HomeMy WebLinkAboutAPA38#·
'
,-,--
,,
S!.!sitna 1-lydro~lectric Project
Supplemental Report
FERC Letter of 4/12/83
.-,
Page _2l._ Item_\ __ _
;-
DECEMBER 1982
r.:.n ·~ It{\ '7.7''iTh .. ·~ ~-;q~--;;; ··~ ·-·-. -· . ·-----.... · ..
lf~l>t~~~: t.~(!.~,i~~ ... :r~.;.,;U~';: •\A ~~v· ,~
Susctt'la Joint Venture
Document Number
t'
L
i L.
i
L
··-~.:.--·-----~~·---~-·--~---------~·---·-~·-·...._,___.. ...... .------·
ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
TASK 3 -HYDROLOGY
SLOUGH HYDROLOGY
INTERIM REPORT
DECEMBER 1982
Prepared for:
ACRES AMERICAN INCORPORATED
1000 Liberty Bank Building
Main@ Court
Buffalo, New York 14202
Telephone: (716) 853-7525
Prep a red by:
R&M CONSULTANTS, INC.
P. 0. Box 6087
5024 Cordova Street
Anchorage, Alaska 99503
Telephone: (907) 279-0483
..
r
l t
r L
f:
I
l
fi
Ill .
L
II:
L
L
j,
l
ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
TASK 3 -HYDROLOG"'
SLOUGH HYDROLOG't
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
1 -INTRODUCTION
1.1 -Backgrou;·,d and Purpose of Study
1. 2 -Description of Study Area
1.3 -Methods
2 -FLOW REGIME
2.1 -Relationship between Slough and Mainstem
Discha 2-1
2.2 -Flow Regime in Sloughs when Upstream End
of Slough is Closed
2.3 -Winter Regime of Sloughs
3 -GROUNDWATER STUDY
3.1 -Introduction
3.2 -Stratigraphy
3.3 -Areas of Visual Groundwater Observation
3.4 -Groundwater Contours
3.5 -Groundwater Hydr·aulic Computations
3.6 -Groundwater Temperatures
3. 7 -Environmental Isotope Study
Page
ii
IV
1-1
1-1
1-1
2-1
2-3
3-1
3-1
3-2
3-3
3-4
3-5
3-5
4 -CONCLUSION AND RECOMMENDED FURTHER STUDIES 4-1
BIBLIOGRAPHY
APPENDIX
A. 1 -Groundwater Elevation Data at Slough 8A and 9
A.2 -Groundwater Temperature Data at Slough SA and 9
A. 3 Climate Summaries for Sherman Weather Station
May-October 1982
A.4 -Daily Discharge Slough 9
A. 5 -Laboratory Test Report on Gravel Gradation
A. 6 -Observation Well Hole Logs
A. 7 -Details of Well Installations at Slough 9B
s16/q2
• •
1.~ LIST OF FIGURES
Number Title
1.1 Location of selected habitat slough sites along the
Susitna River between Talkeetna and Portage Creek
1.2
1.3
2.1
2.2
2.3
2.4
2.5
2.6
3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
s16/q3
Sloughs 9 and 9B
Slough 8A
Aerial photo comparison, 1951 to 1980 Slough 8A
Aerial photo comparison, 1951 to 1980 Slough 9
Aerial photo comparison, 1951 to 1980 Slough 11
Locations of berms controlling connection of mainstem
flow into Slough 9 and mainstem discharge at Gold
Creek when flow is initiated
Locations of berms controlling connection of mainstem
flow into Slough 8A and mainstem discharge at Gold
Creek when flow is initiated
Thalweg profile of Slough 9 with main stem water su rfuce
elevations
Observed location of gro•Jndwater upwelling Slough 9
Observed location of groundwater upwelling Slough 8A
Seepage meter
Groundwater contours, Susitna River at Slough 8A,
4-26-82
Groundwater contours, Susitna River at Slough 8A,
9-3-82
Groundwater contours, Susitna River at Slough 8A,
9-10-82
Groundwater contours, Susitna River at Slough 8A,
9-16-82
Groundwater contours, Susitna River at Slough 8A,
9-20-82
Page
1-4
1-5
1-6
2-5
2-6
2-7
2-8
2-9
2-10
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
..
>--·~·--·--. ...,~,·--·-•<'·---~_.-~,....:::...-· ~ -c-·-•~h__..."'"" ,,..~,., ~ ---·---~~"'~· ~
[
L
1,_ LIST OF FIGURE.S (Continued)
Number Title Page r 3.9 G ro u n d~.-vate r contours, Susitna River at Slough SA, 3-17
10-5-82
''
3.10 Groundwater contours, Susitna River at Slough SA, 3-1S
10-13-S2
~
L 3. 11 Groundwater contours, Sus1tna River at Slough BA, 3-19
12-21-S2
r. 3.12 Groundwater contours, s .... sitna River at Slough 9 3-20 ~. !'
i'' 4-26-S2 ~ ....
~ 3.13 Groundwater contours, Susitna River at Slough 9r 3-21
t, 5-11-S2
3.14 Groundwater contours, Susitna River at Slough 9, 3-22
~ 6-23-S2 1
t;;.
3.15 Groundwater contours, Susitna River at Slough 9, 3-23
Fl 7-1-S2
\• L.,.,
3.16 Groundwater contours, Susitna River at Slough 9, 3-24
r 7-20-S2
3. 17 Gl"oundwater contours, Susitna River at Slough 9, ::3-25
9-6-82
" n ,,
• 3. 1S Groundwater contours, Susitna River at Slough 9, 3-=26 fl..;,>"
9-20-S2
3.19 Groundwater contours, Susitna River at Slough 9, 3-27
10-7-82
It 3.20 Groundwater"' contours, S usitna River at Slough 9, 3-28
10-15-82
(i 3.21 Groundwater contours, Susitna River at Slough 9, 3-29
~ 12-22-S2 ' t:,.
...
s16/q4
1
1
I
~
'
LIST OF TABLES
Number Title
2.1 Winter water surface elevations, mainstem Susitna near
Sloughs 9, 8A, and 21
s16/o5 .
2-4
• ..
,
l
/'
"
f
1 -INTRODUCTION
1.1 -Background and Purpose of Study
Observation of fish activity during 1981 by the Alaska Department of Fish
and Game (ADF&G, 1982) indicated that the sloughs and side-channeis
along the mainstem Susitna River provide the most important salmon
spawning habitat between Devil Canyon and Talkeetna.
The major characteristic of these sloughs which makes them suitable habitat
for salmon spawning and the overwintering of salmon fry is the flow of
water w~ich continues in them throughout the year, either as surface or
intergravel flow. This flow may originate from various sources, including
tributaries, springs and groundwater inflow.
The sources of this flow and the manner in which it would be affected by
the regulation of flow in the Susitna River are questions which must be
addressed.
The purposes of this study are to:
1 .
2.
describe the existing flow regimes m two selected study sloughs (8A
and 9).
determine the origins o·f· the groundwater c~mponent of slough
discharge.
3. develop a cost-effective methodology for the determination of vater
sources that could be applied to other sloughs.
1.2 -Description of Study Area
This report concentrates only on those sloughs between Talkeetna and
Devil Canyon, and specifically on sloughs designated 8A and 9
(Figure 1.1) by the Alaska Department of Fish and Game. At these two
areas an intensive study was initiated to determine the year-round sources
of water in the slough. Sloughs as defined by the ADF&G are the
sidechannel or adjacent wetted habitats to the mainstem Susitna River
which periodically receive a portion of their surface water from the
main stem Susitna River in addition to other water sources. These two
sloughs are located on the east side of the Susitna river about 30 miles
upstream of Talkeetna.
1.3 -Methods
Four methods were considered for determining the source of water in the
sloughs. These were: (1) monitoring of groundwater levels and
temperatures to determine direction, source, and amount of groundwater
inflow (or outflow) to the sloughs; (2) environmental isotope tracking
s16/q 1-1
..
studies; (3) measurement of surface water flows into the sloughs; and
(4) visual observations.
Monitoring of the changes 111 groundwater elevation and temperature was
accomplished by a number of observation wells in the areas of Sloughs 8A
and 9. These sloughs were chosen as study sites due to previous
observance of groundwater input into these sloughs plus the relatively
easy access into them from the Alaska Railroad.
Wells were installed the week of April 12, 1982 at 15 locations in or near
Slough 9 (Figure 1.2) and at 12 locations in or near Slough 8A
(Figure 1.3). The wells consist of 4-inch diameter plastic drainage pipe.
They are perforated throughout their length and capped at the upper end.
These wells were installed using a track mounted backhoe. A hole was
dug slightly below the water table (at time of installation), the pipe
inserted, and backfilled. Additional wells were also installed later in the
season. by hand driving a 1-!-inch diameter casing. The depth of these
wells varies between 4 to 12 feet below the ground surface. The mean sea
leva! elevation of the top of each well was surveyed in from the nearest
control point.
Wells were established along the banks of the sloughs to determine whether
the slough was influent (groundwater moving from the sloughs into the
banks) or effluent (groundwater moving from the banks into the sloughs).
Other wells were established in locations which would provide data useful
in determining overall direction of groundwater flow.
Groundwater level and temperature were measured at intervals through
spring, summer, and fall, and are continuing to be measured into fall and
winter. Elevation of the water surface in the wei' !s found by measuring
the distance of the water surface below top of the casing, ustng a
measuring tape coated with a water-indicating chemical which precisely
shows the location of the water surface. This distance is then subtracted
from the known elevation of the top of the well casing to arrive at a
groundwater surface elevation. This method is accurate to within a few
hundreds of a foot. Temperature is measured using a standard mercury
thermometer reading to 0. 1 °C. The question a rose as to whether the
temperature of the water in the well was the same as the temperature of
the local groundwater at that level. To test this, well temperatures were
measured, the well pumped and allowed to refill, and the temperature
re-measured. No difference in temperature was noted.
In November, 1982 four additional wells were installed in the area of
Slough 98. These wells were installed using a Nodwell mounted B-61 drill
rig. By using this method of installation, as opposed to the previous
method of installation by backhoe, it was possible to establish wells below
the groundwater table. These were necessary for verification of a
groundwater temperature model applied by Acres American. These well
were instrumented in December, 1982 with Datapod recorders to meilsure
temperatures and water surface elevation.
s16/q 1-2
..
r
)..
t.
\<<
En vi ron mental isotope tracking studies are described in Section 3. 7. Water
originating from different sources may have differing "signatures" based
on their isotope contents. Groundwater samples for this study were
obtained up-gradient from the sloughs, and surface water samples obtained
from the main stem Susitna and side sloughs. The isotope ratios for these
samples are to be determined, and this ratio used to identify the source of
water found in the sloughs.
All sources of surface flow into the sloughs were documented and measured
using standard discharge measurement equipment. Continuous stage
recorders were also located in both sloughs and rating curves developed to
relate the stage to discharge.
Visual observations< focused on locating areas of upwelling groundwater and
seepage of groundwater from the banks into the sloughs.
s16/q 1-3
-
t
Fourth of July Creek
...
FIG.1.1
I Oevtl Canyon : 7 Rivermlles v
i
Sherman Creek
Indian AivE,Jr
Stough
AM
\ TalKeetna : 26 Riverm1le~
Location of selected habitat slough sites along the
Susitna River between Talkeenta and Portage Creek
(adapted from ADF&G 198la)
1 - 4
I
I
I
I
I
a
I
i
I
I
I
I
.I
I
I
I
Ill !}
•
•
~·. ·'<!"'} -
P-----------------------------------------------------------------------,----------------------------------------------------------------,
...&.
I
(II
LEGEND:
• OBSERVATION WELLS
y STAFF GAGES
Q DISCHARGE MEASUREMENT SITES
• CONTINUOUS STAGE RECORDERS
~ CONTROLLING BERMS
~ CLIMATE STATION
----STREAMBED
PREPARED BY I
FIG .. 1.2
R&Y CONSULTANTS, INC •
-\I \I I i \
I \ \ -----\
PREPARED FOR:
SLOUGHSI g· &' 98
•
' .·.·.: _: ._ .. : .. : ....... -~~ ..• ·. · .. ·.:.· .. :.~ .. · .. : ...... #.~·~.:. ·• ~ .. :>· ' .1
LEGEND:
• OBSERVATION WELLS
• STAFF GAGES
Q DISCHARGE MEASUREMENT SITE
II CONTINUOUS STAGE RECORDERS
<@> CONTROLLING BERMS
,..._... STREAMBED
PREPARED BY I PAEPA~ED /FOA:
FIG.· 1.3 I SLOUGH' 8 A
R&M CONSULTANTS, INC.
~I'=========-----------~-----·-------------"·--· ........ ---·--......!-=====::! •
..
(.
I
2 -FLOW REGIME
2.1 -Relationship between Slough and Mainstem
The formation of a slough along the Susitna River appears to be caused by
high water stages causing water to spill onto adjacent floodplains. This
process may occur either during high summer flows or during ice jams on
the main river channel. The flow of water, sometimes the entire discharge
of the main river during ice jams, carves a side channel through the
floodplain. Such an occurrence of a jam forcing water· and ice into an
existing slough was observed on May 15, 1982, at both Sloughs 8A and 9.
Surface velocities of up to 10 feet per second were observed. Vegetation
between the slough banks is relatively young, indicating that this ice jam
flooding may be a frequent occurrence in these sloughs. Old ice scars on
the trees on the slough banks also verify this.
Comparison of aerial photos· from 30 years ago (Figures 2.1, 2.2 & 2.3)
shows minor changes in both Sloughs 8A and 9 but verifies that these
sloughs did exist then. This is not the case with Slough 11 (just
downstream of Gold Creek) which did not exist in 1950.
At the present each slough is connected to surface flow from the mainstem
Susitna only when the flow in the mainstem is high enough to overtop the
berm at the upstream end (head) of the slough, or by backwater at the
downstream end (mouth). The flows required to initiate these surface
water connections are unique to each slough.
For Slough 9 the controlling berm at the upstream end begins to overtop
at a discharge of approximately 23,000 c.f.s. at Susitna River at Gold
Creek (visual observation). This berm is very unstable and shifted quite
often during the time it was overtopped. Slough 8A has two entrances.
The berm at the upstream entrance overtops at approximately 30,000 c.f.s.
and the berm further downstream o• .,.tops at 26,000 c.f.s. Both of these
berms seem quite stable and have a f~rowth of small willows on them.
When a slough is overtopped the flow from tha main river dominates flow
conditions in the sloughs.
2.2 -Flow Regime in Sloughs When Upstream End is Closed
Each slough along the river is unique, and therefore must be looked at
separately.
Slough 9 -When flow in the mainstem Susitna River is not enough to
overtop the upstream berm at about 23,000 c.f.s. (Figure 2.4), then flow
in the slough is derived from two sources, surface runoff from small
streams and groundwater inflow. There are two small streams which
originate off the hillside above the railroad tracks and which feed into
Slough 9. Both of these enter the slough at its bend near the railroad
tracks (Figure 1. 2).
s17/d 2-1
l ..
L
~I
,,
To quantify the respective amounts of water comtng from surface runoff
and groundwater, discharge measurements were made within a few hours of
each other at each incoming source of water and at the downstream end of
the slough. These measurements were made using standard discharge
measurement techniques and a pygmy flow met~r.
By documenting surface flows in Slough 9, theoretically the groundwater
component of the slough flow could be determined through a <>imple
summation process. For example, if the flow at the downstream end -of the
slough were 5 c.f.s. and the two small streams each input 2 c.f.s. this
would mean there was a 1 c.f.s. contribution from other sources, which
would be groundwater flow into the slough.
The measurement of open channel flows can never be mere than an
approximation. Under normal field conditions an error of at least 3 to
5 percent can be expected, and in low flow situations, such as were
encountered in the sloughs, greater percentages of error exist.
Understanding this we can look at the data obtained from these
measurements.
SURFACE WATER MEASUREMENTS AT SLOUGH 9
Downstream
Slough Stream Stream End of g,
0 %
Date 98 #1 #2. Slough 9 Groundwater Runoff
8-25-82 1.00 0.68 dry 1. 72 61
9-9-82 0.74 1. 76 0.13 2.96 36
Surface runoff contributed approximately 39% and groundwater 61%
downstream discharge in the slough during a relatively dry period
summer on August 25. Measurements made during a rainy
(upstream berm of slough still not overtopped) showed percentages
runoff contribution and 36% groundwater contribution.
39
64
of the
of the
period
of 64%
The major percentage of the groundwater inflow originates near the
upstream end of Slough 9 from an area referred to as Slough 98 in ADF&G
reports. The flow from this area is assumed to be all groundwater as
there is no obvious input of surface water. Other areas of groundwater
seepage and upwelling were noted in the sloughs. These are detailed is
Section 3.3. The actual origin of the groundwater (mainstem river or
local) must be determined to assess the impact of the proposed
hyd roelech·ic development.
Slough 8 -The berm at the entrance to Slough 8 (Figure 2. 5) is much
higher than the one at Slough 9. Overtopping of the berm occurs at a
flow of approximately 30,000 c.f.s. at Susitna River at Gold Creek. When
the berm is not overtopped there is no surface flow in the slough until the
area near well 8-6, where a small spring emerges. Downstream of this
spring six small cr·eeks flow into the slough. During rainy periods these
s17/d 2-2
f
I ' ...
..
IJ
streams provide the majority of the flow in Slough 8 when the berm is not
overtopped. Some upwelling was observed but only near the shoreward
side of this slough. It would be a difficult task to measure th~ flow in all
these streams to determine their contributions but the streamflow record in
these sloughs shows a large increase in flow during rainy periods when
the upstream berm is not yet overtopped.
2.3 -Winter Regime of Sloughs
Based on limited observations from the beginning of the winter season of
1982, it appears that the ice cover in the mainstem plays a great role m
determining the winter flow conditions in the slough.
The leading edge of the ice cover on the Susitna River reached the area of
Slough 9 in mid-December. Measurements of water surface elevation were
made in the vicinity of Slough 9 on November 22, 1982, when an ice cover
was not present, and again on December 21 1 1982, after a complete ice
cover had formed. The ice cover staging and constriction of the channel
caused water surface elevations in the mainstem to increase five to seven
feet (see Table 2.1 and Figures 2.6 and 3.21). This winter water surface
elevation is comparable to an open channel flow elevation of approximately
30-40,000 c. f. s.. It is not yet known how this will vary through the
winter 1 or its affects on the water table in Slough 9 B.
Comparable data on stage are not yet available for Slough 8A but an
interesting occurrence took place in winter 1982. An ice cover formed in
the mainstem near Slough 8A in late November. Once this hrppened the
increased stage in the mainstem allowed water to flow into the side channel
above Slough 8A. The dow•··,~tream end of this side channel was
obstructed by ice an thus this flow was shunted into Slough 8A.
Estimates of this flow vary from 50 to 150 c. f. s. and have continued from
the beginning of mainstem ice cover formation to the date of last field
observation, December 21 1 1982.
s17/d 2-3
TABLE 2.1
Winter Water Surface Elevations
Mainstem Susitna near Sloughs 9, 8A and 21
RM Location (all WSE in Mainstem)
Mainstem near Slough 9
130.1 xs 33
129.7 200 yards upstream of x s 32
129.4 near upstream end of Slough 9
128.9 near upstream end of island
128.5 near downstream end of xs 30N3
Mainstem near Slough 8A
126.5
126.2
126.1
near upstream entrance to Slough 8A
near groundwater l. . 8-1A
xs 29
Mainstem near Slough 21
142.3
142. 1
141.8
s17/d
xs 57
xs 56
2-4
Elevation (M.S.L~)
11-22-82 12-21-82
611.65
606.62
599.89
594.05
593.12
612.10
608.16
606.50
601.66
597.88
572.77
569.74
568.80
752.90
752.67
746.40
1951
t/dl
AERIAL PHOTO COMPARISON
1951 to 1980
SLOUGH 8A
FIG. 2.1
1980
i '· ·'
\:.
L ..
t/d3
1951
AERIAL PHOTO COMPARISON
1951 to 1980
SLOUGH 9
FIG. 2.2
2-6
1980
1951
t/d2
AERIAL PHOTO COMPARISON
1951 to 1980
SLOUGH 11
FIGo 2.3
2-7
1980
PREPARED BY I
R&M CONSULTANTS, INC.
•
;T· ~,, ••
\ I
e3
I I \ 1 \
\ I l I
I I
LOCATIONS OF BERMS CONTROLLING CONNECTION OF MAINSTEM FLOW INTO
SLOUGH 9 AND MAINSTEM DISCHARGE AT GOLD CREEK WHEN FLOW IS INITIATED.
FIG. 2,.4
. .. ": .... ~ ... ... :.·;:.: . ...... . . ~ .....
ACTUAL LOCATIO~:~::;:.
IS 400 YDS. UPSTREAM
OF LOCATION SHOWN.
I t--1
I I -t--l
PREPARED FOR:
I
..
•
PREPARED BY I
: ... :·:: ::;;~·::.'.~~.: ::; ... :·.-~ ~. ·~ ~ --.w--~.;.;,"~...:.··:_:· ·:...:_";·}: ._=:;:\~ .1::· .
. ... ·.·:t
~ : ·::~.";_, ~ .
• t .... ~~ ;_:~--.
LOCATIONS OF BERMS CON/TROLLING CONNECTION OF MAINSTEM FLOW INTO
SLOUGH 8 AND MAINSTEM DliSCHARGE AT GOLD CREEK WHEN FLOW IS INITIATED.
FIG.· 2.5
R&M CONSULTANTSt INC •
C.F.S .
PHcPARED FOR•
~~~~ ~::::::::::::::::::::::::~---------------------------·--------------....... ___________ _.,.., ____ ...... -........... ,/o< ..... ·-.......... --·--··----_.".....,.-... -.. _._.._ ...... _ ......... _ ..... ~~ ......... , ..... ~ ......... _ ... ,, .. , ........... _ ..... , ........................ _._. •. ______ .... ..
I :
•
•
..
1\:>. ' ..... 0
LRX 31
··--:----·---...... ---* AIAINSTE:Af WAT£R SURFACE: ELEVATION (FROM HEc-2) 34, 5oo ------. 17. ooo ___ -. 13, 4oo __ -.
~ Stt r 11 s.,,CJ
G::.::;j C'<~v(l 1J lliJLIIJLC J f:(f2!] couaq ll !JOvtoc<~
~----------~~
.,., '""~ '>-oo ·-
•
•
... ~ ~ .... f ..• .,., .,, :-~.\ ,. . .. ... \ 1 -~ \:;, 1.! • .! . i ,, ' (, ' • ! 1: I
..
3 -GROUNDWATER STUDY
3. 1 -Introduction
Summer flow in the sloughs depends on local runoff and groundwater· input
into the sloughs. It was al!>o observed (Trihey, 1982) that flow existed in
these sloughs during winter when runoff was not contributing to the flow
in the slough. This suggests that much of the slough flow during winter
may be contributed by groiJndwater. It was also noted in 1981 that the:
intragravel water temperatures in the slough~ were 2-4°C. This f~levated
temperature caused the slough to stay unfrozen through the winter and it
is believed to be an impo1rtant fac:i.:.or in the survival of salmon ~embryos
(Trihey, 1982).
J n order to assess the effec.t of post-project changes of extstmg streamflow
patterns on groundwater input to the sloughs, it is needed to determinE:
the origin of the groundwater. To accomplish this three methods were
tried:
1. assessment of the direction and rate of groundwater flow in the
floodplain upon vvhich these sloughs exist. Observations would
be made through the year and during specific streamflow events
on the mainstem Susitna River. This was accomplished through
monitoring of a number of wells which were established in the
areas of Sloughs 8A and 9.
2. modeling of the groundwater temperatures.
3. a test program to assess the feasibility of using environmental
isotopes.
It was concluded in a separate report (R&M 1982b) that the use of dye for
the tracking of groundwater would be unreliable because of the problems
associated with the absorption of dyes in soils. Thus, this technique was
not used for this study.
3. 2 -Stratigraphy
Sloughs 8 and 9 and all sloughs along the river are part of the modern
floodplain of the Susitna River. The modern floodplain consists
predominately of cobbly sandy gravels with silty mantles in areas between
and adjacent to the main channels. Above and immediately adjacent to the
modern floodplain lie a series of fluvial and glaciofluvial terraces deposited
as the Susitna River re-established its channel and adjusted to changes in
grade following the late Wisconsin glaciations of Soutt'tcentral Alaska. The
terrace deposits generally consist of coarse sandy gravels overlain by a
few feet of sandy silt and silt overbank deposits. Alluvial fan deposits
have formed on the floodplain and terraces where tributary streams
encounter these lower gradient surfaces. The valley floor and side walls
above the terraces are thought to consist of glacial tills composed of
gravel, sand and silt, probably representing deposition during several
s17/d 3-1
..
..
glacial events (the last of which ended about 10,000 years ago). Older
Pleistocene sequences of glacial and glaciofluvial drift may underlie the
terraces and modern floodplains. Bedrock underlies the unconsolidated
materials at an undetermined depth.
This stratifica~i.vn was partially verified during the installation of wells in
the river floodplain. Well Jogs (Appendix A. 6) show well graded sandy
gravel overlain by 0 to 10 feet of silt and sand. The gravel contains well
rounded cobbles and boulders t to 6 inches in diameter and contains no
silt. This gravel existed in all holes drilled, although the density varied
at different depths. Since no wells were established that were deeper
than 43 feet, no data are available on the actual composition of the material
below this depth, or on the depth of a boundary bedrock layer. It has
been assumed for all calculations that this glacial till continues down to
bedrock, and that its coefficient of permeability is the same at all points
and in all directions. A reasonable assumed porosity for glacial till of this
type would be close to 0. 20. An estimate of permeability using a
relationship between particle size and permeability develooped by Hazen
(Lambe, 1969) gives a value of 69 m/day for the single sample analyzed.
The U.S. Army Corps of Engineers estimated a permeabi I ity of 305 m/ day
in similar glacie>fluvial alluvium near Fairbanks (Nelson, 1978). A
permeability of 100 to 1000 m/day should be expected for this type of soil.
3.3 -Areas of Visual Groundwater Observations
Surface water disch9rge measurements at Slough 9 determined that a large
portion of the water in the slough originates from groundwater input.
This input was observed in many areas of the sloughs as seepage from the
slough banks above the water surface in the slough. It was also observed
as upwelling flow in numerous places, on both the river and shoreward
edges side of the sloughs. This upwelling is a flow of water moving up
through the slough channel. Locations of these upwelling areas are
detailed on Figures 3.1 & 3.2. These locations were documented by
ADF&G personnel during the first week of October.
Quantification of the rate of groundwater flow into the sloughs can be
obtained using a device called a seepage meter (Figure 3.3). Seepage
between the groundwater and the slough can be measured directly by
covering an area of sediment with an open bottomed container, then
measuring the time and change of water volume in a bag connected to the
container.
Knowing the area covered by the container, the amount of seepage per
unit area of slough bed can be determined. The Darcy velocity of flow
through the soil can be estimated by the. relationship V = Q/ A. If a
random pattern of samples of groundwater ii1put to a slough are made,
then a reasonable estimate of total groundwater input to the slough can be
determined.
s17/d 3-2
•
~
~ l.
~
i1
"
\
A single pre-freezeup test of a seepage me1:er yielded the following
results.
Location: Slough 98
Depth of VVater: 1 . 5 feet
Sediment Type: Gravel and silt
Date: 1 0-15-82
Time: 12'15-1600 = 225 minutes
Volume Change: greater than 3000 cm 3
=
(Volume Change, cm 3.:....)_---=-_
(elapsed time, seconds) (area, m2 )
(3000)
(13,500 sec.) (.255m2 )
3 .·4 -Groundwater Contours
From the observation wells established in Sloughs BA and 9 general
c•ontours of groundwater elevations were drawn for various times of the
year. These contours were drawn based on the data obtained from the
wells shown on the mapsheets, with intermediate elevations extrapolated
Jfrom these known elevations. Figures 3.4 thru 3.11 illustrate these
contours for Slough BA. During periods of time when the river stage was
stable the flow of water was through the island in a downstream direction,
with a slight gradient away from the center of the island both towards the
sloughs and towards the main channel. Limited sampling during the only
hydrograph rise that occurred after the observation program was set up
indicated that during rising river stage the groundwater contours and thus
the flow of groundwater shifted rapidly toward the direction of the slough.
In Slough 9 analysis was concentrated around Slough 98 as this was shown
to be the largest source of groundwater input. During periods of time
when the river stage was stable the flow was directed into Slough 98 110m
both the river and from the area upland of the slough (Figures 3.12
through 3.21). Data during the occurrence of a rising river stage is not
yet available, but it is likely that this rising river stage will increase the
gradient of flow into Slough 98. An early season (April 26, 1982)
observance of well levels showed very little contribution of flow to
Slough 9B from the upland area. An observation made after an ice cover
had formed on the mainstem Susitna (December 21, 1982) showed no
contribution of flow to 98 from the uplands yet noticeable flow was
observed in the slough.
,.
Continuous data from Datapod recorders operating on four of the wells In
the area of Slough 98 since September 1982 are not yet available.
3.5-Groundwater Hydraulic Calculation
The basic elements of groundwater flow are related by the Darcy equation:
Q = KA dh
dl
where Q is the flow of groundwater, A is the area through which flow
occurs, dh/dl is the hydraulic gradient (the change in hydraulic head
over a distance along the line of flow) and K is the hydraulic conductivity
of the material.
Using Darcy's law and assuming. isotopic soils in the river floodplains, the
seepage velocity of the groundwater flow can be estimated where contour
data are available. During July, which was fair·ly dry with the river stage
very stable, the head difference between Slough 98 and the mainstem
Susitna River was observed to be approximately 0. 91 m (3 feet) on two
occasions (July 1 and July 20). The distance along a flowline is 274 m
(900 feet), resulting in a hydraulic gradient of 0.0033. Using this
gradient, assuming k = 100 m/day and assuming horizontal flow, the Darcy
velocity of flow through the soi I can be estimated.
Assuming
v = Ki = K
v = 100 m
day
v = 100 m
day
K = 1000 m/day
v = 1000 m
day
hl - h 2
( )
L
( 0.91 m )
274 m
(0.0033) = . 33 .l!J:....
day
(0.0033) = 3.3 m
day
In the area of Slough 8A the same type of calculations yieid the following.
..
~
~
~
~
~
•
i
Distance
along
h1 -hz Flowline I Assumed
Date (m) (m) ---(m/m) K (m/day) V (m/day) Comment
4-2G 0.91 335.4 .0027 100 0.27 Ice cover
1000 2.70
9-3 1. 52 701.2 .0022 100 0.22 Stable flow
1000 2.20 14,000 c.f.s.
9-1Ei 0.91 304.9 .0030 100 0.30 Peak of
1000 3.00 hydrograph
31,000 c.f.s.
Permeability for the gravels has not yet been defined, but assuming a
ransJe of 100 to 1000 m/day indicates that in either case the Dar'cy velocity
through the gravels is fairly low, due to the small gradient which drives
the ·Flow.
Rapid rise and fall of the river stage, plus concurrent monitoring of the
river stage and the groundwater levels, were needed to verify this
movement of water and the permeability of the gravel. Only a single event
of this type occurred during the observation period. The data obtained
from this event were not complete enough to produce a value for
permeability.
3.6 -·Groundwater Temperature Analysis
As previously noted it was observed during the winter of 1981-82 that the
tempt~rature of the intragravel winter in the sloughs was 2 to 4°C. This
elevated temperature in the sloughs is thought to be due to the influence
of th~! lag time of the water moving through the ground to the sloughs.
TempE~rature measurements taken in shallow observation wells through the
summe~r and fall are tabulated in Appendix A.2. Temperatures in the wells
generally ranged from 2 to 6°C with temperatures increasing through the
summer. Temperatures in the mainstem Susitna River ranged from 0 to
10°C.
Analysis of the ground thermal regime was undertaken by Acres American,
lnLorporated, and is described in a companion report to this one (Acres,
1983).
3. 7 -En vi ronmel1tal. t sotol?e Study
A test program to determine the feasibility of using env'ronmental isotope
tracers for water source studies was conducted in the fall. of 1982. An
..
environmenta4 isotope is a naturally occurring or man made isotope (which
the investigator cannot control) which may be useful in hydrologic studies.
Oxygen -18 ( 0 18 ), triti urn, and de uteri urn are three en vi ron menta I isotopes
which can be used as tracers of water. Depending on the source of the
water the isotope content of the water will vary with th·~ result that the
water may attain an isotopic signature unique to that water source.
Samples from the mainstem Susitna River, from the groundwater originating
from upiand of from the sloughs, and from the sloughs were analyzed for
their oxygen-18, tritium, and deuterium ratios. If the isotopic signatures
from the different water sources are sufficiently differe.nt then the relative
contributions to the sloughs of groundwater from uprand of the sloughs
and of intragravel flow from the river may be quantified through a simple
mass balance equation.
Sample analysis was done by the Department of Earth Sciences at the
University of Waterloo, Waterloo, Ontario. The samples frorn the area of
Slough 8A were taken on July 18, 1982 (QGC = 25,400). The samples from
the area of Slough 9 were taken on July 20, 1982 (QGC = 22,900). The
results of this testing for tritium, oxygen-18, and deuterium are shown
below.
RESULTS OF INITIAL ENVIRONMENTAL ISOTOPES ANALYSIS
Tritium Oxygen-18 Deuterium
Sample (±8 T. U.) (± .2) (± 3)
Susitna River +64 -21.0 -169
Slough 9B +82 -19.3 -148
Well 9-3, upland groundwater +39 -17.7 -1:~7
Stream entering Slough 8A +49 -17.8 -143
Slough 8A +63 -17.5 -145
To understand these results some background on the two isotopes is
needed.
Tritium is a isotope of hydrogen whose half IHe is 17.35 years, Its
concentration is measur·ed in tritium units (T.U.) where 1 TU = 10-18
tritium atoms per hydrogen atom. Tritium is produced both naturally by
cosmic neutron bombardment of nitrogen -14 af\d by man as a by product
of atmospheric nuclear testing. The natur-a! production of tritium has been
estimated to be from 4 to 25 T. U, btJt concentrations up to 3000 T, U. have
been found in Alaska, since the adv.~nt of nuclear testing in 1952, which
have completely masked th,~ natural pl~oduction.
A general guideline for the use of tritium isotope in hydrology studies is
that if the water has less than 5 T. U. ~ then it originated frvin
precipitation which fell prior to 1953. If the water has more than· 5 T.U.,
then it originated from precipitation which fell after 1953.
For this study it was hoped that a significant difference would be found
between mainstem Susitna water which is partially composed of glacial melt
(old precipitation) and local groundwater (new precipitation). Looking at
the results there was a significant difference but not in the way hoped
for. The mainstem sample (glacial melt and recent precipitation) contained
a greater concentration of tritium than the local groundwater. Testing of
the sample from the slough showed a higher concentration of tritium than
either the mainstem or the local groundwater. This was not expected, as
the concentration here should have beeri between the two extremes.
Oxygen-18 is a stable isotope of oxygen which occurs naturally in water.
The concentration is expressed as a ratio of heavy to light oxygen
(o 18;o16 ) as per mil percent differences relative to a reference standard,
Standard Mean Ocean Water. The oxygen-18 concentration of water is
controlled mainly by the differences in vapor pressures and freezing points
of oxygen-18 and oxygen-16. When water vapor condenses, the rain or
snow which forms has a higher concentration of oxygen-18 than the vapor
from which it formed. This process is called "fractionation''. As 'lhe
water vapor moves inland as part of a regional or continental circulation
system, the process of condensation and precipitation is repeated several
times, progressively depleting the residual water vapor with respect to
oxygen-18. The isotopic compositio;" of a rain or snow event is strongly
controlled by temperature. For practical purposes, the temperature
dependency results in (Sklash, 1982):
0
0
0
0
An Altitude Effect: oxygen-18 becomes more deplete with
altitude.
A Distance to Source Effect: Continental precipitation is more
depleted in oxygen-18 than coastal precipitation.
A Paleoclimate Effect:. Precipitation fallen under cooler climates
which existed in the past would be depleted in oxygen-18.
A Seasonal Effect: Winter precipitation is more depleted in
oxygen-18 than summer precipitation.
All of these factors seem to point to the idea that the water in the
mainstem Susitna, originating from areas of higher elevation and containing
a large percentage of precipitation which had fallen under cooler climates
or as snow, should have a lower concentration of heavy oxygen than the
local groundwater near the sloughs. Our initial sample testing showed this
to be the case.
Deuterium is an isotope of Hydrogen (H 3 ) which occurs natut·ally in water.
Its response to the prC'Icess of fractionation is similar to the oxygen-18
isotope.
There is a possibility that the components of slough flow can be
determined by their isotopic signatures. The results ft·om the initial
tritium testing do not show much promise. Although only one sample was
tested it is likely that future testing using this isotope would not be
worthwhile. The oxygen-18 and deuterium initial results were more
promising, as they followed the expected pattern. A significant problem in
utilizing the environmental isotope technique is the travel time of Susitna
River water as intragravel flow. The Darcy velocity of the groundwater is
generally quite low because of the low driving head. The stratigraphy
and permeability of the gravel islands and bars are quite variable, further
complicating the interpretation. In addition, the isotopic signature of the
river water is believed to vary throughout the year. Because of the
variability in isotopic signatures and in travel time through the gravels, it
is difficult to determine what isotopic signature for river water should be
used when estimating the contributions from different sources.
s17/d 3-8
~ LOCATION OF UPWELLING
PREPARED BY • PREPARED FOR:
OBSERVED LOCATiON OF GROUNDWATER UPWELLING
R&M CONSULTANTS-INC. FIG.~ 3 .. 1 SLOUGH 9
11 ..
• •
It
•
'"' ;?'. >-: .:.,• ,:; : ;.: :0·:.·., ;:) ·: ,,,. :.'!;:,: .. .
(.,)
I -0
A&M CONSULTANTS, INC.
··:::. ... ;,: .; ~ * .....
~ LOCATiON OF UPWELLING
OBSERVED '-OCATION OF GROUNDWATER UPWELLING
FIG. 3.2 SLOUGH 8A
PflEPARED FOR:
~==============~~-----------·-------------,-------------·----·"'-'-'---·_;_..__.._"'"_'~·----..... -------_!:..::====:::! •
A
:
WATER SURFACE
SLOUGH BED
• o • • • 1 • •o" 1 o o ~ •''•• •..:i""'v • --o 0 • • ... _,
~
A -Plastic bag to collect groundwater
B -End section of a 55 gallon drum
Figure 3.3
Seepage il!eter
3 -11 ,.
...
..
Date
4-20
4-21
4-22
4-23
4-24
4-25
4-26
Precipitation*
(mm)
7.0
0.0
0.0
0.0
1. 6
0.0
0.0
PREPARED BY I
R&M CONSULTANTS, INC.
Temperature*
(OC) QGC
1. 7
1. 5
1.2
0.1
1.1
4.4
1. 0
Ice
Ice
lee
Ice
Ice
Ice
Ice
FIG.· 3.4
cover
cover
cover Date:
cover
cover QGC:
cover *
cover
Precip. and temp. data from Devil Canyon
Climate Stations.
GROUNDWATER CONTOURS
SUS.ITNA RIVER· AT SLOUGH SA
SCALE: 1 11 = 1000'
observation well
groundwater elevation
4-26·-82
lee Cover
PREPARED FOR:
1!:========== ... ~ ..... ••• ••• u.-,...,...,. ___ ..,. ______ .,..,..,...._fll~--.t..........---------------------------------====::!J
I
•
•
•
r----....... ....... ............ ._.. ...................... ..__,_, ______________________________________ "'!!
Precipitation Temperature
Date (mm) (OC)
8-28 3.2 9.8
8-29 13.2 9.8
8-30 27.2 8.5
8-31 7.8 9.8
9-1 9.4 10.3
9-2 11.6 9.2
9-3 7.8 8.3
• "I• I
FIG .. · 3.5
R&M CONSULTANTS, INC.
QGC
12,400
12,200
13,100
16,000
17,900
16,000
14,600
--......... -...... ..,_.,
GROUNDWATER CONTOURS
SUSITNA RIVER ·AT SLOUGH SA
SCALE: 1 11 = 1000 1
Legend
0
1160011
Date:
QGC:
observation well
groundwater elevation
9-3-82
14,600
PREPARED
________ &A__, ..... ~.....-...-..... -otlii ..... ------·-·1>-·-------------
FOR:
Jf
,.
..
Precipitation
Date (mm)
9-3 7.8
9-4 0.2
9-5 1.0
9-6 0.0
9-7 1.8
9-8 0.2
9-9 0.8
9-10 0.2
r r..:.. '" :~ .~ ·' ••
R&M COHSULT.ANTS, JNC.
------~----------------------~--·-·----···~ ..... ----..... ----------------------------------~--------------------~
Temperature
QGC (°C)
8.3 14,600
7.8 14,400
9.9 13,600
10.3 12,200
10.9 11,700
9.2 ') 1 '900
9.3 13,400
8.7 14,400
FIG.· 3 .. 6
....... .._._. --
GRu~ "~DWATER CONTOURS
·SUS.ITNA tiiVER ·AT SLOUGH SA
SCALE: I II~ 1000 I
Legend
•
1160011
Date:
observation weP
groundwater el-.1. Jation
9-10-82
14,400
PREPARED fORt
[!::::::::::::::::::::::~--------------------------------~,~--------------------------------·-------*------------------------·--------•
..
.. ..
Climatic Summary for
Preceeding 7-Day Period
Precipitat~e>n Temperature
Date (mm) (°C)
9-10 0 '.) ·-8.7
9-11 7.6 3.7
9-12 3.6 5.7
9-13 28.6 6.6
9-14 19.0 8.9
9-15 29.8 12.2
9-16 11.2 8.6
;:3~ ...• t '... . .... ~\
QGC
14~400
13,600
13~200
15~200
20,200
28,200
32,500
Legend
•
11 600 11
Date:
observation well
groundwater elevation
9-16-82
3'1 ,400
.. ·-· ····--PREPARED FOR: J;:~~~~~----------------------·-· ---------------------------~====~1
FIG. 3.7
R&M CONSULTANTS, INC.
GROUNDWATER CONTOURS
SUSITNA RIVER· AT SLOUGH SA
SCALE: 1''= 1000 ~
•
•. •
(,.)
I
-'
m Climatic Summary for
Preceeding 7-Day Period
Pr·ecipitation Temperature
Date (mm) (°C) QGC
9-14 19.0 8.9 20,200
9-15 29.8 12.2 28,200
9-16 11 . 2 8.6 32,500
9-17 9.4 5.4 32,000
9-18 10.0 7.9 27,500
9-19 18.6 7.7 2-1,100
9-20 6.0 7.5 24,000
fJJ,.:.;.!-.J. -~ ""'--·
FIGo 3.8
R&M CONSULTANTS, INC.
GROUNDWATER CONTOURS
SUSITNA RIVER· AT SLOUGH 8A
SCALE: 111
'= 1000 1
Legend
• observation well
Date:
groundwater elevation
9-20-82
24,000
PREPARED FOR:
~==========~-------·---------------------------------------------~Ill~
•
•
..
'::' :'0 :~·,;,:o ,:; ;; .: :~·: , ... ;''' ·'·\'1~,' ...
·~: ::: ": .
(,.)
1
"""" " CJimatic Summary for
Preceeding 7-Day Period
Precipitatjon Temperature
Date (mm) (oC) QGC ---
9-29 7.4 6.0 12,400
9-30 8.4 4.9 12,500
10-1 2.2 12,400
10-2 3.3 11,700
10-3 2~8 11,000
10-4 1 .3 10,500
10-5 0.1 9,800
PREPARED BY•
R&M CONISULTANTS, INC •
•
•
Legend
•
1160011
Date:
GROUNDWATER COf~TOURS .
SUSITNA RIVER ·AT SL.OUGH .8A
SCALE: 111 = 1000 1
observation well
groundwater elevation
10-5-82
8,300
PREPARED FORt
•
..
•
_ . .,.....~_, .. ......, •• _....,.w __ ,.. ______ .._..,.,.__ •.......... ____ _...._._,...._ .... ,..~..._ ....... _ _,......,.. .. .....,.._...,..........,_.__..,.., • .............., __ .,_.. •• -~----------------------·-•
(,)
I .....
Q)
Date
10-7
10-8
10-9
10-10
10-11
10-12
10-13
.......
Climatic
Pr'eceeding
P r'ecipitation
(mm)
PREPARED BY I
Temperatu r·e
(oC)
0.5
0.1
0.1
-2.0
-0.7
1.1
-2.4
8,480
8,400
8,440
8,480
7,500
FiG.· 3.10
r3.ROUND WA l'ER COt~TOIJRS
SlJSI'rNA RIVER AT SLOUGU SA
s CAL E: 1
11 = 1000 I
·----------·---------·-.. -· .... -·------· ..... ___ ...._ __________________ _
Legend
• observation well
11 600 11 groundwater elevation
Date: 10-13-82
QGC: 7,500
PREPABEO FOn:
..
•
,.
•
"
~--~---------------------------------------------------~-----~-------------------------w---------------,---~·~-----·~-·-----,·--~--------------~
Date:
Note:
. .. ""-~ ,~ .. ":
... t ..
12-21-82
*~. .
~ ... : . . ... : :. . .
Winter flow., ice covet~ on
mainstem. Jamming causing
partial diversion of mainstem
flow into slough
PREPARED BY •
R&M CONSULTANTS, INC.
FIG.3.11
574
4Ae574.76
575
576
GROUNDWATER CONTOURS
SUSITNA RIVER. AT. SLOUGH SA
Legend
• observation well
11 600 11 g .... oundwater elevation
PhEPAREO FOR:
'---------------------------------------.. --... ----·-~ .. ..-............. ~----, ...... ~-... ---·-----·---··· .. ~-----·-.~-
I
r·
I
I
I
I
I
I
I
t
I
l
•
• •
Date
4-20
4-21
4-22
4-23
4-24
4-25
4-26
Precipitation*
(mm)
7.0
0.0
0.0
0.0
1.6
0.0
0.0
Temperature*
(OC)
1. 7
1.5
1. 2
0.1
1.1
4.4
1.0
QGC
Ice cover
Ice cover
Ice cover
Ice cover
Ice cover
Ice cover
Ice cover
* Precip. and temp. data from Devil Canyon
PREPARED BY • Climate Stations.
-~. re?il~/J .... . ..._, {}" ~ I \:I :
R&M CONSULTANTS, INC.
FIG. 3.12
GROUNDWATER CONTOURS
SUSITNA RIVER AT SLOUGH 9
SCALE: 1"; 1000'
Legend
•
11 600 11
Date:
observation well
groundwater elevation
4-26-82
Ice Cover
PREPARED FOR'
11 I
•
..
•
•
••_.11'1 _
Mll[~
._-~
-...r
..-.
J .~.::••:....:.....
..::·:;·\;;t.
··::·t:.....
"4-'·.......~~.
.,:~,"\....::..
'.~:\
~~~~:;:";':"-':':':~.........-(::;'::-:::':;:':".
.::-::
PREPARED FOR:
Ice cover,just
before breakup
groundwater elevation
5-11-82
Legend
•observation well
Date:
QGC Z
"600 11
<-
dJ~c:>
.j ____"Int-...-._--....__..._......._.......~....06"...~....__··.__'_............._.........:......_..__~.~.•
~ca
GROUNDWATER CONTOURS
SUSITNA RIVER AT SLOUGH 9
SCALE:III~IOOOI
QGC
Ice cover
Ice cover
Ice cover
Ice cover
Ice cover
Ice cover
Ice cover
FRG.3.13
0.9
4.7
5.1
4.9
3 ..0
5.1
3.0
Temperature
COC)
0.0
0.0
0.2
0.6
4.4
3.2
3.2
•:Mt;i
.'
b <•ftn ,_,...._
P rel;ipItation
Date (mm)
.~,~-....~
5-5
5-6
5-7
5-8
5-9
5-10
5-11
R&M CONSULfANTS.INC.
~
I
I\)
..a.
.........._._._--Iit-.-.'II ---..--1
•,..Il'--"(.......~""---....r ~
r-----
l'
J1 PREPARE.D BY!
J!j~=:-::=====::::::=:::::::=::=:::'~--_._..._.......__:~--_.....--..:...__-....-........................u-.'._
t>•
•
Date
S-17
6 ... 18
6-19
6-20
6-21
6-22
6-23
...
Precipitation
(mm)
0.0
1.8
0.0
10.8
0~4
0.0
O,.(J
Temperature
(OC)
11.4
10.9
14.3
8.3
10.5
11"8
14.2
24,000
25,000
Legend
•
11 600 11
Date:
observation wei I
groundwater elevation
6-23-82
25,000
~P~R~E;P~AR~~EO~~B~Y~·;:~~;;~~-----------------------------=~~~:--::·~N~~::~~---~-~--~-~-~·~·;·--~-----·-·----·-··-----·--·-·~---~-----._---~~·
GROUNDWATER CONTOUR$
·SUSITNA RI.VER AT SLOUGH 9
SCALE: 1 11 ~ 10001 Mfll~ ·----·-------------------------~·~·-.. ..._..._.._ ... ____ ,.,._.. ... __ '-'"' ... _.....~a.-...... -;;..._ _____ li
R&M CONSULTANTS, INC.J
I ~
•
"
•
•
Climatic Summary for
Preceeding 7-Day Period
Legend
Precipitation
(mm)
Temperature
(OC) QGC " observation wei I
•
Date
6-25
6-26
6-27
6-28
6-29
6-30
7-1
2.0
0.0
0.0
0.8
0.0
9.2
1.6
16.5
15.9
14.9
12.7
13.0
13.6
10.1
25,000
27,000
24 1 000
2L,OOO
116Q011
Date:
QGC:
groundwater
7-1-82
25,000
!~;P;R:E~PA~R;E~D~=B=Y~·;;~~:;:;----------------------------~~::::::~::~::::-----·--------------------~--·---··-----·-
GRQUNDWATER CONTOURS
SUSITNA RIVER AT SLOUGH 9
scALE: 1 .. ~ 1 ooo'
FIG 3.15
R&M CONSULTANTS, INC.
==============~--------------------------------------·-··-·--------------~---
elevation
•
)t
' '
Date
7-14
7-15
'7-16
7-17
7-18
7-19
7-20
,..
l
PREPARED
Climatic Summary for
Preceeding 7-Day Period
Precipitation Temparature
(mm) (oC)
1.8 12.0
2.2 11.4
7.6 11.1
2.4 13.2
13.2 12.2
0.0 15.7
0.0 15.0
BY•
QGC ---
27,300
25,600
25,600
25,300
25,400
24e90Q
22,900
-..
FIG. 3.16
R&M CONSULTANTS, INC.
r
I I I I I I \ I I I
GROUNDWATER .CONTOURS
. SUSITNA PIVER AT SLOUGH 9
SCALE: t":d 1000'
l \ \ t--t I t
I \ I I \ ~
Legend
•
116QQ11
observation well
groundwater elevation
7-20-82
22,900
PfiEPARED FOR:
I
! '
•
(,;)
I
I~
I
I
Date
8-31
9-1
S-2
9-3
9-4
9-5
9-6
Precipitation
(mm)
7.8
9.4
11.6
7.8
0.2
1.0
0.0
P,REPARED BY I
R&M CONSULTANTS, INC. ,
Temperature
(OC)
9.8
10.3
9.2
8.3
7.8
9.9
10.3
16,000
17,900
16,000
14,600
14,400
13/600
12l200
J
FIG. 3.1 7
GROUNDWATER CONTOURS
S·USITNA RIVER AT $LOUGH 9
SCALE: I"~ 1000'
Legend
•
1160011
Date:
observation well
groundwater elevatic:;n
9-6-82
12,200
PREPARED FOR:
•
r
Climatic
P ,~eceedi ng
P r·eci p itation
Date (mm) --·-
9-14 19.0
9-15 29.8
9-16 11.2
9-17 9.4
9-18 10.0
~-19 18.6
9-10 6.0
:1 PRE'-'ARED BY•
R&M CON SUL7ANTS, INC.
f
Summary for
7-Day Period
Temperature
(°C) QGC ---
8.9 20,200
12.3 28,200
8.6 32,500
5.4 32,000
7.9 27,500
7.7 24,100
7.5 24,000
FIG. 3.18
GROUNDWATER CONTOURS
·sUSITNA RIVER AT SLOUGH 9
SCALE: I"; 1000'
Legend
•
116QQ11
Date:
QGC:
observation well
groundwater elevation
9-20-82
24., 000
PnEPARED FOR:
•
•
---·-··.__.......,...._, _______ ...,. ______ ........_ .. ~ ..... ....._ ..... ___ ·~---..._._.......,... .,.,...__.,.,._....... ... ...... _,......_...... ____ _ ----------------.-......·----·· ... ~
~ A/ /,
Climatic Summary for
Preceeding 7-Day Period
Precipitation Temperature
Date (rnm) (°C) QGC
1
10-1
10~2
10-3
10-4
1
10-5
10-6
10-7
? ') -·-3.3
2.8
1. 3
0.1
2.3
0.5
12,400
11,700
11,000
10,500
9,800
8,960
8,480
FIG. 3.19
GROUNDWATER CONTOURS
SUSITNA RIVER AT SLOUGH 9
. scALE: 1"= 1000'
I I \ 1 I I
I l I t+-+-1
Legend
til
"6QQ11
observation well
groundwater elevation
Date: 10-7-82
Q GC:: . 8, 480
frlEPABFD ron
'--==========~-------.. ·---·-· .. ---... ··---··-----··-····-··· ... -·-.. ~--·--,··Jo ... ----··-·---·-·--·--·-•"t ----·~---... ·-.. -............... -.. __ ....... ...._-·---·-·""-"' --··------•
•
Date
10-9
10-10
10-11
10-12
10-13
10-14
10-15
/
/4/ /~,
'. . ; .: : :.~: ;--:'·'·: :•.
I I
Climatic Summary for
Preceeding 7-Day Period
P r·ecipitation
(mm)
Temperature
---"(~Cl __
0.1
-2.0
-0.7
1 ~ 1
-2.4
-5. 1
-6.6
PflEP.t.flED BY I
8,440
8,480
7,500
7,000
I I I I 1 \ I I
Legend
'\ ~ ...
'\,;' '.:'· \\ '<:
"\
I I I I -t---t--{
.,
"600"
observation weH
groundwater elevation
Date: 10-15-82
QGC: 7,000
PflEPARED FOfl:
~~=·~=~~~~.~~~~~~~~~-~. ·~~~-~-~--~-·~~GR~~;~~~-~~N~~----w·------------------~~~~~~
t'~M cousuuAtns._tuc_.. FIG. 3.20 SUSITNA RIVER AT SLOUGH~ Jfi ... ~ .. ~~·~~·~
SCALE: 1
11 = 1000 l!h i] --.. --
--··-------· -·· -··--.......... _,..,..._,.,.,,,,,," ....... 4 .......... -... ---·-~--···...,..·--·-............. , ... --.-•• .-.., .. --···· .................... -....... ,,.._..._ .... -............ 1 ._._ • ......,..._ ..... , ___ ........ , ....... ____ ._ .. _, .... "" .. -............ ,.-............ ,, ... ~ .... ~; .... _ .... ·-···-· ... -·-....... ___ ., ___ ..... -; .... , •
..
Date:
Note:
PREPARED BY I
12-22-82
Winter flow, Ice covt.:r
on mainstem
R&M CONSULTANTS, !NC. FIG. 3. 2 1
e9
I I I I
GROUNDWATER CONTOURS
SUSiTNA RIVER. A"f SLOUGH 9
Legend
•
llfiQQII
observation well
g :ollndwater elevation
PREPARED FOR 1
•
•
4-CONCLUSIONS AND RECOMMENDED FURTHER STUDIES
Much has been '.earned this season about the sources of water in
Sloughs 8A and 9 during the summer and fall seasons. There are
three contributing sources of water. Overflow from the Susitna
River dominates at a stage unique to each slough. Surface runoff
dominates dut"ing periods of wet weather when the ber·m is not
overtopped. Although yet to be fully documented, groundwater
input dominates during dry periods and winter.
Wells situated near the sloughs indicated they gained water from
groundwater input from both their shoreward and river sides.
Direction of flow of groundwater from the river was in all cases
downvalley and toward the sloughs. Permeability for the soils in
this area is high but the hydraulic gradient driving the flow is
small, resulting in a low seepage velocity of the groundwater to
the sloughs. Upwelling groundwater has been documented on the
river side of the sloughs. This high seepage rate on 'the river
side of the slough suggests that this water is coming from the
river. This may be verified with data obtained from recently
installed deeper wells at Slough 98 or possibly from a revised
environmental isotope sampling program.
Although the surface flow in the sloughs 1s controlled by various
factors, the groundwater component of this flow is partially
controlled by the river. Variation of river stage due to project
operation will affect the amount of groundwater input to the
sloughs differently depending on the season. In summer when the
flows are reduced from the mean natural streamflow, the amount of
groundwater input to the sloughs from the river will be decreased
due to a decreased driving head. In winter when flows are
greater than the mean natural streamflow, the change imposed
upon the slough will depend upon formation of an ice cover. If no
ice cover were to form the input of groundwater to the slough may
be decreased due to the lack of staging that accompanies a
pre-project winter flow,. although increased flows will partially or
completely offset this. If an ice cover were to form stage would
increase beneath the ice cover, resulting in a relatively large
gradient pushing the groundwater toward the sloughs. The
driving head would be somewhat reduced along the islands if the
upstream berms were overtopped, allowing water to flow into the
side-channel.
Recommended future studies include:
1 .
2.
sl7/i
Continued observations of sloughs through the winter.
Continued observation of well levels and temperatures
th t"ough winter, with monthly readings and maintenance
of Data pods. As part of these observations, more
emphasis should be placed on water surface elevations in
4 -1
•
3.
4.
5.
s17/i
the main stem Susitna near to the sloughs studied.
Importance should be placed on obtaining data during
the spring hydrograph when a rise in river stage will
demonstrate the affect of river stage change on the
groundwater, although snowmelt and possibly rainfall
infiltration will have to be allowed for.
Quantification of groundwater input "i.o sloughs through
use of a seepage meter. Although this input has been
documented visually it has not been quantified and this
method may be applicable to other sloughs.
An environmental isotop~ program making use of the
recently established wells near Siough 98 and the
oxygen-18 isotope. A study of this type may de:termine
the origin of this upwelling groundwater with more
confidence than has been previously obtained.
Use of surveyed elevations of other non-studied sloughs
and the mainstem nearby to determine the relatio11ship of
the slough thalweg to the mainstem water surface
elevations.
4 - 2
fl
tl
~ .
.
j
J
l
J
Bl BLIOGRAPHY
Acres American, Inc. 1983.
near Sloughs. Susitna
Alaska Power Authority.
Groundwater Flow and Temperature
Hydroelectric Project Report for
Alaska Department of Fish and Game. 1982. Phase I Final Draft
Report. Susitna Hydro Aquatics Study Program. Report for
Acres American Incorporated.
Lee, David R. 1978. A Field Exercise on Groundwater Flow Using
Seepage Meters and Mini-Piezometers. Jou rna I of Geological
Education v. 27, p. 6-10.
Lee, David R.
Lakes and
p. 140-147.
1977. A Device for Measuring Seepage Flux in
Estuaries. Limnology and Oceanography, v. 22,
Lambe, T.W., and R.V. Whitman. 1969. Soil Mechanics, John
Wiley and Sons, Inc., New York.
Nelson, Gordon L. 1978. Hydrologic Information for Land-Use
Planning, Fairbanks Vicinity, Alaska. U.S. G~ological
Survey, Open-File Report 78-959, Anchorage, Alaska.
R&M Consultants, Incorporated. 1982a.
Studies. Susitna Hydro Hydrology.
American Incorporated.
R&M Consultants, Incorporated. 1982b.
Program for Groundwater Tracking
Unpublished Report.
Hydraulic and Ice
Report for· Acres
Preliminary
at Susitna
Testing
Sloughs.
Sklash, Michael, G. 1982. The Use of Environmental Isotopes in
Groundwater Surface Water Mixing Problems. Report for R&M
Consultants, Inc., Anchorage, Alaska.
Trihey, Woody, 1982. Personal Communication.
s17/i3
•
..
s17/i4
APPENDIX A. 1
GROUNDWATER ELEVATION DATA AT
SLOUGH 8A & 9
..
s6/g2
S.G.
Date x-s 29
Apr. 26
May 15
May 27
June 24
June 29 573.45
July 18
Aug. 3
Aug. 5
Aug. 6 571.61
Aug. 9 571.61
Aug. 27
Sep. 3 571.06
Sep. 5
Sep. 10 570.97
Sep. 20 572.84
Oct. 5 569.80
Oct. 13
-not obs.erved
s -silted
d -dry
8-1
579.47
581.16
581.42
581.26
580.99
580.41
581.41
d
d
APPENDIX A.1
GROUNDWATER ELEVATION AT ~,·LOUGH 8A
Well No.
8-3 8-4 8-5 8-6
575,42 574.39 574.76 d
576.31
577.87 573.94 574.91 573.22
577.54 575.06 574.99 573.11
576.38 575.00 574.94 fi72. 98
575.69 574.89 574.83 572.89
576.18 574.87 574.77 572.97
577 .4'1 575.10 574.97 573.17
575.54 574.64 574.56 572.90
578.45 575.32 575.30 573.44
576.57 574.90 574.77 573.03
574.74 574.06 d 572.78
8-7 8-8 8-9
572.79 568.24 568.42
573.43 569.91 568.62
573.32 569.36 568.56
573.23 569.03 568.55
573.13 568.61 568.40
573.12 569.09 56R.43
573.32 569.66 568.52
572.96 569.12 568.31
573.58 570.33 568.91
573.15 569.64 568.37
572.78 568.16
•
s6/g3
Date 8-1~
Apr. 26 566.15
May 15
May 27 565.30
June 24 565.15
June 29 565.34
July 18 565.54
Aug. 3
Aug. 5
Aug. 6
Aug. 9 565.56
Aug. 27
Sep. 3 565.76
Sep. 5
Sep. 10 565.75
Sep. 20 566.00
Oct. 5 565.70
Oct. 13
-not observed
s = silted
d -dry
r ,
8-11
565.64
565.49
565.79
565.51
565.83
566.28
566.70
566.12
APPENDIX A.1
GROUNDWATER ELEVATION AT SLOUGH 8A
(Continued)
Well No.
S.G.
8-12 8-1A 8-1A 8-2A
566.33
s
s
s
564.38 572.63 572.32 572.23
572.19 572.33 572.35
571.85 571.86 571.83
571.79 571.75 571.73
564.29 571.81 d 571.61
d d
d 571.24 d 571.41
570.99 d
571.16 d d
564.44 573.24 573.33 573.25
d 570.39 d d
d d d
8-3A 8-4A QGC
Ice Cover
Breakup
25,200
27,000
23,550
17,800
16,300
571.87 16,000
571.81 16,300
571.05 571.26 12,000
571.87 572.32 13,800
571.74 572.28
571.36 572.24 13,400
573.42 573.72 22,900
571.22 573.09 8,300
570.48 572.58 7,500
:>u/g 1
ll<• w 9-1 ,_. ___ ---9-1A 9-3 9-4
Apt·. 26 603.06 603.62
r·.1c1y 11 b07.7l 605.42 604.46
f•l<.Jy IS
M<•Y 27 6ll7.b8 606.62 604.47
June 23 608.50 606.66 604.77
July ti07.94 606.22 604.67
July 20 &Ul. 32 605.67 604.03
Aug. 2!:l GOS.Y9 60.:J. 69 d
!..t .. p. b CuE.i. 16 605.50 605.70 604.16
S~;.;p. 9 b06.08 605.27 605.49 d
!":>t.:p. 2:J bC8.01 6(J7 .07 607.65 605.23
Oc.t. 7 (j(J5. i:H3 605.21 605.29 603.97
Oc.L. 15 b{S.81 604.85 604.91 d
;:;:; •w l t•blit' rvt;d .. .. .::. !i j lt <"tl
,J .:: •It y
APPENDIX A.1
GROUNDWATER ELEVATION AT SLOUGH 9
\Veil No.
9-5 9-6 9-7 9-9 9-10 9-11
603.33 d d 603.01 600.32 600.06
604.51 604.15 602.68 601.20 601.21
604.00
604.76 604.34 602.45 s 601.16
604.40 604.91 603.02 s 601.69
604.11 604.48 602.78 604.08 s 601.38
603.81 604.08 602.30 600.99 601.07
603 34 d 601.05 602.56 600.34 600.28
603.61 d 601.32 604.37 600.50 600.46
603.60 d 601.14 604.22 600.43 600.35
604.74 604.62 602.78 605.07 601.37 601.49
603.52 d d 603.26 d d
603.39 d d 602.9'1 d d
~ .. , ,._ .. ,. ~ ........
9-"13 9-14 9-15
598.53 d 594.14 d Ice Cover·
694.09 594.57 593.90 Ice Covet•
Br·ealwp
599.94 s s s
600.64 s s s 25,000
600.40 s s s 23,300
599.55 s s s 21,500
d d 593.66 592.74 12,000
11,000
d d 593.74 592.83 12,800
d 594.29 594.77 22,900
d d 593.76 d 7,500
d d 593.66 d 7,000
s17/i5
APPENDIX A.2
GROUNDWATER TEMPERATURE DATA AT
SLOUGH 8A & 9
s6/g6
APPENDIX A.2
TEMPERATURE DATA FROM OBSERVATION WELLS
AT SLOUGH 8A
Date
Well No. May 27 June 24 June 29 Aug. 9 Sep. 3 Sep. 10
8-1 0.5 0. 01 0~06
8-3 0.0 5.0 4.9
8-4 4.5 7.0 7.5
8-5 4.5 5.5 5.6
8-6 2.1 3.0 3.5
8-7 7.0 8.3 8.6
8-8 ow 8.0
8-9 6.1 10.0
8-10 7.5 6.0
8-11 0.05
8-12 s s s
8-1A
8-2A
8-3A
8-4A
Main stem
d = dry well
ow = open water no temperature data
- = not observed
s = silted well
5.9
7.3 8.1 8.1
7.4 7.4 6.5
6.1 8.7 8.4
6.4 6.6 6.8
8.2 7.7 7.0
7.4 7.4 6.8
9.2 10.0 s.o
6.6 7.0 6.5
6.2 6.0
d d
d d d
6.3 6.3 d
4.~ 4.9 5.3
6.4 6.7
9.0 8.8
Sep. "_20
6.6
8.1
6.7
6.7
6.8
6.8
6.8
7. ~J
6.5
6.1
5.8
7.6
6.6
5.4
7.2
6.5
•
s6/g7
Well No. Oct.
8-1 d
8-3 6.2
8-4 4.5
8-5 5.4
8-6 6.1
8-7 5.0
8-8 4.0
8-9 5.0
8-10 5.1
8-11 5.1
8-12 d
8-1A d
8-2A d
8-3A 5.0
8-4A 5.1
Main stem 1. 9
d = dry well
APPENDIX A.2
TEMPERATURE DATA FROM OBSERVATiON WELLS
AT SLOUGH 8A
(Continued)
Date
5 Oct. 13
d
5.4
3.2
4.0
5.0
3.6
2.8
d
d
d
4.4
4.1
0.0
ow = open water no temperature data
- = not observed
s = si.lted well
s6/g4
Well No. May_ll
9-1 1. 2
9-1A
9-3 2.0
9-4 1. 8
9-5 4.0
9-6 2.0
9-7 1.3
9-9 ow
9-10 1.0
9-11 0.5
9-12
9-13
9-14 2.0
9-15 3.0
Main stem
d = dry well
APPENDIX A.2
TEMPERATURE DATA FOR OBSERVATION WELLS
AT SLOUGH 9
Date
May 27 June 23 July 1 Aug. 25 Sep. 6
0.05 2.3 7.8 7.0
0.05 2.4 1. 4 4.8 5.8
2.0 3.6 6.0 d 6.3
1. 0 3.2 4.5 6.6 6.4
1.0 4.9 5.5 d d
0.0 5.5 6.4 d 11.3
ow ow ow ow ow
s s s 5.9 6.5
1. 0 0.5 0.8 5.2 8.3
1. 0 4.0 4.5 d
5 s s d
5 5 s 4.5
s s s 7.4
9.4 10.0 8.5
ow = open water no temperature data
- = not observed
s = silted well
Sep. 9 Sep. 20
6.8 7.2
6.0 6.1
6.0 7.0
d 5.8
6.3 6.7
d 7.4
11.1 10.3
ow 7.8
6.5 6.5
8.5 8.4
d
d 5.7
4.7 5.1
7.6
8.4 6.6
s6/g5
Well No. Oct.
9-1 5.2
9-1A 4.5
9-3 6.2
9-4 4.0
9-5 4.7
9-6 d
9-7 d
9-9 4.2
9-10 d
9-11 d
9-12 d
9-13 d
9-14 4.3
9-15
Main stem 1. 9
d = dry well
APPENDIX A.2
TEMPERATURE DATA FOR OBSERVATION WELLS
A.T SLOUGH 9
(Continued)
Date
7 Oct. 15
2.7
3.4
6.2
d
3.6
d
d
3.8
d
d
d
d
4.0
0.0
ow = open water no temperature data
- = not observed
s = silted well
APPENDIX A.3
CLIMATE SUMMARIES FOR SHERMAN WEATHER STATION
MAY-OCTOBER 1982
s17 /i6
r •
.
I~ & M c· C) N .::-" l J I ·r A N ·r <:--:1: N c~ . f\ • .,. • ...) -••• ...:> .'> r ~:; t.J ~:; :1: ·r N (~ 1--1 Y X) ~~ CJ 1::: 1... 1::: c~ ·r ~~ :1: c~ F~ 1=<: Cl .. T t::: C~ ·1·
f 1
t
MONTI-ILY SUMMl~RY FOR SHERMAN WEATHER STATION
DATA TAl< EN DURING May~ 1982
t \
t
RES. RES. AVG. MAX. MAX. 'DAY'S
i • MAX. KIN. MEAN WIND WIND w~nm GUST GUST P'VAL MEAN MEAN SOLAR
I DAY TEMP. TEMP. TEMP. DIR. SPD. SPD. DIR. SPD. DIR. RH DP PRECIP ENERGY DAY
DEG C DEG C DtG C DEG H/S H/5 DEG tl/5 I DEG C iiM WH/SQH
-----------------------------------------------------------------------------------------------------
1 ***** ***** ****! *** **** **** lt!fl **** *** ** ***** **** UffH 1
~ 2 ***** ***** ***** *** **** **** *** **** *** ** **~** **** ****** 2
3 ***** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 3
4 ***** ***** ***** *** **** *¥** Ul **** *** ** ***** **** ****** 4
5 ***** ***** ***** *** **** '~*** *** **** *** ** ***** **** ****** 5
6 ***** ***** ***** *** **** **** *** **** *** ** §**** **** ****** b
7 ***** ***** ***** *** ill* **** *** **** *** u U*** II** ****** 7 ,,
i 8 t' ***** ***** ***** *** **** **** *** **** *** ** ***** **** **"*** 8 . 9 ***** ***** ***** *** **** U*lt lfll **** *** ** ***** **** **lt*** 9
10 ***** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 10
11 ***** ***** ***** *** **** flU *** **** *** n ***** **** ****** 11
12 ***** ***** ***** *** **** fiB\ I •"*** **** *** ** ***** **** ****** 12 .
13 ***** ***** ***** *** **** **** . *** **** *** ** ***** If** ****** 13
14 ***** ***** ***** *** **** **** . *** . **** *** ** ***** **** ~HUH 14
15 12.7 -1.8 5.5 253 .5 .B 295 4.4 \1 17 -19.4 0.0 7080 15
16 13.9 -3.4 5.3 043 .9 1.0 035 5.7 NE 22 -25.0 o.o 13150 16
17 1,.6 -1.8 5.4 176 .b 1.3 148 6.3 ssw 23 -21.4 0.0 6?88 17
18 11.4 -.6 5.4 198 .7 1.1 199 5.7 ssw 34 -15.1 .2 4478 18
1:, 19 12.1 -1.7 5.2 046 .4 1.1 215 7.6 NNE 26 . -23.2 o.o 6795 19
20 10.6 -1.6 4.5 175 1.2 1.7 143 7.6 s 29 -19.8 0.0 4990 20
21 12.2 -2.0 5.1 233 .7 1.4 305 5.7 s 27 -19.9 o.o 6700 21
22 14.9 -3.9 5.5 165 .4 1.1 142 4.4 s 19 -25.1 o.o 7715 22
23 15.8 -1.5 1,2 033 1.3 1.5 02b b.3 NNE 16 -24.9 0.0 7945 23
24 14.7 -.8 j .o 184 .6 1.4 181 7.0 ssw 18 ·21.5 0.0 5008 24
25 11.1 2.1 6.~, !78 .2 .9 213 5.1 s 45 -b.b 2.4 3155 25
26 10.5 1.1 5.8 2~2 .6 .9 lBB 3.8 ssw 41 -14.7 .2 2880 26
27 12.3 2.b 7.5 205 .4 .9 179 5.7 ssw 54 -9.6 1.2 3015 27
28 11.2 3.4 7.3 225 1.3 1.4 229 8.3 sw 42 -7.6 2.8 4458 28
29 10.8 4.8 7.8 220 1.5 1.7 232 4.4 ssw 27 -14.3 .4 3460 29
30 16.0 1.1 8.6 302 .2 .9 142 3.9 N 39 -17.2 .2 5933 3G
31 20.9 -1.0 10.0 052 .9 t.2 072 5.7 E 23 -22.1 0.0 a:~78 31
MONTH 2U.9 -3.9 6.4 193 .3 1.2 229 8.3 ssw 30 -18.1 7.4 97125
GUST VEL. AT MAX. GUST MINUS ':)
t-INTERVALS 6.3
GUST VEL. AT MAX. GLST MINUS '1 INTERVAL a::: '7 .;,,
GUST VEL.. AT MAX. GUST PLUS 1 INTERVAL 3.2
GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 3.2 -
NOTE: RELATIVE HUMIDITY READINGS ARE UNI~ELIABL E WHEN WIND SPEEDS ARE LESS THAN
ONE METER PER SECOND. SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAILY
OR MONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT.
**~"* SEE NOTES AT THE BACI< OF THIS REPORT *.X•*-x•
' I
i '
c·· C) ;-...,_,~ .;::~ t J 1 ···· :~ --1 ·r -:::·
oJ' • I • -..~ o ••• I ( G ....... '-•~ .~
HOUI~I .''r' PR EClP 1 Tt~tTl ON SUi'ir1(.H~Y FOR SHE!~ M~tN WE.f~THER BT f~tTI ON
DATA TAKEN DURING May~ 1982
PRECIPITATION VALUES ARE IN MILLIMETERS
HOUi~ ENDI~lG
1::;. I=<= C) ... T 1::: c:: ·r
DAlE ulOO 0200 0300 0400 0500 0600 07UO OBOO 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 DAiE
-------------------------------------------------------------------------------------------------------------------------------------
i
2
3
4
5
b
7
B
9
10
11
12
13
14
15
lb
17
1B
19
20
21
22
23
24
2.5
26
27
28
29
30
31
**** **** **** **** **** **** **** **** **** **** *~** **** **** **** *~** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ~fli **** **** **** **** **** **** **** ****
HH 1: ·~** ·HH ·H!-itf **** **** HU **** H*i **** **** **** **** **** **·l·~ ffU **** **** **** wUI **** UH **** H**
**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ~*** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ***~ **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** *~~* **** **** **** **** **** **** **** **** **** **** ~*** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ~*** **** **** **** **** **** **** **** **** ****
**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** i~** ***~ **** *~** **** **** ~*** ~*** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **~* **** **** **** **** **** **** 0.0 o.o 0.0 o.o 0.0 0.0 0.0 0.0 o.o 0,0 0.0 0.0 o.o 0.0 o.o o.o 0.0 0.0
O.G 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 o.o 0,0 o.o .2 0,0 o.o o.o o.o o.o o.o o.o 0.0 o.o
o.o o.o 0,0 0.0 0.0 o.o o.o o.o o.o o.o 0.0 o.o 0.0 o.o o.o
0.0 o.o 0.0 0.0 o.o 0.0 o.o o.o o.o 0.0 o.o o.o o.o 0.0 0.0
o.u o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o 0.0 o.o
o.o 0.0 o.o o.o 0.0 o.o 0.0 o.o o.o o.o 0,0 o.o 0.0 0.0 o.o
0,0 o.o o.o 0.0 o.o o.o 0.0 0,0 o.o 0.0 o.o 0.0 o.o 0.0 0.0
o.o 0.0 0.0 o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o 0.0 o.o
0,0 0.0 .2 .4 .2 o.o 0.0 0.0 0.0 0.0 ,4 ,2 0.0 .2 .B
o.u o.o o.o o.o o,o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o
o.o o.o n.o o.o o.o u.o o.o o.o o.o o.o o.o o.o o.o o.o .2
.2 o.o .2 .2 .4 .4 .2 .4 o.o o.o .4 .2 o.o 0,0 .2
n.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o
&.o .2 o.o o.o o.o o.o o.o o.o o.n o.o o.o o.o o.o o.o o.o
0.0 0,0 0,0 o.o 0.0 o.o o.o 0.0 o.o o.o o.o o.o o.o 0.0 o.o
o.o 0.0 o.o
o.o 0,0 0.0
o.o o.o o.o
0.0 o.o 0.0
o.o 0.0 0.0
o.o 0.0 0.0
o.o o.o o.o
o.o o.o o.o
o.o o.o o.o
o.o o.o o.o
o.o o.o o.o
0.0 o.o 0.0
.2 o.o o.o
o.o 0.0 o.o
o.o o.o 0,0
o.o o.o 0.0
0,0 0,0 o.o
o.o 0.0 o.o
0.0 o.o o.o
o.o 0.0 0.0
o.o o.o 0.0
o.o o.o 0.0
o.o 0.0 0.0
o.o o.o o.o
O.G 0.0 0.0
o.o o.o 0,0
o.o o.o 0.0
o.o o.o o.o
o.o o.o o.o
o.o .4 o.o
o.o o.o 0.0
0,0 0.0 o.o
o.n o.o o.o
o.o o.o o.o
o.o o.o 0.0
0.0 o.o o.o
o. o o. o o·.o
0.0 o.o 0,0
0.0 o.o o.o
0.0 o.o o.o
o.o o.o 0.0
0.0 o.o 0.0
0.0 3.0 0.0
o.o o.o o.o
o.o o.o o.o
0.0 .2 0.0
0. 0 .2 .2
~.0 o.o 0.0
.2 .2 0.0
0.0 o.o 0.0
o.o o.o 0.0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
a:::. ~ M (""" (.. N <""" l J I ·1· """ N ·y· <""" i' .-.-x I ., .J ... :) . ... a·~ I I .... ::'ll > :J: N c:: I
.
~:;; LJ ~=~ :1: ·-r-N A I··J Y I) I~ C) 1::: L.. t::: c:: ·r I~ :1: c:: 1:) I=<! C) .. T 1::: C:: ·r
MONTHLY SUMi1ARY FOR SHE.RMc~N WEATHER STATION
DAT?1 TAKEN DURING June> 1982
( RES. RES. AVG. MAX. MAX. DAY'S
HAX. HIM. MEAN WIND WIND WIND GUST GUST pI VAL HEAN MEAN SOLAR
DAY iEMP. TEMP. TEMP. DIR. SPD. SPD. DIR. SPD. DIR. RH DP PRECIP ENERGY DAY
DEG C DEG C DEG C DEG H/S ti/S DEG li/S % DEG C Hli WH/SQM
. . -----------------------------------------------------------------------------------------------------
1 20.0 -.4 9.& 224 1.2 1.5 239 7.6 sw 18 -21.7 o.o 6800 1
2 9.7 3.0 6.4 176 .2 .9 213 3.8 sw 59 -1.0 19.4 1898 2
3 15.3 .6 B.O 293 .4 .9 186 3.8 NW 34 -19.1 o.o 6685 3
4 16.6 -1.2 7.7 241" 1.0 1.5 .. 226 8.3 WSW 28 -19.4 1.0 5920 4
5 10.4 6,0 8.2 036 .2 .4 026 1.9 NE 65 -2.1 12.0 2298 5
6 11.5 6.4 9.0 269 .2 .6 012 2.5 sw 61 2.2 10.4 2388 6
7 11.6 5.7 8.7 231 .3 .7 232 5.1 sw 58 -.5 6.8 2573 7
8 17.2 4.3 10.8 226 .5 1.0 232 5.1 sw 43 -15.8 .2 5645 8
9 14.6 4.5 9.6 048 .2 .5 346 2.5 ENE 44 -4.1 .4 3380 9
10 17.7 6.9 12.3 226 .3 .• B 228 7,0 sw 49 -5.2 3.8 296!5 10
11 13.9 6.1 10.0 218 ,5 .9 229 3.B ssw 31 -11.3 1.0 3853 11
f 12 13.8 .3 7.1 241 .1 .7 .212 6.3 ssw 55 -3.2 4.2 3380 12
13 14.6 .6 7.6 205 .2 .6 246 3.2 sw 37 -21.2 o.o 4705 13
14 17.2 2.9 10.1 224 1.6 1.7 243 . 7.0 sw 30 -14.7 o.o 6813 14 -...._
15 8.3 5.9 7.1 208 1.0 1.1 232 3.2 ssw 53 -3.0 12.6 22G5 15
16 9.2 5.9 7.6 214 .9 1.0 253 4.4 ssw 53 -2.5 4.4 2068 16
17 19.2 3.5 11.4 251 .3 .a 184 3.2 ssw 3b -19.4 0. 0 69b5 17
18 20.1 1.7 10.9 058 .7 .9 051 5.1 NE 43 -22.3 1.8 4558 18
,19 20.9 7.7 14.3 230 .9 1.3 237 6.3 sw 23 -13.7 o.o 6740 19
" 20 9.5 7.0 8.3 225 1.1 1.2 229 4.4 sw 55 -1.5 10.8 2240 20
21 15.9 5.1 10.5 221 1.2 1.3 245 5.1 sw 37 -12.5 .4 5733 21
I 22 18.5 5,0 11.8 222 .8 1.0 217 5.1 sw 30 -19.2 0.0 6413 22
l 23 2'3.0 5,4 14.2 237 .5 .s 219 3.8 sw 30 -24,9 0,0 7355 23
l 24 26.4 3.1 14.8 219 .5 .8 207 3.8 sw 33 -25.0 o.o 8468 24 '
25 27.9 5.0 16.5 125 .1 .1 213 3.8 ENE 42 -13.~ 2.0 7298 25
26 25,6 6.2 15.9 236 .4 .7 207 3.8 sw 28 -30,0 0.0 6833 26
27 25.9 3.9 14.9 213 .3 .a 221 5.7 sw '35 -19.6 o.o 5430 27
28 18.4 6.9 12.7 215 1.1 n.3 265 5.1 ssw 33 -8.7 .a 5455 28
29 18.8 7.2 13,6 257 .3 .B 117 3.8 ssw 23 -16.6 o.o 6103 29
30 20.0 7.2 13.6 057 .1 .8 224 6.3 NE 42 -11.8 9.2 3823 30
/.. MONTH 27.9 -1.2 10.7 224 .5 .o 226 8.3 sw 40 -12.7 101.2 146985
GUST VEL.. AT NAX. GUST i'11.NUS 2 INTERVALS 7. 0
GUST VEL. AT MAX. GUST riiNUS '! INTERVAL 6.3
GU~3T VEL. AT MAX. GUST PLUS "l INTERVAL. 5.7
GUST VEL. AT MAX. GUST PLUS ".) ,. .. INTERVALS 7.0
NOTE: RELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE u::.:ss .. , THAN
ONE METER PER SECOND. SUCH RF.:ADJ:NGS HAVE NOT BEEN INCLUDED IN THE DAILY
OR rlONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT,
.X.·X·~·* SEE NfJTES AT THE B~1CI< OF THIS I~EPORT oX•**•Xo
,.
' ',c
~~ ~~~x i'"l c:. CJ t·-.! ~:; tJ 1... ·-r .-:::-. , ..... ~ ·r ~:; _ .. :t: ~--~ c:: •
;, ~=> t.j ~==-:~: ·r ;--.... ~ .-:·;-. i··l Y X) i=< C) 1::: L. 1::: C~ ·r F~ :1: C:: F' I~ C) .. T E:: C~ ·r
r
HOUi~L Y .
PRECJP IT~'iTION SLH'lr-iC:~R Y FOl~ t>HER 1·1r~N WEATHER STc:.)TJ.ON
DATA TAl< EN DUi~ ING June.' :l982
f ;
l PRECIPIT(~TION \)Ai.. UES c:~.RE IN N ILL I rfFTEl~ S
HOUR ENDING
\ DATE vlOO 0200 0300 0400 0500 0&00 6700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 .. DATE
-------------~---------------------------------------------------------------------------------------------------------------~~-~---
1 i n.o o.o o.o 0.0 o.o 0.0 o.o o.o 010 0.0 o.o 0.0 0.0 010 o.o 0.0 0111 010 0. 0 0.0 o.o 0.0 Q~O 010
2 1.2 1.2 1.8 1.0 LB 1.8 2.2 2.4 2.2 .6 .2 .4 .2 .2 o.o .4 o.o L6 .2 o.o 0.0 o.o o.o 0.0 2
3 u.o 010 010 010 0.0 010 010 010 0.0 010 o.o 010 010 010 0. 0 o.o 010 0.0 o.o 010 o.o o.o o.o 010 3
4 ulo O,G o.o 0.0 010 010 0 I 0 0.0 010 010 u.o o.o 0.0 o.o o.o o.o 0 I 0 0 I 0 0.0 010 010 12 .4 .4 4
5 i.O 1.2 1.2 1.6 ~B .a o.o .4 ,
''" 14 0.0 010 ,
•£.. 12 .4 .2 0.0 ')
t£. .4 .4 .B .6 .6 14 5
b .6 1.8 1.0 .6 .2 .2 010 0.0 .2 o.o o.o 1.0 .b .4 ,4 .4 .a .6 .2 .2 .6 .4 .2 O.fi 6
i 0.0 .4 ') o.o o.o o~n 0.0 o.o a.o 1.8 .a 1.4 1.0 o.o 0.0 0.0 j o.o o.o .6 .2 .2 0.0 o.n 7 II .. ''-
~ . B ':) 1£; il.O o.o 0,0 0,0 0.0 o.o o.o 0.0 0.0 0 '0 010 0. 0 o.o 0.0 o.o o.o 010 o.o 0,0 0.0 o.u 0,0 0.0 8
I 9 o.o
I
o.o 0.0 0.0 010 O.il 0.0 o.o 0.0 .2 0.0 o.o o.o 0.0 0.0 o.o .2 ii.O o.o 0.0 o.o 0.0 o.o 0. 0 9
iO o.o o.o 0.0 o.o 0. 0 .4 O.il o.o .2 0.0 o.o o.o o.o 0.0 o.o .4 1.0 .4 1.4 0. 0 o.o 016 0.0 0.0 10
11 .2 o.o il.j) ;l o.o .2 j .o. 0 0.0 o.o 0.0 0 I 0 010 0.0 o.o 0.0 0 I 0 o.o o.o O.il il.O 0.0 0.0 ,2 11 .... •'-
12 .4 .2 o.o .2 o.o 0.0 'j
,&; .2 12 0.0 0,0 o.o .a 1.2 .6 0.0 0.0 0.0 .2 0,0 0 I il 010 o.o 0.0 12
13 o.o o.o o.o o.o o.o 0.0 0.0 0.0 o.o 0.0 0.0 010 0.0 il.O 010 o.o 0 I 0 0.0 0,0 o.o 0 I 0 o.o 0. 0 o.o 13
14 il.O 010 0.0 o.o 0.0 0.0 o.o o.o 010 0.0 o.o o.o 0. 0 010 O.il o.o 0.0 0.0 o.o o.o 0,0 0. 0 o.n 0.0 14
r 15 o.o o.o o.o 010 .B 'l '
"l ') 2.b 1.0 1.0 1.0 .8 .2 .2 o.o j 0.0 0.0 o.o 010 o.o .4 o.o 0.0 15 ...... £.11.. tl..
16 ') ,.c;. .4 lb ,4 1.0 .s ,b .2 .2 0.0 0,0 0.0 0.0 o.o o.o tl,O o.o o.o o.o o.o 0,0 o.o o.o o.o 16
17 i)li) 010 0.0 o.u o.o 0.0 0.0 ~.0 0. 0 0.0 o.o o.o 0.0 0 I 0 o.o o.o 0.0 o.o o.o O.il o.o o.o o.o 0,0 17
18 0 I 0 n~o o.o O.ii 010 0.0 o.o 0.0 0.0 o.o 0,0 o.o o.o 0' 0 o.o .2 ')
II.. .a .4 0.0 0.0 o.u .2 0,0 18
19 o.o 0.0 o.o 010 010 o.o o.o 0.0 o.o 010 ii.O 0 I 0 0.0 0.0 o.o o.o 0.0 0 '0 o.o 0.0 0,0 0. 0 o.o o.o 19
20 !i.O .2 .8 1.0 1.0 1 ') 1.2 .6 , .6 ,b 12 .2 12 .4 ,6 .2 .2 0.0 .4 0.0 .2 o.o 14 20 .c:. .o
21 .2 o.o 0.0 j
I{;. 010 o.o 010 il. 0 O,Q 0,0 010 o.o o.o 1110 010 o.o 010 0.0 010 o.o o.o 0.0 o.o 0,0 21
')'j
r..~;; 0,6 0. 0 0.0 o.o 0.0 0' 0 o.o o.o o.o o.o 010 o.o 0,0 0,0 o.o 0 I 0 o.o o.o o.o 0' 0 o.o o.o 0,0 \i,O 22
23 o.o 0.0 0.0 o.o o.o O.il 010 010 o.o 0.0 ii.O 0' 0 0.0 0. 0 010 0.0 o.o o.o 0,0 0.0 o.o o.o o.o 0,0 23
24 o.o o.o 0.0 o.o 0.0 o.o 010 o.o o.o 0 I 0 o.o o.o o.o 0.0 o.o 0,0 o~o o.o 0.0 0 I 0 o.o o.u o.o 0,0 24
25 il. 0 u.o 0.0 o.o o.o 0.0 0 t 0 o.o o.o 0,0 o.o o.o o.o 0,0 .a 1.2 o.o o.o o.o 0,0 0.0 o.o 010 o.o 25
2& n.n 0,0 o.o o.o il. 0 010 010 o.o 0,0 0.0 o.o o.o o.o 0' 0 o.o 0 I 0 o.o o.o o.o O.il 0,0 o.o o.o o.o 26
27 0.0 ii.O 0,0 il.O 010 o.o o.o 0 I 0 0.0 o.o 010 o.o o.o 0 I 0 o.o o.o o.o 0. 0 o.o 0.0 o.o o.o o.o 010 27
28 010 010 ,2 ·j
tl.. 0,0 0. 0 0,0 o.o 0 I 0 010 0 '0 o.o .2 I~ o.o 0 I 0 010 0.0 o.o 010 o.o 0 I 0 0 t 0 o.o 28
29 010 o.o o.o o.o 0. 0 o.o 0. 0 0,0 0.0 0.0 o.o o.o 0.0 0,0 o.o o.o 0.0 o.o o.o 0' 0 o.o 0.0 o.o 0. 0 29
30 o.o o.o 0.0 o.o 010 o.o 010 o.u 0.0 0. 0 0. 0 o.o o..o 0 I 0 1 .2 1.0 o.o 1.8 2.4 .s 1.8 .2 0,0 0.0 3ii
r
I~ & M (""" C) :-.. I <: .. t J I ·-r· A· ... -..! ·r -::--• • ., • I~ .... :> • ••• i .... :> ;-:t: N c:: .
r
i MONTHLY St.H1i'1 r~RY FDR SHERMr:!tN WEATHER STr~TICIN
DATA TAl< EN DURING July~ "1982
..
;
i. RES. RES. AVG. MAX. MAX. DAY 1 S
MAX. MIN. MEAN WIND WI tiD WIND GUST GUST P1 VAL MEAN l'iEAN SOLAR
DAY TEMP. TEMP. TEMP. DIR. SPD. SPD. DIR. SPD. DIR. RH DP PRECIP ENERGY DAY
~ DEG C DEG C DEG C DEG MIS MIS DEG MIS % DEG C M!i WH/SQH I
\
~ .. ---------------------------------------------------------------~-------------------------------------..
1 14.3 5.9 10,1 224 1.0 1.2 245 7.0 sw 32 -9.9 l.b 5283 1
2 17.2 3.6 10.4 217 .3 .7 204 3.8 ssw 32 -19.6 .2 5740 2
' 3 20.7 1.6 11.2 220 5 1.0 216 5.1 sw 24 -25.5 0.0 8:520 3
" 4 21.5 2.3 11.9 228 .9 .1.3 219 7.0 sw 30 -19.0 0.0 7173 4
5 19.9 5.0 12.5 209 .7 -1.1 212 4.4 ssw 28 -19.1 0.0 7458 5
b 21.1 5.5 13.3 220 .4 .a 225 3.8 sw 26 -25.2 0.0 5948 6
\. 7 29.6 2.5 16.1 036 .6 .8 358 5.1 ENE 46 3.0 0.0 8283 7
B 19.5 7.1 13.3 221 1.5 1.7 23/ 7.0 ssw 38 -4.4 .2 5235 8
9 21.4 9.7 15.6 211 .5 .7 222 3.8 ssw 38 -11.4 0.0 5585 9
10 15.6 9.4 12.5 215 .9 1.1 239 5.1 ssw 62 3.2 1.6 2173 10
11 17.1 10.5 13.8 216 1.2 1.2 222 4.4 ssu 47 .7 .4 4348 11
l 12 14.3 9.4 11.9 202 1.1 1.1 20fi 4.4 ssw 50 1.0 3.2 2505 12
13 19.5 7.7 13.6 278 .2 1:' ~019 3.B s 49 -11.8 .4 5508 13 ,..,
14 19.6 4.3 12.0 208 .7 .9 201 3,8 ssw 49 -3.0 1.8 4695 14
15 14.6 8.2 11.4 215 1.2 1.3 . 228 5.1 ssw 51 -.5 2.2 4350 15 --
1J 16 14.6 7.6 11.1 225 .5 .a 214 4.4 sw 51 -1.8 7.6 4000 16
17 18.2 8.2 13.2 209 1.0 1.1 208 3.8 ssw 50 -'3.4 2.4 5610 17
18 18.1 6.2 12.2 236 .4 .7 /!11 3.2 ssw 44 1.9 13.2 3995 18
19 27.7 3.6 15.7 058 ,2 .6 052 3.2 ENE 32 -14.0 o.o 7688 19
20 25.0 4.9 15.0 220 .a 1.1 208 5.7 sw 23 -17.5 o.o 7395 20
21 15.3 9.7 12.5 214 .7 .8 218 3.8 ssw 53 2.0 11.4 1735 21
22 15.3 9.7 12.5 228 1.2 1.3 244 5.1 sw 52 -.1 11.6 2815 22
23 13.9 9.5 11.7 229 1.1 1.2 246 5.7 sw 59 5.2 31.0 1643 2'3
24 13.6 10.2 11.9 217 1.2 1.3 242 5.7 ssw 61 2.9 16,2 1903 24
25 15.2 10.5 12.9 218 .a 1.0 230 5.1 SSw 63 4.6 33.6 2225 25
26 17.1 8.5 ~2.8 348 I 0 .5 209 2.5 N 51 -1.0 o.o 3055 26
27 18.3 10.2 14.3 210 ,5 .6 203 3.8 ssw 44 2.9 .2 3310 27
28 21.1 7.0 14.1 228 .b .9 239 4.4 sw 29 -2.6 .2 4450 28
29 14.3 10.2 12.3 223 .9 1.0 220 4.4 ssw 63 3.9 8,4 3150 29
30 12.7 10.0 11.4 210 ,5 .7 227 5.7 ssw 60 3.6 23.6 1890 30
31 18.8 7.1 13.0 239 .o .5 339 3.2 ESE 30 -6.6 0.0 4843 31
MONTH 29.6 1.6 12.8 219 .7 .9 245 7.0 ssw 44 -5.2 171.0 142307
GUST VEL. AT Mf..)X, GU~>T M:tNLH3 2 INTERV?'d ... S 3.8
'., GUST VEL, AT MAX. GUBT MJ.NUS '1 INTERVAL ';) 1::'
1:;. I \J
GU~3T VEL. AT MriX. GUST Pl-US '! INTER~JAL 1.9
GUST VEL.. AT MAX. GUST PLUS ;~ INTEHVAJ_S l I 3
NOiE: REI.:.ATIVE HUMIDITY READINGS ARE':: UNR I~LI ABLE WI-lEN I;JIND SPEI::DS c:!tRE LESS THAN
ONE METER PER SECOND. SUCH RE:f1DINGS HAV~ NOT IlEr:::N INCLUDED IN THF.:: DAILY
01~ MONTHLY MEc~N FOR REL(.~TIVE HUi'1 J. D I TY AND DEW POINT.
·X.·X. :X·~· SEE NOTES AT THE BACI< OF THIS REPORT ~·*i.t:··x-
t
,.
1:; .. · .~_-:.~ -,~~ ( ........ :-...,J oe::· l J I .... -::: -..... J ··r· oe:·-~ • -·· 1.... I " ..... ;, . ... I I I I . ....> :·
HOURi. Y P R EGJ. PIT c~T :r. ON ~3Ur·ii"1ARY FOR SHER rlc~N ~_.!JEf:1THER STc~TJ:ON
t DATA Tt~i< EN DURING J'tt1Y.· "1982
PRECIP ITr:itTIDN Vc:itUJFS ARE IN i'-\ I I...L I riF:TEi~ S
t
HOUR Ei\!D I NG
DATE ulOO 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 DATE
-------------------------------------------------------------------------------------------------------------------------------------
1 u.o o.o 0.0 .2 o.o 0.0 il.O 0.0 o.o 0.0 o.o 0.0 ') ') 0.0 0.0 0.0 0.0 .B 0.0 'j O.fi 0.0 0.0 1 I ... .~ •'-
2 0 I 0 010 010 010 0.0 0 I 0 o.o 'j
II,;. 0 I 0 o.o o.u 0.0 010 0.0 010 010 0.0 o.o 0.0 o.o o.u 0.0 0 I 0 o.o 2
3 0.0 0.0 0.0 010 0. 0 o.o 0.0 0.0 010 0.0 010 0.0 o.o 0.0 0 I 0 0.0 0.0 0.0 o.o o.o 0,0 0 I 0 0.0 ii.O 3
4 0.0 o.o 0,0 o.o 0 '0 0,0 0.0 n .o 0.0 0' 0 O.fi 0.0 0' 0 0. 0 0.0 o.o o.o o.o o.o o.o 0.0 0.0 0,0 o.o 4
5 u.o o.o 0.0 0.0 o.o ii.O 0.0 0,0 0.0 0 I 0 010 o.o 0 I 0 o.o o.o 0.0 0 I 0 0.0 0 I 0 010 0.0 ILO o.o 0.0 5
6 0,0 0.0 o.o 0.0 o.o 010 o.n 0 '0 0.0 O.li 010 0.0 0 '0 o.o 0.0 010 010 o.o 010 0.0 o.o 0.0 o.o 010 b
7 o.o 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 o.o o.o o.o o.o 0.0 010 0.0 o.o 0.0 016 0 I 0 0.0 0.0 o.o o.c 7 a 0.0 010 O,il 0,0 0 I 0 0.0 0.0 0 J 0 010 0.0 O,fi u.o Q. 0 0. 0 0.0 0. 0 0.0 0. 0 0.0 0 '0 o.o 0 I 0 o.o 'j
•I.. 8
9 o.o 010 u.u o.u n.o 0.0 0.0 0.0 0.0 o.o 0.0 0. 0 0.0 010 0 10 010 0. 0 0.0 o.o 0 '0 0 I 0 0.0 o.o o.o 9
10 o.o 0.0 0.0 0.0 o.o 0.0 o.o o.o o.o 0.0 12 o.o 010 0 I 0 o.u 010 o.o 010 o.o .2 ,8 O.ii .... 12 10 I"
11 .2 0.0 0.0 12 o.o 0.0 0.0 0.0 010 o.o 0 9 0. 0 o.o 0.0 010 o.o 0,0 0.0 o.o o.o 0,0 0.0 010 0. 0 11
12 o.o 0. 0 0 .li 0,0 010 0.0 .6 'j
•'-.4 .B 14 o.o 010 0. 0 0,0 o.o u.o 0.0 010 010 O.fl 010 .4 .4 12
1~ 'j
.~ .2 010 0.0 010 0.0 o.o 0.0 010 0.0 0.0 o.o 0' 0 o.o 0,0 o.o o.o 0. 0 010 u.o o.o 0 I 0 0.0 0.0 1:3
14 0,0 o.o 0. 0 o.o o.o 0.0 o.o 0 '0 010 o.o 010 o.o o.o 010 o.o 0.0 0. 0 14 .2 0' 0 0.0 0,0 0. C1 1 'j tL 14
15 1.4 .2 0.0 .2 .4 o.o 0.0 o.o 010 o.o o.o o.o 0. 0 o.o o.o 0 I 0 o.o o.o 0,0 o.o 0.0 0.0 o.o o.o 15
1b 0.0 .2 .4 .6 16 1.0 1.0 .4 .4 'j ,c;. 'j
•'-o.o 010 o.o 010 010 .2 12 o.o 0. 0 .8 .4 lb ,4 16
17 .6 .2 o.o 12 o.o 0,0 010 0.0 0' 0 010 o.o o.o 0 I 0 .2 o.o .,
"· 0 I 0 0.0 o.o 010 010 ,4 ,2. .4 17
18 .b 1.0 2.8 2.4 1.6 1.8 1.6 lb .a 0.0 0.0 o.o o.o o.n 0,0 0 I 0 010 o.o 0.0 0,0 o.o 010 0 I 0 o.o 18
19 il.O 0.0 O.il o.o 010 0.0 o.o 0.0 0,0 O.il 0.0 o.o 010 o.o 010 0' 0 o.o o.o 010 o.o 0,0 o.o 0.0 il~O 19
20 0 '0 o.o 0.0 0.0 0,0 0. 0 o.o 0.0 0 '0 o.o o.o o.o 0,0 0.0 0 '0 0.0 0 I 0 0 I 0 o.o 0.0 0.0 0,0 0. 0 0,0 23
21 0.0 0.0 0.0 o.o 010 0 '0 0.0 .2 010 'J
II-.2 14 14 o.o o.o o.o .2 o.o 1.8 4.2 1.6 1.6 .6 0. 0 21
22 0.0 1.4 .6 o.o 0.0 0,0 0,0 0.0 0.0 o.o o.o o.o 0 I 0 0,0 o.o 0 I 0 0' 0 0' 0 ,b 1.2 L4 214 210 2,0 22
23 ') ') 4.2 4.2 3.6 1.6 1.8 2.8 3,4 1.4 1.4 .a 1.0 .a ,6 o.o 010 o.o o.o o.o 0 I 0 o.o I . 4 12 ., ...
~...~ ,I:) t:.)
24 o.o 0. 0 .2 .2 0 '0 o.o o.o 010 0 '0 010 0. 0 010 0 '0 0. 0 0,0 .4 1.0 L6 1.8 212 310 212 1.8 1.8 24
25 1.8 2,0 2.0 ':l , ~.b 4.2 414 4.0 4,0 4.0 216 1.4 .4 .2 0 I 0 010 0.0 0 I 0 o.o o.o o.o 0.0 o.o 0,0 o.o 25
26 o.o o.o 0.0 o.o 0,0 0,0 0' 0 u.o o.o o.o 0 I 0 010 0.0 0 '0 o.o 0 '0 0,0 o.o o~o o.o 010 0 I 0 0.0 n.o 26
27 0.0 0.0 0.0 0.0 0,0 ':l
•l. o.o 0.0 o.o o.o 0,0 0' 0 o.o o.o o.o 0,0 0,0 0,0 010 0 '0 o.o o.o o.o o.u 2.7
~ 28 o.o o.o 0.0 o.o o.o 0.0 0,0 .2 010 o.o 0. 0 o.o 0 I 0 o.o 010 0 I 0 0.0 0 I 0 010 0.0 0 I 0 0 I 0 0 '0 o.o 28
29 o.o .2 0.0 .b 1.4 14 .2 ,I\ 1.0 'J o.o .2 0,0 0,0 ,2 1.0 12 .2 .4 12 .2 .4 ,8 .2 29 ·~
30 2.4 412 1.8 1.2 1.2 1.2 .4 12 0.0 1.0 ,4 14 1.8 1.8 2.4 l.b 1.4 .2 0,0 0' 0 o.o o.o 0.0 0 I 0 30
t 31 0.0 o.o 010 0.0 0.0 0 I 0 o.o o.o 010 0.0 010 o.o 010 0,0 0,0 010 0,0 0,0 o.o 0,0 o.o o.o 0 I 0 o.o 31
·~ & M C"' C) N <""' l J I "l" A N ·y-<""'" •"' • ...::> • ••• •• I .,.:) > 'TN(""' • • •JA •
i -
? <:·· l J c: .. T "l" N A .... :~~ . ...) .. 1-~1 Y l) •~ (:l 1::: 1. •• 1::: c~ ·1· s~ :1: c:: a:) •~ (:) ... T t::: c~ ·r ,,
;.
MONTHLY SUMMARY FOR SHERMAN WEATHER STATION
DATA TAKEN DURING Augu~t~ 1982
I
RES. aES. AVG. MAX. HAX. DAY'S
HAX. HIN. MEliN WIND WIN]) YIMD GUST GliST pI VAL ttEAH HEI;H SOLAR
DAY TEHP. TEHP. TEMP. DIR. SPD. SPD. OIR. SPD. DIR. RH DP PRECIP ENERGY DAY
DEG C DEGC DEG C DEG H/S HIS DEG H/S % DEG C HK WH/SQH _________________ ......
. ------·------------------
l 20.2 2.5 11.4 857 .7 .B 871 4.4 ENE 42 -2'3.1 o.o 6840 1
2 22.8 .9 11.9 050 .6 .'7 Ott 3.8 NE 41 -21.1 0.1 7455 2
l 22.7 1.'3 12.0 21~ .3 .6 204 3.2 ESE 1,7 -24.4 o.o 6821 3
4 22.9 2.2 12.6 212 .~ .6 214 3.2 sw 48 -18.9 o.o 6590 4
5 22.1 5.7 13.9 212 .7 .8 193 3.8 sw 32 -6.9 .2 5459 5
6 24.3 3.5 13.9 05b .1 ,5 222 3.2 E 29 -18.0 0.0 5D45 b
7 17.8 4.1 11.8 216 .4 .7 253 5.1 E 41 -.3 9f6 3203 7
8 29.7 t!.7 11.7 959 .2 .8 219 3.8 NNE 30 -8.9 9.2 4788 8
9 13.3 8.3 10.8 211 .5 .6 235 5.1 ssw 42 -.1 6.4 2370 9
10 13.2 1.9 10.6 210 .6 .6 216 5.7 ssw 51 1.2 4.6 2428 10
11 20.& 3.6 11.8 203 .t .6 089 2.5 sw 26 -16.8 .2 59DS 11
12 21.3 1.5 11.4 207 ,J .6 -237 3.8 sw 21 -20.8 o.o 6178 12
13 22.0 5.6 !3.8 221 ,4 .7 250 4.4 E 28 -17.3 1.0 5971 13
14 16.3 9.9 13.1 200 .2 .4 288 'l 2 ~· ssw 57 1.0 2,4 1798 14 --.
15 17.7 8.0 12.9 214 .7 .9 212 3.8 SSY 50 -3.9 2.0 422i 15
~ 16 15.3 7.8 11.6 214 .9 1.1 221 5.7 ssw 44 -7.1 .4 5710 16
17 15.3 7.5 11.4 119 .1 .5 216 2.5 ssw 58 -3.3 4.0 2603 17
18 16.1 3.1 9.6 023 .1 .3 022 1.9 ESE 41 ***** 0.1 2628 18
19 19.9 2.8 11.4 058 .2 .3 048 1.9 ESE 32 ***** i,O 3783 19
20 22.9 2.6 12.8 060 .2 .4 054 2.5 ENE 29 -18.7 0.0 5388 20
21 21.2 2.0 11.6 212 .5 .7 190 3.8 sw 26 -11.8 1.0 5531 21
?2 21.3 1.8 11.6 212 .4 .6 249 3.8 ssw 24 -14.8 a.o 5140 22
23 17.0 8.6 12.8 289 .6 .7 247 3.2 ssw 52 1.0 1.2 2790 23
24 18.6 8.3 13.5 214 .5 .1 225 3.8 sw 36 -2.9 .2 3733 24
25 16.4 8.4 12.4 204 .7 .8 208 3.2 ssw 50 -4.2 1.2 :f.i35 25
26 2G.O 2.3 11.2 276 .1 .5 230 3.2-J E 30 -7.9 t.O ~'b3 2b
27 21.8 tl 10.6 041 .5 .6 937 4.4 HE 27 -23.6 1.0 4925 27
28 17.3 2.3 9.8 185 .t .5 201 4.4 ENE 30 -4.2 3.2 2483 28
29 11.1 8.5 9.8 Oi7 .t .2 947 1.9 NE 43 ***** 13.2 1788 29
l 30 10.2 6,8 8.5 042 .2 .3 043 1.9 NE 51 ***** 2'7.2 1080 30
31 13.Q 6.5 9.8 091 .1 ,5 204 3.2 NE 53 -.9 7.8 2203 31
MONTH 24.3 .1 11.6 202 .2 .6 216 5.7 ssw 39 -10.2 94.1 132158
\' GUST VEL. AT MAX. GUST MINUS 2 INTERVALS 3.2
GUST \,:EL. AT MAX. GUST MINUS 1 INTERVAL ? &::-, ... w
GUST VEl-. AT MAX. GUST PLUS 1 INTERVAL 3.8
GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 2.5
NOTE~ RELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE LESS THAN
ONE METER PER SECOND. SUCH READINGS HAVE NOT BEEN INCLUDEfJ IN THE DAILY
OR MONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT.
*•Xo:X:~· SEE NOTES AT THE BACK OF THIS REPORT ***~·
•
1 :~ • "1""= ("" (") • ....._. <:·· l J I ·-..·· ~-. ··~ 1 "T" oe:·· """' ~< -I _, • ' of ~.:~~ • ••• ' t: :.-; I ""t ~.) > :t: i....J c: .
I··' y Y) ':::. (""1 !==· I '::· (""• "T" .:~ ••• (""' ' ·' J"'i:\. .Ji ..... ··-Jl..... ..,. ~ • • _.,.
..
I
HOUI"~LY PRECIPITI%TION SUMMARY FOR SHERMAN WEATHER STATION
D.~TA TAKEN DURING August.' 1982
t
!
~
PRECIPITATION VALUES ARE IN MILLIMETERS
HOUR ENDING
'· DATE 0100 0208 0309 0408 1500 0600 0700 0810 0900 1000 1100 1200 1380 1400 1500 lbDO 1700 1800 1900 2000 2100 2200 2300 2486 DATE ----------------------------------------------------------------------~·--
1 8.0 o.o 0.0 o.o 1.0 a.o o.o 8.0 9.0 0.0 o.o 0.0 0.0 0.0 0.0 o.o 0,0 o.o o.c o.o o.o 0.0 0.0 o.o 1
2 O.D 1.6 o.o e.a 1.0 0.8 Q.l 0.8 0.0 0.9 0.8 o.o o.o o.o 0.0 o.a 0.0 0.8 8.0 0.0 o.u 0.8 0.0 o.o 2
3 0.0 o.o 0.0 o.o a.o 0.0 0.0 i.O I.Q 0.8 o.a l.i o.o o.o 0.0 0.0 o.o o.o o.o 0.0 0.0 o.o 0.9 o.o 3 "\.
4 i.O 1.8 ~.0 O.i 9.0 0.0 o.o o.o o.o o.o 0.0 o.o o.o 0.0 o.o &.0 o.o o.o O.D o.o a.o G.O 0.0 o.o 4
5 i.O 9.9 o.o 8.0 o.o o.o t.O o.o o.o 0.0 o.o 0.8 0.0 6.0 0.0 .2 o.o o.o o.o o.o 0.0 D.O 0.0 0.0 5
6 o.o o.o o.o o.o o.o o.o o.o o.o D.O 1.1 o.o 0.0 o.o o.o o.o o.o o.o o.o o.o o.o 8.0 0.0 D.O Q,O t .)
7 D.O 0.9 0.8 0.0 o.o O,P 0.6 0.8 0.0 o.o o.o o.o 0.0 0.0 l.b 1.2 1.2 1.8 2.2 1.2 .4 0.0 0.0 8.8 7
B 0.0 0,0 .2 D.O 0.0 9.9 o.o o.o 8.0 o.n O.D o.o o.s 0.0 0.0 0.8 O.i .4 .6 2.2 2.6 2.4 .4 .4 a
9 .2 .6 0.0 0.8 0.0 .b .2 0.0 o.o o.o o.o o.o .2 0.0 .2 .2 0.0 o.o o.o· o.e .4 3.8 .B o.o 9
18 o.o o.o o.o a.o o.o .4 . a .6 1.0 .2 o.o 8.0 0.& .6 o.o .2 o.o .4 o.o o.o .2 .2 0.0 o.o 10 .....
11 o.o 0.0 .2 o.o 0.0 0.0 e.o 9.0 8.0 0.0 o.o o.o 0.0 o.o G.O o.o 0.0 9.0 e.o o.o 0.0 8.8 0.0 o.o 11
12 o.o o.o 0.0 8.0 o.o 0.1 0.0 o.o 0.1 0.1 o.a 0.1 o.o 0.0 o.o o.o o.o 0.8 o.o o.o 0.0 o.o o.o 0,0 12
13 o.o o.o Q,O 9.0 1.0 0.6 c.o o.o o.o 0.9 o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o.n 8.9 0.0 o.o 13 ~-
H 1.0 8,0 e.o o.o 8.0 'J . 2 .2 O.G ... 1.0 .4 o.o o.o o.o 0.0 o.o 0.8 1.0 o.o Q.O 0.0 0.0 o.o 14 ...
15 0.0 ·"' 1.2 .2 o.o o.o .2 o.o 9.0 0.0 o.o 8.0 0.0 o.o 0.0 0.8 0.0 o.o o.e 0.0 0.0 o.o 0.0 o.o 15
16 8.0 o.a o.o o.o o.o 0.0 o.o n.o o.o 0.0 a.o o.o 0.0 o.o o.o o.o 0.0 o.o 0.8 8,0 Q,O 0.1 .2 .2 16
17 .2 D.O .2 0.8 .2 o.o .4 .b .a .4 .4 .4 .2 .2 0.0 8.0 0.0 o.o 0.1 0.0 o.o o.o o.o n.o 17 t::;
18 o.o o.o o.o o.o a.o a.o Q,C 0.0 9.0 a.o O.Q 0.1 0.1 0.0 o.a o.o o.o O.il o.o o.o o.o a.o o.o o.o .18
i9 o.u 8.1 o.o 0.8 0.0 0,0 0.0 0.0 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o 1.0 o.o o.o 0.6 o.o o.o 19
20 8.9 o.o o.o o.o o.o o.o o.o 0.0 8.0 1.0 &.0 0.0 0.6 0.1 o.o o.o o.o o.o 0.0 o.o o.o 0.0 o.o o.o 20 \.::,
21 0.8 9.8 o.o 0.0 O.i 0.0 8.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o Q,O o.o ft,O o.o 6.8 1.0 0.0 o.o 21
22 o.o o.u 0.3 0.0 0.9 0.0 0.8 o.o 0.8 8.0 o.o o.o 0.1 0.8 0.0 o.o o.o o.o o.o o.o o.o 8.0 0.0 o.o 22
23 9.0 0.1 .4 o.o .2 .2 o.o .2 .2 o.o o.o 1.0 0.0 0.0 o.o 0.0 o.o o.o o.o o.o o.o 0.0 0.0 o.o, 23
24 8.0 0.0 o.o o.o 0,0 o.o 9.0 0.0 1.0 Q,O o .• o 0.0 o.o o.o o.o 8.0 8.0 .2 0.0 0.8 o.o 0.0 0.0 o.o 24 \:i
25 .2 6.1 o.o 0.0 8.0 o.o 0.0 9.0 0.0 0.0 o.o o.o o.o o.o o.o o.o 8.0 0.1 o.o o.o o.o 0.0 .B ') oJ~ 25
26 e.e .6 •. 2 .2 o.o 0.8 0.9 o.o o.o 0.0 o.o 0.~ o.a o.o 0.0 o.o 0.1 o.a 8.0 0.0 o.o 0.0 o.o o.o 26
27 0.9 0.0 o.o 0.0 O.i 9,0 0.0 o.o 0.0 o.o o.o 8.0 0.0 O.il o.o o.o 0.0 9.0 o.o o.o o.o o.o n.o o.o 27 •tt
28 o.o 0.8 o.o o.o o.o o.o o.o o.o 1.4 o.o 0.0 o.o .2 o.o 0.0 o.o Q,O o.o 1.8 ·.2 o.o o.o .4 o.o 28
29 o.o O.B 9,0 .b 1.2 1.4 l.b 1.4 1.4 .6 .2 .2 .8 o.o ,6 .8 ~2 o.o .b o.o .2 .b .4 ,4 29
30 .b 1,0 .a 2.2 L4 1.0 1.2 4.2 2.4 2.2 1.6 2.4 1.2 1.& .a 0.0 .2 .4 .6 .2 .2 .4 .6 .b 30
31 ,b .B .6 .a 1.0 ,2 .~ .2 o.o .4 ,2 .2 .6 o.o o.o a.o o.o 0.9 0.8 .6 1.0 0.0 .2 o.o 31 -l
\
1::. ~ ~ ~ ("' (") N <""' l J I ·y· A ...... I ··~-<""' '<;,. .r:~ ...... -~ -I -.:) -... I •• I "<: D -..:::> > :.: N c~ .
~:) l.J ~:> :1: ·r i":-! A 1··1 Y 1) I~ CJ 1::: L. r::: C~ .•. I~ :1: c:: . t==-I~ C) ... T 1::: c:: ·r
~ MONTI·ILY SUMrlARY FOR ~:>HERi'i~~N WEATHEF~ STATION
DATA TAl< EN DURING Sep tet1ber .' 1982
~
RES. RES~ AVG. HAX. i~AX. DAY'S
~ MAX. MIN. MEAN WIND WIN'Jl WitfD GUST !GUST pI VAL MEAN MEAN SOLAR !
i_; DAY TEMP. TEMP. TEiit>. DIR. SPD. SPD. DIR. SPD. DIR. RH DP PRECIP ENER~~~ uAY
DEG C DEG 1: DEG C DEG M/S tt/5 DEG !~/S % DEG C Hti WH/SQH
--~---------------··-----------.. ·---------------·----------------------------------------
1 16.6 3,9 10.3 045 .2 .5 186 5.7 NNE '36 -4.3 9.4 3155 1
2 14.7 3.7 9 •} at. 223 .3 .6 220 3.2 sw 27 -7.5 11.6 2835 2
3 11.5 5.0 8.11 043 .2 .4 043 2.5 NE 50 -.6 7.8 1845 3
4 13.8 1.8 7 .a' 202 .1 .4 187 2.5 ss~ 16 -12.9 .2 3073 4
5 16.7 3.1 9.9 050 .9 1.0 047 5.1 NE 20 -9,9 1.0 2255 5
6 15.3 5.2 10.3 186 .5 1.1 135 6.3 ssw 32 -5.7 o.o 1578 6
7 14.3 7.5 10.9 214 .9 .9 213 4.4 ssw 40 -3.7 l.B 2615 7
B 11.9 6.4 9.2 208 .6 .7 208 3.8 ssw 33 -4.6 .2 1878 8
9 12.9 5.6 9.3 202 .o .3 215 2.5 ESE ** ***** .a 1718 9
10 12.6 4.8 8.7 037 .1 .3 021 '.) r:
&;. • ,J NE ** ***** .2 2030 10
11 7.9 -.6 3.7 044 .1 .5 238 5 .. 1 E 51 -3.2 '},6 1190 11
12 11.8 -.4 5.7 051 .4 C' ,,J 074 2.5 ENE 46 -7.6 3.6 2968 12
13 8.7 4.4 b.b 037 ,.
,,;J ,6 055 2.5 NNE 61 .2 28.6 978 13
14 10.6 7.1 8.9 ~47 ¥) ,t; .3 213 1.9 NNE ** ***** 19r0 940 14
15 .17.0 7.3 12.2 t~46 .1 .a 220 5.1 NNE 48 1.6 29.8 2093 15
\,. 16 12.1 5.0 8.6 223 1.7 1.9 220 10.2 sw 33 -7.8 11.2 2313 16
17 8.2 2.5 5.4 053 .4 .4 065 3.2 NE 72 -.1 9. ~\ 1198 17
18 12.6 3.7 7.9 0:53 .3 .5 212 3.2 E 52 -1.4 10.0 1488 18
19 9.4 6.0 7.7 204 .1 .4 224 3.8 Slol 62 .9 18.6 775 19
20 9.5 5.5 7.5 15J .o .3 243 L9 ENE 53 .1 6.0 1265 20
21 10.0 5.1 7.6 1b9 .1 .6 21il 3.8 HE ** ***** 3.4 1291 21
22 10.2 -,9 4.7 239 .2 .6 214 5.7 WSW ** ~iU** 5.0 2150 22
~ 23 11.8 -3.3 4.3 034 .4 .6 OU5 3.2 NNW ** ***** .2 33b5 23
24 9.9 -5.1 2.4 OlD .3 .5 (';39 3,2 E ** U*!l o.o 2418 24
25 11.1 -3.0 4.1 129 .1 .6 218 3.8 E ** ***** o.o 220g 25
26 8.1 2.2 5.2 049 .3 .5 083 2.5 ENE ** UUf 19.4 1248 26
27 9.9 -1.4 4.3 072 .2 .7 207 '3.2 ESE ** ***** 6.2 1770 27
28 7.3 -3,0 2.2 081 .4 .5 110 1.9 ESE ** iE**** 5.4 1340 28
29 9.4 2.6 6.0 074 .3 .9 208 ·L4 ENE ** il**** 7.4 1605 29
30 7.2 2.5 4.9 215 1.0 1.1 198 !5.1 ssw ** Ui~** 8.4 17B5 30
MONTH 17.0 -5.1 7.1 155 .1 ,/J 220 111.2 ENE 35 -3.9 232.~ ~i7356
GUST \JEL. c~T Mc=~x ,, GUST MINUS 2 INTERVALS 5. '7
GUST VEL. AT M~~x. GUST t1INUS 1 INTERVAL 8. <)>
GUST VEL. AT r1AX. GU~)T PLUS 1 INTERVAL 8.9
GUST VEL. AT Mtt)X I GUST PLUS ':> ~-INTERVALS 8.9
\
NOTE: RELATIVE HUrt I D 1 TY REf4DINIGS Ptl~E UNRELic~BLE WHEN WIND COI::'I""DC ,,,, t:.l::. \:) ARE 1 -r's _l:.o,. THAN
ONE METER PER SECONI>. BUCH r~E(~DINGS HAVE NOT BEEN INCLUDE!) IN THE DAILY
OR MONTHLY i'1EAN FOR RELr~TT.VE HUMIDITY c~ND DEW POINT.
:X· :X· -x· -x· BEE NOTES AT THE :f.{(~CK OF THJ:S REPORT *'Xo*•x-
..
:1: N c; .
HOURLY PRECIPITATION SUMMARY FOR P!-IERMAN WEATHER STATION
DATA TAKEN DURING SepteMber-.' 1982
PRECIPITATION VALUES ARE IN MILLIMETERS
HOUR ENDING
DATE 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1!00 1200 1300 1400 15~0 1600 1700 1800 1909 2030 2100 2200 2300 2400 DATE ------------------.. ___ ,_ _______ -----------------------------------------~-------------------------------·---------------1 .2 2.0 1.2 o.o 1.2 .2 o.o o.a o.o o.o 0.0 O.Q 0.0 o.o 0.0 0.~ o.o o.o 2.6 2.9 o.o o.o o.o o.o 1
2 0.0 o.o 6.0 0.0 o.o. 1.0 4.0 2.2 .2 0.0 .b 0.0 0.0 G.O 0.0 o.o o.o o.o o.n o.o .4 o.o .b 2.6 2 ..
3 2.2 1.2 1.6 .2 •. 2 .,
''" o.o .4 .a .6 .2 0.0 .2 0.0 0.0 o.o 8.0 o.o 0.0 0.0 o.o 0.0 o.o o.o 3
4 8,0 o.o 0.0 o.o n.o 0.0 0.0 0.0 .2 o.o o.o o.o o.o o.o o.o o.o o.o 0.0 0.0 o.o 0.0 o.o 0.9 o.o 4
5 . 0.0 0.0 .4 .4 0.0 o.o .2 0.0 o.o o.a 0.0 o.o 0.0 o.o o.o o.o o.o 0.0 o.a o.o G.O o.o o.e o.o 5
6 o.o o.o 0.0 0.6 G.i o.o o.o o.o 0.0 0.0 o.o o.o 0.0 0.0 0.0 0.0 o.o 0.0 o.o o.o 0.0 G.O o.o o.o b
7 o.o o.o .2 .6 .B o.o .2 0.9 o.o o.o 0.6 o.o 0.0 o.o o.o a.o 0.0 0.0 0.0 0.0 o.o 0.0 o.o o.o 7
8 ~.0 0.0 o.o 0.9 o.o o.o 0.0 0.0 o.o 0.6 o.o o.n 0.0 o.o 0.0 o.o 9.0 o.o o.o o.o 0.0 0.1 0.8 .2 8
9 o.o 0.0 .2 0.0 0.0 0.0 0.0 o.o 0.0 o.o 0.9 o.o 0.0 0.0 0,0 o.s o.o 0.0 0.0 .6 o.o o.o 0.0 o.o 9
10 o.o o.o o.o o.o o.o .2 0.0 8.0 0.0 o.o 0,0 9.9 o.o 0.0 O.Q 0.0 o.o o.o o.o o.o o.o o.o o.o 0.0 10
11 o.o o.o 0.0 .2 9.0 .4 1.4 .b .a t.B .6 0.0 .4 1.2 o.o 0.0 o.o 0.0 o.o .2 o.o O.G o.o o.o •1 ·~ 12 o.o 0.0 0.0 o.o • 0.0 0,0 0.0 o.o 0.0 0.0 0.0 0.0 g n .u o.o 0.0 o.o 0.0 0.0 u.o .4 .6 .2 1.2 1.2 12
13 1.2 2.2 2.2 1.8 t.B t.b 3.0 2.2 t.B t.b 1.0 1.6 1.6 .4 0.0 G.O Q,O LO 2.0 1\ II v.u .6 .b 1.0 o.o 13
14 .2 .2 .2 .4 .4 o.o .2 o.o o.o .2 .2 o.o o.o 0.0 .4 1.0 A .8 3.0 1.6 2.0 .2 1.8 2.4 2.8 14
15 2.8 2.2 1.4 2.0 3.2 3.0 2.4 .b 0.8 o.o o.o o.o o.o 0.0 o.o 0.0 0.0 1.2 4.0 5.2 1.6 o.o o.o .2 15
16 .2 .4 2.2 4.0 1.0 .2 .2 o.o .2 o.o" 0.0 0.0 o.o 0.0 0.0 0.0 o.o 0.0 o.o o.o .2 .o 1.0 1.0 16
17 2.0 1.8 2.0 1.0 .2 .4 L2 .a o.o o.a 0.0 o.e o.o o.o o.o 0.0 0.0 0.0 O.Q 0.0 o.o o.o o.o 0.0 17
18 .2 o.o .2 o.o o.o o.o 0.0 .2 o.o 0.0 0.0 o.o 0.0 o.o .2 .a 1.2 1.0 .B 1.6 2.2 .B .a o.o 18
19 o.o 0.9 o.o 9.0 .2 .b .2 .2 .2 .2 .a 1 4 1.0 2.4 1.6 1.2 .B 1.0 .6 1.4 .b .4 1.4 2.4 19
20 .2 .4 .6 .4 .4 o.o .4 0.0 .2 o.o 0.0 o.o .4 .a .4 .2 .2 .2 0.0 .2 .2 o.o .b .2 20
21 0.0 9,0 .2 o.o .2 0.0 o.o o.o o.o o.o 0.0 .4 1.8 .b o.o o.e 0.0 0.0 O.G 0.0 o.o o.o o.a .2 21
22 0.0 O.Q 0.8 .2 .4 o.o 0.0 .2 1.2 1.0 1.6 .2 o.o 0.0 o.o o.o .2 o.o 0.0 0.0 o.o O.Q a.o o.o 22
23 o.o 0.0 o.o o.o o.o 0.0 O.G o.o .2 o.o o.o o.o 0.0 o.o 0.0 6.0 o.o O.B O.Q o.o 0.9 o.o o.o o.o 23
24 0.0 0.0 o.o o.o 0.0 o.o 0.0 o.o o.o o.o 0.0 0.0 o.o o.o o.o 0.0 0.0 o.o 0.0 0.0 D.O o.o O.G 0.0 24
25 0.0 o.o o.o o.o 0.9 0.0 o.o 0.0 o.o o.o o.o o.o 0.0 0.9 0.0 o.o o.u o.o o.o 0.9 ~.0 o.o. o.o 0.0 25
26 0.0 o.o 0.0 o.o .2 .2 .6 .b o.o 0.0 o.o 0.0 o.o 1.6 2.0 2.0 2.2 o.o .4 .B 2.2 2.0 3.6 L6 26
27 1.0 .4 .6 .6 .4 .4 .4 .2 .2 o.o .6 .2 l.Q .2 o.o o.o 0.0 0.0 o.o o.o o.o o.o 0.0 0.0 2i
28 o.o G.O 0.0 0.0 o.a o.o o.o o.o 0.0 o.o o.o o.o o.s o.o 0.0 .2 .a .a .6 .4 .4 1.0 .a ,4 28
29 .6 .a .2 o.o .2 0.0 .4 o.o .2 o.o 0,0 0.6 o.o o.o o.o o.o o.o o.o o.o .2 .b 1.2 1.6 1.4 29
30 .6 .2 .2 .2 o.o o.o o.o 0.0 o.o 0.0 o.o o.o o.o 0.0 .2 .B .4 .6 1.4 .4 .4 .2 .2 2,6 30
·-·------
~~~ ~ M (""" (""J i'<· 1 <:"" l J e ·y· A· N . ..,. <:"' D"i. .... 'X I .... . u "!: .... ) • •••• t ~ .... J! ;>-
MONTHLY SUMMARY FOR SHERMAN WEATHER STATION
DATA TAKEN DURING October} 1982
RES. RES. AVG. MAX.
HAX. MIN. MEAN WIND WIND WIND GUST
DAY TEMP. TEMP. TEMP. DIR. SPD. SPD. DIR.
DEG C DEG C DEG C DEG M/S ti/5 DEG
MAX.
GUST P1 lJAL MEAN
SPD. DIR. RH
li/S %
DAY 1 S
MEAN SOLAR
DP PRECIP ENERGY DAY
DEG C MH WH/SQM
-----------------------------------------------------~--------------------------------~---------------
1 4.5 -.1 2.2 059 .2 .4 210 2.5 ENE ** ***** **** 1308 1
2 7.6 -1.0 3.3 064 .3 .4 349 2.5 ESE u ***** **** 2088 2
3 7.4 -1.8 2.8 067 .9 .7 ti50 4.4 ENE ** **Ul **** 2350 3
4 7.8 -5.2 1.3 073 .a .B 096 3.9 ENE ** ***** **** 2733 4
5 6.1 -5.9 .1 063 1.6 1.7 047 7.6 t~ ** ***** **** 2751 3
b 5.6 -1.1 2.3 060 1.4 1.5 075 6.3 ENE ~~ ***** **** 1920 b
7 1.8 -.8 .5 061 .a 1.0 062 4.4 tHE ** fiUlU **** 755 7
8 1.8 -1.6 .1 Q4B .4 1.0 927 3.2 ENE ** ***** Hl!f 855 8
9 2.4 -2.2 .1 216 1.1 .8 212 3.8 ssw ** fltif!ff **** 763 9
10 -.4 -3.5 -2.0 214 2.3 1.2 219 5.1 ssw ** ***** **** 1020 10
11 2.0 -3.3 -.7 060 1.1 1.1 043 5.7 ENE ** ***** **** 765 11
12 2.0 .1 1.1 060 .4 .4 047 1.9 NE ** w**** **** 538 12
13 .5 -5.2 -2.4 031 ... .6 214 3.2 NE ** ***** *'** 345 13
14 1.3 -11.5 -5.1 079 1.0 .7 on 3.8 E ** ***** **** 623 14
15 1.2 -14.3 -6.6 048 .7 .6 028 2.5 E ** ***** **** 150i 15
16 -.a -7.5 -4.2 *** ·lffU .7 *** **** *** ** ***** **** 293 16
17 5.0 -8.4 -1.7 026 .3 .4 026 1.9 NNE ** ***** **** 835 17
18 2.4 -11 ~0 -4.3 153 .1 .4 Qqb 1.9 s ** ***** **** 1540 18
19 .B -4.2 -1.7 *** **** .3 *** **** **' u ***** **** 24l 19
20 .7 -13.8 -6.6 *** **** .6 *** **** *** ** ***** **** 630-28
21 -2.8 -12.8 -7.8 067 2.3 2.2 084 7.6 ENE ** ***** **** 893 21
22 -1.5 -10.6 -6.1 058 2.1 2.3 057 7.0 NE ** ***** **** 1485 22
23 -2.0 -15.5 -8.8 080 1.5 1.6 055 6.3 E ** ***** **** 1241 23
24 -3.4 -19.4 -11.4 076 .6 .7 081 3.8 E ** ***** **** 1323 24
25 -4.3 -21.5 -12.9 096 .2 .4 124 1.3 E ** ***** **** 1193 25
26 -20.8 -24.6 -22.7 01'9 ' ,5 ,5 877 2.5 ENE ** ***** **** 153 26
27 ***** ***** ***** *** **** **** *** **** *** ;.f ***** **** ****** 27
28 *~*** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 28
29 *'*** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 29
30 ***** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 30
31 ***** ***** ***** *** **** **** *** ***~ *** ** ***** **** *U*H 31
MONTH 7.8 -24.6 -3.5 068 .a .5 047 7.b ENE ** UUI **** 30135
GUST VEL. AT MAX. GUST MINUG <:) ,_ INTERVALS 5' 1
GUST VEL. AT MAX. GUST MINUS 1 INTEl~ VAL 5.1
GUST VEL. AT Mr~X, GUST ?LUS 1 INTERVAL 5.7
GUST \)EL. AT MAX. GUST PLUS 2 INTERVALS 5.1
NOTE: RELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE LESS THAN
ONE METER PER SECOND. SUCH READINGS HAVE NOT f.!EEN INCLUDED IN THE DAILY
OR MONTHLY MEAN FOI~ RELATIVE HUMIDITY AND DEW POINT.
~·*•Xo* SEE NOTES AT THE BACK OF THIS REPORT ~·:X.·Xo·X·
•
APPENDIX A.4
DAILY DISCHARGE SLOUGH 9
s17/i7
•
s13/t14
TABLE 2.1.3
DAILY DISCHARGE SLOUGH 9: 8/10/82-10/14/82
"'
Gage Height Water Surface Discharge
" Date (ft) ( ft, msl) (cfs)
8/10/82 1. 03 593.71 10.0
8/11/82 1.01 593.69 8.7
8/12/82 0.98 593.66 6.9
8/13/82 0.96 593.64 5.9
8/14/82 0.95 593.63 5.5
8/15/82 0.95 593.63 5.5
8/16/82 0.94 593.62 5.0
8/17/82 0.94 593.62 5.0
~ 8/18/82 0.93 593.61 4.6
8/19/82 0.93 593.61 4.6
8/20/82 0.91 593.59 3.9
8/21/82 0.90 593.58 3.6
8/22/82 0.89 593.57 3.3
8/23/82 0.88 593.56 3.0
8/24/82 0.87 593.55 2.7
8/25/82
8/26/82
8/27/82
8/28/82
8/29/82
8/30/82
8/31/82
9/1/82
9/2/82
9/3/82
9/4/82
9/5/82
9/6/82
9/7/82
9/8/82
9/9/82 0.88 593.56 3.0
9/10/82 0.88 593.56 3.0
9/11/82 0.89 593.57 3.3
{ 9/12/82 0.89 593.57 3.3
9/13/82 0.98 593.66 6.9
9/14/82 1.06 593.74 12.4
9/15/82
9/16/82
9/17/82
9/18/82
'icc
s13/t15
TABLE 2.1.3 (Continued)
DAILY DISCHARGE SLOUGH 9: 8/10/82 -10/14/82
Gage Height Water Surface Discharge
" Date (ft) (ft, msl) (cfs)
9/19/82
9/20/82 1.74 594.42 339
'-9/21/82 1. 72 594.40 315
9/22/82 1. 51 594.19 138
9/23/82 1.24 593.92 37.3
9/24/82 1. 11 593.79 17.2
9/25/82 1.02 593.70 9.3
9/26/82 1.00 593.68 8.0
.. 9/27/82 1.07 593.75 13.2
9/28/82 1.02 593.70 9.3
9/29/82 1.01 593.69 8.7
9/30/82 1.02 593.70 9.3
10/1/82 1.03 593.71 10.0
10/2/82 0.98 593.66 6.9
10/3/82 0.95 593.63 5.5
~· 10/4/82 0.98 593.66 6.9
10/5/82 0.92 593.60 4.3
10/6/82 0.90 593.58 3.6
10/7/82 0.92 593.60 4.3
10/8/82 0.88 593.56 3.0
10/9/82 0.87 593.55 2.7
10/10/82 0.86 593.54 2.5
10/11/82 0.86 593.54 2.5
10/12/82 0.87 593.55 2.7
10/13/82 0.85 593.53 2.3
10/14/82 0.84 593.52 2.1
\..
Note: A dash (-) indicates missing records.
t ...
'I
APPENDIX A.5
LABORATORY TEST REPORT ON GRAVEL GRADATION
s17/i8
LAEiCRATORV TEST REI=IORT
R&M CONSULTANTS, INCo
ENGINEERS GEOLOGISTS PLANNERS SURVEYORS
TEST ON Susitna Subsurface Investigation R&M PROJECT NO. -=..25~2:::.:3:.;1:::..4-=----
CL!EN~PROJECT~~~-~-~~--~~~--~~-~----~ LAB NO. ~G~-~1~~~~-
SOURCE ________________ SUBMITTED BY R&M FIELD NO. ------
SAMPLED FROM_....;.S..;;.;.l...;_-)u_g,..._h_9_I....;.s..;;;;l __ a_nd ___ DATE SAMPLED 9-21-82 DATE R EPO RiED __;;9;_-....;:::2.;::,2 -__;8:.;;2;__ __
LOCA Tl 0 N __ B:::.a~n~k~o~f:..-.!aiS~l~ou.\6.:g~hu...... ________ DEPTH --·----DATE RECEIVED 9-22-82
--
GRAIN SIZE DISTRIBUTION CLASSIFICATION
%PASSING AS SPEC. UNIFIED AASHO FAA COMPACTION
SIEVE REC.EIVED -3/8 11
-
5" % + 10 OPTIMUM MOISTURE....,.,-
4" %+3 MAX. WET DE;NSITY
3" %GRAVEL MAX. ORY DENSITY
2" %SAND ===I CORR. MAX. DRY DENSITY
1 1 /2" 100 %SILT % FRACTURE __
1" 89 %CLAY METHOD .
3/4" 82 FSV NATURAL DENSITY_
1/2" 69 LL NATURAL MOISTURE
3/8" 60 100 PL WEIGHT LOOSE
#4 48 79 PI WEIGHT RODDED
#8 CLASS .
#10 40 68 TOTAL WT. TESTED
# 16 GMS r -# 20 31 52 REMARKS -# 30
# 40 16 27
#50
# BO 3 5 I
# 100 2 3
# 200 O.l O~J.
.02MM LL. u
.005MM a. --. I
COARSE SPEC FINE· SPEC DELETERIOUS MAT. >-
MINUS #200 MESH
... -Vl
SOFT FRAGMENTS z
COAL & LIG. OR LT.WT.PT. w a
CLAY LUMPS >-
STICKS & ROOTS 0::
FRIABLE PARTICLES 0
SPECIFIC GRAVITY ·-
ABSORPTION
.
FINENESS MODULUS
SULFATE SOUNDNESS
FREEZE-THAW RAifO
L. A. ABRASION LOSS GRADE . -
DEGRADATION VALUE
THIN-ELONGATED ,· ~-·~··1".. . -t.>f"«"'' ..... MOISTURE-PERCENT . ··· ..........
ORGANIC COLOR "'"' ~ .,.,..... • .... 't ~ '.... •
007656
• ..
.
U.S. Standard Slwt Openlnga In ktehu U.S. Standard Sieve Numtere Hydromtter !) .
100 4 3 2 11/2 I 3/4 1/2 3L8 3 4 6 ll 10 14 16 Z) 30 40 50 6070 100 140 200 270 0 u 1\ I I' I '\ .~ I I I I ·' I I I I I !'
' . '
90 ~ ~ . ~ 10
~ c\ ,\pc: -:.. ..... '~ I\ 80 -~ ~ i' 20
.. ~ ~ .
"=' ·\ 70 :-' 30 -\ ...,
r\.
'\. :E -40 01 .c 60 '(j) 01 " (j) 1'\ ~
3: "'~ > ~'• ..0 >-50 -50 ... ..0 C1l ~ (IJ ... !\ .... -~ ~"'-. 8
i.L. r' ~ u
c 40 "'-. 60 1:
C1l r\ C1l
(.) (.)
........ ' ... ..... cf C1l a. 30 ~ -70
1\r\. \
20 ~ 1\ 80 I'\ 1\
"' \ .
10 •i 90 ~
~
0 200 100 50 10 5 I 0.5 0.1 0.05 0,01 0.00!5 0.001 100
Grain Size in Millimeters
COBBLES _GRAV_El I SAND I SILT ffi CLAY Coarse Fir.e Coarse Medium I Fine I
-SAMPLE NO. ~!STURE DRY LL PI CLASSIFICATION a DESCRIPTION CONTENT DENSITY
-Sam_ple taken from banks of downstream end of slouoh 9
.
·-..
DRAWN BY
1 ~~· f C) . \!!. ! • ·i: .;.t'i"'~ '• ~ .. f t··;·.··~ 1 .. 'J .~·· ~ 11 ,, ~~· $; :\:l~· .• ~ ::'\\JiP·~~j !if. t':.t~-}~ V.:-~~\llf ~;~M!l:~i lf=Jl-rl· APPROVED BY .. rf1~~:4..• , •. : •.• ' ~ ~ • I • ., • • •~ "} •• ~ ' I ;ta • ~
•/ v!~~.~·j· .. J~:~7\1·~· -:· • !l!,..~, ·"i-i"r,l· ~·7,4 p.t·t.,. N.· r,1 ,.,, . ···1·,..~~ .. ,
DATE ct-23 .. ~ .... t. ~, t-•f "''~·./! ,_.. ,, ...••. ~··· ... ~'kJ /I:~. ld '.
R&M CONSULTANTS, INC. . PROJECT NO. 253314
s 17 /i9
APPENDIX A.6
OBSERVATION WELL BOLE LOGS
..
;<.. ..... ·,·: .. .. ..
....
> w c:
N
10 ....
d z
::E a:
0
l.L
JIIR
JOB NUMBER
Calculations ~FILE NUMBER
SUBJECT: ) ,_ trV {;. // ? SHEET J
;f'/7-/ CC-c:noCy BY ~
APP
........... . (_, ~~ . ........ \
t:::) • ·:
, : "..
. {) /) ,:
... ,'-J .
. -() .0~': .. ·. ·o· "" ... 0~ 1 ....
----10-0 .· " . . ·.· -; 0 c:?. ..
• -• d1 •
:. O·;·o . . . ; .. ; :,0
:·a-·-_ ...
• ·o .. . ·o· . 0 • .. ~
-~ .·
•• I_/' cJ
--:.:.. -· ;_ -~o.o
··o: . .; o
. 0 ..
. . . • ··.(1
· .. :D.··
. . . " ·a·. •: . ' •. (}
: 0.
·~:~ :-4 0
r----... ·· Jo.-o a or. P"F dP.e £"
r11t:=t::1 <fd.en<r..v r"tV£ ;v ~e"" ~~~ S"-:JAA::~
/
$'<7r7<:;-6~r1:G 4_.-<!:J Ckfl:T' LC'J;
I
c-.,,.,. ~c~c PK"-ru,-"-". A?e"/:4......, /'?:1 --{ _s-. ~.
~.-<4!??
s~.-7 1.r 142-;T" p-,.~ 1 ~-o rU:JevJ C:"f.r.-~:r
/'5/0/, 7?
OF ..s'
DATE '1!-f..o I
DATE
•
> UJ a;
d z;
~ a;
0 u.
8'.0 __ .,..)sz,___!
Calculations
SUBJECT:
:. o· ··.; '· .. ··a··:o
:·. : ~~A.t?
0:
·:,o· ··a
\ .
P.·o·h
.'(2:U ,. ··o .. ~ .~ d
-'J-·· <li.O
_: ~·:'i',
t~··· .. 0 4~
-·. · .. o
~. 0 •
·o . • tS l ,: .. ". ~ .. ~·~ .-"t • • 0 •. "' .
....... 0
' : .. :. ·o .
JOB NUMBE R. __ -~.P....;;..5...;.J..;;;o;..tl..:.·...:7~7 __
FILE NUMBER. _______ _
SHEET :.l.
BY ji! 112~-'Jtlft:t..
APP
OF S
DATE tf~/J..l
' I
DATE
v c:-e-y ,lf"??-4--o -"..e.; c-t:..1 ;(/ c t:vc t ( 1"'4' r K t::.-~
/
E?I'>' p.c:n:.~ 1 c./~ .( t::k:>J€ _.[J "~cu P'<£::.V:SIE'
/
I
~OCJ-~~-
~ 4 • .A.)~ -
.l 3'--
.,..
> w a:
~ .,..
d
~l
~~
-·-
Calculations
SUBJECT:
19/7-J
; :[) .. "' ~ .
/'\·· ?::J·~ a .. . . ~ . ·:o ··. . -. ·:c;· · . . .. (}
/.() -
;t C .o tioT. iff' #CJ'-e
JOB i'JUMBER_...,.....:/_:7.:..5"_/_0_;._/......:/ __
FILE NUMBER··--------
SHEET 5 OF ~
DATE t,4(8 .1
>
APP DATE
•
...
> w a:
N
ll) ...
0 z
~ a:
0 u..
A~IR
Calculations
JOB NUMBER / :lj ;>o /, n
FILE NUMBER
SUBJECT: 'fj t. dV ~ /:7" q SHEET '7" OF
BY .l?,4tl DATE
/J/1-~ C:t.='r72<J6.';/
APP DATE
GIU?. sv~
a""'(J./""' r/-ve ;;-v ~rl' Jc ~~"~q $?"~ .-?,._-' c.¢"9.--t::L. , ~
. $''7""-"0 J (; ~y{_"'Z. ..,..c.,;;~ C4/'tf1]t-e..r..,
R-?' .s N:!"(" p.-e. ~ t:..£/ro.4. .., S.iZ?6lv y
OOddc.<J'J 41-~ c,z:-yvec. W//?7 $''7A-<? p-.-<'77?1!.,-y,
v£'o/
.)
t{_L/_.f ..l
'
-~ .. (
() /
..:-.......,_ 3 "
6 ~
~a. ~==v~--+----------------------~ _L
b T.D, -
....
OWN. R!b
CKO. . R&M CONSULTANTS, INC.
DATE, l..f-/2. i!NDINaaR• DaQI.COI•T• P1..NN81'1• aUR\IaVCR.
SCALE.. , . -. I
I. . -
1?:
ts
'
-
--
I
-0
w '=.l t.. GR.ttoso G-Il. Pr v E '-
---------
Jr<.. T'r SA.rJD !-t/ 0~ G tt.v::r. C.J
--------
Cit= rt ·: fi,._!: .S:t 'T'
~ .. ~ ~ J c.:..., ~ell i-f. ..rfr; •• ~
...J ---
GRA v(;: t.. , -----·7
VF. ;t ,. f" :r ,.... ·~ .!:I t.T
b""o""""'-' .,_;. '"' """' ~ .... 11 o ... t
----· --g,S" -
Sr t..Ty ~.ltlNO '-' J o ~ & A ,..;x c. J
-Jo' T.n
.
•
F. B.
GRID.
PROJ.NQ OS 2 J l't
DWGNQ
.. ..
'
"'
Lc-.,.1
tl t'J~.l l:J-9-'i
1
.
4_~ 1-{~!2-g.-?. , Lf::...t"'l.-~"L
;'
Q 0 l
, r
}
.. .
' ~..:..
.
!
I
I ~
~I \ , ~ "' 2
SANDt GR,<\I.I~t. "In p. N''( \ Srt. • 't ..5 At-J I) '-'/OR(;. AN:!: W
LARG-E 1.-" { h n) C.611 0 Ll;! l: ...
" . . $'
w.o. "' . -
-b, T.O.
.
..
-h•s l re.c.. \:. G g' (r.. ... J <: cal.!..\~
)
-.
Io'
..
-
w.D.-%..... -----~ --!tJ" -. .
Gr~Av~L. ,
( I i. 0. .
. .
.
I .
_, \.. , j
OWN. (?B F. a.
CKO, . GRID.
DATE. Y-3"2.. PROJ.NQ CJI"'~J l'f
SCALE
•
'-f _., ~ -~ '-
" w 0
,"' .~ '.,
~ FJ. pJ J;. .!;:r. l.. I :"'4
(,
'/
/ ~-;. ------/,f / I.S
s A-rJ 0 '( G ~AV-1::-L
'ro ... .-..lnl Co J.,l, It'S.
I~"·····..: t I tj " cl.c. ... .,le• ...
., s .
-~ w.o. ,
S T.D. -
.
...
.
.
L ,
OWN. R.tl t
CKO, . R&M CONSULTANTS, INC .
DATF;. Y-22 CNOINEOIRfl OCCI.COI!IITIS PL.,-NNCA• aUR\I.VCRG
SCALE. I '• -: "
-
..
'
J
. /
.~ ....
-.
I
/ 0
F.:t"'£ .S.:!'c..l '-I o e. <. A t..tL c. ~
---
f:r((A-vi=.t.
\,.J-.e.\\ e u.J.,..(
t-o ....... J .,J. c ·l:.ble.J
~
.
.
-2. 7,
F. B.
GRID.
PROJ.NQ t:>f"l..J 1 'f
nwr. NO
0/
I "
2."
w.o. -L
--t---1'---
,
OWN. Re.
CKO, .
DATE, ~-;-:t ..,_
R&M CONSULTANTS, INC •
.NDINII.CRa a•CI.C::IDiaTa PLANNaAa DUR'Iola'rQRIA
SCALE. . ' ~. / I ~
0/
'(ri<Jr.S+
---------
V E t< '( ~I .V E: .S I L T
)'Y\oi.s +
b ro"'""' "
------
s/
9/
,; t:t.s T.D.
F. B.
GRID.
PROJ.NO. or~ Jr .. y
nwr. un
.J
..
r I
~
k
s.s"'
w.o._!_ ---
OWN. (.((3
CKO. .
DATE. 'i-JZ
SCAL~. l •. . "'
0
o R c. ti "'X. c...s
------0 .r"'
S..:rl..T
.
---· ---U / I
1 Lf,S'
w.o. . ;g_ .
GR.Ar:F.c..
6 "' T.O .
..
.
.
R&M CONSULTANTS, INC .
I!NOIN55Aa 08CI.DOI•Ta PI.ANN.Ra !!UA\I.VCRa
~ .
't ·~· l'f
i· ,,
~:-..
L .SI L.T !
--
G (<f+IJE t...
.
I
---
-
.
' 0
-3 '
,
1./.S T. 0 .
.
F. B.
GRID.
PROJ.NO. ().f"2.J 1-f
DWGNQ
•
•
r
"' 9-11
'-1-·1 '-1 -2 "2. ,
C) r!
..
~·· S"r L ,. . . $r
l
·~ ~':J ..
f.
·t ':-~---2. I -}. ---
?) f.roo.~~ ~.l" l T' {~1..1\~r
2.7' & ---£,..,
.
£:z:L.T
.
-
G(('A OJ E. I-
q'
~ 'f w.o.
.
.
.
,
OWN. f£3
CKD. .
DATE. 'i-~2
SCALE ! '; -'
::};!
' If . .
I
1
~ i
, !f; , 2. l.l:.l;
,
.
•
'f' . .
,
T.D.
-
l
t:;-I 2
Y-t'-1-S'l.
SILT
-------
G t<AV ~L
-
.
.
.
6'
.:r'
"-o S/.S I. •
.
F. B.
GRID.
PROJ.NO.. 0!"1.! 1'1
owr. NO,
"
,
J
.J
v
' I
! •
.{
i
.:!.
'~ ~· ,.
2.' t.a:
6'
w.o.
.
OWN. p, rl.
CKO. .
DATE. 4-J: 2,
SCALE. 1 ~ ? I
.
,
0
Sx t. T
--------G~AIJI:.L -------
$.x t.. T
---------
'
GRAVEl..
.
#
R&M CONSUL-TANTS, INC .
ENOtNIIIIRa aaQ&;.CIDISTa PLANNaAM aU!t\laVCIAII
.,. .
" J; 0.1
Sx t. T
- -
GRAVE;L
..,. 7 'y
w.o. --
.
-
.
.
I
--
~
.
•
0
,
-uS." t.
,
'g
F. B.
GRID.
PROJ.NQ orz J 1y
OWG.NO.
•
•
,-
'#tj-IS" .
Lf-llf-i2
-· i
'
! j . .. SILT ..
'"2.~ w_
--- -.
G f<Au E.t-
S,; '
w.o .
Y!--
.
.
;
.
" ~
OWN. r<rs
CKD. .
OATE, '-J-$2
SCALE. j ~~ 7
,.
0 I
.
~ --2.3
.
!;'/
•
.
-
-
.
.
.
I
'
I
.
'
.
;
F. B.
GRID.
PROJ.NQ IJS"2.JIIf
DWG.NQ
']
J ""
' 1
'--
t
'-
'
J
' ' J
._J
._)
.J
J
,.
f.f
t.
i!
# 2-I
t.t-IS-~l..
o'
~ ~~ J.S ..:.
I I
I I
s'
w.c.
OWN. (<.,G.,
CKD. R&M CONSULTAr\JTS, INC.
CNDINII&f'll DIICLCDIBTII PLANNEI'lll BURVEVQRIII
C~AV€ L
--
F. B.
GRID.
PROJ. NO. o.s 2 J l '-/
DWG.NO.
..
-r' !XJ t.
~ 0
--.
\ii
1/ ~
-'-1 ' ,.
3.'7 +----+---- -
t;.s-'~ G' ({ ~ v .E.(.._
·vv.o. -::;:-.l---1--------------S. a 'T. o •
..
J_ __ J-____________ ,. ?.s' r,o.
I
___..) l~---------=~,====~==========~~=~:~
f. B. OWN. R.a.
CKD. .
DATE, '1fj t.
SCALE. ,~~ ... ;
/
,__ ______ ..,.""'1
GRID.
PRO.J.NG. OS'2 . .l I~
OWG.NO.
' l
1
.__j
\
l
'l,. •. J
I
........ _J
i
d
I
J
•
I ..
\!:) I •
J.S
.
,
f
f.
f
i
"-.
-4:-
Sit..1"
-~------.-2. 7'
GRAIIE.L
.
vv~o. ,
S.:< 1',0,
.
~.s,
w.D. .
-
1
I
'
c•/
.·• ~· .
v'
..t . ~; ..
~·
" ~
·V -
.
I
0
.
~X t..l
-------2. s I
G~Avi:..L-
J, ----r-----,
0
.Sx~..;
C. rc. j
ctJ "'• t sh ... J w .. \1..; ""r .
----·-----
~
GII.AVF.;t.. ,
'1 r.o .
.
.
I L----~-----~··~-------
0 ~ , -W ,;: < c N • ~ ,; ~ o • J ::;D OWN. RB
CK!l .
DATE. '7/.3 1.
--M CONSULTANTS, INC~ S IA.J.IT/\111 G tt D ... "" o w rt r~ tt .s -n..o ., PROJ.Na. on ., L. :;:~eeR~ aaai.DDI•TIII Pl..t\NNaRa »Uf'VavaRa . . . ~ I T
SC~L.E. r:. 2.1' DWG.NO.
•
4-I' -fl '-,
o/ ( 0
~
O.<l • ~
~
s r'-l"'
}
~:tt.T ;
'" ~j ---------I. s'
~r----------.
G R A\J Et..
~ GRAVE'--.
,
'3.5
w.o. 9 " 3.1 -w.o. .
,
'f.S T,O.,
..
.
~
.
.
.
. .
.
I .
. ~-"
,
OWN. {((3
Cl<i.\ .
DATE. Lf-. rz.
SCALE. t " .,,
R&M CONSULTANTS, INC .
liNDlNIII[IOia DliCII.DDI .. TC PI,ANNIIA• BUAV.VCA8
t..ov..r , r~:;~-----
J'11APY II PRO~.t-4.0. O.t2 J 1'-f l
t DWG.NO. l
W ttT•t f~
r
. iJ ~-q
LJ-I & -8 "l .
:r
~:rt..T
J. 1. "
·, ------
G KA I.IS: c..
3.L/ # ~·
w.o,
.
.
.
;
OWN. R.'/3
CKD. .
DATE. o/-Rz
\
SCALE. I·~ 7'
-ll ~-!()
"
·Lf-/1.-g '2.
0 ·--~[1 I .
/. 2 " S:r L T
U.lr, ""'-........_, r----
G((AUi;.t-
4
,
.
, " S:? -w.o. 7
..
.
I
---
-
'
.,
"' 0
, --[.o
.
6.s.-.. T.JJ •
.
JrB.
GRID.
PRO!), NO. OS Z...1 1 't
oWG.NQ
..;
•
.
~ 0 -II
<J :JJ.S'-It.
LJ-11.-~?... /'
'1-H-g c,
01 6 ..,. O,t.; Ji!
p .... ~;-o r?c. f.lJVrcs '-'/ S OM'=. .S.t: &..T
----------
S x t, r S:r.t...T
I
/ r-----'I Lf.o , ------~ -----.
. . (;~4-VEL s'-='!:-. , . GtH\liGL. -:
6 T. c. w.o.
b, _![ .
. , w.o. 6.s T,O •
. .
.
I
' I
OWN. (?(!,
CKD. .
DATE, l..f-8 2
· M CONSULTANTS. INC. R & CIIIOI.aat•T• PI.ANNa.-a Bl,jRVIIYORS C!NOINEIIRII
' SCALE. I 1
'-' ,
...
.
.
.
.
I
~
.
.
-
F. B.
GRID.
PROJ.NO. tJjz J 1'-f
(;)WG.NQ
~ c.
!
c.
~
..1
APPENDIX A. 7
DETAILS OF WELL INSTALLATIONS AT SLOUGH 9B
s17/i10
B
0
0
0
n I I u
0 -> w a:
0
r---------------------------------------------------------r------------------------·' lrw; till
Calcu1lations.
SUBJECT:
r-----~ ;.• sn."""
~ I ;,_CJ
tJe .. h'"h/,,T Sc-Te.
-,~,1)
~~ \
..
I
.
! I
•
"
]7·'1
A"" .l'.IJ.· .ft:AC~
(/CIIf-.YJ/t',
(9-J A)
r I 11 t'V(.
s.s .... t, 0 4c-Y/";.~,,.
.l'e<t t:~l
lf·"
/D,')
ro<y J'lt"
IJ.·I
5 LcJ (/t: //
-:l ,, PvC.
/1l,fl. -
fl%~f9t..
l',u>1r!'
I { '·} /TI< '"d.
~ ,1,t:)
( dt~;~
f.l?
:---, •• f'Vt.
t
I 9·'(
j}(!t.y rl•"
/0.'?
Jj Jo.o tt
Itt
JOB NUMBER f.I 'JCJ/. "??
I=ILE NUMBER,. _________ J
SHEET __ --L--OF $
BY ~~~.-r.. DATE~-
APP DATE ~
J,J
18
("1-lA)
STtf: 1/~
~.t sn -~P I f{
~0
. ·~·" :; ! '''I : A;ll..y ~·
r~
I .