Loading...
HomeMy WebLinkAboutAPA332TK 1425 .sa A23 no.332 E I D ( 707 A STREET. ANCHORAGE. ALASKA. 99501; (907) 2794523 EXAMINATION OF SUSITNA RIVER DISCHARGE AND TEMPERATURE CHANGES DUE TO THE PROPOSED SUSITNA HYDROELECTRIC PROJECT FINAL REPORT ARCTIC ENVIRONMENTAL INFORMATION AND DATA CENTER i-~;:;. ·,.,.: r-.-... : ~ _>t, ;_":: ~ • ~~··· .• EXAMINATION OF SUSITNA RIVER DISCHARGE AND TEMPERATURE CHANGES DUE TO THE PROPOSED SUSITNA HYDROELECTRIC PROJECT FINAL REPORT ,..... 0 0 co C") ,.- ,.- 0 0 LO LO ,..... C") C") EXAMINATION OF SUSITNA RIVER DISCHARGE AND TEMPERATURE CHANGES DUE TO THE PROPOSED SUSITNA HYDROELECTRIC PROJECT FINAL REPORT Prepared by: Arctic Environmental Information and Data Center University of Alaska 707 A Street Anchorage, Alaska 99501 Submitted to: Harza-Ebasco Susitna Joint Venture 711 H Street Anchorage, Alaska 99501 For: The Alaska Power Authority 334 W. 5th Avenue, Second Floor Anchorage, Alaska 99501 December 2, 1983 ARLIS Alaska Resources Library & Information Services Library BuilcJing, Suite 111 3211 Providence Drive Anchorage, AK 99508-4614 -rK. l~?..b ,sq A23 flD~33'L This report was prepared by the following AEIDC staff William J. Wilson, Principal Investigator Paul R. Meyer, Hydrologist Ken A. Voos, Ph.D., Environmental Engineer Beverly J. Valdez, Information Coordinator Charles G. Prewitt, Ph.D., Fisheries Biologist TABLE OF CONTENTS LIST OF FIGURES INTRODUCTION. . • . • . . . • . . . . . . . . . . . . . • • . . . . . • . • . . . . • • . • . . . . . • . . • . . . • . . . 1 . PROJECT BACKGROUND. . • . . . . . . . . . . . . . • . . . . . . . . . . • . . . . . • . • . • . • . . • . . 1 APPROACH OF THE STUDY. . . . . . . . • • • . . . . . . . . • . . . . • . . • • . . . . . . . • . . . . . 2 METHODS. . . . . • . . . • . . . . . • • . . . . . . . . • . . . . . . . . . . . . . . . . . • . • • . . . . . . • . . . . . . . 3 DISCHARGE...................................................... 3 Pre-and Postproject Flows................................ 3 Statistical Testing....................................... 6 TEMPERATURE. . . . . . . . . • . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • • . . . . . . . . . 9 Initial Temperatures at Cantwell, Chulitna and Talkeetna. . • . . . . . . . . . • . . . . . . . . . . . . . . . • • . . . • • . . • . . . • . . . . 9 Reservoir Release Temperatures............................ 11 Selection of Conditions Producing Normal and Extreme Temperatures.. . . • . . . . . . . . . . . • . . . . • . . . . . . . . . . . . . 13 Postproj ect Simulations................................... 13 RESULTS AND DISCUSSION.............................................. 15 DISCHARGE...................................................... 15 Single-Dam Scenario (Watana Only)......................... 15 Two-Dam Scenario. . . . . . • . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . 17 TEMPERATURE. . . . . . . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Postproject Simulations •....•.•..........................• 20 Watana Filling....................................... 20 Operational Scenarios ..•.....••....................•. 24 SU~Y •••.•.•..•..••..•. ~····································· 24 REFERENCES APPENDICES A. FLOW STATISTICS FOR THE SINGLE-DAM SCENARIO B. FLOW STATISTICS FOR THE LOG-TRANSFORMED DATA, SINGLE-DAM SCENARIO C. MONTHLY FLOW PROFILES FOR NATURAL AND SINGLE-DAM OPERATIONAL CONDITIONS D. FLOW STATISTICS FOR THE TWO-DAM SCENARIO E. MONTHLY FLOW PROFILES FOR NATURAL AND TWO-DAM OPERATIONAL CONDITIONS F. NATURAL RIVER TE}~ERATURE PROFILES FOR NORMAL AND EXTREME CONDITIONS Figure No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. LIST OF FIGURES Region of present temperature study, Cantwell gage to Sunshine Station Regression model-predicted initial temperatures (C) with 95% confidence intervals. Regression model-predicted initial temperatures (C) for June to September 1980. Estimated mean monthly summer reservoir release temperatures. SNTEMP-predicted temperatures (C) and rank of the mainstem Susitna at Talkeetna Station for June through September, 1968 through 1982. Project-related flow changes, 1-dam scenario Project-related flow changes, 2-dam scenario River temperature profiles for second year of filling Watana reservoir (2 pages). River temperature profiles for natural and 1-dam operational conditions (2 pages). River temperature profiles for natural and 2-dam operational conditions (2 pages). Page No. 4 10 12 12 14 18 19 21 25 27 EXAMINATION OF SUSITNA RIVER DISCHARGE AND TEMPERATURE CHANGES DUE TO THE PROPOSED SUSITNA HYDROELECTRIC PROJECT INTRODUCTION PROJECT BACKGROUND The Alaska Power Authority (APA) is proposing to construct a 1620 megawatt hydroelectric project on the Susitna River, approximately 120 miles northeast of Anchorage, Alaska. Licensing of this project by the Federal Energy Regulatory Commission (FERC) requires, in part, that APA provide an analysis of the environmental effects of the project including a description of the present conditions, an evaluation of expected impacts, and proposals to mitigate those impacts. The Susitna project aquatic resources impacts are expected to result primarily from changes in Susitna River discharge and temperature patterns. In general, these effects are expected to be reduced summer streamflow and· increased winter streamflow relative to preproject conditions. Summer stream temperatures downstream from the project are expected to be cooler and winter temperatures warmer than those currently recorded (ACRES 1983). The aquatic impact assessment program is designed primarily to predict aquatic impacts at study sites selected to represent similar areas which cannot be intensively studied because of cost or time constraints. Central to this type of assessment is the delineation of pre-and postproject discharge and temperature effects in terms of their expected magnitude and significance to aquatic organisms. It is therefore necessary, when proposed project configuration is finalized, to determine the magnitude of expected project changes (in this case discharge and temperature) from the project location to the downstream -1- point at which effects may no longer be considered significant. In so doing, two things are accomplished: first, the stream reaches or segments within which discharge and temperature are homogeneous are determined and serve to stratify the river prior to assigning study site impacts to larger unstudied areas; second, physical bounds are put on the reach of river where discharge and temperature changes are significant, and thus within which impact studies should be concentrated. APPROACH OF THE STUDY In this paper proposed mainstem Susi tna flows resulting from project operation are examined in relation to natural flows. Attempts are made to identify reaches of the river where postproject flows are statistically indistinguishable from natural flows. We believe that flow-related aquatic impact issues cannot be addressed in areas of the river where natural and operational flow regimes are statistically the same. Temperature variations are addressed by comparing natural stream temperatures with downstream temperatures resulting from project operation. We feel it desirable to show natural and postproj ect temperatures expected during normal and extreme meteorologic/hydrologic conditions. To do this, those summer periods which resulted in the normal, maximum and minimum stream temperatures under predevelopment conditions were selected from stream temperature simulations which used historical meteorology and hydrology data. The data from these three selected summer periods (1970 for the minimum, 1980 for the normal and 1977 for the maximum) were combined with postproj ect modifications to compare the difference between predevelopment and postproject stream temperatures. The postproject simulations will, therefore, represent -2- the range of temperatures expected under natural variations in hydrology and meteorology. The sparcity of daily discharge and water temperature data in the Susitna basin dictates the use of monthly timesteps for most simulation modeling. Data. for large time steps are expected to mask some short-period variations, thus conclusions drawn from these monthly simulations must be made with caution. Simulations are presently underway using weekly time periods in which greater short-term variations are expected to appear. This second round of simulations is also being done on a yearly basis, whereas only summer periods (June through September) have been addressed in this report. Thoughout this report the terms "natural flow" and 11 preproject flow" are used synonomously in reference to the estimated flow regime of the Susitna River which occurred since record-keeping began with water year 1950. These estimated flows are a composite of the flows recorded at USGS gage stations in the basin and the statistically-generated flows developed by ACRES (1983) to fill gaps in the record. METHODS DISCHARGE Pre-and Postproject Flows Preproject mean monthly discharges for the Susitna River downstream from the Watana dam site (Figure 1) were estimated using the statistically-filled streamflow data given in the FERC license application (ACRES 1983) and a water balance computer program (H20BAL) developed by AEIDC. The H20BAL program (AEIDC 1983) computes contributing tributary inflow to the Susitna River from small subbasins based either on watershed area or precipitation-weighted watershed area. From this, mainstem flows are determined for a number of -3- I .j:-. I Figure 1. Region of present temperature study, Cantwell gage to Sunshine Station. 0 USGS Gage Stotion 1 Dam Sill! SUSITNA R!VEH Cantwell to Kashwitna River Seale I"= 8 miles • ~~~/ r J locations. The watershed area weighting method was used for these simulations. This was done to maintain as much consistency as possible with the methods previously employed by Acres American, Inc. It should be emphasized that since the H20BAL program only generates mainstem flow data for locations between gage stations, flows used in this report for gage locations (Gold Creek, Watana, Chulitna, Talkeetna and Susitna Station) are consistent with those appearing in the license application. The only exception is at Sunshine Station, where flows available in the license application sometimes result in negative inflows when water balancing. Flows at this station were determined by 11000. 10736. where QS' QGC' QT' and QC refer to flow at Sunshine Station, Gold Creek, Talkeetna, and Chulitna, respectively, 11000. is the area (mi 2 ) of the watershed defined at Sunshine Station, and 10736. is the area (mi 2 ) of the summed watersheds defined at Gold Creek, Chulitna, and Talkeetna gages. Employing H20BAL results in the reconstruction of Susitna River mean monthly streamflows for the water years 1950 through 1981 at all gage stations and significant tributary confluences from the Watana dam site to Susitna Station, 26 miles from the river mouth at Cook Inlet. Postproject streamflows can be predicted at the same locations using the 32-year postproject flows at -5- the Watana dam site (one-dam scenario) or the Devil Canyon dam site (two-dam scenario) as simulated by the ACRES reservoir operation models. These models provide release discharge estimates after simulating power production based on the dimensional properties of the dam(s). One model simulates Watana dam only., while another simulates conjunctive operation of both Watana and Devil Canyon dams. The reservoir operation schedule presented in the Application for FERC License (ACRES 1983), the "C" scenario, was analyzed in this report. This scenario is indicated in the License Application (ACRES 1983) to balance the cost of impact mitigation measures and loss in net benefits. It reflects the minimum demand at Gold Creek for 6000, 6480, 12000 and 9300 cubic feet per second (cfs) respectively in June, July, August and September for fishery purposes. Operational flows expected during the summer of the second year of filling the Watana reservoir were also simulated. This period is of special concern due to the cold (4 C) water that would be released from the lower level dam outlet during this season (ACRES 1983). Minimum flow releases at Gold Creek for the summer filling period are 6000, 6480, 12000 and 9100 cfs for June, July, August and September respectively (ACRES 1983). During some years, enough water is available from tributary inflow between Watana and Gold Creek to meet this requirement without releasing any water from the reservoir. For such cases, a minimum Watana release of 1, 000 cfs has been specified (ACRES 1983). Statistical Testing The statistical analysis of the 32-year flow series is used to describe the flow regime for the natural and operational scenarios at a given mainstem -6- location and, if possible, to determine the point downstream from the project where operational flows become indistinguishable from natural flows. All statistical methods used are described in this section although initial statistical results determine which, if any, additional testing is done on the data. In testing for statistical significance, the pre-and postproj ect flow series at each mainstem node location are considered as samples of distinct flow populations. Moving downstream from the lower reservoir, inflowing tributaries will dampen the differences between natural and operational flows. During months where reservoir releases do not differ greatly from natural flows at the dam site, it is reasonable to expect that the 32-year sample of operational flows would become statistically indistinguishable from the sample of natural flows at some point downstream. Ideally, if both natural and operational flow series approximate normal distributions at each node location for a given month, testing for significant differences at mainstem locations progressing downstream is relatively straightforward. The statistical test that can be used in this case is a comparison of population means with both population variances unknown and not assumed equal (Johnson and Leone 1964). The test statistic has a distribution approximating a Student's t distribution with 31 degrees of freedom. Yevjevich (1972) suggests two criteria for determining whether or not a normal function should be applied to an empirical distribution. These requirements incorporate the skewness (a measure of symmetry) and kurtosis (a measure of peakedness) of a distribution through the skewness coefficient C , and the excess coefficient, C • s e For normally distributed populations, both parameters equal 0. The population a sample is drawn from can be considered normal if it meets the following requirements: -7- -0.2 < C < 0.2 and s -0.5 < c < 0.5. e ··The skewness coefficient is approximated for a small sample (Chow 1964) by where n X. l X c s n n L (n-1) (n-2) i the sample size the mean monthly site and month, the mean of the (X. -x)3 1 l ( = 32), flow during the n monthly flows .th l year at a given The coefficient of excess (Yevjevich 1972) is determined by 2 n c e (n-l)(n-2)(n-3) where variables are as above. n L (X. -X) 4 i=l l - 3 for a given site. When data fails to meet these requirements, Yevjevich gives two options: fit the data to another distribution or transform the variable values to fit a normal distribution. Frequently, discharge data series are positively skewed due to extreme high-flow events. In these cases, replacing flow values with the logarithm of flows may normalize the series and has a justifiable -8- hydrologic basis (Chow 1964). This is only useful, however, if both pre-and postproject flow distributions are positively skewed. When this is not the case, no further statistical manipulation is attempted here. For flow series that fit the transformed lognormal distributions (using the c s and C e values of the transformed data), the test for significant differences can be performed. An additional statistical parameter of a sample distribution which appears in the tabular output is the coefficient of variation, C • This is v simply the standard deviation divided by the mean. TEMPERATURE Initial Temperatures at Cantwell, Chulitna and Talkeetna To begin a natural condition temperature simulation, starting temperatures are required for the Susitna River at the Cantwell gage and the Chulitna and Talkeetna rivers at the USGS gages near the town of Talkeetna. When these data are not available, initial temperatures are synthesized by (1) using SNTEMP to compute an equilibrium temperature for the period of missing data, and (2) using this calculated equilibrium temperature to estimate an initial water temperature from a regression model developed from observed water temperatures and calculated equilibrium temperatures (AEIDC 1983). The reliability of these regression models restricts the accuracy of the physical process temperature simulations. For example, if the regression model for the Cantwell gage predicts an initial temperature of 8 C when the actual stream temperature was 7 C, this one degree overprediction would cause overprediction throughout the simulated length of river. The temperatures predicted with the regression models and the 95% confidence intervals for individual stream temperature values are presented in Figure 2. The -9- Figure 2. Regression model-predicted initial temperatures (C) with 95% confidence intervals. SUSITNA RIVER AT CHULITNA RIVER TALKEETNA RIVER CANTWELL USGS GAGE AT USGS GAGE AT USGS GAGE T 95% T 95% T 95% Confidence Confidence Confidence Interval Interval Interval 1970 (minimum) June 7.97 + 1. 38 6.48 +2.35 7.85 +5.79 July 8.90 +1.40 6.87 +2.38 5.17 +6.28 August 7.47 "+1.39 6.27 +2. 38 6.70 +5.89 September 3.81 +1. 82 4.44 +3.62 1. 37 +8.19 I 1977 (maximum) I-' 0 June 11. 12 +1. 61 7.39 +2.57 10.88 +6.36 I July 10.60 +1. 54 7.69 +2. 74 11.71 +6.70 August 9.22 +1. 41 7.21 +2.48 10.23 +6.14 September 5.35 +1.57 5. 16 +2.98 3.69 +6.89 1980 (average) June 8.68 +1. 39 6.54 +2.35 8.18 +5.79 July 10.20 +1. so 7.47 +2.61 10.88 +6.36 August 8.28 +1. 38 6.53 +2. 35 7.91 +s. 79 September 5.22 +1.59 4.89 +3.20 3. 19 +7.14 T predicted temperature difference in the level of confidence among the three regression models is a result of the number of data points available for computing mean monthly temperatures and the type of data collected. Continuous data was collected at Cantwell gage for June to September of 1980 and 1982, continuous data was collected at Chulitna gage in 1982 with grab samples in 1980, and only grab samples were available at Talkeetna gage for June to September of 1980 and 1981. Comparisons between the observed and regression model-predicted temperatures for 1980 (representing a normal year) are presented in Figure 3. Reservoir Release Temperatures Presently, reservoir release temperature estimates are very sparse. The reservoir thermal model, DYRESM, has been run for both reservoirs only for 1983). We have estimated mean monthly release 1981 conditions (ACRES temperatures (Figure 4) from the continuous thermograph output from these runs. Since reservoir outflow temperatures are expected to vary from year to year due to differences in meteorology, hydrology, available reservoir storage and power requirements, applying these temperatures to other years may not be representative. Consequently, downstream temperatures were simulated under operational conditions for only one year (1981). Release temperature predictions for the second year of filling the Watana reservoir can be made with greater confidence. Until the reservoir level rises to where the normal (upper) outlet facilities can be used (estimated as late summer or fall of the second year of filling), releases are restricted to the lowest outlet facilities (ACRES 1983). The 4 C release water expected from the lowest outlet was used for simulating conditions resulting in cold, normal and warm downstream temperatures. The selection of these representative conditions is discussed in the following section. -11- I 1--' N I Figure 3. Regression model-predicted initial temperatures (C) for June to September 1980 MONTH June July August September SUSITNA RIVER AT USGS CANTWELL GAGE T Tabs n 8.68 10.20 8.28 5.22 8.5 10.0 9.0 4.5 31 30 30 31 T = predicted temperature CHUtiTNA RIVER AT USGS GAGE T 6.54 7.47 6.53 4.89 Tabs 6.8 7. 1 n 1 1 0 0 Tabs = observed temperature, computed as average of mean daily temperatures, n = number of days of observed temperature data TALKEETNA RIVER AT USGS GAGE T 8. 18 10.88 7.91 3.19 Tabs 8.3 8.8 Figure 4. Estimated mean monthly summer reservoir release temperatures (C) (based on 1981 DYRESM results, ACRES 1983) June July August September Watana (1 darn) 7.7 9.5 8. 7 8.3 Devil Canyon (2 dams) 6.0 7.2 6. 7 7.5 n 0 1 1 0 Selection of Conditions Producing Normal and Extreme Temperatures The Susitna study application of the stream temperature model, SNTEMP (AEIDC 1983), was used to estimate the range of natural temperature variations in the mainstem Susitna River from the USGS Cantwell gage station to Talkeetna Station just above the Chulitna confluence (river mile 103. 0, site of the Talkeetna fishwheel). Mean monthly river temperatures were calculated for the summer months (June through September) for the fifteen-year period of readily available meteorology data, 1968 through 1982. Meteorology data from Talkeetna (U.S. National Climatic Center 1968-1982) and recorded and statistically-filled flow data (ACRES 1983; R&M 1982a, 1982b) were used. Predicted mean monthly Susitna River temperatures at Talkeetna Station for the fifteen-year summer period are shown in Figure 5. The ranking (coldest to warmest) for each month as well as the overall seasonal ranking are also given in this figure. The three years chosen from these rankings to represent cold, normal and warm temperature conditions were 1970, 1980 and 1977 respectively. 1981 was eliminated from consideration as the normal year due to the variation in June and July temperatures (warm June followed by a cold July). These years represent the normal and extremes in seasonal water temperatures, a product of both meteorology and hydrology for that period. Postproject Simulations Projected reservoir release flows and temperatures were used as initial conditions for simulating the downstream temperature effects of filling and operation of the dams. For the second year of Watana filling and the Watana-only operational scenarios, the simulated river reach begins at the Watana dam site. For the two-dam scheme, the simulated reach is shortened to begin at the Devil Canyon dam site. -13- YEAR JUN 1968 10.52 1969 10.45 1970 8.75 1971 9.00 1972 7.75 1973 8.65 1974 9.79 1975 8.52 1976 10.73 I 1977 11.61 I-' -1>-1978 10.50 I 1979 10.00 1980 8.97 1981 10.46 1982 9. 77 Figure 5. SNTEMP-predicted temperatures (C) and rank of the mainstem Susitna at Talkeetna Station for June through September, 1968 through 1982. Av. Av. Rank JUL Rank AUG Rank SEPT Rank Temp Rank 13 12.58 13 11.46 13 6.44 7 10.25 ll. 5 10 11.83 10 9.52 4 6.80 12 9.65 9.0 4 10.27 1 9.06 2 5. 10 2 8.30 2.25 6 10.64 4 10.30 9 5. 77 4 8.93 5.75 1 11.64 8.5 10.05 7 4.87 1 8.57 4.38 3 11.03 5 8.64 1 5. 15 3 8.37 3.0 8 10.60 3 10.02 6 6.41 6 9.20 5.75 2 11.64 8.5 9.40 3 6.07 5 8.91 4.62 14 12.78 14 11.20 10 6.55 9 10.32 11.75 15 12.95 15 11.50 14 6.88 13 10.74 14.25 12 11.84 11 11. 29 ll 7. 13 1Lf 10. 19 12.0 9 12.09 12 11.37 12 7.76 15 10.23 12.0 5 11.57 7 10.27 8 6.61 10 9.36 7.5 11 10.40 2 9.95 5 6.52 8 9.33 6.5 7 11.38 6 11.53 15 6. 71 ll 9.85 9.75 Seasonal Rank 13 9 1 5 3 2 6 4 14 15 11 12 8 7 10 The three years selected to represent normal and extreme summer water temperature conditions were used to define the range of expected effects. Basin flow and meteorology data for these three periods were used with the corresponding projected reservoir release flows and temperatures. Since river water temperatures are functions of both hydrology and meteorology, both these data sets were used together for a given year. RESULTS AND DISCUSSION DISCHARGE Single-Dam Scenario (Watana Only) Tabulated statistical results comparing natural mainstem Susitna flows with single-dam operational flows are given in Appendix A. Attempts to determine reaches where operational flows show statistically significant differences from natural flows were unsuccessful. This was due to the variations in the shape of the sample distributions with respect to natural versus operational flow samples, and in the consistency of flow distribution shapes at node locations progressing downriver. As mentioned previously, sample distributions of operational flows must be similar in shape to those of natural flows for the proposed test of significance. Additionally, the distribution shape must remain consistent progressing from node to node downriver. The observed results did not meet these requirements. There is a trend of the natural flow distribution toward positive skewness. Nine months showed C values at most node locations greater than s 0. 2; one month showed a synunetric distribution (May) , and only two months (October and January) showed negative skewness. Dam operations tend to reduce the positive skewness during winter months and increase positive skewness -15- during the summer. Five monthly flows, including December through March, reversed skewness coefficients to the negative (C < -0. 2) under project s operation. For the four summer months (June through September), operational flows remained positively skewed. Reservoir operations, while specifying minimum summer flow requirements to facilitate fish usage, also tend to capture higher flows for winter releases. The result is elimination of extreme flows in both directions (high and low), increasing kurtosis as reflected in the coefficient of excess values. There is a tendency for variation in both skewness and kurtosis when moving downstream. This appears to be due in large part to the effects of the larger tributaries. These tributaries generally do not respond in concert with the upper Susitna River; hence, the shape of the mainstem flow distribution is often altered significantly at the confluence of these rivers. Additionally, there was a tendency for increased positive skewness in the lower river reach near and below the Yentna confluence. This effect is seen both in natural and postproject flows. Since the four summer months showed the greatest consistency in the shape of natural and operational flow distributions, and as these months are of greatest concern, the same statistics were run on the flow data after a log transformation (results in Appendix B). Improvement in the C s and c e values was not sufficient to warrant significance testing of these transformed values. Perhaps the most useful result presented in Appendix A appears under the "% CHANGE" column. This value is determined by postproject flow -preproject flow preproject flow -16- and is given for each node location. Flow augmentation under project operation occurs during seven months, October through April. For the four midwinter months (December through March), this augmentation exceeds 100 percent as far downstream as Susitna Station. The remaining five months undergo flow deficits, the most substantial during June and July. The absolute and relative magnitude of these flow changes are shown graphically in Figure 6. Profiles comparing natural and single-dam operational flows for each month are shown in Appendix C. Two-Dam Scenario Mainstem river flows resulting from operation of the two-dam system differ only slightly from that of single-dam operation (statistical results in Appendix D). In general, differences between natural and post-construction flows become more severe with addition of the Devil Canyon dam. When comparing results in the tabular output, the node at "CHINCHEE" for the single-dam case corresponds to the "D.C. DAM" node in the two-dam scenario. For the six month winter period, November through April, the flow augmentation seen under the single-dam scheme is increased slightly. For the May through August period, there is slightly less mainstem flow than under single-dam operation and, consequently, greater flow deficits. The only diversion from this pattern of more severe flow differences occurs in September and October when flow regimes are slightly closer to natural conditions. There is less of a flow deficit in September and slightly less augmentation in October. Figure 7 shows a graphical representation of the absolute changes in flows due to the paired dam operation (positive when postproj ect flows are greater than natural flows) as well as the percent -17- Figure 6. Project-related flow changes, 1-dam scenario. Absolute flow increases with dam operation, systemwide FLOV INCREASE (cf a) lllmll! + + + + + + SBOO 1- + II 1- + + -50011 - + -lll003 1- -150011 -+ + -2l!OOII OCT NOV DEC JAN FEB APR MAY JUII AUG SEP HONTH Relative change in postproject over preproject flows at three sites 1 !tolEASE 800 GOlD CREEK 700 D 600 srnsHINE STATION 5llll IJ. 400 SUSITNA STATION + 3111 2llll 100 L-------~-i-1--1 T -100 OCT JAN FEB MAY Jl.N Jll. Al.C KJNTH -18- Figure 7. Project-related flow changes, 2-dam scenario. Absolute flow increases with dam operation, systemwide FUJV INCREASE (of a) ll!l!ml • • • • • • • • B 1- -Smlll 1-' -I~Il20 1-• -15llll0 1- • • OCT DEC JIJl FEB MAY .JUN JUL. AUG SEP MONTH Relative change in postproject over preproject flows at three sites % l NCfiEI,SE GOLD ClEEK 700 D ~INE STATION 500 A 400 SIJSTTNA STATION :B! 2111 100 B l_ ________ l_f_i __ l T -Jill OCT DEC JAN FfB NAY Jll. SEP IOCfH change in postproject flows over preproject flows for Gold Creek, Sunshine and Susitna Station mainstem locations. Patterns of skewness and kurtosis for natural and operational flows were similar in this case to those in the single-dam case. Consequently, testing for river reaches with significant flow differences was not pursued. Flow profiles of natural and two-dam operational conditions are shown in Appendix E. TEMPERATURE Postproject Simulations Watana Filling. The downstream effects of the second year of filling Watana reservoir were simulated using the three selected years representing normal and extreme conditions. These simulations are of special concern due to the potential impact of 4 C release waters on the fishery resources. Four monthly temperature profiles (June through September) for the three years appear in Figure 8. These profiles show conditions from the proposed Watana dam site to Sunshine Station below the confluences of the Chulitna and Talkeetna rivers. The projected filling flows and temperatures were used to initialize the temperature model. The expected normal, cold and warm temperature profiles are presented along with the minimum and maximum natural conditions (banded area) for comparison. The temperature discontinuity at river mile 98 represents the influence of the Chulitna River (instantaneous mixing is assumed). The smaller discontinuities throughout the simulated length are a result of the smaller tributaries mixing with the Susitna River. Note that the cold natural hydrology/meteorology does not always result in the minimum temperature profiles for filling conditions; conditions representing June 1970 resulted in a warmer temperature than those produced by -20- Figure 8. Cold 197~ Normal 15 198~ Warm 1977 ~~ 5 Cold 197~ Normal 15 198~ Warm 1977 10 5 River temperature profiles for second year of filling Watana reservoir. Shaded band represents range of simulated natural temperature conditions. SUSITNA WATER TEMPERATURES, JUNE Year 2. ~otona Filling Flows TEMPERATURE CCJ " "' .. ·..< " "' "' l'l e ..... ~a 0 "' 190 18~ m I60 15~ 140 130 120 m DISTANCE CMJ SUSITNA WATER TEMPERATURES, JULY Year 2. ~otona Filling Flo•a TEMPERATURE (Cl " 0 ~ "' >. " " "" .. "' .. " "' .. ·..< u ... t.) " ""' .... ... "' ..... "' "' .... "' e .... ..... ..... .. "' ~ ~ 0 " ~Q "' .c. QQ t.) 190 18~ 170 160 15~ 140 130 120 11~ 1~0 9~ 00 DISTANCE ()IJ Figure 8 (Continued). River temperature profiles for second Cold 1970 Normal IS 198~ Warm 1977 Cold 1970 Normal 198~ ·-- Warm 1977 -~-.-- I~ s ll IS Ill year of filling Watana reservoir. Shaded band represents range of simulated natural temperature conditions. SUSITNA WATER TEMPERATURES, AUGUST Year 2. Watana Filling Flowe TEMPERA lURE <Cl -" "' " " " ... ... "' .... u ~ "' "' ... 9 "'"' ;3:<=! 19~ JBI:l m 161l ISI:l 140 131l 121l llll l~ll 91l OISHNCE Q.ll SUSITNA WATER TEMPERATURES, SEPTEMBER Year 2, Wotono Filling Flows TEMPER~ TURE (Cl 191l 171l 161l !50 14~ 130 120 110 911 8J DISTANCE <Ml -22- the normal (June 1980) condition. This is a result of two factors. First, combinations of meteorology and hydrology were selected for seasonal (sequential June to September) normal, cold and warm temperatures. Thus, even though the natural temperatures expected for June 1970 were lower than the temperatures of June 1980 (refer to Figure 5 and the temperature profiles for natural conditions, Appendix F), June 1970 was not the minimum June and June 1980 was not the average June. We selected seasonal conditions as an initial approach to best represent natural events; we would not expect the coldest June to be followed by the coldest July, August and September. Second, we have used combinations of existing hydrologic conditions with existing meteorologic conditions. Again, this approach was selected to be more representative of natural events, rather than mixing hydrologic and meteorologic conditions to form a synthetic data set. This appears to be responsible for a number of interesting results. Downstream temperatures simulated under the filling scenario for June 1970 were higher than those for June 1980. The larger tributary inflows during 1980 apparently keep mainstem temperatures low, even though the 4 C reservoir flow release was higher during June 1970 than during June 1980. A similar anomaly appears in July when the normal condition year (1980) produced the warmest temperatures. Two additional points are brought out in the results of this scenario. The impact of the tributaries on the mainstem is significant, especially in June. The cooler waters of the tributaries and the lower flows in the mainstem combine in their effects to result in a slow recovery to natural conditions. Reduction in the range of temperatures expected downstream is also significant. The temperature profile produced during the second year of filling will fall within a narrow band relatively independently of the hydrology and meteorology occurring during that year. -23- Operational Scenarios. Since reservoir release temperatures are available for only one year and as there is no appropriate technique for estimating release temperatures short of using a reservoir temperature model, we were limited to simulating one-dam and two-dam effects for the single year for which the reservoir release temperatures were available. This has several shortcomings. With only one year of simulation, no estimate of the range of effects is available. Additionally, the year for which the reservoir release temperatures are available (1981) was a normal year based on the seasonal average (seasonal rank was 7 of 15, see Figure 5) but was composed of a warm June (rank= 11) and a cold July (rank= 2). Thus the downstream temperatures predicted using the 1981 meteorology and hydrology will not represent average conditions for June and July. The simulations for Watana-only summer season operation are presented in Figure 9 and the Watana plus Devil Canyon operation are presented in Figure 10. These simulations imply that there will be observable temperature differences below the Chulitna and Talkeetna confluences. Interpretation of these results should be made with consideration to the low accuracy available from the Chulitna and Talkeetna initial temperature regression models (refer to Figure 2). Fortunately, the regression model for the Chulitna River, which has more influence due to greater flow, is more accurate than the Talkeetna model (AEIDC 1983). As previously stated, 1983 field season data will improve the accuracy of these regression models. SUMMARY The effort to delineate river reaches where postproject flows differ significantly from natural flows has been unsuccessful. The purpose of this effort was to limit the area where flow-related impacts (other than water -24- HATIJW. 1981 1-DAH [fER. 1981 Figure 9. River temperature profiles for natural and 1-dam C?erational conditions. SUSITNA WATER TEMPERATURES, JUNE. NA TI.RAL Alii 1-IJIJI [ffRA TIOOL 2Z IS f- ·-- HATlllAL 1981 1-DAH [ff.R. 1981 Ill s ll 2Z IS Ill 5 B - - f- l!!ll 1!11 ~~t ----~ -_,_--__,_ -1--------·- c "' 0 -"' "' OJ OJ c <J '" ... "OJ ,.. 5 ., .... U'-' u c " . ... .... "' .... ., ., .... ... I! .... .... " "' "' > E 0 .r:: :>:t:> ., "' t.l u I I I 1"' I I I ! ! I 1811 171! 1611 lSI! 14S Ill 12Z Ill! !Ill! DISTMl!I OlD SUSITNA WATER TEMPERATURES, JULY HATlllAL Alll 1-IJAM (I'ERATIC&L ' ,__.,_.._ ~ -- -===1 ---l-_,__ ..._ --- -rL---- L---- c 0 "" "' "' OJ OJ c <J ... " OJ ,.. '" .... U'-' u 5 "' .... .... ., ~ .... 9 .... .... "' > 9 0 " Cl "'" t.l .r:: QQ u 1111 178 161! !51! 141! Ill 12Z Ill! !Ill! !II DISTOCE 04]) _')C: 811 Figure 9 (Continued). River temperature profiles for natural and 1-dam operational conditions . .. SUSITNA WATER TEMPERATURES. AUGUST NA n&l. 00 I-IlAH ll'ERA TIOOL OEQHS CO 2ll NATURAL 1981 1-DAH Cf'ER. IS ,_ 1981 -- 1B t--=~-----~ -... ......._ -__,_ = s - c .< 0 -"' '"' ~ '" c: '" "' w "' aJ " c rn ·r-1 uw u -~ c "' .... "' .-<"' "" .-< w s .., """' ~ "' "' :> e 0 .c :3:0 '""' '-' u I I I I"' I I I I I I 191l 181! 17B 161! ISB Ill 121l 100 DISTAIU DID SUSITNA WATER TEMPERATURES, SEPTEMBER NA ll..Rii 00 1-DAll OPERA TIOO.L DEGREES (0 2ll Nil MAL 1981 I-DAM [fER. IS - 1981 --- 1B t- _...,_ ~ ----------, ~ - 5 1- c 0 -"' "' >, aJ OJ c OJ "' w "OJ " ..... u w u B "' . ... .... .-< "' """' s ..... .-< .-< "' ~ ~ a ~ 0 u .c f"' u I I I I I I I I I B 19B 188 17B 16B Ill 121l 110 100 9ll O!ST m::E Dill ~ -I I NATLRAL 1981 . 2-IJAH CI'ER. 1981 -- NATIJlAL 1981 2-Ditll !FER. 1981 ·-- Figure 10. River temperature profiles for natural and 2-dam operational conditions. SUSITNA WATER TEMPERATURES. JUNE NAT\.RAL .00 2-D.ul (fER..ITJONAL I DEGREES <D 2ll - IS r- Jl! ----------~~-· --r-_...__.,__ ----· ----,__--s c- c 0 ... >· ~ .. c w ... "'" .. "'·~ U'-' u c '" .... " ... '" ~ ... El .... ""' > 6 0 ::<<=> ""' " I I I f"' I I r I I I . I! l!lll 1811 178 16il 141! 131! 129 100 D!STM«:E Olll SUSITNA WATER TEMPERATURES. JULY NA nmt. .00 2-D.IM ll'ERA TIOOAL 2ll IS - 18 --~~-_...__,__ ----,__.--·-_..._ - 5 '-- c 0 ... ,; >· .. .. c '" "' ... "' OJ .. "' U'-' u 5 '" .... ... U) ~ "' 6 .... .... "' > El 0 = .c "' OJ"' " u r r I f"' I 1 I I I r l!ll 1811 1711 16il ISB 148 1311 128 liB !Ill 9ll DISTAIU GID Ill Figure 10 (Continued). River temperature profiles for natural and 2-dam operational conditions. SUSITNA WATER TEMPERATURES. AUGUST NATURAL .IND 2-DIJI OPE&ITIONAL ' DEGREES CO 2ll NIITURAL 1981 2-DIJI OPEP. IS - 1981 --- IB f- _-l_ ---Lc.----- 5 f- ~ "' 0 -'.' ,., " " e:; " ... " " ~ ~ .... u ... u ... '" ... .... ""'"' ... ., ..-< ~ > a 0 ~ "' Q "" '-' u I I I f"' I I I I I I II 100 190 !SZ 1511 . 140 ll! !211 llll !00 nrsrM£E om SUSITNA WATER TEMPERATURES, SEPTEMBER NA!l&L IJ{) 2-DMI CPERAHONAL DEGREES CO za NAllmL 1981 2-DAH OPEP. 15 - 1981 --- 1B - -------__., !-. - 5 f- ~ 0 -" "' ,., " <11 c v ... "'" " .... U'-' u <Jl . .. ..... <Jl 'd E '"' H " > E 0 0 "" '-' I I I ~0 I I I ~ I I il 1911 l!lll 171! !51! 14B 1311 121l 100 OISTMU (14]} -- -- 8ll quality issues) need to be considered. Being unable to establish these limits, it appears necessary to include the entire length of river below the Watana dam site when considering aquatic habitat effects. The most serious restriction in this study was the lack of estimates for reservoir release temperatures. We feel that the 1981 DYRESM results cannot be applied when simulating other years. Thus, at this time we are unable to establish a range of downstream temperatures resulting from project operations. There is clearly a need for additional DYRESM simulations for representative years. Initial condition river temperature estimates based on regression models have been made with very limited data and are plagued by low confidence. Incorporating data collected during the 1983 field season will considerably enhance these models and thus the predictive ability of SNTEMP. -29- REFERENCES Acres American, Inc. 1983. Application for license for major project, Susitna Hydroelectric Project, before the Federal Energy Regulatory Commission. Vol. SA. Exhibit E, Chaps. 1 and 2 (figures). Alaska Power Authority. Susitna Hydroelectric Project. 1 vol. Alaska, University, Arctic Environmental Information and Data Center. 1983. Stream flow and temperature modeling in the Susitna Basin, Alaska. Final Report. Alaska Power Authority. Susitna Hydro Aquatic Studies, Anchorage, AK. Report for Harza-Ebasco Susitna Joint Venture. 60 pp. Chow, V.T. 1964. Handbook of applied hydrology. McGraw-Hill Book Co, New York, NY. 1 vol. Johnson, N.L. and F.C. Leone. 1964. Statistics and experimental design in engineering and the physical sciences. Vol. 1. John Wiley and Sons, Inc., New York, NY 523 pp. R&M Consultants, Inc. Supplement 1. Task Hydroelectric Project. 1982a. Field data collection and processing, 3-Hydrology. Alaska Power Authority. Susitna Prepared for Acres American, Inc. 215 pp. 1982b. Field data collection and Task 3-Hydrology. Alaska Power Authority. Project. Prepared for Acres American, Inc. 215 processing. Vol. 3. Susitna Hydroelectric pp. U.S. National Climatic Talkeetna, Alaska. Center. 1968 to 1982. US NOAA, Asheville, NC. Local climatological data - 3 pp./month. Yevj evich, V. 1972. Probability and statistics in hydrology. Water Resources Publications, Fort Collins, CO. 302 pp. -30- APPENDIX A FLOW STATISTICS FOR THE SINGLE-DAM SCENARIO Location by River Mile of H20BAL Flow Calculation Nodes NODE RIVER MILE Watana 184.4 Tsusena 181.3 Fog 176.0 Devil 161.3 Chinchee 154.6 D.C. Dam 152.0 Portage 148.8 Indian 138.6 Curry 116.8 Whiskers 101.4 Chulitna 98.2 Talkeetna 97.2 Trapper 91.2 Sunshine 83.8 Montana 77.2 Sheep 70.0 Kashwitna 61.2 Little Willow 50.5 Willow 49.8 Deshka 40.6 Susitna Station 25.8 A-i STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY OCTOBER MAINSTEM FLOWS <CFS) STANDARD DEVIATION LOCATION WATANA TSUSENA FOG· DEVIL CHINCHEE PORTAGE INDIAN CURRY WHI Si'\ERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 4522.8 4774.6 4~95.3 5215.5 5334.3 5569.5 57"70.8 5931.9 5985.8 11397.0 14145.4 14189.9 1·4286.8 14835.3 15298.1 16052.3 16480.8 17012.1 18349.0 31426.9 POST-· 6766.1 7017.9 7238.6 7458.9 757"1. 7 7812.8 8014.1 8175.3 82~~9. 2 13640.3 16388.7 16433.2 165~~0. 2 1'7078. 7 17511.5 18295.6 18724.1 19255.5 20:::i92.4 33670.3 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION f'RE-POST- /. CHANGE 49.6 47.0 44.9 43.0 42.1 40.3 38.9 37.8 :S7.5 1'i.7 1:::i.9 15.8 15. i' 15.1 l4.7 14.0 13.6 13.2 7 + 1 PRE- 1100.7 11/'2.9 1232.1 1293.5 1327.:::; 1396.4 14:::i6.8 1486.0 149:::i.8 2385.1 29"70. 8 2980.1 3000.!} 3088.2 31'i'6.o 3343.2 3450.2 3593.5 3997.'/ 9270.2 SKEW COEFFICIENTS PRE-POST- POST- 1286.4 1327.5 1367.~1 1411.1 1435.9 1487.6 1534.3 1553.3 155'7' + 8 2224.7 2772.5 2/81.2 2800.1 2880.7 296.3.7 3125.5 3230.4 3372.1 37"75. 3 90/6.5 E.XCESS COEFFICIENTS PRE-POSl--------------------------------------------------------------------- WATANA .245 .190 .085 .883 -.741 -.470 TSUSENA .246 .189 .070 .898 -.'J68 -.407 FOG .247 .189 .063 .904 -.780 -.344 DEVIL .248 • 11:!9 .061 .904 -.785 ...• 2'19 CHINCHEE .249 .189 .061 .903 -.78~ -.243 PORTAGE .251 .190 .064 .895 -.?B2 -· '1 /4 INLHAN .252 .191 .068 .886 ·-• i' l'l -.119 CURF:Y .251 .190 .060 .878 -./8/ -· + 118 WHISKERS .250 .190 .057 .874 -. }'70 -.119 CHULITNA .209 .163 -.003 .18'7 -.731 -.668 TAU\EET .210 .169 -.022 .179 -.762 -.521 TRAPPER .210 .169 -.022 .1'18 -.762. -.5~2 SUNSHINE .210 .169 ·-. 022 .175 -·. "J..l2 -.525 MONTANA .208 .169 -.004 .190 -.830 -.4/9 SHEEP .208 .169 .025 .212 -.832 -.420 KASHWIT .208 .171 .095 .262 -.740 -.294 LWILLOW .209 .173 .143 .298 -.6'18 -.213 WILLOW .211 .175 .208 .345 -.5()8 -.108 [IESHKA .218 .183 .375 .471 -.095 .158 su STA .295 .270 1.05} 1.01:5 1.697 1.333 A-1 STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY NOVEhBER MAINSTEM FLOWS <CFSl STANDARD DEVIATION LOCATION WATANA TSUSENA FOG-- DEVIL CHINCHEE PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 2059.0 2160.9 2250.2 2339.3 2387.4 2482.6 2564~0 2633.3 2656.4 4854.2 607'7.'-J 6097.0 ~138.6 6374.2 ~573+0 6896.9 7081.0 7309.2 7883.5 13500.7 POST·· 8667.7 8769.6 8858.9 8948.0 89?6.1 9091.3 9172.7 9242.0 92(!5 + 1 11462.9 126i:l6.5 12705.7 12i'(l7.3 12982.9 13181.7 13505.6 13689.7 13917.9 14492.1 20109.4 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- Y. CHANGE 321.0 305.8 293.7 282.5 276.8 266.2 257.7 251.0 ;.!48 + 8 136.1 108.7 108.4 107.7 103.7 100.5 95.8 93.3 90.4 83.8 49.0 PHE- 600.2 626.3 650.9 676.9 6Y1.4 721.0 i?4"l.3 762.8 "761.9 1201.1 1446.5 1451.1 14 61 • i) 1532.1 1596.9 1710./ 1 7"79. 3 186/.6 2103.1 4795.2 SKEW COEFFICIENTS PRE-POST- r=·osr- 1845.7 1860.1 18"7~1.5 1887.6 1895.5 1911.7 1926.2 1936.6 19·10.1 2:226.2 2429.0 2432 + ·; 2HO. 7 2499.2 2552+1 2644.7 2700.6 2968.2 !j4(.l3.5 EXCESS COEFFICIENTS PRE-POST- ----------------------------------------------------------~--------- WATANA .291 .213 .462 -.093 .291 -1.575 TSUSENA .290 .212 .377 -.094 .121 -1.569 FOG .289 .211 .318 "" + 096 .012 -1.560 DEVIL .289 .211 .273 -.09"7 ~.069 -1.549 CHINCHEE .2<!0 .211 .253 -.098 -.102 -1.341 PORTAGE .290 .210 .223 -.099 -.152 -1.524 INDIAN .2'-)1 .210 .204 -.099 -.180 -·1.507 CURRY .290 .210 .203 -.095 -. 17(1 -1.498 WHISKERS .289 .209 .202 -.094 -.179 -1.495 CHULITNA .247 .194 .271 .045 -.220 -1.120 TALKEET .238 .191 .230 .062 - + 28·1 -.997 TRAPPER .238 .1'-J1 .230 .062 -. 28/) -.995 SUNSHINE .238 .191 .230 .064 -.284 -.989 MONTANA .240 .193 .343 .123 .048 -.862 SHEEP ) 2·13 .194 .444 .176 .361 -.735 KASHWIT .248 .196 .612 .268 .900 -.497 LWILLOW .251 .197 .?05 .323 1.209 -.346 WILLOW ,..,.,., t.:.....OO .199 .815 .391 1 • :::il:3.5 -.148 DESHKA .26/ .205 1.059 .561 2.il41 .387 su STA .355 .269 1.852 1.531 5.530 4.1'73 A-2 STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY llECEHBEF: LOCATION WATANA TSUSENA FOG· DEVIL CHINCHEE PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA ADDITIONAL MAINSTEM FLOWS <CFS> PRE- 1414.8 1494.8 156~.0 163!':1.0 1672.8 1747.6 1811.6 1860 • .3 1876.6 3418.1 4275.5 4288.9 4318.2 4452.6 4566.0 4/50.8 4855.7 4985.9 5313.5 8517.!':1 POST- 10300.9 10381.0 10451.2 10521.2 105~9.0 10633.7 1069/.8 10746.5 10762.7 12304.3 13161.6 1317!':1.1 13204.4 13338.8 13452.1 13636.9 13741.9 1J8/2.1 14199.6 17403.7 STAliSTICS i. CHANGE 628.1 594.5 567 .(~ 543.5 531.2 508.5 490.5 417.7 473.5 260.0 207.8 207.2 205.8 199.6 194.6 18?.0 183.0 178.2 167.2 104.3 STANDARD DEVIATION PRE- 391.3 422.6 451.0 480.1 496.0 528.0 555.8 564.8 567.} 733.2 879.8 882.5 888.6 923.8 957.3 1018.:::; 1056.3 1106.0 1242.0 28~1, ·; POST- 1930.6 1944.4 1956.9 1'-i?O.O :19/}.3 1992.1 ~~005 + 1 2010.2 2011.'7' 2087.5 216"1.1 2168.9 2172.8 21Y4.3 :,!214.4 2250.8 22'73.3 2303.2 2386.9 3638.1 COEF. OF VARIAT. SKEW COEFFICIENTS EXCESS COEFF I C l EI~TS LOCATION PRE-POST-PRE-POST-PRE-POST--------------------------------------------------------------------- WAfANA .277 ,187 .304 -.614 -.!':144 -1.345 TSUSENA .283 .187 .. 338 -.603 -.3'?'1 -1.338 FOG .288 .187 ,373 -.593 -.25Y -·1.:.530 DEVIL .294 .187 .410 -.583 -.121 -1.318 CHINCHEE • 29·; .187 .430 -.577 -• O·Hl -1.311 PORTAGE .302 .187 .468 -.566 • 07'1 --1.296 INDIAN .307 .187 .500 -.555 .202 ·-1.280 CURRY .304 .187 .492 -.552 .183 -1.2/7 WH I SI\ERS .303 .187 .. 489 -.551 .1 ?i' -1.276 CHULITNA .214 .170 -.042 -.~41 -.:::i15 -1.207 TALKEET .206 > 165 -.155 -.539 -.435 -1.089 TRAPPER .206 .165 -.15:::i -.539 -.435 -1.087 SUNSHINE .206 ,165 -.. 155 -·. 538 -. ·'4::.S~ -1.084 MONTANA .207 .165 -.108 -.::.124 -.436 -1.0/4 SHEEP .210 .165 -.058 ...• 508 -.1}39 -1.062 KASHWIT .214 .165 .036 -.1176 -.439 -1.037 LWILLOW .218 .165 .094 ·-. 454 -.433 -1.019 WILLOW .222 .166 .165 -.424 -.41'7 -.9'74 llESHKA .234 .168 .337 -·. 337 -.35!':1 -.'-i15 su STA .339 .209 .994 .554 .416 .182 A-3 STATISTICAL RECORD OF 32-YEAR SUMMARY, WATAHA ONLY MAINSTEM FLOWS <CFS) STANDARD DEVIATIUN LOCATION PRE-POST-I. CHANGE PRE-POST- -------------------------------------·----------------------------- WATANA 1165.5 9399.2 706.4 31::!.0 12"78.'7' TSUSENA 1231.3 946~.0 668.7 33/t. ~ 12!11.6 FOG·· 1289.0 9522."7 638.8 3~5.6 1303.4 DEVIL 13·i6.5 !1580.2 611.5 377.8 1315.7 CHINCHEE 1377.6 (/611.3 597.} 390.1 1''"')') ... ..:.J~.:..fo.l PORTAGE 1439.0 9672.7 572.2 415.3 1336.5 INDIAN 1491.6 972~5. 3 552.0 tl3'7.4 1::5-19.0 CURRY 1532.4 9766.1 537.3 444.1 1353.2 WHISKERS 1546.0 9'77"1.7 532.6 ·146 • .:s 1::.5~4.6 CHULITNA 2893.9 11127.6 284.:::i 542.7 1li31.0 TALKEET 3579.0 11812.6 2:50.1 632.1 1<187.5 TRAPPER 3590.2 11823.';' 229.3 634.1 148i:L 8 SUNSHINE 3614.8 1184~L4 227.8 638.4 1,W1. B MONTANA 3'756.0 11989.7 219.2 656.2 1-t97.4 SHEEP 3875.3 12108.9 212.5 672.6 1503.0 KASHWIT 4069.5 12303.2 202.3 701. '7 1513.6 LWILLOW 4179.!] 12A1LL6 1'?'7.0 719.8 1520.5 WILLOW 4316.8 12550.5 190.7 743.::! 1529.8 DESHKA 4661.2 12894.9 176.6 807.3 1537.2 su STA 8030.0 16263.7 102.5 1613.0 ::!056. '7 ADDITIONAL STATISTICS COEF. OF VARIAT. SKEW t.;OEFFICl EWf S EXt.;ESS COEFFIClEN'J"S LOCATION PRE-POST-PI-<E-POST-PHE ·-POST-· -------------------------------------------------------------------- WATANA .268 ~136 .209 --·1.055 -.766 -.426 TSUSENA .272 .136 .198 -1.036 -.1'29 -.4'12 FOG .276 .137 .1115 -·1 • C) 17 ·-. J 0 7 -.455 DEVIL .281 .137 .199 -.997 -.681 -.468 CHINCHEE .283 .138 .204 --. 986 -.677 -.4'74 PORTAGE .289 .138 .220 -.963 -.6!:)2 -.485 I NO IAN .293 .139 .237 ·-+ 941 -.62.} -.494 CURRY .290 .139 .237 -.935 -.6'2.'7 -.497 WHISKERS ,289 .139 .237 ..• 'i33 -.627 -.498 CHULITNA .188 .129 .020 -.901 -.705 -.511 TALi\EET .177 ,126 .036 -·. 832 -.38'7' -.506 TRAPPER .1'7'7 .126 .036 -.830 -·. 389 -,:::i06 SUNSHINE .177 .126 .036 -.B27 -.389 -.505 MONTANA .175 .125 ,098 ..• 802 -.29J -.!301 SHEEP .174 .124 .157 -.i'77 -.199 -.495 KASHWIT .172 .123 .261 ·-. 732 -.030 -.479 LWILLOW .172 .122 -...... ~-, .,:...:.:. ... -.704 .069 -.467 WILLOW .172 • 122 .396 ·-. ~66 .1'-12 -.449 DESHKA .173 .121 .573 -.559 .481 •.• < 387 su STA .201 .126 1.177 .~34 1.380 7 r: '1 • \,J.;_ A-4 STATISTICAL RECORD OF 32-YEAR SUMMARY~ WATANA ONLY FEBf.:UARY LOCATION WATANA TSUSENA FOG· DEVIL CHINCHEE PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA ADDITIONAL MAINSTEM FLOWS CCFSl PRE- 983.3 1041.6 1092.6 1143.-!J 1171.1 1225.6 1272.2 1306.5 1318.0 2443.5 3015.2 :"S024. ·7 3045.4 3176.7 3287.5 3468.0 3570.6 3697.8 4017.8 i'148."l f'OST- 8685.4 8"743.7 8794.8 8845.7 8873.3 8(127. 7 8974.3 9008.6 9020.1 10145.6 10717.3 10"726.8 10747.5 108'78.8 10989.6 11170.1 11272.7 11399.9 11720.0 14850.8 STATISTICS 7. CHANGE 783.3 lJ9.5 704.9 673.5 657.7 62!L5 605.4 539.5 584.4 315.2 255.4 254.6 252.9 242.5 234.3 222.1 215.7 208.3 191.7 107.7 STANDARD DEVIATION PRE- 255.8 273.9 292.1 312.1 323.4 3-17.0 368.2 373.7 37S.5 4-10.-1 519.1 520.7 524.3 5-41.:::; 556.9 581\.7 601.6 623.7 683.5 1415.3 POST- 1260.'7 1268.5 1276.1 1284.4 1289.0 1298.9 1:507.8 1310.8 1311.8 137J.8 1417.8 11U:l.8 1420.9 1421.0 1421.9 1424.6 1426.8 1130.3 1442.6 1788.6 COEF. OF VARIAT. SKEW COEFFICIENTS EXCESS COEFFICIENTS LOCATION PRE-POST-PRE-POST-Pl.;:E·-PO~JT--------------------------------------------------------------------- WATANA .260 .145 .359 -1.314 -.366 • 151 TSUSENA .263 .145 .293 -1.299 -.474 .126 FOG .267 .145 .259 ··1.282 -.580 .104 DEVIL .273 .145 .253 -1.262 -.652 .080 CHINCHEE .276 .145 .261 ·-1.250 -.667 .067 PORTAGE .283 .145 .297 -1.225 -.642 .042 INDIAN .289 .146 .J4::S ·-1. 200 -.561 .022 CURRY .286 .146 .344 -1.195 -.565 .017 WHISI"\ERS .285 .145 • 3·~-1 -1.193 -.5.!J7 .015 CHULITNA .180 .135 .362 -1.141 -.276 -.020 TALKEET • 1 ~~2 .132 '),) ') . .:.. ~ .. .:.. -·1.065 -.625 -.088 TRAPPER .172 .132 '")'")<") t.:...:...:.. -1.063 -.625 -.089 SUNSHINE .172 .132 "") .~) "') .,~, ·-1.059 -.~2~ -.091 MONTANA .170 .131 .287 -1.025 -.613 ·-. 119 SHEEP .169 .129 .342 -.993 -.56)' -.140 KASHWIT .169 .128 .432 -.936 -.439 -.170 LWILLOW .168 .127 .482 -.1'02 -•343 -.183 WILLOW .169 .125 .541 -.856 -.210 ... .196 IlESHKA .170 .123 .673 -./31 • 15i' -.208 su STA .198 .120 1.113 .604 1.951 1.181 A-5 S T AT I S T I CAL R E C 0 R II 0 F 3 2 ·-Y E:: A R S Ut-Hi A F< Y ' W AT AN A UN L Y MARCH MAINSTEM FLOWS CCFS> STANDARD DEVIATION LOCATION WATANA TSUSENA FOG· DEVIL CHINCHEE PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 898.3 946.7 989.2 1031.6 1054.5 1099."7 1138.4 1169.0 1179.2 2184.4 2679.6 2688.0 2706.4 2824.9 2924.8 3087./ 3180.2 32'i5. 0 3583.7 6408.0 POST- 8098.4 8146.8 8189.3 8231.7 82~4.5 829'9.8 8338.5 8369.1 8379.3 !f:::.S84.5 9879.'/ 9888.1 9906.5 10025.0 10124.9 10287.8 10380.3 10495.1 10783.8 13608.1 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- I. CHANGE. 801.5 /60.5 72/.9 698.0 682.8 6~)4. 7 632.5 615.9 610.6 :::.S2Y.6 268.7 26'7.9 266.0 254.9 246.2 233.2 226.4 2U:l.5 200.9 112.4 PRE.- 25~'. 3 2?2.7 287.6 ~~03. 6 312.6 J31.2 34/.8 35;5.2 354.9 1]~.7 500.9 502t5 50G.9 ::.:i16.9 526./ ~'lJ.7 553.9 ~67.0 602.0 1033. '7 SKEW COE.FFIClENlS PRE-POST- POST- 735.3 71.3 .l. 750.6 7~;8.8 763.5 773.3 783.0 78:::i.9 830.8 874.0 875.0 877.2 881.4 885.3 8'7'2. 4 896. '7 903.0 920.1 1207.8 EXCESS CUE.FFI!~:LENTS PHE::-1-='0ST--------------------------------------------------------------------- WATANA .286 .091 7 I~"\ • 0~ ·-1 • 3 9 6 1 r: "• • ..J.::. 1.123 TSUSENA .288 .091 .738 -1.360 .078 1.090 FOG .291 .092 .71Y ·-1.324 -.oo::s 1.056 DEIJIL .294 .092 .706 -1.284 -.086 1.020 CHINCHEE .296 .092 .702 ·-1.261 -.127 .998 PORTAGE .301 .093 .699 -1.213 -. 1 '78 .955 INDIAN .306 .094 .701 ·-1.168 -. 2/l] .918 CURRY .302 .094 .700 -1.152 -. 2·VI: .899 WHISKERS .301 .094 .700 ·-1 • 14 7 -.244 .893 CHULITNA .198 .089 + •189 -.926 -.490 .595 TALI\EET .187 .os8 .574 -·. 724 -. 112 .458 TRAPPER .187 .088 .574 -.'720 -.112 .455 SUNSHINE .187 .089 .374 ·-• 711 -.112 .448 MONTANA .183 .088 .613 -.655 -.018 .406 SHEEP ·> 11:!0 .087 .647 ·-•. ,S 0 6 .068 .375 KASHWIT .176 .087 .703 -.522 .219 -t335 LWILLOW .174 .086 .734 ·-. 4 72 .308 .318 WILLOW .172 .086 • 7'72 -.410 .419 .302 DESHKA .168 .085 .862 -.249 .692 .292 su STA .161 .089 1.248 1.011 1.860 1.367 A-6 STATISTICAL RECORD OF 32-YEAk SUMMARY, WATANA ONLY APRIL MAINSTEM FLOWS <CFS) STANDARD DEVIATION LOCATION WATANA TSUSENA FOG. DEVIL CHINCHEE PORTAGE INDIAN CURRY WHISKERS CHULITNA TAU\EET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 1099."7 1156.8 1206.8 1256.8 1283.8 1337.1 1~82.8 1419.7 1432.0 2660.7 ~2~8.8 3249.0 3271.2 3398.0 3504.9 3679.1 ~$778. 1 3900.9 4209.8 7231.3 PUBT-· 7478.1 7535.3 7385.3 7635.3 '1662.2 7715.6 7761.2 7798.1 7810.5 9039.1 9617.3 9627.5 964Y.7 9776.4 988:.:S.4 10057.6 10156.6 10279.4 10588.2 13609.8 A!IDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- i. CH.:'rNGE 580.0 551.4 50"7.3 496.9 477.0 461.3 449.3 4q5.4 239./ 196.9 196.3 1'15.0 18/.7 182.0 173.4 168.8 163.5 151.5 88.2 PRE- 301.0 318.7 :.:s:.s.s.5 356.1 3.!!?.4 390.8 i) 11 + 9 419.0 421.3 568.0 67~L1 680.5 68::i.2 701.4 715.!! 741.2 756.3 77::i.B 82(L2 1472.8 SKEW CUE.FFIClENlS PRE-POST- POSf- 810.6 820.9 8J1.0 84:.:!.1 848.5 862.1 8/4.5 877.4 8}8.5 93S.3 1001.5 1002.9 1005.9 1020.2 1032.9 1054.9 1068.0 1084.8 1130.0 1707.9 EXCESS COEFFICIENTS F'R£-POST- ------------------------------------------------------~------------- WATANA .274 > 108 .669 -1.423 .766 1.275 TSUSENA .275 .109 .704 -1.366 1.052 1. 201 FOG .279 .110 .732 ·-1. 309 1. 219 1.132 DEVIL .283 .110 .763 -1.246 1 + 32ll' 1.061 CHINCHEE .286 .111 .781 -·1 + 210 1.3?3 1.024 PORTAGE .292 .112 .819 -1.134 1.444 .953 INDIAN .298 .113 .f355 -·1. 066 1. 497 .896 CURRY .295 .113 .855 -1.040 1. 494 .868 WHISKERS .294 .112 .854 -·1. 032 1.-193 .859 CHULITNA .213 .103 .792 -.490 1.453 .469 TALKEET • 2 !)'~ .104 .801 ·-. 14 3 ~<f'BU .234 TRAf'f'ER .209 .104 .801 -.13/ .988 .233 SUNSHINE .207' .104 .801 ·-. 125 .Y88 .231 MONTANA .206 .104 .841 -.085 1.016 .245 SHEEP .204 .105 .875 -.051 1.048 ~·) l ,., +..-0.:.. KASHWIT .201 .105 .930 .00? 1 + 114 ,301 LWILLOW + 21)0 .105 .!!61 .040 1.159 .~29 WILLOW .199 .106 .998 .082 1.221 .369 DESHKA .197 .107 1.086 .187 1.398 .491 su STA .204 .125 1.48:2 .929 2.823 1.958 A-7 STATISTICAL RECORD OF 32-YEAR SUMMhRY, WATANA ONLY MAY MAINSTEM FLOWS <CFS) STANDARD DEVIATION LOCATION WATANA TSUSENA FOG DEVIL CHINCHEE PORTAGE INDIAN CUF:RY WHISi\ERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 10354.6 10957.3 11485.2 12012.3 12296./ 12859.3 13341.0 13657.1 13762.8 23570.9 27743.3 27830.6 28020.9 29096.9 30004.7 31464.2 32324.9 33367.3 35990.0 61646.0 POST-· /519.7 8122.3 8650.3 9177.4 !7'41.>1.'7 10024.4 10506.1 10822.2 10?27.8 20736.0 24<10~:!. 4 24995.7 25U:l5.9 26261.9 2716'7'.8 28649.3 29'18'1.9 30532.3 33155.1 ~8811.1 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- WATANA .310 .278 TSUSENA .309 .276 FOG .·310 .278 DEVIL .311 .281 CHINCHEI:": .312 .284 PORTAGE .315 .289 INDIAN .318 .295 CURRY .316 .293 WHISKERS .316 .293 CHULITNA .314 .311 TALi\EET .302 .295 TRAPPER .302 .295 SUNSHINE .302 .295 MONTANA .293 .285 SHEEP .286 .278 KASHWIT .277 .268 LWILLOW .272 .264 WILLOW .267 .258 DESHKA .r:; r:--, .,...,, .249 su STA .245 .244 % CHANGE -·2 7 + 4 -25.9 -·24 + 7 -23.6 ·-23 • 1 -22.0 -·21 • 2 -20.8 ·-20. 6 -12.0 ··10. 2 -10.2 ·-1 u + 1 -9.7 -9.4 -9.0 -8.8 -8.5 -7.9 -4.6 PHE- 3209.8 3385.8 35~5.~ 3737.2 3839.7 4050.8 4239.1 4320.8 43/}8.2 7412.1 8372.3 8398.6 8·156.0 8521.1 8:::i87.3 8716.9 8802.0 8918.8 Y264.J 1511::5.7 SKEW CUEFFlCIENTS PRE-POST- -.595 .637 -.597 .641 ·-+ 385 .622 -.564 .594 "" > ~49 .~78 -.517 .546 ·-+ 485 '"~~ t,J,.;. -.493 .492 ·-+ 4 96 • ~~82 -.270 .196 -.321 .095 -.321 .094 -· + 321 .092 -.341 .071 ·-+ 352 .059 -.360 .049 ·-. 359 .048 -.3~3 0 c:-') t ...J.:.. ..• 314 .081 .323 .525 A-8 2088.0 240J.2 2582.7 2686.1 2901.9 3096.6 3173.5 319'7,•'! 6il41.1 7.351. !' TJi'"/.6 7B4. 1 }494.3 7~58.0 "?686.5 7Ti':J., 6 /8112.0 8250.1 14:::S44.0 EXCESS CU~FFICJENTS PRE-PU~T- .412 -.313 .50? -.171 .5::19 -.114 .53~ ·-. 102 r.· ') .. ; +J..:...J -.lOB .4o::! ·-. 133 .-'IJ6 -.162 4 ,, .. , . '..) ...• 210 • ·11<! -.225 .132 -· + 269 .142 -.243 .142 -· + 242 .112 -.240 .168 ... ( 252 .188 -.259 .21/ -.264 •') "f r'l • .-..J..::.. -.264 .249 -.260 .280 -.239 • 11 'i -·. 0 "78 STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY JUNE MAINSTEM FLOWS <CFS> STANDARD DE\.! Hi r ION LOCATION WATANA TSUSENA FOG· DEVIL CHINCHEE PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 23023.7 23997+9 24851.3 25703.4 26162.9 27072.4 278:::i1+0 28579.7 28823.3 52400.5 63957.6 64158.9 64:.597.4 66517.9 68138.3 70779.1 72279.5 74140.0 78821.3 124613.8 POST- 6628.4 7602.6 8456.1 9308.1 97.~7.6 10677.1 11455.8 12184.5 12•\28.1 36005.2 47562.3 47763.6 48202.1 50122.6 :::i1743.0 54383.8 55804.2 57744.7 62426.0 108218.5 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- I. CHANGE -71.2 -b8.3 -66.0 -63.8 -62.7 -60.6 -58.9 -57.4 -56.9 -31.3 -2~;-,S -25.6 -25 -~ 4 -24.6 ·-21'\.1 -23.2 -21.7 -22.1 ·-20. 8 -1.3.2 F'F~E- 6208.7 6468.5 6702.4 6941.1 70?1. 9 7334.3 7562.7 7725.2 '7779.6 1196:5.1 15000.0 15047.2 15150.1 15366.8 15569.0 15936.'1 16164.2 16465.2 1730!5.6 2922/~0 SKEW COEFFICIENTS PRE-POST- POST- 3382.8 3600.5 3806.6 ·~02•1.5 -114..S.3 4395.1 461::'.i.3 476-1.4 4814.6 91/'1.9 11987.4 12034.0 12133.4 12326.1 1251:.:l.3 12862.4 13085.6 13385.3 14240.7 26666.1 EXCESS C:OEFF 1 Cl El~'fS PnE-POST--------------------------------------------------------------------- WATANA .270 .510 1+101 ...-; r~· ~ '1 .:..+o\J..:...:... 2.·:18'7 6.122 TSUSENA .270 .474 1.054 2.412 2.313 5.660 FOG .270 .450 1.013 2.289 2.160 5.194 DEVIL .270 .432 .972 2.155 2.010 4.716 CHINCHEE .270 .424 .'750 2.081 1.'7::.>2 4.462 PORTAGE .271 .412 .907 1. 935 1. '782 3.981 INDIAN .272 ·• 403 .871 1. 814 1 • ..S5'7 3.397 CURRY .270 .391 .872 1.793 1.666 ~. 5•14 WHISi\E~:S ,2/0 .387 +873 1.786 1.669 3.:327 CHULITNA .228 .255 1.316 1./71 3.30S 'I• 422 TALKEET .23:::i .252 .964 1.321 1.91}9 •'") l I:"C': "-+O.:J.J TRAPPER .235 .252 .964 1.320 1.94'7 2.653 SUNSHINE .23:3 )252 .• 964 1.318 1.919 :2.648 MONTANA .231 .246 .872 1.208 1.626 2T227 SHEEP .228 .242 .798 1.116 1.3..S5 1. 882 KASHWIT .225 .237 .682 .970 .970 1.355 LWILLOW .224 .234 .621 .891 .76'4 1.082 WILLOW .222 .232 .550 .soo .530 • '7'73 DESHI\A .220 .228 .397 .605 .04-S .153 su STA .235 .246 .143 .283 -.~22 -.3/7 A-9 STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY JULY MAINSTEM FLOWS <CFS) STANDARD DEVIATION LOCATION WATANA TSUSENA FOG· DEVIL CHINCHEE PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 20810.0 21555.8 22209.2 22861.5 23213.3 23909.-s 24505.7 25238.4 25483.4 53167.0 64309.8 6<'1512.1 64953.0 67180.1 69059.2 72121.5 73861.4 7.S018.9 81447.4 134549.6 POST- 5549.6 .s2n:;. 4 6948.8 7.S01.1 7952.9 8.S49.2 9245.3 9978.0 10222.9 37'106.5 49049.3 19251.7 49692.6 51919.7 53798.8 56861.0 58600.9 60/58.4 66187.0 11928'-i .1 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION F'RE-POST- X CHAI~GE -73.3 ~·70. 8 -68.7 -66.8 -65.7 ·~,53. 8 -62.3 ~~.so. 5 -59.9 ·-28. 7 -23.7 ~·23. 7 -23.5 ·-22. 7 -22.1 -·21. 2 -20.7 ·-20. 1 -18.7 -11.3 PRE- 3484.0 3659.6 381'7.9 39'79.4 4067.8 4245.3 4399.6 4497.1 4529.7 7.S'l4.·i' 9266.1 929:.5.2 9358.7 9458.2 95:::i0.8 9718.4 9822.4 995Y.8 10344.9 1603:.:i.1 SKEW COEFFICIENTS PRE-POST- POST- 1-1/3.1 1611.9 1148.5 18<7'5.6 197!:3. 6 211t9.0 ~~:500 + 3 2392.5 212:3.5 5808.8 /320.4 7349.1 /.'\11.7 7197.8 7581.8 773'i'. 9 7840.9 /976.9 8:56/.7 143:57.6 EXCESS C 0 E r· F l C 1 E I~ T S PRE-F'OST--------------------------------------------------------------------- WATANA .167 ,265 .587 1.693 -.0(}2 1.857 TSUSENA .170 .256 .610 1.653 .012 1.9S1 FOG .1"72 .l')r="~ :~o..:..;:.t..:.. .627 1.586 .032 1.917 DEVIL .174 .249 .641 1.508 .oss 1.81"7 CHINCHEE .175 .249 .647 1.465 .104 1.7·18 PORTAGE .178 .248 .657 1.382 .133 1.596 INDIAN .180 .249 .664 1.~15 .15.3 1. 46~~ CURRY .178 .240 .655 1.276 .138 1.349 WHISI\ERS .178 .237 .652 1.263 .133 1. 312 CHULITNA .144 .153 .458 .721 -.455 -·. 144 TALKEET .144 .149 .354 .501 -.370 -.273 TRAPPER .144 .149 .354 .501 -.3'?0 -.274 SUNSHINE:: .144 .149 .354 + -499 -.370 -.276 MONTANA .141 .144 .368 .532 -.322 -·. 159 SHEEP .138 .141 .381 .562 -.2'74 -.048 KASHWIT .135 .136 .404 .610 -.184 ~152 LWILLOW .133 .134 .417 .638 -.127 • 27·1 WILLOW .131 .131 .434 .673 -.051 .430 DESHKA .127 .126 .478 ./54 1 r:" + . .J 0 .830 su STA .119 .120 .731 .991 1.666 2. •178 A-10 STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY AUGUST MAINSTEM FLOWS <CFS> STANDARD DEVIATION LOCATION WATANA TSUSENA FOG· DEVIL CHINCHEE PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 18628.1 19350.4 19983.2 20614. 9• 2095S.6 21629.9 22207.3 22853.1 23069.0 46115.6 56684.8 56863.2 57251.8 59065.7 60596.2 63090.2 64507.3 66264.5 70685.8 113935.4 POST- 9778.8 10501.1 11133.9 11765.6 12106.4 12780.7 13358.0 14003.8 14219.7 37266.4 47835.6 48013.9 48402.6 50216.4 51746.9 542'11.0 55658.1 5741~.3 61836.6 105086.2 ADDITIONAL STATISTICS COEF. OF VARIAr. LOCATION PRE-POST- i. CHANGE -4}.5 ·-45. 7 -44.3 -42.9 ... i!O. 9 -3'1'.8 -~HL7 -38.4 ·-19. 2 -15.6 -15.6 -15.5 -15.0 -14.6 ·-14 • () -13.'7 -1~5. 4 -12.5 -?,8 PRE- 4102.8 4284.1 4451.6 4626.1 4"722.8 -~919.3 5092.4 5214.6 S2S5.6 9078.7 11761.1 11798.1 11878.8 11921.9 11966.8 12055.<; 12115.4 12197.8 12446.3 17221.<; SKEW CUEFFICIE::NTS PRE-POST- PO!lT- 2562.8 2638.9 2?28.0 28~5.8 29(.)1. () ::5043. 1 317'7.1 3276.? 3310.6 735.3.'? 9691.7 9'727.? 9806. ,_s 9826.9 9854.4 9919.0 9966.6 10036.3 10262.4 1:5231.8 EXCESS COEFFICIENTS PRE-POST- ------------------------------------------------------~-------------- WATANA .220 )262 1.414 2.380 2.421 6.542 TSUSENA .221 .251 1. 428 2.646 2.42b 'lr673 FOG .223 ~245 1,439 2.810 2t41~:! 8.395 DEVIL .224 .241 1.447 2.~13 2.38/ 8.842 CHHlCHEE "':> "') r: .... .,;....J ~240 1.450 2.946 2.369 8.976 PORTAGE .227 .238 1.455 2.972 2.329 9. (}4 7 INDIAN .229 ~238 1.458 2.961 2.290 8.943 CURRY .228 .234 1.44~ 2.944 2.26)> 8.844 WHISt\£RS .228 ,233 1.446 2.937 2.262 8.805 CHULITNA .197 .19"7 1.112 1.731 2.296 ··'1. 318 TAU<EET .207 .203 .801 1.145 1.210 2.434 TRAPPER .207 .203 .801 1.143 1.210 2.430 SUNSHINE .207 .203 ,801 1.140 1.210 2.420 HONTANA .202 .196 • 8:.:!0 1.173 1.216 2.465 SHEEP .197 > 190 .834 1.196 1.216 2.493 KASHWIT .191 .183 .849 1.222 1.209 2.514 UJILLOW .188 .179 .854 1.232 1.201 2.513 WILLOW .184 .175 .858 1.238 1.188 2~~01 DESHKA .176 > 166 .851 1.227 1.139 2.416 su STA .151 .145 .317 .434 .441 .746 A-ll STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY MAINSTEM FLOWS <CFS) STANDARD DEVIATION LOCATION WAlANA TSUSENA FOG· DEVIL CHINCHEE PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHt\A SU STA PRE- 10791.9 11306~2 11756.7 12206.5 12449.1 12929.2 13340.2 13702.4 13823.4 25768.0 31/86.3 31886.3 32104.2 33241."7 34201.5 35765.6 36654.3 37756.3 40529.0 67651.7 POST- 7310.8 i'825. 1 8275.6 8725.4 8968.0 9448.1 9859.1 10221.3 10342.3 22286.9 28305.2 28405.2 28623.1 29760.6 30720.4 32284.5 33173.2 34275.1 37047.8 64170.6 ADDITIONAL STA fiSTICS COEF. OF VAIUAT. LOCATION PRE-POST- /. CHANGE. -32.3 -30.8 -29.6 -28.5 -:~8 + 0 -26.9 -·26. 1 -25.4 ·-2~ + 2 -13.5 -11.0 -10.9 ·-1 0 + 8 -10.5 ·-1 0. 2 -9./ -9.5 -9.2 -8.6 -5.1 f'RE- 3044.8 3211./' 3365.5 3525.4 361:J.? 377'3.2 3950.6 4043.0 4074.0 "70'1'8.0 8835.8 8863.6 8924.2 9021.0 9114.8 9290.'7 94U2.Y 9553.6 9986.2 16667.4 SKEW COEfFICIENTS PkE-POST- POST- 1165.8 1091.9 1069.5 1089.2 1116.7 1202.1 1302.7 13'/4.2 13Y8.9 4809.1 6t416.9 6443.4 6501.~5 6608.4 6713.1 6919.0 7030.5 /228.0 7738.7 1516'/.u E.XCE.SS CUJ::FFlCIENTS PkE::-POST--------------------------------------------------------------------- WATANA .282 .159 .257 .131 -.382 .948 TSUSENA .284 .140 .260 .587 -.401 1.::504 FOG .286 .129 .267 1.058 ·-. ·120 1.987 DEVIL .289 .125 .276 1.466 -.4JB 2.368 CHINCHf:::E .290 .125 .292 1.623 -.4-18 2.499 PORTAGE .293 .127 .295 1.782 -.467 2.583 INDIAN .296 > 132 .~07 1.790 -.482 2.498 CURRY .295 .134 .307 1.800 -.489 2.627 WHISKERS .295 .135 .307 1.799 -./~91 ") .. c::; .:..tO\Jt CHULITNA .275 .216 .654 1.856 .5"77 4./02 TALI\EET .278 ,227 .613 1.403 .357 2.966 TRAPPER .278 .227 .613 1.399 .357 2,.9:53 SUNSHINE .2/8 .227 .613 1.::£91 .3:.57 2.927 MONTANA .271 .222 .598 1.366 .375 2,8/8 SHEEP .267 > :.:!19 .::582 1.::$34 .383 2 + 80-"1 KASHWIT .260 .214 .551 1.266 .381 2.626 LWILLOW .257 .213 .532 1,221 .3/2 2.502 WILLOW .253 .211 .50? 1.160 .354 2.333 DESHI<A .246 .209 .441 1.002 .2/B 1. 86S' su STA .246 .236 .119 .291 -.52B -.211 A-12 APPENDIX B FLOW STATISTICS FOR THE LOG-TRANSFORMED DATA, SINGLE-DAM SCENARIO STATISTICAL RECORD OF 32·-YE.AR SUH~iARY' WATANA UNL Y JUNE MAINSTEM FLOWS <LN CFS) STAND r-IRD D[IJ I ::1 T I 01~ LOCATION PRE-POST-· PRE-POST- WATANA 10.011 8.718 .25~ .368 TSUSENA 10.033 8.863 .260 ~ .333 FOG 10.087 8.974 .261 .347 DEVIL 10.121 ~.073 )262 .:::143 CHINCHEE 10. 138 9.122 .263 .343 PORTAGE 10.172 9.213 .265 .:142 INDIAN 10.200 9.284 .266 .343 CURRY 10.226 ?.349 .2~5 • :::13·:1 WHISKERS 10.235 9.369 .264 .332 CHULITNA 10.844 10.465 .214 .227 TALKEET 11.041 10.742 .2::!7 .234 TRAPPER 11.044 10,746 ")'")7 .; ..:... ..::.. , • 23l~ SUNSHINE 11.051 10.756 .221 .234 MONTANA 11.081 10.196 )225 .23:1. SHEEP 11.105 10.828 .223 +229 KASHWIT 11 .143 10.878 "I'")? t,:_li:..- •'"\ '1 I + ..::...::..t:i LWILLOW 11.16!i 10.906 t221 .225 WILLOW 11.190 10.939 )221 .,"")&:' t ,;_.::... ... J DESH~:A 11.252 11.017 .221 .224 su STA 11.705 11.562 .243 .1') C" ""% • ,;,.. ,J •...J ADDITIONAL STATISTICS COEF. OF VARIAT. SKE.W COEFFICIENTS E>~CESS CUEFF 1 C l EIHS LOCATION PRE-POST-PRE-POST-PRE·· POST---------------------------------------------------------------·------ WATANA .026 .042 .174 1. 881 .557 2.989 TSUSENA .026 .040 .151 1.73"1 .4'?'7' 2.606 FOG .02-S .039 .128 1 r:o:.·'"> J. ·.J ,J,.:,. + 411 2.169 DEVIL .026 .038 .10~ 1. 354 .344 1./42 CHINCHEE .026 .038 .093 1.248 • ::no 1.330 PORTAGE .026 .037 .068 1.052 .243 1.163 INDIAN .026 .03? .046 + 89'1' .190 .902 CURRY .026 .036 .o~o .893 .19~ ,!l01 WHISKERS .02~ .035 .052 .891 • 1 116 .8'?9 CHULITNA .020 .022 .466 .921 1.0:JO 1.6~4 TALKEET • o:u .022 .199 )~27 .488 .827 TRAPPER .021 .022 .199 r.:-"1 :f. +..!.:..0 .488 .825 SUNSHINE .021 o~>r:. ) ...... ..:.. .1~9 .:J24 .488 Br;.r, + ,;_.;,;_ MONTANA .020 .021 .155 .46/ .344 .628 SHEEP .o:w .021 .119 ,IJ18 ~227 .464 KASHWIT .020 .021 .063 .3~9 .051 .212 LWILLOW .020 .021 ,034 .297 ·-·.010 .083 WILLOW .020 .021 -.001 .246 -.142 -.061 DESHKA .020 .020 -· '0?? .134 -.312 -.335 su STA .021 0"~' .. &...;... -.340 -.260 ··-.127 ···• o:53 B-1 STATISTICAL RECORD OF 32-YEAR SUNNl-if.:Y, WAT?,NA ONLY JULY MAINSTEM FLOWS <LN CFS) SlANDARD DEVIATION LOCATION PRE-POST-PRE-POST-------------------------------------------------------------------WATANA 9.930 8.594 > 164 .228 TSUSENA 9.965 8.121 .166 .223 FOG 9.994 8 d:l21 .168 .2.21. DEVIL 10.023 8.910 .1?0 .222 CHINCHEE 10.038 8.956 .171 .223 PORTAGE 10.067 9.03'7' .173 .225 INDIAN 10.092 9 > 105 'i175 .227 CURRY 10.121 9.183 • 1l Ji .220 WH I SI'\ERS 10.131 r~ + 208 • 173 .. 218 CHULITNA 10.8/'1 10.532 .1~2 .148 TALKEET 11.062 10.790 • 143 .147 TRAPPER 11.065 10.794 .143 .147 SUNSHINE 11.071 10.803 .143 .147 MONTANA 11.106 10.848 .1~0 .142 SHEEP 11.134 10.884 .137 .138 KASHWIT 11. 177 10.940 .134 .133 LWILLOW 11.202 10.970 .1J2 • 131. WILLOW 11.231 11.007 .130 .128 DESHKA 11.300 11.093 .125 + 12:i su STA 11.803 11.683 .117 .116 ADDITIONAL STATISTICS COE.F. UF VARIAT. SKEW COE.FFICIENTS E.XCESS COEFF l C H.NTS LOCATION PRE-POST-PRE-POST-t:·R::: ·· POST--------------------------------------------------------------------- WATANA .017 .027 .269 1.479 -.369 1.059 TSUSENA .017 .026 .282 1. ~72 -.33'7 .1185 FOG .017 0""" ~ ~-.} .290 1.247 -.:Ho .853 DEVIL .017 .025 .295 1.121 -.285 ,Jo8 CHINCHEE .017 .025 .297 1.056 -.272 .632 PORTAGE .017 .025 .298 .939 -.250 .495 INDIAN .01? .025 .298 .850 -.232 .392 CURRY .017 .024 .292 .828 -.236 .349 WHISKERS .017 .024 .290 .821 -.237 .334 CHULITNA .013 .014 .215 .477 -.488 ... 3?4 TALKEET .013 .014 .072 ~220 -.328 -.315 TRAPPER .013 .014 .072 .219 -. 3.::.!8 -.315 SUNSHINE .013 ,014 .072 .218 -.328 ·-. 316 MONTANA .013 .013 .090 .252 -.327 -.2'J8 SHEEP .012 ,013 .105 .279 -.320 ,., -y..., -.,~, KASHWIT .012 .012 .127 .321 -.296 1'"''\ -+ ..)' LWILLOW .012 .012 .139 .344 -.27? -.096 WILLOW .012 .012 .154 .370 -.246 -.019 DESHKA .011 .011 .186 + .. ~27 -.146 .200 su STA .010 .010 .280 .485 .'-/99 1.520 B-2 STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY AUGUST MAINSTEM FLOWS <LN CFS) STANDARD DEVIAriON LOCATION PRE-POST-PRE-F'Ot::T------------------------------------------------------------------- WATANA 9.812 9.162 )202 .219 TSUSENA 9.849 9.236 .203 .205 FOG 9.881 ft.296 .204 .197 DEVIL 9.912 9 "le':"') +.J...J,;. .20~ .192 CH!NCHEE 9,929 9.381 .205 .190 PORTAGE 9.960 9.436 .20! .189 INDIAN 9.986 '1.480 .208 .188 CURRY 10.01~ 9.528 .208 .186 WH I Sl'\ERS 10.024 ?.543 .207 .185 CHULITNA 10.721 10.~09 .188 .180 TALKEET 10.'125 10.757 .203 .194 TRAPPER 10.928 10.761 .203 .194 SUNSHINE 10.933 10.769 .203 .194 MONTANA 10.'761 10.807 .19"7 .186 SHEEP 10.994 10.838 .192 .181 KASHWIT 11.035 10.886 .186 .173 LWILLOW 1t.058 10.'113 .182 .169 WILLOW 11.086 10.944 .178 .165 DESHKA 11.152 11. 020 .170 .157 su STA 11.632 11.5S2 .152 .144 ADDITIONAL STATISTICS COEF. OF VARIAT. SKEW COE::FFICIE.NTS E::XCE.SS CCJEFFIClENTS LOCATION PRE-POST-PRE-POST-PHE··· POST--------------------------------------------------------------------- WATANA .021 .024 .824 1.581 .9/8 3.636 TSUSENA .021 .022 .845 1.989 .989 -<1.120 FOG ,021 .021 ,863 2.231 .'i'iO 5.321 DEVIL .021 .021 .879 2.423 .982 6.080 CHINCHEE .021 ,020 ~887 2.481 .9/6 6 •")"?..., t ,&.. I ..:.. PORTAGE .021 .020 .902 2.539 .959 6.438 INDIAN .021 ,020 .'7'12 2.!538 • 9 ~12 6.392 CURRY .021 .020 .905 2.~23 .932 6.328 WHISKERS .021 .019 • '7'02 2.516 .928 6.:298 CHULITNA .018 .017 .~:513 .875 1.621 2.793 TALKEET .019 .018 .029 .259 1.318 1.987 TRAPPER .019 .018 .029 .258 1. 318 1. '7'85 SUNSHINE .019 .018 .029 .256 1.318 1.980 MONTANA .018 .017 ,094 .344 1 • 1 ':t 7 1.901 SHEEP .017 .017 .143 .410 1.099 1.831 KASHWIT .017 .016 .210 .501 • ·~ ., 9 1.712 LWILLOW .016 .016 .241 .541.\ .869 l • 641 WILLOW .o1..;. .015 .274 ,587 .7?4 1. 349 DESHKA .015 .()14 .328 .65~ .563 1.309 su STA .013 ,012 -· > 103 .005 .118 .212 B-3 STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY MAINSTEM FLOWS <LN CFS> STANDARD DEVIATION LOCATION F'RE-POST-PRE-f-'OST-------------------------------------------------------------------WATANA 9.246 tL884 .292 .164 TSUSENA 9.292 8.956 .294 .138 FOG 9.331 ?.013 .296 .124 DEVIL 9.368 9.06} .299 .11"7 CHINCHEE 9.387 ?.095 .::soo • 11 ~,) PORTAGE 9.424 9.14"7 .303 .117 INDIAN ?.455 9.189 .305 • 121 CURRY 9.482 9.224 .304 1 'l7 i' .. """' WHISKERS 9,491 9.236 .304 .123 CHULITNA 10.121 9.992 .274 .193 TALKEET 10.330 10.229 .:a.~ .210 fRAPPER 10.333 10.232 .2/6 .210 SUNSHINE 10.340 10.240 , ) .., , >.:../0 .210 110NTANA 10.3"76 10.279 .2/0 .206 SHEEP 10.40,j 10.::512 .266 .204 1\ASHWIT 10.452 10.362 .260 .201 LWILLOW 10 .• -~78 10+389 '"•"'"7 ) ..::.....J I .200 WILLOW 10.508 10.422 .254 .200 DE'3HKA 10.580 10.~00 .249 .200 su STA 11.091 11.042 .256 .241 ADDITIONAL STATISTICS COEF. OF VARIAl. SKEW CUEFFIClENTS EXCESS COEFFICIENTS LOCATION PRE-POST-F·:.;:E-POST-PI-\E ·· POST- WAfANA .032 .018 -,271 -.434 -.467 .734 TSUSENA .032 .015 -.266 .066 -.4l:H ."J90 FOG .032 .014 ..• 258 , ,..,I::" tO~..J -.49..S 1.038 DE•.-trL .032 .013 -.247 1.154 -.511 1.463 CHINCHEE 0 -,,l + ,.,).,;.. .013 ..• 240 1.370 -.S20 1.696 PORTAGE .032 .013 -.226 1. 59~ -.538 1.991 INDIAN .032 ,o13 ·-> 213 1+607 -.S~3 2.001 CURRY .032 .013 -.207 1.:i!f8 -.S6~ 2.078 lm I Si\ERS 0 -( ') + ·.J A-,013 ... ) 205 1.~90 -.S68 2. 07'1 CHULITNA .027 .019 -.011 1. 052 -.195 2.367 TAU\EET .021 .021 .004 .636 -.3..S4 1.177 TRAPPER o·"")..., + ~I .021 .004 .633 -.364 1.168 SUNSHINE:: ()'l ~ -) ,;;_/ ,021 .004 .626 -·. Jb4 1.149 MONTANA .026 .020 -.012 .613 -.3J2 1.124 ~31-tEEF' ,()26 .020 ..• 027 .591 -.310 1.078 l\ASHW IT .025 .019 -.054 .540 -.284 .965 LWILLO~J 0 ')1"." + ,;,....J .019 ..• 070 .505 ·-. 2; 4 .886 tsJ I LLOW .024 .019 -.090 .459 -.2.6"7 • T/9 DESHt<:A .024 .019 ·-. 138 .341 -.2.73 .302 su STA .023 .022 -.305 -.200 -.572. -.325 B-4 APPENDIX C MONTHLY FLOW PROFILES FOR NATURAL AND SINGLE-DAM OPERATIONAL CONDITIONS FLOW PROFILES --1 DAM SCENARIO OCTOBER FLOV (CFSl 4~0011 PREPROJECT 36001! 32llllll I POSTPROJECT I 213001! I -- -240011 I 20000 / __, -161Bl 121!00 8IW 40011 8 2al IBB 150 1411 129 100 BB 50 411 2ll DISTOCE On> FLOW PROFILES --1 DAM SCENARIO OOVEIIBER FLOV <CFSl 400~B PREPROJECT 36ll00 1- 32008 1- POSTPROJECT 28001l 1- ·--24001l 1-- 2llOOB 1-I 160011 1-I -,---121B! 1-r - 8BOO OJ ------' --::::--1-., ,; a ..>! ... "' "' "' 40011 8 "' '" a ... I " 1--"' u .... ~ ~ -.... ... "' rl .... ..... .E " I~ I I 0 1 I I I ~I "' I u IBB l&l 1411 121! !Ill .411 2ll DISTANCE om C-1 FLOW PROFILES --1 DAM SCENARIO FEI!R\JARY FL~ (CFSl 21l000 PREPROJECT IOO!lll ~ 16illll! 1- POSTPROJECT 14000 1-I --121!00 ~ I ,..---- 10000 r - - ----__} -- 800il f- 61100 1- "' ... 4000 -•.-< " ~ 2llllll B s ~ ... <'l "' 0 " I <'l <'l ... B -<I! u ~ § .... ... ~ .... .... ~ " ~ L S I B ~ l I I I I "'I 1811 1611 140 121! 100 40 DJSTIJU <MD FLOW PROFILES --1 DAM SCENARIO MARCH FLOY <CFSl 21100~ PR£PROJECT 1800~ 1600~ POSTPRDJECT 14~~3 I ·-- 121130 I -10000 I -----__} 8llOO - 6330 ~ ... 400~ •.-< " 211~~ 0 2l:l0 100 1611 14~ 121! 100 8ll 611 4~ 2ll DISTANCE <MD C-3 FLOW PROFILES --1 DAM SCENARIO APRIL FLOW (Cf5} 21l~~~ PREPROJECT 181l00 160011 POSIPROJECI 14~00 --121100 I I 10~00 -_,....... I ~0 ----_.} -- 600~ 40011 '" .., "' " ~B 5 .... "' " "' 0 2ll0 181l 160 140 121l 100 8ll 60 4~ 2ll DISTANCE <Mil FLOW PROFILES 1 DAM SCENARIO HAY FLOW (Cf5) 150000 PREPROJECT 135000 121l000 POSTPROJECT 1050011 ---90000 75llllll 60000 I 451l00 {I " {I ... llmliJ .... "' .,;-B "' 15000 0 2llll 181! 161l 140 121l 100 80 6ll 2ll DISTAIU OlD C-4 FLOW PROFILES --1 DAM SCENARIO .l\.t[ FLO~ (CfS) !5001ltl PR£PRO.JECT 135000 120011l PDSTPI\IllECT I 1llSIIIlll ---I 900illl I 75009 I 6IBl0 / -r--45001! OJ ... a '"' ., 151l00 B 211! laB l61l 1411 121l 100 Bll 6ll 2ll B DISTOCE QIJ) FLOW PROFILES --1 DAM SCENARIO Jll.Y FLO~ (CfSl l50BBB PREI'RO.JECT 135000 121ml POST PROJECT I 105001! ---I 900llll I 75llllll J 600011 -.r - 45001l 3lliBl ~ <II "' <II I SIB! ~ B 2lll! IBil 1611 14B 121l Ill! Bll 2ll DJSTAOCE QIIJ C-5 FLOW PROFILES --1 DAM SCENARIO AUGUST FLDW (CfS) 151100~ PREPROJECT 13500~ 121lllllll POSTPROJECT I 11!5EOO - --9~003 I 75fle3 I 6WilB ------451lll0 mm '" "" .. U1 .. 150011 ... -u_ -- II 2110 181! lfia 14~ 1211 100 811' sa 40 2ll II DISTANCE Olll FLOW PROFILES --1 DAM SCENARIO SEPTOOER fllJW((JS) 1Silllllll PREPRDJECT 1351Hl 1200011 POSTPROJECT 18Silll! . -- OOIBl 7SBl !iBlll lj ~-lj ~ 7 ... 3llltlll ·~ -"' 151BJ 8 2111 1Bil 1611 Ull 1211 I ill 8ll 2ll DlSTMU Olll C-6 APPENDIX D FLOW STATISTICS FOR THE TWO-DAM SCENARIO STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO OC1"0BE:R MAINSTEM FLOWS <CFS> ST;~NDAIUt DEV I AT !UN LOCATION D.C. DAM PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 5334.3 5~69.5 5770.8 5931.9 5985.8 11397.0 14145.4 14189.9 14286.8 14833.3 15298.1 16032.3 16480.8 17012.1 18349.0 31426.'1 POST- 7318.5 7553.6 7754.9 ?916.1 7970.0 1J::SfH .1 16129.5 16174.0 16271.0 16819.5 17282.3 180::s6.4 18464.9 18'/96.3 20333.2 33411.1 ADDITIONAL STATISTICS COEF. OF VARH1T. LOCATION PRE-POST- I. CHANGE 37.2 3:5.6 34.4 33.4 33.1 17.4 14.0 14.0 13.9 13.4 13.0 12.4 12.0 1. 1 • 7 10.8 6.3 PRE- 1327.5 13116.-1 1456.8 1486.0 14115.8 2383.1 29"70.8 2980.1 3000.5 3088.2 3176.0 3343.2 3450.2 3:.5'73. :.5 3997."7 9270.2 SKEW COEFFlCIE.N"I"S PRE-POST- POS"J- 106"7.7 110:3.7 11-<"12.3 1158.2 1163.7 1928.5 2471.5 2480.0 2498.5 2572.7 26:::i2.4 2812.2 2917.5 :j060. 8 3-1/'1.6 8845.4 EXCESS CUE F F I C I EN ·r S p:.;:E-POST--------------------------------------------------------------------- D.C. DAM .219 , 146 ~061 1.:334 -.785 .828 PORTAGE .251 .146 .064 1.343 -.782 .?95 INDIAN .252 .147 .068 1.335 -.777 1.113 CURRY .251 .146 .060 1.328 -.78"7 1.110 WHISKERS .250 .146 .057 1.325 -.7'-JO 1.108 CHULITNA .209 .144 -.003 .576 -.731 .2~4 TALKEET .210 , 153 ·-. 022 .443 -.762 -.016 TRAPPER .210 .153 -.022 .441 -.i'62 -.019 SUNSHINE .210 ~154 ~-. 022 .435 -.762 -.026 MONTANA .208 .153 -.004 .432 -.830 -.068 SHEEP .208 .153 .025 .440 -.8J2 -.066 KASHWIT .208 .156 .095 .474 -.1'40 .003 LWILLOW .20'7 .158 .143 .:501 -.648 .0"71 WILLOW .211 .161 .208 .542 -.508 • 1 ~] 4 DESHKA .218 .171 .375 .654 -.0'7:3 .467 su STA .295 .265 1.05/ 1.()91 1.69"7 1.638 D-1 STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO NOVE!'1BER MAINSTEM FLOWS <CFS) STANDARD DEVIATION LOCATION D.C. DAM PORTAGE I NO IAN CURRY WH I SI\ERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT UJILLOW WILLOW DESHKA SU STA PRE- 2387.4 2482.6 2564.0 263.3.3 2656.4 4854.2 6077.9 60'17.0 6138.6 6374.2 6573.0 6896.9 7081.0 7309.2 7883.5 13500.7 POST- 9444.6 '1539. 8 9621.2 9690.5 9713.6 11'111.4 13135.1 131:54.2 13195.9 13i!31.4 13630.2 13954.1 14138.2 14366.4 14940.7 20557.9 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- % CHANGE 295.6 284.3 275.2 268.0 265.7 14:.5.4 116. 1 11:5.7 115.0 110.7 107.4 102.3 99.7 96.6 89.5 52.3 PRE- 691.4 721.0 747.3 762.8 767.9 1201.1 1446.5 14::i1.1 1461.0 1532.1 1596.9 1710.7 1779.3 1867.6 2103.1 479::5.2 SKEW COEFFICIENTS PRE-POST- POST- 1909.4 1<1'1'7.2 1928.3 1936.2 1938.8 2170. •1 2362.8 2366.1 23"73. 1 2'H0.1 2Jl.43.7 2:511.8 2553.5 2609.2 2161.1 5037.8 EXCESS COE::FF I C I E.l..fTS PRE-f'OST----------------------------------------------------·-----------------o.c. DAti .290 .202 .253 -• .308 -.102 -1.581 PORTAGE .290 .201 .223 -.309 -.152 -1.571 INDIAN .291 .200 .204 .... 310 -.180 -1.359 CURRY .290 .200 .203 -.314 -.179 -1.552 WHISKERS .289 .200 )202 ·~. 315 -.179 -1.549 CHULITNA .247 .182 .271 -.345 -.220 -1.258 TALKEET .238 .180 .230 ·-+ 364 -.284 -1.148 TRAF'f'ER .238 .180 .230 -.364 -.284 -1.146 SUNSHINE .238 .180 .230 -.363 ·~. 284 -1.142 MONTANA .240 .179 .343 -.358 .048 -1.103 SHEEP .243 .179 .444 ·-. 348 .361 -1.069 KASHWIT .248 .180 .612 -.318 .900 -1.005 LWILLOW .251 .181 .705 ·-+ 295 1.209 -.963 WILLOW .256 .182 .815 -.260 1.583 -.903 DESHKA .26"7 .185 1,059 -.148 2.441 -.711 su STA .355 .245 1.852 1.012 5.550 2.286 D-2 STATISTICAL RECORD OF 32·-YEAR BUI·tNARY, 2 DAt-i SCENARlO DECEr1BER MAINSTEM FLOWS (CFS> STANDARD DEVIAfiON LOCATION D • C • DAM POR'rAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 1672.8 1747 • .!! 1811.6 1860.3 1876.6 3418.1 4275.5 4288.9 4318.2 4452.6 4566.0 47:::i0.8 4855. "7 498:::i.9 5313.5 8:::i17.:::i POST- 11128.3 11203.0 11267.1 11315.8 11332.1 1287.3.6 13730.9 1374·1. 4 13773.7 13908.1 14021.5 14206.2 14311.2 14441.4 14768.!f 17973.0 ADDITIONAL STATISTICS COEF. OF VAf::IAT. LOCATION PRE-POST·- 7. CHANGE 565.2 541.1 521.9 508.3 503.9 276.6 221.2 219.0 212.4 207.1 199.0 194./ 189.6 178.() 111.0 PRE- 496.0 528+0 555.8 564.8 567.7 733.2 879.8 882.5 888.6 ':i>23. 8 957.3 1018.3 1056.3 1106.0 1242.0 2891.7 SKEW COEFFICIENTS PRE-POST- POST- 2073.4 2081.1 2088.2 2094.1 2202.0 ~288.2 228'i + 7 2293.2 2306.3 2319.4 23~4.3 ~!360. 4 2:582.4 2446.8 3567.5 E.XCESS CUEF FICH.IHS PRE-F'O~;T- ·-----------------·--------------------------------------------------o.c. DAti .297 .186 .430 -.836 -. O·H:l -1.113 PORTAGE .302 .186 .468 -.834 .0'11 -1.109 INDIAN .307 .185 .500 -.831 .202 -·1.104 CURRY .304 .185 .492 ·-. 831 .183 -1.102 WHISKERS .303 .185 .489 -.830 .177 -1.101 CHULITNA .214 .171 -.042 -.820 -.515 -1.017 TALKEET .206 .167 -.155 -.816 -.433 ..• 928 TRAPPER .206 • 167 -·. 155 -.816 -.435 -.927 SUNSHINE .206 .166 -.155 -.816 -.435 -• '124 MONTANA .207 ,166 ·-> 108 -.812 -.436 -.'ill SHEEP .210 .165 -.058 -.805 -.43~ ·-. 8~8 KASHWIT .214 .165 .036 -.785 -.439 -.874 LWILLOW .218 .165 .094 -.1'69 -.433 -.858 WILLOW .222 .165 .165 -·. 745 -.419 -. 83/' DESHKA .234 .166 .337 -.666 -.355 -.771 su STA .339 '198 .~94 .405 .416 .275 D-3 STATISTICAL RECORD OF 32-·YEAR SUHr1ARY, '1 .... Dfil'i SCENARIO JANUARY MA INSTE!1 FLOWS (CFS> STANDARD D E I) I 1:. T I 0 N LOCATION PRE-POST-/. CHANGE PF!E-POST- ----------------------------------------------·--------------------n.c. DAM 1377.6 10484.8 661.1 390.1 1738.6 PORTAGE 1439.0 1054b.2 6~2..9 415.3 1746.9 INDIAN 1491.6 10598.8 610.6 437.4 1754.4 CURRY 1532.4 106~~9.6 :::i<i-'1.3 444.1 1757.5 WHISKERS 1546.0 10653.2 589.1 446.3 1/'58.5 CHULITNA 2893.'7' 12001.1 314.7 542. /' 1831.9 TALKEET 3579.0 12686.1 254.~ 632.1 18/6.7 TRAPPER 3590.2 126'7'7.4 2~:i3. 7 6.34.1 18"77.8 SUNSHINE 3614.8 12721.9 251.9 638.4 1880.1 MONTANA 3756.0 12863.2 2~\2.5 656.2 1881.6 SHEEP 3875.3 12982.4 235.0 672.6 U:H:3J. 6 KASHWIT 4069.5 13176.7 223.8 701.9 1888.0 LWILLOW 4179.9 13287.1 217.9 719.8 1891.2 WILLOW 4316.8 t3124.0 211.0 7·13.2 189~.9 DESHKA 4661.2 1376!:l. 3 195.4 80'/.3 1911.1 su STA 8030.0 17137.2 113.4 1613.0 2279.3 ADDITIONAL STATISTICS COEF. OF VARIAT. SKEW COEFFICIENTS EXCESS COEFFICIENTS LOCATION PRE-POST-PRE-POST-Pl-\:1:::··· F'O!JT- -------------------------------------------------------------------- D.c, IIA11 .283 .166 .204 -1.066 6 "'"7 -+ I I -.501 PORTAGE .289 .166 .220 -1.064 -.652 -.498 I Nil IAN .293 > 166 + 2;".57 -·1 + 061 -.62.7 -• 49c~ CURRY .290 .165 .237 -1.060 -.627 -.498 WHISi"\Er.;:s .289 .165 ~ 2 ~j ;} ·-1 + 059 -.627 -.498 CHULITNA .188 .153 .020 -1.009 -.705 -+547 TAU~EET .177 .148 ,036 -.975 -.~89 -.376 TRAF'PEF: .177 .148 .036 -.974 -.389 ·-. 5"?6 SUNSHINE .17"7 .148 .036 ·-> 973 -.389 -.576 MONTANA .175 .146 .098 -.965 -.293 -.570 SHEEP +174 .145 .157 -.956 -.199 -.565 KASHWIT .172 .143 .261 -.938 -.030 -.5~4 LWILLOW .1"72 • 142 3"'"' "' ~ ..... -· > 9 25 .06'7' -.547 WILLOW .172 .141 • 396 -.908 .192 -.537 DESHKA .173 .139 .573 -.853 .481 -.504 su STA .201 .133 1.177 ,0:)8 1.~80 .274 D-4 STATISTICAL RECORD OF 32·-YEAR SUI'HlARY, 2 litif·i SCENARIO FEBRUARY MAfNSfEM FLOWS <CFS> STANDARD DEVIATIUN LOCATION PRE-POST-I. CHANGE PRE-POST- D.c. DAM 1171.1 1009<\. 4 761.9' 323.4 1926.6 PORTAGE 1225.6 10148.8 "/28.1 347.0 1933.0 INDIAN 1272.2 10195.4 701.4 368.2 1938.8 CURRY 1.306.5 10229'.8 683.0 373.'7 1940.9 WHISKERS 1318.0 10241.3 67/.0 375.~ 1941.7 CHULITNA 2443.5 11366.8 ...,,r::: .., '-'C),,I+A.. 440.4 :i. ~1 96. 8 TALI<EET 3015.2 11938.5 2!!5.9 519.1 2028.1. TRAPPER 3024.7 11948.0 295.0 520.7 2028.8 SUNSHINE 3045.1 11968.6 293.0 ~2~1 + 3 2030.3 MONTANA 3176.'7 12100.0 280.9 541.3 202'1.0 SHEEP 3287.5 12210.7 2/1.4 356.9 2024.7 KASHWIT 3468.0 12391.3 257t3 584.7 2021.8 LWILLOW 35'70. 6 1249.3.9 24'1. 9 601.6 2020.7 WILLOW 3697.8 12621.1 241. J 623.7 2019.8 DESHKA 4017.8 12941.1 2;-!2 .. 1 683.:::; 2020.2 su STA 7148.7 16071.9 124.8 1415.3 2205.9 ADDITIONAL STATISTICS COEF. OF VARIAT. SKEW COEFFICIENTS EXCESS COEFFICIENTS LOCATION PRE-POST-F'RE-POST-PRE-POST---------------------------------------------------------------------n.c. DAt·1 .27.3 .191 .~:!61 -1.414 -.66? .235 PORTAGE .283 .190 .297 -1.410 ·-. 642 .231 INDIAN .289 .190 • 34.3 -·1. 406 -.561 .228 CURRY .286 .190 .344 -1.405 -.!J65 .227 WHISKERS .285 .190 .344 ·-1 • 404 -.~.57 t227 CHULITNA .180 .1'76 .362 -1.:387 -.276 .216 TALKEET .172 .170 1") ~)I) -o-..:....:....r:.. -·1. 362 -.~25 .195 TRAPPER .172 .170 ~~ ') ') t..:.,;:....;.. -1.362 -.625 .195 SUNSHINE .172 .170 .222 ·-1.360 -·. 62~ • 1 <;• ·1 MONTANA .170 .168 .287 -1.34'1 -.613 .181 SHEEP .169 .166 .342 -1~338 -.!::.i..Sl .170 KASHWIT .169 .163 .432 -1.317 -.439 .152 LWILLOW .168 .162 .482 ·-1. 303 -.~:5113 .141 WILLOW .169 .160 .541 -1.285 -.:210 .128 DESHKA .1/0 .156 .6/3 -·1.232 .1::.:i7 .095 su STA .198 .137 1.11 J -.313 1. 951 • 2''17 D-5 STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO LOCATION D.C. DAt1 PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA ADDITIONAL MAINSTEM FLOWS CCFS> PRE- 1054.5 1099.7 1138,4 1169.0 1179.2 2184.4 2679.6 2688.0 2706. ·:\ 2824.9 2924.8 3087.7 3180.2 3295.0 3583.7 6408.0 POST-· 9204.0 9249.2 9288.0 9318.5 9328.7 10334.0 1082Y.1 10837.5 10855.9 10974.4 11074.3 11237.2 113211.7 11444.5 11733.2 14557.5 STATISTICS i. CHMWE 772.9 741.1 715.9 697.2 691.1 373.1 304.1 303.2 301.1 288.5 278.6 263.9 256.3 247.3 227.4 127.2 STANDARD DEVIATION PRE- 312.6 331.2 347.8 35J.2 354.9 432.7 500.9 502.5 505.9 516.9 526.7 543./ 553.'7 567.0 602.0 1033.9 PO~f- 1301.2 1310.2 1318.2 1320.9 1321.8 1J5'7.8 1397.4 1398.3 1400.2 1-402.7 1403.:1. U\09 • 5 1412.3 1416.0 1426.7 162S.O COEF. OF VARIAT. SKEW C 0 E F F I C 1 E ~~ T S EXCESS COEFFICIENTS LOCATION F'RE-POST-PRE-POST-PRE-POST--------------------------------------------------------------------- D.c. DAH + 2'7'6 .141 .702 ····1.018 -.127 .165 PORTAGE .301 .142 .699 -1.003 -.1Y8 .140 INDIAN .306 .142 .701 -·. 988 -.243 .119 CURRY .302 .142 .700 -.982 -.244 .109 WHISKERS .301 .142 .700 ·-. 980 -.244 .105 CHULITNA .198 .132 .489 -.893 -.490 -.032 TAU<EET .187 .129 .574 -.812 -.11~ - + 118 TRAPPER .187 .129 .574 -.811 -.112 -·. 121 SUNSHINE + 18'7 .129 .574 -d:l07 -.112 -.125 MONTANA .183 .128 .613 -.784 -.018 -.151 SHEEP .11:30 .127 .647 ·-+ 764 .0,!,8 -.170 KASHWIT .176 .125 .703 -.729 .219 ·-+ 200 LWILLOW .174 .125 .734 ·-. 708 .308 -.~15 WILLOW .172 .124 .772 -.681 .419 -~232 IIESHKA .168 ~122 .862 ·-+ 608 6 (j ') . . --.26b su STA .161 .112 1.248 .238 1.860 .106 D-6 STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAH SCENARIO APRIL MAINSTEM FLOWS <CFS) STANDARD DEVIATION LOCATION D.C. r1AM PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 1283.8 1337.1 1382.8 1419.7 1432.0 2660.7 3238.8 3249.0 3271.2 3398.0 3504.9 3679.1 3778.1 3900.9 4209.8 7231.3 POST-· 8005.8 8059.1 8104.7 8141.6 81~)4 .o 9382.7 9960.8 9971.0 9993.2 10120.0 10226.9 10401.1 10500.1 10622.9 10'131. 8 13953.3 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- h: CHANGE 523.6 502.7 486.1 473.5 469.4 252.6 207.5 206.9 205.5 19/,8 191.8 182.7 177.9 172.3 1 ~:i9. 7 93.0 PRE- 3.S7.4 390.8 411.9 419.0 421 • .:5 568.0 678.4 680.5 685.2 701.4 }15.9 "741. 2 756.3 775.8 828.2 1472.8 SKEW COEFF 1 C I EIHS PRE-POST- 984.3 996.4 1007.4 1011.5 1012.9 1071.4 1164.8 1166.3 1169.6 1186.1 1200.5 122•1.9 123'7'.3 12:;j7.6 1305.9 1891.6 E.XCESS COEFFICIENTS PRE·-::·us r ·--------------------------------------------------------------------- D.C. DAM .286 .123 .'781 ·-. 237 1.3?3 .012 PORTAGE .292 .124 .819 -.201 1.444 -.064 INDIAN .298 .124 8'='1:" , ..J..J ·-. 169 1. ·'l9'l -.123 CURRY .295 .124 .855 -.157 1.494 -.134 WHISKERS • 29 <\ .124 .854 ·-. 153 1.193 -.138 CHULITNA .213 .114 .792 .060 1.453 -.050 TALKEET .209 .117 .801 .272 .988 .002 TRAPPER .209 .117 .801 .275 .988 .002 SUNSHINE .209 .117 .801 .281 .988 .003 MONTANA .206 .11} .841 .303 1.016 .053 SHEEP .204 .117 .875 .323 1 • o.1•8 .099 KASHWIT .201 .118 .930 .357 1.114 .177 LWILLOW .200 .118 • '761 .376 1.1!::.i9 .224 WILLOW .199 .118 .998 .401 1. 221 .284 DESHKA .197 .119 1.086 .465 1.~98 .442 su STA .204 .136 1.482 .982 2.823 1.8'14 D-7 STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO MAY MAINSTEM FLOWS <CFS) STANDARD DEVIATION LOCATION D.C. DAM PORt AGE I NO IAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 12296.7 12859.3 13341.0 136!::.i7.1 13762.8 23570.9 27743.3 27830.6 28020.9 29096.9 30004.7 31484.2 32324.9 33367.3 35990.0 61646.0 POST- 7656.8 8219.4 8701.1 '701:l.2 9122.9 18'/31 • 0 23103.4 23190.7 23380.9 24457.0 25364.8 26844.3 27685.0 28727.4 31350.1 57006.1 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- I. CHANGE -37.7 ·-36. 1 -34.8 ·<H.O -33.7 ···19. 7 -16.7 ·-16. 7 -16.6 -15.9 -15.5 -·14. 7 -14.4 ·-13. 9 -12.9 -7.:::. PRE- 3839.7 l~050. 8 423Y.1 4320.8 4348.2 7412.1 8372.3 8..398.6 8456.0 8521.1 8587.3 8'716.9 8802.0 8Y18.8 9264.3 15113.7 SKE.W COEFFICIENTS PRE-POST- POST- 1529.4 1 'J 2 ~.:i. 2 1912.5 1991.4 2018 .1 5605.2 6540.5 6!::.i66.() 6621.5 6666.5 6/19.1 6833.1 6912.7 7025.9 7376.3 13S98.1 EXCESS COEFFICIEHTS PRE::·-POST---------------------------------------------------------------------D.c. DAH .312 .200 ·-. 549 .320 t";~, .. ! t;,;J..,.:.J -1.237 PORTAGE .315 .210 -.517 .311 .482 -1.086 INDIAN .318 .220 ·-. 485 .293 .436 -.980 CURRY .316 .221 -.493 .274 .423 -.972 WHISKERS .316 .221 -.496 .267 + 11 '-I -.969 CHULITNA .314 .296 -.270 .412 .132 .217 TAU\EET .302 .283 ·-. 321 .276 .142 .120 TRAPPER .302 .283 -.321 .274 .142 .119 SUNSHINE .302 .283 ..• 321 .269 .1-12 .117 MONTANA .293 .273 -.341 .240 .168 .108 SHEEP .286 ·> 265 ..• 352 .220 .HlB .099 KASHWIT .277 .255 -.360 .19B .217 .085 LWILLOW *272 .250 .. ~ ;:559 .190 .232 .077 WILLOW .267 .245 -.353 .187 .24<J .068 [tESHKA .257 .235 ..• 314 .200 .280 .050 su STA .245 .239 .323 .561 .119 -.059 D-8 STATISTICAL RECORD OF 32-·YEAR SUt·ii'1M-:Y, '2. DAN SCt;NARIO JUNE MAINSTEM FLOWS <CFS> STANDARD' DEVIATION LOCATION D.C. DAM PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE-POST- 26162.9 8146.2 27072.4 9055.7 27851.0 9834.3 28579.7 10563.0 28823.3 10806.6 52400.5 34383.8 63957.6 45940.9 64158.9 46142.1 64597.4 46580.6 66517.9 48501.2 68138.3 50121.6 70779.1 52762.3 72279.5 ~4262.7 74140.0 56123.2 78821.3 60804.5 124613.8 106517.1 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- 7. CHANGE -68.9 ··66. 6 -64.7 ··63. 0 -62.~ -28.'2. -·28. 1 -2"/.9 ·-'2.7. 1 -26.4 -2:3.5 -24.9 ·-'2.1\ • 3 -22.9 -14.5 PRE- 7071.9 7331\.3 7562.7 7725.2 7777'.6 11963.1 15000.0 15047.2 15150.1 1:.5366.8 15~69.4 15936.4 16164.2 1fl465. 2 17305.6 29227.0 SKEW CUEFFlClENTS PRE-POST- POST- 1833.3 2103.0 2344.3 2476.5 :l521.8 6962.7 9806.2 98!52. •1 9953.1 10167.8 10378.8 107/6.4 11029.7 11369.0 12J30.8 2!5':)37.0 EXCESS CU~FFICIENTS PRE-POST--------------------------------------------------------------------- D.c. DAI-1 • 2'10 ~225 .950 -.029 1.932 ·-·1.467 PORTAGE .271 .232 .907 -.046 1.782 -·1.345 INDIAN .272 .238 .871 ·-. 063 1.659 -1.26j, CURRY .270 .234 .872 -.057 1.666 ·-1 • 198 WHISKERS .270 .233 .873 -.053 1.669 -1.174 CHULITNA .228 .202 1. 316 1.160 3.305 '2..171 TALi\EET .235 ~213 • ':1'64 .765 1.949 1.213 TRAPPER .235 .214 .964 .766 1.949 1.216 SUNSHINE .235 .214 .964 .767 1.949 1.223 MONTANA .231 .210 .872 6 ' 'l • o .... 1.626 ,898 SHEEP .228 .207 .798 .579 1.3-S:::i .638 KASHWIT .225 .204 .682 .455 .··:no +260 LW!LLOW .22-4 .203 .621 .394 .16/J .074 WILLOW 2?'' . --.203 .550 .327 .530 -+124 DESHKA t220 .203 • :397 .207 .046 -.474 su STA .235 .240 .143 .284 -.~22 -· t 227 D-9 STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO JULY MAINSTEM FLOWS <CFS> STANDARD DEVIATION LOCATION D. C ~ DAM PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 23213.3 2390<1.6 24505.7 25238.4 25483.4 53167.0 64309.8 64512.1 64953.0 6/180.1 69059.2 /2121.5 73861.4 76018.<;.1 81447.4 134549.6 POST- 7094.5 "i'7<Jo.a 8386.9 9119.6 9364.6 37048.2 48191.0 48~S93. 3 48834.2 51061.3 52940.4 56002.7 57742.6 59900.1 65328.6 118430.8 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- ~' CHANGE -69.4 ··67. 4 -65.8 ··63. 9 -63.3 ··30. 3 -25.1 -·25. 0 -24.8 --~~ 4 • 0 -23.3 -~22. 3 -21.8 ·-21 • 2 -19.8 -12.0 PRE- 4067.8 4245.3 4399.6 4497.1 4529./ 7644.7 9266.1 92'>-'~ + 2 9358.7 9458.2 9550.8 9718.4 9822.4 99~'7.8 10344.9 16035.1 SKEW COE.FFlCIENTS PRE-POST- POST- 1340.5 1479.2 1610.4 16'76.9 1/26.3 5185.1 6682.8 6711.2 67/3.2 68!.50.5 6928.2 7078.4 /176.2 730'r. 2 "7697.3 13/78.8 E.XCESS CUEFF ICIEIHS PRE-POSIT--------------------------------------------------------------------- D.c. DAl'l .1/5 .189 .647 .392 .104 -1.313 PORTAGE .178 .190 .657 .387 .133 -·L 152 INDIAN .180 .192 .664 .394 .153 -1.010 CURRY .178 .186 .655 .402 .138 -· + 966 WHISKERS .178 .184 .652 .405 .133 -.951 CHULITNA .144 .140 .458 .577 -.455 ...• 336 TALKEET .144 .139 .354 .356 -.370 -.418 TRAF'PER .144 .139 .354 .355 -.37() -.419 SUNSHINE .141 .139 .354 .355 -.3/0 -.419 MONTANA .141 .134 .368 .370 -.322 •• + 364 SHEEP .138 .131 .381 .386 -.274 -.301 1\ASHWIT .135 .126 .404 .418 -.184 -.166 LWILLOW .133 .124 .417 .439 -.127 -.075 WILLOW .131 1 '") ') "' .:...:.... .434 .466 -.051 .049 DESHKA .127 .118 .478 .538 .158 .395 su STA .119 .116 .731 .848 1.666 2.110 D-10 STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO AUGUST MAINSTEM FLOWS <CFS> STANDARD DEVIATION LOCATION D.C. DAN PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHWIT LWILLOW WILLOW DESHKA SU STA PRE- 20955.6 21629.9 22207.3 22853.1 23069.0 46115.6 56684.8 56863.2 57251.8 59065.7 60596.2 63090.2 64507.3 66264.5 70685.8 113935.4 POST-·· 11~B3.7 12008.0 12:::i85.3 13231.2 134~17. 1 36493.7 4"1062.9 47241.3 47629.9 49443.8 !.)0974.3 53468.3 548H5.4 56642.6 61063.9 104313.5 ADDITIONAL STATISTICS COEF. OF VARIAT. LOCATION PRE-POST- /. CHf)NGE -· •\ 5. 9 -44.5 -4:S.3 -42.1 -·n. 7 -20.9 ·-17. 0 -16.9 -16.8 -16.3 -1~.9 -15.3 -14.9 -14.5 -13.b -8.4 ·1722. 8 4919.3 5092.4 5214.6 ~25~.6 9078./ 11761.1 11798.1 118/'8.8 11921.9 11966.8 12055.9 1211~5.4 12197.8 12446.3 17221.9 SKEW COEFFICIENTS PHE-POST- POST- 1396.3 1681.3 1/'82.0 1856.9 1883.4 5959.9 8J27.4 8363.3 84111.6 8459.6 8486.8 8554.2 8603.1 8680.4 8928.2 1·1288.5 EXCESS COEr F I L: 1 ENTS Pti:E-f•UST--------------------------------------------------------------------- D.c. DAM "1' '") r~· t..:;.r:;.,J .141 1.450 3.318 2 • .369 11.149 PORTAGE .227 .140 1.455 3.457 2.3~!'7 11.819 INDIAN .22'7' ,142 1.458 3.407 :2.290 11.578 CURRY .228 .140 1.449 3.376 2.269 11.514 WHISKERS .:228 ,140 1.446 3.360 2.~62 11.462 CHULITNA .197 .163 1.112 1.123 2.296 3.016 TALKEET .207 ,177 .801 .676 1. 210 1.715 TRAPPER .207 .177 .801 .677 1.210 1.714 SUNSHIN£ .207 .177 .801 .679 1.210 1.712 MONTANA .202 .171 .820 .723 1.216 1.752 SHEEP .197 .166 ... 834 .735 1.216 1.774 KASHWIT .191 .160 .849 .79/ 1. 20'i 1.786 UJ ILL OW .188 .157 .854 .815 1.201 1.780 WILLOW .184 .153 .858 .832 1.188 :l • 7 61 DESHKA .176 .146 .851 .844 1.1'39 1.662 su STA .151 .137 .317 .229 .447 .319 D-ll STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCEHARlO SEPTEMB MAINSTEM FLOWS CCFS) STANDAIW :OEV I AT I UN LOCATION D.C. DAM PORTAGE INDIAN CURRY WHISKERS CHULITNA TALKEET TRAPPER SUNSHINE MONTANA SHEEP KASHtHT LWILLOW WILLOW DESHKA SU STA PRE- 12449.1 12929.2 13340.2 1:S702.1 13823.4 25768.0 31786.3 31886.3 32104.2 33241.7 34201.5 35765.6 36654.3 37756.3 40529.0 67651."7 POST- 9603.0 10083.1 10494.2 10356.3 10977.4 22921.9 28940.2 29040.2 29258.2 :so::s<J5. 7 31355.5 32?19.6 33808.2 34<J10.2 37682.9 64805.6 AI•DITIONAL STATISTICS COEF. OF VARIAl. LOCATION PRE-POST- A! CHANGE -22.9 -21.3 ··20. 8 -20.6 ··11. 0 -9.0 ··8. 9 -8.9 --8. 6 -8.3 -·8. 0 -7.8 -·7. 5 -7.0 -4.:2 PRE- 3613.9 3'793.2 3950.6 4043.0 4074.0 70<J8.0 8835.8 8863.6 8924.2 <J021.0 9114.8 9290.7 9402.9 9553.6 9986.2 1666"7.4 SKEW COEFFICIENTS PRE-POST- POST- 2331.7 2397.6 2469.3 251;-s.5 2529.0 5116.6 6815.0 6840.6 6896.3 7018.5 ?136.5 7356.4 7495.5 7681.4 820/.7 15638.2 EXCESS COEFFICIENTS PRE-F'UST-------------------------------------------------------------------·--D.c. I•AI1 .2<JO .243 .282 1.<J67 -.448 3.010 PORTAGE .293 .238 .295 2.088 -. 46"1 :5.435 INDIAN .2<J6 .235 .307 2.145 -.482 3.692 CURRY .295 .232 .307 2.142 -.489 3.747 WH I Si\ERS .2<J5 .230 .307 2.139 -.491 3.760 CHULITNA .275 .236 .654 1.820 .577 4.905 TALKEET .218 .235 .613 1.3:25 .3:::17 2.868 TRAPPER .278 .236 .613 1.322 .35/ 2.855 SUNSHINE • 2;}8 .236 .613 1.::514 .357 2.827 MONTANA .271 .231 .598 1.313 .375 2.891 SHEEP .267 .228 .!582 1.302 .383 2.909 KASHWIT .260 .223 .551 1.266 .381 2.873 LWILLOW .2!3/ .222 .532 1.238 .372 2.822 WILLOW .253 .220 .507 1. 1 9"7 .354 2.733 DESHKA .246 .218 4441 L079 .:278 2.421 su STA .246 .241 .119 .375 -.528 .126 D-12 APPENDIX E MONTHLY FLOW PROFILES FOR NATURAL AND TWO-DAM OPERATIONAL CONDITIONS FLOW PROFILES --2 DAM SCENARIO OCTOBER FLOW CCFSJ 4~300 PR£PROJECT 36~00 321lrul POSTPROJECT 28003 ·--24003 23003 16003 12illlll 831l3 4003 3 2llll 1Bil 168 143 121l . IW 8ll 43 2ll DISTANCE Olll FLOW PROFILES --2 DAM SCENARIO OOVEMBER FLDV CCFSJ 400i!B PR£PROJECT llllOO ~ 32IHl 1- POSTPROJECT 28IBl 1- --24300 ~ 2llllOO 1-' I 16800 1-/ ---/" -- 121!00 1-I ., ----.. BIBl 40011 g 1-..... "' ! ..:.! ;:; " "' " I " " " " 1-§ u ... " .... .. ,.., . ... .. M " "' . ~ I I 0 1 I 6 I I I ~ " 181! 161l 14\l 121l 100 fill 2ll DJST Alii OlD E-1 FLOW PROFILES --2 DAM SCENARIO !EIHBER FLOV <O:Sl <mlll PREPROJECT !Billlil I 161Bl I POSTPROJECT ---141W ·--I 12008 ~ -- 1ll0011 80011 600il ., .... 4001l ..... " 2mB 9 2111 1!11 llil1 1-41! Ia! 100 Ill 68 al ll DISTAIU Om FLOW PROFILES --2 DAM SCENARIO JAIIJARY FLOV <CFSl <mlll PR£PROJECT IB!l0B I 16800 POSTPROJECT I 141l011 _../ -- 12llll8 I --- ll!ll0ll !lOOil 6000 ., .... 400il ..... "' ,; .,; ... Ul 2IBl ll 200 !Ill 168 14ll 121! 100 Ill 4ll 2ll D!ST AIU om E-2 FLOW PROFILES --2 DAM SCENARIO FEBHUAAY FLOV (CfSJ 211000 PREPROJECT 1BilBB 1- 16llllll -I POSTPROJECT I 14BOO r- ./ ----.-/ 12llllll r---I !BBOO ----- BOOB r-' BOOB 1- ., ... 4Baa 2llOO -.... " ~ s ~ ..; ... Ol "' "' ., ~ " " r-Ol u I ~ " ~ ... "' .... ... ~ " ~ I 8 I a ::l I I I I I "'I 2llll 1Bil 1611 141! 1211 IllS 811 61!• 40 211 B DISThtii om FLOW PROFILES --2 DAM SCENARIO HAROi FLOV (CfSl 211~~0 PREPROJECT 18009 161l00 POST PROJECT 14000 I --I l2ll00 -_,- 100110 I ---- 60011 ., ... 4BOO .... " ;:; ..; "' 200il B 2llll 180 1611 !4B 1211 IllS 80 49 211 DIST.oc£ om E-3 200 . !Bil Ifill 14B . 121l !Ill 2ll msrAili om E-4 FLOW PROFILES --2 DAM SCENARIO Jt.tf FLOW (CfS) 151lllllll PREPROJECT 13SilllB 12llllllll POSTPROJECT 11l51lll1'1 I ·-- !llllOO I 7Silllll 6lliB! r --45001l r - .. I ... 3lliBI .... "' '" a -"' ,.; '-' "' .. f {f) "' " 15111!ll ... u II 2lll 100 1611 1411 1211 11lll 00 611· 411 2ll DISTA!a <Mil FLOW PROFILES --2 DAM SCENARIO JULY FLOV <CFSJ 15ZIIIl0 PREPROJECT 135000 / 12llllllll POST PROJECT 10500B . -- 90000 I 75llllll I / 600011 451l00 311001! 15000 ll 2llB !!Ill 1611 1411 121! 100 8ll 6ll 4B 2ll DISTI.NCE om E-5 FLOW PROFILES ~-2 DAM SCENARIO ALGJST FLOV <CFSl 15lmOO PREPROJECT 1350011 12llllllll POSTPROJECT 105Wil I ---I !mlll 1500ll I Sll008 45000 llilllll 15000 B 21liJ 1811 161l 141l : 121! 100 Ill 6ll 2ll DISTAl(£ <Mil FLOW PROFILES --2 DAM SCENARIO SEPTEMBER FLOW <CFSl 1520011 PREPROJECT 13Silllll 121l1Ul POST PROJECT lllSilllB ·--9llOOil 75001! 6001!1! 1 45000 3110011 1Silllll B 21liJ Ill! 1611 141l 121! !Ill! Ill 6ll 4B 2ll DISTAIU <Mil E-6 APPENDIX F NATURAL RIVER TEMPERATURE PROFILES FOR NORMAL AND EXTREME CONDITIONS Minimum 1970 Mean 1983 Maximum 1977 Minimu111 1970 Mean 1980 Maximum 1977 SUSITNA WATER TEMPERATURES, JUNE Natural Conditions TEMPERATURE (C) 20 15 ~ ·---t.__.-·~.-. ~.--,.-·-"L-.----·-·· -c. -·-1 r-L.J·--·- ---o::., ---,_ "'""--___, ~ _,_ -"----·--~ --- ~ 5 ~ <' 0 -"' "' >. "' <11 c QJ .. .... .. QJ ... " ., ..... Uu u .... " "' .,.., ..... "' "" "' ., ..... .... e .,.., ..... " "' "' > e 0 "'"' "' "' '"' "' u I ' I . '?"' I I ! I I I 190 180 170 150 150 140 130 120 ll0 93 80 DISTANCE CMl SUSITNA WATER TEMPERATURES. JULY Natural CondJtions TEl~ PER~ TURE (Cl 20 15 r- 10 ~ r- <' "' 0 -"' "' <11 "' c " "' .... "' "' ... " uu u .,.,.., .... .... " ., ..... "' ., .,.., n1 ..... .... e .,.., ..... " n1"' > s 0 "' "'"' ""' '"' u I I I I"' I I I I I I 190 180 170 150 150 140 130 120 110 100 90 80 OISHNCE (J.IJ F-1 SUSITNA WATER TEMPERATURES, AUGUST Natural Conditions TEMPERATURE CD 2ll Minimum 19?~ Mean 15 - 198~ 1977 I~ --·--·--·j --·-·---·--·-· -·=·----L-·-~· -----~ t-- f- " ..; 0 ... "' ., " " ., ~ ... " ., .. "' .... uu u ... " " .... .... " '""'"' "' '""' ... 8 .... ,.., .E ""' ~ ~ 0 "'"' '-' u I I I ~"' I I I I I I ! 19~ IB~ 16~ IS~ 140 130 120 110 100 90 DISTANCE <Ml SUSITNA WATER TEMPERATURES, SEPTEMBER Naturol Conditions, TEMPERATURE (Cl 21!1 Minimum 197~ Mean !5 r- !98~ ·-- Maximum 1977 10 1- ·--·-- ==·=·=·=·=·=-·=·-::::=·=·-==·-==·-==·\_.=: 5 1- " 0 ... ..; "' '" ., " " " " ... " ... " .... U+J u " ""' .... ... " ...... "' ., .,., .. ~-•...! .... .... " :> 8 0 , ;:. "' ., "' '-' -" I I I 'I"' I I I I I u I 190 180 170 16~ !50 140 13~ 120 110 80 DISTANCE <Ml F-2