HomeMy WebLinkAboutAPA332TK
1425
.sa
A23
no.332
E I D ( 707 A STREET. ANCHORAGE. ALASKA. 99501; (907) 2794523
EXAMINATION OF SUSITNA RIVER DISCHARGE
AND TEMPERATURE CHANGES DUE TO THE
PROPOSED SUSITNA HYDROELECTRIC PROJECT
FINAL REPORT
ARCTIC ENVIRONMENTAL INFORMATION AND DATA CENTER
i-~;:;. ·,.,.: r-.-... : ~ _>t, ;_":: ~ • ~~··· .•
EXAMINATION OF SUSITNA RIVER DISCHARGE
AND TEMPERATURE CHANGES DUE TO THE
PROPOSED SUSITNA HYDROELECTRIC PROJECT
FINAL REPORT
,.....
0
0 co
C")
,.-
,.-
0
0
LO
LO ,.....
C")
C")
EXAMINATION OF SUSITNA RIVER DISCHARGE AND TEMPERATURE
CHANGES DUE TO THE PROPOSED SUSITNA HYDROELECTRIC PROJECT
FINAL REPORT
Prepared by:
Arctic Environmental Information
and Data Center
University of Alaska
707 A Street
Anchorage, Alaska 99501
Submitted to:
Harza-Ebasco Susitna Joint Venture
711 H Street
Anchorage, Alaska 99501
For:
The Alaska Power Authority
334 W. 5th Avenue, Second Floor
Anchorage, Alaska 99501
December 2, 1983
ARLIS
Alaska Resources Library & Information Services
Library BuilcJing, Suite 111
3211 Providence Drive
Anchorage, AK 99508-4614
-rK.
l~?..b
,sq
A23
flD~33'L
This report was prepared by the following
AEIDC staff
William J. Wilson, Principal Investigator
Paul R. Meyer, Hydrologist
Ken A. Voos, Ph.D., Environmental Engineer
Beverly J. Valdez, Information Coordinator
Charles G. Prewitt, Ph.D., Fisheries Biologist
TABLE OF CONTENTS
LIST OF FIGURES
INTRODUCTION. . • . • . . . • . . . . . . . . . . . . . • • . . . . . • . • . . . . • • . • . . . . . • . . • . . . • . . . 1
. PROJECT BACKGROUND. . • . . . . . . . . . . . . . • . . . . . . . . . . • . . . . . • . • . • . • . . • . . 1
APPROACH OF THE STUDY. . . . . . . . • • • . . . . . . . . • . . . . • . . • • . . . . . . . • . . . . . 2
METHODS. . . . . • . . . • . . . . . • • . . . . . . . . • . . . . . . . . . . . . . . . . . • . • • . . . . . . • . . . . . . . 3
DISCHARGE...................................................... 3
Pre-and Postproject Flows................................ 3
Statistical Testing....................................... 6
TEMPERATURE. . . . . . . . . • . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • • . . . . . . . . . 9
Initial Temperatures at Cantwell, Chulitna and
Talkeetna. . • . . . . . . . . . • . . . . . . . . . . . . . . . • • . . . • • . . • . . . • . . . . 9
Reservoir Release Temperatures............................ 11
Selection of Conditions Producing Normal and
Extreme Temperatures.. . . • . . . . . . . . . . . • . . . . • . . . . . . . . . . . . . 13
Postproj ect Simulations................................... 13
RESULTS AND DISCUSSION.............................................. 15
DISCHARGE...................................................... 15
Single-Dam Scenario (Watana Only)......................... 15
Two-Dam Scenario. . . . . . • . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . 17
TEMPERATURE. . . . . . . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Postproject Simulations •....•.•..........................• 20
Watana Filling....................................... 20
Operational Scenarios ..•.....••....................•. 24
SU~Y •••.•.•..•..••..•. ~····································· 24
REFERENCES
APPENDICES
A. FLOW STATISTICS FOR THE SINGLE-DAM SCENARIO
B. FLOW STATISTICS FOR THE LOG-TRANSFORMED DATA,
SINGLE-DAM SCENARIO
C. MONTHLY FLOW PROFILES FOR NATURAL AND SINGLE-DAM
OPERATIONAL CONDITIONS
D. FLOW STATISTICS FOR THE TWO-DAM SCENARIO
E. MONTHLY FLOW PROFILES FOR NATURAL AND TWO-DAM
OPERATIONAL CONDITIONS
F. NATURAL RIVER TE}~ERATURE PROFILES FOR NORMAL
AND EXTREME CONDITIONS
Figure No.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
LIST OF FIGURES
Region of present temperature study, Cantwell
gage to Sunshine Station
Regression model-predicted initial temperatures (C)
with 95% confidence intervals.
Regression model-predicted initial temperatures (C)
for June to September 1980.
Estimated mean monthly summer reservoir release
temperatures.
SNTEMP-predicted temperatures (C) and rank of the
mainstem Susitna at Talkeetna Station for June
through September, 1968 through 1982.
Project-related flow changes, 1-dam scenario
Project-related flow changes, 2-dam scenario
River temperature profiles for second year of
filling Watana reservoir (2 pages).
River temperature profiles for natural and
1-dam operational conditions (2 pages).
River temperature profiles for natural and
2-dam operational conditions (2 pages).
Page No.
4
10
12
12
14
18
19
21
25
27
EXAMINATION OF SUSITNA RIVER DISCHARGE AND TEMPERATURE
CHANGES DUE TO THE PROPOSED SUSITNA HYDROELECTRIC PROJECT
INTRODUCTION
PROJECT BACKGROUND
The Alaska Power Authority (APA) is proposing to construct a 1620
megawatt hydroelectric project on the Susitna River, approximately 120 miles
northeast of Anchorage, Alaska. Licensing of this project by the Federal
Energy Regulatory Commission (FERC) requires, in part, that APA provide an
analysis of the environmental effects of the project including a description
of the present conditions, an evaluation of expected impacts, and proposals to
mitigate those impacts.
The Susitna project aquatic resources impacts are expected to result
primarily from changes in Susitna River discharge and temperature patterns.
In general, these effects are expected to be reduced summer streamflow and·
increased winter streamflow relative to preproject conditions. Summer stream
temperatures downstream from the project are expected to be cooler and winter
temperatures warmer than those currently recorded (ACRES 1983).
The aquatic impact assessment program is designed primarily to predict
aquatic impacts at study sites selected to represent similar areas which
cannot be intensively studied because of cost or time constraints. Central to
this type of assessment is the delineation of pre-and postproject discharge
and temperature effects in terms of their expected magnitude and significance
to aquatic organisms.
It is therefore necessary, when proposed project configuration is
finalized, to determine the magnitude of expected project changes (in this
case discharge and temperature) from the project location to the downstream
-1-
point at which effects may no longer be considered significant. In so doing,
two things are accomplished: first, the stream reaches or segments within
which discharge and temperature are homogeneous are determined and serve to
stratify the river prior to assigning study site impacts to larger unstudied
areas; second, physical bounds are put on the reach of river where discharge
and temperature changes are significant, and thus within which impact studies
should be concentrated.
APPROACH OF THE STUDY
In this paper proposed mainstem Susi tna flows resulting from project
operation are examined in relation to natural flows. Attempts are made to
identify reaches of the river where postproject flows are statistically
indistinguishable from natural flows. We believe that flow-related aquatic
impact issues cannot be addressed in areas of the river where natural and
operational flow regimes are statistically the same.
Temperature variations are addressed by comparing natural stream
temperatures with downstream temperatures resulting from project operation.
We feel it desirable to show natural and postproj ect temperatures expected
during normal and extreme meteorologic/hydrologic conditions. To do this,
those summer periods which resulted in the normal, maximum and minimum stream
temperatures under predevelopment conditions were selected from stream
temperature simulations which used historical meteorology and hydrology data.
The data from these three selected summer periods (1970 for the minimum, 1980
for the normal and 1977 for the maximum) were combined with postproj ect
modifications to compare the difference between predevelopment and postproject
stream temperatures. The postproject simulations will, therefore, represent
-2-
the range of temperatures expected under natural variations in hydrology and
meteorology.
The sparcity of daily discharge and water temperature data in the Susitna
basin dictates the use of monthly timesteps for most simulation modeling.
Data. for large time steps are expected to mask some short-period variations,
thus conclusions drawn from these monthly simulations must be made with
caution. Simulations are presently underway using weekly time periods in
which greater short-term variations are expected to appear. This second round
of simulations is also being done on a yearly basis, whereas only summer
periods (June through September) have been addressed in this report.
Thoughout this report the terms "natural flow" and 11 preproject flow" are
used synonomously in reference to the estimated flow regime of the Susitna
River which occurred since record-keeping began with water year 1950. These
estimated flows are a composite of the flows recorded at USGS gage stations in
the basin and the statistically-generated flows developed by ACRES (1983) to
fill gaps in the record.
METHODS
DISCHARGE
Pre-and Postproject Flows
Preproject mean monthly discharges for the Susitna River downstream from
the Watana dam site (Figure 1) were estimated using the statistically-filled
streamflow data given in the FERC license application (ACRES 1983) and a water
balance computer program (H20BAL) developed by AEIDC. The H20BAL program
(AEIDC 1983) computes contributing tributary inflow to the Susitna River from
small subbasins based either on watershed area or precipitation-weighted
watershed area. From this, mainstem flows are determined for a number of
-3-
I
.j:-.
I
Figure 1. Region of present temperature study, Cantwell gage to Sunshine Station.
0 USGS Gage Stotion
1 Dam Sill!
SUSITNA R!VEH
Cantwell to Kashwitna River
Seale I"= 8 miles
•
~~~/
r
J
locations. The watershed area weighting method was used for these
simulations. This was done to maintain as much consistency as possible with
the methods previously employed by Acres American, Inc. It should be
emphasized that since the H20BAL program only generates mainstem flow data for
locations between gage stations, flows used in this report for gage locations
(Gold Creek, Watana, Chulitna, Talkeetna and Susitna Station) are consistent
with those appearing in the license application. The only exception is at
Sunshine Station, where flows available in the license application sometimes
result in negative inflows when water balancing. Flows at this station were
determined by
11000.
10736.
where QS' QGC' QT' and QC refer to flow at Sunshine Station, Gold
Creek, Talkeetna, and Chulitna, respectively,
11000. is the area (mi 2 ) of the watershed defined at Sunshine
Station, and
10736. is the area (mi 2 ) of the summed watersheds defined at
Gold Creek, Chulitna, and Talkeetna gages.
Employing H20BAL results in the reconstruction of Susitna River mean
monthly streamflows for the water years 1950 through 1981 at all gage stations
and significant tributary confluences from the Watana dam site to Susitna
Station, 26 miles from the river mouth at Cook Inlet. Postproject streamflows
can be predicted at the same locations using the 32-year postproject flows at
-5-
the Watana dam site (one-dam scenario) or the Devil Canyon dam site (two-dam
scenario) as simulated by the ACRES reservoir operation models. These models
provide release discharge estimates after simulating power production based on
the dimensional properties of the dam(s). One model simulates Watana dam
only., while another simulates conjunctive operation of both Watana and Devil
Canyon dams.
The reservoir operation schedule presented in the Application for FERC
License (ACRES 1983), the "C" scenario, was analyzed in this report. This
scenario is indicated in the License Application (ACRES 1983) to balance the
cost of impact mitigation measures and loss in net benefits. It reflects the
minimum demand at Gold Creek for 6000, 6480, 12000 and 9300 cubic feet per
second (cfs) respectively in June, July, August and September for fishery
purposes.
Operational flows expected during the summer of the second year of
filling the Watana reservoir were also simulated. This period is of special
concern due to the cold (4 C) water that would be released from the lower
level dam outlet during this season (ACRES 1983). Minimum flow releases at
Gold Creek for the summer filling period are 6000, 6480, 12000 and 9100 cfs
for June, July, August and September respectively (ACRES 1983). During some
years, enough water is available from tributary inflow between Watana and Gold
Creek to meet this requirement without releasing any water from the reservoir.
For such cases, a minimum Watana release of 1, 000 cfs has been specified
(ACRES 1983).
Statistical Testing
The statistical analysis of the 32-year flow series is used to describe
the flow regime for the natural and operational scenarios at a given mainstem
-6-
location and, if possible, to determine the point downstream from the project
where operational flows become indistinguishable from natural flows. All
statistical methods used are described in this section although initial
statistical results determine which, if any, additional testing is done on the
data.
In testing for statistical significance, the pre-and postproj ect flow
series at each mainstem node location are considered as samples of distinct
flow populations. Moving downstream from the lower reservoir, inflowing
tributaries will dampen the differences between natural and operational flows.
During months where reservoir releases do not differ greatly from natural
flows at the dam site, it is reasonable to expect that the 32-year sample of
operational flows would become statistically indistinguishable from the sample
of natural flows at some point downstream.
Ideally, if both natural and operational flow series approximate normal
distributions at each node location for a given month, testing for significant
differences at mainstem locations progressing downstream is relatively
straightforward. The statistical test that can be used in this case is a
comparison of population means with both population variances unknown and not
assumed equal (Johnson and Leone 1964). The test statistic has a distribution
approximating a Student's t distribution with 31 degrees of freedom.
Yevjevich (1972) suggests two criteria for determining whether or not a
normal function should be applied to an empirical distribution. These
requirements incorporate the skewness (a measure of symmetry) and kurtosis (a
measure of peakedness) of a distribution through the skewness coefficient
C , and the excess coefficient, C • s e For normally distributed populations,
both parameters equal 0. The population a sample is drawn from can be
considered normal if it meets the following requirements:
-7-
-0.2 < C < 0.2 and s
-0.5 < c < 0.5. e
··The skewness coefficient is approximated for a small sample (Chow 1964)
by
where n
X.
l
X
c s
n
n L
(n-1) (n-2) i
the sample size
the mean monthly
site and month,
the mean of the
(X. -x)3
1 l
( = 32),
flow during the
n monthly flows
.th
l year
at a given
The coefficient of excess (Yevjevich 1972) is determined by
2 n c e (n-l)(n-2)(n-3)
where variables are as above.
n
L (X. -X) 4
i=l l
- 3
for a given
site.
When data fails to meet these requirements, Yevjevich gives two options:
fit the data to another distribution or transform the variable values to fit a
normal distribution. Frequently, discharge data series are positively skewed
due to extreme high-flow events. In these cases, replacing flow values with
the logarithm of flows may normalize the series and has a justifiable
-8-
hydrologic basis (Chow 1964). This is only useful, however, if both pre-and
postproject flow distributions are positively skewed. When this is not the
case, no further statistical manipulation is attempted here. For flow series
that fit the transformed lognormal distributions (using the c s and C e
values of the transformed data), the test for significant differences can be
performed.
An additional statistical parameter of a sample distribution which
appears in the tabular output is the coefficient of variation, C • This is v
simply the standard deviation divided by the mean.
TEMPERATURE
Initial Temperatures at Cantwell, Chulitna and Talkeetna
To begin a natural condition temperature simulation, starting
temperatures are required for the Susitna River at the Cantwell gage and the
Chulitna and Talkeetna rivers at the USGS gages near the town of Talkeetna.
When these data are not available, initial temperatures are synthesized by
(1) using SNTEMP to compute an equilibrium temperature for the period of
missing data, and (2) using this calculated equilibrium temperature to
estimate an initial water temperature from a regression model developed from
observed water temperatures and calculated equilibrium temperatures (AEIDC
1983). The reliability of these regression models restricts the accuracy of
the physical process temperature simulations. For example, if the regression
model for the Cantwell gage predicts an initial temperature of 8 C when the
actual stream temperature was 7 C, this one degree overprediction would cause
overprediction throughout the simulated length of river. The temperatures
predicted with the regression models and the 95% confidence intervals for
individual stream temperature values are presented in Figure 2. The
-9-
Figure 2. Regression model-predicted initial temperatures (C) with 95% confidence intervals.
SUSITNA RIVER AT CHULITNA RIVER TALKEETNA RIVER
CANTWELL USGS GAGE AT USGS GAGE AT USGS GAGE
T 95% T 95% T 95%
Confidence Confidence Confidence
Interval Interval Interval
1970 (minimum)
June 7.97 + 1. 38 6.48 +2.35 7.85 +5.79
July 8.90 +1.40 6.87 +2.38 5.17 +6.28
August 7.47 "+1.39 6.27 +2. 38 6.70 +5.89
September 3.81 +1. 82 4.44 +3.62 1. 37 +8.19
I 1977 (maximum) I-'
0 June 11. 12 +1. 61 7.39 +2.57 10.88 +6.36 I
July 10.60 +1. 54 7.69 +2. 74 11.71 +6.70
August 9.22 +1. 41 7.21 +2.48 10.23 +6.14
September 5.35 +1.57 5. 16 +2.98 3.69 +6.89
1980 (average)
June 8.68 +1. 39 6.54 +2.35 8.18 +5.79
July 10.20 +1. so 7.47 +2.61 10.88 +6.36
August 8.28 +1. 38 6.53 +2. 35 7.91 +s. 79
September 5.22 +1.59 4.89 +3.20 3. 19 +7.14
T predicted temperature
difference in the level of confidence among the three regression models is a
result of the number of data points available for computing mean monthly
temperatures and the type of data collected. Continuous data was collected at
Cantwell gage for June to September of 1980 and 1982, continuous data was
collected at Chulitna gage in 1982 with grab samples in 1980, and only grab
samples were available at Talkeetna gage for June to September of 1980 and
1981. Comparisons between the observed and regression model-predicted
temperatures for 1980 (representing a normal year) are presented in Figure 3.
Reservoir Release Temperatures
Presently, reservoir release temperature estimates are very sparse. The
reservoir thermal model, DYRESM, has been run for both reservoirs only for
1983). We have estimated mean monthly release 1981 conditions (ACRES
temperatures (Figure 4) from the continuous thermograph output from these
runs. Since reservoir outflow temperatures are expected to vary from year to
year due to differences in meteorology, hydrology, available reservoir storage
and power requirements, applying these temperatures to other years may not be
representative. Consequently, downstream temperatures were simulated under
operational conditions for only one year (1981).
Release temperature predictions for the second year of filling the Watana
reservoir can be made with greater confidence. Until the reservoir level
rises to where the normal (upper) outlet facilities can be used (estimated as
late summer or fall of the second year of filling), releases are restricted to
the lowest outlet facilities (ACRES 1983). The 4 C release water expected
from the lowest outlet was used for simulating conditions resulting in cold,
normal and warm downstream temperatures. The selection of these
representative conditions is discussed in the following section.
-11-
I
1--'
N
I
Figure 3. Regression model-predicted initial temperatures (C) for June to September 1980
MONTH
June
July
August
September
SUSITNA RIVER AT
USGS CANTWELL GAGE
T Tabs n
8.68
10.20
8.28
5.22
8.5
10.0
9.0
4.5
31
30
30
31
T = predicted temperature
CHUtiTNA RIVER AT
USGS GAGE
T
6.54
7.47
6.53
4.89
Tabs
6.8
7. 1
n
1
1
0
0
Tabs = observed temperature, computed as average of mean daily temperatures,
n = number of days of observed temperature data
TALKEETNA RIVER AT
USGS GAGE
T
8. 18
10.88
7.91
3.19
Tabs
8.3
8.8
Figure 4. Estimated mean monthly summer reservoir release temperatures (C)
(based on 1981 DYRESM results, ACRES 1983)
June July August September
Watana
(1 darn) 7.7 9.5 8. 7 8.3
Devil Canyon
(2 dams) 6.0 7.2 6. 7 7.5
n
0
1
1
0
Selection of Conditions Producing Normal and Extreme Temperatures
The Susitna study application of the stream temperature model, SNTEMP
(AEIDC 1983), was used to estimate the range of natural temperature variations
in the mainstem Susitna River from the USGS Cantwell gage station to Talkeetna
Station just above the Chulitna confluence (river mile 103. 0, site of the
Talkeetna fishwheel). Mean monthly river temperatures were calculated for the
summer months (June through September) for the fifteen-year period of readily
available meteorology data, 1968 through 1982. Meteorology data from
Talkeetna (U.S. National Climatic Center 1968-1982) and recorded and
statistically-filled flow data (ACRES 1983; R&M 1982a, 1982b) were used.
Predicted mean monthly Susitna River temperatures at Talkeetna Station
for the fifteen-year summer period are shown in Figure 5. The ranking
(coldest to warmest) for each month as well as the overall seasonal ranking
are also given in this figure.
The three years chosen from these rankings to represent cold, normal and
warm temperature conditions were 1970, 1980 and 1977 respectively. 1981 was
eliminated from consideration as the normal year due to the variation in June
and July temperatures (warm June followed by a cold July). These years
represent the normal and extremes in seasonal water temperatures, a product of
both meteorology and hydrology for that period.
Postproject Simulations
Projected reservoir release flows and temperatures were used as initial
conditions for simulating the downstream temperature effects of filling and
operation of the dams. For the second year of Watana filling and the
Watana-only operational scenarios, the simulated river reach begins at the
Watana dam site. For the two-dam scheme, the simulated reach is shortened to
begin at the Devil Canyon dam site.
-13-
YEAR JUN
1968 10.52
1969 10.45
1970 8.75
1971 9.00
1972 7.75
1973 8.65
1974 9.79
1975 8.52
1976 10.73
I 1977 11.61 I-'
-1>-1978 10.50 I
1979 10.00
1980 8.97
1981 10.46
1982 9. 77
Figure 5. SNTEMP-predicted temperatures (C) and rank of the mainstem Susitna
at Talkeetna Station for June through September, 1968 through 1982.
Av. Av.
Rank JUL Rank AUG Rank SEPT Rank Temp Rank
13 12.58 13 11.46 13 6.44 7 10.25 ll. 5
10 11.83 10 9.52 4 6.80 12 9.65 9.0
4 10.27 1 9.06 2 5. 10 2 8.30 2.25
6 10.64 4 10.30 9 5. 77 4 8.93 5.75
1 11.64 8.5 10.05 7 4.87 1 8.57 4.38
3 11.03 5 8.64 1 5. 15 3 8.37 3.0
8 10.60 3 10.02 6 6.41 6 9.20 5.75
2 11.64 8.5 9.40 3 6.07 5 8.91 4.62
14 12.78 14 11.20 10 6.55 9 10.32 11.75
15 12.95 15 11.50 14 6.88 13 10.74 14.25
12 11.84 11 11. 29 ll 7. 13 1Lf 10. 19 12.0
9 12.09 12 11.37 12 7.76 15 10.23 12.0
5 11.57 7 10.27 8 6.61 10 9.36 7.5
11 10.40 2 9.95 5 6.52 8 9.33 6.5
7 11.38 6 11.53 15 6. 71 ll 9.85 9.75
Seasonal
Rank
13
9
1
5
3
2
6
4
14
15
11
12
8
7
10
The three years selected to represent normal and extreme summer water
temperature conditions were used to define the range of expected effects.
Basin flow and meteorology data for these three periods were used with the
corresponding projected reservoir release flows and temperatures. Since river
water temperatures are functions of both hydrology and meteorology, both these
data sets were used together for a given year.
RESULTS AND DISCUSSION
DISCHARGE
Single-Dam Scenario (Watana Only)
Tabulated statistical results comparing natural mainstem Susitna flows
with single-dam operational flows are given in Appendix A. Attempts to
determine reaches where operational flows show statistically significant
differences from natural flows were unsuccessful. This was due to the
variations in the shape of the sample distributions with respect to natural
versus operational flow samples, and in the consistency of flow distribution
shapes at node locations progressing downriver.
As mentioned previously, sample distributions of operational flows must
be similar in shape to those of natural flows for the proposed test of
significance. Additionally, the distribution shape must remain consistent
progressing from node to node downriver. The observed results did not meet
these requirements.
There is a trend of the natural flow distribution toward positive
skewness. Nine months showed C values at most node locations greater than s
0. 2; one month showed a synunetric distribution (May) , and only two months
(October and January) showed negative skewness. Dam operations tend to reduce
the positive skewness during winter months and increase positive skewness
-15-
during the summer. Five monthly flows, including December through March,
reversed skewness coefficients to the negative (C < -0. 2) under project s
operation. For the four summer months (June through September), operational
flows remained positively skewed. Reservoir operations, while specifying
minimum summer flow requirements to facilitate fish usage, also tend to
capture higher flows for winter releases. The result is elimination of
extreme flows in both directions (high and low), increasing kurtosis as
reflected in the coefficient of excess values.
There is a tendency for variation in both skewness and kurtosis when
moving downstream. This appears to be due in large part to the effects of the
larger tributaries. These tributaries generally do not respond in concert
with the upper Susitna River; hence, the shape of the mainstem flow
distribution is often altered significantly at the confluence of these rivers.
Additionally, there was a tendency for increased positive skewness in the
lower river reach near and below the Yentna confluence. This effect is seen
both in natural and postproject flows.
Since the four summer months showed the greatest consistency in the shape
of natural and operational flow distributions, and as these months are of
greatest concern, the same statistics were run on the flow data after a log
transformation (results in Appendix B). Improvement in the C s and c e
values was not sufficient to warrant significance testing of these transformed
values.
Perhaps the most useful result presented in Appendix A appears under the
"% CHANGE" column. This value is determined by
postproject flow -preproject flow
preproject flow
-16-
and is given for each node location.
Flow augmentation under project operation occurs during seven months,
October through April. For the four midwinter months (December through
March), this augmentation exceeds 100 percent as far downstream as Susitna
Station. The remaining five months undergo flow deficits, the most
substantial during June and July. The absolute and relative magnitude of
these flow changes are shown graphically in Figure 6. Profiles comparing
natural and single-dam operational flows for each month are shown in
Appendix C.
Two-Dam Scenario
Mainstem river flows resulting from operation of the two-dam system
differ only slightly from that of single-dam operation (statistical results in
Appendix D). In general, differences between natural and post-construction
flows become more severe with addition of the Devil Canyon dam. When
comparing results in the tabular output, the node at "CHINCHEE" for the
single-dam case corresponds to the "D.C. DAM" node in the two-dam scenario.
For the six month winter period, November through April, the flow
augmentation seen under the single-dam scheme is increased slightly. For the
May through August period, there is slightly less mainstem flow than under
single-dam operation and, consequently, greater flow deficits. The only
diversion from this pattern of more severe flow differences occurs in
September and October when flow regimes are slightly closer to natural
conditions. There is less of a flow deficit in September and slightly less
augmentation in October. Figure 7 shows a graphical representation of the
absolute changes in flows due to the paired dam operation (positive when
postproj ect flows are greater than natural flows) as well as the percent
-17-
Figure 6. Project-related flow changes, 1-dam scenario.
Absolute flow increases with dam operation, systemwide
FLOV INCREASE (cf a)
lllmll!
+
+ + + + +
SBOO 1-
+
II 1-
+ +
-50011 -
+
-lll003 1-
-150011 -+
+
-2l!OOII
OCT NOV DEC JAN FEB APR MAY JUII AUG SEP
HONTH
Relative change in postproject over preproject flows at three sites
1 !tolEASE
800
GOlD
CREEK 700
D
600
srnsHINE
STATION 5llll IJ.
400
SUSITNA
STATION
+ 3111
2llll
100
L-------~-i-1--1 T
-100
OCT JAN FEB MAY Jl.N Jll. Al.C
KJNTH
-18-
Figure 7. Project-related flow changes, 2-dam scenario.
Absolute flow increases with dam operation, systemwide
FUJV INCREASE (of a)
ll!l!ml • • • • • •
• •
B 1-
-Smlll 1-'
-I~Il20 1-•
-15llll0 1-
•
•
OCT DEC JIJl FEB MAY .JUN JUL. AUG SEP
MONTH
Relative change in postproject over preproject flows at three sites
% l NCfiEI,SE
GOLD
ClEEK 700
D
~INE
STATION 500 A
400
SIJSTTNA
STATION
:B!
2111
100
B l_ ________ l_f_i __ l T
-Jill
OCT DEC JAN FfB NAY Jll. SEP
IOCfH
change in postproject flows over preproject flows for Gold Creek, Sunshine and
Susitna Station mainstem locations. Patterns of skewness and kurtosis for
natural and operational flows were similar in this case to those in the
single-dam case. Consequently, testing for river reaches with significant
flow differences was not pursued. Flow profiles of natural and two-dam
operational conditions are shown in Appendix E.
TEMPERATURE
Postproject Simulations
Watana Filling. The downstream effects of the second year of filling Watana
reservoir were simulated using the three selected years representing normal
and extreme conditions. These simulations are of special concern due to the
potential impact of 4 C release waters on the fishery resources. Four monthly
temperature profiles (June through September) for the three years appear in
Figure 8.
These profiles show conditions from the proposed Watana dam site to
Sunshine Station below the confluences of the Chulitna and Talkeetna rivers.
The projected filling flows and temperatures were used to initialize the
temperature model. The expected normal, cold and warm temperature profiles
are presented along with the minimum and maximum natural conditions (banded
area) for comparison. The temperature discontinuity at river mile 98
represents the influence of the Chulitna River (instantaneous mixing is
assumed). The smaller discontinuities throughout the simulated length are a
result of the smaller tributaries mixing with the Susitna River.
Note that the cold natural hydrology/meteorology does not always result
in the minimum temperature profiles for filling conditions; conditions
representing June 1970 resulted in a warmer temperature than those produced by
-20-
Figure 8.
Cold
197~
Normal 15
198~
Warm
1977 ~~
5
Cold
197~
Normal 15
198~
Warm
1977 10
5
River temperature profiles for second year of filling
Watana reservoir. Shaded band represents range of simulated
natural temperature conditions.
SUSITNA WATER TEMPERATURES, JUNE
Year 2. ~otona Filling Flows
TEMPERATURE CCJ
" "' .. ·..< " "' "' l'l e .....
~a 0
"'
190 18~ m I60 15~ 140 130 120 m
DISTANCE CMJ
SUSITNA WATER TEMPERATURES, JULY
Year 2. ~otona Filling Flo•a
TEMPERATURE (Cl
" 0 ~ "' >.
" " "" .. "' .. " "' .. ·..< u ... t.) " ""' .... ...
"' ..... "' "' ....
"' e .... ..... ..... .. "' ~ ~ 0 " ~Q "' .c.
QQ t.)
190 18~ 170 160 15~ 140 130 120 11~ 1~0 9~ 00
DISTANCE ()IJ
Figure 8 (Continued). River temperature profiles for second
Cold
1970
Normal IS
198~
Warm
1977
Cold
1970
Normal
198~
·--
Warm
1977
-~-.--
I~
s
ll
IS
Ill
year of filling Watana reservoir. Shaded band represents
range of simulated natural temperature conditions.
SUSITNA WATER TEMPERATURES, AUGUST
Year 2. Watana Filling Flowe
TEMPERA lURE <Cl
-" "' " " " ... ... "' .... u
~ "' "' ... 9
"'"' ;3:<=!
19~ JBI:l m 161l ISI:l 140 131l 121l llll l~ll 91l
OISHNCE Q.ll
SUSITNA WATER TEMPERATURES, SEPTEMBER
Year 2, Wotono Filling Flows
TEMPER~ TURE (Cl
191l 171l 161l !50 14~ 130 120 110 911 8J
DISTANCE <Ml
-22-
the normal (June 1980) condition. This is a result of two factors. First,
combinations of meteorology and hydrology were selected for seasonal
(sequential June to September) normal, cold and warm temperatures. Thus, even
though the natural temperatures expected for June 1970 were lower than the
temperatures of June 1980 (refer to Figure 5 and the temperature profiles for
natural conditions, Appendix F), June 1970 was not the minimum June and June
1980 was not the average June. We selected seasonal conditions as an initial
approach to best represent natural events; we would not expect the coldest
June to be followed by the coldest July, August and September.
Second, we have used combinations of existing hydrologic conditions with
existing meteorologic conditions. Again, this approach was selected to be
more representative of natural events, rather than mixing hydrologic and
meteorologic conditions to form a synthetic data set. This appears to be
responsible for a number of interesting results. Downstream temperatures
simulated under the filling scenario for June 1970 were higher than those for
June 1980. The larger tributary inflows during 1980 apparently keep mainstem
temperatures low, even though the 4 C reservoir flow release was higher during
June 1970 than during June 1980. A similar anomaly appears in July when the
normal condition year (1980) produced the warmest temperatures.
Two additional points are brought out in the results of this scenario.
The impact of the tributaries on the mainstem is significant, especially in
June. The cooler waters of the tributaries and the lower flows in the
mainstem combine in their effects to result in a slow recovery to natural
conditions. Reduction in the range of temperatures expected downstream is
also significant. The temperature profile produced during the second year of
filling will fall within a narrow band relatively independently of the
hydrology and meteorology occurring during that year.
-23-
Operational Scenarios. Since reservoir release temperatures are available for
only one year and as there is no appropriate technique for estimating release
temperatures short of using a reservoir temperature model, we were limited to
simulating one-dam and two-dam effects for the single year for which the
reservoir release temperatures were available. This has several shortcomings.
With only one year of simulation, no estimate of the range of effects is
available. Additionally, the year for which the reservoir release
temperatures are available (1981) was a normal year based on the seasonal
average (seasonal rank was 7 of 15, see Figure 5) but was composed of a warm
June (rank= 11) and a cold July (rank= 2). Thus the downstream temperatures
predicted using the 1981 meteorology and hydrology will not represent average
conditions for June and July. The simulations for Watana-only summer season
operation are presented in Figure 9 and the Watana plus Devil Canyon operation
are presented in Figure 10.
These simulations imply that there will be observable temperature
differences below the Chulitna and Talkeetna confluences. Interpretation of
these results should be made with consideration to the low accuracy available
from the Chulitna and Talkeetna initial temperature regression models (refer
to Figure 2). Fortunately, the regression model for the Chulitna River, which
has more influence due to greater flow, is more accurate than the Talkeetna
model (AEIDC 1983). As previously stated, 1983 field season data will improve
the accuracy of these regression models.
SUMMARY
The effort to delineate river reaches where postproject flows differ
significantly from natural flows has been unsuccessful. The purpose of this
effort was to limit the area where flow-related impacts (other than water
-24-
HATIJW.
1981
1-DAH [fER.
1981
Figure 9. River temperature profiles for natural and
1-dam C?erational conditions.
SUSITNA WATER TEMPERATURES, JUNE.
NA TI.RAL Alii 1-IJIJI [ffRA TIOOL
2Z
IS f-
·--
HATlllAL
1981
1-DAH [ff.R.
1981
Ill
s
ll
2Z
IS
Ill
5
B
-
-
f-
l!!ll
1!11
~~t ----~ -_,_--__,_ -1--------·-
c
"' 0 -"' "' OJ
OJ c <J '" ... "OJ ,.. 5 ., .... U'-' u
c " . ... .... "' .... ., ., .... ... I! .... .... " "' "' > E 0 .r:: :>:t:> ., "' t.l u
I I I 1"' I I I ! ! I
1811 171! 1611 lSI! 14S Ill 12Z Ill! !Ill!
DISTMl!I OlD
SUSITNA WATER TEMPERATURES, JULY
HATlllAL Alll 1-IJAM (I'ERATIC&L
'
,__.,_.._ ~ -- -===1
---l-_,__ ..._ --- -rL----
L----
c
0 "" "' "' OJ OJ c <J ... " OJ ,.. '" .... U'-' u 5 "' .... .... ., ~ ....
9 .... ....
"' > 9 0 " Cl "'" t.l .r:: QQ u
1111 178 161! !51! 141! Ill 12Z Ill! !Ill! !II
DISTOCE 04])
_')C:
811
Figure 9 (Continued). River temperature profiles for natural and
1-dam operational conditions .
.. SUSITNA WATER TEMPERATURES. AUGUST
NA n&l. 00 I-IlAH ll'ERA TIOOL
OEQHS CO
2ll
NATURAL
1981
1-DAH Cf'ER. IS ,_
1981
--
1B t--=~-----~ -... ......._ -__,_ =
s -
c .< 0 -"' '"' ~
'" c: '" "' w "' aJ " c rn ·r-1 uw u -~ c "' ....
"' .-<"' "" .-< w s ..,
"""' ~ "' "' :> e 0 .c :3:0 '""' '-' u
I I I I"' I I I I I I
191l 181! 17B 161! ISB Ill 121l 100
DISTAIU DID
SUSITNA WATER TEMPERATURES, SEPTEMBER
NA ll..Rii 00 1-DAll OPERA TIOO.L
DEGREES (0
2ll
Nil MAL
1981
I-DAM [fER. IS -
1981
---
1B t-
_...,_ ~ ----------,
~ -
5 1-
c
0 -"' "' >, aJ
OJ c OJ "' w "OJ " ..... u w u B "' . ... ....
.-< "' """' s ..... .-< .-<
"' ~ ~ a ~
0 u .c
f"' u
I I I I I I I I I B
19B 188 17B 16B Ill 121l 110 100 9ll
O!ST m::E Dill
~
-I
I
NATLRAL
1981
. 2-IJAH CI'ER.
1981
--
NATIJlAL
1981
2-Ditll !FER.
1981
·--
Figure 10. River temperature profiles for natural and
2-dam operational conditions.
SUSITNA WATER TEMPERATURES. JUNE
NAT\.RAL .00 2-D.ul (fER..ITJONAL
I
DEGREES <D
2ll
-
IS r-
Jl!
----------~~-· --r-_...__.,__
----· ----,__--s c-
c
0 ... >· ~ .. c w ... "'" ..
"'·~ U'-' u
c '" ....
" ... '" ~ ... El ....
""' > 6 0 ::<<=> ""' " I I I f"' I I r I I I . I!
l!lll 1811 178 16il 141! 131! 129 100
D!STM«:E Olll
SUSITNA WATER TEMPERATURES. JULY
NA nmt. .00 2-D.IM ll'ERA TIOOAL
2ll
IS -
18 --~~-_...__,__ ----,__.--·-_..._ -
5 '--
c
0 ... ,; >· .. .. c '" "' ... "' OJ ..
"' U'-' u 5 '" ....
... U) ~ "' 6 .... ....
"' > El 0 = .c "' OJ"' " u
r r I f"' I 1 I I I r
l!ll 1811 1711 16il ISB 148 1311 128 liB !Ill 9ll
DISTAIU GID
Ill
Figure 10 (Continued). River temperature profiles for natural
and 2-dam operational conditions.
SUSITNA WATER TEMPERATURES. AUGUST
NATURAL .IND 2-DIJI OPE&ITIONAL
' DEGREES CO
2ll
NIITURAL
1981
2-DIJI OPEP. IS -
1981
---
IB f-
_-l_ ---Lc.-----
5 f-
~
"' 0 -'.' ,.,
" " e:;
" ... " " ~ ~ .... u ... u ... '" ... .... ""'"' ... ., ..-< ~ > a 0 ~
"' Q "" '-' u
I I I f"' I I I I I I II
100 190 !SZ 1511 . 140 ll! !211 llll !00
nrsrM£E om
SUSITNA WATER TEMPERATURES, SEPTEMBER
NA!l&L IJ{) 2-DMI CPERAHONAL
DEGREES CO
za
NAllmL
1981
2-DAH OPEP. 15 -
1981
---
1B -
-------__.,
!-. -
5 f-
~
0 -" "' ,., " <11 c v ... "'" " .... U'-' u
<Jl . ..
..... <Jl 'd
E '"' H
" > E 0
0 "" '-'
I I I ~0 I I I ~ I I il
1911 l!lll 171! !51! 14B 1311 121l 100
OISTMU (14]}
--
--
8ll
quality issues) need to be considered. Being unable to establish these
limits, it appears necessary to include the entire length of river below the
Watana dam site when considering aquatic habitat effects.
The most serious restriction in this study was the lack of estimates for
reservoir release temperatures. We feel that the 1981 DYRESM results cannot
be applied when simulating other years. Thus, at this time we are unable to
establish a range of downstream temperatures resulting from project
operations. There is clearly a need for additional DYRESM simulations for
representative years.
Initial condition river temperature estimates based on regression models
have been made with very limited data and are plagued by low confidence.
Incorporating data collected during the 1983 field season will considerably
enhance these models and thus the predictive ability of SNTEMP.
-29-
REFERENCES
Acres American, Inc. 1983. Application for license for major project,
Susitna Hydroelectric Project, before the Federal Energy Regulatory
Commission. Vol. SA. Exhibit E, Chaps. 1 and 2 (figures). Alaska Power
Authority. Susitna Hydroelectric Project. 1 vol.
Alaska, University, Arctic Environmental Information and Data Center. 1983.
Stream flow and temperature modeling in the Susitna Basin, Alaska.
Final Report. Alaska Power Authority. Susitna Hydro Aquatic Studies,
Anchorage, AK. Report for Harza-Ebasco Susitna Joint Venture. 60 pp.
Chow, V.T. 1964. Handbook of applied hydrology. McGraw-Hill Book Co, New
York, NY. 1 vol.
Johnson, N.L. and F.C. Leone. 1964. Statistics and experimental design in
engineering and the physical sciences. Vol. 1. John Wiley and Sons,
Inc., New York, NY 523 pp.
R&M Consultants, Inc.
Supplement 1. Task
Hydroelectric Project.
1982a. Field data collection and processing,
3-Hydrology. Alaska Power Authority. Susitna
Prepared for Acres American, Inc. 215 pp.
1982b. Field data collection and
Task 3-Hydrology. Alaska Power Authority.
Project. Prepared for Acres American, Inc. 215
processing. Vol. 3.
Susitna Hydroelectric
pp.
U.S. National Climatic
Talkeetna, Alaska.
Center. 1968 to 1982.
US NOAA, Asheville, NC.
Local climatological data -
3 pp./month.
Yevj evich, V. 1972. Probability and statistics in hydrology. Water
Resources Publications, Fort Collins, CO. 302 pp.
-30-
APPENDIX A
FLOW STATISTICS FOR THE
SINGLE-DAM SCENARIO
Location by River Mile of H20BAL Flow Calculation Nodes
NODE RIVER MILE
Watana 184.4
Tsusena 181.3
Fog 176.0
Devil 161.3
Chinchee 154.6
D.C. Dam 152.0
Portage 148.8
Indian 138.6
Curry 116.8
Whiskers 101.4
Chulitna 98.2
Talkeetna 97.2
Trapper 91.2
Sunshine 83.8
Montana 77.2
Sheep 70.0
Kashwitna 61.2
Little Willow 50.5
Willow 49.8
Deshka 40.6
Susitna Station 25.8
A-i
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY OCTOBER
MAINSTEM FLOWS <CFS) STANDARD DEVIATION
LOCATION
WATANA
TSUSENA
FOG·
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHI Si'\ERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
4522.8
4774.6
4~95.3
5215.5
5334.3
5569.5
57"70.8
5931.9
5985.8
11397.0
14145.4
14189.9
1·4286.8
14835.3
15298.1
16052.3
16480.8
17012.1
18349.0
31426.9
POST-·
6766.1
7017.9
7238.6
7458.9
757"1. 7
7812.8
8014.1
8175.3
82~~9. 2
13640.3
16388.7
16433.2
165~~0. 2
1'7078. 7
17511.5
18295.6
18724.1
19255.5
20:::i92.4
33670.3
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION f'RE-POST-
/. CHANGE
49.6
47.0
44.9
43.0
42.1
40.3
38.9
37.8
:S7.5
1'i.7
1:::i.9
15.8
15. i'
15.1
l4.7
14.0
13.6
13.2
7 + 1
PRE-
1100.7
11/'2.9
1232.1
1293.5
1327.:::;
1396.4
14:::i6.8
1486.0
149:::i.8
2385.1
29"70. 8
2980.1
3000.!}
3088.2
31'i'6.o
3343.2
3450.2
3593.5
3997.'/
9270.2
SKEW COEFFICIENTS
PRE-POST-
POST-
1286.4
1327.5
1367.~1
1411.1
1435.9
1487.6
1534.3
1553.3
155'7' + 8
2224.7
2772.5
2/81.2
2800.1
2880.7
296.3.7
3125.5
3230.4
3372.1
37"75. 3
90/6.5
E.XCESS COEFFICIENTS
PRE-POSl---------------------------------------------------------------------
WATANA .245 .190 .085 .883 -.741 -.470
TSUSENA .246 .189 .070 .898 -.'J68 -.407
FOG .247 .189 .063 .904 -.780 -.344
DEVIL .248 • 11:!9 .061 .904 -.785 ...• 2'19
CHINCHEE .249 .189 .061 .903 -.78~ -.243
PORTAGE .251 .190 .064 .895 -.?B2 -· '1 /4
INLHAN .252 .191 .068 .886 ·-• i' l'l -.119
CURF:Y .251 .190 .060 .878 -./8/ -· + 118
WHISKERS .250 .190 .057 .874 -. }'70 -.119
CHULITNA .209 .163 -.003 .18'7 -.731 -.668
TAU\EET .210 .169 -.022 .179 -.762 -.521
TRAPPER .210 .169 -.022 .1'18 -.762. -.5~2
SUNSHINE .210 .169 ·-. 022 .175 -·. "J..l2 -.525
MONTANA .208 .169 -.004 .190 -.830 -.4/9
SHEEP .208 .169 .025 .212 -.832 -.420
KASHWIT .208 .171 .095 .262 -.740 -.294
LWILLOW .209 .173 .143 .298 -.6'18 -.213
WILLOW .211 .175 .208 .345 -.5()8 -.108
[IESHKA .218 .183 .375 .471 -.095 .158
su STA .295 .270 1.05} 1.01:5 1.697 1.333
A-1
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY NOVEhBER
MAINSTEM FLOWS <CFSl STANDARD DEVIATION
LOCATION
WATANA
TSUSENA
FOG--
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
2059.0
2160.9
2250.2
2339.3
2387.4
2482.6
2564~0
2633.3
2656.4
4854.2
607'7.'-J
6097.0
~138.6
6374.2
~573+0
6896.9
7081.0
7309.2
7883.5
13500.7
POST··
8667.7
8769.6
8858.9
8948.0
89?6.1
9091.3
9172.7
9242.0
92(!5 + 1
11462.9
126i:l6.5
12705.7
12i'(l7.3
12982.9
13181.7
13505.6
13689.7
13917.9
14492.1
20109.4
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
Y. CHANGE
321.0
305.8
293.7
282.5
276.8
266.2
257.7
251.0
;.!48 + 8
136.1
108.7
108.4
107.7
103.7
100.5
95.8
93.3
90.4
83.8
49.0
PHE-
600.2
626.3
650.9
676.9
6Y1.4
721.0
i?4"l.3
762.8
"761.9
1201.1
1446.5
1451.1
14 61 • i)
1532.1
1596.9
1710./
1 7"79. 3
186/.6
2103.1
4795.2
SKEW COEFFICIENTS
PRE-POST-
r=·osr-
1845.7
1860.1
18"7~1.5
1887.6
1895.5
1911.7
1926.2
1936.6
19·10.1
2:226.2
2429.0
2432 + ·;
2HO. 7
2499.2
2552+1
2644.7
2700.6
2968.2
!j4(.l3.5
EXCESS COEFFICIENTS
PRE-POST-
----------------------------------------------------------~---------
WATANA .291 .213 .462 -.093 .291 -1.575
TSUSENA .290 .212 .377 -.094 .121 -1.569
FOG .289 .211 .318 "" + 096 .012 -1.560
DEVIL .289 .211 .273 -.09"7 ~.069 -1.549
CHINCHEE .2<!0 .211 .253 -.098 -.102 -1.341
PORTAGE .290 .210 .223 -.099 -.152 -1.524
INDIAN .2'-)1 .210 .204 -.099 -.180 -·1.507
CURRY .290 .210 .203 -.095 -. 17(1 -1.498
WHISKERS .289 .209 .202 -.094 -.179 -1.495
CHULITNA .247 .194 .271 .045 -.220 -1.120
TALKEET .238 .191 .230 .062 - + 28·1 -.997
TRAPPER .238 .1'-J1 .230 .062 -. 28/) -.995
SUNSHINE .238 .191 .230 .064 -.284 -.989
MONTANA .240 .193 .343 .123 .048 -.862
SHEEP ) 2·13 .194 .444 .176 .361 -.735
KASHWIT .248 .196 .612 .268 .900 -.497
LWILLOW .251 .197 .?05 .323 1.209 -.346
WILLOW ,..,.,.,
t.:.....OO .199 .815 .391 1 • :::il:3.5 -.148
DESHKA .26/ .205 1.059 .561 2.il41 .387 su STA .355 .269 1.852 1.531 5.530 4.1'73
A-2
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY llECEHBEF:
LOCATION
WATANA
TSUSENA
FOG·
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
ADDITIONAL
MAINSTEM FLOWS <CFS>
PRE-
1414.8
1494.8
156~.0
163!':1.0
1672.8
1747.6
1811.6
1860 • .3
1876.6
3418.1
4275.5
4288.9
4318.2
4452.6
4566.0
4/50.8
4855.7
4985.9
5313.5
8517.!':1
POST-
10300.9
10381.0
10451.2
10521.2
105~9.0
10633.7
1069/.8
10746.5
10762.7
12304.3
13161.6
1317!':1.1
13204.4
13338.8
13452.1
13636.9
13741.9
1J8/2.1
14199.6
17403.7
STAliSTICS
i. CHANGE
628.1
594.5
567 .(~
543.5
531.2
508.5
490.5
417.7
473.5
260.0
207.8
207.2
205.8
199.6
194.6
18?.0
183.0
178.2
167.2
104.3
STANDARD DEVIATION
PRE-
391.3
422.6
451.0
480.1
496.0
528.0
555.8
564.8
567.}
733.2
879.8
882.5
888.6
923.8
957.3
1018.:::;
1056.3
1106.0
1242.0
28~1, ·;
POST-
1930.6
1944.4
1956.9
1'-i?O.O
:19/}.3
1992.1
~~005 + 1
2010.2
2011.'7'
2087.5
216"1.1
2168.9
2172.8
21Y4.3
:,!214.4
2250.8
22'73.3
2303.2
2386.9
3638.1
COEF. OF VARIAT. SKEW COEFFICIENTS EXCESS COEFF I C l EI~TS
LOCATION PRE-POST-PRE-POST-PRE-POST---------------------------------------------------------------------
WAfANA .277 ,187 .304 -.614 -.!':144 -1.345
TSUSENA .283 .187 .. 338 -.603 -.3'?'1 -1.338
FOG .288 .187 ,373 -.593 -.25Y -·1.:.530
DEVIL .294 .187 .410 -.583 -.121 -1.318
CHINCHEE • 29·; .187 .430 -.577 -• O·Hl -1.311
PORTAGE .302 .187 .468 -.566 • 07'1 --1.296
INDIAN .307 .187 .500 -.555 .202 ·-1.280
CURRY .304 .187 .492 -.552 .183 -1.2/7
WH I SI\ERS .303 .187 .. 489 -.551 .1 ?i' -1.276
CHULITNA .214 .170 -.042 -.~41 -.:::i15 -1.207
TALKEET .206 > 165 -.155 -.539 -.435 -1.089
TRAPPER .206 .165 -.15:::i -.539 -.435 -1.087
SUNSHINE .206 ,165 -.. 155 -·. 538 -. ·'4::.S~ -1.084
MONTANA .207 .165 -.108 -.::.124 -.436 -1.0/4
SHEEP .210 .165 -.058 ...• 508 -.1}39 -1.062
KASHWIT .214 .165 .036 -.1176 -.439 -1.037
LWILLOW .218 .165 .094 ·-. 454 -.433 -1.019
WILLOW .222 .166 .165 -.424 -.41'7 -.9'74
llESHKA .234 .168 .337 -·. 337 -.35!':1 -.'-i15
su STA .339 .209 .994 .554 .416 .182
A-3
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATAHA ONLY
MAINSTEM FLOWS <CFS) STANDARD DEVIATIUN
LOCATION PRE-POST-I. CHANGE PRE-POST-
-------------------------------------·-----------------------------
WATANA 1165.5 9399.2 706.4 31::!.0 12"78.'7'
TSUSENA 1231.3 946~.0 668.7 33/t. ~ 12!11.6
FOG·· 1289.0 9522."7 638.8 3~5.6 1303.4
DEVIL 13·i6.5 !1580.2 611.5 377.8 1315.7
CHINCHEE 1377.6 (/611.3 597.} 390.1 1''"')') ... ..:.J~.:..fo.l
PORTAGE 1439.0 9672.7 572.2 415.3 1336.5
INDIAN 1491.6 972~5. 3 552.0 tl3'7.4 1::5-19.0
CURRY 1532.4 9766.1 537.3 444.1 1353.2
WHISKERS 1546.0 9'77"1.7 532.6 ·146 • .:s 1::.5~4.6
CHULITNA 2893.9 11127.6 284.:::i 542.7 1li31.0
TALKEET 3579.0 11812.6 2:50.1 632.1 1<187.5
TRAPPER 3590.2 11823.';' 229.3 634.1 148i:L 8
SUNSHINE 3614.8 1184~L4 227.8 638.4 1,W1. B
MONTANA 3'756.0 11989.7 219.2 656.2 1-t97.4
SHEEP 3875.3 12108.9 212.5 672.6 1503.0
KASHWIT 4069.5 12303.2 202.3 701. '7 1513.6
LWILLOW 4179.!] 12A1LL6 1'?'7.0 719.8 1520.5
WILLOW 4316.8 12550.5 190.7 743.::! 1529.8
DESHKA 4661.2 12894.9 176.6 807.3 1537.2
su STA 8030.0 16263.7 102.5 1613.0 ::!056. '7
ADDITIONAL STATISTICS
COEF. OF VARIAT. SKEW t.;OEFFICl EWf S EXt.;ESS COEFFIClEN'J"S
LOCATION PRE-POST-PI-<E-POST-PHE ·-POST-· --------------------------------------------------------------------
WATANA .268 ~136 .209 --·1.055 -.766 -.426
TSUSENA .272 .136 .198 -1.036 -.1'29 -.4'12
FOG .276 .137 .1115 -·1 • C) 17 ·-. J 0 7 -.455
DEVIL .281 .137 .199 -.997 -.681 -.468
CHINCHEE .283 .138 .204 --. 986 -.677 -.4'74
PORTAGE .289 .138 .220 -.963 -.6!:)2 -.485
I NO IAN .293 .139 .237 ·-+ 941 -.62.} -.494
CURRY .290 .139 .237 -.935 -.6'2.'7 -.497
WHISKERS ,289 .139 .237 ..• 'i33 -.627 -.498
CHULITNA .188 .129 .020 -.901 -.705 -.511
TALi\EET .177 ,126 .036 -·. 832 -.38'7' -.506
TRAPPER .1'7'7 .126 .036 -.830 -·. 389 -,:::i06
SUNSHINE .177 .126 .036 -.B27 -.389 -.505
MONTANA .175 .125 ,098 ..• 802 -.29J -.!301
SHEEP .174 .124 .157 -.i'77 -.199 -.495
KASHWIT .172 .123 .261 ·-. 732 -.030 -.479
LWILLOW .172 .122 -...... ~-, .,:...:.:. ... -.704 .069 -.467
WILLOW .172 • 122 .396 ·-. ~66 .1'-12 -.449
DESHKA .173 .121 .573 -.559 .481 •.• < 387
su STA .201 .126 1.177 .~34 1.380 7 r: '1 • \,J.;_
A-4
STATISTICAL RECORD OF 32-YEAR SUMMARY~ WATANA ONLY FEBf.:UARY
LOCATION
WATANA
TSUSENA
FOG·
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
ADDITIONAL
MAINSTEM FLOWS CCFSl
PRE-
983.3
1041.6
1092.6
1143.-!J
1171.1
1225.6
1272.2
1306.5
1318.0
2443.5
3015.2
:"S024. ·7
3045.4
3176.7
3287.5
3468.0
3570.6
3697.8
4017.8
i'148."l
f'OST-
8685.4
8"743.7
8794.8
8845.7
8873.3
8(127. 7
8974.3
9008.6
9020.1
10145.6
10717.3
10"726.8
10747.5
108'78.8
10989.6
11170.1
11272.7
11399.9
11720.0
14850.8
STATISTICS
7. CHANGE
783.3
lJ9.5
704.9
673.5
657.7
62!L5
605.4
539.5
584.4
315.2
255.4
254.6
252.9
242.5
234.3
222.1
215.7
208.3
191.7
107.7
STANDARD DEVIATION
PRE-
255.8
273.9
292.1
312.1
323.4
3-17.0
368.2
373.7
37S.5
4-10.-1
519.1
520.7
524.3
5-41.:::;
556.9
581\.7
601.6
623.7
683.5
1415.3
POST-
1260.'7
1268.5
1276.1
1284.4
1289.0
1298.9
1:507.8
1310.8
1311.8
137J.8
1417.8
11U:l.8
1420.9
1421.0
1421.9
1424.6
1426.8
1130.3
1442.6
1788.6
COEF. OF VARIAT. SKEW COEFFICIENTS EXCESS COEFFICIENTS
LOCATION PRE-POST-PRE-POST-Pl.;:E·-PO~JT---------------------------------------------------------------------
WATANA .260 .145 .359 -1.314 -.366 • 151
TSUSENA .263 .145 .293 -1.299 -.474 .126
FOG .267 .145 .259 ··1.282 -.580 .104
DEVIL .273 .145 .253 -1.262 -.652 .080
CHINCHEE .276 .145 .261 ·-1.250 -.667 .067
PORTAGE .283 .145 .297 -1.225 -.642 .042
INDIAN .289 .146 .J4::S ·-1. 200 -.561 .022
CURRY .286 .146 .344 -1.195 -.565 .017
WHISI"\ERS .285 .145 • 3·~-1 -1.193 -.5.!J7 .015
CHULITNA .180 .135 .362 -1.141 -.276 -.020
TALKEET • 1 ~~2 .132 '),) ') . .:.. ~ .. .:.. -·1.065 -.625 -.088
TRAPPER .172 .132 '")'")<") t.:...:...:.. -1.063 -.625 -.089
SUNSHINE .172 .132 "") .~) "')
.,~, ·-1.059 -.~2~ -.091
MONTANA .170 .131 .287 -1.025 -.613 ·-. 119
SHEEP .169 .129 .342 -.993 -.56)' -.140
KASHWIT .169 .128 .432 -.936 -.439 -.170
LWILLOW .168 .127 .482 -.1'02 -•343 -.183
WILLOW .169 .125 .541 -.856 -.210 ... .196
IlESHKA .170 .123 .673 -./31 • 15i' -.208
su STA .198 .120 1.113 .604 1.951 1.181
A-5
S T AT I S T I CAL R E C 0 R II 0 F 3 2 ·-Y E:: A R S Ut-Hi A F< Y ' W AT AN A UN L Y MARCH
MAINSTEM FLOWS CCFS> STANDARD DEVIATION
LOCATION
WATANA
TSUSENA
FOG·
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
898.3
946.7
989.2
1031.6
1054.5
1099."7
1138.4
1169.0
1179.2
2184.4
2679.6
2688.0
2706.4
2824.9
2924.8
3087./
3180.2
32'i5. 0
3583.7
6408.0
POST-
8098.4
8146.8
8189.3
8231.7
82~4.5
829'9.8
8338.5
8369.1
8379.3
!f:::.S84.5
9879.'/
9888.1
9906.5
10025.0
10124.9
10287.8
10380.3
10495.1
10783.8
13608.1
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
I. CHANGE.
801.5
/60.5
72/.9
698.0
682.8
6~)4. 7
632.5
615.9
610.6
:::.S2Y.6
268.7
26'7.9
266.0
254.9
246.2
233.2
226.4
2U:l.5
200.9
112.4
PRE.-
25~'. 3
2?2.7
287.6
~~03. 6
312.6
J31.2
34/.8
35;5.2
354.9
1]~.7
500.9
502t5
50G.9
::.:i16.9
526./
~'lJ.7
553.9
~67.0
602.0
1033. '7
SKEW COE.FFIClENlS
PRE-POST-
POST-
735.3
71.3 .l.
750.6
7~;8.8
763.5
773.3
783.0
78:::i.9
830.8
874.0
875.0
877.2
881.4
885.3
8'7'2. 4
896. '7
903.0
920.1
1207.8
EXCESS CUE.FFI!~:LENTS
PHE::-1-='0ST---------------------------------------------------------------------
WATANA .286 .091 7 I~"\ • 0~ ·-1 • 3 9 6 1 r: "• • ..J.::. 1.123
TSUSENA .288 .091 .738 -1.360 .078 1.090
FOG .291 .092 .71Y ·-1.324 -.oo::s 1.056
DEIJIL .294 .092 .706 -1.284 -.086 1.020
CHINCHEE .296 .092 .702 ·-1.261 -.127 .998
PORTAGE .301 .093 .699 -1.213 -. 1 '78 .955
INDIAN .306 .094 .701 ·-1.168 -. 2/l] .918
CURRY .302 .094 .700 -1.152 -. 2·VI: .899
WHISKERS .301 .094 .700 ·-1 • 14 7 -.244 .893
CHULITNA .198 .089 + •189 -.926 -.490 .595
TALI\EET .187 .os8 .574 -·. 724 -. 112 .458
TRAPPER .187 .088 .574 -.'720 -.112 .455
SUNSHINE .187 .089 .374 ·-• 711 -.112 .448
MONTANA .183 .088 .613 -.655 -.018 .406
SHEEP ·> 11:!0 .087 .647 ·-•. ,S 0 6 .068 .375
KASHWIT .176 .087 .703 -.522 .219 -t335
LWILLOW .174 .086 .734 ·-. 4 72 .308 .318
WILLOW .172 .086 • 7'72 -.410 .419 .302
DESHKA .168 .085 .862 -.249 .692 .292
su STA .161 .089 1.248 1.011 1.860 1.367
A-6
STATISTICAL RECORD OF 32-YEAk SUMMARY, WATANA ONLY APRIL
MAINSTEM FLOWS <CFS) STANDARD DEVIATION
LOCATION
WATANA
TSUSENA
FOG.
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TAU\EET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
1099."7
1156.8
1206.8
1256.8
1283.8
1337.1
1~82.8
1419.7
1432.0
2660.7
~2~8.8
3249.0
3271.2
3398.0
3504.9
3679.1
~$778. 1
3900.9
4209.8
7231.3
PUBT-·
7478.1
7535.3
7385.3
7635.3
'1662.2
7715.6
7761.2
7798.1
7810.5
9039.1
9617.3
9627.5
964Y.7
9776.4
988:.:S.4
10057.6
10156.6
10279.4
10588.2
13609.8
A!IDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
i. CH.:'rNGE
580.0
551.4
50"7.3
496.9
477.0
461.3
449.3
4q5.4
239./
196.9
196.3
1'15.0
18/.7
182.0
173.4
168.8
163.5
151.5
88.2
PRE-
301.0
318.7
:.:s:.s.s.5
356.1
3.!!?.4
390.8
i) 11 + 9
419.0
421.3
568.0
67~L1
680.5
68::i.2
701.4
715.!!
741.2
756.3
77::i.B
82(L2
1472.8
SKEW CUE.FFIClENlS
PRE-POST-
POSf-
810.6
820.9
8J1.0
84:.:!.1
848.5
862.1
8/4.5
877.4
8}8.5
93S.3
1001.5
1002.9
1005.9
1020.2
1032.9
1054.9
1068.0
1084.8
1130.0
1707.9
EXCESS COEFFICIENTS
F'R£-POST-
------------------------------------------------------~-------------
WATANA .274 > 108 .669 -1.423 .766 1.275
TSUSENA .275 .109 .704 -1.366 1.052 1. 201
FOG .279 .110 .732 ·-1. 309 1. 219 1.132
DEVIL .283 .110 .763 -1.246 1 + 32ll' 1.061
CHINCHEE .286 .111 .781 -·1 + 210 1.3?3 1.024
PORTAGE .292 .112 .819 -1.134 1.444 .953
INDIAN .298 .113 .f355 -·1. 066 1. 497 .896
CURRY .295 .113 .855 -1.040 1. 494 .868
WHISKERS .294 .112 .854 -·1. 032 1.-193 .859
CHULITNA .213 .103 .792 -.490 1.453 .469
TALKEET • 2 !)'~ .104 .801 ·-. 14 3 ~<f'BU .234
TRAf'f'ER .209 .104 .801 -.13/ .988 .233
SUNSHINE .207' .104 .801 ·-. 125 .Y88 .231
MONTANA .206 .104 .841 -.085 1.016 .245
SHEEP .204 .105 .875 -.051 1.048 ~·) l ,.,
+..-0.:..
KASHWIT .201 .105 .930 .00? 1 + 114 ,301
LWILLOW + 21)0 .105 .!!61 .040 1.159 .~29
WILLOW .199 .106 .998 .082 1.221 .369
DESHKA .197 .107 1.086 .187 1.398 .491
su STA .204 .125 1.48:2 .929 2.823 1.958
A-7
STATISTICAL RECORD OF 32-YEAR SUMMhRY, WATANA ONLY MAY
MAINSTEM FLOWS <CFS) STANDARD DEVIATION
LOCATION
WATANA
TSUSENA
FOG
DEVIL
CHINCHEE
PORTAGE
INDIAN
CUF:RY
WHISi\ERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
10354.6
10957.3
11485.2
12012.3
12296./
12859.3
13341.0
13657.1
13762.8
23570.9
27743.3
27830.6
28020.9
29096.9
30004.7
31464.2
32324.9
33367.3
35990.0
61646.0
POST-·
/519.7
8122.3
8650.3
9177.4
!7'41.>1.'7
10024.4
10506.1
10822.2
10?27.8
20736.0
24<10~:!. 4
24995.7
25U:l5.9
26261.9
2716'7'.8
28649.3
29'18'1.9
30532.3
33155.1
~8811.1
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
WATANA .310 .278
TSUSENA .309 .276
FOG .·310 .278
DEVIL .311 .281
CHINCHEI:": .312 .284
PORTAGE .315 .289
INDIAN .318 .295
CURRY .316 .293
WHISKERS .316 .293
CHULITNA .314 .311
TALi\EET .302 .295
TRAPPER .302 .295
SUNSHINE .302 .295
MONTANA .293 .285
SHEEP .286 .278
KASHWIT .277 .268
LWILLOW .272 .264
WILLOW .267 .258
DESHKA .r:; r:--, .,...,, .249
su STA .245 .244
% CHANGE
-·2 7 + 4
-25.9
-·24 + 7
-23.6
·-23 • 1
-22.0
-·21 • 2
-20.8
·-20. 6
-12.0
··10. 2
-10.2
·-1 u + 1
-9.7
-9.4
-9.0
-8.8
-8.5
-7.9
-4.6
PHE-
3209.8
3385.8
35~5.~
3737.2
3839.7
4050.8
4239.1
4320.8
43/}8.2
7412.1
8372.3
8398.6
8·156.0
8521.1
8:::i87.3
8716.9
8802.0
8918.8
Y264.J
1511::5.7
SKEW CUEFFlCIENTS
PRE-POST-
-.595 .637
-.597 .641
·-+ 385 .622
-.564 .594
"" > ~49 .~78
-.517 .546
·-+ 485 '"~~ t,J,.;.
-.493 .492
·-+ 4 96 • ~~82
-.270 .196
-.321 .095
-.321 .094
-· + 321 .092
-.341 .071
·-+ 352 .059
-.360 .049
·-. 359 .048
-.3~3 0 c:-') t ...J.:..
..• 314 .081
.323 .525
A-8
2088.0
240J.2
2582.7
2686.1
2901.9
3096.6
3173.5
319'7,•'!
6il41.1
7.351. !'
TJi'"/.6
7B4. 1
}494.3
7~58.0
"?686.5
7Ti':J., 6
/8112.0
8250.1
14:::S44.0
EXCESS CU~FFICJENTS
PRE-PU~T-
.412 -.313
.50? -.171
.5::19 -.114
.53~ ·-. 102
r.· ') .. ; +J..:...J -.lOB
.4o::! ·-. 133
.-'IJ6 -.162 4 ,, .. , . '..) ...• 210
• ·11<! -.225
.132 -· + 269
.142 -.243
.142 -· + 242
.112 -.240
.168 ... ( 252
.188 -.259
.21/ -.264
•') "f r'l • .-..J..::.. -.264
.249 -.260
.280 -.239
• 11 'i -·. 0 "78
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY JUNE
MAINSTEM FLOWS <CFS> STANDARD DE\.! Hi r ION
LOCATION
WATANA
TSUSENA
FOG·
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
23023.7
23997+9
24851.3
25703.4
26162.9
27072.4
278:::i1+0
28579.7
28823.3
52400.5
63957.6
64158.9
64:.597.4
66517.9
68138.3
70779.1
72279.5
74140.0
78821.3
124613.8
POST-
6628.4
7602.6
8456.1
9308.1
97.~7.6
10677.1
11455.8
12184.5
12•\28.1
36005.2
47562.3
47763.6
48202.1
50122.6
:::i1743.0
54383.8
55804.2
57744.7
62426.0
108218.5
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
I. CHANGE
-71.2
-b8.3
-66.0
-63.8
-62.7
-60.6
-58.9
-57.4
-56.9
-31.3
-2~;-,S
-25.6
-25 -~ 4
-24.6
·-21'\.1
-23.2
-21.7
-22.1
·-20. 8
-1.3.2
F'F~E-
6208.7
6468.5
6702.4
6941.1
70?1. 9
7334.3
7562.7
7725.2
'7779.6
1196:5.1
15000.0
15047.2
15150.1
15366.8
15569.0
15936.'1
16164.2
16465.2
1730!5.6
2922/~0
SKEW COEFFICIENTS
PRE-POST-
POST-
3382.8
3600.5
3806.6
·~02•1.5
-114..S.3
4395.1
461::'.i.3
476-1.4
4814.6
91/'1.9
11987.4
12034.0
12133.4
12326.1
1251:.:l.3
12862.4
13085.6
13385.3
14240.7
26666.1
EXCESS C:OEFF 1 Cl El~'fS
PnE-POST---------------------------------------------------------------------
WATANA .270 .510 1+101 ...-; r~· ~ '1 .:..+o\J..:...:... 2.·:18'7 6.122
TSUSENA .270 .474 1.054 2.412 2.313 5.660
FOG .270 .450 1.013 2.289 2.160 5.194
DEVIL .270 .432 .972 2.155 2.010 4.716
CHINCHEE .270 .424 .'750 2.081 1.'7::.>2 4.462
PORTAGE .271 .412 .907 1. 935 1. '782 3.981
INDIAN .272 ·• 403 .871 1. 814 1 • ..S5'7 3.397
CURRY .270 .391 .872 1.793 1.666 ~. 5•14
WHISi\E~:S ,2/0 .387 +873 1.786 1.669 3.:327
CHULITNA .228 .255 1.316 1./71 3.30S 'I• 422
TALKEET .23:::i .252 .964 1.321 1.91}9 •'") l I:"C':
"-+O.:J.J
TRAPPER .235 .252 .964 1.320 1.94'7 2.653
SUNSHINE .23:3 )252 .• 964 1.318 1.919 :2.648
MONTANA .231 .246 .872 1.208 1.626 2T227
SHEEP .228 .242 .798 1.116 1.3..S5 1. 882
KASHWIT .225 .237 .682 .970 .970 1.355
LWILLOW .224 .234 .621 .891 .76'4 1.082
WILLOW .222 .232 .550 .soo .530 • '7'73
DESHI\A .220 .228 .397 .605 .04-S .153
su STA .235 .246 .143 .283 -.~22 -.3/7
A-9
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY JULY
MAINSTEM FLOWS <CFS) STANDARD DEVIATION
LOCATION
WATANA
TSUSENA
FOG·
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
20810.0
21555.8
22209.2
22861.5
23213.3
23909.-s
24505.7
25238.4
25483.4
53167.0
64309.8
6<'1512.1
64953.0
67180.1
69059.2
72121.5
73861.4
7.S018.9
81447.4
134549.6
POST-
5549.6
.s2n:;. 4
6948.8
7.S01.1
7952.9
8.S49.2
9245.3
9978.0
10222.9
37'106.5
49049.3
19251.7
49692.6
51919.7
53798.8
56861.0
58600.9
60/58.4
66187.0
11928'-i .1
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION F'RE-POST-
X CHAI~GE
-73.3
~·70. 8
-68.7
-66.8
-65.7
·~,53. 8
-62.3
~~.so. 5
-59.9
·-28. 7
-23.7
~·23. 7
-23.5
·-22. 7
-22.1
-·21. 2
-20.7
·-20. 1
-18.7
-11.3
PRE-
3484.0
3659.6
381'7.9
39'79.4
4067.8
4245.3
4399.6
4497.1
4529.7
7.S'l4.·i'
9266.1
929:.5.2
9358.7
9458.2
95:::i0.8
9718.4
9822.4
995Y.8
10344.9
1603:.:i.1
SKEW COEFFICIENTS
PRE-POST-
POST-
1-1/3.1
1611.9
1148.5
18<7'5.6
197!:3. 6
211t9.0
~~:500 + 3
2392.5
212:3.5
5808.8
/320.4
7349.1
/.'\11.7
7197.8
7581.8
773'i'. 9
7840.9
/976.9
8:56/.7
143:57.6
EXCESS C 0 E r· F l C 1 E I~ T S
PRE-F'OST---------------------------------------------------------------------
WATANA .167 ,265 .587 1.693 -.0(}2 1.857
TSUSENA .170 .256 .610 1.653 .012 1.9S1
FOG .1"72 .l')r="~ :~o..:..;:.t..:.. .627 1.586 .032 1.917
DEVIL .174 .249 .641 1.508 .oss 1.81"7
CHINCHEE .175 .249 .647 1.465 .104 1.7·18
PORTAGE .178 .248 .657 1.382 .133 1.596
INDIAN .180 .249 .664 1.~15 .15.3 1. 46~~
CURRY .178 .240 .655 1.276 .138 1.349
WHISI\ERS .178 .237 .652 1.263 .133 1. 312
CHULITNA .144 .153 .458 .721 -.455 -·. 144
TALKEET .144 .149 .354 .501 -.370 -.273
TRAPPER .144 .149 .354 .501 -.3'?0 -.274
SUNSHINE:: .144 .149 .354 + -499 -.370 -.276
MONTANA .141 .144 .368 .532 -.322 -·. 159
SHEEP .138 .141 .381 .562 -.2'74 -.048
KASHWIT .135 .136 .404 .610 -.184 ~152
LWILLOW .133 .134 .417 .638 -.127 • 27·1
WILLOW .131 .131 .434 .673 -.051 .430
DESHKA .127 .126 .478 ./54 1 r:" + . .J 0 .830
su STA .119 .120 .731 .991 1.666 2. •178
A-10
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY AUGUST
MAINSTEM FLOWS <CFS> STANDARD DEVIATION
LOCATION
WATANA
TSUSENA
FOG·
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
18628.1
19350.4
19983.2
20614. 9•
2095S.6
21629.9
22207.3
22853.1
23069.0
46115.6
56684.8
56863.2
57251.8
59065.7
60596.2
63090.2
64507.3
66264.5
70685.8
113935.4
POST-
9778.8
10501.1
11133.9
11765.6
12106.4
12780.7
13358.0
14003.8
14219.7
37266.4
47835.6
48013.9
48402.6
50216.4
51746.9
542'11.0
55658.1
5741~.3
61836.6
105086.2
ADDITIONAL STATISTICS
COEF. OF VARIAr.
LOCATION PRE-POST-
i. CHANGE
-4}.5
·-45. 7
-44.3
-42.9
... i!O. 9
-3'1'.8
-~HL7
-38.4
·-19. 2
-15.6
-15.6
-15.5
-15.0
-14.6
·-14 • ()
-13.'7
-1~5. 4
-12.5
-?,8
PRE-
4102.8
4284.1
4451.6
4626.1
4"722.8
-~919.3
5092.4
5214.6
S2S5.6
9078.7
11761.1
11798.1
11878.8
11921.9
11966.8
12055.<;
12115.4
12197.8
12446.3
17221.<;
SKEW CUEFFICIE::NTS
PRE-POST-
PO!lT-
2562.8
2638.9
2?28.0
28~5.8
29(.)1. ()
::5043. 1
317'7.1
3276.?
3310.6
735.3.'?
9691.7
9'727.?
9806. ,_s
9826.9
9854.4
9919.0
9966.6
10036.3
10262.4
1:5231.8
EXCESS COEFFICIENTS
PRE-POST-
------------------------------------------------------~--------------
WATANA .220 )262 1.414 2.380 2.421 6.542
TSUSENA .221 .251 1. 428 2.646 2.42b 'lr673
FOG .223 ~245 1,439 2.810 2t41~:! 8.395
DEVIL .224 .241 1.447 2.~13 2.38/ 8.842
CHHlCHEE "':> "') r: .... .,;....J ~240 1.450 2.946 2.369 8.976
PORTAGE .227 .238 1.455 2.972 2.329 9. (}4 7
INDIAN .229 ~238 1.458 2.961 2.290 8.943
CURRY .228 .234 1.44~ 2.944 2.26)> 8.844
WHISt\£RS .228 ,233 1.446 2.937 2.262 8.805
CHULITNA .197 .19"7 1.112 1.731 2.296 ··'1. 318
TAU<EET .207 .203 .801 1.145 1.210 2.434
TRAPPER .207 .203 .801 1.143 1.210 2.430
SUNSHINE .207 .203 ,801 1.140 1.210 2.420
HONTANA .202 .196 • 8:.:!0 1.173 1.216 2.465
SHEEP .197 > 190 .834 1.196 1.216 2.493
KASHWIT .191 .183 .849 1.222 1.209 2.514
UJILLOW .188 .179 .854 1.232 1.201 2.513
WILLOW .184 .175 .858 1.238 1.188 2~~01
DESHKA .176 > 166 .851 1.227 1.139 2.416
su STA .151 .145 .317 .434 .441 .746
A-ll
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY
MAINSTEM FLOWS <CFS) STANDARD DEVIATION
LOCATION
WAlANA
TSUSENA
FOG·
DEVIL
CHINCHEE
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHt\A
SU STA
PRE-
10791.9
11306~2
11756.7
12206.5
12449.1
12929.2
13340.2
13702.4
13823.4
25768.0
31/86.3
31886.3
32104.2
33241."7
34201.5
35765.6
36654.3
37756.3
40529.0
67651.7
POST-
7310.8
i'825. 1
8275.6
8725.4
8968.0
9448.1
9859.1
10221.3
10342.3
22286.9
28305.2
28405.2
28623.1
29760.6
30720.4
32284.5
33173.2
34275.1
37047.8
64170.6
ADDITIONAL STA fiSTICS
COEF. OF VAIUAT.
LOCATION PRE-POST-
/. CHANGE.
-32.3
-30.8
-29.6
-28.5
-:~8 + 0
-26.9
-·26. 1
-25.4
·-2~ + 2
-13.5
-11.0
-10.9
·-1 0 + 8
-10.5
·-1 0. 2
-9./
-9.5
-9.2
-8.6
-5.1
f'RE-
3044.8
3211./'
3365.5
3525.4
361:J.?
377'3.2
3950.6
4043.0
4074.0
"70'1'8.0
8835.8
8863.6
8924.2
9021.0
9114.8
9290.'7
94U2.Y
9553.6
9986.2
16667.4
SKEW COEfFICIENTS
PkE-POST-
POST-
1165.8
1091.9
1069.5
1089.2
1116.7
1202.1
1302.7
13'/4.2
13Y8.9
4809.1
6t416.9
6443.4
6501.~5
6608.4
6713.1
6919.0
7030.5
/228.0
7738.7
1516'/.u
E.XCE.SS CUJ::FFlCIENTS
PkE::-POST---------------------------------------------------------------------
WATANA .282 .159 .257 .131 -.382 .948
TSUSENA .284 .140 .260 .587 -.401 1.::504
FOG .286 .129 .267 1.058 ·-. ·120 1.987
DEVIL .289 .125 .276 1.466 -.4JB 2.368
CHINCHf:::E .290 .125 .292 1.623 -.4-18 2.499
PORTAGE .293 .127 .295 1.782 -.467 2.583
INDIAN .296 > 132 .~07 1.790 -.482 2.498
CURRY .295 .134 .307 1.800 -.489 2.627
WHISKERS .295 .135 .307 1.799 -./~91 ") .. c::; .:..tO\Jt
CHULITNA .275 .216 .654 1.856 .5"77 4./02
TALI\EET .278 ,227 .613 1.403 .357 2.966
TRAPPER .278 .227 .613 1.399 .357 2,.9:53
SUNSHINE .2/8 .227 .613 1.::£91 .3:.57 2.927
MONTANA .271 .222 .598 1.366 .375 2,8/8
SHEEP .267 > :.:!19 .::582 1.::$34 .383 2 + 80-"1
KASHWIT .260 .214 .551 1.266 .381 2.626
LWILLOW .257 .213 .532 1,221 .3/2 2.502
WILLOW .253 .211 .50? 1.160 .354 2.333
DESHI<A .246 .209 .441 1.002 .2/B 1. 86S'
su STA .246 .236 .119 .291 -.52B -.211
A-12
APPENDIX B
FLOW STATISTICS FOR THE LOG-TRANSFORMED DATA,
SINGLE-DAM SCENARIO
STATISTICAL RECORD OF 32·-YE.AR SUH~iARY' WATANA UNL Y JUNE
MAINSTEM FLOWS <LN CFS) STAND r-IRD D[IJ I ::1 T I 01~
LOCATION PRE-POST-· PRE-POST-
WATANA 10.011 8.718 .25~ .368
TSUSENA 10.033 8.863 .260 ~ .333
FOG 10.087 8.974 .261 .347
DEVIL 10.121 ~.073 )262 .:::143
CHINCHEE 10. 138 9.122 .263 .343
PORTAGE 10.172 9.213 .265 .:142
INDIAN 10.200 9.284 .266 .343
CURRY 10.226 ?.349 .2~5 • :::13·:1
WHISKERS 10.235 9.369 .264 .332
CHULITNA 10.844 10.465 .214 .227
TALKEET 11.041 10.742 .2::!7 .234
TRAPPER 11.044 10,746 ")'")7 .; ..:... ..::.. , • 23l~
SUNSHINE 11.051 10.756 .221 .234
MONTANA 11.081 10.196 )225 .23:1.
SHEEP 11.105 10.828 .223 +229
KASHWIT 11 .143 10.878 "I'")? t,:_li:..-
•'"\ '1 I + ..::...::..t:i
LWILLOW 11.16!i 10.906 t221 .225
WILLOW 11.190 10.939 )221 .,"")&:'
t ,;_.::... ... J
DESH~:A 11.252 11.017 .221 .224
su STA 11.705 11.562 .243 .1') C" ""% • ,;,.. ,J •...J
ADDITIONAL STATISTICS
COEF. OF VARIAT. SKE.W COEFFICIENTS E>~CESS CUEFF 1 C l EIHS
LOCATION PRE-POST-PRE-POST-PRE·· POST---------------------------------------------------------------·------
WATANA .026 .042 .174 1. 881 .557 2.989
TSUSENA .026 .040 .151 1.73"1 .4'?'7' 2.606
FOG .02-S .039 .128 1 r:o:.·'"> J. ·.J ,J,.:,. + 411 2.169
DEVIL .026 .038 .10~ 1. 354 .344 1./42
CHINCHEE .026 .038 .093 1.248 • ::no 1.330
PORTAGE .026 .037 .068 1.052 .243 1.163
INDIAN .026 .03? .046 + 89'1' .190 .902
CURRY .026 .036 .o~o .893 .19~ ,!l01
WHISKERS .02~ .035 .052 .891 • 1 116 .8'?9
CHULITNA .020 .022 .466 .921 1.0:JO 1.6~4
TALKEET • o:u .022 .199 )~27 .488 .827
TRAPPER .021 .022 .199 r.:-"1 :f. +..!.:..0 .488 .825
SUNSHINE .021 o~>r:. ) ...... ..:.. .1~9 .:J24 .488 Br;.r, + ,;_.;,;_
MONTANA .020 .021 .155 .46/ .344 .628
SHEEP .o:w .021 .119 ,IJ18 ~227 .464
KASHWIT .020 .021 .063 .3~9 .051 .212
LWILLOW .020 .021 ,034 .297 ·-·.010 .083
WILLOW .020 .021 -.001 .246 -.142 -.061
DESHKA .020 .020 -· '0?? .134 -.312 -.335
su STA .021 0"~' .. &...;... -.340 -.260 ··-.127 ···• o:53
B-1
STATISTICAL RECORD OF 32-YEAR SUNNl-if.:Y, WAT?,NA ONLY JULY
MAINSTEM FLOWS <LN CFS) SlANDARD DEVIATION
LOCATION PRE-POST-PRE-POST-------------------------------------------------------------------WATANA 9.930 8.594 > 164 .228
TSUSENA 9.965 8.121 .166 .223
FOG 9.994 8 d:l21 .168 .2.21.
DEVIL 10.023 8.910 .1?0 .222
CHINCHEE 10.038 8.956 .171 .223
PORTAGE 10.067 9.03'7' .173 .225
INDIAN 10.092 9 > 105 'i175 .227
CURRY 10.121 9.183 • 1l Ji .220
WH I SI'\ERS 10.131 r~ + 208 • 173 .. 218
CHULITNA 10.8/'1 10.532 .1~2 .148
TALKEET 11.062 10.790 • 143 .147
TRAPPER 11.065 10.794 .143 .147
SUNSHINE 11.071 10.803 .143 .147
MONTANA 11.106 10.848 .1~0 .142
SHEEP 11.134 10.884 .137 .138
KASHWIT 11. 177 10.940 .134 .133
LWILLOW 11.202 10.970 .1J2 • 131.
WILLOW 11.231 11.007 .130 .128
DESHKA 11.300 11.093 .125 + 12:i
su STA 11.803 11.683 .117 .116
ADDITIONAL STATISTICS
COE.F. UF VARIAT. SKEW COE.FFICIENTS E.XCESS COEFF l C H.NTS
LOCATION PRE-POST-PRE-POST-t:·R::: ·· POST---------------------------------------------------------------------
WATANA .017 .027 .269 1.479 -.369 1.059
TSUSENA .017 .026 .282 1. ~72 -.33'7 .1185
FOG .017 0""" ~ ~-.} .290 1.247 -.:Ho .853
DEVIL .017 .025 .295 1.121 -.285 ,Jo8
CHINCHEE .017 .025 .297 1.056 -.272 .632
PORTAGE .017 .025 .298 .939 -.250 .495
INDIAN .01? .025 .298 .850 -.232 .392
CURRY .017 .024 .292 .828 -.236 .349
WHISKERS .017 .024 .290 .821 -.237 .334
CHULITNA .013 .014 .215 .477 -.488 ... 3?4
TALKEET .013 .014 .072 ~220 -.328 -.315
TRAPPER .013 .014 .072 .219 -. 3.::.!8 -.315
SUNSHINE .013 ,014 .072 .218 -.328 ·-. 316
MONTANA .013 .013 .090 .252 -.327 -.2'J8
SHEEP .012 ,013 .105 .279 -.320 ,., -y...,
-.,~,
KASHWIT .012 .012 .127 .321 -.296 1'"''\ -+ ..)'
LWILLOW .012 .012 .139 .344 -.27? -.096
WILLOW .012 .012 .154 .370 -.246 -.019
DESHKA .011 .011 .186 + .. ~27 -.146 .200
su STA .010 .010 .280 .485 .'-/99 1.520
B-2
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY AUGUST
MAINSTEM FLOWS <LN CFS) STANDARD DEVIAriON
LOCATION PRE-POST-PRE-F'Ot::T-------------------------------------------------------------------
WATANA 9.812 9.162 )202 .219
TSUSENA 9.849 9.236 .203 .205
FOG 9.881 ft.296 .204 .197
DEVIL 9.912 9 "le':"') +.J...J,;. .20~ .192
CH!NCHEE 9,929 9.381 .205 .190
PORTAGE 9.960 9.436 .20! .189
INDIAN 9.986 '1.480 .208 .188
CURRY 10.01~ 9.528 .208 .186
WH I Sl'\ERS 10.024 ?.543 .207 .185
CHULITNA 10.721 10.~09 .188 .180
TALKEET 10.'125 10.757 .203 .194
TRAPPER 10.928 10.761 .203 .194
SUNSHINE 10.933 10.769 .203 .194
MONTANA 10.'761 10.807 .19"7 .186
SHEEP 10.994 10.838 .192 .181
KASHWIT 11.035 10.886 .186 .173
LWILLOW 1t.058 10.'113 .182 .169
WILLOW 11.086 10.944 .178 .165
DESHKA 11.152 11. 020 .170 .157
su STA 11.632 11.5S2 .152 .144
ADDITIONAL STATISTICS
COEF. OF VARIAT. SKEW COE::FFICIE.NTS E::XCE.SS CCJEFFIClENTS
LOCATION PRE-POST-PRE-POST-PHE··· POST---------------------------------------------------------------------
WATANA .021 .024 .824 1.581 .9/8 3.636
TSUSENA .021 .022 .845 1.989 .989 -<1.120
FOG ,021 .021 ,863 2.231 .'i'iO 5.321
DEVIL .021 .021 .879 2.423 .982 6.080
CHINCHEE .021 ,020 ~887 2.481 .9/6 6 •")"?..., t ,&.. I ..:..
PORTAGE .021 .020 .902 2.539 .959 6.438
INDIAN .021 ,020 .'7'12 2.!538 • 9 ~12 6.392
CURRY .021 .020 .905 2.~23 .932 6.328
WHISKERS .021 .019 • '7'02 2.516 .928 6.:298
CHULITNA .018 .017 .~:513 .875 1.621 2.793
TALKEET .019 .018 .029 .259 1.318 1.987
TRAPPER .019 .018 .029 .258 1. 318 1. '7'85
SUNSHINE .019 .018 .029 .256 1.318 1.980
MONTANA .018 .017 ,094 .344 1 • 1 ':t 7 1.901
SHEEP .017 .017 .143 .410 1.099 1.831
KASHWIT .017 .016 .210 .501 • ·~ ., 9 1.712
LWILLOW .016 .016 .241 .541.\ .869 l • 641
WILLOW .o1..;. .015 .274 ,587 .7?4 1. 349
DESHKA .015 .()14 .328 .65~ .563 1.309
su STA .013 ,012 -· > 103 .005 .118 .212
B-3
STATISTICAL RECORD OF 32-YEAR SUMMARY, WATANA ONLY
MAINSTEM FLOWS <LN CFS> STANDARD DEVIATION
LOCATION F'RE-POST-PRE-f-'OST-------------------------------------------------------------------WATANA 9.246 tL884 .292 .164
TSUSENA 9.292 8.956 .294 .138
FOG 9.331 ?.013 .296 .124
DEVIL 9.368 9.06} .299 .11"7
CHINCHEE 9.387 ?.095 .::soo • 11 ~,)
PORTAGE 9.424 9.14"7 .303 .117
INDIAN ?.455 9.189 .305 • 121
CURRY 9.482 9.224 .304 1 'l7
i' .. """'
WHISKERS 9,491 9.236 .304 .123
CHULITNA 10.121 9.992 .274 .193
TALKEET 10.330 10.229 .:a.~ .210
fRAPPER 10.333 10.232 .2/6 .210
SUNSHINE 10.340 10.240 , ) .., ,
>.:../0 .210
110NTANA 10.3"76 10.279 .2/0 .206
SHEEP 10.40,j 10.::512 .266 .204
1\ASHWIT 10.452 10.362 .260 .201
LWILLOW 10 .• -~78 10+389 '"•"'"7 ) ..::.....J I .200
WILLOW 10.508 10.422 .254 .200
DE'3HKA 10.580 10.~00 .249 .200
su STA 11.091 11.042 .256 .241
ADDITIONAL STATISTICS
COEF. OF VARIAl. SKEW CUEFFIClENTS EXCESS COEFFICIENTS
LOCATION PRE-POST-F·:.;:E-POST-PI-\E ·· POST-
WAfANA .032 .018 -,271 -.434 -.467 .734
TSUSENA .032 .015 -.266 .066 -.4l:H ."J90
FOG .032 .014 ..• 258 , ,..,I::"
tO~..J -.49..S 1.038
DE•.-trL .032 .013 -.247 1.154 -.511 1.463
CHINCHEE 0 -,,l + ,.,).,;.. .013 ..• 240 1.370 -.S20 1.696
PORTAGE .032 .013 -.226 1. 59~ -.538 1.991
INDIAN .032 ,o13 ·-> 213 1+607 -.S~3 2.001
CURRY .032 .013 -.207 1.:i!f8 -.S6~ 2.078
lm I Si\ERS 0 -( ') + ·.J A-,013 ... ) 205 1.~90 -.S68 2. 07'1
CHULITNA .027 .019 -.011 1. 052 -.195 2.367
TAU\EET .021 .021 .004 .636 -.3..S4 1.177
TRAPPER o·"")..., + ~I .021 .004 .633 -.364 1.168
SUNSHINE:: ()'l ~ -) ,;;_/ ,021 .004 .626 -·. Jb4 1.149
MONTANA .026 .020 -.012 .613 -.3J2 1.124
~31-tEEF' ,()26 .020 ..• 027 .591 -.310 1.078
l\ASHW IT .025 .019 -.054 .540 -.284 .965
LWILLO~J 0 ')1"." + ,;,....J .019 ..• 070 .505 ·-. 2; 4 .886
tsJ I LLOW .024 .019 -.090 .459 -.2.6"7 • T/9
DESHt<:A .024 .019 ·-. 138 .341 -.2.73 .302
su STA .023 .022 -.305 -.200 -.572. -.325
B-4
APPENDIX C
MONTHLY FLOW PROFILES FOR NATURAL AND
SINGLE-DAM OPERATIONAL CONDITIONS
FLOW PROFILES --1 DAM SCENARIO
OCTOBER
FLOV (CFSl
4~0011
PREPROJECT
36001!
32llllll I
POSTPROJECT I
213001! I
-- -240011 I
20000 / __, -161Bl
121!00
8IW
40011
8
2al IBB 150 1411 129 100 BB 50 411 2ll
DISTOCE On>
FLOW PROFILES --1 DAM SCENARIO
OOVEIIBER
FLOV <CFSl
400~B
PREPROJECT
36ll00 1-
32008 1-
POSTPROJECT
28001l 1-
·--24001l 1--
2llOOB 1-I
160011 1-I -,---121B! 1-r -
8BOO
OJ ------' --::::--1-., ,;
a ..>! ...
"' "' "'
40011
8
"' '" a ... I " 1--"' u .... ~
~ -.... ...
"' rl .... ..... .E " I~ I I
0
1 I I I ~I "' I u
IBB l&l 1411 121! !Ill .411 2ll
DISTANCE om
C-1
FLOW PROFILES --1 DAM SCENARIO
FEI!R\JARY
FL~ (CFSl
21l000
PREPROJECT
IOO!lll ~
16illll! 1-
POSTPROJECT
14000 1-I
--121!00 ~ I
,..----
10000 r -
-
----__} --
800il f-
61100 1-
"' ...
4000 -•.-<
" ~
2llllll
B
s ~ ...
<'l "' 0 " I <'l <'l ... B -<I! u ~
§ .... ...
~ .... ....
~ " ~ L S I B ~
l I I I I "'I
1811 1611 140 121! 100 40
DJSTIJU <MD
FLOW PROFILES --1 DAM SCENARIO
MARCH
FLOY <CFSl
21100~
PR£PROJECT
1800~
1600~
POSTPRDJECT
14~~3
I ·--
121130 I -10000 I
-----__}
8llOO -
6330
~ ...
400~ •.-<
"
211~~
0
2l:l0 100 1611 14~ 121! 100 8ll 611 4~ 2ll
DISTANCE <MD
C-3
FLOW PROFILES --1 DAM SCENARIO
APRIL
FLOW (Cf5}
21l~~~
PREPROJECT
181l00
160011
POSIPROJECI
14~00
--121100 I
I
10~00 -_,.......
I
~0 ----_.} --
600~
40011
'" ..,
"'
" ~B 5 ....
"' " "' 0
2ll0 181l 160 140 121l 100 8ll 60 4~ 2ll
DISTANCE <Mil
FLOW PROFILES 1 DAM SCENARIO
HAY
FLOW (Cf5)
150000
PREPROJECT
135000
121l000
POSTPROJECT
1050011
---90000
75llllll
60000 I
451l00 {I
" {I ...
llmliJ ....
"' .,;-B
"'
15000
0
2llll 181! 161l 140 121l 100 80 6ll 2ll
DISTAIU OlD
C-4
FLOW PROFILES --1 DAM SCENARIO
.l\.t[
FLO~ (CfS)
!5001ltl
PR£PRO.JECT
135000
120011l
PDSTPI\IllECT I 1llSIIIlll
---I 900illl
I
75009 I
6IBl0 / -r--45001!
OJ ... a '"' .,
151l00
B
211! laB l61l 1411 121l 100 Bll 6ll 2ll B
DISTOCE QIJ)
FLOW PROFILES --1 DAM SCENARIO
Jll.Y
FLO~ (CfSl
l50BBB
PREI'RO.JECT
135000
121ml
POST PROJECT I 105001!
---I 900llll
I
75llllll
J
600011 -.r -
45001l
3lliBl ~
<II "' <II
I SIB! ~
B
2lll! IBil 1611 14B 121l Ill! Bll 2ll
DJSTAOCE QIIJ
C-5
FLOW PROFILES --1 DAM SCENARIO
AUGUST
FLDW (CfS)
151100~
PREPROJECT
13500~
121lllllll
POSTPROJECT I 11!5EOO
- --9~003
I
75fle3 I
6WilB
------451lll0
mm
'" "" ..
U1 ..
150011 ... -u_ --
II
2110 181! lfia 14~ 1211 100 811' sa 40 2ll II
DISTANCE Olll
FLOW PROFILES --1 DAM SCENARIO
SEPTOOER
fllJW((JS)
1Silllllll
PREPRDJECT
1351Hl
1200011
POSTPROJECT
18Silll!
. --
OOIBl
7SBl
!iBlll lj
~-lj
~ 7 ...
3llltlll ·~ -"'
151BJ
8
2111 1Bil 1611 Ull 1211 I ill 8ll 2ll
DlSTMU Olll
C-6
APPENDIX D
FLOW STATISTICS FOR THE TWO-DAM SCENARIO
STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO OC1"0BE:R
MAINSTEM FLOWS <CFS> ST;~NDAIUt DEV I AT !UN
LOCATION
D.C. DAM
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
5334.3
5~69.5
5770.8
5931.9
5985.8
11397.0
14145.4
14189.9
14286.8
14833.3
15298.1
16032.3
16480.8
17012.1
18349.0
31426.'1
POST-
7318.5
7553.6
7754.9
?916.1
7970.0
1J::SfH .1
16129.5
16174.0
16271.0
16819.5
17282.3
180::s6.4
18464.9
18'/96.3
20333.2
33411.1
ADDITIONAL STATISTICS
COEF. OF VARH1T.
LOCATION PRE-POST-
I. CHANGE
37.2
3:5.6
34.4
33.4
33.1
17.4
14.0
14.0
13.9
13.4
13.0
12.4
12.0
1. 1 • 7
10.8
6.3
PRE-
1327.5
13116.-1
1456.8
1486.0
14115.8
2383.1
29"70.8
2980.1
3000.5
3088.2
3176.0
3343.2
3450.2
3:.5'73. :.5
3997."7
9270.2
SKEW COEFFlCIE.N"I"S
PRE-POST-
POS"J-
106"7.7
110:3.7
11-<"12.3
1158.2
1163.7
1928.5
2471.5
2480.0
2498.5
2572.7
26:::i2.4
2812.2
2917.5
:j060. 8
3-1/'1.6
8845.4
EXCESS CUE F F I C I EN ·r S
p:.;:E-POST---------------------------------------------------------------------
D.C. DAM .219 , 146 ~061 1.:334 -.785 .828
PORTAGE .251 .146 .064 1.343 -.782 .?95
INDIAN .252 .147 .068 1.335 -.777 1.113
CURRY .251 .146 .060 1.328 -.78"7 1.110
WHISKERS .250 .146 .057 1.325 -.7'-JO 1.108
CHULITNA .209 .144 -.003 .576 -.731 .2~4
TALKEET .210 , 153 ·-. 022 .443 -.762 -.016
TRAPPER .210 .153 -.022 .441 -.i'62 -.019
SUNSHINE .210 ~154 ~-. 022 .435 -.762 -.026
MONTANA .208 .153 -.004 .432 -.830 -.068
SHEEP .208 .153 .025 .440 -.8J2 -.066
KASHWIT .208 .156 .095 .474 -.1'40 .003
LWILLOW .20'7 .158 .143 .:501 -.648 .0"71
WILLOW .211 .161 .208 .542 -.508 • 1 ~] 4
DESHKA .218 .171 .375 .654 -.0'7:3 .467
su STA .295 .265 1.05/ 1.()91 1.69"7 1.638
D-1
STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO NOVE!'1BER
MAINSTEM FLOWS <CFS) STANDARD DEVIATION
LOCATION
D.C. DAM
PORTAGE
I NO IAN
CURRY
WH I SI\ERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
UJILLOW
WILLOW
DESHKA
SU STA
PRE-
2387.4
2482.6
2564.0
263.3.3
2656.4
4854.2
6077.9
60'17.0
6138.6
6374.2
6573.0
6896.9
7081.0
7309.2
7883.5
13500.7
POST-
9444.6
'1539. 8
9621.2
9690.5
9713.6
11'111.4
13135.1
131:54.2
13195.9
13i!31.4
13630.2
13954.1
14138.2
14366.4
14940.7
20557.9
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
% CHANGE
295.6
284.3
275.2
268.0
265.7
14:.5.4
116. 1
11:5.7
115.0
110.7
107.4
102.3
99.7
96.6
89.5
52.3
PRE-
691.4
721.0
747.3
762.8
767.9
1201.1
1446.5
14::i1.1
1461.0
1532.1
1596.9
1710.7
1779.3
1867.6
2103.1
479::5.2
SKEW COEFFICIENTS
PRE-POST-
POST-
1909.4
1<1'1'7.2
1928.3
1936.2
1938.8
2170. •1
2362.8
2366.1
23"73. 1
2'H0.1
2Jl.43.7
2:511.8
2553.5
2609.2
2161.1
5037.8
EXCESS COE::FF I C I E.l..fTS
PRE-f'OST----------------------------------------------------·-----------------o.c. DAti .290 .202 .253 -• .308 -.102 -1.581
PORTAGE .290 .201 .223 -.309 -.152 -1.571
INDIAN .291 .200 .204 .... 310 -.180 -1.359
CURRY .290 .200 .203 -.314 -.179 -1.552
WHISKERS .289 .200 )202 ·~. 315 -.179 -1.549
CHULITNA .247 .182 .271 -.345 -.220 -1.258
TALKEET .238 .180 .230 ·-+ 364 -.284 -1.148
TRAF'f'ER .238 .180 .230 -.364 -.284 -1.146
SUNSHINE .238 .180 .230 -.363 ·~. 284 -1.142
MONTANA .240 .179 .343 -.358 .048 -1.103
SHEEP .243 .179 .444 ·-. 348 .361 -1.069
KASHWIT .248 .180 .612 -.318 .900 -1.005
LWILLOW .251 .181 .705 ·-+ 295 1.209 -.963
WILLOW .256 .182 .815 -.260 1.583 -.903
DESHKA .26"7 .185 1,059 -.148 2.441 -.711
su STA .355 .245 1.852 1.012 5.550 2.286
D-2
STATISTICAL RECORD OF 32·-YEAR BUI·tNARY, 2 DAt-i SCENARlO DECEr1BER
MAINSTEM FLOWS (CFS> STANDARD DEVIAfiON
LOCATION
D • C • DAM
POR'rAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
1672.8
1747 • .!!
1811.6
1860.3
1876.6
3418.1
4275.5
4288.9
4318.2
4452.6
4566.0
47:::i0.8
4855. "7
498:::i.9
5313.5
8:::i17.:::i
POST-
11128.3
11203.0
11267.1
11315.8
11332.1
1287.3.6
13730.9
1374·1. 4
13773.7
13908.1
14021.5
14206.2
14311.2
14441.4
14768.!f
17973.0
ADDITIONAL STATISTICS
COEF. OF VAf::IAT.
LOCATION PRE-POST·-
7. CHANGE
565.2
541.1
521.9
508.3
503.9
276.6
221.2
219.0
212.4
207.1
199.0
194./
189.6
178.()
111.0
PRE-
496.0
528+0
555.8
564.8
567.7
733.2
879.8
882.5
888.6
':i>23. 8
957.3
1018.3
1056.3
1106.0
1242.0
2891.7
SKEW COEFFICIENTS
PRE-POST-
POST-
2073.4
2081.1
2088.2
2094.1
2202.0
~288.2
228'i + 7
2293.2
2306.3
2319.4
23~4.3
~!360. 4
2:582.4
2446.8
3567.5
E.XCESS CUEF FICH.IHS
PRE-F'O~;T-
·-----------------·--------------------------------------------------o.c. DAti .297 .186 .430 -.836 -. O·H:l -1.113
PORTAGE .302 .186 .468 -.834 .0'11 -1.109
INDIAN .307 .185 .500 -.831 .202 -·1.104
CURRY .304 .185 .492 ·-. 831 .183 -1.102
WHISKERS .303 .185 .489 -.830 .177 -1.101
CHULITNA .214 .171 -.042 -.820 -.515 -1.017
TALKEET .206 .167 -.155 -.816 -.433 ..• 928
TRAPPER .206 • 167 -·. 155 -.816 -.435 -.927
SUNSHINE .206 .166 -.155 -.816 -.435 -• '124
MONTANA .207 ,166 ·-> 108 -.812 -.436 -.'ill
SHEEP .210 .165 -.058 -.805 -.43~ ·-. 8~8
KASHWIT .214 .165 .036 -.785 -.439 -.874
LWILLOW .218 .165 .094 -.1'69 -.433 -.858
WILLOW .222 .165 .165 -·. 745 -.419 -. 83/'
DESHKA .234 .166 .337 -.666 -.355 -.771
su STA .339 '198 .~94 .405 .416 .275
D-3
STATISTICAL RECORD OF 32-·YEAR SUHr1ARY, '1 .... Dfil'i SCENARIO JANUARY
MA INSTE!1 FLOWS (CFS> STANDARD D E I) I 1:. T I 0 N
LOCATION PRE-POST-/. CHANGE PF!E-POST-
----------------------------------------------·--------------------n.c. DAM 1377.6 10484.8 661.1 390.1 1738.6
PORTAGE 1439.0 1054b.2 6~2..9 415.3 1746.9
INDIAN 1491.6 10598.8 610.6 437.4 1754.4
CURRY 1532.4 106~~9.6 :::i<i-'1.3 444.1 1757.5
WHISKERS 1546.0 10653.2 589.1 446.3 1/'58.5
CHULITNA 2893.'7' 12001.1 314.7 542. /' 1831.9
TALKEET 3579.0 12686.1 254.~ 632.1 18/6.7
TRAPPER 3590.2 126'7'7.4 2~:i3. 7 6.34.1 18"77.8
SUNSHINE 3614.8 12721.9 251.9 638.4 1880.1
MONTANA 3756.0 12863.2 2~\2.5 656.2 1881.6
SHEEP 3875.3 12982.4 235.0 672.6 U:H:3J. 6
KASHWIT 4069.5 13176.7 223.8 701.9 1888.0
LWILLOW 4179.9 13287.1 217.9 719.8 1891.2
WILLOW 4316.8 t3124.0 211.0 7·13.2 189~.9
DESHKA 4661.2 1376!:l. 3 195.4 80'/.3 1911.1
su STA 8030.0 17137.2 113.4 1613.0 2279.3
ADDITIONAL STATISTICS
COEF. OF VARIAT. SKEW COEFFICIENTS EXCESS COEFFICIENTS
LOCATION PRE-POST-PRE-POST-Pl-\:1:::··· F'O!JT-
--------------------------------------------------------------------
D.c, IIA11 .283 .166 .204 -1.066 6 "'"7 -+ I I -.501
PORTAGE .289 .166 .220 -1.064 -.652 -.498
I Nil IAN .293 > 166 + 2;".57 -·1 + 061 -.62.7 -• 49c~
CURRY .290 .165 .237 -1.060 -.627 -.498
WHISi"\Er.;:s .289 .165 ~ 2 ~j ;} ·-1 + 059 -.627 -.498
CHULITNA .188 .153 .020 -1.009 -.705 -+547
TAU~EET .177 .148 ,036 -.975 -.~89 -.376
TRAF'PEF: .177 .148 .036 -.974 -.389 ·-. 5"?6
SUNSHINE .17"7 .148 .036 ·-> 973 -.389 -.576
MONTANA .175 .146 .098 -.965 -.293 -.570
SHEEP +174 .145 .157 -.956 -.199 -.565
KASHWIT .172 .143 .261 -.938 -.030 -.5~4
LWILLOW .1"72 • 142 3"'"' "' ~ ..... -· > 9 25 .06'7' -.547
WILLOW .172 .141 • 396 -.908 .192 -.537
DESHKA .173 .139 .573 -.853 .481 -.504
su STA .201 .133 1.177 ,0:)8 1.~80 .274
D-4
STATISTICAL RECORD OF 32·-YEAR SUI'HlARY, 2 litif·i SCENARIO FEBRUARY
MAfNSfEM FLOWS <CFS> STANDARD DEVIATIUN
LOCATION PRE-POST-I. CHANGE PRE-POST-
D.c. DAM 1171.1 1009<\. 4 761.9' 323.4 1926.6
PORTAGE 1225.6 10148.8 "/28.1 347.0 1933.0
INDIAN 1272.2 10195.4 701.4 368.2 1938.8
CURRY 1.306.5 10229'.8 683.0 373.'7 1940.9
WHISKERS 1318.0 10241.3 67/.0 375.~ 1941.7
CHULITNA 2443.5 11366.8 ...,,r::: ..,
'-'C),,I+A.. 440.4 :i. ~1 96. 8
TALI<EET 3015.2 11938.5 2!!5.9 519.1 2028.1.
TRAPPER 3024.7 11948.0 295.0 520.7 2028.8
SUNSHINE 3045.1 11968.6 293.0 ~2~1 + 3 2030.3
MONTANA 3176.'7 12100.0 280.9 541.3 202'1.0
SHEEP 3287.5 12210.7 2/1.4 356.9 2024.7
KASHWIT 3468.0 12391.3 257t3 584.7 2021.8
LWILLOW 35'70. 6 1249.3.9 24'1. 9 601.6 2020.7
WILLOW 3697.8 12621.1 241. J 623.7 2019.8
DESHKA 4017.8 12941.1 2;-!2 .. 1 683.:::; 2020.2
su STA 7148.7 16071.9 124.8 1415.3 2205.9
ADDITIONAL STATISTICS
COEF. OF VARIAT. SKEW COEFFICIENTS EXCESS COEFFICIENTS
LOCATION PRE-POST-F'RE-POST-PRE-POST---------------------------------------------------------------------n.c. DAt·1 .27.3 .191 .~:!61 -1.414 -.66? .235
PORTAGE .283 .190 .297 -1.410 ·-. 642 .231
INDIAN .289 .190 • 34.3 -·1. 406 -.561 .228
CURRY .286 .190 .344 -1.405 -.!J65 .227
WHISKERS .285 .190 .344 ·-1 • 404 -.~.57 t227
CHULITNA .180 .1'76 .362 -1.:387 -.276 .216
TALKEET .172 .170 1") ~)I)
-o-..:....:....r:.. -·1. 362 -.~25 .195
TRAPPER .172 .170 ~~ ') ')
t..:.,;:....;.. -1.362 -.625 .195
SUNSHINE .172 .170 .222 ·-1.360 -·. 62~ • 1 <;• ·1
MONTANA .170 .168 .287 -1.34'1 -.613 .181
SHEEP .169 .166 .342 -1~338 -.!::.i..Sl .170
KASHWIT .169 .163 .432 -1.317 -.439 .152
LWILLOW .168 .162 .482 ·-1. 303 -.~:5113 .141
WILLOW .169 .160 .541 -1.285 -.:210 .128
DESHKA .1/0 .156 .6/3 -·1.232 .1::.:i7 .095
su STA .198 .137 1.11 J -.313 1. 951 • 2''17
D-5
STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO
LOCATION
D.C. DAt1
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
ADDITIONAL
MAINSTEM FLOWS CCFS>
PRE-
1054.5
1099.7
1138,4
1169.0
1179.2
2184.4
2679.6
2688.0
2706. ·:\
2824.9
2924.8
3087.7
3180.2
3295.0
3583.7
6408.0
POST-·
9204.0
9249.2
9288.0
9318.5
9328.7
10334.0
1082Y.1
10837.5
10855.9
10974.4
11074.3
11237.2
113211.7
11444.5
11733.2
14557.5
STATISTICS
i. CHMWE
772.9
741.1
715.9
697.2
691.1
373.1
304.1
303.2
301.1
288.5
278.6
263.9
256.3
247.3
227.4
127.2
STANDARD DEVIATION
PRE-
312.6
331.2
347.8
35J.2
354.9
432.7
500.9
502.5
505.9
516.9
526.7
543./
553.'7
567.0
602.0
1033.9
PO~f-
1301.2
1310.2
1318.2
1320.9
1321.8
1J5'7.8
1397.4
1398.3
1400.2
1-402.7
1403.:1.
U\09 • 5
1412.3
1416.0
1426.7
162S.O
COEF. OF VARIAT. SKEW C 0 E F F I C 1 E ~~ T S EXCESS COEFFICIENTS
LOCATION F'RE-POST-PRE-POST-PRE-POST---------------------------------------------------------------------
D.c. DAH + 2'7'6 .141 .702 ····1.018 -.127 .165
PORTAGE .301 .142 .699 -1.003 -.1Y8 .140
INDIAN .306 .142 .701 -·. 988 -.243 .119
CURRY .302 .142 .700 -.982 -.244 .109
WHISKERS .301 .142 .700 ·-. 980 -.244 .105
CHULITNA .198 .132 .489 -.893 -.490 -.032
TAU<EET .187 .129 .574 -.812 -.11~ - + 118
TRAPPER .187 .129 .574 -.811 -.112 -·. 121
SUNSHINE + 18'7 .129 .574 -d:l07 -.112 -.125
MONTANA .183 .128 .613 -.784 -.018 -.151
SHEEP .11:30 .127 .647 ·-+ 764 .0,!,8 -.170
KASHWIT .176 .125 .703 -.729 .219 ·-+ 200
LWILLOW .174 .125 .734 ·-. 708 .308 -.~15
WILLOW .172 .124 .772 -.681 .419 -~232
IIESHKA .168 ~122 .862 ·-+ 608 6 (j ') . . --.26b
su STA .161 .112 1.248 .238 1.860 .106
D-6
STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAH SCENARIO APRIL
MAINSTEM FLOWS <CFS) STANDARD DEVIATION
LOCATION
D.C. r1AM
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
1283.8
1337.1
1382.8
1419.7
1432.0
2660.7
3238.8
3249.0
3271.2
3398.0
3504.9
3679.1
3778.1
3900.9
4209.8
7231.3
POST-·
8005.8
8059.1
8104.7
8141.6
81~)4 .o
9382.7
9960.8
9971.0
9993.2
10120.0
10226.9
10401.1
10500.1
10622.9
10'131. 8
13953.3
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
h: CHANGE
523.6
502.7
486.1
473.5
469.4
252.6
207.5
206.9
205.5
19/,8
191.8
182.7
177.9
172.3
1 ~:i9. 7
93.0
PRE-
3.S7.4
390.8
411.9
419.0
421 • .:5
568.0
678.4
680.5
685.2
701.4
}15.9
"741. 2
756.3
775.8
828.2
1472.8
SKEW COEFF 1 C I EIHS
PRE-POST-
984.3
996.4
1007.4
1011.5
1012.9
1071.4
1164.8
1166.3
1169.6
1186.1
1200.5
122•1.9
123'7'.3
12:;j7.6
1305.9
1891.6
E.XCESS COEFFICIENTS
PRE·-::·us r ·---------------------------------------------------------------------
D.C. DAM .286 .123 .'781 ·-. 237 1.3?3 .012
PORTAGE .292 .124 .819 -.201 1.444 -.064
INDIAN .298 .124 8'='1:" , ..J..J ·-. 169 1. ·'l9'l -.123
CURRY .295 .124 .855 -.157 1.494 -.134
WHISKERS • 29 <\ .124 .854 ·-. 153 1.193 -.138
CHULITNA .213 .114 .792 .060 1.453 -.050
TALKEET .209 .117 .801 .272 .988 .002
TRAPPER .209 .117 .801 .275 .988 .002
SUNSHINE .209 .117 .801 .281 .988 .003
MONTANA .206 .11} .841 .303 1.016 .053
SHEEP .204 .117 .875 .323 1 • o.1•8 .099
KASHWIT .201 .118 .930 .357 1.114 .177
LWILLOW .200 .118 • '761 .376 1.1!::.i9 .224
WILLOW .199 .118 .998 .401 1. 221 .284
DESHKA .197 .119 1.086 .465 1.~98 .442
su STA .204 .136 1.482 .982 2.823 1.8'14
D-7
STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO MAY
MAINSTEM FLOWS <CFS) STANDARD DEVIATION
LOCATION
D.C. DAM
PORt AGE
I NO IAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
12296.7
12859.3
13341.0
136!::.i7.1
13762.8
23570.9
27743.3
27830.6
28020.9
29096.9
30004.7
31484.2
32324.9
33367.3
35990.0
61646.0
POST-
7656.8
8219.4
8701.1
'701:l.2
9122.9
18'/31 • 0
23103.4
23190.7
23380.9
24457.0
25364.8
26844.3
27685.0
28727.4
31350.1
57006.1
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
I. CHANGE
-37.7
·-36. 1
-34.8
·<H.O
-33.7
···19. 7
-16.7
·-16. 7
-16.6
-15.9
-15.5
-·14. 7
-14.4
·-13. 9
-12.9
-7.:::.
PRE-
3839.7
l~050. 8
423Y.1
4320.8
4348.2
7412.1
8372.3
8..398.6
8456.0
8521.1
8587.3
8'716.9
8802.0
8Y18.8
9264.3
15113.7
SKE.W COEFFICIENTS
PRE-POST-
POST-
1529.4
1 'J 2 ~.:i. 2
1912.5
1991.4
2018 .1
5605.2
6540.5
6!::.i66.()
6621.5
6666.5
6/19.1
6833.1
6912.7
7025.9
7376.3
13S98.1
EXCESS COEFFICIEHTS
PRE::·-POST---------------------------------------------------------------------D.c. DAH .312 .200 ·-. 549 .320 t";~, .. !
t;,;J..,.:.J -1.237
PORTAGE .315 .210 -.517 .311 .482 -1.086
INDIAN .318 .220 ·-. 485 .293 .436 -.980
CURRY .316 .221 -.493 .274 .423 -.972
WHISKERS .316 .221 -.496 .267 + 11 '-I -.969
CHULITNA .314 .296 -.270 .412 .132 .217
TAU\EET .302 .283 ·-. 321 .276 .142 .120
TRAPPER .302 .283 -.321 .274 .142 .119
SUNSHINE .302 .283 ..• 321 .269 .1-12 .117
MONTANA .293 .273 -.341 .240 .168 .108
SHEEP .286 ·> 265 ..• 352 .220 .HlB .099
KASHWIT .277 .255 -.360 .19B .217 .085
LWILLOW *272 .250 .. ~ ;:559 .190 .232 .077
WILLOW .267 .245 -.353 .187 .24<J .068
[tESHKA .257 .235 ..• 314 .200 .280 .050
su STA .245 .239 .323 .561 .119 -.059
D-8
STATISTICAL RECORD OF 32-·YEAR SUt·ii'1M-:Y, '2. DAN SCt;NARIO JUNE
MAINSTEM FLOWS <CFS> STANDARD' DEVIATION
LOCATION
D.C. DAM
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-POST-
26162.9 8146.2
27072.4 9055.7
27851.0 9834.3
28579.7 10563.0
28823.3 10806.6
52400.5 34383.8
63957.6 45940.9
64158.9 46142.1
64597.4 46580.6
66517.9 48501.2
68138.3 50121.6
70779.1 52762.3
72279.5 ~4262.7
74140.0 56123.2
78821.3 60804.5
124613.8 106517.1
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
7. CHANGE
-68.9
··66. 6
-64.7
··63. 0
-62.~
-28.'2.
-·28. 1
-2"/.9
·-'2.7. 1
-26.4
-2:3.5
-24.9
·-'2.1\ • 3
-22.9
-14.5
PRE-
7071.9
7331\.3
7562.7
7725.2
7777'.6
11963.1
15000.0
15047.2
15150.1
1:.5366.8
15~69.4
15936.4
16164.2
1fl465. 2
17305.6
29227.0
SKEW CUEFFlClENTS
PRE-POST-
POST-
1833.3
2103.0
2344.3
2476.5
:l521.8
6962.7
9806.2
98!52. •1
9953.1
10167.8
10378.8
107/6.4
11029.7
11369.0
12J30.8
2!5':)37.0
EXCESS CU~FFICIENTS
PRE-POST---------------------------------------------------------------------
D.c. DAI-1 • 2'10 ~225 .950 -.029 1.932 ·-·1.467
PORTAGE .271 .232 .907 -.046 1.782 -·1.345
INDIAN .272 .238 .871 ·-. 063 1.659 -1.26j,
CURRY .270 .234 .872 -.057 1.666 ·-1 • 198
WHISKERS .270 .233 .873 -.053 1.669 -1.174
CHULITNA .228 .202 1. 316 1.160 3.305 '2..171
TALi\EET .235 ~213 • ':1'64 .765 1.949 1.213
TRAPPER .235 .214 .964 .766 1.949 1.216
SUNSHINE .235 .214 .964 .767 1.949 1.223
MONTANA .231 .210 .872 6 ' 'l • o .... 1.626 ,898
SHEEP .228 .207 .798 .579 1.3-S:::i .638
KASHWIT .225 .204 .682 .455 .··:no +260
LW!LLOW .22-4 .203 .621 .394 .16/J .074
WILLOW 2?'' . --.203 .550 .327 .530 -+124
DESHKA t220 .203 • :397 .207 .046 -.474
su STA .235 .240 .143 .284 -.~22 -· t 227
D-9
STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO JULY
MAINSTEM FLOWS <CFS> STANDARD DEVIATION
LOCATION
D. C ~ DAM
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
23213.3
2390<1.6
24505.7
25238.4
25483.4
53167.0
64309.8
64512.1
64953.0
6/180.1
69059.2
/2121.5
73861.4
76018.<;.1
81447.4
134549.6
POST-
7094.5
"i'7<Jo.a
8386.9
9119.6
9364.6
37048.2
48191.0
48~S93. 3
48834.2
51061.3
52940.4
56002.7
57742.6
59900.1
65328.6
118430.8
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
~' CHANGE
-69.4
··67. 4
-65.8
··63. 9
-63.3
··30. 3
-25.1
-·25. 0
-24.8
--~~ 4 • 0
-23.3
-~22. 3
-21.8
·-21 • 2
-19.8
-12.0
PRE-
4067.8
4245.3
4399.6
4497.1
4529./
7644.7
9266.1
92'>-'~ + 2
9358.7
9458.2
9550.8
9718.4
9822.4
99~'7.8
10344.9
16035.1
SKEW COE.FFlCIENTS
PRE-POST-
POST-
1340.5
1479.2
1610.4
16'76.9
1/26.3
5185.1
6682.8
6711.2
67/3.2
68!.50.5
6928.2
7078.4
/176.2
730'r. 2
"7697.3
13/78.8
E.XCESS CUEFF ICIEIHS
PRE-POSIT---------------------------------------------------------------------
D.c. DAl'l .1/5 .189 .647 .392 .104 -1.313
PORTAGE .178 .190 .657 .387 .133 -·L 152
INDIAN .180 .192 .664 .394 .153 -1.010
CURRY .178 .186 .655 .402 .138 -· + 966
WHISKERS .178 .184 .652 .405 .133 -.951
CHULITNA .144 .140 .458 .577 -.455 ...• 336
TALKEET .144 .139 .354 .356 -.370 -.418
TRAF'PER .144 .139 .354 .355 -.37() -.419
SUNSHINE .141 .139 .354 .355 -.3/0 -.419
MONTANA .141 .134 .368 .370 -.322 •• + 364
SHEEP .138 .131 .381 .386 -.274 -.301
1\ASHWIT .135 .126 .404 .418 -.184 -.166
LWILLOW .133 .124 .417 .439 -.127 -.075
WILLOW .131 1 '") ') "' .:...:.... .434 .466 -.051 .049
DESHKA .127 .118 .478 .538 .158 .395
su STA .119 .116 .731 .848 1.666 2.110
D-10
STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCENARIO AUGUST
MAINSTEM FLOWS <CFS> STANDARD DEVIATION
LOCATION
D.C. DAN
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHWIT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
20955.6
21629.9
22207.3
22853.1
23069.0
46115.6
56684.8
56863.2
57251.8
59065.7
60596.2
63090.2
64507.3
66264.5
70685.8
113935.4
POST-··
11~B3.7
12008.0
12:::i85.3
13231.2
134~17. 1
36493.7
4"1062.9
47241.3
47629.9
49443.8
!.)0974.3
53468.3
548H5.4
56642.6
61063.9
104313.5
ADDITIONAL STATISTICS
COEF. OF VARIAT.
LOCATION PRE-POST-
/. CHf)NGE
-· •\ 5. 9
-44.5
-4:S.3
-42.1 -·n. 7
-20.9
·-17. 0
-16.9
-16.8
-16.3
-1~.9
-15.3
-14.9
-14.5
-13.b
-8.4
·1722. 8
4919.3
5092.4
5214.6
~25~.6
9078./
11761.1
11798.1
118/'8.8
11921.9
11966.8
12055.9
1211~5.4
12197.8
12446.3
17221.9
SKEW COEFFICIENTS
PHE-POST-
POST-
1396.3
1681.3
1/'82.0
1856.9
1883.4
5959.9
8J27.4
8363.3
84111.6
8459.6
8486.8
8554.2
8603.1
8680.4
8928.2
1·1288.5
EXCESS COEr F I L: 1 ENTS
Pti:E-f•UST---------------------------------------------------------------------
D.c. DAM "1' '") r~· t..:;.r:;.,J .141 1.450 3.318 2 • .369 11.149
PORTAGE .227 .140 1.455 3.457 2.3~!'7 11.819
INDIAN .22'7' ,142 1.458 3.407 :2.290 11.578
CURRY .228 .140 1.449 3.376 2.269 11.514
WHISKERS .:228 ,140 1.446 3.360 2.~62 11.462
CHULITNA .197 .163 1.112 1.123 2.296 3.016
TALKEET .207 ,177 .801 .676 1. 210 1.715
TRAPPER .207 .177 .801 .677 1.210 1.714
SUNSHIN£ .207 .177 .801 .679 1.210 1.712
MONTANA .202 .171 .820 .723 1.216 1.752
SHEEP .197 .166 ... 834 .735 1.216 1.774
KASHWIT .191 .160 .849 .79/ 1. 20'i 1.786
UJ ILL OW .188 .157 .854 .815 1.201 1.780
WILLOW .184 .153 .858 .832 1.188 :l • 7 61
DESHKA .176 .146 .851 .844 1.1'39 1.662
su STA .151 .137 .317 .229 .447 .319
D-ll
STATISTICAL RECORD OF 32-YEAR SUMMARY, 2 DAM SCEHARlO SEPTEMB
MAINSTEM FLOWS CCFS) STANDAIW :OEV I AT I UN
LOCATION
D.C. DAM
PORTAGE
INDIAN
CURRY
WHISKERS
CHULITNA
TALKEET
TRAPPER
SUNSHINE
MONTANA
SHEEP
KASHtHT
LWILLOW
WILLOW
DESHKA
SU STA
PRE-
12449.1
12929.2
13340.2
1:S702.1
13823.4
25768.0
31786.3
31886.3
32104.2
33241.7
34201.5
35765.6
36654.3
37756.3
40529.0
67651."7
POST-
9603.0
10083.1
10494.2
10356.3
10977.4
22921.9
28940.2
29040.2
29258.2
:so::s<J5. 7
31355.5
32?19.6
33808.2
34<J10.2
37682.9
64805.6
AI•DITIONAL STATISTICS
COEF. OF VARIAl.
LOCATION PRE-POST-
A! CHANGE
-22.9
-21.3
··20. 8
-20.6
··11. 0
-9.0
··8. 9
-8.9
--8. 6
-8.3
-·8. 0
-7.8
-·7. 5
-7.0
-4.:2
PRE-
3613.9
3'793.2
3950.6
4043.0
4074.0
70<J8.0
8835.8
8863.6
8924.2
<J021.0
9114.8
9290.7
9402.9
9553.6
9986.2
1666"7.4
SKEW COEFFICIENTS
PRE-POST-
POST-
2331.7
2397.6
2469.3
251;-s.5
2529.0
5116.6
6815.0
6840.6
6896.3
7018.5
?136.5
7356.4
7495.5
7681.4
820/.7
15638.2
EXCESS COEFFICIENTS
PRE-F'UST-------------------------------------------------------------------·--D.c. I•AI1 .2<JO .243 .282 1.<J67 -.448 3.010
PORTAGE .293 .238 .295 2.088 -. 46"1 :5.435
INDIAN .2<J6 .235 .307 2.145 -.482 3.692
CURRY .295 .232 .307 2.142 -.489 3.747
WH I Si\ERS .2<J5 .230 .307 2.139 -.491 3.760
CHULITNA .275 .236 .654 1.820 .577 4.905
TALKEET .218 .235 .613 1.3:25 .3:::17 2.868
TRAPPER .278 .236 .613 1.322 .35/ 2.855
SUNSHINE • 2;}8 .236 .613 1.::514 .357 2.827
MONTANA .271 .231 .598 1.313 .375 2.891
SHEEP .267 .228 .!582 1.302 .383 2.909
KASHWIT .260 .223 .551 1.266 .381 2.873
LWILLOW .2!3/ .222 .532 1.238 .372 2.822
WILLOW .253 .220 .507 1. 1 9"7 .354 2.733
DESHKA .246 .218 4441 L079 .:278 2.421
su STA .246 .241 .119 .375 -.528 .126
D-12
APPENDIX E
MONTHLY FLOW PROFILES FOR NATURAL AND TWO-DAM
OPERATIONAL CONDITIONS
FLOW PROFILES --2 DAM SCENARIO
OCTOBER
FLOW CCFSJ
4~300
PR£PROJECT
36~00
321lrul
POSTPROJECT
28003
·--24003
23003
16003
12illlll
831l3
4003
3
2llll 1Bil 168 143 121l . IW 8ll 43 2ll
DISTANCE Olll
FLOW PROFILES --2 DAM SCENARIO
OOVEMBER
FLDV CCFSJ
400i!B
PR£PROJECT
llllOO ~
32IHl 1-
POSTPROJECT
28IBl 1-
--24300 ~
2llllOO 1-'
I
16800 1-/ ---/" --
121!00 1-I ., ----..
BIBl
40011
g
1-.....
"' ! ..:.! ;:;
" "' " I " " " " 1-§ u ... " .... .. ,.., . ... .. M " "'
. ~ I I
0
1 I 6 I I I ~ "
181! 161l 14\l 121l 100 fill 2ll
DJST Alii OlD
E-1
FLOW PROFILES --2 DAM SCENARIO
!EIHBER
FLOV <O:Sl
<mlll
PREPROJECT
!Billlil I
161Bl I
POSTPROJECT ---141W
·--I 12008
~ --
1ll0011
80011
600il
., ....
4001l .....
"
2mB
9
2111 1!11 llil1 1-41! Ia! 100 Ill 68 al ll
DISTAIU Om
FLOW PROFILES --2 DAM SCENARIO
JAIIJARY
FLOV <CFSl
<mlll
PR£PROJECT
IB!l0B
I
16800
POSTPROJECT I
141l011 _../
--
12llll8 I
---
ll!ll0ll
!lOOil
6000
., ....
400il .....
"' ,; .,; ...
Ul
2IBl
ll
200 !Ill 168 14ll 121! 100 Ill 4ll 2ll
D!ST AIU om
E-2
FLOW PROFILES --2 DAM SCENARIO
FEBHUAAY
FLOV (CfSJ
211000
PREPROJECT
1BilBB 1-
16llllll -I
POSTPROJECT I
14BOO r-
./ ----.-/
12llllll r---I
!BBOO -----
BOOB r-'
BOOB 1-
., ...
4Baa
2llOO
-....
" ~ s ~ ..; ...
Ol "' "' ., ~ " " r-Ol u I ~ " ~ ...
"' .... ... ~ " ~ I 8 I a ::l
I I I I I "'I
2llll 1Bil 1611 141! 1211 IllS 811 61!• 40 211 B
DISThtii om
FLOW PROFILES --2 DAM SCENARIO
HAROi
FLOV (CfSl
211~~0
PREPROJECT
18009
161l00
POST PROJECT
14000 I
--I l2ll00 -_,-
100110 I
----
60011
., ...
4BOO ....
" ;:; ..; "'
200il
B
2llll 180 1611 !4B 1211 IllS 80 49 211
DIST.oc£ om
E-3
200 . !Bil Ifill 14B . 121l !Ill 2ll
msrAili om
E-4
FLOW PROFILES --2 DAM SCENARIO
Jt.tf
FLOW (CfS)
151lllllll
PREPROJECT
13SilllB
12llllllll
POSTPROJECT
11l51lll1'1 I
·--
!llllOO I
7Silllll
6lliB! r --45001l r -
.. I ...
3lliBI ....
"' '" a -"' ,.; '-'
"' ..
f
{f)
"' " 15111!ll ... u
II
2lll 100 1611 1411 1211 11lll 00 611· 411 2ll
DISTA!a <Mil
FLOW PROFILES --2 DAM SCENARIO
JULY
FLOV <CFSJ
15ZIIIl0
PREPROJECT
135000
/ 12llllllll
POST PROJECT
10500B
. --
90000 I
75llllll I
/
600011
451l00
311001!
15000
ll
2llB !!Ill 1611 1411 121! 100 8ll 6ll 4B 2ll
DISTI.NCE om
E-5
FLOW PROFILES ~-2 DAM SCENARIO
ALGJST
FLOV <CFSl
15lmOO
PREPROJECT
1350011
12llllllll
POSTPROJECT
105Wil I
---I !mlll
1500ll I
Sll008
45000
llilllll
15000
B
21liJ 1811 161l 141l : 121! 100 Ill 6ll 2ll
DISTAl(£ <Mil
FLOW PROFILES --2 DAM SCENARIO
SEPTEMBER
FLOW <CFSl
1520011
PREPROJECT
13Silllll
121l1Ul
POST PROJECT
lllSilllB
·--9llOOil
75001!
6001!1! 1
45000
3110011
1Silllll
B
21liJ Ill! 1611 141l 121! !Ill! Ill 6ll 4B 2ll
DISTAIU <Mil
E-6
APPENDIX F
NATURAL RIVER TEMPERATURE PROFILES FOR
NORMAL AND EXTREME CONDITIONS
Minimum
1970
Mean
1983
Maximum
1977
Minimu111
1970
Mean
1980
Maximum
1977
SUSITNA WATER TEMPERATURES, JUNE
Natural Conditions
TEMPERATURE (C)
20
15 ~
·---t.__.-·~.-. ~.--,.-·-"L-.----·-·· -c. -·-1
r-L.J·--·-
---o::., ---,_ "'""--___, ~ _,_ -"----·--~ ---
~
5 ~
<'
0 -"' "' >. "' <11 c QJ .. .... .. QJ ... " ., ..... Uu u .... " "' .,.., ..... "' "" "' ., ..... .... e .,.., ..... " "' "' > e 0 "'"' "' "' '"' "' u
I ' I . '?"' I I ! I I I
190 180 170 150 150 140 130 120 ll0 93 80
DISTANCE CMl
SUSITNA WATER TEMPERATURES. JULY
Natural CondJtions
TEl~ PER~ TURE (Cl
20
15 r-
10 ~
r-
<'
"' 0 -"' "' <11
"' c " "' .... "' "' ... " uu u .,.,.., .... .... " ., ..... "' ., .,..,
n1 ..... .... e .,.., ..... " n1"' > s 0 "' "'"' ""' '"' u
I I I I"' I I I I I I
190 180 170 150 150 140 130 120 110 100 90 80
OISHNCE (J.IJ
F-1
SUSITNA WATER TEMPERATURES, AUGUST
Natural Conditions
TEMPERATURE CD
2ll
Minimum
19?~
Mean
15 -
198~
1977 I~
--·--·--·j
--·-·---·--·-· -·=·----L-·-~· -----~ t--
f-
" ..; 0 ... "' .,
" " ., ~ ... " ., .. "' .... uu u ... " " .... ....
" '""'"' "' '""' ... 8 .... ,.., .E ""' ~ ~ 0
"'"' '-' u
I I I ~"' I I I I I I
!
19~ IB~ 16~ IS~ 140 130 120 110 100 90
DISTANCE <Ml
SUSITNA WATER TEMPERATURES, SEPTEMBER
Naturol Conditions,
TEMPERATURE (Cl
21!1
Minimum
197~
Mean
!5 r-
!98~
·--
Maximum
1977 10 1-
·--·--
==·=·=·=·=·=-·=·-::::=·=·-==·-==·-==·\_.=:
5 1-
" 0 ... ..; "' '" ., " " " " ... " ... " .... U+J u " ""' .... ...
" ...... "' ., .,., .. ~-•...! .... ....
" :> 8 0
,
;:. "' ., "' '-' -"
I I I 'I"' I I I I I
u
I
190 180 170 16~ !50 140 13~ 120 110 80
DISTANCE <Ml
F-2