HomeMy WebLinkAboutAPA179DATE DUE
II I..
~-u~~~7'i':"-_--J--~-~-+----
-:ir l ntn.·
-;;.-,.IT I,;J~·V-u ..
HIGHSMl TH 45-220
lIAR i'l 1982
Rr
TTl<
I '-IdS
,S8
I1d3
179
~~W',"lff~h~RAu.s./.\~}fIE'~~I erio
\.ANCHORAGE,ALASKA )
J:jSLJ,),)/~
)')0
SUSITNA HYDROELECTRIC PROJECT
FEASIBILITY REPORT
VOLUME 4
APPENDIX A
HYDROLOGICAL
STUDIES
FINAL DRAFT
Prepared by:ARLIS
•
Alaska Resources
Library &Information Services
Anchorage Alaska
ALASKA POWER AUTHORITY
,
I '.
\
-,
A2 -Probable Maximum Flood A2-I
-...
r
-r
i
SUSITNA HYDROELECTRIC PROJECT
APPENDIX A
TABLE OF CONTENTS
APPENDIX
Al -Water Resources Studies
A3 -Reservoir Hydraulic Studies
AI-I
A3-I
-I
i
r
r
-
A4 -Reservoir and River Thermal Studies A4-I
A5 -Climatic Studies for Transmission Lines A5-I
r
APPENDIX Al
WATER RESOURCES STUDIES
1 -STREAMFLOW EXTENSION
Historical streamflow data is available for several gaging stations on the
Susitna River and its tributaries.The longest period of record is available
for the station at Gold Creek (32 years from September 1949).At other sta-
tions,the record length varies from 8 to 25 years.
An Acres'in-house computer program has been used for filling in the incomplete
streamflow d at a sets.It is based on the program FILL!N developed by the Texas
Water Development Board (December 1970)(1).The procedure adopted is a multi-
site regression technique which analyzes monthly time series data (streamflow,
rainfall or evaporation data)and fills in missing portions in the incomplete
records.The program evaluates statistical parameters which characterize the
data set (i.e.,seasonal means,seasonal standard deviations,lag-one auto-
correlation coefficients and multi-site spatial correlation coefficients)and
creates a filled-in data set in which these statistical parameters are pre-
served.For the analysis,all streamflow data up to September 1979 have been
used (30 years data at Gold Creek).
A brief description of the steps involved in the program is presented in the
following sections.
(a)Program Uescription
The fill in procedure comprises the following steps:
The data sets pertaining to individual sites are arranged in descending
order of the length of record in each set.
-Sample skewness is removed by a Gaussian transformation.The procedure
chosen is a logastitimic transformation of each data item.
-The mean and standard deviation of the transformed data sets are com-
puted.
-Each value of the transformed data is normalized by subtracting the
monthly mean "and dividing the remainder by the monthly standard devia-
tion.This transformation renders the time series data stationary to the
second order.
-The 1 inear pr"edictor equations for each site are estimated.The depen-
dent variable at time step i at site s is a function of time step i,and
variables at several other sites.
The general form of the predictor equation.i is:
s=.I:
k=1 +1
s-1+.I:
k=l
Al-l
bs,k +e s,
ARLIS
Alaska Resources
Library &Information SerVices
Anchorage,Alaska
where As k and bs k are the regression coefficients and
e s i is a random Gaussian process with the covariance function equal
to'the multiple correlation coefficient matrix.
-The predictor equations are used to synthesize data for the gaps.The
voids are filled in a reverse direction going from the denser to the
sparser data.
-The synthesized values are adjusted in order to avoid abrupt transitions
which sometimes occur at the interfaces of the synthesized and available
data.This smoothing procedure uses the left-hand edge of the gap to set
up a linear corrector which introduces it into the analysis as a maximum
probable upper (or lower)bound of the process.
-The inverse transforms are carried out on the data to convert it back to
the original units.
The fill-in procedure preserves the statistical parameters of the original
time series:mean,variance,autocorrelation and cross correlation co-
efficients.
(b)Data and Computer Runs
Mean monthly flow data obtained from the USGS was used as input.A subrou-
tine which interfaces the FILLIN program with the USGS data format was set
up by Acres.Table Al.l shows the available historical data at the gaging
stations.Tables A1.2 to A1.9 summarize infilled recorded data.All the
missing data are identified as -1 for computation reasons.
Records of all eight gaging sites were used in the first model run.Lack
of overlapping data between Cantwell,Chulitna and Susitna stations result-
ed in a zero correlation which aborted the fi11-in procedure.The exten-
sion of data for the Susitna station was therefore,carried out without the
Cantwell and Chulitna station records.
The mean and standard deviation of the filled data sets (Table Al.lO)are
within the limits of the confidence interval of 5 percent.The lag-one
correlation coefficients show similar limits (Table Al.ll)for the unfilled
data sets.
The spatial correlation matrix shows a good correspondence of the values in
winter and fall and a fair correspondence in spr-ing and summer.Spatial
correlation coefficients for utilized and filled data sets are given in
Tables Al.12 and Al.13,respectively.Filled-in data sets for the seven
gaging sites are presented in Tables Al.14 to Al.2l.
The fill-in procedure used appears superior to other existing regression
procedures which have difficulties in preserving autocorrelation and spat-
ial correlation.Probably the smoothing procedure used in this program has
an important contribution to the fitness of the model.
Al-2
r-
I,
(c)Estimate of Streamflow at Damsites On the Susitna River
Estimate of mean monthly flows at the sites was made adopting a linear
drainage area relationship between the gaging stations and the damsites.
For Denali site,such a relation could not be used due to lower unit runoff
from the lake louise area.Since the local area at the damsite is similar
to that below Cantwell station,the streamflow was directly related to the
unit flows measured at Gold Creek,Cantwell and Denali gages.The follow-
ing relationships were used to calculate streamflows at the damsites:
QDC 0.827 (Qg Qc )+Qc
QHDC =0.802 (Qg Qc )+Qcr-Qw =0.515 (Qg Qc )+Qc
QSIlI =0.042 (Qg lQc)+Qc
Qv =Qc
QD 0.153 (Qg =lJc )+Qd
OM 0.429 (Qc Qd)+Q
where:Q Streamflow in !t3/~2c-A =Drainage area , n m,
-
,....
i
-
(d)
Subscript DC,HDC,W,SIll,V,D and M stand for damsites at Devil Canyon,
High Devil Canyon,Watana,Susitna III,Vee,Denali and Maclaren,respec-
tively.
Subscripts g,c,and d stand for gaging stations at Gold Creek,Cantwell
and Denali,respectively.
The computed mean monthly flows for the 30 year period at each damsite are
given in Tables A1.22 to Al.28 and were used in estimating the hydroelec-
tricenergy potential of the sites and in selection of the best Susitna
developments (1981).
Analysis of Watana Streamflow Records
An automatic water level recorder was established two miles downstream of
the proposed Watana damsite in June 1980.A river discharge rating curve
was developed based on ten discharge measurements taken during the 1980 and
1981 summers.
Estimated daily streamflow has been calculated for the record period along
with peak instantaneous discharges (see Reference Report 2).Data is
availab~e only for the period with open water in the river (June through
September)•
The observed data at Watana along with simultaneous records observed at
Cantwell and Gold Creek stations were analyzed in order to verify estimates
of historical flow at the damsite (section (c)above).Table Al.29 com-
pares the observed and calculated monthly flows at Watana for the two peri-
ods of record.It may be noted that the observed flow is somewhat hi gher
than that calculated (average 4 percent).The results essentially confirm
the historical estimates made in section (c).However,it is recommended
that the streamflow gaging be continued at the Watana station to verify and
improve the flow estimates used in this study with longer-term records.
I
AI-3
2 -EVAPORATION STUDIES
Evaporation from the proposed Watana and Devil Canyon Reservoirs has been evalu-
ated to determine its significance.Evaporation is influenced by air and water
temperatures,wind,atmospheric pressure,and dissolved solids within the water.
However,the evaluation of these factors'effects on evaporation is difficult
because of their interdependence on each other.Consequently,more simplified
methods were preferred and have been utilized to estimate evaporation losses
from the two reservoirs.
Evaporation pans are widely used for directly measuring evaporation.Unfortun-
ately,there are few evaporation pans in Alaska.None were located within the
upper Susitna River basin until a U.S.Weather Bureau Class A pan was installed
near the proposed Watana damsite in May 1981.Evaporation pans near the Susitna
River basin include one located at McKinley Park,with 12 years of data (Table
A1.30),and one at the Matanuska Agricultural Experiment Station,with 31 years
of data (Table A1.31).Evaporation is reported as total evaporation,with daily
changes in water level adjusted for precipitation.
The Matanuska station has a long-term average evaporation of 17.94 inches for
May through Septernber (3).In 1981,the evaporation at Matanuska was slightly
below average at 15.34 inches.During this same period in 1981,the Watana pan
recorded 14.85 inches of evaporation.A review of the monthly totals at the two
stations (Table A1.32)showed a close comparison,with Matanuska slightly higher
than Watana during all months except June.The June anomaly,with Watana's 5.15
inches exceeding Matanuska's 4.24 inches,cannot be explained.The climatic
data for all three sites (including McKinley)are compared in Table A1.34,which
shows similar trends in the climatic parameters for each of the months.
Comparison was also attempted between the McKinley pan and the Watana pan.His-
torically,McKinley data are only available for June,July and August although
some evaporation does occur during May and September.For this reason,June
through August val ues were the only ones compared.McKi nl ey has along-term
average evaporation of 9.54 inches for June through August.This compares to a
long-term June through August evaporation at Matanuska of 11.58 inches.A
similar difference occurred during 1981 with McKinley recording 7.30 inches and
Matanuska recording 9.31 inches.During this same period,Watana recorded 9.42
inches.
Evapotranspiration estimates for Alaskan locations have been computed by Patric
and Black (4).Estimates for locations in and near the Susitna River basin are
summarized in Table A1.35.Patric and Black used the Thornthwaite equation (5)
to compute potential evapotranspiration,which is the water loss from fully
vegetated land surfaces always abundantly supplied with soil moisture.The
Thornthwaite equation uses only temperature data to estimate the potential evap-
ortranspiration (PET),so estimates could be made for any station with monthly
temperature values.
Al-4
-
-
-
Hargreaves (6)indicated a high degree of correlation between U.S.Weather
Bureau pan evaporation and vegetation consumptive use.The potential evapo-
transpiration estimate at Matanuska is about 10 percent higher than the longterm
average pan evaporation for May through September.Patrie and Black compared
monthly potential evapotranspiration at the University Experiment Station in
Fairbanks,using the Penman (7)and Thornthwaite equations and pan evaporation.
The annual potential evapotranspiration agreed fairly closely (Penman,15.70
inches;evaporation pan,18.68 inches;Thornthwaite,17.87 inches).Comparisons
from other regions usually report Thornthwaite estimates as being higher than
other estimates.In the comparison at the University Experiment Station in
Fairbanks,relative humidity strongly influenced the Penman and evaporation pan
estimates of potential evapotranspiration,but did not affect the Thornthwaite
estimate,which is dependent solely on temperature.Based on these limited
data,it would appear that the Thornthwaite estimates from Patric and Black
would be slightly higher than pan evaporation estimates.
Patric and Black compared estimates of PET between high-elevation stations and
nearby low-elevation sites.Their data suggested a decrease of about 1 inch of
PET per year per 500 feet of elevation increases.As there is about a 2,000-
foot difference in elevation between the Matanuska pan and the maximum pool
level at Watana Reservoir,this would result in a difference of 4 inches of
annual PET between the two sites.Similarly,the 1200-foot elevation difference
between Matanuska and the full Devil Canyon Reservoir would result in a differ-
ence of about 2.4 inches of annual PET.The Thornthwaite estimate of PET at
Matanuska is 19.76 inches.Using the elevation relationship,this results in an
estimate of 15.8 inches of annual PET at Watana,and 17.4 inches at Devil
Canyon.
Comparing the Thornthwaite estimate of PET to the actual historic evaporation at
Matanuska,it is seen that the evaporation is less than the PET estimate.Thus
the estimate of evaporation at Watana should be reduced by a similar propor-
tion.
Estimated pan evaporation at Watana =
Pan evaporation at Matanuska
PET at Matanuska [PET at WatanaJ
-
=(17.94/19.76)(15.8)
=14.3 inches evaporation per year
Similarly,Devil Canyon's estimated pan evaporation would be reduced from 17.4
to 15.8 inches per year.The monthly distribution of evaporation at both sites
is assumed to follow that at the Matanuska station.
The rate of evaporation from small areas is greater than that from large areas
Consequently,a pan coefficient of 0.7 is normally recommended for converting
from pan evaporation to lake or reservoir evaporation,although observed values
have been reported to vary from 0.6 to 0.8.The resulting monthly evaporation
estimates are tabulated in Table A1.36,along with nearby monthly air tempera-
tures for comparison.
Al-5
3 -RESERVOIR OPERATION FOR POWER GENERATION
3.1 -Introduction
The energy potential of the Susitna Hydroelectric developments has been assessed
using a monthly energy simulation model.This model determines the energy pro-
duction given historical streamflow at the damsites and physical characteristics
of the sites,such as storage-elevation relationships and tailwater levels.
The monthly simulation has been carried out for the 32 years of streamflow re-
cords available for the Sustina River at Gold Creek.Streamflows at the various
damsites have been synthesized using a statistical and drainage area proration
technique as explained in Section 1.Streamflow data at the damsites are given
in Section 1.The storage-elevation relationships are presented in Volume 3 of
main report.Tailwater discharge relationships were developed based on field
discharge and stage measurements and river cross section surveys (see Reference
Reports 2 and 8).
Model runs for each of the power developments identified in the earlier phases
of this study have been made to assess the most desirable development.This
analysis is reported in detail in the Development Selection Report,Section 8.
Only the later model analyses for the selected Watana and Devil Canyon develop-
ments are reported here.
3.2 -Simulation Model
The model is essentially a monthly simulation of reservoir operation under his-
torical streamflow conditions and physical parameters of the development These
include installed capacity,dam height,and tailwater elevations.The model was
used to determine optimum drawdown and dam height configuration for Watana.
Devil Canyon's maximum water level is set by average tailwater level for Watana.
Optimum drawdown at Devil Canyon has also been addressed using the model.
The model is driven by three criteria.They are,in order of their applica-
tion:
Monthly pattern required,
-Downstream flow requirement;and
-Reservoir rule curve.
(a)Energy Pattern
The energy pattern used in the model is based on monthly load forecasts
developed by ISER and Woodward-Clyde Consultants and more recently by
Battelle.This pattern is imposed as demand on the Susitna hydroelectric
developments and reservoir operation is iteratively simulated to yield max-
imum energy production,thus yielding almost constant thermal energy demand
throughout the year.The energy pattern is critical during periods of low
inflow,particularly when drawdown limits are set.The assumed energy pat-
tern is presented in Figure Al.l.
Al-6
-,,
~
I
-
(b)Downstream Flow Requirement
Environmental considerations require the release of mlnlmum flows during
critical fish spawning periods and protection of the mitigation efforts
associated with the project.The minimum flow required is a variable
monthly value reaching a maximum in August,coincident with salmon spawning
peaks.
The simulation model checks downstream flow requirements against the sum of
the total powerhouse flow and spillage from the most downstream damsite.
For the operations considered,generally the outflow exceeds the downstream
flow requirement in the winter months of Uctober through April.In the
summer months,the outflow is at the lowest level because of low energy de-
mand and the retention of river runoff in storage for release during the
following winter.The exception to this is in late summer,usually
September,when reservoirs can be full and spills could occur.When the
required downstream flow is greater than the power flow simulated,addi-
tional discharge is made through outlet facility to meet the downstre~TI re-
quirement.
(c)Reservoir Rule Curve
The energy pattern described above controls the reservoir operation and
energy production during critical low inflow periods.During other per-
iods,it is apparent that additional energy could be produced because of
larger river flows and greater reservoir storage available.
Essentially;with a reservoir rule curve which establishes minimum reser-
voir levels at different times during the year,it would be possible to
produce more energy in wetter years during winter than by following a set
energy pattern.At the same time,the rule curve ensures that low flow
sequences do not materially reduce the energy potential below a set minimum
or firm annual energy.Several sets of rule curves for the Watana and
Devil Canyon sites were modeled and selected ones presented in Figure A1.2.
r
-
(d)Model Alogrithm
The energy simulation firstly determines the amount of flow required to
meet the demand for power.For single reservoirs,the power output is
given by Equation 1.For two reservoirs in cascade,the power output is
given by Equation 2.
(1)
where:P =Power produced in kilowatts (KW)
K1 =Unit Conversion Constant =0.084773
H =Average monthly head in feet (ft)
Q =Mean monthly powerhouse flow in cubic feet per second (cfs)
E =Overall hydraul ic;,mechanical and electrical efficiency
(dimensionless)
Al-7
(2 )
where:TP =Total power output (KW)
=Average monthly head in upper and lower reservoir,
respectively (ft)
=Mean monthly powerhouse flow plus spillage from upper
reservoir (cfs)
=Contribution flow from intervening drainage area between
dams ites (cfs)
K1 =Unit Conversion Constant =0.084773
E =Efficiency
The model procedure iteratively solves for powerhouse flow given power
demand and ch ange ins tor age.
Storage
inflow.
through
storage
is depleted or replenished depending upon the magnitude of monthly
Generally,storage is depleted during the months of October
May and replenished from June to September.The conversion from
to flow is by Equation 3.
(3)
where:QA =Discharge (cfs)
4.S =Change in storage (acre feet)
K2 =Constant (cfs days to acre feet)-1.984
OM =Number of days in month M.
For power computations using equation (1)or (2),monthly head is used and
is determined from the average water surface elevation at the beginning and
end of each month less tailwater elevation.A constant tailwater elevation
of 1455 and 850 has been assumed for Watana and Devil Canyon,respectively.
This is considered acceptable as the variation in tailwater elevation for
the range of flows expected is +5 feet from the assumed values and is with-
in the reasonable limit of accuracy of the tailwater elevation discharge
curves.
The water surface elevation is determined by linear interpolation of the
storage-elevation curves input to the model.The power potential deter-
mined is effectively the average power during the month.Multiplying this
power by the number of hours in each month results in monthly energy in
kilowatt-hours.
The model next checks downstream flow requirement with total outflow
(powerhouse plus spillage).If no flow deficit occurs,no action is taken.
When outflow is below flow requirements,either further powerhouse flows
are released or spillage occurs depending on demand for additional energy.
This will deplete storage or replenish it more slowly depending upon
inflow.
Al-8
-
r
-i
r
r-,
,
The final procedure in the model is to determine if further drawdown could
occur to produce more usable energy particularly in winter months.The
rule curve followed has been derived from several iterations of the reser-
voir operation and is believed to be close to the best fit for the energy
produced up to the year 2010 and with the forecast developed by Battelle.
In practice,with increase in system demand,the rule curve could be modi-
fied to yield energy that would fit into the system demand in a more eco-
nomical manner.
The model procedure allows the reservoir to be drawn down in each month to
the given levels when the water surface ~elevation at the start of the month
is above these levels.Starting elevations below the target suggests that
a dry sequence is experienced.
When the reservoir is being refilled during high streamflows,a further
condition specifies the amount of surplus water that should be placed into
storage.This is to ensure that during the early months of the filling se-
quence (May and June)the reservoir does not end up full too early in the
summer.If filling occurred quickly,it is possible that spillage would be
high in August and September.Preventing such spillage results in the pro-
duction of more energy in May,June and July and a reduction in spillage
amounts later on.
3.3 -Energy Simulation of Watana/Devil Canyon Development
The simulation model has a facility to determine the production of energy from a
single or a two reservoir system.The operation of Watana or Devil Canyon alone
and Devil Canyon with Watana upstream,have therefore been analyzed.
Energy production from Watana and from Watana/Devil Canyon has been determined
to establish the optimum normal maximum pool elevation and reasonable drawdown
hence live storage amounts.In addition,an assessment of the impact of down-
stream flow requirements on energy production has also been made using the
model.
(a)
(b)
Optimum Normal Maximum Water Surface Elevation
The normal maximum water surface elevation of 2185 for Watana has been
established as the optimum water level with respect to energy production,
project cost and total system economy.This level has been established
based on the analysis of model energy simulation runs for three dam heights
for Watana set at 2215,2165 and 2115.
In all cases,the normal maximum operating level of Devi 1 Canyon was as-
sumed constant at 1455 feet.A detailed discussion of the selection of the
optimum water level along with the OGP5 results are given in Sections 9 and
10 of the main report.
Assessment of Impact on Energy Potential of Downstream Flow Requirements
Fishery mitigation efforts have been directed at assessing the impact of
Watana and Devil Canyon developments on fish populations downstream of the
damsites.To aid in this analysis,downstream flow requirements ranging
from flow releases giving no serious impact to best power operation have
been analyzed.The best power operation and intermediate flow conditions
Al-9
would require in-stream and remedial work at tributary confluences to pre-
vent serious fishery damage.
The cases investigated have been called A,B, C,and D.Case A is the best
power operation,Case Band C intermediate flow and power conditions and
Case D the st acceptable operation with respect to impact on fisheries.
The latter has also been termed the case with "avo idance flow"(avoiding
impacts on fisheries).During the analysis,Case Band C were found to
differ only in minor details and it was decided to eliminate Case B from
further study.
Case D flows were derived from discussions with fisheries study groups and
agencies and represent almost no fishery impact due to project operation.
The monthly required flow at Gold Creek for the three cases (A,C and D)
are given in Table A1.37.The flows required immediately downstream of the
damsites have been calculated to reflect the contribution to flow from the
drainage area between the damsite and Gold Creek.
Monthly energy production with Klatana maximum water level at 2215, 2165,
and 2115 for the three flow conditions are summarized in Tables A1.38 to
A1.40 for the period when Watana is operating alone and in Tables A1.41 to
A1.47 for the total Watana/Devil Canyon development.Annual average and
firm energy are summarized in Table A1.48 for the seven cases when Watana
is alone and in Table A1.49 for Watana/Devil Canyon.
The energies given in Tables A1.38 to A1.49 represent the total energy pro-
duction from the powerplants without any constraints to maximum energy de-
mand of the system.As such,the energies represent the potential of the
developments gi ven the constrai nts of only pl ant capacity and required
flows.In most cases,there is an excess of energy produced over system
demand in the early years of the development.This production of unusable
energy is duly considered in the generation planning analyses and is re-
flected in the overall system costs (Section 18 of the Main Report).
Generally,the higher downstream flow requirement cases result in "dumping"
of large quantities of unusable energy,particularly during summer months.
Monthly energies for the optimum water level of 2185 are given in Tables
A1.50 to A1.52 for Watana alone,Case A,C and D and in Tables A1.53 to
A1.58 for Watana and Devil Canyon.Several options for Watana operation
have been investigated in an attempt to improve energy production.These
represent a change in Watana operation when Devil Canyon comes on line and
impact the energy production for Case C and D.
Tables A1.53,A1.55 and AI.57 present the best estimates of energy produc-
tion from Watana/Devil Canyon for Cases A,C and D,respectively.These
energies have been used in the generation planning and economic analyses
(Section 18 of the Main Report).
(c)Reservoir Drawdown
For the assessment of fisher flows an energy production,it was assumed
that no drawdown limit would be imposed on Watana or Devil Canyon.This,
A1-10
r"",
,-
!
i
r
howeve ,would not necessarily be the best operation for the development
given ntake costs and energy production but is valid in determining the
impact of fishery flows on energy production.Drawdown limits for Watana
were established using the normal maximum operating level of 2185 feet.
Generally,the governing criteria in establishing the drawdown was to maxi-
mize Winter energy production and to reduce spillage while maintaining rea-
sonable costs for intake structures and acceptable temperatures in flow re-
leases.Specifically,115,165,190,and unlimited drawdown cases were
investigated.Generally,the greater the drawdown results,the greater
amount of annual f"irm energy produced.This is due to additional storage
utilized in producing energy during critical low inflow periods.However,
as firm energy increases,average energy decreases due to the longer period
the reservoir is drawn down.As the economic analysis utilizes the average
energy to estimate system costs and the firm energy to estimate system
rel iabil ity,it is advantageous to produce the best combination of firm and
average energy.
The increase in cost of the larger intake structure for greater drawdowns
and additional costs for thermal generation to makeup production deficit is
offset by additional system reliability.From Figures A1.3 to A1.5 and
Tables A1.59 to A1.61,it appears that the most desirable drawdown is be-
tween 115 and 165 feet.Consequently,further analysis resulted in a draw-
down of 140 feet as the optimum drawdown for Watana.
This drawdown of 140 feet is only required for two years in the 32 year
period of simulation.For the other 30 years,the maximum drawdown is
around 100 feet.
Detailed optimization studies for Devil Canyon reservoir was not undertaken
dUe to the relatively smaller reservoir size and a potential single level
of power intake from the reservoir.A drawdown of 50 feet has been select-
ed as maximum permissible drawdown consistent with structUr'al requirements
of the arch dam.
(d)Final energy of WatanalDevil CanyontJevelopment
The potential energy production based on3~years of simulation of ~atana
alone with a constraint in drawdown of 140 feet is an average approximately
3459 GW per year and would produce an annUal firm energy of 2631 GW.
Watana and Devil Canyon combined has an average annual energy production
potential of 6793 GW,and a firm energy production of 5394 GW.The monthly
energy production for average and firm years are given in Table A1.62.
The energy product ion useable from the development,cons ideri hg the fore-
cast ahnualenergy developed bYBaHelle and the monthly distribution de-
termined by WCC/ISER are given in Tables A1.63 and A1.64 for the aVerage
and firm years respectively.
Computer output sheets g1Ving inflow,powerhouse flow,spillage,water sur-
face elevation,heads,power and storage for each month in the simulation
are given in Attachment 1 for the selected Watana/Devil Canyon Develop-
ment.
REFERENCES
1.Texas Water Development Board.1970.A Completion Report on Stochastic
Optimization and Simulation Techniques for Management of Regional
Water Resource Systems -Volume lIB -fILLIN-l Program Description.
2.R&M Consultants,Susitna Hydroelectric Project.Field Data Collection and
Processing,December 1981.
3.U.S.Department of Commerce.Annual.Climatological Data,Alaska.Annual
Summary.Environmental Sci ence Servi ces Adnri ni strat ion.Ashevi 11 e.
North Carolina.
4.Patric.J.H.and Black.P.E.1968.Potential Evapotranspiration and
Climate in Alaska by Thornthwaite's Classification.Pacific Northwest
Forest and Range Experiment Station,U.S.Department of Agriculture.
Forest Service.Research Paper.PNW-71,Juneau.Alaska.28 p..
5.Thornthwaite.C.W.1948.An Approach Toward a Rational Classification of
Climate,Geogr.Rev.38:55-94.
6.Hargreaves.G.H.1958.Closing Discussion on Irrigation Requirements
Based on Climatic Data.Proc.Am.Soc.Civil Engineers,J.Irrigation
and Drainage Division,Volume,No.IRI.pp.7-8.January.
7.Penman.H.L.1948.Natural Evaporation from Open Water,Bare Soil.and
Grass.Proc.Roy.Soc.London.sere A••vol.193.pp.120-145.
8.R&M Consultants.Susitna Hydroelectric Project.Hydrographic Surveys.
October 1981.
AI-12
LIST OF TABLES
Number
AI.I
AL2
AI.3
Titl e
Available Mean Monthly Streamflow Data
Denali Unfilled Data Set
Maclaren Unfilled Data Set
AI.4 Cantwell Unfilled Data Set
AI.5 Gold Creek Unfilled Data Set
AI.6 Chulitna Unfilled Data Set
AI.7 Talkeetna Unfilled Data Set
r--
I
I
r
-
AL8
AI.9
ALIO
AI.II
ALl2
ALl3
AI.14
ALl5
AI.16
Al.l7
AI.18
AI.19
AL20
AI.21
AL22
AI.23
Skwentna Unfilled Data Set
Susitna Station Unfilled Data Set
Mean and Standard Deviation Before and After Filling In
Lag-One Correlation Coefficient
Spatial Correlation Matrix Unfilled Transformed Data Set
Spatial Correlation Matrix Filled Transformed Data Set
Denali Filled Data Set
Maclaren Filled Data Set
Cantwell Filled Data Set
Gold Creek Filled Data Set
Chulitna Filled Data Set
Talkeetna Filled Data Set
Skwentna Filled Data Set
Susitna Station tilled Data Set
Computed Streamflow at Denali
Computed Streamf10w at Maclaren
LIST OF TABLES (Cont'd)
Number
AI.24
AI.25
AI.26
Al.27
A1.28
AI.29
AI.30
A1.31
AI.32
A1.33
A1.34
A1.35
A1.36
AI.37
Al.38
AI.39
A1.40
Al.41
A1.42
AI.43
AI.44
AI.45
A1.46
AI.47
Title
Computed Streamflow at Vee
Computed Streamflow at Susitna III
Computed Streamflow at Watana
Computed Streamflow at Hi gh Devil Canyon
Computed Streamflow at Devil Canyon
Observed and Calculated Streamflows at Watana Damsite
Historical Evaporation -McKinley Park
Historical Evaporation -Matanuska Agricultural Experiment Station
1981 Pan Evaporation
Summer 1981 Climatic Comparison -Watana.Matanuska.McKinley Sites
Comparison of 1981 and Historical Evaporation Data
Potential Evapotranspiration by Thornthwaite Method
Estimated Evaporation Losses -Watana and Devil Canyon Reservoirs
Monthly Flow Requirements
Monthly Energy Production Case A -Watana Alone
Monthly Energy Production Case C -Watana Alone
Monthly Energy Production Case D -Watana Alone
Watana (2215)jDevi 1 Canyon Monthly Energy Pr oduct i on -Case A
Watana (2165)jOevil Canyon Monthly Energy Production -Case A
Watana (2215)jOevi 1 Ca nyon Monthly Energy Production -Case A
Watana (2215)jOevi 1 Canyon Monthly Energy Production -Case C
Watana (2165)jOevil Canyon Monthly Energy Production -Case C
Watana (2115)jDevil Canyon l'1ont hly Energy Production -Case C
Watana (2215)jOevil Ca nyon Monthly Energy Production -Case 0
LIST OF TABLES (Cont'd)
-I
.....
,.....
Number
A1.48
A1.49
A1.50
A1.51
A1.52
A1.53
A1.54
A1.55
A1.56
A1.57
A!.58
A1.59
A1.60
A1.61
A1.62
A1.63
AI.64
Title
Watana Annual Average and Firm Energy Production
Watana/DeVil Canyon Annual Average and Firm Energy Production
Watana (2185)Alone Monthly Energy Production -Case A
Watana (2185)Alone Monthly Energy Production -Case C
Watana (2185)Alone Monthly Energy Production -Case D
Watana (2185)/Devil Canyon Monthly Energy Production -Case A
Watana (2185)/Devil Canyon Monthly Energy Production -Case C
Watana (2185)/Devil Canyon Monthly Energy Production Modified -
Case C
Watana (2185)/Devil Canyon Monthly Energy Production
Watana (2185)/Devil Canyon Monthly Energy Production -Case 0
Watana (2185)/Devil Canyon Monthly Energy Production Modified -
Case D
Watana/DeVil Canybn Annual Energy With Variable DrawdoWn
Watana Average Monthly Energy with Variable Drawdown
Watana Firm Monthly Energy with Variable Drawdown
Watana/Devil Canyon Development Monthly Energy Produttion Potential
Watana/Devil Canyon Deveiopment Monthly Energy Production
Watana/Devil Canyon Development Firm Monthly Energy Production
LIST OF FIGURES
Number Title
AI.I Monthly Energy Pattern
AI.2 Monthly Target Minimum Reservoir Levels
AI.3 Watana Annual Energy versus Drawdown
AI.4 Devil Canyon Annual Energy versus Drawdown
.-
r-
!
i .
A!.5 December Energy versus Drawdown
I"'"
I
-
TABLE Al.1:AVAILABLE MEAN MONTHLY STREAMfLOW DATA
USGS Gage YEA R 5
Sites Number r:f:>U 1':1 :1:1 I ':IOU 1':10:1 1970 J ':1/:1 1':1/':1 1980 191:l1*
Gold Creek (15292000)1950 1981
DenalI (15291000)1957 1981
Maclaren (15291200)1958 1981
Skwenta (15294300)1960 1979
Talkeetna (15292800)1964 1981
Cantwell (15291500)1961 1972 1981
Chulitha (15292400)1958 1972 1981
Susltna (15294350)1973 1981
*Streamflow data for years 1980-81 have not been used in the correlation analysis.
TABLE A1.2:DENALI UNFILLED DATA SET
YEAR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP CAL H,
1 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1950
2 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1.9:i1
3 -1.0 -1.0 -1.0 -1.0 -'1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1 .0 1.']52
4 -1.0 -1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1',0 -1.0 -1.0 -1.0 19~j3
5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1954
6 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1 .0 1.9S~;
7 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 19 ~;6
8 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 12210.0 11170.0 9769.0 4017.0 1957
9 1277.0 610.0 288.0 219.0 150.0 120.0 210.0 1163.0 8367.0 9150.0 6536.0 1879.0 1958
10 939.0 390.0 170.0 119.0 81.0 41.7 43.0 1782.0 8891.0 8333.0 7882.0 2498.0 1959
11 1577.0 760.0 575.0 444.0 321.0 275.0 265.0 3349.0 5237.0 9039.0 7910.0 4817.0 1960
12 1781.0 660.0 483.0 331.0 271.0 281.0 415.0 2959.0 6412.0 8078.0 7253.0 2695.0 19b1.
13 1290.0 680.0 440.0 280.0 240.0 220.0 200.0 2197.0 9087.0 10220.0 9454.0 3649.0 1962
14 1079.0 510.0 310.0 250.0 230.0 200.0 210.0 3253.0 6763.0 10500.0 10210.0 3949.0 1963
15 925.0 290.0 185.0 140.0 140.0 110.0 130.0 910.0 11630.0 7577.0 6552.0 2633.0 l,9b4
16 1468.0 702.0 279.0 220.0 200.0
208.0 320.0 2464.0 4647.0 6756.0 5764.0 6955,0 1965
17 920.0 300.0 240.0 210.0 200.0 200.0 280.0 1629.0 6850.0 8287.0 6432.0 3200.0 1 S'66
18 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1967
19 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 11840.0 9825.0 2192.0 1968
20 700.0 304.0 172.0 145.0 140.0 145.0 229.0 1768.0 8146.0 9445.0 3919.0 '2213.0 1969
21 1002.0 501.0 339.0 265.0 221.0 193.0 319.0 2210.0 5013.0 8454.0 6216.0 1946.0 1970
22 528.0 395.0 276.0 170.0 125.0 120.0 135.0 629.0 8099.0 10410.0 10400.0 3288.0 1971
23 1039.0 478.0 380.0 339.0 307.0 286.0 270.0 3468.0 6562.0 10450.0 8664.0 2778.0 1972
24 l,b7.0 323.0 211.0 178.0 164.0 153.0 153.0 1042.0 5741.0 8346.0 7268.0 2445.0 197:3
25 876.0 462.0 366.0 310.0 271.0 23510 262.0 2541.0 5642.0 9547,0 9292.0 5452.0 1974
26 2135.0 673.0 381.0 300.0 200.0 200.0 200.0 1640.0 7040.0 12110.0 7295.0 3571.0 1975
27 1539.0 375.0 169.0 112.0 97.0 90.0 123.0 1805.0 5939.0 8558.0 10080.0 1822.0 197(,
28 894.0 467.0 331.0 266.0 240.0 231.0 246.0 1498.0 8253.0 10010.0 10180.0 3707.0 1977
29 1148.0 652.0 439.0 348.0 300.0 246.0 263.0 2031.0 5250.0 8993.0 8644.0 3622.0 1.978
30 865.0 463.0 312.0 263.0 229.0 203.0 250.0 2791.0 7650.0 9504.0 9178.0 4512.0 1979
~l '.1 \-:~
-1 '---1 --1 1 --1 1 --1 'c -I 1 --1 ---1 -,'-1
TABLE A1.J:MACLAREN UNFILLED DATA SET
YEAR O.GT NOV nEG JAN FEB MI\R APR HM JUN JUL AUG SE F'C1\L'(r.:
---y 1.0 --l.o 1.0 Lo----r~--1.6 1.0 -1.0 -1.0 1.0 1.0 --1.0 H"50~'
2 -1.0 -l.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -··1.0 1.951
3 -1.0 '-LO -1.0.··1.0 -1.0 -boO -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 195:~
4---1.0 -1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -=-r;-o 1.0 -1.o------r<tS3
5 -1'.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1..0 -1.0 -1.0 -1.0 -1.0 --La 1954
6 -1.0 -1~0 -1.0 -1.0 -L~O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1955
'7 -L.O -L.O -t.O -t ..o -----1-:0 ·-L.O -1.0 -1.0 -1.0 -1.0-1.0 --1.0 1956
B --1.0 -1.0.-1.0 -1.0 -1..0 -1.0 -1.0 -l.0 -1.0 -1.0 -1.0 -·1.0 1957
9 -1 .•0 -1.0 -1.0 --LtO -1.0 ··1.•0 -1.0 --1.0 3532.0 3525.0 2699.0 784.0 1.958
28 302 •.0 toIL a 11.9.0 97.:r----------v2.0 90.0 92.9 366.0 3912~834.0 3394;"0__T297.0 1977
29 512.0 265.0 lab.O 162.0 140.0 121.0 134.0 709.0 2317.0 3196.0 2356.0 924.0 1978
JO s07.0 192.0 142 •.0 122.0 110.0 100 .•0 I1bO 63.4.0 2430.0 3056.•0 2223.0 lL37.0 1979
---"-"-"~'-..-.-~-----_.---"-.-•._-_..•_..._---_....---~~._-_...~--_._--_._-------_.._--_._---~-~---------~---_...
TABLE A1.4:CANTWELL UNFILLED DATA SET
YEAIl 'nCT NOV nFC IAN FEB MAR APR MAY JUN JUL AUG SEF'CALYR
1 '-j,.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 ."1 •0 -1.0 -1.0 -1.0 -1.0 1950
2 -I..o·-1.0 -1 •Q......_~-·_·1~_-!!0 -1.0 -1.0 -1.0 -1.0 -1.0 -1!0 -1.0 19 ~.!_1____-3-----1.0 -1.0 -·1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 --1.0 -1.0 1952
4 --1.0 -"1.0 "1.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 1953
5 -1.0 -1.0 --1.0 -1.0 -1.0 --1.0 ·-1.0 --1.0 -1.0 -1.0 ··1.0 --1.0 1954
6 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -100 -1.0 -1.0 -1.0 1?~5~5
7 ·'1.0 --1.0 -1.0 --1.0 -1.0 -1.0 ·,1.0 -1.0 -1.0 -1.0 --1.0 .1.0 1956
8 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1;0 -1.0 -1.0'-1.0 1957
't 1.0 1.0 1.0 1.0 "To 0 1.0 1.0 1.0 1.0 (.0 -1.0 --1.0 1958
JO --1.0 -1.0 -1.0 -1.0 ".1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 1959
11 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 --1.0 ..1.0 ·-1.0 --1.0 -1.0 --1.0 1960
12 -1.0 -1.0 -1.0 -1.0 -.1.0 -1.0 -1.0 9688.0 15710.0 14820.0 16700.0 6725.0 1961
13 3~81.0 1800.0 1400.0 1300.0 1000.0 940.0 1200.0 10000,0 28320.0 20890.0 16000.0 9410.0 1962
14 4326.0 2200.0 1400.0 1000.0 ~~Q..!il..__7 {;>0 •0 720.0 11340.0 15000.0 22790.0 18190.0 9187.0 1963
1"3B48.0 1300.0 877.0 644.0 586.0 429.0 465.0 -2806.0 34630.0 17040.0 11510.0 5352.0 1964.-'16 31.34.0 1911.0 921.0 760.0 680.0 709.0 1097.0 8818.0 16430.0 18350.0 13440.0 12910.0 1965
17 3116.0 1000.0 750.0 700.0 650.0 650.0 875.0 4387.0 18500.0 12220.0 12680.0 6523.0 1966
18 ;'~322.0 780.0 720.0 680.0 640.0 560.0 513,0 9452.0 19620.0 16880.0 19190.0 10280.0 1967
19 3084.0 1490.0 1332.0 1232.0 1200.0 1200.0 1223.0 9::'68.0 19500.0 17480.0 10940.0 5410.0 1968
20 2406.0 1063.0 618.0 508.0 485.0 548.0 998.0 7471.0 12330.0 13510.0 6597.0 3376.0 1969
21 1638.0 815.0 543.0 437 ~'-0---426 •0 463.0 887.0 7580.0 --"9909.013900 ~o-12320.0 5211.0 1970
22 2155.0 1530.0 1048.0 731.0 503.0 470.0 ~29.0 1915.0 21970.0 18130.0 22710.0 9800.0 1971
23 4058.0 2050.0 1371.0 1068.0 922.0 881.0 876.0 9694.0 20000.0 16690.0 15620.0 9423.0 1972
24 -1.0 -1.0 -1.0 --1.0 ..1.0 -1.0 --1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1973
')'1="-1.0 ·,1.0 -1.0 ·,,1.0 -1.0 .-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1974......J
26 -1.0 -1.0 -1.0 -1.0 -1.O'-"1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1975
27 _.1.0 --1.0 "-1.0 --1.0 =1-:-0--::r.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 1976
28 -1.0 -·1.0 --1.0 -1.0 -t .0 -1.0 -1.0 -l.Q -1.0 -1.0 -1.0 -1.0 1977
29 -1.0 ·-1.0 -1.0 -"1 •0 -1.0 ..1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 1978
30 -1.0 -1.0 -1.0 ---1.0 1979-1.0 -1.0 --1.0 -1.0 --1.0 -1.0 -1.0 -1.0
-_._....---_.-
j "!1 1\1
~-'J '--]~"-l "~l -'~'l '},~'--l -'-"J -]~-l "-1 1 '}'--j -"J ']}]
TABLE 11.1.5:GOLDCR£EK UNFILLED DATA SET
YEAH OCT 'NOV [lEC J'AN FEB MAR AF'R MAY J@ JUL AUG SEF'CALYR
6335.0 258J~D 1439~0 1027.0 7BB.D 726~0 870.0 11510.0 19600.0 22600.0 19880.0 8301.0 1950
2~~3848.0 1300-.;01100.0 960.0820.0 740;0 1617.0 14090.0 20790;0 2257();O--T9670.0~I:r40.0 1(~~i1
3 5571.0 2744.0 19'00.01600.0 1.'000.0 MO.O 920.0 5419.0 32370.0 26390.0 20920.0 14480.0 1952
48202.0 3'497.0 170,0.0 1100.0820.0 820.0 161'5.0 19270.0 21'320.0 20200.0 20610.0 15270.0 195:3
5 5604.0 2100.0 1500.01300.0 1000.0 780.0 1235.0 17280.0 25250.0 20360.0 26100.0 12920.0 19:54
6 5370.0 2760.0 2045.0 1794.0 1400.0 1100.0 1200.0 9319.0 29860.0 27560.0 25750.0 14290.0 1955
7 4951.0 1900.0 1300.0 980.0 970,.0 940.0 950.0 17660.0 33340.0 31090.0 24530.0 18330.0 1956
'~906.0 30~----2T4~'I~l>1500.0 120().()~1200.lJ--T3750.0 30160';0'233n)~O-2Q540.0~~19EjOO.O 1957
99212.03954.0 3264.0 1965.0 1307.0 1148.0 j~33.0 12900.0 2!'i700.0 22880.0 22540.0 7550.0 1958
10 4811.0 2150.0 1513.0 1449.0 1307.0 980.0 1250.0 15990.0 23320.0 25000.0 31180.0 16920.0 1959
---':;'11 6558.0 2850.0 2200.0 11345.01432.0 1197.0 1300.0 15790.0 15530.0 22980.0 23590.0 20510:0 1960
12 7794.0 3000.0 2694.0 2452.0 1754.0 1810.0 2650.0 17360.0 29450.0 24570.0 22100.0 13370.0 1961
13 5916.02700.0 21'00.0 1900.0 1500.0 1400.0 1700.0 12590.0 43270.0 25850.0 23550.0 15890.0 19(,2
14 6723.0 2800.0 2000.0 1600.0 1500.0 1000.0 830.0 19030;0 2600o;()34400.0 23670.0 12320.0 196;3
15 6449.0 2250.0 1494."0 1.04B.0 966.0 713.0 745.0 4::107.0 50590.0 22950.0 16440.0 9571.0 1964
16 6291.0 2799.0 1211.0 960.0860.0 900.0 1360.0 12990.0 25720.0 27B40.0 21120.0 19350.0 1965
17 720S.0 2098.0 1631.0 1400.0 IJOO.o 1300.0 1775.0 9645.0 32950.0 19860.0 21830.0 11750.0 1.966
18 4163.0 1600.0 1500.0 1500.0 1400.0 1200.0 1167.0 15480.0 29310.0 26800.0 32620.0 16870.0 1967
19 4900.0 2353.0 20'55.0 1981.0 1900.0 1900.0 1910.0 16180.0 31550.0 26420.0 17170.0 8816.0 1968
20 3822.0 1630.0 882.0 724.0 723.0 B16.0 1510.0 11050.0 15500.0 16100.0 8879.0 5093.0 IS'69
21 3124.0 1215.0866.0 824.0 768.0 776.0 1080.0 11::180.0 lB630.0 22660.0 19980.0 9121.01970
22 '5288.0 3407.0 2290.>0 1442.0 ;1036.0 950.0 1082.0 3745.0 32930.0 23950.0 31910.0 14440.0 1971
23 5847.0 3093~n-25io-;O---2239-;'O 2028.0 18i3'.-O-17i'O:O·21890.0 34430.0 22770.0 19290.0 ·U40Cl.'O--T9n----
24 4826.0 22~i3.01465.0 1200.0 1200.0 1000.0 1027.0 8235.0 27800.0 18250.0 20290.0 9074.0 1973
25 3733;0 1523.0 1034.0 874.0 777.0 724.0 992.0 16180.0 17870.0 18800.0 16220.0 12250.0 1974
26 3739.0 1700.0 1603.0 1516.0 1471.0 1~00.0 1593.0 153~0.0 32310.0 27720.0 18090.0 16310.0 1975
27 7739.0 1993.01081.0974.0 950.0 '7'00.0 1373.0 12620.0 24380.0 18940.0 19800.0 6881.0 1976
28 3874.0 2650.0 2403.0 1829.0 1618.0 1500.0 1680.0 12680.0 37970.0 22870.0 19240.0 12640.0 1977
29 ~7:i-;~O 3525·:-O~589-;O--'202"9:o'--166tf.0-'·__·-1 6'o5:o~--'l702:-o-iT950~-19 050 :O--'ilo 20 -;0'163'90;-0-8 (,0 7~9 'if)'
30 4907.0 25J5~0 l~el.0 1397.0 1286.0 1200.0 1450.0 13870.0 24690.0 28880.0 20460.0 10770.0 1979
TABLE A1.6:CHULITNA UNFILLED DATA SET
YEAR OCT NOV [IEC JAN FEB MAR APR MAY JUN JUL AUG SEF'CALYR
1 1.0 1.0 --1.0 -1.0 ---=-r:0 --=r;(5 -1.0 1.0 -I.0 -I.t>I.0 -1.0 n"5(j-----
2 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1951
3 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1952
4 -1.0 1.0 -1.0 -1.0 1.0 -=-r.O '-1.0 -1.0 -1.0 -1.0 ------=-I~~~~-~\I~-P153
5 -1.0 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1954
6 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1955
7 -1.0 -·1.0 -1.0 -1.0 -1.0 -·1.0"-1.0 -1.0 -!"-;O -1.0 1.0 1.0 19~6'~-'
8 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1957
9 -1.0 -1.0 -1.0 -1.0 1044.0 948.0 1220.0 10460.0 23170.0 25010.0 20760.0 8000.0 1958ro-4197.0 1883.0 1262.0 1097.0 1049.0 738.0 890.0 7413.0 23660;0--25650~O 2~Ioo.o 9957.0 1959
11 4723.0 2283.0 1700.0 1448.0 1103.0 933.0 1000.0 13890.0 17390.0 23650.0 19320.0 12420.0 1960
12 5135.0 1950.0 1745.0 1452.0 1100.0 1079.0 1600.0 10100.0 20490.0 27420.0 24580.0 16030.0 1961----~1~5777.0 24"00.0 1500.0 1300.0 1~0 930~--rI70.0 7743.0 20620.0 27220.0 21980.0 13490.0 1962
14 3506.0 1500.0 1552.0 1600.0 1300.0 846.0 700.0 11060.0 17750.0 28950.0 18390.0 11330.0 1963
15 8062.0 2300.0 1000.0 1007.0 820.0 770.0 1133.0 2355.0 40330.0 24430.0 20250.0 9235.0 1964
16 5642.0 2900.0 2100.0 1600.0 1400.0 1300.0 1400.0 7452.0 20070.0 23230.0 22550.0 22260.0 1965
17 6071.0 1620,0 1350.0 1200.0 1100.0 1100.0 1300.0 3971.0 21740.0 23750.0 27720.6 12200.0 1966
18 4682.0 1680.0 1500.0 1458.0 1257.0 1045.0 972.0 12400.0 25520.0 35570.0 33670.0 12510.0 1967
----.-19,.,--------::r ~S 3 •0 1 nO'•0 13 97 •0 r~r:r5 •0 n~ulT411_;-"O-~--r:r 4'-:ll~V4\r.-"1l"____;T·;>000 •0 30 1 40 •0'2071 0 •0 73 75 •0 19 Mr----
20 2898.0 1480.0 1139.0 974.0 900.0 824.0 1333.0 6001.0 18560.0 20820.0 11300.0 6704.0 1969
21 4578.0 1887.0 1316.0 1200.0 1154.0 1100.0 1437.0 9643.0 19670.0 26100.0 24660.0 11330.0 1970
:1:T--3826.0 2210.0 1403.0 1113.0 950.0 934.0 982.0 4468.0 22180.0 27'280.0 23810.0 H080.0 1971
23 5439.0 2157.0 1432.0 1174.0 1041.0 939.0 893.0 9765.0 17900.0 25770.0 20970.0 12120.0 1972
24 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1973---25 1.0 ·T;-o----=f;-o----=L·o-~-----=T;O------=t-;-o~---:::T~------1.0 ::T~o----=T;0 -1.0 -1.0 1974"'
26 ··1.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 --1.0 -1.01975
27 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1976
28 -l.0 -1.0 -1.0 -1.0 ··1.0 -·1.0 100 1.0 1.0 1.0 1.0 -1.0 Pin
Z9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1978
30 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1979
---~--------_.-.------~._-_.~-__-_.._-_._----_.~-.,-,,--,_._._.._-,--._"._,-._-_._-----»_..-----------_.~--------------------...---------~~-
e-j '_CO]-------1 -1 1 ---]----1 ~--'--]~----'J '~--l .---]'~-J ---]"'1 "----J -J
TABLE A1.7:TALKEETNA UNFILLED DATA SET
YEAR OCT NOVIIEC JAN FEB MAR APR MAY JUN JUL AUG SEF'CAL YR
-1.0 -1.0 ·'1.0 -1.0 -1.0 -1.0 -j.O -1.0 ~1.0 -1.0 -1.0 -1.01950
2 "1.0 -1.0 -1.0 -1..0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 "-1.0 -1.01951r--1.0 --i.{)"1.0 -1.0 -1-;-0--1,.0 --1.0 -t.O -1.0 -1.0 --1.0 1.0 1952
4 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 -140 -1.0 -1.0 -1.0 1953
5 ··1.0 ··1.0 ...:1.0 -1.0 --1.0 -1.0 -1.0 -'-1.0 -1.0 ·-1.0 -1,0 -1.01954
6 -1.0 -1.0 --1.0'------l--;O---.::1~()-1.0 -r.-O------::-r~()-1.0 --1.0 -1.0 -1.0 l'?5~j
7 "':1.0 ...:1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1956
8 -1.0 -1.0 -1.b -1.0 -1.0 -Lo -1.0 -1.0 -1.0 -1.0 -1.0 -1.01957
9 -1.0 -l:-o---:T:O-..----T;o-----.::i:o------·~~l.O'-1.0 -1.0 "1.0 --=1;0------1.0 -1.o'-TIW·----
10 -1.0 -1.0 -'1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.01959
11 -1.0 -LdL :-..l .•.~---=-1.0 __-,,-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.01960
12 -~.O -1.0 -1.0 -140 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 1961
13 -1.0 '·1.0 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 ~1.0 -1.01962
14 -1-.0 -l.b -1.0 -1.0 -1.0-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 ··1.01963
.t~)"1.0 -1''-:O~-1.0 -1-.-o--·-::1-.o----T:o--'..·-1.0 --1.0 17080:0 9820.0 8396.0 3B15.0 1964
It>3115.0 1568.0 noO'o 720.0 620.0 5>\0.0 580.0 31\74.0 11090.0 12180,0 11150.0 10610.0 1'lt>5
17 4438.0 1460.0 87-6.0 711.0 526.0 39'5.0 422.0 2"10.0 12970.0 10100.0 10730.0 5370.0 1966
:fg 23118.0 --g91.b 750.0 637.0 546.0 47:LO 427;-b 4l12.0 9286.0 12600.0 11160.0 6971.0 1967
19 2029.0 1253.0 9137.0 851.0 777.0 743.09'83.0 BB40.0 14100.0 11230.0 7:':;46.0 4120.01968
20 1637.0 827.0 556.0 459.0 4<)1.0 380.0::;19.0 3fl69.0 5207.0 7080.0 3787-.0 2070.0 1969---.~·H 1450.0 765.0 587.0 504.0 fl,58d):4'40.0 -545.0 3950.0 7979.0 10320.0 8-752.0 5993.0 1'1'7-0----
22 2B17.~1647.0 1103.0 679.~45~.0 402.0 503.0 2j45.~19040.0 11760.0 16770,0 5990.0 1971
23 2632.0 1310.0 845.0 727.0 628.0 481.0 519.0 3~16.0 12700.0 12030.0 9576.0 8709.0 -:,1~9-=7-:::-2__
24 3630.0 1373.0 889.0 748.0 654.0 574.0 577.0 3860.0 12210.0 7676.0 9927.0 3861.0 1973
25 1807.0 960.0 745.0 645.0559.0 482.0 535.0 5678.0 8030.0 7755.0 7104.0 4763.0 1974
26 1967.0 1002.0 774.0 694.0 586.0 508.0 522.0 4084.0 13180.0 12070.08487.0 7960.0 1975
272884.0 773.0 "558.0 524.-0---480:(1-47M-'--t:Ti:-o ---3~39':O--To580'-0 9026.0 8088.0 3205.0 1976.
28 1.857.0 1105.01069.0 700.0 549.0 506.0 548.0 4244.0 18280.0 9344.0 8005.0 5'826.0 1977
2,9 3268.0 1121.0860.0 746.0576.0 485.0 534.0 2950.0 7429.010790.0 7001.0 3567.019'78
30 1660.0 1138.0 932.0 762.0 652.0 577.0 710.0 7790.0 12010.0 14440.0 8274.0 4039.0 1979
--_._._--------,_..•-.-,-----_.--~------._._----.-.._---_.._...~.--"'~---~---'-'~'--"-'
TABLE A1.8:SKWENTNA UNFILLED DATA SET
YEAR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL (iUG SEP CALYR
-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1950
2 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.~-1.0 1951
3 -liO -1.0 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 -1.0 -1.0 ~1.0 1952
4 -1.0 -1.0 -1.6 -1.0 -1.0 -1.0 -1.0 -1.0 -1,0 -liO -1.0 -1.0 1953
5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1954
6 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1955
7 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1956er--------=r.o -1.0 -1.0 -1.0 ··1.0 -1.0 ":1.0 -1.0 -1.0 -1.0 -1.0 -'-1.-0 1957
9 -1.0 -1.0 -1.0 -1.0 -liD -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1958
10 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -i.o -1.0 -1.0 1959
Ii 3532.0 l§SO.O 1400.0 1097.0 961.0 843.0 835.0 10480.0 13440.0 16690;0 15990.0 9171.0 1960
12 3889.0 1600.0 1597.0 1403.0 1154.0 1155.0 1700.0 11210.0 20570.0 16480.0 13910.0 12020.0 1961
13 4605.0 2200.0 1400.0 1200.0 860.0 760.0 1000.0 6613.0 15630.0 14930.0 12080.0 6723.0 1962
14 ----2IfOT;0 1 250 i 0 11 00 •0 1000 •0 810 •6 --:7 00 •0 650 •0 n 65 •0 14050 •0 20430 •0 1 2020 •0 71 80 •0 1963
15 5355.0 1550.0 840.0 970.0 750,0 600.0 840.0 Ib35.0 27250.0 16480.0 12680.0 6224.0 1964
16 4425.0 1790.0 1300.0 920.0 800.0 740.0 770.0 4810.0 17160.0 19370.0 14010.0 13090,0 1965
17 4122.0 1575.0 1150.0 1100.0 1100.0 1100.0 1300.0 4502.0 19550.0 14180.0 17320.0 9812.0 1966---~
1El 5576.0 1400.0 900.0 720.0 650.0 650.0 780.0 1794.0 14430.0 14740.0 15760.0 9517.0 1967
19 3832.0 1560.0 1181.0 1023.0 1000.0 950.0 1293.0 13460.0 20770.0 17480.0 10560.0 3855 .•0 1968
20 1929.0 678.0 624.0 600.0 600.0 626.0 1487.0 11070.0.19580.0 13650.0 7471.0 3783.0 1969
21 5654~0 1607.0 832.0 766.0 700.0 650.0 728.0 11710.0 22880.0 21120.0 13030.0 6665.0 1970
22 2919.0 2023.0 1184.0 865.0 721.0 613.0 607.0 5963.0 25400.0 20600.0 15920.0 6024.0 1971
23 3020.0 1327.0 1103.0 989.0 898;-0----811.0 742.0 8045.0 15330.0 16840.0 13370.0 9256.0 1972
24 4551.0 2340.0 1316.0 910.0 702.0 606.0 727.0 6~49.0 15200.0 13850.0 9874.0 6164.0 1973
25 3340.0 1700.0 1265.0 1023.0 902.0 811.0 1005.0 6765.0 10650.0 11670.0 10480.0 11800.0 1974
26 4557.0 2328.0 919.0 800.0 750.0 750.0 767.0 7852.0 19060.0 19520.0 11710.0 8471.0 1975
27 4704.0 1973.0 1258.0 971.0 897.0 800.0 1270.0 8806.0 15120.0 14580.0 11120.0 8165.0 1976
28 6196.0 2880.0 2871.0 2829.0 1821.0 1200.0 1200.0 8906.0 36670.0 25270.0 20160.0 10290.0 1977
29 5799.0 2373.0 1548.0 1213.0 944.0 841.0 1023,0 9006-.-0-1J840.0 18100.0 13740.0 7335.0 1978
30 4936.0 1380.0 1555.0 1165.0 1036.0 981,0 1597.0 11660.0 14980.0 15830.0 16210.0 7448.0 1979
1
'J 'I
.1
-)~'--1 ,-'--"1 '-1 ,----,--'.---1 -----]----I ---1 -1 -1 -~-]_--1 ~""-'-J
TABLE Al.9:SUSlTNA STATION UNfILLED DATA SET
--TEAR -,---ocr --NOV ----'--:1.TE:c-------:JA~--------FT1t-'-'--1"I'AR--'---ffF'F\-'--rrn-Y'---~~:rUfT:---------JUt------1IUb~----S~LHCITl----
1 -1.0 -1.0 -1.0 -1.0 --1.0 -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 '-1.0 lS'~;O
.~--1.0 -1.0 -1.0 1.0 -1.0 -1,.0 --1.0 -1.0 ,..1.0'-1.0 -1.0 ~~'i'51
3 -1.0 -1~0 -1.0 -1.0 -1.0 -1.0 -l.Q -1.0 -1.0 -1~0 -1.0 -1.0 1952
4 -1.0 -t.Q -t.O -1.0 -1.0 -t.O -1.0 -1.0 ~1.0 ~1.0 -1.0 -1.0 1953
.~_..1.0 1.0 ~Lo --1.0 -1.0 1,0---=1-.-0--1.0 --100 -1.0 1.0 --J.,0 19::.4
6 -1.0 -1.0 -1.0 -1.0 -1.0 -I.Q -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1955
7 -1.0 -t.O .:.1.0 -1.,0 -1.0 -1.0 -1.0 -1.0 -1.0 -·1.0 -1.0 --1.01S'5f,
IS _i .h _,_h __i .Ii _i .n ....i _h ....1 .h 1"
']10 -1 •.0
----!1 -1.0
12 -1.0
13 --1.0
-1.0
-1.0 -1.0 -1.0 -t.O ~t.O -t.Q -1.0 ~1.0 ~I.O -1.0 -1.0 195B
-1.0 -t.O -t.O -l.~-t.O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1959
-·1.0 ··1.0 -1.-o------:::-r-.-u -1.0 -1.0 -1.0 .1.0 1.0 I.0 -1~T'7~--
-1.0 -1.0-1.~-1.0 -l.Q -1.0 -1.0 -1.0 -1.0 -1.0 --1.0 1961
-t.O -1.0 -1.0 -l.Q -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1962
_. _ _~......._~u--_·.._·-·_·~--.\)..~1 t 0 l\j'~2 ()1.()-1 •0 *1 • __'_ _ . _
14 -1.0 "1.0 -1.0 l.O --1.0 -l.O -1.0 -1.0 -1.0 -1.0 ··1.0 --1.01'''(',.3
15 -t.O -1.0 -1.0 -1.0 -1.0 -1.0 -i.o -1.0 -1.0 -1.0 -1.0 -1.0 1964
16 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1965
--.~1 •OL(}----1 •(}i.e --t •()1'70---=10~'-'~1o'(}--=1-.-o-------r;--o---1.•0 --1 ~9(';1.l--
18 -1.0 -1.0 -1.0 -1.,0 --1.0 -·1.0 --1.0 --1.0 ..1.0 -1.0 -1.0 -,1.01967
19 -1.0 -lAO -1.0 --t.O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1968
t)=1-.0 -,1 .0'I.,0 -,I.(j I •tl --I.tl
21 -1.0 -1.0 -1.0 -l.Q --1.0 -t.O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1970
22 -1.0 -1.0 -~.O -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 ~1.0 -1.0 -1.0 1971
---~1 •0 -..l • 0 _.1·.0 -1 •0 ---"'1-;1)-1 • 0 ..~-;-ry----'-"l';"(}---1 •0 I •0 --=-t~..1 •a T77T--
24 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1973
25 -1.0 -·1.0 -1..0 --1.0 ..·1.0 -1.0 -1.0 -1.0 -1.0 --1.0 ,·1.0 -1.01974
26 19~20.0 10400.0 9419.,0 8::;9/.0 71m"1r.o 7048.0 6867.0 4/5'l0.0 L!8800.0 13::'700.0 91360.0 77740.0 IS'?:,---
27 31550.0 9933.0 6000.0 6529.0 5614.0 5368.0 7253.0 70460.0 107000.0 115200.0 ';'9650.0 48910.0 1'.'76
28 30140.Q 18270.0 t3100.0 10100.0 8911.0 6774.0 6233.0 56180.0 165900.0 143900.0 125500.0 83810.0 1977
-"~~n0'3~/~~.0 e ~7'1'70-----57 i:r-;-O-o'70~-v---nr:n;v-4lr57\T-;v-'7'ttt;''3'O~-v-n76'O\),,;v10 <.1 ()(,• v "5S;rO-tr:V---1'771:r--
30 36310.0 15000.0 9306.0 8823.0 7?46.0 7032.0 8683.0 81260.0 119900.0 142500.0 128200.0 74340.0 1979
....>....r-fn"~
Ii.....<i~~l,~f Vi
~c:i~::1;;<'0~Jt<:-..:::::t::J-<'--
TABLE Al.l0:MEAN AND STANDARD DEVIATION BEFORE AND AFTER FILLING IN
Before(B)
Site St atist ical or M0 NTH
(No.of Data)Parameter AftedA)lU II II 1 2 3 4 5 6 7
8 OJ
Gold Creek Mean B 5639 2467 1773 1454 1236 1114 1368 13317 27928 23B53 21479 13171
(360)A 5639 2467 1773 1454 1236 1114 136B 13317 27928 23853 21479 13171
SD B 1422 678.5 571.2 446.3 356.5 340.3 392.6 4236 7740 3921 4775 4235
A 1422 67B.5 571.2 446.3 356.4 340.3 392.6 4236 7740 3921 4775 4235
Maclaren Mean B 408.9 177.0 117.8 96.2 B4.1 76.4 87.2 802.7 2920 3181 2573 1149
(256)A 408.6 172.8 110.3 94.5 78.7 73.0 B6.4 B18.3 2913 3217 2600 1177
SO B 110.8 49.8 39.7 31.5 25.6 22.4 26.3 462.0 611.1 496.0 609.9 460.3
A 107.3 49.0 37.2 29.1 25.7 22.5 26.9 486.7 597.8 482.4 610.9 434.6
Skwentna Mean B 4297 1779 1267 lO7B 902.B 809.4 1016 7920 1B578 17091 13371 8150
(240)A 41B8 1762 1258 1039 875.9 804.9 1024 7985 18044 16463 13212 83B2
B 1101 477.0 447.6 440.8 256.4 178.7 321.6 3139 5B54 3147 2871 2453
A 1063 560.5 416.4 3B3.0 219.2 155.5 328.5 4115 6329 2B8o 2693 3260
Denall Mean B 1132 499.8 317.3 245.5 206.4 187.9 230.2 2056 7306 9399 8124 3356
(247)A 1127 478.7 302.3 240.1 199.3 187.2 230.0 2297 7582 9547 8354 337B
SO B 391 146.4 109.2 84.7 67.9 65.1 B1.B B05.1 1973 1320 1719 1243
A 367 148.4 102.2 77.8 68.3 71.8 77.0 1081 2436 1479 1943 1269
Talkeetna Mean 8 2505 1147 842.1 673.8 564.7 496.9 569.1 4291 11948 10514 9272 5429
(184)A 2702 1194 849.9 678.9 562.9 482.0 554.5 4115 11578 10882 10426 6163
SO B B25.9 273.7 176.8 102.3 92.0 86.9 129.1 1777 3801 1955 2879 2180
A 729.4 263.9 169.3 100.8 97.0 72.1 114.6 1526 3754 2016 302B 2304
Cantwell Mean B 3033 1449 99B.2 823.6 722.0 691.8 853.0 7702 19327 16892 1465B 7Bol
(137)A 3072 1426 927.3 B22.0 689.5 650.7 B22.6 7317 17962 16620 14334 7901
SO B 802 476 314.5 272.1 230.8 227.8 257.4 2911 6462 2906 4126 2649
A 732.4 361.4 245.2 215.4 179.4 193.8 240.6 2683 5118 2508 3216 2528
ChulItna Mean 8 4859 1994 1457 1276 1095 975.6 1158 8511 22537 26333 22185 11736
(176)A 4972 2009 1461 1269 1072 961.8 1167 9516 22921 26687 22449 12oBo
SO B 1276 389 261 198 147.7 147.8 240.2 3159 5648 3363 4674 3671
A 1045 389.5 234.4 185.7 155.0 128.7 249.8 4546 5245 3500 4476 3418
~~1 ,~~~~J ~ilJl!
....
r
!""'"
I
r
I
-
Gold Creek
DenalI
Maclaren
Skwentna
Talkeetna
Cantwell
Chulitna
TABLE A1.11:LAG-ONE CORRELATION COEFFICIENTS
Before Fillina After Fillinq
.612 .612
.567 .597
.594 .600
.602 .587
.664 .616
.645 .616
.4'16 .527
TABLE Al.12:SPATIAL CORRELATION MATRIX UNFILLED TRANSFORMED DATA SET
Gold Creek i 1.000 0.589 0.621 0.612 0.593 0.299 0.486 0.546 0.384 0.449 0.256 0.247 0.097 0.275
Denali i 1.000 0.726 0.619 0.464 0.718 0.873 0.207 0.625 0.445 0.242 0.170 0.437 0.549
Maclaren i 1.000 0.337 0.504 0.587 0.733 0.426 0.540 0.714 0.156 0.306 0.371 0.517
Skwentna 1 1.000 0.424 0.527 0.519 0.193 0.311 0.131 0.396 0.060 0.187 0.236
Talkeetna i 1.000 0.407 0.550 0.307 0.307 0.375 0.261 0.551 0.230 0.372
Cantwell i 1.000 0.730 0.039 0.376 0.390 0.123 0.127 0.587 0.413
Chul itna i 1.000 0.177 0.555 0.478 0.213 0.278 0.481 0.663
Gold Creek 1 1.000 0.550 0.611 0.570 0.571 0.224 0.438
Denali i-l 1.000 0.724 0.588 0.436 0.699 0.860
Maclaren i-1 1.000 0.304 0.495 0.583 0.721
Skwentna i-l 1.000 0.391 0.475 0.481
Talkeetna i-1 1.000 0.380 0.524
Cantwell i-1 1.000 0.705
Chulitna i-l 1.000
q 1:
-1 ,._•..]-1 1 --1 ~~1 -1
fA8LE A1.13:SPATIAL ·GORRElATIONMATRIX FILLED TRANSFORMED DATA SET
Gold Creek i
Denali i-1
Maclaren i -1
Skwentna 1-1
Talkeetna i-1
Cantwell i-l
Chulitna i-1
GoldCree.k
Denali
'Mac:laren
Skwentna
Talkeetna
CanbweH
Chul.itna
i
i
1
i
i
i
i
1.:ooon.~16 0.5340.552 0.500 0.2'58 0.486
1.000 0 .•728 U.5i65 n.398 U..639 0;833
1.:000 :0.31 'I :n.3'66nA59'O~7Tl.
'1.,;UOO U•.353 0.490 0.506
',;:000 0.445 0.476
l~onO 0.650
1.UOO
0.525 0.315 0~350 0.312 0.241
0.210 0.615 0.415 0.286 0.196
0.281 0.4'64 0.615 0.148 0.212
0.285 0.360 0.167 0.597 fJ.t60
0.243 0.229 0.211 0.253 0."586
0.072 0.357 0.252 0,249 0.256
n.2tO 0.511 0.422 0.286 0.261
1.000 0.516 0.534 0.-551 0.501
1.000 0.727 0.564 0.398
1.000 0.307 11.366
1.000 0.353
1.000
0.047 0.266
0.358 0.474
0.239 0.440
0.238 0.307
0.250 0.285
0.598 0.370
0.407 0.611
0.258 0.486
0.639 0.833
0.458 0.733
0.490 0.505
0.446 0.476
LOUD 0.651
t.OOO
TABLE A1.14:DENALI FILLED DATA SET
YEAF(OCT NOV [IEC JAN FEB MAR AF'R MAY JUN JUL AUG SEF'SUMYR CALYR
27
23
24
~5
2.',
1272.9 591.5 321.0 382.5 251.2 230.7 258.8 ~i52.1 6977.0 9185.2 7934.9 1794.5 31352.3 1950
2 711.1 242.1 152.4 122.9 113.9 101.8 315.8 IS60.0 6i55.5 8022.1 5167.0 2860.2 25524.6 1951
3 1084.4 549.7 336.5 297.5 198.9 170-:9-~178:4 1367.48032.89411.07715.63092.5 32435.71952-----
4 1028.2 391.1 232.2 238.7 134.7 77.9 216.0 1601.3 6270.8 8950.7 6349.5 2255.9 27747.2 1953
5 914.7 192.2 145.5 84.8 64.3 88.7 217.3 2593.9 5077.0 7864.5 6286.8 2287.0 25816.8 1954
6 1120.6 546.8 450.0 299.3 229.1 146,6 164.2 1380.0 7192.5 10378.4 10047.8 2831.5 34786.8 1955
7 1455.2 373.7 247.4 196.5 300.4 275.0 249.3 4259.3 9754.7 9449.4 5~06.8 3242.2 35109.9 1956
8 1057.7 475.1 439.7 650.9 422.4 287.1 291.9 3017.3 12210.0 11170.0 9769.0 4017.0 43808.1 1957
'1 1277.0 610.0 288.0 219.0 15o:0----r2o.o~10:0--i163.0 8367.0 9150.0 6536.01879.0 29969.01958
10 939.0 390.0 170.0 119.0 81.0 41.7 43.0 1782.0 8891.0 8333.0 7882.0 2498.0 31169.7 1959
11 1577.0 760.0 575.0 444.0 371.0 275.0 265.0 3349.0 5237.0 9039.0 7910.0 4817.0 34569.0 1960
12 1781.0 660.0 483.0 331.0 271.0 281.0 415.0 2959.0 6412.0 8078.0 7253.0 2695.0 31619.0 1961
13 1290.0 680.0 440.0 280.0 240.0 2~0.0 280.0 2197.0 9087.0 10220.0 9454.0 3649.0 38037.0 1962
14 1079.0 510.0 310.0 250.0 230.0 200.0 210.0 3253.0 6763.0 10500.0 10210.0 3949.0 37464.0 1963
I.~)925.0 290.0 185.0 140.0 i40'~0 110~0 130.0 ---910.OT163~7577~6552.-02633:0-31222.019~·-·
16 1468.0 702.0 279.0 220.0 200.0 208.0 320.0 2464.0 4647.0 6756.0 5764.0 6955.0 29983.0 1965
17 920.0 300.0 240.0 210.0 200.0 200.0 280.0 1629.0 6850.0 8287.0 6432.0 3200.0 28748.0 1966
18 920.0 300.0 240.0 210.0 200.0 200.0 280.0 1629.0 6850.0 8287.0 6432.0 3200.0 28748.0 1967
19 973.5 616.9 323.6 189.0 266.9 266.7 325.0 1495.3 6138.2 11840.0 9825.0 2192.0 34452.1 1968
20 700.0 304.0 172.0 145.0 140.0 145.0 229.0 1768.0 8146.0 9~45.0 3919.0 2213.0 27326.0 1969
21 1002.0 501.0 339.0 '265.0 221.0 193:-0-319.02210-:0--5013;-08454.06216.01946.0 26679.01970
22 528.0 395.0 276.0 170.0 125.0 120.0 135.0 629.0 8099.0 10410.0 10400.0 3288.0 34575.0 1971
1039.0 478.0 380.0 339.0 307.0 286.0 270.0 3468.0 6562.0 10450.0 8~64.0 2778.0 35021.0 1972
667.0 323.0 211.0 178.0 164.0 133.~153.0 1042.~5741.0 8346.0 7268.0 2445.0 26691.0 1973
876.0 462.0 366.0 310.0 271.0 235.0 262.0 2541.0 5642.0 9547.0 9292.0 5452.0 35256.0 1974
2135.0 673.0 381.0 300.0 200.0 200.0 200.0 1640.0 7040.0 12110.0 7295.0 3571.0 35745.0 1975
1539.0 375.0 169~O-112.0 97;~0--90.0--123-:-01805-~O-·-5939.0 8558.0 10080~0 1822.0 30709.0 1976
28 894.0 467.0 331.0 266.0 240.0 231.0 246.0 1498.0 8~53.0 10010.0 10180.0 3707.0 36323.0 1977
29 1148.0 652.0 439.0 348.0 300.0 246.0 263.0 2031.0 5250.0 8993.0 8644.0 3622.0 31936.0 1978
30 865.0 463.0 312.0 263.0 229:0--203'.0 250.0 2791.0 7"'~50.0 9504.0 9178.0 4512.0 36220.01979
)·1 !;l :,J -~~_J a ;
-~I ~_..-._..')-,e~el J J 1 ~-l .e-l e 1 -"~l ~1 C-e ,]------1 ~'-'-1 el J
TABLE A1 4 15;'MACLA'REN FILLED DATA SET
YEAR on NOV [fEe .:liM FEf<'M""'!';:APR 1'\;IIY lJU:N JUl.AUG SEF'SUMYR CAl.YR
1 50:;.2 U'''.b '9,~"e'9I)'.2~_-'110.B iS5".7 63,.4 7'05..~,n-4:li~_3:D29.7 2394.7 5'::;'5.,6 10T57.2 1950
;:)2£16,.9 '97,,8 '50.'9 '4El.3 50.7 315.:8 '9&.•3 7BJA 23BO.22966.1 2530.5 20BZ.A.11412.0 1951
:3 381.7 160.9 11'5.399,,'{'66.:13 50.751.6322.-9 2752.2 3~33.1 3:0'92.9 1692.7 12320.5 ,1952
--~4---Jl49,J 1t;,6.~":'!T_2---_M.6 4 .....:.0 504l,_~82.'Fl52'!hiL..?403 .•2 1'924.6 200!.9 979.1 1034~.13 1953
5370.7 131.4'8'5.7100.356,,3 -4~,.~'8.6:a.7 70,8,3.7 3332.7 3132.4 27·97.8 885.9 13091.4 19~)4
6 368.2 1'59.9 102,.9 97 .•3 lD7.0 73.072.'8 3'97.92:889.5 3137.6 3741.1 1748.4 12895.7 1955
'7 604·.3:2-4,6,.21'02.6 .6:6.:5 105.2 ;83.4 103,.3 ]:549••83303.3 3415.6 2178.4 1080.7 12839.4 1956
n 287.5 125.8 9'6.1 £18",4 70.5 '92~4 71.,5 682,.S 3158.5 ,32'71.5 2246.0 1528.9 11719.8 ~7
9 430.3 171.1 lUI.•,6 1!Hil.7 8'0 .•B -64.0 l1'8.1.S28.0 3832.03525.0 2(,99.0 7B4.0 12459.8 1958
1037'8.0 11'5·.0 123.0 J.Z9.0 93.4 .02.5 77;5 '!iB7.0 2'879.02f1BD.,O 20'B.3.0 B'56.0 1006.5.41959
115'41;)40 25:0.0 190.'0 !-50 .D 1'I'O.O 9-4,.3'91.,5 1'7'42.·0 21"24.0 3,559.0 3048.0 2439.0 141J1l>.B 1960
12 '6'97,.0 195.0 1'49.0110.093,.9'1'6,.01"15.•01237.02.678.03369.0 3299.01168.0 1'3226.91961
13:381 .•,0210.0 170.0 120.0 1;0'0.0'92.0 12'0.iO ,632.:0 2916.0 32h'5.0 29·27.0 1127.0 12060.0 1962
14 3,'85.,0 :210.0 130.0 100.0 9'1.0 eo,.°<83.021;31.03110.0 4649.0 31Ui.O 1'213.,015316.01963
15 416.0 140.0 'P:B.'O :B'5.0 'B9.,,0 7L'O 72,,0 ,3Bl>.O 4797,.'02764.0 2224.0 B71.0 11'512.0 1964
1637'9.0147'4,1)4'9,.3 44.'042,.';04'1.0 '62.0 ''9:B ..!I.'O ,'2268.'03223.,024;0'9.0 2'0'9,8.0 111'4,6.3 1965
U'5~!2.0 180.0 5'5.0 45.0 4S;0113 .,0 51hO 265.0 2'990.0 25,05.0 20'95.0954.0 9749.0 1S'66
l'B 36'9.0 '9'5 .•.0 7;0,.0 :6'$.•0 -60.0 $:;;,.05:3.•3 1023,.:03:634.0 325'5403,,05.0 1416/0 13700.3 1967
19 417.0 130.0 liO'O.n ''97.495.0 '9'S.09.5.0 2'08.0 3::''45·."0 3427.,0 21.29.0 680.0 10718.4 1968
:2 0 ,265.0 l::n.O 68.558.2 55.'0 S 7 •.6 95.3 B49.0 2[\13.0 2692.09 74 •0 470.0 B3113 ,zi 1 969
21 249.0 117.0 7,3 ..:2 '5'9.~~:O.'4 52.7 69.2 746.0 :17'51.'021\41.0 2367.0 7T3.0B74'8.9 1970
22 :3-01.01924 0 '131 .•:083",4 604455,0 66 •.0 36~,"03414 .03-:'028.•0 3,(,:59.0 116.5.0 .1'301'9.8 1971
;~;5 375 .0 ~12i.o U'5:1}107';·1)--'-".498 .5 ~;~5l>9.0 '325S-;;O 2 67,"'0 1366 .0 12 6'55.9 19'72
2'4 5S0.0243.0 136.:0 874465.253.4 51.2 576.:0 290640 28:56.0 2271.0 821.0 10616.2 1973
25 307.0 123.0B2.6 68,.51>:1,•.8 56.6 56.7649.0 2069.0 2.634.,0 243'9.0 1543.0 10090.2 1S'74
2,613'85.'0232.0 140.0 1[5.011040 100.0 103.0 76:8.03178.036-49.61982.0157440 12336.01975
27553.0 23'5.013-9.0 106.:0 94.190...010'5.0 7'B1.02B70.0 2810.0 2604.0 600.0109'87.1 1976
28302·.0 16'B.0 119.0 ''97 •.392.0 '90.'0 92.9 366.0 3942.0 3B344 I)3:r94.0 1297.0 13794.2 1977
2951240 265.0 186,.'0 162:.0--liiO:'O----12I:;'O':134.6---709.0-2317.0 3196.0 2356.0 924 .•0 11022.0 197B
30 3:07 .•0 192.0 142.0 '122,,,0 -11040100.0 :111.0 ,634.0 2430.0 3056.0 2223.0 1137,.0 1056<1.0 1979
TABLE A1.16:CANTWELL FILLED DATA SET
YEM~OCT NOV DEC JAN FEll MAR APR MAY JUll JUL AUG SEF'SUMYR CALYR
'1
J
4218.3 1824.1 924.6 828.3 662.6 562.7 618.3 7827.5 15670.4 16690.4 13901.9 5631.6 69360.7 1950
2 2710.0 889.0 710.7 556.2 494.8 409.5 999.4 6194.6 12003.0 1~652.4 11642.8 11693.5 62955.8 1951
3 3255.8 1575.1 956.5 740.4 492.3 560.5 639.3 2642.7 16465.7 17394.7 13705.1 8185.0 66613.1 1952
4 3431.2 1668.6 932.4 731.2 511.6 476.7 833.7 5960.2 13671.0 13140.8 11158.3 5876.8 58392.4 1953
5 2334.1 916.8 794.1 708.4 482.6 443.3 638.4 7852.1 16795.4 16371.9 19033.7 9832:6 76203.3 1954
6 3293.4 1784.7 1105.3 930.6 797.6 491.0 563.2 3014.7 1~675.8 16621.7 12900.7 6064.7 62243.4 19;:;5
7 2465.1 1075.3 855.2 684.3 727.2 614.7 569.2 8231.9 20082.3 18916.4 14164.8 8487.2 76873.6 1956
S--2547~-4-T279.1 902.1988.4 943.4 851.3 802.6--8230.5 19438.8 16361.0 13422.6 8899.4 74466.8 1957
9 3410.4 2051.9 1096.8 876.9 592.2 454.1 689.9 3004.9 13973.2 15743.3 12723.2 4464.4 59081.3 1958
10 2b90.1 969.6 733.6 661.7 644.9 501.2 671.2 7894.5 16362.3 15620.2 16790.6 8063.5 71603.4 1959
11 3711.0 1718:7 1187.7 1042.0 826.4 695.6 785.6 13750.5 11108.1 16291.3 170~6.1 12704.7 80877.7 1960
12 4625.6 2012.7 1534.8 1207.4 984.7 1056.1 1701.7 9688.0 15710.0 14820.0 16700.0 6725.0 76766.0 1961
13 3281.0 1800.0 1400.0 1300.0 1000.0 940.0 1200.0'10000.0 28320.1 20890.0 16000.0 9410.0 95541.1 1962
14 4326.0 2200.0 1400.0 1000.0 850.0 760.0 720.0 11340.0 15000.0 22790.0 18190.0 9187.0 87763.1 1963
15 3848.0 1300.0 877.0 644.0 586.0 429.0 465.0 2806.0 34630.0 17040.0 11510.0 5352.0 79487.0 1964
16 31lli.!Lti!.!~~.L'-.L-,-760._.0 __~8Q-,O_~Z09!._Q_--.1.Q.22!~!8.016430.0 18350.0 13.440.0 1291.0.0 7916001 1965
17 3116.0 1000.0 750.0 700.0 650.0 630.0 875.0 4387.0 18500.0 12220.0 12680.0 6523.0 62051.0 1966
18 2322.0 780.0 720.0 680.0 640.0 560.0 513.0 9452.0 19620.0 16880.0 19190.0 10280.0 81637.1 1967
19 3084.0 1490.0 1332.0 1232.0 1200.0 1200.0 1223.0 9268.0 19500.0 17480.0 10940.0 5410.0 73359.1 1968
20 2406.0 1063.6 619.0 509.0 495.0 549.0 999.6 7471.0 12330.0 13510.0 6597.6 3376.0 49910.6 196~
21 1638.0 815.0 543.0 437.0 426.0 463.0 887.0 7580.0 9909.0 13900.0 12320.0 5211.0 54129.0 1970
22 2155.0 1530.0 1048.0 731.0 503.0 470.0 529.0 1915.0 21970.0 18130.0 22710.0 9800.0 81491.1 1971
23 4058.0 2650.0 1371.0 i061r;~~~8lIT-;()-1f76:o-9f;9"4.020000.016690.0 15620.0 9413.0 8~'653.0 197:'"'---
24 3619.2 1962.0 1138.5 895.6 778.9 638.9 723.2 4763.6 Ib762.6 12619.1 12379.8 5037.5 61318.9 1973
25 2037.4 929.4 651.2 583.7 467.7 407.8 553.0 9163.1 12544.9 13434.2 11833.3 7888.1 60493.8 1974
26 --21(Hr~9-1191.4 929.8 812.5 779.6 669.5 807.2 5583.5 19277.4 20912.114971.9 106413.4 78492.2 1975
27 3879.3 1052.1 564.4 549.6 529.7 496.4 628.4 4788.3 16571.4 14057.3 1~468.0 4585.6 62170.6 1976
28 2198.5 1195.9 1150.1 848.6 689.9 777.8 996.2 9619.2 30705.6 16666.4 1~242.6 7~20.0 84510.7 1977
29 3968.8 1833-:'7---U63.7 119201 1034.4 1272:7-r368~8--7819:--4--P)655-.316812.8 10181.5 5488.6 67891.8 1~
30 2345.0 1288.6 1032.3 878.5 808.3 746.7 870,6 6209.9 15598.4 18493.7 12750.7 7320.9 68343.7 1979
1 ,--1 -~7--1 ~--l ]-J -1 ~~~l ]--1 --~--l -~-]~-~J ]-1 ~'7-1 ----1
TABLEA1.17:GOLD CREEK FILLED DATA SET
YEAR OCT NOV REC JAN rEB HAR APR HAY JUN JUL AUG SH'SUHYR CALYR
1
2
3
6335.0 2585:-0 1439.01027.0 788.0 726.0 1370.0 11510.019600.0 22600.(Y T'r13Efo.o 13301.0 95659.1 1950
3848.0 1300.0 1100.0 .9.60.0 820.0 740.0 1617.0 14090.020790.022570.0 19670.021240.0 108745.1 19:il
5571.0 2744.0 1900.0 1600.0 1000.0880.0 920.0 5419.032.370.1 26390.020920.014480.0 114194.1 1952
4
5
8202.03497.0 1700.0 1100.0820.0 820.0 1615.0 19270.0 27320.1 20200.0 20610.0 15270.0 120424.1 1953
5604.02100.0 1500.0 1300.0 1000.0 780.0 1235.0 17280.02:'025.0.02'0:360.0 26100.012920.0 115429.1 1954
6 5370.0 27.60.0 '.2045.0 1794.0 1400.0 1100.0 1200.0 9319.0 29860.0 27560 •.0 2575.0.0 14290.0 122448.1 1955
-----7-4951.0 1900.0 1300-.0 980.0 970.0-940;0--950.01-7660;0 33340.0 31090-:1-'-24530.0-18330-;0--136941:2 ---r9'56
B 5806.0 3050.0 2142.0 1700.0 1500.0 1200.0 1200.013750.030160.023310.020540.019800.0 124158.1 is'57
9 8212.0~954.~0 3264'(L19~.0 13020..0 1148.0 1533.0 12900.0 2.5700.0 2;:>880.0 22540.0 7550.0 112953.1 1958
10 4.811.0 2150.0 1513.0 1448.0 1307.0 980.0 1250.0 15990.0 23320.0 25000.0 31180.0 16920.0 125869.1 1959
11 6558.0 2850.0 2200.0 1845.0 1~52.0 11~7.0 1300.0 15780.0 15530.0 22980.0 23590.0 20510.0 115792.1 1960
12 7794.0 3000.0 2694.0 2452.0 1754.0 1810.0 2650.0 17360.029450.024570.·0 2:!100.0 13370.0 129004.1 1961
13 591(,.0 2700.0 2100.0 19,00.0 150o;(f-i400~·olioo.0 12590.0 43270.0 25850.0 23'550.0 15890.0 138366.0 1962
14 6723.0 280040 2000.0 1400.0 1500.0 1000.0 830.0 19030.0 26000.0 34400.0 23670.0 12320.0 131873.0 1963
15 64~9.0 2250.0 1494.0 1048.0 ~66.0 713.0 745.0 4307.0 50580.0 22950.0 16440.0 9571.0 117513.1 1964
16 6291.0 2799.0 1211.0 960.0 .860.0 900.0 1360.0 12990.0 25720.0 27840.0 21120.0 19350.0 121401.1 f9~--
17 7205.0 2098.0 16:31.0 1400.0 13/00.0 1300.0 1775.0 9645.032950.019860.021830.011750.0 11274401 1966
18 4163.0 1600.0 1500.0 1500.0 1400.0 1200.0 1167.0 15480.0 29510.0 26800.0 32620.0 16870.0 133810.1 1967
19 4900.0 2353.0 2055.0 1981.0 1900~O~1900~Ol9io:01b18-O::-0-3f550.0 26420.0 17170:08816':0 117135.1 -1960----
20 3822.0 16.30.0 882.0 724.0 723.·0 816.0 1510.0 11050.0 15500.016100.0 BH79.0 5093.0 66729.0 1969
21 3124.0 12.15.0 866.0 824.0 768.0 776.0 10130.0 11380.0 18630.0 22660.0 19980.0 9121.0 90-124.1 1970
22 5288.0 3407.0 2290.0 1442.0 1036.0 950.0 1082.0 3745.0 32930.0 23950.0 31910.0 14440.0 122470.1 1971
23 5847.0 3093.0 2510.0 2239.0 2028.0 lB23.0 1710.0 21890.0 34430.0 22770.0 19290.0 12400.0 130030.1 1.972
24 4826.0 2253.0 1465.0 1200.0 1200.0 1000.0 1027.0 8235.0 27800 •.0 18250.0 20290.0 9074.0 96620.1 197:3
-'~25 3733.0 1523~034 :0 874.0 i77:O--724:·O--992~T-T6I80:0l.78io-;()I880o;o16220 .0-12250.0 90977.1 -1 974'---
:!6 3739.0 1700.0 1603.0 1516.0 1471.0 1400.0 1593.015350.032310.027720.018090.016310.0 122802.1 1975
27 773~.0 1993.0 1081.0 974.0 950.0 900.0 1373.0 12620.0 24380.0 18940.0 19800.0 6881.0 97631.1 1976
2B 3874.0 2650.0 2403.0 1829.0 1618.0 1500.0 1680.0 12 ....80.0 37970.0 22870.0 19240.0 12640.0 120954.1 1977
29 7571.0 3525.0 2589.0 2029.0 1668.0 1605.0 1702.0 11950.0 19050.0 21020.0 16390.0 8607.0 97706.1 1978
3_0 4907 .0 _253~_•.~~_.!.~_1.~.9_1_397.0__l2~A_~0__.!.200..~2_.14.:JQ._.9_J}l:l?0_.(L_2.~t~__~Q..!..L?5L8_::l.~.1 204.6_Q •.o~LOJ.z.Q~._J 13126.L..!...979 _.
TABLE A1.18:CHULITNA FILLED DATA SET
YEAR OCT NOV [IEC JAN FEB MAR APR MAY JUN JUL AUG SlOP SUMYR CALYR
1 9314.0 3276.9 2142.9 1588.2 117i-;S;-1029.9 1143.2 19888.0 27251.6 33669;325265.0 6424.4 132165.4 i9~.)0
2 3268.1 1236.0 890.7 979.9 911.6 845.4 1282.5 6100.5 19759.9 24160.5 20960.9 14192.6 94588.8 1951
3 6525.7 2406.5 1770.8 1385.3 1165.7 1074.5 1408.9 11664.4 28489.4 26546.6 19652.6 11001.1 113091.3 1952
4 6Tljfl926~5 1495.9 1597.1 --1140.5 955.;>-1266;6 9575.0 I9571~o-22848;3--17478.3 10756.5 94873.1 1953
5 4380.8 1680.2 1287.2 1220.5 1042.8 833.6 1054.4 16617.6 22528.3 2S827.2 27063.5 11887.7 115423.6 1954
6 4668.2 2303.5 1436.6 1148.3 893.6 861.1 1046.7 7928.7 26568.4 34255.7 31861.7 12604.0 125576.6 1955
7 6086.8 -2005.1 1476.3 1323.2 1295.7 lI04~30-;3 20025.433241.0 31196.3 23329.2 23259.6 145373.1 1Y~j6-----
13 6516.1 3013.7 1741.2 1673.3 1298.1 1237.5 1305.9 8447.2 24913.7 28654.7 26519.3 14016.7 119337.4 1957
9 5718.3 2752.0 1419.0 1305.9 1044.0 948.0 1220.0 10460.0 23170.0 25010.0 20760.0 8000.0 101807.2 1958
10 4197.0 1883.0 1262.0 1097.0 1049.0 738.0 890.0 7413.0 23660.0 25650.0 22100.0 9957.0 99896.1 1959
11 4723.0 2283.0 1700.0 1448.0 1103.0 933.0 1000.0 13890.0 17390.0 23650.0 19320.0 12420.0 99860.1 1960
12 5·135.0 1950.0 1745.0 1452.0 1100.0 1079.0 1600.0 10100.0 20490.0 27420.0 24580.0 16030.0 112681.1 1961---n 5777.0 2400.0 1500.0 1300.0 l000;-O~~930;-0-TI7();0774:r;020620~O27220.0 21980.0 13490.0 105130.1 1962
14 3506.0 1500.0 1552.0 1600,0 1300.0 846.0 700.0 11060.0 17750.0 28950.0 18390.0 11330.0 98484.0 1963
15 8062.0 2300.0 1000.0 1007.0 820.0 770.0 1133.0 2355.0 40330.0 24430.0 20250.0 9735.0 111692.1 1964
16 5642.0 2900.0 2106.0 1600.0 1400.0 1300.0 1400.0 7452.0 20070.0 23230.0 22550;O-22260.0-TIT904;i·--i9,S5
17 6071.0 1620.0 1350.0 1200.0 1100.0 1100.0 1300.0 3971.0 21740.0 23750.0 27720.0 12200.0 103122.1 1966
IB 4682.0 1680.0 1500.0 1458.0 1257.0 1045.0 972.0 12400.0 23520.0 35570.0 33670.0 12510.0 132264.1 1967
---"19 34B3.0 1660.0 1397.0 1235.0 1200;O-rr48.0 1347;()10940~O-29000.0 30140.0 20710.0 7375.0 109635.1 19613----
20 2898.0 1480.0 1139.0 974.0 900.0 824.0 1333.0 6001.0 18560.0 20820.0 11300.0 6704.0 72933.1 1969
21 4578.0 1887.0 1316.0 1200.0 1154.0 1100.0 1437.0 9643.0 19670.0 26100.0 24660.0 11330.0 104075.1 1970
22 3826.0 2210.0 1403.0 1113.0 950.0 934.0 982.0 4468.0 27180.0 27280.0 23810.0 11080.0 100236.1 1971
23 5439.0 2157.0 1432.0 1174.0 1041.0 939.0 893.0 9765.0 17900.0 25770.0 20970.0 12120.0 99600.1 1972
24 6461.2 2174.9 lS08.4 1160.2 1031.1 888.7 1105.6 4896.2 20005.4 22760.7 18676.2 7112.0 87780.8 1973
2~,4474.7 I~o-nV7~3~6'----9::4-:6--90S:-7-12f8-:-rT5330;t\-2094L 2 -26818;"8 2'1748.5-12526.5 112545.1 1974
26 4841.1 1782.9 1371.2 1286.5 1055.7 1060.5 1345.2 6927.6 25243.9 33978.6 22306.8 12169.9 113369.9 1975
27 5525.1 1525.2 1091.1 1120.1 1076.9 892.9 1168.2 10429.5 22642.0 25394.9 24290.7 10334.7 105491.4 1976
28 620E1.8 2537.2 2090.5 1497.5 989.0 962.0 1446.8 8159.6 33629.0 2::,801.8 20186.2 12388.3 115896.7 f~---
29 5429.0 2113.0 1640.7 1458.4 1122.9 986.6 1052.1 4702.3 15587.2 24832.7 15322.5 10350.5 84597.9 1978
30 4899.8 2184.4 1651.0 1405.5 1116.9 935.6 1275.6 11395.8 19615.5 27739.8 22897.4 11233.5 106350.8 1979
~1 ~11 ~-~
!1 J 'I
-)e---l ,-'-1 ---'j 1 -'--1 -1 --]~---)-J '1 ""1 1 .-..]
TABLE Al.19:TALKEETNA FILLED DATA SET
YEAr;OCT NOV [IEC JAN FEB MAR APR /'lAy JUN JUL AUG SEF'SUMH(CALYf~
3895.S 1576.9 1026.9 '14.5 ~68~1 396.S 384.i ~31a.5 8918.1 11734.6 10605.3 5210.9 49150.8 1~50
2 2319.4'770.3 514.5 536.1 402,6 378.6 607.0 3155.9 75~2.5 10122.6 9355.4 8464.7 441&9.7 1951
3 2387.B 1094.B 779.B 582.5 466.5 412.B 489.3 2638.3 11366.8 9476.0 8289.7 7047.8 45034.1 1952
4 3188.0 1554.7 931.0 635.0 470.4 453.2 652.5 4946.2 9B67.~9499.4 8028.7 5615.6 45B42.6 1953
5 2023.6 1134.0 693.2·648.6 472.1 366.2 429.2 3563.7 9554.B 10044.6 18033.2 6924.8 53908.1 1954
6 24~~6.0 926.2 632.4 59'f;T'-'S22.0 -444.2 450.1 2529-;err02{)6;'6-1234.().61420611 6302.3 51580.8 1955
7 2290.7 1033.4 789.1 029.9 621:1.2 502.4 497d 6414.7 14813.5 11720.6 12931.5 8179.4604!O.4 1956
8 !Ol,7.4 1766.3 1034.0 707.3 605.6 501.6 52~L4 ,4355.4'12778.8 10847.8 11373.2 9326.5 5685e.4 19S7
9 3662.4 168B.5 1014.7 822.1 609.3 515.3 705.2 4462.716038.613653.512199.7 4513.8 59885."-195B-----
10 2424.2 820.8 614.B 578.9 '526.5 436.2 5!-8.5 4173.6 749B.7 10509.2 13065.2 7053.4 48270.0 1959
11 2946 •.6 932.5 802.8 623.0 47.8.5 411.7 496.4 3826.25317.6 9181.212318.5 7648.0 44983.2 1960
12 3264.0 1485.1 1239.1 1001.4 804.9 62I;o 741.9 4106.815161.412515.914030.1 7879.3 62850.7 1961
1:{3095.2 1554.6 1033.9814.9 734.5 569.1 648.2 3259.9 169'92.5'9664.8 9289.7'5663.1 53320.4 1962
14 3576.4 1377.5 1107.3 776.7 700.4 537.3 454.84327.7 994903 13023.0 10087.2'3777.5 49695.1 1963
is 2839.9 916.2693.0 528.9 440.3 383.6 371.2 1.694.3 17080.09820.0 8396.0 3815.0 46978.4 1964
1(,3115.'0 156c8.!)1100.'0 720.0 620.0 .540.0 580.03474.011090.012180.0 1l150.0 10610.0 56747.0 1965
17 4438.0 1460.0 876.0 71f.0 526.~395.0 422.0 241~.0 12970.0 10100.0 10730.0 5370.0 50408.0 1966
18 2.388.0 897.0 750.0 637.0 546.0 471.0 4<.'7.0 4H2.0 9286.012600.0 14160;0---6''i71.0 53240.0 196'7
19 2029.0 1253.0 987.0 8S1.0 7'77.0 74.3.0 983.0 81340.014100.0 11230.0 75,46.0 4120.0 53459.0 1968
20 11,37.0 827.0 556.0 459.0 401.0 380.0 519.0 3869.0 5207.0 7080,0 3787.0 2070.0 26792.0 1969
21 1450.0 765.0 587.0504.0 4~;8.0 4-;;0.0 545.0 3950.0 7979.010320.0 8752.0 5993.0 41743.0 1970
22 2817.0 1647.0 1103.4 679.0 459.0 402.0 563.0 214.5.0 19040.0 117~0.0 16770.0 5990.0 63315.0 1971
23 2632.0 1310.0 845.0 727.0 628.0 481.0 519.'0 3516.0 12700.0 12030.0 9576.0 8709.0 5~673.0 1972
24 3630.0 1373.()889.0 748.0 654.0 S74.0 577.0 3860.0 12210.0 7676.0 9927.0 3861.0 45979.0 1973
25 1807.0 960.0 745.0 645.0 559.0 482.0 53.5.0 5678.0 8030.0 7755.0 7704.0 476J.O 39663.0 1974
26 1967.0 1002.0 774.0 694.0 586.0 508.0 522.0 40B4.0 13180.0 12070.0 8487.0 7960.0 5183~.O 1975
~-2884.0 773:0558.0 524.0 480-;-0--470.0 613.0'3439.0 10580.0 9026.0 B088.0 3205~0 40640.0 1976
28 1857.0 1105.0 10.69.0 700.0 549.0 506.0 548.0 4244.0 18280.0 9344.0 8005.0 5B26.0 52033.0 1977
29 3268.0 1121.0 860.0 746.0 576.0 485.0 534.0 2950.0 7429.0 10790.0 7001.0 3567.0 39327.0 1978
30 16&0.0 1138.0 932.0 762.0 652.6 577.0 710.0 7790.0 12010.0 14440.0 8274.0 4039.0 52984.0 1979
._---_..'_.__.•_-------~,-~--,_..-..-,-,----,-,----
TABLE A1.20:SKWENTNA FILLED DATA SET
YEAR OCT ,wv nEe JAN FEB MAR APR HAY JUN JUL AUG SE~'SUI1YR CI\LYR
~4120tr.1 1012.1 720.8 695.;J 75;J.7--V:!:r~Y-io8n~1l17i'583.816325.412895.4 5176.6 71052.2 1950
2 2741.5 747.5 628.3 733.7 891.9 768.4 1460.6 10775.6 13874.9 15583.3 11340.5 7822.1 67368.3 1951
3 3116.0 1552.9 924.2 1074.9 822.8 696.0 864.9 8077.6 22948.5 17793.5 11668.3 5492.4 75032.1 1.952
---4 4024.5 Il06.4 824.1 1013.5 828.6 775.4 1018.4 8743.6 13573.8 14073.4 9533.7 4786.8 60302.1 1953
5 2723.1 1228.7 69B.8 687.2 490.2 562.7 766.2 11172.8 19246.9 12761.3 17702.9 10650.8 78691.7 1954
6 4211.4 1223.2 1202.3 1191.9 686.6 732.0 911.7 11900.3 40356.0 2~B16.5 20590.6 9652.0 117474.5 1955
-----,;;;--'5923.6 2831.9 1506.0 854.4 996.2---707.1 943;517845.334533.923137.71"854.513371.3 117505.5 1956
8 4936.3 3094.2 1989.7 2165.8 1130.2 1144.0 900.7 5015.3 29642.6 19122.7 13917.9 8835.0 91894.4 1957
9 5544.7 2174.4 976.2 600.4 613.5 761.4 1253.5 12067.6 19677.0 17800.6 15359.6 6205.8 83034.6 1958
10 4038.4 1184.7 761.1 1091.1 629.9 522.0 759.8 41'98.4 13830.5 15086.5 11729.1 4937.1 59268.6 195~
11 3532.0 1850.0 1400.0 1097.0 961.0 843.0 835.0 10480.0 13440.0 16690.0 15990.0 9171.0 76289.0 1960
12 3889.0 1600.0 1597.0 1403.0 1154.0 1155.0 1700.0 11210.0 20570.0 16480.0 1391-0.0 12020.0 86688.0 1961
rr--'f6"05.0 2200.0 14<50.0 1200.0 860~~0~-n(f;()-Tooo;-o--uT3~O-T~630.014930.0 12080.0 6723.0 68001.0 196,~
14 2801.0 1250 .•0 1100.0 1000.0 810.0 700.0 650.0 7765.0 1~050.0 20430.0 12020.0 7180.0 69756.1 1963
15 5355.0 1550.0 840.0 970.0 750.0 600.0 840.0 1635.0 27250.0 16480.0 12680.0 6224.0 75174.1 1964
16 4425.0 1790.0 1300.0 920.0 800.0 7~O.0 770.0 4810.0 17160.0 19370.0 14010.0 13090.0 79185.1 1965
17 4122.0 1575.0 1150.0 1100.0 1100.0 1100.0 1300.0 4502.0 19550.0 141BO.0 17320.0 9812.0 76811.1 1966
18 5576.0 1400.0 900.0 720.0 650.0 650.0 780.0 1794.0 1~430.0 14740.0 15760.0 9517.0 66917.0 1967
~--19--3832-.0--1560 ~0-ii8i •o~ioi3;O 1000:6 950;6 --1:i"93:-01346---O:o 20770.0 17480.6 f0560-;0-3855~O--76964~.1-J.S'60---
20 1929.0 678.0 624.0 600.0 600.0 626.0 1487.0 11070.0 19580.0 13650.0 7471.0 3783.0 62098.1 1969
21 5654.0 1607.0 832.0 766.0 70Q~~~28.0 1171~22880.0 21120.0 1303~665.0 86342.1 1970
22 2919.0 2023.0 1184.0 865.0 721.0 613.0 607.0 5963.0 25400.0 20600.0 15920.0 6024.0 82839.1 1971
23 3020.0 1327.0 1103.0 989.0 898.0 811.0 742.0 8045.0 15330.0 16840.0 13370.0 9256.0 71731.0 1972
24 4551.0 2340.0 1316.0 910.0 702.0 606.0 727.0 6349.0 15200.0 13850.0 9874.0 6164.0 62589.0 1973
--2~)·------3540.0 1700.0 1265.0 1023.0 902;-0-~8rLo-ro05.0-·6765;-O-io65O-:-011670.0 10480.0 11800.0 61611.0 1974
26 4557.0 2328.0 919.0 800.0 750.0 750.0 767.0 7852.0 19060.0 19520.0 11710.0 8471.0 77484.1 1975
27 4704.0 1973.0 1258.0 971.0 897.0 800.0 1270.0 8806.0 15120.0 11580.0 11120.0 8165.0 69664.0 1976
28 6196.0 2880.0 2871.0 2829.0 1821.0 ~200.0 1200.0 8906.0 36670.0 25270.0 20160.0 10290.0 120293.1 1977
29 5799.0 2373.0 1548.0 1213.0 944.0 841.0 1023.0 9006.0 13840.0 18100.0 13740.0 7335.0 75762.0 1978
30 493~-,-0 151l_Q-,-9 ·1_~_~5_,~~6~.~~__19J_~~Q }?}_'O_!_~_?;:_~9_1 !66Jl-,S>_142'8g_~_!-~~:lQ-,-~J_62LQ.~.L_~8.0 789~§--,~0_1J2L_
~~1 j ,-,I 1 ,.,,-3
-]1 -1 - 1
---1 -)--1 ~J ---1 1 1 ..,------)'---1 -1 ~---l -~l
TABLE Al.ll:SUSITNA STATION FILLED DATA SET
ocr----'-NOV ----nEC-JtlN ..",FEB -I'Ii\R '---~--APR -.MY----JUW------JUL---~-'Aurr--.5EP -------SUMYR CALYF:
26869.4 11367.1 6197.0 6071.9 5255.5 5376.7 5&56.9 66293.5 101615.7 124889.8 106431.8 39331.2 505356.5 1950
HI021,.1 6932.g-·-S<t8U.9--70n.o"-7294.9 638];5-7354.2 592n.5·82254;6 123164;1 100946.9 73471:0'498153.1 1951
31052.6 16363.8 6988.5 a27 ••3 7036.4 5853.0 5985.1 45294.3 132547.3 137321.8 116186.1 82076.3 594979.5 1952
44952.4 16289.1 9746.0 806W.7 6774.5 6349.8 7992.6 88840.0 130561.3 125949.2 97610.0 44167.7 587301.3 1953
,--'7,0168;S'"11829 ;T----S:27T;c;--7202;l/""4-993;1 4979 ;7--6305.5 58516;4 108881.U--116 73 L6 I?85Rb;7 0li275;'3--'----539740.5 .1954
23895.7 9167.8 6183.0 7254.6 5845.1 5315.6 6412.4 58164.0 169044.8 148876.5 120120.0 53504.2 61.3783.7 19~;5
19923.4 10521.9 7294.7 6179.2 6830.8 6324.4 7182.2 82485.8 161346.1 168814.6 131619.5 104218.4 712741.0 1956
·41.821;6 21547;5-14'140;3 -10600;1 8356.1'7353.1'7705.3 63204.4 176218;8 140318;3"1211812.9 87825;l/....703909.4 195]
52636.0 1988b.6 10635.3 7552.9 6386.9 667S.8 8098.6 70:520.5 J.12896.8 122280.2 99608.5 5:3053.3 5]00:".4 19~;8
30543.1 9528.4 4763.4 ]795.1 6564.3 5665.5 6467.8 56601.4 110602.3 146216.8 138334.3 6]903.5 590985.9 1959
---z:j75l\.1--''''101'''64.-S--/o0'l.5--5715,'3--'O-:31 0.0 "56SL',,·--S8Z9.-O"SOOiH;is - -84134 ';4 'I'29403.q~1.T3971;o''''1315bS;'II'-'--5265M;91960
33782.3 12914.2 13768.2 12669.1 10034.0 9192.6 9802.6 85456.7 151715.1 138968.5 116696.5 62504.3 657504.1 1961
29028.7 13043.3 8976.6 9050.1 6182.5 5950.6 6635.2 54553.8 163049.0 143441.3 121220.5 74806.4 635938.0 1962
-77716;2-1075·1;S ---Stl"(,l\;o~-""Bi570.7 -7853 ;;ti'b058 •1"-556'1;7 ...53903.2 "85647;9 146 '120.1-1 00706;S'--70782;.,....----538942 ;1"--1953
37846.3 11701.6 5626.0 6351.1 5761.6 4910.4 5530.8 35536.2 153126.4 124805.8 92279.5 461.09.8 529585.5 1964
28746.9 10458.0 6126.6 6951.9 6195.8 6169.9 7120.1 49485.4 110074.6 138406.5 111845.9 89944.3 571525.9 1965
-----;3'6'553 ;T-12312;S--9Ts'r;T--B1J30 .8--7489.4 7090;5--'8048C;3'-"'52311;4"125182-;13n70U7;'4--Tr8729"·3-o'3"8~--'507.i"11\12'-;7."'--'1965
26396.2 12962.6 8321.9 8028.5 7726.1 6683.2 7280.6 58106.6 134880.9 136306.3 137318.0 89527.0 633537.9 1967
37724.5 15872.8 15081.0 11604.2 11532.2 8772.0 8762.6 94143.2 137867.2 130513.6 86874.5 42384.8 601132.6 1968
~-T5939 ;Fr'6605;7 --427lj1.T~'·;;;032;'5"'5137.2 5171 ;9-'-6'15'2;·"---""lIl317.3tl;:\22S;''5'''1 U21.2T;2"'onlirr~2'-'~3"'f085;4"-'-'''-:Fl\736.2 -"-'1969
226B3.4 6]99.3 5016.4 6G74.2 5581.3 5731.6 5769.1 53036.2 94612.1 132984.7 117728.0 80584.8 536601.1 1970
32817.3 16607.2 8633.2 6508.7 6253.8 5882.6 5787.5 29809.3 122258.2 139183.4 133310.1 69021.2 576072.5 1971
--:327['T;'2'''''1l\92r;'T~~B7lj1U';11--'9379.7..~-...trl\5'R;3--66'4S-;lj-"b8'94 ;'T-7'1l/6:T;'U-"TnOZT;TT;<f27Bo-;tfl0759~-o1Y220.11 6413"51J4;T~-l'n2
26]81.9 14852.9 8147.1 7609.2 ]476.7 6312.6 7688.2 64534.0 122'797.1 123362.2 i07260.8 45226.8 542049.6 1973
20975.7 10113.3 608~.0 7401.6 6747.3 629~.7 6962.8 61457.8 67838.0 102184.3 80251.5 56123.5 432430.5 1974
-'~J:9520;O'''T01J0(r;O~'~V1fT9-;(J''-8597;0"-7804;0 '7048;06867;o 47540';'U "T28Boo-;-;:r"I :r570'()';'O'--gDOU·;T--77711v;-r--':iS-079S."1975
31550.0 9933.0 6000.0 6529.0 5614.0 5368.0 7253.0 70460.1 107000.0 115200.1 99650.1 48910.0 513467.3 1976
30140.0 18270.0 13100.0 10100.0 8911.0 6774.0 6233.0 5~180.0 165900.3 143900.0 125500.1 83810.1 668818.6 197]
----;m230;'012630;'O'--,'52'9';U-697 Jl ;1.)",is 771.0 6590;0'7033.0 48670;0-90930;0"'n760U>rT021 00.2 -55500";'0 ----'-"'500557.3 1978
36810.0 15000.0 9306.0 8823.0 7946.0 7032.0 86B~.0 81260.1 119900.0 142500.0 128200.0 ]4340.0 639800.1 1979
TABLE AI.22:COMPUTED STREAMFLOW AT DENALI
OCT NOV DEC JAN FEB MAF;:APR MAY JUN ,JUL.(-lUG SEF'
1493.5 618.9 398.2 219.4 220.1 149.6 218.8 2531.9 6232.7 10078.0 B01!S.0 2478.8
899.0 310.2 250.8 173.1 147.9 151 .8 363.7 3456.3 7189.2 10352.8 8506.8 5878.0
1216.4 488.0 338.6 359.1 309.3 282.9 :;~98.1 206~).4 9767.3 11392.7 8965.7 3758.~)
1600.3 780.5 362.2 269.1 193.9 166.9 456.8 5754.4 9952.4 9773.4 7960.8 3494.4
1485.8 442.3 309.4 351.6 251.6 215.9 262.5 3757.7 7509.7 9467.0 941b.6 3189.B
1247.9 680.9 371.8 341.6 248.0 237.1 264.7 2669.5 9680.5 9760.9 12473.6 5239.0
12<.n.5 396.4 305.'7 296.6 172.0 212.7 224.6 6666.0 18527.2 15779.2 15313.5 7290.9
2000.2 972.3 573.3 342.6 301.4 221.9 338.7 4577.1 13750.6 12230.0 10785.2 5580.9
1963.6 931.1 605.1 371.8 233.7 175.0 294.4 2090.9 9503.0 10136.3 7701.8 2374.6
1299.5 522.6 295.5 234.7 193.9 131.9 157.9 3626.7 10464.8 9754.3 10165.1 3902.4
2016.2 960.7 741.4 584.2 419.7 349.4 337.6 4211 .8 ~j961.3 10134.5 9255.6 6212.3
2331.2 872.0 710.3 543.0 412.6 432.1 631.0 4132.8 B514.2 9569.8 8079.2 3711.7
1693.2 817.7 547.1 3'71.8 316.5 290.4 356.5 2593.3 11374.3 10978.9 10609.2 4<:.40.4
1445.7 601.8 401.8 341.8 329.5 236.7 226.8 4429.6 8446.0 12276.3 11048.4 4428.3
1323.0 435.4 279.4 201.8 198.1 153.5 172.8 :1.139.7 14070.3 84B1.2 7306.3 32'78.:")
1951.0 837.9 323.4 250.6 227.~:)237.2 360.2 :n 02.3 6068.4 8208.0 6939.0 7940.3
154~:L6 468.0 374.8 317.1 299.5 29?5 417.7 2433.5 9060.8 9455.9 7832.0 3999.7
:1.8~jO.3 655.9 461.4 465.1 356.1 430.2 348.6 5020.6 10672.6 12672.4 11778.1 3946.0
1912.1 634.8 460.8 371.0 422.1 446.4 322.7 1850.2 8846.9 13207.8 10778.2 2713.1
<116.6 390.8 212.4 178.0 17().4 186.0 307.3 231~5.6 8631.0 9841.3 4268.1 2475./
1229.4 :;62 +2 388.4 324.2 273.3 240.9 348.5 2791.4 6347.3 9794.3 /'388.0 2544.2
1007.3 682.2 466.0 278.B 206.5 193.4 219.6 909.0 9775.9 11300.5 11807.6 399'7,.<1
:1.312.'7 637.6 5~j4.3 518.2 476.2 430.1 397.6 ::'j334.0 8769.8 11380.2 9225.5 3233.::)
832.5 409.8 279.9 231.2 227.0 192.8 lHB.c)1341..0 6983.8 8944.8 7984.9 27~)2+3
1089.4 515.1 3<78.3 337.6 2913.5 265+5 299.9 3~:i78.<i 6616.3 10438.?10142.3 6229.0
2340.1 1'44.1 483.<7 394.7 313.7 313.1 320.4 :n99.9 8812.6 13462.8 8229.6 4591.1
2188.6 4?8.6 23~5.6 180.2 162.2 156.0 221.8 2965.9 7322.2 9165.0 10523.6 2190.B
1:1.78.0 695.1 5~j6.6 417.5 370.9 35:L/,396.3 2794.4 10339.8 11007.4 10947.2 4346.2
1/'08.4 929.4 631.2 490.3 426.3 355.9 355.6 2257.I.)5809.1 9823.9 9583.1 4087.0
1222.3 649.1 428.2 345.1 301./'234.2 291.7 3264.3 8213.0 10755.5 10373.0 5039.7
..,,"-]'1 -1 1 1 '1 "-""]-'J ,."']"J '-1 ~.,'J "'-1
TABLE AI.23:COMPUTED STREAMFLOW AT MACLAREN
OCT NOV DEC JAN FEB MAF'~APR MAY JUN JUL AUG SEP
1851.5 930.0 557.2 340.3 308.0 229.9 296.0 3345.8 8595.6 11824.2 9947.8 3932.9
1579.9 529.7 408.8 348.9 279.7 276.2 566.3 5420.9 10605.6 12631.5 9898.4 8174.3
2043.6 845.0 5E13.8 544.9 436.3 384.7 441.3 2224.2 12442.8 13272.1 10301.1 5261.9
2392.9 1158.0 490.4 326.4 240.8 288.2 705.7 7047.4 11176.5 11218.7 9206.1 4547.9
1778.3 620.8 483.7 532.7 363.1 307.0 368.5 :~616.3 8975.5 10546.4 10528.9 3368.0
1408.2 8j.8.3 562.2 532.8 370.2 379.6 390.1 2753.9 13038.6 13381.9 15813.8 8~~1::-C"","~.J+~
1961.5 709.6 454.1 416.2 285.3 263.4 289.2 6372.9 18316.8 16750.4 13544.8 6560.6
1932.0 1040.5 783.2 576.9 484.6 359.4 436.9 4708.5 15590.9 13406.0 11540.4 6402.9
2327.0 1144.3 675.6 539.7 411.7 406.7 541.0 3596.5 12617.6 12274.8 10132.9 2922.4
1589.4 773.2 394.3 364.6 290.4 191.3 238.7 2704.8 10668.2 11497.9 11475.1 4747.3
2482.5 1093.8 805.5 651.9 529.3 462.0 505.6 6262.8 7621.9 11947.9 10863.7 7637.0
2817.8 1069.4 794.1 646.6 510.0 513.4 768.1 5845.7 10400.8 10970.3 11305.8 4423.9
2144.1 1160.5 851.8 717.6 566.0 528.9 674.7 5544.5 17338.0 14797.4 12262.2 6120.5
2472.0 1235.0 777.6 571.8 496.0 440.2 428.8 6722.3 10296.7 15772.4 13633.4 6196.1
2179.0 723.3 481.9 356.2 331.3 246.9 273.7 1723.4 21497.0 11636.6 8679.0 3799.5
21.82.7 1220.7 554.4 451.7 405.9 422.9 653.3 5189.9 9701.9 11729.8 90~57.0 9509.7
1862.1 600.3 458.8 420.2 393.1 393.1 535.3 2812.2 11847.9 9974.3 9112.4 4625.6
1891.8 637.5 504.2 485.6 411.5 430.0 362.0 6395.0 13647.0 13610.8 13784.5 6087.5
2256.2 926.3 771.4 674.9 b94.7 708.5 648.9 4428.6 12364.3 14259.6 10303.3 3572.5
1431.9 629.6 363.3 300.7 288.0 317.9 558.9 4214.6 9940.9 11188.9 5067.9 2711.9
1274.8 635.7 426.5 338.a 308.9 308.8 562.7 4513.7 7113.4 10790.3 8834.6 3346.7
1226.0 881.9 607.2 410.7 287.2 270.1 304.0 1180.7 14049.7 13721.9 15681.0 6081.6
2334.2 1152.4 805.1 651.7 570.8 541.3 530.0 6139.0 12326.9 13127.0 11648.1 5628.7
1987.2 907.7 555.7 467.4 431.8 404"9 428.1 3289.5 11719.7 10915.7 10844.3 4427.3
1503.4 768.3 562.1 474.5 411.1 359.3 469.0 5482.0 8156.0 11015.7 9879.9 6189.7
2248.1 914 t1 (l16.7 556.2 426.3 397.7 460.0 4269.4 12910.5 15013.6 9305.6 6175.7
2377.3 722.6 379.2 290.6 280.1 252.4 382.3 3189.5 9971.8 11309.9 13006.1 2958.2
1376.1 763.9 587.2 511.8 464.1 431.3 439.8 2660.2 15150.2 12730.3 11915.6 5747.0
2332.1 11 06.6 822.6 670.2 532.9 521.0 620.7 5650.9 9602.5 11822.7 9333.7 4456.8
1597.1 830.1 573.6 519.4 478.5 543.3 648.0 6216.9 13381.5 14307.2 10667.2 5717.0
TABLE A1.24:COMPUTED STREAMfLOW AT VEE
OCT NOV DEC JAN FEB MAR APF.:MAY JUN JUL AUG SEP
3005.9 1553.7 882.3 590.2 486.4 402.6 478.5 5627.1 13070.3 15578.3 13765.5
6279.13
2'716.6 902.8 700.5 646.7 517.0 492.3 968.1 9060.2 16106.6 16832.8 13090.5 12924.0
3555.0 1561.0 1077.6 929.0 672.2 581.1 680.7 2940.3 18772.9 17569.8 13574.4 8483.9
4252.1 1971.2 836.8 520.6 :~90.6 512.3 1134.8 10545.2 15261.4 14336.5 12512.6
752'7.()
2749.0 1068.5 848.3 862.7 594.1 487.8 632.4 5771.8 13349.9 13400.4 14393.4 5181.2
2255.8 12913.8 1023.7 957.7 679.6 659.1 665.7 3958.0 19598.0 19784.9 21188.5 12554.0
3201.6 1257.2 761.2 643.8 526.4 433.8 472.5 7958.4 20625.9 20250.5 13447.6 7744.3
2512.1 1455.9 1245.3 1025.9 858.9 653.8 674.6 6383.6 20090.9 16382.1 13898.2 9578.6
3724.5 1855.4 1191.4 966.5 760.1 788.4 981.5 6835.5 18275.1 16433.9 14920.4 4311.1
2455.1 1283.2 692.8 691.5 569.0 390.5 499.1 3933.0 13033.6 15710.3 16257.6 7741.2
3687.7 1538.0 1112.2 928.6 806.6 710.8 825.8 10141.0 10796.2 15819.6 14795.0 11390.4
4197.7 1614.4 1208.2 1066.6 828.2 822.7 1238.1 9688.0 15710.0 14820.0 16700.0 67~~~5.0
3281.0 1800.0 1400.0 1300.0 1000.0 940.0 1200.0 10000.0 28320.1 20890.0 16000.0 9410.0
4326.0 2200.0 1400.0 1000.0 850.0 760.0 720.0 11340.0 15000.0 22790.0 18190.0 9187.0
3848.0 1300.0 877.0 644.0 586.0 429.0 465.0 2806.0 34630.0 17040.0 11510.0 5352.0
3134.0 1911.0 921.0 760.0 680.0 709.0 1097.0 8818.0 16430.0 18350.0 13440.0 12910.0
3116.0 1000.0 750.0 700.0 650.0 650.0 875.0 4387.0 18500.0 12220.0 12680.0 6523.0
2322.0 780.0 720.0 680.0 640.0 560.0 513.0 9452.0 19620.0 16880.0 19190.0 10280.0
3084.0 1490.0 1332.0 1232.0 1200.0 1200.0 1223.0 9268.0 19500.0 17480.0 10940.0 5410,.0
2406.0 1063.0 618.0 508.0 485.0 548.0 998.0 7471.0 12330.0 13510.0 6597.0 3376.0
1638.0 815.0 543.0 437.0 426.0 463.0 887.0 7580.0 9909.0 13900.0 12320.0 5211 .0
2155.0 1530.0 1048.0 731.0 503.0 470.0 529.0 1915.0 21970.0 18130.0 22710.0 9800.0
4058.0 2050.0 1371.0 1068.0 922.0 881.0 876.0 9694.0 20000.0 16690.0 15620.0 9423.0
3744.3 1686.0 1014.6 852.6 788.2 740.1 794.3 6281.0 19677.3 14336.0 15604.3 706~.).B
2338.5 1176.0 823.0 693.5 597.5 524.7 744.5 9396.5 11502.1 12970.6 10662.4 717:L.6
2398.7 1235.0 930.5 897.3 727.6 660.8 806.1 7769.2 20724.2 18878.2 11981.7 9642.5
3493.1 1185.2 658.9 528.4 523.8 468.5 727.5 5032.2 15339.4 14972.8 16900.8 4470.5
2017.8 1159.1 928.2 838.9 762.3 697.8 697.7 4207.1 24330.5 16351.0 14225.7 8462.2
3908.1 1711.7 1333.1 1099.1 842.8 887.0 1096.8 10469.1 15395.8 15589.1 10251.8 5568.0
2571.5 1318.7 921.7 860.6 810.6 996.3 1177.7 10776.8 21010.2 20700.3 12649.3 '7320.9
1 ,4 ~"l 11 T\
J :J :1
1 ~-l --~l ---~l --]'~""l ---]---)]-1 -~-l '-'1 ~-''-1 -)
TABLE A1.25:COMPUTED STREAMFLOW AT SUSITNA III
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF'
3137.7 1594.5 904.3 607.5 498.3 415.4 494.0 5860.1 13328.9 15856.4 14007.7 6359.8
2"761.4 918.5 716.3 659.1 529.0 502.1 993.8 9259.4 16292.1 17060.0 13351.1 13253.3
3634.8 1607.9 1110.2 955.6 685.2 592.9 690.2 3038.5 19311.4 17919.1 13865.3 8721.4
4408.5 2031.6 871.0 543.5 407.6 524.5 1153.8 10890.7 15739.0 14568.7 12833.3 7833.7
2862.1 1109+4 874.1 880.0 610.2 499.4 656.3 6227.6 13821.2 13676.0 14857.0 5487.7
2379.1 1356.7 1064.1 990.8 708.1 676.6 686.9 4170.3 20004.4 20092.8 21369.2 12622.8
3270.9 1282.·7 782.5 657.1 544.0 453.8 491.4 8342.6 21129.4 20679.8 13886.5 8163.:')
2642.6 1519.0 1280+8 1052.6 884.3 675.4 695.4 6675.3 20489.7 16656.5 14161.2 9983.4
3902.2 1938.5 1273.5 1006.0 781.8 802.6 1003.3 7075.7 18569.2 16689.2 15222.2 4439.4
2548.4 1317.5 725.3 721.5 598.2 413.8 528.8 4410.5 13441.0 16078.2 16848.6 8104.7
3801.4 1590.0 1155.3 964.9 832.2 730.1 844.6 10364.3 10983.7 16103.2 15143.3 11751.6
4340.1 1669.3 1267.0 1121.5 864.9 861.8 1294.0 ,9991.8 16254.2 15206.1 16913.9 69813.2
3385.4 1835.6 1427.7 1323.8 1019.8 958.2 1219.8 10102.6 28912.2 21086.4 16299.0 9666.6
4420.9 2223.8 1423.8 1023.8 875.7 769.5 724.4 11644.6 15435.6 23249.8 18407.0 9311.1
3951.0 1337.6 901.4 660.0 601.0 440.2 476.1 2865.4 35261.7 17274.1 11705.2 5519.1
3259.0 1946.2 932.5 767.9 687.1 716.6 1107.4 8983.2 16797.9 18725.8 13744.2 13165.0
3277.9 1043.5 784.9 727.7 675.7 675.7 910.6 4595.2 19072.3 12522.6 13042.4 6730.0
2394.9 812.5 750.9 712.5 670.1 585.3 :':)38.9 9690.7 20011.7 17272.9 19721.9 10541.0
3155.9 1524.2 1360.6 1261.7 1227.7 1227.7 1250.2 9541.7 19977.2 17834.1 11186.7 5544.7'
2462.1 1085.5 628.5 516.6 494.4 558.6 1018.3 7612.7 12455+5 13612.6 6687.4 3444.0
1696+9 830.8 555.8 452.3 439.5 475.4 894.6 7730.5 10254.4 14246.9 12623.4 5365.9
2279.1 1604.3 1097.2 759.2 524.1 489.0 550.9 1987.5 22404.1 18360.5 23074.4 998~L 8
4128.9 2091.3 1416.1 1114.4 965.8 918.3 909.0 10177+0 20571.5 16930.8 15765.3 9540.9
3787.1 1708.5 1032.4 866.4 804.5 750.4 803.5 6358.4 19999.0 14491.0 15789.9 714::'i.3
2393.7 1189.7 831.4 700.6 604.6 532.6 754.3 9665.2 11754.3 13201.5 10882.5 7372.7
2451.8 1253.4 957.1 921.8 757.0 690.1 .837.3 8069.4 21183.0 19228.4 12223.6 9906.6
3661.3 1217.2 675.6 546.0 ~i40.7 485.6 753.1 5332.7 15697.4 15129.9 17015.6 4566.0
2091.3 1218.1 986+6 878.1 796.2 729.6 736.6 4542.7 24870.7 16609.2 14424.3 8627.7
4053.2 1783.5 1382.8 1135.9 875.5 915.4 1120.8 10527.7 15540.5 15804.2 10494.9 5688.4
2664.0 1366.9 951.8 881.8 829.4 1004.4 1188.5 10899.3 21155.9 21024.3 12958.6 7457.5
TABLE Al.26:COMPUTED STREAMFLOW AT WATANA
OCT NOV DEC JAN FEB MAR AF'f~MAY JUN JUL AUG !~EP
4719.9 2083.6 1168.9 815.1 641.7 569.1 680.1.8655.9 16432.1 19193.4 16913.6 '7:320.4
3299.1 11 07.3 906.2 808.0 673.0 619.B 1302.2 11649.8 18517.9 19786.6 16478.0 17205.5
4592.9 2170.1 1501.0 1274.5 841.0 735.0 803.9 4216.5 25773.4 22110.9 17356.3 11571.0
6285.7 2756.8 1281.2 818.9 611.7 670.7 1382.0 15037.2 21469.8 17355.3 16681.6 11513.5
4218.9 1599.6 1183.8 1087.8 803.1 638.2 942.6 11696.8 19476.7 16983.6 20420.6 916~;.5
3859.2 2051.1 1549.5 1388.3 1050.5 886.1 9-40.8 671f3.1 24881.4 23787.9 23537.0 13447.8
4102.3 1588.1 1038.6 816.9 754.8 694.4
718.3 12953.3 27171.8 25831.3 19153.4 13194.4
4208.0 2276.6 1707.0 1373.0 1189.0 935.0 945.1 10176.2 25275.0 19948.9 17317.7 14841.1
6034.9 2935.9 2258.5 1480.6 1041.7 973.5 1265.4 9957.8 22097.8 19752.7 18843.4 5978.7
3668.0 1729.5 1115.1 1081.0 949.0 694.0 885.7 10140.6 18329.6 20493.1 23940.4 12466.9
5165.5 2213.5 1672.3 1400.4 1138.9 961.1 1069.9 13044.2 13233.4 19506.1 19323.1 16085.6
6049.3 2327.8 1973.2 1779.9 1304.8 1331.0 1965.0 13637.9 2278-4.1 19839.8 19480.2 10146.2
4637.6 2263.4 1760.4 1608.9 1257.4 1176.8 1457.4 11333.5 36017.1 23443.7 19887.1 12746.2
5560.1 2508.9 1708.9 1308.9 1184.7 883.6 776.6 15299.2 20663.4 28767.4 21011.4 10800.0
5187.1 1789.1 1194.7 852.0 781.6 575.2 609.2 3578.8 42841.9 20082.8 14048.2 7524.2
4759.4 2368.2 1070.3 863.0 772.7 807.3 1232.4 10966.0 21213.0 23235.9 17394.1 16225.6
5221.2 1565.3 1203.6 1060.4 984.7 984.7 1338.4 7094.1 25939.6 16153.5 17390.9
9214.1
3269.8 1202.2 1121.6 11 02.2 1031.3 889.5 849.7 12555.5 24711.9 21987.3 26104.5 13672.9
4019.0 1934.3 1704.2 1617.6 1560.4 1560.4 1576.7 12826.7 25704.0 22082.8 14147.5 7163.6
3135.0 1354.9 753.9 619.2 607.5 686.0 1261.6 9313.7 13962.1 14843.5 7771.9 4260.0
2403.1 1020.9 709.3 636.2 602.1 624.1 986.4 9536.4 14399.0 18410.1 16263.8 7224.1
3768.0 2496.4 1687.4 1097.1 777.4 717.1 813.7 2857.2 27612.8 21126.4 27446.6 12188.9
4979.1 2587.0 1957.4 1670.9 1491.4 1366.0 1305.4 15973.1 27429.3 19820.3 17509.5 10955.7
4301.2 1977.9 1246.5 1031.5 1000.2 873.9 914.1 7287.0 23859.3 16351.1 18016.7 8099.7
3056.5 1354.7 931.6 786.4 689.9 627.3
871.9 12889.0 14780.6 15971.9 13523.7 ?786.2
3088.8 1474.4 1276.7 1215.8 1110.3 1041.4 1211.2 11672.2 26689.2 23430.4 15126.6 13075.3
5679.1 1601.1 876.2 757.8 743.2 690.7 1059.8 8938.8 19994.0 17015.3 18393.5 5711.5
2973.5 1926.7 1687.5 1348.7 1202.9 11.10.8 1203.4 8569.4 31352.8 19707.3 16807.3 10613.1.
5793.9 2645.3 1979.7 1577.9 1267.7 1256.7 1408.4 11231.5 17277.2 18385.2 13412.1 7L~2.6
3773.9 1944.9 1312.6 1136.8 10~:;5.4 1101.2 1317.9 12369.3 22904.8 24911.7 16670.7 9096.7
'?i
~l
1 ~l "1 "l~"]'-~J ·:-~l···")····]·-··l .--.1 -'-1'~)1 1
TABLE A'I.2l:COMPUTED STREAMfLOW AT HIGH DEVIL CANYON
OCT NOV DEC JAN FEB MAF~APR MAY JUN JUL AUG SEF'
:'5675.8 2379.2 1328.8 940.5 728.3 662.0 792.5 10345.1 18307.0 21209.6 18669.2 7900.8
3624.0 1221.3 1020.9 898.0 760.0 691.0 1488.5 13094.0 19862.6 21433.9 18367.1 19593.3
5171.8 2509.7 1737.1 1467.1 935.:I.820.8 872.6 4928.2 29677.6 24643.4 19465.4 13292.7
7419.8 3194.9 1529.1 985.3 735.0 759.1 1519.9 17542.3 24932.2 19038.9 19006.6 13736.7
5038.7 1895.7 1371.0 1213.4 919.6 722.1 1115.7 15001.1 22893.5 18981.9 23781.9 11387.6
4'753.3 2470.7 1842.8 1628.4 1257.3 1012.7 1094.2 8257.4 27827.9 26020.4 24846.7 13946.2
4604.6 1772.7 1193.3 913.4 882.2 839.8 855.4 15738.9 30822.4 28943.6 22335.5 16233.8
5153.7 2734.3 1964.4 1566.5 1373.0 1091.8 1096.0 12291.3 28166.1 21938.1 19224.8 17776.0
7323.4 3538.4 2853.6 1767.3 1198.7 1076.8 1423.8 11699.1 24229.7 21603.5 21031.2 6908.6
4344.5 19'78.4 1350.6 1298.2 1160.9 863.3 1101.3 13602.5 21283.1 23160.5 28225.1 15:1,02.4
5989.6 2590.2 1984.6 1663.5 1324.2 1100.7 :1,206.1 14663.4 14592.6 21562.1 21848.4 18704.1
7081.9 2725.6 2399.8 2177.7 1570.7 1614.5 2370.4 15840.8 26729.2 22639.3 21030.7 12054.2
5394.2 2521.8 1961.4 1781.2 1401.0 1308.9 1601.0 12077.1 40309.6 24867.8 22055.0 14606.8
6248.3 2681.2 1881.2 1481.2 1371.3 952.5 808.2 17507.2 23821.8 32101.0 22584.9 11699.6
5934.0 2061.9 1371.8 968.0 890.8 656.8 689.6 4009.8 47421.6 21779.7 15463.8 8735.6
5665.9 2623.2 1153.6 920.4 824.4 862.2 1307.9 12163.9 23880.4 25960.8 19599.2 18074.8
6395.3 1880.6 1456.5 1261.4,1171.3 1171.3 1596.8 8603.8 30088.6 18347.1 20018.1 10715.0
3798.4 1437.6 1345.5 1337.6 1249.5 1073.3 1037.5 14286.3 27551.6 24835.6 29960.6 15565.0
4540.4 2182.1 1911.8 1832.7 1761.4 1761.4 1774.0 14811.3 29163.9 24649.7 15936.3 8141.5
3541.6 1517.7 829.7 681.2 675.9 762.9 1408.6 10341.3 14872.3 15587.1 8427.1 4753.0
2829.7 1135.8 802.0 747.4 700.3 714.0 1041.8 10627.5 16903.1 20925.3 18463.2 8346.7
4667.6 3035.3 2044.1 1301.2 930.5 855.0 972.5 3382.6 30759.7 22797.5 30088.2 13521.2
5492.7 2886.5 2284.5 2007.1 1809.0 1636.5 1544.9 19475.0 31572.6 21566.0 18563.3 11810.5
4611.8 2140.7 1375.8 1131.2 1118.5 948.5 980.9 7848.1 26191.5 17475.0 19362.1 B676.~5
3456.9 1454.3 992.2 838.3 741.5 684.5 943.0 14836.7 16609.0 17645.7 15119.5 11244.4
3473.6 1607.9 1469.8 1393.5 1323.8 1253.6 1437.2 13848.9 30015.8 25969.1 16880.4 14989.7
6898.2 1833.0 997.4 885.8 865.6 814.6 1245.2 11117.5 22589.8 18154.4 19225.9 6403.7
3506.4 2354.8 2111.0 1632.9 1448.6 1341.1 1485.5 11002.2 35269.1 21579.1 18247.1 11812.7
6845.7 3165.9 2340.3 1844.9 1504.6 1462.8 1582.2 11656.8 18326.4 19944.6 15174.5 8005.2
4444.5 2294.1 1530.6 1290.8 1191.9 1159.7 1396.1 13257.5 23961.3 27260.3 18913.3 10087.0
TABLE Al.28:COMPUTED STREAMFLOW AT DEVIL CANYON
OCT NO\'!DEC JAN FEB MAR APR MAY JUN JUL AUG SEF'
5758,,2 2404.7 1342.5 951.3 735.7 670.0 802.2 10490.7 18468.6 21383.4 18820.6 7950.B
3652.0 1231.2 1030.8 905.7 767.5 697.1 1504.6 13218.5 19978.5 21575.9 18530.0 19799.1
5221.7 2539.0 1757.5 1483.7 943.2 828.2 878.5 4989.5 30014.2 24861.7 19647.2 13441.1
7517.6 3232.6 1550.4 999.6 745.6 766.7 1531.8 17758.3 25230.7 19184.0 19207.0 13928.4
5109.3 1921.3 1387.1 1224.2 929.7 729.4 1130.6 15286.0 23188.1 19154.1 24071.6 11579.1
4830.4 2506.8 1868.0 1649.1 1275.2 1023.6 1107.4 8390.1 28081.9 26212.8 24959.6 13989.2
4647.9 1788.6 1206.6 921.7 893.1 852.3 867.3 15979.0 31137.1 29212.0 22609.8 16495.8
5235.3 2773.8 1986.6 1583.2 1388.9 1105.4 1109.0 12473.6 28415.4 22109.6 19389.2 18029.0
7434.5 3590.4 2904.9 1792.0 1212.2 1085.7 1437.4 11849.2 24413.5 21763.1 21219.8 6988.8
4402.8 1999.8 1370.9 1316.9 1179.1 877.9 1119.9 13900.9 21537.7 23390.4 28594.4 15329.6
6060.7 2622.7 2011.5 1686.2 1340.2 :1.112.8 1217.8 14802.9 14709.8 21739.3 22066.1 18929.9
7170.9 2759.9 2436.6 2212.0 1593.6 1638.9 2405.4 16030.7 27069.3 22880.6 21164.4 12218.6
5459.4 2544.1 .1978.7 1796.0 1413.4 1320.3 1613.4 12141.2 40679.7 24990.6 22241.8 14767.2
6307.7 2696.0 1896.0 1496.0 1387.4 958.4 810.9 17697.6 24094.1 32388.4 22720.5 11777.2
5998.3 2085.4 1387.1 978.0 900.2 663.8 696.5
4046.9 47816.4 21926.0 15585.8 8840.0
5744.0 2645.1 1160.8 925.3 828.8 866.9 1314.4 12267.1 24110.3 26195.7 19789.3 18234.2
64(,6.5 1907.8 1478.4 1278.7 1187.4 1187.4 1619.1 8734.0 30446.3 18536.2 20244.6 10844.3
3844.0 1457.9 1364.9 1357.9 1268.3 1089.1 1053.7 14435.5 27796.4 25081.2 30293.0 15728.2
4585.3 2203.5 1929.7 1851.2 1778.7 1778.7 1791.0 14982.4 29462.1 24871.0 16090.5 B225.9
3576.7 1531.8 836.3 686.6 681.8 769.6 1421.3 10429.9 14950.7 15651.2 8483.6 4795.~:.'i
2866.5 1145.7 810.0 756.9 708.7 721.8 1046.6 10721.6 17118.9 21142.2 18652.8 8443.5
4745.2 3081.8 2074.8 1318.8 943.6 866.8 986.2 3427.9 31031.0 22941.6 30315.9 13636.0
5537.0 2912.3 2312.6 2036.1 1836.4 1659.8 1565.5 19776.8 31929.8 21716.5 18654.1 11884.2
4638.6 2154.8 1387.0 1139.8 1128.6 955.0 986.7 7896.4 26392.6 17571.8 19478.1 8726.0
3491.4 1462.9 997.4 842.7 745.9 689.5 949.1 15004.6 16766.7 17790.0 15257.0 11370.1
3506.8 1619.4 1486.~i 1408.8 1342.2 1271.9 1456.7 14036.5 30302.6 26188.0 17031.6 15154.7
7003.3 1853.0 1007.9 896.8 876.2 825.2 1261.2 11305.3 22813.6 18252.6 19297.7 6463.3
3552.4 2391.7 2147.5 1657.4 1469.7 1361.0 1509.8 11211.9 35606.7 21740.5 18371.2 11916.1
6936.3 3210.8 2371.4 1867.9 1525.0 1480.6 1597.1 11693.4 18416.8 20079.0 15326.5 8080.4
4502.3 2324.3 1549.4 1304.1 1203.6 1164.7
1402.8 13334.0 24052.4 27462.8 19106.7 10172.4
1 1 ,~,-;~i 1 '1 ~
I
,
TABLE A1.29:OBSERVED AND CALCULATED STREAMFLOWS AT WATANA DAMSITE
i'
l
r-
I
Month
July 19BO
August 1980
September 1980
June 1981
July 1981
August 1981
1 See Section (C)
2 Partial records were averaged
Average Monthly Streamflow ln cfs
1ObservedCalculated
28133 2 26743
18490 18006
11557 10996
17323 15911
27890 26592
31435 316B3
TABLE A1.30:HISTORICAL EVAPORATION*(INCHES)-MCKINLEY PARK
June July August
1967 3.97 3.20 2.42
1968 3.31 3.67 2.25
1969 3.48 2.39
1970 3.35 2.20
1971 6.38 3.75 2.06
1972 3.97 4.10 2.61
1973 3.37 3.25 1.55
1974
1975
1976 p--
1977 3.77 4.02 3.37
1978 3.02 3.46 3.31
1979 2.81 2.97 2.73
1980 4.04 2.92 lo88
1981 3.24 1.89 2.18 1fS""J\
Average 3.78 3.35 2.41
MaxImum 6.38 4.02 3.37
MInlmUm 2.81 1.89 1.55
r-1\~·'i\
*From NOAA Climatological Data Reports
,....
TABLE A1.31:HISTORICAL EVAPoRATIoN*(INCHES)
MATANUSKA AGRICULTURAL EXPERIMENT STATION,..,
i
May June July August September
1951 4.16 2.21 1.79
1952 4.45 2.98 1.64
1953 3.99 4.96 4.88 2.58 1.71
1954 4.74 4.80 4.10 3.03 2.23
.~1955 3.48 4.91 3.96 2.50
1956 4.83 4.32 4.44 1.47
1957 6.41 5.45 4.80 3.59 2.03
1958 4.35 5.00 3.97 3.53 2.00,...1959 4.76 5.23 2.79 2.82 1.46
1960 3.76 4.44 3.59 2.47 1.08
I 1961 5.18 4.17 3.40 2.41 1.62
1962 3.66 4.09 3.85 2.81 1.66
1963 3.56 3.42 2.50 1.48,....1964 4.04 3.06 1.60
1965 4.18 7.19 4.34
1966 3.56 4.08 4.36 2.60 2.25
1967 4.35 3.07 3.99 2.91 1.76
r-196B 4.57 3.56 3.30 1.66
1969 5.42 4.38 3.53 2.07
1970 5.03 3.13 2.36
1971 5.34 4.93 4.90 2.68 1.57
1972 3.43 4.06 4.90 3.79 2.63
1973 5.05 3.56 4.38 3.52
1974 5.06 4.96 3.96 3.79 2.20
1975 4.20 3.56 3.16 3.17 1.73
1976 4.22 5.34 4.55 3.21 2.13
~1977 4.11 5.20 5.24 3.18 1.84
1978 4.60 3.01 3.33 3.23 1.70
1979 4.84 3.90 4.01 3.73 2.54
1980 3.72 2.98 3.27 2.74
1981 4.41 3.98 2.82 2.25
Average 4.48 4.30 4.18 3.10 1.88
Maximum 6.41 5.45 7.19 4.34 2.63-Mmimum 3.43 2.98 2.82 2.21 1.08
*From NOAA Climatological Data Reports
If!II'II1II4,
r--
TABLE Al.32:1981 PAN EVAPORATION (INCHES)
1PanLocationMay(8-31)June July August
Watana 2.10 (.1 S)5.1 S (.17)2.44 (.08)1.83 (.06)
McKInley 1.64 (.12)3.23 (.11)1.89 (.06)2.18 (.07)
Matanuska 1.99 (.14)4.24 (.14)2.B2 (.09)2.25 (.07)
Note:Values in parentheses are average dally evaporation for the month.
Values for the full record were 4.24 inches (.18 inches per day)for
May 8-31 at Watana and 4.41 inches (.14 Inches per day)for May 2-31
at Matanuska
')....)'}'····..1 .......]""']'J ~-1 ..),.......,)')""1 'J --1 )
T"ll.BLE 7Al.JJ:SUMMER 19B1 CLlMATICCDMPARlSON -WATANA,MATANUSKA,MCKINLEY SITES
Monthly 'Evaporation
'(!Lndhes)
JUne ,1 July 1 August
'Watana '1 5.151 2.441 1.'83
Matanus:J<a
]1
4.24 j 2.i82 '1 2.25
Mc iKmley 3.2),1 1.8-9 .I 1.18
A~eiage Daily Temp.Preclp!LtatTOr'i Wind7Run
(OF)(lnches)(mles)
June Jl July IbiQust June July August June July Auqust
49
1
51 501 5.11 6.6.0 6.34 4670 46982 ..4994 2
54 56 54 1.93 4.57 3.65 627 463/680
50 i 52 I 49 I 3.75 4.18 3.B3 306 263 262
,1 Half of August temperature data at Watana was nadand not included.
2 ,July Bl'ld -August 'W!Lndrunsat Watal'laare prellminary,approximate fl.gures.
H\'BLE A134:'COMPARISON OF 1981 AND HISTORICAL EVAPORATION DATA
1981 Evapor,ation (lnches)
June~lfiiiiust T98'1lMav~september19lfl
Average HlstorTcal
Evaporat.i,on (inches)
Juoe-Auqusf-r Mav-September
Watana
'Mataouska
McKmley
9.42
9.31
7.30
14.85
15.34 11458
9.54
17 .94
TABLE A1.35:POTENTIAL EVAPOTRANSPIRATION BY THORNTHWAITE METHOD*
Elevation Latltude Longitude Mean Annual Mean Annual Potentlal
StatlOn Name (F eet)(North)(West)Temperature (OF)PreclPltation (in.)Evapotransplratlon (In.)
Black Rapids 2128 63°32'145°51'29.9 18.58 17.24
Broad Pass 2127 63°12'149'15'28.3 11.40 16.69
Caswell 290 61'58'150'01'31.0 25.06 18.66
Chickaloon 929 61'48'148'27'32.7 14.00 18.11
Curry 516 62°37'150°02'34.9 43.67 18.94
Eureka 3326 61'57'147"'10'24.0 17.09 12.33
Glenallen 1456 62'07'145'32'22.9 8.21 15.57
Gulkana 1572 62'17'145'27'26.9 11.70 17 .44
Hlgh Lake Lodge 2760 62'54'149°05'27.1 24.50 14.18
Indian RlVer 735 62'45'149'50'31.1 36.70 16.97
Matanuska Exp.Station 150 61'34'149°16'35.5 15.40 19.76
McKwley Park 2092 63'42'149°00'27.5 14.44 14.61
Palmer 220 61'37'149°06'35.6 16.61 19.72
Paxson 2697 63'03'145'27'24.3 19.65 14.53
Sheep Mountain 2280 61'48'147'41'28.8 11.01 16.42
Skwentna 153 61°57'151 '10'32.6 29.87 18.46
Snowshoe lake 2500 62'02'146'40'21.5 11.60 12.58
Stampede 2500 63'44'150'22'26.6 19.28 15.85
Summlt 2401 63'20'149'09'25.8 22.25 15.51
Susitna 40 61'30'150°40'36.0 28.60 19.76
Talkeetna 345 62°18'150'06'33.2 28.85 18.70
Tr lms Camp 2408 63°26'145'46'26.5 36.11 17.29
WasBla 400 61°35'149°28'35.0 17.21 17.79
Willow 600 61'45'150°00'32.4 29.16 17.28
Wonder Lake 2000 63°28'150'52'31.8 19.50 18.48
*Patric and Black (1968)
}1 ~
')__c]'J ~l J ~-]'~'-"l '~'1 ."]]'.))
fABLE Al.3.6:ESTIMATED EVAPOHAfIONLOSSES-WATANA AND DEVIL CANYON RESERVOIRS
WJ\TANA AveraqeMonthlv Au Temperature CUC)
Month
January
February
March
April
May
J'une
July
August
September
.october
.November
Deeember
Annual [vap.
Pan
Evaporation
(inches)
n.D
0.0
0.0
0.0
3.b
3.4
3.3
2.5
1.5
0.'0
0.•-0
0.0
l4.3
Re:se-rvoir
Evaporat Ion
(inanes)
11.:0
0.'0
O~O
0.0
L.S
2 .•4
L.3
1.B
1.0
0.0
o..D
{j).0
m.o
D £V I 1
Pan
Evaporation
(indlles)
0.'0
.0.0
0.0
I!J.D
3.9
3.'8
3.7
2.7
1I~7
O.D
0.•.0
0.0
15.'8
CA'NYON
Reservoir
Ev apo rat Ion
(inches)
0.0
0.'0
0.:0
0.0
2.7
2.7
2.6
1.9
1.2
'0.0
0.0
0.0
11.1
Watana 1
-2.5
-7.3
-l.B
-1.8
8.7
lO.O
13.7
12.5
N/A
0.2
-5.1
-17.9
Dev 11 Canyon2
-4.5
-5.0
-4.3
-2.5
6.1
9.2
11.9
N/A
4.8
-1.8
-7.2
-21.1
Talkeetna3
-13.0
-9.3
-6.7
0.7
7.0
12.6
14.4
12.7
7.8
0.2
-7.B
-12.7
~Based on data -Apr H 19BO-Jul1le 1981
Based -on data -July 19BO-June 1981
3 Based on dat a·-Januar y 1941-December ·198'0
-
-
r
!
"
-
-
TABLE A1.38:MONTHLY ENERGY PRODUCTION CASE A -WATANA ALONE
I:.NEHGY tli W.H)
2215 2165 2115
Month Average Firm Averaae Firm Average Fum
Oct 311 312 277 277 244 243
Nov 366 366 327 327 287 287
Dec 427 427 381 381 335 335
Jan 375 375 335 335 294 294
Feb 311 311 278 278 244 244
Mar 311 311 278 278 244 244
Apr 256 256 228 228 201 201
May 234 232 209 209 184 183
Jun 206 201 185 185 164 157
Jul 203 195 190 168 182 147
Aug 221 59 272 52 303 44
SeP 292 43 320 44 295 39
Ann 3513 3085 3280 2762 2977 2418
TABLE A1.39:MONTHLY ENERGY PRODUCTION CASE C -WATANA ALONE
ENE R G Y (G W H)
Case C1 (2215)1 Case C2 (2165)Case 3 (2115 )
Month Averaqe Firm Averaqe Firm Average Firm
Oct 268 269 239 249 211 211
Nov 315 316 281 282 247 248
Dec 368 368 328 328 289 289
Jan 324 324 289 289 254 254
Feb 268 268 240 240 211 211
Mar 268 268 240 240 211 211
Apr 221 221 197 197 173 173
May 202 202 181 180 159 158
Jun 178 177 160 154 145 136
Jul 289 222 306 193 321 172
Aug 467 324 491 285 499 258
Sep 374 220 370 236 351 213
Ann 3542 3179 3322 2864 3071 2534
(1)Normal maximum operatmg level (feet).
re"""
!""'"
I
-
TABLE A1.4o:MONTHLY ENERGY PRODUCTION CASE 0 -WATANA ALONE
ENE R G Y
fG WHJ
Month Averaqe Firm
Oct 230 2~!3
Nov 267 268
Dec 311 312
Jan 274 274
Feb 228 228
Mar 228 228
Aor 187 187
Mav 172 172
Jun 168 147
Jul 480 349
Auq 614 578
Sep 400 269
Ann 3559 3240
TABLE A1.41:WATANA (2215)!DEVIL CANYON MONTHLY
ENERGY PRODUCTION CASE A1
ENE R G Y (G W H)
A V ERA G E FIR M
Month Watana Uev 11 l anyon lotal Watana uev11 Canyon lotal
Oct 311 280 591 312 287 599
Nov 366 329 695 367 319 686
Dec 427 381 808 427 380 807
Jan 375 335 710 376 334 710
Feb 311 280 591 311 278 589
Mar 311 280 591 311 271 582
Apr 256 232 488 256 230 486
May 234 230 464 232 213 445
Jun 206 239 445 201 187 388
Jul 203 235 438 195 177 372
Auq 221 224 445 56 103 159
Sep 292 265 557 43 77 120
Ann 3513 3310 6823 3087 2856 5943
TABLE Al.42:WATANA (2165)/DEVIL CANYON MONTHLY
ENERGY PRODUCTION CASE A
ENE R G Y (G WH)
A V ERA G E FIR M
Month Watana Devil Canyon Total Watana Devil Canyon Total
Oct 277 270 547 280 271 551
Nov 327 318 645 327 317 644
Dec 381 369 750 381 367 748
Jan 335 325 660 335 324 659
Feb 278 270 548 278 258 536
Mar 278 270 548 278 265 543
Apr 228 222 450 228 224 452
Mav 209 216 425 209 205 414
.Jun 185 225 410 186 185 371
Jul 190 231 421 ,168 195 363
Aua 272 263 535 52 93 145
Sep 320 300 620 44 64 108
Ann 3280 3279 6559 2766 2768 5534
TABLE A1.43:WATANA (2115)!DEVIL CANYDN MONTHLY
ENERGY PRODUCTION CASE A
ENE R G Y (G W H)
A V ERA G E FIR M
Month Watana LJev l.l Canyon lotal Watana LJevll Canyon Total
Oct 244 262 506 243 264 507
Nov 287 310 597 288 308 596
Dec 335 358 693 335 356 691
Jan 294 316 610 295 314 609
Feb 244 263 507 244 261 505
Mar 244 267 511 244 262 506
Apr 201 221 422 201 209 410
May 184 216 400 183 200 383
Jun 164 209 373 157 172 329
Jul 182 223 405 147 166 313
Auq 303 286 589 44 59 103
Sep 295 295 590 39 59 98
Ann 2977 3226 6203 2420 2630 5050
-,KT'-'·
r
-
-
-
-
TABLE A1.44:WATANA (2215)!DEVIL CANYON MONTHLY
ENERGY PRODUCTION CASE C
E N E R G Y (G WH)
A V E R A G E f I R M
Month watana lJev il Canyon lotal Watana Dev il Canyon Total
Oct 311 220 531 314 166 480
Nov 366 251 617 367 185 552
Dec 427 308 735 427 221 648
Jan 375 294 669 376 194 570
feb 311 263 574 312 160 472
Mar 311 ?76 587 312 2Z4 536
Apr 256 235 491 256 244 500
May 234 271 505 235 288 523
Jun 206 282 486 201 248 449
Jul 203 267 470 188 261 449
AUQ 221 345 566 56 317 373
Sep 292 264 576 45 Z1.z 257
Ann 3513 3296 6809 3089 2720 5809
TABLE A1.45:WATANA (2165)!DEVIL CANYON MONTHLY
ENERGY PRODUCTION CASE C
ENE R G Y (G W H)
A V ERA G E FIR M
Month Watana Dev il Canyon Total Watana lJevil Canyon lotal
Oct 277 217 494 280 141 421
Nov 327 253 507 327 165 492
Dec 381 306 687 381 194 575
Jan 335 293 628 335 170 505
Feb 278 259 537 278 211 489
Mar 278 272 550 278 275 553
Apr 228 232 460 228 233 461
May 209 268 477 209 233 442
Jun 185 276 461 186 263 449
Jul 190 270 460 168 259 427
Aug 272 357 629 52 310 362
Sep 320 303 623 44 181 225
Ann 3380 3306 6586 2766 2635 5401
"...
i
i
TABLE A1.46:WATANA (2115)/DEVIL CANYON MONTHLY
ENERGY PRODUCTION CASE C ..
ENERGY (G W H)
A V ERA G E FIR M
Month Watana Devil Canyon lotal Watana Devil Canyon lotal
Oct 244 213 457 245 144 389
Nov 287 238 525 288 161 449
Dec 335 289 624 335 190 525
Jan 294 283 577 295 166 461
feb 244 255 499 244 211 455
Mar 244 270 514 244 282 526
Apr 201 232 433 201 244 445
May 184 270 454 184 246 430
Jun 164 277 441 167 275 442
Jul 182 277 459 148 259 407
Aug 303 371 674 44 310 354
Sep 295 312 607 40 181 221
Ann 2977 3287 6264 2435 2669 5104
TABLE A1.47:WATANA (2215)/DEVIL CANYON MONTHLY
ENERGY PRODUCTION CASE D
E N ERG Y (G W H)
AVERAGE FIR M
Month Watana DevIl Canyon Total Watana Devil Canyon Total
Oct 230 215 445 232 228 460
Nov 267 234 501 267 239 506
Dec 311 270 581 309 270 579
Jan 274 241 515 274 241 515
Feb 228 203 431 228 203 431
Mar 228 204 432 228 204 432
Apr 187 171 358 187 169 356
May 172 207 379 172 165 337
Jun 168 245 413 150 173 323
Jul 480 468 948 403 385 788
Auq 614 561 1175 536 503 1032
Sep 400 382 782 285 265 550
Ann 3559 3401 6960 3271 3045 6316
~
I
!
r-
I
1
TABLE A1.4B:WATANA ANNUAL AVERAGE AND FIRM ENERGY PRODUCTION
ENE R G Y (G WH)
Watana Case A Case C Case D
Elevation Averaqe Firm Averaqe Firm Averaqe Firm
2215 3513 3085 3542 3179 3559 3240
2165 3280 2762 3322 2864 --
2115 2977 2418 3071 2534 --
TABLE A1.49:WATANA!DEVIL CANYON ANNUAL AVERAGE AND
FIRM ENERGY PRODUCTION
ENE R G Y (G WH)
Watana Case A Case C Case D
Elevation Averaqe Firm Averaqe Firm Averaqe ~irm
2215 6823 5943 6809 5809 6960 6316
2165 6559 5534 6586 5401 --
2115 6203 5050 6264 5104 - -
J~'
-
-
-
TABLE A1.50:WATANA (2185)ALONE MONTHLY ENERGY
PRODUCTION CASE A
ENE R G Y (G W H)
Month Iweraqe Firm
Oct 263 262
Nov 302 303
Dec 361 361
Jan 318 318
Feb 256 256
Mar 264 264
Apr 224 224
May 202 203
Jun 189 184
Jul 247 191
Aug 413 181
Sep 361 177
Ann 3400 2752
TABLE A1.51:WATANA (2185)ALONE MONTHLY ENERGY
PRODUCTION CASE C
ENE R G Y (G WH)
Month Averaqe Fum
Oct 249 248
Nov 292 294
Dec 341 341
Jan 300 300
Feb 249 249
Mar 249 249
Apr 205 205
May 188 187
Jun 166 161
Jul 304 200
Auq 494 295
Sep 373 243
Ann 3410 2972
I,
r
-!
TABLE A1.52:WATANA (2185)ALONE MONTHLY ENERGY
PRODUCTION CASE D
ENE R G Y (G WH)
Month Averaqe Firm
Oct 218 215
Nov 252 254
Dec 295 295
Jan 260 260
Feb 216 216
Mar 216 216
ADr 177 177
Mav 163 163
Jun 161 139
Jul 471 332
Auo 602 551
SeD 384 256
Ann 3415 3074
TABLE Al.53:WATANA (2185)/DEVIL CANYON MONTHLY
ENERGY PRODUCTION CASE A
ENE R G Y (G W H)
AVERAGE FIR M
Month watana Uev il Lanyon Total Watana Devil Canyon Total
Oct 263 251 514 262 248 510
Nov 302 289 591 303 287 590
Dec 361 340 701 361 341 702
Jan 318 300 618 318 300 618
Feb 256 242 498 256 242 498
Mar 264 249 513 264 248 512
Apr 224 211 435 224 211 435
May 202 198 400 201 191 392
Jun 189 207 396 184 175 359
Jul 247 259 506 200 182 382
Aug 413 343 756 181 171 352
Sep 361 326 687 177 168 345
Ann 3400 3215 6615 2931 2764 5695
-I
(
f"'I.
I
TABLE A1.54:WATANA (2185)/DEVIL CANYON MONTHLY
ENERGY PRODUCTION CASE C
ENE R G Y (G W H)
A V ERA G E FIR M
Month Watana lJevil Canyon lotal Watana Devil Canyon Total
Oct 249 233 482 248 220 468
Nov 292 261 553 294 258 552
Dec 341 303 644 341 302 643
Jan 300 268 568 300 266 566
Feb 249 225 474 249 219 468
Mar 249 227 476 249 219 468
Apr 205 192 397 205 180 385
May 188 223 411 188 166 354
Jun 166 240 406 161 157 318
Jul 304 311 615 215 247 462
AUQ 494 399 893 312 320 632
Sep 373 340 713 257 255 512
Ann 3410 3222 6632 3019 2809 5828
TABLE A1.55:WATANA (2185)!DEVIL CANYON MONTHL't
ENERGY PRODUCTION MODIfIED CASE C
ENE R G Y (G W H)
A V ERA G E fIR M
Month Watana Devil Canyon Total Watana Devll Canyon Total
Oct 272 234 506 272 199 471
Nov 321 265 586 322 235 557
Dec 374 311 685 374 274 648
Jan 329 281 610 329 239 568
feb 273 241 514 273 199 472
Mar 273 247 520 273 198 471
Apr 225 208 433 225 163 388
May 206 245 451 204 152 356
Jun 181 261 442 182 199 381
Jul 210 280 490 165 258 423
AUQ 364 374 738 146 317 463
Sep 355 317 672 186 232 418
Ann 3383 3264 6647 2951 2665 5616
(I )1 D5 foot drawdown at Dev il Canyon.
-I
-
TABLE A1.56:WATANA (2185)/DEVIL CANYON MONTHL 1ENERGYPRODUCTIONMODIFIEDCASEC
ENE R G Y (G W H)
A V ERA G E FIR M
Month Watana Dev il Lanyon Total Watana Devil Canyon Total
Oct 291 209 500 292 139 431
Nov 344 246 590 344 163 507
Dec 400 300 700 400 189 589
Jan 352 293 645 352 217 569
Feb 292 269 561 292 274 566
Mar 292 278 570 292 278 570
Apr 240 238 478 240 234 474
May 220 274 494 220 223 443
Jun 194 282 476 193 215 408
Jul 194 269 463 182 260 442
AUQ 229 348 577 52 315 367
Sep 289 289 578 45 196 241
Ann 3337 3295 6632 2904 2703 5607
(1)Unlimited drawdown at Devil Canyon.
TABLE A1.57:WATANA (2185)/DEVIL CANYON MONTHLY
ENERGY PRODUCTION MODIFIED CASE D
ENE R G Y (G W H)
A V ERA G E FIR M
Month Watana lJevil Canyon lotal Watana lJevi!Canyon lotal
Oct 249 189 438 248 221 469
Nov 293 216 509 294 253 547
Dec 341 260 601 341 296 637
Jan 300 242 542 300 265 565
Feb 249 218 467 249 225 474
Mar 249 22B 477 249 229 478
Apr 205 194 399 205 194 399
May 18B 233 421 18B 209 397
Jun 166 247 413 161 177 33B
Jul 322 405 727 251 363 614
Auq 466 521 987 282 255 537
Sep 368 332 700 155 144 299
Ann 3396 32B5 6681 2923 2831 5754
(1)Unlimited drawdown at Devil Canyon.
-i
-..
!
TABLE A1.58:WATANA (2185)/DEVIL CANYON MONTHL¥
ENERGY PRODUCTION MODIFIED CASE D
ENE R G Y (G WH)
A V ERA G E FIR M
Month Watana Uevil Canyon Total Watana Dev il Canyon Total
Oct 226 201 427 225 175 400
Nov 264 223 487 263 207 470
Dec 309 264 573 309 240 549
Jan 272 239 511 272 213 485
Feb 225 201 426 225 176 401
Mar 225 203 428 225 176 401
Apr 185 170 355 185 145 330
May 170 210 380 169 153 322
Jun 160 238 398 149 165 314
Jul 439 444 983 334 367 701
Auq 557 547 1004 453 527 980
Sep 389 366 755 308 252 560
Ann 3421 3306 6727 3117 2796 5913
(1)DevIl Canyon drawdown limIted to 55'.
TABLE A1.59:DEVIL CANYON ANNUAL ENERGY WITH VARIABLE DRAWDOWN
ANNUAL ENE R G Y.(G W H)
Drawdown Average Lowest 2nd Lowest
WATANA:---
Un1J.mited (227)3395 2924 2935
190 3443 2797 2824
165 3452 2717 2741
140 3459 2611 2632
115 3471 2372 2896
DEVIL CANYON:1
90 3315 2384 2697
55 3334 2503 2745
0 3405 2776 2807
NOTES:
(1)With Watana at 140 feet drawdown.
!"'.-,
~!
I
,...
I
i
-
-
-
TABLE A1.60:WATANA AVERAGE MONTHLY ENERGY
WITH VARIABLE DRAWDOWN
A V ERA G E ENE R G Y
(G W H)
D RAW DOW N (F E E T)
Umlimited
Month 115 140 '165 190 (227)
Oct 278 281 284 287 286
Nov 351 34B 348 349 344
Dec 453 445 437 436 425
Jan 38B 383 377 376 370
Feb 317 31B 311 309 301
Mar 274 276 276 274 274
Apr 197 203 208 213 224
May 164 180 188 193 202
Jun 162 175 180 185 192
Jul 263 25B 256 248 240
Auq 374 344 338 327 305
Sep 250 24B 249 245 234
Ann 3471 3459 3452 3443 3397
TABLE A1.61:WATANA FIRM MONTHLY ENERGY
WITH VARIABLE DRAWDOWN
FIR M ENE R G Y (G W H)
D RAW DOW N (F E E
T)
Umlimited
Month 115 140 165 190 2627)
Oct 213 234 243 250 262
Nov 318 270 281 290 303
Dec 446 321 335 345 361
Jan 377 283 295 303 318
Feb 310 228 238 245 256
Mar 271 235 244 252 264
Apr 203 199 208 214 224
May 164 180 188 193 201
Jun 149 170 178 183 184
Jul 155 182 191 197 200
Auq 146 170 178 183 181
Sep 144 158 164 169 177
Ann 2896 2630 2743 2824 2931
-I
i
"""'.I
TABLE AI.62:WA TANA/DEVIl CANYON DEVELOPMENT
MONTHLY ENERGY PRODUCTION POTENTIAL
ENE R G Y (G W H)
A V ERA G E fIR M
Month Watana Devll Canyon lotal Watana I)evil Canyon fotal
Oct 281 230 511 234 203 437
Nov 348 295 643 270 232 502
Dec 445 373 818 322 276 598
Jan 383 332 715 283 257 540
feb 318 281 599 228 224 452
Mar 276 256 532 235 235 470
Apr 203 248 451 199 261 460
May 180 285 465 180 262 442
Jun 175 303 478 170 322 492
Jul 258 263 521 182 205 387
Auq 344 253 597 170 151 321
Sep 248 215 463 158 135 293
Ann 3459 3334 6793 2631 2763 5394
TABLE A1.63:WATANA/DEVIL CANYON DEVELOPMENT
AVERAGE MONTHLY ENERGY PRODUCTION
A V E RAG E ENERGy 1
Forecast 2 Watana/Forecast 3
Month Watana 2000 .'DevIl Canyon 2010 .''.'.
Oct 281 416 68 507 617 82
Nov 348 490 71 634 723 88
Dec 445 535 83 749 787 95
Jan 383 485 79 684 715 96
Feb 318 462 69 599 680 88
Mar 276 412 67 532 609 87
ADr 203 371 55 451 546 83
May 180 331 54 461 493 94
Jun 175 321 55 461 481 96
Jul 224 307 73 412 461 89
Aua 270 329 82 430 493 87
SeD 237 364 65 405 541 75
Ann 3459 4823 72 6325 7146 89
NOTES:
(1)Average energy from Watana and Watana/Devil Canyon adjusted to
reflect overproduct lOn.
(2)Battelle forecast less small hydroelectrIc productIon for 2000.
(3)Battelle forecast less small hydroelectric productlOn for 2010.
p:-~"
r
-
-i
r
TABLE A1.64:WATANA/DEVIL CANYON DEVELOPMENT
fIRM MONTHLY ENERGY PRODUCTION
A V ERA G E
ENE R G y1
Forecast 1 Watana/Forecast.2
Mont.h Wat.ana 2000 .'Dev il Canyon 2010 .,
'0 '"
Oct 234 416 56 437 617 71
Nov 270 490 55 502 723 69
Dec 322 535 60 598 787 76
Jan 283 485 58 540 715 76
feb 228 462 49 452 680 66
Mar 235 412 57 470 609 77
Apr 199 371 54 460 546 84
.Mav 180 331 54 442 493 90
Jun 170 321 53 461 481 96
Jul 182 307 59 387 461 84
Auq 170 329 52 321 493 65
Sep 158 364 43 293 541 54
Ann 2631 4823 55 5363 7146 75
NOTES:
(1 )Battelle forecast less small hydroelectric product.ion for 2000.
(2)Battelle forecast less small hydroelectric production for 2010.
15
r'""
I
1""'"
Ir
:"",,,-:>0-l-
e>
Q:
I.LI
Z
I.LI
r'...J
cl
;:)
Zz 10cl
Ll-e
I-z
LLJ
U
Q:
LLJa.
f"""
i l-I
,-,
1
r 5
0 N 0 J F M A M J J A S
MONTH
-i
MONTHLY ENERGY PATTERN
FIGURE AI.l
r-
2190
NORMAL MAXIMUM ,OPERATING LEVEL 2185 I I
-I I
I
I-I
-
-
I
-I 2095
I I I I 1 I I I I I I I
WATANA RESERVOIR
MONTHS
-
NORMAL MAXIMUM OPERATING LEVEL 1455
-
-
-
-
-
1400-
I I I I I I I I I I I I
2200
2180
t-=
IL.2160
-I
llJ
>2140
llJ
.J
a::
0 2120
>a::
llJ
Ul
llJ 2100a::
i"""".2080
,-
~1460
1450
t-=1440,~IL.
[
-I
W
>1430w
-I
a::
0 1420
>,..,a::
;.w
Ulw 1410a::-.1
f
1400
1390
o
o
N
N
o
o
J
J
F
F
M
M
A
A
M
M
J
J
J
J
A
A
S
S
MONTHS
DEVIL CANYON RESERVOIR
MONTHLY TARGET MINIMUM RESERVOIR LEVELS
FIGURE AI.2
-(
!""'"
I,
"'-'
250150200
DRAWDOWN (FT)
-
rAVERAGE
t -
.
";;;k~--::::-~,-~~/(-
-/LOWEST
/
/
/
2500
4000
3500
2000
100
x::r:-(!)
I
!,
L >(!)30000=
~W
Z
W
WATANA
ANNUAL ENERGY YS.DRAWDOWN
FIGURE AI.3
r
-
I'"'"'
I 4000
-(
I
I
P"
I[-3500
fI"""
r z
~
(!)
>-3000
!"""
(!)
Ir
W
Z
W
r 2500
'[
I"""I
I
l
!"""'2000
I'"'"'
I
I
I---.~.--AVERAGE
~
~--¥'.--FIRM-'...................._--------
..........
I-'~.--LOWEST,
"'-................
'-.
50 100
DRAWDOWN (FT)
150
r
r
NOTE:
WATANA UPSTREAM:DRAWDOWN
LIMITED TO 140
DEV IL CANYON
ANNUAL ENERGY V5.DRAWDOWN
FIGURE AlA
[iii]
FIGURE AI.5
250
--150
AVERAGE
FIRM
DRAW DOWN
FIRM
AVERAGE
200
-
150 DRAWOOWN (FT)
WATANA
DECEMBER ENERGY vs
L------~~=:::_~~,,~OOO00
N (FT)2 DRAWDOW
o DEVIL CANYON
>-
ffizw
>-(!I
II::
W
Z
W
NOTE:WITH WATAN~
DEVIL CANY~~ITED TO 140DRAWDOWN
i"
I
-,
-
-i
-
-I
i
-
ATTACHMENT 1
--1 -~--l 1 _1 -1 -1 ~-)-~~--1 -~]--~
SUSITNA HEF'i
DEVIL CANYON 1455
600 MW (NO FLO REQ)
START WSEL=1455.0 TWEL=850.0 PMAX=,60000E+06
EL STORAGE
!125.0 0.0
1000.0 7500.0
1050.0 25000.0
1150,0 85000.0
1200.0 132000.0
1250.0 195000.0
1.300.0 292000,0
1350.0 456000.0
•.......I'l.n.~I /'!,."';11\J'i<.l'\r-.
....'\.I'w 'I'""...~..'"-.-
1450.0 1048000.0
1500.0 1484000.0
MINIMUM STORAGE=707000.0
MAXIMUM P.H.Cl =13763.2
MONTHLY BASEL DAD DEMAND
MAXIMUM STORAGE 1092000.0
0.275940Et06
0.234360Et06
0.317520E+06 0.378000E+06
0.211680E+06 O.192780E+06
0.332640E+06
O.200340Et06
0.268380Et06
O.189000Et06
0.275940£+06
O.185220Et06
MONTHLY DISCHARGE REQUIREMENT
1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 2000.0 2000.0 2000.0 2000.0
MONTHLY WATER LEVEL
1455.0 1455.0 1455.0 1455.0 1455.0 1455.0 1440.0 1420.0 1390.0 1390.0 1420.0 1440.0
MONTHLY FLOW DISTRIBUTION
1.0 1,0 1.0
MONTHLY L.F.=0.630
LO 1.0 1.0 1.0 1.0 0.9 1.0 0.8 0.6
NO.YEARS OF SIMULATION =32
PDS=0 NSEC=366 NDEF=18 NDEF1=0 NDSFL=0
YEAR TOTE TOT SEC TOTDEF
1 0.30636£+10 0.82971E+09 O.OOOOOE+OO
2 0.27479E+10 0.51817E+09 0.41083E+07
3 0.33050£+10 o.10711E+10 O.OOOOOE+OO
4 0.34637£+10 0.12299£+10 O.OOOOOE+OO
5 0.33023E+10 0.10684£+10 O.OOOOOE+OO
6 o.35615E+10 0.13276E+10 O.OOOOOEtOO
7 0.39289£+10 0.16950Etl0 O.OOOOOEtOO
8 0.35837E+10 0.13498£+10 O.OOOOOEtOO
9 0.34136E+10 0.11797E+10 O.OOOOOE+OO
10 0.33928E+10 0.11589£+10 O.OOOOOE+OO
11 0.33646E+10 O.11307E+10 O.OOOOOEtOO
12 0.37060E+10 o.14721E+10 O.OOOOOEtOO
13 0.40400E+10 O.18062E+10 O.OOOOOE+OO
14 0.38602£+10 0.16263E+10 O.OOOOOE+OO
15 0.35069E+l0 o.12730E+10 O.OOOOOE+OO
16 0.34395E+10 o.12056E+10 O.OOOOOE+OO
17 0.32877E+10 o.10538E+10 O.OOOOOEtOO
18 0.37335E+10 o.14996Etl0 O.OOOOOEtOO
19 0.35242Etl0 0.12903Etl0 O.OOOOOEtOO
20 0.27755E+10 0.54259E+09 o.10020Et07
21 0.25031E+l0 0.27054Et09 0.13586E+07
22 0.27624E+l0 0.52850Et09 O.OOOOOE+OO
23 0.35625E+10 o.13286E+10 O.OOOOOEtOO
24 0.30442Etl0 0.81034Et09 O.OOOOOE+OO
25 0.27452E+10 0.51336Et09 0.20380Et07
26 0.31224E+10 0.89052Et09 0.19818E+07
27 0.31528E+10 0.91891E+09 O.OOOOOE+OO
28 0.31084E+10 0.87559E+09 0.11140Et07
29 0.32181E+l0 0.98421E+09 O.OOOOOEtOO
30 0.29489E+l0 0.71611E+09 o.11287Et07
31 0.36469E+10 o.14130Etl0 O.OOOOOEtOO
32 0.38651Etl0 o.16312E+10 O.OOOOOE+OO
1
-~-]-)-1 -_._)~_.J ·--1 '1 _c-J C___)·'1 "-)1 .~-'1-'-1 --]]
AVERM;~Nl1NTHI..Y F.NER(iY MlD POWER
MONTH TOTAL
POWER
MW
OCT 315.461
NOI)<'HH ,~-;?(l
DEC 510.842
,JAN 454.507
FEB 385.348
MAF:3:'jO,?n
APR 339.680
i1M 390.322
JUN 1j.:j,~l'lj.
JUL 360.~'45
AUG ~q/>()/!.
SEF'294.Jf·2
PEM:
:':'OWEF:
MW
315.461
<l ()~~~'j /()
510.842
454.507
385.348
:~~'j c)I !19 ~~
339./180
390.322
'\:I.:';,)?1.
"!.t.O.945
\'~tl?Jol)i'l
:::9"~t~62
OFFF'E,t.ll(
POWER
MW
315.461
-1 0 i)•:;;.~()
510.8'1:~
.~~)':r 507
385.318
3:)().rr~
339.680
39('J,3;~?
4:l.:'i t ?/l
3()O.945
~'i 7.0 n.
294.562
TOTAL
F.NERrl'(
GWH
::'30.161
2,';),1.3B
"r'O'""'-1 i,~I <:•!~...
331.608
281.j;:;0
:.2~;j~·j -)9 \~8
247.830
284.779
:1():~y '7:j:?
263.345
2 ~'~i \~.)):.~\~
)j<1.9:l?
f1FFF'EM
ENf:F:(;Y
G~JH
230.161
29!1~138
372.711
33J.608
281.150
2;:.::..938
)·1/.830
;:8.'{to 7"79
3():~~982
/6:~,y3/~5
25~:+223
2:i i:{9l~:J
f'E:ti ~:
fNF:RG'(
GWH
0.000
0.000
0,000
0.000
0,000
0.000
0,000
0.000
(},.OOO
0.000
0.000
0.000
J:tEFtCT.T
MW
0.084
0~2)O
()~22~
0.020
()iOO(J
0.000
0.000
0.000
O.()()O
(~iOO(~
()t()()O
Of 000
SEC
plW
~9 \.t.O/·}
87,)19
J.:;>:~of 0 (.1 4
J21v887
116r968
74t8~;2
·1 'fl"":,'....,.~1...\',""\~.I..,
178+6":12
222v·191
:i.60 ii f,05
1 "j 8 ,0/1
:i.0 9 ~3 /}~!
AVERAGE MONTHLY DISCHARGES AND HEAD
MONTH
ocr
NO'.)
DEC
JANFEB
MAR
APR
1\11;Y
..JUi'!
JUl.
I~UG
SEP
INFLOW
f;l ~~?;,06
9517(00
12245.78
1.0HlLH8
919;;.31
8136.16
MHO.:q
71lt.•8S
80~i9.03
9,~'}.;\.-1·1)
11467.28
B:I.H.7:;;
P.H.FLOW
/1)()~J.n
9·<:24 t 62
1)864.40
:!.():';1.i),<\()
8883.18
8072.30
/'J o:~•'?:~
9343.79
10287.59
if0\~I;1 f /4
8.477.~jO
/;97J..7i'
PFAI(
7-10~,/.:~
9 /124 t 62
HRA4.40
!.0 ':')~.Ii ,.<\0
R883.18
son.30
7903,~~,,~
9:H3.79
1 ()~·.:R7 +~9
9069,n
8477.50
h971.,//
OFFF'EAK
7'H2.n
9 11:~4 +fl?
])864.40
1.0 ;)!.'i ,,:\0
8883.18
B07~t30
7'103.~~:.~
9343.79
1(:<~~8'l,59
'1069./~
R.Il77.50
/;97n.n
HFAfi
390.48
r:{"t '1 '7 1\.1 ••'I,'i"I .1
~",~+t.j
:)98.44
60t,0,l,
602.74
596.12
~~;?9 (58
560.15
3::;1.51
565.02
~j8'2~43
SPILL
!JfOO
OirOO
t 1.38
0.00
0.00
0.00
0.00
0.00
0.00
0.00
H::/.52
0.00
HLilSS
0.00
f\~~Iv'(1,..JIJ
0700
0.00
OtOO
0.00
0.00
0.00
0.00
0.00
0.00
0.00
flVERt;GE MJNlIM.ENFRGY ...0.333378E+10 KWH
DELMI~ISS .-
STORE/HI :;::
STORSH,RT ...
INFLf)(~MASS
ClUTFL.11ASS
-0,1.:;893'101E+05
O,10757076F.+07
0.10920000£+07
0,,H6H98YOEt07
O.34b92513E+07
INFLOW CFS
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL r~UG SEP
1 7159.0 8895.0 12572.0 10738.0 8909.0 7821.0 6009.0 7153.0 6783.0 7121.0 6235.0 479;5.0
2 6535.0 7334.0 8848.0 8600.0 8940.0 7848.0 62:31.0 .S882.0 6288.0 6656.0 7308.0 14009.0
3 8224.0 10430.0 12987.0 11270.0 9116.0 7979.0 5960.0 6146.0 9134.0 7683.0 9557.0 8119.0
4 10519.0 11124.0 12780.0 10786.0 8918.0 7918.0 6258.0 8035.0 8564.0 6626.0 11137.0 898f:l.O
5 8111.0 9812.0 12616.0 11011.0 9103.0 7881.0 6072.0 8905.0 8542.0 6854.0 10623.0 6521.0
6 7492.0 10398.0 13097.0 11436.0 9448.0 8175.0 6051.0 6988.0 8069.0 7511.0 17730.0 9160.0
7 7650.0 9680.0 12436.0 10708.0 9066.0 8004.0 6035.0 8344.0 8790.0 16756.0 17477.0 11666.0
8 8237.0 10665.0 13216.0 11370.0 9562.0 8257.0 6048.0 7613.0 7982.0 7272.0 12179.0 13200.0
9 10436.0 11481.0 14134.0 11579.0 9385.0 8237.0 6164.0 7205.0 7155.0 6875.0 11024.0 5128.0
10 6857.0 7334.0 12593.0 11103.0 9352.0 8029.0 6119.0 9077.0 8051.0 7791.0 15103.0 10500.0
11 9063.0 10514.0 13241.0 11473.0 9513.0 8264.0 6031.0 7073.0 6177.0 7118.0 7202,0 12632.0
12 10173.0 10651.0 13666.0 11999.0 9766.0 8790.0 7132.0 7706.0 9098.0 9029.0 14182.0 7389.0
13 8461.0 10435.0 13208.0 11583.0 9586.0 8472.0 6340.0 6121.0 12575.0 16842.0 17386.0 9938.0
14 9310.0 10587.0 13125.0 11283.0 9560.0 811 0.0 5920.0 7716.0 8238.0 16079.0 17356.0 6948.0
15 9000.0 9976.0 12616.0 10765.0 9073.0 7815.0 5975.0 5851.0 11498.0 14166.0 10259.0 5467.0
16 7209.0 10536.0 12390.0 10712.0 9002.0 8018.0 6041.0 6615.0 7730.0 8264,0 12624.0 13405.0
17 9498.0 9799.0 12708.0 11065.0 9360.0 8339.0 6346.0 6954.0 9368.0 7046.0 8387.0 5741.0
18 6662.0 8883.0 12594.0 11144.0 9441.0 8240.0 6089.0 7197.0 7910.0 11218.0 21298.0 13444.0
19 7587.0 10094.0 13159.0 11638.0 9952.0 8930.0 6518.0 7469.0 8577.0 12251.0 10182.0 5175.0
20 6548.0 7472.0 12066.0 10473.0 8855.0 7921.0 6148.0 6430.0 5736.0 5604.0 5150.0 4885.0
21 6914.0 7703.0 9321.0 8438.0 6979.0 7333.0 6345.0 6863.0 7779.0 7988.0 6974.0 5618.0
22 7504.0 8210.0 9634,0 8545.0 7036.0 7379.0 6453.0 6339.0 8673.0 7078.0 7518.0 5605.0
23 6694.0 8472.0 13542.0 11823,0 10009.0 8811.0 6292.0 9117.0 9297.0 13455.0 13079.0 7055.0
24 7640.0 10046.0 12616.0 10926.0 9301.0 8106.0 5957.0 5925.0 7397.0 5909.0 5930.0 4744.0
25 6542.0 7262.0 12227.0 10629.0 8919.0 7841.0 5962.0 7432.0 6681.0 6550.0 6080.0 5771.0
26 6616.0 7375.0 8952.0 8415.0 9515.0 8423.0 6183.0 7678.0 8441.0 13158.0 11152.0 10325.0
27 10005.0 9744.0 12237.0 10683.0 9049.0 7976.0 6084.0 7681.0 7668.0 5947.0 5346.0 4891.0
28 6733.0 7572.0 10452.0 11444.0 9643.0 8512.0 6236.0 7956.0 9104.0 10688.0 12052.0 7087.0
29 9938.0 11102.0 13601.0 11654.0 9698.0 8632.0 6324.0 5776.0 5970.0 6575.0 6229.0 5U7.0
30 6919.0 7522.0 8940.0 10177.0 9376.0 8316.0 6129.0 6278.0 5970.0 11674.0 12904.0 ~5343.0
31 9902.0 11846.0 13508.0 11436.0 9556.0 8472.0 6302.0 6551.0 7694.0 12453.0 14003.0 7513.0
3'")10248.0 11590.0 12783.0 11074.0 9262.0 8148.0 6017.0 6584.0 6950.0 8785.0 23287.0 13493,0..
ry i),'1 1 111,~~~"1 ,'1 J 4 "
1 -l~-')]-1 1
INFLOW TO SECOND RESERVOIR
YF:OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF'
5758.2 2404.7 1342.5 951.3 735.7 670.0 802.2 10490.7 18468.6 21383.4 18820.6 "7950.f.l
3652.0 1231.2 1030.8 905.7 767.5 697.1 1504.6 13218.5 19978.5 21575.9 18530.0 19799.1
5221.7 2539.0 1757.5 1483.7 943.2 828.2 878.5 4989.5 30014.2 24861.7 19647.2 13441.1
7517.6 3232.6 1550.4 999.6 745.6 766.7 1531.8 17758.3 25230.7 19184.0 19207.0 13928.4
5109.3 1921.3 1387.1 1224.2 929.7 729.4 1130.6 15286.0 23188.1 19154.1 24071.6 11579.1
4830.4 2506.8 1868.0 1649.1 1275.2 1023.6 1107.4 8390.1 28081.9 26212.8 24959.6 13989.2
4647.9 1788.6 1206.6 921.7 893 .1 852.3 867.3 15979.0 31137.1 29212.0 22609.8 16495.8
5235.3 2773.8 1986.6 1583.2 1388.9 1105.4 1109.0 12473.6 28415.4 22109.6 19389.2 18029.0
7434.5 3590.4 2904.9 1792.0 1212.2 1085.7 1437.4 11849.2 24413.5 21763.1 21219.8 6988.8
4402.8 1999.8 1370.9 1316.9 1179.1 877.9 1119.9 13900.9 21537.7 23390.4 28594.4 15329.6
6060.7 2622.7 2011.5 1686.2 1340.2 1112.8 1217.8 14802.9 14709.8 21739.3 22066.1 18929.9
7170.9 2759.9 2436.6 2212.0 1593.6 1638.9 2405.4 16030.7 27069.3 22880.6 21164.4 12218.6
5459.4 2544.1 1978.7 1796.0 1413.4 1320.3 1613.4 12141.2 40679.7 24990.6 22241.8 14767.2
6307.7 2696.0 1896.0 1496.0 1387.4 958.4 810.9 17697.6 24094.1 32388.4 22720.5 11777.2
5998.3 2085.4 1387.1 978.0 900.2 663.8 696.5 4046.9 47816.4 21926.0 15585.8 8840.0
5744.0 2645.1 1160.8 925.3 828.8 866.9 1314.4 12267.1 24110.3 26195.7 19789.3 18234.2
6496.5 1907.8 1478.4 1278.7 1187.4 1187.4 1619.1 8734.0 30446.3 18536.2 20244.6 10844.3
3844.0 1457.9 1364.9 _1357.9 1268.3 1089.1 1053.7 14435.5 27796.4 25081.2 30293.0 15728.2
4585.3 2203.5 1929.7 1851.2 1778.7 1778.7 1791.0 14982.4 29462.1 24871.0 16090.5 8225.9
3576.7 1531.8 836.3 686.6 681.8 769.6 1421.3 10429.9 14950.7 15651.2 8483.6 4795.5
2866.5 1145.7 810.0 756.9 708.7 721.8 1046.6 10721.6 17118.9 21142.2 18652.8 8443.5
4745.2 3081.8 2074.8 1318.8 943.6 866.8 986.2 3427.9 31031.0 22941.6 30315.9 13636.0
5537.0 2912.3 2312.6 2036.1 1836.4 1659.8 1565.5 19776.8 31929.8 21716.5 18654.1 11884.2
4638.6 2154.8 1387.0 1139.8 1128.6 955.0 986.7 7896.4 26392.6 17571.8 19478.1 8726.0
3491.4 1462.9 997.4 842.7 745.9 689.5 949.1 15004.6 16766.7 17790.0 15257.0 11370.1
3506.8 1619.4 1486.5 1408.8 1342.2 1271.9 1456.7 14036.5 30302.6 26188.0 17031.6 15154.7
7003.3 1853.0 1007.9 896.8 876.2 825.2 1261.2 11305.3 22813.6 182G2.6 19297.7 6463.3
3552.4 2391.7 2147.5 1657.4 1469.7 1361.0 1509.8 11211.9 35606.7 21740.5 18371.2 11916.1
6936.3 3210.8 2371.4 1867.9 1525.0 1480.6 1597.1 11693.4 18416.8 20079.0 15326.5 8080.4
4502.3 2324.3 1549.4 1304.1 1203.6 1164.7 1402.8 13334.0 24052.4 27462.8 19106.7 10172.4
605.0 564.5 600.8 600.8 600.8 596.6 600.8 600.8 600.8 584.7 600.8 600.8
600.3 600.8 600.8 589.0 600.8 584.5 603.9 582.4 555.4 584.2 581.6 599.2
~
POWERHOUSE FLOW CFS
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF'
1 7159.0 8895.0 12572.0 10738.0 8909.0 7821.0 7863.1 9415.1 9045.1 7121.0 4713.4 4555.6
'1 6771.0 7805.7 9344.3 8286.1 6561.6 6561.5 6242.6 9144.1 8550.1 6656.0 4971.4 11077.0...
3 7114.2 10430.0 12987.0 11270.0 9116.0 7979.0 7814 .1 8408.1 11396.1 7683.0 6754.4 5653.1
4 9409.2 11124.0 12780.0 10786.0 8918.0 7918.0 8112.1 10297.1 10826.1 6626.0 8050.3 6806.2
5 7001.2 9812.0 12616.0 11011.0 9103.0 7881.0 7926.1 11167.1 10804.1 6854.0 7599.9 4768.3
6 6466.3 9821.1 13097.0 11436.0 9448.0 8175.0 7905.1 9250.1 10331.1 7511.0 13763.2 7858.3
7 6540.2 9680.0 12436.0 10708.0 9066.0 8004.0 7889.1 10606.1 11052.1 13763.2 13763.2 12782.5
8 7127.2 10665.0 13216.0 11370.0 9562.0 8257.0 7902.1 9875.1 10244.1 7272.0 9092.3 11018.2
9 9326.2 11481.0 13763.2 11585.6 9385.0 8237.0 8018.1 9467.1 9417.1 6875.0 "7937.3 4433.4
10 6563.7 7536.0 10087.3 11103.0 9352.0 8029.0 7973.1 11339.1 10313.1 7791.0 12016.3 8318.2
11 7953.2 10514.0 13241.0 11473.0 9513.0 8264.0 7885.1 9335.1 8439.1 7118.0 4887.4 9678.1
12 9063.2 10651.0 13666.0 11999.0 9766.0 8790.0 8986.1 9968.1 11360.1 9029.0 11095.3 5314.9
13 7243.4 10435.0 13208.0 11583.0 9586.0 8472.0 8194.1 8383.1 13763.2 13763.2 13763.2 11054.5
14 8200.2 10587.0 13125.0 11283.0 9560.0 8110.0 7774.1 9978.1 10500.1 13763.2 13763.2 7588.1
15 7890.2 9976.0 12616.0 10765.0 9073.0 7815.0 7829.1 8113.1 13760.1 13763.2 7627.9 4425.1
16 6534.5 8908.0 12390.0 10712.0 9002.0 8018.0 7895.1 8877.1 9992.1 8264.0 9537.3 11223.2
17 8388.2 9799.0 12708.0 11065.0 9360.0 8339.0 8200.1 9216.1 11630.1 7046.0 5826.7 4448.9
18 6556.6 7456.9 11599.5 11144.0 9441.0 8240.0 7943.1 9459.1 10172.1 11218.0 13763.2 13763.2
19 7274.4 10094.0 13159.0 11638.0 9952.0 8930.0 8372.1 9731.1 10839.1 12251.0 7249.9 4442.4
20 6548.0 7566.1 9258.1 10473.0 8855.0 7921.0 8002.1 8692.1 7998.1 5604.0 4768.9 4659.3
21 6914.0 7934.4 9463.2 8352.5 6742.0 6914.1 5841.7 6078.7 10041.1 7988.0 4706.7 4473.6
22 6600.7 7454.8 8771 .8 8099.2 7036.0 7379.0 8307.1 8601.1 10935.1 7078.0 5137.9 4466.1
23 6589.9 7576.9 11681.9 11823.0 10009.0 8811.0 8146.1 11379.1 11559.1 13455.0 9992.3 5118.1
24 6442.4 9888.8 12616.0 10926.0 9301.0 8106.0 7811.1 8187.1 9659.1 5909.0 4768.9 4583.8
25 6817.9 7862.3 9263.0 7812.3 8766.4 7841.0 7816.1 9694.1 8943.1 6550.0 4719.2 4532.6
26 6683.4 7694.5 9187.6 8120.0 6386.4 7444.9 8037.1 9940.1 10703.1 13158.0 8065.3 8143.2
27 8895.2 9744.0 12237.0 10683.0 9049.0 7976.0 7938.1 9943.1 9930.1 5947.0 4768.9 4652.0
28 6872.5 7916.9 9461.2 8019.1 8011.9 8512.0 8090.1 10218.1 11366.1 10688.0 8965.3 5136.9
29 8596.4 11102.0 13601.0 11654.0 9698.0 8632.0 8178.1 8038.1 8232.1 6575.0 4713.6 4544.6
30 6736.6 7740.7 9217.7 8033.0 6915.4 8316.0 7983.1 8540.1 8232.1 11674.0 9817.3 4426.1
31 7527.2 11846.0 13508.0 11436.0 9556.0 8472.0 8156.1 8813.1 9956.1 12453.0 10916.3 5388.0
32 9081.3 11590.0 12783.0 11074.0 9262.0 8148.0 7871.1 8846.1 9212.1 8785.0 13763.2 13763.2
J a
}----1 --1 J ----1 ~--·1 "'-_.-C)-1 -)1 -1 '·---1·'-]
SPILL CFS
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
1 0.0 0.0 0.0 0.0 0.0 0.0 Q.O 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 321.6 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 364.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1390.5 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1149.8 0.0
19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
'1'1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0hh
23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
27 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3138.8 0.0
OUTFLOW CFS
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF'
1 7159.0 8895.0 12572.0 10738.0 8909.0 7821.0 7863.1 9415.1 9045.1 7121.0 4713.4 4555.6
2 6771.0 7805.7 9344.3 8286.1 6561.6 6561.5 6242.6 9144.1 8550.1 6656.0 4971.4 11077.0
7:7114.2 10430.0 12987.0 11270.0
9116.0 7979.0 7814.1 8408.1 11396.1 7683.0 6754.4 5653.1..
4 9409.2 11124.0 12780.0 10786.0
8918.0 7918.0 8112.1 10297.1 10826.1
6626.0 8050.3 6806.2
5 7001.2 9812.0 12616.0 11011.0 9103.0 7881.0 7926.1 11167.1 10804.1 6854.0 7599.9 4768.3
6 6466.3 9821.1 13097.0 11436.0 9448.0 8175.0 7905.1 9250.1 10331.1 7511.0 13763.2 7858.3
7 6540.2 9680.0 12436.0 10708.0 9066.0 8004.0 7889.1 10606.1 11052.1 13763.2 14084.8 12782.5
8 7127.2 10665.0 13216.0 11370.0
9562.0 8257.0 7902.1 9875.1 10244.1 7272.0 9092.3 11018.2
9 9326.2 11481.0 14127.4 11585.6 9385.0 8237.0 8018.1 9467.1 9417.1 6875.0 7937.3 4433.4
10 6563.7 7536.0 10087.3 11103.0 9352.0 8029.0 7973.1 11339.1 10313.1 7791.0 12016.3 8318.2
11 7953.2 10514.0 13241.0 11473.0 9513.0 8264.0 7885.1 9335.1 8439.1 7118.0 4887.4 9678.1
12 9063.2 10651.0 13666.0 11999.0 9766.0 8790.0 8986.1 9968.111360.1 9029.0 110!?5.3 5314.9
13 7243.4 10435.0 13208.0 11583.0 9586.0 8472.0 8194.1 8383.1 13763.2 13763.2 15153.7 11054.5
14 8200.2 10587.0 13125.0 11283.0 9560.0 8110.0 7774.1 9978.1 10500.1 13763.2 13763.2 '7588.1
15 7890.2 9976.0 12616.0 10765.0 9073.0 7815.0 7829.1 8113.1 13760.1 13763.2
7627.9 4425.1
16 6534.5 8908.0 12390.0 10712.0 9002.0 8018.0 7895.1 8877 .1 9992.1 8264.0 9537.3 1122:L2
17 8388.2 9799.0 12708.0 11065.0 9360.0 8339.0 8200.1 9216.1 11630.1 7046.0 5826.7 4448.9
18 6556.6 7456.9 11599.5 11144.0 9441.0 8240.0 7943.1 9459.1 10172.1 11218.0 14913.0 13763.2
19 7274.4 10094.0 13159.0 11638.0
9952.0 8930.0 8372.1 9731.1 10839.1 12251.0 7249.9 4442.4
20 6548.0 7566.1 9258.1 10473.0 8855.0 7921.0 8002.1 8692.1 7998.1 560·1.0 4768.9 4659.3
21 6914.0 7934.4 9463.2 8352.5 6742.0 6914.1 5841.7 6078.7 10041.1 7988.0 4706.7 4473.6
22 6600.7 7454.8 8771.8 8099.2 7036.0 7379.0 8307.1 8601.1 1.0935.1 7078.0 5137.9 4466.1
23 6589.9 7576.9 11681.9 11823.0 10009.0
8811.0 8146.1 11379.1 11559.1 13455.0 9992.3 5118.1
24 6442.4 9888.8 12616.0 10926.0 9301.0 8106.0 7811.1 8187.1 9659.1 5909.0 4768,'7 4583.8
'1'"6817.9 7862.3 9263.0 7812.3 8766.4 7841.0 7816.1 9694.1 89'43.1 6550.0 4719.2 4532.6.....J
26 6683.4 7694.5 9187.6 8120.0 6386.4 7444.9 8037.1 9940.1 10703.1 13158.0 8065.3 8143.2
27 8895.2 9744.0 12237.0 10683.0 9049.0 7976.0 7938.1 9943.1 9930.1 5947.0 4768.9 4652.0
28 6872.5 7916.9 9461.2 8019.1 8011 .9 8512.0 8090.1 10218.1 1.1366.1 10688.0 8965.3 5136.9
29 8596.4 11102.0 13601.0 11654.0 9698.0 8632.0 8178.1 8038.1 8232.1 6575.0 4713.6 4544.6
30 6736.6 7740.7 9217.7 8033.0 6915.4 8316.0 798:3.1 8540.1 8232.111674.0 9817.3 4426.1
31 7527.2 11846.0 13508.0 11436.0 9556.0 8472.0 8156.1 8813.1 9956.1 12453.0 10916.3
5388.0
32 9081.3 11590.0 12783.0 11074.0 9262.0 8148.0 7871.1 8846.1 9212.1 8785.0 16902.0 13763.2
T\~~~,~i l{~~
;;1 J .2
'-~1 --'-'1 '-~-]-l -"'~1 '~-1 -'])1
AVERAGE HEAD FT
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF'
1 605.0 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 556.7 564.5
2 564.5 561.4 557.1 556.3 568.2 584.4 590.1 580.0 560.0 550.0 560.3 583.6
3 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 562.4 585.7
4 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.9
5 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.4 584.5
6 596.6 603.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 567.5 590.8
7 600.8 605.0 605.0 605.0
605.0 605.0 597.5 580.0 560.0 563.2 590.8 600.8
8 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.9
9 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 :;50.0 563.6 580.4
10 584.7 585.1 594.6 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6
586.9
11 600.8 605.0 605.0 605.0
605.0 605.0 597.5 580.0 560.0 550.0 560.2 583.5
12 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.5
13 600.3 605.0 605.0 605.0 605.0 605.0 597.5 580.0 564.7 573 .1 595.9 600.8
14 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 560.2 586.1 599.2
15 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0
551.8 565.2 581.4
16 589.0 598.5 605.0 60,5.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6 586.9
17 600.8 605.0 605.0 605.0
605.0 605.0 597.5 580.0 560.0 550.0 561.3 578.3
18 584.5 591.3 601.3 605.0 605.0 605.0 597.5 580.0 560.0
550.0 57?5 603.9
19 603.9 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.0 579.2
20 582.4 582.0 593.3 605.0 605.0 605.0 597.5 580.0 560.0 550.O.551.7 554.4
21 555.4 554.3 552.7 552.4 553.9 556.8 560.8 566.5 560.0 550.0 560.0 575.1
22 584.2 591.5 598.4 603.5 605.0 605.0 597.5 580.0 560.0 550.0 560.5 576.1
23 581.6 586.0 597.5 605.0 605.0 605.0 597.5 580.0
560.0 550.0 563.6 585.9
24 599.2 .604.5 605.0 605.0 605.0 605.0 597.5 580.0
560.0 550.0 555.1 561.0
25 560.5 556.6 567.0 592.0 604.5 605.0 597.5 580.0 560.0 550.0 556.0 567.5
26 572.7 571.0 568.5 568.8 583.9 601.4 597.5 580.0 560.0 550.0 563.6 586.9
27 600.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 552.6 556.2
28 556.6 554.5 557.3 576.8 598.5 605.0 597.5 580.0 560.0 550.0 563.6 585.9
29 599.8 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 556.7 565.9
30 569.3 569.1 566.9 575.2 594.8 605.0 597.5 580.0 560.0 550.0 563.6 581.3
31 595.2 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 563.6
586.7
32 600.5 605.0 605.0 605.0 605.0 605.0 597.5 580.0 560.0 550.0 577.5
604.1
TOTAL ENERGY GWH
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF'
1 227.7 282.9 399.9 341.5 283.4 248.8 247.0 287.1 266.3 205.9 138.0 135.2
2 201.0 230.4 273.7 242.3 196.0 201.6 193.6 278.8 251.7 192.5 146.4 339.9
3 224.7 331.7 413.1 358.5 289.9 253.8 245.5 256.4 335.5 222.2 199.7 174.1
4 297.2 353.8 406.5 343.1 283.7 251.8 254.8 314.0 318.7 191.6 238.6 210.0
5 221.1 312.1 401.3 350.2 289.5 250.7 249.0 340.5 318.1 198.2 225.1 146.5
6 202.8 311.3 416.6 363.7 300.5 260.0 248.3 282.1 304.2 217.2 410.7 244.1
7 206.6 307.9 395.5 340.6 288.4 254.6 247.8 323.4 325.4 407.5 427.5 403.8
8 225.1 339.2 420.4 361.6 304.1 262.6 248.2 301.1 301.6 210.3 269.4 340.0
9 294.6 365.2 437.8 368.5 298.5 262.0 251.9 288.7 277.2 198.8 235.2 135.3
10 201.8 231.8 315.3 353.1 297.5 255.4 250.5 345.8 303.6 225.3 356.1 256.7
11 251.2 334.4 421.2 364.9 302.6 262.8 247.7 284.6 248.5 205.8 143.9 296.9
12 286.3 338.8 434.7 381.6 310.6 279.6 282.3 304.0 334.5 261.1 328.8 163.9
13 228.6 331.9 420.1 368.4 304.9 269.5 257.4 255.6 408.6 414.7 431.2 349.2
14 259.0 336.7 417.5 358.9 304.1 258.0 244.2 304.3 309.1 405.4 424.1 239.0
15 249.2 317.3 401.3 342.4 288.6 248.6 245.9 247.4 405.1 399.3 226.7 135.3
16 202.4 280.3 394.1 340.7 286.3 255.0 248.0 270.7 294.2 239.0 282.6 346.3
17 264.9 311.7 404.2 351.9 297.7 265.2 257.6 281.0 342.4 203.7 171.9 135,3
18 201.5 231.8 366.7 354.5 300.3 262.1 249.5 288.4 299.5 324.4 417.9 437.0
19 231.0 321.1 418.5 370.2 316.5 284.0 263.0 296.7 319,1 354.2 214.6 135.3
20 200.5 231.5 288.8 333.1 281.6 251.9 251.4 265.0 235.5 1.62.0 138.3 135.8
21 201.9 231.2 275.0 242.6 196.3 202.4 172.2 181.1 295,6 231.0 138.6 135.3
22 202.7 231.8 275.9 257.0 223.8 234.7 260.9 262.3 321.9 204.7 151.4 135.3
23 201.5 233.4 366.9 376.0 318.4 280.2 255.9 347.0 340.3 389.1 296.1.157.6
24 202.9 314.2 401.3 347.5 295.8 257.8 245.4 249.6 284.4 170.9 139.2 135.2
25 200.9 230.1 276.1 243.2 278.6 249.4 245.5 295.6 263.3 189.4 137.9 1.35.2
26 201.2 231.0 274.6 242.8 196.1 235.4 252.5 303.1 315.1 380.5 239.0 251.3
27 281.0 309.9 389.2 339.8 287.8 253.7 249"4 303.2 292 .4 172.0 138.5 136.0
28 201.1 230.8 277 .2 243.2 252.1 270.7 254.1 311.6 334.6 309.0 265.7 158.2
29 271.1 353.1 432.6 370.7 308.5 274.6 256.9 245.1 242.4 190.1 138.0 135.2
30 201.6 231.6 274.7 242.9 216.3 264.5 250.8 260.4 242.4 337.6 290.9 135.3
31 235.5 376.8 429.6 363.7 303.9 269.5 256.2 268.7 293.1 360.1 :323.5 166.2
32 286.7 368.6 406.6 332.2 294.6 259.2 247.3 269.7 271.2 254.0 417.9 437.1
1~q ~J,,"1 --:1
j
,c,''1 '-'-~'1 --'~l 1
STORAGE (MONTH END)AC-FT
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JIJL AUG SEF'
1 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 798748.3 813181.9
'1 798952.0 770511.0 740587.9 759515.3 902924.2 980498.1 979799.9 843400.0 707000.0 707000.0 847889.9 1024680.0..
7 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843399.9 707000.0 707000.0 875992.8 1024680.0'"4 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893120.0 1024680.0
5 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 889283.1 994965.1
6 1056815.4 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 946188.2 1024680.0
7 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 887458.4 1092000.0 1024680.0
8 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1024680.0
9 1091600.0 1091600.0 1092000.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893120.0 935004.6
10 952690.4 940510.8 1091400.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1024680.0
11 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 846564.5 1024680.0
12 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1018182.3
13 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843399.9 771754.4 957398.4 1092000.0 1024680.0
14 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 846637.0 1063273.9 1024680.0
15 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 731287.8 889938.3 952764.t
16 993433.3 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.1 707000.0 707000.0 893119.9 1024680.0
17 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 861377 .1 939285.8
18 945638.9 1031632.1 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 1092000.0 1072753.0
19 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 883796.6 927968.3
20 927968.3 922293.1 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843399.9 707000.0 707000.0 729976.4 743585.6
21 743585.6 729630.2 721055.9 726211.2 740501.1 765760.8 796111.3 843400.0 707000.0 707000.0 843713.4 912720.6
22 967189.9 1012727.5 1064717.8 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 850515.4 919187.8
23 925465.5 979439.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1009907.4
24 1082118.8 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 777008.5 786666.3
25 770032.5 733837.0 912558.4 1082397.4 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 789051.7 863724.3
26 859659.1 840393.4 826188.9 843979.1 1032625.6 1091600.0 979800.0 843400.0 707000.0 707000.0 893120.0 1024680.0
27 1091600.6 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 741794.8 756206.3
28 747794.1 727000.2 786741.5 993251.7 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 1010704.6
29 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843399.9 707000.0 707000.0 798372.8 832886.4
30 843885.8 830698.6 813952.9 943232.3 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.9 948406.0
31 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.0 707000.0 707000.0 893119.8 1021249.4
32 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 1091600.0 979800.0 843400.1 707000.0 707000.0 1092000.0 1075707.6
$
~.-
~'\
4744,.
5771+
1032~5 +
4891.
9938.
6948+
5467+
13405t
c:-,""1__':'"t1.~
13444.}
r.'o!~I~·Jl/~.j ..
4885+
5618~
C·.t AI:"._'\]1_,......1 +
7055~
11666.
132GOt
3128,.
10500+
12632 .~
Jr"""C:-'"tl 7 ...J +
14007t
8119~
8988~
6521·~
?1t.·O +
J.:i.;.,7 i·'~.2
8840fO
18234t2
10844~3..'!;:'"-!-.,,....-,
1 ....1 ....LO f.\'.:
8225+?
47?5+5
7'150+8
197'19?1
13")41,.1
13928~4
J.15?'9?1
1398'1 ..2
16495~E
18029,;~)
...n,.,n QCt7C>O ..0
1532'1+c=
18929,9
12218.6
14767.2
76,j ..;.'
729+4
oI!ro.·.....,...
l.'JLJ~G
852~3
7379+
8811i
8106~
7841.
8423+
7976.;.,,!:".......
C).J.i";;'.
8632+
831,~q
/"'11'1"""'"O"iiL ..
8148.
1 f G...,.-.,..,..
i 0"::'1·:
7848f
7979.
7918.
...,,-.,n ..
lOD.L+
8175v
8004.,.,.....L:".
0..:.:..3/+
8237,\
8029+
82t:,4 ~
87907
8472+
8110~
7815v
8018"
958 ..4""'"7 ,....,O{'J·':,.,t.'
,'.'.',.,
C'OD ..]
....0"".01111,._'.'.;.""'t
1089+J.
1778 f 7
769 ..6
1271.9
,,'"'tc .-,
DLJ.;.':':
1361~O
1480~6
1164,.7
,.......,.t .-,
0/0.,,,;,,
.~!r·...,
"'t07~/
52:~..G
203 +t,
8~'09,.
8940~
0 ....,r
l J.j,0 ~
~~"Q(.'7 1:u +
9103~
9448+
9066,.
nJ:'"~'-"7 ....{0.Lf
f"l"Tf"l1:"
f'.J l~.,~I o!o
9352.;.
9513.
9766+
9586+
95t,{)+
9073"
943t2...,.~'-...i 'i ...!•C!
929,,/
1·'!-:J1:::...)-
.!.";,.......-J,,,;..
893.1
1.0
9002"
9360.,
9441~
9952"
9301·~
8919~
9515+
9049f-
9643~
,.t "n
7070,'
93?6f
95567,....,......t.,
1":':0..::..",
""'7C'"...,i .:..\._,.~/
1387 ..4
/i."";·jtl ..
10G09v
900i'2nryoiJ
\..''':''..1 ~'~,l
1.187.;.4
1268~3..""'{"I ...,1//O·~:"'
681i'8
-'f'.,~~'"1
.I ',...Je'..l
1583+2
1224i'2
..•r /I"..ID"Tl·~ln·'"...'J L1 +.1
......,n ...,
1'::'.1 (:;l'.:'
304.1
1:1.074,;
r'll::.......,
',~....l.l +.,)
'105 ..7
1483 ..7
999 ..6
11144,
11Gb5.;.
11654~
10177+
11436.
11638 ..
10473t-
:::438"
8545.;.
1182::,+
10926 ..
10629+
"i'l"!t:'"c''''t .1.,J .........~....,..,.L \le,,::)..:;of-
11444.
10765+
10712+
1 to 160
10738+
GoGO.
11270,
1078.5 +
11011+
11436+
10708<.
11370,
11579 ..
11103,
11473+
11999",
11583 ..
11283+
707~G .,....n"I"<.850"...,,01 ,+00.LV7'::::"i-V ...0 !000....,;.:-050 .....,,,150 "c".......J :::--1".,DJ ..250 ....nC"""j'"".r:n-""-C""01:'"'"t17J!>'-'VV •":':'7"':':'!>":rJV(·A7;::rO ..450,1048.500+1484~
00 ..0 "7-'1
'''''L.
~88 .71 ~73 ..62 <.56 """'-,,50 '",J.l +,.....;:".,.:.y .,
2904~9
1370 ..9
Li,,),ilf:)
243t,t6
1978+7
2371.;.4
1549+4
2074~8
.....,~..-""':!
"::""":'1."::''"'.-:.)
1387 ..0",.,...,,;!7 /7 ""i
1550~4
1387~1
18b8.0
12Gt,+6
12616....................
l.;."::"":'/i
8952~
12237~
10452~
13{iG1,.
8940f-
1-3508+
12783+
1342 ..5
1030,,8
..-.IC"'....i.:"
J.i ,.)l '"..J
12780+
12616+
13097+
12436+
13216t
14134.
12593?
13241t
13666+
L3208.
13125+
..-"",t ~!.l':::':llC<~
12390+
12708t
12594,
13159,.
12066 ..
9321+
9634.
13542.
1000
0,
....,."}
.L "'::''':''~
707",
11102.
7522t
11846~
115'iO~
2404~7
1231,2
2539,,0
3232 t{~,
1921.3
•...,~!,..,
L\-i .lQ t \.}
178876
2773.8
3590f4
199\('o!-8
''''':!i.'-'")"":"7..:...r~.,..:.....::..f-.'
2759i9
2544+1
9812+
10398.
9680.
10665.
11481.
7334.
10514,
10651.>
10435t
10587 ..
9976-;...'.'.t:;.,l1'I.),...l":;0 t
9799 ..
8883.
100'14.
7472.
7703~
82tOt
8472+
10046,
7262~.....",!;;'.'·oJ i "_,~
9744.
""':'t:',..-,I ,_I,!£..,.
11124,
5496,.5
3844,,0
4585f3
.'?r::-,"...,
,J-di t:t ./
F45,2
5537.0
Ill-,,,,.'"ic.l.~'O,'D
:3491t4
".r'n'-,/"i7Li
7 650~.
B237.
104361
6857.
",n I":r ....Jo ...;.o!-
10173.
84C:\1 +
9310+
9000+
7209.
,,,,,..,r,n
?"'i:"Q -;.
\~\662 t
""':'C'........,
.-',-'C'./~
65.:.18 ~
10519.
no{"ofDl.i.L",
SUS ITNA HEF';
DEVIL CANYON 1455
600 MW (NO FLO REG)
384 1
11 ;)
II-""'l:."'7 L,.)<I-
1200.
1400.
1455.
600000.2000.
-;.73 .84 1.0
.()t
1000,,0 1000~O 1000.0
1455~O 1455~O 1455",0
1.0 1.0 1.0 1.0
7159~8895~12572!"
6535~7334i 8848~
8224+10430~12987t
---1 ---1 )
W~Y~~AN~I~~p
CASE A
)1 1 ·~···l
EL
1900.0
1950.0
2000.0
2050.0
2100.0
1150.0
2200.0
2250.0
MINIMUM STORAGE=
Mf':iXIMUM F'.H.Q ::;;
STORAGE
2550000.0
3330000.0
4250000.0
5340000.0
6650000.0
8189999.5
10020000.0
12210000.0
5232000.0 MAXIMUM STORAGE 9652000.0
17109.7 START WSEL=2185.0 TWEL=1455.0 PMAX=.90000E+06
MONTHLY BASELOAD DEMAND
0.321930E+06 0.370440£+06 0.441000E+06 0.388080E+06 0.313110E+06 0.321930E+06
0.273420E+06 0.246960E+06 0.224910E+06 0.233730E+06 0.220500E+060.216090E+06
MONTHLY DISCHARGE REQUIREMENT
1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0
MONTHLY WATER LEVEL
2185.0 2172.0 2153.5 2135.0 2119.0 2105.0 2095.0 2145.0 2160.0 2170.0 2180.0 2190.0
MONTHLY FLOW DISTRIBUTION
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.8 0.8 0.7
MONTHLY L.F.=0.490
NO.YEARS OF SIMULATION =32
F'DS=0 NSEC=323 NDEF=61 NDEF1=0 NDSFL=0
YEAR TOTE TOT SEC TOTDEF
1 o•30226E +1 0 0.41727E+09 0.92217E+06
2 0.30820E+10 0.47668E+09 0.84709E+06
3 0.33835Etl0 0.77734E+09 0.57148Et05
4 0.35083E+l0 0.90205Et09 O.OOOOOEtOO
5 O.32209E +1 0 0.61470Et09 0.38669E+05
6 0.37974E+l0 0.11923E+l0 0.10547Et07
7 0.39653E+l0 0.13592E+l0 0.39512E+05
8 0.36669E+l0 0.10607E+10 0.60078E+05
9 0.34915E+10 0.88536E+09 0.22515Et05
10 0.33609E+l0 0.75783E+09 0.31195E+07
11 0.34567E+l0 0.85055Et09 0.38122E+05
12 0.37540E+10 0.11478E+l0 0.00000000
13 0.43185E+l0 0.17123E+l0 O.OOOOOE+OO
14 0.40536E+l0 0.14474E+l0 0.39284Et05
15 0.36755E+l0 0.10693E+l0 0.60762E+05
16 0.36369E+l0 0.10307E+10 O.OOOOOE+OO
17 0.32279E+l0 0.62252E+09 0.82441E+06
18 0.39613E+l0 0.13559E+l0 0.78195E+06
19 0.35710Etl0 0.96479E+09 O.OOOOOEtOO
20 0.29518Etl0 0.34657E+09 0.98418E+06
21 0.26109E+10 0.69840E+07 0.22692E+07
22 0.26315E+l0 0.26625E+08 o.13600Et07
23 0.37643E+10 0.11584E+l0 0.30755E+06
24 0.31582E+l0 0.55291E+09 0.88064Et06
"CO 0.29565Etl0 0.35113E+09 0.84561E+06"-.J
26 0.33413Etl0 0.73599E+09 0.91743Et06
27 0.31564E+10 0.55053E+09 0.36604E+06
28 0.33869E+10 0.78453E+09 0.38234E+07
29 0.33194E+l0 0.71323E+09 O.OOOOOEtOO
30 0.32521Etl0 0.64892E+09 0.30505E+07
31 0.38903E+l0 o.12841E+l0 O.OOOOOEtOO
32 0.41182E+10 0.15120Et10 0.38030E+05
~'li ~~1 ~>~!;
J 1 '<OJ '~--J --l 1 "--]-J ~--l ---l -1 -~j ~--1 ---1 '}~""-"l -~]
AVERAGE MONTHLY ENERGY AND POWER
MONTH fOTAl
POWER
MW
OCT 384.~'44
NO!,':47t..498
DEC flO';>61.!1
,J(.lN ~.i25,629
FEB 435.888
MtlF-:,~/8 >0 ·Hl
M'F:278,163
MAY 247.:;61
JUN 239.243
J UL ~~:d,:;8;~
AUG 471.995
SEF 340;272
F'Ef,~;
fO\r!ER
MW
384.9':;1
476,498
60'1,\L,J~
~25 v ~~,29
435.888
;PfL018
~~78.t63
747.261
239.243
;~:';.3 ,:..;fU
471.995
340t272
OFF F'F:'\j i<
F'OWH
MW
M~L:,9'1tl
,~1 >'tl +.:1 S;f-:
f-~i)9 •.6:1..:}
~j2;::.;.t.:29
/13:;.8B8
3?8'rO~}H
278.163
247,261
?:i,9.243
3~:~.~)O.j
471.995
:5'10,2/7.
TOTf,l
Ei'lEF:GY
GWH
:~80 t ~~
:~;/.17r ;13
·4 l}'}r /~"~i
:~R3.'1 ~;9
~~3.8 to?,";
)'/:.~;l-H~:~.(:.
202.948
180.401
174.552
~;~~':i /i 9 /~
344.368
248t262
OFFPEAK
ENERGY
GWH
:'P()~855
'1.·;7 ,Ll:::7
,j "j;..;.....-..J ....j
1/{1j.775
2,8 ;:.,<.';S"17'
318.024
',::;5.824
:}.O?i·94f::
180.401
1 /...:,.5 ~':i ~::
:<~)7 +974
~44.3,~.8
2,18 ..26:·~
F'E~il<
ENHGY
GWH
0,000
0.;.000
01'000
(i«)OO
0.000
OtOOO
0.000
0.000
()\OJ)0
().OOO
0.000
o i \!I~)i~j
DEFICIT
Ml~
o<:~,H?
Ov31H
0rl)ll}
0.008
O.OOfl
O.()()f:.
O~O/7;
(){?()~'i
0,000
OtOOO
(i {,OOO
0(000
SFC
r·il>.!
63.401
10 .,:~77
l,'J J.\(;29
~i.:~I ~~':t ~:;8
.1.;:;;783
!)\'1 r ~.~4
!{•:}:?~:
II !"~r~"\.1 t ~.'Vt;
r::"333
119.853
~')S 1 t .~}'71 :~i
124.182
AVERAGE NON THL Y T.iI SCHI~RG~:S tlND HEAD
MONTH
OCT
NOV
DEC
J(.\N
FEB
MAR
M'F:
Min
JUN
JUt
r~UG
SEP
INFLOW
4:;J ..~,()6
2052t42
1.40 "1.8 <I
1157.27
978.88
H':i8,;n
1.112.57
J.(}397;~"i:":;
2292?'"·~14
:;~O!/8 ,oJ.
18431,4J
10670.'11
P.H.FLOlrJ
:7 /~~B ~::~:I.
9186.44
:1.1.'9 ''i'H l .~,b
10617,16
c/027 +21
80L~,69
f,OlL4J
~·;\~4 4.;~:~1
4990.10
/0)'-~~"j2
9116.69
(,485.92
PEAK
7~~~H ;~:~J.
91.86.,}1
1.1.'j-'Cf8;,:.6
10fd?+l6
y027i?j
801.),.')';
e\011 .'1;~
S ~it ~i .~~.I.
<19'1'0.10
70~~l.;~')?
9116.69
6/185.n
OF FF'Ff:K
FP;S.n
Y18b.44
1.1.998.,46
:i.()AJ ~)i j f:.
90':.'i',21
80).'2+69
6011.43
5 :5::)4 t ~~J.
4990.10
70?1.;,~'j2
9116,69
6,185.92
HFAn SPIll HL.OES
/?7.;.30 0<000 0.00
719.01 0,,00 0",00
704.27 0.00 0.00
f.Bto •-,1 f.',J ..'JV t}"I,}!,J
6t.9+~.1 0+00 0.00
,L.,:A.54 0.00 OtOO
642+28 (i,(lO 0.00
\~\~2.31 OtOO (l.00
h\~.~~?..~:0,00 0.00
l,95.17 0.00 0.00
/15+16 ~-.'1~/.i"I"
j,ji.i..V ~jt\l\f
726.36 ~~~..........~.
I,:i-1.)fJ l..)~IJV
Al.)EF:AGF.:M1NlJ(\l FNERGY :::0.3~i913E+l0 KWH
DElMASS -
STOREND :::
STORSTART :::
INFLOW MASH
OUTFL.MASS
0.18098500E+06
O.96S20000E+07
0.9(,520000E+07
O,30S0J.528E+07
0.30471475F+07
INFLOW CFS
YF:OCT NOV DEC JAN FEB MAR APR MY JUN JUL AUG SEF'
1 4719.9 2083.6 1168.9 815.1 641.7 569.1 680.1 8655.9 16432.1 19193.4 16913.6 7320.4
'i 3299.1 1107.3 906.2 808.0 673.0 619.8 1302.2 11649.8 18517.9 19786.6 16478.0 17205.5.:..
3 4592.9 2170.1 1501.0 1274.5 841.0 735.0 803.9 4216.5 25773.4 22110.9 17356.3 11571.0
4 6285.7 2756.8 1281.2 818.9 611.7 670.7 1382.0 15037.2 21469.8 17355.3 16681.6 11513.5
5 4218.9 1599.6 1183.8 1087.8 803.1 638.2 942.6 11696.8 19476.7 16983.6 20420.6 9165.5
6 3859.2 2051.1 1549.5 1388.3 1050.5 886.1 940.8 6718.1 24881.4 23787.9 23537.0 13447.8
7 4102.3 1588.1 1038.6 816.9 754.8 694.4 718.3 12953.3 27171.8 25831.3 19153.4 13194.4
8 4208.0 2276.6 1707.0 1373.0 1189.0 935.0 915.1 10176.2 25275.0 19948.9 17317.7 14841.1
9 6034.9 2935.9 2258.5 1480.6 1041.7 973.5 1265.4 9957.8 22097.8 19752.7 18843.4 5978.7
10 3668.0 1729.5 1115.1 1081.0 949.0 694.0 885.7 10140.6 18329.6 20493.1 23940.4 12466.9
11 5165.5 2213.5 1672.3 1400.4 1138.9 961.1 1069.9 13044.2 13233.4 19506.1 19323.1 16085.6
12 6049.3 2327.8 1973.2 1779.9 1304.8 1331.0 1965.0 13637.9 22784.1 19839.8 19480.2 10146.2
13 4637.6 2263.4 1760.4 1608.9 1257.4 1176.8 1457.4 11333.5 36017.1 23443.7 19887.1 12746.2
14 5560.1 2508.9 1708.9 1308.9 1184.7 883.6 776.6 15299.2 20663.4 28767.4 21011.4 10800.0
15 5187.1 1789.1 1194.7 852.0 781.6 575.2 609.2 3578.8 42841.9 20082.8 14048.2 7524+2
16 4759.4 2368.2 1070.3 863.0 772.7 807.3 1232.4 10966.0 21213.0 23235.9 17394.1 16225.6
17 5221.2 1565.3 1203.6 1060.4 984.7 984.7 1338.4 7094.1 25939.6 16153.5 17390.9 9214.1
18 3269.8 1202.2 1121.6 1102.2 1031.3 889.5 849.7 12555.5 24711.9 21987.3 26104.5 13672.9
19 4019.0 1934.3 1704.2 1617.6 1560.4 1560.4 1576.7 12826.7 25704.0 22082.8 14147.5 7163.6
20 3135.0 1354.9 753.9 619.2 607.5 686.0 1261.6 9313.7 13962.1 14843.5 7i'71.9 4260.0
21 2403.1 1020.9 709.3 636.2 602.1 624.1 986.4 9536.4 14399.0 18410.1 16263.8 7224.1
22 3768.0 2496.4 1687.4 1097.1 777.4 717.1 813.7 2857.2 27612.8 21126.4 27446.6 12188.9
23 4979.1 2587.0 1957.4 1670.9 1491.4 1366.0 1305.4 15973.1 27429.3 19820.3 17509.5 10955.7
24 4301.2 1977 •9 1246.5 1031.5 1000.2 873.9 914.1 7287.0 23859.3 16351.1 18016.7 8099.7
25 3056.5 1354.7 931.6 786.4 689.9 627.3 871.9 12889.0 14780.6 15971.9 13~23t7 9786.,2
26 3088.8 1474.4 1276.7 1215.8 1110.3 1041.4 1211.2 11672.2 26689.2 23430.4 15126.6 13075.3
27 5679.1 1601.1 876.2 757.8 743.2 690.7 1059.8 8938.8 19994.0 17015.3 18393.5 5711.:5
28 2973.5 1926.7 1687.5 1348.7 1202.9 1110.8 1203.4 8569.4 31352.8 19707.3 16807.3 10613.1
29 5793.9 2645.3 1979.7 1577 •9 1267.7 1256.7 1408.4 11231.5 17277.2 18385.2 13412.1 7132.6
30 3773.9 1944.9 1312.6 1136.8 1055.4 1101.2 1317.9 12369.3 22904.8 24911.7 16670.7 9096.7
31 6150.0 3525.0 2032.0 1470.0 1233.0 1177.0 1404.0 10140.0 23400.0 26740.0 18000.0 11000.0
32 6458.0 3297.0 1385.0 1147.0 971.0 889.0 1103.0 10406.0 17323.0 27840.0 31435.0 12026.0
;!',i1 'I ~l,)'j j
:"~'~~1,'~-"-'1 .h"'~'l J ~"~~'l ---1 1 ,.-~-JC]'>1'~-)}"-1
POWERHOUSE FLOW CFS
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
1 6120.2 8574.2 12398.2 10601.6 8814.5 7720.3 5886.8 5318.2 4746.0 4931.3 4328.0 4164.7
'")6181.7 7210.1 8723.0 8502.4 8845.8 7771.0 6028.8 5313.6 4827.4 4866.4 5255.9 11415.5.:.
3 7594.7 10061.0 12730.3 11061.0 9013.8 7886.2 5885.5 5372.6 4893.4 4932.7 7266.6 6248.8
4 9287.5 10647.7 12510.5 10605.4 8784.5 7821.9 6108.6 5313.6 4802.8 4797.7 861,1.8 6572.6
5 7220.7 9490.5 12413.1 10874.3 8975.9 7789.4 5884.1 5315.7 4830.5 4683.7 6972.1 4107.2
6 6521.1 9942.0 12778.8 11174.8 9223.3 8037.3 5884.1 !)315.7 4868.5 ~3086.5 16307.3 8618.4
7 7104.1 9479.0 12267.9 10603.4 8927.6 7845.6 5886.4 5317.8 4824.9 13374.9 14021.0 8365.0
8 7209.8 10167.5 12936.3 11159.5
9361.8 8086.2 5884.0 5315.6 4841.6 5111.0 10107.6 10011.7
9 9036.7 10826.8 13487.8 11267.1 9214.5 8124.7 5992.0 5313.6 4839.8 4865.0 8647.1 4118.0
10 6121.7 7063.7 12337.1 10867.5 9121.8 7845.2 5884.6 5316.2 4842.8 4893.5 1,0449.2 7637.~i
11 8167.3 10104.4 12901.6 11186.9
9311.7 8112.3 5882.7 5314.4 4701.1 4884.6 4459.1 9787.9
12 9051.1 10218.7 13202.5 11566.4 9477.6 8482.2 6691.6 5313.6 4812.9 5987.9 12497.9 5316.8
13 7639.4 10154.3 12989.7 11395.4 9430.2 8328.0 6184.0 5313 ..oS 7912.0 15295.0 15031.2 7916.8
14 8561.9 10399.8 12938.2 11095.4
9357.5 8034.8 5885.8 5317.2
4806.9 12457.7 15647.3 5970.6
15 8188.9 9680.0 12424.0 10638.5 8954.4 7726.4 5887.6 5382.7 6523.7 12322.8 8721.7 4150.9
16 6224.6 10259.1 12299.6 10649.5 8945.5 7958.5 5959.0 5313.6 4832.4 5304.6 10228.B 11396.2
17 8223.0 9456.2 12432.9 10846.9 9157.5 8135.9 6065.0 5313.6 4861.4 4663.6 5533.5 4110.3
18 6087.8 8627.7 12350.9 10888.7 9204.1 8040.7 5885.0 :i316.5 4825.7 8123.9 17109.7 11388.5
19 7020.8 9825.2 12933.5 11404.1 9733.2 8711 .6 6303.3 5313.6 4818.8 9462.9 8238.8 4112.9
20 6H)6.1 7294.9 11983.2 10405.7 8780.3 7837.2 5988.2 5313.6 4747.2 4796.1 4438.3 4349.0
21 6450.3 7577.9 9220.7 8317.7 6872.2 7235.3 6284.9 5678.2 5059.0 5256.2 4584.8 4399.0
22 6526.3 7624.8 9246.4 8323.5 6870.0 7229.1 6280.2 5768.5 5254.6 5262.4 4649.0 41.57.~j
23 6136.4 8146.4 13186.7 11457.4 9664.2 8517.2 6032.0 5313.6 4796.0 11558.5 11934.4 6126.3
24 7303.0 9868.8 12475.8 10818.0 9173.0 8025.1 5884.4 5315.9 4864.0 4688.5 4468.1 41.18.0
25 6106.9 7153.4 12160.9 10572.9 8862.7 7778.5 5884.8 5316.3 4695.4 4731.9 4347.0 4187.5
26 6198.1 7230.4 8741.9 8221.9 9283.1 8192.6 5937.8 5313.6 4827.2 10400.6 9247.3 8245.9
27 8680.9 9492.0 12105.5 10544.3 8916.0 7841.9 5882.8 5314.5 4848.8 4709.9 4442.3 4138.7
28 6154.2 7107.3 9991.5 11135.2 9375.7 8262.0 5930.0 5313.6 4850.0 8655.1 10488.4 5783."7
29 8795.7 10536.2 13209.0 11364.4 9440.5 8407.9 6135.0 5313.6 4830.5 4881.3 4314.6 4169.6
30 6190.4 7142.9 8703.5 10010.0 9228.2 8252.4 6044.5 5313.6 4822.1 9123.1 10468.0 4267.3
31 9151.8 11415.9 13261.3 11256.5 9405.8 8328.2 6130.6 5313.6 4838.5 9191.1 1180"7.2 6170.6
32 9459.8 11187.9 12614.3 10933.5 9143.8 8040.2 5882.4 5314.1 4837.4 5388.6 17109.7 12026.0
00000000000000000000000000000000u...+
W 00000000000000000000000000000000
rn
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO~
(!)
~OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOON
~~
"1
('.~
00000000000000000000000000000000
-I~00000000000000000000000000000000
-:J
00000000000000000000000000000000
Z~00000000000000000000000000000000
-:l
0000 0 00000000000 0 0000 0 0000000000
>-~00000000000000000000000000000000
::E:
00000000000000000000000000000000
0000000000000000 0 0000 0 0000000000
00 0 0000 0 00000000000 0 000000000000
OC~00000000000000000000000000000000
::E:
0000 0 00 0 000 0 0000 0 000000000000000
o:r..w 00000000000000000000000000000000
u...
00000000000000000000000000000000
Z~00000000000000000000000000000000
-:l
0000000000000000 0 000000000000000
UW 00000000000000000000000000000000
;:;,
00000000000000000000000000000000
:>o 00000000000000000000000000000000
:z
f-
Uo
oc
>-
00000000000000000000000000000000
00000000000 0 00000000000000000000
_NM~~~~ro~O_NM~~~~ro~O_NM~~~~OO~O_N
---------_NNNNNNNNNNMMM
-l C
'--")~'--l 1 --'~1 1 )c'"1 '-}-~l --I ~'-]
OUTFLOW CFS
'IF:OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
1 6120.2 8574.2 12398.2 10601.6 8814.5 7720.3 5886.8 5318.2 4746.0 4931.3 4328.0 4164.7
'1 6181.7 7210.1 8723.0 8502.4 8845.8 7771.0 6028.8 5313.6 4827.4 4866.4 5255.9 11415.5...
3 7594.7 10061.0 12730.3 11061.0 9013.8 7886.2 5885.5 5372.6 4893.4 4932.7 7266.6 6248.8
4 9287.5 10647.7 12510.5 10605.4 8784.5 7821.9 6108.6 5313.6 4802.8 4797.7 8611.8 6572.6
5 7220.7 9490.5 12413.1 10874.3 8975.9 7789.4 5881.1 5315.7 4830.5 4683.7 6972 .1 4107.2
6 6521.1 9942.0 12778.8 11174.8 9223.3 8037.3 5884.1 5315.7 4868.5 ~j086.5 1630::'.3 8618.4
7 7104.1 9479.0 12267.9 10603.4 8927.6 7845.6 5886.4 5317.8 4824.9 13374.9 14021.0 8365.0
B 7209.8 10167.5 12936.3 11159.5 9361.8 8086.2 5884.0 5315.6 4841.6 5111.0 10107.6 10011.7
9 9036.7 10826.8 13487.8 11267.1 9214.5 8124.7 5992.0 5313.6 4839.8 4865.0 8647.1 4118.0
10 6121.7 7063.7 12337.1 10867.5 9121.8 7845.2 5884.6 5316.2 4842.8 4893.5 10449.2 7637.5
11 8167.3 10104.4 12901.6 11186.9 9311.7 8112.3 5882.7 5314.4 4701.1 4884.6 4459.1 9787.7'
12 9051.1 10218.7 13202.5 11566.4 9477.6 8482.2 6691.6 5313.6 4812.9 5987.9 12497.9 5316.8
13 7639.4 10154.3 12989.7 11395.4 9430.2 8328.0 6184.0 5313.6 7912.0 15295.0 15031.2 7916.8
14 8561.9 10399.8 12938.2 11095.4 9357.5 8034.8 5885.8 ~~j317 +2 4806.9 12457.7 15647.3 5970.6
15 8188.9 9680.0 12424.0 10638.5 8954.4 7726.4 5887.6 5382.7 6523.7 12322.8 8721.7 4150.9
16 6224.6 10259.1 12299.6 10649.5 8945.5 7958.5 5959.0 5313.6 4832.4 5304.6 10228.8 11396.2
17 8223 .0 9456.2 12432.9 10846.9 9157.5 8135.9 6065.0 5313.6 4861.4 466~~.6 55:n.5 4110.3
18 6087.8 8627.7 12350.9 10888.7 9204.1 8040.7 5885.0 5316.5 4825.7 8123.9 17109.7 11388.5
19 7020.8 9825.2 12933.5 11404.1 9733.2 8711.6 6303.3 5313.6 4818.8 9462.9 8238.8 41.12.1;
20 6106.1 7294.9 11983.2 10405.7 8780.3 7837.2 5988.2 5313.6 4747.2 4796.1 4438.3 4349.0
21 6450.3 7577.9 9220.7 8317.7 6872.2 7235.3 6284.9 5678.2 5059.0 5256~.2 4~584.8 4399.0
22 6526.3 7624.8 9246.4 8323.5 6870.0 7229.1 6280.2 5768.5 5254.6 5262.4 4t:.49.0 4157.5
23 6136.,j 8146.4 13186.7 11457.4 9664.2 8517.2 6032.0 5313.6 4796.0 11558.5 11934.4 6i26d
24 7303.0 9868.8 12475.8 10818.0 9173.0 8025.1 5884.4 5315.9 4864.0 4688.~i 4468.1 411.8.0
25 6106.9 7153.4 12160.9 10572.9 8862.7 7778.5 5884.8 ~j316.3 4695.4 4731.9 4347.0 4187.5
26 6198.1 7230.4 8741.9 8221.9 9283.1 8192.6 5937.8 5313.6 4827.2 10400.6 9247.3 8245.9
27 8680.9 9492.0 12105.5 10544.3 8916.0 7841.9 5882.8 5~314.5 4848.8 4709.9 4442.3 4138.7
28 6154.2 7107.3 9991.5 11135.2 9375.7 8262.0 5930.0 5313.6 4850.0 8655.1 10488.4 ~i783.7
29 8795.7 10536.2 13209.0 11364.4 9440.5 8407.9 6135.0 5313.6 4830.5 4881.3 4314.6 4169.6
30 6190.4 7142.9 8703.5 10010.0 9228.2 8252+4 6044.5 5313.6 4822.1 9123.1 10468.0 4267.3
31 9151.8 11415.9 13261.3 11256.5 9405.8 8328.2 6130.6 5313.6 4838.~)9191.1 11807.2 t.170.6
32 9459.8 11187.9 12614.3 10933.5 9143.8 8040.2 5882.4 5314.1 4837.4 5388.6 19452.1 12026.0
AVERAGE HEAD FT
YR OCT NOl)DEC JAN FEB MAR APR MAY JUN JlIL AUG SEP
1 728.8 722.3 707.8 689.3 672.0 657.0 6-14.4 642.6 657.8 683.0 707.2 720.1
2 720.4 713.0 701.5 687.5 672.0 657.0 645.0 646.6 666.6 693.4 /16.2 730.2
3 732.5 723.5 707.8 689.3 672.0 657.0 6-14.6 637.9 657.6 694.1 717.9 730.6
4 732.5 723.5 707.8 689.3 672.0 657.0 645.0 649.9 676.1 703.0 720.2 730.9
I:"732.5 723.5 707.8 689.3 672.0 657.0 6~4.8 646.2 667.2 692.7 715.0 730.2,J
6 732.2 723.5 707.8 689.3 672 .0 657.0 644.8 641.1 662.::i 698.7 721.0 731.0
7 732.5 723.5 707.8 689.3 672.0 657.0 614.,5 646.'1 676.4 708.3 722.8 731.0
8 732.5 723.5 707.8 689.3 672.°657.0 644.8 644.7 669.8 702.5 721.0 731.0
9 732.5 723.5 707.8 689.3 672 .0 657.0 615.0 644.9 666.7 696.8 718.4 728.3
10 727.8 721.4 707.7 689.3 672 .0 657.0 644.7 644.5 662.9 690.4 715.9 731.(/
11 732.5 723.5 707.8 689.3 672.0 657.0 644.9 647.8 664.:l 686.2 712.3 729.8
12 732.5 723.5 707.8 689.3 672.0 657.0 645.0 648.:':i 674,,~703.9 721,2 731.0
13 732.5 723.5 707.8 689.3 672.0 657.0 645,0 646.3 679.0 712.3 723 ,0 731.0
14 732.5 723.5 707.8 689.3 672.0 657.0 644.6 649,3 675.1 704.4 122,.6 131.0
15 732.5 723.5 707.8 689.3 672 .0 657.0 644.4 636.7
669f19 711.7 722.5 729.6
16 731.2 723.5 707.8 689.3 672 .0 657.0 645.0 645.9 667.8 699.5 721.1 731.0
17 732.5 723.5 707.8 689.3 672 .0 657.0 645.0 642.0 664.8 69:3.7 715.7 729.7
18 731.6 723.1 707.8 689.3 672.0 657.0 644.6 646.8 673.8 704.8 723.8 733.1
19 732.5 723.5 707.8 689.3 672 .0 657.0 6 '15.0 647,7 675.8 7%.5 721,8 72'7'.;:!
20 729.2 721.9 707.8 689.3 672.°657,0 645.0 644.3 657.6 676.5 689.6 6 0 ')-,,.../
21 688.7 678.3 663.5 647.3 632.1 617.3 603.6 601.9 617.1 642.0 66/'.6 681.8
22 681.9 674.2 661.7 646.8 632.3 617.8 604.0 594.0 616.4 658.2 694.4 721.<1
23 727.1 721.6 707.8 689.3 672.0 657.0 645.0 650.8 682.9 7ll..0 722.4 731.0
24 732,5 723.5 707.8 689.3 672 .0 657.0 644.7 641.7 662.6 692.0 713.9 728.3
25 729.1 721.8 707.8 689.3 672.0 657.0 644.7 647.2 664.9 685.6 704.0 716.2
26 718.3 711.0 700.0 686.9 672.0 657.0 645.0 646.6 674.5 706.6 722.1 731.0
27 732.5 723.5 707.8 689.3 672 .0 657.0 c)44.9 643.7 662.5 688.8 711.9 724.7
28 723.3 716.4 705.3 689.3 672 .0 657.0 645.0 643.6
6~'l 7 707.::;721.8 731.0I..,;.,•f
29 732.5 723.5 707.8 689.3 672.0 657.0 645.0 646.2 664.5 689.3 709.3 719.3
30 719.7 713.5 703.1 688.5 672.0 657.0 645.0 647.3 672~3 703.4 721.9 731.0
31 732.5 723.5 707.8 689.3 672.0 657.0 645.0 645.1 668.4 701.7 721.9 731.0
32 732.5 723.5 707.8 689.3 672.0 657.0 644.9 645.2 662.8 695.1 725.1 734.9
~"t
.--~._]-,o"-_~l :°'------1------1 '1------,-0----]1 1---'1 --]-1
TOTAL ENERGY GWH
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEF'
1 234.5 325.6 461.3 384.2 311.4 266.7 199.4 179.7
164.1 177 .1 160.9 157.?
2 234.1 270.3 321.7 307,3 312.5 268.4 204.4 180.6 169.2 177.4 197.9 438.2
3 292.5 382.7 473.7 400.8 318.4 272.4 199.4 180.2 169.2 180.0 274.2 240.0
4 357.6 405.0 465.5 384.3 310.3 270.2 207.1 181.5 170.7 177.3 326.0 252.5
5 278.1 361.0 461.9 394.0 317.1 269.0 199.4 180.6 169.4 170.6 262.1 157 ..]
6 251.0 378.2 475.5 404.9 325.8 277 .6 199.4 179.2 169.6 186.8 618.2 331.2
7 273 .6 360.5 456.5 384.2 315.4 271.0 199.4 180.9 171.6 498.0 532.8 321.5
8 277 .6 386.7 481.3 404.4 330.7 279.3 199.4 180.2 170.5 188.8 383.2 384.7
9 348.0 411.8 501.9 408.3 325.5 280.6 203.2 180.2 169.6 178.2 326.6 157.7
10 234.2 267.9 459.0 393.8 322.3 271.0 199.4 180.1 168.8 177.6 393.3 293.5
11 314.5 384.3 480.0 405.4 329.0 280.2 199.4 181.0 164.1 176.2 167.0 375.5
12 348.5 388.7 491.2 419.1 334.8 293.0 226.9 181.2 170.7 221.6 473.9 204.3
13 294.2 386.2 483.3 412.9 333.2 287.7 209.7 180.5 282t5 572t7 571.3 304.2
14 329.7 395.6 481.4 402.0 330.6 277 .5 199.4 181.5 170.6 461.3 594.4 229.4
15 315.3 368.2 462.3 385.5 316.3 266.9 199.4 180.2 229.8 461.1 331.3 159.2
16 239.3 390.2 457.6 385.9 316.0
274.9 202.1 180.4 169.7 195.1 387.8 437.9
17 316.7 359.7 462.6 393.0 323.5 281.0 205.7 179.4 169.9 170.6 208.2 157.7
18 234.1 328.0 459.6 394.6 325.2 277.7 199.4 180.8 170.9 301.0 651.0 438.9
19 270.4 373.7 481.2 413.2 343.9 300.9 213.7 180.9 171.2 351.5 312.6 157.7
20 234.1 276.9 445.9 377 .1 310.2 270.7 203.1 180.0 164.1 170.6 160.9 158.4
21 233.5 270.2 321.7 283.0 228.4 234.8 199.4 179.7 164.1 177.4 160.9 157.7
"l"l 234.0 270.2 321.7 283.1 228.4 234.8 199.4 180.1 170.3 182.1 169.7 157.7......
23 234.6 309.0 490.7 415.2 341.4 294.2 204.5 181.8 172.2 432.0 453.3 235.4
24 281.2 375.4 464.2 392 .0 324.1 277.2 199.4 179.3 169.4 170.6 167.7 157.7
25 234.1 271.4 452.5 383.1 313.1 268.7 199.4 180.9 164.1 170.6 160.9 157.7
26 234.0 270.3 321.7 296.9 328.0 283.0 2010 3 180.6 171.2 386.3 351.1 316.9
27 334.3 361.0 450.4 382.1 315.0 270.9 199.4 179.9 168.9 170.6 166.3 157.7
28 234.0 267.7 370.5 403.5 331.2 285.4 201.1 179.8 171.5 321.9 398.0 222.3
29 338.7 400.8 491.5 411.8 333.5 290.4 208.0 180.5 168.8 176.9 160.9 157.7
30 234.2 267.9 321.7 362.3 326.0 285.0 205.0 180.8 170.4 337.4 397.3 164.0
31 352.4 434.2 493.4 407.9 332.3 287.7 207.9 180.2 170.0 339.0 448.1 237.1
32 364.3 425.5 469.4 396.2 323.0 277.7 199.4 180.3 168.6 196.9 652.2 464.7
STORAGE (MONTH END)AC-FT
YR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
1 9386568.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6490048.5 6691305.0 7395950.5 8255923.0 9014804.0 9205086.0
2 9031274.0 8663291.0 8191954.5 7727999.5 7235200.0 6804000.0 6518999.5 6901055.5 7726559.0 8626213.0 9302880.0 9652000.0
3 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6497591.5 6427880.0 7686891.5 8722697.0 9331082.0 9652000.0
4 9471000.0 8995200.0 8318099.0 7727999.5 7235200.0 6804000.0 6519000.0 7105308.0 8110289.0 8867484.0 9354074.0 9652000.0
5 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6506042.5 6890809.5 7773940.0 8515594.0 9326506.0 9631508.0
6 9471000.0 8995200.0 8318099.0 7727999.5 7235200.0 6804000.0 6505933.0 6590496.0 7797223.5 8924869.0 9360799.0 9652000.0
7 9471000.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6492376.0 6952777.0 8300238.5 9051331.0 9360800.0 9652000.0
8 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6506195.0 6799275.0 8031358.5 8926049.0 9360800.0 9652000.0
9 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6799032.5 7839647.5 8737336.0 9352148.0 9464345.0
10 9316394.0 8994756.0 8318100.0 7727999.5 7235199.5 6804000.0 6502576.0 6793475.0 7606694.0 8547313.0 9360800.0 9652000.0
11 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6513799.0 6979884.5 7494361.5 8376001.5 9272262.0 9652000.0
12 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 7020933.5 8104551.5 8939785.0 9360800.0 9652000.0
13 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6881984.0 8576651.0 9067999.0 9360800.0 9652000.0
14 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6495928.5 7097815.5 8053922.0 9037359.0 9360800.0 9652000.0
15 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6485728.5 6376960.5 8566860.0 9034771.0 935S946.0 9559350.0
16 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6859824.5 7847534.0 8928748.0 9360800.0 9652000.0
17 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6626358.5 7897320.0 8590135.0 9305109.0 9612858.0
18 9442938.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6500382.5 6936873.5 8135961.5 8971892.0 9514254.0 9652000.0
19 9471000.0 8995200.0 8318099.0 7727999.0 7235200.0 6804000.0 6519000.0 6972020.0 8231345.0 8992293.0 9348570.0 9532518,0
20 9353369.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6760195.0 7315832.5 7921667.0 8122674.0 8117306.0
21 7873272.0 7477900.0 6964685.0 6501512.5 6123440.0 5724800.5 5405315.0 5637957.0 6201135.5 6994285.5 7698497.5 7868844.0
~~7702527.0 7393296.5 6937510.0 6501776.0 6134408.5 5741750.0 5412136.0 5236590.5 6584733.0 7541290.0 891J929.0 9400203.0"23 9330420.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6519000.0 7161740.5 8526472.0 9024637.0 9360800.0 9652000.0
24 9471000.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 6504306.5 6623157.0 7768525.5 8471751.0 9288695.0 9528780.0
25 9344846.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6501735.0 6958348.0 7566463,5 8244210.0 8797540.0 9135129.0
26 8947648.0 8600578.0 8150448.0 7727999.5 7235199.5 6804000.0 6519000.0 6902406.5 8220629.0 9006292.0 9360800.0 9652000.0
27 9471000.0 8995200.0 8318100.0 7727999.5 7235200.0 6804000.0 651.3184.0 6731718.5 7644934.0 8386917.0 9?28137.0 9322975.0
28 9131184.0 8818810.0 8318099.5 7727999.5 7235200.0 6804000.0 651.9000.0 6715315.5 8313368.0 8979788.0 9360800.0 9652000.0
29 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6875833.5 7626341.5 8440595.0 8989152.0 9167815.0
30 9022106.0 8708680.0 8263030.0 7727999.5 7235200.0 6804000.0 6519000.0 6944440.0 8034779.5 8986791.0 9360800.0 9652000.0
31 9471000.0 8995200.0 8318099.5 7727999.5 7235200.0 6804000.0 6519000.0 6810019.0 7929234.0 8987391.0 9360800.0 9652000.0
32 9471000.0 8995200.0 8318099.5 7727999.5 7235199.5 6804000.0 6515816.0 6822843.5 7575697.0 8929461.0 9652000.0 9652000.0
$
~~iI
--.)--1 ----1 ~-1 '~~l ----1 -_C)):-1 -1 '--1 ]]1
TY WA.DAT
SUSITNA HEF'
WATANA 2185
CASE A
384
8 0
1000000 5.232 9.652 1455..85 .01 1.00
1900.'1 1:"1:"1950.3.33 2000.4.25 2050.5.34..:.ttJtJ
2100.6.65 2150.8.19 2200.10.02 2250.12.21
2185.
900000.2000.00.0 32
.73 .84 1.0 .88 .71 .73 .62 .56 .51 .53 .50 .49
O.
1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0 1200.0
2185.0 2172.0 2153.5 2135.0 2119.0 2105.0 2095.0 2145.0 2160.0 2170.0 2180,.0 2190.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.8 0.8 0.7
4719.9 2083.6 1168.9 815.1 641.7 569.1 680.1 8655.9 16432.1 19193.4 16913.6 7320.4
3299.1 1107.3 906.2 808.0 673 .0 619.8 1302.2 11649.8 18517.9 19786.6 16478.0 17205.5
4592.9 2170.1 1~O 1.0 1274.5 841.0 735.0 803.9 4216.5 25773.4 22110.9 17356.3 11571.0
6285.7 2756.8 1281.2 818.9 611.7 670.7 1382.0 15037.2 21469.8 17355.3 16681.6 11513.5
4218.9 1599.6 1183.8 1087.8 803.1 638.2 942.~11696.8 19476.7 16983.6 20420.6 9165.5
3859.2 2051.1 1549.5 1388.3
1050.5 886.1 940.8 6718.1 24881.4 23787.9 23537.0 13447.8
4102.3 1588.1 1038.6 816.9 754.8 694.4 718.3 12953.3 27171.8 25831.3 19153.4 13194.4
4208.0 2276.6 1707.0 1373.0 1189.0 935.0 945.1 10176.2 25275.0 19948.9 17317.7 14841.1
6034.9 2935.9 225-.8.5 1480.6 1041.7 973.5 1265.4 9957.8 22097.8 19752.7 18843.4 5978.7
3668.0 1729.5 1115.1 1081.0 949.0 694.0 885.7 10140.6 18329.6 20493.1 23940.4 12466.9
5165.5 2213.5 1672.3 1400.4 1138.9 961.1 1069.9 13044.2 13233.4 19506.1 19323.1 16085.6
6049.3 2327.8 1973 .2 1779.9 1304.8 1331.0 1965.0 13637.9 22784.1 19839.8 19480.2 10146.2
4637.6 2263.4 1760.4 1608.9 1257.4 1176.8 1457.4 11333.5 36017.1 23443.7 19887.1 12746.2
5560.1 2508.9 1708.9 1308.9 1184.7 883.6 776.6 15299.2 20663.4 28767.4 21011.4 10800.0
5187.1 1789.1 1194.'7 852.0 781.6 575.2 609.2 3578.8 42841.9 20082.8 14048.2 752,1.2
4759.4 2368.2 1070.3 863.0 772.7 807.3 1232.4 10966.0 21213.0 23235.9 17394.1 16225.6
5221.2 1565.3 1203.6 1060.4 984.7 984.7 1338.4 7094.1 25939.6 16153.5 17390.9 9214.1
3269.8 1202.2 1121.6 11 02.2 1031.3 889.5 849.7 12555.5 24711.9 21987.3 26104.5 13672.9
4019.0 1934.3 1704.2 1617.6 1560.4 1560.4 1576.7 12826.7 25704.0 22082.8 14147.5 7163.6
3135.0 1354.9 753.9 619.2 607.5 686.0 1261.6 9313.7 13962.1 14843.5 7771.9 4260.0
2403.1 1020.9 709.3 636.2 602.1 624.1 986.4 9536.4 14399.0 18410.1 16263.8 7224.1
3768.0 2496.4 1687.4 1097.1 777.<1 717.1 813.7 2857.2 27612.8 21126.4 27446.6 12188.9
4979.1 2587.0 1957.4 1670.9 1491.4 1366.0 130~.4 15973.1 27429.3 19820.3 17509.5 10955.7
4301.2 1977.9 1246.5 1031.5 1000.2 873.9 914.1 7287.0 23859.3 16351.1 18016.7 8099.7
3056.5 1354.7 931.6 786.4 689.9 627.3 871.9 12889.0 14780.6 15971.9 13523.7 9786.2
3088.8 1474.4 1276.7 1215.8 1110.3 1041.4 1211.2 11672.2 26689.2 23430.4 15126.6 13075.3
5679.1 1601.1 876.2 757.8 743.2 690.7 1059.3 8938.3 19994.0 17015.3 18393.5 5711.~:j
2973 .5 1926.7 1687.5 1348.7 1202.9 1110.8 1203.4 8569.4 31352.8 19707.3 16807.3 10613.1
5793.9 2645.3 1979.7 1577.9 1267.7 1256.7 1408.4 11231.5 17277.2 18385.2 13412.1 7132.6
3773.9 1944.9 1312.6 1136.8 t055.4 1101.2 1317.9 12369.3 22904.8 24911.7 16670.7 9091.>.7
6150.0 352~.0 2032.0 1470.0 1233.0 1177.0 1404.0 10140.0 23400.0 26740.0 18000.0 11000.0
6458.0 3297.0 1385.0 1147.0 971.0 889.0 1103.0 10406.0 17323.0 27840.0 31435.0 12026.0
$
FORCAST ENERGY 2000
416.0 490.0 535.0 485.0 462.0 412.0 371.0 331.0 321.0 307.0 329.0 364.0 4823.0
TOTAL ENERGY
YR OCT NOt)DEC JAN FEB MAR APR MAY JUN JUL AUG SEP TOTAL WAT DC
1 462.2 608.5 861.2 725.7 594.8 515.5 446.4 466.8 430.4 383.0 298.9 292.9 6086.3 3022.6 3063.7
2 435.1 500.7 595.4 549.6 508.5 470.0 398.0 459.4 420.9 369.9 344.3 778.1 5829.9 3082.0 2747.9
3 517.2 714.4 886.8 759.3 608.3 526.2 444.9 436.6 504.7 402.2 473.9 414.1 6688.6 3383.5 3305.1
4 654.8 758.8 872.0 727.4 594.0 522.0 461.9 495.5 489.4 368.9 564.6 462.5 6971.8 3508.0 3463.8
5 499.2 673.1 863.2 744.2 606.6 519.7 448.4 521.1 487.5 368.8 487.2 304.2 6523.2 3220.9 3302.3
6 453.8 689.5 892.1 768.6 626.3 537.6 447.7 461.3 473.8 404.0 1028.9 575.3 7358.9 3797.4 3561.5
7 480.2 668.4 852.0 724.8 603.8 525.6 447.2 504.3 497.0 905.5 960.3 725.3 7894.4 3965.4 3929.0
8 502.7 725.9 901.7 766.0 634.8 541.9 447.6 481.3 472.1 399.1 652.6 724.7 7250.4 3666.8 3583.6
9 642.6 777.0 93,9.7 776.8 624.0 542.6 455.1 468.9 446.8 377.0 561.8 293.0 6905.3 3491.6 3413.7
10 436.0 499.7 774.3 746.9 619.8 526.4 449.9 525.9 472.4 402.9 749.4 550.2 6753.8 3360.9 3392.9
11 ~365.7 718.7 901.2 770.3 631.,6 543.0 447.1 465.6 412.6 382.0 310.9 672.4 6821.1 3456.6 3364.5
12 634.8 72?t5 925.9 800.7 645.4 572.6 509.2 485.2 505.2 482.7 802.7 368.2 7460.1 3753.9 3706.2
13 522#8 718.1 903.4 781.3 638.1 557.2 467.1 436.1 691.1 987.4 1002.5 653.4 8358.5 4318.4 4040.1
14 588.7 732.3 898.9 760.9 634.7 535.5 443.6 485.8 479.7 866.7 1018.5 468.4 7913.7 4053.4 3860.3
15 564.5 685.5 863.6 727.9 604.9 515.5 445.3 427.6 634.9 860.4 558.0 294.5 7182.6 3675.5 3507.1
16 441.7 670.5 8~il.7 726.6 602.3 529.9 450.1 451.1 463.9 434.1 670.4 784.2 7076.5 3636.9 3439.6
1)581.6 671.4 866.8 744.9 621.2 546.2 463.3 460.4 512.3 374.3 380.1 293.0 6515.5 3228.0 3287.5
18 435.6 559.8 826.3 749.1 625.5 539.8 448.9 469.2 470.4 625.4 1068.9 875.9 7694.8 3961.2 3733.6
19 501.4 694.8 899.7 783.4 660.4 584.9 476.7 477.6 490.3 705.7 527.2 293.0 7095.1 3570.9 3524.2
20 434.6 508.4 734.7 710.2 591.8 522.6 454.5 445.0 399.6 332.6 299.2 294.2 5727.4 2952.0 2775.4
21 435.4 501.4 596.7 525.6 424.7 437.2 371.6 360.8 459.7 408.4 299.5 293.0 5114.0 2610.8 2503.2
r).,436.7 502.0 597.6 540.1 452.2 469.5 460.3 442.4 492.2 386.8 321.1 293.0 5393.9 2631.5 2762.4./..,1.'_
23 436.1 542.4 857.6 791.2 659.8 574.4 460.4 528.8 512.5 821.1 749.4 393.0 7326.7 3764.3 3562.4
24 484.1 689.6 865.5 739.5 619.9 535.0 444.8 428.9 453.8 341.5 306.9 292.9 6202.4 3158.2 3044.2
25 435.0 501.5 728.6 626.3 591.7 518.1 444.9 476.5 427.4 360.0 298.8 292.9 5701.7 2956.5 2745.2
26 435.2 501.3 596.3 539.7 524.1 518.4 453.8 483.7 486.3 766.8 590.1 568.2 6463.9 3341.3 3122.6
27 615.3 670.9 839.6 721.9 602.8 524.6 448.8 483.1 461.3 342.6 304.8 293.7 6309.4 3156.5 3152.9
28 435 •.1.498.5 647.7 646.7 583.3 556.1 455.2 491.4 506.1 630.9 663.7 380.5 6495.2 3386.9 3108.3
29 609.8 ?53t9 1'24.1 782.5 642.0 565.0 464.9 425.6 411.2 367.0 298.9 292.9 6537.8 3319.5 3218.3
30 435.8 499.5 :596.4 605.2 542.3 ::549.5 455.8 441.2 412.8 675.0 688.2 299.3 6201.0 3252.0 2949.0
31 587.9 811.0 923.0 771.6 636.2 557.2 464.1 448.9 463.1 699.1 771.6 403.3 7537.0 3890.2 3646.8
-.'")651.0 794.1 876.0 748.4 617.6 536.9 446.7 450.0 439.8 450.9 1070.1 901.8 7983.3 4118.2 3865.1".;.
f~NN 511.0 642.8 817.5 715.1 599.2 531.8 450.8 465.2 477.5 521.3 597.6 463.2 6792.9 3459.1 3333.8
-."1 ~l
_-l ~
-
-i
APPENDIX A2
PROBABLE MAXIMUM FLOOD
1 -INTRODUCTION
This report presents the results of the studies conducted to determine a prob-
able maximum flood (PMF)at Watana and Devil Canyon damsites appropriate for use
in design of project spillways and related facilities.
As part of the Acres'Plan of Study for the Susitna Hydroelectric Project dated
February 1980 and revised September 1980,Subtask 3.05 (ii)was undertaken.The
main objectives of this subtask were to review and determine the adequacy of the
PMF estimate reported by the U.S.Army Corps of Engineers (1).The primary con-
clusions of the review was that further analysis of the PMF was warranted
because of its sensitivity to snowpack and probable maximum precipitation (PMP)
estimates.This further evaluation was authorized by the Alaska Power Authority
in April,1981 and the results are presented in this report.Subtask 3.05 (ii)
closeout report is included here as Attachment 1.
This report covers the work performed by Acres in re-estimating the PMF.The
study estimated new values for the Probable Maximum Precipitation and tempera-
ture sequences based on more complete data and elaborate procedures.The study
has relied heavily on the work of the U.S.Army Corps of Engineers (COE)and
that reported in Attachment 1 in cal ibrati ng the watershed computer model of the
basin.
2 -REVIEW OF PREVIOUS ESTIMATES
The U.S.Army Corps of Engineers (CaE)reported on their studies of the estimate
of the PMF (1).The CDE esti mate of flood peaks are 233,000 cfs for Watana and
226,000 cfs for Devil Canyon.Watana reservoir provides some flood peak attenu-
ation for Devil Canyon.The CaE calibrated the SSARR watershed model by esti-
mating basin snowmelt,runoff and other parameters for historical floods.Based
on this calibration,any estimates of the PMP determined by the National Weather
Service,the CaE derived likely estimates of the PMF peak and volume.
Acres reviewed the watershed model developed by the CaE and input parameters
particularly the probable maximum precipitation (PMP),temperature sequences and
snowpack depths.Generally,the watershed model was found to be adequate given
the amount of information available on the watershed characteristics.Several
apparent typographical errors in basin parameters were corrected.
The estimates of PMP and snowpack depths were reviewed and a sensitivity analy-
sis was performed using the SSARR Model and input data supplied by the CaE.The
range of PMF peaks are given in Tables A2.1 and A2.2 for Watana and Devil Can-
yon,respectively.It was found that a change of 30 percent in precipitation
results in a 47 percent change in flood peak at Watana.Snowpack amounts at the
start and temperatures before and during the PMP storm also proved significant
A2-1
with respect to PMF peak.Uue to the relatively large change in PMF peaks for
moderate increases in PMP or temperature maximums,it was recommended to further
study the PMF.More details and further discussion of the sensitivity analysis
and review of the COE study are given in Attachment 1.
Attachment 1 provides the necessary intermation and data on the watershed char-
acteristics and the SSARk Model of the basin on which this study is based.
3 -CLIMATE AND HYDROLOGY
The following section gives a brief description of the climate and hydrology of
the Upper Susitna Basin.It is important to point out that variations within
the basin of both climate and hydrology may be significant.Local climatic in-
fluences of glaciers and mountain ranges are expected to be important but are
currently insufficiently documented to enable a proper analysis of these influ-
ences.The continuation of data collection at the weather stations established
within the Susitna Basin will improve the watershed model as time proceeds.
However,it is believed that the general patterns of precipitation,snowmelt and
hydrological parameters are adequate for this feasibility study and will yield
acceptable results.
3.1 -Cl-imate
The climate of Alaska in general is dictated mostly by its latitude.The char-
acter of the surrounding land or water,physical relief and their interaction
with global circulation patterns also play an important part in determining cli-
mate.The Susitna ~asin in particular lies between the mOderating influence of
the Pacific currents and the more severe continental influences.
The climate of the Susitna Basin upstream from Talkeetna is generally character-
ized by cold,dry winters and warm,moderately moist summers.The upper basin
is dominated by continental climatic conditions while the lower basin falls
within a zone of transition between maritime and continental climatic influ-
ences.
(a)Cl imat ic Data Records
Data on precipitation,temperature and other climatic parameters have been
collected by NOAA at several stations in the south central region of Alaska
since 1941.Prior to the current studies,there were no stations located
within the Susitna Basin upstream from Talkeetna.
The closest stations where long-term climate data is available are at
Talkeetna to the south and Summit to the north.A summary of the precipi-
tation and temperature data available in the vicinity of the basin is pre-
sented in Table A2.3.
Six automatic climate stations were established in the upper basin during
1980 (Figure A2.1).The data currently being collected at these stations
includes air temperature,average wind speed,wind direction,peak wind
gust,relative humidity,precipitation,and solar radiation.Snowfall
amounts are being measured in a heated precipitation bucket at the Watana
station.Data are recorded at thirty minute intervals at the Susitna
Glacier station and at fifteen minute intervals at all other stations.
A2-2
The seasonal distribution of precipitation is similar for all the stations
in and surrounding the basin.At Talkeetna,records show that 68 percent
of the total precipitation occurs during the warmer months of May through
October,while only 32 percent is recorded in the winter months.Average
recorded snowfall at Talkeetna is about 106 inches.Generally,snowfall is
restricted to the months of October through April with about 82 percent
snowfall recorded in the period November to March.
The U.S.Soil Conservation Services (SCS)operates a network of snow course
stations in the basin and records of snow depths and water content are
available from 1964.The stations within the Upper Susitna Basin are gen-
erally located at elevations below 3000 and indicate that annual snow ac-
cumul at ions are around 20 to 40 inches and th at peak depths occur in 1ate
March.There are no historical data for the higher elevations.The basic
network was expanded during 1980 with the addition of three new snow cour-
ses on the Susitna glacier (Figure A2.l).Arrangements have been made with
SCS for continuing the collection of information from the expanded network
during the study period.
(c)Temperature
-\
I
I
(b)Precipitation
Precipitation in the basin varies from low to moderate amounts in the lower
elevations to heavy in the mountains.Mean annual precipitation of over 80
inches is estimated to occur at elevations above 3000 in the Talkeetna
Mountains and the Alaskan Kange whereas at Talkeetna station,at elevation
345,the average annual precipitation recorded is about 28 inches.The
average precipitation reduces in a northerly direction as the continental
climate starts to predominate.At Summit station,at elevation 2397,the
average annual precipitation is only 18 inches.
Typical temperatures observed from historical records at the Talkeetna and
Summit stations are presented in Table A2.4.It is expected that the temp-
eratures at the damsites will be somewhere between the values observed at
these stations.
3.2 -Hydrology
'''!'''''''
(a)Water Resources
Streamflow data has been recorded by the USGS at a total of 12 gaging sta-
tions on the Susitna River and its tributaries (Figure A2.l).The length
of these records varies from 30 years at Gold Creek to about five years at
the Susitna station.There were no historical records of streamflow at any
of the proposed damsite before this study.A gaging station was estab-
lished at the Watana damsite in June 1980 and continuous river stage data
is being collected.
Seasonal variation of flows is extreme and ranges from very low values in
winter (October to April)to high summer values (May to September).For
the Susitna River at Gold Creek,the average winter and summer flows are
2100 and 20,250 cfs,respectively,a 1 to 10 ratio.On the average,ap-
proximately 88 percent of the streamflow recorded at Gold Creek station
A2-3
occurs during the summer months.Figure A2.2 shows the average monthly
flow distribution for the wettest average and driest year flow for stream-
flow recorded at Gold Creek.At higher elevations in the basin,the dis-
tribution of flows is concentrated even more in the summer months.For the
Maclaren River near Paxson (E1 4520)the average winter and summer flows
are 144 and 2100 cfs,respectively,a 1 to 15 ratio.
The Susitna River above the confluence with the Chulitna River contributes
only approximately 20 percent of the mean annual flow near Cook Inlet
(measured at Susitna station).
(b)Floods
The most common causes of flood peaks in the Susitna River Basin are snow-
melt or a combination of snowmelt and rainfall over a large area.Annual
maximum peak discharges generally occur between May and October with the
majority,approximately 60 percent,occuring in June.Some of the annual
maximum flood peaks have also occurred in August or later and are the re-
sult of heavy rains over large areas augmented by significant snowmelt from
higher elevations and glacial runoff.
A regional flood frequency analysis has been carried out using the recorded
floods in the Susitna River and its principal tributaries,as well as the
Copper,Matanuska and Tosina rivers.These analyses have been conducted
for two different time periods within the year.The first period selected
is the open water period,i.e.,after the ice breakup and before freezeup.
This period contains the largest floods which must be accommodated by the
project.The second period represents that portion of time during which
ice conditions occur in the river.These floods,although smaller,can be
accompanied by ice jamming,and must be considered during the construction
phase of the project in planning and design of cofferdams for river diver-
sion.The results of these frequency analyses are given in greater detail
in Appendix A3.
4 -HISTORICAL STORMS
In any evaluation of design floods using a watershed model,it is essential to
review past experience of floods in the basin and to attempt to reconstruct
storm patterns and other meteorological and hydrological conditions before and
during the event in question.To this end,a review of past floods and an at-
tempt to reconstruct from available meteorological records,the storms causing
these floods has been made.Due to the masking effect of large spring snowmelt,
only flood flows thought to be only as a result of significant rainfall with
some high elevation snowmelt are investigated in this section.
The rainfall storms will be transposed in time to occur in conjunction with ap-
propriate probable maximum snowmelt quantities to produce the PMF event.This
transposition is discussed further in Section 6.
Five major flood flows (measured at Gold Creek)were selected for detailed
analysis.These flood flows were the result of documented storms during the
following periods:
A2-4
fiit--
r
r
I
It
August 4 -10,1971
August 2 -17,1967
August 19 -25,1959
July 28 -August 3,1958
August 22 -28,1955
A sixth storm,July 25-31,1980,was also examined.This storm was used as a
base since it had the most data available,including those from the four Weather
Wizards installed at Devil Canyon,Watana,Denali and Susitna Glacier.
Since the Susitna River basin is mountainous,and hence orographic factors are
significant,it was necessary to develop appropriate isohyetal maps for each
storm which would reflect the variation of relief in the basin.This was neces-
sary to model the various sub-basins and their precipitation patterns,volumes,
and intensities adequately.
The paucity of data and sparse distribution of precipitation gages within the
Susitna Basin and vicinity necessitated the use of the isopercental techniques
to obtain valid isohyetal maps.This method requires a base chart of either
mean annual precipitation,or preferably,mean precipitation for the season of
the storm.The July 1980 storm provided such a base chart since it was from the
same season as the other storms,and had additional precipitation stations with-
in the basin.The isohyetal map for the July 198U storm was also based on the
precipitation chart for the State of Alaska during this storm event.
The isopercental technique involves taking the ratio of the total storm preclpl-
tation (of a given storm)to the July 1980 storm precipitation and plotting this
ratio at each station.Isopercental lines are drawn based on the ratios at the
stations.The ratios on these isopercental lines are then multiplied by the
original base chart precipitation values to yield the storm isohyetal chart
(Figures A2.3 to A2.8).The storm isohyetal gradients and locations of centers
tend to resemble the features of the base chart,which in turn reflects the oro-
graphic influences of the terrain.
The accuracy of the isopercental technique relies on the accuracy of the base
chart (that is,July 1980 storm event)and the similarity between the individual
storms and the base storm.In general,most storms of significant precipitation
develop from weak depressions and are fed by a flow of relatively moist air from
the Pacific Ocean.This moisture is carried into the basin and precipitated
primarily due to orographic lifting.This results in a isohyetal pattern of
high precipitation on windward sides of significant relief and lower precipita-
tion amounts of the lee side.This general pattern is reflected in the base
storm.The other storms,based on a cursory review of synoptic information
available,developed from the same general storm pattern are believed to be rep-
resented by the basic isohyetal pattern of the 19HO storm.
5 -HISTORICAL FLOOD SIMULATION
The simulation of past floods recorded in the watershed under study is the ac-
cepted technique for calibration and verification of computer mathematical
models.Generally,baiin parameters are determined by surveys of the basin and
by comparison with other basin with similar topographical and vegetal character-
istics.Calibration proceeds by adjusting critical basin parameters,such as
A2-5
rainfall runoff and snowmelt run off relationships until acceptable modelling of
streamflow is obtained.A verification of the model is made by a final model
run using a storm not used in calibration and without changing basin parameters.
This process of calibration and verification was performed for the SSARR model
of the Susitna Basin above Gold Creek.Basin parameters derived by the COE
(1,2)and updates by Acres (Attachment 1)were used as the base from which the
model was calibrated.In most cases,only minor adjustments to parameters were
made except in the cases of typographical errors in data files which were cor-
rected (Attachment 1).
The SSARR model is believed to be an acceptable model of the Susitna Basin's
rainfall runoff relationships,routing characteristics and other physical and
hydrological responses.The details of the SSARK model are given in the COE
publication "Program Description and User Manual for SSARR Model,"and where an
elaborate discussion of the merits of the model can be found.Consequently,
this discussion is limited to model results and characteristics specific to the
Susitna Basin.Guidelines established in the SSARR manual have been followed
both by the CUE in their earlier studies and by Acres.
The most significant input variables to the SSAkK model are storm precipitation,
temperature sequence and antecedent conditions.By far,the most significant is
storm precipitation and antecedent snowpack amounts.The assessment of these
parameters and the results of the historical flood simulation or reconstitution
are presented below.
5.1 -Historical Storm Precipitation
The significant storms used in the reconstitution of large floods on the Susitna
Basin were derived from precipitation records at stations located either within
or close to the basin.Isohyetal charts of the area were determined using storm
precipitation amounts from the recording stations of that storm (as described in
Section 4).The isohyetal charts for the following storms are given in Figures
A2.3 to A2.8.
August 22 -28,1955
July 28 -August 3,1958
August 19 -25,1959
August 9 -17,1967
August 4 -10,1971
July 25 -31,1980
The Susitna Basin has been divided into eight sub-basins to reflect variations
in the principal hydrological and topographic characteristics.
The precipitation in each storm for each sub-basin uniformly distributed was de-
termined by the Thieson Polygon method.The method considered orographic and
other relevant effects.The stations affecting a given sub-basin were weighted
with respect to sub-basin area and multiplied by the daily storm precipitation
for that station.This yielded a daily storm distribution for each sub-basin
and for each storm.
A2-6
r-
!
,...
I
'"""I
r
!
r
-
Temporal distribution of the precipitation within each sub-basin was derived
from observed rainfall intensities recorded during the storm at the stations.
This distribution was adjusted to reflect the general storm track and possible
modifications to this track because of orographic effects.
5.2 -Flood Reconstitution
The results of calibration and verification studies are provided to indicate,in
as objective a fashion as possible,the level of accuracy that can be expected
from the use of the derived model.Consequently,the level of accuracy is a
direct function of the degree of detail that is available on the physical para-
meters and input variables.Unfortunately,"due to the remoteness of most of the
Upper Susitna Basin information is generally sparse.However,from transposi-
tion of data collected at experimental watersheds with similar features and the
use of data available on the basin,a reasonable model is believed to have been
constructed.
The floods of August 1967 and June 1972 were used to calibrate the SSARR model.
The August 1967 flood was chosen because it represented a major rainfall event
similar in nature to the PMP.The June 1972 flood was chosen since it consisted
of significant snowmelt.The hydrographs showing observed and calculated flows
on the Susitna River near Cantwell,at Gold Creek and the Maclaren River near
Paxson are given on Figures A2.9 to A2.11 and Figures A2.12 to A2.14 for the
floods of August 1967 and June 1972,respectively.Verification of the model
was with the 1971 flood season which had both a significant spring snowmelt
flood and a late summer rainfall flood.The 1971 results are shown in Figures
A2.15 to A2.17.
Calibration of the model was hindered by the paucity of information on the phys-
ical characteristics of the basin.This was particularly true with respect to
the relationship between soil moisture index and runoff percent.This relation-
ship has probably the most significant effect on the rainfall snowmelt-runoff
regime.Attempts were made during the cal ibration to accurately assess the im-
pact of changes in the soil moisture index-runoff relationship at peak outflows.
The relationships given by Figure A2.18 are believed to be the best that can be
achieved under the constraints of time and information available.These rela-
tionships represent the average conditions expected in each of the model sub-
basins (Figure A2.19).Minor errors in flow estimates are therefore expected
due to the variation of runoff characteristics (soil types,vegetation,etc.).
To a lesser extent,the other basin modelling studies of Baseflow Infiltration
Index (Figure A2.20),surface component input rate (Figure A2.21),evapotrans-
piration index (Figure A2.22),snowmelt rate (Figure A2.23),generated runoff
(Figure A2.24)and evapotranspiration rate reduction (Figure A2.25),played a
part in deviations in the observed versus calculated streamflow.
6 -PROBABLE MAXIMUM FLOOD SIMULATION
6.1 -Probable Maximum Precipitation
The Probable Maximum Precipitation (PMP)must be developed before any flood sim-
ulations are undertaken.The PMP was derived from the six storms discussed in
Section 5 by maximizing each storm with respect to available moisture.The
A2-7
maximization factor for each storm was applied to that storm's total precipita-
tion to give the maximum precipitation from that storm given moisture content
and recorded precipitation.The storm yielding the largest total precipitation
for its period was determined to be the Probable Maximum Precipitation.
(a)Precipitation Maximization
The maximization factor for a particular storm is defined as the ratio be-
tween the maximum precipitable water which could have existed in the air
which flowed into the storm,and the precipitable water which actually did
exist in the air flowing into the storm.
The maximum precipitable water which could have existed in the area was de-
rived from dew point temperatures recorded at Anchorage.Maximum recorded
12-hour persisting dew point temperatures for the months of May through
September were abstracted from the 27 year record at Anchorage and a fre-
quency curve for each month determined and fitted to the data.The fifty-
year return period maximum 12-hour persisting dew point temperature was de-
termined from the frequency curves for each month and a plot of month
versus 50-year dew point temperature was developed (Figure A2.26).A simi-
lar exercise was undertaken for Talkeetna to correlate data and check lapse
rates.As shown on Figure A2.26,the correlation between the two stations
is very good.From Figure A2.26,the appropriate dew point temperature for
each storm period was determined and the maximum precipitable water deter-
mined.
The actual storm dew point temperature for each storm was derived by exam-
ining the temperature prior to the storm occurrence.The highest 12-hour
dew point temperature in the air mass flowing into the storm was identi-
fied,and the actual precipitable water flowing into the storm system was
based on this temperature.The ratio between the actual precipitable water
and the maximum precipitable water yields the maximization factor for the
storm.
The results of the precipitation maximization are shown in Table A2.5.As
shown,the storm occurring on August 8-17,1967 has a maximization factor
of 2.0,yielding the largest total precipitation (12.5 inches).This storm
comprises the summer PMP and was also assumed to occur under spring condi-
tions but with a lower maximization factor due to lower dew point tempera-
tures.The storm was centered on June 15 and similar maximization proced-
ures were followed.The maximization factor for the August 1967 storm oc-
curring in June was 1.4,yielding a total precipitation of 8.9 inches.
This concurs with the National Weather Service Memorandum to the COE (1,2)
which showed similar transposition of the summer storm and a spring to
summer total precipitation ratio of 0.7.
(b)Temporal Precipitation Pattern
The temporal pattern of the PMP was maximized to yield the maximum preclpl-
tation pattern.The general pattern derived indicated that the maximum
precipitation effect is observed when the maximum 24-hour precipitation oc-
curred later in the storm period.This would sufficiently prime the basin,
ultimately yielding maximum runoff.The derived pattern had the largest
24-hour precipitation occurring on the eighth day of the storm.
A2-8
"""I.
r
r'"
I
F'"
I
iI~
r
-
I"""
I
i'
I
The second largest 24-hour precipitation occurs on the seventh,and the
third largest precipitation occurs on the ninth day.The pattern is con-
tinued as shown on Table A2.6.
The daily precipitation was further divided into 6-hour periods.After
examining data collected at several stations,no conclusive 6-hour pattern
was found.Therefore,the 6-hour distribution recommended by the National
Weather Service (1)was used.The NWS recommended the 24-hour precipita-
tion be distributed into 50 percent,20 percent,15 percent and 15 percent
values for each respective 6-hour period.Within the storm period,the
6-hour precipitation was ranked similar to the 24-hour precipitation rank-
ing.The 6-hour precipitation was distributed in ascending order for each
day up to the ninth day,while the ninth and tenth day·s 6-hourly precipi-
tation was distributed in descending ordef.
6.2 -Antecedent Conditions
It is important to ensure that the antecedent conditions before occurrence of
the PMP are suitable to yielding the PMF.The condition of soil moisture,snow-
pack,and the temperature sequence and other basin parameters help determine the
ultimate PMF value.
Snowmelt is a major part of the P~IF peak and volume.Adequate snow mu st there-
fore be available to ensure snowmelt throughout the occurrence of the PMP.This
was ensured by assuming that the snowpack for glacial sub-basins was unlimited
and the snowpack for the other sub-basins was large enough to ensure a residual
snowpack during the storm period.These snowpack values were based on maximum
recorded data at stations in and around the Susitna Basin.Table A2.7 lists the
initial snowpack values for each sub-basin of the model in equivalent inches of
water.
The amount of soil moisture initially present will control the amount of water
available for runoff and subsequent rate of runoff,and the distribution of run-
off to baseflow,subsurface and surface components of runoff.Relatively moist
soil conditions were assumed for each sub-basin.These initial conditions were
based on past soil conditions and maximizing where indicated by the calibration
and verification studies.
The temperature sequence prior to and during the PMP and the snowpack quantities
are two of the major components in the estimation of the PMF event.The temper-
ature rise just prior to the PMP storm should be great enough to yield signifi-
cant snowmelt;during the PMP the temperatures should be sufficient to maintain
significant snowmelt but be representative of temperatures during an event of
the nature of the PMP.The temperature sequence for the PMF simulation is shown
on Fi gure A2.27.Temperatures through May are at 32°F to ensure the snowpack is
ripening but yielding little or no snowmelt runoff;following that,a signifi-
cant temperature rise occurs.This temperature gradient is based on maximum one
to seven day temperature ri ses observed for records at Anchorage and Ta"1 keetna.
A2-9
During the PMP storm,temperatures are depressed from the previous peak reached
to reflect the meteorological conditions at the time.After the most signifi-
cant precipitation has fallen,temperatures are again increased to ensure
continuation of significant snowmelt and to maintain runoff at levels represen-
tative of a probable maximum event.
6.3 -Probable Maximum Flood Estimates
The calibrated SSARR model of the upper Susitna Hasin has been utilized to eval-
uate the peak discharge and volume of a PMF.The value of daily precipitation
during the PMP derived from maximization of historical storms has been trans-
posed in time to coincide with maximum snowmelt.This simultaneous occurrence
of the most critical elements which contribute to the flood follows the gener-
ally accepted rationale behind PMF evaluation.
Generally,basin parameters derived during SSARR model calibration and verlfica-
tionstudies have been unchanged during the PMF estimation.Sufficient snowpack
quantities have been assumed to ensure that adequate snowmelt is occ~rring dur-
ing the PMP storm to ensure that the general philosophy of simultaneous occur-
rence of severe precipitation and sno~nelt is maintained.Temperature sequences
before and during the PMP storm are based on the studies conducted in reevalua-
tion of the CaE storm (Attachment 1).
The model,given the above conditions,estimates the PMF peak at Watana to be
325,000 cfs.With routing through the storage at Watana and the assumed dis-
charge facility operation,the peak outflow from Watana is 310,000 cfs.Conse-
quently,the peak inflow to Devil Canyon reservoir is 365,000 cfs,and the maxi-
mum outflow is 365,000 cfs.
A2-10
-i,
r
.....
.....
REFERENCES
1.Corps of Engineers,Interim Feasibility Report,Southcentral Railbelt Area,
Alaska,Appendix 1,Part 1,1975.
A2-11
,..,..
LI ST OF TABLES
r
r
I
!,
l""'"
i
!
r-
I
\-
Number
A2.1
A2.2
A2.3
A2.4
A2.5
A2.6
A2.7
Title
Summary of Sensitivity Runs -Peak Inflow to Watana Reservoir
Summary of Sensitivity Runs Peaks Inflow to Devil Canyon
Reservoir
Summary of Climatological Data
Recorded Air Temperatures at Talkeetna and Summit
Maximized Spring Storms
Temporal Pattern of August 1967 Storm
SSARR Model Initial Snowpack for PMF
LIST OF FIGURES
Number
A2.1
A2.2
A2.3
A2.4
A2.5
A2.6
A2.7
A2.8
A2.9
A2.10
A2.11
A2.12
A2.13
A2.14
A2.15
A2.16
A2.17
A2.18
A2.19
A2.20
A2.21
A2.22
Title
Data Collection Stations
Monthly Average Flows in the Susitna River at
Gol d Creek
Isohyetal Map Storm of July 25 -31,1980
Isohyetal Map Storm of August 4 -lOt 1971
Isohyetal Map Storm of August 9 -17,1967
Isohyetal Map Storm of August 19 -25 t 1959
Isohyetal Map Storm of July 28 -August 3,1958
Isohyetal Map Storm of August 22 -28,1955
Susitna River at Gold Creek 1967
Susitna River near Cantwell 1967
Maclaren River near Paxon 1967
Susitna River at Gold Creek 1972
Susitna River near Cantwell 1972
Maclaren River near Paxon 1972
Susitna River at Gold Creek 1971
Susitna River near Cantwell 1971
Maclaren River near Paxon 1971
SSARR Model SMI vs ROP
Schematic Diagram of SSARR Computer Model
SSARR Model SII vs SF?
SSARR Model RGS VRS
Monthly Evapotranspiration Index
LIST OF FIGURES (Cont1d)
Number Titl e
A2.23 SSARR l\1ode 1 OGEN vs \\1EL TR
A2.24 SSARR Model OGEI~vs SCA
A2.25 SSARR Model PPT vs KE
A2.26 Fifty Year Dew Point Temperatures
A2.27 PMP and Temperature Sequence
A2.28 Watana PMF Inflow Hydrograph
,~1 ~"~-~l ---1 -~)C-l .'~---1 1 -~1 C)1 1 C-]~--l 1
TABLE A2.1:SUMMARY OF SENSITIVITY RUNS -WATANA INFLOW AND OUTFLOW
Watana
Maximum ~~Increase Maximum ~~Increase
Run Descr ipt ion Inflow (cfs)From Base Out flow (cfs)From Base
CoE -Base Run 233,000 0.0 192,000 0.0
Storm Timing Sensitivity 239,000 2.6 194,000 1.0
Temperature Sensitivity 243,000 4.3 198,000 3.1
CoE Snow Pack Sensitivity 254,000 9.0 232,000 20.8
Increased Temperature
Gradient Sensitivity 302,000 29.6 243,000 26.6
Precipitation/Snow Pack
Sensitivity 342,000 46.8 250,000 30.2
Combined Case Sensitivity 430,000 84.5 270,000 40.6
TABLE A2.2:SUMMARY OF SENSITIVITY RUNS -DEVIL CANYON
'1-._..
Maximum ~o Increase Maximum ~o Increase
Run Description Inflow ft 3/s From Base Outflow ft 3/s From Base
COE -Base Run 226,000 0.0 222,000 0.0
Storm Timing Sensitivity 229,000 1.3 224,000 0.9
Temperature Sensitivity
Run 233,000 3.1 229,000 3.2
COE Snow Pack Sensitivity 272,000 20.4 262,000 18.0
Increased Temperature
Gradient Sensitivity 282,000 24.8 275,000 23.9
Precipitation/Snow Pack
Sens it iv it Y 302,000 33.6 290,000 30.6
Combined Case Sensitivity 330,000 46.0 332,000 45.1
1\1I 1 1 1 7
J
'1 ~1 j '1
";,
1 ---)---1 --1 ])
TABLE A2.3:SUMMARY OF CLIMATOLOGICAL DATA
1 -1 )1 --1
MEAN MONTHLY PRECIPITATION IN INCHES PERIOD OF
STATION JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC ANNUAL RECORD
Anchorage 0.84 0.56 0.56 0.56 0.59 1.07 2.07 2.32 2.37 1.43 1.02 1.07
Big Delta 0.36 0.27 0.33 0.31 0.94 2.20 2.49 1.92 1.23 0.56 0.41 0.42 11.44 1941 -70
Fairbanks 0.60 0.53 0.48 0.33 0.65 1.42 1.90 2.19 1.08 0.73 0.66 0.65 11.22 1941 -70
Gulkana 0.58 0.47 0.34 0.22 0.63 1.34 1.84 1.58 1.72 0.88 0.75 0.76 11.11 1941 -70
Matanuska Agr.
Exp.Station 0.79 0.63 0.52 0.62 0.75 1.61 2.40 2.62 2.31 1.39 0.93 0.93 15.49 1951 -75
McKinley Park 0.68 0.61 0.60 0.38 0.82 2.51 3.25 2.48 1.43 0.42 0.90 0.96 15.54 1951 -75
Summit WSO 0.89 1.19 0.86 0.72 0.60 2.18 2.97 3.09 2.56 1.57 1.29 1.11 19.03 1951 -75
Talkeetna 1.63 1.79 1.54 1.12 1.46 2.17 3.48 4.89 4.52 2.54 1.79 1.71 28.64 1941 -70
MEAN MONTHLY TEMPERATURES
Anchorage 11.8 17.8 23.7 35.3 46.2 54.6 57.9 55.9 48.1 34.8 21.1 13.0 1941 -70
Big Delta -4.9 4.3 12.3 29.4 46.3 57.1 59.4 54.8 43.6 25.2 6.9 -4.2 27.5 1941 -70
Fairbanks -11.9 -2.5 9.5 28.9 47.3 59.0 60.7 55.4 44.4 25.2 2.8 -10.4 25.7 1941 -70
Gulkana -7.3 3.9 14.5 30.2 43.8 54.2 56.9 53.2 43.6 26.8 6.1 -5.1 26.8 1941 -70
Matanuska Agr.
Exp.Station 9.9 17.8 23.6 36.2 46.8 54.8 57.8 55.3 47.6 33.8 20.3 12.5 34.7 1951 -75
McKinley Park -2.7 4.8 11.5 26.4 40.8 51.5 54.2 50.2 40.8 23.0 8.9 -0.10 25.8 1951 -75
Summit WSO -0.6 5.5 9.7 23.5 37.5 48.7 52.1 48.7 39.6 23.0 9.8 3.0 25.0 1951 -75
Talkeetna 9.4 15.3 20.0 32.6 44.7 55.0 57.9 54.6 46.1 32.1 17.5 9.0 32.8 1941 -70
iT
TABLE A2.4:RECORDED AIR TEMPERATURES AT TALKEETNA AND SUMMIT IN of
5I AitoN
lalkeetna Summlt
Daily Daily Monthly Daily Daily Monthly
Month Max.Min.Average Max.Min.Average
Jan 19.1 -0.4 9.4 5.7 -6.8 -0.6
~.
Feb 25.8 4.7 15.3 12.5 -1.4 5.5
Mar 32.8 7.1 20.0 18.0 1.3 9.7
r:""
Apr 44.0 21.2 32.6 32.5 14.4 23.5
May 56.1 33.2 44.7 45.6 29.3 37.5
June 65.7 44.3 55.0 52.4 39.8 48.7
Jul 67.5 48.2 57.9 60.2 43.4 52.1
Aug 64.1 45.0 54.6 56.0 41.2 48.7
Sept 55.6 36.6 46.1 46.9 32.2 39.6
Oct 40.6 23.6 32.1 29.4 16.5 23.0
Nov 26.1 8.8 17.5 15.6 4.0 9.8
Dec 18.0 -0.1 9.0 9.2 -3.3 3.0
Annual Average 32.8 25.0
TABLE A2.5:PRECIPITATION MAXIMIZATION RESULTS
Maximized Total
Maximization Precipitation
Storm Factor (inches)
August 1971 1.77 9.04
August 1967 2.00 12.54
August 1959 1.80 6.82
July -August 1958 1.66 4.96
August 1955 1.86 7.03
TABLE A2.6:TEMPORAL PATTERN OF AUGUST 1967 STORM
-I
!
\
Daily
Precipitation
Ranking 10 9
S TOR M
8 7 6
D U RAT ION
4 2 3 5
Sub-Basin
Number
10
20
80
180
210
220
280
330
340
380
480
580
680
TABLE A2.7:SSARR MODEL INITIAL SNOWPACK FOR PMF
Initial Snowpack
Water Equivalent
(inches)
99
81
35
32
99
62
30
33
27
59
57
48
48
COOK INLET
[ijj
~-0100
0IIll0
0100
0400
0IlOO
0100
0100
0IIll0
0IIll0
FIlUM A2.1
10~IlLES
(ApjijiQc--:J-
SCALE
NOTES
I.PIlRAilETERS IlEASU11£D LISTED IN APP£IIOIlC II
2.CONTINUOUS WATEIl QtlALITY _11tlIl ...,.AU.EO
$.DATA COLLECTION 'M!SEASON
4.n«LETTER IlEfOIIf:EACH STATIOII NAIIE II THETAlLEISUIlEDONTHE_TO _ntE
·..-JXIMATE LOCATION Of n«IlllTIOIIe•
DATA COLLECTED
•STlIEAllfUlW -COIITlIIUOUI .~
C STIIEAIIl'lOW-I'IUITIAL IIBXIIIO
•WATER'QUALITY
T 'MTER TEll_TUllE
•IIEDlIlENT Dl:lQlAM[
e CLIMATE
fllf:UlNe ""IN MO IIlCLOUll _
- ...1 SNOW COlJRSE:
A IINOW CIlt:EP
1941-PRESENT
['_-1972 II
19110 -PRESENT
19M-PRESENT
19lI1-PRESENT
"SI-IMO
I9l1O-PRESENT
1974-PRESENT
X I X X X
X X X
X IX X X
X X X
X X X
X I X IX
X i X
STATION
IIA)SUSITNA RI~ER N~AR D£~ALI
,1111 SUSiTNA RIII£R AT II£E CANYON
IC I SUSITNA RlII£R NEAR WATANA lltoMSlTE
(D)SUSITNA Rrll£R NEAll DEVIL CANYON
(EI SUSITNA RM:R AT GOLD CREEK
(f)CHULITNA RlII£R NEAll TllUIRTNA
(6)TALKEETNA RlIIER NEAR TALKEETNA
(HI SUSITNA RIVER _SUNSHIHf
(II SKW£NTNA RIII£R NEAR SKW£NTNA
IJ)YENTNA RIVER NEAll _TNA nlTlON I X
(KI SUSITNA RIVER AT !lUSlTNA STATlON
~
~.~
AllIE.
DATA COLLECTION STATIONS
USI;:D IN PMF STUDY
FAIRBANKS
-.,..,
~---'~'-"'-''':-''''\
....";..0810 ,)
.:•'T~'I
[?"""!'*'"f iE,J*'""'.
)0009~·\....~l;:4i~i
_WAY ":-'II';:;",~,
\,,,--,,,,,j'~:•.~.::::;I \~\
/"j \..."'~..'~.,1)
-/0/,3 "\"I"'''''''-V .''..,/"'--#--(.~~/'l -~"'\.G~)->Y J--"
f ,.Y ~.('.<t!;7 "-l,V _.Ijir--J./ir 9l ~~~~rI ~\(.·Q8~rICA~~-4~.~~tl~·"''''I'{~(4 ~-i
IE DE ..'-'-.OOj!~~....I:•..---'l..__..'-,,_.--.--.I '~..~oe..Q8~....."..~~L i
\~'f (J;-"\"'-,~('J):\.LA~.1__.•,0837','\(~~)
'\"--,'\-,"COMO'.~.......~I
\(,~,<!AJ ~?:':?-)
?'I ~.J /.------------08..["I -'.\.L)-llf~.....--.---'_~~'::._
ot~~.1 .,,~riO~~·pP"
..."~Ltv"~~
®
'l""
0806l0007
CHCLAn..~\~o."\~".
\,~~~f~\\\\'~)l,\~~~~~~\~~i
~'\~OlOOOl.\'~IJ
IJ}~,"",~
~~
50,000
LEGEND
FIGURE A2.2 mNOVDEC
:#~[*~;~~J~IJ;~~~~~.:.:.
APR MAY JUN JUL AUG SEP OCT
MONTHL Y AVERAGE FLOWS IN
THE SUSITNA RIVER AT GOLD CREEK
:::~;:;:::.;:;:;:;:;:;:;::.
MARFEBJAN
O·,·,·,,·,·,·'"'··········~
Cl 40,000 l-I I I I WETTEST YEAR·1962
z
0
(.)I I I U/////J AVERAGE YEARw
Cf)
a::wa..I I I r~m:::::?-<;;I DRIEST YEAR •1969:':§:"';'{fo:-:...m;-.....30,000wwu...
(.)
OJ
:J
(.)-
~20,000
0
...Ju...
~
<tw
a::.....
lI)
10,000
-)e1 e_eel ~_C}~c,e'c'l -',el ee'~l ,e,,_~e]~-'1 c,e",]"--)-)-1 e)-)e1 1
liIlFIGUREA2,!
eO
2,0
r-/----
(
___-,VI
r
ISOHYETAL MAP STORM OF JULY 25-31,1980
~,
\./-..."
"..--"
J
.IsUMMIT
eO
@
~2e5
~:
•PRECIPITATION LOCATlOlli AlliO A~UNT UIlIJ
2AI
..---3~lSOHYET
1
~
"~-1 ~--l '-~)----J ·~--·)---1
TRIMS
•CAMP
2.59
-1
•PAXSON
2.25)
.0
•GULKANA
0,47
'~_._)._-)
.Y!!II!!2:
4.'0 PIl£CIPiTATlON LOCATION AND AMOUNT (IN.)
-.-ISOIt'I'£'I ISOHYETAL MAP STORM OF AUGUST 4 -10,1971 FIGURE A2.4 Il~ll~I
1
__C_)cc-,)_C~1 .~c_~')1 _c-c.-cl ._~--)~-----l --~--l
C )1 )1 -_OJ 1 --J
~
r
\
CHULITNA ,.../
RIVER.,,/
LODGE ,J
t
-5
L£GENll:
--.-PRECIPITATION LOCATION AND AMOUNT (IN)
2.41
_,._ISOHYET
--------/'
ISOHY£TAL MAP STORM OF AUGUST 9-17.1967
•PAXSON
2.57
•GULKANA
.34
FIGURE A2.5 w
1 '~~1 .oc"j ,oco 1 ~'_O_]h.]",-').).'l ')'J '-~-l )--)'1 "1
~
i
\
CHULITNA ,..../
~~~l~R{f/
GOUl
CREEK
\.".......
/6
LEGEND:
•PRECIPITATION LOCATION AND AfolOUNT (IN)!,50
-!-,1SOHYET
•SUMMIT
1.47
---I
ISOHYETAL MAP SlORM OF AUGUST 19-25,1959
•PAXSON
•GULKANA
076
FIGURE A2.6 i~
'~~~l cr'),~]<"1 ~~,)'~~'-}---1 ---1 ~""'J ')~-J
~
,.,
CHULI TNA ,-/
-RIVER ../
LODGE ,.J
"
_TALKEETNA
2.51
~,
-I'RECIPlTATION LOCATION AND AMOUNT (IN.)
2,51
-3_lSOHYU ISOHYETAL MAP STOR M OF JULY 28 -AUGUST 3.1958
2 ________
_PAXSON
_GULKANA
095
FIGURE A2.7 Il~~(~I
'-1 .<c~_)'<-<'~-l <'<']~--']"1 t~~-«l "...)J _.<-~-~,-}.<-)-..)<~<.-<)J '1
~-'FIGURE A2.8 ~lL
•GULKANA
2.46
•PAXSON
TRIMS
•CAMP
2
r-/----
/
.,J'./
ISOHYETAL MAP STORM OF AUGUST 22-28,1955
6
~
"/:1):
~"'~
~
"TALKEETNA
8.45
LEGEND,
"'--PIlf.CIPITATION LOCATION AND AMOUNT (IN.)Z....
_5-IIOHftT
1 ~"··l ~'~~J,1 "'~"-J
~Ol--I ~J---,--------.-,I --r-r--I'--==,--------.-
.1124
.....
FIGURE A2.9
\
\,
\
\
\
,,,
\,
\
\
\,,,
\
\
\
,,
\,
--,I ,
I ,
I ,
I \
I \
"""''''
DATE
,
\,
"....
........'"'-,;...._-..,
SSARR MODEL CALIBRATION
SUSITNA RIVER AT GOLD CREEK 1967 FLOOD
80
7e
70
6e
60
ee
eo
~
8
Q
M 40
S
~3e0
..J
IL 30~,;,;,,,,,,
I
I
/
/
!Ol "-...............----;--.V
Ie
10
e
0 I
DESlGNED8Y
DRAWN BY
CHECl<EDBY
--"])'~-),,",--]
"']"--1 --1 "'l '__C)))))')-)
d
•
24
FIGURE A2.IO
....",,,,,,,,,,,
''-,
........"
I,
I
I
I
I
I
/
/
I
J
/
I
I
J
I
I../
.......,""........._---
I ....
I ....,
J .to.........
Flnw
DATE
OBSERVED FLOW
19/7
SSARR MODEL CALIBRATION
SUSITNA RIVER NEAR CANTWB..L 1967 FLOOD
I/~~..../CALCULATED
....-----/...........'"!"-...................................
/3 15
JULY'
""....,/
,/
//
'",/'
'II97
~O
4~
40
35
§30
K
~~
~
•9 20
IL
I~
10
5
0
I 3
CHECKED BY
DRAWN BY
DESIGNED BY
1 '~~J !~--l "---]~l --------1 )-)t ]
;:1 I'I I'~, ,'qrrrj'"
08SERVED FLOW
24222018121416
AUGUST
1086
..._--------
42
/
CALCULATED F~__-,LOW
,'"............,
27 29 31
TIME (DAY)
DATE
252321191517
JULY
13II97
,-....-------'
5
10
8
§
M 6
~~
ill 4
0
It
2
0
I 3
DESIGNED BY
DRAWN BY
ClEKEDBY
SSARR MODEL CALIBRATION
MACLAREN RIVER NEAR PAXSON 1967 FLOOD
FIGURE A2.11 ici}
~.+,--"-1.~-l ~-,';-....,-'~-~1 .,.~_.)-'J ---,-"')---')
'I;:' .'I"I "[I I I I 1 ..r I'I I
75
70
65
60
55
50
45
0
0
Q 40.
U>...
U
-35
;a
a
...J...
30
25
20
15
10
5
OBSERVED FLOW
I
I
I
I
I
I
I,,
".,...."........_.........
I
\
I
I
I
I
I,,,
\
I,
I
I,,
I
I
I
I
I
I
I
I
I
\ I
\,1
I
I
I
I
I
I
I
I
\
\
\,
\V CALCULATED
\
\
\
\
\
\,,
FLOW
SSARR MODEL CALIBRATION
SUSITNA RIVER AT GOLD CREEK 1972 FLOOD
DESIGNEDlY
OfIAWH IY
CHlCkEDIIY
B .10 15 20
MAY
25 301 5 10 15
JUNE
DATE
20 25 30 5 10 15 20
JULY
25 30
FIGURE A2.12 I ~~~l~I
'-I <Cc<'.']0:•••_],--,"1 :"."')",.)'-'1 )).".'J
(I ' ,'II'I r I I I [".I g
60
55
50
45
40
08 35
K
!II
t;30
~
0rt 25
20
15
10
5
OESIGIIED Iff
DRAWN Iff
ct£CKED8Y
SSARR MODEL CALIBRATION
SUSITNA RIVER NEAR CANTWELL 1912 FLOOD FIGURE A2.13 \l~~(~\
,..~~.]'~~)1 1 l 1 J ~J .~--I
fE''I"']'"I I'F "I g
DESlllN€O 1"1
DR_N IV
CHEClCED IV
10
9
8
7
g 6
~.
~5
~
~4...
3
5
OBSERVED FLOW
"\, \~CALCULATED
I \......_,
I \'/'...\I ~~~I
SSARR MODEL CALIBRATION
MACLAREN RIVER NEAR PAXSON 1972 FLOOD
FLOW
FIGURE A2.14 ~(iI
)'eel CI J -~el :~C'}1 'c l -.CJ,,.eeel ''''''1 ~'F"'l .CC'C")c-
ce"1 ~.'I
~:E''I '''I'I 1 '£I ''':Pf I J
•F!GURE AlUS
r'
I
I
I
\
I
II--"'CALCULATED FLOW
I
\
\
I
I
'\'
I 'I ,
I I
I \,,
I ,
I ,
II \ I
DBSERVED FLOW
~,I
\
\
\
I
I
I
I
I
I
SSARR MODEL VERIFICATION
SUSITNA RIVER AT GOLD CREEK 1971 FLOOD
r
I I'I ,
I \
/\
I,
I
I,
I
I
85
80
75
70
65
60
55
50
<:;
~45.
U>
U-
~40
'"9...
35
30
25
20
15
10
5
0
DSN
DRW
CHK
ir-~},i'"~'~-l ""l .~-J -~J "-'''"'1 -1 1 '--J 1 '---1
~°1 IuI
~?____i I I
OBSERVED FLOW
30
\
\
\
\
"
25
\
\
\~CALCULATEO FLOW
\
\
\
\
\
\
\
\
10 15 20
AUGUST
530I251520
JULV
105
DATE
3025201015
JUNE
60
55
50
45
40
(535
8
R
~30
~
J:25
0
...J
"-
20
15
10
5
ob'~~:20 30 I 525610MAV
oEsKlNEDBV
_BV
OEKEDBV
SSARR MODEL VERIFICATION
SUSITNA RIVER NEAR CANTWELL 1971 FLOOD FIGURE A2.16 I ~~Il~I
"J },'--"'·--rl'..1 ")"'J 1 '-"
,'I iii I'I I
-I10,-
9
30 1251520
AUGUST
10530I251520
JULY
105302520
8
2
3
7
°k 1 1-=:;::--('I I I I I I I I I I I I I I I I I I I I
6 10 15 20 25 30 I 5
MAY
g 6
9
~51 AA /,'/\1/\/"'\u ~I I ~-;9 \,I \-,
II
9 4IL
DESIGNED BY
DRAWN BY
CI-ECKfl)BY
DIlfE
SSARR MODEL VERIFICATION
MACLAREN RIVER NEAR PAXSON 1971 FLOOD FIGURE A2.171 ~~~I~\
'~'~"~-l ~----'-~J <-'-""1 ,'1 '~--l "]·.-'~·l ~~-l--'-'l _'1
157II910II121314
SOIL MOISTURE INDEX-SMI (INS)
65432
I
I -#.1022----,../\1015
....
...."'-1020
I VI ./""~1018/V../....
V ~~..----.-
/..-----~
-----~y/.JI/"'./'...
./""./)",
~~
1021
--~-~-----------~---~-~-- --~-Lt-
,
90
a..
~70
20
30
100
80
;60w
~
~50..........
D
~40
lr
10
00
LEGEND:
1018 -TABLE NUMBER IN
SSARR MODEL
DESIGNED BY
DRAWN
CHECKED BY SSARR MODEL 5 MI VS ROP FIGURE A2.18 I~~II~I
1 f-~l f~-,,~1 c-'-,~~-e,~)'~~~'l "~"]"->]..)
\y-....
I "I 2920)'....._/
SUSITNA RIVER AT GOLD CREEK
OBSERVED
6160 SO.MI.
MACLAREN R.NR.PAXSON
NON -GLACIAL
232 SO.MI.
LEGEND
[===:J ROUTING REACH
o BASIN OR SUB 8A5IN
o COLLECTICJIj POINT
D RESERVOIR
MACLAREN R.LOCAL ABOVE
SUSITNA CONFLUENCE
307 SO.MI.
--....;'\J 2912 )~~~~~~~R.NR.PAXSON
'-_...1
330
MACLAREN R,NR.PllXSON
GLACIAL
44 SO.MI.
SUSITNA R.NR.DENALI
NON-GLACIAL
694 SO.MI.
,,--....
I ~SUSITNA R.NR.DENALI
"'\2910 J OBSERVED
'....._,1
SUSITNA R,NR,DENALI
GLACIAL
221 SO,MI.
OSHETNA
LOCAL
735 SO.MI.
_...."'"'/00,."-I 2915 r-
\ J
......._/
SUSITNA R.NR CANTWELL
OBSERVED
4140 SO.MI.
WATANA AIlD DEADMAN CREEK
LOCAL
1045 SO.FT.
TSUSENA AND DEVIL CREEK
LOCAL
52B SO.MI.
PORTAGE AIlD GOLD CREEK
LOCAL
345 SO.MI.
SUSITNA R.AT
CALCULATED
TYONE RIVER BASIN
1047 SO.MI.LAKE LOUISE AND SUSITNA LAKE
48 SO.ML
REFERENCE'
U.S.ARMY CORPS OF ENGINEERS IIlTE"11I FEASIBILITY
REPORT.1975 APPEIlDllC I PA"T I
SCHEMATIC DIAGRAM OF SSARR COMPUTER MODEL
FIGURE A2.19 m
'"1 '~],-~"1 '~]'-C].'C-~]'.-·~--~'l e--.'].-''-~-1 '-'~1 ----]-1 }'---'>1 .-'1 --1
I~---.
.......--'1-~_--- ---l-"- -.l.------1----7-1----
90 2017
It 801Il
I
~9 70
IL \ILl
If)
<l:'
1Il 60 X 2OO9
~
~OO~'"~40 '-J 1'-....
~['2011 ~
ffi 30 "-'...........~"~20 ......~--.-_""'--.1(2012 ,2009
~,--'0 ~lo.-__
20'\-------............_-...._-=.:.-:..:-.._---....,--- ----------0
0 I 2 3 4 5 6 7 8 9 10
LEGEND:BII-BASEFLOW INFILiRATION INDEX (INS/DAY)
2011 -TABLE NUMBER IN
SSARR MODEL
AZ.ZO.DESIGNED BY
DRAWN BY SSARR MODEL B II VSBFPCHECKEDBY FIGURE
"1 ='1 "'],.'.1 '''-~l 1
.12 V I
.
2
.11 ./
1;7'1.1
.10
"V~3003-/'1.0
f
/.9.......
~.Q9-VI .8II:.O~
~
II:5 .ar
'i-"~.06
/K'3003z
~.a>.5
:E V0u
~.04 V 4~/""'\3008It:
~.03 V I---
V ,,",,'"
.02 -'
~~.~
V
,,,--
.~-...'3009 -~'3009-.01 ~".....~f'1,1 I ~1000-~10--------1 0.0--
0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 1.5 2.0
INPUT RATE-RGS (INS/HR)1.INPUT RATE -RGS (INS/HR)1.
LEGEND:
3008 -TABLE NUMBER IN
SSARR MODEL
mDESIGNEDBY
IOftAWN BY SSARR MODEL RGS VS RSgEKEl?BY FIGURE A2.21
,(4010
r
ro-
I
l
.3 r------..,.....----.....,...-------r-----.....,.--------,....-------,
z
.21------+-----+-------+-----+---------,1-------1
t-
W
I
X
Woz
zo
~a::n:enz<ta::
b
Q../4008~.
w .1 1------+---'--------+-------+-----+-L------1....------1
I,..{4009__
~----
----------
o 4 5 6
MONTH
7 8 9
-
r
LEGEND:
4009 -TABLE NUMBER IN
SSARR MODEL
MONTHLY EVAPOTRANSPIRATION INDEX
DESIGNED BY
DRAWN BY
CHECKED BY FIGURE A2.22
r
r
....
r
cr
r :I:........enz
~
a::
!Jw2,
....
.5 _-.....,~-.....,..--_--.,.....-.......,--.....,..--""'I""'"--'T"""-.....,~-....,.---
/k:.:
.4 t--____1f---+--+---+------I---+---+---~~::.....-____1I__-_+--~---------~~~~-~::
7009\
---+----+-- --+---~--.....-.-.+--......
r
....
I
....--+--+----+---+--...,---+---1-701l~_1-_"
I"""
!
-
o 10 20 30 40 50 60 70 80 90
TOTAL SEASONAL ACCUMULATED RUNOFF -OGEN (-%)
/00
DESIGNED BY
DRAWN BY
CHECKED BY SSARR MODEL QGEN VS MELTR FIGURE A2.23
.....
.....
~
i
l
I"'""
I
10
DESIGNED BY
DRAWN BY
CHECKED BY
20 30 40 50 60 70
ACCUMULATED GENERATED RUNOFF
%OF SEASONAL TOTAL -QGEN
SSARR·MODEL QGEN VS SCA
80 90 100
FIGURE A2.24.
I""'"
i
-
r
-I.
I
~
!
100
~800 \I
I&J
:lie
I
en ~I&J
3
~
~60
\~g
0
I&Ja:
I&J
tia:
1\z 400 ~fia:
ii:enz ~<l:
0:
b ~.5001
Q.20~
l&J
0
.2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
PRECIPITATION RATE -PPT (INS /HR)
•DESIGNED BY
DRAWN BY SSARR MODEL PPT VS KECHECKEDBY FIGURE A2 .25
--J "-'~l --1 ---1 -----1 ~~-·-l -_..-).~...-"1 ----1'-1-)-~J --1--1
70
60
u..
!!...
~
~50
0::
III
Il.
~
III
l-
I-zo
Il.40
~
UJo
30
~---...."--/---".--
/'V
----TALKEETNA
ANCHORAGE
.~
MAY JUNE JULY AUGUST SEPTEMBER
50 YEAR MAXIMUM 12 HOUR PERSISTING DEW POINT TEMPERATURES
FIGURE A2 .261 ~~I[~I
]~·~·1'-.-]~-l ----1 rc.-<]'·-1 ._',~··-1 '-'-1 J
35
30
25
---,"----- --------------~-
PMP AND TEMPERATURE SEQUENCE
OESIGNED BY
DRAWN BY
CHECKED BY
10 15 20
MAY
25 10 15 20
JUNE
25
FIGURE A2.27 I~~Il~I
-'1 '~"'..~C'-~l ,..,.._]"'~l .r.......•.]-1 --1 ._-~-~}..--]·'--1
rn I I "J"""'~~I []I
a.2.0
~PEAK FLO YI =325,000 CFS
,...y\
J \l-f
/,r\I-\/
~1/\
l-I ~
!'...
l-I ~
l-I
l-V
../
I I I I I I I I I I I I I I I I I I
WATANA PMF INFLOW HYDROGRAPH
330
320
300
280
260
240
220
o 200
o
Q
K
~IBO
~
160
140
120
100
BO
60
40
20
o
3 6 9 12 15
JUNE
18 21 24 27 30
FIGURE A2.28 W
-.
,....,
ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
ATTACHMENT 1
SUBTASK 3.05 (ii)-CLOSEOUT REPORT
PROBABLE MAXIMUM FLOOD DETERMINATION
.....
r
r
r
r
I
-,
-I
I
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
1 -INTRODUCTION
2 -SUMMARY ......•..•..•..•...•.••••..••.•.•..•..••••..•.•.••..
2.1 -Review of COE Evaluations ••..•..•......•..••.••.•.•.•
2•2 -Se nsit i v ity An a1ys es .•....•......•..•.••.•..•.•..•.•.
2.3 -Conclusions •.•......•..•...••.......••.•..•..•.•..•••
2.4 -Recommendations ..•...•.........••..•.•..•.......•..••
3 -SCOPE OF WORK ..•.••..•..••....•.••.•..•.....•.•..•..•.•....
3.1 -Probable Maximum Flood Evaluation •.••....•..•.••.....
3.2 -Scope of Work •.....••..•....•.••..•....•..•.•..••.•.•
4 -REVIEW OF CORPS OF ENGINEERS PMF EVALUATION ..••......•....•
4.1 -Oat a Input to SSARR Mode 1 ••••••••••••••••.•••••••••••
4.2 -Calibration and Verification Studies •.••.•••..•....•.
5 -ADDITIONAL SENSITIVITY ANALYSIS •.••....•.......•..•..•.•.••
5.1 -Introduct ion •....•.....•..•.•..•.....•.••...••....•..
5.2 -Base Case •....••..•....•.••..••.....•••.••••.•.....••
5.3 -Sensiti vity St udi es •.•..•..•.•.....•..•..•..•..•.•...
5 .4 - Summ ar y •..••.••.••.......•.•...•.•..•..•.....•.•..•.•
6 -RE-EVALUATION OF PMF •.••.•..•.......•..•..•..•..•.••...••..
6.1 -Introduction .•••.••.••.•.••.••.•.•........•..•..•..••
6.2 Objective ..••..•..••.•.....•.•..••.•...•...••••..•...
6.3 Approach •••.••••••.•.•...••.••••••.••....••...•.....•
6.4 Discussion .•..•..••.•..•.......•....••.•..•.••.•..•.•
BIBLIOGRAPHY
SUPPLEMENT A
,-.
\
r"'"
i
I.
.-
!
-I
!
fI"'"[
-
1 -INTRODUCTION
Results of feasibility studies undertaken by the U.S.Army,Corps of Engineers
(COE)for the Susitna Hydroelectric Project were reported in 1975 (1)and 1979
(2).These studies included determination of a Probable Maximum Flood (PMF)
peak for the Watana and Devil Canyon dam sites appropriate for use in design of
project spillway and related facilities.The location of the dam sites and main
tributaries to the Susitna River are given in Figure 1.1.
As part of the Acres American Plan of Study (POS)for the Susitna Hydroelectric
Project dated February 1980 and revised in September 1980,Subtask 3.05(ii)has
been undertaken with the following objectives:
-To review the input parameters used in determining PMF peaks;
-To determine the sensitivity of PMF peaks to changes in critical input
parameters;and
-To determine if the results are appropriate for use in the current study and
if not,to outline steps required to re-evaluate the PMF.
The results of these studies are reported in this document.Section 2 is a
summary of the work undertaken and the results obtained.In Section 3 there is
a descri pt i on of the scope of work performed and inSect i on 4 the results of the
review of the COE evaluation are discussed.Sensitivity analyses are described
in Section 5 and in Section 6 are the necessary steps required to re-evaluate
the PMF for use in Phase 1 Susitna Design Studies .
2 -SUMMARY
2.1 -Review of COE Evaluations
The COE evaluated the PMF by means of a calibrated river basin computer model
which simulates streamflow in response to specified temperature and precipita-
tion.
The study includes a detailed review of the COE model,the calibration proced-
ures adopted,the calibration results achieved and a range of additional sensi-
tivity runs using the SSARR model and the COE data.The sensitivity runs en-
tailed systematic plausible changes to the snowpack,temperature and precipita-
tion values to determine the relative importance of these parameters to the peak
f16od.
These studies indicate the following:
-The calibration procedure used by the COE was not rigorous and does not allow
a realistic assessment of the modeling accuracy to be made;
-The timing of the key parameters (that is,temperature and precipitation)used
by the COE does not reasonably ensure that the flood peak is a probable maxi-
mum;and
-Both the magnitude of the probable maximum precipitation and the temperature
sequences were based on tentative estimates made by NWS.In their report,the
NWS noted the need for a more detailed analysis (Appendjx A).
2.2 -Sensitivity Analyses
Sensitivity analyses indicated that the peak flow associated with the PMF event
could be considerably higher than that previously estimated by the COE.Further
re-evaluation of the PMF on the basis of more comprehensive climatological data
and study using an appropriate modeling procedure is therefore considered to be
essential as input to the current feasibility studies.This re-evaluation is
further justified by the fact that the Susitna project is large,involving large
capital outlays and is very important to the future development of Alaska.
2.3 -Conclusions
The basis of any model of physical processes is the ability to accurately simu-
late the processes with different input conditions.The model must therefore be
calibrated to within acceptable limits by the selection of the best combination
of parameters,coefficients and relationships that make up the model.We con-
sider that the calibration of the SSARR model by the COE has produced inconclu-
sive and indefensible results.The acceptance of the parameters in the SSARR
model is therefore not fully justifiable.The difficulty in acceptance of the
model results is further compounded by the lack of any verification runs.We
conclude,therefore,that the procedures of calibration should be repeated and
several verification runs be made to prove the acceptabi lity of model parameters
and accuracy limits that can be applied to PMF estimates.
The sensitivity runs indicate that the estimates of peak inflow to Watana Reser-
voir and discharges at any other location are particularly sensitive to varia-
tions in snowpack water equivalents,temperature gradient and temperature maxi-
mums and precipitation volumes and intensity.Sensitivity to changes in sub-
basin parameters are small relative to the sensitivity of the basin to the three
main input parameters given above.Table 2.1 summarizes each sensitivity run
and gives the percent change from the COE estimate for inflow and outflow into
Watana Reservoir.Percent changes to inflow and outflow for Devil Canyon
Reservoir are summarized in Table 2.2.
The estimate of flood flows is particularly sensitive to precipitation.The
estimate of the PMP storm was derived by analyses performed by the National
Weather Service in early 1975.No back-up computations are available or infor-
mation on which form of storm maximization procedure used.No comment can be
made on the validity of these precipitation analyses.It is therefore concluded
that due to the sensitivity of the PMF estimate to precipitation,further
analyses should be performed under established guidelines and with reliable
procedures.
It is also concluded that,in conjunction with precipitation maximization,
studies should be conducted to determine reasonable temperature sequences.The
sequences determined should define antecedent temperatures (cool period followed
by a sharp temperature rise)and temperature during storm periods.It is
particularly important to redefine maximum dew point temperatures.
The present snow course data should be utilized in determining areal distribu-
tions of snowfall,particularly the distribution with respect to elevation.Un-
fortunately,the first year records (1980-1981)are indicating a below normal
snowfall,so it is unlikely that a better definition of maximum snowpack water
equivalents can be determined.
-
,..
I
-
Records collected within the basin should now be utilized to reconstitute
discharges for 1981.The reconstitution with more representative temperature
and precipitation data may lead to a more accurate model of the physical
characteristics of the basin and will probably reduce the error in estimating
peak flows at the various collection points.
2.4 -Recommendations
Itis recommended that a more comprehensive PMF study be undertaken as soon as
possible so that the results can be incorporated in the ongoing engineering
feasibility studies.
This more comprehensive study should include the following:
-recalibration of the SSARR computer model using the data collected within the
basin since the CaE study;
-verify the acceptability of the model and define limits of accuracy by apply-
ing independent input data not used in calibration studies;
-redefinition of the maximum precipitation during spring and summer periods;
-the maximum likely dew point temperatures and temperature gradients plus temp-
eratures during severe storm events should be redefined;
-the appropriate timing of the precipitation and temperature events should be
reassessed and used in conjunction to re-evaluate the PMF.
3 -SCOPE OF WORK
3.1 -Probable Maximum Flood Evaluation
The PMF is generally considered as a flood resulting from the worst possible
combination of a number of maximum credible meteorological parameters and
antecedent basin conditions.Although no annual probability of occurrence can
be accurately attached to thisPMF event,it is generally accepted to be in the
10-5 to 10-7 range.
The first step in the estimation of the PMF is to determine critical meteorolog-
ical conditions such as maximum snowpack,temperature sequence,and the Probable
Maximum Precipitation (PMP).The timing of these maximum events is usually
assumed to be such that the resultant peak is maximized.However,in many
cases,a judgement is made as to the reasonableness of the occurrence of such a
combination of events.The response of the watershed to the PMP,with
antecedent conditions suitably primed to give severe flooding,can either be
determined using computer mathematical models or by use of unit hydrographs and
rainfall-runoff relationships.
A computer simulation model of the basin is usually preferred over the unit
hydrograph or rainfall-runoff methods.The advantage of this method over
conventional methods lies in the ability of the computer model to test
hypotheses of runoff which involve complex interactions of hydrologic elements
and in the relative ease in which a non-homogeneous basin can be sub-divided
into smaller homogeneous hydrologic units.Consequently,the selection of the
SSARR (Stream Flow Synthesis and Reservoir Regulation)computer model by the COE
to estimate streamflow is believed appropriate for the Susitna Basin.
3.2 -Scope of Work
The objective of the work was to assess the accuracy of the COE estimates of
spring and summer PMF events.In undetaking this work,the following review
steps were performed:
(a)Review of COE Work
(i)Review of the COE input data to the SSARR Model particularly with re-
spect to:
-basin and sub-basin physical characteristics;
-precipitation (antecedent storm and PMP storm);
-temperature sequences;
-snowpack accumulation over winter months.
(i i )Review of calibration runs made by COE with the SSARR Model to deter-
mine if the parameters selected to describe the physical characteris-
tics of the basin are acceptable.
(b)Sensitivity Runs With SSARR Model
(i)Additional computer runs to determine the sensitivity of PMF peak es-
timate to changes in either input variables (snowpack,temperature,
and precipitation)or basin characteristics.
Detailed discussion of the above review steps are given in the following
sections.
4 -REVIEW OF COE PMF EVALUATION
The review of the work conducted by the COE included an assessment of the input
data used and the SSARR Model calibration procedure and results.These two as-
pects are discussed below.
,....,
!
("""
i
"
l .
-!
4.1 -Data Input to the SSARR Model
(a)Basin Characteristics
The SSARR computer model obtains the best estimates of streamflow when the
basin is divided into relatively homogeneous sub-basins.Flows from these
sub-basins are combined and routed downstream to derive the flow at speci-
fied collection points.A schematic showing the sub-basins used by the COE
for the Susitna Basin above Gold Creek gaging station is given in Figure
4.1.
Each sub-basin has ascribed physical characteristics that are believed rep-
resentative of that sub-basin.The sub-basin characteristics are defined
in the computer model by tables.These tables,converted to figures to
present a clearer picture,are given in Figures 4.2 to 4.8 The majority of
the parameters,describing the physical characteristics,are determined by
assuming likely values and relationships for each of the sub-basins.The
assumed values are a function of the sub-basins hydrological characteris-
tics such as soil types,slopes and aspects.
The assumed values are then "fine tuned"to obtain streamflow estimates
that are within acceptable limits of observed values.This is the usual
way to calibrate the model when only sparse data on hydrological parameters
are a~ailable.This is further discussed in Section 4.2 (Calibration
Studies).Generally,the basin parameters determined for the basin are
considered to be acceptable at this stage.
-
,-
!
,I
(b)Data Discrepancies
Several discrepancies,common to both summer and spring PMF data files
exists.These are:
(i)For Maclaren Glacier a table,Number 4006 is specified for the
monthly evapotranspiration index.No Table 4006 is given so a zero
evapotranspiration index would have been assumed.However,it is
unlikely that this error would significantly affect peak values,but
would probably seriously affect the accurancy of any long term
streamflow simulations or would be important if antecedent soil
moisture conditions fluctuate significantly.It is believed that
this table should be Table 4009 which would make Maclaren Glacier
similar to Susitna Glacier.
(ii)A base flow infiltration index of 0.03 inches/day has been assigned
to Maclaren Glacier.We believe this should be 0.30 inches/day.
(iii)The timing of the probable maximum precipitation (PMP)and critical
temperatures during the PMP storm do not coincide with those values
recommended by the National Weather Service (Appendix A).If timing
of the PMP and temperatures are changed to match recommended values
the,spring PMF estimate for inflow into Watana reservoir is
increased to 239,000 cfs,an increase of 2.6 percent,with peak
flows occurring approximately twelve hours earlier.
(iv)Total drainage basin area at Gold Creek determined by summing
individual sub-basins equals 6,135 square miles.Actual drainage at
Gold Creek is 6,160 square miles.
In Acres sensitivity runs,the discrepancies noted above have been revised.
The revision of discrepancies given in (i)and (ii)do not seriously effect
streamflow estimates as they only effect flows from Maclaren Glacier
subbasin which represents approximately 0.7 percent of the drainage basin
area at Gold Creek station.Effects of revision to temperature sequence
are discussed in (iii)above.The drainage area difference does not
seriously effect PMF estimates.
4.2 -Calibration and Verification Studies
The results of calibration and verification studies are provided to indicate in
as objective fashion as possible,the level of accuracy that can be expected
from the use of the Model.It should be emphasized that the degree of accep-
tance of any model is ultimately judgemental in nature,and should be continu-
ously reviewed and updated as new information and data are obtained.
Before proceeding further,it will be instructive to review the objectives of
model calibration and verification.Model calibration and verification are
separate but related activities,both of which should be performed in the
process of the models·development and application.In the process of model
calibration a data set is selected which is assumed to be representative of the
type of problems to which the model will be applied.The model is then run with
this data set and its coefficients are adjusted to provide the best agreement
between estimates and observed values.Often several data sets are applied and
a compromise set of coefficients obtained.
When the model coefficients are determined from the calibration exercise,the
model should be run with one or more data sets which are independent of that
used for calibration.In no circumstance should the model's coefficients be
adjusted when using the subsequent data set and the accuracy achieved by the
model constitutes the measure of the model's verification or accuracy.
Review of the COE studies has found no evidence that verification of the model
was undertaken;only calibration runs were apparently made.Consequently,it is
likely that the accuracy of the modeling approach adopted has not been ade-
quate ly tested.
The COE selected spring floods in 1964 and 1972,and summer floods in 1967 and
1971,as representative of floods on the Susitna River and its tributaties
upstream of the Gold Creek gage.Calibration was performed at four gaging
stations;three on the Susitna River and the fourth on the Maclaren River.The
results of these calibration runs are given in Tables 4.1 to 4.4.Flow values
for the Gold Creek gage shown in the table on page A-31 of the COE,Interim
Feasibility Report (1)appear to be in error as they do not agree with the
computer output values.Tables 4.2 to 4.4 also show the return period for the
observed floods at the four gaging stations.The observed and modeled
hydrographs are given in Figures 4.8 to 4.14.
r-
I
-
The results of the calibration study indicate that snowmelt flood peaks are
consistently underestimated for floods at the Gold Creek gage;6.3 percent and
14 percent for 1964 and 1972 floods respectively.However,snowmelt floods
peaks at the next upstream gage (Cantwell)are consistently over-estimated by
4.1 percent and 0.5 percent for 1964 and 1972 respectively.No conclusive
pattern was found for Denali and Maclaren gages.Rainfall flood peak estimation
for 1971 is 4.6 percent less than the observed value at Gold Creek gage and is
22.2 percent greater than the observed value at the Cantwell gate.All
estimates and observed values are given in Tables 4.2 to 4.5 for the four loca-
tions.
The coefficients used in each calibration run are in some respects different.
For PMF estimation the data sets developed through the calibration of the 1972
flood has been used for both the spring and summer floods.Consequently,the
data sets developed for floods in 1964,1967 and 1971 can only be assumed to be
not representative of the basin.As the data sets are different for the two
spring and summer calibration runs no verification of the data used for the PMF
estimates has been made and the accuracy of the model has not been assessed.
5 -ADDITIONAL SENSITIVITY ANALYSES
5.1 -Introduction
The objective of this part of the study was to obtain an indication of the sen-
sitivity of the model to changes in critical parameters.The sensitivity of the
SSARR model to variations in soil moisture index or any of the other physical
parameters is small when compared to the model's sensitivity to changes in snow-
pack volumes,temperature sequences,and the volume and distribution of the PMP
storm.Consequently,no changes to the physical parameters were made at this
stage and sensitivity studies were only made to study variations in flood peaks
due to snowpack,temperature and precipitation changes.
Accepting that no verification of the model has been undertaken,it has been
assumed that the model will reasonably reflect the basin's response to PMF input
condit ions.
5.2 -Base Case
The data fi les for the spring and summer PMF estimate was obtained from the COE
and loaded onto the computer system.As a first check,the spring PMF was run
again to obtain the same hydrograph'as that obtained by the COE in 1975.This
indicated that the SSARR program and that the data file were unchanged.The COE
estimate was used as the base case which each sensitivity run was compared.The
base run hydrograph for peak flow periods is given in Figure 5.1.
The spring PMF base run is distinguished by two distinct peaks,one on June 11
due to snowmelt and a precipitation snowmelt maximum on June 16.The decline in
discharge between the two peaks is due primarily to a temperature drop during
the PMP storm.The temperature sequence used by the COE is given in Figure 5.2.
The temperature sequence during the PMP and for the four preceeding days was
obtained by the COE from the National Weather Service (NWS).The temperature
and PMP storm are given in a memo from the NWS to COE and is attached in
Appendix A.The temperature sequence used by the COE was divided into the
following four periods:
May 1 to May 28 -This period was given by actual 1971 records at Summit
Station
May 29 to June 10 -This period was synthesized by the CDE to obtain the maxi-
mum flood peak.For this period~the COE tried three temperature sequences as
shown on Figure 5.2.The peak discharge was obtained with the third and low-
est temperature used.
-June 11 to June 16 -This period follows the recommended temperature as com-
puted from values given by the NWS,Appendix A.
-June 17 to July 30 -Records for Summit in 1971 applied.
Precipitation in the base run consits bf two storms,one centered on May 31 and
represents the 1:100 year storm and the other the PMP storm centered on June 15.
The intensity of the two storms are given in Tables 5.1 and 5.2.Snowpack was
obtained by estimating maximum water equivalents and gross smoothing to obtain a
contour map of water equivalents throughout the basin,Figure 5.3.
Basin parameters used during the base run have been given in Section 4.1 and are
duplicated for the sensitivity runs described below.
5.3 -Sensitivity Studies
Three main groups of sensitivity runs were performed to determine the effect on
the flood peak due to changes in temperature~snowpack and precipitation input
data.These are discussed below.
(a)Temperature Sensitivity
The COE may have over-estimated the temperatures in May resulting in too
much runoff prior to the critical snowmelt period in June.In some cases
notably in the lower reaches of the basin,snow cover has been depleted
from as much as 60 percent of the available area.In the base run~
approximately 1270 sq.miles or 20 percent of the basin is snow free before
the critical snowmelt period.Although it is recommended that some melting
should occur prior to PMP storms,to ripen the snowpack and saturate soil
moisture,it is believed that a cooler May could result in a higher flood
peak.Temperature records at Summit indicate a normal monthly temperature
for May of 37.4°F.Consequently,a temperature of 32°F has been assumed as
representative of a cool May.Coldest mean May temperature on record at
Summit station is 29.1°F.The sharp rise in temperature necessary to
produce substantial snowmelt has been further delayed in June to attempt a
juxtaposition of maximum runoff from snowmelt and precipitation.The
temperature sequence assumed is given in Figure 5.4.
The assumed temperature sequence produced a peak inflow to Watana reservoir
of 243,000 cfs as compared to 233,000 cfs for the base run.This repre-
sents a 4.3 percent increase in peak inflow.The hydrograph is given in
Figure 5.5.The above result indicates that spring PMF estimates are
relatively insensitive to temperatures during May.
~L
r
i
4
--f
(b)
The sensitivity of peak discharge to temperature gradients immediately
before severe storms is believed to be important.The results of the COE
runs in obtaining the critical temperature sequence immediately before the
PMP storm did not take into account the temperature gradient;only the
timing of the temperature rise.The three temperature sequences assumed
are essentially parallel as shown in Figure 5.2.The effects of a sharp
temperature rise are mainly in producing very large amounts of snowmelt in
short periods of time.This effectively saturates soil moisture capacity
very quickly resulting in quick runoff and large streamflow rises.The
temperature gradient is consequently one of the more influencial parameters
in the estimation of peak spring floods.The temperature gradient is also
one of the main parameters that should be maximized with the usual
constraints being applied based on what are reasonable for the basin.
The COE has a temperature rise of approximately 4.3°F/day over a six day
perioe.Records at Talkeetna Airport and Summit Station indicate that
temperature gradients of this order are typical for May and June and there-
fore cannot be assumed to be representative of extreme events.
The determination of the maximum observed temperature rise in Mayor June
is beyond the scope of work under this task.However,it appears from a
very cursory appraisel of available data that a temperature gradient of
about twice that assumed by the COE may be close to a maximum.Consequent-
ly,'a sensitivity run wi th a temperature gradi ent of 8 .5°F /day has been
assumed.In addition,the temperatures during the PMP storm have been
increased by 9°F to produce a maximum temperature of 66°F instead of 57°F.
This is believed to be not unreasonable based on records available at
Summit and other stations.
The above changes to temperatures produced an inflow peak to Watana Reser-
voir of 302,000 cfs an increase of 29.6 percent,Figure 5.5.Obviously,
the temperature gradient prior to the PMP storm and temperatures during the
storm are very important parameters in determining PMF discharges.The
temperatures selected,although higher than assumed by the CaE,are not
unreasonable.However,it should be noted that the temperatures were only
selected to determine the sensitivity of peak discharges to such changes
and do not necessarily represent the sequence that should be used.
Initial Snowpack Sensitivity
The deri vat i on of snowpack quant it i es for each sub-basi n of the study area
has been based on records from stations outside the area and on judgement.
The available data was only available for lower elevations.The method
used to obtain snowpack amounts was to accumulate the maximum recorded
snowfall for the months of November through April.This produced snowpack
amounts at various points surrounding the basin.Using available regional
mean precipitation distributions,the COE developed a minimum water equiva-
lent contour map for the basin,Figure 5.3.This was further averaged to
give snowpack water equivalents for each sub-basin as shown in Table 5.3.
The additional years of records obtained from the snow course stations,
subsequent to the COE studies and the data obtained from the additional
station established during 1980 do not indicate that any significant heavy
snow accumulations have occurred.Consequently,no conclusive statements
as to the accuracy of the assumed snowpack water equivalents used by COE
can be made.In all the spring PMF estimates,the COE has not assumed any
precipitation during May.Therefore,it can only be assumed that Nay
precipitation is also included in initial snowpack amounts.
The sensitivity of the peak discharge to initial snowpack water equivalents
has been determined by increasing the initial snowpack by 50 percent.This
analysis was in fact performed by the COE in 1975 and was not repeated by
AAI.The peak inflow to Watana was found to increase to 254,000 cfs,a 9.0
percent increase,Figure 5.1.The result indicates that the PMF peaks are
fairly insensitive to changes in initial snowpack water equivalents.
(c)Precipitation Sensitivity
The PMP estimates conducted for the COE by the NWS involved only a summer
rainfall envent.The NWS recommended that 70 percent of the summer PMP be
used as the PMP storm for spring PMF estimates.No basis for this decision
to use 70 percent PMP is given in either NWS or COE documents and it would
be difficult to defend this number.A separate study of spring storms
would have been more appropriate.
To determine sensitivity to changes in quantity of precipitation falling on
the basin,it was decided to assume that the full PMP occured in June,but
remains centered on June 15.To observe only the effect of the precipita-
tion change it was decided to assume antecedent conditions equal to these
in the base run except for 50 percent more initial snowpack water equiva-
lent.Temperature sequences were unchanged.
The result of this run is a substantial increase in peak inflow to Watana
to 342,000 cfs,a 46.8 percent increase Figure 5.5.Obviously,it may not
be correct that the recommended PMP storm occurs in June,but the result of
this run clearly indicates that precipitation amounts are by far the most
important parameters in PMF estimation.It is therefore essential to
ensure that a well defined PMP storm be used for flood estimation
purposes.
As a concluding run,it was decided to obtain an estimate with the case of
full PMP storm with the 8.5°F/day temperature rise to a maximum of 66°F.
This run clearly indicates that the PMF estimate can change substantially
when what can be regarded as plausible changes to a range of input para-
meters are made.The peak inflow to Watana obtained from this combination
was 430,000 cfs,an increase of 85 percent.Outflow from Watana Reservoir
obtained from the above sensitivity runs are shown on Figure 5.6.
r
5.4 -Reservoir Storage
The operation of Watana Reservoir for power generation will have an effect on
storage attenuation of the spring and summer peaks.Consequently,it is not a
clear cut case of developing a maximum storm as a smaller flood entering a full
reservoir may require larger spillway facilities than a larger flood entering a
depleted reservoir.The operation of Watana Reservoir will result in the lowest
reservoir levels occurring in April or May each year.Therefore,there is
substantial storage available to attenuate the spring flood peak.On the
average,it would appear that approximately 2.3 and 1.6 million acre-feet of
storage is available in April,May and June respectively.These values are for
Watana with full supply level of 2,200 feet and 800 MW installed capacity.In
August,September and October,no significant storage is available.A
preliminary estimate of the spring PMF volume is about 4.5 million acre-feet.
Consequently,approximately 36 percent of the spring flood volume could be
stored without reservoir surcharging.If 20 feet of surcharge is allowed,then
about 50 percent of the spring flood volume can be stored.The effect of the
storage is to attentuate the flood peak significantly.
For the summer PMF,reservoir levels are close to maximum so no significant
flood storage is likely.The case for flood storage in spring is strong as the
reservoir can only be full,assuming normal power operation,after snowmelt
runoff.Therefore it may be only applicable to design spillway criteria based
on summer floods and full reservoir conditions.
6 -RE-EVALUATION OF PMF
6.1 -Introduction
The work discussed above shows that no high degree of confidence can be given to
the present estimate of the PMF peak.Consequently it is concluded that a more
comprehensive PMF study should be undertaken to re-evaluate the PMF peak
estimates.The steps required in this re-evaluation are given below.
6.2 -Objectives
I
To re-evaluate probable maximum flood estimates based on a more comprehensive
climatological study and modeling procedure.
6.3 -Approach
The approach will entail reassesslng precipitation maximums,temperature
gradients and temperature maximums based on a thorough study of the
meteorological characteristics of the Susitna River Basin.Applicable storm
maximization techniques will be used to develop a probable maximum precipitation
storm for both spring and summer seasons.
Paralleling the climatological study will be a further calibration of the SSARR
model.The intent of this calibration is to develop a reasonable watershed
model based on procedures that follow generally accepted mathematical modeling
techniques.The calibration will start with assuming that the basin's
meteorological and hydrological parameters used in the COE PMF estimates are the
most representative.These parameters may be adjusted as analysis proceeds.
When a set of watershed parameters that give the most reliable estimation of
spring and summer floods are determined,a verification study will be conducted
using this data set.Several floods will be used that are independent of the
floods used in the calibration study.The verification of the SSARR model will
determine the accuracy that can reasonably be expected from the model.
Estimates of the probable maximum flood at critical locations along the Susitna
River for both spring and summer will be determined using climatological data
developed and the most reliable set of basin parameters.
6.4 -Discussion
The motivation of this addendum stems from the results of the assessment of the
CDE 1975 studies.The assessment determined the sensitivity of the·PMF
estimates to changes in critical meteorological and basin parameters.The
magnitude of the changes are given in Tables 2.1 and 2.2.
The meteorological data used in the CDE estimates were developed by the NWS in a
preliminary study which given a general range of criteria within which it was
believed values from a more comprehensive study would fall.In their conclu-
sions to the study,the NWS noted ...IITime hasn't allowed checks,evaluation,
and comparison of the several types of data summarized here.1I The NWS naturally
recommended further study.Thi sis borne out by the i ncreses to the Pt'IF peak
found in the sensitivity analysis.
p-.-
r
i
!.
LIST OF REFERENCES
(1)U.S.Army Corps of Engineers "Interim Feasibi lity Report,Southcentral
Railbelt Area,Alaska,"Appendix 1,Part 1,Section A,1975
(2)U.S.Army Corps of Engineers,"Supplemental Feasibility Report,South-
central Railbelt Area,Alaska",1979.
.')·"··'1 '-.......,'"C-))~'··'l '1 "1 J '-')'-l ~"."']<."J
TABLE 4.1:COE CALIBRATION STUDY RESULTS:SUSITNA RIVER AT GOLD CREEK
USGS GAGE NO.15292000 DRAINAGE AREA 6160 mi 2-----
Flood Maximum Discharge '.'Observed Peak Return,.
Period Event Observed Date Calculated Date Difference Period -tp (years)
1964
19 May to 25 June Snowmelt 85,900 7 Jun 80,500 5 Jun -6.3 16.0
1967
1 Jul to 31 Aug Rainfall 76,000 15 Aug 78,800 16 Aug +3.7 8.8
1971
6 May to 30 Sep Snowmelt 66,300 12 Jun 53,000 11 Jun -20.1 -
Rainfall 77,700 10 Aug 74,100 12 Aug -4.6 9.5
1972
2 May to 30 Sep Snowmelt 70,700 17 Jun 60,800 17 Jun -14.0 6.5
Rainfall 26,400 14 Sep 32,300 15 Sep +22.4 -
TABLE 4.2:COE CALIBRATION STUDY RESULTS:SUSITNA RIVER NEAR CANTWELL
USGS GAGE NO.15291500 DRAINAGE AREA 4140 mi 2
Flood Maximum Discharqe "Observed Peak Return,0
Period Event Observed Date Calculated Date Difference Period -tp (years)
,
1964
19 May to 25 June Snowmelt 49,100 7 Jun 51,100 4 Jun -4.1 11 .1
1967
1 Jul to 31 Aug Rainfall 36,400 15 Aug 36,600 16 Aug -to.1 3.2
1971
6 May to 30 Sep Snowmelt 24,000 23 Jun 32,600 23 Jun +35.8 -
Rainfall 36,000 9 Aug 44,000 11 Aug +22.2 3.1
1972
2 May to 30 Sep Snowmelt 37,600 17 Jun 37,800 17 Jun +0.5 3.6
Rainfall 21,000 14 Sep 22,800 15 Sep +8.6 -
J 11 '\'n .~~'~,7:j -~'1 ,
;~J J ']'J ,\i
~""0--1 -~~-},--~-1 --,1 ---~1 :--1
TABLE 4.3:COE CALIBRATION STUDY RESULTS:MACLAREN RIVER NEAR PAXSON
USGS GAGE NO.15291200 DRAINAGE AREA 28Umi2
Flood Maximum Discharqe D'AI
Period Event Observed Date Calculated Date Difference
1964
19 May to 25 June Snowmelt 6,400 7 Jun 6,230 4 Jun -2.7
1967
1 Jul to 31 Aug Rainfall 7,280 14 Aug 7,290 15 Aug 0.0
1971
6 May to 30 Sep Snowmelt 5,520 25 Jun 5,430 25 Jun -1.6
Rainfall 8,100 11 Aug 7,980 10 Aug -1.5
1972
2 May to 30 Sep Snowmelt 6,680 16 Jun 7,780 16 Jun +16.5
Rainfall 3,980 13 Sep 2,950 12 Sep -25.9
TABLE 4.4:COE CALIBRATION STUDY RESULTS:SUSITNA RIVER NEAR DENALI
USGS GAGE NO.15291000 DRAINAGE AREA 950 mi 2
Flood Maximum Discharqe "Observed Peak Return,.
Period Event Observed Date Calculated Date Difference Period -tp (years)
1964
19 May to 25 June Snowmelt 16,000 7 Jun 17,200 4 Jun +7.5 2.0
1967
1 Jul to 31 Aug Rainfall *-16,000 16 Aug --
1971
6 May to 30 Sep Snowmelt 17 ,600 27 Jun 17,300 24 Jun -1.7 -
Rainfall 33,400 10 Aug 31,500 11 Aug -5.7 37.6
1972
2 May to 30 Sep Snowmelt 14,700 16 Jun 20,300 17 Jun +38.1 1.5
Rainfall 5,690 13 Sep 15,300 13 Sep +169 -
*No Record
'>~J ~~11 l .~1 .~)j i j ]1;i',J '~f .'~
TABLE 5.1:PRECIPITATION -1:100 YR STORM (inches)
Hour 1st Day 2nd Day 3rd Day
0-6 .04 .14 .04
6-12 .07 .29 .09
......12-18 .17 .65 .21
18-24 .06 .22 .07
TOTAL .34 1.30 .41 3.05 ins
r-ii
"TABLE 5.2:PRECIPITATION -PROBABLE MAXIMUM PRECIPITAITON (inches)
Hour 1st Day 2nd Day 3rd Day
0-6 .25 .6 .15
6-12 .50 1.2 .30
12-18 1.12 2.7 .67
18-24 .38 .9 .23
("'*TOTAL 2.25 5.40 1.35 9.0 ins.
TABLE 5.3:SNOWPACK WATER EQUIVALENTS (inches)ON MAY 1
Sub-basin Minimum Snowpack (ins)
Code Name COE AAI
10 Denali Glac ial 99 99
20 Denali Non-glacial 36 54
80 Denali Local 15 23
180 Local above MacLaren
Confluence 14 21
210 MacLaren Glacial 99 99
220 MacLaren Non-glacial 27 41
280 MacLaren Local 13 20
330 Lake Louise 10 15
340 Tyone 12 18
380 Oshetna 26 39
480 Wat ana Local 25.5 38
580 Tsusena Local 21 32
680 Portage Local 21.5 32
i'~~-'~"1 e--]..~~,C-~,"~-l '--J ~~l p~-l _.-1
"'y-,
I '
I 2920 )'....._/
SUSITNA RIVER AT GOLD CREEK
OBSERVED
6160 SQ.MI.
MACLAREN R.NR.PAXSON
NON -GLACIAL
232 SQ.ML
c::::=J ROUTING REACH
LEGENDo BASIN OR SUB BASIN
o COLLECTION POINT
D RESERVOIR
MACLAREN R.LOCAL A80VE
SUSITNA CONFLUENCE
307 SQ.ML
--..../\.1 2912 )~~~ft~~~R.NR.PAXSON
'-I-'
MACLAREN R NR.PAXSON
GLACIAL
44 SQ.ML
SUSITNA R.NR.DENALI
NON-GLACIAL
6!14 SQ.ML
SUSITNA R NR.DENALI
GLACIAL
221 SQ.ML
SUSITNA R LOCAL A80VE
MACLAREN CONFLUENCE
477 SQ.ML
TYONE RIVER BASIN
1047 SQ.MI.LAKE LOUISE AND SUSITNA LAKE
48 SQ.MI.
OSHETNA
LOCAL
735 SQ.ML
__,'10 0
/'....\.-
f 2915 r--
\ I....._/
SUSITNA R.NR CANTWELL
OBSERVED
4140 SQ.ML
480
WATANA AND DEADMAN CREEK
LOCAL
1045 SQ.FT.
TSUSENA AND DEVIL CREEK
LOCAL
528 SQ.ML
PORTAGE AND GOLD CREEK
LOCAL
345 SQ.MI.
SUSITNA R.AT
CALCULATED
REFERENCE'
U.S.ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY
REPORT.1975 APPENDIX 1 PART I
SCHEMATIC DIAGRAM OF SSARR COMPUTER MODEL
FIGURE 4.1 •
~)~CC].,..-:),-~-l ..~.~]~~--]~-)~--]'~rl r--]J""~
7 8 9 10 II 12 13 14 15
SOIL MOISTURE INDEX SMI (INS)
65432
I 1---'I II I I ,1022 _I I IiI I __,_
I I I --_,_I--
I I _.,__\1015 _
r I I ~_~__
I ~~_I-
----lr--.---,-- - -~_..,I.
I
---t--,
---f--~/r-i\_It----r---- - -_1020 __
-r-I _...
L ,_,/
e-----+--~,,/'~'018 ___
L---L--+-+1i--~--t--
p
7 -:..-f-----I _
-,.."-,-
--.L----t--Le:::Jr--+--t--t-l-
r-L-----r-....
f-----+--_f-----_I--'_,_
-I--t~=-J--+---l~-t--l~-f------1---r--__
I---L-----t-----4 J--+--t-i-l--!---t----,~,~_ _
I __~__
I --I-'"""_c---
-~--7 _~I I >-
.'-~I
I ~£-f----~.17
'02'
__-+-~
--f---1-_~j.L..t-~.1-7f:~I-+----I-----t---r-f---f---I--I I JIf---~....I---->-_I
."-+--~--+---+---r -I I
L~~---t--T-II--+-l-_I---+-I I--+--+-I..--I-+-I I.......-0 0
20
30
10
80
90
100
ll.
~70
~60w
~
~50
Ito
~40a:
SSARR MODEL SMI VS Rap
FIGURE 4.2 •
~l ~'--l -"-l "~--J "-'~~J -1 "l ).~]
109834567
BII-BASEFLOW INFILTRATION INDEX (INS/DAY)
2
----..,a--__------~---1------........._--7-1----
)2017
~\
X 2OO9
~""'....
\011 ""...."
"..........,
'.....,-------J(2012 ,2009
I --....1-__---201\--..........----------------....---I-----~----,----~.:::--oo
100
10
90
a:80
III,
3:
9 70u.
ILlen
~60
g
It 50
oz
~40
u.o
ffi 30
u
0:
~20
SSARR MODEL en VS eFP
FIGURE 4.3 !Ai
'J )·"1 -1 l ;,-~,,r'-J ;~~]'-')~'J J
.8
.5
.9
1.1
1.2
1.0
0,0
15 2.0
INPUT RATE -RGS (INS/HR)1.
.//'
/'
V~3003
~
/1/
...~
-1""""-~
....-'...-3009-
I
03
.11
.01
.02
.12
.10
o .01 .02 .03,.04 .05 .06 07 .08 .09 .10
INPUT RATE-RGS (INS/HR)1.
(/)
II::.0
I.LJ
ti
II::
~.07
a.
~
~.06
z
~{)5
::I
8
~.04
~
II::
~.03
II::
~......
~.09
SSARR MODEL RGS VS RS
FIGURE 4.4 ~I
.~
.4
....
I-
ILl
I
X-ILl
0
~.3
z
0
!;
0::a:enz«
0::.2!'ba.
~
ILl-
.1-
r---~-_.~-~
:4010 I
I
I I
I I
~4008
T
I
I
I
----:-----r---~~:~--1"--.
4 5 6
MONTH
7 8 9
-SSARR MODEL MONTH VS ETI
FIGURE 4.5 •
r
I
(
-I
100
'if!.80
I
LIJ
:II::
I
fi}
3
:§J
~60
I-
U
ffia:
LIJ
!<ia:
~40
~a:
ii:
In
Z«a:
b
11.:§J 20
UJ
\
\
\
\
\
~~~j5001
-o
.2 .4 .6 .8 1.0 1.2 1.4 1.6
PRECIPITATION RATE -PPT (INS /HR)
1.8 2.0
SSARR MODEL PPT VS KE
FIGURE 4.6
.,....
~
-!~
I
<Cu
(/)
I
<Cwa::
<C
0wa::w
f5u
~
0z
(/)-I
t
100
90
80
70
60
50
40
30
20
10
~'~~oo~,
\..~",,"Ill
I\""-
\),,,THEORETICAL SNOWI'"!
,~DEPLETION CURVE
4 (SNOW HYDROLOGY),
I 'I\."~~
":""-.'\I
•~,
"'~,,
•
~r--.....""-
6006 ........~1',
I ~
r
I
'.
r,
10 20 30 40 50 60 70
ACCUMULATED GENERATED RUNOFF
%OF SEASONAL TOTAL -QGEN
80 90 100
SSARR MODEL QGEN VS seA
FIGURE 4.7 •
-i
.~
J-.4
i
a::
J:........
(/)
Z
a::.3_.~
l.tJ
~
Y ,
~a::
'r"'"~~'...II~.2
~
0z
(/)
.1
/k::
V V
~7005
......---------7 f---~-po---.....
/V
~/
7009\
./------
----701l~-
o 10 20 30 40 50 60 70 80 90
TOTAL SEASONAL ACCUMULATED RUNOFF -QGEN [%l
SSARR MODEL QGEN VS MELTR
100
FIGURE4.8 •
"-",,,.
eFS
00 100.000
TO 90,000
00 80.000 .
'0 70,000
.0 ~o.ooo
'",)0,000
20 40,000
10
"0
-20
.~:.
.j.
I
.r
..."
"-f
,",
tp
,
l .•I
: !
,'i ..:'i':':'
·:].'"],1
I!
I I
c'.,,'.~..
..,'.J.
";!"j':'"
.~~··~·I l~t .
.'!'11/:
LJ .
.~~-,.
~
?REC1PITATIVN'fiI
!.
'l'
·5·~
j'
::l ~~~~':
.J:,::~:.
>H:
MECIPlTA.Tl0N
I~INCHES
HYDROGRAPH :SUSITNA RIVER AT GOLD CREEK,1967,1972
FIGURE 4.9 W
I
•/PRECIPITATION'N INCHES
'l',
I ,J..\.i '
1967 i"; ."j ..:
-1,;',1i""J')"!,..,1,.-::.r::::'I":J...:·t
..:::::::;j::.:!~J :·::;~\;:;;:t
!i
.....J.
O.',J :':~'l';';'::;,
.1._-:,
10,000 '"
2O,0CI0:•
50,000
40,000
I,
70,0001"'·'~.~.
I
60,000 I'
I
,, ,I
flOW IN 1 :I'!I '.I ICFS,.,I I
80 100,OOOrO'N 'pf"r s'"~!!l\i~h5 ..",
,ti.'I ;~:~1th I i
TO 90,000 I .1,.".:~...'i'~,Ii I ]
I:I.!!j I .~"",c,p,,,,,,,,,..J
50 soPOO I
•.",",'""1'"1"l'II. ;.,.
I·t I
.~.~..;,'"
,'0
-20
~
~40
lI'
~~
~
wg 20
i!l
.!,ro
~0
REFERENCE:
U.s.ARMY CCRPS OF ENGINEERS INTERIM FEASIBILITY
REPORT,1975 APPENOIX I PART J
PRECIPITATION
IN INCHE:S
I
•'ISIl,~~~~S qs
,~,
'~,'I
i :
t>t'~d:
~"'~~~I~~\\'''~'i is'~s~S ~S~"~t;,~
PREcrPlTAT~
.""INC:P'l[S
·r··.:·
'l"
,1971
.i.
·,10 :~';
~;l :
.,;:;:,....;
i '"'j"..~~U~',:"",'"
"'M~OPITAT'7j-..:...,"'I
}
/:!,:'
'\'r!\~~••.....1.~~ED '
C"-CUL''''O,~to ',',J \'-j \~\'v
' I I IV ,
I I J./':''/'W
\('\,I I
'f I:'\'M'I
1 I r~:n\~I
I I I -{,' IfJIIII
,};,,~..!'<I
I :
.,"...;'"I
I ,,JI~'64 :.:,I
~.I,.j.:,.._.j,:"+"-,.L;;;;';ll :/:::;J,,;:j
i",
,
I
J.ki
flOW to'"C'S
80 6<¥>00
70 5~
80 """""
~o <2JXX)
~
~40 36XlO
~)O XlO(X)
~
~
~
~20 24,000
1
~'0 '0.000
~0 12pOO
-10 6()00
-.0
i
"~"li:'~
/~
,
'I'
AvEIlAG{,TE"'P(R.A~'..
,'.',:,£)'1\""
"'/'f\'r.',''''~'"M','r'!"','~,\jV,:,
\;':cJ".\JV ..v/.
"',",(",r
(\I,,
FLow IN
CFS
80 60,:>00
'0 ~4.000
60 48,000
'"42.000
40 lO,OOO
30 ~,OOO
20 2:4,000
10 18,000
0 12,000
-10 6.000
-'0
REFERENCE,
U,S,ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY
REPORT,1975 APPENDIX I PART I
HYDROGRAPH :SUSITNA RIVER NEAR CANTWELL,1964,1971
FIGURE 4 10m
jL.
"'£CIPlTATlOJ!f
Urt INCMES
o
1.
'.IT.:~
,
I.
I
~:,;~;i
!!~~
.:'1;1=
':
.:'i I)'1 '.1-,I!=-.J.
;~:.;::::~;_L~U:::
.J
J...,
~"I:tJ
:.:~~~:~~:,'~;:~:.
197~
,
····1·
b'
!..
,;..1:;
:'].,',~.,..J:•.~.••.•
,,.~'.~~.,'
:-=._-1~':":";:.'
'. 'I
;,i I . •,.~'_
S's '..',':-~:fJ
j
.~'-r""I'I'jT f~:.,'~:.......-: .-".__'J,;'j"":I '''''',;..m"",/S
'/"-A..,£R.tl;£:j I ~.I I ..'."/v\:'.-PA'"",;,"',:.;r';,'1 ~:;~,;:':if .
k/'/'/.-.'-'~r1v~Jv\'v'IS
~)~
)B\
'j-'
...-.nON I'"cr,
60 60,000
'0 ~"'.OOO
60 48,000
>0 42,000
'0 36.000
'0 30,000
20 2<',000
10 18.000
0 12,000
,10 6,000
-20
't.OW'IN
CFS
60 60,000 .,•.~"5 .'fS
70 ~4,OOO:"~
60 48,00t
~o 4Z,Co'JO
PRECiPiTATION
,,,,,INCfiES
o
!;-
.1 .•
5'.,.'
1
I
'1 -J:'
l\'.I····;..1
~;ill ~::L;:';i.]!:;;~:;!:
';
S -.~~~f'"s .~~~S~,'i ~,!~f'RE-:JPl~ATI()!'l
",
i
'.,
~
tf;
I,
I
f~:
·10 6,000 "
I,
-lO 0 ~..
..g40 36.000
'l'
:')0 lQ,OOO
~
~20 24,000 .rr
~0 lZ,OOO
REFERENCE,
U.S ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY
REPORT,1975 APPENDIX I PART 1
HYDROGRAPH :SUSITNA RIVER NEAR CANTWELL,1967,1972
FIGURE4'UW
fLO\V IN
OFS
80 40,000
70 36.000
eo 32.000
)0 26,000
40 24,000
30 20,000
.0 16,000
10 12,000
0 8,000
-'0 4.0()O
J ;"JUN,I !.,..
I ",1I....!..:.1 I ~VERAC!'~•
I I TEt.lnRA ".'..r"~··'~'i·'!i.f_...
......,..',".":
]j''-J'/V<'"''.:::.':'.,.
: ..i
'.;,;:.:t·
o-20
J::
100
800
600
.00
,00
300
10.00
200
.00
PR(C;~TAT'lCtl
IN INQiES
7
:-~~:':::
4000
0000
12000
16000
Flcn IN :.~;I I \\
=>00 ~-~+"·'!·-U-n.i _.~"~~;000: I I 1 I '",C'~TA"~
>6OCO !j:.~:'"-.!- .I,II''00
32000 ;Yf::il.-:-'11 10/\i 1\:
'.,I ;'/V "J :
28000 ....'.1 ~I . ,
24000 ,.:::-j ...1 •1
"I I,I ,I
20000 .••.;..-•.~I I
eo
70
eo
00
;:;:;40
i 30
~
~'0""~'0
~
~0~
-,0
-20
REFERENCE.
U.S.ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY
REPORT,1975 APPENDIX I PART I
HYDROGRAPH SUSITNA RIVER NEAR DENALI,1964,1971
FIGURE4.IZW
'REoPtT~r.ON
~V'fCHES
o~n'BII.~
c •.~.....~Of ..•~!tu.~.~~~~!""'....I'"s ~~"\l~~~r ~S ~IO!~ill''~,§I S \\I ~':::1
..I ..I'I·..I'.i i''[A"EiU"0[.S S.
H.M;:>[RAri,;R£f s ~
"I;.c1'tJ'AlVV~Lp\f\"'Vi~~\rvV'sl(~v\.....)v ~rY!" 'I', ,\v.....
.~..,i'·...·.··.·f/,r ;,..,:.~,.,\'u····.....Ii"
.......!".'."··r":·:·
\
.."I......,•i '.'"'I
0..,;tl ".,.:..L
-..J l''\.\..m j ,.,
\.-/'..:.."r\\;'.····'··i·······:,,:;"1'~.....•.....,.I '.I I,
:972.:.., ;..:..};1."
'·If.~...:_)::.~.:.'!':J.."..;••..::;:':):;;L.~:(.,j:.;;
f'kat/IN
'"80 40.000
10 36.000
60 32.000
'0 28,000
~i 40
24.000
;;..)0 20,000
~20 16.000
I
~'0 12.000:
t'0 B.OOO~
-10 4.000
-'0
REFERENC~
U.S.ARMY CORPS OF ENGINEERS INTERIM FEASIBiLITY
REPORT,1975 APPENDIX I PART I HYDROGRAPH SUSITNA RIVER NEAR DENALI,1972 FIGURE4.Jm
PRECIPITATION
IN INCHES
),-_I ~0
.i.
~0 ~s~~~~q,
S..,
I
~.'\~~~U~'r'
!lS',
I'
r~11lI
1971
l~s".,~o..'",
9,000
7 ,000
3,000
I !:,
i>'SI ~.'~,',',Il,~I,~.i~l~'·l!~,;ln,~,~.:,I SS'~~~SSS ..,,',:.,',A,·,-~~l:I, ,I··~S ,
AvER:.GE '::i'I _~l ' .r J[M~~A11JR£~,>~'Rf::WrrATrOW~~
'\j "I i.,j'h.,.
/rJ,,"/J \,)/V ''"'t.l'1!;:J,(Ji'A."cvf\~"
,!lJ '",Vvv '1\,'6,000 J~I /4)A ,A A v~
',000 1.V /\/\I '\,..
8,000
1,000
4,000
2,000
FlOW INCf,
10.000
'0
40
'0
20
'0
60
'0
.0
·20
·'0
,~::t-~
.'r i-::t:r \.
REFERENCE.~lpcfR~~i9~~RPSA~~E~~?~N~E~~R'r;ERIM FEASIBILITY HYDROGRAPH:MACLAREN RIVER NEAR PAXSON I 1964,1971
,
~,t ~..~~PRE':IPITATI~~
FLOW INer,
80 '0000
TO 9000
60 6000
'0 '<nO
~:trO 6000
~3D '000
~20 40-:)0
I
'"~'0
)000
~0 2000
~
·'0 1000
·'0 0
...
:j
,"
\':~
V'J l
\.
1
I
:.:'
PREOPlTATlON
IN INQ{[S
FIGURE4.14 W
~\;,I/\
'V _.'
PRECIPl7A71(lN
fN fiCHES
o
""-
s r''n'.S •~S~.
S
...\:::.
~i'l~~'H ~~
..~.:
~
/\..'"
.~J\~
.!2ll.
~t;:.~''''liS ~~,,-,.~.....•r I •S.~~III ~.~r~~~~~~'...~~'~~i •'\~.....-'\"~~~,../"J~'...'.t :(~.!....~
...II q )''-''1 ....I ,'.r\'~~..rv i i'O;)JJV'JL,(.J\/"\.~~"'~I....J V ."v ..\/.OC".'"
··········1 ~
#
J')
rLOWINC"
80 10pOO
70 9.000
W 8,000
'"7 .000
40 6,000
'0 ~,OOO
20 .,000
10 3,000
2,000
-10 1,000
·20
·r:.
~I\~:o."•~':Sl~.~
F"lCNt INCF>
80 10,000 .'1IlO
10 9,000
60 e ,000
l'~•J~'lI
~I.,!
I
'-PRECIF'I;~IO,'i
....
PA(CIPITA110N
IN INC~ES
so
'0
30
~g20
.!.~10
t'0
~
.,000
3,000
-10 /,000
196',
-20
!
REFERENCE,H 0 0U.S.ARMY CORPS OF ENGINEERS INTERIM FEASIBILITY Y R GRAPH MACLAREN RIVER NEAR PAXSON,1967 1972
REPORT.1975 APPENOIX 1 PART 1 'FIGURE4.J.iJ
-1 J 1 1 ····~--l 1 1 1 1 -]----1 --~l
SPRING PMF
by U.S.CORPS OF ENGINEERS
4
o
I
/
/
/
/
/
/
/
PRECIPITATION
---ORIGINAL (70%PMP)/
,.,...----..-................
/'..................
,/........
/..................
/..................
/..................
/..................
ORIGINAL RUN
50%INCREASE IN SNOW
LEGEND
IOU
;0
rT1
!{l
2 ~
'-l
I INFLOW TO WATANA 13 ~
z
40
60
300
280
260
240
220
~200
U
0g 180
~
0it 160
140
120
100
80
20
0'I ! I I I I I I J I I I , ,! , ,I I I I I I I I I I I I !I !I ,! ,I I I I J , ,I I I ! ,! !! ,! ,
I HR.)2 8 14 20 2 8 14 20 2 8 14 20 2 B 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 --------
(DATE)JUN 5 6 7 8 9 10 II 12 13 14 15
TIME
INFLOW TO WATANA (COE)
FIGURE 5.1 •
80r----+--+---+--+--t----+----t--+--+---+---+--f-----+---+--+----+--~
1941 -1970 MEAN
MAY 1-28,1971
DAILY AVG.TEMP.
--_I I7011------t--+--+--+--t--+-----jt,...l~....~~=+-----f---+-+--j---+-7 DAY SERIES --+---1
V~.r-"---\V ~V ~\J ~
60 1------t--+---+-------:F--t-A---H~---.-;-\-+.l--+---1+-+-~j---+---+------+----1---I~V V V ,lm{°'I 61 DAY ~ES~Vv I{I~+~50 /--~I\..J ~~
~/V I ./VfL.~..>'~~VV l/J./
V VrT l~i40p'~V-iA'/li\~j~V ft(tvVW 'IV~.J"Ir~\
::!30 .-t-ir+-t-+-+-~I--+--l---------+-----l---+--+--+--+--I---1---+------+----1----1
;IJ V V
IIJ
:::::!i
~
I
r
201t------j---+--+--+--+------+---If------+--+---+---\--t------t----1---1-------l------I
01-----:~__:_i:-_:l:_-=":_---:.i:_~~~.........---:-I:-~-~-~_1....----l._.....J._.....J..._.....L.._.J
~10 15 20 25 30 ~10 15 20 25 5 10 15 20 25
MAY JUNE JULY
SPRING PMF TEMPERATURE REGIME (COE)
REFERENCE:
U.S.ARMY CORPS OF ENGINEERS
INTERIM FEASIBILITY REPORT,
1975 APPENDIX I PART I FIGURE 5.2 •
~1 -C~l ~e_)e,el ~~l e'l .ee-l 1 1 j Cl '1 )cel
FIGURE 5,3
,-.....
/~-.Jr50~~--....
)
--'r:
30"\----'r
)
SCALE
~~-~o 5 '0 15 20MilI!s
ASSUMED SNOW PACK
20
30 \\'-"7""(/"1 ('v\,~\,,--/\~~)'
,-./-...;,
20 30 /'1 'c.,,"A<~-~I.","/"v--..r _~-J./oe
/"'//---t \.~'i/,,",'
f "'~r'.t.(}'Ii~-.\~\(}'G u 1\.,()f)~~j //--
%,)7""·'/Q'g "'r',/-..em".....~~~*v.,.....//""\..
/ecce ~I.I ~o",/::#,0'
J '~i /-~
I f ./,0
~,~I ,"."r.P-'-.....,"~/,(~~'?~
)CREEK /-~\,~~~~~_./'~slrN4 T.))j~'!''__
('~"""l~Fo,e"..,I I\-roo::/''f"\:/,:rl'-,I)R:[,V -,--y 1/"\J
20 .J<:'.----~}-
20 ~~.~~
&"7 .....,"~"]'I \'J I
30/u::}"_jl\-:'~,\(;to /
&0 I "'-:'~J~C)V--v.X-',
/0,,-(\/1~1401';.\ \ \/~~0''.~'\~,X '.S",,",L''''1.'1/\......\ \\.,,,,"../.~\fl Lo'"\\\\.l_~/~-(~(j'~~
\ f \,""/'/10
I (j \.'""'-\/'C\'\/--0(.__-\~.IL ~
~•40 30 20
t
~i
REFERENCE:
US.ARMY CORPS OF ENGINEERS
INTERIM FEASIBILITY REPORT,1975
APPENOIX I,PART I
--"1 e_~--J ~~-]"-~~l --··'1 -~--1~--1~)-.~.~]
LEGEND
• •ORIGINAL TEMPERATURE
...-....TEMPERATURE SENSITIVITY RUN (RUN NO.I )
• •MELT RATE INCREASED BEFORE STORM
70.,,Ii',,,,,
60 I I I I I I I I I I 't I #I I
50 I I I I I I I I :1_'I ,":Ao:f I
lL.o
IlJ
0::
~
!;.(
0::
~
~40 I I I I I I Po I ,!I :I I I ..
30 I \JT I \;If I ".•I I I I I I I
201 I I I I I I I I I I
FIGURE 5.4
SPRING PMF TEMPERATURE SEQUENCE 2 MAY -20 JUNE
I I I 1 I I ,' I ' ,I ,!I I ,20
!I I I I 10 15 .,1I!1 I !I ~!5
!I I I I ,1 1 30 JUNE
!I I !I I I I !I ! !I~20 2!i ~-flpO;;;l(@
0:.10 MAY IAtilMJ,..
-~---1 ------1 ~----~l ~----l -~~1 -cwo-col '~--J e-l -----1 ~~l --1 ._--~-------,.,)--~1 "'-~-']/._~.,1 ~--l -J
I"::Xl
rJ
'6
2 ;::l
!'i
5z
3~
C
o
,
\
\
INFLOW TO WATANA
LEGEND
8ASE RUN
---TEMPERATURE SENSITIVITY RUN (RUN NO.1)
•_._.-INCREASED PREC"~ISNOWPACK (RUN NO.2)
----PRECIPITATION (70 "!o)OCCURS 12 HRS.EARLIER THAN BASE (RUN NO.3)
120
240
260
280
220
r
I
PRECIPITATION'I :
/
1 1'-'
ORIGINAL (70°;'PMP)1.1 "...,,,,.,....---. .
'''''",,~m '"""00%,-----1 \.\
I \.
i ..--"/........~-;4
I ,....
I ...,\"
I \ \
I ",.\1\\
I • \
I \ \
V---..........\
tf \ '
roo,------""",".\•'",,~'"'~<.~",\\\
1/\.,
1 \\
,~,
..._--__i/I
",-----t'I_._._,:/J
....' -...'I I_,,'.'--.- _...I I
,/,......I'/~/.........
/
.I ..........
.".........//)
,,,'/~~~:://:,1
~180
VI
LL
U§160
~
0140
...J
LL
m814
18
FIGURE 5.5
B 14 20 2
17
8 14 20 2
16
20 2814
14
e 14 20 2 8 14 20 2
12 13
TIME
INFLOW TO WATANA (ACRES)
/
//
//
/
,///
,~/
/'
..........-:"
---_"":,',.-_~__,--.-..-
8 14 20 2
6
20
60
80
40
(HR.)O2 8 14 20 2
(DATEl JUN !I
1 -~]--~1 --__c)~-,)e>-"l :-----1 ]
m
4
I ::Jl
fTl
(')
'0
2 ~
-i
isz
3 :::
~
FIGURE 5.6
ITM .0
8 14
16
/.-.-.-......../"
/".,
.I
/
8 14 20 2
15
8 14 20 2
14
8 14 20 2
13
I
I
PRECIPITATION / I I
--ORIGINAL (70%PMP)~I i
I I
----PPT RUN (100 %PMP)L.....
B 14 20 2
12
TIME
B 14 20 2
II
A
8 14 20 2
10
OUTFLOW FROM WATANA(ACRES)
/
.,...---,,'~
i ~/
/--_._._._._._._.-//'/"-.,///\r ......,.....,
',.,II "IJ_'_..//h__,,'"fi
B 1'4 20 2
9
//
//
//
,,;'/
""",/
//-----.,..,
814202814202
7 8
BASE RUN
TEMPERATURE SENSITIVITY RUN (RUN NO_I)
PRECIP./SNOWPACK (RUN NO.2)
70 %)OCCURS 12 HRS.EARLIER
OUTFLOW FROM WATANA
SPRING PMF
by ACRES
LEGEND
300
2 BO
260
240
220
200
IBO
~
~
l)
o 160
0
Q
~140
0
-'
LL
120
100
80
60
40
20
(HR)O 2 8 14 20 2 8 14 20 2
(DATE)JUN 5 6
..-
,....,
I
~
I
-
-
SUPPLEMENT 1
I""'"
r"'"
I
!-
:.J'
r:ROH:
SUBJ:
DRrGT
Hr.VernonK.Hagen
Office of Chief of Engineers
Corps of Engineers
Forrestal Bldg.,Rm.5-F-039
Washington,D.C.20314
John T.Riedel
enief,Hydrometeorological Branch
Te:ltative E~timates of Probable Maximum Precipitation (PMP)and Snowmelt
Criteria for Four Susitna River Drainages
Introduction
The Office of Chief of Engineers,Corps of Engineers requested PMP and
snowmelt criteria for the subject drainages in a memorandum to the
Rydrometeoro1ogical Branch,dated December 12,1974.The Alaska District
requested the study be completed by Februa=7 1,1975;however,a more
realistic date for completing a study in which we have confidence is
June 1,1975.Because of the need to soon begin hydrologic studies
ba5?d on meteorological criteria,the Branch has concentrated on the
problem and has determined the general level of criteria.A range of PMP
values are given in this memorandum within which we believe values from
a more comprehensive study will fall.The sequences of snowmelt winds,
temperatures,and dew points should be checked w~th additional studies.
In addition,if we knew in detail how snox~elt will be computed,we could
give emphasis to the more important elements.
P~W estimates for four drainages
A range of estimates of PNP for 6,24,and 72 hours for four
drainages outlined on the map accompanying the December 12.1974 ~emorandum
are listed in table 1.These are nucbered fran 1 to 4 (smallest to largest).
-2-
The estimates are for the months of August a-.~September -the season
of greatest rainfall potential.
estimates by 70 percent.
For the sn·~~~~t s~ason)multiply the
Tne estimates take into account numerous cocs~=rations including several
methods of modifying PMP estimates made pre~~~ly for other Alaska
drainages~and PMP estimates from the Weste=n ~~ited States for areas
with similar terrain.
-3-
Temperatures and Dew Pobts for Snotmlelt
A.During PMP Storm
1.Dew point for PMP centered on June 15 =56°F (assume maximum l-day P}-IP
in middle of 3-day storm).
2.For PMP placement prior to June 15 ...6tract O.8°F for each 3-day
period prior to June 15 (e.g.the ~dew point for June 12 will be .
55.2°F).This -O.8°F per 3-days may be applied to obtain the maximum
l-day dew point during the p~~back =0 as early as ¥Ay 15.
3.For first day of PMP storm~subtract lOp from criteria of ~for 3rd
day of PMP storm subtract 2°F.
·4.Add 2°F to each of the three daily C:J points to get daily temperatures
for the 3-day PHP per:.iod.
B.Temperatures and Dew Points Prior to 3-~y PM?Storm (High dew point case)
Adjustment to temperature and dew point on
day of ma::ti:r=::n P~
r
Day prior
to PMP
1st
2d
3rd
4th
T t (OF)empera U=~
-2
-1
o
+1
Dew point (OF)
-2
-4-
-4
-5
-4-
c.Temperatures,Dew Points Prior to 3-day PMP
(High temperatu=e case)
Adjustment of temperature and de~point on
day of maximt!3 PM?
Day prior
toPHP Temperature (oF)
1st +1
2d +2
3rd +4
4th +7
Elevation Adjustment
-12
9
- 7
6
For the 3 days of PMP and for the high dev pointy-,apply a -3°F per 1000 ft
to the temperatures and dew points.The basic criteria are considered applicable
to 1000 mb or zero elevation.
For the high temperature criteria apply a -4~F per 1000 ft increase in
elevation.
Half-day Values
If half-day values are desired for te~eratures and dew points~the
folloWing rules should be followed:
1.For the hi~h-temperature sequence~apply an 18°F"spread for
temperatures and a 6°F spread for dew paine.Par example,for a mean
daily dew point of 50°F,the half-day values woule be 47°F and 53 c F.
2.For the high dew point case,apply a 12~F spread for temperature
and a 4°F spread for dew point.
-i
-
I.
r
-5-
3.In no case,however,should a 12-br d~.point be used that exceeds
the 1-day value for that date.For examp~,the value not to be exceeded
for June 15 is 56°F,for June 3 (four 3~-y periods before June 15)is
-6-
Wind Criteria for Snowmelt
Since two sets of criteria (one emphasizing high temperature and the
other high dew point sequences)are given for snowmelt prior to PMP,
two sets of wind criteria are also necessary since the pre-P~~synoptic
situation favoring high temperatures differs from the criteria favoring
high dew points.The recommended winds,tables 2 and 3,are given by
elevation bands.In the high dew-point case,table 2.(where synoptic
exist
conditions~favoringmaritime influences Drior ~P}~),the same wind.
for 4-days prior to PMP is appropriate.
All of the winds presented in tables 2 and 3 have been adjusted for
applicability over a snow surface.Although a seasonal variation in the
high dew point wind criteria is realistic for the present tentative
criteria,they are considered applicable to }~y and June.
Snowmelt Winds During the PMP
Wind criteria for the 3-day PMP are the same for both the high
temperature and high dew point sequences.They are shown in table 4.
-i
l
r-
l
-
r
\'
-7-
Snow Pack Available for Melt
Some work was done in determining the mean and maximum October-April
precipitation of record for the available"precipitation stations.
These stations and other data are tabulated in table 5.The drainages
and available stations are shown in figure 1.
Table 5 also shows the years of record available for October-April
precipitation,as well as a column labeled "synthetic October-April
precipitation."This gives the sum of the greatest October,greatest
November,etc.,to the greatest April preci.?itation total from the
available record.These synthetic October-~ri1 precipitation values
and the means are plotted on figure 1.
Approximately 9 years of sn~w course data ~e available for 14 locations
in and surrounding the Susitna drainage.?roo these records,the greatest
w~ter equivalents were plotted on a map.T~ese varied from a low of
6 inches at Oshet~a Lake (elevation 2950 it)to an extreme of 94.5 inches
at Gulkana Glacier,station C (elevation 6~~D it).A smooth plot of all
maxima against elevation gave a method of dete~ning depths at other
elevations.Figure 2 shows resulting smoota vater equivalents based on
smoothed elevation contours and this relation.
Some additional guidance could be obtained ==~mean annual precipitation
maps.One such map available to us is i~~;o.AA Technical Hemorandum IDolS
AR-IO,"Mean Monthly and Annual PrecipitatUm,Alaska."The mean annua1
of this report covering the Susitna drainage is shown in figure 3.
-8-
Also 00 this figure is shown the mean runoff for three portions of
the Susitna River drainage based on the yezrs of record shown.No
adjustment has been made for evapotranspira~oo or any other losses.This
indicates that the actual mean annual precipitation is probably greater
than that given by N¥lS AR-IO.
Conclusion.Time hasn't allowed checks,e7aluation,and comparison of
the several types of data summarized here.It appears the "synthetic
October-April precipitationtl generally is 1.ess than.the maximum depths
over the drainages based on snow course ~asuremeots.There depths,or
figure 2,would be considered the least that could be available for melt
in the spring.
7urther Studies
The variation of precipitation ~th terrai~feat~~es in Alaska is important
but yet mostly unknown and unstudied.~or~effo=t should be placed on
attempts to develop mean annual or mean seasonal ?recipitation maps,at
least for the region of the Susitna River.S~e 10 years of data at about
a dozen or so snow courses could be used in this attempt,as well as
stream runoff values.
Some work has been done toward estimating ~~depth-area-duration
values in the August 1967 storm;an important input to the present
estimates.Attempts should be made to carry out 2.complete Part I and
Part II for this storm,although data are sparse and emphasizing the use of
streamflow as a data source.
-9-
The objective of these two studies ~th regard to the Susitna drainages
is to attempt a better evaluation of topographic effects,and to make
a better evaluation of snow pack avai '2;"le for melt.
Study of additional storms could give some ioportant conclusions and
guidance on how moisture is brought up the Cook Inlet to the Talkeetna
Mountains and how these mountains effec~the moisture.
Snowmelt criteria in this quick study is licited to 7 days.Considerably
more work needs to be done to extend this to a longer period.Then we
would need to emphasize compatabilit:of a large snow cover and high
temperatures.More known periods of hi~snow~~lt runoff need to be
studied to determine the synoptic val~es of the meteorological parameters.
-10-
Table ~
General level of PM?es~i"".ates for 4
Susitna River d=ai~ages
Drainage
Number
1
2
3
4
Area
(59 mi)
1260
4140
5180
5810
72-hr Pill'
(in.)
9-12
1.5-10.5
7:;'9
7-9
For 24-hr PMP,multiply 72-hr value by 0.60.
For 6-hr PMP,multiply 72-hr value by 0.30.
PMP for intermediate durations may be obtainec from a plotted smooth
curve through the origin and the 3 val~s specified.
Table 2
Sno~NIIlelt '{·.rinds preceding PMI'for Susitna Basins
for high dew point seqcence
Elevation Dailv ~~d sneed*...
(ft)(3'h)
sfc 8
1000 9
2000 12
3000 18
4000 25
5000 34
6000 36
7000 37
8000 39
9000 40
10,000 6.2
*For each of the 4 days preceding the ~Cay ~·P.
-Il-
l"""I
TabLe 3
Sno~~elt winds preceding P~for Susitna Basins
for high temperature sequence
r-Daily Yind speed (mph)
i Elevation (ft)Dav orior to 3-dav Pr~I .
1st 2nd 3rd 4th
r-
sfc 10 13 4 4
1000 10 13 4 4
2000 11 14 5 5
3000 12 16 5 5
r"'.4000 13 16 6 6j
5000 13 17 6 6
6000 14 13 6 6
7000 15 20 6 6
'r-'"8000 16 20 7 7
9000 16 20 7 7
r-10,000 1.7 21 7 7
!
Table 4
l-linds during 3-day PMP
Wind speed (mph)
Day of Day of 2nd Day of 3ro.,.....Elevation (ft)maximum P~highest PMP highest PMPj
sfc 12 9 8
~1000 14 10 9
2000 19 14 12
~.3000 29 21 18
4000 42 31 27
r-.5000 56 42 36
6000 58 44 38
7000 62 46 40
8000 64 48 41
9000 68 51 44
~
i 10,000 70 52 45
-.
Table 5
Stations with Precipitation Records in and surrounding the
Susitna Drainage
Mean Number
Yrs of record for Maximum of months for Synthetic .-Hean
complete Oct.-Apr.obs.Oct-Yr of synthetic Oct.-Oct.-Apr.Oct.-Apr.
Station Elevation precipitation Apr.prec.Maximum ,Apr.season .-J!recip.Precip '.
(ft.)(in.)(in.)(in.)
Susitna Nendows 750 4 17.18 70-71 4 23.18 13.77
Gulkana 1572 16 6.77 56-57 18 12.68 4.19
Paxson 2697 2 8.42 43-44 6 14.25 7.64
Trims Camp 2408 3 23.26 59-60 5 35.82 15.3
Summit 2401 19 14.09 51-52 20 26.59 7.93
TQl.~eetnD 3/15 35 n.l7 29-30 37 1,0.59 12.26
Sheep Mountain 2316 13 11.91 59-60 12 18.'12 4.78
I-'
N•
.~]~;1 ~~J }13j
~1 :~'~-1 '1 l-'~l "--l---~l r~'~~~1 "]]c
~....----
,$".8,
1'n\'"s C.
IS'3
1'I,j..
fttz.$~#t
7',-.
~Sfllfheff
'l~lj 0,1 "I/,r
?;II!Iian tL.
4~'Z.~""&t.tf()~/·A",:
/1:(,
-\>C;,.,
...jJ
r
\
,)'-"'--r--,
I~.,---'?
t.{I'l,,~
L~'?"l q
I{~+l.)
1).1,~le.f\-
(0\
,-t.'
Figure l.--Drainagc outlines and October-April precipitation in inches.
(Upper values m synthetic October-April precipi~ation;
Lower.mean October-April precipitation.)
J ,.f ,,1I;t~·,.;-~
f 4''1 rtfI'"
---:-J ]-1
it)
Or--]c-~l J c'l .-~)'----J
"2-0
/'I'~
+~:3
"""'.,_l (>
---I .~-]]
FiRUTC 2.--Minimum watcn"~quivalent9 of:anow pack in inchea (bllsed on nroIJ8 omooth1nB
of maximum snow cou rso 1I1elltlUremen tB.)
..,~"-1 "1
15'D+t 3
"-~I '·-1 c~~
/
r
//~
~IIY>/..~:"f(1P
'-"~_.J ......]~~-1
,I
"._]n~'l '·--1-1 "-']
,q....<..
-\-c 'S
.~~~\.i 20
"e~(PII /t4A.()..t 4c'I1"t.A R-/p
Figure 3.~-Mean annual precipitation and stream runoff (in inches).
r
"....
I
I
"....
I
r
,
APPENDIX A3
RESERVOIR HYDRAULIC STUDIES
This appendix presents hydraulic studies undertaken to design and check reser-
voir safety structures including outlet and spillway facilities,river diversion
facilities during construction,emergency reservoir drawdown facilities,and
reservoir freeboard requirements.Section 1 presents the flood routing analyses
performed for selection of capacity of river diversion,outlet facilities,and
spillways for Watana and Devil Canyon developments.Reservoir freeboard re-
quirements under operation and extreme flood conditions are presented in Section
2.Section 3 describes studies conducted to assess the effects of potential
landslides into the reservoirs.
1 -FLOOD ROUTING STUDIES TO DETERMINE SPILLWAY,
OUTLET WORKS AND DIVERSION CAPACITIES
This section presents the results of the flood routing analyses performed for
design of outlet facilities,spillways for Watana and Devil Canyon,and the re-
quired diversion capacity for the two damsites during construction.
1.1 -Spillway and Outlet Works
Selection of the discharge capacity and types of spillway and outlet facilities
has been based on project safety,environmental,and economic criteria.These
are described in detail in Sections 12 and 13 of the main report.In brief,at
each of the developments a set of fixed-cone valves is provided in the outlet
works to discharge floods up to 1:50-year recurrence interval.This facility
would reduce the potential of supersaturation of spill water with gases,espe-
cially nitrogen,and will facilitate avoiding unacceptable levels of supersatur-
ation for downstream fisheries.The main spillway comprises a gated-control
structure and a chute with a flip bucket at its end.The facility has a capac-
ity to discharge in combination with the outlet works,the routed design flood
which has a return period of 1:10,000 years.A fuse plug with an associated
rock cut channel is provided to cater for discharges above the design flood and
up to the estimated probable maximum flood (see Appendix A2).
1.2 -Design Flood Hydrographs
A regional flood peak and volume analysis for the Susitna and surrounding basins
has been carried out (l).Peak discharge,flood volume and hydrograph shape of
design floods for different return periods (1:50 years,1:10,000 years,etc.)
have been derived based on the above analysis.Generally,results from the
regional flood peak frequency curve (Figure A3.1)and single station frequency
curve for GOld Creek (Figure A3.2)agree well (within 10 percent)for flood peak
estimates.The station frequency curve yields somewhat higher estimate of flood
peaks and has been used to conservatively estimate design flood peaks (1:10,000
years).This estimate of flood peak at Gold Creek station has been transferred
A3-1
to the damsites using the regional expression to calculate mean annual flood
peak at the damsites (Reference Report 1).For smaller floods,the regional
frequency curve (Figure A3.1)has been used.Estimated flood peaks at the dam-
sites in the natural river regime are presented in Table A3.1.
Proposed reservoir operations (see Appendix AI)indicate that substantial stor-
age will be available in the Watana reservoir to route spring floods in the
river.In the summer months (August to October),comparatively less storage
will be available to route the floods.To take this aspect into account,spring
and summer flood peaks were estimated at the damsites based on similar analyses
of Gold Creek floods (1).Table A3.1 lists the flood peaks in spring and summer
at the damsites.Plate A3.1 presents the design flood hydrographs for Watana
dams ite.
In all the analyses for Devil Canyon development,it has been assumed that the
Watana development would already exist and floods would be routed through the
Watana reservoir.Plate A3.2 shows the inflow hydrographs at Devil Canyon which
are composed of flood outflow from Watana and the natural flood flow in the
intermediate catchment.
1.3 -Spillway Valves and Gates Operation
For the purpose of flood routing,assumptions have been made as to the time of
opening of the fixed cone valves and spillway gates.Theoretically,these
facilities can be operated when the water level in the reservoir reaches its
normal maximum operating level.However,to allow for operational ease,a mini-
mum surcharge of 0.5 foot will be provided before the valves and gates are
opened to pass floods.The fixed cone valves at Watana would open when water
level rises to 2186 feet and main spillway gates open at 2191.5 feet.The res-
ervoir would surcharge to Elevation 2191 while discharging a 1:50-year flood
through the fixed cone valves with normal power operation.
At Devil Canyon,no allowance of surcharge has been made on the assumption that
the Watana operation would be known in advance and valves and gates could be
opened at the normal maximum operating level to cope with a flood discharge.
1.4 -Capacity of Fixed Cone Valves
Physical size and capacity of these valves are restricted and their operational
experience limited.A review of existing facilities was made to determine the
sizes that can be used in the Watana and Devil Canyon developments with an as-
surance of quality and performance.The selection of the number of valves at
each development has been restricted by the project layout and size.A detailed
description of the type of valves selected and the reasons therefore may be
found in Sections 12 and 13 of the main report.
Six 78-inch diameter fixed cone valves,each with a capacity of 4000 cfs at the
design head,are provided at Watana.Seven valves (3 of 90-inch and 4 of 102-
inch diameter)with a total capacity of 38,500 cfs,are provided at Devil Canyon
as outlet facilities.
A3-2
,.,..
I,
"'"'"I
I
~-
r"'"',,
-(
I
,....
I
1.5 -Main Spillway Gates
Vertical lift gates are provided at the two developments to control discharges
over the main spillway with a free overflow ogee-type crest.Standard
discharge-head relationship has been used to calculate spillway capacity at
different heads.
Q =CLH 1•5
where Q =spillway discharge in cfs
C coefficient of discharge
L =effective spillway 1ength in feet
and H =head above spillway crest in feet
Value of the coefficient"C"is calculated from the physical dimension of the
structures.Procedures to calculate C may be found in standard treatises on the
subject.
1.6 -Availability of Power Flow
Generally,the power flow of the developments is small compared to peak flood
discharges.It is essentially a philosophical question whether power flow
should be considered in determining spillway capacities.In keeping with gener-
al practice (USSR,COE,etc.),it has been assumed that power flow will not be
available in discharging the design 1:10,OOO-year flow or the probable maximum
flood.However,a power flow cons i stent with system power demand dur i ng the
flood season (May through October)was used in routing smaller floods through
the reservoirs.
1.7 -Probable Maximum Flood and Fuse Plug Provision
To ensure safety of main structures of the development,the probable maximum
flood (PMF)discharge has been considered in the design of discharge facilities
(see Sections 12 and 13 of main report).A fuse plug has been provided at each
of the developments to cater for floods above the design 1:10,OOO~year flood and
up to the PMF.The fuse plug is designed to fail at an overtopping water depth
of around one foot.For details of the fuse plug,refer to Sections 12 and 13
of the main report.
1.8 -Results offlood Routing Analyses
A modified Puls method of routing has been used in these analyses.Reservoir
outflows have been restricted to peak inflows until the capacity of the outlet
spillway facilities are exceeded When the reservoir is allowed to surcharge.
ResUlts of the analysis are presented on Plates A3.1 and A3.2,and summarized in
Tables A3.2 to A3.3.Spillway and diversion capacities,as calculated,are
provided in the design of the structures (see Sections 12 and 13 of main
report)•
A3-3
1.9 -River Diversion During Construction
(a)Watana Development
Based on the dam construction schedule and acceptable level of risk of
flooding the construction site,it has been decided that the diversion
facilities will be designed to discharge a 1:50-year flood flow without any
flooding of the construction site (see Section 12 of main report).
The selected discharge facility comprises two 38-foot diameter tunnels and
has a total capacity of 80,000 cfs which is the peak outflow of a 1:50-year
flood routed through the cofferdam.Discharge capacity of the tunnels is
presented in Figures A3.3 to A3.5.The flood routing analysis is shown in
Figure A3.6.
For details of method of selection of the facility,see Section 12 of the
main report.
(b)Devil Canyon Development
Design flood for the diversion facility at Devil Canyon development was
selected as 1:25-year flood due to significant regulation of floods by the
Watana reservoir and due to lower risk and damage to the proposed concrete
dam in the event of a flooding during construction (see Section 12 of the
mai n report).
The selected facility comprises a single modified horseshoe tunnel 30 feet
in diameter with a discharge capacity of 36,000 cfs.Figure A3.7 presents
the rati ng curve of the faci 1 ity,and Fi gure A3.8 shows results of the
flood-routing analysis.
2 -RESERVOIR FREEBOARD FOR WIND WAVES
This section describes studies undertaken to determine freeboard requirements
for wind-induced waves for the developments at Watana and Devil Canyon damsites.
Two effects of wind conditions are considered:wave run-up and wind setup.The
wave freeboard is only a portion of the total freeboard required and must be
combined with those determined for seismic slump of the dam crest,etc.
2.1 -Analysi s
Standard design procedures as detailed in the u.S.ArIT]Y Corps of Engineers (COE)
Shore Protection Manual (2)and outlined specifically for inland reservoirs in
the CaE Engineer Technical Letter No.1110-2-221 (3)have been used in the
analysis.
The wind data recorded at Summit Station have been used in this analysis.Al-
though somewhat limited,these data are believed to be the most representative
of wind conditions at the damsites.More extensive wind data will be required
for final design and will be available from the climatic stations at Watana and
Devi 1 Canyon.
A3-4
-
-
,....,
I
I
Wind speeds and durations are shown in Table A3.4.Wind speeds were converted
to equivalent speeds over water using a wind velocity ratio (3).Wind-velocity
duration curves for Watana and Devil Canyon reservoirs were then developed
(Figure A3.9).A straight line relationship on log-log paper was assumed for
the curves.Based on these,the effective fetch for wave generation was deter-
mined for Watana and Devil Canyon damsites (Figures A3.10 and A3.11).The
lengths of radial lines extending 45°on each side of a central radial located
at the damsite are weighted and summed to estimate an average effective fetch
(2).The design wind direction yields the longest fetch length at the damsite.
Calculated effective fetch for wave generation is 3.4 miles for Watana and 1.0
miles for Devil Canyon.
Curves of critical duration versus wind speed for a given effective fetch were
developed using Figure A3.12.Table A3.5 lists wind speeds and duration for the
Watana reservoir along with the resulting significant wave and the limiting fac-
tor.This table shows the maximum significant wave and,hence,the design wind
characteristics.Figure A3.9 gives a graphic representation of Table A3.5.
The design wind velocity was found by determining the intersection of the wind
velocity duration curve with the critical duration versus wind speed curve for a
given effective fetch length.The design wind velocity for Watana is 40 miles
per hour with a 44-minute duration.The Devil Canyon design wind velocity is 40
miles per hour with a 19-minute duration.
The significant wave found from Figure A3.12 (4)is 3.1 feet for Watana and 1.7
feet for Devil Canyon.The sign ifi cant wave represents the average wave hei ght
of the top one-third wave heights in a stable wave chain.
Wave run-up is dependent on wave and embankment characteristics.Wave run-up
for Watana is determined using the following relationship:
Rs 1
H"S =0.4 +(H /L )1/2 COT Qs0
where:Hs =significant wave height,feet
Rs =wave run-up caused by the significa.nt wave,feet
Lo =wave length,feet
Q =angle embankment makes with horizontal,degrees
The wave length (L o )is determined from the relationship:
Lo =5.12 T2
where:T =represents the wave periods and is determined from Figure A3.13 (4).
This run-up relationship is appropriate for earthfill embankments armored with
riprap (3).Assuming a 2.25H:l.0V slope yields a significant wave run-up of 3.4
feet.For design purposes,maximum wave run-up is taken as 1.5 times the run-up
due to the significant wave,yielding 5.1 feet.Wave run-up for Devil Canyon
was determined using Figure A3.14 (4).For vertical walls in deep water,Figure
A3.14 yields a significant wave run-up of 2.2 feet.Similar to Watana,Devil
Canyon's maximum wave r~n-up is 3.3 feet.
A3-5
Wind set-up is produced from wind shear stress on the reservoir surface which
results in increased water levels at the leeward end.Wind set-up is found by
the following relationship (5):
S 1,400 D
where:U =design wind velocity,miles per hour
f =fetch,miles
D -average reservoir depth,feet.
In contrast to the fetch determined for wave generation,the wind fetch for wind
set-up is assumed to extend the length.of the reservoir.This is a standard
assumption since wind set-up is not seriously affected by the presence of curves
or discontinuities such as islands in a reservoir.The wind set-up fetch for
both Watana and Devil Canyon is 28 miles.The average depth of both reservoirs
is taken as 450 feet.The corresponding wind set-ups are .07 feet for both
Watana and Devi 1 Canyon and are rounded to 0.1 feet.
The freeboard required for wind-induced effects is the sum of the maximum wave
run-up and wind set-up,resulting in 5.2 feet for Watana and 3.4 feet for Devil
Canyon,see Table A3.4.
2.2 -Conclusions
Wave heights in both Watana and Devil Canyon reservoirs are governed by the res-
pective fetch lengths.The narrowness and bends in the reservoirs reduce the
effective fetch,and thus reduce wind-induced waves.The wind set-up for both
reservoirs is 0.1 feet.Set-up is not significant considering the degree of
accuracy inherent in the wave height and run-up calculations.However,set-up
is included in wind-induced freeboard requirements.
Wind-induced freeboard requirements of 5.2 feet for a Watana rockfill dam and
3.4 feet for a Devil Canyon arch dam are included in the total freeboard re-
quirements.When data of wind direction,duration,and speed become available,
it will be appropriate to redefine wind speed duration-relationships for rele-
vant directions.
3 -SLIDE-INDUCED SURGES
A study of wave surges that may be induced by potential landslides into the pro-
posed reservoirs was undertaken to evaluate the magnitude of such waves and
associated problems.Published works on recorded slides and associated predic-
tive empirical models were reviewed to get an insight into the potential magni-
tude of such problems and engineering analyses.An empirical approach defining
generic relationships among impact velocity and kinetic energy of the slides,
induced wave heights,and their attenuation with passage along the reservoir was
then selected to develop standard monographs.
A3-6
r
:
-
r
A set of field data on potential slides in the reservoir areas developed under
separate studies (refer to Appendix K of Task 5 -1980-81 Geotechnical Report)
was incorporated in these monographs to estimate potential wave heights and
their impact on design parameters.The following sections describe the analyses
carried out and results of the studies.
3.1 -Generic Relationships
Figure A3.15 presents a definition sketch for the terms and variables used in
describing the generic relationships.
The velocity of a slide impact is a function of the downslope distance (to the
reservoir),slope angle of the slide plane,and angle of dynamic sliding func-
tion.Figure A3.16 shows a plot of this relationship.In the present analysis,
the angle of dynamic sliding was assumed as a constant due to relatively little
variation in its value.Any slide velocity may be calculated from this figure
when other variables are known.The dimensionless kinetic energy of the slide
may then be estimated from the slide velocity,volume,and density.
Figure A3.17 presents the relationship between the dimensionless kinetic energy
of slide and the maximum potential height of the wave that could be generated as
a ratio of average depth of water at impact location.From this,the maximum
wave height generated at the point of impact may be calcul ated.
Attentuation of the wave height as it progresses in a radial direction along the
surface of the reservoir is presented in Figure A3.18.This relationship may be
used to determine effective wave heights at various points of interest in the
reservoir and especially at the dam to evaluate potential overtopping due to
such waves.
3.2 -Analyses and Results
Field investigations have estimated that the potential for the largest block
slide exists about two miles above the Watana damsite on the south bank.The
maximum volume of thi$slide is estimated to be about 18 million cubic yards
(see Appendix K mentioned in Section 3).The likelihood of occurrence of such a
sl ide is extremely remote.However,for such a case ~the wave hei ght that may
be generated is estimated at 64 feet which will attenuate to approximately 10
feet at the Watana dam.Thus,with some 20 feet freeboard available over the
normal maximum reservoir operating level of 2185 feet~the effect of such a
slide,should it occur at all,will be minimal.
Field investigations have also identified a solifluction flow and retrogressive
$lide located apprOXimately 8 miles downstream from the Watana damsite.Initial
investigations show this slide to have an approximate volume of 3.4 million
cubic yaros.A slide of this volume will cause impedence to the flow;however,
it will have little effect on the tailwater at Watana.Further assessment of
this slide mass will be necessary in subsequent phases of the project since an
increased mass may cause tailwater problems at Watana development.
Several potential landslides of much smaller volumes have been identified along
the two reservoirs,especially in the area of reservoir drawdown and along the
lakes that will be created behind construction cofferdams at the two develop-
ments.In general,the study indicates that no major impact is likely on the
A3-7
proposed structures due to landslides.Table A3.6 presents the theoretical
volume of slides that should be dislodged and dumped into the reservoirs at
their normal maximum operating levels to cause waves of heights greater than the
freeboard provided at the dams.This table is essentially presented to illus-
trate the order of magnitude of slides that would be significant in affecting
design parameters.
3.3 -Conclusions
It does not appear that potentially serious problems of slide-induced surges
exist in the proposed reservoir areas.Minor slides could occur during con-
struction and operation of the developments and could be handled without diffi-
culty.
A3-8
LIST OF REFERENCES
1.R&M Consultants,Susitna Hydroelectric Project,Regional Flood Studies,
December 1981.
2.U.S.Department of the Army,Coastal Engineering Research Center,Shore
Protection Manual,Volumes 1,2,3,Fort Belvoir,Virginia,1973.
3.U.S.Department of the Army,Corps of Engineers,Engineer Technical Letter
No.1110-2-221,Washington,D.C.,November 29,1976.
4.U.S.Department of the Army,Corps of Engineers,Engineer Technical Letter
No.1110-2-8,Washington,D.C.,August 1,1966.
5.Thorndike Saville,Jr.,IYl.ASCE,Elmo W.McClendon,Albert L.Cochran,F.
ASCE,Freeboard Allowances for Waves in Inland Reservoirs,Paper No.
3465,Vol.128,1963,Part IV.
A3-9
LIST OF TABLES
-
-
-i
Number
A3.1
A3.2
A3.3
A3.4
A3.5
A3.6
Title
Estimated Natural Flood Peaks at Watana and Devil Canyon
Flood Routing Results -Watana
Flood Routing Results -Devil Canyon
Freeboard Analysis Summary
Watana Design Wind
Volume of Slide Required to Cause Wave Heights in Excess of
Freeboards Provided at the Dams
LIST OF FIGURES
r
Number
A3.I
A3.2
A3.3
Title
Design Dimensionless Regional Frequency Curve
Gold Creek Seasonal Discharge Frequency Curves
Watana Diversion Pressure Tunnel Rating
A3.4 Watana Diversion Pressure Tunnel Rating
A3.5 Watana Diversion Total Facility Rating
A3.6 Watana Diversion 50-Year Flood Routing
A3.7 Devil Canyon Diversion Facility Rating
,...
1
A3.8
A3.9
A3.I0
A3.11
A3.I2
A3.13
A3.I4
A3.I5
A3.I6
A3.I7
A3.I8
Devil Canyon Diversion 25-Year Flood Routing
Wind Speed -Duration Curves
Effective Fetch Radials for Watana Reservoir
Effective Fetch Radials for Devil Canyon Reservoir
Generalized Correlations of Significant Wave Heights
Generalized Relations Between Wave Periods and Related
Factors
Wave Run-Up Ratios Versus Wave Steepness and Embankment
Slope
Definition Sketch
Slide Impact Velocity
Slide Kinetic Energy Versus Maximum Wave Height/Average Depth
Wave Attenuation
,-
TABLE A3.1:ESTIMATED NATURAL FLOOD PEAKS AT
WATANA AND DEVIL CANYON
WA IA~A fLOU!)PEAKS
flood Return Annual Spring Summer
Period (Years)(cfs) (cfs) (cfs)
1 :25 71,800 51,000 54,500
1:50 80,000 73,000 60,500
,~'
1:10,000 156,)'00 --
DEVIL CANYON FLOOD PEAKS
flood Ket urn Annual ~prlng ~ummer
Period (Years)(cfs)(cfs)(cfs)
1:25 74,200 52,700 56,300
1:50 82,700 75,500 62,600
1:10,000 161,400 --
TABLE A3.2:FLOOD ROUTING RESULTS -WATANA
~aximum Flow Durinq Flood lcfs)
Flood Powerhouse Service Secondary Emerqency Total Max WSEL t ft )
1:50-year 7,000 24,000 0 0 31,000 2191.6
1:10,OOO-year 7,000 24,000 114,000 0 145,000 2193.0
PMF 7,000 24,000 147,000 1 140,000 311,000 2202.0
1 At Elevation 2201.2.
i"""..
r
fi""
I
TABLE A3.3:FLOOD ROUTING RESULTS -DEVIL CANYON
MaXlmUm t ..lOW I.JUrlnq t.lDOd ~cts
uut let MaIn
flood Powerhouse Works .Spillway Emerqency Total Max WSEL (ft)
1:50-year 3,500 38,500 0 0 42,000 1455
1:10,000-year 3,500 38,500 123,000 0 165,000 1455
PMF 3,500 38,500 160,500 160,500 366,000 2466
TABLE A3.4:fREEBOARD ANALYSIS SUMMARY
WATANA DEVIL LANYUN
Effective fetch (miles)
Wind Speed (mph):
fastest Mile*
Monthly Mean**
fastest Mile Over Water
Monthly Mean Over Water
Design Wind
Design Wind Duration (min)
Significant Wave (feet)
Significant Wave Run-Up (feet)
Maximum Design Wave Run-Up (feet)
Wind Set-Up (feet)
Wind Effects freeboard Requirement (feet)
*Equivalant to 1 minute duration
**Equivalent to 43,800 minute durat ion
3.4
48
15.1
60.5
19.0
40
44
3.1
3.4
5.1
0.1
5.2
1.0
48
15.1
54.2
17 .1
40
19
1.7
2.2
3.3
0.1
3.4
po;:?::,".
-
TABLE A3.5:WATANA DESIGN WIND
Wlnd Wind Forecast
Velocity (mph)Duration (min)Hs (ft)Comments
37 90 2.95 Fetch Limits
38 70 2.9 Fetch Limits
39 50 3.0 Fetch Limits
40 44 3.1 Design Wave
41 37 2.8 Durat ion Limits
42 20 1.95 Duration Limits
46 4.5 .82 Durat ion Limits
TABLE A3.6:VOLUME OF SLIDE REQUIRED TO CAUSE WAVE HEIGHTS IN EXCESS OF
FREEBOARDS PROVIDED AT THE DAMS (in million cu.yds.)
LocatIon Impact U 1 S tan c e fro m u a m
Mean Water Depth Velocity x ='164U ft.x =5:ltlU tt.x -6)6U tt.x =~tl4U ft.x ='I5HU tt.x ='164UU ft.x =5:ltlUU ft.
Watana Main Dam*
D =150 m.90 ft/s 3.35 10.71 2B.12 48.67 67.60 97.34 264.96
Watana Main Dam*
D =150 m.30 ftls 30.36 96.96 254.65 440.73 612.12 881.45 2399.51
Devil Canyon Arch Dam**
D =150 m.90 ft/s 1.96 5.99 16.32 2B.29 42.44 57.68 149.63
Devil Canyon Arch Dam**
D =150 m.30 ft/s 17.63 53.87 147.5B 254.67 3B2.00 519.13 1346.78
*Watana water level assumed at 21B5 feet.
**Devil Canyon water level assumed at 1455 feet.
-),]1 \,1 ~~.'P1 )».,\'I
)
'/1 ~'~-)'~-,'~~1-'-"1 -1 ---~)~')~~1 ~--)
10,000
1-1--
.1--1-'
.,':'.1::'.,....
100 200 5005020101.051.005
w>
0:::>u
'1 III I \S'~.I I j It'll .'f 1 'I ..\'"~...I I ....'j"..I I I 'r"...[II.... ...NO:IE:"II -....I I'I"..-.-. -.'."-.'.'.''.'..--..' , I '.-'""'..-'.7.0 '~'.I :,-it H'iEI~~'I ~".J PF -..-::.0 ••,.:.:•~:::.:.::.~.:.'::.'-=--:.-.~.
...:IITI1sE:R~!N~[;1 ~IF wid .:.---~I::·-·:-:··.,f:::;::·::J=--:·~J:-:
6.0 _~I (i 1 '"t 1~,1d .I I *~~.~;....'1 4 ~[,~~f.J~~.,'-g ...'~~,~<.:~:1 <,ITr:.:~~!M'~;~L 1 -j"'t ."1'rlo'ni'~l\i.-'jj~~~.'~~
.~.,I.t 1 Q Ml='J NI-J I1 ~.'.-'.'...-......--'".._'0 ""'.,.!.., ',...I·~I h',..-'......--........,.,II .....--
t Il I In,~D AIN I"H .....---1--""'""-'--~..,",j!I I t~R .~j ~.It q--I ..-..))R':::'~~:.._::::':....I)"'·:.:n ~J...-"I"·
3.0 .._1.'t I L.i~~ktl(\~l ...I'. ....::::'II :~~'~~~~=-_~~":.---:.~~~~,~--..'-
..··M p....,Rlt(11:1 1·1 .....-.....-I---.--v --.:::-I~_-.8iis:,=~!I)!~--.\...-:'_.".~__I -~==-==~'f"'"~.=~~IH''''·''-'-
2.0 =~I i ~~C'~~_"..-:-:....•..._.:_~'>~~~~_.':'<~"~I'
--!-4-t-l-H i ..._.___".'...,_"~_..__..f-._.....J f'R·tt!:±t=
.-...--CjHf~C I _..~j.--..--..-I--...-1-----.
l:lll II ::::~cPlI"".".:1 :~~~%1~,"::~:::II ~.-i ~::~!I:.:-'<I'..r ,;';.:':2f~~·'<~,.~jlli~'
z 0 7 ..- •t .-.~~-!-,:...--.--......--'..--I··
w ":.'U --.,....~:...1:"::".---:::.':':.'::".iT :....::~:.
0:::-I ......I ~I---.........L I ...-_--...."iIt ,"---..::-..-__...--..........-•.-I --.:)-'.
C 0.6 If:~..l-o't l .I.t I ';C'"'.ir .t,..>-.....~tt t ---~..t···..--:.--.......,...rl/'.'-':17.-
0.5 '.':-'r "Ui t?~-- ..'..I . .-,:::';;~::~.'J .~~....H-',.r~
I I I,r J.-.'-~: •I·.-=.'.1 ...III '.'-~...rtf'.--_.- ..1 1-"....'rt ....-~.j'-'.J.-,:._..._•.,I"..-/--1-.-.W"I .....t I'"/.j"'I""..........-..I .....,'.... .I'"..•.•.........''i'
0.4 ..I'.:..• - "...f I~""•,.:~..~~t Ii I ,'.!.i ,-...::'.:~:,.:._..-~.:-:..~::.'..~".'I:..:
-~.I ...................."-f-q -'-'1 ._-..........---...".--I '"
:.._j-:",,'.'"--..···.:-=-=-·::·;··:····-:1,-:
0.3 ':':.II'j'j I .:.''-'~>.·1'.'-:.j I I II I -~~~~:-.-..,~l rml"~r:f~_""..__.....I I III'.'-------".illl ...'"
1.25 2 5
RETURN PERIOD (YRS.)
Prepared by:
R&M CONSULTANTS.INC.
DESIGN DIMENSIONLESSR'EG10NAL FREQUENCY CURVE
ANNUAL INSTANTANEOUS FLOOD PEAKS
FIGURE A3.1
Prepared for:
•
-!
,.....
!
!
l .
,....
i
,
,..,.
I ..,..,..
I I • I
I ,,.I I
• !
,,I I :I I
I
I I I ,
.I I I I
i 1 I
I AiNIIU
I ;..;.-a~~
I'..,.I-II ./A GI·.Ql:
100 T!./t l.;I......
90
80 -.........
70 >+'--I
....
60 -
en ~.-~11:.....-._--.-~.~
50 ---.~•=:::::=:lI
U -..--
(I)
-~--0 40 ..,........,...-0 --'---+-0-
z 30--.,.,
w '.
C)..'-t-a:,;
,.
«.,:x:I l ,u 20 ..,--,--
(I)lOt -I ,:
0 ,,,,I,I
1 ~I
I '--i ,
I ,I ,
I I I
I I I,
!~I !
10 I I I I
2 5 10 20 50 100 200 500
EXCEEDENCE INTERVAL -YEARS
SUSITNA RIVER AT GOLD CREEK
PERIOD OF RECORD -1950-1980
ANNUAL SKEW IS 0.6830
MAY-JULY SKEW IS 1.130
AUG -OCT SKEW IS 1.134
Preoored by:Prepared for;
~~~jM SEASONAL DISCHARGE
,~~~(~I=l&M CONSULTANTS.INC.FREQUENCY CURVES
FIGURE A3.2
-"~--)"~-~1-----1 I --~]l-~-]--~-lh'-1 "--l '--~--),--)
ULL OPEN~<,
,,-"-}
//
/'V.//
GATE OPEN,NG 80 %(TVP I-.y'?
70 V//p"/
:~/--
40
TUNNEL CLOSED
10
50
1500 1510 1520 1530 1540
HEADWATER ELEVATION (FT)
1550 1560
WATANA DIVERSION
II FREE II FLOW TUNNEL RATING
FIGURE A3.3 iiJ
'~J h~l t~~"-~=J'~-lr-"~'lc~l -"~"~'-'l -~-'-'1 -'1 ,""~.)<'"')
60
50
40
0
0
0-..
~
(f)....
0 30~
LaJ
Cl
a::
<[
:J:
0
(f)
0 20
10
~~
-~
~~
~
/
~
/
/'
WATANA DIVERSION
PRESSURE TUNNEL RATING CURVE FIGURE A3.4
1470 1480 1490 1500 1510 1520
HEADWATER ELEVATION (FT)
1530 1540 1550
•
h-l
100
r-l --"}1 1
80
0
0
0-
>C-en 60
LL.
U
~
UJ
f.:)
a::
«
:I:
u 40en-
0
20
/
/
/
/
-------~~
SINGLE TUNNEL----"~TWO TUNNELS~~
~
1470 1480 1490 1500 1510 1520
HEADWATER ELEVATION (FT)
WATANA DIVERSION
TOTAL FACILITY RATING CURVE
1530 1540 1550
FIGURE A3.5 •
26242220181214 16
TIME (DAYS)
108642
MAXI~UM ELEVATIO~1536 FT.
T'1'\..
l-V ~/-V '""
/f-
-/v
I I I 1 I
1480
1540
z
o
~
~1510
w
....J
W
1470
1520
1530
a::1500
w
~
eX
~
o 1490
eX
w
::I:
MAXIMUM INFLOW 81,100 CFS
INFLOW
MAXIMUM OUTFLOW 80,500 CFS
o 2 4 6 8 10 12 14 16
TIME (DAYS)
18 20 22 24 26
WATANA DIVERSION
50 YR.FLOOD ROUTING
FIGUREA3.6
1 1 ;e-I\wcel ;°1 C~l 1 -~-'1 I'"'']1 ;~-···l ")
50
40
0
0
0-
>C
~30en
lL.
u
~
w
(!)
a:«
:I:
u 20
C/)-
0
10
-------
~~
~.
~
/
/
,/'/
,//
V/
880 890 900 910 920 930
HEADWATER ELEVATION (FTl
DEVIL CANYON DIVERSION
RATING CURVE
940 950 960
FIGURE A3.7 •
~...,:
ll.
z 950
0;::ELEVATION 943.5 FT.
c{
I>940w
....I
W
ct::930
w
I-
c{
~
0 920
c{
w
:I:
910
0 2 4 6 8 10 12 14 /6 18 20 22 24
TIME (DAYS)
I!""'\
I
MAXIMUM INFLOW 37.800 CFS MAXIMUM OUTFLOW 37,800 CFS
/~__I
.-...
INFLOW\
~~
~UTFLOW
"
I I I I I I
-,
I (f)
ll.
0
20
r w
(!)
{ct::«
:r:
0
(f)-0
10
,-
I
-40
30
o
o 2 4 6 B 10 12 14
TIME (DAYS)
16 18 20 22 24
DEVIL CANYON DIVERSION
25 YR.FLOOD ROUTING
FIGURE A3.8
-1 ~-~1 r c ']"xl (...y.').)•..._}},-1 --1
100 I I I I I
10000010000
WATANA RESERVOIR WIND
1000
(MINUTES)
WIND FOR WATANA FETCH I ~---J::::::=---~__
10
WIND FOR DEVIL CANYON FETCH
DEVIL CANYON DESIGN WIND
(40 MPH.19 MIN.)
10 'I I , I I I I , ,"!,I I I " ,'I", I I I I "I , , , I I I ""I ,J I I
I
20 I I \\
~
~t----I ~WATANA DESIGN WIND
2:50 t--~................~,/t (40 MPH.44 MIN.)---41-------------11--------------1
o
I&J
I&J
CL.
en
o
z
WIND SPEED-DURATION CURVES
FIGURE A3.9 m
COl .CC'-'J _'--cO].~...']1 --]'--1---1 '----J,---1 ,--1
FIGURE A3.IO Il~~(~l
"'oJ.00
u\
SCALE ~1/2 I,MILES
'/."!>oo
~~-~~-
/
00 /
'/.':>/
/
'/."!>oo
...~
2!)OO~~
FLOW
~~~~~
...~j
2300
,,00 I
~
~-'
-~~
EFFECTIVE FETCH RADIALS FOR WATANA RESERVOIR
~~Q"\~~r--'~",~'~~
.So 0-----".---"~"'~~'-t,,-
~~-...~
~~~...."'.
e]"eCC C
)e <'-1 ,c.--'J ~=;C:'1 '1 ,..-',--]1 --C=--1 ,~--l -~1 -']J
I MILES
I
•
D
o 1/2i _
FIGUREA3.11
SCALE
o
DD
'C::>
EFFECTIVE FETCH RADIALS FOR DEVIL CANYON RESERVOIR~
2500
-----.<.~
(
\j ~
~
'),<]~<1 1 '«<']'1 1 ':,~l '<1 1 1 "1 ~<l
.J,tF,.1 0.2 0.3 0.4-O.G 0.8 I 2:5 4 !l 6 8 10 20 ~40
t-...."'-'"~....'"'""'I....'"r....I "'-I'..'f....~':'I..'"'k "f't-..",I I
.,"'A..'"'I.""--""",r-...'II I~J t'o-IJ'I '"I';t'k :1--..1"~"')"7 ,1.'0
'"i 'It 'J "l.~1 r-....f '-!'..""r-...I 'i'-..~"I",......IJ l(~i'.~'''[1,/i'.J Ito'~""/~""~'"1"-.'llt'.."f!J II'.1/"-l'r-:,N r,i'.,,["\~,Z"f...60
,f'...."f..../"""~'I..'"''',~,~"hl '-~I'..r-,i'..I '"Ir--...I/"I r"Y'//~,I).''J ~,
150~"""i.~,'f.....1'1.."',~r,'Jr.."l:f 1?/",lA,~['''N /;1":---''1.~'/-............50
~~~'t..t'/.../\f..."-,'~"I'-...........~"l/:.,Ij,0 ~L /N l'j /r-...:ol e,~I'.,r-.....~"J,
L ...~~~"f..,.!r-£"'"1'-..1'::'i~~r-.."'k ~I "K 1/i,,'r(f"'if if-~/'r..""l.~40)..,"f....i'-..""J "",,-{"'J",N -to I-0 '"'/./.t ./"1/I'i-"J 40~~/".,........,"'{.,.I"J ........"'i.""""It-.~~e'Ie 0 ""('I .'f.,r-...'"~l,)..,10"I ,",'"I""-.,'""r,1,r-..f.~'6'"J"II f'..../'"If ""~1 "I "I -;f..I ~i ""r ,<''r...'[~]l::J""~,~:,r:-.,I!'c 'I-...r 1
f/l b 30 """i '"I ;;;...~.'",,1/,II ........./'"r"'cl ,..:Fl ......J"/f1i-:-'~.,...J )..,I'"30~.l /"I If","",I ,r-.....r--..'""I.e''t.i",~""r>.......1 ~I t'...'1 'j=!...........,"f',J!2''''~'''/"I 'j..~\..',"J.~""""'"i?(N:'J',I
;:~,,/fi'-J /'""'f'.,~"r-..I I,~I ..,'-/I-...1 "'l:...'f-...f-.'i..,"....~/~iJ r-..f'1
§~/,"J,'"',"fI............J'q'/1,0 /","",f-..'/'..,,['l..,'f.~-§~I'I'i.~B to ~I /'{I'r"~!2 ~/qJ $f........1f...'I,"f'\"\,i,""..:t;j,i~..,I "J,20
!"/.......I /N "','"'qe:'~~"I "f'.~~.J..~rf"it,ij..:':f:.-i:j 3 IN
/N,,I /"~.,"q~"r,I",/I'-..~g~,,~>-'1:.'11'~~......1'fl'J'":::::~,,~~~o
"'f......// /'f.o..t:.""~,r,[I'-..,J"-,I";'N ~ll'f,'f....,/'{'f~~~~..>,
I /'f~i ;"~'f~/"~~,("~,r....~~'~l :L y::....-..L'(~~);'('{~~
IOO!-r.1"--L.-~*-~-:f-,,*-J.,L~7f-J--i7:~......jJ.-/.....::u~~ULJ.~L..J..L!~~l-!-=~!;J.L..;i-.A.-~l.....O~~~~~
GENERALIZED CORRELATIONS OF SIGNIFICAf-:lT WAVE HEIGHTS (H,)WITH RELATED FACTORS
(DEEP WATER CqNDITIONS)
LlGfHO:
501l~Un"rt;rtMnt li9n,ncCIlI wov .....r;rt.,ln f.l1•
.I)nhtd UN'rtllr..lnt minimum wil'ld duratlon,in mlnl/lu,
~In<l for 94nl/'Ollo"0'WCl'II he"llhtl indiccrflCl 'or correapondl~
wllId 'I'Iloe/li ..and fllell di.lonce FIGURE A3.12
SOURCE:REF.4
]~~~l '--~-]-~-l =~"--,~'~-']~"~l '~"l .-'1 ····'1 "~-~--~J =~]·-1 c~/l I '1
50
so
70
20
40
30
30 40'0
30 ~O20
20
!.45 S 8 102
(l,.2 0.3 0.4 0,6 0.6 I 2 3 4 5 6 8 10
EFFECTIVE FETCH DISTANCE IN ~11.£9
0.2 0.3 0,4 o.s 0.8 -I
100.1
aoo,l
50
70
eo
il:
~...."0
~i"..""..i J 30
~~~-g~""...>-
oz
i 20
GENERAL.IZED RELATIONS BETWEEN WAVE PERIODS AND RELATED FACTORS
(DEEP WATER CONDITIONS)
FI GURE A3.13
SOURCE:REF.4.
•
--=-."...V!.:l=.:······C~~-:.~~I~~1112IIC
~OTE:(4)901ld llnes in flg (a)and (b)apply to smooth embankment slope,.
(b)Llnes W·l to w·e in FlS (b)apply to rlprap .lo?e,d1lcussed (n para 7 of
ETL 1110.2·8.mele line.il,o corre'pond to curve.1:01.2 to 4 in F1&(al.
FIGURE A3.14
SOURCE:REF.4
I"'"'
I
r
i
I-
r'
i
r-
I
-l
E
NATURAL HILL SLOPE
POTENTIAL VOLUME --~'=c==I"
OF SLIDE
GENERATED
RESERVOIR WATER LEVEL
D
RESERVOIR BOTTOM
x
VARIABLES:Vim =SLIDE IMPACT VELOCITY WITH WATER
(;j =GRAVITATIONAL CONSTANT
S =DOWNSLOPE DISTANCE
i =SLOPE ANGLE OF THE SLIDE PLANE
¢S =ANGLE OF DYNAMIC SLIDING FUNCTION
Vo =INITIAL SLIDE VELOCITY (ASSUME =0)
Vol =VOLUME OF THE SLIDE
D =MEAN WATER DEPTH
Cls =DENSITY OF SLIDE
Cl =DENSITY OF WATER
KE =KINETIC ENERGY (DIMENSIONLESS)
'TJ MAX =MAXIMUM WAVE HEIGHT
X RADIAL DISTANCE FROM SLIDE
H =WAVE HEIGHT AT DISTANCE X
DEFINITION SKETCH
FIGURE A3.J5
-]----1 -J '--'~Cl 1 --=,~-,'~-l ~---~l ~-1 --~-J ~'l
328.1
u;......
I-
!=
>-
I-
(3
32.8 0-J
W>
W
Cl-0
--'V)
15_0
10.0
100.0
150_0
3.3
10000_0
10000_0 15000_0
1000_0
DOWNSLOPE DISTANCE (FT)
500.0 1000.0 1500_0
100-0
100_050.0
1.0
10.0
100_0
V).....
::E-
>-
l-
i}g 10_0
w>
w
Cl-
0
-J
V)
DOWNSLOPE DISTANCE (M)
SLIDE IMPACT VELOCITY
FIGURE A3_16 I ~~~(~I
~---1 -~-'--l -~-'--1 -~~1 ----1 --1 --)---'1 -----1 1 ~--J .--1
v
V
/
,//
//'
/./
/./,/
./
.......V VV
/'
,/vV'
VV/'V
./
."/'
././
.//'
/'/'
V /
......././
/'
V .......V.,-
/'/'V
/./
~/,,/
0.1
1.0
0.5
o
'-
l!l 0.1E
~
0.05
0.01
0.0001
0.5
0.0005
SLIDE KINETIC ENERGY KE (DIMENSIONLESS)
1.0 50.0 10.0
0.001 0.005 0.01
SLIDE KINETIC ENERGY KE (DIMENSIONLESS)
SLIDE KINETIC ENERGY
VS
MAXIMUM WAVE HEIGHT/AVERAGE DEPTH
50.0
0.05
100.0
0.01
0.005
0.001
0.0005
0.0001
0.1
o
'-'""E
~
FIGURE A3.17 I ~~Il~I
"..,
I
1.0
RW =3.0 (D/)()•H =RW (q MAX)
0.8,....
I
•
~,....::r::
i ~
lJJ::r::
lJJ 0.6,....iI
...J
<l ~Z
~a:,...a:o =25 M =80 FT.
!0 o =100 M =330 FT.
u..0.4 o =150 M =490 FT.0
z o =400 M =656 FT.
0
~
S?ia:u..
0.2
,....
I,
0 •
0 2000 4000 6000 8000 10000
DISTANCE FROM SOURCE (FT.)
i'
0 6560 13120 19680 26240 32800
DISTANCE FROM SOURCE (FT.)
r
WAVE ATTENUATION
FIGURE A3.18
1 """"'""Y~l '"~l ~""J "1 "-~]
{\
I \__LOW
L ______t\_.d':!!tLJ1!!_
jl~FIIICIL~AT ~ULL CAMCITY
/-("-1'OW£1lHOU8l AND J I--
OUTLET MCIL~?rOl'iAT'"I (MATfHIIIll INl'I
__-3
A~
II V
~OIITFLOW
J
I I
\\
/~INl'LOW
I'"~TFlJ1W MATCHING ~li FLOW r-
'NO~cY'i
~:'-~-_______J OP[~AT""
I'OW£IIHO*_
OUTLET MelLin,
I FULL CIt_ITTiPOW[IIHOUlll:_
OUTL[T ~ACILm[S i[~ATINi
(rM.TCHIIHl Il~OWI
3lI3025III20
TIllIE (DAYS)
10
I
)"'-1 ~
\\/"OUT~OW
IIFLOW.U ,
I
Ii \;~\
1~M[~llE:NCY SPLL_Y \,I OP£RATIN8
!\
!(\"
\
I i
\
!1/MA'N SPILLWAY
opmATM
~...lPOW[RHOU~AND OUTLET
FACILlTI[S AT FULL CAIW:ITY
OUTLET F:a.CILITIE5 OPE~ATIN'
240
40
34lO
210
80
320
120
~110
..
i 200
3D~251520
TIIII£IDAYSI
10
40
I.cl
10
10
110
140
110
~'0
....rOO
3lI~IIIIII10
T..lDAYaI
10
10
10
10
10
~
10
70
...
"10
I
~40
1'50 YEAR fLOOD
l_~l
I'IO,OOOYUR fLOOD PROBABLE MAXIMUM fLOOD
PLATE
A3.1
SUSITNA HYDROELECTRIC PROJECT
WATANA
HYDROLOGICAL DATA
ALASKA POWER AUTHORITY
~il
35so251520
TIllIE (DAYS)
10
PftOBABLE MAXIMUM !fLOOD
I~k
rl---EME~GENCY ~PILLWAY
OP£RATIiG 1\
I \
I \
\
I \
I
\
~I
\
IIv-MAIN .,LLWAY.OUTLET FACII..ITI[S
V
~I
'-OUTLET FACILITIES
AT FULL CAPillCITY
2202
1100
211.
211.;
~2114;:
~
..2112
'"15~!2110
211.
2'"
2184
35~251520
TIIII£lDAYaI
1'10,000 YUR fLOOD
10
A !&AX,WiL 211..1
/~I f--INP"LOW [XC[[DINIOIIT~OW CAPtl/:ITY
MAIN SPILLWAY OP£~AT_
(MA CHIIHl IIWLOWI
/
/
~OUTL[T ~ACIUTI[s AT
FULL CAl'AClTY
_1IHOUlII:",,~OUTLET ~ACILITJ[lJ OP[~ATIl8
IMATCHIl8 )
1101
2114 o
2'"
2200
2111
21"
~211.
S~2114
~
'"21ftCi;
1 2110
383010"'lOIS
T.-lOotrII
1'50 Yl:M !fLOOD
(_Ill
rtIAX 1IlIEL'2.....
,......-....;;;.i-
f "'-/\
1\
/~';I[t=r~/~___OUTl.!T1IIICLJT1l1
O'f~.II1'''''(MATCH_IIInDWlI'"o
-
II"
2101
2111
2100
;211.
11114~
'"liN
ii 1110
-~J ·-····~l ~...,..A···l <·~··~··l ·~-·-~1 'J
360 I Il1O
"~RVOlllIIr-:/~\INFLOW I OUTFLOW SO
320 180 /""\.
ilf ~~.I \40
/INFLO ·OUTFL lW
280
I 140 I "'-t.1--.~,~I
..-OUTFLOW "-30u '~ER_ANO240120~
20/~INFLOW.OUTFLOW'i 8I!TLET FACITILIl1t:S
\RATING
INFLOW-~200 100 /"--r\/(EMERGANCY 10
180 ~:T 80I't-POWERHOUSE I 'r-CLOSED 0
...-OUTFLOW 60
0 5 10 15 20 25 :so
120 IIATCHINll TillE (DAYS)
INFLOW
I
RESERVOIR ROUTIN'
80
1'50 YR.FLOOO
U/~~~I~40 I--~II'-IIAIN r'LLWAY lPERATINrG
40 ~v t RATI
"
20 V '"POWER OUSE AND
OUTLET FAClLITrS
POWERHr-osE
OPERArNIl
o 0 5 10 16 20 25 :so 36 0 :so ~o 5 10 16 20 25
TIllE 10AYS)TillE (DAYS)
PROBABLE MAXIMUM FLOOD RESERVOIR ROUTING 1410
1'10,000 YR.FLOOO
g 1458
lrPOWERIrouSE AJD
1480 ~/OUTUT FACILITIESRESE~Olll OPERATING!14M rELEVATION;;l
1470 c '-IIA)~T~lI.r~L~':'CY ~1454 .WSEL '1456
OPERATING a
1460 \POW~II!
/\1462
1450
OPERjl1lU \1450
0 5 10 15 20 25 30
,.:'"TillE (DAYS)
~1440 \1480
RESERVOIR ROUTING~I'50 YR.FLOOD!1450 1458\"I /r-:L~LTLET FLILITIES ~NO!!>
~1458
IIAIN SPILL :r OPERATING
1420
~Id
>-IIAX.JSEL'I4551410~1454
~
1400 ~1462 I ALASKA POWER AUTHORITY
1460 I SUSITNA HYDROELECTRIC PftOJECT
0 5 10 16 20 26 30 35 0 5 10 I!l 20 25 :so 38
TIllE IDllI'S)TillE (DAYS)DEVIL CANYON
PROBABLE MAXIMUM FLOOD RESERVOIR ROUTING HYDROLOGICAL DATA
1'10.000 YR.FLOOD •I~LATEf-------------MARCH 1982 A32
ACRES ....ERiC....'NCOftPOltAT[Q
APPENDIX A4
RESERVOIR AND RIVER THERMAL STUDIES
1 -INTRODUCTION
Temperature regime of the Susitna River below the dam will be greatly altered
from its natural state after impoundment of the proposed reservoirs at Watana
and Devil Canyon.The reservoirs will act as heat traps during summer,resulting
in the river water temperature being lower in summer and higher in winter when
compared to natural conditions.River water temperature is of paramount impor-
tance to the fisheries,and changes in water temperatures could have serious
effects on the fisheries unless controlled carefully.
This appendix describes the studies conducted to analyze natural and post-
project temperature regime of the Susitna River in the reach from the Watana
damsite to the confluence of the Chulitna River with the Susitna River.Studies
were carried out in two parts.First,a simulation of the monthly temperature
regime of the proposed reservoirs was made to determine typical temperature pro-
files within the reservoirs and temperature of outflows.A heat balance in a
series of river reaches below the dams up to the Chulitna confluence was then
made to estimate river water temperatures.The process was iterated several
times by modifying power outlet levels until water temperatures in the reaches
below the dams reach environmentally acceptable levels.
Section 2 describes the reservoir temperature studies and Section 3 details
temperature regime analysis for the river below the dams.Microclimatic effects
due to post-project temperatures in the reservoirs and the lower river are out-
lined in Section 4.
2 -RESERVOIR TEMPERATURE STUDIES
2.1 -Introduction
The objective of the reservoir temperature studies was to determine,for repre-
sentative years,the possible temperature profile within the reservoir of the
selected development plan.
The results from this study are used to determine the best configuration of out-
let works and power intakes to achieve environmentally acceptab"e temperature
levels in the river below the dams and maintain,to the extent possible,down-
stream ice cover growth and stability.
The model used for this study was the Reservoir Temperature Stratification of
the Corps of Engineers developed by the Hydrologic Engineering Center (1).The
model simulates the vertical distribution of water temperature within a reser-
voir on a monthly basis using data on initial conditions,inflows,outflows,
evaporation,precipitation,radiation,and average air temperature.Outflow re-
quirements can be specified in terms of releases or target outflow temperatures.
The model is based on the energy budget approach schematically represented in
Figure A4.1.
A4-1
The Reservoir Temperature Stratification model is not the most precise model
available in the field for such analysis.Other models,such as the MIT model,
could perhaps give more detailed and precise results.However,the amount of
information required to produce this higher order of accuracy is substantial and
is not available for the study area.Information that is available on climatic
conditions and water temperatures for the Susitna Basin essentially dictates the
.level of analyses most effective in both cost and in results.Analyses per-
formed on other lakes and reservoirs indicates that the model used here provides
reasonable indication of reservoir stratification and temperatures.Also,temp-
erature measurements of Garibaldi Lake,in British Columbia and Bradley Lake in
Alaska indicate that the general pattern of reservoir temperatures estimated by
the model is similar to these observed patterns.Figures A4.2 and A4.3 show
observed temperatures in Garibaldi Lake and Bradley Lake,respectively.
In the model,the reservoir is divided into horizontal layers of uniform thick-
ness and an energy balance between the individual layers,the atmosphere,and
the inflow is performed.Outlets,at specified levels,release water to meet a
given total discharge.The selection of the outlet level from which water is
released is determined such that the outlet temperature is as close as possible
to prescribed target temperatures.
Temperature model i ng of Devil Ca nyon reservoir assumes Watana is on-l i ne and
operating under normal power operation.
2.2 -Model Description
(a)Model Characteristics
The Reservoir Temperature Stratification model is based on an energy budget
approach as represented in Figure A4.1.The principal energy balance re-
lationships of conduction,mixing,diffusion,evaporation,and insolation
are represented by standard equations containing the hydrological and
meteorological variables required to estimate the relationship.In each
equation,a regional coefficient is used to describe site specific condi-
tions.These coefficients are briefly described below:
-Air Temperature Coefficient is an index of energy transferred by conduc-
tion due to the difference between the air and water surface tempera-
ture;
-Inflow Mixing Coefficient is an index of energy transferred to the inflow
due to the difference between the modified inflow temperature and the
temperature of each layer as the inflow descends through the reservoir;
-Vertical Diffusion Coefficient is an index of energy transferred between
adjacent layers due to the difference in temperature between layers;
-Evaporation Coefficient is an index of energy lost from the reservoir
water surface due to evaporation.The remaining energy reqUired for the
heat of vaporization is obtained by cooling the air;and
A4-2
,--'
f-~-'
,....
,..,.,
I
,....,
I
,..
!
(b)
(c)
(d)
Insolation Coefficient is an index of energy transferred to the reservoir
due to solar radiation.The solar radiation energy that is not effective
in warming the reservoir is lost because of the absorption and reflection
with the atmosphere and reflection at the water surface.
The values chosen for these coefficients are from a similar reservoir study
undertaken in Oregon.These were assumed to be the best available since no
regional coefficients have as yet been determined for Southcentral Alaska.
These coefficients are listed in Table A4.1.
In the model,Watana and Devil Canyon reservoirs have been divided into
horizontal layers of uniform thickness of five feet.This is believed to
give a reasonable degree of profile definition and models approximately 500
feet in depth of the reservoir.
Initial Conditions
Initial reservoir elevations and storage volumes are taken from the reser-
voir power simulation studies performed by Acres (Appendix A1J.These stud-
ies simulate average monthly elevations and storage volumes for specified
reservoir operation.
September was initially considered as the starting month for modeling,
since it appeared to have the most stable water surface elevations given
normal power operation.However,the initial temperature profile was dif-
ficult to define because of the possible large variation in heat inflow to
the reservoir during the summer months and the consequent likelihood of a
wide range of temperature profiles.After several trials,May was selected
as the starting month,since it proved to have the most stable temperature
profiles due to the depletion of the storage for power generation and low
inflow volumes (hence low heat flux into the reservoir).It was found that
if the model was started in September,after two years of simulation May
was again in an almost isothermal condition of 39°F.Water at this temper-
ature is at its maximum density,and therefore is believed to be a reason-
able starting temperature based on similar studies in cold regions.
Inflow
Watana and Devil Canyon reservoir inflow,outflow,and maximum and mlnlmum
storages were obtained from the reservoir simulation studies for reservoir
operation cases (see Appendix Al)and are presented in Table A4.2.Two
additional sets of inflow and out,flow corresponding to wet and dry year
streamflows for Case A were used in the analyses to determine the range of
operating temperatures (see Table A4.3).
Meteorological Variables
The determination of representative meteorological periods was based on the
number of degree days of heating.It was assumed that the cold,mild,and
average conditions were represented by the highest,lowest,and average
number of degree days of heating.The cumulative degree days of heating
A4-3
for Talkeetna and Summit Stations are given in Figures A4.4 and A4.5,re-
spectively.A review of this data indicated that average conditions may be
used to determine typical reservoir conditions.Average air temperatures
are based on recorded temperatures at Summit and Talkeetna Stations.
Average monthly precipitation figures,based on 35 years of record,for the
Summit Stations were used in the analysis in the absence of good records at
the damsites.Similarly,monthly evaporation data from Matanuska Valley
Agricultural Experimental Stations were initially used in the model.A
correlation was established between the evaporation estimates at Watana and
Matanuska Station (Appendix AI)based on one-year observations at Watana.
The differences between the values were small to cause any significant
change in the model results,and ~he Matanuska data has ben retained in the
model (Table A4.4).Solar radiation values were estimated from Corps of
Engineers model data (Figure A4.6).
(e)Inflow Water Temperatures and Calibration of Model
Occas i ona 1 water temperature data recorded by the USGS are avail ab 1e for
the Gold Creek and Cantwell gaging stations.The data is limited and not
continuous over any period of time.Cantwell records were averaged to ob-
tain mean monthly inflow water temperatures at Watana.Where such data was
unavailable,temperatures were interpolated between available monthly val-
ues.All the modeling of Watana reservoir were carried out with these syn-
thesised monthly inflow water temperatures (see Table A4.5).
During 1981 actual water temperature measurements were made near to Watana
damsite as part of water quality monitoring program (2).This data,along
with simultaneous stream discharges at Watana and climatological data at
Watana and Talkeetna,were used to rerun the model to assess the sensitiv-
ity of the outflow water temperatures using synthetic inflow temperature
data as discussed above.The results compare very closely (Table A4.5)in-
dicating the reasonableness of synthesised data in evaluating post-project
conditions.
Inflow temperature into Devil Canyon reservoir was assumed as that of the
Watana outflow temperature with minor modifications to account for interme-
diate catchment discharge and heat exchange with atmosphere in the interme-
diate shallow reaches of the reservoir.
(f)Model Analyses and Results
With the streamflow,water temperature and other climatological data,the
model was run to determine the temperature profiles in the two reservoirs
for several power intake configurations.The anlyses covered different
operations (Cases A and D,see Appendix Al for details)and Watana reser-
voir filling sequence to define the range of downstream conditions that
could be expected during construction and operation of the projects.Out-
flow temperature as modeled are input to the downstream river temperature
simulation model (Section 3)to determine the temperature regime in the low
river because of the reservoir operations.
A4-4
,~
I
I
t .
r
Model results generally confirmed that single power intakes capable of
drawing water at the lowest operating levels of the reservoirs would be
unable to meet the minimum downstream temperature requirements of 42.5°F
during summer (Section 3).In most months,draw off nearest to the reser-
voir surface yielded outflow temperatures closest to natural temperatures.
An intake structure design with such capability to draw water at or close
to the surface over the entire drawdown range of the reservoir at Watana
was developed but not found to be cost-effective when compared to a rela-
tively simple multi-level structure with four discrete opening levels.The
latter configuration in combination with a single power intake at 70 feet
below the reservoir operating level of 1455 feet generally provided down-
stream flow temperatures well above the minimum required during the summer
months June through September.
In winter,the two reservoirs reach fairly close to isothermal conditions
with water temperature around 39°F.The model is relatively crude in its
representation of ice formation in the reservoir and the anamodous expan-
sion of water between 39°F and 32°F.This results in the inability of the
model to define winter temperature profile clearly in this range (see
Fi gures M.8 and M.10).If thus appears that wi nter and outflow tempera-
ture will be close to 39°F no matter where the water is drawn.It is,how-
ever,logical to assume that somewhat cooler water may be drawn from close
the surface below the ice cover when formed.Figures A4.7 and A4.10 pre-
sent monthly temperature profiles in the two reservoirs.Plates A4.1 shows
general arrangement of the selected intake facility at Watana.
Typical computer output for Watana and Devil Canyon temperature modeling
are presented in Attachment 1.
3 -TEMPERATURE REGIME OF SUSITNA RIVER BELOW DAMS
3.1 -Introduction
An in-house computer model was used to study the temperature regime of the river
below the dams.The Susitna River between the damsites and the confluence of
the Chulitna River is divided into representative reaches.These reaches are
selected to model effectively the hydraulic characteristics of the river.A
daily heat balance in this series of river reaches is simulated in the model to
determine the water temperature at the downstream end of each reach.The compo-
nents of heat exchange used in the balance,determined from empirical relation-
ships presented by Michel (3)are shown in Figure A4.11.Several other possible
sources of heat such as the conduction of heat from within the ground and heat
gained or lost from ground water flows have been neglected because of their rel-
atively small magnitude.
The procedure involves a daily heat balance to be made stepwise starting from
the upstream section of the first reach to the downstream section of the reach.
The water temp~rature,calculated from the net exchange at the end of the first
reach,is then used as the starting temperature of the second reach.This pro-
cess was continued until water temperatures in all the reaches had been calcu-
lated.At each step,the net heat exchange was added to the volume of water
passing through the sections.
A4-5
3.2 -Data Input
The coefficients required for the computation of the components of'heat balance
are insolation,emissivity and albedo.These coefficients are described below:
Insolation Coefficient is an index of energy transferred to the water due to
solar radiation;
Emissivity Coefficient is a measure of the radiation emitted by a surface.For
water,the emissivity has a very small variation with temperature;and
-Albedo for Water is an index of the amount of the atmospheric radiation
absorbed by the body of water.
The values of the insolation,emissivity and albedo coefficients adopted for the
analysis are 0.97, 0.97,and 0.1,respectively.These values are the generally
accepted values for water (3).
Long-term climatic records at Talkeetna and Summit collected by NOAA have been
used as input in the analysis.The principal climatic parameters used in the
model are average daily air temperature,ratio of recorded sunshine to maximum
possible sunshine,wind speed,precipitation,barometric pressure,and relative
humidity.Air temperature and the sunshine ratio are the two most important
parameters of this set.
In the analysis,the average daily air temperature has been assumed to be the
average for the period of record (1941-70)for Talkeetna and Summit Stations.
The average temperatures of the two stations are used for the upper reaches
(above Devil Canyon),since this portion of the river is at an intermediate
elevation and latitude.Average Talkeetna daily air temperatures are used in
the lower river reach.The ratio of bright sunshine to maximum possible
sunshine is taken from the average number of clear,partly cloudy,and cloudy
days for each month over the period of record for Summit,and have been given
values of 0.9, 0.5,and 0.2,respectively.
The other climatological parameters such as wind speed,rainfall,snowfall,
barometric pressure,and relative humidity are taken as the average monthly
values at Summit for the period of record.The average monthly values of these
variables were determined to be adequate due to their relatively small impact on
the estimation of the change in water temperature.
The model in this analysis does not reflect the diurnal variations in water tem-
peratures.In winter,this diurnal change in the water temperature may have a
significant variation about the daily mean due to the normal range in air tem-
peratures.
3.3 -River Characteristics
In computing the heat balance of a river system,the model requires specific
inputs which describe the hydraulic characteristics of the river and the flow
conditions.The study s.ection of Susitna River has been divided into 20 reaches
from the Watana damsite to Talkeetna.Each of these reaches comprises several
A4-6
,-
,..
I
i
sub-reaches which have been surveyed (see Hydrographic Survey Report,Subtask
2.16)and is evaluated to determine relationships which would describe the mean
velocity and average depth for a given discharge.The U.S.Army Corps of Engi-
neers backwater program (HEC-2)has been used to obtain average depths and velo-
cities at various discharges (4).A power curve fitting routine is then used to
determine the relationship between mean velocity and depth flows.
As explained in Section 2,monthly water temperatures at Watana were synthesized
from Gold Creek and Cantwell data.These data have 'been used to generally cali-
brate the model to simulate natural temperature regime in the reach above the
Chulitna confluence and Watana damsite.
3.4 -Model Verification
During the summer of 1981,several thermographs were installed along the river
by the Alaska Department of Fish and Game (ADF&G)as part of fisheries habitat
studies (see Volume 2 of main report).Processed data from selected stations
are now available (Table A4.5).Simultaneous data collected at Watana is also
presented in Table A4.5.
No water temperature data at Watana is available for July 1981 due to a malfunc-
tion of the instrument.Difficulties with monitoring equipment at Watana and
Devil Canyon resulted in poor data recovery in the months July through September
1981.Thus it was decided to use the observed water temperature at river Sec-
tion 61 upstream of Portage Creek for the period of July 17 to September 30,
1981 along with simultaneous flows at Gold Creek and Talkeetna climatic param-
eters as input to the HEATSIM model and formulate the river stretch for over 20
miles to generate water temperatures at cross-sections 54,47 and 34.These
temperatures were compared with the observed water temperatures during this
period.Table A4.6 shows that on the average monthly temperatures simulated and
observed compare favorably (+1°F)except for the river Section 54 which may be
due to local floods,lack of-tributary flow and temperature data or gross aver-
aging effects of the model procedures.However,the closeness of results sug-
gest that the physical heat exchange processes are modeled reasonably and that
the model may be used to estimate post-project river conditions.
3.5 -Environmental Considerations
In order to establish target water temperatures to be achieved in the river
reaches below the dams y extensive discussions were held with the fisheries study
team and ADF&G.It was decided that a minimum temperature of around 42.5°F
should be reached in the river below the dams during the predominant salmon runs
between early June and mid September.Higher temperatures would,however,be
advantageous during the months of July and August.To take account of model
accuracy as interpreted from the calibration and verification procedures,a min-
imum summer outflow temperature of 45°was set as target temperature below the
dams and several iterations for power intake levels were made until target temp-
eratures were achieved.The winter temperatures of 39°F will be somewhat detri-
mental to the fisheries,but lower water temperatures as one progresses further
downstream from the dams reduces such adverse impacts.Impacts of fisheries of
the temperature regime in the river under post-project conditions are discussed
in Volume 2 of the main report.
A4-7
3.6 -Model Analyses and Results
The calibrated model was used to determine the temperature regime of the river
below the dams for the following phases of development:
Filling sequence of the Watana reservoir;
-Operation of the Watana development only;and
-Operation of both Watana and Devil Canyon developments.
The chief concern during the filling sequence of the Watana reservoir lasting
over three summers is that the minimum flow releases from the reservoir will be
made through the low level discharge facilities (Section IS,Volume 1 of the
main report).Temperature of this discharge is estimated to be close to 39°F
all through the year.HE::ATSIil1 model ing of the river reach below the darn up to
the confluence of Chultina was made and results presented in Table A4.7.A
river reach of over 10 miles in the Devil Canyon area between Devil Creek and
just above Portage Creek are not modeled due to lack of river cross-section and
inability,to model the rapids.It is estimated that the temperature regime pre-
sented in Table A4.7 would be somewhat conservative.
Results of the model runs are presented in Tables A4.8 to A4.11 for reservoir
operations in average,wet and dry years of record as well as for Case A and D
operations.Figures A4.12 to A4.17 present these results along with simulated
natural water temperatures at selected rivers sections below the dams.
It should be emphasized that the temperature modeling though performed on a
daily basis is only a tool to predict average monthly conditions due essentially
to gross discretion of all input parameters.The results are believed adequate
to picture the post-project effects on the river thermal regime to assess envi-
ronmental impacts.More detailed data collection program should be initiated to
enable use of sophisticated modeling of the reservoir operations and river char-
acteristics in later phases of work.
4 -MICROCLIMATIC CHANGES DUE TO THE IMPOUNDMENTS
A prel iminary assessment of the microcl imat ic changes at and downstrearn of the
proposed impoundments was made and the following sesctions discuss the findings.
4.1 -Temperature
On the average the reservoir will be ice covered during the period from October
through April and,although shoreline cracking may occur as a result of draw-
down,the area of exposed water will be insufficient to cause any significant
temperature change.
During the period from May through September when the reservoir is expected to
be ice free,the surface water temperature will range from 1SoF below the aver-
age daily maximum to some SOF above the average daily minimum air temperatures.
A4-8
-
-
-
Temperature changes of approximately 70 percent of the difference between reser-
voir surface temperature and undisturbed air temperature are expected at the
shoreline,gradually diminishing to zero change at a downwind inland distance of
about one mile.This means lower shoreline maximums of about 10°F and higher
shoreline minimums of about 4°F,with a lower mean daily temperature of about
3°F or 4°F in the direction of the wind on any particular day.Accuracy of
these temperature projections is of the order of ~2°F.
From May through August,the regional prevailing wind directions are from west
to southwest,and in 1980 at Watana ranged from over 40 percent of time in May,
over 60 percent in June and July,to 90 percent in August.By September,the
reserve flow characteristic of winter conditions sets in with winds from north
to east about 55 percent of the time.
The inland areas most frequently affected by these temperature changes will lie
to the east and northeast of the east-west oriented reservoir from May through
August,shifting to the west and southwest in September,although all other
inland directions will occasionally be affected.
The date of the latest frost in May will likely be earlier by some 10 days,and
the date of the earliest frost in September will likely be delayed by about 7
days.
4.2 -Relative Humidity
As with temperatures,no change in atmospheric moisture content is expected from
October through April when the reservoir will be ice covered.However,in the
open season,the high minimum temperatures should decrease the frequency of
nighttime radiation fog occurrences in the downwind nearshore areas.This would
be particularly true during August and September when the average relative
humidity at Talkeetna exceeds 80 percent at 10 p.m.and 8 a.m.Alaskan Standard
Time and is undoubtedly at or near 100 percent occasionally between those
hours.
4.3 -Precipitation
Again,no change to the existing precipitation regime is expected when the
reservoir is ice covered.A significant change to the distribution of snow in
the area over and downwind of the reservoir will occur.Because reduced fric-
tional drag over the ice-covered reservoir surface as compared with the existing
irregular land surface which will be flooded (even though snow covered during
the colder months),snow will tend to blow and drift into large accumulations to
the west and southwest of the reservoir,extending in alternating drifts and
hollows a few miles downwind.Snow will also tend to blow and drift into the
transmission line corridor(s)regardless of wind direction.
During the open reservoir season,no change in the existing overall precipita-
tion regime is expected.Changes on the micro-scale extending up to about a
mile inland are expected,but these will have no effect on the hydrology of the
drainage basin~As discussed in Section 1,air cooled by up to 10°F blowing
inland off the reservoir in the afternoon may extend about a miie inland before
being destroyed by insolation.The effect of this will be to suppress convec-
tive cloud development and hence reduce the frequency of showers in that very
limited area.
A4-9
4.4 -Wind
During the ice-covered reservoir period,prevailing north to east winds will
tend to sweep the reservoir clear of snow or at least to maintain a smooth flat
surface that will reduce frictional drag,as mentioned in Section 3.Increased
wind speeds from those directions could be in the order of 15 to 20 percent,but
that energy is likely to dissipate downwind of the dam and may be imperceptible
to 5 percent stronger at Gold Creek.
During the open-reservoir period,prevailing west to southwest winds will again
have less frictional drag in passage over the reservoir and hence could be
stronger by 15 to 20 percent at the east and northeast ends of the reservoir.
Again,this energy is likely to dissipate within a few miles after the air
leaves the reservoir.
4.5 -Winter Ice Fog
Downstream of the dam,the river is expected to remain largely ice-free up to
Talkeetna when both Watana and Devil Canyon developments are operational.When
air temperatures are in the approximate range of +10 aF to -lOaF,so-called
II s team fog ll is likely to form over the wider expansions of the river.This fog
consists of small supercooled water drops typically in a size range of 10 to 50
microns which freeze on contact with vegetation or structures to form rime ice
having a density of about 0.6.Typically,the ice thickness in such deposits is
only in the order of 1/4 inch and exerts loads only sufficient to break twigs on
vegetation.At temperatures colder than about -lOaF,ice crystals are likely
rather than supercooled water drops.
Of more concern is the potential for icing roadways,railways and runways.
Based on our experience in observing this type of fog formation on Lake St.
Louis,a widening of the St.Lawrence River near Montreal,it is very unlikely
that these fog occurrences will extend inland more than one mile and are
unlikely to affect Talkeetna airport.The railway and road systems closer to
the river would be affected,possibly requiring additional salt and/or sand
treatment,although this seems unlikely for the railway.Estimated frequencies
of such occurrences are presented below:
Winter Temperature
Average
Warm
Cold
Total Fog Days
50
20
75
A4-10
Maximum
Consecutive Days
15
7
20
""'"!
\
f"<
I
l
LIST OF REFERENCES
1.R&111 Consultants,Susitna Hydroelectric Project,Field Data Collection and
Processing,December 1981.
2.U.S.Army Corps of Engineers,Hydrologic Engineering Center (1972)-
Reservoirs Temperature Stratification User Manual.
3.Michel,B.(1977)Winter Regime of Rivers and Lakes Cold Regions Science
and Engineering Monograph III -B1a U.S.Army Corps of Engineers Cold
Regions Research and Engineering Laboratory;Hanover,New Hampshire.
4.AcresjR&M Consultants,Susitna Hydroelectric Project,Hydraulic and Ice
Studies,March 1982.
A4-11
LIST OF TABLES
Number Title
A4.l Reservoir Temperature Stratification Model Coefficients
A4.2 Watana and Devil Canyon Reservoirs -Average Yearly Flows
A4.3 Watana and Devil Canyon Reservoirs -Wet and Dry Year Flows
A4.4 Average Monthly Evaporation Data
,-
I
A4.5
M.6
M.7
Comparison of Synthetic and Observed Monthly Water
Temperatures at Watana
Comparison of Recorded and Calculated Water Temperatures
Below Devil Canyon Damsite
Average Monthly Water Temperatures During Watana Reservoir
Fill"ing
A4.8 Stream Water Temperature for Average Year -Case A Operation
A4.9 Stream Water Temperature for Wet Year -Case A Operation
r\
M.lD
A4.11
Stream Water Temperature for Dry Year -Case A Operation
Stream Water Temperature for Average Year -Case D Operation
r
I
L
LIST OF FIGURES
Number Title
A4.1 Reservoir Energy Budget
A4.2 Water Temperature Profiles -Garibaldi Lake
A4.3 Water Temperature Profiles -Bradley Lake
A4.4 Cumulative Degree Days of Heating at Talkeetna Station
A4.5 Cumulative Degree Days of Heating at Summit Station
A4.6 Chart of Total Daily Solar Radiation
A4.7
A4.8
Watana Reservoir Temperature Profile:May-October
Watana Reservoir Temperature Profile:November-April
A4.9 Devil Canyon Reservoir Temerature Profile:May-October
r
-
-
-
r
A4.10
A4.11
A4.12
A4.13
A4.14
A4.15
A4.16
A4.17
A4.18
Dev"il Canyon Reservoir Temperature Profil e:November-Apr il
Definition Sketch -Heat Balance
Map Showing River Cross Sections
Temperature Profile -Sheet 1
-Sheet 2
Average Monthly Temperatures at LRX
Average Monthly Temperatures at LRX
Average Monthly Temperature at LRX
Average Monthly Temperature at LRX
Average Monthly Temperature at LRX
TABLE A4.1:RESERVOIR TEMPERATURE STRATIFICATION MODEL COEFFICIENTS
Coefficient Value
~.Air Temperature 0.816
Inflow Mixing 0.114
Vertical Diffusion 0.043
Evaporation 0.637
Insolation 0.193
I~
,.....
f""
I
~
I
r
\
TABLE A4.2:WATANA AND DEVIL CANYON RESERVOIR AVERAGE YEAR FLOWS (CFS)
watana Devl.l Canyon
Inrlo,,"Uut low Inr lOW Uut .t low
Month Case A Case A Case LJ Case A Case D Case A Case D
Jan 1157 10617 7989 10812 8184 10514 7670
Feb 979 9027 6743 9195 6911 8883 6670
Mar 898 8013 6856 8156 6999 8072 6771
Apr 1113 6011 5723 6180 5892 7903 5735
May 10398 5344 5286 7177 7119 9344 7031
Jun 22922 4990 4599 8059 7668 10288 7608
Jul 20778 7022 10350 9344 12672 9070 13786
Aug 18431 9190 13933 11467 16210 8478 18685
Sep 10670 6486 10105 8115 11734 6972 11458
Oct 4513 7338 6324 8137 7123 7403 6456
Nov 2052 9186 7485 9517 7816 9425 7200
Dec 1405 11999 8909 12246 9156 11864 8457
-i
-t
r
-
TABLE A4.3:WATANA AND DEVIL CANYON RESERVOIRS -
WET AND DRY YEAR FLOWS
WAIA ,NA UI:.VIL ,L.I\N YUI'l
Wet Year un Year Wet Year un Year
Month Inflow Uutflow Intlow Uuttlow lntlow Uutt low lntlow Outflow
Jan 817 10603 636 8318 10708 10708 8437 8353
Feb 755 8928 602 6872 9066 9066 6979 6742
Mar 694 7846 624 7235 8004 8004 7333 6914
Apr 718 5886 986 6285 6035 7889 6345 5842
May 12953 5318 9536 5678 8344 10606 6863 6079
Jun 27172 4825 14399 5059 8790 11052 7779 10041
Jul 25831 13375 18410 5256 16756 13763 7988 7988
Aug 19153 1402'1 16264 4585 17477 14085 6974 4707
Sep 13194 8365 7224 4399 11666 12783 5618 4474
Oct 4102 7104 2043 6450 7650 6540 6914 6914
No ....1588 9479 1021 7579 9680 9680 7703 7934
Dec 1039 12268 709 9221 12436 12436 9321 9463
TABLE A4.4:AVERAGE MONTHLY EVAPORATION DATA (INCHES)
Month Evaporation(1)Years of Record
May 4.63 15
June 4.58 24
July 4.09 29
August 2.99 29
September 1.83 26
(1)Data recorded at Matanuska Valley Agricultural
Experiment Station
r
I;
I-
TABLE A4.5:COMPARISON OF SYNTHETIC AND OBSERVED MONTHLY
WATER TEMPERATURES AT WATANA
Calculated Power
Inflow Temperatures Outflow Temperatures
~ynthetlc Recorded ~ynthetlc Recorded
Month (oF)1981 (oF)(oF)1981 (oF)
Jan 32.0 32.03 39.0 39.0
Feb 32.0 32.03 39.0 39.0
Mar 32.0 32.0 3 39.0 39.0
Apr 32.0 32.03 39.0 39.0
May 41.9 41.9 3 39.1 43.1
Jun 45.5 50.4 1 43.9 51.6
Jul 50.9 48.8 2 49.1 50.4
Aug 49.6 47.1 1 48.8 48.4
Sep 42.3 41.3 1 45.4 47.9
Oct 35.2 33.1 1 39.9 42.8
Nov 32.0 32.0 3 39.0 39.6
Dec 32.0 32.0 3 39.0 39.0
Notes:
(1)Average Monthly Data Recorded at Watana
(2)No Data Available -Linear Interpolation
(3)No Recorded Data Available -Same as "Average"
TABLE A4.6:COMPARISON OF RECORDED AND CALCULATED WATER TEMPERATURES
BELOW DEVIL CANYON DAMSITE FOR NATURAL CONDITIONS (OF)
LK x 61 LK x )4 LR X 47 LR X 54
Water
Months Temperature Recorded Calculated Recorded Calculated Recorded Calculated Recorded Calculated
Jul '81 1 Mean 50.1 49.7 48.3 49.8 49.3 50.0 50.5 50.1
Std.De".0.4 0.4 0.9 0.5 0.9 0.4 0.4 0.4
Aug '81 Mean 47.7 47.3 45.8 47.3 47.4 47.7 47.5 47.7
Std.D:l".2.6 2.6 2.3 2.6 2.4 2.6 3.3 2.6
Sep '81 Mean 42.7 42.3 41.8 42.6 41.3 42.9 43.6 43.0
Std.D:l".4.3 4.3 5.0 5.3 4.4 4.1 3.6 3.9
(1)Partial records a"eraged
.~1>)1 ~.il'i )~,~>;1 A ~
.3 ~y i j ".,
'~---l "-eet r\-)Icc),]\r
e )r ·,c 1 1 '~J '-1 it '_e r _')
~\1 }
TABLE A4.7:AVERAGE MoNTHY STREAM TEMPERATURES (aF)-"CASE A OR D"OPERATION
DURING WATANA RESERVOIR FILLING SEQUENCE
Januarv Februarv March April May June Julv Auaust September October November December
Watana 900 900 900 900 4000 4000 6000 6000 6000/3200 3200/900 900 900
Flow cfs avg=4600 avg=2050
Watana
Outflow
Temp 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0
LRX 68 32.0 32 32 42.1 44.1 47.5 45.1 44.8 40.8 37.0 32.0 32.0
LRX 61
Flow cfs 1110 1070 1045 1070 5870 7180 8256 8228 7644 4000 1225 1150
Temp 32.0 32.0 32.0 42.1 44.1 47.5 45.5 44.8 40.8 36.5 32.0 32.0
LRX 54 32.0 32.0 32.0 43.5 44.8 48.6 46.0 45.7 41.2 36.3 32.0 32.0
LRX 47 32.0 32.0 32.0 43.3 45.3 49.1 46.4 46.2 41.4 36.3 32.0 32.0
LRX 41 32.0 32.0 32.0 43.5 45.5 49.3 46.4 46.4 41.5 36.3 32.0 32.0
LRX 34 32.0 32.0 32.0 43.9 45.9 49.8 47.1 46.9 41.7 36.3 32.0 32.0
LRX 24 32.0 32.0 32.0 44.2 46.6 50.7 47.7 47.8 41.9 36.1 32.0 32.0
LRX 21 32.0 32.0 32.0 44.4 46.9 51.4 48.0 48.4 42.3 36.1 32.0 32.0
LRX 15 32.0 32.0 32.0 45.0 47.8 52.5 48.7 49.5 42.6 36.0 32.0 32.0
LRX 9 32.0 32.0 32.0 45.1 48.6 53.4 49.5 50.4 43.0 36.0 32.0 32.0
LRX 3 32.0 32.0 32.0 45.3 51.3 54.1 60.0 51.1 43.2 36.0 32.0 32.0
Alterna-
tive
Watana
FLow cfs 900 900 900 900 4000 4000 16000 16000 4600 2050 900 900
Temp at
LRX 68 32.0 32.0 32.0 39.7 43.7 47.1 40.8 41.4 40.5 .36.5 32.0 32.0
TABLE M.8:STREAM WATER TEMPERATURE FOR AVERAGE YEAR (oF)-"CASE A"OPERATION
MULTILEVEL INTAKE AT WATANA AND SINGLE LEVEL AT DEVIL CANYON
Cross
Section January February March April May June July Auqust September October November December
LRX 68 39.0 39.0 39.0 39.0 42.3 44.8 49.6 49.3 45.7 39.7 39.0 39.0
LRX 61 38.8 38.8 39.0 39.0 42.4 44.8 49.6 49.5 45.7 39.7 39.0 38.8
LRX 54 37.9 38.3 38.7 39.2 43.0 45.5 50.2 50.2 45.9 39.6 38.3 38.3
LRX 47 37.4 37.8 38.5 39.4 43.2 46.0 50.4 50.5 46.0 39.6 38.1 37.9
LRX 41 37.2 37.8 38.5 39.4 43.3 46.2 50.5 50.7 46.0 39.6 37.9 37.8
LRX 34 36.7 37.2 38.1 39.6 43.7 46.8 50.9 51.3 46.2 39.4 37.4 37.2
LRX 27 35.8 36.5 37.9 39.7 44.2 47.5 51.3 51.8 46.4 39.4 36.9 36.5
LRX 21 35.1 36.1 37.8 39.9 44.6 8.08 51.6 52.3 46.6 39.2 36.5 36.0
LRX 15 34.0 35.2 37.4 40.1 45.1 48.9 52.2 53.2 46.8 39.0 35.8 35.1
LRX 9 32.9 34.5 37.0 40.5 45.9 49.8 52.7 54.0 46.9 38.8 35.1 34.3
LRX 3 32.2 34.0 36.7 40.6 46.2 50.5 53.1 54.7 47.1 38.8 34.5 33.6
~
Discharge
Below
Devil
Canyon
(cfs)10514.0 8883.0 8072.0 7903.0 9344.0 10288.0 9070.0 8665.0 6972.0 7403.0 9425.0 11864.0
~.~~1j 11 fi J ~~~.~l 1:;
)")3\*;
'--j '''--'-]-]'~-l 1 '--1 ~_l (7~--1 '~-J ')"~'~]
TABLE A4.9:STREAM WATER TEMPERATURE FOR WET YEAR (OF)-"CASE A"OPERA lION
MULTILEVEL INTAKE AT WATANA AND SINGLE LEVEL AT DEVIL CANYON
Cross
Section January February March April May June July Auqust September October November December
LRX 68 39.0 39.0 39.0 39.0 42.3 44.8 50.2 49.5 45.1 39.6 39.0 39.0
LRX 61 38.8 38.8 39.0 39.0 42.4 45.0 50.2 49.6 45.1 39.6 39.0 38.8
LRX 54 37.9 38.3 38.7 39.2 42.8 45.5 50.5 50.0 45.3 39.4 38.3 38.3
LRX 47 37.4 37.9 38.5 39.4 43.2 46.0 50.7 50.4 45.5 39.4 37.9 37.9
LRX 41 37.2 37.8 38.5 39.4 43.2 46.2 50.9 50.4 45.5 39.4 37.9 37.8
LRX 34 36.7 37.2 38.1 39.6 43.5 46.6 51.1 50.7 45.5 39.2 37.6 37.2
LRX 27 35.8 36.7 37.9 39.7 44.1 47.3 51.4 51.3 45.7 39.0 36.9 36.7
LRX 21 35.2 36.1 37.8 39.9 44.4 47.8 51.6 51.6 45.9 39.0 36.5 36.1
LRX 15 34.0 35.4 37.4 40.1 45.0 48.7 52.0 52.2 46.0 38.8 35.8 35.2
LRX 9 33.1 34.7 37.0 40.5 45.5 49.6 52.3 52.9 46.2 38.7 35.1 34.5
LRX 3 32.2 34.2 36.7 40.6 46.0 50.4 52.7 53.2 46.2 38.5 34.7 33.8
Discharge
Below
Devil
Canyon
(cfs)10708.0 9066.0 8004.0 7889.0 10606.0 11052.0 13763.0 14085.0 12783.0 6540.0 9680.0 12436.0
TABLE A4.10:STREAM WATER TEMPERATURE FOR DRY YEAR (OF)-"CASE A"OPERATION
MULTILEVEL INTAKE AT WATANA AND SINGLE LEVEL AT DEVIL CANYON
Cross
Section January February March April May June July Auqust September October November December
LRX 68 39.0 39.0 39.0 39.0 42.3 44.4 48.9 48.6 45.3 39.7 39.0 39.0
LRX 61 38.8 38.8 39.0 39.0 42.4 44.4 48.9 48.7 45.3 39.7 38.8 38.8
LRX 54 37.8 37.9 38.7 39.4 43.2 45.3 49.5 50.0 45.7 39.6 38.3 38.1
LRX 47 37.0 37.6 38.3 39.6 43.7 45.7 49.8 50.7 45.9 39.4 37.8
37.6
LRX 41 36.9 37.4 38.3 39.6 43.9 45.9 50.0 50.9 45.9 39.4 37.6 37.4
LRX 34 36.1 36.7 38.1 39.7 44.2 46.4 50.4 51.8 46.0 39.4 37.2 36.9
LRX 27 35.1 36.0 37.8 39.9 45.0 47.3 50.9 52.9 46.4 39.2 36.5 36.0
LRX 21 34.3 35.4 37.6 40.1 45.5 47.7 51.3 53.6 46.6 39.0 36.1 35.4
LRX 15 33.1 34.5 37.0 40.5 46.4 48.7 51.8 54.9 46.9 38.8 35.2 34.3
LRX 9 32.0 33.6 36.7 40.6 47.1 49.6 52.3 55.9 47.1 38.7 34.5 33.4
LRX 3 32.0 33.1 36.5 41.0 47.7 50.4 52.9 56.7 47.3 38.7 34.0 32.7
Average
Discharge
8elow
Devil
Canyon
(cfs)8353.0 6742.0 6914.0 5842.0 6079.0 10041.0 7988.0 4707.0 4474.0 6914.0 7934.0 9463.0
.~1 ~;~,1 j 1 .~j 1 ,
,.:'
;7 i!
.--'1 -]c-',··,.-]-1 -1 -,,1 ]-1 1 ----I (]:-'J
TABLE A4.11:STREAM WATER TEMPERATURE FOR AVERAGE YEAR (oF)-"CASE D"OPERATION
MULTILEVEL INTAKE AT WATANA AND SINGLE LEVEL AT DEVIL CANYON
Cross
Section January February March April May June July Auqust September October November December
LRX 68 39.0 39.0 39.0 39.0 39.0 48.6 52.7 50.4 44.6 39.0 39.0 39.0
LRX 61 38.8 38.8 39.0 39.0 39.0 48.6 52.7 50.4 44.6 39.0 38.8 38.8
LRX 54 37.6 37.9 38.7 39.4 39.9 49.5 52.9 50.7 44.8 38.8 38.1 37.9
LRX 47 36.9 37.4 38.3 39.6 40.3 50.0 53.1 50.9 45.0 38.8 37.8 37.4
LRX 41 36.7 37.2 38.3 39.6 40.5 50.2 53.1 51 •1 45.0 38.7 37.6 37.2
LRX 34 36.0 36.7 38.1 39.7 41.0 50.7 53.2 51.3 45.0 38.7 37.0 36.7
LRX 27 34.7 36.0 37.8 39.9 41.7 51.6 53.6 51.6 45.1 38.5 36.3 35.8
LRX 21 34.0 35.4 37.6 40.1 42.3 52.2 53.8 52.0 45.3 38.5 36.0 35.1
LRX 15 32.7 34.3 37.0 40.5 43.2 53.2 54.1 52.3 45.5 38.3 35.1 34.0
LRX 9 32.0 33.6 36.7 40.8 43.9 54.1 54.5 52.9 45.7 38.1 34.2 33.1
LRX 3 32.0 32.9 36.5 41.0 44.4 54.7 54.9 53.2 45.9 38.1 33.8 32.4
Average
Discharge
Below
Devil
Canyon
(cfs)7670.0 6670.0 6771.0 5735.0 7031.0 7608.0 13786.0 18685.0 11458.0 6456.0 7200.0 8457.0
E C P R
r
I
r
r-I
~
I,
D
I
LEGEND
C :AIR-WATER CONDUCTION
R =EFFECTIVE RADIATION
E =EVAPORATION
I =INFLOW
D =DIFFUSION BETWEEN LAYERS
o =OUTFLOW
P =PRECIPITATION
RESERVOIR ENERGY BUDGET
FIGURE A4.1
,-,
8 10 12
,.....,
i
-
100
I i i I
~'~-~~,~~
,
I ''''F <-"''''F :-'~
E I :.1,!
150I
~
CL
,
W i I
0
,
i ,',!
I I ,
200
,,I ,
~
. I ! '
!i I
-
-!
250'-------'-------L--...L------'----'-----L-----C.---L------"------L--'---:.....J
WATER TEMPERATURE PROFILES
GARI BALDI LAKE,BRITISH COLUMBIA
FIGURE A4.2,
r
o 2
WATER TEMPERATURE,DC
4 6 8 10
r
j
~
r
r
\.,
.\;
:\'
\I __
I ~:
I I -J'------+-----1
/
;
I
I I
I I
I
--'---.I ,
-jIT
I I 1
I
I
I
I
,,I
I,
.I ,-11
RP'~I\ltR
i
"IRI S OF ~NGlNEE RS_,;,
PUB1,4SHESt
T ,i
r-,
WATER TEMPERATURE PROFILES
BRADLEY LAKE,ALASKA
FIGURE A4.3
~--l 0--']--"~-,<-----']1
--COLD
NORMAL
--MILD14000
13000
~o
20000
19000
18000
8 17000
Cl
~16000
oct
~15000
12000(f)
>-oct
c 11000
8000
9000
w 10000w
a::
Clwc
w
~
~
...J
::J
:::IE
::J
U
7000
6000
5000
4000
3000
2000
1000
o
JANUARY FEBRUARY MARCH
CD BASED ON 65°F
APRIL MAY JUNE
MONTH
JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER
CUMULATIVE DEGREE DAYS OF HEATING AT TALKEETNA STATION
FIGURE A4.4 m
-~l ':--]'~l ~'"]'~-~l ~1 ~--~I ~-l ''1 --J "c"'1 -~"1 --]C-1 ,c'l
20000
19000
18000
8 17000
l?z 16000~
LJJ 15000J:
14000u.
0
13000
(/)12000>-«
0 11000
LJJ 10000
LJJ
D::
9000l?
LJJ
0
8000
LJJ 7QOO>
I-6000«
-.J
:=I
5000~
:=I
U 4000
3000
2000
1000
a
LEGEND
/'---COLD
1/.//NORMAL
/'"/~----MILD I
/'./Y-_/~',.....~V-----I----..-:::V----::::::~...,.....-1---...'-I.........~---/'---10-/.........~
""~/J,#;
,~/~
.~
~
C7'
MONTH
JANUARY FEBRUARY MARCH
CD BASED ON 65°F
APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER
CUMULATIVE DEGREE DAYS OF HEATING AT SUMMIT STATION
FIGURE A4.5 •
The solid curves represent total daily solar radiation on a
horizontal surface at the top of the atmosphere,measured in cal.
cm.-2 Shaded areas represent regions of continuous darkness •
.....
-!
r
i -so·--6f!
-70·
The above data was obtained from the Smithsonian Meteorological Tables,
by Robert J.List,6th revised edition,1949.
-I I
I
I
CHART OF THE TOTAL DAILY SOLAR RADIATION
AT THE TOP OF THE ATMOSPHERE
FIGURE A4.6
2200
CT --SEP
2180
JUL
2160
JUN
r'"2140
,
2120
--MAY
2180
I"""
2080
2060
.....=2040
I.L
z
20200-I-«>w
....I 2000
w
1980
1960
1940
1920
1900
t'""'"
f
l 1880
1860
32 34 36 38 40 42 44 46 48 50.52 54
TEMPERATURE (oF)
WATANA RESERVOIR TEMPERATURE PROFILE [ii]rj AVERAGE YEAR CONDITIONS MAY THROUGH OCTOBER
FIGURE A4.7
0
0 I-
NOV -
0 t-
DEC
0 .lht.J
FEB
0 I-
-MAR
0 t-API ----
O.
0 I-
0 ...
I
0
0 t-
O -
0
0 I-
0 -
0
0 l-
I
0 t-
"'?I I I I I I I I
196
198
194
204
206
220
200
208
za 202
I-«
>w
....J
W
218
I"""216
214
r'"I
J
i
212
210
!"'"'
~
i
i
,....
i
192
f"'"
190-
188
186
"""'", I
32 34 36 38 40 42 44 46
TEMPER,ATURE (oF)
48 50 52 54
Iti WATANA RESERVOIR TEMPERATURE PROFILE
AVERAGE YEAR CONDITIONS NOVEMBER THROUGH APRIL
FIGURE A4.8
1460
I""'"OCT:
1440 --5 P
--AUG
MAY
1420
1400
--JUL
1380
1360
1340
1320
1300
...=....
1280z
0
i=«>1260w
..Jw
1240
1220
1200
-1180
1160
1140
32 34 36 38 40 42 44 46 48 50 52 54
TEMPERATURE (OF)
P""!'
DEVIL CANYON RESERVOIR TEMPERATURE PROFILE •AVERAGE YEAR CONDITIONS MAY THROUGH OCTOBER
FIGURE A4.9
5452504846444240383.63432
DEC MAR
NOV
I--APR -
I--
I--
I--
l-
I-
l-
I-
i-I
l-
I-
>I I I I 1 I I I
1140
1160
1300
1180
1280
1200
1360
1220
1260
1240
1380
1460
1320
1400
1340
1440
1420
I""'"
[
/""'"r-:
LL..
z,...0-
I--
<l
>
W
....J
W
,....
TEMPERATURE (oF)
DEVIL CANYON RESERVOIR TEMPERATURE PROFILE
AVERAGE YEAR CONDITIONS NOVEMBER THROUGH APRIL
FIGURE A4.IO
r-H Hsa
Hbr H H Hr-e c p
I""'"
FLOW -•Hf •
II =H H +H H -Hbr +H +H ±H +Hfr-net s sr a ar e c p
where
Hnet is the net heat transfer at the water surfaces
HS is the solar radiation incident to the water surface
H is the reflected solar radiationsr
Ha is the atmospheric radiation incident to the water surface
Har is the reflected atmospheric radiation
is the back radiation or the net energy lost by the body
of water through the exchange of long-wave radiation
between the body of water and the atmosphere
-H e
Hr-c
H p
".,.
~
H f
is the evaporative heat exchange
is the conductive heat exchange
is the heat required to supply the latent heat of fusion
of snow falling into the water or the heat gain from
rainfall
is the heat gain from flow friction losses in a river
reach
r-,
\,
\
DEFINITION SKETCH
HEAT BALANCE
FIGURE A4.11
1 -==.1 1 ]~'-=]1 ~l -1 ~-J 1 1 ]1 1
):.~...
FIGURE A4.12
t'.\~¢)
~/){~:0 10
fJ~i •or SCALE IN MILES
21-REFERS TO LRX 21
112-REFERS TO URX 112
NOTE
\
(~
.~"L
~
MAP SHOWING RIVER CROSS SECTIONS
~
''''-..
a ,••/\.:>,lJ'
Y t.P 'c:::..
f{I lJ'~~',r ~"~.r-:;JE:.CJ'YO~i~~~"f:~{
"\\y",p~~y ft.,~Yr'-.,
.~:WATANA ~,G '-~4 .,,(.8 "'~~/,~'"COAL ell..');,~~":R I,~I :::l2q.~(:-~~,\")
47 DEVI~L n0,II.L ~~f~,""\........7
,.,'"\_,0 (j~.l'107:==f==:-j..f06_£B.·,~..~~~r\..§9".~-~~.II...".1""
.~,.,-="'~.
./')0/'~/-"'~(J....'
\.j \
~~
\
',1'1'\..~
~
SUNSHINE
~-~1 --~}~~._]")]_1 -~~l -]
<t !!!
N Z WZZ<t ~i5t:o:w "W">-":H'i '"'"z"..lw If)ww "w WW 0:ow <tW
"><t zw uw o:W "w w -'w -w o:W
:I:-:I:<to:<to:,,0:"'0::I:00:00:00:uo:U -'u '"U UU If)U If)lOU ;;;u Q.U
I I I I I I I ~I
I
I
0_---0_-r-O••.------0_
6_•---Iil_____
-6 ••••6 O~_~___•6_6••0_•••....i ...
°6--
-0_-no----0_
\!-0_
\!\!0 ___
\!\!......\!e=~-~-•......~~•....••••••••
LEGEND
MONTH POST PROJECT NATURAL CONDITIDNS
JUNE °•
JULY 6 •
AUG.0 •
SEPT.\!..
WITH WATANA AND DEVIL
CANYON DEVELOPMENTS
II I I I I I I I I I I I I I I I I
I I I I
60.0
~O.O
...
0
W
0:
"....<t
0:WQ.
:>'w....
0:W....
~
40.0
30.0
RIVER.MILES
LRX SECTION
100
6 9 10
110
14 15 18 20 21
120
27 29
130
33 35 38 41 47
140
51 53 54 53
150
60 62 68
RIVER MILES
LRX SECTION
LONGITUDINAL THERMAL PROFILES
POST PROJECT AND NATURAL CONDITIONS
SHEET I OF 2
FIGURE A4.13 I ~~~{~I
1 ~--:l ~'~1 '~~dJ 1 1 ~~~--]---,
'"«N z '"z z «t:o::'"",'""'''''>-'"--'''''::;""z""~~--''''Vl zi:J "''''il!i:J --''''0::"'"«'"t;:",::l>«<.>'"::l'"'"--''''-'"J:-J:«0::«0::::l0::",0::J:00::"0::00::<'>0::U --'u ::;<.>UU VlU Vl <ou ;0;<.>0.<'>
45.0
RIVER MILES
LRX SECTION
150
60 62 6B53
NATURAL WATER'TEMPERATURE
IS A CONSTANT 32 0 F THROUGH-
THIS PERIOD
WITH WATANA AND DEVIL
CANYON DEVELOPMENTS
LEGEND
o NOVEMBER
o DECEMBER
X JANUARY
o FEBUARY
L,.MARCH
140
51 53 5441473B
130
33 352927
120
21201415IB
I_~===:;;r;;-------"/~,;::::E~~I _o~~-g X_~X__X
110
x
9 10
100
6
40.0
IL
0
'"0::
::l
f-
«
0::
'"0.
::E 16'"
__6
f-
0::
'"~
~
35.0
30.0
RIVER MILES
LRX SECTION 3
LONGITUDINAL THERMAL PROFILES
POST PROJECT AND NATURAL CONDITIONS
SHEET 2 OF 2
FIGURE A4.13 m
LEGEND
6 AVERAGE YEAR
o DRY YEAR
o WET YEAR
X NATURAL CONDITIONS
/~
J~~\(
!\
)VI 1~
II j
II \\
//\\
,.,In I /\I ~In
c p ""p
/\
1/\
/'"
60.0
r 58.0
I"""56.0
IE""'"54.0
\
52.0
U-50.0
0
UJ
a::
~48.0~
<t..-a::
UJa.
.:::!:
UJ 46.0~
r a::
UJ
~44.0~
42.0
40.0
~38.0
\
~
~36.0
34.0I!""'I
32.0
J F M A J
TIME
J A S o N D J
AVERAGE MONTHLY TEMPERATURES
CROSS SECTION LRX 68
DOWNSTREAM OF DEVIL CANYON DAM SITE
FIGURE A4.14
LEGEND
6.AVERAGE YEAR
o DRY YEAR
o WET YEAR
X NATURAL CONDITIONS
T
I
I I
i
I
I
i i
T I
f IbI
~rr,I
Jb'"~
J ,~\
)~~\
iV /\\
//\\
-V /\1 ~~p ".,,,
'I '\/
/\
/~'"
60.0
58.0
56.0
r"I 54.0
52.0
LL 50.0-0
!wa::
:::>48.0!ci,-,a::wa..
t
"
::E 46.0w
......
a::w
!ci 44.0
~
,....
I 42.0I
~II
,....
40.0
I
I
~38.0
I
36.0
34.0
!""'1'
(
32.0
if'>"'J F M A M J
TIME
J A S o N D J
AVERAGE MONTHLY TEMPERATURES
CROSS SECTION LRX 61
DOWNSTREAM OF PORTAGE CREEK
FIGUREA4.15 [~~~f~I
r
r-
60.0
t-58.0
56.0
~54.0
52.0,-
50.0
LL.......O.
Wa::48.0::::l
~a::w
D..
:::E 46.0w
~
a::w
~44.0~
42.0
40.0
38.0
36.0
,....,34.0
LEGEND
6,AVERAGE YEAR
o DRY YEAR
o WET YEAR
X NATURAL CONDITIONS
/'
J/~
1/\
VI \
I V 1~
)V \\. j
//\\
V V I \'~~
~rY'/\~11 't~~l>O-
(
II \.~
V '"F M A M J J
TIME
A s o N D J
i~.
('
AVERAGE MONTHLY TEMPERATURES
CROSS SECTION LRX 47
NEAR GOLD CREEK
FIGURE A4.16 I~~I[~I
60.0
58.0
56.0
54.0
""""
52.0
.,....,
u.50.0
0
wa:
::::l 48.0!:ia:w
Q.
::::!:46.0w
~
a:w
~44.0
~
f-t
I 42.0
r"'"40.0
!.!-
,.,..38.0
l._
36.0
34.0
32.0
LEGEND
6 AVERAGE YEAR
o DRY YEAR
o WET YEAR
X NATURAL CONDITIONS
C])
h~
)~~
II \
)'1 \\
\t
iV 1/~
/I \\
V /\\/"/\1 ~
/IJ"/-\\h
lV I.',~~a/'~
D (
/~,
J F A J
TIME
J A .S o N D J
AVERAGE MONTHLY TEMPERATURES
CROSS SECTION LRX 21
BETWEEN CURRY CREEK AND MACKENZIE CREEK
FIGURE A4.17 II~~[~
r
L
LEGEND
6 AVERAGE YEAR
0 DRY YEAR
0 WET YEAR
X NATURAL CONDITIONS
60.0 I
I
58.0
(
56.0
54.0 ~V'/[~)
52.0
i(J
1/
50.0u..//0
wa:
~48.0 V 1/«a:wa..12546.0
l-I ~a:Iw
!<r:44.0
~//\42.0
V /\\)
40.0 //,
38.0 \'~
V II \\)~/36.0 V /,\~
340 V V r",""I ~~32.0 i
J F M A M J J A 5 0 N D J
TIME
AVERAGE MONTHLY TEMPERATURES
CROSS SECTION LRX 3
NEAR THE CONFLUENCE OF THE
CHULITNA AND SUSITNA RIVERS
FIGURE A4.18 [l~~I~I
0)1 "~C)'~"""~l ,.o~]-~]\'C<'~'l "0'1 '~7"1 "~~1 :-"'J ....~O··l 01
-!EMERGENCT
SPILlWAT
CHANNEL
la,2/70 IH
SUS'TNA HYDROELECTRIC PROJECT
ALASKA POWER AUTHORITY
o II 32 FEET
PLAN AT EL.2205PLANATEL.2115PLANATEL,2021
-m-s==l=~'~:~d:l,~w
II
INTAKE
30,NO.6 20'10'
INTAKE GATE
BULkHEAO
GATE
SHUTTER-_I:"'(;:,:1
OUTLET
FACILITIES
INTAI<E
(SEE PLATE
EL.2009 .
EL.2200~LL2/.'-1~;=~t=~=tl:::;+~~:r~---Tr4;;~~+l1 I I i ~.'...----=I I~
:~t:~~pw.X U',tl
(2 BECTIONS)
,0 TON OVERtt£AO CRANE
SECTION THRU
INTAKE GATE CONTROL STRUCTURE
"J"J"-'""-1/I/V [(Ii'
EL..2236 HIGHEST UFTFl~il ~METAL SIDINO~'1 ~B ~STEEL COLUMN
.'.1 r.:~SHRACK l-i---HYDRAULIC
CYL.INDER
i~ljU ~AIR VENT
EL.2200
ERATING lj
:F'~'~F LINKED STIEM~.'),8UlkHEADHEATEDSATEGUIDE-:-o k'f---INTAKE GATEICEBOOM
SHUTTER GUIDE~91O\OOM--9
GUIDE
....~!..'.T'
TRASHRACK IGUIDEF
110
1-
EL.ZI29 .
TRASHRACK !!
(T'1PtCAL.)
~!!
I'
SHUTIER!l:.-,NO.1 ,
!!
~I~TRASHRACK SH11T'TE:R~
NO'
~;,
'<.i;;;
SHUTTER10 ~b-;":!NO.3 --0
In.'o,,
OL.•009 _~;'••:;.";"'"",.......~,-"".
o..."""""''''A ="<
NORMA
MAX.OP
~
EL..ZOO7
.•MINIMUM
OPERATING-
LEVEL EL.2045
FRONT ELEVATION SECTION A-A SECTION B-B UPSTREAM ELEVATION
iU
WATANA
POWER INTAKE
SECTIONS
PLATE
A4.1
,....
I
-
r
r
jl
ATTACHMENT 1
GUIDE TO VARIABLES USED IN ATTACHMENT 1r
I,
STORA:
STRMX:
STRIVIN:
STCAP:
NLAYER:
LAYER:
Initial Storage Capacity,(Ac-Ft)
Maximum Storage Capacity,(Ac-Ft)
Minimum Storage Capacity,(Ac-Ft)
Storage Capacity Below Each Layer (Ac-Ft)
Number of Layers
Layer Th i ck ness,(Feet)
TSTRT:Initial Temperature of Each Layer,(OF)
RESERVOIR TEMPERATURES:Month End Water Temperatures of Each Layer,(OF)
TA:Air Temperature,(OF)
TMPIN:Inflow Water Temperature,(OF)
TEMPERATURES:(OF)
TPOUT:Outflow Temperature,(OF)
,....
I
r
,.-,
RELEASES THROUGH OUTLET:Flow Through Each Outlet and Corresponding
Temperature
-
-
nI
WATANA RESERVOIR
TEMPERATURE STRATIFICATION STUDY
DATES:AVERAGE YEAR 4 OUTLETS;2021~2057,2093,2129
THE OUTPUT UNITS ON INFLOW AND OUTFLOW ARE IN eFS,EVAF'AND PRECIP IN INCHES~STORAGE IN AF,AND TEMPERATURE IN DEGREES F
NYR IYE NPER IF'EF:MSTF:T NLAYR LAYER NOUTL NMINQ IDERV METRe IDGST ~tTt""NIT NOTL INT[F:rUL-
1 1931 12 <:-c::100 <:-·3 .,0 (J 0 0 0 4.''"'.'
HREL NllO
0 .,
.:l
SIDRA CISA COSA STRMX STRI1N TIN TAIR [VAF'F'RCF'aMm TMAX THIN CSOUT SGLR fiEF'
6560000.1.983 1.983 9652000.5230000.-1.-1 i -1.00 -1.00 -1.<-1./'1.1:'"1'•.4 -,32,81-!.'..f,.,.H}"'t H
AIR TEMP COEf INFLO MIXING COEF DIFFUSION COEF EVAP HEAT COEF HISDLATION COEF
0.816 0.114 0.;J43 O~637 0.193
QOMIN=-2.0 -2.0 -2,0
STCAF'=518960.548736.579824.611104~643920.676912.710560.746320t 782384.817728~
855712. 894528.933328.r"l-~.."nl A 1015472~1056576.1099344,1143776.1183256.12J3664+7 j .Loc'oif t
1280448.1328688.1377216,1426640.1477536.1528992!1580416,1636224,1690240,1746144.
180.3840,1861792,1921216.1981248,2041824.2104832.216B300.2233472.23009.50.2369472.
2437600.2506752~2577824~2652352.2724672~28008001'2879072.2957S04~3036224.3117344.
3201344.3284192.3371584.3457888~3547328.3.j37.~t,4...,..,,,rt-.,.....,,"'Q"',.Ann 3918624.401:5296.,jii.7/'!.t.~ju..::..:·'"tLlCI'
4113760.4214880.4317440.4422496.4525664,4635936.4744448.4855712,49699B4!5034704.
5203232.5353424.5466992.5583536.5703008,5325456.5950a64~6079184.621049(S.i.344720.
6481920,6622080.6765168,6911216,70b0208.721217o!73670138.7524912.7635744.~7849520,
8016208.8185872.8358448,8534032,8712560.8893984.9078400.9265760.94560%,9649376.
TSTRT=39,0 :.W.O .39,0 39fO 39,0 39,0 39.0 37\0 39.0 "7rl 1\~7tV
39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.Ci
39 d)39tO 39,0 ~n •J9fO 39.0 39.0 39.0 39.0 39.0,;,''!~v
39.0 39.0 39.0 39,0 "'!'n II 39,0 39.0 39.0 39~.O 39.0J1i\.J
39,0 39,0 39,0 39.0 39.0 39.0 39.0 ..,.r.....39.0 39.0:37.e..}
39.0 39.0 39.0 31\0 39.0 39,0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0 39,0 39.0 39,0 39.0 39.0
39,0 39.0 39.0 39.0
39,0 39.0 39.0 .39,0 39'()39.0
39.0 ~",-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0J7f~'
-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 ··1.0 -1,0 -1.0 -1.0
STOUT=5253752.6337988. 7262580,
WATANA RESERVOIR TEMPERATURES
39.0
39.0
3'9.0
39.0
39.0
-"~j7.V
39.1
39.0
39,0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
45.1
39.0
39,0
39.4
20
39.0
39.0
39.1
39.1
39.0
39.0
39.1
43.9
40,2
43.9
44.1
39.0
39.1
39.8
45.6
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.3
44.5
19
39.0
""!"n "'",17.1
.<""",.Jf'"
39.0
39.0
39,1
43.3
50.0
39.0
39.1
40,1
43.8
44.1
18
.,,,"J?'.v
39.0
39,0
39,0
39.0
39.0
39.1
39.1
35.2
39,0
39.0
39.0
39.1
39,0
39.0
39.0
39.0
17
39.0
39.0
:59.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
<,
!()
39.0 39.0 39.0
39.0 39,0 39.0
39.1 39.1 39.1
41.8 42.3 42.8
39.0
39.0
39~O
39.1
39fO 39.0 39.0
39.0 39.0 39,0
39.2 39.2 39.3
43.0 43.5 44.0
39.0 39.0 39.0
39.0 39.0 39.0
39.4 39.5 39.6
43,9 44.3 44.7
49.9 JO.O 50.0
39,0 39.0 39,0
39.1 39.1 39.1
39,8 39.9 40.0
43.5 43.6 43,7
44.1 44.1 44.1
3S'.1
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0 39,0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 -12.9
39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39.0 39,0 39.0 39.0 39.0
41,3
39,0
39.0
39,0
:(9.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
14
39!O
39.0
39,0
39.1
13
39.0
39rO
39.1
39.0
39.0
39.0 39.0
39.0 39.0
39.0 39.1
40.6 40,9
39.0
12
39,0
39~O
39fO
39.1
39.0
39,0
39.0
40.3
3S\0
39.1
3S'.O
39.0
39,0
40.1
49.1
10
..,.""~7+U
A'-;...,
'tQ.!
39.0 39.0 39.0 39.0
39.0 39.0 39.0 39,0
39.0 39 ..0
39.0 39.0
39.0 39.0
39.0 3~.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39,0 39.0 39.0 39,0 39.0
39.0 39,0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0
39.0 39.0 39,0 31.5
39.0 39.0 39.0 39.0 39.0
39.0'39.0 39,0 39.0 39.0
39.0 39.0 39.0 39.0 39,0
39.0 39.0 39.0 39.0 39,0
39,0
39.9
39.0
39,0
39,1
"7
39.0
39.0
39.0
39.7
."<-'tOtl
39.0
39.0
39.0
39.0
39.0
39,0
39.0
39.0
39,0
39.0
39.0
39.0
39.0
39.0
35"0
3,9.0
39.0
39.0
39.0
39,0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39,0
39.0
39.0
39~O
39yO
39,1
39,0
39.5
47.5
39.0
39.0
39.0
39.Zi
22.4
39,0
39.0
39.0
39.0
39.0
3S"0
39.0
39.0
39.0
39.0
39,0
39.0 39.0 39,0 32.1
39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0
39.0 39.0
39.0 39.0
39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39,0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0
39,0 39.0 39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39,0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.(39,0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39,0
39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0
39.0
39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.Q
39.0 39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0
39.1 39.1 39.1 39.1 39.1 39.1 39.1 39.1 39*2
40.2 40.4 40.6 40.9 41.1 41.4 41.8 42,1 42.6
49.6 50,2 50.6 50,9 51,1 J1.4 51.8 52.2 52.7
39tO 39.0 39~O 39.0 39.0 39.0 39.0 39.0 39.0
39.0 39,0 39,0 39.0 39.0 39,0 39,0 39,0 39,0
39,1 39.1 39.1 39,2 39,2 39,2 39.3 39.3 39.4
40,9 41.2 41.4 41.7 42.0 42.3 42.7 43.0 43.4
48+7 49~O 4972 49.4 49.5 49.6 49.7 49~a 49.8
39.0 39.0 39.0 39,0 39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39,0 39.0 39.0 39.0 39,1 39,1
39.2 39.3 39.3 39.3 39.4 39.5 39.5 39.6 39.7
41~5 41.7 42,0 42;2 42.4 42.6 42.9 43rl 43.3
44,1 44,1 44,1 44,1 44,1 44.1 44.1 44,1 44,1
7
39,0
39,0
39.0
39.0
39.4
47,0
39.0
39.0
39.0
6
39.0
39.0
39.0
39.0
46.6
39.0
39,0
39.1
40.0
.,,,~
,)'!.v
39.1
40,7
41L1
39,0
39.0
39.0
39.0
39.0
-0 "j ..,t.)
39.0
39.0
39.0
39.0
39.0
39.0
39~O
39.0
39.0
39.9
39.0 39,0 39.0
39.1 39.1 ,;9.1
39.0
39.0
39.0
39.3
46,4
39.0
39.0
39.0
39,0
39.0
39 t 1 39 f 1
40.3 40i5
47.3 47.7
39,0 39.0
39.0 39~O
39.0
39.0
39,0 39.0 39.0
39.0 39.0 39.0
39,0 39.0 39.0
39.0 39.0 39,0
4
39,0
47.5 48,1 48.6
39.(,39.0 39.0
40,9 41.1 41.3
44.1 44.1 44.1
39,0
39.1
3'7.0
39.0
39,0
37"2
46.0
39,0
39.0
39,1
3
39tO
39.0
39.0
'1\.,"tv.{
39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0
39,0 39.0 39.0 39.0
39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0
39,0 39.0 39.0 39.0
39.0 39.0 39.0 39.0
39~O 39.0 39.0 39.0
39.0 39.0 39,0 39,0
39,0 39.0 39.0 39.0
39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0
39,0 39.0 39.0 39,0
39.0 39.0 39.0 39,0
39.0 39,0 39.0 39.0
39.0 39.0 39.0 39.0
39,0 39.0 39.0 39.0
39,0 39.0 39.0 39.0
39.0 39,0 39.0 39.0
39.0 39.0 39.0 39.0
39,0 39.0 39,0 39.0
39.0 39.0 39.0 39.0
39tG
39.0
39,0
39~O
39.0
39.0
39.0
39,0
39.0
39.0
39,0
44.1
39,0
3910
39.0
39 .,~
39.2
45,6
39.0
39.0
39,0
39.6
46,8
39.0
39.1
39.0
39.0
,r "'"Y.Ju:'
3YfV
39tO
31\0
39.0
3S\1
40~O
46,5
39,0
39,0
39,1
40,5
44.0
39.0
39.0
37"0
39.1
39.1
39.0
31\0
39.0
39,0
39.0
39.4
39.0
..n
"t'1tV
40.4
39.0
39.0
39.1
39.9
46.1
9 39,0
7 39tO
6 39.0
39,0 39.0
39.0 39.0
39.0 39.0
3~\O 39.0
39,0 39,0
39.0 39.0
39.0 39.0
39.0 39.0
2 39,0 39.0
39.0 39.0
39.0 39.0
39.0 39.0
39.0 39.0
3 39.0 39.0
39,0 39.0
39.0 39.0
39.0 39,0
39.0 39.0
4 39.0 39.0
39.0 39.0
39.0 39.0
39,0 39.0
39,0 36,5
39.0 39.0
39.0 39.0
11 39,0 39.0
39.0 39,0
39,0 39.0
39,0 39.0
39.0 39.0
12 39~O 39.0
39,0 39.0
39.0 39tO
10 39,0 39.0
YEAR PER 1
1 5 39.0
39,0
....
I WATANA FLOWS AI4D TEI1PEHA TURES FOR YEAR 1!YEAR 5 6 7 8 9 10 11 12 1 2 3 .;
INFLO 7943.0 10398.0 22922.0 20778.0 18431.0 10670.0 4513.0 2052.0 1405.0 1157.0 979.0 898.0 1113.0r-EVAP 2.3 4,6 4.0 4.1 3.0 1.8 0.6 0.2 0.4 0.5 1.3 2.4 ..C'..J.,J
PRep 1.7 0.6 ~~3.1 3.3 ~"1+6 1.2 1.2 0.9 1.2 1.0 0.7~+L ....+0
OUTFL 7935.3 5344.0 4990.0 7022,0 9190.0 6466.0 73313.0 9186.0 11999.0 10617.0 9027,0 8013.0 6011.0
~REGno.7935.3 5344.0 4990.0 7022.0 9190.0 6486.0 7338.0 9186.0 11999.0 10617 .0 9027+0 8013.0 6011.0
STI1X 9652000.9652{lOO.9652000.9652000.9652000,9652000.9652000.9652000.9652000.9652000.9652000,9652000.
STaR 6861553,7922295.8765243.9334403.9586525.9415367,13993987,8345057.7764515+7317498.6876671.6578542.
!lTI1N 5230000.5230000.5230000.5230000.5230000. 5230000.5230000.5230000.:5230000.523qoOO.5230000. 5230000.
!"""\
i Tf;25.5 37t4 49.0 C'''"I ~48.6 39.9 24.0 9'!7 2.9 1.6 6.6 11.2 ".,co.JLtll "'.:it'"
~;r ...,"TMF'IN 45.2 41.9 45.5 50.9 49,6 42.3 ~C'"32.0 32.0 32.0 32.0 37,0.j..J.k ~LtV
TMPMX 41.8 45.9 49.5 54.9 53.6 46.3 39.2 ~..,,36.0 36.0 36.0 36.0 41.0,jf.Q
TPOUT 41.5 39.0 43.9 49.1 48.8 45.4 ...""39.0 39.0 39.0 39.0 39.0 39.0,)7+1
TMPI1N 38+0 44,9 48.5 53,9 52.6 45.3 38.0 32.v 32.0 32.0 32.0 32,0 ;B.O
RELEASES THRU OUTLET 2057
DOHN 5344.0 0.0 0.0 0.0 0.0 0.0 0.0 OtO 0,0 0.0 8013,0 6011.0
GOUTL 5344,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 G.O 8013,0 6011.0
TOUR 39.0 0.0 0.0 0.0 O.V 0,0 0.0 0.0 0.0 0.0 39.0 39.0
RELEASES THRU OUTLET 2093ro.OHN 0,0 4990.0 0.0 0.0 0.0 "~0.0 0.0 0.0 9027l!O 0.0 0.0\.:itV
I GOUR 0.0 4990.0 0.0 0.0 0.0 0.0 0.0-0.0 0.0 9027.0 0.0 0.0
TOUR 0.0 43.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ::.19.0 OftJ 0.0
I"""!RELEASES THRU OUTLET 2129
QOMN 0.0 0.0 7022.0 9190.0 6486.0 7338,0 9186.0 11999 fO 10617tO 0.0 O~O 0.<)
o.oUTL 0.0 0.0 7022.0 9190,0 6486.0 7338+0 9186.0 11999~O 10617.0 0.0 0.0 0.0'
mUTl OtO (i,0 49.1 48.8 45.4 ;rr\l"'\39,0 39.0 39.0 0.0 0",0 0.0,J 7.:1
r
~
"""I
'1""1
f
"""i
,
i
n
.I
!I
DEVIL CANYON RESERVOIR (TWO LEVEL INTAKE AT 70 AND 200 }
TEMPERATURE STRATIFICATION STUDY
DATES:AVE.YEAR,WATANA INTAKES:2021,2057,2129
THE OUTPUT UNITS ON INFLOW AND OUTFLOW ARE IN crs,EVAP AND PRECIP IN INCHES,STORAGE IN AF,AND TEMPERATURE IN DEGREES F
NYR IYR NF'ER IPER l1STRT NLAYR LAYER NOUTL NlWW IDERV METRe IDOST NIC NIT NOTL INTER
1 1981 12 e-e-71 5 2 0 0 0 1 0 0 4oJ,j
MREL liMO
0 3
SiDRA CISA GOSA STRMX STRMN TIN TAIR EVAP PRep GMIN TMAX TMIN CSOUT SGLR (Iff'
979800.1.983 1!983 10B2000.292000,·-1.-1.-1.00 ··1.00 -1.-1..-1.0.::;04 -1.32.81
AIR TEMP COEF INFLO MIXING tOEF DIFFUSION COEF EVAF'HEAT GOEF INSOLATION COEF
0.8105 0.114 0.043 0.637 o ...n.,.fJ.7.:i
QOMIN=-1.0 -}.O
STeAP=52500,56000.5'1500,63000.66500.70000.73500.77000.80500.84000.
8B800.93600.98400.103200.108000.112800.117600.122400.127200f 132000,
133300. 144600.150900.157200.163500.169800.176100.182400.188700.195000.
204MO.214200.223800.233400.243000,252600,262200.271800.281400.2'i1 000,
307500,324000.340500,357Ch'O.373500.3'10000.40,,500.423000.439500.45tiOOO.
431100.506200.531300.556400,581500.606600.631/00.0556800.681900.707000.
741100,775200.gonoa,843400,877500.9110500,945700.979800 f 1013900.1048000,
1082100.
TSTRT=39.0 39,0 39.0 39~O 39.0 2;'1 ~O 39+0 39.0 209 to "0 ....,J/.V
39.0 39.0 39.0 35\0 3S"O 39,0 39.0 39.0 39.0 39f(l
39";0 3970 39.0 .,,,.39.0 39,0 39.0 70 "39.0 39.0.;,•.,.~I)...'!.v
39.0 39.0 39,0 39.0 39.0 39.0 39.0 ;39.0 39,0 3'M
39~O 39.0 39.0 39.0 39~O 39.0 -"0 "39.0 39.0 "'!r'l '";:"!.v ~J .\l
39.0 39.0 3,"()39 t l)39.0 .,,.,.39.0 39.0 39.0 39.0.j'll-V
39,0 39,0 39.0 .,,.,"-39,0 39,0 "7,.\1\3'1~O -1.0 -1.0.;l}'v .J J ~if
-1.0
STOUT=204600.631700.
-
I
39,0 39.0 39.0 39,0 39.0 39,0 39,0 39,0
39,0 39.0 39,0 39,0 39,0 39,0 39,0 39,0
39.6 39,8 40,0 40,3 40,6 40.9 41,3 41,S
DEVIL CANYON RESERVOIR TEMPER~TURES
7 8 9 10 11 12 13 14
39.0 39.0 39.0 39fO 39fV 39.0 39.0 39.0
39.0 39.0 39.0 39.0 39.0 39,0 39.0 39.0
39,0 39.0 39,0 39,0 39.0 39,0 39.0 39,0 39.0
20
39~~
~O "'I
>.Jl'J
39.0
51.0
47.8
H'
39.(,
39.0
39,0
39.0
"7n ,
·:'0 t l
47.3
39.0
17
39.0
71'n,-'7 tV
43.6
39,0
39.0
39.0
16
39.0
39.0
4'1 0"-'f
,c
!.J
39.0
39.0
39.0
46,6
42,3
39.039,0 39,0 39.0 39.0
39 t 1 3S'.1 39 t 1 39.1
43.2 43.9 44.5 4~.2
4B.O
7 39.0 39.0 39,0 39.0 39,0 39,0 39,0 39.0 39,0
39,0 39,0 39.0 39,0 39.0 39.0 39,0 39.0 39.1
39.9 40,0 40.2 40.5 40,8 41,2 41,6 42,1 42,7
YUR ~R 2 3 4 5 6
1 5 39.0 39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39,0 39.0 39.0
39,0 39.0 39.0 39.0 39.0 39.0
39.0 39.0 39.0 39.0 -36.3
6 39.0 39.0 39.0 39.0 39.0 39.0
39,0 39.0 39.0 39.0 39.0 39,0
39,1 39,1 39,2 39.2 39,3 39,4
I
I.
70 oj
....f ...
"Tn l\
:J7 I-V
41.9
39.0 39.0
39.0 39.0
39.0 39.0
37\0 39.v
39.0 39.0
39.0 39.0
39~O 39fO
39~O 39.0
39f~)39.0
39.0 39.0
39.0 39.0
39.0 39.0
39.0 39,0
39,0 39,0
39.11 39.0
39,1
41,7
39.0 39,0
39.0 39,0
39,0 39.0
"Tn ....
J.7.\..'
39.0
40.6
39.0
39.0
39.0
39.0
39.0
39.0
39,0
39,0
49.5
39.0
39.0
39,0
39,0
39,0
39.0
39.0
39.0
39~1
41,4
39.0
71',..
·.Y!<V
39,0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39.0
39,1
41.2
44,2
39.0
39.0
39.0
44.2
39.0
39,0
39.0
39.0
39.0
39.0
39,0
39.0
39.0
39,0
39.0
39.0
39.0
40.2
47.7
39.1
40.9
39.0
"70 n~I tV
39,0
39,0 39,0
39,0 39.0
39,0 39.0
39,0
39.0
37'.0
39.0
39.0
39,0 39,0
39.0 39.0
]9.0
39~0
40.7
44.1
39,0 39.0
39,0 39,0
39.0 39,0
40.5
39.0
39~O
39.0
39.0
39,0
39.0
39.0
39.0
39,0
39.0
39,0
39.0
44,1
39.0
39,0
39~Q
39.0
39.0
39.0
39,0
39.0
39.0
39·~7
39,0
39.0
39,0
39,0
39.0
39.0
39.0
39.0
"71'•.:.<7.iJ
39~O
39,0
39.0
39,0
39.0
39,0
39.0
39.0
46.3
39,0
40,4
44.1
39.0
39.0
"71'n..Jl.V
39.0
39~O
39.0
39.6
45.9
39.0
39.0
39.0
39.0
39,0
39,0
39,0
39.0
39.0
39.0
39,0
.,.n '".J7.V
3S\O
39.0
39.0
39.0
39~5
39.0
14.1
3S"0
39,0
39.0
14,3
39.0
39,0
39,0
16.4
39,0
40,1 40.2
44,0 44,1
39.0
39~O
39,0
39.0
39,0
39.0
39.0
39,4
45.0
39.0
39~O
16~3
39.0 39.0 39.0
39,0 39.0 39,0
39.0 39.0 39.0
39.0
39.0
39.0
39.0
39,0
39,0
39,0
39,0
39,0
39.0
39iO
39,9
43~9
39.0
39.0
39.8
43.8
39.0
39.0
39.0
39.0
39.0
39,0
39.0
39,0
39,0
39.0
39.0 39,0
39.0 39.0
39~O 39~O
39.0 -90,6
39,0 39.0
39.0
39.0
39,0
39,0
39,0
39,0
39.0
39.0
39.0
39.0
39fCT
3S\O
39.0
39.0
39.7
39,0
39.0
39.0
39,0
39.0
39.0
33.8
39.0 39.0
39,3 39,3
44,0 44.5
39.0
39,0
46.2
39.0
39.0
39,0
39.0
39.0
39.0
39.0
39,0
39.0
39.0
43.7
39.0
39,0
39.0 39,0
39,0 39.0
39.0 39.0
39,0 39,0
39,0
39.0
39,0
39,0
39,0
J9.0
39,0
39,0
39.0
39.2
39.0
39.0
39.0
39,0
39.0
39.0
39.0
39.0
39.0
39.0
39,0
39.0
39.0
39.2
39.0
39.0
39,0
39.0
39.0
39.0
39,0
39,0
39.0
39,0
39.0
39.0
39.0
39,0
39.0
39,0
43,1 43,5
50.0
39.(l 39,0
43.3 43,5
45.7 46,0
39.0
39.0
39,0
39.0
39,0
39.0
42.6
39.0
40 0lir..'
39,0 39.0
39.0
39,0
39.0
39.0
39.0
39.0 39,0
39.0 39,0
39.0 39,0
39,0 39.0
39,0 39,0
39.0
39.0
39,4
43,1
45.1
39.0
39,0
39.0
39.0
39,0
39,0
39,0
39.0
39,0
39.0
39,0
39,0
39.0
39,4
39.0
39,0
39.0
39~O
39.0
39.0 39.0
42,3
49.8
39.0
39.0-
39.0
39,0
39,0
39,0
39,0
39.0
39,0
39,0
39.0
39.0
39.0 39.0
39.0 39,0
39.0 39.0
39,0 39.0
39.0 39,0
39.0
39.-0
39,0
39.3
39fO
39,(!
39,0
39.0
39.0
39,0
39.0
39.0
39,0
39.0
39,0
39.0
39.0
39,0
39.0
42,7 42.9
44.6 44.6
41.9
49.7
39~O
39.0
39.0
39.0
39.0 39,0 39,0 39.0
39.1 39.1 39,1 39,1
39!O
39.0
39,0
39,0
39.0
39.0
39.0
39.0
39.0
39.0
39,0
39.0
39.0
39,0
39.0
39.0
39.0
39,0
41 fb
49.7
39,0
39,2
42,4
44.6
39.0
39.0
39,0
39,0
39.0
.3'1,039.0
39.0
39,0
39,0
39.0
39,0
39.0
2 39.0
39,0
39.0
39,0
3 39.0
39,0
39.0
39.0
4 39,0
39,0
39,0
39,0
8 39.0
39.1
41.3
49,6
9 39.0
39,2
42.2
44.5
10 39.0
39,0
39.0
39.0
11 39 +0
39fV 39~O
39.0 39,0
12 39.0 39.0
39,0 39.0
....
!
r
-I
r
l
r
!"'!"I.l
FLOWS AND TEMf'ERATURES FOR YEAR 1
r~
YEAR 5 6 7 8 ....10 11 12 '""1 4;~"INFlO 9033~8 7177.0 80S9.0 9344,0 11467.0 3115.0 8137.0 9517.0 12246.0 10812.0 9195.0 8156.0 6180.0
[VAP "'."T 4.6 4ft.4.1 "1 ~1.8 0.8 .'"0.4 0.5 1.3 2.4 "T E:"..::t·J ....'f-V Ut"::,,)t..J
PRep 1.7 0.8 .,'-:"T ,"T "T 2,8 lt6 1.2 1.2 O.?1.2 1.0 0.7.:.t.::.;1.;1 .,jt.J
OUTFl 903t.~9 9344~O 102B8.0 9070,0 8473.0 6972.0 7403.0 9425.0 11864.0 10514.0 9038.4 8143.8 7903.0
RERDQ 9018tO 9344tO 10288.0 9070.0 B478f{i 6972.0 7403.0 942510 11864.0 10514.0 8883.0 8072.0 7903.0
STMX 1082000.1082000.1082000. 1082000.1082000.1082000.1082000.1082000.1082000. 1082000.1082000.1082000.
STOF,844363$710370.726649.910612.979182.1024763.1030805,1054766,1073316.1082000.1082000.977833.
STMN 292000.292000.292000.292000.292000,292000.292000,292000.292000.292000.292000,292000.
TEi 25~5 37f4 49,0 52+0 48,6 39t9 2470 9.7 '"n 1.6 6.6 11.2 23.5'::77
TMF'IN 4270 31\1 44f-2 49.4 49.6 46.5 39~9 39.0 39.0 39,0 7....•3geO 39.0,.;7 tV
TMPHX .'.t'1 l::45.9 49.5 54.9 53t6 46.3 39.2 37.6 36~O 36.0 36.0 36.0 41.0"i..:..,~I.'
TPOUT 41,5 39.0 44.0 48.8 48.8 .H:-~7...."T 39iO 39.0 39,0 39.0 39,0 39.0"1Jtv ....l!t.r
TMPHN "7 F 'i 37,9 41.5 46.9 45.6 38 ..3 32.0 32 ..0 32,0 32.0 32.0 32.0 33.0
,)0 ~.::..
RELEASES THF:U OUTLET 1
QOMN 0.0 0.0 0.0 188,0 0.0 0,0 0.0 11.0 0.0 0.0 O~O 0.0
GOUTL 0,0 0.0 0.0 188.0 0,0 ti;0 0,0 11.0 0.0 0,0 0.0 0.0 pC]
TOUTL 0.0 0,0 0,0 39.4 o.v 0.0 0.0 39.0 GtO 0.0 0,0 0.0
RELEASES THF:U OUTLET 2
aOMN.-3.0 ~~-3.0 -3.0 "T "-3.0 -3,0 -3,0 -}.O -3.0 -.3.0 -3.0-J+\.i -J.V
aOUTl 9344.0 10288 ..0 9070,0 8290~Ct 6972.0 7403,0 9425~O 11853,0 10514,0 90.113'.4 U143,fl 7903,0
TOUTL 39 ..0 44~O 48.8 49.0 45.3
39,7 39.0 39.0 ~".39.0 39.0 39.0.J7tV
~,""1
i
l .
APPENDIX A5
CLIMATIC STUDIES FOR TRANSMISSION LINES
Climatic studies were carried out to determine likely wind and ice loads for
preliminary design of transmission lines.Historical data and those collected
in the field during the study period were used to assess potential wind and ice
conditions along the selected transmission corridor.The following sections
present details of the analysis undertaken and recommended loads for design.
1 -WIND LOADS
1.1 -Available Data
Daily climatological data summaries were obtained from the National Oceano-
graphic and Atmospheric Administration (NOAA)for the la-year period 1969 to
1978 for recording stations at Anchorage,Fairbanks,and Talkeetna along with
monthly summaries of all available records (extending over 30 years).Partial
records (1969 -1973)for Gulkana and Big Delta stations.Data for Summit sta-
tion and Healy power station were collected by the project team in Anchorage.
For a general description of climatological data availability in the basin,re-
fer to the Field Data Index.
The NOAA records report the fastest mile of wind,which is the maximum wind
speed averaged over a 1 minute duration.Within this interval,instantaneous
gust speeds can be significantly above the average value.Instantaneous gusts
usually are recorded as averages over a few seconds,since this is the lower
limit of response time of most measuring anemometers.NOAA does not routinely
report gust speeds.
Wind speed,direction,and gust speeds were recorded at six climate stations
located in the Upper Susitna Basin during 1980-81 as part of the field data col-
lection program.Wind and gust values were recorded every 15 minutes as aver-
ages of 15 second readings.Peak gusts and values around the peak were also
recorded to enable estimate gust speeds of few seconds duration.Figure A5.1 to
A5.3 presents selected peak gust values and estimated duration for Watana,Devil
Canyon,and Susitna Glacier stations.
1.2 -Analyses
Table A5.1 presents a summary of the length of records and fastest mile speed
recorded at the different stations.The highest wind speed of 75 mph was re-
corded at Big Delta.At the Healy power plant,a high of 70 mph was observed in
a 1.5 year period of record.Several records petween 50 and 60 mph were also
observed in this short period at Healy..
It has not been possible to carry out a regional frequency analysis to estimate
wind speeds along the transmission corridor because of limited records at repre-
sentative stations along the corridor.However,from a review of the available
A5-1
data.a wind speed (1 minute value)of about 100 mph along the corridor was
estimated to have a return period of 1 in 30 years.Corresponding gust speed
was estimated around 150 mph.These values are considered appropriate for use
in preliminary transmission line design.
2 -ICE LOADS
2.1 -Freezing Precipitation
(a)Available Data
Data collected from NOAA on freezing precipitation amount included 3 hourly
records for the period 1969 -1978 for Anchorage and Fairbanks.Records at
Gulkana.Bid Delta.and Talkeetna stations were available for shorter dura-
tions between 1969 and 1972.
Standard freezing precipitation equipment consisting of 8-inch square steel
plates mounted on steel pipes were installed at Watana and Denali climate
stations to record such precipitation amounts (1).The winter of 1980 -
1981 was unusually mild and no freezing precipitation was recorded at these
stations.While some icing may have occurred but gone unrecorded because
of limited site visits by the data recording team.from discussion with the
Watana camp residents.it is gathered that no icing actually occurred
during the season.
(b)Analyses
Short records at the Gulkana,Big Delta,and Talkeetna stations could not
be used in any analyses except as check values.A frequency plot of Fair-
banks and Anchorage records is presented in Figure A5.4.This indicates
that an average I-inch ice accumulation may be expected as a 1 in 15-year
event.
2.2 -In-Cloud Icing
In-cloud ice accretion on transmission lines is a function of supercooling of
the cloud moisture,cloud type,wind speed temperatures,etc.Based on previous
experience in northern climate,a typical combination of climatic conditions
conducive to in-cloud icing was identified.Such data were available from NOAA
only for Anchorage and Fairbanks stations,and were obtained for a la-year
period (1969 to 1978).
In order to measure in-cloud lClng in the field,two methods were used.The
first consisted of a 12-foot length of I-inch diameter aluminum (steel core)
cables mounted about 8 to 10 feet above ground between upright posts.As in-
cloud icing caused rime to build up on the cables,its thickness was to be meas-
ured.The second method continuously measured amounts of atmospheric icing.
The set up consisted of a Rosemount ice detector which sensed the presence of
ice (sensitivity =0.025 inches)and produced an output electrical signal suit-
able for automatic recording in a counter.The unit contains a built-in heater
which automatically de-ices the detector each time an ice warning signal is
A5-2
i"""
I
-
r-
I
-i
l i
produced,thus preparing the detector for another ice-sensing cycle.This
device is designed for use as an automatic control mechanism to de-ice fixed
antenna installations.For our purposes,the unit was connected to a counter
which totaled the number of times that the detector indicated an occurrence of
icing.The counter was then read during regular monthly site visits.
As with the freezing rain measuring setup,no icing was observed on the sections
of transmission line set up during the winter of 1980-81.
The ice detector unit was located near the Watana camp because it required ac
power supply from the camp generator for operation.The system was planned to
automatically record icing events.Unfortunately,the system could not perform
satisfactorily because of frequent power outages at the camp for daily servicing
or changeover.Each power interruption was recorded as a count in the ice de-
tector,making initial observations useless.As a solution to this problem,an
attempt was made to keep a count of the number of power interruptions at the
camp.The intent was that these would then be subtracted from the counts re-
corded by the detector,with the balance of the counts being the number of
icings occurring.The generator operator was enlisted to record the timing of
each power outage.
Keeping accurate track of the number of power interruptions was a more difficult
task than originally envisioned.Sometimes a shut-off might not be recorded,or
during a shut-off the generator might kick on and off a few times,thus causing
multiple icing counts to be recorded but not necessarily logged by the operator.
For this reason,the detector results are suspect.However,the winter of 1980-
81 was a dry one,and judging by observation of the icing cable and plate,it is
suspected that little if any icing actually did occur during the winter at the
observation sites.This suspicion is supported by discussion with long-term
resi dents of the Watana camp.~Ihen the camp mai ntenance men and/or cooks were
asked at frequent intervals during visits to the camp,none reported any freez-
ing rain or icing conditions.
Without field data,no analytical method or modeling could be applied to esti-
mate in-cloud icing on the transmission corridor.
2.3 -Snow Creep
Snow creep is the slow movement of a snowpack downhill.It is most prevalent on
slopes of 25°and 35°.Above this angle the movement of snow will more likely
occur as an avalanche~
During 1973 in Southeast Alaska,several transmission line towers servlclng the
Snettisham Hydroelectric Project failed for a reason unknown but theorized to be
high winds or snow creep pushing the tower off its base.In 1974 and 1975.the
Corps of Engineers installed a system to evaluate the amount of force that snow
creep could exert on a transmission line ~ower (Meyer,1978,[2J).These tests
measured a maximum pressure of 460 lbs/ft with a 71-inch depth of 37 percent-
density snow,but concluded that snow creep forces did not contribute to the
failure of the tower.
A5-3
Even though not judged to be a factor in the Snettisham failures,snow creep was
considered to be a potentially large force in Alaska.To try to determine the
magnitude for the transmission line servicing the Susitna Project,two installa-
tions were set up to measure snow creep forces.To simulate conditions at the
actual transmission line towers as closely as possible,24-inch diameter,
3/8-inch thick tubular steel sections were placed on the chosen slopes along the
potential transmission corridor.These sections were allowed to slide over the
ground and were held from sliding downhill by a cable attached to a dynamometer.
The dynamometer measured the force in the cable which was needed to support the
pipe section.If creep of the snowpack did occur,the force would have been
transmitted to the pi pe section,cable and dynamometer where its maximum woul d
have been recorded by a maximum-recording gauge (1).
The two setups were installed in January 1981,one near Watana and the other
near Devil Canyon damsites.During setup,the snowpack was unavoidably dis-
turbed.Partly because of this and also because of the lack of abundant snow
during the winter,no usable snow creep data were collected.Some readings were
taken,however,which indicated the type of base readings that may occur on the
instrument with no snow (because of thermal,wind,or other stresses).1981
observations are summarized in Table A5.2.
3 -COMBINED LOADS
Where historical events are reported,only 3-hour average and 4-hour maximum
wind speeds are reported.For Anchorage and Fairbanks,these values are as
follows:
Maximum Wind Speed Durinq Icinq mph
3-hour average 1 hour average
Anchorage 10 21
Fa irbanks 12 25
These values are recorded over a 10-year period during occurrences of freezing
precipitation.There is no reliable method to extrapolate wind speeds from
3-hour averages to shorter duration wind and gust speeds.A conservative
approach would suggest using wind speed values in conjunction with I-inch
diameter ice buildup for preliminary designs.A specific gravity of 0.9 may be
assigned to the ice (clear or glaze associated with freezing rain).
4 -DISCUSSION AND RECOMMENDED DESIGN LOADS
Discussions were held with Commonwealth Associates Incorporated,who are respon-
sible for the detailed design of the transmission line interties between Willow
and Healy,with the COE,Retherford Associates,and local utilities in the
Railbelt on the general design parameters of the transmission lines.Based on
these and the analyses discussed above,the following set of parameters were
chosen for the preliminary design of the Susitna transmission lines:
A5-4
,....,
Mj .
~
i
I
.....,.
I •
I .~,
r
I '~,
rrii
njI
NESC heavy loading 1/2-inch with 40 mph wind;or
-Extreme wind of 140 mph without any ice;or
-Extreme ice of I-inch with 40 mph wind.
A5-5
REFERENCES
1.
2.
R&M Consultants,Susitna Hydroelectric Project,Field Data Collection and
Processing,December 1981.
Meyers,R.,Snow Creep Investigat.ions in Southeast Alaska,Cold Regions
Specialty Conference,Anchorage,Alaska,May 1978,Published by
American Society of Civil Engineers.
A5-6
LIST OF TABLES
r
Number
A5.1
Titl e
Recorded Wind Data
-i
)
\
r
t
-
-
-:
A5.2 Snow Creep Observations 1981
-
1
~,,
I""'"
i
!"""
I
~
I
t
-!
LIST OF FIGURES
Number Title
A5.1 Gust Velocities -Watana Station
A5.2 Gust Vel ociti es Devil Canyon Station
A5.3 Gust Velocities -Susitna Glacier Station
A5.4 Frequency Curve for Freezing Precipitation Amounts
......
-I
Y,
r
I""""
i,
TABLE A5.1:RECORDED WIND DATA
Gust (15
Maximum Wind
Period of Speed Recorded
Station Record Years min.avg.)Month/Year mph/min.avg Month/Year
Anchorage 24 N/A N/A 61 Jan 1971
Big Delta 23 N/A N/A 74 --
Fairbanks 26 N/A N/A 40 Jun 1974
Gulkana 15 N/A N/A 52 Jan 1971
Healy Power Plant 1-1/2 N/A N/A 70 Jan 1979
Summit 15 N/A N/A 48 Mar 1971
Talkeetna 10 N/A N/A 38 Jan 1972
Watana 1 37 May 1980 35 May 1980
Devil Canyon 1 31 Apr 1980 19 Nov 1981
Susitna Glacier 1 73 Jan 1981 64 Jan 1981
N/A -Not Available
TABLE A5.2:SNOW CREEP OBSERVATIONS 1981
MaXlmum
Dynomometer Snow De)th
Date Read ing (lbs)(feet
Devil Canyon Site
2-25-81 1.5
3-5-81 515 2.5
3-31-81 605
10-2-81 0.0
11-3-81 400 1.0
12-3-81 480 2.5
Tsusena Butte Site (Watana)
Comments
Installation date.Dyno reading
400 lbs.
Last reading of season.
First visit of season.Dyno reads
340 lbs.
Dry snow,no ice layers or depth
hoar.
2-26-81
4-2-81
10-2-81
11-3-81
12-2-81
500
480
520
2.5
0.0
0.5
0.5
2.0
Installation date.Dyno reading
440 lbs.
No snow around cylinder.Last
reading of season.
First visit of season.Dyno reads
400 lbs.
Hard wind packed snow.
Dry snow.Eight inches of depth
hoar.lee crusts at eight inches
and an surface.
,....
10«
(HdW)A.iI:1013/\.ism)wnWIX'I1W
o
Q o
00
oto o
'<t o
N o
W
0::
::::>
C)
l..L..
0
I
rt)
+
ii5 (ij I
~Ql I
>-w Iexz
::::!!:~I z
!"'"'\~0I
I (ij I-
m 10 «
IIi +l-
I"""mwl/)u..W
I-«::>Zz
::::!!:«r-I-
z «
0 ~
I-,....0 ~m
t a::ww
["l/)I-L m
0 U,...u..0
0 .....J
w W
::::!!:>
I-
r-IO I-m
I :J
C)
,....\
!
~
0
rt)
I,...
o
'<t o
N Q o
I"""
l
(S/~)AlI:J013/\lsn~wn~IX'l1~
N
If)
<t
r
-,!
og
(HdW)AlI:>013/\lSn~WnWIX"1W
o
lD o
W
0::
::::>
C>
lL.
z
0
I-«I-
!Q en
co +~en Zw0>-.......J :::)>-:::)Z Z-:>
i «uz
0 ..J....
0
<[>>Wlr
I<J 0en
aI
0 en
LL.w
0 I-
I<J U~0......J
Ii)W
I >
I-en::::>
(!)
\----'-------L.._----1...--1~
I
\----------------------------.----.----r----l~
+
r
,.....
I
r
,.....
j
t
,.....
I
I
r
I
(S/W)A11:>013/\lSn~wnWIX"1V11r
ov o
If)
o
(\J
o o
t.i
r ~
10«
(HdW)A.l.IJ013A .l.Sm)wnwlx'O'~
o
Q oco o
CD o
~
o
N o
wa::
::::>
Q
LL
1""".
i 0tCD
I +
r I
l',Zl
I 0
,.....I ti
I ....
I en
0,PO
r I +0:0 ex;If)wCXlWCXlC7lC7lII-UC7l::l..J I z «
if I ~...Jll.C)
ct I z~0 «
~Z«....,....0 >a:en
\w ::::l
"
If)en\a:l
~0
-,\lL.en
\0 w
\w ....
\~U
I""'""\~0
0 ...J,PO WI
I >
""'"I ....
r I en
i \I ::::l
C),...I,I
I 0
CD
I
~~
(S/W)A.l.IJ013A .l.Sml wnwlx'O'w
o o
""'"I
"'·"""",*,"ti""'~"'"
r LI
"':
30N30330X3 .:10 A..L 11 '8't'80~d %In<
'Cl'.I1J-,~s;01 O~0'"OS;09 OL 08 06 II:
::>,0'0 Cl
u..
"""Il
xj enr...
I z
~
I 0
!~I cl
z
°1
0
~I /I ~~
\V
I 1"0 [3 a::
:I:<:.>0
"'"""~ILlIa:I x ~0 a.
en
I-(,!)Z
~::>Z0
E :::E
l'<[N
I
z UJ
0 UJ
,....li a:
l-ll..~
I
0 a:I1J
II:0D..U.-ClI
l /
z
N UJ
I
I1J >I1J a:II:
r-/0',....~
I
0
[
I >-0
/zr-ILlIi
t /~~
0/IJJa:
!"""l::u..
I
I
"
!"""S;
,9
L
001 OS;O~0'S;~,.,-
(S~'t'3A.Nil OOI~3d N~n.L3~
~~o(z X ID
IJJ U 0:::
'"Z -IJJ c(~
..J I I
X 0