.4 11849.2 24413.5 21763.1 21219.8 6988.8 4402.8 1999.8 1370.9 1316.9 1179.1 877.9 1119.9 13900.9 21537.7 23390.4 28594.4 15329.6 6060.7 2622.7 2011.5 1686.2 1340.2 1112.8 1217.8 14802.9 14709.8 21739.3 22066.1 18929.9 7170.9 2759.9 2436.6 2212.0 1593.6 1638.9 2405.4 16030.7 27069.3 22880.6 21164.4 12218.6 5459.4 2544.1 1978.7 1796.0 1413.4 1320.3 1613.4 12141.2 40679.7 24990.6 22241.8 14767.2 6307.7 2696.0 1896.0 1496.0 1387.4 958.4 810.9 17697.6 24094.1 32388.4 22720.5 11777.2 5998.3 2085.4 1387.1 978.0 900.2 663.8 696.5 4046.9 47816.4 21926.0 15585.8 8840.0 5744.0 2645.1 1160.8 925.3 828.8 866.9 1314.4 12267.1 24110.3 26195.7 19789.3 18234.2 6496.5 1907.8 1478.4 1278.7 1187.4 1187.4 1619.1 8734.0 30446.3 18536.2 20244.6 10844.3 3844.0 1457.9 1364.9 _1357.9 1268.3 1089.1 1053.7 14435.5 27796.4 25081.2 30293.0 15728.2 4585.3 2203.5 1929.7 1851.2 1778.7 1778.7 1791.0 14982.4 29462.1 24871.0 16090.5 8225.9 3576.7 1531.8 836.3 686.6 681.8 769.6 1421.3 10429.9 14950.7 15651.2 8483.6 4795.5 2866.5 1145.7 810.0 756.9 708.7 721.8 1046.6 10721.6 17118.9 21142.2 18652.8 8443.5 4745.2 3081.8 2074.8 1318.8 943.6 866.8 986.2 3427.9 31031.0 22941.6 30315.9 13636.0 5537.0 2912.3 2312.6 2036.1 1836.4 1659.8 1565.5 19776.8 31929.8 21716.5 18654.1 11884.2 4638.6 2154.8 1387.0 1139.8 1128.6 955.0 986.7 7896.4 26392.6 17571.8 19478.1 8726.0 3491.4 1462.9 997.4 842.7 745.9 689.5 949.1 15004.6 16766.7 17790.0 15257.0 11370.1 3506.8 1619.4 1486.5 1408.8 1342.2 1271.9 1456.7 14036.5 30302.6 26188.0 17031.6 15154.7 7003.3 1853.0 1007.9 896.8 876.2 825.2 1261.2 11305.3 22813.6 182G2.6 19297.7 6463.3 3552.4 2391.7 2147.5 1657.4 1469.7 1361.0 1509.8 11211.9 35606.7 21740.5 18371.2 11916.1 6936.3 3210.8 2371.4 1867.9 1525.0 1480.6 1597.1 11693.4 18416.8 20079.0 15326.5 8080.4 4502.3 2324.3 1549.4 1304.1 1203.6 1164.7 1402.8 13334.0 24052.4 27462.8 19106.7 10172.4 605.0 564.5 600.8 600.8 600.8 596.6 600.8 600.8 600.8 584.7 600.8 600.8 600.3 600.8 600.8 589.0 600.8 584.5 603.9 582.4 555.4 584.2 581.6 599.2 ~ POWERHOUSE FLOW CFS YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF' 1 7159.0 8895.0 12572.0 10738.0 8909.0 7821.0 7863.1 9415.1 9045.1 7121.0 4713.4 4555.6 '1 6771.0 7805.7 9344.3 8286.1 6561.6 6561.5 6242.6 9144.1 8550.1 6656.0 4971.4 11077.0... 3 7114.2 10430.0 12987.0 11270.0 9116.0 7979.0 7814 .1 8408.1 11396.1 7683.0 6754.4 5653.1 4 9409.2 11124.0 12780.0 10786.0 8918.0 7918.0 8112.1 10297.1 10826.1 6626.0 8050.3 6806.2 5 7001.2 9812.0 12616.0 11011.0 9103.0 7881.0 7926.1 11167.1 10804.1 6854.0 7599.9 4768.3 6 6466.3 9821.1 13097.0 11436.0 9448.0 8175.0 7905.1 9250.1 10331.1 7511.0 13763.2 7858.3 7 6540.2 9680.0 12436.0 10708.0 9066.0 8004.0 7889.1 10606.1 11052.1 13763.2 13763.2 12782.5 8 7127.2 10665.0 13216.0 11370.0 9562.0 8257.0 7902.1 9875.1 10244.1 7272.0 9092.3 11018.2 9 9326.2 11481.0 13763.2 11585.6 9385.0 8237.0 8018.1 9467.1 9417.1 6875.0 "7937.3 4433.4 10 6563.7 7536.0 10087.3 11103.0 9352.0 8029.0 7973.1 11339.1 10313.1 7791.0 12016.3 8318.2 11 7953.2 10514.0 13241.0 11473.0 9513.0 8264.0 7885.1 9335.1 8439.1 7118.0 4887.4 9678.1 12 9063.2 10651.0 13666.0 11999.0 9766.0 8790.0 8986.1 9968.1 11360.1 9029.0 11095.3 5314.9 13 7243.4 10435.0 13208.0 11583.0 9586.0 8472.0 8194.1 8383.1 13763.2 13763.2 13763.2 11054.5 14 8200.2 10587.0 13125.0 11283.0 9560.0 8110.0 7774.1 9978.1 10500.1 13763.2 13763.2 7588.1 15 7890.2 9976.0 12616.0 10765.0 9073.0 7815.0 7829.1 8113.1 13760.1 13763.2 7627.9 4425.1 16 6534.5 8908.0 12390.0 10712.0 9002.0 8018.0 7895.1 8877.1 9992.1 8264.0 9537.3 11223.2 17 8388.2 9799.0 12708.0 11065.0 9360.0 8339.0 8200.1 9216.1 11630.1 7046.0 5826.7 4448.9 18 6556.6 7456.9 11599.5 11144.0 9441.0 8240.0 7943.1 9459.1 10172.1 11218.0 13763.2 13763.2 19 7274.4 10094.0 13159.0 11638.0 9952.0 8930.0 8372.1 9731.1 10839.1 12251.0 7249.9 4442.4 20 6548.0 7566.1 9258.1 10473.0 8855.0 7921.0 8002.1 8692.1 7998.1 5604.0 4768.9 4659.3 21 6914.0 7934.4 9463.2 8352.5 6742.0 6914.1 5841.7 6078.7 10041.1 7988.0 4706.7 4473.6 22 6600.7 7454.8 8771 .8 8099.2 7036.0 7379.0 8307.1 8601.1 10935.1 7078.0 5137.9 4466.1 23 6589.9 7576.9 11681.9 11823.0 10009.0 8811.0 8146.1 11379.1 11559.1 13455.0 9992.3 5118.1 24 6442.4 9888.8 12616.0 10926.0 9301.0 8106.0 7811.1 8187.1 9659.1 5909.0 4768.9 4583.8 25 6817.9 7862.3 9263.0 7812.3 8766.4 7841.0 7816.1 9694.1 8943.1 6550.0 4719.2 4532.6 26 6683.4 7694.5 9187.6 8120.0 6386.4 7444.9 8037.1 9940.1 10703.1 13158.0 8065.3 8143.2 27 8895.2 9744.0 12237.0 10683.0 9049.0 7976.0 7938.1 9943.1 9930.1 5947.0 4768.9 4652.0 28 6872.5 7916.9 9461.2 8019.1 8011.9 8512.0 8090.1 10218.1 11366.1 10688.0 8965.3 5136.9 29 8596.4 11102.0 13601.0 11654.0 9698.0 8632.0 8178.1 8038.1 8232.1 6575.0 4713.6 4544.6 30 6736.6 7740.7 9217.7 8033.0 6915.4 8316.0 7983.1 8540.1 8232.1 11674.0 9817.3 4426.1 31 7527.2 11846.0 13508.0 11436.0 9556.0 8472.0 8156.1 8813.1 9956.1 12453.0 10916.3 5388.0 32 9081.3 11590.0 12783.0 11074.0 9262.0 8148.0 7871.1 8846.1 9212.1 8785.0 13763.2 13763.2 J a }----1 --1 J ----1 ~--·1 "'-_.-C)-1 -)1 -1 '·---1·'-] SPILL CFS YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 0.0 0.0 0.0 0.0 0.0 0.0 Q.O 0.0 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 321.6 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 0.0 0.0 364.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1390.5 0.0 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1149.8 0.0 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 '1'1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0hh 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3138.8 0.0 OUTFLOW CFS YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF' 1 7159.0 8895.0 12572.0 10738.0 8909.0 7821.0 7863.1 9415.1 9045.1 7121.0 4713.4 4555.6 2 6771.0 7805.7 9344.3 8286.1 6561.6 6561.5 6242.6 9144.1 8550.1 6656.0 4971.4 11077.0 7:7114.2 10430.0 12987.0 11270.0 9116.0 7979.0 7814.1 8408.1 11396.1 7683.0 6754.4 5653.1.. 4 9409.2 11124.0 12780.0 10786.0 8918.0 7918.0 8112.1 10297.1 10826.1 6626.0 8050.3 6806.2 5 7001.2 9812.0 12616.0 11011.0 9103.0 7881.0 7926.1 11167.1 10804.1 6854.0 7599.9 4768.3 6 6466.3 9821.1 13097.0 11436.0 9448.0 8175.0 7905.1 9250.1 10331.1 7511.0 13763.2 7858.3 7 6540.2 9680.0 12436.0 10708.0 9066.0 8004.0 7889.1 10606.1 11052.1 13763.2 14084.8 12782.5 8 7127.2 10665.0 13216.0 11370.0 9562.0 8257.0 7902.1 9875.1 10244.1 7272.0 9092.3 11018.2 9 9326.2 11481.0 14127.4 11585.6 9385.0 8237.0 8018.1 9467.1 9417.1 6875.0 7937.3 4433.4 10 6563.7 7536.0 10087.3 11103.0 9352.0 8029.0 7973.1 11339.1 10313.1 7791.0 12016.3 8318.2 11 7953.2 10514.0 13241.0 11473.0 9513.0 8264.0 7885.1 9335.1 8439.1 7118.0 4887.4 9678.1 12 9063.2 10651.0 13666.0 11999.0 9766.0 8790.0 8986.1 9968.111360.1 9029.0 110!?5.3 5314.9 13 7243.4 10435.0 13208.0 11583.0 9586.0 8472.0 8194.1 8383.1 13763.2 13763.2 15153.7 11054.5 14 8200.2 10587.0 13125.0 11283.0 9560.0 8110.0 7774.1 9978.1 10500.1 13763.2 13763.2 '7588.1 15 7890.2 9976.0 12616.0 10765.0 9073.0 7815.0 7829.1 8113.1 13760.1 13763.2 7627.9 4425.1 16 6534.5 8908.0 12390.0 10712.0 9002.0 8018.0 7895.1 8877 .1 9992.1 8264.0 9537.3 1122:L2 17 8388.2 9799.0 12708.0 11065.0 9360.0 8339.0 8200.1 9216.1 11630.1 7046.0 5826.7 4448.9 18 6556.6 7456.9 11599.5 11144.0 9441.0 8240.0 7943.1 9459.1 10172.1 11218.0 14913.0 13763.2 19 7274.4 10094.0 13159.0 11638.0 9952.0 8930.0 8372.1 9731.1 10839.1 12251.0 7249.9 4442.4 20 6548.0 7566.1 9258.1 10473.0 8855.0 7921.0 8002.1 8692.1 7998.1 560·1.0 4768.9 4659.3 21 6914.0 7934.4 9463.2 8352.5 6742.0 6914.1 5841.7 6078.7 10041.1 7988.0 4706.7 4473.6 22 6600.7 7454.8 8771.8 8099.2 7036.0 7379.0 8307.1 8601.1 1.0935.1 7078.0 5137.9 4466.1 23 6589.9 7576.9 11681.9 11823.0 10009.0 8811.0 8146.1 11379.1 11559.1 13455.0 9992.3 5118.1 24 6442.4 9888.8 12616.0 10926.0 9301.0 8106.0 7811.1 8187.1 9659.1 5909.0 4768,'7 4583.8 '1'"6817.9 7862.3 9263.0 7812.3 8766.4 7841.0 7816.1 9694.1 89'43.1 6550.0 4719.2 4532.6.....J 26 6683.4 7694.5 9187.6 8120.0 6386.4 7444.9 8037.1 9940.1 10703.1 13158.0 8065.3 8143.2 27 8895.2 9744.0 12237.0 10683.0 9049.0 7976.0 7938.1 9943.1 9930.1 5947.0 4768.9 4652.0 28 6872.5 7916.9 9461.2 8019.1 8011 .9 8512.0 8090.1 10218.1 1.1366.1 10688.0 8965.3 5136.9 29 8596.4 11102.0 13601.0 11654.0 9698.0 8632.0 8178.1 8038.1 8232.1 6575.0 4713.6 4544.6 30 6736.6 7740.7 9217.7 8033.0 6915.4 8316.0 798:3.1 8540.1 8232.111674.0 9817.3 4426.1 31 7527.2 11846.0 13508.0 11436.0 9556.0 8472.0 8156.1 8813.1 9956.1 12453.0 10916.3 5388.0 32 9081.3 11590.0 12783.0 11074.0 9262.0 8148.0 7871.1 8846.1 9212.1 8785.0 16902.0 13763.2 T\~~~,~i l{~~ ;;1 J .2 '-~1 --'-'1 '-~-]-l -"'~1 '~-1 -'])1 AVERAGE HEAD FT YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF' 1 605.0 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 556.7 564.5 2 564.5 561.4 557.1 556.3 568.2 584.4 590.1 580.0 560.0 550.0 560.3 583.6 3 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 562.4 585.7 4 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.9 5 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.4 584.5 6 596.6 603.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 567.5 590.8 7 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 563.2 590.8 600.8 8 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.9 9 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 :;50.0 563.6 580.4 10 584.7 585.1 594.6 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.9 11 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 560.2 583.5 12 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.5 13 600.3 605.0 605.0 605.0 605.0 605.0 597.5 580.0 564.7 573 .1 595.9 600.8 14 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 560.2 586.1 599.2 15 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 551.8 565.2 581.4 16 589.0 598.5 605.0 60,5.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.9 17 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 561.3 578.3 18 584.5 591.3 601.3 605.0 605.0 605.0 597.5 580.0 560.0 550.0 57?5 603.9 19 603.9 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.0 579.2 20 582.4 582.0 593.3 605.0 605.0 605.0 597.5 580.0 560.0 550.O.551.7 554.4 21 555.4 554.3 552.7 552.4 553.9 556.8 560.8 566.5 560.0 550.0 560.0 575.1 22 584.2 591.5 598.4 603.5 605.0 605.0 597.5 580.0 560.0 550.0 560.5 576.1 23 581.6 586.0 597.5 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 585.9 24 599.2 .604.5 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 555.1 561.0 25 560.5 556.6 567.0 592.0 604.5 605.0 597.5 580.0 560.0 550.0 556.0 567.5 26 572.7 571.0 568.5 568.8 583.9 601.4 597.5 580.0 560.0 550.0 563.6 586.9 27 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 552.6 556.2 28 556.6 554.5 557.3 576.8 598.5 605.0 597.5 580.0 560.0 550.0 563.6 585.9 29 599.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 556.7 565.9 30 569.3 569.1 566.9 575.2 594.8 605.0 597.5 580.0 560.0 550.0 563.6 581.3 31 595.2 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.7 32 600.5 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 577.5 604.1 TOTAL ENERGY GWH YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF' 1 227.7 282.9 399.9 341.5 283.4 248.8 247.0 287.1 266.3 205.9 138.0 135.2 2 201.0 230.4 273.7 242.3 196.0 201.6 193.6 278.8 251.7 192.5 146.4 339.9 3 224.7 331.7 413.1 358.5 289.9 253.8 245.5 256.4 335.5 222.2 199.7 174.1 4 297.2 353.8 406.5 343.1 283.7 251.8 254.8 314.0 318.7 191.6 238.6 210.0 5 221.1 312.1 401.3 350.2 289.5 250.7 249.0 340.5 318.1 198.2 225.1 146.5 6 202.8 311.3 416.6 363.7 300.5 260.0 248.3 282.1 304.2 217.2 410.7 244.1 7 206.6 307.9 395.5 340.6 288.4 254.6 247.8 323.4 325.4 407.5 427.5 403.8 8 225.1 339.2 420.4 361.6 304.1 262.6 248.2 301.1 301.6 210.3 269.4 340.0 9 294.6 365.2 437.8 368.5 298.5 262.0 251.9 288.7 277.2 198.8 235.2 135.3 10 201.8 231.8 315.3 353.1 297.5 255.4 250.5 345.8 303.6 225.3 356.1 256.7 11 251.2 334.4 421.2 364.9 302.6 262.8 247.7 284.6 248.5 205.8 143.9 296.9 12 286.3 338.8 434.7 381.6 310.6 279.6 282.3 304.0 334.5 261.1 328.8 163.9 13 228.6 331.9 420.1 368.4 304.9 269.5 257.4 255.6 408.6 414.7 431.2 349.2 14 259.0 336.7 417.5 358.9 304.1 258.0 244.2 304.3 309.1 405.4 424.1 239.0 15 249.2 317.3 401.3 342.4 288.6 248.6 245.9 247.4 405.1 399.3 226.7 135.3 16 202.4 280.3 394.1 340.7 286.3 255.0 248.0 270.7 294.2 239.0 282.6 346.3 17 264.9 311.7 404.2 351.9 297.7 265.2 257.6 281.0 342.4 203.7 171.9 135,3 18 201.5 231.8 366.7 354.5 300.3 262.1 249.5 288.4 299.5 324.4 417.9 437.0 19 231.0 321.1 418.5 370.2 316.5 284.0 263.0 296.7 319,1 354.2 214.6 135.3 20 200.5 231.5 288.8 333.1 281.6 251.9 251.4 265.0 235.5 1.62.0 138.3 135.8 21 201.9 231.2 275.0 242.6 196.3 202.4 172.2 181.1 295,6 231.0 138.6 135.3 22 202.7 231.8 275.9 257.0 223.8 234.7 260.9 262.3 321.9 204.7 151.4 135.3 23 201.5 233.4 366.9 376.0 318.4 280.2 255.9 347.0 340.3 389.1 296.1.157.6 24 202.9 314.2 401.3 347.5 295.8 257.8 245.4 249.6 284.4 170.9 139.2 135.2 25 200.9 230.1 276.1 243.2 278.6 249.4 245.5 295.6 263.3 189.4 137.9 1.35.2 26 201.2 231.0 274.6 242.8 196.1 235.4 252.5 303.1 315.1 380.5 239.0 251.3 27 281.0 309.9 389.2 339.8 287.8 253.7 249"4 303.2 292 .4 172.0 138.5 136.0 28 201.1 230.8 277 .2 243.2 252.1 270.7 254.1 311.6 334.6 309.0 265.7 158.2 29 271.1 353.1 432.6 370.7 308.5 274.6 256.9 245.1 242.4 190.1 138.0 135.2 30 201.6 231.6 274.7 242.9 216.3 264.5 250.8 260.4 242.4 337.6 290.9 135.3 31 235.5 376.8 429.6 363.7 303.9 269.5 256.2 268.7 293.1 360.1 :323.5 166.2 32 286.7 368.6 406.6 332.2 294.6 259.2 247.3 269.7 271.2 254.0 417.9 437.1 1~q ~J,,"1 --:1 j ,c,''1 '-'-~'1 --'~l 1 STORAGE (MONTH END)AC-FT YR OCT NOV DEC JAN FEB MAR APR MAY JUN JIJL AUG SEF' 1 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 798748.3 813181.9 '1 798952.0 770511.0 740587.9 759515.3 902924.2 980498.1 979799.9 843400.0 707000.0 707000.0 847889.9 1024680.0.. 7 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843399.9 707000.0 707000.0 875992.8 1024680.0'"4 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893120.0 1024680.0 5 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 889283.1 994965.1 6 1056815.4 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 946188.2 1024680.0 7 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 887458.4 1092000.0 1024680.0 8 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1024680.0 9 1091600.0 1091600.0 1092000.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893120.0 935004.6 10 952690.4 940510.8 1091400.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1024680.0 11 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 846564.5 1024680.0 12 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1018182.3 13 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843399.9 771754.4 957398.4 1092000.0 1024680.0 14 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 846637.0 1063273.9 1024680.0 15 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 731287.8 889938.3 952764.t 16 993433.3 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.1 707000.0 707000.0 893119.9 1024680.0 17 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 861377 .1 939285.8 18 945638.9 1031632.1 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 1092000.0 1072753.0 19 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 883796.6 927968.3 20 927968.3 922293.1 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843399.9 707000.0 707000.0 729976.4 743585.6 21 743585.6 729630.2 721055.9 726211.2 740501.1 765760.8 796111.3 843400.0 707000.0 707000.0 843713.4 912720.6 22 967189.9 1012727.5 1064717.8 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 850515.4 919187.8 23 925465.5 979439.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1009907.4 24 1082118.8 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 777008.5 786666.3 25 770032.5 733837.0 912558.4 1082397.4 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 789051.7 863724.3 26 859659.1 840393.4 826188.9 843979.1 1032625.6 1091600.0 979800.0 843400.0 707000.0 707000.0 893120.0 1024680.0 27 1091600.6 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 741794.8 756206.3 28 747794.1 727000.2 786741.5 993251.7 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1010704.6 29 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843399.9 707000.0 707000.0 798372.8 832886.4 30 843885.8 830698.6 813952.9 943232.3 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 948406.0 31 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.8 1021249.4 32 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.1 707000.0 707000.0 1092000.0 1075707.6 $ ~.- ~'\ 4744,. 5771+ 1032~5 + 4891. 9938. 6948+ 5467+ 13405t c:-,""1__':'"t1.~ 13444.} r.'o!~I~·Jl/~.j .. 4885+ 5618~ C·.t AI:"._'\]1_,......1 + 7055~ 11666. 132GOt 3128,. 10500+ 12632 .~ Jr"""C:-'"tl 7 ...J + 14007t 8119~ 8988~ 6521·~ ?1t.·O + J.:i.;.,7 i·'~.2 8840fO 18234t2 10844~3..'!;:'"-!-.,,....-, 1 ....1 ....LO f.\'.: 8225+? 47?5+5 7'150+8 197'19?1 13")41,.1 13928~4 J.15?'9?1 1398'1 ..2 16495~E 18029,;~) ...n,.,n QCt7C>O ..0 1532'1+c= 18929,9 12218.6 14767.2 76,j ..;.' 729+4 oI!ro.·.....,... l.'JLJ~G 852~3 7379+ 8811i 8106~ 7841. 8423+ 7976.;.,,!:"....... C).J.i";;'. 8632+ 831,~q /"'11'1"""'"O"iiL .. 8148. 1 f G...,.-.,..,.. i 0"::'1·: 7848f 7979. 7918. ...,,-.,n .. lOD.L+ 8175v 8004.,.,.....L:". 0..:.:..3/+ 8237,\ 8029+ 82t:,4 ~ 87907 8472+ 8110~ 7815v 8018" 958 ..4""'"7 ,....,O{'J·':,.,t.' ,'.'.',., C'OD ..] ....0"".01111,._'.'.;.""'t 1089+J. 1778 f 7 769 ..6 1271.9 ,,'"'tc .-, DLJ.;.':': 1361~O 1480~6 1164,.7 ,.......,.t .-, 0/0.,,,;,, .~!r·..., "'t07~/ 52:~..G 203 +t, 8~'09,. 8940~ 0 ....,r l J.j,0 ~ ~~"Q(.'7 1:u + 9103~ 9448+ 9066,. nJ:'"~'-"7 ....{0.Lf f"l"Tf"l1:" f'.J l~.,~I o!o 9352.;. 9513. 9766+ 9586+ 95t,{)+ 9073" 943t2...,.~'-...i 'i ...!•C! 929,,/ 1·'!-:J1:::...)- .!.";,.......-J,,,;.. 893.1 1.0 9002" 9360., 9441~ 9952" 9301·~ 8919~ 9515+ 9049f- 9643~ ,.t "n 7070,' 93?6f 95567,....,......t., 1":':0..::..", ""'7C'"...,i .:..\._,.~/ 1387 ..4 /i."";·jtl .. 10G09v 900i'2nryoiJ \..''':''..1 ~'~,l 1.187.;.4 1268~3..""'{"I ...,1//O·~:"' 681i'8 -'f'.,~~'"1 .I ',...Je'..l 1583+2 1224i'2 ..•r /I"..ID"Tl·~ln·'"...'J L1 +.1 ......,n ..., 1'::'.1 (:;l'.:' 304.1 1:1.074,; r'll::......., ',~....l.l +.,) '105 ..7 1483 ..7 999 ..6 11144, 11Gb5.;. 11654~ 10177+ 11436. 11638 .. 10473t- :::438" 8545.;. 1182::,+ 10926 .. 10629+ "i'l"!t:'"c''''t .1.,J .........~....,..,.L \le,,::)..:;of- 11444. 10765+ 10712+ 1 to 160 10738+ GoGO. 11270, 1078.5 + 11011+ 11436+ 10708<. 11370, 11579 .. 11103, 11473+ 11999", 11583 .. 11283+ 707~G .,....n"I"<.850"...,,01 ,+00.LV7'::::"i-V ...0 !000....,;.:-050 .....,,,150 "c".......J :::--1".,DJ ..250 ....nC"""j'"".r:n-""-C""01:'"'"t17J!>'-'VV •":':'7"':':'!>":rJV(·A7;::rO ..450,1048.500+1484~ 00 ..0 "7-'1 '''''L. ~88 .71 ~73 ..62 <.56 """'-,,50 '",J.l +,.....;:".,.:.y ., 2904~9 1370 ..9 Li,,),ilf:) 243t,t6 1978+7 2371.;.4 1549+4 2074~8 .....,~..-""':! "::""":'1."::''"'.-:.) 1387 ..0",.,...,,;!7 /7 ""i 1550~4 1387~1 18b8.0 12Gt,+6 12616.................... l.;."::"":'/i 8952~ 12237~ 10452~ 13{iG1,. 8940f- 1-3508+ 12783+ 1342 ..5 1030,,8 ..-.IC"'....i.:" J.i ,.)l '"..J 12780+ 12616+ 13097+ 12436+ 13216t 14134. 12593? 13241t 13666+ L3208. 13125+ ..-"",t ~!.l':::':llC<~ 12390+ 12708t 12594, 13159,. 12066 .. 9321+ 9634. 13542. 1000 0, ....,."} .L "'::''':''~ 707", 11102. 7522t 11846~ 115'iO~ 2404~7 1231,2 2539,,0 3232 t{~, 1921.3 •...,~!,.., L\-i .lQ t \.} 178876 2773.8 3590f4 199\('o!-8 ''''':!i.'-'")"":"7..:...r~.,..:.....::..f-.' 2759i9 2544+1 9812+ 10398. 9680. 10665. 11481. 7334. 10514, 10651.> 10435t 10587 .. 9976-;...'.'.t:;.,l1'I.),...l":;0 t 9799 .. 8883. 100'14. 7472. 7703~ 82tOt 8472+ 10046, 7262~.....",!;;'.'·oJ i "_,~ 9744. ""':'t:',..-,I ,_I,!£..,. 11124, 5496,.5 3844,,0 4585f3 .'?r::-,"..., ,J-di t:t ./ F45,2 5537.0 Ill-,,,,.'"ic.l.~'O,'D :3491t4 ".r'n'-,/"i7Li 7 650~. B237. 104361 6857. ",n I":r ....Jo ...;.o!- 10173. 84C:\1 + 9310+ 9000+ 7209. ,,,,,..,r,n ?"'i:"Q -;. \~\662 t ""':'C'........, .-',-'C'./~ 65.:.18 ~ 10519. no{"ofDl.i.L", SUS ITNA HEF'; DEVIL CANYON 1455 600 MW (NO FLO REG) 384 1 11 ;) II-""'l:."'7 L,.)<I- 1200. 1400. 1455. 600000.2000. -;.73 .84 1.0 .()t 1000,,0 1000~O 1000.0 1455~O 1455~O 1455",0 1.0 1.0 1.0 1.0 7159~8895~12572!" 6535~7334i 8848~ 8224+10430~12987t ---1 ---1 ) W~Y~~AN~I~~p CASE A )1 1 ·~···l EL 1900.0 1950.0 2000.0 2050.0 2100.0 1150.0 2200.0 2250.0 MINIMUM STORAGE= Mf':iXIMUM F'.H.Q ::;; STORAGE 2550000.0 3330000.0 4250000.0 5340000.0 6650000.0 8189999.5 10020000.0 12210000.0 5232000.0 MAXIMUM STORAGE 9652000.0 17109.7 START WSEL=2185.0 TWEL=1455.0 PMAX=.90000E+06 MONTHLY BASELOAD DEMAND 0.321930E+06 0.370440£+06 0.441000E+06 0.388080E+06 0.313110E+06 0.321930E+06 0.273420E+06 0.246960E+06 0.224910E+06 0.233730E+06 0.220500E+060.216090E+06 MONTHLY DISCHARGE REQUIREMENT 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 MONTHLY WATER LEVEL 2185.0 2172.0 2153.5 2135.0 2119.0 2105.0 2095.0 2145.0 2160.0 2170.0 2180.0 2190.0 MONTHLY FLOW DISTRIBUTION 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.8 0.8 0.7 MONTHLY L.F.=0.490 NO.YEARS OF SIMULATION =32 F'DS=0 NSEC=323 NDEF=61 NDEF1=0 NDSFL=0 YEAR TOTE TOT SEC TOTDEF 1 o•30226E +1 0 0.41727E+09 0.92217E+06 2 0.30820E+10 0.47668E+09 0.84709E+06 3 0.33835Etl0 0.77734E+09 0.57148Et05 4 0.35083E+l0 0.90205Et09 O.OOOOOEtOO 5 O.32209E +1 0 0.61470Et09 0.38669E+05 6 0.37974E+l0 0.11923E+l0 0.10547Et07 7 0.39653E+l0 0.13592E+l0 0.39512E+05 8 0.36669E+l0 0.10607E+10 0.60078E+05 9 0.34915E+10 0.88536E+09 0.22515Et05 10 0.33609E+l0 0.75783E+09 0.31195E+07 11 0.34567E+l0 0.85055Et09 0.38122E+05 12 0.37540E+10 0.11478E+l0 0.00000000 13 0.43185E+l0 0.17123E+l0 O.OOOOOE+OO 14 0.40536E+l0 0.14474E+l0 0.39284Et05 15 0.36755E+l0 0.10693E+l0 0.60762E+05 16 0.36369E+l0 0.10307E+10 O.OOOOOE+OO 17 0.32279E+l0 0.62252E+09 0.82441E+06 18 0.39613E+l0 0.13559E+l0 0.78195E+06 19 0.35710Etl0 0.96479E+09 O.OOOOOEtOO 20 0.29518Etl0 0.34657E+09 0.98418E+06 21 0.26109E+10 0.69840E+07 0.22692E+07 22 0.26315E+l0 0.26625E+08 o.13600Et07 23 0.37643E+10 0.11584E+l0 0.30755E+06 24 0.31582E+l0 0.55291E+09 0.88064Et06 "CO 0.29565Etl0 0.35113E+09 0.84561E+06"-.J 26 0.33413Etl0 0.73599E+09 0.91743Et06 27 0.31564E+10 0.55053E+09 0.36604E+06 28 0.33869E+10 0.78453E+09 0.38234E+07 29 0.33194E+l0 0.71323E+09 O.OOOOOEtOO 30 0.32521Etl0 0.64892E+09 0.30505E+07 31 0.38903E+l0 o.12841E+l0 O.OOOOOEtOO 32 0.41182E+10 0.15120Et10 0.38030E+05 ~'li ~~1 ~>~!; J 1 '<OJ '~--J --l 1 "--]-J ~--l ---l -1 -~j ~--1 ---1 '}~""-"l -~] AVERAGE MONTHLY ENERGY AND POWER MONTH fOTAl POWER MW OCT 384.~'44 NO!,':47t..498 DEC flO';>61.!1 ,J(.lN ~.i25,629 FEB 435.888 MtlF-:,~/8 >0 ·Hl M'F:278,163 MAY 247.:;61 JUN 239.243 J UL ~~:d,:;8;~ AUG 471.995 SEF 340;272 F'Ef,~; fO\r!ER MW 384.9':;1 476,498 60'1,\L,J~ ~25 v ~~,29 435.888 ;PfL018 ~~78.t63 747.261 239.243 ;~:';.3 ,:..;fU 471.995 340t272 OFF F'F:'\j i< F'OWH MW M~L:,9'1tl ,~1 >'tl +.:1 S;f-: f-~i)9 •.6:1..:} ~j2;::.;.t.:29 /13:;.8B8 3?8'rO~}H 278.163 247,261 ?:i,9.243 3~:~.~)O.j 471.995 :5'10,2/7. TOTf,l Ei'lEF:GY GWH :~80 t ~~ :~;/.17r ;13 ·4 l}'}r /~"~i :~R3.'1 ~;9 ~~3.8 to?,"; )'/:.~;l-H~:~.(:. 202.948 180.401 174.552 ~;~~':i /i 9 /~ 344.368 248t262 OFFPEAK ENERGY GWH :'P()~855 '1.·;7 ,Ll:::7 ,j "j;..;.....-..J ....j 1/{1j.775 2,8 ;:.,<.';S"17' 318.024 ',::;5.824 :}.O?i·94f:: 180.401 1 /...:,.5 ~':i ~:: :<~)7 +974 ~44.3,~.8 2,18 ..26:·~ F'E~il< ENHGY GWH 0,000 0.;.000 01'000 (i«)OO 0.000 OtOOO 0.000 0.000 ()\OJ)0 ().OOO 0.000 o i \!I~)i~j DEFICIT Ml~ o<:~,H? Ov31H 0rl)ll} 0.008 O.OOfl O.()()f:. O~O/7; (){?()~'i 0,000 OtOOO (i {,OOO 0(000 SFC r·il>.! 63.401 10 .,:~77 l,'J J.\(;29 ~i.:~I ~~':t ~:;8 .1.;:;;783 !)\'1 r ~.~4 !{•:}:?~: II !"~r~"\.1 t ~.'Vt; r::"333 119.853 ~')S 1 t .~}'71 :~i 124.182 AVERAGE NON THL Y T.iI SCHI~RG~:S tlND HEAD MONTH OCT NOV DEC J(.\N FEB MAR M'F: Min JUN JUt r~UG SEP INFLOW 4:;J ..~,()6 2052t42 1.40 "1.8 <I 1157.27 978.88 H':i8,;n 1.112.57 J.(}397;~"i:":; 2292?'"·~14 :;~O!/8 ,oJ. 18431,4J 10670.'11 P.H.FLOlrJ :7 /~~B ~::~:I. 9186.44 :1.1.'9 ''i'H l .~,b 10617,16 c/027 +21 80L~,69 f,OlL4J ~·;\~4 4.;~:~1 4990.10 /0)'-~~"j2 9116.69 (,485.92 PEAK 7~~~H ;~:~J. 91.86.,}1 1.1.'j-'Cf8;,:.6 10fd?+l6 y027i?j 801.),.')'; e\011 .'1;~ S ~it ~i .~~.I. <19'1'0.10 70~~l.;~')? 9116.69 6/185.n OF FF'Ff:K FP;S.n Y18b.44 1.1.998.,46 :i.()AJ ~)i j f:. 90':.'i',21 80).'2+69 6011.43 5 :5::)4 t ~~J. 4990.10 70?1.;,~'j2 9116,69 6,185.92 HFAn SPIll HL.OES /?7.;.30 0<000 0.00 719.01 0,,00 0",00 704.27 0.00 0.00 f.Bto •-,1 f.',J ..'JV t}"I,}!,J 6t.9+~.1 0+00 0.00 ,L.,:A.54 0.00 OtOO 642+28 (i,(lO 0.00 \~\~2.31 OtOO (l.00 h\~.~~?..~:0,00 0.00 l,95.17 0.00 0.00 /15+16 ~-.'1~/.i"I" j,ji.i..V ~jt\l\f 726.36 ~~~..........~. I,:i-1.)fJ l..)~IJV Al.)EF:AGF.:M1NlJ(\l FNERGY :::0.3~i913E+l0 KWH DElMASS - STOREND ::: STORSTART ::: INFLOW MASH OUTFL.MASS 0.18098500E+06 O.96S20000E+07 0.9(,520000E+07 O,30S0J.528E+07 0.30471475F+07 INFLOW CFS YF:OCT NOV DEC JAN FEB MAR APR MY JUN JUL AUG SEF' 1 4719.9 2083.6 1168.9 815.1 641.7 569.1 680.1 8655.9 16432.1 19193.4 16913.6 7320.4 'i 3299.1 1107.3 906.2 808.0 673.0 619.8 1302.2 11649.8 18517.9 19786.6 16478.0 17205.5.:.. 3 4592.9 2170.1 1501.0 1274.5 841.0 735.0 803.9 4216.5 25773.4 22110.9 17356.3 11571.0 4 6285.7 2756.8 1281.2 818.9 611.7 670.7 1382.0 15037.2 21469.8 17355.3 16681.6 11513.5 5 4218.9 1599.6 1183.8 1087.8 803.1 638.2 942.6 11696.8 19476.7 16983.6 20420.6 9165.5 6 3859.2 2051.1 1549.5 1388.3 1050.5 886.1 940.8 6718.1 24881.4 23787.9 23537.0 13447.8 7 4102.3 1588.1 1038.6 816.9 754.8 694.4 718.3 12953.3 27171.8 25831.3 19153.4 13194.4 8 4208.0 2276.6 1707.0 1373.0 1189.0 935.0 915.1 10176.2 25275.0 19948.9 17317.7 14841.1 9 6034.9 2935.9 2258.5 1480.6 1041.7 973.5 1265.4 9957.8 22097.8 19752.7 18843.4 5978.7 10 3668.0 1729.5 1115.1 1081.0 949.0 694.0 885.7 10140.6 18329.6 20493.1 23940.4 12466.9 11 5165.5 2213.5 1672.3 1400.4 1138.9 961.1 1069.9 13044.2 13233.4 19506.1 19323.1 16085.6 12 6049.3 2327.8 1973.2 1779.9 1304.8 1331.0 1965.0 13637.9 22784.1 19839.8 19480.2 10146.2 13 4637.6 2263.4 1760.4 1608.9 1257.4 1176.8 1457.4 11333.5 36017.1 23443.7 19887.1 12746.2 14 5560.1 2508.9 1708.9 1308.9 1184.7 883.6 776.6 15299.2 20663.4 28767.4 21011.4 10800.0 15 5187.1 1789.1 1194.7 852.0 781.6 575.2 609.2 3578.8 42841.9 20082.8 14048.2 7524+2 16 4759.4 2368.2 1070.3 863.0 772.7 807.3 1232.4 10966.0 21213.0 23235.9 17394.1 16225.6 17 5221.2 1565.3 1203.6 1060.4 984.7 984.7 1338.4 7094.1 25939.6 16153.5 17390.9 9214.1 18 3269.8 1202.2 1121.6 1102.2 1031.3 889.5 849.7 12555.5 24711.9 21987.3 26104.5 13672.9 19 4019.0 1934.3 1704.2 1617.6 1560.4 1560.4 1576.7 12826.7 25704.0 22082.8 14147.5 7163.6 20 3135.0 1354.9 753.9 619.2 607.5 686.0 1261.6 9313.7 13962.1 14843.5 7i'71.9 4260.0 21 2403.1 1020.9 709.3 636.2 602.1 624.1 986.4 9536.4 14399.0 18410.1 16263.8 7224.1 22 3768.0 2496.4 1687.4 1097.1 777.4 717.1 813.7 2857.2 27612.8 21126.4 27446.6 12188.9 23 4979.1 2587.0 1957.4 1670.9 1491.4 1366.0 1305.4 15973.1 27429.3 19820.3 17509.5 10955.7 24 4301.2 1977 •9 1246.5 1031.5 1000.2 873.9 914.1 7287.0 23859.3 16351.1 18016.7 8099.7 25 3056.5 1354.7 931.6 786.4 689.9 627.3 871.9 12889.0 14780.6 15971.9 13~23t7 9786.,2 26 3088.8 1474.4 1276.7 1215.8 1110.3 1041.4 1211.2 11672.2 26689.2 23430.4 15126.6 13075.3 27 5679.1 1601.1 876.2 757.8 743.2 690.7 1059.8 8938.8 19994.0 17015.3 18393.5 5711.:5 28 2973.5 1926.7 1687.5 1348.7 1202.9 1110.8 1203.4 8569.4 31352.8 19707.3 16807.3 10613.1 29 5793.9 2645.3 1979.7 1577 •9 1267.7 1256.7 1408.4 11231.5 17277.2 18385.2 13412.1 7132.6 30 3773.9 1944.9 1312.6 1136.8 1055.4 1101.2 1317.9 12369.3 22904.8 24911.7 16670.7 9096.7 31 6150.0 3525.0 2032.0 1470.0 1233.0 1177.0 1404.0 10140.0 23400.0 26740.0 18000.0 11000.0 32 6458.0 3297.0 1385.0 1147.0 971.0 889.0 1103.0 10406.0 17323.0 27840.0 31435.0 12026.0 ;!',i1 'I ~l,)'j j :"~'~~1,'~-"-'1 .h"'~'l J ~"~~'l ---1 1 ,.-~-JC]'>1'~-)}"-1 POWERHOUSE FLOW CFS YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 6120.2 8574.2 12398.2 10601.6 8814.5 7720.3 5886.8 5318.2 4746.0 4931.3 4328.0 4164.7 '")6181.7 7210.1 8723.0 8502.4 8845.8 7771.0 6028.8 5313.6 4827.4 4866.4 5255.9 11415.5.:. 3 7594.7 10061.0 12730.3 11061.0 9013.8 7886.2 5885.5 5372.6 4893.4 4932.7 7266.6 6248.8 4 9287.5 10647.7 12510.5 10605.4 8784.5 7821.9 6108.6 5313.6 4802.8 4797.7 861,1.8 6572.6 5 7220.7 9490.5 12413.1 10874.3 8975.9 7789.4 5884.1 5315.7 4830.5 4683.7 6972.1 4107.2 6 6521.1 9942.0 12778.8 11174.8 9223.3 8037.3 5884.1 !)315.7 4868.5 ~3086.5 16307.3 8618.4 7 7104.1 9479.0 12267.9 10603.4 8927.6 7845.6 5886.4 5317.8 4824.9 13374.9 14021.0 8365.0 8 7209.8 10167.5 12936.3 11159.5 9361.8 8086.2 5884.0 5315.6 4841.6 5111.0 10107.6 10011.7 9 9036.7 10826.8 13487.8 11267.1 9214.5 8124.7 5992.0 5313.6 4839.8 4865.0 8647.1 4118.0 10 6121.7 7063.7 12337.1 10867.5 9121.8 7845.2 5884.6 5316.2 4842.8 4893.5 1,0449.2 7637.~i 11 8167.3 10104.4 12901.6 11186.9 9311.7 8112.3 5882.7 5314.4 4701.1 4884.6 4459.1 9787.9 12 9051.1 10218.7 13202.5 11566.4 9477.6 8482.2 6691.6 5313.6 4812.9 5987.9 12497.9 5316.8 13 7639.4 10154.3 12989.7 11395.4 9430.2 8328.0 6184.0 5313 ..oS 7912.0 15295.0 15031.2 7916.8 14 8561.9 10399.8 12938.2 11095.4 9357.5 8034.8 5885.8 5317.2 4806.9 12457.7 15647.3 5970.6 15 8188.9 9680.0 12424.0 10638.5 8954.4 7726.4 5887.6 5382.7 6523.7 12322.8 8721.7 4150.9 16 6224.6 10259.1 12299.6 10649.5 8945.5 7958.5 5959.0 5313.6 4832.4 5304.6 10228.B 11396.2 17 8223.0 9456.2 12432.9 10846.9 9157.5 8135.9 6065.0 5313.6 4861.4 4663.6 5533.5 4110.3 18 6087.8 8627.7 12350.9 10888.7 9204.1 8040.7 5885.0 :i316.5 4825.7 8123.9 17109.7 11388.5 19 7020.8 9825.2 12933.5 11404.1 9733.2 8711 .6 6303.3 5313.6 4818.8 9462.9 8238.8 4112.9 20 6H)6.1 7294.9 11983.2 10405.7 8780.3 7837.2 5988.2 5313.6 4747.2 4796.1 4438.3 4349.0 21 6450.3 7577.9 9220.7 8317.7 6872.2 7235.3 6284.9 5678.2 5059.0 5256.2 4584.8 4399.0 22 6526.3 7624.8 9246.4 8323.5 6870.0 7229.1 6280.2 5768.5 5254.6 5262.4 4649.0 41.57.~j 23 6136.4 8146.4 13186.7 11457.4 9664.2 8517.2 6032.0 5313.6 4796.0 11558.5 11934.4 6126.3 24 7303.0 9868.8 12475.8 10818.0 9173.0 8025.1 5884.4 5315.9 4864.0 4688.5 4468.1 41.18.0 25 6106.9 7153.4 12160.9 10572.9 8862.7 7778.5 5884.8 5316.3 4695.4 4731.9 4347.0 4187.5 26 6198.1 7230.4 8741.9 8221.9 9283.1 8192.6 5937.8 5313.6 4827.2 10400.6 9247.3 8245.9 27 8680.9 9492.0 12105.5 10544.3 8916.0 7841.9 5882.8 5314.5 4848.8 4709.9 4442.3 4138.7 28 6154.2 7107.3 9991.5 11135.2 9375.7 8262.0 5930.0 5313.6 4850.0 8655.1 10488.4 5783."7 29 8795.7 10536.2 13209.0 11364.4 9440.5 8407.9 6135.0 5313.6 4830.5 4881.3 4314.6 4169.6 30 6190.4 7142.9 8703.5 10010.0 9228.2 8252.4 6044.5 5313.6 4822.1 9123.1 10468.0 4267.3 31 9151.8 11415.9 13261.3 11256.5 9405.8 8328.2 6130.6 5313.6 4838.5 9191.1 1180"7.2 6170.6 32 9459.8 11187.9 12614.3 10933.5 9143.8 8040.2 5882.4 5314.1 4837.4 5388.6 17109.7 12026.0 00000000000000000000000000000000u...+ W 00000000000000000000000000000000 rn OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO~ (!) ~OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOON ~~ "1 ('.~ 00000000000000000000000000000000 -I~00000000000000000000000000000000 -:J 00000000000000000000000000000000 Z~00000000000000000000000000000000 -:l 0000 0 00000000000 0 0000 0 0000000000 >-~00000000000000000000000000000000 ::E: 00000000000000000000000000000000 0000000000000000 0 0000 0 0000000000 00 0 0000 0 00000000000 0 000000000000 OC~00000000000000000000000000000000 ::E: 0000 0 00 0 000 0 0000 0 000000000000000 o:r..w 00000000000000000000000000000000 u... 00000000000000000000000000000000 Z~00000000000000000000000000000000 -:l 0000000000000000 0 000000000000000 UW 00000000000000000000000000000000 ;:;, 00000000000000000000000000000000 :>o 00000000000000000000000000000000 :z f- Uo oc >- 00000000000000000000000000000000 00000000000 0 00000000000000000000 _NM~~~~ro~O_NM~~~~ro~O_NM~~~~OO~O_N ---------_NNNNNNNNNNMMM -l C '--")~'--l 1 --'~1 1 )c'"1 '-}-~l --I ~'-] OUTFLOW CFS 'IF:OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 6120.2 8574.2 12398.2 10601.6 8814.5 7720.3 5886.8 5318.2 4746.0 4931.3 4328.0 4164.7 '1 6181.7 7210.1 8723.0 8502.4 8845.8 7771.0 6028.8 5313.6 4827.4 4866.4 5255.9 11415.5... 3 7594.7 10061.0 12730.3 11061.0 9013.8 7886.2 5885.5 5372.6 4893.4 4932.7 7266.6 6248.8 4 9287.5 10647.7 12510.5 10605.4 8784.5 7821.9 6108.6 5313.6 4802.8 4797.7 8611.8 6572.6 5 7220.7 9490.5 12413.1 10874.3 8975.9 7789.4 5881.1 5315.7 4830.5 4683.7 6972 .1 4107.2 6 6521.1 9942.0 12778.8 11174.8 9223.3 8037.3 5884.1 5315.7 4868.5 ~j086.5 1630::'.3 8618.4 7 7104.1 9479.0 12267.9 10603.4 8927.6 7845.6 5886.4 5317.8 4824.9 13374.9 14021.0 8365.0 B 7209.8 10167.5 12936.3 11159.5 9361.8 8086.2 5884.0 5315.6 4841.6 5111.0 10107.6 10011.7 9 9036.7 10826.8 13487.8 11267.1 9214.5 8124.7 5992.0 5313.6 4839.8 4865.0 8647.1 4118.0 10 6121.7 7063.7 12337.1 10867.5 9121.8 7845.2 5884.6 5316.2 4842.8 4893.5 10449.2 7637.5 11 8167.3 10104.4 12901.6 11186.9 9311.7 8112.3 5882.7 5314.4 4701.1 4884.6 4459.1 9787.7' 12 9051.1 10218.7 13202.5 11566.4 9477.6 8482.2 6691.6 5313.6 4812.9 5987.9 12497.9 5316.8 13 7639.4 10154.3 12989.7 11395.4 9430.2 8328.0 6184.0 5313.6 7912.0 15295.0 15031.2 7916.8 14 8561.9 10399.8 12938.2 11095.4 9357.5 8034.8 5885.8 ~~j317 +2 4806.9 12457.7 15647.3 5970.6 15 8188.9 9680.0 12424.0 10638.5 8954.4 7726.4 5887.6 5382.7 6523.7 12322.8 8721.7 4150.9 16 6224.6 10259.1 12299.6 10649.5 8945.5 7958.5 5959.0 5313.6 4832.4 5304.6 10228.8 11396.2 17 8223 .0 9456.2 12432.9 10846.9 9157.5 8135.9 6065.0 5313.6 4861.4 466~~.6 55:n.5 4110.3 18 6087.8 8627.7 12350.9 10888.7 9204.1 8040.7 5885.0 5316.5 4825.7 8123.9 17109.7 11388.5 19 7020.8 9825.2 12933.5 11404.1 9733.2 8711.6 6303.3 5313.6 4818.8 9462.9 8238.8 41.12.1; 20 6106.1 7294.9 11983.2 10405.7 8780.3 7837.2 5988.2 5313.6 4747.2 4796.1 4438.3 4349.0 21 6450.3 7577.9 9220.7 8317.7 6872.2 7235.3 6284.9 5678.2 5059.0 5256~.2 4~584.8 4399.0 22 6526.3 7624.8 9246.4 8323.5 6870.0 7229.1 6280.2 5768.5 5254.6 5262.4 4t:.49.0 4157.5 23 6136.,j 8146.4 13186.7 11457.4 9664.2 8517.2 6032.0 5313.6 4796.0 11558.5 11934.4 6i26d 24 7303.0 9868.8 12475.8 10818.0 9173.0 8025.1 5884.4 5315.9 4864.0 4688.~i 4468.1 411.8.0 25 6106.9 7153.4 12160.9 10572.9 8862.7 7778.5 5884.8 ~j316.3 4695.4 4731.9 4347.0 4187.5 26 6198.1 7230.4 8741.9 8221.9 9283.1 8192.6 5937.8 5313.6 4827.2 10400.6 9247.3 8245.9 27 8680.9 9492.0 12105.5 10544.3 8916.0 7841.9 5882.8 5~314.5 4848.8 4709.9 4442.3 4138.7 28 6154.2 7107.3 9991.5 11135.2 9375.7 8262.0 5930.0 5313.6 4850.0 8655.1 10488.4 ~i783.7 29 8795.7 10536.2 13209.0 11364.4 9440.5 8407.9 6135.0 5313.6 4830.5 4881.3 4314.6 4169.6 30 6190.4 7142.9 8703.5 10010.0 9228.2 8252+4 6044.5 5313.6 4822.1 9123.1 10468.0 4267.3 31 9151.8 11415.9 13261.3 11256.5 9405.8 8328.2 6130.6 5313.6 4838.~)9191.1 11807.2 t.170.6 32 9459.8 11187.9 12614.3 10933.5 9143.8 8040.2 5882.4 5314.1 4837.4 5388.6 19452.1 12026.0 AVERAGE HEAD FT YR OCT NOl)DEC JAN FEB MAR APR MAY JUN JlIL AUG SEP 1 728.8 722.3 707.8 689.3 672.0 657.0 6-14.4 642.6 657.8 683.0 707.2 720.1 2 720.4 713.0 701.5 687.5 672.0 657.0 645.0 646.6 666.6 693.4 /16.2 730.2 3 732.5 723.5 707.8 689.3 672.0 657.0 6-14.6 637.9 657.6 694.1 717.9 730.6 4 732.5 723.5 707.8 689.3 672.0 657.0 645.0 649.9 676.1 703.0 720.2 730.9 I:"732.5 723.5 707.8 689.3 672.0 657.0 6~4.8 646.2 667.2 692.7 715.0 730.2,J 6 732.2 723.5 707.8 689.3 672 .0 657.0 644.8 641.1 662.::i 698.7 721.0 731.0 7 732.5 723.5 707.8 689.3 672.0 657.0 614.,5 646.'1 676.4 708.3 722.8 731.0 8 732.5 723.5 707.8 689.3 672.°657.0 644.8 644.7 669.8 702.5 721.0 731.0 9 732.5 723.5 707.8 689.3 672 .0 657.0 615.0 644.9 666.7 696.8 718.4 728.3 10 727.8 721.4 707.7 689.3 672 .0 657.0 644.7 644.5 662.9 690.4 715.9 731.(/ 11 732.5 723.5 707.8 689.3 672.0 657.0 644.9 647.8 664.:l 686.2 712.3 729.8 12 732.5 723.5 707.8 689.3 672.0 657.0 645.0 648.:':i 674,,~703.9 721,2 731.0 13 732.5 723.5 707.8 689.3 672.0 657.0 645,0 646.3 679.0 712.3 723 ,0 731.0 14 732.5 723.5 707.8 689.3 672.0 657.0 644.6 649,3 675.1 704.4 122,.6 131.0 15 732.5 723.5 707.8 689.3 672 .0 657.0 644.4 636.7 669f19 711.7 722.5 729.6 16 731.2 723.5 707.8 689.3 672 .0 657.0 645.0 645.9 667.8 699.5 721.1 731.0 17 732.5 723.5 707.8 689.3 672 .0 657.0 645.0 642.0 664.8 69:3.7 715.7 729.7 18 731.6 723.1 707.8 689.3 672.0 657.0 644.6 646.8 673.8 704.8 723.8 733.1 19 732.5 723.5 707.8 689.3 672 .0 657.0 6 '15.0 647,7 675.8 7%.5 721,8 72'7'.;:! 20 729.2 721.9 707.8 689.3 672.°657,0 645.0 644.3 657.6 676.5 689.6 6 0 ')-,,.../ 21 688.7 678.3 663.5 647.3 632.1 617.3 603.6 601.9 617.1 642.0 66/'.6 681.8 22 681.9 674.2 661.7 646.8 632.3 617.8 604.0 594.0 616.4 658.2 694.4 721.<1 23 727.1 721.6 707.8 689.3 672.0 657.0 645.0 650.8 682.9 7ll..0 722.4 731.0 24 732,5 723.5 707.8 689.3 672 .0 657.0 644.7 641.7 662.6 692.0 713.9 728.3 25 729.1 721.8 707.8 689.3 672.0 657.0 644.7 647.2 664.9 685.6 704.0 716.2 26 718.3 711.0 700.0 686.9 672.0 657.0 645.0 646.6 674.5 706.6 722.1 731.0 27 732.5 723.5 707.8 689.3 672 .0 657.0 c)44.9 643.7 662.5 688.8 711.9 724.7 28 723.3 716.4 705.3 689.3 672 .0 657.0 645.0 643.6 6~'l 7 707.::;721.8 731.0I..,;.,•f 29 732.5 723.5 707.8 689.3 672.0 657.0 645.0 646.2 664.5 689.3 709.3 719.3 30 719.7 713.5 703.1 688.5 672.0 657.0 645.0 647.3 672~3 703.4 721.9 731.0 31 732.5 723.5 707.8 689.3 672.0 657.0 645.0 645.1 668.4 701.7 721.9 731.0 32 732.5 723.5 707.8 689.3 672.0 657.0 644.9 645.2 662.8 695.1 725.1 734.9 ~"t .--~._]-,o"-_~l :°'------1------1 '1------,-0----]1 1---'1 --]-1 TOTAL ENERGY GWH YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF' 1 234.5 325.6 461.3 384.2 311.4 266.7 199.4 179.7 164.1 177 .1 160.9 157.? 2 234.1 270.3 321.7 307,3 312.5 268.4 204.4 180.6 169.2 177.4 197.9 438.2 3 292.5 382.7 473.7 400.8 318.4 272.4 199.4 180.2 169.2 180.0 274.2 240.0 4 357.6 405.0 465.5 384.3 310.3 270.2 207.1 181.5 170.7 177.3 326.0 252.5 5 278.1 361.0 461.9 394.0 317.1 269.0 199.4 180.6 169.4 170.6 262.1 157 ..] 6 251.0 378.2 475.5 404.9 325.8 277 .6 199.4 179.2 169.6 186.8 618.2 331.2 7 273 .6 360.5 456.5 384.2 315.4 271.0 199.4 180.9 171.6 498.0 532.8 321.5 8 277 .6 386.7 481.3 404.4 330.7 279.3 199.4 180.2 170.5 188.8 383.2 384.7 9 348.0 411.8 501.9 408.3 325.5 280.6 203.2 180.2 169.6 178.2 326.6 157.7 10 234.2 267.9 459.0 393.8 322.3 271.0 199.4 180.1 168.8 177.6 393.3 293.5 11 314.5 384.3 480.0 405.4 329.0 280.2 199.4 181.0 164.1 176.2 167.0 375.5 12 348.5 388.7 491.2 419.1 334.8 293.0 226.9 181.2 170.7 221.6 473.9 204.3 13 294.2 386.2 483.3 412.9 333.2 287.7 209.7 180.5 282t5 572t7 571.3 304.2 14 329.7 395.6 481.4 402.0 330.6 277 .5 199.4 181.5 170.6 461.3 594.4 229.4 15 315.3 368.2 462.3 385.5 316.3 266.9 199.4 180.2 229.8 461.1 331.3 159.2 16 239.3 390.2 457.6 385.9 316.0 274.9 202.1 180.4 169.7 195.1 387.8 437.9 17 316.7 359.7 462.6 393.0 323.5 281.0 205.7 179.4 169.9 170.6 208.2 157.7 18 234.1 328.0 459.6 394.6 325.2 277.7 199.4 180.8 170.9 301.0 651.0 438.9 19 270.4 373.7 481.2 413.2 343.9 300.9 213.7 180.9 171.2 351.5 312.6 157.7 20 234.1 276.9 445.9 377 .1 310.2 270.7 203.1 180.0 164.1 170.6 160.9 158.4 21 233.5 270.2 321.7 283.0 228.4 234.8 199.4 179.7 164.1 177.4 160.9 157.7 "l"l 234.0 270.2 321.7 283.1 228.4 234.8 199.4 180.1 170.3 182.1 169.7 157.7...... 23 234.6 309.0 490.7 415.2 341.4 294.2 204.5 181.8 172.2 432.0 453.3 235.4 24 281.2 375.4 464.2 392 .0 324.1 277.2 199.4 179.3 169.4 170.6 167.7 157.7 25 234.1 271.4 452.5 383.1 313.1 268.7 199.4 180.9 164.1 170.6 160.9 157.7 26 234.0 270.3 321.7 296.9 328.0 283.0 2010 3 180.6 171.2 386.3 351.1 316.9 27 334.3 361.0 450.4 382.1 315.0 270.9 199.4 179.9 168.9 170.6 166.3 157.7 28 234.0 267.7 370.5 403.5 331.2 285.4 201.1 179.8 171.5 321.9 398.0 222.3 29 338.7 400.8 491.5 411.8 333.5 290.4 208.0 180.5 168.8 176.9 160.9 157.7 30 234.2 267.9 321.7 362.3 326.0 285.0 205.0 180.8 170.4 337.4 397.3 164.0 31 352.4 434.2 493.4 407.9 332.3 287.7 207.9 180.2 170.0 339.0 448.1 237.1 32 364.3 425.5 469.4 396.2 323.0 277.7 199.4 180.3 168.6 196.9 652.2 464.7 STORAGE (MONTH END)AC-FT YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 9386568.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6490048.5 6691305.0 7395950.5 8255923.0 9014804.0 9205086.0 2 9031274.0 8663291.0 8191954.5 7727999.5 7235200.0 6804000.0 6518999.5 6901055.5 7726559.0 8626213.0 9302880.0 9652000.0 3 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6497591.5 6427880.0 7686891.5 8722697.0 9331082.0 9652000.0 4 9471000.0 8995200.0 8318099.0 7727999.5 7235200.0 6804000.0 6519000.0 7105308.0 8110289.0 8867484.0 9354074.0 9652000.0 5 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6506042.5 6890809.5 7773940.0 8515594.0 9326506.0 9631508.0 6 9471000.0 8995200.0 8318099.0 7727999.5 7235200.0 6804000.0 6505933.0 6590496.0 7797223.5 8924869.0 9360799.0 9652000.0 7 9471000.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6492376.0 6952777.0 8300238.5 9051331.0 9360800.0 9652000.0 8 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6506195.0 6799275.0 8031358.5 8926049.0 9360800.0 9652000.0 9 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6799032.5 7839647.5 8737336.0 9352148.0 9464345.0 10 9316394.0 8994756.0 8318100.0 7727999.5 7235199.5 6804000.0 6502576.0 6793475.0 7606694.0 8547313.0 9360800.0 9652000.0 11 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6513799.0 6979884.5 7494361.5 8376001.5 9272262.0 9652000.0 12 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 7020933.5 8104551.5 8939785.0 9360800.0 9652000.0 13 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6881984.0 8576651.0 9067999.0 9360800.0 9652000.0 14 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6495928.5 7097815.5 8053922.0 9037359.0 9360800.0 9652000.0 15 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6485728.5 6376960.5 8566860.0 9034771.0 935S946.0 9559350.0 16 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6859824.5 7847534.0 8928748.0 9360800.0 9652000.0 17 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6626358.5 7897320.0 8590135.0 9305109.0 9612858.0 18 9442938.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6500382.5 6936873.5 8135961.5 8971892.0 9514254.0 9652000.0 19 9471000.0 8995200.0 8318099.0 7727999.0 7235200.0 6804000.0 6519000.0 6972020.0 8231345.0 8992293.0 9348570.0 9532518,0 20 9353369.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6760195.0 7315832.5 7921667.0 8122674.0 8117306.0 21 7873272.0 7477900.0 6964685.0 6501512.5 6123440.0 5724800.5 5405315.0 5637957.0 6201135.5 6994285.5 7698497.5 7868844.0 ~~7702527.0 7393296.5 6937510.0 6501776.0 6134408.5 5741750.0 5412136.0 5236590.5 6584733.0 7541290.0 891J929.0 9400203.0"23 9330420.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6519000.0 7161740.5 8526472.0 9024637.0 9360800.0 9652000.0 24 9471000.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6504306.5 6623157.0 7768525.5 8471751.0 9288695.0 9528780.0 25 9344846.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6501735.0 6958348.0 7566463,5 8244210.0 8797540.0 9135129.0 26 8947648.0 8600578.0 8150448.0 7727999.5 7235199.5 6804000.0 6519000.0 6902406.5 8220629.0 9006292.0 9360800.0 9652000.0 27 9471000.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 651.3184.0 6731718.5 7644934.0 8386917.0 9?28137.0 9322975.0 28 9131184.0 8818810.0 8318099.5 7727999.5 7235200.0 6804000.0 651.9000.0 6715315.5 8313368.0 8979788.0 9360800.0 9652000.0 29 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6875833.5 7626341.5 8440595.0 8989152.0 9167815.0 30 9022106.0 8708680.0 8263030.0 7727999.5 7235200.0 6804000.0 6519000.0 6944440.0 8034779.5 8986791.0 9360800.0 9652000.0 31 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6810019.0 7929234.0 8987391.0 9360800.0 9652000.0 32 9471000.0 8995200.0 8318099.5 7727999.5 7235199.5 6804000.0 6515816.0 6822843.5 7575697.0 8929461.0 9652000.0 9652000.0 $ ~~iI --.)--1 ----1 ~-1 '~~l ----1 -_C)):-1 -1 '--1 ]]1 TY WA.DAT SUSITNA HEF' WATANA 2185 CASE A 384 8 0 1000000 5.232 9.652 1455..85 .01 1.00 1900.'1 1:"1:"1950.3.33 2000.4.25 2050.5.34..:.ttJtJ 2100.6.65 2150.8.19 2200.10.02 2250.12.21 2185. 900000.2000.00.0 32 .73 .84 1.0 .88 .71 .73 .62 .56 .51 .53 .50 .49 O. 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 2185.0 2172.0 2153.5 2135.0 2119.0 2105.0 2095.0 2145.0 2160.0 2170.0 2180,.0 2190.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.8 0.8 0.7 4719.9 2083.6 1168.9 815.1 641.7 569.1 680.1 8655.9 16432.1 19193.4 16913.6 7320.4 3299.1 1107.3 906.2 808.0 673 .0 619.8 1302.2 11649.8 18517.9 19786.6 16478.0 17205.5 4592.9 2170.1 1~O 1.0 1274.5 841.0 735.0 803.9 4216.5 25773.4 22110.9 17356.3 11571.0 6285.7 2756.8 1281.2 818.9 611.7 670.7 1382.0 15037.2 21469.8 17355.3 16681.6 11513.5 4218.9 1599.6 1183.8 1087.8 803.1 638.2 942.~11696.8 19476.7 16983.6 20420.6 9165.5 3859.2 2051.1 1549.5 1388.3 1050.5 886.1 940.8 6718.1 24881.4 23787.9 23537.0 13447.8 4102.3 1588.1 1038.6 816.9 754.8 694.4 718.3 12953.3 27171.8 25831.3 19153.4 13194.4 4208.0 2276.6 1707.0 1373.0 1189.0 935.0 945.1 10176.2 25275.0 19948.9 17317.7 14841.1 6034.9 2935.9 225-.8.5 1480.6 1041.7 973.5 1265.4 9957.8 22097.8 19752.7 18843.4 5978.7 3668.0 1729.5 1115.1 1081.0 949.0 694.0 885.7 10140.6 18329.6 20493.1 23940.4 12466.9 5165.5 2213.5 1672.3 1400.4 1138.9 961.1 1069.9 13044.2 13233.4 19506.1 19323.1 16085.6 6049.3 2327.8 1973 .2 1779.9 1304.8 1331.0 1965.0 13637.9 22784.1 19839.8 19480.2 10146.2 4637.6 2263.4 1760.4 1608.9 1257.4 1176.8 1457.4 11333.5 36017.1 23443.7 19887.1 12746.2 5560.1 2508.9 1708.9 1308.9 1184.7 883.6 776.6 15299.2 20663.4 28767.4 21011.4 10800.0 5187.1 1789.1 1194.'7 852.0 781.6 575.2 609.2 3578.8 42841.9 20082.8 14048.2 752,1.2 4759.4 2368.2 1070.3 863.0 772.7 807.3 1232.4 10966.0 21213.0 23235.9 17394.1 16225.6 5221.2 1565.3 1203.6 1060.4 984.7 984.7 1338.4 7094.1 25939.6 16153.5 17390.9 9214.1 3269.8 1202.2 1121.6 11 02.2 1031.3 889.5 849.7 12555.5 24711.9 21987.3 26104.5 13672.9 4019.0 1934.3 1704.2 1617.6 1560.4 1560.4 1576.7 12826.7 25704.0 22082.8 14147.5 7163.6 3135.0 1354.9 753.9 619.2 607.5 686.0 1261.6 9313.7 13962.1 14843.5 7771.9 4260.0 2403.1 1020.9 709.3 636.2 602.1 624.1 986.4 9536.4 14399.0 18410.1 16263.8 7224.1 3768.0 2496.4 1687.4 1097.1 777.<1 717.1 813.7 2857.2 27612.8 21126.4 27446.6 12188.9 4979.1 2587.0 1957.4 1670.9 1491.4 1366.0 130~.4 15973.1 27429.3 19820.3 17509.5 10955.7 4301.2 1977.9 1246.5 1031.5 1000.2 873.9 914.1 7287.0 23859.3 16351.1 18016.7 8099.7 3056.5 1354.7 931.6 786.4 689.9 627.3 871.9 12889.0 14780.6 15971.9 13523.7 9786.2 3088.8 1474.4 1276.7 1215.8 1110.3 1041.4 1211.2 11672.2 26689.2 23430.4 15126.6 13075.3 5679.1 1601.1 876.2 757.8 743.2 690.7 1059.3 8938.3 19994.0 17015.3 18393.5 5711.~:j 2973 .5 1926.7 1687.5 1348.7 1202.9 1110.8 1203.4 8569.4 31352.8 19707.3 16807.3 10613.1 5793.9 2645.3 1979.7 1577.9 1267.7 1256.7 1408.4 11231.5 17277.2 18385.2 13412.1 7132.6 3773.9 1944.9 1312.6 1136.8 t055.4 1101.2 1317.9 12369.3 22904.8 24911.7 16670.7 9091.>.7 6150.0 352~.0 2032.0 1470.0 1233.0 1177.0 1404.0 10140.0 23400.0 26740.0 18000.0 11000.0 6458.0 3297.0 1385.0 1147.0 971.0 889.0 1103.0 10406.0 17323.0 27840.0 31435.0 12026.0 $ FORCAST ENERGY 2000 416.0 490.0 535.0 485.0 462.0 412.0 371.0 331.0 321.0 307.0 329.0 364.0 4823.0 TOTAL ENERGY YR OCT NOt)DEC JAN FEB MAR APR MAY JUN JUL AUG SEP TOTAL WAT DC 1 462.2 608.5 861.2 725.7 594.8 515.5 446.4 466.8 430.4 383.0 298.9 292.9 6086.3 3022.6 3063.7 2 435.1 500.7 595.4 549.6 508.5 470.0 398.0 459.4 420.9 369.9 344.3 778.1 5829.9 3082.0 2747.9 3 517.2 714.4 886.8 759.3 608.3 526.2 444.9 436.6 504.7 402.2 473.9 414.1 6688.6 3383.5 3305.1 4 654.8 758.8 872.0 727.4 594.0 522.0 461.9 495.5 489.4 368.9 564.6 462.5 6971.8 3508.0 3463.8 5 499.2 673.1 863.2 744.2 606.6 519.7 448.4 521.1 487.5 368.8 487.2 304.2 6523.2 3220.9 3302.3 6 453.8 689.5 892.1 768.6 626.3 537.6 447.7 461.3 473.8 404.0 1028.9 575.3 7358.9 3797.4 3561.5 7 480.2 668.4 852.0 724.8 603.8 525.6 447.2 504.3 497.0 905.5 960.3 725.3 7894.4 3965.4 3929.0 8 502.7 725.9 901.7 766.0 634.8 541.9 447.6 481.3 472.1 399.1 652.6 724.7 7250.4 3666.8 3583.6 9 642.6 777.0 93,9.7 776.8 624.0 542.6 455.1 468.9 446.8 377.0 561.8 293.0 6905.3 3491.6 3413.7 10 436.0 499.7 774.3 746.9 619.8 526.4 449.9 525.9 472.4 402.9 749.4 550.2 6753.8 3360.9 3392.9 11 ~365.7 718.7 901.2 770.3 631.,6 543.0 447.1 465.6 412.6 382.0 310.9 672.4 6821.1 3456.6 3364.5 12 634.8 72?t5 925.9 800.7 645.4 572.6 509.2 485.2 505.2 482.7 802.7 368.2 7460.1 3753.9 3706.2 13 522#8 718.1 903.4 781.3 638.1 557.2 467.1 436.1 691.1 987.4 1002.5 653.4 8358.5 4318.4 4040.1 14 588.7 732.3 898.9 760.9 634.7 535.5 443.6 485.8 479.7 866.7 1018.5 468.4 7913.7 4053.4 3860.3 15 564.5 685.5 863.6 727.9 604.9 515.5 445.3 427.6 634.9 860.4 558.0 294.5 7182.6 3675.5 3507.1 16 441.7 670.5 8~il.7 726.6 602.3 529.9 450.1 451.1 463.9 434.1 670.4 784.2 7076.5 3636.9 3439.6 1)581.6 671.4 866.8 744.9 621.2 546.2 463.3 460.4 512.3 374.3 380.1 293.0 6515.5 3228.0 3287.5 18 435.6 559.8 826.3 749.1 625.5 539.8 448.9 469.2 470.4 625.4 1068.9 875.9 7694.8 3961.2 3733.6 19 501.4 694.8 899.7 783.4 660.4 584.9 476.7 477.6 490.3 705.7 527.2 293.0 7095.1 3570.9 3524.2 20 434.6 508.4 734.7 710.2 591.8 522.6 454.5 445.0 399.6 332.6 299.2 294.2 5727.4 2952.0 2775.4 21 435.4 501.4 596.7 525.6 424.7 437.2 371.6 360.8 459.7 408.4 299.5 293.0 5114.0 2610.8 2503.2 r).,436.7 502.0 597.6 540.1 452.2 469.5 460.3 442.4 492.2 386.8 321.1 293.0 5393.9 2631.5 2762.4./..,1.'_ 23 436.1 542.4 857.6 791.2 659.8 574.4 460.4 528.8 512.5 821.1 749.4 393.0 7326.7 3764.3 3562.4 24 484.1 689.6 865.5 739.5 619.9 535.0 444.8 428.9 453.8 341.5 306.9 292.9 6202.4 3158.2 3044.2 25 435.0 501.5 728.6 626.3 591.7 518.1 444.9 476.5 427.4 360.0 298.8 292.9 5701.7 2956.5 2745.2 26 435.2 501.3 596.3 539.7 524.1 518.4 453.8 483.7 486.3 766.8 590.1 568.2 6463.9 3341.3 3122.6 27 615.3 670.9 839.6 721.9 602.8 524.6 448.8 483.1 461.3 342.6 304.8 293.7 6309.4 3156.5 3152.9 28 435 •.1.498.5 647.7 646.7 583.3 556.1 455.2 491.4 506.1 630.9 663.7 380.5 6495.2 3386.9 3108.3 29 609.8 ?53t9 1'24.1 782.5 642.0 565.0 464.9 425.6 411.2 367.0 298.9 292.9 6537.8 3319.5 3218.3 30 435.8 499.5 :596.4 605.2 542.3 ::549.5 455.8 441.2 412.8 675.0 688.2 299.3 6201.0 3252.0 2949.0 31 587.9 811.0 923.0 771.6 636.2 557.2 464.1 448.9 463.1 699.1 771.6 403.3 7537.0 3890.2 3646.8 -.'")651.0 794.1 876.0 748.4 617.6 536.9 446.7 450.0 439.8 450.9 1070.1 901.8 7983.3 4118.2 3865.1".;. f~NN 511.0 642.8 817.5 715.1 599.2 531.8 450.8 465.2 477.5 521.3 597.6 463.2 6792.9 3459.1 3333.8 -."1 ~l _-l ~ - -i APPENDIX A2 PROBABLE MAXIMUM FLOOD 1 -INTRODUCTION This report presents the results of the studies conducted to determine a prob- able maximum flood (PMF)at Watana and Devil Canyon damsites appropriate for use in design of project spillways and related facilities. As part of the Acres'Plan of Study for the Susitna Hydroelectric Project dated February 1980 and revised September 1980,Subtask 3.05 (ii)was undertaken.The main objectives of this subtask were to review and determine the adequacy of the PMF estimate reported by the U.S.Army Corps of Engineers (1).The primary con- clusions of the review was that further analysis of the PMF was warranted because of its sensitivity to snowpack and probable maximum precipitation (PMP) estimates.This further evaluation was authorized by the Alaska Power Authority in April,1981 and the results are presented in this report.Subtask 3.05 (ii) closeout report is included here as Attachment 1. This report covers the work performed by Acres in re-estimating the PMF.The study estimated new values for the Probable Maximum Precipitation and tempera- ture sequences based on more complete data and elaborate procedures.The study has relied heavily on the work of the U.S.Army Corps of Engineers (COE)and that reported in Attachment 1 in cal ibrati ng the watershed computer model of the basin. 2 -REVIEW OF PREVIOUS ESTIMATES The U.S.Army Corps of Engineers (CaE)reported on their studies of the estimate of the PMF (1).The CDE esti mate of flood peaks are 233,000 cfs for Watana and 226,000 cfs for Devil Canyon.Watana reservoir provides some flood peak attenu- ation for Devil Canyon.The CaE calibrated the SSARR watershed model by esti- mating basin snowmelt,runoff and other parameters for historical floods.Based on this calibration,any estimates of the PMP determined by the National Weather Service,the CaE derived likely estimates of the PMF peak and volume. Acres reviewed the watershed model developed by the CaE and input parameters particularly the probable maximum precipitation (PMP),temperature sequences and snowpack depths.Generally,the watershed model was found to be adequate given the amount of information available on the watershed characteristics.Several apparent typographical errors in basin parameters were corrected. The estimates of PMP and snowpack depths were reviewed and a sensitivity analy- sis was performed using the SSARR Model and input data supplied by the CaE.The range of PMF peaks are given in Tables A2.1 and A2.2 for Watana and Devil Can- yon,respectively.It was found that a change of 30 percent in precipitation results in a 47 percent change in flood peak at Watana.Snowpack amounts at the start and temperatures before and during the PMP storm also proved significant A2-1 with respect to PMF peak.Uue to the relatively large change in PMF peaks for moderate increases in PMP or temperature maximums,it was recommended to further study the PMF.More details and further discussion of the sensitivity analysis and review of the COE study are given in Attachment 1. Attachment 1 provides the necessary intermation and data on the watershed char- acteristics and the SSARk Model of the basin on which this study is based. 3 -CLIMATE AND HYDROLOGY The following section gives a brief description of the climate and hydrology of the Upper Susitna Basin.It is important to point out that variations within the basin of both climate and hydrology may be significant.Local climatic in- fluences of glaciers and mountain ranges are expected to be important but are currently insufficiently documented to enable a proper analysis of these influ- ences.The continuation of data collection at the weather stations established within the Susitna Basin will improve the watershed model as time proceeds. However,it is believed that the general patterns of precipitation,snowmelt and hydrological parameters are adequate for this feasibility study and will yield acceptable results. 3.1 -Cl-imate The climate of Alaska in general is dictated mostly by its latitude.The char- acter of the surrounding land or water,physical relief and their interaction with global circulation patterns also play an important part in determining cli- mate.The Susitna ~asin in particular lies between the mOderating influence of the Pacific currents and the more severe continental influences. The climate of the Susitna Basin upstream from Talkeetna is generally character- ized by cold,dry winters and warm,moderately moist summers.The upper basin is dominated by continental climatic conditions while the lower basin falls within a zone of transition between maritime and continental climatic influ- ences. (a)Cl imat ic Data Records Data on precipitation,temperature and other climatic parameters have been collected by NOAA at several stations in the south central region of Alaska since 1941.Prior to the current studies,there were no stations located within the Susitna Basin upstream from Talkeetna. The closest stations where long-term climate data is available are at Talkeetna to the south and Summit to the north.A summary of the precipi- tation and temperature data available in the vicinity of the basin is pre- sented in Table A2.3. Six automatic climate stations were established in the upper basin during 1980 (Figure A2.1).The data currently being collected at these stations includes air temperature,average wind speed,wind direction,peak wind gust,relative humidity,precipitation,and solar radiation.Snowfall amounts are being measured in a heated precipitation bucket at the Watana station.Data are recorded at thirty minute intervals at the Susitna Glacier station and at fifteen minute intervals at all other stations. A2-2 The seasonal distribution of precipitation is similar for all the stations in and surrounding the basin.At Talkeetna,records show that 68 percent of the total precipitation occurs during the warmer months of May through October,while only 32 percent is recorded in the winter months.Average recorded snowfall at Talkeetna is about 106 inches.Generally,snowfall is restricted to the months of October through April with about 82 percent snowfall recorded in the period November to March. The U.S.Soil Conservation Services (SCS)operates a network of snow course stations in the basin and records of snow depths and water content are available from 1964.The stations within the Upper Susitna Basin are gen- erally located at elevations below 3000 and indicate that annual snow ac- cumul at ions are around 20 to 40 inches and th at peak depths occur in 1ate March.There are no historical data for the higher elevations.The basic network was expanded during 1980 with the addition of three new snow cour- ses on the Susitna glacier (Figure A2.l).Arrangements have been made with SCS for continuing the collection of information from the expanded network during the study period. (c)Temperature -\ I I (b)Precipitation Precipitation in the basin varies from low to moderate amounts in the lower elevations to heavy in the mountains.Mean annual precipitation of over 80 inches is estimated to occur at elevations above 3000 in the Talkeetna Mountains and the Alaskan Kange whereas at Talkeetna station,at elevation 345,the average annual precipitation recorded is about 28 inches.The average precipitation reduces in a northerly direction as the continental climate starts to predominate.At Summit station,at elevation 2397,the average annual precipitation is only 18 inches. Typical temperatures observed from historical records at the Talkeetna and Summit stations are presented in Table A2.4.It is expected that the temp- eratures at the damsites will be somewhere between the values observed at these stations. 3.2 -Hydrology '''!''''''' (a)Water Resources Streamflow data has been recorded by the USGS at a total of 12 gaging sta- tions on the Susitna River and its tributaries (Figure A2.l).The length of these records varies from 30 years at Gold Creek to about five years at the Susitna station.There were no historical records of streamflow at any of the proposed damsite before this study.A gaging station was estab- lished at the Watana damsite in June 1980 and continuous river stage data is being collected. Seasonal variation of flows is extreme and ranges from very low values in winter (October to April)to high summer values (May to September).For the Susitna River at Gold Creek,the average winter and summer flows are 2100 and 20,250 cfs,respectively,a 1 to 10 ratio.On the average,ap- proximately 88 percent of the streamflow recorded at Gold Creek station A2-3 occurs during the summer months.Figure A2.2 shows the average monthly flow distribution for the wettest average and driest year flow for stream- flow recorded at Gold Creek.At higher elevations in the basin,the dis- tribution of flows is concentrated even more in the summer months.For the Maclaren River near Paxson (E1 4520)the average winter and summer flows are 144 and 2100 cfs,respectively,a 1 to 15 ratio. The Susitna River above the confluence with the Chulitna River contributes only approximately 20 percent of the mean annual flow near Cook Inlet (measured at Susitna station). (b)Floods The most common causes of flood peaks in the Susitna River Basin are snow- melt or a combination of snowmelt and rainfall over a large area.Annual maximum peak discharges generally occur between May and October with the majority,approximately 60 percent,occuring in June.Some of the annual maximum flood peaks have also occurred in August or later and are the re- sult of heavy rains over large areas augmented by significant snowmelt from higher elevations and glacial runoff. A regional flood frequency analysis has been carried out using the recorded floods in the Susitna River and its principal tributaries,as well as the Copper,Matanuska and Tosina rivers.These analyses have been conducted for two different time periods within the year.The first period selected is the open water period,i.e.,after the ice breakup and before freezeup. This period contains the largest floods which must be accommodated by the project.The second period represents that portion of time during which ice conditions occur in the river.These floods,although smaller,can be accompanied by ice jamming,and must be considered during the construction phase of the project in planning and design of cofferdams for river diver- sion.The results of these frequency analyses are given in greater detail in Appendix A3. 4 -HISTORICAL STORMS In any evaluation of design floods using a watershed model,it is essential to review past experience of floods in the basin and to attempt to reconstruct storm patterns and other meteorological and hydrological conditions before and during the event in question.To this end,a review of past floods and an at- tempt to reconstruct from available meteorological records,the storms causing these floods has been made.Due to the masking effect of large spring snowmelt, only flood flows thought to be only as a result of significant rainfall with some high elevation snowmelt are investigated in this section. The rainfall storms will be transposed in time to occur in conjunction with ap- propriate probable maximum snowmelt quantities to produce the PMF event.This transposition is discussed further in Section 6. Five major flood flows (measured at Gold Creek)were selected for detailed analysis.These flood flows were the result of documented storms during the following periods: A2-4 fiit-- r r I It August 4 -10,1971 August 2 -17,1967 August 19 -25,1959 July 28 -August 3,1958 August 22 -28,1955 A sixth storm,July 25-31,1980,was also examined.This storm was used as a base since it had the most data available,including those from the four Weather Wizards installed at Devil Canyon,Watana,Denali and Susitna Glacier. Since the Susitna River basin is mountainous,and hence orographic factors are significant,it was necessary to develop appropriate isohyetal maps for each storm which would reflect the variation of relief in the basin.This was neces- sary to model the various sub-basins and their precipitation patterns,volumes, and intensities adequately. The paucity of data and sparse distribution of precipitation gages within the Susitna Basin and vicinity necessitated the use of the isopercental techniques to obtain valid isohyetal maps.This method requires a base chart of either mean annual precipitation,or preferably,mean precipitation for the season of the storm.The July 1980 storm provided such a base chart since it was from the same season as the other storms,and had additional precipitation stations with- in the basin.The isohyetal map for the July 198U storm was also based on the precipitation chart for the State of Alaska during this storm event. The isopercental technique involves taking the ratio of the total storm preclpl- tation (of a given storm)to the July 1980 storm precipitation and plotting this ratio at each station.Isopercental lines are drawn based on the ratios at the stations.The ratios on these isopercental lines are then multiplied by the original base chart precipitation values to yield the storm isohyetal chart (Figures A2.3 to A2.8).The storm isohyetal gradients and locations of centers tend to resemble the features of the base chart,which in turn reflects the oro- graphic influences of the terrain. The accuracy of the isopercental technique relies on the accuracy of the base chart (that is,July 1980 storm event)and the similarity between the individual storms and the base storm.In general,most storms of significant precipitation develop from weak depressions and are fed by a flow of relatively moist air from the Pacific Ocean.This moisture is carried into the basin and precipitated primarily due to orographic lifting.This results in a isohyetal pattern of high precipitation on windward sides of significant relief and lower precipita- tion amounts of the lee side.This general pattern is reflected in the base storm.The other storms,based on a cursory review of synoptic information available,developed from the same general storm pattern are believed to be rep- resented by the basic isohyetal pattern of the 19HO storm. 5 -HISTORICAL FLOOD SIMULATION The simulation of past floods recorded in the watershed under study is the ac- cepted technique for calibration and verification of computer mathematical models.Generally,baiin parameters are determined by surveys of the basin and by comparison with other basin with similar topographical and vegetal character- istics.Calibration proceeds by adjusting critical basin parameters,such as A2-5 rainfall runoff and snowmelt run off relationships until acceptable modelling of streamflow is obtained.A verification of the model is made by a final model run using a storm not used in calibration and without changing basin parameters. This process of calibration and verification was performed for the SSARR model of the Susitna Basin above Gold Creek.Basin parameters derived by the COE (1,2)and updates by Acres (Attachment 1)were used as the base from which the model was calibrated.In most cases,only minor adjustments to parameters were made except in the cases of typographical errors in data files which were cor- rected (Attachment 1). The SSARR model is believed to be an acceptable model of the Susitna Basin's rainfall runoff relationships,routing characteristics and other physical and hydrological responses.The details of the SSARK model are given in the COE publication "Program Description and User Manual for SSARR Model,"and where an elaborate discussion of the merits of the model can be found.Consequently, this discussion is limited to model results and characteristics specific to the Susitna Basin.Guidelines established in the SSARR manual have been followed both by the CUE in their earlier studies and by Acres. The most significant input variables to the SSAkK model are storm precipitation, temperature sequence and antecedent conditions.By far,the most significant is storm precipitation and antecedent snowpack amounts.The assessment of these parameters and the results of the historical flood simulation or reconstitution are presented below. 5.1 -Historical Storm Precipitation The significant storms used in the reconstitution of large floods on the Susitna Basin were derived from precipitation records at stations located either within or close to the basin.Isohyetal charts of the area were determined using storm precipitation amounts from the recording stations of that storm (as described in Section 4).The isohyetal charts for the following storms are given in Figures A2.3 to A2.8. August 22 -28,1955 July 28 -August 3,1958 August 19 -25,1959 August 9 -17,1967 August 4 -10,1971 July 25 -31,1980 The Susitna Basin has been divided into eight sub-basins to reflect variations in the principal hydrological and topographic characteristics. The precipitation in each storm for each sub-basin uniformly distributed was de- termined by the Thieson Polygon method.The method considered orographic and other relevant effects.The stations affecting a given sub-basin were weighted with respect to sub-basin area and multiplied by the daily storm precipitation for that station.This yielded a daily storm distribution for each sub-basin and for each storm. A2-6 r- ! ,... I '"""I r ! r - Temporal distribution of the precipitation within each sub-basin was derived from observed rainfall intensities recorded during the storm at the stations. This distribution was adjusted to reflect the general storm track and possible modifications to this track because of orographic effects. 5.2 -Flood Reconstitution The results of calibration and verification studies are provided to indicate,in as objective a fashion as possible,the level of accuracy that can be expected from the use of the derived model.Consequently,the level of accuracy is a direct function of the degree of detail that is available on the physical para- meters and input variables.Unfortunately,"due to the remoteness of most of the Upper Susitna Basin information is generally sparse.However,from transposi- tion of data collected at experimental watersheds with similar features and the use of data available on the basin,a reasonable model is believed to have been constructed. The floods of August 1967 and June 1972 were used to calibrate the SSARR model. The August 1967 flood was chosen because it represented a major rainfall event similar in nature to the PMP.The June 1972 flood was chosen since it consisted of significant snowmelt.The hydrographs showing observed and calculated flows on the Susitna River near Cantwell,at Gold Creek and the Maclaren River near Paxson are given on Figures A2.9 to A2.11 and Figures A2.12 to A2.14 for the floods of August 1967 and June 1972,respectively.Verification of the model was with the 1971 flood season which had both a significant spring snowmelt flood and a late summer rainfall flood.The 1971 results are shown in Figures A2.15 to A2.17. Calibration of the model was hindered by the paucity of information on the phys- ical characteristics of the basin.This was particularly true with respect to the relationship between soil moisture index and runoff percent.This relation- ship has probably the most significant effect on the rainfall snowmelt-runoff regime.Attempts were made during the cal ibration to accurately assess the im- pact of changes in the soil moisture index-runoff relationship at peak outflows. The relationships given by Figure A2.18 are believed to be the best that can be achieved under the constraints of time and information available.These rela- tionships represent the average conditions expected in each of the model sub- basins (Figure A2.19).Minor errors in flow estimates are therefore expected due to the variation of runoff characteristics (soil types,vegetation,etc.). To a lesser extent,the other basin modelling studies of Baseflow Infiltration Index (Figure A2.20),surface component input rate (Figure A2.21),evapotrans- piration index (Figure A2.22),snowmelt rate (Figure A2.23),generated runoff (Figure A2.24)and evapotranspiration rate reduction (Figure A2.25),played a part in deviations in the observed versus calculated streamflow. 6 -PROBABLE MAXIMUM FLOOD SIMULATION 6.1 -Probable Maximum Precipitation The Probable Maximum Precipitation (PMP)must be developed before any flood sim- ulations are undertaken.The PMP was derived from the six storms discussed in Section 5 by maximizing each storm with respect to available moisture.The A2-7 maximization factor for each storm was applied to that storm's total precipita- tion to give the maximum precipitation from that storm given moisture content and recorded precipitation.The storm yielding the largest total precipitation for its period was determined to be the Probable Maximum Precipitation. (a)Precipitation Maximization The maximization factor for a particular storm is defined as the ratio be- tween the maximum precipitable water which could have existed in the air which flowed into the storm,and the precipitable water which actually did exist in the air flowing into the storm. The maximum precipitable water which could have existed in the area was de- rived from dew point temperatures recorded at Anchorage.Maximum recorded 12-hour persisting dew point temperatures for the months of May through September were abstracted from the 27 year record at Anchorage and a fre- quency curve for each month determined and fitted to the data.The fifty- year return period maximum 12-hour persisting dew point temperature was de- termined from the frequency curves for each month and a plot of month versus 50-year dew point temperature was developed (Figure A2.26).A simi- lar exercise was undertaken for Talkeetna to correlate data and check lapse rates.As shown on Figure A2.26,the correlation between the two stations is very good.From Figure A2.26,the appropriate dew point temperature for each storm period was determined and the maximum precipitable water deter- mined. The actual storm dew point temperature for each storm was derived by exam- ining the temperature prior to the storm occurrence.The highest 12-hour dew point temperature in the air mass flowing into the storm was identi- fied,and the actual precipitable water flowing into the storm system was based on this temperature.The ratio between the actual precipitable water and the maximum precipitable water yields the maximization factor for the storm. The results of the precipitation maximization are shown in Table A2.5.As shown,the storm occurring on August 8-17,1967 has a maximization factor of 2.0,yielding the largest total precipitation (12.5 inches).This storm comprises the summer PMP and was also assumed to occur under spring condi- tions but with a lower maximization factor due to lower dew point tempera- tures.The storm was centered on June 15 and similar maximization proced- ures were followed.The maximization factor for the August 1967 storm oc- curring in June was 1.4,yielding a total precipitation of 8.9 inches. This concurs with the National Weather Service Memorandum to the COE (1,2) which showed similar transposition of the summer storm and a spring to summer total precipitation ratio of 0.7. (b)Temporal Precipitation Pattern The temporal pattern of the PMP was maximized to yield the maximum preclpl- tation pattern.The general pattern derived indicated that the maximum precipitation effect is observed when the maximum 24-hour precipitation oc- curred later in the storm period.This would sufficiently prime the basin, ultimately yielding maximum runoff.The derived pattern had the largest 24-hour precipitation occurring on the eighth day of the storm. A2-8 """I. r r'" I F'" I iI~ r - I""" I i' I The second largest 24-hour precipitation occurs on the seventh,and the third largest precipitation occurs on the ninth day.The pattern is con- tinued as shown on Table A2.6. The daily precipitation was further divided into 6-hour periods.After examining data collected at several stations,no conclusive 6-hour pattern was found.Therefore,the 6-hour distribution recommended by the National Weather Service (1)was used.The NWS recommended the 24-hour precipita- tion be distributed into 50 percent,20 percent,15 percent and 15 percent values for each respective 6-hour period.Within the storm period,the 6-hour precipitation was ranked similar to the 24-hour precipitation rank- ing.The 6-hour precipitation was distributed in ascending order for each day up to the ninth day,while the ninth and tenth day·s 6-hourly precipi- tation was distributed in descending ordef. 6.2 -Antecedent Conditions It is important to ensure that the antecedent conditions before occurrence of the PMP are suitable to yielding the PMF.The condition of soil moisture,snow- pack,and the temperature sequence and other basin parameters help determine the ultimate PMF value. Snowmelt is a major part of the P~IF peak and volume.Adequate snow mu st there- fore be available to ensure snowmelt throughout the occurrence of the PMP.This was ensured by assuming that the snowpack for glacial sub-basins was unlimited and the snowpack for the other sub-basins was large enough to ensure a residual snowpack during the storm period.These snowpack values were based on maximum recorded data at stations in and around the Susitna Basin.Table A2.7 lists the initial snowpack values for each sub-basin of the model in equivalent inches of water. The amount of soil moisture initially present will control the amount of water available for runoff and subsequent rate of runoff,and the distribution of run- off to baseflow,subsurface and surface components of runoff.Relatively moist soil conditions were assumed for each sub-basin.These initial conditions were based on past soil conditions and maximizing where indicated by the calibration and verification studies. The temperature sequence prior to and during the PMP and the snowpack quantities are two of the major components in the estimation of the PMF event.The temper- ature rise just prior to the PMP storm should be great enough to yield signifi- cant snowmelt;during the PMP the temperatures should be sufficient to maintain significant snowmelt but be representative of temperatures during an event of the nature of the PMP.The temperature sequence for the PMF simulation is shown on Fi gure A2.27.Temperatures through May are at 32°F to ensure the snowpack is ripening but yielding little or no snowmelt runoff;following that,a signifi- cant temperature rise occurs.This temperature gradient is based on maximum one to seven day temperature ri ses observed for records at Anchorage and Ta"1 keetna. A2-9 During the PMP storm,temperatures are depressed from the previous peak reached to reflect the meteorological conditions at the time.After the most signifi- cant precipitation has fallen,temperatures are again increased to ensure continuation of significant snowmelt and to maintain runoff at levels represen- tative of a probable maximum event. 6.3 -Probable Maximum Flood Estimates The calibrated SSARR model of the upper Susitna Hasin has been utilized to eval- uate the peak discharge and volume of a PMF.The value of daily precipitation during the PMP derived from maximization of historical storms has been trans- posed in time to coincide with maximum snowmelt.This simultaneous occurrence of the most critical elements which contribute to the flood follows the gener- ally accepted rationale behind PMF evaluation. Generally,basin parameters derived during SSARR model calibration and verlfica- tionstudies have been unchanged during the PMF estimation.Sufficient snowpack quantities have been assumed to ensure that adequate snowmelt is occ~rring dur- ing the PMP storm to ensure that the general philosophy of simultaneous occur- rence of severe precipitation and sno~nelt is maintained.Temperature sequences before and during the PMP storm are based on the studies conducted in reevalua- tion of the CaE storm (Attachment 1). The model,given the above conditions,estimates the PMF peak at Watana to be 325,000 cfs.With routing through the storage at Watana and the assumed dis- charge facility operation,the peak outflow from Watana is 310,000 cfs.Conse- quently,the peak inflow to Devil Canyon reservoir is 365,000 cfs,and the maxi- mum outflow is 365,000 cfs. A2-10 -i, r ..... ..... REFERENCES 1.Corps of Engineers,Interim Feasibility Report,Southcentral Railbelt Area, Alaska,Appendix 1,Part 1,1975. A2-11 ,..,.. LI ST OF TABLES r r I !, l""'" i ! r- I \- Number A2.1 A2.2 A2.3 A2.4 A2.5 A2.6 A2.7 Title Summary of Sensitivity Runs -Peak Inflow to Watana Reservoir Summary of Sensitivity Runs Peaks Inflow to Devil Canyon Reservoir Summary of Climatological Data Recorded Air Temperatures at Talkeetna and Summit Maximized Spring Storms Temporal Pattern of August 1967 Storm SSARR Model Initial Snowpack for PMF LIST OF FIGURES Number A2.1 A2.2 A2.3 A2.4 A2.5 A2.6 A2.7 A2.8 A2.9 A2.10 A2.11 A2.12 A2.13 A2.14 A2.15 A2.16 A2.17 A2.18 A2.19 A2.20 A2.21 A2.22 Title Data Collection Stations Monthly Average Flows in the Susitna River at Gol d Creek Isohyetal Map Storm of July 25 -31,1980 Isohyetal Map Storm of August 4 -lOt 1971 Isohyetal Map Storm of August 9 -17,1967 Isohyetal Map Storm of August 19 -25 t 1959 Isohyetal Map Storm of July 28 -August 3,1958 Isohyetal Map Storm of August 22 -28,1955 Susitna River at Gold Creek 1967 Susitna River near Cantwell 1967 Maclaren River near Paxon 1967 Susitna River at Gold Creek 1972 Susitna River near Cantwell 1972 Maclaren River near Paxon 1972 Susitna River at Gold Creek 1971 Susitna River near Cantwell 1971 Maclaren River near Paxon 1971 SSARR Model SMI vs ROP Schematic Diagram of SSARR Computer Model SSARR Model SII vs SF? SSARR Model RGS VRS Monthly Evapotranspiration Index LIST OF FIGURES (Cont1d) Number Titl e A2.23 SSARR l\1ode 1 OGEN vs \\1EL TR A2.24 SSARR Model OGEI~vs SCA A2.25 SSARR Model PPT vs KE A2.26 Fifty Year Dew Point Temperatures A2.27 PMP and Temperature Sequence A2.28 Watana PMF Inflow Hydrograph ,~1 ~"~-~l ---1 -~)C-l .'~---1 1 -~1 C)1 1 C-]~--l 1 TABLE A2.1:SUMMARY OF SENSITIVITY RUNS -WATANA INFLOW AND OUTFLOW Watana Maximum ~~Increase Maximum ~~Increase Run Descr ipt ion Inflow (cfs)From Base Out flow (cfs)From Base CoE -Base Run 233,000 0.0 192,000 0.0 Storm Timing Sensitivity 239,000 2.6 194,000 1.0 Temperature Sensitivity 243,000 4.3 198,000 3.1 CoE Snow Pack Sensitivity 254,000 9.0 232,000 20.8 Increased Temperature Gradient Sensitivity 302,000 29.6 243,000 26.6 Precipitation/Snow Pack Sensitivity 342,000 46.8 250,000 30.2 Combined Case Sensitivity 430,000 84.5 270,000 40.6 TABLE A2.2:SUMMARY OF SENSITIVITY RUNS -DEVIL CANYON '1-._.. Maximum ~o Increase Maximum ~o Increase Run Description Inflow ft 3/s From Base Outflow ft 3/s From Base COE -Base Run 226,000 0.0 222,000 0.0 Storm Timing Sensitivity 229,000 1.3 224,000 0.9 Temperature Sensitivity Run 233,000 3.1 229,000 3.2 COE Snow Pack Sensitivity 272,000 20.4 262,000 18.0 Increased Temperature Gradient Sensitivity 282,000 24.8 275,000 23.9 Precipitation/Snow Pack Sens it iv it Y 302,000 33.6 290,000 30.6 Combined Case Sensitivity 330,000 46.0 332,000 45.1 1\1I 1 1 1 7 J '1 ~1 j '1 ";, 1 ---)---1 --1 ]) TABLE A2.3:SUMMARY OF CLIMATOLOGICAL DATA 1 -1 )1 --1 MEAN MONTHLY PRECIPITATION IN INCHES PERIOD OF STATION JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC ANNUAL RECORD Anchorage 0.84 0.56 0.56 0.56 0.59 1.07 2.07 2.32 2.37 1.43 1.02 1.07 Big Delta 0.36 0.27 0.33 0.31 0.94 2.20 2.49 1.92 1.23 0.56 0.41 0.42 11.44 1941 -70 Fairbanks 0.60 0.53 0.48 0.33 0.65 1.42 1.90 2.19 1.08 0.73 0.66 0.65 11.22 1941 -70 Gulkana 0.58 0.47 0.34 0.22 0.63 1.34 1.84 1.58 1.72 0.88 0.75 0.76 11.11 1941 -70 Matanuska Agr. Exp.Station 0.79 0.63 0.52 0.62 0.75 1.61 2.40 2.62 2.31 1.39 0.93 0.93 15.49 1951 -75 McKinley Park 0.68 0.61 0.60 0.38 0.82 2.51 3.25 2.48 1.43 0.42 0.90 0.96 15.54 1951 -75 Summit WSO 0.89 1.19 0.86 0.72 0.60 2.18 2.97 3.09 2.56 1.57 1.29 1.11 19.03 1951 -75 Talkeetna 1.63 1.79 1.54 1.12 1.46 2.17 3.48 4.89 4.52 2.54 1.79 1.71 28.64 1941 -70 MEAN MONTHLY TEMPERATURES Anchorage 11.8 17.8 23.7 35.3 46.2 54.6 57.9 55.9 48.1 34.8 21.1 13.0 1941 -70 Big Delta -4.9 4.3 12.3 29.4 46.3 57.1 59.4 54.8 43.6 25.2 6.9 -4.2 27.5 1941 -70 Fairbanks -11.9 -2.5 9.5 28.9 47.3 59.0 60.7 55.4 44.4 25.2 2.8 -10.4 25.7 1941 -70 Gulkana -7.3 3.9 14.5 30.2 43.8 54.2 56.9 53.2 43.6 26.8 6.1 -5.1 26.8 1941 -70 Matanuska Agr. Exp.Station 9.9 17.8 23.6 36.2 46.8 54.8 57.8 55.3 47.6 33.8 20.3 12.5 34.7 1951 -75 McKinley Park -2.7 4.8 11.5 26.4 40.8 51.5 54.2 50.2 40.8 23.0 8.9 -0.10 25.8 1951 -75 Summit WSO -0.6 5.5 9.7 23.5 37.5 48.7 52.1 48.7 39.6 23.0 9.8 3.0 25.0 1951 -75 Talkeetna 9.4 15.3 20.0 32.6 44.7 55.0 57.9 54.6 46.1 32.1 17.5 9.0 32.8 1941 -70 iT TABLE A2.4:RECORDED AIR TEMPERATURES AT TALKEETNA AND SUMMIT IN of 5I AitoN lalkeetna Summlt Daily Daily Monthly Daily Daily Monthly Month Max.Min.Average Max.Min.Average Jan 19.1 -0.4 9.4 5.7 -6.8 -0.6 ~. Feb 25.8 4.7 15.3 12.5 -1.4 5.5 Mar 32.8 7.1 20.0 18.0 1.3 9.7 r:"" Apr 44.0 21.2 32.6 32.5 14.4 23.5 May 56.1 33.2 44.7 45.6 29.3 37.5 June 65.7 44.3 55.0 52.4 39.8 48.7 Jul 67.5 48.2 57.9 60.2 43.4 52.1 Aug 64.1 45.0 54.6 56.0 41.2 48.7 Sept 55.6 36.6 46.1 46.9 32.2 39.6 Oct 40.6 23.6 32.1 29.4 16.5 23.0 Nov 26.1 8.8 17.5 15.6 4.0 9.8 Dec 18.0 -0.1 9.0 9.2 -3.3 3.0 Annual Average 32.8 25.0 TABLE A2.5:PRECIPITATION MAXIMIZATION RESULTS Maximized Total Maximization Precipitation Storm Factor (inches) August 1971 1.77 9.04 August 1967 2.00 12.54 August 1959 1.80 6.82 July -August 1958 1.66 4.96 August 1955 1.86 7.03 TABLE A2.6:TEMPORAL PATTERN OF AUGUST 1967 STORM -I ! \ Daily Precipitation Ranking 10 9 S TOR M 8 7 6 D U RAT ION 4 2 3 5 Sub-Basin Number 10 20 80 180 210 220 280 330 340 380 480 580 680 TABLE A2.7:SSARR MODEL INITIAL SNOWPACK FOR PMF Initial Snowpack Water Equivalent (inches) 99 81 35 32 99 62 30 33 27 59 57 48 48 COOK INLET [ijj ~-­0100 0IIll0 0100 0400 0IlOO 0100 0100 0IIll0 0IIll0 FIlUM A2.1 10~IlLES (ApjijiQc--:J- SCALE NOTES I.PIlRAilETERS IlEASU11£D LISTED IN APP£IIOIlC II 2.CONTINUOUS WATEIl QtlALITY _11tlIl ...,.AU.EO $.DATA COLLECTION 'M!SEASON 4.n«LETTER IlEfOIIf:EACH STATIOII NAIIE II THETAlLEISUIlEDONTHE_TO _ntE ·..-JXIMATE LOCATION Of n«IlllTIOIIe• DATA COLLECTED •STlIEAllfUlW -COIITlIIUOUI .~ C STIIEAIIl'lOW-I'IUITIAL IIBXIIIO •WATER'QUALITY T 'MTER TEll_TUllE •IIEDlIlENT Dl:lQlAM[ e CLIMATE fllf:UlNe ""IN MO IIlCLOUll _ - ...1 SNOW COlJRSE: A IINOW CIlt:EP 1941-PRESENT ['_-1972 II 19110 -PRESENT 19M-PRESENT 19lI1-PRESENT "SI-IMO I9l1O-PRESENT 1974-PRESENT X I X X X X X X X IX X X X X X X X X X I X IX X i X STATION IIA)SUSITNA RI~ER N~AR D£~ALI ,1111 SUSiTNA RIII£R AT II£E CANYON IC I SUSITNA RlII£R NEAR WATANA lltoMSlTE (D)SUSITNA Rrll£R NEAll DEVIL CANYON (EI SUSITNA RM:R AT GOLD CREEK (f)CHULITNA RlII£R NEAll TllUIRTNA (6)TALKEETNA RlIIER NEAR TALKEETNA (HI SUSITNA RIVER _SUNSHIHf (II SKW£NTNA RIII£R NEAR SKW£NTNA IJ)YENTNA RIVER NEAll _TNA nlTlON I X (KI SUSITNA RIVER AT !lUSlTNA STATlON ~ ~.~ AllIE. DATA COLLECTION STATIONS USI;:D IN PMF STUDY FAIRBANKS -.,.., ~---'~'-"'-''':-''''\ ....";..0810 ,) .:•'T~'I [?"""!'*'"f iE,J*'""'. )0009~·\....~l;:4i~i _WAY ":-'II';:;",~, \,,,--,,,,,j'~:•.~.::::;I \~\ /"j \..."'~..'~.,1) -/0/,3 "\"I"'''''''-V .''..,/"'--#--(.~~/'l -~"'\.G~)->Y J--" f ,.Y ~.('.<t!;7 "-l,V _.Ijir--J./ir 9l ~~~~rI ~\(.·Q8~rICA~~-4~.~~tl~·"''''I'{~(4 ~-i IE DE ..'-'-.OOj!~~....I:•..---'l..__..'-,,_.--.--.I '~..~oe..Q8~....."..~~L i \~'f (J;-"\"'-,~('J):\.LA~.1__.•,0837','\(~~) '\"--,'\-,"COMO'.~.......~I \(,~,<!AJ ~?:':?-) ?'I ~.J /.------------08..["I -'.\.L)-llf~.....--.---'_~~'::._ ot~~.1 .,,~riO~~·pP" ..."~Ltv"~~ ® 'l"" 0806l0007 CHCLAn..~\~o."\~". \,~~~f~\\\\'~)l,\~~~~~~\~~i ~'\~OlOOOl.\'~IJ IJ}~,"",~ ~~ 50,000 LEGEND FIGURE A2.2 mNOVDEC :#~[*~;~~J~IJ;~~~~~.:.:. APR MAY JUN JUL AUG SEP OCT MONTHL Y AVERAGE FLOWS IN THE SUSITNA RIVER AT GOLD CREEK :::~;:;:::.;:;:;:;:;:;:;::. MARFEBJAN O·,·,·,,·,·,·'"'··········~ Cl 40,000 l-I I I I WETTEST YEAR·1962 z 0 (.)I I I U/////J AVERAGE YEARw Cf) a::wa..I I I r~m:::::?-<;;I DRIEST YEAR •1969:':§:"';'{fo:-:...m;-.....30,000wwu... (.) OJ :J (.)- ~20,000 0 ...Ju... ~ <tw a::..... lI) 10,000 -)e1 e_eel ~_C}~c,e'c'l -',el ee'~l ,e,,_~e]~-'1 c,e",]"--)-)-1 e)-)e1 1 liIlFIGUREA2,! eO 2,0 r-/---- ( ___-,VI r ISOHYETAL MAP STORM OF JULY 25-31,1980 ~, \./-..." "..--" J .IsUMMIT eO @ ~2e5 ~: •PRECIPITATION LOCATlOlli AlliO A~UNT UIlIJ 2AI ..---3~lSOHYET 1 ~ "~-1 ~--l '-~)----J ·~--·)---1 TRIMS •CAMP 2.59 -1 •PAXSON 2.25) .0 •GULKANA 0,47 '~_._)._-) .Y!!II!!2: 4.'0 PIl£CIPiTATlON LOCATION AND AMOUNT (IN.) -.-ISOIt'I'£'I ISOHYETAL MAP STORM OF AUGUST 4 -10,1971 FIGURE A2.4 Il~ll~I 1 __C_)cc-,)_C~1 .~c_~')1 _c-c.-cl ._~--)~-----l --~--l C )1 )1 -_OJ 1 --J ~ r \ CHULITNA ,.../ RIVER.,,/ LODGE ,J t -5 L£GENll: --.-PRECIPITATION LOCATION AND AMOUNT (IN) 2.41 _,._ISOHYET --------/' ISOHY£TAL MAP STORM OF AUGUST 9-17.1967 •PAXSON 2.57 •GULKANA .34 FIGURE A2.5 w 1 '~~1 .oc"j ,oco 1 ~'_O_]h.]",-').).'l ')'J '-~-l )--)'1 "1 ~ i \ CHULITNA ,..../ ~~~l~R{f/ GOUl CREEK \."....... /6 LEGEND: •PRECIPITATION LOCATION AND AfolOUNT (IN)!,50 -!-,1SOHYET •SUMMIT 1.47 ---I ISOHYETAL MAP SlORM OF AUGUST 19-25,1959 •PAXSON •GULKANA 076 FIGURE A2.6 i~ '~~~l cr'),~]<"1 ~~,)'~~'-}---1 ---1 ~""'J ')~-J ~ ,., CHULI TNA ,-/ -RIVER ../ LODGE ,.J " _TALKEETNA 2.51 ~, -I'RECIPlTATION LOCATION AND AMOUNT (IN.) 2,51 -3_lSOHYU ISOHYETAL MAP STOR M OF JULY 28 -AUGUST 3.1958 2 ________ _PAXSON _GULKANA 095 FIGURE A2.7 Il~~(~I '-1 .<c~_)'<-<'~-l <'<']~--']"1 t~~-«l "...)J _.<-~-~,-}.<-)-..)<~<.-<)J '1 ~-'FIGURE A2.8 ~lL •GULKANA 2.46 •PAXSON TRIMS •CAMP 2 r-/---- / .,J'./ ISOHYETAL MAP STORM OF AUGUST 22-28,1955 6 ~ "/:1): ~"'~ ~ "TALKEETNA 8.45 LEGEND, "'--PIlf.CIPITATION LOCATION AND AMOUNT (IN.)Z.... _5-IIOHftT 1 ~"··l ~'~~J,1 "'~"-J ~Ol--I ~J---,--------.-,I --r-r--I'--==,--------.- .1124 ..... FIGURE A2.9 \ \, \ \ \ ,,, \, \ \ \,,, \ \ \ ,, \, --,I , I , I , I \ I \ """'''' DATE , \, ".... ........'"'-,;...._-.., SSARR MODEL CALIBRATION SUSITNA RIVER AT GOLD CREEK 1967 FLOOD 80 7e 70 6e 60 ee eo ~ 8 Q M 40 S ~3e0 ..J IL 30~,;,;,,,,,, I I / / !Ol "-...............----;--.V Ie 10 e 0 I DESlGNED8Y DRAWN BY CHECl<EDBY --"])'~-),,",--] "']"--1 --1 "'l '__C)))))')-) d • 24 FIGURE A2.IO ....",,,,,,,,,,, ''-, ........" I, I I I I I / / I J / I I J I I../ .......,""........._--- I .... I ...., J .to......... Flnw DATE OBSERVED FLOW 19/7 SSARR MODEL CALIBRATION SUSITNA RIVER NEAR CANTWB..L 1967 FLOOD I/~~..../CALCULATED ....-----/...........'"!"-................................... /3 15 JULY' ""....,/ ,/ // '",/' 'II97 ~O 4~ 40 35 §30 K ~~ ~ •9 20 IL I~ 10 5 0 I 3 CHECKED BY DRAWN BY DESIGNED BY 1 '~~J !~--l "---]~l --------1 )-)t ] ;:1 I'I I'~, ,'qrrrj'" 08SERVED FLOW 24222018121416 AUGUST 1086 ..._-------- 42 / CALCULATED F~__-,LOW ,'"............, 27 29 31 TIME (DAY) DATE 252321191517 JULY 13II97 ,-....-------' 5 10 8 § M 6 ~~ ill 4 0 It 2 0 I 3 DESIGNED BY DRAWN BY ClEKEDBY SSARR MODEL CALIBRATION MACLAREN RIVER NEAR PAXSON 1967 FLOOD FIGURE A2.11 ici} ~.+,--"-1.~-l ~-,';-....,-'~-~1 .,.~_.)-'J ---,-"')---') 'I;:' .'I"I "[I I I I 1 ..r I'I I 75 70 65 60 55 50 45 0 0 Q 40. U>... U -35 ;a a ...J... 30 25 20 15 10 5 OBSERVED FLOW I I I I I I I,, ".,...."........_......... I \ I I I I I,,, \ I, I I,, I I I I I I I I I \ I \,1 I I I I I I I I \ \ \, \V CALCULATED \ \ \ \ \ \,, FLOW SSARR MODEL CALIBRATION SUSITNA RIVER AT GOLD CREEK 1972 FLOOD DESIGNEDlY OfIAWH IY CHlCkEDIIY B .10 15 20 MAY 25 301 5 10 15 JUNE DATE 20 25 30 5 10 15 20 JULY 25 30 FIGURE A2.12 I ~~~l~I '-I <Cc<'.']0:•••_],--,"1 :"."')",.)'-'1 )).".'J (I ' ,'II'I r I I I [".I g 60 55 50 45 40 08 35 K !II t;30 ~ 0rt 25 20 15 10 5 OESIGIIED Iff DRAWN Iff ct£CKED8Y SSARR MODEL CALIBRATION SUSITNA RIVER NEAR CANTWELL 1912 FLOOD FIGURE A2.13 \l~~(~\ ,..~~.]'~~)1 1 l 1 J ~J .~--I fE''I"']'"I I'F "I g DESlllN€O 1"1 DR_N IV CHEClCED IV 10 9 8 7 g 6 ~. ~5 ~ ~4... 3 5 OBSERVED FLOW "\, \~CALCULATED I \......_, I \'/'...\I ~~~I SSARR MODEL CALIBRATION MACLAREN RIVER NEAR PAXSON 1972 FLOOD FLOW FIGURE A2.14 ~(iI )'eel CI J -~el :~C'}1 'c l -.CJ,,.eeel ''''''1 ~'F"'l .CC'C")c- ce"1 ~.'I ~:E''I '''I'I 1 '£I ''':Pf I J •F!GURE AlUS r' I I I \ I II--"'CALCULATED FLOW I \ \ I I '\' I 'I , I I I \,, I , I , II \ I DBSERVED FLOW ~,I \ \ \ I I I I I I SSARR MODEL VERIFICATION SUSITNA RIVER AT GOLD CREEK 1971 FLOOD r I I'I , I \ /\ I, I I, I I 85 80 75 70 65 60 55 50 <:; ~45. U> U- ~40 '"9... 35 30 25 20 15 10 5 0 DSN DRW CHK ir-~},i'"~'~-l ""l .~-J -~J "-'''"'1 -1 1 '--J 1 '---1 ~°1 IuI ~?____i I I OBSERVED FLOW 30 \ \ \ \ " 25 \ \ \~CALCULATEO FLOW \ \ \ \ \ \ \ \ 10 15 20 AUGUST 530I251520 JULV 105 DATE 3025201015 JUNE 60 55 50 45 40 (535 8 R ~30 ~ J:25 0 ...J "- 20 15 10 5 ob'~~:20 30 I 525610MAV oEsKlNEDBV _BV OEKEDBV SSARR MODEL VERIFICATION SUSITNA RIVER NEAR CANTWELL 1971 FLOOD FIGURE A2.16 I ~~Il~I "J },'--"'·--rl'..1 ")"'J 1 '-" ,'I iii I'I I -I10,- 9 30 1251520 AUGUST 10530I251520 JULY 105302520 8 2 3 7 °k 1 1-=:;::--('I I I I I I I I I I I I I I I I I I I I 6 10 15 20 25 30 I 5 MAY g 6 9 ~51 AA /,'/\1/\/"'\u ~I I ~-;9 \,I \-, II 9 4IL DESIGNED BY DRAWN BY CI-ECKfl)BY DIlfE SSARR MODEL VERIFICATION MACLAREN RIVER NEAR PAXSON 1971 FLOOD FIGURE A2.171 ~~~I~\ '~'~"~-l ~----'-~J <-'-""1 ,'1 '~--l "]·.-'~·l ~~-l--'-'l _'1 157II910II121314 SOIL MOISTURE INDEX-SMI (INS) 65432 I I -#.1022----,../\1015 .... ...."'-1020 I VI ./""~1018/V../.... V ~~..----.- /..-----~ -----~y/.JI/"'./'... ./""./)", ~~ 1021 --~-~-----------~---~-~-- --~-Lt- , 90 a.. ~70 20 30 100 80 ;60w ~ ~50.......... D ~40 lr 10 00 LEGEND: 1018 -TABLE NUMBER IN SSARR MODEL DESIGNED BY DRAWN CHECKED BY SSARR MODEL 5 MI VS ROP FIGURE A2.18 I~~II~I 1 f-~l f~-,,~1 c-'-,~~-e,~)'~~~'l "~"]"->]..) \y-.... I "I 2920)'....._/ SUSITNA RIVER AT GOLD CREEK OBSERVED 6160 SO.MI. MACLAREN R.NR.PAXSON NON -GLACIAL 232 SO.MI. LEGEND [===:J ROUTING REACH o BASIN OR SUB 8A5IN o COLLECTICJIj POINT D RESERVOIR MACLAREN R.LOCAL ABOVE SUSITNA CONFLUENCE 307 SO.MI. --....;'\J 2912 )~~~~~~~R.NR.PAXSON '-_...1 330 MACLAREN R,NR.PllXSON GLACIAL 44 SO.MI. SUSITNA R.NR.DENALI NON-GLACIAL 694 SO.MI. ,,--.... I ~SUSITNA R.NR.DENALI "'\2910 J OBSERVED '....._,1 SUSITNA R,NR,DENALI GLACIAL 221 SO,MI. OSHETNA LOCAL 735 SO.MI. _...."'"'/00,."-I 2915 r- \ J ......._/ SUSITNA R.NR CANTWELL OBSERVED 4140 SO.MI. WATANA AIlD DEADMAN CREEK LOCAL 1045 SO.FT. TSUSENA AND DEVIL CREEK LOCAL 52B SO.MI. PORTAGE AIlD GOLD CREEK LOCAL 345 SO.MI. SUSITNA R.AT CALCULATED TYONE RIVER BASIN 1047 SO.MI.LAKE LOUISE AND SUSITNA LAKE 48 SO.ML REFERENCE' U.S.ARMY CORPS OF ENGINEERS IIlTE"11I FEASIBILITY REPORT.1975 APPEIlDllC I PA"T I SCHEMATIC DIAGRAM OF SSARR COMPUTER MODEL FIGURE A2.19 m '"1 '~],-~"1 '~]'-C].'C-~]'.-·~--~'l e--.'].-''-~-1 '-'~1 ----]-1 }'---'>1 .-'1 --1 I~---. .......--'1-~_--- ---l-"- -.l.------1----7-1---- 90 2017 It 801Il I ~9 70 IL \ILl If) <l:' 1Il 60 X 2OO9 ~ ~OO~'"~40 '-J 1'-.... ~['2011 ~ ffi 30 "-'...........~"~20 ......~--.-_""'--.1(2012 ,2009 ~,--'0 ~lo.-__ 20'\-------............_-...._-=.:.-:..:-.._---....,--- ----------0 0 I 2 3 4 5 6 7 8 9 10 LEGEND:BII-BASEFLOW INFILiRATION INDEX (INS/DAY) 2011 -TABLE NUMBER IN SSARR MODEL AZ.ZO.DESIGNED BY DRAWN BY SSARR MODEL B II VSBFPCHECKEDBY FIGURE "1 ='1 "'],.'.1 '''-~l 1 .12 V I . 2 .11 ./ 1;7'1.1 .10 "V~3003-/'1.0 f /.9....... ~.Q9-VI .8II:.O~ ~ II:5 .ar 'i-"~.06 /K'3003z ~.a>.5 :E V0u ~.04 V 4~/""'\3008It: ~.03 V I--- V ,,",,'" .02 -' ~~.~ V ,,,-- .~-...'3009 -~'3009-.01 ~".....~f'1,1 I ~1000-~10--------1 0.0-- 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 1.5 2.0 INPUT RATE-RGS (INS/HR)1.INPUT RATE -RGS (INS/HR)1. LEGEND: 3008 -TABLE NUMBER IN SSARR MODEL mDESIGNEDBY IOftAWN BY SSARR MODEL RGS VS RSgEKEl?BY FIGURE A2.21 ,(4010 r ro- I l .3 r------..,.....----.....,...-------r-----.....,.--------,....-------, z .21------+-----+-------+-----+---------,1-------1 t- W I X Woz zo ~a::n:enz<ta:: b Q../4008~. w .1 1------+---'--------+-------+-----+-L------1....------1 I,..{4009__ ~---- ---------- o 4 5 6 MONTH 7 8 9 - r LEGEND: 4009 -TABLE NUMBER IN SSARR MODEL MONTHLY EVAPOTRANSPIRATION INDEX DESIGNED BY DRAWN BY CHECKED BY FIGURE A2.22 r r .... r cr r :I:........enz ~ a:: !Jw2, .... .5 _-.....,~-.....,..--_--.,.....-.......,--.....,..--""'I""'"--'T"""-.....,~-....,.--- /k:.: .4 t--____1f---+--+---+------I---+---+---~~::.....-____1I__-_+--~---------~~~~-~:: 7009\ ---+----+-- --+---~--.....-.-.+--...... r .... I ....--+--+----+---+--...,---+---1-701l~_1-_" I""" ! - o 10 20 30 40 50 60 70 80 90 TOTAL SEASONAL ACCUMULATED RUNOFF -OGEN (-%) /00 DESIGNED BY DRAWN BY CHECKED BY SSARR MODEL QGEN VS MELTR FIGURE A2.23 ..... ..... ~ i l I"'"" I 10 DESIGNED BY DRAWN BY CHECKED BY 20 30 40 50 60 70 ACCUMULATED GENERATED RUNOFF %OF SEASONAL TOTAL -QGEN SSARR·MODEL QGEN VS SCA 80 90 100 FIGURE A2.24. I""'" i - r -I. I ~ ! 100 ~800 \I I&J :lie I en ~I&J 3 ~ ~60 \~g 0 I&Ja: I&J tia: 1\z 400 ~fia: ii:enz ~<l: 0: b ~.5001 Q.20~ l&J 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 PRECIPITATION RATE -PPT (INS /HR) •DESIGNED BY DRAWN BY SSARR MODEL PPT VS KECHECKEDBY FIGURE A2 .25 --J "-'~l --1 ---1 -----1 ~~-·-l -_..-).~...-"1 ----1'-1-)-~J --1--1 70 60 u.. !!... ~ ~50 0:: III Il. ~ III l- I-zo Il.40 ~ UJo 30 ~---...."--/---".-- /'V ----TALKEETNA ANCHORAGE .~ MAY JUNE JULY AUGUST SEPTEMBER 50 YEAR MAXIMUM 12 HOUR PERSISTING DEW POINT TEMPERATURES FIGURE A2 .261 ~~I[~I ]~·~·1'-.-]~-l ----1 rc.-<]'·-1 ._',~··-1 '-'-1 J 35 30 25 ---,"----- --------------~- PMP AND TEMPERATURE SEQUENCE OESIGNED BY DRAWN BY CHECKED BY 10 15 20 MAY 25 10 15 20 JUNE 25 FIGURE A2.27 I~~Il~I -'1 '~"'..~C'-~l ,..,.._]"'~l .r.......•.]-1 --1 ._-~-~}..--]·'--1 rn I I "J"""'~~I []I a.2.0 ~PEAK FLO YI =325,000 CFS ,...y\ J \l-f /,r\I-\/ ~1/\ l-I ~ !'... l-I ~ l-I l-V ../ I I I I I I I I I I I I I I I I I I WATANA PMF INFLOW HYDROGRAPH 330 320 300 280 260 240 220 o 200 o Q K ~IBO ~ 160 140 120 100 BO 60 40 20 o 3 6 9 12 15 JUNE 18 21 24 27 30 FIGURE A2.28 W -. ,...., ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT ATTACHMENT 1 SUBTASK 3.05 (ii)-CLOSEOUT REPORT PROBABLE MAXIMUM FLOOD DETERMINATION ..... r r r r I -, -I I TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES 1 -INTRODUCTION 2 -SUMMARY ......•..•..•..•...•.••••..••.•.•..•..••••..•.•.••.. 2.1 -Review of COE Evaluations ••..•..•......•..••.••.•.•.• 2•2 -Se nsit i v ity An a1ys es .•....•......•..•.••.•..•.•..•.•. 2.3 -Conclusions •.•......•..•...••.......••.•..•..•.•..••• 2.4 -Recommendations ..•...•.........••..•.•..•.......•..•• 3 -SCOPE OF WORK ..•.••..•..••....•.••.•..•.....•.•..•..•.•.... 3.1 -Probable Maximum Flood Evaluation •.••....•..•.••..... 3.2 -Scope of Work •.....••..•....•.••..•....•..•.•..••.•.• 4 -REVIEW OF CORPS OF ENGINEERS PMF EVALUATION ..••......•....• 4.1 -Oat a Input to SSARR Mode 1 ••••••••••••••••.••••••••••• 4.2 -Calibration and Verification Studies •.••.•••..•....•. 5 -ADDITIONAL SENSITIVITY ANALYSIS •.••....•.......•..•..•.•.•• 5.1 -Introduct ion •....•.....•..•.•..•.....•.••...••....•.. 5.2 -Base Case •....••..•....•.••..••.....•••.••••.•.....•• 5.3 -Sensiti vity St udi es •.•..•..•.•.....•..•..•..•..•.•... 5 .4 - Summ ar y •..••.••.••.......•.•...•.•..•..•.....•.•..•.• 6 -RE-EVALUATION OF PMF •.••.•..•.......•..•..•..•..•.••...••.. 6.1 -Introduction .•••.••.••.•.••.••.•.•........•..•..•..•• 6.2 Objective ..••..•..••.•.....•.•..••.•...•...••••..•... 6.3 Approach •••.••••••.•.•...••.••••••.••....••...•.....• 6.4 Discussion .•..•..••.•..•.......•....••.•..•.••.•..•.• BIBLIOGRAPHY SUPPLEMENT A ,-. \ r"'" i I. .- ! -I ! fI"'"[ - 1 -INTRODUCTION Results of feasibility studies undertaken by the U.S.Army,Corps of Engineers (COE)for the Susitna Hydroelectric Project were reported in 1975 (1)and 1979 (2).These studies included determination of a Probable Maximum Flood (PMF) peak for the Watana and Devil Canyon dam sites appropriate for use in design of project spillway and related facilities.The location of the dam sites and main tributaries to the Susitna River are given in Figure 1.1. As part of the Acres American Plan of Study (POS)for the Susitna Hydroelectric Project dated February 1980 and revised in September 1980,Subtask 3.05(ii)has been undertaken with the following objectives: -To review the input parameters used in determining PMF peaks; -To determine the sensitivity of PMF peaks to changes in critical input parameters;and -To determine if the results are appropriate for use in the current study and if not,to outline steps required to re-evaluate the PMF. The results of these studies are reported in this document.Section 2 is a summary of the work undertaken and the results obtained.In Section 3 there is a descri pt i on of the scope of work performed and inSect i on 4 the results of the review of the COE evaluation are discussed.Sensitivity analyses are described in Section 5 and in Section 6 are the necessary steps required to re-evaluate the PMF for use in Phase 1 Susitna Design Studies . 2 -SUMMARY 2.1 -Review of COE Evaluations The COE evaluated the PMF by means of a calibrated river basin computer model which simulates streamflow in response to specified temperature and precipita- tion. The study includes a detailed review of the COE model,the calibration proced- ures adopted,the calibration results achieved and a range of additional sensi- tivity runs using the SSARR model and the COE data.The sensitivity runs en- tailed systematic plausible changes to the snowpack,temperature and precipita- tion values to determine the relative importance of these parameters to the peak f16od. These studies indicate the following: -The calibration procedure used by the COE was not rigorous and does not allow a realistic assessment of the modeling accuracy to be made; -The timing of the key parameters (that is,temperature and precipitation)used by the COE does not reasonably ensure that the flood peak is a probable maxi- mum;and -Both the magnitude of the probable maximum precipitation and the temperature sequences were based on tentative estimates made by NWS.In their report,the NWS noted the need for a more detailed analysis (Appendjx A). 2.2 -Sensitivity Analyses Sensitivity analyses indicated that the peak flow associated with the PMF event could be considerably higher than that previously estimated by the COE.Further re-evaluation of the PMF on the basis of more comprehensive climatological data and study using an appropriate modeling procedure is therefore considered to be essential as input to the current feasibility studies.This re-evaluation is further justified by the fact that the Susitna project is large,involving large capital outlays and is very important to the future development of Alaska. 2.3 -Conclusions The basis of any model of physical processes is the ability to accurately simu- late the processes with different input conditions.The model must therefore be calibrated to within acceptable limits by the selection of the best combination of parameters,coefficients and relationships that make up the model.We con- sider that the calibration of the SSARR model by the COE has produced inconclu- sive and indefensible results.The acceptance of the parameters in the SSARR model is therefore not fully justifiable.The difficulty in acceptance of the model results is further compounded by the lack of any verification runs.We conclude,therefore,that the procedures of calibration should be repeated and several verification runs be made to prove the acceptabi lity of model parameters and accuracy limits that can be applied to PMF estimates. The sensitivity runs indicate that the estimates of peak inflow to Watana Reser- voir and discharges at any other location are particularly sensitive to varia- tions in snowpack water equivalents,temperature gradient and temperature maxi- mums and precipitation volumes and intensity.Sensitivity to changes in sub- basin parameters are small relative to the sensitivity of the basin to the three main input parameters given above.Table 2.1 summarizes each sensitivity run and gives the percent change from the COE estimate for inflow and outflow into Watana Reservoir.Percent changes to inflow and outflow for Devil Canyon Reservoir are summarized in Table 2.2. The estimate of flood flows is particularly sensitive to precipitation.The estimate of the PMP storm was derived by analyses performed by the National Weather Service in early 1975.No back-up computations are available or infor- mation on which form of storm maximization procedure used.No comment can be made on the validity of these precipitation analyses.It is therefore concluded that due to the sensitivity of the PMF estimate to precipitation,further analyses should be performed under established guidelines and with reliable procedures. It is also concluded that,in conjunction with precipitation maximization, studies should be conducted to determine reasonable temperature sequences.The sequences determined should define antecedent temperatures (cool period followed by a sharp temperature rise)and temperature during storm periods.It is particularly important to redefine maximum dew point temperatures. The present snow course data should be utilized in determining areal distribu- tions of snowfall,particularly the distribution with respect to elevation.Un- fortunately,the first year records (1980-1981)are indicating a below normal snowfall,so it is unlikely that a better definition of maximum snowpack water equivalents can be determined. - ,.. I - Records collected within the basin should now be utilized to reconstitute discharges for 1981.The reconstitution with more representative temperature and precipitation data may lead to a more accurate model of the physical characteristics of the basin and will probably reduce the error in estimating peak flows at the various collection points. 2.4 -Recommendations Itis recommended that a more comprehensive PMF study be undertaken as soon as possible so that the results can be incorporated in the ongoing engineering feasibility studies. This more comprehensive study should include the following: -recalibration of the SSARR computer model using the data collected within the basin since the CaE study; -verify the acceptability of the model and define limits of accuracy by apply- ing independent input data not used in calibration studies; -redefinition of the maximum precipitation during spring and summer periods; -the maximum likely dew point temperatures and temperature gradients plus temp- eratures during severe storm events should be redefined; -the appropriate timing of the precipitation and temperature events should be reassessed and used in conjunction to re-evaluate the PMF. 3 -SCOPE OF WORK 3.1 -Probable Maximum Flood Evaluation The PMF is generally considered as a flood resulting from the worst possible combination of a number of maximum credible meteorological parameters and antecedent basin conditions.Although no annual probability of occurrence can be accurately attached to thisPMF event,it is generally accepted to be in the 10-5 to 10-7 range. The first step in the estimation of the PMF is to determine critical meteorolog- ical conditions such as maximum snowpack,temperature sequence,and the Probable Maximum Precipitation (PMP).The timing of these maximum events is usually assumed to be such that the resultant peak is maximized.However,in many cases,a judgement is made as to the reasonableness of the occurrence of such a combination of events.The response of the watershed to the PMP,with antecedent conditions suitably primed to give severe flooding,can either be determined using computer mathematical models or by use of unit hydrographs and rainfall-runoff relationships. A computer simulation model of the basin is usually preferred over the unit hydrograph or rainfall-runoff methods.The advantage of this method over conventional methods lies in the ability of the computer model to test hypotheses of runoff which involve complex interactions of hydrologic elements and in the relative ease in which a non-homogeneous basin can be sub-divided into smaller homogeneous hydrologic units.Consequently,the selection of the SSARR (Stream Flow Synthesis and Reservoir Regulation)computer model by the COE to estimate streamflow is believed appropriate for the Susitna Basin. 3.2 -Scope of Work The objective of the work was to assess the accuracy of the COE estimates of spring and summer PMF events.In undetaking this work,the following review steps were performed: (a)Review of COE Work (i)Review of the COE input data to the SSARR Model particularly with re- spect to: -basin and sub-basin physical characteristics; -precipitation (antecedent storm and PMP storm); -temperature sequences; -snowpack accumulation over winter months. (i i )Review of calibration runs made by COE with the SSARR Model to deter- mine if the parameters selected to describe the physical characteris- tics of the basin are acceptable. (b)Sensitivity Runs With SSARR Model (i)Additional computer runs to determine the sensitivity of PMF peak es- timate to changes in either input variables (snowpack,temperature, and precipitation)or basin characteristics. Detailed discussion of the above review steps are given in the following sections. 4 -REVIEW OF COE PMF EVALUATION The review of the work conducted by the COE included an assessment of the input data used and the SSARR Model calibration procedure and results.These two as- pects are discussed below. ,...., ! (""" i " l . -! 4.1 -Data Input to the SSARR Model (a)Basin Characteristics The SSARR computer model obtains the best estimates of streamflow when the basin is divided into relatively homogeneous sub-basins.Flows from these sub-basins are combined and routed downstream to derive the flow at speci- fied collection points.A schematic showing the sub-basins used by the COE for the Susitna Basin above Gold Creek gaging station is given in Figure 4.1. Each sub-basin has ascribed physical characteristics that are believed rep- resentative of that sub-basin.The sub-basin characteristics are defined in the computer model by tables.These tables,converted to figures to present a clearer picture,are given in Figures 4.2 to 4.8 The majority of the parameters,describing the physical characteristics,are determined by assuming likely values and relationships for each of the sub-basins.The assumed values are a function of the sub-basins hydrological characteris- tics such as soil types,slopes and aspects. The assumed values are then "fine tuned"to obtain streamflow estimates that are within acceptable limits of observed values.This is the usual way to calibrate the model when only sparse data on hydrological parameters are a~ailable.This is further discussed in Section 4.2 (Calibration Studies).Generally,the basin parameters determined for the basin are considered to be acceptable at this stage. - ,- ! ,I (b)Data Discrepancies Several discrepancies,common to both summer and spring PMF data files exists.These are: (i)For Maclaren Glacier a table,Number 4006 is specified for the monthly evapotranspiration index.No Table 4006 is given so a zero evapotranspiration index would have been assumed.However,it is unlikely that this error would significantly affect peak values,but would probably seriously affect the accurancy of any long term streamflow simulations or would be important if antecedent soil moisture conditions fluctuate significantly.It is believed that this table should be Table 4009 which would make Maclaren Glacier similar to Susitna Glacier. (ii)A base flow infiltration index of 0.03 inches/day has been assigned to Maclaren Glacier.We believe this should be 0.30 inches/day. (iii)The timing of the probable maximum precipitation (PMP)and critical temperatures during the PMP storm do not coincide with those values recommended by the National Weather Service (Appendix A).If timing of the PMP and temperatures are changed to match recommended values the,spring PMF estimate for inflow into Watana reservoir is increased to 239,000 cfs,an increase of 2.6 percent,with peak flows occurring approximately twelve hours earlier. (iv)Total drainage basin area at Gold Creek determined by summing individual sub-basins equals 6,135 square miles.Actual drainage at Gold Creek is 6,160 square miles. In Acres sensitivity runs,the discrepancies noted above have been revised. The revision of discrepancies given in (i)and (ii)do not seriously effect streamflow estimates as they only effect flows from Maclaren Glacier subbasin which represents approximately 0.7 percent of the drainage basin area at Gold Creek station.Effects of revision to temperature sequence are discussed in (iii)above.The drainage area difference does not seriously effect PMF estimates. 4.2 -Calibration and Verification Studies The results of calibration and verification studies are provided to indicate in as objective fashion as possible,the level of accuracy that can be expected from the use of the Model.It should be emphasized that the degree of accep- tance of any model is ultimately judgemental in nature,and should be continu- ously reviewed and updated as new information and data are obtained. Before proceeding further,it will be instructive to review the objectives of model calibration and verification.Model calibration and verification are separate but related activities,both of which should be performed in the process of the models·development and application.In the process of model calibration a data set is selected which is assumed to be representative of the type of problems to which the model will be applied.The model is then run with this data set and its coefficients are adjusted to provide the best agreement between estimates and observed values.Often several data sets are applied and a compromise set of coefficients obtained. When the model coefficients are determined from the calibration exercise,the model should be run with one or more data sets which are independent of that used for calibration.In no circumstance should the model's coefficients be adjusted when using the subsequent data set and the accuracy achieved by the model constitutes the measure of the model's verification or accuracy. Review of the COE studies has found no evidence that verification of the model was undertaken;only calibration runs were apparently made.Consequently,it is likely that the accuracy of the modeling approach adopted has not been ade- quate ly tested. The COE selected spring floods in 1964 and 1972,and summer floods in 1967 and 1971,as representative of floods on the Susitna River and its tributaties upstream of the Gold Creek gage.Calibration was performed at four gaging stations;three on the Susitna River and the fourth on the Maclaren River.The results of these calibration runs are given in Tables 4.1 to 4.4.Flow values for the Gold Creek gage shown in the table on page A-31 of the COE,Interim Feasibility Report (1)appear to be in error as they do not agree with the computer output values.Tables 4.2 to 4.4 also show the return period for the observed floods at the four gaging stations.The observed and modeled hydrographs are given in Figures 4.8 to 4.14. r- I - The results of the calibration study indicate that snowmelt flood peaks are consistently underestimated for floods at the Gold Creek gage;6.3 percent and 14 percent for 1964 and 1972 floods respectively.However,snowmelt floods peaks at the next upstream gage (Cantwell)are consistently over-estimated by 4.1 percent and 0.5 percent for 1964 and 1972 respectively.No conclusive pattern was found for Denali and Maclaren gages.Rainfall flood peak estimation for 1971 is 4.6 percent less than the observed value at Gold Creek gage and is 22.2 percent greater than the observed value at the Cantwell gate.All estimates and observed values are given in Tables 4.2 to 4.5 for the four loca- tions. The coefficients used in each calibration run are in some respects different. For PMF estimation the data sets developed through the calibration of the 1972 flood has been used for both the spring and summer floods.Consequently,the data sets developed for floods in 1964,1967 and 1971 can only be assumed to be not representative of the basin.As the data sets are different for the two spring and summer calibration runs no verification of the data used for the PMF estimates has been made and the accuracy of the model has not been assessed. 5 -ADDITIONAL SENSITIVITY ANALYSES 5.1 -Introduction The objective of this part of the study was to obtain an indication of the sen- sitivity of the model to changes in critical parameters.The sensitivity of the SSARR model to variations in soil moisture index or any of the other physical parameters is small when compared to the model's sensitivity to changes in snow- pack volumes,temperature sequences,and the volume and distribution of the PMP storm.Consequently,no changes to the physical parameters were made at this stage and sensitivity studies were only made to study variations in flood peaks due to snowpack,temperature and precipitation changes. Accepting that no verification of the model has been undertaken,it has been assumed that the model will reasonably reflect the basin's response to PMF input condit ions. 5.2 -Base Case The data fi les for the spring and summer PMF estimate was obtained from the COE and loaded onto the computer system.As a first check,the spring PMF was run again to obtain the same hydrograph'as that obtained by the COE in 1975.This indicated that the SSARR program and that the data file were unchanged.The COE estimate was used as the base case which each sensitivity run was compared.The base run hydrograph for peak flow periods is given in Figure 5.1. The spring PMF base run is distinguished by two distinct peaks,one on June 11 due to snowmelt and a precipitation snowmelt maximum on June 16.The decline in discharge between the two peaks is due primarily to a temperature drop during the PMP storm.The temperature sequence used by the COE is given in Figure 5.2. The temperature sequence during the PMP and for the four preceeding days was obtained by the COE from the National Weather Service (NWS).The temperature and PMP storm are given in a memo from the NWS to COE and is attached in Appendix A.The temperature sequence used by the COE was divided into the following four periods: May 1 to May 28 -This period was given by actual 1971 records at Summit Station May 29 to June 10 -This period was synthesized by the CDE to obtain the maxi- mum flood peak.For this period~the COE tried three temperature sequences as shown on Figure 5.2.The peak discharge was obtained with the third and low- est temperature used. -June 11 to June 16 -This period follows the recommended temperature as com- puted from values given by the NWS,Appendix A. -June 17 to July 30 -Records for Summit in 1971 applied. Precipitation in the base run consits bf two storms,one centered on May 31 and represents the 1:100 year storm and the other the PMP storm centered on June 15. The intensity of the two storms are given in Tables 5.1 and 5.2.Snowpack was obtained by estimating maximum water equivalents and gross smoothing to obtain a contour map of water equivalents throughout the basin,Figure 5.3. Basin parameters used during the base run have been given in Section 4.1 and are duplicated for the sensitivity runs described below. 5.3 -Sensitivity Studies Three main groups of sensitivity runs were performed to determine the effect on the flood peak due to changes in temperature~snowpack and precipitation input data.These are discussed below. (a)Temperature Sensitivity The COE may have over-estimated the temperatures in May resulting in too much runoff prior to the critical snowmelt period in June.In some cases notably in the lower reaches of the basin,snow cover has been depleted from as much as 60 percent of the available area.In the base run~ approximately 1270 sq.miles or 20 percent of the basin is snow free before the critical snowmelt period.Although it is recommended that some melting should occur prior to PMP storms,to ripen the snowpack and saturate soil moisture,it is believed that a cooler May could result in a higher flood peak.Temperature records at Summit indicate a normal monthly temperature for May of 37.4°F.Consequently,a temperature of 32°F has been assumed as representative of a cool May.Coldest mean May temperature on record at Summit station is 29.1°F.The sharp rise in temperature necessary to produce substantial snowmelt has been further delayed in June to attempt a juxtaposition of maximum runoff from snowmelt and precipitation.The temperature sequence assumed is given in Figure 5.4. The assumed temperature sequence produced a peak inflow to Watana reservoir of 243,000 cfs as compared to 233,000 cfs for the base run.This repre- sents a 4.3 percent increase in peak inflow.The hydrograph is given in Figure 5.5.The above result indicates that spring PMF estimates are relatively insensitive to temperatures during May. ~L r i 4 --f (b) The sensitivity of peak discharge to temperature gradients immediately before severe storms is believed to be important.The results of the COE runs in obtaining the critical temperature sequence immediately before the PMP storm did not take into account the temperature gradient;only the timing of the temperature rise.The three temperature sequences assumed are essentially parallel as shown in Figure 5.2.The effects of a sharp temperature rise are mainly in producing very large amounts of snowmelt in short periods of time.This effectively saturates soil moisture capacity very quickly resulting in quick runoff and large streamflow rises.The temperature gradient is consequently one of the more influencial parameters in the estimation of peak spring floods.The temperature gradient is also one of the main parameters that should be maximized with the usual constraints being applied based on what are reasonable for the basin. The COE has a temperature rise of approximately 4.3°F/day over a six day perioe.Records at Talkeetna Airport and Summit Station indicate that temperature gradients of this order are typical for May and June and there- fore cannot be assumed to be representative of extreme events. The determination of the maximum observed temperature rise in Mayor June is beyond the scope of work under this task.However,it appears from a very cursory appraisel of available data that a temperature gradient of about twice that assumed by the COE may be close to a maximum.Consequent- ly,'a sensitivity run wi th a temperature gradi ent of 8 .5°F /day has been assumed.In addition,the temperatures during the PMP storm have been increased by 9°F to produce a maximum temperature of 66°F instead of 57°F. This is believed to be not unreasonable based on records available at Summit and other stations. The above changes to temperatures produced an inflow peak to Watana Reser- voir of 302,000 cfs an increase of 29.6 percent,Figure 5.5.Obviously, the temperature gradient prior to the PMP storm and temperatures during the storm are very important parameters in determining PMF discharges.The temperatures selected,although higher than assumed by the CaE,are not unreasonable.However,it should be noted that the temperatures were only selected to determine the sensitivity of peak discharges to such changes and do not necessarily represent the sequence that should be used. Initial Snowpack Sensitivity The deri vat i on of snowpack quant it i es for each sub-basi n of the study area has been based on records from stations outside the area and on judgement. The available data was only available for lower elevations.The method used to obtain snowpack amounts was to accumulate the maximum recorded snowfall for the months of November through April.This produced snowpack amounts at various points surrounding the basin.Using available regional mean precipitation distributions,the COE developed a minimum water equiva- lent contour map for the basin,Figure 5.3.This was further averaged to give snowpack water equivalents for each sub-basin as shown in Table 5.3. The additional years of records obtained from the snow course stations, subsequent to the COE studies and the data obtained from the additional station established during 1980 do not indicate that any significant heavy snow accumulations have occurred.Consequently,no conclusive statements as to the accuracy of the assumed snowpack water equivalents used by COE can be made.In all the spring PMF estimates,the COE has not assumed any precipitation during May.Therefore,it can only be assumed that Nay precipitation is also included in initial snowpack amounts. The sensitivity of the peak discharge to initial snowpack water equivalents has been determined by increasing the initial snowpack by 50 percent.This analysis was in fact performed by the COE in 1975 and was not repeated by AAI.The peak inflow to Watana was found to increase to 254,000 cfs,a 9.0 percent increase,Figure 5.1.The result indicates that the PMF peaks are fairly insensitive to changes in initial snowpack water equivalents. (c)Precipitation Sensitivity The PMP estimates conducted for the COE by the NWS involved only a summer rainfall envent.The NWS recommended that 70 percent of the summer PMP be used as the PMP storm for spring PMF estimates.No basis for this decision to use 70 percent PMP is given in either NWS or COE documents and it would be difficult to defend this number.A separate study of spring storms would have been more appropriate. To determine sensitivity to changes in quantity of precipitation falling on the basin,it was decided to assume that the full PMP occured in June,but remains centered on June 15.To observe only the effect of the precipita- tion change it was decided to assume antecedent conditions equal to these in the base run except for 50 percent more initial snowpack water equiva- lent.Temperature sequences were unchanged. The result of this run is a substantial increase in peak inflow to Watana to 342,000 cfs,a 46.8 percent increase Figure 5.5.Obviously,it may not be correct that the recommended PMP storm occurs in June,but the result of this run clearly indicates that precipitation amounts are by far the most important parameters in PMF estimation.It is therefore essential to ensure that a well defined PMP storm be used for flood estimation purposes. As a concluding run,it was decided to obtain an estimate with the case of full PMP storm with the 8.5°F/day temperature rise to a maximum of 66°F. This run clearly indicates that the PMF estimate can change substantially when what can be regarded as plausible changes to a range of input para- meters are made.The peak inflow to Watana obtained from this combination was 430,000 cfs,an increase of 85 percent.Outflow from Watana Reservoir obtained from the above sensitivity runs are shown on Figure 5.6. r 5.4 -Reservoir Storage The operation of Watana Reservoir for power generation will have an effect on storage attenuation of the spring and summer peaks.Consequently,it is not a clear cut case of developing a maximum storm as a smaller flood entering a full reservoir may require larger spillway facilities than a larger flood entering a depleted reservoir.The operation of Watana Reservoir will result in the lowest reservoir levels occurring in April or May each year.Therefore,there is substantial storage available to attenuate the spring flood peak.On the average,it would appear that approximately 2.3 and 1.6 million acre-feet of storage is available in April,May and June respectively.These values are for Watana with full supply level of 2,200 feet and 800 MW installed capacity.In August,September and October,no significant storage is available.A preliminary estimate of the spring PMF volume is about 4.5 million acre-feet. Consequently,approximately 36 percent of the spring flood volume could be stored without reservoir surcharging.If 20 feet of surcharge is allowed,then about 50 percent of the spring flood volume can be stored.The effect of the storage is to attentuate the flood peak significantly. For the summer PMF,reservoir levels are close to maximum so no significant flood storage is likely.The case for flood storage in spring is strong as the reservoir can only be full,assuming normal power operation,after snowmelt runoff.Therefore it may be only applicable to design spillway criteria based on summer floods and full reservoir conditions. 6 -RE-EVALUATION OF PMF 6.1 -Introduction The work discussed above shows that no high degree of confidence can be given to the present estimate of the PMF peak.Consequently it is concluded that a more comprehensive PMF study should be undertaken to re-evaluate the PMF peak estimates.The steps required in this re-evaluation are given below. 6.2 -Objectives I To re-evaluate probable maximum flood estimates based on a more comprehensive climatological study and modeling procedure. 6.3 -Approach The approach will entail reassesslng precipitation maximums,temperature gradients and temperature maximums based on a thorough study of the meteorological characteristics of the Susitna River Basin.Applicable storm maximization techniques will be used to develop a probable maximum precipitation storm for both spring and summer seasons. Paralleling the climatological study will be a further calibration of the SSARR model.The intent of this calibration is to develop a reasonable watershed model based on procedures that follow generally accepted mathematical modeling techniques.The calibration will start with assuming that the basin's meteorological and hydrological parameters used in the COE PMF estimates are the most representative.These parameters may be adjusted as analysis proceeds. When a set of watershed parameters that give the most reliable estimation of spring and summer floods are determined,a verification study will be conducted using this data set.Several floods will be used that are independent of the floods used in the calibration study.The verification of the SSARR model will determine the accuracy that can reasonably be expected from the model. Estimates of the probable maximum flood at critical locations along the Susitna River for both spring and summer will be determined using climatological data developed and the most reliable set of basin parameters. 6.4 -Discussion The motivation of this addendum stems from the results of the assessment of the CDE 1975 studies.The assessment determined the sensitivity of the·PMF estimates to changes in critical meteorological and basin parameters.The magnitude of the changes are given in Tables 2.1 and 2.2. The meteorological data used in the CDE estimates were developed by the NWS in a preliminary study which given a general range of criteria within which it was believed values from a more comprehensive study would fall.In their conclu- sions to the study,the NWS noted ...IITime hasn't allowed checks,evaluation, and comparison of the several types of data summarized here.1I The NWS naturally recommended further study.Thi sis borne out by the i ncreses to the Pt'IF peak found in the sensitivity analysis. p-.- r i !. LIST OF REFERENCES (1)U.S.Army Corps of Engineers "Interim Feasibi lity Report,Southcentral Railbelt Area,Alaska,"Appendix 1,Part 1,Section A,1975 (2)U.S.Army Corps of Engineers,"Supplemental Feasibility Report,South- central Railbelt Area,Alaska",1979. .')·"··'1 '-.......,'"C-))~'··'l '1 "1 J '-')'-l ~"."']<."J TABLE 4.1:COE CALIBRATION STUDY RESULTS:SUSITNA RIVER AT GOLD CREEK USGS GAGE NO.15292000 DRAINAGE AREA 6160 mi 2----- Flood Maximum Discharge '.'Observed Peak Return,. Period Event Observed Date Calculated Date Difference Period -tp (years) 1964 19 May to 25 June Snowmelt 85,900 7 Jun 80,500 5 Jun -6.3 16.0 1967 1 Jul to 31 Aug Rainfall 76,000 15 Aug 78,800 16 Aug +3.7 8.8 1971 6 May to 30 Sep Snowmelt 66,300 12 Jun 53,000 11 Jun -20.1 - Rainfall 77,700 10 Aug 74,100 12 Aug -4.6 9.5 1972 2 May to 30 Sep Snowmelt 70,700 17 Jun 60,800 17 Jun -14.0 6.5 Rainfall 26,400 14 Sep 32,300 15 Sep +22.4 - TABLE 4.2:COE CALIBRATION STUDY RESULTS:SUSITNA RIVER NEAR CANTWELL USGS GAGE NO.15291500 DRAINAGE AREA 4140 mi 2 Flood Maximum Discharqe "Observed Peak Return,0 Period Event Observed Date Calculated Date Difference Period -tp (years) , 1964 19 May to 25 June Snowmelt 49,100 7 Jun 51,100 4 Jun -4.1 11 .1 1967 1 Jul to 31 Aug Rainfall 36,400 15 Aug 36,600 16 Aug -to.1 3.2 1971 6 May to 30 Sep Snowmelt 24,000 23 Jun 32,600 23 Jun +35.8 - Rainfall 36,000 9 Aug 44,000 11 Aug +22.2 3.1 1972 2 May to 30 Sep Snowmelt 37,600 17 Jun 37,800 17 Jun +0.5 3.6 Rainfall 21,000 14 Sep 22,800 15 Sep +8.6 - J 11 '\'n .~~'~,7:j -~'1 , ;~J J ']'J ,\i ~""0--1 -~~-},--~-1 --,1 ---~1 :--1 TABLE 4.3:COE CALIBRATION STUDY RESULTS:MACLAREN RIVER NEAR PAXSON USGS GAGE NO.15291200 DRAINAGE AREA 28Umi2 Flood Maximum Discharqe D'AI Period Event Observed Date Calculated Date Difference 1964 19 May to 25 June Snowmelt 6,400 7 Jun 6,230 4 Jun -2.7 1967 1 Jul to 31 Aug Rainfall 7,280 14 Aug 7,290 15 Aug 0.0 1971 6 May to 30 Sep Snowmelt 5,520 25 Jun 5,430 25 Jun -1.6 Rainfall 8,100 11 Aug 7,980 10 Aug -1.5 1972 2 May to 30 Sep Snowmelt 6,680 16 Jun 7,780 16 Jun +16.5 Rainfall 3,980 13 Sep 2,950 12 Sep -25.9 TABLE 4.4:COE CALIBRATION STUDY RESULTS:SUSITNA RIVER NEAR DENALI USGS GAGE NO.15291000 DRAINAGE AREA 950 mi 2 Flood Maximum Discharqe "Observed Peak Return,. Period Event Observed Date Calculated Date Difference Period -tp (years) 1964 19 May to 25 June Snowmelt 16,000 7 Jun 17,200 4 Jun +7.5 2.0 1967 1 Jul to 31 Aug Rainfall *-16,000 16 Aug -- 1971 6 May to 30 Sep Snowmelt 17 ,600 27 Jun 17,300 24 Jun -1.7 - Rainfall 33,400 10 Aug 31,500 11 Aug -5.7 37.6 1972 2 May to 30 Sep Snowmelt 14,700 16 Jun 20,300 17 Jun +38.1 1.5 Rainfall 5,690 13 Sep 15,300 13 Sep +169 - *No Record '>~J ~~11 l .~1 .~)j i j ]1;i',J '~f .'~ TABLE 5.1:PRECIPITATION -1:100 YR STORM (inches) Hour 1st Day 2nd Day 3rd Day 0-6 .04 .14 .04 6-12 .07 .29 .09 ......12-18 .17 .65 .21 18-24 .06 .22 .07 TOTAL .34 1.30 .41 3.05 ins r-ii "TABLE 5.2:PRECIPITATION -PROBABLE MAXIMUM PRECIPITAITON (inches) Hour 1st Day 2nd Day 3rd Day 0-6 .25 .6 .15 6-12 .50 1.2 .30 12-18 1.12 2.7 .67 18-24 .38 .9 .23 ("'*TOTAL 2.25 5.40 1.35 9.0 ins. TABLE 5.3:SNOWPACK WATER EQUIVALENTS (inches)ON MAY 1 Sub-basin Minimum Snowpack (ins) Code Name COE AAI 10 Denali Glac ial 99 99 20 Denali Non-glacial 36 54 80 Denali Local 15 23 180 Local above MacLaren Confluence 14 21 210 MacLaren Glacial 99 99 220 MacLaren Non-glacial 27 41 280 MacLaren Local 13 20 330 Lake Louise 10 15 340 Tyone 12 18 380 Oshetna 26 39 480 Wat ana Local 25.5 38 580 Tsusena Local 21 32 680 Portage Local 21.5 32 i'~~-'~"1 e--]..~~,C-~,"~-l '--J ~~l p~-l _.-1 "'y-, I ' I 2920 )'....._/ SUSITNA RIVER AT GOLD CREEK OBSERVED 6160 SQ.MI. MACLAREN R.NR.PAXSON NON -GLACIAL 232 SQ.ML c::::=J ROUTING REACH LEGENDo BASIN OR SUB BASIN o COLLECTION POINT D RESERVOIR MACLAREN R.LOCAL A80VE SUSITNA CONFLUENCE 307 SQ.ML --..../\.1 2912 )~~~ft~~~R.NR.PAXSON '-I-' MACLAREN R NR.PAXSON GLACIAL 44 SQ.ML SUSITNA R.NR.DENALI NON-GLACIAL 6!14 SQ.ML SUSITNA R NR.DENALI GLACIAL 221 SQ.ML SUSITNA R LOCAL A80VE MACLAREN CONFLUENCE 477 SQ.ML TYONE RIVER BASIN 1047 SQ.MI.LAKE LOUISE AND SUSITNA LAKE 48 SQ.MI. OSHETNA LOCAL 735 SQ.ML __,'10 0 /'....\.- f 2915 r-- \ I....._/ SUSITNA R.NR CANTWELL OBSERVED 4140 SQ.ML 480 WATANA AND DEADMAN CREEK LOCAL 1045 SQ.FT. TSUSENA AND DEVIL CREEK LOCAL 528 SQ.ML PORTAGE AND GOLD CREEK LOCAL 345 SQ.MI. SUSITNA R.AT CALCULATED REFERENCE' U.S.ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY REPORT.1975 APPENDIX 1 PART I SCHEMATIC DIAGRAM OF SSARR COMPUTER MODEL FIGURE 4.1 • ~)~CC].,..-:),-~-l ..~.~]~~--]~-)~--]'~rl r--]J""~ 7 8 9 10 II 12 13 14 15 SOIL MOISTURE INDEX SMI (INS) 65432 I 1---'I II I I ,1022 _I I IiI I __,_ I I I --_,_I-- I I _.,__\1015 _ r I I ~_~__ I ~~_I- ----lr--.---,-- - -~_..,I. I ---t--, ---f--~/r-i\_It----r---- - -_1020 __ -r-I _... L ,_,/ e-----+--~,,/'~'018 ___ L---L--+-+1i--~--t-- p 7 -:..-f-----I _ -,.."-,- --.L----t--Le:::Jr--+--t--t-l- r-L-----r-.... f-----+--_f-----_I--'_,_ -I--t~=-J--+---l~-t--l~-f------1---r--__ I---L-----t-----4 J--+--t-i-l--!---t----,~,~_ _ I __~__ I --I-'"""_c--- -~--7 _~I I >- .'-~I I ~£-f----~.17 '02' __-+-~ --f---1-_~j.L..t-~.1-7f:~I-+----I-----t---r-f---f---I--I I JIf---~....I---->-_I ."-+--~--+---+---r -I I L~~---t--T-II--+-l-_I---+-I I--+--+-I..--I-+-I I.......-0 0 20 30 10 80 90 100 ll. ~70 ~60w ~ ~50 Ito ~40a: SSARR MODEL SMI VS Rap FIGURE 4.2 • ~l ~'--l -"-l "~--J "-'~~J -1 "l ).~] 109834567 BII-BASEFLOW INFILTRATION INDEX (INS/DAY) 2 ----..,a--__------~---1------........._--7-1---- )2017 ~\ X 2OO9 ~""'.... \011 ""...." ".........., '.....,-------J(2012 ,2009 I --....1-__---201\--..........----------------....---I-----~----,----~.:::--oo 100 10 90 a:80 III, 3: 9 70u. ILlen ~60 g It 50 oz ~40 u.o ffi 30 u 0: ~20 SSARR MODEL en VS eFP FIGURE 4.3 !Ai 'J )·"1 -1 l ;,-~,,r'-J ;~~]'-')~'J J .8 .5 .9 1.1 1.2 1.0 0,0 15 2.0 INPUT RATE -RGS (INS/HR)1. .//' /' V~3003 ~ /1/ ...~ -1""""-~ ....-'...-3009- I 03 .11 .01 .02 .12 .10 o .01 .02 .03,.04 .05 .06 07 .08 .09 .10 INPUT RATE-RGS (INS/HR)1. (/) II::.0 I.LJ ti II:: ~.07 a. ~ ~.06 z ~{)5 ::I 8 ~.04 ~ II:: ~.03 II:: ~...... ~.09 SSARR MODEL RGS VS RS FIGURE 4.4 ~I .~ .4 .... I- ILl I X-ILl 0 ~.3 z 0 !; 0::a:enz« 0::.2!'ba. ~ ILl- .1- r---~-_.~-~ :4010 I I I I I I ~4008 T I I I ----:-----r---~~:~--1"--. 4 5 6 MONTH 7 8 9 -SSARR MODEL MONTH VS ETI FIGURE 4.5 • r I ( -I 100 'if!.80 I LIJ :II:: I fi} 3 :§J ~60 I- U ffia: LIJ !<ia: ~40 ~a: ii: In Z«a: b 11.:§J 20 UJ \ \ \ \ \ ~~~j5001 -o .2 .4 .6 .8 1.0 1.2 1.4 1.6 PRECIPITATION RATE -PPT (INS /HR) 1.8 2.0 SSARR MODEL PPT VS KE FIGURE 4.6 .,.... ~ -!~ I <Cu (/) I <Cwa:: <C 0wa::w f5u ~ 0z (/)-I t 100 90 80 70 60 50 40 30 20 10 ~'~~oo~, \..~",,"Ill I\""- \),,,THEORETICAL SNOWI'"! ,~DEPLETION CURVE 4 (SNOW HYDROLOGY), I 'I\."~~ ":""-.'\I •~, "'~,, • ~r--.....""- 6006 ........~1', I ~ r I '. r, 10 20 30 40 50 60 70 ACCUMULATED GENERATED RUNOFF %OF SEASONAL TOTAL -QGEN 80 90 100 SSARR MODEL QGEN VS seA FIGURE 4.7 • -i .~ J-.4 i a:: J:........ (/) Z a::.3_.~ l.tJ ~ Y , ~a:: 'r"'"~~'...II~.2 ~ 0z (/) .1 /k:: V V ~7005 ......---------7 f---~-po---..... /V ~/ 7009\ ./------ ----701l~- o 10 20 30 40 50 60 70 80 90 TOTAL SEASONAL ACCUMULATED RUNOFF -QGEN [%l SSARR MODEL QGEN VS MELTR 100 FIGURE4.8 • "-",,,. eFS 00 100.000 TO 90,000 00 80.000 . '0 70,000 .0 ~o.ooo '",)0,000 20 40,000 10 "0 -20 .~:. .j. I .r ..." "-f ,", tp , l .•I : ! ,'i ..:'i':':' ·:].'"],1 I! I I c'.,,'.~.. ..,'.J. ";!"j':'" .~~··~·I l~t . .'!'11/: LJ . .~~-,. ~ ?REC1PITATIVN'fiI !. 'l' ·5·~ j' ::l ~~~~': .J:,::~:. >H: MECIPlTA.Tl0N I~INCHES HYDROGRAPH :SUSITNA RIVER AT GOLD CREEK,1967,1972 FIGURE 4.9 W I •/PRECIPITATION'N INCHES 'l', I ,J..\.i ' 1967 i"; ."j ..: -1,;',1i""J')"!,..,1,.-::.r::::'I":J...:·t ..:::::::;j::.:!~J :·::;~\;:;;:t !i .....J. O.',J :':~'l';';'::;, .1._-:, 10,000 '" 2O,0CI0:• 50,000 40,000 I, 70,0001"'·'~.~. I 60,000 I' I ,, ,I flOW IN 1 :I'!I '.I ICFS,.,I I 80 100,OOOrO'N 'pf"r s'"~!!l\i~h5 ..", ,ti.'I ;~:~1th I i TO 90,000 I .1,.".:~...'i'~,Ii I ] I:I.!!j I .~"",c,p,,,,,,,,,..J 50 soPOO I •.",",'""1'"1"l'II. ;.,. I·t I .~.~..;,'" ,'0 -20 ~ ~40 lI' ~~ ~ wg 20 i!l .!,ro ~0 REFERENCE: U.s.ARMY CCRPS OF ENGINEERS INTERIM FEASIBILITY REPORT,1975 APPENOIX I PART J PRECIPITATION IN INCHE:S I •'ISIl,~~~~S qs ,~, '~,'I i : t>t'~d: ~"'~~~I~~\\'''~'i is'~s~S ~S~"~t;,~ PREcrPlTAT~ .""INC:P'l[S ·r··.:· 'l" ,1971 .i. ·,10 :~'; ~;l : .,;:;:,....; i '"'j"..~~U~',:"",'" "'M~OPITAT'7j-..:...,"'I } /:!,:' '\'r!\~~••.....1.~~ED ' C"-CUL''''O,~to ',',J \'-j \~\'v ' I I IV , I I J./':''/'W \('\,I I 'f I:'\'M'I 1 I r~:n\~I I I I -{,' IfJIIII ,};,,~..!'<I I : .,"...;'"I I ,,JI~'64 :.:,I ~.I,.j.:,.._.j,:"+"-,.L;;;;';ll :/:::;J,,;:j i", , I J.ki flOW to'"C'S 80 6<¥>00 70 5~ 80 """"" ~o <2JXX) ~ ~40 36XlO ~)O XlO(X) ~ ~ ~ ~20 24,000 1 ~'0 '0.000 ~0 12pOO -10 6()00 -.0 i "~"li:'~ /~ , 'I' AvEIlAG{,TE"'P(R.A~'.. ,'.',:,£)'1\"" "'/'f\'r.',''''~'"M','r'!"','~,\jV,:, \;':cJ".\JV ..v/. "',",(",r (\I,, FLow IN CFS 80 60,:>00 '0 ~4.000 60 48,000 '"42.000 40 lO,OOO 30 ~,OOO 20 2:4,000 10 18,000 0 12,000 -10 6.000 -'0 REFERENCE, U,S,ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY REPORT,1975 APPENDIX I PART I HYDROGRAPH :SUSITNA RIVER NEAR CANTWELL,1964,1971 FIGURE 4 10m jL. "'£CIPlTATlOJ!f Urt INCMES o 1. '.IT.:~ , I. I ~:,;~;i !!~~ .:'1;1= ': .:'i I)'1 '.1-,I!=-.J. ;~:.;::::~;_L~U::: .J J..., ~"I:tJ :.:~~~:~~:,'~;:~:. 197~ , ····1· b' !.. ,;..1:; :'].,',~.,..J:•.~.••.• ,,.~'.~~.,' :-=._-1~':":";:.' '. 'I ;,i I . •,.~'_ S's '..',':-~:fJ j .~'-r""I'I'jT f~:.,'~:.......-: .-".__'J,;'j"":I '''''',;..m"",/S '/"-A..,£R.tl;£:j I ~.I I ..'."/v\:'.-PA'"",;,"',:.;r';,'1 ~:;~,;:':if . k/'/'/.-.'-'~r1v~Jv\'v'IS ~)~ )B\ 'j-' ...-.nON I'"cr, 60 60,000 '0 ~"'.OOO 60 48,000 >0 42,000 '0 36.000 '0 30,000 20 2<',000 10 18.000 0 12,000 ,10 6,000 -20 't.OW'IN CFS 60 60,000 .,•.~"5 .'fS 70 ~4,OOO:"~ 60 48,00t ~o 4Z,Co'JO PRECiPiTATION ,,,,,INCfiES o !;- .1 .• 5'.,.' 1 I '1 -J:' l\'.I····;..1 ~;ill ~::L;:';i.]!:;;~:;!: '; S -.~~~f'"s .~~~S~,'i ~,!~f'RE-:JPl~ATI()!'l ", i '., ~ tf; I, I f~: ·10 6,000 " I, -lO 0 ~.. ..g40 36.000 'l' :')0 lQ,OOO ~ ~20 24,000 .rr ~0 lZ,OOO REFERENCE, U.S ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY REPORT,1975 APPENDIX I PART 1 HYDROGRAPH :SUSITNA RIVER NEAR CANTWELL,1967,1972 FIGURE4'UW fLO\V IN OFS 80 40,000 70 36.000 eo 32.000 )0 26,000 40 24,000 30 20,000 .0 16,000 10 12,000 0 8,000 -'0 4.0()O J ;"JUN,I !.,.. I ",1I....!..:.1 I ~VERAC!'~• I I TEt.lnRA ".'..r"~··'~'i·'!i.f_... ......,..',".": ]j''-J'/V<'"''.:::.':'.,. : ..i '.;,;:.:t· o-20 J:: 100 800 600 .00 ,00 300 10.00 200 .00 PR(C;~TAT'lCtl IN INQiES 7 :-~~:'::: 4000 0000 12000 16000 Flcn IN :.~;I I \\ =>00 ~-~+"·'!·-U-n.i _.~"~~;000: I I 1 I '",C'~TA"~ >6OCO !j:.~:'"-.!- .I,II''00 32000 ;Yf::il.-:-'11 10/\i 1\: '.,I ;'/V "J : 28000 ....'.1 ~I . , 24000 ,.:::-j ...1 •1 "I I,I ,I 20000 .••.;..-•.~I I eo 70 eo 00 ;:;:;40 i 30 ~ ~'0""~'0 ~ ~0~ -,0 -20 REFERENCE. U.S.ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY REPORT,1975 APPENDIX I PART I HYDROGRAPH SUSITNA RIVER NEAR DENALI,1964,1971 FIGURE4.IZW 'REoPtT~r.ON ~V'fCHES o~n'BII.~ c •.~.....~Of ..•~!tu.~.~~~~!""'....I'"s ~~"\l~~~r ~S ~IO!~ill''~,§I S \\I ~':::1 ..I ..I'I·..I'.i i''[A"EiU"0[.S S. H.M;:>[RAri,;R£f s ~ "I;.c1'tJ'AlVV~Lp\f\"'Vi~~\rvV'sl(~v\.....)v ~rY!" 'I', ,\v..... .~..,i'·...·.··.·f/,r ;,..,:.~,.,\'u····.....Ii" .......!".'."··r":·:· \ .."I......,•i '.'"'I 0..,;tl ".,.:..L -..J l''\.\..m j ,., \.-/'..:.."r\\;'.····'··i·······:,,:;"1'~.....•.....,.I '.I I, :972.:.., ;..:..};1." '·If.~...:_)::.~.:.'!':J.."..;••..::;:':):;;L.~:(.,j:.;; f'kat/IN '"80 40.000 10 36.000 60 32.000 '0 28,000 ~i 40 24.000 ;;..)0 20,000 ~20 16.000 I ~'0 12.000: t'0 B.OOO~ -10 4.000 -'0 REFERENC~ U.S.ARMY CORPS OF ENGINEERS INTERIM FEASIBiLITY REPORT,1975 APPENDIX I PART I HYDROGRAPH SUSITNA RIVER NEAR DENALI,1972 FIGURE4.Jm PRECIPITATION IN INCHES ),-_I ~0 .i. ~0 ~s~~~~q, S.., I ~.'\~~~U~'r' !lS', I' r~11lI 1971 l~s".,~o..'", 9,000 7 ,000 3,000 I !:, i>'SI ~.'~,',',Il,~I,~.i~l~'·l!~,;ln,~,~.:,I SS'~~~SSS ..,,',:.,',A,·,-~~l:I, ,I··~S , AvER:.GE '::i'I _~l ' .r J[M~~A11JR£~,>~'Rf::WrrATrOW~~ '\j "I i.,j'h.,. /rJ,,"/J \,)/V ''"'t.l'1!;:J,(Ji'A."cvf\~" ,!lJ '",Vvv '1\,'6,000 J~I /4)A ,A A v~ ',000 1.V /\/\I '\,.. 8,000 1,000 4,000 2,000 FlOW INCf, 10.000 '0 40 '0 20 '0 60 '0 .0 ·20 ·'0 ,~::t-~ .'r i-::t:r \. REFERENCE.~lpcfR~~i9~~RPSA~~E~~?~N~E~~R'r;ERIM FEASIBILITY HYDROGRAPH:MACLAREN RIVER NEAR PAXSON I 1964,1971 , ~,t ~..~~PRE':IPITATI~~ FLOW INer, 80 '0000 TO 9000 60 6000 '0 '<nO ~:trO 6000 ~3D '000 ~20 40-:)0 I '"~'0 )000 ~0 2000 ~ ·'0 1000 ·'0 0 ... :j ," \':~ V'J l \. 1 I :.:' PREOPlTATlON IN INQ{[S FIGURE4.14 W ~\;,I/\ 'V _.' PRECIPl7A71(lN fN fiCHES o ""- s r''n'.S •~S~. S ...\:::. ~i'l~~'H ~~ ..~.: ~ /\..'" .~J\~ .!2ll. ~t;:.~''''liS ~~,,-,.~.....•r I •S.~~III ~.~r~~~~~~'...~~'~~i •'\~.....-'\"~~~,../"J~'...'.t :(~.!....~ ...II q )''-''1 ....I ,'.r\'~~..rv i i'O;)JJV'JL,(.J\/"\.~~"'~I....J V ."v ..\/.OC".'" ··········1 ~ # J') rLOWINC" 80 10pOO 70 9.000 W 8,000 '"7 .000 40 6,000 '0 ~,OOO 20 .,000 10 3,000 2,000 -10 1,000 ·20 ·r:. ~I\~:o."•~':Sl~.~ F"lCNt INCF> 80 10,000 .'1IlO 10 9,000 60 e ,000 l'~•J~'lI ~I.,! I '-PRECIF'I;~IO,'i .... PA(CIPITA110N IN INC~ES so '0 30 ~g20 .!.~10 t'0 ~ .,000 3,000 -10 /,000 196', -20 ! REFERENCE,H 0 0U.S.ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY Y R GRAPH MACLAREN RIVER NEAR PAXSON,1967 1972 REPORT.1975 APPENOIX 1 PART 1 'FIGURE4.J.iJ -1 J 1 1 ····~--l 1 1 1 1 -]----1 --~l SPRING PMF by U.S.CORPS OF ENGINEERS 4 o I / / / / / / / PRECIPITATION ---ORIGINAL (70%PMP)/ ,.,...----..-................ /'.................. ,/........ /.................. /.................. /.................. /.................. ORIGINAL RUN 50%INCREASE IN SNOW LEGEND IOU ;0 rT1 !{l 2 ~ '-l I INFLOW TO WATANA 13 ~ z 40 60 300 280 260 240 220 ~200 U 0g 180 ~ 0it 160 140 120 100 80 20 0'I ! I I I I I I J I I I , ,! , ,I I I I I I I I I I I I !I !I ,! ,I I I I J , ,I I I ! ,! !! ,! , I HR.)2 8 14 20 2 8 14 20 2 8 14 20 2 B 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 -------- (DATE)JUN 5 6 7 8 9 10 II 12 13 14 15 TIME INFLOW TO WATANA (COE) FIGURE 5.1 • 80r----+--+---+--+--t----+----t--+--+---+---+--f-----+---+--+----+--~ 1941 -1970 MEAN MAY 1-28,1971 DAILY AVG.TEMP. --_I I7011------t--+--+--+--t--+-----jt,...l~....~~=+-----f---+-+--j---+-7 DAY SERIES --+---1 V~.r-"---\V ~V ~\J ~ 60 1------t--+---+-------:F--t-A---H~---.-;-\-+.l--+---1+-+-~j---+---+------+----1---I~V V V ,lm{°'I 61 DAY ~ES~Vv I{I~+~50 /--~I\..J ~~ ~/V I ./VfL.~..>'~~VV l/J./ V VrT l~i40p'~V-iA'/li\~j~V ft(tvVW 'IV~.J"Ir~\ ::!30 .-t-ir+-t-+-+-~I--+--l---------+-----l---+--+--+--+--I---1---+------+----1----1 ;IJ V V IIJ :::::!i ~ I r 201t------j---+--+--+--+------+---If------+--+---+---\--t------t----1---1-------l------I 01-----:~__:_i:-_:l:_-=":_---:.i:_~~~.........---:-I:-~-~-~_1....----l._.....J._.....J..._.....L.._.J ~10 15 20 25 30 ~10 15 20 25 5 10 15 20 25 MAY JUNE JULY SPRING PMF TEMPERATURE REGIME (COE) REFERENCE: U.S.ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY REPORT, 1975 APPENDIX I PART I FIGURE 5.2 • ~1 -C~l ~e_)e,el ~~l e'l .ee-l 1 1 j Cl '1 )cel FIGURE 5,3 ,-..... /~-.Jr50~~--.... ) --'r: 30"\----'r ) SCALE ~~-~o 5 '0 15 20MilI!s ASSUMED SNOW PACK 20 30 \\'-"7""(/"1 ('v\,~\,,--/\~~)' ,-./-...;, 20 30 /'1 'c.,,"A<~-~I.","/"v--..r _~-J./oe /"'//---t \.~'i/,,",' f "'~r'.t.(}'Ii~-.\~\(}'G u 1\.,()f)~~j //-- %,)7""·'/Q'g "'r',/-..em".....~~~*v.,.....//""\.. /ecce ~I.I ~o",/::#,0' J '~i /-~ I f ./,0 ~,~I ,"."r.P-'-.....,"~/,(~~'?~ )CREEK /-~\,~~~~~_./'~slrN4 T.))j~'!''__ ('~"""l~Fo,e"..,I I\-roo::/''f"\:/,:rl'-,I)R:[,V -,--y 1/"\J 20 .J<:'.----~}- 20 ~~.~~ &"7 .....,"~"]'I \'J I 30/u::}"_jl\-:'~,\(;to / &0 I "'-:'~J~C)V--v.X-', /0,,-(\/1~1401';.\ \ \/~~0''.~'\~,X '.S",,",L''''1.'1/\......\ \\.,,,,"../.~\fl Lo'"\\\\.l_~/~-(~(j'~~ \ f \,""/'/10 I (j \.'""'-\/'C\'\/--0(.__-\~.IL ~ ~•40 30 20 t ~i REFERENCE: US.ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY REPORT,1975 APPENOIX I,PART I --"1 e_~--J ~~-]"-~~l --··'1 -~--1~--1~)-.~.~] LEGEND • •ORIGINAL TEMPERATURE ...-....TEMPERATURE SENSITIVITY RUN (RUN NO.I ) • •MELT RATE INCREASED BEFORE STORM 70.,,Ii',,,,, 60 I I I I I I I I I I 't I #I I 50 I I I I I I I I :1_'I ,":Ao:f I lL.o IlJ 0:: ~ !;.( 0:: ~ ~40 I I I I I I Po I ,!I :I I I .. 30 I \JT I \;If I ".•I I I I I I I 201 I I I I I I I I I I FIGURE 5.4 SPRING PMF TEMPERATURE SEQUENCE 2 MAY -20 JUNE I I I 1 I I ,' I ' ,I ,!I I ,20 !I I I I 10 15 .,1I!1 I !I ~!5 !I I I I ,1 1 30 JUNE !I I !I I I I !I ! !I~20 2!i ~-flpO;;;l(@ 0:.10 MAY IAtilMJ,.. -~---1 ------1 ~----~l ~----l -~~1 -cwo-col '~--J e-l -----1 ~~l --1 ._--~-------,.,)--~1 "'-~-']/._~.,1 ~--l -J I"::Xl rJ '6 2 ;::l !'i 5z 3~ C o , \ \ INFLOW TO WATANA LEGEND 8ASE RUN ---TEMPERATURE SENSITIVITY RUN (RUN NO.1) •_._.-INCREASED PREC"~ISNOWPACK (RUN NO.2) ----PRECIPITATION (70 "!o)OCCURS 12 HRS.EARLIER THAN BASE (RUN NO.3) 120 240 260 280 220 r I PRECIPITATION'I : / 1 1'-' ORIGINAL (70°;'PMP)1.1 "...,,,,.,....---. . '''''",,~m '"""00%,-----1 \.\ I \. i ..--"/........~-;4 I ,.... I ...,\" I \ \ I ",.\1\\ I • \ I \ \ V---..........\ tf \ ' roo,------""",".\•'",,~'"'~<.~",\\\ 1/\., 1 \\ ,~, ..._--__i/I ",-----t'I_._._,:/J ....' -...'I I_,,'.'--.- _...I I ,/,......I'/~/......... / .I .......... .".........//) ,,,'/~~~:://:,1 ~180 VI LL U§160 ~ 0140 ...J LL m814 18 FIGURE 5.5 B 14 20 2 17 8 14 20 2 16 20 2814 14 e 14 20 2 8 14 20 2 12 13 TIME INFLOW TO WATANA (ACRES) / // // / ,/// ,~/ /' ..........-:" ---_"":,',.-_~__,--.-..- 8 14 20 2 6 20 60 80 40 (HR.)O2 8 14 20 2 (DATEl JUN !I 1 -~]--~1 --__c)~-,)e>-"l :-----1 ] m 4 I ::Jl fTl (') '0 2 ~ -i isz 3 ::: ~ FIGURE 5.6 ITM .0 8 14 16 /.-.-.-......../" /"., .I / 8 14 20 2 15 8 14 20 2 14 8 14 20 2 13 I I PRECIPITATION / I I --ORIGINAL (70%PMP)~I i I I ----PPT RUN (100 %PMP)L..... B 14 20 2 12 TIME B 14 20 2 II A 8 14 20 2 10 OUTFLOW FROM WATANA(ACRES) / .,...---,,'~ i ~/ /--_._._._._._._.-//'/"-.,///\r ......,....., ',.,II "IJ_'_..//h__,,'"fi B 1'4 20 2 9 // // // ,,;'/ """,/ //-----.,.., 814202814202 7 8 BASE RUN TEMPERATURE SENSITIVITY RUN (RUN NO_I) PRECIP./SNOWPACK (RUN NO.2) 70 %)OCCURS 12 HRS.EARLIER OUTFLOW FROM WATANA SPRING PMF by ACRES LEGEND 300 2 BO 260 240 220 200 IBO ~ ~ l) o 160 0 Q ~140 0 -' LL 120 100 80 60 40 20 (HR)O 2 8 14 20 2 8 14 20 2 (DATE)JUN 5 6 ..- ,...., I ~ I - - SUPPLEMENT 1 I""'" r"'" I !- :.J' r:ROH: SUBJ: DRrGT Hr.VernonK.Hagen Office of Chief of Engineers Corps of Engineers Forrestal Bldg.,Rm.5-F-039 Washington,D.C.20314 John T.Riedel enief,Hydrometeorological Branch Te:ltative E~timates of Probable Maximum Precipitation (PMP)and Snowmelt Criteria for Four Susitna River Drainages Introduction The Office of Chief of Engineers,Corps of Engineers requested PMP and snowmelt criteria for the subject drainages in a memorandum to the Rydrometeoro1ogical Branch,dated December 12,1974.The Alaska District requested the study be completed by Februa=7 1,1975;however,a more realistic date for completing a study in which we have confidence is June 1,1975.Because of the need to soon begin hydrologic studies ba5?d on meteorological criteria,the Branch has concentrated on the problem and has determined the general level of criteria.A range of PMP values are given in this memorandum within which we believe values from a more comprehensive study will fall.The sequences of snowmelt winds, temperatures,and dew points should be checked w~th additional studies. In addition,if we knew in detail how snox~elt will be computed,we could give emphasis to the more important elements. P~W estimates for four drainages A range of estimates of PNP for 6,24,and 72 hours for four drainages outlined on the map accompanying the December 12.1974 ~emorandum are listed in table 1.These are nucbered fran 1 to 4 (smallest to largest). -2- The estimates are for the months of August a-.~September -the season of greatest rainfall potential. estimates by 70 percent. For the sn·~~~~t s~ason)multiply the Tne estimates take into account numerous cocs~=rations including several methods of modifying PMP estimates made pre~~~ly for other Alaska drainages~and PMP estimates from the Weste=n ~~ited States for areas with similar terrain. -3- Temperatures and Dew Pobts for Snotmlelt A.During PMP Storm 1.Dew point for PMP centered on June 15 =56°F (assume maximum l-day P}-IP in middle of 3-day storm). 2.For PMP placement prior to June 15 ...6tract O.8°F for each 3-day period prior to June 15 (e.g.the ~dew point for June 12 will be . 55.2°F).This -O.8°F per 3-days may be applied to obtain the maximum l-day dew point during the p~~back =0 as early as ¥Ay 15. 3.For first day of PMP storm~subtract lOp from criteria of ~for 3rd day of PMP storm subtract 2°F. ·4.Add 2°F to each of the three daily C:J points to get daily temperatures for the 3-day PHP per:.iod. B.Temperatures and Dew Points Prior to 3-~y PM?Storm (High dew point case) Adjustment to temperature and dew point on day of ma::ti:r=::n P~ r Day prior to PMP 1st 2d 3rd 4th T t (OF)empera U=~ -2 -1 o +1 Dew point (OF) -2 -4- -4 -5 -4- c.Temperatures,Dew Points Prior to 3-day PMP (High temperatu=e case) Adjustment of temperature and de~point on day of maximt!3 PM? Day prior toPHP Temperature (oF) 1st +1 2d +2 3rd +4 4th +7 Elevation Adjustment -12 9 - 7 6 For the 3 days of PMP and for the high dev pointy-,apply a -3°F per 1000 ft to the temperatures and dew points.The basic criteria are considered applicable to 1000 mb or zero elevation. For the high temperature criteria apply a -4~F per 1000 ft increase in elevation. Half-day Values If half-day values are desired for te~eratures and dew points~the folloWing rules should be followed: 1.For the hi~h-temperature sequence~apply an 18°F"spread for temperatures and a 6°F spread for dew paine.Par example,for a mean daily dew point of 50°F,the half-day values woule be 47°F and 53 c F. 2.For the high dew point case,apply a 12~F spread for temperature and a 4°F spread for dew point. -i - I. r -5- 3.In no case,however,should a 12-br d~.point be used that exceeds the 1-day value for that date.For examp~,the value not to be exceeded for June 15 is 56°F,for June 3 (four 3~-y periods before June 15)is -6- Wind Criteria for Snowmelt Since two sets of criteria (one emphasizing high temperature and the other high dew point sequences)are given for snowmelt prior to PMP, two sets of wind criteria are also necessary since the pre-P~~synoptic situation favoring high temperatures differs from the criteria favoring high dew points.The recommended winds,tables 2 and 3,are given by elevation bands.In the high dew-point case,table 2.(where synoptic exist conditions~favoringmaritime influences Drior ~P}~),the same wind. for 4-days prior to PMP is appropriate. All of the winds presented in tables 2 and 3 have been adjusted for applicability over a snow surface.Although a seasonal variation in the high dew point wind criteria is realistic for the present tentative criteria,they are considered applicable to }~y and June. Snowmelt Winds During the PMP Wind criteria for the 3-day PMP are the same for both the high temperature and high dew point sequences.They are shown in table 4. -i l r- l - r \' -7- Snow Pack Available for Melt Some work was done in determining the mean and maximum October-April precipitation of record for the available"precipitation stations. These stations and other data are tabulated in table 5.The drainages and available stations are shown in figure 1. Table 5 also shows the years of record available for October-April precipitation,as well as a column labeled "synthetic October-April precipitation."This gives the sum of the greatest October,greatest November,etc.,to the greatest April preci.?itation total from the available record.These synthetic October-~ri1 precipitation values and the means are plotted on figure 1. Approximately 9 years of sn~w course data ~e available for 14 locations in and surrounding the Susitna drainage.?roo these records,the greatest w~ter equivalents were plotted on a map.T~ese varied from a low of 6 inches at Oshet~a Lake (elevation 2950 it)to an extreme of 94.5 inches at Gulkana Glacier,station C (elevation 6~~D it).A smooth plot of all maxima against elevation gave a method of dete~ning depths at other elevations.Figure 2 shows resulting smoota vater equivalents based on smoothed elevation contours and this relation. Some additional guidance could be obtained ==~mean annual precipitation maps.One such map available to us is i~~;o.AA Technical Hemorandum IDolS AR-IO,"Mean Monthly and Annual PrecipitatUm,Alaska."The mean annua1 of this report covering the Susitna drainage is shown in figure 3. -8- Also 00 this figure is shown the mean runoff for three portions of the Susitna River drainage based on the yezrs of record shown.No adjustment has been made for evapotranspira~oo or any other losses.This indicates that the actual mean annual precipitation is probably greater than that given by N¥lS AR-IO. Conclusion.Time hasn't allowed checks,e7aluation,and comparison of the several types of data summarized here.It appears the "synthetic October-April precipitationtl generally is 1.ess than.the maximum depths over the drainages based on snow course ~asuremeots.There depths,or figure 2,would be considered the least that could be available for melt in the spring. 7urther Studies The variation of precipitation ~th terrai~feat~~es in Alaska is important but yet mostly unknown and unstudied.~or~effo=t should be placed on attempts to develop mean annual or mean seasonal ?recipitation maps,at least for the region of the Susitna River.S~e 10 years of data at about a dozen or so snow courses could be used in this attempt,as well as stream runoff values. Some work has been done toward estimating ~~depth-area-duration values in the August 1967 storm;an important input to the present estimates.Attempts should be made to carry out 2.complete Part I and Part II for this storm,although data are sparse and emphasizing the use of streamflow as a data source. -9- The objective of these two studies ~th regard to the Susitna drainages is to attempt a better evaluation of topographic effects,and to make a better evaluation of snow pack avai '2;"le for melt. Study of additional storms could give some ioportant conclusions and guidance on how moisture is brought up the Cook Inlet to the Talkeetna Mountains and how these mountains effec~the moisture. Snowmelt criteria in this quick study is licited to 7 days.Considerably more work needs to be done to extend this to a longer period.Then we would need to emphasize compatabilit:of a large snow cover and high temperatures.More known periods of hi~snow~~lt runoff need to be studied to determine the synoptic val~es of the meteorological parameters. -10- Table ~ General level of PM?es~i"".ates for 4 Susitna River d=ai~ages Drainage Number 1 2 3 4 Area (59 mi) 1260 4140 5180 5810 72-hr Pill' (in.) 9-12 1.5-10.5 7:;'9 7-9 For 24-hr PMP,multiply 72-hr value by 0.60. For 6-hr PMP,multiply 72-hr value by 0.30. PMP for intermediate durations may be obtainec from a plotted smooth curve through the origin and the 3 val~s specified. Table 2 Sno~NIIlelt '{·.rinds preceding PMI'for Susitna Basins for high dew point seqcence Elevation Dailv ~~d sneed*... (ft)(3'h) sfc 8 1000 9 2000 12 3000 18 4000 25 5000 34 6000 36 7000 37 8000 39 9000 40 10,000 6.2 *For each of the 4 days preceding the ~Cay ~·P. -Il- l"""I TabLe 3 Sno~~elt winds preceding P~for Susitna Basins for high temperature sequence r-Daily Yind speed (mph) i Elevation (ft)Dav orior to 3-dav Pr~I . 1st 2nd 3rd 4th r- sfc 10 13 4 4 1000 10 13 4 4 2000 11 14 5 5 3000 12 16 5 5 r"'.4000 13 16 6 6j 5000 13 17 6 6 6000 14 13 6 6 7000 15 20 6 6 'r-'"8000 16 20 7 7 9000 16 20 7 7 r-10,000 1.7 21 7 7 ! Table 4 l-linds during 3-day PMP Wind speed (mph) Day of Day of 2nd Day of 3ro.,.....Elevation (ft)maximum P~highest PMP highest PMPj sfc 12 9 8 ~1000 14 10 9 2000 19 14 12 ~.3000 29 21 18 4000 42 31 27 r-.5000 56 42 36 6000 58 44 38 7000 62 46 40 8000 64 48 41 9000 68 51 44 ~ i 10,000 70 52 45 -. Table 5 Stations with Precipitation Records in and surrounding the Susitna Drainage Mean Number Yrs of record for Maximum of months for Synthetic .-Hean complete Oct.-Apr.obs.Oct-Yr of synthetic Oct.-Oct.-Apr.Oct.-Apr. Station Elevation precipitation Apr.prec.Maximum ,Apr.season .-J!recip.Precip '. (ft.)(in.)(in.)(in.) Susitna Nendows 750 4 17.18 70-71 4 23.18 13.77 Gulkana 1572 16 6.77 56-57 18 12.68 4.19 Paxson 2697 2 8.42 43-44 6 14.25 7.64 Trims Camp 2408 3 23.26 59-60 5 35.82 15.3 Summit 2401 19 14.09 51-52 20 26.59 7.93 TQl.~eetnD 3/15 35 n.l7 29-30 37 1,0.59 12.26 Sheep Mountain 2316 13 11.91 59-60 12 18.'12 4.78 I-' N• .~]~;1 ~~J }13j ~1 :~'~-1 '1 l-'~l "--l---~l r~'~~~1 "]]c ~....---- ,$".8, 1'n\'"s C. IS'3 1'I,j.. fttz.$~#t 7',-. ~Sfllfheff 'l~lj 0,1 "I/,r ?;II!Iian tL. 4~'Z.~""&t.tf()~/·A",: /1:(, -\>C;,., ...jJ r \ ,)'-"'--r--, I~.,---'? t.{I'l,,~ L~'?"l q I{~+l.) 1).1,~le.f\-­ (0\ ,-t.' Figure l.--Drainagc outlines and October-April precipitation in inches. (Upper values m synthetic October-April precipi~ation; Lower.mean October-April precipitation.) J ,.f ,,1I;t~·,.;-~ f 4''1 rtfI'" ---:-J ]-1 it) Or--]c-~l J c'l .-~)'----J "2-0 /'I'~ +~:3 """'.,_l (> ---I .~-]] FiRUTC 2.--Minimum watcn"~quivalent9 of:anow pack in inchea (bllsed on nroIJ8 omooth1nB of maximum snow cou rso 1I1elltlUremen tB.) ..,~"-1 "1 15'D+t 3 "-~I '·-1 c~~ / r //~ ~IIY>/..~:"f(1P '-"~_.J ......]~~-1 ,I "._]n~'l '·--1-1 "-'] ,q....<.. -\-c 'S .~~~\.i 20 "e~(PII /t4A.()..t 4c'I1"t.A R-/p Figure 3.~-Mean annual precipitation and stream runoff (in inches). r ".... I I ".... I r , APPENDIX A3 RESERVOIR HYDRAULIC STUDIES This appendix presents hydraulic studies undertaken to design and check reser- voir safety structures including outlet and spillway facilities,river diversion facilities during construction,emergency reservoir drawdown facilities,and reservoir freeboard requirements.Section 1 presents the flood routing analyses performed for selection of capacity of river diversion,outlet facilities,and spillways for Watana and Devil Canyon developments.Reservoir freeboard re- quirements under operation and extreme flood conditions are presented in Section 2.Section 3 describes studies conducted to assess the effects of potential landslides into the reservoirs. 1 -FLOOD ROUTING STUDIES TO DETERMINE SPILLWAY, OUTLET WORKS AND DIVERSION CAPACITIES This section presents the results of the flood routing analyses performed for design of outlet facilities,spillways for Watana and Devil Canyon,and the re- quired diversion capacity for the two damsites during construction. 1.1 -Spillway and Outlet Works Selection of the discharge capacity and types of spillway and outlet facilities has been based on project safety,environmental,and economic criteria.These are described in detail in Sections 12 and 13 of the main report.In brief,at each of the developments a set of fixed-cone valves is provided in the outlet works to discharge floods up to 1:50-year recurrence interval.This facility would reduce the potential of supersaturation of spill water with gases,espe- cially nitrogen,and will facilitate avoiding unacceptable levels of supersatur- ation for downstream fisheries.The main spillway comprises a gated-control structure and a chute with a flip bucket at its end.The facility has a capac- ity to discharge in combination with the outlet works,the routed design flood which has a return period of 1:10,000 years.A fuse plug with an associated rock cut channel is provided to cater for discharges above the design flood and up to the estimated probable maximum flood (see Appendix A2). 1.2 -Design Flood Hydrographs A regional flood peak and volume analysis for the Susitna and surrounding basins has been carried out (l).Peak discharge,flood volume and hydrograph shape of design floods for different return periods (1:50 years,1:10,000 years,etc.) have been derived based on the above analysis.Generally,results from the regional flood peak frequency curve (Figure A3.1)and single station frequency curve for GOld Creek (Figure A3.2)agree well (within 10 percent)for flood peak estimates.The station frequency curve yields somewhat higher estimate of flood peaks and has been used to conservatively estimate design flood peaks (1:10,000 years).This estimate of flood peak at Gold Creek station has been transferred A3-1 to the damsites using the regional expression to calculate mean annual flood peak at the damsites (Reference Report 1).For smaller floods,the regional frequency curve (Figure A3.1)has been used.Estimated flood peaks at the dam- sites in the natural river regime are presented in Table A3.1. Proposed reservoir operations (see Appendix AI)indicate that substantial stor- age will be available in the Watana reservoir to route spring floods in the river.In the summer months (August to October),comparatively less storage will be available to route the floods.To take this aspect into account,spring and summer flood peaks were estimated at the damsites based on similar analyses of Gold Creek floods (1).Table A3.1 lists the flood peaks in spring and summer at the damsites.Plate A3.1 presents the design flood hydrographs for Watana dams ite. In all the analyses for Devil Canyon development,it has been assumed that the Watana development would already exist and floods would be routed through the Watana reservoir.Plate A3.2 shows the inflow hydrographs at Devil Canyon which are composed of flood outflow from Watana and the natural flood flow in the intermediate catchment. 1.3 -Spillway Valves and Gates Operation For the purpose of flood routing,assumptions have been made as to the time of opening of the fixed cone valves and spillway gates.Theoretically,these facilities can be operated when the water level in the reservoir reaches its normal maximum operating level.However,to allow for operational ease,a mini- mum surcharge of 0.5 foot will be provided before the valves and gates are opened to pass floods.The fixed cone valves at Watana would open when water level rises to 2186 feet and main spillway gates open at 2191.5 feet.The res- ervoir would surcharge to Elevation 2191 while discharging a 1:50-year flood through the fixed cone valves with normal power operation. At Devil Canyon,no allowance of surcharge has been made on the assumption that the Watana operation would be known in advance and valves and gates could be opened at the normal maximum operating level to cope with a flood discharge. 1.4 -Capacity of Fixed Cone Valves Physical size and capacity of these valves are restricted and their operational experience limited.A review of existing facilities was made to determine the sizes that can be used in the Watana and Devil Canyon developments with an as- surance of quality and performance.The selection of the number of valves at each development has been restricted by the project layout and size.A detailed description of the type of valves selected and the reasons therefore may be found in Sections 12 and 13 of the main report. Six 78-inch diameter fixed cone valves,each with a capacity of 4000 cfs at the design head,are provided at Watana.Seven valves (3 of 90-inch and 4 of 102- inch diameter)with a total capacity of 38,500 cfs,are provided at Devil Canyon as outlet facilities. A3-2 ,.,.. I, "'"'"I I ~- r"'"',, -( I ,.... I 1.5 -Main Spillway Gates Vertical lift gates are provided at the two developments to control discharges over the main spillway with a free overflow ogee-type crest.Standard discharge-head relationship has been used to calculate spillway capacity at different heads. Q =CLH 1•5 where Q =spillway discharge in cfs C coefficient of discharge L =effective spillway 1ength in feet and H =head above spillway crest in feet Value of the coefficient"C"is calculated from the physical dimension of the structures.Procedures to calculate C may be found in standard treatises on the subject. 1.6 -Availability of Power Flow Generally,the power flow of the developments is small compared to peak flood discharges.It is essentially a philosophical question whether power flow should be considered in determining spillway capacities.In keeping with gener- al practice (USSR,COE,etc.),it has been assumed that power flow will not be available in discharging the design 1:10,OOO-year flow or the probable maximum flood.However,a power flow cons i stent with system power demand dur i ng the flood season (May through October)was used in routing smaller floods through the reservoirs. 1.7 -Probable Maximum Flood and Fuse Plug Provision To ensure safety of main structures of the development,the probable maximum flood (PMF)discharge has been considered in the design of discharge facilities (see Sections 12 and 13 of main report).A fuse plug has been provided at each of the developments to cater for floods above the design 1:10,OOO~year flood and up to the PMF.The fuse plug is designed to fail at an overtopping water depth of around one foot.For details of the fuse plug,refer to Sections 12 and 13 of the main report. 1.8 -Results offlood Routing Analyses A modified Puls method of routing has been used in these analyses.Reservoir outflows have been restricted to peak inflows until the capacity of the outlet spillway facilities are exceeded When the reservoir is allowed to surcharge. ResUlts of the analysis are presented on Plates A3.1 and A3.2,and summarized in Tables A3.2 to A3.3.Spillway and diversion capacities,as calculated,are provided in the design of the structures (see Sections 12 and 13 of main report)• A3-3 1.9 -River Diversion During Construction (a)Watana Development Based on the dam construction schedule and acceptable level of risk of flooding the construction site,it has been decided that the diversion facilities will be designed to discharge a 1:50-year flood flow without any flooding of the construction site (see Section 12 of main report). The selected discharge facility comprises two 38-foot diameter tunnels and has a total capacity of 80,000 cfs which is the peak outflow of a 1:50-year flood routed through the cofferdam.Discharge capacity of the tunnels is presented in Figures A3.3 to A3.5.The flood routing analysis is shown in Figure A3.6. For details of method of selection of the facility,see Section 12 of the main report. (b)Devil Canyon Development Design flood for the diversion facility at Devil Canyon development was selected as 1:25-year flood due to significant regulation of floods by the Watana reservoir and due to lower risk and damage to the proposed concrete dam in the event of a flooding during construction (see Section 12 of the mai n report). The selected facility comprises a single modified horseshoe tunnel 30 feet in diameter with a discharge capacity of 36,000 cfs.Figure A3.7 presents the rati ng curve of the faci 1 ity,and Fi gure A3.8 shows results of the flood-routing analysis. 2 -RESERVOIR FREEBOARD FOR WIND WAVES This section describes studies undertaken to determine freeboard requirements for wind-induced waves for the developments at Watana and Devil Canyon damsites. Two effects of wind conditions are considered:wave run-up and wind setup.The wave freeboard is only a portion of the total freeboard required and must be combined with those determined for seismic slump of the dam crest,etc. 2.1 -Analysi s Standard design procedures as detailed in the u.S.ArIT]Y Corps of Engineers (COE) Shore Protection Manual (2)and outlined specifically for inland reservoirs in the CaE Engineer Technical Letter No.1110-2-221 (3)have been used in the analysis. The wind data recorded at Summit Station have been used in this analysis.Al- though somewhat limited,these data are believed to be the most representative of wind conditions at the damsites.More extensive wind data will be required for final design and will be available from the climatic stations at Watana and Devi 1 Canyon. A3-4 - - ,...., I I Wind speeds and durations are shown in Table A3.4.Wind speeds were converted to equivalent speeds over water using a wind velocity ratio (3).Wind-velocity duration curves for Watana and Devil Canyon reservoirs were then developed (Figure A3.9).A straight line relationship on log-log paper was assumed for the curves.Based on these,the effective fetch for wave generation was deter- mined for Watana and Devil Canyon damsites (Figures A3.10 and A3.11).The lengths of radial lines extending 45°on each side of a central radial located at the damsite are weighted and summed to estimate an average effective fetch (2).The design wind direction yields the longest fetch length at the damsite. Calculated effective fetch for wave generation is 3.4 miles for Watana and 1.0 miles for Devil Canyon. Curves of critical duration versus wind speed for a given effective fetch were developed using Figure A3.12.Table A3.5 lists wind speeds and duration for the Watana reservoir along with the resulting significant wave and the limiting fac- tor.This table shows the maximum significant wave and,hence,the design wind characteristics.Figure A3.9 gives a graphic representation of Table A3.5. The design wind velocity was found by determining the intersection of the wind velocity duration curve with the critical duration versus wind speed curve for a given effective fetch length.The design wind velocity for Watana is 40 miles per hour with a 44-minute duration.The Devil Canyon design wind velocity is 40 miles per hour with a 19-minute duration. The significant wave found from Figure A3.12 (4)is 3.1 feet for Watana and 1.7 feet for Devil Canyon.The sign ifi cant wave represents the average wave hei ght of the top one-third wave heights in a stable wave chain. Wave run-up is dependent on wave and embankment characteristics.Wave run-up for Watana is determined using the following relationship: Rs 1 H"S =0.4 +(H /L )1/2 COT Qs0 where:Hs =significant wave height,feet Rs =wave run-up caused by the significa.nt wave,feet Lo =wave length,feet Q =angle embankment makes with horizontal,degrees The wave length (L o )is determined from the relationship: Lo =5.12 T2 where:T =represents the wave periods and is determined from Figure A3.13 (4). This run-up relationship is appropriate for earthfill embankments armored with riprap (3).Assuming a 2.25H:l.0V slope yields a significant wave run-up of 3.4 feet.For design purposes,maximum wave run-up is taken as 1.5 times the run-up due to the significant wave,yielding 5.1 feet.Wave run-up for Devil Canyon was determined using Figure A3.14 (4).For vertical walls in deep water,Figure A3.14 yields a significant wave run-up of 2.2 feet.Similar to Watana,Devil Canyon's maximum wave r~n-up is 3.3 feet. A3-5 Wind set-up is produced from wind shear stress on the reservoir surface which results in increased water levels at the leeward end.Wind set-up is found by the following relationship (5): S 1,400 D where:U =design wind velocity,miles per hour f =fetch,miles D -average reservoir depth,feet. In contrast to the fetch determined for wave generation,the wind fetch for wind set-up is assumed to extend the length.of the reservoir.This is a standard assumption since wind set-up is not seriously affected by the presence of curves or discontinuities such as islands in a reservoir.The wind set-up fetch for both Watana and Devil Canyon is 28 miles.The average depth of both reservoirs is taken as 450 feet.The corresponding wind set-ups are .07 feet for both Watana and Devi 1 Canyon and are rounded to 0.1 feet. The freeboard required for wind-induced effects is the sum of the maximum wave run-up and wind set-up,resulting in 5.2 feet for Watana and 3.4 feet for Devil Canyon,see Table A3.4. 2.2 -Conclusions Wave heights in both Watana and Devil Canyon reservoirs are governed by the res- pective fetch lengths.The narrowness and bends in the reservoirs reduce the effective fetch,and thus reduce wind-induced waves.The wind set-up for both reservoirs is 0.1 feet.Set-up is not significant considering the degree of accuracy inherent in the wave height and run-up calculations.However,set-up is included in wind-induced freeboard requirements. Wind-induced freeboard requirements of 5.2 feet for a Watana rockfill dam and 3.4 feet for a Devil Canyon arch dam are included in the total freeboard re- quirements.When data of wind direction,duration,and speed become available, it will be appropriate to redefine wind speed duration-relationships for rele- vant directions. 3 -SLIDE-INDUCED SURGES A study of wave surges that may be induced by potential landslides into the pro- posed reservoirs was undertaken to evaluate the magnitude of such waves and associated problems.Published works on recorded slides and associated predic- tive empirical models were reviewed to get an insight into the potential magni- tude of such problems and engineering analyses.An empirical approach defining generic relationships among impact velocity and kinetic energy of the slides, induced wave heights,and their attenuation with passage along the reservoir was then selected to develop standard monographs. A3-6 r : - r A set of field data on potential slides in the reservoir areas developed under separate studies (refer to Appendix K of Task 5 -1980-81 Geotechnical Report) was incorporated in these monographs to estimate potential wave heights and their impact on design parameters.The following sections describe the analyses carried out and results of the studies. 3.1 -Generic Relationships Figure A3.15 presents a definition sketch for the terms and variables used in describing the generic relationships. The velocity of a slide impact is a function of the downslope distance (to the reservoir),slope angle of the slide plane,and angle of dynamic sliding func- tion.Figure A3.16 shows a plot of this relationship.In the present analysis, the angle of dynamic sliding was assumed as a constant due to relatively little variation in its value.Any slide velocity may be calculated from this figure when other variables are known.The dimensionless kinetic energy of the slide may then be estimated from the slide velocity,volume,and density. Figure A3.17 presents the relationship between the dimensionless kinetic energy of slide and the maximum potential height of the wave that could be generated as a ratio of average depth of water at impact location.From this,the maximum wave height generated at the point of impact may be calcul ated. Attentuation of the wave height as it progresses in a radial direction along the surface of the reservoir is presented in Figure A3.18.This relationship may be used to determine effective wave heights at various points of interest in the reservoir and especially at the dam to evaluate potential overtopping due to such waves. 3.2 -Analyses and Results Field investigations have estimated that the potential for the largest block slide exists about two miles above the Watana damsite on the south bank.The maximum volume of thi$slide is estimated to be about 18 million cubic yards (see Appendix K mentioned in Section 3).The likelihood of occurrence of such a sl ide is extremely remote.However,for such a case ~the wave hei ght that may be generated is estimated at 64 feet which will attenuate to approximately 10 feet at the Watana dam.Thus,with some 20 feet freeboard available over the normal maximum reservoir operating level of 2185 feet~the effect of such a slide,should it occur at all,will be minimal. Field investigations have also identified a solifluction flow and retrogressive $lide located apprOXimately 8 miles downstream from the Watana damsite.Initial investigations show this slide to have an approximate volume of 3.4 million cubic yaros.A slide of this volume will cause impedence to the flow;however, it will have little effect on the tailwater at Watana.Further assessment of this slide mass will be necessary in subsequent phases of the project since an increased mass may cause tailwater problems at Watana development. Several potential landslides of much smaller volumes have been identified along the two reservoirs,especially in the area of reservoir drawdown and along the lakes that will be created behind construction cofferdams at the two develop- ments.In general,the study indicates that no major impact is likely on the A3-7 proposed structures due to landslides.Table A3.6 presents the theoretical volume of slides that should be dislodged and dumped into the reservoirs at their normal maximum operating levels to cause waves of heights greater than the freeboard provided at the dams.This table is essentially presented to illus- trate the order of magnitude of slides that would be significant in affecting design parameters. 3.3 -Conclusions It does not appear that potentially serious problems of slide-induced surges exist in the proposed reservoir areas.Minor slides could occur during con- struction and operation of the developments and could be handled without diffi- culty. A3-8 LIST OF REFERENCES 1.R&M Consultants,Susitna Hydroelectric Project,Regional Flood Studies, December 1981. 2.U.S.Department of the Army,Coastal Engineering Research Center,Shore Protection Manual,Volumes 1,2,3,Fort Belvoir,Virginia,1973. 3.U.S.Department of the Army,Corps of Engineers,Engineer Technical Letter No.1110-2-221,Washington,D.C.,November 29,1976. 4.U.S.Department of the Army,Corps of Engineers,Engineer Technical Letter No.1110-2-8,Washington,D.C.,August 1,1966. 5.Thorndike Saville,Jr.,IYl.ASCE,Elmo W.McClendon,Albert L.Cochran,F. ASCE,Freeboard Allowances for Waves in Inland Reservoirs,Paper No. 3465,Vol.128,1963,Part IV. A3-9 LIST OF TABLES - - -i Number A3.1 A3.2 A3.3 A3.4 A3.5 A3.6 Title Estimated Natural Flood Peaks at Watana and Devil Canyon Flood Routing Results -Watana Flood Routing Results -Devil Canyon Freeboard Analysis Summary Watana Design Wind Volume of Slide Required to Cause Wave Heights in Excess of Freeboards Provided at the Dams LIST OF FIGURES r Number A3.I A3.2 A3.3 Title Design Dimensionless Regional Frequency Curve Gold Creek Seasonal Discharge Frequency Curves Watana Diversion Pressure Tunnel Rating A3.4 Watana Diversion Pressure Tunnel Rating A3.5 Watana Diversion Total Facility Rating A3.6 Watana Diversion 50-Year Flood Routing A3.7 Devil Canyon Diversion Facility Rating ,... 1 A3.8 A3.9 A3.I0 A3.11 A3.I2 A3.13 A3.I4 A3.I5 A3.I6 A3.I7 A3.I8 Devil Canyon Diversion 25-Year Flood Routing Wind Speed -Duration Curves Effective Fetch Radials for Watana Reservoir Effective Fetch Radials for Devil Canyon Reservoir Generalized Correlations of Significant Wave Heights Generalized Relations Between Wave Periods and Related Factors Wave Run-Up Ratios Versus Wave Steepness and Embankment Slope Definition Sketch Slide Impact Velocity Slide Kinetic Energy Versus Maximum Wave Height/Average Depth Wave Attenuation ,- TABLE A3.1:ESTIMATED NATURAL FLOOD PEAKS AT WATANA AND DEVIL CANYON WA IA~A fLOU!)PEAKS flood Return Annual Spring Summer Period (Years)(cfs) (cfs) (cfs) 1 :25 71,800 51,000 54,500 1:50 80,000 73,000 60,500 ,~' 1:10,000 156,)'00 -- DEVIL CANYON FLOOD PEAKS flood Ket urn Annual ~prlng ~ummer Period (Years)(cfs)(cfs)(cfs) 1:25 74,200 52,700 56,300 1:50 82,700 75,500 62,600 1:10,000 161,400 -- TABLE A3.2:FLOOD ROUTING RESULTS -WATANA ~aximum Flow Durinq Flood lcfs) Flood Powerhouse Service Secondary Emerqency Total Max WSEL t ft ) 1:50-year 7,000 24,000 0 0 31,000 2191.6 1:10,OOO-year 7,000 24,000 114,000 0 145,000 2193.0 PMF 7,000 24,000 147,000 1 140,000 311,000 2202.0 1 At Elevation 2201.2. i""".. r fi"" I TABLE A3.3:FLOOD ROUTING RESULTS -DEVIL CANYON MaXlmUm t ..lOW I.JUrlnq t.lDOd ~cts uut let MaIn flood Powerhouse Works .Spillway Emerqency Total Max WSEL (ft) 1:50-year 3,500 38,500 0 0 42,000 1455 1:10,000-year 3,500 38,500 123,000 0 165,000 1455 PMF 3,500 38,500 160,500 160,500 366,000 2466 TABLE A3.4:fREEBOARD ANALYSIS SUMMARY WATANA DEVIL LANYUN Effective fetch (miles) Wind Speed (mph): fastest Mile* Monthly Mean** fastest Mile Over Water Monthly Mean Over Water Design Wind Design Wind Duration (min) Significant Wave (feet) Significant Wave Run-Up (feet) Maximum Design Wave Run-Up (feet) Wind Set-Up (feet) Wind Effects freeboard Requirement (feet) *Equivalant to 1 minute duration **Equivalent to 43,800 minute durat ion 3.4 48 15.1 60.5 19.0 40 44 3.1 3.4 5.1 0.1 5.2 1.0 48 15.1 54.2 17 .1 40 19 1.7 2.2 3.3 0.1 3.4 po;:?::,". - TABLE A3.5:WATANA DESIGN WIND Wlnd Wind Forecast Velocity (mph)Duration (min)Hs (ft)Comments 37 90 2.95 Fetch Limits 38 70 2.9 Fetch Limits 39 50 3.0 Fetch Limits 40 44 3.1 Design Wave 41 37 2.8 Durat ion Limits 42 20 1.95 Duration Limits 46 4.5 .82 Durat ion Limits TABLE A3.6:VOLUME OF SLIDE REQUIRED TO CAUSE WAVE HEIGHTS IN EXCESS OF FREEBOARDS PROVIDED AT THE DAMS (in million cu.yds.) LocatIon Impact U 1 S tan c e fro m u a m Mean Water Depth Velocity x ='164U ft.x =5:ltlU tt.x -6)6U tt.x =~tl4U ft.x ='I5HU tt.x ='164UU ft.x =5:ltlUU ft. Watana Main Dam* D =150 m.90 ft/s 3.35 10.71 2B.12 48.67 67.60 97.34 264.96 Watana Main Dam* D =150 m.30 ftls 30.36 96.96 254.65 440.73 612.12 881.45 2399.51 Devil Canyon Arch Dam** D =150 m.90 ft/s 1.96 5.99 16.32 2B.29 42.44 57.68 149.63 Devil Canyon Arch Dam** D =150 m.30 ft/s 17.63 53.87 147.5B 254.67 3B2.00 519.13 1346.78 *Watana water level assumed at 21B5 feet. **Devil Canyon water level assumed at 1455 feet. -),]1 \,1 ~~.'P1 )».,\'I ) '/1 ~'~-)'~-,'~~1-'-"1 -1 ---~)~')~~1 ~--) 10,000 1-1-- .1--1-' .,':'.1::'.,.... 100 200 5005020101.051.005 w> 0:::>u '1 III I \S'~.I I j It'll .'f 1 'I ..\'"~...I I ....'j"..I I I 'r"...[II.... ...NO:IE:"II -....I I'I"..-.-. -.'."-.'.'.''.'..--..' , I '.-'""'..-'.7.0 '~'.I :,-it H'iEI~~'I ~".J PF -..-::.0 ••,.:.:•~:::.:.::.~.:.'::.'-=--:.-.~. ...:IITI1sE:R~!N~[;1 ~IF wid .:.---~I::·-·:-:··.,f:::;::·::J=--:·~J:-: 6.0 _~I (i 1 '"t 1~,1d .I I *~~.~;....'1 4 ~[,~~f.J~~.,'-g ...'~~,~<.:~:1 <,ITr:.:~~!M'~;~L 1 -j"'t ."1'rlo'ni'~l\i.-'jj~~~.'~~ .~.,I.t 1 Q Ml='J NI-J I1 ~.'.-'.'...-......--'".._'0 ""'.,.!.., ',...I·~I h',..-'......--........,.,II .....-- t Il I In,~D AIN I"H .....---1--""'""-'--~..,",j!I I t~R .~j ~.It q--I ..-..))R':::'~~:.._::::':....I)"'·:.:n ~J...-"I"· 3.0 .._1.'t I L.i~~ktl(\~l ...I'. ....::::'II :~~'~~~~=-_~~":.---:.~~~~,~--..'- ..··M p....,Rlt(11:1 1·1 .....-.....-I---.--v --.:::-I~_-.8iis:,=~!I)!~--.\...-:'_.".~__I -~==-==~'f"'"~.=~~IH''''·''-'- 2.0 =~I i ~~C'~~_"..-:-:....•..._.:_~'>~~~~_.':'<~"~I' --!-4-t-l-H i ..._.___".'...,_"~_..__..f-._.....J f'R·tt!:±t= .-...--CjHf~C I _..~j.--..--..-I--...-1-----. l:lll II ::::~cPlI"".".:1 :~~~%1~,"::~:::II ~.-i ~::~!I:.:-'<I'..r ,;';.:':2f~~·'<~,.~jlli~' z 0 7 ..- •t .-.~~-!-,:...--.--......--'..--I·· w ":.'U --.,....~:...1:"::".---:::.':':.'::".iT :....::~:. 0:::-I ......I ~I---.........L I ...-_--...."iIt ,"---..::-..-__...--..........-•.-I --.:)-'. C 0.6 If:~..l-o't l .I.t I ';C'"'.ir .t,..>-.....~tt t ---~..t···..--:.--.......,...rl/'.'-':17.- 0.5 '.':-'r "Ui t?~-- ..'..I . .-,:::';;~::~.'J .~~....H-',.r~ I I I,r J.-.'-~: •I·.-=.'.1 ...III '.'-~...rtf'.--_.- ..1 1-"....'rt ....-~.j'-'.J.-,:._..._•.,I"..-/--1-.-.W"I .....t I'"/.j"'I""..........-..I .....,'.... .I'"..•.•.........''i' 0.4 ..I'.:..• - "...f I~""•,.:~..~~t Ii I ,'.!.i ,-...::'.:~:,.:._..-~.:-:..~::.'..~".'I:..: -~.I ...................."-f-q -'-'1 ._-..........---...".--I '" :.._j-:",,'.'"--..···.:-=-=-·::·;··:····-:1,-: 0.3 ':':.II'j'j I .:.''-'~>.·1'.'-:.j I I II I -~~~~:-.-..,~l rml"~r:f~_""..__.....I I III'.'-------".illl ...'" 1.25 2 5 RETURN PERIOD (YRS.) Prepared by: R&M CONSULTANTS.INC. DESIGN DIMENSIONLESSR'EG10NAL FREQUENCY CURVE ANNUAL INSTANTANEOUS FLOOD PEAKS FIGURE A3.1 Prepared for: • -! ,..... ! ! l . ,.... i , ,..,. I ..,..,.. I I • I I ,,.I I • ! ,,I I :I I I I I I , .I I I I i 1 I I AiNIIU I ;..;.-a~~ I'..,.I-II ./A GI·.Ql: 100 T!./t l.;I...... 90 80 -......... 70 >+'--I .... 60 - en ~.-~11:.....-._--.-~.~ 50 ---.~•=:::::=:lI U -..-- (I) -~--0 40 ..,........,...-0 --'---+-0- z 30--.,., w '. C)..'-t-a:,; ,. «.,:x:I l ,u 20 ..,--,-- (I)lOt -I ,: 0 ,,,,I,I 1 ~I I '--i , I ,I , I I I I I I, !~I ! 10 I I I I 2 5 10 20 50 100 200 500 EXCEEDENCE INTERVAL -YEARS SUSITNA RIVER AT GOLD CREEK PERIOD OF RECORD -1950-1980 ANNUAL SKEW IS 0.6830 MAY-JULY SKEW IS 1.130 AUG -OCT SKEW IS 1.134 Preoored by:Prepared for; ~~~jM SEASONAL DISCHARGE ,~~~(~I=l&M CONSULTANTS.INC.FREQUENCY CURVES FIGURE A3.2 -"~--)"~-~1-----1 I --~]l-~-]--~-lh'-1 "--l '--~--),--) ULL OPEN~<, ,,-"-} // /'V.// GATE OPEN,NG 80 %(TVP I-.y'? 70 V//p"/ :~/-- 40 TUNNEL CLOSED 10 50 1500 1510 1520 1530 1540 HEADWATER ELEVATION (FT) 1550 1560 WATANA DIVERSION II FREE II FLOW TUNNEL RATING FIGURE A3.3 iiJ '~J h~l t~~"-~=J'~-lr-"~'lc~l -"~"~'-'l -~-'-'1 -'1 ,""~.)<'"') 60 50 40 0 0 0-.. ~ (f).... 0 30~ LaJ Cl a:: <[ :J: 0 (f) 0 20 10 ~~ -~ ~~ ~ / ~ / /' WATANA DIVERSION PRESSURE TUNNEL RATING CURVE FIGURE A3.4 1470 1480 1490 1500 1510 1520 HEADWATER ELEVATION (FT) 1530 1540 1550 • h-l 100 r-l --"}1 1 80 0 0 0- >C-en 60 LL. U ~ UJ f.:) a:: « :I: u 40en- 0 20 / / / / -------~~ SINGLE TUNNEL----"~TWO TUNNELS~~ ~ 1470 1480 1490 1500 1510 1520 HEADWATER ELEVATION (FT) WATANA DIVERSION TOTAL FACILITY RATING CURVE 1530 1540 1550 FIGURE A3.5 • 26242220181214 16 TIME (DAYS) 108642 MAXI~UM ELEVATIO~1536 FT. T'1'\.. l-V ~/-V '"" /f- -/v I I I 1 I 1480 1540 z o ~ ~1510 w ....J W 1470 1520 1530 a::1500 w ~ eX ~ o 1490 eX w ::I: MAXIMUM INFLOW 81,100 CFS INFLOW MAXIMUM OUTFLOW 80,500 CFS o 2 4 6 8 10 12 14 16 TIME (DAYS) 18 20 22 24 26 WATANA DIVERSION 50 YR.FLOOD ROUTING FIGUREA3.6 1 1 ;e-I\wcel ;°1 C~l 1 -~-'1 I'"'']1 ;~-···l ") 50 40 0 0 0- >C ~30en lL. u ~ w (!) a:« :I: u 20 C/)- 0 10 ------- ~~ ~. ~ / / ,/'/ ,// V/ 880 890 900 910 920 930 HEADWATER ELEVATION (FTl DEVIL CANYON DIVERSION RATING CURVE 940 950 960 FIGURE A3.7 • ~...,: ll. z 950 0;::ELEVATION 943.5 FT. c{ I>940w ....I W ct::930 w I- c{ ~ 0 920 c{ w :I: 910 0 2 4 6 8 10 12 14 /6 18 20 22 24 TIME (DAYS) I!""'\ I MAXIMUM INFLOW 37.800 CFS MAXIMUM OUTFLOW 37,800 CFS /~__I .-... INFLOW\ ~~ ~UTFLOW " I I I I I I -, I (f) ll. 0 20 r w (!) {ct::« :r: 0 (f)-0 10 ,- I -40 30 o o 2 4 6 B 10 12 14 TIME (DAYS) 16 18 20 22 24 DEVIL CANYON DIVERSION 25 YR.FLOOD ROUTING FIGURE A3.8 -1 ~-~1 r c ']"xl (...y.').)•..._}},-1 --1 100 I I I I I 10000010000 WATANA RESERVOIR WIND 1000 (MINUTES) WIND FOR WATANA FETCH I ~---J::::::=---~__ 10 WIND FOR DEVIL CANYON FETCH DEVIL CANYON DESIGN WIND (40 MPH.19 MIN.) 10 'I I , I I I I , ,"!,I I I " ,'I", I I I I "I , , , I I I ""I ,J I I I 20 I I \\ ~ ~t----I ~WATANA DESIGN WIND 2:50 t--~................~,/t (40 MPH.44 MIN.)---41-------------11--------------1 o I&J I&J CL. en o z WIND SPEED-DURATION CURVES FIGURE A3.9 m COl .CC'-'J _'--cO].~...']1 --]'--1---1 '----J,---1 ,--1 FIGURE A3.IO Il~~(~l "'oJ.00 u\ SCALE ~1/2 I,MILES '/."!>oo ~~-~~- / 00 / '/.':>/ / '/."!>oo ...~ 2!)OO~~ FLOW ~~~~~ ...~j 2300 ,,00 I ~ ~-' -~~ EFFECTIVE FETCH RADIALS FOR WATANA RESERVOIR ~~Q"\~~r--'~",~'~~ .So 0-----".---"~"'~~'-t,,- ~~-...~ ~~~...."'. e]"eCC C )e <'-1 ,c.--'J ~=;C:'1 '1 ,..-',--]1 --C=--1 ,~--l -~1 -']J I MILES I • D o 1/2i _ FIGUREA3.11 SCALE o DD 'C::> EFFECTIVE FETCH RADIALS FOR DEVIL CANYON RESERVOIR~ 2500 -----.<.~ ( \j ~ ~ '),<]~<1 1 '«<']'1 1 ':,~l '<1 1 1 "1 ~<l .J,tF,.1 0.2 0.3 0.4-O.G 0.8 I 2:5 4 !l 6 8 10 20 ~40 t-...."'-'"~....'"'""'I....'"r....I "'-I'..'f....~':'I..'"'k "f't-..",I I .,"'A..'"'I.""--""",r-...'II I~J t'o-IJ'I '"I';t'k :1--..1"~"')"7 ,1.'0 '"i 'It 'J "l.~1 r-....f '-!'..""r-...I 'i'-..~"I",......IJ l(~i'.~'''[1,/i'.J Ito'~""/~""~'"1"-.'llt'.."f!J II'.1/"-l'r-:,N r,i'.,,["\~,Z"f...60 ,f'...."f..../"""~'I..'"''',~,~"hl '-~I'..r-,i'..I '"Ir--...I/"I r"Y'//~,I).''J ~, 150~"""i.~,'f.....1'1.."',~r,'Jr.."l:f 1?/",lA,~['''N /;1":---''1.~'/-............50 ~~~'t..t'/.../\f..."-,'~"I'-...........~"l/:.,Ij,0 ~L /N l'j /r-...:ol e,~I'.,r-.....~"J, L ...~~~"f..,.!r-£"'"1'-..1'::'i~~r-.."'k ~I "K 1/i,,'r(f"'if if-~/'r..""l.~40)..,"f....i'-..""J "",,-{"'J",N -to I-0 '"'/./.t ./"1/I'i-"J 40~~/".,........,"'{.,.I"J ........"'i.""""It-.~~e'Ie 0 ""('I .'f.,r-...'"~l,)..,10"I ,",'"I""-.,'""r,1,r-..f.~'6'"J"II f'..../'"If ""~1 "I "I -;f..I ~i ""r ,<''r...'[~]l::J""~,~:,r:-.,I!'c 'I-...r 1 f/l b 30 """i '"I ;;;...~.'",,1/,II ........./'"r"'cl ,..:Fl ......J"/f1i-:-'~.,...J )..,I'"30~.l /"I If","",I ,r-.....r--..'""I.e''t.i",~""r>.......1 ~I t'...'1 'j=!...........,"f',J!2''''~'''/"I 'j..~\..',"J.~""""'"i?(N:'J',I ;:~,,/fi'-J /'""'f'.,~"r-..I I,~I ..,'-/I-...1 "'l:...'f-...f-.'i..,"....~/~iJ r-..f'1 §~/,"J,'"',"fI............J'q'/1,0 /","",f-..'/'..,,['l..,'f.~-§~I'I'i.~B to ~I /'{I'r"~!2 ~/qJ $f........1f...'I,"f'\"\,i,""..:t;j,i~..,I "J,20 !"/.......I /N "','"'qe:'~~"I "f'.~~.J..~rf"it,ij..:':f:.-i:j 3 IN /N,,I /"~.,"q~"r,I",/I'-..~g~,,~>-'1:.'11'~~......1'fl'J'":::::~,,~~~o "'f......// /'f.o..t:.""~,r,[I'-..,J"-,I";'N ~ll'f,'f....,/'{'f~~~~..>, I /'f~i ;"~'f~/"~~,("~,r....~~'~l :L y::....-..L'(~~);'('{~~ IOO!-r.1"--L.-~*-~-:f-,,*-J.,L~7f-J--i7:~......jJ.-/.....::u~~ULJ.~L..J..L!~~l-!-=~!;J.L..;i-.A.-~l.....O~~~~~ GENERALIZED CORRELATIONS OF SIGNIFICAf-:lT WAVE HEIGHTS (H,)WITH RELATED FACTORS (DEEP WATER CqNDITIONS) LlGfHO: 501l~Un"rt;rtMnt li9n,ncCIlI wov .....r;rt.,ln f.l1• .I)nhtd UN'rtllr..lnt minimum wil'ld duratlon,in mlnl/lu, ~In<l for 94nl/'Ollo"0'WCl'II he"llhtl indiccrflCl 'or correapondl~ wllId 'I'Iloe/li ..and fllell di.lonce FIGURE A3.12 SOURCE:REF.4 ]~~~l '--~-]-~-l =~"--,~'~-']~"~l '~"l .-'1 ····'1 "~-~--~J =~]·-1 c~/l I '1 50 so 70 20 40 30 30 40'0 30 ~O20 20 !.45 S 8 102 (l,.2 0.3 0.4 0,6 0.6 I 2 3 4 5 6 8 10 EFFECTIVE FETCH DISTANCE IN ~11.£9 0.2 0.3 0,4 o.s 0.8 -I 100.1 aoo,l 50 70 eo il: ~...."0 ~i"..""..i J 30 ~~~-g~""...>- oz i 20 GENERAL.IZED RELATIONS BETWEEN WAVE PERIODS AND RELATED FACTORS (DEEP WATER CONDITIONS) FI GURE A3.13 SOURCE:REF.4. • --=-."...V!.:l=.:······C~~-:.~~I~~1112IIC ~OTE:(4)901ld llnes in flg (a)and (b)apply to smooth embankment slope,. (b)Llnes W·l to w·e in FlS (b)apply to rlprap .lo?e,d1lcussed (n para 7 of ETL 1110.2·8.mele line.il,o corre'pond to curve.1:01.2 to 4 in F1&(al. FIGURE A3.14 SOURCE:REF.4 I"'"' I r i I- r' i r- I -l E NATURAL HILL SLOPE POTENTIAL VOLUME --~'=c==I" OF SLIDE GENERATED RESERVOIR WATER LEVEL D RESERVOIR BOTTOM x VARIABLES:Vim =SLIDE IMPACT VELOCITY WITH WATER (;j =GRAVITATIONAL CONSTANT S =DOWNSLOPE DISTANCE i =SLOPE ANGLE OF THE SLIDE PLANE ¢S =ANGLE OF DYNAMIC SLIDING FUNCTION Vo =INITIAL SLIDE VELOCITY (ASSUME =0) Vol =VOLUME OF THE SLIDE D =MEAN WATER DEPTH Cls =DENSITY OF SLIDE Cl =DENSITY OF WATER KE =KINETIC ENERGY (DIMENSIONLESS) 'TJ MAX =MAXIMUM WAVE HEIGHT X RADIAL DISTANCE FROM SLIDE H =WAVE HEIGHT AT DISTANCE X DEFINITION SKETCH FIGURE A3.J5 -]----1 -J '--'~Cl 1 --=,~-,'~-l ~---~l ~-1 --~-J ~'l 328.1 u;...... I- != >- I- (3 32.8 0-J W> W Cl-0 --'V) 15_0 10.0 100.0 150_0 3.3 10000_0 10000_0 15000_0 1000_0 DOWNSLOPE DISTANCE (FT) 500.0 1000.0 1500_0 100-0 100_050.0 1.0 10.0 100_0 V)..... ::E- >- l- i}g 10_0 w> w Cl- 0 -J V) DOWNSLOPE DISTANCE (M) SLIDE IMPACT VELOCITY FIGURE A3_16 I ~~~(~I ~---1 -~-'--l -~-'--1 -~~1 ----1 --1 --)---'1 -----1 1 ~--J .--1 v V / ,// //' /./ /./,/ ./ .......V VV /' ,/vV' VV/'V ./ ."/' ././ .//' /'/' V / ......././ /' V .......V.,- /'/'V /./ ~/,,/ 0.1 1.0 0.5 o '- l!l 0.1E ~ 0.05 0.01 0.0001 0.5 0.0005 SLIDE KINETIC ENERGY KE (DIMENSIONLESS) 1.0 50.0 10.0 0.001 0.005 0.01 SLIDE KINETIC ENERGY KE (DIMENSIONLESS) SLIDE KINETIC ENERGY VS MAXIMUM WAVE HEIGHT/AVERAGE DEPTH 50.0 0.05 100.0 0.01 0.005 0.001 0.0005 0.0001 0.1 o '-'""E ~ FIGURE A3.17 I ~~Il~I ".., I 1.0 RW =3.0 (D/)()•H =RW (q MAX) 0.8,.... I • ~,....::r:: i ~ lJJ::r:: lJJ 0.6,....iI ...J <l ~Z ~a:,...a:o =25 M =80 FT. !0 o =100 M =330 FT. u..0.4 o =150 M =490 FT.0 z o =400 M =656 FT. 0 ~ S?ia:u.. 0.2 ,.... I, 0 • 0 2000 4000 6000 8000 10000 DISTANCE FROM SOURCE (FT.) i' 0 6560 13120 19680 26240 32800 DISTANCE FROM SOURCE (FT.) r WAVE ATTENUATION FIGURE A3.18 1 """"'""Y~l '"~l ~""J "1 "-~] {\ I \__LOW L ______t\_.d':!!tLJ1!!_ jl~FIIICIL~AT ~ULL CAMCITY /-("-1'OW£1lHOU8l AND J I-- OUTLET MCIL~?rOl'iAT'"I (MATfHIIIll INl'I __-3 A~ II V ~OIITFLOW J I I \\ /~INl'LOW I'"~TFlJ1W MATCHING ~li FLOW r- 'NO~cY'i ~:'-~-_______J OP[~AT"" I'OW£IIHO*_ OUTLET MelLin, I FULL CIt_ITTiPOW[IIHOUlll:_ OUTL[T ~ACILm[S i[~ATINi (rM.TCHIIHl Il~OWI 3lI3025III20 TIllIE (DAYS) 10 I )"'-1 ~ \\/"OUT~OW IIFLOW.U , I Ii \;~\ 1~M[~llE:NCY SPLL_Y \,I OP£RATIN8 !\ !(\" \ I i \ !1/MA'N SPILLWAY opmATM ~...lPOW[RHOU~AND OUTLET FACILlTI[S AT FULL CAIW:ITY OUTLET F:a.CILITIE5 OPE~ATIN' 240 40 34lO 210 80 320 120 ~110 .. i 200 3D~251520 TIIII£IDAYSI 10 40 I.cl 10 10 110 140 110 ~'0 ....rOO 3lI~IIIIII10 T..lDAYaI 10 10 10 10 10 ~ 10 70 ... "10 I ~40 1'50 YEAR fLOOD l_~l I'IO,OOOYUR fLOOD PROBABLE MAXIMUM fLOOD PLATE A3.1 SUSITNA HYDROELECTRIC PROJECT WATANA HYDROLOGICAL DATA ALASKA POWER AUTHORITY ~il 35so251520 TIllIE (DAYS) 10 PftOBABLE MAXIMUM !fLOOD I~k rl---EME~GENCY ~PILLWAY OP£RATIiG 1\ I \ I \ \ I \ I \ ~I \ IIv-MAIN .,LLWAY.OUTLET FACII..ITI[S V ~I '-OUTLET FACILITIES AT FULL CAPillCITY 2202 1100 211. 211.; ~2114;: ~ ..2112 '"15~!2110 211. 2'" 2184 35~251520 TIIII£lDAYaI 1'10,000 YUR fLOOD 10 A !&AX,WiL 211..1 /~I f--INP"LOW [XC[[DINIOIIT~OW CAPtl/:ITY MAIN SPILLWAY OP£~AT_ (MA CHIIHl IIWLOWI / / ~OUTL[T ~ACIUTI[s AT FULL CAl'AClTY _1IHOUlII:",,~OUTLET ~ACILITJ[lJ OP[~ATIl8 IMATCHIl8 ) 1101 2114 o 2'" 2200 2111 21" ~211. S~2114 ~ '"21ftCi; 1 2110 383010"'lOIS T.-lOotrII 1'50 Yl:M !fLOOD (_Ill rtIAX 1IlIEL'2..... ,......-....;;;.i- f "'-/\ 1\ /~';I[t=r~/~___OUTl.!T1IIICLJT1l1 O'f~.II1'''''(MATCH_IIInDWlI'"o - II" 2101 2111 2100 ;211. 11114~ '"liN ii 1110 -~J ·-····~l ~...,..A···l <·~··~··l ·~-·-~1 'J 360 I Il1O "~RVOlllIIr-:/~\INFLOW I OUTFLOW SO 320 180 /""\. ilf ~~.I \40 /INFLO ·OUTFL lW 280 I 140 I "'-t.1--.~,~I ..-OUTFLOW "-30u '~ER_ANO240120~ 20/~INFLOW.OUTFLOW'i 8I!TLET FACITILIl1t:S \RATING INFLOW-~200 100 /"--r\/(EMERGANCY 10 180 ~:T 80I't-POWERHOUSE I 'r-CLOSED 0 ...-OUTFLOW 60 0 5 10 15 20 25 :so 120 IIATCHINll TillE (DAYS) INFLOW I RESERVOIR ROUTIN' 80 1'50 YR.FLOOO U/~~~I~40 I--~II'-IIAIN r'LLWAY lPERATINrG 40 ~v t RATI " 20 V '"POWER OUSE AND OUTLET FAClLITrS POWERHr-osE OPERArNIl o 0 5 10 16 20 25 :so 36 0 :so ~o 5 10 16 20 25 TIllE 10AYS)TillE (DAYS) PROBABLE MAXIMUM FLOOD RESERVOIR ROUTING 1410 1'10,000 YR.FLOOO g 1458 lrPOWERIrouSE AJD 1480 ~/OUTUT FACILITIESRESE~Olll OPERATING!14M rELEVATION;;l 1470 c '-IIA)~T~lI.r~L~':'CY ~1454 .WSEL '1456 OPERATING a 1460 \POW~II! /\1462 1450 OPERjl1lU \1450 0 5 10 15 20 25 30 ,.:'"TillE (DAYS) ~1440 \1480 RESERVOIR ROUTING~I'50 YR.FLOOD!1450 1458\"I /r-:L~LTLET FLILITIES ~NO!!> ~1458 IIAIN SPILL :r OPERATING 1420 ~Id >-IIAX.JSEL'I4551410~1454 ~ 1400 ~1462 I ALASKA POWER AUTHORITY 1460 I SUSITNA HYDROELECTRIC PftOJECT 0 5 10 16 20 26 30 35 0 5 10 I!l 20 25 :so 38 TIllE IDllI'S)TillE (DAYS)DEVIL CANYON PROBABLE MAXIMUM FLOOD RESERVOIR ROUTING HYDROLOGICAL DATA 1'10.000 YR.FLOOD •I~LATEf-------------MARCH 1982 A32 ACRES ....ERiC....'NCOftPOltAT[Q APPENDIX A4 RESERVOIR AND RIVER THERMAL STUDIES 1 -INTRODUCTION Temperature regime of the Susitna River below the dam will be greatly altered from its natural state after impoundment of the proposed reservoirs at Watana and Devil Canyon.The reservoirs will act as heat traps during summer,resulting in the river water temperature being lower in summer and higher in winter when compared to natural conditions.River water temperature is of paramount impor- tance to the fisheries,and changes in water temperatures could have serious effects on the fisheries unless controlled carefully. This appendix describes the studies conducted to analyze natural and post- project temperature regime of the Susitna River in the reach from the Watana damsite to the confluence of the Chulitna River with the Susitna River.Studies were carried out in two parts.First,a simulation of the monthly temperature regime of the proposed reservoirs was made to determine typical temperature pro- files within the reservoirs and temperature of outflows.A heat balance in a series of river reaches below the dams up to the Chulitna confluence was then made to estimate river water temperatures.The process was iterated several times by modifying power outlet levels until water temperatures in the reaches below the dams reach environmentally acceptable levels. Section 2 describes the reservoir temperature studies and Section 3 details temperature regime analysis for the river below the dams.Microclimatic effects due to post-project temperatures in the reservoirs and the lower river are out- lined in Section 4. 2 -RESERVOIR TEMPERATURE STUDIES 2.1 -Introduction The objective of the reservoir temperature studies was to determine,for repre- sentative years,the possible temperature profile within the reservoir of the selected development plan. The results from this study are used to determine the best configuration of out- let works and power intakes to achieve environmentally acceptab"e temperature levels in the river below the dams and maintain,to the extent possible,down- stream ice cover growth and stability. The model used for this study was the Reservoir Temperature Stratification of the Corps of Engineers developed by the Hydrologic Engineering Center (1).The model simulates the vertical distribution of water temperature within a reser- voir on a monthly basis using data on initial conditions,inflows,outflows, evaporation,precipitation,radiation,and average air temperature.Outflow re- quirements can be specified in terms of releases or target outflow temperatures. The model is based on the energy budget approach schematically represented in Figure A4.1. A4-1 The Reservoir Temperature Stratification model is not the most precise model available in the field for such analysis.Other models,such as the MIT model, could perhaps give more detailed and precise results.However,the amount of information required to produce this higher order of accuracy is substantial and is not available for the study area.Information that is available on climatic conditions and water temperatures for the Susitna Basin essentially dictates the .level of analyses most effective in both cost and in results.Analyses per- formed on other lakes and reservoirs indicates that the model used here provides reasonable indication of reservoir stratification and temperatures.Also,temp- erature measurements of Garibaldi Lake,in British Columbia and Bradley Lake in Alaska indicate that the general pattern of reservoir temperatures estimated by the model is similar to these observed patterns.Figures A4.2 and A4.3 show observed temperatures in Garibaldi Lake and Bradley Lake,respectively. In the model,the reservoir is divided into horizontal layers of uniform thick- ness and an energy balance between the individual layers,the atmosphere,and the inflow is performed.Outlets,at specified levels,release water to meet a given total discharge.The selection of the outlet level from which water is released is determined such that the outlet temperature is as close as possible to prescribed target temperatures. Temperature model i ng of Devil Ca nyon reservoir assumes Watana is on-l i ne and operating under normal power operation. 2.2 -Model Description (a)Model Characteristics The Reservoir Temperature Stratification model is based on an energy budget approach as represented in Figure A4.1.The principal energy balance re- lationships of conduction,mixing,diffusion,evaporation,and insolation are represented by standard equations containing the hydrological and meteorological variables required to estimate the relationship.In each equation,a regional coefficient is used to describe site specific condi- tions.These coefficients are briefly described below: -Air Temperature Coefficient is an index of energy transferred by conduc- tion due to the difference between the air and water surface tempera- ture; -Inflow Mixing Coefficient is an index of energy transferred to the inflow due to the difference between the modified inflow temperature and the temperature of each layer as the inflow descends through the reservoir; -Vertical Diffusion Coefficient is an index of energy transferred between adjacent layers due to the difference in temperature between layers; -Evaporation Coefficient is an index of energy lost from the reservoir water surface due to evaporation.The remaining energy reqUired for the heat of vaporization is obtained by cooling the air;and A4-2 ,--' f-~-' ,.... ,..,., I ,...., I ,.. ! (b) (c) (d) Insolation Coefficient is an index of energy transferred to the reservoir due to solar radiation.The solar radiation energy that is not effective in warming the reservoir is lost because of the absorption and reflection with the atmosphere and reflection at the water surface. The values chosen for these coefficients are from a similar reservoir study undertaken in Oregon.These were assumed to be the best available since no regional coefficients have as yet been determined for Southcentral Alaska. These coefficients are listed in Table A4.1. In the model,Watana and Devil Canyon reservoirs have been divided into horizontal layers of uniform thickness of five feet.This is believed to give a reasonable degree of profile definition and models approximately 500 feet in depth of the reservoir. Initial Conditions Initial reservoir elevations and storage volumes are taken from the reser- voir power simulation studies performed by Acres (Appendix A1J.These stud- ies simulate average monthly elevations and storage volumes for specified reservoir operation. September was initially considered as the starting month for modeling, since it appeared to have the most stable water surface elevations given normal power operation.However,the initial temperature profile was dif- ficult to define because of the possible large variation in heat inflow to the reservoir during the summer months and the consequent likelihood of a wide range of temperature profiles.After several trials,May was selected as the starting month,since it proved to have the most stable temperature profiles due to the depletion of the storage for power generation and low inflow volumes (hence low heat flux into the reservoir).It was found that if the model was started in September,after two years of simulation May was again in an almost isothermal condition of 39°F.Water at this temper- ature is at its maximum density,and therefore is believed to be a reason- able starting temperature based on similar studies in cold regions. Inflow Watana and Devil Canyon reservoir inflow,outflow,and maximum and mlnlmum storages were obtained from the reservoir simulation studies for reservoir operation cases (see Appendix Al)and are presented in Table A4.2.Two additional sets of inflow and out,flow corresponding to wet and dry year streamflows for Case A were used in the analyses to determine the range of operating temperatures (see Table A4.3). Meteorological Variables The determination of representative meteorological periods was based on the number of degree days of heating.It was assumed that the cold,mild,and average conditions were represented by the highest,lowest,and average number of degree days of heating.The cumulative degree days of heating A4-3 for Talkeetna and Summit Stations are given in Figures A4.4 and A4.5,re- spectively.A review of this data indicated that average conditions may be used to determine typical reservoir conditions.Average air temperatures are based on recorded temperatures at Summit and Talkeetna Stations. Average monthly precipitation figures,based on 35 years of record,for the Summit Stations were used in the analysis in the absence of good records at the damsites.Similarly,monthly evaporation data from Matanuska Valley Agricultural Experimental Stations were initially used in the model.A correlation was established between the evaporation estimates at Watana and Matanuska Station (Appendix AI)based on one-year observations at Watana. The differences between the values were small to cause any significant change in the model results,and ~he Matanuska data has ben retained in the model (Table A4.4).Solar radiation values were estimated from Corps of Engineers model data (Figure A4.6). (e)Inflow Water Temperatures and Calibration of Model Occas i ona 1 water temperature data recorded by the USGS are avail ab 1e for the Gold Creek and Cantwell gaging stations.The data is limited and not continuous over any period of time.Cantwell records were averaged to ob- tain mean monthly inflow water temperatures at Watana.Where such data was unavailable,temperatures were interpolated between available monthly val- ues.All the modeling of Watana reservoir were carried out with these syn- thesised monthly inflow water temperatures (see Table A4.5). During 1981 actual water temperature measurements were made near to Watana damsite as part of water quality monitoring program (2).This data,along with simultaneous stream discharges at Watana and climatological data at Watana and Talkeetna,were used to rerun the model to assess the sensitiv- ity of the outflow water temperatures using synthetic inflow temperature data as discussed above.The results compare very closely (Table A4.5)in- dicating the reasonableness of synthesised data in evaluating post-project conditions. Inflow temperature into Devil Canyon reservoir was assumed as that of the Watana outflow temperature with minor modifications to account for interme- diate catchment discharge and heat exchange with atmosphere in the interme- diate shallow reaches of the reservoir. (f)Model Analyses and Results With the streamflow,water temperature and other climatological data,the model was run to determine the temperature profiles in the two reservoirs for several power intake configurations.The anlyses covered different operations (Cases A and D,see Appendix Al for details)and Watana reser- voir filling sequence to define the range of downstream conditions that could be expected during construction and operation of the projects.Out- flow temperature as modeled are input to the downstream river temperature simulation model (Section 3)to determine the temperature regime in the low river because of the reservoir operations. A4-4 ,~ I I t . r Model results generally confirmed that single power intakes capable of drawing water at the lowest operating levels of the reservoirs would be unable to meet the minimum downstream temperature requirements of 42.5°F during summer (Section 3).In most months,draw off nearest to the reser- voir surface yielded outflow temperatures closest to natural temperatures. An intake structure design with such capability to draw water at or close to the surface over the entire drawdown range of the reservoir at Watana was developed but not found to be cost-effective when compared to a rela- tively simple multi-level structure with four discrete opening levels.The latter configuration in combination with a single power intake at 70 feet below the reservoir operating level of 1455 feet generally provided down- stream flow temperatures well above the minimum required during the summer months June through September. In winter,the two reservoirs reach fairly close to isothermal conditions with water temperature around 39°F.The model is relatively crude in its representation of ice formation in the reservoir and the anamodous expan- sion of water between 39°F and 32°F.This results in the inability of the model to define winter temperature profile clearly in this range (see Fi gures M.8 and M.10).If thus appears that wi nter and outflow tempera- ture will be close to 39°F no matter where the water is drawn.It is,how- ever,logical to assume that somewhat cooler water may be drawn from close the surface below the ice cover when formed.Figures A4.7 and A4.10 pre- sent monthly temperature profiles in the two reservoirs.Plates A4.1 shows general arrangement of the selected intake facility at Watana. Typical computer output for Watana and Devil Canyon temperature modeling are presented in Attachment 1. 3 -TEMPERATURE REGIME OF SUSITNA RIVER BELOW DAMS 3.1 -Introduction An in-house computer model was used to study the temperature regime of the river below the dams.The Susitna River between the damsites and the confluence of the Chulitna River is divided into representative reaches.These reaches are selected to model effectively the hydraulic characteristics of the river.A daily heat balance in this series of river reaches is simulated in the model to determine the water temperature at the downstream end of each reach.The compo- nents of heat exchange used in the balance,determined from empirical relation- ships presented by Michel (3)are shown in Figure A4.11.Several other possible sources of heat such as the conduction of heat from within the ground and heat gained or lost from ground water flows have been neglected because of their rel- atively small magnitude. The procedure involves a daily heat balance to be made stepwise starting from the upstream section of the first reach to the downstream section of the reach. The water temp~rature,calculated from the net exchange at the end of the first reach,is then used as the starting temperature of the second reach.This pro- cess was continued until water temperatures in all the reaches had been calcu- lated.At each step,the net heat exchange was added to the volume of water passing through the sections. A4-5 3.2 -Data Input The coefficients required for the computation of the components of'heat balance are insolation,emissivity and albedo.These coefficients are described below: Insolation Coefficient is an index of energy transferred to the water due to solar radiation; Emissivity Coefficient is a measure of the radiation emitted by a surface.For water,the emissivity has a very small variation with temperature;and -Albedo for Water is an index of the amount of the atmospheric radiation absorbed by the body of water. The values of the insolation,emissivity and albedo coefficients adopted for the analysis are 0.97, 0.97,and 0.1,respectively.These values are the generally accepted values for water (3). Long-term climatic records at Talkeetna and Summit collected by NOAA have been used as input in the analysis.The principal climatic parameters used in the model are average daily air temperature,ratio of recorded sunshine to maximum possible sunshine,wind speed,precipitation,barometric pressure,and relative humidity.Air temperature and the sunshine ratio are the two most important parameters of this set. In the analysis,the average daily air temperature has been assumed to be the average for the period of record (1941-70)for Talkeetna and Summit Stations. The average temperatures of the two stations are used for the upper reaches (above Devil Canyon),since this portion of the river is at an intermediate elevation and latitude.Average Talkeetna daily air temperatures are used in the lower river reach.The ratio of bright sunshine to maximum possible sunshine is taken from the average number of clear,partly cloudy,and cloudy days for each month over the period of record for Summit,and have been given values of 0.9, 0.5,and 0.2,respectively. The other climatological parameters such as wind speed,rainfall,snowfall, barometric pressure,and relative humidity are taken as the average monthly values at Summit for the period of record.The average monthly values of these variables were determined to be adequate due to their relatively small impact on the estimation of the change in water temperature. The model in this analysis does not reflect the diurnal variations in water tem- peratures.In winter,this diurnal change in the water temperature may have a significant variation about the daily mean due to the normal range in air tem- peratures. 3.3 -River Characteristics In computing the heat balance of a river system,the model requires specific inputs which describe the hydraulic characteristics of the river and the flow conditions.The study s.ection of Susitna River has been divided into 20 reaches from the Watana damsite to Talkeetna.Each of these reaches comprises several A4-6 ,- ,.. I i sub-reaches which have been surveyed (see Hydrographic Survey Report,Subtask 2.16)and is evaluated to determine relationships which would describe the mean velocity and average depth for a given discharge.The U.S.Army Corps of Engi- neers backwater program (HEC-2)has been used to obtain average depths and velo- cities at various discharges (4).A power curve fitting routine is then used to determine the relationship between mean velocity and depth flows. As explained in Section 2,monthly water temperatures at Watana were synthesized from Gold Creek and Cantwell data.These data have 'been used to generally cali- brate the model to simulate natural temperature regime in the reach above the Chulitna confluence and Watana damsite. 3.4 -Model Verification During the summer of 1981,several thermographs were installed along the river by the Alaska Department of Fish and Game (ADF&G)as part of fisheries habitat studies (see Volume 2 of main report).Processed data from selected stations are now available (Table A4.5).Simultaneous data collected at Watana is also presented in Table A4.5. No water temperature data at Watana is available for July 1981 due to a malfunc- tion of the instrument.Difficulties with monitoring equipment at Watana and Devil Canyon resulted in poor data recovery in the months July through September 1981.Thus it was decided to use the observed water temperature at river Sec- tion 61 upstream of Portage Creek for the period of July 17 to September 30, 1981 along with simultaneous flows at Gold Creek and Talkeetna climatic param- eters as input to the HEATSIM model and formulate the river stretch for over 20 miles to generate water temperatures at cross-sections 54,47 and 34.These temperatures were compared with the observed water temperatures during this period.Table A4.6 shows that on the average monthly temperatures simulated and observed compare favorably (+1°F)except for the river Section 54 which may be due to local floods,lack of-tributary flow and temperature data or gross aver- aging effects of the model procedures.However,the closeness of results sug- gest that the physical heat exchange processes are modeled reasonably and that the model may be used to estimate post-project river conditions. 3.5 -Environmental Considerations In order to establish target water temperatures to be achieved in the river reaches below the dams y extensive discussions were held with the fisheries study team and ADF&G.It was decided that a minimum temperature of around 42.5°F should be reached in the river below the dams during the predominant salmon runs between early June and mid September.Higher temperatures would,however,be advantageous during the months of July and August.To take account of model accuracy as interpreted from the calibration and verification procedures,a min- imum summer outflow temperature of 45°was set as target temperature below the dams and several iterations for power intake levels were made until target temp- eratures were achieved.The winter temperatures of 39°F will be somewhat detri- mental to the fisheries,but lower water temperatures as one progresses further downstream from the dams reduces such adverse impacts.Impacts of fisheries of the temperature regime in the river under post-project conditions are discussed in Volume 2 of the main report. A4-7 3.6 -Model Analyses and Results The calibrated model was used to determine the temperature regime of the river below the dams for the following phases of development: Filling sequence of the Watana reservoir; -Operation of the Watana development only;and -Operation of both Watana and Devil Canyon developments. The chief concern during the filling sequence of the Watana reservoir lasting over three summers is that the minimum flow releases from the reservoir will be made through the low level discharge facilities (Section IS,Volume 1 of the main report).Temperature of this discharge is estimated to be close to 39°F all through the year.HE::ATSIil1 model ing of the river reach below the darn up to the confluence of Chultina was made and results presented in Table A4.7.A river reach of over 10 miles in the Devil Canyon area between Devil Creek and just above Portage Creek are not modeled due to lack of river cross-section and inability,to model the rapids.It is estimated that the temperature regime pre- sented in Table A4.7 would be somewhat conservative. Results of the model runs are presented in Tables A4.8 to A4.11 for reservoir operations in average,wet and dry years of record as well as for Case A and D operations.Figures A4.12 to A4.17 present these results along with simulated natural water temperatures at selected rivers sections below the dams. It should be emphasized that the temperature modeling though performed on a daily basis is only a tool to predict average monthly conditions due essentially to gross discretion of all input parameters.The results are believed adequate to picture the post-project effects on the river thermal regime to assess envi- ronmental impacts.More detailed data collection program should be initiated to enable use of sophisticated modeling of the reservoir operations and river char- acteristics in later phases of work. 4 -MICROCLIMATIC CHANGES DUE TO THE IMPOUNDMENTS A prel iminary assessment of the microcl imat ic changes at and downstrearn of the proposed impoundments was made and the following sesctions discuss the findings. 4.1 -Temperature On the average the reservoir will be ice covered during the period from October through April and,although shoreline cracking may occur as a result of draw- down,the area of exposed water will be insufficient to cause any significant temperature change. During the period from May through September when the reservoir is expected to be ice free,the surface water temperature will range from 1SoF below the aver- age daily maximum to some SOF above the average daily minimum air temperatures. A4-8 - - - Temperature changes of approximately 70 percent of the difference between reser- voir surface temperature and undisturbed air temperature are expected at the shoreline,gradually diminishing to zero change at a downwind inland distance of about one mile.This means lower shoreline maximums of about 10°F and higher shoreline minimums of about 4°F,with a lower mean daily temperature of about 3°F or 4°F in the direction of the wind on any particular day.Accuracy of these temperature projections is of the order of ~2°F. From May through August,the regional prevailing wind directions are from west to southwest,and in 1980 at Watana ranged from over 40 percent of time in May, over 60 percent in June and July,to 90 percent in August.By September,the reserve flow characteristic of winter conditions sets in with winds from north to east about 55 percent of the time. The inland areas most frequently affected by these temperature changes will lie to the east and northeast of the east-west oriented reservoir from May through August,shifting to the west and southwest in September,although all other inland directions will occasionally be affected. The date of the latest frost in May will likely be earlier by some 10 days,and the date of the earliest frost in September will likely be delayed by about 7 days. 4.2 -Relative Humidity As with temperatures,no change in atmospheric moisture content is expected from October through April when the reservoir will be ice covered.However,in the open season,the high minimum temperatures should decrease the frequency of nighttime radiation fog occurrences in the downwind nearshore areas.This would be particularly true during August and September when the average relative humidity at Talkeetna exceeds 80 percent at 10 p.m.and 8 a.m.Alaskan Standard Time and is undoubtedly at or near 100 percent occasionally between those hours. 4.3 -Precipitation Again,no change to the existing precipitation regime is expected when the reservoir is ice covered.A significant change to the distribution of snow in the area over and downwind of the reservoir will occur.Because reduced fric- tional drag over the ice-covered reservoir surface as compared with the existing irregular land surface which will be flooded (even though snow covered during the colder months),snow will tend to blow and drift into large accumulations to the west and southwest of the reservoir,extending in alternating drifts and hollows a few miles downwind.Snow will also tend to blow and drift into the transmission line corridor(s)regardless of wind direction. During the open reservoir season,no change in the existing overall precipita- tion regime is expected.Changes on the micro-scale extending up to about a mile inland are expected,but these will have no effect on the hydrology of the drainage basin~As discussed in Section 1,air cooled by up to 10°F blowing inland off the reservoir in the afternoon may extend about a miie inland before being destroyed by insolation.The effect of this will be to suppress convec- tive cloud development and hence reduce the frequency of showers in that very limited area. A4-9 4.4 -Wind During the ice-covered reservoir period,prevailing north to east winds will tend to sweep the reservoir clear of snow or at least to maintain a smooth flat surface that will reduce frictional drag,as mentioned in Section 3.Increased wind speeds from those directions could be in the order of 15 to 20 percent,but that energy is likely to dissipate downwind of the dam and may be imperceptible to 5 percent stronger at Gold Creek. During the open-reservoir period,prevailing west to southwest winds will again have less frictional drag in passage over the reservoir and hence could be stronger by 15 to 20 percent at the east and northeast ends of the reservoir. Again,this energy is likely to dissipate within a few miles after the air leaves the reservoir. 4.5 -Winter Ice Fog Downstream of the dam,the river is expected to remain largely ice-free up to Talkeetna when both Watana and Devil Canyon developments are operational.When air temperatures are in the approximate range of +10 aF to -lOaF,so-called II s team fog ll is likely to form over the wider expansions of the river.This fog consists of small supercooled water drops typically in a size range of 10 to 50 microns which freeze on contact with vegetation or structures to form rime ice having a density of about 0.6.Typically,the ice thickness in such deposits is only in the order of 1/4 inch and exerts loads only sufficient to break twigs on vegetation.At temperatures colder than about -lOaF,ice crystals are likely rather than supercooled water drops. Of more concern is the potential for icing roadways,railways and runways. Based on our experience in observing this type of fog formation on Lake St. Louis,a widening of the St.Lawrence River near Montreal,it is very unlikely that these fog occurrences will extend inland more than one mile and are unlikely to affect Talkeetna airport.The railway and road systems closer to the river would be affected,possibly requiring additional salt and/or sand treatment,although this seems unlikely for the railway.Estimated frequencies of such occurrences are presented below: Winter Temperature Average Warm Cold Total Fog Days 50 20 75 A4-10 Maximum Consecutive Days 15 7 20 ""'"! \ f"< I l LIST OF REFERENCES 1.R&111 Consultants,Susitna Hydroelectric Project,Field Data Collection and Processing,December 1981. 2.U.S.Army Corps of Engineers,Hydrologic Engineering Center (1972)- Reservoirs Temperature Stratification User Manual. 3.Michel,B.(1977)Winter Regime of Rivers and Lakes Cold Regions Science and Engineering Monograph III -B1a U.S.Army Corps of Engineers Cold Regions Research and Engineering Laboratory;Hanover,New Hampshire. 4.AcresjR&M Consultants,Susitna Hydroelectric Project,Hydraulic and Ice Studies,March 1982. A4-11 LIST OF TABLES Number Title A4.l Reservoir Temperature Stratification Model Coefficients A4.2 Watana and Devil Canyon Reservoirs -Average Yearly Flows A4.3 Watana and Devil Canyon Reservoirs -Wet and Dry Year Flows A4.4 Average Monthly Evaporation Data ,- I A4.5 M.6 M.7 Comparison of Synthetic and Observed Monthly Water Temperatures at Watana Comparison of Recorded and Calculated Water Temperatures Below Devil Canyon Damsite Average Monthly Water Temperatures During Watana Reservoir Fill"ing A4.8 Stream Water Temperature for Average Year -Case A Operation A4.9 Stream Water Temperature for Wet Year -Case A Operation r\ M.lD A4.11 Stream Water Temperature for Dry Year -Case A Operation Stream Water Temperature for Average Year -Case D Operation r I L LIST OF FIGURES Number Title A4.1 Reservoir Energy Budget A4.2 Water Temperature Profiles -Garibaldi Lake A4.3 Water Temperature Profiles -Bradley Lake A4.4 Cumulative Degree Days of Heating at Talkeetna Station A4.5 Cumulative Degree Days of Heating at Summit Station A4.6 Chart of Total Daily Solar Radiation A4.7 A4.8 Watana Reservoir Temperature Profile:May-October Watana Reservoir Temperature Profile:November-April A4.9 Devil Canyon Reservoir Temerature Profile:May-October r - - - r A4.10 A4.11 A4.12 A4.13 A4.14 A4.15 A4.16 A4.17 A4.18 Dev"il Canyon Reservoir Temperature Profil e:November-Apr il Definition Sketch -Heat Balance Map Showing River Cross Sections Temperature Profile -Sheet 1 -Sheet 2 Average Monthly Temperatures at LRX Average Monthly Temperatures at LRX Average Monthly Temperature at LRX Average Monthly Temperature at LRX Average Monthly Temperature at LRX TABLE A4.1:RESERVOIR TEMPERATURE STRATIFICATION MODEL COEFFICIENTS Coefficient Value ~.Air Temperature 0.816 Inflow Mixing 0.114 Vertical Diffusion 0.043 Evaporation 0.637 Insolation 0.193 I~ ,..... f"" I ~ I r \ TABLE A4.2:WATANA AND DEVIL CANYON RESERVOIR AVERAGE YEAR FLOWS (CFS) watana Devl.l Canyon Inrlo,,"Uut low Inr lOW Uut .t low Month Case A Case A Case LJ Case A Case D Case A Case D Jan 1157 10617 7989 10812 8184 10514 7670 Feb 979 9027 6743 9195 6911 8883 6670 Mar 898 8013 6856 8156 6999 8072 6771 Apr 1113 6011 5723 6180 5892 7903 5735 May 10398 5344 5286 7177 7119 9344 7031 Jun 22922 4990 4599 8059 7668 10288 7608 Jul 20778 7022 10350 9344 12672 9070 13786 Aug 18431 9190 13933 11467 16210 8478 18685 Sep 10670 6486 10105 8115 11734 6972 11458 Oct 4513 7338 6324 8137 7123 7403 6456 Nov 2052 9186 7485 9517 7816 9425 7200 Dec 1405 11999 8909 12246 9156 11864 8457 -i -t r - TABLE A4.3:WATANA AND DEVIL CANYON RESERVOIRS - WET AND DRY YEAR FLOWS WAIA ,NA UI:.VIL ,L.I\N YUI'l Wet Year un Year Wet Year un Year Month Inflow Uutflow Intlow Uuttlow lntlow Uutt low lntlow Outflow Jan 817 10603 636 8318 10708 10708 8437 8353 Feb 755 8928 602 6872 9066 9066 6979 6742 Mar 694 7846 624 7235 8004 8004 7333 6914 Apr 718 5886 986 6285 6035 7889 6345 5842 May 12953 5318 9536 5678 8344 10606 6863 6079 Jun 27172 4825 14399 5059 8790 11052 7779 10041 Jul 25831 13375 18410 5256 16756 13763 7988 7988 Aug 19153 1402'1 16264 4585 17477 14085 6974 4707 Sep 13194 8365 7224 4399 11666 12783 5618 4474 Oct 4102 7104 2043 6450 7650 6540 6914 6914 No ....1588 9479 1021 7579 9680 9680 7703 7934 Dec 1039 12268 709 9221 12436 12436 9321 9463 TABLE A4.4:AVERAGE MONTHLY EVAPORATION DATA (INCHES) Month Evaporation(1)Years of Record May 4.63 15 June 4.58 24 July 4.09 29 August 2.99 29 September 1.83 26 (1)Data recorded at Matanuska Valley Agricultural Experiment Station r I; I- TABLE A4.5:COMPARISON OF SYNTHETIC AND OBSERVED MONTHLY WATER TEMPERATURES AT WATANA Calculated Power Inflow Temperatures Outflow Temperatures ~ynthetlc Recorded ~ynthetlc Recorded Month (oF)1981 (oF)(oF)1981 (oF) Jan 32.0 32.03 39.0 39.0 Feb 32.0 32.03 39.0 39.0 Mar 32.0 32.0 3 39.0 39.0 Apr 32.0 32.03 39.0 39.0 May 41.9 41.9 3 39.1 43.1 Jun 45.5 50.4 1 43.9 51.6 Jul 50.9 48.8 2 49.1 50.4 Aug 49.6 47.1 1 48.8 48.4 Sep 42.3 41.3 1 45.4 47.9 Oct 35.2 33.1 1 39.9 42.8 Nov 32.0 32.0 3 39.0 39.6 Dec 32.0 32.0 3 39.0 39.0 Notes: (1)Average Monthly Data Recorded at Watana (2)No Data Available -Linear Interpolation (3)No Recorded Data Available -Same as "Average" TABLE A4.6:COMPARISON OF RECORDED AND CALCULATED WATER TEMPERATURES BELOW DEVIL CANYON DAMSITE FOR NATURAL CONDITIONS (OF) LK x 61 LK x )4 LR X 47 LR X 54 Water Months Temperature Recorded Calculated Recorded Calculated Recorded Calculated Recorded Calculated Jul '81 1 Mean 50.1 49.7 48.3 49.8 49.3 50.0 50.5 50.1 Std.De".0.4 0.4 0.9 0.5 0.9 0.4 0.4 0.4 Aug '81 Mean 47.7 47.3 45.8 47.3 47.4 47.7 47.5 47.7 Std.D:l".2.6 2.6 2.3 2.6 2.4 2.6 3.3 2.6 Sep '81 Mean 42.7 42.3 41.8 42.6 41.3 42.9 43.6 43.0 Std.D:l".4.3 4.3 5.0 5.3 4.4 4.1 3.6 3.9 (1)Partial records a"eraged .~1>)1 ~.il'i )~,~>;1 A ~ .3 ~y i j "., '~---l "-eet r\-)Icc),]\r e )r ·,c 1 1 '~J '-1 it '_e r _') ~\1 } TABLE A4.7:AVERAGE MoNTHY STREAM TEMPERATURES (aF)-"CASE A OR D"OPERATION DURING WATANA RESERVOIR FILLING SEQUENCE Januarv Februarv March April May June Julv Auaust September October November December Watana 900 900 900 900 4000 4000 6000 6000 6000/3200 3200/900 900 900 Flow cfs avg=4600 avg=2050 Watana Outflow Temp 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 LRX 68 32.0 32 32 42.1 44.1 47.5 45.1 44.8 40.8 37.0 32.0 32.0 LRX 61 Flow cfs 1110 1070 1045 1070 5870 7180 8256 8228 7644 4000 1225 1150 Temp 32.0 32.0 32.0 42.1 44.1 47.5 45.5 44.8 40.8 36.5 32.0 32.0 LRX 54 32.0 32.0 32.0 43.5 44.8 48.6 46.0 45.7 41.2 36.3 32.0 32.0 LRX 47 32.0 32.0 32.0 43.3 45.3 49.1 46.4 46.2 41.4 36.3 32.0 32.0 LRX 41 32.0 32.0 32.0 43.5 45.5 49.3 46.4 46.4 41.5 36.3 32.0 32.0 LRX 34 32.0 32.0 32.0 43.9 45.9 49.8 47.1 46.9 41.7 36.3 32.0 32.0 LRX 24 32.0 32.0 32.0 44.2 46.6 50.7 47.7 47.8 41.9 36.1 32.0 32.0 LRX 21 32.0 32.0 32.0 44.4 46.9 51.4 48.0 48.4 42.3 36.1 32.0 32.0 LRX 15 32.0 32.0 32.0 45.0 47.8 52.5 48.7 49.5 42.6 36.0 32.0 32.0 LRX 9 32.0 32.0 32.0 45.1 48.6 53.4 49.5 50.4 43.0 36.0 32.0 32.0 LRX 3 32.0 32.0 32.0 45.3 51.3 54.1 60.0 51.1 43.2 36.0 32.0 32.0 Alterna- tive Watana FLow cfs 900 900 900 900 4000 4000 16000 16000 4600 2050 900 900 Temp at LRX 68 32.0 32.0 32.0 39.7 43.7 47.1 40.8 41.4 40.5 .36.5 32.0 32.0 TABLE M.8:STREAM WATER TEMPERATURE FOR AVERAGE YEAR (oF)-"CASE A"OPERATION MULTILEVEL INTAKE AT WATANA AND SINGLE LEVEL AT DEVIL CANYON Cross Section January February March April May June July Auqust September October November December LRX 68 39.0 39.0 39.0 39.0 42.3 44.8 49.6 49.3 45.7 39.7 39.0 39.0 LRX 61 38.8 38.8 39.0 39.0 42.4 44.8 49.6 49.5 45.7 39.7 39.0 38.8 LRX 54 37.9 38.3 38.7 39.2 43.0 45.5 50.2 50.2 45.9 39.6 38.3 38.3 LRX 47 37.4 37.8 38.5 39.4 43.2 46.0 50.4 50.5 46.0 39.6 38.1 37.9 LRX 41 37.2 37.8 38.5 39.4 43.3 46.2 50.5 50.7 46.0 39.6 37.9 37.8 LRX 34 36.7 37.2 38.1 39.6 43.7 46.8 50.9 51.3 46.2 39.4 37.4 37.2 LRX 27 35.8 36.5 37.9 39.7 44.2 47.5 51.3 51.8 46.4 39.4 36.9 36.5 LRX 21 35.1 36.1 37.8 39.9 44.6 8.08 51.6 52.3 46.6 39.2 36.5 36.0 LRX 15 34.0 35.2 37.4 40.1 45.1 48.9 52.2 53.2 46.8 39.0 35.8 35.1 LRX 9 32.9 34.5 37.0 40.5 45.9 49.8 52.7 54.0 46.9 38.8 35.1 34.3 LRX 3 32.2 34.0 36.7 40.6 46.2 50.5 53.1 54.7 47.1 38.8 34.5 33.6 ~ Discharge Below Devil Canyon (cfs)10514.0 8883.0 8072.0 7903.0 9344.0 10288.0 9070.0 8665.0 6972.0 7403.0 9425.0 11864.0 ~.~~1j 11 fi J ~~~.~l 1:; )")3\*; '--j '''--'-]-]'~-l 1 '--1 ~_l (7~--1 '~-J ')"~'~] TABLE A4.9:STREAM WATER TEMPERATURE FOR WET YEAR (OF)-"CASE A"OPERA lION MULTILEVEL INTAKE AT WATANA AND SINGLE LEVEL AT DEVIL CANYON Cross Section January February March April May June July Auqust September October November December LRX 68 39.0 39.0 39.0 39.0 42.3 44.8 50.2 49.5 45.1 39.6 39.0 39.0 LRX 61 38.8 38.8 39.0 39.0 42.4 45.0 50.2 49.6 45.1 39.6 39.0 38.8 LRX 54 37.9 38.3 38.7 39.2 42.8 45.5 50.5 50.0 45.3 39.4 38.3 38.3 LRX 47 37.4 37.9 38.5 39.4 43.2 46.0 50.7 50.4 45.5 39.4 37.9 37.9 LRX 41 37.2 37.8 38.5 39.4 43.2 46.2 50.9 50.4 45.5 39.4 37.9 37.8 LRX 34 36.7 37.2 38.1 39.6 43.5 46.6 51.1 50.7 45.5 39.2 37.6 37.2 LRX 27 35.8 36.7 37.9 39.7 44.1 47.3 51.4 51.3 45.7 39.0 36.9 36.7 LRX 21 35.2 36.1 37.8 39.9 44.4 47.8 51.6 51.6 45.9 39.0 36.5 36.1 LRX 15 34.0 35.4 37.4 40.1 45.0 48.7 52.0 52.2 46.0 38.8 35.8 35.2 LRX 9 33.1 34.7 37.0 40.5 45.5 49.6 52.3 52.9 46.2 38.7 35.1 34.5 LRX 3 32.2 34.2 36.7 40.6 46.0 50.4 52.7 53.2 46.2 38.5 34.7 33.8 Discharge Below Devil Canyon (cfs)10708.0 9066.0 8004.0 7889.0 10606.0 11052.0 13763.0 14085.0 12783.0 6540.0 9680.0 12436.0 TABLE A4.10:STREAM WATER TEMPERATURE FOR DRY YEAR (OF)-"CASE A"OPERATION MULTILEVEL INTAKE AT WATANA AND SINGLE LEVEL AT DEVIL CANYON Cross Section January February March April May June July Auqust September October November December LRX 68 39.0 39.0 39.0 39.0 42.3 44.4 48.9 48.6 45.3 39.7 39.0 39.0 LRX 61 38.8 38.8 39.0 39.0 42.4 44.4 48.9 48.7 45.3 39.7 38.8 38.8 LRX 54 37.8 37.9 38.7 39.4 43.2 45.3 49.5 50.0 45.7 39.6 38.3 38.1 LRX 47 37.0 37.6 38.3 39.6 43.7 45.7 49.8 50.7 45.9 39.4 37.8 37.6 LRX 41 36.9 37.4 38.3 39.6 43.9 45.9 50.0 50.9 45.9 39.4 37.6 37.4 LRX 34 36.1 36.7 38.1 39.7 44.2 46.4 50.4 51.8 46.0 39.4 37.2 36.9 LRX 27 35.1 36.0 37.8 39.9 45.0 47.3 50.9 52.9 46.4 39.2 36.5 36.0 LRX 21 34.3 35.4 37.6 40.1 45.5 47.7 51.3 53.6 46.6 39.0 36.1 35.4 LRX 15 33.1 34.5 37.0 40.5 46.4 48.7 51.8 54.9 46.9 38.8 35.2 34.3 LRX 9 32.0 33.6 36.7 40.6 47.1 49.6 52.3 55.9 47.1 38.7 34.5 33.4 LRX 3 32.0 33.1 36.5 41.0 47.7 50.4 52.9 56.7 47.3 38.7 34.0 32.7 Average Discharge 8elow Devil Canyon (cfs)8353.0 6742.0 6914.0 5842.0 6079.0 10041.0 7988.0 4707.0 4474.0 6914.0 7934.0 9463.0 .~1 ~;~,1 j 1 .~j 1 , ,.:' ;7 i! .--'1 -]c-',··,.-]-1 -1 -,,1 ]-1 1 ----I (]:-'J TABLE A4.11:STREAM WATER TEMPERATURE FOR AVERAGE YEAR (oF)-"CASE D"OPERATION MULTILEVEL INTAKE AT WATANA AND SINGLE LEVEL AT DEVIL CANYON Cross Section January February March April May June July Auqust September October November December LRX 68 39.0 39.0 39.0 39.0 39.0 48.6 52.7 50.4 44.6 39.0 39.0 39.0 LRX 61 38.8 38.8 39.0 39.0 39.0 48.6 52.7 50.4 44.6 39.0 38.8 38.8 LRX 54 37.6 37.9 38.7 39.4 39.9 49.5 52.9 50.7 44.8 38.8 38.1 37.9 LRX 47 36.9 37.4 38.3 39.6 40.3 50.0 53.1 50.9 45.0 38.8 37.8 37.4 LRX 41 36.7 37.2 38.3 39.6 40.5 50.2 53.1 51 •1 45.0 38.7 37.6 37.2 LRX 34 36.0 36.7 38.1 39.7 41.0 50.7 53.2 51.3 45.0 38.7 37.0 36.7 LRX 27 34.7 36.0 37.8 39.9 41.7 51.6 53.6 51.6 45.1 38.5 36.3 35.8 LRX 21 34.0 35.4 37.6 40.1 42.3 52.2 53.8 52.0 45.3 38.5 36.0 35.1 LRX 15 32.7 34.3 37.0 40.5 43.2 53.2 54.1 52.3 45.5 38.3 35.1 34.0 LRX 9 32.0 33.6 36.7 40.8 43.9 54.1 54.5 52.9 45.7 38.1 34.2 33.1 LRX 3 32.0 32.9 36.5 41.0 44.4 54.7 54.9 53.2 45.9 38.1 33.8 32.4 Average Discharge Below Devil Canyon (cfs)7670.0 6670.0 6771.0 5735.0 7031.0 7608.0 13786.0 18685.0 11458.0 6456.0 7200.0 8457.0 E C P R r I r r-I ~ I, D I LEGEND C :AIR-WATER CONDUCTION R =EFFECTIVE RADIATION E =EVAPORATION I =INFLOW D =DIFFUSION BETWEEN LAYERS o =OUTFLOW P =PRECIPITATION RESERVOIR ENERGY BUDGET FIGURE A4.1 ,-, 8 10 12 ,....., i - 100 I i i I ~'~-~~,~~ , I ''''F <-"''''F :-'~ E I :.1,! 150I ~ CL , W i I 0 , i ,',! I I , 200 ,,I , ~ . I ! ' !i I - -! 250'-------'-------L--...L------'----'-----L-----C.---L------"------L--'---:.....J WATER TEMPERATURE PROFILES GARI BALDI LAKE,BRITISH COLUMBIA FIGURE A4.2, r o 2 WATER TEMPERATURE,DC 4 6 8 10 r j ~ r r \., .\; :\' \I __ I ~: I I -J'------+-----1 / ; I I I I I I --'---.I , -jIT I I 1 I I I I ,,I I, .I ,-11 RP'~I\ltR i "IRI S OF ~NGlNEE RS_,;, PUB1,4SHESt T ,i r-, WATER TEMPERATURE PROFILES BRADLEY LAKE,ALASKA FIGURE A4.3 ~--l 0--']--"~-,<-----']1 --COLD NORMAL --MILD14000 13000 ~o 20000 19000 18000 8 17000 Cl ~16000 oct ~15000 12000(f) >-oct c 11000 8000 9000 w 10000w a:: Clwc w ~ ~ ...J ::J :::IE ::J U 7000 6000 5000 4000 3000 2000 1000 o JANUARY FEBRUARY MARCH CD BASED ON 65°F APRIL MAY JUNE MONTH JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER CUMULATIVE DEGREE DAYS OF HEATING AT TALKEETNA STATION FIGURE A4.4 m -~l ':--]'~l ~'"]'~-~l ~1 ~--~I ~-l ''1 --J "c"'1 -~"1 --]C-1 ,c'l 20000 19000 18000 8 17000 l?z 16000~ LJJ 15000J: 14000u. 0 13000 (/)12000>-« 0 11000 LJJ 10000 LJJ D:: 9000l? LJJ 0 8000 LJJ 7QOO> I-6000« -.J :=I 5000~ :=I U 4000 3000 2000 1000 a LEGEND /'---COLD 1/.//NORMAL /'"/~----MILD I /'./Y-_/~',.....~V-----I----..-:::V----::::::~...,.....-1---...'-I.........~---/'---10-/.........~ ""~/J,#; ,~/~ .~ ~ C7' MONTH JANUARY FEBRUARY MARCH CD BASED ON 65°F APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER CUMULATIVE DEGREE DAYS OF HEATING AT SUMMIT STATION FIGURE A4.5 • The solid curves represent total daily solar radiation on a horizontal surface at the top of the atmosphere,measured in cal. cm.-2 Shaded areas represent regions of continuous darkness • ..... -! r i -so·--6f! -70· The above data was obtained from the Smithsonian Meteorological Tables, by Robert J.List,6th revised edition,1949. -I I I I CHART OF THE TOTAL DAILY SOLAR RADIATION AT THE TOP OF THE ATMOSPHERE FIGURE A4.6 2200 CT --SEP 2180 JUL 2160 JUN r'"2140 , 2120 --MAY 2180 I""" 2080 2060 .....=2040 I.L z 20200-I-«>w ....I 2000 w 1980 1960 1940 1920 1900 t'""'" f l 1880 1860 32 34 36 38 40 42 44 46 48 50.52 54 TEMPERATURE (oF) WATANA RESERVOIR TEMPERATURE PROFILE [ii]rj AVERAGE YEAR CONDITIONS MAY THROUGH OCTOBER FIGURE A4.7 0 0 I- NOV - 0 t- DEC 0 .lht.J FEB 0 I- -MAR 0 t-API ---- O. 0 I- 0 ... I 0 0 t- O - 0 0 I- 0 - 0 0 l- I 0 t- "'?I I I I I I I I 196 198 194 204 206 220 200 208 za 202 I-« >w ....J W 218 I"""216 214 r'"I J i 212 210 !"'"' ~ i i ,.... i 192 f"'" 190- 188 186 """'", I 32 34 36 38 40 42 44 46 TEMPER,ATURE (oF) 48 50 52 54 Iti WATANA RESERVOIR TEMPERATURE PROFILE AVERAGE YEAR CONDITIONS NOVEMBER THROUGH APRIL FIGURE A4.8 1460 I""'"OCT: 1440 --5 P --AUG MAY 1420 1400 --JUL 1380 1360 1340 1320 1300 ...=.... 1280z 0 i=«>1260w ..Jw 1240 1220 1200 -1180 1160 1140 32 34 36 38 40 42 44 46 48 50 52 54 TEMPERATURE (OF) P""!' DEVIL CANYON RESERVOIR TEMPERATURE PROFILE •AVERAGE YEAR CONDITIONS MAY THROUGH OCTOBER FIGURE A4.9 5452504846444240383.63432 DEC MAR NOV I--APR - I-- I-- I-- l- I- l- I- i-I l- I- >I I I I 1 I I I 1140 1160 1300 1180 1280 1200 1360 1220 1260 1240 1380 1460 1320 1400 1340 1440 1420 I""'" [ /""'"r-: LL.. z,...0- I-- <l > W ....J W ,.... TEMPERATURE (oF) DEVIL CANYON RESERVOIR TEMPERATURE PROFILE AVERAGE YEAR CONDITIONS NOVEMBER THROUGH APRIL FIGURE A4.IO r-H Hsa Hbr H H Hr-e c p I""'" FLOW -•Hf • II =H H +H H -Hbr +H +H ±H +Hfr-net s sr a ar e c p where Hnet is the net heat transfer at the water surfaces HS is the solar radiation incident to the water surface H is the reflected solar radiationsr Ha is the atmospheric radiation incident to the water surface Har is the reflected atmospheric radiation is the back radiation or the net energy lost by the body of water through the exchange of long-wave radiation between the body of water and the atmosphere -H e Hr-c H p ".,. ~ H f is the evaporative heat exchange is the conductive heat exchange is the heat required to supply the latent heat of fusion of snow falling into the water or the heat gain from rainfall is the heat gain from flow friction losses in a river reach r-, \, \ DEFINITION SKETCH HEAT BALANCE FIGURE A4.11 1 -==.1 1 ]~'-=]1 ~l -1 ~-J 1 1 ]1 1 ):.~... FIGURE A4.12 t'.\~¢) ~/){~:0 10 fJ~i •or SCALE IN MILES 21-REFERS TO LRX 21 112-REFERS TO URX 112 NOTE \ (~ .~"L ~ MAP SHOWING RIVER CROSS SECTIONS ~ ''''-.. a ,••/\.:>,lJ' Y t.P 'c:::.. f{I lJ'~~',r ~"~.r-:;JE:.CJ'YO~i~~~"f:~{ "\\y",p~~y ft.,~Yr'-., .~:WATANA ~,G '-~4 .,,(.8 "'~~/,~'"COAL ell..');,~~":R I,~I :::l2q.~(:-~~,\") 47 DEVI~L n0,II.L ~~f~,""\........7 ,.,'"\_,0 (j~.l'107:==f==:-j..f06_£B.·,~..~~~r\..§9".~-~~.II...".1"" .~,.,-="'~. ./')0/'~/-"'~(J....' \.j \ ~~ \ ',1'1'\..~ ~ SUNSHINE ~-~1 --~}~~._]")]_1 -~~l -] <t !!! N Z WZZ<t ~i5t:o:w "W">-":H'i '"'"z"..lw If)ww "w WW 0:ow <tW "><t zw uw o:W "w w -'w -w o:W :I:-:I:<to:<to:,,0:"'0::I:00:00:00:uo:U -'u '"U UU If)U If)lOU ;;;u Q.U I I I I I I I ~I I I 0_---0_-r-O••.------0_ 6_•---Iil_____ -6 ••••6 O~_~___•6_6••0_•••....i ... °6-- -0_-no----0_ \!-0_ \!\!0 ___ \!\!......\!e=~-~-•......~~•....•••••••• LEGEND MONTH POST PROJECT NATURAL CONDITIDNS JUNE °• JULY 6 • AUG.0 • SEPT.\!.. WITH WATANA AND DEVIL CANYON DEVELOPMENTS II I I I I I I I I I I I I I I I I I I I I 60.0 ~O.O ... 0 W 0: "....<t 0:WQ. :>'w.... 0:W.... ~ 40.0 30.0 RIVER.MILES LRX SECTION 100 6 9 10 110 14 15 18 20 21 120 27 29 130 33 35 38 41 47 140 51 53 54 53 150 60 62 68 RIVER MILES LRX SECTION LONGITUDINAL THERMAL PROFILES POST PROJECT AND NATURAL CONDITIONS SHEET I OF 2 FIGURE A4.13 I ~~~{~I 1 ~--:l ~'~1 '~~dJ 1 1 ~~~--]---, '"«N z '"z z «t:o::'"",'""'''''>-'"--'''''::;""z""~~--''''Vl zi:J "''''il!i:J --''''0::"'"«'"t;:",::l>«<.>'"::l'"'"--''''-'"J:-J:«0::«0::::l0::",0::J:00::"0::00::<'>0::U --'u ::;<.>UU VlU Vl <ou ;0;<.>0.<'> 45.0 RIVER MILES LRX SECTION 150 60 62 6B53 NATURAL WATER'TEMPERATURE IS A CONSTANT 32 0 F THROUGH- THIS PERIOD WITH WATANA AND DEVIL CANYON DEVELOPMENTS LEGEND o NOVEMBER o DECEMBER X JANUARY o FEBUARY L,.MARCH 140 51 53 5441473B 130 33 352927 120 21201415IB I_~===:;;r;;-------"/~,;::::E~~I _o~~-g X_~X__X 110 x 9 10 100 6 40.0 IL 0 '"0:: ::l f- « 0:: '"0. ::E 16'" __6 f- 0:: '"~ ~ 35.0 30.0 RIVER MILES LRX SECTION 3 LONGITUDINAL THERMAL PROFILES POST PROJECT AND NATURAL CONDITIONS SHEET 2 OF 2 FIGURE A4.13 m LEGEND 6 AVERAGE YEAR o DRY YEAR o WET YEAR X NATURAL CONDITIONS /~ J~~\( !\ )VI 1~ II j II \\ //\\ ,.,In I /\I ~In c p ""p /\ 1/\ /'" 60.0 r 58.0 I"""56.0 IE""'"54.0 \ 52.0 U-50.0 0 UJ a:: ~48.0~ <t..-a:: UJa. .:::!: UJ 46.0~ r a:: UJ ~44.0~ 42.0 40.0 ~38.0 \ ~ ~36.0 34.0I!""'I 32.0 J F M A J TIME J A S o N D J AVERAGE MONTHLY TEMPERATURES CROSS SECTION LRX 68 DOWNSTREAM OF DEVIL CANYON DAM SITE FIGURE A4.14 LEGEND 6.AVERAGE YEAR o DRY YEAR o WET YEAR X NATURAL CONDITIONS T I I I i I I i i T I f IbI ~rr,I Jb'"~ J ,~\ )~~\ iV /\\ //\\ -V /\1 ~~p ".,,, 'I '\/ /\ /~'" 60.0 58.0 56.0 r"I 54.0 52.0 LL 50.0-0 !wa:: :::>48.0!ci,-,a::wa.. t " ::E 46.0w ...... a::w !ci 44.0 ~ ,.... I 42.0I ~II ,.... 40.0 I I ~38.0 I 36.0 34.0 !""'1' ( 32.0 if'>"'J F M A M J TIME J A S o N D J AVERAGE MONTHLY TEMPERATURES CROSS SECTION LRX 61 DOWNSTREAM OF PORTAGE CREEK FIGUREA4.15 [~~~f~I r r- 60.0 t-58.0 56.0 ~54.0 52.0,- 50.0 LL.......O. Wa::48.0::::l ~a::w D.. :::E 46.0w ~ a::w ~44.0~ 42.0 40.0 38.0 36.0 ,....,34.0 LEGEND 6,AVERAGE YEAR o DRY YEAR o WET YEAR X NATURAL CONDITIONS /' J/~ 1/\ VI \ I V 1~ )V \\. j //\\ V V I \'~~ ~rY'/\~11 't~~l>O- ( II \.~ V '"F M A M J J TIME A s o N D J i~. (' AVERAGE MONTHLY TEMPERATURES CROSS SECTION LRX 47 NEAR GOLD CREEK FIGURE A4.16 I~~I[~I 60.0 58.0 56.0 54.0 """" 52.0 .,...., u.50.0 0 wa: ::::l 48.0!:ia:w Q. ::::!:46.0w ~ a:w ~44.0 ~ f-t I 42.0 r"'"40.0 !.!- ,.,..38.0 l._ 36.0 34.0 32.0 LEGEND 6 AVERAGE YEAR o DRY YEAR o WET YEAR X NATURAL CONDITIONS C]) h~ )~~ II \ )'1 \\ \t iV 1/~ /I \\ V /\\/"/\1 ~ /IJ"/-\\h lV I.',~~a/'~ D ( /~, J F A J TIME J A .S o N D J AVERAGE MONTHLY TEMPERATURES CROSS SECTION LRX 21 BETWEEN CURRY CREEK AND MACKENZIE CREEK FIGURE A4.17 II~~[~ r L LEGEND 6 AVERAGE YEAR 0 DRY YEAR 0 WET YEAR X NATURAL CONDITIONS 60.0 I I 58.0 ( 56.0 54.0 ~V'/[~) 52.0 i(J 1/ 50.0u..//0 wa: ~48.0 V 1/«a:wa..12546.0 l-I ~a:Iw !<r:44.0 ~//\42.0 V /\\) 40.0 //, 38.0 \'~ V II \\)~/36.0 V /,\~ 340 V V r",""I ~~32.0 i J F M A M J J A 5 0 N D J TIME AVERAGE MONTHLY TEMPERATURES CROSS SECTION LRX 3 NEAR THE CONFLUENCE OF THE CHULITNA AND SUSITNA RIVERS FIGURE A4.18 [l~~I~I 0)1 "~C)'~"""~l ,.o~]-~]\'C<'~'l "0'1 '~7"1 "~~1 :-"'J ....~O··l 01 -!EMERGENCT SPILlWAT CHANNEL la,2/70 IH SUS'TNA HYDROELECTRIC PROJECT ALASKA POWER AUTHORITY o II 32 FEET PLAN AT EL.2205PLANATEL.2115PLANATEL,2021 -m-s==l=~'~:~d:l,~w II INTAKE 30,NO.6 20'10' INTAKE GATE BULkHEAO GATE SHUTTER-_I:"'(;:,:1 OUTLET FACILITIES INTAI<E (SEE PLATE EL.2009 . EL.2200~LL2/.'-1~;=~t=~=tl:::;+~~:r~---Tr4;;~~+l1 I I i ~.'...----=I I~ :~t:~~pw.X U',tl (2 BECTIONS) ,0 TON OVERtt£AO CRANE SECTION THRU INTAKE GATE CONTROL STRUCTURE "J"J"-'""-1/I/V [(Ii' EL..2236 HIGHEST UFTFl~il ~METAL SIDINO~'1 ~B ~STEEL COLUMN .'.1 r.:~SHRACK l-i---HYDRAULIC CYL.INDER i~ljU ~AIR VENT EL.2200 ERATING lj :F'~'~F LINKED STIEM~.'),8UlkHEADHEATEDSATEGUIDE-:-o k'f---INTAKE GATEICEBOOM SHUTTER GUIDE~91O\OOM--9 GUIDE ....~!..'.T' TRASHRACK IGUIDEF 110 1- EL.ZI29 . TRASHRACK !! (T'1PtCAL.) ~!! I' SHUTIER!l:.-,NO.1 , !! ~I~TRASHRACK SH11T'TE:R~ NO' ~;, '<.i;;; SHUTTER10 ~b-;":!NO.3 --0 In.'o,, OL.•009 _~;'••:;.";"'"",.......~,-"". o..."""""''''A ="< NORMA MAX.OP ~ EL..ZOO7 .•MINIMUM OPERATING- LEVEL EL.2045 FRONT ELEVATION SECTION A-A SECTION B-B UPSTREAM ELEVATION iU WATANA POWER INTAKE SECTIONS PLATE A4.1 ,.... I - r r jl ATTACHMENT 1 GUIDE TO VARIABLES USED IN ATTACHMENT 1r I, STORA: STRMX: STRIVIN: STCAP: NLAYER: LAYER: Initial Storage Capacity,(Ac-Ft) Maximum Storage Capacity,(Ac-Ft) Minimum Storage Capacity,(Ac-Ft) Storage Capacity Below Each Layer (Ac-Ft) Number of Layers Layer Th i ck ness,(Feet) TSTRT:Initial Temperature of Each Layer,(OF) RESERVOIR TEMPERATURES:Month End Water Temperatures of Each Layer,(OF) TA:Air Temperature,(OF) TMPIN:Inflow Water Temperature,(OF) TEMPERATURES:(OF) TPOUT:Outflow Temperature,(OF) ,.... I r ,.-, RELEASES THROUGH OUTLET:Flow Through Each Outlet and Corresponding Temperature - - nI WATANA RESERVOIR TEMPERATURE STRATIFICATION STUDY DATES:AVERAGE YEAR 4 OUTLETS;2021~2057,2093,2129 THE OUTPUT UNITS ON INFLOW AND OUTFLOW ARE IN eFS,EVAF'AND PRECIP IN INCHES~STORAGE IN AF,AND TEMPERATURE IN DEGREES F NYR IYE NPER IF'EF:MSTF:T NLAYR LAYER NOUTL NMINQ IDERV METRe IDGST ~tTt""NIT NOTL INT[F:rUL- 1 1931 12 <:-c::100 <:-·3 .,0 (J 0 0 0 4.''"'.' HREL NllO 0 ., .:l SIDRA CISA COSA STRMX STRI1N TIN TAIR [VAF'F'RCF'aMm TMAX THIN CSOUT SGLR fiEF' 6560000.1.983 1.983 9652000.5230000.-1.-1 i -1.00 -1.00 -1.<-1./'1.1:'"1'•.4 -,32,81-!.'..f,.,.H}"'t H AIR TEMP COEf INFLO MIXING COEF DIFFUSION COEF EVAP HEAT COEF HISDLATION COEF 0.816 0.114 0.;J43 O~637 0.193 QOMIN=-2.0 -2.0 -2,0 STCAF'=518960.548736.579824.611104~643920.676912.710560.746320t 782384.817728~ 855712. 894528.933328.r"l-~.."nl A 1015472~1056576.1099344,1143776.1183256.12J3664+7 j .Loc'oif t 1280448.1328688.1377216,1426640.1477536.1528992!1580416,1636224,1690240,1746144. 180.3840,1861792,1921216.1981248,2041824.2104832.216B300.2233472.23009.50.2369472. 2437600.2506752~2577824~2652352.2724672~28008001'2879072.2957S04~3036224.3117344. 3201344.3284192.3371584.3457888~3547328.3.j37.~t,4...,..,,,rt-.,.....,,"'Q"',.Ann 3918624.401:5296.,jii.7/'!.t.~ju..::..:·'"tLlCI' 4113760.4214880.4317440.4422496.4525664,4635936.4744448.4855712,49699B4!5034704. 5203232.5353424.5466992.5583536.5703008,5325456.5950a64~6079184.621049(S.i.344720. 6481920,6622080.6765168,6911216,70b0208.721217o!73670138.7524912.7635744.~7849520, 8016208.8185872.8358448,8534032,8712560.8893984.9078400.9265760.94560%,9649376. TSTRT=39,0 :.W.O .39,0 39fO 39,0 39,0 39.0 37\0 39.0 "7rl 1\~7tV 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.Ci 39 d)39tO 39,0 ~n •J9fO 39.0 39.0 39.0 39.0 39.0,;,''!~v 39.0 39.0 39.0 39,0 "'!'n II 39,0 39.0 39.0 39~.O 39.0J1i\.J 39,0 39,0 39,0 39.0 39.0 39.0 39.0 ..,.r.....39.0 39.0:37.e..} 39.0 39.0 39.0 31\0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39.0 39,0 39.0 39.0 .39,0 39'()39.0 39.0 ~",-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0J7f~' -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 ··1.0 -1,0 -1.0 -1.0 STOUT=5253752.6337988. 7262580, WATANA RESERVOIR TEMPERATURES 39.0 39.0 3'9.0 39.0 39.0 -"~j7.V 39.1 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 45.1 39.0 39,0 39.4 20 39.0 39.0 39.1 39.1 39.0 39.0 39.1 43.9 40,2 43.9 44.1 39.0 39.1 39.8 45.6 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.3 44.5 19 39.0 ""!"n "'",17.1 .<""",.Jf'" 39.0 39.0 39,1 43.3 50.0 39.0 39.1 40,1 43.8 44.1 18 .,,,"J?'.v 39.0 39,0 39,0 39.0 39.0 39.1 39.1 35.2 39,0 39.0 39.0 39.1 39,0 39.0 39.0 39.0 17 39.0 39.0 :59.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 <, !() 39.0 39.0 39.0 39.0 39,0 39.0 39.1 39.1 39.1 41.8 42.3 42.8 39.0 39.0 39~O 39.1 39fO 39.0 39.0 39.0 39.0 39,0 39.2 39.2 39.3 43.0 43.5 44.0 39.0 39.0 39.0 39.0 39.0 39.0 39.4 39.5 39.6 43,9 44.3 44.7 49.9 JO.O 50.0 39,0 39.0 39,0 39.1 39.1 39.1 39,8 39.9 40.0 43.5 43.6 43,7 44.1 44.1 44.1 3S'.1 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 -12.9 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 41,3 39,0 39.0 39,0 :(9.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 14 39!O 39.0 39,0 39.1 13 39.0 39rO 39.1 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.1 40.6 40,9 39.0 12 39,0 39~O 39fO 39.1 39.0 39,0 39.0 40.3 3S\0 39.1 3S'.O 39.0 39,0 40.1 49.1 10 ..,.""~7+U A'-;..., 'tQ.! 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39 ..0 39.0 39.0 39.0 39.0 39.0 3~.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 31.5 39.0 39.0 39.0 39.0 39.0 39.0'39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39,0 39,0 39.9 39.0 39,0 39,1 "7 39.0 39.0 39.0 39.7 ."<-'tOtl 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 35"0 3,9.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39~O 39yO 39,1 39,0 39.5 47.5 39.0 39.0 39.0 39.Zi 22.4 39,0 39.0 39.0 39.0 39.0 3S"0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 32.1 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.(39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.Q 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.1 39.1 39.1 39.1 39.1 39.1 39.1 39.1 39*2 40.2 40.4 40.6 40.9 41.1 41.4 41.8 42,1 42.6 49.6 50,2 50.6 50,9 51,1 J1.4 51.8 52.2 52.7 39tO 39.0 39~O 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39,0 39.0 39.0 39,0 39,0 39,0 39,0 39,1 39.1 39.1 39,2 39,2 39,2 39.3 39.3 39.4 40,9 41.2 41.4 41.7 42.0 42.3 42.7 43.0 43.4 48+7 49~O 4972 49.4 49.5 49.6 49.7 49~a 49.8 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39,1 39,1 39.2 39.3 39.3 39.3 39.4 39.5 39.5 39.6 39.7 41~5 41.7 42,0 42;2 42.4 42.6 42.9 43rl 43.3 44,1 44,1 44,1 44,1 44,1 44.1 44.1 44,1 44,1 7 39,0 39,0 39.0 39.0 39.4 47,0 39.0 39.0 39.0 6 39.0 39.0 39.0 39.0 46.6 39.0 39,0 39.1 40.0 .,,,~ ,)'!.v 39.1 40,7 41L1 39,0 39.0 39.0 39.0 39.0 -0 "j ..,t.) 39.0 39.0 39.0 39.0 39.0 39.0 39~O 39.0 39.0 39.9 39.0 39,0 39.0 39.1 39.1 ,;9.1 39.0 39.0 39.0 39.3 46,4 39.0 39.0 39.0 39,0 39.0 39 t 1 39 f 1 40.3 40i5 47.3 47.7 39,0 39.0 39.0 39~O 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39,0 4 39,0 47.5 48,1 48.6 39.(,39.0 39.0 40,9 41.1 41.3 44.1 44.1 44.1 39,0 39.1 3'7.0 39.0 39,0 37"2 46.0 39,0 39.0 39,1 3 39tO 39.0 39.0 '1\.,"tv.{ 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39~O 39.0 39.0 39.0 39.0 39.0 39,0 39,0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39.0 39,0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39tG 39.0 39,0 39~O 39.0 39.0 39.0 39,0 39.0 39.0 39,0 44.1 39,0 3910 39.0 39 .,~ 39.2 45,6 39.0 39.0 39,0 39.6 46,8 39.0 39.1 39.0 39.0 ,r "'"Y.Ju:' 3YfV 39tO 31\0 39.0 3S\1 40~O 46,5 39,0 39,0 39,1 40,5 44.0 39.0 39.0 37"0 39.1 39.1 39.0 31\0 39.0 39,0 39.0 39.4 39.0 ..n "t'1tV 40.4 39.0 39.0 39.1 39.9 46.1 9 39,0 7 39tO 6 39.0 39,0 39.0 39.0 39.0 39.0 39.0 3~\O 39.0 39,0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 2 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 3 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 4 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39,0 36,5 39.0 39.0 39.0 39.0 11 39,0 39.0 39.0 39,0 39,0 39.0 39,0 39.0 39.0 39.0 12 39~O 39.0 39,0 39.0 39.0 39tO 10 39,0 39.0 YEAR PER 1 1 5 39.0 39,0 .... I WATANA FLOWS AI4D TEI1PEHA TURES FOR YEAR 1!YEAR 5 6 7 8 9 10 11 12 1 2 3 .; INFLO 7943.0 10398.0 22922.0 20778.0 18431.0 10670.0 4513.0 2052.0 1405.0 1157.0 979.0 898.0 1113.0r-EVAP 2.3 4,6 4.0 4.1 3.0 1.8 0.6 0.2 0.4 0.5 1.3 2.4 ..C'..J.,J PRep 1.7 0.6 ~~3.1 3.3 ~"1+6 1.2 1.2 0.9 1.2 1.0 0.7~+L ....+0 OUTFL 7935.3 5344.0 4990.0 7022,0 9190.0 6466.0 73313.0 9186.0 11999.0 10617.0 9027,0 8013.0 6011.0 ~REGno.7935.3 5344.0 4990.0 7022.0 9190.0 6486.0 7338.0 9186.0 11999.0 10617 .0 9027+0 8013.0 6011.0 STI1X 9652000.9652{lOO.9652000.9652000.9652000,9652000.9652000.9652000.9652000.9652000.9652000,9652000. STaR 6861553,7922295.8765243.9334403.9586525.9415367,13993987,8345057.7764515+7317498.6876671.6578542. !lTI1N 5230000.5230000.5230000.5230000.5230000. 5230000.5230000.5230000.:5230000.523qoOO.5230000. 5230000. !"""\ i Tf;25.5 37t4 49.0 C'''"I ~48.6 39.9 24.0 9'!7 2.9 1.6 6.6 11.2 ".,co.JLtll "'.:it'" ~;r ...,"TMF'IN 45.2 41.9 45.5 50.9 49,6 42.3 ~C'"32.0 32.0 32.0 32.0 37,0.j..J.k ~LtV TMPMX 41.8 45.9 49.5 54.9 53.6 46.3 39.2 ~..,,36.0 36.0 36.0 36.0 41.0,jf.Q TPOUT 41.5 39.0 43.9 49.1 48.8 45.4 ...""39.0 39.0 39.0 39.0 39.0 39.0,)7+1 TMPI1N 38+0 44,9 48.5 53,9 52.6 45.3 38.0 32.v 32.0 32.0 32.0 32,0 ;B.O RELEASES THRU OUTLET 2057 DOHN 5344.0 0.0 0.0 0.0 0.0 0.0 0.0 OtO 0,0 0.0 8013,0 6011.0 GOUTL 5344,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 G.O 8013,0 6011.0 TOUR 39.0 0.0 0.0 0.0 O.V 0,0 0.0 0.0 0.0 0.0 39.0 39.0 RELEASES THRU OUTLET 2093ro.OHN 0,0 4990.0 0.0 0.0 0.0 "~0.0 0.0 0.0 9027l!O 0.0 0.0\.:itV I GOUR 0.0 4990.0 0.0 0.0 0.0 0.0 0.0-0.0 0.0 9027.0 0.0 0.0 TOUR 0.0 43.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ::.19.0 OftJ 0.0 I"""!RELEASES THRU OUTLET 2129 QOMN 0.0 0.0 7022.0 9190.0 6486.0 7338,0 9186.0 11999 fO 10617tO 0.0 O~O 0.<) o.oUTL 0.0 0.0 7022.0 9190,0 6486.0 7338+0 9186.0 11999~O 10617.0 0.0 0.0 0.0' mUTl OtO (i,0 49.1 48.8 45.4 ;rr\l"'\39,0 39.0 39.0 0.0 0",0 0.0,J 7.:1 r ~ """I '1""1 f """i , i n .I !I DEVIL CANYON RESERVOIR (TWO LEVEL INTAKE AT 70 AND 200 } TEMPERATURE STRATIFICATION STUDY DATES:AVE.YEAR,WATANA INTAKES:2021,2057,2129 THE OUTPUT UNITS ON INFLOW AND OUTFLOW ARE IN crs,EVAP AND PRECIP IN INCHES,STORAGE IN AF,AND TEMPERATURE IN DEGREES F NYR IYR NF'ER IPER l1STRT NLAYR LAYER NOUTL NlWW IDERV METRe IDOST NIC NIT NOTL INTER 1 1981 12 e-e-71 5 2 0 0 0 1 0 0 4oJ,j MREL liMO 0 3 SiDRA CISA GOSA STRMX STRMN TIN TAIR EVAP PRep GMIN TMAX TMIN CSOUT SGLR (Iff' 979800.1.983 1!983 10B2000.292000,·-1.-1.-1.00 ··1.00 -1.-1..-1.0.::;04 -1.32.81 AIR TEMP COEF INFLO MIXING tOEF DIFFUSION COEF EVAF'HEAT GOEF INSOLATION COEF 0.8105 0.114 0.043 0.637 o ...n.,.fJ.7.:i QOMIN=-1.0 -}.O STeAP=52500,56000.5'1500,63000.66500.70000.73500.77000.80500.84000. 8B800.93600.98400.103200.108000.112800.117600.122400.127200f 132000, 133300. 144600.150900.157200.163500.169800.176100.182400.188700.195000. 204MO.214200.223800.233400.243000,252600,262200.271800.281400.2'i1 000, 307500,324000.340500,357Ch'O.373500.3'10000.40,,500.423000.439500.45tiOOO. 431100.506200.531300.556400,581500.606600.631/00.0556800.681900.707000. 741100,775200.gonoa,843400,877500.9110500,945700.979800 f 1013900.1048000, 1082100. TSTRT=39.0 39,0 39.0 39~O 39.0 2;'1 ~O 39+0 39.0 209 to "0 ....,J/.V 39.0 39.0 39.0 35\0 3S"O 39,0 39.0 39.0 39.0 39f(l 39";0 3970 39.0 .,,,.39.0 39,0 39.0 70 "39.0 39.0.;,•.,.~I)...'!.v 39.0 39.0 39,0 39.0 39.0 39.0 39.0 ;39.0 39,0 3'M 39~O 39.0 39.0 39.0 39~O 39.0 -"0 "39.0 39.0 "'!r'l '";:"!.v ~J .\l 39.0 39.0 3,"()39 t l)39.0 .,,.,.39.0 39.0 39.0 39.0.j'll-V 39,0 39,0 39.0 .,,.,"-39,0 39,0 "7,.\1\3'1~O -1.0 -1.0.;l}'v .J J ~if -1.0 STOUT=204600.631700. - I 39,0 39.0 39.0 39,0 39.0 39,0 39,0 39,0 39,0 39.0 39,0 39,0 39,0 39,0 39,0 39,0 39.6 39,8 40,0 40,3 40,6 40.9 41,3 41,S DEVIL CANYON RESERVOIR TEMPER~TURES 7 8 9 10 11 12 13 14 39.0 39.0 39.0 39fO 39fV 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39,0 39,0 39.0 39,0 39.0 39,0 39.0 20 39~~ ~O "'I >.Jl'J 39.0 51.0 47.8 H' 39.(, 39.0 39,0 39.0 "7n , ·:'0 t l 47.3 39.0 17 39.0 71'n,-'7 tV 43.6 39,0 39.0 39.0 16 39.0 39.0 4'1 0"-'f ,c !.J 39.0 39.0 39.0 46,6 42,3 39.039,0 39,0 39.0 39.0 39 t 1 3S'.1 39 t 1 39.1 43.2 43.9 44.5 4~.2 4B.O 7 39.0 39.0 39,0 39.0 39,0 39,0 39,0 39.0 39,0 39,0 39,0 39.0 39,0 39.0 39.0 39,0 39.0 39.1 39.9 40,0 40.2 40.5 40,8 41,2 41,6 42,1 42,7 YUR ~R 2 3 4 5 6 1 5 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 -36.3 6 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39,0 39,1 39,1 39,2 39.2 39,3 39,4 I I. 70 oj ....f ... "Tn l\ :J7 I-V 41.9 39.0 39.0 39.0 39.0 39.0 39.0 37\0 39.v 39.0 39.0 39.0 39.0 39~O 39fO 39~O 39.0 39f~)39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39,0 39,0 39.11 39.0 39,1 41,7 39.0 39,0 39.0 39,0 39,0 39.0 "Tn .... J.7.\..' 39.0 40.6 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39,0 49.5 39.0 39.0 39,0 39,0 39,0 39.0 39.0 39.0 39~1 41,4 39.0 71',.. ·.Y!<V 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,1 41.2 44,2 39.0 39.0 39.0 44.2 39.0 39,0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39.0 40.2 47.7 39.1 40.9 39.0 "70 n~I tV 39,0 39,0 39,0 39,0 39.0 39,0 39.0 39,0 39.0 37'.0 39.0 39.0 39,0 39,0 39.0 39.0 ]9.0 39~0 40.7 44.1 39,0 39.0 39,0 39,0 39.0 39,0 40.5 39.0 39~O 39.0 39.0 39,0 39.0 39.0 39.0 39,0 39.0 39,0 39.0 44,1 39.0 39,0 39~Q 39.0 39.0 39.0 39,0 39.0 39.0 39·~7 39,0 39.0 39,0 39,0 39.0 39.0 39.0 39.0 "71'•.:.<7.iJ 39~O 39,0 39.0 39,0 39.0 39,0 39.0 39.0 46.3 39,0 40,4 44.1 39.0 39.0 "71'n..Jl.V 39.0 39~O 39.0 39.6 45.9 39.0 39.0 39.0 39.0 39,0 39,0 39,0 39.0 39.0 39.0 39,0 .,.n '".J7.V 3S\O 39.0 39.0 39.0 39~5 39.0 14.1 3S"0 39,0 39.0 14,3 39.0 39,0 39,0 16.4 39,0 40,1 40.2 44,0 44,1 39.0 39~O 39,0 39.0 39,0 39.0 39.0 39,4 45.0 39.0 39~O 16~3 39.0 39.0 39.0 39,0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39,0 39,0 39,0 39,0 39.0 39iO 39,9 43~9 39.0 39.0 39.8 43.8 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39,0 39,0 39.0 39.0 39,0 39.0 39.0 39~O 39~O 39.0 -90,6 39,0 39.0 39.0 39.0 39,0 39,0 39,0 39,0 39.0 39.0 39.0 39.0 39fCT 3S\O 39.0 39.0 39.7 39,0 39.0 39.0 39,0 39.0 39.0 33.8 39.0 39.0 39,3 39,3 44,0 44.5 39.0 39,0 46.2 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 43.7 39.0 39,0 39.0 39,0 39,0 39.0 39.0 39.0 39,0 39,0 39,0 39.0 39,0 39,0 39,0 J9.0 39,0 39,0 39.0 39.2 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.2 39.0 39.0 39,0 39.0 39.0 39.0 39,0 39,0 39.0 39,0 39.0 39.0 39.0 39,0 39.0 39,0 43,1 43,5 50.0 39.(l 39,0 43.3 43,5 45.7 46,0 39.0 39.0 39,0 39.0 39,0 39.0 42.6 39.0 40 0lir..' 39,0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39,0 39.0 39,0 39.0 39,0 39,0 39.0 39,0 39,0 39.0 39.0 39,4 43,1 45.1 39.0 39,0 39.0 39.0 39,0 39,0 39,0 39.0 39,0 39.0 39,0 39,0 39.0 39,4 39.0 39,0 39.0 39~O 39.0 39.0 39.0 42,3 49.8 39.0 39.0- 39.0 39,0 39,0 39,0 39,0 39.0 39,0 39,0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.-0 39,0 39.3 39fO 39,(! 39,0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39,0 39.0 39.0 39,0 39.0 42,7 42.9 44.6 44.6 41.9 49.7 39~O 39.0 39.0 39.0 39.0 39,0 39,0 39.0 39.1 39.1 39,1 39,1 39!O 39.0 39,0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39.0 39,0 41 fb 49.7 39,0 39,2 42,4 44.6 39.0 39.0 39,0 39,0 39.0 .3'1,039.0 39.0 39,0 39,0 39.0 39,0 39.0 2 39.0 39,0 39.0 39,0 3 39.0 39,0 39.0 39.0 4 39,0 39,0 39,0 39,0 8 39.0 39.1 41.3 49,6 9 39.0 39,2 42.2 44.5 10 39.0 39,0 39.0 39.0 11 39 +0 39fV 39~O 39.0 39,0 12 39.0 39.0 39,0 39.0 .... ! r -I r l r !"'!"I.l FLOWS AND TEMf'ERATURES FOR YEAR 1 r~ YEAR 5 6 7 8 ....10 11 12 '""1 4;~"INFlO 9033~8 7177.0 80S9.0 9344,0 11467.0 3115.0 8137.0 9517.0 12246.0 10812.0 9195.0 8156.0 6180.0 [VAP "'."T 4.6 4ft.4.1 "1 ~1.8 0.8 .'"0.4 0.5 1.3 2.4 "T E:"..::t·J ....'f-V Ut"::,,)t..J PRep 1.7 0.8 .,'-:"T ,"T "T 2,8 lt6 1.2 1.2 O.?1.2 1.0 0.7.:.t.::.;1.;1 .,jt.J OUTFl 903t.~9 9344~O 102B8.0 9070,0 8473.0 6972.0 7403.0 9425.0 11864.0 10514.0 9038.4 8143.8 7903.0 RERDQ 9018tO 9344tO 10288.0 9070.0 B478f{i 6972.0 7403.0 942510 11864.0 10514.0 8883.0 8072.0 7903.0 STMX 1082000.1082000.1082000. 1082000.1082000.1082000.1082000.1082000.1082000. 1082000.1082000.1082000. STOF,844363$710370.726649.910612.979182.1024763.1030805,1054766,1073316.1082000.1082000.977833. STMN 292000.292000.292000.292000.292000,292000.292000,292000.292000.292000.292000,292000. TEi 25~5 37f4 49,0 52+0 48,6 39t9 2470 9.7 '"n 1.6 6.6 11.2 23.5'::77 TMF'IN 4270 31\1 44f-2 49.4 49.6 46.5 39~9 39.0 39.0 39,0 7....•3geO 39.0,.;7 tV TMPHX .'.t'1 l::45.9 49.5 54.9 53t6 46.3 39.2 37.6 36~O 36.0 36.0 36.0 41.0"i..:..,~I.' TPOUT 41,5 39.0 44.0 48.8 48.8 .H:-~7...."T 39iO 39.0 39,0 39.0 39,0 39.0"1Jtv ....l!t.r TMPHN "7 F 'i 37,9 41.5 46.9 45.6 38 ..3 32.0 32 ..0 32,0 32.0 32.0 32.0 33.0 ,)0 ~.::.. RELEASES THF:U OUTLET 1 QOMN 0.0 0.0 0.0 188,0 0.0 0,0 0.0 11.0 0.0 0.0 O~O 0.0 GOUTL 0,0 0.0 0.0 188.0 0,0 ti;0 0,0 11.0 0.0 0,0 0.0 0.0 pC] TOUTL 0.0 0,0 0,0 39.4 o.v 0.0 0.0 39.0 GtO 0.0 0,0 0.0 RELEASES THF:U OUTLET 2 aOMN.-3.0 ~~-3.0 -3.0 "T "-3.0 -3,0 -3,0 -}.O -3.0 -.3.0 -3.0-J+\.i -J.V aOUTl 9344.0 10288 ..0 9070,0 8290~Ct 6972.0 7403,0 9425~O 11853,0 10514,0 90.113'.4 U143,fl 7903,0 TOUTL 39 ..0 44~O 48.8 49.0 45.3 39,7 39.0 39.0 ~".39.0 39.0 39.0.J7tV ~,""1 i l . APPENDIX A5 CLIMATIC STUDIES FOR TRANSMISSION LINES Climatic studies were carried out to determine likely wind and ice loads for preliminary design of transmission lines.Historical data and those collected in the field during the study period were used to assess potential wind and ice conditions along the selected transmission corridor.The following sections present details of the analysis undertaken and recommended loads for design. 1 -WIND LOADS 1.1 -Available Data Daily climatological data summaries were obtained from the National Oceano- graphic and Atmospheric Administration (NOAA)for the la-year period 1969 to 1978 for recording stations at Anchorage,Fairbanks,and Talkeetna along with monthly summaries of all available records (extending over 30 years).Partial records (1969 -1973)for Gulkana and Big Delta stations.Data for Summit sta- tion and Healy power station were collected by the project team in Anchorage. For a general description of climatological data availability in the basin,re- fer to the Field Data Index. The NOAA records report the fastest mile of wind,which is the maximum wind speed averaged over a 1 minute duration.Within this interval,instantaneous gust speeds can be significantly above the average value.Instantaneous gusts usually are recorded as averages over a few seconds,since this is the lower limit of response time of most measuring anemometers.NOAA does not routinely report gust speeds. Wind speed,direction,and gust speeds were recorded at six climate stations located in the Upper Susitna Basin during 1980-81 as part of the field data col- lection program.Wind and gust values were recorded every 15 minutes as aver- ages of 15 second readings.Peak gusts and values around the peak were also recorded to enable estimate gust speeds of few seconds duration.Figure A5.1 to A5.3 presents selected peak gust values and estimated duration for Watana,Devil Canyon,and Susitna Glacier stations. 1.2 -Analyses Table A5.1 presents a summary of the length of records and fastest mile speed recorded at the different stations.The highest wind speed of 75 mph was re- corded at Big Delta.At the Healy power plant,a high of 70 mph was observed in a 1.5 year period of record.Several records petween 50 and 60 mph were also observed in this short period at Healy.. It has not been possible to carry out a regional frequency analysis to estimate wind speeds along the transmission corridor because of limited records at repre- sentative stations along the corridor.However,from a review of the available A5-1 data.a wind speed (1 minute value)of about 100 mph along the corridor was estimated to have a return period of 1 in 30 years.Corresponding gust speed was estimated around 150 mph.These values are considered appropriate for use in preliminary transmission line design. 2 -ICE LOADS 2.1 -Freezing Precipitation (a)Available Data Data collected from NOAA on freezing precipitation amount included 3 hourly records for the period 1969 -1978 for Anchorage and Fairbanks.Records at Gulkana.Bid Delta.and Talkeetna stations were available for shorter dura- tions between 1969 and 1972. Standard freezing precipitation equipment consisting of 8-inch square steel plates mounted on steel pipes were installed at Watana and Denali climate stations to record such precipitation amounts (1).The winter of 1980 - 1981 was unusually mild and no freezing precipitation was recorded at these stations.While some icing may have occurred but gone unrecorded because of limited site visits by the data recording team.from discussion with the Watana camp residents.it is gathered that no icing actually occurred during the season. (b)Analyses Short records at the Gulkana,Big Delta,and Talkeetna stations could not be used in any analyses except as check values.A frequency plot of Fair- banks and Anchorage records is presented in Figure A5.4.This indicates that an average I-inch ice accumulation may be expected as a 1 in 15-year event. 2.2 -In-Cloud Icing In-cloud ice accretion on transmission lines is a function of supercooling of the cloud moisture,cloud type,wind speed temperatures,etc.Based on previous experience in northern climate,a typical combination of climatic conditions conducive to in-cloud icing was identified.Such data were available from NOAA only for Anchorage and Fairbanks stations,and were obtained for a la-year period (1969 to 1978). In order to measure in-cloud lClng in the field,two methods were used.The first consisted of a 12-foot length of I-inch diameter aluminum (steel core) cables mounted about 8 to 10 feet above ground between upright posts.As in- cloud icing caused rime to build up on the cables,its thickness was to be meas- ured.The second method continuously measured amounts of atmospheric icing. The set up consisted of a Rosemount ice detector which sensed the presence of ice (sensitivity =0.025 inches)and produced an output electrical signal suit- able for automatic recording in a counter.The unit contains a built-in heater which automatically de-ices the detector each time an ice warning signal is A5-2 i""" I - r- I -i l i produced,thus preparing the detector for another ice-sensing cycle.This device is designed for use as an automatic control mechanism to de-ice fixed antenna installations.For our purposes,the unit was connected to a counter which totaled the number of times that the detector indicated an occurrence of icing.The counter was then read during regular monthly site visits. As with the freezing rain measuring setup,no icing was observed on the sections of transmission line set up during the winter of 1980-81. The ice detector unit was located near the Watana camp because it required ac power supply from the camp generator for operation.The system was planned to automatically record icing events.Unfortunately,the system could not perform satisfactorily because of frequent power outages at the camp for daily servicing or changeover.Each power interruption was recorded as a count in the ice de- tector,making initial observations useless.As a solution to this problem,an attempt was made to keep a count of the number of power interruptions at the camp.The intent was that these would then be subtracted from the counts re- corded by the detector,with the balance of the counts being the number of icings occurring.The generator operator was enlisted to record the timing of each power outage. Keeping accurate track of the number of power interruptions was a more difficult task than originally envisioned.Sometimes a shut-off might not be recorded,or during a shut-off the generator might kick on and off a few times,thus causing multiple icing counts to be recorded but not necessarily logged by the operator. For this reason,the detector results are suspect.However,the winter of 1980- 81 was a dry one,and judging by observation of the icing cable and plate,it is suspected that little if any icing actually did occur during the winter at the observation sites.This suspicion is supported by discussion with long-term resi dents of the Watana camp.~Ihen the camp mai ntenance men and/or cooks were asked at frequent intervals during visits to the camp,none reported any freez- ing rain or icing conditions. Without field data,no analytical method or modeling could be applied to esti- mate in-cloud icing on the transmission corridor. 2.3 -Snow Creep Snow creep is the slow movement of a snowpack downhill.It is most prevalent on slopes of 25°and 35°.Above this angle the movement of snow will more likely occur as an avalanche~ During 1973 in Southeast Alaska,several transmission line towers servlclng the Snettisham Hydroelectric Project failed for a reason unknown but theorized to be high winds or snow creep pushing the tower off its base.In 1974 and 1975.the Corps of Engineers installed a system to evaluate the amount of force that snow creep could exert on a transmission line ~ower (Meyer,1978,[2J).These tests measured a maximum pressure of 460 lbs/ft with a 71-inch depth of 37 percent- density snow,but concluded that snow creep forces did not contribute to the failure of the tower. A5-3 Even though not judged to be a factor in the Snettisham failures,snow creep was considered to be a potentially large force in Alaska.To try to determine the magnitude for the transmission line servicing the Susitna Project,two installa- tions were set up to measure snow creep forces.To simulate conditions at the actual transmission line towers as closely as possible,24-inch diameter, 3/8-inch thick tubular steel sections were placed on the chosen slopes along the potential transmission corridor.These sections were allowed to slide over the ground and were held from sliding downhill by a cable attached to a dynamometer. The dynamometer measured the force in the cable which was needed to support the pipe section.If creep of the snowpack did occur,the force would have been transmitted to the pi pe section,cable and dynamometer where its maximum woul d have been recorded by a maximum-recording gauge (1). The two setups were installed in January 1981,one near Watana and the other near Devil Canyon damsites.During setup,the snowpack was unavoidably dis- turbed.Partly because of this and also because of the lack of abundant snow during the winter,no usable snow creep data were collected.Some readings were taken,however,which indicated the type of base readings that may occur on the instrument with no snow (because of thermal,wind,or other stresses).1981 observations are summarized in Table A5.2. 3 -COMBINED LOADS Where historical events are reported,only 3-hour average and 4-hour maximum wind speeds are reported.For Anchorage and Fairbanks,these values are as follows: Maximum Wind Speed Durinq Icinq mph 3-hour average 1 hour average Anchorage 10 21 Fa irbanks 12 25 These values are recorded over a 10-year period during occurrences of freezing precipitation.There is no reliable method to extrapolate wind speeds from 3-hour averages to shorter duration wind and gust speeds.A conservative approach would suggest using wind speed values in conjunction with I-inch diameter ice buildup for preliminary designs.A specific gravity of 0.9 may be assigned to the ice (clear or glaze associated with freezing rain). 4 -DISCUSSION AND RECOMMENDED DESIGN LOADS Discussions were held with Commonwealth Associates Incorporated,who are respon- sible for the detailed design of the transmission line interties between Willow and Healy,with the COE,Retherford Associates,and local utilities in the Railbelt on the general design parameters of the transmission lines.Based on these and the analyses discussed above,the following set of parameters were chosen for the preliminary design of the Susitna transmission lines: A5-4 ,...., Mj . ~ i I .....,. I • I .~, r I '~, rrii njI NESC heavy loading 1/2-inch with 40 mph wind;or -Extreme wind of 140 mph without any ice;or -Extreme ice of I-inch with 40 mph wind. A5-5 REFERENCES 1. 2. R&M Consultants,Susitna Hydroelectric Project,Field Data Collection and Processing,December 1981. Meyers,R.,Snow Creep Investigat.ions in Southeast Alaska,Cold Regions Specialty Conference,Anchorage,Alaska,May 1978,Published by American Society of Civil Engineers. A5-6 LIST OF TABLES r Number A5.1 Titl e Recorded Wind Data -i ) \ r t - - -: A5.2 Snow Creep Observations 1981 - 1 ~,, I""'" i !""" I ~ I t -! LIST OF FIGURES Number Title A5.1 Gust Velocities -Watana Station A5.2 Gust Vel ociti es Devil Canyon Station A5.3 Gust Velocities -Susitna Glacier Station A5.4 Frequency Curve for Freezing Precipitation Amounts ...... -I Y, r I"""" i, TABLE A5.1:RECORDED WIND DATA Gust (15 Maximum Wind Period of Speed Recorded Station Record Years min.avg.)Month/Year mph/min.avg Month/Year Anchorage 24 N/A N/A 61 Jan 1971 Big Delta 23 N/A N/A 74 -- Fairbanks 26 N/A N/A 40 Jun 1974 Gulkana 15 N/A N/A 52 Jan 1971 Healy Power Plant 1-1/2 N/A N/A 70 Jan 1979 Summit 15 N/A N/A 48 Mar 1971 Talkeetna 10 N/A N/A 38 Jan 1972 Watana 1 37 May 1980 35 May 1980 Devil Canyon 1 31 Apr 1980 19 Nov 1981 Susitna Glacier 1 73 Jan 1981 64 Jan 1981 N/A -Not Available TABLE A5.2:SNOW CREEP OBSERVATIONS 1981 MaXlmum Dynomometer Snow De)th Date Read ing (lbs)(feet Devil Canyon Site 2-25-81 1.5 3-5-81 515 2.5 3-31-81 605 10-2-81 0.0 11-3-81 400 1.0 12-3-81 480 2.5 Tsusena Butte Site (Watana) Comments Installation date.Dyno reading 400 lbs. Last reading of season. First visit of season.Dyno reads 340 lbs. Dry snow,no ice layers or depth hoar. 2-26-81 4-2-81 10-2-81 11-3-81 12-2-81 500 480 520 2.5 0.0 0.5 0.5 2.0 Installation date.Dyno reading 440 lbs. No snow around cylinder.Last reading of season. First visit of season.Dyno reads 400 lbs. Hard wind packed snow. Dry snow.Eight inches of depth hoar.lee crusts at eight inches and an surface. ,.... 10« (HdW)A.iI:1013/\.ism)wnWIX'I1W o Q o 00 oto o '<t o N o W 0:: ::::> C) l..L.. 0 I rt) + ii5 (ij I ~Ql I >-w Iexz ::::!!:~I z !"'"'\~0I I (ij I- m 10 « IIi +l- I"""mwl/)u..W I-«::>Zz ::::!!:«r-I- z « 0 ~ I-,....0 ~m t a::ww ["l/)I-L m 0 U,...u..0 0 .....J w W ::::!!:> I- r-IO I-m I :J C) ,....\ ! ~ 0 rt) I,... o '<t o N Q o I""" l (S/~)AlI:J013/\lsn~wn~IX'l1~ N If) <t r -,! og (HdW)AlI:>013/\lSn~WnWIX"1W o lD o W 0:: ::::> C> lL. z 0 I-«I- !Q en co +~en Zw0>-.......J :::)>-:::)Z Z-:> i «uz 0 ..J.... 0 <[>>Wlr I<J 0en aI 0 en LL.w 0 I- I<J U~0......J Ii)W I > I-en::::> (!) \----'-------L.._----1...--1~ I \----------------------------.----.----r----l~ + r ,..... I r ,..... j t ,..... I I r I (S/W)A11:>013/\lSn~wnWIX"1V11r ov o If) o (\J o o t.i r ~ 10« (HdW)A.l.IJ013A .l.Sm)wnwlx'O'~ o Q oco o CD o ~ o N o wa:: ::::> Q LL 1""". i 0tCD I + r I l',Zl I 0 ,.....I ti I .... I en 0,PO r I +0:0 ex;If)wCXlWCXlC7lC7lII-UC7l::l..J I z « if I ~...Jll.C) ct I z~0 « ~Z«....,....0 >a:en \w ::::l " If)en\a:l ~0 -,\lL.en \0 w \w .... \~U I""'""\~0 0 ...J,PO WI I > ""'"I .... r I en i \I ::::l C),...I,I I 0 CD I ~~ (S/W)A.l.IJ013A .l.Sml wnwlx'O'w o o ""'"I "'·"""",*,"ti""'~"'" r LI "': 30N30330X3 .:10 A..L 11 '8't'80~d %In< 'Cl'.I1J-,~s;01 O~0'"OS;09 OL 08 06 II: ::>,0'0 Cl u.. """Il xj enr... I z ~ I 0 !~I cl z °1 0 ~I /I ~~ \V I 1"0 [3 a:: :I:<:.>0 "'"""~ILlIa:I x ~0 a. en I-(,!)Z ~::>Z0 E :::E l'<[N I z UJ 0 UJ ,....li a: l-ll..~ I 0 a:I1J II:0D..U.-ClI l / z N UJ I I1J >I1J a:II: r-/0',....~ I 0 [ I >-0 /zr-ILlIi t /~~ 0/IJJa: !"""l::u.. I I " !"""S; ,9 L 001 OS;O~0'S;~,.,- (S~'t'3A.Nil OOI~3d N~n.L3~ ~~o(z X ID IJJ U 0::: '"Z -IJJ c(~ ..J I I X 0