Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
APA1122
s . J SUSITNA HYDROELECTRIC PROJEC'F FEDERAL ENERGY REGULATORY COMMISSION PROJECT No. 7114 LJ 1.11 A R Y AJ..ASl(A DEP·~ Of FISH & 8AME 33~ R&s.pbef'D( R.d. A~. Alaau 9951&-lM • l (J.{'Jf?.~ •• ) • t l /:.'' ( INSTREAM ICE· CALIBRA-TION OF COMPUTER .MODEL [}{]ffi\[R1~~=~[ID~@©@ SUSITNA JOINT VENTURE FINAL REPORT APRIL 1-984 DOCUMENT No. 1122 .......____ALASKA POWER AUTHORITY -----...J SOSiftA HYDROBLBCmiC PROJS::T IRSTREAII ICE CALIBRA~IOii OP CmiPOTER MODEL Report by Harza~Ebasco Susitna Joint Venture Prepared for Alaska Power Authority Document No. 1122 Susitna File No. 42.2.5 ARLIS Final Report April 1984 L ·o Alaska Resources 1 rrar;,;; Infonnation Senllces . chorage, Alaska NOTICE ANY QUESTIONS OR COMMENTS CONCERNING THIS REPORT SHOULD BE DIRECTED TO THE ALASKA POWER AUTHORITY SUSITNA PROJECT OFFICE TABLE OF CONTENTS SECTION/TITLE LIST OF TABLES LIST OF EXHIBITS 1.0 INTRODUCTION 1.1 Environmental Work Plan 2.0 DESCRIPTION OF MODEL 3.0 DATA AVAILABLE FOR CALIBRATION 4.0 CALIBRATION OF ICE-FREE TEMPERATURE PROFILE 5.0 CALIBRATION OF ICE-FREE WATER SURFACE PROFILE 6.0 CALIBRATION OF FREEZE-UP PROCESSES 7.0 DISCUSSION OF RESULTS 8.0 FURTHER STUDIES REFERENCES TABLES ..- '¢ EXHIBITS ~ 0 g APPENDICES It) It) I"' (") (") i PAGE ii iii 1-1 1-2 2-1 3-1 4-1 5-1 6-1 7-1 8-1 No. 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 LIST OF TABLES Title Ice-free Water Profile Calibration -Q = 3000 cfs. Ice-free Water Profile Calibration -Q = 9700 cfs. Ice-free Water Profile Calibrated n Values. 1982 Freeze-Up-Ice Observations at Gold Creek. 1982 Freeze-Up-Devil Canyon Climatological Data. 1982 Freeze-Up-Talkeetna Climatological Data. 1982 Freeze-Up-Observed Water Surface Profiles. 1982 Freeze-Up-Observed Ice Thicknesses -Feb.5,1983. 1982 Freeze-Up-Maximum Water/Ice Profile. 1982 Freeze-Up-Calibration Coefficients 1983 Freeze-Up-Discharge at Gold Creek. 1983 Freeze-Up-Talkeetna Climatological Data. 1983 Freeze-Up-Sherman Climatological Data. 1983 Freeze-Up-Ice Observations at Gold Creek. 1983 Freeze-Up-Observed Water Surface Profiles. ·1983 Freeze-Up-Observed Ice Thicknesses -Jan. 5, 1984. 1983 Freeze-Up-Observed Ice Thicknesses -Jan. 26-27, 1984. 1983 Freeze-Up-Observed Ice Cover Leading Edge Progression. 1983 Freeze-Up-Maximum Water/Ice Profile. 1982 and 1983 Freeze-Ups-Calibration Coefficients. ii No. 1 2 3 4 5 6 7 8 9 LIST OF EXHIBITS Title Map of Susitna River Basin Environmental Work Plan Water Surface Profiles for 3000 cfs and 9700 cfs -Computed and Observed 1982 Freeze-Up-Observed Leading Edge Progression 1982 Freeze-Up-Maximum Water/Ice Profile Typical Ice-Covered Cross-Section 1982 Freeze-Up-Leading Edge Progression 1983 Freeze-Up-Maximum Water/Ice Profile 1983 Freeze-Up-Leading Edge Progression iii 1.0 INTRODUCTION As a part of the on-going environmental studies for the project, we have completed the calibration phase of the computer modelling studies for instream ice. This report deals with the reach from the confluence at Talkeetna to Gold Creek, as shown on Exhbit 1. This reach includes a number of the more important sloughs, and is expected to experience a greater change in winter regime than the Lower River area. Data has been collected in this reach since 1980 and includes the most complete data available on the river for ice modelling purposes. The calibration studies have been restricted to freeze-up since we expect that this will lead to the most significant staging with project, and since break-up modelling is generally considered beyond present state-of-the-art. The break~up of an ice cover depends on complex, highly variable and unpredictable structural characteristics of ice. In addition, the ice jams resulting from break-up can result in unsteady flow which is not included in our present model. We believe that this limitation of the ice model is acceptable because: 1. With project, break-up in the middle reach will be more gradual and controlled compared to pre-project because power flows can be regulated during the break-up period. 2. Maximum ic~e jam stages can be estimated with present analytical techniques if the likely locations of jams are known. 1-1 1.1 ENVIRONMJ!NTAL WORK PLAN The sequence of enviromental studies in progress for the river is shown on Exhibit 2. According to this exhibit, the critical input data for the instream ice model are the discharge hydrograph and temperature time history for releases at the dam(s). The instream temperature model (AEIDC) will also be required for final instream ice runs. However, for preliminary runs, the instream ice model will also include computations for ice-free temperature profiles for convenien1t=e. 1-2 2.0 DESCRIPTION OF MODEL The bas 1 c program, I CECAL, has been developed by Darryl Calk! ns of the Cold Regions Research and Engineering Laboratory (CRREL), U.S. Army Corps of Engineers. The program documentation is included in Appendix A. Mr. Calkins provided assistance in installing the program on the H-E system and continues to provide advice on as- sessment of program output. In summary, the program requires the following daily input data: Upstream Boundary Water Discharge Water Temperature, or Frazil Ice Discharge Within the Reach Channel Cross-sections Channel Roughness Air Temperature Wind Velocity Downstream Boundary Stage Hydrograph Water Dllscharge 2-1 For the first day of the simulation period, the program computes the ice-free water surface profile and temperature profile. During each day, including the first day, the model determines the total ice produced and determines advance of the leading ice edge from a pre-determined location and thickening of the cover. In addition, lateral ice growth is determined at various open-water sections in accordance with calibrated coefficients. After the ice front advances from one cross-section to the next upstream section, or if the water discharge changes from one day to the next, the water surface profile is re-computed. The ice production in the reach is computed based on open-water heat exchange using a linear approximation of the heat transfer coefficient with wind velocity as the major independent variable. The ice cover starts at a pre-determined location at the downstream boundary. The advance of the leading edge is based on water velocity at the front and relative thickness of ice to water depth. The critical parameters which must come from the ice hydraulics calibration are as follow: 1. Ice-free heat transfer coefficients. 2. Cohesion coefficient for frazil slush accumulation. 3. Critical value of Froude Number for progression of the leading edge. 4. Critical velocity for erosion/deposition under ice cover. 5. Lateral ice growth coefficients. 2-2 The model uses the following fundamental equations for the ice processes, based on references 7-11: 1. Ice inflow at upstream boundary: where 3 = ice discharge, m /s. Ci = surface ice concentration, %. V = mean velocity, (m/s). B =ice-free water width, (m). t =mean thickness of the floating slush (m). e = porosity of the floating slush. 2. Ice production in open water: where ice h. A T ~ a pA. 3 discharge, m /s. 2 = ice production heat transfer coefficient, W/m -°C. 2-3 A = ice-free water surface area, T =air temperature below 0°C. a p = density of water, 3 1000 kg/m • 2 m • 5 =heat of fusion, 3.34 x 10 N-m/kg. 3. Lateral ic!e growth: where L = ice growth in m/day. i K = coefficient based on observation. V = mean flow velocity, m/sec. N = exponent based on observation. 4. Criterion for progression of leading edge: F = V < Fe ---v' 2gH where F computed modified Froude Number. Fe = critical Froude Number. 2-4 V = mean flow velocity, m/sec. H = hydraulic depth, m. If F > F , leading edge cannot advance and ice is drawn under c cover for possible deposition downstream. 5. Progression by Hydraulic Thickening: 6. where V =mean flow velocity just upstream of the leading edge, m/sec. H = hydraulic depth just upstream of the leading edge 1 m. th = stable ice thickness required for progression of front, m. P .. , P = d e n s i t: y of ice cover (assumed 920 3 kg/m ), 3 (1000 kg/m ). Progression by Mechanical Thickening (shoving): B Vu 2 [l p: :·j = 2a.ts .L.. e + + C2H 2 p gJ..IH 2 p ]..1 u u where V = mean velocity under ice cover, m/sec. u 2-5 -] 2 -£...._ ~ P H 2 u water H = mean hydraulic depth under ice cover, m. u B = channel width, m. U =coefficient of internal friction for ice cover, 1.28. C = Chezy coefficient of friction, based on average of bed friction and ni = 0.050. P~P= density of ice cover, (same as 5, above). R = hydraulic radius under ice cover, m. a = cohesion of ice cover, N/m 2 • t =stable~ ice thickness required for shoving stability, m. s 7. Underice Deposition: V -c = critical velocity beneath ice cover for deposition of u ice under cover when front cannot advance, m/sec. Temp. 0° to -7°C -r to -18°C -18° to -30°C 8 • S o 1 i d I c e G r ow t h : Vu-e (m/s) Vu-e Vu-c/0.95 Vu-c/0.90 2-6 1/H ) a where T a H a e = previous day ice thickness, m. = incremental ice thickness growth per day, m. = reach ave. air temp below 0°C. =thermal conductivity, 2.23 W/m-°C. 2 = surface heat exchange coef, W/m -°C. =porosity of ice cover (assumed 0.3). =heat of fusion of ice, 3.34 N-m/kg. 3 = density of ice, 920 kg/m • 2-7 3.0 DATA AVAILABLE FOR CALIBRATION The data available for model calibration has been accumulated primarily by R&M Consultants over the past four years. This infor- mation is available in R&M reports (See References 1-3, and 6). In addition, channel cross-sections from Talkeetna to Watana, and ice- free stage-discharge observations are available in R&M's report on "Hydraulic and Ice Studies," (Reference 4). The information included in these reports is as follows: 1. Descriptions of the ice processes, 2. Photos of river ice phenomena, 3. Weather data, 4. Discharge data, 5. Surface ice concentration, 6. Water surface profiles, 7. Ice thickness, 8. Leading edge progression, 9. Ice jam locations and effects, 10. Channel cross-sections, 11. Ice-free stage-discharge ratings. 3-1 Based on the above information, the freeze-up for 1982-83 and 1983-84 were selected for calibration of the freeze-up portion of the model, since this represents the most useful information re- quired for calibration. While this data is not complete, the following information in the reach from Talkeetna to Gold Creek was sufficient for preliminary calibration: 1. Progression of the leading edge, 2. Water surf:ace profiles and maximum ice elevations, 3. Ice thickness after formation of cover, 4. Estimate of surface ice inflow at Gold Creek. 3-2 4.0 CALIBRATION OF ICE-FREE TEMPERATURE PROFILE The ice-free temperature profile is not important for the calibra- tion of the freeze-up portion of the model~ since the simulation period begins after the river has reached 0°C~ and air temperatures are generally below 0°C. Therefore, no attempt has been made to calibrate this portion of the model. However, for post-project production runs, discharges from the dam(s) will be above freezing and it is very important to determine the location of the 0°C point in order to estimate the ice produc- tion and limit of ice cover. Therefore for post-project operation, we plan to use results of the AEIDC temperature profile model, SNTEMP, which has been calibrated to the Susitna. Until SNTEMP results are available, however~ we will use the temperature profile as co~uted by !CECAL, realizing that adjustments may be necessary when the final SNTEMP data is available. 4-1 5.0 CALIBRATION OP ICE-FREE WATER SURFACE PIOPILE This portion of the model must be calibrated since velocity and depth are crucial to the development of an ice cover and the mechanics of the ice front advance. Ice-free stage data is available on the river for Gold Creek dis- charges of 3000 cfs, 9700 cfs, and higher flows. Since the normal pre-project winter flow during freeze-up is approximately 3000 cfs, and with-project freeze-up flows are expected to be approximately 10,000 cfs, both discharges were used for calibration purposes. Tables 1 and 2 show the comparison of computed and observed water surface elevations. All computed water surface elevations are within 0.5 foot of the observed values, which is considered accept- able for the ice model. Exhibit 3 includes profiles showing the same information. Tables 1 and 2 also show the water surface elevations computed with the HEC-2 model, as reported in reference 5. These values demonstrate that the ice-free surface profile computation in ICECAL compares favorably with HEC-2, which is the standard model for open-water profiles. The resulting Manning's "n" values for the river bed at the various cross-sections are shown on Table 3 and range from 0.022 to 0.065, with contraction and expansion losses of 0.1 and 0.3, respectively. This is considered to be a normal range of "n" values for a river such as the Susitna. These calibrated roughness factors were then used for the river bed for all succeeding freeze-up simulations. 5-1 6.0 CALIBRATION OF FREEZE-UP PROCESSES The simulation of freeze-up for 1982-83 is based primarily on data given in the R&M 1982-83 Ice Observation Report. taken from that report is as follows: The information 1. Table 4 contained water discharge, mean daily air temperature, and ice concentration at the upstream model boundary. (Gold Creek). Since wind velocity was not available at Gold Creek, the record at Devil Canyon was used, shown in Table 5. The ice concentration was converted to ice discharge based on estimated thickness, porosity, and flow velocity. 2. Table 6 provided the downstream boundary conditions (Talkeetna), mean daily air temperature and wind velocity. 3. Table 7 listed the river stage after the ice front passed various locations in the reach between Talkeetna and Gold Creek. 4. Table 8 gave the ice thickness following freeze-up at Gold Creek, Curry, and Talkeetna (LRX-3). 5. Exhibit 4 in this report was used to determine the location of the leading edge with time. Results of final simulation trials are shown on Exhibit 5, and 7 and Tables 9 and 10. Exhibit 5 shows a profile of the maximum water surface elevations computed after the ice front has passed the various sections in the reach, along with corresponding ob- served ice elevations at locations reported in Table 7. Table 9 shows a comparison of the computed and observed maximum water/ice elevations at the observation loc~tions. Exhibit 5 also shows the 6-1 computed slush i~e thickness in the reach, after the cover has progressed to Gold Creek, with observed ice thickness included for comparison. It should be pointed out here that a quantitative comparison of ice thickness is difficult. Exhibit 6 shows a typi- cal ice-covered cross section versus the model approximation of the same section. The actual flow distribution and ice deposition pattern are complex 3-dimensional processes, whereas the model computation is one-dimensional. The observed ice thicknesses, based on 1-3 corings typically, cannot be expected to define an average ice thickness which would be indicative of the ice volume stored, which is ultimately our goal in the modelling effort. However, based on our studies to date, we believe the computed ice thicknesses are indications of the ice volumes, and are probably somewhat conservative (high). Exhibit 7 shows the computed loca- tion of the ice front with time, compared to the observed location. The calibration coefficients resulting from the final simulation for the 1982 freeze-up are shown in Table 10. within normal tolerances, as indicated. These values are The simulation of freeze-up for 1983-84 was based on data provided by R&M in their Preliminary Ice Report for 1983-84. The informa- tion used is as follows: 1. Table 11 was used for water discharge at Gold Creek. 2. Tables 12 and 13 were used for air temperature and wind velocity at Talkeetna and Sherman thru December 1983. For the first week of January, Gold Creek temperature and Talkeetna wind velocity were used for the entire reach, since no other data was available at that time. 3. Table 14 was used to estimate ice inflow at Gold Creek. A porosity value of 0.6 was assumed for this computation. 6-2 4. Table 15 was used to define the maximum water/ice profile during the progression of the leading edge from Talkeetna to Gold Creek. 5. Tables 16 and 17 were used to define the observed ice thick- nesses at selected locations following freeze-up of the Talkeetna-Gold Creek reach, in early January and late January, respectively. 6. Table 18 provides ~he location of the observed leading edge(s) with time from Cook Inlet to Gold Creek. Results of final simulations are shown on Exhibits 8 and 9, and Tables 19 and 20. Exhibit 8 shows the computed maximum water/ice profile and computed maximum ice thicknesses, along with cor- responding observed values. Table 19 shows the comparison of computed and observed maximum water/ice elevations at the observa- tion locations. Exhibit 9 shows the computed leading edge progression versus time for various assumed values for the critical Froude number at the leading edge, along with the observed leading edge progression. It should be noted that in the 1983 freeze-up, two intermediate ice bridges formed in the reach. The present model does not consider intermediate bridges and therefore does not simulate the multiple cover progressions as observed. The simula- tions varied the critical Froude criteria in order to match the range of progression rates observed. As shown on Table 20, we have selected run 84-15, with a critical Froude number of 0.096, as representative of an average progression rate for the 1983 freeze- up. Table 20 shows the other final calibration coefficients for the 1982 and 1983 freeze-ups. All of the factors are common except F , which was slightly different for the two years. c For with- project simulations, we will use F c 0.095, the average of these two simulations. 6-3 7.0 DISCUSSION OP RESULTS Based on the results of the simulations to date, we conclude the following: 1. The ice-free water surface profile calibration yields computed values within 0.5 foot of observed values for 3000 cfs and 9700 cfs. This is considered acceptable for ice modelling purposes. 2. The maximum water/ice elevations computed and observed for the 1982 and 1983 freeze-ups are compared in Tables 9 and 19 respectively. In general, the differences are within + 2 feet which is the order of accuracy which could be expected in modelling the phenomena. However, there are some locations where the disagreement is significantly greater than this. For example, at RM 127.0 and 130.9 in 1982, and RM 113.0, 123.3, and 128.7 in 1983, the differences range from+ 3 to over + 8 ft. In all cases when these large differences occur, the computed values are higher than the observed values. One possible explanation for this is that the higher levels cannot actually obtain in the field because of overflow into sloughs which are not included in the model. In addition to this, the model may be overpredicting the stages, particularly in the 1983 simulation, because the model does not consider inter- mediate bridges, which can interrupt ice supply to downstream reaches. It appears then than the model will produce conserva- tive results for with-project operation, in that overtopping of berms will be indicated when they occur, but actual stages will likely be less than the model prediction. 3. Ice thickness computed and observed following the 1982 freeze- up agree very well. The field observations were made in February when discharges and stages had decreased, and some 7-1 solid ice had developed. However, the total ice thickness is very similar to the computed slush thickness. The thickness observations following the 1983 freeze-up agree reasonably well with model simulations except at LRX-24 and LRX-27. Here the observed thicknesses are significantly higher than computed. However, it should be pointed out again that the observations are limited to 2 or 3 measurements in a 400 ft. + cross section and therefore cannot be expected to completely define the ice in the section. The only other explanation for the discrepancy is the intermediate ice bridge which formed at LRX-24 and led to the second leading edge progression. This may have led to the "hanging dam" observed in the reach from LRX-24 to LRX-27. The model simulation did not assume the intermediate bridge and therefore the leading edge moved thru this reach at higher stage with less deposition of ice. 4. The computed leading edge progression compares reasonably well with the observed rates for the 1982 freeze-up as shown on Exhibit 7 except fo~ the observed "stall" near Gold Creek. The observed progression from RM 134 to 136.5 took over one month, while the computed advance in this area took only about one week. This indicates the model simulation will be conservative in that it will probably show a somewhat higher advance rate that actual. The 1983 freeze-up advance rates are shown on Exhibit 9. This comparison was complicated by the observed development of intermediate bridges which were not modelled. The model was run with varying values of critical Froude num- ber, F , such that the limits of observed rates were simulated. c Run 84-15 used an intermediate value of F , 0.096, and produced c a progression rate which was a reasonable approximation of the observed, without using an intermediate bridge. Again as in 7-2 the 1982 simulation~ we expect model predictions to be conser- vative with high predictions of stage during progression of the leading edge. 7-3 8.0 FURTHER STUDIES These studies conclude the calibration portion of the modelling effort. We will now extend the model to with-project studies which will include the following: 1. With Watana only. 2. With Watana and Devil Canyon. 3. Wet, Dry, Average River Flow. 4. Hot, Cold, Warm Winters. 5. Various Power Demand Schedules. 6. Case C Environmental Flow Release Schedule. The studies will include the reach from the dam(s) to Talkeetna, for the period from November thru April. An estimate will be made of the period required to fill the lower river with ice, which will permit ice progression up the middle reach. We will use a conser- vative estimate for this period in order that we obtain a conservative estimate of ice cover development in the middle reach. A future report will deal with results of these studies. 8-1 REFERENCES REFERENCES 1. R&M Consultants, Susitna Hydroelectric Project, Ice Observations, 1980-81, August 1981. 2. R&M Consultants, Susitna Hydroelectric Project, Ice Observations Report, Winter 1981-82, December 1982. 3. R&M Consultants, Susitna Hydroelectric Project, Susitna River Ice Study, 1982-83, Preliminary Draft, August 1983. 4. R&M Consultants, Susitna Hydroelectric Project, Hydraulic and Ice Studies, March 1982. 5. Harza-Ebasco Joint Venture, Susitna Hydroelectric Project, Water Surface Profiles and Discharge Rating Curves for Middle and Lower Susitna River, December 1983. 6. R&M Consultants, Susitna Hydroelectric Project, Preliminary Susitna River Ice Report, 1983-84, February 1984. 7. Pariset, Hausser and Gagnon, "Formation of Ice Covers and Ice Jams in Rivers", ASCE Hydraulics Div., November 1966. 8. Newbury, R. "The Nelson River: A Study of Subarctic River Processes", Ph.D. Thesis, John Hopkins University, 1967. 9. Ashton, George D., "River Ice", Annual Review of Fluid Mechanics, 1978. 10. Ashton, George D., "Dynamics of Snow & Ice Masses" Chapter 5, Academic Press, 1980. 11. Ashton, George D., "Suppression of River Ice by Thermal Effluents", U.S. Army CRREL Report 79-30, December 1979. TABLES Section River No. Mile LRX-3 98.5 9 LRX-4 99.58 LRX-9 103.22 LRX-24 120.66 LRX-28 124.41 LRX-35 130.87 LRX-4 5 136.68 LRX-62 148.94 LRX-68 150.19 References: 1 • "Water Surface Harza-Ebasco, Table 1 ICE-FREE WATER SURFACE PROFILE Q = 3000 cfs at Gold Creek Harz a 1 R&M 2 HEC-2 Observed 339.7 340.2 34 7.1 374.9 375.1 519.2 519.1 551.6 615.0 614.7 681.1 681.4 831.4 831.9 847.3 Profiles and Discharge Rating October, 1983. Table 5. 2. R&M Correspondence No. 052306, September 11 ' Harz a Instream Ice Model 340.2 346.8 374.6 518.9 551.6 614.5 681.0 831.4 847.1 Curves, .. 1981. Section River No. Mile LRX-3 98.59 LRX-4 99.58 LRX-9 103.22 LRX-24 120.66 LRX-28 124.41 LRX-3 5 130.87 LRX-45 136.68 LRX-62 148.94 LRX-68 150.19 References: Table 2 ICE-FREE WATER SURFACE PROFILES Q z 9700 cfs at Gold Creek Harz a 1 R&M 2 REC-2 Observed 344.1 348.6 348.1 378.0 378.4 521.2 5 21 .3 554.4 553.8 617.4 617.3 684.0 684.1 835.4 835.4 851.0 851.4 Harz a River Ice Model 344.0 348.6 378.9 521.8 553.8 617.4 684.5 835.9 851.4 1. "Water Surface Profiles and Discharge Rating Curves," Rarza-Ebasco, October, 1983. Table 5. 2. "Hydraulic and Ice Studies," R&M Consultants, March 1982, Table 4.18. Table 3 Ice-free Calibrated "n" Values Clio~:, :,t:"' ' Ill hi uAIA .-r A I 1 Ut.l t'(:, •.a•t',. C I tst.U•N lC.t.-N .. , . .,, q l.V.) u.uu~ v.uu~ ~t'.~b 4t 1. u;s u.u~~ u.uu~ '111.1;)'1 lH t.u.s v.uz~ u.u~u 'lbeOq lJ l.u.S u.u2~ u.~t:.u 'IYeU'i 1.) 1.Vl v.u~i! u.u~u yc,.j .. l.s l.uJ u.u~~ u.u~u ""·~~ 115 1.us v.ul~ v.-o~o I\IUe~b ·~ l.u.S u.u .. u u.uso lUU.'Ib ~~ l.v~ v.uqu v.u~u lUJ.~~ , .. 1. Ul li.uc:.~ u.o~u 1u2 • .so l1 1.Uj v.ue~ v.u~o I U.S.~~ 1~ 1.u.s u.obc v.u~u tuq.t~ 14 , .• V".S u.o~~ u.o,o lUtt.ob lb l.UJ u.ul;)~ u.u~u ltJtt.41 14 leUJ u.o!t~ u.u~u 11" • .)ft 11 leUJ "·"~, u.u;o lltl.tsCf lb t.u~· u.o~!» v.u~o llt.r-J 1~ t.u.s "·""~ u.u~u ll~.J4 17 "1; 0"3 De040 a.-o~o 11~ • .,.., lb l.u.s u.uqo u.o~o ttJ.u~ 1ft l.U.) Ue04U u.u~o 11..S.ob ·~ l.uJ u.u .. u u.u~o lllf.1J I'!» &.U] u.uqo · u.u~u · U'l.:>Y ~~ t.u.s o.uqu u.u~u tlb."" tQ 1.UJ v.uqu uev~o- 117.1'1 ... &.u.s Cl.u .. u u.usu llY.t, l l leU.) UeUIIU u.u~o 11 \f. i~ ,, leU.) u.Ujtl u • ..,;u 1~Uec!O If\ leU.) u.uiu u.u'.:»u tcv.ot. ... '·"" u.u.)O u.u~u l£'1.JU l.S t.uu u.oJo o.u,v- l~J.t.j 11 t.uu u.u.su ... ut:.u 1&!2.1;)1 1&! t.uu u.vl~ u.osu l.~J-~J 1.) t.uo u.u~., u.uso ·~"·"' lb t.uo u.ut!~ u.u~u tt!o.ll l!l t.uu u.u~, u.u~o 1~7.'JU 1"'l l.VO o.o.se o-.v~o lib ebb lb J.uo u.~Ub u.u~u li'l.b7 "fl t.UII o.o.se u.u~u I.S~.l~ ·~ l.IJu o.u.so u.u~u l JU •'' I 1'1 &.uu u .o·~o v.ul!)u J.)u.cs/ lei l.Utl u.,uu u • ..,,u Contraction Loss = 0.1 b. V2 /2g Expansion Loss = 0.3 b. V2 /2g Table 3 (Cont'd) Ice-free Calibrated "n" Values ..;(AilUfll JJJ.J't IJJ.I'lU 1.)~ • .," l.S.S • .Sl J_,q.c-es 1Jq.7t!. ~~~ • .so lJI;)."/~ I.S"l.'t't I.Sb.C.U l.Jo.oa llo • .,o H7.1~ lJ7.cal I .Sa.~~ lld ... D l~a.t~.., l.SCfe&l4 111u.J~ J'lu.o3 IC11.&~'1 l&li!.J.) lllt!. • .)Ct lff.).la lllll.ft~ tcai.~D l•us.I.S ICta • ., .. .,..,_,~ lttlf.J:) ta'l.&l, 1 ... ..,.~1 14"'·"' li;)U.l., cwu~:, :,t L 1 l lJhl u41A t'l:, u-fACI tft.V•N ··'-JCt•N ·t 't 'S -."Uu u-;vcal· cr.vso 14 l.vu u.olb u.usu 1&1 l.vu-u. 'O.).o v.-v~u 11 l.uo u.u.)o u.uso 1&1 l.uu v.u~e v.~v· ).) ··"" u.o.se u.u~u ·t, t.vo v;;-o~·& ueno 17 l.uu u.ucau o.uso ~u l.vv v.U4V u.u~v 14 j. '"' u.v4S u.u~o ~~ 1.uu ·u.u•~ u • .,~., ~~ t.uu u.u4'S o.u~o 111 le'OU V.'Uif1l 0.0'~'0 1U 1.uu Uet14U u.usu -~~ 1.1iv u.vqu v.u!Jt I 1 t.uu u.u .. ~ u.uso ... v.~tt u .'9~1t v • .-o~e lo u.C~b u.v~CI o.u~o 111 Ue'fCI u.u~u u.osu 14 u.c;t5 o.oss o.uso 1&1 u .. .,, u.u~~ u.u~v Jl;) "·'~"-u.u~l;) o.usu ~~ Ve'tG o.-u~u u.u~'" lat ... .,tt u.u~u u.ul;)u , .. '0 ·"""' v.~ o.o~o !4 \;.'Itt U.VS!J v.usu 1~· v.va v.-vol u.u~u ~~ "·~" (r.Uo.) u.u~u ·}j v-.-...4 o.vs~ o.u-;u 11 v ... ,. u.CI!J~ v.u~u ~~ v.4fll v-• .,~!t ~.17~U 't ... ., ... u.u51;) v.c.-:,u 1.) .,_.,,. v.vo!t v.u~u 1~ "·"" u.ub~ u.uso Contraction Loss = 0.1 ~ v 2 /2g E-xpansion-Loss = 0. 3 ~ v 2 /2g B5/dd2 TABU: 11.11 SUSITNA RIVER AT GOLD CR££K FR£EZ£•UP OBSERVATIONS ON TH£ MAINSTEM November 1982 Gold creek Mean Air Water Ice In Border Ice snow Dlacharge ( 1) Temperature (2) Te•perature (3) Channel (It) Thlcknesa Depth 1-lj Dat.e (Cf&) (OC) (DC) Ill (ft) il1.L Weather li 0 Nov. 1 lt800 ·2.2 0.00 70 0.9 1.5 Wlnd~/CIOUd)' s 2 11700 1.1 0.10 20 0.9 1.5 Snow ::0 3 14600 ·6.9 0.20 50 0.9 1. 7 Cloud~ !?'I .. 14500 -3.3 0 •. 30 15 0.9 1,8 Cloud~ ..,. 5 141400 •6,7 0.140 10 0.9 '· 8 Cloud~ ~ 6 11300 •16.9 0.30 50 0.9 1,8 sunn~ :;o 7 14300 -17.8 fl.20 55 1,0 1. 8 sunn~ ro 8 11200 -7.5 0.15 55 1.2 1,8 Snov •o 9 14100 •5.6 0.15 55 1.2 2.6 Cloud~ 0 10 11000 -5.0 0.30 50 1.2 2.5 Cloud~ li 11 11000 •1,1 0.20 50 1.2 2.5 Snov rt 12 3900 •1,9 0.20 35 1.3 3.3 Cloud~ 13 3800 •3,"1 0,20 35 1,3 3,3 Sunn~ 111 3800 •1.9 0.20 30 1 '' 3,11 Cloud)' 1-'(/) ' 15 3700 •12.2 ItO 1.5 3.11 Sunny 1..? ~ 16 3600 •15.8 60 1.6 3.11 sunny CO(Il Ch tv 1-'· "" 17 3600 -15.0 70 1.6 3.11 Sunny lrt ' 18 3500 -22.8 0.30 70 1.6 3.3 sunny 00~ 19 3500 •25.7 0.20 75 1' 7 3.3 sunny Will 20 31100 •10.0 o. 30 70 1.6 3.3 Snow 21 31100 •6,11 o. 30 60 1.6 11.1 Snov :;o 22 3300 ·5.0 0, ItO 55 1.6 11.1 Sunn~ 1-'· 23 3300 ...... o. 30 lt5 1.3 lt.O Sunn~ <: (I) 2ft 3200 -3.1 o. 30 30 1.3 11.0 Sunn~ li 25 3200 •2.8 0.50 ItO 1.2 3.9 Sunn~ 26 3100 -3.1 0.110 50 1.2 3.8 Sunn~ H 27 3100 -8.3 0.110 50 1. 2 3.8 Sunn~ () 28 3100 •12.8 0.50 60 1.3 3.8 Sunn~ ro 29 3000 •9.7 o. 30 60 1,3 3.8 Snov (/) 30 3000 -8.9 0.20 ItO 1.3 3.8 Cloud~ rt ~ p, I<: ... 1. Provisional data subject to revision b~ the u.s. Geological surve~, Water Reaources Division. Anchorage, Ataaka. 2, Average value or the days •lnl•u• and Maxl•u• te•perature. 3. Based on one Instantaneous .. aaure•ent, usual I~ taken at 9 •·•· "dall)', t-3 ... VIsual estf•ate based on one Instantaneous observation. usually a.t 9 a.•. dall~. Ill o· ...... ro .(:::>. &5/dd3 TABLE lf.5 SUSITNA RIVER AT GOLD CREEK FREEZE•UP OBSERVATIONS ON THE MAINSTEM December 1982 Gold Creek Mean Air Water Ice In Border Ice Snow Discharge (1) Temperatura (2) Temperatura (3) Channel (If) Thickneu Depth Date (CfS) (OC) I OCJ Ill 1ft) 1.llL Weather Dec. 1 3000 ·7.8 0.10 30 1.3 3.4 Cloudy 2 2900 •16.9 0.10 55 1.3 3.3 Cloudy 3 2900 -16.9 0.00 70 1.3 3.3 Windy/Sunny If 2900 •10.0 0.10 75 1.3 3,3 Cloudy 5 2800 -8.3 0.20 75 1, 3 3.3 Cloudy 6 2800 -1.7 0.20 65 1.3 3.0 Sunny 7 2800 2.5 0.30 ItO 1.3 3.0 Windy/Cloudy 8 2700 3.6 0,20 15 1.1 3.8 snow 9 2700 -1.9 0.20 25 1 • 1 3.9 Cloudy 10 2700 ·16.1 0.10 60 1.2 3.9 Sunny 11 2600 -6.1 0.1)0 lfO 1. 3 3.9 Sunny 12 2600 -3.1 o.oo 60 1,3 3.8 Cloudy 13 2600 -1.7 0.10 ItO 1.3 3.8 Sunny 11f 2600 ·5.0 0.20 25 1. 2 3.8 sunny 15 2600 -0.3 0,20 10 1.2 3.8 sunny 16 2500 ·3.3 0.10 10 3,7 Sunny I 17 2500 ·6.7 0:10 10 3.7 Sunny (rl 18 2500 ·10.6 0,00 50 3.7 sunny "' 19 2400 -11.7 o.oo lfO 3.7 Sunny 20 21100 -7.2 o.oo ItO 3.7 Sunny 21 21100 -21.1 o.oo 50 0.5 3.7 Sunny 22 211ll0 •23.1 0.00 50 0.5 3.7 Sunny 23 2400 •15.6 o.oo 30 0.5 3.7 Sunny 24 2400 -11.9 0.00 30 0.5 3.6 Sunny 25 2300 -9.2 0.10 30 0.6 3.6 Sunny .26 2300 ·5.6 0.10 30 0.6 3.5 Sunny 27 2400 -1.7 o. 10 35 0.6 3.5 Snow 28 21100 0.6 .. 5.0 snow 29 2600 1. 7 0.10 5 overflow 3.1 Rain 30 2800 -0.3 0,10 25 overflow 3.2 Rain 31 2900 0.10 ~ 1.3 3.2 sunny 1. Provisional data subject to revision by the u.s. Geological Survey, Water Resources Division. Anchorage, Alaska. t-3 AI tr 2. Average value of the days •lnl•um and •axlmu• temperat~re. 1-' (I) 3. Based on one Instantaneous •easurement usually ·taken at 9 •·•· dally. .t>. ... VIsual estimate based on one Instantaneous observation. usually at 9 •·•· da fly, -n 0 ::s rT -p. s5/dd4 TABLE 4.6 SUSITNA RIVER AT GOLD CREEK FREEZE-UP OBSERVATIONS ON THE MAINSTEM Janua ey 1983 Gold Creek Mean Air Water Ice In Border tee Snow ·Discharge c 1 , Temperature (2J Temperature (3J Channel (4) Thickness Depth Date (cfs) I oq I OC) IS) u:u .u:.u_ weather Jan. 1 2900 -2.8 o.oo 8 1.3 3.2 Sunny 2 2600 -2.8 0.00 10 1.3 3.2 sunny 3 2800 -3.9 0.00 30 1.3 3.5 CloUd)' 4 2700 -5.0 o.oo 60 1.4 3.5 Sunny 5 2700 -13.9 0.10 65 1.3 3.5 Sunny 6 2600 -19. 1 o. 10 65 1.3 3.5 Sunny 7 2500 0.00 70 1.3 3.5 sunny 8 2500 oo25,3 0.00 65 1.3 3.3 Sunny 9 2400 •22.2 o.oo 60 1.4 3.3 Sunny 10 21100 -20.6 0.01) 70 1.4 3.0 HIgh W.l nds 11 211110 •16.7 o.oo 85 1.4 3.0 sunny 12 2300 -18.6 o.oo 90 1.5 3.0 Sunny 13 2300 •16.7 0.00 90 1.5 3.0 Sunny 14 2200 -13.1 0.00 100 1.5 3,0 Sunny * 1 • Provisional data subject to revision by the u.s. Geological Survey, Water Resources Division, Anchorage, Alaska. 2, Average value of the days minimum and maximum temperature. 3. 4. * Based on one lnstantanoous measurement, usually taken at 9 a.m. dally. VIsual estimate based on one Instantaneous observation, usually at 9 a.m. dally, Channel rrozen over. () 0 :::s rt 0.. From R&M Report: susitna River Ice Study~ 1982-83 R ~ M CONSULTANTS~ XNC Table 5 SU$XTNA HYDROELECTRIC PR03ECT MONTHLY SUHMARY FOR DE~L CANYON WEATHER STATION DATA TAKEN DURING No-..e,..ber, 1982 IES. m. M. JIAX, flAX. DAY'S MX. ll1lt. ION IIHD IIINI IIIII QJST at P'VI. I£AN t£AN SOLAR DAY TatP. TDIP. TEMP. DIR. SPJI. SPJI. III. SPJI, ID. IH DP PREClP ENERGY DAY Bt me 1St lEG IllS IVS JB IllS I Jl£1iC Ill WHISQit I .2 -9.1 -4.5 121 1.5 1.8 113 7.6 ESE 73 . . -7.5 HH 6Sl t 2 -.41 -9.6 -5.1 121 .6 ·' 195 3.2 s " -5.8 IHf 615 2 3 -2.7 -12.9 -7.8 116 .s ·' 171 J.B DE 71 -14.5 .... 441 3 4 -.3 -5.5 -2.9 125 • 9 1.1 178 6.3 ESE 75 -7.2 HH 568 4 5 -2.6 -14.3 -a.s 135 • 6 •• 132 2.5 SE 19 -8.7 H .. 605 5 6 -11.7 -18.1 -14.9 182 t.i 1.7 182 4.4 E 88 -16.8 IHf 423 6 7 -11.9 -18.5 -15.2 194 2.1 2.3 121 5.1 ESE .. -18.1 Hit 423 7 8 -7.4 -13.6 -11.5 114 1.7 t.a 191 5.7 ESE 12 -11.3 IIH 148 8 9 -5.7 -8.5 -7.1 194 .1 .s 128 2.5 IISW 13 -38.1 IHI 311 9 II -5.9 -13.7 -9.8 188 1.6 1.7 '" 4.4 ES£ 79 -U.l IHI 315 18 11 -3.6 -6.5 -5.1 til 1.3 1.4 117 3.8 ESE 41 -24.3 Hit 31.8 1l 12 -.s -6.8 -3.7 131 1.1 1.4 131 4.4 SE 83 -4.3 IHI 493 12 13 -.7 -6.5 -3.6 121 1.1 1.3 115 4.4 £SE 88 -4.2 Hit 541 13 14 -3.2 -9.2 -6.2 t76 .7 ·' t89 3.8 £HE 21 -~.8 Hit 400 14 15 -6.7 -15.3 -11.1 193 1.6 1.6 195 4.4 E 71 -13.1 .... 365 15 16 -13.8 -16.8 -14.9 187 2.1 2.1 t&a 4.4 E 92 -16.5 IHI 350 16 17 -t5.7 -21.4 -18.6 188 2.3 2.4 197 5.1 E 87 •19.9 HU . 351 17 18 -15.9 -22.2 -19.1 192 2.2 2.3 198 4.4 E 78 -23.8 Hll 390 18 19 -15.2 -21.4 -18.3 115 2.8 2.8 ns 7.1 ESE 63 -23.2 HII 418 19 21 -11.1 -15.3 -12.7 us 2.9 3.1 123 6.3 ESE 79 -15.4 Hfl 338 28 21 -5.8 -18.7 -1.3 193 1.5 1.7 125 4.4 EiiE as -11.4 IH .. 393 21 22 -4.6 -7.5 -6.1 113 1.6 1.8 119 5.1 EM£ 81 -8.9 HH 378 22 23 -.a -6.1 -3.4 112 1.1 1.3 113 3.8 ESE 84 -4.4 Hll l48 2.3 24 -1.1 -4.7 -2.9 136 1.4 1.4 138 3.8 SE 91 -3.4 IHI 335 24 25 ,5 -6.7 -1.1 138 1.4 1.5 159 3.8 SE " -5.2 IHI 358 zs 26 -4.9 -7.3 -6.1 116 2.4 2.4 lit 5.7 ESE 76 -9.7 IHI 359 2D 17 -3.8 -n.a -7.8 186 1.5 1.6 tl4 4.4 E 88 -a.5 HH 363 27 28 -11.3 -14.7 -u.s tal 2.7 2.7 178 4.4 E " -13.8 IIH 368 28 29 -5.4 -10.1 -7.8 197 1.1 1.2 131 3.8 EHE 31 -1~.~ .... 2S8 ~ 31 -5.8 -12.8 -8.9 259 .4 .7 Z76 l.B u 69 -12.2. IHI 273 3D IIDITH .5 -22.2 -8.9 114 t.4 1.6 lll 7.6 ESE Tl -13.8 Hfl 12061 GUST VEL, AT MAX. GUST MINUS 2 INTERVALS 5.1 GUST VEL. AT MAX. GUST HINUS 1 INTERVAL 5.7 GUST VEL. AT MAX. GUST PLUS 1 INTERVAL 5.7 GUST VEL. AT HAX. GUST PLUS 2 INTERVALS 3.8 NOTE: RELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE:. LESS THAN ONE METER PER SECOND. SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAILY OR MONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT. **** SEE NOTES AT THE BACK OF THIS REPORT **••· -15" Table 5 (Cont'd) R & M CONSULTANTS~ INC. SUSITNA HYDROELECTRIC PROJECT ~T( .Y SUMMARY FOR DEVIL CANYON WEATHER STATION fA TAKEN DURING DeceMber 1 1982 RES. RES. AVG. tiAX. ttAX. DAY'S !tAX. ftiM. ItEAM VIND WlMD VlHD GUST GUST P 'VAL I!EAII MEAN sa.Ai DAY TEP. TEMP. TEftP. DIR. SPD. SPD. DlR. SPD. DIR. RH DP PRECIP ENERGY DAY DEC C DEGC JIEGC DEG lt/S ft/S DEC ft/S % DEC C i'lft WH/SQII • 1 -11.1 -19.9 -15.5 tt7 .5 .8 280 3.2 SE 92 -17.7 1111 268 1 2 -15.1 -21.6 -18.4 121 1.5 1.7 133 5.1 SE 86 -20.1 IHI 283 :! 3 -11.9 -21.4 -16.7 187 1.2 1.6 125 4.4 ESE 88 -18.9 1111 293 3 4 -13.1 -18.7 -15.9 1GB 2.3 z.s t2S 6.3 ESE 1S -20.5 IIH :!43 4 5 -4.7 -13.1 -8,9 108 1.3 1.3 898 4.4 ESE 83 -11.3 *Ill 305 5 6 -1.5 -7.5 -4.5 122 1.7 1.9 118 7.B SE 80 -1.9 IIH m 6 7 1.8 -1.9 -.1 t07 2.3 2.4 107 9.5 ESE 81 -2.1 IIH 301 7 8 O.D -t.S -.9 . 134 .7 1.0 :!OS 5.1 SE 11 -36.5 Ill* 2:8 8 9 -.6 -14.4 -7.5 Do7 1.1 1.7 271 5.1 ENE 93 -9.1 1111 271 9 11 -4.3 -19.1 -11.7 110 1.6 1.9 141 6.3 ESE so -13.3 till 273 1D 11 -4.8 -8.7 -6.8 129 2.0 2.1 l88 6.3 ESE 77 -U.l lt!H 295 11 12 -2.3 -6.8 -4.6 138 t.5 1.6 124 5. l ESE 77 -7.2 Hll :!18 12 13 -.1 -5.1 -2.4 145 1.3 1.5 109 &.3 SSE 83 -5.0 fill 328 13 14 -.9 -9.1 -5.1 142 1.1 1.2 124 4.4 SE· 83 -6.9 II! I 318 14 15 .3 -5.5 -2.6 138 1.5 1.7 182 5.7 ESE 7l -6.1 IHI JOB 15. 16 -.3 -5.0 -2.7 134 1.4 1.5 115 4.4 SE 74 -6.7 H:l!f :!15 lb 17 -2.6 -u.s -6.6 107 1.a 1.9 117 4.4 ESE Q'l -7.5 11*1 3Cl 17 -18 -11.2 -13.9 -12.1 089 1.7 1.8 017 4.4 E 18 -13.0 1111 308 19 19 -6.6 -13.0 -9.8 113 1.1 1.3 122 4.4 SE 88 -12.3 !lHI 301 19 20 -s.o -15.3 -18.5 124 1.o 1.8 1:!1 5.1 ESE 74 -13.5 HI! 31~ 29 21 -1S.D -18.9 -16.9 083 2.6 2.6 871 5.1 E 91 -17.7 !EIII ltl 21 22 -16.0 -29.6 -18.3 015 2.6 2.7 872 5.7 EM£ 87' -20.5 !!t! 311C: .... ~ 23 -u.s -17.9 -14.8 099 1.8 2.8 181 4.4 ESE 1S -18.1 llltl 328 23 24 -8.1 -16.8 -12.4 us 2.3 2.5 119 5.7 ESE 80 -14.6 IIH 308 24 25 -7.8 -12.7 -10.3 112 2.1 2.3 116 6.3 ESE 81 -13.5 1111 311 25 26 -.s -8.7 -4.8 118 1.2 1.4 101 4.4 ESE 80 -9.4 llfl lU :!6 rJ .4 -2.9 -1.3 143 .a 1.1 D98 3.2 SSE 71 -9.D IHI 253 27 ZB .9 -.4 .3 145 .3 .4 087 1.9 SE 18 -~.4 !fll 240 28 29 1.7 -.3 .7 179 •• 1.0 252 3.2 SE tt -27.5 flU 268 29 :!D -.1 -9.3 -4.7 Iff 1111 IIH Ill 1111 HI 5 -37.6 Ill! ~ lC 31 -6.6 -10.4 -a.s fll HII HH Ill ltH Ill 1 -46.0 *'*' 251 31 HCHTH t.S -21.6 -8.2 ttl t.4 1.7 107 9.5 ESE !19 -15.7 II II 9143 GUST VEL. AT MAX. GUST MINUS 2 INTERVALS 7.0 GUST VEL. AT MAX. GUST MINUS 1 INTER','AL 6.3 GUST VEL. AT MAX. GUST PLUS 1 INTERVAL 9.5 GUST !,.•EL. AT MAX. GUST PLUS 2 .INTERVALS 8.9 iE RELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS Af~E LESS Tf-I~'!.N ONE METER PER SECOND. SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAILY OR MONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT. C.·}E SEE NOTES AT THE BACK OF THIS REPORT *·X··~* -160- Table 5 (Cont 1 d) ·1;;:· ~ M CONBl.JI. .. TAN""f"~:;;, :1: NC. SUSITNA HYDROELECTRIC PRbJECT MONTHLY SUMMARY FOR DE\(.~L CANYON WEATHER STATION DATA TAKEN DURING J.anuar y .• 1983 RES. R£5. AVG. tiAX. MX. DAY'S MX. Jtiti. taN WIND WIND tiiMD .GUST GUST P'VAL itEAH ltEiii'i SOLAR DAY TEMP. TEMP. T£.~. DIR. SPD. SPD. DIR. SPD. DIR. RH DP PIECIP EhERGY DA'i JiEG C DEG C »£& c DEii it/5 IllS iiEG IVS ' vEri t titl WiiiSQI'I 1 -1.1 -7._2 -4.2 HI IHI IHI Itt Uttt Hf 82 -~.8 tiff 265 1 2 -1.4 ·4.2 ·2.8 114 2.1 2.1 111 5.1 ESE 78 -8.9 Hll 268 2 3 -4.2 -11.7 -8.1 115 .9 1.1 117 4.4 ESE 71 -11.4 IHI 253 l 4 -11.3 -21.0 ·16.2 897 1.3 1.5 D92 4.4 tNE 67 -18.6 Hfl 278 4 5 -17.9 -24.9 -21.4 102 1.5 1.7 192 4.4 £ i9 -25.6 **** 278 5 6 -!o.l ·21.1 -18.7 112 2.4 2.5 106 8.9 ESE 67 -22.5 lift 290 6 i -17.2 -25.4 -21.3 110 2.5 2.6 194 8.9 ESE 67 -25.4 tiU 34i ': I 8 -22.4 -27.0 -24.7 124 1.2 1.5 888 5.1 ESE 66 -29.1 **** 303 6 9 -23.2 -26.4 -24.8 . 133 2.3 '·" 109 5.7 SE 57 -30.4 1ft* 363 If 10 -2D.2 -26.2 -23.2 123 2.2 2.'3 121 5.7 SE 52 -29.7 .... l'C' b"' 10 11 -16.2 -31.b -24.9 115 1.7 2.0 140 6.'3 E &8 -32.1 HU ·311 11 12 IlK* tlttt Httl IH .... HH Itt Htt ttl It *"** Hit *hltii 12 ll HUt ..... IUH '" Htl Hit HI HH IH II IHitl HH IHIH 13 14 Hth HHt dltt ... HII Hll Ill Itt I ttl II Hill Hit I Hill 14 15 IHII lilllt IIHt IH "** 1111 HI Hil-l HI It Hill HU ltiiH 15 16 IIIII HHI ..... HI 1111 Htl HI IHI Ill H . IIIII HH tiiHI lb 17 nut "'** IIHI lilt Hltt "" IH Bill-HI .. HUt I Hit IIHit 17 18 Hill IHtf IIIII Itt 1111 ttll HI IHI Ill H Hltf Hll iitiUI 18 19 -~.8 -7.4 -6,6 102 .6 .9 2.74 2.5 5E 50 -tr...s Hit .269 19 20 -5.8 -12.3 -9.1 ll9 1.5 1.6 111 5.1 ESE 82 -U.t Hit 35-a 2il 21 -4.4 -11.~ ·7.9 128 1.6 1.7 124 4.4 S£ 54 -14.4 tHt ~2& .2l 22 -B.B -18.0 -13.4 884 2.6 2.6 089 7.0 E ·63 -19 • .2 Hll 416 22 23 l.b -15.u -&.7 12il 2.3 2.7 131 8.3 £5£ iJ -19.2 .... 5eJ Z3 24 -3.8 ·9.9 -6.9 lOB 2.~ 2.6 100 9.5 ESE 33 -20.5 •••• 603 ~4 25 -5.8 -9.9 ·7.9 114 2.2 2.3 182 8.3 ESE 42 ·18.8 HU 55B Q 26 -1.9 -7.3 -4.6 115 1.8 2.1 123 7.6 ESE 59 -11.3 .... 503 26 'li -s.s -to.c. -8.1 099 2.2 2.6 113 6.3 ENE 74 -12.3 Hit 4i~ 27 28 -3.9 -12.2 -8.1 109 1.9 2.1 137 4.4 ESE 61 -so.s 1111 Slil 2B 21 -5.4 -13.9 -9.7 i91 2.1 2.3 1.24 5.1 £ 81 -11.8 tt•• .. yij 21 Jii -4.il -9.7 -6.9 121 1.7 1.9 104 6.3 ESE 6.2 -8.7 1111 533 30 '31 1.9 -5.3 •1.7 1l7 1.1 1.3 115 4.4 5£ 73 '""·' IHI 573 31 ftONiH 1.9 -31.6 -12.0 112 1.8 1.5 100 9.5 Est &5 -17.3 HH 9i3S GUST VEL. AT MAX. GUST MINUS 2 INTERVALS 7.6 GUST VEL. AT MAX. GLJST Mii-IUS 1 INTERVAL 8.9 GUST VEL. AT MAX. GUST PLUS 1 INTERVAL 7.0 GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 50 l NOTE: ~Ei .. +1TIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE LESS Thf ONE hETER PER SECOND. SUCH READINGS HAVE NOT BEEN INCi..UDED IN Ti-iE DAIL·· OR MONTHLY MEAN FOi< RELATIVE HUMIDITY AND DEW POINT. ·11;-).-'k·X, SEE NOTES AT THE BACi\ OF THIS REPORT 'k·k ... ·:J'< .. Table 6 From R&M Report: Susitna River Ice Study, 1982-83 IOf 1U2 U521 ULIHTII, ILISU Tlli[ETII IIIPOIT LOCAL CLIMATOLOGICAL DATA 1[1 Sft tiiTIAtf l[l OIST ... i I t 2 3 • 5 ' 1 I ' 10 " 12 13 u 15 " 11 II " 20 21 22 l3 24 25 n 21 21 n fO T[IIP[RATVRE •r 31 n 2t 22 23 u u 21 n 27 JG 33 35 33 15 " 21 • " 21 25 31 34 37• 34 30 21 10 n 20 " II 7 I • •I ·f1 14 11 11 25 27 22 ' ·4 •5 3 •21 ·25• 10 21 23 ~' 21 " " 7 0 • • ! -= -I 25 24 t4 t'j t4 , 2 11 ~2 23 21 JG 2' 21 ' • 12 ••• ·7 " 2l 27 32 U• 2S 2J 11 5 ,. H ~ == DO -· =· ... ... ~, ... , r ·'I ·7 ·I ·II ·1'1 ·3 2 3 ' 11 If 3 •JI ·11 ·5 ·24 ·23 0 ---!i -· =· ' 22 11 12 11 D . ' 15 1) 2' 24 27 2' 1 2 ... ·21 • I 17 \2 11 11 n ·21 , n 10 " s 17 ·I • I 4 17 2 SUII SUII ---• eo--- "'· UG. l¥6. DEP. A¥6. H.! •· a · WIIlER Of DAYS !Ill I ftU" TU!P . ~ •o• J2• a Jll Moathly Summary fill£ Zll£ ALISUI 411 1 ~ . 12 2. 1 ~ 9. H D1 I . 7 'I . ' 1 i D I I 0 ! 4t I a . 02 . 4 i 21 I C 2 'it IS 0 O~~.a~S 1.1 3.7 I 21 'I 3 5o " ' 'l!;a.eo n .4 .4 4 n tg 4 151 1 u . n .1 ~'. 24 ~~ • o . o s a 1 1 o • s •z t4 o o ~ •. s, ~~ 1.4 1.4 s o4 2 J ' ., 14 0 0 121 . ., ~2 3.. 4 . 2 13 35 0 t 7 47 1 I& .2'1 4.4 12'1.21 ~~ 7.0 '·' 16 U 10 I 4l 17 0 0 'I 02 10 'I 42 1 11 .o• 1.1 p•.n ~l 1.5 1.'1 11 01 10 10 31 , ' 1• .20 1.1 12'1. 11 ~2 1.0 1.1 '' n· 15 20 .02 t ~···· ~2 •.• 10.2 11 Ol 36 2U .Dl .I ~9.16 ~· 5.3 5.'1 'I 04 .. 1 21 .07 1.3 12'1.21 ~1 .4 .• ' ll 5'1 0 22 0 0 ~'1.47 ~5 2.7 l.i ' li 15'1 0 22 D 0 n 2, o o ~us ~' 73 2, 0 • 0 ~' . 4 I ID• 72 21 0 0 P..'·" ~3 H I 21 .03 .'I 1"'1.11 1"1 42 1 22 .ot .7 ~'1.7'1 @s 31 22 0 0 ~'-''lilt 33 22 T T 12 21 r T ~~·'' ~.• 40 21 o o ""'.n 1'5 f2 20 0 0 ~~.'1~ !~ 47 20 I 0 ~8.'15 ~5 60 20 0 D ~~ . 7 4 ~5 ., 20 .57 7.4 ~··" ~5 51 28 • 25 3. 1 I .2 I. 8 3.6 3. 7 '5.0 '5.3 2.2 2.' 7 3'5 ,. 02 I 2 3C u 02 17 u 7 .• 7.' u 01 ~-1 ta.z a o1 7. I '·' 11.3 5.5 3.~ ·' 7.5 7.6 0.5 •. 3 4.0 •• 10 u 12 36 17 02 I 7 3~ 10 32 6 OJ 5 05 5 1~ IIITAl Dill IUIIIII Ill' DITS TOTAl TOTAL FOR TM( ftOIIIII: lUI 0 D P. O£P " 0 1.70 !7.0 ~RECIPITliiOI D[P. ; .tt litH. 1! ·D.O' ! U'S U{: I Dill lllftlliU 10 II 10 10 12 10 'I 1l t 0o l e u ,~ i ~ I ;~ 'I ~ l 4 ~~ ~: l :: ~: 10 ' 22 10 II 23 7 ~· 10 2'5 • 8 1 10 I 0 3 26 5 17 3 21 2~ lO S~P. i SUI! ··~~~~...,~ ... lf6. A¥6. . ' atutst D£Ptll 011 aouao or ~181, ICE P[litrS > 1.0 IICH 7 SUSDR TO Oll£ TDUL IDUl IIU1£Sl £1 24 MOUIIS liD 011[$ 3834 1 IHUIO[R~IllfM 0 PRECIP!IIIIOII SNOW IC l(ll£TS 5101, JU PELlETS OR JC[ lllll DaTE DEP. D P MEAn rolf o . ~ '· o 11 1 '· 30 110 ~ CL(U I ,.liLT CLOUOT tlOUDT ID a EXTREft£ FOR THE ftONTM -lAST OCCURRENCE IF ROR£ THIN ONE. T TRACE lftOUtiT. DIU. IN CDLS 6 IND 12·1'5 IRE . BASED OM 7 OR 110RE OBSERYAiiONS AT 3·"0UR INTERVAlS. RESULTANT WINO IS THE VECTOR S~ll cr NINO SPEEDS AND DIRECTIONS DIVIDED BY TME IIU11BER DF OBSER~AT IONS. OIIE Of THREE WINO SPEEDS IS GIVEX UNDER rAST[Sl ftiL£: ;AST£ST llllE • HIGHEST RECORDED SPEED roA WHICH A ftiL[ or WINO ~ASSES STATION IDIRECTION IN CD11P&SS POINTSJ. fASTEST OBS£~¥£0 ONE IIINUTE WIND • HIGH[St ONE "!NUT[ SPEED lDIAEtTIDN IN lE-S Of • ALSO 011 EARLIER DUElS I. MEAn ~OG: VISIBILITY 114 ftlLE OR LESS. BLANK ENTAl ES DENOTE 111SSING DATA. HOURS OF OPS. ftAY BE REDUCED DN A VARIABLE SCHEDULE. DEGREESI. PEAK GUSt ·HIGHEST INSTANlAMEOUS WIND SPEED lA t APPEARS IN THE DIRECTION COLUftNl. [RI!ORS WILL BE :uRRECH:O AMD CHANGES IN SUllftARY DATA WI~L BE ANNOTATED IN T"E ANNUAL IIUBL I CATION. I CERTirY THAT THIS IS II OrFJCIIl PUBLICITJDM OF TN£ IITIDIIAL OCEIIIJC AIID ITNDSPMERIC ADRIIISTRITIOII, 1110 IS Ct~PILED rROII RECORDS OM rtL[ IT THE IIATIOMAL tliRATIC CENTER, ASM£YillE. IIDRTM CAROLIIII, 28801. ~~-!J,J n 0 a a UTIOIIL ltflllt Ill /tiiiiDIIIEilll lATA IID/IITIIIU tUIAllt C[IT£11 UIDSPM[IIt UIJIISTII11DI/ IIFPUTIOI Stlut£ / ASM[liLL£. IOITM CIIIDllll ICTIWG DIRECTOR IIATIOIIAl CLIIIATIC tENTER \1 c::l o;L I" (f) -<""" a_ c:: -~ Jt- UU! :lUl s.. -1 r::;:.. ... Table 6 {Cont'd) DEC U12 26~21 1551 01,.·0424 riLl(tTII, ILISII !ALIE£fll IIIPOif LOCAL CLIMATOLOGICAL DATA IIU SIC COITIICT lltT OISJ Monthly Summary ~ ... .. 1 1 2 3 • ~ ' 1 I ' Ill 11 12 ll. 14 15 16 11 !8 I, 20 21 22 23 H 25 26 27 28 2' J~ [L£111111 ,_., 345 Fttf 1111( Zllt: IUSUI IIIII 121.~21 T£11PEU TUAE °F SUISIIII[ su can• I 1[1111~1 TO ·I ] ·1 a &2 I 2' .04 .• ~ •. 11~1 .4 .4 4 01 10 1 "' ·6• ·17 ·TI 71 2' It 0 ~·.13 ~~ 2.1 2., 16 02 D I :17 ·5 ·16 ·II 70 2' 0 D ~·.116 ~~ 4.2 ~.6 12 01 D 0 16 ·17 ·1 ·12 • 1 •• 2' 0 0 ~1.43 ~~ t2.0 12.5 211 36 ' • I 2 ] ' s 21 T 6 22 II 13 43 2' f T ~·.54 ~~ IT . 5 IT. I 20 113 I D-I 0 n 21 2• " 11 36 21 o a ~··5' ~~ IJ.I '·' u 36 3 36 2' 3l 23 32 27 • 11 I. 1 T 2 36 Ill 34 11 u 21 n 12 1 21 .5• 1.1 ~~.1a !' 1.1 r.1 '' 15 to 33 11 25 n 21 41 U .02 .I ~~-12 C:4 3.5 1.6 16 IS IJ 11 4 11 1 4 54 25 t a ~•.s6 ~~ s.o 6.0 1 01 s 21 0 !4 5 IS 51 25 0 0 ~1.,2 ~5 1., •. 2 17 34 10 32 25 21 20 21 36 24 0 D ~I.'H ~· 10.2 10.1 16 36 TO 32 22 27 II 20 31 24 0 0 ~1.63 ~~ IJ.4 IJ.6 16 36 10 3 4 21 21 " 17 24 0 0 . 13 02 ' 35 20 21 IIJ 2~ 3f 24 0 0 ~1.51 ~~ 7., 1.2 16 02 10 33 22 21 20 21 l1 24 0 0 •. 64 u 10. 6 10.' 16 03 ' 31 t1 21 13 21 44 0 24 T T '. 04 35 6. 3 6. 5 12 ll 10 12 3 I 0 4 57 0 24 0 G IJ. 20 04 4. 1 4. 2 6 04 6 26 1 n 1 ' 5D o 24 o o z•.oo 36 IJ.I ~o.2 23 o2 10 21 10 " 11 13 46 0 24 0 0 21J.Ot 01 •. 3 •. s 16 01 7 T 0 • 3 4 ·4 61 0 • 24 0 0 6 03 2 3 -10 -4 -12 -11 61 a 24 a o 1.15 ' 3.1 5.3 1 33 o 15 2 ' I • 2 S6 0 24 0 0 I. IJ3 I 1. I 10.2 15 36 2 22 12 17 1 ' 41 0 2 4 0 0 1 . OIJ 5 1. I 1 . I 12 01 1 2 3 12 II I 0 I 0 47 0 24 0 0 '. 37 . 5 1. 0 1 • 3 U 0 I I 0 • ' I ' 3 10 • 11 , T 2 ll " 15 16 7 17 • 11 7 ,, 20 2T 22 23 7 2• I 2S 3l 22 21 20 16 37 0 24 0 0 IJ.3, 02 13.1 13.4 17 01 10 TO 26 34 30 32 24 2' ll 0 1 24 .30 2.5 ~·.4· 01 5.4 6.3 16 01 10 27 31 32 35 27 30 D 25 .64 .I 12 02 10 21 42 32 37• 21J 34 21 0 24 .a4 .5 ~'-" 01 1., 4.2 13 16 10 21 35 ~~ 2~! ~~ 2' l4 o ~! 0T T ~~.55 as 2.2 •.2 ' 01 1 8 0 ~o1 Jt L~ '·" LU 2! 3J 0 L3 012,~2]~ 7.0 7.6 !Q 33 IQ J. SU~ ~UI - -IOIIl TOTAL IUIII[I or DAYS Olll IOU roR IK[ IIOIIN: lOll 1 SUR SUR 98 384 419 o 1.10 10.1 n o ••1'-':!36!::-1-m,..j H'?.'fi~ . .,._..:::a~y&;o.. -2--ilTf&"':.:+i'!OE;:;.P~. -'A;:.::l::.&·+-"iDE::.Pr. t-=D~t~P'li.-1 ~lltCIPITAIIDI DtP. -·I· U£: 1 'I ""'Ill .,. If&. AYG. ~5. 12 1'11 101 ·31 0 >.OliiiCM. 7 0.09 ----•. & IUWI£1 OF DIYS SUSOM To DUE ~MOl, ICE PEUUS l 'IUT£ST II 24 IIQUIS •• GATtS &IIUT!ST Q[PIM 01 &10111111 OF f'Olll 10 ll > 1. 0 HICM '"'""'ll::o:I~U""IIU""R"'T""EI::P,-. _,.....,ll"'•t""II~UI.-'l'OTI£ ""11111"".~-io ~;lf.:iil,;2~i:lH-.::&.:.::;.I+ii~~U;:,IOE:.ol:in~T!::OR:::M:--""""of+"':'pa::=[~tl"'P.,.,IT'"'AI"'IOI='"....,...,s""IID:::M,.....,I...,tE,...,.,P£"'L'""£""TS:--I StOll, IC[ P[LL[IS 01 ICE AID Ol1( 3 90• < 32" < 32° < 0° D£P. ll£P. ltUn FO' 0 .81 ·21 4 4 1• _11 31 ·l ·5 tLEAI " Pllf ! CLOUDY 4 CLOUDY l1 * EXTRE~E FOR.TH£ ~ONTM ·lAST OCCURRENCE IF ~ORE THAN ONE. T TRAC£ AI!OUNT . DATA IN COLS 6 ANO 12•15 ARE BASED ON 7 OR ~ORE OBSERVATIONS AT 3·HOUR INTERVALS. RESULTANT WINO IS THE VECTOR SUft OF WINO SPEEDS AND DIRECTIONS DIVIDED Bl THE NUftBEA OF OBSERVATIONS. ONE OF THREE WINO SPEEDS IS GIVEN UNOU FASTEST IIIL£: FASTEST IItlE • HIGHEST RECORDED SPEED FOR WHICH A ftllE OF WINO PASSES STATION IDIRECTION IN COIIPASS POINTS!. FASTEST OBSERVED ON( ~!NUT[ 111110 • HIGHEST ONE ftiNUTE SPEED IOIIIECTION IN TENS OF" + ALSO OM [AAL!£A OAT[!Sl. HEAYl FOG: VISIBILITl 1/4 ~ILE OR LESS. BLAMK ENTRIES DENOTE ~ISSING OAU. HOURS OF DPS. "AY BE REDUCED DN A VARIABLE SCHEDULE. DEGREES!. P(AK GUST· HIGIIEST INSTANIAN[OUS WIMO SPEED II 1 APPEARS IN Til[ OIREtri~N COlUIINI. EIIHOAS WILL BE COR~ECTED :~gli~:;~~~-;IN SUIIIIARl DATA WILL BE ANNOTUEO IN THE ANNUAL I CEAT!Fl THAT THIS IS AI OFFICIAL PUILICATIOI DF THE NATIONAl OCUIIC AlB UROSPHEAIC ABIIIIISTRUIOI, AIIO 15 COIIPilEO FROR RECORDS ON FILE AT THE liATIOilolL CliiiATIC CUTER, ASHEVILLE, IORTH CIROLIIA, 21801. l.fl,.~ n 0 a a UliOIIL DCUlJC 110 .jEHIIDIIEIIAL DlTA AIO/IITIDIA~ Clii.TIC CUTEI l!WOSJMEIJC lDIIIISTIITIG llfOIIITIOI SEIIICI / ISMUill[, IGITM UIGLIII ACTI116 DIRECTOR IAfiOIAL CLIIIATIC CENTER -178- .. Table 6 (Cont'd) J&l 1913 T&LIEETII, ALASIA TIU£Ef111 AIRJOAI 2~521 LOCAL .CLIMATOLOGICAL lfU Sft CIIITAAtT II£T DISf ·Monthly Summary DATA £LUIT1. I&IIOUIDJ 145 f[U 118lN t2i528 TEIIPERATUfiE or SUNS Hill£ sn entiA ll(MIMSI I 33 27 31 22 23 35 D 23 D 0 29.24 1 5. 8 5.. I 2 02 10 I ' 2 34 25 · 30 22 23 35 0 23 0 D 2,.G7 5 ~.4 lo.5 10 01 ' ·10 3 27 24 U 11 22 3' 0 I 21 .U 3.8 29.10 lo 1.7 9.2 15 01 IC • u -1 10 2 ss o 2• o o 12 02 3 s 10 -10 • o -• -10 n o 2• o a 29.10 ~1 7.3 7.r. •• o3 o ' ·2 ·II ·10 -18 ·I· 75 0 2~ T T 8.5~ 01 3.2 3.3 9 G3 2 1 •2 -21 ·12 ·20 -14 17 0 2' .01 .2 8.48 ~~~ 2. I 3.2 7 31 r. • ·2 -381 .... ·24 ·30 II 0 2~ 0 0 9.18 ~2 3.1 3.5 11 03 0 • 1 -12 -r. .,. -•• 11 o 26 o o 9.58 62 8 .. 5 9.2 11 o3 a 10 6 -12 ·3 ·11 -11 U 0 2~ 0 D 9.41 ~1 10.6 11.4 21 01 0 11 11 4 I 0 57 0 26 0 0 21 03 G u • • 3 3 • s -12 62 o 25 o o ~r ,, ~ 3 , . 4 , . s 11 o 2 , 7 0 0 u 6 -1 3 -6 -16 62 o • 25 o o ~'·" ~2 10.1 11.• n· 02 ' • u u •10 2 -7 • • u D 25 0 0 ~·.14 ~3 3.1 3.2 13 03 2 I 4 t5. ,. u 25 16 11 4a o 25 o o ,_u p1 9.2 •t.s u 1s 10 , 16 34 25 30 21 20 35 0 1 25 .12 2.3 B.lfo ~t. 5.2 7.2 1l 01 1D 10 17 25 11 18 9 l7 47 0 I 27 .07 1.2 8.14 31. 1.0 I .2 lo 34 10 f8 3~ · 13 25 16 411 0 28 T T 15 03 10 19 35 20 21 18 23 37 0 I 21 .10 4.4 2!.13 4 2.2 6.6 13 15 10 20 2~ 21 2• U U 41 0 32 0 D 29.57 01 9. I 9.5 14 02 ' 11 12 13 ~: !' 17 i ~ ! 20 21 28 3 16 r. 7 49 0 32 0 0 29. H 3r. 1. 3 7.8 13 3~ , 0 0 7 4 8 21 ! o 22 I 0 23 i 22 8 ·• 0 -10 • 8 65 0 30 0 0 ~9.51o 03 2. 7 2.7 7 03 23 11 -11 D -10 • 7 loS 0 30 0 0 ~·-27 ~5 2.0 24 25 .,. 6 ·5 -6 5• a 10 o o ~·.o• In 4.8 2.2 ' 21 5., 13 03 25 25 n 22 11 43 e H o o 26 31 25 28 17 15 37 0 29 0 0 ~8.5~ 01 11.4 11.8 27 2' H 22 11 16 43 0 29 0 0 ~~. 75 35 4. 3 4. 9 21 2' 7 18 7 16 47 0 2' D 0~9.1431> 4.1 4.5 29 2• 4 n 5 10 u o n o o~a.•1~s 5.t 5.3 ~·~ ~:. 2; n. 2~ ;; u ~ t: : ~ ~u~ ~~ '~:~ 1 ~-~ n n " 02 14 03 ' 01 10 33 :: ~.~ 10 9 ' 0 ' , 24 I 2~ I 2' I 21 1 ~ ~~ l • 30 3' IIIR8£R or DITS SUSOI ID OUE }lOll, ICE PELL£TS 'lUTES! II 14 IIOutiS liD OAI£5 &IIEAI[Sl D[nK Bl GIOUifO Of 101Al TOTAl > 1.0 IICM 4 $lOll, ICE P(LL£15 OR ICE &Ill) 011£ &8 4 0 !MUIO[ASIOA~S 0 Pll!tlPIUI!Ol SNOW ICE PEll£15 lJ20 (QO 0£P. Ill'-N[m FOG _ll . n IL-17 4.4 '' 3 1q ll 13 ·140 0 CL U I~ PARI Y C OUOY ' CLOUOY U • ElTREftE FOR THE ftOMT~ ·.LAST OCCURRENCE If ROAE THIN ONE. T lRACE AnOUNT. • ALSO ON EARliER DATEISI. HEAVY FOG: VISIBILITY 114 "flt OR LESS. BLANK ENTRIES DENOTE ft!SSING OR UNREPORTED DATA. HOURS OF OPS. ftAY BE REDUCED ON A VARIABLE SCHEDULE. DATA IN COLS 6 AND 12·15 ARE BASED ON 7 OR "ORE OBSERVATIONS AT 3-HOUR INTERVALS. RESULTANT WIND IS THE VECTOR SU" Of WI flO SPEEDS AND DIRECTIONS DIVIDED BY THE NU"BER Of OBSERVATIONS. ONE OF T~AEE WIND SPEEDS IS GIVEN UNDER FASTEST HILE' FASTEST niLE • HIGHEST RECORDED sPEED fOR WHICH A ntLE Of WINO PASSES STATION !DIRECTION IN CD"PASS POINTS!. FASIEST OBSERVED ONE niNUTE WIND • HIGHEST ONE "INUTE SPfED !DIRECTION 1M TENS Of DEGREES I. PEAK GUST -HIGHEST IHSTANIA!t€0US WINO SPEEO 1 A i APPEARS IN THE DIRECTION COLUHNI. ERRORS WILL BE CORRECTED AND CHANGES IN SunnARY DATA WILL BE ANNOTATED IN THE ANNUAL PUBLICATION. I CERtlr1 THAT THIS IS AN OFFICIAL PUBLICATION Of 1M£ NATIONAl OCEANIC AND ATftOSPH[RIC ADftiNISTfiATION, AND IS COftPtLEO FROft fi[CDRDS ON FILE AT THE NATIONAL tLiftATit DATA tEllER, ASHEVILLE, NORTH CAROLINA, 21101 ~-~-~- au-. -~~-·"-'a n 0 a a GUMIC-bri..UI.ILSIIEL1JI[ •• IA C&.JaiiCDAIACllllrll At11M6 DIRECTOR . 11111J1111€111C IDIIIISIIIIIa .. TIFGIIMIIa IEJtJC[ MIC'IL1E •111 c-.Ja IAltiiNAL C llftAl !C DATA t[Nl[R -179- TABLE 11.1 RIVER STAGES AT FRE£Z£UP MEASURED FROM TOP OF ICE ALONG BANKS AT &ELECTED LOCATIONS Elevation Maxi- Open Wlter. rtj Dhcharge Actual ti AC:roxl .. te Top of Ice Correapondlng DIIChlrge at 0 River ate or River Bank Elevetlon• to SU!e Gold creek a IIDL Loc1\100 rreeuup Cftl '"' Ccfl left) ::tJ Q'> 1111.9 Port1ge Creek 12/23/82 lltl,O 139., 27,000 2,1t00 ~ ::0 1112.3 Slough 21, H9 • 751.3 755.~ • CD tO 1110.1 Slough 21. LRX•51t • 755.1 n1·.1 • • 0 ti U6.6 Gold Creek 1/11t/ll 617.0 615.1 16,000 2,200 rt .. U5.3 Slough 11, Mouth 12/6/12 671.5 • • 1,100 1-' 1,0(/) U0.9 Slough 9, Shln~an 12/1/12 622.11 620.1 30,000 1,000 cos:: I\.) (I) 121.1 &Iough 9, Houtll 11/29/12 • 16.91 • 1,000 I 1-'· cart I w::l 127.0 Slough e, Held· 11/22/82 579.1 • 1,100 Ill 121t., Slough I, LRX•21 11/20/12 556.2 559.1 ..... ooo caureta) 1,1100 ::tJ 1-'· 120.7 Curry 11/20/12 527.0 521t.6 28,000 1,1100 <! ([) 116.7 McKenzie C,...k 11/18/12 la91.3 · 3,500 ti • H 111.7 Lint C,...k 11/15/12 16.71 ... 1,700 () ([) 106.2 LRk•11 11/9/12 15.11 • 11,100 (/) 103.1 LRk•9 11/l/12 Sllf. 1 313.9 111,000 11,200 rt s:: "·' LRk-3 11/5/12 llt6.1t 3115., 11,1100 p. "<: 8 Ill tr 1-' .. V•luea In br1ckeU I 1 repreaent relltiW elevattona balld on an 111u.ed datu. rro• 1 te•porary benc,_rl4 ([) adjacent to the alte. ....) .Q!!! Feb. 5 Feb. 5 Feb. 5 Table 8 From "Preliminary Susitna River Ice Report, 1983-84," R&M Consultants, Feb. 84. TABLE 8 SUSITNA R1VER HISTORICAL ICE THICKNESSES 1983 Location Distance from Left Bank (Feet) Solid lr:e LRX-45 (Gold Vt*~k) 36 1.8 W.S.E. = 684.50 92 1.4 148 1.3 232 1.9 288 1. 7 LRX-24 (Curry) 229 W.S.E. = 522.60 291 1.8 337 2.1 377 1.8 416 2.0 LRX-3 ( 7[;/~p~fn~) 138 3.7 W.S.E. = 342.80 210 2.0 312 2.6· 464 3.9 721 2.1 Slush 0 0.5 3 3 12 12 0 0 0 0 4 2 0 Station (RM) LRX-3 (98.5) LRX-9 (103.3) Table 9 MAXIMUM WATER/ICE PROFILE 1982 FREEZE-UP Maximum Water/Ice El.-Ft. ComEuted Observed 345.5 345.5 382.4 383.9 McKenzie Creek (116.7) 492.6 493.3 Curry (120.7) 526.0 524.6 LRX-28 (124.5) 560.9 559.3 Slough 8 (127.0) 588.0 579.3 Slough 9 (130.9) 625.1 620.1 Gold Creek (136.6) 684.4 685.3 Avg. Diff. o.o -1 • 5 -0.7 +1.4 +1.6 +8.7 +5.0 -0.9 ==== +1.7 Table 10 1982 FREEZE-UP INSTREAM ICE MODEL CALIBRATION COEFFICIENTS Parameter 1. Open-water-heat- transfer coefficient 2. Cohesion coefficient for frazil slush 3. Critical Froude No. for Leading Edge Progression 4. Critical Velocity for under ice deposition 5. Lateral ice coefficients Final Value From Simulation Normal Range of Value (20+2VW)W/m 2 -oc 12-20 W/m~oc where V =Wind Velocity-m/s w 700 N/m2 0.0935 0. 9 m/ s 0.1 v-2 "8 m/day 500-2000 N/ 2 m 0.06-0.11 0.6-1.4 m/s where V=Water Velocity, m/s Notes: 1. Ice inflow at Gold Creek based on assumed slush thickness = 0.15 m and slush porosity = 0.6. From "Preliminary Susitna River Ice Report, 1983-84,n R&IYl Consultants, Feb. 84. TABLE 2 (cont.) GOLD CREEK WIRE WEIGHT READINGS (FEET) with corresponding values in USGS Table 11 Datum (feet), Mean Sea Level (feet) and Discharge (cf/sec) Date USGS MSL Q December, 1983 1 56.92 5.29 681.61 3500 2 56.96 5.33 681.65 3550 3 56.72 5.09 681.41 3100 4 56.92 5.29 681.61 3400 5 56.93 5.30 681.62 3400 6 57.07 5.44 681.76 3750 7 57.04 5.41 681.73 3700 8 56.97 5.34 681.66 3550 9 56.90 5.27 681.59 3400 10 56.95 5.32 681.64 3400 11 56.97 5.34 681.66 3450 12 56.92 5.29 681.61 3400 13 56.90 5.27 681.59 3400 14 56.88 5.25 681.57 3350 15 56.90 5.27 681.59 3400 16 57.01 5.38 681.70 361T 17 57.13 5.50 681.82 18 57.22 5.59 681.91 19 57.30 5.67 681.99 20 57.45 5.82 682.14 * Assumef 21 57.52 5.89 682.21 * 361JOC 22 57.27 5.64 681.96 * 23 57.50 5.87 682.19 * tlnfi/ 24 57.60 5.97 682.29 * Jc711· 6;84. 25 57.65 6.02 682.34 * 26 57.87 6.24 682.56 * 27 57.85 6.22 682.54 * 28 57.82 6.19 682.71 * 29 58.04 6.41 682.93 * 30 58.15 6.52 683.04 * 31 58.33 6.70 683.22 * * Backwater effect from ice bridge at LRX-43 and advancing ice cover. Table 12 From "Preliminary Susitna River Ice Report, 1983-84," R&M Consultants, Feb. 84. ... ._ .... - --· U.. L .IIPMTM•1' 0P COMM•CI STAT ... ~----= ........... ~ .._....,UT::J~~ .............. T ....... _ .. _.._ .... j .:.. l--=-.,..:=--..oo+_;;=r;;;,::--~ ~. ~ .. . -_ .. I~ *!I ........... .... -. • _... ...... :. ...... :;" ........ .... tea ..... . : ---:::-: .... T CMI. = ~ ..:.. = • -... I I ......:: ... 1 Q.T, ~~-.,. III:I: ..... IIC&I ............ , ........ ~ --.. "l -,_ .... ,.f --.1: ,a I • .... 'I •. te .. q .. .. .. .. • 1~ :.::n ~~ ::n o .o\.. 1. o 10 ll ... '/.::J. ..11. c, 110 • 'l ...5 I ;).. Ito~ D 0 o C /0 • "T .3$1.1. "-;t 't I • 'l -~ ,_ la..l o o 0 llr"'l L Q.S"» 1;;1. o • \ -~ , t • .:::. o o o 10 • Q.o o \ .S ,. LO 10 I. ~5 S'o 10 ""T"' "'T" 10 f4f. -..JI 0 I 10 •• -f I -~ t ib 'l 0 -r-"'T" I.:::J ~.c l S 0.., :.I w.3 .3 I .. lo 11:::1. 11-. •.11"19 o . t 1 1.-, J.,;J. 'f,K. I~ o.;;a. to 1 c... ,. 1"-1 ..., 1"1 1-C. ~110 0 0 I~ ~"1.1..)/...._ Q ~3 /0 •• :.::1 1.:1 ::l ~:a• wo 1 0 . o.:::t 0 • .;L I ~ 1'. '-I .J. .3.. iL.3 /0 l • I • "3. I 3. •'-~ 0 C C /:ill ..:s'. "?.. 1.3. o..;;: il.3 0 • Q -:1 -4f l_l ... 'i 0 0 0 ll 3. \ (. 10""'' 0 • 44 I ..S: ~.3.' I 1-h:l 0 0 D 't '' .• 1.: I '""r Q ~ tl"t C • - -11' -~ ·I :l 7o o o o 'f l:L lt ... 0\.. ~ ~ o I • .., c -:1 1o1'-1 o o o ' .3.3_ , ~s .::r.. .. ..::a ' 15 14-1 .So ·.... o o 'I b. 'f 'I :-l 1t 1-C.~''' il.srt o t).n 1.1.. lll.o -rz1 ...-........... _ ............. __ __, ........... ....__ ..... lr:.-----::::-'0~-............ ____ Ja->0~- - 1'Ua 2/ ~ t; fr 0 a ~ .. 0 .. .. 0 ., -··--___ ....£1_,.il. __ •.. .._.._._ ....... __ _. ..... ---~ ........ --lSI~ :r·- _ .. ____ -l!o.l _ _.... .SolS -----il&l a&ai .... NIC:Ifii'A ...... .. .. • • • .. -.. .. .. . .. • n.c;. G .. "".O. , .... ,.... i.iD& ftt.:a.•t!t • - From "Preliminary Susitna River Ice Report, 1983-84," R&M Consultants, Feb. 84. Table 13 SUSITNA HYDROELFCTRIC PROJECT MONTHLY SUMMARY FOR SHERMAN \IJEATHER STAT YON DATA TAKEN DURING DeceMber~ 1983 IES. RES. AVG. !tAX. flAX. DAY'S MX. IIIN. lEAN liND IIIND IIDID GUST GUST P'VAL IlEAl! taN SllAR JAY TElf. mtP. mr. DIR. SPD. SPD. DIR. SPD, DIR. RH IP PRECIP ENERGY DAY BC JRC BC JEC IllS IllS lEG liS z DECC "" WJVSU" t 2.2 -3.1 -.5 159 .7 .7 164 2.5 ENE 63 -5.7 1.1 2f.5 1 2 -2.9 -8.5 -5.7 126 .2 .3 175 1.9-H HIH 1.8 280 2 3 -3.4 -6.5 -s.o 142 .1 .1 159 t.J If H IIIII 1.1 265 3 4 -2.8 -8.8 -5.8 152 .2 .2 1-'6 1.9 IE II IHII 1.1 170 4 5 -2.4 -3.8 -3.1 158 .3 .2 162 1.9 liE H IHH 1.1 tSS 5 6 -1.5 -10.7 -6.1 171 .2 .2 167 1.3 EHE H IIHI 1.1 245 6 7 -10.7 -15.6 -13.2 IH 1.1 1.1 125 .6 Ill II IH*f 1.1 291 7 8 -tt.4 -21.6 -16.1 HI 1.1 1.1 134 .6 HI H HHt ••• 255 8 ' -12.9 -22.9 -11.9 154 .4 .4 149 J.B ENE 68 -19.4 1.1 &!81 9 II -6.1 -14.5 -11.3 171 1.8 1.8 166 5.1 ENE 63 -15.3 0.1 290 10 11 -4.5 -9.5 -7.1 167 1.6 1.6 . 181 4.4 ENE 67 -11.6 ••• us 11 12 -7.2 -16.1 -11.7 146 .8 .9 138 3.2 ME 81 -13.9 1.1 241 12 13 -5.5 -14.3 -9.9 159 .9 t.l 166 4.4 ENE 71 -11.6 1.1 215 13 '" -···· -21.2 -18.11 157 .3 .3 145 1.9 NE II HHt 1.8 215 14 15 -t8.4 -25.7 -22.1 172 .2 .2 072 2.5 ENE H HHI ••• 271 15 16 -12.5 ... 17.7 -15.1 154 .8 .8 159 3.8 NE 13 -17.1 t.D 255 H. 17 -8.5 -12.6 -11.6 152 .9 1.1 159 3.2 ENE 85 -13.0 1.1 171 17 18 -7.7 -17.8 -12.8 151 .7 .7 175 2.5 ENE 93 -13.9 ••• 215 18 19 ... 6.8 -17.5 -12.2 167 .s .5 165 1.9 ENE 91 -16.6 1.1 191 19 21 -3.3 -7.1 -5.2 164 .5 .6 151 2.5 ENE H Hill 8.0 180 2D 21 -2.2 -5.8 ...... 159 .5 .s 146 1.9 Bl£ H IHII 1.1 175 21 22 -4.3 -19.8 -12.1 162 .5 .s 022 1.9 EN£ H HIH O.D 220 22 23 -u.s -21.3 -18.9 157 .3 .4 161 1.9 EN£ H HHI 1.1 245 23 24 -9.4 -19.5 -14.5 166 ·" .6 174 1.9 DE H IHII 1.1 258 24 25 .6 -11.1 -4.7 151 1.1 1.1 139 4.4 IE 67 -8.6 1.1 291 25 26 -7.7 -17.1 -12.4 180 .8 .B 153 2.5 ENE 71 -13.4 ••• 24D 26 'D -13.3 -22.2 -17.8 152 .4 .4 182 1.9 NE 9l -15.6 1.1 251 27 28 -21.7 -23.9 -22.3 144 .3 ... 809 1.9 tiE II IHH 1.0 255 2R 29 -21.7 -26.1 -23.9 157 .3 .J 142 1.3 HE H IIIII 1.1 U5 .29 JD -16.7 -'D.J -22.0 151 .1 .t 085 1.3 NNE H HHI 1.1 265 31 31 -11.2 -16.3 -13.3 154 .5 .6 139 1.9 ENE H IIIH ••• !40 31 ttONTN 2.2 -27.3 -12.1 159 .5 .6 166 5.1 EM£ 71 -13.5 8.0 7405 GUST VEL. AT MAX. GUST MINUS 2 INTER\IALS 3.8 GUST VEL. AT HAX. GUST MINUS 1 INTERVAL 4.4 GUST VEL. 'AT MAX. GUST PI.US 1 INTERVAL 3.8 GUST VEL. AT HAX. GUST PLUS 2 INTERVALS 4.4 NOTE: RELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDR ARE LESD THAN ON~ METER PER SECOND. SUCH READINGS HAVE NOT BEEN INCLUDED IN·THE DAILY OR MONTHLY MEAN FOR RELATIVE HUMIDITY' AND DEW POINT. From "Preliminary Susitna River Ice Report, 1983-84," R&M Consultants, Feb. 84. Ice TABLE 5 (cont.) SUSJTNA RIVER at GOLD CREEK ICE DISCHARGE COMPUTATIONS Qi = ci V 5 e1 t 5 (1-~) Surface Channel Slush Concentration Velocity Width Thickness Date ci (\) Y. (m/s) Bl (m) ts(m) December 1983. 1 10 0.9 87 0.30 2 10 0.9 87 0.30 3 15 0.9 87 0.30 4 25 0.9 87 0.30 5 15 0.9 87 0.30 6 10 1.1 87 0.30 7 35 1.1 87 0.30 8 40 1.1 87 0.30 9 55 1.1 87 0.30 10 55 0.9 87 0.30 11 65 0.9 87 0.40 12 80 0.9 87 0.40 13 80 0.9 78 0.40 14 80 0.9 78 0.40 15 80 0.9 78 0.40 16 80 0.9 78 0.40 17 60 0.9 78 0.40 18 70 0.9 78 0.40 19 50 0.9 78. 0.40 20 35 0.9 78 0.40. 21 20 1.1 78 0.40 22 50 1.1 78 0.40 23 50 0.9 78 0.40 24 30 0.9 78 0.40 25 30 0.9 78 0.40 26 40 0.8 78 0.40 27 50 0.8 78 0.40 28 55 0.8 78 0.40 29 60 0.8 78 0.40 30 70 0.8 78 0.40 31 50 0.8 78 0.40 Table 14 Ice Concentr-ation _Date ___£i (\) January 1984 1 2 20 3 10 4 20 ..s 50 6 30 •7 20 8 20 9 20 10 15 11 5 12 5 13 5 14 5 15 16 17 18 19 20 21 22 23 24 25 "26 27 28 29· 30 31 TABLE 5 (cont.) SUSITNA RIVER at GOLD CREEK ICE DISCHARGE COMPUTATIONS Qi = Ci Vs 81 ts (1-Es) Sur-face Channel Slush Velocity Width ·Thickness Ys (m/s) 81 (m) ...!s (m) 0.8 78 0.3 0.8 78 0.3 0.6 78 0.3 0.6 63 0.3 0.6 63 0.3 0.6 63 0.3 0.6 63 0.3 0.6 63 0.3 0.6 63 0.3 0.6 63 0.3 0.6 63 0.3 0.6 63 0.3 0.6 63 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Table 14 (Cont'd) Table 15 Location From "Preliminary Susitna River Ice Report, 1983-84," R&M Consultants, Feb. 84. TABLE 1 SUSITNA RIVER Between the CHULITNA CONFLUENCE (RM 98.5) and GOLD CREEK (RM 136.5) Water Surface Elevations in Feet (MSL) Date of Survey 10/6 10/17 10/21 11/4 LRX-45 Gold Creek RM 136.5 683.59 683.35 683.06 681.84 LRX-40 RM 134.2 657.21 Near LRX-35 RM 130.9 Near LRX-31 RM 128.7 lRX-29 RM 126.1 569.44 LRX-27 RM 123.3 LRX-24 RM 120.5 520.93 LRX-18 RM 113.0 460.18 Nea:- LRX-10.3. * RM 106.2 2.25 LRX-9 RM 103.3 377.52 LRX-3 RM 98.6 342.55 341.51 341.30 339.65 LRX-2.3 RM 98.4 341.24 339.23 LRX-2.2 RM 98.2 340.86 339.36 11/18 681.24 654.24 614.92 592.86 567.55 541.11 520.05 457.74 375.67 339.40 Location of Leading Edge Discharge.(USGS Gold Creek) No Cover No Cover No Cover RM 42. 0 RM 82. 5 8800 7800 6900 3900 2800 * Surveyed from Arbitrary Reference Datum of 10 feet. Table 15 (Cont'd) Location LRX-45 Gold Creek LRX-40 Near LRX-35 Near LRX-31 LRX-29 LRX-27 LRX-24 · LRX-18 Near LRX-10.3 LRX-9 LRX-3a. LRX-2.3 LRX-2.2 TABLE 1 (cont.) SUSITNA RIVER Between the CHULITNA CONFLUENCE (RM 98.5) and GOLD CREEK (RM 136. 5) Water Surface Elevations in Feet (MSL) Date of· Survey 12/13 12/22 12/28 1/5 RM 136.5 681.59 681.96 682.73 683.49 RM 134.2 653.86 654.55 655.23 RM 130.9 617.55 617.05 RM 128.7 593.95 596.54 595.58 RM 126.1 . 563.49 573.53 572.59 571.53 RM 123.3 545.31 544.35 RM 120.5 520.82 522.26 523.58 RM 113.0 461.87 461.36 * RM 106.2 7.65 RM 103.3 383.57 381.32 RM 98.6 342.80 343.07 343.00 RM 98.4 RM 98.2 1/27 684.64 657.58 618.16 594.99 571.08 544.43 523.89 461.13 381.41 341.34 Location of Leading Edge RM 108 RM 116.2 RM 129.5 RM 130.2 RM 130.2 RM 127.0 RM 136.3 RM 136.8 Discharge (USGS Gold Creek) 3400 BACKWATER * Surveyed from Arbitrary Reference Datum of 10 feet. 8. A maximum stage of 344.63 feet was reached at_ 1530 . on Decemb~r 9, coincident with the leading edge of ice cover passmg th1s cross section. 1983 Table 16 From "Preliminary Susitna River Ice Report, 1983-84," R&M Consultants, Feb. 84. Location SUSITNA RIVER ICE THICKNESSES at Selected Cross-Sections on January 5, 1984 Description LRX-45 at Gold Creek Drilled one hole through border ice 30 feet from the left bank. Ice thickness 1.7 feet. Open water width is 208 feet. Shore ice width is 40 feet. LRX-40 Near LRX-31 LRX-27 LRX-24 at Curry LRX-18 LRX-3 Ice thickness was 1.0 feet at edge of 10 foot border ice on right bank. DriJJed one hole in ice cover beyond edge of old border ice at mid-channel. Ice thickness 1.7 feet with no slush. Drilled· two holes. The first, 200 feet from the left bank. No water in this hole. Ice thickness 1. 5 feet with air pocket, then 3 feet of slush. Second hole· drilled at 350 feet from the left bank.. Ice thickness 1. 7 feet with no slush. Drilled one hole at last observed location of open water, about 100 feet from right bank. Ice thickness was 1.8 feet and slush ice to bottom at 10. 7 feet. Drilled one hole at mid-channel through ice bridge, about 300 feet from left bank. Ice thickness was 1. 6 feet with slush ice greater than 12 feet thick as measured from top of ice. Drilled one hole at last observed location of open water and near an open lead. tee thickness was 4.5 feet with no slush. Open lead at mid-channel. Ice thickness at edge was 2.3 feet with no slush. SUSITNA RIVER 19811 ICE THICKNESSES (Cont.) Distance From Water Water Solid Slush Tote I L,oQat ll!!l !.g{l; Bgnli Dmt.b VIIOCII;Y leg ...J..Q.L thickness River Mll·e 61.2 (near kashwltna River) 200 13+ 2,9 5. 1 7.0 1-rJ I 400 10.0 2.7 5.3 8.0 li Date: January 21t 600 10.0 3,0 11.0 7.0 0 Total Width= 700 ft. ;3 Average Thickness = 7.3 rt. 1-' = 1.01-d COli R I ve r M I I e 68 • 5 W!D II-' (near Sheep Creek) 200 13+ 2.8 5.2 8.0 co 1-'· 400 13+ 2.0 3.0 5.0. of::>. a Date: January 24 600 7.0 1, 7 5.3 7.0 ... 1-'· ::s Total Width = 800 ft. ::Oill Average Thickness • 6.1 ft. R">li ~I-<! ()(/) River Mile 71.0 0 c (at Montana CreekJ 200 7.0 2.0 5.0 7.0 ::s (11 !tOO 6.0 2.3 3.7 6.0 (11 1-'· Date: January 24 600 13+ 1.3 0 1.3* Crt 1-'::S Total Width= 700 ft. rtlll Ill Average Thickness = 6.5 ft. ::s::o rt 1-'· (11 <! River Mile 92.6 .. !D (near Birch Slough) 200 13+ 2.3 0 2.3 li 1-rJ 400 10.0 2.5 ft/S 1.8 0 1.8 !DH Date: January 211 600 ll.lt 2.3 0 2.3 O'Cl . !D Total Width= 700 ft. co::o Average Thickness= 2,1 ft. .f::>.!D 'U R I ve r M I I e 98. 6 0 li ( Chul I tna Conr I uence) OPEN LEAD rt 88 6.2 4.11 ft/B 1.5 11.7 6.0 .. Date: January 26 = 1-3 Total Width= 300 ft. Ill 0' Average Thickness = 6.0 ft. 1-' !D 1-' -...J SUSITNA RIVER 1984 ICE THICKNESSES (Cont.) ; L~catlon Distance From Water Water Solid Slush Total left B!Dis ~ YtloCftY ICe --'..£.L Thlclsness River Ml le 103.3· ( LRX•9) 313 9.0 2.0 7.0 9.0 Date: Janua~ 26 439 12.0 1,9 ft/S 1.5 5.0 6.5 558 10.6 2.0 7.0 9.0 Tota I Width = 600 ft. Average Thickness 8.2 tt. River Mile 113.0 (LRX•18) 238 6.6 1.6 tt/s 2.0 0 2,0* 341 7.6 2.5 5. 1 7.6 Date: January 26 467 6.0 2.3 3.5 5.8 Total Width= 500ft. Average Thickness = 6.9 ft. RIver M I I e 120. 6 ( LRX•24) 278 12.2 2.8 9.4 12,2 373 11.7 • 2.0 6.6 8.6 Date: January 26 441 8.0 2.3ft/B 1. 5 0 1.5* Total Width = 500 ft. Average Thickness = 10.4 ft. River Mile 123.4 ( LRX•27) 284 11.5 1.8 8.9 10.7 368 12.2 1, 8 8.7 10.5 Date: January 26 461 5.0 4 ft/S 2.4 0 2.4* Total Width = 500 ft. Average Thickness = 10.6 ft. R I ve r M I I e 126, 2 ( LRX·29) 252 4.5 2.3 1.7 4.0 381 6.5 1.8 4.7 6.5 Date: January 26 513 8.0 4.5 ft/8 1.8 0 1.8* Total Width= 575 ft. 1-3 PI Average Thickness = 5.3 ft. 0' 1-' (D 1-' -.J n 0 ;:l rt -p.. .L.mml.l!m River Mile 128.5 (near LRX•31) Date: Janua'r)l 27 Total Width= 600 ft. Average Thickness = 5.2 ft. River Mile 136.6 ( LRX•45) Date: January 27 Total Width= 350 ft. Average Thickness = 2.2 rt. PI stance From left Bank 369 469 569 96 188 287 SUSITNA RIVER 198-ICE THICKNESSES (Cont.) Water l2!!l!.t!! 4.8 6.6 7.0 6.0 9.5 7.1 Water YtlocftY 4.5 ft/8 5 rtts Solid tee 1.8 1.6 1.0 1 • 1 0.9 1.0 Slush --l.£L 0 3.6 0 0 3.1 0.5 • These values were not Included In the average Ice thickness. Site evaluations were used to determine the probable representative Ice thickness at the time or Ice cover progression. Total Tblcknes§ 1.8* 5.2 1.0* 1 • 1 4.0 1.5 Date October 26 27 November 1 4 7 9 15 16 17 18 19 21 25 26 December 8 13 22 28 January 5 27 From "Preliminary Susitna River Ice Report, 1983-84," R&M Consultants, Feb. 84. SUS ITNA RIVER ICE COVER LEADtNG EDGE LOCATIONS DURING 1983 FREEZE-UP Cook Inlet = River Mile (RM) 0.0 Table 18 Leading Edge Location Initial Ice Bridge at RM 9. 0 RM 15.0 RM 31.5 RM 42.0 RM 57.0 RM 66.0 RM 77.0 RM 78.5 RM 79.5 RM 82.5 RM 84.5 RM 89.0 RM 91.0 RM 95.5 RM 98.5 RM 108 RM 116.2 New Ice Bridge at RM 120.7 Second Leading Edge at RM 127 RM 129.5 RM 130.2 New Ice Bridge at RM 135.7 Third Leading Edge at RM 136.3 RM 137 Station (RM) LRX-3 (98.6) LRX-9 (103.3) LRX-18 (113.0) LRX-24 (120.5) LRX-27 (123 .3) LRX-29 {126.1) LRX-31 {128.7) LRX-3 5 (130.9) Table 19 MAXIMUM WATER/ICE PROFILE 1983 FREEZE-UP Maximum Water/Ice Profile Computed Observed Diff. 345.2 344.6 +0.6 381.5 383.6 -2.1 465.2 461.9 +3.3 525.2 523.9 +1.3 548.3 545.3 +3.0 574.8 573.5 +1.3 601.3 596.5 +4.8 620.4 618.2 +1.8 ==== Avg. +1. 75 Table 20 INSTREAM ICE MODEL CALIBRATION COEFFICIENTS Parameter 1. Open-water-heat transfer coefficient 2. Cohesion coefficient for frazil slush 3. Critical Froude No. for Leading Edge Progression 4. Critical Velocity for Underice Depoition 5. Lateral Ice Coefficients Best Value from Simulations 1982 Freeze-Up 1983 Freeze-Up Same where V =Wind Velocity in m/s w 700 N/m 2 Same 0.0935 0.096 0.9 m/s Same -2.8 0.1 V m/day Same where V=Water Velocity~ m/s Note: Ice inflow at Gold Creek based on assumed slush thickness = 0.15 m and slush porosity = 0.6. EXHIBITS EXHIBIT 1 NORTH HARZA-EBASCO Susitna Joint Venture • J.nuary 1984 SUSITNA BASIN Exhibit 2 SUSITNA PROJECT HYDROLOGIC AND HYDRAULIC STUDIES ('"'."'"' (H1stor1ea1 RELATED TO Sediment Stream Flows ASSESSMENT OF PROJECT IMPACTS Data {USGS R&M) ON (USGS, R&M) AQUATIC ECOSYSTEM Channel AdJUStment tor Geometry and Glaciers Contrib- Stage vs Q r-ution & Extreme Data Drought (USGS, R&M, ADF&G) (Task 42 R&M) Reservo1r Reserv1or 0 Reserv1or Sedimentation '"\ Operation Design & Operation ,./ Study P'~a!Deters (Task 42) (Task 42) (HE Eng.) I cv, CD G) Inl:low Temperature Channel Instream Reserv1or ' & lee Data Agradationa 1 ,./ Hydraulic ] Temperature ,./ l (USGS,_ R&M) Degradation Study Ice Study (Task 42) ~ (Task 42) (Task 42) I I ' i • "'J ~ Tnbu<ory ' Instrea111 ~-<ooro<08>< Stream Flow ~ ,.J Te111perature Data Temperature ., Stud) (AEIDC) ' (AEIDC (NWS R&M) I I l I G) r.r I I ~Instrea111 L .. 1nstrea111 Slough, Stele Slough and Ice Data lee ._ Channel "'\ Side C11annel Study Tributary ,../ Tributary Data R&M, USGS) (Task 42) Hydraulies/G\1 (ADF&G R&M) vs Mainstem Hydraulics (ADF&G, AEIDC R&M, EWT Task 42) l :l'nys1ea1 H~01tat ' ·Fuhery Habitat Preference & Data Simulation WUA Curves ,./ (AEIDC) (EWT ADF&G} (ADF&G) LEGEND -INPUT Impacts & (Feedback Lo~) I Mitigation ( (AEIDC, ADF&G EWT, H/E · WCC) ANALYSIS t;conom1.c, I I Enviornmental Engineering, other Considerations (APA, H/E, ADF&G END PRODUCT AEIDC Others) 1 I 7 Op<••wo ProJe<< ·~ 0 ACTIVITIES 0 Imfact Statements SUBTASK 2, H/E, ADF&G TASK 42 AEIDC) F NOTE: Assuaes impacts oa water chemistry will not be a major issue TALKEETNA LRX-3 LRX-4 LRX-5 LRX-6 LRX-7 LRX-8 LRX-9 RIVER MILE 384 -382 380 378 376 374 372 370 368 m r 366 m < 364 :!:i 5 z 362 z "T1 m m 360 -I 358 356 354 352 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION ICE-FREE WATER SURFACE PROFILE TALKEETNA TO DEVIL CANYON INJ£00~£.,(g[ID£@@@ SUSTINA JOINT VENTURE MARCH 1984 EXHIBIT 3 Sleet 1 of B ~·------~--~·-· ___ .........:...._ __ ,_....:.....:..._ ________________________ __._..::..:;.;;.:~---1------' / / / //// ./ / //// , / ,. / ~ //1/ / ~ I 1 1/// I I //// / 398 1-t:l 396 / / u.. / / ~ 394 // / z Q / I ~ 392 </ > w ul 390 388 386 / / / /384 / / / 382 / / / / / / 380 / / / ..,. ..,. 378 / / LRX-10 LRX-11 RIVER MILE IXJ£00(Z£~>!!@£~@@ SUSTINA JOINT VENTURE MARCH 1984 I I / / I /l I I I I I /,I ,/ I / I ,-//I / / / ~ ,t"/ / l}'/ / <;:,<;)/ / <W / ~, ~ / t;.."/ / ,§f}'/ ," ~ / 0 / / / / / / / / ,/ / LRX-12 LRX-13 LRX-14 I 444 442 440 438 436 434 m 432 r-m < l> 430 -t 5 z 428 z "TI 426 m m -1 424 422 420 418 416 414 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICI: MODEL CALIBRATION ICE-FREE WATER SURFACE PROFILE TALKEETNA TO DEVIL CANYON EXHIBIT 3 St>eet 2 of 8 tu w u.. ~ ~ 454 j: ~ 452 w ...1 w 450 LRX-15 LRX-16 LRX-17 LRX-18 LRX-19 RIVER MILE LRX-20 502 500 498 496 494 492 490 m r ~ 46$ :!:; 0 486 z z 484 ;:: ~ 482 480 478 476 474 472 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION ICE-FREE WATER SURFACE PROFILE TALKEETNA TO DEVIL CANYON IJ:0£00l6£a §[§l/A\~@@ SUSTINA !O.~~-:~v_E_N_T_U~-E-MA_R_C,_H __ 1_:_9.::_84.::__ _______________ =--------------'---.;_--...LE:;.X.;;.,H:.:;IB:.:.IT;._;_3 ---1..·~9>-cc_t_3_ot-8 __ __. LRX-21 LRX-22 119 120 121 ll{]£00?l£ai£[ID£~@@ SUSTINA JOINT VENTURE MARCH 1984 / .I / I / I /I OBSERVED 1 I a~ 9700 cfs~1 I . I I I I 1 l/ / I I I COMPUTED Ill 0= 9700 cfs I a~~OOOcfs/)~,.1 I _,-""'_,-" I ~"' ,; .... / .. ,"" ,/ / ,; ,""/ "' ,; :/' LRX-25 LRX-26 RIVER MILE LRX-27 LRX-211 558 556 554 562 550 648 546 m r m 544 < !j i5 z z Tl m m -f SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION ICE-FRI:E WATER SURFACE PROFILE TALKEETNA TO DEVIL CANYON EXHIBIT 3 Sheet 4 of 8 558 556 554 / / / / //'/ / / / I' /"/ / / / / / COMPUTEO ///:~ Q = 9700 cfs7Y/ I 0= 3000ch I' I / / / / /I I I I / l/ I " II" LRX-29 126 LRX-30 127 128 00£00~£o[j[ID£@@@ SUSTINA JOINT VENTURE MARCH 1984 LRX-31 129 RIVER MILE LRX-32 LRX-33 LRX-34 LRX-35 LRX-36 130 131 LRX-37 132 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION ICE-FREE WATER SURFACE PROFILE TALKEETNA TO DEVIL CANYON EXHIBIT 3 9>eet 5 of 8 I I I I / I / I /// I / / / /I/ / / /(" I I I 1 /f ,I I I I //, I I //' I 1}:]£00~£"§00£®@@ SUSTINA JOINT VENTURE MARCH 1984 // / j' // 1/ 704 I I ,,. I' OBSERVED I I ,"' / 702 0=9700cfs~ I /// 0•3000"'7;' 700 I I tii 698 ( . I I LIJ ~ I I I ! I / /' I z 696 // 2 ~ 694 I I > / I LIJ ,/I . iii 692 COMPUTED I I 690 a = 9700 cfs / I Q·lO»d~? I I --I I I I I // I I I I /1 RIVER MILE 690 688 686 684 682 680 678 m 676 ..... ~ 674 J> -f 0 z 672 z , 670 m !!l 668 666 664 662 660 658 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION ICE-FREE WATER SURFACE PROFILE TALKEETNA TO DEVIL CA!IIYON EXHIBIT 3 Sleet 6of 8 ---------------------------------------------------------------------------------------~--------~------~ I I I I I I I I ,// I I I I ,// I I I 1 Qs 9700cfs I COMPUTED 1! 0=3000cfl~ I I //! I I ~ I // I , I I l/ I I I I 140 141 142 00&00~/.i\"lil§l£~@ SUSTINA JOINT VENTURE MARCH 1984 143 RIVER MILE 144 798 796 794 lu 792 w "" ! 790 ~ !;;: 788 ~ .... w I I I I I I I I I /1 I I I I I ,l'j I I I I //I I I .I 145 , 778 776 774 772 770 768 766 764 ~ ~ 762 ~ i5 760 z z '11 758 :;: -t 756 754 752 750 748 746 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION ICE-FREE WATER SURFACE PROFILE TALKEETNA TO DEVIL CANYON EXHIBIT 3 Sleet 7 of 8 838 836 830 z 0 i= 822 § s 820 uJ 814 812 808 / I" I I / / I I / I OBSERVED A /. a=9700ct.~ a= 3000 cfs 7)' I I I /j I I I / //I I I / / COMPUTED /1 a = 9700 cfs .. , Q=3000cfs ~ / "Y' I • /// / I I I //I / I <l 147 148 149 RIVER MILE [){J£00~£.,[!00£@@@ SUSTINA JOINT VENTURE MARCH 1984 150 OBSERVED a a 9700cfs e---MOUTH OF DEVIL CANYON 151 162 ..... m 840 ~ 836 SUSITNA HYDROELECTRIC PROJECT IN STREAM ICE MODEL CALl BRA TION ICE-FREE WATER SURFACE PROFILE TALKEETNA TO DEVIL CANYON EXHIBIT 3 Sheet 8 of 8 eoo --• .. ! • • eoo • c • • E ( • .. 0 .a • 400 .. • • .. -z 0 ;::: c > 200-... ~ Ill 0 • N .. u 0 ... ., . = .. u 0 " .. • I N .. u I 0 ~ .... ., . TMICimtA"'\ ... I • I "' • ... .. • i ; z , .. ...,, . .... , " .. i i . ., I a. i .. q .. ...,, \._OCMIII "'---1H1 .... AN "-..ILOUGHI \_ILOUGtt I ~CUflll'f. RAIICIIAUI CRitiC""'\ \ ' 'CitUI.ItU.IUIItNA CONPLUIIICI ' . IIICH CRIIK ILOUGH ....... \ \. MOIITANA CRall \.IOOU CRIIIC ILCIUQH CONFLUlNCl IUIItNA•YaltfN\ 20 40 eo 80 RIVER MILl! tOO 120 140 SUSITNA RIVER ICE LEADING EDGE PROGRESSION RATES (mllee/dey) RELATIVE TO THE THALWEG PROFILE FROM RIVER MILE 0 (Cook Inlet) TO RIVER MILE 155 teo ~ CD '0 0 ti rt .. 354 MAXIMUM ICE THICKNESS COMPUTED---~ OBSERVED 5 FEB. 83 98 99 100 RIVER MILE ~-I OBSERVED----...,...-~ .COMPUTED---""" 384 382 380 378 376 374 372 370 111 ,... ~ 368 ~ i z 364 ;::: !!I 362 358 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION 1982-83 FREEZE-UP TALKEETNA TO GOLD CREEK EXHIBIT 5 Sloat 1 of 6 412 410 408 406 404 t:i 398 LU 1.1. ~ 396 ~ i= 394 <( > ~ 392 LU 390 388 386 384 382 378 105 106 107 108 109 RIVER MILE 442 440 438 436 434 m 432:;; ~ 430 ::! 0 z 428 z ~ m 426 !!l 424 420 416 414 SUSITNA HYDROELECTRIC PROJECT INSTAEAM ICE MODEL CALIBRATION 1982-83 FREEZE-UP TALKEETNA TO GOLD CREEK IXJ£00~£co§[ID£~@@ SUSTINA JOINT VENTURE MARCH 1984 EXHIBIT 5 ----------------------·----------------------------------L--_..;_-.....L.. ___ __. Sheet 2 of 6 452 450 112 MAXIMUM ICE THICKNESS COMPUTED---... 113 00£00~£<>(;00£~@@ SUSTINA JOINT VENTURE MARCH 1984 114 115 RIVER MILE 494 492 490 488 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION 1982-83 FREEZE-UP TALKEETNA TO GOLD CREEK EXHIBIT 5 91eet 3 of 6 1- UJ UJ 1&- ~ z 0 j::: <( > w ...1 UJ 119 MAXIMUM ICE THICKNESS COMPUTED ___ _., 120 121 IllJ&.[Kl!l£"§00£~@@ SUSTINA JOINT VENTURE MARCH 1984 RIVER MILE 122 123 124 125 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION 1982-83 FREEZE-UP TALKEETNA TO GOLD CREEK EXHIBIT 5 Sleet 4 of 6 Iii w u. ! ~ ~ > ~ 568 w 126 MAXIMUM ICE THICKNESS COMPUTED 127 l}{)£00~£o§@£~©@ SUSTINAJOINTVENTUAE MARCH 1984 1-w w u. ! ~ ~ > w ...1 w LRX·33 LRX-34 128 129 130 RIVER MILE LRX-37 131 132 622 62() 618 616 614 612 610 608 I!! m < 606 !; 0 604 :: z ., 602 ~· 600 598 596 594 592 590 SUSITNA HYDROELECTRIC PROJE(ll INSTR EAM ICE MODEL CALIBRATION 1982-83 FREEZE-UP TALKEETNA TO GOLD CREEK EXHIBIT 5 ~eel 5 of6 MAXIMUM ICE ELEVATION ... 11.1 "' u.. ~ z 0 i= <( > "' ...1 "' LRX-39 LRX-40 LRX-41 LRX-42 : LRX-43 LRX·44 ...1 133 134 135 136 RIVER MILE 00&.00:g£ .. ~@L!.\@@@ SUSTINA JOINT VENTURE MARCH 1984 OBSERVED ICE 6 FEB83 GOLD CREEK 137 138 690 678 676 m ,.. m < > .... 5 ;z i "' m m .... 668 666' 664 662 660 658 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION 1982-83 FREEZE-UP TALKEETNA TO GOLD CREEK EXHIBIT 5 91eet 6 of 6 Exhibit 6 Ice-Covered Cross-Sections Ice Water Actual Cross-Section Ice Water Model Simulation of Cross-Section MAXIMUM ICE THICKNESS COMPUTED -------?"'\"n\ OBSERVED 26JAN 84 LRX-3 LRX-4 98 99 IXJ£00(g£ajg(ID£®@@ SUSTINA JOINT VENTURE MARCH 1984 100 ' LRX-5 LRX-6 101 RIVER MILE LRX-7 LRX-8 LRX-11 384 382 380 378 374 372 370 388 366 364 362 360 358 356 354 352 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION 1983-84 FREEZE-UP TALKEETNA TO GOLD CREEK EXHIBIT 8 'Sheet 1 of 6 t-w w 11. ~ z Q t- <( > w ...I w RIVER MILE [l{J£00£g£o~(ID£~@@ SUSTINA JOINT VENTURE MARCH 1984 436 434 432 430 m r m 428 ::: .... 426 ~ z 424 ;:: m .... 422 420 418 416 414 SUSITNA HYDROELECTRIC PROJECT INSTREAM iCE MODEL CALIBRATION 1983-84 FREEZE-UP TALKEETNA TO GOLD CREEK EXHIBIT 8 Sheet 2 of 6 470 MAXIMUM 464 ICE ELEVATION COMPUTED OBSERVED 1-w 458 w LL ~ z 0 j: < > w ul 462 RIVER MILE ll=:J&.00?6.£=f![ID.£®@@ SUSTINA JOINT VENTURE MARCH 1984 600 498 496 494 492 m r-490 ~ )> .; 488 i5 z 486 z Tl m m 484 .; 482 480 478 476 474 472 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION 1983-84 FREEZE-UP TALKEETNA TO GOLD CREEK EXHIBIT 8 Sleet 3 of 6 528 526 524 522 518 514 512 50:' 119 120 121 IXJ£00:!'6£a§I!J£~@@ SUSTINA JOINT VENTURE MARCH 1984 MAXIMUM ICE ELEVATION OBSERVED---- COMPUTED--------._ 122 RIVER MILE 123 SUSITNA HYDROELECTRIC PROJECT INSTREAM ICE MODEL CALIBRATION 1983-84 FREEZE·UP TALKEETNA TO GOLD CREEK EXHIBIT 8 Sleet 4 of 6 LRX-29 LRX-30 LRX-31 LRX-32 LRX-33 LRX-34 LRX-35 LRX-36 126 127 128 129 130 131 RIVER MILE IXJ&l00Cl&,.§@&l@@@ SUSTINA JOINT VENTURE MARCH 1984 LRX-37 132 622 620 618 616 614 SUSITNA HYDROELECTRIC PROJECT IN STREAM ICE MODEL CALIBRATION 1983-84 FREEZE-UP TALKEETNA TO GOLD CREEK EXHIBIT 8 Sleet 5 of 6 ! 2 622 0 i= ~ 620 w ....1 w MAXIMUM ICE ELEVATION COMPUTED ------e-/V LRX·36 LRX·36 LRX-37 131 132 LRX·38 133 IXJ&00?6&,"[!@&,@@@ SUSTINA JOINT VENTURE MARCH 1964 LRX·39 134 GOLD CREEK 136.7 LRX-40 LRX·41 135 136 137 RIVER MILE 646 m r ~ ~ 628 5 2 624 618 614 z ... m !!I SUSITNA HYDROELECTRIC PROJECT' JNSTREAM ICE MODEL CALIBRATION, 1983-84 FREEZE-UP TALKEETNA TO GOLD CREEK . EXHIBIT 8 SHEET 6 of 6 I I I ....... lflf·P f 1APf .. ! I) I Ill ,'q, .•· [d. ., .,,,, l'f 1.1 INt H 11\0 II 1.(1() IJIVI,IONS fi'RINTEO tfl U S.A 11N' I fAio~J>Rtt-.11 Tl t UNit'l\1. P"'l'f I c (@' :: ;: i; ., :!:! .:;. ::!: :::i :::1 i::~ :!:! .:1 !1:~J!ll{iL~J.J ::'~~;-; ~~~ :! ;.EL ~;~~;~...:. :::1 ji1!: i: .;; · :; !'! I:!~:· ..... :... ~t'VD"'" : :.; ~:; ~-:~ . :~· ;;1.1 ::·~ ;·": ... ~ 1 :;~ !·:I ••<: ~:""~~tr...:t1Tii14. -·~~n ..-:r , .. ;.r-/lf~~ c::l.·~p. :<j ~!H :.!; ::: .... ~::~ · .. : .. i :·~~ ::.t. -· :::1. ·· · -~·~: .: i i: :: ·:: :: · ::. :~:: ·1:;,::1::i1 :: ... _: ···~· :,)Li..:~lnYl ·.J:~..a ·.r::,~;.....:·~;!~· .......... ·: 1:::: ••· .: : 1·:·, ::.:. . . . .. · . · · :1 ~-f4' ' ,. lllj .•• 111 1 ' It• II ' ,., 1 '1 '! . . .5iL-~ .QI'f,L.c..~fLCA~· . ·I ·••! 'I'.. I,., •• ,, .• ~;.._t I ••• •• : 1 :: 1!, ,:!: :::: .'; .:,·i :i:i .:11 :!;; !:ij i::• :j.. :·, ', '/. ..-::,. ~· .,-?':~~i: 0 j, .. ;,;! ::!• .:: :,: :~·:: ::• :::! ::: ·,·;1,· •. , ... ,-~ .. · .. -,:,II j.' . . 1 . . . ·JI .. I. I 'I I • I . • " • • .. • I ·t f II'J • I ' . I . I "I • :I t . . I . ~j tot 'I . . . • • • • . • ' ' • I . I i . II. . " • • • . • ' . . ' . •• .'.,·! ~.· '· I I. ::·~ . ·r~ ·~.--·;."' ~-~~~ ·~~~-~~~; ;t:-: r~. rr• ·r;~ ~-;,r t~r~..L ~:·!, . ·~,-.. do . ·,; ··~ .. !··t·+!-• ·:--tr 1',__:~ -:··t ~· ............. ,_...._~ .......,_ ............. ~-+-• 1 .... 4 -....-.. ~ ·.~~· ·····--+·•::~ ~~--.... ; .•. -~·:: , , , I• •• II• ''''oil<~~~~ lj'l tl 1"1 I,,, .jt tf "[, ''" · •I I •" 1. ; · j., :. • t ;; ::1 .!. •:., , , :•:: I, ··.',•. :.•.!,, !' .1 •• • . : : I I • ' . I ' • : : ~ . j ; : J '_ L· I t J : i : I_ f I : I I 1 j ; l: : : : ! : i : : ; : I • : : : : I i I ' I • • : • • • • : • ' • • . • I ' ! : : I .. ' . I : • • . : . I • \ ' ' ' • : j I : . .. ;:! ;: :::~.ri.L:il~lt:.~::Aliijll,~~~:,~tw::ti:J~7~·ii!' :iii.:.: • :.J .. : ·.:J: ::::::::1 ;J :: ~ :1:· .:: i:.: i:! ;,,; i< :ii : . : :; ( :,;: :::: : -d ~ ·:. ! :··~ rr. W.t ~!L, rt:lf.l. ~:L• f'lH 1 i:Hf .rt;. L... . .. • ::<(:ll •1 ~. -1 ~~· f::: +·~~ . :-•' +: -·: f . ..-·1 , •..• : o-:J ~-:~--:-~~· . t" ~ !·: ~t:-: t·:: :~ :: ·it: . ·~ · .. ~-:-: ... ~---:-·:-'-l .:,·: ': :;·; .• : : ~ .. ~:;;_ :;·JI;;I·· !:,:.,:......;. .;:i; ·~: :: i :·.: ;:;: :i•l :::. 1:. i I . ;·::: !': :: :::1 :.:! .. · ::·: .:: . ·,·. i'i,. ·.-: :.· :.:,: ·.·.:· ::;,; l ::; .;·. , , I, 1 •1 • • ··• ~ ... ;).t'l.,. '_!"' ~'!}: _j_ • • Mo :• · ,; ·•t 't' ,, 1 'I • ., •· • ·• • ·t · •·I· •• :::: 1 :: ;::; ;:;: !:i,i.~~~-:: :: .. ·M·+l !hJ.~·;:: ::;, .; .. ; ;.[t: i< ·t ::i .:;:::: : .: :. ; ::. ~: !·-:. ::} :/ :::: ,,.: ::::: !:: :::1 ;:'~ ·!!: :: · 1: ·· :;: :Hi •H• ··--.•••• ·t· L"; .. _..,~,.._i ... l.it 'tllif .• 1_ ........ ~ ...... w.. •·•j ·-··· .,_ .. -,. ··•·· •· -· "'"I ., .•••.•• ··-·· ·.·-· •.•• r•~-•·.•• ···-.... J ..... _ .• 1. ·····t •··~-·r··· .... ,. ·--~ _. ....... , ... , .. , . .... •··· '"'. , ........... I'.. , ....... '''I .•.. l" ........ ', ... ' . . . . .. '·• ... , 'I' I'" •• , ••• I •• , '··· '•· I'' • " ..... , . I'' 'I' I 'I 1lji .. , ', ... ·p"~l:i··. 'i lli. :~: ... ·I.. ..1 ''I" ""1 "I'. I ', ..•..•... ,.' . ":'. .., .• i. ,,· .• I: ...•. 'li .. : ....... ;::. :::: l,ll .·..;,l.i.:·•: :. ljjj:: l.iU '!A'I"'J..I '.Jo\) li",; ;'7.': :lj 1 ~ ·: :1 ::· ::li ·l·i! i : .·; ;; :·: ·;. ·::! I;:: '1: li·· ::,: :1· :! :,: :~:: !:~. j!.; 1!: . : :·. . . "' If...,.,~:· ::: ;t;j :;j, ~.l.i. ::!!t:;:r.·,;~ ::ii 1:~:~:.,, ::~; ;J,' :_:I::,, •II: Jo 1 ··:: l•o• • j ;• • ·I:::: ·:;1 1.,; :, , :::. '"' 11'' :· .. ll.i ••·• ,.1 i ·: I .~:· ;:1 .; . ; :: .:: :1:: l:jk'~ II rt....:"~ .;11 :1~. ;;;: :J.:!,: 11:1 :!li :1·: ':!: ·:I, : ·; , 'I' ~ ";i :;; ;•;. 1·.: 1·:· : ;1 !;" ·;: i, ii. :· : .. ·:• il'! -·~~: ~-:-.. ~7'~ ·1;, :.. . . ~ ... r~~--:-tt .. 14.~ ... ~-~ :f::;~ rt~:, -:-·f. -.;71 ...... -~ ... ~---·H-....... --· ................. J. 1 .... ~ ........... ~.......l-4 ............ ,..._. -~-.. ,.,...J 1--.: ....... --~ ;.q .... -~.._~ ..... ~ ..... -.. ~ ~ ... , ......... ·+-t- ::; I . :.. I il i:::: ...... } . .;,.; !...I. : ,~ l ':l· i! i:. ~ ~ ..... ::.; i; :I li i: .. I: :I; I :-:. ::. I; . ; : . ! . I i. . ; :: :. i :.:...:.. : ~ ..:.:..!-!. ~ ; : i :. ·II!:!; ·1; : . > .. ; ; : :::: ; i ;ll ~ ~ i · . · · · -· · 11 · · t_. rt.,..-·, · ~ rvH 4 • •• .. .... I • -• · • ~ • • ' • 11_ . 1 · · · : 11 · • I··· 1, ·-~ .'!"'T::: · r-·-· L ... :_;...... • 11 • • • • • • • • • • • : tl ·'· • I .. • · .... l·.:u .... '· ... •··· · · · ...... ·.1 ... · · • .. · ., .. ·· ·· · 1 • .. ,. .. ... ·••· ::: ::; ~. ~ .... ...b: ;~:~i.l»~! !;.b.ij~~! :; .;,· :; : •.·: ::! ::;1· ,-;.:I/1JI:-c:.t:.~,..:,u?/l.-: ;); ;.·.::;. .. ' -·.· .· ·: .::·. : .. : .. :;;; :;:: "·:; r: ·~-~ ·t:~ ~.;J!II'C:II ~i .. :'"'!' ~jl i--f.t'J:~i::~ ~f:--:-t·;j· :~··~'-~h :1:. -::~£.:..1..._ .¥;. .. ,.-.; ;:·•; ~l~~-· :~-! ::· :: .. ---.-~7·~-~-:·~~ ~::i' :~~ ·•~ • --~t• _._,_ ;ri-:-,,_..... ~~.~. ::, ::; :::jlr..w.-:if.~: :ii: UJ.{ ~~~t::; :.~ ii! !;:i .:,; :i!l •l1 •,. ,; •· .:. ;.: :: :t:: ~ ~ ·~ ~~·w... i!i :'! 1:;: :q ;.: ::;: ::!: ::;; :;: ,,_. ' I· .. · ..•. , .. ''1'!.. "''LI· I' .. ' .. ' .. I • . . ... . 'J-~.Jif'l!lii"" '"'· ..... • ... ,-t11H.t-!-.rrltt+o.+,,+-1-!i!-r.h-,-i. -.. -.. + .......... rr.~ •. '!'tl ~.++-~. :·: .:;: ;: irl6~.i;: ~~· 'j: ::;h~--:.: ;:,.1~ :::..r ..;,~ :::~ :: ~~ .... ""' ....... z··-:-I .... ~ 1.. ·;· -: ... : ::. j;; ·:.) ··:: :!: :; :: :; :: .::: .::1 ";~~ ~ .. : ··-:~ .. ~ .. · .... : ... :-H::m~-:---~~~~~ ~~~"1>1.1-r .. .w. ":"""1~-~---.. ~ -~·"'! 1:·i ·h~:..L: ;~:~ ~~~:-h~ ~t~ ~~~ ·:m b: ~~t-::· -::;~-·· ::~ -~j·J . ' • • • • I ' : :! : . i ; I . i ,· II ; ; : ! I. i ! : ,: :t : : : : I i 'I' II ; : ~ " I' I : : : .. I.J. ' . I ; 'I./ : . : :I· ,:" I •.. ,· ; : ! l" : : ! I i . lj1 ; ; : , I : : j • ,· :i: : : . ; II : II . : ~ ! : 1.,. ; ! ! ! ; : : . . .. : : I : ; : I : ,II . • • I' • I . I i ' . I'. . ..• It i: I It j II :11 II ll I. t. '. I I L . . ' . . I . -• • • . . . . I ! 1 . '•:.... . . It·. I I I Ll 1 1 :I' • I i . J I I • I II. • • . lJ. . . . . 'I . • • • I I -:~; ...... ::.::::. ~~~~~H-'I!i'' :!;I ;·,li 1: .. ~·.::~· ·'~-,,,.,~.~~-+·-+.·0::·-~"T' .. ·~· i i'rh+'"l :!. IJ~:·:,~:,:: ~~jl .:! ·~ .. ·.1; ·w·· .;1·: ''II;:;._··::.· ·.:: ·.: . • " .. ' I:; . ' . : .. 'I j j ~· • ~u l . I:; j ; :! I :I I I i .• ~f :I':. :I I; I: .. I :. . . ::. : . ; I : j :~ ~ r . ~ II!: • ; . . . : ; : 'i I ~I : ! ; ; ! :: : . i :. . :: l; :I: . . !.t!.~:~.:~~l ""1:~-~:-~1~~+~ t;, !4 .. ~·;t!-t~~~~·~, i+ --r~.~·~·~;t·~f· .. !r·.-~~···+ ·: .. r··+'·~+-~·~tf";~rr~. 1 1 ·-~ .-f++:·"'-J .. ~1-i~:-~.~"''7: ~:t~~~7"~~~f+-~ .. ~~;!:·:L~ . , . . . . . . . . 1, , 1 ~ U.li I '-!i j: iJr , , . ~ 1 i:,. , , , . u. :t .11 , •. i. ;.....+.J . • • . . , ! ~ • 1 ..• 1 ~: ~ ', i . , 1 i. 1, , 1. . II· . 1 . , .1. 11 • . . r I 11, ~ 1 • j· , , . . . 11 .~ 1 .. I., . ·I .. · ~·...,, j.i, : : : . : : : i : : : · : · . ~ : ; '.R ld. r~ ~~.:-, r t-H-:.u..; 1 : : , : 'ir: .":"' ; ' t : • '~ : : 1 : · : · · · . · . : : .• · , • : : . . : 1 1 ' 1 , ; 11 11 : : : ' : i . : : . 1 : : : : • ' : · : • 1 , 1 , : ! , : r i ! 1 : : : • ·l : , ! : ~ : : i 1 : •: : y:~ ~. ~-. ::I : :: :::I : fl! I :. li i I j I' : ; ii: ::; . ""': . I::: i ! ·,I ~! ll.;: ~... : I : ; ' : . : : . :I I:; i .,. : ' i;: ; i ; I i: : ; i! . :I: . : !! i : :; JL. 'I :I i. : i!; •. • . i i. i :; i! : . I : ; . : I : : : : ~ : : : : ~ • I I l : I : I i t .i; I I I . ' II ; : ; -: I• -Jt~ I i ; : I : : l.i I' .. -~ L,., ~ . . . I ' . ; : : •. :~· I : : ~ . ~ t l ' :j ; : I ; L : ... I : . ; I • ; I ! I I : I L : : I I : II : ; ; ~ : : I ! : I ~ ; ; : I I ~ I : : I ~ ··:~ "''~ ... ·t:1 ·~:+-!i:~tt+1+!t~-t'":++_··!-:-tm-~-t'l. 1-J ,rt:l'~l'IT .·~~·~:~~:t·:--~~i :7· "-:t ~t .-1-·, ·:_~ .... :;'1•~7~ ... ~·~\-i~::-:-_. rt:.t'it .. ,.t'-'~t!~~~~-!...!-!+·~; " .. . ~ . " ' . .. . I I" t 'I' IIi' . I . • • I'. I . ' . . I I I I. . I .. I I ~-• • . ;'>.ko_ • Wt..,lf' r-~_4.1-i-1' ~~ i.J .. • I . I .. ,. .. • . ' . • I '. . 'I ' . • II ' . I ,,. . . .. . ' .. . .. • . .. I . . . • . • • ' " , , I' • I' j I ' . ' I • .. , ' • • " . . • .. • . ...:..1.: I " " I r--, , I' " ' " . . I ' " " . . • • " • . ' " , ' " I I . • . " • . : : , . . .. , . . ' ,I' I-. I·• 'I'. II II I Jl .:_j• •ol.r-~~ ' •• ~lt,;;l ·+* jl •••• , ., -· ,,, ,, •••• ·.,II ••• I Iii i·•·. II'··: •.• ,, •. 'II ·til •II' .. :. : .r~· :i: :, :,:; :~u: 11','1 :l:l·t :;~: !/'". :,:~.: ~!-lr.:-...~.-,.!.i :!:1 :::: ,·:: ·:~: :: ~, .. :.r!l.:i :;!: t :!: :;:: ·~·:!: ::·: ::·: ::!: :;:: :::: :_!!·:: :::-: ... :: .ii: . ' . . I """"-' . I • I • • I y . ¥. I i ~~ -tf,U.· I . • ' . • I ~ I ' I ' ~ . I I .. ' 1 . . . + l.' . I • . . I . I • I I ' • . I I I ' I • l . . L' I • • I ' . • I • ' • I I L I • • I • • I . . . . . I • . • .•• ! • I 1 I .. .. .. .. . " . •·i f---.. • --4 ..... . . ~ 1 •• ' •• 1-.... 'ti-l· --··. . . ~ ........ 1 ..... 1 ... J -· ••.• I., . ,.).,. .. -.. t! ~ . +-. I·+•·• •.••• ; ', . ..;. -· • .... . --..... •·•·•. •.• •• ·•-· ,, •.•• ,. ''I t•··. I I•, . ~ r--T""r .• I .•. •I ••• ''·I ••. 'I •• I• I,, ·•. ,,, ,, •I·· , ..•.. 1 .. . ••• •. • ••. , •. ,,. . . lb .. . .. . . I . . . Ill • . . . . . t • y ;r. : IJ. ""' . I . . . . . •. .. . . . I . • ' • I . ' I .. .. : I •. ' I . I . I ' .. . • . .. ' . . . . " .. . .. . I • ' I .. .,.-.~ : ~ -:: ; ::.: : , : : ; •.' :::! ~M ~ .. ~ ~ r•· . I : _ _1 . : -; ..• : -; l • I .• u . j i i:: l :. i ~; i; ::; : i: ~ ; . : ~ : ; . ; . . :: . ~ ~ : ; ~ l. . I •• I • • • I, I.., "" ..... ::: . ; : ::.; I':: ; 1/: ~~~ ;;li' ./ .•. ; .. : I' . : . . . . . . . : . . : ; ; :. i' : . : : ; .. : I;:. ':.: :44: ... : : ; .. : ... ; . I :. : :: ' : .. :: . :: '. . . . ~ I.. . .. I;' ill I :;p f;f':. •••• . I ... I I .. I' I ..• '' ... I. t I ... I... .. ••. ! . , .. l 1 ·I . ''I i I •. '... . • • ' ..... ' . • . •• : I.,. , . . .. ''. . . • I; .. I . ... : .: .. ; '::'\; .;..~: .~.;.: :r:-· 1'~ IJ'! ~~1; ;:~, i+.~+;· II . : • .: •• ~~ ~. --if• ;_;;; ;:~ ·-<t +i ~+i--··· ;...;; 11;t~ ~! ';t., i~:_;_ ~i+-· ....:..;T.;.:.,_; -J.j-; :~..;-"; ; ... ; ,.:.ll .:..!. . : .. : 'I ~ ' : : : .. : . : . ; I' : 'u. .. I I • . • ;fl~ I : : ! : . ' I ; I ~ : • : : I ' I ! f ~ : : : : l ~ : : : : ! i . : ~ . I i . I ; ' I :J : :i : ; I ": : : . i: f : ; ; : I 1: .. I • I : ' . : : I ' : : I : ; : 1 : I· ' : ~ . : : ! : : • ' . : : : ; ; : : ; . . ' ' I .. . . ; . 'II .. . !;'• I. II .• " ' . : . ' . ' ,, ! I i' . • . • 'I 'I • • . j· .. . . " . ·I . ' : : ' I • I .. I i " ' I I I'. . i'. . .. . . . . . j' • I . • • • j' • • i'. .. . . " . . . .. . i .. • • • ' • . I i . i I ' '.1. I I z. • . . ' . . f • • ' I • . t ' I • I ! . . • 1 • ~ _j .L' . __ LI_· _ _i_ • I l . I I I • • • I . I • . ' I • I ' I • ' • • I • I • • • ' • ': .. :: ::;; j ... :~L· II: :t:: '1': :::11:.:::! !IU ';I:',! :1.1 1:1~ ·:j.IIL :·t :t· .,,: :11' !1:1 '1!!11':: li: J.:. ·:: .;:, :·:· ::~· .;:; 1,11::::: :.;: ::· •'1: •::: • .. .... ; • I ... ~~· '"' .. +'' ,,, t' I t' ' ... ' ; I I,,, '. .I' •.•. I .. ' ...• I•· I' . ; 'I ! ! I ... I' .•. I : ,.1,!. I.. • . . . ' I. I. I'.. . ..•• ! ' • ' I' .. I... . . . . I •.•. ~.'I, .:., .; .• :::~ :j:.~ ... t ~·. ~' ....: it;~ r· I H_+.!.t ;+ 1·:-~ If+ L!t~J.1Ht'ri~_;-l' .:.:..~+"..;;J<. L~-.'vP·lr;.; Ht . ...:r· I+:.. t.;. ..... ~:..:..: .j..:' r.-J-r: ·h-~; -i~ ;..;:.!r:+:..:~.:...:. !;..~ ;.:~ iJ~. ~ . .. : : ; . I . ~ , .. ·~ : ~~~ .U jj' : • : l j l . I I . : : : : • ; I • . I ll! I ; : . : I i I •.. , : : I . : : . I' : . . . 'I : I ; .. ' : : . : " ' . ·, : I L i . ; : ! : : .I : : : .• , : . : : . ; . . • : 1 : .. : ; I : . ! : . . : . i : . : ; ' : I : . : : : . " • . ... ,. .. • ! • . : . .. I " ' • I ' .. • • I . ' . I . • .. ' I . . i: ; . j' ' • . i' ' .. . ' " • I • ' . I I • • . " ' " .. I . . . . .. . • .. . ' . I .. I I • . . .. I . .. . • ·,· . : I M~-•I. •1•1 ~' • •1'. •t • Oj I ,:,, ••••• t• ' . .,, ' ' Ill .•.. •t·l ,,,, .••• ,, '•II •• II ,. ••. : •• •tl :• ,,,, I flo ' • I ••• , lJ..' ::. · ,.flll"'_..·!":"-:lr::: :,:, :.!, ·i1 :·., ··~· ·:. til:: 1. ;:::::.:,·:I:::;; ··1 · · .. :; .:. 1::,:: 1:·1 ;!:: ·i·: ::.; ,,: :.;. :· :: i · :. :;; . · i'·; ·· · ;; ·; : : ~ ~ : : . : : ;., ·'; . f : I : : • • : : I I : I • I ' : : t II il' . t ; : : ~ ' : ;~-; ~ ; : ! : : I . I . : : ·: I . : : t' : : I .. : ~ I ! ' : • : 1 ; ~ : : I • ! : : : : : : ~ : : : ' : ; . ; . ' ; . ; : ; ' : : . ' : ' : .. . . : ~ . ~ ; : ... _,,, ''"' "'' ....... -· ~r·~ ··~ I-tt• ...... _ ·r Ht ··~ J,. , •. '-'·•·•'·h··· ........... ··-· ~-·· q•·· .. , .. rlj ............. 1. ""•·-...... ···~ •<'1 ·r· ..... r·-:111 .... -~·· '-:--' ' : .. : . i ( ~ .. ::: :::. "'! ;J· :::: i::: ; :-i :: i! ~ . i : I I i ij :; :: :; T ::; :I j: I : ; i: ~ :; i : i il:! i I I I:~~: ; i;;: : i: ::; ::: '~:: . ::I : ": : :: ! :: ~~ .. :::: . i: 1 : • : • • : : : :: 1 .. 1 I 1 : I 1 : · : 1 : t • : • I I I " ' • : ; : : : ~~ • . : : : I : • : 1 : : -I ·~~ ' : : • : : : I • I " : •, 1 ~ ~ ~ ' + ~ ~~ ~ ='-+ :: : • 1 ! ~ ~~ h~~· " : 1 1 ' : • . • : . ~ ~ : . : : ::: ~ l~': I : . :: . : . : ~ 1: I • ~ ~ i I i : i . :: i ; : l ~ i: : :': 1!~--1· : i I i' ; ~. . . ~ ; i ! . ! ! i ~ : : : ~: . I:: . ; : : ~ . ; : : ~It . ! . . ' . : :: . I . ~;1 • . ....... , ...... •·•·• ·-· .__.._ ...... _ .•••. ···' ..... f-i .......... '""'"'·· •++-....... -.··• --· 1 ... ~, .. , .1._'"'--•r··-· __ ,. ·-·· ......... ::a .. ~ ............. ·~· ... ,-~ .. ·· • · · · ··:~ ,:-;" • ••. •·• ···c . • •· I • • "tt" '' .. o I •I •· "ii •' "" • !: ..• ~• • •· · ... •.;: • · ol ·li• · ... ~'? ; : : ; ::; : ::: : '. ; . I .. i: i I' l' I I :. : :. ~'; :. ; . i:. ::: i' :: I :. : i . ; ; . ; :II: i ' ~:. ,: ; :; . . •. i' ' . ; .• i I ; I'. : . ; ::: . ~-• • • . • •••• I, • • • • • • • • • • •• 11 .9 J • • I __ 1 ~-·..l . . . • . t _ r . . . . . . . , 1 , t •• i ..... , I • • • • . • . • ~. • I • • • • APPENDIX INPUT DESCRIPTIONS -ICECAL A. Five Read Files for Input Data 1. DESCRP -Set-up for 10 lines of 80 characters each, describing the project. 2. INITIL -Free format input data for: a) No. of days in simulation b). No. of cross sections c) No. of stations d) Stationing of meteorological stations (i.e., dist. along river in meters, use same base as river cross sectioning). 3. DISAIR -Free format a) Day b) Inflow Q (m 3 /s) c) D/S w.s. Elev {m) d) Inflow Ice Discharge {m 3 /day) e) Inflow Water Temp (°C) f) Air temp, (°C) , up to 10 locations g) Wind V.eJcocity -{m/s), up to 10 locations 4a. CROSS a) Stationing of cross section (meters) b) Number of ground points in cross section c) Discharge factor as percentage of inflow Q d) Bed roughness -nb e) Ice roughness -~ -1- a) Ice cover porosity b) Erosion velocity (m/s) c) Cohesion of ice cover (N/m2 ) d) Beat transfer intercept, (W/m 2 -c0 )-a e) f) q) Heat transfer slope , (W-sec)-f, M3_oc Lateral ice growth coefficient -J Lateral ice growth slope - d -2- a + bV w SUB DEPOS:t When the ice cover cannot progress upstream, the incoming floating ice must be deposited under the ice cover as the leading edge remains stationary. This condition can occur before 1) a set of rapids such that the water level must rise and drown out the critical or super critical flow depth and then the leading edge can proc~ed and 2) when the flow velocity beneath the leading edge \ is too hi'gh that ice is transported d/s to increase the u/s water and decrease t:he velocity below the erosion velocity value. The ice deposits in a d/s direction, filling each section until the critical '\relocity is reached. Then it progresses to the next d/s section. This process generates what is called a "hanging dam. n The ice discharge that comes into the section is distributed within the downstrearn reach, ·and if the reach cannot accept all incoming ice, it is transported to the next downstream reach and so on. SUB VELPRO This routine calculates the progression of the ice cover usptream. The ice cover porosity in the leading edge is assumed to be 0.5. The porosity is probably related to the velocity, but a constant value is norm,ally adequate. -3- SUB BYDTHC This subroutine determines the initial thickness of the slush ice cover as it progresses upstream (i.e. prior to any underice deposition). Based on •Formation of Ice Covers and Ice Jams in Rivers• by Pariset, Hausser and Gagnon, 1966, two possible mechanisms for ice cover progression are considered, (1) Hydraulic Progression, applicable to •narrow• rivers, in which a stable ice thickness is determined by hydra_ulic conditic1ns at the leading edge of the ice cover. The theoretical governing equation is Where v, B • Velocity, depth just upstream of ice cover t -thickness of advancing ice y' -density of ice cover It can be shown that a solution exists for the above equation only when a modified Froude No. , V / /i"iH", is less than a certain maximum value which corresponds to t/H 1 • 1/3. When V/ J2gH' exceeds the maximum value, incoming slush ice is swept underneath the leading edge of the ice cover and no progression takes place. Researchers have suggested that this maximum Froude No. may vary from .06 -.11. -4- (2) Shoving is applicable to "wide" rivers and is the mechanical consolidation of an existing ice cover which has insufficient thickness to resist the river forces. Successive shoves increase the ice ~1ickness until it reaches a stable level. The governing equation for this stable ice thickness iJ5 where Vu -velocity under ice. cover B -channel width p -coefficient of internal friction for ice c -Chezy coefficient of friction 'R = hydraulic radius o( = cohesion ·Of ice cover The model pr1ovides for the following possibilities in determining the ice cove:r progression: a. H:~draulic conditions just upstream of the ice c1over show a Froude No. greater than the maximum. Therefore, no advancement can occur. b. Froude No. is less than maximum value. Both Hydraulic Progression and Shoving equations are then solved for t. The mechanism which r1esul ts in the greater t controls. -5- SUB UNDAVC This subroutine determines whether erosion or deposition is occurring beneath the ice cover •. The critical velocity is read in as input. Typical values reported in literature range from 0.6 m/s to 1;4 m/s. 'l'he high values for the velocity are when. the frazil ice is very active and the low values are for inactive frazil ice. Th4a air temperature is sometiJqes used as a basis for the correction factor to account for this spread in erosion velocities. Temp 0° to -7°C -7 to -19°C -18 to -30°C SUB ICEPRO Vc 0.9 m/s 0.9/0.95 m/s 0.9/0.9 m/s Computes the frazil ice production in the open water reaches. Uses the heat transftar coefficient approach to determine the heat loss from the water surface. The ice discharge (daily) for a reach is computed and prlnted in the d/s section output. Qi IK -hw B (~X ) Ta • 86,400 /P"' A a+b V w (heat transfer coefficient) V •=r average wind speed w a = 3 (input) . b = 4 (input) B • average open water width between cross sections p"' = density of ice A = heat of fusion for ice 'l'a == average air temperature (below o0 c) ~X =• distance between cross-sections. -6- SUB LATICE Lateral ice co·~rer growth. Empirical relationship developed from Newbury's field data for river flowing with a heavy concentration of slush ice and air temperatures -10°C. Latic = a~ Latic = ice growth from both shores a = constant = 0.1 b = constant = 2.8 V = open water velocity at the cross section SUB SU:.~QI Sul;)routine keEtps track of ice discharge in the downstream direction, i.e., a summation routine for ice continuity. SUB LCMELT This subroutine allows for lateral ice cover melting in accordance with Ashton (1979). -7- SUB ICEGRO Computes the solid ice growth at each cross section on ice cover forms. When the solid ice growth overtakes the initial cover thickness, 1:he initial cover thickness values are set equal to the solid ice ce>ver value for printout purposes. The ice thickness equation is ti = predicted ice thickness, m. ti-l = previous day ice thickness, m. ll ti = incremental ice thickness growth per day, m. T a K. 1 H a e = ~r * 86400/{P* A* e)/(t.-1 / K. + 1/Ha) a 1 1 = r~each ave. air temp below 0°C = thermal conductivity, W/m-°C = surface heat exchange coef, "t.V/m 2 -oc = pc:>rosi ty of ice cover = ht!at of fusion of ice, J/kg. =density of ice, kg/m3 • -8- SUB ICWTDK Computes the w,ater temperature decay beneath an ice cover and ·melts the ice ~over thickness accordingly. The computation begins at the U/S boundary and progresses downstream. Reach averaged values are used for the hydraulic and meteorological variables. The equation from Ashton (1979) and Calkins (1983): ·1. Twl (T ) = wo 2. hwi = 2 * kw * f * Re * Pr /4x(8*D*(l.07 + 12.7 f/8 Pr·667 -1)) '~'wo = water temperature at upstream section '~'wl = water temperature at downstream section hwi = heat: transfer coefficient at ice/water interface &x = distance between reaches h = aveJ~age depth Vu = average velocity beneath ice cover Re = Reynolds Number = Vuh 2~ f = Dar«::ys friction factor for the ice cover Kw = ther.mal conductivity of water P = Prand tl Number = ir C /K r P w -9- SUB OWTDK Computes the water temperature in an open water condition beginning at the most u/s section. The u/s boundary condition is a water temperature va.l ue. The temperatur·e preduction at the next d/s cross section is based on the reach average of the hydraulic and meteorological variables. The equation is from Ashton {1979): Twl = (Two -Ta) * exp (ht, A X/ P Cp V H) + .Ta Ta = reach average air temperature Two = water temperature at upstream section Twl = water temperature at downstream section hw = reac:h average heat transfer coefficient A X = dis~Ance between cross sections P = density of water Cp = spec:::ific heat capacity of water H, V = reac::h average depth, velocity a = constant = 3 b = con1r~tant = 4 Vw = aveJI:'age wind speed -10- SUB TRAVEL Computes the travel time from one cross section to another for either opem water or ice covered conditions. SUB AIRDIS Computes t:he air temperature and wind speed at every cross sec- tion loca11:.ion on a daily basis. The daily air temperature and wind velocity may be input at up to 10 sites along the river. The location along the river for each meteorological site mus~ be input, measured from the downstream cross section. A linear interpoloation between met sites is used to determine intermedi,ate values. SUB CONVEY Computes the flow conveyance for each section. The program tests for the ice cover to decide which conveyance will be used, i.e., open water, lateral ice+ open water, or fully ice covered. SUB CHNGEO Computes the geometric elements for the cross section with or without t:he ice cover. The intersection pts of the water level with the banks is solved using the surveying procedure of latitudes; and departures. The area is solved using the trapezoidal rule both in the, )open water and beneath the lateral ice cover. -11- SUBROUTINE BKWTR Computes a backwater profile using the procedure followed by the HEC-2 program. The program tests if an ice cover is pre- sent and c:omputes the profile with or without ice at a particu- lar section. using the same test as The progrcm checks for critical depth HEC-2 (V 2 /2g > 0.95 A/2 x Top width). If the test is positive, depth for that section and proceeds the program computes critical upstream. An ice cover cannot exist with critical or super critical flow~ The downstream water levels have to rise to drown out the critical depth section before the leading edge can progress upstream. During th~a deposition of ice beneath the cover the program may thicken the ice cover to where the flow hydraulics indicates critical depth. When this occurs, the program reduces the ice thickness at the section until the test for critical depth passes. -12- liYl>iAULICS, MECHANICS AND BEAT TRANSFER FOR WINTER FREEZE-UP RIVER CONDITIONS 'Darry 1 J. Calkins Research Hydraulic Engineer USACRREL-Ranover, NR Clas1s no~es: Ice Engineering for ltivers and· Lakes. Feb. 1-2, 1982, 1Jn1.v. of Wi.scousin, Madison, WI R'EviSf'J) V"IWV #3 ICE MECHANICS AND RE.AT TRANSFER The ~dy, analysis or prediction of ¥ater levels ~ r.i7er• during ~he win~er requires a knowledge of the flow hydraulics, the ice mechanics and the heat transfer processes in the river system. All three occur simul- taneously and tc1 properly analyze or predict a certain quantity such as river stage means they have to be understood to some degree. Figure 1 is a flow chart reprt~senting the possible phases a river might follow during the freeze-up condition. See Appendix II for a list of selected reference. Conditions Lead:!.ng to Ice Bridging Basically the river flow must cool to its freezing temperature~ .0.0°C befor.e any ice producti.on can be significant. Once the river has cooled to its freezing point ice generation begins and the lateral ice cover grows from the shore (shore ice), anchor ice may fom on the bed aru:i ice is transported downstream. These processes continue until a section is reached where the ice cover fully bridges the river. (also known as ice arching). The ice cover now can begin to progress upstream as well as continuing to grow la~erall.y in the open water reaches. The rate of upstream progres- sion is a funct:!.on of the flow hydraulics, and the mechanical. properties of the inco1Ding ice and downstream cover. The ai.r temperature has an effect on the physical and mechanical properties of the moving and stationary i.ce, although it is not well documented. The follow:l.ng analysis assumes the river flow has been cooled to the freezing temperature. The procedures and analytical developments given by Ash~on (1979) can be applied to deterlDine the time at which the river flow ruches 32°F (o•c), ar one can deve~op his own heat loss 1110del. The follow:l.ng physical. processes are occurring simultaneously in a rt-.er -reach duri.ng ~e freue-ut~ period.. la lee ProdtLCtion: The equation for predicting the volume of ice discharge~ is - 3 (: ) (7] where hiwa • ice production heat transfer coefficient. W/mZ-•c • open water area m2 :r .. -.:Lr ~er~a~re llelow o• c p • deusity of water "q/m 3 (1000) • heat of fusion J/kg (3.34 x 10 5) 1 b lee Floe Growth, (flocuation): The growth of ice floes traveling downstreiiiDL is often viewed as a flocuation process, but it is one that is not well understood. Tbe growth of the floes result in larger floe si&es and increased thickness. It is suspected that the flocuation process depends upon the ice discharge (especially at the surface), flow velocity, air temperature and the channel characteristics. lc Lateral Ice Caver Growth (shore ice): The shore ice or lateral J.ce cover srowth 1a another area of JJwdequ.at.e dDcuae~aUon. ~ empirical relationship relating the lateral growth (Li) to the aean fla,w velocity (V, m/s) for a Northern Canadian river (Newbury· 1968) yielded L -1.8 v-2 •85 i a/day I B) where the •urface J.ce concentration was nearly 100% and the thickness of the slush ice covt~r .oving cloWD$treaa wu est:iaated at 15 c:a. Also, the air temperature vo~ls less than -2o•c. For lover ice concentrations and warmer air temperntures the intercept value will decrease and the negative slope will also ~~crease in magnitude. i.e. (-2). Recently a study on a small New EnglaDd stream showed the overall lateral growth rate ranged from 0.1 to 0.2 aeters per •c day, Where the average freeze-up flow velocity wae roughly 0.7 to O.EI m/s with low surface ice concentrations. ld Flow Byc!raulics with Laterally Growing Ice Cover: l'he .flow velocity distribution in a partially ice covered stream bas been evaluated analytically, documented in the field, and experi- mentally measured in a flume. The flow velocity concentrates in the opez1 water portion and can be described as a ratio (9) where V2 • flow velocity beneath ice cover segment V1 • flow velocity in open water segment Yl • flow depth in open water segment and t • ice c:over thickness. %be paper b.Y Calkins et al. (1982) co~ains tbe deri~ation far the --·· above equation plu's additional information on the assumptions used to derive the ez:pression. Somewhere along the river reach the ice cover will completely bridge from shore to shore. Determining the location of this bridging may be the location of a natural construction; i.e. a wide river bend is a classical site. The asymetric flaw di.stributicm ~&&cis ~ a rapi.d lateral 1.ce cover growth 1u the ~nd which causes the open. water width to decrease. This in turn creates a surface constriction for the ice floes traveling downstream, where the floe si;e may be increased which significantly enhances their arching capabilties. Predicting the ice bridging locaUons from an analytical atandpoint 1s not possible at this time with any confidence. Ollce the ice cover bridges. progression upstream of the leading edge is governed bJ the incoming ice discharge. flow hydraulics, ice mechanics and the air temperature. lee Cover Progression and Thickening The .ast logical step to determine the progression and thickening of the ice cover woul.d be to write down the continuity equation for ice dis- charge. The ice 1.nf low to a river reach or to the leading edge of the ice cover is llOl where Qi •ice discharge m3/s ci • surface ice concentration % Vs • surface flow (m/s) .l • open w..ter width (a) ts • equivalent thickness of the floating ice (m) £s • porosity of the floating slush. The amount of ice that is not floating at the water surface is a small quanti~ and is considered negligible for sub critical flows in channel slopes of 0.002 or milder. ~re are four possible conditions for the progression of the leading edge, Vp• 1. Progression ~ •1•ple juxtaposition of the arriving floes with oo thickening. i -v AY NY M> :a:c; 2. Progression, but tho arriVing floes thicken to values greater th&o the iDitial thickness of the arriving ice, tj/B < 0.33, or tj/B > .33. Vp .- :' p --· 2 l ~ z> , I I ,r rf ... v 3. Progr·ession trith ice cover thickening and ic:r also being trans- ported beneath the cover. v, ... < ' .·---~ ·--- --v 4. No pr·ogressing of the cover, all ice is transported beneath the cover. $2- 7VV' The type of: ecmditian eneounted above depends upon the flow hydraulics upstream of the cover or beneath the cover, the ice discharge and size of the floes, the ~eha~ies cf the ice accumulaticD and the •iT temperatuTe. Juxtaposition: The progressing of the leading edge ~ ice floe juxtaposition results in a rapid cover development. Analytical formulations have been put forth and experience usually dictates the choice. If the thickness and planar dimension of the arriving floes can be predieted, their stability can be analyzed. 1f the flow velocity just upstream of the leading edge is less than •o:me cr.i.Uca.l velocity for U.e ice floe to underturn, dive or be entrained; the art·iving ice floe will remain stable and come to rest against the leading edge. Ashton (1978) presents this equation v -2 (1 -i: ) [ gt. (1 c r. t 2]1/2 L_5 -3 (1 -:) U 1/2 pi ) e [ ll] When the river fl1~w velocity V > Vc, the solid ice floes (not fra.iil slush floes) will go under the cover; R • flow depth just upstream of the leading edge. Progression, Thickening and No Undercover Transport 1. 7he equa:d.oo. describ:Lq the equ:Uibrim~ thickness of the iee cover ( tj) when the value of tj /ll is less than 0.33 is related to the flow velocity upstrea:rll of the cover (Pariset et al •• 1961) V• (1-~) 2gt (1--) t [ pi ~1/2 R j P [12] The use of this caquaUon implies the forces along tbe bank are •uf£ic:ient to withstand the internal forces within the ice cover which are greater ~han the driving forces such that no shoving or further thickeuiug can take place. In other wt)rds, the thickness at the leading edge is sufficient to transmit the forces to the bank, even when the leading edge at a new time has progressed upstream. The driving forces of water shear stress and the cover weight component are small. The limitation of tj/B • 0.33 must be checked beeause a different mde of thickening will oecur at tj/B > 0.33. The use of ~his relationship will be for long backwater reaches where ~ flow vel.ocity is l.aa aDd riveT ia DM "Yery s'teep. See Pariset and Hausser (1961, 1966) for further details. 2. The majority oJ: ice cover thickening occurs as a result of crushing or shoving of an ice c~ver sometimes called staging. The cover may initially progress upstream nccording to equation [121 just presented, but in order for the leading ed1~e to progress further upstream the ice cover bas to thicken by shoves 1~0 withstand the larger forces, which creates a larger head loss and in ttirD higher water levels upstream and lower flow velocities. There have been several formulations (see references 3, 14, 19, 20, 23) presented to caLlculate the equilibrium thickness of a cover when the weight component illL the downstream direction) require a cover thickness greater than .33B, to withstand the forces. The basic formulation is [13} where ~ • ice on ice in'teraal friction type coefficient • 1.3 c • cohesion of the 1.c.e cover H/rr Tw • shear stress on the ice cover underside N/m 2 and ~he o~her qua11~i~ies have been previously defined. The applica~:Lon of ~his equation requires a knowledge of l'w {water shear s~ress) and c {cohesive force within the ice cover). The values of the shear s~ress may range from 1 to 20 N/m 2 and c could vary from a low of 100 N/m,.to maybe u high as 2000 N/m!-' The value of c has not been well documented in the field although a conserva~ively low value (lOD-200) will yield thick ice Q)Vers aod produce higher water levels. Bigh values of cohesion will oc~~r during the freeze-up when the air tempera~ures are low. A composite ice sheet of fragmen~ed ice with a thin upper solid ice cover is very str4)Dg in shear while the same cover thickness without the thin solid sheet 1fi.ll be 1111ch weaker. For ice jam analyses , c is a low value because of this non-freezing condition during the break-up and jamming process • 3.. ThickenitlJ ancl Undercover Transport This combine•! process is not well documented analytically, but has been observed in the field. The state of the art has not advanced sufficiently to pl~operly address this combined topic .. 4. Undercover Trllnsport and No Thickening There is very little field data to substantiate the only equation put forth to estimate the ice discharge benea~ a cover. Pariset and Hausser (1961) used the Pt~ter-Meyer 1947 equation. Recently researchers at the Univ. of Iowa have looked at the individual ice block stability beneath ice c:over.s, lut application to field conditions has not lleen attempted. 'Ihe main reason is lac:k of field data. There is some field dat.a on the transport of small frar.U floes beneath ice covers in shallow streams and the criteria has been generally related to 11 minimum flow velocity 0. 7 to 1.·0 m./s • The value may be even 1.5 •/s.