HomeMy WebLinkAboutAPA356aAlaskaResourcesLibrary&InformationSerVicesAnchorage,Alaska
DATEDUEI'<l.f';uA""1t,;5)JAIillV""~1111no'1"........n,",UL-r--Z;UlJJiiiiHIGHSMITH45-220
ACRESAMERICANINCORPORATED1577CStreetSuite305Anchorage,Alaska99501Telephone:(907)279-9631TKt4;lSALASKAPOvlERAUTHORITYSUSITNAHYDROELECTRICPROJECTTASK6 -DEVELOPMENTSELECTIONSUBTASK6.05DEVELOPMENTSELECTIONREPORTAPPENDICESATHROUGHJDECEMBER1981ACRESAMERICANINCORPORATED1000LibertyBankBuildingMainatCourtBuffalo,NewYork14202Telephone:(716)853-7525
ALASKAPOWERAUTHORITYSUSITNAHYDROELECTRICPROJECTSUSITNABASINDEVELOPMENTSELECTIONVOLUMEII-APPENDICESATHROUGHJTABLEOFCONTENTSLISTOFTABLESiiiLISTOFFIGURESviiiA-GENERICPLANFORMULATIONANDSELECTIONMETHODOLOGYA.1-PlanFormulationandSelectionMethodologyA-2A.2-GuidelinesforEstablishingScreeningandEvaluationCriteriaA-2A.3-PlanSelectionProcedureA-5B -THERMALGENERATINGRESOURCESB.1-FuelAvailabilityandCostsB-1B.2-ThermalGeneratingOptions-CharacteristicsandCostsB-7B.3-EnvironmentalConsiderationsB-16C -ALTERNATIVEHYDROGENERATINGSOURCESC.1-AssessmentofHydroAlternativesC-1C.2-ScreeningofCandidateSitesC-1D-ENGINEERINGLAYOUTDESIGNASSUMPTIONSD.1-ApproachtoProjectDefinitionStudiesD-1D.2-ElectricalSystemConsiderationsD-1D.3-GeotechnicalConsiderationsD-2D.4-HydrologicandHydraulicConsiderationsD-3D.5-EngineeringLayoutConsiderationsD-3D.6-MechanicalEquipmentD-3D.7-ElectricalEquipmentD-40.8-EnvironmentalConsiderationsD-4E -SUSITNABASINSCREENINGMODELE.1-ScreeningModelE-1E.2-ModelComponentsE-2E.3-ApplicationoftheScreeningModelE-3E.4-InputDataE-3E.5-ModelRunsandResultsE-4i
ALASKAPOWERAUTHORITYSUSITNAHYDROELECTRICPROJECTSUSITNABASINDEVELOPMENTSELECTIONVOLUMEII-APPENDICESATHROUGHJTABLEOFCONTENTS(Cont'd.)F -SINGLEANDMULTI-RESERVOIRHYDROPOWERSIMULATIONSTUDIESF.l-IntroductionF-lF.2-SingleReservoirModel•.....•............................F-lF.3-Multi-ReservoirSimulation........•..................•.•.F-3F.4-AnnualDemandFactorF-3F.5-InputtoSimulationModelsF-4F.6-ModelResultsF-5F.7-InteractionofOGP5F-6G-SYSTEMWIDEECONOMICEVALUATIONG.l-Introduction..•....•.....................................G-lG.2-GenerationPlanningModelsG-2G.3-GenerationPlanningResults...........................•..G-8H-ENGINEERINGSTUDIESH.1-Dev;1CanyonSiteH-lH.2-WatanaSiteH-5I -ENVIRONMENTALSTUDIES1.1-Summary.......................•..........................I-I1.2-TESReport1-3J -AGENCYANDOTHERCOMMENTSJ.l-ResponsestoAEIDCComments•..•......•...................J-lJ.2-ResponsestoADF&GComments..............•...............J-2J.3-ResponsetoUSGSCommentsJ-2J.4-ResponsetoUSNPSCommentsJ-2J.5-ResponsetoADECComments............•...................J-2; ;
LISTOFTABLESA.lA.2A.3A.4B.lB.2B.3B.4B.5B.6B.7B.8B.9B.10B.11B.12B.13B.14B.15C.lC.2Step2 -SelectCandidatesStep3 -Screening ProcessStep5 -PlanEvaluationandSelectionExamplesofPlanFormulationandSelectionMethodologyAlaskanRailbeltCoalDataAlaskanGasFieldsAlaskanOilFieldsAlaskanRailbeltFuelPrices(1980)SummaryofAlaskanFuelOpportunityValuesGeneratingUnitsWithintheRailbelt-1980ExistingGeneratingCapacityintheRailbeltRegion1000MWCoal-FiredSteamPlantCostEstimate-Lower48500MWCoalFiredSteamCostEstimates250MWCoal-FiredSteamCostEstimates100MWCoal-FiredSteamCostEstimates250MWCombinedCyclePlantCostEstimatesSummaryofThermalGeneratingResourcePlantParamatersGasTurbineTurnkeyCostEstimateGas75MWGasTurbineCostEstimateSummaryofResultsofScreeningProcessSitesEliminatedinSecondIterationiii
LISTOFTABLES(Cont.)C.3C.4C.5C.6C.7C.8C.9C.10C.llC.12C.l3C.14C.15C.16C.17C.18C.19C.20C.210.10.20.3EvaluationCirteriaSensitivityScalingSensitivityScalingofEvaluationCriteriaSiteEvaluationsSiteEvaluationMatrixCriteriaWeightAdjustmentsSiteCapacityGroupsRankingResultsShortlistedSitesPreliminaryCostEstimate-SnowPreliminaryCostEstimate-KeetnaPreliminaryCostEstimate-CachePreliminaryCostEstimate-BrownePreliminaryCostEstimate-Talkeetna- 2PreliminaryCostEstimate-HicksPreliminaryCostEstimate-ChakachamnaOperatingandEconomicParametersforSelectedHydroelectricPlantsAlternativeHydroDevelopmentPlansResultsofEconomicAnalysesofAlternativeGenerationScenariosMonthlyVariationsofEnergyandPeakPowerDemandGeotechnicalDesignConsiderationsInitialHydrologicDesignConsiderationsiv
LISTOFTABLES(Cont.)0.40.50.60.70.80.90.10E.lE.2E.3E.4E.5E.6E.7E.8F.lF.2F.3F.4F.5F.6F.7RevisedDesignFloodFlowsforCombinedDevelopmentSiteSpecificHydraulicDesignConsiderationsGeneralHydraulicDesignConsiderationsPreliminaryFreeboardRequirementExampleCalculationofFreeboardRequirementatDevilCanyonEngineeringLayoutConsiderationsasSingleDevelopmentsTentativeEnvironmentalFlowConstraintsComputedStreamflowatDevilCanyonComputedStreamflowatHighDevilCanyonComputedStreamflowatWatanaComputedStreamflowatSusitna3ComputedStreamflowatVeeComputedStreamflowatMaclarenComputedStreamflowatDenaliResultsofScreeningModelReservoirandFlowConstraintsDamSiteStreamflowRelationshipSusitnaDevelopmentPlansSusitnaEnvironmentalDevelopmentPlansPlan1.1-EnergiesPlan1.2-EnergiesPlan1.3-Energiesv
LISTOFTABLES(Cont.)F.8F.9F.10F.llF.12F.13F.14F.15G.lG.2G.3G.4G.5G.6G.?G.8G.gG.10Plan2.1-EnergiesPlan2.2-EnergiesPlans2.3andE.213-EnergiesPlan3.1-EnergiesPlan4,1-EnergiesPlanEl.2-EnergiesPlanEl.3-EnergiesPlanE2.4-EnergiesSalientFeaturesofGenerationPlanningProgramsRailbeltRegionLoadandEnergyForecastsUsedForGenerationPlanningStudiesLoadsandProbabilitiesUsedinGenerationPlanningFuelCostsandEscalationRatesAnnualFixedCarryingChargesUsedinGenerationPlanningModelTenYearBaseGenerationPlanMediumLoadForecast.SusitnaEnvironmentalDevelopmentPlansResultsofEconomicAnalysesofSusitnaPlans-MediumLoadForecastResultsofEconomicAnalysesofSusitnaPlans-LowandHighLoadForecastsResultsofEconomicSensitivityAnalysesforGenerationScenarioIncorporatingSusitnaBasinDevelopmentPlanEl.3-MediumForecastvi
LISTOFTABLES(Cont.)G.llG.12I.lI.2I.3ResultsofEconomicAnalysesofAlternativeGenerationScenariosResultsofEconomicAnalysesforGenerationScenarioIncorporatingThermalDevelopmentPlan-MediumForecastEnvironmentalEvaluationofDevilCanyonDamandTunnelSchemeSocialEvaluationofSusitnaBasinDevelopmentSchemes/Plans.EnvironmentalEvaluationofWatana/DevilCanyonandHighDevilCanyon/VeeDevelopmentPlansvii
LISTOFFIGURESA.lC.1C.2C.3C.4C.5C.6C.7C.8C.9C.10C.11LlL2L3L4F.1G.lH.lH.2H.3H.4PlanFormulationandSelectionMethodologySelectedAlternativeHydroelectricSitesAlternativeHydroSitesTypicalDamSectionAlternativeHydroSitesSnowAlternativeHydroSitesKeetnaAlternativeHydroSitesCacheAlternativeHydroSitesBrowneAlternativeHydroSitesTalkeetna2AlternativeHydroSitesHicksAlternativeHydroSitesChakachamnaAlternativeHydroSitesChakachamna-ProfileandSectionsGenerationScenarioIncorporatingThermalandAlternativeHydropowerDevelopments-MediumLoadForecastDamsiteCostvsReservoirStorageCurvesDamsiteCostvsReservoirStorageCurvesDamsiteCostvsReservoirStorageCurvesMutuallyExclusiveDevelopmentAlternatives1995Month/AnnualPeakLoadRatiosEnergyForecastsUsedForGenerationPlanningStudiesDevilCanyonArchGravityDamSchemePlanandSections-GeneralArrangementDevilCanyonArchGravityDamSchemeSectionsWatanaArchDamGeometry-GeneralArrangementWatanaArchDamGeometry-SectionsAlongPlanesofCentersviii
APPENDIXA -GENERICPLANFORMULATIONANDSELECTIONMETHODOLOGYOnnumerousoccasionsduringthefeasibilitystudiesfortheSusitnaHydro-electricProject,decisionsmustbemadeinwhichasingleorasmallnumberofcoursesofactionareselectedfromalargernumberofpossiblealternatives.Thisappendixpresentsageneralizedframeworkforthisdecision-makingprocessthathasbeendevelopedfortheSusitnaplanningstudies.Itoutlines,ingen-eralterms,theapproachusedinscreeningalargemultitudeofoptionsandfinallyestablishingthebestoptionorplan.Itiscomprehensiveinthatitakesintoaccountnotjusteconomicaspectsbutalsoabroadrangeofenvironmentalandsocialfactors.TheapplicationofthisgeneralizedmethodologyisparticularlyrelevanttothefollowingdecisionstobemadeduringtheSusitnastudies:-Selectionofalternativeplansinvolvingthermaland/ornon-Susitnahydro-electricdevelopmentsintheprimaryassessmentoftheeconomicfeasibilityofthe SusitnaBasindevelopmentplan(Task6).-SelectionofthepreferredSusitnaBasinhydroelectricdevelopmentplan(i.e.identificationofbestcombinationofdamsitestobedeveloped)(Task6).-SelectionofthepreferredRailbeltgenerationexpansionplan(i.e.comparisonofRailbeltplanswithandwithoutSusitna).-OptimizationoftheselectedSusitnaBasindevelopmentplan(i.e.determiningthebestdamheights,installedcapacities,andstagingsequences)(Task6).-Selectionofthepreferredtransmissionlineroutes(Task8).-Selectionofthepreferredmodeofaccessandaccessroutes(Task2).-Selectionofthepreferredlocationandsizeofconstructionandoperationalcampfacilities(Task2).Itisrecognizedthattheaboveplanningactivitiesembraceaverydiversesetdecision-makingprocesses.Thegeneralizedmethodologyoutlinedherehasbeencarefullydevelopedtobeflexibleandreadilyadaptabletoarangeofob-jectivesanddataavailabilityassociatedwitheachdecision.Thefollowingsectionsbrieflyoutlinetheoveralldecision-makingprocessanddiscusstheguidelinestobeusedforestablishingscreeningandevaluationcriteria.A-l
A.l-PlanFormulationandSelectionMethodologyThemethodologytobeusedinthedecisionprocesscangenerallybesubdividedintofivebasicsteps(FigureA.l):-Step1:Determinebasicobjectivesoftheplannedcourseofaction-Step2:Identifyallfeasiblecandidatecoursesofaction-Step3:Establishabasistobeusedandperformscreeningofcandidates-Step4:Formulateplansincorporatingpreferredalternatives-Step5:Re-establishabasistobeused,evaluateplansandselectpreferredplanUnderStep2,thecandidatecoursesofactionareidentifiedsuchthattheysat-isfy,eitherindividuallyorincombinations,thestatedobjectives(TableAI).InStep3,thebasisofscreeningthesecandidatesisestablishedinitemsofredefined,specificobjectives,assumptions,database,criteriaandmethodol-ogy.Thisprocessfollowsasub-seriesofsevenstepsasshowninTableA.2toproduceashortlist,ideallyofnomorethanfiveorsixpreferredalterna-tives.PlansarethenformulatedinStep4toincorporatesinglealternativesorappropriatecombinationsofalternatives.TheseplansarethenevaluatedinStep5,usingafurtherredefinedsetofobjectives,criteriaandmethodology,toarriveataselectedplan.ThissixstepprocedureisillustratedinTableA.3.TablesA.2andA.3alsoindicatethereviewprocessthatmustaccompanytheplanningprocess.Itisimportantthat,withintheplanformulationandselectionmethodology,theobjectivesofeachphaseofthedecisionprocessberedefinedasnecessary.Attheoutsettheobjectiveswillbebroadandsomewhatgeneralinnature.Astheprocesscontinues,therewillbeatleasttworedefinitionsofobjectives.ThefirstwilltakeplaceduringStep3andthesecondduringStep5.Asanexample,thebasicobjectivesatStep1mightbethedevelopmentandapplicatiorofanappropriateprocedureforselectionofasingle,preferredcourseofaction.Step2mightinvolvetheselectionofthosecandidateswhicharetechnicallyfeasibleonthebasisofadefineddatabaseandsetofassumptions.TheobjectivesatStep3mightbetheestablishmentandapplicationofadefinecsetofcriteriaforeliminationofthosecandidateswhicharelessacceptablefromaneconomicalandenvironmentalstandpoint.Thiswouldbeaccomplishedonthebasisofanappropriatelymodifieddatabaseandassumptions.Havingdevelopedaseriesofplansincorporatingtheremainingorpreferredalterna-tivesunderStep4,theobjectivesunderStep5mightbetheselectionofthesinglealternativewhichbestsatisfiesanappropriatelyredefinedsetofcriteriaforeconomic,environmentalandsocialacceptability.A.2-GuidelinesforEstablishingScreeningandEvaluationCriteriaThedefinitionofcriteriaforthescreeningandevaluationprocedureswilllargelydependontheprecisenatureofthealternativesunderconsideration.However,inmostcasescomparisonswillbebasedontechnical,economic,environmentalandsocioeconomicfactorswhichwillusuallyinvolvesomedegreeoftrade-offinmakingapreferredselection.Itisusuallynotpossibletoadequatelyquantifysuchtrade-offs.A-2
tionalcriteriamayalsobeseparatelyconsideredinsomecases,suchasorconservationofnaturalresources.Guidelinesforconsiderationofmorecommonoverallfactorsare discussedinthefollowingparagraphs.TechnicalFeasibilityBasically,alloptionsconsideredmustbetechnicallyfeasible,completewithinthemselves,andmustensurepublicsafety.Theymustbeadequatelydesignedtocopewithallpossibleconditionsincludingfloodflows,seis-micevents,andallothertypesofnormalloadingconditions.EconomicCriteriaIncaseswhereaspecificeconomicobjectivecanbemetbyvariousalterna-tiveplans,thecriteriatobeusedistheleastpresentworthcost.Forexample,thiswouldapplytotheevaluationofthevariousRailbeltpowergenerationscenarios,optimizingSusitnaBasinhydroelectricdevelopments,andselectionofthebesttransmissionandaccessroutes.Incaseswherescreeningofalargenumberofoptionsistobecarriedout,unitcommoditycostscanbeusedasabasisofcomparison.Forinstance,energycostin$/kwhwouldapplytoscreeninganumberofhydroelectricdevelopmentsitesdistributedthroughoutsouthernAlaska.Similarilythescreeningofalternativeaccessortransmissionlineroutesegmentswouldbebasedona$/milecomparison.BecausetheSusitnaBasindevelopmentisastateproject,economicparametersaretobeusedforallanalyses.Thisimpliestheuseofreal(inflationadjusted)interestratesandonlythedifferentialescalationratesaboveorbelowtherateofgeneralpriceinflation.Intra-statetransferpaymentssuchastaxesandsubsidiesareexcluded,andopportunityvalues(orshadowprices)areusedtoestablishparameterssuchasfuelandtransportationcosts.Extensiveuseshouldalsobemadeofsensitivityanalysestoensurethattheconclusionsbasedoneconomicsarevalid forarangeofthevaluesofparametersused.Forexample,someofthemorecommonparametersconsid-eredincomparisonsofalternativegenerationplansparticularlylendthemselvestosensitivityanalyses.Thesemayinclude:-Loadforecasts-Fuelcosts-Fuelcostescalationrates-Interestanddiscountrates-Economiclifeofsystemcomponents-CapitalcostofsystemcomponentsA-3
(c)EnvironmentalCriteriaEnvironmentalcriteriatobeconsideredincomparisonsofalternativesarebasedontheFERC(1)requirementsforthepreparationoftheExhibitE"EnvironmentalReport"tobesubmittedaspartofthelicenseapplicationfortheproject.Thesecriteriaincludeprojectimpactson:-Physicalresources,air,waterandland-Biologicalresources,flora,faunaandtheirassociatedhabitats-Historicalandculturalresources-LanduseandaestheticvaluesInadditiontotheabovecriteria,whichareusedforcomparingorrankingalternatives,thefollowingeconomicaspectsshouldalsobeincorporatedinthebasicalternativesbeingstudied:-Indevelopingthealternativeconceptsorplans,measuresshouldbein-corporatedtominimizeorprecludethepossibilityofundesirableandirreversiblechangestothenaturalenvironment.-Effortsshouldalsobemadetoincorporatemeasureswhichenhancethequalityaspectsofwater,landandair.Careshouldbetakenwhenincorporatingtheaboveaspectsinthealterna-tivesbeingscreenedorevaluatedtoensureconsistencybetweenalterna-tives,i.e.thatallalternativesincorporatethesamedegreeofmitiga-tion.Asanexample,thesemeasurescouldincludereservoiroperationalconstraintstominimizeenvironmentalimpact,incorporationofairqualitycontrolmeasuresforthermalgeneratingstations,andadoptionofaccessroadandtransmissionlinedesignstandardsandconstructiontechniqueswhichminimizeimpactonterrestrialandaquatichabitat.(d)SocioeconomicCriteriaBasedgenerallyonFERCrequirements,theprojectimpactassessmentshouldbeconsideredintermsofsocioeconomiccriteriawhichinclude:-ImpactonlocalcommunitiesandtheavailabilityofpUblicfacilitiesandservices-Impactofemploymentontaxandpropertyvalues-Displacementofpeople,businessesandfarms-DisruptionofdesirablecommunityandregionalgrowthA-4
A.3-PlanSelectionProcedureAsnotedabove,foreachsuccessivescreeningexercise,thecriteriacanberefinedormodifiedinordertoreduceorincreasethenumberofalternativesbeingconsidered.Asageneralrule,noattemptwillbemadetoascribenumeri-calvaluestonon-quantifiableattributessuchasenvironmentalandsocialimpactsinordertoarriveatanoverallnumericalevaluation.Suchaprocesstendstomaskthejudgementaltradeoffsthataremadeinarrivingatthebestplan.Theadoptedapproachinvolvesutilizingcombinationsofbothquantifiableandqualitativeparametersinthescreeningexercisewithoutmakingtradeoffs.Forexample,thescreeningcriteriausedmightbe:-II•••alternativeswillbeexcludedfromfurtherconsiderationiftheirunitcostsexceedXand/oriftheyarejudgedtohaveasevereimpactonwildlifehabitat...IIThisapproachispreferabletocriteriawhichmightstate:-II•••alternativeswillbeexcludedifthesumoftheirunitcostindexplustheenvironmentalimpactindexexceedsY...11Nevertheless,itisrecognizedthatundercertaincircumstances,particularlywherearelativelylargenumberofverydiversealternativesmustbescreenedveryquickly,thelatterquantitativeapproachmayhavetobeused.Inthefinalplanevaluationstages,carewillbetakentoensurethatalltradeoffsthathavetobemadebetweenthedifferentquantitativeandqualita-tiveparametersused,areclearlyhighlighted.Thiswillfacilitatearapidfocusonthekeyaspectsinthedecision-makingprocess.Anexampleofsuchanevaluationresultmightbe:-II•••PlanAissuperiortoPlanB.Itis$XmoreeconomicandthisbenefitisjudgedtooutweighthelowerenvironmentalimpactassociatedwithPlanB...11SufficientdetailedinformationshouldbepresentedtoallowareviewertomakeanindependentassessmentofthejUdgementaltradeoffsmade.Theapplicationofthisprocedureintheevaluationstageisfacilitatedbyperformingtheevaluationsforpairedalternativesonly.Forexample,iftheshortlistplansareA,B,andC,thenintheevaluationPlanAisfirstevalu-atedagainstPlanB,thenthebetterofthesetwoisevaluatedagainstCtoselectthebestoverallplan.A-5
LISTOFREFERENCES(1)CodeofFederalRegulations-Title18;Parts2,4,5,16and131.A-6
TABLEA.1-STEP2 -SELECTCANDIDATESStep2.1-Identificationofcandidates:-objectives-assumptions-database-selectioncriteria-selectionmethodologyStep2.2-ListanddescribecandidatesthatwillbeusedinStep3.TABLEA.2-STEP3 -SCREENINGPROCESSStep3.1-Establish:-objectives-assumptions-database-screeningcriteria-screeningmethodologyStep3.2-Screencandidates,usingmethodologyestablishedinStep3.1toconductscreeningofalternatives.Step3.3-Identifyanyremainingindividualalternatives(orcombinationsofalternatives)thatsatisfytheobjectivesandmeetthecriteriaestablishedinStep3.1undertheassumptionsmade.Step3.4-Determinewhetherasufficientnumberofalternativesremaintoformulatealimitednumberofplans.Ifnot,additionalscreeningviaSteps3.1through3.3isrequired.Step3.5-Prepareinterimreport.Step3.6Reviewscreeningprocessvia(asappropriate):-Acres-APA-ExternalgroupsStep3.7-Reviseinterimreport.
TABLEA.3-STEP5 -PLANEVALUATIONANDSELECTIONStep5.1-Establish:-objectives-evaluationcriteria-evaluationmethodologyStep5.2-Establishdatarequirementsanddevelopdatabase.Step5.3-Proceedwiththeplanevaluationandselectionprocessasfollows:-Identifyplanmodificationstoimprovealternativeplans-Basedontheestablisheddatabaseandtheselectioncriteria,useapairedcomparisontechniquetoranktheplansas(1)thepreferr-edplan,(2)thesecondbestplan,and(3)otherplans;-Identifytradeoffsandassumptionsmadeinrankingtheplans.Step5.4-Preparedraftplanselectionreport.Step5.5-Reviewplanselectionprocessvia(asappropriate):-Acres-APA-ExternalgroupsStep5.6-Preparefinalplanselectionreport.
TABLE A.4 -EXAMPLES OF PLAN FORMULATION AND SELECTION METHODOLOGY
i~~-DeTrne-------T ..:>elect--.~4;.Plan
Activity Objectives Alternatives 3.Screen Formulation 5.Evaluation
Susitna Basin
Development
Selection
Access Route
Selection
Select best
Susitna Basin
hydropower
development
plan
Select best
access route
to the pro-
posed hydro-
power develop-
ment sites
within the
basin for
purposes of
construction
and operation
All alternative
dam sites in the
basin,e.g.:
Devil Canyon;
High Devil Canyon;
Watana
Susitna III;
Vee;
Maclaren;
Butte Creek;
Tyone;
Denali ;
Gold Creek;
Olson;
Devil Creek;
Tunnel Alternative
All alternative
road,rail,and
air transport
component links,
e.g.:
road and rail
links from Gold
Creek to sites
via north and
south routes;
Road links to
sites from Denali
Highway;
Screen out sites
which are too
small or are
known to have
severe environ-
ment al impacts
Screen out links
which are either
more costly or
have higher
environmental
impact than
equivalent
alternatives.
Ensure suffi-
cient links
remain to allow
formulation of
plans
Se lect several
combinations of
dams which have
the potential
for delivering
the lowest cost
ene rgy in the
basin,e.g.:
Watana-Devil
Canyon dams;
High Devil
Canyon-Vee dams;
Watana Dam -
Tunnel
Select several
different access
plans,e.g.:
Gold Creek road
access;
Gold Creek road/
rail access;
Dena li Highway
road access
Conduct detailed
evaluation of
development plans
Conduct detailed
evaluation of
development plans
Air links to
sites and associated
landing facilities
INPUT FROM AVAILABLE SOURCES -PREVIOUS AND CURRENT STUDIES
DEFINE
OBJECTIVES
SELECT
CANDIDATES
FEEDBACK
FEEDBACK
LEGEND
---'\STEP NUMBER IN
4 STANDARD PROCESS
(APPENDIX A )
PLAN FORMULATION AND SELECTION METHODOLOGY
FIGURE A.I iiJ
APPENDIXB -THERMALGENERATINGRESOURCESThepurposeofthisAppendixistodefinethethermalgeneratingresourcesavailabletotheRai1be1tduringthe1980-2010studyperiod.Toaddressthermalresources,itisnecessarytoreviewtheexistingthermalcapacity,fuelavail-abilityandassociatedcostsaswellasreviewfutureplantcapacitiesandcapi-talcostsfordevelopment.Todeveloptheparametersnecessaryforgeneration.planningstudies,itisalsonecessarytoassessoperationandmaintenancecosts,andplannedandforcedoutages.ThecontentsofthissectiondocumentthedatausedinthegenerationplanningstudiesdescribedinSections6and8.B.1-FuelAvailabilityandCostsFuelsourcesavailableintheRai1be1tregionforfutureelectricgenerationplantsareprimarilycoalandnaturalgas.Distillate,althoughnotexpectedtoplayamajorrole,isdiscussedbriefly.ItisunlikelythatoilwillbeusedastheprimaryfuelforadditionstothegenerationsystemintheRai1be1tduetopublicpolicyandhighvalueforotheruses.TablesB.1,B.2andB.3summar-izeestimatedfuelreserves.TableB.4listscurrent(1980)fuelpricesintheRai1be1tregion.TableB.5summarizesthedevelopedfuelcostswhichrepresentopportunity(shadow)values,assumingactiveinternationalmarketingofAlaskanfuels,asdiscussedinthefollowingsections.(a)CoalAlaskancoalreservesincludethefollowingcoalproducingfields(2):-Nenana-Matanuska-Beluga-Kenai-BeringRiver-HerendeenBay-ChignikBayOftheseeightregions,onlyfourhavepotentialforRai1be1tuse.TableB.1listspertinentinformationofthesefourcoalreserves.TheBelugafield,whichispartofthelargerSusitnaCoalDistrict,isanundevelopedsourcelocated45to60mileswestofAnchorageonthewestbankofCookInlet.Coalminingatthislocationwouldrequiretheestab-lishmentofaminingoperation,transportationsystemandsupportingcom-munityandinfrastructure.AnumberofstudieshavebeenconductedonthereserveslocatedintheBelugaCoalFields.Ithasbeenestimatedthatthreeareas(theCapps,ChuitnaandThreeMilefields)contain2.4billiontonsofcoalandthatinexcessof400milliontonscanbestrippedwithoutexceedingeconomiclimitsoncoal/overburdenratios.TheexistingNenanacoalfield,whichislocatedinthevicinityofFair-banks,isprimarilyleasedbyUsibelliCoalMineIncorporated.Thefieldrangesfromlessthanamiletomorethan30milesinwidthforabout80milesalongthenorthflankoftheAlaskaRange.Nenanacoalisprimarilyminedbysurfacemethods.Anestimated95milliontonsofcoalisavail-ablebystripping,andanestimatedtotalinexcessof2billionadditionaltonsofcoalcouldbeextractedbyundergroundmining.B-1
TheMatanuskacoalfields,eastofAnchorage,occupymostoftheMatanuskaValley.Althoughstrippingandundergroundminingofthissourcehavebeenundertaken,strippingislimitedduetorelativelysteepdipsandincreas-inglythickoverburden.Reservesareestimatedat50milliontons,andul-timateresourcevaluemaybe100milliontons.Althoughlimitedusageispossiblelocally,potentialasasignificantRailbeltsourceisunlikely(3).ThefourthpotentialcoalproducingregionistheKenaicoalfieldintheKenailowlands,southofTustumenaLakeontheeasternshoreofCookInlet.Resourcesareestimatedat300milliontons.Thesecoalseamsarethinandseparatedvertically,makingminingextremelydifficult.LimiteduseofcoalintheRailbeltatpresentisaresultofanundevelop-edexportmarketandtherelativelysmalllocaldemandforthisfuel.Cur-rentlytheUsibelliCoalCompanyminesNenanacoalatafacilitylocatedinHealyandproducesapproximately0.7milliontons/year.Thiscoalrepre-sentstheonlymajorcommercialcoaloperationinAlaska.Thecoalistruckedseveralmilesfromtheminesitetoa25MWpowerplantownedandoperatedbytheGoldenValleyElectricAssociation(GVEA)atHealy.Thedeliveredcostisapproximately$1.25permillionBtu(MMBtu).TheNenanacoalisalsotrucked8-1/2milestoarailwayspurloadingstationatSusitanafortransporttoFairbanks,adistanceof111miles.ThiscoalisdeliveredtotheChenaStation(capacity29MW),ownedbyFairbanksMunici-palUtilitySystem(FMUS),atanextracostofapproximately$O.34/MMBtubringingthepricetoFMUSto$1.40/MMBtu.CoalminedatHealyisalsousedforgenerationinunitsatFortWainwrightArmybaseandtheUniver-sityofAlaskapowerplants.VariousproposalshavebeenmadeforexpandedproductionintheNenanacoalfieldwhichwouldnearlydoubletheproduction.InSeptember,1980,acontractbetweenJapanandtheownersoftheHealyoperationwassignedtotransportcoaltoSewardviatheAlaskanRailroadforbargingtoJapan.Detailsandcostsofthisproposalarenotavailableatthistime.Otherexpansionoptionsinclude:-EnlargetheHealygenerationplantto100MW(75MWaddition).ThiswasproposedjointlybyGVEAandFMUS.However,thelocationoftheHealyplant4.5milesfromMt.McKinleyNationalParkmayrestrictdevelopmentduetoincreasedcostsassociatedwithmeetingairqualitystandards.-ExpandtheFMUSChenagenerationplantorbuildanewjointFMUS/GVEAplantatFairbankstosupplydistrictheatandincreasedelectricpowercapability.TransportHealyminedcoalapproximately55milesnorthviatheAlaskaRailroadtoNenanaandbuilda100MWexpansionthere.However,accord-ingtoGVEAandFMUS,thisexpansionplanhasbeenpostponeddueinparttoslowingdemandgrowthandenvironmentalrestrictions.-TransportHealyminedcoalapproximately200milessouthviatheAlaskaRailroadtoAnchorageforutilizationinnew200or400MWcoal-firedplants.Thisoptionisthoughtpossible,buttheeconomicsofcoaltransportatthenecessarycapacityviatheexistingrailsystemisinquestion.DevelopmentatBelugamayalsoprecludethisoption.B-2
TwopotentialdevelopershaveauthorizedstudiesoftheBelugacoaldis-tricttodeterminetheeconomicsandfeasibilityofextensivedevelopment.Placer-AmexIncorporatedhasextensiveholdingsthroughouttheBelugadis-trictandBass-Hunt-WilsonVenturehasholdingsintheChuitnafield.(i)Placer-AmexHoldingsAnextensivestudyofthepotentialofthePlacer-Amexholdingswascompletedin1980bytheAlaskaDivisionofEnergyandPowerDevelop-ment(16).ThisreportsummarizesthepotentialofdevelopmentoftheCookInletRegioncoalfield.Severaloptionswereshowntoexistfordevelopment.ThefirstoptionwquldbedevelopmentbyBelugaCoalCompany(awhollyownedsubsidiaryofPlacer~AmexInc.)withinthenexttwoorthreeyears.However,sincemostoftheproposedprojectoutputisexported,theycannotbegininitiationuntilafirmmarketiscontractedforthecoal.Thesecondoptionistheconstructionofacoal-firedgeneratingplantbytheChugachElectricAssociation(CEA).Thisoptionisdependentupongovernmentmandatedrequestsforutilitiestoconvertfromnaturalgastocoal.TheCEAhascurrentlynofirmplanstoconstructsuchaplant.Basedonthesetwooptions,fourpossiblelevelsofdevelopmentatBelugaareconsideredandwereevaluatedinthe1980reportnotedabove.-Lowlevelofcoalminingtosupplylocalgeneratingfacilities.DevelopmentcouldoccuriftheCEAisrequiredbygovenmentmandatet~replacenaturalgasunitswithcoalunits.ThisscenariowouldrequiremoderatedevelopmentofaworkcampatBeluga,andwouldincludetwo200MWgeneratorsusingapproximately1.5milliontonsperyear.Constructionwouldbeduringtheperiod1980-1986.- Asufficientlylarge(atleastsixmilliontonsperyear(MMTPY))exportmarketisdevelopedandnogeneratingstationsareconstruc-ted.Thisfigureisconsideredtheminimumamountnecessaryforcosteffectiveexporting.Inthiscase,apermanentworkcampwouldbeestablishedsimilartothefirstscenario.Exportingwouldbeginin1990.-Two200MWcoal-firedgeneratingplantsandasixMMTPYcoalexport-ingfacilitycouldjustifythenecessaryfront-endcapitalinvest-menttoestablishapermanentcommunityatBeluga.Thiswouldalsoentailsecondaryeconomicdevelopment.-ThereisadistinctpossibilitythatnodevelopmentoftheBelugacoalfieldwilloccurbefore1990.Exportscenariosalsoincludebarging3500milestoJapanor2100milestoSanFranciscoandaslurrypipelineschemetothePacificNorthwest(28).SupplyingAnchoragewithcoalviaanewrailroadtiedoesnotappeartobeanoptionconsideredforthenearfuturedevel-opment(28).B-3
(ii)Bass-Hunt-WilsonHoldingsThestudyoftheBelugaCoalFieldpotentialattheBass-Hunt-Wilson(BHW)coalleasesintheChuitnaRiverFieldwascompletedbyBechtelCorporationinApril1980(27).Thisstudyresultedina7.7MMTPYeconomicexportproductionratewithnoconsiderationoflocalcoal-firedgeneratingdevelopments.PotentialexportmarketsforBelugacoalasdefinedintheprevioussectionincludetheentireLower48statesorCalifornia,PacificNorthwestandJapanmarkets.TheaveragemarketpriceforcoalinCaliforniaandthePacificNorthwestregion,asreportedinJune,1980totheU.S.DepartmentofEnergy,rangedfrom$1.55/MMBtuto$1.46/MMBtu.Thesepricesareslightlyhigherthantheaverageu.s.price.ThecostsoftransportingBelugaminedcoaltothePacificNorthwestortoCaliforniawereestimatedina1977Reporton"AlaskaCoalandthePacific."(2)ThesepriceswereestimatedandappearinTableB.5.TheBelugacoalstudiesdoneforPlacer-AmexandtheBass-Hunt-Wilsonven-turehaveresultedinopportunitycostsforcoalof$1.00-$1.33/MMBtu.Forpurposesofthisstudythevalueof$1.15/MMBtuwillbeusedforsuppliestofuturecoal-firedgeneratingplantsconstructedinAlaska(TableB.5).AreportissuedinDecember,1980byBattellePacificNorthwestLaboratory(50)analyzedmarketopportunitiesforBelugacoal.ResultsreportedinthisreportweregenerallyconsistentwithearlierBattelleandDOEstudies.(b)NaturalGasNaturalgasresourcesavailableorpotentiallyavailabletotheRailbeltregionincludetheNorthSlope(PrudhoeBay)reservesandtheCookInletreserves.InformationonthesereservesissummarizedinTableB.2.ThePrudhoeBayFieldcontainsthelargestaccumulationofoilandgaseverdiscoveredontheNorthAmericancontinent.Thein-placegasvolumesinthefieldareestimatedtobeinexcessof40trillioncubicfeet(Tcf).Withlossesconsidered,recoverablegasreservesareestimatedat29Tcf.GascanbemadeavailableforsalefromthePrudhoeBayFieldatarateofatleast2.0billioncubicfeetperday(Bcfd)andpossiblyslightlymorethan2.5Bcfd.Atthisrate,gasdeliveriescanbesustainedfor25to35years,dependingonthesalesrateandultimategasrecoveryefficiency.Duringthemid-seventies,threenaturalgastransportsystemswereproposedtomarketnaturalgasfromtheNorthSlopeFieldstotheLower48states.Twooverlandpipelineroutes(AlcanandArctic)andapipeline/LNGtanker(ElPaso)routewereconsidered.TheAlcanandArcticpipelineroutestraversedAlaskaandCanadaforsome4000to5000miles,terminatinginthecentralU.S.fordistributiontopointseastand/orwest.TheElPasoproposalinvolvedanoverlandpipelineroutethatwouldgenerallyfollowtheAlyeskaoilpipelineutilitycorridorforapproximately800miles.Aliquefactionplantwouldprocessapproximately37millioncubicmetersofB..A
gasperday.ThetransferstationwasproposedatPointGraviniasouthoftheValdezterminationpoint.Eleven165,000cubicmetercryogenictankerswouldtransporttheLNGtoPointConceptioninCaliforniaforregasification.Thestudiesnotedabovehaveconcludedwiththeinitiationofa4800mile,2.4Bcfd,Alaska-Canadanaturalgaspipelineproject,costingbetween$22and$40billion,expectedtobeoperationalby1984-1985.Thepipelineprojectpassesapproximately60milesnortheastofFairbanks.TheCookInletReserves(TableB.2)arerelativelysmallincomparisontotheNorthSlopereserves.Gasreservesareestimatedat4.2Tcfascom-paredto29TcfinPrudhoeBay.Ofthe4.2Tcf,approximately3.5Tcfisavailableforuse;theremainingreservesareconsideredshut-inatthistime.ThegasproductioncapabilityintheKenaiPeninsulaandCookInletregionfarexceedsdemand,asnomajortransportationsystemexiststoex-portmarkets.Asaresultofthissituation,thetwoAnchorageelectricutilitieshaveasupplyofnaturalgasataveryeconomicprice.ExportfacilitiesforCookInletnaturalgasincludeoneoperatingandonepro-posedLNGscheme.Thefacilityinoperation,theNikiskiterminal,ownedandoperatedbyPhillips-Marathon,islocatedontheeasternshoreofCookInlet.TwoLiberiancryogenictankerstransportLNGsome4000milestoJapan.Thevolumeproducedis185MMCFDwithrawnaturalgasrequirementsof70percentfromaplatforminCookInletand30percentfromexistingonshorefields.In1979,thePacificAlaskaLNGCompany(PALNG)proposedtoshipLNGtoCaliforniafromaterminaltobeconstructedatNikiskiontheKenaiPenin-sula.Thisplantwouldultimatelyprocessupto430MMCFDforshipmentviatwocryogenictankerstoLittleCojo(nearPointConception),California.TheFederalEnergyRegulatoryCommission(FERC)hasplacedariderontheprojectpermit,stipulatingthatin-placeandcommittedgasreservesmusttotal1.6Tcfbeforealicenseisgranted.10datePALNGestimates1.0Tcfisinplace.ThereisalsosomepotentialforagaslinespurtobeconstructedfromtheCookInletregionsome310milesnorthtointersectwiththeAlaska-CanadanaturalgaspipelineprojectinordertomarkettheCookInletgas.Thisconcepthasnotbeenextensivelystudiedbutcouldprovetobeaviablealternative.MarketsforPrudhoeBaygaswerenotconsideredindevelopingamarketpriceforRailbeltfuelalternativessinceanexistingmarketandtranspor-tationsystemhasbeendevelopedwiththeinceptionoftheAlaska-Canadapipelineproject.MarketsforCookInletgasincludetheLower48statesviatwotransporta-tionmodes:LNGtankersorapipelinespurconstructedfromAnchoragetoDeltaJunctionandintersectingwiththeAlaska-Canadapipeline.TheregulatedceilingmarketpricefornaturalgasonthewestcoastasreportedintheFederalRegister,DepartmentofEnergy,Tuesday,October27,1980was$4.89/MMBtuintheRegion10area(Washington,Oregon,California).TheaveragereportedU.S.pricewas$3.58/MMBtu.ShipmentofgastothesemarketsviatheLNGtankerschemeasproposedbyPALNGwas8-5
wasestimatedtocost$2.50/MMBtufortransportationandprocessing.Alternatively,thecostforshipmentviaa310-milepipelinespurfromCookInlettotheAl-Canpipelinewasestimated(basedoncostdataavailablefromthecurrentpipelineproject)tobe$1.97/MMBtu.ThisincludestheincrementalcostoftheAlaska-Canadapipeline($1.27/MMBtu)andthecostofthetapfromCookInlet($O.70/MMBtu).TableB.5liststheresultingAlaskanopportunityvaluesunderthesetwoassumptionsformarketsinRegion10andtheLower48states.ThecurrentJapanesemarketpricefornaturalgassalesfromtheNikiskiLNGprojectis$4.50to$4.65/MMBtu(46).BasedoninformationcollectedfromNikiski,transportationandprocessingcostswereestimatedtobe$3.00/MMBtu.ThisresultsinanAlaskanopportunityvalueof$1.50to$1.65/MMBtu.Theresultingpricesdevelopedintheseanalysesrangefrom$1.08to$2.92/MMBtu.Forpurposesofthisstudy$2.00/MMBtuwasadoptedastheopportunityvalueofnaturalgasinAlaska.(c)OilBoththeNorthSlopeandtheCookInletFieldshavesignificantquantitiesofoilresourcesasseeninTableB.3.NorthSlopereservesareestimatedat8375millionbarrels.OilreservesintheCookInletregionareesti-matedat198millionbarrels(14).Asof1979,thebulkofAlaskacrudeoilproduction(92.1percent)camefromPrudhoeBay,withtheremainderfromCookInlet.Netproductionin1979was1.4millionbarrelsperday(11).OilresourcesfromthePrudhoeBayfieldaretransportedviathe800miletrans-Alaskapipelineatarateof1.2millionbarrelsperday.Inexcessof600shipsperyeardeliveroilfromtheportofValdeztothewest,GulfandeastcoastsoftheU.S.Approximately2percent(or10millionbar-rels)ofthePrudhoeBaycrudeoilwasusedinAlaskarefineriesandalongthepipelineroutetopowerpumpstations(14).TheNorthPoleRefinery,located14milessoutheastofFairbanks,issupplied~thetr~ns-Alaskapipelineviaaspur.Refiningcapacityisaround25,000barrelsperdaywithhomeheatingoils,dieselandjetfuelstheprimaryproducts.MuchoftheinstalledgeneratingcapacityownedbyFairbanks·utilitiesisfueledbyoil.FMUShas38.2MWandGVEAhas186MWofoil-firedcapacity.Duetothehighcostofoil,theseutilitiesuseavailablecoal-firedcapacityasmuchaspossiblewithoilusedasstandbyandforpeakingpurposes.CrudeoilfromoffshoreandonshoreKenaioilfieldsisrefinedatKenai,primarilyforusein-state.ThermalgeneratingstationsinAnchoragerelyonoilasstandbyfuelonly.SincetheinstallationoftheAlyeskaoilpipeline,whichhasmadeAlaskanoilmarketable,theopportunitycostofoiltoAlaskahasbeentheexistingmarketprice.Contractsforoiltoutilitieshaverangedfrom$3.45/MMBtuto$4.01jMMBtuasreportedtoFERC.ForpurposesofthegenerationB-6
expansionstudy,whereoilisconsideredonlyavailableforstandbyunits,thepriceadoptedforuseis$4.00/MMBtu(TableB.5).B.2-ThermalGeneratingOptions-CharacteristicsandCostsTheanalysisofthermalgeneratingresourcesavailabletomeetfutureRailbeltneedsrequiresthedetaileddeterminationofexistinggeneratingcapacity,itsuse,conditionandplannedretirementpolicyinadditiontocommittedthermalplantexpansions.Ofthe943.6MWofexisting(1980)capacityintheRailbeltregion,95percentofcapacityreliesonfossilfuels(TableB.6).AsummaryofcapacitybyunittypeisgiveninTableB.7.ByfarthemostimportantthermalgeneratingresourcesavailabletotheRailbeltin1980,arethenaturalgas-firedgasturbinesintheAnchorage/CookInletre-gion(TableB.7).TherecenttrendofbothAnchorageMunicipalLightandPowerDepartment(AMLPD)andtheCEAhasbeentomeetfuturegeneratingneedsusingcombinedcycleadditionstoexistinggasturbineunits.ThisongoingtrendisillustratedbytheanticipatedexpansionofCEA'ssystemwiththeBelugaNo.8unit(60MW)andthemostrecentAMLPDexpansionofunitNo.6attheirGeorgeM.SullivanPlant.TheseunitsallrelyonlocallycontractedCookInletnaturalgasforgeneration.Oil-firedgenerationbygasturbinesisgenerallyconfinedtotheFairbanksre-gionwithunitsownedandoperatedbyGVEAandFMUS.Inaddition,thesetwoutilitiesownandoperatethe54MWofcoal-firedsteamcapacityusingHealycoal.SmalldieselunitsareusedforpeakingandstandbyserviceintheFair-banksregion..Thecapitalcostsforfourdifferenttypesofthermalgeneratingplantsconsid-eredavailabletotheRailbeltregionwereestimated.Capitalcostestimatesforcoal-firedsteam,combinedcycle,gasturbinesanddieselsappearinTablesB.8toB.13.TableB.13summarizesthegenerationparametersnecessaryfortheproductioncostmodelinthegenerationplanningstudiesdescribedinSection8.Capitalcostsfornewfossil(coal)thermalplantalternativesareaninputtoanygenerationplanningstudy.Thedevelopmentofcapitalcostestimatesofhighaccuracygenerallyconsumessubstantialtimeandeffortforasingleplantdesignataspecifiedlocation.Thedevelopmentofdetailedcostestimatesfornumerousplanttypesatnon-specificlocationstobeselectedatsomefuturetimewouldbeaformidabletask.Theapproachtakeninthisstudyhasbeentodevelopgenericcoal-firedplantcostestimates,largelybaseduponpublishedLower48states'costdata,previousstudiesofAtaskanconstructioncostdif-ferentials,andrecentAlaskanconstructionexperiences.Gasturbinecombinedcycleanddieselplantsaretypicallymodularizedunits,withmajorcostvariationslargelytiedtospecifiedsiteconditionsorrestric-tions.Costsusedfortheseitemswerebasedonmanufacturersuppliedinforma-tionandpublishedbidinformationforunitstobeinstalledintheRailbeltre-gion.B-7
(a)Coal-FiredSteamAspreviouslymentionedtherearecurrentlyfourcoal-firedsteamplantsinoperation.The29MWChenaunitisoperatedbyFMUSandanother25MWplantisoperatedbyGVEAatHealy.Twomorecoalunits,withatotalcapacityof6MW,supplyFortWainwrightandtheUniversityofAlaskaatFairbankswithheatandelectricpower.ThesetwounitssupplyFMUSonacontractualbasis,whenavailable.AlloftheseplantsaresmallincomparisontonewelectricutilityunitstypicallyunderconsiderationintheLower48states.Up-to-datecostcomparisonsforpotentialnewinstallationsinAlaskawerethereforedifficult.Otherfactorsthathavebeenconsideredindevelopingcostsfornewinstal-lationsinclude:Large,newcoal-firedplantswillrequireextensiveemissioncontrolequipmenttomeetcurrentEPAemissionstandards-Largerplantsinvolvelongerconstructionperiods-Currenthighinterestandescalationrateshavedrivencostsofnewplantstomuchhigherlevelsthanpreviouslyexperienced(i)DeviationofPlantCostsBasedonprojectedAlaskanplantcapacityadditionsdevelopedinpreviousstudies,coal-firedunitsizesof100,250,and500MWwereconsideredforcapacityadditions.Itisunlikelythata500MWplantwouldbeproposedforlocalsupplytoeitherAnchorageorFairbanksduetolimitedpowerde-mandandfueltransportationcapacity.TheremotenessofFairbanksalsopossiblyprecludestheuseof500MWplants.However,installationofsuchaplantasabaseloadunit,perhapsintheBelugacoalfieldregion,tofeedanintegratedutilitygridisapossibility.SincetypicalplantunitsizesrequiredinAlaskaaresubstantiallysmallerthanthosetypicaloftheLower48states,previousstudieshavethereforeincorporatedrelation-shipsforeconomyofscale,baseduponLower48data(3,17).TheregionaldifferencesinAlaskanconstructioncostscanalsobesubstantial,withtheresultthatAlaskanlocationadjustmentfactorshavealsobeenusedintheserecentstudies(3).Costdifferencesmaybeduetotransportationrequirements,laborcosts,climate,anddistancefromequipmentsupplies.AreviewofAlaskanconstructioncostlocationadjustmentfactorswasundertakenbyBattelleinMarch1978(3).Theseadjustmentfactors,iden-tifiedfordifferentlocationsintheRailbelt,rangedfrom1.35to1.7forAnchorage,1.8to2.75forBeluga,and2.20to2.42fortheHealy/Nenana/Fairbanksarea.ThefactorsfinallyadoptedbyBattellefortheirstudywere1.65,1.80and2.20forAnchorage,BelugaandtheHealy-Fairbanksarea,respectively.TheBattellestudyincludedareviewofmaterialcostadditionsduetotransportationandlaborcostvariationsduetolackofdevelopedsocialinfrastructureinmanyareasinthestate.TheBattellestudyexaminedtheBelugacoalfieldsasapowerplantsite.ParticularattentionwaspaidtothevariationincostsassociatedwithB-8
developmentofalargelyuninhabitedarea.Landwasconsideredtobelowerincostthaninotherregions,andthesitefavoreduseofpreassembledplantmodulesbargedtothesite;bothitemsproducedcostreductions.Costincreasesresultedfromconstructionofworkertownsandtransportofequipment,food,fuelandothersupplies.IntheHealyarea,modularizedconstructionoflargeunitswouldnotbepossiblesincetransportationopportunitiesarelimitedtotheabilityofAlaskanrailroadstocarrylargeloads.Therefore,theneteffectontheadjustmentfactorisincreased.ThereisasignificantamountofuncertaintyregardingtheuseofAlaskanlocationadjustmentfactorsderivedinpreviousstudies•.Consequently,attemptsweremadetocrosscheckthevalidityoftheBattellefactorswithindependentdevelopmentofcostsforongoingAlaskanprojectsandevalua-tionoftheBattellesourceswheneverpossible.Capacityscalingfactors,asusedbyEPRIandBattelleinpreviousstudies,extrapolatecostsoflargerunits(500-1000MW)tosmallerunits(100-500MW).Underthisprocedure,thecostofasmallerunitcanbecomputedgiventhecostofalargerunitandanexponentialscalingfactor.Thisprocedure,exercisedwithcautionovernomorethanatenfoldrangeofcap-acity,canproducepreliminaryfiguresforcostcomparison.Battelle,intheirstudyofAlaskanelectricpower,usedcapacityscalingfactorsof0.85inthe200-1000MWrangeand0.60inthe100-200MWrange(3).Recog-nizingtheinaccuraciesassociatedwithusingcapacityscalingfactors,theuseoftheexponentapproachwaslimitedandwasreviewedforconsistencyonceapplied.Afurthercheckwasmadebymeansofcostsensitivityassessmentsingenerationplanningstudies(Section8).(ii)BasisofPlantCostEstimatesThecoal-firedplantcostestimatesdevelopedforinputintothermalgener-atingoptionswerebasedonanEPRIdocumentnumberAF-342,preparedbyBechtel(17).Thisreportextensivelydetailsthecostsof1000MWcoalplantsinvariousLower48locations.Thebaselineplant,usedtodevelopAlaskancosts,wasdesignedforaremotelocationinOregonwithmaximumenvironmentalcontrols.ThisplantusedWyomingcoalswhichhavesimilarcharacteristicstoAlaskancoals.Thecostestimateswerebasedonthefollowingdesignassumptions:-Theplantlocationassumesbothmake-upwaterandrailaccessavailable,butatsomedistancefromthesite.Ariverintakeandpumpingplantwouldsupplyrawriverwatertoasurgepondthroughathirteen-milelongpipeline.-CoalwouldberaildeliveredbyunittraininopengondolacarsforrotarydumpserviceoB-9
Theplantdesignhasassumedtoincludethefollowingsystems:-Coalhandlingsystem-Auxiliaryboilersystem-Rawwatersupplysystem-Fireprotectionsystem-Plantrainrun-offsystem-Lightoilsupplysystem-Heatingandventilatingsystem-Boilersystem-Turbinegeneratorsystem-Condensatesystem-Extractionsteamsystem-Mainsteamandreheatsystem-Circulatingwaterandcoolingtowersystem-Rainwatersystem-Chemicaltreatment-Ashhandling-Wastewaterdisposal-AirqualitycontrolTheairqualitycontrolsystemisdesignedtocontrolsulphurdioxideemis-sionsandparticulates.ThissystemwasconsideredparticularlyimportantduetotheairqualityoftheAlaskanenvironment.Theswitchyardcostincludes:-Circuitbreakers-Disconnectswitches-Linetraps-Potentialdevices-Lightningarresters-Foundations-Controlbuildings-Supportingstructures-Take-offtowers-Singlealuminumbus-singlebreakerschemewithbussectionalizingbreak-ersof345kV-Twostart-uptransformers-Emergencypowersupply(lowvoltage)IntheEPRIbaselinedesign,waterfromthecondensorswouldbecooledintwomechanicaldraftcoolingtowers,withmake-upwatercomingbypipeline.Thereis,ofcourse,thepotentialforopencyclecoolingusingacoolingpondwhichoffersapotentialcostsavings.However,duetothescopeofthisstudy,thiswasnotinvestigated.Theuseofnaturalwaterbodiesforonce-throughcoolingisgenerallycheaperthancoolingtowers.However,duetoenvironmentalconstraints,thiscoolingmethodisrestricted.SiteaccesscostsincludedintheEPRIplantdesignwerebaseduponare-motearea;accessoriesincluded15milesofrailroadandswitchingstation,and13milesofwaterpipeline.ThiswouldadequatelyrepresentaremotedevelopmentintheBelugaarea.8-10
TableB.6summarizesthecostestimateoftheEPRIplantin1976.Thecostin1976dollarsfora1000MWplantwasdeterminedtobe$566.6million.(iii)CostAdjustmentsUpdatedcostsfor1980weredevelopedusingtheHandy-Whitmanindices(54).TheHandy-Whitmanindicesarewidelyusedforcostupdating.Theyaredevelopedbi-annuallybyWhitman-RequardtandAssociatesandarebasedonextensiveutilityplantcostresearchineachofsixregionsoftheUnitedStates.TheHandy-WhitmanindicesusedforthisstudyarefortheRegion6-PacificNorthwestarea.TheyarerepresentedasaratiooftheJanuary1,1980dollarvaluestotheJanuary1,1976dollarvaluesforavarietyofplantcostestimates.The1976costwasthereforeupdatedtogivea1980dollarcostof$792million.Thiscostrepresentsthecostofa1000MWplantintheLower48andthereforeisrequiredtobescaledtoreflectthecostofaunitsizeapplicabletotheRailbeltregion.Twomethodswereconsideredinscalingthecost.ThefirstwasdevelopedfromEPRIresearchwhichreportedthatapproximately-54percentofthetotalconstructioncostwasattributabletothefirstunit(17).Thecostofasingle500MWunitwouldthusbe54percentofthecostofa1000MWplant,or$428million.Thecapacityscalingequationusedwas:CostofUnitACostofUnitB=(CapabilityofUnitA)exponent(CapabilityofUnitB)Thisequationwassolvedfortheexponentbysubstitutingthevariouscostsandcapabilities.Thisyieldedavalueof0.89whichissubstantiallygreaterthantheusual0.6value.However,asdiscussedinanarticleonthesubjectofcomputingeconomyofscalevalues(51),inflation,highin-terestratesandlengthenedscheduleshavenegatedtoalargedegreethe0.6economyofscaleandbroughttheexponentuptovaluesof0.79to0.86.Thiscomparesfavorablytothe0.85valueobtainedinanalysesconductedbyBattellefor200to500MWunits.Itisassumedthatthe0.85valueusedbyBattelleinpreviousstudiesisanaccuraterepresentationofthecur-renteconomyofscaleinpowerplantestimation.Consequently,thisvaluewasusedfortheplantcostsinthisstudy.TablesB.8,B.9andB.10reflectthisapplication.Forthe100MWplantthescalingfactorusedwas0.85ratherthanthe0.60suggestedbyBattelleforplantsinthe100to200MWrange.Applyingthe0.85factorresultsinamoreconservativefigureforthe100MWplantbyalmost$90milliondollars($111vs$199million).TheapplicationoftheestablishedLower48costtotheRailbeltsituationmusttakeintoaccountavarietyofotherfactors.Short-termadditionstoexistingcoal-firedplantsareaviablepossibilityforextensionofRail-beltgenerationcapability.OngoingstudiesintheFairbanksregiontoexpandexistingcoal-firedcapacityforelectricityanddistrictheating,althoughforasmallerplantcapacitythanthe100MWconsideredhere,haveshownthecostofnewmechanicalequipmentalonetobeapproximately1.77timesmorecomparedtoasimilarinstallationintheLower48.Thisresult,inadditiontoresearchbytheU.S.ArmyCorpofEngineersandB-ll
Battelle,indicatesincreasesinLower48plantcostsintherangeof1.2to2.65fortheRailbelt.Additionally,duetothelimitationsofmostoptimizedproductioncostmodels,allowanceismadeforanumberoffuturesizeadditions;however,theadditionsaresite-constricted,allowingnovariabilityincapitalcostversussiteconditions.Reviewingthelong-termcoalproductionandusepotentialintheRailbeltindicatesthatlargescaledevelopmentatBelugaisagoodpossibility.Thisdevelopmentwouldentailexportoperationsandlocalgenerationusage.Therefore,todevelopandrepresenttoaproductioncostmodelanindica-tionoflikelysitedevelopmentandcost,theLower48capitalcostswereadjustedtorepresentaBeluga-siteddevelopment.Thisrepresentationinnowaydisallowsthepossibilityofexpansionorevensmallscaledevelop-mentofcoalpotentialatotherRailbeltlocations.Itdoes,however,servetorepresentanoverallRailbeltcoalpotentialcostforaremoteAlaskansituation.TheBelugacostfiguresshowninTablesB.8toB.10re-flecta1.8Alaskanadjustmentfactor,whichrepresentsthemiddlerangeofallRailbeltestimatesandissimilartothedevelopedBelugafactorreportedbyBattelle(3).InadditiontothedirectcostsshowninTablesB.8,B.9andB.10,acon-tingencyof16percent,10percentforutilitiesandotherconstructionfacilitiesand12percentforengineeringandadministrationwasadded.Interestof3percent,netofescalation,duringtheconstructionperiodofsixyearsforthe500and250MWplantsandfiveyearsforthe100MWplantwouldbeanaddedcost.(iv)OperatingCharacteristicsCoal-firedplantoperatingcharacteristicswhichareincorporatedinthegenerationplanninganalysisareheatrate,unitavailabilityandoperationandmaintenancecosts.Theheatrateselectedforthethreeplantsizesis10,500Btu/kWh,whichisconsistentwiththeEPRIplantdesign.Outagesforcoal-firedsteamplantsaretakenintoaccountintermsofscheduled(planned)andforcedoutagesasapercentoftime.Datapublish-edbytheEdisonElectricInstitute(EEl)indicatesaforcedoutageofap-proximately5.4percentforlargecoal-firedplants(41).Thisfigurewasroundedto5percenttorepresentforcedoutagesforstudypurposes.Sche-duledoutages,asreportedbyGVEAfortheirHealyplant,areinthe5.1to16.3percentrange.Anaverageof11percent,whichalsocorrelateswiththeEEldata,wasadoptedasthescheduledoutagerateforcoal-firedplantsforthisstudy.TheparametersgivenaboveforthermalgeneratingplantsaregiveninTableB.13.Operationandmaintenance(O&M)costsforuseingenerationplanningaredividedintotwocomponents:fixedcostsandvariablecosts(exclusiveoffuel).FixedO&Mcostsfortypicalu.S.plantsarereportedperiodicallyintheDOEpublication,SteamPlantConstructionandAnnualProductionExpenses(21).Trendsindicatedinthesereportsledtoadoptionofvaluesforfixedcostof0.50,1.05and1.30$yr/kwfor500MW,250MWand100MWplantsrespectively.VariablecostsintheDOEpublication(21)areshowntodecreasewithincreasingunitsize.Thevaluesusedinthisstudyare$1.40,$1.80and$2.20/yr/kWfor500MW,250MWand100MWplantsrespectively.B-12
(b)CombinedCycleAnumberoffactorshaverecentlyledtoanincreasedinterestincombinedcyclegeneratingplants,bothintheLower48andAlaska.Thesefactorsincluderisingfuelprices,increasingenvironmentalrequirementsandgreaterflexibilityformid-andbase-loadapplicationsdictatedbychang-ingsystemloadrequirements.TheseconditionshavepromptedtwoAnchorageutilities,AMLPDandCEA,tolooktocombinedcyclegenerationtomeettheirneeds.PresentlytherearetwocombinedcycleplantsinoperationinAlaska.Anoperationalunit,knownastheG.M.SullivanplantandownedbyAMLPD,con-sistsofthreeunitswhich,whenoperatingintandem,produceanetcapa-cityof140.9MW.AnotherplantunderconstructionforCEAandknownasBelugaNo.9unitwilladda60MWsteamturbinetothesystemsometimein1982.Thesetwounitsrepresentexpansionstoexistinggas-turbineplantsandareconsideredtobeessentiallyshort-termgenerationplanningcommit-mentsfortheRailbelt.Forthelongerterm,aunitcapacityof250MWfornewcombinedcycleplantswasconsideredtoberepresentativeofpotentialfutureadditionsintheRailbeltarea.ThisassumptionisbasedontrendsintheLower48andloadgrowthprojectionsinAlaska.Aheatrateof8500Btu/kWhwasadoptedbasedonAlaskanexperience.TheEPRIreportAF-610(18),wasusedasthebasisofcostestimatesforthistypeofplant.Asubstantialquantityofnaturalgascouldbeavailabletoutilitieswiththeimplementation oftheAlaskanNaturalGasPipeline.However,construc-tionofanaturalgaspipelinespurtosupplycombined-cycleinstallationsintheRailbeltregionisnotlikelyduringthecriticalstudyplanningperiodof1990-1995.AllgeneratingresourcesinFairbanksarecurrentlyfueledwithcoaloroil.Inaddition,despitethecloseproximityoftheBelugaregiontotheCookInletgasreserves,developmentatBelugawouldnotbepredicatedoncombinedcycleplants.Therefore,thepotentialinstallationofcombinedcycleplantswillmostlikelybelimitedtotheAnchoragearea.Thispremiseisbasedonthelocalelectricutilities'mostrecentgenerationexpansionprogramsandreadilyavailableCookInletnaturalgas.RecentexperienceincombinedcycleconstructioninAlaskahasbeenlimitedtosmallexpansionsofexistingfacilities.Forpurposesofthisstudy,itwasthereforenecessarytorelyonLower48costestimatesforlargerin-stallations,extrapolatedtoapplytoAlaskaconditions.Lower48costsfor250MWcombinedcyclegeneratingunitsaregiveninTableB.13.ThesecostswereobtainedfromGeneralElectricCorporationin1980dollars.Estimatesweremadeforcostsoffoundati~nsandbuildings,fuelhandlingfacilitiesandothermechanicalandelectricalequipment.Anadditionalcostof25percentofthecostofthegeneratingequipmenthasbeenincludedfortransportationofthebasicunittothePacificNorthwest.ThesecostswerecomparedtopriorcostestimatesofcombinedcyclepowerplantsinEPRI-AF-610andwerefoundtobeconsistent.UsinganAlaskanlocationadjustmentfactorof1.6recommendedbyBattelle(3),theaccountitemswereadjustedforaplantlocatedintheAnchoragearea.TransportationtoAnchoragewasassumedtobe25percentmorethantothePacificNorthwestcoast.ThismaybeslightlyhighfortransportationcoststoAlaska,however,consideringlimitednavigationperiodsandsizeB-13
sizeofthe250MWunits,itisbelievedtobeareasonableassumptionandwithinlimitsofaccuracyforstudycostestimates.Asforcoal-firedplants,indirectcostsof16percentforcontingency,10percentforconstructionfacilitiesandutilities,and12percentforengineeringandadministrationwereaddedtothedirectedcost.TableB.13summarizestheresultsoftheseestimates.Allowanceforfundsduringconstruction(AFDC)fortheseyearsisincludedinthistotal.Op-erationandmaintenance(O&M)costsforlargecombinedcycleplants,asre-portedinEPRl,AF-610(18)approximate$2.75/yr/kWforfixedO&Mand$0.30/MWhforvariableO&M.ThesewereadoptedforAlaskanapplication.BasedoninformationprovidedbyAMLPDfortheirG.M.Sullivancombinedcycleplant,scheduledoutageratesareapproximately11percent.Foralargerplantof250MW,basedonEEldata,a14percentscheduledoutageratewasselected.Aforcedoutagerateof6percentwasalsoconsideredappropriatebasedontheAMLPDandEEldata.Thecombined-cycleplantpar-ametersaresummarizedinTableB.13.(c)GasTurbinesGasturbinesarebyfarthemainsourceofthermalpowergeneratingre-sourcesintheRailbeltareaatthepresenttime.Thereare470.5MWofinstalledgasturbinesoperatingonnaturalgasintheAnchorageareaandapproximately168.3MWofoil-firedgasturbinesintheFairbanksarea(TableB.7).Lowinitialcostandsimplicityofconstructionandoperationinadditiontoavailablelowcostgashavemadegasturbinesveryattrac-tiveasaRailbeltgeneratingscource.Newoil-firedgasturbineswerenotconsideredinthisstudyprimarilybecauseofthepriceofdistillate.Thispricehasbeenhistoricallyhigherthannaturalgasandisexpectedtoremainso.Aunitsizeof75MWwasconsideredtoberepresentativeofamoderngasturbineplantadditiontotheRailbeltsystem.Thepossibilityofinstall-inggasturbineunitsatBelugawasnotconsidered,asthisdevelopmentisintendedprimarilyforcoal.Coalconversiontomethanolisapossibility;butthisconsiderationisbeyondthescopeofthisstudy.Thegasturbineplantsareassumedtohaveatwo-yearconstructionperiod(22).ThebaseplantcostswereobtainedfromtheGasTurbineWorldHand-book(19),whichlists"turnkey"bidsin1978dollarsforagasturbineprojectinAnchorage.TheseestimatesarequotedinTableB.14.Thesees-timateshadanestimatedheatrateof12,000Btu/kWh.Thecostswereesca-latedby13.7percentusingthedevelopedHandy-WhitmanindicestoJanuary,1980dollars.A10percentincreasewasincludedforconstructionfacili-tiesandutilitiesaswellasa14percentengineeringandadministrationfee(TableB.15).Theresultantcostof$25.80million(excludingAFDC)wasconsideredrepresentativeofthecostofgasturbineconstructionre-gardlessoflocationwithintheRailbelt.Potentiallyhighercostcould,however,beincurredforremoteAlaskanlocations.Operationandmaintenance(O&M)costsadoptedare$2.50/yr/kWand$0.30/MWhforthefixedandvariablecomponents.ThesevaluesreflectintermediatelevelsofO&McostsintheFMUS/GVEAUnitStudy(32).B-14
Threesourcesofdatawereconsultedforplannedandforcedoutagesofgasturbineunits;theEElreportandinformationfromAMLPDandGVEA.Sche-duledoutageratesof11to12percentandforcedoutageratesof3.8per-centappeartobevalidintheAlaskaarea.Gas-turbineparametersaregiveninTableB.12.(d)DieselsMostdieselplantsinoperationtodayarestandbyunitsorpeakinggenera-tionequipment.Nearlyallthecontinuousdutyunitshavebeenplacedonstandbyserviceforseveralyearsduetothehighoilpricesandtheconse-quenthighcostofoperation.Thelackofsysteminterconnectionandtheremotenatureoflocalizedvillageloadcentershasrequiredtheinstalla-tionofmanysmalldieselunits.Theinstalledcapacityofthesedieselunitsis64.9MW,andtheseunitsaresolelyusedforloadfollowing.Thehighcostofdieselfuelmakesnewdieselplantsexpensiveinvestmentsforallbutemergencyuse.Aunitsizeof10MWwasselectedtorepresentanadditionofasmallamountofstandbycapacityintheAlaskanRailbelt.Todevelopacapitalcostoftheseunits,threemanufacturers·quotesforgeneratingunitswereobtained:Six16cylinderunitstotalling10,685kWat900RPMat$5,050,000F.O.B.AdditionalcostswouldbeincurredfortransportationtoAlaska(10percentofgeneratingunits),controlsandbuildings/site.develop-menteAfourunit(2500kW/unit)dieselgeneratingplantat$3,000,000F.O.B.A$10,000/unittransportationcosttoAlaskawassuggestedaswellasadditionalcostsforpre-engineeredbuilding,foundations,controlsandelectricalequipment.-Ten100kWunitsplustwoforcontinuousduty,eachunitcosting$150,000,givingatotalcostfor12unitsof$1,800,000F.O.B.A$5,000/unittransportationcostwasassessedandadditionalcostsformechanicalcontrols.Alsoaddedtothecostofthegeneratingunitsareauxiliarymechanicalandfuelhandlingequipmentandelectricalsystem/switchyardcosts.Aconstructionperiodofoneyearwasassumedsincetheseplantsaremodu-larandquicktoassemble.Inaddition,contingencies(16percent),con-structionfacilitiesandutilities(10percent),engineeringandadminis-tration(14percent)areaddedtocosts.Anaveragecostof$7.67million1980dollars(excludingAFDC)wasadoptedandusedfortheentireRailbeltregionregardlessoflocationbasedonthemodularandrapidconstructiontechniquesassociatedwiththesesmalldieselunits.DieselO&McostsquotedintheWilliamsBrothersReportforGVEAandFMUS(32)areconsideredtypicalforsmalldieselunitsoperatinginAlaska.Fixedcostsof$O.50/yr/kWand$5.00/MWhforvariablecostsareusedinthisstudy.B-15
Dieselunitshavealow(1percent)scheduledoutagerate.ThisrateisbasedonEElutilityexperience.However,theEEldatacorrespondtounitsinlocationswherepartsandserviceareforthemostpartreadilyavail-able.CanadianElectricalAssociatesdataforremoteisolatedunitswithdifficultaccessforpartsandservicearefarworse.Alaskacouldbesomewherebetweentheseextremes,withheavydependenceonunitmanufac-turersandlocationgivingforcedoutagesratesofbetween4.0-5.0percent.Consequently,a 5percentratewasadoptedforthesystemplanningstudy.DieselparametersaresummarizedinTableB.12.B.3-EnvironmentalConsiderationsTheinvestigationofthermalalternativesforinclusionInproposedgenerationexpansionsequencesdealtwithgenericplanttypeswhichweregenerallynotsitespecific.Theunderlyingassumptionforinputwasthatenvironmentallyaccept-ablesitescouldbefoundwithintheRailbeltregion.Thus,theconcernadd-ressedwastheidentificationofmajorcostitemsincurredbynecessaryenviron-mentalprotectionmeasures.Themajorenvironmentalprotectioncostcomponentofcoal-fired,gasturbine,combinedcycle,anddieselunitswillbethatrequiredforairpollutioncontroltomeettheNationalNewSourcePerformanceStandards(NSPS).SitingofthermalplantsintheRailbeltregionmaybelimitedbythePreventionofSignificantDeterioration(PSD)standardsforClassI,II,andIIIairsheds.PlantslocatednearNationalParkswhicharedesignatedClassIwillbesubjecttothescrutinyoftheeffectsofitsemissionsonvisibilityandairqualitywithinthepark.ClassIIareasthatarenotpresentlyincompliancewithoneormoreoftheambientairqualitystandards(AnchorageandFairbanks)orthatareclosetoexceedingthePSDincrementfortheairshed(suchasValdez)maynotbeacceptablesitesforthermalplants.Otherenvironmentalcontrols,suchasthoserequiredforwateruse,effluentdischarge,solidwastedisposal,noisecontrolandconstructionactivities,areimportantwithrespecttothepresentqualityoftheAlaskanenvironment.Thesefactors,althoughnotsignificantatthistimeforcostestimatingpurposes,wouldhavetobeconsideredintheevaluationofanyplantsiting.(a)AirQualityRequirementsThecostofairpollutioncontrolequipmentisbasedonsatisfactionofthenationalNSPSandNationalAmbientAirQualityStandards(NAA~S)(36).ItisassumedthatcompliancewithNSPSandNAAQSforthefinalsiteselectionforspecificfacilitieswillassurecompliancewiththePreventionofSig-nificantDeterioration(PSD)aspectsofairqualityregulation.TheStateofAlaskahasadoptedtheNationalAmbientAirQualityStandards,withad-ditionofastandardforreducedsulfurcompounds(36,37).TheStatemayalsorequiremeasuresforcontroloficefog(38).ThreeNewSourcePerformanceStandardscovertheplanttypesunderconsid-eration.TheNSPSforElectricUtilitySteamGeneratingUnitsisapplic-abletocoal-firedstearnunits.Specificstandardsaresetforcontrolofsulfurdioxide(S02),particulate,andnitrogenoxides(NOx)'Forthecoal-firedunits,theuseofhighlyefficientcombustiontechnologyis8-16
acceptedforcontrolofNOx'FluegasdesulfurizationisrequiredforS02removal,anddryscrubbertechnologyisrecommendedbyEPAforusewithlowsulfurfuel.Lowsulfurfuelisgenerallyconsideredtohaveasulfurcontentlessthan3lb/millionBTUorlessthanapproximately1.5percentsulfurbyweightincoal.TypicalAlaskancoalshavesulfurcon-tentsofaround1.5percentbyweight.Drytechnologyisappropriatealsoforreductionofpotentialicefogproblems.BaghousesarepreferredbyEPAforremovalofparticulatesinfacilitiesburninglowsulfurfuel.Pollutioncontrolforgasturbineunitsandforcombinedcycleunitsburn-inggasisdesignatedbytheNewSourcePerformanceStandardsforgastur-bines.InstallationofgasturbineunitsrequireswetcontroltechnologysuchaswaterorsteaminjectionforcontrolofNOxemissions.Turbinesusingtheinjectionprocess,however,areexemptfrommeetingtheNOxemissionsstandardsduringperiodswhenicefogisdeemedatraffichazard.S02emissionsarelimitedbylimitationsonfuelsulfulcontent.NSPSforStationaryInternalCombustionEngineswhichapplytotheproposeddie-selunitsrequireNOxcontrol.ReductionofNOxemissionswillbeachievedbyanefficientfuelinjectionprocess.NewpollutionsourcesmustmeetthePSDrequirementsforClassI,II,andIIIairsheds(39).MostareasofthestatearedesignatedClassIIareas(40)inwhichimplementationofNSPStechnologieswillbesufficienttosatisfythePSDincrement.Thereareseveralexceptionstothisstatus(40).Mt.McKinleyNationalParkisdesignatedasaClassIarea.Aplantlocat-edinthevicinityoftheParkwouldbesubjecttotherestrictionsbasedontheeffectsofitsemissionsonvisibilityandairqualitywithinthepark.AnchorageandFairbanks-NorthPoleurbanareasarepresentlytheonlyClassIIareasnotincompliancewithoneormoreofambientairqual-itystandards.ValdezisclosetoexceedingthePOSincrementallowedfortheairstand.Compliancewithstricterregulationsinanyofthesesensitiveareascouldincurhigherpollutioncontrolcosts,orcouldeffectivelyresultinbarr-ingthedevelopmentofathermalplantinthatarea.Itislikelythatnewthermalplantswillnotbelocatedintheseareasifthecostofadditionalpollutioncontrolequipmentsubstantiallyaffectsthecostofenergysup-pliedtotheconsumer.Thesesitinglimitations,however,barelylimitthenumberofpossibleplantlocationswithintheRailbelt.Therefore,"theas-sumptionofcompliancewithNSPSisbelievedtobeappropriateforderiva-tionofairpollutioncontrolcosts.(b)OtherRequirementsThecostsforotherenvironmentalcontrolswerealsoincludedincostesti-mates.Thesecontrolsaremandated~nationalandstatewaterdischargestandards,solidwastedisposalstandardsandoccupationalhealthandsafetystandards.Thesecontrolswillhavethegreatestrelativeimpactonthecostofcoal-firedplantscomparedtotheotherthermalplanttypes.Thisisduetothelargepermanentstaffrequiredatcoalplantsforcoalhandlingandplantoperationsandmaintenance,andtothetreatmentfacili-tiesrequiredforfluegasdesulfurizationwastes.However,comparedtothecostsofairpollutioncontrol,thesecostsareofminorsignificance.B-17
LISTOFREFERENCES(1)Abegg,F."BurningCoalinAlaska- AWinterExperience",ASME,1980.(2)AlaskanDepartmentofCommerceandEconomicDevelopment,AlaskaCoalandthePacific,Juneau,Alaska,September,1977.(3)BattellePacificNorthwestLaboratories,AlaskanElectricPower;AnAnalysisofFutureRequirementsandSupplyAlternativesfortheRailbeltRegion,March,1978.(4)EngineeringNewsRecord,"ConstructionisUnderwayonAlaska-CanadaGasline",August21,1980,P.18.(5)Erickson,GreggandBoness,Frederick.AlaskaCoalandAlaskaPowerAlternativesfortheRailbelt,May,1980.(6)ExecutiveOfficeofthePresident,EnergyPolicyandPlanning,DecisionandReporttoCongressontheAlaskaNaturalGasTransportationSystem,September,1977.(7)rCFIncorporated.AReviewofAlaskaNaturalGasTransportationSystemIssues;FERC,EJ-78-C-01-6395,May,1979.(8)JensenAssociatesInc."TheMarketOutlookforAlaskanNaturalGas,"September,1979.(9)U.S.DepartmentofEnergy,CostandQualityofFuelsforElectricUtilityPlants.FPCFormNO.423,DOE/EIA-0075(80/04),June1,1980.(10)U.S.DepartmentofEnergy,"RecommendationtothePresidentonANGTS,"May1,1977.(11)TheAlaskaEconomyYear-EndPerformanceReport,AlaskaDepartmentofCommerceandEconomicDevelopment,1979.(12)AlaskaOilandGasConservationCommissionStatisticalReport,1978.(13)StateofAlaska,DepartmentofNaturalResources,DivisionofMineralsandEnergyManagement,IIHistoricandProjectedDemandforOilandGasinAlaska1972-1995,IIApri1,1977.(14)TheEnergyReport,Vol.No.3,FairbanksNorthStarBorough,CommunityInformationCenter,September,1980.(15)Rao,P.O.andWolff,ErnestN.,"CharacterizationandEvaluationofWashabilityofAlaskanCoals."UniversityofFairbanksforDOEGrantNo.G0166212,May,1978.B-18
LISTOFREFERENCES(Cont1d)(16)U.S.DepartmentofEnergy,OfficeofEnvironmentalAssessments,DivisionofEnergyandPower.AlaskaRegionalEnergyResourcesPlanningProject,Phase2,Coal,HydroelectricandEnergyAlternatives;Volume1BelugaCoalDistrictAnalysis.PreparedbyAlaskaDepartmentofCommerceandEconomicDevelopment,1980.(17)Coal-FiredPowerPlantCapitalCostEstimates-EPRIAF-342(SOA76-329FinalReport,December,1977.(18)CombinedCyclePowerPlantCapitalCostEstimates-EPRIAF-610(SOA77-402)FinalReport,December,1977.(19)GasTurbineWorldHandbook-1978,PequotPub.Vol.4,1979-80.(20)1978FairbanksEnergyInventory-CommunityInformationCenterSpecialReportNo.4,FairbanksNorthStarBorough,July,1979.(21)U.S.DepartmentofEnergy,Steam-ElectricPlantConstructionCostandAnnualProductionExpenses1976,August,1978.(22)U.S.DepartmentofEnergy,GasTurbineElectricPlantConstructionCostandAnnualProductionExpenses-1976,EIA-0180,April,1979.(23)Phung,DoarL.,AMethodforEstimatinEscalationandInterestDurinConstructionEDC&IDC.ORAU/IEA-78-6M,April,1978.(24)ElectricalWorldDirectoryofElectricUtilities-1979-8087thEdition.(25)Manual-U.S.ArmyCorpsofEngineers,Portland,1979.(26)Personalcommunication,re:SusitnaHydroelectricProject-Task6,CostEstimating.September,1980.(27)BechtelCorporation,ExecutiveSummary,PreliminaryFeasibilityStudy,CoalExportProgram,Bass-Hunt-WilsonCoalLeases,ChuitnaRiverField,Alaska.April,1980.(28)Hennigan,Brian0.,CookInletCoal:EconomicsofMiningandMarineSlurryTransport,MastersThesis,UniversityofWashington,Seattle,Washington,1977•(29)Olsen,Marvin,etal.,1979.BelugaCoalFieldDevelopment:SocialEffectsandManagementAlternatives.PreparedforAlaskaDivisionofEnergyandPowerDevelopment,DepartmentofCommerceandEconomicDevelopment,Anchorage,AlaskaandtheU.S.DepartmentofEnergy,OfficeofTechnologyImpacts,RegionalAssessmentDivision,Washington,D.C.byPacificNorthwestLaboratory,Richland,Washington,BattelleHumanAffairsResearchCenters,Seattle,Washington,andCH2MHill,Anchorage,Alaska.PNL-RAP-29UC-11.B-19
LISTOFREFERENCES(Cont'd)(30)BattellePacificNorthwestLaboratory,DraftFinalReport,~elugaCoalMarketStudies,fortheStateofAlaska,OfficeoftheGovernor,DivisionofPolicyDevelopmentandPlanning,September,1980.(31)FederalEnergyRegulatoryCommission(FERC)FormNo.12,PowerSystemStatementsfor(a)AnchorageMunicipalLightand PowerDepartment(AMLU),(b)ChugachElectricAssociation(CEA),(c)FairbanksMunicipalUtilitySystems(FMUS),(d)HomerElectricAssociation(HEA),and(e)GoldenValleyElectricAssociation(GVEA),December31,1979.(32)WilliamtirothersEngineeringCompany,ReportonFMUSandGVEASystems,1978.(33)AlaskaDepartmentofRevenue,PetroleumRevenueDivision,PetroleumProductionRevenueForecast,QuarterlyReport,March,1980.(34)AlcanPipelineCompany,AlcanPipelineProject,48-InchAlternativeProposal,March,1977.(35)Markle,Donald,ofOITGeo-HeatUtilizationCenter,GeothermalEnergyinAlaska:SiteDataBaseandDevelopmentStatus,fortheU.S.DepartmentofEnergy,April,1979.(36)TheBureauofNationalAffairs(BNA),Incorporated,BNAPolicyandPracticeSeries;AirPollutionControl,Section101;AmbientAirQualityStandards,Section111;StatePolicies,Section121,NewSourcePerformanceStandards,copyright1980.(37)StateofAlaska,AlaskaAdministrativeCode,Title19,Cnapter50.050(d).(38)StateofAlaska,AlaskaAdministrativeCode,Title18,Chapter50.090,IceFogLimitations.(39)StateofAlaska,AlaskaAdministrativeCode,Title18,Chapter50.020,AmbientAirQualityStandards.(40)StateofAlaska,AlaskaAdministrativeCoae,Title18,Chapter50.u21,StateAirwualityClassifications.(41)EdisonElectricInstitute(tEl),"ReportonEquipmentAvailabilityforthe10-yearPeriod1968-1978",1979.(42)PersonalcommunicationwithMr.HankNicholsofAnchorageMunicipalLightandPowerDepartment,September,1980.(43)PersonalcommunicationwithMr.LarryColpofFairbanksMunicipalUtilitiesSystem,September,1980.B-20
LISTOFREFERENCES(Cont'd)(44)PersonalcommunicationwithMr.WoodyBaker,GoldenValleyElectricAssociationProductionSuperintendent,September,1980.(45)U.S.DepartmentofEnergy,OfficeofConservationandSolarEnergy,FederalEnergyManagementandPlanningPrograms;MethodologyandProceduresforLifeCycleCostAnalysesAverageFuelCosts,TheFederalRegister,Tuesday,October7,1980.(46)PersonalcommunicationwithDr.CharlesLogsdan,AlaskaStateDepartmentofRevenue,December,1980.(47)PersonalcommunicationwithMr.SchandlerofSuperiorProducts,Springfield,Ohio,September,1980.(48)PersonalcommunicationwithBelyeaCompany,JerseyCity,NewJersey,September,1980.(49)PersonalcommunicationwithMr.MarshallofCumminsInternationalDiesel,Baltimore,Maryland,September,1980.(50)BattellePacificNorthwestLaboratory,BelugaCoalMarketStudyfortheStateofAlaska,OfficeoftheGovernor,December,1980.(51)Comtois,WilfredH.,"EconomyofScaleinPowerPlants",PowerEngineering,August,1977,p.51-53.(52)Budwani,RameshN.,"PowerPlantCapitalCostAnalysis",PowerEngineering,May,1980,p.62-70.(53)BattellePacificNorthwestLabortory,CookInletNaturalGas;FutureAvailabilityandPriceForecastsfortheStateofAlaska,OfficeoftheGovernor,February,1981.(54)Handy-Whitman,CostIndexforHydropowerProductioninthePacificNorthwest,1978.8-21
Table B.1 -ALASKAN RAILBELT COAL DATA 1
Approximate Heatmg
Reserves 0'0'0'0'Value 0''"'"'"'"'0
ASTM million Moisture Volatile Fixed Ash Btu/lb 0'%0'0'Sulfur'"'0 '"Coal Field Rank tons (range)Matter Carbon (range)(range)C H N 0 (range)
Beluga 2400 (12-33)--(3-25)(7200-----(0.2)
8900)
Water Fall Sub Bit C 20.56 36.62 34.68 8.14 8,665 49.9 6.0 0.56 35.2 0.15
Yentna /12 Lower Lignite 29.80 38.26 28.61 3.33 7,943 45.2 6.8 0.53 44.1 0.11
Kenai Cabin Sub Bit C 23.01 35.63 32.71 8.65 8,028 47.2 6.1 0.62 37.2 0.23•
Nenana Sub Bit 2000 (17-27)--(3-13)(7500--- --(0.1-0.3)
9400)
Poker Flat 114 Sub Bit C 25.29 32.51 32.55 9.85 7,779 45.3 6.3 1.10 37.1 0.33
Poker Flat 116 Mid Sub Bit C 25.23 35.71 31.40 7.66 8,136 46.1 6.3 0.60 39.2 0.12
Moose Seam'Sub Bit C 21.42 36.62 34.88 7.68 8,953 51.7 6.3 0.81 33.3 0.15
Caribou Seam Sub Bit C 21.93 35.88 32.85 9.34 8,567 49.4 6.1 0.69 34.3 0.13
/12 Seam Sub Bit C 26.76 33.12 32.25 7.87 7,966 46.4 6.4 0.63 38.5 0.17
Jarvis Creek Sub Bit c 20.58 36.20 34.16 9.06 8,746 49.8 5.8 0.86 33.4 1.05
Matanuska 100 (2-9)--(4-21 )(10,300-- -- -
(0.2-1.0)
(limited)14,000)
Castle Mountain Uv Ab 1.78 28.23 52.20 17.78 12,258 69.3 4.7 1.60 6.3 0.46
Premier Uv Bb 5.87 35.73 43.96 14.44 11,101 63.6 5.1 1.60 15.3 0.35
Kenai Sub Bit C 300 (21-30)--(3-22)(6500-----(0.1-0.4 )
8500)
Notes:
(1)Proximate and ultimate analysis
TableB.2-ALASKANGASFIELDSGas(billioncubicfeet)Location/fieldNorthSlope:PrudhoeBayEastUmiatKavikKemikSouthBarrow2TOTAL:CookInlet:AlbertKaloaBeaverCreekBelugaBirchHillFallsCreekIvanRiverKenaiLewisRiverMcArthurRiverMoquawkieNicolaiCreekNorthCookInletNorthForkNorthMiddleGroundShoalSterlingSwansonRiverWestForelandWestForkTOTAL:Notes:RemainingReserves129,000UnknownUnknownUnknown2529,025+Unknown250767208051313Unknown78None171074201252330012074189+ProductDestinationorFieldStatusPipelineconstructiontoLower48underwayShut-inShut-inShut-inBarrowresidential&commercialusersShut-inLocalBelugaRiverPowerPlant(CEA)Shut-inShut-inShut-inLNGPlant,Anchorage&KenaiUsersShut-inLocalFieldAbandonedGranitePt.FieldLNGPlantShut-inShut-inKenaiUsersShut-inShut-inShut-in(1)Recoverablereservesestaimedtoshowmagnitudeoffieldonly.(2)Producing
(1)Recoverablereservesestaimedtoshowmagnitudeoffieldonly.(2)ProducingTableB.3-ALASKANOILFIELDSLocation/FieldNorthSlope:PrudhoeBay2SimpsonUgnuUmiatTOTALCookInlet:BeaverCreekGranitePointMcArthurRiverMiddleGroundShoalRedoubtShoalSwansonRiverTradingBayTOTALNotes:RemainingReserves1Oil(millionbarrels)8,375UnknownUnknownUnknown8,375+12111836None224198+ProductDestinationorFieldStatusPipelinetoValdezShut-inShut-inShut-inRefineryDriftRiverTerminalDriftRiverTerminalNikiskiTerminalFieldAbandonedNikiskiTerminalNikiskiTerminal
TableB.4-ALASKANRAILBELTFUELPRICES(1980)FuelCoal1NaturalGas2OilSource/UseHealy/Mine-Mouth(GVEA)Healy/Fairbanks(FMUS)AverageLower48DOERegion10DOEU.S.AverageKenai-CookInlet/AnchorageUtilitiesAMLPDCEA:BelugaOtherAverageCookInlet/LNGexporttoNikiskiAverageLower48DOERegion10DOEU.S.AveragePrudhoeBay/FairbanksUtilities:GVEAFMUSCost$80/MMBTU1.251.401.351.551.461.000.241.040.344.50-4.651.984.893.583.454.01References( )&(( )&((9)June1980(45)October1980(45)October1980(31)(9)June1980(9)June1980(9)June1980(46)(9)June1980(45)October1980(45)October1980(31)(32)Notes:AverageLower48DOEU.S.Average5.44(9)June19804-63-4.93(45)October1980(1)HealyCoal=8,500Btu/lb(2)NaturalGas=1,005Btu/cf
TableB.5-SUMMARYOFALASKANFUELOPPORTUNITYVALUESAlaskanOpportunityMarketPriceTransportCostValueFuelMarketVia$/MMBTU$/MMBTU$/MMBTUCoalPacificNWbarge1.550.501.05Lower48barge1.460.630.83JapanbargeN/AN/A1.33JapanPlacer-AmexN/AN/A1.33JapanbargeN/AN/A1.00-1.30JapanB-H-WN/AN/A1.00-1.30NaturalRegion10LNG-tanker4.892.502.39GasRegion10Pipelinespur4.891.972.92Lower48LNG-tanker3.582.501.08Lower48Pipelinespur3.581.9711.61JapanLNG-tanker4.50-4.653.001.50-1.65OilLower48Pipeline-tankerN/AN/A4.00Notes:(1)estimated
Table B.6 -GENERATING UNITS WITHIN THE RAILBELT -1980
Heat Rate Minimum Maximum Fuel RetirementRaUbeltStationUnitUnitInstallationInstalled
Utility Name /f Type Year (8TU/kWH)Capacity Capacity Capacity Type Year
(MW)(MW) (MW)
Anchorage AMLPD 1 GT 1962 15,000 14 2 15 NG 1992
Municipal AMLPD 2 GT 1964 15,000 14 2 15 NG 1994
Light &Power AMLPD 3 GT 1968 14,000 15 2 20 NG 1998
Department AMLPD 4 GT 1972 12,000 28.5 2 35 NG 2002
(AMLPD)G.M.Sullivan 5,6,7 CC 1979 8,500 140.9 NA NA NG 2009
Chugach Beluga 1 GT 1969 13,742 15.1 NA NA NG 1998
Electric Beluga 2 GT 1968 13,742 15.1 NA NA NG 1998
Association Beluga 3 GT 1973 13,742 53.5 NA NA NG 2003
(CEA)Beluga 4 GT 1976 13,742 9.3 NA NA NG 2006
Beluga 5 GT 1975 13,742 53.5 NA NA NG 2005
Beluga 6 GT 1976 13,742 67.8 NA NA NG 2006
Beluga 7 GT 1978 13,742 67.8 NA NA NG 2008
Bernice Lake 1 GT 1963 23,440 8.2 NA NA NG 1993
2 GT 1972 23,440 19.6 NA NA NG 2002
3 GT 1978 23,440 24.0 NA NA NG 2008
International 1Station1GT196539,9731 14.5 NA NA NG 1995
2 GT 1975 39,973 1 14.5 NA NA NG 1995
3 GT 1971 39,973 18.6 NA NA NG 2001
Knik Arm 1 GT 1952 28,264 14.5 NA NA NG 1985
Copper Lake 1 HY 1961 --15.0 NA NA --2011
Golden Valley Healy 1 ST 1967 11,808 25.0 7 27 Coal 2002
Electric 2 IC 1967 14,000 2.7 2 3 Oil 1997
Association North Pole 2 GT 1976 13,500 64.0 5 64 Oil 1996
(GVEA)2 GT 1977 13,000 64.0 25 64 Oil 1997
Zehander 1 GT 1971 14,500 17.65 10 20 Oil 1991
2 GT 1972 14,500 17.65 10 20 Oil 1992
3 GT 1975 14,900 2.5 1 3 Oil 1995
4 GT 1975 14,900 2.5 1 3 Oil 1995
5 IC 1970 14,000 2.5 1 3 Oil 2000
6 IC 1970 14,000 2.5 1 3 Oil 2000
7 IC 1970 14,000 2.5 1 3 Oil 2000
8 IC 1970 14,000 2.5 1 3 Oil 2000
9 IC 1970 14,000 2.5 1 3 Oil 2000
10 IC 1970 14,000 2.5 1 3 Oil 2000
Table B.6 (Continued)
Railbelt Station Unit Unit Insta1lation Heat Rate Installed Minimum Maximum Fuel Retirement
Utility Name //Type Year (BTU/kWH)Capacity Capacity Capacity Type Year
(MW)(MW)(MW)
Fairbanks Chena 1 ST 1954 14,000 5.0 2 5 Coal 1989
Municipal 2 ST 1952 14,000 2.5 1 2 Coal 1987
Utiltiy 3 ST 1952 14,000 1.5 1 1.5 Coal 1987
System (FMUS)4 GT 1963 16,500·7.0 2 7 Oil 1993
5 ST 1970 14,500 20.0 5 20 Coal 2005
6 GT 1976 12,490 23.1 10 29 Oil 2006
FMUS 1 IC 1967 11,000 2.7 1 3 Oil 1997
2 IC 1968 11,000 2.7 1 3 Oil 1998
3 IC 1968 11,000 2.7 1 3 Oil 1998
Homer Elec.Homer=
Association Kenai 1 IC 1979 15,000 0.9 NA NA Oil 2009
(HEA)Pt.Graham 1 IC 1971 15,000 0.2 NA NA Oil 2001
Seldovia 1 IC 1952 15,000 0.3 NA NA Oil 1982
2 IC 1964 15,000 0.6 NA NA Oil 1994
3 IC 1970 15,000 0.6 NA NA Oil 2000
Matanuska Talkeetna 1 IC 1967 15,000 0.9 NA NA Oil 1997
Elec.Assoc.
(MEA)
Seward SES 1 IC 1965 15,000 1.5 NA NA Oil 1995
Electric
System (SES)2 IC 1965 15,000 1.5 NA NA Oil 1995
Alaska Eklutna -HY 1955 --30.0 NA NA --2005
Power
Administration
(APAd)
TOTAL 943.6
Notes:
GT =Gas turbine
CC =Combined cycle
HY =Conventional hydro
IC =Internal Combustion
ST =Steam turbine
NG =Natural gas
NA =Not available
(1)This value judged to be unrealistic for large range planning and therefore is adjusted
to 15,000 for generation planning studies.
TABLEB.7-EXISTINGGENERATINGCAPACITYINTHERAILBELTREGIONNo.TypeUnitsCapacity(MW)Coal-firedsteam554.0Naturalgasgas-turbines(Anchorage)18470.5Oil-firedgasturbines(Fairbanks)6168.3Diesels2164.9Combinedcycle(naturalgas)140.9Hydro245.0TOTAL53943.6MW
TABLEB.8-1000MWCOAL-FIREDSTEAMPLANTCOSTESTIMATE-LOWER48$MIL[IONSHandy-WhitmanAccount/Item1976Adjustment198010Concrete22.40547/39431.1020Civil/Structural/Architectural21,22,24Structural&M1SC.Iron&Steel23.70559/39733.3725Architectural&Finish11.90500/36116.7626Earthwork23.70500/36132.8228SiteImprovements14.80500/36120.5030SteamGenerators119.70571/407167.9341TurbineGenerators48.40413/29368.2242MainCondenser&Auxiliaries4.20518/3616.0343RotatingEquipment,Ex.T/G12.80518/36118.3644Heaters&Exchangers3.70518/3615.3145Tanks,Drums&Vessels1.50518/3612.1546WaterTreatment/ChemicalFeed2.40518/3613.4447Coal/Ash/FGDEquipment47.1CoalOnloadlngEqulpment3.50461/3384.7747.2CoalReclaimingEquipment3.40461/3384.6347.3AshHandlingEquipment1.40461/3381.9047.4ElectrostaticPrecipitators61.30461/33883.6047.6FGDRemovalEquipment87.90461/338119.8847.8Stack(Lining,Lights,etc.)5.20461/3387.0948OtherMechanicalEquiEmentIncl.Insulatlon&agglng9.70518/36113.9249Heatin~EVentilating,AirCondlioning1.70518/3612.4350Piping44.60629/42266.4760Control&Instrumentation11.10461/32215.4170ElectricalEruipment(Switchgear!ransformers/MCCs/Fixtures)11.30461/33215.6980ElectricalBulkMaterials81,82,83CableTray&Conduit11.60173/12316.3184,85,86Wire&Cable13.40173/12318.85Switchyard11.30173/12315.89CONSTRUCTIONCOSTTOTAL$566.60$792.82
TABLEB.9-500MWCOAL-FIREDSTEAMCOSTESTIMATES$MI [ [ION5(1980)ACCOUNT/ITEM[ower48Beluga10-20Civil/Structural/Architectural$72.66$130.7930-46MechanicalEquipment146.57263.8247Coal/Ash/FGD131.52236.7348-60OtherMechanical53.0495.4770-80ElectricalEquipment36.0564.89CONSTRUCTIONCOSTTOTAL:$439.84$791.70Contingency(16%)70.37126.67Subtotal510.21918.37ConstructionFacilities/Utilities(10%)51.0291.84Subtotal561.231010.20Engineering&:Administration(12%)67.35121.23TOTAL(EXCLUDINGAFDC)$628.57$1131.43
TABLEB.10-250MWCOAL-FIREDSTEAMCOSTESTIMATESACCOUNT/ITEM10-20Civil/Structural/Architectural30-46MechanicalEquipment47Coal/Ash/FGD48-60OtherMechanical70-80ElectricalEquipmentCONSTRUCTIONCOSTTOTALContingency(16%)SubtotalConstructionFacilities/Utilities(10%)SubtotalEngineering&Administration(12%)$MIL[ION5(1980)Lower48Beluga$39.23$70.6179.15142.4777.52139.5328.6551.579.4635.02$244.01$439.20283.05509.47311.35560.41TOTAL(EXCLUDINGAFDC)$348.71$627.65
TABLEB.11-100MWCOAL-FIREDSTEAMCOSTESTIMATESACCOUNT/ITEM10-20Civil/Structural/Architectural30-46MechanicalEquipment47Coal/Ash/FGD48-60OtherMechanical70-80ElectricalEquipmentCONSTRUCTIONCOSTTOTALContingency(16%)SubtotalConstructionFacilities/Utilities(10%)SubtotalEngineering&Administration(12%)$MIL[ION5(1980)Lower48Beluga$21.19$38.1442.7476.9322.0839.7415.4727.8510.5018.90$111.98$201.56129.89233.80142.88257.19TOTAL(EXCLUDINGAFDC)$160.03$288.05
TABLEB.12-250MWCOMBINEDCYCLEPLANTCOSTESTIMATES$MI [[IoN 5(1980)[ower48Beluga2.834.535.639.0037.5060.001.402.245.288.4511.7918.869.3818.7573.81121.8385.61141.3494.17155.47ACCOUNT/ITEM20Civil/Structural/Architectural21,22,23Buildings/Structures26,28FoundationsSiteWork40Mechanical41-47GeneratingUnits45FuelHandling48OtherMechanical70/80ElectricalEquipment100Transportation:(25%)(41-47total)PacificNW(50%)(41-47total)AnchorageCONSTRUCTIONCOSTTOTALContingency(16%)SubtotalConstructionFacilities/Utilities(10%)SubtotalEngineering&Administration(12%)TOTAL(EXCLUDINGAFDC)$105.47$174.13
TABLE B.13 -SUMMARY OF THERMAL GENERATING RESOURCE PLANT PAR~METERS
I'TJ\N T T Y P E
CO~[-FIRED STEAM COMBINED GAS
Parameter CYCLE TURBINE DIESEL
500 MW 250 MW 100 MW 250 MW 75 MW 10 MW
Heat Rate (Btu/kWh)10,500 10,500 10,500 8,500 12,000 11,500
O&M Costs
Fixed O&M ($/yr/kW)0.50 1.05 1.30 2.75 2.75 0.50
Variable O&M ($/MWH)1.40 1.80 2.20 0.30 0.30 5.00
Outa~
Planned Outages (%)11 11 11 14 11 1
Forced Outages (%)5 5 5 6 3.8 5
Construction Period (yrs)6 6 5 3 2
Start-up Time (yrs)6 6 6 4 4
Total Capital Cost
($million)
Railbelt:---175 26 7.7
Beluga:1,130 630 290
Unit Capital Cost ($/kW)1
Railbelt:- --728 250 778
Beluga:2473 2744 3102
Notes:
(1)Including AFDC at 0 percent escalation and 3 percent interest.
TABLEB.14-GASTURBINETURNKEYCOSTESTIMATE1TurnkeyInstalledBidsCapacity($million1978)6313.957518.107718.807814.32Notes:(1)Source:Reference(19)
TABLEB.15-GAS75MWGASTURBINECOSTESTIMATEItemTurnkeyCostConstructionfacilities/Utilities(10%)EngineeringandAdministration(14%)TOTAL(EXCLUDINGAfDC)Notes:Cost($million1978)($million1980)118.1020.582.063.1625.80(1)AdjustedbyHandy-WhitmanCostIndicesforSteamPlants(258/227)
APPENDIXC -ALTERNATIVEHYDROGENERATINGSOURCESTheanalysisofalternativesitesfornon-Susitnahydropowerdevelopmentfollow-edtheplanformulationandselectionmethodologydiscussedinSection1.4ofVolumeIandAppendixA.Thegeneralapplicationofthefive-stepmethodology(FigureA.1)fortheselectionofnon-SusitnaplansispresentedinSection6ofthisreport.Additionaldataandexplanationoftheselectionprocessarepre-sentedinmoredetailinthisAppendix.Thefirststepintheplanformulationandselectionprocessistodefinetheoverallobjectiveoftheexercise.Forstep2oftheprocess,allfeasiblesitesareidentifiedforinclusionintothesubsequentscreeningprocess.Thescreeningprocess(step3)eliminatesthosesiteswhichdonotmeetthescreen-ingcriteriaandyieldscandidateswhichcouldberefinedtoincludeintotheformulationofRailbeltgenerationplans(step4).Detailsofeachoftheaboveplanningstepsaregivenbelow.TheobjectiveoftheprocessistodeterminetheoptimumRailbeltgenerationplanwhichincorpor-atestheproposednon-Susitnahydroelectricalternatives.C.1-AssessmentofHydroAlternativesNumerousstudiesofhydroelectricpotentialinAlaskahavebeenundertaken.Thesedateasfarbackas1947,andwereperformedbyvariousagenciesincludingthethenFederalPowerCommission,theU.S.ArmyCorpsofEngineers(COE),theUnitedStatesBureauofReclamation(USBR),theUnitedStatesGeologicalSurvey(USGS)andtheStateofAlaska. Asignificantamountoftheidentifiedpoten-tialislocatedintheRailbeltregion,includingseveralsitesinthe SusitnaRiverBasin.ReviewoftheabovestudiesandinparticulartheinventoriesofpotentialsitespublishedintheU.S.ArmyCorpsofEngineersNationalHydropowerStudy(1)andtheAlaskaPowerAdministration(APAd)IIHydroelectricAlternativesfortheAlaska-Railbeltll(2)identifiedatotalof91potentialsites(FigureC.1).Allofthesesitesaretechnicallyfeasibleand,understep2oftheplanningprocess,wereidentifiedforinclusioninthesubsequentscreeningexercise.C.2-ScreeningofCandidateSitesThescreeningprocessforthisanalysisrequiredtheapplicationoffouritera-tionswithprogressivelymorestringentcriteria.(a)FirstIterationThefirstscreenoriterationdeterminedwhichsitesweretechnicallyinfeasibleornoteconomicallyviableandrejectedthesesites.Thestan-dardforeconomicviabilityinthisiterationwasdefinedasenergyproductioncostlessthan50millsperkWh,basedoneconomicparameters.ThisvalueforenergyproductioncostwasconsideredtobeareasonableupperlimitconsistentwithSusitnaBasinalternativesforthisphaseoftheselectionprocess.C-l
CostdataprovidedinpublishedCOEandAPAdreportswereupdatedtorepre-sentthecurrentlevelofeconomicsinhydropowerdevelopmentforatotalof91sitesinventoriedwithintheRailbeltRegion.AsdiscussedinSection8,annualcostswerederivedonthebasisofa 3percentcostofmoney,netofgeneralinflation.ConstructioncostsweredevelopedbymakinguniformthefieldcostsprovidedintheCOEandAPAdreports.Thiswasnecessaryasthetwoagenciesuseddifferentlocationfactorsintheirestimates,toaccountforhigherpricelevelsinAlaska.Contingenciesof20percentandengineering-administrationadjustmentsof12to14percentwereaddedtofinallyyieldtheprojectcost.Projectcostsweresubse-quentlyupdatedtoaJuly1,1980pricelevelbasedontheIIHandy-WhitmanCostIndexforHydropowerProductioninthePacificNorthwestll(3).Usingupdatedprojectcostsaswellasaseriesofplantsize-dependenteconomicfactorspreliminarilyselectedfortherougheconomicscreening,theaverageannualproductioncostsinmills/kWhwereestimatedforthe91sites.Typicalfactorsconsideredwereconstructionperiod,annualinvest-mentcarryingcharges,andoperationandmaintenanceexpenditures.Plantcapacityfactorsrangedfrom50to60percent,basedonsourcedata.Arangeofaverageannualproductioncostsresultedformostofthesites,similartothoseinitiallyestimatedbyboththeCOEandtheAPAd.Asaresultofthisscreen,26siteswereeliminatedfromtheplanningpro-cess.ThesitesrejectedaregiveninTableC.1.Theremaining65sitesweresubjectedtoaseconditerationofscreeningwhichincludedadditionalcriteriaonenvironmentalacceptability.Thelocationofthe65remainingsitesaregiveninFigureC.1.(b)SecondIterationTheinclusionofenvironmentalcriteriaintotheplanningprocessrequiredasignificantdatasurveytoobtaininformationonthelocationofexistingandpublishedsourcesofenvironmentaldata.The27referencesourcesusedinpreparingtheevaluationmatrixincludepublicationsandmapsforwhichdatawerecollected,preparedand/oradoptedbythefollowingagencies:-UniversityofAlaska,ArcticEnvironmentalInformationandDataCenter-AlaskaDepartmentofFishandGame-AlaskaDivisionofParks-NationalParkService-BureauofLandManagement,U.S.DepartmentofInterior-U.S.GeologicalSurvey-AlaskaDistrictCorpsofEngineers-JointFederalStateLandUsePlanningCommissionC-2
Inaddition,representativesofstateandfederalagencies(includingAEIDC,ADNR,ADF&G,ADECandAlaskaPowerAdministration)wereinterviewedtoprovidesubjectiveinputtotheplanningprocess.Thebasicdatacollectedidentifiedtwolevelsofdetailofenvironmentalscreening.Thepurposeofthefirstlevelofscreeningwastoeliminatethosesiteswhichwereunquestionablyunacceptablefromanenvironmentalstandpoint.Rejectionofsitesoccurredif:(i)TheywouldcausesignificantimpactswithintheboundariesofanexistingNationalParkoraproclaimedNationalMonumentarea;(ii)Theywerelocatedonariverinwhich:-Anadromousfishareknowntoexist;-Theannualpassageoffishatthesiteexceeds50,000;-Upstreamofthesite,aconfluencewithatributaryoccursinwhichamajorspawningorfishingareaislocated.Thedefinitionoftheaboveexclusioncriteriawasmadeonlyafterareviewofthepossibleimpactsofhydropowerdevelopmentonthenaturalenviron-mentandtheeffectsoflandissuesonparticularsitedevelopment.Thefirstexclusioncriterionreflectstheexistingrestrictionstothedevelopmentofhydropowerincertainclassifiedlandareas.Informationregardingtheinterpretationsoflanduseregulationswasgatheredindis-cussionswithstateandfederalofficials,includingrepresentativesoftheFederalRegulatoryCommission(FERC)whoareresponsibleforthelicensingofhydropowerprojectsaffectingfederallands.Manylandclassificationswereidentified,suchasnationalandstateparks,forests,gamerefugeorhabitatareas,wildandscenicrivers,andwildernessareas.Additionally,thelandownershipquestioninAlaskawasfurthercomplicatedbyfederallandwithdrawals(undertheFederalLandPolicyandManagementAct)andAdministrationNationalMonumentProclamations.Afterthevariousrestrictionswereevaluated,itbecameclearthattheonlylandswherehydropowerdevelopmentisstrictlyprohibitedareNationalParksandMonuments,WildandScenicRiversandNationalWildernessAreas.Atthistime,manylandswerestillprotectedbytheNationalMonumentProclamations,pendingthepassageoftheAlaskaNationalInterestLandsBillinCongress.Otherlandclassificationsallowformonitoringandregulationofdevelopmentbythecontrollingagencyand,insomecases,vetopowerifthedevelopmentisnotconsistentwiththepurposesofthelanddesignation.NotethatnositescoincidedwitheitherWildandScenicRiversorWildernessAreas;thesewerenotincludedasexclusioncriteria.Atthetimeofevaluation,theAlaskaLandsBillhadnotyetbeenpassedbytheU.S.Congress.Thus,thedeterminationofimpactsofrestrictedlandusewasbasedontheexistinglegislation,whichincludedtheC-3
AdministrationNationalMonumentProclamationofDecember1~1978~andtheFederalLandPolicyandManagementActof1976.TheLandsBillbecamePublicLaw96-487onDecember2~1980.Theresultinglandstatuschangeshavebeenevaluatedtotheextentthattheyaffectedthechosenhydropowersites.ManysignificantsensitivitieswereidentifiedintheAlaskansetting.However~onlyoneofthesewasdeterminedtobesohighlysensitivetohydrodevelopmentandsoimportanttothestatethatitalonecouldpro-hibitthedevelopmentofasite.Thus~siteslocatedonastretchofriverusedasamajorarteryforanadromousfishpassagewereexcluded.Itwasbelievedthatthepotentialformitigationofadverseaffectsofsuchsiteswaslimited,andthatevenarelativelysmallpercentagelossoffishcouldhaveadevastatingresultforthefishery.Ofthe65sitesremainingafterthepreliminaryeconomicscreening~19siteswereunabletomeettherequirementssetforthesecondscreen.ThesesitesaregiveninTableC.l~andthereasonfortheirrejectioninTableC.2(c)ThirdIterationThereductioninthenumberofsitesto46allowedareasonablereassess-mentofthecapitalandenergyproductioncostsforeachoftheremainingsitestobemade.AdjustmentsweremadetotakeintoaccounttransmissionlinecostsnecessarytolinkeachsitetotheproposedAnchorage-Fairbanksintertie.Thisiterationresultedintherejectionof18sitesbasedonjudgementaleliminationofthemoreobviousuneconomicorlessenvironmentallyacceptablesites.Theremaining28sitesweresubjectedtoafourthiterationwhichentailedamoredetailednumericalenvironmentalassessment.The18sitesrejectedinthethirditerationaregiveninTableC.1.(d)FourthIterationTofacilitateanalysis~thesiteswerecategorizedintosizesasfollows:-Lessthan25MW:5sites;25MWto100MW:15sites-Greaterthan100MW:8sites.Thefourthandfinalscreenwasperformedusingdetailednumericalenviron-mentalassessmentwhichconsideredeightcriteriachosentorepresentthesensitivityofthenaturalandhumanenvironmentsateachofthesites.Threemainaspectswereincorporatedintotheselectionofthesecriteria:-Criteriamustrepresenttheimportantcomponentsoftheenvironmentalsettingthatmaybeimpactedbythedevelopmentofahydroelectricpro-ject.-Criteriamustincludecomponentsthatrepresentexistingandpotentiallanduseandmanagementplans.C-4
-Informationrelatingtothesecriteriamustbereasonablyavailableandeasilyincorporatedintoascreening/evaluationprocess.TheeightevaluationcriteriaarelistedinTableC.3.Eachcriterionwasdefinedtoidentifytheobjectivesusedforinvestigatingthatcriterion.Followingtheselectionoftheevaluationcriteria,itwasnecessarytodefinethesignificanceofavarietyoffactorswithineachsetofcriter-ia.Underthecategoryofanadromousfisheries,forexample,itisneces-sarytodifferentiatebetweenasitewhichwouldadverselyaffectamajorspawningareaandasitewhichisusedonlyforpassagebyarelativelysmallnumberoffish.Foreachoftheevaluationcriteria,therefore,asystemofsensitivityscalingwasusedtoratetherelativesensitivityofeachsite.Aletter(A,B,CorD)wasassignedtoeachsiteforeachoftheeightcriteriatorepresentthissensitivity.ThescaleratingsystemisdefinedinTableC.4.EachevaluationcriterionhasadefinitivesignificancetotheAlaskanenvironmentanddegreeofsensitivitytoimpact.Adiscussionofeachcriterionisappropriatetodeterminetheimportanceofthatcriterioninthecontinuedstudyorrejectionofthehydroelectricsites.(i)BigGameThepresenceofbiggameisespeciallysignificantintheAlaskanenvironment.Specialprotectionandmanagementtechniquesareem-ployedtoensurepropagationofthespeciesandcontinuedabundanceforsubsistanceandcommercialharvestingaswellasrecreationuses.Thiscriterionhasaveryhighimportanceinthelifestyleandeco-nomicwellbeingoftheAlaskanpeople.Sitespecificinformationwasextractedfromaseriesofmapoverlayswhichidentifiedtypesofbiggamehabitatswithvaryingimportancetosurvivalofthespeciesconsidered.Forexample,amapmayhavealargeareadesignatedas"moosepresent"or"moosedistribution".Withinthatlargedistributionarea,smallerareaswereidentifiedasseasonalconcentrationareasorcalvingareas.Thesesmallerareaswereconsideredtobemoresensitivetodevelopmentthanthe largeareasbecausetheysatisfyspecificneedswithinthelifecycleofthemoose,andbecausetheavailabilityofappropriatelandislimited.Ofthereferencesinspected,"Alaska1sWildlifeAtlas,VolI"wasregardedasthemostauthoritativesource,andtookprecedenceinthecaseofconflictinginformation.References"MuskOxenandCaribou"and"LargeMammals"generallyaddedtothebodyofknowledge.Refer-ences"BearDenningandGoatRange,"DallSheep,DeerandMooseCon-centrations"and"DistributionofCaribouHerdsinAlaska"werereviewed,buthadlittleinputwhichcorrespondedwiththesitessurveyed.C-5
(ii)ArgiculturalPotentialAgriculturalpotentialwasassignedarelativelyhighimportance.Thisisbecauseitisanindicatonofthepotentialfortheselfsuffi-ciencyofanyarea,andtheavenuestowardsselfsufficiencyrequirespecialconsiderationintheeconomicclimateofAlaska.ThebestagriculturalresourcesidentifiedintheRailbeltregionarelocatedinthelowlandsadjacenttothelowerSusitnabasin.TheseincludetheYentna/SkwentnasystemandthenorthernandeasternshoresofCookInletaswellastheTananaandNenanaRivervalleysandtheupperpartoftheCopperRiverbasin.Thelatterwasidentifiedasclimaticallymarginal.Theamountoflandidentifiedwithsuitablefarmingsoilsisrela-tivelysmallandwasassignedahighersensitivitythanlandwithmarginalfarmingsoils.Landswithnosuitablesoilsidentifiedwereassignedthelowestsensitivity.MapreferenceIICultivatableSoilslland"AlaskaResourcesInventory,AgriculturalandRangeResources"wereusedtoidentifylandswithagriculturalpotentialintheRailbelt.(iii)Waterfowl,RaptorsandEndangeredSpeciesTheRailbeltprovidesextensivehabitatsformanyspeciesofwaterfowlaswellashabitatsforsomethreatenedandendangeredbirdspecies.Theprotectionofthesehabitatsinthefaceofdevelopmentisacon-cernofmanyenvironmentalistsandecologists.Asanevaluationcri-terion,thiswasconsideredtobeslightlylessimportantthanthebiggameorfisheriescriteriabecauseofthecombinedecologicalandeconomicimportanceofthosetwocriteria.Inevaluatingthesensitivityofthevariousfactorsprovidinginputtothesecriteria,threereferencemapsweresurveyed:"Alaska'sWildlifeAtlasVolII"providedinformationregardingwaterfowlandseabirds;IIMigratoryBirds:Seabirds,Raptors&EndangeredSpecies"hadinformationregardingseabirdsandraptorhabitats;andIIBirdsllidentifiedendangeredandthreatenedspecieshabitats.Generally,raptorandendangeredspecies'habitatswereconsideredmostsensitive.Highdensityandkeywaterfowlareaswereconsideredtobemoderatelysensitive.(iv)AnadromousFisheriesTheanadromousfisheriesresourceisanessentialcomponentofAlaska'seconomyandlifestyleaswellasitsnaturalenvironment.Itisthesingleresourcemostaffectedbyhydropowerdevelopmentduetothenatureofthedevelopmentitselfwhichnotonlyhampersthepassageoffishbutmayalsoalterflowconditionsessentialtotheanadromouslifecycle.Becauseofitssensitivitytohydropowerdevelopment,theanadromousfisheriesresourcewasveryhighlyconsideredinthisevaluation.C-6
Thecomparativesensitivityofthesiteswasbasedonthenumberofspeciesidentifiedaspresentorspawninginthevicinity.Particularemphasiswasplacedontheriverupstreamofproposeddamsitesand,wheninformationwasavailable,ontheestimatednumberoffishiden-tifiedpassingcertainpoints.Somesiteswereexcludedinprelimin-aryscreeningbecausetheywereidentifiedasmajorlocationsforfishpassage(greaterthan50,000annually.)Themostsensitiveoftheremainingsiteswerethosewiththelargestnumberofspeciespresentandwiththemostextensivespawningareasupsteamofthedamsite.Lowestsensitivitycorrespondedwiththeabsenceofanadromousfishinthearea.Severalcompiledreferenceswereavailablefordeterminingtheextentoffisheries'presenceateachofthehydrositesconsidered.Themostcomprehensivereferencewas"AlaskaFisheriesAtlas"VolumeI,whichindicatedonUSGStopographicalmapsthepresenceofeachoffivespeciesofsalmonandtheirspawningareasforallareasofinterest.Twomapoverlayswereusedtodeterminemoregenerallythepresenceofanadromousfisheries:"Fisheries"and"MarineMammalsandFish".ThisinformationwasalsocheckedagainsttheCh2M-Hillreport"ReviewofSouthCentralAlaskaHydropowerPotential"forsomeofthesites.(v)WildernessConsiderationNationalandstateinterestinthepreservationofnaturalaestheticqualitiesinAlaskacontinuetobetheimpetusforstudiesandlanduselegislation.Substantialamountsoflandhavebeenidentifiedandprotectedunderstateandfederallaw.However,otherlandshavebeenidentifiedfortheiruniquewilderness,scenic,naturalandprimitivequalitiesbuthavereceivednoparticularprotection.Thisfactorwasconsideredtotheextentthatanyofthepotentialhydrositeswouldimpacttheaestheticqualityoftheseunprotectedlands.TwomapoverlayspreparedbytheJointFederalStateLandUsePlanningCommissionwereused:"SelectedPrimitiveAreasinAlaskaforConsid-erationforWildernessDesignation"and"Scenic,NaturalandPrimitiveValues".(vi)Cultural,RecreationandScientificfeaturesThesecriteriareflecttheimportanceplacedonthehistorical,cul-turalandrecreationalvaluesofcertainlandmarks,aswellasthevaluesofscientificresourcesatidentifiedlocations.Areasofvaryingsignificancewereidentifiedbythereferencesourcesandcom-parativesensitivitieswereassignedaccordinglyifpotentialhydrositescorrespondedwithidentifiedareas.Threemapoverlayswereusedtosubstantiatethesecriteria:"Recrea-tion,CulturalandScientificFeatures","NationallySignificantCul-turalFeatures",and"ProposedEcologicalReserveSystemforAlaska".C-7
(vii)RestrictedLandUseAsignificantamountoflandinAlaskaisclassifiedasnationalorstateparks,wildlifeareas,monuments,etc.Theseclassificationsaffordvaryinglevelsofprotectionfromcompleteexclusionofanydevelopmentactivitytoamonitoringorregulationofdevelopmentoccurringontheprotectedlands.Usingthiscriterionasanindica-tionofthelegalrestrictionsthatmighthindertheimplementationofahydroelectricdevelopment,thecomparativesensitivitiesweredefined.Ifapotentialhydrositewaslocatedwithinanationalparkormonument,thesitewasexcludedduringpreliminaryscreeningfromfurtherconsideration.Otherlandclassificationswerelesssevere.Thiscriterion,althoughitmaybemoreofanindicationofinstitutionalfactorsthantheactualsensitivityofthesitearea,representsrealissuesthatwouldaffectdevelopment.Landstatuswasidentifiedusingmapsandreferencematerialspreparedbystatesources:IIGenera1izedStateLandActivityll,IIGameRefuges,CriticalHabitatAreasandSanctuariesll,andfederalsources,USGSAlaskaMapEandQuadrangleMaps,IIAdministrationNationalMonumentProclamationandFLDMAWithdrawalsll,IIAlaskaIllustratedLandStatusll.ItshouldbenotedthatthisevaluationwasperformedbeforethepassingoftheAlaskaNationalInterestLandsConservationAct(PL96-487).Theresultsoftheapplicationofthiscriterionweresubsequentlycomparedagainstthemandatesofthisfederalact.Nosubstantialeffectsonthescreeningresultswerefound.(viii)AccessThemainpurposeofthiscriterionwastoindicatehowthepotentialhydrositesfitintotheexistinginfrastructure.Inotherwords,theconcernwastoidentifythoseareaswhichwouldbemostandleastaffectedorchangedbytheintroductionofroads,transmissionlinesandotherfacilities.Thehighestsensitivitywasassignedtothesiteswhichwerethefarthestfromtheexistinginfrastructure,indicatingareaswiththegreatestpotentialforimpacts.Lowersensitivitieswereassignedtoareaswhereroads,transmissionlinesandsettlementsalreadyexist.Althoughthiswasanimportantcriteriontoconsider,itwasnotgivenahighweightingwhencomparedtoothercriteriaduetothesubjectivenatureoftheinterpretationsmade.Itcouldbe,forexample,thatanexistingsmallsettlementwouldbemoreadamantlyopposedtodevelop-mentinanareawherenobodyhaspresentlysettled.InformationwasgarneredfromnotesinIIReviewoftheSouthcentralHydropowerPotentialllandroadmapsofthearea.(ix)SummaryofCriteriaWeightingThefirstfourcriteria-biggame,agriculturalpotential,birdsandanadromousfisheries,werechosentorepresentthemostsignificantfeaturesofthenaturalenvironment.TheseresourcesrequireC-8
protectionandcarefulmanagementduetotheirpositionintheAlaskanenvironment,theirrolesintheexistingpatternsoflifeofthestateresidentsandtheirimportanceinthefuturegrowthandeconomicinde-pendenceofthestate.Thesefourcriteriawereviewedasmoreimpor-tantthanthefollowingfourcriteriaduetotheirquantifiableandsignificantpositioninthelivesoftheAlaskanpeople.Theremainingfourcriteria-wilderness,cultural,recreationandscientificfeatures,restrictedlanduse,andaccesswerechosentorepresenttheinstitutionalfactorstobeconsideredindetermininganyfuturelanduse.Thesearespecialfeatureswhichhavebeeniden-tifiedorprotectedbygovernmentallawsorprogramsandmayhavevaryingdegreesofprotectedstatus,orthecriteriarepresentexist-inglandstatuswhichmaybesubjecttochangebythepotentialdevel-opments.Itmustbenotedthattheinterpretationsplacedonthesecriteriaaresubjective,althoughcarewastakentoensurethatthemanyviewpointswhichmakeupAlaska'ssociopoliticalclimatewererepresentedintheevaluation.Thelatterfourcriteriawereconsideredlessimportantinthecomparativeweightingofcriteriamainlybecauseofthesubjec-tivenatureandlowerdegreeofreliabilityofthefactscollected.Datarelatingtoeachofthesecriteriawerecompliedseparatelyandrecordedforeachsite,formingadata-basematrix.Then,basedonthesedata,asystemofsensitivityscalingwasdevelopedtorepresenttherelativesensitivityofeachenvironmentalresource(bycriterion)ateachsite.Thescaleratingsusedaresummarizedbelow.AdetailedexplanationofthescaleratingmaybefoundinTableC.5.A -Exclusion(usedforsitesexcludedinpreliminaryscreening)B -HighSensitivityC-ModerateSensitivityD -LowSensitivityThescaleratingsforthecriteriaateachsitewererecordedintheevaluationmatrix.Siteevaluationsofthe28sitesunderconsidera-tionaregiveninTableC.6.Preliminarydataregardingtechnicalfactorswerealsorecordedforeachpotentialdevelopment.Parametersincludedinstalledcapacity,developmenttype(damordiversion),damheight,andnewlandfloodedbyimpoundment.ThecompleteevaluationmatrixmaybefoundinTableC.7.Inthismanner,theenvironmentaldatawerereducedtoaform fromwhicharelativecomparisonofsitescouldbemade.Thecomparisonwascarriedoutbymeansofarankingprocess.C-9
(x)RankWeightingandScoringForthepurposeofevaluatingtheenvironmentalcriteria,thefollow-ingrelativeweightswereassignedtothecriteria.Ahighervalue·indicatesgreaterimportanceorsensitivitythanalowervalue.BigGame8AgriculturalPotential7Birds8AnadromousFisheries10WildernessValues4CulturalValues4LandUse5Access4Thecriteriaweightsforthefirstfourcriteriawerethenadjusteddown,dependingonrelatedtechnicalfactorsofthedevelopmentscheme.Damheightwasassumedtobethefactorhavingthegreatestimpactonanadromousfisheries.Allthesiteswererankedintermsoftheirdamheightsasfollows:-Height~150I:Rank+-Height1501-3501:Rank++-Height>3501:Rank+++Adamwiththelowestheightranking(+)wouldhaveleastimpact,andwouldthereforeresultinthefisheriesweighttobeadjusteddownbytwopoints.Similarly,adamofheight(++)wasadjusteddownbyonepoint.Adamofheight(+++)wouldhavethegreatestimpactandtheweightremainedatitsdesignatedvalue.Theamountofnewlandfloodedbycreationofareservoirwascon-sideredtobetheonefactorwithgreatestimpactonagriculture,birdhabitat,andbiggamehabitat.Siteswererankedintermsoftheirnewreservoirareaasfollows:-Area<5000acres:Rank+-Area5000-100,000acres:Rank++-Area~100,000acres:Rank+++Thesameadjustmentsweremadeforthebiggame,agriculturalpoten-tials,andbirdhabitatweightsbasedonthisfloodedareaimpact(seeTableC.8).Notethatfordevelopmentswhichutilizedanexistinglakeforstorage,thenewareafloodedwasassumedtobeminimal(+).C-10
Thescaleindicatorswerealsogivenaweightedvalueasfollows:- B=5C=30=1Tocomputetherankingscore,thescaleweightsweremultipliedbytheadjustedcriteriaweightsforeachcriteriaandtheresultingproductswereadded.Twoscoreswerethencomputed.Thetotalscoreisthesumofalleightcriteria.Thepartialscoreisthesumofthefirstfourcri-teriaonly,whichgivesanindicationoftherelativeimportanceoftheexistingnaturalresourcesincomparisontothetotalscore.(xi)EvaluationTheevaluationofsitestookplaceinthefollowingmanner:siteswerefirstdividedintothreegroupsintermsoftheircapacity.Basedontheeconomics,thebestsiteswerechosenforenvironmentalevaluation.TableC.10liststhenumberofsitesevaluatedineachofthecapacitygroups.Thesiteswerethenevaluatedasdescribedabove.Theywerelistedinascendingorderaccordingtotheirtotalscoresforeachofthegroups.Thepartialscorewasalsocompared.Thesiteswerethengroupedasbetter,acceptable,questionable,orunacceptable,basedonthescores.Thesamegeneralstandards(e.g,cut-offpoints)wereusedforallgroups.(xii)AnalysisThepartialandtotalscoresforeachofthesites,groupedaccordingtocapacity,aregiveninTableC.10.- a -25MWOfthefivesitesevaluated,allfiveweredeterminedtobeaccep-table,basedontheoverallstandards.ThreeofthesesiteswerejUdgedasagrouptobebetterthantheothertwowhichhadhigherpartialandtotalscores.-25-100MWAcutoffpointofapproximately134forthetotalscoreandapproxi-mately100forthepartialscorewasused.Sitesscoringhigherwereeliminated.Thesevensitesscoringlowerwerere-examined.ThreedevelopmentsatBruskasna,BradleyLake,andSnowwerethebestsitesidentified.C-11
Oftheremainingfour,CoffeeandSeetnawereidentifiedasques-tionablebecauseofanticipatedsalmonfisheriesproblems.LoweandCachescoredonlyslightlybetter,butLowehasminimalfisheriesproblems,andtheCachesiteisfarthestupstreamontheTalkeetnaRiver,beyondwhichthesalmonmigrateonlyaboutfivemiles.->100MWAgain,thesamecutoffpointforacceptablesiteswithtotalscoresof134andpartialscoresof100used.Thesitesfelleasilyintothetwogroupingsofacceptableandunacceptable.(xiii)ResultsSixteensiteswerechosenforfurtherconsideration.Threecon-straintswereusedtoidentifythese16sites.First,themosteco-nomicalsiteswhichhadpassedtheenvironmentalscreeningwerechosen.Secondly,siteswithaverygoodenvironmentalimpactratingwhichhadpassedtheeconomicscreeningwerechosen.Andfinally,arepresentativenumberofsitesineachcapacitygroupweretobechosen,TableC.10.Fromthelistof16sites,10wereselectedfordetaileddevelopmentandcostestimatesrequiredasinputtothegenerationplanning.ThetensiteschosenareunderlinedinTableC.l.Threesites,StrandlineLake,Hicks,andBrownewereidentifiedbytheCh2M-HillReporttoCaEasbeingenvironmentallyverygood.Thesesiteswereincluded,eventhoughtheirassociatedeconomicswerenotasgoodasmanyoftheothersiteswhichhadalsopassedtheeconomicscreening.TheChakachamnasitehadbothaveryhigheconomicrankingandagoodenvironmentalratingintermsofthesensitivityofitsnaturalresourcestodevelopment.ChakachamnawasalsoidentifiedbytheCh2M-Hi11reportashavingminimalenvironmentalimpacts.ItshouldbenotedthatundertherecentlypassedAlaskaNationalInterestLandsConservationAct(PL96-487,December2,1980)thelandsincludingtheChakachamnasitehavenotreceivedprotectedstatusofanytype.ThisappliestoboththeprojectareaandtheexistingLakeChakachamna.Althoughtheboundaryofdesignatedwildernessareaislocatedafewmilesfromtheeasternendofthelake,operationofthelakewouldhavelittledirecteffectonthewildernessarea.BecausetheChakachamnasiteisdesirableinotherrespects,itisbeingconsid-eredasaviablealternatecompetingwiththeSusitnaProject.ThreesiteswerechosenonthelkeetnaRiver.TheseareCache,Keetna,andTalkeetna-2whicharebeingstudiedasanintegratedsystemalternative.Althoughtheidentifiedenvironmentalproblemsaresignificant,thesystemisbeingstudiedforseveralreasons.ItC-12
isbelievedthatwiththesystemapproach,theincrementalimpactsofbuildingasecondorthirdplantonthesameriversystemwouldbesmallerthantheimpactsassociatedwithbuildingplantsoncompletelyseparaterivers.Theintegratedsystemnotonlyimprovestheeconomicpotentialoftheoperatingcapacity,butalsoallowsforbettercon-troloverregulationofstreamflowsasneededbythedownstreameco-systems.Secondly,thechoiceoftheTalkeetnaRiverwasmadeoverotherriverswithpotentialfordevelopmentofsimilarsystems,becausetheenvironmentalsensitivityoftheTalkeetnawasnotasgreatasthatoftheYentna-Skwentnabasin,theChulitnaRiverorthelowerSusitnabasin,particularlywithregardstothepresenceofan-adromousfishorbiggame.Andfinally,theTalkeetnaRiverdevelop-mentsweresomeofthebestsiteseconomically,thusprovidingbettercompetitiontoSusitna.Theremainingsitesofthe10studiedindetailareAllisonCreek,Snow,andBruskasna.Thesearesitesthatwereidentifiedbytheenvironmentalevaluationasbeingthebestenvironmentallyofthe28economicallysuperiorsites.(e)PlanFormulationandEvaluationSteps4and5intheplanningprocessaretheformulationofthepreferredsitesidentifiedinStep3intoRailbeltgenerationscenarios.Toade-quatelyformulatethesescenarios,theengineering,energyandenviron-mentalaspectsofthe tenshortlistedsiteswerefurtherrefined(Step4).Engineeringsketchlayouts(FiguresC.2toC.lO)wereproducedforsevenofthesiteswithcapacitiesof50MWorgreater,andsitespecificconstruc-tioncostestimateswerepreparedonthebasisofthismoredetailedinfor-mation(TablesC.12throughC.18).Forthethreeremainingsites,con-structioncostsweredevelopedbyaprocessofjudgementalinterpolationonthebasisoftheestimatesforthesevenlargerdevelopments.CostsandparametersassociatedwithalltensitesaresummarizedinTableC.19.Thesecostsincorporatea20percentallowanceforcontingenciesand10percentforengineeringandowner'sadministration.Costofmoneyhasagainbeenassumedtobethreepercent,netofinflation.Energyandpowercapabilitywasdeterminedforeachofthesitesusingamonthlystreamflowsimulationprogram(AppendixF).TheannualaverageenergyforeachofthethesitesarealsogiveninTableC.19.Installedcapacitiesweregeneral-lyassumedthatwouldyieldaplantfactorforthedevelopmentsofapprox-imately50percent.ThisensuresgeneralconsistencywithSusitnadevelop-mentsandRailbeltsystemrequirements.TheformulationofthetensitesintodevelopmentplansresultedintheidentificationoffiveplansincorporatingvariouscombinationsofthesesitesasinputtotheStep5evaluations.ThefivedevelopmentplansaregiveninTableC.20.TheessentialobjectiveofStep5wasestablishedasthederivationoftheoptimumplanforthefutureRailbeltgenerationincorporatingnon-Susitnahydrogenerationaswellasrequiredthermalgeneration.ThemethodologyusedintheevaluationofalternativegenerationscenariosfortheRailbeltarediscussedindetailinSection8.ThecriteriononwhichthepreferredplanwasfinallyselectedintheseactivitieswasleastpresentworthcostbasedoneconomicparametersestablishedinSection8.
Theselectedpotentialnon-Susitnahydrodevelopments(TableC.19)wererankedintermsoftheireconomiccostofenergy.Chakachamnaisthehigh-estranked(preferred)withacostofenergyof40$/1000kWhandHicksisthelowestrankedwithacostofenergyof1612$/1000kWh.Thepotentialdevelopmentswerethenintroducedintotheall-thermalgeneratingscenarioingroupsoftwoorthree.Themosteconomicschemeswereintroducedfirstfollowedbythelesseconomicschemes.TheresultsoftheserunsaregiveninTableC.21andillustratethataminimumtotalsystemcostof$7040millioncanbeachievedbytheintroduc-tionoftheChakachamna,KeetnaandSnowprojects(PlanC.2).Thisplanincludes1211MWofthermalcapacityandassumesamediumloadforecast.Norenewalofgasplantsatretirementisalsoassumed.Themake-upoftheRailbeltgenerationsystemunderthisleastcostscenarioisshowninFigureC.ll.AdditionalsitessuchasSnow,StrandlineandAllisonCreekcouldbeintroducedwithoutsignificantlychangingtheeconomicsofthegenerationscenarios.Theintroductionoftheselatterprojectswouldbebeneficialintermsofdisplacingnon-renewableenergyresourceconsumption.C-14
LISTOFREFERENCES(1)U.S.ArmYCorpsofEngineers,NationalHydropowerStud~,July,1979.(2)AlaskaPowerAdministration,HydroelectricAlternativesfortheAlaskaRailbelt,February,1980.(3)Handy-Whitman,CostIndexforHydropowerProductioninthePacificNorthwest,1978.C-15
TABLE C.1 -SUMMARY OF RESULTS OF SCREENING PROCESS
ElImInatIon tllmlnatlOn thminabon thmInatlOn
Iteration Iteration Iteration Iteration
1 1 1 1
Site 1 2 3 4 Site 1 2 3 4 Site 1 2 3 4 Site 1 2 3 4
Allison Creek Fox *Lowe *Talachulitna River *Beluga Lower *Gakona *Lower Chulitiua *Talkeetnna R.-Sheep *
Beluga Upper *Gerstle *Lucy *Talkeetna - 2
Big Delta *Granite Gorge *McClure Bay *Tanana RIver *Bradley Lake *Grant Lake *McKinley River *Tazlina *Bremmer R.-Salmon *Greenstone *McLaren River *Tebay Lake *Bremmer R.-S.F.*Gulkana River *Million Dollar *Teklanika *Browne Hanagita *Moose Horn *Tiekel River *Bruskasna Healy *Nellie Juan River *Tokichitna *Cache Hicks Nellie Juan R.-Upper *Tat atlanika *Canyon Creek *'JiiCJ<River *Ohio *Tustumena *Caribou Creek *Johnson *Power Creek *Vachon Island *Carlo *Junction Island *Power Creek - 1 *Whiskers *Cathedral Bluffs *Kanhshna River *Ramport *Wood Canyon *Chakachamna Kasilof River *Sanford *Yaned - 2 *Chulitna E.F.*Keetna Sheep Creek *Yentna *Chulitna Hurrican *~ake *Sheep Creek - 1 *Chulitna W.F.*Kenai Lower *Silver Lake *Cleave *Killey River *Skwentna *Coal *King Mtn *Snow
Coffee *Klutina *"SOlOmon Gulch *Crescent Lake *Kotsina *Stelters Ranch *Crescent Lake - 2 *Lake Creek Lower *Strandline Lake
Deadman Creek *Lake Creek Upper *Summit Lake *Eagle River *Lane *Talachulitna *
--
NOTES:
(1)Final site selection underlined.
*Site eliminated from further consideration.
SiteHealyCarloYanert- 2CleaveTebayLakeHanagitaGakonaSanfordTABLEC.2-SITESELIMINATEDINSECONDITERATIONCriterionNationalPark(Mt.McKinley)NationalMonument(Wrangell-St.EliasNationalPark)andMajorFisheryNationalMonument(Wrangell-St.EliasNationalPark)LakeCreekUpperMcKinleyRiverTeklanikaCrescentLakeKasilofRiverMillionDollarRampartVachonIslandJunctionIslandPowerCreekNaionalMonument(DenaliNaitonalPark)NationalMonument(LakeClarkNationalPark)MajorFishery
EvaluatIonCriterIaTABLEC.3-EVALUATIONCRITERIAGeneralConcerns(1)BigGame(2)AgriculturalPotential(3)Waterfowl,raptors&endangeredspecies(4)Anadromousfisheries(5)WildernessConsideration(6)Cultural,recreation&scientificfeatures(7)Restrictedlanduse(8)Access-protectionofwildliferesources-protectionofexistingandpotentialagriculturalresources-protectionofwildliferesources-protectionoffisheriesprotectionofwildernessanduniquefeatures-protectionofexistingandidentifiedpotentialfeatures-considerationoflegalrestrictiontolanduse-identificationofareaswherethegreatestchangewouldoccur
ScaleRatingA.EXCLUSIONB.HIGHSENSITIVITYC.MODERATESENSITIVITYD.LOWSENSITIVITYTABLEC.4-SENSITIVITYSCALINGDefinitionThesignificanceofonefactorisgreatenoughtoexcludeasitefromfurtherconsideration.Thereislittleornopossibilityformitigationofextremeadverseimpactsordevelopmentofthesiteislegallyprohibited.1)Themostsensitivecomponentsoftheenvironmentalcriteriawouldbedisturbedbydevelopment,or2)Thereexistsahighpotentialforfutureconflictwhichshouldbeinvestigatedinamoredetailedassessment.Areasofconcernwerelessimportantthanthosein"B"above.1)Areasofconcernsarecommonformostormanyofthesites.2)Concernsarelessimportantthanthoseof"C"above.3)Theavailableinformationaloneisnotenoughtoindicateagreatersignificance.
TABLE C.5 -SENSITIVITY SCALING OF EVALUATION CRITERIA
r-v-l;ilu-aHon--c-fiter fa ----~---------SCALE
ABC D
Exclusion High Moderate Low
Big Game:
Agricultural Potential
Waterfowl,Raptors and
Endangered Species
Anadromous Fisheries
Wilderness Consideration
Cultural,Recreational and
Scientific Features
-major anadromous fish
corridor for three or
more species
-more than 50,000
salmon passing site
-seasonal concentration
are key range areas
-calving areas
upland or lowland
soils suitable for
farming
-nesting areas for:
•Peregrine Falcon
•Canada Geese
•Trumputee Swan
-year round habitat
for Neritic seabirds
and raptors
-key migration area
three or more species
present or spawning
identified as a major
anadromous fish area
All of the following
-good to high quality:
•scenic area
•natural features
•primitive values
-selected for wilderness
consideration
-existing or proposed
historic landmark
-reserve proposed for
the Ecological Reserve
System
-big game present
-bear denning area
-marginal farming soils
-high density waterfowl
area
-waterfowl migration
and hunt ing area
-waterfowl migration
route
-waterfowl nesting or
or molt area
less than three
species present or
spawning
-identified as an impor-
tant fish area
Two of the following
-good to high quality:
•scenic area
•natural features
•primitive value
-site in or close to an
area selected for
wilderness consideration
-Site affects one or
more of the following:
boating potential
recreational potential
historic feature
historic trail
archeological site
ecological reserve
nomination
cultural feature
-habitat or distribu-
t ion area for bear
no identified agri-
cultural potential
-medium or low density
waterfowl areas
-waterfowl present
not identified as
a spawning or
rearing area.
One or less of the
following
good to high quality:
•scenic area
•natural features
primitive value
-site near one of the
factors in B or C
TABLE C.5 (Continued)
I:valuaHon-Criteria SCALEA-----B C ~U
Exclusion High Moderate Low
Restricted Land Use
Restricted Land Use
-Significant impact to:
•Existing National
Park
Federal Lands with-
drawn by National
Monument Proclaima-
tions
-Impact to:
•National Wildlife
Range
State Park
•State game refuge,
range,or wilderness
preservation area
-no existing roads,
railroads or airports
-terrain rough and
access difficult
-increase access to
wilderness area
-Increase:
•Nat ional Forest
•Proposed wild and
scenic river
•Nat ional resource
area
•Forest land withdrawn
for mineral entry
-existing trails
-proposed roads or
-existing airports
-close to existing
roads
-In one of the
following:
•State land
Native land
•None of A,B,C
-existing roads or
railroads
-existing power lines
fABLE C.6 -SITE EVAlUATIONS
Site EYilUBlIon CrU"i'lii
Agr (cultural Wit.errowl'·Raplors,AnilCffOiiOOe "lJoeroeis Ciill,ijral,··RiJereitrOiliI;ffMtflctecJ
Big G....Polentiel Endengered SpecIee risherlee Consideration end Scientific risherIee lend Use
Allison Creek -Bleck end Grizzly beer -None lde·,U ned
present
Oredley loke -Block end Grizzly beer -2~10 JO percenl ef
presnt soil mergIne11 sull-
-Hoose presont.able for fermlng
-high QUelity foreete
Browne -Bleck end Gr Iz zly beor -ttJre than SO percent
_~~:n~resenl mergInslly suitable
ror forming
-Caribou wintor range
Bruskosno -Bleck end Grizzly beor -None ldentined
prescnt
-Hoose present
-Caribour wint.er fange
O1nkochomno -mock beer hohllol -tlplnnd opruce,herd-
-Hoose present wood foreot
-Veer reund hab Iisl for
neritic seAblrdo lind
replors
-Peregr lne relcon
nest lng eres
-Wolsrrowl presenl
-Peregrine ralcon
nest lng Bre08
-low density or ...ier-
rowl
-low denolly or weler-
rowl
-Nooting en<!molt Ing
area
-Waterfowl neet log nnd
molt log area
-Spewnlng erea ror 2
BaIntOn species
-None ldenti fiod
-None
-None
-Two spec leo present
-High io good guallty
8Ct!nlc .f88
-Good 10 high QUelliy
BCffnery
-None
-Good 10 high quoilly
Bcenery
-Area under wilderness
consldeat ion t
-Good 10 high guaHI y
scenery
-Primitive end nalural
rellt.ureo
-None Identified
-008!Inq area
-Boailng potential
-Boating polential
-Proposed ecological
reoerve site
-Roollng oreos
-Noar Chugach
Nationol fore.I
-None ldentl fied
-None ldenl Ifled
-None ldenU ned
-None IdlmU ned
Coffee
Cethedrel B1ufr.
Hicks
Johnson
Keelno
Kenai lake
-Black end Grizzly beor
present
-!-bone present
-Alack end Grizzly bear
present
-f.bose present
-De 11 sheep preseni
-Moose concentration area
-Aleck and Grizzly baer
present
-Car lbou praaani
-Hoose wintering aren
-Bleck end Grizzly beor
preeent
-t-boae,car tbou and
bison present.
-Black ...d Grizzly beer
preeeni
-Car tbou winter are.
-Hoose rall/wlnler
coneentrotlon ares
-Bleck ..d Grizzly bear
-I:~:~ep habital
-Hooaa fall/wlnler
concentration area
-Hore Ihan ~O%of upper
lands suilable fer
egr I.ultursl
-Good forests
-Hore Ihen ~O%or lend
msrglnol ror rsrlOing
-Upland spruce-herdwnod
rareet
-None ldenlifled
-25 10 ~or uplen<!
soil 8uitoble ror
farming
-Uplend spruce-hardwood
forest
-None ldenllfled
-None Identified
-Coaelal helOleck-
alUcD sprue.foreat
-Key wslerfowl hobital
-low density of waler-
rowl
-Noating en<!oooiting
Bren
-lIalerrowl noollng ond
1fM)1t lng area
-low dens ily walerfowl
Ireo
-Noating end molt Ing
area
-None ldenti ned
-Wetarrowl neollng end
ooolting ares
-Four species present,
two tlpownlng in oren
-One spec les present
-rar downotreem of aite
only
-Salmon epuwnlng arOIl,
one speciee preoent
-four spec le8 present,
one opecies spawning
near site
-rour epee lea present,
twot9Pawnlng
-None ldenli ned
-Good scenery
-None ldenli ned
-None ldenli ned
-Coed 10 high QUal Uy
pr 1..llive lando
::tur~·~~;ru~;:nory
-Booling area
-None ldenli fled
-None ldenli fled
-Boating polenlial
-High booting polentlal
-Bosting polential
-None ldenU ned
-None ldenlHled
-No precenl
restrlct loon
-None ldenll fled
-None ldenll ned
-Chugech Nalionsl
rorest
TABlE C.6 (Continued)
srre-E:ViiluoHOi1 CfitcH"
~11ufaT --WarerrowI,·Rij)tiro,lVln:oro..ons -lfllOiroos9 ~~l:Ul{ur~8tlonolf--~
_______-'B"'I"'9L.e-==-_Potential Endangered Specla.Fisheriaa Conaideratlon end Scientific Fioharie.tend lIae
Klutln.-Black end Grizzly be.r -25 to SO percent of -tow donally watarfowl -Two epecles present,-HIt.:quality acanery -lIo.t Ing potent 1.1 -Ilona ldontlfod
pre88nt .011a ...rglno1 for orea one spec leo spawn in -Ha urol For...tlone
-Car Ibou preaent forming -Nesting and 11I011 Ing vicinity of .lIa -Prlmll Ive lend.
-t-boso f8l1 concentro--Climate marglnel for 8r08 -Selected for wllder-
t ion area far..lng upland spruce-MSS COf1s1derot Ion
hardwood fora.t
t.ne -Black bear praoent -""re than SO percont -low density waterfowl -five specles prosent -None ldenl iflod -'::~:';1I:::rortunlt lee -Nona ldenll find
-Hoose present .of the .0110 In upper-oroe and 8PSwn 1n uUe
-Caribou proscnt lend••ultobl.for -Ne.tlng and tROlting vicinity
rer..lng orca
-IIottomlend spruco-
poplar foreot
lowe -Rlock and Grizzly boor -IIono ldentl fled -Per Igrona falcon -One opec lea present,-Good to high qu.llly -Hlotoricol feature -located neSf the
present -Co ••tal we.tarn hntRlock-nt'!st log eroa others downstream of scenery -Propos.ed ecologlco1 border of Olugoch
-MJosc present s ltka spruce forcst aile -Area se lected for rOBffrvo stte Net looel roroot
wlldernees consideration
tower Oluillna -Black end GrizZly b••r -""re th.n SO parcont of -Nedlum denolty ...terfowl -fOUf opectes present f -Area selected for -Boot Ing potent 1.1 -None I,font I flod
present tho upland eoU.oull-area throe opown Ing In wilderness considerot ton
-Caribou present able for farming -~otlng .nd mol t Ing vicinity
areD
-Bleck and Gr Izzly boor -~ne ldent Iflod -Veor round hablt.t ror
present -Coeotal ....torn hemlock-neritic ...oblrdo end
-High deneity of 80.10 a1th opruce foreat reptora
Silver loke
Skwentna -Olock end Grizzly b••r
present
-Moose wtnter conesot fo-
tion orea
-SO percent of upparlande -low donolty ...terfowl
suitable for forming area
-lowland epruce --Neet Ing and molting
hardwood rorool orca
-One specloa preeont,
more downst reM
-Three apeeies prt'uh,nt,
$powning in eres
-Coed to high quollty
eeeoery
•Primitive volue
-None identified
-Bo.t Ing areo potont 101
=~:~~~Yc:~o:rollo
-Olugocl1 Not lonol
fore"
-None ldentl fled
Snow -Bl.ck bear present -Hene ldentl fled
-0011 ohaep hablt.to
-""088 winter concentra-
tion oreB
-Neotlng Ond molting
BreD
-Hene -!lone ldantl fled -Proposed ecologtcot
rem!lrve site
-locotod In OlUQoch
Not lonol foroot
Slrendllno lake -lIoooe,black be.r -25 to SO porcont ..ergl--Neetlng end IIIOlt Ing
h.bltot nel fermlng .0110 oreo
-Grizzly boer _present ~_•Alpl",,-tundre~
-None present •Goad to high 'Iuo1lty
scenery
-Primitive lends
-!lone ldenllfled -None Illentl fled
falkeelnn 2
Cacho
falllno
-Block and Grizzly beor
pr.ent
-Moo88 foil/winter con-
centration orca
-Cor lbou winter range
-Block end GriZZly beor
present
-fobooe wtnter concen-
trot ion ares
-C.ribou winter range
-Block and Gr Izzly be.r
preoent
-tbose winter range
-Caribou wlntar range
-Nona ldont I f10d
-None ldentl fled
-Nona ident I fled
-lowlend spruca-herdwood
foresl
-None ldont IfI"d
-None ldentl fled
-Nodi ...denalty w.ter-
rowl area
-Neotlng and 11IO 11 Ing
eres
-four epec iee present,
one species spnwno at.
alte
-Four opoctes or aalmon
preoont.spawn log oroos
ldontlfled
-Two speciee pre..nt
at .110 end up.tre...
-Coed to high 'lUoHty
sceMry
-Primitive lando
~Coed to high qu.llty
scenery
-Primitive lando
-None identl fled
-1Io0ting potontlol
-Ilo.tlng potentlel
-1Io01lng potent 101
-Nona ldent I fl.d
-None IdentHled
-None ldentl fled
foklcl1llno -Black bear prosenl -",re lhan ~o percent of -HodilP density water--rour species present,
-Hoose present oolls are usable for fowl orca three 8peciea &pawn in
-Caribou prooent farming (In upper lando)-Neatlng .nd ..,ltlllll aroa ~alte vicInity
-Border prbllit lve orea -Booting potentl.1 -!lone ldent tr led
IABlE C.6 (Conllnued)
~~---~.__.__..--~-_._--_.--~~--------~-------t:Viiliiiil.-IOn----crnerTo
Agr hiultiJriil liiiterrolil;-Replor.,--PiiiKJrOlllOfla
Olg Came Polenllal ~_~Endangored SpecIes n""eriea
Wilderness CuHufaI"Recreational,Restricted
Conaldorsllon ond ScionlHlc nnllories lond llM
JunllJlter8 -Black boar hoblla!-None ldonll fled -Nona ldenllfled -None Idsnllrled
-Doll &h..p hobltot
Upper Belugn -Moose prescnt -Hare thon ~O percent of -MadlUlll donslty ..nter--rOUf species present,
upper londs are tlUlt-fowl area two species spawn In
able for forming -Noollng ond moiling oreo
-lowland spruce-hordwood oreo
rorest
Uppor No 11 Ie -Gr izzly boor present -None ldenl Hied -Nono Idsntlfled -None ldonll fled
Jusn -Moose present -C089Ln1 western hemlock-
-mock besr hobltat sitko spurce foroot
-Sr lecled ror wllderne..-Nona ldonll ned
conslderst Ion
-Good 10 high quality
scenery
-Natural rcotureD
-Primitive lendo
-None Idsntl fled -Bostlng ores
-Selecled ror "Ildsrno..-Oo.llng petentlol
cono Idetat Ion
-High pr Imltlvo,ocenlc,
ond nslural roatureo
-localed In Kenai
Notional Masoe R""""
-Site ..lthln 0 -
doolgnoled Nat Ions I
WI tdernco8 orea
-None ldenll ned
-Chugach Nat lonnl
Forest
Whiskers -Bleck ond Crlzzly bear -50 percanl or upperland.-lo..don.lly "oterro..l
prescnt suitable for farming nr08
-Mooo.pre.ent -Oollomlond spurce--Noollng ond molting
-Cac lbou prosent.poplar forest area
-five speclos present.
two spawn In area
-None Idsntlrted -Oostlng petenllel -No""ldentl ned
Yentno -Block .nd Crlzzly boer
present
-~ose,spring/summar/
wlnler :oneent rot ton
-25 to 50 percenl or -HodlUlll donslty ..eler-
00 Us In lowl nods ere fowl orea
.ulteble ror r.rmlng -""'.Ung .nd moltIng
-OoU...lond .pruce-popler eree
forest
-rive species spawn In
orea
-None Idsnl tried -Geatlng petenUsl -Nono Identified
TABLE C.7 -SITE EVALUATION MATRIX
Waterfowl,Installed [000
Big Agrlcullural Raplors,Anadromous Wilderness Cult,Recrea,Reslricted Capacity Dam nooded
Game Polentisl Endg.Species rtsheries Consideration u&!iJ:i""tiLic Land Use Access (M'lI)Scheme Height (ft)(Acres)
Crescenl lake
Chakachomna
lower Be I uga
Coffee
l\1per Beluga
St rand line lake
llrodley lake
Kasilof River
TustlJlleno
Kenai lower
Kenoi loke
Crescenl lake-2
Granl lake
Snow
I-\CClure lley
C
C
C
C
C
C
C
C
C
C
o
C
11
B
o
o
o
o
II
II
C
C
B
o
B
o
o
o
o
o
o
C
C
C
C
C
II
C
o
C
C
C
C
C
o
B
C
B
B
B
o
o
II
o
B
B
c
II
o
C
C
B
o
o
D
C
C
o
B
C
C
C
c
o
B
C
C
C
C
C
o
C
C
o
C
o
c
c
c
o
II
B
o
o
o
o
o
o
o
B
c
C
C
c
C
B
c
o
o
o
o
o
o
B
o
o
o
o
o
c
>100
<25
25-100
25-100
<25
25-100
<25
25-100
>100
<25
<25
25-100
<25
Reservo ir <150
wlOi vers ion
Reservoir <150
wlOI vers ion
Reservoir <150
anel Dam
Dam snd <150
Reservoir
Dam and 150-350
Reservoir
Reservoir <150
wlOi version
Reservoir <150
wlOi vers Ion
Reservoir 150-350
wlOi vers ion
Reservoir <150
w/Oiversion
Om end <150
Reservoir
Osm and >350
Reservoir
Reservoir <150
wlOi vera ion
Reservoir <150
wlOI vers Ion
Reservoir 150-350
wlOi vers Ion
Reservoir <150
wiD I vers ion
<5000
<5000
<5000
<5000
5000 to
100,000
<5000
<5000
>100,000
<5000
<5000
5000 to
100,000
<5000
<5000
5000 to
100,000
<5000
l\1per Nellie Juan R C o o o B c C <25 Reservoir <150
w/Ohers Ion
<5000
Allison Creek
Solomon Gulch
Lowe
Sliver lake
Power Creek
o
o
C
o
o
o
o
o
o
o
R
B
R
o
R
C
C
C
C
A
o
o
c
c
c
o
o
c
c
C
o
o
o
C
c
o
o
o
c
c
<25
<25
25-100
<25
<25
Reservoir <150
w/Olversion
Reservoir <150
wlOi vers ion
Dam and 150-350
Reservoir
Reservoir <150
wlOi vers ion
Reservoir <150
wlOi vers Ion
<5000
<5000
5000 to
100,000
<5000
<5000
Mill ion Dollar o o o A o c c c Dam and
Reservoir
<150 5000 to
100,000
Haterfowl,Installed nlimd
81g Agrlcullural Raplors,Anadromous Wilderness Cull,Recrea,Realrlcled Capacity Oorn rtoodod
Game Polential Endg.Species fisheries Consideration &ScJ~nJ!fic Land lls~A,,-c"!llL__Q!lI.L s.,h~me Heighl (fl)(Acres)
Keelna
Grsnlle Gorge
lalkeelna-2
Greenstone
Cache
Hicks
B
8
8
8
8
B
o
o
o
o
D
D
o
o
D
D
D
c
8
8
8
8
B
o
o
c
c
c
C
D
c
c
c
c
C
D
o
o
o
o
o
o
c
c
c
c
c
D
25-100
25-100
25-100
25-100
25-100
25-100
Oam and )350
Reservoir
Reservoir 150-350
wiD I ve ra ion
Dam and )350
Reaervoir
Reservo I r 150-350
w/Di vera Ion
Dum and 150-350
Reservblr
Darn and 150-350
Reservoir
5000 10
100,000
<5000
5000 10
100,000
<5000
<5000
<5000
Ramparl
Vachon Is land
Juncllon Island
Kanllshna River
McKinley River
Tsklanlka River
8rowne
Healy
Carlo
Yanerl-2
8ruskasna
Tanana
Gerslle
Johnson
Calhedral Bluffs
c
8
B
c
8
8
B
8
B
B
B
8
fl
c
B
8
B
8
B
D
D
c
c
D
o
o
fl
8
B
c
8
c
C
c
C
D
o
D
o
o
C
c
C
c
c
A
A
A
8
o
D
D
o
o
o
o
B
c
C
c
o
o
D
D
B
8
D
8
8
B
o
D
D
o
o
C
c
C
c
c
o
c
8
c
C
B
c
c
c
I>
C
o
o
o
A
A
o
A
A
A
o
o
o
o
o
c
C
C
B
D
o
o
o
D
o
C
D
D
)100
)100
)100
25-100
)1£10
25-100
25-100
25-100
)100
>100
Dam and
Reservoir
Dam and
Reservoir
Dam and
Reservoir
Oom and
Reservoir
Dam and
Reservoir
Oom and
Reservoir
Dam and
Reservoir
Oem ond
Reservoir
Darn and
Reservoir
Oumond
Reaervolr
Oumond
Reservoir
Dam and
Reservoir
Oem and
Reservoir
Dam and
Reservoir
Oam and
Reaervoir
)350
<150
150-350
<150
150-350
)350
150-350
150-350
150-350
150-350
150-350
<150
<150
<150
150-350
)100,000
)100,000
)100,000
)100,000
<5000
5000 to
100,000
5000 10
100,000
5000 to
100,000
<5000
5000 to
100,000
5000 10
100,000
5000 to
100,000
<5000
5000 to
100,000
5000 to
100,000
TABLE C.7 (Continued)
WilterfOWl,··Installed Lililil
Big Agricullural Raptors,Anadromous Wilderness Cull,Recrea,Reatrlcted Capacity Dam flooded
_________Game Potential Endg.Species fisher lea Consideration c\Scientific Land Use Access (MW)Scheme Height (ft)(Acres)
Cleave
Wood Canyon
lebay Lake
Hanaglta
C
C
C
C
o
o
o
o
B
C
o
o
B
B
C
o
B
B
B
B
C
B
o
o
A
A
A
A
o
o
n
n
Dam and 150-350
Reservoir
Dam and >350
Reservoir
Reservoir <150
w/Ol vers Ion
Reservoir <150
,,/Oi vers ion
5000 to
100,000
>100,000
<5IJOO
<5000
Klutina
Tazl Ina
Gakona
Sanford
B
Il
o
B
C
o
C
C
c
C
C
C
C
C
C
C
B
o
o
o
C
C
C
C
o
C
A
A
o
o
25-100
>100 Dam end
Reservoir
Oem and
Reservoir
Oem and
Reservoir
150-350
150-350
5000 to
100,000
5000 to
100,000
r.ulkana
Yentna
To lachu It no
SkwenLna
Lake Creek Lpper
Lake Creek Lower
B
B
B
B
C
C
o
B
n
B
o
n
C
C
C
C
C
C
C
B
Il
n
C
B
o
o
o
o
C
o
B
C
C
C
o
C
B
o
o
o
A
o
o
C
c
C
c
c
25-100
>100
25-100
25-100
Reservoir 150-350
w/Ol vers ion
Oam and <150
Reservoir
Oem end <150
Reservoir
Oem and >350
Reservoir
Reservoir <150
w/Ol vera Ion
Oem and 150-350
Reservoir
5000 to
100,000
>100,000
5000 to
100,000
5000 to
100,000
<5000
<5000
Lower Chulitna
Toklchitna
COAL
lJ110
Chulitna
Whiskers
lane
C
C
Il
B
A
C
C
B
A
o
o
o
B
B
C
C
C
C
C
C
c
B
n
C
C
C
B
n
C
C
C
C
C
o
o
C
C
C
C
C
C
c
o
o
o
o
o
o
o
o
o
o
o
o
C
C
25-100
>100
25-100
25-100
25-100
25-100
>100
Oem and
Reservoir
Oam ond
Reservoir
Dam end
Reservoir
Oam ond
Reservoir
Oem and
Reservoir
Oem end
Reservoir
Oom and
150-350
150-350
150-350
150-350
150-350
<150
150-350
<5000
5000 to
100,000
<5000
<5000
<5000
<5000
<5000
TABLEC.8-CRITERIAWEIGHTADJUSTMENTSDamHeightAdjustedWeightsReserv.AreaInitialWeight++++++++++++BigGame8678AgriculturalPotential7567Birds8678Fisheries108 910TABLEC.9-SITECAPACITYGROUPSNo.ofSItesNo.ofSItesSiteGroupEvaluatedAccepted<25MW5325-100MW154 - 6>100MW84
TABLEC.l0-RANKINGRESULTSSiteGroupPartialScoreTotalScoreSites:<25MWStrandlineLake5985NellieJuanUpper3796Tustumena37106AllisonCreek6582SilverLake65111Sites:25-100MWHicks6279Bruskasna71104BradleyLake71104Snow71106Cache86127Lowe89122Keetna89131Talkeetna-298134Coffee101126Whiskers101134Klutina101142LowerChulitiua106139BelugaUpper117142TalachultnaRiver126159Skwentna136169Sites>100MWChakachamna65134Browne6994Tazlina89124Johnson96121CathedralBluffs101126Lane106139KenaiLake112147Tokichitna117150
TABLEC.11-SHORTLISTEDSITESEnvironmentalCapacityRatingo -25MW25-100MW100MWGoodStrandlineLake*Hicks*Browne*AllisonCreek*Snow*JohnsonTustumenaCache*SilverLakeBruskasna*AcceptableKeetna*Chakachamna*PoorTalkeetna-2*LaneLowerChulitnaTokichitna*10selectedsites
TableC.12-PRELIMINARYCOSTESTIMATE-SNOWDescriptionDiversionTunnelEarthCofferdamsExcavation-Overburden-SpillwayImperviousFillPerviousFillFilterStoneCoarseRockFillConcreteSpillway9Ft~PowerTunnel22Ft~SurgeShaft50MWUndergroundPowerhouseTailraceTunnelTailraceChannelSubtotalLand/DamagesReservoirClearingSwitchyardTransmissionRoadsBridgesOn-siteRoadsBuildings/EquipmentMobilizationSubtotalCampCateringSubtotalEngineering,AdministrationContingencyTOTALQuantity2,000132,000768,000638,0003,028,00083,00057,0001,60010,00020015052,000Cost/UnltUnit$LF3,060.00cy10.25cy4.50cy5.00cy5.00cy8.00cy8.50LF24,900.00LF1,978.00VLF7,000.00eaLF1,978.00LF510.00Airio~ntTotgls$10$106.121.353.463.1915.140.660.4939.8019.781.4025.001.001.02118.41.984.163.007.204.205.008.007.54158.4920.0014.40192.8961.72254.61
TableC.13-PRELIMINARYCOSTESTIMATE-KEETNACost/UnitAmo~ntfotglsDescriptionQuantityUnitJ$10$10DiversionTunnel2,000LF9,460.0018.92EarthCofferdams824,000cy10.258.45Excavation-Overburden1,474,000cy4.506.63ImperviousDamFill1,850,000cy5.009.25PerviousDamFill8,513,000cy5.0042.50FilterStone193,000cy8.001.54CoarseRock-RipRap148,000cy8.501.26Spillway Excavation410,000cy130FtConcreteSpillway1,000LF100,500.00100.50PowerTunnel2,100LF4,110.008.64100MWSurfacePowerhouse1ea50.00Subtotal247.69Lands/Damage1.66ReservoirClearing12.18Switchyard3.00Transmission3.20Roads3.60Bridges5.00On-siteRoads5.00Buildings/Equipment8.00Mobilization14.47Subtotal303.80Camp30.00Catering27.30Subtotal361.10Engineering,Administration,Contingency115.55TOTAL476.65
TableC.14-PRELIMINARYCOSTESTIMATE-CACHECostfUnltAffio~ntTot~lsDescriptionQuantityUnit$$10 $10DiversionTunnel2,200LF8,390.0018.45EarthCofferdams301,000cy10.253.09Excavation-Overburden2,946,000cy4.5013.25-Spillway490,000cyImperviousFill2,750,000cy5.0013.75PerviousFill12,018,000cy5.0060.09FilterStone284,000cy8.002.27CoarseRockFill196,000cy8.501.67ConcreteSpillway2,000LF71,400.00142.8013Ft~PowerTunnel2,000LF2,870.005.7450MWSurfacePowerhouse1ea25.00Subtotal286.11Lands/Damages1.89ReservoirClearing13.96Switchyard3.00Transmission8.80Roads12.00Bridges5.00On-siteRoads5.00Buildings/Equipment8.00Mobilization17.19Subtotal360.95Camp33.75Catering32.40Subtotal427.10Engineering,Administration,Contingency136.67TOTAL563.77
TableC.15-PRELIMINARYCOSTESTIMATE-BROWNECost/UmtAmo~ntTotglsDescriptionQuantityUnit$$10$10DiversionTunnel1,000LF12,000.0012.00EarthCofferdams196,000cy10.252.00Excavation-Overburden7,197,000cy4.5032.39-SpillwayImperviousFill2,497,000cy5.0012.49PerviousFill.11,895,000cy5.0059.48FilterStone337,000cy8.002.70CoarseRockFill329,000cy8.502.80ConcreteSpillway1,100LF128,000.00141.0023Ft~PowerTunnel1,000LF5,540.005.54100MWSurfacePowerhouse1ea50.00TailraceChannel300LF510.000.15Subtotal320.55Lands/Damages4.62ReservoirClearing28.21Switchyard3.00Transmission2.00Roads4.20Bridges5.00On-siteRoads5.00Buildings/Equipment8.00Mobilization19.03Subtotal399.61Camp37.50Catering36.00Subtotal473.11Engineering,Administration,Contingency151.40TOTAL624.51
TableC.16-PRELIMINARYCOSTESTIMATE-TALKEETNA-2Cost/UnItAffio~ntTot~lsDescriptionQuantityUnit$$10$10Diversion,Tunnel2,800LF8,660.0024.25EarthCofferdams445,000cy10.254.56Excavation-Overburden4,668,000cy4.5021.00-Spillway333,000cyImperviousFill2,932,000cy5.0014.66PerviousFill14,213,000cy5.0071.07FilterStone294,000cy8.002.35CoarseRockFill197,000cy8.501.67ConcreteSpillway1,200LF81,600.0097.9012.5Ft~PowerTunnel2,400LF2,750.006.6050MWSurfacePowerhouse1ea25.00Subtotal269.06Lands/Damages0.48ReservoirClearing3.27Switchyard3.00Transmission5.60Roads7.20Bridges5.00On-siteRoads5.00Buildings/Equipment8.00Mobilization15.33Subtotal321.94Camp27.50Catering29.10Subtotal378.54Engineering,Administration,Contingency121.13TOTAL499.67
TableC.17-PRELIMINARYCOSTESTIMATE-HICKSCost/UnItAirio~ntlotalsDescriptionQuantityUnit$$10 $106DiversionTunnel2,400LF8,450.0020.28EarthCofferdams641,000cy10.256.60Excavation-Overburden2,136,000cy4.509.60-Spillway292,000cyImperviousFill2,160,000cy5.0010.80PerviousFill8,713,000cy5.0043.60FilterStone238,000cy8.001.90CoarseRockFill154,000cy8.501.30ConcreteSpillway1,800LF79,444.00143.0015Ft~PowerTunnel1,900LF3,342.006.35SurgeShaft60MWSurfacePowerhouseea30.00Subtotal273.43Lands/Damages1.76ReservoirClearing1.48Switchyard3.00Transmission20.00Roads3.00Bridges5.00On-siteRoads5.00Buildings/Equipment8.00Mobilization16.05Subtotal336.72Camp33.75Catering30.30Subtotal400.77Engineering,Administration,Contingency128.25TOTAL529.02
TableC.18-PRELIMINARYCOSTESTIMATE-CHAKACHAMNACOst/Om.tAlriogntlotgIsDescriptionQuantityUnit$$10$10MainDamea2.0026FtConcreteLinedPowerTunnel57,000LF8,380.00477.66AditTunnels14,000LF1,680.0023.5035FtTailraceTunnel1,000LF3,500.003.5088Ft0SurgeShaft500LF50,000.0025.0016Ft0Penstocks3,700LF5,090.0018.85500MWUndergroundPowerhouse1ea273.50DiversionTunnel2,000LF9,580.0019.15Subtotal843.16Lands/Damages0.50ReservoirClearingSwitchyard3.00Transmission14.00Roads31.80Bridges10.00On-siteRoads10.00Buildings/Equipment8.00Mobilization44.40Subtotal964.86Camp72.50Catering84.00Subtotal1121.36Engineering,Administration,Contingency359.05TOTAL1480.41
TableC.19-OPERATINGANDECONOMICPARAMETERSFORSELECTEDHYDROELECTRICPLANTSMax.AverageEconomicGrossInstalledAnnualPlantCapit~lCostofHeadCapacityEnerrFactorCos~EnergyNo.SiteRiverFt.(MW)(Gwh(%)($10)($/1000Kwh)1SnowSnow6905022050255452BruskasnaNenana23530140532381133KeetnaTalkeetna33010039545477474CacheTalkeetna31050220515641005BrowneNenana19510041047625596Talkeetna-2Talkeetna3505021550500907HicksMatanuska2756024546529848ChakachamnaChakachatna9455001925441480309AllisonAllisonCreek1270833475412510StrandlineLakeBeluga810208549126115NOTES:~ncludingengineeringandowner'sadministrativecostsbutexcludingAFDC.
TABLEC.20-ALTERNATIVEHYDRODEVELOPMENTPLANSInstalledOn-linePlanDescriptionCapacityDateA.1D1akachamna5001993Keetna1001997A.2D1akachamna5001993Keetna1001997Snow502002A.3D1akachamna5001993Keetna1001996Snow501998Strandline201998AllisonCreek81998A.4D1akachamna5001993Keetna1001996Snow502002Strandline202002AllisonCreek82002A.5D1akachamna5001993Keetna1001996Snow502002Talkeetna- 2502002Cache502002Strandline202002AllisonCreek82002
TABLE C.21 -RESULTS OF ECONOMIC ANALYSES OF ALTERNATIVE GENERATION SCENARIOS
Installed capacity (MW)by 10tal System lotal System
Category in 2010 Installed Present Worth
Generation Scenario OGP5 Run 2hermal HYdro Capacity in Cost -
,~Descnption Load Forecast Id.No.oal Gas oil 2010 (MW)($10 6 )
All Thermal No Renewals Very Low 1 LBT7 500 426 90 144 1160 4930
No Renewals Low L7E1 700 300 40 144 1385 5920
With Renewals Low L2C7 600 657 30 144 1431 5910
No Renewals Medium LME1 900 801 50 144 1895 8130
With Renewals Medium LME3 900 807 40 144 1891 8110
No Renewals High L7F7 2000 1176 50 144 3370 13520
With Renewals High L2E9 2000 576 130 144 3306 13630
No Renewals Probab il ist ic LOF3 1100 1176 100 144 3120 8320
Thermal Plus No Renewals Plus:Medium l7W1 600 576 70 744 1990 7080
Alternative Chakachamna (500)2_1993
Hydro Keetna (100)-1997
No Renewals Plus:Medium LFL7 700 501 10 794 2005 7040
Chakachamna (500)-1993
Keetna (100)-1997
Snow (50)-2002
No Renewals Plus:Medium LWP7 500 576 60 822 1958 7064
Chakachamna (500)-1993
Keetna (100)-1996
St randl.i.ne (20),
Allison Creek (8),
Snow (50)-1998
No Renewals Plus:Medium LXF1 700 426 30 822 1978 7041
Chakachamna (500)-1993
Keetna (100)-1996
Strandline (20),
Allison Creek (8),
Snow (50)-2002
No Renewals Plus:Medium L403 500 576 30 922 2028 7088
Chakachamna (500)-1993
Keetna (100)-1996
Snow (50),Cache (50),
Allison Creek (8),
Talkeetna-2 (50),
Strandline (20)-2002
Notes:
(1)Incorporating load management and conservation
(2)Installed capacity
46SCALE-MILESIINCHEQUALSAPPROXIMATELY40MILESo&G0-25MW25-100MWI.STRANOLINEL.13.WHISKERS26.SNOW2.LOWERBELUGA14.COAL27.KENAILOWER3.LOWERLAKECR.15.CHULITNA28.GERSTLE4.ALLISONCR.16.OHIO29.TANANAR.5.CRESCENTLAKE217.LOWERCHULITNA30.8RUSKASNA6.GRANTLAKE18.CACHE31.KANTISHNAR.7.McCLURE8AY19.GREENSTONE32.UPPER8ELUGA8.UPPERNELLIEJUAN20.TALKEETNA233.COFFEE9.POWERCREEK21.GRANITEGORGE34.GULKANAR.10.SILVERLAKE22.KEETNA35.KLUTINAII.SOLOMONGULCH23.SHEEPCREEK36.BRADLEYLAKE12.TUSTUMENA24.SKWENTNA37.HICK'SSITE25.TALACHULITNA38.LOWESELECTEDALTERNATIVEHYDROELECTRICSITES39.40.41.42.43.44.45.46.47-48.49.>100MWLANETOKICHITNAYENTNACATHEDRALBLUFFSJOHNSONBROWNEJUNCTIONIS.VACHONIS.TAZILNAKENAILAKECHAKACHAMNAFIGURECIIOIRI
FIGUREC.2[iii]~CALE.: 0'200400FEETI~~~!~_~IGRA\JE.LSURF~E:CCRESTELEVATION(ASINDICATEDONPLAN)~=#=:::o...::::--...L.---DAMCROSSSECTiONALTERNATIVEHYDROSITESTYPICALDAMSECTIONRIPRAP£NORMALMAx.WL(ASINDICATEDONPLAN)
FIGUREC.314TAILRACEUNDERGROUNDPOWERHOUSE50MWCAPACIToSCALE:AO,----r=1~O.ZM\LES•ISCALE:BI;iMILESALTERNATIVEHYDROSITESSNOWPLANOFDEVELOPMENT,,00;;~==~S:C~A~LE~:~B~=::=-__---!~~J\'l,00..-0:-::::-~~:;.------.-.......;::;-..:::::"'.-:::::---------:::-,...::::---.----------"---:::---°08~//\ooo\o8
FIGUREC.4111m:...----..'"--"-----•..SURFACE.FOWe.R1-lOUS1:rooMWCAPACITY1=L1PBUCKl:iITAlkWATERSt...~~.s.o/l~.-----0/5:COFFERDAM.p~RINTAKIii(\\ALTERNATIVEHYDROSITESKEETNANORMAl..MA')(,W.L.EL.0)45t
FIGUREC.5\500\600.___-liOOSURF~CEPOWtRHOUSE.50MWCAPACITY\~oo~ALf:0~~~~~O_.I~..'2.I.•MILe>-----SP\LLWA'YCONTROL~\<cfSJSTRUCTURE.~ALTERNATIVEHYDROSITESCACHE---------.,.".-:-....NORMALMA'J..WLE.L.\630-~-----------._-\400~•••uf.;COFFERDAM~------....".-------1400-.~-••
FIGUREC611~lmI0.2MILES0.1o/#/,.....",,----_...----.F'LIPOUC~ET
FIGUREC.7O.'2.MIL.E.S0.1SCAl-E:.0\?JcP0°\J\:~POWERTUNNE.-LALTERNATIVEHYDROSITESTALKEETNA2SPILl-WA'(CONTROL.~__STt<U<:TuRe.\'OC~~=------'Soc-~--U!sCOFFE:ROAJv1/,\cP1000-~-------1400/1iI'ooFLOWr>
AGUREc.a[iii]1800O.'2..M IL.ES0.1---------------1900rzt:X:J::)SCALE.05PILL.WAYCONTROL5TJ<UCTURE........:::::::1-11----<:::::..·1-1....---.......-:-:.>.......1700__________lGOO:-------------=/50:::>--/9QJ~::I-It---l~---------~---------'2100---20~_---~----1800---==:::::::-~f---'~:-=-::::--:~--==----------------ALTERNATIVEHYDROSITESHICKS"DisGOFFIER.DAM,"1400"~...\~~~ISURFAcE.POWE.RHOUSe.-__=-nI.'.__~---~::T:\ttt=-----:"~'--II::"'-"~'/\.'''~,<00MWCAPAC1-:::__•••_....~"---.::J---..----.~~:~:~/.l---l!I------IT.o::~WATE.1<.E.LI~IIMATANUSkAeIVE.R".=4••I--II---~".....0.=-,.o~···--------···--':::=::::'0i~FLIPBUCKET-----/500r---_,<OQo-.U/5GOFFEROAMNORMALMAX.W.L.£L.I<aSGI
o'2MIL.E.S~""--.""I....-..""r,CONSTRU110N--fAOITALTERNATIVEHYDROSITESCHAKACHAMNAUt-JDE:R.GROUNDPOWE'RHQUSe.-500MWCAPA.CITYFIGUREe.9
FIGUREC.IOIHimISURe;E5~AFT10II8UNLlt-JE.DORSHOTCR&TER:>WERTUNt-JEL2~.O:DIA.6..,TAILRAa:TDNNI:L5ALTERNATIVEHYDROSITESSeAL.,-0.......0:::.-----:.:;40FEETCHAKACHAMNA-PROFILEANDSECTIONSHORIZONTALDISTANCE.It-JMIL;S4PROFILEALONGiOFINrAKii::,TUNNI:L1~POWERI-4OUSE32powe~TUNN&LSECTIC),JMAXIMUMReSERVOIRELU30.0·oIUL",L.~____J---_L---_1_---_+_---+_---+_---~--~~--_+---+~-=~L_JF7TAlLWATGRla,/-B5li'\l--JJ-----+-----+-~--_+---+--"""7'""4'~--_t_---+_---+_---t_---t_---t_-_r___;-r-1'ONERHOUse500MW(;.AR6CITYFIGUREC.IOIHimISURe;E5~AFT10II8UNLlt-JE.DORSHOTCR&TER:>WERTUNt-JEL2~.O:DIA.6..,TAILRAa:TDNNI:L5ALTERNATIVEHYDROSITESSeAL.,-0.......0:::.-----:.:;40FEETCHAKACHAMNA-PROFILEANDSECTIONSHORIZONTALDISTANCE.It-JMIL;S4PROFILEALONGiOFINrAKii::,TUNNI:L1~POWERI-4OUSE32powe~TUNN&LSECTIC),JMAXIMUMReSERVOIRELU30.0·oIUL",L.~____J---_L---_1_---_+_---+_---+_---~--~~--_+---+~-=~L_JF7TAlLWATGRla,/-B5li'\l--JJ-----+-----+-~--_+---+--"""7'""4'~--_t_---+_---+_---t_---t_---t_-_r___;-r-1'ONERHOUse500MW(;.AR6CITY
2010700kl""'I""'III~",j1965J.L..'-Ll2000150815341944fllJll'l'I'lI1954PEAKLOAD~19807152oLEGEND8642DHYDROELECTRIChtrtilCOALFIREDTHERMALEZlGASFIREDTHERMAL•OILFIREDTHERMAL(NOTSHOWNONENERGYDIAGRAM)NOTE:RESULTSOBTAINEDFROMOGPSRUNLFL7KEETNACHAKACHAMNAEXISTINGANDCOMMITTEDSNOW1980199020002010TIMEGENERATIONSCENARIOINCORPORATINGTHERMALIlieIANDALTERNATIVEHYDROPOWERDEVELOPMENTS-MEDIUMLOADFORECAST-FIGUREC.II
APPENDIX0 -ENGINEERINGLAYOUTDESIGNASSUMPTIONSTheobjectiveofdocumentingthefollowingdesignconsiderationsistofacili-tateastandarizedapproachtotheengineeringlayoutworkbeingdoneaspartofSubtasks6.02"InvestigateTunnelAlternative",6.03"EvaluateAlternativeSusitnaDevelopments"and6.06"StagedDevelopment".Itisemphasizedthatforpurposesoftheseinitialprojectdefinitionstudies,layoutsareessentiallyconceptualandthematerialpresentedisbasedonpublisheddatamodifiedbyjudgementandexperience.0.1-ApproachtoProjectDefinitionStudiesThegeneralapproachtotheprojectdefinitionstudiesinvolvesthreesteps:(a)SingleSiteDevelopmentsAllsitesaretreatedassingleprojects.(b)MultisiteDevelopmentsTwoorthreesitesaredevelopedinaseries.Thismeansthatthedown-stream·sitesmayhaveinstalledcapacities,spillwayanddiversioncapaci-ties,anddrawdownlevelswhichdifferconsiderablyfromtheslnglesitedevelopment.(c)StagedDevelopmentsDevelopmentatasitemaybestaged,i.e.insubsequentstagesofdevelop-ment,thedamcrestlevelmaybeincreasedandthepowerhousecapacityexpanded.Althoughthesestepsnormallyfollowconsecutively,thereisconsiderableover-lap,andworkcouldbeprogressingonallthreestepsatthesametime.Thisappendixessentiallyaddressesthestep(a)typestudies.Carefulinter-pretationoftheinformationisrequiredwhenapplyingittostep(b)and(c)studies.0.2-ElectricalSystemConsiderationsThecurrenttotalsystemplantfactorisreportedtobeoftheorderof50to55percent.Studyprojections(Section5)indicatethatthisfactormaygouptobetween56and63percentinfutureyears.Initially,allprojectsshouldbesizedfora45to55percentplantfactorandshouldincorporatedailypeakingtosatisfythisrequirement.Asalaterstep,someoftheproposeddevelopmentscouldhavehigherorlowerplactfactors,ifthisisjustifiedineconomicstudies.0-1
Allprojectsshouldbecapableofmeetingaseasonallyvaryingpowerdemand.TableD.1isbasedonloadforecastingstudiesundertakenasdiscussedinSection5andliststhemonthlyvariationinpowerandenergydemandthatshouldbeused.Ingeneral,theinstalledcapacityandreservoirlevelregulatingrulesusedinthisstudyareestablishedsothatthefirmenergyoutputoftheprojectismaximized.Anumberoftermsrelativetoenergyassessmentswhichareusedintheprojectdefinitionstudiesarelistedanddefinedbelow.Thesedefinitionsmaybemodifiedduringthesubsequentstepsofthefeasibilitystudiestoreflectthehighersophisticationofthestudiesandconsequentlytheneedforamoreexactorspecificterminologydefinition.-AverageMonthlyorAnnualEnergyTheaveragemonthlyannualenergyproducedbyahydroprojectoveragivenperiodofoperation.-FirmMonthlyorAnnualEnergyTheminimumamountofmonthlyorannualenergythatcanbeguaranteedevenduringlowflowperiods.Forpurposesofthispreliminarystudythisshouldcorrespondtotheenergyproducedduringthesecondlowestenergyproducingyearonrecord.Thiscorrespondsroughlytoanannuallevelofassuranceof95%.-SecondaryEnergyElectricenergyhavinglimitedavailability.In900dwateryearsahydroplantcangenerateenergyinexcessofitsfirmenergycapability.Thisexcessenergyisclassifiedassecondaryenergybecauseitisnotavailableeveryyear,andvariesinmagnitudeinthoseyearswhenitisavailable.-InstalledCapacityTheratingofgeneratorsatdesignheadandbestgateavailableforproductionofsaleablepower.D.3-GeotechnicalConsiderations(a)MainandSaddleDamsGeotechnicalconsiderationsinherentforeachofthedamsitesaresummarizedinTableD.2.(b)TemporaryCofferdamsItisassumedthatallcofferdamsareoffill-type.Sincemuchoftheoriginalriverbedmaterialunderthemaindamshellmayhavetobeexca-vated,allcofferdamshavebeenlocatedoutsidetheupstreamanddownstreamlimitsofthemaindamineachcase.D-2
D.4-HydrologicandHydraulicConsiderationsTablesD.3,D.4,D.5andD.6listtheprovisionalhydrologicandhydraulicparametersusedininitialprojectdefinitionstudies.TableD.7detailspreliminaryfreeboardrequirements.AnexampleisworkedoutinTableD.8tocalculatefreeboardrequirements.(a)GeneralFiguresD.1toD.8illustratethestoragecapacityandreservoirareaateachSusitnaBasindamsitefortheapplicablerangeofwaterlevels.(b)SizingofHydraulicComponentsPowerConduits-FordamschemesthesizesshouldbebasedonthemaximumvelocitieslistedinTableD.6.Forlongtunnelschemesthediameterisdeterminedsuchthatthecostofenergyisminimized.Thatis,tunneldiameterisoptimizedbetweencostofexcavatinglargertunnelsagainstreducedheadlosses.-DiversionSystem-Thecofferdam-diversiontunnelsystemissizedasfo11ows:•Thediversiontunnelissizedtoaccommodatethemaximumvelocitypermissible(TableD.6)forthedesigndiversionflow.Thetopoftheupstreamcofferdamisthendeterminedbycomputingheadlossthroughthetunnel,addingtotheelevationoftheenergygradelineattheoutletportal,andprovidinga10feetfreeboardallowance.•Thedownstreamcofferdamheightisdeterminedfromtheavailablestage-dischargerelationshipwithsimilarfreeboardallowances.-Spillway-SpillwaysizewasbasedontheaccommodationoftheProjectDesignFloodshowninTableD.3andD.4.Supplementaryemergencyspillwaysareusedwherenecessary.Allservicespillwayshavedownstreamstillingbasins.ThecapacityofeachstructureischeckedforthePMFflowwithareductionupto9feetinfreeboard(TableD.7).Theenergytobedissipatedbythespillwaystructurewassetat45,000hpperfootwidthunderPMFconditions.D.5-EngineeringLayoutConsiderationsTableD.9liststhecomponentsthatareincorporatedintheengineeringlayoutsanddescribesthetypesofcomponentstobeused.TableD.9wasusedasaguidetodesignforalllayouts.D.6-MechanicalEquipment(a)Powerhouse-NumberofUnitsIngeneral,adecreaseinthenumberofunitswillresultinareductioninpowerplantcost.ForpreliminarystudiesithasbeenassumedthatunitcapacitiesrangefromIOOto250MW.Theminimumnumberofunitsassumedistwoandthemaximumnumberisfour.D-3
-TurbinesTheratednetheadhasbeenassumedtobeapproximatelyequaltotheminimumnetheadplus75percentofthedifferencebetweenthemaximumandminimumnetheads.Forratedheadsabove130feet,verticalFrancistypeunitswithsteelspiralcaseshavebeenassumed.VerticalKaplanunitsareusedforheadslowerthan130feet.Turbinesaredirectlyconnectedtoverticalsynchronousgeneratorsinallcases.(b)OverflowSpillwayGatesThespillwaygateshavebeenassumedtobefixedwheelverticalliftgatesoperatedbyadoubledrumwithropehoistslocatedinanenclosedtowerandbridgestructure.Maximumgatesizeforpreliminarydesignhasbeensetat50feetwidthand60feetheight.Inallcasesaprovisionof3feetoffreeboardforgatesovermaximumoperatinglevelhasbeenassumed.Thegatesareheatedforwinteroperation.(c)MiscellaneousMechanicalEquipmentCostestimatesprovideforafullrangeofpowerstationequipmentincludingcranes,gates,valves,etc.0.7-ElectricalEquipment(a)PowerhouseGeneratorsareoftheverticalsynchronoustypewithseparatetransformergalleriesprovidedformainandstationtransformers.Provisionismadeinthecostestimatesforafullrangeofmiscellaneousoperatingandcontrolequipmentincludingwherenecessaryallowanceforremotestationoperations.(b)SwitchyardandTransmissionLinesTheswitchyardisdesignedtobelocatedonthesurfaceandasclosetothepowerhouseaspossible.Sizeguidelinesfortheyardsareapproximately900x500feet.Costestimatesallowfortransmissionlinesandsubstations(Table0.9).0.8-EnvironmentalConsiderationsPreviousinvestigationshaveshownthataprimeenvironmentalconsiderationistheeffectofpossibledevelopmentonfisheries.Inordertoavoidaseveredetrimentalimpactonthefisherieshabitat,tentativewaterlevelfluctuationsanddownstreamflowreleaseconstraintshavebeendeveloped.Theseareguidelinesonlyforthepresentstudiesandwillbefurtheraddressedandrefinedasworkproceeds.0-4
(a)FlowConstraintsTable0.10listspreliminaryvaluesofminimumflowsrequireddownstreamofanydevelopmentatalltimes.Thelowerflowsarebasedonpreliminaryassessmentoftherequirementsofresidentfishwhilethehigherflowsareestimatedanadromousfishneeds.(b)WaterLevelConstraintsDailyreservoirlevelfluctuationsshouldbekeptbelow5feetwhileseasonaldrawdownshouldbelimitedtobetween100and150feet.0-5
TABLE0.1-MONTHLYVARIATIONSOFENERGYANDPEAKPOWERDEMANDMonthEnergyVar2at2onPeakDemandOctober.086.80November.101.92December.1091.00January.100.92February.094.87March.086.78April.076.70May.069.64June.067.62July.066.61August.070.64September.076.70I,I~
General Conditions
TABLE D.2 -GEOTECHNICAL DESIGN CONSIDERATIONS
DAM S -rT E
Dena!l Maclaren Vee
Dam Type
U!S Slope
D!S Slope
Earth-Rockfill
4:1 (H!V)
4:1
Earth-Rockfill
4:1
4:1
Earth-Rockfill
2.25:1
2:1
General Foundation Conditions All structures would have soil
foundations.Depth to bedrock
is believed to be 200'+.Inter-
stratified till and alluvium
foundation material,local
liquefaction potential.40'+
alluvium in valley.
Assurre soil foundations.Depth
to bedrock estimated at 200'.
Compressible,permeable and
liquefiab Ie zones probab ly
exist.
River alluvium 125',drift
abutments is 10-40'thick.
located on deep permafrost
or talus on
Saddle dam
alluvium.
Required Foundation Excavation
(in addition to overburden)
Abutment
Channel
Total Excavation Depth
Core Shell---mr-...,-rrr-
70''50'
Unknown.
Denali.
Assume same as for Assume:Core -Remove
rock
Shell -Remove
average of 50'of
top 10'of rock
Required Foundation Treatment and
Grouting
Seismic Considerations
(MCE =Maximum Credibl e Earthquake)
Powerhouse Locat ion
Permafrost
Construction Material Availabi lity
Remarks
NOTES:
Assune core-grout in five rows
of holes to 70 percent of head
up to a maximum of 300 I.
Probable drain curtain or drain
blanket under downstream she II.
Foundation surface -no special
treatment.
High exposure,no known site
faults.MCE =Richter 8.5 @ 40
Underground powerhouse unsui tab Ie.
>100 I deep in abutrrents,probable
lenses under river.
No borrow areas identified.
Assume suitable materials are
available within a five-mile
radius.Processing of impervious
material will be required.
Based on Kachadoorian,1959.
Assume same as for Denali.
High exposure,no known site faults.
MCE =8.5 @ 40 miles.
Underground powerhouse unsuitable.
Probably )100'.
Assume same as for Denali.
No report on site.Parameters
based on regional geology.
Assume grouting same as for Watana.No
special treatment under shell.Assume
extensive sand drains in saddle dam
permafrost area.
High exposure,no known site faults.
MCE =B.5 @ 40 miles.
Unknown.Assume suitable for t.l1derground
with substantial rock support.
>60'in saddle area,sporadic in ablJt-
ments.
Assume available 0.5 to 5 mile radius.
Imperv ious will require processing.
Based on USSR studies.
Watana and Devil Canyon have been taken from overburden contour maps.
to January 1 t 1981.Estimates made after this date have used updated excavation criteria.
TABLE D.2 (Continued)
General Conditions
D--1\-M S I I t:
5lisTEna Watana HIgh Dev!l Canyon
Dam Type
U!S Slope
D!S Slope
General Foundation Conditions
Required Foundation Excavation
(in addition to overburden)
Required Foundation Treatment and
Grouting
Seismic Considerations
(MCE =Maximum Credible Earthquake)
Powerhouse Location
Permafrost
Construction Material Availability
Remarks
Earth-Rockfi 11
2.25:1
2:1
Unknown but rock probab Ie over
50'in depth.Possible perme-
ab Ie compressible and liquefiab Ie
strata.
Assurre same as for Watana.
Assure grout and drain system full
width of dam,dependent on founda-
tion quality.Drain gallery and
drain holes.
High exposure.MCE=8.5 ®411 miles.
Also near zone of intense
shearing.
Unknown.Assume suitable for
underground with substantial rock
support.
Probably sporadic and deep.
Assume available within five
miles.Processing similar to that
at Watana.
No reports available.Parameters
based on regional geology of the
area.
Earth-Rockfill or concrete arch
2.25:1 (for earth)
2:1
Abutments-assume 15'overburden (OB)
Valley bottom -48-78'alluvium.
Assume 70'.Right bank upstream -
apprOXimately 475 t deep relict
channel on right bank,upstream of
dam site.
Core:Remove top 40'of rock.
Shell:Remove top 10'of rock.
Extensive grouting to depth =7r110
of head but not to exceed 300'.
Drain gallery and drain holes.
MCE =Richter 8.5 ®40 miles or
7.0 @ 10 miles.-
Underground favorab Ie,ex tensi ve
support may be required.
)100'on left abutment.More
prevalent and deeper on north
facing slopes.
Available with 0-5 miles.
Processing required.
Based on Corps studies and 1980
Acres exploration.
Earth-Rockfill
2.25:1
2:1
Assume 30-60'overburden and alluvium.
Core:Remove top 40'of rock.
Shell:Remove top 15'of rock.
Assure same as for Watana.
Same as for Watana.
Probably favorable for underground but
assume support needed.
Sporadic,possibly 100'+.
No borrow areas defined.Assume avail-
able within 5 miles.
No geotechnical data available.Para-
meters based on regional geology.
-~~~~~~~~~~~''-''?----=....'"m.........~~.__'"
TABLE 0.2 (Continued)
General Conditions
DAM 5--1 T E
De~Canyon Devl1 Canyon ~age Creek
Dam Type
U!S Slope
D!S Slope
General Foundation Conditions
Required Foundation Excavation
(in addition to overburden)
Required Foundation Treatment and
Grouting
Concrete arch or gravity
Assume 35'alluvium in river bottom.
abutments,35-50'of weathered rock.
deep.Assume excavation for spillway
valley walls.
Remove 50'of rock.Extensive
dental work and shear zone over-
excavat~on will be required.
Saddle dam:Excavation 15'into
rock.
Extensive grouting to 70~~of head,
limited to 300'.Allow for long
anchors into rock for thrust
blocks.Extensive dental treat-
ment.Deep cutoff under saddle
dam,15'into rock.
Rockfill
2.25:1
2:1
Shears and fau 1t zones in both
Saddle dam overburden up to 90'
totals 90'to sound rock on
Core:Excavation 40'into rock
Shell:Excavate 15'into rock
Extensive grouting to 70%of head,
limited to 300'.Extensive dental
treatment under core.Deep cutoff
under s add Ie dam,15'into rock.
Concrete gravity
Unknown -assume same as for Devil Canyon
Rock type is similar to Devil Canyon,so
assume foundation condit ions are
similar.
Assume same as Devil Canyon.
Seismic Considerations
(MCE =Maximum Credible Earthquake)
Powerhouse Location
Permafrost
Construction Material Availability
Remarks
Same as for Watana.
Favorable for underground power-
house,assume moderate support.
None expected,but possibly
sporadic.
Concrete aggregate within 0.5
miles,embankment material -
assume within 3 mi les.
Based on USBR,Corps and 1980
Acres exploration.
Same as Watana.
Favorable for underground power-
house,assume moderate support.
None expected,but possibly
sporadic.
Concrete aggregate within 0.5 miles,
embankment materia 1 -assume within
3 miles.
Based on USBR,Corps and 1980
Acres exploration.
MCE =Richter 8.5 @ 40 miles or 7.0
at 10 miles.-
Probably favorable for underground
powerhouse,assume moderate support.
None expected,but may be local areas
on north exposures or in overburden.
Unknown -expect adequate sources 2-5
miles downstream.
No previous investigations are available
on this site.
Parameter Denali
.2Catchmentarea-sq.ml.:1,269'
Mean annual flow-cfs:3,290
Spillway design flood-efs:89,800
Construction diversion
flood cfs:42,500
50 year sediment
accumulation Acre-ft 1 :*290,000
Notes:
(1)Assumes upstream reservoir.
TABLE D.3 -INITIAL HYDROLOGIC DESIGN CONSIDERATIONS
DAM 5 I TE 5
Susitna High Devil Devil Portage Tunnel
Maclaren Vee III Watana Canyon Canyon Creek Alternative Remarks
2,320 4,140 4,225 5,180 5,760 5,810 5,840
4,360 6,190 6,350 8,140 9,140 9,230 9,230
106,000 133,000 137,000 175,000 198,000 200,000 200,000 175,000 1:10,000 year
flood peak
without routing
50,000 63,000 64,600 82,600 93,500 94,400 20,0001 20,0001 1:50 year flood
peak
243,000 162,000 165,000 204,000 248,000 252,000 ----assumes no up-
stream develop-
ment
TABLE D.4 -REVISED DESIGN FLOOD FLOWS FOR COMBINED DEVELOPMENT
Parameters
~v-r-[Qtl-M E N T
Scnel1leT .--SCneme-L .~m-arKS
(High Devil Portage )
(Watana &Devil Canyon)(Canyon &Creek &Vee )
Spillway design
flood -cfs 115,or)Q 135,000 145,000 150,000 105,000 1:10,000 year flood routed
through the reservoir at FSL
as in Table D.5
Construction diversion 89,100 20,000 99,100 20,000 71,200 Subsequent developrrents
enjoy regulation by upstream
reservoir(s).
PMF for checking 235,000 270,000 262,000 270,000 189,000
design -cfs
Notes:
This table is based on Acres Flood Frequency Analyses and supercedes
Table D.3 for Watana and High Devil Canyon first developrrents.
TABLE 0.5 -SITE SPECIFIC HYDRAULIC DESIGN CONSIDERATIONS
1JAM"5~TTt:--S
Susitna High Devil Devil Portage1 Tunne1 1 Remarks Tunnel
Parameter Denali Maclaren Vee III Watana Canyon Canyon Creek Alternative Alternative Only
Reservoir Full 2,540 2,395 2,330 2,340 2,220/1,750 1,445 1,020 2,200/Tunnel alternative
Supply Level -ft 2,000 1,475 consists of Watana
and re-regu lat ion
dams
Dam Crest Level -'ft 2,555 2,405 2,350 2,360 2,225/1,775 1,465 1,030 2,225/See above remarks
2,fJ60 (rock fill)1,490
1,459
(concrete)2
Average Tail Water
Level -ft 2,4fJ5 2,320 1,925 1,81 fJ 1,465 1,030 880 85fJ 1,465/Watana/Re-regula-
1,260/tion dam/Devil
9fJO Canyon,respec-
tively
Installed Capacity -MW 50 10 230 330 800/400 800 400 150
Maximum Power Flow -5,400 2,000 8,300 9,fJOO 18,000/18,000 10,000 15,000 8,400 In Tunnel between
cfs 11,000 re-regulation and
Devil Canyon Power
House
Minimum Compensation 600 1,200 1,500 1,500 2,000 2,000 2,000 2,00fl 1,000 In reach between
Flow -cfs tunnel out fa 11 at
Devil Canyon
Low Level Outl~t
8,900 4,700 8,300 10,flOO 20,800 15,600 10,6orl 9,300 20,8flf)Capacity -cfs'
Notes:
(1)Considered only as second developments after u/s dam(s)is built.
(2)Includes 4'high wave wall on top of dam.
(3)Empties reservoir to ,10 percent capacity in 12 months.
TABLED.G-GENERALHYDRAULICDESIGNCONSIDERATIONSWaterpassage1Steelpenstocks:Powertunnels-lined:Tailrace-lined:-unlined:Diversiontunnels-lined:MaXlmumVelocityfps2015151050Notes:(1)Fortunnel-alternativeschemes(tunnellengthgreaterthan5miles)optimizevelocitywithrespecttocostoftunnelingandenergylossinfriction.
(1)Ifseismicslump<14'designconditionsfixdamcrestlevel.Ifseismicslump>14'damcrestleve1=FSL+seismicslump+1percentallowanceforpost-constructionsettlement.-TABLED.7-PRELIMINARYFREEBOARDREQUIREMENTParameterDesignConditionsDryfreeboard-ftWaverunupandwindsetup-ftFloodsurchargeoverfullsupplylevel(FSL)-ftAllowanceforpost-constructionsettlementTotalfreeboard-ftDamcrestlevel-ftExtremeConditionsforCheckingDesignSeismicslump1PMFsurchargeoverFSLallowableNotes:DAMRockhIllEarthfillDam3651%damheight14'FSL+14'+1%damheight1-1/2%ofdamheight14'YPEConcreteDam365nil14'FSL+14'nil14'
TABLE0.8-EXAMPLECALCULATIONOFFREEBOARDREQUIREMENTATDEVILCANYONParameterDesignConditions1Dryfreeboard-ftWaverunupandwindsetup-ftFloodsurcharge-ftHeightofdam-ft1%ofheightforpost-constructionsettlementDamcrestlevelExtremeConditionsSeismicslump(1-1/2%)-ftSeismicslump<14feetThus,damcrestlevelremainsthesameascalculatedaboveDAMTY P ERockhl1ConcreteDamDam3366556006006nil1445+14+61445+14==1465'1459'9nilPMFconditionMaximumallowblewaterlevelNotes:1445+14=1459'1445+14=1459'(1)Fu11supplylevel=1445ft;damheight=600ft
TABLE 0.9 -ENERGINEERING LAYOUT CONSIDERATIONS AS SINGLE DEVELOPMENTS
U/l;WSTTE
Components Denali Maclaren C1j Vee Susitna III Watana High Devil Canyon Devil Canyon Tunnel Alternatives
Dam t--Conventional earth/rockfill--------------------------------------·--------Concrete Earth/rockfill
Spillway
Power Facilities
Intake:
Power Tunnel:
Penstocks:
Powerhouse:
Tailrace Tunnel:
Low Level Outlet Works
Intake and Tunnel:
t--Service:Gated,open chute with downstream stilling basing --7
t--Emergency:(if required)as above with downstream flip bucket )
~Single level ----7 f--Multilevel )
f--Single concrete"?f--Minimum of two,concrete lined Two partially lined
lined tunnels (1/3 concrete
lined,1/3 shot-
creted,1/3 unlined)
f--Steel lining where necessary (near U.G.Powerhouse)(length =1/5 turbine head))
t--Underground if feasible
f-One lined/unlined ----1 f---Two lined/unlined )
(Lined or unlined -based on cost/energy loss optimization
f-One or two with gates -use diversion tunnel(s)if possible )
Construction Facilities
U/S &D/S Cofferdams:f--Earth or rock fill )
Fill or~cellular-)f--Fill------\)
Diversion Tunnels:
Access
Road Access:
Transmission Line
Local
Compensation Flow
Outlet
Surge Chamber
Notes:
t--Minimum of two )
t--To Denali Highway ----1 t---to Gold Creek )
t-To Cantwell along ----7 f--to Gold Creek )
Denali Highway
t--Roads/tunnels and bridges as required )
t-Independent intake with control valve discharghing through low level outlet works or independent conduit )
t--Upstream surge tank required if net head on machines <1/6 of distance between reservoir and machine )
f--Downstream surge tank is required if tailrace is pressurized )
~Size differential surge chambers for all locations where required )
(1 )Portage Creek development will be similar to Maclaren except that
access roads and transmission lines will be to Gold Creek.
TABLE D.10 -TENTATIVE ENVIRONMENTAL FLOW CONSTRAINTS
Site
lfeCjlui'ea MInImum
Flow Release -cfs
WfEh ProTect--.Wl1::Il-otJtProje-ct
Located Located
Downstream 1 Downstream 1
Maximum Allowable
Flow for Daily
Peaking O~erations
CFS Remarks
Dena Ii
Maclaren
Vee
Susitna III
Watana
High Devil Canyon
Devil Canyon
Alternative Tunnel
Scheme
Notes:
300 600
600 1,20fl
800 1,500
800 1,500
1,000 2,000
1,000 2,000
1,flOO 2,000
1,flOO
5,000
6,500
9,500
9,500
12,000
13,500
14,000
14,000 In the reach between
re-reg.dam and tail-
race outfall at
Devil Canyon
(1)Does not apply if downstream dam backs up to tail water level of dam above.
(2)Would not necessarily apply if scheme considered did not include a substantial amount of seasonal
regulation.
APPENDIXE-SUSITNABASINSCREENINGMODELAsdiscussedinSection8,ascreeningmodelwasdevelopedforuseintheselec-tionofSusitnaBasinsitesforincorporationinthebasindevelopmentplans.ThepurposeofthisAppendixistoprovidetherequiredbackgroundinformationnecessarytoestablishthevalidityandreasonablenessofthescreeningmodelusedtodeterminetheseoptimumbasindevelopmentsfortheselectionprocess.Asinmostmodelswhichtrytooptimizeadesiredproduct,thescreeningmodelisdependentupontheavailabilityanddetailofinformationusedasinput.Thescreeningmodelisthereforeonlyasgoodastheinputestimatesofcost,damtypes,environmentalcriteria,andenergyoutputandrequirements.Theuseofthemodelshouldthereforebetreatedinasubjectivemannerappropriatetothequalityoftheinputdataused.E.l-ScreeningModelThebasicscreeningmodelisausefultool,evenwhendatabasesarethoughtinadequateorincomplete.Theusefulnessofthemodelstemsfromitsabilitytorejectalternativesthatareobviouslyinferiortoothersandtorankallalter-nativesaccordingtotheinformationavailable.Thenetresultisareduction.intheamountofanalysesandinvestigationsrequiredtoproducedefinitiveconclusionsastoselectionorrejectionofdevelopmentalternatives.Developmentselectionisdeterminedthroughmathematicalprogrammingtechniques(optimization).Theadvantagesofthistechniqueare:-Developmentsareneverfullyrejectedfromthelistbythemodel;-Comparisonsofdevelopmentsarebasedonthesameobjectivefunctionandimposedconstraints.Thedecisionsarebasedonahomogenousandconsistentsetofgeneratedalternatives;-Algorithmsusedtosolvetheobjectivefunctionaremathematicallyprovenandefficient;-Sensitivityanalysesarerelativelysimpletoconduct.Thedisadvantagesofthetechniquearemoreoperationaloreconomicthanphilo-sophicalinnature.Themainprogramislargeandexpensivetorun.However,costscanusuallybereducedbymakingsimplifyingassumptions.TheprogramselectedforSusitnaBasinscreeningusesasimplifiedMixedIntegerProgramming(MIP)Model.TheMIPmodelsareadaptionsofclassicalLinearPro-grammingModelswithintegervariables.GenerallyMIPmodelsoptimize(eitherminimizeormaximize)alinearobjectivefunctionwhichissubjecttoasetofconstraintsorlinearirregularities.InsomecircumstancesMIPmodelscanoptimizenonlinearobjectivefunctionsbutthisisanunusualcondition.Theselectionofthismodelingapproachtoscreenpossibledevelopmentsisbasedonthefollowingobservations:-Manyoftherelationshipsbetweenthemodelvariablesarelinearorcanbemadepiecewiselinear;E-l,IIIII
-Mixedintegerprogrammingoffersoneofthefastestalgorithmsforsolvingoptimizationproblems;-StandardsoftwareforMIPisavailable;-Mutuallyexclusivesituationscanbemodelledthroughzero-onevariablesandlogicalconstraints;-Sensitivityanalysesareusuallypartoftheprogram;-TheMIPmodelischeaperthanothertechniques;-Operationalproceduresareuseroriented;and-Thesolvingalgorithmsarereliable.E.2-ModelComponentsThemodelcomponentsconsistofthreebasicsets:variables,constraintsandobjectivefunction.Insomecases,dependinguponstudytype,avariableinonestudywillbeaconstraintinanother.Consequentlycareisusuallyrequiredtoensurethatareasonablesetofvariablesandconstraintsareselected.Theobjectivefunctionislessopentothevagariesofstudytypebutissubjecttoeconomic,social,environmentalandpoliticalpressures.(a)VariablesThevariablesofthemodelaretheunknowns.Generallythevariablescanbedividedintothreegroups:-Statevariableswhichcharacterizethebehaviorofthesystem;-Decisionvariablesthatexpressaresultofachoice;and-Logicalvariablesusedtosetuprelationshipsamongthevariousdecisionvariables.Nophysicaldifferenceexistsbetweenstateanddecisionvariables,andinsome,modelcasesarereversible.Eachvariablecanbecontinuousordiscrete(integer).InthemodeloftheSusitnaBasin,statevariablesare:seasonalreservoir.storagevariation,seasonalenergyyieldandspills.Decisionvariablesare:sites(systemconfiguration),reservoircapacity(damheights),installedcapacity,anddischarges.(b)ConstraintsConstraintsarerelationshipswhichlimitthevalueofavariable,usuallywithinagivenrange.LinearinequalitiesandboundslimitingonevariablearethetwotypesofconstraintusedintheMIPmodel.Linearinequalitiescanalsobereplacedby,orsupplementedwith,equationslinkingseveralvariablestoalimitingcondition.TheconstraintsincludedintheSusitnaBasinmodelare:reservoirwaterbalance,maximumstorage,powerandenergyequations,levelofdevelopment(quantifiedbythetotalinstalledcapacity),convexityoflogicalequa-tions(SectionE4)andlogicalconditionsformutuallyexclusivealterna-tives.E-2
(c)ObjectiveFunctionTheobjectiveoftheSusitnaBasinstudiesasappliedtothisscreeningmodelistominimizecostsofthesystem.E.3-ApplicationoftheScreeningModelTheassumptionsusedandtheapproachtothesitescreeningprocessarediscuss-edinSection8ofthisreport.TheresultsofthesitescreeningprocessdescribedinSection8indicatethattheSusitnaBasindevelopmentplanshouldincorporateacombinationofseveralmajordamsandpowerhouseslocatedatoneormoreofthefollowingsites:-DevilCanyon;-HighDevilCanyon;-Watana;-SusitnaIII;and-Vee.Inaddition,sitesatWatanaandDenaliarealsorecommendedascandidatesforsupplementaryupstreamflowregulation.Themaincriterion(objectivefunction)inselectingtheSusitnaBasindevelop-mentplansiseconomic(seeFigure8.1).Environmentalconsiderationsareincorporatedintotheassessmentoftheplansfinallyselected.Thecomputermodelusedselectstheleastcostbasindevelopmentplanforagiventotalbasinpowerandenergydemand.Intheselectiontheprogramdeter-minestheapproximatedamheightandinstalledcapacityateachsite.Themodelisprovidedwithbasichydrologicdata,damvolume-costcurvesatallthesites,anindicationofwhichsitesaremutuallyexclusiveandatotalpowerdemandrequiredfromthebasin.Itthenperformsatimeperiodbytimeperiodenergysimulationprocessforindividualandgroupsites.Inthisprocess,themodelsystematicallysearchesouttheleastcostsystemofreservoirsandselectsinstalledcapacitiestomeetthespecifiedpowerandenergydemand.E.4-InputDataInputdatatothemodelconsistsofthevariousvariablesandconstraintsre-quiredbythemodeltosolvefortheobjectivefunction.Inputdatatothemodeltakesthefollowingform.(a)StreamflowAsnotedinthediscussionofthemodelcharacteristics,simplifyingassumptionscouldbemadetoreducethecomplexityofthemodelanalysis.Onesuchsimplificationistodividestreamflowintotwoperiods,summerandwinter.ThisassumptionisreasonablefortheSusitnaRiverbecauseofthenatureofstreamflowsintheregion.E-3
FlowsarespecifiedforthesetwoperiodsforthirtyyearsatalldamsitesexceptDevilCanyon,Vee,MaclarenandDenali.StreamflowrecordsusedarehistoricaldatacollectedatthefourgagingstationsintheUpperSusitnaBasin,whichhavebeenextendedwherenecessarytothirtyyearsbycorrelationwiththethirtyyearrecordatGoldCreek.ThesmallerdamsitesatDevilCanyon,Vee,MaclarenandDenali,whichhavelittleornooveryearstoragecapability,utilizeonlytwotypicalyearsofhydrologyasinput.Thesetypicalyearscorrespondtoadryyear(90percentprobabilityofexceedence)andanaverageyear(50percentprobabilityofexceedence).StreamflowrecordsusedasinputtothemodelaregiveninTablesE.1toE.7.(b)SiteCharacteristicsForeachofthesevensites,storagecapacityversuscostcurvesweredevelopedbasedonengineeringlayoutspresentedinSection8.Utilizingtheselayoutsasabasis,thequantitiesforlowerleveldamheightsweredeterminedandusedtoestimatethecostsassociatedwiththeselowerlevels.FiguresE.1toE.3depictthecurvesusedinthemodelruns.Thesecurvesalso incorporatethecostoftheappropriategeneratingequip-mentexceptfortheDenaliandMaclarenreservoirswhicharetreatedsolelyasstoragefacilities.(c)BasinCharacteristicsBasincharacteristicsareinputedtothemodeltorepresentwhichsitesaremutuallyexclusive;thatis,thosesiteswhichcannotbedevelopedwithoutcausingtheeliminationofanothersite.MutuallyexclusivesitesaregiveninFigureE.4.(d)PowerandEnergyUemandThemodelissuppliedwithapowerandenergydemandthatisrepresentativeofthefutureloadrequirementsoftheRailbeltregion.Thetotalgenera-tioncapacityrequiredfromtheriverbasinandanassociatedannualplantfactorhasbeenused.Thecapacityandannualplantfactorareusedtodeterminetheannualenergydemand.ThevaluesusedarediscussedinSec-tionE.5.E.5-ModelRunsandResultsThereviewoftheenergyforecastsgiveninSection5revealsthatbetweentheearliestonlinedateoftheSusitnaProjectin1993andtheendoftheplanningperiodin2010,approximately2210,4210and9620GWhofaddi-tionalenergywouldberequiredforthelow,mediumandhighenergyfore-castsrespectively.Basedontheseenergyprojections,thescreeningmodelwasrunwiththefollowingtotalcapacitiesandenergyvalues:-Run1:-Run2:-Run3:-Run4:400MW-1750GWh800MW-3500GWh1200MW-5250GWh1400MW-6150GWhE-4
Forinitialstudypurposes,theannualplantfactorassociatedwithallthesecombinationswasassumedtobe50percent.TheresultsofthefourscreeningmodelrunsaregiveninTableE.8.Thethreebestsolutions(optimal,firstsuboptimalandsecondsuboptimal)fromaneconomicpointofviewarepresentedonly.Themostimportantconclu-sionsthatcanbedrawnfromtheseresultsareasfollows:-Forenergyrequirementsofupto1750GWh,theHighDevilCanyon,DevilCanyonortheWatanasitesindividuallyprovidethemosteconomicenergy.ThedifferencebetweenthecostsshownonTableE.8arearound10percentwhichissimilartotheaccuracythatcanbeexpectedfromthescreeningmodel;-Forenergyrequirementsofbetween1750and3500GWh,theHighDevilCan-yonsiteisthemosteconomic.DevelopmentsatWatanaandDevilCanyonare20to25percentmorecostly;-Forenergyrequirementsofbetween3bOOand5250GWhthecombinationsofeitherWatanaandDevilCanyonorHighDevilCanyonandVeearethemosteconomic.TheHighDevil/SusitnaIIIcombinationisalsocompetitive.ItscostexceedstheWatana/DevilCanyonoptionby11percentwhichiswithintheaccuracyofthemodel;-ThetotalenergyproductioncapabilityoftheWatana/DevilCanyondevel-opmentisconsiderablylargerthanthatoftheHighDevilCanyon/Veedevelopmentandistheonlyplancapableofmeetingenergydemandsinthe6000GWhrange.OfthesevensitesavailabletothemodelforinclusionintoplansofSusitnaBasindevelopmenttwowererejectedandonlyoneincludedinasecondsuboptimalsolution.TherejectedsitesatMaclarenandDenalidonotsignificantlyimpactthesystems'energycapabilityandarerelativelycostlysowereeliminatedfromtheplans.SusitnaIIIwasrejected,exceptintheonecase,duetohighcapitalcosts.E-5II
TABLE E.1
-
COMPUTED STREAMFLOW AT DEVIL CANYON
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
-670-.0
697.1
735./
76l.,5
802·.2,·1-0 4-9-0 r7-1B46B'l6-2+3B-3.'4-'18B-2o-.-6-'-::;'~...-B----
1504.6 13218.5
1
9
9
7
8
.
5
21575.9 18530.0 19799.1
943.2 828.2
8
7
8
.
5
4989.5 30014.2 24861.7 19647.2 13441.1
7 15.,t,--"-76-6 .-'1-"1:53b-S-17 T5B-.3--25-B(h-7--1-9-t~-1--9-~7-.v--~B-r4---
929.7 729.4 1130.6 15286.0 23188.1 19154.1 24071.6 11579.1
1275.2 1023.6
1
1
0
7
.
4
8390.1 28081.9 26212.8 24959.6 13989.2
893 •
1
-852 ..3 SA 7.3-1 5979.-0 '_':311 37-d--'-z-92 1-2--.,v--'-22-609.8--1649-5.8~-----'-'
1388.9 1105.4 1109.0 12473.6 28415.4 22109.6 19389.2 18029.0
1212.2 1085.7
1
4
3
7
.
4
11849.2 24413.5 21763.1 21219.8 6988.8
1:1 79 .1:'.'S7-7 .9 ..-+1:1 '7-.--9--:1:'-39 *.9-..!21:--:r3-7,7 2-3.:,3-9-&-....r--2-6-5·94·.,~-3-2'9-r6--
1340.2 1112.8 1217.8 14802.9
1
4
7
0
9
.
8
21739.3 2?066.1 18929.9
1593.6 1638.9 2405.4 16030.7 27069.3 22880.621164.4 12218.6
1413.4 ·-1-3-2<)'.·3····16·1-3·r4,12141-.z·'4-0-679T7L-249-9-0 ..-6,-r2-24-1.B-'-:l:4·7-6-l-r2-··---"
1387.4 938.4 810.9 17697.6 24094.1 32388.4 22720.5 11777.2
900.2 663.8 696.5 4046.9 47816.4 21926.0 15585.8 8840.0
828.8 ....-~66 .-9,;1.3104.4-t·2·2·~,7-..-1---2·4··1·-i"-O-"",·~.....u-l·-9-5--ri~-1·-9-7.@.¥....·J-..·-1~~~-..·~--_.._·-
1187.4
1
1
8
7
.
4
1619.1 8734.0 30446.3 18536.2 20244.6 10844.3
1268.3 1089.1 1053.7 14435.5 27796.4 25081.2 30293.0 15728.2
1778.7-1778.71791.0 ..14 9.8.2 .•4 ..2 ..9.4·62-.-1 ....2A27.1...-O--.-1.609·0·,·•.5._.-.....S2-25...s-
681.8 769.6 1421.3 10429.9 14950.7 15651.2 8483.6 4795.5
708.7 721.8 1046.6 10721.6
1
7
1
1
8
.
9
21142.2 18652.8 8443.5
943.6 ··-au •8 .,..981.).2-..342i~-.9 .,.3-1-O-3-1 ..,-O---2,2,Q.4-1+6-3-w1S...·9---1~4-+-O----...·
1836.4 1659.8 1565.5 19776.8 31929.8 21716.5 18654.1 11884.2
1128.6 955.0 986.7 7896.4 26392.6 17571.8 19478.1 8726.0
745.9 689.5 949.11-5004y6-16 766.7---1":1-:;"90-.-0 +5-i~-5-t'''dt-''11-3 '7'0.1-
1342.2 1271.9
1
4
5
6
.
7
14036.5 30302.6 26188.0 17031.6
1
5
1
5
4
.
7
876.2 825.2 1261.211305.3 22813.6 18252.6 19297.7 6463.3
·1509.-8-:I:1:-2-11-i-9 '-3~-.7--z-:i:7-40.-5-1:-8-37-h--Z---i-:t-9+6-.-1-------·..-·
1597.1 11693.4 18416.8 20079.0 15326.5 8080.4
1402.8 13334.0 24052.4 27462.8 19106.7 10172.4
756+9
1583.2
17,)2.0
1649.1
921.7
951.3
905.7
1483.7
-999-.6
1224.2
1318.8
2036.1
1139.8
842.7
1.408.8
87'6.8
165'7.4,.1469 •7"---":1:36-1 .0
1867.9 1525.0 1480.6
1304.1 1203.6 1164.7
131-6.9
1686.2
2212.0
1796.0
1496.0
978.0
925.3-
1278.7
13:::;7.9
1851.2
686.6
575B~2 -2404~7 1342~5
3652.0 1231.2
1
0
3
0
.
8
5221.7 2539.0 1757.5
-7-&1-7-.""6--3'2'32-.-6""1550."
5109.3 1921.3 1387.1
4830.4 2506.8 1868.0
4647.9 --1-7&8.-6--1206.6
5235.3 2773.8 1986.6
7434.5 3590.4 2904.9
~"""4-<1'2-.B ---1:-9-9-9--T8---1 3 70
•
9
6060.7 2622.7
2
0
1
1
.
5
7170.9 2759.9
2
4
3
6
.
6
---5-459 ..4-2544-'.1:1978.7
6307.7 2696.0 1896.0
5998.3 2085.4 1387.1
·5-:,7-44.-0·-.;;L-&4~T'1-1160.8
6496.5 1907.8 1478.4
3844.0 1457.9 1364.9
4585.3.2203 ..5.-1929.7
3576.7 1531.8 836.3
2866.5 1145.7 810.0
4745.2:·30S1 ....$--.2074 •8
5537.0 2912.3 2312.6
4638.6 2154.8 1387.0
3491.4 1462~9 9~7.4
3506.8 1619.4
1
4
8
6
.
5
7003.3 1853.0 1007.9
'-'---315 &2-·.4---'~3-9-1.'::;'-:2 1 A'7 •5
6936.3 3210.8 2371.4
4502.3 2324.3 1549.4
TABLE E.2 -COMPUTED STREAMFLOW AT HIGH DEVIL CANYON
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
1 'r -,.'.r:..::0 /...1 .;...)
919.6
1,237.3
1448.6
1504.t1
1191"l"9
1198.7
1160.9
1324.2
1570.7
1401.0
1371.3
890.8
824.4
1171.3
1249.5
1761.4
67;:i.9
700.3
930.5
1809.0
1118.5
741.5
1323.8
865.6
662.0 792.5 10345.1 18307.0 21209.6 18669.2 7900.8
691.0 1488.5 13094.0 19862.6 21433.9 18367.1 19593.3
··S 20·.3---·S7-2 ..·a ·-.4!~·~·g.....·2··_·:J-.9.a·'J·::;·..··a 2 4-6 4 ~.4-~..-4--4 ~:2 1;1 2 r:f-._....
759.1 1.519.9 17542.3 24932.2 19038.9 19006.6 13736.7
722.1 1115.7 15001.1 22893.5 18981.9 23781.9 11387.6
1012.7"'·1094"+2···-·8-257·.4 ·278-27....9-2-6G20.~24-a4-6-...:;7--·-·13-94-b-.-2--·__····
839.8 855.4 15738.9 30822.4 28943.6 22335.5 16233.8
1091.8 1096.0 12291.3 28166.1 21938.1 19224.8 17776.0
1-0 7'6 .B-··..--t4-z·3--.-B---:H-&9-9-.·1:---2·~··2·2-9-.--r--z-1·-6-(7;h-5---Z-1-fr3-:i:-+2--~.,....,tllr-----
863.3 1101.3 13602.5 21283.1 23160.5 28225.1 15102.4
1100.7 1206.1 14663.4 14592.6 21562.1 21848.4 18704.1
1614.5-2370.4-··15840.8 26729 ..2-226·3-9·r3---iH<t;'3·0·,7··H?·05-4".2------
1308.9 1601.0 12077.1 40309.6 24867.8 22055.0 14606.8
952.5 808.2 17507.2 23821.8 32101.0 22584.9 11699.6
6~"j 6·.8 -6-89 .6~-4·0 09·.B---4.]4-24--.·6 ......;2-1 "7 7--9 •7--4-€!i4--b~·..S·_·..S 7-;;5 •6
862.2 1307.9 12163.9 23880.4 25960.8 19599.2 18074.8
1171.3 1596.8 8603.8 30088.6 18347.1 20018.1 10715.0
1073.3 1037-.5 ·14286.3 27551·...6··24B;-;S ..6-..¢9960-T6-·-1SS6-5 ..-0-_·_..
1761.4 1774.0 14811.3 29163.9 24649.7 15936.3 8141.5
762.9 1408.6 10341.3 14872.3 15587.1 8427.1 4753.0
714rO ··:!:.(}/t·l·.-f!··1-0627.5 -16-90¢.··1 ..-2()~5-....3-··-1-B4-6-3 ..·2 ····8-H6-.:;'·.....·__..__·..·..
855.0 972.5 3382.6 30759.7 22797.5 30088.2 13521.2
1636.5 1544.9 19475.0 31572.6 21566.0 18563.3 11810.5
948.-5'980.9 7848.126191,.-5'''1-7-47-5.-&-1-936-2·.-1-..·-8-6--7-6T3-----
684.5 943.0 14836.7 16609.0 17645.7 15119.5 11244.4
1253.6 1437.2 13848.9 30015.8 2G969.1 1A880.4 14989.7
814-.-6-'.':1:245,'--2'111'1.'7'.·5 ·2'25-S-9.·ft..rtt·5-il....-t-·-·t~5 ..+"9 ·····&·4€rs·.-'7'..----_..
1341.1 1485.5 11002.2 35269.1 21579.1 18247.1 11812.7
1462.8 1582.2 11636.8 18:;26.4 19944.6 15174.5 8005.2
··:t:1-59....-jL·....-1--3-96+1--1:--3-25-7-.-5 z 396h-3-..zn~....-3-TB-9-1-3T3-11;)~8 7 .--(1--
88~~+2
728.3
760.0
935.1
'735.0
940.5
898.0
1467.·;1··········
985.3
1213.4
1628.4
913.4
1328.8
1020.9
·1737.1
1529.1
1371.0
1842.8
1193.3
2379.2
1221 :'3
25-09.7
3194.9
1895.7
2470.7
1772.7
2734.3 1964.4 1566.5
3538",:4 2853.6 17&7.3
1978.4 1350.6 1298.2
2590.2 1984.6 1663.5
2·725.6 2399.8 2177 •7
2521.8 1961.4 1781.2
2681.2 1881.2 1481.2
20~1.9.137;1,.8 9 ~8+0
2623.2 1153.6 920.4
1880.6 1456.5 1261.4
1437.6 1345.5 1337.6
2182.1 1911.8 1832.7
1517.7 829.7 681.2
1135.8 802 ..-0 747.4
3035.3 2044.1 1301.2
2886.5 2284.5 2007.1
2140 •71 1 375 •8 113 1.•2
1454.3 992.2 838.3
1607.9 1469.8 1393.5
183-3.{}997 .4 885.8
2354.8 2111.0 1632.9
3165.9 2340.3 1844.9
229 -4 d·.---H;-3-~h"-6--·12-9-<t."8
4b67.6
;:i492 .7
4611.8
3456.9
3473.tJ
-689,8.2,
3506.4
6845.7
4444.5
.~,-~~8 2,·,9".7
;5153.7
"7323.4 ..
4344.5
598<;'.6
7081.·9
5394.2
6248.3
..5~=t34·.0
5665.9
6395.3
3799.4
4540.4
3541.1.:,
5675.8
3624.0
·51.7-1...9
7419.8
5038.7
4753 r3
4604.6
TABLE E.3 -COMPUTED STREAMFLOW AT WATANA
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
575.2 609.2 3578.8 42841.9 20082.8 14048.2 7524.2
807.3 1232.4 10966.0 21213.0 23235.9 17394.1 16225.6
·984.7 1338.4..·7-094 .1
889.5 849.7 12535.5 24711.9 21987.3 26104.5 13672.9
1560.4 1576.7 12826.7 25704.0 22082.8 14147.5 7163.6
"686.O'...···1 261.6--"9~13 .?···139'02·.-1.-1:-4&4·3·.5····??-?l1....9······4-£tre.....r-..··..-
624.1 986.4 9536.4 14399.0 18410.1 16263.8 7224.1
717.1 813.7 2857.2 27612.8 21126.4 27446.6 12188.9
1 366 •0 '1305.4 1 5973 •1 2742-9 ..3 ..··1·9820.3 ..1:7509.-;510955 ..:;.·
873.9 914.1 7287.0 23859.3 16351.1 18016.7 8099.7
627.3 871.9 12889.0 14780.6 15971.9 13523.7 9786.2
1041 .-4··1211-.2'·11·6 7·2·~-2·-26-6-&9--..2-.·-234-3<t ..4··4~1:2-6.-6-·13 075.3······...
690.7 1059.8 8938.8 19994.0 17015.3 18393.5 5711.5
1110.8 1203.4 8569.4 31352.8 19707.3 16807.3 10613.1
-·1·25-6.7-1408·.-411·2·3-·1-·,,§··17·27-7ti-..:l:-S3B·:¥;,··2-·;I;~1f!.·,-4-··74-3-2r6---·.....
1101.2 1317.9 12369.3 22904.8 24911.7 16670.7 9096.7
772.7
641.7 569.1 680.1 8655.9 16432.1 19193.4 16913.6 7320.4
"'673";0"········6 rT;13······:r:rOZ·;2···rnr:tt'9·.·g-·!1j;:rt7;·9'-·1-'1"i1:fo··;.o-;,·$·'¢7S.··O-"1"'i4\}~~----·
841.0 735.0 803.9 4216.5 25773.22110.9 17356.3 11571.0
611.7 670.7 1382.0 15037.2 21469.8 17355.3 16681.6 11513.5
803.1638 .1~942.6 11·69-6.8
1050.5 886.1 940.8 6718.1 24881.4 23787.9 23537.0 13447.8
754.8 694.4 718.3 12953.3 27171.8 25831.3 19153.4 13194.4
1189.0 ·····935.-0 915'.1 -l·"4B-4·f"·rt---~--_·
1041.7 973.5 1265.4 9957.8 22097.8 19752.7 18843.4 5978.7
949.0 694.0 885.7 10140.6 18329.6 20493.1 23940.4 12466.9
-1138.9 961.11069.9'130440'2 1 .:1.-1-*&5..·6----_.-
1304.8 1331.0 1965.0 13637.9.22784.1 19839.8 19480.2 10146.2
1257.4 1176.8 1457.4 1j333.5 36017.1 23443.7 19887.1 12746.2
118+.7 ·..883r6 ..····7176.·b··j ,::;29·9·..
781.6
984.7
1031.3
1560.4
607.5
602.1
777.4
1491.4
1000.2
689.S'
·11·lO.3
743.2
1202.9
·1·267.7
1055.4
815.1
'808';'0
1274.5
8:1.8.9
1087~8
1388.3
816.9
1373.0
1480.6
1081.0
1400.4
1779.9
1608.9
-1308.·9
852.0
863.0
106{).4
1:1.02.2
16;.17.6
619.2
636.2
1097.1
1670.9
1031.5
786.4
1215 ..8
757.8
1348.7
1577.9
1136.8
1168.9
"906;2
1501.0
1281.2
1183.8
1549.5
1038.6
1"707."0
2258.5
1115.1
1672 ..3
1973.2
1760.4
···1708.9
1194.7
1070.3
1203.6
1121.6
1/'04.2
753..9
709.3
1687.4
1957.4
1246,5
931.6
1276.7
876.2
1687.5
1979 ..7
1312.6
2368.2
15650·3
1202.2
H'34.3
1354.·9
1020.9
2496.4
2587.0·
1977.9
1354.7
·1474.4
1601.1
1926.7
2645.3
1944.9
2263.4
·25-08.,9
1789.1
:305bt~':;
5·2·2,·-1,.2
3269.8
3088.8
5679.1
2973.5
5793.f;'
3773.9
4019.0
··3·135.0··
2403.1
3768.0
·4979.1
4301.2
4719.9 2083.6
···········329lj~T·.rl0T~"J'
4592.9 2170.1
6285.7 2756.8
4218 ..9 1599'.6
3859.2 2051.1
4102.3 1588.1
4208".02.2'76 .6-
6034.9 2935.9
3668.0 1729.5
5165.5 2213.5
6049.3 2327.8
4637.6
··5~{).1
5187.1
4759.4
TABLE E.4
-
COMPUTED STREAMFLOW AT SUSITNA 3
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
_·_··--~4:J.+~·7--~-9-4-.-5·---9-0A··.3
2761.4 918.5 716.3
3634.8 1607.9 1110.2
·--44(}8·..S---2-<t-3-1-.·6----·EF71 .0
2862.1 1109.4 874.1
2379.1 1356.7 1064.1
-··-·-·¥r7·-0·r9-·~8-2i -;-7-82--.5
2642.6 1519.0 1280.8
3902.2 1938.5
1
2
7
3
.
5
"·-254ft.4 ·F3-17··.-5-·..·725 .3
3801.4 1590.0 1155.3
4340.1 1669.3 1267.0
_·_·······_-~SS·....4..·_·~-·-142+·..7
4420.9 2223.8 1423.8
3951.0 1337.6 901.4
·:;;259·~·O 19A:-b .....2 932.:i
3277.9 1043.5 784.9
2394.9 812.5 750.9
:;;±~;;·5T9 ····-1..a-24·..2·····-1-360 ..6
2462.1 1085.5 628.5
1696.9 830.8 555.8
22·i'9 r1 1604.-3--1097.2
4128.9 2091.3 1416.1
3787.1 1708.5 1032.4
23-93.-7 .11B9-.7---831.4
2451.8 1253.4 957.1
3661.3 1217.2 675.6
-2091.3 ·1218.1 986.6
4053.2 1783.5
1
3
8
2
.
8
2664.0 1366.9 951.8
1:,07 ..-5·..·•··#S.-3··..---4-4~--···-4J;'4-M}·_···-5 B /:,0 .:1.:I.;3;;:2 B
•
9 1 5B 5/:,•4 1 4 ~.;'/:,;3 5 9
•
8
659.1 529.0 502.1 993.8 9259.4 16292.1 17060.0 13351.1 13253.3
955.6 685.2 592.9 690.2 3038.5 19311.4 17919.1 13865.3 8721.4
543·.5··.··-4-G7l..-b--·---5-24-rS---1-1-;"3.8 ..1-()-&9-<1-.-t--1-·~-9--f~4-4S-CrB-r7 12 a 3-3"":3-··-~·....,""'7-'---
880.0 610.2 499.4 656.3 6227.6 13821.2 13676.0 14857.0 5487.7
990.8 708.1 676.6
6
8
6
.
9
4170.3 20004.4 20092.8 21369.2 12622.8
.-6&7.1-----5-44-dt---·-4-53-TB---·-4·9-!-.-4-·...8 3-04 2 •
6
2-H:29 •'"2
0
6
'7 9
•
8
13 e 8
6
•5·--€1-16 3-•5
1052.6 884.3 675.4
6
9
5
.
4
6675.3 20489.7 16656.5 14161.2 9983.4
1006.0 781.8 802.6 1003.3 7075.7 18569.2 16689.2 15222.2 4439.4
721·.5 -5 98 ··.··2-·_...4-1·3T8-·..·-52el8---4-4·H)-.5··-l-3-4-4-h~re.·~-e-.+·~€H~+.=r----_·
964.9 832.2 730.1 844.6 10364.3 10983.7 16103.2 15143.3 11751.6
1121.5 864.9
8
6
1
.
8
1294.0 9991.8 16254.2 15206.1 16913.9 6988.2
-1·3·2·3··.-8-_·..~·1··0 1-9·..-8-..-9-r;.a.....2~--1-2-:l.-9~.8 1010:2.6 :2 8 9 12 •2 2100 6 ..4
1
(:,2 9 9 ..G .-9 (:,6 6-..(,
1023.8 875.7 769.5 724.4 11644.6 15435.6 23249.8 18407.0 9311.1
660.0
6
0
1
.
0
440.2 476.1·2865.4 35261.7 17274.1 11705.2 5519.1
767 .9..---b8 7.-1-....7·1-6-..·-6---11 (j·:;.t·.-4-··-89·8-3..f!·-1-b-7-9 7-.9.;1 872 S •B-+~l'2"+3-1-6-S-l~--
727.7 675.7 675.7 910.6 4595.2 19072.3
1
2
5
2
2
.
6
13042.4 6730.0
712.5 670.1 585.3 538.9 9690.7 20011.7 17272.9 19721.9
1
0
5
4
1
.
0
1 26-1.-7..122-7·..7-..--;t22..7.·-7··--12·:;O ..2--·..9~4-h-7--·-1-9-9--7-h·2 1 7 a:;"+..-1 111 U .....i~-····5 5 44.-9---·
516.6 494.4 5~8.6 1018.3 7612.7 12455.5
1
3
6
1
2
.
6
6687.4 3444.0
452.3
4
3
9
.
5
4
7
5
.
4
894.6 7730.5 10254.4 14246.9 12623.4 5365.9
759.2·524 •:l:....48-9.0 ...-·-5G{h9·:l:9-8.;'-.·5-"2·2-4-o-+.·1--4B';;'6--G,-S-·~7L4-.-4-·-
-
'
r
9
-
B
3
-
r
B
-
·
_
-
1114.4 965.8 918.3
9
0
9
.
0
10177.0 20571.5 16930.8 15765.3 9540.9
866.4
8
0
4
.
5
750.4 803.5 6358.4 19999.0 14491.0
1
5
7
8
9
.
9
7145.3
70&.6 .60A .6 ··-5-32".""6 '-........7 54·•-3 96-6-5.-2,1--'./;":;'-54-.·-3-,1 3 :2 0 1.·5--~8-2-.-5-'''':;-3-7'2-r7----·
921.8 757.0 690.1 837.3 8069.4 21183.0 19228.4
1
2
2
2
3
.
6
9906.6
546.0
5
4
0
.
7
485.6 733.1 5332.7 15697.4 15129.9 17015.6 4566.0
878 •1796-•2 729.-6-6.-6 4542.7 2A-8+··0-...:;Z ..-1-~·..2·-1-442·4-~·3----8·6~7··.-7..·..·_·-
1135.9 875.5 915.4 1120.8 10527.7 15540.5 15804.2 10494.9 5688.4
881.8 829.4 1004.4
1
1
8
8
.
5
10899.3 21155.9 21024.3 12958.6 7457.5
TABLE E.5 -COMPUTED STREAMFLOW AT VEE
3005.9 1553.7 882.3
2716.6 902.8 700.5
~55S.~4~~4~01077..6
4252.1 1971.2 836.8
2749.0 1068.5 848.3
~2-255.'8i29Eh 8 ---1023.7
3201.6 1257.2 761.2
2512.1 1455.9 1245.3
3724.'7j .'1855.4 1191.4
2455.1 1283.2 692.8
3687.7 1538.0 1112.2
,·-4-1~97.::;·--46-iA-.-4--1208.2
3281.0 1800.0 1400.0
4326.0 2200.0 1400.0
3848.0 1300rO B77.0
3134.0 1911.0 921.0
3116.0 1000.0 750.0
-2322 ..0 ·780.0 .-.-.-··72<).0
3084.0 1490.0 1332.0
2406.0 1063.0 618.0
:l638,.{J 815.0 543.0
2155.0 1530.0 1048.0
4058.0 2050.0 1371.0
--37-44 ..3 -1686.0 -1-014.6
2338.5 1176.0 823.0
2398.7 1235.0 930.5
3493.1 ·U.8·5.2 658 •9
2017.8 1159.1 928.2
3908.1 1711.7 1333.1
2571·.,5 1314j.7 921.7
SEPAUGJULJUNMAYAPRMAR
402.6 478.5 5627.1 13070.3 15578.3 13765.5 6279.8
492.3 968.1 9060.2 16106.6 16832.8 13090.5 12924.0
581.1 ·6-8(1.7 2940r3 ·13574
512.3 1134.8 10545.2 15261.4 14336.5 12512.6 7527.0
487.8 632.4 5771.8 13349.9 13400.4 14393.4 5181.2
.65-9'.-1;---,,''6 65.'7 '~i·Qr;r~,~··fr·······'4-.c;'C:;'<:;~~·4+··4-·~i~-i=i-A-·,...Q-···e;q-+t::l-~,,-t'·--1~~J::;·'::~·,.--A-----_..
433.8 472.5 7958.4 20625.9 20250.5 13447.6 7744.3
653.8 674.6 6383.6 20090.9 16382.1 13898.2 9578.6
788.4 981,-'5 ··,-o835.'5-i:B275--+"1---1;--t;>Y3'3'".9'-1 a <;>''':>A "It ··-"t\--~-H-·_-+·-'-'--"·-·
390.3 499.1 3933.0 13033.6 13710.3 16257.6 7741.2
710.8 825.8 10141.0 10796.2 15819.6 14795.0 11390.4
.89.2l7 ..·-12 :3 8.1:·········9 68 8,,·<)---1-~r7-1.~-+4~(}--1-tr74Hh·.e-'·-6-7-£l:-\5..~-"---;..
940.0 1200.0 10000.0 28320.1 20890.0 16000.0 9410.0
760.0 720.0 11340.0 15000.0 22790.0 18190.0 9187.0
429.0 465.0 2806.034630.-(j"..1;4)4(h·0..--l'Hijl0.~..-~;352-.G------
709.0 1097.0 8818.0 16430.0 18350.0 li440.0 12910.0
650.0 875.0 4387.0 18500.0 12220.0 12680.0 6523.0
-·-56-0;O·,···513rtJ-·9 45 2.-0--4.-9-6-2-0--M1-'4--6-8~-..-1-9-H-o.4--l:-O---2B(j-rO-..-----
1200.0 1223.0 9268.0 19500.0 17480.0 10940.0 5410.0
548.0 998.0 7471.0 12330.0 13510.0 6597.0 3376.0
46-3.0 ,·887.0 ·758().-<J9-9<J-9·.0----1-"39·0-(hO--i-2-3-2-0-..0 -'5-2-1-:l:T~)-'----'
470.0 529.0 1915.0 21970.0 18130.0 22710.0 9800.0
881.0 876.0 9694.0 20000.0 16690.0 15620.0 9423.0
"7·40.1..'7-94.36281.-0 ·-19677..-3-....1-43-3&.0·-1"5-6-04·..-3-~l-065.-H-..-···....
524.7 744.5 9396.5 11502.1 12970.6 10662.4 7171.6
660.8 806.1 7769.2 20724.2 18878.2 11981.7 9642.5
468 •-5 ..-.727.5 5032 ..215339 .-4....14~7.2 ..·S....;l·4·9·(),O",-B '44-7-0-.5·-,·,--
697.8 697.7 4207.1 243~0.5 16351.0 14225.7 8462.2
887.0 1096.8 10469.1 15395.8 15589.1 10251.8 5568.0
,··99-.{,·.~117+...'l .,1:077'{".-8--..2-1·'()14-.·2·-,·24-700·.-~·..-1..2«-9....~····7~.9
JAN FEB
590.2 486.4
646.7 517.0
929.0 672,2
520.6 390.6
862.7 594.1
957.7 679-.6'-
643.8 526.4
1025.9 858.9
966.5 760.1
691.5 569.0
928.6 806.6
1066.6 828.2'
1300.0 1000.0
1000.0 830.0
644.0 586.0
760.0 680.0
700.0 650.0
680.0 640.0
1232.0 12'00.0
508.0 485.0
437.0 426.0
731.0 503.0
1068.0 9::2 +0
832.6 788.2
693.5 597.5
897.3 727.6
528.4 523.8
8~8.9 ?62+3
1099.1 842.8
8.€>-O.'{'-8l0.,.€>-
DECNOVOCT
TABLE E.6 -COMPUTED STREAMFLOW AT MACLAREN
._._----------------_._._-------------------------_._-------_._---_._---_.
2482t~j
2256.2
1778.3
1408.2
1961.5
1932.0
::~3:;~7.0
1589.4
2817.8
2144.1
:;1472.0
2179.0
2182.7
1862.1 ..
1891.8
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
1851.5 930.0 557.2 340.3 308.0 229.9 296.0 3345.8 8595.6 11824.2 9947.8 3932.9
15 :;z 9 •9 52 9 -.-7~0 8-.-8 --34 8-.--9--2-7-9-.--7--27-6-.-2--5 66--r3-54-20-.-9-1-06 05-.6-1-26-3-1-.-5-98 9 8-.-4-817-4-.-3:----
2043.6 845.0 583.8 544.9 436.3 384.7 441.3 2224.2 12442.8 13272.1 10301.1 5261.9
2392.9 1158.0 490.4 326.4 240.8 288.2 705.7 7047.4 11176.5 11218.7 9206.1 4547.9
620 .8--483--.-7---532-.-7--363-.-1--307·-.-0----·368-.5--361·6 .-3--8975 .5-10546-·.-4-10528.9-3368-.0------
818.3 562.2 532.8 370.2 379.6 390.1 2753.9 13038.6 13381.9 15813.8 8225.5
709.6 454.1 416.2 285.3 263.4 289.2 6372.9 18316.8 16750.4 13544.8 6560.6
104 o.5--783-.-2--·5-7-6-.-9---4 84-.-6~5-9•4 436-.--9--4·7-08-.-5-1-55·9·0-.-9-1-34 06-.-0-1-154 0-.-4-6402-.-9'----
1144.3 675.6 539.7'411.7 406.7 541.0 3596.5 12617.6 12274.8 10132.9 2922.4
773.2 394.3 364.6 290.4 191.3 238.7 2704.8 10668.2 11497.9 11475.:1 4747.3
1093.8----805.5--··_·65-1-·.-9···---529.3--46-2-.·-O--5()~-;..·6---6262.-8 --762 1-.9-1-1'94 7-.-9-10863.7--7637.-0-------·
1069.4 794.1 646.6 510.0 513.4 768.1 5845.7 10400.8 10970.3 11305.8 4423.9
1160.5 851.8 717.6 566.0 528.9 674.7 5544.5 17338.()14797.4 ~2262.2 6120.5
1235·.·0--7-7-7--.-6--5-7-1-..8--496-.-0--44()-"';'~--428-.-8-672·2-.-3-1-0-296-•.:;-1-5-7-7-2-.-4-1-3633.-4-6196-.-1----
723.3 481.9 356.2 331.3 246.9 273.7 1723.4 21497.0 11636.6 8679.0 3799.5
1220.7 554.4 451.7 405.9 422.9 653.3 5189.9 9701.9 11729.8 9057.0 9509.7.
600.3 ..·----458.8---420.-2--393.-1--393·.-1--··..:,35.·3-2812-....2-1·1847 .-9---9974v3--9112-.4-4625-.·6 .---
637.5 504.2 485.6 411.5 430.0 362.0 6395.0 13647.0 13610.8 137H4.5 6087.5
926.3 771.4 674.9 694.7 708.5 648.9 4428.6 12364.3 14259.6 10303.3 3572.5
1431 • 9 ,"-629 ..6---3 63...3---3 0 0+7--2 88 ....0---31-7.....-9--:i 58 .....9-·-4214....6-9-94 {).....-9-1-U·8 8.....9-5 06 7-.-9--2 711 ......9
1.2 7 4 •8 635 •7 426 •5 33 8 •8 308 •9 308 • 8 5 62 • 7 45 :I.3 •7 7 11 :~• 4 1 0790 •3 883"4 •6 33 46 •7
1226.0 881.9 607.2 410.7 287.2 270.1 304.0 1180.7 14049.7 13721.9 15681.0 6081.6
2 :~3 4.2 -.-1:1.52 ..4·--·-80:-i..-l·--651.7-······-~.)70·..8--~i41...-3 ...--5~~0.0 ---6139·.-0--1-2326...-9 ..·1312-7 .-0--1-1648.1--5628 ..-7--------
1987.2 907.7 555.7 467.4 431.8 404.9 428.1 3289.5 11719.7 10915.7 10844.3 4427.3
1503.4 768.3 562.:1.474.5 411.1 359.3 469.0 54H2.0 8156.0 11015.7 9879.9 6189.7
2248.1 914.-1--616-..-7--556-.-2----426...-3-39:/-.-7--460-.-0-4269-.-4-1-29-10 .·5-ltiOl-3-..--6-9305·.-6--..6175 .-7----
2377.3 722.6 379.2 290.6 280.1 252.4 382.3 3189.5 9971.8 11309.9 13006.1 2958.2
1376.1 763.9 587.2 511.8 464.1 431.3 439.8 2660.2 15150.2 12730.3 11915.6 5747.0
2J:~:;!.1·1106 .·6---·822-.6..----6'70·.·;;>--532.......9-·-52.hO--620.-7-5650...-9--96()2.5-1-1822.·7---9333.-7-·...,4456.8------
1597.1 830.1 573.6 519.4 478.5 543.3 648.0 6216.9 13381.5 14307.2 10667.2 5717.0
TABLE E.7 -COMPUTED STREAMFLOW AT DENALI
OCT NOV DEC JAN FEB MAR APR MAYJUN JUL AUG SEP
1493.~618.9 398.2 219.4 220.1 149.6 218.8 2531.9 6232.7 10078.0 8015.0 2478.8
--899.0 ----3-10-.-2--250-.8--1-7-3--.-1--14 7-.--9--1-5h-8--363-.-7-3-4 56-j.-3---7J 89-.-2-1-0352.8--8506.-8-587 8 ..0-----
1216.4
1600.3
1485.8
1247.9
1297.5
2000.2
1963.6
1299.5
2016.2
2:Dl.2
169:-L2
1445.7
1323.0
1951.0
1545.6
18;:;0.3
191:;'.1
-916.6
1229.4
:1007.3
LH2.7
832.5
1089.4
2340.:1
2188.6
11 78.0
1708.4
1222.3
488.0 338.6 359.1 309.3 282.9 298.1 2065.4 9767.3 11392.7 8965.7 3758.5
780.5 362.2 269.1 193.9 166.9,456.8 5754.4 9952.4 9773.4 7960.8 3494.4
--442.3---309 ..4----35 h-6---2~.i-1-.-6----215-.9------262-.-5--3-7-57.-7---7509.-7-9467-.0--9416-.-6-----:H 89.B-------
680.9 371.8 341.6 248.0 237.1 264.7 2669.5 9680.5 9760.9 12473.6 5239.0
396.4 305.7 296.6 172.0 212.7 224.6 6666.0 18527.2 15779.2 15313.5 7290.9
---972-.-3---573.-3--3-4-2-.-6--301-.-4--2-2-h-~~38-.-7-45-7-7-.--1-13750-.-6-1-22-30-.-0-10785-.-2--5580-.-9----
931.1 605.1 371.8 233.7 175.0 294.4 2090.9 9503.0 10136.3 7701.8 2374.6
522.6 295.5 234.7 193.9 131.9 -157.9 3626.7 10464.8 9754.31016~.1 3902.4
960.7------74 :1:-.-4 --------584.-:2----41 9.7---349..4---33/-.-6--421.-1:.-8 ---5961.3---10134-.5 ----9255.6 6212.-3-----
872.0 710.3 543.0 412.6 4:52.1 631.0 4132.8 8514.2 9569.8 8079.2 3711.7
817.7 547.1 371.8 316.5 290.4 356.5 2593.3 11374.3 10978.9 10609.2 4640.4
---601-.8--40 t-.8---~~·H-.8--329 .~_)------236-.-7--2';'~6-.-8--4429-.-6-8446.0-.1-;2276-.-3-11048.4---4428-.-3-----
435.4 279.4 201.8 198.1 153.5 172.8 1139.7 14070.3 8481.2 7306.3 3278.5
837.9 323.4 250.6 227.5 237.2 360.2 3102.3 6068.4 8208.0 6939.0 7940.3
-468.0 ---37 4 ;8---·-317-.-1.--·---299.~i ---·-299-.::=i----41_-7-.:J-243~h5·---9060.8---9455.9-----7832.0·--3999.-7-----------
655.9 461.4 465.1 356.1 430.2 348.6 5020.6 10672.6 12672.4 11778.1 3946.0
634.8 460.8 371.0 422.1 446.4 322.7 1850.2 8846.9 13207.8 10778.2 2713.1
390.8 ---21.2-.--4--1-78..-0--:1-7 6·.-4--1-B6-.-0--30-7-...3-23l5.-6--863l-.0-984-1-.·3---4-268-.-1--..2475.7---
562.2 388.4 324.2 273.3 240.9 348.5 2791.4 6347.3 9794.3 7388.0 2544.2
682.2 466.0 278.8 206.5 193.4 219.6 909.0 9775.9 11300.5 11807.6 3997.9
637.6-·-554.-~~---5180'~~--4 76.2---430 ...-"----397.6--53.34.0·---8769.8-1.·1-380.2---9225.5 --3233 .::'i ----
409.8 279.9 231.2 227.0 192.8 188.6 1341.0 6983.8 8944.8 7984.9 2752.3
515.1 398.3 337.6 298.5 265.5 299.9 3578.9 6616.3 10438.9 10142.3 6229.0
-744.1-----483 ..-9------3 9-4.7---_:~1.3 ..-/--3-1-3--.-t--3-:W-.--4-27-9-9-...9-8812-.-6--1-3-462-..8-8 22 9-.6---4591 .:1.----
498.6 233.6 180.2 162.2 156.0 221.8 2965.9 7322.2 9165.0 10523.6 2190.8
695.1 556.6 417.5 370.9 353.7 396.3 2794.4 10339.8 11007.4 10947.2 4346.2
9:~9.4------63_1..-2----490 "3---426-.3·--355.-9----355 ...6-22,,,)7.6 ---5809.1-9823.9--~-9583.1----4087.0----
649.1 428.2 345.1 301.7 234.2 291.7 3264.3 8213.0 10755.5 10373.0 5039.7
TABLE E.8 -RESULTS OF SCREENING MODEL
....
Total Demand
Max.Inst.Total Max.Inst.Total Max.Inst.
Energy Site Water Cap.Cost Site Water Cap.Cost 6 Site Water Cap.
Run MW GWh Names Level MW $x 10 6 Names Level MW $,x 10 Names Level MW $
400 1750 High 15BO 400 BB5 Devil 1450 400 970 Wat.ana 1950 400 9BO
Devil Canyon
Canyon
2 BOO 3500 High 1750 BOO 1500 Watana 1900 450 1130 Watana 2200 800 1B60
Devil
Canyon
Devil
Canyon 1250 350 710
TOTAL BOO 1840
3 1200 5250 Watana 2110 700 1690 High 1750 BOO 1500 High 1750 B20 1500
Devil Devil
Canyon Canyon
Devil 1350 500 800 Vee 2350 400 1060 Susitna 2300 3BO 1260
Canyon III
TOTAL 1200 2490 TOTAL 1200 2560 TOTAL 1200 2760
4 1400 6150 Watana 2150 740 1770
N 0 SOL UTI 0 N N 0 SOL UTI 0 N
Devil 1450 660 1000
Canyon
LEGEND•COSTDEVELOPEDDIRECTLYFROMENGINEERINGLAYOUTSCOSTBASEDONADJUSTMENTSTOoVALUESDETERMINEDFROMLAYOUTS10001000800~IDQ600..-~400u20000DEVILCANYON15001000.....IDO><-I-(f)0u500150050004000100020003000RESERVOIRSTORAGE(103x AF)HIGHDEVILCANYONO'-----£-----£-----"'-----"-----~_..oDAMSITECOSTVSRESERVOIRSTORAGECURVESFIGUREE.I
2400LEGEND•COSTDEVELOPEDDIRECTLYFROMENGINEERINGLAYOUTSCOSTBASEDONADJUSTMENTSTOoVALUESDETERMINEDFROMLAYOUTS1390186015001000U)Q)(-I-en8500OL-_--l__-L..__.L.-_--l__..J-__.L.-_--l__......o20004000600080001000012000RESERVOIRSTORAGE(103xAF)WATANA4002000..l-S4000100020003000RESERVOIRSTORAGE(103xAF)SUSITNAIIIo'--.......L.-.L.-......-----l..oDAMSITECOSTVSRESERVOIRSTORAGECURVESFIGUREE.2
0'-_-.1.__""""-__"'--_......__........__......__..........o200400600800100012001400RESERVOIRSTORAGE(103xAF)MACLAREN1000800~600)(-l-I/)8400200800600~)(-~400l-I/)ou2002004006008001000RESERVOIRSTORAGE(103xAF)VEE~500~1060LEGEND•COSTDEVELOPEDDIRECTLYFROMENGINEERINGLAYOUTSCOSTBASEDONADJUSTMENTSTOoVALUESDETERMINEDFROMLAYOUTS800l-4008200_-~4401000200030004000RESERVOIRSTORAGE(I03xAF)DENALI5000DAMSITECOSTVSRESERVOIRSTORAGECURVESFIGUREEJiiJ
TYONEBUTTE
CREEKMACLARENIDENALI
BUTTE CREEK
DENALI
MACLAREN
WATA~A I SUSITNAml VEE
VEE
DEVIL
CREEK
SUSITNA m
WATANA
DAM IN COLUMN IS MUTUALLY EXCLUSIVE IF FULL
SUPPLY LEVEL OF DAM IN ROW EXCEEDS THIS VALUE-FT.
VALUE IN BRACKET REFERS TO APPROXIMATE DAM HEIGHT.
LEGEND
DEVIL CREEK
HIGH DEVIL CANYON
DEVI L CANYON
OLSON
COMPATIBLE ALTERNATIVES
MUTUALLY EXCLUSIVE ALTERNATIVES
D
GOLD CREEK
MUTUALLY EXCLUSIVE DEVELOPMENT ALTERNATIVES
FIGURE E.411111
F.1-IntroductionAPPENDIXF -SINGLEANDMULTI-RESERVOIRHYDROPOWERSIMULATIONSTUDIESTheaveragemonthlyinflowinanymonthisutilizedasfollowsinorderofpriority:energyunderconstantheadcondi-isusedtosupplementtheinflowandifavailableinflowexceedspowerreplenishedbyanysurplusinflow.InflowF-l-Powerhouseflowtomeetdemand;-Fillreservoir;-Generatesecondaryenergy;and-Spill.Ifinflowisinadequatetomeetdemandtions,thenstoragefromthereservoirthereservoirisdrawndown.Conversedemandneeds,thereservoirstorageisThesimulationmodelisdrivenbyanenergydemandcurveandwillattempttomeetthisdemandineachmonth.Adeficitisnotedwhenthedemandisnotmetandafailureofthesystemisrecorded.Ifthenumberoffailuresinthestudyperiodisexcessive,theenergydemandistoohighforthesystemandanothersimulationmustbemadewithalowerenergydemand.Thisprocessisrepeateduntildeficitsarerecordedinnoneorinonlyoneyearofthesimulation.ThereservoirsimulationmodelsdeterminetheenergyyieldfromtheSusitnadevelopmentsgivenusinginflowdataforthethirtyyearperiodfrom1949to1979,theinstalledcapacityateachhydroplantandaspecifiedannualenergy.demandpatternandplantfactor.ThetotalenergysuppliedbySusitnawasassumedtobeafractionoftheforecastelectricalsystemdemandfortheRail-beltregionasdiscussedinSection5.Themonthlydistributionofthegener-atedenergyisassumedtobeequaltothemonthlypeakloadmultipliedbytheloadfactorinthatmonth.Environmentalconstraintsincorporatedintothemodelincludeamaximumseasonalreservoirlevelfluctuation,amaximumdailyreservoirfluctuationandaminimumdownstreamflowrequirement.Theseconstraintsarepreliminaryatthisstageandareonlyusedtoprovideconsistencybetweenenergyestimatesattherespectivedamsites.TheeconomiccomparisonsofvariousSusitnaBasindamsitesdescribedinSection8,bothindividuallyandincombination,wereaccomplishedtoalargeextentthroughsimulationofenergyavailabilityfromagivendevelopment.ThepurposeofthisAppendixistodescribethetwocomputermodelswhichwereusedtosimulateenergyyieldsaccordingtothestorageandhydrologyavailableatthevariousdamsites.(b)UtilizationofMonthF.2-SingleReservoirModel(a)EnergyOemand
(c)ActionsatReservoirBoundaryCondition~Underboundaryconditionsofeitherminimumreservoirlevelormaximumreservoirlevel,thefollowingactionsaretaken:(i)MinimumReservoirLevelTurbinedischargeisassumedequaltoinflowplusthestorageavail-abletoreducethereservoirtotheminimumlevelattheendofthemonth.Ifdischargeisinadequatetomeettheenergydemand,afail-ureisrecorded.(ii)MaximumReservoirLevelWhenthereservoirisfull,thetotalcapacityoftheplantistheor-eticallyavailableiftheinflowisadequate.Consequently,thedis-chargeissetequaltotheinflowexceptwhentheinflowexceedstheinstalledcapacity.Inthiscase,thedischargeequalstheplantcapacityandthesurpluswaterisspilled.Energygeneratedabovedemandisdesignatedassecondaryenergy.(d)SimulationProcedure(i)MonthlySimulationThemodelcomputesthedischargethatwillgivetheenergydemandfortheheadavailable.Ifreservoirstorageisdepletedorreplenished,aniterativeprocessisusedtodeterminethecombinationdischargeflowandheadnecessarytomeetdemand.Forthesepreliminarystudiesithasbeenassumedthatiftheenergy.'generatediswithin5percentofenergydemandforsinglereservoirand1percentformulti-reservoir,theresulthasconvergedsufficiently.Asnotedearlier,adeficitisnotedwhenenergygenerateddoesnotmeetenergydemand.Becauseofthenatureofthissystem,adeficitcanonlyoccurwhenthereservoirisdrawndowntothespecifiedmin-imumlevel.However,energyisgeneratedsincethepowerhouseflowisassumedequaltoinflow,givingnochangeinreservoirlevel.(ii)DailySimulationThemonthlysimulationhassuperimposedonitadailyrequirementduetopeakingoperation.Theoperationhasbeendividedintobaseloadcapacity,peakingcapacityandsecondarycapacity.Thepeakingcapa-cityhasbeenassumedtobeneededfor10hours.Baseloadcapacityandpeakingcapacityaredeterminedsothatthesumofeachdailygenerationforanymonthequalstheenergydeterminedinthemonthlysimulation.Ineffect,monthlypeakingcapacityisequaltotheratioofmonthlypeaktoannualpeakgiveninFigureF.lmultipliedbythenominalinstalledcapacity.Baseloadcapacityisvariableanddeterminedtoproducethenecessaryenergytomakethedailyoperationconsistentwithmonthlyenergyvalues.SecondarycapacityF-2
isonlyusedwhenthereservoirisfullandwouldhavetospill.Secondaryenergyisassumedtobegeneratedfor24hoursbythedif-ferenceininstalledcapacityandthesumofbaseloadandpeakingcapacities.Secondaryenergycanalsobeproducedduringtheoffpeakperiodbythecapacitydifferencebetweeninstalledcapacityandbaseloadcapacity.Alowerlimitonbaseloadpowerhouseflowistheconstraintofmini-mumdownstreamflowwhichmustalwaysbemetexceptwhennecessarytoviolatetheminimumreservoirlevelboundary.Ifbaseloadpowerhouseflowshavetobesetequaltodownstreamflowrequirements,thenpeakingperiodpowerhouseflowsmustbereducedtomaintainthemonthlyenergybalance.Apeakingcapacitydeficitisthereforepro-ducedandthiseventisrecordedandprinted.F.3-Multi-ReservoirSimulationThemulti-reservoirsimulationfollowsthesameoperatingrulesasthesinglereservoirprogramexceptthattheenergydemandinaparticularmonth;sallo-catedtoeachhydropowerplantaccordingtothereservoirstatusinthatmonth.Thisallocationrulepreventsthestorageofwaterinonereservoirwhenanotherreservoirisbeingdrawndown.Theallocationoftheenergydemandbetweenres-ervoirsisgivenby:H..E..=E.lJlJJT.lJwhere:E·=theenergydemandinmonthJJE·.=thefractionoftheenergydemandinmonthjallocatedtolJthehydropowerplant;H·.=thenetheadinmonthjofthehydropowerplantilJHij=thetotalheadofthecascadeinmonthjAfterthisallocation,thesinglereservoiroperatingrulesareappliedforeveryhydropowerplant.Thereservoirischeckedforitsfinalstatussolvingthesamenonlinearsystemofinequalitiesiterativelyforeverymonthofthesimulationperiod.F.4-AnnualDemandFactorAnannualdemandfactorisinitiallyspecifiedtoenableanestimateofthemonthlyenergydemandtobemadeforagiveninstalledcapacityandmonthlypeaktoannualpeakratios.Theintentionofthisdemandfactoristoalloweasyadjustmenttotheenergydemandcurvewhichdrivesthesimulationprogram.F-3
Adjustmentofthespecifiedinstalledcapacitywouldalsoadjusttheenergydemandcurveifthedemandfactorwasheldconstant.Consequently,thedemandfactorusedcoupledwithinstalledcapacitymustbeconsideredonlyasameansofdeterminingtheenergydemandthatcanbesuppliedbyagivenhydropowersystem.Environmentalconstraintsandhydrology(shortagesandsurpluses)leadtoanactualplantfactorwhichisslightlydifferentthanthenominaldemandfactorspecifiedtodeterminedemand.F.5-InputtoSimulationModelsInputtothesimulationmodelshasbeendeterminedfromexistingdefinitivestudiesoftheSusitnaBasinhydropotentialandfrompublishedandunpublishedUSGSrecords.Inputtothemodelcanbeclassedunderthreemaincategories:reservoirandpowergenerationfacilitydescription,energydemandcurveandinflowrecords.(a)ReservoirandPowerGenerationFacilities(i)ReservoirStorage-ElevationCurvesThestoragecurvesforthesevendamsidentifiedintheSusitnaBasinscreeningmodelhavebeendeterminedfrom50footcontourmapsofthereservoirareasbeingstudied.(ii)ReservoirStorageConstraintsDuetothepossibleenvironmentallimitationstoseasonalanddailydrawdownofthereservoirs,tentativevalueshavebeensettoallowconsistencyincomparisons.Themaximumdailyreservoirfluctua-tion,duetopeakingoperation,hasbeensetatfivefeet.Seasonalfluctuationsvaryaccordingtothesizedreservoir.Thefluctua-tionsassumedaregiveninTableF.l.Theseconstraintsmaybechangedduetomoreinformationon,andanalysesof,theenvironmentalimpactofthesefluctuations.(iii)DownstreamFlowConstraintThisconstraintonlyaffectsdailypeakingoperation.Assuch,itoccasionallylimitstheplantcapabilitytoproduceeitherfullordemandpower.Theflowconstrainthasbeensetsothattheplantatleastgivesapproximatelythehistoricalnterflowinthereachimmediatelydownstreamofthedamsite.FlowconstraintsaregiveninTableF.l.(iv)InstalledCapacityInstalledcapacityforeachofthedamsiteshasbeendeterminedfromtheplansidentifiedduringtheoptimumscreeningofSusitnaBasindevelopments(AppendixE).Insomecasesphasedpowerhousealternativeshavebeenconsideredandareusually50percentoffulldevelopment.InstalledcapacitiesconsideredaregiveninTablesF.3andF.4.F-4
(v)TailwaterElevationandEfficiencyAveragetailwaterelevationshavebeendeterminedfromtopographicalmapsandfrominformationcontainedinreportsofpaststudies.TailwaterelevationsaregiveninTableF.l.Theassessmentofmoreprecisetailwaterelevationratingcurvesdevelopedduringlaterstagesofthestudiesandfurtherdefinitionofchannelgeometryatselecteddevelopmentsiteswillbeundertakenduringdetailedpro-jectfeasibilitystudies.Combinedefficiencyofgenerators,turbinesandpenstocks,etc.hasbeenassumedtobe81percent.Thisvalueisconservativeandisbelievedtobeareasonableassumptionfortheseinitialassess-ments.(b)EnergyDemandCurveThisdistributionhasbeentakenfromstudiesoftheRailbeltregionenergygrowthasdiscussedinSection5.Thedistributionselectedisthatfor1995underamediumloadgrowthscenarioandisgiveninFigureF.1.(c)InflowThestreamflownetworkoftheUpperSusitnaBasinconsistsofthreegagesatGoldCreek(2920),Cantwell(2915)andDenali(2910)ontheSusitnaRiverandoneatMaclarenontheMaclarenRiver(2912).ThelongestrecordisatGoldCreek,whichhas30yearsofrecordfrom1949to1979.Theothershaveshorter,intermittentrecords.Therecordsatthethreegageswithl~ssthan30yearshavebeenextendedbycorrelationwithstreamflowsatGoldCreek.Toestimatethestreamflowateachoftheproposeddamsites,arelationshipbetweendrainageareaandupstreamanddownstreamgagestreamflowwasdetermined.Basically,thisrelationshipwasusedtoestimatethestreamflowatadamsitebyaddingthenearestupstreamgagerecordstotheflowdifferencebetweenthenearestupstreamanddownstreamgageswhichwereproratedtoreflectthedrainageareaatthedamsitewithrespecttothenearestdownstreamgage.ThesestreamflowrelationshipsaregiveninTableF.2.Streamflowsateachdamsiteforthe30yearperiodaregiveninTablesE.1toE.7ofAppendixE.F.6-ModelResultsThescreeningmodelidentifiedpotentialSusitnadevelopmentsconsistingofeithersingledarnsormulti-damdevelopments(AppendixE).Themaindamscon-sideredoptimumfordevelopmentareDevilCanyon,HighDevilCanyon,VeeandWatana.TheoptimizationprocessindicatedthatWatanaandHighDevilCanyonwouldbefirststagedevelopmentsinmulti-damdevelopmentschemes.Second-stagedevelopmentswouldresultinaWatana/DevilCanyonplanandaHighDevilCanyon/Veeplan.F-5
Adjustmentofthespecifiedinstalledcapacitywouldalsoadjusttheenergydemandcurveifthedemandfactorwasheldconstant.Consequently,thedemandfactorusedcoupledwithinstalledcapacitymustbeconsideredonlyasameansofdeterminingtheenergydemandthatcanbesuppliedbyagivenhydropowersystem.Environmentalconstraintsandhydrology(shortagesandsurpluses)leadtoanactualplantfactorwhichisslightlydifferentthanthenominaldemandfactorspecifiedtodeterminedemand.F.5-InputtoSimulationModelsInputtothesimulationmodelshasbeendeterminedfromexistingdefinitivestudiesoftheSusitnaBasinhydropotentialandfrompublishedandunpublishedUSGSrecords.Inputtothemodelcanbeclassedunderthreemaincategories:reservoirandpowergenerationfacilitydescription,energydemandcurveandinflowrecords.(a)ReservoirandPowerGenerationFacilities(i)ReservoirStorage-ElevationCurvesThestoragecurvesforthesevendamsidentifiedintheSusitnaBasinscreeningmodelhavebeendeterminedfrom50footcontourmapsofthereservoirareasbeingstudied.(ii)ReservoirStoraqeConstraintsDuetothepossibleenvironmentallimitationstoseasonalanddailydrawdownofthereservoirs,tentativevalueshavebeensettoallowconsistencyincomparisons.Themaximumdailyreservoirfluctua-tion,duetopeakingoperation,hasbeensetatfivefeet.Seasonalfluctuationsvaryaccordingtothesizedreservoir.Thefluctua-tionsassumedaregiveninTableF.l.Theseconstraintsmaybechangedduetomoreinformationon,andanalysesof,theenvironmentalimpactofthesefluctuations.(iii)DownstreamFlowConstraintThisconstraintonlyaffectsdailypeakingoperation.Assuch,itoccasionallylimitstheplantcapabilitytoproduceeitherfullordemandpower.Theflowconstrainthasbeensetsothattheplantatleastgivesapproximatelythehistoricalwinterflowinthereachimmediatelydownstreamofthedamsite.FlowconstraintsaregiveninTableF.l.(iv)InstalledCapacityInstalledcapacityforeachofthedamsiteshasbeendeterminedfromtheplansidentifiedduringtheoptimumscreeningofSusitnaBasindevelopments(AppendixE).Insomecasesphasedpowerhousealternativeshavebeenconsideredandareusually50percentoffulldevelopment.InstalledcapacitiesconsideredaregiveninTablesF.3andF.4.F-4
(v)TailwaterElevationandEfficiencyAveragetailwaterelevationshavebeendeterminedfromtopographicalmapsandfrominformationcontainedinreportsofpaststudies.TailwaterelevationsaregiveninTableF.1.Theassessmentofmoreprecisetailwaterelevationratingcurvesdevelopedduringlaterstagesofthestudiesandfurtherdefinitionofchannelgeometryatselecteddevelopmentsiteswillbeundertakenduringdetailedpro-jectfeasibilitystudies.Combinedefficiencyofgenerators,turbinesandpenstocks,etc.hasbeenassumedtobe81percent.Thisvalueisconservativeandisbelieved tobeareasonableassumptionfortheseinitialassess-ments.(b)EnergyDemandCurveThisdistributionhasbeentakenfromstudiesoftheRailbeltregionenergygrowthasdiscussedinSection5.Thedistributionselectedisthatfor1995underamediumloadgrowthscenarioandisgiveninFigureF.1.(c)InflowThestreamflownetworkoftheUpperSusitnaBasinconsistsofthreegagesatGoldCreek(2920),Cantwell(2915)andDenali(2910)ontheSusitnaRiverandoneatMaclarenontheMaclarenRiver(2912).ThelongestrecordisatGoldCreek,whichhas30yearsofrecordfrom1949to1979.Theothershaveshorter,intermittentreco~ds.Therecordsatthethreegageswithlessthan30yearshavebeenextendedbycorrelationwithstreamflowsatGoldCreek.Toestimatethestreamflowateachoftheproposeddamsites,arelationshipbetweendrainageareaandupstreamanddownstreamgagestreamflowwasdetermined.Basically,thisrelationshipwasusedtoestimatethestreamflowatadamsitebyaddingthenearestupstreamgagerecordstotheflowdifferencebetweenthenearestupstreamanddownstreamgageswhichwereproratedtoreflectthedrainageareaatthedamsitewithrespecttothenearestdownstreamgage.ThesestreamflowrelationshipsaregiveninTableF.2.Streamflowsateachdamsiteforthe30yearperiodaregiveninTablesE.1toE.7ofAppendixE.F.6-ModelResultsThescreeningmodelidentifiedpotentialSusitnadevelopmentsconsistingofeithersingledarnsormulti-damdevelopments(AppendixE).Themaindamscon-sideredoptimumfordevelopmentareDevilCanyon,HighDevilCanyon,VeeandWatana.TheoptimizationprocessindicatedthatWatanaandHighDevilCanyonwouldbefirststagedevelopmentsinmulti-damdevelopmentschemes.Second-stagedevelopmentswouldresultinaWatana/DevilCanyonplanandaHighDevilCanyon/Veeplan.F-5
Thesimulationmodelswereruntoestimateenergyyieldsfromthesinglereser-voirdevelopments(WatanaandHighDevilCanyon),andthenfrombasindevelop-ments(Watana/DevilCanyonandHighDevilCanyon/Vee).Theaverageannualenergylevelsobtainedfromthevariousdevelopmentplanspossible(stagedpowerhouse,stageddams,etc.)aregiveninTableF.3andF.4.DetailsofmonthlyaverageenergyandmonthlyfirmenergyaregiveninTablesF.5toF.15.F.7-InteractionofOGP5Thefinalplantfactorandthemonthlypeakratiosordemandcurvearedeter-minedinaninteractiverunwithOGP5.Basically,theinputofthesimulationresultstoOGP5canbeassumedtoapplytovariousinstalledcapacitiesprovidedtheenergydemandcurve determinedinthesimulationprocedureisnotviolated.OGP5thenselectsoptimumplantfactors(andinstalledcapacity)whichthenformsthebasisfornewreservoirsimulationwork.F-6
TABLEF.1-RESERVOIRANDFLOWCONSTRAINTSMaXl.ffiUmDOwnstreamNormalSeasonalCompensationTailwaterMaximumDrawdownFlowElevationElevationDam(ft)(cfa)(rt)(ft)DevilCanyon10020008801450HighDevilCanyon100200010201750Watana150200014652200Vee150200019052350
TABLEF.2-DAMSITESTREAMFLOWRELATIONSHIPuralnageSiteAreaDischargeRelationshipGoldCreek(g)6160QgCantwell(c)4140QcDenali(d)950QdDevil'Canyon(DC)5B10~C=0.827(Q-Q)+Q9c cHighDevilCanyon(HOC)5760QHOC=0.802(Qg-Qc)+QcWatana(W)5180QW=0.515(Q-Q)+Q9c cSusitnaIII(S)4225Qs=0.042(Q-Q)+Q9c cVee(V)4140QV=QcDenali(D)950~=0.153(Q-Q)+Qd9 cMaclaren(M)2319~=0.429(Q-Q)c d+Qd
TABLE F .3.SUSITNA DEVELOPMENT PLANS
CUffiulatl.ve
Stage/Incremental Data System Data
Annual
Maximum Energy
Capital Cost Earliest Reservoir Seasonal Production Plant
$Hi lUans On-line Full Supply Draw-Firm Avg.Factor
(1980 values)1 ~Plan Stage Construction Date Level -ft.down-ft GWH GWH.ro
1 .1 1 Watana 2225 ft 800MW 1860 1993 2200 150 2670 3250 46
2 Devil Canyon 1470 ft
600 MW 1000 1996 1450 100 5500 6230 51
TOTAL SYSTEM 1400 MW ~
1.2 1 Watana 2060 ft 400 MW 1570 1992 2000 100 1710 2110 60
2 Watana raise to
2225 ft 360 1995 2200 150 2670 2990 85
3 Watana add 400 MW
capacity 130 2 1995 2200 150 2670 3250 46
4 Oevil Canyon 1470 ft
600 MW 1000 1996 1450 100 5500 6230 51
TOTAL SYSTEM 1400 MW )1Jb!l"
1.3 1 Watana 2225 ft 400 MW 1740 1993 2200 150 2670 2990 85
2 Watana add 400 MW
capacity 150 1993 2200 150 2670 3250 46
3 Devil Canyon 1470 ft
600 MW 1000 1996 1450 100 5500 6230 51
TOTAL SYSTEM 1400 MW 'lIl'm
TABLE F.3 (Continued)
--~-~-~CumlJlat~ve
Stage/Incremental Data System Data
Annual
Maximum Energy
Capital Cost Earliest Reservoir Seasonal Production Plant
$Millions On-line Full Supply Draw-Firm Avg.Factor
Plan (198D values)1
Stage Construction Date Level -ft.down-ft.GWH GWH %
2.1 1 High Devil Canyon
1775 ft 800 MW 1500 1994 3 1750 150 2460 3400 49
2 Vee 2350 ft 400 MW 1060 1997 2330 150 3B70 4910 47
TOTAL SYSTEM 1200 MW "Z5Oll"
2.2 1 High Devil Canyon ~
1630 ft 400 MW 1140 1993'1610 100 1770 2020 58
2 High Devil Canyon
add 400 MW Capacity
raise dam to 1775 ft 500 1996 1750 150 2460 3400 49
3 Vee 2350 ft 400 MW 1060 1997 2330 150 3870 4910 47
TOTAL SYSTEM 1200 MW 'TTlJlj
2.3 1 High Devil Canyon
1775 ft 400 MW 1390 1994 3 1750 150 2400 2760 79
2 High Devil Canyon
add 400 MW capacity 140 1994 1750 150 2460 3400 49
3 Vee 2350 ft 400 MW 1060 1997 2330 150 3870 4910 47
TOTAL SYSTEfl 1200 MW 'Z'5'lU
3.1 1 Watana 2225 ft 800 MW 1860 1993 2200 150 2670 3250 46
2 Watana add 50 MW
tunne I 330 MW 1500 1995 1475 4 4B90 5430 53
TOTAL SYSTEM 1180 MW 136'1f
TABLE F.3 (Continued)
Stsgeilncremental
~umIJ~al:.IVB
Data System Data
Annua t
Maximum Energy
Capital Cost Earliest Reservoir Seasonal Production Plant
$Millions On-line Full Supp ly Draw-Firm Avg.Factor
(19BD values)1 "Plan Stage Construction Date Level -ft.down-ft.GWH GWH ~
3.2 1 Watana 2225 ft 400 MW 1740 1993 2200 150 2670 2990 85
2 Watana add 400 MW
capacity 150 1994 2200 150 2670 3250 46
3 Tunnel 330 MW add
50 MW to Watana 1500 1995 1475 4 4890 5430 53
»'lIT
4.1 1 Watana
2225 ft 400 MW 1740 1995
3 2200 150 2670 2990 85
2 Watana add 400 MW
capacity 150 1996 2200 150 2670 3250 46
3 High Devil Canyon
1470 ft 400 MW 860 1998 1450 100 4520 5280 50
4 Portage Creek
1030 ft 150 MW 650 2000 1020 50 5110 6000 51
TOTAL SYSTEM 1350 MW )1i1JIJ"
NOTES:
(1)Allowing for a 3 year overlap construction period between major dams.
(2)Plan 1.2 Stage 3 is less expensive than Plan 1.3 Stage 2 due to lower mobilization costs.
(3)Assumes FERC license can be filed by June 1984,ie.2 years later than for the Watana/Devil Canyon Plan 1.
TABLE F.4.SUSITNA ENVIRONMENTAL OEVELOPMENT PLANS
CUffiulatlve
Stage/Incremental Data System Data
Mnua (
Maximum Energy
Capital Cost Earliest Reservoir Seasonal Production Plant
$Millions On-line Full Supply Draw-Firm Avg.Factor
Plan Stage (1980 values)1ConstructionDate Level -ft.down-ft GWH GWH.%
E1.1 1 Watana 2225 ft 800MW
and Re-Regulation
Dam 1960 1993 2200 150 2670 3250 46
2 Oevil Canyon 1470 ft
40IJMW 900 1996 1450 100 5520 6070 58
TOTAL SYSTEM 1200MW '2llb!T
E1.2 1 Watana 2060 ft 400MW 1570 1992 2000 100 1710 2110 60
2 Watana raise to
2225 ft 360 1995 2200 150 2670 2990 85
3 \~atana add 400MW
capacity and
Re-Regulation Dam 230 2 1995 2200 150 2670 3250 46
4 Devil Canyon 1470 ft
400l>1W 900 1996 1450 100 5520 6070 58
TOTAL SYSTEM 1200MW )1J6l'f
E1.3 1 Watana 2225 ft 400MW 1740 1993 2200 150 2670 2990 85
2 Watana add 40Of~
capacity and
Re-Regulation Dam 250 1993 2200 150 2670 3250 46
3 Devil Canyon 1470 ft
400 MW 900 1996 1450 100 5520 6070 58
TOTAL SYSTEM 1200MW '2'!l'JIT
Maximum Energy
Capital Cost Earliest Reservoir Seasonal Pl."oduction Plant
$ME lions On-line Full Supply Draw-Firm Avg.Factor
Plan Stage Construction (1980 values)1Date Level -ft.down-ft.GWH GWH %
E2.4 1 High Devil Canyon
1755 ft 40flMW 1390 1994
3 1750 150 2400 2760 79
2 High Devil Canyon
add 480MW capacity
and Portage Creek
Dam 150 ft 790 1995 1750 150 3170 4080 49
3 Vee 2350 ft
400MW 1060 1997 2330 150 4430 5540 47
TOTAL SYSTEM mrr
E3.2 1 Watana
2225 ft 400MW 1740 1993 2200 150 2670 2990 85
2 Watana add
400 MW capacity
and Re-Regulation
Dam 250 1994 2200 150 2670 3250 46
3 Watana add 50MW
Tunnel Scheme 330MW 1500 1995 1475 4 4890 5430 53
TOTAL SYSTEM 1180MW '3'1i9!f
E4.1 1 Watana ,
2225 ft 400MW 1740 1995'2200 150 2670 2990 85
2 Watana
add 400MW capacity
and Re-Regulation
Dam 250 1996 2200 150 2670 3250 46
3 High Devil Canyon
1470 ft 400MW 860 1998 1450 100 4520 5280 50
4 Portage Creek
1030 ft 150MW 650 2000 1020 50 5110 6000 51
TOTAL SYSTEM 1350 MW >sm
NOTES:
rrr--Allowing for a 3 year overlap construction period between major dams.
(2)Plan 1.2 Stage 3 is less expensive than Plan 1.3 Stage 2 due to lower mobilization costs.
(3)Assumes FERC license can be filed by June 1984,ie.2 years later than for the Watana/Devil Canyon Plan 1.
TABLE F.4 (Continued)
Cumulative
Stage/Incremental Data System Data
Annual
Maximum Energy
Capital Cost Earliest Reservoir Seasonal Production Plant
$Millions On-line Full Supply Draw-Firm Avg.Factor
Plan Stage (19BO values)1ConstructionDate Level -ft.down-ft.GWH GWH %
E1.4 1 Watana 2225 ft 400MW 1740 1993 2200 150 2670 2990 B5
2 Devil Canyon 1470 ft
40OM\~900 1996 1450 100 5190 5670 81
TOTAL SYSTEM 800MW Uiiii
E2.1 1 High Devil Canyon
1 775 ft 800MW and
Re-ReglJ lation Dam 1600 1994
3 1750 150 2460 3400 49
2 Vee 2350ft 400MW 1060 1997 2330 150 3870 4910 47
TOTAL SYSTEM 1200MW T660
E2.2 1 High Devil Canyon
1630 ft 40DMW 1140 1993 3 1610 100 1770 2020 58
2 High Devil Canyon
raise dam to 1775 ft
add 400MW and
Re-Regulation Dam 600 1996 1750 150 2460 3400 49
3 Vee 2350 ft 400 MW 1060 1997 2330 150 3870 4910 47
TOTAL SYSTEM 1200MW TsiJii
E2.3 1 High Devil Canyon
177 5 ft 400MW 1390 1994 3 1750 150 2400 2760 79
2 High Devil Canyon
add 400MW capacity
and Re-Regulation
Dam 240 1995 1750 150 2460 3400 49
3 Vee 2350 ft 400MW 1060 1997 2330 150 3870 4910 47
TOTAL SYSTEM 1200 2690
TABLEF.5-PLAN1.1-ENERGIESSTAGE1STAGE2AddOev11CanyonMONTHWatana(2200)(1450)BOOMW600MWEAEFEAEF(GWH) (GWH)(GWH) (GWH)JANUARY26426354253BFEBRUARY250249514511MARCH224224452458APRIL201201394406MAY186186418405JUNE187183437383JULY285183473373AUGUST499190707394SEPTEMBER370204667421OCTOBER233ZJ3488478NOVEMBER266266544540OECEMBER2B7287591587TOTALANNUAL3252266962275494Notes:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(2200):Reservoirfullsupplylevel
TABLEF.6-PLAN1.2-ENERGIESSiAGE3(1)51AGE1stAGE4Watana(2000)RaiseWatana(2200)AddDev~1CanyonMONTH400MWAdd400MW(1450)400MWEAEFEAEFEAEF(GWH)(GWH)(GWH)(GWH)(GWH) (GWH)JANUARY13B13726426354253BFEBRUARY130129250249514511MARCH117116224224452458APRIL10357201201394406MAY1001001B618641B405JUNE154102187 183437383JULY3221032851B3473373AUGUST355365499190707394SEPTEMBER26918B370204667421OCTOBER131123233 23348B478NOVEMBER140139266266544540DECEMBER150149287287591587TOTALANNUAL210917083252266962275494Notes:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(2000):Reservoirfullsupplylevel(ft)(1)Stage2isasforStage1onTableF.6(Plan1.3)
TABLEF.7-PLAN1.3-ENERGIESSIAGE1STAGeZSTAGe3Watana(2200)Add400MWtoAddDevilCanyonMONTH400MWWatana(2200)(1450)400MWEAITeAEFEAEF(GWH) (GWH)(GWH)(GWH)(GWH)(GWH)JANUARY263 26326426354253BFEBRUARY250 249250249514511MARCH224 224224224452 458APRIL201 201201201394406MAY186 186186 186418405JUNE187 184187183437383JULY245183285183473373AUGUST333190499190707394SEPTEM8ER315204370204667421OCT08ER233233233 233488 478NOVEMBER266 265266266544540DECEMBER287 2872B72B7591587TOTALANNUAL2990 26693252266962275494Notes:EA:AverageMonthlylnergyEF:MonthlyFirmEnergy(2000):Reservoirfullsupplylevel(ft)
TABLEF.B-PLAN2.1-ENERGIESSTAGE1STAGE2MONTHHighDevilCanyonAddVee(2355)(1750)BOOMW400MWEAEFEAEF(GWH)(GWH)(GWH) (GWH)JANUARY235 23236B368FE8RUARY222219349 350MARCH197151303313APRIL17330268276MAY169171254258JUNE231172290247JULY480173526319AUGUST554307752298SEPTEM8ER429303575280OCTOBER219213394 366NOVEMBER239233403393DECEMBER257254425401TOTALANNUAL3405245849073869Notes:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(1750):Reservoirfullsupplylevel(ft)
TABLEF.9-PLAN2.2-ENERGIESStAGE1STAGEZSTAGE3RaiseH1ghDevilAddVee(2330)Hi{hDevilCanyonCanyon(1750)400MWMONTH1610)400MWTotal1200MWEAEF.EAEFEAEF(GWH)(GWH)(GWH)(GWH)(GWH)(GWH)JANUARY11711623523236B36BFEBRUARY110 109222219349350MARCH999B197141303313APRIL898717330268276MAY9Z87169171254258JUNE26593231172290247JULY29Z291480173526319AUGUST29029Z55430775229BSEPTEMBER270 243429303575280OCTOBER150105219213394366NOVEMBER120 119239 233403393DECEMBER129127257254425401TOTALANNUAL20n17672759241549073869Notes:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(1610):Reservoirfullsupplylevel(ft)
TABLEF.10-PLANS2.3andE2.3-ENERGIESH'?hg~e!I~anyonS~A5E2S~4GE~MdOMWtoAddee(530)MONTH1750)400MWHighDevilCanyon400MWEAEFEAEFEAEF(GWH)(GWH)(GWH)(GWH) (GWH)(GWH)JANUARY23523223523236B 36BFEBRUARY222219222219349350MARCH197141197152303313APRIL173301733026B276MAY169171169171254258JUNE200172231172290 247JULY2751734BO173526319AUGUST2BB2B6554307752298SEPTEMBER2B5292429303575280OCTOBER219213219 213394366NOVEMBER239 232239233403393DECEMBER257254257254425401TOTALANNUAL2759 24153405245949073869Notes:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(1750):Reservoirfullsupplylevel(ft)
TABLEF.11-PLAN3.1-ENERGIES51AGE151AGE2Watana(2200)AddTunnelMONTH800MW380MWEAEFEAEFJANUARY264263490488FEBRUARY250249463467MARCH224 224411423APRIL201201364376MAY186186345351JUNE187183332 332JULY285183390321AUGUST499190633337SEPTEMBER370204574364OCTOBER233 233419417NOVEMBER2662664B3481DECEMBER287 287529527TOTALANNUAl32522669543348B5Notes:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(2200):Reservoirfullsupplylevel(ft)
TABLEF.12-PLAN4.1-ENERG!ESSTAGE1STAGE2StAGE3Watana(220d)AddH.O.C.AddPortagaCreekMONTH800MW(1450)400MW(1020)150MWEAEFEAEFEAEF(GWH) (GWH)(GWH) (GWH)(GWH)(GWH)JANUARY264 263447444504501FEBRUARY250 249424 422 478476MARCH224 224379378428426APR!L201 201334335 379 378MAY186 186338330391376JUNE187183349313406356JULY285183419306481347AUGUST499190670323799366SEPTEM8ER370204583346661392OCTOBER233 233400393454445NOVEM8ER266265499446507503DECEMBER287287488485550546TOTALANNUAL32522669528145225997 5112~:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(2200):Reservoirfullsupplylevel(ft)
TABLEF.13-PLANE1.2-ENERGIESSTAGE2(1)STAGE3STAGE4WatanaHalseDamAdd400MWtoAddDevl!CanyonMONTH(2200)400MWWatana(2200) (1450)400MWEAEFEAEFEAEF(GWH)(GWH)(GWH) (GWH)(GWH) (GWH)JANUARY263263264263544560FEBRUARY250249250249515 516MARCH224224224224450460APRIL201201201 20139640BMAY1B61861B61B6419406JUNE1B71841B71B34363B5JULY2451B32B5183453375AUGUST333190499190616395SEPTEMBER315204370204606423OCTOBER2332332332334904BONOVEMBER266265266266547545DECEMBER2872B72872875945B9TOTALANNUAL299026693252266960655520Notes:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(2200):Reservoirfullsupplylevel(ft)(1)Staga1isasforStage1onTable2Plan(1.2)
TABLEF.14-PLANE1.)-ENERGIESSTAGE1-STAGEZSIAGE3Watana(2200)Add400MWtoAddDevilCanyonMONTH400MWWatana(1450)400MWEAEFEAEFEAEF(GWH) (GWH)(GWH)(GWH) (GWH)(GWH)JANUARY26)26)26426)544560FEBRUARY2502~9250249515516MARCH224224224224450460APRIL201 201201 201)9640BMAY186 186186186419406JUNE18718418718)4)6)85JULY24518)28518)45)315AUGUST)))190499190616)95SEPTEMBER)1520437020460642)OCT08ERZ)Z)2)J2»490480NOVEMBER266 265266 266547545OECEMBER287287287 287594589TOTALANNUAL299026693252266960655520~:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(2200):Reservoirfullsupplylevel(ft)
TA8LEF.1'-PLANE2.4-ENERGIESSTAGE1STAGE2SfAGE3Add400MWtoHighMONTHHi~hDevilCanyonDevilCanyonandPor-AddVee(23,0)17,0)400MWtageCreek(1'0MW)400MWEAEFEAEFEAEF(GWH)(GWH)(GWH)(GWH)(GWH)(GWH)JANUARY23,232317317432435FE8RUARY222219296302411415MARCH197141261270360372APRIL17330231239318328MAY169171220221287 290JUNE200172232208321277JULY275173460214564349AUGUST288 286629221820332SEPTEM8ER285 292492241646315OCTOBER219213282276447 415NOVEM8ER239 2323173174,7446OECEM8ER257 254346346480456TOTALANNUAL275924154083317155434430Notes:EA:AverageMonthlyEnergyEF:MonthlyFirmEnergy(1750):Reservoirfullsupplylevel(rt)
FIGUREF.III~IRI1.00I-.92.92.87I-.80.78.70.70I-.64.64.62.611995MONTH/ANNUALPEAKLOADRATIOSNOVDECSEPOCTJUNJULAUGMONTHJANFE8MARAPRMAYREF:WOODWARDCLYDECONSULTANTS,'.'FORECASTINGPEAKELECTRICDEMANDFORALASKA'SRAIL8ELT"1.0.9.8Q~Q:.7:.:«UJa...J.6«::>zz«.50I-:.:.4«UJa.>-.3..J~Z0:=;;.2
APPENDIXG -SYSTEMWIDEECONOMICEVALUATIONTheRailbeltSystemwillbedevelopedinthefuturebymeansofanappropriatecontinuationofexistingandnewprovengenerationalternativestosupplythenecessarydemand.TheobjectivesofgenerationplanningintheevaluationprocessistodeterminethepreferredSusitnaBasindevelopmentplanwhichwillformpartoftheRail-beltSystem.ThepreferredSusitnaBasinplanwouldbethatplanwhichgivesthelowestsystempresentworthcostofgenerationfortheenergyandcapacitydemandsandeconomiccriteriaselected.G.1-IntroductionGenerationplanninganalyseswereperformedbymakingacomparisonofSusitnaBasindevelopmentalternativeswiththeaidofaproductioncostmodeltoassessthesystemcostsforthevariousdevelopmentalternativesavailable.Standardnumericalevaluationtechniqueswerethenusedtomakedirectcomparisonofal-ternatives.Initially,asetofvariableswasestablishedforuseinmakingbroadcomparisonsofavailablebasindevelopments.Inthispreliminaryevalua-tion,thestudyfocusedonthemediumloadforecasttoidentifyvariousplans;abaseplanwhichconsistedofanall-thermaldevelopment,planscomposedofther-malplusvariousSusitnadevelopments,andaplancomposedofthermalplusotherhydroelectricdevelopments.Thesecondphaseofgenerationplanningassessedtheimpactofvaryingtheloadforecast.SystemgenerationplanswithandwithouttheSusitnaBasindevelop-mentplanwereidentifiedforthehighandlowloadforecasts.Aplanwasalsodevelopedforthelowloadforecastconsideringanadditionalreductioninloadgrowthduetoconservationandloadmanagement.Alsounderthisphase,aplanwasdevelopedconsideringaprobabilisticforecastcenteredaroundthemediumloadforecast.Sinceitisrecognizedthattheselectionofagenerationplanmaybesensitivetotheunderlyingassumptions,thethirdphaseofgenerationplanningassessedtheimpactsofvariableplanningparametersandthesensitivityofthesepara-meterswithrespecttothegenerationplans.Thisanalysisdealtwithvariableinterestrates,fuelcostandescalation,retirementpolicies,andcapitalcostestimates.G.2-GenerationPlanningModels(a)SelectionofPlanningModelThemajortoolusedintheeconomicevaluationofthevariousRailbeltgen-erationplansisacomputergenerationsystemsimulationprogram.Thereareanumberofgenerationplanningmodelsavailablecommerciallyandac-ceptedforuseintheutilityindustrythatwillsimulatetheoperation,growthandcostofaelectricutilitysystem.Someofthemorewidelyusedmode1sinc1udethefo11owing:G-l
-GENOP-OGP5-PROMOD-WASPbyWestinghousebyGeneralElectric.byEnergyManagementAssociates.byTennesseeValleyAuthority.TheWASPprogramwasnotavailableforuseatthestartofthisstudysoisnotconsideredordiscussedfurtherinthisreport.Keyconsiderationsforuseinselectionofamodelforthisstudyaredataprocessingcosts,methodofproductioncostmodeling,treatmentofsystemreliability,selectionofnewcapacity,dispatchingofhydroelectriccapa-citytomeetloadprojectionsandabilityofthemodeltoaddressloaduncertainty.Althoughtheseitemsarehandleddifferentlyineachprogram,commontraitsofoperationexist.SomeofthesalientfeaturesofeachmodelareshownonTableG.l.Majordifferencesinthemodelsaregivenbelow.(i)ForcedOutagesOnesignificantfactorwhichvariesbetweenthemodelsisthemethodofdeterminingforcedoutagesofthevariousunitsofsystempowergenerationinstallationswhicharerepresentedintheproductioncostalgorithm.Thethreemethodsusedare:-Deterministicmethodswhichdevoteunitcapacitybyamultiplierorbyextendingplannedmaintenanceschedules.-Stochasticmethodswhichcanbereducedtodeterministicmethods.Strictlyspeakingstochasticrepresentationsofoutagesisarandomselectionofsomeunitsineachcommitmentzonetobeputoutofservice.Theloadpreviouslyservedwillbetransferredtohighercostunits.-Probabilisticmethods,whicharedescribedbythemodifiedBooth-Baleriauxmethodofproductionsimulationwhichallowsforprobabilitydistributionofgenerationunitoutages.Theselectionofoneofthesemethodsmaybecriticalintheuseofamodelforshort-termoutagescheduling.However,itisgenerallyfoundthatvirtuallynodifferenceinplanningresultsisobtainedfrommodelsusingthethreemethodsavailableoveralongtermperiod.(ii)DispatchingHydropowerResourcesThemethodofdfspatchinghydropowerresourcestomeetloaddemandsisanothersignificantfeaturewhichaffectsthemodel'srepresentationofthesystem.TheGENOPprogramwilldispatchorselect,fromavail-ableunits,hydroelecricunitsfirsttomeetagivendemand.Gen-erally,therun-of-riverunitswillmeetloaddemandandunitswithstoragecapabilitywillbeusedtoshavepeakdemands.G-2
TheOGP5programusesasimilarmethod,utilizinghydroelectricenergyasmuchaspossibletominimizesystemoperatingcosts.Hydropowerisscheduledfirstonamonthlybasistoaccountforseasonalconditions.Anadditionalfeatureoftheprogramistheabilitytousedryyearorfirmenergyonamonthlybasistodeterminesystemreliability,whileusingaverageannualenergytodeterminesystemproductioncosts.ThePROMODprogramallowsforthree1eve1sofannualrunoffandassociatedhydroelectricenergy.Theseenergylevelscanbeenteredintotheprograminaprobabilisticmannertobeusedindeterminingreliabilityandproductioncosting.Run-of-riverandstorageunitsaredispatchedasintheotherprograms.Otherfactorsarealsoimportantsuchasprogramavailabilityandex-perienceofstaffinusingthemodels.Onthebasisofthisassessmentofmodelfeatures,modelavailabilityandAcres'knowledgeoftheintricaciesofthemodelprocedures,theOGP5modelwasselectedforuseinthisstudy.ThismodelisbelievedtobethemostappropriatetoaccuratelymodeltheRailbeltgenerationsystemasitexiststodayandinthefuture,withthevariousgenerationalternativesavailabletotheregion.OGP5ModelTheprimarytoolusedforthegenerationplanningstudieswasthemathema-ticalmodeldevelopedbytheElectricUtilitySystemsEngineeringDepart-mentoftheGeneralElectricCompany.ThemodeliscommonlyknownasDGP5orOptimizedGenerationPlanningModel.Thefollowinginformationispara-phrasedfromGEliteratureontheprogram.TheOGP5programwasdevelopedovertenyearsagotocombinethethreemainelementsofgenerationexpansionplanning(systemreliability,operatingandinvestmentcosts)andautomategenerationadditiondecisionanalysis.OGP5willautomaticallydevelopoptimumgenerationexpansionpatternsintermsofeconomics,reliabilityandoperation.ManyutilitiesuseOGP5tostudyloadmanagement,unitsize,capitalandfuelcosts,energystorage,forcedoutagerates,andforecastuncertainty.TheOGP5programrequiresanextensivesystemofspecificdatatoperformitsplanningfunction.Indevelopinganoptimalplan,theprogramconsid-erstheexistingandcommittedunits(plannedandunderconstruction)availabletothesystemandthecharacteristicsoftheseunitsincludin9age,heatrate,sizeandoutageratesasthebasegenerationplan.Theprogramthenconsidersthegivenloadforecastandoperationcriteriatodeterminetheneedforadditionalsystemcapacitybasedongivenreliabil-itycriteria.Thisdetermines"howmuch"capacitytoadd and"when"itshouldbeinstalled.Ifaneedexistsduringanymonthlyiteration,theprogramwillconsideradditionsfromalistofalternativesandselecttheavailableunitbestfittingthesystemneeds.Unitselectionismadebycomputingproductioncostsforthesystemforeachalternativeincludedandcomparingtheresults.G-3
Themodelisthenfurtherusedtocomparealternativeplansformeetingvariableelectricaldemands,basedonsystemreliabilityandproductioncostsforthestudyperiod.Furtherdiscussionontheloadrequirements,loaduncertaintyandplantreliabilityisgivenbelow:(i)LoadRepresentationBesidesgenerationunitdataandsystemreliabilitycriteria,theprogramusesamodelofthesystemloadincludingmonthtoyearpeakloadratios,typicaldailyloadshapesfordaysandweekends,andprojectedgrowthfortheperiodofstudyintermsofcapacityandenergysupply.Loadforecasts'usedforgenerationplanningarerepresentedindetailinSection5,"RailbeltLoadForecast",ofthemainreport.FigureG.1depictsthefourenergyforecastsinthesystemwideanalysis.Theunitresultinginaddedtothesystem.costsiscompletedtoaddtothesystem.thelowestsystemproductioncostisselectedandFinally,aninvestmentcostanalysisofthecapitalanswerthequestionof"whatkind"ofgenerationtoTheforecastsusedforgenerationplanningarebasedonAcres'analysisoftheISERenergyforecast.TheenergyforecastusedbyAcresforestablishingthe"basecase"generationplanisthemediumloadforecast(TableG.2).SensitivityanalyseshavealsobeenundertakenusingvariableloadsdevelopedfromtheISERscenariosofhighandlowlevelsofbotheconomicactivityandgovernmentspending.TableG.2givestherangeofloadforecastsconSidered.TheenergyandloadforecastsdevelopedinSection5ofthisreportincludeenergyprojectionsforself-suppliedindustrialandmilitarysectors.ThesemarketswillnotbeapartofthefutureelectricaldemandtobemetbytheRailbeltUtilityCompany.Likewise,thecapacityownedbythesesectorswillnotbeavailableasasupplytothegeneralmarket. Areviewoftheindustrialselfsuppliersindicatesthattheyareprimarilyoffshoreoperations,drillingoperationsandothersvlhichwouldnotlikelyaddnordrawpowerfromthesystem.Theforecastshavebeenappropriatelyadjustedforuseingenerationplanningstudies,asdescribedinSection5.Additionally,althoughitisconsideredlikelythatthemilitarywouldpurchaseavailablecosteffectivepowerfromageneralmarket,muchoftheircapacityresourceistiedtodistrictheatingsystems,andthuswouldbeexpectedtocontinueoperation.Forthesereasonsonly30percentofthemilitarygenerationtotalwillbeconsideredasaloadonthetotalsystem.Thisamountisabout4percentoftotalenergyin1980anddecreasest~2.5percentin1990.Thismethodofaccountingfortheseloadshasnosignificanteffectontotalcapacityadditionsneededtomeetprojectedloadsafter1985.TableG.2illustratesthemediumloadandenergyforecastsatfiveyearintervalsthrou9houttheplanningperiod.G-4
(ii)LoadUncertaintyTheloadforecastusedtodevelopagenerationplanwillhaveasigni-ficantbearingonthenatureoftheplan.Inaddition,theplancanbesignificantlychangedduetouncertaintiesassociatedwiththeforecastedloads.Toaddressthe questionoftheimpactofloadun-certaintyonadevelopmentplan,twoprocedureswillbeused.Thefirstprocedurewillbetodevelopplansusingthehighandlowloadforecastsassumingnouncertaintytotheforecast.ThiswillidentifytheupperandlowerboundsofdevelopmentwhichwillbeneededintheRailbelt.Thesecondmethodwillbetoincorporatethevariablefore~castsanduncertaintyoftheloadforecastsintotheplanningpro-cess.Themediumloadforecast(usedinpreliminaryevaluationofplans)isintroducedintotheprogramindetail.Thiswouldincludedailyloadshapes,monthlyvariabilityandannualgrowthofpeaksandenergy.Additionalvariablesareaddedwhichintroduceforecastuncertaintyintermsofhigherandlowerlevelsofpeakdemandandtheprobabilityoftheoccurrenceoftheseforecasts.Forexample,intheyear2000themediumloadforecastdemandenteredis1175MW.Variableforecastsareenteredfor950,1060,1530and1670MW,withassociatedprobabil-itiesofoccurrenceof0.10,0.20,0.20and0.10,respectively.Themiddlelevelforecastof1175MWwouldhaveaprobabilityofoccur-renceof0.40.TheOGP5programusesthisvariableforecastindetermininggeneratingsystemreliabilityonly.Alossofloadprobabilityiscalculatedforeachprojecteddemand1eve1ascomparedtotheavailab1ecapacityandaweightedaverageistaken.Thislossofloadprobabilityisthenusedforcapacityadditiondecisions.Aftercapacitydecisionsaremade,theprogramusesthemediumloadforecastdetailforoperatingtheproductioncostmodel.ThismethodofdealingwithuncertaintyisdirectlyapplicabletothedataavailableonRailbeltloadforecasts.Therearefiveforecastswhichcouldbepluggedintothereliabilitycalculations,threebyISERandtwoextremescalculatedbyAcresrepresentedinTableG.2.Subjectivityisreducedtothedecisionofplacingprobabilitiesontheloadforecasts.BasedoncommmunicationwiththeISERgroupinAlaskaaswellasGeneralElectricOPG5personnel,theaboveexampleprobabilitysethasbeenconsideredintheanalysis.Thisisbasedontheassumptionthateachextremeforecastishalfaslikelytohappenastheadjacentforecastwhichisclosertothemedium.TheloadsandprobabilitiesanalyzedaregiveninTableG.3.(iii)GenerationPlantReliabilityInordertoperformastudyofthegenerationsystem,criteriaarerequiredtoestablishgeneratingplantandsystemreliability.ThesecriteriaareimportantindeterminingtheadequacyoftheavailableG-5
generatingcapacityaswellastheslzlngandtimingofadditionalunits.Plantreliabilityisexpressedintheformofforcedandplan-nedoutagerateswhichhavebeenpresentedwithintheindividualre-sourcedescriptionsinSection6.Systemreliabilityisexpressedasthelossofloadprobability(LOLP).AnLOLPforasystemisacalculatedprobabilitybasedonthecharacteristicsofcapacity,forcedandscheduledoutage,andcyclingabilityofindividualunitsinthegeneratingsystem.Theprobabilitydefinesthelikelihoodofnotmeetingthefulldemandwithinaoneyearperiod.Forexample,anLOLPof1relatestotheprobabilityofnotmeetingdemandonedayinoneyear;anLOLPof0.1isonedayintenyears.ForthisstudY,anLOLPof0.1hasbeenadopted.ThisvalueiswidelyusedbyutilityplannersintheUnitedStatesasatargetforindependentsystems.Thistargetvaluewillbeusedbothforthebasecaseplanandforsensitivityanalysesdealingwiththeeffectsofoverorundercapacityavailab1ility.(iv)EconomicandFinancialParametersAsapublicinvestment,itwasdeterminedthattheSusitnaprojectshouldbeevaluatedinitiallyfromaneconomicperspective,usingeco-nomicparameters.InitialanalysisandscreeningofSusitnaalterna-tivesemployedanumericaleconomicanalysisandthegeneralaidoftheOGP5model.Thedifferencesbetweeneconomicandfinancial(costofpower)ana-lysespertaintothefollowingparameters:-ProjectLifeInecpnomicevaluations,aneconomiclifeisusedwithoutregardtotheterms(repaymentperiod)ofdebtcapacityemployedtofinancetheproject.Afinancial(orcostofpower)perspectiveusesanamortizationperiodthatistiedtothetermsoffinancing.Aretirementperiod(policy)isgenerallyequivalenttoprojectlifeineconomiceva1uations;financia1analysismayusearetirementperiodthatdiffersfromprojectlife.-DenominationofCashFlowsandDiscountRatesEconomicevaluationsuserealdollarsandrealdiscountratesthatexcludetheeffectsofgeneralpriceinflationwiththeexceptionoffuelescalation.-MarketorShadowPricesWhenevermarketandshadowpricesdiverge,economicevaluationsuseshadowprices(opportunitycostsorvalues).Financialanalysisusesmarketpricesprojectedasapplicable.FuelpricesarefriscussedindetailinSection6andAppendixB.G-6
-CostEscalationRatesG-7Itshouldbenotedthatthe50-yearlifeforhydroprojectswasselectedasaconservative'estimateanddoesnotincludereplacementinvestmentexpenditures.-30years-35years-20years-30years-30years-50years•Largesteamplants•Smallsteamplants•Gasturbines,oil-fired•Gasturbines,gas-fired'•Diesels•HydroelectricprojectsTocalculateannualcarryingcharges,thefollowingassumptionsweremaderegardingtheeconomiclifeofvariouspowerprojects.Asnotedearlier,theseliveswerealsoassumedastheplantlives.Itisimportanttonotethatapplicationofthevariousparameterscontainedhereinwillnotnecessarilyprovideanaccuratereflectionofthetruelifecyclecostofanysinglegeneratingresourceofthesystem.Fromthepublic(StateofAlaska)perspective,therelevantprojectcostsarebasedonopportunityvaluesandexcludetransferpaymentssuchastaxesandsubsidies.Furtherstudyintothiscomparativeanalysisofprojecteconomicswillbecontinuingduring1981.Incomparison,analysisrequiresanominalormarketrateofinter-estfordiscountedcashflowanalysis.Thisrateisdependentupongeneralpriceinflation,capitalstructure(debt-equityratios)andtax-exemptstatus.Inthebasecase,ageneralrateofpriceinfla-tionofsevenpercentisassumedfortheperiod1980to2010.Givena100percentdebtcapitalizationandathreepercentrealdiscountrate,theappropriatenominalinterestrateisapproximately10percentinthebasecase.Thenomina1interestiscomputedas:NominalInterestRate=(1+inflationrate)x(1+realinterestrate)=1.07x1.03Intheinitialsetofgenerationplanningparameters,itwasassumedthatallcostitemsexceptenergyescalateattherateofgeneralpriceinflation(assumedintheeconomicsensetobe0percentperyear).Thisresultsinrealgrowthratesofzeropercentfor,non-energycostsinthesetofeconomicparametersusedinrealdollargenerationplanning.-InterestRatesandAnnualCarryingChargesTheassumedgenerationp1anningstudybasedoneconomicparametersandcriteriahasa 3percentrealdiscountrateforthebasecaseanalysis.Thisfigurecorrespondstothehistoricalandexpectedrealcostofdebtcapacity.Theissueoftax-exemptfinancingdoesnotimpingeontheseeconomicevaluations.
Baseperiod(January1980)energypriceswereestimatedbasedonbothmarketandshadowvalues.Theinitialbasecaseanalysisusedbaseperiodcosts(marketandshadowprices)of$1.15/millionBtu(MMBtu)and$4.00/MMBtuforcoalanddistillaterespectively.Fornaturalgas,thecurrentactualmarketpriceisabout$1.05/MMBtuandtheshadowpriceisestimatedtobe$2.00/MMBtu.Theshadowpriceforgasrepresentstheexpectedmarketvalueassuminganexportmarketwasdeveloped.Realgrowthratesinenergycosts(excludinggeneralpriceinfla-tion)areshowninTableG.4.ThesearebasedonfuelescalationratesfromtheDepartmentofEnergy(DOE)mid-termEnergyFore-castingSystemforDOERegion10(includingtheStatesofAlaska,Washington,OregonandIdaho.Priceescalatorspertainingtotheindustrialsectorwereselectedoverthoseavailableforthecommer-cialandresidentialsectorstoreflectutilities'bulkpurchasingadvantage.Acompositeescalationratehasbeencomputedfortheperiod1980to1995whichreflectsaveragecompoundgrowthrateperyear.SincetheDOEhassuggestedthattheforecaststo1995maybeextendedto2005,thecompositeescalationratesareassumedtopre-vailintheperiod1996to2005.Beyond2005,zerogrowthinenergypricesisassumed.TableG.5summarizesthesetsofeconomicandfinancialparametersassumedforgenerationplanning.-OtherParametersOtherparametersconsideredingenerationplanningstudiesincludeinsuranceandtaxes.Thefactorsforinsurancecosts(0.10 percentforhydroelectricprojectsand0.25percentforallothers)arebasedonFERCguidelines.Stateandfederaltaxeswereassumedtobezeroforalltypesofpowerprojects.Thisassumptionisvalidforplanningbasedoneconomiccriteriasinceallintra-statetaxesshouldbeexcludedastransferpaymentsfromAlaska'sperspective.Thesubsequentfinancialanalysesmayrelaxthisassumptionifnon-zerostateand/orlocaltaxesorpaymentsinlieuoftaxesareiden-tified.AnnualfixedcarryingchargesrelevanttothegenerationplanninganalysisaregiveninTableG.5.G.3-GenerationPlanningResultsGenerationplanningrunsweremadeforeachoftheSusitnadevelopmentplansidentifiedinSection8.6-FormulationofSusitnaBasinDevelopmentPlans,andforsystemgenerationplanswithoutSusitnadevelopments.PlanswithoutSusitnaincludedalternativehydroandall-thermalgenerationscenarios.AminorlimitationinherentintheuseoftheOGP5modelisthatthenumberofyearsofsimulationislimitedto20years.Toovercomethis,thestudyperiodof1980to2040hasbeenbrokenintothreeseparatesegmentsforstudypurposes.Thesesegmentsarecommontoallsystemgenerationplans.G-8
firstsegmenthasbeenassumedtobefrom1980to1990.Themodelofthisimeperiodincludesallcommittedgenerationunitsandisassumedtobecommonallgenerationscenarios.Thisten-yearmodelissummarizedinTableG-8.Thistableshowsthe1980to1990systemconfigurationanddetailsoncommittedunitsandretirementsthatoccurduringtheperiod.Theendpointofthismodelbecomesthebeginningofeach1990-2010model.modelofthefirsttwotimeperiodsconsidered(1980to1990,and1990to)providesthetotalproductioncostsonayear-to-yearbasis.Thesetotalinclude,fortheperiodofmodeling,allcostsoffuelandoperationandntenanceofallgeneratingunitsincludedaspartofthesystem.Intion,thecompletedproductioncostincludestheannualizedinvestmentcostsofanyproductionplansaddedduringtheperiodofstudy.Anumberoffactorsichcontributetotheultimatecostofpowertotheconsumer,arenotincludedinthismodel.Thesearecommontoallscenariosandinclude:-Allinvestmentcoststoplantsinservicepriorto1981;Costsoftransmissionsystemsinservicebothatthetransmissionanddistributionlevel;andAdministrativecostsofutilitiesforprovidingelectricservicetothepublic.,itshouldberecognizedthattheproductioncostsmodeledrepresentonlya.portionofultimateconsumercostsandineffectareonlyaportion,albeitmajor,oftotalcosts.thirdperiod,2010to2040,wasmodeledbyassumingthatproductioncostsofowouldrecurfortheadditional30yearsto2040.Thisassumptionisievedtobereasonablegiventhelimitationsonforecastingenergyandloadrementsforthisperiod.Theadditionperiodto2040isrequiredtotakeintoaccountthebenefitderivedfromthevalueoftheadditionofahydroelectricpowerplantwhichhasausefullifeoffiftyyearsormore.Theselectionofthepreferredgenerationplanisbasedonnumerousfactors.Oneoftheseisthecostofthegenerationplan.Toprovideaconsistentmeans·ofassessing theproductioncostofagivengenerationscenarioeachproductioncosttotalhasbeenconvertedtoa1980presentworthbasis.Thepresentworthcostofanygenerationscenarioismadeupofthreecostamounts.Thefirstispresentworthcost(PWC)ofthefirsttenyearsofstudy(1981to1990),thesecondisthePWCofthescenarioassumedduring1990to2010,andthethirdisthePWCofthescenari0in2010assumedtorecurfortheperiod2010to2040.Inthiswaythelong-term(60years)PWCofeachgenerationscenarioin1980dollarscanbecompared.ThepresentworthcostofthegenerationsystemgivenbyTableG.6is$873.7millionin1980values.ThiscostiscommontoallgenerationscenariosandisaddedtoallPWCvaluesforeachgenerationscenarioduringthemodelingofthesystemintheperiodof1990to2040.G-9
GenerationscenariosanalysesincludethermalgenerationwithSusitnaBasinplans,thermalgenerationwithalternativenon-Susitnahydroplansandall-ther-malgeneration.Detailsoftheanalysisofthesethreegenerationmixesaregiveninthefollowingsections.(a)SusitnaBasinPlans(i)Base CaseMediumLoadForecastEssentiallytheSusitnaBasinplansweredevelopedfromthestudiesdescribedinSection8.Someoftheplansaresimilarinlocationandsizebutvaryinstagingconcepts.Othersareattotallydif-ferentsites.ThesevariousSusitnaplansweremodeledinthe.OGP5modelaspartoftheRailbeltsystem.ThecharacteristicsoftheSusitnaplansaresummarizedinTableG.7andtheirformulationisdescribedfullyinSection8.TheresultsoftheOGP5modelrunsassumingamediumloadforecastforalltheSusitnaplansidentifiedthroughtheproceduresoutlinedinSection8aregiveninTableG.8.Theplansdevelopedincluded800MWand1200MWcapacityplansinadditiontovariationintheseplanstodeterminetheeffectsonPWCofdelayingimplementationoftheplan,theeliminationofastageintheplan,orstagingconstructionofaparticulardamintheplan.InspectionoftheresultsgiveninTableG.8indicatesthefollowing:Thelowestpresentworthcostdevelopmentat$5850millioniseitherPlanEl.lorPlanEl.3(seeTableG.7).ThisresultshowsthatthereisnoeffectivedifferencebetweenfullpowerhousedevelopmentatWatanaandstagedpowerhousedevelopment;-Thehighestpresentworthcostdevelopmentat$6960millionisPlan1.3withDevilCanyonnotconstructed;Watana/DevilCanyon(PlanE1.1orEl.3)issuperiortoWatana/Tunnel(Plan3.1)by$680million;Watana/DevilCanyon(PlanEl.lorEl.3)remainssuperiortoWatana/Tunnel(SpecialPlan3.1)whentunnelcapitalcostsarehalved.Watana/DevilCanyonissuperiorby$380million;Watana/DevilCanyon(PlanE1.1orEl.3)issuperiortoHighDevilCanyon/Veedevelopments(PlanE2.1orPlanE2.3)byatleast$520million;ReplacementofVeeDamwithChakachamnadevelopmentlowerspre-sentworthcostofPlan2.3to$6210million.Watana/DevilCanyonremainssuperiorby$360million;G-10
-Watana/DevilCanyondevelopmentlimitedto800MW(PlanEl.4)is$140millionmorethanfull1200MWdevelopment(PlansEl.lorEl.3)butremainssuperiortotunnelschemeorHighDevilCanyon/Veeplans;.DelayingimplementationofWatana/DevilCanyonPlanEl.3byfiveyearsadverselyaffectspresentcostbyanadditional$220mi11ion;StagingpowerhouseanddamconstructionatWatana(PianEl.2)costs$180millionmorethanPlansE1.1orE1.3;andWatana/HighDevilCanyon/PortageCreek(PlanE4.1)is$200millionmorethaneitherPlanE1.1orE1.3.(ii)VariableLoadForecastAsdiscussedinSection5,themanyuncertainitiesofloadforecast-ingprovideawiderangeofpossibilitiesforfuturegenerationplanning.Themediumloadforecast(withmoderategovernmentexpen-diture)usedabovetoshowthepresentworthcostofthedevelop-mentsidentifiedthroughsitescreeningandplanformulationstepsisthoughttobethemostlikelyloadandenergyforecast.However,duetotheuncertainty associatedwiththeloadforecasting,approx-imateupperandlowerlimitstotheloadforecasthavebeendefined.Thehighforecastassumeshigheconomicgrowthandhighgovernmentexpenditurewhereasthelowerbound,orlowforecast,assumesloweconomicgrowthandlowgovernmentexpenditure.Inadditiontothesetwoforecasts,theresultsofadeterminedeffortatloadmanagementandconservationhavebeenincorporatedintoafourthloadforecast.Thisverylowforecastalsoassumeslowgovernmentexpenditureinadditiontoloweconomicgrowthwithloadmanagementandconservation.FurtherdetailsoftheseforecastsaregiveninSection5andloadforecastvaluesinfive-yearperiodsinTableG.8.TheresultsoftheOGP5analysisoftheRailbeltgenerationsystemwithSusitnaunderthesevariousloadforecastsaregiveninTableG.g.TheconclusionsthatcanbedrawnfrominspectionofTableG.gare:-Watana/DevilCanyondevelopment(PlanE1.4)hastheleastpresentworthcostat$4350millionofalldevelopmentsunderalowloadforecast;-Watana/DevilCanyonwithChakachamnaasafourthstage(modifiedPlanE1.3)hastheleastpresentworthcostof$10,050millionofalldevelopmentsunderahighloadforecast;-PlanE1.4issuperiortospecialWatana/tunnel(tunnelcosthalved)by$380millionunderalowloadforecast;G-11
PlanE1.4issuperiortoHighDevilCanyon/Vee(PlanE2.1)by$320millionunderalowloadforecast;ModifiedPlanE1.3issuperiorby$650milliontoPlanE1.3underahighloadforecast;andModifiedPlanE1.3issuperiortoHighDevilCanyon/VeewithChakachamna(modifiedPlanE2.3)by$990million.(iii)EconomicSensitivityTheWatana/DevilCanyondevelopmentknownasPlanE1.3hasbeenidentifiedasthemosteconomicdevelopmentofSusitnaalternativesunderamediumloadforecast(TableG.8).Inaddition,variationsoftheWatana/DevilCanyondevelopmenthavebeenidentifiedasthemosteconomicalunderlowandhighloadforecasts(TableG.9).Consequently,thePlanE1.3isobviouslythemostreasonabletoselectastheonetodeterminethesensitivityoftheplanstovariationsintheeconomicparameterswhicharesubjecttouncertainties.SensitivityanalyseshavebeenperformedoncriticalparametersandarebasedonPlanE1.3withamediumloadforecast.TheresultsoftheseanalysesaresummarizedinTableG.10andarediscussedbelow.BasevaluesfortheparametersassumedinOGP5modeling,particular-lywithrespecttothermalplantcosts,etc.aregiveninAppendixB.InterestRatesInthebaseplanselected(alsoinotherplans)theinterestrateassumedis3percent.Thisraterepresentsthecostofmoney,netofinflation.Variationofthisrateto5and9percenthasbeenassumedtodeterminetheeffectofinterestratevariationonthiscapitalintensivedevelopment.Theeffectofa 5percentinterestrateistolowerthepresentworthcostofPlanE1.3by$1620millionto$4230million.Thehigherrateof9percentlovlersthepresentworthcostto$2690million.-FuelCostandFuelCostEscalationRateThebaseplanhasassumedafuelcost($/millionBtu)of2.00,1.15,and4.00,fornaturalgas,coalandoilrespectively.Theeffectofreducingfuelcostsby20percentto1.60,0.92and3.20$/millionBtufornaturalgas,coalandoilrespectivelyistoreducethepresentworthcostofPlanE1.3by$590millionto$5260.Thisreductionrepresentsthelowercostassociatedwithoperatingthethermalgenerationcomponentofthesystem.Fuelcostescalationratesof3.98,2.93,and3.58percenthavebeenderivedastypicalfortheRailbeltregion(AppendixB).Theeffectofloweringthisescalationratetozeropercentforall-thermalfuelsistolowerthepresentworthcostofPlanE1.3G-12
-EconomicLifeofThermalPlantsTheeffectsofthesensitivityanalysesconductedabovewouldbethesameforwhicheverdevelopmentplanisselected;therelativerankingofthevariousSusitnaBasindevelopmentplanswouldremainessentiallyunchangedandPlanE1.3wouldstillbethemosteconomicintermsofpresentworthcostunderamediumloadforecast.to$4360million.Whencoalcostescalationaloneissetatzeropercenttheeffectismuchless,givingareductionofonly$590million.Againthefuelcostescalationrateshowsthatthehy-droelectricalternativeswouldbecomeeconomicallysuperiorifthermaloperationcostsarelowered.G-13480MW100MW50MW-ThermalPlantCapitalCostsTheeffectofareductioninthermalplantcapitalcostsby22percent,to350,2135and778$/kwfornaturalgas,coalandoilrespectively,resultsinaslightreductioninpresentworthcostofthesystem.Thereductionis$110millionandisadirectre-sultofthelowercapitalcostsofthethermalcomponentofthesystem.-HydroPlantCapitalCostsVariousuncertaintiesincapitalcostsofthehydrodevelopmentexistduetopossiblevariationsinamountsoffoundationtreat-ment,constructiondelays,etc.Totakeintoaccountsomeoftheseuncertainties,anassessmenthasbeenmadeofincreasedhydroconstructioncosts.Anincreaseinconstructioncostof10percenttoDevilCanyonresultsinanincreaseinpresentworthcostofthesystemof$360million.A50percentincreaseinbothWatanaandDevilCanyonconstructioncostsresultsina$960millionincreaseinpresentworthcost.Increasingtheeconomiclivesof thermalplantsincorporatedintothegenerationsystemwithSusitnaPlanE1.3resultsinanin-creaseofthepresentworthcostofthesystemof$250million.Thisresultwasfora50percentincreaseinthermalplantlifeandshowsthattheincreaseresultsingreateroperationalcosts.-Chakachamna:-Keetna:-Snow:AlternativeHydroGenerationPlansInSection6andAppendixC,alternativehydroelectricdevelopmentstoSusitnawereidentified.InAppendixC,thefollowingtensiteswereshowntobethemost.economicallyviableandenvironmentallyacceptablesitesoutsideoftheSusitnaBasin:
IntheOGP5analysesthesesiteswerecombinedintoappropriategroupsonthebasisofleastcostenergyandincorporatedwiththermalgenerationsourcestomeetthemediumloadforecastdefinedearlier(Section5).TheresultsoftheOGP5runsaregiveninTableG.11.-Strandline:-AllisonCreek:-Cache:-Talkeetna-2:-Browne:-Bruskasna:-Hicks:20MW8t1W50MW50MW100MW30Mlj60MW(c)ThermalGenerationScenariosThethermalgeneratingresourcesrequiredtomeetRailbeltenergyandpowerdemandscanbeidentifiedthroughtheuseofthesameproductioncostmodelasthatwhichidentifiedthemosteconomicplanofdevelopmentwithSusitnaBasinalternativesandnon-Susitnahydroalternatives.ThelowestpresentworthcostofthesystemwithalternativeSusitnahydrois$7040million.Thisrepresentsanincreaseof$1190millionoverthelowestcostSusitnadevelopmentplan(PlanE1.3)forthemediumloadfore-cast.ThisalternativehydroscenarioincludesChakachamna,KeetnaandSnowdevelopments.TheadditionofStrandlineLakeandAllisonCreektothesystemhasminimumeffectonpresentworthcost($7041million)butwouldeliminatetheneedof55MWofthermalgeneratingcapacity,thussavinganon-renewableresource.ofalternativehydroconsideredhasapresentworthThesixsitesincludedinthisplanaregiveninThemaximumdevelopmentcostof$7088million.TableG.l1.UsinginformationdevelopedinAppendixBforthermalgeneratingresourcesavailabletotheRailbeltandthefiveloadforecastsoutlinedinSection5,theOGP5programwasusedtosimulatetheoperationoftheRailbeltgeneratingsystemoverthe3D-yearstudyperiod.AsinSusitnaandnon--Susitnahydroalternatives,thelongtermpresentworthcost(in1980dollars)ofthethermalsystemwasdetermined.ThemediumloadforecastiscurrentlybelievedtobethemostlikelyloadtodevelopintheRailbeltoverthenext40years.Consequently,asbeforeforhydrodevelopments,thisforecast'formsthebasisofthemajorityofOGP5analysis.(i)MediumLoadForecast:ThethermalgeneratingplanforthemediumloadforecastispresentedinTableG.11.Twocasesweremodeledforthethermalgenerationplan.Thefirstmodelallowedtherenewalofnaturalgasturbinesattheendoftheireconomiclife;thesecondassumednorenewalsandrequiredthepermanentretirementofthenaturalgasG-14
turbinesattheendoftheirusefullives.Thispolicyaffects456MWofexistinggasturbineunits.TherationalebehindthesetworenewalpoliciesisrelatedtotheimplementationoftheFuelUseAct(FUA)whichprohibitsthebuildingofnewgeneratingunitsoper-atingonnaturalgas.TheFUAisdiscussedmorefullyinSection6.6whereitwasshownthatRailbeltutilitieswouldprobablyberestrictedtonewgasfacilitiesforpeakingapplicationsonly.Thepolicyofrenewalornon-renewalofgasturbineshasaminimaleffectonlong-termpresentworthcostofthethermalsystemmodel.ThisisclearlyshowninTableG.llwherethepresentworthcostdifferencebetweenthetwopolicies,underamediumloadforecast,isonly$20million.Thenaturalgasturbinespermanentlyretiredareinfactsimplyreplacedbypeaking-onlynaturalgasturbines.Thelong-termpresentworthcostofthethermalgeneratingsystemis$8110millionassuminggasturbinerenewals.Thesame10-yeargenerationplan(for1981-1990)appliestothethermalgeneratingscenarioasitdoesforthehydroelectricscenar-iosgivenabove.ThisperiodseestheinstallationoftheBelugacombinecycleUnitNo.8byChugachElectricAssociationandthe94MWBradleyLakehydroplantin1988.Underthemediumloadforecastthelevelofinstalledcoal-firedunitsincreasesfrom54MWin1990to900MWin2010withthefirstcoalunitadditionin1993tomeetlossofloadprobabilityrequire-ments.Themodelselects100MWcoalunitadditionsover250and500MWunits.ThisselectionisdueinparttoarelativelyslowdemandgrowthfromyeartoyearandthegenerousreservecapacityofpeakingunitsintheexistingRailbeltregion.The2010systemmixiscomprisedprimarilyofnaturalgasturbinesandcoalunits,althoughenergydispatchedismorereliantoncoalplantsoperatingatapproximately70percentplantfactor.(ii)OtherLoadForecastsSection5identifiedloadforecastswhichtookintoaccountcombina-tionsoflevelsofeconomicgrowthandgovernmentexpenditure.Theseloadforecastsalsoincludedthecaseswithloadmanagementandconservationandtheprobabilisticvariationonthemediumloadforecast.Asinthemediumforecast,thetwocasesofgasturbinerenewalornon-renewalweredetermined.HighLoadForecastThehighloadforecastrequirestheinstallationofa100MWcoal~firedplantin1990.ThisisthesameaswasdeterminedforSusitnaandnon-Susitnahydroscenariosunderthehighloadfore-cast.Thelong-termpresentworthcostofthethermalgenerationscenari0underthisloadforecastis$13,630mi11ionassumingarenewalpolicyofgasturbines.Thereisaslightbenefitof$110millionifapolicyofnon-renewalispursued.However,thehlocasescanbeassumedtobeeffectivelythesame.G-15
-LowLoadForecastThelowloadforecastrequiresapproximatelyonethirdofthecapacityadditionsasthehighloadforecast(TableG.11).Thepresentworthcostofthethermalsystemunderthelowloadfore-cast,andassumingrenewalsofgasturbineunits,is$5910million.Withnorenewals,thepresentworthcostisveryslightlyincreasedto$5920million.LoadManagementandConservationForecastThethermalgenerationplanrequiredtomeetthelowloadfore-castwithadeterminedpolicyofloadmanagementandconservationwasdevelopedusingthesameprinciplesandpracticeasfortheSusitnaplans.Aswouldbeexpectedthisforecastresultedinalowercostsystemthanthatfoundundertheunadjustedlowloadforecast.Thepresentworthcostwasfoundtobe$4930millionforthisscenario(norenewalswereassumed).-ProbabilisticLoadForecastTocompletetheanalysisofthethermalgenerationplan,themed-iumloadforecastwasoperatedundertheassumptionofaprob-abilisticloadvariation.Theeffectofassumingthisvariationtothemediumforecastresults,aswasfoundforSusitnaBasindevelopments,inanincreaseinlong-termpresentworthcost.Thepresentworthcostforthissystem(TableG.11)is$8320million.Thisassumesnogasturbinerenewalsandrepresentsanincreaseof$190millionoverthecomparablemediumloadforecastcase.(iii)SensitivityAnalysesItisimportanttoobjectivelydeterminethesensitivityofnon-Susitnaornon-renewalresourcedependentgenerationplansorchangesincostsandescalationoffuel,interestrates,construc-tioncosts,andplantlife.InterestRateSensitivityAsintheSusitnadevelopmentscenarioandtheinvestigationintothesensitivityoftheplantoeconomicparameterchanges,theassumedunderlyingescalationrateforthebasecasethermalplaniszeropercentandtheinterestrateisthreepercent.Sensi-tivityofthethermalplantochangesintheinterestrateto5and9percentwasdetermined,againassumingazeropercentesca-lationorinflationrate.TableG.12showsthechangeofthepresentworthcostfortheplanfrom$8130millionto$5170millionand$2610millionforfiveandninepercentinterestratesrespectively.G-16
IfacomparisonwastobedrawnbetweenthermalandSusitnascen-ariosstudiedunderthesensitivityanalyses,itwouldshowthatthetwoplanswouldbeeconomicallycomparable(intermsofpresentworthcost)ifinterestrateswereapproximatelyeightpercent.Toprovidereasonablecomparisonsbetweeninterestratesensitiv-ityanalysesitwasnecessarytoassumethatthegenerationsystemmixwouldbesimilarasthatdeterminedforthethreeper-centOGP5run.Ifthiswasnotthecase,thenOGP5wouldselectcheapergenerationunits,particularlynaturalgas,whichprob-ablywouldnotmeetdefinedcriteriaonsystemcomponents.-FuelCostThereductionoffuelcostsby20percentproducessignificantreductioninpresentworthcostofapproximately$1060millionto$7070million.Thisreductionisduetothelowerexpenseofsupplyingtheplantswiththenecessaryfueltopowertheunits.-FuelCostEscalationFuelcostescalationsensitivitywasassessedintwomethods.Thefirstwasassumingzeropercentescalationforallthreemajorfuelsandthesecondwastoassumezeropercentforcoalonly,withoilandnaturalgasremainingatanescalationrateof3.58and3.98percentrespectively.Inbothcasesescalationrateswereassumedtoapplybetween1980and2005andprogress-ivelydroppingtozeroin2010.Thecaseofzeropercentescalationforallfuelsshowsadra-maticreductioninpresentworthcostof$3570millionoverthebasecasethermalscenario(TableG.12).Aswouldbeexpectedforzeropercentescalationinthecostofcoal,thereductioninproductioncostislessthanfornoesca-lationincostofanyfuel.Thisreductionis,however,stillsignificantandamountstoanannualsavingsof$1210millionoverthebasecasethermalplan.-EconomicLifeofThermalPlantTheuncertaintyassociatedwiththeprobableplantlifeofin-stallationsintheRailbeltregionnaturallyraisesconcerns.Toaddresstheseconcernsthethermalplantlife,ineachcategory,wasextendedby50percent.Theplantlifethereforebecame45,45,and30yearsforcoal,gasandoilfacilitiesrespectively.Theextensionoftheeconomicliferesultsinagainincostofapproximately$280millionforthethermalgenerationscenario.G-17
-ThermalCapitalCostsCapitalcostisanotherareaofconcernwhichhasbeenaddressedinanattempttonegotiatetheuncertaintiesassociatedwithcostingworkorstructuresinremoteareas.Althoughthecostsdevelopedarebelievedtobethebestpossibleestimatesthatcanbemadeatthistime,thecostsofall-thermalplanttypeshavebeenreducedby22percent.Aswouldbeexpectedfromalogicalinspectionatthesystem,thereductionincoalplantcostsresultsincoalbecomingmoreeco-nomicallyviableasanenergyscource.Capitalcostsreductionthereforeshowsagainincoalcapacitygenerationof200MWoverthebasecasethermalplan.Thelongtermpresentworthcostisreducedto$7590million,areductionof$540millionfromthebasecase.G-18
TABLE G.1 -SALIENT fEATURES Of GENERATION PLANNING PROGRAMS
Programl Load Generat ion ----------opt 1m lzat ion--Reltability Pf-o-difcElon Av8i1-aoiIlty and
Developer Modeling Modeling Available Criterion Simulation Cost/Run
GENOP/Done by two Done by one yes LOLP or Deterministic or $500 to validate
Westinghouse external external %reserve Modified Booth -Learning Curve
programs program Baleriaux Costs
$300 -$BOO/run
PROMOD/EMA Done by one Done by one no LOLP or Modified Booth -$2,500 to validate
external external %reserve Baleriaux on TYMSHARE
program program learning Curve
Costs
$300 -$500/run
OGP/GE I)one by one Dane by one yes LDLP or Deterministic or AAI validated
external external %reserve Stochastic Columbia &Buffalo
program program Experienced
Personnel
$50 -$BOO/run
TABLEG.2-RAILBELTREGIONLOADANDENERGYfDRECASTSUSEDfORGENERATIONPLANNINGSTUDIESLOADCASELowPlusLoadManagementandLowMediumHighConservation(LES-GL)2(MES-GM)3(HES-GH)4(LES-GLAdjusted)1loadLoadloadload~MWGWhFactorMWGWhFactorMWGWhfactorMWGWhFactor198D510279062.551D279062.4510279062.4510279062.419B5560309062.858D316D62.4650357062.66953B6063.4199062D343063.2640350562.4735403062.6920509063.119956B5381D63.5795435062.3945517062.51295712062.82000755424063.8950521062.31175643D62.41670917062.62005835469064.11045570062.21380753062.3228512540'62.62010920520064.41140622D62.21635894062.4290D1593062.7~:(1)LES-GLLoweconomicgrowth/lowgovernmentexpenditurewithloadmanagementandconservation.(2)LES-GLLoweconomicgrowth/lowgovernmentexpenditure.0)MES-GMMediumeconomicgrowth/moderategovernmentexpenditure.(4)HES-GHHigheconomicgrowthlhighgovernmentexpenditure.
TABLEG.'-LOADSANDPROBABILITIESUSEDINGENERATIONPLANNINGNotes:FORECAST1PROBABILITYSETLES-LG.10LES-MG.20MES-MG.40HES-MG.20HES-HG.10LoweconomicgrowthmediumeconomicgrowthhigheconomicgrowthlowgovernmentexpendituremoderategovernmentexpenditurehighgovernmentexpenditureLES:MES:HES:LG:MG:HG:(1)
TA8lEG.4-fUELCOSTSANOESCALATIONRATESNaturalGascoalD~stI1IateBasePeriod(January1980)-Prices($/million8tu)MarketPrices$1.05$1.15$4.00Shadow(Qpportunity)Values2.001.154.00RealEscalationRates(Percentage)-ChangeCompounded(Annually)1980-19851.79%9.56%3.38%1986-19906.202.393.091991-19953.99-2.874.27Composite(average)1980-19953.982.933.581996-20053.982.933.582006-2010000
TABLEG.5-ANNUALFIXEDCARRYINGCHARGESUSEDINGENERATIDNPLANNINGMDDELProjectL1feJlype3d-Year3S-Year50-Year20-YearThermal ThermalHydroThermal(%)(%)(%)(%)ECDNOMICPARAMETERS(0%-3%)CostofMoney3.0D3.DO3.00 3.00Amortization2.1D1.650.893.72Insurance0.250.25 0.100.25TOTALS>.J)4.'9IT~b.97FINANCIALPARAMETERS(7%-10%)Non-exemptCostoffoklney10.DO10.00 10.0010.00Amortization0.610.370.091.75Insurance0.250.250.10 0.25TOTALSm:m-l'IJ:b'2"TO:T9"n:mrTax-exemptCostofMoney8.00 8.00 8.00 8.00Amortization0.880.580.172.19Insurance0.25 0.25 0.100.25TOTALS'1:'UF.lITe.rrlu:44
TABLEG.6-TENYEARBASEGENERATIONPLANMEDIUMLOADfORECASTSYSIEM(AwlToTALYEARMWMWNGOILoILCAPABILITYCommittedRetiredCOALGTGTDIESELCCHY(MW)19BO544701686514149947119B1544701686514149947198260CC54.470168652014910071983544701686520149100719845447016865201491007198514(NGGT)544561686520149993198650456168652014999319874(Coal)504561686520149989198895HY5045616865201144108419895(Coal)45456168652011441079199045456168652011441079Notes:(1)Thisfiguresvariesslightlyfromthe943.6MWreportedduetointernalcomputerrounding.
TA8LE G.7 -SUSITNA ENVIRONMENTAL DEVELOPMENT PLANS
Cwnulatlve
Stage/Incremental Data System Data
Annual
Maximum Energy
Capital Cost Earliest Reservoir Seasonal Production Plant
$Millions On-I ina full Supply Draw-Firm Avg.Factor
(1980 values)1 ~Plan Stage Construction Dete Level -ft.down-ft GWH GWH.~
E1.1 1 Watana 2225 ft 800MW
and Re-Regulation
Dam 1960 1993 2200 150 2670 3250 46
2 Devil Canyon 1470 ft
400MW 900 1996 1450 100 5520 6070 58
TOTAL SYSTEM 120~IW '2llbll"
E1.2 1 Watan'2060 ft 400MW 1570 1992 2000 100 1710 2110 60
2 Watana raise to
2225 ft 360 1995 2200 150 2670 2990 85
3 Hat ana add 400MW
capacity and
Re-Regulation Dam 230 2 1995 2200 150 2670 3250 46
4 Devil Canyon 1470 ft
400MW 900 1996 1450 100 5520 6070 58
TOTAL SYSTEM 1200MW 1ll61l"
E1.3 1 Watana 2225 ft 400MW 1740 1993 2200 150 2670 2990 85
2 Hat ana add 400MW
capacity and
Re-Regulation Dam 250 1993 2200 150 2670 3250 46
3 Devil Canyon 1470 ft
400 flH 900 1996 1450 100 5520 6070 58
TOTAL SYSTEI1 1200MW 2ll"9lf
TABLE G.7 (Continued)
Cumulative
Stage/Incremental Data System Data
Annual
Maximum Energy
Cap ital Cost Earliest Reservoir Seasonal Production Plant
$Millions On-line full Supply Draw-firm Avg.factor
(1980 values)1PlanStageConstructionDate Level -ft.down-ft.GWH GWH ~
E1.4 1 Watana 2225 ft 4DOMW 1740 1993 2200 150 2670 2990 85
2 Devil Canyon 1470 ft
400MW 900 1996 1450 100 5190 5670 81
TOTAL SYSTEM 800MW 2640
EZ.1 1 High Devil Canyon
1775 ft 800MW and
Re-Regulation Dam 1600 1994
3 1750 150 2460 3400 49
2 Vee 2350ft 400MW 1060 1997 2330 150 3870 4910 47
TOTAL SYSTEM 1200MW 266ii
E2.2 1 High Devil Canyon
1630 ft 400MW 1140 1993 3 1610 100 1770 2020 58
2 High Devil Canyon
raise dam to 177S ft
add 400MW and
Re-Regulation Dam 600 1996 1750 150 2460 3400 49
3 Vee 2350 ft 400 MW 1060 1997 2330 150 3870 4910 47
TOTAL SYSTEM 1200MW 2800
E2.3 1 High Devil Canyon
1775 ft 400MW 1390 1994 3 1750 150 2400 2760 79
2 High Devil Canyon
add 40~lW capacity
and Re-Regulation
Dam 240 1995 1750
150 2460 3400 49
3 Vee 2350 ft 400MW 1060 ,.997 2330 150 3870 4910 47
TOTAL SYSTEM 1200 2690
cumulatIve
Stage/Incremental Data System Data
Annual
Maximum Energy
Capital Cost Earliest Reservoir Seasonal Production Plant
$Millions On-line Full Supply Draw-Firm Avg.Factor
(1980 values)1Plan.Stage Construction Date Level -ft.down-ft.GWH GWH ~
E2.4 1 High Devil Canyon
17 55 ft 40()1W 1390 1994 3 1750 150 2400 2760 79
2 High Devil Canyon
add 400MW capacity
and Portage Creek
Dam 150 ft 790 1995 1750 150 3170 4080 49
3 Vee 2350 ft
40()1W 1060 1997 2330 150 4430 5540 47
TOTAL SYSTEM mrr
EJ.2 1 Watana
2225 ft 40()1W 1740 1993 2200 150 2670 2990 85
2 Watana add
400 MW capacity
and Re-Regulat ion
Dam 250 1994 2200 150 2670 3250 46
3 Watana add 5()1W
Tunnel Scheme 330MW 1500 1995 1475 4 4890 5430 53
TOTAL SYSTEM 118(}IW ~
E4.1 1 Watana
2225 fL 40()1W 1740 1995
3 2200 150 2670 2990 85
2 Watana
add 40()1W capacity
and Re-Regulation
Dam 250 1996 2200 150 2670 3250 46
3 High Devil Canyon
1470 ft 40()1W 860 1998 1450 100 4520 5280 50
4 Portage Creek
1030 ft 15()1W 650 2000 1020 50 5110 6000 51
TOTAL SYSrEM 1350 MW J'5Ulr
NOTES:
("f)-Allowing for a 3 year overlap construction period between major dams.
(2)Plan 1.2 Stage 3 is less expensive than Plan 1.3 Stage 2 due to lower mobilization costs.
(3)Assumes FERC license can be filed by June 1984,ie.2 years later than for the Watana/Oevil Canyon Plan 1.
TABLE G.B -RESULTS Of ECONOMIC ANALYSES Of SUSITNA PLANS -MEDIUM LOAD fORECAST
Sus~tna Develo~nt Plan Inc.Installed CapacIty (Aw)by total System fetal System
[},lne Dates Category in 2010 Installed Present Remarks Pertaining to
Plan Stages OGP5 Run Thermal Hydro Capacity In Worth Cos~the Susitna Basin
No.T 2 3 4 Id.No.Coal Gas 01.1 Other Susltna 2010-MW $Mill ion Development Plan
El.1 1993 2000 ----LXE7 300 426 0 144 1200 2070 5B50
E1.2 1992 1995 1997 2002 L5Y9 200 501 0 144 1200 2045 6030
E1.3 1993 1996 2000 --LBJ9 300 426 0 144 1200 2070 5B50
1993 1996 ----L7W7 500 651 0 144 BOO 2095 6960 Stage 3,Devil Canyon Dam
not constructed
199B 2001 2005 --LAD7 400 276 30 144 1200 2050 6070 Delayed implementation
schedule
E1.4 1993 2000 ----LCK5 200 726 50 144 BOO 1920 5B90 Total development limited
to BOO MW
flJdified
E2.1 1994 2000 ----LA25 400 651 60 144 BOO 2055 6620 High Devil Canyon limited
to 400 MW
E2.3 1 1993
1
9
9
6
2000 --L601 300 651 20 144 1200 2315 6370
1993 1996 ----LE07 500 651 30 144 BOO 2125 6720 Stage 3,Vee Dam,not
constructed
Modified
EZ.3 1993
1
9
9
6
2000 LEB3 300 726 220 144 1300 2690 6210 Vee dam replaced by
Chakachamna dam
3.1 1993 1996 2000 --L607 200 651 30 144 IlBO 2205 6530
Special
3.1 1993 1996 2000 --L615 200 651 30 144 IlBO 2205 6230 Capital cost of tunnel
reduced by 50 percent
E4.1 1995 1996 199B --LTZ5 200 576 30 144 1200 2150 6050 Stage 4 not constructed
~:
(1)Adjusted to incorporate cost of re-regulation dam
Remarks
Plan Stages OGP5 Run Thermal Hydro Capacity In Worth Cost the Susitna Basin
No.1 Z 3 4 Id.No.Coal Gas 011 Other Sus1tna 2010-MW $Million Development Plan
VERY LOW FORECAST 1
E1.4 1997 2005 ----L7B7 0 651 50 144 BOO 1645 3650
LOW LOAD FORECAST
E1.3 1993 1996 2000 ------------------low energy demand does not
warrant plan capacities
E1.4 1993 2002 ----LC07 0 351 40 144 BOO 1335 4350
1993 ------LAK7 200 501 BO 144 400 1325 4940 St age 2,Dev il Canyon Dam,
not constructed
E2.1 1993 2002 ----LG09 100 426 30 144 BOO 1500 4560 High Devil Canyon limited
to 400 MW
1993 -- --
--LBUl 400 501 0 144 400 1445 4B50 Stage 2,Vee Dam,not
constructed
E2.3 1993 1996 2000 -------------------low energy demand does not
warrant plan capacities
Spec ial
3.1 1993 1996 2000 --L613 0 576 20 144 780 1520 4730 Capital cost of tunnel
reduced by SO percent
3.2 1993 2002 ----L609 0 576 20 144 7BO 1520 5000 Stage 2,400 MW addition
to Watana,not constructed
HIGH LOAO FORECAST
E1.3 1993 1996 2000 --LA73 1000 951 0 144 1200 3295 106BO
Modified
2005 2E1.3 1993 1996 2000 LBV7 BOO 651 60 144 1700 3355 10050 Chakachamna hydroelectric
generating station (4BO MW)
brought on line as a fourth
stage
E2.3 1993 1996 2000 --LBV3 1300 951 90 144 1200 36B5 11720
Modified
2003 2E2.3 1993 1996 2000 LAYl 1000 876 10 144 1700 3730 11040 Chakachamna hydroelectric
generating ststion (480 MW)
brought on line as a fourth
stage
NOTE:
(1)Incorporating load management and conservation
TABLE G.10 -RESULTS OF ECONOMIC SENSITIVITY ANALYSES FOR GENERATION SCENARIO
INCORPORATING SUSITNA BASIN DEVELOPMENT PLAN E1.3 -MEDIUM FORECAST
Total Total
Installed Capacity (MW)by
System System
Installed Present
Category in 2010 Capacity Wodh
Description Parameter OGP5 Run Thermal Hydro In 2010 Cost
Parameter Varted Values Id.No.coal Gas OIl OEher Sus1tna MW $Million Remarks
Interest Rate 5%LFB5 300 426 0 144 1200 207D 4230
9%LFB7 300 426 D 144 1200 2070 2690
Fuel Cost ($million Btu,
natural gas/coal/oil)1.60/0.92/3.20 L533 100 576 20 144 1200 2040 5260 20%fuel cost reduction
Fuel Cost Escalalion (%,
natural gas/coal/oil)0/0/0 L557 0 651 30 144 1200 2025 4360 Zero escalation
3.98/0/3.58 L563 300 426 0 144 1200 2070 5590 Zero coal cost escalation
Economic life of Thermal
Plants (year,natural
gas/coal/oil)45/45/30 L585 45 367 233 144 1200 19B9 610D Economic lives increased
by 50%
Thermal Plant Capital
Cost ($/kW,natural gas/
coal/oil)350/2135/77B LEIl7 300 426 0 144 1200 2070 5740 Coal capital cost reduced
by 22?o
\1atan~/Devil Canyon Capital
Cost ($million,Walana/
Dev il Canyon)1990/1110 L,Gl 300 426 0 144 1200 2070 6210 Capital cost for nevil
Canyon Dam increased by 23%
2976/13,0 LD7,300 426 0 144 1200 2070 6B10 Capital cost for both dams
increased by 50%
Probabilistic Load Forecasl L8T,200 1476 140 144 1200 3160 6290
--
~:
(1)Alaskan cost adjustment faclor reduced from 1.8 to 1.4 (see Section B._)
(2)Excluding AFOC
TABLE G.11 -RESULTS OF ECONOMIC ANALYSES OF ALTERNATIYE GENERATION SCENARIOS
Installed Capacity (MW)by Total System lotal System
Category in 2010 Installed Present Worth
Generation Scenario OGP5 Run 1herms!Aydro Capacity in Cost -
Iype Descriplion Load forecast Id.No.Coal Gas 011 2010 (MW)($10 6 )
All Thermal No Renewals Very Low 1 LAT7 500 426 90 144 1160 4930
No Renewals Low L7El 700 300 40 144 1385 5920
With Renewals Low L2C7 600 657 30 144 1431 5910
No Renewals t-ledilJll LME1 900 801 50 144 1895 8130
With Renewals Medium U1E3 900 807 40 144 1891 8110
No Renewals High L7F7 2000 1176 50 144 3370 13520
With Renewals High L2E9 2000 576 130 144 3306 13630
No Renewals Probabilistic LOF3 1100 1176 100 144 3120 8320
Thermal Plus No Renewals Plus:Medium L7W1 600 576 70 764 2010 7080
Alternative Chakachamna (500)2_1993
Hydro KeeLna (120)-1997
No Renewals Plus:Medium LFL7 700 501 10 814 2025 7040
Chakachamna (500)-1993
Keetna (120)-1997
Snow (50)-2002
No Renewals Plus:"led tum LWP7 500 576 60 847 1983 7064
Chakachamna (500)-1993
Keetna (120)-1996
Strandline (20),
Allison Creek (8),
Snow (50)-1998
No Renewals Plus:Medium LXf1 700 426 30 847 2003 7041
Chakachamna (500)-1993
Keetna (120)-1996
Strandline (20),
Allison Creek (8),
Snow (50)-2002
No Renewals Plus:Med il.ltl L403 500 576 30 947 2053 7088
01akachamna (500)-1993
Keetna (120)-1996
Snow (50),Cache (50),
Allison Creek (8),
Talkeetna-2 (50),
Strandline (20)-2002
Notes:
(1)Incorporating load management and conservation
(2)InsLalled capacity
TABLE G.12 -RESULTS OF ECONOMIC ANALYSES FOR GENERATION SCENARIO
INCORPORATING THERMAL DEVELOPMENT PLAN -MEDIUM FORECAST
lotal System lota1
Installed Capacity (MW)Installed System
by Category in 2010 Capacity Present
Description Parameter OGP5 Run Thermal In 2010 Worth Cost
Parameter varled Value Id.No.Coal Gas ulI Hydro Total MW $Million Remarks
Interest Rate 5%LEA9 900 BOO 50 144 1895 5170
9%LEBl 900 801 50 144 1895 2610
Fuel Cost ($million Btu,
natural gas/coal/oil)1.60/0.92/3.20 L1K7 800 876 70 144 1890 7070 20%fuel cost reduction
fuel Cost Escalation (%,
natural gas/coal/oil)0/0/0 L547 0 1701 10 144 1855 4560 Zero escalation
3.98/0/3.58 L561 1100 726 10 144 1980 6920 Zero coal cost escalation
Economic Life of Thermal
Plants (year)natural
gas/coal/oil 45/45/30 L583 1145 667 51 144 2007 7850 Economic life increased
50%
Thermal Plant Capital
Cost ($/kW,natural gas/350/2135/778 LAL9 1100 726 10 144 1980 7590 Coal capital cost reduced
coal/oil)by 22%
220102005IIIIIIIIIIIIIIIHES-GHIIII------LES-GLADJUSTED20001995YEARIIFIGUREG.I,,,,,,//"/,,/,//,19901985HES-GH,HIGHECONOMICGROWTHTHIGHGOVERNMENTEXPENDITUREMES-GM'MODERATEECONOMICGROWTHTMODERATEGOVERNMENTEXPENDITURELES-GL'LOWECONOMICGROWTHTLOWGOVERNMENTEXPE~DITURELES-GLADJUSTED'LOWECONOMICGROWTHTLOWGOVERNMENTEXPENDITURETLOADMANAGEMENTANDCONSERVATIONLEGEND0'----.1.-'--'-'----.1.....1980ENERGYFORECASTSUSEDFORGENERATIONPLANNINGSTUDIES1615141312II~:I:;;:10(,!)~z09~a::wz8W(,!)>-f-()7ii::f-()W6...JW54
PPENDIXH-ENGINEERINGSTUDIESAstheprojectplanningstudiesoutlinedinSections6and7werecompleted,astartwasmadewithmoredetailedengineeringstudiesfortheselectedWatanaandDevilCanyonsites.Themajorthrustofthesestudieswastwofold:-Toselecttheappropriatedamtypeforthetwosites;-Toundertakesomepreliminarydesignoftheselecteddamtypes.Thissectionbrieflyoutlinestheresultsofthestudiestodate.AmoredetaileddescriptionwillbeincorporatedintheProjectFeasibilityReport.-DevilCanyonSiteDamTypeStudiesAmajoradvantageofanarchdamrelativetoacomparablerock/earthfillstructureisthegenerallylowercostoftheauxiliarystructures,whichcanbeincorporatedwithinthedamitselforreducedinoveralllengthcorrespondingtothereducedbasewidthoftheconcretedam.Inordertostudytherelativeeconomicsofdifferentdamtypesitwasnecessarytodevelopgeneralarrangementsofthesitesincludingthediversion,powerfacilitiesandspillways.ArepresentativearrangementwasstudiedforeachofthefollowingdamtypesattheDevilCanyonsite:- Athickconcretearchdar,];- Athinconcretearchdam;and- Arockfilldam.Noneoftheselayoutsareintendedasthefinalsitearrangement,buteachwillbesufficientlyrepresentativeofthemostsuitablearrangementasso-ciatedwitheachdamtypetoprovideanadequatebasisforcomparison.EachtypeofdamislocatedjustdownstreamofwheretheriverentersDevilCanyon,closetothecanyon'snarrowestpoint,whichistheoptimumloca-tionforalltypesofdams.Abriefdescriptionofeachdamtypeandcon-figurationisgivenbelow.(i)ThickArchDamAsshownonPlatesH.IandH.2,themainconcretedamisasinglecenterarchstructure,actingpartlyasagravitydarn,withaverticalcylindricalupstreamfaceandaslopingdownstreamfaceinclinedat1V:D.4H.Themaximumheightofthedamis635feetwithauniformcrestwidthof30feet,acrestlengthofapproximately1400feetandamaximumfoundationwidthof225feet.Thecrestelevationis1460feet.Thecenterportionofthedamisfoundedonamassiveconcretepadconstructedintheexcavatedriverbed.Thiscentralsectionincorporatesaservicespillwaywithgatedorificespillwaysdischarg-ingdownthesteeplyinclineddownstreamfaceofthedamintoasinglelargestillingbasinwithsidewallsanchoredintosolidbedrocksetbelowriverlevel,spanningthevalley.H-l
Themaindamterminatesinthrustblockshighontheabutments.Theleftabutmentthrustblockincorporatesanemergencygatedcontrolspillwaystructurewhichdischargesintoarockchannelrunningwelldownstreamandterminatingatahighlevelintherivervalley.Beyondthecontrolstructureandthrustblockalowlyingsaddleontheleftabutmentisclosedbymeansofarockfilldikefoundedonbedrock.Thepowerhousehousesfour150MWunitsandislocatedundergroundwithintherightabutment.Themulti-levelintakeisconstructedintegrallywiththedamandconnectedtothepowerhousebyverticalsteel-linedpenstocks.Theservicespillwayisdesignedtopassthe1:10,000yearroutedfloodwithlargerfloodsdischargeddownstreamviatheemergencyspi11way•(ii)ThinArchDamAsshownonPlate10,themaindamisatwo-center,doublecurvedarchstructureofsimilarheighttothethickarchdam,butwitha20footuniformcrestwidthandamaximumbasewidthof90feet.Thecrestelevationis1460feet.Thecentersectionisfoundedonaconcretepadandtheextremeupperportionofthedamterminatesinconcretethrustblockslocatedontheabutments.Themainservicespillwayislocatedontherightabutmentandconsistsofaconventionalgatedcontrolstructuredischargingdownaconcrete-linedchuteterminatinginaflipbucket.Thebucketdischargesintoanunlinedplungepoolexcavatedintheriverbedalluviumandlocatedsufficientlydownstreamtopreventunderminingofthedamandassociatedstructures.Themainspillwayissupplementedbyorificetypespillwayslocatedhighinthecenterportionofthedamwhichdischargeintoaconcrete-linedplungepoolimmediatelydownstreamofthedam.Anemergencyspillwayconsistingofafuseplugdischargingintoanunlinedrockchannelwhichterminateswelldownstream,islocatedbeyondthesaddledamonthe1eftabutment.Theconcretedamterminatesinamassivethrustblockoneachabutmentwhich,ontheleftabutment,adjoinsarockfillsaddledarn.Theserviceandauxiliaryspi11way'saredesignedtodischargethe1:10,000yearflood.Excessflowsforstormsuptotheprobablemaximumfloodwi11bedischargedthroughtheemergency1eftabutmentspillway.(iii)RockfillDamAsshownonPlate1,therockfilldamisapproximately670feethigh.Ithasacrestwidthof50feet,upstreamanddownstreamslopesof1:2.25and1:2respectively,andcontainsapproximately20millionH-2
cubicyardsofmaterial.Thecentralimperviouscoreissupportedbyadownstreamsemi-perviouszone.Thesetwozonesareprotectedup-streamanddownstreambyfilterandtransitionmaterials.Theshellsectionsareconstructedfromblastedrock.Alldamsectionsarefoundedonsoundbedrock.Externalcofferdamsarefoundedontheriverbedalluvium.Asinglespillwayconsistingofagatedcontrolstructure,chuteanddownstreamunlinedplungepoolislocatedontherightabutment.Thisisdesignedtopasswithoutdamagethe1:10,000yearroutedflood.Excesscapacityisprovidedtoallowdischargeoftheprobablemaximumfloodwithnodamagetothemaindam.ConstructionMaterialsSandandgravelforconcreteaggregatesarebelievedtobeavailableinsufficientquantitiesimmediatelyupstreamintheCheechakofanandter-races.Thegravel~ndsandsareformedfromthegraniticandmetamorphicrocksofthearea,andatthistimeitisanticipatedthattheywillbesuitablefortheproductionofaggregatesafteramoderateamountofscreeningandwashing.Materialfortherockfilldamshellwouldbeblastedrock,someofitcomingfromthesiteexcavations.Itisanticipatedthatsomeimperviousmaterialforthecoreisavailablefromthetilldepositsformingtheflatelevatedareasontheleftabutmentandthatothersuitableborrowmaterialswillbeavailableinhighlyingareaswithinthethreemileupstreamreachoftheriver;however,noneofthesedepositshaveyetbeenproven.GeneralConsiderationsThegeologyofthesiteisasdiscussedinSection7anditappearsatthisstagethattherearenogeologicalorgeotechnicalconcernsthatwouldpre-cludeanyofthedamtypesfromconsideration.Arockfilldamwouldbemoreadaptablethanaconcretearchdamtopoorerfoundationconditionsalthough,atpresent,foundationandabutmentloadingsfromthearchdamsappearwellwithinacceptablelimits.Thethickarchdamallowsfortheincorporationofamainservicespillwaychuteonthedownstreamfaceofthedamwhichdischargesintoaspillwaylocateddeepwithinthepresentriverbed.Thisspillwaycanpassroutedfloodswithareturnfrequencyoflessthan1:10,000years.Forthethinarchandrockfillalternativestheequivalentdischargecapacityhastobeprovidedseparatelythroughtheabutments.Stressesunderhydrostaticandtemperatureloadingswithinthethickarchdamaregenerallylowerthanthoseforthethinarchalternative.However,finiteelementanalysishasshownthattheadditionalmassofthedamunderseismicloadingproducesstressesofagreatermagnitudeint~lethickarchdamthaninthethinarchdam.Ifthesurfacestressesapproachthemaximumallowableataparticularsection,theremainingunderstressedareaofconcreteisgreaterforthethickarchandthefactorofsafetyfortheH-3
damiscorrespondinglyhigher.Thethinarchis,however,amoreefficientdesignandbetterutilizestheinherentpropertiesoftheconcrete.Itisdesignedaroundacceptablepredeterminedfactorsofsafetyandrequiresamuchsmallervolumeofconcretefortheactualdamstructure.Atthetimeofcompletionoflayoutsindicationswerethatthethinarchdamwouldbefeasible.Athickarchdamlayoutwascompletedtodetermineifitprovidedanyoutstandingadvantages,andincaseathinarch,inspiteofindications,shouldproveinfeasible.Itdidnotappeartohaveanyoutstandingmeritscomparedtoathinarchdamandwouldbemoreexpensiveduetothelargervolumeofconcrete.Arockfilldamconstructedtothedesigncurrentlyassumedoffersnocostsavingsrelativetothethinarchconsiderationofmoreconservativedesignsinwhichtheupstreamrockfillslopesarerevisedfrom1:2.25to1:2.75tomeetpossiblymorestringentseismicdesignrequirements.Thesecostincreaseswouldoccurinthedamitselfandinspillwayandpowerfacilitiesbecauseofthelargerbasewidthofthedam.Studieshavethereforecontinuedinanefforttoconfirmthefeasibilityofthethinarchalternative.(d)PreliminaryArchDamDesignBoththinandthickarchdamdesignswereoriginallyanalyzedbymeansofacomputerprogrambasedonfiniteelementanalysis.Resultsfromtheseanalysesindicatedsignificantlylowerstressesforthethickarchunderhydrostaticandtemperatureloadings,aswouldbeanticipated.Substan-tiallyhighertensilestresseswerefoundunderseismicloadingconditionsforbothdams,althoughsomewhathigherinthecaseofthethickarchdarn.Stressesclosetothefoundationsandabutmentsweredistortedbythefiniteelementmodelbecauseofthecoarsemeshspacingoftheselectednodes.Toproduceresultswhichcouldmorereadilybeinterpreted,itwasdecidedtousethetrialloadmethodandtheassociatedprogramArchDamStressAnalysisSystem(ADSAS)developedbytheUSBR.Theresultsofthisanalysisarepresentedinthefollowingparagraphs.Thethin,two-centerarchdamdesignislocatedapproximatelynormaltothevalley.Thereisagradualthickeningofthedamtowardstheabutments,butthetwo-centerconfigurationproducessimilarthicknessandcontactpressuresatequivalentrock/concretecontactelevationsandasymmetricaldistributionofpressuresacrossthedam.Underhydrostaticloadsnoten-sionisevidentatthedamfaces.UnderextremetemperaturedistributionasdeterminedbytheUSBRprogramHEATFLOvJ,fullreservoirconditionsbringaboutlowtensilestressesonbothfacesacrossthecrestofthedam.Theseapproachtheallowabletensilestressof150psi.Althoughanalysishasstilltobefinalizedforseismicloadings,indica-tionsarethattheconcretethinarchdamatDevilCanyonwillbestructurallyfeasible.H-4
2 -WatanaSiteDamTypeStudiesArockfilldamlayout(Plate12)hasbeenstudiedatWatanawiththedamsitedbetweenthenorthwesttrendingshearzonesofthe"Fins"andthe"Fingerbuster".ThedamisclosetothealignmentproposedbytheCorpsofEngineersandisskewedslightlytothevalleyinanorth-northwestdirection.Theapproximateheightofthedamis900feet,theupstreamanddownstreamslopesare1V:2.75Hand1V:2Hrespectively,andthevolumeisapproximately62millioncubicyards.Theassumedcrestelevationofthedamis2225feet,subjecttocompletionofreservoirleveloptimizationstudies.Forinitialstudypurposes,thespillwayhasbeenassumedtodischargedowntherightabutmentwithanintermediatestillingbasinandadownstreamstillingbasinfoundedbelowriverlevel.Two35feetdiameterdiversiontunnelsarelocatedontherightbankandan800MWundergroundpowerstationislocatedontheleftabutment.Optimizationstudiesofspillway,diversionandpowerplantfacilitiesarecontinuing.ConstructionMaterialsAtthistimeitisassumedthat50percentoftherockfillfortheshellmaterialforthedamwillbeblastedrock,asmallproportionofwhichwillbeobtainedfromsiteexcavations;theremainderwillconsistofblastedrockfromborrowareas.Theremaining50percentwillbegravelmaterialsobtainedfromthedownstreamalluvialriverbeddeposits.GravelsforfilterzonesareavailablefromalluvialdepositsinTsusenaCreek.Corematerialisavailabdefromglacialtillslocatedapproximatelythreemilesupstreamabovetherightsideoftherivervalley.Thismaterialwillrequireverylittleprocessing.)GeneralConsiderationsAsanalternativetotherockfilldam,athree-centerconcretethinarchhasbeenconsidered,andlayoutsareshownonPlatesH.3andH.4.Thevolumeofthedamis8.25millioncubicyardswithadditionalconcreterequiredfortheabutmentthrustblocks.Theoverallcostofconcretewillbeapproximately$1,300millionascomparedto$950millionfortheupperlimitcostestimateforfillwithintherockfilldam.Althoughwaterpassageswillbeshorterforfacilitiesassociatedwiththeconcretedam,itisanticipatedthatthesewillbeoffsetbysavingsinthespillwayexcavationassociatedwiththerockfilldamwhereexcavatedmaterialcanbeutilizedwithinthedam.TheoverallcostsforbothtypesofdamandtheirassociatedfacilitieswillbeevaluatedfurtherintheProjectFeasibilityReport.Inthemeantime,studyoflayoutsassociatedwiththerockfilldamhasproceeded.PreliminaryDamDesignAsectionhasbeententativelyestablishedforarockfilldamwithanearverticalimperviouscore(Plate12).Atthistime,nostabilityanalyseshavebeenconductedonthedam,butthesectionisconservativelybasedonH-5
Acres'pastexperienceandongeneralexperiencethroughouttheworldconcerningsimilardamsizesandlocationsofsimilarseismicactivity.Thereisapossibilitythatfurtheranalysiswillleadtoareduction.insizeofthedam.Thecrestwidthofthedamis80feet,theupstreamslopeisIV:2.75HandthedownstreamslopeisIV:2H.Thecoreiscomposedofmaterialsfromthefinetilldepositsandtheshellispresentlytobeconstructedofblastedrockfromsiteexcavationsandfromborrowandgravelmaterialtakenfromtheriverbed.H-6
,CENTR"L.ANGLA(DECO.)'»Sq"JJ)5KARESOURC·UHR~R~USDart:roent0theInteriOr.,ep/PLATEHIL-/DEvlLCANYONARCHGI<AVITYDAMSCHEMEPLANANDSE.CTIONSRI~-440'R"&20'RI·40o!'RI,,_~OOIk'I..51400'/,~.--,--,~CH.APP.APPj\""............'-xREVISIONSAR.C~·GRAVITYDAMGEOME.TRY\~"S'E.I~:"IC.E.SPILL.WA'(-OR-PICE.'20'·0.'ZO'-ODOWN~IRE.AME.LEVATIONOFDAM----\\t--2'RC!;,,'-".~'"~"'~O~'----"-------...Jl!IOj•IRWL.EL.14'50~~-"':~~~:-&-S-_~IO.",~o'------.-J~.500I~OI-1200IIIIIIL~Z11000~":>III1000JIII900.!I20200'·0GROUT.c,uIllTAIN·eoTTOMciNEI~OORIGHT~ANtLTt-I~U$TP-tLOCl(,1506-1400I!>GO.+1'7.~"'~t-III1100-IIIlL~1000Z0I-4"100>IIIJIII600100-·~-500-.~I/JrOO-------..~0g(f"-uJoARRANGEMENTGENERAL/II1~/'/...uJ//'/~\,0°-HQUS:Bl..OCI(."'1--,'fJfNING,.//I/00::>/I/,,_/I,'-,._\",00./\1!>15JI/J//~/,rv"O/-'til'J~:JI::;//I//~J:>,<9~/'<Jl/I\,I....')/J/IA-I<)I~Ill!II-<f)a.::>'\J\\\\\"\/Fl-OW\\/r\"
"-SERvIC.e.5PlLLNAyUt-JITOPF=T1t-JGGIOtOUNDSURFACE.CONcRE.TELlt-JI"'G-'21Tf.·fJoC..POWE.RFACILITIESPi<OFILE.STEE.1..L1t-JE.RCOUPLING_~-~/'IJI------'''-II:,;;:'/'~_~ORIGINAI..-~""-LNORMAI..MA>C..w:L.E.L1450'EL..14SS·IZ>OO-800-900-I-uJWlL~''200-Zoi=1100-~<?OW'NST~CO",.u.o.........(TOBE~VE.O)/CONSOLIC)O.'TIO....GR.OUTING-""RELIEFDQ.AI"'lS·4':;>,A..g~oc/cO~VE.RSIONOLJTLE,TS,0'.10'EL.1'2.&0'-Ai:iiAT1DNOFFSE.T--GQOUTC.uRi.to.INEL.1._~·IO',GO'PLATEH21..ALASKAPOWERAUTHORITYSUSITNAHVDROELECTRICPROJECT~'YORIGINAl..GQOUt-JO5URFA,GI>},./STOPLOGGUIDESDEVILCANYONARGI-lGRAVITYDAMSC~EME5E.CTIONS~""-QJ,"~-I/"-,'"\ROCK.eeL-,S/SE.CTION5-5----_<000'APPl<OX.........r------~.CONSOLIDATION]GROUTINGRELIE.FOQ.AI"'lS-4"OIA.AEVISIQH5SECTIONTf-lRLJDIVERSIUNTUNNE.LEL.14IQO'TOPa'>a:lCKFII..I..D'KE.---<_~~U~~~~ND\EME.R<iJ!.>,jC'r:>PILLWA"(p-E5UTME.NT~iDATE.---.-----------1--_-¥-_.~------~-------,---+-+-I--I~~_~~I-~-,-.-D-E-C--1-9-8-1--+.c.=~":":":=------r=:::-IQt.AlP.APP.ACRlSAMERICANIHCORPORATfDCONCRETE.l..INING~'TI-lk..1400-T>JRU5TP.>LOCI<.5CALE.O.~~~'~OO~iiiiiiiiiiii~2COFeeTi:!SECTIONA-A:fzoii1!>50~wI-1500-~1450STOPLOGGUICE'S'_a__·'500-900-1'200-800-1100-I!>OO-,000-,400900-aoo-,!!lCXl-,400-1100-,000-1'200~1500-I-::llJ.;!:Zo~,.uJ-luJ900-1100-1000/'\\\'.\\''\\MO."TWI..,IcL.9.'2.S,'L--.J~~CDNC.~TE.WNIN(iDOWW5T~H1OFAU)ll.IL."A.~DAMSECTIONATiNE.lRPROFILE..OFEMEQGECYSPILLWAY-II,'!--REL-'E.~~"-40'''',I/,!~(-GROUTculCTA.IN..ACO...,CSZe.TELININGA.,5E.ci10NA,SPILLWAYAQCH-GRAVI,YDAMLAVOU,900-soo-1100-~'000-;!:zo~WJW1500-I-UI,400-W~h?zI~OO-Cl~~''ZOO-W-luJ1100-
Z300PLATEH3WATANAARCHDAMGEOMETRYI22.15~S.651502.210033.0S454S1950S2..5454'-(pISOOZ9.037374180031.041.544.:s11#5029.040.541TABLEOFARCHANGLESGEOMETRYTYPICALARCHSECTIONCENTRA.L.$EGMENT/l/A.omDE.C.19811----+"'""-------~--------+-+-I--Ii.'V1_'LrJ~I-o-~-..-~-=.~-'---''----f=;;;;;;-;;;:---r.=lI-:D::::AT=E--l';='1------~-'-;;;:REV;:;IS:::,DHS=------L--+:at::-.+-APP-.f-:.APP--:-F,.A~AMERi"cANi;CoRpQRATEo+.-.-o,-""------f'....·uvNOTES:I.)'PCC'INDICATESpOI~TOFCHAN6EOOFCURVATURE.2.}'c:'INDICA-TE.SCEN~OFE><.TAAPOSARCH.•3.1'I'INDICA.TEOSCEONT~OFINTRADOSA.RCI-\.4.)THE:SUBSCRIPT'0'INDICo'Te:SOUT!P\SEGMENT.e.)THESUBSC.RIPT'c'INDICATEOsCENTRAl.SEGMEONT.(".)THESUeScR.IPT'I.:'INDICA.TESI.E.PTSIO.OFARcHl.OOKINGUI'STREOAM.7.)THEOSUB.SCRIPT'R'INDICA.T!SRIGHTSlOEofARCHl.OOKINGUPSTReAM.6.1THRUSTBl.OCK5AREONOTSHOWN.9.}CONTOURI.INEOSsHOWGROUNDSURPACi::GENERALARRANGEMENT,THRUST,el.OCKl'f.C.S_---?PCC4:------A~~~?I'Cc.~pU::z.pCC12100--22002000-1900IhOO
------THRUST&1.0CI<..emDEC.1981WATANAARCHDAMGEOMETRYPLATEH4IliumII--~-uL-s~-T5_NK_A_A_H-~_~-R-~-E-~-~-cA_TR-~-:_H_p_~-OR~JI_~_~--ISOUNDROCKSURFACE.GROUNDSURFACEDOWNSTRE.AMFACEOFABUTMENT"l200(NOTDEVELOPED)"l000EL.2215'EL./3",0'LC2.•3300'lACRO~~VAI.I.E.Y)340032003000EXTRADOSFACECENTERLINE2200240021D002.600DISTANCE(FT.)INTRADOSFACECENTERLINE16002000IIDOOR,»<.IS0 •4050'.,.I---I'-c-''I------~-==:=_----~-_+:_If_+__+-'',....~.:~~~::~+_-----___J:>DATEREVISIONlACRESAM::R1CANINCORPORATEDPROJECTPROFILEOFDAMLOOKINGUPSTREAM1400E)(CAVATIONLINE.(DOWNSTREAMFAce01"ABUTMENT)---~--#----LINEOFINTRADOSCENTERSLINEOFEXTRADOSCENTERSFORCENT~LSEGMENTS01"INTI"i'OOS"::'>-<::::-=--'-iFa~II.-\NE.E\...2215'=1350SECTIONSALONGPLANESOFCENTERS-....IIIIl)'"..."'i00'"iii-\0III.J'...-s'"0....~1086.5848'2HiI-''"~6>002UI1055.9139'uZ~800108(o."'i011'ltln10001367.500U:1734-7se~DICE120025002300----2100~~1900°2CE-"988.189107'(NOTTOSCALe)z02200~:>1700III--lW2100150013001400uJJ«~zwoo01200l-lLt-""0III<Il62400~~,1000<Ii-1\I...'"0...'"Oliii22000")000....NI-'~Z2000~~OO0~uJ>'"w2"'iE"IIJ1800~"100w20'0175'SESIIIDOO200iDEE\...1360'140007E1200
APPENDIXI -ENVIRONMENTALSTUDIES"Whileperforminganenvironmentalreviewofthevariousdevelopmentoptions,'withintheSusitnaBasin,Acres'environmentalsubconsultant,TES,preparedtworeportsentitled"PreliminaryEnvironmentalAssessmentofTunnelAlternatives",and"EnvironmentalConsiderationsofAlternativeHydroe1ectricDevelopmentSchemesfortheUpperSusitnaBasin".Thesereportsassubmitted,arecontainedinthisAppendix.1.1-SummaryThesereports,augmentedbyadditionalinformationthatbecameavailablesubsequenttotheirpreparation,formedthebasisofthecomparisonoftheDevilCanyonDamwiththetunnelalternativeandthereachbyreachcomparisonofWatana/DevilCanyonversusHighDevilCanyon/Veedevelopmentplans.,TheenvironmentalassessmentsofthermaldevelopmentsandofalternativehydroelectricdevelopmentsoutsideoftheSusitnaBasinaregiveninAppendixBandC,respectively.(alDevilCanyonDamversusTunnelAlternative(ilEnvironmentalComparisonTheenvironmentalcomparisonofthetwoschemesissummarizedinTableB.1.Overall,thetunnelschemeis'judgedtobesuperiorbecause:'-Itoffersthepotentialforenhancinganadromousfishpopulationsdownstreamofthere-regulationdamduetothemoreuniform'flowdistributionthatwillbeachievedinthisreach.-Itinundates13mileslessofresidentfisherieshabitatinriverandmajortributaries.-Ithasalowerimpactonwildl,ifehabitatduetothesma11erinundationofhabitatbythere-regulationdam.-Ithasalowerpotentialforinundatingarcheologicalsitesduetothesmallerreservoirinvolved.-ItwouldpreservemanyoTthecharacteristicsoftheDevilCanyongorge,whichisconsideredtobeanaestheticandrecreationalresource.(ii)Socia1ComparisonTable1.2summarizestheevaluationintermsofthesocialcriteriaofthetwoschemes.Intermsofimpactonstateandlocaleconomicsandrisksduetoseismicexposure,thetwoschemesareratedequally.However,thedamschemehas,duetoitshigherenergyyield,morepotentialfordisplacingnonrenewableenergyresourcesandthereforescoresaslightoverallplusintermsofthesocialevaluationcriteria.I-I
Amajorfactortobeconsideredincomparingthetwodevelopmentplansisthepotentialeffectsoncaribouintheregion.Itisjudgedthattheincreasedlengthofriverflooded,especiallyupstreamfromtheVeedamsite,wouldresultintheHighDevilCanyon-VeeplancreatingagreaterpotentialdiversionoftheNelchinaherd'srange.Inaddition,alargerareaofcaribourangewouldbedirectlyinundatedby'theVeereservoir.TheareafloodedbytheVeereservo'irisalsoconsideredimportanttosomekeyfurbearers,particularlyredfox.InacomparisonofthisareawiththeWatanaCreekareathatwouldbeinundatedwiththeWatana-DevilCanyonscheme,theareaupstreamofVeeisjudgedtobemoreimportantforfurbearers.1-2
Aspreviouslymentioned,betweenDevilCanyonandtheOshetnaRivertheSusitnaRiverisconfinedtoarelativelysteeprivervalley.Alongthesevalleyslopesarehabitatsimportanttobirdsandblackbears.SincetheWatanareservoirwouldfloodtheriversectionbetweentheWatanaDarnsiteandtheOshetnaRivertoahigherelevationthanwouldtheHighDevilCanyonreservoir(2200feetascomparedto1750feet),theHighDevilCanyon-Veeplanwouldretaintheintegrityofmoreofthisrivervalleyslopehabitat.Fromthearcheologicalstudiesdonetodate,theretendstobeanincreaseinsiteintensityasoneprogressestowardsthenortheastsectionoftheUpperSusitnaBasin.TheHighDevilCanyon-Veeplanwouldresultinmoreextensiveinundationandincreasedaccesstothenortheasterlysectionofthebasin.Thisplanisthereforejudgedtohaveagreaterpotentialfordirectlyorindirectlyaffectingarcheologicalsites.DuetothewildernessnatureoftheUpperSusitnaBasin,thecreationofincreasedaccessassociatedwithprojectdevelopmentcouldhaveasignificantinfluenceonfutureusesandmanagementofthearea.TheHighDevilCanyon-VeeplanwouldinvolvetheconstructionofadamattheVeesiteandthecreationofareservoirinthemorenortheasterlysectionofthebasin.ThisplanwouldthuscreateinherentaccesstomorewildernessthanwouldtheWatana-Devi1Canyonscheme.Sinceitiseasiertoextendaccessthantolimitit,inherentaccessrequirementsareconsidereddetrimental;theWatana-Devi1Canyonschemeisjudgedtobemoreacceptableinthisregard.Exceptfortheincreasedlossofrivervalley,bird,andblackbearhabitat,theWatana-Devi1CanyondevelopmentplanisjudgedtobemoreenvironmentallyacceptablethantheHighDevilCanyon-Vee·p1an.AlthoughtheWatana-Devi1CanyonplanisconsideredtobethemoreenvironmentallycompatibleUpperSusitnadevelopmentplan,theactualdegreeofacceptabilityisaquestionbeingaddressedaspartofongoingstudies.(ii)SocialComparisonTableB.2summarizestheevaluationintermsofthesocialcriteria.Asinthecaseofthedamversustunnelcomparison,theWatana-DevilCanyonplanisjudgedtoh~veaslightadvantageovertheHighDevilCanyon-Veeplan.Thisisbecauseofitsgreaterpotentialfordisplacingnonrenewableresources.1.2-TESReportReportspreparedbyTESontheenvironmentalassessmentoftheDevilCanyonDarnversustheTunnelalternativeandWatana/DevilCanyonversusHighDevilCanyon/Veedevelopmentplansaregivenintheirentiretybelow.1-3
ALASKAPOWERAUTHORITYSUSITNAHYDROELECTRICPROJECT.oPRELIMINARYENVIRONMENTALASSESSMENTOFTUNNELALTERNATIVESbyTerrestrialEnvironmentalSpecialists,Inc.Phoenix,NewYorkforAcresAmericanIncorporatedBuffalo,NewYorkDecember15,19BO
TABLEOFCONTENTSPage1 -INTRODUCTION..............................................12 -COMPARISONOFTUNNELALTERNATIVES................•.•.......32.1.Scheme1........................................32.2Scheme2........................................32.3Scheme3........................................32.4Scheme4..........52.5LocationofDevilsCanyonPowerhouse............52.6DisposalofTunnelMuck.........................63 -COMPARISONOFSCHEME3WITHCORPSOFENGINEERS'SCHEME....8APPENDIXA-DESCRIPTIONSOFTUNNELSCHEMESAPPENDIXB-AMENDEDDESCRIPTIONOFTUNNELSCHEME4J1./
1 -INTROOUCTIONInresponsetoarequestbyAcresAmerican,Inc.forinputintoSubtask6.02ofth.eSusitnaHydroelectricProjectfeasibilitystudy,TerrestrialEnvironmentalSpecialists,Inc.(TES)didapreliminaryassessmentoftunnelalternatives.,Theobjectivesofthisassessmentwere:(1)tocompareenvironmentalaspectsoffouralternativetunnelschemes;(2)tocomparethebesttunnelscheme,asselectedbyAcres,withthetwo-damscheme(WatanaandDevilsCanyon)proposedby.theU.S.ArmyCorpsofEngineers;(3)tocomparetworevisedlocationsforthedownstreampowerhouse;and(4)tocommentonalternativemethodsofdisposaloftunnelmuck,therockremovedtocreateatunnel.TheenvironmentalassessmentwasbasedonboththeprojectdescriptionsinaletterdatedOctober29,1980,fromAcrestoTES,asamendedbyaletterdatedDecember11,1980,andonconversationsbetweenrepresentativesofthesefirms.Copiesoftheselettersmaybefoundintheappendicestothisreport.Atthetimethisassessmentwasperformedcompleteinformationwasnotavailableonthevarioustunnelschemesunderconsideration.Therefore,TESviewsthisassessmentasonlyapreliminarystudy.OneassumptionmadebyTES,andconfirmedbyAcres,isthatthedam,poolelevation,andpoollevelfluctuationsofWatanaareasdescribedbytheCorpsofEngineersandwouldnotdifferamongthefiveschemes.If,onthecontrary,anyofthetunnelschemesincreasetheprobabilitythatthepoollevelatWatanamaybelowerthanthatproposedbytheCorpsorifaparticularschememaymoderatethepoolfluctuations,thentheenvironmentalassessmentofthetunnelschemesmay,inturn,beaffected.1.I
ItisrecognizedthatanenvironmentalassessmentforrankingalternativeschemeSmustincludesomesubjectivevaluejudgements.Agivenschememaybepreferablefromthestandpointofoneenvironmentaldiscipline(e.g.fisheries)whereasanotherschememaybebetterfromanotheraspect(e.g.terrestrial·ecologyoraesthetics).To-recommendanyoneschemeoveranotherinvolvesthedifficulttaskofmakingtrade-offsamongtheenvironmental'disciplines.Suchtrade-offsarelikelytobecontroversial.2
2 -COMPARISONOFTUNNELALTERNATIVES2.1Scheme1Theenvironmentalimpactsassociatedwiththistunnelschemearelikelytobegreaterthanthoseofatleastoneofthe.othertunnelschemesevaluated(i.e.Scheme3).Themaincriterionforthisassessmentistheadverseeffects,particularlyonfisheriesandrecreation,ofthevariabledownstreamflows(4000-14000cfsdaily)createdbytheDevilsCanyonpowerhousepeakingoperation.·Othernegativeimpactswouldresultfromconstructionofboththere-regulationdamandarelativelylongtunnel.TunnelimpactsaresimilartothoseofSchemes2and4andincludedisturbanceofSusitnatributariesasaresultoftunnelaccessandthepotentialproblemsassociatedwithdisposalofarelativelylargevolumeoftunnelmuck.2.2Scheme2LikeSchemeI,thisschemeinvolvesadverseenvironmentalimpactsassociatedwithvariabledownstreamflowscausedbypeakingoperationattheDevilsCanyonpowerhouse(4000-14000cfs).Withoutthere-regulationdam,however,lesslandwouldbeinundatedandtheimpactsassociatedwithconstructionofthisrelativelysmalldamwouldbeavoided,althoughflowfluctuationsaboveDevilsCanyonwouldbemoresevere.LikeScheme1too,thelongtunnelproposedherewillhavenegativeconsequences,includingdisturbanceoftributariesfortunnelaccessandthepotentialproblemsconnectedwithtunnelmuckdisposal.2.3Scheme3Theoverallenvironmentalimpactofthisschemeisconsideredlessthanthatrelatedtothetwopreviousschemes,andalsolessthanthatrelatedtothefourthschemeasamended(AppendixB).Therelativelyconstantdischarge(aboutB300-8900cfs)fromtheDevilsCanyonpowerhouseisdesirableformaintainingdownstreamfishhabitatandrecreationalpotential.Sinceitmayallowanadromousfishaccessto3.I
apreviouslyinaccessibleIS-milestretchoftheSusitnaRiver,Scheme3could,infact,offerarareopportunityforenhancementofthefisheriesresource.Thenewlyavailablesectionofrivercouldperhapsbeactivelymanagedtocreateorimprovespawninghabitatforsalmon.Thismitigationpotentialisdependentuponthelocationofthedownstreampowerhouse(aboveorbelowthepresentrapids)andthedeterminationofwhetherprojectflowsthroughDevilsCanyonwillstillconstituteabarriertofishpassage.Thedataneededforthisdeterminationarenotyetavailable.Acompensationflowreleaseof1000cfsatthere-regulationdamisnotthesameas1000cfsattheWatanadam.Becausefewertributarieswillaugmentthecompensationflowunderthisre-regulationscheme,thecompensationflowwillneedtobeslightlygreaterthanwiththeotherschemestoresultintheequivalentflowatDevilsCanyon.Compensationflowshouldbesufficienttomaintainacertaindegreeofriverinecharacter,andthusshouldbekepttoamaximumevenintheabsenceofasalmonfishery.Ofcourse,iftheviabilityofatunnelschemeisjeopardized,theimpactsofthealternativeschememustbecomparedtotheimpactsofalessercompensationflow.Aswithanyofthetunnelschemes,thewildlifehabitatinthestretchofriverbypassedbythetunnelmightimprovetemporarilybecauseofanincreaseinriparianzonevegetation.WithScheme3,however,thisstretchofriverisshorterthanwiththeothertunnelschemes;soasmallerareawouldbenefit.Thewildlifehabitatdownstream·ofDevilsCanyonpowerhousemaywellbenefitfromtheflowfromthehydroelectricproject,regardlessofthetunnelschemechosen.Theimprovementstothathabitatmaybesomewhatgreater,though,withtheconstantflowsallowedinScheme3thanwiththevariableflowsresultingfrompeakingintheothertunnelschemes.Oneenvironmentaldisadvantageofthisschemecomparedtotheothersisthelargerareatobeinundatedbythere-regulationreservoir.Thisareaincludesknownarcheologicalsitesinadditiontowildlifehabitat.Nevertheless,itisfeltthatthisdi~advantageisoffsetbythemorepositiveenvironmentalfactorsassociatedwithconstantdischargefromtheDevilsCanyonpowerhouse.4['IIIII·.'I,.IIIII,1.,1apreviouslyinaccessibleIS-milestretchoftheSusitnaRiver,Scheme3could,infact,offerarareopportunityforenhancementofthefisheriesresource.Thenewlyavailablesectionofrivercouldperhapsbeactivelymanagedtocreateorimprovespawninghabitatforsalmon.Thismitigationpotentialisdependentuponthelocationofthedownstreampowerhouse(aboveorbelowthepresentrapids)andthedeterminationofwhetherprojectflowsthroughDevilsCanyonwillstillconstituteabarriertofishpassage.Thedataneededforthisdeterminationarenotyetavailable.Acompensationflowreleaseof1000cfsatthere-regulationdamisnotthesameas1000cfsattheWatanadam.Becausefewertributarieswillaugmentthecompensationflowunderthisre-regulationscheme,thecompensationflowwillneedtobeslightlygreaterthanwiththeotherschemestoresultintheequivalentflowatDevilsCanyon.Compensationflowshouldbesufficienttomaintainacertaindegreeofriverinecharacter,andthusshouldbekepttoamaximumevenintheabsenceofasalmonfishery.Ofcourse,iftheviabilityofatunnelschemeisjeopardized,theimpactsofthealternativeschememustbecomparedtotheimpactsofalessercompensationflow.Aswithanyofthetunnelschemes,thewildlifehabitatinthestretchofriverbypassedbythetunnelmightimprovetemporarilybecauseofanincreaseinriparianzonevegetation.WithScheme3,however,thisstretchofriverisshorterthanwiththeothertunnelschemes;soasmallerareawouldbenefit.Thewildlifehabitatdownstream·ofDevilsCanyonpowerhousemaywellbenefitfromtheflowfromthehydroelectricproject,regardlessofthetunnelschemechosen.Theimprovementstothathabitatmaybesomewhatgreater,though,withtheconstantflowsallowedinScheme3thanwiththevariableflowsresultingfrompeakingintheothertunnelschemes.Oneenvironmentaldisadvantageofthisschemecomparedtotheothersisthelargerareatobeinundatedbythere-regulationreservoir.Thisareaincludesknownarcheologicalsitesinadditiontowildlifehabitat.Nevertheless,itisfeltthatthisdi~advantageisoffsetbythemorepositiveenvironmentalfactorsassociatedwithconstantdischargefromtheDevilsCanyonpowerhouse.4
2.4Scheme4Scheme4,asoriginallydescribed(AppendixA),wasdeterminedtobeenvironmentally·superiortotheothertunnelschemes,becauseofconstantdownstreamflowscombinedwiththelackofalowerreservoir.However,Acres'analysisdeterminedthatthisbaseloadoperationismostlikelyincapableofsupplyingthepeakenergydemand..Scheme4,asamended(AppendixB),isapeakingoperationatWatanawithbaseloadoperationatthetunnel.SincethenetdailyfluctuationsinflowbelowDevilsCanyonwouldbeconsiderable(intheorderof4000-13000cfs),theamendedScheme4wasjudgedaslessdesirablethanScheme3fromanenvironmentalstandpoint.AlthoughScheme4wouldavoidtheimpactsassociatedwiththelowerdamanditsimpoundment·(asplannedunderScheme3),theadverseimpactsthatwouldresultfromfluctuatingdownstreamflowsareconsideredtobeanoverridingfactor.Another,lesssignificantdisadvantageofScheme4(andsharedbySchemes1and2)incontrasttoScheme3isthelongertunnellengthplannedfortheformerand,perhaps,theproposedlocationofthetunnelonthenorthsideoftheriver.Thesiteschosenfordisposaloftunnelmuckandfortherequiredaccessroadsinanyoftheseschemes(asyetundetermined)willfurtherinfluencethiscomparison.2.5LocationofDevilsCanyonPowerhouseAlternativelocationsfortheDevilsCanyonpowerhousehavebeenproposed.Theseconsistofanupstreamlocationabqut5milesabovetheproposedCorpsofEngineersdamsiteandadownstreamlocationabout1.5milesbelowPortageCreek,asalternativestothesiteillustratedinAppendixA.ThemajorenvironmentalconsiderationisthatapowerhouseupstreamofDevilsCanyonwouldpreservemuchoftheaestheticvalueofthecanyon.Inaddition,theshortertunnelwouldconfineconstructionactivitiestoasmallerareaandmayresultinslightlylessgrounddisturbance,particularlyiftherearefeweraccesspoints,aswellasasmallermuckdispos~lproblem.Adownstreampowerhouselocation,ontheotherhand,mightcreatea5~!
mitigationopportunitybyopeningupalongerstretchofriverthatperhapscouldbemanagedtocreatesalmonspawninghabitat.Untillarge-scaleaerialphotographsandcross-sectionaldataonthecanyonhavebeenreceivedandanalyzed,adeterminationcannotbemadeastowhetherprojectflowsthroughthecanyonwillstillconstituteabarriertofishpassage.Ourprimaryresponsibilityistoavoid,oratleasttominimize,adverseimpactstotheenvironment,anditmusttakeprecedenceoverourdesiretoenhanceorexpandaresource.Itisouropinionthatlosingaresource(theaestheticvalueoftheDevilsCanyonrapids)isworsethanlosingapossiblemitigationopportunity.Itisnotyetknownifthisopportunityevenexists.Furthermore,therearealwaysothermeansbywhichtoenhancethefishery,althoughnotnecessarilysoconvenientlyassociatedwiththehydroelectricproject.Thus,atthistimetheupstreampowerhouselocationispreferred.2.6DisposalofTunnel.MuckThereareanumberofoptionstobeconsideredfordisposaloftherockremovedincreatingthetunnel.Theseinclude:stockpilingthematerialforuseinaccessroadrepair,constructionofthere-regulationdam,orstabilizationofthereservoirshoreline;disposalinWatanareservoir;dikeconstruction;pile,cover,andseed;anddisposalinaravineorotherconvenientlocation.Itisunlikelythatthemostenvironmentallyacceptableoptionwillalsobethemosteconomical.Becausemanyunknownfactorsnowexist,afirmrecommendationcannotbemadewithoutfurtherevaluation.Itisquitelikely,however,thatacombinationofdisposalmethodswillbethebestsolution.Stockpilingatleastsomeofthematerialforaccessroadrepairsisenvironmentallyacceptable,providedasuitablelocationisselectedforthestockpile.Perhapsthematerialcouldbeutilizedforconstructionofanyoftheaccessroadspursortemporaryroadsthatarenotalreadycompletedatthetimethetunnelisdug.6
Anotheracceptablesolutionmightbetostockpilethematerialforuseinconstructionofthere-regulationdam.Thisrockcouldalsobea..potentialsourceofmaterialforstabilizationofthereservoirshorelineifrequired.Aswiththepreviousoption,anenvironmentallyacceptablelocationofthestockpilewouldberequired.DisposalofthematerialinWatanaReservoirmightalsobeenvironmentallyacceptable.Considerationshouldbegiventothefeasibilityofusingthematerialintheconstructionofanyimpoundmentcontrolstructuressuchasdikes.Asmallamountoftunnelmuckcouldpossiblyalsobeusedforstream.habitatdevelopment.Withanyoftheseoptions,thepossibletoxicityofmineralsexposedto.thewatershouldbefirstdeterminedbyassay,ifthereisanyreasontosuspecttheoccurrenceofsuchminerals.Topile,cover,andseedthematerialisworthyoffurtherconsideration,andwouldrequireproperplanning.Forexample,borrowareasusedindamconstructioncouldperhapsberestoredtooriginalcontourbythismethod..Thesourceofsoilforcoverisamajorconsideration,asearthshouldonlybetakenfromanareaslatedforfuturedisturbanceorinundation.Iftruckingsoilfromthereservoirareaisdeterminedtobefeasible,itmightalsobeworthwhiletotransportaportionofthemuckbackfordisposalinthereservoirarea.Themosteconomicalsolutionmightbetofillaravinewiththematerialortodisposeofitinanotherconvenientlocation.Unlessthechosendisposalsitewilleventuallybeinundated,however,suchanarrangementisenvironmentallyunacceptable,especiallysincebetteroptionsareobviouslyavailable.7
I3 -COMPARISONOFTUNNELSCHEME3WITHCORPSOFENGINEERS'SCHEMEScheme3emergedassuperiorinAcres'preliminaryeconomicandtechnicalscreening.AfteramendmentofScheme4,Scheme3wasalsoconsideredtobethebestschemefromanenvironmentalstandpoint.Therefore,Scheme3istobecomparedwiththetwo-damschemeproposedbytheU.S.ArmyCorpsofEngineers.FurtheranalysiswillbeinorderaftercompletedetailsareavailableonTunnelScheme3.Atpresent,manygapsexistintheavailabledata.Additionalinformationondesign,operation,andhydrology,combinedwithenvironmentalfieldinvestigationsatthelocationsofprojectfacilities,wouldpermitamuchmoredetailedcomparisonofthesetwodevelopmentalternatives.Nevertheless,fromwhatispresentlyunderstoodaboutScheme3,thereislittledoubtthatitis,byfar,environmentallysuperiortotheCorpsofEngineers'proposal.Ofcourse,extensiveadditionalstudyneedstobeperformedonwhateverschemeisselectedtoidentifyitsimpactsandtodevelopmitigationplans.TunnelScheme3has,byanymeasure,alessadverseenvironmentalimpactthantheCorpsofEngineers'scheme.Byvirtueofsizealone,construc-tionofthesmallerdam(245ft.)wouldhavelessenvironmentalimpactthantheDevilsCanyondamproposedbytheCorps.TherivermilesfloodedandthereservoirareacreatedbytheScheme3re-regu1ationdamwouldbeabouthalfthoseoftheCorps'planforDevilsCanyon,therebyreducingnegativeconsequences,suchaslossofwildlifehabitatandpossiblearcheologicalsites.Inaddition,theadverseeffectsupontheaestheticvalueofDevilsCanyonwouldbesUbstantiallylessenedwithScheme3,particularlywiththepowerhouselocationupstreamoftheproposedCorpsdamsite.Furthermore,TunnelScheme3maypos~ib1ypresentararemitigationopportunity,bycreatingnewsalmonspawninghabitatthatcouldbeactivelymanaged.WiththeincreaseinriparianzonevegetationallowedbyScheme3,thewildlifehabitatinthestretchofriverbypassedbythetunnelmightbetemporarilyimproved.TheimpactsassociatedwithtunnelaccessanddisposaloftunnelmucknecessitatedbyScheme3aremorethanoffsetbytheplan'sadvantages.Thus,TunnelScheme3farexceeds,theU.S.ArmyCorpsofEngineers'proposalintermsofenvironmentalacceptability.8
APPENDIXADESCRIPTIONSOFTUNNELSCHEMES
OtherOllices:Columbia.MD:Pittsburgh.PA:Raleigh.NC:Washington.DCOctober29,1980P5700.06T507Telex91-6423ACRESaUFTelephone716-853-7525ConsultingEngineersTheLibertyBankBuilding.MainatCourtBullalo.NewYork14202Scheme1iscomposedoftheCOEWatanaDamandpowerhouse,andasmallre-regulationdamwithpowertunnelsleadingtoapowerhouseatDevilCanyon.PeakingoperationswilloccuratbothWatanaandtheDevilCanyonpower-houses.AconstantcompensationflowdischargewillbeprovidedbetweenWatanaandDevilCanyon.PeakingoperationswillcreatedailywaterlevelfluctuationsofunknownmagnitudedownstreamofDevilCanyon.ACRESAMERICANINCORPORATEDh',,:n',DearVince:SusitnaHydroelectricProjectSubtask6.02Attention:VinceLucidTerrestrialEnvironmentalSpecialists,Inc.R.D.1Phoenix,NY13135Scheme2iscomposedoftheCOEWatanaDamandpowerhousewithpowertunnelsfromtheWatanaReservoirtoapowerhouseatDevilCanyon.UponcompletionofthetunnelschemetheWatanapowerhousewillbereducedto35MWandwillsupplyaconstantcompensationflowbetweenWatanaandDevilCanyon.TheDevilCanyonpowerhousewilloperateasapeakinghydrofacility.WaterlevelfluctuationsdownstreamofDevilCanyonaresimilartothatofScheme1.Wewouldlikeyoutoreviewtheenvironmentalaspectsofthetunnelalter-native(Subtask6.02),whichyouwereintroducedtoonOctober3,1980.YourenvironmentalassessmentwillbeincludedintheSubtask6.02close-outreport,November1980.Inordertocompletethisclose-outreportonscheduletheenvironmentalassessmentisrequiredbyNovember13,1980.Theenvironmentalassessmentshouldincludeasmallsectiononeachofthefourtunnelschemes(SchemesI,2,3,&4).Physicalfactorsoftheschemes-andtheCOEselectedplan.arepresentedinTable1.Tunnelschemeplanviewandali9nmentsareenclosed.Scheme3iscomposedoftheCOEWatanaDamandpowerhouse,andare-regulationdamwithpowertunnelsleadingtoapowerhouseatDevilCanyon.TheWatanapowerhousewilloperateasapeakingfacilitywhichdischargesintoare-regulationreservoir.There-regulationreservoiriscapableofstoringthedailypeakdischargesandreleasingaconstantdischargeintothepowertunnels.Afourfootdailywaterlevelfluctuationinthere-regulationreservoirisrequired.TheDevilCanyonpowerhousewilloperateasabaseloadfacility,thus,nodailywaterlevelfluctuationswilloccurdownstreamofDevilCanyon.
ACRESAMERICANINCORPORATEDRJW:ccvOctober29,1980- 2-Stockpileanduseforaccessroadrepairs._Stockpileandusefordammaterial(Scheme3only).-DumpinWatanaReservoir.-Fillthenearestravine.-Leaveinthemostconvenientlocation.-Pile,cover,andseed.;Z:-.J~,~01-.c?KevinYoungPleasedonothesitatetocontactmeforanyadditionalinformationthatmayberequired.TheobjectiveofSubtask6.02istocomparethebesttunnelschemewiththeCOEselectedscheme(HighWatanaandDevilCanyon).TheenvironmentalassessmentshouldincludeasectioncomparingtheimpactsoftunnelScheme3withtheCOEselectedscheme.Includeconclusionsandadescriptionofadditionalstudyrequired.Inregardstodisposaloftunnelmuck(rockremoved,tocreatetunnel)wecanassumethatadditionalcostswillbeincuredtodisposeofthemuckinanenvironmentallyacceptablemanner.Anenvironmentalassessmentofalternativedisposalmethodswouldhelptodefinethisaddedcost.Thefollowinglistsonlyafewdisposalideas,feelfreetoconsiderothers.ThegenerallayoutofScheme4issimilartoScheme2.Scheme4isabaseloadschemeandhasaverylimitedpotentialtoproduceadditionalpeakenergy.DailywaterlevelfluctuationsdownstreamofDevilCanyonaresimilartoScheme3.PreliminaryeconomicandtechnicalscreeningshowedScheme3assuperior.PreliminaryenvironmentalassessmentrankedScheme4environmentallysuperior.Scheme4ismostlikelynotcapableofsupplytherequiredpeakenergydemand.Thus,Scheme3,rankedsecondenvironmentally,wasprelim-inarilychosenasthebesttunnelscheme.IfyoushoulddisagreewiththeselectionofScheme3pleasecontactmeassoonaspossible.VinceLucidTerrestrialEnvironmentalSpecialists,Inc.III\1'!II!",II!I'
TABLE1SusitnaTunnelSchemesPhysicalFactors..COEDevilCanyon12347.500320-0-3.900-0":31.62.0-0-.15.8-0-272915.8.29--10.749.00011.545,0004,285,0006.494,000500500500500"totototq10001000 10001000streamervoirVolume,re-Feet)1,100.0009.500-0-350.00'0-O-ilCanyonerhousechargeConstantPeakingPeakingConstantConstantHeightet)52075245I
DEcFG302UNDE.RGROUNDPOWERl-lOLJSE3sUQGETANK.--4,LuJwc1U56FLOW-POWE.RTUNNE:LSCHEMES2q4.aINTAK.E.(5C~EME9ACCE.SSADITMAX.H.W.L,E.L.22C01I5CHE,ME.5'2~4II.!1025=3000F========~~E~I===========~=~~~~~-=======-=========_====_=====soo'-------:>__;__~~------,;--------;;;---------;c----~---=~=---L'510:4:;;11520"C'''''"'NM'coo"NORTHE.R.NALIGNM--(t.Ni5Cf-IE.ME5I,'2q,4)10002'0001500NOTES:A8,LI.)TUNNELALIGNMEN.TF"O~SCHEME.3IS5HOWNONDRAWINGN~5700.cG:,-;1-z.2)ALLPLANSANDPROFILESFORCONCEPTJALSTUDYpuRPOSESONLY.IUIRII-;;-A~lA~S:;-:-KA-::-::-P::-:O-.:-W:-E_R_A_U_TH_O_R....:.-IT~Y-lSUS1TNAHYDROELECTRICPROJECTPLATEUNDERGROUNDPOWE.RHOUSE.25SURGE.TANK.;201uJ1~cJvT.v\!.L.EL67C'iO::===~~=====~~~~15/POwE.;:<,UNNELI::>'2.000l-l.W.L.EL1SCO'lSCHEMEI)3SOO1500~=-----l-----3CCO1000IMAX.H.W.LE.LrL'200\I-'lS:)QJ:~e:,ME.:S'2.44~wuJuJLLuJrizI)z2=Q1-<l>uJ1500-lIII1000SOO05DiSTANCE.INM1L-E..51098D\QECT7ALIG NMENT(SCI-F'ME..SI,'Z.14')+DATE4Re....ISION'S3CONCEPTUALTUNNELSCHEMESPLANaSECTIONS
oAGEcBF,e.O'OI"'.SURGE.TANI4S2II\IIIIIIIII1\IIIIII1\\IIIII".t~\\\\"IIII)I./\IIII1\~~'2-?>o'DIA,\~POWERTUNNEL'SIIIIII IIIIII34GENERALARRANGEMENTPEVILCANYONi=t::>W£Rl-IOU5ESCALE0400800FE.ETi!5ALLPL"-N5ANDLAYOUTSFORCONCEPTUALSTUDYpuRPOSESONL.Y.NORMALTW.L",12<00'6PLAN~----------__rUN-~~---!:!~4.1...RE-"<EGUL-ATIONDAM...i~---!.~~E:.N.,.o----~C!:!..i:."-11;.r---2....'i-I//DEVILCANyONPOWE.R1-40USEj/'/)"-'iOE",VC!.I=L~~'I,,~,,'-~/,~CANYON"'~A~rJ9J4i/~If~-40'101,SO'HIGHVERTICALL.IFTGATE.S'--~--------SPIL.LW"'YCRE'STEL./435,~NOTE.:SCl-1E.ME.':>72-';0'OIA_POWERTUNNEL5~=======-=~SCAL-EO~~~~iiiiiiiiiiiiii,:2MIL-£I.I25'DIAOIVE.RSIONfL-OWLEVELouTLETTUNNEl..8---------------GENERALARRANGEMENIRE,REGULATIONDAM9\NTAlo'..E.SCALE0300"00FEETiOATEREVISIONS109-+87t4653t.--------..._._~J'"10~/900SUS/TNA14001:';00----,,00\c,oo
BAcDEFG,NORMA.l...T.W.LEL'lOO-COFF£RDAMI..TAILRACESTQ?LOGS"\\PREFERREDTUNNELSCHEME3SECTIONS22IMIRII--~-U-':-,-T:-~--H-~-D-A-~-E-~-~-C-:-AU-Ic_T_H_.O_A-~-J~-c-~-~PLATE3:-30'OIA.TA.IL'2b..C.E:.,TUNNE.1..10334I-o-.,-,---IC-.:'l-----------:."'"'v-:,,-:,""'------------+-""-.1-.,.-f-.,.-:-:-l.--~s_~I~TEo+------.....-!SCALE.'ATRANSFOR-ME.R..GAl.-LERYSCALE.A0100=FEE.T~i~~_iiiiiiiiiiil'5DISTANCE.INMIL-Eo5TUNN.E.LALIGNMENTtAL-1..STRUCTURALANDSLiPPORTDETAILSARECONCEPTU"LANDFORSTUDYPURPOSESONLY_NoTE;DEVILCANYONPOWERFACILITIESPROFILE5HEXNUTSTEEL?LIO"EoFA5TSETTINGGRouTGROUTASRE.QU/l2E.OC''"P)DE.TAILAOETAILe>W.W.F.6STEEL?LA'EFASTSETTI»6GROUT500L..__-"-__......1l-__-'---__--l'-__-'---__--ll-__-'---__......1L__---"--__---l_30002~ooI-WuJ2000Ii..~Z0~I~OO>uJ-'W1000ACCESSA.OITORIFICE-------SURGETANK----------(NOTTOSeAL.E)7ROCKBOLTS---I~OO15001400....ww"-!::1300:z~....I~OO«>w~w11001000000TYPICALTUNNELSECTIONS8,,SE.CTIONA-ASCALE.:A4OW.40HVE£T\CALL.IFT"c:"ATESROLLeDROCKFILLSPILLWAYPROFILESCAL-E.;A9CASTI»PL,ACE.cof'.lCRETELININ(')MAX.OPERATINGLEVel-INTAKE.GATESCALE.:Po..RE-REGULATIONDAMTYPICALSECTIONflA A~BEARIN6PI>DCONC.LINEDW/STEELSETPOWERTUNNELINTAKESECTIONRocl<BOLTSASREQUIREDNORMALMAX.EL.l475'UNLINEDTYPICALTUNNELSECTIONS(NOTToSCALE.)DETAILA.I<POOI~OO1500I~OO>-MIN.NORMALw...1500OPERATINGLEveL"-~EL.1470':z//fL141&'0;::1400<lTRASHRACK:>I~lw1300:zo~>~I!DO....ww"-='140010IGOO150014.00~~~I~OO:z0;::«>...I~OOoJw1100
APPENDIXBAMENDEDDESCRIPTIONOFTUNNELSCHEME4
December11,1980P5700.11.30T.606OffIcesColumbia.MD:PIttsburgh.PA.Raleigh.NC:Washington,DCCRESAMERICANINCORPORATEDInaddition,Ihavecompletedyourtableoutliningtunneldesigninformation.Sincerely,r-J..-/~:~~/~/_.~_~/'~~i_~~evinYoungEnvironmentalCoordinatorTelex91-6423ACRESBUFMr.VinceLucidTerrestrialEnvironmentalSpecialists,Inc.RD1Box388Phoenix,NewYork13135EnclosureKRY/ljrDearVince:SusitnaHydroelectricProjectRevisedDescriptionofTunnelAlternativesEnclosedpleasefindamemofromB.Wartoutliningourreviseddescriptionoftunnelalternatives.Pleaseusethisdescriptioninyourassessmentoftunnelalter-natives.onsultingEngineerseLibertyBankBuildmg.MainatCourtHaloNewYork14202
OFFICEMEMORANDUMSUBJECT:SusitnaHydroelectricProjectPreliminaryEnvironmentalAssessmentofTunnelAlternativesTheassumptionmadebyTESthatthedam,poolelevation,andpoollevelfluctuationsofWatanaareasdescribedbytheCorpsofEngineers,andwouldnotdifferamongthefiveschemesiscorrect.ThedescriptionoftunnelScheme4hasbeenrevisedsothatScheme4iscapableofsupplyingadailyloadcurvesimilartothatoftheotherschemes.ThereviseddescriptionoftunnelScheme4follows:Date:December11,1980File:P5700.07.07K.YoungB.WartFROM:TO:RJ~l/ljrThegenerallayoutofScheme4issimilartoScheme2.TheoperatiorofScheme4variesfromthatofScheme2andisdescribedbelow.TheWatanapowerhousewillremainatthestageoneinstalledcapaci~orifnecessaryenlargedslightly.PeakingdemandswillbemetwiththeWatanapowerhouse.AtalltimestheWatanapowerhousewillgenerateami~imumof35MWtosupplementbaseloaddemandsandsupplytherequiredcompensationflowbetweenWatanaandDevilCanyolTheDevilCanyonpowerhouseandtunnelwilloperateasabaseloadfacility.Scheme4failstodevelopthefullheadfortheentireflowandthusScheme4isnotexpectedtoproduceannualenergycomparabletootherschemes.DailywaterlevelfluctuationsdownstrtofDevilCanyonaresimilartoSchemes1and2.Waterlevelfluctua'betweenWatanaandDevilCanyonareexpectedtobelarge.
susrTNA TUNNEL SCHEMES -PHYS[CAL FACTORS (Addendum)
Typical COE 1 2 3 4
Range of discharge (cfs)daily 6 000 t.o 13,000 4,000 to 14,000 4,000 to 14 000 8 300 to 8 900 4 000 to 13 000
at Devil Canyon Powerhouse seasonal Fluctuations are less than existing natural fluctuations and are smaller for all plans.
Range of river stage below daily SmaLl J Large I Large I Small I Large
Devil Canyon powerhouse To date no detailed information is available.
(corresponding to discharges A.d plans have ~dentical seasonal fluctuatlOns which are ~ess than natural fluctuations.
1 isted above)seasonal To date no information is available.
Maximum fluctuations (ft)daily <1 Same as COE Same as COE Same as COE Same as COE
in Watana Reservoir seasonal See Graph Same as COE Same as COE Same as COE Same as COE
Maximum fluctuations (ft)dailY 2 Laroe NA 4 NA
in downstream reservoir
seasonal None None NA None NA
Generating Capacity (MW)Watana 792 792 35 (792)*792 792
[)ev~l
Canyon 776 550 1,150 365 365
Total Project Costs ($)2 150 000 000 2,502,100.000 2.394,600,000 2 144.300.000 2.074.200,000
Total Annual Enerqy (GwH)6 895 5,704 5,056 5 924 4,140
*Watana capacity is reduced after completion of tunnel project.
JMTAHA litOHTHt.,Y STORAGE Fl*:QUENCY
F<m Tl{£OEVIL CAW({»f I:..~WATAN·,.SYSTE~
[¥:fIT~~'I~r~.;·'~!;~~.~.~..;:,..n.;~.r~~:-:r-:'~f;J·~t.;~~:.;-·-~-~-~.:-r~ffrr1~-~;',::,-;,,~·n~?;·:I
..
.,
~~--_",,_'-'--..:..-
.~..:...~~::i
~;:
~~'.;':~;-~i,
:'!
!
,..";I
I
....~..~',:
Appendix I
GRAPH C-12
C-147
...
'"......
~
:i
oo
~
~
~
-';-;~!~·_;;~>~-;t-t;~~·":'ttrrn~t~t~~t",~;'0 ;.:,i:+i'~.>-;-~~.i
'IJOO:~..",:~.~.~~~.~...
[i'·;';:;:.
,poo~:.~_~.:.~~:;,'.~!'i
...........~f :i _
","00 .··r·,;.:!L_,_.,,,..
"II.~
"":""._~~_._,-~j~,~:}21f:~1-"
4,OO(lt-:':'"I,CVIVH l··~.,pC"~C..c,0''I"C ".UlOt
"-:'.1M'Tot .~fA·,~PCUf,t CO"'[',"_III'C ....ACPORT
':.fi·:':.d~"PIC.:..,u,'·r lliOl~lT():;SOlJTHCEIiTRAI.RAIUIE!.T
.:..,VOlU"!.AREA AI..ASKA~..DCvll 0','0..'0;,"£l:l '0 .....,t..
,:,.-:.""'VIl H ....lTI'J..'A,V':~'I""Al",U CIIsrROCIs.ooo ..:,:Cit'.':.'1100 CO,VS 0'(':"'((11 '1«1:=.·r..:::L"_·=.·•.::,~.,..,.;:-..""Itt riPI
:*.:.g~".:..':..:.-:--=...=i:~
CCT wt:N I)(C .we m MAll APII .Ii&AY ~u.y M SUT
:Terrestrial,.nvironmentai'SpEcialists.inc.R.D.1BOX388PHOENIX,N.Y.13135January16,1981218.443ProjectManagerSusitnaHydroelectricProjectAcresAmerican,Inc.LibertyBankBuildingMainatCourtBuffalo,NewYork14202Attention:KevinYoungRe:AlternativeDevelopmentSchemesDearKevin:InresponsetoyourrequestofDecember10,1980,andasdiscussedinmylettertoyouonJanuary8,1981,TES,Inc.haspreparedsomecommentsontheVee/HighDevilCanyon/OlsonschemeincomparisonwiththeWatana/DevilCanyonscheme.Enclosedforyourreviewandco~mentisadraftofabriefreportentitled"EnvironmentalConsiderationsofAlternativeHydroelectricDevelopmentSchemesfortheUpperSusitnaBasin".Wewillbepleasedtodiscussthecontentsofthisreportwithyou.Sincerely,VincentJ.Lucid,Ph.D.EnvironmentalStudiesDirectorVJl/vlEne.cc:R.Krogseng
Dw'.qC_::Z~.,-..'I;'.'!~..L..i~;1,J\".-JII;---:\iJI'jALASKAPOWERAUTHORITYSUSITNAHYDROELECTRICPROJECTENVIRONMENTALCONSIDERATIONSOFALTERNATIVEHYDROELECTRICDEVELOPMENTSCHEMESFORTHEUPPERSUSITNABASINbyTerrestrialEnvironmentalSpecialists,Inc.Phoenix,NewYorkforAcresAmerican,Inc.Buffalo,NewYorkJanuary16,1981
.".TABLEOFCONTENTS1 -INTRODUCTION2 -APPROACH2.1TheDevelopmentSchemes...."2.2AssumptionsofEnvironmentalConstraints3 -DISCUSSION. .3.1Socioeconomics.3.2CulturalResources.3.3LandUse3.4FishEcology3.5WildlifeEcology.3.6PlantEcology.3.7TransmissionLineImpacts....3.8AccessRoadImpacts3.9Summary. .4 -CONCLUSION....APPENDIXA-DESCRIPTIONOFSTAGINGALTERNATIVESPage1222333455789911
1 -INTRODUCTIONThisreportdocumentspreliminaryenvironmentalconsiderationsofalternativehydroelectricdevelopmentschemesfortheUpperSusitnaBasin.Theneedforthereportstemsfromdiscussionatameetingheld·inBuffaloonDecember2,1980betweenstaffofAcresAmericanandTES,Inc.ThealternativedevelopmentschemesaredescribedinaDecember4,1980memofromI.HutchisontoK.YoungfortransmittaltoTES,In~.(AppendixA).AdditionaldetailswereobtainedandtheapproachagreeduponinsubsequentconversationsanddatatransmittalbetweenK.YoungandV.Lucidconcerningthesealternativedevelopmentschemes.ThefollowingassessmentisbaseduponafamiliaritywiththeWatana/DevilCanyonareaobtaineddu~ingthefirstyearofenvironmentalstudies.Atthiswriting,however,wedonothavethebenefitofinformationtobecontainedinthe1980AnnualReports,whicharetobecompletedbyTESsubcontractorsbyMarch1981.BecausemuchoftheVeereservoirliesoutsideofthestudyareaformanydisciplines,commentsconcerningthisimpoundmentrelyheavilyuponintuitivejudgement.
2 -APPROACH2.1TheDevelopmentSchemesEnvironmentalconsiderationswerepreliminarilyidentifiedfortwodifferenthydroelectricdevelopmentschemesfortheUpperSusitnaBasin:Watana/DevilCanyonandVee/HighDevilCanyon/Olson.Thethreestagingvariationsforeachoftheseschemes(AppendixA)willlikelyhavedifferentshort-termimpacts,butanattempttoaddressthesepossibledifferencesatthistimewouldbetoospeculativeinmostdisciplinestobemeaningful.Indisciplinessuchassocioeconomicsandlanduse,however,thestagingofthedevelopmentwilllargelydeterminethemagnitudeofimpacts.Thus,theenvironmentalconsiderationsidentifiedinthisreportarebasedinmostcasesuponthetwoultimateschemeswithoccasionalreferencestothestagingoptions.Itwasassumedthatwhateverstagingalternativeisselected,allstagesofdevelopmentwouldbecompleted.TheresultwouldbeoneofthetwoschemesoutlinedinTable1.2.2AssumptionsofEnvironmentalConstraintsTheidentificationofpotentialadvantagesanddisadvantagesofthetwoschemes,fromanenvironmentalstandpoint,requiresthatcertainassumptionsbemadeconcerningenvironmentalconstraintsthatwillgovernthedesignandoperationofthefacilities.Amongtheseare:(a)thatconstant,ornearlyconstant,.downstreamflowsbemaintained,bothduringandafterdevelopment,whetherbymeansofare-regulationfacilityoroperationalconstraints;(b)thatdrawdownofthereservoirswouldbesimilarinmagnitudetocorrespondingreservoirsintheotherscheme(e.g.Watanavs.Vee),andwouldbewithinenvironmentalconstraints;and(c)thataminimumreleaseorcompensationflowbemaintained(ofavolumetobedetermined)topreservetheriverinehabitatbetweenthereservoirs.2
Table1DescriptionsofTwoAlternativeHydroelectric( )DevelopmentSchemesfortheUpperSusitnaBasinaMaximumpoolelevation(ft)DamHeight(ft)InstalledCapacity"(MW)ProbableOn-lineDateoflastStageDailyPeakingApproximate(b)ReservoirArea(acres)Approximate(b)RiverMilesFlooded(C)Watana/DevilCanyon2200/1450750/570800/6002010to2020Yes/No40,000/7,500(Total=47,500)60/30(Total=90)Vee/HighDevilCanyon/Olson2300/1750/1020425/725/120400/800/100+2020Yes/Yes/No16,000/21,700/900(Total-38,600)95/58/7(Total=160)aDerivedfromdescriptionsofthreestagingalternativesforeachscheme,whicharepresentedinAppendixA.bPreliminaryvalues.cMainstreamSusitnaonly,tributariesnotincluded.
3 -DISCUSSIONPotentialadvantagesanddisadvantagesofthetwodevelopmentschemesarepresentedbelowforeachofthemajorenvironmentalstudydisciplines.3.1SocioeconomicsTherecouldbesignificantdifferencesintype,degree,andchronologyofsocioeconomic'impactsresultingfromthevariousplansunderconsideration.Animportantconcernrelatestoalternativestagingplansandassociatedfactorssuchas:(a)costofstage,(b)schedulingofvariousstages(i.e.,lengthofconstructionperiodperstageandspacing),(c)constructionmanpowerrequirementsbytimeperiod,(d)accesspointoforigin,and(e)whetherornotaconstruction"community"willbeestablished.Impactsgenerallywillfallintotwo&ategories:thoseassociatedwithprojecteconomicsandconstruction,andthoseassociatedwithpowerproductionandsales.Bothtypesofimpactswillexhibitavarietyoflocal,Railbelt,andstatewideramifications.Intheabsenceofpracticallyanyprojecteconomicsinformation,detailedanalysisisimpossibleatthistime.Ingeneral,however,itcanbeexpectedthataschemeinvolvingon-lineproductioncapabilityof800MWbytheyear2000willhavegreaterandmoresignificantimpactsthanaschemeinwhichthatcapabilityisnotattaineduntil2010(e.g.,Plan1comparedtoPlan2).Thisdifferencewouldoccurbecause,inthelatterplan,thedemandonresourceswillbespreadoutovertime.Inaddition,itisreasonabletoexpectthattheeconomicbaseofMat-SuBoroughwillbelargerin2010thanin2000,evenwithouttheproject.Therefore,therelikelywouldbeagreatercapacitytodealwithprojectimpacts.3.2CulturalResourcesFieldsurveysintheWatana/DevilCanyonimpoundmentareaduringthesummerof1980havedocumented37archeologicalsites.Apreliminaryassessmentofthedataindicatesagreaternumberofarcheologicalsites3
towardstheeastendofthestudyarea.In1953,apreliminaryfieldsurveyconductedfortheNationalParkServicenearLakesLouise,Susitna,andTyoneidentifiedapproximatelysixarcheologicalsites.Thereisahighpotentialfordiscoveringmanymoresitesalongthelakes,streams,andriversinthiseasterlyregionoftheUpperSusitnaRiverBasin.AdditionalsitesareexpectedtobeidentifiednearcariboucrossingsoftheOshetnaRiver.Insummary,apreliminaryassessmentofavailableinformationsuggeststhatthereperhapscouldbeagreaternumberofarcheologicalsitesassociatedwiththeVee/HighDevilCanyon/OlsonschemethanwiththeWatana/DevilCanyonscheme.3.3LandUseAtpresent,muchoftheUpperSusitnaBasinissubjectedtoalmostnegligiblehumanactivity.Eitherofthedevelopmentschemes(andanyofthestagingplans)willcausechangesinlandusepatternsintheUpperSusitnaBasin.Regardlessoftheschemechosen,impactsonlocallandusageandhumanactivityintheUpperBasinwillbesignificantintermsofareainundatedandlandcoverchangesresultingfromprojectfacilities.WitheithertheWatana/DevilCanyonorVee/HighDevilCanyon/Olsonscheme,DeadmanFallswillbeinundatedandDevilCanyonwillbegreatlyreducedinscenicvalue.TheVee/HighDevilCanyon/OlsonschemewouldalsoeliminateTsusenaFallsandwoulddestroytheexistingaestheticsofVeeCanyonbydamconstructionatthissite.AlthoughtheVee/HighDevilCanyon/Olsonschemehasasmallerreservoirarea,itwouldinundateapproximately70milesmoreoftheSus~tnaRiverthanwouldtheWatana/DevilCanyonscheme(Table1).Developmentofarecreationplanfortheprojectwouldvaryaccordingtothedesignschemeandstagingplanselected.Broaderconcernsassociatedwithlandusearerelatedtostaging,asdiscussedintheprevioussectionregardingsocioeconomics.Theinfluenceofstagingonlanduseimpactsappliestolandusefactorsconcernedwithexistingregionaltransportationsystems.Theexistingtransportationsystems(andcommunitiesandlandusesassociatedwiththem)whichconnecttotheselectedaccessroutewillbeaffectedbyconstruction-relatedactivity.Inthiscontext,thedegreeof4
construction-relatedactivitywithinagiventimeframecouldbeasignificantfactor.Thisconsiderationissimilartothesocioeconomicconcernidentifiedpreviously.Theproportionatelygreaterdegreeofconstructionactivityassociatedwithaplaninwhich800MWcapabilitywouldbeachievedby2000-ascomparedwithoneinwhichthiswouldnotbeachieveduntil2010-concentratesimpactsonlandusesinashortertimeframe.3.4FishEcologyAlldevelopmentschemesmustbeexaminedwiththedownstreamanadromousfisheryreceivingprimaryconsideration.Anyschemeorstagingplanthatallowsfordailypeakingwithoutare-regulationdamdownstreamcouldbedetrimentaltothisresource.Therefore,themaintenanceofconstant,ornearlyconstant,downstreamflowsisanenvironmentalconstraintthatmustbemetforanydevelopmentschemetobeacceptable.TheVee/HighDevilCanyon/Olsonschemehasatleastonemajordisadvantage,withrespecttofishecology,incomparisontodevelopmentatWatana/DevilCanyon.ItisthattheOlsonsiteisdownstreamofPortageCreek,whichisknowntobeaveryimportantspawningstreamforsalmon.DamdevelopmentattheOlsonsitewouldprovideanobstructiontoanadromousfishpassageandtwomilesofPortageCreekwouldbeinundated.Evenwithfacilitiesforfishpassage,theimpactsonthisspawningareacouldbesevere.BecausetheVee/HighDevilCanyon/Olsonschemewouldinundateabout70additionalmilesoftheSusitnaRiver,plusdifferenttributaries,thanwouldtheWatana/DevilCanyonscheme,impactsonresidentfishcanbeexpectedtodifferbetweenthetwoschemes.Dataarenotpresentlyavailabletopermitan.assessmentoftheseimpacts.3.5WildlifeEcologyAlthoughtheareathatwouldbeinundatedbytheVeereservoirhasnotbeenthoroughlyinvestigated,projectpe~sonnelhavesufficientfamiliaritywiththeareatomakeafairlystrongrecommendationat~
thistime.Withtheexceptionofimpactsonavianspecies,itisfeltthattheWatana/DevilCanyonschemeissuperiorfromawildlifeimpactstandpointtotheVee/HighDevilCanyon/Olsonscheme.Thebasictrade-offsassociatedwiththiscomparisoninvolvetheareastobefloodedbytheVeedamasopposedtothefloodingofmuchoftheWatanaCreekdrainageandthehigherportionsofthecanyonwallsalongtheSusitna.ForavarietyofreasonstheareatobefloodedbytheVeedamseemsmorevaluableforwildlifethantheareasthatwouldbeinundatedbytheWatana/DevilCanyondams.AVee/HighDevi1Canyon/OlsonschemewouldfloodmoreacreageofcriticalriverbottomhabitatthanwouldtheWatana/DevilCanyonscheme.Theseareasareimportantformooseduringseverewintersandtheadditionalreductioninsuchhabitatcouldhaveamajorimpactonmoosepopulations.Inaddition,theVeeimpoundmentwouldfloodkeywinterhabitatforatleastthreesubpopulationsofmoosethatrangeoverlargeareaseastoftheSusitnaandnorthoftheMaClarenRiver.TheareathatwouldbesavedbytheVeedamscheme,theWatanaCreekdrainage,isinhabitatedbyasubpopulationofmoosethatappearstobedeclininginconditionandincreasinginage,thusindicatingthatwithin10to15yearsthissubpopulationmaybefarlessimportantthanatpresent.ThehabitatqualitywithintheWatanaCreekdrainagealsoseemstobedecreasing.TEShaspreviouslyrecommendedthatthepoolelevationofWatanabeloweredtopreserveasmuchoftheWatanaCreekdrainageaspossible.Nevertheless,thetrade-offbetweenWatanaCreekandtheVeeimpoundmentfavorsfloodingtheWatanaCreekarea.TheareathatwouldbefloodedbytheVeedamishistoricallyusedbytheNelchinacaribouherd,particularlyinmovingtotheircalvinggroundsnearKosinaCreek.Althoughcariboumovementpatternsarehighlyvariableandappeartochangeasthesizeoftheherdchanges,thisareahasbeenfrequentlytraversedbymembersofthisherd.ThepotentialforimpactingcariboumovementisgreaterthanwiththepresentWatanascheme.LikeWatana,theVeereservoirwouldbesubjecttolargedrawdownandpossibleice-shelving.Inaddition,thethree-damschemewouldresultinagreaterdivisionoftheNelchinaherd1srangeduetothegreaterlengthoftheimpoundmentsinvolvedandthusincreasethelikelihoodofimpactsonthisherd.6
ThereisanindicationthattheareatobefloodedbytheVeedamismoreimportanttosomekeyfurbearers,theredfoxinparticular,thanareassuchasWatanaCreekthatwouldbesparedbyaVeedam.ThereisalsomoretrappingconductedbyresidentsintheareaupstreamfromtheVeesitethaninareasdownstreamfromthatarea.TheVeedam,especiallyduetothedrawdownschedulethatwouldbeoperativewiththisdam,alsohasthepotentialofmoreseverelyimpactingbothmuskratandbeaverpopulations.ItappearsthatonlyavianspeciesmightsufferlessadverseimpactsfromtheVee/HighDevilCanyon/OlsonschemethanfromWatana/DevilCanyon.AlthoughtheVeedamwouldeliminatemoreriverbottomhabitat,itwouldspareaconsiderableamountofdeciduousforest(birchandaspen)thatexistsalongthesouth-facingslopesoftheSusitnacanyonandalongsomeofthetributaries.Thisistheonlyarea,ofanyextent,thatcontainsthistypeofhabitat,anditsassociatedavifauna,withintheUpperSusitnaBasin.Althoughamoredetailedrecommendationcouldbemadeifabetterdatabasewereavailable,thereasonsgivenaboveseemtoindicatethattheWatana/DevilCanyonschemeissuperiortoaVee/HighDevilCanyon/Olsonscheme.Thisisespeciallytrueifoneconsidersthatthegreatestpotentialformoresevereimpactsconcernmooseandcaribou,whichareunquestionablythekeybiggamespeciesinthearea.3.6PlantEcologyBothschemeswillprimarilyflooddeciduousforests(whitebirch,balsampoplar,andaspentypes),coniferouswoodlandsandforests(whitespruceandblackspruce),andshrubcommunities(alder,birch,andwillowtypes).Therelativeamountsofhabitatsfloodedwillvarywiththetwoschemes.TheVee/HighDevilCanyon/Olsoncombinationwillprobablyfloodmorefloodplainhabitatssuchasbalsampoplarforests,whiletheWatana/DevilCanyonschemewillprobablyfloodmorebirchandaspenforests.7
TheprimaryadvantageoftheVee/HighDevilCanyon/Olsonschemeisthatapproximately9,000feweracreswouldbeflooded(Table1).Theprimarydisadvantagesofthisschemeare:morelakesandwetlandsflooded,moreriverfloodplainsflooded,andagreateramountofassociatedfloodplainhabitats,suchasbalsampoplar,eliminated.Theamountofwetlandeliminatedwouldbeaverysmallproportionofthetotalwetlandintheregion.Nevertheless,theimportanceofwetlands,floodplains,andassociatedhabitatshasbeenemphasizedbyExecutiveOrdersandvariousfederalagencies.3.7TransmissionLineImpactsBecauseofthedistance'traversed,theconstructionofatransmissionlinetotheintertiefromaVee/HighDevilCanyon/OlsonprojectoffersseveraldisadvantageswhencomparedtoalineconstructedfromaWatana/DevilCanyonproject.AlinefromtheParksHighwaytoWatanawouldbeapproximately50milesinlength.FollowingthesameroutetoWatanaandextendingthelinetotheVeesitewouldaddapproximately40milestoitstotallength,anincreaseinmileageofsome80percent.Generally,thelongertheline,thegreatertheimpact.Inaddition,theaddedlengthwouldcrossapresentlyroadlessremoteparcelofland,therebynecessitatingadditionalmilesofaccessroadconstruction.Additionalvegetationclearingwouldberequiredduetothelongerroute.Assuminga300footwideright-of-way,approximately1500additionalacreswouldneedtobeclearedduringconstructionandmaintainedduringoperationofthisline,therebypotentiallyimpactingwildlifehabitat.Totheextentthatlanduse,aestheticandrecreationalopportunitiesareimpairedbytransmissionfacilities,alargerimpactzonewillbecreated.Similarly,areasofsignificantculturalresourcepotentialwillbeimpactedtoagreaterdegreethanwiththeshorterline.AgreaternumberofstreamstributarytotheSusitnaRiverwillneedtobecrossed,posingadditionalareasofpotentialimpact.Insummary,constructingtransmissionfacilitiestotheVeesiteconsiderablyincreasesthepotentialimpactofprojecttransmissionlines.8
3.8AccessRoadImpactsAtpresent,anaccessroutefortheWatana/DevilCanyonschemehasnotbeendecidedupon,andnoinformationatallisavailablewithregardtoaccessfortheVee/HighDevilCanyon/Olsonscheme.Also,ithasnotevenbeendeterminedwhichofthetwoschemeswouldhavetheshorteraccessroad.Byvirtueoftherelativedispersionofthedamsites,however,thetwo'schemesmaydifferwithrespecttotheareaopeneduptoaccessandtheresultantdispersionofhumandisturbanceovertheUpperSusitnaBasin.TheWatana/DevilCanyonschememayconfineaccesstoasmallerportionofthebasin,especiallyifaccessisfromthewest.TheVee/HighDevilCanyon/Olsonscheme,especiallyifitisastageddevelopment,maybemorelikelytohaveaccessfrombothnorth(DenaliHighway)andwest,therebyopeningaccesstoalargerarea,andfromseveraldirections.3.9SummaryIneachoftheenvironmentalstudydisciplines,differencesexistinthepotentialimpactsoftheVee/HighDevilCanyon/OlsonschemeincomparisontotheWatana/DevilCanyonscheme..TheVee/HighDevilCanyon/Olsonschemehasmoreapparentdisadvantagesthanadvantages;mostofthesedisadvantagesareduetotheVeeimpoundmentratherthantheHighDevilCanyonimpoundment.Insocioeconomicsandinsomeaspectsoflanduse,thedifferencesduetostagingareofmoresignificancethanthoseduetothelocationofthedams.Nevertheless,itisnoteworthythattheVee/HighDevilCanyon/OlsonschememayaffectmorecanyonsandwaterfallsofoutstandingscenicvaluethanwouldWatana/DevilCanyon.ExistinginformationsuggeststhatthereisahighpotentialforoccurrenceofculturalresourcesinthevicinityoftheVeereservoir,perhapsevenmorethaninthevicinityofDevilCanyonandWatana.AmajordisadvantageoftheVee/HighDevilCanyon/OlsonschemeistheimpactofOlsononanadromousfishspawninginPortageCreek;dailypeakingfromHighDevilCanyonwithoutre-regulationisalsoenvironmentallyunacceptable.Thereisevidencethatimpactsuponbiggame(particularlymooseandcaribou)andfurbearerswouldbemoreseverewiththeVee/HighDevilCanyon/OlsonschemethanwithWatana/DevilCanyon,althoughthisisnotnecessarilythecasewithbirds.AlthoughtheVee/HighDevilCanyon/Olsonschemewould9
floodlessacreagethanWatana/DevilCanyon,alargeramountoffloodplainandwetlandhabitatwouldbeinundated.Becauseofthelongerdistancetraversed,potentialimpactsofthetransmissionlinewouldbeproportionatelygreaterwithdevelopmentattheVeesite.ThedispersionofthedamsitesintheUpperBasinwithVee/HighDevilCanyon/Olsonwouldalsolikelyresultinalargerimpactzoneduetoincreasedaccess.10
4 -CONCLUSIONAlthoughsomepotentialadvantagesanddisadvantageshavebeenidentifiedforboththeWatana/DevilCanyonschemeandtheVee/HighDevilCanyon/Olsonscheme,sufficientinformationisnotyetavailableuponwhichtobasea firmrecommendation.Theevidencethatisavailable,however,whencombinedwithintuitivejudgement,suggeststhattheWatana/DevilCanyonschememaybepreferabletotheVee/HighDevilCanyon/Olsoncombination.Thecommentscontainedinthisreportwillbereviewedandrefinedafterthe1980AnnualReportsareavailableandwhenmoreconstructionandoperationaldetailsareknown.ComparisonofthetwoschemeswillstillbehamperedbythescarcityofinformationconcerningtheVeeimpoundmentarea.11
APPENDIXADESCRIPTIONOFSTAGINGALTERNATIVES
.'~..~~,.P5700~14.06'.December,4,1980~fo~o~~~nsmit:bl·toTES).I..,Hutchison·'' ".r~;~;~~~:'~~P~~:~" .:.~urr~~t.SusitnaBasinDevelopmentSch'e!nes"Asreq·u'ested~·theschemescurrentlybeinginvestigatedare"sunmarizedonthe'attachedsheets.:,Please''notethattheprobableon-linedatesareestimates.at~~!s.stage,andwillbefinnedupoverthenexttwoweeks.I.HutchisonIH:ccvAttacr.mentscc:J.D.LawrenceJ.H.Hayden'P.T!Jc;-{el~(Col.)A.SimonG.KrishnanD.CarlsonR.HartV.S-inghP.RodrigueE.~l.,ShadeedR.Ibbotson
SCHEME Plan 1 .(Total installed capacity =1400t·1U)
Dam Site DeviL~anyon (450)DamSite I.
Stage I Development
Dam Site Watana (22001
Height 750 ft.
Installed
Capacity 800 ~~
Probable on
Line Date 1995-2000
Daily
Mode of Operation Peaking
Separate
Re-regulation Dam Possibly
Stage II Development
Height 570 ft.
Installed
Capacity __~~~
.Probable on
Line Date 2010-20
No Oai1y
Mode of Operatione.eakjng
Separate
Re-regu1 ation Dam ...:.rJ,L;;:O~_
Stage III Development
i
Height ft.
Ins ta 11 ed
Capacity ~M
Probable on
Li ne Date ---
Hode 'of Operation _
Separate
Re-regulation Dam _
~~age IV Development
Dam Site _
Height ft.
Installed
Capacity ~M
Probable on
Li ne Date ---
Mode of Operation _
Separate
Re-regulation dam _
NOTE:Figures in brackers behind dam site name
indicate maximum water surface elevation in feet.
SCH EME ~P1U!a.!.!.n..J;2,-_(Total installed capacity =1409 MW)
Dam Site O~yjl.ca'nYQ!J (1.1501)Dam Site .••
Stage I 'Deve 10E!!l.ent
Dam Site Hqtana.(2000L
Height -2§.Q ft.
Insta 11 ed
Capaci ty 400 f4W
Stage II Development
Dam Site Watana (2200).
Hei ght ,750 ft.
Installed
Capacity .800 ~M
Stage III Development
Height 570 ft.
Insta11 ed
Capaci ty 600 '~1VJ
-~
?tage IV Development
Height ft.
Installed
Capacity .~M
Probable on Probable on
Line Date 1995 ,,Line Date 2000-10,
Daily "Da ily ,
Hade of Operati on Pea king , .Mode of Operati on eea kj 09
Probable on Probable on
Line Date 2010-20:,Line Date • ,
.''""No Daily .
,t10de of Operation .eeaking ,Mode of Operation'_
Separate
Re-regulation Dam Possibly
Separate
Re-regulation Dam Possibly
Wa~tanaDam raised 200'
Installed Capacity
Increased by 400 MW
Separate,
Re-regulation Dam ~N=Q~.___
'Separate
Re-regulation dam •.
SCHEME -eJan 3 '•(Total installed capacity =1400 t·1\~)
~e1ght ft.
Installed
Capacity ~M
Probable on
.Line Date ---
Mode of Operati on _
Stage I Development
Dam Si te \:Jatana {2200}
He;ght --l.§Q ft.
Installed
Capacity'400 t4W
Probable on
Line Date 1995
Daily
Mode of Operation Peaking
Separate
Re-regulation Dam .Possibly
.~tage III Development
Dam Site .De\[;1 Ca OYOO_
Height.--liZ.Q.ft~
Ins ta 11 ed
,Capac;ty'600 ,~1Vl
Probable on
Line Date 2010-20 ,
No Daily'
Hode ()f Operati on eea King
Separate ,
ne-r~gulat;on D~m ~
~~age IV Development
Dam Site ------._.
Separate
Re-regulation'dam _
SCHEME Plan 4 '(Total installed capacity =1300 f.1W)'
Dam Si te .~j gh 0 Ie.(1Z5.5)Dam Si te Vee.(?300)._,
Height 725 ft.Height 425 ft.
l..
.Probable on,Probable on
Li ne Date .2020 -''..Line Dat~_
..No Daily ..
,Hade of Operation .eeaking ':Mode of Operation _
Stage I DeveloEment
.Installed
Capac;ty .800 t~
Probable on
Line Date 1995-2000
.Daily
Mode of Operation Peaking
~tage IIDeveloEmen~..
.Instal,led
Capac;ty .!lQO J.1W
.Probable'on
Line Date .2Q10-2Q.
"Dai 1y
Mode of Opera ti on .pea ki [lg
~t~ge III DeveloEment
,Dam Si te ..Q..1son ,(lQ1Q),.
Height ._12Q~_'ft.
Installed'
Capacity :!:10Q_14'".
Stage IV Oeve19pmen~
Dam Site ------
';Height _..__.ft.
Installed
Capaci ty .~1W
Separate Separate
Re-regul ation Dam Pass;bly*'Re-regul ation -Dam J.Q
Separate
~e-regulation Dam ~
Separate
Re-regulation dam •
*Olson may serve as the re-regulation dam in which case the Olson
dam would constitute part of'Stage I.The powerhouse'at Olson
could ~till be b~ilt at a later stage... .
SCHEME Plan'5 (Total installed capacity 1:1 1300 '·U4)
Separate 'Separate ,Separa~e.
Re-regu)ation Dam Possibly*Re-regulationDam'Pos~ibly*'Re-t~gulation Dam ~....
,;High Devil ,Canyon Dam
Rai sed 140'"..'".,,
.I'n'stalled capacity
',"Increased by 400 t1\~
,,
Stage I'Develoement
Dam Site High Devil Capyon
(1610)
Height 570 ft.
Ins ta 11 ed
Capacity,400 'f4W
Probable on
Line Date'1995
Daily
Mode of Operation Peaking
Stage II Development
,,
Dam SiteHjgb Ocvj"Ciln~n
,,'".',(1750)
,Hei ght,,725 ',·ft.
•I ••
,I nsta 1.1 ed
Capac;ty 800 t!\W,-
Probable on ' ,
:'Li ne Date ,2000:..10,,.,.~··Daily
Mode of Operation Peaki~g
:
Stage III Development,
,Dam S1 te •y'ee (Z~OO),;".,
Heigh~425 ft.
,,......:'.
".
Installed "
,Capac.ity .:....400;~1W
Probable on .
Line Date "2010-20 ',',
"""Oai ly'::"
,Hode of Opera ti..on ,Pea ki n9
'stage IV Oeveloement
Dam Si,te .Ql son,(l020}_
"
;'Height 120 ft.
,"......
Installed
Capacity ±Ioa ~M
p'roba b1eon'
',Line,Date 2020
No Daily
Mode of OperationPeakiQ9.
.Separate
:Re-regul ati,on «:fam ...;..:N-.o__
*O1·sonilmay.se rvei"as',th'c'::re,;;reguJ at10n ,'danf.'1n,:'wh1 ch::case:the 01 son
,dam would constitute,part of Stage I.':The'powerhouse at 01 son'.
could 5tH 1 be ,bu,i.lt ata,later"stage.:'.
SCHEME Plan 6 (Total installed capacity a 1300 t1H)
Separate Separate Separate
Re-regulation Dam Possibly*Re-regulation Dam P9ssib]y*Re-r~gulationDam'No
Installed Capacity increased
~400 I~
Stage II Development
No-Daily
Mode of Operation Peaking
Separate
Re-regulation dam.--Ho
Stage IV Development
Dam Site OJ son (J 020)
Height .120 ft.
Installed
-Capac;ty ,±100 HH
Probable on
Line Date ?020
Hei ght •425 _ft.
Install ed
Capacity 400_FII
Probable on
Line Date 2010-20, -Daily
t10de of Operati on ,Peaking
Dam Site lee I
S~age III Development
llL ft.
Dam Site _High ~vil.CanYon
(1750)
Height
Installed
Capac1 ty _8.illL-t·1W
Probable on
Line Date 2000-1q .
Dally
Mode of Operati on .Pea king
~tage I DeveloRment
Dam Si te ,Hi gb .Qe'Li 1 ,Ca~on
(1750)
Height --If§ft.
Installed
Capaci ty 40Q ._HW
Probable on
Line Date 1995
Da ily
Mode of Operation Peaking
*01 son may serve as the re-regul at10n dam 1n wh1 ch case the 01 son
dam would constitute part of Stage 1.The powerhouse at Olson
could still be built at a later stage.
~LJ..~.!...-~....!..NVJHIlM,1I NIAI_..!~~~!!!.~.!)1 VIt,CANYON DM!AND IIJNNII ~~
..--------'----..,--------·------------~)pi'ilEiil-
f"J\VirWlOlImtal (fJlfrel"efu:e~:;il'l in~JHct
Atlribule _._~~~.of t.wo schemes)
fcoloqical:
-------------------------SCli."ne Judqed lo have
Idenl ificullun the leasl polent ial impact
of diffcnHlce _.Appraisal :Judgement funnel Dr:
-Downstream r lstmr tt:?s
and Ii d,ll.fe
!!.es idenl fisher ies:
Iii Idl ife:
Cultural:
Land Use:
(ffecls I'c:-ltJl t tnt)
from change:::;in
wal er lIuanl i l Y and
qual ity.
Lotis a r res ident
fisheries hahilal.
lnss of wildl ife
hab ital.
lnundal ion of
archeo log iea 1 s iles.
lllundat iun of Dev il
Canyon.
No sitJllificanl differ-
ence bel ween gel H:Hnl~S
regaflHn~J effects down-
stream of Oevil Canyon ..
Oi ffcl'ence in reach
bel ween Dcv i 1 CliO yon
dam and lutU1C 1 re-
requlat ion dam.
Minimal differences
bel ween schemes.
Minimal differences
bel ween schemes.
Potenl ial differences
bel ween schemes.
Significant difference
between schemes.
l~ith lhe lunnel scheme cun-
trollod flows between rCfJlJln-
l ion dum and downstream power-
house offers potent ial for
anadl'omous fisher ies enhance-
ment in lh is 11 mile reach of
the 1'iver.
Dev it Canyon dam would inundale
27 miles of the Sus ltna River
and approximalely 2 miles of
Dev i I Creek.The t unne I scheme
would inundate 16 miles of the
Susitna River.
The moat senaitive wildlife ha-
hilal in this reach is upslream
of the lunne I re-re9ulation dam
where there is no "it]tlificanl
difference bel ween the schemes.
The Dev iI Canyon dam scheme in
adrJit ion inundales the river
valley between the two dam
sites result ing in a moderate
ioel'ease in ifllJocls Lo
wildlife.
Due lo the larger area inun-
dated the probahi I ily of inun-
dal ing archeological siles is
increased.
The Devil Canyon is considered
a un ique resoul'ce,80 percent
of ,"'ich would be inundated by
lhe Dev it Canyon dam scheme.
Th is would resull in a loss of
both an aesthel ic value plus
the potenl ial for while water
reereal ion.
Not a faclor in eva ltlal ion of
scheme.
If fisher ies enhancement oppor-
lun il y can be rea I ized the tun-
nel scheme offers a positive
mit igat ion measure nol ava i Ish Ie
wil.h the Devil Canyon dam
scheme.This opporlunity is
COilS ide red moderate and favors
1he t unne I scheme.
Th i3 reach of river is not con-
sidered to be highly significant
for resinenl fisheries and lhua
the difference between the
schemes is minor and favors the
t unne I scheme.
The difference in loss of wild-
life hab il at is cons idered mod-
erale and favors the tunne I
scheme.
A sif)nificanl.archeological
site,if idenl ified,can proba-
bly be excavaled.This concern
is not cons idered a factor in
in scheme evaluat ion.
rhe aesthet ie and lo sume extenl
the recreal ional losses'assoc i-
ated with the development of the
Oev it Canyon dam is the rna in
aspect favor ing lhe lunne 1 scheme.
x
OVERALL EVAlIJAIIllN:The lunnel scheme hus ovel'all a lower impact on the environment.
TABLE 1.2 -SOCIAL EVALUATION OF SUSITNA BASIN DEVELOPMENT SCHEMES/PLANS
SocIal Tunnel DevIl Canyon---mgIlUevITLanyQilT-lVa"tan8]lle-,,'-n
Aspect Parameter Scheme Dam Scheme Vee Plan Ca~yon Plan Remarks
All projects would have similar impacts on the state and
local economy.
Potential
non-renewable
resource
displacement
Impact on
state economy
Impact on
local economy
Mill ion tons
Beluga coal
over 50 years
]
80 110 170 210 Devil Canyon dam scheme
potential higher than
tunnel scheme.Watana/
Devil Canyon plan higher
than High Devil Canyon/
Vee plan.
Seismic
exposure
Risk of major
structural
failure
Potential
impact of
failure on
human life.
All projects designed to similar levels of safet y.
,Any dam failures would effect the same downstream
populat ion.
Essentially no difference
between plans/pchemes.
Overall
Evaluat ion
1.Devil Canyon dam superior to tunnel.
2.Watana/Devil Canyon superior to High Devil Canyon/Vee plan.
TABLE 1.3 -ENV.lRONHENTAL EVALUATION or IIATANA/DEVIL CANYON AND HIGH DEVIL CANYON/VEE DEVElOPHENT PLANS
Environmental Attribute,Plan Compariaon .Appraisal Judgement
Pliiil judged to have the
leaat potential impactHDe/V ~~~:-lI7OC
EColopica!:
1)Isherles No significant difference In effects on downstreom
snadromous fisher les.
HOC/V would Inundate approximalely 95 mllea of lhe
Susllna River and 2B miles of trihulary streams,In-
cluding the Tyone River.
II/DC would inundate approximalely B4 miles of lhe
Susltna River and 24 miles of lributary atreams,
including lIatana Creek.
Due to the avoidance of the Tyone River,
lesser inundation of resident fisheries
habitat and no signiflcanl difference In the
effects on anadromous fisheries,lhe II/DC plen
Is judged 10 have less Impact.
x
2)Wildlifa
a)l.foose
HOC/V would Inundate 123 miles of critical winter rivar Due 10 the lower polentiel for direct Impect
bottom habitat.on moose populations within the Susitna,the
II/DC plan is judged superior.
II/DC would inundate lOB miles of this river bottom
habitat.
HOC/V would inundate a large area upstream of Vee
utilized by three eub-populetlonsof moose that range
In the northeast aection of the basin.
x
b)Cerlbou
r.)furbearers
d)Birds and Bears
Cultural!
W/DC would Inundate the lIatana Creek area ut Illzed by
moose.The condit Ion of this sub-populat Ion of moose
and lhe quality of the habitat they are using appeara
to be decreaa Ing.
The Increased length of river flooded,especially up-
stream from the Vee dam aite,would reauIt in the
HOC/V plan creating a greater potential division of
the Nelchlna herd'a range.In addlt Ion,en increase
In range would be direct ly Inundated by the Vee res-
ervoir.
The area flooded by lhe Vee reservoIr Is considered
lr.'portant to some key furbearers,particularly red fox.
ThIs area is judlJed to be more Importont than the
Walana Creek area that would be inundated by tha II/DC
plan.
foresl habitat,important for birds and black bears,
exisl along the valley slopes.The lose of this hsbl-
tst would be greater with the II/DC plan.
There Is a high potential for discovery of archeo logi-
cal sites in the easterly region of the Upper Susltna
Basin.The HOC/V plen has a greater potent ial of
affect Ing these altes.for olher reeches of the river
the difference between plans Is considered minimal.
Due to the potent ial for a greater Impact on
the Nelchina ceribou herd,the HOC/V scheme
is considered Inferior.
Due to lhe lesser potent lei for Impact on fur-
bearers the W/DC Is judged to be auperlor.
The HOC/V plan Is judged super lor.
The II/DC plan Is judged to have a lower po-
tential effect on archeological sites.
x
x
x
1.~I1U t.3 (Coni lmmdi
IlOClV-."7llT:Apprais"l Judqement----_._---_._--_.Plwi l:olllparisurlfovil'Ollllllnllal Altrihulc
------------.------..----------------_.--------------------.-------------------._-..-------_._.------------------,'1";,""Judq"d (0 have (he--
least pote"Ual.impact
AesUwt iC/
~Wilh nilhcr schelllt~,lhu aeslhelic quality of hoth
I){~v i t Canyon and V~e Caoyon would he impaired.fhe
IlDC/V plan \'iuuld also inundale lsuuena ralls.
Bolh plan!:i impucl lh~vtliley uesthcl ics.The
rlifferBnce is considered minimal.
DlH~Lo construcl ion at Vee DUlI1 sHe and the sizH of
the Vee Heservnir,the IUlC/V ;,lan would inhel'enlly
r.realc Cll~·t:esS to more wilderness area than would the
lv/DC plan.
An it is eas ier Lo extend access lhan to
1 imil it,inherenl access requirements were
considered detrimental and the W/OC plan is
judged superior.Ihe ecological sensil ivity
of the at'en opened uy the IiDC/V plan re in-
forces th is judgement.
x
OVUlAl.I [VALDA liON:Ihe 11/D(;plan is judged to be superior to the IUJC/V plan.
(Ihe lower i"I,act on birds and bonrs associated with IUlC/V plan is considered to be outweighed by all
_________the other impacts "hieh favour the W/llC plan.)_
NOlES;
H =\'/0 lana Daw
DC =Dev i I Canyon Ilam
IIDC =lIiqh Devil Callyon Dam
V =Vee Dnm
APPENDIXJ -AGENCYANDOTHERCOMMENTSTheseconddraftoftheDevelopmentSelectionReportwasdistributedtothefollowingagenciesforreviewandcomment.Thissectionofthereportaddressesthecommentsreceivedandresponsestothosecomments.Attachment1,2,3,4and5,whichfollowintheirentirety,arethecommentsreceivedfromthefollowingagencies:-Attachment1:UniversityofAlaskaArcticEnvironmentalInformationandDataCenter-Attachment2:StateofAlaska,DepartmentofFishandGame-Attachment3:U.S.DepartmentofInterior,GeologicalSurvey-Attachment4:U.S.DepartmentofInterior,NationalParkService-Attachment5:StateofAlaska,DepartmentofEnvironmentalConservationJ.1-ResponsestoAEIDCComments(a)BorrowAreasItisagreedthattherewillbesignificantimpactsduetodevelopmentofborrowareasforconstructionofallearthorrockfilldamsconsidered.Forpurposesofthestudyithasbeenassumedthatthemajorportionofborrowmaterialwillbeobtainedfromareaswhichwillbesubsequentlysubmergedbytheproposedreservoirs.Therelativelyshort-termimpactsofearth-movingoperationsduringdamconstructionareconsideredtobesimilarforallalternativesconsideredandthereforenotasignificantfactorincomparisons.Thelonger-termimpactsofborrowareaswhichwillbesubmergedwereconsideredtobeincludedinthecomparisonsofimpactsofthereservoirsineachcase.(b)ContinuationofEnvironmentalStudiesItistruethatdetailedenvironmentalstudiesofonlytheselectedplanarecontinuinginsupportoftherequirementsoftheFERClicenseapplica-tion.Thepurposeofthesestudiesistoallowmorepreciseassessmentstobemadeofsuchimpactsandfordevelopmentofmitigationplanswhereappropriate.Thecomparisonsofenvironmentalimpactsofallalternativesconsideredhavebeenbasedonlyonthoseaspectswhichwillinfluencetheselectionofadevelopmentplan.Thereportprovidesappropriatesupportforthesecomparisonstobemadeandwillnotconsiderthemfurther.Con-siderationofimpactswhicharesimilarinmagnitudeorwhicharerelative-lyinsignificantwillnotinfluencetheselectionprocessandhavethere-forebeenexcluded.J-l
J.2-ResponsestoADF&GComments(a)Page1-4(g),Task7 -EnvironmentalStudiesThetexthasbeenrevisedassuggested.(b)Pages8-26and8-27,EnvironmentalComparisonsThebackgroundinformationusedtosupporttheenvironmentalcomparisonsmadeconsistsofpublisheddatatogetherwithvisualobservationofperson-nelundertakingthecurrentstudies.Thereportprovidesappropriatereferencestoanddocumentationofthisinformation.ThepersonnelinvolvedinthestudiesareamplyqualifiedintheirrespectivefieldsandwereapprovedassuchbytheAlaskaPowerAuthority.AppropriatemechanismshavebeenestablishedforcontinuingtheactiveinvolvementofADF&G,USFWSandallotherconcernedagenciesinthedeci-sionprocessesbeingusedinthisstudy.Thescopeandmethodologyforundertakingenvironmentalstudieshavebeenreviewedbytheseagenciesandmodifiedwhereappropriateasaresultofsuchreviews.J.3-ResponsetoUSGSCommentsNoresponserequired.J.4-ResponsetoUSNPSCommentsTheSusitnaProjectFeasibilityReportwilldealwiththespecificimpactsoftheselecteddevelopmentplanandwillnotconsiderfurthertheimpactsofalternativeSusitnaBasindevelopmentplans.Sufficientinformationhasbeenpresentedinthereporttoarriveataselecteddevelopment;furtherstudyofotherbasinalternativesisunwarrantedatthistime.TheimpactofreservoirsiltationfortheselecteddevelopmentwillbestudiedandtheresultspresentedintheFeasibilityReport.J.5-ResponsetoADECCommentsNoresponserequired.J-2
,rCI!CEnvironmenlollnformolionandDOloCenler707ASlreelAnchorage,Alm~.a99501ATTACHMENT1PHONE(907)279..c:Sf'UNIVEHSITYOFALASKAAugust4,1981Dave'WozniakAlaskaPowerAuthority333'W.4thAVenue,Suite31Anchorage,AK99501DearDave:RECEIVED:'.'!G519B1ALASKAPOWERAtlTHOP.JTYPeryourrequesttothemembersoftheSusitnaSteeringCommittee,IhavequicklyreviewedtheDevelopmentSelectionReportpreparedbyAcres.IngeneralIfounditlogicalinapproachandcompleteinre-gardstotherelevantfactorsoneshouldevaluatewhenreducingmultipleoptions.Ihaveonlythefollowingspecificcomments:1.Thelocationandenvironmentaleffectsofdevelopingborrowmaterialsitesisnotwelldocumentedandincorporatedintothefirstpartofthereport.Enormousqunatitieswouldberequiredformostofthedams,andtheremoval,stockpiling,andtransportofthismaterialcouldbeasignificantfactorinfluencingthedecision-makingprocess.2.Significanteffortsarecurrentlybeingexpendedinenviron-mentalstudyofthisregion,theresultsofwhicharenotyetavailable.Factoringthisnewknowledgeintothedecision-makingprocesscouldhaveinfluencedthenatureofthefinalscheme;oristhecurrentenvironmentalstudyeffortgearedonlytowardtheeffectsofthe"selectedplan(page9-1)"andnotforinputtotheoverallselectionprocess?IngeneralIfoundtheenvironmentaleffectsofthealternativeoptionsaddressedverysuperficially.Ihopemycommentsareofinterest.Sincerely,,,'/.)1'.(.:.(LWilliamJ.WilsonSupervisor,ResourceandScienceServicesDivisionSeniorResearchAnalystinFisheries\UW/gcc:AlCarson
i')J\n,lQ..uc..t?c:.1Page1-4(g)Ta~k7 -EnvironmentalStudieslivereviewedthedraftDevelopmentSelectionReportfortheSusitnaHydroelectricProjectandmYcommentsareasfollows:ATTACHMENTReviewofDraftDevelopmentSelectionReport-SuHydroProjectJuly29,198102-1-81-ADF&G-7.002-V-Acres-1.0DATEStateofAlaskaFILENOTELEPHONENOALASKAPOWERAUTHORITYDaveWozniakProjectEngineerAlaskaPowerAuthority333W.4thAvenue,Suite31Anchorage,Alaska~1ThWTGtlJ,JR E C E , V E 0SUBJECT:omas.renAquaticStudie:coordd~nato/~!/01,1981SuHydroAquatlcStules·'~'-1-.AnchorageComment:Irecommendthewordsinthelastsentencei.e.,largegamebechangedto~game.Page8-26EnvironmentalComparison-2ndparagraph- astatementregardlligenhancementpotentialforanadromousfishand,thestatementonpage8-27EnvironmentalComparison,2ndparagraph.Comment:Ageneralobservationaddressedtothesespecificsections,isthatdevelopmentoftheenvironmentalcomparisonshasundoubtedlybeena-subjectiveprocess.Thestatementsmadereallydon'tprovideanydetailingofthehows,whys,andrationalefortheconclusionsdrawn.Ibelievewecanacceptasubjectiveprocessforevaluatingtheenvironmentalmeritsordeficienciesofaparticulardamscheme,butitwouldhavebeenahelpfulprocessforAcrestoinvolveADF&G,USFWSandothersinsuchananalysistodiscussalternativepositive/negativeimpactpossibilitIthinkthiswouldhaveledtoahealthyexchangeofideas.Theexposureofthefish9ndwildlifeorotherresourceagenciestothesamedesignoroperationalschemeslaidouttotheAcresenvironmentalreviewteammayhaveledtoconclusionswhichwerethesameorpotentiallyquitedifferentfromtheAcresanalysisofthesituation.Tosumup,wecan'targuewithAcresreportsincewedon'tknowthebackgroundinformationusedtosupporttheirrationalizationsortheexperienceoftheindividualsinvolvedinthereportpreparationthatdrewtheconclusionsonfisheries.cc:S.Zrake-DECB.Wilson-AEIDCG.Stackhouse-USFWSR.Lamke-USGSA.Carson-ADNRMEMORANDUMTOFROM:
UNITEDSTATESDEPARTMENTOFTHEINTERIORGEOLOGICALSURVEYWaterResourcesDivision733W.FourthAve.,Suite400Anchorage,Alaska99501July27,1981ATTACHMENT3RECEIVED.1tJL3)1981AlASKApOWEr:':":;::-:OJ<fTYAlCarsonStateofAl.askaDepartmentofNaturalResources323E.FourthAvenue'Anchorage,Alaska99501DearMr.Carson:IhavereviewedtheDraftDevelopmentSelectionReportfortheproposedSusitnaHydroelectricProjectasrequestedintheAPAtransmittalofJune1811981.Thereviewwaslimitedtotheevaluationprocessus4dbyAcres,therelativeimpactsofseveralalternativedevelopmentplans.ofSusi·tnahydroelectricresources,andtheconclusionthattheWatana-DeyilCanyonplanisthepreferredbasinalternative.TherewerenoproblemsinvolvedinunderstandingtheselectionprocessusedbyAcresandtherewereenoughdataandinformationpresentedtocomparethefinalcandidate(alternative)plans.Therelativeimpactsofthecandidateswerepresentedinanunderstandableandcrediblemanner.Althoughenlyaqualitativeevaluationofimpactsispresented(pendingreportsofon-goingstudies},areasonableconclusionisthattheWatana-DeyilCanyonplanisthepreferredcandidateforSusitnahydroelectricdevp10pment.cc:DavidD.Wozniak,ProjectEngineer,APA,Anchorage,AY
DearDavid:Thankyoufortheopportunitytoreviewthereport.TheabovecommentsaremyownandshouldnotbeinterpretedasrepresentingtheofficialpositionoftheNationalParkService.ATTACHMENT/\UG?1981RECEIVEDAlASKAPOWERAUTHORITYAUG:;iS81334WestFifthAvenue,Suite250Anchorage,Alaska99501UnitedStatesDepartnlentoftheInteriorNATIONALPARKSERVICEALASKASTATEOFFICESaveEnergyandYouServeAlIlerica!1201-03aSincerely,'-~~'./1-~1-Jt\tlPl(,)!~~-Larry.Wr19ht.OutdooRecreationPlannerMr.DavidD.WozniakSusitnaHydroProjectEngineerAlaskaPowerAuthority333West4thAvenue,Suite31Anchorage,AK99501InresponsetoyourrequestIhavereviewedtheDraftDevel-opmentSelectionReportfortheSusitnaProject.BaseduRortheinformationpresentedinthereport,Iwouldjudgetheevaluationprocesstobesatisfactory.However,Iwouldnotwanttorecommendorotherwisecommentonapreferredbasinalternativepriortothecompletionofongoingstudieswhicfwillfurtherquantifytheanticipatedenvironmentalimpacts.Iassumethefinalreportwillreflectamoreprecisecom~parisonofenvironmentalimpactsforthedamsitesunderconsideration.Anadditionalitemofinterestwhichshouldperhapsbeincludedinthefinalreportisacomparisonoftheexpectedlifeoftheprojectforeachalternativedamsiteconsiderintheeffectofsiltaccumulationin'thereservoirs.INREPLYREFERTO:
BH/SZ/mnATTACHMENT5437EStreetSecondFloorAnchorage.AKP.O.Ro~1207Soldotna.Ala!>l<.a99669(907):'625210P.O.Bo>:i064Wasilla,Alaska99687(907)376·5038ilL.4//;IAugust14~19811981n[l@(";'-;\;:",o,·\I}.'.'l·./1"f\o.\'....II\1.1'")I.rJ_:Ji.rj\>~.;....".1'·/:Dr:..::..v~-04_At.thistime,thisDepartmentdoesnotendorseanyparticularplan.l-lewould,however~recommendtheSteeringCommitteeopenlydiscussthe\.]atanaDam-Tunneloptionbecauseofitsreducedenvironmentaland·aestheticimpact.Thankyoufortheopportunitytoreviewthisdocument.WeappreciateyoureffortinsolicitingSu-HydroSteeringCommitteeinvolvement.IfyouhaveanyquestionsregardingthesecommentspleasecontactStevenZrakeofthisoffice.cc:SteveZrakeDaveStudevantAlCarson-DNRSincerely,ft#//h~BobNartinRegIonalEnvironmentalSuperVisorDearMr.Wozniak:Wehavereviewedsections7and8oftheSusitnaHydroelectricProjectDevelopmentSelectionReport(seconddraftJune1981).Wefindthattheplanselectionmethodologyusedinsection8meetstheobjectivesofdetermininganoptimumSusitnaBasinDevelopmentPlanandofmakingapreliminaryassessmentofaselectedplanby.an.alternativescomparison•.TheincreasedemphasisoverpreviousanalYses·oftheenvironmentalacceptabilityofthealternativesisgood.DaveWozniakProjectEngineerAlaskaPowerAuthority333W.4thAvenue~Suite31Anchorage,Alaska99501