HomeMy WebLinkAboutAPA1657FERC/DEIS-0038FEDERALENERGYREGULATORYCOMMISSIONOFFICEOFELECTRICPOWERREGULATIONDRAFTENVIRONMENTALIMPACTSTATEMENTSUSITNAHYDROELECTRICPROJECTFERCNO.7114-ALASKAVolume5.AlaskaResourcesLibrary&InformationSerVicesAnchorage,AJaskaAppendixJ.TerrestrialBotanicalResourcesAppendixK.TerrestrialWildlifeResourcesApplicant:AlaskaPowerAuthority333West4thAvenueSuite31Anchorage,Alaska99501AdditionalcopiesoftheDraft-EISmaybeorderedfrom:DivisionofPublicInformationFederalEnergyRegulatoryCommission825NorthCapitolSt.,NE.Washington,D.C.20426May1984FERC/DEIS-0038FEDERALENERGYREGULATORYCOMMISSIONOFFICEOFELECTRICPOWERREGULATIONDRAFTENVIRONMENTALIMPACTSTATEMENTSUSITNAHYDROELECTRICPROJECTFERCNO.7114-ALASKAVolume5.AlaskaResourcesLibrary&InformationSerVicesAnchorage,AJaskaAppendixJ.TerrestrialBotanicalResourcesAppendixK.TerrestrialWildlifeResourcesApplicant:AlaskaPowerAuthority333West4thAvenueSuite31Anchorage,Alaska99501AdditionalcopiesoftheDraft-EISmaybeorderedfrom:DivisionofPublicInformationFederalEnergyRegulatoryCommission825NorthCapitolSt.,NE.Washington,D.C.20426May1984
iiiTABLEOFCONTENTSAPPENDIXJ.TERRESTRIALBOTANICALRESOURCESJ.lAFFECTEDENVIRONMENT.J.1.1Introduction.J.l.2ProposedProject.J.1.2.1UpperandMiddleSusitnaRiverBasinJ.1.2.1.1Forests.J.1.2.1.2Shrublands.J.1.2.1.3Tundra. . . . . . . . . . . ... ..J.1.2.1.4OtherVegetationTypesandUnvegetatedAreasJ.1.2.1.5Wetlands.J.l.2.2LowerSusitnaRiverFloodplainJ.1.2.2.1Early-SuccessionalStandsJ.l.2.2.2Mid-SuccessionalStands.J.1.2.2.3Late-SuccessionalStandsJ.1.2.2.4Wetlands.J.1.2.3PowerTransmissionCorridor.J.l.2.3.1Willow-to-AnchorageSegmentJ.1.2.3.2Healy-to-WillowSegment..J.l.2.3.3Healy-to-FairbanksSegmentJ.1.2.3.4\'Ietlands.J.1.2.4ThreatenedandEndangeredSpeciesJ.1.3SusitnaDevelopmentAlternativesJ.l.3.1AlternativeDamLocationsandDesignsJ.1.3.2AlternativeAccessRoutes.J.1.3.3AlternativePowerTransmissionRoutesJ.1.3.3.1NorthernStudyArea.J.1.3.3.2CentralStudyArea.J.1.3.3.3SouthernStudyArea.J.l.3.4AlternativeBorrowSites.J.l.3.5ThreatenedandEndangeredSpeciesJ.l.4Non-SusitnaGenerationAlternatives.J.1.4.1Natural-Gas-FiredGenerationScenarioJ.1.4.1.1BelugaandChuitnaRivers.J.1.4.1.2Kenai.J.l.4.1.3Anchorage.J.1.4.2Coal-FiredGenerationScenarioJ.1.4.2.1Willow.J.1.4.2.2Nenana.J.1.4.2.3Healy.J.1.4.2.4CookInletArea.J.1.4.3CombinedHydro-ThermalGenerationScenarioJ.l.4.3.1JohnsonJ.1.4.3.2KeetnaJ.l.4.3.3Snow.J.l.4.3.4BrowneJ.1.4.3.5ChakachamnaLakeJ.l.4.3.6Nenana,ChuitnaRiver,AnchorageJ.1.4.4ThreatenedandEndangeredSpeciesJ.2ENVIRONMENTALIMPACTS. . .J.2.1ProposedProjectJ.2.1.1WatanaDevelopmentJ.2.1.1.1ConstructionJ.2.1.1.2Operation...J.2.1.2DevilCanyonDevelopmentJ.2.1.2.1ConstructionJ.2.1.2.2Operation.J.2.1.3AccessRoutes.J.2.1.3.1DenaliHighwaytoWatanaJ.2.1.3.2WatanatoDevilCanyonJ.2.1.3.3RailAccesstoDevilCanyonJ.2.1.4PowerTransmissionFacilities.J.2.1.4.1Dams-to-GoldCreekSegmentJ-3J-3J-3J-12J-25J-31J-32J-33J-33J-33J-36J-36J-37J-37J-37J-37J-37J-39J-41J-41J-41J-41J-41J-43J-43J-44J-44J-44J-44J-44J-44J-44J-44J-44J-45J-45J-45J-45J-45J-45J-45J-45J-45J-45J-45J-46J-46J-46J-46J-46J-46J-54J-56J-56J-61J-62J-62J-64J-65J-65J-65iiiTABLEOFCONTENTSAPPENDIXJ.TERRESTRIALBOTANICALRESOURCESJ.lAFFECTEDENVIRONMENT.J.1.1Introduction.J.l.2ProposedProject.J.1.2.1UpperandMiddleSusitnaRiverBasinJ.1.2.1.1Forests.J.1.2.1.2Shrublands.J.1.2.1.3Tundra. . . . . . . . . . . ... ..J.1.2.1.4OtherVegetationTypesandUnvegetatedAreasJ.1.2.1.5Wetlands.J.l.2.2LowerSusitnaRiverFloodplainJ.1.2.2.1Early-SuccessionalStandsJ.l.2.2.2Mid-SuccessionalStands.J.1.2.2.3Late-SuccessionalStandsJ.1.2.2.4Wetlands.J.1.2.3PowerTransmissionCorridor.J.l.2.3.1Willow-to-AnchorageSegmentJ.1.2.3.2Healy-to-WillowSegment..J.l.2.3.3Healy-to-FairbanksSegmentJ.1.2.3.4\'Ietlands.J.1.2.4ThreatenedandEndangeredSpeciesJ.1.3SusitnaDevelopmentAlternativesJ.l.3.1AlternativeDamLocationsandDesignsJ.1.3.2AlternativeAccessRoutes.J.1.3.3AlternativePowerTransmissionRoutesJ.1.3.3.1NorthernStudyArea.J.1.3.3.2CentralStudyArea.J.1.3.3.3SouthernStudyArea.J.l.3.4AlternativeBorrowSites.J.l.3.5ThreatenedandEndangeredSpeciesJ.l.4Non-SusitnaGenerationAlternatives.J.1.4.1Natural-Gas-FiredGenerationScenarioJ.1.4.1.1BelugaandChuitnaRivers.J.1.4.1.2Kenai.J.l.4.1.3Anchorage.J.1.4.2Coal-FiredGenerationScenarioJ.1.4.2.1Willow.J.1.4.2.2Nenana.J.1.4.2.3Healy.J.1.4.2.4CookInletArea.J.1.4.3CombinedHydro-ThermalGenerationScenarioJ.l.4.3.1JohnsonJ.1.4.3.2KeetnaJ.l.4.3.3Snow.J.l.4.3.4BrowneJ.1.4.3.5ChakachamnaLakeJ.l.4.3.6Nenana,ChuitnaRiver,AnchorageJ.1.4.4ThreatenedandEndangeredSpeciesJ.2ENVIRONMENTALIMPACTS. . .J.2.1ProposedProjectJ.2.1.1WatanaDevelopmentJ.2.1.1.1ConstructionJ.2.1.1.2Operation...J.2.1.2DevilCanyonDevelopmentJ.2.1.2.1ConstructionJ.2.1.2.2Operation.J.2.1.3AccessRoutes.J.2.1.3.1DenaliHighwaytoWatanaJ.2.1.3.2WatanatoDevilCanyonJ.2.1.3.3RailAccesstoDevilCanyonJ.2.1.4PowerTransmissionFacilities.J.2.1.4.1Dams-to-GoldCreekSegmentJ-3J-3J-3J-12J-25J-31J-32J-33J-33J-33J-36J-36J-37J-37J-37J-37J-37J-39J-41J-41J-41J-41J-41J-43J-43J-44J-44J-44J-44J-44J-44J-44J-44J-44J-45J-45J-45J-45J-45J-45J-45J-45J-45J-45J-45J-46J-46J-46J-46J-46J-46J-54J-56J-56J-61J-62J-62J-64J-65J-65J-65
ivTABLEOFCONTENTS(Cont'd)J.2.1.4.2Healy-to-WillowSegment...J.2.1.4.3Healy-to-FairbanksSegmentJ.2.1.4.4Willow-to-AnchorageSegment.J.2.1.5ThreatenedandEndangeredSpeciesJ.2.2SusitnaDevelopmentAlternativesJ.2.2.1AlternativeDamLocationsandDesignsJ.2.2.2AlternativeAccessRoutes.J.2.2.3AlternativePowerTransmissionRoutesJ.2.2.4AlternativeBorrowSites.J.2.2.5ThreatenedandEndangeredSpecies..J.2.3Non-SusitnaGenerationAlternatives...J.2.3.1Natural-Gas-FiredGenerationScenarioJ.2.3.2Coal-FiredGenerationScenarioJ.2.3.3CombinedHydro-ThermalGenerationScenarioJ.2.3.4ThreatenedandEndangeredSpeciesJ.2.4ComparisonofAlternatives.....J.2.4.1SusitnaDevelopmentAlternativesJ.2.4.2PowerGenerationScenariosJ.2.5Conclusions.....J.2.5.1ProposedProject.....J.2.5.2AlternativesJ.3MITIGATION.....J.3.1MeasuresProposedbytheApplicantJ.3.1.1Avoidance..J.3.1.2MinimizationJ.3.1.3RectificationJ.3.1.4Reduction..J.3.1.5Compensation...J.3.2EvaluationofProposedMeasuresJ.3.3RecommendedandOngoingStudiesREFERENCES. . . . . . . . . . . . . . .APPENDIXK.TERRESTRIALWILDLIFERESOURCESK.1BACKGROUND. . . . . . . . . . . . .K.2AFFECTEDENVIRONMENT.K.2.1ProposedProject.K.2.1.1UpperandMiddleSusitnaRiverBasinK.2.1.1.1Moose.K.2.1.1.2Barren-GroundCaribouK.2.1.1.3Dall'sSheepK.2.1.1.4BrownBearK.2.1.1.5BlackBearK.2.1.1.6GrayWolf..K.2.1.1.7Beaver...K.2.1.1.8PineMarten.K.2.1.1.9OtherFurbearersK.2.1.1.10OtherMammalsK.2.1.1.11GoldenEagleK.2.1.1.12BaldEagleK.2.1.1.13OtherRaptorsandRavenK.2.1.1.14TrumpeterSwanK.2.1.1.15OtherWaterbirdsK.2.1.1.16OtherBirds...K.2.1.1.17HumanUseandManagementofWildlifeK.2.1.1.18ThreatenedandEndangeredSpeciesK.2.1.2LowerSusitnaRiverBasinK.2.1.2.1Moose...K.2.1.2.2BearK.2.1.2.3FurbearersK.2.1.2.4Raptors..K.2.1.2.5WaterbirdsK.2.1.3PowerTransmissionLineCorridorK.2.2SusitnaDevelopmentAlternativesK.2.2.1AlternativeDamLocationsandDesignsK.2.2.2AlternativeAccessRoutes,PowerTransmissionLineRoutes,andBorrowSites.K.2.3Non-SusitnaGenerationScenarios.K.2.3.1Natural-Gas-FiredGenerationScenarioK.2.3.1.1ChuitnaandBelugaRivers....J-69J-69J-73J-73J-75J-75J-75J-77J-79J-79J-79J-79J-83J-84J-85J-85J-85J-86J-86J-86J-88J-88J-88J-88J-88J-90J-91J-92J-92J-93J-94K-3K-5K-5K-5K-5K-12K-16K-17K-19K-19K-23K-23K-23K-23K-23K-24K-24K-24K-24K-24K-26K-29K-30K-30K-34K-34K-34K-34K-34K-35K-35K-35K-35K-35K-35ivTABLEOFCONTENTS(Cont'd)J.2.1.4.2Healy-to-WillowSegment...J.2.1.4.3Healy-to-FairbanksSegmentJ.2.1.4.4Willow-to-AnchorageSegment.J.2.1.5ThreatenedandEndangeredSpeciesJ.2.2SusitnaDevelopmentAlternativesJ.2.2.1AlternativeDamLocationsandDesignsJ.2.2.2AlternativeAccessRoutes.J.2.2.3AlternativePowerTransmissionRoutesJ.2.2.4AlternativeBorrowSites.J.2.2.5ThreatenedandEndangeredSpecies..J.2.3Non-SusitnaGenerationAlternatives...J.2.3.1Natural-Gas-FiredGenerationScenarioJ.2.3.2Coal-FiredGenerationScenarioJ.2.3.3CombinedHydro-ThermalGenerationScenarioJ.2.3.4ThreatenedandEndangeredSpeciesJ.2.4ComparisonofAlternatives.....J.2.4.1SusitnaDevelopmentAlternativesJ.2.4.2PowerGenerationScenariosJ.2.5Conclusions.....J.2.5.1ProposedProject.....J.2.5.2AlternativesJ.3MITIGATION.....J.3.1MeasuresProposedbytheApplicantJ.3.1.1Avoidance..J.3.1.2MinimizationJ.3.1.3RectificationJ.3.1.4Reduction..J.3.1.5Compensation...J.3.2EvaluationofProposedMeasuresJ.3.3RecommendedandOngoingStudiesREFERENCES. . . . . . . . . . . . . . .APPENDIXK.TERRESTRIALWILDLIFERESOURCESK.1BACKGROUND. . . . . . . . . . . . .K.2AFFECTEDENVIRONMENT.K.2.1ProposedProject.K.2.1.1UpperandMiddleSusitnaRiverBasinK.2.1.1.1Moose.K.2.1.1.2Barren-GroundCaribouK.2.1.1.3Dall'sSheepK.2.1.1.4BrownBearK.2.1.1.5BlackBearK.2.1.1.6GrayWolf..K.2.1.1.7Beaver...K.2.1.1.8PineMarten.K.2.1.1.9OtherFurbearersK.2.1.1.10OtherMammalsK.2.1.1.11GoldenEagleK.2.1.1.12BaldEagleK.2.1.1.13OtherRaptorsandRavenK.2.1.1.14TrumpeterSwanK.2.1.1.15OtherWaterbirdsK.2.1.1.16OtherBirds...K.2.1.1.17HumanUseandManagementofWildlifeK.2.1.1.18ThreatenedandEndangeredSpeciesK.2.1.2LowerSusitnaRiverBasinK.2.1.2.1Moose...K.2.1.2.2BearK.2.1.2.3FurbearersK.2.1.2.4Raptors..K.2.1.2.5WaterbirdsK.2.1.3PowerTransmissionLineCorridorK.2.2SusitnaDevelopmentAlternativesK.2.2.1AlternativeDamLocationsandDesignsK.2.2.2AlternativeAccessRoutes,PowerTransmissionLineRoutes,andBorrowSites.K.2.3Non-SusitnaGenerationScenarios.K.2.3.1Natural-Gas-FiredGenerationScenarioK.2.3.1.1ChuitnaandBelugaRivers....J-69J-69J-73J-73J-75J-75J-75J-77J-79J-79J-79J-79J-83J-84J-85J-85J-85J-86J-86J-86J-88J-88J-88J-88J-88J-90J-91J-92J-92J-93J-94K-3K-5K-5K-5K-5K-12K-16K-17K-19K-19K-23K-23K-23K-23K-23K-24K-24K-24K-24K-24K-26K-29K-30K-30K-34K-34K-34K-34K-34K-35K-35K-35K-35K-35K-35
vTABLEOFCONTENTS(Cont'd)K.2.3.1.2Kenai.. .... .K.2.3.1.3Anchorage.... .K.2.3.2Coal-FiredGenerationScenarioK.2.3.2.1Willow.K.2.3.2.2Nenana. . . . . . . . . .K.2.3.2.3Healy.K.2.3.3CombinedHydro-ThermalGenerationScenarioK.2.3.3.1ChakachamnaLakeK.2.3.3.2BrowneK.2.3.3.3KeetnaK.2.3.3.4Snow...K.2.3.3.5Johnson..K.2.3.3.6Nenana,ChuitnaRiver,andAnchorageK.3ENVIRONMENTALIMPACT.K.3.1ProposedProject.K.3.1.1WatanaDevelopment. . . . .K.3.1.1.1ConstructionandFillingK.3.1.1.2Operation.K.3.1.1.3ThreatenedorEndangeredSpeciesK.3.1.2DevilCanyonDevelopment..K.3.1.2.1ConstructionandFillingK.3.1.2.2Operation.K.3.1.3AccessRoutes.K.3.1.3.1DenaliHighway-to-WatanaRouteK.3.1.3.2Watana-to-DevilCanyonRouteK.3.1.3.3DevilCanyon-to-GoldCreekRailAccessK.3.1.4PowerTransmissionFacilities.K.3.1.4.1Dams-to-GoldCreekSegmentK.3.1.4.2Healy-to-WillowSegment..K.3.1.4.3Healy-to-FairbanksSegmentK.3.1.4.4Willow-to-AnchorageSegmentK.3.2SusitnaDevelopmentAlternativesK.3.2.1AlternativeDamLocationsandDesignsK.3.2.2AlternativeAccessRoutes.K.3.2.3AlternativePowerTransmissionRoutesK.3.2.4AlternativeBorrowAreas.K.3.3Non-SusitnaGeneratingAlternatives.K.3.3.1Natural-Gas-FiredGenerationScenarioK.3.3.2Coal-FiredGenerationScenarioK.3.3.3CombinedHydro-ThermalGenerationScenarioK.3.4ComparisonofAlternativesK.4MITIGATIVEACTIONS.K.4.1ProposedMitigation.K.4.2RecommendedMitigationK.5SIGNIFICANTENVIRONMENTALIMPACTSK.5.1ProposedProject.....K.5.2AlternativestotheProposedProjectREFERENCES. . . . . . . . . . . . . . . . . .K-36K-36K-36K-36K-36K-36K-36K-36K-37K-37K-37K-37K-37K-38K-38K-38K-38K-54K-60K-60K-60K-65K-66K-66K-69K-69K-69K-69K-71K-72K-73K-74K-74K-75K-75K-76K-76K-76K-76K-77K-77K-79K-79K-82K-83K-83K-83K-84vTABLEOFCONTENTS(Cont'd)K.2.3.1.2Kenai.. .... .K.2.3.1.3Anchorage.... .K.2.3.2Coal-FiredGenerationScenarioK.2.3.2.1Willow.K.2.3.2.2Nenana. . . . . . . . . .K.2.3.2.3Healy.K.2.3.3CombinedHydro-ThermalGenerationScenarioK.2.3.3.1ChakachamnaLakeK.2.3.3.2BrowneK.2.3.3.3KeetnaK.2.3.3.4Snow...K.2.3.3.5Johnson..K.2.3.3.6Nenana,ChuitnaRiver,andAnchorageK.3ENVIRONMENTALIMPACT.K.3.1ProposedProject.K.3.1.1WatanaDevelopment. . . . .K.3.1.1.1ConstructionandFillingK.3.1.1.2Operation.K.3.1.1.3ThreatenedorEndangeredSpeciesK.3.1.2DevilCanyonDevelopment..K.3.1.2.1ConstructionandFillingK.3.1.2.2Operation.K.3.1.3AccessRoutes.K.3.1.3.1DenaliHighway-to-WatanaRouteK.3.1.3.2Watana-to-DevilCanyonRouteK.3.1.3.3DevilCanyon-to-GoldCreekRailAccessK.3.1.4PowerTransmissionFacilities.K.3.1.4.1Dams-to-GoldCreekSegmentK.3.1.4.2Healy-to-WillowSegment..K.3.1.4.3Healy-to-FairbanksSegmentK.3.1.4.4Willow-to-AnchorageSegmentK.3.2SusitnaDevelopmentAlternativesK.3.2.1AlternativeDamLocationsandDesignsK.3.2.2AlternativeAccessRoutes.K.3.2.3AlternativePowerTransmissionRoutesK.3.2.4AlternativeBorrowAreas.K.3.3Non-SusitnaGeneratingAlternatives.K.3.3.1Natural-Gas-FiredGenerationScenarioK.3.3.2Coal-FiredGenerationScenarioK.3.3.3CombinedHydro-ThermalGenerationScenarioK.3.4ComparisonofAlternativesK.4MITIGATIVEACTIONS.K.4.1ProposedMitigation.K.4.2RecommendedMitigationK.5SIGNIFICANTENVIRONMENTALIMPACTSK.5.1ProposedProject.....K.5.2AlternativestotheProposedProjectREFERENCES. . . . . . . . . . . . . . . . . .K-36K-36K-36K-36K-36K-36K-36K-36K-37K-37K-37K-37K-37K-38K-38K-38K-38K-54K-60K-60K-60K-65K-66K-66K-69K-69K-69K-69K-71K-72K-73K-74K-74K-75K-75K-76K-76K-76K-76K-77K-77K-79K-79K-82K-83K-83K-83K-84
viLISTOFFIGURESFigurePageCOVERPHOTO:Artist'sRenditionof theProposedWatanaDamandReservoirAPPENDIXJ.TERRESTRIALBOTANICALRESOURCESJ-1GeneralVegetationDistributioninSouthcentralAlaskaandLocationsofProposedDamSites,Non-SusitnaAlternativeHydropowerSites,andAlternativeTherma1UnitSites. . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-4J-2VegetationDistributionwithin10mioftheSusitnaRiverbetweenGoldCreekandtheTyoneRiver:LocationMap. . . . . . . . . . . . . . . . . . . . .J-8J-3UplandSuccessionalSequenceFollowingFireinBlackSpruceandWhiteSpruceJ-29J-4LocationsofCreeksandWaterBodiesintheUpperandMiddleSusitnaBasinAroundWhichWetlandsHaveBeenIdentifiedJ-34J-5PrimarySuccessionontheTananaRiverFloodplain.. . .J-35J-6TypicalTransmissionRight-of-WayCrossSection.. . . .J-68APPENDIXK.TERRESTRIALWILDLIFERESOURCESK-1GeneralPatternsofMovementbyRadio-CollaredMoosefromOctober1976throughMid-August1981withintheUpper/MiddleSusitnaBasin.. . . . . . . . . .K-7K-2RelativeDensitiesofMooseinCensusAreaswithintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . . . . . ...K-8K-3GeneralMooseCalvingRangefrom1977through1981withintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . ,K-9K-4GeneralMooseRuttingRangefrom1977through1980withintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . ...K-10K-5GeneralAreaofWinterConcentrationofMoosefrom1977through1982withintheUpper/MiddleSusitnaBasin. . . . . . . . . . . . . . . . . . . . .K-llK-6GeneralRangeofMainNelchinaCaribouHerdduringtheCalvingPeriodfrom1980through1982withintheUpper/MiddleSusitnaBasin. . . . . . . . . . . . . .K-13K-7GeneralRangeforCalvingbytheUpperSusitna-NenanaCaribouSubherdfrom1980through1982. . . . . . . . . . . . . . . . . . . . . . . . . . .K-14K-8GeneralWinteringRangeforNelchinaCaribouHerdfrom1980through1982K-15K-9Dall'sSheepRangeintheUpper/MiddleSusitnaBasin. . . . . . .K-16K-10GeneralRangeofBlackBearintheUpper/MiddleSusitnaBasin.. .K-20K-11KnownandSuspectedTerritorialBoundariesofWolfPacksInhabitingtheUpper/MiddleSusitnaBasin. . . . . . . . . . . . . . . . . . . . . . . . . . .K-22K-12ImportanceValUesofWaterBodiesforMigrantWaterfowlintheUpper/MiddleSusitnaBasinandUpperTananaRiverValley--Spring1980. . . . . . . . .K-25K-13ImportanceValuesofWaterBodiesforMigrantWaterfowlintheUpper/MiddleSusitnaBasin,andUpperTananaRiverValleyandScottieCreekArea-Fall1980K-25K-14GameManagementUnitsofSouthcentralAlaska. . . . . . . . .K-27K-15MooseHuntingIntensityandTakeforGMU13. . . . . . . . . .K-28K-16GeneralOverwinteringRangeofMooseintheLowerSusitnaBasinK-31K-17GeneralSummer-FallRangesofMooseintheLowerSusitnaBasinK-32K-18GeneralCalvingRangeofMooseintheLowerSusitnaBasin.. .K-33K-19BoundariesofPrimary,Secondary,andTertiaryZonesofImpactfortheSusitnaHydroelectricProject.. . . . . . . . . . . . . . . . . . . . . . . . . . . .K-42viLISTOFFIGURESFigurePageCOVERPHOTO:Artist'sRenditionof theProposedWatanaDamandReservoirAPPENDIXJ.TERRESTRIALBOTANICALRESOURCESJ-1GeneralVegetationDistributioninSouthcentralAlaskaandLocationsofProposedDamSites,Non-SusitnaAlternativeHydropowerSites,andAlternativeTherma1UnitSites. . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-4J-2VegetationDistributionwithin10mioftheSusitnaRiverbetweenGoldCreekandtheTyoneRiver:LocationMap. . . . . . . . . . . . . . . . . . . . .J-8J-3UplandSuccessionalSequenceFollowingFireinBlackSpruceandWhiteSpruceJ-29J-4LocationsofCreeksandWaterBodiesintheUpperandMiddleSusitnaBasinAroundWhichWetlandsHaveBeenIdentifiedJ-34J-5PrimarySuccessionontheTananaRiverFloodplain.. . .J-35J-6TypicalTransmissionRight-of-WayCrossSection.. . . .J-68APPENDIXK.TERRESTRIALWILDLIFERESOURCESK-1GeneralPatternsofMovementbyRadio-CollaredMoosefromOctober1976throughMid-August1981withintheUpper/MiddleSusitnaBasin.. . . . . . . . . .K-7K-2RelativeDensitiesofMooseinCensusAreaswithintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . . . . . ...K-8K-3GeneralMooseCalvingRangefrom1977through1981withintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . ,K-9K-4GeneralMooseRuttingRangefrom1977through1980withintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . ...K-10K-5GeneralAreaofWinterConcentrationofMoosefrom1977through1982withintheUpper/MiddleSusitnaBasin. . . . . . . . . . . . . . . . . . . . .K-llK-6GeneralRangeofMainNelchinaCaribouHerdduringtheCalvingPeriodfrom1980through1982withintheUpper/MiddleSusitnaBasin. . . . . . . . . . . . . .K-13K-7GeneralRangeforCalvingbytheUpperSusitna-NenanaCaribouSubherdfrom1980through1982. . . . . . . . . . . . . . . . . . . . . . . . . . .K-14K-8GeneralWinteringRangeforNelchinaCaribouHerdfrom1980through1982K-15K-9Dall'sSheepRangeintheUpper/MiddleSusitnaBasin. . . . . . .K-16K-10GeneralRangeofBlackBearintheUpper/MiddleSusitnaBasin.. .K-20K-11KnownandSuspectedTerritorialBoundariesofWolfPacksInhabitingtheUpper/MiddleSusitnaBasin. . . . . . . . . . . . . . . . . . . . . . . . . . .K-22K-12ImportanceValUesofWaterBodiesforMigrantWaterfowlintheUpper/MiddleSusitnaBasinandUpperTananaRiverValley--Spring1980. . . . . . . . .K-25K-13ImportanceValuesofWaterBodiesforMigrantWaterfowlintheUpper/MiddleSusitnaBasin,andUpperTananaRiverValleyandScottieCreekArea-Fall1980K-25K-14GameManagementUnitsofSouthcentralAlaska. . . . . . . . .K-27K-15MooseHuntingIntensityandTakeforGMU13. . . . . . . . . .K-28K-16GeneralOverwinteringRangeofMooseintheLowerSusitnaBasinK-31K-17GeneralSummer-FallRangesofMooseintheLowerSusitnaBasinK-32K-18GeneralCalvingRangeofMooseintheLowerSusitnaBasin.. .K-33K-19BoundariesofPrimary,Secondary,andTertiaryZonesofImpactfortheSusitnaHydroelectricProject.. . . . . . . . . . . . . . . . . . . . . . . . . . . .K-42
viiLISTOFTABLESTablePageAPPENDIXJ.TERRESTRIALBOTANICALRESOURCESJ-lDescriptionsofGeneralizedVegetationClassesUsedforMappinginFigureJ-l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-5J-2SummaryofViereckandDyrnessVegetationClassificationsUsedforVegetationMappingJ-9J-3VegetationTypesandTheirGeneralAreasofOccurrencewithintheUpperandMiddleSusitnaBasin,LowerSusitnaRiverFloodplain,andTransmissionCorridorStudyArea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-13J-4ViereckandDyrnessVegetationTypesMostLikelytoOccurwithintheVegetationClassesDelineatedinFigureJ-l. . . . . . . . . . . . . . . . . . . . . .J-15J-5CorrelationofVegetationClassestoPotentialWetlandClasses. . . . . . .J-16J-6PreliminaryListofPlantSpeciesIdentifiedintheUpperandMiddleSusitnaRiverBasin,theDownstreamFloodplain,andtheHealy-to-WillowTransmissionCorridorStudyArea.. . . . . . . . . . . . . . . . . . . .J-17J-7AcreageandPercentageofTotalAreaCoveredbyVegetationTypesintheUpperandMiddleSusitnaBasin. . . . . . . . . . . . . . . . . . . . . . . .J-26J-8AcreageandPercentageofTotalAreaCoveredbyVegetationTypesfortheAreaTenMilesonEitherSideoftheSusitnaRiverfromGoldCreektotheTyoneRiver.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-27J-9CriteriaforAssignmentofIndividualPlantstoVerticalLayersinthePlantCommunityforPurposesofStratifiedCanopyCoverMeasurements. . . .J-28J-IOComparisonofCharacteristicsofBlackSpruceForestsandWhiteSpruceForests.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-30J-llElevationsofTundraAreasSampledintheUpperandMiddleSusitnaBasinJ-32J-12EstimatedArealExtentandPercentageofTotalAreaCoveredbyPotentialWetlandswithintheUpperandMiddleSusitnaBasin. . . . . . . . . .J-35J-13AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithinthe\1illow-to-AnchorageTransmissionCorridorStudyArea. . . . . . . . .J-38J-14AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheProposedHealy-to-WillowTransmissionCorridor. . . . . . . . . . . .J-39J-15AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheHealy-to-FairbanksTransmissionCorridorStudyArea.. . . . . . . . .J-40J-16EstimatedArealExtentandPercentageofTotalAreaCoveredbyPotentialWetlandswithintheWillow-to-AnchorageandHealy-to-FairbanksTransmissionCorridorStudyAreasandtheProposedHealy-to-WillowTransmissionLineCorridor.. . . . ...J-42J-17PlantSpeciesunderReviewasThreatenedorEndangeredwiththeHighestProbabilityofOccurrencewithinAreasthatWouldbeAffectedbytheProposedProject. . . . . . . . . . . . . . . . . . . . . . . . . . .J-43J-18AcreageofVegetationTypesthatWouldbePermanentlyLostasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin. . . . . . . . . . . . . . . . .J-47J-19AcreageofVegetationTypesthatWouldbeTemporarilyLostandWouldRequireRehabilitationasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. .J-48J-20AcreageofPotentialWetlandTypesthatWouldbePermanentlyLostasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . .J-50J-21AcreageofPotentialWetlandTypesthatWouldbeTemporarilyLostandWouldRequireRehabilitationasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-51J-22AcreageofVegetationTypesthatWouldbePermanentlyLost asaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . .J-57J-23AcreageofVegetationTypesthatWouldbeTemporarilyLostandWouldRequireRehabilitationasaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-58J-24AcreageofPotentialWetlandTypesthatWouldbePermanentlyLostasaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . .J-59viiLISTOFTABLESTablePageAPPENDIXJ.TERRESTRIALBOTANICALRESOURCESJ-lDescriptionsofGeneralizedVegetationClassesUsedforMappinginFigureJ-l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-5J-2SummaryofViereckandDyrnessVegetationClassificationsUsedforVegetationMappingJ-9J-3VegetationTypesandTheirGeneralAreasofOccurrencewithintheUpperandMiddleSusitnaBasin,LowerSusitnaRiverFloodplain,andTransmissionCorridorStudyArea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-13J-4ViereckandDyrnessVegetationTypesMostLikelytoOccurwithintheVegetationClassesDelineatedinFigureJ-l. . . . . . . . . . . . . . . . . . . . . .J-15J-5CorrelationofVegetationClassestoPotentialWetlandClasses. . . . . . .J-16J-6PreliminaryListofPlantSpeciesIdentifiedintheUpperandMiddleSusitnaRiverBasin,theDownstreamFloodplain,andtheHealy-to-WillowTransmissionCorridorStudyArea.. . . . . . . . . . . . . . . . . . . .J-17J-7AcreageandPercentageofTotalAreaCoveredbyVegetationTypesintheUpperandMiddleSusitnaBasin. . . . . . . . . . . . . . . . . . . . . . . .J-26J-8AcreageandPercentageofTotalAreaCoveredbyVegetationTypesfortheAreaTenMilesonEitherSideoftheSusitnaRiverfromGoldCreektotheTyoneRiver.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-27J-9CriteriaforAssignmentofIndividualPlantstoVerticalLayersinthePlantCommunityforPurposesofStratifiedCanopyCoverMeasurements. . . .J-28J-IOComparisonofCharacteristicsofBlackSpruceForestsandWhiteSpruceForests.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-30J-llElevationsofTundraAreasSampledintheUpperandMiddleSusitnaBasinJ-32J-12EstimatedArealExtentandPercentageofTotalAreaCoveredbyPotentialWetlandswithintheUpperandMiddleSusitnaBasin. . . . . . . . . .J-35J-13AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithinthe\1illow-to-AnchorageTransmissionCorridorStudyArea. . . . . . . . .J-38J-14AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheProposedHealy-to-WillowTransmissionCorridor. . . . . . . . . . . .J-39J-15AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheHealy-to-FairbanksTransmissionCorridorStudyArea.. . . . . . . . .J-40J-16EstimatedArealExtentandPercentageofTotalAreaCoveredbyPotentialWetlandswithintheWillow-to-AnchorageandHealy-to-FairbanksTransmissionCorridorStudyAreasandtheProposedHealy-to-WillowTransmissionLineCorridor.. . . . ...J-42J-17PlantSpeciesunderReviewasThreatenedorEndangeredwiththeHighestProbabilityofOccurrencewithinAreasthatWouldbeAffectedbytheProposedProject. . . . . . . . . . . . . . . . . . . . . . . . . . .J-43J-18AcreageofVegetationTypesthatWouldbePermanentlyLostasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin. . . . . . . . . . . . . . . . .J-47J-19AcreageofVegetationTypesthatWouldbeTemporarilyLostandWouldRequireRehabilitationasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. .J-48J-20AcreageofPotentialWetlandTypesthatWouldbePermanentlyLostasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . .J-50J-21AcreageofPotentialWetlandTypesthatWouldbeTemporarilyLostandWouldRequireRehabilitationasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-51J-22AcreageofVegetationTypesthatWouldbePermanentlyLost asaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . .J-57J-23AcreageofVegetationTypesthatWouldbeTemporarilyLostandWouldRequireRehabilitationasaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-58J-24AcreageofPotentialWetlandTypesthatWouldbePermanentlyLostasaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . .J-59
viiiLISTOFTABLES(Cont'd)TableJ-25AcreageofPotentialWetlandTypesthatWouldBeTemporarilyLostandWouldRequireRehabilitationasaResultof theDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-60J-26AcreageofVegetationTypesthatWouldBeClearedforAccessandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-63J-27AcreageofPotentialWetlandTypesthatWouldbeClearedforAccessandComparisonofeachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin. . . . . . . . . . . . . . . . . . . . . . . . . . . .J-64J-28AcreageofVegetationTypesthatWouldbeCrossedbyTransmissionCorridorsfromtheDamstoGoldCreekandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin. . . . . . . . . . . . . . . . ...J-66J-29AcreageofPotentialWetlandTypesthatWouldBeCrossedbyTransmissionCorridorsfromtheDamstoGoldCreekandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin"J-67J-30AcreageofVegetationTypesthatWouldbeCrossedbytheHealy-to-WillowTransmissionCorridorandPercentageofEachTypewithintheProposedTransmissionCorridor.. . . . . . . . . . . . . . . . . . . . . . . . .J-70J-31AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheHealy-to-WillowTransmissionCorridorandPercentageofEachTypewithintheProposedTrans-missionCorridor. . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-71J-32AcreageofVegetationTypesthatWouldbeCrossedbytheHealy-to-FairbanksTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheHealy-to-FairbanksTransmissionCorridorStudyArea.. . . . .J-72J-33AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheHealy-to-FairbanksTransmissionCorridorandComparisonofEachTypewiththeTotalAcreageofthatTypeintheHealy-to-FairbanksTransmissionCorridorStudyArea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-73J-34AcreageofVegetationTypesthatWouldbeCrossedbytheWillow-to-AnchorageTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheWillow-to-AnchorageTransmissionCorridorStudyArea.. .J-74J-35AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheWillow-to-AnchorageTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheWillow-to-AnchorageTransmissionCorridorStudyArea. . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-74J-36AcreagesofVegetationTypesthatWouldBeClearedfortheNorthernandSouthernAlternativeAccessCorridorsandComparisonofEachVegetationTypewiththeTota1AcreageforthatTypeintheUpperandMiddleSusitnaBasin.. . . . . .J-76J-37AcreagesofPotentialWetlandTypesthatWouldBeClearedfortheNorthernandSouthernAlternativeAccessCorridorsandComparisonofEachWetlandTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasin.. . . .J-77J-38AcreagesofVegetationTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheNorthernandSouthernStudyAreas.. . . . . . .J-78J-39AcreagesofVegetationTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheCentralStudyAreaandComparisonofEachVegeta-tionTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-80J-40AcreagesofPotentialWetlandTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheNorthernandSouthernStudyAreasJ-81J-41AcreagesofPotentialWetlandTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheCentralStudyAreaandComparisonofEachWetlandTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . .J-82J-42PotentialAcreagesofVegetationPermanentlyRemovedforConstructionofFacili-tiesAssociatedwithNatural-Gas-FiredUnitsatEachLocationfortheNatural-Gas-FiredGenerationScenario.. . . . . . . . . . . . . . . . . . . . . . .J-83J-43PotentialAcreagesofVegetationPermanentlyandTemporarilyRemovedforCon-structionofFacilities,WasteDisposal,andSurfaceMiningAssociatedwiththeCoal-andNatural-Gas-FiredUnitsateachLocationintheCoal-FiredGenerationScenari0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-84J-44PotentialAcreagesofVegetationPermanentlyorTemporarilyRemovedbyInundation,ConstructionofFacilities,WasteDisposal,andSurfaceMiningAssociatedwiththeCombinedHydro~ThermalGenerationScenario,bothwithandwithoutLakeChakachamn'a..":. . . . . . ..'.. . . . . . . . . . ; . . . . . . . . . . . .J-85J-45ComparisonofEstimatedQuantifiableandUnquantifiableDisturbancetoVegetationAmongthePowerGenerationScenarios. . . . . . . . . . . . . . . . . . . ...J-87viiiLISTOFTABLES(Cont'd)TableJ-25AcreageofPotentialWetlandTypesthatWouldBeTemporarilyLostandWouldRequireRehabilitationasaResultof theDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-60J-26AcreageofVegetationTypesthatWouldBeClearedforAccessandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-63J-27AcreageofPotentialWetlandTypesthatWouldbeClearedforAccessandComparisonofeachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin. . . . . . . . . . . . . . . . . . . . . . . . . . . .J-64J-28AcreageofVegetationTypesthatWouldbeCrossedbyTransmissionCorridorsfromtheDamstoGoldCreekandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin. . . . . . . . . . . . . . . . ...J-66J-29AcreageofPotentialWetlandTypesthatWouldBeCrossedbyTransmissionCorridorsfromtheDamstoGoldCreekandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasin"J-67J-30AcreageofVegetationTypesthatWouldbeCrossedbytheHealy-to-WillowTransmissionCorridorandPercentageofEachTypewithintheProposedTransmissionCorridor.. . . . . . . . . . . . . . . . . . . . . . . . .J-70J-31AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheHealy-to-WillowTransmissionCorridorandPercentageofEachTypewithintheProposedTrans-missionCorridor. . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-71J-32AcreageofVegetationTypesthatWouldbeCrossedbytheHealy-to-FairbanksTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheHealy-to-FairbanksTransmissionCorridorStudyArea.. . . . .J-72J-33AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheHealy-to-FairbanksTransmissionCorridorandComparisonofEachTypewiththeTotalAcreageofthatTypeintheHealy-to-FairbanksTransmissionCorridorStudyArea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-73J-34AcreageofVegetationTypesthatWouldbeCrossedbytheWillow-to-AnchorageTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheWillow-to-AnchorageTransmissionCorridorStudyArea.. .J-74J-35AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheWillow-to-AnchorageTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheWillow-to-AnchorageTransmissionCorridorStudyArea. . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-74J-36AcreagesofVegetationTypesthatWouldBeClearedfortheNorthernandSouthernAlternativeAccessCorridorsandComparisonofEachVegetationTypewiththeTota1AcreageforthatTypeintheUpperandMiddleSusitnaBasin.. . . . . .J-76J-37AcreagesofPotentialWetlandTypesthatWouldBeClearedfortheNorthernandSouthernAlternativeAccessCorridorsandComparisonofEachWetlandTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasin.. . . .J-77J-38AcreagesofVegetationTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheNorthernandSouthernStudyAreas.. . . . . . .J-78J-39AcreagesofVegetationTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheCentralStudyAreaandComparisonofEachVegeta-tionTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-80J-40AcreagesofPotentialWetlandTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheNorthernandSouthernStudyAreasJ-81J-41AcreagesofPotentialWetlandTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheCentralStudyAreaandComparisonofEachWetlandTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . . . . .J-82J-42PotentialAcreagesofVegetationPermanentlyRemovedforConstructionofFacili-tiesAssociatedwithNatural-Gas-FiredUnitsatEachLocationfortheNatural-Gas-FiredGenerationScenario.. . . . . . . . . . . . . . . . . . . . . . .J-83J-43PotentialAcreagesofVegetationPermanentlyandTemporarilyRemovedforCon-structionofFacilities,WasteDisposal,andSurfaceMiningAssociatedwiththeCoal-andNatural-Gas-FiredUnitsateachLocationintheCoal-FiredGenerationScenari0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J-84J-44PotentialAcreagesofVegetationPermanentlyorTemporarilyRemovedbyInundation,ConstructionofFacilities,WasteDisposal,andSurfaceMiningAssociatedwiththeCombinedHydro~ThermalGenerationScenario,bothwithandwithoutLakeChakachamn'a..":. . . . . . ..'.. . . . . . . . . . ; . . . . . . . . . . . .J-85J-45ComparisonofEstimatedQuantifiableandUnquantifiableDisturbancetoVegetationAmongthePowerGenerationScenarios. . . . . . . . . . . . . . . . . . . ...J-87
ixLISTOFTABLES(Cont'd)TablePageAPPENDIXK.TERRESTRIALWILDLIFERESOURCESK-1TaxaofWildlifeConsideredinAssessmentofImpactsfromSusitnaHydroelectricProject.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .K-4K-1EstimatedPotentialWinterCarryingCapacityforMooseintheProjectedWatanaImpoundmentZoneandSusitnaRiverBasinUpstreamofGoldCreek.. . . . . . .K-6K-3Aerial ObservationsofBrownBearbySeasoninEachofFiveHabitatCategorieswithintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . .K-18K-4AerialObservationsofBlackBearbySeasoninEachofFiveHabitatCategoriesintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . .K-21K-5TrapperExportsandDealerPurchasesofFurbearerPeltsinGameManagementUnit13,1977-1980. . . . . . ., . . . . . . . . . . . . .K-30K-6PotentialImpactstoMoosefromWatanaDevelopment. . . . . . . . . . .K-39K-7ProportionateSeasonalUseofHabitatCoverTypebyRadio-CollaredMooseK-40K-8MooseUseofHabitatCoverTypesinRelationtoTheirAvailabilitywithinthePrimaryImpactZoneoftheWatanaDevelopment.. . . . .K-40K-9PotentialImpactstoCariboufromWatanaDevelopmentK-43K-10PotentialImpactstoDall'sSheepfromWatanaDevelopmentK-45K-11PotentialImpactstoBrownBearfromWatanaDevelopmentK-45K-12PotentialImpactstoBlackBearfromWatanaDevelopment.K-47K-13Potentia1ImpactstoWoIffromWatanaDevelopment. . . .K-48K-14PotentialImpactstoWolverinefromWatanaDevelopmentK-49K-15PotentialImpactstoAquaticFurbearersfromWatanaDevelopmentK-49K-16PotentialImpactstoSemi-AquaticFurbearersfromWatanaDevelopmentK-51K-17PotentialImpactstoFoxfromWatanaDevelopment. . . . . . . . . .K-51K-18PotentialImpactstoRaptorsandRavensfromWatanaDevelopment.. .K-52K-19RaptorandRavenNestingLocationsthatMightBeAffectedbyConstructionActivitiesattheWatanaDevelopment. . . . . . . . . . . . . . . .K-53K-20InfluenceofTimingofDisturbanceonthePossibleEffectsonRaptors. .K-54K-21PotentialImpactstoWildlifefromDevilCanyonDevelopment.. . . . . .K-61K-22RaptorandRavenNestingLocationsLikelytoBeAffectedbyConstructionActivitiesatDevilCanyon. . . . . . . . . . . . . . . . . . .K-65K-23RelativePotentialforImpactstoWildlifefromAlternativeGenerationScenarios.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .K-78ixLISTOFTABLES(Cont'd)TablePageAPPENDIXK.TERRESTRIALWILDLIFERESOURCESK-1TaxaofWildlifeConsideredinAssessmentofImpactsfromSusitnaHydroelectricProject.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .K-4K-1EstimatedPotentialWinterCarryingCapacityforMooseintheProjectedWatanaImpoundmentZoneandSusitnaRiverBasinUpstreamofGoldCreek.. . . . . . .K-6K-3Aerial ObservationsofBrownBearbySeasoninEachofFiveHabitatCategorieswithintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . .K-18K-4AerialObservationsofBlackBearbySeasoninEachofFiveHabitatCategoriesintheUpper/MiddleSusitnaBasin.. . . . . . . . . . . . . . . . . . . .K-21K-5TrapperExportsandDealerPurchasesofFurbearerPeltsinGameManagementUnit13,1977-1980. . . . . . .,. . . . . . . . . . . . .K-30K-6PotentialImpactstoMoosefromWatanaDevelopment. . . . . . . . . . .K-39K-7ProportionateSeasonalUseofHabitatCoverTypebyRadio-CollaredMooseK-40K-8MooseUseofHabitatCoverTypesinRelationtoTheirAvailabilitywithinthePrimaryImpactZoneoftheWatanaDevelopment.. . . . .K-40K-9PotentialImpactstoCariboufromWatanaDevelopmentK-43K-10PotentialImpactstoDall'sSheepfromWatanaDevelopmentK-45K-11PotentialImpactstoBrownBearfromWatanaDevelopmentK-45K-12PotentialImpactstoBlackBearfromWatanaDevelopment.K-47K-13Potentia1ImpactstoWoIffromWatanaDevelopment. . . .K-48K-14PotentialImpactstoWolverinefromWatanaDevelopmentK-49K-15PotentialImpactstoAquaticFurbearersfromWatanaDevelopmentK-49K-16PotentialImpactstoSemi-AquaticFurbearersfromWatanaDevelopmentK-51K-17PotentialImpactstoFoxfromWatanaDevelopment. . . . . . . . . .K-51K-18PotentialImpactstoRaptorsandRavensfromWatanaDevelopment.. .K-52K-19RaptorandRavenNestingLocationsthatMightBeAffectedbyConstructionActivitiesattheWatanaDevelopment. . . . . . . . . . . . . . . .K-53K-20InfluenceofTimingofDisturbanceonthePossibleEffectsonRaptors. .K-54K-21PotentialImpactstoWildlifefromDevilCanyonDevelopment.. . . . . .K-61K-22RaptorandRavenNestingLocationsLikelytoBeAffectedbyConstructionActivitiesatDevilCanyon. . . . . . . . . . . . . . . . . . .K-65K-23RelativePotentialforImpactstoWildlifefromAlternativeGenerationScenarios.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .K-78
DRAFTENVIRONMENTALIMPACTSTATEMENTSUSITNAHYDROELECTRICPROJECT,FERCNO.7114APPENDIXJTERRESTRIALBOTANICALRESOURCESPreparedbyJ.D.JastrowArgonneNationalLaboratoryJ-1DRAFTENVIRONMENTALIMPACTSTATEMENTSUSITNAHYDROELECTRICPROJECT,FERCNO.7114APPENDIXJTERRESTRIALBOTANICALRESOURCESPreparedbyJ.D.JastrowArgonneNationalLaboratoryJ-1
J-3APPENDIXJ.TERRESTRIALBOTANICALRESOURCESJ.1AFFECTEDENVIRONMENTJ.1.1IntroductionThesitesoftheproposedSusitnaprojectandmostoftheprojectalternativesconsideredinthisdocumentarelocatedinSouthcentralAlaska,almostentirelywithinanecoregionclassifiedbyBailey(1978)astheAlaskaRangeProvinceoftheSubarcticDivision.TheclimateofthisregionissimilartothatofInteriorAlaskaandischaracterizedbylong,severewintersandhot,drysummers.Annualprecipitationaverages16inches(in)[410millimeters(mm)],andtemperaturesrangefrom90°F(32°C)to-70°F(-57°C).Permafrostisoftendiscontinuousandcanbeabsentfromlargeareasonsouth-facingslopesandalongriverfloodplains.PermafrostandsoiltypesarediscussedinSectionE.1ofAppendixE.*Majorvegetationtypesincludeconifer,deciduous,andmixedconifer-deciduousforests(andtheirvarioussuccessionalstages)atlowerelevations,andshrublandsandtundrasystemsathigherelevationsabovethetimberline[about2,500to3,500feet(ft),or760to1,100meters(m)MSL](Bailey,1978)..ThegeneraldistributionofmajorvegetationclasseswithinSouthcentralAlaskainrelationtothesitesoftheproposeddamsandalternativepowergenerationfacilitiesisillustratedinFigureJ-l.EachofthevegetationclassesdelineatedinthefigureisdescribedbrieflyinTableJ-l.Theclassificationsystempresentedinthetableisusefulfordepictingthedistri-butionofvegetationoverrelativelylargeareas.J.l.2ProposedProjectDescriptionsofvegetationtypesandtheirdistributionintheregionsaroundtheproposedprojectfeaturesarepresentedinthissection.Exceptasnoted,thediscussionsarebasedprincipallyonplantecologystudiesconductedfortheApplicantbyMcKendricketal.(1982)duringthesummersof1980and1981.Vegetationmapsformostoftheareasthatwouldbeaffectedbytheproposedprojectwerepre-paredbyMcKendricketal.(1982)atthreedifferentscales.TheentireupperandmiddleSusitnaBasinareawasmappedatascaleof1:250,000(ExhibitE,Vol.6B,Chap.3,Fig.E.3.38).Theareawithin10miles(mi)[16kilometers(km)]ofeitherbankoftheSusitnaRiverbetweenGoldCreekandtheTyoneRiveralsowasmappedatascaleof1:63,360(Fig.J-2),asweretheproposedaccesscorridorsandthe5-mi(8-km)wideHealy-to-FairbanksandWillow-to-Anchoragepowertransmissioncorridorstudyareas(ExhibitE,Vol.6B,Chap.3,Figs.E.3.42-E.3.44andE.3.48-E.3.52).Vegetationwithintheimpoundmentareas[anda0.5-mi(0.8-km)zonesurround-ingtheimpoundmentareas],constructionandborrowareas,andtheSusitnafloodplaindownstreamofthedamsitestoTalkeetnawasfurthermappedatascaleof1:24,000(ExhibitE,Vol.6B,Chap.3,Figs.E.3.53-E.3.65).Mappingwasbasedonphoto-interpretationofhigh-altitude(U-2)colorinfraredphotographyandLANDSATimagery,followedbyfieldverification.McKendricketal.(1982)didnotmapvegetationalongtherouteoftheproposedHealy-to-Willowtransmissioncorridorsegment.MapspreparedbyCommonwealthAssociates(1982)atascaleof1:250,000wereusedtodeterminevegetationdistributionswithinthevicinityofthissegment.VegetationtypeswereidentifiedanddelineatedonthemapsgeneratedbyMcKendricketa1.(1982)accordingtothehierarchicalclassificationsystemproposedbyViereckandDyrness(1980).Thisclassificationsystemhasfivelevelsofresolution.LevelIconsistsoffivevegetationformations(forest,tundra,shrubland,andherbaceousterrestrialvegetation,andaquaticvegetation).Atthefinestlevelofresolution,LevelV,theunitsarediscreteplantcommunities.Thethreeremaininglevelsareintermediateinresolution.Generally,LevelIIInameswereusedformapping,althoughLevelIVnameswereoftenusedforforesttypes,andLevelIandIInameswereusedforherbaceoustypesonthe1:24,000-and1:63,360-scalemaps.Additionally,shrublandtype~wereidentifiedbyacombinationofLevelIIandLevelIVnames.Thegeneralcriteriausedto~placevariousvegetationtypesintotheclassesusedbyMcKendricketal.(1982)arebrieflydescribedinTableJ-2.*Throughoutthisdocument,referencestospecific"Exhibits"aretotheexhibitssubmittedtoFERCaspartofAlaskaPowerAuthority'sSusitnaHydroelectricProjectLicenseApplication.Referencestospecific"Appendices"(App.)aretotheappendicesprovidedinVolumes2through7ofthisDraftEnvironmentalImpactStatement.J-3APPENDIXJ.TERRESTRIALBOTANICALRESOURCESJ.1AFFECTEDENVIRONMENTJ.1.1IntroductionThesitesoftheproposedSusitnaprojectandmostoftheprojectalternativesconsideredinthisdocumentarelocatedinSouthcentralAlaska,almostentirelywithinanecoregionclassifiedbyBailey(1978)astheAlaskaRangeProvinceoftheSubarcticDivision.TheclimateofthisregionissimilartothatofInteriorAlaskaandischaracterizedbylong,severewintersandhot,drysummers.Annualprecipitationaverages16inches(in)[410millimeters(mm)],andtemperaturesrangefrom90°F(32°C)to-70°F(-57°C).Permafrostisoftendiscontinuousandcanbeabsentfromlargeareasonsouth-facingslopesandalongriverfloodplains.PermafrostandsoiltypesarediscussedinSectionE.1ofAppendixE.*Majorvegetationtypesincludeconifer,deciduous,andmixedconifer-deciduousforests(andtheirvarioussuccessionalstages)atlowerelevations,andshrublandsandtundrasystemsathigherelevationsabovethetimberline[about2,500to3,500feet(ft),or760to1,100meters(m)MSL](Bailey,1978)..ThegeneraldistributionofmajorvegetationclasseswithinSouthcentralAlaskainrelationtothesitesoftheproposeddamsandalternativepowergenerationfacilitiesisillustratedinFigureJ-l.EachofthevegetationclassesdelineatedinthefigureisdescribedbrieflyinTableJ-l.Theclassificationsystempresentedinthetableisusefulfordepictingthedistri-butionofvegetationoverrelativelylargeareas.J.l.2ProposedProjectDescriptionsofvegetationtypesandtheirdistributionintheregionsaroundtheproposedprojectfeaturesarepresentedinthissection.Exceptasnoted,thediscussionsarebasedprincipallyonplantecologystudiesconductedfortheApplicantbyMcKendricketal.(1982)duringthesummersof1980and1981.Vegetationmapsformostoftheareasthatwouldbeaffectedbytheproposedprojectwerepre-paredbyMcKendricketal.(1982)atthreedifferentscales.TheentireupperandmiddleSusitnaBasinareawasmappedatascaleof1:250,000(ExhibitE,Vol.6B,Chap.3,Fig.E.3.38).Theareawithin10miles(mi)[16kilometers(km)]ofeitherbankoftheSusitnaRiverbetweenGoldCreekandtheTyoneRiveralsowasmappedatascaleof1:63,360(Fig.J-2),asweretheproposedaccesscorridorsandthe5-mi(8-km)wideHealy-to-FairbanksandWillow-to-Anchoragepowertransmissioncorridorstudyareas(ExhibitE,Vol.6B,Chap.3,Figs.E.3.42-E.3.44andE.3.48-E.3.52).Vegetationwithintheimpoundmentareas[anda0.5-mi(0.8-km)zonesurround-ingtheimpoundmentareas],constructionandborrowareas,andtheSusitnafloodplaindownstreamofthedamsitestoTalkeetnawasfurthermappedatascaleof1:24,000(ExhibitE,Vol.6B,Chap.3,Figs.E.3.53-E.3.65).Mappingwasbasedonphoto-interpretationofhigh-altitude(U-2)colorinfraredphotographyandLANDSATimagery,followedbyfieldverification.McKendricketal.(1982)didnotmapvegetationalongtherouteoftheproposedHealy-to-Willowtransmissioncorridorsegment.MapspreparedbyCommonwealthAssociates(1982)atascaleof1:250,000wereusedtodeterminevegetationdistributionswithinthevicinityofthissegment.VegetationtypeswereidentifiedanddelineatedonthemapsgeneratedbyMcKendricketa1.(1982)accordingtothehierarchicalclassificationsystemproposedbyViereckandDyrness(1980).Thisclassificationsystemhasfivelevelsofresolution.LevelIconsistsoffivevegetationformations(forest,tundra,shrubland,andherbaceousterrestrialvegetation,andaquaticvegetation).Atthefinestlevelofresolution,LevelV,theunitsarediscreteplantcommunities.Thethreeremaininglevelsareintermediateinresolution.Generally,LevelIIInameswereusedformapping,althoughLevelIVnameswereoftenusedforforesttypes,andLevelIandIInameswereusedforherbaceoustypesonthe1:24,000-and1:63,360-scalemaps.Additionally,shrublandtype~wereidentifiedbyacombinationofLevelIIandLevelIVnames.Thegeneralcriteriausedto~placevariousvegetationtypesintotheclassesusedbyMcKendricketal.(1982)arebrieflydescribedinTableJ-2.*Throughoutthisdocument,referencestospecific"Exhibits"aretotheexhibitssubmittedtoFERCaspartofAlaskaPowerAuthority'sSusitnaHydroelectricProjectLicenseApplication.Referencestospecific"Appendices"(App.)aretotheappendicesprovidedinVolumes2through7ofthisDraftEnvironmentalImpactStatement.
J-4INSERTEDINPOCKETINSIDEBACKCOVERFigureJ-1.GeneralVegetationDistributioninSouthcentralAlaskaandLocationsofProposedDamSites,Non-SusitnaAlternativeHydropowerSites,andAlternativeThermalUnitSites.[Source:AdaptedfromSelkregg,1974;1977JJ-4INSERTEDINPOCKETINSIDEBACKCOVERFigureJ-1.GeneralVegetationDistributioninSouthcentralAlaskaandLocationsofProposedDamSites,Non-SusitnaAlternativeHydropowerSites,andAlternativeThermalUnitSites.[Source:AdaptedfromSelkregg,1974;1977J
Table J-l.Descriptions of Generalized Vegetation Classes Used for Mapping in Figure J-l
Vegetation Class
Coastal Western Hemlock-
Sitka Spruce Forest
Bottomland Spruce-
Poplar Forest
Upland Spruce-
Hardwood Forest
Lowland Spruce-
Hardwood Forest
Important Species
Sitka spruce (Picea sitchensis)
Western hemlock (Tsuga heterophylla)
Mountain hemlock (Tsuga mertensiana)
Balsam poplar (Populus balsamifera)
Black cottonwood (Populus trichocarpa)
White spruce (Picea glauca)
Balsam poplar
Black cottonwood
Paper birch (Betula papyrifera)
Quaking aspen (Populus tremuloides)
White spruce
Black spruce (Picea mariana)
Paper birch ------
Quaking aspen
Balsam poplar
Bl ack spruce
White spruce
Paper birch
Quaking aspen
Balsam poplar
Description
Extension of Pacific rainbelt forests;
mountain hemlock replaces western hemlock
in Cook Inlet area;west of Cook Inlet
Sitka spruce dominates;deciduous hard-
woods occur primarily on stream flood-
plains.
Tall,relatively dense forests (and the
successional stages leading to them)
found on level to nearly level flood-
plains,low river terraces,and deeply
thawed south-facing slopes;balsam poplar
and cottonwood quickly invade floodplains
following pioneer and alder-shrub stages;
white spruce replaces hardwoods in later
seral stages.
Varied forest types depending on condi-
tions;successional stages often present
due to fire;mixed white spruce-deciduous
stands occur on south-facing slopes and
well-drained soils;black spruce often
replaces white spruce on north-facing
slopes and on other cold or poorly
drained soils;pure stands of white
spruce or mixed white spruce-balsam
poplar often occur along streams;pure
stands of paper birch or aspen occur as
successional stages following fire on
warmer well-drained soils.
Forests usually dominated by black
spruce,sometimes in extensive pure
stands;successional stages often
present due to fire;occurs on areas of
shallow peat,glacial deposits,outwash
plains,intermontane basins,lowlands,
and north-facing slopes;stands often
underlain by permafrost;organic layer
often well-developed.
c...,
I
(J'1
Table J-l.Descriptions of Generalized Vegetation Classes Used for Mapping in Figure J-l
Vegetation Class
Coastal Western Hemlock-
Sitka Spruce Forest
Bottomland Spruce-
Poplar Forest
Upland Spruce-
Hardwood Forest
Lowland Spruce-
Hardwood Forest
Important Species
Sitka spruce (Picea sitchensis)
Western hemlock (Tsuga heterophylla)
Mountain hemlock (Tsuga mertensiana)
Balsam poplar (Populus balsamifera)
Black cottonwood (Populus trichocarpa)
White spruce (Picea glauca)
Balsam poplar
Black cottonwood
Paper birch (Betula papyrifera)
Quaking aspen (Populus tremuloides)
White spruce
Black spruce (Picea mariana)
Paper birch
Quaking aspen
Balsam poplar
Black spruce
White spruce
Paper birch
Quaking aspen
Balsam poplar
Description
Extension of Pacific rainbelt forests;
mountain hemlock replaces western hemlock
in Cook Inlet area;west of Cook Inlet
Sitka spruce dominates;deciduous hard-
woods occur primarily on stream flood-
plains.
Tall,relatively dense forests (and the
successional stages leading to them)
found on level to nearly level flood-
plains,low river terraces,and deeply
thawed south-facing slopes;balsam poplar
and cottonwood quickly invade floodplains
following pioneer and alder-shrub stages;
white spruce replaces hardwoods in later
seral stages.
Varied forest types depending on condi-
tions;successional stages often present
due to fire;mixed white spruce-deciduous
stands occur on south-facing slopes and
well-drained soils;black spruce often
replaces white spruce on north-facing
slopes and on other cold or poorly
drained soils;pure stands of white
spruce or mixed white spruce-balsam
poplar often occur along streams;pure
stands of paper birch or aspen occur as
successional stages following fire on
warmer well-drained soils.
Forests usually dominated by black
spruce,sometimes in extensive pure
stands;successional stages often
present due to fire;occurs on areas of
shallow peat,glacial deposits,outwash
plains,intermontane basins,lowlands,
and north-facing slopes;stands often
underlain by permafrost;organic layer
often well-developed.
Vegetation Class
High Brush
Low Brush,Muskeg-Bog
Moist Tundra
Table J-l.(Continued)
Important Species
Sitka alder (Alnus sinuata)
American green alder (Alnus crispa)
Thinleaf alder (Alnus tenuifolia)
Willows (Salix s~
Resin birch (Betula glandulosa)
Black spruce
Sedges (Carex spp.)
Mosses (sphagnum and others)
Cottongrasses (Eriophorum spp.)
Bog rosemary (Andromeda polifolia)
Resin birch
Dwarf Arctic birch (Betula nana)
Labrador tea (Ledum groenTanctTCum)
Willows
Bog cranberry (Oxycoccus microcarpus)
Blueberries (Vaccinium spp.)
Crowberry (Empetrum nigrum)
Cottongrass
Polar grass (Arctagrostis latifolia)
Bluejoint (Calamagrostis canadensis)
Sedges
Dwarf Arctic birch
Resin birch
Wi 11 ows
Labrador tea
Blueberries
Bearberry (Arctostaphylos spp.)
Crowberry
Bog cranberry
Description
Occurs as three subtypes;coastal alder
thickets are found between beach and
forest along the southern coast of the
Alaska Peninsula and eastern Cook Inlet;
floodplain thickets dominated by willow
and alder occur on alluvial deposits in
rivers and along meandering streams;
birch-alder-willow thickets occur between
treeline and tundra,in avalanche paths,
and old forest burn areas in interior
Alaska.
Muskeg-bogs usually consist of a thick
mat of mosses,sedges,lichens,and dwarf
shrubs;shrubs dominate exposed and drier
sites,and mosses and herbaceous species
dominate waterlogged areas;coastal
muskegs found in wet,flat basins on the
Kenai Peninsula and bordering upper Cook
Inlet often have conifers (western
hemlock and Alaska cedar)scattered over
drier areas;interior bogs often occur
where conditions are too wet for trees,
although scattered black spruce do occur
on drier areas;string bogs have unevenly
spaced string-like ridges that are often
too wet for shrubs.
Community composition varies from almost
continuous cottongrass tussocks with
sparse growth of sedges and dwarf shrubs
to stands in which dwarf shrubs are
dominant and tussocks are scarce or
absent.
c....
I
(J)
Vegetation Class
High Brush
Low Brush,Muskeg-Bog
Moist Tundra
Table J-l.(Continued)
Important Species
Sitka alder (Alnus sinuata)
American green alder (Alnus crispa)
Thinleaf alder (Alnus tenuifolia)
Willows (Salix s~
Resin birch (Betula glandulosa)
Black spruce
Sedges (Carex spp.)
Mosses (sphagnum and others)
Cottongrasses (Eriophorum spp.)
Bog rosemary (Andromeda polifolia)
Resin birch
Dwarf Arctic birch (Betula nana)
Labrador tea (Ledum groenTanctTCum)
Willows
Bog cranberry (Oxycoccus microcarpus)
Blueberries (Vaccinium spp.)
Crowberry (Empetrum nigrum)
Cottongrass
Polar grass (Arctagrostis latifolia)
Bluejoint (Calamagrostis canadensis)
Sedges
Dwarf Arctic birch
Resin birch
Willows
Labrador tea
Blueberries
Bearberry (Arctostaphylos spp.)
Crowberry
Bog cranberry
Description
Occurs as three subtypes;coastal alder
thickets are found between beach and
forest along the southern coast of the
Alaska Peninsula and eastern Cook Inlet;
floodplain thickets dominated by willow
and alder occur on alluvial deposits in
rivers and along meandering streams;
birch-alder-willow thickets occur between
treeline and tundra,in avalanche paths,
and old forest burn areas in interior
Alaska.
Muskeg-bogs usually consist of a thick
mat of mosses,sedges,lichens,and dwarf
shrubs;shrubs dominate exposed and drier
sites,and mosses and herbaceous species
dominate waterlogged areas;coastal
muskegs found in wet,flat basins on the
Kenai Peninsula and bordering upper Cook
Inlet often have conifers (western
hemlock and Alaska cedar)scattered over
drier areas;interior bogs often occur
where conditions are too wet for trees,
although scattered black spruce do occur
on drier areas;string bogs have unevenly
spaced string-like ridges that are often
too wet for shrubs.
Community composition varies from almost
continuous cottongrass tussocks with
sparse growth of sedges and dwarf shrubs
to stands in which dwarf shrubs are
dominant and tussocks are scarce or
absent.
L
Im
Vegetation Class
Wet Tundra
Alpine Tundra
Table J-1.(Continued)
Important Species
Cottongrass
Sedges
Rushes (Juncus spp.)
Willows ---
Dwarf Arctic birch
Labrador tea
Mountain cranberry (Vaccinium
vitis-idaea)
Mountain avens (Dryas spp.)
Moss campion (Silene acaulis)
Cassiopes (Cas~spp.)
Dwarf arctic birch
Crowberry
Labrador tea
Alpine bearberry (Arctostaphylos alpina)
Bog blueberry (Vaccinium uliginosum)
Mountain heather (Phyllodoce spp.)
Willows
Alpine azalea (Loiseleuria procumbens)
Description
Dominant species are sedges and cotton-
grass,which usually occur in a mat
rather than in tussocks;woody and
herbaceous species are infrequent and
occur above the water table;found in
low,flat areas where soils are wet and
shallow lakes are common.
Most common on ridges,rubble slopes,and
other shallow,dry and porous soils in
mountains at elevations between 2,000 and
4,000 ft;vegetation is sparse and only
a few inches high;plant associations
vary,but mountain avens and lichens
usually dominate;associated herbs,
grasses,and sedges occur as low mats.
c....
I
-...)
Conversion:To convert feet to meters,mUltiply by 0.305.
Source:Based on Selkregg (1974,1977)and Neiland and Viereck (1977).
Vegetation Class
Wet Tundra
Alpine Tundra
Table J-1.(Continued)
Important Species
Cottongrass
Sedges
Rushes (Juncus spp.)
Willows -----
Dwarf Arctic birch
Labrador tea
Mountain cranberry (Vaccinium
vitis-idaea)
Mountain avens (Dryas spp.)
Moss campion (Silene acaulis)
Cassiopes (Cas~spp.)
Dwarf arctic birch
Crowberry
Labrador tea
Alpine bearberry (Arctostaphylos alpina)
Bog blueberry (Vaccinium uliginosum)
Mountain heather (Phyllodoce spp.)
Willows
Alpine azalea (Loiseleuria procumbens)
Description
Dominant species are sedges and cotton-
grass,which usually occur in a mat
rather than in tussocks;woody and
herbaceous species are infrequent and
occur above the water table;found in
low,flat areas where soils are wet and
shallow lakes are common.
Most common on ridges,rubble slopes,and
other shallow,dry and porous soils in
mountains at elevations between 2,000 and
4,000 ft;vegetation is sparse and only
a few inches high;plant associations
vary,but mountain avens and lichens
usually dominate;associated herbs,
grasses,and sedges occur as low mats.
Conversion:To convert feet to meters,multiply by 0.305.
Source:Based on Selkregg (1974,1977)and Neiland and Viereck (1977).
bSSSSISegmentCLakeLouise[]]I[]]SegmentBFigureJ-2.VegetationDistributionwithin10mi(16km)oftheSusitnaRiverbetweenGo1dCreekandtheTyoneRiver:LocationMap.[ActualmapsforSegmentsA,B,andCareinsertedinthepocketinsidethebackcover.]J-8zC>I")cozC>~5""-O::-o-W-------'-4-,9-O-W--------1-4-8T""o-W--------14-7"l"o-W--------14-S"":oW17MilesVEGETATIONMAPSV77ZJSegmentAbSSSSISegmentCLakeLouise[]]I[]]SegmentBFigureJ-2.VegetationDistributionwithin10mi(16km)oftheSusitnaRiverbetweenGo1dCreekandtheTyoneRiver:LocationMap.[ActualmapsforSegmentsA,B,andCareinsertedinthepocketinsidethebackcover.]J-8zC>I")cozC>~5""-O::-o-W-------'-4-,9-O-W--------1-4-8T""o-W--------14-7"l"o-W--------14-S"":oW17MilesVEGETATIONMAPSV77ZJSegmentA
Table J-2.Summary of Viereck and Dyrness (1980)Vegetation Classifications Used for Vegetation Mappingt 1
Level I
1.Forest
Canopy cover of tree species
~10%
Leve 1 II
1.1 Conifer Forest
Conifer species con-
tribute ~75%of tree
cover
1.2 Deciduous Forest
Deciduous species con-
tribute ~75%of tree
cover
1.3 Mixed Forest
Deciduous and conifer
species each contribute
25%-74%of tree cover
Level III
1.1.1 Closed Conifer Forestt2
Tree canopy cover >50%
1.1.2 Open Conifer Forestt 2
Tree canopy cover ranges
25%-50%
1.1.3 Conifer Woodland
Tree canopy cover ranges
10%-25%
1.2.1 Closed Deciduous Forestt2
Tree canopy cover >50%
1.2.2 Open Deciduous Forestt 2
Tree canopy cover ranges
25%-50%
1.2.3 Deciduous Woodland
Tree canopy cover ranges
10%-25%
1.3.1 Closed Mixed Forestt2
Tree canopy cover >50%
1.3.2 Open Mixed Forestt 2
Tree canopy cover ranges
25%-50%
1.3.3 Mixed Woodland
Tree canopy cover ranges
10%-25%
c...,
I
<.0
Table J-2.Summary of Viereck and Dyrness (1980)Vegetation Classifications Used for Vegetation Mappingt 1
Level I
1.Forest
Canopy cover of tree species
~10%
Leve 1 II
1.1 Conifer Forest
Conifer species con-
tribute ~75%of tree
cover
1.2 Deciduous Forest
Deciduous species con-
tribute ~75%of tree
cover
1.3 Mixed Forest
Deciduous and conifer
species each contribute
25%-74%of tree cover
Level III
1.1.1 Closed Conifer Forestt2
Tree canopy cover >50%
1.1.2 Open Conifer Forestt 2
Tree canopy cover ranges
25%-50%
1.1.3 Conifer Woodland
Tree canopy cover ranges
10%-25%
1.2.1 Closed Deciduous Forestt2
Tree canopy cover >50%
1.2.2 Open Deciduous Forestt 2
Tree canopy cover ranges
25%-50%
1.2.3 Deciduous Woodland
Tree canopy cover ranges
10%-25%
1.3.1 Closed Mixed Forestt2
Tree canopy cover >50%
1.3.2 Open Mixed Forestt 2
Tree canopy cover ranges
25%-50%
1.3.3 Mixed Woodland
Tree canopy cover ranges
10%-25%
c...,
I
<.0
Level
2.Shrub 1and
Vegetation dominated by
erect to decumbent (but
not matted)woody shrubs;
cover of shrub species
S 25%;not located beyond
tree line
3.Tundra
Vegetation dominated by
sedges and low,matted
shrubs;if grasses dominate
they are typical Arctic
species (e.g.,Arctagrostis
latifolia or Poa arctica);
located above~ee line
Table J-2.(Continued)
Leve 1 II
2.1 Tall Shrubland
Shrubs>5 ft tall
2.2 Low Shrubland
Shrubs <5 ft tall;
shrubs not associated
with tundra species;
located adjacent to
tree line or within
forested regions
3.1 Sedge-Grass Tundra
Vegetation dominated by
a sedge-grass mat,not
forming tussocks
3.2 Mat and Cushion Tundra
Vegetation dominated by
herbaceous species and
prostrate shrubs (e.g.,
Betula nana and Dryas)
usually ~8 to 12 in
tall
Level III
2.1.1 Closed Tall Shrubland
Canopy cover of shrub
species>75%
2.1.2 Open Tall Shrubland
Canopy cover of shrub
species ranges 25%-75%
2.2.1 Closed Low Shrubland
Canopy cover of shrub
species>75%
2.2.2 Open Low Shrubland
Canopy cover of shrub
species ranges 25%-75%
3.1.1 Wet Sedge-Grass Tundra
Vegetation dominated by
sedges and grasses common to
wet sites;cover of erect
shrub species <10%
3.1.2 Mesic Sedge-Grass Tundra
Vegetation dominated by
sedges,grasses,or forbs
common to mesic sites;
cover of low or matted shrub
species <10%
3.2.1 Closed Mat and Cushion Tundra
Areal cover>75%
3.2.2 Open Mat and Cushion Tundra
Areal cover generally ranges
50%-75%
c:....
I
I-'o
Level
2.Shrub 1and
Vegetation dominated by
erect to decumbent (but
not matted)woody shrubs;
cover of shrub species
S 25%;not located beyond
tree line
3.Tundra
Vegetation dominated by
sedges and low,matted
shrubs;if grasses dominate
they are typical Arctic
species (e.g.,Arctagrostis
latifolia or Poa arctica);
located above~ee line
Table J-2.(Continued)
Leve 1 II
2.1 Tall Shrubland
Shrubs>5 ft tall
2.2 Low Shrubland
Shrubs <5 ft tall;
shrubs not associated
with tundra species;
located adjacent to
tree line or within
forested regions
3.1 Sedge-Grass Tundra
Vegetation dominated by
a sedge-grass mat,not
forming tussocks
3.2 Mat and Cushion Tundra
Vegetation dominated by
herbaceous species and
prostrate shrubs (e.g.,
Betula nana and Dryas)
usually ~8 to 12 in
tall
Level III
2.1.1 Closed Tall Shrubland
Canopy cover of shrub
speci es >75%
2.1.2 Open Tall Shrubland
Canopy cover of shrub
species ranges 25%-75%
2.2.1 Closed Low Shrubland
Canopy cover of shrub
species>75%
2.2.2 Open Low Shrubland
Canopy cover of shrub
species ranges 25%-75%
3.1.1 Wet Sedge-Grass Tundra
Vegetation dominated by
sedges and grasses common to
wet sites;cover of erect
shrub species <10%
3.1.2 Mesic Sedge-Grass Tundra
Vegetation dominated by
sedges,grasses,or forbs
common to mesic sites;
cover of low or matted shrub
species <10%
3.2.1 Closed Mat and Cushion Tundra
Areal cover>75%
3.2.2 Open Mat and Cushion Tundra
Areal cover generally ranges
50%-75%
c:....
I
I-'o
Level I
4.Herbaceous Vegetation
Vegetation dominated by
grasses (primarily
Calamagrostis and Elymus),
or pioneer communities on
gravel and sand bars in
rivers
Table J-2.(Continued)
Level II
3.3 Herbaceous Tundra
Vegetation dominated by
forbs
4.1 Tall Grassland
Grasses dominate but
occasional forbs and
sedges;grasses>3.3 ft
tall
Level III
3.3.1 Alpine Herbaceous Tundra
Located on snowbeds,cliffs,
and scree slopes in alpine
areas;species composition is
very di verse
N.A.t 3
t 1 Vegetation maps usually use Level III classifications,except Level IV is often used for forest types (e.g.,
black spruce,white spruce,birch,balsam poplar)and shrubland (e.g.,willow,birch);whereas Level I and II
are used for herbaceous types.
t 2 Viereck and Dyrness (1980)proposed 60%cover as the boundary between closed and open forest types,but
McKendrick et al.(1982)used 50%cover because it was easier to estimate on aerial photographs and in the
field.
t 3 Not applicable.
Conversions:To convert feet to meters,mUltiply by 0:305.
To convert inches to centimeters,multiply by 2.54.
Source:Based on Viereck and Dyrness (1980)and McKendrick et al.(1982).
c....
I............
Level I
4.Herbaceous Vegetation
Vegetation dominated by
grasses (primarily
Calamagrostis and Elymus),
or pioneer communities on
gravel and sand bars in
rivers
Table J-2.(Continued)
Level II
3.3 Herbaceous Tundra
Vegetation dominated by
forbs
4.1 Tall Grassland
Grasses dominate but
occasional forbs and
sedges;grasses>3.3 ft
tall
Level III
3.3.1 Alpine Herbaceous Tundra
Located on snowbeds,cliffs,
and scree slopes in alpine
areas;species composition is
very diverse
N.A.t 3
t 1 Vegetation maps usually use Level III classifications,except Level IV is often used for forest types (e.g.,
black spruce,white spruce,birch,balsam poplar)and shrubland (e.g.,willow,birch);whereas Level I and II
are used for herbaceous types.
t 2 Viereck and Dyrness (1980)proposed 60%cover as the boundary between closed and open forest types,but
McKendrick et al.(1982)used 50%cover because it was easier to estimate on aerial photographs and in the
field.
t 3 Not applicable.
Conversions:To convert feet to meters,multiply by 0:305.
To convert inches to centimeters,multiply by 2.54.
Source:Based on Viereck and Dyrness (1980)and McKendrick et al.(1982).
J-12MajorvegetationtypesandsUbtypes(definedbyimportantspecies)foundwithintheupperandmiddleSusitnaBasin,lowerSusitnaRiverfloodplain,andtransmissioncorridorstudyareas,anddescriptionsofthegeneralkindsofareaswherethesevegetationtypesusuallyoccurarelistedinTableJ-3.EachofthesevegetationtypesisdescribedinmoredetailinSectionJ.1.2.1.TheViereckandDyrness(1980)vegetationtypesdonotcorresponddirectlytotheclassificationsystemusedinFigureJ-1andalsoinCommonwealthAssociates(1982)fortheHealy-to-Willowtransmissioncorridorsegment.Toprovidesomebasisforcomparisonbetweenthetwosystems,theViereckandDyrness(1980)vegetationtypesthataremostlikelytooccurwithinthevegeta-tionclassesshowninFigureJ-1areidentifiedinTableJ-4.PotentialwetlandareaswerequantifiedbyliberallycorrelatingappropriateViereckandDyrness(1980)vegetationtypestothewetlandclassesofCowardinetal.(1979)asindicatedinTableJ-5.Althoughestimatesofpotentialwetlandareaanddistributionobtainedbythismethodareextremelyliberal,theyarethebestcurrentlyavailable.FloristicssurveysoftheupperandmiddleSusitnaBasinandthelowerSusitnaRiverfloodplainwereconductedbyMcKendricketal.(1982).AdditionalspeciesoccurrencesintheupperandmiddleSusitnaBasinwerealsoreportedbySteigersetal.(1983).FloristicssurveysoftheHealy-to-WillowtransmissioncorridorstudyareaweremadebyCommonwealthAssociates(1982).TheWillow-to-AnchorageandHealy-to-Fairbankstransmissioncorridorstudyareaswerenotsurveyed.Todate,307vascularplantspeciesbelongingto154generain58familieshavebeenidentifiedbytheApplicantintheupperandmiddleSusitnaBasin,thelowerSusitnaRiverfloodplain,andtheHealy-to-Willowtransmissioncorridorstudyarea(TableJ-6).Therewasconsiderableoverlapinthespeciescompositionofthevarioussurveyareas.Intheupperandmiddlebasin,263specieswereidentified,80and128specieswerefoundinthelowerSusitnaRiverfloodplaindownstreamofGoldCreekandintheHealy-to-Willowtransmissioncorridorstudyarea,respectively.However,ofthese80and128species,only26and18,respectively,werespeciesnotalreadyfoundintheupperandmiddleSusitnabasin.Insurveysfornonvascularplants,11lichengenera(includingatleast12species)andsevenmosstaxawereidentifiedintheupperandmiddlebasinandthelowerSusitnaRiverfloodplain(TableJ-6).McKendricketal.(1982)indicatedthattheworkonmossesandlichenswasnotextensiveandthatmanymorespecieswouldlikelybeidentifiedwithadditionalwork.Ingeneral,thevegetationcommunitiesinthevicinityoftheproposedprojectareaaretypicalofthosefoundovermuchofInteriorAlaska,includingmountainousareas.Manyofthesecommuni-tiesrepresentvarioussuccessionalstagesthatareoftentheresultoffiresorriveraction(VanCleveandViereck,1981;VanCleveetal.,1983).DescriptionsofspecificvegetationtypesareprovidedbelowfortheupperandmiddleSusitnaBasin.ForthelowerSusitnaRiverfloodplain,vegetationconsistsofvarioussuccessionalstagesofmixedconifer-deciduousforest,andthesestagesaredescribed.Discussionsofvegetationtypeswithintheproposedtransmissioncorridorstudyareasarebrokendownbycorridorsegments.Theareascoveredbywetlandswithineachgeographicregionarealsodiscussed.J.1.2.1UpperandMiddleSusitnaRiverBasinThedistributionofvegetationtypeswithintheentireupperandmiddleSusitnaBasinisillustratedinExhibitE(Vol.6B,Chap.3,Fig.E.3.38).Alongtheeast-westportionoftheSusitnaRiver,theoftensteepcanyonslopesarecoveredwithconifer,deciduous,ormixedconifer-deciduousforests.Abovethecanyons,theterrainchangestorelativelyflatbenches,andthevegetationconsistsprimarilyoflowshrub(birchorwillow)orwoodlandsprucecommu-nities.Alder-dominatedtallshrubcommunitiesaremostcommonalongcreekandriverdrainages,especiallyonthewesternendofthemiddleSusitnaBasin.Atthehigherelevations,includinglowmountainsrisingabovethebenches,predominantvegetationtypesaremesicsedge-grasstundraormatandcushiontundra.IntheupperSusitnaBasin,vegetationtypesareprimarilylowshrub(birchandwillow)andwoodlandspruce.Tundrasystemsarepresentatthehighere1evations.Matandcushionandmesicsedge-grasstundraoccuroverareaslargeenoughtobemappedatthe1:250,000scaleusedinFigureE.3.38ofExhibitE(Vol.6B,Chap.3).However,manyoftheareasmappedasrockalsohaveimportantpioneeringplantspeciesgrowinginsoilpocketsandsmallcrevices,buttheseplantsprovidenegligib1egroundcover.Mostofthefarnorthernreachesoftheupperbasin,intheAlaskaRange,arecoveredbypermanentsnowfieldsandglaciersand,thus,lackvegetationcover.ThesoutheasternportionofthemiddleSusitnaBasinintheareaoftheOshetnaandTyoneriversandLakeLouiseischaracterizedbyextensiveflatareas.Predominantvegetationtypesarelowshrubland(birchandwillow),aswellaswoodlandblackspruceandopenspruceforests.Muchoftheareaispoorlydrainedandbog-like.J-12MajorvegetationtypesandsUbtypes(definedbyimportantspecies)foundwithintheupperandmiddleSusitnaBasin,lowerSusitnaRiverfloodplain,andtransmissioncorridorstudyareas,anddescriptionsofthegeneralkindsofareaswherethesevegetationtypesusuallyoccurarelistedinTableJ-3.EachofthesevegetationtypesisdescribedinmoredetailinSectionJ.1.2.1.TheViereckandDyrness(1980)vegetationtypesdonotcorresponddirectlytotheclassificationsystemusedinFigureJ-1andalsoinCommonwealthAssociates(1982)fortheHealy-to-Willowtransmissioncorridorsegment.Toprovidesomebasisforcomparisonbetweenthetwosystems,theViereckandDyrness(1980)vegetationtypesthataremostlikelytooccurwithinthevegeta-tionclassesshowninFigureJ-1areidentifiedinTableJ-4.PotentialwetlandareaswerequantifiedbyliberallycorrelatingappropriateViereckandDyrness(1980)vegetationtypestothewetlandclassesofCowardinetal.(1979)asindicatedinTableJ-5.Althoughestimatesofpotentialwetlandareaanddistributionobtainedbythismethodareextremelyliberal,theyarethebestcurrentlyavailable.FloristicssurveysoftheupperandmiddleSusitnaBasinandthelowerSusitnaRiverfloodplainwereconductedbyMcKendricketal.(1982).AdditionalspeciesoccurrencesintheupperandmiddleSusitnaBasinwerealsoreportedbySteigersetal.(1983).FloristicssurveysoftheHealy-to-WillowtransmissioncorridorstudyareaweremadebyCommonwealthAssociates(1982).TheWillow-to-AnchorageandHealy-to-Fairbankstransmissioncorridorstudyareaswerenotsurveyed.Todate,307vascularplantspeciesbelongingto154generain58familieshavebeenidentifiedbytheApplicantintheupperandmiddleSusitnaBasin,thelowerSusitnaRiverfloodplain,andtheHealy-to-Willowtransmissioncorridorstudyarea(TableJ-6).Therewasconsiderableoverlapinthespeciescompositionofthevarioussurveyareas.Intheupperandmiddlebasin,263specieswereidentified,80and128specieswerefoundinthelowerSusitnaRiverfloodplaindownstreamofGoldCreekandintheHealy-to-Willowtransmissioncorridorstudyarea,respectively.However,ofthese80and128species,only26and18,respectively,werespeciesnotalreadyfoundintheupperandmiddleSusitnabasin.Insurveysfornonvascularplants,11lichengenera(includingatleast12species)andsevenmosstaxawereidentifiedintheupperandmiddlebasinandthelowerSusitnaRiverfloodplain(TableJ-6).McKendricketal.(1982)indicatedthattheworkonmossesandlichenswasnotextensiveandthatmanymorespecieswouldlikelybeidentifiedwithadditionalwork.Ingeneral,thevegetationcommunitiesinthevicinityoftheproposedprojectareaaretypicalofthosefoundovermuchofInteriorAlaska,includingmountainousareas.Manyofthesecommuni-tiesrepresentvarioussuccessionalstagesthatareoftentheresultoffiresorriveraction(VanCleveandViereck,1981;VanCleveetal.,1983).DescriptionsofspecificvegetationtypesareprovidedbelowfortheupperandmiddleSusitnaBasin.ForthelowerSusitnaRiverfloodplain,vegetationconsistsofvarioussuccessionalstagesofmixedconifer-deciduousforest,andthesestagesaredescribed.Discussionsofvegetationtypeswithintheproposedtransmissioncorridorstudyareasarebrokendownbycorridorsegments.Theareascoveredbywetlandswithineachgeographicregionarealsodiscussed.J.1.2.1UpperandMiddleSusitnaRiverBasinThedistributionofvegetationtypeswithintheentireupperandmiddleSusitnaBasinisillustratedinExhibitE(Vol.6B,Chap.3,Fig.E.3.38).Alongtheeast-westportionoftheSusitnaRiver,theoftensteepcanyonslopesarecoveredwithconifer,deciduous,ormixedconifer-deciduousforests.Abovethecanyons,theterrainchangestorelativelyflatbenches,andthevegetationconsistsprimarilyoflowshrub(birchorwillow)orwoodlandsprucecommu-nities.Alder-dominatedtallshrubcommunitiesaremostcommonalongcreekandriverdrainages,especiallyonthewesternendofthemiddleSusitnaBasin.Atthehigherelevations,includinglowmountainsrisingabovethebenches,predominantvegetationtypesaremesicsedge-grasstundraormatandcushiontundra.IntheupperSusitnaBasin,vegetationtypesareprimarilylowshrub(birchandwillow)andwoodlandspruce.Tundrasystemsarepresentatthehighere1evations.Matandcushionandmesicsedge-grasstundraoccuroverareaslargeenoughtobemappedatthe1:250,000scaleusedinFigureE.3.38ofExhibitE(Vol.6B,Chap.3).However,manyoftheareasmappedasrockalsohaveimportantpioneeringplantspeciesgrowinginsoilpocketsandsmallcrevices,buttheseplantsprovidenegligib1egroundcover.Mostofthefarnorthernreachesoftheupperbasin,intheAlaskaRange,arecoveredbypermanentsnowfieldsandglaciersand,thus,lackvegetationcover.ThesoutheasternportionofthemiddleSusitnaBasinintheareaoftheOshetnaandTyoneriversandLakeLouiseischaracterizedbyextensiveflatareas.Predominantvegetationtypesarelowshrubland(birchandwillow),aswellaswoodlandblackspruceandopenspruceforests.Muchoftheareaispoorlydrainedandbog-like.
Table J-3.Vegetation Types and Their General Areas of Occurrence within the Upper and Middle Susitna Basin,
Lower Susitna River Floodplain,and Transmission Corridor Study Areat 1
Vegetation Type
Conifer Forest
Conifer species contribute ~75%
of tree cover
Deciduous Forest
Deciduous species contribute
~75%of tree cover
Mixed Forest
Deciduous and conifer species
each contribute 25%-74%of
tree cover
Ta 11 Shrub 1and
Shrubs>5 ft tall
Low Shrubland
Shrubs <5 ft tall;shrubs
not associated with tundra
species
Important Species (subtype)
Black spruce (Picea mariana)
White spruce (Picea glauca)
Balsam poplar (Populus balsamifera)
Paper birch (Betula papyrifera)
Trembling aspen (Populus tremuloides)
White spruce/paper birch
White spruce/hardwoods
Sitka alder (Alnus sinuata)
American green alder (Alnus crispa)
Resin birch (Betula glandulosa)
Occurrence
Poorly drained sites,including those
underlain by permafrost and those on north-
facing slopes
Warmer,well-drained sites
Islands in the rivers or flat areas in the
floodplain
Steep,relatively dry,usually south-facing
slopes
Upper levels of dry,south-facing slopes;
usually on drier,warmer sites than paper
birch;stands small and infrequent
Considered a successional stage where
white spruce is replacing deciduous forest;
usually on slopes along the river
Considered a stage in floodplain succession
where mature balsam poplar is being
replaced by white spruce and paper birch on
the oldest,most stable sites
Usually in narrow strips through other
vegetation types on slopes along rivers and
creeks and in rings around mountains at
certain elevations
On relatively flat benches with soils that
are frequently wet and gleyed,but usually
without standing water;located adjacent to
tree line or within forested regions
c....
I
I-'
W
Table J-3.Vegetation Types and Their General Areas of Occurrence within the Upper and Middle Susitna Basin,
Lower Susitna River Floodplain,and Transmission Corridor Study Areat 1
Vegetation Type
Conifer Forest
Conifer species contribute ~75%
of tree cover
Deciduous Forest
Deciduous species contribute
~75%of tree cover
Mixed Forest
Deciduous and conifer species
each contribute 25%-74%of
tree cover
Tall Shrubland
Shrubs>5 ft tall
Low Shrubland
Shrubs <5 ft tall;shrubs
not associated with tundra
species
Important Species (subtype)
Black spruce (Picea mariana)
White spruce (Picea glauca)
Balsam poplar (Populus balsamifera)
Paper birch (Betula papyrifera)
Trembling aspen (Populus tremuloides)
White spruce/paper birch
White spruce/hardwoods
Sitka alder (Alnus sinuata)
American green alder (Alnus crispa)
Resin birch (Betula glandulosa)
Occurrence
Poorly drained sites,including those
underlain by permafrost and those on north-
facing slopes
Warmer,well-drained sites
Islands in the rivers or flat areas in the
floodplain
Steep,relatively dry,usually south-facing
slopes
Upper levels of dry,south-facing slopes;
usually on drier,warmer sites than paper
birch;stands small and infrequent
Considered a successional stage where
white spruce is replacing deciduous forest;
usually on slopes along the river
Considered a stage in floodplain succession
where mature balsam poplar is being
replaced by white spruce and paper birch on
the oldest,most stable sites
Usually in narrow strips through other
vegetation types on slopes along rivers and
creeks and in rings around mountains at
certain elevations
On relatively flat benches with soils that
are frequently wet and gleyed,but usually
without standing water;located adjacent to
tree line or within forested regions
Vegetation Type
Wet Sedge-Grass Tundra
Shrub layer of scattered
willows present in some stands
Mesic Sedge-Grass Tundra
Vegetation usually <1 ft tall
Mat and Cushion Tundra
Vegetation usually <8 to 12 in
tall
Alpine Herbaceous Tundra
Herbaceous Types
Table J-3.(Continued)
Important Species (subtype)
Diamondleaf willow (Salix
planifolia ssp.pulChra)
Water sedge (Carex aguatilis)
Bigelow sedge (Carex bigelowii)
Bluejoint (Calamagrostis canadensis)
Sphagnum mosses (Sphagnum spp.)
Bigelow sedge
Lichens
Dwarf arctic birch (Betula nana)
Crowberry (Empetrum nTQrUm)----
Bearberry (Arctostaphylos spp.)
Bog blueberry (Vaccinium uliginosum)
Northern Labrador tea (Ledum decumbens)
Herb-sedge (species composition is
very diverse,no dominants)
Pioneer forbs and shrubs
Bluejoint (Calamagrostis canadensis)
Horsetails (Eguisetum spp.)
Lupines (Lupinus spp.)
Alpine sweetvetch (Hedysarum
alpinum)
Occurrence
Similar but wetter sites than birch shrub;
sites often have standing water;often
found in thickets along small streams at
high elevations
Wet,depressed areas with poor drainage;
more common below tree line than other
tundra types
Rolling uplands with well-drained soils
Dry,windy ridges
Near glaciated areas on gentle,well-
drained slopes at high elevations
Small soil pockets between rocks in isola-
ted rocky areas
Grassland communities on level to sloping
areas at lower elevations near the rivers
Pioneer communities on gravel and sand bars
in rivers
c...
I
I-'.po
t 1 See Section J.1.2.1 for more detailed discussions of the information in this table.
Conversions:To convert feet to meters,multiply by 0.305.
To convert inches to centimeters,multiply by 2.54.
Source:Based on Viereck and Dyrness (1980)and McKendrick et al.(1982).
Vegetation Type
Wet Sedge-Grass Tundra
Shrub layer of scattered
willows present in some stands
Mesic Sedge-Grass Tundra
Vegetation usually <1 ft tall
Mat and Cushion Tundra
Vegetation usually <8 to 12 in
tall
Alpine Herbaceous Tundra
Herbaceous Types
Table J-3.(Continued)
Important Species (subtype)
Diamondleaf willow (Salix
planifolia ssp.pulChra)
Water sedge (Carex aguatilis)
Bigelow sedge (Carex bigelowii)
Bluejoint (Calamagrostis canadensis)
Sphagnum mosses (Sphagnum spp.)
Bigelow sedge
Lichens
Dwarf arctic birch (Betula nana)
Crowberry (Empetrum nTgrUm)----
Bearberry (Arctostaphylos spp.)
Bog blueberry (Vaccinium uliginosum)
Northern Labrador tea (Ledum decumbens)
Herb-sedge (species composition is
very diverse,no dominants)
Pioneer forbs and shrubs
Bluejoint (Calamagrostis canadensis)
Horsetails (Eguisetum spp.)
Lupines (Lupinus spp.)
Alpine sweetvetch (Hedysarum
alpinum)
Occurrence
Similar but wetter sites than birch shrub;
sites often have standing water;often
found in thickets along small streams at
high elevations
Wet,depressed areas with poor drainage;
more common below tree line than other
tundra types
Rolling uplands with well-drained soils
Dry,windy ridges
Near glaciated areas on gentle,well-
drained slopes at high elevations
Small soil pockets between rocks in isola-
ted rocky areas
Grassland communities on level to sloping
areas at lower elevations near the rivers
Pioneer communities on gravel and sand bars
in rivers
t 1 See Section J.1.2.1 for more detailed discussions of the information in this table.
Conversions:To convert feet to meters,multiply by 0.305.
To convert inches to centimeters,multiply by 2.54.
Source:Based on Viereck and Dyrness (1980)and McKendrick et al.(1982).
J-15TableJ-4.ViereckandDyrness(1980)VegetationTypesMostLikelytoOccurwithintheVegetationClassesDelineatedinFigureJ-1VegetationClasst1Coastalwesternhemlock-SitkaspruceforestBottomlandspruce-poplarforestUplandspruce-hardwoodforestLowlandspruce-hardwoodforestHighbrushLowbrush,muskegbogMoisttundraWettundraAlpinetundraVegetationTypest2N.A.t3Balsampoplarforest,whitespruceforest,mixedforest,tallshrubland,herbaceousWhitespruceforest,blackspruceforest,birchforest,aspenforest,mixedforest,lowshrubland,tallshrublandBlackspruceforest,lowshrublandTallshrubland,lowshrublandLowshrubland,blackspruceforest,wetsedge-grasstundraMatandcushiontundra,mesicsedge-grasstundra,lowshrublandWetsedge-grasstundraAlpineherbaceoustundra,matandcushiontundra,mesicsedge-grasstundrat1ClassificationsystemusedinFigureJ-1anddescribedinTableJ-1.BasedonSelkregg(1974,1977)andNeilandandViereck(1977).t2ViereckandDyrness(1980)vegetationtypesandsUbtypesidentifiedinTableJ-3.t3N.A.=Notapplicable.CoastalforestsdidnotoccurwithinSusitnaBasinortransmissioncorridorstudyarea.Source:BasedonSelkregg(1974,1977);NeilandandViereck(1977);andViereckandDyrness(1980).J-15TableJ-4.ViereckandDyrness(1980)VegetationTypesMostLikelytoOccurwithintheVegetationClassesDelineatedinFigureJ-1VegetationClasst1Coastalwesternhemlock-SitkaspruceforestBottomlandspruce-poplarforestUplandspruce-hardwoodforestLowlandspruce-hardwoodforestHighbrushLowbrush,muskegbogMoisttundraWettundraAlpinetundraVegetationTypest2N.A.t3Balsampoplarforest,whitespruceforest,mixedforest,tallshrubland,herbaceousWhitespruceforest,blackspruceforest,birchforest,aspenforest,mixedforest,lowshrubland,tallshrublandBlackspruceforest,lowshrublandTallshrubland,lowshrublandLowshrubland,blackspruceforest,wetsedge-grasstundraMatandcushiontundra,mesicsedge-grasstundra,lowshrublandWetsedge-grasstundraAlpineherbaceoustundra,matandcushiontundra,mesicsedge-grasstundrat1ClassificationsystemusedinFigureJ-1anddescribedinTableJ-1.BasedonSelkregg(1974,1977)andNeilandandViereck(1977).t2ViereckandDyrness(1980)vegetationtypesandsUbtypesidentifiedinTableJ-3.t3N.A.=Notapplicable.CoastalforestsdidnotoccurwithinSusitnaBasinortransmissioncorridorstudyarea.Source:BasedonSelkregg(1974,1977);NeilandandViereck(1977);andViereckandDyrness(1980).
J-16TableJ-S.CorrelationofVege~ationClassestoPotentialWetlandClassest1BasedonViereckandDyrness(1980).t2BasedonCowardinetal.(1979).Source:ModifiedfromMcKendricketal.(1982).VegetationClasst1Lakes,pondsRivers,streamsWetsedge-grassLowshrubBirchshrubWillowshrubOpenblackspruceWoodlandblackspruceOpenwhitespruceWoodlandwhitespruceOpenbalsampoplarClosedbalsampoplarU.S.FishandWildlifeServiceWetlandClasst2Lacustrineunconsolidatedbottom,aquaticbed,andunconsolidatedshoreRiverineupperperennialrockbottom,unconsolidatedbottom,rockyshore,andunconsolidatedshorePalustrineorlacustrineemer-gent,persistentPalustrinescrub-shrub,broad-leaveddeciduousPalustrinescrub-shrub,broad-leaveddeciduousPalustrinescrub-shrub,broad-leaveddeciduousPalustrineforested,needle-leavedevergreenPalustrineforested,needle-leavedevergreenPalustrineforested,needle-leavedevergreenPalustrineforested,needle-leavedevergreenPalustrineforested,broad-leaveddeciduousPalustrineforested,broad-leaveddeciduousJ-16TableJ-S.CorrelationofVege~ationClassestoPotentialWetlandClassest1BasedonViereckandDyrness(1980).t2BasedonCowardinetal.(1979).Source:ModifiedfromMcKendricketal.(1982).VegetationClasst1Lakes,pondsRivers,streamsWetsedge-grassLowshrubBirchshrubWillowshrubOpenblackspruceWoodlandblackspruceOpenwhitespruceWoodlandwhitespruceOpenbalsampoplarClosedbalsampoplarU.S.FishandWildlifeServiceWetlandClasst2Lacustrineunconsolidatedbottom,aquaticbed,andunconsolidatedshoreRiverineupperperennialrockbottom,unconsolidatedbottom,rockyshore,andunconsolidatedshorePalustrineorlacustrineemer-gent,persistentPalustrinescrub-shrub,broad-leaveddeciduousPalustrinescrub-shrub,broad-leaveddeciduousPalustrinescrub-shrub,broad-leaveddeciduousPalustrineforested,needle-leavedevergreenPalustrineforested,needle-leavedevergreenPalustrineforested,needle-leavedevergreenPalustrineforested,needle-leavedevergreenPalustrineforested,broad-leaveddeciduousPalustrineforested,broad-leaveddeciduous
J-17TableJ-6.PreliminaryListofPlantSpeciesIdentifiedintheUpperandMiddleSusitnaRiverBasin,theDownstreamFloodplain,andtheHealy-to-WillowTransmissionCorridorStudyAreaScientificNamet1PTERIDOPHYTACommonNameLocationt2AspidiaceaeDryopterisdilatata(Hoffm.)GrayDryopterisfragrans(L.)SchottGymnocarpiumdryopteris(L.)Newm.AthyriaceaeAthyriumfilix-femina(L.)RothCystopterisfragilis(L.)Bernh.Cystopterismontana(Lam.)Bernh.Matteucciastruthiopteris(L.)TodaroWoodsiaalpina(Bolton)S.F.GrayEquisetaceaeEquisetumarvenseL.EquisetumfluviatileL.ampl.Ehrh.EquisetumpalustreL.EquisetumpratenseL.EquisetumsilvaticumL.EquisetumvariegatumSchleich.Equisetumsp.IsoetaceaeIsoetesmuricataDur.LycopodiaceaeLycopodiumalpinumL.LycopodiumannotinumL.LycopodiumclavatumL.LycopodiumcomplanatumL.LycopodiumselagoL.ssp.selagoThelypteridaceaeThelypterisphegopteris(L.)SlossonGYMNOSPERMAEShieldfernU D IFragrantshieldfernU IOakfernU D ILadyfernU DFragilefernUMountainfragilefernUOstrichfernD IAlpinewoodsiaUMeadowhorsetailUSwamphorsetailUMarshhorsetailDMeadowhorsetailU DWoodlandhorsetailU IVariegatedscouring-rushU DHorsetailIQuillwortUAlpineclubmossUStiffclubmossURunningclubmossUGroundcedarUFirclubmossULongbeechfernUCupressaceaeJuniperuscommunisL.PinaceaePiceaglauca(Moench)VossPiceamariana(Mill.)Britt.,--sterns&Pogg.CommonjuniperWhitespruceBlackspruceU IUD IU IMONOCOTYLEDONEAECyperaceaeCarexaquatilisWahlenb.CarexbigelowiiTorr.CarexcapillarisL.CarexcanescensL.CarexconcinnaR.Br.CarexeleusinoidesTurcz.CarexfilifoliaNutt.CarexgarberiFern.Carex1imosaL.CarexlOfTaCeaL.CarexmagellanicaLam.ssp.irrigua(Wahlenb.)Hult.CarexmediaR.Br.CarexmembranaceaHook.CarexpodocarpaC.B.ClarkeWatersedgeUBigelowsedgeUHairlikesedgeUSilverysedgeU D ILownorthernsedgeUSedgeDThread-leafsedgeUSedgeDShoresedgeUSedgeUBogsedgeUSedgeUFragilesedgeUShort-stalksedgeUJ-17TableJ-6.PreliminaryListofPlantSpeciesIdentifiedintheUpperandMiddleSusitnaRiverBasin,theDownstreamFloodplain,andtheHealy-to-WillowTransmissionCorridorStudyAreaScientificNamet1PTERIDOPHYTACommonNameLocationt2AspidiaceaeDryopterisdilatata(Hoffm.)GrayDryopterisfragrans(L.)SchottGymnocarpiumdryopteris(L.)Newm.AthyriaceaeAthyriumfilix-femina(L.)RothCystopterisfragilis(L.)Bernh.Cystopterismontana(Lam.)Bernh.Matteucciastruthiopteris(L.)TodaroWoodsiaalpina(Bolton)S.F.GrayEquisetaceaeEquisetumarvenseL.EquisetumfluviatileL.ampl.Ehrh.EquisetumpalustreL.EquisetumpratenseL.EquisetumsilvaticumL.EquisetumvariegatumSchleich.Equisetumsp.IsoetaceaeIsoetesmuricataDur.LycopodiaceaeLycopodiumalpinumL.LycopodiumannotinumL.LycopodiumclavatumL.LycopodiumcomplanatumL.LycopodiumselagoL.ssp.selagoThelypteridaceaeThelypterisphegopteris(L.)SlossonGYMNOSPERMAEShieldfernU D IFragrantshieldfernU IOakfernU D ILadyfernU DFragilefernUMountainfragilefernUOstrichfernD IAlpinewoodsiaUMeadowhorsetailUSwamphorsetailUMarshhorsetailDMeadowhorsetailU DWoodlandhorsetailU IVariegatedscouring-rushU DHorsetailIQuillwortUAlpineclubmossUStiffclubmossURunningclubmossUGroundcedarUFirclubmossULongbeechfernUCupressaceaeJuniperuscommunisL.PinaceaePiceaglauca(Moench)VossPiceamariana(Mill.)Britt.,--sterns&Pogg.CommonjuniperWhitespruceBlackspruceU IUD IU IMONOCOTYLEDONEAECyperaceaeCarexaquatilisWahlenb.CarexbigelowiiTorr.CarexcapillarisL.CarexcanescensL.CarexconcinnaR.Br.CarexeleusinoidesTurcz.CarexfilifoliaNutt.CarexgarberiFern.Carex1imosaL.CarexlOfTaCeaL.CarexmagellanicaLam.ssp.irrigua(Wahlenb.)Hult.CarexmediaR.Br.CarexmembranaceaHook.CarexpodocarpaC.B.ClarkeWatersedgeUBigelowsedgeUHairlikesedgeUSilverysedgeU D ILownorthernsedgeUSedgeDThread-leafsedgeUSedgeDShoresedgeUSedgeUBogsedgeUSedgeUFragilesedgeUShort-stalksedgeU
J-18TableJ-6.(Continued)ScientificNamet1CarexrhynchophysaC.A.Mey.CarexrotundataWahlenb.CarexsaxatilisL.Carexspp.lliOCharissp.EriophorumangustifoliumHonck.EriophorumscheuchzeriHoppeEriophorumvaginatumL.Eriophorumsp.ScirpusmicrocarpusPresl.Trichophorumcaespitosum(L.)Hartm.Gramineae(Poaceae)Agropyronboreale(Turcz.)DrobovAgropyroncaninum(L.)Beauv.Agropyronmacrourum(Turcz.)DrobovAgropyronsp.AgrostisscabraWilld.Agrostissp.AlopecurusalpinusSm.Arctagrostislatifolia(R.Br.)Griseb.Beckmanniasyzigachne(Steud.)Fern.Calamagrostiscanadensis(Michx.)Beauv.CalamagrostispurpurascensR.Br.Cinnalatifolia(Trev.)Griseb.inLedeb.oanthoniaintermediaVaseyDeschampsiaatropurpurea(Wahlenb.)Scheelet3Deschampsiacaespitosa(L.)Beauv.FestucaaltaicaTrin.FestucarubraL.Coll.Hierochloealpina(Swartz)Roem.&Schult.Hierochloeodorata(L.)Wahlenb.PhleumcommutatumGandogerPoaalpinaL.PoaarcticaR.Br.PoapalustrisL.Trisetumspicatum(L.)RichterIridaceaeIrissetosaPellasJuncaceaeJuncusarcticusWilld.JuncuscastaneusSm.Juncus.drummondiiE.Mey.JuncusmertensianusBong.JuncustriglumisL.Luzulacampestris(L.)DC.exDC.&Lamt3LuzulaconfusaLindeb.Luzulamultiflora(Retz.)Lej.Luzulaparviflora(Ehrh.)Desv.LuzulatundricolaGorodk.LuzulawahlenbergiiRupr.LiliaceaeLloydiaserotina(L.)Rchb.Streptopusamplexifolius(L.)DC.TofieldiacoccineaRichards.Tofieldiapusilla(Michx.)Pers.VeratrumvirideAit.Zygadenus-eTegansPurshOrchidaceaeListeracordata(L.)R.Br.Platantheraconvallariaefolia(Fisch.)Lindl.CommonNameLocationt2SedgeUSedgeDSedgeDSedgeU D ISpikerushITallcottongrassUWhitecottongrassUTussockcottongrassU D ICottongrassD ISmall-fruitbullrushDTuftedclubrushUNorthernwheatgrassDWheatgrassDWheatgrassDi'/heatgrassUTicklegrassU DBentgrassUMountainfoxtailUPolargrassUSloughgrassDBluejointU D IPurplereedgrassUWoodreedDTimberoatgrassUMountainhairgrassUTuftedhairgrassU DFescuegrassURedfescueUAlpineholygrassUVanillagrassU DTimothyUAlpinebluegrassUArcticbluegrassUBluegrassUDownyoatgrassU DWildirisU IArcticrushUDChestnutrushUDrummondrushUMertensrushURushUWoodrushUNorthernwoodrushUWoodrushUSmall-floweredwoodrushUTundrawoodrushUWahlenbergwoodrushUAlplilyU ICucumberrootU D INorthernasphodelUScotchasphodelU IFalsehelleboreUIElegantdeathcamasU ITwybladeINorthernbog-orchisUJ-18TableJ-6.(Continued)ScientificNamet1CarexrhynchophysaC.A.Mey.CarexrotundataWahlenb.CarexsaxatilisL.Carexspp.lliOCharissp.EriophorumangustifoliumHonck.EriophorumscheuchzeriHoppeEriophorumvaginatumL.Eriophorumsp.ScirpusmicrocarpusPresl.Trichophorumcaespitosum(L.)Hartm.Gramineae(Poaceae)Agropyronboreale(Turcz.)DrobovAgropyroncaninum(L.)Beauv.Agropyronmacrourum(Turcz.)DrobovAgropyronsp.AgrostisscabraWilld.Agrostissp.AlopecurusalpinusSm.Arctagrostislatifolia(R.Br.)Griseb.Beckmanniasyzigachne(Steud.)Fern.Calamagrostiscanadensis(Michx.)Beauv.CalamagrostispurpurascensR.Br.Cinnalatifolia(Trev.)Griseb.inLedeb.oanthoniaintermediaVaseyDeschampsiaatropurpurea(Wahlenb.)Scheelet3Deschampsiacaespitosa(L.)Beauv.FestucaaltaicaTrin.FestucarubraL.Coll.Hierochloealpina(Swartz)Roem.&Schult.Hierochloeodorata(L.)Wahlenb.PhleumcommutatumGandogerPoaalpinaL.PoaarcticaR.Br.PoapalustrisL.Trisetumspicatum(L.)RichterIridaceaeIrissetosaPellasJuncaceaeJuncusarcticusWilld.JuncuscastaneusSm.Juncus.drummondiiE.Mey.JuncusmertensianusBong.JuncustriglumisL.Luzulacampestris(L.)DC.exDC.&Lamt3LuzulaconfusaLindeb.Luzulamultiflora(Retz.)Lej.Luzulaparviflora(Ehrh.)Desv.LuzulatundricolaGorodk.LuzulawahlenbergiiRupr.LiliaceaeLloydiaserotina(L.)Rchb.Streptopusamplexifolius(L.)DC.TofieldiacoccineaRichards.Tofieldiapusilla(Michx.)Pers.VeratrumvirideAit.Zygadenus-eTegansPurshOrchidaceaeListeracordata(L.)R.Br.Platantheraconvallariaefolia(Fisch.)Lindl.CommonNameLocationt2SedgeUSedgeDSedgeDSedgeU D ISpikerushITallcottongrassUWhitecottongrassUTussockcottongrassU D ICottongrassD ISmall-fruitbullrushDTuftedclubrushUNorthernwheatgrassDWheatgrassDWheatgrassDi'/heatgrassUTicklegrassU DBentgrassUMountainfoxtailUPolargrassUSloughgrassDBluejointU D IPurplereedgrassUWoodreedDTimberoatgrassUMountainhairgrassUTuftedhairgrassU DFescuegrassURedfescueUAlpineholygrassUVanillagrassU DTimothyUAlpinebluegrassUArcticbluegrassUBluegrassUDownyoatgrassU DWildirisU IArcticrushUDChestnutrushUDrummondrushUMertensrushURushUWoodrushUNorthernwoodrushUWoodrushUSmall-floweredwoodrushUTundrawoodrushUWahlenbergwoodrushUAlplilyU ICucumberrootU D INorthernasphodelUScotchasphodelU IFalsehelleboreUIElegantdeathcamasU ITwybladeINorthernbog-orchisU
J-19TableJ-6.(Continued)ScientificNamet1Platantheradilatata(Pursh)Lindl.Platantherahyperborea(L.)Lindl.Platantheraobtusata(Pursh)Lindl.PotamogetomaceaePotamogetonepihydrusRaf.PotamogetonfiliformisPers.PotamogetongramineusL.PotamogetonperfoliatusL.PotamogetonrobbinsiiOakesSparganiaceaeSparganiumangustifoliumMichx.DICOTYLEDONEAEAdoxaceaeAdoxamoschatellinaL.AraliaceaeEchinopanaxhorridum(Sm.)Decne.&Planch.Betulaceaet4Alnuscrispa(Ait.)PurshAlnussinuata(Reg.)Rydb.AlnustenuifoliaNutt.Alnussp.BetulaglandulosaMichx.BetulananaL.BetulaOCCldentalisHook.BetulapapyriferaMarsh.BoraginaceaeMertensiapaniculata(Ait.)G.DonMyosotisalpestrisF.W.SchmidtCallitrichaceaeCallitrichehermaphroditicaL.CallitrichevernaL.CampanulaceaeCampanulalasiocarpaCham.CaprifoliaceaeLinnaeaborealisL.SambucuscallicarpaGreenet4Viburnumedule(Michx.)Raf.CaryophyllaceaeMinuartiaobtusiloba(Rydb.)HouseMoehringialateriflora(L.)FenzlSileneacaulisL.stellariacrassifoliaEhrh.Stellariasp.Wilhelmsiaphysodes(Fisch.)McNeillCompositae(Asteraceae)AchilleaborealisBong.AchilleasibiricaLedeb.Antennariaalpina(L.)Gaertn.AntennariamonocephalaDC.AntennariaroseaGreeneArnicaamplexTCaulisNutt.ssp.primaMaguireArnicachamissonisLess.(?)ArnicafrigidaC.A.Mey.ArnicalessingiiGreeneCommonNameWhitebog-orchisNorthernbog-orchisSmallbog-orchisNuttallpondweedFiliformpondweedPondweedClasping-leafpondweedRobbinspondweedNarrow-leavedburreedMoschatelDevil'sclubAmericangreenalderSitkaalderThinleafalderAlderResinbirchDwarfarcticbirchWaterbirchPaperbirchTallbluebellForget-me-notWaterstarwortVernalwaterstarwortMountainharebellTwin-flowerPacificredelderHighbushcranberryAlpinesandwortGrovesandwortMosscampionChickweedStarwortMerckia'farrowSiberianyarrowAlpinepussytoesPussytoesPussytoesArnicaArnicaArnicaArnicaLocationt2uuuuuuuuuDUD IU IUD IDIU IUD IUUD IUD IUUUU IU IIUD IUD IUIUUU DU DUUUUDU IUJ-19TableJ-6.(Continued)ScientificNamet1Platantheradilatata(Pursh)Lindl.Platantherahyperborea(L.)Lindl.Platantheraobtusata(Pursh)Lindl.PotamogetomaceaePotamogetonepihydrusRaf.PotamogetonfiliformisPers.PotamogetongramineusL.PotamogetonperfoliatusL.PotamogetonrobbinsiiOakesSparganiaceaeSparganiumangustifoliumMichx.DICOTYLEDONEAEAdoxaceaeAdoxamoschatellinaL.AraliaceaeEchinopanaxhorridum(Sm.)Decne.&Planch.Betulaceaet4Alnuscrispa(Ait.)PurshAlnussinuata(Reg.)Rydb.AlnustenuifoliaNutt.Alnussp.BetulaglandulosaMichx.BetulananaL.BetulaOCCldentalisHook.BetulapapyriferaMarsh.BoraginaceaeMertensiapaniculata(Ait.)G.DonMyosotisalpestrisF.W.SchmidtCallitrichaceaeCallitrichehermaphroditicaL.CallitrichevernaL.CampanulaceaeCampanulalasiocarpaCham.CaprifoliaceaeLinnaeaborealisL.SambucuscallicarpaGreenet4Viburnumedule(Michx.)Raf.CaryophyllaceaeMinuartiaobtusiloba(Rydb.)HouseMoehringialateriflora(L.)FenzlSileneacaulisL.stellariacrassifoliaEhrh.Stellariasp.Wilhelmsiaphysodes(Fisch.)McNeillCompositae(Asteraceae)AchilleaborealisBong.AchilleasibiricaLedeb.Antennariaalpina(L.)Gaertn.AntennariamonocephalaDC.AntennariaroseaGreeneArnicaamplexTCaulisNutt.ssp.primaMaguireArnicachamissonisLess.(?)ArnicafrigidaC.A.Mey.ArnicalessingiiGreeneCommonNameWhitebog-orchisNorthernbog-orchisSmallbog-orchisNuttallpondweedFiliformpondweedPondweedClasping-leafpondweedRobbinspondweedNarrow-leavedburreedMoschatelDevil'sclubAmericangreenalderSitkaalderThinleafalderAlderResinbirchDwarfarcticbirchWaterbirchPaperbirchTallbluebellForget-me-notWaterstarwortVernalwaterstarwortMountainharebellTwin-flowerPacificredelderHighbushcranberryAlpinesandwortGrovesandwortMosscampionChickweedStarwortMerckia'farrowSiberianyarrowAlpinepussytoesPussytoesPussytoesArnicaArnicaArnicaArnicaLocationt2uuuuuuuuuDUD IU IUD IDIU IUD IUUD IUD IUUUU IU IIUD IUD IUIUUU DU DUUUUDU IU
J-20TableJ-6.ScientificNamet1ArtemisiaalaskanaRybd.ArtemisiaarcticaLess.ArtemisiatilesiiLedeb.AstersibiricusL.ErTQeronacrisssp.politus(L.)(E.Fries)Schinz&KellerErigeronhumilisGrahamErigeronlonchophyllusHook.ErigeronpurpuratusGreeneHieraciumtristeWilld.PetasitesfrTQTdus(L.)Franch.Petasitessagittatus(Banks)GrayPetasitessp.Saussureaangustifolia(Willd.)DC.Senecioatropurpureus(Ledeb.)Fedtsch.SeneciolugensRichards.SeneciosheldonensisPors.SeneciotriangularisHook.Seneciosp.SolidagomultiradiataAit.Taraxacumsp.CornaceaeCornuscanadensisL.CrassulaceaeSedumrosea(L.)Scop.Cruciferae(Brassicaceae)CardaminebellidifoliaL.CardaminepratensisL.CardamineumbellataGreeneDrabaaureaVahlDrabanrvaTisLiljebl.DrabastenolobaLedeb.Parryanudicaulis(L.)RegelRorippaislandica(Oeder)Borb.DiapensiaceaeDiapensialapponicaL.DroseraceaeDroserarotundifoliaL.ElaeagnaceaeShepherdiacanadensis(L.)Nutt.EmpetraceaeEmpetrumnigrumL.EricaceaeAndromedapolifoliaL.Arctostaphylosalpina(L.)Spreng.Arctostaphylosrubra(Rehd.&Wilson)Fern.Arctostaphylosuva-ursi(L.)Spreng.Cassiopestelleriana(Pall.)DC.Cassiopetetragona(L.)D.DonLedumdecumbens(Ait.)Smallt4LedumgroenlandicumOederLedumsp.IOTSeleuriaprocumbens(L.)Desv.MenziesiaferrugineaSm.OxycoccusmicrocarpusTurcz.Rhododendronlapponicum(L.)Wahlenb.VacciniumcaespitosumMichx.VacciniumuliginosumL.Vacciniumvitis-idaeaL.Vacciniumsp.(Continued)CommonNameAlaskawormwoodWormwoodWormwoodSiberianasterFleabaneFleabanedaisyDaisyFleabaneWoolyhawkweedArcticsweetcoltsfootArrowleafsweetcoltsfootSweetcoltsfootSaussureaRagwortRagwortSheldongroundselRagwortRagwortNortherngoldenrodDandelionBunchberryRoserootAlpinebittercressCuckooflowerBittercressDrabaRockcressRockcressMustardMarshyellowcressDiapensiaSundewSoapberryCrowberryBogrosemaryAlpinebearberryRed-fruitbearberryBearberryAlaskamossheathFour-anglemountainheatherNorthernLabradorteaLabradorteaLabradorteaAlpineazaleaMenziesiaBogcranberryLaplandrosebayDwarfblueberryBogblueberryMountaincranberryBlueberryLocationt2UUIU D IU D IIUDIUUIUD IUIUUIUIIU DUU D IU IUUUIUUUIUUIIU D IUIUUIUIUIUUIUIUIDIU IIU DUIUU D IUIIJ-20TableJ-6.ScientificNamet1ArtemisiaalaskanaRybd.ArtemisiaarcticaLess.ArtemisiatilesiiLedeb.AstersibiricusL.ErTQeronacrisssp.politus(L.)(E.Fries)Schinz&KellerErigeronhumilisGrahamErigeronlonchophyllusHook.ErigeronpurpuratusGreeneHieraciumtristeWilld.PetasitesfrTQTdus(L.)Franch.Petasitessagittatus(Banks)GrayPetasitessp.Saussureaangustifolia(Willd.)DC.Senecioatropurpureus(Ledeb.)Fedtsch.SeneciolugensRichards.SeneciosheldonensisPors.SeneciotriangularisHook.Seneciosp.SolidagomultiradiataAit.Taraxacumsp.CornaceaeCornuscanadensisL.CrassulaceaeSedumrosea(L.)Scop.Cruciferae(Brassicaceae)CardaminebellidifoliaL.CardaminepratensisL.CardamineumbellataGreeneDrabaaureaVahlDrabanrvaTisLiljebl.DrabastenolobaLedeb.Parryanudicaulis(L.)RegelRorippaislandica(Oeder)Borb.DiapensiaceaeDiapensialapponicaL.DroseraceaeDroserarotundifoliaL.ElaeagnaceaeShepherdiacanadensis(L.)Nutt.EmpetraceaeEmpetrumnigrumL.EricaceaeAndromedapolifoliaL.Arctostaphylosalpina(L.)Spreng.Arctostaphylosrubra(Rehd.&Wilson)Fern.Arctostaphylosuva-ursi(L.)Spreng.Cassiopestelleriana(Pall.)DC.Cassiopetetragona(L.)D.DonLedumdecumbens(Ait.)Smallt4LedumgroenlandicumOederLedumsp.IOTSeleuriaprocumbens(L.)Desv.MenziesiaferrugineaSm.OxycoccusmicrocarpusTurcz.Rhododendronlapponicum(L.)Wahlenb.VacciniumcaespitosumMichx.VacciniumuliginosumL.Vacciniumvitis-idaeaL.Vacciniumsp.(Continued)CommonNameAlaskawormwoodWormwoodWormwoodSiberianasterFleabaneFleabanedaisyDaisyFleabaneWoolyhawkweedArcticsweetcoltsfootArrowleafsweetcoltsfootSweetcoltsfootSaussureaRagwortRagwortSheldongroundselRagwortRagwortNortherngoldenrodDandelionBunchberryRoserootAlpinebittercressCuckooflowerBittercressDrabaRockcressRockcressMustardMarshyellowcressDiapensiaSundewSoapberryCrowberryBogrosemaryAlpinebearberryRed-fruitbearberryBearberryAlaskamossheathFour-anglemountainheatherNorthernLabradorteaLabradorteaLabradorteaAlpineazaleaMenziesiaBogcranberryLaplandrosebayDwarfblueberryBogblueberryMountaincranberryBlueberryLocationt2UUIU D IU D IIUDIUUIUD IUIUUIUIIU DUU D IU IUUUIUUUIUUIIU D IUIUUIUIUIUUIUIUIDIU IIU DUIUU D IUII
J-21TableJ-6.(Continued)ScientificNamet1FumariaceaeCorydalispauciflora(Steph.)Pers.GentianaceaeGentianaglaucaPall.GentianapropinguaRichards.MenyanthestrifoliataL.SwertiaperennisL.GeraniaceaeGeraniumerianthumDC.HaloragaceaeHippurisvUlgarisL.Leguminosae(Fabaceae)AstragalusaboriginumRichards.AstragalusalpinusL.t3AstragalusumbellatusBungeHedysarumalpinumL.LupinusarcticusS.Wats.OxytropisborealisDC.Oxytropiscampestris(L.)DC.OxytropishuddelsoniiPors.OxytropismaydellianaTrautv.Oxytropisnigrescens(Pall.)Fisch.OxytropisviscidaNutt.LentibulariaceaePinguiculavillosaL.UtriculariavulgarisL.MyricaceaeMyricagaleL.NymphaeaceaeNupharpolysepalumEngelm.OnagraceaeCircaeaalpinaL.EpilobiumangustifoliumL.EpilobiumlatifoliumL.EpilobiumpalustreL.OrobanchaceaeBoschniakiarossica(Cham.&Schlecht.)Fedtsch.PolemoniaceaePolemoniumacutiflorumWilld.PolygonaceaeOxyriadigyna(L.)HillPolygonumbistortaL.PolygonumviviparumL.RumexarcticusTrautv.Rumexsp.PortulacaceaeClaytoniasarmentosaC.A.Mey.PrimulaceaeAndrosacechamaejasmeHult.DodecatheonfrigidumCham.&Schlecht.PrimulacuneifoliaLedeb.PrimulaegaliksensisWormsk.TrientaliseuropaeaL.CommonNameFew-floweredcorydalisGlaucousgentianGentianBuckbeanGentianNortherngeraniumCommonmarestailMi1k-vetchMi1k-vetchMilk-vetchAlpinesweet-vetchArcticlupineOxtropeFieldoxytropeHuddelsonoxytropeMaydelloxytropeBlackishoxytropeViscidoxytropeHairybutterwortCommonbladderwortSweetgaleYellowpondlilyEnchanter'snightshadeFireweedDwarffireweedSwampwillow-herbPoqueJacob'sladderMountainsorrelMeadowbistortAlpinebistortArcticdockDockSpring-beautyRockjasmineNorthernshootingstarWedge-leafprimroseGreenlandprimroseArcticstarflowerLocationt2U IuuUD IU IU IUUU DUUD IU IDDUUU IUUUUD IUDUD IUD IUUD IUD IU IUU IU IU IUIU IUUUD IJ-21TableJ-6.(Continued)ScientificNamet1FumariaceaeCorydalispauciflora(Steph.)Pers.GentianaceaeGentianaglaucaPall.GentianapropinguaRichards.MenyanthestrifoliataL.SwertiaperennisL.GeraniaceaeGeraniumerianthumDC.HaloragaceaeHippurisvUlgarisL.Leguminosae(Fabaceae)AstragalusaboriginumRichards.AstragalusalpinusL.t3AstragalusumbellatusBungeHedysarumalpinumL.LupinusarcticusS.Wats.OxytropisborealisDC.Oxytropiscampestris(L.)DC.OxytropishuddelsoniiPors.OxytropismaydellianaTrautv.Oxytropisnigrescens(Pall.)Fisch.OxytropisviscidaNutt.LentibulariaceaePinguiculavillosaL.UtriculariavulgarisL.MyricaceaeMyricagaleL.NymphaeaceaeNupharpolysepalumEngelm.OnagraceaeCircaeaalpinaL.EpilobiumangustifoliumL.EpilobiumlatifoliumL.EpilobiumpalustreL.OrobanchaceaeBoschniakiarossica(Cham.&Schlecht.)Fedtsch.PolemoniaceaePolemoniumacutiflorumWilld.PolygonaceaeOxyriadigyna(L.)HillPolygonumbistortaL.PolygonumviviparumL.RumexarcticusTrautv.Rumexsp.PortulacaceaeClaytoniasarmentosaC.A.Mey.PrimulaceaeAndrosacechamaejasmeHult.DodecatheonfrigidumCham.&Schlecht.PrimulacuneifoliaLedeb.PrimulaegaliksensisWormsk.TrientaliseuropaeaL.CommonNameFew-floweredcorydalisGlaucousgentianGentianBuckbeanGentianNortherngeraniumCommonmarestailMi1k-vetchMi1k-vetchMilk-vetchAlpinesweet-vetchArcticlupineOxtropeFieldoxytropeHuddelsonoxytropeMaydelloxytropeBlackishoxytropeViscidoxytropeHairybutterwortCommonbladderwortSweetgaleYellowpondlilyEnchanter'snightshadeFireweedDwarffireweedSwampwillow-herbPoqueJacob'sladderMountainsorrelMeadowbistortAlpinebistortArcticdockDockSpring-beautyRockjasmineNorthernshootingstarWedge-leafprimroseGreenlandprimroseArcticstarflowerLocationt2U IuuUD IU IU IUUU DUUD IU IDDUUU IUUUUD IUDUD IUD IUUD IUD IU IUU IU IU IUIU IUUUD I
TableJ-6.ScientificNamet1PyrolaceaeMonesesuniflora(L.)GrayPyrolaasarifoliaMichx.PyrolagrandifloraRadiusPyro1aminorL.PyrolasecundaL.Pyrolasp.RanunculaceaeAconitumdelphinifoliumDC.Actaearubra(Ait.)Willd.AnemOne-narcissifloraL.AnemoneparvifloraMichx.AnemonerichardsoniiHook.Anemonesp.CalthaleptosepalaDC.CalthapalustrisL.DelphiniumglaucumS.Wats.Ranunculusconfervoides(E.Fries)E.FriesRanunculusmacouniiBritt.(maybe~pacificusorsomethingsimilar)RanunculusnivalisL.RanunculusoccidentalisNutt.RanunculuspygmaeusWahlenb.Ranunculussp.ThalictrumalpinumL.ThalictrumsparsiflorumTurcz.RosaceaeDryasdrummondiiRichards.DryasintegrifoliaM.VahlDryasoctopetalaL.GeummacrophyllumWild.Geumrossii(R.Br.)Ser.LUetkea-pectinata(Pursh)Ktze.PotentillabifloraWilld.PotentillafruticosaL.PotentillahyparcticaMaltePotentillapalustris(L.)Scop.PotentillavillosaPall.RosaacicularisLindl.RubusarcticusL.RubuschamaemorusL.RubusidaeusL.RubuspeaatUsSm.Rubussp.5angUisorbastipulataRaf.SibbaldiaprocumbensL.SorbusscopulinaGreeneSpiraeabeauverdianaSchneid.RubiaceaeGaliumborealeL.GaliumtrifidumL.GaliumtriflorumMichx.Salicaceaet4PopulusbalsamiferaL.PopulustremuloidesMichx.Salixalaxensis(Anderss.)Cov.SalixarbusculoidesAnderss.SalixarcticaPall.SalixbarclayiAnderss.SalixbrachycarpaNutt.SalixfuscescensAnderss.J-22(Continued)CommonNameSingledelightLiverleafwintergreenLarge-flowerwintergreenLesserwintergreenOne-sidedwintergreenWintergreenMonkshoodBaneberryAnemoneNorthernanemoneAnemoneAnemoneMountainmarsh-marigoldMarshmarigoldLarkspurWatercrowfootMacounbuttercupSnowbuttercupWesternbuttercupPygmybuttercupButtercupArcticmeadowrueFew-flowermeadowrueDrummondmountain-avensDryasWhitemountain-avensAvensRossavensLuetkeaTwo-flowercinquefoilShrubbycinquefoilArcticcinquefoilMarshcinquefoilVillouscinquefoilPricklyroseNagoonberryCloudberryRaspberryFive-leafbrambleRaspberrySitkaburnetSibbaldiaWesternmountainashBeauverdspireaNorthernbedstrawSmallbedstrawSweet-scentedbedstrawBalsampoplar(orcottonwood)QuakingaspenFeltleafwillowLittletreewillowArcticwillowBarclaywillowBarren-groundwillowAlaskabogwillowLocationt2U DDUUU DIU IDU IU IU DIIU IUIUDUUUUIUU D IU D IU IUIUIUUU IUU D IUU D IU D IU IUD IU IIU IUUIU DIUUDUD IU IU DU DUUUU DTableJ-6.ScientificNamet1PyrolaceaeMonesesuniflora(L.)GrayPyrolaasarifoliaMichx.PyrolagrandifloraRadiusPyro1aminorL.PyrolasecundaL.Pyrolasp.RanunculaceaeAconitumdelphinifoliumDC.Actaearubra(Ait.)Willd.AnemOne-narcissifloraL.AnemoneparvifloraMichx.AnemonerichardsoniiHook.Anemonesp.CalthaleptosepalaDC.CalthapalustrisL.DelphiniumglaucumS.Wats.Ranunculusconfervoides(E.Fries)E.FriesRanunculusmacouniiBritt.(maybe~pacificusorsomethingsimilar)RanunculusnivalisL.RanunculusoccidentalisNutt.RanunculuspygmaeusWahlenb.Ranunculussp.ThalictrumalpinumL.ThalictrumsparsiflorumTurcz.RosaceaeDryasdrummondiiRichards.DryasintegrifoliaM.VahlDryasoctopetalaL.GeummacrophyllumWild.Geumrossii(R.Br.)Ser.LUetkea-pectinata(Pursh)Ktze.PotentillabifloraWilld.PotentillafruticosaL.PotentillahyparcticaMaltePotentillapalustris(L.)Scop.PotentillavillosaPall.RosaacicularisLindl.RubusarcticusL.RubuschamaemorusL.RubusidaeusL.RubuspeaatUsSm.Rubussp.5angUisorbastipulataRaf.SibbaldiaprocumbensL.SorbusscopulinaGreeneSpiraeabeauverdianaSchneid.RubiaceaeGaliumborealeL.GaliumtrifidumL.GaliumtriflorumMichx.Salicaceaet4PopulusbalsamiferaL.PopulustremuloidesMichx.Salixalaxensis(Anderss.)Cov.SalixarbusculoidesAnderss.SalixarcticaPall.SalixbarclayiAnderss.SalixbrachycarpaNutt.SalixfuscescensAnderss.J-22(Continued)CommonNameSingledelightLiverleafwintergreenLarge-flowerwintergreenLesserwintergreenOne-sidedwintergreenWintergreenMonkshoodBaneberryAnemoneNorthernanemoneAnemoneAnemoneMountainmarsh-marigoldMarshmarigoldLarkspurWatercrowfootMacounbuttercupSnowbuttercupWesternbuttercupPygmybuttercupButtercupArcticmeadowrueFew-flowermeadowrueDrummondmountain-avensDryasWhitemountain-avensAvensRossavensLuetkeaTwo-flowercinquefoilShrubbycinquefoilArcticcinquefoilMarshcinquefoilVillouscinquefoilPricklyroseNagoonberryCloudberryRaspberryFive-leafbrambleRaspberrySitkaburnetSibbaldiaWesternmountainashBeauverdspireaNorthernbedstrawSmallbedstrawSweet-scentedbedstrawBalsampoplar(orcottonwood)QuakingaspenFeltleafwillowLittletreewillowArcticwillowBarclaywillowBarren-groundwillowAlaskabogwillowLocationt2U DDUUU DIU IDU IU IU DIIU IUIUDUUUUIUU D IU D IU IUIUIUUU IUU D IUU D IU D IU IUD IU IIU IUUIU DIUUDUD IU IU DU DUUUU D
J-23TableJ-6.(Continued)ScientificNamet1SalixglaucaL.SalixlanataL.ssp.richardsonii---cHOo~Skwortz.SalixmonticolaBebb.Salixnovae-angliaeAnderss.SalixphlebophyllaAnderss.SalixplanifoliaPurshssp.planifoliaSalixplanifoliaPurshssp.pulchra(Cham.)ArgusSalixpolarisWahlenb.ssp.pseudopolaris(Flod.)Hult.SalixreticulataL.SalixrotundifoliaTrautv.SalixscoulerianaBarrattSalixsp.SantalaceaeGeocaulonlividum(Richards.)Fern.SaxifragaceaeBoykiniarichardsonii(Hook.)GrayChrysopleniumtetrandrum(Lund)T.FriesLeptarrhenapyrolifolia(D.Don)Ser.ParnassiapalustrisL.ParnassiakotzebueiCham.&Schlecht.Parnassiasp.RibeshudsonianumRichards.RibeslaxiflorumPursh(maybeR.-gJandulosum)RibestristePall.saxTfr~onchialisL.SaxifragadavuricaWilld.SaxifragafoliolosaR.Br.SaxifragahieracifoliaWaldst.&Kit.SaxifragalyalliiEnglerSaxifragaoppositifoliaL.SaxifragapunctataL.SaxifragaserpyllifoliaPurshSaxifragatricuspidataRottb.ScrophulariaceaeCastillejacaudata(Pennell)Rebr.MimulusguttatusDC.PediculariscapitataAdamsPediculariskaneiDurandPedicularislabradoricaWirsingPedicularisparvifloraJ.E.Sm.var.parvifloraPedicularissudeticaWilld.PedicularisverticillataL.Pedicularissp_VeronicaamericanaVeronicawormskjoldiiRoem.&Schult.Umbelliferae(Apiaceae)AngelicalucidaL.HeracleumlanatumMichx.ValerianaceaeValerianacapitataPall.ViolaceaeViolabifloraL.ViolaepipsilaLedeb.ViolalangsdorffiiFisch.Violasp.CommonNameGrayleafwi11owRichardsonwillowParkwillowTallblueberrywillowSkeletonleafwillowPlaneleafwillowOiamondleafwillowPolarwillowNetleafwillowLeastwillowScoulerwi11owWi11owSandalwoodRichardsonboykiniaNorthernwatercarpetLeather-leafsaxifrageNorthernGrass-of-ParnassusKotzebueGrass-of-ParnassusGrassofParnassusNorthernblackcurrantTrailingblackcurrantRedcurrantSpottedsaxifrageSaxifrageGrainedsaxifrageStiff-stemmedsaxifrageRed-stemsaxifragePurplemountainsaxifrageBrooksaxifrageThyme-leafsaxifrageThree-toothsaxifragePaleIndianpaintbrushYellowmonkeyflowerCapitatelousewortKanelousewortLabradorlousewortLousewortLousewortWhorledlousewortLousewortBrooklimeAlpinespeedwellWildceleryCowparsnipCapitatevalerianVioletMarshvioletVioletVioletLocationt2UUUU 0UUUUUUUU 0 IUUUUU IU IoU 0oU 0 IUUUUUUUUU IU IIUU IU IUUUIIU IUU0 IUIU IUJ-23TableJ-6.(Continued)ScientificNamet1SalixglaucaL.SalixlanataL.ssp.richardsonii---cHOo~Skwortz.SalixmonticolaBebb.Salixnovae-angliaeAnderss.SalixphlebophyllaAnderss.SalixplanifoliaPurshssp.planifoliaSalixplanifoliaPurshssp.pulchra(Cham.)ArgusSalixpolarisWahlenb.ssp.pseudopolaris(Flod.)Hult.SalixreticulataL.SalixrotundifoliaTrautv.SalixscoulerianaBarrattSalixsp.SantalaceaeGeocaulonlividum(Richards.)Fern.SaxifragaceaeBoykiniarichardsonii(Hook.)GrayChrysopleniumtetrandrum(Lund)T.FriesLeptarrhenapyrolifolia(D.Don)Ser.ParnassiapalustrisL.ParnassiakotzebueiCham.&Schlecht.Parnassiasp.RibeshudsonianumRichards.RibeslaxiflorumPursh(maybeR.-gJandulosum)RibestristePall.saxTfr~onchialisL.SaxifragadavuricaWilld.SaxifragafoliolosaR.Br.SaxifragahieracifoliaWaldst.&Kit.SaxifragalyalliiEnglerSaxifragaoppositifoliaL.SaxifragapunctataL.SaxifragaserpyllifoliaPurshSaxifragatricuspidataRottb.ScrophulariaceaeCastillejacaudata(Pennell)Rebr.MimulusguttatusDC.PediculariscapitataAdamsPediculariskaneiDurandPedicularislabradoricaWirsingPedicularisparvifloraJ.E.Sm.var.parvifloraPedicularissudeticaWilld.PedicularisverticillataL.Pedicularissp_VeronicaamericanaVeronicawormskjoldiiRoem.&Schult.Umbelliferae(Apiaceae)AngelicalucidaL.HeracleumlanatumMichx.ValerianaceaeValerianacapitataPall.ViolaceaeViolabifloraL.ViolaepipsilaLedeb.ViolalangsdorffiiFisch.Violasp.CommonNameGrayleafwi11owRichardsonwillowParkwillowTallblueberrywillowSkeletonleafwillowPlaneleafwillowOiamondleafwillowPolarwillowNetleafwillowLeastwillowScoulerwi11owWi11owSandalwoodRichardsonboykiniaNorthernwatercarpetLeather-leafsaxifrageNorthernGrass-of-ParnassusKotzebueGrass-of-ParnassusGrassofParnassusNorthernblackcurrantTrailingblackcurrantRedcurrantSpottedsaxifrageSaxifrageGrainedsaxifrageStiff-stemmedsaxifrageRed-stemsaxifragePurplemountainsaxifrageBrooksaxifrageThyme-leafsaxifrageThree-toothsaxifragePaleIndianpaintbrushYellowmonkeyflowerCapitatelousewortKanelousewortLabradorlousewortLousewortLousewortWhorledlousewortLousewortBrooklimeAlpinespeedwellWildceleryCowparsnipCapitatevalerianVioletMarshvioletVioletVioletLocationt2UUUU 0UUUUUUUU 0 IUUUUU IU IoU 0oU 0 IUUUUUUUUU IU IIUU IU IUUUIIU IUU0 IUIU IU
J-24TableJ-6.(Continued)t1Firstordername=order;secondordername=family,thirdordername=genusandspecies.VascularplantspeciesnomenclatureaccordingtoHulten(1968)exceptwherenoted.LichennomenclatureaccordingtoThomson(1979).MossnomenclatureaccordingtoConard(1979).t2U=upperandmiddleSusitnaBasin;D=downstreamfloodplain;I=Healy-to-Willowtransmissioncorridorstudyarea.t3NomenclatureaccordingtoWelsh(1974).t4NomenclatureaccordingtoViereckandLittle(1972).t5NomenclatureaccordingtoCrum(1976).Source:ModifiedfromExhibitE,Vol.6A,Chap.3,Appendix3.C,asadaptedfromMcKendricketal.(1982),CommonwealthAssociates(1982),andSteigersetal.(1983).ScientificNamet1NONVASCULARPLANTSPECIESLichensCetrariacucullata(Bell.)Ach.Cetrariaislandica(L.)Ach.Cetrarianivalis(L.)Ach.CetrariarichardsoniiHook.Cetrariaspp.Cladoniaalpestris(L.)Rabenh.CladoniamitisSandst.CladoniarangTferina(L.)Web.Cladoniaspp.Dactylinaarctica(Hook.)Nyl.Haematommasp.Lobarialinita(Ach.)Rabh.Nephroma~Peltigeraspp.Rhizocarpongeographicum(L.)DC.Stereocaulonpaschale(L.)Hoffm.Thamnoliavermicularis(Sw.)Schaer.Umbilicariasp.MossesClimaciumsp.Hypnumspp.andotherfeathermossesPaludellasguarrosa(Hedw.)Brid.t5Polytrichumspp.Ptiliumcrista-castrensis(Hedw.)DeNot.Phacomitriumspp.Sphagnumspp.CommonNameReindeermossKnight'splumeLocationt2UUUUUUUUUUUDUUUU DUUUUUU DUU DUDJ-24TableJ-6.(Continued)t1Firstordername=order;secondordername=family,thirdordername=genusandspecies.VascularplantspeciesnomenclatureaccordingtoHulten(1968)exceptwherenoted.LichennomenclatureaccordingtoThomson(1979).MossnomenclatureaccordingtoConard(1979).t2U=upperandmiddleSusitnaBasin;D=downstreamfloodplain;I=Healy-to-Willowtransmissioncorridorstudyarea.t3NomenclatureaccordingtoWelsh(1974).t4NomenclatureaccordingtoViereckandLittle(1972).t5NomenclatureaccordingtoCrum(1976).Source:ModifiedfromExhibitE,Vol.6A,Chap.3,Appendix3.C,asadaptedfromMcKendricketal.(1982),CommonwealthAssociates(1982),andSteigersetal.(1983).ScientificNamet1NONVASCULARPLANTSPECIESLichensCetrariacucullata(Bell.)Ach.Cetrariaislandica(L.)Ach.Cetrarianivalis(L.)Ach.CetrariarichardsoniiHook.Cetrariaspp.Cladoniaalpestris(L.)Rabenh.CladoniamitisSandst.CladoniarangTferina(L.)Web.Cladoniaspp.Dactylinaarctica(Hook.)Nyl.Haematommasp.Lobarialinita(Ach.)Rabh.Nephroma~Peltigeraspp.Rhizocarpongeographicum(L.)DC.Stereocaulonpaschale(L.)Hoffm.Thamnoliavermicularis(Sw.)Schaer.Umbilicariasp.MossesClimaciumsp.Hypnumspp.andotherfeathermossesPaludellasguarrosa(Hedw.)Brid.t5Polytrichumspp.Ptiliumcrista-castrensis(Hedw.)DeNot.Phacomitriumspp.Sphagnumspp.CommonNameReindeermossKnight'splumeLocationt2UUUUUUUUUUUDUUUU DUUUUUU DUU DUD
J-25Theproposedsitesofthedams,impoundments,andrelatedprojectfacilitieswouldbelocatedmostlyinforestedareas(Fig.J-2).InthevicinityoftheproposedWatanadamsiteandimpoundment(Fig.J-2),morethan75%ofthevegetatedareaisforested,andmostoftheremain-ingareaisshrubland(bothlow-shrubandtall-shrubtypes).Thepredominantforesttypesarewoodlandandopenblackspruceandopenmixedconifer-deciduousforest.Theareaaroundtheproposedconstructioncamp,village,andairstripsites(Fig.J-2)iscoveredbylow-shrubtypes.Theborrowsites(Figs.2-2and2-6)wouldbelocatedinareascoveredpredominantlybyvariousforesttypesandshrubland,primarilylow-shrubtypes.BorrowsitesA,E,H,andIaremostlyforested;whereassitesDandFaremostlylowshrubland.BorrowsiteAalsoincludesarelativelylargeareaofmatandcushiontundra,andborrowsiteDincludesasmallareaofwetsedge-grasstundra.AlmostalloftheareaoccupiedbytheproposedDevilCanyondamsiteandimpoundment(Fig.J-2)isforested,andalmost50%oftheforestsaremixedconifer-deciduoustypes.Othersignificantforesttypesfoundintheareaincludeclosedbirch,openandwoodlandblackspruce,andopenwhitespruce.Thesitesoftheproposedconstructioncampandvillage(Fig.J-2)andover75%ofproposedborrowsiteK(Fig.2-6)wouldbelocatedinclosedmixedconifer-deciduousforest.ProposedborrowsiteG(Fig.2-6)isrelativelysmallandhasstandsofwoodlandandopenblackspruce,closedmixedconifer-deciduousforest,andopentallshrub.Theproposedaccessroutes(Fig.2-11)becauseoftheirlengthsandvariedelevations,wouldcrossavarietyofvegetationtypes.TheproposedDenaliHighway-to-Watanaaccessroutewouldcrossmostlylowshrubland,aswellassmallerareasofmatandcushiontundraandbothmesicandwetsedge-grasstundratypes.Thetundratypesgenerallyoccuratthehighere1evations.TheproposedWatana-to-DevilCanyonaccessroutewouldtraversemostlyshrublands(bothlowshrubandtallshrub)andvarioustundratypes,butitalsowouldcrossforestedareas(mostlymixedconifer-deciduousandwoodlandandopenwhitespruce)nearTsusenaCreekandtheSusitnaRiver.FromDevilCanyontoGoldCreek,closedmixedconifer-deciduousforestisthepredominantvegetationtypethatwouldbecrossedbytheproposedrailaccess.TheproposedDams-to-GoldCreekpowertransmissioncorridor(Fig.2-7)wouldfollowaroutesimilartothatofthepro-posedWatana/DevilCanyon/GoldCreekaccessroutesand,thus,wouldcrosssimilarvegetationtypes.Theareascoveredbythevegetationtypesillustratedinthe1:250,000-scalemaps(ExhibitE,Vol.6B,Chap.3,Fig.E.3.38)aregiveninTableJ-7.Thevegetationtypescoveringthelargestareasaremixedlowshrub(29%ofthetotalarea),woodlandspruceforest(12%),andmesicsedge-grasstundra(11%).However,withtherelativelysmallscale(1:250,000)ofthismap,thesmallestpracticalmappableunitis640acres(260ha).Thus,thelevelofdetailassociatedwithFigureE.3.38inExhibitE(Vol.6B,Chap.3)andTableJ-7isquitelow.Thelargerscale(1:63,360)maps(Fig.J-2)providegl'eaterresolution[smallestpracticalmappableunitis40acres(16ha)],buttheycoverasmallerareathatislimitedto10mi(16km)oneithersideoftheSusitnaRiverbetweenGoldCreekandtheTyoneRiver.TheareascoveredbyvegetationtypesshownonthelargerscalemapsarelistedinTableJ-8.Shrublandandtundraformationscoversimilarpercentagesofthe20-mi(16-km)wideareaastheydointheentireupperandmiddleSusitnaBasin(TableJ-7),butthepercentageofforestedareasalongtheriverisgreaterbecausetheslopesalongtherivermakeupalargerportionofthetotalareainthe1:63,360maps.Becauseoftheirgreaterdetail,the1:63,360-scalemapswereusedtocalculateareasofvariousvegetationtypesthatwouldbeimpactedbytheproposedproject(Sec.J.2.1).EachofthevegetationtypesidentifiedinTableJ-8wassampledanddescribedbyMcKendricketal.(1982).PlantcoverbyspecieswithinverticalstratificationlayersforeachvegetationtypeispresentedinExhibitE(Vol.6B,Chap.3,TablesE.3.53-E.3.63andE.3.65-E.3.69).CriteriausedtoassignindividualplantstoverticallayersaresummarizedinTableJ-9.Briefdescriptions(adaptedfromMcKendricketal.,1982)ofeachvegetationtypefollow.J.1.2~1.1ForestsTheoccurrencesofvariousforesttypesintheupperandmiddleSusitnaBasinoftencanberelatedtosuchfactorsaselevation,slope,aspect,drainage,andfirehistory.Inthetaigaecosystems(moistsubarcticforests)ofInteriorAlaska,thesefactorsapparentlyinfluenceecosystemstructureandfunctionthrougheffectsonairandsoiltemperatures,soilmoisture,andthepresenceofpermafrost(VanCleveandViereck,1981;VanCleveetal.,1983).Ingeneral,blackspruceforestsaremostcommonthroughoutthetaiga,andtheyareusuallyfoundonpoorlydrainedsites,includingthoseunderlainbypermafrostandthoseonnorth-facingslopes.Conversely,uplandwhitespruceforestsusuallyoccuronwarmer,well-drainedsites.Deciduousforestsofpaperbirch,tremblingaspen,ormixedbirch-aspenandmixeddeciduous-whitespruceforestsareconsideredsuccessiona1stages1eadingtowhitespruce.Bottomlandspruceandbalsampoplarforestsoccuralongrivers,andthesuccessionalstagesleadingtotheseforesttypes,includingshrubsandbalsampoplarstands,arediscussedinSectionJ.1.2.2.J-25Theproposedsitesofthedams,impoundments,andrelatedprojectfacilitieswouldbelocatedmostlyinforestedareas(Fig.J-2).InthevicinityoftheproposedWatanadamsiteandimpoundment(Fig.J-2),morethan75%ofthevegetatedareaisforested,andmostoftheremain-ingareaisshrubland(bothlow-shrubandtall-shrubtypes).Thepredominantforesttypesarewoodlandandopenblackspruceandopenmixedconifer-deciduousforest.Theareaaroundtheproposedconstructioncamp,village,andairstripsites(Fig.J-2)iscoveredbylow-shrubtypes.Theborrowsites(Figs.2-2and2-6)wouldbelocatedinareascoveredpredominantlybyvariousforesttypesandshrubland,primarilylow-shrubtypes.BorrowsitesA,E,H,andIaremostlyforested;whereassitesDandFaremostlylowshrubland.BorrowsiteAalsoincludesarelativelylargeareaofmatandcushiontundra,andborrowsiteDincludesasmallareaofwetsedge-grasstundra.AlmostalloftheareaoccupiedbytheproposedDevilCanyondamsiteandimpoundment(Fig.J-2)isforested,andalmost50%oftheforestsaremixedconifer-deciduoustypes.Othersignificantforesttypesfoundintheareaincludeclosedbirch,openandwoodlandblackspruce,andopenwhitespruce.Thesitesoftheproposedconstructioncampandvillage(Fig.J-2)andover75%ofproposedborrowsiteK(Fig.2-6)wouldbelocatedinclosedmixedconifer-deciduousforest.ProposedborrowsiteG(Fig.2-6)isrelativelysmallandhasstandsofwoodlandandopenblackspruce,closedmixedconifer-deciduousforest,andopentallshrub.Theproposedaccessroutes(Fig.2-11)becauseoftheirlengthsandvariedelevations,wouldcrossavarietyofvegetationtypes.TheproposedDenaliHighway-to-Watanaaccessroutewouldcrossmostlylowshrubland,aswellassmallerareasofmatandcushiontundraandbothmesicandwetsedge-grasstundratypes.Thetundratypesgenerallyoccuratthehighere1evations.TheproposedWatana-to-DevilCanyonaccessroutewouldtraversemostlyshrublands(bothlowshrubandtallshrub)andvarioustundratypes,butitalsowouldcrossforestedareas(mostlymixedconifer-deciduousandwoodlandandopenwhitespruce)nearTsusenaCreekandtheSusitnaRiver.FromDevilCanyontoGoldCreek,closedmixedconifer-deciduousforestisthepredominantvegetationtypethatwouldbecrossedbytheproposedrailaccess.TheproposedDams-to-GoldCreekpowertransmissioncorridor(Fig.2-7)wouldfollowaroutesimilartothatofthepro-posedWatana/DevilCanyon/GoldCreekaccessroutesand,thus,wouldcrosssimilarvegetationtypes.Theareascoveredbythevegetationtypesillustratedinthe1:250,000-scalemaps(ExhibitE,Vol.6B,Chap.3,Fig.E.3.38)aregiveninTableJ-7.Thevegetationtypescoveringthelargestareasaremixedlowshrub(29%ofthetotalarea),woodlandspruceforest(12%),andmesicsedge-grasstundra(11%).However,withtherelativelysmallscale(1:250,000)ofthismap,thesmallestpracticalmappableunitis640acres(260ha).Thus,thelevelofdetailassociatedwithFigureE.3.38inExhibitE(Vol.6B,Chap.3)andTableJ-7isquitelow.Thelargerscale(1:63,360)maps(Fig.J-2)providegl'eaterresolution[smallestpracticalmappableunitis40acres(16ha)],buttheycoverasmallerareathatislimitedto10mi(16km)oneithersideoftheSusitnaRiverbetweenGoldCreekandtheTyoneRiver.TheareascoveredbyvegetationtypesshownonthelargerscalemapsarelistedinTableJ-8.Shrublandandtundraformationscoversimilarpercentagesofthe20-mi(16-km)wideareaastheydointheentireupperandmiddleSusitnaBasin(TableJ-7),butthepercentageofforestedareasalongtheriverisgreaterbecausetheslopesalongtherivermakeupalargerportionofthetotalareainthe1:63,360maps.Becauseoftheirgreaterdetail,the1:63,360-scalemapswereusedtocalculateareasofvariousvegetationtypesthatwouldbeimpactedbytheproposedproject(Sec.J.2.1).EachofthevegetationtypesidentifiedinTableJ-8wassampledanddescribedbyMcKendricketal.(1982).PlantcoverbyspecieswithinverticalstratificationlayersforeachvegetationtypeispresentedinExhibitE(Vol.6B,Chap.3,TablesE.3.53-E.3.63andE.3.65-E.3.69).CriteriausedtoassignindividualplantstoverticallayersaresummarizedinTableJ-9.Briefdescriptions(adaptedfromMcKendricketal.,1982)ofeachvegetationtypefollow.J.1.2~1.1ForestsTheoccurrencesofvariousforesttypesintheupperandmiddleSusitnaBasinoftencanberelatedtosuchfactorsaselevation,slope,aspect,drainage,andfirehistory.Inthetaigaecosystems(moistsubarcticforests)ofInteriorAlaska,thesefactorsapparentlyinfluenceecosystemstructureandfunctionthrougheffectsonairandsoiltemperatures,soilmoisture,andthepresenceofpermafrost(VanCleveandViereck,1981;VanCleveetal.,1983).Ingeneral,blackspruceforestsaremostcommonthroughoutthetaiga,andtheyareusuallyfoundonpoorlydrainedsites,includingthoseunderlainbypermafrostandthoseonnorth-facingslopes.Conversely,uplandwhitespruceforestsusuallyoccuronwarmer,well-drainedsites.Deciduousforestsofpaperbirch,tremblingaspen,ormixedbirch-aspenandmixeddeciduous-whitespruceforestsareconsideredsuccessiona1stages1eadingtowhitespruce.Bottomlandspruceandbalsampoplarforestsoccuralongrivers,andthesuccessionalstagesleadingtotheseforesttypes,includingshrubsandbalsampoplarstands,arediscussedinSectionJ.1.2.2.
J-26TableJ-7.AcreageandPercentageofTotalAreaCoveredbyVegetationTypesintheUpperandMiddleSusitnaBasint1VegetationTypeTotalvegetationForestConiferWoodlandspruceOpenspruceClosedspruceDeciduousOpenbirchClosedbirchMixedconifer-deciduousOpenClosedTundraIoletsedge-grassMesicsedge-grassMatandcushionMatandcushion/sedge-grassAlpineherbaceousShrublandTallshrubLowshrubBirchWi11owMixedUnvegetatedWaterLakesRiversRockSnowandiceTotalareaAcrest23,429,000860,000760,000466,000294,0001,0003,0002,0001,00097,00058,00039,000975,00012,000456,000161,000345,0002,0001,593,000319,0001,274,00083,00026,0001,165,000601,00098,00062,00036,000281,000222,0004,030,000PercentageofTotalAreat285.121.318.911.67.30.020.070.050.022.41.41.024.20.311.34.08.60.0539.57.931.62.10.628.914.92.41.50.97.05.5100t1Basedonmapsproducedatascaleof1:250,000.DifferencesinresolutionasaresultofdifferencesinscalemayresultinsomediscrepanciesforcommonareasbetweenthesevaluesandthosepresentedinTableJ-8.t2Acreagesandpercentagesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromExhibitE,Vol.6B,Chap.3,TableE.3.51,byconversiontothenearest1000acresfromhectares(originallybasedonMcKendricketal.,1982).J-26TableJ-7.AcreageandPercentageofTotalAreaCoveredbyVegetationTypesintheUpperandMiddleSusitnaBasint1VegetationTypeTotalvegetationForestConiferWoodlandspruceOpenspruceClosedspruceDeciduousOpenbirchClosedbirchMixedconifer-deciduousOpenClosedTundraIoletsedge-grassMesicsedge-grassMatandcushionMatandcushion/sedge-grassAlpineherbaceousShrublandTallshrubLowshrubBirchWi11owMixedUnvegetatedWaterLakesRiversRockSnowandiceTotalareaAcrest23,429,000860,000760,000466,000294,0001,0003,0002,0001,00097,00058,00039,000975,00012,000456,000161,000345,0002,0001,593,000319,0001,274,00083,00026,0001,165,000601,00098,00062,00036,000281,000222,0004,030,000PercentageofTotalAreat285.121.318.911.67.30.020.070.050.022.41.41.024.20.311.34.08.60.0539.57.931.62.10.628.914.92.41.50.97.05.5100t1Basedonmapsproducedatascaleof1:250,000.DifferencesinresolutionasaresultofdifferencesinscalemayresultinsomediscrepanciesforcommonareasbetweenthesevaluesandthosepresentedinTableJ-8.t2Acreagesandpercentagesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromExhibitE,Vol.6B,Chap.3,TableE.3.51,byconversiontothenearest1000acresfromhectares(originallybasedonMcKendricketal.,1982).
J-27TableJ-8.AcreageandPercentageofTotalAreaCoveredbyVegetationTypesfortheAreaTenMiles(16km)onEitherSideoftheSusitnaRiverfromGoldCreektotheTyoneRivert1VegetationTypeForestConiferWoodlandspruce-blackWoodlandspruce-whiteOpenspruce-blackOpenspruce-whiteDeciduousOpenbirchClosedbirchClosedbalsampoplarMixedconifer-deciduousOpenClosedTundraWetsedge-grassMesicsedge-grassMatandcushionSedge/shrubShrublandTallshrubOpenClosedLowshrubBirchWi11owMixedHerbaceousGrasslandDisturbedUnvegetatedWaterRiversLakesRockSnowandiceTotalAreaAcresF352,000284,000156,00033,00070,00026,00011,0004,0006,0001,00056,00024,00033,000283,0009,00068,000157,00050,000438,00077,00038,00039,000361,000106,00020,000234,000<1003,000<10067,00025,00010,00015,00041,0001,0001,143,000PercentageofTotalAreat230.824.813.62.96.12.31.00.30.50.14.92.12.924.80.85.913.74.438.36.73.33.431.69.31.720.5<0.10.3<0.15.92.20.91.33.60.1100t1Basedonmapsproducedatascaleof1:63,360.Dif-ferencesinresolutionasaresultofdifferencesinmapscalemayresultinsomediscrepanciesforcommonareasbetweenthesevaluesandthosepresentedinTableJ-7.t2Acreagesandpercentagesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromExhibitE,Vol.6B,Chap.3,TableE.3.52,byconversiontothenearest1000acresfromhectares(originallybasedonMcKendricketal.,1982).J-27TableJ-8.AcreageandPercentageofTotalAreaCoveredbyVegetationTypesfortheAreaTenMiles(16km)onEitherSideoftheSusitnaRiverfromGoldCreektotheTyoneRivert1VegetationTypeForestConiferWoodlandspruce-blackWoodlandspruce-whiteOpenspruce-blackOpenspruce-whiteDeciduousOpenbirchClosedbirchClosedbalsampoplarMixedconifer-deciduousOpenClosedTundraWetsedge-grassMesicsedge-grassMatandcushionSedge/shrubShrublandTallshrubOpenClosedLowshrubBirchWi11owMixedHerbaceousGrasslandDisturbedUnvegetatedWaterRiversLakesRockSnowandiceTotalAreaAcresF352,000284,000156,00033,00070,00026,00011,0004,0006,0001,00056,00024,00033,000283,0009,00068,000157,00050,000438,00077,00038,00039,000361,000106,00020,000234,000<1003,000<10067,00025,00010,00015,00041,0001,0001,143,000PercentageofTotalAreat230.824.813.62.96.12.31.00.30.50.14.92.12.924.80.85.913.74.438.36.73.33.431.69.31.720.5<0.10.3<0.15.92.20.91.33.60.1100t1Basedonmapsproducedatascaleof1:63,360.Dif-ferencesinresolutionasaresultofdifferencesinmapscalemayresultinsomediscrepanciesforcommonareasbetweenthesevaluesandthosepresentedinTableJ-7.t2Acreagesandpercentagesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromExhibitE,Vol.6B,Chap.3,TableE.3.52,byconversiontothenearest1000acresfromhectares(originallybasedonMcKendricketal.,1982).
J-28TableJ-9.CriteriaforAssignmentofIndividualPlantstoVerticalLayersinthePlantCommunityforPurposesofStratifiedCanopyCoverMeasurementsVerticalLayerCriteriaGroundlayerAllherbaceousandwoodyspecies<1.6fttallShrublayerWoodyspecies>1.6fttalland<1indbht1UnderstoryWoodyspecies>1indbhand<4indbhOverstoryWoodyspecies>4indbht1dbh=diameteratbreastheight.Conversions:Toconvertfeettometers,multiplyby0.305.Toconvertinchestocentimeters,multiplyby2.54.Source:BasedonMcKendricketal.(1982).Intheuplandareasofthetaiga,firerecursinsomeforesttypesasoftenasevery30to100years(Yarie,1981).Itisacommonphenomenonandamajorfactoraffectingthedistri-butionofuplandvegetationtypes;anaverageoffrom0.6%to1%oftheforested1andinInteriorAlaskahasburnedannuallysincerecordshavebeenkept,startingin1940(VanCleveetal.,1983).Duetotherecurrentfires,matureforeststandsmorethan200yearsoldarerare,exceptperhapsinthefloodplains.Thefiresareoftenpatchy,resultinginamixtureofvarious-agedvegetationstandsthataresuperimposedovervariationsinslopeandaspect,thuscreatingamosaicofvegetationtypes(VanCleveetal.,1983).Thespeedanddirectionofrevegetationfollowingafireisrelativelycomplexanddependsonsuchfactorsas:preburnvegetationtypeandage,soiltypeandmoisturecontent,weatherconditions,climate,timeoftheburn,andfireseverity(depthoforganiclayerremoved).Thedepthofburnisveryimpor-tantbecausemanyspecies(includingpaperbirch,tremblingaspen,pricklyrose,Labradortea,blueberry,cranberry,andbluejoint)regeneratefromundergroundpartslocatedprimarilyintheorganiclayer,andmaybekilledifthatlayerisburnedverydeeply.However,exposedmineralsoilsprovidethebestlocationsforseedgerminationofspecies--suchasblackspruce,willow,andfireweed--thatareadaptedtoreinvasionofburnedareasbyseed.HorsetailsandspeciesofthemossPolytrichumhaverhizomesandrhizoidsthatgrowintothemineralsoil,allowingtheseplantstoregeneratebyvegetativemeansfollowingallbutthemostseverefires(ViereckandSchandelmeier,1980;Viereck,1983).EventhoughthereispotentiallygreatvariabilityinthesequencesofrevegetationfollowingfireintheforestsandshrublandsofInteriorAlaska,twogeneralsequencesthatarepertinenttotheproposedprojectareahavebeendescribed(ViereckandSchandelmeier,1980;VanCleveandViereck,1981).Oneoccursonrelativelycold,wet,poorlydrained,permafrostsitesdominatedbyblackspruce.Theothersequenceoccursonmoreproductive,mesicsitesinwhichshrubandhardwoodstagesoftenleadtomaturewhitesprucestands.Followingfireonrelativelycold,poorlydrainedsites,theinitialvegetationstageconsistsofherbsandtreeandshrubseedlingsandisfollowedbyastageinwhichshrubs,suchaswilloworalder,dominate.About25to50yearsafterthefire,blacksprucesap1ingsbegintodominate,andthematureblackspruce-mosscommunitytypedevelopsafter100to200years,iffiredoesnotrecur.Intheearlyyearsfollowingafire,thereducedthicknessofthesoilorganiclayerandchangesinsurfacealbedoresultinwarmersoiltemperaturesanddeepeningoftheactivelayer(annualthawdepth)ofpermafrostareas.Thesechanges,alongwithincreasednutrientavailability(exceptincasesofsignificanterosion),areprobablythemajorfactorscausingobservedincreasesintheproductivityofblackspruceareasfollowingafire.However,astheinsulatingorganiclayeraccumulatesovertheyearsduringsuccession,theactivelayerbecomesshallower,nutrientavailabilityisreduced,andproductivityislowered(VanCleveandViereck,1981;VanCleveetal.1983).Onwarmer,driersites,theinitialherbandseedlingstageandthesubsequentshrubstagearefollowed25to50yearsafterthefirebyadensehardwoodstagethatisdominatedbypaperbirchandtremb1ingaspen.Asthehardwoodsmature,whitesprucedevelops.Iffiredoesnotrecur,themixedwhitespruce-hardwoodstageoccursafter100to200years,andeventuallythehardwoodsdieout,leavingthematurewhitespruce-mosscommunitytype.Permafrostisusuallynotpresentonsuchsites.Comparedwithblacksprucesuccessionaltypes,decompositionratesarehigher,theorganiclayeraccumulatesmuchmoreslowly,andproductivityisgenerallyhigher(VanCleveandViereck,1981;VanCleveeta1.1983).Successiona1changesinvegetationandcorrespondingchangesinthethicknessesoftheorganiclayerandactivelayerforblackandwhitesprucetypesareillustratedinFigureJ-3.J-28TableJ-9.CriteriaforAssignmentofIndividualPlantstoVerticalLayersinthePlantCommunityforPurposesofStratifiedCanopyCoverMeasurementsVerticalLayerCriteriaGroundlayerAllherbaceousandwoodyspecies<1.6fttallShrublayerWoodyspecies>1.6fttalland<1indbht1UnderstoryWoodyspecies>1indbhand<4indbhOverstoryWoodyspecies>4indbht1dbh=diameteratbreastheight.Conversions:Toconvertfeettometers,multiplyby0.305.Toconvertinchestocentimeters,multiplyby2.54.Source:BasedonMcKendricketal.(1982).Intheuplandareasofthetaiga,firerecursinsomeforesttypesasoftenasevery30to100years(Yarie,1981).Itisacommonphenomenonandamajorfactoraffectingthedistri-butionofuplandvegetationtypes;anaverageoffrom0.6%to1%oftheforested1andinInteriorAlaskahasburnedannuallysincerecordshavebeenkept,startingin1940(VanCleveetal.,1983).Duetotherecurrentfires,matureforeststandsmorethan200yearsoldarerare,exceptperhapsinthefloodplains.Thefiresareoftenpatchy,resultinginamixtureofvarious-agedvegetationstandsthataresuperimposedovervariationsinslopeandaspect,thuscreatingamosaicofvegetationtypes(VanCleveetal.,1983).Thespeedanddirectionofrevegetationfollowingafireisrelativelycomplexanddependsonsuchfactorsas:preburnvegetationtypeandage,soiltypeandmoisturecontent,weatherconditions,climate,timeoftheburn,andfireseverity(depthoforganiclayerremoved).Thedepthofburnisveryimpor-tantbecausemanyspecies(includingpaperbirch,tremblingaspen,pricklyrose,Labradortea,blueberry,cranberry,andbluejoint)regeneratefromundergroundpartslocatedprimarilyintheorganiclayer,andmaybekilledifthatlayerisburnedverydeeply.However,exposedmineralsoilsprovidethebestlocationsforseedgerminationofspecies--suchasblackspruce,willow,andfireweed--thatareadaptedtoreinvasionofburnedareasbyseed.HorsetailsandspeciesofthemossPolytrichumhaverhizomesandrhizoidsthatgrowintothemineralsoil,allowingtheseplantstoregeneratebyvegetativemeansfollowingallbutthemostseverefires(ViereckandSchandelmeier,1980;Viereck,1983).EventhoughthereispotentiallygreatvariabilityinthesequencesofrevegetationfollowingfireintheforestsandshrublandsofInteriorAlaska,twogeneralsequencesthatarepertinenttotheproposedprojectareahavebeendescribed(ViereckandSchandelmeier,1980;VanCleveandViereck,1981).Oneoccursonrelativelycold,wet,poorlydrained,permafrostsitesdominatedbyblackspruce.Theothersequenceoccursonmoreproductive,mesicsitesinwhichshrubandhardwoodstagesoftenleadtomaturewhitesprucestands.Followingfireonrelativelycold,poorlydrainedsites,theinitialvegetationstageconsistsofherbsandtreeandshrubseedlingsandisfollowedbyastageinwhichshrubs,suchaswilloworalder,dominate.About25to50yearsafterthefire,blacksprucesap1ingsbegintodominate,andthematureblackspruce-mosscommunitytypedevelopsafter100to200years,iffiredoesnotrecur.Intheearlyyearsfollowingafire,thereducedthicknessofthesoilorganiclayerandchangesinsurfacealbedoresultinwarmersoiltemperaturesanddeepeningoftheactivelayer(annualthawdepth)ofpermafrostareas.Thesechanges,alongwithincreasednutrientavailability(exceptincasesofsignificanterosion),areprobablythemajorfactorscausingobservedincreasesintheproductivityofblackspruceareasfollowingafire.However,astheinsulatingorganiclayeraccumulatesovertheyearsduringsuccession,theactivelayerbecomesshallower,nutrientavailabilityisreduced,andproductivityislowered(VanCleveandViereck,1981;VanCleveetal.1983).Onwarmer,driersites,theinitialherbandseedlingstageandthesubsequentshrubstagearefollowed25to50yearsafterthefirebyadensehardwoodstagethatisdominatedbypaperbirchandtremb1ingaspen.Asthehardwoodsmature,whitesprucedevelops.Iffiredoesnotrecur,themixedwhitespruce-hardwoodstageoccursafter100to200years,andeventuallythehardwoodsdieout,leavingthematurewhitespruce-mosscommunitytype.Permafrostisusuallynotpresentonsuchsites.Comparedwithblacksprucesuccessionaltypes,decompositionratesarehigher,theorganiclayeraccumulatesmuchmoreslowly,andproductivityisgenerallyhigher(VanCleveandViereck,1981;VanCleveeta1.1983).Successiona1changesinvegetationandcorrespondingchangesinthethicknessesoftheorganiclayerandactivelayerforblackandwhitesprucetypesareillustratedinFigureJ-3.
J-29100-200200-250+26-50Age(yr)6-252-50-1Cl>Cl>coCl>a-0COE;;,..Ea-If)0Vl"0en'"Cl>Cl>'"CCl>..0~COCO..::e0E0CD::e"-If)If)Cl>>.J:J"-u"iCl>Cl>::>::>uCl>.cu::>0.z::>0.If)If)0.If)If).>C.>C.>CUU0U00CDCDCDe:'l!:'ii:::>0::e"let/Iff'l..°Yf'r·Permafrost-rJ--0-12-56-2526-5051-100100-200Agetyr)IIIIIIVVIVVII..'"Icoco'"EEuIf)CIl::>..0.co'0CIlE0CIl02!'"J;co'";:'0E'00co(;;r:'"CIlE-o'"VlCIJ;2co'"'0C'00'"0Vlo'":.Q.0<1I'"0J;'00'"'=Vl:;;'"i:i"PC0'"o0;;,'"'"IJ:.'".=CIl'"v'0'"I'"~l!:''"C'"LlCCDIi::.,::::>"'-1:0CDILlIf),..Q;"iI'"ZFigureJ-3.UplandSuccessionalSequenceFollowingFirein(Top)BlackSpruceand(Bottom)WhiteSpruce.[Source:VanCleveandViereck,1981:Figs.3.2and3.3.Copyrighted1981Springer-VerlagNewYork.Usedwithpermissionofthepublisher.]J-29100-200200-250+26-50Age(yr)6-252-50-1Cl>Cl>coCl>a-0COE;;,..Ea-If)0Vl"0en'"Cl>Cl>'"CCl>..0~COCO..::e0E0CD::e"-If)If)Cl>>.J:J"-u"iCl>Cl>::>::>uCl>.cu::>0.z::>0.If)If)0.If)If).>C.>C.>CUU0U00CDCDCDe:'l!:'ii:::>0::e"let/Iff'l..°Yf'r·Permafrost-rJ--0-12-56-2526-5051-100100-200Agetyr)IIIIIIVVIVVII..'"Icoco'"EEuIf)CIl::>..0.co'0CIlE0CIl02!'"J;co'";:'0E'00co(;;r:'"CIlE-o'"VlCIJ;2co'"'0C'00'"0Vlo'":.Q.0<1I'"0J;'00'"'=Vl:;;'"i:i"PC0'"o0;;,'"'"IJ:.'".=CIl'"v'0'"I'"~l!:''"C'"LlCCDIi::.,::::>"'-1:0CDILlIf),..Q;"iI'"ZFigureJ-3.UplandSuccessionalSequenceFollowingFirein(Top)BlackSpruceand(Bottom)WhiteSpruce.[Source:VanCleveandViereck,1981:Figs.3.2and3.3.Copyrighted1981Springer-VerlagNewYork.Usedwithpermissionofthepublisher.]
J-30Incontrast,successioninthefloodplainiscontrolledprimarilybyriveractionsincetheseareasarerelativelyprotectedfromfireexceptontheolderterraces(VanCleveandViereck,1981).AtypicalfloodplainsuccessionalsequenceisdescribedinSectionJ.1.2.2.CONIFEROUSFORESTSTheconiferousforestsintheupperandmiddleSusitnaBasinaredominatedeitherbyblackorwhitespruce.Althoughoneclosedconiferarea(locatedintheLakeLouisearea)wasmappedbyMcKendricketal.(1982),onlyopenandwoodlandsprucetypeswereactuallysampled.Theattri-butesofopenblackandwhitespruceforesttypesarecomparedinTableJ-10.IntheupperandmiddleSusitnaBasin,foresttypesoccuratthelowerelevationsandcover21%ofthetotalareaand31%ofthe20-mi(32-km)wideareaalongtheSusitnaRiver.ThemeanelevationofforeststandssampledbyMcKendricketal.(1982)was1,716ft(523m)MSL,andtheelevationalrangewas1,100to2,600ft(340to790m)MSL.McKendricketal.(1982)reportedthatingeneralfortheupperandmiddleSusitnaBasin,blacksprucedidoccuronwettersitesthanwhitespruce,whereasdeciduousormixedforestsoccurredonthewarmersites.Closedforestswerealsofoundonwarmersites.Furthermore,inareasofclosedforest,driersitesusuallysupporteddeciduousstands,whereasmoistersiteshadmixedforestsorweredominatedbyspruce.WhiteSpruceLargerOccurrenceofdominantmostlyinoverstoryUpto6634-7877-171SmallerOccurrenceofdominantrelativelyequalinalllayers,highestinshrublayer16to36BlackSpruceTableJ-10.ComparisonofCharacteristicsofBlackSpruceForestsandWhiteSpruceForestsMaximumheight(ft)AttributeAgeofsampledsprucetrees(yrs)CanopyareaofsprucetreesVerticalstratificationConversion:Toconvertfeettometers,multiplyby0.305.Source:BasedonMcKendricketal.(1982).Bothopenblackandwhitesprucestandspossessawell-developedgroundlayerthataccountsformostofthevegetationcover.Openblacksprucestandscontainlowshrubs--includingcrowberry,northernLabradortea,bogblueberry,andmountaincranberry--inthegroundlayerandsomewhitespruceintheunderstoryandoverstory.Inopenwhitesprucestands,SitkaalderandAmericangreenalder.arepresentintheunderstoryandshrub1ayers.Theground1ayerisdominatedbymoreherbaceousspecies,includingbluejointandtwinflower,thaninblacksprucestands.Lowshrubsoccurringinthegroundlayerarealsodifferentfromthosefoundintheblacksprucestands;theyincludepricklyroseandresinbirch.Mosses,especiallyfeathermosses,areprevalent(~30%cover)inbothblackandwhitesprucestands.Opensprucestands,locatedprimarilyonriverineslopesandterraces,coverabout7%ofthetotalupperandmiddleSusitnaBasin.ThemeanelevationoftheopensprucestandssampledbyMcKendricketal.(1982)was1,600ft(488m)MSL,witharangeof1,100to1,950ft(340to590m).WoodlandsprucestandswereusuallyfoundonrelativelylevelbencheswithpoorlydrainedsoilsatameanelevationforthestandssampledbyMcKendricketal.(1982)of2,046ft(624m)MSL.Theelevationalrangeofthesampledwoodlandsprucestandswas1,600to2,600ft(490to790m)MSL.WoodlandspruceisthemostwidespreadforesttypeintheupperandmiddleSusitnaBasin,cover-ingabout12%ofthetotalarea.AllwoodlandsprucestandssampledbyMcKendricketal.(1982)wereblackspruce.Woodlandsprucestandsarecomposedofscattered,stuntedtreesthatareoftentoosmalltoqualifyfortheoverstorylayerbecausetrunksarelessthan4in(10cm)diameteratbreastheight(dbh).Insomeareas,maximumheightsarelessthan7ft(2m).Inwoodlandspruce,sphagnummossesreplacefeathermossesasthedominantground-layerspecies.Otherground-layerspeciesaresimilartothoseinopenblacksprucestandsexceptfortheJ-30Incontrast,successioninthefloodplainiscontrolledprimarilybyriveractionsincetheseareasarerelativelyprotectedfromfireexceptontheolderterraces(VanCleveandViereck,1981).AtypicalfloodplainsuccessionalsequenceisdescribedinSectionJ.1.2.2.CONIFEROUSFORESTSTheconiferousforestsintheupperandmiddleSusitnaBasinaredominatedeitherbyblackorwhitespruce.Althoughoneclosedconiferarea(locatedintheLakeLouisearea)wasmappedbyMcKendricketal.(1982),onlyopenandwoodlandsprucetypeswereactuallysampled.Theattri-butesofopenblackandwhitespruceforesttypesarecomparedinTableJ-10.IntheupperandmiddleSusitnaBasin,foresttypesoccuratthelowerelevationsandcover21%ofthetotalareaand31%ofthe20-mi(32-km)wideareaalongtheSusitnaRiver.ThemeanelevationofforeststandssampledbyMcKendricketal.(1982)was1,716ft(523m)MSL,andtheelevationalrangewas1,100to2,600ft(340to790m)MSL.McKendricketal.(1982)reportedthatingeneralfortheupperandmiddleSusitnaBasin,blacksprucedidoccuronwettersitesthanwhitespruce,whereasdeciduousormixedforestsoccurredonthewarmersites.Closedforestswerealsofoundonwarmersites.Furthermore,inareasofclosedforest,driersitesusuallysupporteddeciduousstands,whereasmoistersiteshadmixedforestsorweredominatedbyspruce.WhiteSpruceLargerOccurrenceofdominantmostlyinoverstoryUpto6634-7877-171SmallerOccurrenceofdominantrelativelyequalinalllayers,highestinshrublayer16to36BlackSpruceTableJ-10.ComparisonofCharacteristicsofBlackSpruceForestsandWhiteSpruceForestsMaximumheight(ft)AttributeAgeofsampledsprucetrees(yrs)CanopyareaofsprucetreesVerticalstratificationConversion:Toconvertfeettometers,multiplyby0.305.Source:BasedonMcKendricketal.(1982).Bothopenblackandwhitesprucestandspossessawell-developedgroundlayerthataccountsformostofthevegetationcover.Openblacksprucestandscontainlowshrubs--includingcrowberry,northernLabradortea,bogblueberry,andmountaincranberry--inthegroundlayerandsomewhitespruceintheunderstoryandoverstory.Inopenwhitesprucestands,SitkaalderandAmericangreenalder.arepresentintheunderstoryandshrub1ayers.Theground1ayerisdominatedbymoreherbaceousspecies,includingbluejointandtwinflower,thaninblacksprucestands.Lowshrubsoccurringinthegroundlayerarealsodifferentfromthosefoundintheblacksprucestands;theyincludepricklyroseandresinbirch.Mosses,especiallyfeathermosses,areprevalent(~30%cover)inbothblackandwhitesprucestands.Opensprucestands,locatedprimarilyonriverineslopesandterraces,coverabout7%ofthetotalupperandmiddleSusitnaBasin.ThemeanelevationoftheopensprucestandssampledbyMcKendricketal.(1982)was1,600ft(488m)MSL,witharangeof1,100to1,950ft(340to590m).WoodlandsprucestandswereusuallyfoundonrelativelylevelbencheswithpoorlydrainedsoilsatameanelevationforthestandssampledbyMcKendricketal.(1982)of2,046ft(624m)MSL.Theelevationalrangeofthesampledwoodlandsprucestandswas1,600to2,600ft(490to790m)MSL.WoodlandspruceisthemostwidespreadforesttypeintheupperandmiddleSusitnaBasin,cover-ingabout12%ofthetotalarea.AllwoodlandsprucestandssampledbyMcKendricketal.(1982)wereblackspruce.Woodlandsprucestandsarecomposedofscattered,stuntedtreesthatareoftentoosmalltoqualifyfortheoverstorylayerbecausetrunksarelessthan4in(10cm)diameteratbreastheight(dbh).Insomeareas,maximumheightsarelessthan7ft(2m).Inwoodlandspruce,sphagnummossesreplacefeathermossesasthedominantground-layerspecies.Otherground-layerspeciesaresimilartothoseinopenblacksprucestandsexceptforthe
J-31additionofvarioussedgespecies.Woodlandspruceareasoftengradeintoboggyareasoraredifficulttodistinguishfromlowbirchshrubtypes(McKendricketal.,1982).DECIDUOUSFORESTSDeciduousforestsarerestrictedalmostentirelytothesteepbanksandfloodplainalongtheriver.Theycoverlessthan0.1%oftheentireupperandmiddleSusitnaBasinandonly1%ofthe20-mi(32-km)wideareaalongtheSusitnaRiver.AverageelevationofstandssampledbyMcKendricketal.(1982)was1,910ft(583m)MSL[range=1,400to2,100ft(430to640m)MSL],withclosedstandsoccurringatgenerallylowerelevationsthanopenstands.Theforestcanopyofeachstandisgenerallydominatedbyonlyoneofthreespecies:paperbirch,tremblingaspen,orbalsampoplar.Vegetationcoverisnearlycomplete,withawell-developedgroundlayer.Openstandstendtohavemorewoodycoverinthegroundlayer,whereasclosedstandshaveagreatercomponentofherbaceousspecies.Paperbirchstandsoccuronsteep,usuallysouth-facingslopesthatoftenhavebeenrecentlysubjectedtodisturbance.Theseweretheonlydeciduousstandslargeenoughtomapatthe1:250,000scale.Closedbalsampoplarstandsgenerallyarefoundonislandsintheriveroronflatareasinthefloodplain,sincethisspeciesisusuallythefirsttreetobecomeestablishedduringsuccessionaldevelopmentofalluvialdeposits(seeSec.J.1.2.2).Balsampoplarstandswerelargeenoughtomapatthe1:63,360scale.Thetremblingaspenstandswerenotmappableevenatthe1:24,000scale.Thesesmallstandsareinfrequentlyfoundattheupperlevelsofdry,south-facingslopes.VanCleveandViereck(1981)indicatedthataspenstandsareusuallyfoundonwarmeranddriersitesthanarebirch,poplar,orsprucestands.MIXEDCONIFER-DECIDUOUSFORESTSThemixedconifer-deciduousforestsoftheupperandmiddleSusitnaBasinarecommonlydominatedbywhitespruceandhardwoods,primarilypaperbirch.TheyaretypicaloftheInteriorAlaskamixedforesttypedescribedbyVanCleveandViereck(1981).Thisvegetationtypeisbelievedtobeasuccessionalstageinwhichwhitespruceisreplacingdeciduousforest.Thisvegetationtypeaccountsforabout2%ofthetotalareaintheupperandmiddleSusitnaBasinandalmost5%oftheareawithin10mi(16km)oneithersideoftheSusitnaRiver.MostofthelargerstandsarefoundonslopesalongtheriveronthewesternendofthemiddleSusitnaBasin(downstreamofTsusenaCreek).ThemeanelevationofthestandssampledbyMcKendricketal.(1982)was1,530ft(467m)MSL,witharangeof1,200to2,250ft(370to690m)MSL.Closedstandsaregenerallyfoundatlowerelevationsthanopenstands.Overstorycoverisintermediatebetweenthatofconiferanddeciduousforests.Totalcoverisalmostcomplete,withawell-developedgroundlayer.Inopenstandstheshrublayerisalsoimportant.ManyofthestandssampledbyMcKendricketal.(1982)hadtreesmorethan100yearsold.J.1.2.1.2ShrublandsShrublandsarethemostcommonlyoccurringvegetationtypeintheupperandmiddleSusitnaBasin,coveringalmost40%ofthearea.Ingeneral,shrublandsarefoundatmid-elevations,aboveforestcommunitiesbutbelowtundrasystems.However,asaresultoffires,shrubtypesarealsofoundmixedwithforeststands.Twomajortypesarepresent:tallandlowshrub.Ofalltypes,however,mixed(birch-willow)lowshrubisbyfarthemostprevalent.Tallshrubtypesaredominatedbyalder,primarilySitkaalderand,secondarily,Americangreenalder.Thesestandsareoften7to13ft(2to4m)inheight.Closedalderstandshavealmostcompletecover,withthegroundlayerandunderstorycontributingthemostcover.Portionsofsomeclosedstandsareactuallythickets.Openalderstandsaresimilarincompositiontoclosedstands,buthavelesscover.Bluejointandwoodlandhorsetailareimportantground-layerspecies.TallshrubstandsoccurmostlyonsteepslopesabovetheSusitnaR~ver,ofteninnarrowstripsthroughothervegetationtypes.Theyalsooccurinstripsalongtributarydrainagesandinringsaroundmountainsatcertainelevations.MeanelevationofthestandssampledbyMcKendricketal.(1982)was1,880ft(573m)MSL[range=1,600to2,550ft(490to780m)MSL].Lowshrubtypesaredominatedbybirch,willow,oramixturethereof.Birchstandsareusuallydominatedbyresinbirch,butotherlowshrubsareoftenpresent,especiallynorthernLabradorteaandbogblueberry.Somestandsaredenseandthicket-like,whereasinotherstandsindi-vidualshrubsareseparatedbylargeopenings.Somestandscontainscatteredblackspruce,whichmakesthesestandsdifficulttoseparatefromwoodlandsprucetypes.Willowstandsgenerallyoccuronwetterareasthanbirchstandsandaredominatedbydiamondleafwillow.Duetothewetness(oftenincludingstandingwater),willowstandsareusuallylessdiversethanbirchstands.Watersedgeisanimportantherbaceousspeciesinwillowstands.J-31additionofvarioussedgespecies.Woodlandspruceareasoftengradeintoboggyareasoraredifficulttodistinguishfromlowbirchshrubtypes(McKendricketal.,1982).DECIDUOUSFORESTSDeciduousforestsarerestrictedalmostentirelytothesteepbanksandfloodplainalongtheriver.Theycoverlessthan0.1%oftheentireupperandmiddleSusitnaBasinandonly1%ofthe20-mi(32-km)wideareaalongtheSusitnaRiver.AverageelevationofstandssampledbyMcKendricketal.(1982)was1,910ft(583m)MSL[range=1,400to2,100ft(430to640m)MSL],withclosedstandsoccurringatgenerallylowerelevationsthanopenstands.Theforestcanopyofeachstandisgenerallydominatedbyonlyoneofthreespecies:paperbirch,tremblingaspen,orbalsampoplar.Vegetationcoverisnearlycomplete,withawell-developedgroundlayer.Openstandstendtohavemorewoodycoverinthegroundlayer,whereasclosedstandshaveagreatercomponentofherbaceousspecies.Paperbirchstandsoccuronsteep,usuallysouth-facingslopesthatoftenhavebeenrecentlysubjectedtodisturbance.Theseweretheonlydeciduousstandslargeenoughtomapatthe1:250,000scale.Closedbalsampoplarstandsgenerallyarefoundonislandsintheriveroronflatareasinthefloodplain,sincethisspeciesisusuallythefirsttreetobecomeestablishedduringsuccessionaldevelopmentofalluvialdeposits(seeSec.J.1.2.2).Balsampoplarstandswerelargeenoughtomapatthe1:63,360scale.Thetremblingaspenstandswerenotmappableevenatthe1:24,000scale.Thesesmallstandsareinfrequentlyfoundattheupperlevelsofdry,south-facingslopes.VanCleveandViereck(1981)indicatedthataspenstandsareusuallyfoundonwarmeranddriersitesthanarebirch,poplar,orsprucestands.MIXEDCONIFER-DECIDUOUSFORESTSThemixedconifer-deciduousforestsoftheupperandmiddleSusitnaBasinarecommonlydominatedbywhitespruceandhardwoods,primarilypaperbirch.TheyaretypicaloftheInteriorAlaskamixedforesttypedescribedbyVanCleveandViereck(1981).Thisvegetationtypeisbelievedtobeasuccessionalstageinwhichwhitespruceisreplacingdeciduousforest.Thisvegetationtypeaccountsforabout2%ofthetotalareaintheupperandmiddleSusitnaBasinandalmost5%oftheareawithin10mi(16km)oneithersideoftheSusitnaRiver.MostofthelargerstandsarefoundonslopesalongtheriveronthewesternendofthemiddleSusitnaBasin(downstreamofTsusenaCreek).ThemeanelevationofthestandssampledbyMcKendricketal.(1982)was1,530ft(467m)MSL,witharangeof1,200to2,250ft(370to690m)MSL.Closedstandsaregenerallyfoundatlowerelevationsthanopenstands.Overstorycoverisintermediatebetweenthatofconiferanddeciduousforests.Totalcoverisalmostcomplete,withawell-developedgroundlayer.Inopenstandstheshrublayerisalsoimportant.ManyofthestandssampledbyMcKendricketal.(1982)hadtreesmorethan100yearsold.J.1.2.1.2ShrublandsShrublandsarethemostcommonlyoccurringvegetationtypeintheupperandmiddleSusitnaBasin,coveringalmost40%ofthearea.Ingeneral,shrublandsarefoundatmid-elevations,aboveforestcommunitiesbutbelowtundrasystems.However,asaresultoffires,shrubtypesarealsofoundmixedwithforeststands.Twomajortypesarepresent:tallandlowshrub.Ofalltypes,however,mixed(birch-willow)lowshrubisbyfarthemostprevalent.Tallshrubtypesaredominatedbyalder,primarilySitkaalderand,secondarily,Americangreenalder.Thesestandsareoften7to13ft(2to4m)inheight.Closedalderstandshavealmostcompletecover,withthegroundlayerandunderstorycontributingthemostcover.Portionsofsomeclosedstandsareactuallythickets.Openalderstandsaresimilarincompositiontoclosedstands,buthavelesscover.Bluejointandwoodlandhorsetailareimportantground-layerspecies.TallshrubstandsoccurmostlyonsteepslopesabovetheSusitnaR~ver,ofteninnarrowstripsthroughothervegetationtypes.Theyalsooccurinstripsalongtributarydrainagesandinringsaroundmountainsatcertainelevations.MeanelevationofthestandssampledbyMcKendricketal.(1982)was1,880ft(573m)MSL[range=1,600to2,550ft(490to780m)MSL].Lowshrubtypesaredominatedbybirch,willow,oramixturethereof.Birchstandsareusuallydominatedbyresinbirch,butotherlowshrubsareoftenpresent,especiallynorthernLabradorteaandbogblueberry.Somestandsaredenseandthicket-like,whereasinotherstandsindi-vidualshrubsareseparatedbylargeopenings.Somestandscontainscatteredblackspruce,whichmakesthesestandsdifficulttoseparatefromwoodlandsprucetypes.Willowstandsgenerallyoccuronwetterareasthanbirchstandsandaredominatedbydiamondleafwillow.Duetothewetness(oftenincludingstandingwater),willowstandsareusuallylessdiversethanbirchstands.Watersedgeisanimportantherbaceousspeciesinwillowstands.
J-32Lowshrubtypesarelocatedprimarilyontheextensive,relativelyflatbenchesabovetheSusitnaRiverValley,aremostoftenassociatedwithsoilsthatarefrequentlywetandgleyed,butareusuallywithoutstandingwater,exceptforwillowtypes.Willowtypesoftenoccurasthicketsalongsmallstreamsathighelevations.ThemeanelevationofthelowshrubstandssampledbyMcKendricketal.(1982)was2,562ft(781m)MSL[range=2,100to3,200ft(640to980m)MSL].J.l.2.1.3TundraTableJ-l1.ElevationsofTundraAreasSampledintheUpperandMiddleSusitnaBasint1NA=Notavailable.Conversion:Toconvertfeettometers,multiplyby0.305.Source:BasedonMcKendricketal.(1982).Tundracommunitiesusuallyoccurabovethetreelineandcoverabout24%oftheareawithintheupperandmiddleSusitnaBasin.Well-vegetatedcommunitiesarefoundmostlyonflattogentlyslopingareas,whereascommunitiesoccurringonsteeporrockyterrainaremoresparselyvege-tated.Althoughthespeciescompositionoftundraareasishighlyvariable(about70vascularplantspecieswereidentifiedbyMcKendricketal.,1982),fourdistincttypeswerefoundinareaslargeenoughtomap.Thesetypeswerewetsedge-grasstundra,mesicsedge-grasstundra,alpineherbaceoustundra,andclosedmatandcushiontundra.MeansandrangesofelevationsforeachofthefourtypesarelistedinTableJ-11.Elevation(ftMSL)MeanRange1,9261,400-2,5504,502NAt13,2802,600-4,0004,249NATundraTypeWetsedge-grassAlpineherbaceous(herb-sedge)MatandcushionMesicsedge-grassWetsedge-grasstundraismorecommonbelowthetreelinethantheothertundratypes,occurringinwet,depressedareaswithpoordrainage.Vegetationcoverisalmostcomplete.Themostimportantground-layerspeciesarewatersedge,Bigelowsedge,bluejoint,andsphagnummosses.Ashrublayerofscatteredwillowsispresentinsomestands.Theorganicmattercontentofsoilsisusuallyhighandsometimesispresentasathickorganiclayeroverthemineralsoil.Mesicsedge-grasstundrausuallyoccursonrollinguplandswithwell-drainedsoils.Vegetationcoveris50%to70%inthesestands,withBigelowsedgepredominant.Vegetationisconfinedtothegroundlayer,andisusuallylessthan1ft(30cm)tall.Soilsarewell-developedinsomeareasbutpatchyinothers.Matandcushiontundraoccursondry,windyridges.Vegetationcoverisabout75%.Allvegeta-tionisinthegroundlayer,andisusuallylessthan8to12in(20to30cm)tall.Dominantspeciesarelichensandlowmat-formingshrubs,suchasdwarfarcticbirch,crowberry,bearberry,bogblueberry,andnorthernLabradortea.Soilsareshallowandcoarse.TwotypesofalpineherbaceoustundraarepresentintheupperandmiddleSusitnaBasin,althoughonlyone,herb-sedge,ispresentinareaslargeenoughtomap.Herb-sedgecommunitiesoccurathighelevationsnearglaciatedareasongentle,well-drainedslopeswithrelativelywe11-developedsoils.Vegetationcoverisalmostcompletebutlimitedtothegroundlayer.Speciescompositionisverydiverse,andnospeciesgroupsdominatethecommunitytype.Soi1sareessentiallymineralsoilswithabout5%organicmatter.Theotheralpineherbaceoustundratypeoccursinsmall,iso1atedrockyareas.Smallpioneeringforbs,andsometimesshrubs,occurinpocketsofmineralsoilimbeddedbetweenrocks.Thenaturalfireregimeinthetundraisnotwellunderstood.Thereislittleinformationonthefrequencyofnaturalfiresinthetundra,butthereissomeevidencethattheyarefarlessJ-32Lowshrubtypesarelocatedprimarilyontheextensive,relativelyflatbenchesabovetheSusitnaRiverValley,aremostoftenassociatedwithsoilsthatarefrequentlywetandgleyed,butareusuallywithoutstandingwater,exceptforwillowtypes.Willowtypesoftenoccurasthicketsalongsmallstreamsathighelevations.ThemeanelevationofthelowshrubstandssampledbyMcKendricketal.(1982)was2,562ft(781m)MSL[range=2,100to3,200ft(640to980m)MSL].J.l.2.1.3TundraTableJ-l1.ElevationsofTundraAreasSampledintheUpperandMiddleSusitnaBasint1NA=Notavailable.Conversion:Toconvertfeettometers,multiplyby0.305.Source:BasedonMcKendricketal.(1982).Tundracommunitiesusuallyoccurabovethetreelineandcoverabout24%oftheareawithintheupperandmiddleSusitnaBasin.Well-vegetatedcommunitiesarefoundmostlyonflattogentlyslopingareas,whereascommunitiesoccurringonsteeporrockyterrainaremoresparselyvege-tated.Althoughthespeciescompositionoftundraareasishighlyvariable(about70vascularplantspecieswereidentifiedbyMcKendricketal.,1982),fourdistincttypeswerefoundinareaslargeenoughtomap.Thesetypeswerewetsedge-grasstundra,mesicsedge-grasstundra,alpineherbaceoustundra,andclosedmatandcushiontundra.MeansandrangesofelevationsforeachofthefourtypesarelistedinTableJ-11.Elevation(ftMSL)MeanRange1,9261,400-2,5504,502NAt13,2802,600-4,0004,249NATundraTypeWetsedge-grassAlpineherbaceous(herb-sedge)MatandcushionMesicsedge-grassWetsedge-grasstundraismorecommonbelowthetreelinethantheothertundratypes,occurringinwet,depressedareaswithpoordrainage.Vegetationcoverisalmostcomplete.Themostimportantground-layerspeciesarewatersedge,Bigelowsedge,bluejoint,andsphagnummosses.Ashrublayerofscatteredwillowsispresentinsomestands.Theorganicmattercontentofsoilsisusuallyhighandsometimesispresentasathickorganiclayeroverthemineralsoil.Mesicsedge-grasstundrausuallyoccursonrollinguplandswithwell-drainedsoils.Vegetationcoveris50%to70%inthesestands,withBigelowsedgepredominant.Vegetationisconfinedtothegroundlayer,andisusuallylessthan1ft(30cm)tall.Soilsarewell-developedinsomeareasbutpatchyinothers.Matandcushiontundraoccursondry,windyridges.Vegetationcoverisabout75%.Allvegeta-tionisinthegroundlayer,andisusuallylessthan8to12in(20to30cm)tall.Dominantspeciesarelichensandlowmat-formingshrubs,suchasdwarfarcticbirch,crowberry,bearberry,bogblueberry,andnorthernLabradortea.Soilsareshallowandcoarse.TwotypesofalpineherbaceoustundraarepresentintheupperandmiddleSusitnaBasin,althoughonlyone,herb-sedge,ispresentinareaslargeenoughtomap.Herb-sedgecommunitiesoccurathighelevationsnearglaciatedareasongentle,well-drainedslopeswithrelativelywe11-developedsoils.Vegetationcoverisalmostcompletebutlimitedtothegroundlayer.Speciescompositionisverydiverse,andnospeciesgroupsdominatethecommunitytype.Soi1sareessentiallymineralsoilswithabout5%organicmatter.Theotheralpineherbaceoustundratypeoccursinsmall,iso1atedrockyareas.Smallpioneeringforbs,andsometimesshrubs,occurinpocketsofmineralsoilimbeddedbetweenrocks.Thenaturalfireregimeinthetundraisnotwellunderstood.Thereislittleinformationonthefrequencyofnaturalfiresinthetundra,butthereissomeevidencethattheyarefarless
J-33frequentandgenerallycovermuchsmallerareasthaninthetaiga(ViereckandSchandelmeier,1980).Generally,theresultsoftundrafiresareextremelyvariable,butinmostcases,thevegetationisrarelydestroyedcompletelybythefire.Recoveryusuallyisbyvegetativemeansandoccursrapidly,oftenwithallsignsofthefiredisappearingwithinsixtoeightyears.Usuallythemostimportanteffectsofthefireareincreasesinthedepthoftheactivelayerandinthefloweringofmanyspecies,especiallythesedges.Dwarfshrubspeciesoftenrespondmoreslowlythanthesedgesandgrasses,andareaswithabundantlichensmaytakemorethan20yearstofullyrecover.Iftheorganiclayerisburnedtothemineralsoil,fireweedandotherforbsmayinvade(ViereckandSchandelmeier,1980).J.1.2.1.4OtherVegetationTypesandUnvegetatedAreasTwoherbaceousvegetationtypesarepresentintheupperandmiddleSusitnaBasin.Onetypeconsistsofherbaceouspioneerspeciesthatinvadegravelandsandbarsontheriverduringearlysuccessionalstages(seeSec.J.1.2.2).Pioneerspeciesincludehorsetails,lupines,andalpinesweetvetch.Theothertypeisgrasslanddominatedbybluejoint.ThesecommunitiesarefoundonleveltoslopingareasatlowerelevationsalongtheSusitnaRiverandthePortageCreekdrainage.Unvegetatedareasconsistofwater,rock,snow,andice.Theseareascomprise15%oftheupperandmiddleSusitnaBasin.Waterareasconsistoflakesandstreams.Lakesaregenerallyfoundonflatbenches.Rockareasincludebedrockordepositedgeologicmaterialsthatsupportlittleornovegetation.Rockareasareusuallyfoundasunconso1idatedgravelinnewlydepositedriverbarsorasoutcropseitheralongtheSusitnaRiverorathighelevations.SnowandiceareascomprisepermanentsnowfallsandglaciersintheAlaskaRangeandtosomeextentintheTalkeetnaMountains.J.1.2.1.5WetlandsWithintheupperandmiddleSusitnaBasin,wetlandsincluderiparianzones,pondsandlakesonuplandplateaus,andareaswithwetorpoorly-drainedsoilssupportingcommunitiessuchaswetsedge-grasstundra,lowshrubland,orblackspruceforest.Wetlandareasthathavebeenidenti-fiedwithintheupperandmiddleSusitnaBasinneartheproposedprojectfeaturesincludeupperBrushkanaandTsusenacreeks,theareabetweenlowerDeadmanandTsusenacreeks,theFogLakesarea,andtheareasaroundStephanLakeandPrairieCreek,SwimmingBearLake,andJackLongCreek(Fig.J-4).TherearealsolargenumbersoflakesintheextensiveflatareasoftheupperandmiddleSusitnaBasin,suchasthoseinthevicinityofLakeLouise(ExhibitE,Vol.6A,Chap.3,p.E-3-223).McKendricketal.(1982)surveyedvascularaquaticvegetationinandaround24lakesandpondswithintheupperandmiddleSusitnabasin.Adescriptionofdominantspecies,factorswhichmayinfluencespecieslocationsinandaroundthewaterbodies,totalvegetationcover,andthewidthofsurroundingwetlandareascanbefoundinMcKendricketal.(1982)andExhibitE(Vol.6A,Chap.3,pp.E-3-211-E-3-212).AsindicatedinSectionJ.1.2andillustratedinTableJ-5,thewetlandsclassificationsofCowardinetal.(1979)canbeliberallycorrelatedtothevegetationclassificationsofViereckandDyrness(1980).Ofcourse,notallofaparticularvegetationtypethatiscorrelatedtoawetlandclassificationislikelytoactuallybeawetlandareasincethesecorrelationsdonotconsiderfactorssuchassoilmoistureorperiodicambientwaterconditions.Forexample,alllowshrubareasarenotlikelyalsotobepalustrinescrub-shrub,broad-leaveddeciduouswet-lands,althoughlowshrubareasthatarewetlandswouldbeclassifiedassuch.Thus,anyestima-tionofwetlandareasbasedstrictlyonvegetationtypesislikelytobeextremelyliberalandonlyindicativeofpotentialwetlandareas.However,atpresent,suchanestimateofpotentialwetlandsrepresentsthebestavailabledata.Thearealextentofpotentialwetlands,basedoncorrelatedvegetationtypes,ispresentedinTableJ-12fortheupperandmiddleSusitnaBasin.J.1.2.2LowerSusitnaRiverFloodplainBelowtheproposedDevilCanyondamsite,plantcommunitiesoccurringintheSusitnaRiverfloodplainconstitutethevegetationmostlikelytobeaffectedbytheproposedproject.ThevegetatedareasofthefloodplainalongtheDevilCanyon-to-Talkeetnareachhavebeenmappedatthe1:24,000scale(ExhibitE,Vol.6B,Chap.3,Figs.E.3.54-E.3.58).MostofthevegetationcommunitiesalongtheSusitnaRiverfloodplainappeartobeapartofthefloodplainsuccessionalsequencedescribedbyVanCleveandViereck(1981)andillustratedinFigureJ-5.Briefly,pioneercommunitiesconsistingofherbaceousandshrubspeciesarereplacedbycommunitiesdominatedfirstbyalderandthenbybalsampoplar.Finally,theoldest,moststableareasarecoveredbymixedconifer-deciduous(whitespruce-birch)forest.Throughphysicaldisturbances--suchasiceprocesses(especiallyduringfreezeupandbreakup),floodingevents,andbankerosionandsedimentdepositionduringtheopenwaterperiod--latersera1J-33frequentandgenerallycovermuchsmallerareasthaninthetaiga(ViereckandSchandelmeier,1980).Generally,theresultsoftundrafiresareextremelyvariable,butinmostcases,thevegetationisrarelydestroyedcompletelybythefire.Recoveryusuallyisbyvegetativemeansandoccursrapidly,oftenwithallsignsofthefiredisappearingwithinsixtoeightyears.Usuallythemostimportanteffectsofthefireareincreasesinthedepthoftheactivelayerandinthefloweringofmanyspecies,especiallythesedges.Dwarfshrubspeciesoftenrespondmoreslowlythanthesedgesandgrasses,andareaswithabundantlichensmaytakemorethan20yearstofullyrecover.Iftheorganiclayerisburnedtothemineralsoil,fireweedandotherforbsmayinvade(ViereckandSchandelmeier,1980).J.1.2.1.4OtherVegetationTypesandUnvegetatedAreasTwoherbaceousvegetationtypesarepresentintheupperandmiddleSusitnaBasin.Onetypeconsistsofherbaceouspioneerspeciesthatinvadegravelandsandbarsontheriverduringearlysuccessionalstages(seeSec.J.1.2.2).Pioneerspeciesincludehorsetails,lupines,andalpinesweetvetch.Theothertypeisgrasslanddominatedbybluejoint.ThesecommunitiesarefoundonleveltoslopingareasatlowerelevationsalongtheSusitnaRiverandthePortageCreekdrainage.Unvegetatedareasconsistofwater,rock,snow,andice.Theseareascomprise15%oftheupperandmiddleSusitnaBasin.Waterareasconsistoflakesandstreams.Lakesaregenerallyfoundonflatbenches.Rockareasincludebedrockordepositedgeologicmaterialsthatsupportlittleornovegetation.Rockareasareusuallyfoundasunconso1idatedgravelinnewlydepositedriverbarsorasoutcropseitheralongtheSusitnaRiverorathighelevations.SnowandiceareascomprisepermanentsnowfallsandglaciersintheAlaskaRangeandtosomeextentintheTalkeetnaMountains.J.1.2.1.5WetlandsWithintheupperandmiddleSusitnaBasin,wetlandsincluderiparianzones,pondsandlakesonuplandplateaus,andareaswithwetorpoorly-drainedsoilssupportingcommunitiessuchaswetsedge-grasstundra,lowshrubland,orblackspruceforest.Wetlandareasthathavebeenidenti-fiedwithintheupperandmiddleSusitnaBasinneartheproposedprojectfeaturesincludeupperBrushkanaandTsusenacreeks,theareabetweenlowerDeadmanandTsusenacreeks,theFogLakesarea,andtheareasaroundStephanLakeandPrairieCreek,SwimmingBearLake,andJackLongCreek(Fig.J-4).TherearealsolargenumbersoflakesintheextensiveflatareasoftheupperandmiddleSusitnaBasin,suchasthoseinthevicinityofLakeLouise(ExhibitE,Vol.6A,Chap.3,p.E-3-223).McKendricketal.(1982)surveyedvascularaquaticvegetationinandaround24lakesandpondswithintheupperandmiddleSusitnabasin.Adescriptionofdominantspecies,factorswhichmayinfluencespecieslocationsinandaroundthewaterbodies,totalvegetationcover,andthewidthofsurroundingwetlandareascanbefoundinMcKendricketal.(1982)andExhibitE(Vol.6A,Chap.3,pp.E-3-211-E-3-212).AsindicatedinSectionJ.1.2andillustratedinTableJ-5,thewetlandsclassificationsofCowardinetal.(1979)canbeliberallycorrelatedtothevegetationclassificationsofViereckandDyrness(1980).Ofcourse,notallofaparticularvegetationtypethatiscorrelatedtoawetlandclassificationislikelytoactuallybeawetlandareasincethesecorrelationsdonotconsiderfactorssuchassoilmoistureorperiodicambientwaterconditions.Forexample,alllowshrubareasarenotlikelyalsotobepalustrinescrub-shrub,broad-leaveddeciduouswet-lands,althoughlowshrubareasthatarewetlandswouldbeclassifiedassuch.Thus,anyestima-tionofwetlandareasbasedstrictlyonvegetationtypesislikelytobeextremelyliberalandonlyindicativeofpotentialwetlandareas.However,atpresent,suchanestimateofpotentialwetlandsrepresentsthebestavailabledata.Thearealextentofpotentialwetlands,basedoncorrelatedvegetationtypes,ispresentedinTableJ-12fortheupperandmiddleSusitnaBasin.J.1.2.2LowerSusitnaRiverFloodplainBelowtheproposedDevilCanyondamsite,plantcommunitiesoccurringintheSusitnaRiverfloodplainconstitutethevegetationmostlikelytobeaffectedbytheproposedproject.ThevegetatedareasofthefloodplainalongtheDevilCanyon-to-Talkeetnareachhavebeenmappedatthe1:24,000scale(ExhibitE,Vol.6B,Chap.3,Figs.E.3.54-E.3.58).MostofthevegetationcommunitiesalongtheSusitnaRiverfloodplainappeartobeapartofthefloodplainsuccessionalsequencedescribedbyVanCleveandViereck(1981)andillustratedinFigureJ-5.Briefly,pioneercommunitiesconsistingofherbaceousandshrubspeciesarereplacedbycommunitiesdominatedfirstbyalderandthenbybalsampoplar.Finally,theoldest,moststableareasarecoveredbymixedconifer-deciduous(whitespruce-birch)forest.Throughphysicaldisturbances--suchasiceprocesses(especiallyduringfreezeupandbreakup),floodingevents,andbankerosionandsedimentdepositionduringtheopenwaterperiod--latersera1
J-34LakeLouise17MilesFigureJ-4.LocationsofCreeksandWaterBodiesintheUpperandMiddleSusitnaBasinAroundWhichWetlandsHaveBeenIdentified.zo~5+-0;:o-W-------14-9'O-W--------1-4-S,...O-W--------1-4-7T"o-W--------14\60WJ-34LakeLouise17MilesFigureJ-4.LocationsofCreeksandWaterBodiesintheUpperandMiddleSusitnaBasinAroundWhichWetlandsHaveBeenIdentified.zo~5+-0;:o-W-------14-9'O-W--------1-4-S,...O-W--------1-4-7T"o-W--------14\60W
J-35TableJ-12.EstimatedArealExtentandPercentageofTotalAreaCoveredbyPotentialWetlandswithintheUpperandMiddleSusitnaBasinPotentialAreaPercentageofEntireWetlandClassificationCovered(acres)t1,2UpperandMiddleBasinPalustrineforested,759,00018.8needle-leavedevergreenPalustrineforested,1,000<0.1broad-leaveddeciduoust3Palustrinescrub-shrub,1,274,00031.6broad-leaveddeciduousPalustrineorlacustrine12,0000.3emergent,persistentLacustrine62,0001.5Riverine36,0000.9TotalPotentialWetland2,144,00053.2t1Theseareasshouldbeconsideredextremelyliberal;seeexplanationintext.t2ValuesconvertedfromhectaresasgiveninMcKendricketal.(1982)toacresandroundedtonearest1000acres.t3Basedondataforbalsampoplarstandswithin10mi(16km)oftheSusitnaRiverbetweenGoldCreekandtheTyoneRiver(TableJ-8andExhibitE,Vol.6B,Chap.3,TableE.3.52).Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-7usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.BuriedForest~>0:ococ~IQ.>Q.>UC/l.20..::JtiltilQ.>0...-o cen...0-1IIQ.>U.E'tn..::J::J...tIlUQ.>...o0entil1-2ill2-5IV"0Q.>l/loU5-10v...oa.oC/lQ.C::JEo0>-l/loen20-40VI...oa.Q.>o~Q.0.Etil5:2:!o.cen:;:80-100VllQ.>...uo::Ja.0./IV)E2:!o.cl/l:;:125-175Vlll200-300AgeofSurface(yrlFigureJ-5.PrimarySuccessionontheTananaRiverFloodplain.[Source:VanCleveandViereck,1981:Fig.3.1.Copyrighted1981Springer-VerlagNewYork.Usedwithpermissionofthepublisher.]J-35TableJ-12.EstimatedArealExtentandPercentageofTotalAreaCoveredbyPotentialWetlandswithintheUpperandMiddleSusitnaBasinPotentialAreaPercentageofEntireWetlandClassificationCovered(acres)t1,2UpperandMiddleBasinPalustrineforested,759,00018.8needle-leavedevergreenPalustrineforested,1,000<0.1broad-leaveddeciduoust3Palustrinescrub-shrub,1,274,00031.6broad-leaveddeciduousPalustrineorlacustrine12,0000.3emergent,persistentLacustrine62,0001.5Riverine36,0000.9TotalPotentialWetland2,144,00053.2t1Theseareasshouldbeconsideredextremelyliberal;seeexplanationintext.t2ValuesconvertedfromhectaresasgiveninMcKendricketal.(1982)toacresandroundedtonearest1000acres.t3Basedondataforbalsampoplarstandswithin10mi(16km)oftheSusitnaRiverbetweenGoldCreekandtheTyoneRiver(TableJ-8andExhibitE,Vol.6B,Chap.3,TableE.3.52).Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-7usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.BuriedForest~>0:ococ~IQ.>Q.>UC/l.20..::JtiltilQ.>0...-ocen...0-1IIQ.>U.E'tn..::J::J...tIlUQ.>...o0entil1-2ill2-5IV"0Q.>l/loU5-10v...oa.oC/lQ.C::JEo0>-l/loen20-40VI...oa.Q.>o~Q.0.Etil5:2:!o.cen:;:80-100VllQ.>...uo::Ja.0./IV)E2:!o.cl/l:;:125-175Vlll200-300AgeofSurface(yrlFigureJ-5.PrimarySuccessionontheTananaRiverFloodplain.[Source:VanCleveandViereck,1981:Fig.3.1.Copyrighted1981Springer-VerlagNewYork.Usedwithpermissionofthepublisher.]
J-36stagesmaybereplacedbyearlierseralstages.Thus,becauseofphysicaldisturbances,vegeta-tiondevelopmentinagivenareamaynotproceeddirectlythroughtheentiresuccessiona1sequenceillustratedinFigureJ-5.BelowtheDevilCanyondamsitetoTalkeetna,theSusitnaRivervalleyisrelativelyincised.Thechannelisoftenarmoredwithcobblesandboulders.Midchanne1gravelbarsareregularlyreworked,butthecentersofmanyislandsarewell-vegetatedwithlater-successionalstands,inaicatingrelativelyinfrequentdisturbanceexceptalongislandperimeters(R&MConsultants,1982).Inthisreach,thevegetatedareasofthefloodplainappeartobe5%-10%pioneercommuni-ties,20%alderand/orimmaturebalsampoplar,25%-40%maturetodecadentbalsampoplar,and20%-35%whitespruce-birch,forests(McKendricketal.,1982).BelowTalkeetnatoCookInlet,theSusitnaRiverchannelisbraidedwithabroaderfloodplain.Gravelbars,islands,andterracesalongtheriverareconstantlybeingreworkedbytheactionoftheriverastherivermeandersthroughtheactivegravelfloodplain.Erosiveprocessesareslowedwhentheriverflowsagainstvegetatedbanklines.However,itisgenerallydifficultforvegetationtoestablishintheactivefloodplainbecauseofthedynamicnatureofthesystemandthefrequencyofdisturbance.Bankfullfloodscausemajorchangesintheactivefloodplain,whereasflowsofgreatermagnitudecanfloodvegetatedareas,movegravelfrommorestablebarsintothechannel,andchangethechannelshapeandnetwork.BecauseofthebroadfloodplainbelowTalkeetna,iceprocessesgenerallydonotcausemajorchangesintheoverallpatternoftheriverandvegetatedareas,sinceseveralflowreliefchannelsareoftenavailable(R&MConsultants,1982).TheApplicantdidnotmapvegetationinthefloodplainbelowTalkeetna,butitisexpectedthatthevegetationcommunitiesgenerallyrepresentvariousstagesoftheflood-plainsuccessionalsequencedescribedabove,exceptinthedeltaareasneartheSusitnaRivermouthwherelargeareasofwetsedge-grassoccur(Selkregg,1974).Early-,mid-,andlate-successionalstandsinthelowerSusitnafloodplainarebrieflydescribedinthefollowingsubsections.PlantcoverbyspeciesforrepresentativestandsfromeachsuccessionalstageispresentedinExhibitE(Vol.6B,Chap.3,TablesE.3.73-E.3.76).Moredetailedinformationconcerningthedensityandvariouscharacteristics(e.g.,height,age)ofwoodyspeciesispresentedinMcKendricketal.(1982).J.l.2.2.lEarly-SuccessionalStandsEarlysuccessionalplantcommunitiesaredominatedbyhorsetail,horsetail-willow,horsetail-ba1sampoplar,ordryasassociations.Vegetationcoverissparse,withgreater·than50%bareground.Plantspeciesaretypicallyperennialsthatpossessrhizomes.Theseundergroundstemsallowvegetativereproductionandcanextendlaterallyformanyyards,effectivelybindingloosesandandsilt.Generally,horsetailbecomesestablishedfirst,exceptonrockyorgravellysiteswheredryasappearstobemoreimportant.Woodyspeciesincludebalsampoplar,severalwillowspecies,andtwoalderspecies(Sitkaalderandthinleafalder).Balsampoplardensitiesaregenerallythehighest,althoughaldergrowsrapidly,overtoppingtheotherwoodyspecieswithintwoorthreeyearsafteritbecomesestablished.Earlysuccessionalcommunitiesapparentlylastforuptotenyearsormoreafterthelastmajordisturbance.Frequently,floodingwillburythevegetationinsilt,butnotdestroyit.Thentheplantsoftenresurfaceandcontinuetogrow.Suchacyclemayberepeatedseveraltimesbeforethecommunityadvancestothenextseralstage.J.l.2.2.2Mid-SuccessionalStandsMid-successionalcommunitiesaredominatedbyeitherthinleafalderorimmaturebalsampoplarinthetallshrubortreestage.Thetransitiontothesemid-successionalstandsapparentlyrequiresenoughdepositionofsandandsilttoraisethesiteelevationabovetheleveloffrequentflooding.Thealdervegetationtype(whichcorrespondstothetallshrubclassificationofViereckandDyrness,1980)generallyoccursfrom10to25yearsafterstabilization,whereasthebalsampoplarstageappearstodominatefrom25to55yearsafterstabilization.ThelattertypeisfoundlessfrequentlythanthealderstageinthefloodplainofthelowerSusitnaRiver.Duringthetransitionfromearly-tomid-successionalstages,alderovertopstheshade-intolerantbalsampoplar.Alderdensitygreatlyincreases,whilebalsampoplardensitygreatlydeclines.Alderdominatesfor15to20years,bywhichtimebalsampoplarhasreachedthetopofthealdercanopy.Thenthebalsampoplarquicklydoublesinheight,shadingthealderanddevelopingintotheimmaturebalsampoplarstage.Incontrasttotheearly-successionalstands,thereisessentiallynobaregroundinthemid-successionalstands.Litterandbluejointaccountformostofthegroundlayercover.Willowdensitydecreases,butthedensitiesofpricklyroseandhighbushcranberryincrease.Afewwhitespruceandpaperbirchbecomeestablishedduringthemid-successionalstage.J-36stagesmaybereplacedbyearlierseralstages.Thus,becauseofphysicaldisturbances,vegeta-tiondevelopmentinagivenareamaynotproceeddirectlythroughtheentiresuccessiona1sequenceillustratedinFigureJ-5.BelowtheDevilCanyondamsitetoTalkeetna,theSusitnaRivervalleyisrelativelyincised.Thechannelisoftenarmoredwithcobblesandboulders.Midchanne1gravelbarsareregularlyreworked,butthecentersofmanyislandsarewell-vegetatedwithlater-successionalstands,inaicatingrelativelyinfrequentdisturbanceexceptalongislandperimeters(R&MConsultants,1982).Inthisreach,thevegetatedareasofthefloodplainappeartobe5%-10%pioneercommuni-ties,20%alderand/orimmaturebalsampoplar,25%-40%maturetodecadentbalsampoplar,and20%-35%whitespruce-birch,forests(McKendricketal.,1982).BelowTalkeetnatoCookInlet,theSusitnaRiverchannelisbraidedwithabroaderfloodplain.Gravelbars,islands,andterracesalongtheriverareconstantlybeingreworkedbytheactionoftheriverastherivermeandersthroughtheactivegravelfloodplain.Erosiveprocessesareslowedwhentheriverflowsagainstvegetatedbanklines.However,itisgenerallydifficultforvegetationtoestablishintheactivefloodplainbecauseofthedynamicnatureofthesystemandthefrequencyofdisturbance.Bankfullfloodscausemajorchangesintheactivefloodplain,whereasflowsofgreatermagnitudecanfloodvegetatedareas,movegravelfrommorestablebarsintothechannel,andchangethechannelshapeandnetwork.BecauseofthebroadfloodplainbelowTalkeetna,iceprocessesgenerallydonotcausemajorchangesintheoverallpatternoftheriverandvegetatedareas,sinceseveralflowreliefchannelsareoftenavailable(R&MConsultants,1982).TheApplicantdidnotmapvegetationinthefloodplainbelowTalkeetna,butitisexpectedthatthevegetationcommunitiesgenerallyrepresentvariousstagesoftheflood-plainsuccessionalsequencedescribedabove,exceptinthedeltaareasneartheSusitnaRivermouthwherelargeareasofwetsedge-grassoccur(Selkregg,1974).Early-,mid-,andlate-successionalstandsinthelowerSusitnafloodplainarebrieflydescribedinthefollowingsubsections.PlantcoverbyspeciesforrepresentativestandsfromeachsuccessionalstageispresentedinExhibitE(Vol.6B,Chap.3,TablesE.3.73-E.3.76).Moredetailedinformationconcerningthedensityandvariouscharacteristics(e.g.,height,age)ofwoodyspeciesispresentedinMcKendricketal.(1982).J.l.2.2.lEarly-SuccessionalStandsEarlysuccessionalplantcommunitiesaredominatedbyhorsetail,horsetail-willow,horsetail-ba1sampoplar,ordryasassociations.Vegetationcoverissparse,withgreater·than50%bareground.Plantspeciesaretypicallyperennialsthatpossessrhizomes.Theseundergroundstemsallowvegetativereproductionandcanextendlaterallyformanyyards,effectivelybindingloosesandandsilt.Generally,horsetailbecomesestablishedfirst,exceptonrockyorgravellysiteswheredryasappearstobemoreimportant.Woodyspeciesincludebalsampoplar,severalwillowspecies,andtwoalderspecies(Sitkaalderandthinleafalder).Balsampoplardensitiesaregenerallythehighest,althoughaldergrowsrapidly,overtoppingtheotherwoodyspecieswithintwoorthreeyearsafteritbecomesestablished.Earlysuccessionalcommunitiesapparentlylastforuptotenyearsormoreafterthelastmajordisturbance.Frequently,floodingwillburythevegetationinsilt,butnotdestroyit.Thentheplantsoftenresurfaceandcontinuetogrow.Suchacyclemayberepeatedseveraltimesbeforethecommunityadvancestothenextseralstage.J.l.2.2.2Mid-SuccessionalStandsMid-successionalcommunitiesaredominatedbyeitherthinleafalderorimmaturebalsampoplarinthetallshrubortreestage.Thetransitiontothesemid-successionalstandsapparentlyrequiresenoughdepositionofsandandsilttoraisethesiteelevationabovetheleveloffrequentflooding.Thealdervegetationtype(whichcorrespondstothetallshrubclassificationofViereckandDyrness,1980)generallyoccursfrom10to25yearsafterstabilization,whereasthebalsampoplarstageappearstodominatefrom25to55yearsafterstabilization.ThelattertypeisfoundlessfrequentlythanthealderstageinthefloodplainofthelowerSusitnaRiver.Duringthetransitionfromearly-tomid-successionalstages,alderovertopstheshade-intolerantbalsampoplar.Alderdensitygreatlyincreases,whilebalsampoplardensitygreatlydeclines.Alderdominatesfor15to20years,bywhichtimebalsampoplarhasreachedthetopofthealdercanopy.Thenthebalsampoplarquicklydoublesinheight,shadingthealderanddevelopingintotheimmaturebalsampoplarstage.Incontrasttotheearly-successionalstands,thereisessentiallynobaregroundinthemid-successionalstands.Litterandbluejointaccountformostofthegroundlayercover.Willowdensitydecreases,butthedensitiesofpricklyroseandhighbushcranberryincrease.Afewwhitespruceandpaperbirchbecomeestablishedduringthemid-successionalstage.
J-37J.l.2.2.3Late-SuccessionalStandsThebalsampoplarstandsprobablyachievematurityabout75yearsafterstabilizationandpersistforanother30yearsormore.Thebalsampoplareventuallybecomesdecadent,creatingspaceforyoungerbalsampoplarsorforwhitespruceorbirch.Whennofurtherdisturbanceinterruptstheprocess,whitespruce-birch(mixedconifer-deciduous)forestsbecomeestablishedontheoldest,moststablesites.Itisnotclearwhy,butsomeareasremaininthebalsampoplartypewhileotherschangetothewhitespruce-birchforests.McKendricketal.(1982)indicatedthereissomeevidencethatthewhitespruce-birchforestsareself-perpetuating.J.l.2.2.4WetlandsAsindicatedinSectionJ.l.2,thewetlandclassificationsofCowardinetal.(1979)canbeliberallycorrelatedtothevegetationclassificationsofViereckandDyrness(1980).Many,ifnotall,ofthevegetatedareasdominatedbyalderandwillowintheimmediatefloodplainofthelowerSusitnaRivercanprobablybeclassifiedaspalustrineforestedorscrub-shrubwetlandsdependingonplantheight.Herbaceouspioneercommunitiescanprobablyalsobeconsideredwetlands,whereascommunitiesdominatedbywhitespruce-paperbircharegenerallynotlikelytobewetlands.J.l.2.3PowerTransmissionCorridorVegetationstudiesalongtheproposedrouteofthetransmissioncorridorbetweenFairbanksandAnchorage(Fig.2-7)arecomplicatedbytheuseoftwodifferentvegetationclassificationsystemsanddifferentmappingscales.FortheHealy-to-FairbanksandtheWillow-to-Anchoragesegments,vegetationstudiesandmapping(atascaleof1:63,360)werecarriedoutbyMcKendricketal.(1982)within5-mi(8-km)widetransmissioncorridorstudyareasthatencompasstheactualproposedrights-of-way(ExhibitE,Vol.6B,Chap.3,Figs.E.3.48-E.3.52).FortheHealy-to-Willowsegment,vegetationmapping(atascaleof1:250,000)wascarriedoutbyCommon-wealthAssociates(1982)withinatransmissioncorridorstudyareaofvariablewidth[rangingfromabout4mi(6km)to18mi(29km)wide].Theareasanddistributionsofvegetationtypeswithinthetransmissioncorridorstudyareasarediscussedbelowforeachsegment.WiththeexceptionoftheHealy-to-Willowsegment,vegetationtypeclassificationsfollowViereckandDyrness(1980)andaredescribedinSectionJ.l.2.1.ThevegetationtypeclassificationsusedfortheHealy-to-WillowsegmentarebrieflydescribedinTableJ-l.TheDams-to-Gold CreektransmissioncorridorsegmentisdiscussedinSectionJ.l.2.1.J.l.2.3.1Willow-to-AnchorageSegmentTheWillow-to-Anchoragetransmissioncorridorstudyareacoversabout95,000acres(39,000ha)ofrelativelyflatterrain.TheapproximateareascoveredbyeachvegetationtypewithinthestudyareaarequantifiedinTableJ-13.Thetransmissioncorridorstudyareais67%forested.Closedmixedconifer-deciduousforestsandspruceforestsarethepredominantforesttypes.Wetsedge-grassmarsh(tundra)istheothermajorvegetationtype,coveringabout24%ofthestudyarea.Thewetsedge-grassareasareassociatedwithdiversenetworksofponds,lakes,andmeanderingstreams.Majorspeciesfoundinthemixedforestsarewhitespruce,paperbirch,andbalsampoplar.Althoughpaperbirchisthepredominantdeciduousspecies,localizedbalsampoplarstandsoccurontheactivefloodplainnearWillow.Mostopenandclosedspruceforestsoccurringinareasdominatedbymixedconifer-deciduousforestsarewhitesprucestands,butmostwoodlandspruceforestsaredominatedbyblackspruce.Sprucestandsoccurringontheedgesofwetsedge-grassorlowshrubareascanconsistofwhiteand/orblackspruce.J.l.2.3.2Healy-to-WillowSegmentThevegetationtypeclassificationsusedbyCommonwealthAssociates(1982)formappingtheHealy-to-Willowtransmissioncorridorstudyarea(asdescribedinTableJ-l)aredifferentfromandcannotbedirectlycomparedwiththoseofViereckandDyrness(1980).Additionally,theacreagesofeachvegetationtypepresentedinTableJ-14arethosethatwouldactuallybecrossedbytheproposedtransmissionlinecorridorratherthantheareaswithintheentireHealy-to-Wi11owstudyarea.TheproposedHealy-to-Wi11owtransmissioncorridorcoversabout4,600acres(1,900ha).Spruce-hardwoodandspruce-poplarforestsarepresentoverabout50%oftheproposedcorridor,andshrublandsarethesecondmostprevalenttype,covering29%oftheareathatwouldbecrossedbythecorridor.Thesoutherntwo-thirdsoftheproposedcorridorisprimarilyforested.Whitespruce-birchforestsoccuronthedrierforestedsites;whereas,whitespruce-balsampoplararethemajorspeciesinforestedfloodplainareas.Blacksprucedevelopsprimarilyonpoorlydrainedsites.Thenorthernone-thirdoftheproposedcorridorwouldcrossmostlyopenwoodland,shrubland,andtundra,types.J-37J.l.2.2.3Late-SuccessionalStandsThebalsampoplarstandsprobablyachievematurityabout75yearsafterstabilizationandpersistforanother30yearsormore.Thebalsampoplareventuallybecomesdecadent,creatingspaceforyoungerbalsampoplarsorforwhitespruceorbirch.Whennofurtherdisturbanceinterruptstheprocess,whitespruce-birch(mixedconifer-deciduous)forestsbecomeestablishedontheoldest,moststablesites.Itisnotclearwhy,butsomeareasremaininthebalsampoplartypewhileotherschangetothewhitespruce-birchforests.McKendricketal.(1982)indicatedthereissomeevidencethatthewhitespruce-birchforestsareself-perpetuating.J.l.2.2.4WetlandsAsindicatedinSectionJ.l.2,thewetlandclassificationsofCowardinetal.(1979)canbeliberallycorrelatedtothevegetationclassificationsofViereckandDyrness(1980).Many,ifnotall,ofthevegetatedareasdominatedbyalderandwillowintheimmediatefloodplainofthelowerSusitnaRivercanprobablybeclassifiedaspalustrineforestedorscrub-shrubwetlandsdependingonplantheight.Herbaceouspioneercommunitiescanprobablyalsobeconsideredwetlands,whereascommunitiesdominatedbywhitespruce-paperbircharegenerallynotlikelytobewetlands.J.l.2.3PowerTransmissionCorridorVegetationstudiesalongtheproposedrouteofthetransmissioncorridorbetweenFairbanksandAnchorage(Fig.2-7)arecomplicatedbytheuseoftwodifferentvegetationclassificationsystemsanddifferentmappingscales.FortheHealy-to-FairbanksandtheWillow-to-Anchoragesegments,vegetationstudiesandmapping(atascaleof1:63,360)werecarriedoutbyMcKendricketal.(1982)within5-mi(8-km)widetransmissioncorridorstudyareasthatencompasstheactualproposedrights-of-way(ExhibitE,Vol.6B,Chap.3,Figs.E.3.48-E.3.52).FortheHealy-to-Willowsegment,vegetationmapping(atascaleof1:250,000)wascarriedoutbyCommon-wealthAssociates(1982)withinatransmissioncorridorstudyareaofvariablewidth[rangingfromabout4mi(6km)to18mi(29km)wide].Theareasanddistributionsofvegetationtypeswithinthetransmissioncorridorstudyareasarediscussedbelowforeachsegment.WiththeexceptionoftheHealy-to-Willowsegment,vegetationtypeclassificationsfollowViereckandDyrness(1980)andaredescribedinSectionJ.l.2.1.ThevegetationtypeclassificationsusedfortheHealy-to-WillowsegmentarebrieflydescribedinTableJ-l.TheDams-to-Gold CreektransmissioncorridorsegmentisdiscussedinSectionJ.l.2.1.J.l.2.3.1Willow-to-AnchorageSegmentTheWillow-to-Anchoragetransmissioncorridorstudyareacoversabout95,000acres(39,000ha)ofrelativelyflatterrain.TheapproximateareascoveredbyeachvegetationtypewithinthestudyareaarequantifiedinTableJ-13.Thetransmissioncorridorstudyareais67%forested.Closedmixedconifer-deciduousforestsandspruceforestsarethepredominantforesttypes.Wetsedge-grassmarsh(tundra)istheothermajorvegetationtype,coveringabout24%ofthestudyarea.Thewetsedge-grassareasareassociatedwithdiversenetworksofponds,lakes,andmeanderingstreams.Majorspeciesfoundinthemixedforestsarewhitespruce,paperbirch,andbalsampoplar.Althoughpaperbirchisthepredominantdeciduousspecies,localizedbalsampoplarstandsoccurontheactivefloodplainnearWillow.Mostopenandclosedspruceforestsoccurringinareasdominatedbymixedconifer-deciduousforestsarewhitesprucestands,butmostwoodlandspruceforestsaredominatedbyblackspruce.Sprucestandsoccurringontheedgesofwetsedge-grassorlowshrubareascanconsistofwhiteand/orblackspruce.J.l.2.3.2Healy-to-WillowSegmentThevegetationtypeclassificationsusedbyCommonwealthAssociates(1982)formappingtheHealy-to-Willowtransmissioncorridorstudyarea(asdescribedinTableJ-l)aredifferentfromandcannotbedirectlycomparedwiththoseofViereckandDyrness(1980).Additionally,theacreagesofeachvegetationtypepresentedinTableJ-14arethosethatwouldactuallybecrossedbytheproposedtransmissionlinecorridorratherthantheareaswithintheentireHealy-to-Wi11owstudyarea.TheproposedHealy-to-Wi11owtransmissioncorridorcoversabout4,600acres(1,900ha).Spruce-hardwoodandspruce-poplarforestsarepresentoverabout50%oftheproposedcorridor,andshrublandsarethesecondmostprevalenttype,covering29%oftheareathatwouldbecrossedbythecorridor.Thesoutherntwo-thirdsoftheproposedcorridorisprimarilyforested.Whitespruce-birchforestsoccuronthedrierforestedsites;whereas,whitespruce-balsampoplararethemajorspeciesinforestedfloodplainareas.Blacksprucedevelopsprimarilyonpoorlydrainedsites.Thenorthernone-thirdoftheproposedcorridorwouldcrossmostlyopenwoodland,shrubland,andtundra,types.
J-38TableJ-13.AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheWillow-to-AnchorageTransmissionCorridorStudyAreaPercentageofVegetationTypeAcrest1TotalAreapForest64,00067.4Conifer22,00023.2Woodlandspruce6,0006.3Openspruce8,0008.4Closedspruce8,0008.4Deciduous10,00010.5Openbirch40<0.1Closedbirch9,0009.5Openbalsampoplar2000.2Closedbalsampoplar4000.4Mixedconifer-deciduous32,00033.7Open4,0004.2Closed28,00029.5Tundra23,00024.2Wetsedge-grass23,00024.2Shrubland5,0005.3Tallshrub(closed)2000.2Lowshrub(mixed)5,0005.3Disturbed1,0001.1Unvegetated2,0002.1Water2,0002.1Lakes2,0002.1TotalArea95,000100t1Acreagesandpercentagesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromExhibitE,Vol.6B,Chap.3,TableE.3.78androundedtothenearest1000acresoronesignificantfigureforvalueslessthan500(originallybasedonMcKendricketal.,1982).J-38TableJ-13.AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheWillow-to-AnchorageTransmissionCorridorStudyAreaPercentageofVegetationTypeAcrest1TotalAreapForest64,00067.4Conifer22,00023.2Woodlandspruce6,0006.3Openspruce8,0008.4Closedspruce8,0008.4Deciduous10,00010.5Openbirch40<0.1Closedbirch9,0009.5Openbalsampoplar2000.2Closedbalsampoplar4000.4Mixedconifer-deciduous32,00033.7Open4,0004.2Closed28,00029.5Tundra23,00024.2Wetsedge-grass23,00024.2Shrubland5,0005.3Tallshrub(closed)2000.2Lowshrub(mixed)5,0005.3Disturbed1,0001.1Unvegetated2,0002.1Water2,0002.1Lakes2,0002.1TotalArea95,000100t1Acreagesandpercentagesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromExhibitE,Vol.6B,Chap.3,TableE.3.78androundedtothenearest1000acresoronesignificantfigureforvalueslessthan500(originallybasedonMcKendricketal.,1982).
J-39TableJ-14.AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheProposedHealy-to-WillowTransmissionCorridorVegetatedAreaCrossedt1'ZPercentageofVegetationType(acres)TotalAreat1,ZUplandspruce-hardwood1,10023.9forestLowlandspruce-hardwood83018.0forestBottomlandspruce-poplar3407.4forestWettundra2705.9Moisttundra2204.8Alpinetundra651.4Shrublands1,30028.3Lowbrush,Muskegbog53011.5TotalVegetatedArea4,600100t1CalculatedfromdataandmapsinCommonwealthAssociates(1982).Thevaluespresentedhererepresenttheadditionalclearingofthecorridorfromthe110ft(34m)givenbyCommonwealthAssociates(1982)toatotalwidthof300ft(91m)fromGoldCreektoHealyand400ft(122m)fromGoldCreektoWillow.Thus,theareaspre-sentedinthistablerepresentareasthatwouldoccurwithina190-ft(58-m)widecorridorfromGoldCreektoHealyanda290-ft(88-m)widecorridorfromGoldCreektoWillow.tZAreasrepresentedarethosethatwouldactuallybecrossedbytheproposedtransmissionlinecorridor,roundedtotwosignificantfigures.Acreagesandpercentagesdonotadduptototalsduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromrevisionstoSupplementalInformationtoExhibitE,Vol.6B,Chap.3,TableE.3.79(Revised)p.3B-7-2,aspresentedintheApplicant'sResponsestotheDepartmentoftheInteriorCommentsonLicenseApplication,February15,1984.J.1.2.3.3Healy-to-FairbanksSegmentTheHealy-to-Fairbankstransmissioncorridorstudyareacoversabout276,000acres(112,000ha).TheapproximateareascoveredbyeachvegetationtypewithinthestudyareaarequantifiedinTableJ-15.Forestsdominatemost(78%)ofthetransmissioncorridorstudyareaandshrublandcoversanadditional15%.Oftheforesttypes,openspruceoccupiesthelargestportionofthestudyarea(29%).Thetransmissioncorridorstudyareacrossesthreephysiographicallyandphytosociologicallydistinctsections:HealytoNenanaRiver,NenanaRivertoTananaRiver,andTananaRivertoFairbanks.FromHealytotheNenanaRiver,arelativelyflatareaisborderedbyadissectedplateautothewestandbytheParksHighwayandNenanaRivertotheeast.Withinthetransmissioncorridorstudyarea,openspruce,deciduous,ormixedforestsoccuralongtheridgesleadingfromtheplateau.Lowshrublandmixedwithmesicsedge-grassandbothopenandclosedsprucestandsconsistingofrelativelyshorttreesdominatetheflatarea.TheTananaFlatsareabetweentheNenanaandTananariversischaracterizedbyacomplicatedmosaicofwetvegetationtypes,notablyopenspruce[usuallywithlarch(Larixlaricina)],lowshrub,andwetsedge-grasstundra.Somepatchesofdeciduousforestarealsopresent.McKendricketal.(1982)foundthatinsomepartsofthisarea,vegetationtypeswithinthestudyareaweretoointermingledtoseparateinthemapping.Thus,variouscomplexeswererecognizedbyMcKendrickandcoworkers(TableJ-15).The1ocationsofmanyvegetationtypesappeartoberelatedtooldstreammeandersanddrainagepatterns.UnlikespruceforestsintheJ-39TableJ-14.AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheProposedHealy-to-WillowTransmissionCorridorVegetatedAreaCrossedt1'ZPercentageofVegetationType(acres)TotalAreat1,ZUplandspruce-hardwood1,10023.9forestLowlandspruce-hardwood83018.0forestBottomlandspruce-poplar3407.4forestWettundra2705.9Moisttundra2204.8Alpinetundra651.4Shrublands1,30028.3Lowbrush,Muskegbog53011.5TotalVegetatedArea4,600100t1CalculatedfromdataandmapsinCommonwealthAssociates(1982).Thevaluespresentedhererepresenttheadditionalclearingofthecorridorfromthe110ft(34m)givenbyCommonwealthAssociates(1982)toatotalwidthof300ft(91m)fromGoldCreektoHealyand400ft(122m)fromGoldCreektoWillow.Thus,theareaspre-sentedinthistablerepresentareasthatwouldoccurwithina190-ft(58-m)widecorridorfromGoldCreektoHealyanda290-ft(88-m)widecorridorfromGoldCreektoWillow.tZAreasrepresentedarethosethatwouldactuallybecrossedbytheproposedtransmissionlinecorridor,roundedtotwosignificantfigures.Acreagesandpercentagesdonotadduptototalsduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromrevisionstoSupplementalInformationtoExhibitE,Vol.6B,Chap.3,TableE.3.79(Revised)p.3B-7-2,aspresentedintheApplicant'sResponsestotheDepartmentoftheInteriorCommentsonLicenseApplication,February15,1984.J.1.2.3.3Healy-to-FairbanksSegmentTheHealy-to-Fairbankstransmissioncorridorstudyareacoversabout276,000acres(112,000ha).TheapproximateareascoveredbyeachvegetationtypewithinthestudyareaarequantifiedinTableJ-15.Forestsdominatemost(78%)ofthetransmissioncorridorstudyareaandshrublandcoversanadditional15%.Oftheforesttypes,openspruceoccupiesthelargestportionofthestudyarea(29%).Thetransmissioncorridorstudyareacrossesthreephysiographicallyandphytosociologicallydistinctsections:HealytoNenanaRiver,NenanaRivertoTananaRiver,andTananaRivertoFairbanks.FromHealytotheNenanaRiver,arelativelyflatareaisborderedbyadissectedplateautothewestandbytheParksHighwayandNenanaRivertotheeast.Withinthetransmissioncorridorstudyarea,openspruce,deciduous,ormixedforestsoccuralongtheridgesleadingfromtheplateau.Lowshrublandmixedwithmesicsedge-grassandbothopenandclosedsprucestandsconsistingofrelativelyshorttreesdominatetheflatarea.TheTananaFlatsareabetweentheNenanaandTananariversischaracterizedbyacomplicatedmosaicofwetvegetationtypes,notablyopenspruce[usuallywithlarch(Larixlaricina)],lowshrub,andwetsedge-grasstundra.Somepatchesofdeciduousforestarealsopresent.McKendricketal.(1982)foundthatinsomepartsofthisarea,vegetationtypeswithinthestudyareaweretoointermingledtoseparateinthemapping.Thus,variouscomplexeswererecognizedbyMcKendrickandcoworkers(TableJ-15).The1ocationsofmanyvegetationtypesappeartoberelatedtooldstreammeandersanddrainagepatterns.Unlikespruceforestsinthe
J-40TableJ-15.AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheHealy-to-FairbanksTransmissionCorridorStudyAreaVegetationTypet1ForestConiferWoodlandspruceOpenspruceClosedspruceDeciduousWoodlandOpenClosedMixedconifer-deciduousWoodlandOpenClosedComplexesOpenspruce/opendeciduousOpenspruce/wetsedge-grass/opendeciduousOpenspruce/lowshrub/wetsedge-grass/opendeciduousOpenspruce/lowshrubTundraWetsedge-grassMesicsedge-grassSedge/shrubMatandcushion/sedge-grassShrublandLowshrubWi11owMixedLowshrub/wetsedge-grasscomplexAgriculturallandDisturbedUnvegetatedWaterLakesRiversGravelTotalAreaAcrest2215,00086,0004,00078,0003,00059,0002,00031,00026,00043,0002,00031,00010,00026,0002,0005,00017,0001,00011,0006,0001,0001,0003,00042,00038,00010038,0004,0004001,0006,0006,0005005,000300276,000PercentageofTotalAreat277.931.21.428.31.121.40.711.29.415.60.711.23.69.40.71.86.20.44.02.20.40.41.115.213.8<0.113.81.40.10.42.22.20.21.80.1100t1TheTananaFlatsareawithinthistransmissioncorridorstudyarea(seetext)ischaracterizedbyextremelycomplexmosaicsofvariousvegetationtypes.Asaresult,variouscomplexeswererecognizedandmapped.t2Acreagesandpercentagesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromExhibitE,Vol.68,Chap.3,TableE.3.77androundedtothenearest1000acresortoonesignificantfigureforvalueslessthan500(originallybasedonMcKendricketal.,1982).J-40TableJ-15.AcreageandPercentageofTotalAreaCoveredbyVegetationTypeswithintheHealy-to-FairbanksTransmissionCorridorStudyAreaVegetationTypet1ForestConiferWoodlandspruceOpenspruceClosedspruceDeciduousWoodlandOpenClosedMixedconifer-deciduousWoodlandOpenClosedComplexesOpenspruce/opendeciduousOpenspruce/wetsedge-grass/opendeciduousOpenspruce/lowshrub/wetsedge-grass/opendeciduousOpenspruce/lowshrubTundraWetsedge-grassMesicsedge-grassSedge/shrubMatandcushion/sedge-grassShrublandLowshrubWi11owMixedLowshrub/wetsedge-grasscomplexAgriculturallandDisturbedUnvegetatedWaterLakesRiversGravelTotalAreaAcrest2215,00086,0004,00078,0003,00059,0002,00031,00026,00043,0002,00031,00010,00026,0002,0005,00017,0001,00011,0006,0001,0001,0003,00042,00038,00010038,0004,0004001,0006,0006,0005005,000300276,000PercentageofTotalAreat277.931.21.428.31.121.40.711.29.415.60.711.23.69.40.71.86.20.44.02.20.40.41.115.213.8<0.113.81.40.10.42.22.20.21.80.1100t1TheTananaFlatsareawithinthistransmissioncorridorstudyarea(seetext)ischaracterizedbyextremelycomplexmosaicsofvariousvegetationtypes.Asaresult,variouscomplexeswererecognizedandmapped.t2Acreagesandpercentagesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromExhibitE,Vol.68,Chap.3,TableE.3.77androundedtothenearest1000acresortoonesignificantfigureforvalueslessthan500(originallybasedonMcKendricketal.,1982).
J-41upperandmiddleSusitnaBasin,abouthalfofthesprucestandsinthisareacontain containlarch.ThesectionofthetransmissioncorridorstudyareabetweentheTananaRiverandFairbanksconsistsofrollinghills.Opendeciduousforestsarethepredominantvegetationtype.SprucestandsaresmallerandlesscommonthanintheTananaFlatsarea.Inmanyoftheclosedsprucestands,thetreesareveryshortandscrub-like.Veryfewlarchtreesaremixedwiththespruceinthisarea.J.1.2.3.4WetlandsWetsedge-grasstundraandpotentiallywetspruceareasareknowntooccurwithinthetrans-missioncorridorstudyareas.However,McKendricketal.(1982)andCommonwealthAssociates(1982)didnotmapwetlandsinthetransmissioncorridorstudyareas.AsindicatedinSec-tionJ.1.2andTableJ-5thewetlandsclassificationsofCowardinetal.(1979)canbeliberallycorrelatedtothevegetationclassificationsofViereckandDyrness(1980).Thus,forthisdocument,theareasofpotentialwetlandswithintheWillow-to-AnchorageandHealy-to-FairbankstransmissioncorridorstudyareasandtheproposedHealy-to-WillowtransmissioncorridorhavebeenestimatedbythemethodsdescribedinSectionJ.1.2;theresultsaresummarizedinTableJ-16.J.1.2.4ThreatenedandEndangeredSpeciesAtpresent,noplantspeciesknowntooccurinAlaskahavebeenofficiallylistedasthreatenedorendangeredbyFederalorstateauthorities.Thereare,however,30planttaxaunderreviewforpossibleprotectionundertheEndangeredSpeciesActof1973,asamended(U.S.FishandWildlifeService,1980,1983).OnthebasisofMurray(1980),9ofthese30candidatetaxahavebeenidentifiedashavingahigherprobabilitythantherestofoccurringwithintheupperandmiddleSusitnaBasinandthelowerSusitnaRiverfloodplain(McKendricketal.,1982).Oftheseninecandidatespecies(listedinTableJ-l7),two,Smelkowskiaborealisvar.villosaandTaraxacumcarneocoloratum,havebeenidentifiedbytheApplicant'sconsultantsashavingthepotentialofoccurringinthevicinityoftheHealy-to-Willowtransmissioncorridorstudyarea(CommonwealthAssociates,1982).Athirdspecies,Montiabostockii,wasconsideredtohaveappropriatehabitatwithintheproposedHealy-to-Willowtransmissioncorridorbutitisnotknowntooccurinthegeneralareaaroundthatcorridor.Todate,noneoftheninecandidatespecieslistedinTableJ-17noranyoftheothercandidatetaxaunderreviewhasbeenfoundwithintheupperandmiddleSusitnaBasin,thelowerSusitnaRiverfloodplain,ortheHealy-to-Willowtransmissioncorridorstudyarea.SurveysoftheWillow-to-AnchorageandHealy-to-Fairbankstransmissioncorridorstudyareashavenotbeencon-ducted;however,theU.S.FishandWildlifeServicehasindicatedthatthelikelihoodoffindingthesespeciesinthosecorridorsegmentsisverylow(U.S.Dept.ofInterior,1983:p.50).J.1.3SusitnaDevelopmentAlternativesJ.1.3.1AlternativeDamLocationsandDesignsThesitesofalternativedamlocationsanddesignswouldallbelocatedwithintheupperandmiddleSusitnaBasin.DescriptionsanddefinitionsofthevegetationtypesfoundwithintheupperandmiddleSusitnaBasinhavebeenprovidedaboveinSectionJ.1.2.1.Alternativedesignsforthedamsandrelatedfacilitieswouldaffectessentiallythesameenviron-mentastheproposeddesigns.BriefdescriptionsofthevegetationtypesthatarefoundinthevicinityofthealternativeSusitnaBasindamsitesandtheirassociatedimpoundmentswerederivedfromFigureE.3.38inExhibitE(Vol.6B,Chap.3).VegetationtypesfoundinthevicinityoftheWatanaIalternativeareessentiallythesameasthosedescribedinSectionJ.1.2.1fortheproposedWatanadamandimpoundment,exceptthatproportionallylesserareasofshrublandaswellaswoodlandandopenblackspruceforesttypeswouldlikelybeaffected.Thisassumptionisbasedonthelowerelevationofthisalternativedamandthereducedlengthofitsimpoundment.FortheReregulatingdamalternative(Fig.2-17),thedam,impoundment,andpowerhousewouldbelocatedprimarilyinopenspruceandopenmixedforesttypes.TheModifiedHighDevilCanyonalternative(Fig.2-17)wouldbelocatedinessen-tiallythesameenvironmentastheproposedDevilCanyondamandimpoundment(seeSec.J.1.2.1),exceptthatmixedconifer-deciduousforestlocatedbetweentheDevilCanyonandHighDevi1Canyondamsiteswouldnotbeaffected.J.1.3.2AlternativeAccessRoutesThetwotechnicallyandeconomicallyfeasiblealternativeaccessrouteswouldbelocatedalmostentirelywithintheupperandmiddleSusitnaBasin(seeSec.2.2.2.4andFig.2-13).Descrip-tionsanddefinitionsofthevegetationtypesfoundwithintheupperandmiddleSusitnaBasinhavebeenpreviouslydiscussedinSectionJ.1.2.1.BriefdescriptionsofthevegetationtypesJ-41upperandmiddleSusitnaBasin,abouthalfofthesprucestandsinthisareacontain containlarch.ThesectionofthetransmissioncorridorstudyareabetweentheTananaRiverandFairbanksconsistsofrollinghills.Opendeciduousforestsarethepredominantvegetationtype.SprucestandsaresmallerandlesscommonthanintheTananaFlatsarea.Inmanyoftheclosedsprucestands,thetreesareveryshortandscrub-like.Veryfewlarchtreesaremixedwiththespruceinthisarea.J.1.2.3.4WetlandsWetsedge-grasstundraandpotentiallywetspruceareasareknowntooccurwithinthetrans-missioncorridorstudyareas.However,McKendricketal.(1982)andCommonwealthAssociates(1982)didnotmapwetlandsinthetransmissioncorridorstudyareas.AsindicatedinSec-tionJ.1.2andTableJ-5thewetlandsclassificationsofCowardinetal.(1979)canbeliberallycorrelatedtothevegetationclassificationsofViereckandDyrness(1980).Thus,forthisdocument,theareasofpotentialwetlandswithintheWillow-to-AnchorageandHealy-to-FairbankstransmissioncorridorstudyareasandtheproposedHealy-to-WillowtransmissioncorridorhavebeenestimatedbythemethodsdescribedinSectionJ.1.2;theresultsaresummarizedinTableJ-16.J.1.2.4ThreatenedandEndangeredSpeciesAtpresent,noplantspeciesknowntooccurinAlaskahavebeenofficiallylistedasthreatenedorendangeredbyFederalorstateauthorities.Thereare,however,30planttaxaunderreviewforpossibleprotectionundertheEndangeredSpeciesActof1973,asamended(U.S.FishandWildlifeService,1980,1983).OnthebasisofMurray(1980),9ofthese30candidatetaxahavebeenidentifiedashavingahigherprobabilitythantherestofoccurringwithintheupperandmiddleSusitnaBasinandthelowerSusitnaRiverfloodplain(McKendricketal.,1982).Oftheseninecandidatespecies(listedinTableJ-l7),two,Smelkowskiaborealisvar.villosaandTaraxacumcarneocoloratum,havebeenidentifiedbytheApplicant'sconsultantsashavingthepotentialofoccurringinthevicinityoftheHealy-to-Willowtransmissioncorridorstudyarea(CommonwealthAssociates,1982).Athirdspecies,Montiabostockii,wasconsideredtohaveappropriatehabitatwithintheproposedHealy-to-Willowtransmissioncorridorbutitisnotknowntooccurinthegeneralareaaroundthatcorridor.Todate,noneoftheninecandidatespecieslistedinTableJ-17noranyoftheothercandidatetaxaunderreviewhasbeenfoundwithintheupperandmiddleSusitnaBasin,thelowerSusitnaRiverfloodplain,ortheHealy-to-Willowtransmissioncorridorstudyarea.SurveysoftheWillow-to-AnchorageandHealy-to-Fairbankstransmissioncorridorstudyareashavenotbeencon-ducted;however,theU.S.FishandWildlifeServicehasindicatedthatthelikelihoodoffindingthesespeciesinthosecorridorsegmentsisverylow(U.S.Dept.ofInterior,1983:p.50).J.1.3SusitnaDevelopmentAlternativesJ.1.3.1AlternativeDamLocationsandDesignsThesitesofalternativedamlocationsanddesignswouldallbelocatedwithintheupperandmiddleSusitnaBasin.DescriptionsanddefinitionsofthevegetationtypesfoundwithintheupperandmiddleSusitnaBasinhavebeenprovidedaboveinSectionJ.1.2.1.Alternativedesignsforthedamsandrelatedfacilitieswouldaffectessentiallythesameenviron-mentastheproposeddesigns.BriefdescriptionsofthevegetationtypesthatarefoundinthevicinityofthealternativeSusitnaBasindamsitesandtheirassociatedimpoundmentswerederivedfromFigureE.3.38inExhibitE(Vol.6B,Chap.3).VegetationtypesfoundinthevicinityoftheWatanaIalternativeareessentiallythesameasthosedescribedinSectionJ.1.2.1fortheproposedWatanadamandimpoundment,exceptthatproportionallylesserareasofshrublandaswellaswoodlandandopenblackspruceforesttypeswouldlikelybeaffected.Thisassumptionisbasedonthelowerelevationofthisalternativedamandthereducedlengthofitsimpoundment.FortheReregulatingdamalternative(Fig.2-17),thedam,impoundment,andpowerhousewouldbelocatedprimarilyinopenspruceandopenmixedforesttypes.TheModifiedHighDevilCanyonalternative(Fig.2-17)wouldbelocatedinessen-tiallythesameenvironmentastheproposedDevilCanyondamandimpoundment(seeSec.J.1.2.1),exceptthatmixedconifer-deciduousforestlocatedbetweentheDevilCanyonandHighDevi1Canyondamsiteswouldnotbeaffected.J.1.3.2AlternativeAccessRoutesThetwotechnicallyandeconomicallyfeasiblealternativeaccessrouteswouldbelocatedalmostentirelywithintheupperandmiddleSusitnaBasin(seeSec.2.2.2.4andFig.2-13).Descrip-tionsanddefinitionsofthevegetationtypesfoundwithintheupperandmiddleSusitnaBasinhavebeenpreviouslydiscussedinSectionJ.1.2.1.Briefdescriptionsofthevegetationtypes
Table J-16.Estimated Areal Extent and Percentage of Total Area Covered by Potential Wetlands within the Willow-to-Anchorage and
Healy-to-Fairbanks Transmission Corridor Study Areas and the Proposed Healy-to-Willow Transmission Line Corridor
Willow-to-Anchoraget 1 Healy-to-Willowt 1 Healy-to-Fairbankst 1
83,000 30.1
0 0
42,000 15.2
6,000 2.2
23,000 8.3
c...
500 0.2 I
.j::>
N
6,000 2.2
160,000 58.0
Percentage of
Potential Transmission Corridor Potential Percentage of
Wetland Classification Acreaget 2 ,3 Study Areat 4 Acreaget 2 ,5 Transmission Corridort 4
Palustrine forested,14,000 14.7 830 18.0
needle-leaved evergreen
Palustrine forested,700 0.7 340 7.4
broad-leaved deciduous
Palustrine scrub-shrub,5,000 5.3 1,800 39.1
broad-leaved deciduous
Palustrine or lacustrine 23,000 24.2 270 5.9
emergent,persistent
Complexes of Palustrine 0 0 0 0
forested,scrub-shrub,and
emergent
Lacustrine 2,000 2.1 0 0
Riverine 0 0 0 0
Total Potential Wetland 45,000 47.4 3,300 71.7
Potential
Acreaget 2 ,3
Percentage of
Transmission Corridor
Study Areat 4
t 1 Acreages and percentages do not add up to totals due to rounding errors.
t 2 These areas should be considered extremely liberal,see explanation in text.
t 3 Values converted from hectares as given in McKendrick et al.(1982)to acres and rounded to nearest 1000 acres or one significant figure
if values are less than 1,000.
t 4 Percentages calculated by dividing acreages by total area of transmission corridor study area for the Willow-to-Anchorage and
Healy-to-Fairbanks segments and by total area of proposed transmission line corridor for the Healy-to-Willow segment.See
Tables J-13, J-15,and J-14,respectively.
t 5 Calculated from data and maps in Commonwealth Associates (1982).The values presented here represent the additional clearing of the
corridor from the 110 ft (34 m)given by Commonwealth Associates (1982)to a total width of 300 ft (91 m)from Gold Creek to Healy and
400 ft (122 m)from Gold Creek to Willow.Thus,the potential wetland areas presented in this table represent areas that would occur
within a 190-ft (58-m)wide corridor from Gold Creek to Healy and a 290-ft (88-m)wide corridor from Gold Creek to Willow.Areas
represented are those that would actually be crossed by the proposed transmission line corridor,rounded to two significant figures.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Tables J-13, J-14,and J-15 using correlations of vegetation types to potential wetland classes as given in
Table J-5.
Table J-16.Estimated Areal Extent and Percentage of Total Area Covered by Potential Wetlands within the Willow-to-Anchorage and
Healy-to-Fairbanks Transmission Corridor Study Areas and the Proposed Healy-to-Willow Transmission Line Corridor
Willow-to-Anchoraget 1 Healy-to-Willowt 1 Healy-to-Fairbankst 1
83,000 30.1
0 0
42,000 15.2
6,000 2.2
23,000 8.3
c...
500 0.2 I
.j::>
N
6,000 2.2
160,000 58.0
Percentage of
Potential Transmission Corridor Potential Percentage of
Wetland Classification Acreaget 2 ,3 Study Areat 4 Acreaget 2 ,5 Transmission Corridort 4
Palustrine forested,14,000 14.7 830 18.0
needle-leaved evergreen
Palustrine forested,700 0.7 340 7.4
broad-leaved deciduous
Palustrine scrub-shrub,5,000 5.3 1,800 39.1
broad-leaved deciduous
Palustrine or lacustrine 23,000 24.2 270 5.9
emergent,persistent
Complexes of Palustrine 0 0 0 0
forested,scrub-shrub,and
emergent
Lacustrine 2,000 2.1 0 0
Riverine 0 0 0 0
Total Potential Wetland 45,000 47.4 3,300 71.7
Potential
Acreaget 2 ,3
Percentage of
Transmission Corridor
Study Areat 4
t 1 Acreages and percentages do not add up to totals due to rounding errors.
t 2 These areas should be considered extremely liberal,see explanation in text.
t 3 Values converted from hectares as given in McKendrick et al.(1982)to acres and rounded to nearest 1000 acres or one significant figure
if values are less than 1,000.
t 4 Percentages calculated by dividing acreages by total area of transmission corridor study area for the Willow-to-Anchorage and
Healy-to-Fairbanks segments and by total area of proposed transmission line corridor for the Healy-to-Willow segment.See
Tables J-13, J-15,and J-14,respectively.
t 5 Calculated from data and maps in Commonwealth Associates (1982).The values presented here represent the additional clearing of the
corridor from the 110 ft (34 m)given by Commonwealth Associates (1982)to a total width of 300 ft (91 m)from Gold Creek to Healy and
400 ft (122 m)from Gold Creek to Willow.Thus,the potential wetland areas presented in this table represent areas that would occur
within a 190-ft (58-m)wide corridor from Gold Creek to Healy and a 290-ft (88-m)wide corridor from Gold Creek to Willow.Areas
represented are those that would actually be crossed by the proposed transmission line corridor,rounded to two significant figures.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Tables J-13, J-14,and J-15 using correlations of vegetation types to potential wetland classes as given in
Table J-5.
J-43TableJ-17.PlantSpeciesunderReviewasThreatenedorEndangeredwiththeHighestProbabilityofOccurrencewithinAreasthatWouldbeAffectedbytheProposedProjectt1ScientificNameAsteryukonensisCryptanthashackletteanaEriogonumflavumvar.aquilinumErysimumasperumvar.angustatumMontiabostockiiPodisterayukonensisSmelowskiaborealisvar.villosaSmelowskiapyriformisTaraxacumcarneocoloratumCommonNameYukonasterCatseyeWi1dbuckwheat\1a11flowert1AllspecieslistedareunderreviewforinclusionundertheEndangeredSpeciesActof1973,asamended(U.S.FishWi1dlf.Serv.,1980;1983).t2"_"=Nocommonname.Source:ModifiedfromMcKendricketal.(1982).foundalongthenorthernandsouthernalternativeaccesscorridorsarepresentedbelow.ThesedescriptionsarebasedonmaterialinExhibitE(Vol.9,Chap.10,p.E-10-42-E-10-43,andFigs.E.10.7-E.10.8)andSupplementalInformationtoExhibitE(Vol.9,Chap.10,June30,1983,p.10-14-1-10-14-2andsupplementalattachmentsSA10-14-1-SA10-14-2).Thenorthernaccessalternativeconsistsoftwosegments.TheroutefromHurricanetoDevi1Canyonwouldtraversemostlywhitespruceandmixedconifer-deciduousforesttypes,aswellasta11shrubcommunitiesandsomeriparianandwetlandareas.Thenorth-sideroutebetweenDevilCanyonandWatanawouldcrossmostlywhitespruce,mixedconifer-deciduousforest,andtallshrubtypesalongPortageCreekandovertoDevilCreek.AtthehigherelevationsbetweenDevilCreekandWatanatheroutewouldcrossmostlyshrublandsandvarioustundratypes.Thesouthernaccessalternativehasthreesegments.ThepredominantvegetationtypethatwouldbecrossedbytheroutebetweenGoldCreekandDevilCanyonismixedconifer-deciduousforest.BetweenHurricaneandDevilCanyontheroutewouldbeessentiallythesameasthatdescribedaboveforthenorthernaccessalternative.Thesouth-sideroutefromDevilCanyontoWatanawouldtraverseacomplexmosaicofvegetationtypes.FromDevilCanyoneast,theroutewouldcrossmixedforestandtallshrubcommunities,thenmostlylowshrubandtundratypes,andfinally,inthefareasternportionoftheroute,mixedforest,spruceforest,andlowshrub-land,includingnumerouswetlandareasnearPrairieCreek,StephanLake,andTsusenaandDeadmancreeks.J.1.3.3AlternativePowerTransmissionRoutesThealternativepowertransmissionlineroutesaredividedintothreestudyareas:northern,southern,andcentral(Figs.2-14through2-16).Withinthesestudyareas,one(northern),six(central),andtwo(southern)technicallyandeconomicallyacceptablealternativecorridorshavebeenidentifiedinadditiontotheproposedcorridors(ExhibitE,Vol.9,Chap.10,TableE.10.24).Briefdescriptionsofthevegetationtypesfoundalongthealternativecorridorsarepresentedbelow.ThedescriptionsarebasedonExhibitB(TablesB.39-B.41)andSupplementalInforma-tiontoExhibitE(Vol.9,Chap.10,June30,1983,p.10-20-1-10-20-7).DescriptionsanddefinitionsofthevegetationtypeshavebeenpreviouslyprovidedinSectionJ.1.2.1.J.1.3.3.1NorthernStudyAreaCorridorABDC:Abouthalfspruceforests,one-thirdlowshrub,remalnlngareasaredeciduousforest,mixedforest,andtallshrub;manywetareaslikelyinsegmentBDC.J-43TableJ-17.PlantSpeciesunderReviewasThreatenedorEndangeredwiththeHighestProbabilityofOccurrencewithinAreasthatWouldbeAffectedbytheProposedProjectt1ScientificNameAsteryukonensisCryptanthashackletteanaEriogonumflavumvar.aquilinumErysimumasperumvar.angustatumMontiabostockiiPodisterayukonensisSmelowskiaborealisvar.villosaSmelowskiapyriformisTaraxacumcarneocoloratumCommonNameYukonasterCatseyeWi1dbuckwheat\1a11flowert1AllspecieslistedareunderreviewforinclusionundertheEndangeredSpeciesActof1973,asamended(U.S.FishWi1dlf.Serv.,1980;1983).t2"_"=Nocommonname.Source:ModifiedfromMcKendricketal.(1982).foundalongthenorthernandsouthernalternativeaccesscorridorsarepresentedbelow.ThesedescriptionsarebasedonmaterialinExhibitE(Vol.9,Chap.10,p.E-10-42-E-10-43,andFigs.E.10.7-E.10.8)andSupplementalInformationtoExhibitE(Vol.9,Chap.10,June30,1983,p.10-14-1-10-14-2andsupplementalattachmentsSA10-14-1-SA10-14-2).Thenorthernaccessalternativeconsistsoftwosegments.TheroutefromHurricanetoDevi1Canyonwouldtraversemostlywhitespruceandmixedconifer-deciduousforesttypes,aswellasta11shrubcommunitiesandsomeriparianandwetlandareas.Thenorth-sideroutebetweenDevilCanyonandWatanawouldcrossmostlywhitespruce,mixedconifer-deciduousforest,andtallshrubtypesalongPortageCreekandovertoDevilCreek.AtthehigherelevationsbetweenDevilCreekandWatanatheroutewouldcrossmostlyshrublandsandvarioustundratypes.Thesouthernaccessalternativehasthreesegments.ThepredominantvegetationtypethatwouldbecrossedbytheroutebetweenGoldCreekandDevilCanyonismixedconifer-deciduousforest.BetweenHurricaneandDevilCanyontheroutewouldbeessentiallythesameasthatdescribedaboveforthenorthernaccessalternative.Thesouth-sideroutefromDevilCanyontoWatanawouldtraverseacomplexmosaicofvegetationtypes.FromDevilCanyoneast,theroutewouldcrossmixedforestandtallshrubcommunities,thenmostlylowshrubandtundratypes,andfinally,inthefareasternportionoftheroute,mixedforest,spruceforest,andlowshrub-land,includingnumerouswetlandareasnearPrairieCreek,StephanLake,andTsusenaandDeadmancreeks.J.1.3.3AlternativePowerTransmissionRoutesThealternativepowertransmissionlineroutesaredividedintothreestudyareas:northern,southern,andcentral(Figs.2-14through2-16).Withinthesestudyareas,one(northern),six(central),andtwo(southern)technicallyandeconomicallyacceptablealternativecorridorshavebeenidentifiedinadditiontotheproposedcorridors(ExhibitE,Vol.9,Chap.10,TableE.10.24).Briefdescriptionsofthevegetationtypesfoundalongthealternativecorridorsarepresentedbelow.ThedescriptionsarebasedonExhibitB(TablesB.39-B.41)andSupplementalInforma-tiontoExhibitE(Vol.9,Chap.10,June30,1983,p.10-20-1-10-20-7).DescriptionsanddefinitionsofthevegetationtypeshavebeenpreviouslyprovidedinSectionJ.1.2.1.J.1.3.3.1NorthernStudyAreaCorridorABDC:Abouthalfspruceforests,one-thirdlowshrub,remalnlngareasaredeciduousforest,mixedforest,andtallshrub;manywetareaslikelyinsegmentBDC.
J-44J.l.3.3.2CentralStudyAreaCorridorABCD:Mostlyblackspruceforest(potentiallywet)withsomelowshrubinsegmentAB;equalamountsofmixedconifer-deciduousforest,spruceforest,andlowshrubinsegmentBC;mostlymixedconifer-deciduousforestinsegmentCD.CorridorABCF:SegmentsABandBCdescribedabove;mostlytallshrubandmixedconifer-deciduousforestinsegmentCF.CorridorABECD:SegmentsABandCDdescribedabove;woodlandspruceandbogsnearStephanLake,remainingareasinsegmentBECincludelowshrub,tundra,tallshrub,andmixedconifer-deciduousforest.CorridorABECF:SegmentsAB,BEC,andCFdescribedabove.CorridorAJCF:MostlylowshrubandtundratypeswithsometallshrubinsegmentAJ;tallandlowshrublandandmixedconifer-deciduousforestinsegmentJC;segmentCFdescribedabove.CorridorCJAHI:SegmentsCJandJAdescribedabove;mostlylowandtallshrub1andwithsomewoodlandspruceinsegmentAH;tundratypesandshrublandprobablypredominatealongsegmentHI.J.l.3.3.3SouthernStudyAreaCorridorABC':Abouthalfmixedconifer-deciduousforests,aboutone-fourthdeciduous(balsampoplar)forest(mostlyinsegmentBC),withlesseramountsofwetsedge-grassmarshes,sprucebogs,andshrubland.CorridorAEFC:Mostlymixedconifer-deciduousforestinnorthernhalfofsegmentAEF,withmostofsouthernhalfwetsedge-grassbogsandblackspruceforest;mixtureofspruceforests,mixedconifer-deciduousforests,wetsedge-grassmarshes,andblacksprucebogsinsegmentFC.J.l.3.4AlternativeBorrowSitesTheonlyalternativeborrowsitesnotdiscussedinSectionJ.l.2.1areborrowsitesB, C,J,andL(Figs.2-2and2-6).DescriptionsofthevegetationlocatedwithinthesealternativeborrowsitesarebasedonFigureJ-2andExhibitE(Vol.9,Chap.10,p.E-IO-83-E-IO-I04).BorrowsiteBiscoveredmostlybymixedconifer-deciduousforestwithaheavyunderstoryandmarshyconditionsonthesouth-facingside.BorrowsiteCiscoveredbyamixtureofwoodlandspruceforestandshrubland(mostlylowshrub).Tundratypesarealsofoundathighereleva-tionsonthevalleyslopes.BorrowsiteJiscontainedwithintheSusitnaRiver.BorrowsiteLisaverysmallsitecoveredwithdeciduousforestandamarshyareaoftallshrub.J.l.3.5ThreatenedandEndangeredSpeciesConsiderationofthreatenedandendangeredplantspeciesfortheSusitnadevelopmentalterna-tivesisthesameasthatpresentedfortheproposedprojectinSectionJ.l.2.4.J.l.4Non-SusitnaGenerationAlternativesExceptasnoted,thefollowingdescriptionsofvegetationoccurrenceassociatedwithpotentialdevelopmentofthenatural-gas-firedgenerationscenario,thecoal-firedgenerationscenario,andthecombinedhydro-thermalgenerationscenarioarebasedonthevegetationmappresentedinSectionJ.l.l(Fig.J-l).ThevegetationtypesdelineatedonthatmaparedescribedinTableJ-l.J.l.4.1Natural-Gas-FiredGenerationScenarioJ.l.4.1.1BelugaandChuitnaRiversVegetationinthelowerBelugaRiverareaismostlyuplandspruce-hardwoodforestexceptnearthecoast,wherewetsedge-grasspredominates.TheChuitnaRiveroriginatesinanareaofhighbrushandthenpassesthroughuplandspruce-hardwoodforestonitswaytoCookInlet.J.l.4.1.2KenaiNorthofKenaithevegetationisprimarilylowlandspruce-hardwoodforest,althougharelativelynarrowstripofuplandspruce-hardwoodforestoccursalongthecoast.J.l.4.1.3AnchorageSoutheastofAnchoragethenaturalvegetationhasprobablybeenalteredsomewhatbydevelopmentactivities.Undisturbedorrelativelyundisturbedareasarelikelytobebottomlandspruce-poplarforest,uplandspruce-hardwoodforest,orlowlandspruce-hardwoodforest.J-44J.l.3.3.2CentralStudyAreaCorridorABCD:Mostlyblackspruceforest(potentiallywet)withsomelowshrubinsegmentAB;equalamountsofmixedconifer-deciduousforest,spruceforest,andlowshrubinsegmentBC;mostlymixedconifer-deciduousforestinsegmentCD.CorridorABCF:SegmentsABandBCdescribedabove;mostlytallshrubandmixedconifer-deciduousforestinsegmentCF.CorridorABECD:SegmentsABandCDdescribedabove;woodlandspruceandbogsnearStephanLake,remainingareasinsegmentBECincludelowshrub,tundra,tallshrub,andmixedconifer-deciduousforest.CorridorABECF:SegmentsAB,BEC,andCFdescribedabove.CorridorAJCF:MostlylowshrubandtundratypeswithsometallshrubinsegmentAJ;tallandlowshrublandandmixedconifer-deciduousforestinsegmentJC;segmentCFdescribedabove.CorridorCJAHI:SegmentsCJandJAdescribedabove;mostlylowandtallshrub1andwithsomewoodlandspruceinsegmentAH;tundratypesandshrublandprobablypredominatealongsegmentHI.J.l.3.3.3SouthernStudyAreaCorridorABC':Abouthalfmixedconifer-deciduousforests,aboutone-fourthdeciduous(balsampoplar)forest(mostlyinsegmentBC),withlesseramountsofwetsedge-grassmarshes,sprucebogs,andshrubland.CorridorAEFC:Mostlymixedconifer-deciduousforestinnorthernhalfofsegmentAEF,withmostofsouthernhalfwetsedge-grassbogsandblackspruceforest;mixtureofspruceforests,mixedconifer-deciduousforests,wetsedge-grassmarshes,andblacksprucebogsinsegmentFC.J.l.3.4AlternativeBorrowSitesTheonlyalternativeborrowsitesnotdiscussedinSectionJ.l.2.1areborrowsitesB, C,J,andL(Figs.2-2and2-6).DescriptionsofthevegetationlocatedwithinthesealternativeborrowsitesarebasedonFigureJ-2andExhibitE(Vol.9,Chap.10,p.E-IO-83-E-IO-I04).BorrowsiteBiscoveredmostlybymixedconifer-deciduousforestwithaheavyunderstoryandmarshyconditionsonthesouth-facingside.BorrowsiteCiscoveredbyamixtureofwoodlandspruceforestandshrubland(mostlylowshrub).Tundratypesarealsofoundathighereleva-tionsonthevalleyslopes.BorrowsiteJiscontainedwithintheSusitnaRiver.BorrowsiteLisaverysmallsitecoveredwithdeciduousforestandamarshyareaoftallshrub.J.l.3.5ThreatenedandEndangeredSpeciesConsiderationofthreatenedandendangeredplantspeciesfortheSusitnadevelopmentalterna-tivesisthesameasthatpresentedfortheproposedprojectinSectionJ.l.2.4.J.l.4Non-SusitnaGenerationAlternativesExceptasnoted,thefollowingdescriptionsofvegetationoccurrenceassociatedwithpotentialdevelopmentofthenatural-gas-firedgenerationscenario,thecoal-firedgenerationscenario,andthecombinedhydro-thermalgenerationscenarioarebasedonthevegetationmappresentedinSectionJ.l.l(Fig.J-l).ThevegetationtypesdelineatedonthatmaparedescribedinTableJ-l.J.l.4.1Natural-Gas-FiredGenerationScenarioJ.l.4.1.1BelugaandChuitnaRiversVegetationinthelowerBelugaRiverareaismostlyuplandspruce-hardwoodforestexceptnearthecoast,wherewetsedge-grasspredominates.TheChuitnaRiveroriginatesinanareaofhighbrushandthenpassesthroughuplandspruce-hardwoodforestonitswaytoCookInlet.J.l.4.1.2KenaiNorthofKenaithevegetationisprimarilylowlandspruce-hardwoodforest,althougharelativelynarrowstripofuplandspruce-hardwoodforestoccursalongthecoast.J.l.4.1.3AnchorageSoutheastofAnchoragethenaturalvegetationhasprobablybeenalteredsomewhatbydevelopmentactivities.Undisturbedorrelativelyundisturbedareasarelikelytobebottomlandspruce-poplarforest,uplandspruce-hardwoodforest,orlowlandspruce-hardwoodforest.
J-45J.l.4.2Coal-FiredGenerationScenarioJ.l.4.2.1WillowVegetationintheWillowareaisprimarilylowlandspruce-hardwoodforest,althoughbottomlandspruce-poplarforestisfoundalongtheSusitnaRiver.J.l.4.2.2NenanaAlongtheTananaandNenanariversnearNenana,thevegetationisprimarilybottomlandspruce-poplarforest.Fartherawayfromtheriversthepredominantvegetationtypeislowlandspruce-hardwoodforest.J.l.4.2.3Healy(MiningArea)InthevicinityofHealy,wherethecoalwouldbemined(Fig.1-14),vegetationalongtheNenanaRiveranditstributariesisuplandspruce-hardwoodforest.Awayfromtheriver,athigherelevations,thevegetationgradesintomoisttundraandalpinetundra.J.l.4.2.4CookInletAreaVegetationoccurringinlikelylocationsforsitingofgascombustionturbinesintheCookInletareahasbeendescribedforthenatural-gas-firedgenerationscenarioinSectionJ.l.4.1.J.l.4.3CombinedHydro-ThermalGenerationScenarioJ.l.4.3.1JohnsonAlongtheTananaRiverneartheJohnsonalternativesitethevegetationismostlybottomlandspruce-poplarforest;fartherawayfromtheTananaRiverfloodplainandalongtheJohnsonRiver,thevegetationismostlyuplandspruce-hardwoodforest.However,therearealsosmallerareasoflowlandspruce-hardwoodforestandlowshrub,muskegbogaswellasareasofmoisttundraandalpinetundraatthehigherelevations.J.l.4.3.2KeetnaBottomlandspruce-poplarforesttypespredominatealongtheTalkeetnaRiverneartheKeetnaalternativesite.Theseforestsgradeintouplandspruce-hardwoodforestsawayfromtheflood-plain.Athigherelevationsabovetheriverthevegetationconsistsofmoisttundratypes(e.g.,mesicsedge-grasstundraandmatandcushiontundra)similartothosefoundonthebenchesabovetheSusitnaRiverCanyon.J.1.4.3.3SnowForestedareasneartheSnowalternativesitearemostlycoastalwesternhemlock-Sitkaspruceforest;however,cottonwoodsandwillowsprobablydominatetherivervalleysandfloodplains.Tallshrubcommunities,dominatedbyalder,gradeintoalpinetundratypesabovethetreeline.J.l.4.3.4BrowneVegetationalongtheNenanaRiverneartheBrownealternativesiteismostlybottomlandspruce-poplarforest.Fartherfromtheriverthevegetationgradesintolowlandspruce-hardwoodcommunities.About10mi(16km)upstreamfromthedamsite,uplandspruce-hardwoodforestcommunitiespredominatealongtheriver.Athigherelevationsthevegetationgradesintomoisttundraandalpinetundra.J.l.4.3.5ChakachamnaLakeThevegetationonthesteepslopessurroundingChakachamnaLakecanbegenerallyclassifiedastallshrublandwithalpinetundraandbarerockathigherelevations.Thetallshrubtypeconsistsofanabundanceofblackcottonwood,Sitkaalder,andpaperbirch,withdiamondleafandfeltleafwillowabundantinsomeareas.ThisvegetationtypeisalsofoundonthecanyonwallsabovetheMcArthur,Chilligan,Neacola,Ignita,andNagishlaminarivers(Bechtel,1983).IntheChakachatnaRivercanyonandonthefloodplainsofriversflowingintoChakachamnaLake,thetallshrubtypeischaracterizedbySitkaalder,paperbirch,whitespruce,anddiamondleafandfeltleafwillows.AstheriversdroptolowerelevationsonthewaytoCookInlet,ripariancommunitiesarecharacterizedbyblackcottonwood,thinleafalder,paperbirch,andnumerouswillowspecies(Bechtel,1983).Large,low-shrubbogsarefoundonflat,poorlydrainedareasasthetopographyflattensouttotheupperCookInletcoastalplain.Thesebogsaredominatedbyshrubssuchasresinbirch,bogJ-45J.l.4.2Coal-FiredGenerationScenarioJ.l.4.2.1WillowVegetationintheWillowareaisprimarilylowlandspruce-hardwoodforest,althoughbottomlandspruce-poplarforestisfoundalongtheSusitnaRiver.J.l.4.2.2NenanaAlongtheTananaandNenanariversnearNenana,thevegetationisprimarilybottomlandspruce-poplarforest.Fartherawayfromtheriversthepredominantvegetationtypeislowlandspruce-hardwoodforest.J.l.4.2.3Healy(MiningArea)InthevicinityofHealy,wherethecoalwouldbemined(Fig.1-14),vegetationalongtheNenanaRiveranditstributariesisuplandspruce-hardwoodforest.Awayfromtheriver,athigherelevations,thevegetationgradesintomoisttundraandalpinetundra.J.l.4.2.4CookInletAreaVegetationoccurringinlikelylocationsforsitingofgascombustionturbinesintheCookInletareahasbeendescribedforthenatural-gas-firedgenerationscenarioinSectionJ.l.4.1.J.l.4.3CombinedHydro-ThermalGenerationScenarioJ.l.4.3.1JohnsonAlongtheTananaRiverneartheJohnsonalternativesitethevegetationismostlybottomlandspruce-poplarforest;fartherawayfromtheTananaRiverfloodplainandalongtheJohnsonRiver,thevegetationismostlyuplandspruce-hardwoodforest.However,therearealsosmallerareasoflowlandspruce-hardwoodforestandlowshrub,muskegbogaswellasareasofmoisttundraandalpinetundraatthehigherelevations.J.l.4.3.2KeetnaBottomlandspruce-poplarforesttypespredominatealongtheTalkeetnaRiverneartheKeetnaalternativesite.Theseforestsgradeintouplandspruce-hardwoodforestsawayfromtheflood-plain.Athigherelevationsabovetheriverthevegetationconsistsofmoisttundratypes(e.g.,mesicsedge-grasstundraandmatandcushiontundra)similartothosefoundonthebenchesabovetheSusitnaRiverCanyon.J.1.4.3.3SnowForestedareasneartheSnowalternativesitearemostlycoastalwesternhemlock-Sitkaspruceforest;however,cottonwoodsandwillowsprobablydominatetherivervalleysandfloodplains.Tallshrubcommunities,dominatedbyalder,gradeintoalpinetundratypesabovethetreeline.J.l.4.3.4BrowneVegetationalongtheNenanaRiverneartheBrownealternativesiteismostlybottomlandspruce-poplarforest.Fartherfromtheriverthevegetationgradesintolowlandspruce-hardwoodcommunities.About10mi(16km)upstreamfromthedamsite,uplandspruce-hardwoodforestcommunitiespredominatealongtheriver.Athigherelevationsthevegetationgradesintomoisttundraandalpinetundra.J.l.4.3.5ChakachamnaLakeThevegetationonthesteepslopessurroundingChakachamnaLakecanbegenerallyclassifiedastallshrublandwithalpinetundraandbarerockathigherelevations.Thetallshrubtypeconsistsofanabundanceofblackcottonwood,Sitkaalder,andpaperbirch,withdiamondleafandfeltleafwillowabundantinsomeareas.ThisvegetationtypeisalsofoundonthecanyonwallsabovetheMcArthur,Chilligan,Neacola,Ignita,andNagishlaminarivers(Bechtel,1983).IntheChakachatnaRivercanyonandonthefloodplainsofriversflowingintoChakachamnaLake,thetallshrubtypeischaracterizedbySitkaalder,paperbirch,whitespruce,anddiamondleafandfeltleafwillows.AstheriversdroptolowerelevationsonthewaytoCookInlet,ripariancommunitiesarecharacterizedbyblackcottonwood,thinleafalder,paperbirch,andnumerouswillowspecies(Bechtel,1983).Large,low-shrubbogsarefoundonflat,poorlydrainedareasasthetopographyflattensouttotheupperCookInletcoastalplain.Thesebogsaredominatedbyshrubssuchasresinbirch,bog
J-46blueberry,andnarrow-leafLabradorteaandbysedgesandgrasses.Blackspruce,blackcotton-wood,alder,andpaperbircharefoundinlatersuccessionalstands.Sedge-grasscoastalmarshescovermostoftheareawithin1mi(1.6km)ofCookInlet,aswellassomeareasalongtheMcArthurRiver.Intermediatebetweenthecoastalmarshesandthebogsarepoorlydrainedareasofblackspruceforest,withanunderstoryofdiamondleafwillow,alder,sedges,andgrasses.Theseareasdifferfromthebogsinthelackoffloatingvegetationmatsandtheabsenceofblackcottonwood(Bechtel,1983).J.1.4.3.6Nenana,ChuitnaRiver,AnchorageVegetationinthevicinityofNenana,theChuitnaRiver,andAnchorage,wherethermalunitsforthisscenariowouldprobablybesited,havebeendescribedinSectionsJ.1.4.1andJ.1.4.2.J.1.4.4ThreatenedandEndangeredSpeciesConsiderationofthreatenedandendangeredplantspeciesfornon-Susitnapowergenerationalter-nativesisessentiallythesameasthatpresentedinSectionJ.1.2.4.OnthebasisofMurray(1980),twoadditionalspecies,OxytropiskokrinensisandThlaspiarcticum,havesomepossi-bilityofoccurrence--OxytropiskokrinensisatJohnson,Browne,andtheNenana/Healyareas,andThlaspiarcticumatSnowandChakachamnaLakeandintheCookInletregion.J.2ENVIRONMENTALIMPACTSJ.2.1ProposedProjectJ.2.1.1WatanaDevelopmentJ.2.1.1.1ConstructionPotentialimpactstoterrestrialplantcommunitiesandwetlandsresultingfromconstructionoftheWatanadevelopmentcanbedividedintothreecategories(1)thedirectremovalofvegeta-tion,(2)indirectvegetationlossordamage,and(3)alterationofplantcommunities.Thefirstcategorygenerallyconstitutesthemostsevereimpactsandisthemostquantifiableofthethreecategories.Thesecondandthirdcategoriesarenotmutuallyexclusiveinthatindirectvegetationlossordamageoftenresultsinalterationofplantcommunities.VegetationRemovalDuringtheconstructionandfi11ingoftheWatanadevelopment,approximately36,000acres(14,600ha)ofvegetationwouldbedirectlyremovedbyclearingorinundation.Ofthisareaapproximately31,000acres(12,500ha)ofvegetationwouldbepermanentlylostduetoconstruc-tionofthedam,spillways,impoundment,permanentvillage,andairstrip.Vegetationclearedfortheconstructioncampandvillage,constructionroads,contractorworkareas,andborrowareaswouldtotalapproximately5,200acres(2,100ha).However,thepotentialforvegetationestablishmentandgrowthontheseareaswouldonlybetemporarilylostsincethesefacilitieswouldonlyberequiredduringconstruction.Theareaofvegetationthatwouldbepermanentlylostrepresentsabout1%ofallvegetationandabout3%oftheforestedareaswithintheentireupperandmiddleSusitnaBasinaboveGoldCreek(TableJ-18).Mostofthevegetationlost(over60%)wouldbewoodlandandopenspruceforest;however,theseareasonlyamounttoapproximately2%ofthewoodlandspruceforestand3%oftheopenspruce'forestintheupperandmiddleSusitnaBasin.Incontrast,theactualacreagesofbirchandmixedforesttypesremovedwouldbelessthanspruceforesttypes,buttheareasofthesetypesthatwouldbelostrepresentatleast5%ofthetotalareacoveredbyeachvegeta-tiontypewithintheupperandmiddleSusitnaBasin(TableJ-18).Themostseverelyimpactedvegetationtypeswouldbeopenandclosedbirchforest,buttheproportionofthesetypeslost,aspresentedinTableJ-18,isagrossoverestimationcausedbymappingscales.Sincemanybirchstandsweregenerallyfoundtoberelativelysmall(McKendricketa1.,1982),mostwerenotmappableatthe1:250,000scaleusedfortheupperandmiddleSusitnaBasin,butmanymorestandsweremappableatthe1:63,360scaleusedtocomputevegetatedareasaffectedbyWatanafacilities.Assumingthatbirchstandsareusuallyfoundonrelativelywarmslopesnearrivers(seeSec.J.l.2.1.1),betterestimatesoftheproportionsofbirchforesttypesthatmightbelost(ca.20%forbothclosedandopenstands)maybebasedonestimatesofbirchforesttypesoccurringwithin10mi(16km)oftheSusitnaRiverbetweenGo1dCreekandtheTyoneRiver(whichwasmappedatascaleof1:63,360;seeTableJ-8).Theactualproportionsofopenandclosedbirchforeststhatwouldbelostareprobablysomewherebetween10and20%ofthetotalfortheupperandmiddleSusitnaBasin.Vegetationthatwouldbeclearedfortemporaryfacilitiesandborrowareasrepresentabout0.2%ofthevegetationwithintheupperandmiddleSusitnaBasin(TableJ-19).Theseareaspresentlysupportapproximatelyequalareasofforestandshrublandtypesandarelativelysmallerpropor-t ionoftundratypes.AccordingtotheschedulepresentedinExhibitE(Vo1.6A,Chap.3,J-46blueberry,andnarrow-leafLabradorteaandbysedgesandgrasses.Blackspruce,blackcotton-wood,alder,andpaperbircharefoundinlatersuccessionalstands.Sedge-grasscoastalmarshescovermostoftheareawithin1mi(1.6km)ofCookInlet,aswellassomeareasalongtheMcArthurRiver.Intermediatebetweenthecoastalmarshesandthebogsarepoorlydrainedareasofblackspruceforest,withanunderstoryofdiamondleafwillow,alder,sedges,andgrasses.Theseareasdifferfromthebogsinthelackoffloatingvegetationmatsandtheabsenceofblackcottonwood(Bechtel,1983).J.1.4.3.6Nenana,ChuitnaRiver,AnchorageVegetationinthevicinityofNenana,theChuitnaRiver,andAnchorage,wherethermalunitsforthisscenariowouldprobablybesited,havebeendescribedinSectionsJ.1.4.1andJ.1.4.2.J.1.4.4ThreatenedandEndangeredSpeciesConsiderationofthreatenedandendangeredplantspeciesfornon-Susitnapowergenerationalter-nativesisessentiallythesameasthatpresentedinSectionJ.1.2.4.OnthebasisofMurray(1980),twoadditionalspecies,OxytropiskokrinensisandThlaspiarcticum,havesomepossi-bilityofoccurrence--OxytropiskokrinensisatJohnson,Browne,andtheNenana/Healyareas,andThlaspiarcticumatSnowandChakachamnaLakeandintheCookInletregion.J.2ENVIRONMENTALIMPACTSJ.2.1ProposedProjectJ.2.1.1WatanaDevelopmentJ.2.1.1.1ConstructionPotentialimpactstoterrestrialplantcommunitiesandwetlandsresultingfromconstructionoftheWatanadevelopmentcanbedividedintothreecategories(1)thedirectremovalofvegeta-tion,(2)indirectvegetationlossordamage,and(3)alterationofplantcommunities.Thefirstcategorygenerallyconstitutesthemostsevereimpactsandisthemostquantifiableofthethreecategories.Thesecondandthirdcategoriesarenotmutuallyexclusiveinthatindirectvegetationlossordamageoftenresultsinalterationofplantcommunities.VegetationRemovalDuringtheconstructionandfi11ingoftheWatanadevelopment,approximately36,000acres(14,600ha)ofvegetationwouldbedirectlyremovedbyclearingorinundation.Ofthisareaapproximately31,000acres(12,500ha)ofvegetationwouldbepermanentlylostduetoconstruc-tionofthedam,spillways,impoundment,permanentvillage,andairstrip.Vegetationclearedfortheconstructioncampandvillage,constructionroads,contractorworkareas,andborrowareaswouldtotalapproximately5,200acres(2,100ha).However,thepotentialforvegetationestablishmentandgrowthontheseareaswouldonlybetemporarilylostsincethesefacilitieswouldonlyberequiredduringconstruction.Theareaofvegetationthatwouldbepermanentlylostrepresentsabout1%ofallvegetationandabout3%oftheforestedareaswithintheentireupperandmiddleSusitnaBasinaboveGoldCreek(TableJ-18).Mostofthevegetationlost(over60%)wouldbewoodlandandopenspruceforest;however,theseareasonlyamounttoapproximately2%ofthewoodlandspruceforestand3%oftheopenspruce'forestintheupperandmiddleSusitnaBasin.Incontrast,theactualacreagesofbirchandmixedforesttypesremovedwouldbelessthanspruceforesttypes,buttheareasofthesetypesthatwouldbelostrepresentatleast5%ofthetotalareacoveredbyeachvegeta-tiontypewithintheupperandmiddleSusitnaBasin(TableJ-18).Themostseverelyimpactedvegetationtypeswouldbeopenandclosedbirchforest,buttheproportionofthesetypeslost,aspresentedinTableJ-18,isagrossoverestimationcausedbymappingscales.Sincemanybirchstandsweregenerallyfoundtoberelativelysmall(McKendricketa1.,1982),mostwerenotmappableatthe1:250,000scaleusedfortheupperandmiddleSusitnaBasin,butmanymorestandsweremappableatthe1:63,360scaleusedtocomputevegetatedareasaffectedbyWatanafacilities.Assumingthatbirchstandsareusuallyfoundonrelativelywarmslopesnearrivers(seeSec.J.l.2.1.1),betterestimatesoftheproportionsofbirchforesttypesthatmightbelost(ca.20%forbothclosedandopenstands)maybebasedonestimatesofbirchforesttypesoccurringwithin10mi(16km)oftheSusitnaRiverbetweenGo1dCreekandtheTyoneRiver(whichwasmappedatascaleof1:63,360;seeTableJ-8).Theactualproportionsofopenandclosedbirchforeststhatwouldbelostareprobablysomewherebetween10and20%ofthetotalfortheupperandmiddleSusitnaBasin.Vegetationthatwouldbeclearedfortemporaryfacilitiesandborrowareasrepresentabout0.2%ofthevegetationwithintheupperandmiddleSusitnaBasin(TableJ-19).Theseareaspresentlysupportapproximatelyequalareasofforestandshrublandtypesandarelativelysmallerpropor-t ionoftundratypes.AccordingtotheschedulepresentedinExhibitE(Vo1.6A,Chap.3,
J-47TableJ-18.AcreageofVegetationTypesthatWouldbePermanentlyLostasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinVegetatedAreaLost(acres)t1PercentageofDamandPermanentBasinTotalforVegetationTypeSpi11waysImpoundmentVi11ageAirstripTotalRespectiveTypet2Forest8427,0000027,0003.1Woodlandblackspruce209,6009,6002.3Woodlandwhitespruce980980Openblackspruce7,1007,1003.1Openwhitespruce1,9001,900Openbirch280081040.5t3Closedbirch321,1001,200120.0t3Closedbalsampoplar77t4Openmixed123,3003,3005.7Closedmixed171,9001,9004.9Tundra0210002100.02Wetsedge-grass2102101.8Shrubland1104,10067424,4000.3Opentallshrub155605800.4Closedtallshrub42710750Birchshrub21,10037321,2001.4Wi11owshrub1601600.6Mixedlowshrub541,60030101,7000.1Herbaceous011000110t4Unvegetated325,2002005,3000.9Rock21501500.05River305,0005,00013.9Lake94201100.2TotalVegetatedArea19831,000674231,0000.9TotalArea23036,000t5864237,0000.9t1Acreagesconvertedfromhectaresasgiveninthesourceandroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t3Thisisanoverestimationcausedbydifferencesinmappingscales(seetext).t4ThesevegetationtypeswerenotquantifiedinTableJ-7(seetext).t5ThetotalareathatwouldbeinundatedbytheWatanaimpoundmentascalculatedbyMcKendricketal.(1982)inthevegetationstudiesdiffersslightlyfromtheimpoundmentareastatedinSection2.1.2.1.Thisisprobablyduetodifferencesinmappingtechniques.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.83(Revised),p.3B-7-4,whichisbasedonthe1:63,360maps(Fig.J-2).J-47TableJ-18.AcreageofVegetationTypesthatWouldbePermanentlyLostasaResultoftheWatanaDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinVegetatedAreaLost(acres)t1PercentageofDamandPermanentBasinTotalforVegetationTypeSpi11waysImpoundmentVi11ageAirstripTotalRespectiveTypet2Forest8427,0000027,0003.1Woodlandblackspruce209,6009,6002.3Woodlandwhitespruce980980Openblackspruce7,1007,1003.1Openwhitespruce1,9001,900Openbirch280081040.5t3Closedbirch321,1001,200120.0t3Closedbalsampoplar77t4Openmixed123,3003,3005.7Closedmixed171,9001,9004.9Tundra0210002100.02Wetsedge-grass2102101.8Shrubland1104,10067424,4000.3Opentallshrub155605800.4Closedtallshrub42710750Birchshrub21,10037321,2001.4Wi11owshrub1601600.6Mixedlowshrub541,60030101,7000.1Herbaceous011000110t4Unvegetated325,2002005,3000.9Rock21501500.05River305,0005,00013.9Lake94201100.2TotalVegetatedArea19831,000674231,0000.9TotalArea23036,000t5864237,0000.9t1Acreagesconvertedfromhectaresasgiveninthesourceandroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t3Thisisanoverestimationcausedbydifferencesinmappingscales(seetext).t4ThesevegetationtypeswerenotquantifiedinTableJ-7(seetext).t5ThetotalareathatwouldbeinundatedbytheWatanaimpoundmentascalculatedbyMcKendricketal.(1982)inthevegetationstudiesdiffersslightlyfromtheimpoundmentareastatedinSection2.1.2.1.Thisisprobablyduetodifferencesinmappingtechniques.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.83(Revised),p.3B-7-4,whichisbasedonthe1:63,360maps(Fig.J-2).
Table J-19.Acreage of Vegetation Types that Would be Temporarily Lost and Would Require Rehabilitation as a
Result of the Watana Development and Comparison of Each Type with the Total Acreage of that Type in
the Upper and Middle Susitna Basint 1
Vegetated Area Lost (acres)t2
Borrow Areast 3
Vegetation Type
Const ruct ion
Camp
Temporary
Vi 11 age A o E F H
Contractor Work
Areas and Con-
struction Roadst 4 Total
Percentage of
Basin Total for
Respective Typet S
2
2 5 0 0 0 0
5
450 130 440 200 1,100 84
440 40 550
12
79 260
120 2 47
170 20 0 0 0 0
20
c..,
I
-Poco
0.2
3.3
0.7
0.7
0.02
0.2
0.1
0.2
0.05
1.0
0.2
0.1
0.3
0.3
<0.01
<0.01
<0.01
190
20
170
2,400
2
160
840
52
1,400
7
5
2
2,600
1,000
350
340
190
33
410
270
o
720
o
200
21
73
100
120
840o
42
52
94
300 37
480
10
o 490
180 170
5 150 27
200 550
2
2 30
10 220
190 310
170
o
o
o
49
37
86
o
o
o
84
72
160
Un vegetated
Rock
Lake
Forest
Woodland black spruce
Woodland white spruce
Open black spruce
Open white spruce
Closed birch
Open mixed
Closed mixed
Tundra
Wet sedge-grass
Mat and cushion
Shrubland
Open tall shrub
Closed tall shrub
Birch shrub
Wi 11 ow shrub
Mixed low shrub
Total Vegetated Area
Total Area
160
160
86
86
820 700 440 690 1,200 84
820 710 440 690 1,200 84
1,000
1,000
5,200
5,200
0.2
0.1
t 1 The use of the word,temporarily,implies that the area would eventually be rehabilitated.
t 2 Acreages converted from hectares as given in the source and rounded to two significant figures;values do not add up to totals
for each major vegetation type due to rounding errors.
t 3 Values only include acreages located above the maximum impoundment elevation.
t 4 Values estimated by determining total acreages within 10 mi (16 km)of the Susitna River (Table J-8)of types that might be
affected (according to Exhibit E,Vol.6A,Chap.3,p.E-3-276),and determining what proportion each type represents of the
total for all types affected.These proportions were then multiplied by the estimated total acreage of work areas and roads to
give estimates of each type that might be affected.
t S Percentages calculated by dividing acreages by total acreages for each type as given in Table J-7.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Modified from Supplemental Information to Exhibit E,Vol.6B,Chap.3,June 30,1983,Table E.3.83 (Revised),p.3B-7-4,
which is based on the 1:63,360 maps (Fig.J-2).
Table J-19.Acreage of Vegetation Types that Would be Temporarily Lost and Would Require Rehabilitation as a
Result of the Watana Development and Comparison of Each Type with the Total Acreage of that Type in
the Upper and Middle Susitna Basint 1
Vegetated Area Lost (acres)t2
Borrow Areast 3
Vegetation Type
Construction
Camp
Temporary
Vi 11 age A o E F H
Contractor Work
Areas and Con-
struction Roadst 4 Total
Percentage of
Basin Total for
Respective Typet S
2
2 5 0 0 0 0
5
450 130 440 200 1,100 84
440 40 550
12
79 260
120 2 47
170 20 0 0 0 0
20
c..,
I
-Poco
0.2
3.3
0.7
0.7
0.02
0.2
0.1
0.2
0.05
1.0
0.2
0.1
0.3
0.3
<0.01
<0.01
<0.01
190
20
170
2,400
2
160
840
52
1,400
7
5
2
2,600
1,000
350
340
190
33
410
270
o
720
o
21
73
100
200
120
840o
42
52
94
300 37
480
10
o 490
180 170
5 150 27
200 550
2
2 30
10 220
190 310
170
o
o
o
49
37
86
o
o
o
84
72
160
Un vegetated
Rock
Lake
Forest
Woodland black spruce
Woodland white spruce
Open black spruce
Open white spruce
Closed birch
Open mixed
Closed mixed
Tundra
Wet sedge-grass
Mat and cushion
Shrubland
Open tall shrub
Closed tall shrub
Birch shrub
Wi 11 ow shrub
Mixed low shrub
Total Vegetated Area
Total Area
160
160
86
86
820 700 440 690 1,200 84
820 710 440 690 1,200 84
1,000
1,000
5,200
5,200
0.2
0.1
t 1 The use of the word,temporarily,implies that the area would eventually be rehabilitated.
t 2 Acreages converted from hectares as given in the source and rounded to two significant figures;values do not add up to totals
for each major vegetation type due to rounding errors.
t 3 Values only include acreages located above the maximum impoundment elevation.
t 4 Values estimated by determining total acreages within 10 mi (16 km)of the Susitna River (Table J-8)of types that might be
affected (according to Exhibit E,Vol.6A,Chap.3,p.E-3-276),and determining what proportion each type represents of the
total for all types affected.These proportions were then multiplied by the estimated total acreage of work areas and roads to
give estimates of each type that might be affected.
t S Percentages calculated by dividing acreages by total acreages for each type as given in Table J-7.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Modified from Supplemental Information to Exhibit E,Vol.6B,Chap.3,June 30,1983,Table E.3.83 (Revised),p.3B-7-4,
which is based on the 1:63,360 maps (Fig.J-2).
J-49p.E-3-276-E-3-277),temporaryfacilitiesandborrowareaswouldberemovedand/orregradedandrehabilitatedbytheendoftheconstructionandreservoir-fillingperiod(within11yearsofthestartofconstruction).GeneralrehabilitationproceduresplannedbytheApplicanthavebeendescribedinSectionJ.3.1.3andExhibitE(Vol.6A,Chap.3,p.E-3-279-E-3-281).Ifsoilscanbeadequatelyrestoredonrehabilitatedareas,itislikelythatatleastsomevegetationwouldreestablishratherrapidlybecauseofthedisturbance-adaptednatureofsub-arcticplantspeciesandcommunities(VanCleve,1978;WebberandIves,1978;ChapinandChapin,1980;ViereckandSchandelmeier,1980;VanCleveandViereck,1981).However,inmost(ifnotall)instances,itwouldbereadilyapparentforsometimethattheareahasbeendisturbed.Therateatwhichplantcommunitiesinrehabilitatedareasreplacetheoriginalpatternoflostvegetationorblendinwithsurroundingcommunitieswoulddependontheratesofplantreestab-lishmentandsuccessionontherehabilitatedsitesandinsurroundingareas.Therateanddirectionofplantreestablishmentandsuccessionateachsitemightvarydependingonnumerousfactors,suchas:sizeoftheaffectedarea;vegetationtypesinsurroundingareas;changesinphysical,chemical,andmicrobialpropertiesofsoilsduringstorage;viabilityofseedsandvegetativepropagulesinreplacedsoils;whetherornotintroducedspecieswereinitiallyseededforerosioncontrol;siteslope,aspect,andelevation;soiltype;soilnutrientcontent;soilmoistureanddrainageconditions;presenceofpermafrost;soiltextureanddegreeofcompaction;degreeofherbivoreuse;andfireoccurrence.Basedontheratesofplantsuccessionreportedforfloodplainsandglacialmorainesandthoseobservedfollowingfires(Viereck,1966;ViereckandSchandelmeier,1980;VanCleveandViereck,1981),itmightbe150yearsormore(perhapseven250to300years)beforetheoriginalvegetationtypesremovedfromsomeareas(generallythoseoccupiedbylatersuccessionalstages)werereplacedwithsimilarplantcommunities.Ofcourse,itmighttakelesstimeifconditionsareoptimal.Ontheotherhand,replacementoflatersuccessionalstandsbyearlierseralstagesmightbebeneficialforwildlifebecauseearlyseralstagesgenerallyprovidemorehigh-qualityforagethandolaterseralstages(Wolff,1978;WolffandZasada,1979;ViereckandSchandelmeier,1980).Inmanycases,thelong-termeffectsofheavybrowsingmightbetoincreaseproductionthroughincreasedlateralbranching(ViereckandDyrness,1979;WolffandZasada,1979).However,itispossiblethatsomeoftherehabilitatedareascouldbeover-browsedwhichmightcausevegetationstunting,poorcover,erosion,anddecreasedstabilityofthedevelopingplantcommunity.Negativeeffectsassociatedwithheavybrowsingareprobablymostlikelytooccurinareaswherestressesareatahighlevel(e.g.lownutrientreserves)(Wolff,1978;WolffandZasada,1979).ManyofthevegetationtypesthatwouldbeclearedduringconstructionofWatanafacilitiescanalsobeconsideredwetlands.However,itisdifficulttoaccuratelypredicttheactualacreagesofvariouswetlandtypesthatwouldbelostbecausetheApplicanthasnotconductedadetailedwetlandmappingprogramwhichincludesconsiderationofsoilsandtopographyaswellasplantcommunities.Lackingbetterinformation,extremelyliberalestimatesofpotentialwetlandsthatwouldbelostduetoconstructionoftheWatanadevelopment(TablesJ-20andJ-21)havebeenmadeonthebasisoftheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).TheareaspresentedinTablesJ-20andJ-21reallyrepresentareasthatwouldbelostinwhichwetlandspotentiallycouldoccur.Thus,asaliberalestimate,28,000acres(11,300ha)ofwetlands,primarilypalustrineforested,needle-leavedevergreentypes,wouldbepermanentlylostasaresultofWatanaconstructionandfilling(TableJ-20).Thisacreagerepresentsabout1.3%ofthepotentialwetlandareaintheupperandmiddleSusitnaBasin.Althoughlessthan250acres(100ha)ofpalustrineandlacus-trineemergent,persistentwetlandswouldbelost,theseareasaccountforalmost2%ofthetypewithintheupperandmiddleSusitnaBasin.Additionally,about14%oftheriverinetypewithintheupperandmiddleBasinwouldbelost.ConstructionoftemporaryfacilitiesandborrowareasfortheWatanadevelopmentcouldpoten-tiallyaffectanadditionalareaofapproximately4,200acres(1,700ha)ofwetlands(TableJ-21).Thisareaamountstoapproximately0.2%ofthewetlandswithintheupperandmiddleSusitnaBasin.Althoughthelandareaswherethesetemporaryfacilitieshadbeenlocatedwouldbephysicallyrehabilitated,itisimpossibletopredictwhetherwetlandsthatoriginallyoccurredintheseareaswouldberestored.Sincelocalizeddrainagepatternsandterrainmightoftenbeaffectedorpurposefullychangedduringconstructionofprojectfacilitiesorexcavationofborrowareas,thepotentialforandthefeasibilityofreestablishingwetlandconditionsmustbeconsideredonacase-by-casebasis.Conversely,constructionofWatanafacilitiesmightchangelocaldrainagepatternsaroundthefacilities,resultinginthecreationofnewwetlandsnearby(Berg,1980).However,theApplicanthasindicatedthateffortswouldbetakentoavoidwet-landswhereverpossibleduringconstructionofprojectfacilitiesandtominimizepotentialmajoralterationstodrainagepatternsthroughproperengineeringdesign(ExhibitE,Vol.6A,Chap.3,p.E-3-256andE-3-290).J-49p.E-3-276-E-3-277),temporaryfacilitiesandborrowareaswouldberemovedand/orregradedandrehabilitatedbytheendoftheconstructionandreservoir-fillingperiod(within11yearsofthestartofconstruction).GeneralrehabilitationproceduresplannedbytheApplicanthavebeendescribedinSectionJ.3.1.3andExhibitE(Vol.6A,Chap.3,p.E-3-279-E-3-281).Ifsoilscanbeadequatelyrestoredonrehabilitatedareas,itislikelythatatleastsomevegetationwouldreestablishratherrapidlybecauseofthedisturbance-adaptednatureofsub-arcticplantspeciesandcommunities(VanCleve,1978;WebberandIves,1978;ChapinandChapin,1980;ViereckandSchandelmeier,1980;VanCleveandViereck,1981).However,inmost(ifnotall)instances,itwouldbereadilyapparentforsometimethattheareahasbeendisturbed.Therateatwhichplantcommunitiesinrehabilitatedareasreplacetheoriginalpatternoflostvegetationorblendinwithsurroundingcommunitieswoulddependontheratesofplantreestab-lishmentandsuccessionontherehabilitatedsitesandinsurroundingareas.Therateanddirectionofplantreestablishmentandsuccessionateachsitemightvarydependingonnumerousfactors,suchas:sizeoftheaffectedarea;vegetationtypesinsurroundingareas;changesinphysical,chemical,andmicrobialpropertiesofsoilsduringstorage;viabilityofseedsandvegetativepropagulesinreplacedsoils;whetherornotintroducedspecieswereinitiallyseededforerosioncontrol;siteslope,aspect,andelevation;soiltype;soilnutrientcontent;soilmoistureanddrainageconditions;presenceofpermafrost;soiltextureanddegreeofcompaction;degreeofherbivoreuse;andfireoccurrence.Basedontheratesofplantsuccessionreportedforfloodplainsandglacialmorainesandthoseobservedfollowingfires(Viereck,1966;ViereckandSchandelmeier,1980;VanCleveandViereck,1981),itmightbe150yearsormore(perhapseven250to300years)beforetheoriginalvegetationtypesremovedfromsomeareas(generallythoseoccupiedbylatersuccessionalstages)werereplacedwithsimilarplantcommunities.Ofcourse,itmighttakelesstimeifconditionsareoptimal.Ontheotherhand,replacementoflatersuccessionalstandsbyearlierseralstagesmightbebeneficialforwildlifebecauseearlyseralstagesgenerallyprovidemorehigh-qualityforagethandolaterseralstages(Wolff,1978;WolffandZasada,1979;ViereckandSchandelmeier,1980).Inmanycases,thelong-termeffectsofheavybrowsingmightbetoincreaseproductionthroughincreasedlateralbranching(ViereckandDyrness,1979;WolffandZasada,1979).However,itispossiblethatsomeoftherehabilitatedareascouldbeover-browsedwhichmightcausevegetationstunting,poorcover,erosion,anddecreasedstabilityofthedevelopingplantcommunity.Negativeeffectsassociatedwithheavybrowsingareprobablymostlikelytooccurinareaswherestressesareatahighlevel(e.g.lownutrientreserves)(Wolff,1978;WolffandZasada,1979).ManyofthevegetationtypesthatwouldbeclearedduringconstructionofWatanafacilitiescanalsobeconsideredwetlands.However,itisdifficulttoaccuratelypredicttheactualacreagesofvariouswetlandtypesthatwouldbelostbecausetheApplicanthasnotconductedadetailedwetlandmappingprogramwhichincludesconsiderationofsoilsandtopographyaswellasplantcommunities.Lackingbetterinformation,extremelyliberalestimatesofpotentialwetlandsthatwouldbelostduetoconstructionoftheWatanadevelopment(TablesJ-20andJ-21)havebeenmadeonthebasisoftheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).TheareaspresentedinTablesJ-20andJ-21reallyrepresentareasthatwouldbelostinwhichwetlandspotentiallycouldoccur.Thus,asaliberalestimate,28,000acres(11,300ha)ofwetlands,primarilypalustrineforested,needle-leavedevergreentypes,wouldbepermanentlylostasaresultofWatanaconstructionandfilling(TableJ-20).Thisacreagerepresentsabout1.3%ofthepotentialwetlandareaintheupperandmiddleSusitnaBasin.Althoughlessthan250acres(100ha)ofpalustrineandlacus-trineemergent,persistentwetlandswouldbelost,theseareasaccountforalmost2%ofthetypewithintheupperandmiddleSusitnaBasin.Additionally,about14%oftheriverinetypewithintheupperandmiddleBasinwouldbelost.ConstructionoftemporaryfacilitiesandborrowareasfortheWatanadevelopmentcouldpoten-tiallyaffectanadditionalareaofapproximately4,200acres(1,700ha)ofwetlands(TableJ-21).Thisareaamountstoapproximately0.2%ofthewetlandswithintheupperandmiddleSusitnaBasin.Althoughthelandareaswherethesetemporaryfacilitieshadbeenlocatedwouldbephysicallyrehabilitated,itisimpossibletopredictwhetherwetlandsthatoriginallyoccurredintheseareaswouldberestored.Sincelocalizeddrainagepatternsandterrainmightoftenbeaffectedorpurposefullychangedduringconstructionofprojectfacilitiesorexcavationofborrowareas,thepotentialforandthefeasibilityofreestablishingwetlandconditionsmustbeconsideredonacase-by-casebasis.Conversely,constructionofWatanafacilitiesmightchangelocaldrainagepatternsaroundthefacilities,resultinginthecreationofnewwetlandsnearby(Berg,1980).However,theApplicanthasindicatedthateffortswouldbetakentoavoidwet-landswhereverpossibleduringconstructionofprojectfacilitiesandtominimizepotentialmajoralterationstodrainagepatternsthroughproperengineeringdesign(ExhibitE,Vol.6A,Chap.3,p.E-3-256andE-3-290).
Table J-20.Acreage of Potential Wetland Types that Would be Permanently Lost as a Result of the
Watana Development and Comparison of Each Type with the Total Acreage of that
Type in the Upper and Middle Susitna Basin
Potential Wetland Area Lost (acres)t 1
Percentage of
Dam and Permanent Basin Total for
Wetland Type Spi llways Impoundment Vi 11 age Airstrip Total Respective Typet 2
Palustrine forested,20 20,000 0 0 20,000 2.6
needle-leaved evergreen
Palustrine forested,0 7 0 0 7 0.7
broad-leaved deciduous
Palustrine scrub-shrub,57 2,900 67 42 3,000 0.2
broad-leaved deciduous c....
IPalustrineorlacustrine0210002101.8 (J1
0emergent,persistent
Lacustrine 0 94 20 0 no 0.2
Riverine 30 5,000 0 0 5,000 13.9
Total Potential no 28,000 86 42 28,000 1.3
Wetland Area
t 1 Acreages based on correlation of vegetation types to wetland types of Cowardin et al.(1979)as in Table J-5,
converted from hectares as given in the source,and rounded to two significant figures.Values do not add up to
totals due to rounding errors.
t 2 Percentages calculated by dividing acreages by total acreages for each type as given in Table J-12.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Table J-18 using correlations of vegetation types to potential wetland classes as
given in Table J-5.
Table J-20.Acreage of Potential Wetland Types that Would be Permanently Lost as a Result of the
Watana Development and Comparison of Each Type with the Total Acreage of that
Type in the Upper and Middle Susitna Basin
Potential Wetland Area Lost (acres)tl Percentage of
Dam and Permanent Basin Total for
Wetland Type Spi llways Impoundment Vi 11 age Airstrip Total Respective Typet 2
Palustrine forested,20 20,000 0 0 20,000 2.6
needle-leaved evergreen
Palustrine forested,0 7 0 0 7 0.7
broad-leaved deciduous
Palustrine scrub-shrub,57 2,900 67 42 3,000 0.2
broad-leaved deciduous c....
IPalustrineorlacustrine0210002101.8 (J1
0emergent,persistent
Lacustrine 0 94 20 0 no 0.2
Riverine 30 5,000 0 0 5,000 13.9
Total Potential no 28,000 86 42 28,000 1.3
Wetland Area
t 1 Acreages based on correlation of vegetation types to wetland types of Cowardin et al.(1979)as in Table J-5,
converted from hectares as given in the source,and rounded to two significant figures.Values do not add up to
totals due to rounding errors.
t 2 Percentages calculated by dividing acreages by total acreages for each type as given in Table J-12.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Table J-18 using correlations of vegetation types to potential wetland classes as
given in Table J-5.
Table J-21.Acreage of Potential Wetland Types that Would be Temporarily Lost and Would Require Rehabilitation as a Result of the
Watana Development and Comparison of Each Type with the Total Acreage of that Type in the Upper and Middle Susitna Basint 1
Potential Wetland Area Lost (acres)t 2
Borrow Areast 3 Contractor Work Percentage of
Construction Temporary Areas and Con-Basin Total for
Vegetation Type Camp Vi 11 age A D E F H I struction Roadst 4 Total Respective Typet 5
Palustrine forested,0 0 450 40 330 200 850 37 0 1,900 0.3
needle-leaved evergreen
Palustrine scrub-shrub,160 86 200 520 0 490 94 0 720 2,300 0.2
broad-leaved deciduous
Palustrine or lacustrine 0 0 0 20 0 0 0 0 0 20 0.2
emergent,persistent
Lacustrine 0 0 2 0 0 0 0 0 0 2 <0.01
Riverine 0 0 0 0 0 0 0 0 0 0 0
Total Potential 160 86 640 580 330 690 940 37 720 4,200 0.2
Wetland Area
t 1 The use of the word,temporarily,implies that the area would eventually be rehabilitated.
t 2 Acreages based on correlation of vegetation types to wetland types of Cowardin et al.(1979)as in Table J-5,converted from
hectares as given in the source,and rounded to two significant figures.Values do not add up to totals due to rounding errors.
t 3 Values only include potential wetland acreages located above the maximum impoundment elevation.
t 4 Values estimated by determining total acreages within 10 mi (16 km)of the Susitna River (Table J-8)of types that might be
affected (according to Exhibit E,Vol.6A,Chap.3,p.E-3-276),and determining what proportion each type represents of the
total for all types affected.These proportions were then multiplied by the estimated total acreage of work areas and roads to
give estimates of each type that might be affected.
t 5 Percentages calculated by dividing acreages by total acreages for each type as given in Table J-12.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Table J-19 using correlations of vegetation types to potential wetland classes as given in
Table J-5.
L
I
U1
f-'
Table J-21.Acreage of Potential Wetland Types that Would be Temporarily Lost and Would Require Rehabilitation as a Result of the
Watana Development and Comparison of Each Type with the Total Acreage of that Type in the Upper and Middle Susitna Basint 1
Potential Wetland Area Lost (acres)t 2
Borrow Areast 3 Contractor Work Percentage of
Construction Temporary Areas and Con-Basin Total for
Vegetation Type Camp Vi 11 age A D E F H I struction Roadst 4 Total Respective Typet 5
Palustrine forested,0 0 450 40 330 200 850 37 0 1,900 0.3
needle-leaved evergreen
Palustrine scrub-shrub,160 86 200 520 0 490 94 0 720 2,300 0.2
broad-leaved deciduous
Palustrine or lacustrine 0 0 0 20 0 0 0 0 0 20 0.2
emergent,persistent
Lacustrine 0 0 2 0 0 0 0 0 0 2 <0.01
Riverine 0 0 0 0 0 0 0 0 0 0 0
Total Potential 160 86 640 580 330 690 940 37 720 4,200 0.2
Wetland Area
t 1 The use of the word,temporarily,implies that the area would eventually be rehabilitated.
t 2 Acreages based on correlation of vegetation types to wetland types of Cowardin et al.(1979)as in Table J-5,converted from
hectares as given in the source,and rounded to two significant figures.Values do not add up to totals due to rounding errors.
t 3 Values only include potential wetland acreages located above the maximum impoundment elevation.
t 4 Values estimated by determining total acreages within 10 mi (16 km)of the Susitna River (Table J-8)of types that might be
affected (according to Exhibit E,Vol.6A,Chap.3,p.E-3-276),and determining what proportion each type represents of the
total for all types affected.These proportions were then multiplied by the estimated total acreage of work areas and roads to
give estimates of each type that might be affected.
t 5 Percentages calculated by dividing acreages by total acreages for each type as given in Table J-12.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Table J-19 using correlations of vegetation types to potential wetland classes as given in
Table J-5.
J-52IndirectVegetationLossorDamageandAlterationofPlantCommunitiesVegetationlossordamagecouldoccurasaresultoferosionandslumpageonslopessurroundingtheimpoundmentorotherWatanafacilities(Baxter,1977;BaxterandGlaude,1980;Jassby,1980).Twomajorcausesofreservoirslopeinstabilityareexpectedtobereservoir-inducedchangesingroundwaterregimesandthawingofpermafrost(ExhibitE,Vol.7,Chap.6,p.E-6-31).Morelocalizederosionwouldprobablyoccurasaresultofconstruction-relatedfactors,suchas;altereddrainagepatterns,blowdownoftreesnearclearedareas,anddestabilizationofsoilsexposedbyclearing.AlthoughthearealextentofslopeinstabilityalongtheWatanareservoirshorelinecannotbereliablyquantifiedinadvance,theApplicanthascalculated,onthebasisofaerialphoto-graphicinterpretationandlimitedfieldreconnaissance,thatabout15,000acres(6,000ha)oflandadjacenttothereservoirshorelinemightbeaffectedtosomedegreebybeaching,flow,orblockslides(SupplementalInformationtoExhibitE,Vol.7,Chap.6,Item7).Itisantici-patedthattheseslopefailureswouldbealong-term,progressiveactivityinitiatedduringconstructionandcontinuingduringoperation,andthatsomeportionoftheseareaswouldbesusceptibletoerosionandlossofvegetation.Therearethreemajorareaswhereerosion,slumpage,andsUbsequentvegetationlosswouldbeexpected.ThelargestareaoccursonthesouthsideofthecanyonfromthesouthabutmentoftheWatanadamsite(RM184)totheVeeCanyon-OshetnaRiverarea(RM225-233).Theslopesinthisreach(seeExhibitE,Vol.7,Chap.6,Figs.E.6.31-E.6.45),especiallytoRM218areunderlainbydiscontinuouspermafrostthatis200-to300-ft(60-to90-m)deep.Vegetationtypesthatcouldpotentiallybeaffectedbyerosionandslumpageinthisreachincludewoodlandandopenblackspruceandlowshrubtypes.FromtheOshetnaRiver-GooseCreekarea(RM233)totheheadwatersofthereservoir(RM243),cliffsoffrozensiltsandclaysareconsideredsuscep-tibletoslumpageanderosion.Woodlandblackspruceandbirchshrubarethepredominantvegeta-tiontypesalongthisreach.ThethirdareaconsistsoftheslopesalongthenorthsideofthecanyonfromtheWatanadamsitetotheWatanaCreekarea(RM194).Inthisareaunconsolidatedglacialoutwashoccurswithinandabovethedrawdownzone.Vegetationtypesinthisareaincludewoodlandandopenblackspruce,birchshrub,andlowmixedshrub.However,theexactlocationsandacreagesofspecificvegetationtypesthatwouldbeaffectedbyerosionandslumpagecannotbereliablyquantifiedatthistime(ExhibitE,Vol.6A,Chap.3,p.E-3-226andp.E-3-285-E-3-286).Increasedwindscausedbythegreaterfetchassociatedwithclearingoftheimpoundmentarea(BaxterandGlaude,1980)couldresultinblowdownoftreesneartheimpoundment.Blowdownhasbeenidentifiedasaprobleminclearedareas(Todd,1982).TheareaslikelytosufferthegreatestdamagearethestandsofwoodlandblacksprucesouthoftheWatanadamsite,becauseofpredominatelynortheasterlywindsandthetypicallyshallowrootingdepth[12in(30cm)]ofblackspruce.SeveralotherfactorsassociatedwiththeconstructionoftheWatanadevelopmentmightcauserelativelylocalizedvegetationdamageand/oralterationsinplantcommunitiesofanunquantifi-ablenature.Forexample,changesindrainagepatternsandsurfacehydrologywouldbecausedbysuchconstructionactivitiesasclearing,ditching,soilstockpiling,andborrowsiteexcavation(Berg,1980).Somesoilsmightbecomewaterlogged;othersmightaccumulatelessmoisture.Soilaerationconditionsandnutrientcyclingprocessescouldalsobeaffected.Theactivelayerofpermafrostareasmightchange,andclearedsoilsmightfreezeandthawdeeperandearlierthanwheninsulatedbyvegetation.Suchchangesinsurfaceandsoilwaterregimesmightdirectlyalterthecompositionorproductivityofnearbyplantcommunitiesormightcauseerosiontherebyindirectlyaffectingvegetation.Onpermafrost-freesites,rainfall-andsnowmelt-inducedsheet-rillerosionmightbeontheorderof10to20timesgreateronclearedsiteswheretheorganiclayerisremovedthenonsiteswheregroundlayervegetationandtheorganiclayerareleftintact(AldrichandSlaughter,1983).Fugitivedustfromclearedareasandborrowsitesmightaccumulateonvegetationorcauseabrasivedamage.Relativelythickaccumulationscanpotentiallyretardsnowmelt;whereas,relativelythinaccumulationsmayspeedupsnowmelt(Drake,1981).Eithersituationcanaffectplantphenology.Directeffectsofdustonplantswouldvarydependingonfactorssuchasthicknessofaccumulation,chemicalcompositionofthedust,andplantspecies.Intundravegetationtypes,mossesandlichens(particularlySphagnumspp.andlichensinthefamilyCladoniaceae)appeartobegenerallylesstolerantofdustingthanvascularplants,presumablyduetofactorssuchastheirlowgrowthform,shallowsurfaceanchoring,andlackofcuticle(Everett,1980).Growthofsomespecies,notablythecottongrasses,mightactuallybestimula-tedbydustingconditions.CommunitieswithahighabundanceofSphagnumand/orfruticoselichensarelikelytobeaffectedmorethanothercommunities.Permafrostmightbeaffectedinthesecommunitiesifthethicknessoftheinsulatingorganiclayerisreducedsignificantly.Clearingaswellastheindirectlossordamageofvegetationmightaffecttheabundanceofinsects,decayorganisms,anddisease-causingagents.Changesintheabundanceoftheseorganismscouldhavefurtherindirecteffectsonvegetation.J-52IndirectVegetationLossorDamageandAlterationofPlantCommunitiesVegetationlossordamagecouldoccurasaresultoferosionandslumpageonslopessurroundingtheimpoundmentorotherWatanafacilities(Baxter,1977;BaxterandGlaude,1980;Jassby,1980).Twomajorcausesofreservoirslopeinstabilityareexpectedtobereservoir-inducedchangesingroundwaterregimesandthawingofpermafrost(ExhibitE,Vol.7,Chap.6,p.E-6-31).Morelocalizederosionwouldprobablyoccurasaresultofconstruction-relatedfactors,suchas;altereddrainagepatterns,blowdownoftreesnearclearedareas,anddestabilizationofsoilsexposedbyclearing.AlthoughthearealextentofslopeinstabilityalongtheWatanareservoirshorelinecannotbereliablyquantifiedinadvance,theApplicanthascalculated,onthebasisofaerialphoto-graphicinterpretationandlimitedfieldreconnaissance,thatabout15,000acres(6,000ha)oflandadjacenttothereservoirshorelinemightbeaffectedtosomedegreebybeaching,flow,orblockslides(SupplementalInformationtoExhibitE,Vol.7,Chap.6,Item7).Itisantici-patedthattheseslopefailureswouldbealong-term,progressiveactivityinitiatedduringconstructionandcontinuingduringoperation,andthatsomeportionoftheseareaswouldbesusceptibletoerosionandlossofvegetation.Therearethreemajorareaswhereerosion,slumpage,andsUbsequentvegetationlosswouldbeexpected.ThelargestareaoccursonthesouthsideofthecanyonfromthesouthabutmentoftheWatanadamsite(RM184)totheVeeCanyon-OshetnaRiverarea(RM225-233).Theslopesinthisreach(seeExhibitE,Vol.7,Chap.6,Figs.E.6.31-E.6.45),especiallytoRM218areunderlainbydiscontinuouspermafrostthatis200-to300-ft(60-to90-m)deep.Vegetationtypesthatcouldpotentiallybeaffectedbyerosionandslumpageinthisreachincludewoodlandandopenblackspruceandlowshrubtypes.FromtheOshetnaRiver-GooseCreekarea(RM233)totheheadwatersofthereservoir(RM243),cliffsoffrozensiltsandclaysareconsideredsuscep-tibletoslumpageanderosion.Woodlandblackspruceandbirchshrubarethepredominantvegeta-tiontypesalongthisreach.ThethirdareaconsistsoftheslopesalongthenorthsideofthecanyonfromtheWatanadamsitetotheWatanaCreekarea(RM194).Inthisareaunconsolidatedglacialoutwashoccurswithinandabovethedrawdownzone.Vegetationtypesinthisareaincludewoodlandandopenblackspruce,birchshrub,andlowmixedshrub.However,theexactlocationsandacreagesofspecificvegetationtypesthatwouldbeaffectedbyerosionandslumpagecannotbereliablyquantifiedatthistime(ExhibitE,Vol.6A,Chap.3,p.E-3-226andp.E-3-285-E-3-286).Increasedwindscausedbythegreaterfetchassociatedwithclearingoftheimpoundmentarea(BaxterandGlaude,1980)couldresultinblowdownoftreesneartheimpoundment.Blowdownhasbeenidentifiedasaprobleminclearedareas(Todd,1982).TheareaslikelytosufferthegreatestdamagearethestandsofwoodlandblacksprucesouthoftheWatanadamsite,becauseofpredominatelynortheasterlywindsandthetypicallyshallowrootingdepth[12in(30cm)]ofblackspruce.SeveralotherfactorsassociatedwiththeconstructionoftheWatanadevelopmentmightcauserelativelylocalizedvegetationdamageand/oralterationsinplantcommunitiesofanunquantifi-ablenature.Forexample,changesindrainagepatternsandsurfacehydrologywouldbecausedbysuchconstructionactivitiesasclearing,ditching,soilstockpiling,andborrowsiteexcavation(Berg,1980).Somesoilsmightbecomewaterlogged;othersmightaccumulatelessmoisture.Soilaerationconditionsandnutrientcyclingprocessescouldalsobeaffected.Theactivelayerofpermafrostareasmightchange,andclearedsoilsmightfreezeandthawdeeperandearlierthanwheninsulatedbyvegetation.Suchchangesinsurfaceandsoilwaterregimesmightdirectlyalterthecompositionorproductivityofnearbyplantcommunitiesormightcauseerosiontherebyindirectlyaffectingvegetation.Onpermafrost-freesites,rainfall-andsnowmelt-inducedsheet-rillerosionmightbeontheorderof10to20timesgreateronclearedsiteswheretheorganiclayerisremovedthenonsiteswheregroundlayervegetationandtheorganiclayerareleftintact(AldrichandSlaughter,1983).Fugitivedustfromclearedareasandborrowsitesmightaccumulateonvegetationorcauseabrasivedamage.Relativelythickaccumulationscanpotentiallyretardsnowmelt;whereas,relativelythinaccumulationsmayspeedupsnowmelt(Drake,1981).Eithersituationcanaffectplantphenology.Directeffectsofdustonplantswouldvarydependingonfactorssuchasthicknessofaccumulation,chemicalcompositionofthedust,andplantspecies.Intundravegetationtypes,mossesandlichens(particularlySphagnumspp.andlichensinthefamilyCladoniaceae)appeartobegenerallylesstolerantofdustingthanvascularplants,presumablyduetofactorssuchastheirlowgrowthform,shallowsurfaceanchoring,andlackofcuticle(Everett,1980).Growthofsomespecies,notablythecottongrasses,mightactuallybestimula-tedbydustingconditions.CommunitieswithahighabundanceofSphagnumand/orfruticoselichensarelikelytobeaffectedmorethanothercommunities.Permafrostmightbeaffectedinthesecommunitiesifthethicknessoftheinsulatingorganiclayerisreducedsignificantly.Clearingaswellastheindirectlossordamageofvegetationmightaffecttheabundanceofinsects,decayorganisms,anddisease-causingagents.Changesintheabundanceoftheseorganismscouldhavefurtherindirecteffectsonvegetation.
J-53Theremightbeincreasedincidencesoffiresduetothegreaternumbersofpeopleintheareaduringconstruction.Althoughfireisanaturalfactoraffectingplantcommunitydistributionpatternsintheregion(ViereckandSchande1meier,1980),Susitnadeve1opment-re1atedfireswouldcauseplantcommunitychangessimi1artothosecausedbynaturalfires.However,thefrequency,duration,intensity,andareaofthefiresmightbealteredbycomparisontonaturallycausedfires,andthiscouldhavesomeeffectonplantcommunitydistributions.Therewouldbeotherformsofindirectloss,damage,andalterationofvegetationduetoincreasedhumanactivityintheWatanadevelopmentareaduringconstruction.Nonessentialdisturbanceofvegetationsurroundingthecamp,village,airstrip,andconstructionareascausedbyworkersandotherscannotbeavoidedentirely.TheApplicanthasstatedthatamonitoringprogramwouldbeinstitutedtodetermineareasdisturbedbysuchactivitiesandthattheseareaswouldberehabili-tatedalongwiththoseareasidentifiedinTableJ-19(ExhibitE,Vol.6A,Chap.3,p.E-3-281-E-3-282).Increaseduseofoff-roadvehicles(ORV)andall-terrainvehicles(ATV)mightalsooccurinthedevelopmentarearesultinginincreasederosion,subsidence,additionallocalizedvegetationlossordamage,and/oralterationofplantcommunities.TheeffectsofORV/ATVusewouldprobablybemostsevereasaresultofsummeruseandinareaswithpermafrost,inwet-lands,inareaswithhighsoilmoisturecontent,ondeepgravel-freesoils,onslopes,andintundravegetationtypes(RickardandBrown,1974;GersperandChallinor,1975;ChallinorandGersper,1975;Sparrowetal.,1978).Plantrecoverywouldbelesslikelyiftheorganiclayerwasseverelydisturbedandrootsystemsweredestroyed(RickardandBrown,1974).Inareaswheretheorganiclayeristotallyremoveditmaytake100yearsorlongerforrebuildingofanorganicmatcapab1eofretainingnutrientswithinthesystem(ChapinandVanCleve,1978).TheresultsofORV/ATVusagearequitevariabledependingonfactorssuchastheamountandfrequencyofuse,degreeofdisturbance,soiltype,terrain,drainageandpermafrostconditions,latitude,andvegetationtype.Althoughmoststudieshavebeenconductedinarctictundraareasandmaynotbedirectlyapplicabletothesubarctictundra,shrub,andforestcommunitiesoftheSusitnaBasinarea,theydoaffordsomeideaofpotentialconsequencesofincreasedORV/ATVusageintheSusitnaBasin.WorkinginarctictundranearBarrow,GersperandChallinor(1975)reportedthat,sixyearsafterperturbation,soilsdisturbedbyseveralyearsofinfrequenttracked-vehiclepassagehadhigherbulkdensitiesandtemperatures,acceleratedanddeeperthaw,andlowermoisturecontentsthannearbyundisturbedsoils.Inaddition,soilswithinthetrackscarshadlower(negative)redoxpotentials,higherconcentrationsofexchangeablebases,higherbasesaturationandpH,andhigherconcentrationsofsolublenutrientsinthesoilsolution.Vegetationgrowinginthetrackscarsexhibitedhighernutrientconcentrations,increasedproductivityduelargelytoincreasedplantsize,anddifferencesinspeciescompositionwhencomparedtoundisturbedsoils(ChallinorandGesper,1975).Inalaterstudy,ChapinandShaver(1981)examinedtheeffectsofvariousdegreesofpreviousORV/ATVdisturbancealongtopographicmoisturegradientswithinwet,mesic,anddrygraminoid-dominatedtundracommunitiesneartheFairbanks-PrudhoeBayhaulroad.Theyfoundthatthedisturbedsoi1shadhighertemperatures,increasedthawdepths,andhigherconcentrationsofavai1ab1ephosphatethanundisturbedsoils;butthesoi1s didnotdifferconsistentlyinbulkdensity,volumetricmoisturecontent,pH,ororganicmattercontent.Fewerspecieswerefoundinthevehicletracksthaninundisturbedcontrols,andthiswasassoci-atedwithadecreaseintheabundanceofshrubsandbyincreaseddominanceofafewgraminoidspecies.Therewasastrongrelationshipbetweensoilmoistureandleafbiomassandatendencyforincreasedbiomassondisturbedsoilsbycomparisontocontrolsatwettomesicsites,butthereversewastruefordrysites.ChapinandShaverconcludedthatimprovednutrientstatusonthedisturbedsites,howeveritisachieved,leadstohigherproductivityduetoincreasesingraminoidabundancerelativetoshrubsandtoincreasedtillerdensity.Sparrowetal.(1978)studiedORVeffectsmorerepresentativeoftheSusitnaBasinatlocationsalongtheDenaliHighway.Onheavilyusedtrails(morethan12vehiclesperyear)thesurface1ayerof1ivingmateria1hadbeenki11ed,andtheorganic1ayerwasnolongerpresentbecausethechurningactionofthevehicleshadmixedtheorganicmaterialwiththeupperinchesofmineralsoil.Ononesitewhereaportionofthetrailhadbeenabandoned,watererosionhadcausedtheformationofgullies20to25ft(6to8m)wideandupto10ft(3m)deep.Thesidesofthegullieswerecollapsing,indicatingthatgradualexpansioningullywidthwasstilloccurring.Onlesserusedtrails,alayerofdeadundecomposedorganicmaterialremainedonthesoilsurface.Wetareaswereoftenthemostheavilydisturbedwithpondingofwatercausingquagmires.Toavoidtheseareasdriversoftentriedtocircumventthem,therebygraduallyincreasingthewidthofdisturbance.Thedepthtopermafrostwasusuallymuchgreaterinthetrailsthanfornearbyundisturbedsoils.Soilbulkdensitiesincreasedincomparisontocontrolsintrailswithmoderatetoseveredisturbance,whichwascausedbymoderate(6to12vehiclesperyear)toheavyusage.Vegetationwastotallylackingonheavilyusedtrailsandonlyoccurredbetweenthetracksonsomelesserusedtrails.Tallershrubssuchaswillowandresinbirchseemedmostsusceptibletodamageandweremostreducedontrailsreceivinglight(lessthansixvehiclesperyear)tomoderateuse.Low-growingericaceousshrubs,sedges,andgrassestendedtosurviveonthesetrailsinsimilarproportionstothosefoundonnearbyundis-turbedsoils.Inpoorlydrainedareas,sedgeswereoftentheonlysurvivingspecies,especiallyonactivetrails.J-53Theremightbeincreasedincidencesoffiresduetothegreaternumbersofpeopleintheareaduringconstruction.Althoughfireisanaturalfactoraffectingplantcommunitydistributionpatternsintheregion(ViereckandSchande1meier,1980),Susitnadeve1opment-re1atedfireswouldcauseplantcommunitychangessimi1artothosecausedbynaturalfires.However,thefrequency,duration,intensity,andareaofthefiresmightbealteredbycomparisontonaturallycausedfires,andthiscouldhavesomeeffectonplantcommunitydistributions.Therewouldbeotherformsofindirectloss,damage,andalterationofvegetationduetoincreasedhumanactivityintheWatanadevelopmentareaduringconstruction.Nonessentialdisturbanceofvegetationsurroundingthecamp,village,airstrip,andconstructionareascausedbyworkersandotherscannotbeavoidedentirely.TheApplicanthasstatedthatamonitoringprogramwouldbeinstitutedtodetermineareasdisturbedbysuchactivitiesandthattheseareaswouldberehabili-tatedalongwiththoseareasidentifiedinTableJ-19(ExhibitE,Vol.6A,Chap.3,p.E-3-281-E-3-282).Increaseduseofoff-roadvehicles(ORV)andall-terrainvehicles(ATV)mightalsooccurinthedevelopmentarearesultinginincreasederosion,subsidence,additionallocalizedvegetationlossordamage,and/oralterationofplantcommunities.TheeffectsofORV/ATVusewouldprobablybemostsevereasaresultofsummeruseandinareaswithpermafrost,inwet-lands,inareaswithhighsoilmoisturecontent,ondeepgravel-freesoils,onslopes,andintundravegetationtypes(RickardandBrown,1974;GersperandChallinor,1975;ChallinorandGersper,1975;Sparrowetal.,1978).Plantrecoverywouldbelesslikelyiftheorganiclayerwasseverelydisturbedandrootsystemsweredestroyed(RickardandBrown,1974).Inareaswheretheorganiclayeristotallyremoveditmaytake100yearsorlongerforrebuildingofanorganicmatcapab1eofretainingnutrientswithinthesystem(ChapinandVanCleve,1978).TheresultsofORV/ATVusagearequitevariabledependingonfactorssuchastheamountandfrequencyofuse,degreeofdisturbance,soiltype,terrain,drainageandpermafrostconditions,latitude,andvegetationtype.Althoughmoststudieshavebeenconductedinarctictundraareasandmaynotbedirectlyapplicabletothesubarctictundra,shrub,andforestcommunitiesoftheSusitnaBasinarea,theydoaffordsomeideaofpotentialconsequencesofincreasedORV/ATVusageintheSusitnaBasin.WorkinginarctictundranearBarrow,GersperandChallinor(1975)reportedthat,sixyearsafterperturbation,soilsdisturbedbyseveralyearsofinfrequenttracked-vehiclepassagehadhigherbulkdensitiesandtemperatures,acceleratedanddeeperthaw,andlowermoisturecontentsthannearbyundisturbedsoils.Inaddition,soilswithinthetrackscarshadlower(negative)redoxpotentials,higherconcentrationsofexchangeablebases,higherbasesaturationandpH,andhigherconcentrationsofsolublenutrientsinthesoilsolution.Vegetationgrowinginthetrackscarsexhibitedhighernutrientconcentrations,increasedproductivityduelargelytoincreasedplantsize,anddifferencesinspeciescompositionwhencomparedtoundisturbedsoils(ChallinorandGesper,1975).Inalaterstudy,ChapinandShaver(1981)examinedtheeffectsofvariousdegreesofpreviousORV/ATVdisturbancealongtopographicmoisturegradientswithinwet,mesic,anddrygraminoid-dominatedtundracommunitiesneartheFairbanks-PrudhoeBayhaulroad.Theyfoundthatthedisturbedsoi1shadhighertemperatures,increasedthawdepths,andhigherconcentrationsofavai1ab1ephosphatethanundisturbedsoils;butthesoi1s didnotdifferconsistentlyinbulkdensity,volumetricmoisturecontent,pH,ororganicmattercontent.Fewerspecieswerefoundinthevehicletracksthaninundisturbedcontrols,andthiswasassoci-atedwithadecreaseintheabundanceofshrubsandbyincreaseddominanceofafewgraminoidspecies.Therewasastrongrelationshipbetweensoilmoistureandleafbiomassandatendencyforincreasedbiomassondisturbedsoilsbycomparisontocontrolsatwettomesicsites,butthereversewastruefordrysites.ChapinandShaverconcludedthatimprovednutrientstatusonthedisturbedsites,howeveritisachieved,leadstohigherproductivityduetoincreasesingraminoidabundancerelativetoshrubsandtoincreasedtillerdensity.Sparrowetal.(1978)studiedORVeffectsmorerepresentativeoftheSusitnaBasinatlocationsalongtheDenaliHighway.Onheavilyusedtrails(morethan12vehiclesperyear)thesurface1ayerof1ivingmateria1hadbeenki11ed,andtheorganic1ayerwasnolongerpresentbecausethechurningactionofthevehicleshadmixedtheorganicmaterialwiththeupperinchesofmineralsoil.Ononesitewhereaportionofthetrailhadbeenabandoned,watererosionhadcausedtheformationofgullies20to25ft(6to8m)wideandupto10ft(3m)deep.Thesidesofthegullieswerecollapsing,indicatingthatgradualexpansioningullywidthwasstilloccurring.Onlesserusedtrails,alayerofdeadundecomposedorganicmaterialremainedonthesoilsurface.Wetareaswereoftenthemostheavilydisturbedwithpondingofwatercausingquagmires.Toavoidtheseareasdriversoftentriedtocircumventthem,therebygraduallyincreasingthewidthofdisturbance.Thedepthtopermafrostwasusuallymuchgreaterinthetrailsthanfornearbyundisturbedsoils.Soilbulkdensitiesincreasedincomparisontocontrolsintrailswithmoderatetoseveredisturbance,whichwascausedbymoderate(6to12vehiclesperyear)toheavyusage.Vegetationwastotallylackingonheavilyusedtrailsandonlyoccurredbetweenthetracksonsomelesserusedtrails.Tallershrubssuchaswillowandresinbirchseemedmostsusceptibletodamageandweremostreducedontrailsreceivinglight(lessthansixvehiclesperyear)tomoderateuse.Low-growingericaceousshrubs,sedges,andgrassestendedtosurviveonthesetrailsinsimilarproportionstothosefoundonnearbyundis-turbedsoils.Inpoorlydrainedareas,sedgeswereoftentheonlysurvivingspecies,especiallyonactivetrails.
J-54J.2.1.1.2OperationOperationoftheWatanafacilitywouldresultincontinuationofsomeconstruction-relatedimpactssuchasincreasedincidenceoffires,andvegetationlossordamageduetoORVandATVuse,erosion,andpermafrostthaw.Inaddition,Watanaoperationwouldaffectvegetationthroughregulationofdownstreamflowsandmesoclimaticchanges.EffectsofRegulatedFlowsTheregulatedflowsassociatedwithWatanaoperationwouldaffectthedevelopmentofripariancommunitiesdownstreamofthedamsite.Specificeffectsaredifficulttopredictandquantifysincetheywouldvaryatparticularlocationsdependingonrivermorphologyanddistancefromthedam.Thefollowingdiscussionofpotentialimpactsisbasedonpredictionsofriverstaging,watertemperatures,andiceregimespresentedinExhibitE(Vo1.5A,Chap.2).Ingeneral,regulatedflowswouldbehigherthanpreprojectflowsinwinterandlowerthanpreprojectflowsinsummer,andincreasedtemperaturesofwaterreleasedfromWatanainwinterwouldaffecticeformationdownstreamofthedamsite.However,itshouldbepointedoutthatothermoresubtlechangesbroughtaboutbyregulatedflowsandreducedsedimentationratescouldalsoinfluencetherateofplantcommunitydevelopmentandsuccession,aswellascommunitystructureandproductivity.Forexample,changesinwatertableelevationcouldaffectthedevelopmentofalkalisoilconditionsusuallyencounteredintheearlystagesoffloodplaincolonization.Theseconditionsarecreatedwhenevaporationofgroundwaterbroughttothesurfacethroughcapillaryactionresultsinsubstantialaccumulationsofsalts,especiallycalciumsulfate.Suchconditionsmayaffectthegerminationanddevelopmentofvariousplantspecies,aswellastheavailabilityandcyclingofplantnutrients,particularlyphosphorous.Duringmid-successionalstages,watertableelevationcouldbeimportantbecausecapillaritymaysupplygroundwatertothetree-rootingzone,providingadequatemoisturethroughoutthegrowingseason,evenduringdroughtperiods(VanCleveandViereck,1981).Theeffectsofsuchsubtlechangesinphysical/chemicalregimescannotbereliablyfactoredintothefollowingdiscussionbasedonriverstaging,watertemperatures,andiceregimes,sincetheinfluenceofsuchchangeswouldvarydependingonrivermorphologyandalluvium/substratumcomposition.IntheWatanatoDevilCanyonreach,itisexpectedthaticeformationwouldbeprecludedbytheincreasedtemperaturesofoutflowfromWatana(ExhibitE,Vol.5A,Chap.2,p.E-2-125).Thus,changesinriparianzonevegetationwouldmostlikelybecontrolledbysummerflows.Sincesummerflowswouldbereducedbycomparisontopreprojectflows,vegetationwouldgraduallyestablishonnewly-exposedareasalongbanksandonislands.However,theactualareasinvolvedwouldprobablyberelativelysmallbecauseoftherelativelysteepbanksinthisreach.Therateofvegetativecolonizationoncobbledareasmightbeslowedbyreducedsedimentationratesassociatedwiththereducedfrequencyoffloodingevents,andthedecreasedsedimentloadoftheoutflowwaters.Withtheeliminationoficescouringandmajorfloodingevents,successionofexistingandnewlyestablishedvegetationstandswouldproceedwithrelativelylittleinterrup-tiontowardmaturebalsampoplarandwhitespruceforestuntilclearingandinundationoftheDevilCanyonreservoirwasbegun.IntheDevilCanyontoTalkeetnareach,reducedsummerflowsareexpectedtocauseriverstagesthatare2to4ft(0.6to1.2m)belowpreprojectsummerflows(ExhibitE,Vol.5A,Chap.2,p.E-2-106).Icewouldbeexpectedtoforminthisreachalthoughitsformationwouldlikelybede1ayedbyseveralweeks.Theexact1ocationoftheend-of-wintericefronthasnotbeenpre-dictedwithcertainty,buticethicknessesareexpectedtobesimilartothosedevelopedunderpreprojectconditions(ExhibitE,Vol.5A,Chap.2,p.E-2-125-E-2-126).Thus,withhigherregulatedwinterflows,icestagingwouldlikelybehigherthanitwaspriortoregulation.However,itislikelythaticescouringofvegetationassociatedwithicejamsduringbreakupwouldnolongerhaveamajoreffectonriparianvegetation,because(1)regulatedflowswouldgenerallyreducespringfloodstagesand(2)therelativelywarmwaterreleasedfromWatanawouldpromotein-placemelting(ExhibitE,Vol.5A,Chap.2,p.E-2-126).Thus,abovetheend-of-wintericefront,vegetationdevelopmentwouldbecontrolledbythesameprocessesidentifiedfortheWatanatoDevi1Canyonreach.Whereiceformationoccurred,however,reducedsummerflowswouldexposemoreareacapableofbeingcolonized,butatmanylocationshighericestagingassociatedwithincreasedwinterflowscouldextendintotheseareas,affectingnotonlythenewlydevelopingcommunitiesbut,insomelocations,evensomeexistingvegetatedareas.Itisdifficulttopredictwhateffectsthisicestagingwouldhavebecauseunderunregulatedconditionsicestaginglevelsareoftenbelowratherthanabovethewatersurfaceelevationsthatoccurduringsummerflows.Thus,untilclearingandinundationoftheDevilCanyonreservoirwasbegun,thewidthofareaoccupiedbyearly-tomid-successionalstagesmighteitherincreaseoverpreprojectconditionsorremainsimilartopreprojectcondi-tions.InthereachfromTalkeetnatotheYentnaRiver,itisimpossibletopredictpostprojectchangesinvegetationwithanycertainty.BelowtheconfluenceoftheSusitna,Chulitna,andTalkeetnarivers,thechannelisbraided,andtheSusitnacontributesonly40%ofthetotalflow.TheJ-54J.2.1.1.2OperationOperationoftheWatanafacilitywouldresultincontinuationofsomeconstruction-relatedimpactssuchasincreasedincidenceoffires,andvegetationlossordamageduetoORVandATVuse,erosion,andpermafrostthaw.Inaddition,Watanaoperationwouldaffectvegetationthroughregulationofdownstreamflowsandmesoclimaticchanges.EffectsofRegulatedFlowsTheregulatedflowsassociatedwithWatanaoperationwouldaffectthedevelopmentofripariancommunitiesdownstreamofthedamsite.Specificeffectsaredifficulttopredictandquantifysincetheywouldvaryatparticularlocationsdependingonrivermorphologyanddistancefromthedam.Thefollowingdiscussionofpotentialimpactsisbasedonpredictionsofriverstaging,watertemperatures,andiceregimespresentedinExhibitE(Vo1.5A,Chap.2).Ingeneral,regulatedflowswouldbehigherthanpreprojectflowsinwinterandlowerthanpreprojectflowsinsummer,andincreasedtemperaturesofwaterreleasedfromWatanainwinterwouldaffecticeformationdownstreamofthedamsite.However,itshouldbepointedoutthatothermoresubtlechangesbroughtaboutbyregulatedflowsandreducedsedimentationratescouldalsoinfluencetherateofplantcommunitydevelopmentandsuccession,aswellascommunitystructureandproductivity.Forexample,changesinwatertableelevationcouldaffectthedevelopmentofalkalisoilconditionsusuallyencounteredintheearlystagesoffloodplaincolonization.Theseconditionsarecreatedwhenevaporationofgroundwaterbroughttothesurfacethroughcapillaryactionresultsinsubstantialaccumulationsofsalts,especiallycalciumsulfate.Suchconditionsmayaffectthegerminationanddevelopmentofvariousplantspecies,aswellastheavailabilityandcyclingofplantnutrients,particularlyphosphorous.Duringmid-successionalstages,watertableelevationcouldbeimportantbecausecapillaritymaysupplygroundwatertothetree-rootingzone,providingadequatemoisturethroughoutthegrowingseason,evenduringdroughtperiods(VanCleveandViereck,1981).Theeffectsofsuchsubtlechangesinphysical/chemicalregimescannotbereliablyfactoredintothefollowingdiscussionbasedonriverstaging,watertemperatures,andiceregimes,sincetheinfluenceofsuchchangeswouldvarydependingonrivermorphologyandalluvium/substratumcomposition.IntheWatanatoDevilCanyonreach,itisexpectedthaticeformationwouldbeprecludedbytheincreasedtemperaturesofoutflowfromWatana(ExhibitE,Vol.5A,Chap.2,p.E-2-125).Thus,changesinriparianzonevegetationwouldmostlikelybecontrolledbysummerflows.Sincesummerflowswouldbereducedbycomparisontopreprojectflows,vegetationwouldgraduallyestablishonnewly-exposedareasalongbanksandonislands.However,theactualareasinvolvedwouldprobablyberelativelysmallbecauseoftherelativelysteepbanksinthisreach.Therateofvegetativecolonizationoncobbledareasmightbeslowedbyreducedsedimentationratesassociatedwiththereducedfrequencyoffloodingevents,andthedecreasedsedimentloadoftheoutflowwaters.Withtheeliminationoficescouringandmajorfloodingevents,successionofexistingandnewlyestablishedvegetationstandswouldproceedwithrelativelylittleinterrup-tiontowardmaturebalsampoplarandwhitespruceforestuntilclearingandinundationoftheDevilCanyonreservoirwasbegun.IntheDevilCanyontoTalkeetnareach,reducedsummerflowsareexpectedtocauseriverstagesthatare2to4ft(0.6to1.2m)belowpreprojectsummerflows(ExhibitE,Vol.5A,Chap.2,p.E-2-106).Icewouldbeexpectedtoforminthisreachalthoughitsformationwouldlikelybede1ayedbyseveralweeks.Theexact1ocationoftheend-of-wintericefronthasnotbeenpre-dictedwithcertainty,buticethicknessesareexpectedtobesimilartothosedevelopedunderpreprojectconditions(ExhibitE,Vol.5A,Chap.2,p.E-2-125-E-2-126).Thus,withhigherregulatedwinterflows,icestagingwouldlikelybehigherthanitwaspriortoregulation.However,itislikelythaticescouringofvegetationassociatedwithicejamsduringbreakupwouldnolongerhaveamajoreffectonriparianvegetation,because(1)regulatedflowswouldgenerallyreducespringfloodstagesand(2)therelativelywarmwaterreleasedfromWatanawouldpromotein-placemelting(ExhibitE,Vol.5A,Chap.2,p.E-2-126).Thus,abovetheend-of-wintericefront,vegetationdevelopmentwouldbecontrolledbythesameprocessesidentifiedfortheWatanatoDevi1Canyonreach.Whereiceformationoccurred,however,reducedsummerflowswouldexposemoreareacapableofbeingcolonized,butatmanylocationshighericestagingassociatedwithincreasedwinterflowscouldextendintotheseareas,affectingnotonlythenewlydevelopingcommunitiesbut,insomelocations,evensomeexistingvegetatedareas.Itisdifficulttopredictwhateffectsthisicestagingwouldhavebecauseunderunregulatedconditionsicestaginglevelsareoftenbelowratherthanabovethewatersurfaceelevationsthatoccurduringsummerflows.Thus,untilclearingandinundationoftheDevilCanyonreservoirwasbegun,thewidthofareaoccupiedbyearly-tomid-successionalstagesmighteitherincreaseoverpreprojectconditionsorremainsimilartopreprojectcondi-tions.InthereachfromTalkeetnatotheYentnaRiver,itisimpossibletopredictpostprojectchangesinvegetationwithanycertainty.BelowtheconfluenceoftheSusitna,Chulitna,andTalkeetnarivers,thechannelisbraided,andtheSusitnacontributesonly40%ofthetotalflow.The
J-55importanceoficeprocessesinvegetativesuccessionisreducedexceptinlocalizedareas(R&MConsultants,1982).Themagnitudeofincreasedwinterflowswouldbedilutedbyinputfromtheotherrivers,whichmeansanyincreasedicestagingwouldbeoflesserproportionsthanintheDevilCanyontoTalkeetnareach.Furthermore,withwide,braidedchannels,anyincreaseinstageduetoicecoverusuallyisrelativelysmallcomparedtoincreasesoccurringinsingleorsplitchannels(ExhibitE,Vol.5A,Chap.2,p.E-2-127).Inthisreach,springandsummerfloods,throughtheireffectsonbankerosionandsedimentdeposition,wouldprobablyplaythegreatestroleinvegetativedevelopmentandsuccession.Regulatedandreducedsummerflowswouldhavesomeeffectonthefrequencyandseverityoffloodinginthisreach,buttheeffectswouldbeattenuatedbyflowsfromtheotherrivers.Asaresultofreducedsummerflowsandlessfrequentflooding,early-andmid-successionalstandsmightdevelopsufficientlyinsomeareastoprovidesomestabilizationagainstlaterfloods.Althoughreducedsummerflowsandperhapsincreasedwinterflowswouldprobablyhavesomeeffectonvegetationinthisreach,itisimpossibletopredictwhethertheneteffectswouldbeincreasesordecreasesinvegetatedareasorinsuccession/recessionrates.InthereachfromtheYentnaRivertoCookInlet,bankfullflowsandfloodingwouldprobablybethemajorfactorsaffectingvegetativesuccession/recessionrates.InthisreachflowsfromtheSusitna(upstreamofTalkeetna)contributeonly20%ofthebankfullflows.Becauseofthedilutioneffectoftheotherrivers,aswellasthetidalinfluenceuptoRM20(R&MConsultants,1982),anychangesinvegetationwouldbedifficulttoattributesolelytoWatanaoperation.EffectsofErosion,Deposition,MesoclimaticChanges,andIncreasedHumanUseVegetationisnotexpectedtoinvadethedrawdownzoneoftheimpoundment(BaxterandGlaude,1980),whichtypicallywouldrangeinelevationfrom2,095to2,185ft(639to666m)MSL,unlessaseriesofdroughtyearswouldpreventfillingtothemaximumelevations.Withoutavegetativecover,thedrawdownzonewouldremainunstableuntilallsoiliserodedandbedrockorgravel/cobblesubstratesareexposed.Erosionandslumpageofsoilsaroundtheshorelineofthereservoirwouldcontinuetooccurbecauseofinstabilityandsoillossinthedrawdownzone.Inmoreseverelyerodedareasvegetationmightbelostandmanyyearsmightberequiredbeforepioneerspeciescouldbecomeestablished,whereasinareasoflesserdisturbancereplacementoflater-seralvegetativecommunitiesbyearlierserescouldprovidevaluablewildlifehabitat(Wolff,1978;WolffandZasada,1979).Permafrostthawandsubsequenterosion,slumpage,andslidinginitiatedbyvegetationclearingfortheimpoundmentwouldcontinueduringoperation(BaxterandGlaude,1980).Muchofthepermafrostlayeronthesouthsideofthereservoiriswithin1.8°F(1°C)ofthawing(ExhibitE,Vol.6A,Chap.3,p.E-3-230),andoncethereservoirisfilledandoperatingthewaterwouldwarmadjacenthillsidescausingfurtherpermafrostmeltingbeyondthatwhichoccurredduringconstructionandfilling.EstimatesofpotentialacreagesthatcouldbeinvolvedhavebeendiscussedinSectionJ.2.1.1.1.Whentheareaofdisturbanceissmall,vegetationcommunitiesmightbealtered,revertingtoearlierseralstages,butinareasofmajorslidingwheresoilsarelost,theentirecycleofsuccessioncouldbeinitiatedonthemeltedpermafrost,probablyleadingtowetblackspruceforestorbog-typevegetation.Depositionofsedimentatthemouthsofcreeksenteringthereservoirmighteventuallyproducedeltaareas(BaxterandGlaude,1980).Thesedeltaareaswouldbeexpectedtodevelopvegeta-tioninthesequencedescribedforfloodplainsuccession(Sec.J.1.2.2).Treeblowdownwouldcontinuetooccurduringoperation,primarilyonthesouthsideofthereservoir.Howevertheextentofthisdamageisdifficulttoquantify.Thelargevolumeofwaterinthereservoirwouldwarmmoreslowlyinspringandcoolmoreslowlyinfallthansurroundinglandmasses.Resultantseasonalchangesinairandsoiltemperaturesnearthereservoir(i.e.,coolertemperaturesinspringandwarmertemperaturesinfall)wouldprobablyaffectplantphenologyandperhapscausealterationofplantcommunities.Thesouthsideofthereservoirmightbeaffectedthemostbecauseofprevailingnortheasterlywinds.TheWatanareservoirwouldalsomoderatediurnaltemperaturefluctuationsnearthereservoir,andmightaffectlocalrainfallpatternsandhumidity(BaxterandGlaude,1980).However,itisnotpossibletopredictwhateffectsthesechangeswouldhaveonnearbyvegetation.Thereservoircouldalsocauseincreasedoccurrencesoffoginsurroundingareas,especiallyduringbreakupandfreezeupperiods(BaxterandGlaude,1980).Followingbreakup,warm,moistairmightcontactthecoldwaterofthereservoir,creatingpersistentfogbanks.Priortofreezeup,coldaircontactingwarmwaterinthereservoirwouldcreateicefogconditions,whichmightcauserimeiceaccumulationsonvegetation.Whenaccumulationsarethick,branchesandtwigscanbreak,damagingvegetation.However,ifplantsarenotseverelydamaged,thiscouldhaveabeneficialeffectforwildlifeifsucculentnewgrowthisinduced.Similarly,icefoggingandrimeiceaccumulationwouldbeexpectedtooccuralongthedownstreamfloodplaininthesectionoftheriverwhereiceformationispreventedbyWatanaoutflowtemperatures.J-55importanceoficeprocessesinvegetativesuccessionisreducedexceptinlocalizedareas(R&MConsultants,1982).Themagnitudeofincreasedwinterflowswouldbedilutedbyinputfromtheotherrivers,whichmeansanyincreasedicestagingwouldbeoflesserproportionsthanintheDevilCanyontoTalkeetnareach.Furthermore,withwide,braidedchannels,anyincreaseinstageduetoicecoverusuallyisrelativelysmallcomparedtoincreasesoccurringinsingleorsplitchannels(ExhibitE,Vol.5A,Chap.2,p.E-2-127).Inthisreach,springandsummerfloods,throughtheireffectsonbankerosionandsedimentdeposition,wouldprobablyplaythegreatestroleinvegetativedevelopmentandsuccession.Regulatedandreducedsummerflowswouldhavesomeeffectonthefrequencyandseverityoffloodinginthisreach,buttheeffectswouldbeattenuatedbyflowsfromtheotherrivers.Asaresultofreducedsummerflowsandlessfrequentflooding,early-andmid-successionalstandsmightdevelopsufficientlyinsomeareastoprovidesomestabilizationagainstlaterfloods.Althoughreducedsummerflowsandperhapsincreasedwinterflowswouldprobablyhavesomeeffectonvegetationinthisreach,itisimpossibletopredictwhethertheneteffectswouldbeincreasesordecreasesinvegetatedareasorinsuccession/recessionrates.InthereachfromtheYentnaRivertoCookInlet,bankfullflowsandfloodingwouldprobablybethemajorfactorsaffectingvegetativesuccession/recessionrates.InthisreachflowsfromtheSusitna(upstreamofTalkeetna)contributeonly20%ofthebankfullflows.Becauseofthedilutioneffectoftheotherrivers,aswellasthetidalinfluenceuptoRM20(R&MConsultants,1982),anychangesinvegetationwouldbedifficulttoattributesolelytoWatanaoperation.EffectsofErosion,Deposition,MesoclimaticChanges,andIncreasedHumanUseVegetationisnotexpectedtoinvadethedrawdownzoneoftheimpoundment(BaxterandGlaude,1980),whichtypicallywouldrangeinelevationfrom2,095to2,185ft(639to666m)MSL,unlessaseriesofdroughtyearswouldpreventfillingtothemaximumelevations.Withoutavegetativecover,thedrawdownzonewouldremainunstableuntilallsoiliserodedandbedrockorgravel/cobblesubstratesareexposed.Erosionandslumpageofsoilsaroundtheshorelineofthereservoirwouldcontinuetooccurbecauseofinstabilityandsoillossinthedrawdownzone.Inmoreseverelyerodedareasvegetationmightbelostandmanyyearsmightberequiredbeforepioneerspeciescouldbecomeestablished,whereasinareasoflesserdisturbancereplacementoflater-seralvegetativecommunitiesbyearlierserescouldprovidevaluablewildlifehabitat(Wolff,1978;WolffandZasada,1979).Permafrostthawandsubsequenterosion,slumpage,andslidinginitiatedbyvegetationclearingfortheimpoundmentwouldcontinueduringoperation(BaxterandGlaude,1980).Muchofthepermafrostlayeronthesouthsideofthereservoiriswithin1.8°F(1°C)ofthawing(ExhibitE,Vol.6A,Chap.3,p.E-3-230),andoncethereservoirisfilledandoperatingthewaterwouldwarmadjacenthillsidescausingfurtherpermafrostmeltingbeyondthatwhichoccurredduringconstructionandfilling.EstimatesofpotentialacreagesthatcouldbeinvolvedhavebeendiscussedinSectionJ.2.1.1.1.Whentheareaofdisturbanceissmall,vegetationcommunitiesmightbealtered,revertingtoearlierseralstages,butinareasofmajorslidingwheresoilsarelost,theentirecycleofsuccessioncouldbeinitiatedonthemeltedpermafrost,probablyleadingtowetblackspruceforestorbog-typevegetation.Depositionofsedimentatthemouthsofcreeksenteringthereservoirmighteventuallyproducedeltaareas(BaxterandGlaude,1980).Thesedeltaareaswouldbeexpectedtodevelopvegeta-tioninthesequencedescribedforfloodplainsuccession(Sec.J.1.2.2).Treeblowdownwouldcontinuetooccurduringoperation,primarilyonthesouthsideofthereservoir.Howevertheextentofthisdamageisdifficulttoquantify.Thelargevolumeofwaterinthereservoirwouldwarmmoreslowlyinspringandcoolmoreslowlyinfallthansurroundinglandmasses.Resultantseasonalchangesinairandsoiltemperaturesnearthereservoir(i.e.,coolertemperaturesinspringandwarmertemperaturesinfall)wouldprobablyaffectplantphenologyandperhapscausealterationofplantcommunities.Thesouthsideofthereservoirmightbeaffectedthemostbecauseofprevailingnortheasterlywinds.TheWatanareservoirwouldalsomoderatediurnaltemperaturefluctuationsnearthereservoir,andmightaffectlocalrainfallpatternsandhumidity(BaxterandGlaude,1980).However,itisnotpossibletopredictwhateffectsthesechangeswouldhaveonnearbyvegetation.Thereservoircouldalsocauseincreasedoccurrencesoffoginsurroundingareas,especiallyduringbreakupandfreezeupperiods(BaxterandGlaude,1980).Followingbreakup,warm,moistairmightcontactthecoldwaterofthereservoir,creatingpersistentfogbanks.Priortofreezeup,coldaircontactingwarmwaterinthereservoirwouldcreateicefogconditions,whichmightcauserimeiceaccumulationsonvegetation.Whenaccumulationsarethick,branchesandtwigscanbreak,damagingvegetation.However,ifplantsarenotseverelydamaged,thiscouldhaveabeneficialeffectforwildlifeifsucculentnewgrowthisinduced.Similarly,icefoggingandrimeiceaccumulationwouldbeexpectedtooccuralongthedownstreamfloodplaininthesectionoftheriverwhereiceformationispreventedbyWatanaoutflowtemperatures.
J-56Impactsassociatedwithincreasedhumanuseoftheareaduringconstructionandfillingwouldcontinueduringoperation,althoughperhapstoalesserextent.Operationalpersonnelandtheirfamilieswouldbefewerinnumberthanconstructionpersonnel.AlthoughtheApplicanthasproposedmeasurestomitigatetheimpactsofincreasedhumanuse,increasedfireincidenceandORV/ATVusagecouldstilloccurwithsomefrequencyandwouldconsequentlyhavesomeeffect.However,moreextensiveimpactsofthisnaturemightbeexpectedtooccurasaresultofmoreextensiveuseoftheareabythegeneralpUblicasdiscussedinSectionJ.2.1.3.Thepotentiali~pactsoffireandORV/ATVusehavebeendiscussedpreviouslyinSectionJ.2.1.1.1.J.2.1.2DevilCanyonDevelopmentJ.2.1.2.1ConstructionConstructionoftheDevilCanyondevelopmentwouldresultinimpactstoterrestrialplantcom-munitiesandwetlandsofasimilarnaturetothosedescribedfortheWatanadevelopment.However,theextentoftheimpactsassociatedwithDevilCanyon,asdescribedbelow,aregenerallyexpectedtobelessthanforWatana.VegetationRemovalConstructionandfillingoftheDevilCanyondevelopmentwouldresultinremovalofapproxi-mately7,100acres(2,800ha)ofvegetationfromtheupperandmiddleSusitnaBasin.Vegetationcoveringapproximately5,900acres(2,400ha)ofthisareawouldbepermanentlylostduetoconstructionofthedam,spillways,andimpoundment.Clearingfortheconstructioncampandvi11age,constructionroads,contractorworkareas,andborrowareaswouldremoveabout1,200acres(490ha)ofvegetation.AswiththetemporaryWatanafacilities,thepotentialforvegetationestablishmentandgrowthonthelatterareaswouldonlybetemporarilylostbecausethesefacilitieswouldonlyberequiredduringconstruction.Theareaofvegetationthatwouldbepermanentlylostrepresentsabout0.2%ofallthevegeta-tionwithintheentireupperandmiddleSusitnaBasinaboveGoldCreek(TableJ-22).About97%ofthevegetationlostwouldbeforesttypesandalmosthalfoftheseforestswouldbemixedconifer-deciduoustypes.Althoughopenmixedforeststandsthatwouldberemovedbyconstruc-tionoftheDevilCanyonfacilityrepresentonlyabout1%ofthattypewithintheupperandmiddleSusitnaBasin,almost5%oftheclosedmixedforeststandsintheupperandmiddleSusitnaBasinwouldbepermanentlylost.AsdiscussedinSectionJ.2.1.1.1,theoccurrenceofbirchforesttypesinsmall,scatteredstandscausestheproportionofthesetypesthatwouldbelost,aspresentedinTableJ-22,tobeoverestimatedbecauseofthemappingscalesused.Ifitisassumedthatbirchstandsareusuallyfoundonrelativelywarmslopesnearrivers(seeSec.J.1.2.1.1),theproportionofbirchforesttypesthatmightbelostmaybeestimatedmorereliablyonthebasisoftheareaofbirchforestmapped(atascaleof1:63,360)within10mi(16km)oftheSusitnaRiverbetweenGoldCreekandtheTyoneRiver(TableJ-8).Usingtheseestimatesfortheareawithin10mi(16km)oftheriver,about4%oftheopenbirchforestsandabout19%oftheclosedbirchforestswouldbepermanentlylost.However,theactualpropor-tionsofopenandclosedbirchforestthatwouldberemovedfromtheupperandmiddleBasinareprobablysomewherebetween2to4%and10to19%,respectively.Theareathatwouldbeclearedfortemporaryfacilitiesandborrowareasamountstoonly0.03%ofthevegetationintheentireupperandmiddleSusitnaBasin(TableJ-23).Over90%ofthisareapresentlysupportsforesttypes,principallyopenblackspruceandclosedmixedforests.AccordingtotheschedulepresentedinExhibitE(Vol.6A,Chap.3,p.E-3-277-E-3-278),temporaryfacilitiesandborrowareaswouldberemovedand/orregradedandrehabilitatedbytheendoftheconstructionandreservoir-fillingperiod(withinnineyearsofthestartofconstruc-tion).GeneralrehabilitationproceduresplannedbytheApplicanthavebeendescribedinSec-tionJ.3.1.3andExhibitE(Vol.6A,Chap.3,p.E-3-279-E-3-281).Thediscussionconcerningreestablishmentandsuccessionofvegetationfollowingphysicalrehabi-litationofconstructionfacilitiespresentedinSectionJ.2.1.1.1fortheWatanadevelopmentisapp1icab1etotheDevi1Canyondeve1opmentalso.However,vegetationreestab1ishmentondisturbedareaslocatedonsteepslopeswouldprobablytakemoretimethanforsiteswithmoregent1egrades.Withsteepslopesnaturalrevegetationmightbeslowedorhamperedbysoi1erosion,butuseofintroducedorperhapsevennativegrassspeciestoestablishaquickcoverandminimizeerosionmightinhibitlaterinvasionbyothernativespecies(Johnson,1981;Johnson,1982).AsexplainedinSectionJ.2.1.1.1,extremelyliberalestimatesofwetlandsthatcouldbelostduetoconstructionoftheDevilCanyondevelopment(TablesJ-24andJ-25)havebeenmadeonthebasisoftheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).TheareaspresentedinTablesJ-24andJ-25reallyrepresentareasthatwouldbelostinwhichwetlandspotentiallycouldoccur.J-56Impactsassociatedwithincreasedhumanuseoftheareaduringconstructionandfillingwouldcontinueduringoperation,althoughperhapstoalesserextent.Operationalpersonnelandtheirfamilieswouldbefewerinnumberthanconstructionpersonnel.AlthoughtheApplicanthasproposedmeasurestomitigatetheimpactsofincreasedhumanuse,increasedfireincidenceandORV/ATVusagecouldstilloccurwithsomefrequencyandwouldconsequentlyhavesomeeffect.However,moreextensiveimpactsofthisnaturemightbeexpectedtooccurasaresultofmoreextensiveuseoftheareabythegeneralpUblicasdiscussedinSectionJ.2.1.3.Thepotentiali~pactsoffireandORV/ATVusehavebeendiscussedpreviouslyinSectionJ.2.1.1.1.J.2.1.2DevilCanyonDevelopmentJ.2.1.2.1ConstructionConstructionoftheDevilCanyondevelopmentwouldresultinimpactstoterrestrialplantcom-munitiesandwetlandsofasimilarnaturetothosedescribedfortheWatanadevelopment.However,theextentoftheimpactsassociatedwithDevilCanyon,asdescribedbelow,aregenerallyexpectedtobelessthanforWatana.VegetationRemovalConstructionandfillingoftheDevilCanyondevelopmentwouldresultinremovalofapproxi-mately7,100acres(2,800ha)ofvegetationfromtheupperandmiddleSusitnaBasin.Vegetationcoveringapproximately5,900acres(2,400ha)ofthisareawouldbepermanentlylostduetoconstructionofthedam,spillways,andimpoundment.Clearingfortheconstructioncampandvi11age,constructionroads,contractorworkareas,andborrowareaswouldremoveabout1,200acres(490ha)ofvegetation.AswiththetemporaryWatanafacilities,thepotentialforvegetationestablishmentandgrowthonthelatterareaswouldonlybetemporarilylostbecausethesefacilitieswouldonlyberequiredduringconstruction.Theareaofvegetationthatwouldbepermanentlylostrepresentsabout0.2%ofallthevegeta-tionwithintheentireupperandmiddleSusitnaBasinaboveGoldCreek(TableJ-22).About97%ofthevegetationlostwouldbeforesttypesandalmosthalfoftheseforestswouldbemixedconifer-deciduoustypes.Althoughopenmixedforeststandsthatwouldberemovedbyconstruc-tionoftheDevilCanyonfacilityrepresentonlyabout1%ofthattypewithintheupperandmiddleSusitnaBasin,almost5%oftheclosedmixedforeststandsintheupperandmiddleSusitnaBasinwouldbepermanentlylost.AsdiscussedinSectionJ.2.1.1.1,theoccurrenceofbirchforesttypesinsmall,scatteredstandscausestheproportionofthesetypesthatwouldbelost,aspresentedinTableJ-22,tobeoverestimatedbecauseofthemappingscalesused.Ifitisassumedthatbirchstandsareusuallyfoundonrelativelywarmslopesnearrivers(seeSec.J.1.2.1.1),theproportionofbirchforesttypesthatmightbelostmaybeestimatedmorereliablyonthebasisoftheareaofbirchforestmapped(atascaleof1:63,360)within10mi(16km)oftheSusitnaRiverbetweenGoldCreekandtheTyoneRiver(TableJ-8).Usingtheseestimatesfortheareawithin10mi(16km)oftheriver,about4%oftheopenbirchforestsandabout19%oftheclosedbirchforestswouldbepermanentlylost.However,theactualpropor-tionsofopenandclosedbirchforestthatwouldberemovedfromtheupperandmiddleBasinareprobablysomewherebetween2to4%and10to19%,respectively.Theareathatwouldbeclearedfortemporaryfacilitiesandborrowareasamountstoonly0.03%ofthevegetationintheentireupperandmiddleSusitnaBasin(TableJ-23).Over90%ofthisareapresentlysupportsforesttypes,principallyopenblackspruceandclosedmixedforests.AccordingtotheschedulepresentedinExhibitE(Vol.6A,Chap.3,p.E-3-277-E-3-278),temporaryfacilitiesandborrowareaswouldberemovedand/orregradedandrehabilitatedbytheendoftheconstructionandreservoir-fillingperiod(withinnineyearsofthestartofconstruc-tion).GeneralrehabilitationproceduresplannedbytheApplicanthavebeendescribedinSec-tionJ.3.1.3andExhibitE(Vol.6A,Chap.3,p.E-3-279-E-3-281).Thediscussionconcerningreestablishmentandsuccessionofvegetationfollowingphysicalrehabi-litationofconstructionfacilitiespresentedinSectionJ.2.1.1.1fortheWatanadevelopmentisapp1icab1etotheDevi1Canyondeve1opmentalso.However,vegetationreestab1ishmentondisturbedareaslocatedonsteepslopeswouldprobablytakemoretimethanforsiteswithmoregent1egrades.Withsteepslopesnaturalrevegetationmightbeslowedorhamperedbysoi1erosion,butuseofintroducedorperhapsevennativegrassspeciestoestablishaquickcoverandminimizeerosionmightinhibitlaterinvasionbyothernativespecies(Johnson,1981;Johnson,1982).AsexplainedinSectionJ.2.1.1.1,extremelyliberalestimatesofwetlandsthatcouldbelostduetoconstructionoftheDevilCanyondevelopment(TablesJ-24andJ-25)havebeenmadeonthebasisoftheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).TheareaspresentedinTablesJ-24andJ-25reallyrepresentareasthatwouldbelostinwhichwetlandspotentiallycouldoccur.
J-57TableJ-22.AcreageofVegetationTypesthatWouldbePermanentlyLostasaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinVegetatedAreaLost(acres)tlPercentageofDamandBasinTotalforVegetationTypeSpi11waysImpoundmentTotalRespectiveTypet2Forest405,7005,7000.7Woodlandblackspruce3303300.08Woodlandwhitespruce4949Openblackspruce107407500.5Openwhitespruce810810Openbirch1401407.0t3Closedbirch71,1001,1001l0.Ot3Openbalsampoplar1515t4Closedbalsampoplar2020t4Openmixed176907101.2Closedmixed51,8001,8004.6Tundra02727<0.01Wetsedge-grass27270.2Shrubland01701700.01Opentallshrub55<0.01Closedtallshrub22Birchshrub1201200.1Willowshrub35350.1Mixedlowshrub1010<0.01Unvegetated52,0002,0000.3Rock37370.01River22,000 2,0005.6Lake2250.01TotalVegetatedArea405,9005,9000.2TotalArea447,900t57,9000.2t1Acreagesconvertedfromhectaresasgiveninthesourceandroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t3Thisisanoverestimationcausedbydifferencesinmappingscales(seetext).t4ThesevegetationtypeswerenotquantifiedinTableJ-7(seetext).t5ThetotalareathatwouldbeinundatedbytheDevilCanyonimpoundmentascalculatedbyMcKendricketal.(1982)inthevegetationstudiesdiffersslightlyfromtheimpoundmentareastatedinSection2.1.2.2.Thisisprobablyduetodifferencesinmappingtechniques.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.84(Revised),p.3B-7-5,whichisbasedonthe1:63,360maps(Fig.J-2).J-57TableJ-22.AcreageofVegetationTypesthatWouldbePermanentlyLostasaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinVegetatedAreaLost(acres)tlPercentageofDamandBasinTotalforVegetationTypeSpi11waysImpoundmentTotalRespectiveTypet2Forest405,7005,7000.7Woodlandblackspruce3303300.08Woodlandwhitespruce4949Openblackspruce107407500.5Openwhitespruce810810Openbirch1401407.0t3Closedbirch71,1001,1001l0.Ot3Openbalsampoplar1515t4Closedbalsampoplar2020t4Openmixed176907101.2Closedmixed51,8001,8004.6Tundra02727<0.01Wetsedge-grass27270.2Shrubland01701700.01Opentallshrub55<0.01Closedtallshrub22Birchshrub1201200.1Willowshrub35350.1Mixedlowshrub1010<0.01Unvegetated52,0002,0000.3Rock37370.01River22,000 2,0005.6Lake2250.01TotalVegetatedArea405,9005,9000.2TotalArea447,900t57,9000.2t1Acreagesconvertedfromhectaresasgiveninthesourceandroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t3Thisisanoverestimationcausedbydifferencesinmappingscales(seetext).t4ThesevegetationtypeswerenotquantifiedinTableJ-7(seetext).t5ThetotalareathatwouldbeinundatedbytheDevilCanyonimpoundmentascalculatedbyMcKendricketal.(1982)inthevegetationstudiesdiffersslightlyfromtheimpoundmentareastatedinSection2.1.2.2.Thisisprobablyduetodifferencesinmappingtechniques.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.84(Revised),p.3B-7-5,whichisbasedonthe1:63,360maps(Fig.J-2).
Table J-23.Acreage of Vegetation Types that Would be Temporarily Lost and Would Require
Rehabilitation as a Result of the Devil Canyon Development and Comparison of Each Type
with the Total Acreage of that Type in the Upper and Middle Susitna Basint 1
Vegetated Area Lost (acres)t 2
Borrow Contractor Work Percentage ofAreasConstructionConstructionAreasandCon-Basin Total for
Vegetation Type Camp Vi 11 age G Kt 3 struction Roadst 3 Total Respective Typet 4
Forest 89 96 47 290 580 1,100 0.1
Woodland black spruce 30 30 0.01
Open black spruce 12 27 310 350 0.1
Closed birch 23 23 2.3
Open mixed 100 100 0.2
Closed mixed 89 96 5 270 150 600 1.5
Tundra 0 0 0 0 0 0 0
Shrubland 0 0 7 44 0 52 <0.01
Open tall shrub 7 7 <0.01
Birch shrub 44 44 0.05 c..
I
(J"l
00
Unvegetated 0 0 0 27 0 27 <0.01
Lake 27 27 0.04
Total Vegetated Area 89 96 54 340 580 1,200 0.03
Total Area 89 96 54 370 580 1,200 0.03
t 1 The use of the word,temporarily,implies that the area would eventually be rehabilitated.
t 2 Acreages converted from hectares as given in the source and rounded to two significant figures;values do not add up to
totals for each major vegetation type due to rounding errors.
t 3 Values estimated by determining total acreages within 10 mi (16 km)of the Susitna River (Table J-8)of types that might
be affected (according to Exhibit E,Vol.6A,Chap.3,p.E-3-276),and determining what proportion each type represents
of the total for all types affected.These proportions were then multiplied by the expected acreage of borrow site K or
the estimated total acreage of work areas and roads to give estimates of each type that might be affected.
t 4 Percentages calculated by dividing acreages by total acreages for each type as given in Table J-7.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Modified from Supplemental Information to Exhibit E,Vol.6B,Chap.3,June 30,1983,Table E.3.84 (Revised),
p.3B-7-5,which is based on the 1:63,360 maps (Fig.J-2).
Table J-23.Acreage of Vegetation Types that Would be Temporarily Lost and Would Require
Rehabilitation as a Result of the Devil Canyon Development and Comparison of Each Type
with the Total Acreage of that Type in the Upper and Middle Susitna Basint 1
Vegetated Area Lost (acres)t2
Borrow Contractor Work Percentage ofAreasConstructionConstructionAreasandCon-Basin Total for
Vegetation Type Camp Vi 11 age G Kt 3 struction Roadst 3 Total Respective Typet 4
Forest 89 96 47 290 580 1,100 0.1
Woodland black spruce 30 30 0.01
Open black spruce 12 27 310 350 0.1
Closed birch 23 23 2.3
Open mixed 100 100 0.2
Closed mixed 89 96 5 270 150 600 1.5
Tundra 0 0 0 0 0 0 0
Shrubland 0 0 7 44 0 52 <0.01
Open tall shrub 7 7 <0.01
Birch shrub 44 44 0.05 c..
I
(J"l
00
Unvegetated 0 0 0 27 0 27 <0.01
Lake 27 27 0.04
Total Vegetated Area 89 96 54 340 580 1,200 0.03
Total Area 89 96 54 370 580 1,200 0.03
t 1 The use of the word,temporarily,implies that the area would eventually be rehabilitated.
t 2 Acreages converted from hectares as given in the source and rounded to two significant figures;values do not add up to
totals for each major vegetation type due to rounding errors.
t 3 Values estimated by determining total acreages within 10 mi (16 km)of the Susitna River (Table J-8)of types that might
be affected (according to Exhibit E,Vol.6A,Chap.3,p.E-3-276),and determining what proportion each type represents
of the total for all types affected.These proportions were then multiplied by the expected acreage of borrow site K or
the estimated total acreage of work areas and roads to give estimates of each type that might be affected.
t 4 Percentages calculated by dividing acreages by total acreages for each type as given in Table J-7.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Modified from Supplemental Information to Exhibit E,Vol.6B,Chap.3,June 30,1983,Table E.3.84 (Revised),
p.3B-7-5,which is based on the 1:63,360 maps (Fig.J-2).
J-59TableJ-24.AcreageofPotentialWetlandTypesthatWouldbePermanentlyLostasaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinPotentialWetlandAreaLost(acres)t1PercentageofDamandBasinTotalforWetlandTypeSpi11waysImpoundmentTotalRespectiveTypet2Palustrineforested,101,9001,9000.3needle-leavedevergreenPalustrineforested,035353.5broad-leaveddeciduousPalustrinescrub-shrub,01701700.01broad-leaveddeciduousPalustrineorlacustrine027270.2emergent,persistentLacustrine2250.01Riverine22,000 2,0005.6TotalPotential154,200 4,2000.2\oJet1andAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,convertedfromhectaresasgiveninthesource,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-12.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-22usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.J-59TableJ-24.AcreageofPotentialWetlandTypesthatWouldbePermanentlyLostasaResultoftheDevilCanyonDevelopmentandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinPotentialWetlandAreaLost(acres)t1PercentageofDamandBasinTotalforWetlandTypeSpi11waysImpoundmentTotalRespectiveTypet2Palustrineforested,101,9001,9000.3needle-leavedevergreenPalustrineforested,035353.5broad-leaveddeciduousPalustrinescrub-shrub,01701700.01broad-leaveddeciduousPalustrineorlacustrine027270.2emergent,persistentLacustrine2250.01Riverine22,000 2,0005.6TotalPotential154,200 4,2000.2\oJet1andAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,convertedfromhectaresasgiveninthesource,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-12.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-22usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.
Table J-25.Acreage of Potential Wetland Types that Would Be Temporarily Lost and Would Require
Rehabilitation as a Result of the Devil Canyon Development and Comparison of
Each Type with the Total Acreage of that Type in the
Upper and Middle Susitna Basint 1
Potential Wetland Areas Lost (acres)t2
Construction Borrow Contractor Work Percentage ofAreasCampandAreasandCon-Basin Total for
Wetland Type Vi 11 age G Kt 3 struction Roadst 3 Total Respective Typet 4
Palustrine forested,0 42 27 310 380 0.05
needle-leaved evergreen
Palustrine scrub-shrub,0 0 44 0 44 <0.01
broad-leaved deciduous
Palustrine or lacustrine 0 0 0 0 0 0
emergent,persistent e..-
o
O'l
Lacustrine 0 0 27 0 27 0.04 0
Riverine 0 0 0 0 0 0
Total Potential 0 42 99 310 450 0.02
Wetland Area
t 1 The use of the word,temporarily,implies that the area would eventually be rehabilitated.
t 2 Acreages based on correlation of vegetation types to wetland types of Cowardin et al.(1979)as in
Table J-5,converted from hectares as given in the source,and rounded to two significant figures.
Values do not add up to totals due to rounding errors.
t 3 See footnote t 3 in Table J-23.
t 4 Percentages calculated by dividing acreages by total acreages for each type as given in Table J-12.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Table J-23 using correlations of vegetation types to potential wetland classes
as given in Table J-5.
Table J-25.Acreage of Potential Wetland Types that Would Be Temporarily Lost and Would Require
Rehabilitation as a Result of the Devil Canyon Development and Comparison of
Each Type with the Total Acreage of that Type in the
Upper and Middle Susitna Basint 1
Potential Wetland Areas Lost (acres)t2
Construction Borrow Contractor Work Percentage ofAreasCampandAreasandCon-Basin Total for
Wetland Type Vi 11 age G Kt 3 struction Roadst 3 Total Respective Typet 4
Palustrine forested,0 42 27 310 380 0.05
needle-leaved evergreen
Palustrine scrub-shrub,0 0 44 0 44 <0.01
broad-leaved deciduous
Palustrine or lacustrine 0 0 0 0 0 0
emergent,persistent e..-
o
O'l
Lacustrine 0 0 27 0 27 0.04 0
Riverine 0 0 0 0 0 0
Total Potential 0 42 99 310 450 0.02
Wetland Area
t 1 The use of the word,temporarily,implies that the area would eventually be rehabilitated.
t 2 Acreages based on correlation of vegetation types to wetland types of Cowardin et al.(1979)as in
Table J-5,converted from hectares as given in the source,and rounded to two significant figures.
Values do not add up to totals due to rounding errors.
t 3 See footnote t 3 in Table J-23.
t 4 Percentages calculated by dividing acreages by total acreages for each type as given in Table J-12.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Table J-23 using correlations of vegetation types to potential wetland classes
as given in Table J-5.
J-61Thus,asaliberalestimate,4,200acres(1,700ha)orabout0.2%ofthepotentialwetlandsintheupperandmiddleSusitnaBasinwouldbepermanentlylostasaresultofconstructionandfillingoftheDevilCanyondam,spillways,andimpoundment(TableJ-24).Anadditional450acres(180ha)ofpotentialwetlandtypeswouldbeaffectedbyconstructionoftemporaryfacilitiesandexcavationofborrowareas(TableJ-25).Thislatteracreagerepresentsonly0.02%ofthepotentialwetlandsintheupperandmiddleSusitnaBasin.Almosthalfoftheareathatwouldbepermanentlyremovedisriverinewetland.Thepalustrineforested,needle-leavedevergreentypecomprisesmostoftherestofthewetlandthatwouldbepermanentlyremovedandover80%ofthewetlandthatwouldbeaffectedbytemporaryfacilities.Althoughthelandareaswheretemporaryfacilitieshadbeenlocatedwouldbephysicallyrehabilitated,itisimpossibletopredictwhetherwetlandsthatoriginallyoccurredintheseareaswouldberestored(seeSec.J.2.1.1.1).IndirectVegetationLossorDamageandAlterationofPlantCommunitiesVegetationlossordamageandalterationofplantcommunitiescouldoccurasaresultofrockslidesanderosiononthesteepslopessurroundingtheimpoundment.UnliketheWatanaimpound-ment,areasofpermafrostarerelativelysparseontherockyslopessurroundingtheproposedDevilCanyonimpoundment.Thus,erosion,slides,thawingofpermafrost,andsubsequenteffectsonvegetation(asdescribedinSec.J.2.1.1.1)wouldbemuchlessincomparisontoWatana.AlthoughthearealextentofslopeinstabilityalongtheDevilCanyonreservoirshorelinecannotbereliablyquantifiedinadvance,theApplicanthascalculated,onthebasisofaerialphoto-graphicinterpretationandlimitedfieldreconnaissance,thatabout2,500acres(1,000ha)oflandadjacenttothereservoirshorelinemightbeaffectedtosomedegreebybeachingandtoamuchlesserextentbyfloworblockslides(SupplementalInformationtoExhibitE,Vol.7,Chap.6,Item7).Itisanticipatedthattheseslopefailureswouldbealong-term,progressiveactivityinitiatedduringconstructionandcontinuingduringoperation,andthatsomeportionoftheseareaswouldbesusceptibletoerosionandlossofvegetation.TreeblowdownandfugitivedustingimpactsmightoccurduringDevilCanyonconstruction,butthemagnitUdeoftheimpactsshouldbelessthanforWatana.Inthecaseoftreeblowdown,themaximumfetchwouldbelessattheDevilCanyonsitethanatWatana.Fugitivedustingwouldbelessbecauseofthesmallersizeofdust-generatingareassuchastheclearedimpoundmentzone,borrowsites,andconstructionroads.TheeffectsofaltereddrainagecausedbyconstructionactivitieshavebeendiscussedinSec-tionJ.2.1.1.1fortheWatanadevelopment.SimilareffectsmightoccurduringDevilCanyonconstructionalthoughimpactswouldbelessextensivethanatWatanaduetothesteepslopes,sparsepermafrostconditions,andgenerallysmallerscopeofactivitiesatDevilCanyon.Theeffectsofincreasedhumanactivity(i.e.,increasedfireincidence,ORV/ATVusage,andnonessentialdisturbancesofvegetation)describedfortheWatanadevelopment(seeSec.J.2.1.1.1)wouldalsooccurattheDevilCanyondevelopment.However,theeffectsshouldbelessthanforWatanabecauseofthesmallerworkforceandshorterconstructiontime.J.2.1.2.2OperationImpactsresultingfromoperationoftheDevilCanyonfacilitywouldbesimilarinnaturetothosecausedbyWatanaoperation.Aswithconstruction-relatedimpacts,however,manyoftheimpactsassociatedwithDevilCanyonwouldbegenerallylessextensivethanforWatana.TheeffectsofregulatedflowsonriparianplantcommunitiesdownstreamofTalkeetnawouldbesimilartothosedescribedinSectionJ.2.1.1.2foroperationofWatanaalone.SinceincreasedwatertemperaturesassociatedwithreservoiroutflowwouldextendfurtherdownstreamwithDevilCanyoninoperation,morein-placemeltingoficeduringbreakupwouldoccurdownstreamofTalkeetna.Thus,thesomewhatlocalizedeffectsoficejammingwouldprobablybereducedslightlyoverWatanaonlyconditionsforsomedistancebelowTalkeetna.WithDevilCanyoninoperation,thefactorscontrollingriparianvegetationintheDevilCanyontoTalkeetnareachwouldchange.Iceformationwouldbeconsideredunlikelyinthisreach(ExhibitE,Vol.5A,Chap.2,p.E-2-169),andvegetationdevelopmentwouldprobablybecontrolledbysummerflows.Sincesummerflowswouldbereducedbycomparisontopreprojectflowsandsinceice-stagingeffectsassociatedwithoperationofWatanaalonewouldbeeliminated,anincreaseinvegetatedareaoverpreprojectconditionswouldprobablyoccur.Thewidthofareaoccupiedbyearly-tomid-successionalstageswouldprobablyincreaseoverpreprojectconditionsinit ially.Withtime,however,theregu1atedflowsanddecreasedincidenceoffloodingwouldallowsuccessiontoproceedtowardsmaturebalsampoplarandwhitespruceforests.Thewidthofareaoccupiedbyearly-tomid-successionalstagesmighteventuallybedecreasedbelowpre-projectconditionssincefewereventscapableofcausingvegetativerecessiontoearlierseralstageswouldoccur.ThedrawdownzoneoftheDevilCanyonimpoundmentwouldtypicallyrangeinelevationfrom1,405to1,455ft(429to444m)MSL.ThereislittleprobabilityofvegetationestablishmentwithinJ-61Thus,asaliberalestimate,4,200acres(1,700ha)orabout0.2%ofthepotentialwetlandsintheupperandmiddleSusitnaBasinwouldbepermanentlylostasaresultofconstructionandfillingoftheDevilCanyondam,spillways,andimpoundment(TableJ-24).Anadditional450acres(180ha)ofpotentialwetlandtypeswouldbeaffectedbyconstructionoftemporaryfacilitiesandexcavationofborrowareas(TableJ-25).Thislatteracreagerepresentsonly0.02%ofthepotentialwetlandsintheupperandmiddleSusitnaBasin.Almosthalfoftheareathatwouldbepermanentlyremovedisriverinewetland.Thepalustrineforested,needle-leavedevergreentypecomprisesmostoftherestofthewetlandthatwouldbepermanentlyremovedandover80%ofthewetlandthatwouldbeaffectedbytemporaryfacilities.Althoughthelandareaswheretemporaryfacilitieshadbeenlocatedwouldbephysicallyrehabilitated,itisimpossibletopredictwhetherwetlandsthatoriginallyoccurredintheseareaswouldberestored(seeSec.J.2.1.1.1).IndirectVegetationLossorDamageandAlterationofPlantCommunitiesVegetationlossordamageandalterationofplantcommunitiescouldoccurasaresultofrockslidesanderosiononthesteepslopessurroundingtheimpoundment.UnliketheWatanaimpound-ment,areasofpermafrostarerelativelysparseontherockyslopessurroundingtheproposedDevilCanyonimpoundment.Thus,erosion,slides,thawingofpermafrost,andsubsequenteffectsonvegetation(asdescribedinSec.J.2.1.1.1)wouldbemuchlessincomparisontoWatana.AlthoughthearealextentofslopeinstabilityalongtheDevilCanyonreservoirshorelinecannotbereliablyquantifiedinadvance,theApplicanthascalculated,onthebasisofaerialphoto-graphicinterpretationandlimitedfieldreconnaissance,thatabout2,500acres(1,000ha)oflandadjacenttothereservoirshorelinemightbeaffectedtosomedegreebybeachingandtoamuchlesserextentbyfloworblockslides(SupplementalInformationtoExhibitE,Vol.7,Chap.6,Item7).Itisanticipatedthattheseslopefailureswouldbealong-term,progressiveactivityinitiatedduringconstructionandcontinuingduringoperation,andthatsomeportionoftheseareaswouldbesusceptibletoerosionandlossofvegetation.TreeblowdownandfugitivedustingimpactsmightoccurduringDevilCanyonconstruction,butthemagnitUdeoftheimpactsshouldbelessthanforWatana.Inthecaseoftreeblowdown,themaximumfetchwouldbelessattheDevilCanyonsitethanatWatana.Fugitivedustingwouldbelessbecauseofthesmallersizeofdust-generatingareassuchastheclearedimpoundmentzone,borrowsites,andconstructionroads.TheeffectsofaltereddrainagecausedbyconstructionactivitieshavebeendiscussedinSec-tionJ.2.1.1.1fortheWatanadevelopment.SimilareffectsmightoccurduringDevilCanyonconstructionalthoughimpactswouldbelessextensivethanatWatanaduetothesteepslopes,sparsepermafrostconditions,andgenerallysmallerscopeofactivitiesatDevilCanyon.Theeffectsofincreasedhumanactivity(i.e.,increasedfireincidence,ORV/ATVusage,andnonessentialdisturbancesofvegetation)describedfortheWatanadevelopment(seeSec.J.2.1.1.1)wouldalsooccurattheDevilCanyondevelopment.However,theeffectsshouldbelessthanforWatanabecauseofthesmallerworkforceandshorterconstructiontime.J.2.1.2.2OperationImpactsresultingfromoperationoftheDevilCanyonfacilitywouldbesimilarinnaturetothosecausedbyWatanaoperation.Aswithconstruction-relatedimpacts,however,manyoftheimpactsassociatedwithDevilCanyonwouldbegenerallylessextensivethanforWatana.TheeffectsofregulatedflowsonriparianplantcommunitiesdownstreamofTalkeetnawouldbesimilartothosedescribedinSectionJ.2.1.1.2foroperationofWatanaalone.SinceincreasedwatertemperaturesassociatedwithreservoiroutflowwouldextendfurtherdownstreamwithDevilCanyoninoperation,morein-placemeltingoficeduringbreakupwouldoccurdownstreamofTalkeetna.Thus,thesomewhatlocalizedeffectsoficejammingwouldprobablybereducedslightlyoverWatanaonlyconditionsforsomedistancebelowTalkeetna.WithDevilCanyoninoperation,thefactorscontrollingriparianvegetationintheDevilCanyontoTalkeetnareachwouldchange.Iceformationwouldbeconsideredunlikelyinthisreach(ExhibitE,Vol.5A,Chap.2,p.E-2-169),andvegetationdevelopmentwouldprobablybecontrolledbysummerflows.Sincesummerflowswouldbereducedbycomparisontopreprojectflowsandsinceice-stagingeffectsassociatedwithoperationofWatanaalonewouldbeeliminated,anincreaseinvegetatedareaoverpreprojectconditionswouldprobablyoccur.Thewidthofareaoccupiedbyearly-tomid-successionalstageswouldprobablyincreaseoverpreprojectconditionsinit ially.Withtime,however,theregu1atedflowsanddecreasedincidenceoffloodingwouldallowsuccessiontoproceedtowardsmaturebalsampoplarandwhitespruceforests.Thewidthofareaoccupiedbyearly-tomid-successionalstagesmighteventuallybedecreasedbelowpre-projectconditionssincefewereventscapableofcausingvegetativerecessiontoearlierseralstageswouldoccur.ThedrawdownzoneoftheDevilCanyonimpoundmentwouldtypicallyrangeinelevationfrom1,405to1,455ft(429to444m)MSL.Thereislittleprobabilityofvegetationestablishmentwithin
J-62thedrawdownzonesincethewaterlevelwouldonlybeloweredsignificantlyduringAugustandSeptember(ExhibitE,Vol.5A,Chap.2,p.E-2-155).Changesinplantcommunitiesassociatedwithreservoir-inducedchangesinsoilwatertablesareexpectedtobeminimalbecauseofthegreaterprevalenceofconsolidated,rockysubstrataintheDevilCanyonarea.Ingeneral,erosion-causedvegetationlossoralterationwouldbelessextensivethanfortheWatanaimpoundment,duetotheinfrequencyofpermafrostconditionsandthemorestableslopeconditionsintheDevilCanyonarea(seeSees.E.2.1.1andE.2.1.2,ReservoirSlopeInstability,inApp.E).However,thoseerosionprocessesinitiatedfollowingimpoundmentclearing(seeSec.J.2.1.2.1)wouldprobablycontinueduringoperation.EstimatesofpotentialacreagesthatcouldbeinvolvedhavebeendiscussedinSectionJ.2.1.2.1.IftheoldlandslideatRM175movesafterfilling(Sec.E.2.1.2.1,RegionalSeismicity,inApp.E),somewhattemporaryflood-ingofupstreamareasmightoccur,whichcouldcausesomeunpredictablevegetationloss.AreaslikelytobeaffectedincludethemouthsandfloodplainsofFogandTsusenaCreeks.MesoclimaticeffectsdescribedfortheWatanadevelopment(Sec.J.2.1.1.2)--suchastreeblowdown,alterationofairandsoiltemperature,fog,andrimeiceaccumulationsnearthereservoirandinthedownstreamfloodp1ain--mightalsooccurasaresultofDevi1Canyonoperation.However,theextentoftheeffects,withtheexceptionofdownstreamfloodplainfogandicing,wouldbemuchlessthanforWatanabecauseofthesmallersizeandthephysicalcon-figurationoftheDevilCanyonreservoir.OnceDevi1Canyonisinoperation,impactstovegetationassociatedwithincreaseduseoftheareabyoperationalpersonnelwouldbeminimalbecauseofthesmallnumbersofpeopleinvolved.However,increaseduseoftheareabythegeneralpUblicasdiscussedinSectionJ.2.1.3couldhaveagreaterimpactonvegetation.J.2.1.3AccessRoutesJ.2.1.3.1DenaliHighwaytoWatanaConstructionConstructionoftheDenaliHighway-to-Watanaaccessroadwouldresultinclearingandpermanentlossofabout630acres(250ha)ofvegetation(TableJ-26).Thisareaamountsto0.02%ofthevegetationwithintheupperandmiddleSusitnaBasin.Over70%ofthevegetationremovedwouldbelowshrubtypesandalmost25%wouldbetundratypes.TheproposedaccessroutealignmenthasbeenadjustedbytheApplicanttoavoidimportantwet-landareasnearDeadmanandTsusenacreeksandtominimizecrossageofotherwetlandareas.However,about480acres(190ha)ofpotentialwetlandtypes,primarilythepalustrinescrub-shrub,broad-leaveddeciduoustype,mightbeclearedfortheDenaliHighway-to-Watanaaccessroad(TableJ-27).AsexplainedinSectionJ.2.1.1.1,theareasinTableJ-27areextremelyliberalestimatesbasedoncorrelationtotheViereckandDyrness(1980)vegetationclassifica-tionsystem(seeTableJ-5).Temporarylossofvegetationmightoccurasaresultofconstruction-relatedvehiclemovementsoutsidetheactualaccessroutealignmentandclearingforpossibleborrowareas.TheApplicanthasproposedconstructionmethodstoreducerequirementsforfillmaterial(ExhibitE,Vol.6A,Chap.3,p.E-3-264-E-3-266).However,nineborrowareasthatmightbeusedonacontingencybasishavebeenidentifiedalongtheDenaliHighway-to-vlatanaroute.TheApp1icanthasindi-catedthattheseborrowsiteswouldbeexcavatedtoabout8ft(2.5m)ontheaverageandthateachwouldcoverfrom10to20acres(4to8ha).Additionalareawouldberequiredforover-burdenandsoi1storageduringexcavation.Thus,inaworst-casesituation,about200acres(81ha)ofmostlyshrubandtundravegetationtypeswouldbetemporarilyremovedduringborrowexcavation.ThesesiteswouldbephysicallyrehabilitatedfollowingconstructionandvegetationreestablishmentshouldproceedasdescribedinSectionJ.2.1.1.1.SincethelengthofsoilstoragetimeswouldbeconsiderablyshorterthanthoseassociatedwithrehabilitationeffortsforWatanaandDevilCanyonfacilities,vegetationrecolonizationmightbeinitiatedsoonerandproceedmorerapidlythanfordamsitefacilities.Indirecteffectstovegetationmightoccurasaresultoffugitivedusting,erosion,andaltereddrainagepatterns.RefertoSectionJ.2.1.1.1foradiscussionoftheseeffects.OperationVegetationwouldcontinuetobeaffectedbyuseoftheaccessroadduringoperation.Dust-anderosion-relatedimpactstoborderingvegetationwouldcontinue.Theaccessroadwouldfacilitateincreasedhumanuseofthearea,whichwouldincreasethefrequencyandextentofdisturbancessuchasORV/ATVuseandhuman-causedfires.Human-relatedimpactstovegetationcouldlikelyincreaseifgeneralpublicusageoftheareaincreasesfollowingthecompletionofconstructionattheWatanaandDevilCanyondevelopments.J-62thedrawdownzonesincethewaterlevelwouldonlybeloweredsignificantlyduringAugustandSeptember(ExhibitE,Vol.5A,Chap.2,p.E-2-155).Changesinplantcommunitiesassociatedwithreservoir-inducedchangesinsoilwatertablesareexpectedtobeminimalbecauseofthegreaterprevalenceofconsolidated,rockysubstrataintheDevilCanyonarea.Ingeneral,erosion-causedvegetationlossoralterationwouldbelessextensivethanfortheWatanaimpoundment,duetotheinfrequencyofpermafrostconditionsandthemorestableslopeconditionsintheDevilCanyonarea(seeSees.E.2.1.1andE.2.1.2,ReservoirSlopeInstability,inApp.E).However,thoseerosionprocessesinitiatedfollowingimpoundmentclearing(seeSec.J.2.1.2.1)wouldprobablycontinueduringoperation.EstimatesofpotentialacreagesthatcouldbeinvolvedhavebeendiscussedinSectionJ.2.1.2.1.IftheoldlandslideatRM175movesafterfilling(Sec.E.2.1.2.1,RegionalSeismicity,inApp.E),somewhattemporaryflood-ingofupstreamareasmightoccur,whichcouldcausesomeunpredictablevegetationloss.AreaslikelytobeaffectedincludethemouthsandfloodplainsofFogandTsusenaCreeks.MesoclimaticeffectsdescribedfortheWatanadevelopment(Sec.J.2.1.1.2)--suchastreeblowdown,alterationofairandsoiltemperature,fog,andrimeiceaccumulationsnearthereservoirandinthedownstreamfloodp1ain--mightalsooccurasaresultofDevi1Canyonoperation.However,theextentoftheeffects,withtheexceptionofdownstreamfloodplainfogandicing,wouldbemuchlessthanforWatanabecauseofthesmallersizeandthephysicalcon-figurationoftheDevilCanyonreservoir.OnceDevi1Canyonisinoperation,impactstovegetationassociatedwithincreaseduseoftheareabyoperationalpersonnelwouldbeminimalbecauseofthesmallnumbersofpeopleinvolved.However,increaseduseoftheareabythegeneralpUblicasdiscussedinSectionJ.2.1.3couldhaveagreaterimpactonvegetation.J.2.1.3AccessRoutesJ.2.1.3.1DenaliHighwaytoWatanaConstructionConstructionoftheDenaliHighway-to-Watanaaccessroadwouldresultinclearingandpermanentlossofabout630acres(250ha)ofvegetation(TableJ-26).Thisareaamountsto0.02%ofthevegetationwithintheupperandmiddleSusitnaBasin.Over70%ofthevegetationremovedwouldbelowshrubtypesandalmost25%wouldbetundratypes.TheproposedaccessroutealignmenthasbeenadjustedbytheApplicanttoavoidimportantwet-landareasnearDeadmanandTsusenacreeksandtominimizecrossageofotherwetlandareas.However,about480acres(190ha)ofpotentialwetlandtypes,primarilythepalustrinescrub-shrub,broad-leaveddeciduoustype,mightbeclearedfortheDenaliHighway-to-Watanaaccessroad(TableJ-27).AsexplainedinSectionJ.2.1.1.1,theareasinTableJ-27areextremelyliberalestimatesbasedoncorrelationtotheViereckandDyrness(1980)vegetationclassifica-tionsystem(seeTableJ-5).Temporarylossofvegetationmightoccurasaresultofconstruction-relatedvehiclemovementsoutsidetheactualaccessroutealignmentandclearingforpossibleborrowareas.TheApplicanthasproposedconstructionmethodstoreducerequirementsforfillmaterial(ExhibitE,Vol.6A,Chap.3,p.E-3-264-E-3-266).However,nineborrowareasthatmightbeusedonacontingencybasishavebeenidentifiedalongtheDenaliHighway-to-vlatanaroute.TheApp1icanthasindi-catedthattheseborrowsiteswouldbeexcavatedtoabout8ft(2.5m)ontheaverageandthateachwouldcoverfrom10to20acres(4to8ha).Additionalareawouldberequiredforover-burdenandsoi1storageduringexcavation.Thus,inaworst-casesituation,about200acres(81ha)ofmostlyshrubandtundravegetationtypeswouldbetemporarilyremovedduringborrowexcavation.ThesesiteswouldbephysicallyrehabilitatedfollowingconstructionandvegetationreestablishmentshouldproceedasdescribedinSectionJ.2.1.1.1.SincethelengthofsoilstoragetimeswouldbeconsiderablyshorterthanthoseassociatedwithrehabilitationeffortsforWatanaandDevilCanyonfacilities,vegetationrecolonizationmightbeinitiatedsoonerandproceedmorerapidlythanfordamsitefacilities.Indirecteffectstovegetationmightoccurasaresultoffugitivedusting,erosion,andaltereddrainagepatterns.RefertoSectionJ.2.1.1.1foradiscussionoftheseeffects.OperationVegetationwouldcontinuetobeaffectedbyuseoftheaccessroadduringoperation.Dust-anderosion-relatedimpactstoborderingvegetationwouldcontinue.Theaccessroadwouldfacilitateincreasedhumanuseofthearea,whichwouldincreasethefrequencyandextentofdisturbancessuchasORV/ATVuseandhuman-causedfires.Human-relatedimpactstovegetationcouldlikelyincreaseifgeneralpublicusageoftheareaincreasesfollowingthecompletionofconstructionattheWatanaandDevilCanyondevelopments.
J-63TableJ-26.AcreageofVegetationTypesthatWoulrlBeClearedforAccessandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinVegetatedAreaClearedBasinTotalforDenaliHighwayWatanatoDeviltoWatanaRoadCanyonRoad(acres)andPercentageofRespectiveTypet1_3RailAccesstoTotalforAllDevilCanyonAccessRoutesVegetationTypeacresForest28Woodlandblackspruce4WoodlandwhitespruceOpenblackspruceOpenwhitespruce2OpenbirchClosedbirchClosedbalsampoplarOpenmixed22ClosedmixedTundra150Wetsedge-grass31Mesicsedge-grass44Sedge-shrubMatandcushion79Shrub1and450OpentallshrubClosedtallshrubBirchshrub200Willowshrub200Mixedlowshrub51Rock2TotalVegetatedArea630%<0.01<0.01<0.010.040.020.30.010.050.030.20.8<0.01<0.010.02acres9314139210265311192426020551101359o400%0.01<0.010.010.20.020.070.010.09t30.010.020.020.10.050.01o0.01acres70421145022oo72%acres0.01190414<0.015410.122t410.02460.176<0.012100.02434419100o7002055310220110o2<0.011,100%0.02<0.010.020.10.2t40.080.20.020.40.01t40.060.040.020.40.80.01<0.010.03t1Acreagesroundedtotwosignificantfigures;valuesdonotaQduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t3AdditionalacreageswouldbeclearedforconstructionoftherailheadfacilityatDevilCanyonandforcontigencyborrowsites(seetext).t4ThesevegetationtypeswerenotquantifiedinTableJ-7(seetext).Conversion:Toconvertacrestohectares,multiplyby0.405.Source:SupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.85(Revised),p.3B-7-6,whichisbasedonmappingatthe1:63,360scale.J-63TableJ-26.AcreageofVegetationTypesthatWoulrlBeClearedforAccessandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinVegetatedAreaClearedBasinTotalforDenaliHighwayWatanatoDeviltoWatanaRoadCanyonRoad(acres)andPercentageofRespectiveTypet1_3RailAccesstoTotalforAllDevilCanyonAccessRoutesVegetationTypeacresForest28Woodlandblackspruce4WoodlandwhitespruceOpenblackspruceOpenwhitespruce2OpenbirchClosedbirchClosedbalsampoplarOpenmixed22ClosedmixedTundra150Wetsedge-grass31Mesicsedge-grass44Sedge-shrubMatandcushion79Shrub1and450OpentallshrubClosedtallshrubBirchshrub200Willowshrub200Mixedlowshrub51Rock2TotalVegetatedArea630%<0.01<0.01<0.010.040.020.30.010.050.030.20.8<0.01<0.010.02acres9314139210265311192426020551101359o400%0.01<0.010.010.20.020.070.010.09t30.010.020.020.10.050.01o0.01acres70421145022oo72%acres0.01190414<0.015410.122t410.02460.176<0.012100.02434419100o7002055310220110o2<0.011,100%0.02<0.010.020.10.2t40.080.20.020.40.01t40.060.040.020.40.80.01<0.010.03t1Acreagesroundedtotwosignificantfigures;valuesdonotaQduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t3AdditionalacreageswouldbeclearedforconstructionoftherailheadfacilityatDevilCanyonandforcontigencyborrowsites(seetext).t4ThesevegetationtypeswerenotquantifiedinTableJ-7(seetext).Conversion:Toconvertacrestohectares,multiplyby0.405.Source:SupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.85(Revised),p.3B-7-6,whichisbasedonmappingatthe1:63,360scale.
J-64TableJ-27.AcreageofPotentialWetlandTypesthatWouldBeClearedforAccessandComparisonofeachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinPotentialWetlandAreaCleared(acres)andPercentageofBasinTotalforRespectiveTypet1,2WatanatoDenaliHighwayDevilCanyonRailAccesstoTotalforAlltoWatanaRoadRoadDevilCanyonAccessRoutesWetlandTypeacres%acres%acres%acres%Palustrineforested,6<0.01550.014<0.01640.01needle-leavedevergreenPalustrineforested,0 0 0 0 10.110.1broad-leaveddeciduousPalustrinescrub-shrub,4500.041800.010 06300.05broad-leaveddeciduousPalustrineorlacustrine310.3110.0920.02430.4emergent,persistentLacustrine0 000000 0Riverine0 0 0 0 0 0 0 0TotalPotential4800.022500.016<0.017400.03WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-12.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-26usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.J.2.1.3.2WatanatoDevilCanyonConstructionAbout400acres(160ha)ofvegetationwouldbeclearedandpermanentlylostasaresultofaccessroadconstructionbetweenWatanaandDevilCanyon(TableJ-26).Thisarearepresents0.01%ofthevegetationwithintheentireupperandmiddleSusitnaBasinand0.04%ofthevege-tationwithin10mi(16km)oftheSusitnaRiver.Mostofthevegetationremoved(64%)wouldbeshrubtypes.Forestandtundratypescomprise23%and13%,respectively,ofthevegetationthatwouldbelost.TheproposedaccessroutealignmenthasbeenadjlistedbytheApp1icanttoavoidimportantwet-1andareasnearJackLongCreekand-tominimizecrossageofotherwetlandareas.Over60%[250acres(100ha)]ofthevegetationclearedfortheWatana-to-DevilCanyonaccessroadmightpotentiallybewetland(TableJ-27).AsexplainedinSectionJ.2.1.1.1,theareasofpotentialwetlandsinTableJ-27areextremelyliberalestimateswhicharebasedoncorrelationstotheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).Temporarylossofvegetationcausedbyconstruction-relatedactivityoutsidetheactualaccessroutecouldoccur.Clearingaswellasstorageofoverburdenandsoilassociatedwithborrowsiteexcavationmightalsoresultintemporarylossofvegetation.FivepotentialborrowsitessimilarinsizetothosedescribedinSectionJ.2.1.3.1havebeenidentifiedforcontingencyuse.Thus,inaworst-casesituationabout110acres(45ha)ofvegetationwouldbetemporarilyremovedforfillmaterialexcavation.Rehabilitationofthese-typesofdisturbanceshasbeendescribedinSectionJ.2.1.3.1.Indirecteffectstovegetationmightoccurasaresultoffugitivedusting,erosion,andaltereddrainagepatterns.RefertoSectionJ.2.1.1.1foradiscussionoftheseeffects.J-64TableJ-27.AcreageofPotentialWetlandTypesthatWouldBeClearedforAccessandComparisonofeachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinPotentialWetlandAreaCleared(acres)andPercentageofBasinTotalforRespectiveTypet1,2WatanatoDenaliHighwayDevilCanyonRailAccesstoTotalforAlltoWatanaRoadRoadDevilCanyonAccessRoutesWetlandTypeacres%acres%acres%acres%Palustrineforested,6<0.01550.014<0.01640.01needle-leavedevergreenPalustrineforested,0 0 0 0 10.110.1broad-leaveddeciduousPalustrinescrub-shrub,4500.041800.010 06300.05broad-leaveddeciduousPalustrineorlacustrine310.3110.0920.02430.4emergent,persistentLacustrine0 000000 0Riverine0 0 0 0 0 0 0 0TotalPotential4800.022500.016<0.017400.03WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-12.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-26usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.J.2.1.3.2WatanatoDevilCanyonConstructionAbout400acres(160ha)ofvegetationwouldbeclearedandpermanentlylostasaresultofaccessroadconstructionbetweenWatanaandDevilCanyon(TableJ-26).Thisarearepresents0.01%ofthevegetationwithintheentireupperandmiddleSusitnaBasinand0.04%ofthevege-tationwithin10mi(16km)oftheSusitnaRiver.Mostofthevegetationremoved(64%)wouldbeshrubtypes.Forestandtundratypescomprise23%and13%,respectively,ofthevegetationthatwouldbelost.TheproposedaccessroutealignmenthasbeenadjlistedbytheApp1icanttoavoidimportantwet-1andareasnearJackLongCreekand-tominimizecrossageofotherwetlandareas.Over60%[250acres(100ha)]ofthevegetationclearedfortheWatana-to-DevilCanyonaccessroadmightpotentiallybewetland(TableJ-27).AsexplainedinSectionJ.2.1.1.1,theareasofpotentialwetlandsinTableJ-27areextremelyliberalestimateswhicharebasedoncorrelationstotheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).Temporarylossofvegetationcausedbyconstruction-relatedactivityoutsidetheactualaccessroutecouldoccur.Clearingaswellasstorageofoverburdenandsoilassociatedwithborrowsiteexcavationmightalsoresultintemporarylossofvegetation.FivepotentialborrowsitessimilarinsizetothosedescribedinSectionJ.2.1.3.1havebeenidentifiedforcontingencyuse.Thus,inaworst-casesituationabout110acres(45ha)ofvegetationwouldbetemporarilyremovedforfillmaterialexcavation.Rehabilitationofthese-typesofdisturbanceshasbeendescribedinSectionJ.2.1.3.1.Indirecteffectstovegetationmightoccurasaresultoffugitivedusting,erosion,andaltereddrainagepatterns.RefertoSectionJ.2.1.1.1foradiscussionoftheseeffects.
J-65OperationRefertoSectionJ.2.1.3.1foradiscussionoftheoperationalimpactsoftheWatana-to-DevilCanyonaccessroad.J.2.1.3.3RailAccesstoDevilCanyonConstructionConstructionoftherailspurbetweenGoldCreekandDevilCanyonwouldresultintheremovalandpermanentlossofabout70acres(30ha)ofvegetationconsistingmostlyofforesttypes,primarilyclosedmixedconifer-deciduousforest(TableJ-26).Clearingwouldremovelessthan0.01%ofthetotalvegetationand0.1%oftheclosedmixedandopenbirchforesttypeswithintheupperandmiddleSusitnaBasin.About50acres(20ha)ofvegetationwouldalsoberemovedtoconstructtherailheadfacility.TheproposedaccessroutealignmentandlocationoftherailheadfacilityhavebeenselectedbytheApplicanttoavoidimportantwetlandareasnearJackLongCreekandtominimizecrossageofotherwetlandareas.Infact,only6acres(2.5ha)ofpotentialwetlandtypesmayneedtobeclearedfortherailaccesstoDevilCanyon(TableJ-27).AsexplainedinSectionJ.2.1.1.1,theareasofpotentialwetlandsinTableJ-27areextremelyliberalestimateswhicharebasedoncorrelationstotheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).Temporarylossofvegetationcausedbyconstruction-relatedactivityoutsidetheactualaccessroutemightoccur.Rehabi1itationofthistypeofdisturbancehasbeendescribedinSec-tionJ.2.1.3.1.OperationImpactstovegetationresultingfromusageofrailaccesswouldwillbeminimal.Mostoftheimpactsofusingtheaccessroads(seeSec.J.2.1.3.1)mightalsooccuralongtherailaccessroutebutthefrequencyandextentofoccurrencewouldbegreatlyreducedbycomparisontoroadaccess.J.2.1.4PowerTransmissionFacilitiesJ.2.1.4.1Dams-to-GoldCreekSegmentConstructionThe300ft-wide(91m-wide)right-of-wayfortheWatana-to-GoldCreektransmissionlineproposedfor\o/atanaonlyoperationwouldcrossapproximately1,300acres(530ha)ofvegetation(TableJ-28).Thisarearepresentsaworst-caseestimateofvegetationthatwouldbeimpacted,sinceonlytheforestandtallshrubtypeswouldrequiremajorclearing.BetweenWatanaandDevilCanyonmostofthevegetationintheproposedright-of-wayisshrubandtundratypes.Lessthan5%oftheproposedright-of-wayisoccupiedbyforesttypes.Incontrast,fromDevilCanyontoGoldCreektheproposedright-of-wayisover90%forestedwithclosedmixedconifer-deciduousforestbeingthemostprevalenttype.Theonlyothervegetationtypethatwouldbecrossediswetsedge-grasstundra.TheApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorsduringdetailedalignmentstudiestominimizewetlandandfloodplaincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).However,aworst-caseestimateofpotentialwetlandtypesthatwouldbecrossedbytheWatana-to-GoldCreektransmissionlineduringWatanaonlyoperationispresentedinTableJ-29.Oftheapproximately550acres(220ha)ofpotentialwetlandthatwouldbecrossed,almostallofthesectionbetweenWatanaandDevilCanyonispalustrinescrub-shrub,broad-leaveddeciduous;whereas,palustrineforested,needle-leavedevergreen;palustrineorlacustrineemergent,persistent;andasmallareaofriverinetypeswouldbecrossedbythesectionbetweenDevilCanyonandGoldCreek.Withtheexceptionofthepalustrineorlacustrineemergent,persistenttype,theareaofeachwetlandtypethatwouldbecrossedrepresentslessthan0.1%oftherespectivetypewithintheupperandmiddleSusitnaBasin.OnceDevilCanyonisoperational,twoadditionallineswouldbeaddedbetweenDevilCanyonandGoldCreekrequiringawideningoftheDevilCanyon-to-GoldCreekright-of-wayto510ft(155m).Theadditionalproposedright-of-waywouldcrossabout210acres(85ha)ofthesamevegetationtypesandabout47acres(19ha)ofthesamepotentialwetlandtypesasthosethatwouldbecrossedbytheinitialDevilCanyon-to-GoldCreekright-of-waysegment(TablesJ-28andJ-29).TheApplicanthasindicatedthatlimitedcuttingoftreesandshrubvegetationwouldberequiredforline-of-sitestakinganddistancemeasurementduringsurveyingtolocatecenterlines.Clearingofvegetationfromtherights-of-waywouldbeselective,withtotalremovalgenerallyJ-65OperationRefertoSectionJ.2.1.3.1foradiscussionoftheoperationalimpactsoftheWatana-to-DevilCanyonaccessroad.J.2.1.3.3RailAccesstoDevilCanyonConstructionConstructionoftherailspurbetweenGoldCreekandDevilCanyonwouldresultintheremovalandpermanentlossofabout70acres(30ha)ofvegetationconsistingmostlyofforesttypes,primarilyclosedmixedconifer-deciduousforest(TableJ-26).Clearingwouldremovelessthan0.01%ofthetotalvegetationand0.1%oftheclosedmixedandopenbirchforesttypeswithintheupperandmiddleSusitnaBasin.About50acres(20ha)ofvegetationwouldalsoberemovedtoconstructtherailheadfacility.TheproposedaccessroutealignmentandlocationoftherailheadfacilityhavebeenselectedbytheApplicanttoavoidimportantwetlandareasnearJackLongCreekandtominimizecrossageofotherwetlandareas.Infact,only6acres(2.5ha)ofpotentialwetlandtypesmayneedtobeclearedfortherailaccesstoDevilCanyon(TableJ-27).AsexplainedinSectionJ.2.1.1.1,theareasofpotentialwetlandsinTableJ-27areextremelyliberalestimateswhicharebasedoncorrelationstotheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).Temporarylossofvegetationcausedbyconstruction-relatedactivityoutsidetheactualaccessroutemightoccur.Rehabi1itationofthistypeofdisturbancehasbeendescribedinSec-tionJ.2.1.3.1.OperationImpactstovegetationresultingfromusageofrailaccesswouldwillbeminimal.Mostoftheimpactsofusingtheaccessroads(seeSec.J.2.1.3.1)mightalsooccuralongtherailaccessroutebutthefrequencyandextentofoccurrencewouldbegreatlyreducedbycomparisontoroadaccess.J.2.1.4PowerTransmissionFacilitiesJ.2.1.4.1Dams-to-GoldCreekSegmentConstructionThe300ft-wide(91m-wide)right-of-wayfortheWatana-to-GoldCreektransmissionlineproposedfor\o/atanaonlyoperationwouldcrossapproximately1,300acres(530ha)ofvegetation(TableJ-28).Thisarearepresentsaworst-caseestimateofvegetationthatwouldbeimpacted,sinceonlytheforestandtallshrubtypeswouldrequiremajorclearing.BetweenWatanaandDevilCanyonmostofthevegetationintheproposedright-of-wayisshrubandtundratypes.Lessthan5%oftheproposedright-of-wayisoccupiedbyforesttypes.Incontrast,fromDevilCanyontoGoldCreektheproposedright-of-wayisover90%forestedwithclosedmixedconifer-deciduousforestbeingthemostprevalenttype.Theonlyothervegetationtypethatwouldbecrossediswetsedge-grasstundra.TheApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorsduringdetailedalignmentstudiestominimizewetlandandfloodplaincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).However,aworst-caseestimateofpotentialwetlandtypesthatwouldbecrossedbytheWatana-to-GoldCreektransmissionlineduringWatanaonlyoperationispresentedinTableJ-29.Oftheapproximately550acres(220ha)ofpotentialwetlandthatwouldbecrossed,almostallofthesectionbetweenWatanaandDevilCanyonispalustrinescrub-shrub,broad-leaveddeciduous;whereas,palustrineforested,needle-leavedevergreen;palustrineorlacustrineemergent,persistent;andasmallareaofriverinetypeswouldbecrossedbythesectionbetweenDevilCanyonandGoldCreek.Withtheexceptionofthepalustrineorlacustrineemergent,persistenttype,theareaofeachwetlandtypethatwouldbecrossedrepresentslessthan0.1%oftherespectivetypewithintheupperandmiddleSusitnaBasin.OnceDevilCanyonisoperational,twoadditionallineswouldbeaddedbetweenDevilCanyonandGoldCreekrequiringawideningoftheDevilCanyon-to-GoldCreekright-of-wayto510ft(155m).Theadditionalproposedright-of-waywouldcrossabout210acres(85ha)ofthesamevegetationtypesandabout47acres(19ha)ofthesamepotentialwetlandtypesasthosethatwouldbecrossedbytheinitialDevilCanyon-to-GoldCreekright-of-waysegment(TablesJ-28andJ-29).TheApplicanthasindicatedthatlimitedcuttingoftreesandshrubvegetationwouldberequiredforline-of-sitestakinganddistancemeasurementduringsurveyingtolocatecenterlines.Clearingofvegetationfromtherights-of-waywouldbeselective,withtotalremovalgenerally
J-66VegetatedAreaCrossed(acres)andPercentageofBasinTotalforRespectiveTypet1,2TableJ-28.AcreageofVegetationTypesthatWouldBeCrossedbyTransmissionCorridorsfromtheDamstoGoldCreekandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasint1Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t3ThesevegetationtypeswerenotquantifiedinTableJ-7(seetext).Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.80(Revised),p.3B-7-3,whichisbasedonmappingatthe1:63,360scale.0.060.02<0.010.41.21.00.030.3<0.01t30.080.050.080.30.10.010.04%TotalDamstoGoldCreekO.0251030.0182<0.01100.270.5120.4390<0.013100.1397130130a720100160260331600.011,500%acresa210DevilCanyonAddition190254351501616acresDevilCanyontoGoldCreek%0.01<0.010.20.70.6<0.010.2a0.010.03a290270366472202323acres%0.010.010.060.03<0.01t30.080.050.080.30.10.010.034232222270WatanaOnlyWatanatoDevilCanyonDevilCanyontoGoldCreekacres7130130720100160260331601,000VegetationTypeForestWoodlandblackspruceWoodlandwhitespruceOpenblackspruceOpenbirchClosedbirchClosedmixedTundraWetsedge-grassMesicsedge-grassSedge-shrubMatandcushionShrublandOpentallshrubClosedtallshrubBirchshrubWillowshrubMixedlowshrubTotalVegetatedAreaJ-66VegetatedAreaCrossed(acres)andPercentageofBasinTotalforRespectiveTypet1,2TableJ-28.AcreageofVegetationTypesthatWouldBeCrossedbyTransmissionCorridorsfromtheDamstoGoldCreekandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasint1Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t3ThesevegetationtypeswerenotquantifiedinTableJ-7(seetext).Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.80(Revised),p.3B-7-3,whichisbasedonmappingatthe1:63,360scale.0.060.02<0.010.41.21.00.030.3<0.01t30.080.050.080.30.10.010.04%TotalDamstoGoldCreekO.0251030.0182<0.01100.270.5120.4390<0.013100.1397130130a720100160260331600.011,500%acresa210DevilCanyonAddition190254351501616acresDevilCanyontoGoldCreek%0.01<0.010.20.70.6<0.010.2a0.010.03a290270366472202323acres%0.010.010.060.03<0.01t30.080.050.080.30.10.010.034232222270WatanaOnlyWatanatoDevilCanyonDevilCanyontoGoldCreekacres7130130720100160260331601,000VegetationTypeForestWoodlandblackspruceWoodlandwhitespruceOpenblackspruceOpenbirchClosedbirchClosedmixedTundraWetsedge-grassMesicsedge-grassSedge-shrubMatandcushionShrublandOpentallshrubClosedtallshrubBirchshrubWillowshrubMixedlowshrubTotalVegetatedArea
J-67TableJ-29.AcreageofPotentialWetlandTypesthatWouldBeCrossedbyTransmissionCorridorsfromtheDamstoGoldCreekandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinPotentialWetlandAreaCrossed(Acres)andPercentageofBasinTotalforRespectiveTypet1'ZDevilCanyonWatanaOnlyAdditionWatanatoDevilCanyonDevilCanyonTotalDamstoDevilCanyontoGoldCreektoGoldCreekGoldCreekWetlandTypeacres%acres%acres%acres%Palustrineforested,24<0.01410.0129<0.01950.01needle-leavedevergreenPalustrinescrub-shrub,4600.0400 0 04600.04broad-)eaveddeciduousPalustrineorlacustrine00230.2160.1390.3emergent,persistentLacustrine0 0 0 0 0 00 0Riverine003t30.012t30.015t30.01TotalPotential4800.0267<0.0147<0.015900.03WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.tZPercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-12.t3FromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,p.3B-12-8.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-28usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.beingconfinedtotowersites,accesstrails,andtemporaryconstructionfacilities.Herbicideswouldnotbeused.TypicalclearinglimitsforguyedX-typetowersupto85ft(26m)tallonlevelterrainareillustratedinFigureJ-6.Vegetationwouldbeclearedtovariousmaximumheightsdependingupondistancefromthelines,but,generally,atleastgroundlayervegetationwouldbeleftintact.Outsidetherights-of-way,additionallimitedclearingwouldberequiredforaccesstrailsandtoremovedangertrees(treesoutsidetheright-of-waywhicharetallenoughtocontactthetowers,guys,orlinesiftheyweretofall)(ExhibitE,Vol.6A,Chap.3,p.E-3-270-E-3-271).Thus,forestandtallshrubtypes,becauseoftheirheights,arethevegetationtypesthat,generally,wouldbemostimpactedbyclearingoftherights-of-way.BetweenWatanaandGoldCreek,forestandtallshrubtypesrepresent44%ofthevegetationintheright-of-wayduringWatanaonlyoperationand51%ofthevegetationiftheDevilCanyon-to-GoldCreeksegmentiswidenedfortwo-damoperation.Removaloftreesonpermafrostareas,evenwhenunderstoryvegetationisleftintactcanresultinpermafrostthawandsubsidencepotentiallycausingdamagetovegetationandalterationofplantcommunities(VanCleve,1978).Inaddition,construction-relatedmovementsandactivitiesinandaroundtherights-of-wayandaccesstrailsmightcauselocalizederosionandpermafrostthawandsubsequentdamagetovegetation.Erosion-andpermafrost-relatedimpactswouldbeminimized,however,bytheuseofballoon-tireandflat-treadvehicles.Thesetypesofimpactsarelikelytobegreaterintundratypesandwetareas.OperationAftertransmissionlineconstructioniscomplete,vegetationsuccessionwouldproceedindis-turbedareasasdescribedinSectionJ.1.2.1.Resproutingandnewgrowthfollowingconstructiondisturbancesshouldprovideenhancedbrowseforwildlifeinmanyareas(seeSec.J.2.1.1.1).J-67TableJ-29.AcreageofPotentialWetlandTypesthatWouldBeCrossedbyTransmissionCorridorsfromtheDamstoGoldCreekandComparisonofEachTypewiththeTotalAcreageofthatTypeintheUpperandMiddleSusitnaBasinPotentialWetlandAreaCrossed(Acres)andPercentageofBasinTotalforRespectiveTypet1'2DevilCanyonWatanaOnlyAdditionWatanatoDevilCanyonDevilCanyonTotalDamstoDevilCanyontoGoldCreektoGoldCreekGoldCreekWetlandTypeacres%acres%acres%acres%Palustrineforested,24<0.01410.0129<0.01950.01needle-leavedevergreenPalustrinescrub-shrub,4600.0400 0 04600.04broad-)eaveddeciduousPalustrineorlacustrine00230.2160.1390.3emergent,persistentLacustrine0 0 0 0 0 00 0Riverine003t30.012t30.015t30.01TotalPotential4800.0267<0.0147<0.015900.03WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-12.t3FromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,p.3B-12-8.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-28usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.beingconfinedtotowersites,accesstrails,andtemporaryconstructionfacilities.Herbicideswouldnotbeused.TypicalclearinglimitsforguyedX-typetowersupto85ft(26m)tallonlevelterrainareillustratedinFigureJ-6.Vegetationwouldbeclearedtovariousmaximumheightsdependingupondistancefromthelines,but,generally,atleastgroundlayervegetationwouldbeleftintact.Outsidetherights-of-way,additionallimitedclearingwouldberequiredforaccesstrailsandtoremovedangertrees(treesoutsidetheright-of-waywhicharetallenoughtocontactthetowers,guys,orlinesiftheyweretofall)(ExhibitE,Vol.6A,Chap.3,p.E-3-270-E-3-271).Thus,forestandtallshrubtypes,becauseoftheirheights,arethevegetationtypesthat,generally,wouldbemostimpactedbyclearingoftherights-of-way.BetweenWatanaandGoldCreek,forestandtallshrubtypesrepresent44%ofthevegetationintheright-of-wayduringWatanaonlyoperationand51%ofthevegetationiftheDevilCanyon-to-GoldCreeksegmentiswidenedfortwo-damoperation.Removaloftreesonpermafrostareas,evenwhenunderstoryvegetationisleftintactcanresultinpermafrostthawandsubsidencepotentiallycausingdamagetovegetationandalterationofplantcommunities(VanCleve,1978).Inaddition,construction-relatedmovementsandactivitiesinandaroundtherights-of-wayandaccesstrailsmightcauselocalizederosionandpermafrostthawandsubsequentdamagetovegetation.Erosion-andpermafrost-relatedimpactswouldbeminimized,however,bytheuseofballoon-tireandflat-treadvehicles.Thesetypesofimpactsarelikelytobegreaterintundratypesandwetareas.OperationAftertransmissionlineconstructioniscomplete,vegetationsuccessionwouldproceedindis-turbedareasasdescribedinSectionJ.1.2.1.Resproutingandnewgrowthfollowingconstructiondisturbancesshouldprovideenhancedbrowseforwildlifeinmanyareas(seeSec.J.2.1.1.1).
95'
~o
ct::
~
LIJ
8
LIJ
55'
i I
105'
1
"95'
c.....
I
O'lco
NOTE:
TOWER SPACING CENTERLINE TO CENTERLINE DISTANCE 105:
TOWER SPACING CENTERLINE TO EDGE OF RIGHT-OF-WAY 95:
NUM BER TOWERS
1
2
3
4
RIGHT-OF-WAY WIDTH
190 FEET
300 FEET
400 FEET
510 FEET
Figure J-6.Typical Transmission Right-of-Way Cross Section.
[Source:Exhibit E,Vol.6B,Chap.3,Fig.E.3.85]
95'
55'
105'
~o
ct::
~
LIJ
8
LIJ
i
1........1--_-=.5-=.5_·__••+oI~4..:...0=-·_~~40 '
c.....
I
O'lco
NOTE:
TOWER SPACING CENTERLINE TO CENTERLINE DISTANCE 105:
TOWER SPACING CENTERLINE TO EDGE OF RIGHT-OF-WAY 95:
NUM BER TOWERS
1
2
3
4
RIGHT-OF-WAY WIDTH
190 FEET
300 FEET
400 FEET
510 FEET
Figure J-6.Typical Transmission Right-of-Way Cross Section.
[Source:Exhibit E,Vol.6B,Chap.3,Fig.E.3.85J
J-69TheApplicantexpectsthatroutinemaintenance-relatedclearingoftherights-of-waywouldbenecessaryabouteverytenyears(ExhibitE,Vol.6A,Chap.3,p.E-3-272).Clearingmightoccurmorefrequentlyifnecessaryfortowerorlinerepairormaintenance.Noherbicideswouldbeused.Selectiveclearingbymanualclippingandtrimmingshouldcontinuetostimulatebrowseproductionofwillowandotherbrowsespecies.OthershrubssuchascrowberryandLabradorteamaysufferincreasedmortalityifrhizomesorrootsaredamagedduringclearing(Hernandez,1973;ChapinandShaver,1981).Ontheotherhand,ifmooseandothe·rwildlifeareattractedtotherights-of-waybecauseofincreasedbrowseproduction,over-browsingcouldaffectfuturevegetativeproductionorplantcommunitystructure.However,thepotentiallygreatestimpactstovegetationduringtheoperationalphasemightbecausedbyORV/ATVusageintherights-of-way(seeSec.J.2.1.1.1).J.2.1.4.2Healy-to-WillowSegmentConstructionThevegetationtypeclassificationsusedinmappingtheHealy-to-Willowsegmentaredifferentfromthoseusedfortherestoftheproposedproject,necessitatingthattheimpactsofthissegmentbediscussedseparatelyfromtheothersegments(seeSec.J.1.2.3.2).Approximately4,600acres(1,900ha)ofvegetationwouldbecrossedbytheSusitnaadditiontotheexistingHealy-to-Willowintertieright-of-way(TableJ-30).FromGoldCreektoHealytheadditionwouldbe190ft(58m)wide,andfromGoldCreektoWillowtheadditionwouldbe290ft(88m)wide.Theareaof4,600acres(1,900ha)representsaworst-caseestimateofvegetatedareathatwouldbeimpacted.Majorvegetationtypesthatwouldbecrossedareuplandspruce-hardwoodforest,shrublands,andtoalesserextentlowlandspruce-hardwoodforest.Duetotheirheight,forestandtallshrubtypes,whichrepresentabout50%oftheright-of-way,wouldbethevegetationtypesmostimpactedbyclearingoftheright-of-way.Asaworst-caseestimate,theHealy-to-Willowsegmentwouldcrossabout3,300acres(1,300ha)ofpotentialwetlandtypes(TableJ-31).Thisarearepresentsabout70%oftheareawithintheproposedHealy-to-Willowright-of-way.Palustrinescrub-shrub,broad-leaveddeciduouswetlandwouldbethemostprevalentwetlandtypecrossed.However,theApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorduringdetailedalign-mentstudiesinordertominimizewetlandandfloodplaincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).AdditionalconstructionimpactsarediscussedinSectionJ.2.1.4.1.OperationOperational-phaseimpactstovegetationarediscussedinSectionJ.2.1.4.1.J.2.1.4.3Healy-to-FairbanksSegmentConstructionThe300ft-wide(91m-wide)proposedright-of-wayfromHealytoFairbankswouldcrossapproxi-mately3,500acres(1,400ha)ofvegetation(TableJ-32).Thisarearepresentsaworst-caseestimateofthevegetationthatwouldbeimpacted.Themajorityoftheproposedright-of-wayiscoveredbyforest,althoughrelativelylargeareasoflowshrublandandwetsedge-grassarealsopresent.Openspruceisthemostcommonforesttype.Theforestandtallshrubtypesoccupyabout74%ofthevegetatedareawithintheproposedright-of-wayandarelikelytobemoreimpactedbyclearingthanothervegetationtypesduetotheirheight.Aworst-caseestimateofpotentialwetlandtypesthatwouldbecrossedbytheHealy-to-FairbankstransmissionlinesegmentispresentedinTableJ-33.About2,700acres(1,100ha),orapproxi-mately1.7%ofthepotentialwetlandareawithintheHealy-to-Fairbankstransmissioncorridorstudyarea(seeTableJ-16)wouldbecrossed.Mostofthepotentialwetlandareaispalustrineforested,needle-leavedevergreenoracomplexofpalustrineforested,scrub-shrub,andemergenttypes.However,about4%ofthepalustrineorlacustrineemergent,persistentwetlandsinthetransmissioncorridorstudyareawouldbecrossedbytheproposedright-of-way.TheApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorduringdetai1edalignmentstudiesinordertominimizewetlandandfloodp1aincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).Additionalconstruction-relatedimpactsarediscussedinSectionJ.2.1.4.1.OperationOperational-phaseimpactstovegetationwouldbethesameasdiscussedinSectionJ.2.1.4.1.J-69TheApplicantexpectsthatroutinemaintenance-relatedclearingoftherights-of-waywouldbenecessaryabouteverytenyears(ExhibitE,Vol.6A,Chap.3,p.E-3-272).Clearingmightoccurmorefrequentlyifnecessaryfortowerorlinerepairormaintenance.Noherbicideswouldbeused.Selectiveclearingbymanualclippingandtrimmingshouldcontinuetostimulatebrowseproductionofwillowandotherbrowsespecies.OthershrubssuchascrowberryandLabradorteamaysufferincreasedmortalityifrhizomesorrootsaredamagedduringclearing(Hernandez,1973;ChapinandShaver,1981).Ontheotherhand,ifmooseandothe·rwildlifeareattractedtotherights-of-waybecauseofincreasedbrowseproduction,over-browsingcouldaffectfuturevegetativeproductionorplantcommunitystructure.However,thepotentiallygreatestimpactstovegetationduringtheoperationalphasemightbecausedbyORV/ATVusageintherights-of-way(seeSec.J.2.1.1.1).J.2.1.4.2Healy-to-WillowSegmentConstructionThevegetationtypeclassificationsusedinmappingtheHealy-to-Willowsegmentaredifferentfromthoseusedfortherestoftheproposedproject,necessitatingthattheimpactsofthissegmentbediscussedseparatelyfromtheothersegments(seeSec.J.1.2.3.2).Approximately4,600acres(1,900ha)ofvegetationwouldbecrossedbytheSusitnaadditiontotheexistingHealy-to-Willowintertieright-of-way(TableJ-30).FromGoldCreektoHealytheadditionwouldbe190ft(58m)wide,andfromGoldCreektoWillowtheadditionwouldbe290ft(88m)wide.Theareaof4,600acres(1,900ha)representsaworst-caseestimateofvegetatedareathatwouldbeimpacted.Majorvegetationtypesthatwouldbecrossedareuplandspruce-hardwoodforest,shrublands,andtoalesserextentlowlandspruce-hardwoodforest.Duetotheirheight,forestandtallshrubtypes,whichrepresentabout50%oftheright-of-way,wouldbethevegetationtypesmostimpactedbyclearingoftheright-of-way.Asaworst-caseestimate,theHealy-to-Willowsegmentwouldcrossabout3,300acres(1,300ha)ofpotentialwetlandtypes(TableJ-31).Thisarearepresentsabout70%oftheareawithintheproposedHealy-to-Willowright-of-way.Palustrinescrub-shrub,broad-leaveddeciduouswetlandwouldbethemostprevalentwetlandtypecrossed.However,theApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorduringdetailedalign-mentstudiesinordertominimizewetlandandfloodplaincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).AdditionalconstructionimpactsarediscussedinSectionJ.2.1.4.1.OperationOperational-phaseimpactstovegetationarediscussedinSectionJ.2.1.4.1.J.2.1.4.3Healy-to-FairbanksSegmentConstructionThe300ft-wide(91m-wide)proposedright-of-wayfromHealytoFairbankswouldcrossapproxi-mately3,500acres(1,400ha)ofvegetation(TableJ-32).Thisarearepresentsaworst-caseestimateofthevegetationthatwouldbeimpacted.Themajorityoftheproposedright-of-wayiscoveredbyforest,althoughrelativelylargeareasoflowshrublandandwetsedge-grassarealsopresent.Openspruceisthemostcommonforesttype.Theforestandtallshrubtypesoccupyabout74%ofthevegetatedareawithintheproposedright-of-wayandarelikelytobemoreimpactedbyclearingthanothervegetationtypesduetotheirheight.Aworst-caseestimateofpotentialwetlandtypesthatwouldbecrossedbytheHealy-to-FairbankstransmissionlinesegmentispresentedinTableJ-33.About2,700acres(1,100ha),orapproxi-mately1.7%ofthepotentialwetlandareawithintheHealy-to-Fairbankstransmissioncorridorstudyarea(seeTableJ-16)wouldbecrossed.Mostofthepotentialwetlandareaispalustrineforested,needle-leavedevergreenoracomplexofpalustrineforested,scrub-shrub,andemergenttypes.However,about4%ofthepalustrineorlacustrineemergent,persistentwetlandsinthetransmissioncorridorstudyareawouldbecrossedbytheproposedright-of-way.TheApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorduringdetai1edalignmentstudiesinordertominimizewetlandandfloodp1aincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).Additionalconstruction-relatedimpactsarediscussedinSectionJ.2.1.4.1.OperationOperational-phaseimpactstovegetationwouldbethesameasdiscussedinSectionJ.2.1.4.1.
J-70TableJ-30.AcreageofVegetationTypesthatWouldbeCrossedbytheHealy-to-WillowTransmissionCorridorandPercentageofEachTypewithintheProposedTransmissionCorridorVegetatedAreaCrossed(acres)t1,2GoldCreekGoldCreekPercentageofVegetationTypetoHealyToWillowTotalTransmissionCorridorUplandspruce-hardwood6903701,10023.9forestLowlandspruce-hardwood083083018.0forestBottomlandspruce-poplar15330 3407.4forestWettundra27002705.9Moisttundra0220 2204.8Alpinetundra4421651.4Shrublands1,0002601,30028.3Lowbrush,Muskegbog0530 53011.5TotalVegetatedArea2,0002,6004,600100t1CalculatedfromdataandmapsinCommonwealthAssociates(1982).Thevaluespresentedhererepresenttheadditionalclearingofthecorridorfromthe110ft(34m)givenbyCommonwealthAssociates(1982)toatotalwidthof300ft(91m)fromGoldCreektoHealyand400ft(122m)fromGoldCreektoWillow.Thus,theareaspresentedinthistablerepresentareasthatwouldbeclearedwithina190-ft(58-m)widecorridorfromGoldCreektoHealyanda290-ft(88-m)widecorridorfromGoldCreektoWillow.t2Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsduetoroundingerrors.Conversion:Toconvertfromacrestohectares,multiplyby0.405.Source:ModifiedfromrevisionstoSupplementalInformationtoExhibitE,TableE.3.79(Revised),p.3B-7-2,aspresentedintheApplicant'sResponsestotheDepartmentoftheInteriorCommentsonLicenseApplication,February15,1984.J-70TableJ-30.AcreageofVegetationTypesthatWouldbeCrossedbytheHealy-to-WillowTransmissionCorridorandPercentageofEachTypewithintheProposedTransmissionCorridorVegetatedAreaCrossed(acres)t1,2GoldCreekGoldCreekPercentageofVegetationTypetoHealyToWillowTotalTransmissionCorridorUplandspruce-hardwood6903701,10023.9forestLowlandspruce-hardwood083083018.0forestBottomlandspruce-poplar15330 3407.4forestWettundra27002705.9Moisttundra0220 2204.8Alpinetundra4421651.4Shrublands1,0002601,30028.3Lowbrush,Muskegbog0530 53011.5TotalVegetatedArea2,0002,6004,600100t1CalculatedfromdataandmapsinCommonwealthAssociates(1982).Thevaluespresentedhererepresenttheadditionalclearingofthecorridorfromthe110ft(34m)givenbyCommonwealthAssociates(1982)toatotalwidthof300ft(91m)fromGoldCreektoHealyand400ft(122m)fromGoldCreektoWillow.Thus,theareaspresentedinthistablerepresentareasthatwouldbeclearedwithina190-ft(58-m)widecorridorfromGoldCreektoHealyanda290-ft(88-m)widecorridorfromGoldCreektoWillow.t2Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsduetoroundingerrors.Conversion:Toconvertfromacrestohectares,multiplyby0.405.Source:ModifiedfromrevisionstoSupplementalInformationtoExhibitE,TableE.3.79(Revised),p.3B-7-2,aspresentedintheApplicant'sResponsestotheDepartmentoftheInteriorCommentsonLicenseApplication,February15,1984.
J-71TableJ-31.AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheHealy-to-WillowTransmissionCorridorandPercentageofEachTypewithintheProposedTransmissionCorridorPotentialWetlandAreaCrossed(acres)t1GoldCreekGoldCreekPercentageofWetlandTypetoHealytovii11owTotalTransmissionCorridort2Palustrineforested,083083018.0needle-leavedevergreenPalustrineforested,15330 3407.4broad-leaveddeciduousPalustrinescrub-shrub,1,0007901,80039.1broad-leaveddeciduousPalustrineorlacustrine27002705.9emergent,persistentLacustrine0000Riverine0000TotalPotential1,3002,0003,30071.7WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2Percentagescalculatedbydividingacreagesbytotalacreageofproposedtrans-missionlinecorridor(seeTableJ-30).Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-30usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.J-71TableJ-31.AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheHealy-to-WillowTransmissionCorridorandPercentageofEachTypewithintheProposedTransmissionCorridorPotentialWetlandAreaCrossed(acres)t1GoldCreekGoldCreekPercentageofWetlandTypetoHealytovii11owTotalTransmissionCorridort2Palustrineforested,083083018.0needle-leavedevergreenPalustrineforested,15330 3407.4broad-leaveddeciduousPalustrinescrub-shrub,1,0007901,80039.1broad-leaveddeciduousPalustrineorlacustrine27002705.9emergent,persistentLacustrine0000Riverine0000TotalPotential1,3002,0003,30071.7WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2Percentagescalculatedbydividingacreagesbytotalacreageofproposedtrans-missionlinecorridor(seeTableJ-30).Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-30usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.
J-72TableJ-32.AcreageofVegetationTypesthatWouldbeCrossedbytheHealy-to-FairbanksTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheHealy-to-FairbanksTransmissionCorridorStudyAreaVegetationTypet1ForestWoodlandspruceOpenspruceClosedspruceOpendeciduousCloseddeciduousWoodlandmixedOpenmixedClosedmixedOpenspruce/opendeciduousOpenspruce/wetsedge-grass/opendeciduousOpenspruce/lowshrub/wetsedge-grass/opendeciduousTundraWetsedge-grassMesicsedge-grassSedge-shrubShrublandLowmixedshrubLowshrub/wetsedge-grassDisturbedUnvegetatedRiverTotalVegetatedAreaVegetatedAreaCrossed(acres)t22,6001201,4004023093233901713132402902501620610530801752523,500PercentageofTransmissionCorridorStudyAreat31.23.01.81.30.70.41.21.30.20.70.31.42.64.21.62.01.51.42.01.70.91.01.3t1TheTananaFlatsareacrossedbythistransmissioncorridor(Sec.J.1.2.3.3)isanareacharacterizedbyextremelycomplexmosaicsofvariousvegetationtypes.Asaresult,variouscomplexeswererecognizedandmapped.t2Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t3PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-15.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.68,Chap.3,June30,1983,TableE.3.86(Revised),p.38-7-7.J-72TableJ-32.AcreageofVegetationTypesthatWouldbeCrossedbytheHealy-to-FairbanksTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheHealy-to-FairbanksTransmissionCorridorStudyAreaVegetationTypet1ForestWoodlandspruceOpenspruceClosedspruceOpendeciduousCloseddeciduousWoodlandmixedOpenmixedClosedmixedOpenspruce/opendeciduousOpenspruce/wetsedge-grass/opendeciduousOpenspruce/lowshrub/wetsedge-grass/opendeciduousTundraWetsedge-grassMesicsedge-grassSedge-shrubShrublandLowmixedshrubLowshrub/wetsedge-grassDisturbedUnvegetatedRiverTotalVegetatedAreaVegetatedAreaCrossed(acres)t22,6001201,4004023093233901713132402902501620610530801752523,500PercentageofTransmissionCorridorStudyAreat31.23.01.81.30.70.41.21.30.20.70.31.42.64.21.62.01.51.42.01.70.91.01.3t1TheTananaFlatsareacrossedbythistransmissioncorridor(Sec.J.1.2.3.3)isanareacharacterizedbyextremelycomplexmosaicsofvariousvegetationtypes.Asaresult,variouscomplexeswererecognizedandmapped.t2Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t3PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-15.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.68,Chap.3,June30,1983,TableE.3.86(Revised),p.38-7-7.
J-73TableJ-33.AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheHealy-to-FairbanksTransmissionCorridorandComparisonofEachTypewiththeTotalAcreageofthatTypeintheHealy-to-FairbanksTransmissionCorridorStudyAreaPotentialWetlandPercentageofAreaCrossedTransmissionCorridorWetlandType(acres)t1StudyAreat2Palustrineforested,1,5001.8needle-leavedevergreenComplexesofPalustrine2601.1forested,scrub-shrub,andemergentPalustrinescrub-shrub,6101.5broad-leaveddeciduousPalustrineorlacustrine2504.2emergent,persistentLacustrine00Riverine520.9TotalPotential2,7001.7WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-16.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-32usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.J.2.1.4.4Willow-to-AnchorageSegmentConstructionApproximately2,000acres(810ha)ofvegetationwouldbecrossedbytheproposed400-ft(122-m)wideright-of-wayfortheWillow-to-Anchoragesegment(TableJ-34).Thisarearepresentstheworst-caseestimateofvegetationthatwouldbeimpacted.Closedmixedconifer-deciduousforestandwetsedge-grasstundraarethemajorvegetationtypesoccurringwithintheright-of-way;eachtyperepresentsabout28%ofthetotalvegetatedareawithintheright-of-way.Forestandtallshrubtypes,whichtogetherrepresentabout62%oftheright-of-way,wouldbethevegeta-tiontypesmostimpactedbyright-of-wayclearingmethods.Theworst-caseestimateofpotentialwetlandtypesthatwouldbecrossedbytheWillow-to-Anchoragetransmissionsegmentis1,100acres(450ha)(TableJ-35).Althoughthisacreagerepresentsabout2.4%ofthewetlandareawithintheWillow-to-Anchoragetransmissioncorridorstudyarea,about4.4%ofthepotentialpalustrinescrub-shrub,broad-leaveddeciduoustypewithinthestudyareawouldbecrossed.However,theApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorduringdetailedalignmentstudiesinordertominimizewetlandandfloodplaincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).Additionalconstruction-relatedimpactsarediscussedinSectionJ.2.1.4.1.OperationOperational-phaseimpactstovegetationarediscussedinSectionJ.2.1.4.1.J.2.1.5ThreatenedandEndangeredSpeciesAtpresent,noplanttaxaknowntooccurinAlaskaareofficiallylistedasthreatenedorendangeredbyFederalorstateauthorities.Therefore,noimpactstothreatenedorendangeredplantspecieswouldoccurasaresultofconstructionandoperationoftheWatanadevelopment,theDevilCanyondevelopment,theproposedaccessroutes,ortheproposedpowertransmissionfacilities.J-73TableJ-33.AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheHealy-to-FairbanksTransmissionCorridorandComparisonofEachTypewiththeTotalAcreageofthatTypeintheHealy-to-FairbanksTransmissionCorridorStudyAreaPotentialWetlandPercentageofAreaCrossedTransmissionCorridorWetlandType(acres)t1StudyAreat2Palustrineforested,1,5001.8needle-leavedevergreenComplexesofPalustrine2601.1forested,scrub-shrub,andemergentPalustrinescrub-shrub,6101.5broad-leaveddeciduousPalustrineorlacustrine2504.2emergent,persistentLacustrine00Riverine520.9TotalPotential2,7001.7WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-16.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-32usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.J.2.1.4.4Willow-to-AnchorageSegmentConstructionApproximately2,000acres(810ha)ofvegetationwouldbecrossedbytheproposed400-ft(122-m)wideright-of-wayfortheWillow-to-Anchoragesegment(TableJ-34).Thisarearepresentstheworst-caseestimateofvegetationthatwouldbeimpacted.Closedmixedconifer-deciduousforestandwetsedge-grasstundraarethemajorvegetationtypesoccurringwithintheright-of-way;eachtyperepresentsabout28%ofthetotalvegetatedareawithintheright-of-way.Forestandtallshrubtypes,whichtogetherrepresentabout62%oftheright-of-way,wouldbethevegeta-tiontypesmostimpactedbyright-of-wayclearingmethods.Theworst-caseestimateofpotentialwetlandtypesthatwouldbecrossedbytheWillow-to-Anchoragetransmissionsegmentis1,100acres(450ha)(TableJ-35).Althoughthisacreagerepresentsabout2.4%ofthewetlandareawithintheWillow-to-Anchoragetransmissioncorridorstudyarea,about4.4%ofthepotentialpalustrinescrub-shrub,broad-leaveddeciduoustypewithinthestudyareawouldbecrossed.However,theApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorduringdetailedalignmentstudiesinordertominimizewetlandandfloodplaincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).Additionalconstruction-relatedimpactsarediscussedinSectionJ.2.1.4.1.OperationOperational-phaseimpactstovegetationarediscussedinSectionJ.2.1.4.1.J.2.1.5ThreatenedandEndangeredSpeciesAtpresent,noplanttaxaknowntooccurinAlaskaareofficiallylistedasthreatenedorendangeredbyFederalorstateauthorities.Therefore,noimpactstothreatenedorendangeredplantspecieswouldoccurasaresultofconstructionandoperationoftheWatanadevelopment,theDevilCanyondevelopment,theproposedaccessroutes,ortheproposedpowertransmissionfacilities.
J-74TableJ-34.AcreageofVegetationTypesthatWouldbeCrossedbytheWillow-to-AnchorageTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheWillow-to-AnchorageTransmissionCorridorStudyAreaVegetationTypeForestWoodlandspruceOpenspruceClosedspruceCloseddeciduousOpenmixedClosedmixedTundraWetsedge-grassShrublandLowmixedshrubDisturbedTotalVegetatedAreaVegetatedAreaCrossed(acres)t11,30019097190150100560550550220220172,000PercentageofTransmissionCorridorStudyAreat22.03.21.22.41.72.52.02.42.44.44.41.72.2t1Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-13.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.86(Revised),p.3B-7-7.TableJ-35.AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheWillow-to-AnchorageTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheWillow-to-AnchorageTransmissionCorridorStudyAreaPotentialWetlandPercentageofAreaCrossedTransmissionCorridorWetlandType(acres)tlStudyAreat2Palustrineforested,2902.1needle-leavedevergreenPalustrinescrub-shrub,2204.4broad-leaveddeciduousPalustrineorlacustrine5502.4emergent,persistentLacustrine00Riverine00TotalPotential1,1002.4WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-16.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-34usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.J-74TableJ-34.AcreageofVegetationTypesthatWouldbeCrossedbytheWillow-to-AnchorageTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheWillow-to-AnchorageTransmissionCorridorStudyAreaVegetationTypeForestWoodlandspruceOpenspruceClosedspruceCloseddeciduousOpenmixedClosedmixedTundraWetsedge-grassShrublandLowmixedshrubDisturbedTotalVegetatedAreaVegetatedAreaCrossed(acres)t11,30019097190150100560550550220220172,000PercentageofTransmissionCorridorStudyAreat22.03.21.22.41.72.52.02.42.44.44.41.72.2t1Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-13.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.6B,Chap.3,June30,1983,TableE.3.86(Revised),p.3B-7-7.TableJ-35.AcreageofPotentialWetlandTypesthatWouldbeCrossedbytheWillow-to-AnchorageTransmissionCorridorandComparisonofeachTypewiththeTotalAcreageofthatTypeintheWillow-to-AnchorageTransmissionCorridorStudyAreaPotentialWetlandPercentageofAreaCrossedTransmissionCorridorWetlandType(acres)tlStudyAreat2Palustrineforested,2902.1needle-leavedevergreenPalustrinescrub-shrub,2204.4broad-leaveddeciduousPalustrineorlacustrine5502.4emergent,persistentLacustrine00Riverine00TotalPotential1,1002.4WetlandAreat1AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.t2PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-16.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-34usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.
J-75J.2.2SusitnaDevelopmentAlternativesJ.2.2.1AlternativeDamLocationsandDesignsThetypesofimpactstoplantcommunitiescausedbyuseofalternativedesignsfortheproposeddamsitesandforrelatedfacilitieswouldbeessentiallysimilartothoseimpactsfortheproposedprojectasdescribedinSectionJ.2.1.Relativelyminorrefinementsinthedesignsofthedamsandrelativelysmallchangesinthelocationsordesignsofrelatedfacilities,suchasthespillways,mightcauseslightchangesintheacreageortypesofvegetationremovedincomparisontotheproposedproject,butthesechangeswouldprobablybeinsignificantbycompari-sontothevegetationlostthroughinundationbytheimpoundment.IndirectvegetationlossordamageandalterationofplantcommunitiesthatwouldbecausedbyalternativedamandfacilitydesignswouldbeessentiallythesameasthatdescribedinSectionJ.2.1exceptthattheactuallocationand,thus,plantcommunitytypeaffectedmightchangeslightly.ConstructionandoperationoftheWatanaIalternativewouldlowertheimpoundmentelevationto2,100ft(640m)andreducetheareainundatedto28,300acres(11,450ha)(Wakefield,1983).Ofthe28,300acres(11,450ha)thatwouldbeinundated,about24,000acres(9,700ha)wouldbeexpectedtobevegetated.SpecificvegetationtypesthatwouldbelostshouldbesimilartothosequantifiedinTableJ-18exceptthattherelativeproportionsofeachtypemightchangeslightly.SincelessfillmaterialswouldberequiredforWatanaIincomparisontothepro-posedWatanadam,theacreageofvegetationthatwouldbetemporarilylostduringexcavationofborrowsitesandwouldlaterrequirerehabilitationwouldbelessthantheacreagequantifiedinTableJ-19fortheproposedWatanadam.IndirectvegetationlossordamageandalterationofplantcommunitiesthatwouldbecausedbyWatanaIwouldbesimilartothatdescribedinSec-tionJ.2.1.1;however,becauseofthesmallersizeoftheWatanaIimpoundment,theextentofsuchimpactswouldbelessthantheywouldbeforWatana.ThedownstreameffectsonripariancommunitiesthatwouldbecausedbyregulatedflowsassociatedwithWatanaIoperationwouldbesimilartothosedescribedinSectionJ.2.1.1.2,butmightaffectaslightlylesserareaiftheregulatedflowsassociatedwithWatanaIaremoresimilartoexistingflowsthanthoseassociatedwithWatana.ConstructionandoperationoftheReregulatingdamalternative(Fig.2-17)wouldresultinimpactssimilarto,butprobablylessextensivethan,impactstovegetationdescribedinSec-tionJ.2.1.2fortheproposedDevilCanyondamandimpoundment.ThemajordifferencebetweenthisalternativeandDevilCanyonisthatitwouldinundatelessarea[about4,000acres(l,600ha)]and1essvegetation[about3,000acres(1,200ha)]thanDevi1Canyon(seeTableJ-22).SpecificvegetationtypesthatwouldbelostshouldbesimilartothosequantifiedinTableJ-22,althoughtherelativeproportionsofeachtypemightchangeslightly.Additiona-lly,theextentofindirectvegetationlossordamageandalterationofplantcommunitiescausedbytheReregulatingdamalternativewouldlikelybelessthan theywouldbeforDevilCanyon.ConstructionandoperationoftheModifiedHighDevilCanyonalternative(Fig.2-17)wouldalsoresultinimpactssimilarto,butprobablylessextensivethan,thoseoftheproposedDevilCanyondamandimpoundment(seeSec.J.2.1.2).Althoughvegetation(primarilymixedconifer-deciduousforest)locatedinthe5mi(8km)betweentheModifiedHighDevilCanyonalternativedamsiteandtheDevilCanyondamsitewouldnotbeinundatedbytheModifiedHighDevilCanyonalternative,thehigherreservoirelevationofthisalternativewouldcauseinundationofvegeta-tionhigherupthecanyonslopesthanwouldoccurwiththeproposedDevilCanyonimpoundment.Asaroughestimate,theModifiedHighDevilCanyonalternativewouldinundateabout6,800acres(2,750ha),ofwhichapproximately5,100acres(2,100ha)wouldbevegetated.Specificvegeta-tiontypesthatwouldbelostshouldbesimilartothosequantifiedinTableJ-22,althoughtherelativeproportionsofeachtypemightchangeslightly.Also,theextentofindirectvegeta-tionlossordamageandalterationofplantcommunitiesassociatedwiththisalternativewouldprobablybeslightlylessthanforDevilCanyon.J.2.2.2AlternativeAccessRoutesConstructionofthenorthernorsouthernaccessalternatives(seeSec.2.2.2.4andFig.2-13)wouldresultinclearingandpermanentlossofabout810acres(330ha)or980acres(400ha)ofvegetation,respectively(TableJ-36).Theseareaseachamounttoabout0.02%ofthevegetationwithintheupperandmiddleSusitnaBasin.Forthenorthernaccessalternativeabout40%ofthevegetationremovedwouldbeforesttypes,principallywoodlandandopenwhitespruceforest;whereas,tallshrubandlowshrubtypeswouldaccountfor20%and33%ofthevegetationremoved,respectively.Almost60%ofthevegetationthatwouldberemovedforthesouthernacce3Salter-nativewouldbeforesttypes.Mixedconifer-deciduousandopenspruceforestswouldbethemajorforesttypeslost.Tallandlowshrubtypesoccurringinroughlyequalproportionscoveraboutathirdofthesouthernaccessalternative.About510acres(210ha)ofpotentialwetlandtypesmightbeclearedforthenorthernaccessalternative;whereas,only420acres(170ha)ofpotentialwetlandtypeswouldbeclearedforthesouthernaccessalternative(TableJ-37).AsexplainedinSectionJ.2.1.1,theareasinJ-75J.2.2SusitnaDevelopmentAlternativesJ.2.2.1AlternativeDamLocationsandDesignsThetypesofimpactstoplantcommunitiescausedbyuseofalternativedesignsfortheproposeddamsitesandforrelatedfacilitieswouldbeessentiallysimilartothoseimpactsfortheproposedprojectasdescribedinSectionJ.2.1.Relativelyminorrefinementsinthedesignsofthedamsandrelativelysmallchangesinthelocationsordesignsofrelatedfacilities,suchasthespillways,mightcauseslightchangesintheacreageortypesofvegetationremovedincomparisontotheproposedproject,butthesechangeswouldprobablybeinsignificantbycompari-sontothevegetationlostthroughinundationbytheimpoundment.IndirectvegetationlossordamageandalterationofplantcommunitiesthatwouldbecausedbyalternativedamandfacilitydesignswouldbeessentiallythesameasthatdescribedinSectionJ.2.1exceptthattheactuallocationand,thus,plantcommunitytypeaffectedmightchangeslightly.ConstructionandoperationoftheWatanaIalternativewouldlowertheimpoundmentelevationto2,100ft(640m)andreducetheareainundatedto28,300acres(11,450ha)(Wakefield,1983).Ofthe28,300acres(11,450ha)thatwouldbeinundated,about24,000acres(9,700ha)wouldbeexpectedtobevegetated.SpecificvegetationtypesthatwouldbelostshouldbesimilartothosequantifiedinTableJ-18exceptthattherelativeproportionsofeachtypemightchangeslightly.SincelessfillmaterialswouldberequiredforWatanaIincomparisontothepro-posedWatanadam,theacreageofvegetationthatwouldbetemporarilylostduringexcavationofborrowsitesandwouldlaterrequirerehabilitationwouldbelessthantheacreagequantifiedinTableJ-19fortheproposedWatanadam.IndirectvegetationlossordamageandalterationofplantcommunitiesthatwouldbecausedbyWatanaIwouldbesimilartothatdescribedinSec-tionJ.2.1.1;however,becauseofthesmallersizeoftheWatanaIimpoundment,theextentofsuchimpactswouldbelessthantheywouldbeforWatana.ThedownstreameffectsonripariancommunitiesthatwouldbecausedbyregulatedflowsassociatedwithWatanaIoperationwouldbesimilartothosedescribedinSectionJ.2.1.1.2,butmightaffectaslightlylesserareaiftheregulatedflowsassociatedwithWatanaIaremoresimilartoexistingflowsthanthoseassociatedwithWatana.ConstructionandoperationoftheReregulatingdamalternative(Fig.2-17)wouldresultinimpactssimilarto,butprobablylessextensivethan,impactstovegetationdescribedinSec-tionJ.2.1.2fortheproposedDevilCanyondamandimpoundment.ThemajordifferencebetweenthisalternativeandDevilCanyonisthatitwouldinundatelessarea[about4,000acres(l,600ha)]and1essvegetation[about3,000acres(1,200ha)]thanDevi1Canyon(seeTableJ-22).SpecificvegetationtypesthatwouldbelostshouldbesimilartothosequantifiedinTableJ-22,althoughtherelativeproportionsofeachtypemightchangeslightly.Additiona-lly,theextentofindirectvegetationlossordamageandalterationofplantcommunitiescausedbytheReregulatingdamalternativewouldlikelybelessthan theywouldbeforDevilCanyon.ConstructionandoperationoftheModifiedHighDevilCanyonalternative(Fig.2-17)wouldalsoresultinimpactssimilarto,butprobablylessextensivethan,thoseoftheproposedDevilCanyondamandimpoundment(seeSec.J.2.1.2).Althoughvegetation(primarilymixedconifer-deciduousforest)locatedinthe5mi(8km)betweentheModifiedHighDevilCanyonalternativedamsiteandtheDevilCanyondamsitewouldnotbeinundatedbytheModifiedHighDevilCanyonalternative,thehigherreservoirelevationofthisalternativewouldcauseinundationofvegeta-tionhigherupthecanyonslopesthanwouldoccurwiththeproposedDevilCanyonimpoundment.Asaroughestimate,theModifiedHighDevilCanyonalternativewouldinundateabout6,800acres(2,750ha),ofwhichapproximately5,100acres(2,100ha)wouldbevegetated.Specificvegeta-tiontypesthatwouldbelostshouldbesimilartothosequantifiedinTableJ-22,althoughtherelativeproportionsofeachtypemightchangeslightly.Also,theextentofindirectvegeta-tionlossordamageandalterationofplantcommunitiesassociatedwiththisalternativewouldprobablybeslightlylessthanforDevilCanyon.J.2.2.2AlternativeAccessRoutesConstructionofthenorthernorsouthernaccessalternatives(seeSec.2.2.2.4andFig.2-13)wouldresultinclearingandpermanentlossofabout810acres(330ha)or980acres(400ha)ofvegetation,respectively(TableJ-36).Theseareaseachamounttoabout0.02%ofthevegetationwithintheupperandmiddleSusitnaBasin.Forthenorthernaccessalternativeabout40%ofthevegetationremovedwouldbeforesttypes,principallywoodlandandopenwhitespruceforest;whereas,tallshrubandlowshrubtypeswouldaccountfor20%and33%ofthevegetationremoved,respectively.Almost60%ofthevegetationthatwouldberemovedforthesouthernacce3Salter-nativewouldbeforesttypes.Mixedconifer-deciduousandopenspruceforestswouldbethemajorforesttypeslost.Tallandlowshrubtypesoccurringinroughlyequalproportionscoveraboutathirdofthesouthernaccessalternative.About510acres(210ha)ofpotentialwetlandtypesmightbeclearedforthenorthernaccessalternative;whereas,only420acres(170ha)ofpotentialwetlandtypeswouldbeclearedforthesouthernaccessalternative(TableJ-37).AsexplainedinSectionJ.2.1.1,theareasin
J-76TableJ-36.AcreagesofVegetationTypesthatWouldBeClearedfortheNorthernandSouthernAlternativeAccessCorridorsandComparisonofEachVegetationTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasinVegetatedAreaCleared(acres)andPercentageofBasinTotalforRespectiveTypet1,2NorthernSouthernAlternativeAlternativet1PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t2Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t3ThesevegetationtypeswerenotquantifiedinTableJ-7.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:BasedonSupplementalInformationtoExhibitE,Vol.9,Chap.10,June30,1983,pp.10-14-1-10-14-2.VegetationTypeForestWoodlandblackspruceWoodlandwhitespruceOpenblackspruceOpenwhitespruceOpenbirchClosedbalsampoplarOpenmixedClosedmixedTundraWetsedge-grassMesicsedge-grassSedge-shrubMatandcushionGrasslandShrublandOpentallshrubClosedtallshrubBirchshrubWi11owshrubMixedlowshrubTotalVegetatedAreaacres32010041303285860625262430441201602586810%0.040.020.050.20.050.10.010.050.030.050.20.10.010.02acres570106160no4171250916338453206086701687980%0.070.020.060.2t30.10.60.010.05<0.01t30.030.020.050.080.060.010.03J-76TableJ-36.AcreagesofVegetationTypesthatWouldBeClearedfortheNorthernandSouthernAlternativeAccessCorridorsandComparisonofEachVegetationTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasinVegetatedAreaCleared(acres)andPercentageofBasinTotalforRespectiveTypet1,2NorthernSouthernAlternativeAlternativet1PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-7.t2Acreagesroundedtotwosignificantfigures;valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.t3ThesevegetationtypeswerenotquantifiedinTableJ-7.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:BasedonSupplementalInformationtoExhibitE,Vol.9,Chap.10,June30,1983,pp.10-14-1-10-14-2.VegetationTypeForestWoodlandblackspruceWoodlandwhitespruceOpenblackspruceOpenwhitespruceOpenbirchClosedbalsampoplarOpenmixedClosedmixedTundraWetsedge-grassMesicsedge-grassSedge-shrubMatandcushionGrasslandShrublandOpentallshrubClosedtallshrubBirchshrubWi11owshrubMixedlowshrubTotalVegetatedAreaacres32010041303285860625262430441201602586810%0.040.020.050.20.050.10.010.050.030.050.20.10.010.02acres570106160no4171250916338453206086701687980%0.070.020.060.2t30.10.60.010.05<0.01t30.030.020.050.080.060.010.03
J-nTableJ-37.AcreagesofPotentialWetlandTypesthatWouldBeClearedfortheNorthernandSouthernAlternativeAccessCorridorsandComparisonofEachWetlandTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasinPotentialWetlandAreaCleared(acres)andPercentageofBasinTotalforRespectiveTypet1'2NorthernSouthernAlternativeAlternativeWetlandTypeacres%acres%Palustrineforested,2300.032400.03needle-leavedevergreenPalustrineforested,0 010.1broad-leaveddeciduousPalustrinescrub-shrub,2700.021700.01broad-leaveddeciduousPalustrineorlacustrine60.0560.05emergent,persistentLacustrine0 00 0Riverine0 00 0TotalPotentialWetlandArea5100.024200.02t1PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-12.t2AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-36usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.TableJ-37areextremelyliberalestimatesbasedoncorrelationtotheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).Temporarylossofvegetationmightoccurasaresultofconstruction-relatedactivityoutsidetheactualalternativeaccessroutealignments.AlthoughtheApp1icanthasproposedconstruc-tionmethodstoreducerequirementsforfillmaterial(ExhibitE,Vol.6A,Chap.3,p.E-3-264-E-3-266),someborrowareasmightberequired.Ifborrowareasarerequired,clearingaswellasstorageofoverburdenandsoilcouldalsoresultintemporarylossofvegetation.Onthebasisofcontingencyborrowsitesidentifiedfortheproposedaccessroute,itcanbeestimatedthat,asaworst-casesituation,about300acres(120ha)ofvegetationmightbetemporarilyremovedduringborrowexcavationforeitheralternativeaccessroute.RehabilitationofthesetypesofdisturbancehasbeendescribedinSectionsJ.2.1.1.1andJ.2.1.3.1.PotentialindirectconstructioneffectstovegetationaswellaspotentialoperationalimpactstovegetationhavebeendiscussedinSectionJ.2.1.3.1.J.2.2.3AlternativePowerTransmissionRoutesTheacreagesofvariousvegetationtypesthatwouldbecrossedbytechnicallyandeconomicallyfeasiblealternativepowertransmissionroutes(ExhibitE,Vol.9,Chap.10,TableE.10.24)wereestimatedbytheApplicant(SupplementalInformationtoExhibitE,Vol.9,Chap.10,June30,1983,pp.10-20-1-10-20-4).Inthenorthernstudyarea(Fig.2-15),theright-of-wayforalternativepowertransmissionrouteABDCwouldcrossabout3,100acres(1,250ha)ofvegetation(TableJ-38).Inthecentralstudyarea(Fig.2-14),therights-of-wayforthesixtransmissionJ-nTableJ-37.AcreagesofPotentialWetlandTypesthatWouldBeClearedfortheNorthernandSouthernAlternativeAccessCorridorsandComparisonofEachWetlandTypewiththeTotalAcreageforthatTypeintheUpperandMiddleSusitnaBasinPotentialWetlandAreaCleared(acres)andPercentageofBasinTotalforRespectiveTypet1'ZNorthernSouthernAlternativeAlternativeWetlandTypeacres%acres%Palustrineforested,2300.032400.03needle-leavedevergreenPalustrineforested,0 010.1broad-leaveddeciduousPalustrinescrub-shrub,2700.021700.01broad-leaveddeciduousPalustrineorlacustrine60.0560.05emergent,persistentLacustrine0 00 0Riverine0 00 0TotalPotentialWetlandArea5100.024200.02t1PercentagescalculatedbydividingacreagesbytotalacreagesforeachtypeasgiveninTableJ-12.tZAcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Valuesdonotadduptototalsduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-36usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.TableJ-37areextremelyliberalestimatesbasedoncorrelationtotheViereckandDyrness(1980)vegetationclassificationsystem(seeTableJ-5).Temporarylossofvegetationmightoccurasaresultofconstruction-relatedactivityoutsidetheactualalternativeaccessroutealignments.AlthoughtheApp1icanthasproposedconstruc-tionmethodstoreducerequirementsforfillmaterial(ExhibitE,Vol.6A,Chap.3,p.E-3-264-E-3-266),someborrowareasmightberequired.Ifborrowareasarerequired,clearingaswellasstorageofoverburdenandsoilcouldalsoresultintemporarylossofvegetation.Onthebasisofcontingencyborrowsitesidentifiedfortheproposedaccessroute,itcanbeestimatedthat,asaworst-casesituation,about300acres(120ha)ofvegetationmightbetemporarilyremovedduringborrowexcavationforeitheralternativeaccessroute.RehabilitationofthesetypesofdisturbancehasbeendescribedinSectionsJ.2.1.1.1andJ.2.1.3.1.PotentialindirectconstructioneffectstovegetationaswellaspotentialoperationalimpactstovegetationhavebeendiscussedinSectionJ.2.1.3.1.J.2.2.3AlternativePowerTransmissionRoutesTheacreagesofvariousvegetationtypesthatwouldbecrossedbytechnicallyandeconomicallyfeasiblealternativepowertransmissionroutes(ExhibitE,Vol.9,Chap.10,TableE.10.24)wereestimatedbytheApplicant(SupplementalInformationtoExhibitE,Vol.9,Chap.10,June30,1983,pp.10-20-1-10-20-4).Inthenorthernstudyarea(Fig.2-15),theright-of-wayforalternativepowertransmissionrouteABDCwouldcrossabout3,100acres(1,250ha)ofvegetation(TableJ-38).Inthecentralstudyarea(Fig.2-14),therights-of-wayforthesixtransmission
J-78TableJ-38.AcreagesofVegetationTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheNorthernandSouthernStudyAreast1,2VegetatedAreaCrossed(acres)byeachCorridort3NorthernStudyAreaSouthernStudyAreaVegetationTypeABDCProposedABC'AEFCProposedForest2,2002,5002,800930900Conifer1,5001,50072350270Deciduous34038085010096Mixed3906301,900470540Tundra00280700270Mesicsedge-grass79Wetsedge-grass280700190Shrubland93073020040230Tallshrub270120160Lowshrub66061043 40230Sphagnumbog0020260580Unvegetated595933000vJater442253Disturbed1537270TotalVegetatedArea3,1003,2003,3001,9002,000t1Onlytechnicallyandeconomicallyfeasiblealternativeswereconsidered(seeExhibitE,Vol.9,Chap.10,TableE.10.24).t2AcreagesofvegetationtypescrossedbyproposedcorridorsareincludedinthistablebecauseacreagespresentedinthistablewerederivedbytheApplicantfrom1:250,000-scaleStateofAlaska,DepartmentofNaturalResourcesvegetationmapsfortheFairbanks,Healy,andAnchorageQuadsandarenotdirectlycomparabletotheacreagespresentedfortheproposedcorridorsinTablesJ-32andJ-34.t3Acreagesroundedtotwosignificantfigures;corridorwidthequals300ft(91m)forthenorthernstudyareaand400ft(122m)forthesouthernstudyarea.Valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.9,Chap.10,June30,1983,pp.10-20-1-10-20-4.J-78TableJ-38.AcreagesofVegetationTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheNorthernandSouthernStudyAreast1,2VegetatedAreaCrossed(acres)byeachCorridort3NorthernStudyAreaSouthernStudyAreaVegetationTypeABDCProposedABC'AEFCProposedForest2,2002,5002,800930900Conifer1,5001,50072350270Deciduous34038085010096Mixed3906301,900470540Tundra00280700270Mesicsedge-grass79Wetsedge-grass280700190Shrubland93073020040230Tallshrub270120160Lowshrub66061043 40230Sphagnumbog0020260580Unvegetated595933000vJater442253Disturbed1537270TotalVegetatedArea3,1003,2003,3001,9002,000t1Onlytechnicallyandeconomicallyfeasiblealternativeswereconsidered(seeExhibitE,Vol.9,Chap.10,TableE.10.24).t2AcreagesofvegetationtypescrossedbyproposedcorridorsareincludedinthistablebecauseacreagespresentedinthistablewerederivedbytheApplicantfrom1:250,000-scaleStateofAlaska,DepartmentofNaturalResourcesvegetationmapsfortheFairbanks,Healy,andAnchorageQuadsandarenotdirectlycomparabletotheacreagespresentedfortheproposedcorridorsinTablesJ-32andJ-34.t3Acreagesroundedtotwosignificantfigures;corridorwidthequals300ft(91m)forthenorthernstudyareaand400ft(122m)forthesouthernstudyarea.Valuesdonotadduptototalsforeachmajorvegetationtypeduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:ModifiedfromSupplementalInformationtoExhibitE,Vol.9,Chap.10,June30,1983,pp.10-20-1-10-20-4.
J-79routealternativeswouldcrossvaryingacreagesofvegetation,rangingfrom1,300acres(530ha)forcorridorAJCFto3,000acres(1,200ha)forcorridorCJAHI(TableJ-39).Inthesouthernstudyarea(Fig.2-16),3,300acres(1,300ha)ofvegetationwouldbecrossedbytheright-of-\.;ayforalternativeABC';whereas1,900acres(770ha)ofvegetationwouldbecrossedbyalter-nativeAEFC(TableJ-38).Theseareasrepresentaworst-caseestimateofvegetationtobeimpacted,sinceonlytheforestandtallshrubtypes(becauseoftheiroverstorylayerheights)wouldrequiremajorclearing.Inmostcases,forestandtallshrubcommunitiescoverlargeracreagesinthealternativerights-of-waythaninthecorrespondingproposedrights-of-way(seeTablesJ-38andJ-39,notefirstfootnoteineachtable).TheonlyexceptionstothisarealternativeABDCinthenorthernstudyareaandalternativeAJCFinthecentralstudyarea.TheApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorsduringdetailedalignmentstudiesinordertominimizewetlandandfloodplaincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).However,worst-caseestimatesofpotentialwetlandtypes(basedoncorrelationtovegetationtypes;seeSectionJ.2.1.1.1)thatwouldbecrossedbythealternativetransmissionlinerights-of-wayarepresentedinTablesJ-40andJ-41.Additionalpossiblealternativetransmissionlinecorridorsinthenorthernandsouthernstudyareas(asidentifiedinWakefield,1983)wouldcrosssimilartypesofvegetationasthealter-nativesidentifiedinTableJ-38althoughthespecificproportionsofvariousvegetationtypescontributingtothetotalacreagewouldbedifferent.Forexample,someofthesealternativesarelocatedclosertoriversorcreeksand,thus,mightcrossmorefloodplaincommunities.Ifthesealternativesparallelexistingrights-of-wayforroads,raillines,orothertransmissionlines,thenimpactstovegetationcausedbyclearingforaccessmightbelessthanforotheralternatives.However,withoutmoredetailedvegetationstudiesandmorespecificinformationonaccesslocationstothecorridors,itisimpossibletoidentifythealternativeswiththeleastimpactsonthebasisofbotanicalresources.OtherpotentialimpactstovegetationfromconstructionandoperationofthealternativepowertransmissionrouteswouldbesimilartothosealreadydiscussedinSectionJ.2.1.4.1.J.2.2.4AlternativeBorrowSitesWiththeexceptionofborrowsiteJ,whichiscontainedwithintheSusitnaRiver(Fig.2-2),useofthealternativeborrowsiteswouldresultinthetemporaryremovalofvegetationfromthesesites.Vegetationandsoilswouldbeclearedpriortoexcavation,andtheareaswouldberehabilitatedasoutlinedinSectionJ.2.1.1.1.TheacreagesofvegetationclearedforborrowsitesBandL(Fig.2-2)wouldberelativelysmall;whereas,about1,500acres(610ha)ofvegetationwouldbeclearedforborrowSiteC(Fig.2-6)(ExhibitE,Vol.9,Chap.10,pp.E-10-87, E-10-88,andE-10-99).J.2.2.5ThreatenedandEndangeredSpeciesAtpresent,noplanttaxaknowntooccurinAlaskaareofficiallylistedasthreatenedorendangeredbyFederalorstateauthorities.Therefore,noimpactstothreatenedorendangeredspecieswouldoccurasaresultoftheSusitnadevelopmentalternatives.J.2.3Non-SusitnaGenerationAlternativesJ.2.3.1Natural-Gas-FiredGenerationScenarioConstructionoffacilitiesassociatedwitheachofthe200-MWcombined-cycleunitsandeachofthe70-MWcombustion-turbineunitsinthenatural-gas-firedgenerationscenariowouldresultinthepermanentremovalof5acres(2ha)ofvegetation.Thus,atotalofabout50acres(20ha)ofvegetationwouldbepermanentlylostasaresultoftheimplementationofthisscenario(seeTableJ-42).Sincethegas-firedunitsdonotproducesolidwastes,novegetationwouldhavetobeclearedforasolid-wastedisposalarea.Placementofgaspipelinespurstotheplantswouldprobablyrequiretemporaryremovalordisturbanceandsubsequentrehabilitationofrelativelynarrowandshortcorridorsofvegetation.Inaddition,relativelyshort[lessthan10mi(16km)Jtransmissionlinestubswouldprobablybeconstructedtotheplantsresultinginvegeta-tionimpactssimilartothosedescribedinSectionJ.2.1.4.IfinadditiontotransmissionlinestubstotheplantsitisassumedthattransmissionofthepowertotheRailbeltwouldrequire,at1east,(1)constructionoftwo345-kV1inesfromWi11owtoAnchorageandfromHealytoFairbanksand(2)upgradingoftheexistingintertiebetweenHealyandWillowtotwo345-kVlines,thenatleast9,000acres(3,640ha)ofvegetationmightbedisturbedbyconstructionandoperationofpowertransmissionfacilities.GaseouscombustionemissionsofS02andNOareexpectedtobelowenoughthatnoimpactstoevensensitiveplantspeciesfromthesepolrutantswouldbelikely(Dvoraketal.,1978).Impactstowetlandswouldprobablybeminimalifitisassumedthatfacilitieswouldbesitedtoavoidcriticalorsensitivewetlandareas.J-79routealternativeswouldcrossvaryingacreagesofvegetation,rangingfrom1,300acres(530ha)forcorridorAJCFto3,000acres(1,200ha)forcorridorCJAHI(TableJ-39).Inthesouthernstudyarea(Fig.2-16),3,300acres(1,300ha)ofvegetationwouldbecrossedbytheright-of-\.;ayforalternativeABC';whereas1,900acres(770ha)ofvegetationwouldbecrossedbyalter-nativeAEFC(TableJ-38).Theseareasrepresentaworst-caseestimateofvegetationtobeimpacted,sinceonlytheforestandtallshrubtypes(becauseoftheiroverstorylayerheights)wouldrequiremajorclearing.Inmostcases,forestandtallshrubcommunitiescoverlargeracreagesinthealternativerights-of-waythaninthecorrespondingproposedrights-of-way(seeTablesJ-38andJ-39,notefirstfootnoteineachtable).TheonlyexceptionstothisarealternativeABDCinthenorthernstudyareaandalternativeAJCFinthecentralstudyarea.TheApplicanthasindicatedthatsite-specificadjustmentswouldbemadeinthetransmissionlinecorridorsduringdetailedalignmentstudiesinordertominimizewetlandandfloodplaincrossings(ExhibitE,Vol.6A,Chap.3,p.E-3-290).However,worst-caseestimatesofpotentialwetlandtypes(basedoncorrelationtovegetationtypes;seeSectionJ.2.1.1.1)thatwouldbecrossedbythealternativetransmissionlinerights-of-wayarepresentedinTablesJ-40andJ-41.Additionalpossiblealternativetransmissionlinecorridorsinthenorthernandsouthernstudyareas(asidentifiedinWakefield,1983)wouldcrosssimilartypesofvegetationasthealter-nativesidentifiedinTableJ-38althoughthespecificproportionsofvariousvegetationtypescontributingtothetotalacreagewouldbedifferent.Forexample,someofthesealternativesarelocatedclosertoriversorcreeksand,thus,mightcrossmorefloodplaincommunities.Ifthesealternativesparallelexistingrights-of-wayforroads,raillines,orothertransmissionlines,thenimpactstovegetationcausedbyclearingforaccessmightbelessthanforotheralternatives.However,withoutmoredetailedvegetationstudiesandmorespecificinformationonaccesslocationstothecorridors,itisimpossibletoidentifythealternativeswiththeleastimpactsonthebasisofbotanicalresources.OtherpotentialimpactstovegetationfromconstructionandoperationofthealternativepowertransmissionrouteswouldbesimilartothosealreadydiscussedinSectionJ.2.1.4.1.J.2.2.4AlternativeBorrowSitesWiththeexceptionofborrowsiteJ,whichiscontainedwithintheSusitnaRiver(Fig.2-2),useofthealternativeborrowsiteswouldresultinthetemporaryremovalofvegetationfromthesesites.Vegetationandsoilswouldbeclearedpriortoexcavation,andtheareaswouldberehabilitatedasoutlinedinSectionJ.2.1.1.1.TheacreagesofvegetationclearedforborrowsitesBandL(Fig.2-2)wouldberelativelysmall;whereas,about1,500acres(610ha)ofvegetationwouldbeclearedforborrowSiteC(Fig.2-6)(ExhibitE,Vol.9,Chap.10,pp.E-10-87, E-10-88,andE-10-99).J.2.2.5ThreatenedandEndangeredSpeciesAtpresent,noplanttaxaknowntooccurinAlaskaareofficiallylistedasthreatenedorendangeredbyFederalorstateauthorities.Therefore,noimpactstothreatenedorendangeredspecieswouldoccurasaresultoftheSusitnadevelopmentalternatives.J.2.3Non-SusitnaGenerationAlternativesJ.2.3.1Natural-Gas-FiredGenerationScenarioConstructionoffacilitiesassociatedwitheachofthe200-MWcombined-cycleunitsandeachofthe70-MWcombustion-turbineunitsinthenatural-gas-firedgenerationscenariowouldresultinthepermanentremovalof5acres(2ha)ofvegetation.Thus,atotalofabout50acres(20ha)ofvegetationwouldbepermanentlylostasaresultoftheimplementationofthisscenario(seeTableJ-42).Sincethegas-firedunitsdonotproducesolidwastes,novegetationwouldhavetobeclearedforasolid-wastedisposalarea.Placementofgaspipelinespurstotheplantswouldprobablyrequiretemporaryremovalordisturbanceandsubsequentrehabilitationofrelativelynarrowandshortcorridorsofvegetation.Inaddition,relativelyshort[lessthan10mi(16km)Jtransmissionlinestubswouldprobablybeconstructedtotheplantsresultinginvegeta-tionimpactssimilartothosedescribedinSectionJ.2.1.4.IfinadditiontotransmissionlinestubstotheplantsitisassumedthattransmissionofthepowertotheRailbeltwouldrequire,at1east,(1)constructionoftwo345-kV1inesfromWi11owtoAnchorageandfromHealytoFairbanksand(2)upgradingoftheexistingintertiebetweenHealyandWillowtotwo345-kVlines,thenatleast9,000acres(3,640ha)ofvegetationmightbedisturbedbyconstructionandoperationofpowertransmissionfacilities.GaseouscombustionemissionsofS02andNOareexpectedtobelowenoughthatnoimpactstoevensensitiveplantspeciesfromthesepolrutantswouldbelikely(Dvoraketal.,1978).Impactstowetlandswouldprobablybeminimalifitisassumedthatfacilitieswouldbesitedtoavoidcriticalorsensitivewetlandareas.
Table J-39.Acreages of Vegetation Types that Would Be Crossed by Alternative and Proposed Transmission Corridors in the
Central Study Area and Comparison of Each Vegetation Type with the Total Acreage for
that Type in the Upper and Middle Susitna Basint 1 ,2
Vegetated Area Cros?ed (acres)by each Corri dor and Percentage of Basin Iota 1 for Respective TYQet 3
ABCD ABCF ABECD ABECF AJCF CJAHI Proposed
Vegetation Type
Forest
Woodland spruce
Open spruce
Open mixed
Closed mixed
Tundra
Mesic sedge-grass
Mat and cushion
Mat and cushion/
sedge-grass
Alpine herbaceous
Shrubland
Open tall shrub
Birch shrub
Willow shrub
Mixed low shrub
acres
1,400
230
220
94
830
o
310
22
290
%
0.2
0.05
0.07
0.2
2.1
o
0.02
0.01
0.3
acres %
980 0.1
230 0.05
220 0.07
300 0.5
230 0.6
o 0
550 0.03
260 0.08
290 0.3
acres
1,500
280
240
140
820
96
7
25
64
320
37
260
15
17
%
0.2
0.06
0.08
0.2
2.1
0.01
<0.01
0.02
0.02
0.02
0.01
0.3
0.06
<0.01
acres
1,100
280
240
350
220
96
7
25
64
560
270
260
15
17
%
0.1
0.06
0.08
0.6
0.6
0.01
<0.01
0.02
0.02
0.04
0.08
0.3
0.06
<0.01
acres
580
15
390
170
120
120
640
360
100
180
%
0.07
0.01
0.7
0.4
0.01
0.03
0.04
0.1
0.1
0.7
acres
430
120
15
210
86
740
400
120
220
1,800
750
320
180
510
%
0.05
0.03
0.01
0.4
0.2
0.08
0.2
0.03
11.0
0.1
0.2
0.4
0.7
0.04
acres
970
15
180
770
120
120
410
120
100
180
%
0.1
0.01
0.3
2.0
0.01
0.03
0.03
0.04
0.1
0.7
c...,
fcoo
Unvegetated
Water
Rock
Snow and ice
25 <0.01
25 0.03
o 0 40
40
0.01
0.04
15 <0.01
15 0.02
15 <0.01
15 0.02
510
15
99
400
0.08
0.02
0.04
0.2
40 0.01
40 0.04
Total Vegetated Area 1,700 0.05 1,500 0.04 1,900 0.06 1,700 0.05 1,300 0.04 3,000 0.09 1,500 0.04
t 1 Only technically and economically feasible alternatives were considered (see Exhibit E,Vol.9,Chap.10,Table E.10.24).
t 2 Acreages of vegetation types crossed by the proposed corridor are included in this table because acreages presented in this
table were derived by the Applicant from Figure E.3.38 primarily (Exhibit E,Vol.6B,Chap.3)and are not directly comparable
to the acreages presented for the proposed corridor in Table J-28.
t 3 Acreages rounded to two significant figures;corridor width equals 300 ft (91 m)in areas with two circuits and 510 ft
(155 m)in areas with four circuits.Values do not add up to totals for each major vegetation type due to rounding errors.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Modified from Supplemental Information to Exhibit E,Vol.9,Chap.10,June 30,1983,pp.10-20-1 and 10-20-3.
Table J-39.Acreages of Vegetation Types that Would Be Crossed by Alternative and Proposed Transmission Corridors in the
Central Study Area and Comparison of Each Vegetation Type with the Total Acreage for
that Type in the Upper and Middle Susitna Basint 1 ,2
Vegetated Area Crossed (acres)by each Corridor and Percentage of Basin Total for Respective Typet 3
ABCD ABCF ABECD ABECF AJCF CJAHI Proposed
Vegetation Type
Forest
Woodland spruce
Open spruce
Open mixed
Closed mixed
Tundra
Mesic sedge-grass
Mat and cushion
Mat and cushion/
sedge-grass
Alpine herbaceous
Shrubland
Open tall shrub
Birch shrub
Willow shrub
Mixed low shrub
acres
1,400
230
220
94
830
o
310
22
290
%
0.2
0.05
0.07
0.2
2.1
o
0.02
0.01
0.3
acres %
980 0.1
230 0.05
220 0.07
300 0.5
230 0.6
o 0
550 0.03
260 0.08
290 0.3
acres
1,500
280
240
140
820
96
7
25
64
320
37
260
15
17
%
0.2
0.06
0.08
0.2
2.1
0.01
<0.01
0.02
0.02
0.02
0.01
0.3
0.06
<0.01
acres
1,100
280
240
350
220
96
7
25
64
560
270
260
15
17
%
0.1
0.06
0.08
0.6
0.6
0.01
<0.01
0.02
0.02
0.04
0.08
0.3
0.06
<0.01
acres
580
15
390
170
120
120
640
360
100
180
%
0.07
0.01
0.7
0.4
0.01
0.03
0.04
0.1
0.1
0.7
acres
430
120
15
210
86
740
400
120
220
1,800
750
320
180
510
%
0.05
0.03
0.01
0.4
0.2
0.08
0.2
0.03
11.0
0.1
0.2
0.4
0.7
0.04
acres
970
15
180
770
120
120
410
120
100
180
%
0.1
0.01
0.3
2.0
0.01
0.03
0.03
0.04
0.1
0.7
c...,
fcoo
Unvegetated
Water
Rock
Snow and ice
25 <0.01
25 0.03
o 0 40
40
0.01
0.04
15 <0.01
15 0.02
15 <0.01
15 0.02
510
15
99
400
0.08
0.02
0.04
0.2
40 0.01
40 0.04
Total Vegetated Area 1,700 0.05 1,500 0.04 1,900 0.06 1,700 0.05 1,300 0.04 3,000 0.09 1,500 0.04
t 1 Only technically and economically feasible alternatives were considered (see Exhibit E,Vol.9,Chap.10,Table E.10.24).
t 2 Acreages of vegetation types crossed by the proposed corridor are included in this table because acreages presented in this
table were derived by the Applicant from Figure E.3.38 primarily (Exhibit E,Vol.6B,Chap.3)and are not directly comparable
to the acreages presented for the proposed corridor in Table J-28.
t 3 Acreages rounded to two significant figures;corridor width equals 300 ft (91 m)in areas with two circuits and 510 ft
(155 m)in areas with four circuits.Values do not add up to totals for each major vegetation type due to rounding errors.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Modified from Supplemental Information to Exhibit E,Vol.9,Chap.10,June 30,1983,pp.10-20-1 and 10-20-3.
J-81TableJ-40.AcreagesofPotentialWetlandTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheNorthernandSouthernStudyAreast1,2PotentialWetlandAreaCrossed(acres)byeachCorridort3NorthernStudyAreaSouthernStudyAreaWetlandTypeABDCProposedABC'AEFCProposedPalustrineforested,1,5001,30072350270needle-leavedevergreenPalustrineforested,·140180000broad-leaveddeciduousPalustrinescrub-shrub,6606104340230broad-leaveddeciduousPalustrineorlacustrine00300960770emergent,persistentLacustrine/Riverine005300Riverine4422000TotalPotentialWetlandArea2,3002,2004701,3001,300t1Onlytechnicallyandeconomicallyfeasiblealternativeswereconsidered(seeExhibitE,Vol.9,Chap.10,TableE.10.24).t2AcreagesofpotentialwetlandtypescrossedbyproposedcorridorsareincludedinthistablebecauseacreagesinthistablewerederivedbytheApplicantbycorrelat-ingvegetationtypesfrom1:250,000-scaleStateofAlaska,DepartmentofNaturalResourcesvegetationmapsfortheFairbanks,Healy,andAnchorageQuadstowetlandtypesofCowardinetal.(1979)andarenotdirectlycomparabletotheacreagespresentedfortheproposedcorridorsinTablesJ-33andJ-35.t3AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Corridorwidthequals300ft(91m)forthenorthernstudyareaand400ft(122m)forthesouthernstudyarea.Valuesdonotadduptototalsduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-38usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.J-81TableJ-40.AcreagesofPotentialWetlandTypesthatWouldBeCrossedbyAlternativeandProposedTransmissionCorridorsintheNorthernandSouthernStudyAreast1,2PotentialWetlandAreaCrossed(acres)byeachCorridort3NorthernStudyAreaSouthernStudyAreaWetlandTypeABDCProposedABC'AEFCProposedPalustrineforested,1,5001,30072350270needle-leavedevergreenPalustrineforested,·140180000broad-leaveddeciduousPalustrinescrub-shrub,6606104340230broad-leaveddeciduousPalustrineorlacustrine00300960770emergent,persistentLacustrine/Riverine005300Riverine4422000TotalPotentialWetlandArea2,3002,2004701,3001,300t1Onlytechnicallyandeconomicallyfeasiblealternativeswereconsidered(seeExhibitE,Vol.9,Chap.10,TableE.10.24).t2AcreagesofpotentialwetlandtypescrossedbyproposedcorridorsareincludedinthistablebecauseacreagesinthistablewerederivedbytheApplicantbycorrelat-ingvegetationtypesfrom1:250,000-scaleStateofAlaska,DepartmentofNaturalResourcesvegetationmapsfortheFairbanks,Healy,andAnchorageQuadstowetlandtypesofCowardinetal.(1979)andarenotdirectlycomparabletotheacreagespresentedfortheproposedcorridorsinTablesJ-33andJ-35.t3AcreagesbasedoncorrelationofvegetationtypestowetlandtypesofCowardinetal.(1979)asinTableJ-5,androundedtotwosignificantfigures.Corridorwidthequals300ft(91m)forthenorthernstudyareaand400ft(122m)forthesouthernstudyarea.Valuesdonotadduptototalsduetoroundingerrors.Conversion:Toconvertacrestohectares,multiplyby0.405.Source:CalculatedfromdatainTableJ-38usingcorrelationsofvegetationtypestopotentialwetlandclassesasgiveninTableJ-5.
Table J-41.Acreages of Potential Wetland Types that Would Be Crossed by Alternative and Proposed
Transmission Corridors in the Central Study Area and Comparison of Each
Wetland Type with the Total Acreage for that Type in the
Upper and Middle Susitna Basint 1 ,2
Potential Wetland Area Crossed (acres)by each Corridor and
Percentage of Basin Total for Respective Typet 3
Wetland Type
ABCD
acres %
ABCF
acres %
ABECD
acres %
ABECF
acres %
AJCF
acres %
CJAHI
acres %
Proposed
acres %
Palustrine forested,
needle-leaved
evergreen
Palustrine scrub-shrub,
broad-leaved
deciduous
450
290
0.06
0.02
450
290
0.06
0.02
520
290
0.07
0.02
520
290
0.07
0.02
15
280
<0.01 140 0.02
0.02 1,000 0.08
15
280
<0.01
0.02
Palustrine or lacustrine
emergent,persistent
o o o o o o o o o o o 0 o o c....
Ico
N
Riverine/Lacustrine
Total Potential Wetland
Area
25
770
0.03
0.04
o
740
o
0.03
40
840
0.04
0.04
15
820
0.02
0.04
15
310
0.02 15 0.02
0.01 1,200 0.06
40
340
0.04
0.02
t 1 Only technically and economically feasible alternatives were considered (see Exhibit E,Vol.9,Chap.10,Table E.10.24).
t 2 Acreages of potential wetland types crossed by the proposed corridor are included in this table because acreages in this table
were derived by the Applicant by correlating vegetation types from Figure E.3.38 (Exhibit E,Vol.6B,Chap.3)to wetland types
of Cowardin et al.(1979)and are not directly comparable to the acreages presented for the proposed corridor in Table J-29.
t 2 Acreages based on correlation of vegetation types to wetland types of Cowardin et al.(1979)as in Table J-5,and rounded to
two significant figures.Corridor width equals 300 ft (91 m)in areas with two circuits and 510 ft (155 m)in areas with four
circuits.Values do not add up to totals due to rounding errors.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Table J-39 using correlations of vegetation types to potential wetland classes as given in
Table J-5.
Table J-41.Acreages of Potential Wetland Types that Would Be Crossed by Alternative and Proposed
Transmission Corridors in the Central Study Area and Comparison of Each
Wetland Type with the Total Acreage for that Type in the
Upper and Middle Susitna Basint 1 ,2
Potential Wetland Area Crossed (acres)by each Corridor and
Percentage of Basin Total for Respective Typet 3
Wetland Type
ABCD
acres %
ABCF
acres %
ABECD
acres %
ABECF
acres %
AJCF
acres %
CJAHI
acres %
Proposed
acres %
Palustrine forested,
needle-leaved
evergreen
Palustrine scrub-shrub,
broad-leaved
deciduous
450
290
0.06
0.02
450
290
0.06
0.02
520
290
0.07
0.02
520
290
0.07
0.02
15
280
<0.01 140 0.02
0.02 1,000 0.08
15
280
<0.01
0.02
Palustrine or lacustrine
emergent,persistent
o o o o o o o o o o o 0 o o
c....
Ico
N
Riverine/Lacustrine
Total Potential Wetland
Area
25
770
0.03
0.04
o
740
o
0.03
40
840
0.04
0.04
15
820
0.02
0.04
15
310
0.02 15 0.02
0.01 1,200 0.06
40
340
0.04
0.02
t 1 Only technically and economically feasible alternatives were considered (see Exhibit E,Vol.9,Chap.10,Table E.10.24).
t 2 Acreages of potential wetland types crossed by the proposed corridor are included in this table because acreages in this table
were derived by the Applicant by correlating vegetation types from Figure E.3.38 (Exhibit E,Vol.6B,Chap.3)to wetland types
of Cowardin et al.(1979)and are not directly comparable to the acreages presented for the proposed corridor in Table J-29.
t 2 Acreages based on correlation of vegetation types to wetland types of Cowardin et al.(1979)as in Table J-5,and rounded to
two significant figures.Corridor width equals 300 ft (91 m)in areas with two circuits and 510 ft (155 m)in areas with four
circuits.Values do not add up to totals due to rounding errors.
Conversion:To convert acres to hectares,multiply by 0.405.
Source:Calculated from data in Table J-39 using correlations of vegetation types to potential wetland classes as given in
Table J-5.
J-83TableJ-42.PotentialAcreagesofVegetationPermanentlyRemovedforConstructionofFacilitiesAssociatedwithNatural-Gas-FiredUnitsatEachLocationfortheNatural-Gas-FiredGenerationScenarioLocationLowerBelugaRiverChuitnaRiverKenaiSoutheastofAnchorageAnchorageTOTALPlantTypePCombined-cycleCombined-cycleCombined-cycleCombined-cycleCombustion-turbineNumberofUnits23212PotentialAcreageofVegetationRemoved10151051050t1Combined-cycleunitswouldbe200MWeach,combustion-turbineunitswouldbe70Mvleach.Conversion:Toconvertacrestohectares,multiplyby0.405.J.2.3.2Coal-FiredGenerationScenarioConstructionoffacilitiesassociatedwiththefive200-MWcoalunitsandthe ten70-MWgascombustion-turbineunitsofthecoal-firedgenerationscenariocouldresultinthepermanentremovalordisturbanceofabout600acres(240ha)ofvegetation(TableJ-43).Overthe3D-yearlifeofthecoalunitsanadditionaltotalofabout225acres(90ha)ofvegetationwouldbetemporarilyremovedforsolidwastedisposalattheplantsites,andatotalofabout2,250acres(910ha)ofvegetationwouldbetemporarilyremovedduringsurfacecoalmining.Itwouldbeexpectedthatthewastedisposalandsurfaceminesiteswouldeventuallyberehabilitated.Ifsoilscouldbeadequatelyrestoredontheseareas,rehabilitationshouldbenomoredifficultthantherehabilitationofborrowsitesorothertemporaryfacilitiesplannedfortheproposedSusitnaproject(seeSec.J.2.1.1.1).Temporaryremovalordisturbanceofvegetationthatwouldbeassociatedwithconstructionoftransmissionlinestubsorgaspipelinespurshasbeendes-cribedinSectionJ.2.3.1.Aswiththenatural-gas-firedgenerationscenario,transmissionofpowertotheRailbeltwouldrequireconstructionandoperationofpowertransmissionfacilitiesthatcoulddisturbabout9,000acres(3,640ha)ofvegetation(seeSec.J.2.3.1).Localizedalterationordamageofplantcommunitiesmightresultfromfugitivedustingnearcoalminepits,alongtransportationroutes,nearcoalstoragepilesattheplant,themine,andtransportationloadingfacilities,andnearwastedisposalsites(seeSec.J.2.1.1.1).Specificeffectswouldbedependentuponsite-specificparameterssuchaswindconditions,plantcommunitytype,chemicalcompositionofthedust,andthemagnitudeofdust-controlefforts.Traceelementsinrunofforseepagefromsolid-wastedisposalareasmighthavesomelocalizedeffectsonvegeta-tionsurroundingthesite.However,thechancesof adverseeffectswouldprobablybelowsincethewastewouldbedryratherthanaslurry(Dvoraketal.,1978).Inaddition,linerscouldbeemployedifsite-specificevaluationsindicatedtheywouldbenecessarytoreduceseepagetogroundwaterandadjacentsoils.Consideringthehighparticulateremovalefficiency(99.95%)assumedforthecoalunits,noimpactstovegetationfromparticulatesortraceelementcombustionemissionswouldbeexpected.Onthebasisofscreeningmodelingfordispersionofcombustionemissions(seeApp.G,Sec.G.2.4),S02-sensitiveplantspecieswouldprobablynotsufferacuteinjuryordamage,exceptperhapsatspecificlocationsunderworst-casefumigationconditions.Evenforthree200-MWunitsatNenana,themaximumannual3-hraverageS02concentrationsatgroundlevel(atelevatedterrainlocations)underworst-casefumigationconditionswouldbelessthan275~g/m3(assumingmaximumannua13-hraveragesareroughly2.5timesthemaximumannua124-hraverages;seeApp.G,TableG-I0).Thisdosagelevelisrightatthelowestlevelofthethresholdrangeforacuteinjuryofsensitivespecies(Dvoraketal.,1978).Thismeansthatalthoughdamagetosensitivespeciesisnotlikely,thereisaveryslightpossibilitythatinjuryordamagecouldoccurinsomesensitivespeciesatcertainlocationsunderworst-caseconditions.Specieswithinter-mediateS02-sensitivityorS02-resistantspecieswouldnotbeinjuredevenunderworst-caseconditions.Manynonvascularplantsaswellastremblingaspen,paperbirch,andsomealderspeciesareconsideredS02-sensitivespecies;balsampoplarandwesternhemlockareconsideredJ-83TableJ-42.PotentialAcreagesofVegetationPermanentlyRemovedforConstructionofFacilitiesAssociatedwithNatural-Gas-FiredUnitsatEachLocationfortheNatural-Gas-FiredGenerationScenarioLocationLowerBelugaRiverChuitnaRiverKenaiSoutheastofAnchorageAnchorageTOTALPlantTypePCombined-cycleCombined-cycleCombined-cycleCombined-cycleCombustion-turbineNumberofUnits23212PotentialAcreageofVegetationRemoved10151051050t1Combined-cycleunitswouldbe200MWeach,combustion-turbineunitswouldbe70Mvleach.Conversion:Toconvertacrestohectares,multiplyby0.405.J.2.3.2Coal-FiredGenerationScenarioConstructionoffacilitiesassociatedwiththefive200-MWcoalunitsandthe ten70-MWgascombustion-turbineunitsofthecoal-firedgenerationscenariocouldresultinthepermanentremovalordisturbanceofabout600acres(240ha)ofvegetation(TableJ-43).Overthe3D-yearlifeofthecoalunitsanadditionaltotalofabout225acres(90ha)ofvegetationwouldbetemporarilyremovedforsolidwastedisposalattheplantsites,andatotalofabout2,250acres(910ha)ofvegetationwouldbetemporarilyremovedduringsurfacecoalmining.Itwouldbeexpectedthatthewastedisposalandsurfaceminesiteswouldeventuallyberehabilitated.Ifsoilscouldbeadequatelyrestoredontheseareas,rehabilitationshouldbenomoredifficultthantherehabilitationofborrowsitesorothertemporaryfacilitiesplannedfortheproposedSusitnaproject(seeSec.J.2.1.1.1).Temporaryremovalordisturbanceofvegetationthatwouldbeassociatedwithconstructionoftransmissionlinestubsorgaspipelinespurshasbeendes-cribedinSectionJ.2.3.1.Aswiththenatural-gas-firedgenerationscenario,transmissionofpowertotheRailbeltwouldrequireconstructionandoperationofpowertransmissionfacilitiesthatcoulddisturbabout9,000acres(3,640ha)ofvegetation(seeSec.J.2.3.1).Localizedalterationordamageofplantcommunitiesmightresultfromfugitivedustingnearcoalminepits,alongtransportationroutes,nearcoalstoragepilesattheplant,themine,andtransportationloadingfacilities,andnearwastedisposalsites(seeSec.J.2.1.1.1).Specificeffectswouldbedependentuponsite-specificparameterssuchaswindconditions,plantcommunitytype,chemicalcompositionofthedust,andthemagnitudeofdust-controlefforts.Traceelementsinrunofforseepagefromsolid-wastedisposalareasmighthavesomelocalizedeffectsonvegeta-tionsurroundingthesite.However,thechancesof adverseeffectswouldprobablybelowsincethewastewouldbedryratherthanaslurry(Dvoraketal.,1978).Inaddition,linerscouldbeemployedifsite-specificevaluationsindicatedtheywouldbenecessarytoreduceseepagetogroundwaterandadjacentsoils.Consideringthehighparticulateremovalefficiency(99.95%)assumedforthecoalunits,noimpactstovegetationfromparticulatesortraceelementcombustionemissionswouldbeexpected.Onthebasisofscreeningmodelingfordispersionofcombustionemissions(seeApp.G,Sec.G.2.4),S02-sensitiveplantspecieswouldprobablynotsufferacuteinjuryordamage,exceptperhapsatspecificlocationsunderworst-casefumigationconditions.Evenforthree200-MWunitsatNenana,themaximumannual3-hraverageS02concentrationsatgroundlevel(atelevatedterrainlocations)underworst-casefumigationconditionswouldbelessthan275~g/m3(assumingmaximumannua13-hraveragesareroughly2.5timesthemaximumannua124-hraverages;seeApp.G,TableG-I0).Thisdosagelevelisrightatthelowestlevelofthethresholdrangeforacuteinjuryofsensitivespecies(Dvoraketal.,1978).Thismeansthatalthoughdamagetosensitivespeciesisnotlikely,thereisaveryslightpossibilitythatinjuryordamagecouldoccurinsomesensitivespeciesatcertainlocationsunderworst-caseconditions.Specieswithinter-mediateS02-sensitivityorS02-resistantspecieswouldnotbeinjuredevenunderworst-caseconditions.Manynonvascularplantsaswellastremblingaspen,paperbirch,andsomealderspeciesareconsideredS02-sensitivespecies;balsampoplarandwesternhemlockareconsidered
J-84TableJ-43.PotentialAcreagesofVegetationPermanentlyandTemporarilyRemovedforConstructionofFacilities,WasteDisposal,andSurfaceMiningAssociatedwiththeCoal-andNatural-Gas-FiredUnitsateachLocationintheCoal-FiredGenerationScenarioPotentialAcreageofVegetationRemovedPermanentPlantSolidWasteSurfaceFacilitiesDisposalt2Miningt2250909003001351,35030-350010005-10006002252,250unitswouldbe70MWeach.NumberLocationPlantTypet1ofUnitsWi11owCoalunit2NenanaCoalunit3Tyonek-Be1ugaareaGascombustion-6-7turbineAnchorageGascombustion-2turbineKenaiGascombustion-1-2turbineTOTALt1Coalunitswouldbe200MWeach,combustion-turbinet2Assumes30-yearoperatinglifeofeachunit.Conversion:Toconvertacrestohectares,multiplyby0.405.tohaveintermediateS02-sensitivity;andwhitespruce,blackspruce,andwillowspeciesareconsideredbysomesourcestohaveintermediatesensitivityandbyotherstobere1ativelyS02-resistant(Dvoraketal.,1978;MalhotraandBlauel,1980).AlthoughthepotentialforS02-inducedchronicorlong-terminjuryoralterationofplantcommunitiesnearthecoalunitsexists,itisimpossibletopredictwhetherornotsucheffectswouldactuallyoccurbecauselittleinformationonchronicorlong-terminjurythresholdlevelsexistsintheliterature.ItisunlikelythatvegetationinthevicinityofthecoalunitswouldbedirectlyaffectedbyNOemissions.Forthree200-MWunits,themaximumannual3-hraverageNOconcentrationsatgrou~levelunderworst-casefumigationconditionswouldbeabout225~g/m3~whichiswellbelowtheacuteandchronicthresholdinjurylevels(about2,000~g/m3)forplants(Dvoraketal.,1978).However,NOemissionscouldcontributetotheformationofsecondarypollutantssuchasozoneorperoxyac~tylnitrate(PAN)throughreactionswithairbornehydrocarbons,andNOtogetherwithS02andozonemightcausegreaterinjurythananyoneofthepollutantswoufdalone(Dvoraketal.,1978).Impactstowetlandswouldprobablybeminimalifitisassumedthatfacilitieswouldbesitedtoavoidcriticalorsensitivewetlandareas.J.2.3.3CombinedHydro-ThermalGenerationScenarioConstructionofthevariousdams,impoundments,diversions,1aketraps,andassociatedfaci1i-tiesattheJohnson,Keetna,Snow,Browne,andLakeChakachamnasites,andthevariousthermalfacilitiesofthecombinedhydro-thermalgenerationscenariowouldresultinthepermanentortemporaryremovalofabout103,000acres(41,700ha)ofvegetationeitherwithorwithoutLakeChakachamna(TableJ-44).Indirectvegetationlossordamageandalterationofplantcommuni-tiesasaresultofconstructionandoperationofthesehydropowersites,aswellasassociatedaccessroadsandtransmissionlines,wouldlikelyoccurandwouldbesimilarintypetothoseimpactsdescribedinSectionJ.2.1.Aswiththenatural-gas-andcoa1-firedgenerationscenarios,transmissionofpowertotheRailbeltwouldrequireconstructionandoperationofpowertransmissionfacilitiesthatcoulddisturbabout9,000acres(3,640ha)ofvegetation(seeSec.J.2.3.1).Inaddition,constructionandoperationoftransmissionlinestubstoeachofthedamsitesandthermalunits(asdescribedinSecs.2.3.3and2.5.3)couldpotentiallydisturbanother4,800acres(1,940ha)ofvegetationwithLakeChakachamnaoranother3,500acres(1,420ha)withoutLakeChakachamna.Thus,atotalofabout12,500to13,800acres(5,060to5,580ha)ofvegetationcouldbedisturbedbytransmissionfacilitiesforthisscenario.ImpactstowetlandscausedbydevelopmentofthehydropowersiteswouldbesimilartothosedescribedinSectionJ.2.1,butmightvarydependingonsite-specificconditions.Itisimpossibletopredictsuchimpactsatthistime.Non-transmissionrelatedimpactstovegetationfromthethermalfacilitiesofthisscenariohavebeendescribedinSectionsJ.2.3.1andJ.2.3.2.J-84TableJ-43.PotentialAcreagesofVegetationPermanentlyandTemporarilyRemovedforConstructionofFacilities,WasteDisposal,andSurfaceMiningAssociatedwiththeCoal-andNatural-Gas-FiredUnitsateachLocationintheCoal-FiredGenerationScenarioPotentialAcreageofVegetationRemovedPermanentPlantSolidWasteSurfaceFacilitiesDisposalt2Miningt2250909003001351,35030-350010005-10006002252,250unitswouldbe70MWeach.NumberLocationPlantTypet1ofUnitsWi11owCoalunit2NenanaCoalunit3Tyonek-Be1ugaareaGascombustion-6-7turbineAnchorageGascombustion-2turbineKenaiGascombustion-1-2turbineTOTALt1Coalunitswouldbe200MWeach,combustion-turbinet2Assumes30-yearoperatinglifeofeachunit.Conversion:Toconvertacrestohectares,multiplyby0.405.tohaveintermediateS02-sensitivity;andwhitespruce,blackspruce,andwillowspeciesareconsideredbysomesourcestohaveintermediatesensitivityandbyotherstobere1ativelyS02-resistant(Dvoraketal.,1978;MalhotraandBlauel,1980).AlthoughthepotentialforS02-inducedchronicorlong-terminjuryoralterationofplantcommunitiesnearthecoalunitsexists,itisimpossibletopredictwhetherornotsucheffectswouldactuallyoccurbecauselittleinformationonchronicorlong-terminjurythresholdlevelsexistsintheliterature.ItisunlikelythatvegetationinthevicinityofthecoalunitswouldbedirectlyaffectedbyNOemissions.Forthree200-MWunits,themaximumannual3-hraverageNOconcentrationsatgrou~levelunderworst-casefumigationconditionswouldbeabout225~g/m3~whichiswellbelowtheacuteandchronicthresholdinjurylevels(about2,000~g/m3)forplants(Dvoraketal.,1978).However,NOemissionscouldcontributetotheformationofsecondarypollutantssuchasozoneorperoxyac~tylnitrate(PAN)throughreactionswithairbornehydrocarbons,andNOtogetherwithS02andozonemightcausegreaterinjurythananyoneofthepollutantswoufdalone(Dvoraketal.,1978).Impactstowetlandswouldprobablybeminimalifitisassumedthatfacilitieswouldbesitedtoavoidcriticalorsensitivewetlandareas.J.2.3.3CombinedHydro-ThermalGenerationScenarioConstructionofthevariousdams,impoundments,diversions,1aketraps,andassociatedfaci1i-tiesattheJohnson,Keetna,Snow,Browne,andLakeChakachamnasites,andthevariousthermalfacilitiesofthecombinedhydro-thermalgenerationscenariowouldresultinthepermanentortemporaryremovalofabout103,000acres(41,700ha)ofvegetationeitherwithorwithoutLakeChakachamna(TableJ-44).Indirectvegetationlossordamageandalterationofplantcommuni-tiesasaresultofconstructionandoperationofthesehydropowersites,aswellasassociatedaccessroadsandtransmissionlines,wouldlikelyoccurandwouldbesimilarintypetothoseimpactsdescribedinSectionJ.2.1.Aswiththenatural-gas-andcoa1-firedgenerationscenarios,transmissionofpowertotheRailbeltwouldrequireconstructionandoperationofpowertransmissionfacilitiesthatcoulddisturbabout9,000acres(3,640ha)ofvegetation(seeSec.J.2.3.1).Inaddition,constructionandoperationoftransmissionlinestubstoeachofthedamsitesandthermalunits(asdescribedinSecs.2.3.3and2.5.3)couldpotentiallydisturbanother4,800acres(1,940ha)ofvegetationwithLakeChakachamnaoranother3,500acres(1,420ha)withoutLakeChakachamna.Thus,atotalofabout12,500to13,800acres(5,060to5,580ha)ofvegetationcouldbedisturbedbytransmissionfacilitiesforthisscenario.ImpactstowetlandscausedbydevelopmentofthehydropowersiteswouldbesimilartothosedescribedinSectionJ.2.1,butmightvarydependingonsite-specificconditions.Itisimpossibletopredictsuchimpactsatthistime.Non-transmissionrelatedimpactstovegetationfromthethermalfacilitiesofthisscenariohavebeendescribedinSectionsJ.2.3.1andJ.2.3.2.
J-85TableJ-44.PotentialAcreagesofVegetationPermanentlyorTemporarilyRemovedbyInundation,ConstructionofFacilities,WasteDisposal,andSurfaceMiningAssociatedwiththeCombinedHydro-ThermalGenerationScenario,bothwithandwithoutLakeChakachamnaPotentialAcreageofVegetationPermanentlyorTemporarilyRemovedNumberWithWithoutLocationTypet1ofUnitsChakachamnaChakachamnaJohnsonHydro(damandimpoundment)84,OOOt284,OOOt2KeetnaHydro(damandimpoundment)4,800t24,800t2SnowHydro(damandimpoundment)2,600t22,600t2BrowneHydro(damandimpoundment)10,640t210,640t2LakeChakachamnaHydro(laketap)Negligiblet20NenanaCoal1695t3695t3ChuitnaRiverCombined-cycle21010AnchorageCombustion-turbine31515LowerBelugaRiverCombined-cycle1or2t4510TOTAL102,765102,770t1Coalandcombined-cycleunitswouldbe200MWeach,combustion-turbineunitswouldbe70MWeach;hydrounitswouldvary.t2Acreagesareestimatesofareatobeinundatedincludingunvegetatedareassuchasrivers.Ontheotherhand,acreagesofvegetationremovedforconstructionofassoci-atedfacilitiesandaccessroadshavenotbeenincludedintheseestimates.t3Includes200acresforplantfacilities,45acresforsolidwastedisposal,and450acresforsurfaceminingoverthe30-yearoperatinglifeoftheunit.t4OneunitwithChakachamnaandtwounitswithoutChakachamna.Conversion:Toconvertacrestohectares,multiplyby0.405.J.2.3.4ThreatenedandEndangeredSpeciesAtpresent,noplanttaxaknowntooccurinAlaskaareofficiallylistedasthreatenedorendangeredbyFederalorstateauthorities.Therefore,noimpactstothreatenedorendangeredspecieswouldoccurasaresultofthenon-Susitnapowergenerationalternatives.J.2.4ComparisonofAlternativesJ.2.4.1SusitnaDevelopmentAlternativesComparisonofthealternativedamlocationsanddesignshasbeenincorporatedintothecomparisonofpowergenerationscenarios(SectionJ.2.4.2).Acomparisonoftheaccessalternatives(TablesJ-26andJ-36)indicatesthattheproposedroutewouldbethelongestandwould,there-fore,disturbmorevegetation.Theproposedroutewoulddisturbmoretundraandshrubtypesandlessforesttypesthanthetwoalternatives.Inadditiontheproposedroutewoulddisturbmorepotentialwetlandareathanthetwoalternatives(1.5and1.8timesforthenorthernandsouthernalternatives,respectively;seeTablesJ-27andJ-37).TheApplicanthasindicated,however,thatwetlandsbetweenHurricaneandIndianRiverinboththenorthernandsouthernalternativerouteswouldhavearelativelyhighpotentialforcauslngdrainagealterations,becausesoilsintheseareashaveapoorbearingcapacity,andmightcauseexcessivesettlementoftheroadinsomeareas,makinginstallationandmaintenanceofculvertsdifficult(SupplementalInformationtoExhibitE,Vol.9,Chap.10,June30,1983,pp.10-15-1-10-15-2).TheApplicantalsoindicatedthattheproposedDenaliHighway-to-Watanaroutedoesnothaveanywetlandareaswithashighapotentialfordrainagealterations.However,theproposedroutecouldprovideincreasedaccesstogreaterlandareasthaneitherofthealternatives,therebyincreasingthepotentialforincreasedhuman-useimpactstovegetation(e.g.,increasedfireincidenceandORV/ATVusage)unlessmeasuresweretakentolimitorpreventuseoftheaccessroadsafterconstructionoftheprojectwascompleted.J-85TableJ-44.PotentialAcreagesofVegetationPermanentlyorTemporarilyRemovedbyInundation,ConstructionofFacilities,WasteDisposal,andSurfaceMiningAssociatedwiththeCombinedHydro-ThermalGenerationScenario,bothwithandwithoutLakeChakachamnaPotentialAcreageofVegetationPermanentlyorTemporarilyRemovedNumberWithWithoutLocationTypet1ofUnitsChakachamnaChakachamnaJohnsonHydro(damandimpoundment)84,OOOt284,OOOt2KeetnaHydro(damandimpoundment)4,800t24,800t2SnowHydro(damandimpoundment)2,600t22,600t2BrowneHydro(damandimpoundment)10,640t210,640t2LakeChakachamnaHydro(laketap)Negligiblet20NenanaCoal1695t3695t3ChuitnaRiverCombined-cycle21010AnchorageCombustion-turbine31515LowerBelugaRiverCombined-cycle1or2t4510TOTAL102,765102,770t1Coalandcombined-cycleunitswouldbe200MWeach,combustion-turbineunitswouldbe70MWeach;hydrounitswouldvary.t2Acreagesareestimatesofareatobeinundatedincludingunvegetatedareassuchasrivers.Ontheotherhand,acreagesofvegetationremovedforconstructionofassoci-atedfacilitiesandaccessroadshavenotbeenincludedintheseestimates.t3Includes200acresforplantfacilities,45acresforsolidwastedisposal,and450acresforsurfaceminingoverthe30-yearoperatinglifeoftheunit.t4OneunitwithChakachamnaandtwounitswithoutChakachamna.Conversion:Toconvertacrestohectares,multiplyby0.405.J.2.3.4ThreatenedandEndangeredSpeciesAtpresent,noplanttaxaknowntooccurinAlaskaareofficiallylistedasthreatenedorendangeredbyFederalorstateauthorities.Therefore,noimpactstothreatenedorendangeredspecieswouldoccurasaresultofthenon-Susitnapowergenerationalternatives.J.2.4ComparisonofAlternativesJ.2.4.1SusitnaDevelopmentAlternativesComparisonofthealternativedamlocationsanddesignshasbeenincorporatedintothecomparisonofpowergenerationscenarios(SectionJ.2.4.2).Acomparisonoftheaccessalternatives(TablesJ-26andJ-36)indicatesthattheproposedroutewouldbethelongestandwould,there-fore,disturbmorevegetation.Theproposedroutewoulddisturbmoretundraandshrubtypesandlessforesttypesthanthetwoalternatives.Inadditiontheproposedroutewoulddisturbmorepotentialwetlandareathanthetwoalternatives(1.5and1.8timesforthenorthernandsouthernalternatives,respectively;seeTablesJ-27andJ-37).TheApplicanthasindicated,however,thatwetlandsbetweenHurricaneandIndianRiverinboththenorthernandsouthernalternativerouteswouldhavearelativelyhighpotentialforcauslngdrainagealterations,becausesoilsintheseareashaveapoorbearingcapacity,andmightcauseexcessivesettlementoftheroadinsomeareas,makinginstallationandmaintenanceofculvertsdifficult(SupplementalInformationtoExhibitE,Vol.9,Chap.10,June30,1983,pp.10-15-1-10-15-2).TheApplicantalsoindicatedthattheproposedDenaliHighway-to-Watanaroutedoesnothaveanywetlandareaswithashighapotentialfordrainagealterations.However,theproposedroutecouldprovideincreasedaccesstogreaterlandareasthaneitherofthealternatives,therebyincreasingthepotentialforincreasedhuman-useimpactstovegetation(e.g.,increasedfireincidenceandORV/ATVusage)unlessmeasuresweretakentolimitorpreventuseoftheaccessroadsafterconstructionoftheprojectwascompleted.
J-86Acomparisonofthealternativepowertransmissionroutesindicatesthattheproposedrouteswouldcrossneitherthemostnortheleastvegetation(TablesJ-38andJ-39,notefirstfoot-notesineachtable).Forestandtallshrubtypes,becauseoftheiroverstorylayerheightsandgreaterclearingrequirements,wouldbemostdisturbedbythetransmissionlines.Inmostcases,theproposedcorridorswouldcrosslessforestandtallshrubcommunitiesthanwouldthealternatives.TheonlyexceptionstothisarealternativeABDCinthenorthernstudyareaandalternativeAJCFinthecentralstudyarea.However,theareasofforestandtallshrubthatwouldbecrossedbyeachofthesealternativesisnotthatmuchless[about150acres(61ha)]thantheareasofthesetypesthatwouldbecrossedbytheproposedcorridors.Thepotentialwetlandareascrossedbytheproposedcorridors(TablesJ-40andJ-41)wouldbelessthanthosecrossedbythealternativesexceptforalternativeABC'inthesouthernstudyareaandalterna-tiveAJCFinthecentralstudyarea.Unlessmorespecificinformationabouttowerplacement,accesslocations,andthelocationsofvaluablevegetationorwetlandtypesisknown,itisdifficulttoprovideadefinitivecomparisonofcorridorsonthebasisofbotanicalresourcesalone.ThealternativeborrowsitesarecomparedbysizeandvegetationoccurrenceinTablesJ-19,J-21,J-23,andJ-25andSectionsJ.1.3.4andJ.2.2.4.Relativetoimpactstovegetation,alternativeborrowsitesthatwouldbeinundatedbytheimpoundmentswouldhavetheleastaddi-tiona1effectonvegetation;whereas,thosesitedalongthebanksofotherwiseundisturbedcreeksmightpresentmoredifficultiesinrehabilitation.Dependinguponthedepthofthesitesandprovisionsmadeforregradingsteepslopes,quarrysites(A,B,K,andL)mightbemoredifficulttorehabilitatethanborrowsites(C,D,E,F,G,H,I,andJ).J.2.4.2PowerGenerationScenariosAcomparisonoftheimpactstovegetationforthevariousalternativepowergenerationscenarios(includingSusitnaasproposedandthealternativeSusitnadevelopments)ispresentedinTableJ-45.ThiscomparisonindicatesthatthealternativeSusitnadevelopmentswouldremoveordisturblessvegetatedarea(about82%to88%)thanwouldtheproposedproject.However,thenatural-gas-firedandcoal-firedgenerationscenarioswouldhavetheleasteffectsonvegeta-tion.Vegetationremovedordisturbedbythenatural-gas-firedandcoal-firedscenarioswouldbeabout16%and22%,respectively,ofthevegetatedareaaffectedbytheproposedproject.Furthermore,eachofthesethermalscenarioswouldhavefewerindirecteffectsonvegetationthanwou1danyofthea1ternativescenarioswithhydropowersites.Duetothevery1argeimpoundmentareaestimatedfortheJohnsonsite[84,000acres(34,000ha)],thecombinedhydro-thermalscenariowouldprobablydisturbmorethantwiceasmuchvegetatedarea[over115,000acres(46,500ha)]astheproposedSusitnaproject.J.2.5ConclusionsJ.2.5.1ProposedProjectConstructionoftheproposedWatanaandDevilCanyondamsandimpoundments,relatedfacili-ties,andaccessroadswouldresultinthedirectremovalofabout44,000acres(17,800ha)ofvegetation,orabout1.3%ofthevegetatedareawithintheupperandmiddleSusitnaBasin.Morespecifica11y,about4%ofallforestedareas,about10%ofmixedconifer-deciduousforesttypes,aboutone-thirdofthepaperbirchforeststands,andlessthan1%ofthetundraandshrub1andtypeswithintheupperandmiddleSusitnaBasinwouldberemoved.Morethan80%[37,000acres(15,000ha)]ofthevegetationthatwouldberemovedcouldalsobeconsideredpotentialwetlandareas.Thisrepresentsabout1.7%ofthepotentialwetlandareaswithintheupperandmiddleSusitnaBasin.FollowingcompletionoftheproposedWatanaandDevilCanyondamsandimpoundments,about6,400acres(2,600ha),orabout15%ofthetotalvegetatedarearemovedduringconstruc-tion,wouldrequirerehabilitationtopreventfutureerosion,vegetationandwildlifehabitatloss,andvisualandrecreationalimpacts.Inadditiontotheareasdescribedabove,about12,000acres(4,900ha)ofvegetation(ofwhichalmosttwo-thirdsmightalsobeconsideredpotentialwetlands)wouldbecrossedbytheproposedpowertransmissioncorridorsandwouldbesubjecttoselectiveclearing.Forestandtallshrubtypes,whichrepresentalmost60%ofthevegetationcrossedbythecorridors,wouldbemostimpactedbyclearingbecauseoftheheightofoverstoryvegeta-tion.TheregulatedflowsandchangesiniceprocessesassociatedwithWatanaandDevilCanyonoperationwouldvariouslyaffectthedevelopmentofriparianplantcommunitiesdownstreamofthedamsites,butspecificeffectsaredifficultorimpossibletoreliablypredictorquantify.J-86Acomparisonofthealternativepowertransmissionroutesindicatesthattheproposedrouteswouldcrossneitherthemostnortheleastvegetation(TablesJ-38andJ-39,notefirstfoot-notesineachtable).Forestandtallshrubtypes,becauseoftheiroverstorylayerheightsandgreaterclearingrequirements,wouldbemostdisturbedbythetransmissionlines.Inmostcases,theproposedcorridorswouldcrosslessforestandtallshrubcommunitiesthanwouldthealternatives.TheonlyexceptionstothisarealternativeABDCinthenorthernstudyareaandalternativeAJCFinthecentralstudyarea.However,theareasofforestandtallshrubthatwouldbecrossedbyeachofthesealternativesisnotthatmuchless[about150acres(61ha)]thantheareasofthesetypesthatwouldbecrossedbytheproposedcorridors.Thepotentialwetlandareascrossedbytheproposedcorridors(TablesJ-40andJ-41)wouldbelessthanthosecrossedbythealternativesexceptforalternativeABC'inthesouthernstudyareaandalterna-tiveAJCFinthecentralstudyarea.Unlessmorespecificinformationabouttowerplacement,accesslocations,andthelocationsofvaluablevegetationorwetlandtypesisknown,itisdifficulttoprovideadefinitivecomparisonofcorridorsonthebasisofbotanicalresourcesalone.ThealternativeborrowsitesarecomparedbysizeandvegetationoccurrenceinTablesJ-19,J-21,J-23,andJ-25andSectionsJ.1.3.4andJ.2.2.4.Relativetoimpactstovegetation,alternativeborrowsitesthatwouldbeinundatedbytheimpoundmentswouldhavetheleastaddi-tiona1effectonvegetation;whereas,thosesitedalongthebanksofotherwiseundisturbedcreeksmightpresentmoredifficultiesinrehabilitation.Dependinguponthedepthofthesitesandprovisionsmadeforregradingsteepslopes,quarrysites(A,B,K,andL)mightbemoredifficulttorehabilitatethanborrowsites(C,D,E,F,G,H,I,andJ).J.2.4.2PowerGenerationScenariosAcomparisonoftheimpactstovegetationforthevariousalternativepowergenerationscenarios(includingSusitnaasproposedandthealternativeSusitnadevelopments)ispresentedinTableJ-45.ThiscomparisonindicatesthatthealternativeSusitnadevelopmentswouldremoveordisturblessvegetatedarea(about82%to88%)thanwouldtheproposedproject.However,thenatural-gas-firedandcoal-firedgenerationscenarioswouldhavetheleasteffectsonvegeta-tion.Vegetationremovedordisturbedbythenatural-gas-firedandcoal-firedscenarioswouldbeabout16%and22%,respectively,ofthevegetatedareaaffectedbytheproposedproject.Furthermore,eachofthesethermalscenarioswouldhavefewerindirecteffectsonvegetationthanwou1danyofthea1ternativescenarioswithhydropowersites.Duetothevery1argeimpoundmentareaestimatedfortheJohnsonsite[84,000acres(34,000ha)],thecombinedhydro-thermalscenariowouldprobablydisturbmorethantwiceasmuchvegetatedarea[over115,000acres(46,500ha)]astheproposedSusitnaproject.J.2.5ConclusionsJ.2.5.1ProposedProjectConstructionoftheproposedWatanaandDevilCanyondamsandimpoundments,relatedfacili-ties,andaccessroadswouldresultinthedirectremovalofabout44,000acres(17,800ha)ofvegetation,orabout1.3%ofthevegetatedareawithintheupperandmiddleSusitnaBasin.Morespecifica11y,about4%ofallforestedareas,about10%ofmixedconifer-deciduousforesttypes,aboutone-thirdofthepaperbirchforeststands,andlessthan1%ofthetundraandshrub1andtypeswithintheupperandmiddleSusitnaBasinwouldberemoved.Morethan80%[37,000acres(15,000ha)]ofthevegetationthatwouldberemovedcouldalsobeconsideredpotentialwetlandareas.Thisrepresentsabout1.7%ofthepotentialwetlandareaswithintheupperandmiddleSusitnaBasin.FollowingcompletionoftheproposedWatanaandDevilCanyondamsandimpoundments,about6,400acres(2,600ha),orabout15%ofthetotalvegetatedarearemovedduringconstruc-tion,wouldrequirerehabilitationtopreventfutureerosion,vegetationandwildlifehabitatloss,andvisualandrecreationalimpacts.Inadditiontotheareasdescribedabove,about12,000acres(4,900ha)ofvegetation(ofwhichalmosttwo-thirdsmightalsobeconsideredpotentialwetlands)wouldbecrossedbytheproposedpowertransmissioncorridorsandwouldbesubjecttoselectiveclearing.Forestandtallshrubtypes,whichrepresentalmost60%ofthevegetationcrossedbythecorridors,wouldbemostimpactedbyclearingbecauseoftheheightofoverstoryvegeta-tion.TheregulatedflowsandchangesiniceprocessesassociatedwithWatanaandDevilCanyonoperationwouldvariouslyaffectthedevelopmentofriparianplantcommunitiesdownstreamofthedamsites,butspecificeffectsaredifficultorimpossibletoreliablypredictorquantify.
Table J-45.Comparison of Estimated Quantifiable and Unquantifiable Disturbance to
Vegetation Among the Power Generation Scenarios
Scenario
Permanent or Long-Term
Vegetation Removal (acres)
Dams,Impoundments,
Construction of
Permanent Facilities Access
Temporary Vegetation
Removal (acres)t 1
Temporary Facilities,
Borrow Areas,Waste
Disposal,Mining
Vegetated Area
Disturbed by
Transmission
Facilities (acres)t 2
Total Quantifiable
Vegetated Area
Disturbed
(acres)
Potential
Unquantifiable
Indirect
Effects to
Vegetat i on·r 3
Proposed Susitna Project
Watana-Devil Canyon
Alternative Susitna Developments
Watana I-Devil Canyon
Watana I-Reregulating Dam
Watana I-Modified High Devil Canyon
Natural-Gas-Fired
Coal-Fired
Combined Hydro-Thermal
Johnson,Keetna,Snow,Browne,Chakachamna
Therma 1 Units
Total
Johnson,Keetna,Snow,Browne
Therma 1 Units
Total
36,900 1,100 6,400 11,700 56,100
29,900 1,100 6,400 11,700 49,100
27,000 1,100 6,400 11,700 46,200
29,100 1,100 6,400 11,700 48,300
50 N.D.t 4 N.A.t S 9,000+9,050+t 6
600 N.D.2,475 9,000+12,075+
102,040 N.D.N.D.13 ,600 115,640+
230 N.D.495 200+925+
102,270 N.D.495+13,800+116,565+
102,040 N.D.N.D.12,300 114,340+
235 N.D.495 200+930+
102,275 N.D.495+12,500+115,270+
A,B,C,D,E,F,G,H
A,B,C,D,E,F,G,H
A,B,C,D,E,F,G,H
A,B,C,D,E,F,G,H
A,B,C,F
A,B,C,F,G,H
A,B,C,D,E,F,G,H
A,B,C,D,E,F,G,H
c...,
Ico
--..J
t 1 The use of the word temporary implies that the area would eventually be rehabilitated.
t 2 For natural-gas-fired,coal-fired,and combined hydro-thermal scenarios,assumes (1)construction of two 345 kV lines from Willow to Anchorage and from Healy
to Fairbanks and (2)upgrading of existing intertie between Healy and Wi"llow to two 345 kV lines as well as construction of lines described in Sections 2.3.3
and 2.5.3 to the various dam sites and thermal units.
t 3 Caused by:A =erosion,slumpage,or permafrost thaw;B =alteration of drainage patterns;C =fugitive dusting;D =climatic changes;E =downstream
flow changes;F =increased human use or access;G =potential for seepage from waste disposal areas,H =slight potential for air pollutant effects.
t 4 N.D.=Not determined.
t S N.A.=Not applicable.
t 6 "+"indicates an additional undeterminable acreage;these amounts would likely be higher for hydropower sites than for thermal sites due to greater
constraints on siting.
Conversion:To convert acres to hectares,multiply by 0.405.
Table J-45.Comparison of Estimated Quantifiable and Unquantifiable Disturbance to
Vegetation Among the Power Generation Scenarios
Permanent or Long-Term Temporary Vegetation PotentialVegetationRemoval(acres)Removal (acres)t 1 Vegetated Area Total Quantifiable Unquantifiable
Dams,Impoundments,Temporary Facilities,Disturbed by Vegetated Area Indirect
Construction of Borrow Areas,Waste Transmission Disturbed Effects to
Scenario Permanent Facilities Access Disposal,Mining Facilities (acres)t 2 (acres)Vegetat i on·r 3
Proposed Susitna Project
Watana-Devil Canyon 36,900 1,100 6,400 11,700 56,100 A,B,C,D,E,F,G,H
Alternative Susitna Developments
Watana I-Devil Canyon 29,900 1,100 6,400 11,700 49,100 A,B,C,D,E,F,G,H
Watana I-Reregulating Dam 27,000 1,100 6,400 11,700 46,200 A,B,C,D,E,F,G,H
Watana I-Modified High Devil Canyon 29,100 1,100 6,400 11,700 48,300 A,B,C,D,E,F,G,H
Natural-Gas-Fired 50 N.D.t 4 N.A.t S 9,000+9,050+t 6 A,B,C,F
Coal-Fired 600 N.D.2,475 9,000+12,075+A,B,C,F,G,H
Combined Hydro-Thermal c...,
I
115,640+coJohnson,Keetna,Snow,Browne,Chakachamna 102,040 N.D.N.D.13 ,600 --..J
Therma 1 Units 230 N.D.495 200+925+
Total 102,270 N.D.495+13,800+116,565+A,B,C,D,E,F,G,H
Johnson,Keetna,Snow,Browne 102,040 N.D.N.D.12,300 114,340+
Thermal Units 235 N.D.495 200+930+
Total 102,275 N.D.495+12,500+115,270+A,B,C,D,E,F,G,H
t 1 The use of the word temporary implies that the area would eventually be rehabilitated.
t 2 For natural-gas-fired,coal-fired,and combined hydro-thermal scenarios,assumes (1)construction of two 345 kV lines from Willow to Anchorage and from Healy
to Fairbanks and (2)upgrading of existing intertie between Healy and Wi"llow to two 345 kV lines as well as construction of lines described in Sections 2.3.3
and 2.5.3 to the various dam sites and thermal units.
t 3 Caused by:A =erosion,slumpage,or permafrost thaw;B =alteration of drainage patterns;C =fugitive dusting;0 =climatic changes;E =downstream
flow changes;F =increased human use or access;G =potential for seepage from waste disposal areas,H =slight potential for air pollutant effects.
t 4 N.D.=Not determined.
t S N.A.=Not applicable.
t 6 "+"indicates an additional undeterminable acreage;these amounts would likely be higher for hydropower sites than for thermal sites due to greater
constraints on siting.
Conversion:To convert acres to hectares,multiply by 0.405.
J-88Anadditionalunquantifiableacreageofvegetationwouldbeindirectlylost,damaged,and/oralteredduetofactorssuchaserosion,permafrostthaw,slumpage,wind,fugitivedust,alterationofdrainagepatterns,mesoclimaticchanges,andincreasedhumanactivitiesandusagecausedbyconstructionandoperationoftheproposedSusitnaproject.J.2.5.2AlternativesImpactstovegetationfromalternativeSusitnadamlocationsanddesigns,accessroutes,powertransmissionroutes,andborrowsiteswouldbesimilarintypeandmagnitudetoimpactsoftheproposedproject.Thecombinedhydro-thermalgenerationscenariowouldresultinthedirectremovalordis-turbanceofmorethan115,000acres(46,500ha)ofvegetation(ormorethantwicethevegetatedareathatwouldbeaffectedbytheproposedproject),aswellasothertypesofimpactssimilartothoseidentifiedfortheproposedproject.J.3MITIGATIONJ.3.1MeasuresProposedbytheApplicantTheApplicant'sproposedplanformitigationofimpactstobotanicalresourcesincludesimplemen-tationofthefollowingmeasures(listedinorderofpriority):Avoidanceofimpactthroughprojectdesignandoperation,orbynottakingacertainaction;Minimizationofimpactbyreducingthedegreeormagnitudeoftheaction,orbychang-ingitslocation;Rectificationofimpactbyrepairing,rehabilitating,orrestoringtheaffectedportionoftheenvironment;Reductionofimpactovertimebyidentificationofareaswhererectificationmeasurescanbeginorrequiremaintenanceeffortsoverthelifeoftheaction;Compensationforimpactsthroughprovisionofreplacementorsubstituteresourcesthatwouldotherwisebeunavailable.ThisapproachwasadoptedafterconsultationwithresourceagenciesincludingtheAlaskaDepart-mentofFishandGameandtheU.S.FishandWildlifeService.ThefollowingsubsectionsprovideasummaryofthemitigativemeasuresforbotanicalresourcesproposedbytheApplicantasdescribedinExhibitE(Vol.6A,Chap.3,pp.E-3-250-E-3-292).J.3.1.1AvoidanceWithoutmitigation,constructionofallprojectfacilitieswouldremovevegetationfromatotalofabout44,000acres(17,800ha)andwouldremoveordisturbanadditionalareaofabout12,000acres(4,900ha)fortransmissionfacilities.Removalofvegetationcannotbetotallyavoided;therefore,theApplicanthasproposedimplementationoftheothermitigativemeasures.J.3.1.2MinimizationMit igativemeasuresproposedbytheApp1icanttoffilnlmlZeimpactstovegetationgenerallyconsistofmeasuresappliedtothedesignorlocationofprojectfacilitiessoastoreduceclearingrequirementsoreffectsonsensitiveareassuchaswetlands.TheApplicanthasalreadyappliedthesemitigativemeasurestotheproposedsitinganddesignofmajorfacilitiessuchasconstructioncampsandvi11ages,theDevilCanyonrai1headfaci1ity,andgeneralaccessandtransmissionlinerouting.However,thesemitigativemeasureswouldalsobeappliedonamoresite-specificbasisduringdetailedengineeringandalignmentstudiesforprojectfacilities.TheApplicanthasplannedthesitingoffacilitiestominimizeimpactstovegetationwherepossible.Theareasthatwouldbedisturbedandclearedforcamps,villages,temporaryroads,fuelandequipmentstorageareas,andotherconstructionsupportfacilitieshavebeenconfinedtothevicinityofthedamsites.TheproposedlocationsofthepermanentvillageandtemporaryconstructionvillageatWatanahavebeencombined.Thedimensionsofproposedconstructioncampsandvillageshavebeenkeptsmallbydesigningcompactarraysofuniformly-sized,contiguousresidentialmodules.Theconsolidationofconstructionfacilitiesandcarefulplanningoftrafficpatternsandserviceroadsshouldalsominimizenon-essentialdisturbanceofvegetationbyconstructionworkers.Inaddition,theApplicantplanstoimplementanenvironmentalbrief-ingsprogramthatwouldrequireparticipationbyallfieldpersonnelinordertofurtherminimizeunnecessarydisturbancestosoilsandvegetation.J-88Anadditionalunquantifiableacreageofvegetationwouldbeindirectlylost,damaged,and/oralteredduetofactorssuchaserosion,permafrostthaw,slumpage,wind,fugitivedust,alterationofdrainagepatterns,mesoclimaticchanges,andincreasedhumanactivitiesandusagecausedbyconstructionandoperationoftheproposedSusitnaproject.J.2.5.2AlternativesImpactstovegetationfromalternativeSusitnadamlocationsanddesigns,accessroutes,powertransmissionroutes,andborrowsiteswouldbesimilarintypeandmagnitudetoimpactsoftheproposedproject.Thecombinedhydro-thermalgenerationscenariowouldresultinthedirectremovalordis-turbanceofmorethan115,000acres(46,500ha)ofvegetation(ormorethantwicethevegetatedareathatwouldbeaffectedbytheproposedproject),aswellasothertypesofimpactssimilartothoseidentifiedfortheproposedproject.J.3MITIGATIONJ.3.1MeasuresProposedbytheApplicantTheApplicant'sproposedplanformitigationofimpactstobotanicalresourcesincludesimplemen-tationofthefollowingmeasures(listedinorderofpriority):Avoidanceofimpactthroughprojectdesignandoperation,orbynottakingacertainaction;Minimizationofimpactbyreducingthedegreeormagnitudeoftheaction,orbychang-ingitslocation;Rectificationofimpactbyrepairing,rehabilitating,orrestoringtheaffectedportionoftheenvironment;Reductionofimpactovertimebyidentificationofareaswhererectificationmeasurescanbeginorrequiremaintenanceeffortsoverthelifeoftheaction;Compensationforimpactsthroughprovisionofreplacementorsubstituteresourcesthatwouldotherwisebeunavailable.ThisapproachwasadoptedafterconsultationwithresourceagenciesincludingtheAlaskaDepart-mentofFishandGameandtheU.S.FishandWildlifeService.ThefollowingsubsectionsprovideasummaryofthemitigativemeasuresforbotanicalresourcesproposedbytheApplicantasdescribedinExhibitE(Vol.6A,Chap.3,pp.E-3-250-E-3-292).J.3.1.1AvoidanceWithoutmitigation,constructionofallprojectfacilitieswouldremovevegetationfromatotalofabout44,000acres(17,800ha)andwouldremoveordisturbanadditionalareaofabout12,000acres(4,900ha)fortransmissionfacilities.Removalofvegetationcannotbetotallyavoided;therefore,theApplicanthasproposedimplementationoftheothermitigativemeasures.J.3.1.2MinimizationMit igativemeasuresproposedbytheApp1icanttoffilnlmlZeimpactstovegetationgenerallyconsistofmeasuresappliedtothedesignorlocationofprojectfacilitiessoastoreduceclearingrequirementsoreffectsonsensitiveareassuchaswetlands.TheApplicanthasalreadyappliedthesemitigativemeasurestotheproposedsitinganddesignofmajorfacilitiessuchasconstructioncampsandvi11ages,theDevilCanyonrai1headfaci1ity,andgeneralaccessandtransmissionlinerouting.However,thesemitigativemeasureswouldalsobeappliedonamoresite-specificbasisduringdetailedengineeringandalignmentstudiesforprojectfacilities.TheApplicanthasplannedthesitingoffacilitiestominimizeimpactstovegetationwherepossible.Theareasthatwouldbedisturbedandclearedforcamps,villages,temporaryroads,fuelandequipmentstorageareas,andotherconstructionsupportfacilitieshavebeenconfinedtothevicinityofthedamsites.TheproposedlocationsofthepermanentvillageandtemporaryconstructionvillageatWatanahavebeencombined.Thedimensionsofproposedconstructioncampsandvillageshavebeenkeptsmallbydesigningcompactarraysofuniformly-sized,contiguousresidentialmodules.Theconsolidationofconstructionfacilitiesandcarefulplanningoftrafficpatternsandserviceroadsshouldalsominimizenon-essentialdisturbanceofvegetationbyconstructionworkers.Inaddition,theApplicantplanstoimplementanenvironmentalbrief-ingsprogramthatwouldrequireparticipationbyallfieldpersonnelinordertofurtherminimizeunnecessarydisturbancestosoilsandvegetation.
J-89TheproposedroutingoftheWatana-to-GoldCreekaccessroadandtransmissionlineright-of-waythroughthesamegeneralcorridorshouldminimizevegetationremovalassociatedwithaccessandequipmenttransporttothetransmissionlinecorridor.Useofflat-tread,balloon-tirevehicleswouldfurtherminimizeimpactstogroundlayervegetationandorganicsoils.TheApplicanthasplanneduseofside-borrowandbalancedcut-and-filltechniques(seeExhibitE,Vol.6A,Chap.3,pp.E-3-264-E-3-266)foraccessroadconstruction,thereby,minimizingtheneedforlargeborrowsiteslocatedsomedistanceawayfromtheaccesscorridors.Contingencyborrowsiteshavebeensitedimmediatelyadjacenttotheaccessroutes.Thisfurtherreducesvegetationclearingrequirementsbyeliminatingtheneedforseparateaccessroadstotheborrowsites.TheplanneduseofrailaccessbetweenGoldCreekandDevilCanyonhasminimizedvegetationlossbecausetheclearingwidthofthiscorridor[50ft(15m)]islessthanhalfthewidthrequiredforroadconstruction[120ft(37m)].TheApplicanthasentirelyavoidedsitingofallpads,buildings,andotherstructuralfacilitiesinwetsedge-grasstundra,whichisavegetationtype(andwetlandcommunitytype)ofrelativelylowabundanceintheupperandmiddleSusitnaBasin.Inparticular,theproposedlocationsofthecamp,village,andotherfacilitiesatDevilCanyonhavebeensitedtominimizeimpactstowetlandsinthevicinityofJackLongCreek.TheApplicanthasrealignedtheproposedaccessroutesandDams-to-GoldCreektransmissionlineright-of-waytoavoidwetlandareasandimportantwildlifehabitat.TheproposedDenaliHighway-to-Watanaaccessroutehasbeenmovedwestwardfromitsoriginalalignmenttorelativelywell-drainedterrainandsoilsthatgenerallyshouldallowside-borroworbalancedcut-and-fillconstructiontechniquesratherthanthebermedconstructiontechniquesrequiredinwet,poorlydrainedterrain.Thisrealignmentisshorterthantheoriginalrouteand,therefore,wouldcrossfewerwetareas.Additionally,potentialalterationsofplantcommunitiescausedbyalterationstodrainagepatternsandsi1tationwouldbeminimizedbyavoidingthelow,wetterrainthatwouldhavebeencrossedbytheoriginalalignment.MinorrouteadjustmentshavealsobeenmadetominimizepotentialimpactstowetlandareasinthevicinityoflowerDeadmanandTsusenacreeks.TheApp1icantalsohasrealignedtheproposedrai1accesstoDevi1CanyontominimizeimpactstowetlandsintheJackLongCreekarea.ThealignmenthasbeenmodifieptofollowthehillsidesouthtoJackLongCreekratherthancrossingthelowergroundalongthenorthsideofthecreek.Theproposedrailheadfacilityhasbeenrelocatedtorelativelyflatgroundonthesouthsideofthecreekfromitsoriginallocationonthenorthside.TheproposedDams-to-GoldCreektransmissioncorridorhasbeenrealignedtofollowaroutesimilartotheproposedaccessrouteintheJackLongCreekarea.TheApplicanthasalsoindicatedthatsite-specificadjustmentsinaccessandtransmissionlinerouteswouldbemadeduringdetailedalign-mentstudiestominimizewetlandandfloodplaincrossings.Proposeduseofflexiblespeeddesignsaswellasapplicationofside-borrowandbalancedcut-and-filltechniquesforaccessroadconstructionshouldreducefillrequirements,thereby,minimizingimpactstovegetation.Thereducedneedforseparateborrowsitesforside-borrowandbalancedcut-and-fillconstructionhasbeendiscussedpreviously.Theside-borrowtechniquegenerallyonlydisturbsa20ft(6m)stripalongeachsideoftheroadbed.Balancedcut-and-fillconstructiongenerallyisonlyfeasiblewhereexcessivelydeepcutsarenotrequiredtominimizegrades.TheproposedWatana-to-Devi1Canyonaccessroadhasbeenroutedtofollowgentletomoderateslopesandwherepossible,toavoiddeepcuttingandtheexcessivefillrequirementsassociatedwithdeepcutting.Additionally,onsteepterrains,useofaflexiblespeeddesignwouldallowuseofsteepergradesandshorter-radiuscurvesthatcouldnotbeaccommodatedbyauniform55mph(88km/hr)designspeed.TheApplicanthasplannedtominimizevegetationloss(eitherclearingorburial)associatedwithdisposalofspoilcreatedduringconstructionactivitiesandborrowexcavations.ThisplanincludesdepositingmostofthespoilproducedduringconstructionoftheproposedWatanaandDevilCanyonimpoundmentsandfacilitieswithintheimpoundmentareainsuchawaythatfinesarepreventedfrombecomingentrainedinsurfacewaterflowsduringconstructionorturbulentflowsduringfillingoroperation.Plannedaccessroadconstructiontechniquesarenotexpectedtoproducenon-usablespoilrequiringseparatedisposalsites.Tominimizeimpactstovegetationcrossedbythetransmissionlinecorridors,theApplicanthasplannedonlyselectiveclearingoftherights-of-way.Ingeneral,clearingforguyedx-typetowersupto85ft(26m)tallonlevelterrain(seeFig.J-6)wouldbelimitedtothefollowing:Themaximumvegetationheightwouldbe10ft(3m)ontheinsidebufferedgeand60ft(18m)ontheoutsidebufferedge;Astripofvegetationnotexceeding10ft(3m)inheightwouldbemaintainedbetweenadjacenttransmissionlinesexceptattowersites;Attowersites[tower-to-towerspanequals1,200to1,300ft(360to390m)]trans-versestrips,30ft(9m)inwidth,wouldbeclearedbetweenadjacenttowers;Intheareaunderthelines,including5ft(1.5m)beyondtheoutsidephases,treesandshrubsover2ft(0.6m)tallwouldbecuttowithin6in(15cm)ofthegroundsurfaceandothervegetationunder2ft(0.6m)inheightwouldbeleftuncut;J-89TheproposedroutingoftheWatana-to-GoldCreekaccessroadandtransmissionlineright-of-waythroughthesamegeneralcorridorshouldminimizevegetationremovalassociatedwithaccessandequipmenttransporttothetransmissionlinecorridor.Useofflat-tread,balloon-tirevehicleswouldfurtherminimizeimpactstogroundlayervegetationandorganicsoils.TheApplicanthasplanneduseofside-borrowandbalancedcut-and-filltechniques(seeExhibitE,Vol.6A,Chap.3,pp.E-3-264-E-3-266)foraccessroadconstruction,thereby,minimizingtheneedforlargeborrowsiteslocatedsomedistanceawayfromtheaccesscorridors.Contingencyborrowsiteshavebeensitedimmediatelyadjacenttotheaccessroutes.Thisfurtherreducesvegetationclearingrequirementsbyeliminatingtheneedforseparateaccessroadstotheborrowsites.TheplanneduseofrailaccessbetweenGoldCreekandDevilCanyonhasminimizedvegetationlossbecausetheclearingwidthofthiscorridor[50ft(15m)]islessthanhalfthewidthrequiredforroadconstruction[120ft(37m)].TheApplicanthasentirelyavoidedsitingofallpads,buildings,andotherstructuralfacilitiesinwetsedge-grasstundra,whichisavegetationtype(andwetlandcommunitytype)ofrelativelylowabundanceintheupperandmiddleSusitnaBasin.Inparticular,theproposedlocationsofthecamp,village,andotherfacilitiesatDevilCanyonhavebeensitedtominimizeimpactstowetlandsinthevicinityofJackLongCreek.TheApplicanthasrealignedtheproposedaccessroutesandDams-to-GoldCreektransmissionlineright-of-waytoavoidwetlandareasandimportantwildlifehabitat.TheproposedDenaliHighway-to-Watanaaccessroutehasbeenmovedwestwardfromitsoriginalalignmenttorelativelywell-drainedterrainandsoilsthatgenerallyshouldallowside-borroworbalancedcut-and-fillconstructiontechniquesratherthanthebermedconstructiontechniquesrequiredinwet,poorlydrainedterrain.Thisrealignmentisshorterthantheoriginalrouteand,therefore,wouldcrossfewerwetareas.Additionally,potentialalterationsofplantcommunitiescausedbyalterationstodrainagepatternsandsi1tationwouldbeminimizedbyavoidingthelow,wetterrainthatwouldhavebeencrossedbytheoriginalalignment.MinorrouteadjustmentshavealsobeenmadetominimizepotentialimpactstowetlandareasinthevicinityoflowerDeadmanandTsusenacreeks.TheApp1icantalsohasrealignedtheproposedrai1accesstoDevi1CanyontominimizeimpactstowetlandsintheJackLongCreekarea.ThealignmenthasbeenmodifieptofollowthehillsidesouthtoJackLongCreekratherthancrossingthelowergroundalongthenorthsideofthecreek.Theproposedrailheadfacilityhasbeenrelocatedtorelativelyflatgroundonthesouthsideofthecreekfromitsoriginallocationonthenorthside.TheproposedDams-to-GoldCreektransmissioncorridorhasbeenrealignedtofollowaroutesimilartotheproposedaccessrouteintheJackLongCreekarea.TheApplicanthasalsoindicatedthatsite-specificadjustmentsinaccessandtransmissionlinerouteswouldbemadeduringdetailedalign-mentstudiestominimizewetlandandfloodplaincrossings.Proposeduseofflexiblespeeddesignsaswellasapplicationofside-borrowandbalancedcut-and-filltechniquesforaccessroadconstructionshouldreducefillrequirements,thereby,minimizingimpactstovegetation.Thereducedneedforseparateborrowsitesforside-borrowandbalancedcut-and-fillconstructionhasbeendiscussedpreviously.Theside-borrowtechniquegenerallyonlydisturbsa20ft(6m)stripalongeachsideoftheroadbed.Balancedcut-and-fillconstructiongenerallyisonlyfeasiblewhereexcessivelydeepcutsarenotrequiredtominimizegrades.TheproposedWatana-to-Devi1Canyonaccessroadhasbeenroutedtofollowgentletomoderateslopesandwherepossible,toavoiddeepcuttingandtheexcessivefillrequirementsassociatedwithdeepcutting.Additionally,onsteepterrains,useofaflexiblespeeddesignwouldallowuseofsteepergradesandshorter-radiuscurvesthatcouldnotbeaccommodatedbyauniform55mph(88km/hr)designspeed.TheApplicanthasplannedtominimizevegetationloss(eitherclearingorburial)associatedwithdisposalofspoilcreatedduringconstructionactivitiesandborrowexcavations.ThisplanincludesdepositingmostofthespoilproducedduringconstructionoftheproposedWatanaandDevilCanyonimpoundmentsandfacilitieswithintheimpoundmentareainsuchawaythatfinesarepreventedfrombecomingentrainedinsurfacewaterflowsduringconstructionorturbulentflowsduringfillingoroperation.Plannedaccessroadconstructiontechniquesarenotexpectedtoproducenon-usablespoilrequiringseparatedisposalsites.Tominimizeimpactstovegetationcrossedbythetransmissionlinecorridors,theApplicanthasplannedonlyselectiveclearingoftherights-of-way.Ingeneral,clearingforguyedx-typetowersupto85ft(26m)tallonlevelterrain(seeFig.J-6)wouldbelimitedtothefollowing:Themaximumvegetationheightwouldbe10ft(3m)ontheinsidebufferedgeand60ft(18m)ontheoutsidebufferedge;Astripofvegetationnotexceeding10ft(3m)inheightwouldbemaintainedbetweenadjacenttransmissionlinesexceptattowersites;Attowersites[tower-to-towerspanequals1,200to1,300ft(360to390m)]trans-versestrips,30ft(9m)inwidth,wouldbeclearedbetweenadjacenttowers;Intheareaunderthelines,including5ft(1.5m)beyondtheoutsidephases,treesandshrubsover2ft(0.6m)tallwouldbecuttowithin6in(15cm)ofthegroundsurfaceandothervegetationunder2ft(0.6m)inheightwouldbeleftuncut;
J-90Attowersitesandinareasoccupiedbylongitudinalaccesstrailsorbytemporaryconstructionfacilities,allvegetationmightbecleared,andgrubbingofstumpsorstrippingoftheorganiclayerwouldberequiredfortowererectionatsomelocations;Outsiderights-of-way,additionallimitedclearingwouldberequiredtoallowaccessandtoremovedangertrees(treesofsufficientheighttocontacttowers,guys,orlinesiftheyweretofall);Allslash,debris,andfelleddangertreeswouldbestockpiledwithinrights-of-way,allowedtodrythroughthesummerimmediatelyfollowingclearingandcontrol-burnedattheendofthesummer,inordertoreducethepotentialforspreadofsprucebudwormandotherinsectsordisease;Noherbicideswouldbeused;Maintenance-relatedclearingofrights-of-waywouldprobablybenecessaryabouteverytenyears;Betweensuchperiodicclearing,vegetationwouldbeallowedtogrowundisturbed,exceptwheredangertreeremovalisrequiredorlocalizedclearingisrequiredfortowerorlinerepairandmaintenance.Tominimizeclearingofvegetationforaccesstotransmissionlinecorridors,theApplicanthasplannedtorequirecontractorstoprepareaccessplansthatareacceptabletotheApplicantaswellaslandownersorcontrollingagencies.TheApplicanthasstatedthataccessplanningwouldincludethefollowingbasicelementstominimizeimpactstovegetation:Stipulationthatexistingroadswouldbeusedtothenearestpointoftransmissioncorridoraccessandthatcontractorsobtainpermissiontobuildconstructiontrailsfromthenearestpointsonexistingroadstotherights-of-way;Stipulationthatconstructiontrailswouldbeestablishedonlyafterthoroughonsiteassessmentofa1ternativeroutesanddeve1opmentofprocedurestoensureminima1environmentaldisturbance(includingavoidance,wherefeasible,ofdensevegetation,streamcrossings,wetlandandfloodplainareas,andextensiveswitchbacksonsteeperosion-proneterrain);Useofminimum-standardlongitudinaltrailsfromtowertotoweralongtheclearedinsideportionoftherights-of-way.TheApplicanthasplannedtominimizeimpactstovegetationassociatedwithincreasedpublicaccesstotheupperandmiddleSusitnaBasin.AlongtheproposedDenaliHighway-to-Watanaroad,publicaccesswouldberestrictedduringconstructionbyuseofalockedgatesupervisedbysecurityguards.Publicuseoftheproposedrailaccesswouldnotbeallowed.Policiesconcern-ingpublicaccesstotheproposedprojectareaafterprojectconstructionwouldbedevelopedwithconcurrenceoflandandresourcemanagementagenciesandprivatelandownerswhoselandswouldbeaffected.Optionstominimizepublic-useimpactstovegetationthatwouldbeconsideredinclude:(1)gatingtheproposedDenaliHighway-to-Watanaaccessroad,(2)useofsignstodetervehic1edeparturesfromtheroad,(3)specia1regulatorydesignationofaccessroadstodiscourage.off-roadandall-terrainvehicleuse,(4)useofregulatoryoptionsavailabletoresourcemanagementagenciestolimitaccesstolandsundertheirjurisdiction,and(5)phasedimplementationoftheSusitnaprojectrecreationplan,whichisdesignedtominimizeand1oca1izeaccess-re1atedimpactsthroughuseoftrailsanddesignatedcampingareas,andissubjecttointeragencyreviewandconcurrence.J.3.1.3RectificationMitigativemeasurestorectifyimpactstovegetationgenerallywouldbeappliedonceprojectfacilitiesusedonatemporarybasisduringconstructionarenolongerneeded.Areasdisturbedbyeitherconstructionactivitiesornonessentialactivitieswouldalsorequirerectification.Vegetationlossesordisturbancecausedbybuildingoftemporaryconstructionfacilitiesandconstruction-orotherhuman-relatedactivitieswouldbe,atleast,partiallyrectifiedbydismant1ingofstructures;regrading,recontouring,andrehabilitatingsoils;andpreparingsoilstoa11owrapidreestab1ishmentofvegetation.TheApp1icanthaspresentedageneralscheduleforrehabilitationofmajortemporaryfacilitiesinExhibitE(Vol.6A,Chap.3,pp.E-3-276-E-3-278).Inmostcases,plannedrehabilitationprocedureswouldprobablyonlypartiallyrectifyvegetationlossesintheshortterm,becausereplacementoflostplantcommuni-tiesbysimilarcommunitytypesdependsupontherateofplantsuccession,whichmayvarybutcouldtakeaslongas150years(seeSectionJ.2.1.1.1).TheApplicanthasdesignatedthepreparationofcomprehensiverestorationplansasataskforthedetailedengineeringdesignphase.Duetotheneedforsite-specificrehabilitationpro-cedures,individualrestorationplanswouldbedevelopedforeacharearequiringrehabilitation.J-90Attowersitesandinareasoccupiedbylongitudinalaccesstrailsorbytemporaryconstructionfacilities,allvegetationmightbecleared,andgrubbingofstumpsorstrippingoftheorganiclayerwouldberequiredfortowererectionatsomelocations;Outsiderights-of-way,additionallimitedclearingwouldberequiredtoallowaccessandtoremovedangertrees(treesofsufficientheighttocontacttowers,guys,orlinesiftheyweretofall);Allslash,debris,andfelleddangertreeswouldbestockpiledwithinrights-of-way,allowedtodrythroughthesummerimmediatelyfollowingclearingandcontrol-burnedattheendofthesummer,inordertoreducethepotentialforspreadofsprucebudwormandotherinsectsordisease;Noherbicideswouldbeused;Maintenance-relatedclearingofrights-of-waywouldprobablybenecessaryabouteverytenyears;Betweensuchperiodicclearing,vegetationwouldbeallowedtogrowundisturbed,exceptwheredangertreeremovalisrequiredorlocalizedclearingisrequiredfortowerorlinerepairandmaintenance.Tominimizeclearingofvegetationforaccesstotransmissionlinecorridors,theApplicanthasplannedtorequirecontractorstoprepareaccessplansthatareacceptabletotheApplicantaswellaslandownersorcontrollingagencies.TheApplicanthasstatedthataccessplanningwouldincludethefollowingbasicelementstominimizeimpactstovegetation:Stipulationthatexistingroadswouldbeusedtothenearestpointoftransmissioncorridoraccessandthatcontractorsobtainpermissiontobuildconstructiontrailsfromthenearestpointsonexistingroadstotherights-of-way;Stipulationthatconstructiontrailswouldbeestablishedonlyafterthoroughonsiteassessmentofa1ternativeroutesanddeve1opmentofprocedurestoensureminima1environmentaldisturbance(includingavoidance,wherefeasible,ofdensevegetation,streamcrossings,wetlandandfloodplainareas,andextensiveswitchbacksonsteeperosion-proneterrain);Useofminimum-standardlongitudinaltrailsfromtowertotoweralongtheclearedinsideportionoftherights-of-way.TheApplicanthasplannedtominimizeimpactstovegetationassociatedwithincreasedpublicaccesstotheupperandmiddleSusitnaBasin.AlongtheproposedDenaliHighway-to-Watanaroad,publicaccesswouldberestrictedduringconstructionbyuseofalockedgatesupervisedbysecurityguards.Publicuseoftheproposedrailaccesswouldnotbeallowed.Policiesconcern-ingpublicaccesstotheproposedprojectareaafterprojectconstructionwouldbedevelopedwithconcurrenceoflandandresourcemanagementagenciesandprivatelandownerswhoselandswouldbeaffected.Optionstominimizepublic-useimpactstovegetationthatwouldbeconsideredinclude:(1)gatingtheproposedDenaliHighway-to-Watanaaccessroad,(2)useofsignstodetervehic1edeparturesfromtheroad,(3)specia1regulatorydesignationofaccessroadstodiscourage.off-roadandall-terrainvehicleuse,(4)useofregulatoryoptionsavailabletoresourcemanagementagenciestolimitaccesstolandsundertheirjurisdiction,and(5)phasedimplementationoftheSusitnaprojectrecreationplan,whichisdesignedtominimizeand1oca1izeaccess-re1atedimpactsthroughuseoftrailsanddesignatedcampingareas,andissubjecttointeragencyreviewandconcurrence.J.3.1.3RectificationMitigativemeasurestorectifyimpactstovegetationgenerallywouldbeappliedonceprojectfacilitiesusedonatemporarybasisduringconstructionarenolongerneeded.Areasdisturbedbyeitherconstructionactivitiesornonessentialactivitieswouldalsorequirerectification.Vegetationlossesordisturbancecausedbybuildingoftemporaryconstructionfacilitiesandconstruction-orotherhuman-relatedactivitieswouldbe,atleast,partiallyrectifiedbydismant1ingofstructures;regrading,recontouring,andrehabilitatingsoils;andpreparingsoilstoa11owrapidreestab1ishmentofvegetation.TheApp1icanthaspresentedageneralscheduleforrehabilitationofmajortemporaryfacilitiesinExhibitE(Vol.6A,Chap.3,pp.E-3-276-E-3-278).Inmostcases,plannedrehabilitationprocedureswouldprobablyonlypartiallyrectifyvegetationlossesintheshortterm,becausereplacementoflostplantcommuni-tiesbysimilarcommunitytypesdependsupontherateofplantsuccession,whichmayvarybutcouldtakeaslongas150years(seeSectionJ.2.1.1.1).TheApplicanthasdesignatedthepreparationofcomprehensiverestorationplansasataskforthedetailedengineeringdesignphase.Duetotheneedforsite-specificrehabilitationpro-cedures,individualrestorationplanswouldbedevelopedforeacharearequiringrehabilitation.
J-91Ingeneral,individualplanswouldincludeinformationsuchasthefollowingforcontractorsandmonitorstouse:Aplanview(drawing)oftheareatoberehabilitated,includingclearlydelineatedlimits,overburdenorsoilstockpilelocations,andareasofspecialconcern(e.g.,erosion,slumping,oilsaturationfromequipmentmaintenanceshops);Aerialphotographsoftheplanviewareatoserveasaphotobasefor(1)overlaysoforiginalvegetationandsoiltypesaswellasappropriaterevegetationclasses(AlaskaRuralDevelopmentCouncil,1983),and(2)overlaysofareasrequiringspecialtreat-ment(e.g.,seedingforerosioncontrol,waterbars,applicationofextrasoiland/ororganiclayermaterial,extraorspecialfertilizerapplications);Specificlocationsforstockpilingoforganicsoils,withspecialstipulationsforprovidingprotectivemeasuresagainstdrying,winderosion,andrunoff;Specificationsofdepthsandproceduresforrippingandscarificationduringsoi1preparation;Specificationsforquantitiesandtypesoffertilizerstobeapplied;Specificationsofrevegetationmixturestobeusedforseeding,includingapplicationratesandplantingmethods.Althoughspecificrestorationplanswouldprovidemuchgreaterdetailandmightvaryconsiderablydependingonsite-specificconditions,thefollowingparagraphsgiveanoverviewofthegeneralproceduralapproachplannedbytheApplicant.Thelandsurfaceofdisturbedareaswouldberippedandgradedtocontour.Previouslystock-piledmineraland/ororganiclayersoilswouldthenbespreadevenlyoverthecontouredlandsurface.Fertilizerhighinphosphorus(e.g.,10-20-10or8-32-16,N-P-K)wouldbeappliedataratesufficienttosupplyabout75to100poundsofnitrogenperacre(85to100kg/ha).Followingthespreadingofmineralsoil,organiclayermaterial,andfertilizer,thesitesurfacewouldbescarifiedtoadepthof12in(30cm)usingaraketowedbyamini-Rolligon-typevehicle.Thisprocedureisintendedtomixtheorganicswithunderlyingmineralsoil,aeratethemixture,andlightlycompactthesurface.Duringthesecondandthirdgrowingseasons,followupfertilizerapplicationswouldbemadeatone-halftoone-thirdoftheoriginalrate.Atsiteswhereaestheticconsiderationswouldnotbeinvolvedandtheprobabilityoferosion-relatedproblemswouldbelow,rehabilitationprocedureswouldemphasizesitepreparationandapplicationoforganicsandfertilizerbutwouldminimizeseeding.Thisapproachshouldencouragethereinvasionofnativespeciesfromsurroundingrelativelyundisturbedcommunities.Forsiteswherethedegreeofdisturbanceisslightandsoilshaveremainedintact,fertiliza-tionaloneshouldbesufficienttofacilitaterevegetation.Siteswithhigherosionorvisualimpactpotentialwouldbeseededwithfast-growingnativegrassesappropriatetotheclimateandgeographyoftheSusitnaBasin.Tominimizeerosion,allsiteswouldbephysicallyrehabilitated,fertilized,and,seeded,ifnecessary,bythefirst-growingseasonfollowingtheremovalofstructuresorequipment.Therevegetationpotentialsofavailablenativestrainswouldbeevaluatedpriortouseondisturbedsites,andsufficientquantitiesofseedsforthosesitesrequiringseedingwouldbestockpiled.SelectionofspeciesorstrainsforsiterehabilitationwouldbemadeafterconsultationwithFederalandstatenaturalresourceagencies.J.3.1.4ReductionMitigativemeasuresplannedbytheApplicanttoreduceimpactstovegetationwouldreallybeanextensionofrectificationinthatthesemeasureswouldmainlyinvolvemonitoringofprojectfacilitiesandactivitiestoensurethemosteffectiveuseandapplicationofrehabilitationmeasures.TheApplicantplanstoconductthefollowingtasksonacontinuingbasisduringprojectconstruction,andoperation:Monitorrehabilitationprogresstoidentifysitesorlocationswithinsitesrequiringrepeatedoralteredapplicationsoffertilizerand/orseed;Systematicallyidentifydisturbedareaswhereconstructionactivitieshaveceasedandwhicharenolongerrequired,andinitiaterehabilitation;Coordinaterehabilitationeffortswithclosureandremovalofserviceortemporaryroadsidentifiedasnolongerrequired.J-91Ingeneral,individualplanswouldincludeinformationsuchasthefollowingforcontractorsandmonitorstouse:Aplanview(drawing)oftheareatoberehabilitated,includingclearlydelineatedlimits,overburdenorsoilstockpilelocations,andareasofspecialconcern(e.g.,erosion,slumping,oilsaturationfromequipmentmaintenanceshops);Aerialphotographsoftheplanviewareatoserveasaphotobasefor(1)overlaysoforiginalvegetationandsoiltypesaswellasappropriaterevegetationclasses(AlaskaRuralDevelopmentCouncil,1983),and(2)overlaysofareasrequiringspecialtreat-ment(e.g.,seedingforerosioncontrol,waterbars,applicationofextrasoiland/ororganiclayermaterial,extraorspecialfertilizerapplications);Specificlocationsforstockpilingoforganicsoils,withspecialstipulationsforprovidingprotectivemeasuresagainstdrying,winderosion,andrunoff;Specificationsofdepthsandproceduresforrippingandscarificationduringsoi1preparation;Specificationsforquantitiesandtypesoffertilizerstobeapplied;Specificationsofrevegetationmixturestobeusedforseeding,includingapplicationratesandplantingmethods.Althoughspecificrestorationplanswouldprovidemuchgreaterdetailandmightvaryconsiderablydependingonsite-specificconditions,thefollowingparagraphsgiveanoverviewofthegeneralproceduralapproachplannedbytheApplicant.Thelandsurfaceofdisturbedareaswouldberippedandgradedtocontour.Previouslystock-piledmineraland/ororganiclayersoilswouldthenbespreadevenlyoverthecontouredlandsurface.Fertilizerhighinphosphorus(e.g.,10-20-10or8-32-16,N-P-K)wouldbeappliedataratesufficienttosupplyabout75to100poundsofnitrogenperacre(85to100kg/ha).Followingthespreadingofmineralsoil,organiclayermaterial,andfertilizer,thesitesurfacewouldbescarifiedtoadepthof12in(30cm)usingaraketowedbyamini-Rolligon-typevehicle.Thisprocedureisintendedtomixtheorganicswithunderlyingmineralsoil,aeratethemixture,andlightlycompactthesurface.Duringthesecondandthirdgrowingseasons,followupfertilizerapplicationswouldbemadeatone-halftoone-thirdoftheoriginalrate.Atsiteswhereaestheticconsiderationswouldnotbeinvolvedandtheprobabilityoferosion-relatedproblemswouldbelow,rehabilitationprocedureswouldemphasizesitepreparationandapplicationoforganicsandfertilizerbutwouldminimizeseeding.Thisapproachshouldencouragethereinvasionofnativespeciesfromsurroundingrelativelyundisturbedcommunities.Forsiteswherethedegreeofdisturbanceisslightandsoilshaveremainedintact,fertiliza-tionaloneshouldbesufficienttofacilitaterevegetation.Siteswithhigherosionorvisualimpactpotentialwouldbeseededwithfast-growingnativegrassesappropriatetotheclimateandgeographyoftheSusitnaBasin.Tominimizeerosion,allsiteswouldbephysicallyrehabilitated,fertilized,and,seeded,ifnecessary,bythefirst-growingseasonfollowingtheremovalofstructuresorequipment.Therevegetationpotentialsofavailablenativestrainswouldbeevaluatedpriortouseondisturbedsites,andsufficientquantitiesofseedsforthosesitesrequiringseedingwouldbestockpiled.SelectionofspeciesorstrainsforsiterehabilitationwouldbemadeafterconsultationwithFederalandstatenaturalresourceagencies.J.3.1.4ReductionMitigativemeasuresplannedbytheApplicanttoreduceimpactstovegetationwouldreallybeanextensionofrectificationinthatthesemeasureswouldmainlyinvolvemonitoringofprojectfacilitiesandactivitiestoensurethemosteffectiveuseandapplicationofrehabilitationmeasures.TheApplicantplanstoconductthefollowingtasksonacontinuingbasisduringprojectconstruction,andoperation:Monitorrehabilitationprogresstoidentifysitesorlocationswithinsitesrequiringrepeatedoralteredapplicationsoffertilizerand/orseed;Systematicallyidentifydisturbedareaswhereconstructionactivitieshaveceasedandwhicharenolongerrequired,andinitiaterehabilitation;Coordinaterehabilitationeffortswithclosureandremovalofserviceortemporaryroadsidentifiedasnolongerrequired.
J-92Thesemeasureswouldbestipulatedinthecomprehensiverestorationplansandwouldbeintendedtohelpfocusandimplementtheplans.Amajorobjectiveofthemonitoringprogramwouldbetomaintainawarenessoftheextentandlocationofdisturbedareas,bothplannedandunplanned,sothatrehabilitationcouldbeginasearlyasfeasibleonceactivitiesinagivenareadiminished.Monitoringwouldbeusedthrough-outpre-constructionfieldactivitiesandtheconstructionandoperationperiodstoidentifyareasinneedofrehabilitationotherthanthosespecificallytargetedintheoriginalcompre-hensiverestorationplans.J.3.1.5CompensationSincetheproposeddamandimpoundmentsitesareessentiallyfixed,vegetationlostduetotheirconstructioncouldnotbeminimized,rectified,orreducedovertime.Thesevegetationlossescouldonlybeoffsetthroughcompensationmeasures.TheApplicanthasconsideredtwocompensa-tionoptions:Acquisitionoflandswitharealcoveragesofvegetationtypesequivalenttothoselost,andprotectionoftheselandsfromfuturedevelopment;Prioritizationoflostvegetationtypeswithrespecttotheirvalueaswildlifehabitatfollowedbyselectivealterationofvegetationonacquiredlandstoreplaceorexceedlostarealcoveragesofhigh-priorityvegetationtypes.Thesecondoptionhasbeense1ectedbytheApp1icantbecausehabitatenhancementmeasuresaccomplishedthroughvegetationalterationwouldallowcompensationforhigh-priorityvegetation(habitat)typeswhilerequiringacquisitionofrelativelysmallerlandareas.Inidentifyingreplacementlandsforhabitatenhancement,theApplicantwouldplacethehighestpriorityonstateandFederallandsthatcanbeacquiredatminimalornocost.AlaskaDepart-mentofNaturalResources(ADNR)statutes(Tit1e38)setforthprovisionsforexchangesofstate-ownedlandsonanequal-valuebasisfollowingappraisal.Blackspruceforesttypes,whichareconsideredtohavehighenhancementpotential,arereadilyavailableonstate-ownedlandsinthevicinityoftheproposedSusitnaproject.Thus,theApplicantanticipatesthatreplacementlandsmightbeacquiredthroughexchangesofstatelandsfollowingADNRreviewandconcurrence.AsecondpossibilityforreplacementlandacquisitionbeingconsideredbytheApplicantisprovidedbySection907oftheAlaskaNationa1InterestLandsConservationActof1980(Publ.L.96-487).ThisprovisionestablishedtheAlaskaLandBankProgram,whichaffordsprivatelandownerstaxincentivesandotherbenefitsformakinglandsavailableforfishandwildlifemanagementinaccordancewiththepoliciesofstateorFederalresourceagencies.Tohelpassessthesuitabilityofcontrolledburningasamethodforbrowsehabitatenhancement,theApplicanthasparticipatedinacooperativeprogramwiththeU.S.ForestServiceInstituteofNorthernForestry,theAlaskaDepartmentofFishandGame,andtheBureauofLandManagement.Todate,speciesdistribution,abundance,andvegetativecoverhavebeenquantifiedwithinthe6,400-acre(2600-ha)BureauofLandManagementareathathasbeendesignatedforcontrolledburningintheAlphabetHillseastoftheprojectarea(Steigersetal.,1983).Aftertheareaisburned,studieswouldbeconductedtocharacterizepost-burnplantsuccessionandbrowseavailability.OtheraspectsoftheApplicant'smitigationplanwithregardtocompensationoflostwildlifehabitataredescribedinSectionK.4.1ofAppendixK.J.3.2EvaluationofProposedMeasuresResourceagencies'formalcommentsontheproposedmitigationplan,ingeneral,havesupportedtheapproachtakenbytheApp1icantformit igatingvegetationlosses.Agencycommentsaregenerallycritiquesoftheproposedplanratherthanrecommendationsoftotallynewmeasures.TheStaffalsoagreeswiththegeneralapproachtomitigationproposedbytheApplicant.TheU.S.FishandWildlifeServiceinparticular,hasexpressedconcernthattheproposedmitiga-tionplanisincompleteandtoogeneral.SpecificconcernshavebeenoutlinedbytheU.S.Depart-mentoftheInterior(1983).TheApplicant,however,hasresponded(AlaskaPowerAuthority,1984a)thatmitigationplanswouldbeupdatedandrefinedasmorecompletedataandfurtheranalysesareobtained.Furthermore,theApplicanthasindicatedawarenessoftheneedforstipulatingmorespecificprocedures,locations,schedules,andcosts,buthasdeferredmanysite-specificaspectsofmitigationplanninguntilthedetaileddesignphaseoftheproposedprojectdevelopment.Severalagencies,notablytheU.S.FishandWildlifeService(U.S.Dept.ofInterior,1983)andtheBureauofLandManagement(U.S.Dept.ofInterior,BureauofLandManagement,1983),haverecommended(1)thattheApplicantcontinuetoconsultcloselywithstateandFederalresourceagenciesasthemitigationplanisrefined,and(2)thatimpactstovegetation,implementationofmitigativemeasures,andtheefficacyofmitigativeeffortsbemonitoredbyaninteragencyJ-92Thesemeasureswouldbestipulatedinthecomprehensiverestorationplansandwouldbeintendedtohelpfocusandimplementtheplans.Amajorobjectiveofthemonitoringprogramwouldbetomaintainawarenessoftheextentandlocationofdisturbedareas,bothplannedandunplanned,sothatrehabilitationcouldbeginasearlyasfeasibleonceactivitiesinagivenareadiminished.Monitoringwouldbeusedthrough-outpre-constructionfieldactivitiesandtheconstructionandoperationperiodstoidentifyareasinneedofrehabilitationotherthanthosespecificallytargetedintheoriginalcompre-hensiverestorationplans.J.3.1.5CompensationSincetheproposeddamandimpoundmentsitesareessentiallyfixed,vegetationlostduetotheirconstructioncouldnotbeminimized,rectified,orreducedovertime.Thesevegetationlossescouldonlybeoffsetthroughcompensationmeasures.TheApplicanthasconsideredtwocompensa-tionoptions:Acquisitionoflandswitharealcoveragesofvegetationtypesequivalenttothoselost,andprotectionoftheselandsfromfuturedevelopment;Prioritizationoflostvegetationtypeswithrespecttotheirvalueaswildlifehabitatfollowedbyselectivealterationofvegetationonacquiredlandstoreplaceorexceedlostarealcoveragesofhigh-priorityvegetationtypes.Thesecondoptionhasbeense1ectedbytheApp1icantbecausehabitatenhancementmeasuresaccomplishedthroughvegetationalterationwouldallowcompensationforhigh-priorityvegetation(habitat)typeswhilerequiringacquisitionofrelativelysmallerlandareas.Inidentifyingreplacementlandsforhabitatenhancement,theApplicantwouldplacethehighestpriorityonstateandFederallandsthatcanbeacquiredatminimalornocost.AlaskaDepart-mentofNaturalResources(ADNR)statutes(Tit1e38)setforthprovisionsforexchangesofstate-ownedlandsonanequal-valuebasisfollowingappraisal.Blackspruceforesttypes,whichareconsideredtohavehighenhancementpotential,arereadilyavailableonstate-ownedlandsinthevicinityoftheproposedSusitnaproject.Thus,theApplicantanticipatesthatreplacementlandsmightbeacquiredthroughexchangesofstatelandsfollowingADNRreviewandconcurrence.AsecondpossibilityforreplacementlandacquisitionbeingconsideredbytheApplicantisprovidedbySection907oftheAlaskaNationa1InterestLandsConservationActof1980(Publ.L.96-487).ThisprovisionestablishedtheAlaskaLandBankProgram,whichaffordsprivatelandownerstaxincentivesandotherbenefitsformakinglandsavailableforfishandwildlifemanagementinaccordancewiththepoliciesofstateorFederalresourceagencies.Tohelpassessthesuitabilityofcontrolledburningasamethodforbrowsehabitatenhancement,theApplicanthasparticipatedinacooperativeprogramwiththeU.S.ForestServiceInstituteofNorthernForestry,theAlaskaDepartmentofFishandGame,andtheBureauofLandManagement.Todate,speciesdistribution,abundance,andvegetativecoverhavebeenquantifiedwithinthe6,400-acre(2600-ha)BureauofLandManagementareathathasbeendesignatedforcontrolledburningintheAlphabetHillseastoftheprojectarea(Steigersetal.,1983).Aftertheareaisburned,studieswouldbeconductedtocharacterizepost-burnplantsuccessionandbrowseavailability.OtheraspectsoftheApplicant'smitigationplanwithregardtocompensationoflostwildlifehabitataredescribedinSectionK.4.1ofAppendixK.J.3.2EvaluationofProposedMeasuresResourceagencies'formalcommentsontheproposedmitigationplan,ingeneral,havesupportedtheapproachtakenbytheApp1icantformit igatingvegetationlosses.Agencycommentsaregenerallycritiquesoftheproposedplanratherthanrecommendationsoftotallynewmeasures.TheStaffalsoagreeswiththegeneralapproachtomitigationproposedbytheApplicant.TheU.S.FishandWildlifeServiceinparticular,hasexpressedconcernthattheproposedmitiga-tionplanisincompleteandtoogeneral.SpecificconcernshavebeenoutlinedbytheU.S.Depart-mentoftheInterior(1983).TheApplicant,however,hasresponded(AlaskaPowerAuthority,1984a)thatmitigationplanswouldbeupdatedandrefinedasmorecompletedataandfurtheranalysesareobtained.Furthermore,theApplicanthasindicatedawarenessoftheneedforstipulatingmorespecificprocedures,locations,schedules,andcosts,buthasdeferredmanysite-specificaspectsofmitigationplanninguntilthedetaileddesignphaseoftheproposedprojectdevelopment.Severalagencies,notablytheU.S.FishandWildlifeService(U.S.Dept.ofInterior,1983)andtheBureauofLandManagement(U.S.Dept.ofInterior,BureauofLandManagement,1983),haverecommended(1)thattheApplicantcontinuetoconsultcloselywithstateandFederalresourceagenciesasthemitigationplanisrefined,and(2)thatimpactstovegetation,implementationofmitigativemeasures,andtheefficacyofmitigativeeffortsbemonitoredbyaninteragency
J-93monitoringteam.TheStaffconcursthatsuchinteractionwithresourceagenciesisnecessary,andtheApplicanthasalsoacknowledgedthenecessityofinteraction.Thereissomeconcernonthepartoftheagencieswithregardtofeasibilityoftheproposedcompensationmeasures.ThestateofAlaska(StateofAlaska,OfficeofManagementandBudget,1983)hasexpressedconcernthathabitatenhancementeffortscouldberiskyand,therefore,favorscompensationwith replacementlands.Conversely,theU.S.FishandioJildlifeService(U.S.Dept.ofInterior,1983)hasindicatedsupportfortheApplicant'schosenoptionofcompen-sationthroughhabitatenhancement,butnotedthatselectionanddeve1opmentof1andsforhabitatenhancementmustalsoincludeconsiderationofotherhabitatcharacteristicsaffectingwildlifehabitatvalues,including(1)locationwithrespecttowildlife-usepatternsand(2)interspersionwithvegetationtypesprovidingcoverandprotection.ThereisalsoconcernonthepartoftheagenciesandtheStaffaboutthefeasibilityandspecificsofhabitat-enhancementmeasures.Althoughitisfairlywelldocumentedthatdisturb-ancessuchasfiregenerallyeffectanincreaseinbrowseproduction(Wolff,1978;WolffandZasada,1979;ViereckandSchandelmeier,1980),thereareuncertaintiesastoselectionofmethodsandthespecificeffectsoffactorssuchassoilandenvironmentalconditions,thespeciescompositionofvegetativecommunitiestobemodified,andthecompositionofsurroundingcommunities.Thus,atpresentitwouldbedifficultinmanylocationstopredictwithconfi-dencethepreciseresultsofenhancementmanipulationsonchangesinvegetativecommunitystruc-tureandproductivity.Furthermore,itwouldbeevenmoredifficulttopredicttheresponsesofwildlifepopulationstovariousenhancementmanipulations.Therefore,severalagencieshaveindicatedthatadditionalstudiesarerequiredtodeterminemoreprecisely(1)whatimportanthabitatareaswouldbelostduetoconstructionandoperationoftheproposedproject,(2)whetheritispossibleorfeasibletoreplacetheseareas,and(3)howandwheretobestattemptreplace-mentmanipulations.Itisforthesereasonsthatresourceagencieshaverecommendedvegetationandwetlandstudiesandmappingthatareorientedtowardsquantificationandunderstandingofplantcommunitiesfromawildlifehabitatperspective.TheApplicanthasacknowledgedtheseconcernsandhasstatedthateffortsarebeingmadetopursuesuchstudieswiththehelpandconsultationofappropriateresourceagenciesduringthemitigationplanrefinementprocess(AlaskaPowerAuthority,1984a,b).ConcerningtheApplicant'sapproachtorectificationofvegetationimpacts,theagenciesandtheStaffconcurwiththegeneralrehabilitationproceduresproposedbytheApplicant,recognizingthatmorespecificdetailsofprocedures,locations,schedules,andcostsareplannedforthedetaileddesignphaseoftheproposedprojectdevelopmentandshouldalsobecoveredingreaterdetailintheApplicant'splannedRevegetation/RehabilitationManual.However,theStaffrecom-mendsthattheApplicant,wherefeasible,considertheuseofengineeringpracticestostabilizeerosiveareaseitherinadditiontoorinlieuofseedingwithnativegrasses.Forexample,terracingwouldnotonlyreduceerosionbutwouldhelpcollectmoisturewhichmaybecriticaltorapidlyachievingsuccessfulrevegetation.Asanotherexample,properlyplacedwater-controldiversionswouldminimizeerosionwhileallowingsurfacedrainageofexcesswater.Sinceseedingwithgrasses(evennativespecies)mightinhibitlaterinvasionbyothernativespecies,thejudicioususe,wherefeasible,ofsucherosion-controlmeasuresinlieuof ortominimizeseedingwithgrassesmightallowdevelopmentofamoretypicalnativecommunitythanwouldotherwiseoccur.J.3.3RecommendedandOngoingStudiesTheStaffrecommendsthatongoingstudiesorientedtowardsquantificationandunderstandingofplantcommunitiesfromawildlifehabitatperspectiveaswellasthosedesignedtoevaluatetheresponsesofplantcommunitiesandwildlifepopulationstovarioushabitatmanipulationoptionsbecompleted.Thesestudiesshouldincludedirectmappingofwetlandsforallareasthatwouldbeaffectedbyconstructionandoperationoftheproposedproject(includingtheHealy-to-Willowtransmissionlinesegment)usingclassificationcategoriesspecificenoughtoassesslossesofhigh-valuewetlandtypes.TheStaffalsorecommendsthatstudiesbeconductedtodeterminetheeffectsoflong-term(fivetotenyears)soilstorageonrehabilitationsuccess.Althoughthereisevidencethatreplacementofmineraland/ororganic-layersoilscansignificantlyimproverevegetationofdisturbedsites(VanCleve,1978;ChapinandChapin,1980;Johnson,1981;Gartneretal.,1983),long-termstorageofsoil(mineralororganic-layer)couldaffectseedorvegetativepropaguleviabilityand/orthechemical,physical,andmicrobialpropertiesofthesoil.Theseeffectscouldreducerehabilitationsuccesscomparedtoareaswherereplacedsoilswerestoredforlessthanayearortwo(Hinchmanetal.,1981;Milleretal.,1981,1984).Evenmoreimportantly,itshouldbedeterminedwhetherspecificstoragemethodsorpractices(e.g.,controllingmoisturecontentorcompactionlevels,depthofstockpiles,ormixtureoforganicandmineralsoils)canenhancethepotentialforrehabilitationsuccesswhenreplacementsoilsmustbestoredforlongperiods.J-93monitoringteam.TheStaffconcursthatsuchinteractionwithresourceagenciesisnecessary,andtheApplicanthasalsoacknowledgedthenecessityofinteraction.Thereissomeconcernonthepartoftheagencieswithregardtofeasibilityoftheproposedcompensationmeasures.ThestateofAlaska(StateofAlaska,OfficeofManagementandBudget,1983)hasexpressedconcernthathabitatenhancementeffortscouldberiskyand,therefore,favorscompensationwith replacementlands.Conversely,theU.S.FishandioJildlifeService(U.S.Dept.ofInterior,1983)hasindicatedsupportfortheApplicant'schosenoptionofcompen-sationthroughhabitatenhancement,butnotedthatselectionanddeve1opmentof1andsforhabitatenhancementmustalsoincludeconsiderationofotherhabitatcharacteristicsaffectingwildlifehabitatvalues,including(1)locationwithrespecttowildlife-usepatternsand(2)interspersionwithvegetationtypesprovidingcoverandprotection.ThereisalsoconcernonthepartoftheagenciesandtheStaffaboutthefeasibilityandspecificsofhabitat-enhancementmeasures.Althoughitisfairlywelldocumentedthatdisturb-ancessuchasfiregenerallyeffectanincreaseinbrowseproduction(Wolff,1978;WolffandZasada,1979;ViereckandSchandelmeier,1980),thereareuncertaintiesastoselectionofmethodsandthespecificeffectsoffactorssuchassoilandenvironmentalconditions,thespeciescompositionofvegetativecommunitiestobemodified,andthecompositionofsurroundingcommunities.Thus,atpresentitwouldbedifficultinmanylocationstopredictwithconfi-dencethepreciseresultsofenhancementmanipulationsonchangesinvegetativecommunitystruc-tureandproductivity.Furthermore,itwouldbeevenmoredifficulttopredicttheresponsesofwildlifepopulationstovariousenhancementmanipulations.Therefore,severalagencieshaveindicatedthatadditionalstudiesarerequiredtodeterminemoreprecisely(1)whatimportanthabitatareaswouldbelostduetoconstructionandoperationoftheproposedproject,(2)whetheritispossibleorfeasibletoreplacetheseareas,and(3)howandwheretobestattemptreplace-mentmanipulations.Itisforthesereasonsthatresourceagencieshaverecommendedvegetationandwetlandstudiesandmappingthatareorientedtowardsquantificationandunderstandingofplantcommunitiesfromawildlifehabitatperspective.TheApplicanthasacknowledgedtheseconcernsandhasstatedthateffortsarebeingmadetopursuesuchstudieswiththehelpandconsultationofappropriateresourceagenciesduringthemitigationplanrefinementprocess(AlaskaPowerAuthority,1984a,b).ConcerningtheApplicant'sapproachtorectificationofvegetationimpacts,theagenciesandtheStaffconcurwiththegeneralrehabilitationproceduresproposedbytheApplicant,recognizingthatmorespecificdetailsofprocedures,locations,schedules,andcostsareplannedforthedetaileddesignphaseoftheproposedprojectdevelopmentandshouldalsobecoveredingreaterdetailintheApplicant'splannedRevegetation/RehabilitationManual.However,theStaffrecom-mendsthattheApplicant,wherefeasible,considertheuseofengineeringpracticestostabilizeerosiveareaseitherinadditiontoorinlieuofseedingwithnativegrasses.Forexample,terracingwouldnotonlyreduceerosionbutwouldhelpcollectmoisturewhichmaybecriticaltorapidlyachievingsuccessfulrevegetation.Asanotherexample,properlyplacedwater-controldiversionswouldminimizeerosionwhileallowingsurfacedrainageofexcesswater.Sinceseedingwithgrasses(evennativespecies)mightinhibitlaterinvasionbyothernativespecies,thejudicioususe,wherefeasible,ofsucherosion-controlmeasuresinlieuof ortominimizeseedingwithgrassesmightallowdevelopmentofamoretypicalnativecommunitythanwouldotherwiseoccur.J.3.3RecommendedandOngoingStudiesTheStaffrecommendsthatongoingstudiesorientedtowardsquantificationandunderstandingofplantcommunitiesfromawildlifehabitatperspectiveaswellasthosedesignedtoevaluatetheresponsesofplantcommunitiesandwildlifepopulationstovarioushabitatmanipulationoptionsbecompleted.Thesestudiesshouldincludedirectmappingofwetlandsforallareasthatwouldbeaffectedbyconstructionandoperationoftheproposedproject(includingtheHealy-to-Willowtransmissionlinesegment)usingclassificationcategoriesspecificenoughtoassesslossesofhigh-valuewetlandtypes.TheStaffalsorecommendsthatstudiesbeconductedtodeterminetheeffectsoflong-term(fivetotenyears)soilstorageonrehabilitationsuccess.Althoughthereisevidencethatreplacementofmineraland/ororganic-layersoilscansignificantlyimproverevegetationofdisturbedsites(VanCleve,1978;ChapinandChapin,1980;Johnson,1981;Gartneretal.,1983),long-termstorageofsoil(mineralororganic-layer)couldaffectseedorvegetativepropaguleviabilityand/orthechemical,physical,andmicrobialpropertiesofthesoil.Theseeffectscouldreducerehabilitationsuccesscomparedtoareaswherereplacedsoilswerestoredforlessthanayearortwo(Hinchmanetal.,1981;Milleretal.,1981,1984).Evenmoreimportantly,itshouldbedeterminedwhetherspecificstoragemethodsorpractices(e.g.,controllingmoisturecontentorcompactionlevels,depthofstockpiles,ormixtureoforganicandmineralsoils)canenhancethepotentialforrehabilitationsuccesswhenreplacementsoilsmustbestoredforlongperiods.
J-94REFERENCESFORAPPENDIXJA1askaPowerAuthority.1984a.ResponsestotheDepartmentofInteriorCommentsonLicenseApplication,SusitnaHydroelectricProject.February15,1984.AlaskaPowerAuthority.1984b.ResponsestoAgencyCommentsonLicenseApplication,SusitnaHydroelectricProject.January19,1984.AlaskaRuralDevelopmentCouncil.1983.ARevegetativeGuideforAlaska.UniversityofAlaskaCooperativeExtensionService,RuralDevelopmentCouncilPublicationNo.2,A-00146.Aldrich,J.W.andC.W.Slaughter.1983.Soilerosiononsubarcticforestslopes.JournalofSoilandWaterConservation38:115-118.Bailey,R.G.1978.DescriptionoftheEcoregionsoftheUnitedStates.U.S.DepartmentofAgriculture,ForestService,IntermountainRegion.Ogden,UT.77pp.Baxter,R.M.1977.Environmenta1effectsofdamsandimpoundments.AnnualReviewofEcologyandSystematics8:255-283.Baxter,R.M.andP.Glaude.1980.EnvironmentalEffectsofDamsandImpoundmentsinCanada:ExperienceandProspects.CanadianBulletinofFisheriesandAquaticScience.Bulletin205,pp.1-34.BechtelCivilandMinerals,Inc.AssessmentReport.Vol.II.1983.ChakachamnaHydroelectricProjectInterimFeasibilityPreparedforAlaskaPowerAuthority.Anchorage.Berg,R.L.1980.Roadperformanceandassociatedinvestigations.pp.53-100, In:J.BrownandR.L.Berg(eds.),Environmenta1EngineeringandEco1ogica1BaselineInvestigationsalongtheYukonRiver-PrudhoeBayHaulRoad.CRRELReport80-19.U.S.ArmyCorpsofEngineers,ColdRegionsResearchandEngineeringLaboratory.Hanover,NH.Challinor,J.L.andP.L.Gersper.1975.Vehicleperturbationeffectsuponatundrasoil-plantsystem:II.Effectsonthechemicalregime.SoilScienceSocietyofAmericaProceedings39:689-695.Chapin,F.S.IIIandK.VanCleve.1978.NitrogenandphosphorusdistributioninanAlaskantussocktundraecosystem:Naturalpatternsandimplicationsfordevelopment.pp.738-753,In:D.C.AdrianoandI.L.Brisbin,Jr.(eds.),EnvironmentalChemistryandCyclingProcesses.U.S.DepartmentofEnergy,TechnicalInformationCenter.Chapin,F.S.IIIandM.C.Chapin.1980.Revegetationofanarcticdisturbedsitebynativetundraspecies.JournalofAppliedEcology17:449-456.Chapin,F.S.IIIandG.R.Shaver.1981.disturbanceofAlaskanarctictundra.ChangesinsoilpropertiesandvegetationfollowingJournalofAppliedEcology18:605-617.CommonwealthAssociatesInc.1982.Anchorage-FairbanksTransmissionIntertie,EnvironmentalAssessmentReport.PreparedwithassistancefromDOWLEngineersandKevinWaringAssoci-atesfortheAlaskaPowerAuthority.Anchorage.375pp.Conard,H.A.302pp.1979.HowtoKnowtheMossesandLiverworts.Wm.C.BrownCo.Philadelphia.[AscitedinMcKendricketal.,1982.]Cowardin,L.M.,V.Carter,F.C.GoletandE.T.LaRoe.1979.DeepwaterHabitatsoftheUnitedStates.FWS/OBS-79/31.FishandWildlifeService,BiologicalServicesProgram.ClassificationofWetlandsandU.S.DepartmentoftheInterior,Washington,DC.103pp.Crum,H.1976.AnnArbor.MossesoftheGreatLakesForest.UniversityHerbarium,UniversityofMichigan.104pp.[AscitedinMcKendricketal.,1982.]Drake,J.J.1981.Theeffectsofsurfacedustonsnowmeltrates.ArcticandA1pineResearch13:219-223.Dvorak,A.J.,etal.1978.ImpactsofCoal-FiredPowerPlantsonFish,Wildlife,andtheirHabitats.FI-JS/OBS-78/29.U.S.FishandWildlifeService,preparedbyArgonneNationalLaboratory.261pp.Everett,K.R.1980.Distributionandpropertiesofroaddustalongthenorthernportionofthehaulroad.pp.101-128,In:J.BrownandR.L.Berg(eds.),EnvironmentalEngineeringandEcologicalBaselineInvestigationsalongtheYukonRiver-PrudhoeBayHaulRoad.CRRELReport80-19.U.S.ArmyCorpsofEngineers,ColdRegionsResearchandEngineeringLabora-tory.Hanover,NH.J-94REFERENCESFORAPPENDIXJA1askaPowerAuthority.1984a.ResponsestotheDepartmentofInteriorCommentsonLicenseApplication,SusitnaHydroelectricProject.February15,1984.AlaskaPowerAuthority.1984b.ResponsestoAgencyCommentsonLicenseApplication,SusitnaHydroelectricProject.January19,1984.AlaskaRuralDevelopmentCouncil.1983.ARevegetativeGuideforAlaska.UniversityofAlaskaCooperativeExtensionService,RuralDevelopmentCouncilPublicationNo.2,A-00146.Aldrich,J.W.andC.W.Slaughter.1983.Soilerosiononsubarcticforestslopes.JournalofSoilandWaterConservation38:115-118.Bailey,R.G.1978.DescriptionoftheEcoregionsoftheUnitedStates.U.S.DepartmentofAgriculture,ForestService,IntermountainRegion.Ogden,UT.77pp.Baxter,R.M.1977.Environmenta1effectsofdamsandimpoundments.AnnualReviewofEcologyandSystematics8:255-283.Baxter,R.M.andP.Glaude.1980.EnvironmentalEffectsofDamsandImpoundmentsinCanada:ExperienceandProspects.CanadianBulletinofFisheriesandAquaticScience.Bulletin205,pp.1-34.BechtelCivilandMinerals,Inc.AssessmentReport.Vol.II.1983.ChakachamnaHydroelectricProjectInterimFeasibilityPreparedforAlaskaPowerAuthority.Anchorage.Berg,R.L.1980.Roadperformanceandassociatedinvestigations.pp.53-100, In:J.BrownandR.L.Berg(eds.),Environmenta1EngineeringandEco1ogica1BaselineInvestigationsalongtheYukonRiver-PrudhoeBayHaulRoad.CRRELReport80-19.U.S.ArmyCorpsofEngineers,ColdRegionsResearchandEngineeringLaboratory.Hanover,NH.Challinor,J.L.andP.L.Gersper.1975.Vehicleperturbationeffectsuponatundrasoil-plantsystem:II.Effectsonthechemicalregime.SoilScienceSocietyofAmericaProceedings39:689-695.Chapin,F.S.IIIandK.VanCleve.1978.NitrogenandphosphorusdistributioninanAlaskantussocktundraecosystem:Naturalpatternsandimplicationsfordevelopment.pp.738-753,In:D.C.AdrianoandI.L.Brisbin,Jr.(eds.),EnvironmentalChemistryandCyclingProcesses.U.S.DepartmentofEnergy,TechnicalInformationCenter.Chapin,F.S.IIIandM.C.Chapin.1980.Revegetationofanarcticdisturbedsitebynativetundraspecies.JournalofAppliedEcology17:449-456.Chapin,F.S.IIIandG.R.Shaver.1981.disturbanceofAlaskanarctictundra.ChangesinsoilpropertiesandvegetationfollowingJournalofAppliedEcology18:605-617.CommonwealthAssociatesInc.1982.Anchorage-FairbanksTransmissionIntertie,EnvironmentalAssessmentReport.PreparedwithassistancefromDOWLEngineersandKevinWaringAssoci-atesfortheAlaskaPowerAuthority.Anchorage.375pp.Conard,H.A.302pp.1979.HowtoKnowtheMossesandLiverworts.Wm.C.BrownCo.Philadelphia.[AscitedinMcKendricketal.,1982.]Cowardin,L.M.,V.Carter,F.C.GoletandE.T.LaRoe.1979.DeepwaterHabitatsoftheUnitedStates.FWS/OBS-79/31.FishandWildlifeService,BiologicalServicesProgram.ClassificationofWetlandsandU.S.DepartmentoftheInterior,Washington,DC.103pp.Crum,H.1976.AnnArbor.MossesoftheGreatLakesForest.UniversityHerbarium,UniversityofMichigan.104pp.[AscitedinMcKendricketal.,1982.]Drake,J.J.1981.Theeffectsofsurfacedustonsnowmeltrates.ArcticandA1pineResearch13:219-223.Dvorak,A.J.,etal.1978.ImpactsofCoal-FiredPowerPlantsonFish,Wildlife,andtheirHabitats.FI-JS/OBS-78/29.U.S.FishandWildlifeService,preparedbyArgonneNationalLaboratory.261pp.Everett,K.R.1980.Distributionandpropertiesofroaddustalongthenorthernportionofthehaulroad.pp.101-128,In:J.BrownandR.L.Berg(eds.),EnvironmentalEngineeringandEcologicalBaselineInvestigationsalongtheYukonRiver-PrudhoeBayHaulRoad.CRRELReport80-19.U.S.ArmyCorpsofEngineers,ColdRegionsResearchandEngineeringLabora-tory.Hanover,NH.
J-95Gartner,B.L.,F.S.ChapinIIIandG.R.Shaver.1983.Demographicpatternsofseedlingestab-1ishmentandgrowthofnativegraminoidsinanAlaskantundradisturbance.Journa1ofAppliedEcology20:965-980.Gersper,P.L.andJ.L.Challinor.1975.Vehicleperturbationeffectsuponatundrasoil-plantsystem:I.Effectsonmorphologicalandphysicalenvironmentalpropertiesofthesoils.SoilScienceSocietyofAmericaProceedings39:737-744.Hernandez,H.1973.Naturalplantreco1onizationofsurficia1disturbances,TuktoyaktukPeninsulaRegion,NorthwestTerritories.CanadianJournalofBotany51:2177-2196.Hinchman,R.R.,etal.1981.JimBridgermineproject.pp.13-28,In:LandReclamationProgramAnnualReport1980.ANL/LRP-12.ArgonneNationalLaboratory,Argonne,IL.Hulten,E.1968.FloraofAlaskaandNeighboringTerritories,AManualoftheVascularPlants.StanfordUniversityPress.Stanford,California.1008pp.Jassby,A.D.1980.Theenvironmentaleffectsofhydroelectricpowerdevelopment.pp.32-43,In:EnergyandtheFateofEcosystems.NationalResearchCouncil,NationalAcademyPress.Washington,D.C.pp.32-43.Johnson,L.A.1981.RevegetationandSe1ectedTerrainDisturbancesalongtheTrans-AlaskaPipeline,1975-1978.CRRELReport81-12.U.S.ArmyCorpsofEngineers,ColdRegionsResearchandEngineeringLaboratory.Hanover,N.H.115pp.Johnson,L.A.1982.Revegetationalongpipelinerights-of-wayinAlaska.PresentedatThirdSymposiumonEnvironmenta1ConcernsinRights-of-vJayManagement,15-18February1982,SanDiego,CA.Malhotra,S.S.andR.A.Blauel.1980.DiagnosisofAirPollutantandNaturalStressSymptomsonForestVegetationinWesternCanada.InformationReportNOR-X-228.EnvironmentCanada,CanadianForestryService,NorthernForestResearchCentre.Edmonton,Alberta.McKendrick,J.,W.Collins,D.Helm,J.McMullenandJ.Koranda.1982.SusitnaHydroelectricProject,EnvironmentalStudies,Subtask7.12:PlantEcologyStudies,PhaseIFinalReport.PreparedbyUniversityofAlaskaAgriculturalExperimentalStation,Palmer,fortheAlaskaPowerAuthority,Anchorage.124pp.Miller,R.M.,etal.1981.Below-groundecosystemsproject.pp.63-71,In:LandReclamationProgramAnnualReport1980.ANL/LRP-12.ArgonneNationalLaboratory.Argonne,IL.Miller,R.M.,B.A.CarnesandT.B.Moorman.1984.Factorsinfluencingsurvivalofvesicular-arbuscularmycorrhizapropagulesduringtopsoilstorage.JournalofAppliedEcology21:(inpress).Murray,D.F.1980.ThreatenedandEndangeredPlantsofAlaska.CooperativePublicationoftheU.S.DepartmentofAgriculture,ForestService,andtheU.S.DepartmentoftheInterior,BureauofLandManagement.59pp.Neiland,B.J.andL.A.Viereck.1977.Foresttypesandecosystems.pp.109-136,In:SymposiumProceedingsNorthAmericanForestLandsatLatitudesNorthof60Degrees.UniversityofAlaska.Fairbanks.R&MConsultants,Inc.1982.SusitnaHydroelectricProject,Task3-Hydrology,RiverMorphology.PreparedforAcresAmerican,Inc.Rickard,vI.E.,Jr.andJ.Brown.1974.Effectsofvehiclesonarctictundra.EnvironmentalConservation1:55-62.Selkregg,L.L.1974.AlaskaRegionalProfiles.VolumeI.SouthcentralRegion.TheUniversityofAlaska,ArcticEnvironmentalInformationandDataCenter.Anchorage.255pp.Selkregg,L.L.1977.AlaskaRegionalProfiles.VolumeVI.Alaska,ArcticEnvironmentalInformationandDataCenter.YukonRegion.TheUniversityofAnchorage.346pp.Sparrow,S.D.,F.J.WoodingandE.H.Whiting.1978.Effectsofoff-roadvehicletrafficonsoilsandvegetationintheDenaliHighwayregionofAlaska.JournalofSoilandWaterConservation33:20-27.StateofAlaska,OfficeofManagementandBudget.1983.CommentstoFERContheSusitnaProjectLicenseApplication.(November18).J-95Gartner,B.L.,F.S.ChapinIIIandG.R.Shaver.1983.Demographicpatternsofseedlingestab-1ishmentandgrowthofnativegraminoidsinanAlaskantundradisturbance.Journa1ofAppliedEcology20:965-980.Gersper,P.L.andJ.L.Challinor.1975.Vehicleperturbationeffectsuponatundrasoil-plantsystem:I.Effectsonmorphologicalandphysicalenvironmentalpropertiesofthesoils.SoilScienceSocietyofAmericaProceedings39:737-744.Hernandez,H.1973.Naturalplantreco1onizationofsurficia1disturbances,TuktoyaktukPeninsulaRegion,NorthwestTerritories.CanadianJournalofBotany51:2177-2196.Hinchman,R.R.,etal.1981.JimBridgermineproject.pp.13-28,In:LandReclamationProgramAnnualReport1980.ANL/LRP-12.ArgonneNationalLaboratory,Argonne,IL.Hulten,E.1968.FloraofAlaskaandNeighboringTerritories,AManualoftheVascularPlants.StanfordUniversityPress.Stanford,California.1008pp.Jassby,A.D.1980.Theenvironmentaleffectsofhydroelectricpowerdevelopment.pp.32-43,In:EnergyandtheFateofEcosystems.NationalResearchCouncil,NationalAcademyPress.Washington,D.C.pp.32-43.Johnson,L.A.1981.RevegetationandSe1ectedTerrainDisturbancesalongtheTrans-AlaskaPipeline,1975-1978.CRRELReport81-12.U.S.ArmyCorpsofEngineers,ColdRegionsResearchandEngineeringLaboratory.Hanover,N.H.115pp.Johnson,L.A.1982.Revegetationalongpipelinerights-of-wayinAlaska.PresentedatThirdSymposiumonEnvironmenta1ConcernsinRights-of-vJayManagement,15-18February1982,SanDiego,CA.Malhotra,S.S.andR.A.Blauel.1980.DiagnosisofAirPollutantandNaturalStressSymptomsonForestVegetationinWesternCanada.InformationReportNOR-X-228.EnvironmentCanada,CanadianForestryService,NorthernForestResearchCentre.Edmonton,Alberta.McKendrick,J.,W.Collins,D.Helm,J.McMullenandJ.Koranda.1982.SusitnaHydroelectricProject,EnvironmentalStudies,Subtask7.12:PlantEcologyStudies,PhaseIFinalReport.PreparedbyUniversityofAlaskaAgriculturalExperimentalStation,Palmer,fortheAlaskaPowerAuthority,Anchorage.124pp.Miller,R.M.,etal.1981.Below-groundecosystemsproject.pp.63-71,In:LandReclamationProgramAnnualReport1980.ANL/LRP-12.ArgonneNationalLaboratory.Argonne,IL.Miller,R.M.,B.A.CarnesandT.B.Moorman.1984.Factorsinfluencingsurvivalofvesicular-arbuscularmycorrhizapropagulesduringtopsoilstorage.JournalofAppliedEcology21:(inpress).Murray,D.F.1980.ThreatenedandEndangeredPlantsofAlaska.CooperativePublicationoftheU.S.DepartmentofAgriculture,ForestService,andtheU.S.DepartmentoftheInterior,BureauofLandManagement.59pp.Neiland,B.J.andL.A.Viereck.1977.Foresttypesandecosystems.pp.109-136,In:SymposiumProceedingsNorthAmericanForestLandsatLatitudesNorthof60Degrees.UniversityofAlaska.Fairbanks.R&MConsultants,Inc.1982.SusitnaHydroelectricProject,Task3-Hydrology,RiverMorphology.PreparedforAcresAmerican,Inc.Rickard,vI.E.,Jr.andJ.Brown.1974.Effectsofvehiclesonarctictundra.EnvironmentalConservation1:55-62.Selkregg,L.L.1974.AlaskaRegionalProfiles.VolumeI.SouthcentralRegion.TheUniversityofAlaska,ArcticEnvironmentalInformationandDataCenter.Anchorage.255pp.Selkregg,L.L.1977.AlaskaRegionalProfiles.VolumeVI.Alaska,ArcticEnvironmentalInformationandDataCenter.YukonRegion.TheUniversityofAnchorage.346pp.Sparrow,S.D.,F.J.WoodingandE.H.Whiting.1978.Effectsofoff-roadvehicletrafficonsoilsandvegetationintheDenaliHighwayregionofAlaska.JournalofSoilandWaterConservation33:20-27.StateofAlaska,OfficeofManagementandBudget.1983.CommentstoFERContheSusitnaProjectLicenseApplication.(November18).
J-96Steigers,W.D.,Jr.,D.Helm,J.G.MacCracken,J.D.McKendrickandP.V.Mayer.1983.AlaskaPowerAuthoritySusitnaHydroelectricProject,EnvironmentalStudies,Subtask7.12:1982PlantEcologyStudies,FinalReport.PreparedbyUniversityofAlaskaAgriculturalExperi-mentStation,Palmer,forLGLAlaskaResearchAssociates,Inc.Thomson,J.W.1979.LichensoftheAlaskanArcticSlope.UniversityofTorontoPress.314pp.[AscitedinMcKendricketal.,1982.]Todd,A.M.D.1982.Naturalregeneration:Policies,proceduresandpracticesinthePrinceGeorgeforestregion.pp.5-15,In:ForestRegenerationatHighLatitudes:ExperiencesfromNorthernBritishColumbia.UniversityofAlaska,FairbanksandU.S.ForestService,PacificNorthwestForestandRangeExperimentStation,Misc.ReportNo.82-1.U.S.DepartmentoftheInterior.1983.CommentstoFERContheSusitnaProjectLicenseApplica-tion.(December12).U.S.DepartmentoftheInterior,BureauofLandManagement.1983.CommentstoFERContheSusitnaProjectLicenseApplication.(November4).U.S.FishandWildlifeService.1980.Endangeredandthreatenedwildlifeandplants:Reviewofplanttaxafor1istingasendangeredorthreatenedspecies.Federa1Register45(242):82480-82569.U.S.FishandWildlifeService.1983.Endangeredandthreatenedwildlifeandplants;Supplementtoreviewofplanttaxaforlistingasendangeredorthreatenedspecies.FederalRegister48(229):53640-53670.VanCleve,K.1978.RecoveryofdisturbedtundraandtaigasurfacesinAlaska.pp.422-455,In:J.Cairns,Jr.,K.L.Dickson,andLE.Herricks(eds.),RecoveryandRestorationofDamagedEcosystems.UniversityPressofVirginia,Charlottesville,VA.VanCleve,K.andL.A.Viereck.1981.ForestsuccessioninrelationtonutrientcyclingintheborealforestofAlaska.pp.185-211,In:D.C.West,H.H.Shugart,andD.B.Botkin(eds.),ForestSuccession:ConceptsandApplication.Springer-Verlag.NewYork.VanCleve,K.,C.T.Dyrness,L.A.Viereck,J.Fox,F.S.ChapinIIIandW.Oechel.1983.TaigaecosystemsininteriorAlaska.BioScience33:39-44.Viereck,L.A.1966.Glacier,Alaska.PlantsuccessionandsoildevelopmentongraveloutwashoftheMuldrowEcologicalMonographs36:181-199.Viereck,L.A.1983.TheeffectsoffireinblackspruceecosystemsofAlaskaandnorthernCanada.pp.201-220,In:R.W.WeinandD.A.MacLean(eds.),TheRoleofFireinNorthernCircumpolarEcosystems.JohnWileyandSons,Ltd.NewYork.Viereck,L.A.,andE.L.Little,Jr.1972.AlaskaTreesandShrubs.AgricultureHandbookNo.410.U.S.DepartmentofAgriculture,ForestService.WashingtonD.C.265pp.Viereck,L.A.andC.T.Dyrness(eds.).1979.EcologicalEffectsoftheWickershamDomeFirenearFairbanks,Alaska.GeneralTechnicalReportPNW-90.U.S.DepartmentofAgriculture,ForestService,PacificNorthwestForestandRangeExperimentStation.Viereck,L.A.andC.T.Dyrness.1980.APreliminaryClassificationSystemforVegetationofAlaska.GeneralTechnicalReportPNW-I06.U.S.DepartmentofAgriculture,ForestService,PacificNorthwestForestandRangeExperimentStation.38pp.Viereck,L.A.andL.A.Schandelmeier.1980.EffectsofFireinAlaskaandAdjacentCanada- ALiteratureReview.AlaskaTechnicalReport6.BLM/AK/TR-80/06.U.S.DepartmentofInterior,BureauofLandManagement.Anchorage.124pp.Wakefield,W.C.,II.1983.MemorandumfromWilliamC.WakefieldII,SusitnaProjectManager,FederalEnergyRegulatoryCommission,toSusitnaAdvisoryCommittee,"PotentialRefinementsfortheSusitnaHydroelectricProject."(October18).Webber,P.J.andJ.D.Ives.1978.Damageandrecoveryoftund'ravegetation.Environmenta1Conservation5:171-182.vJelsh,S.L.1974.Anderson'sFloraofAlaskaandAdjacentPartsofCanada.BrighamYoungUniversityPress.Provo,UT.724pp.[AscitedinMcKendricketal.,1982.]Wolff,J.O.1978.BurningandbrowsingeffectsonwillowgrowthinInteriorAlaska.JournalofWildlifeManagement42:135-140.J-96Steigers,W.D.,Jr.,D.Helm,J.G.MacCracken,J.D.McKendrickandP.V.Mayer.1983.AlaskaPowerAuthoritySusitnaHydroelectricProject,EnvironmentalStudies,Subtask7.12:1982PlantEcologyStudies,FinalReport.PreparedbyUniversityofAlaskaAgriculturalExperi-mentStation,Palmer,forLGLAlaskaResearchAssociates,Inc.Thomson,J.W.1979.LichensoftheAlaskanArcticSlope.UniversityofTorontoPress.314pp.[AscitedinMcKendricketal.,1982.]Todd,A.M.D.1982.Naturalregeneration:Policies,proceduresandpracticesinthePrinceGeorgeforestregion.pp.5-15,In:ForestRegenerationatHighLatitudes:ExperiencesfromNorthernBritishColumbia.UniversityofAlaska,FairbanksandU.S.ForestService,PacificNorthwestForestandRangeExperimentStation,Misc.ReportNo.82-1.U.S.DepartmentoftheInterior.1983.CommentstoFERContheSusitnaProjectLicenseApplica-tion.(December12).U.S.DepartmentoftheInterior,BureauofLandManagement.1983.CommentstoFERContheSusitnaProjectLicenseApplication.(November4).U.S.FishandWildlifeService.1980.Endangeredandthreatenedwildlifeandplants:Reviewofplanttaxafor1istingasendangeredorthreatenedspecies.Federa1Register45(242):82480-82569.U.S.FishandWildlifeService.1983.Endangeredandthreatenedwildlifeandplants;Supplementtoreviewofplanttaxaforlistingasendangeredorthreatenedspecies.FederalRegister48(229):53640-53670.VanCleve,K.1978.RecoveryofdisturbedtundraandtaigasurfacesinAlaska.pp.422-455,In:J.Cairns,Jr.,K.L.Dickson,andLE.Herricks(eds.),RecoveryandRestorationofDamagedEcosystems.UniversityPressofVirginia,Charlottesville,VA.VanCleve,K.andL.A.Viereck.1981.ForestsuccessioninrelationtonutrientcyclingintheborealforestofAlaska.pp.185-211,In:D.C.West,H.H.Shugart,andD.B.Botkin(eds.),ForestSuccession:ConceptsandApplication.Springer-Verlag.NewYork.VanCleve,K.,C.T.Dyrness,L.A.Viereck,J.Fox,F.S.ChapinIIIandW.Oechel.1983.TaigaecosystemsininteriorAlaska.BioScience33:39-44.Viereck,L.A.1966.Glacier,Alaska.PlantsuccessionandsoildevelopmentongraveloutwashoftheMuldrowEcologicalMonographs36:181-199.Viereck,L.A.1983.TheeffectsoffireinblackspruceecosystemsofAlaskaandnorthernCanada.pp.201-220,In:R.W.WeinandD.A.MacLean(eds.),TheRoleofFireinNorthernCircumpolarEcosystems.JohnWileyandSons,Ltd.NewYork.Viereck,L.A.,andE.L.Little,Jr.1972.AlaskaTreesandShrubs.AgricultureHandbookNo.410.U.S.DepartmentofAgriculture,ForestService.WashingtonD.C.265pp.Viereck,L.A.andC.T.Dyrness(eds.).1979.EcologicalEffectsoftheWickershamDomeFirenearFairbanks,Alaska.GeneralTechnicalReportPNW-90.U.S.DepartmentofAgriculture,ForestService,PacificNorthwestForestandRangeExperimentStation.Viereck,L.A.andC.T.Dyrness.1980.APreliminaryClassificationSystemforVegetationofAlaska.GeneralTechnicalReportPNW-I06.U.S.DepartmentofAgriculture,ForestService,PacificNorthwestForestandRangeExperimentStation.38pp.Viereck,L.A.andL.A.Schandelmeier.1980.EffectsofFireinAlaskaandAdjacentCanada- ALiteratureReview.AlaskaTechnicalReport6.BLM/AK/TR-80/06.U.S.DepartmentofInterior,BureauofLandManagement.Anchorage.124pp.Wakefield,W.C.,II.1983.MemorandumfromWilliamC.WakefieldII,SusitnaProjectManager,FederalEnergyRegulatoryCommission,toSusitnaAdvisoryCommittee,"PotentialRefinementsfortheSusitnaHydroelectricProject."(October18).Webber,P.J.andJ.D.Ives.1978.Damageandrecoveryoftund'ravegetation.Environmenta1Conservation5:171-182.vJelsh,S.L.1974.Anderson'sFloraofAlaskaandAdjacentPartsofCanada.BrighamYoungUniversityPress.Provo,UT.724pp.[AscitedinMcKendricketal.,1982.]Wolff,J.O.1978.BurningandbrowsingeffectsonwillowgrowthinInteriorAlaska.JournalofWildlifeManagement42:135-140.
J-97Wolff,J.0.,andJ.C.Zasada.1979.MoosehabitatandforestsuccessionontheTananaRiverfloodplainandYukon-Tananaupland.pp.213-244In:ProceedingsofNorthAmericanMooseConferenceandWorkshopNumber15.Soldotna-Kenai,AD.Yarie,J.1981.Forestfirecyclesandlifetables:AcasestudyfromInteriorAlaska.CanadianJournalofForestryResearch11:554-562.J-97Wolff,J.0.,andJ.C.Zasada.1979.MoosehabitatandforestsuccessionontheTananaRiverfloodplainandYukon-Tananaupland.pp.213-244In:ProceedingsofNorthAmericanMooseConferenceandWorkshopNumber15.Soldotna-Kenai,AD.Yarie,J.1981.Forestfirecyclesandlifetables:AcasestudyfromInteriorAlaska.CanadianJournalofForestryResearch11:554-562.
DRAFTENVIRONMENTALIMPACTSTATEMENTSUSITNAHYDROELECTRICPROJECT,FERCNO.7114APPENDIXKTERRESTRIALWILDLIFERESOURCESPreparedbyLarsF.SohoItArgonneNationalLaboratoryK-1DRAFTENVIRONMENTALIMPACTSTATEMENTSUSITNAHYDROELECTRICPROJECT,FERCNO.7114APPENDIXKTERRESTRIALWILDLIFERESOURCESPreparedbyLarsF.SohoItArgonneNationalLaboratoryK-1
K-3APPENDIXK.TERRESTRIALWILDLIFERESOURCESK.1BACKGROUNDThediversityofplantassociationswithinSouthcentralandInteriorAlaska(seeAppendixJ)provideshabitatforalargearrayofanimalpopulations.Thestudyareasupportspopulationsofbiggame(e.g.,moose,Dall'ssheep,barren-groundcaribou,blackandbrownbear),furbearers(e.g.,wolverine,wolf,fox,beaver,marten),migratorywaterbirds,raptors,andnumerousothersmallmammals,birds,andinvertebrates(Selkregg,1974,1977;AlaskaDept.ofFishandGame,1973,1978).Reptilesandamphibiansaregenerallynotfoundintheprojectareabecauseof theextremelatitudes,althoughthewoodfrogmaybepresent(Hodge,1977).Thecomplexinteractionsofanimalpopulationswithinsubarcticecosystemsmakeitdifficulttoquantifytheimportanceofanygivenpopulationofwildlife.Thenumberofpopulationsfoundinsubarcticecosystemsmakesitnecessarytoplaceprioritiesontheirconsideration,thusempha-sizingsometaxaattheexpenseofdetailedconsiderationofothertaxa.Thisapproachhasbeenreflectedintheapplicant'sExhibitE*(Vol.6A,Chap.3,pp.E-3-294toE-3-296),aswellasintheU.S.FishandWildlifeService's(1983a)identificationof"mitigationevaluationspecies".Ingeneral,thedegreeofemphasisongivenwildlifetaxahasbeendirectlyproportionaltotheanticipatedmagnitudeofimpactandextentoftheirusebyhumansintheprojectarea(TableK-1).Hence,mooseandotherbiggamespeciesareemphasizedthroughoutthefollowingdiscussions,andfurbearersaregivenlessattention.Inaddition,emphasisisplacedoncertaintaxabecauseoftheirhighnationalinterest,e.g.,baldandgoldeneagles,trumpeterswans,andotherwater-birds.Smallmammalsandbirdsaretreatedlessintensivelybecausetheyarenotgenerallyusedbyhumansintheprojectareaanddetailedecologicaldataarelessavailable.Invertebratepopulationsarenottreatedbecauseofthepaucityofdataavailabletorelateprojectimpactstothedynamicsandstructureofthesepopulations.Atthistime,notaxaofsmallmammals,birds,orinvertebratesareknowntohavesignificantlybroadecologicalvaluetosubarcticecosystemsthatmightbeimpactedbytheproposedproject.Inthesucceedingdiscussions,emphasisisplaceduponthelocationofwildlifeconcentrationsandthedistributionofimportanthabitatinrelationtoprojectfeatures.Numericalestimatesofsomewildlifepopulationsareavailablefortheprojectarea.However,theseestimatesarebaseduponnecessarilylimitedsamplingeffortsandarecharacterizedbybroadrangesofstatis-ticaluncertainty.Therefore,principalemphasisisplaceduponhabitatfeaturesthatmightbealteredbytheconstructionandoperationoftheproposedproject.Thesefeaturesincludeareasofwinterforageandshelter,breedingandrearingareas,migratorypathways,andminerallicks.Thisapproachisinkeepingwithcurrentphilosophiesinregardtotheassessmentofimpactstoanddevelopmentofmitigationprogramsforwildlifepopulations(Schweitzeretal.,1978;U.S.FishandWildlifeService1980, 1981,1983a;Mautz,1980;Wolfe,1980;U.S.Dept.ofEnergy,1982).InthecourseofpreparingitsapplicationtotheFederalEnergyRegulatoryCommission,theApplicanthassponsoredandcontinuestosponsoraseriesofstudiesofthebiologyofwildlifeintheSusitnaRiverBasin(ExhibitE,Vol.6A,Chap.3,Sec.4).TheprincipalorganizationcarryingoutthesestudieswastheAlaskaDepartmentofFishandGame(ADFG).Eachindividualresearcherdefinedastudyareabaseduponthetaxaunderstudyandthescopeofthestudy.Thediscussionhereinvisbasedupontheresultsofthosestudies,aswellasuponotherstudiesinSouthcentralAlaskaandcurrentknowledgeofthebiologyofrelevantwildlifespecies.Useoftheterm"studyarea"inthisana1ysisreferstotheareastudiedbytheresearchersunderdiscussion,andthegeographicalextentofthatareadiffersamongstudies.Asusedinthisanalysis,theterm"projectarea"isusedtodesignatethatareaadjacenttoprojectfeaturessuchasdams,reservoirs,accessroutes,orpowertransmissionlines.Inthediscussionsthatfollow,nomenclaturefollowsHall(1981)formammaliantaxaandtheAmericanOrnithologists'Union(1975)foraviantaxa.*Throughoutthisdocument,referencestospecific"Exhibits"aretotheexhibitssubmittedtoFERCaspartofAlaskaPowerAuthority'sSusitnaHydroelectricProjectLicenseApplication.Referencestospecific"Appendices"(App.)aretotheappendicesprovidedinVolumes2through7ofthisDraftEnvironmentalImpactStatement.K-3APPENDIXK.TERRESTRIALWILDLIFERESOURCESK.1BACKGROUNDThediversityofplantassociationswithinSouthcentralandInteriorAlaska(seeAppendixJ)provideshabitatforalargearrayofanimalpopulations.Thestudyareasupportspopulationsofbiggame(e.g.,moose,Dall'ssheep,barren-groundcaribou,blackandbrownbear),furbearers(e.g.,wolverine,wolf,fox,beaver,marten),migratorywaterbirds,raptors,andnumerousothersmallmammals,birds,andinvertebrates(Selkregg,1974,1977;AlaskaDept.ofFishandGame,1973,1978).Reptilesandamphibiansaregenerallynotfoundintheprojectareabecauseof theextremelatitudes,althoughthewoodfrogmaybepresent(Hodge,1977).Thecomplexinteractionsofanimalpopulationswithinsubarcticecosystemsmakeitdifficulttoquantifytheimportanceofanygivenpopulationofwildlife.Thenumberofpopulationsfoundinsubarcticecosystemsmakesitnecessarytoplaceprioritiesontheirconsideration,thusempha-sizingsometaxaattheexpenseofdetailedconsiderationofothertaxa.Thisapproachhasbeenreflectedintheapplicant'sExhibitE*(Vol.6A,Chap.3,pp.E-3-294toE-3-296),aswellasintheU.S.FishandWildlifeService's(1983a)identificationof"mitigationevaluationspecies".Ingeneral,thedegreeofemphasisongivenwildlifetaxahasbeendirectlyproportionaltotheanticipatedmagnitudeofimpactandextentoftheirusebyhumansintheprojectarea(TableK-1).Hence,mooseandotherbiggamespeciesareemphasizedthroughoutthefollowingdiscussions,andfurbearersaregivenlessattention.Inaddition,emphasisisplacedoncertaintaxabecauseoftheirhighnationalinterest,e.g.,baldandgoldeneagles,trumpeterswans,andotherwater-birds.Smallmammalsandbirdsaretreatedlessintensivelybecausetheyarenotgenerallyusedbyhumansintheprojectareaanddetailedecologicaldataarelessavailable.Invertebratepopulationsarenottreatedbecauseofthepaucityofdataavailabletorelateprojectimpactstothedynamicsandstructureofthesepopulations.Atthistime,notaxaofsmallmammals,birds,orinvertebratesareknowntohavesignificantlybroadecologicalvaluetosubarcticecosystemsthatmightbeimpactedbytheproposedproject.Inthesucceedingdiscussions,emphasisisplaceduponthelocationofwildlifeconcentrationsandthedistributionofimportanthabitatinrelationtoprojectfeatures.Numericalestimatesofsomewildlifepopulationsareavailablefortheprojectarea.However,theseestimatesarebaseduponnecessarilylimitedsamplingeffortsandarecharacterizedbybroadrangesofstatis-ticaluncertainty.Therefore,principalemphasisisplaceduponhabitatfeaturesthatmightbealteredbytheconstructionandoperationoftheproposedproject.Thesefeaturesincludeareasofwinterforageandshelter,breedingandrearingareas,migratorypathways,andminerallicks.Thisapproachisinkeepingwithcurrentphilosophiesinregardtotheassessmentofimpactstoanddevelopmentofmitigationprogramsforwildlifepopulations(Schweitzeretal.,1978;U.S.FishandWildlifeService1980, 1981,1983a;Mautz,1980;Wolfe,1980;U.S.Dept.ofEnergy,1982).InthecourseofpreparingitsapplicationtotheFederalEnergyRegulatoryCommission,theApplicanthassponsoredandcontinuestosponsoraseriesofstudiesofthebiologyofwildlifeintheSusitnaRiverBasin(ExhibitE,Vol.6A,Chap.3,Sec.4).TheprincipalorganizationcarryingoutthesestudieswastheAlaskaDepartmentofFishandGame(ADFG).Eachindividualresearcherdefinedastudyareabaseduponthetaxaunderstudyandthescopeofthestudy.Thediscussionhereinvisbasedupontheresultsofthosestudies,aswellasuponotherstudiesinSouthcentralAlaskaandcurrentknowledgeofthebiologyofrelevantwildlifespecies.Useoftheterm"studyarea"inthisana1ysisreferstotheareastudiedbytheresearchersunderdiscussion,andthegeographicalextentofthatareadiffersamongstudies.Asusedinthisanalysis,theterm"projectarea"isusedtodesignatethatareaadjacenttoprojectfeaturessuchasdams,reservoirs,accessroutes,orpowertransmissionlines.Inthediscussionsthatfollow,nomenclaturefollowsHall(1981)formammaliantaxaandtheAmericanOrnithologists'Union(1975)foraviantaxa.*Throughoutthisdocument,referencestospecific"Exhibits"aretotheexhibitssubmittedtoFERCaspartofAlaskaPowerAuthority'sSusitnaHydroelectricProjectLicenseApplication.Referencestospecific"Appendices"(App.)aretotheappendicesprovidedinVolumes2through7ofthisDraftEnvironmentalImpactStatement.
Table K-1.Taxa of Wildlife Considered in Assessment of Impacts from Susitna Hydroelectric Project
Colloquial Namet 1
Moose*t 2
Alaskan barren-ground
caribou*
Dall's sheep*
Brown bear*
Black bear*
Beaver*
Pine marten*
Gray wolf*
Other furbearers
Other mammals
Golden eagle*
Bald eagle
American peregrine
falcon
Other raptors
Trumpeter swan*
Other waterfowl and
waterbirds
Other birds
Scientific Namet 1
Alces alces----
Rangifer tarandus granti
Ovi s dall i
Ursus arctos
Ursus americanus
Castor canadensis
Martes americana
Canis lupus
Orders Carnivora and
Rodentia,in part
Aquila chrysaetos
Haliaeetus leucocephalus
Falco peregrinus anatum
Order Falconiformes,in part
Olor buccinator
Reason for Consideration
Major big-game species in study region
Big-game species;high public interest;
unique to Alaska in United States
Big-game species;unique to Alaska in
United States
Big-game species;high national interest;
nationally scarce
Big-game species
Important furbearer
Important furbearer
Furbearer;major predator on game species;
high national interest;nationally scarce
Harvested on limited scale in project area
Components of subarctic ecosystems
High national interest
High national interest;nationally scarce
Endangered species
High national interest
High national interest;nationally scarce
High national interest
Components of subarctic ecosystems
;;>;;
I
-i'>
t 1 Mammalian nomenclature follows Hall (1981);avian nomenclature follows American Ornithologists'Union
(1975).
t 2 Taxa designated by an asterisk (*)are nominated by U.S.Fish and Wildlife Service (1983a)as "mitigation
evaluation species"for the Susitna Hydroelectric Project.
Table K-1.Taxa of Wildlife Considered in Assessment of Impacts from Susitna Hydroelectric Project
Colloquial Namet 1
Moose*t 2
Alaskan barren-ground
caribou*
Dall's sheep*
Brown bear*
Black bear*
Beaver*
Pine marten*
Gray wolf*
Other furbearers
Other mammals
Golden eagle*
Bald eagle
American peregrine
falcon
Other raptors
Trumpeter swan*
Other waterfowl and
waterbirds
Other birds
Scientific Namet 1
Alces alces
Rangifer tarandus granti
Ovi s dall i
Ursus arctos
Ursus americanus
Castor canadensis
Martes americana
Canis lUpus
Orders Carnivora and
Rodentia,in part
Aquila chrysaetos
Haliaeetus leucocephalus
Falco peregrinus anatum
Order Falconiformes,in part
Olor buccinator
Reason for Consideration
Major big-game species in study region
Big-game species;high public interest;
unique to Alaska in United States
Big-game species;unique to Alaska in
United States
Big-game species;high national interest;
nationally scarce
Big-game species
Important furbearer
Important furbearer
Furbearer;major predator on game species;
high national interest;nationally scarce
Harvested on limited scale in project area
Components of sUbarctic ecosystems
High national interest
High national interest;nationally scarce
Endangered species
High national interest
High national interest;nationally scarce
High national interest
Components of sUbarctic ecosystems
t 1 Mammalian nomenclature follows Hall (1981);avian nomenclature follows American Ornithologists'Union
(1975).
t 2 Taxa designated by an asterisk (*)are nominated by U.S.Fish and Wildlife Service (1983a)as "mitigation
evaluation species"for the Susitna Hydroelectric Project.
K-5K.2AFFECTEDENVIRONMENTK.2.1ProposedProjectK.2.1.1UpperandMiddleSusitnaRiverBasinK.2.1.1.1MooseMoose(Alcesalces)aretheprincipalspeciesofbiggamethroughouttheSusitnaBasin(Selkregg,1974;U.S.Dept.ofAgriculture,1981).Thislargestofthedeerfamilyisacharacteristicinhabitantoftheborealornorthernforests(Franzmann,1980;Coady1982).Mooseareprimarilybrowsers,feedingonshrubsandtrees,especiallyduringthewintermonthswhenherbaceousforageisgenerallyunavai1ab1e.Duringthesummermonths,mooseforageincludesgrasses,forbs,emergentaquatics,andmosses.Peek(1974)concludedthatwillowsformedthechiefcomponentoftheAlaskanmoosediet,althoughdietvarieswithavailabilityofforagespecies.Standsofearlystages(lessthan25years)inborealforestsuccessionareconsideredmajorsourcesofwinterbrowseforAlaskanmoosepopulations(WolffandZasada,1979;Franzmann,1980;Coady1982).CONDITIONOFPOPULATIONBaseduponastratifiedcensusingsurveyconductedinNovember1980byBallardetal.(1982a),theApplicantestimatedthatabout4,000mooseoccurredwithinthe2,200squaremiles(mi2)[5,700squareki1ometers(km2) ]thatweresurveyedaroundtheproposedimpoundmentarea(ExhibitE,Vol.6A,Chap.3p.E-3-311).Ballardetal.(1983a)estimatedthatover11,000mooseinhabitedabout5,400mi2(14,000km2)surroundingtheprojectarea.Historicallythemoosepopulationinthebasinhasbeenonthedeclinesince1962,withindicesofproductivityreach-ingalowaround1975(BishopandRausch,1974;Ballardetal.1982a,1983a).Productivityappearstohavestabilizedorevenincreasedwithinthecensusareassince1975.BishopandRausch(1974)suggestedthatmoosepopulationsizewaslimitedbyacombinationofpredationandhuntingintheNelchina-UpperSusitnaBasin,theADFG'sGameManagementUnit13,whichincludestheupperandmiddleSusitnaBasin.Ballardandcoworkers(Ballardetal.,1981a,1982b)indicatedthatlowproductivityofthemoosepopulationcurrentlyisassociatedwith101'/calfsurvival(45%to55%)priortotheonsetofwinter.Predationappearstobethemajorfactorinmoosecalfmortality.BishopandRausch(1974)suggestedthatwolfweretheprincipalpredatorsonmooseintheNelchina-UpperSusitnaBasin.ThisappearstobetrueelsewhereinAlaska(Gasawayetal.,1983).However,recentexperimentalreductionsinbrownbearpopulationsindicatethat,currently,brownbeararetheprincipallimitingpredatorsuponmooseintheNelchina-UpperSusitnaBasin(Ballardetal.,1981b;Gasawayetal.,1983).Blackbearandwolfalsopreyonmoosetoamorelimitedextent.AlthoughdataofBallardetal.(l982a)indicatethatpredationmaybeanimportantfactorinpost-partumsurvival,itdoesappearlikelythattheseverityofwinteralsoisafactoraffect-ingparturitionandpost-partumsurvival,aswellasadultnutritionandsurvival(Franzmann,1980;Coady,1982).Nutritionalstressandmortalitytendtobecorrelatedwithwinterseverity,especiallyinrelationtosnowdepth.Deepsnowbothreducestheavailabilityofforageandincreasestheenergycostsofmovementandfeeding.Thus,availabilityofoverwinteringforagecanlimitthesizeofungulatepopulations,includingmoose(Coady,1974,1982).Populationlimitsimposedbywinterforageavailabilityareoftentakenasdefiningthecarryingcapacityforungulatesonagivenrange(Mautz,1980).AlthoughmoosepopulationsintheSusitnaBasinapparentlyareregulatedatalevelbelowcarry-ingcapacitybypredationandhunting(BishopandRausch,1974;Ballardetal.,1981a,b,1982a,b,1983a;Gasawayetal.,1983),potentialcarryingcapacitywithinthebasincouldbeaffectedbytheproposedproject.Baseduponpreliminaryestimatesofforageavailability(ExhibitE,Vol.6B,Chap.3,Tablel.3.92)andamooseforageintakerateof11lb(5kg)perday(GasawayandCoady,1974),the6,300-mi2(16,000-km2)SusitnaBasinaboveGoldCreekhaspotentialwintercarryingcapacityforabout12,100moose(TableK-2).Itwasassumedforthisestimatethatseverewinterconditionspersistfor90days.Thisdurationisbaseduponwhenmooseinthebasinandelsewheretendtomoveintowinterconcentrations(Telfer,1970;Peeketal.,1971;Ba11ardeta1.,1982a,1983a).Wereseverewintersto1astlonger,potentia1carryingcapacitywouldbeproportionatelylower.Inaddition,thecarrying-capacityestimateswerebasedontheassumptionthatwoodlandhabitatswouldprovidethemajorityofforageduringtheseverewinter(seediscussionbelowonwinterhabitatuse).Inmilderwintersandwhereforageismorereadilyavailable,potentialcarryingcapacitywouldbehigherforagivenyear.DISTRIBUTIONANDHABITATUSEMoosearewidespreadovertheupperandmiddleSusitnaBasin,rangingacrossallhabitattypesintheprojectarea.Ballardetal.(l982a)havedefined13subpopulationsofmooseinthevicinityoftheproject.DefinitionofthesesubpopulationswasbasedupongeneralpatternsofK-5K.2AFFECTEDENVIRONMENTK.2.1ProposedProjectK.2.1.1UpperandMiddleSusitnaRiverBasinK.2.1.1.1MooseMoose(Alcesalces)aretheprincipalspeciesofbiggamethroughouttheSusitnaBasin(Selkregg,1974;U.S.Dept.ofAgriculture,1981).Thislargestofthedeerfamilyisacharacteristicinhabitantoftheborealornorthernforests(Franzmann,1980;Coady1982).Mooseareprimarilybrowsers,feedingonshrubsandtrees,especiallyduringthewintermonthswhenherbaceousforageisgenerallyunavai1ab1e.Duringthesummermonths,mooseforageincludesgrasses,forbs,emergentaquatics,andmosses.Peek(1974)concludedthatwillowsformedthechiefcomponentoftheAlaskanmoosediet,althoughdietvarieswithavailabilityofforagespecies.Standsofearlystages(lessthan25years)inborealforestsuccessionareconsideredmajorsourcesofwinterbrowseforAlaskanmoosepopulations(WolffandZasada,1979;Franzmann,1980;Coady1982).CONDITIONOFPOPULATIONBaseduponastratifiedcensusingsurveyconductedinNovember1980byBallardetal.(1982a),theApplicantestimatedthatabout4,000mooseoccurredwithinthe2,200squaremiles(mi2)[5,700squareki1ometers(km2) ]thatweresurveyedaroundtheproposedimpoundmentarea(ExhibitE,Vol.6A,Chap.3p.E-3-311).Ballardetal.(1983a)estimatedthatover11,000mooseinhabitedabout5,400mi2(14,000km2)surroundingtheprojectarea.Historicallythemoosepopulationinthebasinhasbeenonthedeclinesince1962,withindicesofproductivityreach-ingalowaround1975(BishopandRausch,1974;Ballardetal.1982a,1983a).Productivityappearstohavestabilizedorevenincreasedwithinthecensusareassince1975.BishopandRausch(1974)suggestedthatmoosepopulationsizewaslimitedbyacombinationofpredationandhuntingintheNelchina-UpperSusitnaBasin,theADFG'sGameManagementUnit13,whichincludestheupperandmiddleSusitnaBasin.Ballardandcoworkers(Ballardetal.,1981a,1982b)indicatedthatlowproductivityofthemoosepopulationcurrentlyisassociatedwith101'/calfsurvival(45%to55%)priortotheonsetofwinter.Predationappearstobethemajorfactorinmoosecalfmortality.BishopandRausch(1974)suggestedthatwolfweretheprincipalpredatorsonmooseintheNelchina-UpperSusitnaBasin.ThisappearstobetrueelsewhereinAlaska(Gasawayetal.,1983).However,recentexperimentalreductionsinbrownbearpopulationsindicatethat,currently,brownbeararetheprincipallimitingpredatorsuponmooseintheNelchina-UpperSusitnaBasin(Ballardetal.,1981b;Gasawayetal.,1983).Blackbearandwolfalsopreyonmoosetoamorelimitedextent.AlthoughdataofBallardetal.(l982a)indicatethatpredationmaybeanimportantfactorinpost-partumsurvival,itdoesappearlikelythattheseverityofwinteralsoisafactoraffect-ingparturitionandpost-partumsurvival,aswellasadultnutritionandsurvival(Franzmann,1980;Coady,1982).Nutritionalstressandmortalitytendtobecorrelatedwithwinterseverity,especiallyinrelationtosnowdepth.Deepsnowbothreducestheavailabilityofforageandincreasestheenergycostsofmovementandfeeding.Thus,availabilityofoverwinteringforagecanlimitthesizeofungulatepopulations,includingmoose(Coady,1974,1982).Populationlimitsimposedbywinterforageavailabilityareoftentakenasdefiningthecarryingcapacityforungulatesonagivenrange(Mautz,1980).AlthoughmoosepopulationsintheSusitnaBasinapparentlyareregulatedatalevelbelowcarry-ingcapacitybypredationandhunting(BishopandRausch,1974;Ballardetal.,1981a,b,1982a,b,1983a;Gasawayetal.,1983),potentialcarryingcapacitywithinthebasincouldbeaffectedbytheproposedproject.Baseduponpreliminaryestimatesofforageavailability(ExhibitE,Vol.6B,Chap.3,Tablel.3.92)andamooseforageintakerateof11lb(5kg)perday(GasawayandCoady,1974),the6,300-mi2(16,000-km2)SusitnaBasinaboveGoldCreekhaspotentialwintercarryingcapacityforabout12,100moose(TableK-2).Itwasassumedforthisestimatethatseverewinterconditionspersistfor90days.Thisdurationisbaseduponwhenmooseinthebasinandelsewheretendtomoveintowinterconcentrations(Telfer,1970;Peeketal.,1971;Ba11ardeta1.,1982a,1983a).Wereseverewintersto1astlonger,potentia1carryingcapacitywouldbeproportionatelylower.Inaddition,thecarrying-capacityestimateswerebasedontheassumptionthatwoodlandhabitatswouldprovidethemajorityofforageduringtheseverewinter(seediscussionbelowonwinterhabitatuse).Inmilderwintersandwhereforageismorereadilyavailable,potentialcarryingcapacitywouldbehigherforagivenyear.DISTRIBUTIONANDHABITATUSEMoosearewidespreadovertheupperandmiddleSusitnaBasin,rangingacrossallhabitattypesintheprojectarea.Ballardetal.(l982a)havedefined13subpopulationsofmooseinthevicinityoftheproject.Definitionofthesesubpopulationswasbasedupongeneralpatternsof
K-6TableK-2.EstimatedPotentialWinterCarryingCapacityforMooseintheProjectedWatanaImpoundmentZoneandSusitnaRiverBasinUpstreamofGoldCreekHabitatTypeImpoundmentZoneBasinPotentialWinterCarryingCapacityt1ImpoundmentZoneBasinOpenconiferousforestt2Woodlandconiferousforestt3Openmixedforestt4Othert5Totals152052060460730905,0206,300260nono4806,4004,2001,80012,400t1Numberofmoose;baseduponalimitingharshwinterperiodof90days.t2Carryingcapacityofabout240moose-days/100acres(ExhibitE,Vol.6B,Chap.3,TableE.3.92).t3Carryingcapacityofabout80moose-days/100acres(ExhibitE,Vol.6B,Chap.3,TableE.3.92).t4Carryingcapacityofabout270moose-days/100acres(ExhibitE,Vol.6B,Chap.3,TableE.3.92).t5Thelimitingconditionsof theharshwinterarebasedontheassumptionthatopenhabitatsarenotavailabletomooseduetoheavysnow.Conversion:Toconvertsquaremilestosquarekilometers,multiplyby2.59.moosemovementandpopulationconcentrations(Figs.K-1andK-2).Ingeneral,moosearemostabundantinthisareabetweenDevilandDeadmancreeksandeastofWatanaandKosinacreeks(Fig.K-2).Moosetendtouseabroaderarrayofhabitatsduringsummerthanduringwinter(Coady,1982).Seasonalmigrationsresultindifferentialuseofhabitatsandareaswithinthebasinduringdifferentperiodsof themooselifehistory.CalvingintheupperandmiddleSusitnaRiverBasinoccurredgenerallyinMayandJuneduringtheyearsfrom1977to1981(Ballardetal.,1982a,1983a).Duringcalving,moosetendedtoconcentratealongthemajordrainagesinthebasin(Fig.K-3).CalvingoccurredthroughouttheproposedimpoundmentandadjacentareasfromDevilCreektothemouthoftheOshetnaRiver.Duringcalving,moosewereobservedatlowerelevations[ca.2,600feet(ft),or790meters(m),MeanSeaLevel(MSL)]thanduringotherstagesofthelifehistory.Atthisstage,moosewereprincipallyinareasdominatedbysparsetomedium-dense,medium-heightspruceanduplandbrush/willowhabitattypes(ExhibitE,Vol.6B,Chap.3,TablesE.3.87andE.3.88).Theseareasprovidehigh-qualityforageintheearlyspringastemperaturesriseandthesnowsrecede.Thisisparticularlyimportantafterseverewinterswhennutritionalbalancemustberecoveredquicklyforsuccessfulparturitionandearlyrearing(Coady,1982).Duringthepost-partum,rearingseason(JunethroughAugust)moosewereobservedatsomewhathigherelevations[2,750ft(850m)MSL]thaninthespring,mostfrequentlyinareasdominatedbysparsetomedium-densesprucehabitats(Ballardetal.,1982a,1983a).Duringsummer,moosetendedtobemoredispersedandusedagreatervarietyofhabitatsthaninspring.Duringfallruttingorbreedingseason(SeptembertoOctober),moosetendedtocongregateinuplandareasremovedfromtheprojectedareaofinundationandprojectfeaturelocation(Fig.K-4).Higherelevationswereusedatthistime[averagingnear3,000ft(900m)MSL],andmoosewereobservedinuplandbrush/willowhabitat25%and43%ofthetimeinSeptemberandOctober,respectively(ExhibitE,Vol.6B,Chap.3,TablesE.3.87andE.3.88).Useofsprucehabitatwasconcomitantlyreducedinfall.Duringthewintersof1977-1981moosetendedtoremainathigherelevations,2,800to3,000ft"(850to900m)MSL(ExhibitE,Vol.6B,Chap.3,TableE.3.87).Useofuplandbrush/willowhabitatremainedhigh;30%to45%ofmooseobservationsoccurredinthishabitatNovemberthroughFebruary(ExhibitE,Vol.6B,Chap.3,TableE.3.88).From1977to1981,fewmoosewereobservedinthebottomlandsoftheSusitnaRiver(Ballardetal.,1982a).Thisisincontrasttoearlierstudieswhenlowlandswereusedduringwintermonths.ThedifferencesmayberelatedtotheK-6TableK-2.EstimatedPotentialWinterCarryingCapacityforMooseintheProjectedWatanaImpoundmentZoneandSusitnaRiverBasinUpstreamofGoldCreekHabitatTypeImpoundmentZoneBasinPotentialWinterCarryingCapacityt1ImpoundmentZoneBasinOpenconiferousforestt2Woodlandconiferousforestt3Openmixedforestt4Othert5Totals152052060460730905,0206,300260nono4806,4004,2001,80012,400t1Numberofmoose;baseduponalimitingharshwinterperiodof90days.t2Carryingcapacityofabout240moose-days/100acres(ExhibitE,Vol.6B,Chap.3,TableE.3.92).t3Carryingcapacityofabout80moose-days/100acres(ExhibitE,Vol.6B,Chap.3,TableE.3.92).t4Carryingcapacityofabout270moose-days/100acres(ExhibitE,Vol.6B,Chap.3,TableE.3.92).t5Thelimitingconditionsof theharshwinterarebasedontheassumptionthatopenhabitatsarenotavailabletomooseduetoheavysnow.Conversion:Toconvertsquaremilestosquarekilometers,multiplyby2.59.moosemovementandpopulationconcentrations(Figs.K-1andK-2).Ingeneral,moosearemostabundantinthisareabetweenDevilandDeadmancreeksandeastofWatanaandKosinacreeks(Fig.K-2).Moosetendtouseabroaderarrayofhabitatsduringsummerthanduringwinter(Coady,1982).Seasonalmigrationsresultindifferentialuseofhabitatsandareaswithinthebasinduringdifferentperiodsof themooselifehistory.CalvingintheupperandmiddleSusitnaRiverBasinoccurredgenerallyinMayandJuneduringtheyearsfrom1977to1981(Ballardetal.,1982a,1983a).Duringcalving,moosetendedtoconcentratealongthemajordrainagesinthebasin(Fig.K-3).CalvingoccurredthroughouttheproposedimpoundmentandadjacentareasfromDevilCreektothemouthoftheOshetnaRiver.Duringcalving,moosewereobservedatlowerelevations[ca.2,600feet(ft),or790meters(m),MeanSeaLevel(MSL)]thanduringotherstagesofthelifehistory.Atthisstage,moosewereprincipallyinareasdominatedbysparsetomedium-dense,medium-heightspruceanduplandbrush/willowhabitattypes(ExhibitE,Vol.6B,Chap.3,TablesE.3.87andE.3.88).Theseareasprovidehigh-qualityforageintheearlyspringastemperaturesriseandthesnowsrecede.Thisisparticularlyimportantafterseverewinterswhennutritionalbalancemustberecoveredquicklyforsuccessfulparturitionandearlyrearing(Coady,1982).Duringthepost-partum,rearingseason(JunethroughAugust)moosewereobservedatsomewhathigherelevations[2,750ft(850m)MSL]thaninthespring,mostfrequentlyinareasdominatedbysparsetomedium-densesprucehabitats(Ballardetal.,1982a,1983a).Duringsummer,moosetendedtobemoredispersedandusedagreatervarietyofhabitatsthaninspring.Duringfallruttingorbreedingseason(SeptembertoOctober),moosetendedtocongregateinuplandareasremovedfromtheprojectedareaofinundationandprojectfeaturelocation(Fig.K-4).Higherelevationswereusedatthistime[averagingnear3,000ft(900m)MSL],andmoosewereobservedinuplandbrush/willowhabitat25%and43%ofthetimeinSeptemberandOctober,respectively(ExhibitE,Vol.6B,Chap.3,TablesE.3.87andE.3.88).Useofsprucehabitatwasconcomitantlyreducedinfall.Duringthewintersof1977-1981moosetendedtoremainathigherelevations,2,800to3,000ft"(850to900m)MSL(ExhibitE,Vol.6B,Chap.3,TableE.3.87).Useofuplandbrush/willowhabitatremainedhigh;30%to45%ofmooseobservationsoccurredinthishabitatNovemberthroughFebruary(ExhibitE,Vol.6B,Chap.3,TableE.3.88).From1977to1981,fewmoosewereobservedinthebottomlandsoftheSusitnaRiver(Ballardetal.,1982a).Thisisincontrasttoearlierstudieswhenlowlandswereusedduringwintermonths.Thedifferencesmayberelatedtothe
A
I
--.J
.......--._-\
\
)
.r-........../_./............/.,
/.r \.I?..<-).
EAST FORJ{L '''\
\
\
".~\(V'"'/-~.
.................._---..;1
CO,4l.C~
~"'~",'(~-o
.~
~
.;-...
~~
,.f:•
@
SCALE 0 10 2:0 MILES
Figure K-1.General Patterns of Movement by Radio-Collared Moose from
October 1976 through Mid-August 1981 within the Upper/Middle
Susitna Basin.[Source:Ballard et al.,1982a:Fig.11J
~~~§'Oiiiiiiiiiiiiiiiiiiii~2P MILESSCALEc:::,
Figure K-1.General Patterns of Movement by Radio-Collared Moose from
October 1976 through Mid-August 1981 within the Upper/Middle
Susitna Basin.[Source:Ballard et al.,1982a:Fig.11J
K-8'?ti,.19t-hLakeLouise~z0N(D1500W1490W1480W1470W1460W17MilesMOOSEDENSITYmmIm3Highm:rrm:mMedium1=====1Lowc==JNoneFigureK-2.RelativeDensitiesofMooseinCensusAreaswithintheUpper/MiddleSusitnaBasin.[Source:Ballardetal.1982a:Fig.18JK-8'?ti,.19t-hLakeLouise~z0N(D1500W1490W1480W1470W1460W17MilesMOOSEDENSITYmmIm3Highm:rrm:mMedium1=====1Lowc==JNoneFigureK-2.RelativeDensitiesofMooseinCensusAreaswithintheUpper/MiddleSusitnaBasin.[Source:Ballardetal.1982a:Fig.18J
K-9zonCOLakeLouisezo~+-::--....,...,---------....,..---------1.1500W1490W1480W1470W1460W17MilesMOOSE~UpstreamCalvingFigureK-3.GeneralMooseCalvingConcentrations(May15-June15)from1977othrough1981intheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1982a,1983a]K-9zonCOLakeLouisezo~+-::--....,...,---------....,..---------1.1500W1490W1480W1470W1460W17MilesMOOSE~UpstreamCalvingFigureK-3.GeneralMooseCalvingConcentrations(May15-June15)from1977othrough1981intheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1982a,1983a]
K-10zoI")(0LakeLouisezoN+-:::------r...,..-.......,~--------1,(01500W1490W1480W1470W1460W17MilesMOOSE~UpstreamRuttingFigureK-4.GeneralMooseRuttingRange(September20-October20)from1977through1980withintheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1982a,1983a]milderwinters,andhencegreateravailabilityofbrowseinthewindblownuplands,duringthemorerecentstudies.Currentstudieshavenotpermittedevaluationoftheextentoflimitingwinterhabitatinthebasin(Ballardetal.,1982a,1983a).However,earlierstudiessuggestthatduringwinterswithheavysnowfall,thelocalmooseusethemixedwoodlandsatlowerelevationsalongtheriveranditsmajortributaries(ExhibitE,Vol.6A,Chap.3,p.E-3-399).Studieselsewherehaveshownthatmoosetendtocongregateinrelativelysmallareasofsuitablehabitatduringharshwinters(Telfer,1970;ProulxandJouyal,1981;Proulx1983).Moosetendtopreferhabitatswithdensecoverforprotectionandwithsuitablebrowse.Suchconditionsareoftenfoundinmixedforestsofconiferoushabitatinterspersedwithearlysuccessionalshruborhardwoodhabitat(Peeketal.,1976;Stevens,1980;Telfer,1970,1978;BrusnykandGilbert,1983).Baseduponthesestudies,itislikelythatthemosaicofspruceandmixedwoodlandforestalongthebottomlandoftheSusitnaRiveranditstributariesprovidesimportanthabitatduringseverewinters.Ballardetal.(1983a)didfindmooseconcentratingalongtheriverandmajortributariesduringMarch1982(Fig.K-5),andalsonotedthatduringwintermooseusedelevationsof3,000ft(900m)orhigherlessthanwouldbeexpectedonthebasisoftheavailabilityofuplandhabitat.Inlatewinterthroughearlyspringof1977through1981,moosetendedtomovetolowereleva-tions.DuringMarchthroughMay,useofuplandbrush/willowwasatitslowestleveloftheyearK-10zoI")(0LakeLouisezoN+-:::------r...,..-.......,~--------1,(01500W1490W1480W1470W1460W17MilesMOOSE~UpstreamRuttingFigureK-4.GeneralMooseRuttingRange(September20-October20)from1977through1980withintheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1982a,1983a]milderwinters,andhencegreateravailabilityofbrowseinthewindblownuplands,duringthemorerecentstudies.Currentstudieshavenotpermittedevaluationoftheextentoflimitingwinterhabitatinthebasin(Ballardetal.,1982a,1983a).However,earlierstudiessuggestthatduringwinterswithheavysnowfall,thelocalmooseusethemixedwoodlandsatlowerelevationsalongtheriveranditsmajortributaries(ExhibitE,Vol.6A,Chap.3,p.E-3-399).Studieselsewherehaveshownthatmoosetendtocongregateinrelativelysmallareasofsuitablehabitatduringharshwinters(Telfer,1970;ProulxandJouyal,1981;Proulx1983).Moosetendtopreferhabitatswithdensecoverforprotectionandwithsuitablebrowse.Suchconditionsareoftenfoundinmixedforestsofconiferoushabitatinterspersedwithearlysuccessionalshruborhardwoodhabitat(Peeketal.,1976;Stevens,1980;Telfer,1970,1978;BrusnykandGilbert,1983).Baseduponthesestudies,itislikelythatthemosaicofspruceandmixedwoodlandforestalongthebottomlandoftheSusitnaRiveranditstributariesprovidesimportanthabitatduringseverewinters.Ballardetal.(1983a)didfindmooseconcentratingalongtheriverandmajortributariesduringMarch1982(Fig.K-5),andalsonotedthatduringwintermooseusedelevationsof3,000ft(900m)orhigherlessthanwouldbeexpectedonthebasisoftheavailabilityofuplandhabitat.Inlatewinterthroughearlyspringof1977through1981,moosetendedtomovetolowereleva-tions.DuringMarchthroughMay,useofuplandbrush/willowwasatitslowestleveloftheyear
K-llLakeLouisezo~15::0:o~W:-------14-9""o::-W-------1-4-8T""o-W--------14-7""'o-W--------1-146oW17MilesMOOSEF====IUpstreamWinteringFigureK-5.GeneralAreaofWinterRangeofMoose[el.<3,000ft(900m)MSL]from1977through1982withintheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1982a,1983a](ExhibitE,Vol.6B,Chap.3,TablesE.3.87andE.3.88).Lowerelevationsnearertheriverandthetributariesmaybeselectedbecauseofearlyavailabilityofgreenforage.MOVEMENTSMovementsofmooseincludelocal,short-distancetravelwithinseasonallyusedrange,longermigrationsbetweenseasonallyusedrange,andlong-distancedispersaltootherregions(Coady,1982).Localtravelisprincipallyameansofacquiringforageortakingadvantageofcoveronthelocalrange.Migratorymovementisgenerallyimplementedinresponsetovaryingqualityandavailabilityofforageamongseasonsandinresponsetovaryingweatherpatterns.Some,butnotall,mooseinapopulationmaymaketraditionalseasonaluseofsomeareasandfollowtraditional,generalpatternsofmigration.Dispersalisamechanismforexploitingnewrangethatmaybeunderexploited.Theseasonalshiftsinhabitatusagebysomemoosenecessitatemovementsofsevera1miles.Ballardetal.(1982a,1983a)indicatedthatmigratorymooseoccurlargelyeastofJayCreekandintheareaofWatanaCreek(Fig.K-1).AnumberofmigrationpatternsrequirethatmoosecrosstheSusitnaRiverintheprojectedWatanaimpoundmentareaorpassnearthatarea(Fig.K-1).K-llLakeLouisezo~15::0:o~W:-------14-9""o::-W-------1-4-8T""o-W--------14-7""'o-W--------1-146oW17MilesMOOSEF====IUpstreamWinteringFigureK-5.GeneralAreaofWinterRangeofMoose[el.<3,000ft(900m)MSL]from1977through1982withintheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1982a,1983a](ExhibitE,Vol.6B,Chap.3,TablesE.3.87andE.3.88).Lowerelevationsnearertheriverandthetributariesmaybeselectedbecauseofearlyavailabilityofgreenforage.MOVEMENTSMovementsofmooseincludelocal,short-distancetravelwithinseasonallyusedrange,longermigrationsbetweenseasonallyusedrange,andlong-distancedispersaltootherregions(Coady,1982).Localtravelisprincipallyameansofacquiringforageortakingadvantageofcoveronthelocalrange.Migratorymovementisgenerallyimplementedinresponsetovaryingqualityandavailabilityofforageamongseasonsandinresponsetovaryingweatherpatterns.Some,butnotall,mooseinapopulationmaymaketraditionalseasonaluseofsomeareasandfollowtraditional,generalpatternsofmigration.Dispersalisamechanismforexploitingnewrangethatmaybeunderexploited.Theseasonalshiftsinhabitatusagebysomemoosenecessitatemovementsofsevera1miles.Ballardetal.(1982a,1983a)indicatedthatmigratorymooseoccurlargelyeastofJayCreekandintheareaofWatanaCreek(Fig.K-1).AnumberofmigrationpatternsrequirethatmoosecrosstheSusitnaRiverintheprojectedWatanaimpoundmentareaorpassnearthatarea(Fig.K-1).
K-12Ballardetal.(1982a:Fig.12)reportedthat28of73crossingsof theriver(ca.35%)from1976to1980occurredwithintheprojectedimpoundmentarea.From1980to1981,75moosecrossedtheriverintheprojectedimpoundmentareaatotalof40times.Trackingdatasuggestedthatrivercrossingsoccurredthroughouttheaffectedstretchof theriver,buttendedtobeconcen-tratedinthefollowingareas:FogCreektooppositeStephanLake,DeadmanCreekandupstream5miles(mi)[8kilometers(km)],WatanatoJayCreeks,andfromGooseCreektoClearwaterCreek(Ballardetal.,1982a).ThepopulationofmoosealongthemainstemSusitnaRivermayalsoproviderecruitmentformoreperipheralpopulationsviadispersal(Ballardetal.,1982a,1983a).K.2.1.1.2Barren-GroundCaribouBarren-groundcaribou(Rangifertarandus)aremembersof thedeerfamilythatarecharacteristicinhabitantsofthe ArctictundraofNorthAmerica(Bergerud,1980;Miller,1982).Cariboutendtobehighlygregarious;historically,duringthepost-calvingperiod,herdshavebeencomposedoftensofthousandsofindividuals.Caribouforageonabroadvarietyofplantsthatincludesgrasses,sedges,forbs,andshrub.Mossesandlichensalsoformamajorcomponentof thecariboudiet.ThebasinsurroundingtheprojectedimpoundmentareasisoccupiedbytheNelchinacaribouherd,whichrangesoveranareaofabout20,000mi2(50,000km2)boundedbytheAlaskaRangetothenorth,theWrangellMountainstotheeast,theChugachMountainstothesouth,andtheTalkeetnaMountainstothewest(Pitcher,1982).ThisherdisimportanttosportandsubsistencehuntersbecauseofitslargesizeandproximitytoAlaska'smajorpopulationcenters.CONDITIONOFPOPULATIONHerdsizehasdeclinedsubstantiallysince1955,whenanestimated40,000individualscomprisedtheherd(Hemming,1971;Pitcher,1982:Table13).Bythemid-1970stheherdsizewasbelow10,000individuals.Sincethen,theherdhasgrownto20,000individualsorhalfits1955size.Sincethemid-1970s,theratioofcalvestofemaleshasincreasedfrom30%to40%,indicatingincreasedproductivityasaresultofincreasedbirthrateordecreasedmortalityrate.Abouthalfthemortalitywasattributedtopredation(principallywolf)andhuntingbyPitcher(1982,1983).Thebalanceof themortalitycanbeattributedtostarvation,disease,aging,andaccidents.Althoughavailabilityofforageistheultimatefactorlimitingtheherdsize,predationandhuntingarethelikelyproximatelimitingfactors.Thishasbeenshowntobethecasenorthof theAlaskaRange(Gasawayetal.,1983).Pitcher(1982,1983)identifiedseveralsubherdswithintherangeoftheNelchinacaribouherd.OfprincipalinterestinrelationtotheproposedprojectistheUpperSusitna-Nenanasubherd.ThissubherdrangessouthfromtheNenanaRiver,extendingeastfromaroundtheParksHighwaytotheheadwatersof theSusitnaRiver.Pitcher(1983)estimatedthatabout2,000individualscomposedthissubherd.DISTRIBUTIONANDHABITATUSEDuringthecalvingperiod(May-June)in1980-1982,thefemalesof themainherdoccupiedthedrainagesofKosinaCreek,GooseGreek,andOshetnaRiver(Fig.K-6).Historically,theherd'scalvinggroundshaverangedfromFogLakestotheLittleNelchinaRiverinthenorthernTalkeetnaMountains,atabout3,000to4,500ft(900to1,400m)'elevation(Pitcher,1982).Thehabitatusedbyfemalesduringcalvingwaspredominantlyherbaceous-tundra.CalvingconcentrationsoftheSusitna-NenanagroupoccurredattheheadwatersoftheChulitnaRiver,fromCoalCreektoupperDeadmanCreek,andattheheadwatersoftheSusitnaRiver(Fig.K-7).Malestendedtoremaininthewinteringareasdominatedbyspruceforest.Duringsummer,malestendedtooccuratlowerelevations[ca.3,500ft(1,000m)MSL]thandidfemales[over4,000ft(1,200m)MSL].Historically,thefemale-calfsegmentofthemainherdhasspentthesummerintheeasternTalkeetnaMountainsandacrosstheSusitnaRiverfromDeadmanCreek,nearthecalvingrange(Fig.K-6).Maleshavesummereddispersedthroughouttherangeofthemainherd.Thesubherdalsosummerednearthecalvingrange,butathigherelevations.Herbaceoustundrawasthepredominanthabitatusedbybothmalesandfemalesduringthesummer(Pitcher,1982).Duringtheautumnrut,theherdconcentratedinthreeareas:northeasternTalkeetnaMountains,LakeLouiseFlats,and,toalesserextent,theAlphabetHills.Duringthisperiod,theherdmadegreateruseof theshrublandandspruceforesthabitats(Pitcher,1982,1983).In1980-1982,theherdoverwinteredatlowerelevationsontheLakeLouiseFlatsandeastward(Fig.K-8).Historically,however,themainherdhasoverwinteredinvariousareasthroughoutitsrange(Hemming,1971).TheUpperSusitna-NenanasubherdtendedtooverwinterintheMonahanFlattoCoalCreekarea,althoughafewindividualsoverwinteredintheChulitnaMountains(Fig.K-8).K-12Ballardetal.(1982a:Fig.12)reportedthat28of73crossingsof theriver(ca.35%)from1976to1980occurredwithintheprojectedimpoundmentarea.From1980to1981,75moosecrossedtheriverintheprojectedimpoundmentareaatotalof40times.Trackingdatasuggestedthatrivercrossingsoccurredthroughouttheaffectedstretchof theriver,buttendedtobeconcen-tratedinthefollowingareas:FogCreektooppositeStephanLake,DeadmanCreekandupstream5miles(mi)[8kilometers(km)],WatanatoJayCreeks,andfromGooseCreektoClearwaterCreek(Ballardetal.,1982a).ThepopulationofmoosealongthemainstemSusitnaRivermayalsoproviderecruitmentformoreperipheralpopulationsviadispersal(Ballardetal.,1982a,1983a).K.2.1.1.2Barren-GroundCaribouBarren-groundcaribou(Rangifertarandus)aremembersof thedeerfamilythatarecharacteristicinhabitantsofthe ArctictundraofNorthAmerica(Bergerud,1980;Miller,1982).Cariboutendtobehighlygregarious;historically,duringthepost-calvingperiod,herdshavebeencomposedoftensofthousandsofindividuals.Caribouforageonabroadvarietyofplantsthatincludesgrasses,sedges,forbs,andshrub.Mossesandlichensalsoformamajorcomponentof thecariboudiet.ThebasinsurroundingtheprojectedimpoundmentareasisoccupiedbytheNelchinacaribouherd,whichrangesoveranareaofabout20,000mi2(50,000km2)boundedbytheAlaskaRangetothenorth,theWrangellMountainstotheeast,theChugachMountainstothesouth,andtheTalkeetnaMountainstothewest(Pitcher,1982).ThisherdisimportanttosportandsubsistencehuntersbecauseofitslargesizeandproximitytoAlaska'smajorpopulationcenters.CONDITIONOFPOPULATIONHerdsizehasdeclinedsubstantiallysince1955,whenanestimated40,000individualscomprisedtheherd(Hemming,1971;Pitcher,1982:Table13).Bythemid-1970stheherdsizewasbelow10,000individuals.Sincethen,theherdhasgrownto20,000individualsorhalfits1955size.Sincethemid-1970s,theratioofcalvestofemaleshasincreasedfrom30%to40%,indicatingincreasedproductivityasaresultofincreasedbirthrateordecreasedmortalityrate.Abouthalfthemortalitywasattributedtopredation(principallywolf)andhuntingbyPitcher(1982,1983).Thebalanceof themortalitycanbeattributedtostarvation,disease,aging,andaccidents.Althoughavailabilityofforageistheultimatefactorlimitingtheherdsize,predationandhuntingarethelikelyproximatelimitingfactors.Thishasbeenshowntobethecasenorthof theAlaskaRange(Gasawayetal.,1983).Pitcher(1982,1983)identifiedseveralsubherdswithintherangeoftheNelchinacaribouherd.OfprincipalinterestinrelationtotheproposedprojectistheUpperSusitna-Nenanasubherd.ThissubherdrangessouthfromtheNenanaRiver,extendingeastfromaroundtheParksHighwaytotheheadwatersof theSusitnaRiver.Pitcher(1983)estimatedthatabout2,000individualscomposedthissubherd.DISTRIBUTIONANDHABITATUSEDuringthecalvingperiod(May-June)in1980-1982,thefemalesof themainherdoccupiedthedrainagesofKosinaCreek,GooseGreek,andOshetnaRiver(Fig.K-6).Historically,theherd'scalvinggroundshaverangedfromFogLakestotheLittleNelchinaRiverinthenorthernTalkeetnaMountains,atabout3,000to4,500ft(900to1,400m)'elevation(Pitcher,1982).Thehabitatusedbyfemalesduringcalvingwaspredominantlyherbaceous-tundra.CalvingconcentrationsoftheSusitna-NenanagroupoccurredattheheadwatersoftheChulitnaRiver,fromCoalCreektoupperDeadmanCreek,andattheheadwatersoftheSusitnaRiver(Fig.K-7).Malestendedtoremaininthewinteringareasdominatedbyspruceforest.Duringsummer,malestendedtooccuratlowerelevations[ca.3,500ft(1,000m)MSL]thandidfemales[over4,000ft(1,200m)MSL].Historically,thefemale-calfsegmentofthemainherdhasspentthesummerintheeasternTalkeetnaMountainsandacrosstheSusitnaRiverfromDeadmanCreek,nearthecalvingrange(Fig.K-6).Maleshavesummereddispersedthroughouttherangeofthemainherd.Thesubherdalsosummerednearthecalvingrange,butathigherelevations.Herbaceoustundrawasthepredominanthabitatusedbybothmalesandfemalesduringthesummer(Pitcher,1982).Duringtheautumnrut,theherdconcentratedinthreeareas:northeasternTalkeetnaMountains,LakeLouiseFlats,and,toalesserextent,theAlphabetHills.Duringthisperiod,theherdmadegreateruseof theshrublandandspruceforesthabitats(Pitcher,1982,1983).In1980-1982,theherdoverwinteredatlowerelevationsontheLakeLouiseFlatsandeastward(Fig.K-8).Historically,however,themainherdhasoverwinteredinvariousareasthroughoutitsrange(Hemming,1971).TheUpperSusitna-NenanasubherdtendedtooverwinterintheMonahanFlattoCoalCreekarea,althoughafewindividualsoverwinteredintheChulitnaMountains(Fig.K-8).
K-13zor0(0LakeLouisezo~-1-::-------_-,---.---,--1,1500W1490W1480W1470W1460W17MilesCARIBOU~RecentCalvingAreas~HistoricalCalvingAreasFigureK-6.GeneralRangeofMainNelchinaCaribouHerdduringtheCalvingPeriod(May15throughJune10)from1980through1982withintheUpper/MiddleSusitnaBasin.[Source:Pitcher,1982,1983JK-13zor0(0LakeLouisezo~-1-::-------_-,---.---,--1,1500W1490W1480W1470W1460W17MilesCARIBOU~RecentCalvingAreas~HistoricalCalvingAreasFigureK-6.GeneralRangeofMainNelchinaCaribouHerdduringtheCalvingPeriod(May15throughJune10)from1980through1982withintheUpper/MiddleSusitnaBasin.[Source:Pitcher,1982,1983J
K-14zonCDzLakeLouise17MilesoN+-::--------'--r---.....---,-iCD1500W1490W1480W1470W1460WCARIBOU~CalfingAreasFigureK-7.GeneralRangeforCalvingbytheUpperSusitna-NenanaCaribouSubherdfrom1980through1982.[Source:Pitcher,1982,1983JK-14zonCDzLakeLouise17MilesoN+-::--------'--r---.....---,-iCD1500W1490W1480W1470W1460WCARIBOU~CalfingAreasFigureK-7.GeneralRangeforCalvingbytheUpperSusitna-NenanaCaribouSubherdfrom1980through1982.[Source:Pitcher,1982,1983J
K-15zot')COzo~1+5-0°:-W-------1-4-9r-o-W--------14-8.,.o-W--------1-4-7r-o-W--------14~6°W17MilesCARIBOU~WinteringAreasFigureK-8.GeneralWinteringRangeforNelchinaCaribouHerdfrom1980through1982.[Source:Pitcher,1982,1983]Caribouprimarilyoccupiedspruceforesthabitatsduringthewinter.Inthespring,thefemalesmovedtothecalvinggroundsandthemalesdispersedoverabroaderarea(Pitcher,1982).MOVEMENTSCariboumovefromareatoareainresponsetoavailabilityofforageandcover,aswellastoavoidstressfulweatherconditions.Cariboutendtomaketraditionaluseofseasonalrangeforvariousaspectsoftheirlifehistory(Bergerud,1980;Miller,1982).Movementsbetweentradi-tionalrangesappeartobewell-structured.Someindividualsubherdsandherdsexhibitamarkedaffinityforspecificseasonalrangesandmigrationroutes.Overthepastseveraldecades,themainNe1chinaherdhashadwinteringconcentrationsinvariousareasofitsrange(Hemming,1971).Recently,winterrangehasbeensouthandeastoftheproposedimpoundmentareasintheareaofLakeLouiseandeastward(Fig.K-8),althoughoccasionaluseoftheareafromDeadmanCreekeastwardhasbeenobserved(Pitcher,1982,1983).Thus,themajorspringmigrationoffemalestothetraditionalcalvinggroundsintheTalkeetnaMountains(Fig.K-8)wouldnotgenerallyrequirecrossingoftheSusitnaRiver.However,itislikelythatmovementofmalestospringandsummerrangewouldnecessitatesuchacrossing.Pitcher(1982,1983)suggeststhatasthesizeof theherdincreases,thelikelihoodofcrossingtheproposedprojectareaswouldincreasebecausetheherdhashistoricallytendedtouseabroaderareaathigherpopulationsizes.K-15zot')COzo~1+5-0°:-W-------1-4-9r-o-W--------14-8.,.o-W--------1-4-7r-o-W--------14~6°W17MilesCARIBOU~WinteringAreasFigureK-8.GeneralWinteringRangeforNelchinaCaribouHerdfrom1980through1982.[Source:Pitcher,1982,1983]Caribouprimarilyoccupiedspruceforesthabitatsduringthewinter.Inthespring,thefemalesmovedtothecalvinggroundsandthemalesdispersedoverabroaderarea(Pitcher,1982).MOVEMENTSCariboumovefromareatoareainresponsetoavailabilityofforageandcover,aswellastoavoidstressfulweatherconditions.Cariboutendtomaketraditionaluseofseasonalrangeforvariousaspectsoftheirlifehistory(Bergerud,1980;Miller,1982).Movementsbetweentradi-tionalrangesappeartobewell-structured.Someindividualsubherdsandherdsexhibitamarkedaffinityforspecificseasonalrangesandmigrationroutes.Overthepastseveraldecades,themainNe1chinaherdhashadwinteringconcentrationsinvariousareasofitsrange(Hemming,1971).Recently,winterrangehasbeensouthandeastoftheproposedimpoundmentareasintheareaofLakeLouiseandeastward(Fig.K-8),althoughoccasionaluseoftheareafromDeadmanCreekeastwardhasbeenobserved(Pitcher,1982,1983).Thus,themajorspringmigrationoffemalestothetraditionalcalvinggroundsintheTalkeetnaMountains(Fig.K-8)wouldnotgenerallyrequirecrossingoftheSusitnaRiver.However,itislikelythatmovementofmalestospringandsummerrangewouldnecessitatesuchacrossing.Pitcher(1982,1983)suggeststhatasthesizeof theherdincreases,thelikelihoodofcrossingtheproposedprojectareaswouldincreasebecausetheherdhashistoricallytendedtouseabroaderareaathigherpopulationsizes.
K-16K.2.1.1.3Dall'sSheepDall'ssheep(Ovisdalli)arethemountainsheepcharacteristicofAlaska'sruggedmountainareas,suchastheTalkeetnaMountainsandtheAlaskaRange(Nichols,1980;LawsonandJohnson,1982).Dall'ssheeptypicallyutilizealpinehabitat,rarelyextendingbelowtimberline.Sheeparefoundonsteep,openterraininterspersedwithrockyslopes,ridges,cliffsandruggedcanyons.Sheeparechieflygrazersofgrassesandforbsbutwillconsumeothervegetationifavailable.Typically,sheepaggregateintobandsof2to15ewesandlambsorrams.WolfaretheprincipalpredatoruponDall'ssheep.Intheproposedprojectarea,Dall'ssheeparefoundinthreeareas:Portage/TsusenaCreekdrainage,southoftheSusitnaRiverfromFogLakestoKosinaCreek,andeastofWatanaCreekintheWatanaHills(Fig.K-9).Surveyscarriedoutfrom1980to1982foundapeaknumberofabout70sheepintheMt.Watana/Grebeareaandover200intheWatanaHillsarea(Ballardetal.,1982c).Ingeneral,therangeoftheDall'ssheepisoutsidetheprojectedareaofeffectfortheproposedproject;however,animportantminerallickfortheWatanaHillspopulationislocatedinaportionoflowerJayCreekthatmightbeinundatedbytheproposedWatanaimpound-ment.zo10coLakeLouisezo~+---------,..---------r----------,::--------:-:J1500W1490W1480W1470W1460W17Miles~SheepFigureK-9.Dall'sSheepRangeintheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1982c]K-16K.2.1.1.3Dall'sSheepDall'ssheep(Ovisdalli)arethemountainsheepcharacteristicofAlaska'sruggedmountainareas,suchastheTalkeetnaMountainsandtheAlaskaRange(Nichols,1980;LawsonandJohnson,1982).Dall'ssheeptypicallyutilizealpinehabitat,rarelyextendingbelowtimberline.Sheeparefoundonsteep,openterraininterspersedwithrockyslopes,ridges,cliffsandruggedcanyons.Sheeparechieflygrazersofgrassesandforbsbutwillconsumeothervegetationifavailable.Typically,sheepaggregateintobandsof2to15ewesandlambsorrams.WolfaretheprincipalpredatoruponDall'ssheep.Intheproposedprojectarea,Dall'ssheeparefoundinthreeareas:Portage/TsusenaCreekdrainage,southoftheSusitnaRiverfromFogLakestoKosinaCreek,andeastofWatanaCreekintheWatanaHills(Fig.K-9).Surveyscarriedoutfrom1980to1982foundapeaknumberofabout70sheepintheMt.Watana/Grebeareaandover200intheWatanaHillsarea(Ballardetal.,1982c).Ingeneral,therangeoftheDall'ssheepisoutsidetheprojectedareaofeffectfortheproposedproject;however,animportantminerallickfortheWatanaHillspopulationislocatedinaportionoflowerJayCreekthatmightbeinundatedbytheproposedWatanaimpound-ment.zo10coLakeLouisezO~+---------,..---------r----------,::--------:-:J1500W1490W1480W1470W1460W17Miles~SheepFigureK-9.Dall'sSheepRangeintheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1982c]
K-17MinerallicksaregenerallyconsideredtobekeyhabitatrequirementsforDall'ssheep(Nichols,1980;LawsonandJohnson,1982).Thepresenceofminera1 1ickscanaffectthepatternsofmovementanddistributionofsheepbands.Minerallicksareimportantsourcesofsupplementalmineralnutrientsforungulates(WeeksandKirkpatrick,1976;Robbins,1983).Sodiumisgenerallythoughttobetheprincipalnutrientsuppliedbyminerallicks(Jordaneta1.,1973;WeeksandKirkpatrick,1976;BelovskyandJordan,1981;FraserandHristienko,1981;Robbins,1983;TankersleyandGasaway,1983).Terrestrialplantforageisgenerallylowinsodium(Botkinetal.,1973),hence,supplementalsourcesarerequired.Useofminerallicksbyungulatesisusuallymostintenseduringspringandearlysummer(WeeksandKirkpatrick,1976;FraserandHristienko,1980;TankersleyandGasaway,1983).Thisappearstoberelatedtothesodium/potassiumimbalancesresultingfrom(1)increasedpost-winterintakeofpotassiumandwaterconcomitantwithincreasedfoodintakeand(2)thehighpotassiumcontentofthespringpheno-logicalstagesofforageplants.TheJayCreekminera1 1ickreceivesheavyusebybandsofsheepandisconsideredimportanttothemaintenanceoftheWatanaHillsheeppopulation;Ballardetal.(1982c)andTankersley(1983)observedupto15sheep(7%oftheobservedpopulationfortheWatanaHills)usingthelickatonetime.Tankersleyalsoreportedthatothershaveobservedupto23individualsatthelickatonetime.SeveralotherlickshavebeenlocatedintheWatanaHillsrange;however,therelativeimportanceoftheselickshasnotbeendocumented.Tankersley(1983)suggestedthattheJayCreeklickisofgreaterimportanceinviewofitsintenseuse,despiteitsloca-tioninatypicalsheephabitatanditsdistancefromthecenterofmostsheepsightings.Otherlicksareinmoretypicalhabitat,closertothemajorityofsightings.K.2.1.1.4BrownBearBrownbear(Ursusarctos)(alsocalledgrizzlybear)arewidespreadthroughoutAlaska(AlaskaDept.ofFishandGame,1973,1978;Jonke1,1980;CraigheadandMitche11,1982).These1argecarnivoresarecharacteristicallyfoundinupland,openhabitat,althoughtheyuseavarietyofhabitatsthroughouttheyear.Individualbrownbearrangewidelyduringthecourseoftheyear,exp1oitingavarietyoffoodsources.Ballardeta1.(1982d)reportedaveragehomerangesofabout160and300mi2(410and780km2)forfemalesandmales,respectively.Bearsappeartomaketraditionalmovementstoexploitsourcesofhigh-qualityfood(CraigheadandMitchell,1982).Brownbearareomnivorous,feedinguponabroadrangeoffoods,suchassalmon,ungulates(e.g.,mooseandcaribou),carrion,andplantmaterial(berriesandfoliage).Dietsvarywiththeavailabilityoffoodtypesandthenutritionalstateofindividualbears.Animalfoodmakesup50%to60%ofthediet.CONDITIONOFTHEPOPULATIONWithinthestudyareaofMillerandcoworkers(MillerandMcAllister,1982;MillerandBallard,1982),brownbeardensitiesrangedfromabout4to6individualsper100mi2(1.5to2.5/100km2)intheupperandmiddleSusitnaBasin;thus,inthe3,300-mi2(8,500-km2)brown-bearstudyarea,therewereanestimated130to200brownbearin1979.ThepopulationhasahighproportionofyoungandisconsideredtobeoneofthemostproductivepopulationsinAlaska(ExhibitE,Vol.6A,Chap.3,p.E-3-336),althoughMillerandMcAllister(1982)inferfromthelargehomerangesofindividualsthattheareamayhavelowproductivityoffoodspecies.DISTRIBUTIONANDHABITATUSEBrownbearutilizeanextensivevarietyofhabitatswithinthebasin(MillerandMcAllister,1982).Inthespring(MaytoJune)brownbearweremostfrequentlyobservedinsprucehabitatsalongtheriverandinuplandshrublands(TableK-3).Useofthelowlandareasduringspringmayreflecttheavailabilityofnew-growthplantforageaswellasatendencyforbeartocon-centrateinthegeneralareaofmoosecalving(seeFig.K-3).Inspring,femaleswithcubsweremorefrequentlyobservedinuplandshrubhabitats(ca.50%oftheobservations)andotheruplandareas(35%).Asthesummerprogressed,allbrownbearbecamemorefrequentlyobserved(50%-60%)inuplandshrubhabitats.Thismayreflectaresponsetoavailabilityofthesummerberrycropintheuplandareas.DuringJulyandAugust,about20%oftheobservationsoccurredinriparianhabitat,probablyreflectinguseoftheseareasforsalmonfishingbythebear.Duringfallandwintermostobservations(ca.70%)occurredinuplandsnowandiceareas.IntheupperandmiddleSusitnaBasin,brownbearhavebeendocumentedasmakingdirectionalmovementstoareasofseasona1foodabundance(Mi11erandMcA11ister,1982;Mi11er,1983).Duringsalmonspawningseason(July-August),somebrownbearmovedtosalmonspawningstreams.PrairieCreekisthemostinteriorofthesestreamsanddrainsfromStephanLakeintotheTalkeetnaRiver.MillerandMcAllister(1982)estimatethat30to40bearusethisstreameachsummer.From1980to1982,10%to35%oftheradio-co11aredbearinthebasinmovedtothePrairieCreekduringJulyandAugust.ThegreatestdistancetraveledbyabeartoreachPrairieCreekwasabout35mi(50km).Baseduponobservedhomeranges,thePrairieCreekspawningareaattractsbearfromanareaofabout2,200mi2(5,700km2),includingareastothenorthoftheSusitnaRiver..K-17MinerallicksaregenerallyconsideredtobekeyhabitatrequirementsforDall'ssheep(Nichols,1980;LawsonandJohnson,1982).Thepresenceofminera1 1ickscanaffectthepatternsofmovementanddistributionofsheepbands.Minerallicksareimportantsourcesofsupplementalmineralnutrientsforungulates(WeeksandKirkpatrick,1976;Robbins,1983).Sodiumisgenerallythoughttobetheprincipalnutrientsuppliedbyminerallicks(Jordaneta1.,1973;WeeksandKirkpatrick,1976;BelovskyandJordan,1981;FraserandHristienko,1981;Robbins,1983;TankersleyandGasaway,1983).Terrestrialplantforageisgenerallylowinsodium(Botkinetal.,1973),hence,supplementalsourcesarerequired.Useofminerallicksbyungulatesisusuallymostintenseduringspringandearlysummer(WeeksandKirkpatrick,1976;FraserandHristienko,1980;TankersleyandGasaway,1983).Thisappearstoberelatedtothesodium/potassiumimbalancesresultingfrom(1)increasedpost-winterintakeofpotassiumandwaterconcomitantwithincreasedfoodintakeand(2)thehighpotassiumcontentofthespringpheno-logicalstagesofforageplants.TheJayCreekminera1 1ickreceivesheavyusebybandsofsheepandisconsideredimportanttothemaintenanceoftheWatanaHillsheeppopulation;Ballardetal.(1982c)andTankersley(1983)observedupto15sheep(7%oftheobservedpopulationfortheWatanaHills)usingthelickatonetime.Tankersleyalsoreportedthatothershaveobservedupto23individualsatthelickatonetime.SeveralotherlickshavebeenlocatedintheWatanaHillsrange;however,therelativeimportanceoftheselickshasnotbeendocumented.Tankersley(1983)suggestedthattheJayCreeklickisofgreaterimportanceinviewofitsintenseuse,despiteitsloca-tioninatypicalsheephabitatanditsdistancefromthecenterofmostsheepsightings.Otherlicksareinmoretypicalhabitat,closertothemajorityofsightings.K.2.1.1.4BrownBearBrownbear(Ursusarctos)(alsocalledgrizzlybear)arewidespreadthroughoutAlaska(AlaskaDept.ofFishandGame,1973,1978;Jonke1,1980;CraigheadandMitche11,1982).These1argecarnivoresarecharacteristicallyfoundinupland,openhabitat,althoughtheyuseavarietyofhabitatsthroughouttheyear.Individualbrownbearrangewidelyduringthecourseoftheyear,exp1oitingavarietyoffoodsources.Ballardeta1.(1982d)reportedaveragehomerangesofabout160and300mi2(410and780km2)forfemalesandmales,respectively.Bearsappeartomaketraditionalmovementstoexploitsourcesofhigh-qualityfood(CraigheadandMitchell,1982).Brownbearareomnivorous,feedinguponabroadrangeoffoods,suchassalmon,ungulates(e.g.,mooseandcaribou),carrion,andplantmaterial(berriesandfoliage).Dietsvarywiththeavailabilityoffoodtypesandthenutritionalstateofindividualbears.Animalfoodmakesup50%to60%ofthediet.CONDITIONOFTHEPOPULATIONWithinthestudyareaofMillerandcoworkers(MillerandMcAllister,1982;MillerandBallard,1982),brownbeardensitiesrangedfromabout4to6individualsper100mi2(1.5to2.5/100km2)intheupperandmiddleSusitnaBasin;thus,inthe3,300-mi2(8,500-km2)brown-bearstudyarea,therewereanestimated130to200brownbearin1979.ThepopulationhasahighproportionofyoungandisconsideredtobeoneofthemostproductivepopulationsinAlaska(ExhibitE,Vol.6A,Chap.3,p.E-3-336),althoughMillerandMcAllister(1982)inferfromthelargehomerangesofindividualsthattheareamayhavelowproductivityoffoodspecies.DISTRIBUTIONANDHABITATUSEBrownbearutilizeanextensivevarietyofhabitatswithinthebasin(MillerandMcAllister,1982).Inthespring(MaytoJune)brownbearweremostfrequentlyobservedinsprucehabitatsalongtheriverandinuplandshrublands(TableK-3).Useofthelowlandareasduringspringmayreflecttheavailabilityofnew-growthplantforageaswellasatendencyforbeartocon-centrateinthegeneralareaofmoosecalving(seeFig.K-3).Inspring,femaleswithcubsweremorefrequentlyobservedinuplandshrubhabitats(ca.50%oftheobservations)andotheruplandareas(35%).Asthesummerprogressed,allbrownbearbecamemorefrequentlyobserved(50%-60%)inuplandshrubhabitats.Thismayreflectaresponsetoavailabilityofthesummerberrycropintheuplandareas.DuringJulyandAugust,about20%oftheobservationsoccurredinriparianhabitat,probablyreflectinguseoftheseareasforsalmonfishingbythebear.Duringfallandwintermostobservations(ca.70%)occurredinuplandsnowandiceareas.IntheupperandmiddleSusitnaBasin,brownbearhavebeendocumentedasmakingdirectionalmovementstoareasofseasona1foodabundance(Mi11erandMcA11ister,1982;Mi11er,1983).Duringsalmonspawningseason(July-August),somebrownbearmovedtosalmonspawningstreams.PrairieCreekisthemostinteriorofthesestreamsanddrainsfromStephanLakeintotheTalkeetnaRiver.MillerandMcAllister(1982)estimatethat30to40bearusethisstreameachsummer.From1980to1982,10%to35%oftheradio-co11aredbearinthebasinmovedtothePrairieCreekduringJulyandAugust.ThegreatestdistancetraveledbyabeartoreachPrairieCreekwasabout35mi(50km).Baseduponobservedhomeranges,thePrairieCreekspawningareaattractsbearfromanareaofabout2,200mi2(5,700km2),includingareastothenorthoftheSusitnaRiver..
Table K-3.Aerial Observations of Brown Bear by Season in Each of Five Habitat
Categories within the Upper/Middle Susitna Basin
Fall/Winter
Habitat Spring Summer October-Habitat
Type May June July August September Apri 1 Total
Spruce
Number of bear 44 50 17 16 9 5 141
Percentaget 1 (31.0)(29.6)(19.3)(17.6)(25.0)(13.2)
Riparian
Number of bear 16 26 22 20 4 1 89
Percentaget 1 (1l.3)(15.4)(25.0) (22.0)(11.1)(2.6)
Shrubland
Number of bear 39 75 46 52 21 5 238 ;:<;
Percentaget 1 (27.5) (44.4)(52.3) (57.1)(58.3)(13.2)I
I-'co
Tundra
Number of bear 12 14 1 1 0 0 28
Percentaget 1 (8.5)(8.3)(1.1)(1.1)(0)(0)
Othert 2
Number of bear 31 4 2 2 2 27 68
Percentaget 1 (21.8)(2.4)(2.3)(2.2)(5.6)(71.1)
Total observed 142 169 88 91 36 38 564
t 1 Percentage of total observations within an observation period.
t 2 Mostly snow and bare rock.
Source:Miller and McAllister (1982),Table 21.
Table K-3.Aerial Observations of Brown Bear by Season in Each of Five Habitat
Categories within the Upper/Middle Susitna Basin
Fall/Winter
Habitat Spring Summer October-Habitat
Type May June July August September Apri 1 Total
Spruce
Number of bear 44 50 17 16 9 5 141
Percentaget 1 (31.0)(29.6)(19.3)(17.6) (25.0)(13.2)
Riparian
Number of bear 16 26 22 20 4 1 89
Percentaget 1 (1l.3)(15.4) (25.0) (22.0) (11.1)(2.6)
Shrubland
Number of bear 39 75 46 52 21 5 238 ;:<;
Percentaget 1 (27.5)(44.4)(52.3) (57.1) (58.3)(13.2)I
I-'co
Tundra
Number of bear 12 14 1 1 0 0 28
Percentaget 1 (8.5)(8.3)(1.1)(1.1)(0)(0)
Othert 2
Number of bear 31 4 2 2 2 27 68
Percentaget 1 (21.8)(2.4)(2.3)(2.2)(5.6)(71.1)
Total observed 142 169 88 91 36 38 564
t 1 Percentage of total observations within an observation period.
t 2 Mostly snow and bare rock.
Source:Miller and McAllister (1982),Table 21.
K-19Movementofbrownbearstoareasofmooseorcaribouconcentrationsarenotwelldocumentedforthebasin.MillerandMcAllister(1982)doprovideevidencethatsomeindividualsmovedtocalvingareasoftheNelchinacaribouherd(Fig.K-6).Movementstomoosecalvingareascannotbereadilydistinguishedfrommovementstosprucehabitatinordertoexploitnew-growthplantforage.DENNINGBrownbearoverwinterinaninactivestateofwintersleeporhibernation(CraigheadandMitchell,1982).Duringthis inactiveperiod,bodytemperatureandmetabo1icactivityarereduced.Althoughindividualsmayawakenduringthisperiod,theygenerallydonotfeed,relyinginsteadonbodystoresoffattomeettheirenergyneeds.Therefore,intheearlyspring,emergingbearareinastateofnegativenutritionalbalance.Brownbearoverwinterwithindensexcavatedintoslopesofrelativelyloosesoils(CraigheadandMitchell,1982).Densservetominimizethermoregulatorydemandsduringwinterinactivity.Mostdensofbrownbeararenewlyexcavatedeachyear,althoughsomedensmaybereused.DuringstudiesintheupperandmiddleSusitnaBasin,brownbeardensweretypicallylocatedonsouth-facingslopesatanaverageelevationofabout4,000ft(1,200m)MSL(Miller,1983).Of31densfoundinthearea,onlythreeoccurredatelevationsbelow2,500ft(760m).Habitatsarounddensweretypicallyuplandtundraandshrubland.Noneofthedensobservedwerereusedduringthestudyperiodof1980-1982.BearstypicallyentereddensinOctoberandemergedinlateApril-earlyMay,aperiodofaboutsixmonths(Miller,.1983).Adultmalesgenerallyenterdenslaterandemergeearlierthanotherageandgenderclasses.K.2.1.1.5BlackBearBlackbear(Ursusamericanus)arethemostcommonNorthAmericanbear;inAlaskatheyrangenorthwardtotheBrooksRange(AlaskaDept.ofFishandGame,1973,1978;Pelton,1982).SpruceforestisaprincipalcomponentofblackbearhabitatinSouthcentralAlaska.Blackbearrangewidelyinresponsetovaryingavailabilityoffood.Althoughblackbearareomnivorous,animalmattermakesupasmallerproportion(5%-20%)ofthedietthanisthecaseforbrownbear(50%-60%).Dietsvarywithfoodavailabilityandincludefreshplantgrowthinspring,summerberries,andcarrion.Homerangesofmalesaregenerallylarger[2-80mi2(5-200km2)Jthanthoseoffemales[1-20mi2(2-50km2)J(Pelton,1982).Miller(1983)surveyedforblackbearina1,600-mi2(4,200-km2)studyareawithintheupperandmiddleSusitnaBasin.Baseduponthatsurvey,theApplicantestimatedthatintherangeof50to170blackbearwerepresentinthestudyarea,althoughmoremayhavebeenpresent(ExhibitE,Vol.6A,Chap.3,p.E-3-342).IntheupperandmiddleSusitnaBasin,thepopulationappearstobeproductiveandhealthyeventhoughtheextentofsuitablehabitatislimitedtoabout550mi2(1,400km2)(MillerandMcAllister,1982;Miller,1983).BlackbeartendedtoonlyusehabitatadjacenttothemainstemoftheSusitnaRiver(Fig.K-10).Inthespring,sprucehabitatreceivedthemostuse(ca.50%ofobservation)byblackbear(TableK-4).Throughouttheyear,blackbearobservationsinsprucehabitatexceeded30%oftotalobservations.Thatblackbearwererestrictedtolowlandhabitatisevidencedbythefactthatonly1%oftherelocationsoccurredatelevationsabove3,500ft(1,100m)MSL(Miller,1983).Therestrictedhabitatuseofblackwbearwasprobablyafunctionofavailabilityofsuitablecoverandforage,availabilityofsuitabledenningareas,andcompetitionfrombrownbearlocatedchieflyintheuplands.Asexpected,someblackbearmadeseasonalmovements,apparentlyinresponsetovaryingfoodavailability(MillerandMcAllister,1982).Insummer,anumberofindividualsmovedintotheshrub-dominatedtablelandsalongtheSusitnaRiver,principallytothenorth.Duringthesummermonths,blackbearwereoftenobserved(45%to55%ofobservations)inshrub1andhabitatadjacenttosprucehabitat.Thesemoveswereapparentlymotivatedbytheavailabilityoftheripeningberrycrop.Manymovesnecessitatedcrossingtheriverwithintheproposedimpoundmentzone.Blackbearreturnedtothesprucehabitatforwinter.ThebearoverwinteredindensalongtheSusitnaRiver,enteringmid-Septembertomid-OctoberandemergingfromearlyApriltomid-May(MillerandMcAllister,1982;Miller,1983).Densweretypicallylocatedinsteepterrainonsouth-facingslopeswithinforestedhabitat.Of54denslocated,onlytwowerefoundateleva-tionsabove3,100ft(940m)MSL;averageelevationwasabout2,000ft(600m)MSL.About50%ofthedenswerenaturalcavities,andabout50%ofthedenshadbeenpreviouslyused(Miller,1983).K.2.1.1.6GrayWolf'Graywolf(Canis~)rangethroughoutavarietyofhabitatsinSouthcentralAlaska,fromtundratoforest.Theprincipalhabitatfeaturedeterminingthepresenceofwolfappearstobetheavailabilityofsuitableprey(ParadisoandNowak,1982).WolfarealmostexclusivelyK-19Movementofbrownbearstoareasofmooseorcaribouconcentrationsarenotwelldocumentedforthebasin.MillerandMcAllister(1982)doprovideevidencethatsomeindividualsmovedtocalvingareasoftheNelchinacaribouherd(Fig.K-6).Movementstomoosecalvingareascannotbereadilydistinguishedfrommovementstosprucehabitatinordertoexploitnew-growthplantforage.DENNINGBrownbearoverwinterinaninactivestateofwintersleeporhibernation(CraigheadandMitchell,1982).Duringthis inactiveperiod,bodytemperatureandmetabo1icactivityarereduced.Althoughindividualsmayawakenduringthisperiod,theygenerallydonotfeed,relyinginsteadonbodystoresoffattomeettheirenergyneeds.Therefore,intheearlyspring,emergingbearareinastateofnegativenutritionalbalance.Brownbearoverwinterwithindensexcavatedintoslopesofrelativelyloosesoils(CraigheadandMitchell,1982).Densservetominimizethermoregulatorydemandsduringwinterinactivity.Mostdensofbrownbeararenewlyexcavatedeachyear,althoughsomedensmaybereused.DuringstudiesintheupperandmiddleSusitnaBasin,brownbeardensweretypicallylocatedonsouth-facingslopesatanaverageelevationofabout4,000ft(1,200m)MSL(Miller,1983).Of31densfoundinthearea,onlythreeoccurredatelevationsbelow2,500ft(760m).Habitatsarounddensweretypicallyuplandtundraandshrubland.Noneofthedensobservedwerereusedduringthestudyperiodof1980-1982.BearstypicallyentereddensinOctoberandemergedinlateApril-earlyMay,aperiodofaboutsixmonths(Miller,.1983).Adultmalesgenerallyenterdenslaterandemergeearlierthanotherageandgenderclasses.K.2.1.1.5BlackBearBlackbear(Ursusamericanus)arethemostcommonNorthAmericanbear;inAlaskatheyrangenorthwardtotheBrooksRange(AlaskaDept.ofFishandGame,1973,1978;Pelton,1982).SpruceforestisaprincipalcomponentofblackbearhabitatinSouthcentralAlaska.Blackbearrangewidelyinresponsetovaryingavailabilityoffood.Althoughblackbearareomnivorous,animalmattermakesupasmallerproportion(5%-20%)ofthedietthanisthecaseforbrownbear(50%-60%).Dietsvarywithfoodavailabilityandincludefreshplantgrowthinspring,summerberries,andcarrion.Homerangesofmalesaregenerallylarger[2-80mi2(5-200km2)Jthanthoseoffemales[1-20mi2(2-50km2)J(Pelton,1982).Miller(1983)surveyedforblackbearina1,600-mi2(4,200-km2)studyareawithintheupperandmiddleSusitnaBasin.Baseduponthatsurvey,theApplicantestimatedthatintherangeof50to170blackbearwerepresentinthestudyarea,althoughmoremayhavebeenpresent(ExhibitE,Vol.6A,Chap.3,p.E-3-342).IntheupperandmiddleSusitnaBasin,thepopulationappearstobeproductiveandhealthyeventhoughtheextentofsuitablehabitatislimitedtoabout550mi2(1,400km2)(MillerandMcAllister,1982;Miller,1983).BlackbeartendedtoonlyusehabitatadjacenttothemainstemoftheSusitnaRiver(Fig.K-10).Inthespring,sprucehabitatreceivedthemostuse(ca.50%ofobservation)byblackbear(TableK-4).Throughouttheyear,blackbearobservationsinsprucehabitatexceeded30%oftotalobservations.Thatblackbearwererestrictedtolowlandhabitatisevidencedbythefactthatonly1%oftherelocationsoccurredatelevationsabove3,500ft(1,100m)MSL(Miller,1983).Therestrictedhabitatuseofblackwbearwasprobablyafunctionofavailabilityofsuitablecoverandforage,availabilityofsuitabledenningareas,andcompetitionfrombrownbearlocatedchieflyintheuplands.Asexpected,someblackbearmadeseasonalmovements,apparentlyinresponsetovaryingfoodavailability(MillerandMcAllister,1982).Insummer,anumberofindividualsmovedintotheshrub-dominatedtablelandsalongtheSusitnaRiver,principallytothenorth.Duringthesummermonths,blackbearwereoftenobserved(45%to55%ofobservations)inshrub1andhabitatadjacenttosprucehabitat.Thesemoveswereapparentlymotivatedbytheavailabilityoftheripeningberrycrop.Manymovesnecessitatedcrossingtheriverwithintheproposedimpoundmentzone.Blackbearreturnedtothesprucehabitatforwinter.ThebearoverwinteredindensalongtheSusitnaRiver,enteringmid-Septembertomid-OctoberandemergingfromearlyApriltomid-May(MillerandMcAllister,1982;Miller,1983).Densweretypicallylocatedinsteepterrainonsouth-facingslopeswithinforestedhabitat.Of54denslocated,onlytwowerefoundateleva-tionsabove3,100ft(940m)MSL;averageelevationwasabout2,000ft(600m)MSL.About50%ofthedenswerenaturalcavities,andabout50%ofthedenshadbeenpreviouslyused(Miller,1983).K.2.1.1.6GrayWolf'Graywolf(Canis~)rangethroughoutavarietyofhabitatsinSouthcentralAlaska,fromtundratoforest.Theprincipalhabitatfeaturedeterminingthepresenceofwolfappearstobetheavailabilityofsuitableprey(ParadisoandNowak,1982).Wolfarealmostexclusively
K-20zot'")coLakeLouisezo0J-l-:----,.-r----------,----------tco1500W1490W1480W1470W1460W17Miles~BlackBearFigureK-IO.GeneralRangeofBlackBearintheUpper/MiddleSusitnaBasin.[Source:MillerandMcAllister,1982;Miller,1983JK-20zot'")coLakeLouisezo0J-l-:----,.-r----------,----------tco1500W1490W1480W1470W1460W17Miles~BlackBearFigureK-IO.GeneralRangeofBlackBearintheUpper/MiddleSusitnaBasin.[Source:MillerandMcAllister,1982;Miller,1983J
Table K-4.Aerial Observations of Black Bear by Season in Each of Five
Habitat Categories in the Upper/Middle Susitna Basin
Fall-Winter
Habitat Spring Summer October-Habitat
Type May June July August September April Total
Spruce
Number of bear 82 95 54 68 44 15 358
Percentaget 1 (50.3)(46.3) (35.8)(31.8)(30.8)(46.9)
Riparian
Number of bear 23 33 23 18 23 1 121
Percentaget 1 (14.1)(16.1)(15.2)(8.4)(16.1)(3.1)
Shrubland ;>;:
Number of bear 50 70 69 119 71 9 388 I
N
Percentaget 1 (30.7)(34.1) (45.7) (55.6)(49.7)(28.1)I-'
Tundra
Number of bear 3 3 3 6 2 0 17
Percentaget 1 (1.8)(1.5)(2.0)(2.8)(1.4)(0)
Othert 2
Number of bear 5 4 2 3 3 7 24
Percentaget 1 (3.1)(2.0)(1.3)(1.4)(2.1)(21.9)
Total observed 163 205 151 214 143 32 908
t 1 Percentage of observation in each observation period.
t 2 Mostly snow and bare rock.
Source:Miller and McAllister (1982),Table 44.
Table K-4.Aerial Observations of Black Bear by Season in Each of Five
Habitat Categories in the Upper/Middle Susitna Basin
Fall-Winter
Habitat Spring Summer October-Habitat
Type May June July August September April Total
Spruce
Number of bear 82 95 54 68 44 15 358
Percentaget 1 (50.3) (46.3) (35.8)(31.8)(30.8)(46.9)
Riparian
Number of bear 23 33 23 18 23 1 121
Percentaget 1 (14.1)(16.1)(15.2)(8.4)(16.1)(3.1)
Shrubland ;>;:
Number of bear 50 70 69 119 71 9 388 I
N
Percentaget 1 (30.7)(34.1) (45.7) (55.6)(49.7)(28.1)I-'
Tundra
Number of bear 3 3 3 6 2 0 17
Percentaget 1 (1.8)(1.5)(2.0)(2.8)(1.4)(0)
Othert 2
Number of bear 5 4 2 3 3 7 24
Percentaget 1 (3.1)(2.0)(1.3)(1.4)(2.1)(21.9)
Total observed 163 205 151 214 143 32 908
t 1 Percentage of observation in each observation period.
t 2 Mostly snow and bare rock.
Source:Miller and McAllister (1982),Table 44.
K-22carnivorous,andtheirdietgenerallyconsistsoflargepreysuchasmoose,caribou,andDall'ssheep.WolfpredationappearstobeamajorfactorinlimitingthesizesofAlaskanungulatepopulations(BishopandRausch,1974;Ballardetal.,1981b;Gasawayetal.,1983).Inthebasin,wolfapparentlyplayaminorroleinlimitingmoosenumbers,butdoconstitutetheprincipallimitingfactorforcaribou(Ballardetal.,1981a,b;Pitcher,1982,1983).Wolfgenerallyoccuringroups,orpacks,ofseveralindividuals.Duringrecentstudies,13knownorsuspectedwolfpacksrangedthroughtheupperandmiddleSusitnaBasin(Fig.K-11).Inthebasin,packsizesvariedfrom2to15individuals(Ballardetal.,1981b,1982e,1983b).Thetotalnumberofwolfinthebasinrangedfrom20to50from1980to1982.Ingeneral,wolfpackstendtomaintainexclusive,non-overlappingrangesorterritories(ParadisoandNowak,1982).Territorysizesintheprojectarearangedfrom360to980mi2(930to2,500km2)(Ballardetal.,1982e).Wolfmovementduringthesummergenerallycentersaroundthedenandrendezvoussite(ParadisoandNowak,1982).Intheprojectarea,wolfmovedseasonallyintodifferentareasoftheirrange.Lowerelevationsweregenerallyusedmorefrequentlyinwinterthaninsummer(Ballardetal.,1983b).Wolfmovementsappearedtobeaffectedbydistributionofsuitableprey,chieflymooseandcaribou.zoI"')coLakeLouisezo~1+5-0°:-W-------1-4-9"'o-W--------14-8"'o-W--------1-4-7,..o-W--------14-'16oW17MilesWOLFW%%%1EstimatedRange~KnownRangeFigureK-11.KnownandSuspectedTerritorialBoundariesofWolfPacksInhabitingtheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1983b:Fig.1JK-22carnivorous,andtheirdietgenerallyconsistsoflargepreysuchasmoose,caribou,andDall'ssheep.WolfpredationappearstobeamajorfactorinlimitingthesizesofAlaskanungulatepopulations(BishopandRausch,1974;Ballardetal.,1981b;Gasawayetal.,1983).Inthebasin,wolfapparentlyplayaminorroleinlimitingmoosenumbers,butdoconstitutetheprincipallimitingfactorforcaribou(Ballardetal.,1981a,b;Pitcher,1982,1983).Wolfgenerallyoccuringroups,orpacks,ofseveralindividuals.Duringrecentstudies,13knownorsuspectedwolfpacksrangedthroughtheupperandmiddleSusitnaBasin(Fig.K-11).Inthebasin,packsizesvariedfrom2to15individuals(Ballardetal.,1981b,1982e,1983b).Thetotalnumberofwolfinthebasinrangedfrom20to50from1980to1982.Ingeneral,wolfpackstendtomaintainexclusive,non-overlappingrangesorterritories(ParadisoandNowak,1982).Territorysizesintheprojectarearangedfrom360to980mi2(930to2,500km2)(Ballardetal.,1982e).Wolfmovementduringthesummergenerallycentersaroundthedenandrendezvoussite(ParadisoandNowak,1982).Intheprojectarea,wolfmovedseasonallyintodifferentareasoftheirrange.Lowerelevationsweregenerallyusedmorefrequentlyinwinterthaninsummer(Ballardetal.,1983b).Wolfmovementsappearedtobeaffectedbydistributionofsuitableprey,chieflymooseandcaribou.zoI"')coLakeLouisezo~1+5-0°:-W-------1-4-9"'o-W--------14-8"'o-W--------1-4-7,..o-W--------14-'16oW17MilesWOLFW%%%1EstimatedRange~KnownRangeFigureK-11.KnownandSuspectedTerritorialBoundariesofWolfPacksInhabitingtheUpper/MiddleSusitnaBasin.[Source:Ballardetal.,1983b:Fig.1J
K-23K.2.1.1.7BeaverBeaver(Castorcanadensis)aresemiaquaticfurbearersrangingalongmostof thestreamsofSouthcentralAlaska(Hill,1982).Beavertypicallyprefersmallstreamsorslow-flowingwatersorlakesandimpoundmentswithstablewaterlevels.Fast-flowingwatersorfluctuatingwaterlevelsaregenerallyunsuitable(SloughandSadleir,1977;Allen,1982a).Beaverrequireaminimumof1.5ft(0.5m)ofice-freewatertosuccessfullyoverwinterinlodgesordens(SloughandSadleir,1977).Beaverareuncommonalongmuchof theSusitnaRiveranditsmajortributaries(Gipsonetal.,1982).Aeria1surveysidentifiedthemajorityofbeaversignin1akesonthebenchesabovetherivervalleyatelevationsof2,000to2,400ft(610to730m).Beaverpopulationsalsowereobservedalongtheslower-flowingsectionsofmostmajorcreeks.Gipsonetal.(1982)observednoactivelodgesordensontheriveritselforonthelowerreachesoftributarystreams.Ina1982survey,densitiesofaboutoneactivebeaverlodgepermile(0.5/km)werefoundalongthemiddlestretchesofDeadmanCreek(ExhibitE,Vol.6A,Chap.3,p.E-3-357);higherdensitiesoccurredintheupper,marshyreachesofthecreek.Anestimated65beaveroccupiedthiscreek.K.2.1.1.8PineMartenPinemarten(Martesamericana)aretypicallyfoundinspruceandmixedforesthabitatinAlaska(Stricklande~1982;Allen,1982b).Thus,intheprojectareathisfurbearerisrestrictedtohabitatadjacenttothemainstemSusitnaRiver.Foodsincludesmallmammals,passerinebirds,invertebrates,andberries.Surveysin1980indicatedthatmartenoccurredatleastfromPortageCreektotheTyoneRiver(Gipsonetal.,1982).Theywereconsideredlocallyabundantintheareasof thetwoproposedimpoundments.Densitieswereestimatedasabout2/mi2(0.8/km2)fromDeadmantoWatanacreeks.Trackcountsin1980identifiedmostnumerousmartensigninspruceforestbelow3,300ft(1,000m)(Gipsonetal.,1982).K.2.1.1.9OtherFurbearersAnumberofotherfurbearersoccurwithintheupperandmiddleSusitnaBasin.Wolverine(Gulo~)occurthroughoutthearea.Anestimated120wolverineoccupiedthebasinin1980(GardnerandBallard,1982).Muskrat(Ondatrazibethicus)occurthroughouttheSusitnadrainageuptoabout3,300ft(1,000m)MSL.Mostmuskratsignwasobservedinlakesabovetherivervalley[900to2,800ft(260to860m)MSL]andalongtheslowerstretchesoflargercreeks(Gipsonetal.,1982).Riverotter(Enhydralutra)andmink(Mustelavison)werecommonalongtheriverandmajortributariesupto4,000ft(1,200m).MinkweremostabundantintheupperreachesoftheproposedWatanaimpoundmentsite.Redfox(Vulpesvulpes)havebeenobservedthroughouttheprojectarea.Gipsonetal.(1982)mostfrequentlyobservedfoxathighelevationsnearorabovethetimberline.Theauthorsestimatedadensity4-6fox/32mi2(83km2)andconcludedthatdensitieswerelowrelativetootherareasinAlaska.Otherfurbearersintheprojectareaincludelynx(Felis~),coyote(Canislatrans),andweasels(Mustelaerminea,M.nivalis).K.2.1.1.10OtherMammalsSma11non-gamemammalsoccurthroughoutthearea(Kesse1eta1.,1982).Shrews(Sorexspp.,Microsorexhoyi)andred-backedvoles(Clethrionomysrutilus)wereobservedinallhabitattypes.Incontrast,othervoles(Microtusspp.)displayedastrongpreferenceforopen,unforestedhabitat.Lemmings(Lemmussibericus,Snyaptomysborealis)wereuncommoninthearea.Arcticgroundsquirrels(Spermophilusparryii)wereprevalentinherbaceoustundraandshrublandabovethetimberline.Hoarymarmots(Marmotacaligata)andpika(Ochotonacollaris)weregenerallyrestrictedtotundra/talushabitatathigherelevations.Thearborealredsquirrel(Tamiasciurushudsonicus)wasfoundinconiferousforesthabitat.Snowshoehare(Lepusamericanus)wererela-tivelysparseinthearea,presumablybecauseofthepaucityofsuitablehabitat,i.e.,recentburnsandriparianshrubthickets.K.2.1.1.11GoldenEagleGoldeneagle(Aguilachrysaetos)nestincliffhabitatthroughoutthestate.AlargeportionofthesuitablenestinglocationsforgoldeneagleinSouthcentralAlaskaoccursalongthemiddleSusitnaRiverintheareaoftheproposedproject(ExhibitE,Vol.6A,Chap.3,p.E-3-444).ThenumberofobservedactivenestsintheupperandmiddleSusitnaBasinsuggeststhattheareasupportsoneof thehighestpopulationsinthestate(Kesseletal.,1982).Of16knownnestinglocationsintheprojectarea,7or8wereintheprojectedDevilCanyonandWatanaimpoundmentK-23K.2.1.1.7BeaverBeaver(Castorcanadensis)aresemiaquaticfurbearersrangingalongmostof thestreamsofSouthcentralAlaska(Hill,1982).Beavertypicallyprefersmallstreamsorslow-flowingwatersorlakesandimpoundmentswithstablewaterlevels.Fast-flowingwatersorfluctuatingwaterlevelsaregenerallyunsuitable(SloughandSadleir,1977;Allen,1982a).Beaverrequireaminimumof1.5ft(0.5m)ofice-freewatertosuccessfullyoverwinterinlodgesordens(SloughandSadleir,1977).Beaverareuncommonalongmuchof theSusitnaRiveranditsmajortributaries(Gipsonetal.,1982).Aeria1surveysidentifiedthemajorityofbeaversignin1akesonthebenchesabovetherivervalleyatelevationsof2,000to2,400ft(610to730m).Beaverpopulationsalsowereobservedalongtheslower-flowingsectionsofmostmajorcreeks.Gipsonetal.(1982)observednoactivelodgesordensontheriveritselforonthelowerreachesoftributarystreams.Ina1982survey,densitiesofaboutoneactivebeaverlodgepermile(0.5/km)werefoundalongthemiddlestretchesofDeadmanCreek(ExhibitE,Vol.6A,Chap.3,p.E-3-357);higherdensitiesoccurredintheupper,marshyreachesofthecreek.Anestimated65beaveroccupiedthiscreek.K.2.1.1.8PineMartenPinemarten(Martesamericana)aretypicallyfoundinspruceandmixedforesthabitatinAlaska(Stricklande~1982;Allen,1982b).Thus,intheprojectareathisfurbearerisrestrictedtohabitatadjacenttothemainstemSusitnaRiver.Foodsincludesmallmammals,passerinebirds,invertebrates,andberries.Surveysin1980indicatedthatmartenoccurredatleastfromPortageCreektotheTyoneRiver(Gipsonetal.,1982).Theywereconsideredlocallyabundantintheareasof thetwoproposedimpoundments.Densitieswereestimatedasabout2/mi2(0.8/km2)fromDeadmantoWatanacreeks.Trackcountsin1980identifiedmostnumerousmartensigninspruceforestbelow3,300ft(1,000m)(Gipsonetal.,1982).K.2.1.1.9OtherFurbearersAnumberofotherfurbearersoccurwithintheupperandmiddleSusitnaBasin.Wolverine(Gulo~)occurthroughoutthearea.Anestimated120wolverineoccupiedthebasinin1980(GardnerandBallard,1982).Muskrat(Ondatrazibethicus)occurthroughouttheSusitnadrainageuptoabout3,300ft(1,000m)MSL.Mostmuskratsignwasobservedinlakesabovetherivervalley[900to2,800ft(260to860m)MSL]andalongtheslowerstretchesoflargercreeks(Gipsonetal.,1982).Riverotter(Enhydralutra)andmink(Mustelavison)werecommonalongtheriverandmajortributariesupto4,000ft(1,200m).MinkweremostabundantintheupperreachesoftheproposedWatanaimpoundmentsite.Redfox(Vulpesvulpes)havebeenobservedthroughouttheprojectarea.Gipsonetal.(1982)mostfrequentlyobservedfoxathighelevationsnearorabovethetimberline.Theauthorsestimatedadensity4-6fox/32mi2(83km2)andconcludedthatdensitieswerelowrelativetootherareasinAlaska.Otherfurbearersintheprojectareaincludelynx(Felis~),coyote(Canislatrans),andweasels(Mustelaerminea,M.nivalis).K.2.1.1.10OtherMammalsSma11non-gamemammalsoccurthroughoutthearea(Kesse1eta1.,1982).Shrews(Sorexspp.,Microsorexhoyi)andred-backedvoles(Clethrionomysrutilus)wereobservedinallhabitattypes.Incontrast,othervoles(Microtusspp.)displayedastrongpreferenceforopen,unforestedhabitat.Lemmings(Lemmussibericus,Snyaptomysborealis)wereuncommoninthearea.Arcticgroundsquirrels(Spermophilusparryii)wereprevalentinherbaceoustundraandshrublandabovethetimberline.Hoarymarmots(Marmotacaligata)andpika(Ochotonacollaris)weregenerallyrestrictedtotundra/talushabitatathigherelevations.Thearborealredsquirrel(Tamiasciurushudsonicus)wasfoundinconiferousforesthabitat.Snowshoehare(Lepusamericanus)wererela-tivelysparseinthearea,presumablybecauseofthepaucityofsuitablehabitat,i.e.,recentburnsandriparianshrubthickets.K.2.1.1.11GoldenEagleGoldeneagle(Aguilachrysaetos)nestincliffhabitatthroughoutthestate.AlargeportionofthesuitablenestinglocationsforgoldeneagleinSouthcentralAlaskaoccursalongthemiddleSusitnaRiverintheareaoftheproposedproject(ExhibitE,Vol.6A,Chap.3,p.E-3-444).ThenumberofobservedactivenestsintheupperandmiddleSusitnaBasinsuggeststhattheareasupportsoneof thehighestpopulationsinthestate(Kesseletal.,1982).Of16knownnestinglocationsintheprojectarea,7or8wereintheprojectedDevilCanyonandWatanaimpoundment
K-24areas(ExhibitE,Vol.6B,Chap.3,TableE.3.160).Goldeneaglestendtohuntinopentreelessareasoralongtheforestedge(Bent,1961;Armstrong,1981).Principalfoodsaresmallmammalsandbirds.K.2.1.1.12BaldEagleThebaldeagle(Leucocephalushaliaeetus)isanuncommonbreederinthebasin;themajorityofbaldeaglesnestalongcoastalAlaska,southoftheupperandmiddleSusitnaBasin.SuitablenestinglocationsforbaldeaglearelimitedupstreamfromDevilCanyon,andtheprincipalconcentrationsoftheseraptorsaresituateddownstream.Sixnestinglocationsaresituatedintheprojectarea(ExhibitE,Vol.6B,Chap.3,TableE.3.160).Nestsoccurinthetopsoftalltreesandrarelyinriverinecliffs.BaldeagleshuntoveropenwatersoftheSusitnaandmajortributaries.Fishandwaterbirdsarelikelyprincipalpreyofthisspeciesintheprojectarea.Duringsalmonspawning,PrairieCreekmaybeasourceofprey.K.2.1.1.13OtherRaptorsandRavenGyrfalcons(Falcorusticolus)areuncommoninSouthcentralAlaskabutdoregularlynestintheAlaskaRange-;-tOthenorthoftheprojectarea(Kesseletal.,1982).Threegyrfalconnestlocationshavebeenobservedintheprojectarea.Threegoshawk(Accipitergentilis)nestlocationshavebeenobservedintheprojectarea,and21raven(Corvuscorax)nestlocationshavealsobeenobservedduring1980-1981surveys.SomesuitablenestinghabitatforotherraptorsdoesoccuralongtheSusitnaRiver(ExhibitE,Vol.6A,Chap.3,p.E-3-276).K.2.1.1.14TrumpeterSwanTrumpeterswan(Olorbuccinator)commonlybreedinlacustrinehabitatintheupperandmiddleSusitnaBasin,principallyeastoftheSusitnaRiver,betweentheOshetnaandMcLarenRivers(Kesseleta1.,1982).ThisareasupportsthewesternedgeoftheGulkanaBasinpopulation,whichisincreasinginsize.InAlaska,breedinghabitatfortrumpeterswansgenerallyconsistsofwaterbodieswithstablewaterlevelsandwithdensestandsofemergentvegetation(Hansenetal.,1971).Althoughsuitablebreedinghabitatoccurswithintheupperandmiddlebasin,nobreedingswanswereobservedinthevicinityoftheproposedprojectfeatures.K.2.1.1.15OtherWaterbirdsThebasindoesnotsupportlargeconcentrationsofwaterbirdseitherduringmigrationorbreed-ing,althoughuseofdiscretewaterbodiesvariedconsiderably(Kesseletal.,1982).Surveysin1980-1981indicatedthatthebasindoesnotappeartobeamajormigrationrouteforwaterbirds.ThelakesintheprojectareareceivelowusecomparedtoareasinInteriorAlaska(Figs.K-12andK-13).Toidentifythewaterbodiesofmostvaluetowaterbirds(loons,grebes,andwaterfowl),Kesseleta1.(1982)derivedare1ative"ImportanceValue"foreachseasonforeachwaterbodysurveyed(Figs.K-12andK-13).Theimportancevalueofeachwaterbodyatagivenseasonwasthesumofrelativemeanabundance(numberofbirds)fromthecensuses,therelativemeandensity(birds/km2),andtherelativemeanspeciesrichness(numberofspecies):IMPORTANCEVALUEofawaterbodymeandensityofbirdsonwaterbodysumofmeandensitiesofbirdsonallwaterbodiesmean.numberofbirdsonwaterbody=+sumofmeannumberofbirdsonallwaterbodiesmeannumberofsp~ciesonwaterbody+sumofnumberofspeciesonallwaterbodiesThisderivedvalueisanalogoustoimportancevaluesusedbyplantecologistsinevaluatingimportanceofaspecieswithinaplantassociationbycombiningmeasuresofabundance(Greig-Smith,1983).K.2.1.1.16OtherBirdsMorethan130speciesofbirdswereidentifiedinthebasinin1980-1982(Kesseleta1.,1982).Forestandwoodlandhabitatsgenerallysupportedhigherdensitiesofbirdsthandidshrubhabitats.Coniferousforestssupportedfewerbirdsthandidotherforesttypes.Alpinetundrasupportedthelowestnumberofbirds,althoughthistypesupportedspeciesgenerallynotfoundelsewhere.K-24areas(ExhibitE,Vol.6B,Chap.3,TableE.3.160).Goldeneaglestendtohuntinopentreelessareasoralongtheforestedge(Bent,1961;Armstrong,1981).Principalfoodsaresmallmammalsandbirds.K.2.1.1.12BaldEagleThebaldeagle(Leucocephalushaliaeetus)isanuncommonbreederinthebasin;themajorityofbaldeaglesnestalongcoastalAlaska,southoftheupperandmiddleSusitnaBasin.SuitablenestinglocationsforbaldeaglearelimitedupstreamfromDevilCanyon,andtheprincipalconcentrationsoftheseraptorsaresituateddownstream.Sixnestinglocationsaresituatedintheprojectarea(ExhibitE,Vol.6B,Chap.3,TableE.3.160).Nestsoccurinthetopsoftalltreesandrarelyinriverinecliffs.BaldeagleshuntoveropenwatersoftheSusitnaandmajortributaries.Fishandwaterbirdsarelikelyprincipalpreyofthisspeciesintheprojectarea.Duringsalmonspawning,PrairieCreekmaybeasourceofprey.K.2.1.1.13OtherRaptorsandRavenGyrfalcons(Falcorusticolus)areuncommoninSouthcentralAlaskabutdoregularlynestintheAlaskaRange-;-tOthenorthoftheprojectarea(Kesseletal.,1982).Threegyrfalconnestlocationshavebeenobservedintheprojectarea.Threegoshawk(Accipitergentilis)nestlocationshavebeenobservedintheprojectarea,and21raven(Corvuscorax)nestlocationshavealsobeenobservedduring1980-1981surveys.SomesuitablenestinghabitatforotherraptorsdoesoccuralongtheSusitnaRiver(ExhibitE,Vol.6A,Chap.3,p.E-3-276).K.2.1.1.14TrumpeterSwanTrumpeterswan(Olorbuccinator)commonlybreedinlacustrinehabitatintheupperandmiddleSusitnaBasin,principallyeastoftheSusitnaRiver,betweentheOshetnaandMcLarenRivers(Kesseleta1.,1982).ThisareasupportsthewesternedgeoftheGulkanaBasinpopulation,whichisincreasinginsize.InAlaska,breedinghabitatfortrumpeterswansgenerallyconsistsofwaterbodieswithstablewaterlevelsandwithdensestandsofemergentvegetation(Hansenetal.,1971).Althoughsuitablebreedinghabitatoccurswithintheupperandmiddlebasin,nobreedingswanswereobservedinthevicinityoftheproposedprojectfeatures.K.2.1.1.15OtherWaterbirdsThebasindoesnotsupportlargeconcentrationsofwaterbirdseitherduringmigrationorbreed-ing,althoughuseofdiscretewaterbodiesvariedconsiderably(Kesseletal.,1982).Surveysin1980-1981indicatedthatthebasindoesnotappeartobeamajormigrationrouteforwaterbirds.ThelakesintheprojectareareceivelowusecomparedtoareasinInteriorAlaska(Figs.K-12andK-13).Toidentifythewaterbodiesofmostvaluetowaterbirds(loons,grebes,andwaterfowl),Kesseleta1.(1982)derivedare1ative"ImportanceValue"foreachseasonforeachwaterbodysurveyed(Figs.K-12andK-13).Theimportancevalueofeachwaterbodyatagivenseasonwasthesumofrelativemeanabundance(numberofbirds)fromthecensuses,therelativemeandensity(birds/km2),andtherelativemeanspeciesrichness(numberofspecies):IMPORTANCEVALUEofawaterbodymeandensityofbirdsonwaterbodysumofmeandensitiesofbirdsonallwaterbodiesmean.numberofbirdsonwaterbody=+sumofmeannumberofbirdsonallwaterbodiesmeannumberofsp~ciesonwaterbody+sumofnumberofspeciesonallwaterbodiesThisderivedvalueisanalogoustoimportancevaluesusedbyplantecologistsinevaluatingimportanceofaspecieswithinaplantassociationbycombiningmeasuresofabundance(Greig-Smith,1983).K.2.1.1.16OtherBirdsMorethan130speciesofbirdswereidentifiedinthebasinin1980-1982(Kesseleta1.,1982).Forestandwoodlandhabitatsgenerallysupportedhigherdensitiesofbirdsthandidshrubhabitats.Coniferousforestssupportedfewerbirdsthandidotherforesttypes.Alpinetundrasupportedthelowestnumberofbirds,althoughthistypesupportedspeciesgenerallynotfoundelsewhere.
K-25FigureK-12.ImportanceValuesofWaterBodiesforMigrantWaterfowlintheUpper/MiddleSusitnaBasin(WB)andUpperTananaRiverValley--Spring1980.[Source:ExhibitE,Vol.6B,Chap.3,Fig.E.3.106JFigureK-13.ImportanceValuesofWaterBodiesforMigrantWaterfowlintheUpper/MiddleSusitnaBasin(WB),andUpperTananaRiverValleyandScottieCreekArea-Fall1980.[Source:ExhibitE,Vol.6B,Chap.3,Fig.E.3.107JK-25FigureK-12.ImportanceValuesofWaterBodiesforMigrantWaterfowlintheUpper/MiddleSusitnaBasin(WB)andUpperTananaRiverValley--Spring1980.[Source:ExhibitE,Vol.6B,Chap.3,Fig.E.3.106JFigureK-13.ImportanceValuesofWaterBodiesforMigrantWaterfowlintheUpper/MiddleSusitnaBasin(WB),andUpperTananaRiverValleyandScottieCreekArea-Fall1980.[Source:ExhibitE,Vol.6B,Chap.3,Fig.E.3.107J
K-26K.2.1.1.17HumanUseandManagementofWildlifeAprincipalhumanuseoftheupperandmiddleSusitnaBasinistheharvestingofbiggameandfurbearers(seeAppendicesFandL).Wildlifeharvestingiscarriedoutforl'ecreational,subsistence,andcommercialpurposes.Wildlifedirectlyandindirectlycontributetotheeconomyofthissparselysettledbasinandadjacentareas(seeAppendixN).Asecondaryhumanuseisnon-consumptiveviewingofwildlife,chieflybiggameandbirds.Thisrecreationaluseisgenerallyrestrictedtotheperipheryoftheaffectedprojectarea.TheresponsibilityforregulatinghumanusesofwildlifeandmanagingwildliferesourcesofAlaskarestsintheAlaskaDepartmentofFishandGame,whichimplementsthemanagementpoliciesoftheAlaskaBoardofGame.TheregionsurroundingtheprojectisadministrativelydividedintoGameManagementUnits(GMU)(Fig.K-14),andmostdataonhumanuseofwildliferesourcesarecollectedonthebasisofmanagementunits.TheprincipalprojectfeaturesaresituatedinGMU13.Accesstothecoreoftheprojectareaislimitedbythenumberandqualityofgroundtransporta-tionroutes(seeAppendixN).Theprincipalmodesoftransportareair;off-road,all-terrainvehicles;andacombinationofhighwayandfootaccess(ExhibitE,Vol.7,Chap.5,p.E-5-111).Inaddition,boataccessisavailablefromTalkeetnatoDevilCanyonandfromDenaliHighwaytoVeeCanyon.Limitedaccesstotheareaserves,inpart,asaconstrainingfactoronthehumanuseofthebasin'swildliferesources.Theprincipalhumanuseofbig-gameanimalsisforsporthunting.Thereisnodirectcommercialexploitationofgamepopulations(ExhibitE,Vol.7,Chap.5,p.E-5-102),butcommercialtrappingandsomehuntingoffurbearerstoobtainpeltsdoesoccur.SubsistenceusesofwildliferesourceshavearecognizedpriorityunderbothFederalandstatelaws,providedthatsuchusesdonotinterferewithwildlifeconservationgoals.Subsistenceusersharvestgameandfurbearersprincipallyasasourceoffood,clothing,orotherutili-tarianpurposes.Theseusergoalsencompassboththeobjectiveofobtainingqualitygoodsatrelativelylowcostandfulfillingofculturaltraditionsandobligations.Thus,subsistenceuseshavebotheconomicandsocioculturalsignificance(seeAppendixN).Subsistenceuserstatisticsarenotdistinguishableinharveststatisticsforgamespecies,withtheexceptionofcaribou.Therefore,specificsubsistenceuserpatternsfortheareaarenotcurrentlyknownandareincorporatedintothegeneralusepatternsdiscussedbelow.Indirectcommercialbenefitsaccruefromrecreationalandsubsistencehuntingofgamespecies.Biggamehuntingbynon-residentsofAlaskarequiresbylawtheemploymentoflicensedguides.Inadditiontoofferingguidingservices,theseguidesmayprovidetransportation,lodging,food,orcampingservices.Thereareanumberoflodgesinthegeneralregionoftheproposedprojectthatserveconsumptiveandnon-consumptiveusersofgameresourcesintheimpactarea.Inaddition,financialgaincanaccruetointerestsoutsidetheprojectregionthroughsupplyinguserswithtransportation,food,equipment,taxidermyservices,andmeatandhidepreparation.Theprincipalgamespeciesintheareathatwouldbeaffectedbytheprojectaremoose,caribou,Dall'ssheep,blackandbrownbear,wolf,andwolverine.Thestatusofthesepopulationshasbeendiscussedindividuallyabove.Theeconomicimportanceofeachspeciesisdifficulttoascertain.Thereisnoinformationonthebusinessvolumeassociatedwitheachspecies.More-over,huntsareoftenconductedascombinedhuntsandcostsarenotapportionedtoeachspecies.Inlieuof.suchdata,relativeimportancecanbeexpressedonthebasisoftakeinGMU13asaproportionofstatewidetakeduring1978-1979(ExhibitE,Vol.7,Chap.5,p.E-5-110):moose--14.5%;wolf--9.0%;blackbear--5.0%;caribou--9.0%;brownbear--8.0%.Moosearetakenbynonresidentsprincipallyforantlertrophies,whereasresidentstakemooseformeatandrecreationalactivity.MostresidenthuntersinGMU13, 14,and16arefromtheAnchorage-PalmerandFairbanksareas.Intensityofhuntingandhuntingsuccesshasvariedconsiderablyfrom1970(Fig.K-15).HuntingintensityiscontrolledbyAlaskaDepartmentofFishandGameregulationsthroughthreebasicmethods:(1)1imitingthehuntingseason,(2)establishingharvestquotas,and(3)imposingdirectlimitationsoneffort,e.g.,issuingalimitednumberofpermits(AlaskaDept.ofFishandGame,1983).Thesemethodshavebeenusedtovaryingdegreesincontrollingharvestofmooseandothergameintheaffectedgamemanagementunits.Successrate(takeperhunter)inGMU13hasvariedoverthelast12yearsfrom0.19to0.36(mean=0.27)(Fig.K-15).Inthelate1960s,successratesrangedfrom0.3to0.5(ExhibitE,Vol.7,Chap.5,p.E-5-117).Varyingsuccessratesarefunctionsofvaryingmoosepopulationsizeandvaryingregulationsovertheyears.Thevariabilityofsuccessratesovertimemakesitimpossib1etogenera1izeabouttheovera11qualityofhuntingexperienceintheaffectedmanagementunits.K-26K.2.1.1.17HumanUseandManagementofWildlifeAprincipalhumanuseoftheupperandmiddleSusitnaBasinistheharvestingofbiggameandfurbearers(seeAppendicesFandL).Wildlifeharvestingiscarriedoutforl'ecreational,subsistence,andcommercialpurposes.Wildlifedirectlyandindirectlycontributetotheeconomyofthissparselysettledbasinandadjacentareas(seeAppendixN).Asecondaryhumanuseisnon-consumptiveviewingofwildlife,chieflybiggameandbirds.Thisrecreationaluseisgenerallyrestrictedtotheperipheryoftheaffectedprojectarea.TheresponsibilityforregulatinghumanusesofwildlifeandmanagingwildliferesourcesofAlaskarestsintheAlaskaDepartmentofFishandGame,whichimplementsthemanagementpoliciesoftheAlaskaBoardofGame.TheregionsurroundingtheprojectisadministrativelydividedintoGameManagementUnits(GMU)(Fig.K-14),andmostdataonhumanuseofwildliferesourcesarecollectedonthebasisofmanagementunits.TheprincipalprojectfeaturesaresituatedinGMU13.Accesstothecoreoftheprojectareaislimitedbythenumberandqualityofgroundtransporta-tionroutes(seeAppendixN).Theprincipalmodesoftransportareair;off-road,all-terrainvehicles;andacombinationofhighwayandfootaccess(ExhibitE,Vol.7,Chap.5,p.E-5-111).Inaddition,boataccessisavailablefromTalkeetnatoDevilCanyonandfromDenaliHighwaytoVeeCanyon.Limitedaccesstotheareaserves,inpart,asaconstrainingfactoronthehumanuseofthebasin'swildliferesources.Theprincipalhumanuseofbig-gameanimalsisforsporthunting.Thereisnodirectcommercialexploitationofgamepopulations(ExhibitE,Vol.7,Chap.5,p.E-5-102),butcommercialtrappingandsomehuntingoffurbearerstoobtainpeltsdoesoccur.SubsistenceusesofwildliferesourceshavearecognizedpriorityunderbothFederalandstatelaws,providedthatsuchusesdonotinterferewithwildlifeconservationgoals.Subsistenceusersharvestgameandfurbearersprincipallyasasourceoffood,clothing,orotherutili-tarianpurposes.Theseusergoalsencompassboththeobjectiveofobtainingqualitygoodsatrelativelylowcostandfulfillingofculturaltraditionsandobligations.Thus,subsistenceuseshavebotheconomicandsocioculturalsignificance(seeAppendixN).Subsistenceuserstatisticsarenotdistinguishableinharveststatisticsforgamespecies,withtheexceptionofcaribou.Therefore,specificsubsistenceuserpatternsfortheareaarenotcurrentlyknownandareincorporatedintothegeneralusepatternsdiscussedbelow.Indirectcommercialbenefitsaccruefromrecreationalandsubsistencehuntingofgamespecies.Biggamehuntingbynon-residentsofAlaskarequiresbylawtheemploymentoflicensedguides.Inadditiontoofferingguidingservices,theseguidesmayprovidetransportation,lodging,food,orcampingservices.Thereareanumberoflodgesinthegeneralregionoftheproposedprojectthatserveconsumptiveandnon-consumptiveusersofgameresourcesintheimpactarea.Inaddition,financialgaincanaccruetointerestsoutsidetheprojectregionthroughsupplyinguserswithtransportation,food,equipment,taxidermyservices,andmeatandhidepreparation.Theprincipalgamespeciesintheareathatwouldbeaffectedbytheprojectaremoose,caribou,Dall'ssheep,blackandbrownbear,wolf,andwolverine.Thestatusofthesepopulationshasbeendiscussedindividuallyabove.Theeconomicimportanceofeachspeciesisdifficulttoascertain.Thereisnoinformationonthebusinessvolumeassociatedwitheachspecies.More-over,huntsareoftenconductedascombinedhuntsandcostsarenotapportionedtoeachspecies.Inlieuof.suchdata,relativeimportancecanbeexpressedonthebasisoftakeinGMU13asaproportionofstatewidetakeduring1978-1979(ExhibitE,Vol.7,Chap.5,p.E-5-110):moose--14.5%;wolf--9.0%;blackbear--5.0%;caribou--9.0%;brownbear--8.0%.Moosearetakenbynonresidentsprincipallyforantlertrophies,whereasresidentstakemooseformeatandrecreationalactivity.MostresidenthuntersinGMU13, 14,and16arefromtheAnchorage-PalmerandFairbanksareas.Intensityofhuntingandhuntingsuccesshasvariedconsiderablyfrom1970(Fig.K-15).HuntingintensityiscontrolledbyAlaskaDepartmentofFishandGameregulationsthroughthreebasicmethods:(1)1imitingthehuntingseason,(2)establishingharvestquotas,and(3)imposingdirectlimitationsoneffort,e.g.,issuingalimitednumberofpermits(AlaskaDept.ofFishandGame,1983).Thesemethodshavebeenusedtovaryingdegreesincontrollingharvestofmooseandothergameintheaffectedgamemanagementunits.Successrate(takeperhunter)inGMU13hasvariedoverthelast12yearsfrom0.19to0.36(mean=0.27)(Fig.K-15).Inthelate1960s,successratesrangedfrom0.3to0.5(ExhibitE,Vol.7,Chap.5,p.E-5-117).Varyingsuccessratesarefunctionsofvaryingmoosepopulationsizeandvaryingregulationsovertheyears.Thevariabilityofsuccessratesovertimemakesitimpossib1etogenera1izeabouttheovera11qualityofhuntingexperienceintheaffectedmanagementunits.
20GULFOFALASKAADAMs/rES25oFAIRBANKSFigureK-14.G,meManagementUnit,(GMU)ofSOutheentra)A)aska.[Source,A)a'kaDept.OfFj'handG'me.1981]20GULFOFALASKAADAMs/rES25oFAIRBANKSFigureK-14.G,meManagementUnit,(GMU)ofSOutheentra)A)aska.[Source,A)a'kaDept.OfFj'handG'me.1981]
5
w
(/)
(/J
0
a:4 /~0
w
:E
......
LL.
Z
::)"
0
J:3 I \
(/)
LL.,\
c 7':
I
t1 \
w N
0
(Xl12a:
(/J
\
C
C
\
Z
z 2
\
10 ::)
«
\
J:
(/J
::)
\~t:.--LI.,A 8
0
\~',,J:1 \~6"'''''ir--&-_-tf , /
-16
......
6...~}{.....--tf
1970 1972 1974 1976 1978 1980 1982
Figure K-15.Moose Hunting Intensity and Take for GMU13.(Solid line indicates number of
hunters,dashed line indicates number of moose.)[Source:Exhibit E,Vol.7,
Chap.5,Table E.5.51]
5
(/Ja:4 20 ww(/)......0Z~18 0::)":EJ:3 I \16 LL.LL.,\00t1\(J)(/J \14 cc\w 7':
I
NZ2\12 a:(Xl
«\c(/J \z::)\10 ::)0
J:\/l:J.--l:J.J:
......1 \l:J.."../,A 8
l:J././'otr-~""'-d ,".".,Y::f ,
}f/6
1970 1972 1974 1976 1978 1980 1982
Figure K-15.Moose Hunting Intensity and Take for GMU13.(Solid line indicates number of
hunters,dashed line indicates number of moose.)[Source:Exhibit E,Vol.7,
Chap.5,Table E.5.51]
K-29Caribouhuntingprovidesbothmeatandrecreationalexperiencetoregionalhunters.TheNelchinacaribouherdiscentrallylocatedtothemajorpopulationcentersofAlaska.Therefore,usersofthisresourcearedrawnprincipallyfromtheAnchorageandFairbanksareas.CurrenthunterparticipationinharvestingNelchinacaribouislessthan30%ofthatoccurringintheearly1970s(ExhibitE,Vol.7,Chap.5,p.E-5-112).Thisreductioninhuntingintensityhasresultedfromplacinglimitsonthenumberofpermitsavailabletohunters,aswellasfromtheestablish-mentofabaglimitofoneanimalperyear.Theselimitationsaredesignedtomaintaintheherdsizeatabout20,000individuals,wellbelowhistoricpopulationlevels(Pitcher,1982,1983).ThenumberofcaribouhuntingpermitsavailableinGMU13and14isfarlessthanthedemand.In1980,forexample,morethan6,800huntersappliedfor1,300permits,aratioof5:1(ExhibitE,Vol.7,Chap.5,p.E-5-113).Controlofthehuntingintensityhasledtoamain-tenanceofasteadysuccessrateforpermittedhunters.Since1977,successrateshaveclimbedandstabilizedataround0.50to0.60.Inpart,theimprovedsuccessrateshavebeencorrelatedwitharecoveryintheherdsize.Dall'ssheepintheprojectareaaretakenprincipallyforheadtrophiesratherthanmeat.HuntersusingthewTalkeetnaMountainsandChulitnalWatanaHillsareaareapportionedapproxi-mately80%Alaskanresidentsand20%nonresidents(ExhibitE,September1983Suppl.,p.5-22-8).Residenthuntersareprobablydrawnfromtheprincipa1populationcenters,AnchorageandFairbanks.About80sheepperyeararetakenfromtheTalkeetnaMountainsandChulitnalWatanaHillsarea(BallardetaI.,1982d).Huntersareallowedoneramwith7/8curlhornorlargerperyear.Duringtheperiodof1971-1981,residenthuntershadsuccessratesof0.16to0.33;whereasguided,nonresidenthuntershadsuccessratesof0.5to0.8.Blackbeararemostfrequentlytakenonincidentalencountersduringmooseorcaribouhunts(ExhibitE,September1983Suppl.,p.5-22-2).Fewhuntersvalueblackbearsufficientlytohuntawayfromavailabletransportroutesinordertoobtainanimals.Bearhideandmeatareusedbyhunters.ResidentbearhuntersareprincipallyfromtheAnchorageandFairbanksareas.From1973to1980,thetakeinGMU13averaged66blackbearsperyear,withabaglimitofthreebearperhunter.ItisestimatedthatthecurrentharvestiswellbelowthesustainableyieldfortheSusitnablackbearpopulation.Dataonsuccessratesforblackbearhuntingareunavailable.Brownbearareusuallyhuntedforrecreationalvalueandtrophyvalueoftheanimals'hides(ExhibitE,September1983Suppl.,p.5-22-4).TheyoungageofbeartakenintheSusitnaBasinareasuggeststhathuntersarenotselectinglargetrophyindividuals.Inmanyinstances,brownbeararetakenincidentaltomooseorcaribouhunts.From1973to1980,anaverageof64brownbearperyearweretakeninGMU13.BecauseitwasbelievedthataharvestablesurplusofbrownbearexistedinGMU13andthatbrownbearweresignificantpredatorsonmoose,in1980theAlaskaDepartmentofFishandGameestablishedmoreliberalhuntingregulationsforbrownbearinGMU13(MillerandBallard,1980;BallardetaI.,1981a).Asaresult,theharvestofbearin1980and1981increasedabout20%overtheprevioustwoyears.Theavailabledatadonot,however,allowadeterminationofhuntersuccessrateduringtheseperiods.Wolfarehuntedbothforrecreationandforsaleofpelts.MosthuntersareresidentsoftheAnchorageandFairbanksareas(ExhibitE,September1983Suppl.,p.5-22-6).Currently,theonlyrestrictionsontakingwolfarelimitedhuntingandtrappingseasons.ItisbelievedthatconsiderablepoachingoccursinGMU13.From1971-1977annualtakeofwolvesaveragedabout100-120animalsandpeakedat130in1978-1979.Sincethen,thetakehassteadilydeclined.Noanalysisofsuccessrateisavailable.Themajorfurbearerscommerciallyharvestedintheprojectareaarebeaver,muskrat,pinemarten,mink,redfox,riverotter,andweasel.Wolvesandwolverinemayalsobetrappedorhuntedforfurinadditiontobeingharvestedasgamespecies.Themostintenseharvestingoccursonpopulationsofmuskrat,fox,andmarten(TableK-5).Itappearsthatingeneraltheprojectareaisnottrappedbylargenumbersofindividuals.Only11individualswerereportedtobetrappinginthegeneralimpactareaduring1980-1981(ExhibitE,Vol.7,Chap.5,p.E-5-120).TrappingcurrentlyoccursprincipallyintheareasaroundStephanLake,TsusenaCreek,ClarenceLake,andtheeasternportionsoftheSusitnaValley.K.2.1.1.18ThreatenedandEndangeredSpeciesTheU.S.FishandWildlifeService(1983b)andAlaskaDepartmentofFishandGame(1982)listonlyfourtaxaofwildlifeasthreatenedorendangeredinthestateofAlaska.Ofthese,onlytheAmericanperegrinefalcon(Falcoperegrinusanatum)rangesovertheareaoftheproposedprojectandtransmissionfacilities(KesseletaI.,1982;U.S.FishandWildlifeService,1983c).TheAmericanperegrinefalconislistedbybothFederalandstatewildlifeauthoritiesasendangered.Peregrinenestincliffledgesassociatedwithwaterbirdhabitat,andtheirprincipalfoodsareotherbirds,especiallywaterbirds(Bent,1961;Armstrong,1981;U.S.FishandWild-lifeService,1982,1983d).K-29Caribouhuntingprovidesbothmeatandrecreationalexperiencetoregionalhunters.TheNelchinacaribouherdiscentrallylocatedtothemajorpopulationcentersofAlaska.Therefore,usersofthisresourcearedrawnprincipallyfromtheAnchorageandFairbanksareas.CurrenthunterparticipationinharvestingNelchinacaribouislessthan30%ofthatoccurringintheearly1970s(ExhibitE,Vol.7,Chap.5,p.E-5-112).Thisreductioninhuntingintensityhasresultedfromplacinglimitsonthenumberofpermitsavailabletohunters,aswellasfromtheestablish-mentofabaglimitofoneanimalperyear.Theselimitationsaredesignedtomaintaintheherdsizeatabout20,000individuals,wellbelowhistoricpopulationlevels(Pitcher,1982,1983).ThenumberofcaribouhuntingpermitsavailableinGMU13and14isfarlessthanthedemand.In1980,forexample,morethan6,800huntersappliedfor1,300permits,aratioof5:1(ExhibitE,Vol.7,Chap.5,p.E-5-113).Controlofthehuntingintensityhasledtoamain-tenanceofasteadysuccessrateforpermittedhunters.Since1977,successrateshaveclimbedandstabilizedataround0.50to0.60.Inpart,theimprovedsuccessrateshavebeencorrelatedwitharecoveryintheherdsize.Dall'ssheepintheprojectareaaretakenprincipallyforheadtrophiesratherthanmeat.HuntersusingthewTalkeetnaMountainsandChulitnalWatanaHillsareaareapportionedapproxi-mately80%Alaskanresidentsand20%nonresidents(ExhibitE,September1983Suppl.,p.5-22-8).Residenthuntersareprobablydrawnfromtheprincipa1populationcenters,AnchorageandFairbanks.About80sheepperyeararetakenfromtheTalkeetnaMountainsandChulitnalWatanaHillsarea(BallardetaI.,1982d).Huntersareallowedoneramwith7/8curlhornorlargerperyear.Duringtheperiodof1971-1981,residenthuntershadsuccessratesof0.16to0.33;whereasguided,nonresidenthuntershadsuccessratesof0.5to0.8.Blackbeararemostfrequentlytakenonincidentalencountersduringmooseorcaribouhunts(ExhibitE,September1983Suppl.,p.5-22-2).Fewhuntersvalueblackbearsufficientlytohuntawayfromavailabletransportroutesinordertoobtainanimals.Bearhideandmeatareusedbyhunters.ResidentbearhuntersareprincipallyfromtheAnchorageandFairbanksareas.From1973to1980,thetakeinGMU13averaged66blackbearsperyear,withabaglimitofthreebearperhunter.ItisestimatedthatthecurrentharvestiswellbelowthesustainableyieldfortheSusitnablackbearpopulation.Dataonsuccessratesforblackbearhuntingareunavailable.Brownbearareusuallyhuntedforrecreationalvalueandtrophyvalueoftheanimals'hides(ExhibitE,September1983Suppl.,p.5-22-4).TheyoungageofbeartakenintheSusitnaBasinareasuggeststhathuntersarenotselectinglargetrophyindividuals.Inmanyinstances,brownbeararetakenincidentaltomooseorcaribouhunts.From1973to1980,anaverageof64brownbearperyearweretakeninGMU13.BecauseitwasbelievedthataharvestablesurplusofbrownbearexistedinGMU13andthatbrownbearweresignificantpredatorsonmoose,in1980theAlaskaDepartmentofFishandGameestablishedmoreliberalhuntingregulationsforbrownbearinGMU13(MillerandBallard,1980;BallardetaI.,1981a).Asaresult,theharvestofbearin1980and1981increasedabout20%overtheprevioustwoyears.Theavailabledatadonot,however,allowadeterminationofhuntersuccessrateduringtheseperiods.Wolfarehuntedbothforrecreationandforsaleofpelts.MosthuntersareresidentsoftheAnchorageandFairbanksareas(ExhibitE,September1983Suppl.,p.5-22-6).Currently,theonlyrestrictionsontakingwolfarelimitedhuntingandtrappingseasons.ItisbelievedthatconsiderablepoachingoccursinGMU13.From1971-1977annualtakeofwolvesaveragedabout100-120animalsandpeakedat130in1978-1979.Sincethen,thetakehassteadilydeclined.Noanalysisofsuccessrateisavailable.Themajorfurbearerscommerciallyharvestedintheprojectareaarebeaver,muskrat,pinemarten,mink,redfox,riverotter,andweasel.Wolvesandwolverinemayalsobetrappedorhuntedforfurinadditiontobeingharvestedasgamespecies.Themostintenseharvestingoccursonpopulationsofmuskrat,fox,andmarten(TableK-5).Itappearsthatingeneraltheprojectareaisnottrappedbylargenumbersofindividuals.Only11individualswerereportedtobetrappinginthegeneralimpactareaduring1980-1981(ExhibitE,Vol.7,Chap.5,p.E-5-120).TrappingcurrentlyoccursprincipallyintheareasaroundStephanLake,TsusenaCreek,ClarenceLake,andtheeasternportionsoftheSusitnaValley.K.2.1.1.18ThreatenedandEndangeredSpeciesTheU.S.FishandWildlifeService(1983b)andAlaskaDepartmentofFishandGame(1982)listonlyfourtaxaofwildlifeasthreatenedorendangeredinthestateofAlaska.Ofthese,onlytheAmericanperegrinefalcon(Falcoperegrinusanatum)rangesovertheareaoftheproposedprojectandtransmissionfacilities(KesseletaI.,1982;U.S.FishandWildlifeService,1983c).TheAmericanperegrinefalconislistedbybothFederalandstatewildlifeauthoritiesasendangered.Peregrinenestincliffledgesassociatedwithwaterbirdhabitat,andtheirprincipalfoodsareotherbirds,especiallywaterbirds(Bent,1961;Armstrong,1981;U.S.FishandWild-lifeService,1982,1983d).
K-30TableK-5.TrapperExportsandDealerPurchasesofFurbearerPeltsinGameManagementUnit13,1977-1980Species19771978 19791980TrapperExportsBeaver47245148Mink56105140 163Muskrat525762632473Marten61119194102Otter321010Whitefox20111Otherfox146302192207Weasel338292Lynx78604253Numberoftrappers40576239DealerPurchasesBeaver2211329Mink394254102Muskrat5521,023351805Marten79273280 236Otter37 22\olhitefox00 22Otherfox12416659142Weasel3210509Lynx47391449Source:ExhibitE,Vol.7,Chap.5,TableE.5.52.Noperegrinefalconwereobservedduring1980-1981surveysinthevicinityoftheproposeddams,reservoirs,andaccessroutes,althoughperegrineoccasionallyhavebeenobservedintheareainthepast(Kesseletal.,1982).Ingeneral,theareaisnotconsideredtobeofhighqualityasperegrinebreedinghabitat(U.S.FishandWildlifeService,1982).K.2.1.2LowerSusitnaRiverBasinThelowerSusitnaRiverBasinbelowDevilCanyonisinhabitedbythesamewildlifespeciesasoccurintheupperandmiddlebasinarea(Selkregg,1974;AlaskaDept.ofFishandGame,1973,1978;U.S.Dept.ofAgriculture,1981).Theabundanceandrelativeimportanceofeachspeciesvariesfromthatdescribedabovebecauseofchangesinthedistributionofhabitattypes(seeAppendixJ).Forestedhabitatsaregenerallymoreabundantinthelowerbasin,whereastundrahabitatsarelessabundant.Thus,tundraspeciessuchascaribouarenotascommoninthelowerasintheupperandmiddlebasinoftheSusitnaRiver.Inaddition,wetlandshabitatbecomesmoreabundantastheriverbroadensandapproachestheCookInlet.K.2.1.2.1MooseMoosearetheprincipalbiggamespeciesthatwillbeaffectedbyalterationofdownstreamflows.From260to930moosewereobservedduringwinteraeria1surveysfromDevi1CanyontotheCookInlet(Modafferi,1983).MooseweremoreprevalentinlowerreachesthanbetweenDevilandMontanacreeks.FromDevilCanyondownrivertowardCookInlet,estimatedwintermoosedensitiesincreasedfromabout3.5to10individuals/mi2(1.5to4/km2).Ratioofcalvestocowsobservedin1981indicatedthatthepopulationinthelowerbasinwassomewhatmoreproduc-tivethantheupstreampopulation.Circumstantialevidencesuggeststhatbeararethemajorpredatorsonmooseinthisregion(Modaferri,1982).Modafferi(1983)reportedthatmoosewinteringalong"theSusitnaRiverannuallyrangeoveranareaofabout3,450mi2(8,950km2).MostoftheindividualmoosetrackedbyModafferi(1983)overwinteredintheriparianhabitatintheSusitnaRiverfloodplain(Fig.K-16).Modafferiidentifiedninesubpopulationsofmoosethatoverwinterintheriparianzonesoftheriver.Twosubpopulationsremainneartheriverthroughouttheyear;theothersdispersefromtheriverduringsummerthroughfallmonths(Fig.K-l7).Duringcalving,thesubpopulationnorthofTalkeetnaremainedneartheriver,whileothersdispersed(Fig.K-18).K-30TableK-5.TrapperExportsandDealerPurchasesofFurbearerPeltsinGameManagementUnit13,1977-1980Species19771978 19791980TrapperExportsBeaver47245148Mink56105140 163Muskrat525762632473Marten61119194102Otter321010Whitefox20111Otherfox146302192207Weasel338292Lynx78604253Numberoftrappers40576239DealerPurchasesBeaver2211329Mink394254102Muskrat5521,023351805Marten79273280 236Otter37 22\olhitefox00 22Otherfox12416659142Weasel3210509Lynx47391449Source:ExhibitE,Vol.7,Chap.5,TableE.5.52.Noperegrinefalconwereobservedduring1980-1981surveysinthevicinityoftheproposeddams,reservoirs,andaccessroutes,althoughperegrineoccasionallyhavebeenobservedintheareainthepast(Kesseletal.,1982).Ingeneral,theareaisnotconsideredtobeofhighqualityasperegrinebreedinghabitat(U.S.FishandWildlifeService,1982).K.2.1.2LowerSusitnaRiverBasinThelowerSusitnaRiverBasinbelowDevilCanyonisinhabitedbythesamewildlifespeciesasoccurintheupperandmiddlebasinarea(Selkregg,1974;AlaskaDept.ofFishandGame,1973,1978;U.S.Dept.ofAgriculture,1981).Theabundanceandrelativeimportanceofeachspeciesvariesfromthatdescribedabovebecauseofchangesinthedistributionofhabitattypes(seeAppendixJ).Forestedhabitatsaregenerallymoreabundantinthelowerbasin,whereastundrahabitatsarelessabundant.Thus,tundraspeciessuchascaribouarenotascommoninthelowerasintheupperandmiddlebasinoftheSusitnaRiver.Inaddition,wetlandshabitatbecomesmoreabundantastheriverbroadensandapproachestheCookInlet.K.2.1.2.1MooseMoosearetheprincipalbiggamespeciesthatwillbeaffectedbyalterationofdownstreamflows.From260to930moosewereobservedduringwinteraeria1surveysfromDevi1CanyontotheCookInlet(Modafferi,1983).MooseweremoreprevalentinlowerreachesthanbetweenDevilandMontanacreeks.FromDevilCanyondownrivertowardCookInlet,estimatedwintermoosedensitiesincreasedfromabout3.5to10individuals/mi2(1.5to4/km2).Ratioofcalvestocowsobservedin1981indicatedthatthepopulationinthelowerbasinwassomewhatmoreproduc-tivethantheupstreampopulation.Circumstantialevidencesuggeststhatbeararethemajorpredatorsonmooseinthisregion(Modaferri,1982).Modafferi(1983)reportedthatmoosewinteringalong"theSusitnaRiverannuallyrangeoveranareaofabout3,450mi2(8,950km2).MostoftheindividualmoosetrackedbyModafferi(1983)overwinteredintheriparianhabitatintheSusitnaRiverfloodplain(Fig.K-16).Modafferiidentifiedninesubpopulationsofmoosethatoverwinterintheriparianzonesoftheriver.Twosubpopulationsremainneartheriverthroughouttheyear;theothersdispersefromtheriverduringsummerthroughfallmonths(Fig.K-l7).Duringcalving,thesubpopulationnorthofTalkeetnaremainedneartheriver,whileothersdispersed(Fig.K-18).
K-31zRiverj}CookInletoc:t:::s..cozOf"),----------,--.,.....,co°NCO°mi'7..;;;;;-.------"F--l..--__..:::::...._.,..-__---J151°30'W16MilesMOOSE11111//1111DownstreamWinterRangeFigureK-16.GeneralOverwinteringRangeofMooseintheLowerSusitnaBasin.[Source:Modafferi,1983JK-31zRiverj}CookInletoc:t:::s..cozOf"),----------,--.,.....,co°NCO°mi'7..;;;;;-.------"F--l..--__..:::::...._.,..-__---J151°30'W16MilesMOOSE11111//""DownstreamWinterRangeFigureK-16.GeneralOverwinteringRangeofMooseintheLowerSusitnaBasin.[Source:Modafferi,1983J
K-32j}CookInletzo1'0<0zoN<00..--F=::.----------JF::::.......l------....:::::--.,.-------'<0151°30'W16MilesMOOSEVZZ:dDownstreamSummer/FallRangeFigureK-17.GeneralSummer-FallRangesofMooseintheLowerSusitnaBasin.[Source:Modafferi1983JK-32j}CookInletzo1'0<0zoN<00..--F=::.----------JF::::.......l------....:::::--.,.-------'<0151°30'W16MilesMOOSEVZZ:dDownstreamSummer/FallRangeFigureK-17.GeneralSummer-FallRangesofMooseintheLowerSusitnaBasin.[Source:Modafferi1983J
K-33zoc~en:::>(J)j)CookInletz0.,-r~:...---------_F-...I...------.;;:.,.-...,..------'(0151°30'W150°30'W149°30'W16Miles0,.,.,r-------------------r---'7"-"'7I(0°C'l(0MOOSE~~DownstreamCalvingRangeFigureK-18.GeneralCalvingRangeofMooseintheLowerSusitnaBasin.[Source:Modafferi1983JK-33zoc~en:::>(J)j)CookInletz0.,-r~:...---------_F-...I...------.;;:.,.-...,..------'(0151°30'W150°30'W149°30'W16Miles0,.,.,r-------------------r---'7"-"'7I(0°C'l(0MOOSE~~DownstreamCalvingRangeFigureK-18.GeneralCalvingRangeofMooseintheLowerSusitnaBasin.[Source:Modafferi1983J
K-34K.2.1.2.2BearBlackandbrownbearrangethroughthelowerSusitnaBasin(Selkregg,1974;AlaskaDept.ofFishandGame,1973,1978;U.S.Dept.ofAgriculture,1981).Blackbeararemorecharacteristicallyassociatedwithforestedhabitatand,hence,aremorewidespreadinthelowerbasinthanintheupperandmiddleSusitnaBasin.Brownbeararemorecharacteristicofupland,openhabitats,whicharenotascommoninthelowerbasinasupstream.Miller(1983)suggeststhathabitatbecomesmoresuitableforblackbearandlesssuitableforbrownbearasoneprogressessouthalongtheSusitnaRiverdownstreamfromIndianRiver.Bothblackandbrownbearfishinsalmonspawningstreams(July-August)andsloughsalongthemainstemSusitnaRiver.Miller(1983)indicatesthatbrownbearusedtheareafromIndianRivertoDevilCanyon(includingPortageCreek)mostintensively.FishingactivityofblackbearincreasedalongtheSusitnaRiverasactivityofbrownbeardeclined.Usebybearofspawningareaswascorrelatedwiththeprevalenceofsalmon.K.2.1.2.3FurbearersGipsonetal.(1982)surveyedthelowerbasinbyairforsignsofbeaverandmuskrat.Beaverwerefoundtopreferslow-movingside-channelsorsloughsaswellasthemouthsoftributaries(ExhibitE,Vol.6A,Chap.3,TableE.3.118).Beaversignincreasedprogressivelyfartherdownstream.Anestimated70beaverinhabitedthestretchfromTalkeetnatoPortageCreekin1982surveys;surveysfarthersouthwereinhibitedbyflooding.MuskratwereonlyobservedsouthofTalkeetnaandincreaseddownstreamwherenumeroussidechannelsandsloughsoccurred.Otherfurbearersoccuralongthelowerreachesoftheriverbutarenotaslikelytobeaffectedbyalteredriverflowregimes.K.2.1.2.4RaptorsIngeneral,thelowerbasindoesnothavesuitablehabitatforcliff-nestingraptorssuchasgoldeneagle.Incontrast,thebaldeaglehabitatisimprovedincomparisonwiththeupperandmiddleSusitnaBasin.Theabundanceofaquaticandwetlandhabitatprovidesafoodbaseforbaldeagle.Inparticular,salmonrunsbelowDevilCanyonareoflikelyimportance.Abundanttalltreesalongtheriverbankandonislandsprovidesuitablelocationsfornestingandperch-ingbybaldeagle.K.2.1.2.5WaterbirdsThecoastalwetlandsprovidealargeareaofhabitatforanabundanceofwaterbirds(Selkregg,1974;Sellers,1979;U.S.Dept.ofAgriculture,1981).TheSusitnaRiverdeltasupportsaveryhighdensityofwaterfowl.ThisareaismanagedastheSusitnaFlatsStateGameRefuge.SummerbirddensitiesinCookInletestuariesareontheorderof200to600ducks/mi2(80-230/km2),20to100geese/mi2(10-40/km2),and60to300shorebirds/mi2(20-100/km2)(Sellers,1979).K.2.1.3PowerTransmissionLineCorridorTheproposedtransmissionlinecorridortraversesanumberofhabitatscharacteristicofSouth-centralandInteriorAlaska(seeAppendixJ).Habitatsrangefromopentundratoclosedconi-ferousanddeciduousforest.Wildlifealongtheproposedrouteincludeallofthespeciesdiscussedinprevioussections.Theabundanceofspeciesovertheproposedroutevarieswithvariationinhabitatdistribution.SouthofGoldCreektheproposedrouteextendsthroughthelowerSusitnaRiverdrainage,throughwildliferangedescribedinSectionK.2.1.2.Blackbearandmoosearethemostimportantbig-gamespeciesinthisarea.Beaverareimportantfurbearersalongtheslowerwaterwaysandinwetlandareas.Martenarecharacteristicofconiferousandmixedforesthabitats.Southwardalongtheproposedroute,waterbirddensitiesincreaseasavailabilityofsuitablewetlandhabitatsincreases.ThecoastalwetlandsbetweentheSusitnadeltaandKnikArmsupportextremelyhighdensitiesofmigratorywaterfowl.Sometrumpeterswannestingandsummeruseareasoccuralongthisportionoftheroute(CommonwealthAssoc.,1982).Baldeaglehabitatalsoincreasesalongthesouthernportionsoftheroute.FromGoldCreektoHealy,theproposedrouteextendsthroughmoreuplandhabitat(AppendixJ).Thewildlifecharacteristicofopenhabitatsaremoreabundantinthisarea(Tarboxetal.,1979;CommonwealthAssoc.,1982).Caribouaremoreabundantthanfarthersouth,especiallynorthofBroadPass.BrownbeararealsomoreactiveinthisareathansouthofGoldCreek.NeartheconfluenceoftheSusitnaandIndianRivers,bothbrownandblackbearusesloughsandstreamsasfishinggroundsduringsalmonspawning.SuitablefishingareasalsooccurinthedrainageoftheChulitnaRiver.Dall'ssheeparerestrictedtotheruggedterrainsouthofHealyandeastofDenaliNationalParkandPreserve.Thisareaalsocontainssuitablehabitatforcliff-nestingraptors,suchasgoldeneagle,gyrfalcon,andgoshawk.K-34K.2.1.2.2BearBlackandbrownbearrangethroughthelowerSusitnaBasin(Selkregg,1974;AlaskaDept.ofFishandGame,1973,1978;U.S.Dept.ofAgriculture,1981).Blackbeararemorecharacteristicallyassociatedwithforestedhabitatand,hence,aremorewidespreadinthelowerbasinthanintheupperandmiddleSusitnaBasin.Brownbeararemorecharacteristicofupland,openhabitats,whicharenotascommoninthelowerbasinasupstream.Miller(1983)suggeststhathabitatbecomesmoresuitableforblackbearandlesssuitableforbrownbearasoneprogressessouthalongtheSusitnaRiverdownstreamfromIndianRiver.Bothblackandbrownbearfishinsalmonspawningstreams(July-August)andsloughsalongthemainstemSusitnaRiver.Miller(1983)indicatesthatbrownbearusedtheareafromIndianRivertoDevilCanyon(includingPortageCreek)mostintensively.FishingactivityofblackbearincreasedalongtheSusitnaRiverasactivityofbrownbeardeclined.Usebybearofspawningareaswascorrelatedwiththeprevalenceofsalmon.K.2.1.2.3FurbearersGipsonetal.(1982)surveyedthelowerbasinbyairforsignsofbeaverandmuskrat.Beaverwerefoundtopreferslow-movingside-channelsorsloughsaswellasthemouthsoftributaries(ExhibitE,Vol.6A,Chap.3,TableE.3.118).Beaversignincreasedprogressivelyfartherdownstream.Anestimated70beaverinhabitedthestretchfromTalkeetnatoPortageCreekin1982surveys;surveysfarthersouthwereinhibitedbyflooding.MuskratwereonlyobservedsouthofTalkeetnaandincreaseddownstreamwherenumeroussidechannelsandsloughsoccurred.Otherfurbearersoccuralongthelowerreachesoftheriverbutarenotaslikelytobeaffectedbyalteredriverflowregimes.K.2.1.2.4RaptorsIngeneral,thelowerbasindoesnothavesuitablehabitatforcliff-nestingraptorssuchasgoldeneagle.Incontrast,thebaldeaglehabitatisimprovedincomparisonwiththeupperandmiddleSusitnaBasin.Theabundanceofaquaticandwetlandhabitatprovidesafoodbaseforbaldeagle.Inparticular,salmonrunsbelowDevilCanyonareoflikelyimportance.Abundanttalltreesalongtheriverbankandonislandsprovidesuitablelocationsfornestingandperch-ingbybaldeagle.K.2.1.2.5WaterbirdsThecoastalwetlandsprovidealargeareaofhabitatforanabundanceofwaterbirds(Selkregg,1974;Sellers,1979;U.S.Dept.ofAgriculture,1981).TheSusitnaRiverdeltasupportsaveryhighdensityofwaterfowl.ThisareaismanagedastheSusitnaFlatsStateGameRefuge.SummerbirddensitiesinCookInletestuariesareontheorderof200to600ducks/mi2(80-230/km2),20to100geese/mi2(10-40/km2),and60to300shorebirds/mi2(20-100/km2)(Sellers,1979).K.2.1.3PowerTransmissionLineCorridorTheproposedtransmissionlinecorridortraversesanumberofhabitatscharacteristicofSouth-centralandInteriorAlaska(seeAppendixJ).Habitatsrangefromopentundratoclosedconi-ferousanddeciduousforest.Wildlifealongtheproposedrouteincludeallofthespeciesdiscussedinprevioussections.Theabundanceofspeciesovertheproposedroutevarieswithvariationinhabitatdistribution.SouthofGoldCreektheproposedrouteextendsthroughthelowerSusitnaRiverdrainage,throughwildliferangedescribedinSectionK.2.1.2.Blackbearandmoosearethemostimportantbig-gamespeciesinthisarea.Beaverareimportantfurbearersalongtheslowerwaterwaysandinwetlandareas.Martenarecharacteristicofconiferousandmixedforesthabitats.Southwardalongtheproposedroute,waterbirddensitiesincreaseasavailabilityofsuitablewetlandhabitatsincreases.ThecoastalwetlandsbetweentheSusitnadeltaandKnikArmsupportextremelyhighdensitiesofmigratorywaterfowl.Sometrumpeterswannestingandsummeruseareasoccuralongthisportionoftheroute(CommonwealthAssoc.,1982).Baldeaglehabitatalsoincreasesalongthesouthernportionsoftheroute.FromGoldCreektoHealy,theproposedrouteextendsthroughmoreuplandhabitat(AppendixJ).Thewildlifecharacteristicofopenhabitatsaremoreabundantinthisarea(Tarboxetal.,1979;CommonwealthAssoc.,1982).Caribouaremoreabundantthanfarthersouth,especiallynorthofBroadPass.BrownbeararealsomoreactiveinthisareathansouthofGoldCreek.NeartheconfluenceoftheSusitnaandIndianRivers,bothbrownandblackbearusesloughsandstreamsasfishinggroundsduringsalmonspawning.SuitablefishingareasalsooccurinthedrainageoftheChulitnaRiver.Dall'ssheeparerestrictedtotheruggedterrainsouthofHealyandeastofDenaliNationalParkandPreserve.Thisareaalsocontainssuitablehabitatforcliff-nestingraptors,suchasgoldeneagle,gyrfalcon,andgoshawk.
K-35NorthofHealy,mooseandblackbearbecomethemostabundantbiggame.Suitablecliff-nestinghabitatforraptorsoccursalongtheTananaRivernorthofNenana,within5mi(8km)oftheproposedroute.Severalformerlyusedperegrinenestsarelocatedneartheproposedtransmissionlineroute,alongtheTananaRivernorthofNenana(ExhibitE,Vol.6A,Chap.3,p.E-3-497;U.S.FishandWildlifeService,1983c;ExhibitE,January1984Suppl.,Response0.1).K.2.2SusitnaDevelopmentAlternativesK.2.2.1AlternativeDamLocationsandDesignsIngeneral,thealternativeSusitnadevelopments(alternativelocationsanddesigns)wouldoccurwithintheboundariesofthewildlifestudyareasdescribedinSectionK.2.1.1.VariationsoftheWatanadamheight(WatanaI)wouldaffectthesamegeneralwildlifepopula-tionsdescribedpreviously,aswouldalterationsinthedesignoftheproposedWatanadevelop-mentfeatures.TheHighDevilCanyonsiteislocatedinanareaoflowerqualitymoosehabitatthantheWatanasiteandwouldaffectthesamepopulationsaffectedbytheupperportionsoftheproposedDevilCanyonreservoir(Fig.2-17).AReregulatingdambelowWatanawouldbelocatedintheuppermost10mi(16km)oftheproposedDevilCanyonimpoundment.Thus,thewildlifepopulationsaffectedbythealternativelocations,designs,oroperationscenarioswouldbequalitativelythesame(bothupstreamanddownstream)asdescribedabove.K.2.2.2AlternativeAccessRoutes,PowerTransmissionLineRoutes,andBorrowSitesAllofthealternativeaccessroutes,powertransmissionlineroutes,andborrowsites(Figs.2-2,2-6,and2-13to2-16)arewithintheareascoveredinSectionsK.2.1.1andK.2.1.3andthediscussionsofwildlifepopulationsprovidedinthosesectionsareappropriate.AccesstotheParksHighwaywouldcrosswetlandsbetweenthehighwayandGoldCreekthatareproductiveaquaticfurbearerhabitat(AcresAmerican,1982a).ThesouthernalternativeaccessandpowertransmissionlineroutesbetweenDevilCanyonandWatanawouldpassnearStephanLakeandPrairieCreek.ThelatterareahaslargeconcentrationsofbrownbearduringsalmonspawninginJulyandAugust(MillerandMcAllister,1982;Miller,1983).Thatareaalsosupportsmoderatetohighdensitiesofmoose(ExhibitE,Vol.9,Chap.10,p.E-10-43).K.2.3Non-SusitnaGenerationScenariosK.2.3.1Natural-Gas-firedGenerationScenarioK.2.3.1.1ChuitnaandBelugaRiversThesealternativelocationsarebiggameintheareaarebrownuncommonlyoccurinthisarea.basis.situatedwestofCookInletnearTyonek(Fig.2-18).Principalandblackbearandmoose(CookInletReg.etal.,1981).WolfMoosearelocallyabundantandbearusetheareaonaseasonalAbout150moosewereobservedduringa1980aerialsurveyofthearea(CookInletRegion,1981).Moosegenerallycalveduringspringmonthswhileinmuskegandswamphabitat.SummermonthsarespentinmoreuplandhabitatonthelowerChuitnaRiverandupperChuitCreek.WinteringgroundsarelocatedinlowlandareasalongNikolaiCreekandeastwardfromthemouthoftheBelugaRiver.Muchoftheareahasbeenloggedinrecentyearsandprovidehigh-qualitybrowse,particularlyaboveNikolaiCreek.Brownbearemergingfromtheirdensmovetolowlandormid-elevationhabitat.Bearmaymovetoareasofmoreconcentrationinordertotakeadvantageofavailableprey.Bearmovetohighergroundasspringprogressesforagingonnewplantgrowth.Duringsalmonspawning,bearmovetoseveralfishingareasinthedrainageoftheChuitnaRiver.Inlatesummerbearremainnearthespawningstreamsandsupplementtheirdietwithberriesandgreenvegetation.Brownbearprepareoverwinteringdensinupland[1,000-2,500ft(300-750m)MSLJhillsidesawayfromtheprincipalalternationlocations.Blackbeararefoundthroughouttheareaalongprincipaldrainage(CookInletRegion,1981).ThesebearoccurprincipallyaboveNikolaiCreekandinforestedhabitatalongtheupperChuitnaRiver.Duringlatesummer,blackbearutilizetheberrycropandmayalsoconcentratealongsalmonspawningstreams.Baldeaglesarecommonraptorsthroughoutthearea.Cliff-nestingraptorsareuncommon.Anumberofwaterbirds,includingtrumpeterswanandsandhillcrane,occurinthecoastalwet-lands.Avarietyofducks,geese,andloonsarecommoninthearea.TradingBayStateGameRefugesupportsanabundantwaterbirdpopulationsouthwestofNikolaiCreek.Residentbirdsincludecommonraven,chickadee,Stellar'sjay,magpie,andwoodpeckers.K-35NorthofHealy,mooseandblackbearbecomethemostabundantbiggame.Suitablecliff-nestinghabitatforraptorsoccursalongtheTananaRivernorthofNenana,within5mi(8km)oftheproposedroute.Severalformerlyusedperegrinenestsarelocatedneartheproposedtransmissionlineroute,alongtheTananaRivernorthofNenana(ExhibitE,Vol.6A,Chap.3,p.E-3-497;U.S.FishandWildlifeService,1983c;ExhibitE,January1984Suppl.,Response0.1).K.2.2SusitnaDevelopmentAlternativesK.2.2.1AlternativeDamLocationsandDesignsIngeneral,thealternativeSusitnadevelopments(alternativelocationsanddesigns)wouldoccurwithintheboundariesofthewildlifestudyareasdescribedinSectionK.2.1.1.VariationsoftheWatanadamheight(WatanaI)wouldaffectthesamegeneralwildlifepopula-tionsdescribedpreviously,aswouldalterationsinthedesignoftheproposedWatanadevelop-mentfeatures.TheHighDevilCanyonsiteislocatedinanareaoflowerqualitymoosehabitatthantheWatanasiteandwouldaffectthesamepopulationsaffectedbytheupperportionsoftheproposedDevilCanyonreservoir(Fig.2-17).AReregulatingdambelowWatanawouldbelocatedintheuppermost10mi(16km)oftheproposedDevilCanyonimpoundment.Thus,thewildlifepopulationsaffectedbythealternativelocations,designs,oroperationscenarioswouldbequalitativelythesame(bothupstreamanddownstream)asdescribedabove.K.2.2.2AlternativeAccessRoutes,PowerTransmissionLineRoutes,andBorrowSitesAllofthealternativeaccessroutes,powertransmissionlineroutes,andborrowsites(Figs.2-2,2-6,and2-13to2-16)arewithintheareascoveredinSectionsK.2.1.1andK.2.1.3andthediscussionsofwildlifepopulationsprovidedinthosesectionsareappropriate.AccesstotheParksHighwaywouldcrosswetlandsbetweenthehighwayandGoldCreekthatareproductiveaquaticfurbearerhabitat(AcresAmerican,1982a).ThesouthernalternativeaccessandpowertransmissionlineroutesbetweenDevilCanyonandWatanawouldpassnearStephanLakeandPrairieCreek.ThelatterareahaslargeconcentrationsofbrownbearduringsalmonspawninginJulyandAugust(MillerandMcAllister,1982;Miller,1983).Thatareaalsosupportsmoderatetohighdensitiesofmoose(ExhibitE,Vol.9,Chap.10,p.E-10-43).K.2.3Non-SusitnaGenerationScenariosK.2.3.1Natural-Gas-firedGenerationScenarioK.2.3.1.1ChuitnaandBelugaRiversThesealternativelocationsarebiggameintheareaarebrownuncommonlyoccurinthisarea.basis.situatedwestofCookInletnearTyonek(Fig.2-18).Principalandblackbearandmoose(CookInletReg.etal.,1981).WolfMoosearelocallyabundantandbearusetheareaonaseasonalAbout150moosewereobservedduringa1980aerialsurveyofthearea(CookInletRegion,1981).Moosegenerallycalveduringspringmonthswhileinmuskegandswamphabitat.SummermonthsarespentinmoreuplandhabitatonthelowerChuitnaRiverandupperChuitCreek.WinteringgroundsarelocatedinlowlandareasalongNikolaiCreekandeastwardfromthemouthoftheBelugaRiver.Muchoftheareahasbeenloggedinrecentyearsandprovidehigh-qualitybrowse,particularlyaboveNikolaiCreek.Brownbearemergingfromtheirdensmovetolowlandormid-elevationhabitat.Bearmaymovetoareasofmoreconcentrationinordertotakeadvantageofavailableprey.Bearmovetohighergroundasspringprogressesforagingonnewplantgrowth.Duringsalmonspawning,bearmovetoseveralfishingareasinthedrainageoftheChuitnaRiver.Inlatesummerbearremainnearthespawningstreamsandsupplementtheirdietwithberriesandgreenvegetation.Brownbearprepareoverwinteringdensinupland[1,000-2,500ft(300-750m)MSLJhillsidesawayfromtheprincipalalternationlocations.Blackbeararefoundthroughouttheareaalongprincipaldrainage(CookInletRegion,1981).ThesebearoccurprincipallyaboveNikolaiCreekandinforestedhabitatalongtheupperChuitnaRiver.Duringlatesummer,blackbearutilizetheberrycropandmayalsoconcentratealongsalmonspawningstreams.Baldeaglesarecommonraptorsthroughoutthearea.Cliff-nestingraptorsareuncommon.Anumberofwaterbirds,includingtrumpeterswanandsandhillcrane,occurinthecoastalwet-lands.Avarietyofducks,geese,andloonsarecommoninthearea.TradingBayStateGameRefugesupportsanabundantwaterbirdpopulationsouthwestofNikolaiCreek.Residentbirdsincludecommonraven,chickadee,Stellar'sjay,magpie,andwoodpeckers.
K-36K.2.3.1.2KenaiThisalternativesiteislocatedontheKenaiPeninsula,eastofKenai(Fig.2-18).TheKenaiPeninsulasupportsawidearrayofwildlifepopulations(Selkregg,1974).Concentrationsofmoose,caribou,andwaterfowloccurinalltheareaswithavailablenaturalgas.Theareaisdevelopedforgasproductionanddoesnotprovidehighqualityhabitat.AnareaofintensiveusebyblackbearoccursnorthwestofKenaiandSoldatna.OtherspeciesoccurringintheKenaiareaincludebrownbear,Dall'ssheep,mountaingoat,andwolf.K.2.3.1.3AnchorageThisalternativesiteislocatedonthesoutheastsiteofAnchorage(Fig.2-18).Anchorageisbasicallyurbanizedandprovideslimitedwildlifehabitat.However,mooseandotherwildlifedousetheareaonoccasion.SouthofAnchorage,alongtheSewardHighway,PotterMarshsupportsalargenumberofwaterbirds.K.2.3.2Coal-FiredGenerationScenarioK.2.3.2.1WillowThisalternativesiteislocatedwestofWillow(Fig.2-18).TheareaaroundWillowsupportswildlifepopulationstypicalofthosefoundalongthelowerSusitnadrainage(seeSec.K.2.1.2).MooseconcentratealongtheriverandnearNancyLakes(Se1kregg,1974;U.S.Dept.ofAgri-culture,1981).BlackbearmakeintensiveuseofareassouthwestofWillow.WaterfowloccurinlowtomoderatedensitiesinthevicinityofWillow.Baldeaglesandtrumpeterswansnestalongdrainagesinthearea.K.2.3.2.2NenanaThisalternativesiteislocatedonthewestsideofNenana(Fig.2-18).TheNenanaareaislocatedinthenorthernthirdoftheproposedtransmissionlineroute(seeSec.K.2.1.3).InthevicinityofNenana,winterconcentrationsofmooseoccuralongtheriver.LowtohighdensitiesofwaterfowlarefoundinthevicinityofNenana(Selkregg,1977).TheMintoFlatsareatothenorthsupportsahighdensityofwaterfowl.TwohistoriceyriesofperegrinefalconexistontheTananaRiverupstreamfromNenana.ThehillsnorthoftheTananaRiverarecon-sideredprimehabitatforperegrinefalcon(AcresAmerican,1982a).K.2.3.2.3HealyTheNenanacoal-fieldnearHealyisatthesouthendofthenortherntransmissionlinestub(seeSec.K.2.1.3,Fig.1-14).Nearly40speciesofanimalsoccurintheregion(Tarboxetal.,1979).Moosearetheprincipalbiggame,rangingthroughoutthearea.Themoosepopulationislowwithdensitiesaround8mooseper10mi2(3per10km2)(Gasawayetal.,1983).Moosetendtoconcentratealongtheriverduringspringcalvingandwinter.Cariboualsorangethroughtheup1andhabitataroundthemine.Portionsofseveralherdshavehistorica11ywinteredinthevicinityofHealy(Hemming,1971).Bearandwolfalsorangethroughthearea,butapparentlyarenotabundant.Fivetotenmi1es(8-16km)southoftheHealyarea,-Da11IssheeprangethroughtheruggeduplandseastofDenaliNationalParkandPreserve(CommonwealthAssoc.,1982).Thisareacontainsalltherequiredhabitatfeaturesforsheep,e.g.,minerallicks,wintercover,andhaulingareas.ThesheepspendspringandearlysummerneartheParksHighwayandapparentlywintertothewestofthehighway.Over50speciesofbirdshavebeenrecordedintheHealyarea(Tarboxetal.1979).Ducksandgeeseuselocalwaterbodiesandwetlands.Goldeneagleoccurbutdonotappeartobeabundant.SuitablecliffnestinghabitatoccursintheNenanaRiverGorgesouthofthearea.K.2.3.3CombinedHydro-ThermalGenerationScenarioK.2.3.3.1ChakachamnaLakeChakachamnaLakeislocatedwestofCookIn1et,northwestoftheChuitnaandBelugarivers(Fig.2-18).CommonmammalsintheChakachamnaareaaremoose,blackandbrownbear,coyote,andgraywolf(Bechtel,1983).Riverotter,barren-groundcaribou,andwolverinewereoccasionallyencounteredduringfieldsurveys.Moosearecommonthroughoutthearea,principallyinhabitatassociatedwithdrainagesintoChakachamnaLakeandtheriparianhabitatsaroundChakachatnaandMcArthurrivers.Duringfieldsurveys(Bechtel,1983),moosewereabundantinthecoastalmarshriparianhabitatatthemouthsoftheriversandlessabundantinuplandalderthicketsontheslopesaboveChakachamnaLake.K-36K.2.3.1.2KenaiThisalternativesiteislocatedontheKenaiPeninsula,eastofKenai(Fig.2-18).TheKenaiPeninsulasupportsawidearrayofwildlifepopulations(Selkregg,1974).Concentrationsofmoose,caribou,andwaterfowloccurinalltheareaswithavailablenaturalgas.Theareaisdevelopedforgasproductionanddoesnotprovidehighqualityhabitat.AnareaofintensiveusebyblackbearoccursnorthwestofKenaiandSoldatna.OtherspeciesoccurringintheKenaiareaincludebrownbear,Dall'ssheep,mountaingoat,andwolf.K.2.3.1.3AnchorageThisalternativesiteislocatedonthesoutheastsiteofAnchorage(Fig.2-18).Anchorageisbasicallyurbanizedandprovideslimitedwildlifehabitat.However,mooseandotherwildlifedousetheareaonoccasion.SouthofAnchorage,alongtheSewardHighway,PotterMarshsupportsalargenumberofwaterbirds.K.2.3.2Coal-FiredGenerationScenarioK.2.3.2.1WillowThisalternativesiteislocatedwestofWillow(Fig.2-18).TheareaaroundWillowsupportswildlifepopulationstypicalofthosefoundalongthelowerSusitnadrainage(seeSec.K.2.1.2).MooseconcentratealongtheriverandnearNancyLakes(Se1kregg,1974;U.S.Dept.ofAgri-culture,1981).BlackbearmakeintensiveuseofareassouthwestofWillow.WaterfowloccurinlowtomoderatedensitiesinthevicinityofWillow.Baldeaglesandtrumpeterswansnestalongdrainagesinthearea.K.2.3.2.2NenanaThisalternativesiteislocatedonthewestsideofNenana(Fig.2-18).TheNenanaareaislocatedinthenorthernthirdoftheproposedtransmissionlineroute(seeSec.K.2.1.3).InthevicinityofNenana,winterconcentrationsofmooseoccuralongtheriver.LowtohighdensitiesofwaterfowlarefoundinthevicinityofNenana(Selkregg,1977).TheMintoFlatsareatothenorthsupportsahighdensityofwaterfowl.TwohistoriceyriesofperegrinefalconexistontheTananaRiverupstreamfromNenana.ThehillsnorthoftheTananaRiverarecon-sideredprimehabitatforperegrinefalcon(AcresAmerican,1982a).K.2.3.2.3HealyTheNenanacoal-fieldnearHealyisatthesouthendofthenortherntransmissionlinestub(seeSec.K.2.1.3,Fig.1-14).Nearly40speciesofanimalsoccurintheregion(Tarboxetal.,1979).Moosearetheprincipalbiggame,rangingthroughoutthearea.Themoosepopulationislowwithdensitiesaround8mooseper10mi2(3per10km2)(Gasawayetal.,1983).Moosetendtoconcentratealongtheriverduringspringcalvingandwinter.Cariboualsorangethroughtheup1andhabitataroundthemine.Portionsofseveralherdshavehistorica11ywinteredinthevicinityofHealy(Hemming,1971).Bearandwolfalsorangethroughthearea,butapparentlyarenotabundant.Fivetotenmi1es(8-16km)southoftheHealyarea,-Da11IssheeprangethroughtheruggeduplandseastofDenaliNationalParkandPreserve(CommonwealthAssoc.,1982).Thisareacontainsalltherequiredhabitatfeaturesforsheep,e.g.,minerallicks,wintercover,andhaulingareas.ThesheepspendspringandearlysummerneartheParksHighwayandapparentlywintertothewestofthehighway.Over50speciesofbirdshavebeenrecordedintheHealyarea(Tarboxetal.1979).Ducksandgeeseuselocalwaterbodiesandwetlands.Goldeneagleoccurbutdonotappeartobeabundant.SuitablecliffnestinghabitatoccursintheNenanaRiverGorgesouthofthearea.K.2.3.3CombinedHydro-ThermalGenerationScenarioK.2.3.3.1ChakachamnaLakeChakachamnaLakeislocatedwestofCookIn1et,northwestoftheChuitnaandBelugarivers(Fig.2-18).CommonmammalsintheChakachamnaareaaremoose,blackandbrownbear,coyote,andgraywolf(Bechtel,1983).Riverotter,barren-groundcaribou,andwolverinewereoccasionallyencounteredduringfieldsurveys.Moosearecommonthroughoutthearea,principallyinhabitatassociatedwithdrainagesintoChakachamnaLakeandtheriparianhabitatsaroundChakachatnaandMcArthurrivers.Duringfieldsurveys(Bechtel,1983),moosewereabundantinthecoastalmarshriparianhabitatatthemouthsoftheriversandlessabundantinuplandalderthicketsontheslopesaboveChakachamnaLake.
K-37BlackandbrownbearwereabundantintheareasaboveChakachamnaLakeandjustdownstream.Highaltituderiparianhabitatsupportedthemostbear(Bechtel,1983).BearbecamelesscommonindownstreamhabitatsalongtheChakachatnaandMcArthurrivers.Graywolfwerecommonlyfoundinhighaltituderiparianhabitat.Coyoteweredistributedoverallhabitats,andwereabundantincoastalmarshhabitat.Coastalmarshriparianhabitatsupportedthegreatestdiversityofavifauna(Bechtel,1983).Trumpeterswan,Canadagoose,marshhawk,baldeagle,sandhillcrane,andseveralspeciesofgullswerecommonlyfoundincoastalmarshes.Thishabitatalsosupportedanabundanceofducks.BaldeaglenestswereconcentratedinthemarshhabitatofNoauktaSloughandthelowerChakachatnaandMcArthurrivers.TrumpeterswannestsweremostdenseinanareafromNoauktaSloughtoBlockadeGlacieralongtheMcArthurRiver.K.2.3.3.2BrowneTheBrownesiteislocatedontheNenanaRiver,northofHealy(Fig.2-18).ThewildlifeintheareaoftheBrownesitewouldbetypicalofthosefoundinthecentralportionsoftheRailbelt(seeSecs.K.2.1.3andK.2.3.2.3).Importantbiggameincludemoose,caribou,blackandbrownbear,andDall'ssheep.Mooseconcentrateinthegeneralareaduringfallandwinter(Selkregg,1977).Inwinterinparticular,moosetendtoconcentrateinriparianhabitatalongtheNenanaRiver.Caribourangethroughoutthearea,andwinterconcentrationsarefoundalongtheNenana.Dall'ssheepconcentrationsarefoundinthehighlandsabovetheNenanaRiversome10mi(16km)southofthesite(Selkregg,1977;CommonwealthAssoc.,1982).Brownandblackbearrangethroughoutthearea.Severalmilestothesouth,anareaaroundtheentrancetoDenaliNationalParkandPreserveisintensivelyusedbybrownbear(Selkregg,1977;CommonwealthAssoc.,1982).FurbearersoccuralongtheNenanaRiverbutdonotappeartobeverycommon.AlthoughwaterfowlusetheareaalongtheNenanaRiver,densitiestendtobelow(Selkregg,1977).Amajorflywayoccursthroughthearea,paralleltotheNenana.Commonraptorsincludesharp-shinnedhawk,rough-leggedhawk,American-kestrel,ahdgoldeneagle(Armstrong,1981;CommonwealthAssoc.,1982).K.2.3.3.3KeetnaTheKeetasiteislocatedontheTalkeetnaRiver,approximately70mi(110km)northofAnchorage(Fig.2-18).ThewildlifeoftheKeetnaareaaretypicalofthosefoundinthemiddleSusitnadrainage(seeSec.K.2.1.1).Thesiteislocatedinanareaoffallandwinterconcentrationsofmoose(Selkregg,1977).Caribourangethroughouttheregion,andwinterconcentrationsoccuraroundthepotentialdamsites.ConcentrationsofDall'ssheeparewellremoved,some25mi(40km)tothesoutheast.Blackandbrownbearalsorangethroughthearea.ThebrownbearfishingareaatPrairieCreekisupstreamofthissite.Thisisnotamajorwaterfowlusearea.K.2.3.3.4SnowTheSnowsiteislocatedontheSnowRiverontheKenaiPeninsulanorthofSeward(Fig.2-18).TheriparianhabitatintheSnowRiversupportsmooseandotherwildlife.Upstreamanddown-streamofthepotentialdamsiteareareasoffallandwintermooseconcentration(Selkregg,1974).MountaingoatandDall'ssheepoccupythesteepslopesabovethesite.Blackandbrownbearandwolfrangeacrossthearea.Waterfowlusethevicinityofthesiteforanestingandmoltingarea(ExhibitE,Vol.9,Chap.10,TableE.I0.6).K.2.3.3.5JohnsonTheJohnsonsiteislocatedontheTananaRiver120mi(190km)southeastofFairbanks(Fig.2-18).Mooseandcaribourangethroughoutthearea(Selkregg,1977),andafallconcentrationareaformooseislocatedtothesouthwestalongtheJohnsonRiver.Abisoncalvingareaislocateddownstreamofthesite,alongtheTananaRiver.Blackandbrownbeararealsopresent(ExhibitE,Vol.9,Chap.10,TableE.I0.6).Lowdensitiesofwaterfowlusetheareafornestingandmolting.K.2.3.3.6Nenana,ChuitnaRiver,andAnchorageThewildlifepopulationsoftheNenanaareaareasdescribedinSectionK.2.3.2,whilethoseoftheChuitnaRiverandAnchorageareasareasdescribedinSectionK.2.3.1.K-37BlackandbrownbearwereabundantintheareasaboveChakachamnaLakeandjustdownstream.Highaltituderiparianhabitatsupportedthemostbear(Bechtel,1983).BearbecamelesscommonindownstreamhabitatsalongtheChakachatnaandMcArthurrivers.Graywolfwerecommonlyfoundinhighaltituderiparianhabitat.Coyoteweredistributedoverallhabitats,andwereabundantincoastalmarshhabitat.Coastalmarshriparianhabitatsupportedthegreatestdiversityofavifauna(Bechtel,1983).Trumpeterswan,Canadagoose,marshhawk,baldeagle,sandhillcrane,andseveralspeciesofgullswerecommonlyfoundincoastalmarshes.Thishabitatalsosupportedanabundanceofducks.BaldeaglenestswereconcentratedinthemarshhabitatofNoauktaSloughandthelowerChakachatnaandMcArthurrivers.TrumpeterswannestsweremostdenseinanareafromNoauktaSloughtoBlockadeGlacieralongtheMcArthurRiver.K.2.3.3.2BrowneTheBrownesiteislocatedontheNenanaRiver,northofHealy(Fig.2-18).ThewildlifeintheareaoftheBrownesitewouldbetypicalofthosefoundinthecentralportionsoftheRailbelt(seeSecs.K.2.1.3andK.2.3.2.3).Importantbiggameincludemoose,caribou,blackandbrownbear,andDall'ssheep.Mooseconcentrateinthegeneralareaduringfallandwinter(Selkregg,1977).Inwinterinparticular,moosetendtoconcentrateinriparianhabitatalongtheNenanaRiver.Caribourangethroughoutthearea,andwinterconcentrationsarefoundalongtheNenana.Dall'ssheepconcentrationsarefoundinthehighlandsabovetheNenanaRiversome10mi(16km)southofthesite(Selkregg,1977;CommonwealthAssoc.,1982).Brownandblackbearrangethroughoutthearea.Severalmilestothesouth,anareaaroundtheentrancetoDenaliNationalParkandPreserveisintensivelyusedbybrownbear(Selkregg,1977;CommonwealthAssoc.,1982).FurbearersoccuralongtheNenanaRiverbutdonotappeartobeverycommon.AlthoughwaterfowlusetheareaalongtheNenanaRiver,densitiestendtobelow(Selkregg,1977).Amajorflywayoccursthroughthearea,paralleltotheNenana.Commonraptorsincludesharp-shinnedhawk,rough-leggedhawk,American-kestrel,ahdgoldeneagle(Armstrong,1981;CommonwealthAssoc.,1982).K.2.3.3.3KeetnaTheKeetasiteislocatedontheTalkeetnaRiver,approximately70mi(110km)northofAnchorage(Fig.2-18).ThewildlifeoftheKeetnaareaaretypicalofthosefoundinthemiddleSusitnadrainage(seeSec.K.2.1.1).Thesiteislocatedinanareaoffallandwinterconcentrationsofmoose(Selkregg,1977).Caribourangethroughouttheregion,andwinterconcentrationsoccuraroundthepotentialdamsites.ConcentrationsofDall'ssheeparewellremoved,some25mi(40km)tothesoutheast.Blackandbrownbearalsorangethroughthearea.ThebrownbearfishingareaatPrairieCreekisupstreamofthissite.Thisisnotamajorwaterfowlusearea.K.2.3.3.4SnowTheSnowsiteislocatedontheSnowRiverontheKenaiPeninsulanorthofSeward(Fig.2-18).TheriparianhabitatintheSnowRiversupportsmooseandotherwildlife.Upstreamanddown-streamofthepotentialdamsiteareareasoffallandwintermooseconcentration(Selkregg,1974).MountaingoatandDall'ssheepoccupythesteepslopesabovethesite.Blackandbrownbearandwolfrangeacrossthearea.Waterfowlusethevicinityofthesiteforanestingandmoltingarea(ExhibitE,Vol.9,Chap.10,TableE.I0.6).K.2.3.3.5JohnsonTheJohnsonsiteislocatedontheTananaRiver120mi(190km)southeastofFairbanks(Fig.2-18).Mooseandcaribourangethroughoutthearea(Selkregg,1977),andafallconcentrationareaformooseislocatedtothesouthwestalongtheJohnsonRiver.Abisoncalvingareaislocateddownstreamofthesite,alongtheTananaRiver.Blackandbrownbeararealsopresent(ExhibitE,Vol.9,Chap.10,TableE.I0.6).Lowdensitiesofwaterfowlusetheareafornestingandmolting.K.2.3.3.6Nenana,ChuitnaRiver,andAnchorageThewildlifepopulationsoftheNenanaareaareasdescribedinSectionK.2.3.2,whilethoseoftheChuitnaRiverandAnchorageareasareasdescribedinSectionK.2.3.1.
K-38K.3ENVIRONMENTALIMPACTK.3.1ProposedProjectK.3.1.1WatanaDevelopmentK.3.1.1.1ConstructionandFillingMOOSEAsnotedearlier(Sec.K.2.1.1.1),moosearetheprincipalbiggameinSouthcentralAlaska.Itisanticipatedthatconstructionandfi11ingoftheWatanareservoirwouldhavedirectandindirecteffectschieflyuponpopulationsofmooseupstreamoftheproposeddamsite.Potentialimpactswouldincludelossandalterationofmoosehabitatandincreaseddisturbancebyhumanpresenceandactivity(TableK-6).Lossofhabitatduetoconstructionofthedamandspillways;clearingandfillingofthereservoir;clearingforthecamp,villageandairstripsites;andexcavationofborrowareaswouldaffectmooseuseofhighqualityhabitat(seeAppendixJ).Approximately37,000acres[15,000hectares(ha)]oflandwouldbeoccupiedpermanentlybyprojectfeatures(App.J,TableJ-18).Aboutanother5,200acres(2,100ha)wouldbetemporarilyoccupiedbyprojectfacilities(App.J,TableJ-19).Theseareaswouldbereclaimedaftertheywerenolongerrequired(ExhibitE,Vol.6A,Chap.3,pp.E-3-275-278).However,recoveryoftheoriginalhabitatcoverwouldnot'occurforaperiodrangingfromseveraldecadestooveracentury(seeAppendixJ).Mooseutilizeallofthehabitatstobeaffectedbythevlatanaconstructionactivities(TablesK-7andK-8).Onlyasmallpercentage(ca.1%)ofthetotalhabitatavailableintheupperandmiddleSusitnaBasinwouldbeaffectedby\4atanaconstructionactivities(seeAppendixJ).However,theworkofBallardetal.(1982a,1983a)indicatesastrongpreferenceforforestedhabitat(TableK-8).ThesearetheprincipalhabitatsthatwouldbeaffectedbyconstructionactivitiesattheWatanadevelopment.TheWatanadevelopmentisexpectedtoaffectover3%oftheforesthabitatavailableintheupperandmiddleSusitnaBasin.Itisgenerallyacceptedthatcarryingcapacityforlargeungulatesislimitedbytheavailabilityofsuitableoverwinteringhabitat(Mautz,1980;Hobbsetal.,1982;PotvinandHuot,1983).ThisgeneralizationisprobablyapplicabletomoosepopulationsinSouthcentralAlaska(Coady,1982).Althoughwinterhabitatisconsideredlimiting,itisusuallyonlyduringseverewintersthatmoosearelikelytocongregateinareasoflowsnowdepths,areasofinterspersionofearlyandlatesuccessionalhabitat,andareasofpreferredwinterbrowse.TheApplicant'scurrentstudieshavenotprovidedabasisforevaluationoftheextentoflimitingwinterhabitatinthebasin(Ballardetal.,1982a,1983a).However,Ballardetal.(1983a)didobserveabout290mooseconcentratingalongtheSusitnaanditstributariesinapproximately100mi2(260km2)ofbottom-landhabitat.Earlierstudiesandstudieselsewheresuggestthatduringwinterswithheavysnowfall,thelocalmooseutilizethemixedwoodlandsatlowerelevationsalongtheriveranditsmajortributaries(seeSec.K.2.1.1.1).Approximately8%ofthisbottomlandforestwithin10mi(16km)oftheprojectedimpoundmentzoneswouldbepermanentlyoccupiedbyWatanaprojectfeatures[ExhibitE,Vol.6B,Chap.3,TableE.3.83(Rev.)].Baseduponpreliminarycalculationsofwintercarryingcapacities,thebasinhassufficienthabitattosupporttheequivalentof12,000moosethroughthe90-daylimitingwinterconditions(TableK-5).Thisvalueisprobablylowbecausehabitatsotherthanconiferousormixedforestswouldprovidesomebrowse.Permanenthabitatlostisequivalenttoanestimatedwintercarryingcapacityofabout500moose.Thus,constructionandfillingoftheWatanaimpoundmentcouldresultinlossofcarryingcapacityandultimatereductioninthemoosepopulationbyabout4%.Thispercentageofthemoosepopulationcouldbehigheriftheprojectedimpoundmentzonecontainsforesthabitatofhighervaluethanelsewhereinthebasin.Winterforagequalitycoulddifferamonghabitats,or,duringwintersofheavysnow,thelowlandsaroundtheprojectedimpoundmentzonecouldprovidemoreprotectedareaswithshallowersnow.Althoughspringuseoftheprojectareabycowswithcalvesiswidespread,Ballardetal.(1982a,1983a)foundconcentrationsintheprimaryimpactzone,withintheprojectedboundariesoftheWatanaimpoundment(Fig.K-3).Bottomlandforesthabitatwasapreferredhabitattypeduringtheseobservations.LossofthishabitatduetothefloodingoftheWatanaimpoundment,wouldlikelyhaveanegativeimpactuponsuccessfulcalvingandcalfrearing,and,hence,recruitmentofnewindividualsintothelocalpopulation.Themagnitudeoftheimportanceoftheprojectedimpoundmentzoneasacalvingareacannotbequantified.However,thelowlandforesthabitatintheimpoundmentzonereceivedhighestusebymooseduringthespringandearlysummermonths(Ballardetal.,1982a,1983a).Ballardetal.(1982a)postulatethattheselowlandhabitatsaresourcesofhigh-qualityforagecriticaltoK-38K.3ENVIRONMENTALIMPACTK.3.1ProposedProjectK.3.1.1WatanaDevelopmentK.3.1.1.1ConstructionandFillingMOOSEAsnotedearlier(Sec.K.2.1.1.1),moosearetheprincipalbiggameinSouthcentralAlaska.Itisanticipatedthatconstructionandfi11ingoftheWatanareservoirwouldhavedirectandindirecteffectschieflyuponpopulationsofmooseupstreamoftheproposeddamsite.Potentialimpactswouldincludelossandalterationofmoosehabitatandincreaseddisturbancebyhumanpresenceandactivity(TableK-6).Lossofhabitatduetoconstructionofthedamandspillways;clearingandfillingofthereservoir;clearingforthecamp,villageandairstripsites;andexcavationofborrowareaswouldaffectmooseuseofhighqualityhabitat(seeAppendixJ).Approximately37,000acres[15,000hectares(ha)]oflandwouldbeoccupiedpermanentlybyprojectfeatures(App.J,TableJ-18).Aboutanother5,200acres(2,100ha)wouldbetemporarilyoccupiedbyprojectfacilities(App.J,TableJ-19).Theseareaswouldbereclaimedaftertheywerenolongerrequired(ExhibitE,Vol.6A,Chap.3,pp.E-3-275-278).However,recoveryoftheoriginalhabitatcoverwouldnot'occurforaperiodrangingfromseveraldecadestooveracentury(seeAppendixJ).Mooseutilizeallofthehabitatstobeaffectedbythevlatanaconstructionactivities(TablesK-7andK-8).Onlyasmallpercentage(ca.1%)ofthetotalhabitatavailableintheupperandmiddleSusitnaBasinwouldbeaffectedby\4atanaconstructionactivities(seeAppendixJ).However,theworkofBallardetal.(1982a,1983a)indicatesastrongpreferenceforforestedhabitat(TableK-8).ThesearetheprincipalhabitatsthatwouldbeaffectedbyconstructionactivitiesattheWatanadevelopment.TheWatanadevelopmentisexpectedtoaffectover3%oftheforesthabitatavailableintheupperandmiddleSusitnaBasin.Itisgenerallyacceptedthatcarryingcapacityforlargeungulatesislimitedbytheavailabilityofsuitableoverwinteringhabitat(Mautz,1980;Hobbsetal.,1982;PotvinandHuot,1983).ThisgeneralizationisprobablyapplicabletomoosepopulationsinSouthcentralAlaska(Coady,1982).Althoughwinterhabitatisconsideredlimiting,itisusuallyonlyduringseverewintersthatmoosearelikelytocongregateinareasoflowsnowdepths,areasofinterspersionofearlyandlatesuccessionalhabitat,andareasofpreferredwinterbrowse.TheApplicant'scurrentstudieshavenotprovidedabasisforevaluationoftheextentoflimitingwinterhabitatinthebasin(Ballardetal.,1982a,1983a).However,Ballardetal.(1983a)didobserveabout290mooseconcentratingalongtheSusitnaanditstributariesinapproximately100mi2(260km2)ofbottom-landhabitat.Earlierstudiesandstudieselsewheresuggestthatduringwinterswithheavysnowfall,thelocalmooseutilizethemixedwoodlandsatlowerelevationsalongtheriveranditsmajortributaries(seeSec.K.2.1.1.1).Approximately8%ofthisbottomlandforestwithin10mi(16km)oftheprojectedimpoundmentzoneswouldbepermanentlyoccupiedbyWatanaprojectfeatures[ExhibitE,Vol.6B,Chap.3,TableE.3.83(Rev.)].Baseduponpreliminarycalculationsofwintercarryingcapacities,thebasinhassufficienthabitattosupporttheequivalentof12,000moosethroughthe90-daylimitingwinterconditions(TableK-5).Thisvalueisprobablylowbecausehabitatsotherthanconiferousormixedforestswouldprovidesomebrowse.Permanenthabitatlostisequivalenttoanestimatedwintercarryingcapacityofabout500moose.Thus,constructionandfillingoftheWatanaimpoundmentcouldresultinlossofcarryingcapacityandultimatereductioninthemoosepopulationbyabout4%.Thispercentageofthemoosepopulationcouldbehigheriftheprojectedimpoundmentzonecontainsforesthabitatofhighervaluethanelsewhereinthebasin.Winterforagequalitycoulddifferamonghabitats,or,duringwintersofheavysnow,thelowlandsaroundtheprojectedimpoundmentzonecouldprovidemoreprotectedareaswithshallowersnow.Althoughspringuseoftheprojectareabycowswithcalvesiswidespread,Ballardetal.(1982a,1983a)foundconcentrationsintheprimaryimpactzone,withintheprojectedboundariesoftheWatanaimpoundment(Fig.K-3).Bottomlandforesthabitatwasapreferredhabitattypeduringtheseobservations.LossofthishabitatduetothefloodingoftheWatanaimpoundment,wouldlikelyhaveanegativeimpactuponsuccessfulcalvingandcalfrearing,and,hence,recruitmentofnewindividualsintothelocalpopulation.Themagnitudeoftheimportanceoftheprojectedimpoundmentzoneasacalvingareacannotbequantified.However,thelowlandforesthabitatintheimpoundmentzonereceivedhighestusebymooseduringthespringandearlysummermonths(Ballardetal.,1982a,1983a).Ballardetal.(1982a)postulatethattheselowlandhabitatsaresourcesofhigh-qualityforagecriticalto
K-39TableK-6.PotentialImpactstoMoosefromWatanaDevelopmentProjectFeaturesPotentialImpactPermanentHabitatLossImpoundmentareaandpermanentfacilitiesImpoundmentclearingConstructionareasandborrowsitesClimatic-inducedhabitatalterationHydrologic-inducedhabitatalterationImpoundmentDownstreamConstructionactivitiesImpoundmentclearingAirtrafficPreliminaryestimatedlossofwintercarryingcapacityfortheequivalentofapproximately500moose.Lossofspring/earlysummerhabitat.Approximately1,800moosewouldbedirectlyaffected.TemporaryHabitatLossClearingwouldreducewinterandspringhabitatpriortopermanentlossduetoflooding.Habitatforupto15moosewouldbeaffected.HabitatAlterationDelayedsnowmeltwouldreducetheavailabilityoflowshrubhabitatinspringinanarrowbandontheshoreoftheimpoundment.Delayedplantphenologymightoccurimmediatelyadjacenttothereservoirduetoitscoolingeffect.Alteredfrequencyandmechanismofcreationofearlysuccessionalhabitatswouldoccurindownstreamreaches.Barriers,Impediments,andHazardstoMovementOpenwaterand/oriceshelvingcouldimpedeaccesstotraditionalcalvingandwinteringareas.Openwatermightrestrictmovementstoislandcalvingareasforthosecowswhichusethem.Attemptedcrossingsofopenwaterduringwintermightthermallystressanimals.Icecoverandaufeiswouldincreasedownstreamduetoincreasedwinterflowandmightresultinsomemortalityfrommoosefallingdown.DisturbanceWinterhabitatsandcalvingareasmightbesubjecttodisturbance.Noisyandunpredictabledisturbanceswouldbemostseriousandwouldlikelycauseavoidanceofthearea.Overflightscouldbeaseriousimpactduringcalvingandinwinter.Repeatedharassment couldbedetrimentalatalltimesofyear.K-39TableK-6.PotentialImpactstoMoosefromWatanaDevelopmentProjectFeaturesPotentialImpactPermanentHabitatLossImpoundmentareaandpermanentfacilitiesImpoundmentclearingConstructionareasandborrowsitesClimatic-inducedhabitatalterationHydrologic-inducedhabitatalterationImpoundmentDownstreamConstructionactivitiesImpoundmentclearingAirtrafficPreliminaryestimatedlossofwintercarryingcapacityfortheequivalentofapproximately500moose.Lossofspring/earlysummerhabitat.Approximately1,800moosewouldbedirectlyaffected.TemporaryHabitatLossClearingwouldreducewinterandspringhabitatpriortopermanentlossduetoflooding.Habitatforupto15moosewouldbeaffected.HabitatAlterationDelayedsnowmeltwouldreducetheavailabilityoflowshrubhabitatinspringinanarrowbandontheshoreoftheimpoundment.Delayedplantphenologymightoccurimmediatelyadjacenttothereservoirduetoitscoolingeffect.Alteredfrequencyandmechanismofcreationofearlysuccessionalhabitatswouldoccurindownstreamreaches.Barriers,Impediments,andHazardstoMovementOpenwaterand/oriceshelvingcouldimpedeaccesstotraditionalcalvingandwinteringareas.Openwatermightrestrictmovementstoislandcalvingareasforthosecowswhichusethem.Attemptedcrossingsofopenwaterduringwintermightthermallystressanimals.Icecoverandaufeiswouldincreasedownstreamduetoincreasedwinterflowandmightresultinsomemortalityfrommoosefallingdown.DisturbanceWinterhabitatsandcalvingareasmightbesubjecttodisturbance.Noisyandunpredictabledisturbanceswouldbemostseriousandwouldlikelycauseavoidanceofthearea.Overflightscouldbeaseriousimpactduringcalvingandinwinter.Repeatedharassment couldbedetrimentalatalltimesofyear.
K-40TableK-7.ProportionateSeasonalUseofHabitatCoverTypebyRadio-CollaredMooseProportionofRelocationst1ForestCoverTypeSpringSummer-FallWinterWoodlandspruceforestst20.560.430.40Openspruceforestst20.290.280.30Birchforests<0.01<0.01<0.01Mixedforestst2Tallshrubt30.00.00.0Birchshrubt30.00.00.0WillowandmixedlowShrubt30.140.290.29Tundra0.00.00.0N7915047oo445ot1ProportionofmooserelocationsinthathabitatduringApril-May,June-October,andNovember-March,respectively.t2Ballardetal.(1982a)includedmixedforestcommunitiesintheirspruceforestclassificationsandthereforemoose'useinmixedforestcovertypescannotbeseparatelyestimated.t3Ballardetal.(1982a)includedallshrubtypesinasingleshrubcategoryandthereforeuseinvariousshrubtypescannotbeseparatelyestimated.Source:Ballardetal.(l982a),Table13.TableK-8.MooseUseofHabitatCoverTypesinRelationtoTheirAvailabilitywithinthePrimaryImpactZoneoftheWatanaDevelopmentUse(%)PCoverTypeLowShrubMat-cushionTundraBirchWoodlandblackspruceOpenBlackSpruceOpenTallShrubSedgegrassTundraClosedMixedForestWoodlandWhiteSpruceSedgeShrubTundraOpenMixedForestOpenWhiteSpruceClosedTallShrubRockLakeWi11owClosedBirchForestOpenBirchForestWetSedgeGrassTundraTotalsNHabitatAvailability21.0%12.511.19.76.15.75.45.04.33.93.62.32.22.01.81.10.90.80.6100.01,450gridpointsAllMooseLocations23.6%2.3t211.917.5t212.6t23.81.78.9F7.9t20.3t22.22.61.3Ot20.3t22.2F0.40.40.4100.3784mooselocationsSpringMooseLocations24.5%3.0t210.715.0t212.0t24.72.612.0t27.3t22.11.72.60.9t20.9100.0233mooselocationst1Includeslocationsonecotonesbetweencovertypes.t2Usesignificantlydifferent(P<0.05)thanexpectedfromhabitatavailability(X2-test).Source:Ballardetal.(1983a),Table7.K-40TableK-7.ProportionateSeasonalUseofHabitatCoverTypebyRadio-CollaredMooseProportionofRelocationst1ForestCoverTypeSpringSummer-FallWinterWoodlandspruceforestst20.560.430.40Openspruceforestst20.290.280.30Birchforests<0.01<0.01<0.01Mixedforestst2Tallshrubt30.00.00.0Birchshrubt30.00.00.0WillowandmixedlowShrubt30.140.290.29Tundra0.00.00.0N7915047oo445ot1ProportionofmooserelocationsinthathabitatduringApril-May,June-October,andNovember-March,respectively.t2Ballardetal.(1982a)includedmixedforestcommunitiesintheirspruceforestclassificationsandthereforemoose'useinmixedforestcovertypescannotbeseparatelyestimated.t3Ballardetal.(1982a)includedallshrubtypesinasingleshrubcategoryandthereforeuseinvariousshrubtypescannotbeseparatelyestimated.Source:Ballardetal.(l982a),Table13.TableK-8.MooseUseofHabitatCoverTypesinRelationtoTheirAvailabilitywithinthePrimaryImpactZoneoftheWatanaDevelopmentUse(%)PCoverTypeLowShrubMat-cushionTundraBirchWoodlandblackspruceOpenBlackSpruceOpenTallShrubSedgegrassTundraClosedMixedForestWoodlandWhiteSpruceSedgeShrubTundraOpenMixedForestOpenWhiteSpruceClosedTallShrubRockLakeWi11owClosedBirchForestOpenBirchForestWetSedgeGrassTundraTotalsNHabitatAvailability21.0%12.511.19.76.15.75.45.04.33.93.62.32.22.01.81.10.90.80.6100.01,450gridpointsAllMooseLocations23.6%2.3t211.917.5t212.6t23.81.78.9F7.9t20.3t22.22.61.3Ot20.3t22.2F0.40.40.4100.3784mooselocationsSpringMooseLocations24.5%3.0t210.715.0t212.0t24.72.612.0t27.3t22.11.72.60.9t20.9100.0233mooselocationst1Includeslocationsonecotonesbetweencovertypes.t2Usesignificantlydifferent(P<0.05)thanexpectedfromhabitatavailability(X2-test).Source:Ballardetal.(1983a),Table7.
K-41recoveryofnutritionalbalanceafteraseverewinter.Mooseandotherungulatesinborealandsubarcticecosystemsaregenerallyinastateofdelicateorunstablenutritionalbalanceattheendofaseverewinter(Moen,1978;Mautz,1980;Coady,1982).Lowlandhabitatadjacenttotheriverwouldtendtohaveearliersnowmeltandearlieremergenceofactivelygrowingvegetation(seeAppendixJ).Newgrowthplanttissueisgenerallyconsideredofhighnutritionalvalue.TheproposedWatanaprojectcouldreducetheavailabilityofspringhabitatbyinundationofover55mi2(140km2).Reducedavailabilityofspringforagewouldleadtoincreasedpost-wintermortalityduetoexacerbationofoverwinteringnutritionalinbalanceaswellasreduceproductivity.Thesefactorswouldfurtherexacerbatelossesofoverwinteringcarryingcapacity.Ba11ardeta1.(1982a,1983a)definedthreeareassurroundingtheimpoundmentasprimary,secondary,andtertiaryzonesofimpacttomoose(Fig.K-19).<The1,200-mi2(3,000-km2)primaryimpactzonewasestimatedonthebasisoftherangesofmoosethatwereknowntoutilizetheareasofimpoundmentandprojectfacilities.Secondaryandtertiaryimpactzoneswerederivedassumingthatdisplacementofindividualsfromtheprimaryimpactzonewouldleadtoanincreaseincompetitiveinteractionsforcoverandfoodresources.Atpresent,approximately1,800mooseareestimatedtousetheareaoftheprojectedWatanaimpoundment(Ballardetal.,1983a:p.27).Lossofthishabitatfortheimpoundmentwouldlikelyhavethemostdirecteffectsuponthese1,800moose.Thesemoosewouldbecompe11edtocompetemoreintenselywithmoosecurrentlyusingrangeoutsidetheprimaryimpactzonepotentiallyresultinginsecondaryeffectsuponanestimated8,000additionalmoose(Ballardetal.,1983a:Table5).Althoughtheeffectsofthisincreasedcompetitioncannotbequantifiedrigorously,itislikelythatafterestablishmentoftheimpoundment,localmoosepopulationswouldstabilizeatalowerlevelthanpreviously.Inadditiontohabitatpermanentlylosttoinundationandpermanentprojectfeatures,approxi-mately5,200acres(2,100ha),or8mi2(20km2),wouldbetemporarilylosttoprojectfacili-ties.Basedupondensityestimates(Fig.K-2),aaverageofupto15moosewouldbeexpectedtousethisareaoftemporarydisturbance.ThisareaislocatedalongthemainstemSusitnaRiverandadjacentbenches,althoughpossibleborrowareasextendupTsusenaCreek.Shrublandandforesthabitatswouldbethemajorhabitatstemporarilyaffected(App.J,TableJ-19).Temporaryfacilitiesandborrowareasnotinundatedwouldberehabilitatedwithin11yearsafterinitia-tionofconstruction(ExhibitE,Vol.6A,Chap.3,pp.E-3-276to-277).Revegetationbysomeplantspeciescouldoccurquiterapidlyonrehabilitatedareas(seeApp.J,Sec.J.3).However,recoveryoftheoriginalmosaicofmature/earlysuccessionalhabitatscouldtakeover150years.Ifrevegetationfollowsthepatternofnaturalsuccessioninsubarcticsystems,thepresenceofearlysuccessionalstageswouldprovidehigh-qualitybrowseforlocalmoose(Peek,1974;Wolf,1978;WolffandZasada,1979).'Baseduponratesofnaturalsuccession,optimumforagewouldbeexpectedtobeavailableforabout1to20yearsfollowingtheinitia-tionofrecovery(WolffandZasada,1979).However,asWolffandZasadanote,althoughtheforagemightbeavailable,moosewouldnotnecessarilybeabletoorchoosetoutilizeit.ThesecondprincipalimpacttomooseusingtheWatanaconstructionzonewouldbedisturbanceofindividualsduetothepresenceofunfamiliarandconspicuousauditoryandvisualstimuli.HumanactivitiesassociatedwiththeconstructionoftheWatanadevelopmentwouldgenerateanarrayofstimuliunfamiliartolocalfauna.Mooseandothergamemightbedirectlyaffectedbytheinterruptionofactivitypatternsandresult ingavoidanceoftheconstructionareaandimbalancesinnutritionalbudgets.Noisegeneratedbyurbanconstructionactivitiesisgenerallyontheorderof90decibe1s,A-weighted,(dBA)atadistanceof50ft(15m)fromtheequipment(U.S.EnvironmentalProtec-tionAgency,1974a).Constructionatthedamsitewouldlikelygeneratecontinuousnoiselevelsonthesameorderofmagnitude,withimpulsenoiseranginghigher.Backgroundlevelsoverwhichthesenoiselevelswouldbesuperimposedareontheorderof20-30dBAforwildernessareas(U.S.EnvironmentalProtectionAgency,1974b).Underidealconditions,withnobarrierstosoundtravel,constructionnoisecouldbedistinguishablefrombackgrounduptoabout10mi(15km)fromtheconstructionzone.ThereviewofDufour(1980)suggeststhatungulatesarenotdisturbedbysteady-statenoisebelowabout60dBA.Unobstructedsoundwaveswoulddroptothislevelatabout0.3mi(0.5km)fromtheconstructionzone.Thus,theareaofcontinualdisturb-ancearoundtheconstructionsitesandborrowareasmightbeontheorderof20mi2(50km2),assumingactivitiesextendapproximately32mi(51km)alongtheSusitnaRiverandTsusenaCreek(ExhibitE,Vol.9Chap.10,Fig.L10.B).Impulsenoise,principallyduetoblasting,andnoiseassociatedwithaircraftwouldbeexpectedtocarryforlongerdistances.Effectsfromaircraftwouldberestrictedtoareasnearlandingsites,unlessactiveharassmentofmooseoccurred.Clearingofforestpriortofloodingwouldalsogeneratenoiseontheorderof90dBA.Disturb-anceaffectsassociatedwithclearingwouldextendforthelengthoftheprojectedimpoundment,ca.50mi(80km),affectinganareaofca.30mi2(80km2).Becauseclearingwouldoccurprogressivelyasthereservoirfills,clearingnoiseandactivitywouldbeofshorterduration(weeks)thannoiseandactivityaroundtheconstructionzone(about10years).K-41recoveryofnutritionalbalanceafteraseverewinter.Mooseandotherungulatesinborealandsubarcticecosystemsaregenerallyinastateofdelicateorunstablenutritionalbalanceattheendofaseverewinter(Moen,1978;Mautz,1980;Coady,1982).Lowlandhabitatadjacenttotheriverwouldtendtohaveearliersnowmeltandearlieremergenceofactivelygrowingvegetation(seeAppendixJ).Newgrowthplanttissueisgenerallyconsideredofhighnutritionalvalue.TheproposedWatanaprojectcouldreducetheavailabilityofspringhabitatbyinundationofover55mi2(140km2).Reducedavailabilityofspringforagewouldleadtoincreasedpost-wintermortalityduetoexacerbationofoverwinteringnutritionalinbalanceaswellasreduceproductivity.Thesefactorswouldfurtherexacerbatelossesofoverwinteringcarryingcapacity.Ba11ardeta1.(1982a,1983a)definedthreeareassurroundingtheimpoundmentasprimary,secondary,andtertiaryzonesofimpacttomoose(Fig.K-19).<The1,200-mi2(3,000-km2)primaryimpactzonewasestimatedonthebasisoftherangesofmoosethatwereknowntoutilizetheareasofimpoundmentandprojectfacilities.Secondaryandtertiaryimpactzoneswerederivedassumingthatdisplacementofindividualsfromtheprimaryimpactzonewouldleadtoanincreaseincompetitiveinteractionsforcoverandfoodresources.Atpresent,approximately1,800mooseareestimatedtousetheareaoftheprojectedWatanaimpoundment(Ballardetal.,1983a:p.27).Lossofthishabitatfortheimpoundmentwouldlikelyhavethemostdirecteffectsuponthese1,800moose.Thesemoosewouldbecompe11edtocompetemoreintenselywithmoosecurrentlyusingrangeoutsidetheprimaryimpactzonepotentiallyresultinginsecondaryeffectsuponanestimated8,000additionalmoose(Ballardetal.,1983a:Table5).Althoughtheeffectsofthisincreasedcompetitioncannotbequantifiedrigorously,itislikelythatafterestablishmentoftheimpoundment,localmoosepopulationswouldstabilizeatalowerlevelthanpreviously.Inadditiontohabitatpermanentlylosttoinundationandpermanentprojectfeatures,approxi-mately5,200acres(2,100ha),or8mi2(20km2),wouldbetemporarilylosttoprojectfacili-ties.Basedupondensityestimates(Fig.K-2),aaverageofupto15moosewouldbeexpectedtousethisareaoftemporarydisturbance.ThisareaislocatedalongthemainstemSusitnaRiverandadjacentbenches,althoughpossibleborrowareasextendupTsusenaCreek.Shrublandandforesthabitatswouldbethemajorhabitatstemporarilyaffected(App.J,TableJ-19).Temporaryfacilitiesandborrowareasnotinundatedwouldberehabilitatedwithin11yearsafterinitia-tionofconstruction(ExhibitE,Vol.6A,Chap.3,pp.E-3-276to-277).Revegetationbysomeplantspeciescouldoccurquiterapidlyonrehabilitatedareas(seeApp.J,Sec.J.3).However,recoveryoftheoriginalmosaicofmature/earlysuccessionalhabitatscouldtakeover150years.Ifrevegetationfollowsthepatternofnaturalsuccessioninsubarcticsystems,thepresenceofearlysuccessionalstageswouldprovidehigh-qualitybrowseforlocalmoose(Peek,1974;Wolf,1978;WolffandZasada,1979).'Baseduponratesofnaturalsuccession,optimumforagewouldbeexpectedtobeavailableforabout1to20yearsfollowingtheinitia-tionofrecovery(WolffandZasada,1979).However,asWolffandZasadanote,althoughtheforagemightbeavailable,moosewouldnotnecessarilybeabletoorchoosetoutilizeit.ThesecondprincipalimpacttomooseusingtheWatanaconstructionzonewouldbedisturbanceofindividualsduetothepresenceofunfamiliarandconspicuousauditoryandvisualstimuli.HumanactivitiesassociatedwiththeconstructionoftheWatanadevelopmentwouldgenerateanarrayofstimuliunfamiliartolocalfauna.Mooseandothergamemightbedirectlyaffectedbytheinterruptionofactivitypatternsandresult ingavoidanceoftheconstructionareaandimbalancesinnutritionalbudgets.Noisegeneratedbyurbanconstructionactivitiesisgenerallyontheorderof90decibe1s,A-weighted,(dBA)atadistanceof50ft(15m)fromtheequipment(U.S.EnvironmentalProtec-tionAgency,1974a).Constructionatthedamsitewouldlikelygeneratecontinuousnoiselevelsonthesameorderofmagnitude,withimpulsenoiseranginghigher.Backgroundlevelsoverwhichthesenoiselevelswouldbesuperimposedareontheorderof20-30dBAforwildernessareas(U.S.EnvironmentalProtectionAgency,1974b).Underidealconditions,withnobarrierstosoundtravel,constructionnoisecouldbedistinguishablefrombackgrounduptoabout10mi(15km)fromtheconstructionzone.ThereviewofDufour(1980)suggeststhatungulatesarenotdisturbedbysteady-statenoisebelowabout60dBA.Unobstructedsoundwaveswoulddroptothislevelatabout0.3mi(0.5km)fromtheconstructionzone.Thus,theareaofcontinualdisturb-ancearoundtheconstructionsitesandborrowareasmightbeontheorderof20mi2(50km2),assumingactivitiesextendapproximately32mi(51km)alongtheSusitnaRiverandTsusenaCreek(ExhibitE,Vol.9Chap.10,Fig.L10.B).Impulsenoise,principallyduetoblasting,andnoiseassociatedwithaircraftwouldbeexpectedtocarryforlongerdistances.Effectsfromaircraftwouldberestrictedtoareasnearlandingsites,unlessactiveharassmentofmooseoccurred.Clearingofforestpriortofloodingwouldalsogeneratenoiseontheorderof90dBA.Disturb-anceaffectsassociatedwithclearingwouldextendforthelengthoftheprojectedimpoundment,ca.50mi(80km),affectinganareaofca.30mi2(80km2).Becauseclearingwouldoccurprogressivelyasthereservoirfills,clearingnoiseandactivitywouldbeofshorterduration(weeks)thannoiseandactivityaroundtheconstructionzone(about10years).
7'
I
"""N
Q
y 2f SO,ml
."--._'
./,
"Jl)c:-:.
I~•C'"'s{";
o~
00
)~~mo""'\,10"•~~·-"O_·J"p.x.o~~
.
GLENN HIGHWAY ./
.",.,......-.-............-._.---'
rfJ PRIMARY IMPACT
tfr~~SECONDARY IMPACT
~TERTIARY IMPACT
Figure K-19.Boundaries of Primary,
Hydroelectric Project.
Secondary,and Tertiary Zones of Impact for the Susitna
[Source:Ballard et al.,1983a:Fig.3J
.
•~'NN HIGHWAY ./
.",.,......-...........-._.---'
~PRIMARY IMPACT
tfr~~SECONDARY IMPACT
~TERTIARY IMPACT ./,
25
I
GI.nnan.~1.....,..-.-..~
0"\
50 mI,
Figure K-19.Boundaries of Primary,Secondary,and Tertiary Zones of Impact for the Susitna
Hydroelectric Project.[Source:Ballard et al.,1983a:Fig.3J
K-43Theeffectsofdisturbingstimuliuponmoosearedifficulttopredict.TheApplicantcitesTracy(1977)asevidencethatmoosearemoretolerantofhumanactivitythanotherungulates(ExhibitE,Vol.6A,Chap.3,p.E-3-402).However,itisunlikelythatthelevelofactivityduringTracy'sstudiesinMcKinleyNationalPark(nowDenaliNationalParkandPreserve)approachedthelevelsanticipatedfortheWatanaconstruction.TheApplicantalsocitesempiricalevidencethatmoosecontinuetoutilizehabitatinthevicinityofconstructionandminingactivitiesinnorthernCanada(ExhibitE,Vol.6A,Chap.3,p.E-3-403).Thistoleranceofextensiveactivityappearstoexistonlyifhuntingandovertharassmentpressuresareabsent.Ifmooseavoidtheconstructionareas,therewouldbeaneffectivereductionincarryingcapacity.Displacementofmoosetootherareascouldincreasecompetitionforhabitatresourcesprobablyleadingtoanetlossinmoosenumbersinregionsaroundtheconstructionarea.Theextentofdisplacementwouldbetemporaryduringtheconstructionperiod(ca.10years).Evenifmoosedonotavoidtheconstructionarea,theycouldbesubjecttostressfromdisturbingstimuli,par-ticularlyduetosporadicblastingandlow-leveloverflights.Severalstudieshaveidentifiedphysiologicalresponsestounfamiliarnoiseandvisualstimuliintheabsenceofovertbehavioralresponses(McArthuretal.,1979;Moenetal.,1982).Moen(1976,1978)haspostulatedthatsuchresponsescouldleadtoenergeticimbalancesduringstressfulwinters.Thiscouldbemostdeleteriousduringwinterwhenmineralandenergybalancesaredelicateformoose.Theapproximately20mi2(50km2)zoneofdisturbancewouldextendthroughareasoflowmoosedensity[1.I/mi2(0.4/km2)]tomoderatedensity[1.8/mi2(1.4/km2)](Fig.K-2).Thus,some20to40moosewouldlikelybeaffectedbydirectdisturbance.Thenumbercouldincreaseduringseverewintersasmoosemoveintolowlandhabitatneartheconstructionzone.CARIBOUConstructionactivitiesattheWatanadevelopmentwouldremovetemporarilyandpermanentlyabout52,000acres(21,000ha)ofcaribouhabitat(App.J,TablesJ-18andJ-19).However,thelossofthishabitatwouldnotbeexpectedtobeproblematicalasitrepresentslessthan1%ofthehabitatavailabletotheNelchinaherd(TableK-9).Theconstructionandimpoundmentareasarenotextensivelyusedbycaribouandarenotconsideredhigh-qualitycaribourange(Pitcher,1982,1983).Theprincipaleffectsuponcaribouwouldbetheinterruptionofmovementbythepresenceofthereservoirandaccessroute(seeSec.K.3.1.1.2).Unfamiliaracousticandvisualstimulimightelicitfrightorotherstressresponsesfromindi-vidualcaribouintheproposedconstructionzone.Becausetheareaisnotusedextensivelybycaribou,itisunlikelythatsuchresponseswouldadverselyaffecttheNelchinaherdevenifindividualsareaffected.Life-historystagesofextremesensitivity,e.g.,calvingandrear-ing,occurinareaswellremovedfromtheconstructionzone(seeFig.K-6).Duringthesummermonths,bullcariboumightbefoundinthevicinityoftheprojectedborrowareasA,0,andF(Figs.2-2and2-6).Activitiesintheseareasmightcauseafewcariboutoavoidusingtheadjacentrange.Constructioneffectsuponthetotalherdwouldbeminute.TableK-9.PotentialImpactstoCariboufromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentareaReclaimedareasImpoundmentAreathatwouldbepermanentlylostrepresents0.3%oftotalrange,andwouldconsistoflow-qualitygrazinghabitat.HabitatAlterationandTemporaryHabitatLoss:BorrowsitesA,0,andFwouldbeinareasfrequentedbybullsinsummer.Barriers,Impediments,andHazardstoMove-ment:Mightresultin:(1)alteredmovementpatternsreducingfrequencyofcrossingwithconsequentdecreasesinuseofportionsofrange,thusreducingcarryingcapacity;(2)isolat-ingofsubherdshavingseparatecalvinggrounds;(3)increasedaccidentalmortalityassociatedwithiceshelving,driftingiceflows,floatingdebris,andextensivemudflats.K-43Theeffectsofdisturbingstimuliuponmoosearedifficulttopredict.TheApplicantcitesTracy(1977)asevidencethatmoosearemoretolerantofhumanactivitythanotherungulates(ExhibitE,Vol.6A,Chap.3,p.E-3-402).However,itisunlikelythatthelevelofactivityduringTracy'sstudiesinMcKinleyNationalPark(nowDenaliNationalParkandPreserve)approachedthelevelsanticipatedfortheWatanaconstruction.TheApplicantalsocitesempiricalevidencethatmoosecontinuetoutilizehabitatinthevicinityofconstructionandminingactivitiesinnorthernCanada(ExhibitE,Vol.6A,Chap.3,p.E-3-403).Thistoleranceofextensiveactivityappearstoexistonlyifhuntingandovertharassmentpressuresareabsent.Ifmooseavoidtheconstructionareas,therewouldbeaneffectivereductionincarryingcapacity.Displacementofmoosetootherareascouldincreasecompetitionforhabitatresourcesprobablyleadingtoanetlossinmoosenumbersinregionsaroundtheconstructionarea.Theextentofdisplacementwouldbetemporaryduringtheconstructionperiod(ca.10years).Evenifmoosedonotavoidtheconstructionarea,theycouldbesubjecttostressfromdisturbingstimuli,par-ticularlyduetosporadicblastingandlow-leveloverflights.Severalstudieshaveidentifiedphysiologicalresponsestounfamiliarnoiseandvisualstimuliintheabsenceofovertbehavioralresponses(McArthuretal.,1979;Moenetal.,1982).Moen(1976,1978)haspostulatedthatsuchresponsescouldleadtoenergeticimbalancesduringstressfulwinters.Thiscouldbemostdeleteriousduringwinterwhenmineralandenergybalancesaredelicateformoose.Theapproximately20mi2(50km2)zoneofdisturbancewouldextendthroughareasoflowmoosedensity[1.I/mi2(0.4/km2)]tomoderatedensity[1.8/mi2(1.4/km2)](Fig.K-2).Thus,some20to40moosewouldlikelybeaffectedbydirectdisturbance.Thenumbercouldincreaseduringseverewintersasmoosemoveintolowlandhabitatneartheconstructionzone.CARIBOUConstructionactivitiesattheWatanadevelopmentwouldremovetemporarilyandpermanentlyabout52,000acres(21,000ha)ofcaribouhabitat(App.J,TablesJ-18andJ-19).However,thelossofthishabitatwouldnotbeexpectedtobeproblematicalasitrepresentslessthan1%ofthehabitatavailabletotheNelchinaherd(TableK-9).Theconstructionandimpoundmentareasarenotextensivelyusedbycaribouandarenotconsideredhigh-qualitycaribourange(Pitcher,1982,1983).Theprincipaleffectsuponcaribouwouldbetheinterruptionofmovementbythepresenceofthereservoirandaccessroute(seeSec.K.3.1.1.2).Unfamiliaracousticandvisualstimulimightelicitfrightorotherstressresponsesfromindi-vidualcaribouintheproposedconstructionzone.Becausetheareaisnotusedextensivelybycaribou,itisunlikelythatsuchresponseswouldadverselyaffecttheNelchinaherdevenifindividualsareaffected.Life-historystagesofextremesensitivity,e.g.,calvingandrear-ing,occurinareaswellremovedfromtheconstructionzone(seeFig.K-6).Duringthesummermonths,bullcariboumightbefoundinthevicinityoftheprojectedborrowareasA,0,andF(Figs.2-2and2-6).Activitiesintheseareasmightcauseafewcariboutoavoidusingtheadjacentrange.Constructioneffectsuponthetotalherdwouldbeminute.TableK-9.PotentialImpactstoCariboufromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentareaReclaimedareasImpoundmentAreathatwouldbepermanentlylostrepresents0.3%oftotalrange,andwouldconsistoflow-qualitygrazinghabitat.HabitatAlterationandTemporaryHabitatLoss:BorrowsitesA,0,andFwouldbeinareasfrequentedbybullsinsummer.Barriers,Impediments,andHazardstoMove-ment:Mightresultin:(1)alteredmovementpatternsreducingfrequencyofcrossingwithconsequentdecreasesinuseofportionsofrange,thusreducingcarryingcapacity;(2)isolat-ingofsubherdshavingseparatecalvinggrounds;(3)increasedaccidentalmortalityassociatedwithiceshelving,driftingiceflows,floatingdebris,andextensivemudflats.
K-44OALL'SSHEEPNosheephabitatwouldbeaffectedbyconstructionactivitiesattheWatanasite(TableK-10).Sheeparesensitivetodisturbancefromhumanactivity;however,theydohabituatetomoderatelevelsofactivity(Geist,1980;LawsonandJohnson,1982;MacArthur,1979,1982;HicksandElder,1979).Althoughthesheeprangeiswellremovedfromtheconstructionsite(Fig.K-10),somedisturbanceofsheepwouldbeexpectedduetoairtraffictoandfromtheconstructionareas.Becausetheareasofsheepconcentrationareremovedfromtheconstructionzone,over-flightsinsupportofconstructionshouldgenerallybeathighenoughaltitudes[>1,000ft(300m)]toreduceharassmentimpactstoaminorlevel.FillingofthereservoirwouldinundateanimportantminerallickalongJayCreek(TableK-10)(seeSec.K.3.1.1.2forfurtherdiscussion).BROWNBEARAbout400brownbearrangethroughoutthe6,400-mi2(16,000-km2)upperandmiddleSusitnaBasin(MillerandMcAllister,1982;MillerandBallard,1982).MillerandMcAllister(1982)indicatethatthisisprobablyanunderestimate.Thetwoprincipa1impactstobrownbearwouldbetemporaryandpermanentlossofspringfoodresourcesandhuman-bearinteractions(TableK-11).ConstructionandfillingofWatanareservoirwouldinundateover55mi2(140km2)ofbrownbearhabitat(App.J,TableJ-18).Thelowlandhabitatsof'theprojectedimpoundmentzoneappeartobeimportantsourcesofearlyspringberriestoamajorityofthelocalpopulation(MillerandMcAllister,1982).Thelowlandhabitatsaregenerallythefirstareastobecomeclearofsnow,providingaccesstooverwinteringberries.Plantgrowthbeginsearlierinlowlandhabitatsaswell,providinghigh-qualitynewplantgrowth.Adultmaleandyearlingbeararetheprincipalindividualsthatwouldbeimpactedbythelossoflowlandspringhabitat(MillerandMcAllister,1982;Miller,1983).Sowswithcubstendtoremaininuplandareaslaterthanotherindividuals.MillerandMcAllister(1982)postulatethatthelowlandforageplaysanimportantroleinregainingnutritionalbalanceafterover-wintering.Ouringthewinterdenningperiod,brownbearrarelyventurefromtheirdens(CraigheadandMitchell,1982).Thus,theyaredependentuponmetabolismofbodyfatstoresformaintenanceofmetabolicenergyneeds.Duringthecourseofawinter,abrownbearmayloseinexcessof30%ofitspre-denningbodyweight.Thus,theperiodimmediatelyafteremergenceisacriticalperiodininitiatingtherecoveryoffatstoresmetabolizedduringdenning.Theextenttowhichbrownbearinthebasinaredependentuponmooseisnotclear.Animalmattermakesupthemajority(50%-60%)ofthebrownbeardiet(CraigheadandMiller,1982).Ballardetal.(1981a)foundthatalargeproportion(>40%)ofmoose-calfmortalitycouldbeattributedtobrownbearpredation.However,theproportionofmooseinthebrownbeardietisnotknown.Becausemoosearethemostprevalentungulatesinthearea,itis1ikelythattheyformalargeproportionoftheanimalmatterinthedietoflocalbrownbear.Thus,effectsuponthemoosepopulationsizewouldprobablyresultinthereductionoftheoverallfoodbaseforbrownbearinthebasin.Constructionactivitywouldlikelyincreaseinteractionsbetweenbearsandhumans,aswellasinfluencesomebearstoavoidtheareaofhumanactivity.Thosebearthatbecamehabituatedtohumanpresencemightbecomepestsiftheywereattractedtoaccessiblefoodsuchasgarbage.Theseindividualscouldengageinactionsleadingtopropertydamage,toinjurytohumansandtothemselves,andtomortalityofproblembears.Properhandlingofputresciblewasteswouldreducethepotentialforpersistentencroachmentbyproblembearsintohumanworkandlivingareas.Habituatedbearsmightalsobecomemoresusceptibletohunting(seeSec.K.3.1.1.3).Chance,surpriseencountersofbearandhumanscouldalsohaveinjuriousorfatalresultsforeitherparty.Becauseconstructionactivitieswouldaffectasmallareaandasmallnumberofbears(ontheorderoften),thesehuman/bearinteractionsduetoconstructionactivitieswouldbeunlikelytohaveamajorimpactuponthebearpopulationofthebasin.Interactionscould,however,havedisruptiveeffectsonhumanactivities.BLACKBEARIntheupperandmiddleSusitnaBasin,blackbeararegenerallyfoundinlowlandconiferhabitatsalongtheSusitnaRiveranditstributaries(seeSec.K.2.1.1.5).Mostsightingsofblackbearhavebeenwithina10-mi(16-km)striponeitherside-oftheSusitnaRiverfromGoldCreektotheMaclarenRiver(MillerandMcAllister,1982:Fig.2).OnlyduringthelatesummerberryseasondoblackbearventureontothetablelandsnorthoftheSusitna.MillerandMcAllister(1982)estimatedthatontheorderof300to400blackbearoccupythevicinityoftheprojectedWatanaimpoundment.K-44OALL'SSHEEPNosheephabitatwouldbeaffectedbyconstructionactivitiesattheWatanasite(TableK-10).Sheeparesensitivetodisturbancefromhumanactivity;however,theydohabituatetomoderatelevelsofactivity(Geist,1980;LawsonandJohnson,1982;MacArthur,1979,1982;HicksandElder,1979).Althoughthesheeprangeiswellremovedfromtheconstructionsite(Fig.K-10),somedisturbanceofsheepwouldbeexpectedduetoairtraffictoandfromtheconstructionareas.Becausetheareasofsheepconcentrationareremovedfromtheconstructionzone,over-flightsinsupportofconstructionshouldgenerallybeathighenoughaltitudes[>1,000ft(300m)]toreduceharassmentimpactstoaminorlevel.FillingofthereservoirwouldinundateanimportantminerallickalongJayCreek(TableK-10)(seeSec.K.3.1.1.2forfurtherdiscussion).BROWNBEARAbout400brownbearrangethroughoutthe6,400-mi2(16,000-km2)upperandmiddleSusitnaBasin(MillerandMcAllister,1982;MillerandBallard,1982).MillerandMcAllister(1982)indicatethatthisisprobablyanunderestimate.Thetwoprincipa1impactstobrownbearwouldbetemporaryandpermanentlossofspringfoodresourcesandhuman-bearinteractions(TableK-11).ConstructionandfillingofWatanareservoirwouldinundateover55mi2(140km2)ofbrownbearhabitat(App.J,TableJ-18).Thelowlandhabitatsof'theprojectedimpoundmentzoneappeartobeimportantsourcesofearlyspringberriestoamajorityofthelocalpopulation(MillerandMcAllister,1982).Thelowlandhabitatsaregenerallythefirstareastobecomeclearofsnow,providingaccesstooverwinteringberries.Plantgrowthbeginsearlierinlowlandhabitatsaswell,providinghigh-qualitynewplantgrowth.Adultmaleandyearlingbeararetheprincipalindividualsthatwouldbeimpactedbythelossoflowlandspringhabitat(MillerandMcAllister,1982;Miller,1983).Sowswithcubstendtoremaininuplandareaslaterthanotherindividuals.MillerandMcAllister(1982)postulatethatthelowlandforageplaysanimportantroleinregainingnutritionalbalanceafterover-wintering.Ouringthewinterdenningperiod,brownbearrarelyventurefromtheirdens(CraigheadandMitchell,1982).Thus,theyaredependentuponmetabolismofbodyfatstoresformaintenanceofmetabolicenergyneeds.Duringthecourseofawinter,abrownbearmayloseinexcessof30%ofitspre-denningbodyweight.Thus,theperiodimmediatelyafteremergenceisacriticalperiodininitiatingtherecoveryoffatstoresmetabolizedduringdenning.Theextenttowhichbrownbearinthebasinaredependentuponmooseisnotclear.Animalmattermakesupthemajority(50%-60%)ofthebrownbeardiet(CraigheadandMiller,1982).Ballardetal.(1981a)foundthatalargeproportion(>40%)ofmoose-calfmortalitycouldbeattributedtobrownbearpredation.However,theproportionofmooseinthebrownbeardietisnotknown.Becausemoosearethemostprevalentungulatesinthearea,itis1ikelythattheyformalargeproportionoftheanimalmatterinthedietoflocalbrownbear.Thus,effectsuponthemoosepopulationsizewouldprobablyresultinthereductionoftheoverallfoodbaseforbrownbearinthebasin.Constructionactivitywouldlikelyincreaseinteractionsbetweenbearsandhumans,aswellasinfluencesomebearstoavoidtheareaofhumanactivity.Thosebearthatbecamehabituatedtohumanpresencemightbecomepestsiftheywereattractedtoaccessiblefoodsuchasgarbage.Theseindividualscouldengageinactionsleadingtopropertydamage,toinjurytohumansandtothemselves,andtomortalityofproblembears.Properhandlingofputresciblewasteswouldreducethepotentialforpersistentencroachmentbyproblembearsintohumanworkandlivingareas.Habituatedbearsmightalsobecomemoresusceptibletohunting(seeSec.K.3.1.1.3).Chance,surpriseencountersofbearandhumanscouldalsohaveinjuriousorfatalresultsforeitherparty.Becauseconstructionactivitieswouldaffectasmallareaandasmallnumberofbears(ontheorderoften),thesehuman/bearinteractionsduetoconstructionactivitieswouldbeunlikelytohaveamajorimpactuponthebearpopulationofthebasin.Interactionscould,however,havedisruptiveeffectsonhumanactivities.BLACKBEARIntheupperandmiddleSusitnaBasin,blackbeararegenerallyfoundinlowlandconiferhabitatsalongtheSusitnaRiveranditstributaries(seeSec.K.2.1.1.5).Mostsightingsofblackbearhavebeenwithina10-mi(16-km)striponeitherside-oftheSusitnaRiverfromGoldCreektotheMaclarenRiver(MillerandMcAllister,1982:Fig.2).OnlyduringthelatesummerberryseasondoblackbearventureontothetablelandsnorthoftheSusitna.MillerandMcAllister(1982)estimatedthatontheorderof300to400blackbearoccupythevicinityoftheprojectedWatanaimpoundment.
K-45TableK-IO.PotentialImpactstoDall'sSheepfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentImpoundmentInundationofover22%ofJayCreekminerallickduringmonthsofmaximumuse.AtmaximumimpoundmentlevelinOctober,42%oflicksurfacewouldbe beflooded.HabitatAlterationandTemporaryHabitatLoss:Areasoflickbelowmaximumfilllevelmightsuffersomeleaching,makingthemlessdesirablewhentheyareavailable.Disturbance:AirtrafficImpactstoallDall'ssheepinthemiddlebasinmightoccuriflow-flyingaircraftareuncontrolled.TheJayCreekminerallickwouldbeaparticularlysensitivearea.TableK-ll.PotentialImpactstoBrownBearfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentHydrologic-inducedImpoundmentGeneralImpoundmentfacilities,stagingareas,borrowsitesAirtrafficSpringfeedingareas(lowerelevationsprucehabitats)wouldbeflooded.Effectsonpreypopulationsmightimpactbrownbears,buttheimportanceofungulatepreyisunquantified.HabitatAlterationandTemporaryHabitatLoss:Reductioninpreypopulations(ungulateandsalmon)iftheyoccurwouldimpactbrownbearsindownstreamreaches.Barriers,Impediments,andHazardstoMovements:Brokeniceand/orice-shelvingmightblockorhinderaccesstohabituallyusedareasforsomeindividualsinearlyspring.Disturbance:Somebearswouldavoidareasofintensehumanactivities;otherswouldhabituateandsomehabituatedbearsmightbeattractedtosuchareas.Human/bearconflictswouldhaveapotentialtocausesignificantlossofworktimeforcontractors,injuriestoemployees,andpropertydamage.Habituatedbearsalsomightbecomemoresusceptibletohunting.Mortalitiesduetohuman/bearconflicts.Alteredmovementsduetoavoidanceorattraction.Bearswouldbeattractedtogarbagedumpsandtoimproperlydisposedorinadequatelyincineratedgarbage.Bearsmightbeattractedtorevegetatedareas.Thiswouldincreasetheircontactwithhumans,causingproblemswithhabituatedbears.Mightdisruptnormalfeeding,resting,anddenningactivities.K-45TableK-IO.PotentialImpactstoDall'sSheepfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentImpoundmentInundationofover22%ofJayCreekminerallickduringmonthsofmaximumuse.AtmaximumimpoundmentlevelinOctober,42%oflicksurfacewouldbe beflooded.HabitatAlterationandTemporaryHabitatLoss:Areasoflickbelowmaximumfilllevelmightsuffersomeleaching,makingthemlessdesirablewhentheyareavailable.Disturbance:AirtrafficImpactstoallDall'ssheepinthemiddlebasinmightoccuriflow-flyingaircraftareuncontrolled.TheJayCreekminerallickwouldbeaparticularlysensitivearea.TableK-ll.PotentialImpactstoBrownBearfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentHydrologic-inducedImpoundmentGeneralImpoundmentfacilities,stagingareas,borrowsitesAirtrafficSpringfeedingareas(lowerelevationsprucehabitats)wouldbeflooded.Effectsonpreypopulationsmightimpactbrownbears,buttheimportanceofungulatepreyisunquantified.HabitatAlterationandTemporaryHabitatLoss:Reductioninpreypopulations(ungulateandsalmon)iftheyoccurwouldimpactbrownbearsindownstreamreaches.Barriers,Impediments,andHazardstoMovements:Brokeniceand/orice-shelvingmightblockorhinderaccesstohabituallyusedareasforsomeindividualsinearlyspring.Disturbance:Somebearswouldavoidareasofintensehumanactivities;otherswouldhabituateandsomehabituatedbearsmightbeattractedtosuchareas.Human/bearconflictswouldhaveapotentialtocausesignificantlossofworktimeforcontractors,injuriestoemployees,andpropertydamage.Habituatedbearsalsomightbecomemoresusceptibletohunting.Mortalitiesduetohuman/bearconflicts.Alteredmovementsduetoavoidanceorattraction.Bearswouldbeattractedtogarbagedumpsandtoimproperlydisposedorinadequatelyincineratedgarbage.Bearsmightbeattractedtorevegetatedareas.Thiswouldincreasetheircontactwithhumans,causingproblemswithhabituatedbears.Mightdisruptnormalfeeding,resting,anddenningactivities.
K-46FillingtheWatanaimpoundmentwouldbeexpectedtoinundateabout8%ofthesuitableforesthabitatavailableforblackbearwithintheupperandmiddlebasin(TableK-12andApp.J,TableJ-18).Suchlosscouldbedirectlyreflectedinaconcomitantreductioninthelocalblackbearpopulation.Themostsevereeffectswouldlikelyresultfromlossofsuitablehabitatforlocatingblackbeardens(McA11isterandMi11er,1982;Mi11er,1983).Of24densinthe1oca1ityoftheprojectedWatanaimpoundment,13wouldbeinundated.Thus,theimpoundmentwouldseverelyrestricttheavailabilityofsuitabledenningsitesinthearea,perhapsbyasmuchas55%(TableK-12).Lossofsuitablehabitatwouldbelikelytocausesomeblackbeartoshiftactivitiestomoreuplandlocations.Suchshiftswouldincreasetheprobabilityofinteractionswiththelargerbrownbear.Increasedinteractioncouldleadtoincreasedmortalordebilitatinginjuryaswellasreducednutritionalstatus.Thissituationwouldfurtherexacerbatethedirecteffectsofimpoundment,alongwitheffectsofincreasedhumanactivityandhuntingpressure(discussedinSec.K.3.l.l.3).Disturbanceandhuman/bearinteractionswouldbeofthesamenatureasdescribedforbrownbear.However,agreaternumberofindividualblackbeararelikelytobeinvolvedinsuchinteractionsbecauseoftheconcentrationofsuitableblackbearhabitataroundtheconstructionarea.Again,movementofblackbearfromtheconstructionareatothefringesofsuitablehabitatwouldlikelybringblackbearintocontactwithbrownbearmorefrequently.WOLFTheWatanaandJayCreekpacksandpossiblytheTalkeetnaRiverpackcouldbeaffectedbycon-structionandfillingactivities(Ballardetal.,1982d,1983c).Noknowndenningorrendezvousareaswouldbeaffectedbyconstruction(TableK-13).However,lossordisplacementofmooseandcariboupreyfromtheconstructionareacouldleadtolossofcarryingcapacityforwolfintheconstructionzone.Construction,clearing,andimpoundmentfillingwouldaffectover55mi2(140km2)ofareawithinthehomerangesoftheWatanaandJayCreekpacks,containingupto16and12individuals,respectively.Theterritoriesofthesepacksaverageabout500mi2(1,300km2)fortheWatanapackandabout150mi2(390km2)fortheJayCreekpack(Ballardetal.,1982,1983c).Thus,about7%oftheterritoriesofthesetwopackswouldbelost,leadingtoareductioninhuntingrange,impedanceofmovement,andreductionofabundanceofprey.Theareathatwouldbeinun-datediscenteredintheportionoftheterritoriesreceivinghighest(45%)use(Ballardetal.,1983b).Thus,thesizeofthesetwopackscouldbesubstantiallyreducedifthetwopackswereabletosurviveasseparateentities.Thedisplacementorreductioninnumbersofpreyintheimpoundmentareawouldhaveanegativeimpactonwolfusingtheimpoundmentarea(Ballardetal.,1982d,1983c).Thisisparticularlytruesincemoosecalvingandrearinggroundswouldbelosttoinundation(TableK-6).Althoughtheimpoundmentmightincreasethesusceptibilityofsomeungulatestowolf,thenetresultoverthelongtermwouldbeareductionofcarryingcapacityforwolfpreyinthevicinityof theimpoundment.DataofVanBallenbergheetal.(1975)andGasawayetal.(1983)indicatethatfoodsupplyisgenerallythemajorfactorlimitingwolfpopulations.However,thepopulationinthebasinisbelievedtobecurrentlylimitedbyhunting(Ballardetal.,1981,1982d,1983c;Gasawayetal.,1983).Thus,areductioninfoodsupplywouldnotbeexpectedtoresultinadepressioninlocalwolfnumbers.Ontheotherhand,theWatanapackislessaccessibletohuntingthanmoreperipheralpacksinthebasin,andBallardetal.(1983c)suggestthatthisproductivepackservesasareservoirforrecruitmentofyoungintootherpacks.Thus,impactstothefoodsupplyoftheWatanapackcouldaffectrecruitmentofwolvesintomoreheavilyhuntedpacksandresultinasubsequentdeclineinthebasinwidewolfpopulation.TheextenttowhichtheWatanapackservesasareservoirforrecruitmentofwolvesintootherpacksisnotknown.Inordertoavoidhumanactivityorinordertofindmoreprey,theWatanaandJayCreekpacksmightshifttheirrangesinresponsetoconstructionactivities.Thiswouldlikelyleadtoincreasedinteractionandcompetitionwithadjacentpacks,possiblyleadingtoanetlossinwolfnumbers.Somewolvesmighthabituatetothepresenceofhumansandbecomenuisanceanimals.Nuisanceinteractionswithhumanswouldbelikelytoleadtothemortalityofsomewolfintheconstructionarea.\10LVERINEAnestimated80wolverineoccupiedtheupperandmiddleSusitnaBasinin1980to1982(WhitmanandBallard,1983).Of12wolverinemonitoredinthebasin,onlytwohadrangesoverlappingtheconstructionandimpoundmentzone.K-46FillingtheWatanaimpoundmentwouldbeexpectedtoinundateabout8%ofthesuitableforesthabitatavailableforblackbearwithintheupperandmiddlebasin(TableK-12andApp.J,TableJ-18).Suchlosscouldbedirectlyreflectedinaconcomitantreductioninthelocalblackbearpopulation.Themostsevereeffectswouldlikelyresultfromlossofsuitablehabitatforlocatingblackbeardens(McA11isterandMi11er,1982;Mi11er,1983).Of24densinthe1oca1ityoftheprojectedWatanaimpoundment,13wouldbeinundated.Thus,theimpoundmentwouldseverelyrestricttheavailabilityofsuitabledenningsitesinthearea,perhapsbyasmuchas55%(TableK-12).Lossofsuitablehabitatwouldbelikelytocausesomeblackbeartoshiftactivitiestomoreuplandlocations.Suchshiftswouldincreasetheprobabilityofinteractionswiththelargerbrownbear.Increasedinteractioncouldleadtoincreasedmortalordebilitatinginjuryaswellasreducednutritionalstatus.Thissituationwouldfurtherexacerbatethedirecteffectsofimpoundment,alongwitheffectsofincreasedhumanactivityandhuntingpressure(discussedinSec.K.3.l.l.3).Disturbanceandhuman/bearinteractionswouldbeofthesamenatureasdescribedforbrownbear.However,agreaternumberofindividualblackbeararelikelytobeinvolvedinsuchinteractionsbecauseoftheconcentrationofsuitableblackbearhabitataroundtheconstructionarea.Again,movementofblackbearfromtheconstructionareatothefringesofsuitablehabitatwouldlikelybringblackbearintocontactwithbrownbearmorefrequently.WOLFTheWatanaandJayCreekpacksandpossiblytheTalkeetnaRiverpackcouldbeaffectedbycon-structionandfillingactivities(Ballardetal.,1982d,1983c).Noknowndenningorrendezvousareaswouldbeaffectedbyconstruction(TableK-13).However,lossordisplacementofmooseandcariboupreyfromtheconstructionareacouldleadtolossofcarryingcapacityforwolfintheconstructionzone.Construction,clearing,andimpoundmentfillingwouldaffectover55mi2(140km2)ofareawithinthehomerangesoftheWatanaandJayCreekpacks,containingupto16and12individuals,respectively.Theterritoriesofthesepacksaverageabout500mi2(1,300km2)fortheWatanapackandabout150mi2(390km2)fortheJayCreekpack(Ballardetal.,1982,1983c).Thus,about7%oftheterritoriesofthesetwopackswouldbelost,leadingtoareductioninhuntingrange,impedanceofmovement,andreductionofabundanceofprey.Theareathatwouldbeinun-datediscenteredintheportionoftheterritoriesreceivinghighest(45%)use(Ballardetal.,1983b).Thus,thesizeofthesetwopackscouldbesubstantiallyreducedifthetwopackswereabletosurviveasseparateentities.Thedisplacementorreductioninnumbersofpreyintheimpoundmentareawouldhaveanegativeimpactonwolfusingtheimpoundmentarea(Ballardetal.,1982d,1983c).Thisisparticularlytruesincemoosecalvingandrearinggroundswouldbelosttoinundation(TableK-6).Althoughtheimpoundmentmightincreasethesusceptibilityofsomeungulatestowolf,thenetresultoverthelongtermwouldbeareductionofcarryingcapacityforwolfpreyinthevicinityof theimpoundment.DataofVanBallenbergheetal.(1975)andGasawayetal.(1983)indicatethatfoodsupplyisgenerallythemajorfactorlimitingwolfpopulations.However,thepopulationinthebasinisbelievedtobecurrentlylimitedbyhunting(Ballardetal.,1981,1982d,1983c;Gasawayetal.,1983).Thus,areductioninfoodsupplywouldnotbeexpectedtoresultinadepressioninlocalwolfnumbers.Ontheotherhand,theWatanapackislessaccessibletohuntingthanmoreperipheralpacksinthebasin,andBallardetal.(1983c)suggestthatthisproductivepackservesasareservoirforrecruitmentofyoungintootherpacks.Thus,impactstothefoodsupplyoftheWatanapackcouldaffectrecruitmentofwolvesintomoreheavilyhuntedpacksandresultinasubsequentdeclineinthebasinwidewolfpopulation.TheextenttowhichtheWatanapackservesasareservoirforrecruitmentofwolvesintootherpacksisnotknown.Inordertoavoidhumanactivityorinordertofindmoreprey,theWatanaandJayCreekpacksmightshifttheirrangesinresponsetoconstructionactivities.Thiswouldlikelyleadtoincreasedinteractionandcompetitionwithadjacentpacks,possiblyleadingtoanetlossinwolfnumbers.Somewolvesmighthabituatetothepresenceofhumansandbecomenuisanceanimals.Nuisanceinteractionswithhumanswouldbelikelytoleadtothemortalityofsomewolfintheconstructionarea.\10LVERINEAnestimated80wolverineoccupiedtheupperandmiddleSusitnaBasinin1980to1982(WhitmanandBallard,1983).Of12wolverinemonitoredinthebasin,onlytwohadrangesoverlappingtheconstructionandimpoundmentzone.
K-47TableK-12.PotentialImpactstoBlackBearfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentareaReclaimedareasImpoundmentshoreerosionHydrologic-inducedalterationImpoundmentOperatingfacilitiesImpoundmentfacilities,stagingareas,andborrowsitesAirtrafficAbout8%ofpinespruceforesthabitatswouldbelost.Thenarrowbandofspruceforestremainingcouldleaveresidentbearssuscep-tibletointeractionswithbrownbearsandnecessitatealteredmove-mentpatterns.Denhabitats(55%ofknowndens)wouldbeflooded.HabitatAlterationandTemporaryHabitatLoss:BorrowareasDandFwouldbeinareasusedforberriesinlatesummer.Revegetationwouldbelikelytoimproveavailabilityofearly,springforagetemporarily.Possibleimpacttosomedenhabitats.Reductioninsalmonpopulations(iftheyoccur)wouldnegativelyimpactblackbears.Alterationofhydrologicregimemightalteravailabilityofriparianspringforage.Barriers,Impediments,andHazardstoMovement:Brokenicefloesand/oriceshelvingmighthinderaccesstohabitu-allyusedareasforsomeindividualsinearlyspring.Animalsdisplacedduringfillingcouldbesusceptibletomortalityfrombrownbearstheymayencounterondispersal.MightblockaccessoraltermovementsofdownstreamanimalstolatesummerforagingareasupstreamofTsusenaCreek.DisturbanceRelatedtoConstructionActivities:Mortalitiesduetohuman/bearconflicts.Alteredmovementsduetoavoidanceorattraction.Individualbearswhosehomerangesoverlapthesesiteswouldbedisplaced.Bearswouldavoiddenningnearareaswithfrequentdisturbances.Bearsmightbeattractedtorevegetatedareas.Thiswouldincreasetheircontactwithhumansandcauseproblemswithhabituatedbears.Mightdisruptnormalfeeding,resting,anddenningactivities.K-47TableK-12.PotentialImpactstoBlackBearfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentareaReclaimedareasImpoundmentshoreerosionHydrologic-inducedalterationImpoundmentOperatingfacilitiesImpoundmentfacilities,stagingareas,andborrowsitesAirtrafficAbout8%ofpinespruceforesthabitatswouldbelost.Thenarrowbandofspruceforestremainingcouldleaveresidentbearssuscep-tibletointeractionswithbrownbearsandnecessitatealteredmove-mentpatterns.Denhabitats(55%ofknowndens)wouldbeflooded.HabitatAlterationandTemporaryHabitatLoss:BorrowareasDandFwouldbeinareasusedforberriesinlatesummer.Revegetationwouldbelikelytoimproveavailabilityofearly,springforagetemporarily.Possibleimpacttosomedenhabitats.Reductioninsalmonpopulations(iftheyoccur)wouldnegativelyimpactblackbears.Alterationofhydrologicregimemightalteravailabilityofriparianspringforage.Barriers,Impediments,andHazardstoMovement:Brokenicefloesand/oriceshelvingmighthinderaccesstohabitu-allyusedareasforsomeindividualsinearlyspring.Animalsdisplacedduringfillingcouldbesusceptibletomortalityfrombrownbearstheymayencounterondispersal.MightblockaccessoraltermovementsofdownstreamanimalstolatesummerforagingareasupstreamofTsusenaCreek.DisturbanceRelatedtoConstructionActivities:Mortalitiesduetohuman/bearconflicts.Alteredmovementsduetoavoidanceorattraction.Individualbearswhosehomerangesoverlapthesesiteswouldbedisplaced.Bearswouldavoiddenningnearareaswithfrequentdisturbances.Bearsmightbeattractedtorevegetatedareas.Thiswouldincreasetheircontactwithhumansandcauseproblemswithhabituatedbears.Mightdisruptnormalfeeding,resting,anddenningactivities.
K-48TableK-13.PotentialImpactstoWolffromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentandfacilitiesImpoundmentandfacil·i-tiesDownstreamreachesConstructionactivitiesAirtrafficWatanapackmembersmightbeaffectedbecause45%ofallradio-locationsforpackmemberswereintheimpoundmentzone.SecondaryeffectsoftheeliminationoftheWatanapack'srangewouldbeupheavalofthehistoricaldistributionofpacksandassoci-atedsocialstrife.Reductionsinmoosecarryingcapacitywouldreducewolfcarryingcapacity,thoughwolveshavenotobtainedcarryingcapacityinthebasinforseveraldecadesduetowolf-controlmeasures,hunting,andtrapping.HabitatAlterationandTemporaryHabitatLoss:Reductionincarryingcapacityofpreywouldreducecapacityforwolves.Barriers,Impediments,andHazardstoMovement:Mightreduceaccesstocaribouandmoosecalvingareasforsomepacks.Openwaterinwintermightbeahazardtowolvesattemptingtocross.Disturbance:Avoidancewouldoccurinitially,buthabituationtopredictabledisturbancesmightoccur.Densitesaremostsensitiveandwolveswouldabandondensthatweredisturbedfrequently.Habituatedwolveswouldhavethepotentialtobecomenuisanceanimals.Densiteswouldbeabandonediffrequentairtrafficoccurredatlowaltitudesneardens.Impactswouldbemanifestedthroughlossofover55mF(140km2)offoraginghabitatanddisturbancefromhumanactivity(TableK-14).Principallyforested,winterhabitatwouldbeinundated(App.J,TableJ-18).Thiswouldresultinthelossofsmallmammalandbirdpreyforafewwolverine.Basedupontheestimateof1wolverine/60mi2(1/160km2),lossoftheinun-datedareaof55mi2(140km2)wouldlowerthecarryingcapacitybytheequivalentofaboutonewolverine(WhitmanandBallard,1983).Lossofmooseoverwinteringhabitatduetoimpoundmentmightleadtoincreasedmortalityandconsequentincreasedavailabilityofmoosecarrion.Thiswouldbenefitsomewolverinebyprovid-ingadditionalfoodbase.However,thelong-termavailabilityofaddedcarrionwouldvaryasnutrition-inducedmortalityofmoosevariedwithwinterseverity.Humanactivitiesintheconstructionandimpoundmentzoneswouldlikelycausewolverinetoavoidtheareaforthedurationofactivities(abouttenyears).Several(10to20)wolverinecouldbeaffectedbytheseactivities(GardnerandBallard,1982;WhitmanandBallard,1983).Shiftsinterritoryusecouldincreasecompetitiveandaggressiveinteractionamongindividualwolverine.BEAVERANDMUSKRATNobeaverwouldbeaffectedbyconstructionandfillingactivities(Gipsonetal.,1982;TableK-15);however,fivetotenmuskratuseborrowareasDandEforoverwintering(Figs.2-2and2-6).Impactsofconstructiontothebasinwidepopulationofmuskratwouldbeminorbecauseofthesmallnumberofmuskratinvolved.K-48TableK-13.PotentialImpactstoWolffromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentandfacilitiesImpoundmentandfacil·i-tiesDownstreamreachesConstructionactivitiesAirtrafficWatanapackmembersmightbeaffectedbecause45%ofallradio-locationsforpackmemberswereintheimpoundmentzone.SecondaryeffectsoftheeliminationoftheWatanapack'srangewouldbeupheavalofthehistoricaldistributionofpacksandassoci-atedsocialstrife.Reductionsinmoosecarryingcapacitywouldreducewolfcarryingcapacity,thoughwolveshavenotobtainedcarryingcapacityinthebasinforseveraldecadesduetowolf-controlmeasures,hunting,andtrapping.HabitatAlterationandTemporaryHabitatLoss:Reductionincarryingcapacityofpreywouldreducecapacityforwolves.Barriers,Impediments,andHazardstoMovement:Mightreduceaccesstocaribouandmoosecalvingareasforsomepacks.Openwaterinwintermightbeahazardtowolvesattemptingtocross.Disturbance:Avoidancewouldoccurinitially,buthabituationtopredictabledisturbancesmightoccur.Densitesaremostsensitiveandwolveswouldabandondensthatweredisturbedfrequently.Habituatedwolveswouldhavethepotentialtobecomenuisanceanimals.Densiteswouldbeabandonediffrequentairtrafficoccurredatlowaltitudesneardens.Impactswouldbemanifestedthroughlossofover55mF(140km2)offoraginghabitatanddisturbancefromhumanactivity(TableK-14).Principallyforested,winterhabitatwouldbeinundated(App.J,TableJ-18).Thiswouldresultinthelossofsmallmammalandbirdpreyforafewwolverine.Basedupontheestimateof1wolverine/60mi2(1/160km2),lossoftheinun-datedareaof55mi2(140km2)wouldlowerthecarryingcapacitybytheequivalentofaboutonewolverine(WhitmanandBallard,1983).Lossofmooseoverwinteringhabitatduetoimpoundmentmightleadtoincreasedmortalityandconsequentincreasedavailabilityofmoosecarrion.Thiswouldbenefitsomewolverinebyprovid-ingadditionalfoodbase.However,thelong-termavailabilityofaddedcarrionwouldvaryasnutrition-inducedmortalityofmoosevariedwithwinterseverity.Humanactivitiesintheconstructionandimpoundmentzoneswouldlikelycausewolverinetoavoidtheareaforthedurationofactivities(abouttenyears).Several(10to20)wolverinecouldbeaffectedbytheseactivities(GardnerandBallard,1982;WhitmanandBallard,1983).Shiftsinterritoryusecouldincreasecompetitiveandaggressiveinteractionamongindividualwolverine.BEAVERANDMUSKRATNobeaverwouldbeaffectedbyconstructionandfillingactivities(Gipsonetal.,1982;TableK-15);however,fivetotenmuskratuseborrowareasDandEforoverwintering(Figs.2-2and2-6).Impactsofconstructiontothebasinwidepopulationofmuskratwouldbeminorbecauseofthesmallnumberofmuskratinvolved.
K-49TableK-14.PotentialImpactstoWolverinefromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentareaImpoundmentWinteringforaginghabitatwouldbelost,withasubstantialdecreaseinavailabilityofsmallmammalandgrouse.Barriers,Impediments,andHazardstoMovement:Mightformhomerangeboundariesforanimalsinbasin.Disturbance:AllconstructionWolverinewouldbelikelytoavoidallareasofactivedisturbance.areasandimpoundmentclearingTableK-15.PotentialImpactstoAquaticFurbearersfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentHydrologic-inducedalterationAbout5-10muskratswouldbedisturbedintheimpoundmentandborrowareasDandE.HabitatAlterationandTemporaryHabitatLoss:Increasedwinterflowswouldlikelybenefitbeaver,allowingover-winteringinmoresitesthanarecurrentlyavailable.Stabilizedflowswouldallowbeavergreatersecurityinanchoringfoodcaches.Lackoficecoverwouldallowcolonizationofshallowerreaches.Muskratwouldlikelybenefitfromincreasednumberofbeaverpondsdown-stream.K-49TableK-14.PotentialImpactstoWolverinefromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentareaImpoundmentWinteringforaginghabitatwouldbelost,withasubstantialdecreaseinavailabilityofsmallmammalandgrouse.Barriers,Impediments,andHazardstoMovement:Mightformhomerangeboundariesforanimalsinbasin.Disturbance:AllconstructionWolverinewouldbelikelytoavoidallareasofactivedisturbance.areasandimpoundmentclearingTableK-15.PotentialImpactstoAquaticFurbearersfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentHydrologic-inducedalterationAbout5-10muskratswouldbedisturbedintheimpoundmentandborrowareasDandE.HabitatAlterationandTemporaryHabitatLoss:Increasedwinterflowswouldlikelybenefitbeaver,allowingover-winteringinmoresitesthanarecurrentlyavailable.Stabilizedflowswouldallowbeavergreatersecurityinanchoringfoodcaches.Lackoficecoverwouldallowcolonizationofshallowerreaches.Muskratwouldlikelybenefitfromincreasednumberofbeaverpondsdown-stream.
K-50MINKANDOTTERMinkandottergenerallypreferhabitatalongslow-tomoderate-flowingriversandstreamswithwell-woodedbanks.SuchhabitatexistsalongtheSusitnaRiveranditstributariesabovethevlatanadamsite.Gipsoneta1.(1982)foundthatriverotterwerecommonintheupperandmiddleSusitnaBasin.Minkwerelocallyabundantnearsomestreamsandlakes.FillingoftheWatanaimpoundmentwouldinundatesome60mi(100km)ofsuitableh~bitatforthesespecies.Minkandotterwouldlikelybeaffectedbyactivitiesalongstreamsandtherivermainstem(TableK-16).Activitiesintheborrowareascouldleadtodisruptionofuptoabout3,000acres(1,300ha)ofhabitatsuitableforsupportingthesespecies(App.J,TableJ-19).Clearingandinundationofforesthabitatwouldaffecttheavailabilityofterrestrialpreysuchassmallmammalsandwaterfowl.Activitieswouldaffectaquaticpreyaswellthroughsiltationofstreams.REDFOXANDCOYOTEAlthoughprey-supportinghabitatmightbelost,noimportantcomponentsofthepreybasesofredfoxandcoyotewouldbelostduringconstructionandfilling.Somepreyhabitatwouldbelosttoclearingandinundationofsome55mi2(140km2)ofhabitat(TableK-l7).Mostredfoxutilizeareasabovetheimpoundmentzoneduringthewinterseasonoflimitedfoodavailability(Gipsoneta1.,1982).Duringtheotherseasons,abundantsmallmammalandbirdpreywouldcontinuetooccurinhabitatsadjacenttothereservoir.Bothfoxandcoyotemighthabituatetohumanpresenceandbecomenuisancesatconstructionsites.Wolfcouldpreventcoyotefromusingprojectareasunlesswolfwereeliminatedfromthearea.MARTEN,WEASEL,ANDLYNXMarten,weasel,andlynxwouldbeaffectedbythelossofforestedhabitatduetotheWatanaimpoundment.Gipsoneta1.(1982)estimatedthathabitatsupportingupto100martenwouldbelost.Weaselareabundant,butonlyasmallfractionoftheiravailablehabitatwouldbeaffec-ted.Lynxarenotabundantinthebasinandfewwouldbeaffected.RAPTORSANDRAVENSTheprincipa1impactstoraptorsandravensinthevicinityofthe\4atanaimpoundmentwou1dbelossordisturbanceofnestinglocations(TableK-18).Themajorraptorsofconcernincludegoldeneagle,baldeagle,goshawk,andgyrfalcon.TheperegrinefalconisendangeredinAlaskaandisdiscussedinSectionK.3.1.1.3.Goldeneagle,gyrfalcon,andravennestinriverineanduplandcliffs(Kesseleta1.,1982;Armstrong,1981;Bent,1961).Baldeagleandgoshawkcommonlynestinmaturetrees.Constructionactivitiescouldaffectabout30outof50raptorandravenactivenestinglocations(TableK-19).Ofthese,onlyonegoldeneaglenestwouldbedestroyedbyactivitieswithinborrowsiteE(Fig.2-6).Anumberofothernestinglocationswouldbeinundatedduringreservoirfilling,including5or6goldeneaglesites,4baldeaglesites,1goshawksite,and15ravensites.Thus,approximatelyhalfoftheknownraptorandravennestinglocationswouldbelostduringconstructionandfillingoftheWatanadevelopment.Inadditiontolossofknownnestinglocations,fillingoftheWatanareservoirwouldresultinlossofpotentialnestinghabitat.About9mi(15km)ofgood-qualitycliffnestinghabitatwouldbeflooded,leavingonly0.6mi(1km)aboveWatanadam(Kesse1eta1.,1982).Becausemuchoftheareathatwouldbefloodedisforested(ca.75%)alargeproportionofsuitabletreenestinghabitatwouldbelostaswell.Availabilityofsuitablenestinghabitatisoftenafactorinlimitingthenumbersofraptors(Newton,1979:pp.71-73).IntheSusitnaBasin,thegyrfalconisatthesouthernextremeofitsrange(Bent,1961;Armstrong,1981;Peterson,1961).Hence,lossofsuitablenestinglocationsalongtheSusitnaRiverwouldnothaveamajorimpactonthespeciesasawholewithinAlaska.Incontrast,alargeproportionofthesuitablenestinglocationsforgoldeneagleinSouth-centralAlaskaoccursalongthemiddleSusitnaRiverandwouldbeimpacted(ExhibitE,Vol.6A,Chap.3,p.E-3-444).Thus,severeimpacttogoldeneaglewouldbeanticipated.SuitablenestinglocationsforbaldeagleandgoshawkarelimitedaboveDevilCanyon,andtheprincipalconcentrationsoftheseraptorsaresituateddownstream.Thus,impactstothesespecieswouldbeexpectedtobeminor.RavennestinavarietyofsituationsandarecommonthroughoutAlaska.Impactstothisspecieswouldalsoberelativelyminor.Oflesserconcernwouldbethelossofperchingandhuntinghabitat.Raptorsarelimitedbytheavailabilityoffoodaswellasavailabilityofnestinglocations(Newton,1979:pp.61-71).However,lossofhuntingterritoryis1ikelytobeofonlyminorconsequenceinthebasin.Goldeneagle,gyrfalcon,andgoshawktendtohuntinopen,treelessareasoralongtheforestedge(Bent,1961;Armstrong,1981).Thesecovertypeswouldnotbegreatlyaffectedbytheimpoundment(seeAppendixJ).BaldeaglehuntovertheopenwatersoftheSusitnaanditsmajorK-50MINKANDOTTERMinkandottergenerallypreferhabitatalongslow-tomoderate-flowingriversandstreamswithwell-woodedbanks.SuchhabitatexistsalongtheSusitnaRiveranditstributariesabovethevlatanadamsite.Gipsoneta1.(1982)foundthatriverotterwerecommonintheupperandmiddleSusitnaBasin.Minkwerelocallyabundantnearsomestreamsandlakes.FillingoftheWatanaimpoundmentwouldinundatesome60mi(100km)ofsuitableh~bitatforthesespecies.Minkandotterwouldlikelybeaffectedbyactivitiesalongstreamsandtherivermainstem(TableK-16).Activitiesintheborrowareascouldleadtodisruptionofuptoabout3,000acres(1,300ha)ofhabitatsuitableforsupportingthesespecies(App.J,TableJ-19).Clearingandinundationofforesthabitatwouldaffecttheavailabilityofterrestrialpreysuchassmallmammalsandwaterfowl.Activitieswouldaffectaquaticpreyaswellthroughsiltationofstreams.REDFOXANDCOYOTEAlthoughprey-supportinghabitatmightbelost,noimportantcomponentsofthepreybasesofredfoxandcoyotewouldbelostduringconstructionandfilling.Somepreyhabitatwouldbelosttoclearingandinundationofsome55mi2(140km2)ofhabitat(TableK-l7).Mostredfoxutilizeareasabovetheimpoundmentzoneduringthewinterseasonoflimitedfoodavailability(Gipsoneta1.,1982).Duringtheotherseasons,abundantsmallmammalandbirdpreywouldcontinuetooccurinhabitatsadjacenttothereservoir.Bothfoxandcoyotemighthabituatetohumanpresenceandbecomenuisancesatconstructionsites.Wolfcouldpreventcoyotefromusingprojectareasunlesswolfwereeliminatedfromthearea.MARTEN,WEASEL,ANDLYNXMarten,weasel,andlynxwouldbeaffectedbythelossofforestedhabitatduetotheWatanaimpoundment.Gipsoneta1.(1982)estimatedthathabitatsupportingupto100martenwouldbelost.Weaselareabundant,butonlyasmallfractionoftheiravailablehabitatwouldbeaffec-ted.Lynxarenotabundantinthebasinandfewwouldbeaffected.RAPTORSANDRAVENSTheprincipa1impactstoraptorsandravensinthevicinityofthe\4atanaimpoundmentwou1dbelossordisturbanceofnestinglocations(TableK-18).Themajorraptorsofconcernincludegoldeneagle,baldeagle,goshawk,andgyrfalcon.TheperegrinefalconisendangeredinAlaskaandisdiscussedinSectionK.3.1.1.3.Goldeneagle,gyrfalcon,andravennestinriverineanduplandcliffs(Kesseleta1.,1982;Armstrong,1981;Bent,1961).Baldeagleandgoshawkcommonlynestinmaturetrees.Constructionactivitiescouldaffectabout30outof50raptorandravenactivenestinglocations(TableK-19).Ofthese,onlyonegoldeneaglenestwouldbedestroyedbyactivitieswithinborrowsiteE(Fig.2-6).Anumberofothernestinglocationswouldbeinundatedduringreservoirfilling,including5or6goldeneaglesites,4baldeaglesites,1goshawksite,and15ravensites.Thus,approximatelyhalfoftheknownraptorandravennestinglocationswouldbelostduringconstructionandfillingoftheWatanadevelopment.Inadditiontolossofknownnestinglocations,fillingoftheWatanareservoirwouldresultinlossofpotentialnestinghabitat.About9mi(15km)ofgood-qualitycliffnestinghabitatwouldbeflooded,leavingonly0.6mi(1km)aboveWatanadam(Kesse1eta1.,1982).Becausemuchoftheareathatwouldbefloodedisforested(ca.75%)alargeproportionofsuitabletreenestinghabitatwouldbelostaswell.Availabilityofsuitablenestinghabitatisoftenafactorinlimitingthenumbersofraptors(Newton,1979:pp.71-73).IntheSusitnaBasin,thegyrfalconisatthesouthernextremeofitsrange(Bent,1961;Armstrong,1981;Peterson,1961).Hence,lossofsuitablenestinglocationsalongtheSusitnaRiverwouldnothaveamajorimpactonthespeciesasawholewithinAlaska.Incontrast,alargeproportionofthesuitablenestinglocationsforgoldeneagleinSouth-centralAlaskaoccursalongthemiddleSusitnaRiverandwouldbeimpacted(ExhibitE,Vol.6A,Chap.3,p.E-3-444).Thus,severeimpacttogoldeneaglewouldbeanticipated.SuitablenestinglocationsforbaldeagleandgoshawkarelimitedaboveDevilCanyon,andtheprincipalconcentrationsoftheseraptorsaresituateddownstream.Thus,impactstothesespecieswouldbeexpectedtobeminor.RavennestinavarietyofsituationsandarecommonthroughoutAlaska.Impactstothisspecieswouldalsoberelativelyminor.Oflesserconcernwouldbethelossofperchingandhuntinghabitat.Raptorsarelimitedbytheavailabilityoffoodaswellasavailabilityofnestinglocations(Newton,1979:pp.61-71).However,lossofhuntingterritoryis1ikelytobeofonlyminorconsequenceinthebasin.Goldeneagle,gyrfalcon,andgoshawktendtohuntinopen,treelessareasoralongtheforestedge(Bent,1961;Armstrong,1981).Thesecovertypeswouldnotbegreatlyaffectedbytheimpoundment(seeAppendixJ).BaldeaglehuntovertheopenwatersoftheSusitnaanditsmajor
K-51TableK-16.PotentialImpactstoSemi-AquaticFurbearers(minkandotter)fromWatanaDevelopmentProjectFeaturesImpoundmentareaandpermanentfacilitiesHydrologic-inducedalterationConstructionsitesImpactsPermanentHabitatLoss:Wouldeliminateasubstantialportionofgood-qualityhabitatforbothspecies,50miofmainstemplus10miofstreamhabitat.Wouldreducepreyavailabilityforbothspecies.HabitatAlterationandTemporaryHabitatLoss:Downstreamflowstabilizationandopenwaterwouldbenefitotterandmink.Increasednumberofbeaverwouldbenefitboth.Disturbance:Mightdisturbdailyactivitiesandforceabandonmentofaquatichabitatswheretheyoccurnearconstructionzones.Conversion:Toconvertmilestokilometers,multiplyby1.61.TableK-17.PotentialImpactstoFoxfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentandotherfacilitiesImpoundmentDownstreamFoxwouldlosesomeprey.Barriers,Impediments,orHazardstoMovement:Mightserveashomerangeboundaryforresidentanimals,butwouldnotprohibitmovementsacrossimpoundment.Openwaterinwintermightmakecrossingshazardousorinfrequent.Disturbance:Densiteswouldbesensitivetodisturbance,particularlyduringearlydenningandearlypostpartum.Habituatedfoxescouldbecomepests,leadingtoincreasedprobabilityofexposuretorabies.K-51TableK-16.PotentialImpactstoSemi-AquaticFurbearers(minkandotter)fromWatanaDevelopmentProjectFeaturesImpoundmentareaandpermanentfacilitiesHydrologic-inducedalterationConstructionsitesImpactsPermanentHabitatLoss:Wouldeliminateasubstantialportionofgood-qualityhabitatforbothspecies,50miofmainstemplus10miofstreamhabitat.Wouldreducepreyavailabilityforbothspecies.HabitatAlterationandTemporaryHabitatLoss:Downstreamflowstabilizationandopenwaterwouldbenefitotterandmink.Increasednumberofbeaverwouldbenefitboth.Disturbance:Mightdisturbdailyactivitiesandforceabandonmentofaquatichabitatswheretheyoccurnearconstructionzones.Conversion:Toconvertmilestokilometers,multiplyby1.61.TableK-17.PotentialImpactstoFoxfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentandotherfacilitiesImpoundmentDownstreamFoxwouldlosesomeprey.Barriers,Impediments,orHazardstoMovement:Mightserveashomerangeboundaryforresidentanimals,butwouldnotprohibitmovementsacrossimpoundment.Openwaterinwintermightmakecrossingshazardousorinfrequent.Disturbance:Densiteswouldbesensitivetodisturbance,particularlyduringearlydenningandearlypostpartum.Habituatedfoxescouldbecomepests,leadingtoincreasedprobabilityofexposuretorabies.
K-52TableK-18.PotentialImpactstoRaptorsandRavensfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentBorrowsitesreclaimedareas.ImpoundmentclearingBorrowsitesAirtrafficBorrowsites5-6of16(31%)goldeneaglenestinglocationswouldbelost.Cliffnestinghabitatwouldbecomeextremelylimited.4of8(50%)baldeaglenestinglocationswouldbelost.1of3(33%)knowngoshawknestinglocationswouldbelost.Perchinghabitatoncliffsandlargetreeswouldbelost.Somehuntinghabitatwouldalsobelost,althoughthisisnotexpectedtobeasignificantimpactonanyoftheraptorspecies.HabitatAlteration:AgoldeneaglenestinglocationwouldbedestroyedbyborrowareaE.DisturbanceRelatedtoConstructionActivities:7goldeneaglenestssusceptibletodisturbanceduringclearing.4baldeaglenestssusceptible.1gyrfalconnestsusceptible.1knowngoshawknestsusceptible.12ravennestssusceptible.GoldeneaglenestsusceptibleatborrowsiteE;mightbedestroyed.1goshawknestsusceptibleatborrowsiteI.2ravennestssusceptibleatborrowsiteH.Goldeneaglesparticularlysusceptibleduringnestlingperiod.Otherraptorssusceptiblebutsomewhatlesssensitive.1gyrfalconnestsusceptibleinborrowsiteK.K-52TableK-18.PotentialImpactstoRaptorsandRavensfromWatanaDevelopmentProjectFeaturesImpactsPermanentHabitatLoss:ImpoundmentBorrowsitesreclaimedareas.ImpoundmentclearingBorrowsitesAirtrafficBorrowsites5-6of16(31%)goldeneaglenestinglocationswouldbelost.Cliffnestinghabitatwouldbecomeextremelylimited.4of8(50%)baldeaglenestinglocationswouldbelost.1of3(33%)knowngoshawknestinglocationswouldbelost.Perchinghabitatoncliffsandlargetreeswouldbelost.Somehuntinghabitatwouldalsobelost,althoughthisisnotexpectedtobeasignificantimpactonanyoftheraptorspecies.HabitatAlteration:AgoldeneaglenestinglocationwouldbedestroyedbyborrowareaE.DisturbanceRelatedtoConstructionActivities:7goldeneaglenestssusceptibletodisturbanceduringclearing.4baldeaglenestssusceptible.1gyrfalconnestsusceptible.1knowngoshawknestsusceptible.12ravennestssusceptible.GoldeneaglenestsusceptibleatborrowsiteE;mightbedestroyed.1goshawknestsusceptibleatborrowsiteI.2ravennestssusceptibleatborrowsiteH.Goldeneaglesparticularlysusceptibleduringnestlingperiod.Otherraptorssusceptiblebutsomewhatlesssensitive.1gyrfalconnestsusceptibleinborrowsiteK.
K-53TableK-19.RaptorandRavenNesting LocationsthatMightBeAffectedbyConstructionActivitiesattheWatanaDevelopmentSpeciesGoldeneagleBaldeagleGryfalconGoshawkRavenTotalsNumberofLocations9-104o21530-31TotalKnowninBasin168332151ProjectEffects2locationsaresituated<0.1mifromborrowsiteJ;1within1miofborrowsiteF;1lieswithinborrowsiteE;5-6wouldbeinundated.Inundationzone.1locatedwithin0.1miofborrowsiteI;1withininun-dationzone.2arelocatedwithin330ftofborrowsiteJ;1<0.1and1<1mifromborrowsiteH;2within1mioftheWatanacamp;10withininundationzone.Conversion:Toconvertmilestokilometers,multiplyby1.61.tributaries.Thereservoirmighthavesomesuitablehabitatforfishorwaterfowlprey,butreservoirdynamicswouldbeunlikelytoallowlargenumbersofpreytobepresent.Thus,lossesofhuntinghabitatwouldlikelybegreaterforbaldeaglesthanforotherraptors.Abouttennestinglocationswouldbesubjecttodisturbancebyhumanpresence.Theresponsesofraptorstodisturbancearevariable(TableK-20).Thenetresultofsuchdisturbancecouldbelossinproductivityandlowerrecruitmentofyoungintothepopulation.Severalstudieshaverecordedevidenceofreducedproductivityandrecruitmentbyraptorsinresponsetohuman-induceddisturbance(Swenson,1979;Grier,1969).StalmasterandNewman(1978)reportedaltera-tioninpatternsofusebywinteringbaldeagles.Eaglestendedtobedisplacedfromareasofhigherhumanactivityinresponsetothepresenceofhumans.Incontrast,Mathisen(1969)andMcEwanandHirth(1979)reportednocorre1ationsbetweenbaldeagleproductivityandhumanactivity.CitingRoseneauetal.(1981),theApplicantnotesthatalthoughraptorsmayhabituatetodistur-bancesinsomecases,inothercasesthesamelevelandtypesofdisturbanceelicitdetrimentalresponses(ExhibitE,Vol.6A,Chap.3,p.E-3-452).Goldeneagleappearmostsusceptibletodisturbance,particularlybyaircraftoverflightsandhumanpresence.Prolongedormultipledisturbancesandovertharassmentareespeciallyeffectiveinducersofdeleteriousresponses.Althoughmanagementpolicymightpreventharassmentbyprojectpersonnel,prolongedandmultipledisturbanceofthetenraptorandravennestinglocationsnearconstructionactivitieswouldbelikelyduringtheapproximatelyten-yearconstructionperiod.WATERBIRDSLoons,grebes,swans,andseveralspeciesofduckoccuronlakesandwouldnotbedirectlyaffectedbyconstructionactivities(Kesseletal.,1982).Themajortrumpeterswannestinghabitatoccurssouthandeastoftheprojectedimpoundmentzoneandwouldnotbedirectlyimpacted.Shorebirdsassociatedwiththeareasofborrowsitescouldbeaffectedbylossordisruptionofbreedinghabitat:e.g.,harlequinduck,commonmerganser,semi-palmatedplover,arctictern,andothers.Commongoldeneyeandmergansercouldlosenestingtreesintheborrowareas.Activitiesinwetlandswouldalsotendtodisturbnearbywaterbirds,possiblyinducingthemtoavoidthevicinityofconstructionareas.Overflightscouldaffectlakebirds,inducingavoidanceorabandonmentofcurrentlyusedlakesbeneathregularflightpaths.ThiscouldbemostpronouncedintheFogLakesareasouthofthedamsite.However,thisareadoesnotsupportlargenumbersofwaterbirds(Kesseletal.,1982).TheupperandmiddleSusitnaBasindoesnotprovidehigh-qualityhabitatforwaterbirdsand,thus,thebasindoesnotsupportlargenumbersofthesebirds(Figs.K-12andK-13).BecauseofK-53TableK-19.RaptorandRavenNesting LocationsthatMightBeAffectedbyConstructionActivitiesattheWatanaDevelopmentSpeciesGoldeneagleBaldeagleGryfalconGoshawkRavenTotalsNumberofLocations9-104o21530-31TotalKnowninBasin168332151ProjectEffects2locationsaresituated<0.1mifromborrowsiteJ;1within1miofborrowsiteF;1lieswithinborrowsiteE;5-6wouldbeinundated.Inundationzone.1locatedwithin0.1miofborrowsiteI;1withininun-dationzone.2arelocatedwithin330ftofborrowsiteJ;1<0.1and1<1mifromborrowsiteH;2within1mioftheWatanacamp;10withininundationzone.Conversion:Toconvertmilestokilometers,multiplyby1.61.tributaries.Thereservoirmighthavesomesuitablehabitatforfishorwaterfowlprey,butreservoirdynamicswouldbeunlikelytoallowlargenumbersofpreytobepresent.Thus,lossesofhuntinghabitatwouldlikelybegreaterforbaldeaglesthanforotherraptors.Abouttennestinglocationswouldbesubjecttodisturbancebyhumanpresence.Theresponsesofraptorstodisturbancearevariable(TableK-20).Thenetresultofsuchdisturbancecouldbelossinproductivityandlowerrecruitmentofyoungintothepopulation.Severalstudieshaverecordedevidenceofreducedproductivityandrecruitmentbyraptorsinresponsetohuman-induceddisturbance(Swenson,1979;Grier,1969).StalmasterandNewman(1978)reportedaltera-tioninpatternsofusebywinteringbaldeagles.Eaglestendedtobedisplacedfromareasofhigherhumanactivityinresponsetothepresenceofhumans.Incontrast,Mathisen(1969)andMcEwanandHirth(1979)reportednocorre1ationsbetweenbaldeagleproductivityandhumanactivity.CitingRoseneauetal.(1981),theApplicantnotesthatalthoughraptorsmayhabituatetodistur-bancesinsomecases,inothercasesthesamelevelandtypesofdisturbanceelicitdetrimentalresponses(ExhibitE,Vol.6A,Chap.3,p.E-3-452).Goldeneagleappearmostsusceptibletodisturbance,particularlybyaircraftoverflightsandhumanpresence.Prolongedormultipledisturbancesandovertharassmentareespeciallyeffectiveinducersofdeleteriousresponses.Althoughmanagementpolicymightpreventharassmentbyprojectpersonnel,prolongedandmultipledisturbanceofthetenraptorandravennestinglocationsnearconstructionactivitieswouldbelikelyduringtheapproximatelyten-yearconstructionperiod.WATERBIRDSLoons,grebes,swans,andseveralspeciesofduckoccuronlakesandwouldnotbedirectlyaffectedbyconstructionactivities(Kesseletal.,1982).Themajortrumpeterswannestinghabitatoccurssouthandeastoftheprojectedimpoundmentzoneandwouldnotbedirectlyimpacted.Shorebirdsassociatedwiththeareasofborrowsitescouldbeaffectedbylossordisruptionofbreedinghabitat:e.g.,harlequinduck,commonmerganser,semi-palmatedplover,arctictern,andothers.Commongoldeneyeandmergansercouldlosenestingtreesintheborrowareas.Activitiesinwetlandswouldalsotendtodisturbnearbywaterbirds,possiblyinducingthemtoavoidthevicinityofconstructionareas.Overflightscouldaffectlakebirds,inducingavoidanceorabandonmentofcurrentlyusedlakesbeneathregularflightpaths.ThiscouldbemostpronouncedintheFogLakesareasouthofthedamsite.However,thisareadoesnotsupportlargenumbersofwaterbirds(Kesseletal.,1982).TheupperandmiddleSusitnaBasindoesnotprovidehigh-qualityhabitatforwaterbirdsand,thus,thebasindoesnotsupportlargenumbersofthesebirds(Figs.K-12andK-13).Becauseof
K-54TableK-20.InfluenceofTimingofDisturbanceonthePossibleEffectsonRaptorsTimingPossibleEffectsofDisturbanceWinterArrivalandcourtshipEgg-layingIncubationNestlingphaseFledglingphaseNightGeneralRaptormightabandonnest,roostingcliff,orhuntingarea(e.g.,gyrfalcon)Migrantraptormightbeforcedtousealternativenestsite(ifavailable);mightremainbutfailtobreed;or,mightabandonnestsite.Partialclutchmightbeabandonedandremainder(orfullclutch)laidatalternativenest;or,breedingeffortmightceaseorsitemightbeabandoned.Eggsmightbechilled,overheated,orpreyeduponifparentsarekeptoffnesttoolong;suddenflushingfromnestmightdestroyeggs;or,malemightceaseincubating;clutchorsitemightbeabandoned.Chilling,overheating,orpredationofyoungmightoccurifadultswerekeptoffnest;suddenflushingofparentmightinjureorkillnestlings;malnutritionanddeathmightresultfrommissedfeedings;prematureflyingofnestlingsfromnestmightcauseinjuryordeath;or,adultsmightabandonnestorsite.Missedfeedingsmightresultinmalnutritionordeath;fledglingsmightbecomelostifdisturbedduringhighwinds;increasedchanceofinjuryduetoextramovingabout;or,parentsmightabandonbroodorsite.Panicflightmightoccur,andbirdsmightbecomelostorsufferinjuryordeath.Undueexpenseofenergy;increasedriskofinjurytoalarmedordefend-ingbirds;or,missedhuntingopportunities.Source:Roseneauetal.(1981),Table12.this,effectsuponwaterbirdswouldbeexpectedtobeminorandofnoconsequencetotheintegrityofwaterbirdpopulationsinSouthcentralAlaska(Kesseletal.,1982).OTHERBIRDSANDSMALLMAMMALSIngeneral,otherbirdsandsmallmammalswouldbeaffectedinproportiontothehabitataffectedbyconstructionactivities(Kesseletal.,1982).Habitatsaffectedwouldamounttolessthan1%ofthehabitatinthebasinaboveGoldCreek.Speciesmostaffectedwouldbethoseassociatedwithforestandshrublandhabitats.Muchofthehabitatnotpermanentlylosttodamfacilitieswouldberehabilitatedandsomehabitatproductivityrecovered.Revegetationwould,atleastinitially,providehabitatforspeciescharacteristicofearlyplant-communitysuccessionalstagesattheexpenseofforestinhabitantssuchassprucegrouse,hairyanddownywoodpeckers,alderflycatcher,blackcappedandborealchickadees,browncreeper,dark-eyedjunco,porcupine,snowshoehare,pygmyshrew,andredsquirrel(Kesseletal.,1982).Althoughlargenumbersofindividua1smightbelost,thesenumberswou1drepresentonlyasma11fraction«1%)oftheestimatedpopulationsizesinthebasinandsurroundingregion(Kesseletal.,1982).Thus,constructionandfillingactivitieswouldnotposeathreattosurvivaloflocalpopulationsofthesespecies.Increasedpopulationsofgroundsquirrel,seagull,raven,andmagpiewouldbeexpectedinthevicinityoftheconstructioncampandvillage.K.3.1.1.2OperationMOOSEAfterfillingoftheimpoundment,theinundatedlandwouldremainunavailableforuseasmoosehabitat(TableK-6).Thereservoirwouldextendforabout54mi(86km)upstreamtothevicinityofthemouthoftheTyoneRiver,servingasatleastapartialbarriertomovement.Regulationofflowthroughthedamsitewouldalterdownstreampatternsofriverinevegetativesuccession(seeAppendixJ)affectingmoosedependentupontheseriverinehabitats.Furthermore,duringoperationoftheWatanadevelopment,thereservoirwouldaffecttheimmediatemicroclimateofadjacenthabitatandresultinincreasedhumanpresenceintheinterioroftheupperandmiddle'SusitnaBasin.LossofhabitatisdiscussedinSectionK.3.1.1.1,andincreasedhumanaccessisdiscussedinSectionK.3.1.3.K-54TableK-20.InfluenceofTimingofDisturbanceonthePossibleEffectsonRaptorsTimingPossibleEffectsofDisturbanceWinterArrivalandcourtshipEgg-layingIncubationNestlingphaseFledglingphaseNightGeneralRaptormightabandonnest,roostingcliff,orhuntingarea(e.g.,gyrfalcon)Migrantraptormightbeforcedtousealternativenestsite(ifavailable);mightremainbutfailtobreed;or,mightabandonnestsite.Partialclutchmightbeabandonedandremainder(orfullclutch)laidatalternativenest;or,breedingeffortmightceaseorsitemightbeabandoned.Eggsmightbechilled,overheated,orpreyeduponifparentsarekeptoffnesttoolong;suddenflushingfromnestmightdestroyeggs;or,malemightceaseincubating;clutchorsitemightbeabandoned.Chilling,overheating,orpredationofyoungmightoccurifadultswerekeptoffnest;suddenflushingofparentmightinjureorkillnestlings;malnutritionanddeathmightresultfrommissedfeedings;prematureflyingofnestlingsfromnestmightcauseinjuryordeath;or,adultsmightabandonnestorsite.Missedfeedingsmightresultinmalnutritionordeath;fledglingsmightbecomelostifdisturbedduringhighwinds;increasedchanceofinjuryduetoextramovingabout;or,parentsmightabandonbroodorsite.Panicflightmightoccur,andbirdsmightbecomelostorsufferinjuryordeath.Undueexpenseofenergy;increasedriskofinjurytoalarmedordefend-ingbirds;or,missedhuntingopportunities.Source:Roseneauetal.(1981),Table12.this,effectsuponwaterbirdswouldbeexpectedtobeminorandofnoconsequencetotheintegrityofwaterbirdpopulationsinSouthcentralAlaska(Kesseletal.,1982).OTHERBIRDSANDSMALLMAMMALSIngeneral,otherbirdsandsmallmammalswouldbeaffectedinproportiontothehabitataffectedbyconstructionactivities(Kesseletal.,1982).Habitatsaffectedwouldamounttolessthan1%ofthehabitatinthebasinaboveGoldCreek.Speciesmostaffectedwouldbethoseassociatedwithforestandshrublandhabitats.Muchofthehabitatnotpermanentlylosttodamfacilitieswouldberehabilitatedandsomehabitatproductivityrecovered.Revegetationwould,atleastinitially,providehabitatforspeciescharacteristicofearlyplant-communitysuccessionalstagesattheexpenseofforestinhabitantssuchassprucegrouse,hairyanddownywoodpeckers,alderflycatcher,blackcappedandborealchickadees,browncreeper,dark-eyedjunco,porcupine,snowshoehare,pygmyshrew,andredsquirrel(Kesseletal.,1982).Althoughlargenumbersofindividua1smightbelost,thesenumberswou1drepresentonlyasma11fraction«1%)oftheestimatedpopulationsizesinthebasinandsurroundingregion(Kesseletal.,1982).Thus,constructionandfillingactivitieswouldnotposeathreattosurvivaloflocalpopulationsofthesespecies.Increasedpopulationsofgroundsquirrel,seagull,raven,andmagpiewouldbeexpectedinthevicinityoftheconstructioncampandvillage.K.3.1.1.2OperationMOOSEAfterfillingoftheimpoundment,theinundatedlandwouldremainunavailableforuseasmoosehabitat(TableK-6).Thereservoirwouldextendforabout54mi(86km)upstreamtothevicinityofthemouthoftheTyoneRiver,servingasatleastapartialbarriertomovement.Regulationofflowthroughthedamsitewouldalterdownstreampatternsofriverinevegetativesuccession(seeAppendixJ)affectingmoosedependentupontheseriverinehabitats.Furthermore,duringoperationoftheWatanadevelopment,thereservoirwouldaffecttheimmediatemicroclimateofadjacenthabitatandresultinincreasedhumanpresenceintheinterioroftheupperandmiddle'SusitnaBasin.LossofhabitatisdiscussedinSectionK.3.1.1.1,andincreasedhumanaccessisdiscussedinSectionK.3.1.3.
K-55Inadditiontothehabitatlosttofillingtheimpoundment,fluctuationsinreservoirlevel,permafrostthaw,anderosionwouldresultinfurtherlossofhabitatadjacenttotheimpoundment(AppendixJ).Thishabitatwouldbepredominantlyforested.Someareaswouldrevegetateandmightprovidehigh-qualityforageduringearlysuccessionalstages.Theextenttowhichsuchlossofhabitatmightoccurhasnotbeenquantified.Presenceofthereservoircouldalterthequalityofhabitatusedbymooseinspring.McKendricketa1.(1982)postulatethatthemicroc1imate-moderatingeffectsofthereservoirmightdelaytheemergenceofnewplantgrowth(seeAppendixJ).Suchadelaycouldexacerbateanyexistingnutritionalstressinpregnantcowsandnewborncalves.Althoughspringuseoftheprojectareabycowswithcalvesiswidespread,Ballardeta1.(1982a,1983a)foundcalvingandrearingconcentrationsintheprimaryimpactzone(withintheprojectedboundariesoftheproposedWatanaimpoundment).Bottomlandforesthabitatwasapreferredhabitattypeduringtheseobserva-tions(TableK-8).Duringthecalvingseason,10%to50%oftheapproximately380observationsintheprimaryimpactareaoccurredbelow2,300ft(700m)MSL.Thus,itappearsthatthehabitatoftheimpoundmentzoneisimportanttocowswithcalves.Ballardetal.(1982a)postulatedthatpregnantcowsmoveintothebottomlandareasinresponsetoearlysnowmeltandemergenceofnewplantgrowth.Mooseandotherungulatesarefrequentlyinanegativeordelicatelybalancednutritionalstateattheendofwinterandearlyspring(GasawayandCoady,1974;Moen,1978;Mautz,1980;Coady,1982).Newplantgrowthisprobablyanecessityforthesuccessfulbirthandrearingofyoung,particularlyafterharshwinters.Delaysintheemergenceofnewgrowthwouldhaveanegativeeffectuponrecruitmentofyoungintothelocalpopulation.Lossandalterationofsuitablehabitatneartheimpoundmentzonewouldlikelycompelcowstomovetoother,possiblylesssuitable,areaswherethecompetitionforsuitablebrowsewouldincrease.Nutritionallystressedcowsandcalvesmightalsobecomemoresusceptibletopredators,principallybrownbear(Ballardetal.,1981a).Althoughunquantifiable,thenetresultofcontinuedoperationoftheimpoundmentwouldbealossintherecruitmentrateofyoungmooseintothelocalpopulationandpossiblyareductioninpopulationsize.Thiseffectcouldbereflectedinareasoutsideoftheimmediateimpactareaiftherewereanetmovementofindi-vidualsfromthemiddlebasinarea(Ballardeta1.,1982a).DownstreamfromtheWatanadamsite,moosewouldbeaffectedbyalterationofriparianhabitatdependentupontheflowdynamicsoftheSusitnaRiver(Modafferi,1982,1983).IslandandshorelinehabitatareimportantforbothmooseoverwinteringandcalvingdownstreamfromDevilCanyon(Figs.K-18andK-19).EffectswouldbemostapparentupstreamfromTalkeetna.Higherwinterflowswouldbeexpectedtoexpandthefloodplainanddisplacethezoneofearly-tomid-successionalvegetation(seeAppendixJ).Smallerislandscouldberegularlyscouredfreeofvegetation,althoughtheearly-tomid-successionalzonecouldbewidenedonlargerislandsandtheriverbanks.AboveDevilCanyon,thelackoficescouringandlowersummerflowswouldultimatelyleadtoareductioninearly-tomid-successionalhabitat.Asnotedearlier,habitatintheearly-tomid-successionalstage(1to20yearsafterdisturbance)provideshighqualityforageformoose(WolffeandZasada,1979).BelowDevilCanyon,thequantityofthesehabitatswithhigh-qualityforagecouldincreaseorexhibitnonetchangepriortooperationoftheDevilCanyonfacility(seeAppendixJ).AfterDevilCanyonbecameoperational,early-successionalstagesalongtheriverwouldlikelydecreaseinthestretchfromTalkeetnatoDevilCanyonasaresultofloweredicingandstabilizedflow.Openwaterduringwinterandearlyspringmightserveasabarriertoaccesstoislands.Moosewouldprobablybereluctanttoenterthewateratthistimeofyearbecauseofthethermalstressesthatwouldbeimposed.Thermalenergystresswouldincreaseforindividualsattemptingtoswimthroughopenwaterduringthisperiod.Asaresultofthisandlossofsomeislandterritory,theavailabilityofsuitablecalvingareasmightbereduceddownstreamfromtheWatanadamsite(Modafferi,1982,1983).Islandsintheriverprovidesuitableforageforcalvingandnursingcowsandprovidesecurityfrompredatorsastheislandsbecomeisolatedfromthemainlandduringriverbreakup.LossofaccesstotheislandscouldnegativelyaffectthesuccessofrecruitmentofyoungintomoosepopulationsfromWatanadamtoTalkeetna.SimilaraffectsoflowermagnitudewouldbeexpecteddownstreamfromTalkeetna.Ballardetal.(1982a,1983a)havedocumentedmajormovementpatternsofmoosethatcrossorparalleltheimpoundmentzone.Anumberofmoosetraditionallyfollowmigrationpatternsthatwouldbeaffectedbythepresenceofthereservoir(Fig.K-1).Monitoringofindividualmooserevealednumerous(>80observationsfor33moose)instancesofmoosecrossingtheriverinthevicinityoftheproposedimpoundment.Thepresenceofanimpoundmentwouldlikelyserveasabarriertomovementatcertaintimes,particularlyduringwinterandearlyspring.Duringwinter,moosewouldbereluctanttocrossopenwaterdownstreamfromthedamduetothethermalstressthatwouldbeincurred.Steepslopesoriceblockswouldimposeanimpedimenttomove-mentacrossthedrawdownareaduringwinterandduringicebreakupinearlyspring.K-55Inadditiontothehabitatlosttofillingtheimpoundment,fluctuationsinreservoirlevel,permafrostthaw,anderosionwouldresultinfurtherlossofhabitatadjacenttotheimpoundment(AppendixJ).Thishabitatwouldbepredominantlyforested.Someareaswouldrevegetateandmightprovidehigh-qualityforageduringearlysuccessionalstages.Theextenttowhichsuchlossofhabitatmightoccurhasnotbeenquantified.Presenceofthereservoircouldalterthequalityofhabitatusedbymooseinspring.McKendricketa1.(1982)postulatethatthemicroc1imate-moderatingeffectsofthereservoirmightdelaytheemergenceofnewplantgrowth(seeAppendixJ).Suchadelaycouldexacerbateanyexistingnutritionalstressinpregnantcowsandnewborncalves.Althoughspringuseoftheprojectareabycowswithcalvesiswidespread,Ballardeta1.(1982a,1983a)foundcalvingandrearingconcentrationsintheprimaryimpactzone(withintheprojectedboundariesoftheproposedWatanaimpoundment).Bottomlandforesthabitatwasapreferredhabitattypeduringtheseobserva-tions(TableK-8).Duringthecalvingseason,10%to50%oftheapproximately380observationsintheprimaryimpactareaoccurredbelow2,300ft(700m)MSL.Thus,itappearsthatthehabitatoftheimpoundmentzoneisimportanttocowswithcalves.Ballardetal.(1982a)postulatedthatpregnantcowsmoveintothebottomlandareasinresponsetoearlysnowmeltandemergenceofnewplantgrowth.Mooseandotherungulatesarefrequentlyinanegativeordelicatelybalancednutritionalstateattheendofwinterandearlyspring(GasawayandCoady,1974;Moen,1978;Mautz,1980;Coady,1982).Newplantgrowthisprobablyanecessityforthesuccessfulbirthandrearingofyoung,particularlyafterharshwinters.Delaysintheemergenceofnewgrowthwouldhaveanegativeeffectuponrecruitmentofyoungintothelocalpopulation.Lossandalterationofsuitablehabitatneartheimpoundmentzonewouldlikelycompelcowstomovetoother,possiblylesssuitable,areaswherethecompetitionforsuitablebrowsewouldincrease.Nutritionallystressedcowsandcalvesmightalsobecomemoresusceptibletopredators,principallybrownbear(Ballardetal.,1981a).Althoughunquantifiable,thenetresultofcontinuedoperationoftheimpoundmentwouldbealossintherecruitmentrateofyoungmooseintothelocalpopulationandpossiblyareductioninpopulationsize.Thiseffectcouldbereflectedinareasoutsideoftheimmediateimpactareaiftherewereanetmovementofindi-vidualsfromthemiddlebasinarea(Ballardeta1.,1982a).DownstreamfromtheWatanadamsite,moosewouldbeaffectedbyalterationofriparianhabitatdependentupontheflowdynamicsoftheSusitnaRiver(Modafferi,1982,1983).IslandandshorelinehabitatareimportantforbothmooseoverwinteringandcalvingdownstreamfromDevilCanyon(Figs.K-18andK-19).EffectswouldbemostapparentupstreamfromTalkeetna.Higherwinterflowswouldbeexpectedtoexpandthefloodplainanddisplacethezoneofearly-tomid-successionalvegetation(seeAppendixJ).Smallerislandscouldberegularlyscouredfreeofvegetation,althoughtheearly-tomid-successionalzonecouldbewidenedonlargerislandsandtheriverbanks.AboveDevilCanyon,thelackoficescouringandlowersummerflowswouldultimatelyleadtoareductioninearly-tomid-successionalhabitat.Asnotedearlier,habitatintheearly-tomid-successionalstage(1to20yearsafterdisturbance)provideshighqualityforageformoose(WolffeandZasada,1979).BelowDevilCanyon,thequantityofthesehabitatswithhigh-qualityforagecouldincreaseorexhibitnonetchangepriortooperationoftheDevilCanyonfacility(seeAppendixJ).AfterDevilCanyonbecameoperational,early-successionalstagesalongtheriverwouldlikelydecreaseinthestretchfromTalkeetnatoDevilCanyonasaresultofloweredicingandstabilizedflow.Openwaterduringwinterandearlyspringmightserveasabarriertoaccesstoislands.Moosewouldprobablybereluctanttoenterthewateratthistimeofyearbecauseofthethermalstressesthatwouldbeimposed.Thermalenergystresswouldincreaseforindividualsattemptingtoswimthroughopenwaterduringthisperiod.Asaresultofthisandlossofsomeislandterritory,theavailabilityofsuitablecalvingareasmightbereduceddownstreamfromtheWatanadamsite(Modafferi,1982,1983).Islandsintheriverprovidesuitableforageforcalvingandnursingcowsandprovidesecurityfrompredatorsastheislandsbecomeisolatedfromthemainlandduringriverbreakup.LossofaccesstotheislandscouldnegativelyaffectthesuccessofrecruitmentofyoungintomoosepopulationsfromWatanadamtoTalkeetna.SimilaraffectsoflowermagnitudewouldbeexpecteddownstreamfromTalkeetna.Ballardetal.(1982a,1983a)havedocumentedmajormovementpatternsofmoosethatcrossorparalleltheimpoundmentzone.Anumberofmoosetraditionallyfollowmigrationpatternsthatwouldbeaffectedbythepresenceofthereservoir(Fig.K-1).Monitoringofindividualmooserevealednumerous(>80observationsfor33moose)instancesofmoosecrossingtheriverinthevicinityoftheproposedimpoundment.Thepresenceofanimpoundmentwouldlikelyserveasabarriertomovementatcertaintimes,particularlyduringwinterandearlyspring.Duringwinter,moosewouldbereluctanttocrossopenwaterdownstreamfromthedamduetothethermalstressthatwouldbeincurred.Steepslopesoriceblockswouldimposeanimpedimenttomove-mentacrossthedrawdownareaduringwinterandduringicebreakupinearlyspring.
K-56Theeffectsofimpedingamoose'smovementthroughitsrangearenotwelldocumented.Moosefindsuitablehabitatonbothsidesoftheriverforoverwintering,calving,andsummerrange.Ballardetal.(1982a,1983a)postulatethatrestrictionofmovementacrosstheriverreducestheoptionsavailabletoamooseforoptimizingtheuseofsuitablerange.ThehomerangesofseveralmoosewouldbebisectedbytheWatanaimpoundment.Restrictionofmovementwouldcon-strainanindividual'soptionstorespondtosuchsituationsaslocalizedoverbrowsing,changesinthemosiacofearlysuccessionalstages,localvariationinbrowseproduction,andseverewinters.Severalcharacteristicsoftheimpoundmentcouldposeahazardtoindividualsattemptingtocross.Iceblocks,frigidwaters,mudflats,andunstableiceconditionscouldposethedangerofmortalordebilitatinginjury.Difficultcrossingscouldalsoexacerbatenutritionalimbalancesduetothestrenuousnessof theactivity.Anindirectresultofsuchasituationwouldbeincreasedsusceptibilitytopredation.Ballardetal.(l982a,d)suggestincreasedpredationbywolvescouldresult.Directandindirectmortalityduetotheimpoundmentwouldbeinadditiontotheeffectsofloss"andalterationofsuitablemoosehabitat.CARIBOUTheprincipalimpacttotheNelchinacaribouherdwouldbeinterruptionofmovement,chieflymigration,patterns(TableK-9).Althoughsomecaribourangewillbelostduetotheimpound-ment,thelossamountstoonlyasmallfractionoftheavailablerangeintheupperandmiddleSusitnaBasin.Theprojectedimpoundmentareausedbyafewindividua1sforsummerrange(Pitcher,1982,1983).Thisareaisconsideredtobeofrelativelylowqualityrange.TheWatanaimpoundmentwouldintersectahistoricallymajormigratorypathway,althoughtheroutehasnotbeenusedtoamajorextentinthepastfewyears(seeSec.K.3.1. 1.1).However,evenforthecurrentpopulationlevels,theupperreachesofthereservoirmightserveaspartialimpedimentstocariboumigration.ThisisparticularlytrueforspringmigrationfromwinteringgroundstothetraditionalcalvinggroundsintheupperreachesofKosinaCreekintheTalkeetnaMountains(Fig.K-6).Pitcher(1982,1983)indicatedthatmanyindividualshaverecentlyusedtheimpoundmentzoneasatravellaneduringspringmigration.Theimpoundmentwouldposeimpedimentstomovementofcaribousimilarinnaturetothosediscussedformoose.Floatingice,unstableiceconditions,openmudflats,snowdrifts,andfrigidwaterscouldhindermovementandevenposethreatsofmortalanddebilitatinginjury.Increasedsusceptibilitytopredationbywolvesandperhapsbear,aswellasdestabilizationofnutritionalbalance,couldbesecondaryconsequences.Crossingsduringsummerandautumnshouldposeconsiderablylessrisk.Baseduponexperienceatothersubarcticreservoirs,theApplicantpostulatesfourpossibleresponsesofcariboutotheWatanareservoir(ExhibitE,Vol.6A,Chap.3,p.E-3-417):CaribouwouldmanagetosafelycrossintheareaofWatanaandKosinacreeks;CaribouwouldtravelfarthertotheeastandcrosstheSusitnaonice-coveredflatsneartheTyoneandOshetnarivers;Caribouwouldmakehazardouscrossings,ris~ingmortalityandinjury;or,Caribouwouldrefusetocrosstheimpoundment.Theproportionoftheherdthatwouldrespondineachofthesewaysisimpossibletoquantify.Thesignificanceoftheimpoundmentasabarrierwillbeproportionaltothenumbersofcaribouusingtheareaasapathwayfromwinteringtocalvinggrounds.CurrentlythemajorityofthecaribouherdwintersintheLakeLouiseFlatsareaandfemalestraveltothenorthernTalkeetnaMountainsforcalving(Fig.K-7).Anumberofcariboudousetheprojectedimpoundmentzoneduringthismigration(Pitcher,1982,1983).However,thesecariboucouldprobablyadjusttheirmovementpatternsaroundtheimpoundmentifnecessarybecausetheimpoundmentwouldnotliedirectlybetweenthewinterandspringcentersofconcentration.WinteruseofareasnorthofSusitnaRiverhavehistoricallyoccurredwhenherdsizewaslargerthancurrently(Hemming,1971;Pitcher,1982).Ifherdsizeincreases,theimpoundmentcouldbecomeasubstantialbarriertomovementfromnorthoftheSusitnaRivertothe thetraditionalcalvinggrounds.Theimpoundmentcouldrestrictcalvingbypartofanexpandedherdtopossiblysuboptimalhabitats.Thiscouldeffectivelylimitthepotentialforgrowthoftheherd.IncreaseddisturbanceandhuntingpressurearediscussedinSectionK.3.1.3astheyaredirectlyrelatedtoaccess.K-56Theeffectsofimpedingamoose'smovementthroughitsrangearenotwelldocumented.Moosefindsuitablehabitatonbothsidesoftheriverforoverwintering,calving,andsummerrange.Ballardetal.(1982a,1983a)postulatethatrestrictionofmovementacrosstheriverreducestheoptionsavailabletoamooseforoptimizingtheuseofsuitablerange.ThehomerangesofseveralmoosewouldbebisectedbytheWatanaimpoundment.Restrictionofmovementwouldcon-strainanindividual'soptionstorespondtosuchsituationsaslocalizedoverbrowsing,changesinthemosiacofearlysuccessionalstages,localvariationinbrowseproduction,andseverewinters.Severalcharacteristicsoftheimpoundmentcouldposeahazardtoindividualsattemptingtocross.Iceblocks,frigidwaters,mudflats,andunstableiceconditionscouldposethedangerofmortalordebilitatinginjury.Difficultcrossingscouldalsoexacerbatenutritionalimbalancesduetothestrenuousnessof theactivity.Anindirectresultofsuchasituationwouldbeincreasedsusceptibilitytopredation.Ballardetal.(l982a,d)suggestincreasedpredationbywolvescouldresult.Directandindirectmortalityduetotheimpoundmentwouldbeinadditiontotheeffectsofloss"andalterationofsuitablemoosehabitat.CARIBOUTheprincipalimpacttotheNelchinacaribouherdwouldbeinterruptionofmovement,chieflymigration,patterns(TableK-9).Althoughsomecaribourangewillbelostduetotheimpound-ment,thelossamountstoonlyasmallfractionoftheavailablerangeintheupperandmiddleSusitnaBasin.Theprojectedimpoundmentareausedbyafewindividua1sforsummerrange(Pitcher,1982,1983).Thisareaisconsideredtobeofrelativelylowqualityrange.TheWatanaimpoundmentwouldintersectahistoricallymajormigratorypathway,althoughtheroutehasnotbeenusedtoamajorextentinthepastfewyears(seeSec.K.3.1. 1.1).However,evenforthecurrentpopulationlevels,theupperreachesofthereservoirmightserveaspartialimpedimentstocariboumigration.ThisisparticularlytrueforspringmigrationfromwinteringgroundstothetraditionalcalvinggroundsintheupperreachesofKosinaCreekintheTalkeetnaMountains(Fig.K-6).Pitcher(1982,1983)indicatedthatmanyindividualshaverecentlyusedtheimpoundmentzoneasatravellaneduringspringmigration.Theimpoundmentwouldposeimpedimentstomovementofcaribousimilarinnaturetothosediscussedformoose.Floatingice,unstableiceconditions,openmudflats,snowdrifts,andfrigidwaterscouldhindermovementandevenposethreatsofmortalanddebilitatinginjury.Increasedsusceptibilitytopredationbywolvesandperhapsbear,aswellasdestabilizationofnutritionalbalance,couldbesecondaryconsequences.Crossingsduringsummerandautumnshouldposeconsiderablylessrisk.Baseduponexperienceatothersubarcticreservoirs,theApplicantpostulatesfourpossibleresponsesofcariboutotheWatanareservoir(ExhibitE,Vol.6A,Chap.3,p.E-3-417):CaribouwouldmanagetosafelycrossintheareaofWatanaandKosinacreeks;CaribouwouldtravelfarthertotheeastandcrosstheSusitnaonice-coveredflatsneartheTyoneandOshetnarivers;Caribouwouldmakehazardouscrossings,ris~ingmortalityandinjury;or,Caribouwouldrefusetocrosstheimpoundment.Theproportionoftheherdthatwouldrespondineachofthesewaysisimpossibletoquantify.Thesignificanceoftheimpoundmentasabarrierwillbeproportionaltothenumbersofcaribouusingtheareaasapathwayfromwinteringtocalvinggrounds.CurrentlythemajorityofthecaribouherdwintersintheLakeLouiseFlatsareaandfemalestraveltothenorthernTalkeetnaMountainsforcalving(Fig.K-7).Anumberofcariboudousetheprojectedimpoundmentzoneduringthismigration(Pitcher,1982,1983).However,thesecariboucouldprobablyadjusttheirmovementpatternsaroundtheimpoundmentifnecessarybecausetheimpoundmentwouldnotliedirectlybetweenthewinterandspringcentersofconcentration.WinteruseofareasnorthofSusitnaRiverhavehistoricallyoccurredwhenherdsizewaslargerthancurrently(Hemming,1971;Pitcher,1982).Ifherdsizeincreases,theimpoundmentcouldbecomeasubstantialbarriertomovementfromnorthoftheSusitnaRivertothe thetraditionalcalvinggrounds.Theimpoundmentcouldrestrictcalvingbypartofanexpandedherdtopossiblysuboptimalhabitats.Thiscouldeffectivelylimitthepotentialforgrowthoftheherd.IncreaseddisturbanceandhuntingpressurearediscussedinSectionK.3.1.3astheyaredirectlyrelatedtoaccess.
K-57DALL'SSHEEPTheprincipa1impacttoDa11'ssheepduetotheWatanadevelopmentwouldbeinundationofaportionoftheJayCreekminerallickandincreaseddisturbanceandhuntingpressure(TableK-9).NootherregularlyusedhabitatofDall'ssheepwouldbeaffected.Ingeneral,Dall'ssheepuseareasareremovedfromtheimpoundmentzone(Fig.K-10).TheWatanaHi11ssheepgroupdoesmakeextensiveuseofaminera1 1icklocatedalongJayCreek(Ballardetal.1982b;Tankersley,1983).Thisminerallickwillbepartiallyinundatedbytheimpoundment.Theactivelickarearangesfromcreeklevelat2,000ft(610m)MSLtotherimat2,450ft(740m)MSL.MaximumreservoirlevelinOctoberwouldreach2,190ft(670m)MSL,inundatingabout40%ofthelicksurfacearea.Duringtheperiodofmaximumsheepuse,waterlevelwouldbeabout2,100ft(640m)MSL,covering20%ofthelicksurface.QualitativeinformationfromBallardetal.(1982b)suggeststhatthelowerportionofthelickismoreextensivelyusedbysheepthantheupperportion.Annualdrawdownisexpectedtobeabout120ft(40m),andfluctuationsinreservoirlevelwouldleadtoerosionoftheloosesoilscomprisingthelickarea.Inaddition,saturationoflicksoilswithreservoirwatercouldleadtoleachingofsolublemineralsfromthelick.Themoresolublemineralswouldbemostavailabletothesheepandprobablyarethemoreimportantmineralssupplementedinthedietbylickuse.Thesefactors,coupledwithlossofavailabilityofthelower20%ofthelickduringspring,couldleadtoamarkedreductioninthevaluesofthelicktosheep.TheApplicant'srecreationplanproposestoprovideforrecreationaluseoftheWatanareservoir(seeAppendixL),includingboatingopportunitiesonthereservoirifthesecondphaseofdevelop-mentisadopted(ExhibitE,Vol.8,Chap.7,p.E-7-107).Projectedmaximumannualuserdaysonthereservoirareontheorderofseveralthousand.ThisrecreationaluseofthereservoirwouldposethepotentialofdisturbingsheepusingtheJayCreeklick.Sheeparesensitivetohumanpresence(Geist,1980)and,althoughrecreationaluseinthespringwouldbelowerthansummerandfall,sufficienthumanactivitiesduringMaythroughJunecouldinducesheeptoabandonorrestricttheiruseofthelick.Theconsequencesofreducedavailabilityandabandonmentorrestricteduseofthelickremainuncertain.Manyungulatesareknowntoingestsoilasasourceofmineralnutrients,especiallysodium(Botkinetal.,1973;BelovskyandJordan,1981;Robbins,1983:pp.30-60).Terrestrial,non-halophyticplantsaregenerallypoorinsodium,andsupplementsareneededintheungulatediet.Severalotherminera1 1ickshavebeenfoundintherangeoftheWatanagroup,buttheirrelativecontributiontothegroup'snutritionalbalanceisunknown(Tankersley,1983).TheimportanceoftheJayCreeklickisevidencedbyitsheavyuseeventhoughitisoutsideoftypicalsheephabitatandremovedfromareasoffrequentsheepobservation.Sheepexhibitahighfidelitytospecificminerallicks,andlossofallorpartoftheJayCreeklickcouldhavedetrimentaleffectsupontheWatanagroup.Effectsofwaveactionontheminerallickmightalsohaveabeneficialeffectwhichwouldpartiallybalancethenegativeeffects.Naturalweatheringoftheexposedlicksoilswouldgraduallyreduceavailabilityofsolublemineralsastheywereleachedfromthesurfacesoilmaterials.Mineral-richsubsurfacesoilmaterialswouldonlybecomeexposedgraduallythrougherosionandoccasionallythroughnaturalslumping.Actionofthereservoirwaterswouldacceler-atetherateofexposureofsubsurfacematerialsatleastfortheperiodoftimerequiredfortheslopestoreachanewequilibriumwiththenewconditions.Exposureofmineral-rich materialsmightmakeatleastpartof thelickmorevaluabletosheepthanatpresent.Thenetbalanceofnegativeeffectsofthereservoiruponthevalueoftheminerallickcannotbequantified.However,itismost1ikelythatthenetresultwouldbenegative.Minera1sinthelower40%ofthelickwouldbeheavilyleachedbyreservoirfloodingandwouldbecomeunavailabletothesheep.Increaseinthevalueof theupperslopeswouldnotlikelybesuffi-cienttocounterthelossofthelowerslopevalue.RecreationalactivityintheareawouldalsofurtherreducethevaluetosheepoftheJayCreekminerallick.BROWNBEARBrownbeararehighlymobile,rangingoverlargeareas.IntheupperandmiddleSusitnaBasin,averagesizesofhomerangearefromabout80to400mi2(200to1,000km2)(MillerandMcAllister,1982;Ballardetal.,1982c,Miller,1983).Bearfrequentlymoveacrosstheareaoftheprojectedimpoundment.Bearmovefromareatoareainresponsetoseasonalvariationsinavailabilityofvegetableforage,inungulateconcentrations(especiallyduringcalving),andinsalmonfishingareas.AnumberofbearcrosstheareaoftheprojectedimpoundmenttomovetosalmonspawninggroundsalongPrairieCreek(Mi11er,1983).Asformooseandcaribou,thepresenceof theimpoundmentmightimpedemovementsofbrownbear.Restrictionofbearmovementcouldeffectivelyaltertheavai1abi1ityoftheseseasonalfoodresourcestobrownbear.Individua1brownbearK-57DALL'SSHEEPTheprincipa1impacttoDa11'ssheepduetotheWatanadevelopmentwouldbeinundationofaportionoftheJayCreekminerallickandincreaseddisturbanceandhuntingpressure(TableK-9).NootherregularlyusedhabitatofDall'ssheepwouldbeaffected.Ingeneral,Dall'ssheepuseareasareremovedfromtheimpoundmentzone(Fig.K-10).TheWatanaHi11ssheepgroupdoesmakeextensiveuseofaminera1 1icklocatedalongJayCreek(Ballardetal.1982b;Tankersley,1983).Thisminerallickwillbepartiallyinundatedbytheimpoundment.Theactivelickarearangesfromcreeklevelat2,000ft(610m)MSLtotherimat2,450ft(740m)MSL.MaximumreservoirlevelinOctoberwouldreach2,190ft(670m)MSL,inundatingabout40%ofthelicksurfacearea.Duringtheperiodofmaximumsheepuse,waterlevelwouldbeabout2,100ft(640m)MSL,covering20%ofthelicksurface.QualitativeinformationfromBallardetal.(1982b)suggeststhatthelowerportionofthelickismoreextensivelyusedbysheepthantheupperportion.Annualdrawdownisexpectedtobeabout120ft(40m),andfluctuationsinreservoirlevelwouldleadtoerosionoftheloosesoilscomprisingthelickarea.Inaddition,saturationoflicksoilswithreservoirwatercouldleadtoleachingofsolublemineralsfromthelick.Themoresolublemineralswouldbemostavailabletothesheepandprobablyarethemoreimportantmineralssupplementedinthedietbylickuse.Thesefactors,coupledwithlossofavailabilityofthelower20%ofthelickduringspring,couldleadtoamarkedreductioninthevaluesofthelicktosheep.TheApplicant'srecreationplanproposestoprovideforrecreationaluseoftheWatanareservoir(seeAppendixL),includingboatingopportunitiesonthereservoirifthesecondphaseofdevelop-mentisadopted(ExhibitE,Vol.8,Chap.7,p.E-7-107).Projectedmaximumannualuserdaysonthereservoirareontheorderofseveralthousand.ThisrecreationaluseofthereservoirwouldposethepotentialofdisturbingsheepusingtheJayCreeklick.Sheeparesensitivetohumanpresence(Geist,1980)and,althoughrecreationaluseinthespringwouldbelowerthansummerandfall,sufficienthumanactivitiesduringMaythroughJunecouldinducesheeptoabandonorrestricttheiruseofthelick.Theconsequencesofreducedavailabilityandabandonmentorrestricteduseofthelickremainuncertain.Manyungulatesareknowntoingestsoilasasourceofmineralnutrients,especiallysodium(Botkinetal.,1973;BelovskyandJordan,1981;Robbins,1983:pp.30-60).Terrestrial,non-halophyticplantsaregenerallypoorinsodium,andsupplementsareneededintheungulatediet.Severalotherminera1 1ickshavebeenfoundintherangeoftheWatanagroup,buttheirrelativecontributiontothegroup'snutritionalbalanceisunknown(Tankersley,1983).TheimportanceoftheJayCreeklickisevidencedbyitsheavyuseeventhoughitisoutsideoftypicalsheephabitatandremovedfromareasoffrequentsheepobservation.Sheepexhibitahighfidelitytospecificminerallicks,andlossofallorpartoftheJayCreeklickcouldhavedetrimentaleffectsupontheWatanagroup.Effectsofwaveactionontheminerallickmightalsohaveabeneficialeffectwhichwouldpartiallybalancethenegativeeffects.Naturalweatheringoftheexposedlicksoilswouldgraduallyreduceavailabilityofsolublemineralsastheywereleachedfromthesurfacesoilmaterials.Mineral-richsubsurfacesoilmaterialswouldonlybecomeexposedgraduallythrougherosionandoccasionallythroughnaturalslumping.Actionofthereservoirwaterswouldacceler-atetherateofexposureofsubsurfacematerialsatleastfortheperiodoftimerequiredfortheslopestoreachanewequilibriumwiththenewconditions.Exposureofmineral-rich materialsmightmakeatleastpartof thelickmorevaluabletosheepthanatpresent.Thenetbalanceofnegativeeffectsofthereservoiruponthevalueoftheminerallickcannotbequantified.However,itismost1ikelythatthenetresultwouldbenegative.Minera1sinthelower40%ofthelickwouldbeheavilyleachedbyreservoirfloodingandwouldbecomeunavailabletothesheep.Increaseinthevalueof theupperslopeswouldnotlikelybesuffi-cienttocounterthelossofthelowerslopevalue.RecreationalactivityintheareawouldalsofurtherreducethevaluetosheepoftheJayCreekminerallick.BROWNBEARBrownbeararehighlymobile,rangingoverlargeareas.IntheupperandmiddleSusitnaBasin,averagesizesofhomerangearefromabout80to400mi2(200to1,000km2)(MillerandMcAllister,1982;Ballardetal.,1982c,Miller,1983).Bearfrequentlymoveacrosstheareaoftheprojectedimpoundment.Bearmovefromareatoareainresponsetoseasonalvariationsinavailabilityofvegetableforage,inungulateconcentrations(especiallyduringcalving),andinsalmonfishingareas.AnumberofbearcrosstheareaoftheprojectedimpoundmenttomovetosalmonspawninggroundsalongPrairieCreek(Mi11er,1983).Asformooseandcaribou,thepresenceof theimpoundmentmightimpedemovementsofbrownbear.Restrictionofbearmovementcouldeffectivelyaltertheavai1abi1ityoftheseseasonalfoodresourcestobrownbear.Individua1brownbear
K-58couldlosetheflexibilityofbeingabletorespondfullytoseasonalvariabilityinthelocationofsuitablefoodsupplies.Movementacrossthereservoirwouldbeparticularlydifficultinlatewinterandearlyspringduringicebreakup.Asnotedpreviously,thepresenceofthereservoircouldalterlocalmicroclimaticconditionsinadjacenthabitat,delayingemergenceofnewplantgrowthinthespring(McKendricketal.,1982).Theextentofthisdelaycannotbequantified,butitwouldreducetheavailabilityofhighqualityplantfoodatatimewhenbrownbearareinastateofnutritionalimbalance.Brownbeararehighlydependentuponspringemergenceoffoodplantsinbeginningtheirrecoveryfromoverwintering(CraigheadandMiller,1982).Inaddition,thesedelaysinplantemergencemightinducedispersalofspringmooseconcentrations,anotherimportantsourceoffoodforpost-emergentbrownbear.Downstreampopulationsofbrownbearwouldlikelybeaffectedbyalterationofsalmonspawningsloughs(MillerandMcAllister,1982;Miller,1983).Alterationsinriverflowregimescouldaltertheavailabilityandsuitabilityofsloughsforspawningsalmonparticularlyc;Iuringreservoirfilling(seeAppendixI).Duringthespawningseason,brownbeardoappeartocongre-gatearoundthesesloughsandtakeadvantageoftheabundanceofsalmonprey(MillerandMcAllister,1982;Miller,1983).Operationalflowsmightnotonlylowertheabundanceofsalmoninthesloughsbutalsolowerthesuitabilityofsloughmorphologyforefficientfishingbyonshorebear.DuringfillingoftheWatanareservoir,ontheorderof10%to20%ofthespawningsalmonpopula-tionaboveTalkeetnawouldbeexpectedtobelost(AppendixI).Althoughtheimportanceofspawningsalmoninthedietofbrownbearhasnotbeenquantified,observationsindicatethatdownstreambearshowamarkedaffinityforriparianareasduringsalmonspawningseason,July-August(TableK-3).Duringthisperiodabout20%to25%ofthebrownbearobservationswereinriparianareas,suggestingthatthebearwererespondingtothepresenceofasalmonfoodsource(MillerandMcAllister,1982;Miller,1983).Preliminaryscatanalysessupportthisconclusion.Thus,brownbearmightbeseverelyimpactedbyareductioninspawningsalmon,atleastintheshort-term.Long-termeffectstothesalmonpopulationaboveTalkeetnaarelesscertain(AppendixI).Thepopulationcouldbeseverelycutback,toasmuchas50%ofcurrentlevels,whichwouldlikelyhavesevereconsequencesfordownstreampopulationsofbrownbear.Alternatively,thesalmonpopulationmightbeenhancedbyasmuchas50%ofcurrentlevels.Thisenhancementafterfillingwouldhelpthebearpopulationsrecovermorerapidlyfromimpactsincurredduringreservoirfilling.Thenetresultmightevenbeanenhancementofthedownstreambrownbearpopulations.Thelikelihoodofeithernegativeorpositiveextremehasnotbeenquantified.BLACKBEARAswithbrownbear,climaticallyinduceddelaysinplantgrowth,movementrestrictions,andareductioninungulatepreyarelikelytofurtherreducetheavailabilityofsuitablefoodforblackbearintheupperandmiddleSusitnaBasin.Theconsequencesfortheupstreamblackbearpopulationwouldlikelybemoreseverethanforbrownbear.Themajorityofthesuitablehabitatforblackbackinthebasinwouldbeinthevicinityofthereservoir(Fig.K-11).Delaysinspringemergenceofnewplantgrowthwouldbeofgreaterconsequencetothemoreherbivorousblackbear.Duringspringicebreakup,thereservoirwouldimpedethebearandinterferwiththeirabilitytoexploitsuitablehabitatonbothsidesoftheriver.Thelossofalreadyrestrictedsuitableblackbearhabitatwouldbefurthercompounded.Lossofsuitablehabitatwouldbelikelytocauseblackbeartoshiftactivitiestomoreuplandlocations.Suchshiftswouldincreasetheprobabilityofinteractionswiththelargerbrownbear.Increasedinteractioncouldleadtoincreasedmortalordebilitatinginjury,aswellasreducednutritiona1status.This situationwouldfurtherexacerbatethedirecteffectsofimpoundmentalongwitheffectsofincreasedhumanactivityandhuntingpressure.Effectstodownstreamblackbearwouldbelessthananticipatedfortheupstreampopulationandsimilarinnature,thoughlessinmagnitude,toeffectsdiscussedfordownstreambrownbear.Reductioninthedownstreamfisherywouldhavenegativeimpactonthefoodsupplyofdownstreamblackbear.Thereisanindicationthatblackbeardotakeadvantageoftheavailabilityofspawningsalmonasafoodsource(MillerandMcAllister,1982;Miller,1983).Becauseblackbeararelessdependentuponanimalfood,thisreductioninsalmonavailabilitywouldnothaveasgreatofanimpactasanticipatedforbrownbear.WOLFTheprincipalimpactstowolfwouldbeincurredasaresultofconstructionandfillingofthereservoir(TableK-13).Operationoftheimpoundmentmightincreasethesusceptibilityofsomeungulatestowolf,althoughthenetresultoverthelongtermwouldbeareductionofcarryingcapacityforwolfpreyinthevicinityoftheimpoundment(Ballardetal.,1982d,1983c).AsK-58couldlosetheflexibilityofbeingabletorespondfullytoseasonalvariabilityinthelocationofsuitablefoodsupplies.Movementacrossthereservoirwouldbeparticularlydifficultinlatewinterandearlyspringduringicebreakup.Asnotedpreviously,thepresenceofthereservoircouldalterlocalmicroclimaticconditionsinadjacenthabitat,delayingemergenceofnewplantgrowthinthespring(McKendricketal.,1982).Theextentofthisdelaycannotbequantified,butitwouldreducetheavailabilityofhighqualityplantfoodatatimewhenbrownbearareinastateofnutritionalimbalance.Brownbeararehighlydependentuponspringemergenceoffoodplantsinbeginningtheirrecoveryfromoverwintering(CraigheadandMiller,1982).Inaddition,thesedelaysinplantemergencemightinducedispersalofspringmooseconcentrations,anotherimportantsourceoffoodforpost-emergentbrownbear.Downstreampopulationsofbrownbearwouldlikelybeaffectedbyalterationofsalmonspawningsloughs(MillerandMcAllister,1982;Miller,1983).Alterationsinriverflowregimescouldaltertheavailabilityandsuitabilityofsloughsforspawningsalmonparticularlyc;iuringreservoirfilling(seeAppendixI).Duringthespawningseason,brownbeardoappeartocongre-gatearoundthesesloughsandtakeadvantageoftheabundanceofsalmonprey(MillerandMcAllister,1982;Miller,1983).Operationalflowsmightnotonlylowertheabundanceofsalmoninthesloughsbutalsolowerthesuitabilityofsloughmorphologyforefficientfishingbyonshorebear.DuringfillingoftheWatanareservoir,ontheorderof10%to20%ofthespawningsalmonpopula-tionaboveTalkeetnawouldbeexpectedtobelost(AppendixI).Althoughtheimportanceofspawningsalmoninthedietofbrownbearhasnotbeenquantified,observationsindicatethatdownstreambearshowamarkedaffinityforriparianareasduringsalmonspawningseason,July-August(TableK-3).Duringthisperiodabout20%to25%ofthebrownbearobservationswereinriparianareas,suggestingthatthebearwererespondingtothepresenceofasalmonfoodsource(MillerandMcAllister,1982;Miller,1983).Preliminaryscatanalysessupportthisconclusion.Thus,brownbearmightbeseverelyimpactedbyareductioninspawningsalmon,atleastintheshort-term.Long-termeffectstothesalmonpopulationaboveTalkeetnaarelesscertain(AppendixI).Thepopulationcouldbeseverelycutback,toasmuchas50%ofcurrentlevels,whichwouldlikelyhavesevereconsequencesfordownstreampopulationsofbrownbear.Alternatively,thesalmonpopulationmightbeenhancedbyasmuchas50%ofcurrentlevels.Thisenhancementafterfillingwouldhelpthebearpopulationsrecovermorerapidlyfromimpactsincurredduringreservoirfilling.Thenetresultmightevenbeanenhancementofthedownstreambrownbearpopulations.Thelikelihoodofeithernegativeorpositiveextremehasnotbeenquantified.BLACKBEARAswithbrownbear,climaticallyinduceddelaysinplantgrowth,movementrestrictions,andareductioninungulatepreyarelikelytofurtherreducetheavailabilityofsuitablefoodforblackbearintheupperandmiddleSusitnaBasin.Theconsequencesfortheupstreamblackbearpopulationwouldlikelybemoreseverethanforbrownbear.Themajorityofthesuitablehabitatforblackbackinthebasinwouldbeinthevicinityofthereservoir(Fig.K-11).Delaysinspringemergenceofnewplantgrowthwouldbeofgreaterconsequencetothemoreherbivorousblackbear.Duringspringicebreakup,thereservoirwouldimpedethebearandinterferwiththeirabilitytoexploitsuitablehabitatonbothsidesoftheriver.Thelossofalreadyrestrictedsuitableblackbearhabitatwouldbefurthercompounded.Lossofsuitablehabitatwouldbelikelytocauseblackbeartoshiftactivitiestomoreuplandlocations.Suchshiftswouldincreasetheprobabilityofinteractionswiththelargerbrownbear.Increasedinteractioncouldleadtoincreasedmortalordebilitatinginjury,aswellasreducednutritiona1status.This situationwouldfurtherexacerbatethedirecteffectsofimpoundmentalongwitheffectsofincreasedhumanactivityandhuntingpressure.Effectstodownstreamblackbearwouldbelessthananticipatedfortheupstreampopulationandsimilarinnature,thoughlessinmagnitude,toeffectsdiscussedfordownstreambrownbear.Reductioninthedownstreamfisherywouldhavenegativeimpactonthefoodsupplyofdownstreamblackbear.Thereisanindicationthatblackbeardotakeadvantageoftheavailabilityofspawningsalmonasafoodsource(MillerandMcAllister,1982;Miller,1983).Becauseblackbeararelessdependentuponanimalfood,thisreductioninsalmonavailabilitywouldnothaveasgreatofanimpactasanticipatedforbrownbear.WOLFTheprincipalimpactstowolfwouldbeincurredasaresultofconstructionandfillingofthereservoir(TableK-13).Operationoftheimpoundmentmightincreasethesusceptibilityofsomeungulatestowolf,althoughthenetresultoverthelongtermwouldbeareductionofcarryingcapacityforwolfpreyinthevicinityoftheimpoundment(Ballardetal.,1982d,1983c).As
K-59discussedabove,impactstofoodsupplyoftheWatanapackcouldaffectrecruitmentofwolvesintomoreheavilyhuntedpacks.Otherimpactstowolfduringoperationwouldbeindirectinnature(TableK-13).EffectsduetoincreasedhumanaccessarediscussedinSectionK.3.1.3.LossofareawithintheterritoriesoftheWatanaandJayCreekpackswouldresultinthedisplacementofwolfactivitypatterns.Displacementwouldbringthepacksintoconflictwithwolfinadjacentterritories.Interactionsamongpackswouldlikelyresultinasubsequentreadjustmentofterritoryboundariesandsizes,andpossiblythedissolutionofoneormorepacks.Aswithothermammals,theimpoundmentwouldservetoimpedemovementandreducetheflexibilityofwolftorespondtochangesindistributionofpreypopulations.Counteringthislessenedflexibilitywouldberestrictionsofpreymovementsimposedbypresenceoftheimpoundment.WOLVERINEPrincipalimpactstowolverinewouldresultfromlossofhabitatduetotheimpoundment(TableK-14)andincreasedpresenceofhumans(seeSec.K.3.1.3).Forestedhabitatnearthereservoirmightbefurtherreducedbyerosionandsloughingalongtheshoreline,resultinginthelossofsmallmammalandbirdprey.Increasedmortalityofungulatesaroundthereservoirduringoperationmightprovidecarriontosupplementlossofforesthabitat.However,theseeffectswouldnotlikelyaffectthewolverinepopulationasawholebecausewolverinearewide-spreadandwide-ranginginthebasin.BELUKHAItisthoughtthatbelukha,orwhitewhale,congregateatthemouthoftheSusitnaRivertofeeduponrunsofanadromouseulachonandsalmon(ExhibitE,Vol.6A,Chap.3,p.E-3-434).Eulachonspawninthelowerreachesoftheriverandareunlikelytobeeffectedbytheproposedproject(seeAppendixI).Salmonappeartobeoflesserimportanceinthediet(Calkins,1983).IfallsalmonspawninghabitatwerelostaboveTalkeetna,about5%ormoreofthecurrentlyavailablesalmonwouldbecomeunavailabletobelukha.Areductioninsalmonwouldlikelybereflectedinasmalleffectuponthebelukhapopulation(Calkins,1983),however,thenaturalvariabilityinpopulationsizeswouldlikelymasksucheffects.BEAVERANDMUSKRATOnthewhole,downstreambeaverwouldprobablybenefitfromtheWatanadevelopment,whereasmuskratwouldbeaffecteddetrimentally(TableK-15).Nobeaverareknowntoresideintheareaofproposedinundation(Gipsonetal.,1982).Althoughafewbeavermightusethereservoir,annualdrawdownwoulddiscouragemostbeaverfromusingthereservoirshoreline.Downstream,increasedwinterflowswouldbelikelytobenefitbeaverbyincreasingthedepthofice-freewaterovercurrentconditions.ThisenhancementofbeaverhabitatwouldbemostpronouncedupstreamfromTalkeetna.Somemuskrathabitatwouldbeinundatedupstream,butafewmuskratdownstreammighttakeadvantageofadditionalbeaverponds.MINKANDOTTERImpactsfromoperationwouldnothavefurtherconsequencethanwouldresultfrominundationofhabitat(seeSec.K.3.1.1.1).OTHERFURBEARERSImpactstofoxandcoyoteswouldbeprincipallyduetoincreasedhumanaccess(seeSec.K.3.1.2).Somepreyhabitatwouldbelostbyinundationofabout65mi2(170km2)ofarea(Sec.K.3.1.1.1).Lynx,weasel,andmartenwouldbeaffectedbytheinundationofforestedhabitatbytheWatanaimpoundment.However,impactsareexpectedtobeminor(TableK-17).RAPTORSANDRAVENSThemajorraptorsofconcernincludegoldeneagle,baldeagle,goshawk,andgyrfalcon(Kesseletal.,1982).TheprincipalimpactstoraptorsandravensinthevicinityoftheWatanaimpoundmentwouldbelossordisturbanceofnestinglocations.About20nestinglocationswouldbeinundatedbytheWatanaimpoundment(Sec.K.3.1.1.1).ImpactsassociatedwithhumanaccessarediscussedinSectionK.3.1.3.WATERBIRDSWaterbirdsarenotabundantintheSusitnaBasin(Kesseletal.,1982).However,theWatanadevelopmentwouldinundateoraltersomesuitablehabitat.Onlyasmallproportion«0.2%)oflakehabitatwouldbelost.SomespecieswouldlosepermanenthabitatalongriverineshorelineandalluviaaboveWatanadamsite.ReservoirfillingandfluctuationsinreservoirlevelwouldK-59discussedabove,impactstofoodsupplyoftheWatanapackcouldaffectrecruitmentofwolvesintomoreheavilyhuntedpacks.Otherimpactstowolfduringoperationwouldbeindirectinnature(TableK-13).EffectsduetoincreasedhumanaccessarediscussedinSectionK.3.1.3.LossofareawithintheterritoriesoftheWatanaandJayCreekpackswouldresultinthedisplacementofwolfactivitypatterns.Displacementwouldbringthepacksintoconflictwithwolfinadjacentterritories.Interactionsamongpackswouldlikelyresultinasubsequentreadjustmentofterritoryboundariesandsizes,andpossiblythedissolutionofoneormorepacks.Aswithothermammals,theimpoundmentwouldservetoimpedemovementandreducetheflexibilityofwolftorespondtochangesindistributionofpreypopulations.Counteringthislessenedflexibilitywouldberestrictionsofpreymovementsimposedbypresenceoftheimpoundment.WOLVERINEPrincipalimpactstowolverinewouldresultfromlossofhabitatduetotheimpoundment(TableK-14)andincreasedpresenceofhumans(seeSec.K.3.1.3).Forestedhabitatnearthereservoirmightbefurtherreducedbyerosionandsloughingalongtheshoreline,resultinginthelossofsmallmammalandbirdprey.Increasedmortalityofungulatesaroundthereservoirduringoperationmightprovidecarriontosupplementlossofforesthabitat.However,theseeffectswouldnotlikelyaffectthewolverinepopulationasawholebecausewolverinearewide-spreadandwide-ranginginthebasin.BELUKHAItisthoughtthatbelukha,orwhitewhale,congregateatthemouthoftheSusitnaRivertofeeduponrunsofanadromouseulachonandsalmon(ExhibitE,Vol.6A,Chap.3,p.E-3-434).Eulachonspawninthelowerreachesoftheriverandareunlikelytobeeffectedbytheproposedproject(seeAppendixI).Salmonappeartobeoflesserimportanceinthediet(Calkins,1983).IfallsalmonspawninghabitatwerelostaboveTalkeetna,about5%ormoreofthecurrentlyavailablesalmonwouldbecomeunavailabletobelukha.Areductioninsalmonwouldlikelybereflectedinasmalleffectuponthebelukhapopulation(Calkins,1983),however,thenaturalvariabilityinpopulationsizeswouldlikelymasksucheffects.BEAVERANDMUSKRATOnthewhole,downstreambeaverwouldprobablybenefitfromtheWatanadevelopment,whereasmuskratwouldbeaffecteddetrimentally(TableK-15).Nobeaverareknowntoresideintheareaofproposedinundation(Gipsonetal.,1982).Althoughafewbeavermightusethereservoir,annualdrawdownwoulddiscouragemostbeaverfromusingthereservoirshoreline.Downstream,increasedwinterflowswouldbelikelytobenefitbeaverbyincreasingthedepthofice-freewaterovercurrentconditions.ThisenhancementofbeaverhabitatwouldbemostpronouncedupstreamfromTalkeetna.Somemuskrathabitatwouldbeinundatedupstream,butafewmuskratdownstreammighttakeadvantageofadditionalbeaverponds.MINKANDOTTERImpactsfromoperationwouldnothavefurtherconsequencethanwouldresultfrominundationofhabitat(seeSec.K.3.1.1.1).OTHERFURBEARERSImpactstofoxandcoyoteswouldbeprincipallyduetoincreasedhumanaccess(seeSec.K.3.1.2).Somepreyhabitatwouldbelostbyinundationofabout65mi2(170km2)ofarea(Sec.K.3.1.1.1).Lynx,weasel,andmartenwouldbeaffectedbytheinundationofforestedhabitatbytheWatanaimpoundment.However,impactsareexpectedtobeminor(TableK-17).RAPTORSANDRAVENSThemajorraptorsofconcernincludegoldeneagle,baldeagle,goshawk,andgyrfalcon(Kesseletal.,1982).TheprincipalimpactstoraptorsandravensinthevicinityoftheWatanaimpoundmentwouldbelossordisturbanceofnestinglocations.About20nestinglocationswouldbeinundatedbytheWatanaimpoundment(Sec.K.3.1.1.1).ImpactsassociatedwithhumanaccessarediscussedinSectionK.3.1.3.WATERBIRDSWaterbirdsarenotabundantintheSusitnaBasin(Kesseletal.,1982).However,theWatanadevelopmentwouldinundateoraltersomesuitablehabitat.Onlyasmallproportion«0.2%)oflakehabitatwouldbelost.SomespecieswouldlosepermanenthabitatalongriverineshorelineandalluviaaboveWatanadamsite.Reservoirfillingandfluctuationsinreservoirlevelwould
K-60eliminatenestingtreesforgoldeneyeandmergansers.Allshorebirdbreedinghabitatwithintheimpoundmentwouldbelost.OTHERBIRDSANDMAMMALSThemajoreffectstootherbirdsandmammalsfromtheWatanadevelopmentwouldbelossandalterationofhabitat(Kesseletal.,1982).Inparticular,wildlifeassociatedwithforestednabitatwouldbeaffected.Noneofthesmallbirdormammaltaxaarerestrictedinrangetothebasin.Thus,although55mi2(140km2)ofhabitatwouldbeinundated,notaxawouldlosemorethanminoramountsofcarryingcapacity.K.3.1.1.3ThreatenedorEndangeredSpeciesFederalandstateagenciesformallylistorproposeonlyfivetaxaasthreatenedorendangeredinthestateofAlaska(U.S.FishandWildlifeService1983a;AlaskaDept.ofFishandGame,1982).Ofthesetaxa,onlytheendangeredAmericanperegrinefalcon(Falcoperegrinusanatum)islikelytooccurintheSusitnaBasin(Armstrong,1981;Kesseletal.,1982;U.S.FishandWildlifeService,1983b,c).Althoughperegrinefalconhavebeenobservedintheprojectarea,nonestinglocationshavebeenlocatednearproposedprojectfeatureswithinthebasin.ThisareaisnotconsideredtocontainkeyhabitatfortherecoveryofthisspeciesinA1aska(U.S.FishandWildlifeService,1982c).TheWatanadamandreservoirwouldnotposeathreattothecontinuingsurvivalorrecoveryoftheperegrinefalconinAlaska.K.3.1.2DevilCanyonDevelopmentK.3.1.2.1ConstructionandFillingConstructionactivitiesattheDevilCanyondevelopmentwouldbesimilarinnaturetothosediscussedfortheWatanadevelopmentinSectionK.3.1.1.1--temporaryandpermanentlossofwildlifehabitat,impedanceofwildlifemovements,anddisturbanceofwildlifebehavior(Tab1eK-21).BecausetheDevilCanyondeve1opmentwouldnotbeasextensiveastheWatanadevelopment,themagnitudeofeffectstowildlifewouldbesmaller,albeitsubstantial.ComparedwithconstructionandfillingoftheWatanaimpoundment,activitiesatDevilCanyonwouldaffectabout20%additionalwildlifehabitat(AppendixJ).ConstructionandfillingofDevilCanyonreservoirwouldresultinpermanentlossofabout7,900acres(2,800ha)(App.J,TableJ-22)andtemporarylossof1,200acres(480ha)ofwildlifehabitat(App.J,TableJ-23).Over75%oftheaffectedareawouldbeforested.LesserpotentialforimpactisalsoattributabletothegenerallylowerhabitatqualityoftheDevilCanyonimpactarea,principallyduetothecon-strictedandruggednatureofthecanyon.MOOSEThehabitatinthevicinityofDevilCanyonsupportsfewermoosethanthehabitatabovetheWatanadamsite(Fig.K-2).Inpart,thisisduetothesteepertopographyofDevilCanyonandthegreaterextentofmatureforest.Becauseoflowermoosedensitiesandsmallerareaoftheimpoundment,theDevilCanyonimpoundmentwouldaffectfewermoosethanwouldtheWatanaimpound-ment.Baseduponobservedrangesofmoosebetween1976-1982andaerialsurveysandcensuses,Ballardetal.(l983a:p.27)estimatedthat450moosewouldbeaffectedbytheDevi1Canyonimpoundmentcomparedto1,800attheWatanaimpoundment.Baseduponpreliminaryestimatesofpotentialwintercarryingcapacityformoosehabitatinthebasin(TableK-2),thelossofhabitatduetoDevilCanyondevelopmentwouldbeequivalenttolossofthepotentialcarryingcapacityforabout60moose,inadditiontoalossofcarryingcapacityfor480mooseduetotheWatanadevelopment.ThisestimateforDevilCanyonmightbelowbecauseforageinmature,closedforestwasnotestimated.However,themorematureforest,whichdominatestheDevilCanyonarea,generallycontains5%to20%oftheavailableforagefoundinearlysuccessionalstages(WolffandZasada,1979).TheimpactsfromDevilCanyonthenwouldbesubstantiallyless(ca.10%-25%)thantheimpactsduetoWatana.TheDevilCanyonareadoescontainareasofmooseconcentrationduringwinterandspring(Figs.K-3andK-5).However,developmentofDevilCanyonwouldfurtherextendtheimpactsduringtheseimportantperiodsand,addedtotheeffectsoftheWatanadevelopment,wouldresultinafurtherreductionofthemoosepopulationrecruitmentrateandsize.EffectsofmoosedisturbancefromconstructionactivitiesatDe~ilCanyonwouldbeinadditiontothoseincurredduringconstructionofWatana.TheareaofdisturbancewouldshiftdownstreamfromWatana.Theareaofmaximumdisturbance[noiselevelsinexcessof60dB(A)]wouldextendabout0.3mi(0.5km)fromtheedgeofconstructionactivities,encompassinglessthan3mi2(8km2).Baseduponmoosedensitiesinthedamarea(ca.1.1/mi2,Fig.K-2),onlyaboutthreemoosewouldlikelybeaffectedbydirectdisturbance.ThisisconsiderablylessthanthenumbercalculatedfortheWatanaconstructionareas.K-60eliminatenestingtreesforgoldeneyeandmergansers.Allshorebirdbreedinghabitatwithintheimpoundmentwouldbelost.OTHERBIRDSANDMAMMALSThemajoreffectstootherbirdsandmammalsfromtheWatanadevelopmentwouldbelossandalterationofhabitat(Kesseletal.,1982).Inparticular,wildlifeassociatedwithforestednabitatwouldbeaffected.Noneofthesmallbirdormammaltaxaarerestrictedinrangetothebasin.Thus,although55mi2(140km2)ofhabitatwouldbeinundated,notaxawouldlosemorethanminoramountsofcarryingcapacity.K.3.1.1.3ThreatenedorEndangeredSpeciesFederalandstateagenciesformallylistorproposeonlyfivetaxaasthreatenedorendangeredinthestateofAlaska(U.S.FishandWildlifeService1983a;AlaskaDept.ofFishandGame,1982).Ofthesetaxa,onlytheendangeredAmericanperegrinefalcon(Falcoperegrinusanatum)islikelytooccurintheSusitnaBasin(Armstrong,1981;Kesseletal.,1982;U.S.FishandWildlifeService,1983b,c).Althoughperegrinefalconhavebeenobservedintheprojectarea,nonestinglocationshavebeenlocatednearproposedprojectfeatureswithinthebasin.ThisareaisnotconsideredtocontainkeyhabitatfortherecoveryofthisspeciesinA1aska(U.S.FishandWildlifeService,1982c).TheWatanadamandreservoirwouldnotposeathreattothecontinuingsurvivalorrecoveryoftheperegrinefalconinAlaska.K.3.1.2DevilCanyonDevelopmentK.3.1.2.1ConstructionandFillingConstructionactivitiesattheDevilCanyondevelopmentwouldbesimilarinnaturetothosediscussedfortheWatanadevelopmentinSectionK.3.1.1.1--temporaryandpermanentlossofwildlifehabitat,impedanceofwildlifemovements,anddisturbanceofwildlifebehavior(Tab1eK-21).BecausetheDevilCanyondeve1opmentwouldnotbeasextensiveastheWatanadevelopment,themagnitudeofeffectstowildlifewouldbesmaller,albeitsubstantial.ComparedwithconstructionandfillingoftheWatanaimpoundment,activitiesatDevilCanyonwouldaffectabout20%additionalwildlifehabitat(AppendixJ).ConstructionandfillingofDevilCanyonreservoirwouldresultinpermanentlossofabout7,900acres(2,800ha)(App.J,TableJ-22)andtemporarylossof1,200acres(480ha)ofwildlifehabitat(App.J,TableJ-23).Over75%oftheaffectedareawouldbeforested.LesserpotentialforimpactisalsoattributabletothegenerallylowerhabitatqualityoftheDevilCanyonimpactarea,principallyduetothecon-strictedandruggednatureofthecanyon.MOOSEThehabitatinthevicinityofDevilCanyonsupportsfewermoosethanthehabitatabovetheWatanadamsite(Fig.K-2).Inpart,thisisduetothesteepertopographyofDevilCanyonandthegreaterextentofmatureforest.Becauseoflowermoosedensitiesandsmallerareaoftheimpoundment,theDevilCanyonimpoundmentwouldaffectfewermoosethanwouldtheWatanaimpound-ment.Baseduponobservedrangesofmoosebetween1976-1982andaerialsurveysandcensuses,Ballardetal.(l983a:p.27)estimatedthat450moosewouldbeaffectedbytheDevi1Canyonimpoundmentcomparedto1,800attheWatanaimpoundment.Baseduponpreliminaryestimatesofpotentialwintercarryingcapacityformoosehabitatinthebasin(TableK-2),thelossofhabitatduetoDevilCanyondevelopmentwouldbeequivalenttolossofthepotentialcarryingcapacityforabout60moose,inadditiontoalossofcarryingcapacityfor480mooseduetotheWatanadevelopment.ThisestimateforDevilCanyonmightbelowbecauseforageinmature,closedforestwasnotestimated.However,themorematureforest,whichdominatestheDevilCanyonarea,generallycontains5%to20%oftheavailableforagefoundinearlysuccessionalstages(WolffandZasada,1979).TheimpactsfromDevilCanyonthenwouldbesubstantiallyless(ca.10%-25%)thantheimpactsduetoWatana.TheDevilCanyonareadoescontainareasofmooseconcentrationduringwinterandspring(Figs.K-3andK-5).However,developmentofDevilCanyonwouldfurtherextendtheimpactsduringtheseimportantperiodsand,addedtotheeffectsoftheWatanadevelopment,wouldresultinafurtherreductionofthemoosepopulationrecruitmentrateandsize.EffectsofmoosedisturbancefromconstructionactivitiesatDe~ilCanyonwouldbeinadditiontothoseincurredduringconstructionofWatana.TheareaofdisturbancewouldshiftdownstreamfromWatana.Theareaofmaximumdisturbance[noiselevelsinexcessof60dB(A)]wouldextendabout0.3mi(0.5km)fromtheedgeofconstructionactivities,encompassinglessthan3mi2(8km2).Baseduponmoosedensitiesinthedamarea(ca.1.1/mi2,Fig.K-2),onlyaboutthreemoosewouldlikelybeaffectedbydirectdisturbance.ThisisconsiderablylessthanthenumbercalculatedfortheWatanaconstructionareas.
Table K-21.Potential Impacts to Wildlife from Devil Canyon Development
Species
MOOSE
CARIBOU
BROWN BEAR
Project Features
Impoundment area and
permanent facilities
Reclaimed areas
Hydrologic-induced
alteration
Impoundment
Downstream
Impoundment area and
village and airstrip
Impoundment
Impacts
Permanent Habitat Loss:
Wintering habitat loss would reduce carrying capacity the equivalent of about 60 moose.
Spring habitat loss would be minor but might displace a small number of moose that calve in
this area.
Habitat Alteration:
Borrow area K and the temporary camp and village would contain winter browse for equivalent
of about 2 moose.
Increased water temperatures and open water in winter would occur downstream as far as
Talkeetna,otherwise impacts would be as described for Watana.
Barriers,Impediments,and Hazards to Movement:
Impacts would be as for Watana,but less severe.
As for Watana,except open water might occur as far downstream as Talkeetna.
Permanent Habitat Loss:
An inconsequential proportion of total range would be affected.
Permanent Habitat Loss:
Some spring feeding areas would be lost.
Prey population reduction might affect brown bears.
Disturbance:
As for Watana.
'"I
O"l
f-l
Table K-21.Potential Impacts to Wildlife from Devil Canyon Development
Species
MOOSE
CARIBOU
BROWN BEAR
Project Features
Impoundment area and
permanent facilities
Reclaimed areas
Hydrologic-induced
alteration
Impoundment
Downstream
Impoundment area and
village and airstrip
Impoundment
Impacts
Permanent Habitat Loss:
Wintering habitat loss would reduce carrying capacity the equivalent of about 60 moose.
Spring habitat loss would be minor but might displace a small number of moose that calve in
this area.
Habitat Alteration:
Borrow area K and the temporary camp and village would contain winter browse for equivalent
of about 2 moose.
Increased water temperatures and open water in winter would occur downstream as far as
Talkeetna,otherwise impacts would be as described for Watana.
Barriers,Impediments,and Hazards to Movement:
Impacts would be as for Watana,but less severe.
As for Watana,except open water might occur as far downstream as Talkeetna.
Permanent Habitat Loss:
An inconsequential proportion of total range would be affected.
Permanent Habitat Loss:
Some spring feeding areas would be lost.
Prey population reduction might affect brown bears.
Disturbance:
As for Watana.
Species
BLACK BEAR
WOLF
FURBEARERS
RAPTORS AND RAVEN
Project Features
Impoundment area
Impoundment
Impoundment clearing
Other sites
Impoundment
Table K-21.Continued
Impacts
Permanent Habitat Loss:
Loss of spruce forest habitats.
Loss of 6%of known black bear dens in impoundment area.
Disturbance:
As for Watana.
Disturbance Related to Construction Activities:
As for Watana.
Permanent Habitat Loss:
Would be less severe than for Watana,but similar in nature.
Beaver might successfully colonize this impoundment due to small annual drawdown,
particularly during wet years.
Disturbance Related to Construction Activities:
Would temporarily displace fox.
Would likely eliminate mink and otter from affected areas.
Might disturb daily activities and force abandonment of aquatic habitats where they occur
near construction zones.
As for Watana.
Permanent Habitat Loss:
Would lose 2 of 16 (12%)golden eagle nesting locations.
1 of 3 known goshawk nesting locations would be lost.
4 or 5 of 21 (19%)previously used raven nesting locations would be lost.
7':
I
0'\
N
Species
BLACK BEAR
WOLF
FURBEARERS
RAPTORS AND RAVEN
Project Features
Impoundment area
Impoundment
Impoundment clearing
Other sites
Impoundment
Table K-21.Continued
Impacts
Permanent Habitat Loss:
Loss of spruce forest habitats.
Loss of 6%of known black bear dens in impoundment area.
Disturbance:
As for Watana.
Disturbance Related to Construction Activities:
As for Watana.
Permanent Habitat Loss:
Would be less severe than for Watana,but similar in nature.
Beaver might successfully colonize this impoundment due to small annual drawdown,
particularly during wet years.
Disturbance Related to Construction Activities:
Would temporarily displace fox.
Would likely eliminate mink and otter from affected areas.
Might disturb daily activities and force abandonment of aquatic habitats where they occur
near construction zones.
As for Watana.
Permanent Habitat Loss:
Would lose 2 of 16 (12%)golden eagle nesting locations.
1 of 3 known goshawk nesting locations would be lost.
4 or 5 of 21 (19%)previously used raven nesting locations would be lost.
Species
RAPTORS AND RAVEN
(continued)
Project Features
Impoundment clearing
Borrow sites and
reclaimed areas
Impoundment clearing
Dam construction
Borrow sites
Table K-21.Continued
Impacts
Habitat Alteration:
Tree nesting locations for small raptors and owls would be lost.
1 goshawk nesting location would be lost.
1 gyrfalcon nest might be located in borrow site K.
Disturbance Related to Construction Activities:
5 golden eagle nests would be susceptible to disturbance.
1 gyrfalcon nest would be susceptible.
6 raven nests would be susceptible.
1 golden eagle nest would be susceptible.
1 raven nest would be susceptible.
1 gyrfalcon nest would be susceptible in borrow site K.
:;0::
I
a>w
Species
RAPTORS AND RAVEN
(continued)
Project Features
Impoundment clearing
Borrow sites and
reclaimed areas
Impoundment clearing
Dam construction
Borrow sites
Table K-21.Continued
Impacts
Habitat Alteration:
Tree nesting locations for small raptors and owls would be lost.
1 goshawk nesting location would be lost.
1 gyrfalcon nest might be located in borrow site K.
Disturbance Related to Construction Activities:
5 golden eagle nests would be susceptible to disturbance.
1 gyrfalcon nest would be susceptible.
6 raven nests would be susceptible.
1 golden eagle nest would be susceptible.
1 raven nest would be susceptible.
1 gyrfalcon nest would be susceptible in borrow site K.
K-64CARIBOUCaribouarecharacteristicofopentundraandshrublandhabitats(Miller,1982),whichcompriselessthan5%ofthehabitatthatwouldbeaffectedbytheDevilCanyondevelopment(App.J,TablesJ-22andJ-23).Althoughafewindividualsmightbeaffected,theoverallimpactswouldbeminute.DALL'SSHEEPThehabitatforDall'ssheepintheregioniswellremoved[about25mi(40km)JfromtheDevilCanyondevelopmentarea(Fig.K-9).TheprojectfeaturesarewellbelowelevationsatwhichDall'ssheepregularlyarefound[2,000ftto3,500ft(600to1,000m)].TheDevilCanyondevelopmentwouldaddnofurtherimpactstothoseincurredduringWatanadevelopment.BROWNBEARTheprincipalimpacttobrownbearwouldbelossof5,900acres(2,400ha)ofspringforage(App.J,TableJ-22).Thelowlandforesthabitatprovidesanmportantsourceofearlyplantgrowthandoverwinteredberries.Thesefoodsareprobablyimportantforrecoveryofnutritionalbalanceafterbrownbearemergefromtheden.ThemorematureforestsoftheDevilCanyonareaswouldprobablyprovidelessspringfoodthanfoundintheyoungerforestsassociatedwithhabitatupstreamoftheWatanadamsite.Thus,lossesduetotheDevilCanyondevelopmentwouldnotbeasgreatasfortheWatanadevelopment,althoughtheDevilCanyoneffectswouldbeaddedtotheeffectsofWatanadevelopment.Brownbearmightavoidtheareaoftheconstructionactivitiesduetonoiseandthepresenceofhumans.Thiswouldeffectivelyamounttoalossofthishabitatforthedurationofconstruc-tion(ca.tenyears).Basedontheaveragepopulationdensityinthebasin,the3-mi2(8-km2)areaofdirectdisturbancewouldbeexpectedtocontainnomorethanonebrownbear(MillerandBallard,1982).Thus,disturbanceeffectswouldbeexpectedtobeminor.Thepresenceofgarbageinthecampmightprovetobeanattractionforbrownbear.Thisandthepresenceofhumanswouldincreasethelikelihoodofhuman/bearinteractions.Bearsmightbecomenuisancesanddisruptiveofhumanactivities.Asaresult,somebearmightbekilled.Propercontrolofwasteswouldensurethatsuchinstanceswouldbefew.BLACKBEARAsoccursupstreamfromtheproposedWatanadamsite,blackbearinDevilCanyonprincipallyusethe1owland,spruceforesthabitat(Mi11erandMcA11ister,1982).Thishabitattypecomprisesaboutone-thirdoftheforesthabitatthatwouldbelostduetotheDevilCanyonimpoundment.About1,900acres(760ha)ofspruceforest(App.J,TableJ-22)wouldbecoveredbytheDevilCanyonimpoundment.Thisistheprincipalareaofblackbearuseinthevicinityoftheproject(Fig.K-ll).Basedupontheestimateddensityofblackbearintheimpoundmentarea,aboutfivebearswouldbeaffectedbyreservoirfilling(MillerandMcAllister,1982).AswiththeWatanaimpoundment,blackbeardensmightbeinundatedbyfi11ingoftheDevi1Canyonimpoundment.Ofthe18densknowntooccuralongDevilCanyon,onlyonewouldbefloodedbyfi11ingoftheproposedreservoir(Mi11er,1983).Abovetheproposedvlatanasite,13of24knowndenswouldbeflooded.Thus,theimpactsofDevilCanyonfi11ingwouldbe1ess,althoughadditionalto,theimpactsfromfillingoftheWatanareservoir.BlackbearwouldbesubjecttodisturbanceduringconstructionoftheDevilCanyondam.Ontheaverage,aboutthreeblackbearmightbeexpectedtooccupythezoneofdirectdisturbance.Thus,onlyasmallfractionoftheblackbearpopulationwouldbedirectlydisturbed.Afewnuisancebearsmightdisruptactivitiesintheconstructioncampandvillage.WOLFFillingofDevilCanyonreservoirwouldremoveanadditional7,900acres(2,800ha)fromtheterritoryoftheWatanawolfpack(Fig.K-12).Thiswouldamounttoonlyabout2%ofthetotalterritory,butwithWatanadevelopment,atotalof10%oftheterritorywouldbelosttotheWatanapack(Ballardetal.,1983c).Thislosswouldhaveaseriouseffectuponthispackbecausetheinundationareawouldrepresentabout45%oftheobservedwolfuse.FURBEARERSImpoundmenteffectsuponaquaticfurbearerswouldbesmallduetothelackofsuitablehabitatinDevilCanyon.Abouttenbeavermightbeaffectedbydevelopmentoftheconstructioncampandborrowarea(Gipsoneta1.,1982).Lossofmaturespruceandmixedforestwouldimpactchieflypinemarten,whicharedependentuponsuchhabitat.Gipsonetal.(1982)estimatedthatabout55martenmightbeaffectedbyfillingDevilCanyonreservoir.Fox,marten,andweaselmightbeattractedtotheconstructioncampandvillage,becomingnuisanceanimals.K-64CARIBOUCaribouarecharacteristicofopentundraandshrublandhabitats(Miller,1982),whichcompriselessthan5%ofthehabitatthatwouldbeaffectedbytheDevilCanyondevelopment(App.J,TablesJ-22andJ-23).Althoughafewindividualsmightbeaffected,theoverallimpactswouldbeminute.DALL'SSHEEPThehabitatforDall'ssheepintheregioniswellremoved[about25mi(40km)JfromtheDevilCanyondevelopmentarea(Fig.K-9).TheprojectfeaturesarewellbelowelevationsatwhichDall'ssheepregularlyarefound[2,000ftto3,500ft(600to1,000m)].TheDevilCanyondevelopmentwouldaddnofurtherimpactstothoseincurredduringWatanadevelopment.BROWNBEARTheprincipalimpacttobrownbearwouldbelossof5,900acres(2,400ha)ofspringforage(App.J,TableJ-22).Thelowlandforesthabitatprovidesanmportantsourceofearlyplantgrowthandoverwinteredberries.Thesefoodsareprobablyimportantforrecoveryofnutritionalbalanceafterbrownbearemergefromtheden.ThemorematureforestsoftheDevilCanyonareaswouldprobablyprovidelessspringfoodthanfoundintheyoungerforestsassociatedwithhabitatupstreamoftheWatanadamsite.Thus,lossesduetotheDevilCanyondevelopmentwouldnotbeasgreatasfortheWatanadevelopment,althoughtheDevilCanyoneffectswouldbeaddedtotheeffectsofWatanadevelopment.Brownbearmightavoidtheareaoftheconstructionactivitiesduetonoiseandthepresenceofhumans.Thiswouldeffectivelyamounttoalossofthishabitatforthedurationofconstruc-tion(ca.tenyears).Basedontheaveragepopulationdensityinthebasin,the3-mi2(8-km2)areaofdirectdisturbancewouldbeexpectedtocontainnomorethanonebrownbear(MillerandBallard,1982).Thus,disturbanceeffectswouldbeexpectedtobeminor.Thepresenceofgarbageinthecampmightprovetobeanattractionforbrownbear.Thisandthepresenceofhumanswouldincreasethelikelihoodofhuman/bearinteractions.Bearsmightbecomenuisancesanddisruptiveofhumanactivities.Asaresult,somebearmightbekilled.Propercontrolofwasteswouldensurethatsuchinstanceswouldbefew.BLACKBEARAsoccursupstreamfromtheproposedWatanadamsite,blackbearinDevilCanyonprincipallyusethe1owland,spruceforesthabitat(Mi11erandMcA11ister,1982).Thishabitattypecomprisesaboutone-thirdoftheforesthabitatthatwouldbelostduetotheDevilCanyonimpoundment.About1,900acres(760ha)ofspruceforest(App.J,TableJ-22)wouldbecoveredbytheDevilCanyonimpoundment.Thisistheprincipalareaofblackbearuseinthevicinityoftheproject(Fig.K-ll).Basedupontheestimateddensityofblackbearintheimpoundmentarea,aboutfivebearswouldbeaffectedbyreservoirfilling(MillerandMcAllister,1982).AswiththeWatanaimpoundment,blackbeardensmightbeinundatedbyfi11ingoftheDevi1Canyonimpoundment.Ofthe18densknowntooccuralongDevilCanyon,onlyonewouldbefloodedbyfi11ingoftheproposedreservoir(Mi11er,1983).Abovetheproposedvlatanasite,13of24knowndenswouldbeflooded.Thus,theimpactsofDevilCanyonfi11ingwouldbe1ess,althoughadditionalto,theimpactsfromfillingoftheWatanareservoir.BlackbearwouldbesubjecttodisturbanceduringconstructionoftheDevilCanyondam.Ontheaverage,aboutthreeblackbearmightbeexpectedtooccupythezoneofdirectdisturbance.Thus,onlyasmallfractionoftheblackbearpopulationwouldbedirectlydisturbed.Afewnuisancebearsmightdisruptactivitiesintheconstructioncampandvillage.WOLFFillingofDevilCanyonreservoirwouldremoveanadditional7,900acres(2,800ha)fromtheterritoryoftheWatanawolfpack(Fig.K-12).Thiswouldamounttoonlyabout2%ofthetotalterritory,butwithWatanadevelopment,atotalof10%oftheterritorywouldbelosttotheWatanapack(Ballardetal.,1983c).Thislosswouldhaveaseriouseffectuponthispackbecausetheinundationareawouldrepresentabout45%oftheobservedwolfuse.FURBEARERSImpoundmenteffectsuponaquaticfurbearerswouldbesmallduetothelackofsuitablehabitatinDevilCanyon.Abouttenbeavermightbeaffectedbydevelopmentoftheconstructioncampandborrowarea(Gipsoneta1.,1982).Lossofmaturespruceandmixedforestwouldimpactchieflypinemarten,whicharedependentuponsuchhabitat.Gipsonetal.(1982)estimatedthatabout55martenmightbeaffectedbyfillingDevilCanyonreservoir.Fox,marten,andweaselmightbeattractedtotheconstructioncampandvillage,becomingnuisanceanimals.
K-65RAPTORSANDRAVENSAtotalofnineortenadditionalraptorandravennestinglocationswouldbesusceptibletoDevilCanyonconstructionandfillingactivities(TableK-22).OnegyrfalconnestcouldbelosttoexcavationofborrowsiteK(Fig.2-6);onegoldeneagleandoneravenlocationaresuscept-ibletoexcessivedisturbance.FillingofDevilCanyonwouldaffectanadditionalsevenoreightraptorandravennestinglocationswhichwouldbeinundatedbythereservoir.AsattheupstreamWatanasite,goldeneaglelosseswouldbeofgreatestconcern.Kesselletal.(1982)estimatedthatabout17mi(27km)ofgood-qualityraptorcliff-nestinghabitatwouldbeinunda-ted,leavingabout15mi(25km)abovewaterline.However,althoughthereisabundantcliffhabitatinDevilCanyon,itislittleusedbycliff-nestingraptorsandravens.Kesseletal.(1982)speculatethatthehigh,turbulentwindsinthecanyonmaketheareaundesirabletoraptors.Ashallower,broader,canyonafterfillingmightreducetheviolenceofthewindssufficientlytomakethecanyonmoresuitabletocliff-nestingraptors.TableK-22.RaptorandRavenNestingLocationsLikelytoBeAffectedbyConstructionActivitiesatDevilCanyonNumberofLocationsGoldeneagle3-4Baldeagle0Gyrfalcon1Goshawk1Raven4Total9-10Effects1within0.6miofdamconstruction;2-3ininundationzoneMayberemovedbyquarryexcavationWithininundationzone1within0.4miofdamconstruction;3withininundationzoneConversion:Toconvertmilestokilometers,multiplyby1.61.Source:ExhibitE,Vol.6A,Chap.3,TableE.3.161.WATERBIRDSMostwaterfowlwouldnotbeaffectedbytheDevilCanyondevelopment.AswiththeWatanadevelop-ment,reservoirfillingwouldfloodnestinghabitatforsuchriverineshorebirdsasspottedsandpiper,wanderingtattler,dipperandothers.OTHERBIRDSANDMAMMALSAbout9,100acres(3,700ha)ofhabitatwouldbeaffectedbyconstructionandfillingoftheDevilCanyonreservoir(App.J,TablesJ-22andJ-23).About75%oftheaffectedhabitatwouldbeforested.Forspeciesofbirdsandmammalsdependentuponforest,habitatwouldbelostforthousandsofindividuals(Kesseletal.,1982).Affectedforest-nestingbirdswouldincludewoodpeckers,black-cappedchickadee,Swainson'sthrush,yellow-rumpedwarbler,andothers.Redsquirrel,porcupine,andsnowshoeharearemammalsgenerallyrestrictedtoforesthabitat.Althoughthousandsofindividualanimalswouldbeaffected,allofthesespeciesarewidespreadthroughoutSouthcentra1Alaska.Thus,impactsofDevilCanyonfi11ingwouldresultinonlyminorreductionsinthesizesofregionalpopulationsofthesespecies.K.3.1.2.2OperationDuringoperation,principalimpactswouldbeassociatedwithalteredmicroclimate,altereddownstreamflows,impededmovement,andcontinuedlossofhabitat.FlowregimesbelowDevilCanyonwouldbeexpectedtoremainasdiscussedinSectionK.3.1.1.2fortheWatanadevelopment.Thelocationofriparianhabitatmightshift,andtheabundanceofearly-andmid-successionalvegetationwouldprobablybereduced(App.J,Sec.J.2.1.2.2).However,increasedwatertempera-tureswouldresultinopenwatertoTalkeetnaduringthewinter.Habitatalterationduetolackoficestaging,icedepositiononvegetation,andmicroclimatechangesmightoccuralongtheopenwater(AppendixJ).K-65RAPTORSANDRAVENSAtotalofnineortenadditionalraptorandravennestinglocationswouldbesusceptibletoDevilCanyonconstructionandfillingactivities(TableK-22).OnegyrfalconnestcouldbelosttoexcavationofborrowsiteK(Fig.2-6);onegoldeneagleandoneravenlocationaresuscept-ibletoexcessivedisturbance.FillingofDevilCanyonwouldaffectanadditionalsevenoreightraptorandravennestinglocationswhichwouldbeinundatedbythereservoir.AsattheupstreamWatanasite,goldeneaglelosseswouldbeofgreatestconcern.Kesselletal.(1982)estimatedthatabout17mi(27km)ofgood-qualityraptorcliff-nestinghabitatwouldbeinunda-ted,leavingabout15mi(25km)abovewaterline.However,althoughthereisabundantcliffhabitatinDevilCanyon,itislittleusedbycliff-nestingraptorsandravens.Kesseletal.(1982)speculatethatthehigh,turbulentwindsinthecanyonmaketheareaundesirabletoraptors.Ashallower,broader,canyonafterfillingmightreducetheviolenceofthewindssufficientlytomakethecanyonmoresuitabletocliff-nestingraptors.TableK-22.RaptorandRavenNestingLocationsLikelytoBeAffectedbyConstructionActivitiesatDevilCanyonNumberofLocationsGoldeneagle3-4Baldeagle0Gyrfalcon1Goshawk1Raven4Total9-10Effects1within0.6miofdamconstruction;2-3ininundationzoneMayberemovedbyquarryexcavationWithininundationzone1within0.4miofdamconstruction;3withininundationzoneConversion:Toconvertmilestokilometers,multiplyby1.61.Source:ExhibitE,Vol.6A,Chap.3,TableE.3.161.WATERBIRDSMostwaterfowlwouldnotbeaffectedbytheDevilCanyondevelopment.AswiththeWatanadevelop-ment,reservoirfillingwouldfloodnestinghabitatforsuchriverineshorebirdsasspottedsandpiper,wanderingtattler,dipperandothers.OTHERBIRDSANDMAMMALSAbout9,100acres(3,700ha)ofhabitatwouldbeaffectedbyconstructionandfillingoftheDevilCanyonreservoir(App.J,TablesJ-22andJ-23).About75%oftheaffectedhabitatwouldbeforested.Forspeciesofbirdsandmammalsdependentuponforest,habitatwouldbelostforthousandsofindividuals(Kesseletal.,1982).Affectedforest-nestingbirdswouldincludewoodpeckers,black-cappedchickadee,Swainson'sthrush,yellow-rumpedwarbler,andothers.Redsquirrel,porcupine,andsnowshoeharearemammalsgenerallyrestrictedtoforesthabitat.Althoughthousandsofindividualanimalswouldbeaffected,allofthesespeciesarewidespreadthroughoutSouthcentra1Alaska.Thus,impactsofDevilCanyonfi11ingwouldresultinonlyminorreductionsinthesizesofregionalpopulationsofthesespecies.K.3.1.2.2OperationDuringoperation,principalimpactswouldbeassociatedwithalteredmicroclimate,altereddownstreamflows,impededmovement,andcontinuedlossofhabitat.FlowregimesbelowDevilCanyonwouldbeexpectedtoremainasdiscussedinSectionK.3.1.1.2fortheWatanadevelopment.Thelocationofriparianhabitatmightshift,andtheabundanceofearly-andmid-successionalvegetationwouldprobablybereduced(App.J,Sec.J.2.1.2.2).However,increasedwatertempera-tureswouldresultinopenwatertoTalkeetnaduringthewinter.Habitatalterationduetolackoficestaging,icedepositiononvegetation,andmicroclimatechangesmightoccuralongtheopenwater(AppendixJ).
K-66K.3.1.3AccessRoutesK.3.1.3.1DenaliHighway-to-WatanaRouteNON-HUNTINGMORTALITYItisanticipatedthattherecouldbesubstantialdirectmortalityofmooseandcariboualongtheaccessroute.Largevolumesoftrafficwouldbeexpectedduringthepeakconstructionyears--ontheorderof500to600vehicle-tripsperday,or20,000to25,000vehicle-milesperdayfromDenaliHighwaytoWatana(ExhibitE,Vol.6b,Chap.3,TableE.3.167).Duringwinter,vehiclecollisionsaremorelikelybecausetheopenroadwayprovidesanattractiverouteforungulatepassage,andthebermsofsnowoneithersiderestrictescapemovements.CitingdatafromtheAlaskaDepartmentofFishandGame,CommonwealthAssociates(1982)notethatupto300moosehavebeenkilledalongthe360-mi(580-km)AlaskaRailroadduringasinglewinter.Duringthisperiodtrainspassedalongattherateofapproximately90to180train-miles(145to290km)perday.Thus,thepotentialforcollisionofungulatesandvehicleswouldbehighalongtheproposedaccessroutefromDenaliHighway.Thisaccessroutepassesprincipallythroughuplandshrublandandtundrahabitats(Fig.2-11andAppendixJ).Thesehabitatssupportrelativelylowdensitiesofmoose,aboutto1/mi2(0.4/km2)(Fig.K-2).ThisdensityislowerthangenerallyoccursalongtheAlaskaRailroad(Modafferi,1982,1982).Nomajormoosemovementsareknowntocrosstherouteoftheproposedaccessroad(Fig.K-l).However,theroadwouldpassthroughthemajormigratorypathfortheNelchina-UpperSusitnasubherdofcaribou.Thus,impactstocariboufromvehiclecollisionswouldbemorelikelythanimpactstomoose.HABITATLOSSANDALTERATIONSomewildlifehabitatwouldbelostduetoconstructionoftheroadwayandexcavationofassoci-atedborrowpits(App.J,TableJ-26).Inaddition,somehabitatadjacenttotheright-of-waywouldbealteredbecauseofchangeddrainagepatterns.Theseimpactswouldbeminor,amountingtoonlyabout0.02%ofthehabitatavailableinthebasin.Onecurrentlyactivebaldeaglenestwouldbedestroyedbyconstructionoftheaccessroadasoriginallyproposed(ExhibitE,Vol.6A,Chap.3,p.E-3-489).Initsmitigationplan,theApplicantproposestoreroutetheroadaroundthisnestinglocation(ExhibitE,Vol.6B,Chap.3,Fig.E.3.8.1).TheroadwouldpassthroughthebestpotentialhabitatforbaldeaglenestingalongDeadmanCreek(Fig.2-11).Approximately65beaveroccupyupperDeadmanCreek,alongwhichtheroadwouldextend.Over40beavercouldbenegativelyimpactedbyexcavationofborrowareasandconstructionoftheroad(ExhibitE,Vol.6A,Chap.3,p.E.3.487;Gipsonetal.,1982).Theroadwouldlikelydegradebeaverhabitatinsomeinstancesandenhanceitinothers.Effectswouldbeprincipallyduetochangesindrainage,sedimentation,andbankdestabilization.TheApplicantprojectsthenetresultwouldbenegative.DISTURBANCEAprincipalimpactofbothconstructionandoperationoftheaccessroadwouldbedisturbanceofwildlifeusinghabitatadjacenttotheright-of-way.Theeffectsofsuchdisturbanceincludedisruptionofbehavioralpatternsandnutritionalbudgets,avoidanceofhabitataroundtheright-of-way,andreluctancetopassthroughareasofextensivehumanactivity.ThesecondaryconsequencesofdisturbanceduetoincreasedhumanaccesstotheinterioroftheSusitnaBasinarediscussedbelow.Disturbanceduetotrafficislikelytobeextensiveduringthepeakconstructionperiodfor~Iatanadam.Duringthisperiod,500to600vehiclesperdaywouldpassalongtheDenaliHighwayandtheaccessroadtoWatana(ExhibitE,Vol.6B,Chap.3,TableE.3.167).Thisisanaverageofonecarpassingagivenpointineitherdirectionontheroadaboutevery2.5minutes,althoughtherewouldbepeakperiodsduringshiftchangeswhentrafficdensitywouldbeconsiderablyhigher.Therehavebeenafewstudiesoftheresponsesofwildlifetotrafficandroads.Thereissomeevidencethatpassingvehiclesmayelicitalertorstartleresponsesfromwildlifewithin0.1to0.5mi(0.2to0.8km)ofaroadway(Singer,1978;RostandBailey,1979;McArthuretal.,1982).Traffichasalsobeendocumentedtodeteranimalsfromroadcrossings(Singer,1978).Inhibitionofmovementacrosstheroadwaywouldeffectivelyisolateindividualanimalsfrompartsoftheirhistoricalrange.Underconditionsoflowtrafficflowandifhuntingpressurewerelow,wildlifemighthabituatetotrafficactivityandaccessroadpresence(ShultzandBailey,1978;RostandBailey,1979;Tracy,1977;Singer1978).However,duringdamconstruc-tion,theaccessroadwouldbeheavilyused.Additionally,theroadmightalsobeusedasastagingpointforhuntingforaysifpublicaccesswereallowed.K-66K.3.1.3AccessRoutesK.3.1.3.1DenaliHighway-to-WatanaRouteNON-HUNTINGMORTALITYItisanticipatedthattherecouldbesubstantialdirectmortalityofmooseandcariboualongtheaccessroute.Largevolumesoftrafficwouldbeexpectedduringthepeakconstructionyears--ontheorderof500to600vehicle-tripsperday,or20,000to25,000vehicle-milesperdayfromDenaliHighwaytoWatana(ExhibitE,Vol.6b,Chap.3,TableE.3.167).Duringwinter,vehiclecollisionsaremorelikelybecausetheopenroadwayprovidesanattractiverouteforungulatepassage,andthebermsofsnowoneithersiderestrictescapemovements.CitingdatafromtheAlaskaDepartmentofFishandGame,CommonwealthAssociates(1982)notethatupto300moosehavebeenkilledalongthe360-mi(580-km)AlaskaRailroadduringasinglewinter.Duringthisperiodtrainspassedalongattherateofapproximately90to180train-miles(145to290km)perday.Thus,thepotentialforcollisionofungulatesandvehicleswouldbehighalongtheproposedaccessroutefromDenaliHighway.Thisaccessroutepassesprincipallythroughuplandshrublandandtundrahabitats(Fig.2-11andAppendixJ).Thesehabitatssupportrelativelylowdensitiesofmoose,aboutto1/mi2(0.4/km2)(Fig.K-2).ThisdensityislowerthangenerallyoccursalongtheAlaskaRailroad(Modafferi,1982,1982).Nomajormoosemovementsareknowntocrosstherouteoftheproposedaccessroad(Fig.K-l).However,theroadwouldpassthroughthemajormigratorypathfortheNelchina-UpperSusitnasubherdofcaribou.Thus,impactstocariboufromvehiclecollisionswouldbemorelikelythanimpactstomoose.HABITATLOSSANDALTERATIONSomewildlifehabitatwouldbelostduetoconstructionoftheroadwayandexcavationofassoci-atedborrowpits(App.J,TableJ-26).Inaddition,somehabitatadjacenttotheright-of-waywouldbealteredbecauseofchangeddrainagepatterns.Theseimpactswouldbeminor,amountingtoonlyabout0.02%ofthehabitatavailableinthebasin.Onecurrentlyactivebaldeaglenestwouldbedestroyedbyconstructionoftheaccessroadasoriginallyproposed(ExhibitE,Vol.6A,Chap.3,p.E-3-489).Initsmitigationplan,theApplicantproposestoreroutetheroadaroundthisnestinglocation(ExhibitE,Vol.6B,Chap.3,Fig.E.3.8.1).TheroadwouldpassthroughthebestpotentialhabitatforbaldeaglenestingalongDeadmanCreek(Fig.2-11).Approximately65beaveroccupyupperDeadmanCreek,alongwhichtheroadwouldextend.Over40beavercouldbenegativelyimpactedbyexcavationofborrowareasandconstructionoftheroad(ExhibitE,Vol.6A,Chap.3,p.E.3.487;Gipsonetal.,1982).Theroadwouldlikelydegradebeaverhabitatinsomeinstancesandenhanceitinothers.Effectswouldbeprincipallyduetochangesindrainage,sedimentation,andbankdestabilization.TheApplicantprojectsthenetresultwouldbenegative.DISTURBANCEAprincipalimpactofbothconstructionandoperationoftheaccessroadwouldbedisturbanceofwildlifeusinghabitatadjacenttotheright-of-way.Theeffectsofsuchdisturbanceincludedisruptionofbehavioralpatternsandnutritionalbudgets,avoidanceofhabitataroundtheright-of-way,andreluctancetopassthroughareasofextensivehumanactivity.ThesecondaryconsequencesofdisturbanceduetoincreasedhumanaccesstotheinterioroftheSusitnaBasinarediscussedbelow.Disturbanceduetotrafficislikelytobeextensiveduringthepeakconstructionperiodfor~Iatanadam.Duringthisperiod,500to600vehiclesperdaywouldpassalongtheDenaliHighwayandtheaccessroadtoWatana(ExhibitE,Vol.6B,Chap.3,TableE.3.167).Thisisanaverageofonecarpassingagivenpointineitherdirectionontheroadaboutevery2.5minutes,althoughtherewouldbepeakperiodsduringshiftchangeswhentrafficdensitywouldbeconsiderablyhigher.Therehavebeenafewstudiesoftheresponsesofwildlifetotrafficandroads.Thereissomeevidencethatpassingvehiclesmayelicitalertorstartleresponsesfromwildlifewithin0.1to0.5mi(0.2to0.8km)ofaroadway(Singer,1978;RostandBailey,1979;McArthuretal.,1982).Traffichasalsobeendocumentedtodeteranimalsfromroadcrossings(Singer,1978).Inhibitionofmovementacrosstheroadwaywouldeffectivelyisolateindividualanimalsfrompartsoftheirhistoricalrange.Underconditionsoflowtrafficflowandifhuntingpressurewerelow,wildlifemighthabituatetotrafficactivityandaccessroadpresence(ShultzandBailey,1978;RostandBailey,1979;Tracy,1977;Singer1978).However,duringdamconstruc-tion,theaccessroadwouldbeheavilyused.Additionally,theroadmightalsobeusedasastagingpointforhuntingforaysifpublicaccesswereallowed.
K-67Althoughallwildlifealongtheaccessroutemightbedisturbedbyhighwayactivities,theeffectstotheNelchinacaribouherdwouldbeofgreatestconcern.TheaccessroadwouldbisecttherangeoftheUpperSusitna-NenanasubherdwhichrangesfromCoalCreektotheParksHighway,southoftheNenanaRiver.Pitcher(1983)estimatedthat35%to50%ofthesubherdmoveswestwardintotheChulitnaMountainsforsummerandreturnstotheareaeastof theproposedaccessroadinthefall.Presenceoftheroadcouldaffectthesuccesswithwhichthesubherdcanutilizeitscurrentsummerrange.IfthemainherdshouldreturntowinteringnorthoftheSusitnaRiver,theaccessroadcouldalsoinfluenceseasonalmovementintohigherqualityrangefromthemainherdaswell.Therehavebeenseveralstudiesoftherelationsofcaribouandroadways(e.g.,Cameronetal.,1979;CameronandWhitten,1980;Jakimchuk,1980;Fancy,1983).Somehavefoundthatcaribouavoidareasofhumanactivityincludingroads,andexhibitareluctancetocrossthem.Fancy(1983)concludedthattheseresponseswereinconsequential,amountingtoonly10%to20%ofhisobservations.Incontrast,cow-calfpairstendedtoavoidhabitatadjoiningtheTrans-AlaskaPipelinehaulroad(Cameronetal.,1979;CameronandWhitten,1979).Cowswithcalvesappeartobemostsensitivetothepresenceofroadsandhumanactivity(Jakimchuk,1980).Althoughcaribouherdsdocoexistwithinroadnetworks(Jakimchuk1980),itisunlikelythattheseroadscarrytrafficatthelevelsthatwouldbeexpectedfortheWatanaaccessroadduringthepeakconstructionperiod.Becausetheaccessroadwouldextendbetweenthespring/winterandsummerrangesfor35%to50%oftheSusitna-Nenanasubherd,itislikelythatitwouldaffectcow-calfgroupings.Thiswouldhaveimplicationsforthesuccessofrecruitmentofyoungintothesubherdandhenceforthemaintenanceofthesubherdsize.Quantificationofthesepotentialaffectsisnotpossiblewiththecurrentdatabase.Presenceoftheaccessroadmightalsoleadtothedisturbanceofbrownbear,especiallyindenningareas.BrownbearhavebeenobservedatgreaternumbersawayfromtheDenaliParkRoadthanalongtheroad(Tracy,1977).MillerandBallard(1982b)reportedevidenceofshort-termreluctanceofbrownbeartocrosshighwaysduringlong-rangehomingmovementsoftransplantedindividuals.Avoidanceoftheroadwouldleadtoadecreaseinavailabilityofsomeforagealongtheroute.Itislikelythatthebrownbearwouldavoiddenningareasneartheproposedroute(ExhibitE,Vol.6A,Chap.3,p.E-3-484).Inaddition,winterconstructionmightcauseabandonmentofnearbydensandsubsequentmortality.Theaccessroutewouldpassnear[<0.5mi(0.8km)Jfourredfoxdencomplexes(ExhibitE,Vol.6B,Chap.3,Figs.E.3.80to81).Itwouldbelikelythattheheavyuseoftheaccessroadwouldmakethesesitesunusable.Tracy(1977)observedseveralfoxdenswithin330ft(100m)oftheDenaliParkroad.However,suchhabituationtotheaccessroadwouldbelesslikelyduetoheavyusageoftheroadduringconstructionandincreasedtrappingpressureiftheroadwereopentothepublic.Noraptorcliff-nestingandonlyonetree-nestingsiteislocatedalongtheproposedaccessroute.Iftheroutewerelocatedtoavoidtheonebaldeaglenestlocation,thesitewouldstillbesubjecttodisturbancefromtrafficactivity.TheApplicantproposestoshifttheroute0.5mi(0.8km)westof thenestinglocation.Thiswouldreducetheeffectsoftrafficbutwouldstillallowreadyhumanaccesstothesite.INCREASEDHUMANACCESSCurrently,theSusitnaprojectareaisaccessibleonlytoalimitednumberofpeople(seeAppendicesFandL).TheWatanasiteislocatedapproximately40mi(60km)southofthenearesthighway,theDenaliHighway(Fig.2-11).Accesstotheregionisprimarilybyairplane,althoughall-terrainvehiclescanaccesspartsoftheareaandboatscanfloatdowntheSusitnaRivertoVeeCanyonfromtheDenaliHighwayanduptherivertoDevilCanyon.Byallowingaccessforpersonalvehicles,theaccessroadtoWatanawouldopenupthemiddleSusitnaBasintoacon-siderablylargerpopulationthannowaccessesthebasin.TheSusitnaprojectwouldaffectpatternsofhumanaccessbyprovidinganaccessroadandbydirectlyincreasingthenumbersofpeopleinthebasin.Duringconstructionofdams,useoftheaccessroadwouldbelimited(totheextentpossible)toprojectpersonnelandotherauthorizedpersons.Forthe20-yearperiodofconstruction,approximately2,000personswouldberegularlyaccessingthebasin.Presenceofthetemporaryandpermanentvillageswouldbringabout1,500and200personsintothecenterofthebasin,respectively.Post-constructionuseoftheaccessroadcouldbeopenedtothepublic,and,thus,itcouldserveasaconduitforrecreationalusersofthebasin.Post-constructionrecreationaluseofthebasinisexpectedtobearound30,000user-daysperyearbeyondtheprojectedbaselinelevels(ExhibitE,Vol.8,Chap.7,TableE.7.13).TheApplicantestimatesthatconsumptiveuseswoulddoubleandnonconsumptiveusesquadrupleasaresultoftheproject.K-67Althoughallwildlifealongtheaccessroutemightbedisturbedbyhighwayactivities,theeffectstotheNelchinacaribouherdwouldbeofgreatestconcern.TheaccessroadwouldbisecttherangeoftheUpperSusitna-NenanasubherdwhichrangesfromCoalCreektotheParksHighway,southoftheNenanaRiver.Pitcher(1983)estimatedthat35%to50%ofthesubherdmoveswestwardintotheChulitnaMountainsforsummerandreturnstotheareaeastof theproposedaccessroadinthefall.Presenceoftheroadcouldaffectthesuccesswithwhichthesubherdcanutilizeitscurrentsummerrange.IfthemainherdshouldreturntowinteringnorthoftheSusitnaRiver,theaccessroadcouldalsoinfluenceseasonalmovementintohigherqualityrangefromthemainherdaswell.Therehavebeenseveralstudiesoftherelationsofcaribouandroadways(e.g.,Cameronetal.,1979;CameronandWhitten,1980;Jakimchuk,1980;Fancy,1983).Somehavefoundthatcaribouavoidareasofhumanactivityincludingroads,andexhibitareluctancetocrossthem.Fancy(1983)concludedthattheseresponseswereinconsequential,amountingtoonly10%to20%ofhisobservations.Incontrast,cow-calfpairstendedtoavoidhabitatadjoiningtheTrans-AlaskaPipelinehaulroad(Cameronetal.,1979;CameronandWhitten,1979).Cowswithcalvesappeartobemostsensitivetothepresenceofroadsandhumanactivity(Jakimchuk,1980).Althoughcaribouherdsdocoexistwithinroadnetworks(Jakimchuk1980),itisunlikelythattheseroadscarrytrafficatthelevelsthatwouldbeexpectedfortheWatanaaccessroadduringthepeakconstructionperiod.Becausetheaccessroadwouldextendbetweenthespring/winterandsummerrangesfor35%to50%oftheSusitna-Nenanasubherd,itislikelythatitwouldaffectcow-calfgroupings.Thiswouldhaveimplicationsforthesuccessofrecruitmentofyoungintothesubherdandhenceforthemaintenanceofthesubherdsize.Quantificationofthesepotentialaffectsisnotpossiblewiththecurrentdatabase.Presenceoftheaccessroadmightalsoleadtothedisturbanceofbrownbear,especiallyindenningareas.BrownbearhavebeenobservedatgreaternumbersawayfromtheDenaliParkRoadthanalongtheroad(Tracy,1977).MillerandBallard(1982b)reportedevidenceofshort-termreluctanceofbrownbeartocrosshighwaysduringlong-rangehomingmovementsoftransplantedindividuals.Avoidanceoftheroadwouldleadtoadecreaseinavailabilityofsomeforagealongtheroute.Itislikelythatthebrownbearwouldavoiddenningareasneartheproposedroute(ExhibitE,Vol.6A,Chap.3,p.E-3-484).Inaddition,winterconstructionmightcauseabandonmentofnearbydensandsubsequentmortality.Theaccessroutewouldpassnear[<0.5mi(0.8km)Jfourredfoxdencomplexes(ExhibitE,Vol.6B,Chap.3,Figs.E.3.80to81).Itwouldbelikelythattheheavyuseoftheaccessroadwouldmakethesesitesunusable.Tracy(1977)observedseveralfoxdenswithin330ft(100m)oftheDenaliParkroad.However,suchhabituationtotheaccessroadwouldbelesslikelyduetoheavyusageoftheroadduringconstructionandincreasedtrappingpressureiftheroadwereopentothepublic.Noraptorcliff-nestingandonlyonetree-nestingsiteislocatedalongtheproposedaccessroute.Iftheroutewerelocatedtoavoidtheonebaldeaglenestlocation,thesitewouldstillbesubjecttodisturbancefromtrafficactivity.TheApplicantproposestoshifttheroute0.5mi(0.8km)westof thenestinglocation.Thiswouldreducetheeffectsoftrafficbutwouldstillallowreadyhumanaccesstothesite.INCREASEDHUMANACCESSCurrently,theSusitnaprojectareaisaccessibleonlytoalimitednumberofpeople(seeAppendicesFandL).TheWatanasiteislocatedapproximately40mi(60km)southofthenearesthighway,theDenaliHighway(Fig.2-11).Accesstotheregionisprimarilybyairplane,althoughall-terrainvehiclescanaccesspartsoftheareaandboatscanfloatdowntheSusitnaRivertoVeeCanyonfromtheDenaliHighwayanduptherivertoDevilCanyon.Byallowingaccessforpersonalvehicles,theaccessroadtoWatanawouldopenupthemiddleSusitnaBasintoacon-siderablylargerpopulationthannowaccessesthebasin.TheSusitnaprojectwouldaffectpatternsofhumanaccessbyprovidinganaccessroadandbydirectlyincreasingthenumbersofpeopleinthebasin.Duringconstructionofdams,useoftheaccessroadwouldbelimited(totheextentpossible)toprojectpersonnelandotherauthorizedpersons.Forthe20-yearperiodofconstruction,approximately2,000personswouldberegularlyaccessingthebasin.Presenceofthetemporaryandpermanentvillageswouldbringabout1,500and200personsintothecenterofthebasin,respectively.Post-constructionuseoftheaccessroadcouldbeopenedtothepublic,and,thus,itcouldserveasaconduitforrecreationalusersofthebasin.Post-constructionrecreationaluseofthebasinisexpectedtobearound30,000user-daysperyearbeyondtheprojectedbaselinelevels(ExhibitE,Vol.8,Chap.7,TableE.7.13).TheApplicantestimatesthatconsumptiveuseswoulddoubleandnonconsumptiveusesquadrupleasaresultoftheproject.
K-68Increasedhumanpresence inthebasinwouldhavetwoprincipalimpacts:increasedpotentialfordisturbanceofwildlifeandincreasedhuntingpressure.Theeffectsofdisturbancetowildlifearedescribedinpreviousdiscussions.Increasedhumanpresenceinthebasinwouldexacerbatetheseeffects.Areasofhighhumanusewouldbeavoidedbymoresensitivewildlifesuchassheepandbrownbear.Increaseddisturbancecouldcausepopulationrangestoshiftfromhighertolowerqualityhabitatseffectivelyreducingbasinwidecarryingcapacity.AlthoughwildlifepopulationsdosuccessfullycoexistwithhumanusersoflandselsewhereinAlaska,thesepopula-tionsaregenerallysmallerthaninareaswherehumansarepresentlessfrequently.HuntingisamajorrecreationalactivityinSouthcentralAlaska(seeAppendixL).AmajorfactorlimitingthedistributionofhuntingintheSusitnabasinisaccessibility.Thus,huntingpressureismoreintense.ontheperipheryofthebasinwherethehighwaysprovideready,inexpensiveaccess.TheproposedaccessroadtoWatanawouldprovidethistypeofaccesstotheinteriorofthebasin.Huntingpressurewouldlikelyincreaseforwildlifepopulationsthatpreviouslywerenothuntedintensively.Increasedhuntingpressurewouldchieflyaffectthosepopulationsforwhichhuntingisnotregulatedbypermit.InGameManagementUnit13,onlycaribou,sheep,andsomemoosehuntingisregulatedbypermit(AlaskaDept.ofFishandGame,1983a).Huntingofothergamespeciesisregulatedbybaglimitandage/size/genderlimits.Forexample,bullmoosewithatleasta36-inch(91-cm)spreadinantlersorthreebrowtynesonatleastoneantler,canbetakenatarateofonemooseperseason.Othermoosemaybetakenbythoseholdingoneofalimitednumber(150in1983-1988)ofpermitsforsubsistenceusesonly.Increasedhuntingpressureinthecentralpartofthebasincouldleadtoincreasedmortalityandloweredpopulationsizes.Thiscouldaffectmoreperipheralpopulations,becauseforseveralspeciestheinteriorpopulationsmaysupplyrecruitstomoreheavilyhuntedperipheralpopula-tions.Wolfpopulationsmightbeparticularlyaffectedbecausethereisnolimitontakeofwolfduringhuntingseasons(AlaskaDept.ofFishandGame,1983b).Improvedaccesstotheprojectareamightalsoincreasetrappingpressureonfurbearersinthebasin.Currenttrappingintensityislow,butinexpensiveandreadyaccessmightinducetrapperstoincreaseactivitiesinthebasin.Currently,trappingisregulatedbybaglimit(AlaskaDept.ofFishandGame,1983b).Fox,beaver,andmartencouldbeaffectedsubstantiallybyextensivetrappinginthebasin.RegulationofhuntingandtrappingintheSusitnaBasinistheresponsibilityoftheAlaskaDepartmentofFishandGame(1983a,b).Limitsontakearesetinordertomaintainpopulationsizeofwildlifeatspecificlevelsinkeepingwithmanagementgoals.Ifincreasedhuntingandtrappingpressuredepressedpopulationsbelowtheselevels,thedepartmentwouldlikelytakestepstofurtherlimittakeinthebasin.Thiswouldnotdirectlyaffectillegaltake,butpoachingwouldlikelybeincludedinthedecision-makingprocessofsettingnewlimits.Ifproperregulationwereimplemented,asithasinthepast,theeffectsuponwildlifeofincreasedhuntingpressureshouldbeameliorated.PATTERNSOFHUMANUSEDevelopmentofrecreationalfacilitiesintheprojectareawoulddramaticallyincreasethenumbersofpersonsusingthebasinfornonconsumptiveuses.Withnoaccessorfaci1ities,nonconsumptiveuserswouldberare.Easieraccessandlessrusticconditionswouldlikelyenticenonconsumptiveusersintothebasin,particularlyasdemandforrecreationalfacilitiesinsurroundingareasincreases.Increasedhumanusagewouldresultinsomedisturbanceeffectsuponlocalwildlife,particularlyinthevicinityofdevelopedfacilities.Consumptiveusesinthebasinwouldbeexpectedtoincreaseuptotwofoldasaresultoftheproject.Wildlifepopulationsinthebasininteriorwouldbesubjecttohigherharvestpressureandincreasedtake.Incombinationwithincreasedmortalityanddecreasedproductivityduetootherprojectimpacts,increasedharvestingwouldlikelyresultinwildlifepopulationsstabiliz-ingalower,perhapsmuchlower,sizesthancurrentlyexist.Themakeupofthebasin'suserpopulationwouldprobablyalsochange.Theaverageperuser-daydollarvaluewouldprobablydeclineinthebasinbecauseofthepresenceofalessexpensiveaccessalternativeandaninfluxofusetypesthatcarrylowerdollarvalues.Theproportionofhighdollarvalueout-of-stateuserswouldlikelydeclinewhereasin-stateuserproportionwouldlikelyincrease.Theabsolutenumberofout-of-stateusersmightalsodeclineinthebasinbecausetheseusersmightnotwishtopayhighvalueforthehunting/wildernessexperienceinanareaofhigherusercompetitionandmorehumandevelopment.Thedevelopmentoftheareawouldmarkedlyalterthequalityofexperienceforusersinthebasin.Theconsequencesofalteringthatcharacterdependuponindividualusertastes.Comparedtoconditionsintheabsenceoftheproject,post-projectuserswouldprobablyencountermorehumanactivity,sufferalowertakepereffortorsuccessrate,andperhapsviewfewergame.Formanyusers,theseconditionswouldlowerthequalityofthehunting/wildernessexperience.K-68Increasedhumanpresence inthebasinwouldhavetwoprincipalimpacts:increasedpotentialfordisturbanceofwildlifeandincreasedhuntingpressure.Theeffectsofdisturbancetowildlifearedescribedinpreviousdiscussions.Increasedhumanpresenceinthebasinwouldexacerbatetheseeffects.Areasofhighhumanusewouldbeavoidedbymoresensitivewildlifesuchassheepandbrownbear.Increaseddisturbancecouldcausepopulationrangestoshiftfromhighertolowerqualityhabitatseffectivelyreducingbasinwidecarryingcapacity.AlthoughwildlifepopulationsdosuccessfullycoexistwithhumanusersoflandselsewhereinAlaska,thesepopula-tionsaregenerallysmallerthaninareaswherehumansarepresentlessfrequently.HuntingisamajorrecreationalactivityinSouthcentralAlaska(seeAppendixL).AmajorfactorlimitingthedistributionofhuntingintheSusitnabasinisaccessibility.Thus,huntingpressureismoreintense.ontheperipheryofthebasinwherethehighwaysprovideready,inexpensiveaccess.TheproposedaccessroadtoWatanawouldprovidethistypeofaccesstotheinteriorofthebasin.Huntingpressurewouldlikelyincreaseforwildlifepopulationsthatpreviouslywerenothuntedintensively.Increasedhuntingpressurewouldchieflyaffectthosepopulationsforwhichhuntingisnotregulatedbypermit.InGameManagementUnit13,onlycaribou,sheep,andsomemoosehuntingisregulatedbypermit(AlaskaDept.ofFishandGame,1983a).Huntingofothergamespeciesisregulatedbybaglimitandage/size/genderlimits.Forexample,bullmoosewithatleasta36-inch(91-cm)spreadinantlersorthreebrowtynesonatleastoneantler,canbetakenatarateofonemooseperseason.Othermoosemaybetakenbythoseholdingoneofalimitednumber(150in1983-1988)ofpermitsforsubsistenceusesonly.Increasedhuntingpressureinthecentralpartofthebasincouldleadtoincreasedmortalityandloweredpopulationsizes.Thiscouldaffectmoreperipheralpopulations,becauseforseveralspeciestheinteriorpopulationsmaysupplyrecruitstomoreheavilyhuntedperipheralpopula-tions.Wolfpopulationsmightbeparticularlyaffectedbecausethereisnolimitontakeofwolfduringhuntingseasons(AlaskaDept.ofFishandGame,1983b).Improvedaccesstotheprojectareamightalsoincreasetrappingpressureonfurbearersinthebasin.Currenttrappingintensityislow,butinexpensiveandreadyaccessmightinducetrapperstoincreaseactivitiesinthebasin.Currently,trappingisregulatedbybaglimit(AlaskaDept.ofFishandGame,1983b).Fox,beaver,andmartencouldbeaffectedsubstantiallybyextensivetrappinginthebasin.RegulationofhuntingandtrappingintheSusitnaBasinistheresponsibilityoftheAlaskaDepartmentofFishandGame(1983a,b).Limitsontakearesetinordertomaintainpopulationsizeofwildlifeatspecificlevelsinkeepingwithmanagementgoals.Ifincreasedhuntingandtrappingpressuredepressedpopulationsbelowtheselevels,thedepartmentwouldlikelytakestepstofurtherlimittakeinthebasin.Thiswouldnotdirectlyaffectillegaltake,butpoachingwouldlikelybeincludedinthedecision-makingprocessofsettingnewlimits.Ifproperregulationwereimplemented,asithasinthepast,theeffectsuponwildlifeofincreasedhuntingpressureshouldbeameliorated.PATTERNSOFHUMANUSEDevelopmentofrecreationalfacilitiesintheprojectareawoulddramaticallyincreasethenumbersofpersonsusingthebasinfornonconsumptiveuses.Withnoaccessorfaci1ities,nonconsumptiveuserswouldberare.Easieraccessandlessrusticconditionswouldlikelyenticenonconsumptiveusersintothebasin,particularlyasdemandforrecreationalfacilitiesinsurroundingareasincreases.Increasedhumanusagewouldresultinsomedisturbanceeffectsuponlocalwildlife,particularlyinthevicinityofdevelopedfacilities.Consumptiveusesinthebasinwouldbeexpectedtoincreaseuptotwofoldasaresultoftheproject.Wildlifepopulationsinthebasininteriorwouldbesubjecttohigherharvestpressureandincreasedtake.Incombinationwithincreasedmortalityanddecreasedproductivityduetootherprojectimpacts,increasedharvestingwouldlikelyresultinwildlifepopulationsstabiliz-ingalower,perhapsmuchlower,sizesthancurrentlyexist.Themakeupofthebasin'suserpopulationwouldprobablyalsochange.Theaverageperuser-daydollarvaluewouldprobablydeclineinthebasinbecauseofthepresenceofalessexpensiveaccessalternativeandaninfluxofusetypesthatcarrylowerdollarvalues.Theproportionofhighdollarvalueout-of-stateuserswouldlikelydeclinewhereasin-stateuserproportionwouldlikelyincrease.Theabsolutenumberofout-of-stateusersmightalsodeclineinthebasinbecausetheseusersmightnotwishtopayhighvalueforthehunting/wildernessexperienceinanareaofhigherusercompetitionandmorehumandevelopment.Thedevelopmentoftheareawouldmarkedlyalterthequalityofexperienceforusersinthebasin.Theconsequencesofalteringthatcharacterdependuponindividualusertastes.Comparedtoconditionsintheabsenceoftheproject,post-projectuserswouldprobablyencountermorehumanactivity,sufferalowertakepereffortorsuccessrate,andperhapsviewfewergame.Formanyusers,theseconditionswouldlowerthequalityofthehunting/wildernessexperience.
K-69Thus,userswouldbemorelikelytobethosewhoprefernottoexpendlargesumsofmoneytouseareasoflowerhumandevelopmentandpossiblyhigherharvestsuccessl'ate.Subsistenceusel'Swouldbethegroupmostseverelyimpacted.Decreasedwildlifeproductivityandincreasedcompetitionfortheharvestwouldresultindecreasedsuccessrates.Decreasedsuccessrateswouldbedetrimentaltotheextentthatfurthereffortcouldnotbeexpendedtomaintainanabsoluterateoftakeperseasonandtotheextenttheuserwasdependentuponsubsistenceforhisorherownwell-being.Unfortunately,thiscannotbequantifiedatthistime.HumanuseandwildlifemanagementpolicyandstrategyfortheupperandmiddleSusitnaBasinwouldlikelyneedtobereviewedandrevisedinordertomeetgoalsforwildlifeconservation,subsistencemaintenance,andotheruses.K.3.1.3.2Watana-to-DevilCanyonRouteThisaccessroadwouldhaveimpactsofthesamenatureastheroutebetweenDenaliHighwayandtheI-/atanasite.Additional,butasmalleramount,ofhabitatwouldbelostoraltered(App.J,TableJ-26).HumanaccesswouldbecomemorereadilyextendedtotheDevilCanyonsite(Fig.2-11),withconcomitantextensionofeffectstowildlifefromdisturbance,disruptionofmovements,andincreasedhunting.Becausefewerindividualsusethisarea,theimpactstomooseandcaribouwouldbelessthanexpectedfortheaccessroutetoWatana.However,theroutebetweenWatanaandDevilCanyonwouldcrossprimebrownbearhabitat.Theroutewouldpassseveralfoxdenningcomplexesthatmightbeimpacted.Agoldeneaglenestlocationandaravennestlocationarewithin0.3mi(0.4km)oftheproposedroute.Thebridgewouldbeabout0.5mi(0.8km)downstreamfromagoldeneaglenestlocation.Activityalongtheroadmightmaketheselocationsunsuitablefornesting.K.3.1.3.3DevilCanyon-to-GoldCreekRailAccessEffectsfromtherailaccessroutetoDevilCanyonwouldgenerallyparallelthosedescribedpreviously.Accesswouldbemorelimitedbecausevehicletrafficwouldnotusethisaccessroute.Railaccessismoreamenabletolimitingthenumberofusers.Therailroutewouldpasswithin0.3mi(0.5km)ofabaldeaglenestlocatedacrosstheSusitnaRiver.Constructionandoperationcouldmakethissiteatleasttemporarilyunsuitable.ThisroutemightincreaseaccesstotheStephanLakeandPrairieCreekarea,southoftheDevilCanyonsite(Fig.2-11).ThepresenceoftheconstructioncampatDevilCanyonwouldcertainlyincreasethenumbersofpeoplevisitingthePrairieCreekarea.Thisareaisamajorcongregat-ingpointforbrownbearduringsalmonspawning(MillerandBallard,1982b;Miller,1983).Alargenumberofbearfromsomedistance[30mi(50km)JtraveltoPrairieCreek,suggestingthatitisanimportantfeedingareafortheregionalbrownbearpopulation.Increaseddisturbancefromhumanpresencecouldresultinareluctanceofbeartousethearea,effectivelydenyingthemahigh-qualityfoodsource.Thiscouldleadtoareductioninthesizeoftheregionalpopulationofbrownbear.K.3.1.4PowerTransmissionFacilitiesK.3.1.4.1Dams-to-GoldCreekSegmentCONSTRUCTIONEffectsofconstructionoftheproposedtransmissionlinesandSUbstationswouldfallintotwocategories:(1)lossandalterationofhabitatwithconsequentlossoralterationofwildlifecarryingcapacities,and(2)disturbanceofindividualanimalsduetonoisegenerationandhumanactivity.BetweenthedarnsandGoldCreek,approximately510acres(200halofforestwouldhavetobecleared(App.J,TableJ-28).Thisamountstoabout30%oftheright-of-way;mostoftheforestedlandoccursinthe8mi(13km)fromDevilCanyontoGoldCreek(Fig.2-14).Manystudieshaveexaminedtheimpactsofclear-cuttingandright-of-waymanagementonwildlife(e.g.,Arner,1977;AsplundhEnvironmentalServices,1977;CarvellandJohnston,1978;GalvinandCupit,1979).Ingeneral,right-of-wayclearingwouldresultinthepresenceofwildlifewhopreferopenhabitatwithfewlargetrees.Thesewildlifespecieswouldbethosecharac-teristicofearlystagesofplantcommunitysuccession,suchasarefoundinabandonedfarmfieldsorareasofpost-fireregeneration.Maintenanceofaclear-cutstripinanareaofextensiveforestswouldofferamorediversehabitatthanpureforeststands,supportingagreaterdiversityofwildlife(t~ayer.1976;Johnsonetal.,1979;Geibert,1980;Cavanaughetal.,1981;Kroodsma,1982).Theherbaceousandshrubbygrowthwouldalsoprovidefoodforanumberofwildlifespecies(KreftingandHansen,1969;Kufeld,1977;Cavanaughetal.,1981).Rights-of-wayhavebeenassessedashavinghighvalueforusebywildlife,particularlywhereK-69Thus,userswouldbemorelikelytobethosewhoprefernottoexpendlargesumsofmoneytouseareasoflowerhumandevelopmentandpossiblyhigherharvestsuccessl'ate.Subsistenceusel'Swouldbethegroupmostseverelyimpacted.Decreasedwildlifeproductivityandincreasedcompetitionfortheharvestwouldresultindecreasedsuccessrates.Decreasedsuccessrateswouldbedetrimentaltotheextentthatfurthereffortcouldnotbeexpendedtomaintainanabsoluterateoftakeperseasonandtotheextenttheuserwasdependentuponsubsistenceforhisorherownwell-being.Unfortunately,thiscannotbequantifiedatthistime.HumanuseandwildlifemanagementpolicyandstrategyfortheupperandmiddleSusitnaBasinwouldlikelyneedtobereviewedandrevisedinordertomeetgoalsforwildlifeconservation,subsistencemaintenance,andotheruses.K.3.1.3.2Watana-to-DevilCanyonRouteThisaccessroadwouldhaveimpactsofthesamenatureastheroutebetweenDenaliHighwayandtheI-/atanasite.Additional,butasmalleramount,ofhabitatwouldbelostoraltered(App.J,TableJ-26).HumanaccesswouldbecomemorereadilyextendedtotheDevilCanyonsite(Fig.2-11),withconcomitantextensionofeffectstowildlifefromdisturbance,disruptionofmovements,andincreasedhunting.Becausefewerindividualsusethisarea,theimpactstomooseandcaribouwouldbelessthanexpectedfortheaccessroutetoWatana.However,theroutebetweenWatanaandDevilCanyonwouldcrossprimebrownbearhabitat.Theroutewouldpassseveralfoxdenningcomplexesthatmightbeimpacted.Agoldeneaglenestlocationandaravennestlocationarewithin0.3mi(0.4km)oftheproposedroute.Thebridgewouldbeabout0.5mi(0.8km)downstreamfromagoldeneaglenestlocation.Activityalongtheroadmightmaketheselocationsunsuitablefornesting.K.3.1.3.3DevilCanyon-to-GoldCreekRailAccessEffectsfromtherailaccessroutetoDevilCanyonwouldgenerallyparallelthosedescribedpreviously.Accesswouldbemorelimitedbecausevehicletrafficwouldnotusethisaccessroute.Railaccessismoreamenabletolimitingthenumberofusers.Therailroutewouldpasswithin0.3mi(0.5km)ofabaldeaglenestlocatedacrosstheSusitnaRiver.Constructionandoperationcouldmakethissiteatleasttemporarilyunsuitable.ThisroutemightincreaseaccesstotheStephanLakeandPrairieCreekarea,southoftheDevilCanyonsite(Fig.2-11).ThepresenceoftheconstructioncampatDevilCanyonwouldcertainlyincreasethenumbersofpeoplevisitingthePrairieCreekarea.Thisareaisamajorcongregat-ingpointforbrownbearduringsalmonspawning(MillerandBallard,1982b;Miller,1983).Alargenumberofbearfromsomedistance[30mi(50km)JtraveltoPrairieCreek,suggestingthatitisanimportantfeedingareafortheregionalbrownbearpopulation.Increaseddisturbancefromhumanpresencecouldresultinareluctanceofbeartousethearea,effectivelydenyingthemahigh-qualityfoodsource.Thiscouldleadtoareductioninthesizeoftheregionalpopulationofbrownbear.K.3.1.4PowerTransmissionFacilitiesK.3.1.4.1Dams-to-GoldCreekSegmentCONSTRUCTIONEffectsofconstructionoftheproposedtransmissionlinesandsubstationswouldfallintotwocategories:(1)lossandalterationofhabitatwithconsequentlossoralterationofwildlifecarryingcapacities,and(2)disturbanceofindividualanimalsduetonoisegenerationandhumanactivity.BetweenthedarnsandGoldCreek,approximately510acres(200halofforestwouldhavetobecleared(App.J,TableJ-28).Thisamountstoabout30%oftheright-of-way;mostoftheforestedlandoccursinthe8mi(13km)fromDevilCanyontoGoldCreek(Fig.2-14).Manystudieshaveexaminedtheimpactsofclear-cuttingandright-of-waymanagementonwildlife(e.g.,Arner,1977;AsplundhEnvironmentalServices,1977;CarvellandJohnston,1978;GalvinandCupit,1979).Ingeneral,right-of-wayclearingwouldresultinthepresenceofwildlifewhopreferopenhabitatwithfewlargetrees.Thesewildlifespecieswouldbethosecharac-teristicofearlystagesofplantcommunitysuccession,suchasarefoundinabandonedfarmfieldsorareasofpost-fireregeneration.Maintenanceofaclear-cutstripinanareaofextensiveforestswouldofferamorediversehabitatthanpureforeststands,supportingagreaterdiversityofwildlife(t~ayer.1976;Johnsonetal.,1979;Geibert,1980;Cavanaughetal.,1981;Kroodsma,1982).Theherbaceousandshrubbygrowthwouldalsoprovidefoodforanumberofwildlifespecies(KreftingandHansen,1969;Kufeld,1977;Cavanaughetal.,1981).Rights-of-wayhavebeenassessedashavinghighvalueforusebywildlife,particularlywhere
K-70theycrossextensivewoodlands(t~ayer,1976;AsplundhEnvironmentalServices,1977;BrambleandByrnes,1979;EatonandGates,1981).Thetwobiggamespeciesthatmostlikelywouldbeaffectedaremooseandblackbear.MoosearemoderatelyabundantbelowtheWatanadamsiteanduselowlandforestduringwinterandspring(Figs.K-2throughK-4).Moosemakeuseofearlysuccessionalhabitatasamajorsourceofforage(Peeketal.,1976;Peek,1974;LaReschetal.,1974;Coady,1982).Clear-cuttinghasbeenshowntoenhancetheavailabilityofhigh-qualityforageformooseinbothwinterandspring(Telford,1978;BrusnykandGilbert,1983).Interspersionofclear-cutareaswithforestenhancesforageavailabilitywhileretainingneededwintercover.Clearingoftheforestforther"ight-of-waywouldlikelyenhancethelocalavailabilityofforage.HolffandZasada(1979)haveestimatedthatearlysuccessionalstages(1toISyearsafterdisturbance)canprovideSto20timestheavailablemooseforagefoundinolderforest.Enhancedforageavailabilityalongtheright-of-waycouldcompensateforafraction(10%-40%)oftheexpectedlossofwintercanyingcapacityduetotheimpoundments(Tab1esK-6andK-22).HOIoJever,\'/0lffandZasada(1979)foundthatactualuseindisturbedareasrangedfrom0toSO%ofestimatedcarryingcapacityandaveragedonlyabout20%.Thus,althoughincreasedacreageofhigh-qualityforagemightbeavailablealongtheright-of-way,moosemightnottakeadvantageofit.BlackbearmakeextensiveuseofthelowlandspruceforestsalongtheSusitnaRiver.Duringthespring,post-emergentblackbearrelyheavilyonnewplantgrowthtorecoverynutritionalbalanceafteroverwintering.Earlysuccessionalstagesofplantcommunitiesareimportantsourcesofspringplantforageforblackbear,andtheclear-cutright-of-waywouldprovideasourceofhigh-qua1ityforage(Lindzeyandrv1es1ow,1977;Pe1ton,1982).However,asviithmoose,blackbearmightnotusetherights-of-\oJay.Creationofsegmentsofearlysuccessionalplantcommunitiesinforestedhabitatwouldalsoallowenhancementofpopulationsofsmallmammalsandbirdscharacteristicofopenhabitatandecotonalhabitatattheexpenseofspeciescharacteristicofforestedhabitat.Forexample,arcticgroundsquirrel,tundravole,andmeadowvolepopulationsarelikelytoexpandintotheclearedright-of-way(Kesseletal.,1982).Redsquirrel,marten,andotherforestspecieswouldbenegativelyaffectedbytheclearingoftheright-of-way.TheproposedlinestoGoldCreekpassthroughmooseoverwinteringareas(Fig.K-S).Duringwinter,theopennessofaclearedright-of-waywouldresultinmoreextremetemperatures,greaterwindsandconvectiveheatloss,andgreateramountsofdriftingsnowthanfoundinforestedhabitat(HerringtonandHeisler,1973).Lowertemperaturesandhigherwindswouldimposegreaterthermoregulatorystressesonmooseoccupyingtheright-of-way.Deepersnowdriftswouldincreasethemetaboliccostsoftravelandwouldcoverpotentiallyimportantsourcesofwinterbrowse.Thus,eventhoughtheright-of-waymightcontainhigh-qualityforage,heavysnowmightlimitwinteruseoftheclearingbymoose.Severalstudieshaveshownthatdeeravoidopenrights-of-wayinthewinterindirectproportiontothewidthoftheclearing(Hydro-Quebec,1981;Doucetetal.,1981;\>Jilley,1982).Moreover,themovementofmoosehasbeenshowntoberestrictedbydeepsnow(Coady,1974,1982;Telfer,1978).Theproposedbroadrights-of-way[e.g.,300toS10ft(90toISOm)Jcouldresultinrestrictionsofmoosemovementduringwintersofheavysnow,limitingtheaccessibilityofsuitableforageforoverwinteringmoose.Althoughtheprimaryimpactstowildlifewouldresultfromalterationofhabitatintheright-of-way,thereareseveralotherpotentialimpactsthatcouldresultfromtheconstructionofthetransmissionline.Theprincipalsuchimpactwouldbedisturbanceoflocalwildlife.Raptorsandwaterbirdsareparticularlysensitivetohumandisturbance(StalmasterandNewman,1978;Swensen,1979;EnoJin,1980;LiddleandScorgie,1980;Burger,1981).Onegoldeneagle,andtworavennestinglocationsareknowntobewithin1mi(1.6km)oftheproposedright-of-way(Kesseletal.,1982).Althoughthesewouldbesusceptibletoimpactsfromtransmissionlineconstruc-tion,itislikelythatnearbyDevilCanyondamandaccessrouteconstructionwouldalreadyhaveimpactedtheselocations.Inaddition,abaldeaglenestinglocationoccurswithin0.3mi(O.Skm)oftheproposedroutenearthemouthoftheIndianRiver,andagoshawk(historical)andagyrfalconlocationarewithin1mi(1.6km)oftheproposedroute,eastoftheproposedDevilCanyonsite(Kesseletal.,1982).Approximatelyfourblackbeardensoccurwithin1mi(1.6km)oftherouteneartheWatanadamsite.Duringlineconstructionthesesitesmightbeaffectedandwildlifediscouragedfromusingthem.Onthewhole,disturbanceimpactswouldbeexpectedtobesimilartothosefromconstructionoftheaccessroutesfromWatanatoGoldCreekwhichapproximatelyparalleltheproposedtransmissionlineroute.OPERATIONDuringoperation,theright-of-waythroughforestwouldbemaintainedinanearlysuccessionalstage,l'etainingimpactsofforestclearingthroughoutthelifeofthefacility.Inadditiontothepresenceandmaintenanceofaclearedright-of-wayinforesthabitat,therewouldbeotherpotentialimpactsduringoperation.Thesewouldincludecollisionsofbirdswithtowersorconductors,e1ectrocution,ozonegeneration,audib1enoisegeneration,andelectric/magneticfieldeffects(seeAppendixD).K-70theycrossextensivewoodlands(t~ayer,1976;AsplundhEnvironmentalServices,1977;BrambleandByrnes,1979;EatonandGates,1981).Thetwobiggamespeciesthatmostlikelywouldbeaffectedaremooseandblackbear.MoosearemoderatelyabundantbelowtheWatanadamsiteanduselowlandforestduringwinterandspring(Figs.K-2throughK-4).Moosemakeuseofearlysuccessionalhabitatasamajorsourceofforage(Peeketal.,1976;Peek,1974;LaReschetal.,1974;Coady,1982).Clear-cuttinghasbeenshowntoenhancetheavailabilityofhigh-qualityforageformooseinbothwinterandspring(Telford,1978;BrusnykandGilbert,1983).Interspersionofclear-cutareaswithforestenhancesforageavailabilitywhileretainingneededwintercover.Clearingoftheforestforther"ight-of-waywouldlikelyenhancethelocalavailabilityofforage.HolffandZasada(1979)haveestimatedthatearlysuccessionalstages(1toISyearsafterdisturbance)canprovideSto20timestheavailablemooseforagefoundinolderforest.Enhancedforageavailabilityalongtheright-of-waycouldcompensateforafraction(10%-40%)oftheexpectedlossofwintercanyingcapacityduetotheimpoundments(Tab1esK-6andK-22).HOIoJever,\'/0lffandZasada(1979)foundthatactualuseindisturbedareasrangedfrom0toSO%ofestimatedcarryingcapacityandaveragedonlyabout20%.Thus,althoughincreasedacreageofhigh-qualityforagemightbeavailablealongtheright-of-way,moosemightnottakeadvantageofit.BlackbearmakeextensiveuseofthelowlandspruceforestsalongtheSusitnaRiver.Duringthespring,post-emergentblackbearrelyheavilyonnewplantgrowthtorecoverynutritionalbalanceafteroverwintering.Earlysuccessionalstagesofplantcommunitiesareimportantsourcesofspringplantforageforblackbear,andtheclear-cutright-of-waywouldprovideasourceofhigh-qua1ityforage(Lindzeyandrv1es1ow,1977;Pe1ton,1982).However,asviithmoose,blackbearmightnotusetherights-of-\oJay.Creationofsegmentsofearlysuccessionalplantcommunitiesinforestedhabitatwouldalsoallowenhancementofpopulationsofsmallmammalsandbirdscharacteristicofopenhabitatandecotonalhabitatattheexpenseofspeciescharacteristicofforestedhabitat.Forexample,arcticgroundsquirrel,tundravole,andmeadowvolepopulationsarelikelytoexpandintotheclearedright-of-way(Kesseletal.,1982).Redsquirrel,marten,andotherforestspecieswouldbenegativelyaffectedbytheclearingoftheright-of-way.TheproposedlinestoGoldCreekpassthroughmooseoverwinteringareas(Fig.K-S).Duringwinter,theopennessofaclearedright-of-waywouldresultinmoreextremetemperatures,greaterwindsandconvectiveheatloss,andgreateramountsofdriftingsnowthanfoundinforestedhabitat(HerringtonandHeisler,1973).Lowertemperaturesandhigherwindswouldimposegreaterthermoregulatorystressesonmooseoccupyingtheright-of-way.Deepersnowdriftswouldincreasethemetaboliccostsoftravelandwouldcoverpotentiallyimportantsourcesofwinterbrowse.Thus,eventhoughtheright-of-waymightcontainhigh-qualityforage,heavysnowmightlimitwinteruseoftheclearingbymoose.Severalstudieshaveshownthatdeeravoidopenrights-of-wayinthewinterindirectproportiontothewidthoftheclearing(Hydro-Quebec,1981;Doucetetal.,1981;\>Jilley,1982).Moreover,themovementofmoosehasbeenshowntoberestrictedbydeepsnow(Coady,1974,1982;Telfer,1978).Theproposedbroadrights-of-way[e.g.,300toS10ft(90toISOm)Jcouldresultinrestrictionsofmoosemovementduringwintersofheavysnow,limitingtheaccessibilityofsuitableforageforoverwinteringmoose.Althoughtheprimaryimpactstowildlifewouldresultfromalterationofhabitatintheright-of-way,thereareseveralotherpotentialimpactsthatcouldresultfromtheconstructionofthetransmissionline.Theprincipalsuchimpactwouldbedisturbanceoflocalwildlife.Raptorsandwaterbirdsareparticularlysensitivetohumandisturbance(StalmasterandNewman,1978;Swensen,1979;EnoJin,1980;LiddleandScorgie,1980;Burger,1981).Onegoldeneagle,andtworavennestinglocationsareknowntobewithin1mi(1.6km)oftheproposedright-of-way(Kesseletal.,1982).Althoughthesewouldbesusceptibletoimpactsfromtransmissionlineconstruc-tion,itislikelythatnearbyDevilCanyondamandaccessrouteconstructionwouldalreadyhaveimpactedtheselocations.Inaddition,abaldeaglenestinglocationoccurswithin0.3mi(O.Skm)oftheproposedroutenearthemouthoftheIndianRiver,andagoshawk(historical)andagyrfalconlocationarewithin1mi(1.6km)oftheproposedroute,eastoftheproposedDevilCanyonsite(Kesseletal.,1982).Approximatelyfourblackbeardensoccurwithin1mi(1.6km)oftherouteneartheWatanadamsite.Duringlineconstructionthesesitesmightbeaffectedandwildlifediscouragedfromusingthem.Onthewhole,disturbanceimpactswouldbeexpectedtobesimilartothosefromconstructionoftheaccessroutesfromWatanatoGoldCreekwhichapproximatelyparalleltheproposedtransmissionlineroute.OPERATIONDuringoperation,theright-of-waythroughforestwouldbemaintainedinanearlysuccessionalstage,l'etainingimpactsofforestclearingthroughoutthelifeofthefacility.Inadditiontothepresenceandmaintenanceofaclearedright-of-wayinforesthabitat,therewouldbeotherpotentialimpactsduringoperation.Thesewouldincludecollisionsofbirdswithtowersorconductors,e1ectrocution,ozonegeneration,audib1enoisegeneration,andelectric/magneticfieldeffects(seeAppendixD).
K-71Thereareseveraldocumentedcasesofbirdmortalityfromco11isionwithconductorsortowerstructures(Averyetal.,1978;U.S.FishandWildlifeService,1978).Themajorityofthespeciesinvolvedinsuchincidentsaremigratorywaterfowl.Theproposedtransmissionlinewouldnotbetallenough[ca.100ft(30m)Jtoposeathreattoanybirdsinmigratoryflight.Ingeneral,migratoryflightoccursataltitudesinexcessof100m(300ft)abovegroundsurface(U.S.FishandWildlifeService,1978;Lincoln,1979).However,waterfowllandingortakingflightcouldstrikecomponentsofalinepassingoverorimmediatelyadjacenttoanopenbodyofwater.Theproposedlinewouldpasswithin2,500ft(760m)ofseveralsmalllakesandwouldcrossseveraldrainagesandwetlandsthatmightbeusedbywaterfowl,particularlynearDevilCanyonandnearGoldCreek.Becausethisrepresentsonlyaminutefractionoftheavailablehabitatofthistype,itisunlikelythatthethreatofcollisionswouldaffectmorethanaminorfractionofwaterfowlinthelocale.Inaddition,asnotedearlier,alargewaterfowlpopulationisnotfoundinthisarea(Kesseletal.,1982).Ingeneral,collisionswithpower1inesdocompriseasma11fraction«1%)ofnon-huntingmorta1ity(StoutandCornwe11,1976;Banks,1979).Electrocutioncouldoccurwhenananimalmakescontactwithtwoenergizedconductorsorwithoneenergizedconductorandashieldwireorgroundedpartofthesupporttower.Historically,thishasbeenaproblemwithlargeraptors(suchaseagles)andsmalllines(Benson,1982).Thecliffsalongtheriverprovideexcellentnestinghabitatforgoldeneagle(Kesseletal.,1982).Itislikelythatraptorscouldusetransmissionstructuresforhuntingperches.However,minimumclearancesontheproposed345-kilovolt(kV)line[>10ft(3m)Jwouldensurethattherewasnopossibilityofelectrocution.TheApplicantalsowoulddesignthe34-kVlinefromCantwelltoWatanainsuchawaythatraptorelectrocutionwouldbeunlikely(ExhibitE,Vol.6A,Chap.3,p.E-3-539).Perceptiblesparkdischargesfromwildlifetogroundunderthelinearealsounlikelybecausewildlifearenormallywellgrounded.Operationoflinesoperatingatgreaterthan345kVisknowntogenerateozonewhenthelinesareincorona(ElectricPowerResearchInst.,1982).Maximumshort-termconcentrationsofozoneatground1eve1havebeenmeasuredatabout20-40microgramspercubicmeter(pg/m3),or10-20partsperbillion(ppb),abovebackgroundlevelsduringfoulweatheratvoltagesinexcessof1,000kV.Thisisabout40%ofthelevelofdetectabilityand10%oftheminimumconcentra-tionrequiredfortoxiceffectsduringshort-termexposureofanimals(ClelandandKingsbury,1977;GoldsmithandFriberg,1977;CoffinandStokinger,1977).Therefore,itisunlikelythatthetl'ansmissionlinewouldgeneratesufficientozonetobedetrimentaltowildlifeinthevicinityoftheline.Duringfoulweather,audiblenoiselevelscouldapproacha24-hr,day-nightweightedaverageof60dB(A)beneathoperatinglines(ElectricPowerResearchInstitute,1982).Wildernessback-gl'oundnoiserangesfrom20to30dB(A),dependinguponweatherconditions;thereforenoisecouldbeaudibleabovebackground(U.S.EnvironmentalProtectionAgency,1974b).Thereareinsufficientdatatoquantitativelyrelateaudiblenoiseemissionstoimpactstowildlifealongtheright-of-way.Deerandelkhavebeenobservedusingtransmissionlinerights-of-waydespitethepresenceofaudiblenoise(LeeandGriffith,1978).Wildlifeuseoftransmissionlinerights-of-wayunderavarietyofweatherconditionsimpliesthataudiblenoisehasanegligibleimpactuponwildlifeactivities.Thus,itappearsthatthelowlevelofaudiblenoiseemittedbytheproposedtransmissionlinewouldbeunlikelytodeterwildlifefromusinghabitatwithinorinthevicinityoftheright-of-way.However,Klein(1971)citesevidencethatsuggestscariboumightbereluctanttocrosstheright-of-waybeneathoperatingtransmissionlines.Magneticfieldsfromtheproposedlinewouldnotbeexpectedtoinfluenceanimalsinthevicinityofthelinebecausefieldstrengthdissipatesrapidlywithdistancefromtheline,andfieldlevelswouldbewellbelow(byaboutafactorof10-S)levelsknowntoelicitevenequivocalresponsesinlaboratoryanimals(Bracken,1979).Maximumelectricfieldunder345-kVAClinescouldbeexpectedtobeabout5kilovoltspermeter(kV/m)(ElectricPowerResearchInst.,1982).Biologicalresponsestofieldsof5kV/morlesshavebeenobservedonlyafterseveraldaysofcontinuousexposure.Nodeleteriouseffectshavebeenreportedforfieldsthislow.Becauseoftheanimals'mobility,suchconditionswouldbeimprobableforfree-ranginganimalsusingtheright-of-wayundertheproposedline.Inaddition,maximumfieldstrengthswouldonlybefoundimmediatelyundertheconductorsandwoulddissipaterapidlywithdistance.Beyondtheedgeoftheright-of-way,fieldstrengthswouldbebelowlevelsknowntoelicitresponses.K.3.1.4.2Healy-to-WillowSegmentTheHealy-to-WillowoftheSusitnapowertransmissionsystemwouldoccupyaright-of-waycoveringabout4,600acres(1,500ha)foradistanceofabout170mi(270km)adjacenttotheexistingAnchorage-Fairbankstransmissionintertie(Fig.2-7).Thelinewouldcrossadiversityofhabitatrangingfromopentundra(ca.15%oftheright-of-way)toclosedforest(ca.50%oftheright-of-way)(App.J,TableJ-30).Approximately2,300acres(920ha)offorestwouldneedtobeclearedalongthisportionofthetransmissionline.K-71Thereareseveraldocumentedcasesofbirdmortalityfromco11isionwithconductorsortowerstructures(Averyetal.,1978;U.S.FishandWildlifeService,1978).Themajorityofthespeciesinvolvedinsuchincidentsaremigratorywaterfowl.Theproposedtransmissionlinewouldnotbetallenough[ca.100ft(30m)Jtoposeathreattoanybirdsinmigratoryflight.Ingeneral,migratoryflightoccursataltitudesinexcessof100m(300ft)abovegroundsurface(U.S.FishandWildlifeService,1978;Lincoln,1979).However,waterfowllandingortakingflightcouldstrikecomponentsofalinepassingoverorimmediatelyadjacenttoanopenbodyofwater.Theproposedlinewouldpasswithin2,500ft(760m)ofseveralsmalllakesandwouldcrossseveraldrainagesandwetlandsthatmightbeusedbywaterfowl,particularlynearDevilCanyonandnearGoldCreek.Becausethisrepresentsonlyaminutefractionoftheavailablehabitatofthistype,itisunlikelythatthethreatofcollisionswouldaffectmorethanaminorfractionofwaterfowlinthelocale.Inaddition,asnotedearlier,alargewaterfowlpopulationisnotfoundinthisarea(Kesseletal.,1982).Ingeneral,collisionswithpower1inesdocompriseasma11fraction«1%)ofnon-huntingmorta1ity(StoutandCornwe11,1976;Banks,1979).Electrocutioncouldoccurwhenananimalmakescontactwithtwoenergizedconductorsorwithoneenergizedconductorandashieldwireorgroundedpartofthesupporttower.Historically,thishasbeenaproblemwithlargeraptors(suchaseagles)andsmalllines(Benson,1982).Thecliffsalongtheriverprovideexcellentnestinghabitatforgoldeneagle(Kesseletal.,1982).Itislikelythatraptorscouldusetransmissionstructuresforhuntingperches.However,minimumclearancesontheproposed345-kilovolt(kV)line[>10ft(3m)Jwouldensurethattherewasnopossibilityofelectrocution.TheApplicantalsowoulddesignthe34-kVlinefromCantwelltoWatanainsuchawaythatraptorelectrocutionwouldbeunlikely(ExhibitE,Vol.6A,Chap.3,p.E-3-539).Perceptiblesparkdischargesfromwildlifetogroundunderthelinearealsounlikelybecausewildlifearenormallywellgrounded.Operationoflinesoperatingatgreaterthan345kVisknowntogenerateozonewhenthelinesareincorona(ElectricPowerResearchInst.,1982).Maximumshort-termconcentrationsofozoneatground1eve1havebeenmeasuredatabout20-40microgramspercubicmeter(pg/m3),or10-20partsperbillion(ppb),abovebackgroundlevelsduringfoulweatheratvoltagesinexcessof1,000kV.Thisisabout40%ofthelevelofdetectabilityand10%oftheminimumconcentra-tionrequiredfortoxiceffectsduringshort-termexposureofanimals(ClelandandKingsbury,1977;GoldsmithandFriberg,1977;CoffinandStokinger,1977).Therefore,itisunlikelythatthetl'ansmissionlinewouldgeneratesufficientozonetobedetrimentaltowildlifeinthevicinityoftheline.Duringfoulweather,audiblenoiselevelscouldapproacha24-hr,day-nightweightedaverageof60dB(A)beneathoperatinglines(ElectricPowerResearchInstitute,1982).Wildernessback-gl'oundnoiserangesfrom20to30dB(A),dependinguponweatherconditions;thereforenoisecouldbeaudibleabovebackground(U.S.EnvironmentalProtectionAgency,1974b).Thereareinsufficientdatatoquantitativelyrelateaudiblenoiseemissionstoimpactstowildlifealongtheright-of-way.Deerandelkhavebeenobservedusingtransmissionlinerights-of-waydespitethepresenceofaudiblenoise(LeeandGriffith,1978).Wildlifeuseoftransmissionlinerights-of-wayunderavarietyofweatherconditionsimpliesthataudiblenoisehasanegligibleimpactuponwildlifeactivities.Thus,itappearsthatthelowlevelofaudiblenoiseemittedbytheproposedtransmissionlinewouldbeunlikelytodeterwildlifefromusinghabitatwithinorinthevicinityoftheright-of-way.However,Klein(1971)citesevidencethatsuggestscariboumightbereluctanttocrosstheright-of-waybeneathoperatingtransmissionlines.Magneticfieldsfromtheproposedlinewouldnotbeexpectedtoinfluenceanimalsinthevicinityofthelinebecausefieldstrengthdissipatesrapidlywithdistancefromtheline,andfieldlevelswouldbewellbelow(byaboutafactorof10-S)levelsknowntoelicitevenequivocalresponsesinlaboratoryanimals(Bracken,1979).Maximumelectricfieldunder345-kVAClinescouldbeexpectedtobeabout5kilovoltspermeter(kV/m)(ElectricPowerResearchInst.,1982).Biologicalresponsestofieldsof5kV/morlesshavebeenobservedonlyafterseveraldaysofcontinuousexposure.Nodeleteriouseffectshavebeenreportedforfieldsthislow.Becauseoftheanimals'mobility,suchconditionswouldbeimprobableforfree-ranginganimalsusingtheright-of-wayundertheproposedline.Inaddition,maximumfieldstrengthswouldonlybefoundimmediatelyundertheconductorsandwoulddissipaterapidlywithdistance.Beyondtheedgeoftheright-of-way,fieldstrengthswouldbebelowlevelsknowntoelicitresponses.K.3.1.4.2Healy-to-WillowSegmentTheHealy-to-WillowoftheSusitnapowertransmissionsystemwouldoccupyaright-of-waycoveringabout4,600acres(1,500ha)foradistanceofabout170mi(270km)adjacenttotheexistingAnchorage-Fairbankstransmissionintertie(Fig.2-7).Thelinewouldcrossadiversityofhabitatrangingfromopentundra(ca.15%oftheright-of-way)toclosedforest(ca.50%oftheright-of-way)(App.J,TableJ-30).Approximately2,300acres(920ha)offorestwouldneedtobeclearedalongthisportionofthetransmissionline.
K-72AswiththedamstoGoldCreeksegment,theprincipalimpactofconstructionofthelinewouldbealterationofforesthabitatintoearly-successional,herbaceous/shrubhabitat.Moosewouldbethemostcommonbiggamespeciesaffected(CommonwealthAssoc.,1982).Modafferi(1982)estimatedmoosedensitiesof3.5to10permi2(1to4perkm2)intheSusitnaRiverdrainagebelowGoldCreek.~100senumbersdeclinetothenorth.Clearingvlouldlikelyenhancemooseforage,althoughmoosemightnotextensive1ybrowseintheseareas(Wo1ffandZasada,1979).SouthofGoldCreek,moosemoveacrosstheproposedrouteofthetransmissionlinetowinterandspringconcentrationareasalongtheSusitnaandothermajorwaterways(Figs.K-18andK-19).Theright-of-waywouldbelikelytoformabarriertomovementduringwinterswhendeepsnowcollectedinclearingsthroughforestedhabitat(seeCoady,1974,1982).Duringthesewinters,high-qualityforageintheright-of-vlaywouldprobablybeinaccessible.Caribouarenotabundantalongthissegmentoftheproposedtransmissionline,chieflyduetothepaucityoftundrahabitat(CommonwealthAssoc.,1982).Becauseclearingoftundrahabitatwouldnotbenecessary,littlecaribouhabitatwouldbealteredalongtheright-of-way.Cariboumightavoidsomesuitablehabitatduringtheconstructionperiod.Brownandblackbearmightalsoavoidtheright-of-wayinresponsetothenoiseandhumanactivity.TheactivitiesduringwinterconstructionmightalsoinducebeartoabandondensthatmightbelocatedneartheY'ight-of-way.Afterconstruction,theclearedright-of-waywouldprovidehigh-qualityforagecharacteristicofearly-successionalstages.TheproposedtransmissionlinewouldnotextendthroughthehabitatoftheDall'ssheeppopula-tioninthehighcountrybetweenHealyandCantwell.However,useofhelicoptersduringconstruc-tionandmaintenancecouldcausesheeptoavoidhabitatneartheright-of-way(CommonwealthAssoc.,1982).Sheepcanbequitesensitivetohumanpresenceandactivity(Geist,1980).ImpactstosheepwouldbemostpronouncedifpresenceoftheSusitnatransmissionsystemrequiredsubstantiallymoremaintenanceactivity,especiallyoverflights,thanwouldberequiredfortheexistingIntertiealone.Somebeavermightbeadverselyimpactedwhereclearingwasrequirednearoccupieddrainages.Clearingofmaturespruceforestwouldadverselyaffectmarten,althoughmartendoexploitsomeopenhabitats(Stricklandetal.,1982).Ingeneral,otherfurbearersandsmallmammalswouldbeadverselyaffectedtotheextentthattheyaredependentuponforesthabitatthatwouldrequireclearingandmaintenanceinanopenstate.Clearingoftreeswouldresultinsomelossofpotentialnestinglocationsforbaldeagle,particularlysouthofGoldCreek.Threebaldeaglenestinglocationareknowntooccurwithin1mi(1.6km)oftheproposedroute(Commoll\vealthAssoc.,1982).Althoughthesenestswouldbeavoidedbytheright-of-way,theystillcouldbesusceptibletodisturbance.GoldeneaglenestinghabitatnorthofCantwellcouldalsobeaffectedbydisturbancefromconstructionandmaintenanceactivities.Clearedportionsoftheright-of-waymightprovideadditionalforagingareaandhuntingperchesforraptorsthathuntinopenhabitat.Waterbirds,suchasducks,swans,andshorebirds,aremorecommoninthesouthernportionsoftheproposedroute,northofWillow(CommonwealthAssoc.,1982).Collisionswithconductorsandsupportstructureswouldbelikelybutwouldnotcontributesubstantially(0.5%-0.6%)tomortality(StoutandCornwell,1976;Averyetal.,1978;U.S.Fishandv/ildlifeService,1978;Banks,1979).Localizedmortalitycouldbehigher.TrumpeterswansestablishnestsintheareainMayandremainuntilAugust(CommonwealthAssoc.,1982).Twotrumpeterswannestsarelocatedalongtheroute,northofWi11ow.Hanseneta1.(1971)notedthatduringnestingandrearingstages,trumpeterswansareverysensitivetohumandisturbance.Constructionandmaintenanceactivitiesduringthesummercoulddisruptnestingandrearingoftrumpeterswanslocatednearthetransmissionlineroute.ImpactsfromtheSusitnalinemightnotincreasedisturbancesubstantiallyabovelevelsthatwouldbeincurredduetotheexistingIntertie.IncreasedhumanaccessibilityalongthetransmissionlinefromHealytoWillowshouldnotposeamajorthreatforwildlife.TheroutewouldparalleltheParksHighwayandAlaskaRailroadthroughmuchofitslength.ThepresenceoftheIntertiewouldalsohaveprovidedexistingaccessforhumanuseofthearea.Theadditionalaccessopportunitiesthatwouldresultfromtheproposedlinewouldbeminor.K.3.1.4.3Healy-to-FairbanksSegmentThe100-mi(160-km)Healy-to-FairbankssegmentoftheSusitnatransmissionlinewouldtraverseabout3,500acres(1,400ha)ofright-of-way(Fig.2-15).About70%,or2,600acres(1,000ha),oftheroutewouldpassthroughforestedhabitat(App.J,TableJ-32).Shrublandandtundrahabitatswouldcompriseabout15%and10%,respectively,oftheright-of-way.Thus,theprincipalimpactfromthissegmentofthelinewouldbelossofforesthabitatandmaintenanceofopen,early-successionalplantcommunitiesina300-ft(90-m)stripthroughforestedareas.K-72AswiththedamstoGoldCreeksegment,theprincipalimpactofconstructionofthelinewouldbealterationofforesthabitatintoearly-successional,herbaceous/shrubhabitat.Moosewouldbethemostcommonbiggamespeciesaffected(CommonwealthAssoc.,1982).Modafferi(1982)estimatedmoosedensitiesof3.5to10permi2(1to4perkm2)intheSusitnaRiverdrainagebelowGoldCreek.~100senumbersdeclinetothenorth.Clearingvlouldlikelyenhancemooseforage,althoughmoosemightnotextensive1ybrowseintheseareas(Wo1ffandZasada,1979).SouthofGoldCreek,moosemoveacrosstheproposedrouteofthetransmissionlinetowinterandspringconcentrationareasalongtheSusitnaandothermajorwaterways(Figs.K-18andK-19).Theright-of-waywouldbelikelytoformabarriertomovementduringwinterswhendeepsnowcollectedinclearingsthroughforestedhabitat(seeCoady,1974,1982).Duringthesewinters,high-qualityforageintheright-of-vlaywouldprobablybeinaccessible.Caribouarenotabundantalongthissegmentoftheproposedtransmissionline,chieflyduetothepaucityoftundrahabitat(CommonwealthAssoc.,1982).Becauseclearingoftundrahabitatwouldnotbenecessary,littlecaribouhabitatwouldbealteredalongtheright-of-way.Cariboumightavoidsomesuitablehabitatduringtheconstructionperiod.Brownandblackbearmightalsoavoidtheright-of-wayinresponsetothenoiseandhumanactivity.TheactivitiesduringwinterconstructionmightalsoinducebeartoabandondensthatmightbelocatedneartheY'ight-of-way.Afterconstruction,theclearedright-of-waywouldprovidehigh-qualityforagecharacteristicofearly-successionalstages.TheproposedtransmissionlinewouldnotextendthroughthehabitatoftheDall'ssheeppopula-tioninthehighcountrybetweenHealyandCantwell.However,useofhelicoptersduringconstruc-tionandmaintenancecouldcausesheeptoavoidhabitatneartheright-of-way(CommonwealthAssoc.,1982).Sheepcanbequitesensitivetohumanpresenceandactivity(Geist,1980).ImpactstosheepwouldbemostpronouncedifpresenceoftheSusitnatransmissionsystemrequiredsubstantiallymoremaintenanceactivity,especiallyoverflights,thanwouldberequiredfortheexistingIntertiealone.Somebeavermightbeadverselyimpactedwhereclearingwasrequirednearoccupieddrainages.Clearingofmaturespruceforestwouldadverselyaffectmarten,althoughmartendoexploitsomeopenhabitats(Stricklandetal.,1982).Ingeneral,otherfurbearersandsmallmammalswouldbeadverselyaffectedtotheextentthattheyaredependentuponforesthabitatthatwouldrequireclearingandmaintenanceinanopenstate.Clearingoftreeswouldresultinsomelossofpotentialnestinglocationsforbaldeagle,particularlysouthofGoldCreek.Threebaldeaglenestinglocationareknowntooccurwithin1mi(1.6km)oftheproposedroute(Commoll\vealthAssoc.,1982).Althoughthesenestswouldbeavoidedbytheright-of-way,theystillcouldbesusceptibletodisturbance.GoldeneaglenestinghabitatnorthofCantwellcouldalsobeaffectedbydisturbancefromconstructionandmaintenanceactivities.Clearedportionsoftheright-of-waymightprovideadditionalforagingareaandhuntingperchesforraptorsthathuntinopenhabitat.Waterbirds,suchasducks,swans,andshorebirds,aremorecommoninthesouthernportionsoftheproposedroute,northofWillow(CommonwealthAssoc.,1982).Collisionswithconductorsandsupportstructureswouldbelikelybutwouldnotcontributesubstantially(0.5%-0.6%)tomortality(StoutandCornwell,1976;Averyetal.,1978;U.S.Fishandv/ildlifeService,1978;Banks,1979).Localizedmortalitycouldbehigher.TrumpeterswansestablishnestsintheareainMayandremainuntilAugust(CommonwealthAssoc.,1982).Twotrumpeterswannestsarelocatedalongtheroute,northofWi11ow.Hanseneta1.(1971)notedthatduringnestingandrearingstages,trumpeterswansareverysensitivetohumandisturbance.Constructionandmaintenanceactivitiesduringthesummercoulddisruptnestingandrearingoftrumpeterswanslocatednearthetransmissionlineroute.ImpactsfromtheSusitnalinemightnotincreasedisturbancesubstantiallyabovelevelsthatwouldbeincurredduetotheexistingIntertie.IncreasedhumanaccessibilityalongthetransmissionlinefromHealytoWillowshouldnotposeamajorthreatforwildlife.TheroutewouldparalleltheParksHighwayandAlaskaRailroadthroughmuchofitslength.ThepresenceoftheIntertiewouldalsohaveprovidedexistingaccessforhumanuseofthearea.Theadditionalaccessopportunitiesthatwouldresultfromtheproposedlinewouldbeminor.K.3.1.4.3Healy-to-FairbanksSegmentThe100-mi(160-km)Healy-to-FairbankssegmentoftheSusitnatransmissionlinewouldtraverseabout3,500acres(1,400ha)ofright-of-way(Fig.2-15).About70%,or2,600acres(1,000ha),oftheroutewouldpassthroughforestedhabitat(App.J,TableJ-32).Shrublandandtundrahabitatswouldcompriseabout15%and10%,respectively,oftheright-of-way.Thus,theprincipalimpactfromthissegmentofthelinewouldbelossofforesthabitatandmaintenanceofopen,early-successionalplantcommunitiesina300-ft(90-m)stripthroughforestedareas.
K-73MooseandblackbeararetheprincipalbiggamespeciesalongtheproposedroutefromHealy(Selkregg,1977;AlaskaDept.ofFishandGame,1973,1978).t~aintenanceoftheclearedright-of-waycouldprovidehigh-qualitybrowseformoose(WolffandZasada,1979),aswellasforblackbear.Moosedensitiesalongtheproposedrouterangefrom0.2to1/mi2(0.06to0.4/km2)(Gasawayetal.,1983).Mooseweremoreabundantalongthesouthernportionsofthesegment;however,mostforestclearingwouldoccurnorthofNenana(AppendixJ).Thus,moosemaynottakeadvantageoftheincreasedavailabilityofforageintheright-of-way.NorthofNenana,blackbearwouldpredominate,whileinthemoreopenhabitatnorthofHealybrownbeararemorecommon.Winterconstructionactivitiescoulddisturbdenningbearadjacenttotheright-of-way.Ifbearabandondens,thiscouldleadtoinneasedmortalityofsomebearduetotherelativepaucityofsuitablefoodduringwinter.Nodensareknownwithin1mi(1.6km)oftheproposedroute,althoughintensivesurveyshavenotbeencarriedout.CaribouwinterintheopenhabitatsnorthofHealy(Selkregg,1977).Becauseminimalclearingwouldberequiredinnon-forestedhabitat,littlecaribouhabitatwouldbelostinright-of-waypreparation.Constructionandmaintenanceactivitiesmightcausecariboutoavoidtheright-of-way,atleastwhenhumanswerep\'esent.Additionally,cariboumightbereluctanttousetheright-of-wayduringoperationoftheline,principallybecauseofthenoisethatwouldbegenerated(Klein,1971).However,itisunlikelythattheright-of-waywouldimposeamajorbarriertocariboumovement.ThetransmissionlinewouldpassanareaoflowwaterfowldensitiesasitparallelstheNenanaRiverbetweenHealyandNenana(Selkregg,1977).NorthofNenanatheforestedhabitatalongtheproposedright-of-wayisunsuitableforwaterfowl.BetweenHealyandNenana,sixtrumpeterswannestingareasareknowntooccurwithin2mi(3.2km)oftheproposedroute(AcresAmerican,1982b).Thesenestscouldbesubjecttodisruptionduringsu~nerconstructionandmaintenancealongtheright-of-way(Hansenetal.,1971).NorthofNenana,theproposedroutepasseswithin1to5mi(2to8km)ofanumberofperegrinefalconhistoricalnestinglocations(U.S.Fishand\4ildlifeService,1983c;AlaskaPowerAuthority,1984).Althoughtheselocationshavenotbeenusedrecently,inthepastperegrinehaveoccupiedthesesitesduringthesummerseason.Theproposedroutewouldnotpassthroughanyperegrinenestinglocation,norwoulditpassthroughhigh-qualityhabitat.However,theroutewouldpasswithin1to5mi(2to8km)ofhabitathighlysuitedforperegrinenestingalongthenorthernsideoftheNenanaRiver(AlaskaPowerAuthority,1982).Potentially,noiseandhumanactivityalongtheright-of-wayduringnestingseasoncoulddiscourageperegrinesfromusingtheseloca-tionsinthefuture(U.S.FishandWildlifeService,1983c).Toprecludethis,stepswouldbetakentoavoiddisturbingactivitiesduringthenestingseasonifperegrineswerepresent.BecausethetransmissionlineroutewouldroughlyparalleltheroutesoftheexistingParksHighway,AlaskaRailroad,andHealy-to-Fairbankspowerline,itisunlikelythattheproposedright-of-waywouldincreaseaccessintoareasnotcurrentlyaccessible.Thus,thepl'oblemsofincreasedaccesswouldbeunlikelytooccurinthisarea.K.3.1.4.4Willow-to-AnchorageSegmentSouthfromWillow,theproposedtransmissionlinewouldtraverseabout30mi(50km)ofright-of-waycovering2,000acres(810ha)ofwildlifehabitat(Fig.2-14).About65%,or1,300acres(530ha),oftheright-of-waywouldbeforested(App.J,TableJ-34).About25%oftheright-of-waywouldextendthroughwetsedge-grasswetlands.ThehabitatistypicalofthelowerSusitnadrainagebasin,withextensiveforestedwetlandsaswellasherbaceouswetlands.Mooserangeextensivelythroughthearea(Figs.K-17toK-19).Modaferri(1982,1383)estimatedwintermoosedensitiesofabout10permi2(4perkm2)alongthelowerendoftheSusitnaRiver.Dispersaleastwardfromtheareaofwinterconcentrationwouldbringmoosetotheright-of-way.Theclearedright-of-waywouldhavehigherlevelsofbrowseavailablethannearbyforest,andmoosemightusetheright-of-wayforthisreason(WolffandZasada,1979).Blackbearcouldalsomakeuseoftheearly-successionalvegetationintheclearedright-of-way.ThewetlandssouthofWillowprovidehabitatforalargenumberofwaterfowl(Selkregg,1974;Sellers,1979;U.S.Dept.ofAgriculture,1981).TheproposedlinewouldpasswestoftheNancyLakeStateRecreationAreaandnortheastoftheSusitnaFlatsStateGameRefuge.TheSusitnaFlatsRefugehasthehighestwaterfowlharvestrateofthethreerefugesinthesubbasinbelowWillow(U.S.Dept.ofAgriculture,1981).CollisionsofwaterfowlandthetransmissionlinearemostlikelyalongthesegmentsouthofWillow.Evenhere,however,mortalityrateswouldbeonlyasmallfractionofthemortalityduetoothercauses(StoutandCornwell,1976;Banks,1979).K-73MooseandblackbeararetheprincipalbiggamespeciesalongtheproposedroutefromHealy(Selkregg,1977;AlaskaDept.ofFishandGame,1973,1978).t~aintenanceoftheclearedright-of-waycouldprovidehigh-qualitybrowseformoose(WolffandZasada,1979),aswellasforblackbear.Moosedensitiesalongtheproposedrouterangefrom0.2to1/mi2(0.06to0.4/km2)(Gasawayetal.,1983).Mooseweremoreabundantalongthesouthernportionsofthesegment;however,mostforestclearingwouldoccurnorthofNenana(AppendixJ).Thus,moosemaynottakeadvantageoftheincreasedavailabilityofforageintheright-of-way.NorthofNenana,blackbearwouldpredominate,whileinthemoreopenhabitatnorthofHealybrownbeararemorecommon.Winterconstructionactivitiescoulddisturbdenningbearadjacenttotheright-of-way.Ifbearabandondens,thiscouldleadtoinneasedmortalityofsomebearduetotherelativepaucityofsuitablefoodduringwinter.Nodensareknownwithin1mi(1.6km)oftheproposedroute,althoughintensivesurveyshavenotbeencarriedout.CaribouwinterintheopenhabitatsnorthofHealy(Selkregg,1977).Becauseminimalclearingwouldberequiredinnon-forestedhabitat,littlecaribouhabitatwouldbelostinright-of-waypreparation.Constructionandmaintenanceactivitiesmightcausecariboutoavoidtheright-of-way,atleastwhenhumanswerep\'esent.Additionally,cariboumightbereluctanttousetheright-of-wayduringoperationoftheline,principallybecauseofthenoisethatwouldbegenerated(Klein,1971).However,itisunlikelythattheright-of-waywouldimposeamajorbarriertocariboumovement.ThetransmissionlinewouldpassanareaoflowwaterfowldensitiesasitparallelstheNenanaRiverbetweenHealyandNenana(Selkregg,1977).NorthofNenanatheforestedhabitatalongtheproposedright-of-wayisunsuitableforwaterfowl.BetweenHealyandNenana,sixtrumpeterswannestingareasareknowntooccurwithin2mi(3.2km)oftheproposedroute(AcresAmerican,1982b).Thesenestscouldbesubjecttodisruptionduringsu~nerconstructionandmaintenancealongtheright-of-way(Hansenetal.,1971).NorthofNenana,theproposedroutepasseswithin1to5mi(2to8km)ofanumberofperegrinefalconhistoricalnestinglocations(U.S.Fishand\4ildlifeService,1983c;AlaskaPowerAuthority,1984).Althoughtheselocationshavenotbeenusedrecently,inthepastperegrinehaveoccupiedthesesitesduringthesummerseason.Theproposedroutewouldnotpassthroughanyperegrinenestinglocation,norwoulditpassthroughhigh-qualityhabitat.However,theroutewouldpasswithin1to5mi(2to8km)ofhabitathighlysuitedforperegrinenestingalongthenorthernsideoftheNenanaRiver(AlaskaPowerAuthority,1982).Potentially,noiseandhumanactivityalongtheright-of-wayduringnestingseasoncoulddiscourageperegrinesfromusingtheseloca-tionsinthefuture(U.S.FishandWildlifeService,1983c).Toprecludethis,stepswouldbetakentoavoiddisturbingactivitiesduringthenestingseasonifperegrineswerepresent.BecausethetransmissionlineroutewouldroughlyparalleltheroutesoftheexistingParksHighway,AlaskaRailroad,andHealy-to-Fairbankspowerline,itisunlikelythattheproposedright-of-waywouldincreaseaccessintoareasnotcurrentlyaccessible.Thus,thepl'oblemsofincreasedaccesswouldbeunlikelytooccurinthisarea.K.3.1.4.4Willow-to-AnchorageSegmentSouthfromWillow,theproposedtransmissionlinewouldtraverseabout30mi(50km)ofright-of-waycovering2,000acres(810ha)ofwildlifehabitat(Fig.2-14).About65%,or1,300acres(530ha),oftheright-of-waywouldbeforested(App.J,TableJ-34).About25%oftheright-of-waywouldextendthroughwetsedge-grasswetlands.ThehabitatistypicalofthelowerSusitnadrainagebasin,withextensiveforestedwetlandsaswellasherbaceouswetlands.Mooserangeextensivelythroughthearea(Figs.K-17toK-19).Modaferri(1982,1383)estimatedwintermoosedensitiesofabout10permi2(4perkm2)alongthelowerendoftheSusitnaRiver.Dispersaleastwardfromtheareaofwinterconcentrationwouldbringmoosetotheright-of-way.Theclearedright-of-waywouldhavehigherlevelsofbrowseavailablethannearbyforest,andmoosemightusetheright-of-wayforthisreason(WolffandZasada,1979).Blackbearcouldalsomakeuseoftheearly-successionalvegetationintheclearedright-of-way.ThewetlandssouthofWillowprovidehabitatforalargenumberofwaterfowl(Selkregg,1974;Sellers,1979;U.S.Dept.ofAgriculture,1981).TheproposedlinewouldpasswestoftheNancyLakeStateRecreationAreaandnortheastoftheSusitnaFlatsStateGameRefuge.TheSusitnaFlatsRefugehasthehighestwaterfowlharvestrateofthethreerefugesinthesubbasinbelowWillow(U.S.Dept.ofAgriculture,1981).CollisionsofwaterfowlandthetransmissionlinearemostlikelyalongthesegmentsouthofWillow.Evenhere,however,mortalityrateswouldbeonlyasmallfractionofthemortalityduetoothercauses(StoutandCornwell,1976;Banks,1979).
K-74Clearingoftheright-of-waywouldundoubtedlyremovesomenestinghabitatforthebaldeagle.However,theclearingof910acres(360ha)offorestrepresentsonlyabout0.2%oftheforestinthebasinsouthoftheKashwitnaRiver(U.S.Dept.ofAgriculture,1981).Thus,thelinewouldhavelittleeffectuponbaldeaglenestinginthisarea.SouthofWillowtheproposedright-of-waywoulddivergefromtheprincipalaccessroutesoftheregion.Theright-of-waycouldincreasetheaccessibilityoftheareatogroundvehicles.ThiscouldresultinincreasedhuntingpressuresuponwaterfowlintheSusitnaFlatsarea.Manage-mentandharvestplansoftheAlaskaDepartmentofFishandGamemighthavetobealteredtoaccountforthisincreaseinhu~tingpressure.K.3.2SusitnaDevelopmentAlternativesK.3.2.1AlternativeDamLocationsandDesignsUseofalternativedesignsforthedamsandrelatedfacilitieswouldresultinessentiallythesameimpactstowildlifeasdiscussedabovefortheproposedproject(Sec.K.3.1).Thisisprincipallybecausethemajorimpactswouldbeduetoimpoundmentfillingandcontinuingpresenceofareservoir.Thechiefimpactsofalternativedesignswouldresultfromhumanpresenceandactivityandpermanentortemporarylossofhabitat.Relocationofsomeancillaryfacilitiesmightalter'thetypeofhabitataffected,andalterationinfaci1itysizewouldchangethequantityofhabitataffected.However,thesechangeswouldnotlikelycauseonlysignificantalterationofthemagnitudeofthetotalaffectedhabitatbecausedams,spillways,andancillaryfacilitiescompriselessthan5%oftheareathatwouldbeimpactedbyconstructionofthedams.RelocationoffacilitiesmightalterthepatternofhumandisturbanceintheprojectHowever,thechangewouldnotbesubstantialbecausefacilitiescouldnotbemovedadistancefromtheirpr'oposedlocationwithoutreducingtheirutilitytotheproject.disturbanceimpactswouldbeatthesamelevelasdiscussedpreviously.area.greatThus,Constructionofthe~IatanaIalternativewouldlowerthemaximumreservoirelevationbehindtheWatanadamtoabout2,100ft(640m)MSL.Hence,theareaofinundationwouldbereducedtoabout28,300acres(11,400ha)(\~akefield,1983)ofwhichabout85%wouldbeexpectedtobevegetatedhabitat.Thequantitiesofeachhabitattypethatwouldbelostwouldbeproportion-atetothosethatwouldbeexpectedtobelostfortheproposeddam.However.lowlandforestswouldlikelyfromalargerproportionofthelosthabitatbecauseofthelowerelevationofmaximuminundation.Impactsofa~JatanaIalternativewouldbesimilartothosedescribedinSectionK.3.1.1;however,themagnitudeofinundationwouldbereducedabout20%.Thesamewildlifepopulationsasdiscussedpreviouslywouldbeimpacted.Mooseandblackbearwouldbetheprincipalwildlifespeciesaffectedbya\~atanaIalternative.Estimatedwintercarryingcapacityfortheequiva-lentofapproximately400moosewouldbelosttoinundationbehindaWatanaIconfiguration.Ontheorderof6%ofthesuitablehabitatforblackbearand40%oftheknowndenscouldbelosttoaWatanaIdevelopment.TheJayCreekminerallickwouldstillbeinundated,butalargerproportionofthelickwouldbeavailableforsheepthanundertheproposedplan.TheWatanawolfpackwouldstillbeaffectedbylossofthecentralportionofitshomerange.OnelessbaldeaglenestinglocationwouldbefloodedundertheWatanaIconfigurationthanundertheproposed.Impactstowildlifemovementwouldbereducedfromtheproposedprojectbecauseofthe4to5mi(6to8km)reductioninreservoirlengthundertheWatanaIconfiguration.BecausethesmallerWatanaIdamwouldrequirelessvolumeoffillmaterial,thisalternativewouldrequirelessextensiveuseoftheborrO\oJareasthantheproposedproject.Thus,temporaryhabitatlosswouldbereduced.Impactstosomewildlifeusingtheborrowareasmightbeavoidedbyimplementationofthisalternative.TheshorterconstructionperiodforthesmallerdamwouldalsoreducethedurationofdisturbinghumanactivityincomparisontotheproposedWatanadeveIopment.DownstreamimpactsofimplementingtheWatanaIalternativewouldbesimilartothosediscussedpreviously(Sec.K.3.1).Alterationofflowregimeswouldaltersuccessionalpatternsofriverinevegetation,andice-freewaterscouldpreventaccesstomoosecalvinghabitatonriverislands.Impactstothebearfisheryandpotentialenhancementofbeaverhabitatwouldalsoresultfromalterationofthedownstreamflowregime.Themagnitudeoftheseimpactswouldbedirectlydependentuponthedegreetowhichflowpatternswerealteredfromnaturalconditions.ThisalterationmightbelessundertheWatanaIalternativethanundertheproposedplan.ImplementationofeitheraModifiedHighDevilCanyonalternativeoraReregulatingdamalterna-tiveinlieuoftheDevilCanyonproposalwouldaffectthesamewildlifepopulationsdiscussedinSectionK.3.1.2.Becausetheimpoundmentswouldbesmallerforthealternatives,lesshabitatwouldbelostthanwouldbeexpectedfortheproposedDevilCanyondevelopment.Approximately15%or55%lesshabitatwouldbeinundatedthroughimplementationoftheModifiedHighDevilK-74Clearingoftheright-of-waywouldundoubtedlyremovesomenestinghabitatforthebaldeagle.However,theclearingof910acres(360ha)offorestrepresentsonlyabout0.2%oftheforestinthebasinsouthoftheKashwitnaRiver(U.S.Dept.ofAgriculture,1981).Thus,thelinewouldhavelittleeffectuponbaldeaglenestinginthisarea.SouthofWillowtheproposedright-of-waywoulddivergefromtheprincipalaccessroutesoftheregion.Theright-of-waycouldincreasetheaccessibilityoftheareatogroundvehicles.ThiscouldresultinincreasedhuntingpressuresuponwaterfowlintheSusitnaFlatsarea.Manage-mentandharvestplansoftheAlaskaDepartmentofFishandGamemighthavetobealteredtoaccountforthisincreaseinhu~tingpressure.K.3.2SusitnaDevelopmentAlternativesK.3.2.1AlternativeDamLocationsandDesignsUseofalternativedesignsforthedamsandrelatedfacilitieswouldresultinessentiallythesameimpactstowildlifeasdiscussedabovefortheproposedproject(Sec.K.3.1).Thisisprincipallybecausethemajorimpactswouldbeduetoimpoundmentfillingandcontinuingpresenceofareservoir.Thechiefimpactsofalternativedesignswouldresultfromhumanpresenceandactivityandpermanentortemporarylossofhabitat.Relocationofsomeancillaryfacilitiesmightalter'thetypeofhabitataffected,andalterationinfaci1itysizewouldchangethequantityofhabitataffected.However,thesechangeswouldnotlikelycauseonlysignificantalterationofthemagnitudeofthetotalaffectedhabitatbecausedams,spillways,andancillaryfacilitiescompriselessthan5%oftheareathatwouldbeimpactedbyconstructionofthedams.RelocationoffacilitiesmightalterthepatternofhumandisturbanceintheprojectHowever,thechangewouldnotbesubstantialbecausefacilitiescouldnotbemovedadistancefromtheirpr'oposedlocationwithoutreducingtheirutilitytotheproject.disturbanceimpactswouldbeatthesamelevelasdiscussedpreviously.area.greatThus,Constructionofthe~IatanaIalternativewouldlowerthemaximumreservoirelevationbehindtheWatanadamtoabout2,100ft(640m)MSL.Hence,theareaofinundationwouldbereducedtoabout28,300acres(11,400ha)(\~akefield,1983)ofwhichabout85%wouldbeexpectedtobevegetatedhabitat.Thequantitiesofeachhabitattypethatwouldbelostwouldbeproportion-atetothosethatwouldbeexpectedtobelostfortheproposeddam.However.lowlandforestswouldlikelyfromalargerproportionofthelosthabitatbecauseofthelowerelevationofmaximuminundation.Impactsofa~JatanaIalternativewouldbesimilartothosedescribedinSectionK.3.1.1;however,themagnitudeofinundationwouldbereducedabout20%.Thesamewildlifepopulationsasdiscussedpreviouslywouldbeimpacted.Mooseandblackbearwouldbetheprincipalwildlifespeciesaffectedbya\~atanaIalternative.Estimatedwintercarryingcapacityfortheequiva-lentofapproximately400moosewouldbelosttoinundationbehindaWatanaIconfiguration.Ontheorderof6%ofthesuitablehabitatforblackbearand40%oftheknowndenscouldbelosttoaWatanaIdevelopment.TheJayCreekminerallickwouldstillbeinundated,butalargerproportionofthelickwouldbeavailableforsheepthanundertheproposedplan.TheWatanawolfpackwouldstillbeaffectedbylossofthecentralportionofitshomerange.OnelessbaldeaglenestinglocationwouldbefloodedundertheWatanaIconfigurationthanundertheproposed.Impactstowildlifemovementwouldbereducedfromtheproposedprojectbecauseofthe4to5mi(6to8km)reductioninreservoirlengthundertheWatanaIconfiguration.BecausethesmallerWatanaIdamwouldrequirelessvolumeoffillmaterial,thisalternativewouldrequirelessextensiveuseoftheborrO\oJareasthantheproposedproject.Thus,temporaryhabitatlosswouldbereduced.Impactstosomewildlifeusingtheborrowareasmightbeavoidedbyimplementationofthisalternative.TheshorterconstructionperiodforthesmallerdamwouldalsoreducethedurationofdisturbinghumanactivityincomparisontotheproposedWatanadeveIopment.DownstreamimpactsofimplementingtheWatanaIalternativewouldbesimilartothosediscussedpreviously(Sec.K.3.1).Alterationofflowregimeswouldaltersuccessionalpatternsofriverinevegetation,andice-freewaterscouldpreventaccesstomoosecalvinghabitatonriverislands.Impactstothebearfisheryandpotentialenhancementofbeaverhabitatwouldalsoresultfromalterationofthedownstreamflowregime.Themagnitudeoftheseimpactswouldbedirectlydependentuponthedegreetowhichflowpatternswerealteredfromnaturalconditions.ThisalterationmightbelessundertheWatanaIalternativethanundertheproposedplan.ImplementationofeitheraModifiedHighDevilCanyonalternativeoraReregulatingdamalterna-tiveinlieuoftheDevilCanyonproposalwouldaffectthesamewildlifepopulationsdiscussedinSectionK.3.1.2.Becausetheimpoundmentswouldbesmallerforthealternatives,lesshabitatwouldbelostthanwouldbeexpectedfortheproposedDevilCanyondevelopment.Approximately15%or55%lesshabitatwouldbeinundatedthroughimplementationoftheModifiedHighDevil
K-75CanyonorReregulatingdamalternatives,respectively.Theresultingimpactstowildlifewouldbereducedaccordingly.K.3.2.2AlternativeAccessRoutesDifferencesinhabitatthatwouldbeaffectedbyalternativeaccessrouteswouldnotbesubstan-tial.Allalternativesandtheproposedaccesswouldaffectmuchlessthan1%ofthebasinwidehabitat.Principaldifferenceswouldinvolvehumanaccesstothecentralportionsofthebasin.AccessfromtheParksHighwaytoDevilCanyonwouldcrossastretchofwetlandshabitatbetweenthehighwayandIndianRiver.Thishabitatsupportsmoose,blackbear,andbeaver.Construc-tionofthisroutecouldnecessitatecutsthroughslopesadjacenttowetlands,withsubsequenterosionimpactstowetlandsresources.ThebrownbearfisheriesofPortageCreekandIndianRivercouldalsobeaffectedbyerosionfromtheright-of-way.AccessfromtheParksHighwaywouldprovideamajorrouteofaccessintothecentralportionoftheupperandmiddleSusitnaBasin(Fig.2-13).Asdiscussedpreviously,thisincreasedaccesswouldimpactboththewildliferesourcesandthecurrenthumanusersofthebasin.TheParksHighwayisthemajorlinkforpersonalvehiclesbetweenthepopulationcentersofAlaska.ThUS,adirectlinkagetothehighwaywouldprovidereadyaccesstothebasinbypersonalgroundvehi-cles.Patternsandintensityofhumanusewouldlikelybealtered.Greateruseofinteriorregionswouldresult,impactingpreviouslyunusedorslightlyusedwildlifepopulations.Themagnitudeofusewouldincreasesubstantially.ThesouthernaccessroutefromDevilCanyontoWatanawouldcrossextensivewetlandsintheareafromStephanLaketoFogLakes(Fig.2-13).Thisareasupportsmoderatedensitiesofmooseaswellasotherwildlife.TheprincipalimpactofthisalternativewouldbeimprovedsurfaceaccesstoStephanLakeandPrairieCreek.PrairieCreeksupportsthemostinteriorsalmonrunwithinthebasin.From30to40brownbearcongregateintheareaduringJulyandAugusttoexploitthisfishery(MillerandMcAllister,1982;Miller,1983).Theimportanceofthisfisherytobrownbearcannotbequantified.However,thefactthatsomebeartravelinexcessof30mi(50km)suggeststhatthisfisheryisimportanttotheregionalbrownbearpopulation.Increasedaccesstotheareawouldincreasehuman/bearinteractions.Asaresult,bearmightbegintoavoidtheareainresponsetoincreasedhuntingpressure,harassment,ordisturbinghumanpresence.K.3.2.3AlternativePowerTransmissionRoutesSelectionofalternativetransmissionlineroutes(Figs.2-14to2-16)wouldvariablyaffectwildliferelativetotheproposedroutes,dependinguponlengthofline,amountofclearingofforesthabitatrequired(App.J,TablesJ-38toJ-41),proximitytoraptororswannestinglocations,andamountofwaterfowlhabitattraversed.Qualitativeimpactswouldbethesameasdiscussedpreviously.Theamountanddistributionofimpactswouldvaryamongalternatives.Thealternativetransmissionlineswouldhaveessentiallysimilarimpactstotheproposedlines(seeSec.K.3.2.3).Impactswouldchieflybearesultofclearingforestedhabitatfortheright-of-way.Differencesamongthealternativesareintheamountofright-of-wayclearingrequired.Mostoftheroutesencompassapproximatelythesameareas.RoutesfromWatanatotheHealy-WillowIntertiethatextendnorthwardwouldgenerallycrosstwicetheareacrossedbyroutesextendingwestward.RoutesextendingsoutheastofNenanaacrosstheTananaFlatsalsowouldoccupytwicetheareaofroutespassingnearertoNenana.RoutesaroundKnikArmwouldalsocrossmoreacreagethanroutesextendingfromWillowtoAnchorageacrossMacKenziePoint.TheroutesfromthedamsitestotheRailbeltarefundamentallysimilarexceptinlength.Severalaretwiceormorethelengthoftheproposedrouteandwouldbeexpectedtohavegreaterimpacttowildlifehabitats.RoutespassingfromFogLakestoStephanLakecouldhavesubstan-tiallyhigherpotentialforwaterfowlcollisions,althoughsuchmortalitywouldstillbeasmallfractionofoverallmortality.RoutespassingthroughtheuplandsnorthoftheSusitnaRivercouldimpactbrownbeardenninghabitat.Selectionofanytransmissionlineroutenotassociatedwithaselectedtransportationaccessroutewouldfurtherenhanceaccessibilityoftheregion.TheproposedroutewouldtraversetheshortestlengthofhabitatamongthealternativesandfollowstheproposedaccessroutefromGoldCreek.AlternativesfortheHealy-to-Fairbankssegmentarebasicallysimilarexceptinlength.OnlyalternativesthatswingsouthoftheTananaRiverandextendtothesouthernsideofFairbankswouldavoidtheprimeperegrinefalconhabitatlocatedalongthenorthernsideoftheriverfromNenanatoChenaRidge.Impactstothepotentialperegrinehabitatcouldbeavoidedbyproperschedulingofconstructionandmaintenanceactivities.Therefore,theextramileagerequiredtoavoidtheareawouldnotbewarranted.FromWillowtoAnchorage,theprincipaldifferenceamongalternativeswouldbethelengthoftheroute.AlternativeroutesaroundKnikArmwouldbenearlytwicethelengthofroutestoPt.MacKenzie.Noparticularadvantageswouldbegainedbyselectingthelongeralternatives.K-75CanyonorReregulatingdamalternatives,respectively.Theresultingimpactstowildlifewouldbereducedaccordingly.K.3.2.2AlternativeAccessRoutesDifferencesinhabitatthatwouldbeaffectedbyalternativeaccessrouteswouldnotbesubstan-tial.Allalternativesandtheproposedaccesswouldaffectmuchlessthan1%ofthebasinwidehabitat.Principaldifferenceswouldinvolvehumanaccesstothecentralportionsofthebasin.AccessfromtheParksHighwaytoDevilCanyonwouldcrossastretchofwetlandshabitatbetweenthehighwayandIndianRiver.Thishabitatsupportsmoose,blackbear,andbeaver.Construc-tionofthisroutecouldnecessitatecutsthroughslopesadjacenttowetlands,withsubsequenterosionimpactstowetlandsresources.ThebrownbearfisheriesofPortageCreekandIndianRivercouldalsobeaffectedbyerosionfromtheright-of-way.AccessfromtheParksHighwaywouldprovideamajorrouteofaccessintothecentralportionoftheupperandmiddleSusitnaBasin(Fig.2-13).Asdiscussedpreviously,thisincreasedaccesswouldimpactboththewildliferesourcesandthecurrenthumanusersofthebasin.TheParksHighwayisthemajorlinkforpersonalvehiclesbetweenthepopulationcentersofAlaska.ThUS,adirectlinkagetothehighwaywouldprovidereadyaccesstothebasinbypersonalgroundvehi-cles.Patternsandintensityofhumanusewouldlikelybealtered.Greateruseofinteriorregionswouldresult,impactingpreviouslyunusedorslightlyusedwildlifepopulations.Themagnitudeofusewouldincreasesubstantially.ThesouthernaccessroutefromDevilCanyontoWatanawouldcrossextensivewetlandsintheareafromStephanLaketoFogLakes(Fig.2-13).Thisareasupportsmoderatedensitiesofmooseaswellasotherwildlife.TheprincipalimpactofthisalternativewouldbeimprovedsurfaceaccesstoStephanLakeandPrairieCreek.PrairieCreeksupportsthemostinteriorsalmonrunwithinthebasin.From30to40brownbearcongregateintheareaduringJulyandAugusttoexploitthisfishery(MillerandMcAllister,1982;Miller,1983).Theimportanceofthisfisherytobrownbearcannotbequantified.However,thefactthatsomebeartravelinexcessof30mi(50km)suggeststhatthisfisheryisimportanttotheregionalbrownbearpopulation.Increasedaccesstotheareawouldincreasehuman/bearinteractions.Asaresult,bearmightbegintoavoidtheareainresponsetoincreasedhuntingpressure,harassment,ordisturbinghumanpresence.K.3.2.3AlternativePowerTransmissionRoutesSelectionofalternativetransmissionlineroutes(Figs.2-14to2-16)wouldvariablyaffectwildliferelativetotheproposedroutes,dependinguponlengthofline,amountofclearingofforesthabitatrequired(App.J,TablesJ-38toJ-41),proximitytoraptororswannestinglocations,andamountofwaterfowlhabitattraversed.Qualitativeimpactswouldbethesameasdiscussedpreviously.Theamountanddistributionofimpactswouldvaryamongalternatives.Thealternativetransmissionlineswouldhaveessentiallysimilarimpactstotheproposedlines(seeSec.K.3.2.3).Impactswouldchieflybearesultofclearingforestedhabitatfortheright-of-way.Differencesamongthealternativesareintheamountofright-of-wayclearingrequired.Mostoftheroutesencompassapproximatelythesameareas.RoutesfromWatanatotheHealy-WillowIntertiethatextendnorthwardwouldgenerallycrosstwicetheareacrossedbyroutesextendingwestward.RoutesextendingsoutheastofNenanaacrosstheTananaFlatsalsowouldoccupytwicetheareaofroutespassingnearertoNenana.RoutesaroundKnikArmwouldalsocrossmoreacreagethanroutesextendingfromWillowtoAnchorageacrossMacKenziePoint.TheroutesfromthedamsitestotheRailbeltarefundamentallysimilarexceptinlength.Severalaretwiceormorethelengthoftheproposedrouteandwouldbeexpectedtohavegreaterimpacttowildlifehabitats.RoutespassingfromFogLakestoStephanLakecouldhavesubstan-tiallyhigherpotentialforwaterfowlcollisions,althoughsuchmortalitywouldstillbeasmallfractionofoverallmortality.RoutespassingthroughtheuplandsnorthoftheSusitnaRivercouldimpactbrownbeardenninghabitat.Selectionofanytransmissionlineroutenotassociatedwithaselectedtransportationaccessroutewouldfurtherenhanceaccessibilityoftheregion.TheproposedroutewouldtraversetheshortestlengthofhabitatamongthealternativesandfollowstheproposedaccessroutefromGoldCreek.AlternativesfortheHealy-to-Fairbankssegmentarebasicallysimilarexceptinlength.OnlyalternativesthatswingsouthoftheTananaRiverandextendtothesouthernsideofFairbankswouldavoidtheprimeperegrinefalconhabitatlocatedalongthenorthernsideoftheriverfromNenanatoChenaRidge.Impactstothepotentialperegrinehabitatcouldbeavoidedbyproperschedulingofconstructionandmaintenanceactivities.Therefore,theextramileagerequiredtoavoidtheareawouldnotbewarranted.FromWillowtoAnchorage,theprincipaldifferenceamongalternativeswouldbethelengthoftheroute.AlternativeroutesaroundKnikArmwouldbenearlytwicethelengthofroutestoPt.MacKenzie.Noparticularadvantageswouldbegainedbyselectingthelongeralternatives.
K-76K.3.2.4AlternativeBorrowAreasAlternativeuseofbonowareas(Figs.2-2and2-6)wouldresultintemporarylossofhabitatintheareasactuallyused,exceptwheretheborrowareaswouldbeinundatedbythereservoir.Nomajorreductionsinimpactstowildlifewouldbeachievedbyselectingoneareaoveranotherexceptbyusingareasthatwouldbeinundatedoraffectedbyconstructionanyway,suchasareasA,B,0,E,I,J,L,andG.BorrowareasCandFwouldlikelyhaveadditionalimpactonbrowsehabitatformooseandotherwildlifeoverandabovereservoirfilling,althoughtheareascouldberehabilitatedtoregainatleastaportionofthebrowseproductivity.BorrowareasHandKaresituatedinmorerugged,cliffhabitatthatwouldbesuitableraptornestingareas.K.3.3Non-SusitnaGeneratingAlternativesK.3.3.1Natural-Gas-FiredGenerationScenarioThetwocombined-cycleunitssituatedalongtheBelugaRiver(Fig.2-18)wouldoccupyabout10acres(4halofuplandspruce-hardwoodforest.Becausesuchgas-firedunitsproducenosolidwastes,thisareawouldbecomprisedofonsitefacilitiesonly.Thisacreagewouldbeeffec-tivelylostfromuseaswildlifehabitat.Moosecongregatingintheareaduringwintermightbedisturbedbyhumanactivitiesduringconstructionandoperation.Responsesofmooseandotherwildlifehavebeendiscussedpl'eviously(Sec.K.3.1).~100semighttendtoavoidtheplantarea,butthiswouldaffectonlyaminutefractionoftheirwinterrange.AlongtheChuitnaRiver(Fig.2-18),thethreecombined-cycleunitswouldoccupyabout15acres(6halofuplandspruce-hardwoodhabitat.PlantconstructionandoperationmightdisruptblackbeardenningareasalongtheChuitnaRiver.However,theplantarearepresentslessthan1%oftheavailablehabitat.Someareasusedforfishingbybrownbearduringsalmonspawningmightalsobeimpacted.Brownbeardenningai'eawouldbelocatedinuplandsites,removedfromthisalternativesite.Nootherareasofknownwildlifesensitivitywouldbeaffectedbythealternativeplant.Theareaisalreadyaccessiblebyroad,andalternativedevelopmentswouldnotsubstantiallyincreaseaccessibi1ity.Accesswouldundoubtedlybeupgradedtosomeextent,butongoing1oggingandfossilfueldevelopmentcurrentlyaffectlocalwildlife,andanyadditionalimpactswouldonlybeincremental.NearKenai(Fig.2-18),twocombined-cycleunitswouldoccupyabout10acres(4haloflowlandspruce-hardwoodhabitat.Althoughavai'ietyofwildliferangethroughthearea,noknownsensi-tiveareasexistinthevicinityofthesepossiblealternativedevelopments.Theaffectedhabitatwouldbeasmallfraction«<1%)ofavailablerange.Theareaisdevelopedwithroads,andpetroleumindustryactivityisextensive.Thus,thealternativedevelopmentswouldnotmateriallyincreasehumanpresence.The15acres(6haldevotedtothermalplantsintheAnchoragearea(Fig.2-18)wouldbesituatedinmoreurbanizedhabitatandwou1dnotsubstantive1yaffectwi1dliferesourcesintheregion.Thenatural-gas-firedfacilitiesVlouldnotcontributesubstantivelytolocalairpollutionproblems(AppendixG).Thus,impactstowildlifeviaairpollutantswouldnotbeexpected.Somenewtransmissionlineright-of-waywouldberequiredtoconnectthegeneratingcapacitytoexistingpowersystems.Impactswouldbesimilartothosealreadydiscussed(Sec.K.3.1).Thelineswouldberelativelyshortbecausethesealternativeswouldbelocatedindevelopedareas.Themagnitudeofimpactswouldbeproportionaltothelengthoftransmissionlinerequired.K.3.3.2Coal-FiredGenerationScenarioThe400MWofcoalpowergenerationthatwouldbeinstallednearWillow(Fig.2-18)underthisscenariowouldrequireapproximately400acres(160ha)ofareaforplantfacilitiesandwastestorage.Principallylowlandspruce-hardwoodhabitatwouldbeimpacted.Theplantwouldbelocatedinanareaofhighdensitiesofmooseandblackbear.However,suitablehabitatoccursthroughoutthisportion oftheSusitnaBasin.Theareaislightlydevelopedforrecreationalpurposes,andaccessmightbeenhancedtosomedegreebythisdevelopment.Thisdevelopmentcouldalsoresultinincreaseddisturbancetonestingtrumpeterswansandbaldeagles.ThethreeNenanacoalunits(Fig.2-18)wouldbelocatedmainlyinbottomlandspruce-hardwoodhabitatandrequireabout500acres(200ha).Moosedoconcentrateintheareaduringwinter,buttheplantfacilitieswouldoccupyonlyasmallfractionofthehabitatavailable.Sometrumpeterswannestingmightbedisturbed.Historicalperegrinenestinglocationswouldpoten-tiallybewithin5mi(8km)oftheplant.BecausetheareaislocatedontheParksHighway,noadditionalaccessibilitywouldresult.CoalminingnearHealy(Fig.1-14)wouldnecessitatedisturbingabout3,000acres(1,200ha)ofuplandspruce-hardwoodandtundrahabitat.Brownbear,caribou,andmoosewouldbemostimpactedbythishabitatloss.Reclamationoftheminedlandcouldrecoversomeofthelostproductivity.BiggamemortalityalongtheAlaskaRailroadcouldincreasedramatically,particularlyduringwinterwhencoalshipmentscouldrequiretwotothreetimesthecurrentrailtraffic.K-76K.3.2.4AlternativeBorrowAreasAlternativeuseofbonowareas(Figs.2-2and2-6)wouldresultintemporarylossofhabitatintheareasactuallyused,exceptwheretheborrowareaswouldbeinundatedbythereservoir.Nomajorreductionsinimpactstowildlifewouldbeachievedbyselectingoneareaoveranotherexceptbyusingareasthatwouldbeinundatedoraffectedbyconstructionanyway,suchasareasA,B,0,E,I,J,L,andG.BorrowareasCandFwouldlikelyhaveadditionalimpactonbrowsehabitatformooseandotherwildlifeoverandabovereservoirfilling,althoughtheareascouldberehabilitatedtoregainatleastaportionofthebrowseproductivity.BorrowareasHandKaresituatedinmorerugged,cliffhabitatthatwouldbesuitableraptornestingareas.K.3.3Non-SusitnaGeneratingAlternativesK.3.3.1Natural-Gas-FiredGenerationScenarioThetwocombined-cycleunitssituatedalongtheBelugaRiver(Fig.2-18)wouldoccupyabout10acres(4halofuplandspruce-hardwoodforest.Becausesuchgas-firedunitsproducenosolidwastes,thisareawouldbecomprisedofonsitefacilitiesonly.Thisacreagewouldbeeffec-tivelylostfromuseaswildlifehabitat.Moosecongregatingintheareaduringwintermightbedisturbedbyhumanactivitiesduringconstructionandoperation.Responsesofmooseandotherwildlifehavebeendiscussedpl'eviously(Sec.K.3.1).~100semighttendtoavoidtheplantarea,butthiswouldaffectonlyaminutefractionoftheirwinterrange.AlongtheChuitnaRiver(Fig.2-18),thethreecombined-cycleunitswouldoccupyabout15acres(6halofuplandspruce-hardwoodhabitat.PlantconstructionandoperationmightdisruptblackbeardenningareasalongtheChuitnaRiver.However,theplantarearepresentslessthan1%oftheavailablehabitat.Someareasusedforfishingbybrownbearduringsalmonspawningmightalsobeimpacted.Brownbeardenningai'eawouldbelocatedinuplandsites,removedfromthisalternativesite.Nootherareasofknownwildlifesensitivitywouldbeaffectedbythealternativeplant.Theareaisalreadyaccessiblebyroad,andalternativedevelopmentswouldnotsubstantiallyincreaseaccessibi1ity.Accesswouldundoubtedlybeupgradedtosomeextent,butongoing1oggingandfossilfueldevelopmentcurrentlyaffectlocalwildlife,andanyadditionalimpactswouldonlybeincremental.NearKenai(Fig.2-18),twocombined-cycleunitswouldoccupyabout10acres(4haloflowlandspruce-hardwoodhabitat.Althoughavai'ietyofwildliferangethroughthearea,noknownsensi-tiveareasexistinthevicinityofthesepossiblealternativedevelopments.Theaffectedhabitatwouldbeasmallfraction«<1%)ofavailablerange.Theareaisdevelopedwithroads,andpetroleumindustryactivityisextensive.Thus,thealternativedevelopmentswouldnotmateriallyincreasehumanpresence.The15acres(6haldevotedtothermalplantsintheAnchoragearea(Fig.2-18)wouldbesituatedinmoreurbanizedhabitatandwou1dnotsubstantive1yaffectwi1dliferesourcesintheregion.Thenatural-gas-firedfacilitiesVlouldnotcontributesubstantivelytolocalairpollutionproblems(AppendixG).Thus,impactstowildlifeviaairpollutantswouldnotbeexpected.Somenewtransmissionlineright-of-waywouldberequiredtoconnectthegeneratingcapacitytoexistingpowersystems.Impactswouldbesimilartothosealreadydiscussed(Sec.K.3.1).Thelineswouldberelativelyshortbecausethesealternativeswouldbelocatedindevelopedareas.Themagnitudeofimpactswouldbeproportionaltothelengthoftransmissionlinerequired.K.3.3.2Coal-FiredGenerationScenarioThe400MWofcoalpowergenerationthatwouldbeinstallednearWillow(Fig.2-18)underthisscenariowouldrequireapproximately400acres(160ha)ofareaforplantfacilitiesandwastestorage.Principallylowlandspruce-hardwoodhabitatwouldbeimpacted.Theplantwouldbelocatedinanareaofhighdensitiesofmooseandblackbear.However,suitablehabitatoccursthroughoutthisportion oftheSusitnaBasin.Theareaislightlydevelopedforrecreationalpurposes,andaccessmightbeenhancedtosomedegreebythisdevelopment.Thisdevelopmentcouldalsoresultinincreaseddisturbancetonestingtrumpeterswansandbaldeagles.ThethreeNenanacoalunits(Fig.2-18)wouldbelocatedmainlyinbottomlandspruce-hardwoodhabitatandrequireabout500acres(200ha).Moosedoconcentrateintheareaduringwinter,buttheplantfacilitieswouldoccupyonlyasmallfractionofthehabitatavailable.Sometrumpeterswannestingmightbedisturbed.Historicalperegrinenestinglocationswouldpoten-tiallybewithin5mi(8km)oftheplant.BecausetheareaislocatedontheParksHighway,noadditionalaccessibilitywouldresult.CoalminingnearHealy(Fig.1-14)wouldnecessitatedisturbingabout3,000acres(1,200ha)ofuplandspruce-hardwoodandtundrahabitat.Brownbear,caribou,andmoosewouldbemostimpactedbythishabitatloss.Reclamationoftheminedlandcouldrecoversomeofthelostproductivity.BiggamemortalityalongtheAlaskaRailroadcouldincreasedramatically,particularlyduringwinterwhencoalshipmentscouldrequiretwotothreetimesthecurrentrailtraffic.
K-77Localizedalterationordamageofwildlifehabitatmightresultfromfugitivedustingneartheminepit,alongtransportationroutes,nearcoalstoragepilesattheplantandthemineorattransportationloadingfacilities,andnearwastedisposalsites(Dvoraketal.,1978).Specificeffectswouldbedependentuponsite-specificparameters,suchaswindconditions,plantcommunitytype,chemicalcompositionofthedust,andthemagnitudeofdust-controlefforts.Traceelementsinrunofforseepagefromsolid-wastedisposalareasmighthavesomelocalizedeffectsonvegeta-tionsurroundingthesite(Soholtetal.,1980).However,thechancesofadverseeffectswouldprobablybe10\01becausethewastewouldbedryratherthanaslurry.Inaddition,linerscouldbeemployedifsite-specificevaluationsindicatedtheywouldbenecessarytoreduceseepagetogroundwaterandadjacentsoils.Consideringthehighparticulateremovalefficiency(99.95%)assumedforthecoalunits,noimpactstowildlifehabitatfromtraceelementcombustionemissionswouldbeexpected(seeAppendixJ).Onthebasisofdispersionmodelingofcombustionemissions(App.G,Sec.G.2.3),S02-sensitiveplantspecieswouldnotlikelysufferacuteinjuryordamageevenunderworst-casefumigationconditions.Evenforthree200-MWunits,themaximumannual3-hraverageS02concen-trationsatgroundlevelunderworst-casefumigationconditionswouldoccur0.8mi(1.3km)fromtheplantandwouldbelessthan75IJg/m3.Thisconcentrationiswellbelowtheacuteinjurythresholdlevelforeventhemostsensitiveplantspecies(Dvoraketal.,1978).AlthoughthepotentialforS02inducedchronicorlong-terminjuryoralterationofplantcommuni-tieswouldexistnearthecoalunits,itisimpossibletopredictwhethersucheffectswouldactuallyoccur.Thisisbecauselittleinfol'mationonchronicorlong-terminjurythresholdlevelexistsintheliterature.ItisunlikelythatwildlifehabitatinthevicinityofthecoalunitswouldbedirectlyaffectedbyNOemissions.Forthree200-MWunits,themaximumannual3-hraverageNOconcentrationsatgroun~levelunderworst-casefumigationconditionswouldbeapproximately2~0IJg/m3,whichiswellbelowtheacuteandchronicthresholdinjurylevels(about2,000pg/m3)forplants(Dvoraketal.,1978).However,NOemissionscouldcontributetotheformationofsecondarypollutantssuchasozoneorperoxyacefylnitrate(PAN)throughreactionswithairbornehydrocarbons,and~~6n:o(~;~~;kWe\tharO,2;9n7~)o.zonemightcausegreaterinjurythananyoneofthepollutantswouldIngeneral,animalspeciesarelesssensitivetogaseouspollutantsthanthemoresensitiveplantspecies(Dvoraketal.,1978).Anticipatedground-levelconcentrationsofS02andNOwouldbeexpectedtobeseveralordersofmagnitudebelowthresholdlevelsfordirecteffecnuponwildlifespecies.Thus,wildlifespecieswouldbeunlikelytobeaffectedbyaerialemissionsfromcoalcombustion.Useofupto50acres(20halrequiredforcombustion-turbineunitswouldhaveeffectssimilartothosedescribedintheprevioussection,buttheexactnatureofimpactswoulddependuponpreciselywheretheunitswerelocated.ItislikelythattheseplantswouldbelocatednearthepopulationcentersofAnchorage,Palmer,andKenai.K.3.3.3CombinedHydro-ThermalGenerationScenarioImplementationofthecombinedhydro-thermalalternative\olOuldresultininundationofover115,000acres(46,000halofhabitatrangingfromtundratoforest(TableK-23).Nearly85%ofthishabitatwouldbearesultofdevelopmentofthereservoirattheJohnsonsite(Fig.2-18).TheKeetnadevelopmentwouldeliminatethesalmonrunstoPrairieCreek.Asdiscussedpreviously,lossofthisfisherycouldhaveasevereimpacttobrownbearandbaldeagleintheupperandmiddleSusitnaBasin.TheChakachamnadevelopmentcouldaffectbrownbearfisheriesdownstream.WinterrangeforcaribouandmoosewouldbeaffectedbytheBrowneandJohnsondevelopments.MountaingoatandDall'ssheepmightbedisturbedbyconstructionactivitiesattheSnowdevelop-ment.Bothspeciesarerelativelysensitivetohumanpresence.IncreasedaccessibilitywouldlikelyoccurattheKeetna,Snow,andChakachamnasites.TheBrownandJohnsonsiteswouldbesituatedalongmajorhighways.OtherimpactswouldbesimilarinnaturetothosedescribedfortheSusitnadevelopment.Impactsfromthermaldevelopmentswouldbeasdescribedinthepreceed-ingsection.Themagnitudeofimpactswouldvarywithsizeofthedevelopment,valueofwildlifehabitataffected,andnumbersofwildlifeaffected.K.3.4ComparisonofAlternativesDifferencesamongalternativeborrowareasareonlysubstantiveforthoseareasthatwouldnotbeinundatedbyreservoirfilling,areasC,F,H,andK(Figs.2-2and2-6).Alternativetrans-missionlineroutesarealllongerthantheproposedroutes,andfewcrossmoresensitivewildlifehabitat.Theaccessalternativewithleastimpactstowildlifewouldberail/roadaccessfromGoldCl'eektoI-Jatana,southoft.heSusitnabelowDevilCanyonandnorthoftheSusitnaaboveDevilCanyon.ThisroutewouldavoidthesensitiveStephanLakearea,avoidpassingacrossthemovementpathwayoftheNenana-UpperSusitnacaribou,andmaintainmorerestrictedaccessthanisproposed.K-77Localizedalterationordamageofwildlifehabitatmightresultfromfugitivedustingneartheminepit,alongtransportationroutes,nearcoalstoragepilesattheplantandthemineorattransportationloadingfacilities,andnearwastedisposalsites(Dvoraketal.,1978).Specificeffectswouldbedependentuponsite-specificparameters,suchaswindconditions,plantcommunitytype,chemicalcompositionofthedust,andthemagnitudeofdust-controlefforts.Traceelementsinrunofforseepagefromsolid-wastedisposalareasmighthavesomelocalizedeffectsonvegeta-tionsurroundingthesite(Soholtetal.,1980).However,thechancesofadverseeffectswouldprobablybe10\01becausethewastewouldbedryratherthanaslurry.Inaddition,linerscouldbeemployedifsite-specificevaluationsindicatedtheywouldbenecessarytoreduceseepagetogroundwaterandadjacentsoils.Consideringthehighparticulateremovalefficiency(99.95%)assumedforthecoalunits,noimpactstowildlifehabitatfromtraceelementcombustionemissionswouldbeexpected(seeAppendixJ).Onthebasisofdispersionmodelingofcombustionemissions(App.G,Sec.G.2.3),S02-sensitiveplantspecieswouldnotlikelysufferacuteinjuryordamageevenunderworst-casefumigationconditions.Evenforthree200-MWunits,themaximumannual3-hraverageS02concen-trationsatgroundlevelunderworst-casefumigationconditionswouldoccur0.8mi(1.3km)fromtheplantandwouldbelessthan75IJg/m3.Thisconcentrationiswellbelowtheacuteinjurythresholdlevelforeventhemostsensitiveplantspecies(Dvoraketal.,1978).AlthoughthepotentialforS02inducedchronicorlong-terminjuryoralterationofplantcommuni-tieswouldexistnearthecoalunits,itisimpossibletopredictwhethersucheffectswouldactuallyoccur.Thisisbecauselittleinfol'mationonchronicorlong-terminjurythresholdlevelexistsintheliterature.ItisunlikelythatwildlifehabitatinthevicinityofthecoalunitswouldbedirectlyaffectedbyNOemissions.Forthree200-MWunits,themaximumannual3-hraverageNOconcentrationsatgroun~levelunderworst-casefumigationconditionswouldbeapproximately2~0IJg/m3,whichiswellbelowtheacuteandchronicthresholdinjurylevels(about2,000pg/m3)forplants(Dvoraketal.,1978).However,NOemissionscouldcontributetotheformationofsecondarypollutantssuchasozoneorperoxyacefylnitrate(PAN)throughreactionswithairbornehydrocarbons,and~~6n:o(~;~~;kWe\tharO,2;9n7~)o.zonemightcausegreaterinjurythananyoneofthepollutantswouldIngeneral,animalspeciesarelesssensitivetogaseouspollutantsthanthemoresensitiveplantspecies(Dvoraketal.,1978).Anticipatedground-levelconcentrationsofS02andNOwouldbeexpectedtobeseveralordersofmagnitudebelowthresholdlevelsfordirecteffecnuponwildlifespecies.Thus,wildlifespecieswouldbeunlikelytobeaffectedbyaerialemissionsfromcoalcombustion.Useofupto50acres(20halrequiredforcombustion-turbineunitswouldhaveeffectssimilartothosedescribedintheprevioussection,buttheexactnatureofimpactswoulddependuponpreciselywheretheunitswerelocated.ItislikelythattheseplantswouldbelocatednearthepopulationcentersofAnchorage,Palmer,andKenai.K.3.3.3CombinedHydro-ThermalGenerationScenarioImplementationofthecombinedhydro-thermalalternative\olOuldresultininundationofover115,000acres(46,000halofhabitatrangingfromtundratoforest(TableK-23).Nearly85%ofthishabitatwouldbearesultofdevelopmentofthereservoirattheJohnsonsite(Fig.2-18).TheKeetnadevelopmentwouldeliminatethesalmonrunstoPrairieCreek.Asdiscussedpreviously,lossofthisfisherycouldhaveasevereimpacttobrownbearandbaldeagleintheupperandmiddleSusitnaBasin.TheChakachamnadevelopmentcouldaffectbrownbearfisheriesdownstream.WinterrangeforcaribouandmoosewouldbeaffectedbytheBrowneandJohnsondevelopments.MountaingoatandDall'ssheepmightbedisturbedbyconstructionactivitiesattheSnowdevelop-ment.Bothspeciesarerelativelysensitivetohumanpresence.IncreasedaccessibilitywouldlikelyoccurattheKeetna,Snow,andChakachamnasites.TheBrownandJohnsonsiteswouldbesituatedalongmajorhighways.OtherimpactswouldbesimilarinnaturetothosedescribedfortheSusitnadevelopment.Impactsfromthermaldevelopmentswouldbeasdescribedinthepreceed-ingsection.Themagnitudeofimpactswouldvarywithsizeofthedevelopment,valueofwildlifehabitataffected,andnumbersofwildlifeaffected.K.3.4ComparisonofAlternativesDifferencesamongalternativeborrowareasareonlysubstantiveforthoseareasthatwouldnotbeinundatedbyreservoirfilling,areasC,F,H,andK(Figs.2-2and2-6).Alternativetrans-missionlineroutesarealllongerthantheproposedroutes,andfewcrossmoresensitivewildlifehabitat.Theaccessalternativewithleastimpactstowildlifewouldberail/roadaccessfromGoldCl'eektoI-Jatana,southoft.heSusitnabelowDevilCanyonandnorthoftheSusitnaaboveDevilCanyon.ThisroutewouldavoidthesensitiveStephanLakearea,avoidpassingacrossthemovementpathwayoftheNenana-UpperSusitnacaribou,andmaintainmorerestrictedaccessthanisproposed.
Table K-23.Relative Potential for Impacts to Wildlife from Alternative Generation Scenarios
Habitat
Loss Brown Black Human
Scenario (acres)Moose Caribou Bear Bear Furbearers Raptors Waterbirds Use
Susitna Hydroelectric Project 64,000 High Moderate-High Moderate High Low Moderate Low High
Watana I-Devil Canyon 55,000 High Moderate-High Moderate High Low Moderate Low High
Watana I-Modified High 54,000 High Moderate-Hi gh Moderate High Low Moderate Low High
Devil Canyon
Watana I-Reregulating Dam 52,000 High Moderate-High Moderate High Low Moderate Low High 7'
I
'-J
Natural-Gas Generation 9,000 Low None Low Low Low Low Low Low co
Coal Generation 12,000 Low-Moderate Low Low Low Low Low-Moderate Moderate Low
Combined Hydro-Thermal 115,000 Moderate Low High Low No No Low Low-Moderate
without Chakachamna
Combined Hydro-Thermal 116,000 Moderate Low High Low No No Low Low-Moderate
with Chakachamna
Conversion:To convert acres to hectares,multiply by 0.405.
Table K-23.Relative Potential for Impacts to Wildlife from Alternative Generation Scenarios
Habitat
Loss Brown Black Human
Scenario (acres)Moose Caribou Bear Bear Furbearers Raptors Waterbirds Use
Susitna Hydroelectric Project 64,000 High Moderate-High Moderate High Low Moderate Low High
Watana I-Devil Canyon 55,000 High Moderate-High Moderate High Low Moderate Low High
Watana I-Modified High 54,000 High Moderate-High Moderate High Low Moderate Low High
Devil Canyon
Watana I-Reregulating Dam 52,000 High Moderate-High Moderate High Low Moderate Low High 7'
I
'-J
Natural-Gas Generation 9,000 Low None Low Low Low Low Low Low co
Coal Generation 12,000 Low-Moderate Low Low Low Low Low-Moderate Moderate Low
Combined Hydro-Thermal 115,000 Moderate Low High Low No No Low Low-Moderate
without Chakachamna
Combined Hydro-Thermal 116,000 Moderate Low High Low No No Low Low-Moderate
with Chakachamna
Conversion:To convert acres to hectares,multiply by 0.405.
K-79Alternativepowergenerationconfigurationswoulddiffersubstantivelyinimpacts(TableK-23).Onthebasisofamountofhabitatlost,thecombinedhydro-thermalalternativewouldbetheleastdesirableforwildlifeconsiderations;thisalternativewouldaffecttwicetheamountofhabitataffectedbytheproposedproject.However,thevalueoftheaffectedhabitatmightbelowerforthecombinedconfiguration;a1thoughtheKeetnadevelopmentwou1deliminatethefisheriesofthePrairieCreekareawhichareusedbybrownbear.Thethermalalternativeswouldaffectfewerwildliferesourcesthanwouldanyofthehydropoweralternativestotheproposedproject.Natural-gasconfigurationswouldaffectmorethansixtimesfeweracresofwildlifehabitat.Coal-firedconfigurationswouldaffectmorethanfivetimes1essacreagethanhydropowerdevelopments.Forthemostpart,thesealternativeswouldbedevelopedinhabitatsoflowsensitivityoraffectonlyasmallfractionofsensitivehabitat.Additionally,thermaldevelopmentswouldgenerallyoccurinareaswithsomedegreeofexistinghumandevelopment.Thenatural-gasconfigurationwouldbemostcompatiblewithwildlifeconservationgoalsbecausefarlesslandisrequired.K.4MITIGATIVEACTIONSTheApplicanthasproposedaplantomitigatetheeffectsuponwildlifethatmightresultfromtheproposedproject(ExhibitE,Vol.6A,Chap.3,pp.E-3-508toE-3-550).TheApplicant'splanisbaseduponimplementingthefollowingprinciplesinorderoftheirpriority:Avoidanceofimpactthroughprojectdesignandoperation,orbynottakingagivenaction.Minimizationoftheimpactbyreducingthedegreeormagnitudeoftheaction,orbychangingitslocation.Rectificationoftheimpactbyrepairing,rehabilitating,orrestoringtheaffectedportionoftheenvironment.Reductionoreliminationoftheimpactovertimebypreservation,monitoring,andmainten-anceoperationsduringthelifeoftheaction.Compensationfortheimpactbyprovidingreplacementorsubstituteresourcesthatwouldnototherwisebeavailable.TheseprinciplesarethekeycomponentsofmitigationasdefinedbytheCouncilonEnvironmentalQuality(40CFR1508.20),aswellastheU.S.FishandWildlifeService(1981).Thefirsttwoprinciplesinvolveprojectdesignmeasures,andimpactshavebeendiscussedincorporatingpro-posedmeasuresintotheassessment(Sec.K.3.1).AlternativedesignmeasuresthatmightfurtheravoidorreducethemagnitudeofimpactsarediscussedinSectionsK.3.2toK.3.4.Thesucceed-ingdiscussionemphasizesthelastthreeprinciples.K.4.1ProposedMitigationTheApplicanthasidentifiedtheprincipalimpactstowildlifeanddevelopedpreliminaryplansformitigatingtheseimpactstotheextentpossiblegiventheApplicant'sdeterminationofprojectneeds.Impoundmentc1earingactivitieswouldnotbeginuntiltwoorthreeyearspriortofilling.Patchesofriparianvegetationwouldbeleftuncleareduntiljustpriortofilling.However,thishabitatwouldbepermanentlylosttoinundationofimpoundmentzonesduringfilling.Delayedclearingwouldtemporarilyavoidimpactsofhabitatlosstomarten,moose,andblackbear.Avoidingclearingduringthewinterandearlyspringwouldpreventdisturbanceofmooseduringoverwinteringandcalvinganddisturbanceofbrownandblackbearduringhibernation.Preciseclearingscheduleswouldbedeterminedinconsultationwithresourceagencies.Revegetationofdisturbedsiteswouldreducetheperiodoftemporaryhabitatloss(seeAppendixJ).Itcouldprovidespringandwinterforageformoosefor2to20yearsaftertheinitiationofreclamation.However,asnotedbyWolffandZasada(1979),moosemightnottakeadvantageofthisavailableforage.Bearmightbeattractedtosuchsitesbythehighproductivityandearlyavailabilityofspringforage.However,insomeareas,thismightincreasethefrequencyofbear/humanencounters,withpossiblenegativeimpacts.Minimizationofhabitatlosstothetransmissioncorridorwouldbeaccomplishedbyselectiveclearinginthecorridor,leavingsmallshrubsandtrees,andbyleavinga35-ft(10-m)widestripofvegetationupto10ft(3m)tallbetweencircuits.Rectificationforhabitatlosswouldbeprovidedbyallowingvegetationtogrowtoaheightof10ft(3m)duringoperation.ThisdesigncouldenhancehabitatformooseandotherwildlifepreferringvegetationtypesinK-79Alternativepowergenerationconfigurationswoulddiffersubstantivelyinimpacts(TableK-23).Onthebasisofamountofhabitatlost,thecombinedhydro-thermalalternativewouldbetheleastdesirableforwildlifeconsiderations;thisalternativewouldaffecttwicetheamountofhabitataffectedbytheproposedproject.However,thevalueoftheaffectedhabitatmightbelowerforthecombinedconfiguration;a1thoughtheKeetnadevelopmentwou1deliminatethefisheriesofthePrairieCreekareawhichareusedbybrownbear.Thethermalalternativeswouldaffectfewerwildliferesourcesthanwouldanyofthehydropoweralternativestotheproposedproject.Natural-gasconfigurationswouldaffectmorethansixtimesfeweracresofwildlifehabitat.Coal-firedconfigurationswouldaffectmorethanfivetimes1essacreagethanhydropowerdevelopments.Forthemostpart,thesealternativeswouldbedevelopedinhabitatsoflowsensitivityoraffectonlyasmallfractionofsensitivehabitat.Additionally,thermaldevelopmentswouldgenerallyoccurinareaswithsomedegreeofexistinghumandevelopment.Thenatural-gasconfigurationwouldbemostcompatiblewithwildlifeconservationgoalsbecausefarlesslandisrequired.K.4MITIGATIVEACTIONSTheApplicanthasproposedaplantomitigatetheeffectsuponwildlifethatmightresultfromtheproposedproject(ExhibitE,Vol.6A,Chap.3,pp.E-3-508toE-3-550).TheApplicant'splanisbaseduponimplementingthefollowingprinciplesinorderoftheirpriority:Avoidanceofimpactthroughprojectdesignandoperation,orbynottakingagivenaction.Minimizationoftheimpactbyreducingthedegreeormagnitudeoftheaction,orbychangingitslocation.Rectificationoftheimpactbyrepairing,rehabilitating,orrestoringtheaffectedportionoftheenvironment.Reductionoreliminationoftheimpactovertimebypreservation,monitoring,andmainten-anceoperationsduringthelifeoftheaction.Compensationfortheimpactbyprovidingreplacementorsubstituteresourcesthatwouldnototherwisebeavailable.TheseprinciplesarethekeycomponentsofmitigationasdefinedbytheCouncilonEnvironmentalQuality(40CFR1508.20),aswellastheU.S.FishandWildlifeService(1981).Thefirsttwoprinciplesinvolveprojectdesignmeasures,andimpactshavebeendiscussedincorporatingpro-posedmeasuresintotheassessment(Sec.K.3.1).AlternativedesignmeasuresthatmightfurtheravoidorreducethemagnitudeofimpactsarediscussedinSectionsK.3.2toK.3.4.Thesucceed-ingdiscussionemphasizesthelastthreeprinciples.K.4.1ProposedMitigationTheApplicanthasidentifiedtheprincipalimpactstowildlifeanddevelopedpreliminaryplansformitigatingtheseimpactstotheextentpossiblegiventheApplicant'sdeterminationofprojectneeds.Impoundmentc1earingactivitieswouldnotbeginuntiltwoorthreeyearspriortofilling.Patchesofriparianvegetationwouldbeleftuncleareduntiljustpriortofilling.However,thishabitatwouldbepermanentlylosttoinundationofimpoundmentzonesduringfilling.Delayedclearingwouldtemporarilyavoidimpactsofhabitatlosstomarten,moose,andblackbear.Avoidingclearingduringthewinterandearlyspringwouldpreventdisturbanceofmooseduringoverwinteringandcalvinganddisturbanceofbrownandblackbearduringhibernation.Preciseclearingscheduleswouldbedeterminedinconsultationwithresourceagencies.Revegetationofdisturbedsiteswouldreducetheperiodoftemporaryhabitatloss(seeAppendixJ).Itcouldprovidespringandwinterforageformoosefor2to20yearsaftertheinitiationofreclamation.However,asnotedbyWolffandZasada(1979),moosemightnottakeadvantageofthisavailableforage.Bearmightbeattractedtosuchsitesbythehighproductivityandearlyavailabilityofspringforage.However,insomeareas,thismightincreasethefrequencyofbear/humanencounters,withpossiblenegativeimpacts.Minimizationofhabitatlosstothetransmissioncorridorwouldbeaccomplishedbyselectiveclearinginthecorridor,leavingsmallshrubsandtrees,andbyleavinga35-ft(10-m)widestripofvegetationupto10ft(3m)tallbetweencircuits.Rectificationforhabitatlosswouldbeprovidedbyallowingvegetationtogrowtoaheightof10ft(3m)duringoperation.Thisdesigncouldenhancehabitatformooseandotherwildlifepreferringvegetationtypesin
K-80earlysuccessionalstages.Impactsofhabitatlossfromotherprojectfeaturesmightbecompen-satedforthroughincreasedcarryingcapacityformooseprovidedwiththiscorridordesign.Otherspecies(e.g.,marten,hare)couldalsobenefitfromthiscorridordesignbecausetheretentionofcoverinthecorridorwouldpresentlessofapsychologicalorvisualbarriertomovements.HabitatalterationthatwouldoccurdownstreamfromtheDevilCanyondamwouldbereducedthroughtheuseofmultilevelintakestructuresthatwouldmaintainrivertemperaturesasclosetonormalaspossiblegivenoperationalgoals.Compensationforpermanenthabitatlossandalterationformoose,brownbear,andblackbearwouldbeprovidedbyhabitatenhancementmeasuresandacquisitionofreplacementlands.Carry-ingcapacityformooseandbearcouldbeenhancedbymeasureswhichallowdevelopmentofearlysuccessionalvegetation,suchasburning,logging,orlandclearing.Theseearlysuccessionalcommunitiesgenerallyhavehigherbrowseproductionthanmatureforest(WolffandZasada,1979).However,asnotedpreviously,wildlifeuseofthisavailablebrowseisnotacertainty.TheApplicantmuststudyfurthertheefficacyofsuchtechniquesinordertodeterminetheamountsofcompensationthatwouldberequiredtoreplacelostcarryingcapacity.TheApplicantiscurrentlyrefiningitsestimatesofcarrying-capacitylossesthatmightbeincurred.Aspartofthis,theApplicantisdevelopingahabitat-basedmodeltodeterminepotentialimpactofhabitatlossonmoosepopulations.Anestimateofthenumberofacresrequiredtomitigateforhabitatlossesformoosewouldbedeterminedusingthisinformation.TheApplicantcontendsthatrefinementanduseofthismodelwouldallow100%compensationforimpactstomooseanddevelopmentofthemodelingapproachshouldalsobeconsideredout-of-kindmitigationforspeciesimpactswhichcannotbeotherwiseaddressed(ExhibitE,Vol.6A,Chap.3,p.E-3-530).TheStafffeelsthatcurrentuncertaintiesdonotallowonetoreachthiscon-clusion;nordoestheStaffconsidermodelingalonetobesuitablemitigation.TheApplicantwouldassisttheAlaskaBoardofGameinconductingacontrolledmoosehuntwithintheprojectareatoavoidover-browsingoftheareabydisplacedmoose.Theneedforsuchahuntwouldbeassessedusingthemodelingapproachdescribedabove.Ahuntwouldbeconductedifstudiesdeterminethatthereceivingareascouldnotsupportdisplacedmoosewithoutdegrada-tionofcarryingcapacityandtheBoarddeemeditappropriate.Hazardstomovementcreatedbytheimpoundmentwouldbereducedthroughclearingoftheimpound-mentzonepriortofloodingandthroughaprogramofdebrisremovalasnecessarytocontinuethroughoutthelicenseperiod.Monitoringoftheimpoundmentduringtheopen-waterperiodwouldidentifydebrishazards.Sensitivewildlifeareasidentifiedinthemonitoringstudieswouldbeprotectedfromdisturbancefromprojectaircraftbythefollowingguidelinesandmeasuresforprojectpersonnel:Pilotswouldberequiredtomaintainaminimumaltitudeof1,000ft(300m)abovegroundlevelexceptduringtake-offandlandingthroughoutthebasin.Aircraftlandingswouldbeprohibitedwithin0.5mi(0.8m)oftheJayCreekminerallickbetweenApril15andJune15.AircraftlandingswouldbeprohibitedwithintheNelchinacaribouherdcalvingareaintheTalkeetnaMountainsbetweenMay15andJune30.Aircraftlandingswouldbeprohibitedwithin0.25mi(0.4km)ofknownactivewolfdensorrendezvoussitesduringMay1throughJuly31.Aircraftlandingswouldbeprohibitedwithin0.5mi(0.8km)ofactivegoldeneaglenestsbetweenMarch15andAugust31.Aircraftlandingswouldbeprohibitedwithin0.25mi(0.4km)ofactivegyrfalconnestsbetweenFebruary15andAugust15.Anaircraftbufferzoneofatleast0.25mi(0.4km)or1,000verticalfeet(300m)wouldbeestablishedaroundlakesusedbytrumpeterswansduringthenestingseason.Allaircraftrestrictionsandscheduleswouldbeprovidedtoaircraftpilotsinaconcisemanual.Grounddisturbanceofidentifiedsensitiveareaswouldbeavoidedthroughtheguidelinesandmeasuresdescribedbelow.Forthepurposesofthisdiscussion,minorgroundactivityincludesshort-termreconnaissanceandexplorationtypeprogramssuchasfieldinventories.MajorgroundK-80earlysuccessionalstages.Impactsofhabitatlossfromotherprojectfeaturesmightbecompen-satedforthroughincreasedcarryingcapacityformooseprovidedwiththiscorridordesign.Otherspecies(e.g.,marten,hare)couldalsobenefitfromthiscorridordesignbecausetheretentionofcoverinthecorridorwouldpresentlessofapsychologicalorvisualbarriertomovements.HabitatalterationthatwouldoccurdownstreamfromtheDevilCanyondamwouldbereducedthroughtheuseofmultilevelintakestructuresthatwouldmaintainrivertemperaturesasclosetonormalaspossiblegivenoperationalgoals.Compensationforpermanenthabitatlossandalterationformoose,brownbear,andblackbearwouldbeprovidedbyhabitatenhancementmeasuresandacquisitionofreplacementlands.Carry-ingcapacityformooseandbearcouldbeenhancedbymeasureswhichallowdevelopmentofearlysuccessionalvegetation,suchasburning,logging,orlandclearing.Theseearlysuccessionalcommunitiesgenerallyhavehigherbrowseproductionthanmatureforest(WolffandZasada,1979).However,asnotedpreviously,wildlifeuseofthisavailablebrowseisnotacertainty.TheApplicantmuststudyfurthertheefficacyofsuchtechniquesinordertodeterminetheamountsofcompensationthatwouldberequiredtoreplacelostcarryingcapacity.TheApplicantiscurrentlyrefiningitsestimatesofcarrying-capacitylossesthatmightbeincurred.Aspartofthis,theApplicantisdevelopingahabitat-basedmodeltodeterminepotentialimpactofhabitatlossonmoosepopulations.Anestimateofthenumberofacresrequiredtomitigateforhabitatlossesformoosewouldbedeterminedusingthisinformation.TheApplicantcontendsthatrefinementanduseofthismodelwouldallow100%compensationforimpactstomooseanddevelopmentofthemodelingapproachshouldalsobeconsideredout-of-kindmitigationforspeciesimpactswhichcannotbeotherwiseaddressed(ExhibitE,Vol.6A,Chap.3,p.E-3-530).TheStafffeelsthatcurrentuncertaintiesdonotallowonetoreachthiscon-clusion;nordoestheStaffconsidermodelingalonetobesuitablemitigation.TheApplicantwouldassisttheAlaskaBoardofGameinconductingacontrolledmoosehuntwithintheprojectareatoavoidover-browsingoftheareabydisplacedmoose.Theneedforsuchahuntwouldbeassessedusingthemodelingapproachdescribedabove.Ahuntwouldbeconductedifstudiesdeterminethatthereceivingareascouldnotsupportdisplacedmoosewithoutdegrada-tionofcarryingcapacityandtheBoarddeemeditappropriate.Hazardstomovementcreatedbytheimpoundmentwouldbereducedthroughclearingoftheimpound-mentzonepriortofloodingandthroughaprogramofdebrisremovalasnecessarytocontinuethroughoutthelicenseperiod.Monitoringoftheimpoundmentduringtheopen-waterperiodwouldidentifydebrishazards.Sensitivewildlifeareasidentifiedinthemonitoringstudieswouldbeprotectedfromdisturbancefromprojectaircraftbythefollowingguidelinesandmeasuresforprojectpersonnel:Pilotswouldberequiredtomaintainaminimumaltitudeof1,000ft(300m)abovegroundlevelexceptduringtake-offandlandingthroughoutthebasin.Aircraftlandingswouldbeprohibitedwithin0.5mi(0.8m)oftheJayCreekminerallickbetweenApril15andJune15.AircraftlandingswouldbeprohibitedwithintheNelchinacaribouherdcalvingareaintheTalkeetnaMountainsbetweenMay15andJune30.Aircraftlandingswouldbeprohibitedwithin0.25mi(0.4km)ofknownactivewolfdensorrendezvoussitesduringMay1throughJuly31.Aircraftlandingswouldbeprohibitedwithin0.5mi(0.8km)ofactivegoldeneaglenestsbetweenMarch15andAugust31.Aircraftlandingswouldbeprohibitedwithin0.25mi(0.4km)ofactivegyrfalconnestsbetweenFebruary15andAugust15.Anaircraftbufferzoneofatleast0.25mi(0.4km)or1,000verticalfeet(300m)wouldbeestablishedaroundlakesusedbytrumpeterswansduringthenestingseason.Allaircraftrestrictionsandscheduleswouldbeprovidedtoaircraftpilotsinaconcisemanual.Grounddisturbanceofidentifiedsensitiveareaswouldbeavoidedthroughtheguidelinesandmeasuresdescribedbelow.Forthepurposesofthisdiscussion,minorgroundactivityincludesshort-termreconnaissanceandexplorationtypeprogramssuchasfieldinventories.Majorground
K-81activitywouldinvolvesuchthingsasclearing,padconstruction,blasting,andfacilityconstruc-tion.Allofthesewouldrequirelargenumbersofpersonnel,equipment,surfacedisturbance,noise,andvehicularactivity.Theprotectionmeasuresimplementedwouldinclude:KnownraptornestinglocationswouldbeassumedtobeoccupieduntilJune1ofeachyear,afterwhich,protectionmeasureswouldbewithdrawnfortheremainderoftheyearifthenestwasdocumentedtobeinactive.Majorgroundactivitywouldbeprohibitedwithin0.5mi(0.8km)oftheJayCreekminerallickbetweenApril15andJune15.Thereservoiradjacenttothelickwouldbeclosedtoboatandfloatplaneusewithin0.5mi(0.8km)ofthelick.Clearingactivitiesintheimpoundmentareawouldberestrictedtononsensitiveperiodsnearareasidentifiedassensitivetodisturbance(e.g.,concentrationsofcalvingmoose,brownandblackbears,denningwolves,migratingcaribou,raptornests,etc.).Majorgroundactivitywouldbeprohibitedwithin0.25mi(0.4km)ofallknownactivebeardensbetweenSeptember15andMay15.Majorgroundactivitywouldbeprohibitedwithin0.5mi(0.8km)ofwaterbodiesusedbyswansduringthenestingseasonandothertimeswhenswansarepresent.Groundactivitywouldbeprohibitedwithin0.25mi(0.4km)ofknownactivewolfdensorrendezvoussitesbetweenMay1andJuly31.Majorgroundactivitywouldbeprohibitedwithin0.5mi(0.8km)ofactivegoldeneaglesnestsbetweenMarch15andAugust31,within0.25mi(0.4km)ofactivebaldeaglenestsbetweenMarch15andAugust31,orwithinO.25mi(0.4km)ofgyrfa1connestsbetweenFebruary15andAugust15.Althoughcompleteavoidanceoftheimpactsofalteredcariboumovementsandrangeusewouldnotbepossiblewiththerouteproposed,designchangesintheaccessroadandrealignmenttominimizeeffectsoncurrentmajoruseareasoftheNelchinarangewouldreduceitsimpact.Althoughthisrealignmentwouldavoidsomeareasforcariboucalving,somecowsthatcalveinthemountainstothewestoftheroadwouldstillbeaffected.Useofside-borrowtechniqueswouldminimizephysicalandvisualbarriereffectsoftheroadtocaribouandotherspecies.Thistechniquewouldresultinafinishedroadprofilelessthan4ft(1.2m)aboveoriginalgroundlevelandwouldreducetheamountofhabitatlosttomaterialsites.Theeffectsofvehicletrafficoncariboumovementswouldbeminimizedbyreducingthevolume,speed,orfrequencyoftrafficontheroad.Pub1icaccesswou1dbeprohibitedduringtheconstructionperiod.TheApplicantiscurrentlyreviewingoptionsforreducingtrafficvolume.Furtherminimizationofimpactscouldbeprovidedthroughbusingworkerstothesite,allowingonlyconvoytraffic,orreducingthespeedlimitandvolumeoftrafficduringsensitiveperiods.Becausedustcloudsbehindvehiclesaddtothevisualeffectoncaribou,watertruckswouldbeusedtocontroldustalongtheroadduringtheconstructionphase.Continuedmonitoringwouldevaluatetheresidualimpact(ifany)oncaribouandtheneedforout-of-kindmitigationforcaribou.IfmonitoringofDall'ssheepindicatedapopulation-leveleffectofpartialinundationoftheJayCreekminerallick,newsoilwouldbeexposedtorectifytheimpact.Monitoringuseandcomparisonofsoilsampleswouldallowevaluationoftheeffectivenessofthismitigation.Theimpactofoverharvestofgamespecieswithimprovedaccesswouldbeavoidedduringconstruc-tionbyprohibitingpublicaccessviatheprojectroadorairfield,prohibitingemployeesandtheirfamiliesfromusingprojectfacilitiesorequipmentforhuntingandtrapping,andbyprovidingdatafrommonitoringinvestigationswhichmightassisttheAlaskaBoardofGameinregulatinghuntingandtrappingactivitiesinthearea.Duringtheoperationphase,theApplicantwouldhavenocontroloverharvestactivitiesbutwouldcontinuetoprovideanypertinentdatatotheAlaskaDepartmentofFishandGameandassistanceintheirmanagementactivities.Thecreationofnuisanceanimalswouldbeavoidedthroughcombinedimplementationofthefollow-inggarbage-controlandeducationmeasures:AnEnvironmentalBriefingProgramforemployeeswouldberequiredandwouldincludebrief-ingsonregulationsprohibitingfeedingofanimalsandreasonsfortherestrictions.Stateregulationsprohibitingfeedingofwildanimalswouldbestrictlyenforced.Constructioncampsandlandfillswouldbefencedwithbear-resistantfencing,andgateswouldbemonitoredtoensuretheeffectivenessofthe'fencing.K-81activitywouldinvolvesuchthingsasclearing,padconstruction,blasting,andfacilityconstruc-tion.Allofthesewouldrequirelargenumbersofpersonnel,equipment,surfacedisturbance,noise,andvehicularactivity.Theprotectionmeasuresimplementedwouldinclude:KnownraptornestinglocationswouldbeassumedtobeoccupieduntilJune1ofeachyear,afterwhich,protectionmeasureswouldbewithdrawnfortheremainderoftheyearifthenestwasdocumentedtobeinactive.Majorgroundactivitywouldbeprohibitedwithin0.5mi(0.8km)oftheJayCreekminerallickbetweenApril15andJune15.Thereservoiradjacenttothelickwouldbeclosedtoboatandfloatplaneusewithin0.5mi(0.8km)ofthelick.Clearingactivitiesintheimpoundmentareawouldberestrictedtononsensitiveperiodsnearareasidentifiedassensitivetodisturbance(e.g.,concentrationsofcalvingmoose,brownandblackbears,denningwolves,migratingcaribou,raptornests,etc.).Majorgroundactivitywouldbeprohibitedwithin0.25mi(0.4km)ofallknownactivebeardensbetweenSeptember15andMay15.Majorgroundactivitywouldbeprohibitedwithin0.5mi(0.8km)ofwaterbodiesusedbyswansduringthenestingseasonandothertimeswhenswansarepresent.Groundactivitywouldbeprohibitedwithin0.25mi(0.4km)ofknownactivewolfdensorrendezvoussitesbetweenMay1andJuly31.Majorgroundactivitywouldbeprohibitedwithin0.5mi(0.8km)ofactivegoldeneaglesnestsbetweenMarch15andAugust31,within0.25mi(0.4km)ofactivebaldeaglenestsbetweenMarch15andAugust31,orwithinO.25mi(0.4km)ofgyrfa1connestsbetweenFebruary15andAugust15.Althoughcompleteavoidanceoftheimpactsofalteredcariboumovementsandrangeusewouldnotbepossiblewiththerouteproposed,designchangesintheaccessroadandrealignmenttominimizeeffectsoncurrentmajoruseareasoftheNelchinarangewouldreduceitsimpact.Althoughthisrealignmentwouldavoidsomeareasforcariboucalving,somecowsthatcalveinthemountainstothewestoftheroadwouldstillbeaffected.Useofside-borrowtechniqueswouldminimizephysicalandvisualbarriereffectsoftheroadtocaribouandotherspecies.Thistechniquewouldresultinafinishedroadprofilelessthan4ft(1.2m)aboveoriginalgroundlevelandwouldreducetheamountofhabitatlosttomaterialsites.Theeffectsofvehicletrafficoncariboumovementswouldbeminimizedbyreducingthevolume,speed,orfrequencyoftrafficontheroad.Pub1icaccesswou1dbeprohibitedduringtheconstructionperiod.TheApplicantiscurrentlyreviewingoptionsforreducingtrafficvolume.Furtherminimizationofimpactscouldbeprovidedthroughbusingworkerstothesite,allowingonlyconvoytraffic,orreducingthespeedlimitandvolumeoftrafficduringsensitiveperiods.Becausedustcloudsbehindvehiclesaddtothevisualeffectoncaribou,watertruckswouldbeusedtocontroldustalongtheroadduringtheconstructionphase.Continuedmonitoringwouldevaluatetheresidualimpact(ifany)oncaribouandtheneedforout-of-kindmitigationforcaribou.IfmonitoringofDall'ssheepindicatedapopulation-leveleffectofpartialinundationoftheJayCreekminerallick,newsoilwouldbeexposedtorectifytheimpact.Monitoringuseandcomparisonofsoilsampleswouldallowevaluationoftheeffectivenessofthismitigation.Theimpactofoverharvestofgamespecieswithimprovedaccesswouldbeavoidedduringconstruc-tionbyprohibitingpublicaccessviatheprojectroadorairfield,prohibitingemployeesandtheirfamiliesfromusingprojectfacilitiesorequipmentforhuntingandtrapping,andbyprovidingdatafrommonitoringinvestigationswhichmightassisttheAlaskaBoardofGameinregulatinghuntingandtrappingactivitiesinthearea.Duringtheoperationphase,theApplicantwouldhavenocontroloverharvestactivitiesbutwouldcontinuetoprovideanypertinentdatatotheAlaskaDepartmentofFishandGameandassistanceintheirmanagementactivities.Thecreationofnuisanceanimalswouldbeavoidedthroughcombinedimplementationofthefollow-inggarbage-controlandeducationmeasures:AnEnvironmentalBriefingProgramforemployeeswouldberequiredandwouldincludebrief-ingsonregulationsprohibitingfeedingofanimalsandreasonsfortherestrictions.Stateregulationsprohibitingfeedingofwildanimalswouldbestrictlyenforced.Constructioncampsandlandfillswouldbefencedwithbear-resistantfencing,andgateswouldbemonitoredtoensuretheeffectivenessofthe'fencing.
K-82Securegarbagecontainerswouldberequiredinworkareas.Personnelwouldbeassignedtheresponsibilityforpickingupanddisposingofalldiscardedrefuseinworkareasandalongroads.Putresciblekitchenwasteswouldbestoredindoorsandcompletelyincinerateddaily,ormoreoftenifrequired,inadequateincinerators.Solidwastelandfillswouldbecoveredwithsoildaily,orasrequiredbypermitstipula-tions.Theconstructionmanagerwouldbeinstructedtodevelopananimalcontrolstrategydirectedatavoidingandminimizingallproject-relatedproblemsandtorespondpromptlytoanysituationsthatarise.Decreasedavailabilityofsalmontobearswouldbecompensatedforbyenhancementof13sloughsbetweenDevilCanyonandtheconfluenceoftheChulitnaandTalkeetnarivers(seeAppendixI).IncreasedactivityatPrairieCreekcouldbeasecondaryimpactoftheprojectthatwouldhaveanegativeeffectonbrownandblackbearswhichmakeseasonalmovementstotheareaduringsalmonruns.TheApplicantwouldassistresourcemanagementagenciesinassessingthisimpactandinpreparingrecommendationsformitigatingactions.Theimpactsofdecreasedavailabilityofungulatepreyforbrownbear,blackbear,andwolfwouldbereducedthroughmeasurestoavoid,minimize,orcompensateforimpactstoungulatepopulations.However,itispossiblethatpredatorpopulationswouldbereducedthroughharvestasamanagementstrategytoallowincreasedharvestofungulatesbyhumans.Therefore,completemitigationofimpactsisunlikelyforthesespecies.Lossofhabitatforaquaticfurbearerswouldbereducedbyloweringgravelrequirementsthroughside-borrowtechniquesandutilizingonlyborrowsitesD,E,I,J,andK(Figs.2-2and2-6).Inaddition,materialfortheaccessroadintheDeadmanCreekareawouldbeobtainedifnecessaryfromsmalluplandsitesoutsidetheDeadmanCreekdrainage.Lossofhabitatforaquaticandsemi-aquaticfurbearers(especiallybeaver)wouldbecompensatedforthroughenhancementofsloughsinthereachbetweenDevilCanyonandtheconfluencewiththeChulitnaandTalkeetnarivers.Thirteensloughsinthisreachwouldbemanagedassalmonspawn-ingsloughs,andbeaverarelikelytobeactivelyexcludedfromthese.Oftheremainingsloughs,thebeavermodelmightindicatetheenhancementmeasuresrequiredforcolonizationandover-winteringbybeavers.Sloughenhancementmeasurescouldalsobenefitmuskrat,mink,andotterandmightprovidecompletecompensationforaquaticandsemi-aquaticfurbearers.Theunavoidablelossofraptornestinglocationswouldbecompensatedforbysiteenhancementandthecreationofartificialnestinglocations.Thesuccessofthesemeasureswouldbedeter-minedthroughannualmonitoringefforts.Acombinationofmeasuresincludingsubsequentmodifi-cationswouldbeuseduntilthenumberofsuccessfulnewnestingsequalsorexceedsthenumberofnestinggoldeneaglepairslosttotheproject.K.4.2RecommendedMitigationAsnotedabove,theApplicanthasbeendevelopinganextensivemitigationplanforimplementa-tionduringconstructionandoperationoftheproposedproject.ThisplanhasbeendevelopedinconservationwiththemajorFederalandstateresourceagenciesinAlaska.Theformalcommentsofresourceagenciesonmitigationhavetendedtobegeneralcritiquesofthemitigationplaninitscurrentstate.Generalrecommendationsinclude:(1)continuedcloseinteractionwiththeresourceagencies;(2)furtherstudiesoftheeffectivenessofproposedactions;and,(3)continuedmonitoringofthestatusofwildlifeandmitigationactionsinthebasin.TheStaffconcursthatcontinued,closeinteractionwiththeresourceagenciesisanecessityfordevelopingandimplementingmitigativeactions.TheApplicantalsoacknowledgesthenecessityofsuchinteraction.However,thereappearstobesomedissatisfactionamongresourceagencieswiththecurrentlackofdefinitedirectioninthemitigationplan.InlargepartthisisbecausethereisinsufficientinformationastothefeasibilityofanumberoftheApplicant'smitigationproposals.Manyofthemitigationproposalsrevolvearoundhabitatrehabilitationandenhancement.Manyoftheseproposalsarereliantuponlimiteddataandexperience.Responsesofplantcommunitiestotheserevegetationandhabitatmanipulationactionshavenotbeendocumentedsufficientlytopredictwithconfidencetheresultsofimplementingtheseapproaches(seeAppendixJ).Theresponsesofwildlifepopulationstothesemanipulationsofplantcommunitiesareevenmoredifficulttopredictwithconfidence.Onthewhole,theApplicanthasnotdocumentedthelikeli-hoodofsuccessforitsrehabilitationandenhancementproposalsnorhastheApplicantdocumentedtheamountofcompensationthatcouldbeattributedtotheenhancementefforts.FortheseK-82Securegarbagecontainerswouldberequiredinworkareas.Personnelwouldbeassignedtheresponsibilityforpickingupanddisposingofalldiscardedrefuseinworkareasandalongroads.Putresciblekitchenwasteswouldbestoredindoorsandcompletelyincinerateddaily,ormoreoftenifrequired,inadequateincinerators.Solidwastelandfillswouldbecoveredwithsoildaily,orasrequiredbypermitstipula-tions.Theconstructionmanagerwouldbeinstructedtodevelopananimalcontrolstrategydirectedatavoidingandminimizingallproject-relatedproblemsandtorespondpromptlytoanysituationsthatarise.Decreasedavailabilityofsalmontobearswouldbecompensatedforbyenhancementof13sloughsbetweenDevilCanyonandtheconfluenceoftheChulitnaandTalkeetnarivers(seeAppendixI).IncreasedactivityatPrairieCreekcouldbeasecondaryimpactoftheprojectthatwouldhaveanegativeeffectonbrownandblackbearswhichmakeseasonalmovementstotheareaduringsalmonruns.TheApplicantwouldassistresourcemanagementagenciesinassessingthisimpactandinpreparingrecommendationsformitigatingactions.Theimpactsofdecreasedavailabilityofungulatepreyforbrownbear,blackbear,andwolfwouldbereducedthroughmeasurestoavoid,minimize,orcompensateforimpactstoungulatepopulations.However,itispossiblethatpredatorpopulationswouldbereducedthroughharvestasamanagementstrategytoallowincreasedharvestofungulatesbyhumans.Therefore,completemitigationofimpactsisunlikelyforthesespecies.Lossofhabitatforaquaticfurbearerswouldbereducedbyloweringgravelrequirementsthroughside-borrowtechniquesandutilizingonlyborrowsitesD,E,I,J,andK(Figs.2-2and2-6).Inaddition,materialfortheaccessroadintheDeadmanCreekareawouldbeobtainedifnecessaryfromsmalluplandsitesoutsidetheDeadmanCreekdrainage.Lossofhabitatforaquaticandsemi-aquaticfurbearers(especiallybeaver)wouldbecompensatedforthroughenhancementofsloughsinthereachbetweenDevilCanyonandtheconfluencewiththeChulitnaandTalkeetnarivers.Thirteensloughsinthisreachwouldbemanagedassalmonspawn-ingsloughs,andbeaverarelikelytobeactivelyexcludedfromthese.Oftheremainingsloughs,thebeavermodelmightindicatetheenhancementmeasuresrequiredforcolonizationandover-winteringbybeavers.Sloughenhancementmeasurescouldalsobenefitmuskrat,mink,andotterandmightprovidecompletecompensationforaquaticandsemi-aquaticfurbearers.Theunavoidablelossofraptornestinglocationswouldbecompensatedforbysiteenhancementandthecreationofartificialnestinglocations.Thesuccessofthesemeasureswouldbedeter-minedthroughannualmonitoringefforts.Acombinationofmeasuresincludingsubsequentmodifi-cationswouldbeuseduntilthenumberofsuccessfulnewnestingsequalsorexceedsthenumberofnestinggoldeneaglepairslosttotheproject.K.4.2RecommendedMitigationAsnotedabove,theApplicanthasbeendevelopinganextensivemitigationplanforimplementa-tionduringconstructionandoperationoftheproposedproject.ThisplanhasbeendevelopedinconservationwiththemajorFederalandstateresourceagenciesinAlaska.Theformalcommentsofresourceagenciesonmitigationhavetendedtobegeneralcritiquesofthemitigationplaninitscurrentstate.Generalrecommendationsinclude:(1)continuedcloseinteractionwiththeresourceagencies;(2)furtherstudiesoftheeffectivenessofproposedactions;and,(3)continuedmonitoringofthestatusofwildlifeandmitigationactionsinthebasin.TheStaffconcursthatcontinued,closeinteractionwiththeresourceagenciesisanecessityfordevelopingandimplementingmitigativeactions.TheApplicantalsoacknowledgesthenecessityofsuchinteraction.However,thereappearstobesomedissatisfactionamongresourceagencieswiththecurrentlackofdefinitedirectioninthemitigationplan.InlargepartthisisbecausethereisinsufficientinformationastothefeasibilityofanumberoftheApplicant'smitigationproposals.Manyofthemitigationproposalsrevolvearoundhabitatrehabilitationandenhancement.Manyoftheseproposalsarereliantuponlimiteddataandexperience.Responsesofplantcommunitiestotheserevegetationandhabitatmanipulationactionshavenotbeendocumentedsufficientlytopredictwithconfidencetheresultsofimplementingtheseapproaches(seeAppendixJ).Theresponsesofwildlifepopulationstothesemanipulationsofplantcommunitiesareevenmoredifficulttopredictwithconfidence.Onthewhole,theApplicanthasnotdocumentedthelikeli-hoodofsuccessforitsrehabilitationandenhancementproposalsnorhastheApplicantdocumentedtheamountofcompensationthatcouldbeattributedtotheenhancementefforts.Forthese
K-83reasonstheStaffhasassumedinitsanalysisthatimpactswouldnotbecompensatedforbyenhancementtechniques.TheStaffconcursthattheApplicantshouldfurtherstudytheefficacyofproposedrehabilitationandenhancementtechniqueswiththegoalofimplementingfeasiblemitigationactionsthathavealikelihoodofsuccess.Continuedmonitoringofwildlifepopulationsandtheirresponsestotheprojectandmitigationactionsisnecessaryinordertodevisefuturemitigationoraltertheapproachtomitigationifneededandtoquantifytheextenttowhichmitigationiscompensatingforlosses.TheStaffagreesthatsuchstudiesareanintegralpartofthemitigationplan.U.S.FishandWildlifeServicehasstatedthatseveralofthewildlifespecieswhichithasidentifiedasevaluationspeciesfallwithinitscriteriaforrequiring"in-kind"compensation.Thisrequirescompensationforlosstoagivenspeciesbyreplacingorenhancementoftheaffectedspecies.Thisapproachcontrastswith"out-of-kind"mitigationofonespeciestocompensatelossestoanotherspecies.Thesedifferenceswouldhavetoberesolvedduringtheissuesresolu-tionphaseofthelicensingprocess.TheStateofAlaskahasnotedthattheApplicantcannotrelyupontheAlaskaBoardofGametomitigatetheprojectschangesinpatternsofhumanuseandeffectsfromthesechanges.ThestatearguesthattheApplicantshouldtakeeverysteppossibletomitigateimpactspriortoanyneedfortheBoardofGametoreviewandrevisemanagementstrategies.TheStaffagreeswiththisviewandconsidersthatanyBoardreviewandrevisionsnecessitatedbytheprojectwouldbeimpactsoftheprojectandnotapartofmitigationactivities.Severalagenciessuggestedalterationsinproposedprojectplansinordertoreduceoravoidimpacts.TheStaffhasconsideredtheseinitsdiscussionofalternativestoproposedprojectfeatures.K.5SIGNIFICANTENVIRONMENTALIMPACTSK.5.1ProposedProjectAsproposed,theSusitnaHydroelectricProjectwouldhavesevereimpactstowildlife,principallyintheupperandmiddleSusitnaBasin.Themajorprojectimpactswouldinclude:ReductionoftheSusitnaBasin'smoosepopulationduetolossofabout60mi2(150km2)ofimportanthabitat,atwofoldincreaseinhuntingpressure,andincreasedmortality.Severereductioninthebasin'sblackbearpopulationduetolossofabout60mi2(150km2)ofalready-limitedhabitatfromWatanadevelopment,lossof50%ofavailabledenningsites,andatwofoldincreaseinhuntingpressure.Reductioninthebasin'sbrownbearpopulationduetolossofsomespringhabitat,reducedavailabilityofprey(mooseandsomesalmon),andatwofoldincreaseinhuntingpressure.Reductioninthebasin'sgraywolfpopulationduetolossofabout10%ofthehomerangeofthecentral-mostpack,reducedavailabilityofprey(moose),andatwofoldincreaseinhuntingpressure.PossiblereductionoftheWatanaHillsgroupofDall'ssheepduetoreductioninthesuit-abilityoftheJayCreekminerallickasaresultofinundationandleachingofsolubleminerals.Possiblerestrictionofthemovementofcaribouinthebasin.Lossordisturbanceof4baldeagleand16to18goldeneaglenestinglocations.Lossof50%ofthecliff-nestinghabitatalongthemiddleSusitnaRiver.Alterationofhuman-usepatternsintheSusitnaRiverBasinduetoafourfoldincreaseinnumberofusers,possiblyleadingtoloweredgame-harvestsuccessrates,reductioninthequalityofthehuntingexperience,andachangeinthemakeupofusersofthebasin.Possibleneedtoalterwildlifemanagementplansandgoalswithinthebasin.K.5.2AlternativestotheProposedProjectSignificantenvironmentalimpactsfromimplementationofalternativestotheproposedprojectwouldinclUde:Somealternativetransmissionrouteswoulddoubletheamountofhabitatcrossedincomparisontotheproposedroutes.K-83reasonstheStaffhasassumedinitsanalysisthatimpactswouldnotbecompensatedforbyenhancementtechniques.TheStaffconcursthattheApplicantshouldfurtherstudytheefficacyofproposedrehabilitationandenhancementtechniqueswiththegoalofimplementingfeasiblemitigationactionsthathavealikelihoodofsuccess.Continuedmonitoringofwildlifepopulationsandtheirresponsestotheprojectandmitigationactionsisnecessaryinordertodevisefuturemitigationoraltertheapproachtomitigationifneededandtoquantifytheextenttowhichmitigationiscompensatingforlosses.TheStaffagreesthatsuchstudiesareanintegralpartofthemitigationplan.U.S.FishandWildlifeServicehasstatedthatseveralofthewildlifespecieswhichithasidentifiedasevaluationspeciesfallwithinitscriteriaforrequiring"in-kind"compensation.Thisrequirescompensationforlosstoagivenspeciesbyreplacingorenhancementoftheaffectedspecies.Thisapproachcontrastswith"out-of-kind"mitigationofonespeciestocompensatelossestoanotherspecies.Thesedifferenceswouldhavetoberesolvedduringtheissuesresolu-tionphaseofthelicensingprocess.TheStateofAlaskahasnotedthattheApplicantcannotrelyupontheAlaskaBoardofGametomitigatetheprojectschangesinpatternsofhumanuseandeffectsfromthesechanges.ThestatearguesthattheApplicantshouldtakeeverysteppossibletomitigateimpactspriortoanyneedfortheBoardofGametoreviewandrevisemanagementstrategies.TheStaffagreeswiththisviewandconsidersthatanyBoardreviewandrevisionsnecessitatedbytheprojectwouldbeimpactsoftheprojectandnotapartofmitigationactivities.Severalagenciessuggestedalterationsinproposedprojectplansinordertoreduceoravoidimpacts.TheStaffhasconsideredtheseinitsdiscussionofalternativestoproposedprojectfeatures.K.5SIGNIFICANTENVIRONMENTALIMPACTSK.5.1ProposedProjectAsproposed,theSusitnaHydroelectricProjectwouldhavesevereimpactstowildlife,principallyintheupperandmiddleSusitnaBasin.Themajorprojectimpactswouldinclude:ReductionoftheSusitnaBasin'smoosepopulationduetolossofabout60mi2(150km2)ofimportanthabitat,atwofoldincreaseinhuntingpressure,andincreasedmortality.Severereductioninthebasin'sblackbearpopulationduetolossofabout60mi2(150km2)ofalready-limitedhabitatfromWatanadevelopment,lossof50%ofavailabledenningsites,andatwofoldincreaseinhuntingpressure.Reductioninthebasin'sbrownbearpopulationduetolossofsomespringhabitat,reducedavailabilityofprey(mooseandsomesalmon),andatwofoldincreaseinhuntingpressure.Reductioninthebasin'sgraywolfpopulationduetolossofabout10%ofthehomerangeofthecentral-mostpack,reducedavailabilityofprey(moose),andatwofoldincreaseinhuntingpressure.PossiblereductionoftheWatanaHillsgroupofDall'ssheepduetoreductioninthesuit-abilityoftheJayCreekminerallickasaresultofinundationandleachingofsolubleminerals.Possiblerestrictionofthemovementofcaribouinthebasin.Lossordisturbanceof4baldeagleand16to18goldeneaglenestinglocations.Lossof50%ofthecliff-nestinghabitatalongthemiddleSusitnaRiver.Alterationofhuman-usepatternsintheSusitnaRiverBasinduetoafourfoldincreaseinnumberofusers,possiblyleadingtoloweredgame-harvestsuccessrates,reductioninthequalityofthehuntingexperience,andachangeinthemakeupofusersofthebasin.Possibleneedtoalterwildlifemanagementplansandgoalswithinthebasin.K.5.2AlternativestotheProposedProjectSignificantenvironmentalimpactsfromimplementationofalternativestotheproposedprojectwouldinclude:Somealternativetransmissionrouteswoulddoubletheamountofhabitatcrossedincomparisontotheproposedroutes.
K-84EliminationoftheDenali-Watanaaccessroutewouldmarkedlyreduceaccessibilityofthebasinincomparisontotheproposedproject.AParksHighwayaccessconnectionwouldincreaseaccessibilityevenmorethanproposed.AnaccessroutetoWatanasouthoftherivercouldreducethesuitabilityofPrairieCreekasafisheryforbrownbear.Adoptionofthenatural-gasgenerationconfigurationwouldreducelossofwildlifehabitataboutsixfoldincomparisonwiththeproposedproject.Adoptionofthecombinedhydro-thermalgenerationconfigurationwouldresultindoublethehabitatlossoftheproposedproject,aswellaslossofthePrairieCreekfishery.Adoptionofthecoalgenerationconfigurationwouldreducelossofwildlifehabitataboutfourfoldincomparisontotheproposedproject.REFERENCESFORAPPENDIXKAcresAmerican,Inc.1982a.SusitnaHydroelectricProjectTask2--SurveysandSiteFacilities.Subtask2.10:AccessRoads.CloseoutReports;AccessRouteSelectionReport(FinalDraft).PreparedforAlaskaPowerAuthority.Anchorage.AcresAmerican.1982b.SusitnaHydroelectricProject.TransmissionLineSelectedRoute.FinalDraft.PreparedforAlaskaPowerAuthority.Anchorage.AlaskaDepartmentofFishandGame.1973.Alaska'sWildlifeandHabitat.Vol.I.Juneau.AlaskaDepartmentofFishandGame.1978.Alaska'sWildlifeandHabitat.Vol.II.Juneau.AlaskaDepartmentofFishandGame.1981.AlaskaGameManagementUnits.Juneau.AlaskaDepartmentofFishandGame.1982.AlaskaMiscellaneousGameRegulations.No.3--Effective1July.AlaskaBoardofGame.Juneau.AlaskaDepartmentofFishandGame.1983a.AlaskaHuntingRegulations.No.24.RegulationsEffective:July1,1983-June30,1984.Juneau.AlaskaDepartmentofFishandGame.1983b.AlaskaTrappingRegulations.No.24.RegulationsEffective:July11983-June30,1984.Juneau.Allen,A.W.1982a.HabitatSuitabilityIndexModels:Beaver.FWS/OBS-82/10.30.andWildlifeService,OfficeofBiologicalServices.Washington,DC.Allen,A.W.1982b.HabitatSuitabilityIndexModels:Marten.FWS/OBS-82/10.11.andWildlifeService,OfficeofBiologicalServices.Washington,DC.U.S.FishU.S.Fish1978.AvianMortalityatMan-madeStructures:AnU.S.FishandWildlifeService,OfficeofBiologicalAmericanOrnithologistsUnion.1975.Check-ListofNorthAmericanBirds.FifthEdition.PortCityPress,Inc.Baltimore.691pp.Armstrong,R.H.1981.AGuidetotheBirdsofAlaska.AlaskaNorthwestPublishingCo.Anchorage.Arner,D.H.1977.TopicalBriefs:FishandWildlifeResourcesandElectricPowerGeneration,No.2.TransmissionLineRights-of-WayManagement.FWS/OBS-76/20.2.U.S.FishandWildlifeService,OfficeofBiologicalServices.Washington,DC.12pp.Asp1undhEnvironmenta1Services.1977.Environmenta1andEconomicAspectsofContemporaneousElectricTransmissionLineRight-of-WayManagementTechniques.PreparedforEmpireStateElectricEnergyResearchCorporation.Avery,M.L.,P.F.SpringerandN.S.Dailey.AnnotatedBibliography.FWS/OBS-78-58.Services.Washington,DC.108pp.Ballard,W.B.,T.H.SprakerandK.P.Taylor.1981a.CausesofneonatalmoosecalfmortalityinsouthcentralAlaska.JournalofWildlifeManagement45(2):335-342.Ballard,W.B.,R.O.StephensonandT.H.Spraker.Report.AlaskaDepartmentofFishandGame.1981b.NelchinaBasinWolfStudies.Juneau.FinalK-84EliminationoftheDenali-Watanaaccessroutewouldmarkedlyreduceaccessibilityofthebasinincomparisontotheproposedproject.AParksHighwayaccessconnectionwouldincreaseaccessibilityevenmorethanproposed.AnaccessroutetoWatanasouthoftherivercouldreducethesuitabilityofPrairieCreekasafisheryforbrownbear.Adoptionofthenatural-gasgenerationconfigurationwouldreducelossofwildlifehabitataboutsixfoldincomparisonwiththeproposedproject.Adoptionofthecombinedhydro-thermalgenerationconfigurationwouldresultindoublethehabitatlossoftheproposedproject,aswellaslossofthePrairieCreekfishery.Adoptionofthecoalgenerationconfigurationwouldreducelossofwildlifehabitataboutfourfoldincomparisontotheproposedproject.REFERENCESFORAPPENDIXKAcresAmerican,Inc.1982a.SusitnaHydroelectricProjectTask2--SurveysandSiteFacilities.Subtask2.10:AccessRoads.CloseoutReports;AccessRouteSelectionReport(FinalDraft).PreparedforAlaskaPowerAuthority.Anchorage.AcresAmerican.1982b.SusitnaHydroelectricProject.TransmissionLineSelectedRoute.FinalDraft.PreparedforAlaskaPowerAuthority.Anchorage.AlaskaDepartmentofFishandGame.1973.Alaska'sWildlifeandHabitat.Vol.I.Juneau.AlaskaDepartmentofFishandGame.1978.Alaska'sWildlifeandHabitat.Vol.II.Juneau.AlaskaDepartmentofFishandGame.1981.AlaskaGameManagementUnits.Juneau.AlaskaDepartmentofFishandGame.1982.AlaskaMiscellaneousGameRegulations.No.3--Effective1July.AlaskaBoardofGame.Juneau.AlaskaDepartmentofFishandGame.1983a.AlaskaHuntingRegulations.No.24.RegulationsEffective:July1,1983-June30,1984.Juneau.AlaskaDepartmentofFishandGame.1983b.AlaskaTrappingRegulations.No.24.RegulationsEffective:July11983-June30,1984.Juneau.Allen,A.W.1982a.HabitatSuitabilityIndexModels:Beaver.FWS/OBS-82/10.30.andWildlifeService,OfficeofBiologicalServices.Washington,DC.Allen,A.W.1982b.HabitatSuitabilityIndexModels:Marten.FWS/OBS-82/10.11.andWildlifeService,OfficeofBiologicalServices.Washington,DC.U.S.FishU.S.Fish1978.AvianMortalityatMan-madeStructures:AnU.S.FishandWildlifeService,OfficeofBiologicalAmericanOrnithologistsUnion.1975.Check-ListofNorthAmericanBirds.FifthEdition.PortCityPress,Inc.Baltimore.691pp.Armstrong,R.H.1981.AGuidetotheBirdsofAlaska.AlaskaNorthwestPublishingCo.Anchorage.Arner,D.H.1977.TopicalBriefs:FishandWildlifeResourcesandElectricPowerGeneration,No.2.TransmissionLineRights-of-WayManagement.FWS/OBS-76/20.2.U.S.FishandWildlifeService,OfficeofBiologicalServices.Washington,DC.12pp.Asp1undhEnvironmenta1Services.1977.Environmenta1andEconomicAspectsofContemporaneousElectricTransmissionLineRight-of-WayManagementTechniques.PreparedforEmpireStateElectricEnergyResearchCorporation.Avery,M.L.,P.F.SpringerandN.S.Dailey.AnnotatedBibliography.FWS/OBS-78-58.Services.Washington,DC.108pp.Ballard,W.B.,T.H.SprakerandK.P.Taylor.1981a.CausesofneonatalmoosecalfmortalityinsouthcentralAlaska.JournalofWildlifeManagement45(2):335-342.Ballard,W.B.,R.O.StephensonandT.H.Spraker.Report.AlaskaDepartmentofFishandGame.1981b.NelchinaBasinWolfStudies.Juneau.Final
1983b.SusitnaHydroelectricProjectAlaskaDepartmentofFishandGame,K-85Ballard,W.B.,C.L.Gardner,J.H.WestlundandJ.R.Dau.1982a.SusitnaHydroelectricProjectFinalPhaseIReport,BigGameStudies.Vol.III.Moose-Upstream.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Ballard,W.B.,C.L.GardnerandS.D.Miller.1982b.NelchinaYearlingMooseMortalityStudy.Vol.II.AlaskaDepartmentofFishandGame.Juneau.Ballard,W.B.,J.H.Westlund,C.L.GardnerandR.Tobey.1982c.SusitnaHydroelectricProjectPhaseIFinalReport,BigGameStudies.Vol.V.DallSheep.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Ballard,W.B.,S.D.MillerandT.H.Spraker.1982d.Homerange,dailymovements,andreproduc-tivebiologyofbrownbearinsouthcentralAlaska.CanadianFieldNaturalist96:1-5.Ballard,W.B.,C.L.Gardner,J.H.WestlundandJ.R.Dau.1982e.SusitnaHydroelectricProjectPhaseIFinalReport,BigGameStudies.Vol.V.Wolf.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Ballard,W.B.,J.S.\'Ihitman,N.G.Tankersley,L.D.AumillerandP.Hessing.1983a.SusitnaHydroelectricProjectPhaseIIProgressReport,BigGameStudies.Vol.III.Moose-Upstream.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Ballard,\'I.B.,J.S.\'Ihitman,L.D.AumillerandP.Hessing.1982AnnualReport,BigGameStudies.Vol.V.Wolf.submittedtotheAlaskaPowerAuthority.Anchorage.Banks,R.C.1979.HumanRelatedMortalityofBirdsintheUnitedStates.SpecificScientificReport-WildlifeNo.215.U.S.FishandWildlifeService.Washington,DC.BechtelCivil&Minerals,Inc.1983.ChakachamnaHydroelectricProjectInterimFeasibilityAssessmentReport.Vol.II.AppendixtoSection6.0.PreparedforAlaskaPowerAuthority.Anchorage.Belovsky,G.E.andP.A.Jordan.1981.Sodiumdynamicsandadaptationsofamoosepopulation.JournalofMammalogy62:613-621.Benson,P.C.1982.Project1002.PreventionofGoldenEagleElectrocution.FinalReport.EA-2680;ResearchBrighamYoungUniversityforElectricPowerResearchInstitute.PaloAlto,CA.Bent,A.C.1961.LifeHistoriesofNorthAmericanBirdsofPrey.Parts1and2.DoverPublica-tionsInc.NewYork.[Originallypublishedin1937and1938.JBergerud,A.T.1980.Caribou.pp.83-101,In:ofNorthAmerica.EcologyandManagement.Books.Harrisburg,PA.J.L.SchmidtandD.L.Gilbert(eds.),BigGameWildlifeManagementInstitute.StackpoleBishop,R.H.andR.A.Rausch.1974.MoosepopulationfluctuationsinAlaska.NaturalisteCanadien101:559-593.Botkin,D.B.,P.A.Jordan,A.S.Dominski,H.S.LowendorfandG.E.Hutchinson.1973.Sodiumdynamicsinanorthernecosystem.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica70(10):2745-2748.Bracken,T.D.1979.Electricalparametersofthehigh-voltagedirect-currenttransmission-lineenvironment.pp.485-500,In:R.D.Phillips,M.F.Gillis,W.T.KaumeandD.O.Mathlum(eds.),BiologicalEffectsofExtremelyLowFrequencyElectromagneticFields.CONF-781016.U.S.DepartmentofEnergy.Bramble,W.C.andvJ.R.Byrnes.1979.Evaluationofthewildlifehabitatvaluesofrights-of-way.JournalofWildlifeManagement43:642-649.Brusnyk,L.M.andF.F.Gilbert.1983.Useofshorelinetimberreservesbymoose.JournalofWildlifeManagement47(3):673-685.Burger,J.1981.Theeffectofhumanactivityonbirdsatacoastalbay.BiologicalConserva-tion21:131-241.Calkins,D.G.1983.SusitnaHydroelectricProject.PhaseIIProgressReport.BigGameStudies.Vol.IX.BelukhaWhale.Alaska DepartmentofFishandGame,submittedtoAlaskaPowerAuthority.Anchorage.1983b.SusitnaHydroelectricProjectAlaskaDepartmentofFishandGame,K-85Ballard,W.B.,C.L.Gardner,J.H.WestlundandJ.R.Dau.1982a.SusitnaHydroelectricProjectFinalPhaseIReport,BigGameStudies.Vol.III.Moose-Upstream.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Ballard,W.B.,C.L.GardnerandS.D.Miller.1982b.NelchinaYearlingMooseMortalityStudy.Vol.II.AlaskaDepartmentofFishandGame.Juneau.Ballard,W.B.,J.H.Westlund,C.L.GardnerandR.Tobey.1982c.SusitnaHydroelectricProjectPhaseIFinalReport,BigGameStudies.Vol.V.DallSheep.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Ballard,W.B.,S.D.MillerandT.H.Spraker.1982d.Homerange,dailymovements,andreproduc-tivebiologyofbrownbearinsouthcentralAlaska.CanadianFieldNaturalist96:1-5.Ballard,W.B.,C.L.Gardner,J.H.WestlundandJ.R.Dau.1982e.SusitnaHydroelectricProjectPhaseIFinalReport,BigGameStudies.Vol.V.Wolf.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Ballard,W.B.,J.S.\'1hitman,N.G.Tankersley,L.D.AumillerandP.Hessing.1983a.SusitnaHydroelectricProjectPhaseIIProgressReport,BigGameStudies.Vol.III.Moose-Upstream.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Ballard,\'1.B.,J.S.\'1hitman,L.D.AumillerandP.Hessing.1982AnnualReport,BigGameStudies.Vol.V.Wolf.submittedtotheAlaskaPowerAuthority.Anchorage.Banks,R.C.1979.HumanRelatedMortalityofBirdsintheUnitedStates.SpecificScientificReport-WildlifeNo.215.U.S.FishandWildlifeService.Washington,DC.BechtelCivil&Minerals,Inc.1983.ChakachamnaHydroelectricProjectInterimFeasibilityAssessmentReport.Vol.II.AppendixtoSection6.0.PreparedforAlaskaPowerAuthority.Anchorage.Belovsky,G.E.andP.A.Jordan.1981.Sodiumdynamicsandadaptationsofamoosepopulation.JournalofMammalogy62:613-621.Benson,P.C.1982.Project1002.PreventionofGoldenEagleElectrocution.FinalReport.EA-2680;ResearchBrighamYoungUniversityforElectricPowerResearchInstitute.PaloAlto,CA.Bent,A.C.1961.LifeHistoriesofNorthAmericanBirdsofPrey.Parts1and2.DoverPublica-tionsInc.NewYork.[Originallypublishedin1937and1938.JBergerud,A.T.1980.Caribou.pp.83-101,In:ofNorthAmerica.EcologyandManagement.Books.Harrisburg,PA.J.L.SchmidtandD.L.Gilbert(eds.),BigGameWildlifeManagementInstitute.StackpoleBishop,R.H.andR.A.Rausch.1974.MoosepopulationfluctuationsinAlaska.NaturalisteCanadien101:559-593.Botkin,D.B.,P.A.Jordan,A.S.Dominski,H.S.LowendorfandG.E.Hutchinson.1973.Sodiumdynamicsinanorthernecosystem.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica70(10):2745-2748.Bracken,T.D.1979.Electricalparametersofthehigh-voltagedirect-currenttransmission-lineenvironment.pp.485-500,In:R.D.Phillips,M.F.Gillis,W.T.KaumeandD.O.Mathlum(eds.),BiologicalEffectsofExtremelyLowFrequencyElectromagneticFields.CONF-781016.U.S.DepartmentofEnergy.Bramble,W.C.andvJ.R.Byrnes.1979.Evaluationofthewildlifehabitatvaluesofrights-of-way.JournalofWildlifeManagement43:642-649.Brusnyk,L.M.andF.F.Gilbert.1983.Useofshorelinetimberreservesbymoose.JournalofWildlifeManagement47(3):673-685.Burger,J.1981.Theeffectofhumanactivityonbirdsatacoastalbay.BiologicalConserva-tion21:131-241.Calkins,D.G.1983.SusitnaHydroelectricProject.PhaseIIProgressReport.BigGameStudies.Vol.IX.BelukhaWhale.Alaska DepartmentofFishandGame,submittedtoAlaskaPowerAuthority.Anchorage.
K-86Cameron,R.D.,K.R.Whitten,H.T.SmithandD.D.Roby.1979.Cariboudistributionandgroupcompositionassociatedwithconstructionof theTrans-AlaskaPipeline.CanadianField-Naturalist93(2):155-162.Cameron,R.D.andK.R.Hhitten.1980.Effectsof theTrans-AlaskaPipelineonCaribouMovements.AlaskaDepartmentofFishandGame.Juneau.Carve11,K.l.andP.A.Johnston.1978.ForestedEcosystems.EPRIEA-491.EnvironmentalEffectsofRight-of-HayManagementonElectricPowerResearchInstitute.PaloAlto,CA.Cavanaugh,J.B.,D.P.OlsonandS.N.Macrigeanis.1981.Hildlifeuseandmanagementofpowerlinerights-of-wayinNewHampshire.pp.276-285,In:D.ArnerandR.E.Tillman(eds.),Environmenta1ConcernsinRights-of-WayManagement.ProceedingsofSecondSymposiurn,October16-18,1979.PreparedforU.S.FishandWildlifeServiceandElectricPowerResearchInstitute.Cleland,J.G.andG.L.Kingsbury.1977.MultimediaEnvironmentalGoalsforEnvironmentalAssessment.EPA-600/7-77-136a;PB-276919.U.S.EnvironmentalProtectionAgency,ResearchTriangleInstitute.ResearchTrianglePark,NC.Coady,J.W.1974.Influenceofsnowonbehaviorofmoose.NaturalisteCanadien101:417-435.Coady,J.W.1982.Moose.pp.902-922,In:J.S.ChapmanandG.A.Feldhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.Coffin,D.l.andH.E.Stokinger.1977.Biologicaleffectsofairpollutants.pp.231-360,In:A.C.Stern(ed.),AirPollution.Vol.2.TheEffectsofAirPollution.3rded.AcademicPress.NewYork.CommonwealthAssociates,Inc.1982.Anchorage-FairbanksTransmissionIntertie;AlaskaPowerAuthority.EnvironmentalAssessmentReport.PreparedwithassistancefromDOHlEngineersandKevinHaringAssociates.CookInletRegion,Inc.,andPlacerAmex,Inc.1981.CoaltoMethanolFeasibilityStudy.BelugaMethanolProjectFinalReport.Vol.IV.Environmental.Craighead,J.J.andJ.A.Mitchell.1982.Grizzlybear.pp.515-556,In:J.A.ChapmanandG.A.Feldhamer(eds.),MammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Ba1t imore.Doucet,G.J.,R.W.StewartandK.A.Morrison.1981.Theeffectofautilityright-of-wayonwhite-taileddeerinanortherndeeryard.pp.59-1to59-9,In:EnvironmentalConcernsinRights-of-HayManagement.EPRIHS-78-141.ElectricPowerResearchInstitute.PaloAlto,CA.Dvorak,A.J.,etal.1978.ImpactsofCoal-FiredPowerPlantsonFish,Hildlife,andtheirHabitats.FH/OBS-78/24.OfficeofBiologicalServices,U.S.FishandWildlifeService.Washington,DC.Eaton,R.H.andJ.E.Gates.1981.Transmission-linerights-of-waymanagementandwhite-taileddeerhabitat:Areview.pp.58-1to58-7,In:D.ArnerandR.E.Tillman(eds.),Environ-mentalConcernsinRights-of-HayManagement.ProceedingsofSecondSymposium,October16-18,1979.PreparedforU.S.FishandWildlifeServiceandElectricPowerResearchInstitute.ElectricPowerResearchInstitute.1982.TransmissionlineReferenceBook.345kVandAbove.EPRIIEl-2500.2ndEd.PaloAlto,CA.Erwin,R.M.1980.Breedinghabitatusebycoloniallynestingwaterbirdsintwomid-AtlanticU.S.regionsunderdifferentregimesofhumandisturbance.BiologicalConservation18:39-51.Fancy,S.G.1983.MovementsandactivitiesofcaribounearoildrillingsitesintheSagavanirktokRiverfloodplain,Alaska.Arctic36:193-197.Franzmann,A.H.1980.Moose.pp.67-81,In:J.l.SchmidtandD.L.Gilbert,(eds.),BigGameofNorthAmerica.EcologyandManagement.WildlifeManagementInstitute.StackpoleBooks.Harrisburg,PA.Fraser,D.andH.Hristienko.1981.Activityofmooseandwhite-taileddeeratmineralsprings.CanadianJournalofZoology59:1991-2000.Galvin,M.T.andR.D.Cupit.1979.Right-of-HayEcologicalEffectsBibliography.EPRIEA-1080.ElectricPowerResearchInstitute,PaloAlso,CA.246pp.K-86Cameron,R.D.,K.R.Whitten,H.T.SmithandD.D.Roby.1979.Cariboudistributionandgroupcompositionassociatedwithconstructionof theTrans-AlaskaPipeline.CanadianField-Naturalist93(2):155-162.Cameron,R.D.andK.R.Hhitten.1980.Effectsof theTrans-AlaskaPipelineonCaribouMovements.AlaskaDepartmentofFishandGame.Juneau.Carve11,K.l.andP.A.Johnston.1978.ForestedEcosystems.EPRIEA-491.EnvironmentalEffectsofRight-of-HayManagementonElectricPowerResearchInstitute.PaloAlto,CA.Cavanaugh,J.B.,D.P.OlsonandS.N.Macrigeanis.1981.Hildlifeuseandmanagementofpowerlinerights-of-wayinNewHampshire.pp.276-285,In:D.ArnerandR.E.Tillman(eds.),Environmenta1ConcernsinRights-of-WayManagement.ProceedingsofSecondSymposiurn,October16-18,1979.PreparedforU.S.FishandWildlifeServiceandElectricPowerResearchInstitute.Cleland,J.G.andG.L.Kingsbury.1977.MultimediaEnvironmentalGoalsforEnvironmentalAssessment.EPA-600/7-77-136a;PB-276919.U.S.EnvironmentalProtectionAgency,ResearchTriangleInstitute.ResearchTrianglePark,NC.Coady,J.W.1974.Influenceofsnowonbehaviorofmoose.NaturalisteCanadien101:417-435.Coady,J.W.1982.Moose.pp.902-922,In:J.S.ChapmanandG.A.Feldhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.Coffin,D.l.andH.E.Stokinger.1977.Biologicaleffectsofairpollutants.pp.231-360,In:A.C.Stern(ed.),AirPollution.Vol.2.TheEffectsofAirPollution.3rded.AcademicPress.NewYork.CommonwealthAssociates,Inc.1982.Anchorage-FairbanksTransmissionIntertie;AlaskaPowerAuthority.EnvironmentalAssessmentReport.PreparedwithassistancefromDOHlEngineersandKevinHaringAssociates.CookInletRegion,Inc.,andPlacerAmex,Inc.1981.CoaltoMethanolFeasibilityStudy.BelugaMethanolProjectFinalReport.Vol.IV.Environmental.Craighead,J.J.andJ.A.Mitchell.1982.Grizzlybear.pp.515-556,In:J.A.ChapmanandG.A.Feldhamer(eds.),MammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Ba1t imore.Doucet,G.J.,R.W.StewartandK.A.Morrison.1981.Theeffectofautilityright-of-wayonwhite-taileddeerinanortherndeeryard.pp.59-1to59-9,In:EnvironmentalConcernsinRights-of-HayManagement.EPRIHS-78-141.ElectricPowerResearchInstitute.PaloAlto,CA.Dvorak,A.J.,etal.1978.ImpactsofCoal-FiredPowerPlantsonFish,Hildlife,andtheirHabitats.FH/OBS-78/24.OfficeofBiologicalServices,U.S.FishandWildlifeService.Washington,DC.Eaton,R.H.andJ.E.Gates.1981.Transmission-linerights-of-waymanagementandwhite-taileddeerhabitat:Areview.pp.58-1to58-7,In:D.ArnerandR.E.Tillman(eds.),Environ-mentalConcernsinRights-of-HayManagement.ProceedingsofSecondSymposium,October16-18,1979.PreparedforU.S.FishandWildlifeServiceandElectricPowerResearchInstitute.ElectricPowerResearchInstitute.1982.TransmissionlineReferenceBook.345kVandAbove.EPRIIEl-2500.2ndEd.PaloAlto,CA.Erwin,R.M.1980.Breedinghabitatusebycoloniallynestingwaterbirdsintwomid-AtlanticU.S.regionsunderdifferentregimesofhumandisturbance.BiologicalConservation18:39-51.Fancy,S.G.1983.MovementsandactivitiesofcaribounearoildrillingsitesintheSagavanirktokRiverfloodplain,Alaska.Arctic36:193-197.Franzmann,A.H.1980.Moose.pp.67-81,In:J.l.SchmidtandD.L.Gilbert,(eds.),BigGameofNorthAmerica.EcologyandManagement.WildlifeManagementInstitute.StackpoleBooks.Harrisburg,PA.Fraser,D.andH.Hristienko.1981.Activityofmooseandwhite-taileddeeratmineralsprings.CanadianJournalofZoology59:1991-2000.Galvin,M.T.andR.D.Cupit.1979.Right-of-HayEcologicalEffectsBibliography.EPRIEA-1080.ElectricPowerResearchInstitute,PaloAlso,CA.246pp.
K-87Gardner,C.L.andW.B.Ballard.1982.SusitnaHydroelectricProjectFinalPhaseIReport,BigGameStudies.Vol.VII.Wolverine.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Gasaway,W.C.andJ.W.Coady.1974.Reviewofenergyrequirementsandrumenfermentationinmooseandotherruminants.NaturalisteCanadien101:227-262.Gasaway,W.C.,R.O.Stephenson,J.L.Davis,P.LK.ShepherdandO.LBurris.1983.Inter-relationshipsofwolves,prey,andmanininteriorAlaska.WildlifeMonographs84:1-50.Geibert,E.H.1980.Songbirddiversityalonganurbanpowerlineright-of-wayinRhodeIsland.EnvironmentalManagement4:205-213.Geist,V.1980.Behavior.pp.297-304,In:NorthAmerica.EcologyandManagement.J.L.SchmidtandD.L.Gilbert(eds.),BigGameofStackpoleBooks,Harrisburg,PA.Gipson,P.S.,S.W.BuskirkandLW.Hobgood.1982.SusitnaHydroelectricProjectFurbearerStudies,PhaseIReport.AlaskaCooperativeWildlifeResearchUnit,submittedtoTerrestrialEnvironmentalSpecialists,Inc.Goldsmith,J.R.andL.T.Friberg.1977.Effects ofairpollutiononhumanhealth.pp.457-620,In:A.C.Stern(ed.),AirPollution.Vol.2.TheEffectsofAirPollution.3rded.AcademicPress,NY.Greig-Smith,P.1983.QuantitativePlantEcology.Vol.9.StudiesinEcology.ThirdEdition.UniversityofCaliforniaPress.BerkeleyandLosAngeles.Grier,J.1969.Baldeaglebehaviorandproductivityresponsestoclimbingtonests.JournalofWildlifeManagement33:961-996.Hall,LR.1981.TheMammalsofNorthAmerica.2Volumes.SecondEdition.JohnWiley&Sons,Inc.NewYork.xv+1181+90pp.Hansen,H.A.,P.E.K.Shepherd,J.G.KingandW.A.Troyer.1971.ThetrumpeterswaninAlaska.WildlifeMonographs26:1-83.Hemming,J.E.1971.TheDistributionandMovementPatternsofCaribouinAlaska.GameTechnicalBulletinNo.1.Alas~aDepartmentofFishandGame.Juneau.Herrington,L.P.andG.M.Heisler.1973.Microclimatemodificationduetopowertransmissionrightsofway.pp.37-57,In:R.Goodland(ed.),PowerLinesandtheEnvironment.TheCareyArboretumof theNewYorkBotanicalGardens.Millbrook,NY.170pp.Hicks,L.L.,andJ.M.Elder.1979.HumandisturbanceofSierraNevadabighornsheep.JournalofWildlifeManagement43(4):909-915.Hill,E.P.1982.Beaver.pp.256-281,In:J.A.ChapmanandG.A.Felhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUnversityPress.Baltimore.Hodge,R.P.1977.AmphibiansandReptilesinAlaska,theYukon,andNorthwestTerritories.AlaskaNorthwestPublishingCo.Anchorage.Hydro-Quebec.1981.Etuded'Impactde1aTraverseeduRavagedeCerfsdeVirginiedeHi11Head.1reet2eLignesa735kVduComp1ex1aGrande.RapportSynthese.Directionde1'Environment.Montreal,Quebec.65pp.Jakimchuk,R.D.1980.DisturbancetoBarren-GroundCaribou:AReviewof theEffectsandImplicationsofHumanDevelopmentsandActivities.RenewableResourcesConsultingServicesLtd.Sidney,BritishColumbia.Johnson,W.C.,R.K.SchreiberandR.L.Burgess.1979.Diversityofsmallmammalsinapowerlineright-of-wayandadjacentforestinEastTennessee.AmericanMidlandNaturalist101:231-235.JonkelC.1980.Black,brown(grizzly),andpolarbears.pp.227-248,In:J.L.SchmidtandD.L.Gilbert(eds.),BigGameofNorthAmerica.EcologyandManagement.WildlifeManage-mentInstitute.StackpoleBooks.Harrisburg,PA.Jordan,P.A.,D.S.Botkin,A.S.Dominski,H.S.LowendorffandG.E.Belovsky.1973.SodiumasacriticalnutrientforthemooseofIsleRoyale.Transactionsofthe9thNorthAmericanMooseConferenceWorkshop9:13-42.K-87Gardner,C.L.andW.B.Ballard.1982.SusitnaHydroelectricProjectFinalPhaseIReport,BigGameStudies.Vol.VII.Wolverine.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Gasaway,W.C.andJ.W.Coady.1974.Reviewofenergyrequirementsandrumenfermentationinmooseandotherruminants.NaturalisteCanadien101:227-262.Gasaway,W.C.,R.O.Stephenson,J.L.Davis,P.LK.ShepherdandO.LBurris.1983.Inter-relationshipsofwolves,prey,andmanininteriorAlaska.WildlifeMonographs84:1-50.Geibert,E.H.1980.Songbirddiversityalonganurbanpowerlineright-of-wayinRhodeIsland.EnvironmentalManagement4:205-213.Geist,V.1980.Behavior.pp.297-304,In:NorthAmerica.EcologyandManagement.J.L.SchmidtandD.L.Gilbert(eds.),BigGameofStackpoleBooks,Harrisburg,PA.Gipson,P.S.,S.W.BuskirkandLW.Hobgood.1982.SusitnaHydroelectricProjectFurbearerStudies,PhaseIReport.AlaskaCooperativeWildlifeResearchUnit,submittedtoTerrestrialEnvironmentalSpecialists,Inc.Goldsmith,J.R.andL.T.Friberg.1977.Effects ofairpollutiononhumanhealth.pp.457-620,In:A.C.Stern(ed.),AirPollution.Vol.2.TheEffectsofAirPollution.3rded.AcademicPress,NY.Greig-Smith,P.1983.QuantitativePlantEcology.Vol.9.StudiesinEcology.ThirdEdition.UniversityofCaliforniaPress.BerkeleyandLosAngeles.Grier,J.1969.Baldeaglebehaviorandproductivityresponsestoclimbingtonests.JournalofWildlifeManagement33:961-996.Hall,LR.1981.TheMammalsofNorthAmerica.2Volumes.SecondEdition.JohnWiley&Sons,Inc.NewYork.xv+1181+90pp.Hansen,H.A.,P.E.K.Shepherd,J.G.KingandW.A.Troyer.1971.ThetrumpeterswaninAlaska.WildlifeMonographs26:1-83.Hemming,J.E.1971.TheDistributionandMovementPatternsofCaribouinAlaska.GameTechnicalBulletinNo.1.Alas~aDepartmentofFishandGame.Juneau.Herrington,L.P.andG.M.Heisler.1973.Microclimatemodificationduetopowertransmissionrightsofway.pp.37-57,In:R.Goodland(ed.),PowerLinesandtheEnvironment.TheCareyArboretumof theNewYorkBotanicalGardens.Millbrook,NY.170pp.Hicks,L.L.,andJ.M.Elder.1979.HumandisturbanceofSierraNevadabighornsheep.JournalofWildlifeManagement43(4):909-915.Hill,E.P.1982.Beaver.pp.256-281,In:J.A.ChapmanandG.A.Felhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUnversityPress.Baltimore.Hodge,R.P.1977.AmphibiansandReptilesinAlaska,theYukon,andNorthwestTerritories.AlaskaNorthwestPublishingCo.Anchorage.Hydro-Quebec.1981.Etuded'Impactde1aTraverseeduRavagedeCerfsdeVirginiedeHi11Head.1reet2eLignesa735kVduComp1ex1aGrande.RapportSynthese.Directionde1'Environment.Montreal,Quebec.65pp.Jakimchuk,R.D.1980.DisturbancetoBarren-GroundCaribou:AReviewof theEffectsandImplicationsofHumanDevelopmentsandActivities.RenewableResourcesConsultingServicesLtd.Sidney,BritishColumbia.Johnson,W.C.,R.K.SchreiberandR.L.Burgess.1979.Diversityofsmallmammalsinapowerlineright-of-wayandadjacentforestinEastTennessee.AmericanMidlandNaturalist101:231-235.JonkelC.1980.Black,brown(grizzly),andpolarbears.pp.227-248,In:J.L.SchmidtandD.L.Gilbert(eds.),BigGameofNorthAmerica.EcologyandManagement.WildlifeManage-mentInstitute.StackpoleBooks.Harrisburg,PA.Jordan,P.A.,D.S.Botkin,A.S.Dominski,H.S.LowendorffandG.E.Belovsky.1973.SodiumasacriticalnutrientforthemooseofIsleRoyale.Transactionsofthe9thNorthAmericanMooseConferenceWorkshop9:13-42.
K-88Kessel,B.,S.D.MacDonald,D.O.Gibson,B.A.CooperandB.A.Anderson.1982.AlaskaPowerAuthoritySusitnaHydroelectricProjectEnvironmentalStudiesPhaseIFinalReport.Subtask7.11,BirdsandNon-GameMammals.UniversityofAlaskaMuseum.Fairbanks.Klein,D.R.1971.Reactionofreindeertoobstructionsanddisturbances.Science173:393-398.Kroodsma,R.L.1982.Birdcommunityecologyonpower-linecorridorsineastTennessee.BiologicalConservation23:79-94.Lawson,B.andR.Johnson.1982.Mountainsheep.pp.1036-1055,In:J.A.ChapmanandG.A.Feldhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.LeResch,R.E.,R.H.BishopandJ.W.Coady.1974.DistributionandhabitatsofmooseinAlaska.NaturalisteCanadien101:143-178.[ascitedinGasawayetal.1983JLee,J.M.andD.B.Griffith.1978.Transmissionlineaudiblenoiseandwildlife.pp.105-168,In:J.L.FletcherandR.G.Busnel(eds.),EffectsofNoiseonWildlife.AcademicPress.NewYork,NY.305pp.Liddle,M.J.andH.R.A.Scorgie.1980.Theeffectsofrecreationonfreshwaterplantsandanimals:areview.BiologicalConservation17:506-513.Lincoln,F.C.1979.MigrationofBirds.Rev.ed.(RevisedbyS.R.Peterson).U.S.Fishand\4ildlifeServiceCircular16.Washi~gton,DC.Lindzey,F.G.andE.C.Meslow.1977.HomerangeandhabitatusebyblackbearsinsouthwesternWashington.JournalofWildlifeManagement41(3):413.MacArthur,R.A.,R.H.JohnstonandV.Geist.1979.Factorsinfluencingheartrateinfree-rangingbighornsheep:aphysi01ogica1approachtothestudyofwildlifeharassment.CanadianJournalofZoology57:2010-2021.MacArthur,R.A.,V.GeistandR.H.Johnson.1982.Cardiacandbehavioralresponsesofmountainsheeptohumandisturbance.JournalofWildlifeManagement46(2):351-358.Matishen,J.E.1968.Effectsofhumandisturbanceonnestingofbaldeagles.Journal.ofWildlifeManagement32:1-6.Mautz,W. W.1980.Nutritionandcarryingcapacity.pp.321-348,In:J.L.SchmidtandD.L.Gilbert(eds.),BigGameofNorthAmerica.EcologyandManagement.SecondPrinting,revised.WildlifeManagementInstitute.StackpoleBooks.Harrisburg,PA.Mayer,T.D.1976.Anevaluationofchemically-sprayedelectrictransmissionlinerights-of-wayforactualandpotentialwildlifeuse.pp.288-294,In:R.Tillman(ed.),ProceedingsoftheFirstNationalSymposiumonEnvironmentalConcernsinRight-of-WayManagement,January6-8,1976,MississippiStateUniversity.McEwan,L.C.andD.H.Hirth.1979.Southernbaldeagleproductivityandnestsiteselection.JournalofWildlifeManagement43(3):585-594.McKendrick,J.,W.Collins,D.Helm,J.McMullenandJ.Koranda.1982.SusitnaHydroelectricProject,PhaseIFinalReport,EnvironmentalStudies,Subtask7.12:PlantEcologyStudies.UniversityofAlaskaAgriculturalExperimentalStation,Palmer.PreparedfortheAlaskaPowerAuthority.Miller,F.L.1982.Caribou.MammalsofNorthAmerica.Press.Baltimore.pp.923-959,In:J.S.ChapmanandG.A.Feldhamer,(eds.),WildBiology,Management,andEconomics.TheJohnsHopkinsUniversityMiller,S.D.1983.SusitnaHydroelectricProjectPhaseIIFirstAnnualProgressReport,BigGameStudies.Vol.VI.BlackBearandBrownBear.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Miller,S.D.andW.B.Ballard.1982a.DensityandbiomassestimatesforaninteriorAlaskanbrownbear,Ursusarctos,population.CanadianField-Naturalist96:448-454.Miller,S.D.,andW.B.Ballard.1982b.HomingoftransplantedAlaskanbrownbears.JournalofWildlifeManagement46(4):869-876.Miller,S.D.andD.C.McAllister.1982.SusitnaHydroelectricProjectFinalPhaseIReport,BigGameStudies.Vol.VI.BlackBearandBrownBear.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.K-88Kessel,B.,S.D.MacDonald,D.O.Gibson,B.A.CooperandB.A.Anderson.1982.AlaskaPowerAuthoritySusitnaHydroelectricProjectEnvironmentalStudiesPhaseIFinalReport.Subtask7.11,BirdsandNon-GameMammals.UniversityofAlaskaMuseum.Fairbanks.Klein,D.R.1971.Reactionofreindeertoobstructionsanddisturbances.Science173:393-398.Kroodsma,R.L.1982.Birdcommunityecologyonpower-linecorridorsineastTennessee.BiologicalConservation23:79-94.Lawson,B.andR.Johnson.1982.Mountainsheep.pp.1036-1055,In:J.A.ChapmanandG.A.Feldhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.LeResch,R.E.,R.H.BishopandJ.W.Coady.1974.DistributionandhabitatsofmooseinAlaska.NaturalisteCanadien101:143-178.[ascitedinGasawayetal.1983JLee,J.M.andD.B.Griffith.1978.Transmissionlineaudiblenoiseandwildlife.pp.105-168,In:J.L.FletcherandR.G.Busnel(eds.),EffectsofNoiseonWildlife.AcademicPress.NewYork,NY.305pp.Liddle,M.J.andH.R.A.Scorgie.1980.Theeffectsofrecreationonfreshwaterplantsandanimals:areview.BiologicalConservation17:506-513.Lincoln,F.C.1979.MigrationofBirds.Rev.ed.(RevisedbyS.R.Peterson).U.S.Fishand\4ildlifeServiceCircular16.Washi~gton,DC.Lindzey,F.G.andE.C.Meslow.1977.HomerangeandhabitatusebyblackbearsinsouthwesternWashington.JournalofWildlifeManagement41(3):413.MacArthur,R.A.,R.H.JohnstonandV.Geist.1979.Factorsinfluencingheartrateinfree-rangingbighornsheep:aphysi01ogica1approachtothestudyofwildlifeharassment.CanadianJournalofZoology57:2010-2021.MacArthur,R.A.,V.GeistandR.H.Johnson.1982.Cardiacandbehavioralresponsesofmountainsheeptohumandisturbance.JournalofWildlifeManagement46(2):351-358.Matishen,J.E.1968.Effectsofhumandisturbanceonnestingofbaldeagles.Journal.ofWildlifeManagement32:1-6.Mautz,W. W.1980.Nutritionandcarryingcapacity.pp.321-348,In:J.L.SchmidtandD.L.Gilbert(eds.),BigGameofNorthAmerica.EcologyandManagement.SecondPrinting,revised.WildlifeManagementInstitute.StackpoleBooks.Harrisburg,PA.Mayer,T.D.1976.Anevaluationofchemically-sprayedelectrictransmissionlinerights-of-wayforactualandpotentialwildlifeuse.pp.288-294,In:R.Tillman(ed.),ProceedingsoftheFirstNationalSymposiumonEnvironmentalConcernsinRight-of-WayManagement,January6-8,1976,MississippiStateUniversity.McEwan,L.C.andD.H.Hirth.1979.Southernbaldeagleproductivityandnestsiteselection.JournalofWildlifeManagement43(3):585-594.McKendrick,J.,W.Collins,D.Helm,J.McMullenandJ.Koranda.1982.SusitnaHydroelectricProject,PhaseIFinalReport,EnvironmentalStudies,Subtask7.12:PlantEcologyStudies.UniversityofAlaskaAgriculturalExperimentalStation,Palmer.PreparedfortheAlaskaPowerAuthority.Miller,F.L.1982.Caribou.MammalsofNorthAmerica.Press.Baltimore.pp.923-959,In:J.S.ChapmanandG.A.Feldhamer,(eds.),WildBiology,Management,andEconomics.TheJohnsHopkinsUniversityMiller,S.D.1983.SusitnaHydroelectricProjectPhaseIIFirstAnnualProgressReport,BigGameStudies.Vol.VI.BlackBearandBrownBear.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Miller,S.D.andW.B.Ballard.1982a.DensityandbiomassestimatesforaninteriorAlaskanbrownbear,Ursusarctos,population.CanadianField-Naturalist96:448-454.Miller,S.D.,andW.B.Ballard.1982b.HomingoftransplantedAlaskanbrownbears.JournalofWildlifeManagement46(4):869-876.Miller,S.D.andD.C.McAllister.1982.SusitnaHydroelectricProjectFinalPhaseIReport,BigGameStudies.Vol.VI.BlackBearandBrownBear.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.
K-89Modafferi,R.D.1982.SusitnaHydroelectricProjectFinalPhaseIReport,BigGameStudies.Vol.II.Moose-Downstream.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Modafferi,R.D.1983.SusitnaHydroelectricProjectPhaseIIProgressReport,BigGameStudies.Vol.II.Moose-Downstream.AlaskaDepartmentofFishandGame,submittedtoAlaskaPowerAuthority.Anchorage.Moen,A.A.1976.Energyconservationbywhite-taileddeerinthewinter.Ecology57:192-198.Moen,A. A.1978.Seasona1changesinheartrates,activity,metabo1ism,andforageintakeofwhite-taileddeer.JournalofWildlifeManagement42(4):715-738.Moen,A.N.,S.WhittemoreandB.Buxton.1982.Effectsofdisturbancebysnowmobilesonheartrateofcaptivewhite-taileddeer.NewYorkFishandGameJournal29:176-183.Newton,1.1979.PopulationEcologyofRaptors.ButeoBooks.Vermillion,SO.Nichols,L.,Jr.1980.Dall'ssheep.pp.173-189,In:BigGameofNorthAmerica.EcologyandManagement.ManagementInstitute.Washington,DC.J.L.SchmidtandD.L.Gilbert(eds.),Secondprinting,revised.WildlifeParadiso,J.L.andR.M.Nowak.1982.Wolves.pp.460-474,In:J.A.ChapmanandG.A.Felhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.Peek,J.M.1974.AreviewofmoosefoodhabitsstudiesinNorthAmerica.NaturalisteCanadien101:195-215.Peek,J.M.,D.L.UrichandB.J.Mackie.1976.MoosehabitatselectionandrelationshiptoforestmanagementinnortheasternMinnesota.WildlifeMonographs48:1-65.Pelton,M.R.1982.Biackbear.pp.504-514,In:J.A.ChapmanandG.A.Feldhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.Peterson,R.T.1961.AFieldGuidetoWesternBirds.2ndEd.HoughtonMifflinCompany.Boston.Pftcher,K.W.1982.'SusitnaHydroelectricProjectPhaseIFinalReport,BigGameStudies.Vol.IV.Caribou.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Pitcher,K.W.1983.SusitnaHydroelectricProjectPhaseII1982AnnualReport,BigGameStudies.Vol.IV.Caribou.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Potvin,F.andH.Huot.1983.Estimatingcarryingcapacityofawhite-taileddeerwinteringareainQuebec.JournalofWildlifeManagement47(2):463-475.Proulx,G.1983.Characteristicsofmoose(Alcesalces)winteryardsondifferentexposuresandslopesinsouthernQuebec.CanadianJournar-o-r-Zoology61(1):112-118.Proulx,G.andR.Joyal.1981.Forestrymapsasaninformationsourcefordescriptionofmoosewinter yards.CanadianJournalofZoology59:75-80.Robbins,C.T.1983.WildlifeFeedingandNutrition.AcademicPress,Inc.NewYork.Roseneau,D.G.,C.E.TullandR.W.Nelson.1981.ProtectionStudiesforPeregrineFalconsandOtherRaptorsalongthePlannedNorthwestAlaskanGasPipelineRoute.Vol.1.FinalReport.LGLAlaskaResearchAssociates,Inc.,Fairbanks,forNorthwestAlaskanPipelineCompany.Rost,G.R.andJ.A.Bailey.1979.Distributionofmuledeerandelkinrelationtoroads.JournalofWildlifeManagement43(3):634-641.Schultz,R.D.andJ.A.Bailey.1978.Responsesofnationalparkelktohumanactivity.JournalofWildlifeManagement42(1):91-100.Schweitzer,D.L.,C.T.CushwaandT.W.Hoekstra.1978.The1979nationalassessmentofwildlifeandfish:Aprogressreport.TransactionsoftheForty-thirdNorthAmericanWildlifeandNaturalResourcesConference43:266-273.K-89Modafferi,R.D.1982.SusitnaHydroelectricProjectFinalPhaseIReport,BigGameStudies.Vol.II.Moose-Downstream.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Modafferi,R.D.1983.SusitnaHydroelectricProjectPhaseIIProgressReport,BigGameStudies.Vol.II.Moose-Downstream.AlaskaDepartmentofFishandGame,submittedtoAlaskaPowerAuthority.Anchorage.Moen,A.A.1976.Energyconservationbywhite-taileddeerinthewinter.Ecology57:192-198.Moen,A. A.1978.Seasona1changesinheartrates,activity,metabo1ism,andforageintakeofwhite-taileddeer.JournalofWildlifeManagement42(4):715-738.Moen,A.N.,S.WhittemoreandB.Buxton.1982.Effectsofdisturbancebysnowmobilesonheartrateofcaptivewhite-taileddeer.NewYorkFishandGameJournal29:176-183.Newton,1.1979.PopulationEcologyofRaptors.ButeoBooks.Vermillion,SO.Nichols,L.,Jr.1980.Dall'ssheep.pp.173-189,In:BigGameofNorthAmerica.EcologyandManagement.ManagementInstitute.Washington,DC.J.L.SchmidtandD.L.Gilbert(eds.),Secondprinting,revised.WildlifeParadiso,J.L.andR.M.Nowak.1982.Wolves.pp.460-474,In:J.A.ChapmanandG.A.Felhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.Peek,J.M.1974.AreviewofmoosefoodhabitsstudiesinNorthAmerica.NaturalisteCanadien101:195-215.Peek,J.M.,D.L.UrichandB.J.Mackie.1976.MoosehabitatselectionandrelationshiptoforestmanagementinnortheasternMinnesota.WildlifeMonographs48:1-65.Pelton,M.R.1982.Biackbear.pp.504-514,In:J.A.ChapmanandG.A.Feldhamer(eds.),WildMammalsofNorthAmerica.Biology,Management,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.Peterson,R.T.1961.AFieldGuidetoWesternBirds.2ndEd.HoughtonMifflinCompany.Boston.Pftcher,K.W.1982.'SusitnaHydroelectricProjectPhaseIFinalReport,BigGameStudies.Vol.IV.Caribou.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Pitcher,K.W.1983.SusitnaHydroelectricProjectPhaseII1982AnnualReport,BigGameStudies.Vol.IV.Caribou.AlaskaDepartmentofFishandGame,submittedtotheAlaskaPowerAuthority.Anchorage.Potvin,F.andH.Huot.1983.Estimatingcarryingcapacityofawhite-taileddeerwinteringareainQuebec.JournalofWildlifeManagement47(2):463-475.Proulx,G.1983.Characteristicsofmoose(Alcesalces)winteryardsondifferentexposuresandslopesinsouthernQuebec.CanadianJournar-o-r-Zoology61(1):112-118.Proulx,G.andR.Joyal.1981.Forestrymapsasaninformationsourcefordescriptionofmoosewinter yards.CanadianJournalofZoology59:75-80.Robbins,C.T.1983.WildlifeFeedingandNutrition.AcademicPress,Inc.NewYork.Roseneau,D.G.,C.E.TullandR.W.Nelson.1981.ProtectionStudiesforPeregrineFalconsandOtherRaptorsalongthePlannedNorthwestAlaskanGasPipelineRoute.Vol.1.FinalReport.LGLAlaskaResearchAssociates,Inc.,Fairbanks,forNorthwestAlaskanPipelineCompany.Rost,G.R.andJ.A.Bailey.1979.Distributionofmuledeerandelkinrelationtoroads.JournalofWildlifeManagement43(3):634-641.Schultz,R.D.andJ.A.Bailey.1978.Responsesofnationalparkelktohumanactivity.JournalofWildlifeManagement42(1):91-100.Schweitzer,D.L.,C.T.CushwaandT.W.Hoekstra.1978.The1979nationalassessmentofwildlifeandfish:Aprogressreport.TransactionsoftheForty-thirdNorthAmericanWildlifeandNaturalResourcesConference43:266-273.
K-90Selkregg,L.L.(ed.)1974.AlaskaRegionalProfiles--SouthcentralRegion.ArcticEnviron-mentalInformationandDataCenter.Anchorage.255pp.Selkregg,L. L.(ed.)1977.AlaskaRegionalProfiles--YukonRegion.ArcticEnvironmentalInformationandDataCenter.Anchorage.346pp.Se11ers,R.1979.WaterbirdUseofandManagementConsiderationsforCookIn1etStateGameRefuges(DraftReport).AlaskaDepartmentofFishandGame.Juneau.Singer,F.J.1978.Park,Montana.BehaviorofmountaingoatsinrelationtoU.S.Highway2,GlacierNationalJournalofWildlifeManagement43(3):591-597.pp.599-612,In:Biology,Manage-Slough,B.G.andR.M.F.S.Sadleir.1977.A landcapabilityclassificationsystemforbeaver(CastorcanadensisKuhl).CanadianJournalofZoology55(8):1324-1335.Soholt,L.F.,etal.1980.HandlingofCombustionandEmission-AbatementWastesfromCoal-FiredPowerPlants:ImplicationsforFishandWildlifeResources.FWS/OBS-80/33.U.S.FishandWildlifeService.184pp.Stalmaster,M.V.andJ.R.Newman.1978.Behavioralresponsesofwinteringbaldeaglestohumanactivity.JournalofWildlifeManagement42:506-513.Stevens,D.R.1970.WinterecologyofmooseintheGallatinMountains,Montana.JournalofWildlifeManagement34:37-46.Stout,I.J.andG.W.Cornwell.1976.NonhuntingmortalityoffledgedNorthAmericanwaterfowl.JournalofWildlifeManagement40(4):681-693.Strickland,M.A.,C.W.Douglas,M.NovakandN.P.Hunziger.1982.Marten.J.A.ChapmanandG.A.Feldhamer(eds.),WildMammalsofNorthAmerica.ment,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.Swensen,J.E.1979.FactorsaffectingstatusandreproductionofospreysinYellowstoneNationalPark.JournalofWildlifeManagement43(3):595-601.Swift,D.M.,J.E.EllisandN.T.Hobbs.1979.Applicationofaruminantenergeticsmodeltoastudyofelkwinterrangecarryingcapacity.In:R.M.Linn(ed.),ProceedingsofFirstConferenceonScientificResearchinNationalParks.Vol.1.U.S.DepartmentoftheInterior.Washington,D.C.Tankersley,N.C.Vol.VIII.Authority.1983.SusitnaHydroelectricProjectPhaseIIProgressReport,BigGameStudies.DallSheep.AlaskaDepartmentofFishandGame,submittedtoAlaskaPowerAnchorage.Tankersley,N.G.andW.C.Gasaway.1983.MinerallickusebymooseinAlaska.CanadianJournalofZoology61(10):2242-2249.Tarbox,K.E.,M.A.Scott,D.O.McKayandM.R.Joyce.1979.BiologicalStudiesofaProposedPowerPlantSitenearHealy,Alaska,May-October1978.PreparedbyWoodward-ClydeConsultantsforStanleyConsultantsonbehalfofGoldenValleyElectricAssociation.Fairbanks.Telfer,E.S.1970.Winterhabitatselectionbymooseandwhite-taileddeer.JournalofWildlifeManagement34(3):553.Telfer,E.S.1978.Cerviddistribution,browse,andsnowcover.JournalofWildlifeManage-ment42:352-361.Tracy,D.M.1977.ReactionsofWildlifetoHumanActivityAlongtheMt.McKinleyNationalParkRoad.M.S.Thesis,UniversityofAlaska,Fairbanks.[AscitedinExhibitE,Vol.6A,Chap.3,p.E-3-599.]U.S.DepartmentofAgriculture.1981.SusitnaRiverBasinStudy-Alaska.WillowSubasin.FinalReport.PreparedincooperationwiththeStateofAlaskaandtheU.S.FishandWildlifeService.U.S.DepartmentofEnergy.1982.EnvironmentalComplianceGuide.Vol.3D.GuidanceManualforDepartmentofEnergyCompliancewiththeFishandWildlifeCoordinationAct.DOE/EA-0059.OfficeofEnvironmentalCompliance.WashingtonDC.21pp.U.S.EnvironmentalProtectionAgency.1974a.EffectsofNoiseonWildlifeandOtherAnimals.NTID300.5.Washington,DC.K-90Selkregg,L.L.(ed.)1974.AlaskaRegionalProfiles--SouthcentralRegion.ArcticEnviron-mentalInformationandDataCenter.Anchorage.255pp.Selkregg,L. L.(ed.)1977.AlaskaRegionalProfiles--YukonRegion.ArcticEnvironmentalInformationandDataCenter.Anchorage.346pp.Se11ers,R.1979.WaterbirdUseofandManagementConsiderationsforCookIn1etStateGameRefuges(DraftReport).AlaskaDepartmentofFishandGame.Juneau.Singer,F.J.1978.Park,Montana.BehaviorofmountaingoatsinrelationtoU.S.Highway2,GlacierNationalJournalofWildlifeManagement43(3):591-597.pp.599-612,In:Biology,Manage-Slough,B.G.andR.M.F.S.Sadleir.1977.A landcapabilityclassificationsystemforbeaver(CastorcanadensisKuhl).CanadianJournalofZoology55(8):1324-1335.Soholt,L.F.,etal.1980.HandlingofCombustionandEmission-AbatementWastesfromCoal-FiredPowerPlants:ImplicationsforFishandWildlifeResources.FWS/OBS-80/33.U.S.FishandWildlifeService.184pp.Stalmaster,M.V.andJ.R.Newman.1978.Behavioralresponsesofwinteringbaldeaglestohumanactivity.JournalofWildlifeManagement42:506-513.Stevens,D.R.1970.WinterecologyofmooseintheGallatinMountains,Montana.JournalofWildlifeManagement34:37-46.Stout,I.J.andG.W.Cornwell.1976.NonhuntingmortalityoffledgedNorthAmericanwaterfowl.JournalofWildlifeManagement40(4):681-693.Strickland,M.A.,C.W.Douglas,M.NovakandN.P.Hunziger.1982.Marten.J.A.ChapmanandG.A.Feldhamer(eds.),WildMammalsofNorthAmerica.ment,andEconomics.TheJohnsHopkinsUniversityPress.Baltimore.Swensen,J.E.1979.FactorsaffectingstatusandreproductionofospreysinYellowstoneNationalPark.JournalofWildlifeManagement43(3):595-601.Swift,D.M.,J.E.EllisandN.T.Hobbs.1979.Applicationofaruminantenergeticsmodeltoastudyofelkwinterrangecarryingcapacity.In:R.M.Linn(ed.),ProceedingsofFirstConferenceonScientificResearchinNationalParks.Vol.1.U.S.DepartmentoftheInterior.Washington,D.C.Tankersley,N.C.Vol.VIII.Authority.1983.SusitnaHydroelectricProjectPhaseIIProgressReport,BigGameStudies.DallSheep.AlaskaDepartmentofFishandGame,submittedtoAlaskaPowerAnchorage.Tankersley,N.G.andW.C.Gasaway.1983.MinerallickusebymooseinAlaska.CanadianJournalofZoology61(10):2242-2249.Tarbox,K.E.,M.A.Scott,D.O.McKayandM.R.Joyce.1979.BiologicalStudiesofaProposedPowerPlantSitenearHealy,Alaska,May-October1978.PreparedbyWoodward-ClydeConsultantsforStanleyConsultantsonbehalfofGoldenValleyElectricAssociation.Fairbanks.Telfer,E.S.1970.Winterhabitatselectionbymooseandwhite-taileddeer.JournalofWildlifeManagement34(3):553.Telfer,E.S.1978.Cerviddistribution,browse,andsnowcover.JournalofWildlifeManage-ment42:352-361.Tracy,D.M.1977.ReactionsofWildlifetoHumanActivityAlongtheMt.McKinleyNationalParkRoad.M.S.Thesis,UniversityofAlaska,Fairbanks.[AscitedinExhibitE,Vol.6A,Chap.3,p.E-3-599.]U.S.DepartmentofAgriculture.1981.SusitnaRiverBasinStudy-Alaska.WillowSubasin.FinalReport.PreparedincooperationwiththeStateofAlaskaandtheU.S.FishandWildlifeService.U.S.DepartmentofEnergy.1982.EnvironmentalComplianceGuide.Vol.3D.GuidanceManualforDepartmentofEnergyCompliancewiththeFishandWildlifeCoordinationAct.DOE/EA-0059.OfficeofEnvironmentalCompliance.WashingtonDC.21pp.U.S.EnvironmentalProtectionAgency.1974a.EffectsofNoiseonWildlifeandOtherAnimals.NTID300.5.Washington,DC.
K-91U.S.EnvironmentalProtectionAgency.1974b.InformationonLevelsofEnvironmentalNoiseRequisitetoProtectPublicHealthandWelfarewithanAdequateMarginofSafety.EPA550/9-74-004.OfficeofNoiseAbatementandControl.Washington,DC.U.S.FishandWildlifeService.1978.ImpactsofTransmissionLinesonBirdsinFlight.ProceedingsofaConference,January31-February2,1978.ORAU-142.OakRidgeAssociatedUniversities.OakRidge,TN.212pp.U.S.FishandWildlifeService.1980.EcologicalServicesManual.HabitatEvaluationProcedures.ESM-100through-104.DivisionofEcologicalServices.Washington,DC.U.S.FishandWildlifeService.1981.U.S.FishandWildlifeServiceMitigationPolicy;NoticeofFinalPolicy.FederalRegister46:7644-7663(23January).U.S.FishandWildlifeService.1982.RecoveryPlanforthePeregrineFalcon--AlaskaPopulation.Region7.Anchorage.U.S.FishandWildlifeService.1983a.50CFRPart17.Republicationofthelistsofendangeredandthreatenedspecies.FederalRegister48:34182-34196(27July).U.S.FishandWildlifeService.1983b.LetterfromP.M.Nelson,ActingRegionalDirector,Region7,Anchorage,toL.R.Anderson,FederalEnergyRegulatoryCommission,WashingtonDC(12October).U.S.FishandWildlifeService.1983c.PeregrineFalconsinNorthAmerica.50CFRPart17.ProposedReclassificationoftheFederalRegister48:8796-8802(1March).VanBallenberghe,V.,A.W.EricksonandD.Byman.1975.Ecologyofthetimberwolfinnorth-easternMinnesota.WildlifeMonographs43:1-43.Wakefield,W.C.,II.1983.MemorandumwithattachmentsfromW.C.Wakefield,II,FERCSusitnaProjectManager,toSusitnaAdvisoryCommittee.PotentialRefinementsfortheSusitnaHydroelectricProject(18October).Weeks,H.P.andC.M.Kirkpatrick.1976.Adaptationsofwhitetaileddeertonaturallyoccurringsodiumdeficiencies.JournalofWildlifeManagement40(4):610-625.Whitman,J.S.andW.B.Ballard.1983.SusitnaHydroelectricProject.PhaseIIProgressReport.BigGameStudies.Vol.VII.Wolverine.AlaskaDepartmentofFishandGame,submittedtoAlaskaPowerAuthority.Anchorage.Willey,C.H.1982.PrefiledtestimonybeforeVermontPublicServicesBoard.DocketNo.4622.March.Wolfe,M.L.1980.Habitatchangesandmanagement.pp.349-368,In:J.L.SchmidtandD.L.Gilbert(eds.),BigGameofNorthAmerica.EcologyandManagement.Secondprinting,revised.WildlifeManagementInstitute.Washington,DC.Wolff,J.O.andJ.C.Zasada.1979.MoosehabitatandforestsuccessionontheTananaRiverfloodplainandYukon-Tananaupland.ProceedingsoftheNorthAmericanMooseConferenceWorkshop15:213-244.Wolff,J.O.1978.BurningandbrowsingeffectsonwillowgrowthininteriorAlaska.JournalofWildlifeManagement42(1):135-140.K-91U.S.EnvironmentalProtectionAgency.1974b.InformationonLevelsofEnvironmentalNoiseRequisitetoProtectPublicHealthandWelfarewithanAdequateMarginofSafety.EPA550/9-74-004.OfficeofNoiseAbatementandControl.Washington,DC.U.S.FishandWildlifeService.1978.ImpactsofTransmissionLinesonBirdsinFlight.ProceedingsofaConference,January31-February2,1978.ORAU-142.OakRidgeAssociatedUniversities.OakRidge,TN.212pp.U.S.FishandWildlifeService.1980.EcologicalServicesManual.HabitatEvaluationProcedures.ESM-100through-104.DivisionofEcologicalServices.Washington,DC.U.S.FishandWildlifeService.1981.U.S.FishandWildlifeServiceMitigationPolicy;NoticeofFinalPolicy.FederalRegister46:7644-7663(23January).U.S.FishandWildlifeService.1982.RecoveryPlanforthePeregrineFalcon--AlaskaPopulation.Region7.Anchorage.U.S.FishandWildlifeService.1983a.50CFRPart17.Republicationofthelistsofendangeredandthreatenedspecies.FederalRegister48:34182-34196(27July).U.S.FishandWildlifeService.1983b.LetterfromP.M.Nelson,ActingRegionalDirector,Region7,Anchorage,toL.R.Anderson,FederalEnergyRegulatoryCommission,WashingtonDC(12October).U.S.FishandWildlifeService.1983c.PeregrineFalconsinNorthAmerica.50CFRPart17.ProposedReclassificationoftheFederalRegister48:8796-8802(1March).VanBallenberghe,V.,A.W.EricksonandD.Byman.1975.Ecologyofthetimberwolfinnorth-easternMinnesota.WildlifeMonographs43:1-43.Wakefield,W.C.,II.1983.MemorandumwithattachmentsfromW.C.Wakefield,II,FERCSusitnaProjectManager,toSusitnaAdvisoryCommittee.PotentialRefinementsfortheSusitnaHydroelectricProject(18October).Weeks,H.P.andC.M.Kirkpatrick.1976.Adaptationsofwhitetaileddeertonaturallyoccurringsodiumdeficiencies.JournalofWildlifeManagement40(4):610-625.Whitman,J.S.andW.B.Ballard.1983.SusitnaHydroelectricProject.PhaseIIProgressReport.BigGameStudies.Vol.VII.Wolverine.AlaskaDepartmentofFishandGame,submittedtoAlaskaPowerAuthority.Anchorage.Willey,C.H.1982.PrefiledtestimonybeforeVermontPublicServicesBoard.DocketNo.4622.March.Wolfe,M.L.1980.Habitatchangesandmanagement.pp.349-368,In:J.L.SchmidtandD.L.Gilbert(eds.),BigGameofNorthAmerica.EcologyandManagement.Secondprinting,revised.WildlifeManagementInstitute.Washington,DC.Wolff,J.O.andJ.C.Zasada.1979.MoosehabitatandforestsuccessionontheTananaRiverfloodplainandYukon-Tananaupland.ProceedingsoftheNorthAmericanMooseConferenceWorkshop15:213-244.Wolff,J.O.1978.BurningandbrowsingeffectsonwillowgrowthininteriorAlaska.JournalofWildlifeManagement42(1):135-140.