Loading...
HomeMy WebLinkAboutAPA38#· ' ,-,-- ,, S!.!sitna 1-lydro~lectric Project Supplemental Report FERC Letter of 4/12/83 .-, Page _2l._ Item_\ __ _ ;- DECEMBER 1982 r.:.n ·~ It{\ '7.7''iTh .. ·~ ~-;q~--;;; ··~ ·-·-. -· . ·-----.... · .. lf~l>t~~~: t.~(!.~,i~~ ... :r~.;.,;U~';: •\A ~~v· ,~ Susctt'la Joint Venture Document Number t' L i L. i L ··-~.:.--·-----~~·---~-·--~---------~·---·-~·-·...._,___.. ...... .------· ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT TASK 3 -HYDROLOGY SLOUGH HYDROLOGY INTERIM REPORT DECEMBER 1982 Prepared for: ACRES AMERICAN INCORPORATED 1000 Liberty Bank Building Main@ Court Buffalo, New York 14202 Telephone: (716) 853-7525 Prep a red by: R&M CONSULTANTS, INC. P. 0. Box 6087 5024 Cordova Street Anchorage, Alaska 99503 Telephone: (907) 279-0483 .. r l t r L f: I l fi Ill . L II: L L j, l ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT TASK 3 -HYDROLOG"' SLOUGH HYDROLOG't TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES 1 -INTRODUCTION 1.1 -Backgrou;·,d and Purpose of Study 1. 2 -Description of Study Area 1.3 -Methods 2 -FLOW REGIME 2.1 -Relationship between Slough and Mainstem Discha 2-1 2.2 -Flow Regime in Sloughs when Upstream End of Slough is Closed 2.3 -Winter Regime of Sloughs 3 -GROUNDWATER STUDY 3.1 -Introduction 3.2 -Stratigraphy 3.3 -Areas of Visual Groundwater Observation 3.4 -Groundwater Contours 3.5 -Groundwater Hydr·aulic Computations 3.6 -Groundwater Temperatures 3. 7 -Environmental Isotope Study Page ii IV 1-1 1-1 1-1 2-1 2-3 3-1 3-1 3-2 3-3 3-4 3-5 3-5 4 -CONCLUSION AND RECOMMENDED FURTHER STUDIES 4-1 BIBLIOGRAPHY APPENDIX A. 1 -Groundwater Elevation Data at Slough 8A and 9 A.2 -Groundwater Temperature Data at Slough SA and 9 A. 3 Climate Summaries for Sherman Weather Station May-October 1982 A.4 -Daily Discharge Slough 9 A. 5 -Laboratory Test Report on Gravel Gradation A. 6 -Observation Well Hole Logs A. 7 -Details of Well Installations at Slough 9B s16/q2 • • 1.~ LIST OF FIGURES Number Title 1.1 Location of selected habitat slough sites along the Susitna River between Talkeetna and Portage Creek 1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6 3. 1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 s16/q3 Sloughs 9 and 9B Slough 8A Aerial photo comparison, 1951 to 1980 Slough 8A Aerial photo comparison, 1951 to 1980 Slough 9 Aerial photo comparison, 1951 to 1980 Slough 11 Locations of berms controlling connection of mainstem flow into Slough 9 and mainstem discharge at Gold Creek when flow is initiated Locations of berms controlling connection of mainstem flow into Slough 8A and mainstem discharge at Gold Creek when flow is initiated Thalweg profile of Slough 9 with main stem water su rfuce elevations Observed location of gro•Jndwater upwelling Slough 9 Observed location of groundwater upwelling Slough 8A Seepage meter Groundwater contours, Susitna River at Slough 8A, 4-26-82 Groundwater contours, Susitna River at Slough 8A, 9-3-82 Groundwater contours, Susitna River at Slough 8A, 9-10-82 Groundwater contours, Susitna River at Slough 8A, 9-16-82 Groundwater contours, Susitna River at Slough 8A, 9-20-82 Page 1-4 1-5 1-6 2-5 2-6 2-7 2-8 2-9 2-10 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 .. >--·~·--·--. ...,~,·--·-•<'·---~_.-~,....:::...-· ~ -c-·-•~h__..."'"" ,,..~,., ~ ---·---~~"'~· ~ [ L 1,_ LIST OF FIGURE.S (Continued) Number Title Page r 3.9 G ro u n d~.-vate r contours, Susitna River at Slough SA, 3-17 10-5-82 '' 3.10 Groundwater contours, Susitna River at Slough SA, 3-1S 10-13-S2 ~ L 3. 11 Groundwater contours, Sus1tna River at Slough BA, 3-19 12-21-S2 r. 3.12 Groundwater contours, s .... sitna River at Slough 9 3-20 ~. !' i'' 4-26-S2 ~ .... ~ 3.13 Groundwater contours, Susitna River at Slough 9r 3-21 t, 5-11-S2 3.14 Groundwater contours, Susitna River at Slough 9, 3-22 ~ 6-23-S2 1 t;;. 3.15 Groundwater contours, Susitna River at Slough 9, 3-23 Fl 7-1-S2 \• L.,., 3.16 Groundwater contours, Susitna River at Slough 9, 3-24 r 7-20-S2 3. 17 Gl"oundwater contours, Susitna River at Slough 9, ::3-25 9-6-82 " n ,, • 3. 1S Groundwater contours, Susitna River at Slough 9, 3-=26 fl..;,>" 9-20-S2 3.19 Groundwater contours, Susitna River at Slough 9, 3-27 10-7-82 It 3.20 Groundwater"' contours, S usitna River at Slough 9, 3-28 10-15-82 (i 3.21 Groundwater contours, Susitna River at Slough 9, 3-29 ~ 12-22-S2 ' t:,. ... s16/q4 1 1 I ~ ' LIST OF TABLES Number Title 2.1 Winter water surface elevations, mainstem Susitna near Sloughs 9, 8A, and 21 s16/o5 . 2-4 • .. , l /' " f 1 -INTRODUCTION 1.1 -Background and Purpose of Study Observation of fish activity during 1981 by the Alaska Department of Fish and Game (ADF&G, 1982) indicated that the sloughs and side-channeis along the mainstem Susitna River provide the most important salmon spawning habitat between Devil Canyon and Talkeetna. The major characteristic of these sloughs which makes them suitable habitat for salmon spawning and the overwintering of salmon fry is the flow of water w~ich continues in them throughout the year, either as surface or intergravel flow. This flow may originate from various sources, including tributaries, springs and groundwater inflow. The sources of this flow and the manner in which it would be affected by the regulation of flow in the Susitna River are questions which must be addressed. The purposes of this study are to: 1 . 2. describe the existing flow regimes m two selected study sloughs (8A and 9). determine the origins o·f· the groundwater c~mponent of slough discharge. 3. develop a cost-effective methodology for the determination of vater sources that could be applied to other sloughs. 1.2 -Description of Study Area This report concentrates only on those sloughs between Talkeetna and Devil Canyon, and specifically on sloughs designated 8A and 9 (Figure 1.1) by the Alaska Department of Fish and Game. At these two areas an intensive study was initiated to determine the year-round sources of water in the slough. Sloughs as defined by the ADF&G are the sidechannel or adjacent wetted habitats to the mainstem Susitna River which periodically receive a portion of their surface water from the main stem Susitna River in addition to other water sources. These two sloughs are located on the east side of the Susitna river about 30 miles upstream of Talkeetna. 1.3 -Methods Four methods were considered for determining the source of water in the sloughs. These were: (1) monitoring of groundwater levels and temperatures to determine direction, source, and amount of groundwater inflow (or outflow) to the sloughs; (2) environmental isotope tracking s16/q 1-1 .. studies; (3) measurement of surface water flows into the sloughs; and (4) visual observations. Monitoring of the changes 111 groundwater elevation and temperature was accomplished by a number of observation wells in the areas of Sloughs 8A and 9. These sloughs were chosen as study sites due to previous observance of groundwater input into these sloughs plus the relatively easy access into them from the Alaska Railroad. Wells were installed the week of April 12, 1982 at 15 locations in or near Slough 9 (Figure 1.2) and at 12 locations in or near Slough 8A (Figure 1.3). The wells consist of 4-inch diameter plastic drainage pipe. They are perforated throughout their length and capped at the upper end. These wells were installed using a track mounted backhoe. A hole was dug slightly below the water table (at time of installation), the pipe inserted, and backfilled. Additional wells were also installed later in the season. by hand driving a 1-!-inch diameter casing. The depth of these wells varies between 4 to 12 feet below the ground surface. The mean sea leva! elevation of the top of each well was surveyed in from the nearest control point. Wells were established along the banks of the sloughs to determine whether the slough was influent (groundwater moving from the sloughs into the banks) or effluent (groundwater moving from the banks into the sloughs). Other wells were established in locations which would provide data useful in determining overall direction of groundwater flow. Groundwater level and temperature were measured at intervals through spring, summer, and fall, and are continuing to be measured into fall and winter. Elevation of the water surface in the wei' !s found by measuring the distance of the water surface below top of the casing, ustng a measuring tape coated with a water-indicating chemical which precisely shows the location of the water surface. This distance is then subtracted from the known elevation of the top of the well casing to arrive at a groundwater surface elevation. This method is accurate to within a few hundreds of a foot. Temperature is measured using a standard mercury thermometer reading to 0. 1 °C. The question a rose as to whether the temperature of the water in the well was the same as the temperature of the local groundwater at that level. To test this, well temperatures were measured, the well pumped and allowed to refill, and the temperature re-measured. No difference in temperature was noted. In November, 1982 four additional wells were installed in the area of Slough 98. These wells were installed using a Nodwell mounted B-61 drill rig. By using this method of installation, as opposed to the previous method of installation by backhoe, it was possible to establish wells below the groundwater table. These were necessary for verification of a groundwater temperature model applied by Acres American. These well were instrumented in December, 1982 with Datapod recorders to meilsure temperatures and water surface elevation. s16/q 1-2 .. r ).. t. \<< En vi ron mental isotope tracking studies are described in Section 3. 7. Water originating from different sources may have differing "signatures" based on their isotope contents. Groundwater samples for this study were obtained up-gradient from the sloughs, and surface water samples obtained from the main stem Susitna and side sloughs. The isotope ratios for these samples are to be determined, and this ratio used to identify the source of water found in the sloughs. All sources of surface flow into the sloughs were documented and measured using standard discharge measurement equipment. Continuous stage recorders were also located in both sloughs and rating curves developed to relate the stage to discharge. Visual observations< focused on locating areas of upwelling groundwater and seepage of groundwater from the banks into the sloughs. s16/q 1-3 - t Fourth of July Creek ... FIG.1.1 I Oevtl Canyon : 7 Rivermlles v i Sherman Creek Indian AivE,Jr Stough AM \ TalKeetna : 26 Riverm1le~ Location of selected habitat slough sites along the Susitna River between Talkeenta and Portage Creek (adapted from ADF&G 198la) 1 - 4 I I I I I a I i I I I I .I I I I Ill !} • • ~·. ·'<!"'} - P-----------------------------------------------------------------------,----------------------------------------------------------------, ...&. I (II LEGEND: • OBSERVATION WELLS y STAFF GAGES Q DISCHARGE MEASUREMENT SITES • CONTINUOUS STAGE RECORDERS ~ CONTROLLING BERMS ~ CLIMATE STATION ----STREAMBED PREPARED BY I FIG .. 1.2 R&Y CONSULTANTS, INC • -\I \I I i \ I \ \ -----\ PREPARED FOR: SLOUGHSI g· &' 98 • ' .·.·.: _: ._ .. : .. : ....... -~~ ..• ·. · .. ·.:.· .. :.~ .. · .. : ...... #.~·~.:. ·• ~ .. :>· ' .1 LEGEND: • OBSERVATION WELLS • STAFF GAGES Q DISCHARGE MEASUREMENT SITE II CONTINUOUS STAGE RECORDERS <@> CONTROLLING BERMS ,..._... STREAMBED PREPARED BY I PAEPA~ED /FOA: FIG.· 1.3 I SLOUGH' 8 A R&M CONSULTANTS, INC. ~I'=========-----------~-----·-------------"·--· ........ ---·--......!-=====::! • .. (. I 2 -FLOW REGIME 2.1 -Relationship between Slough and Mainstem The formation of a slough along the Susitna River appears to be caused by high water stages causing water to spill onto adjacent floodplains. This process may occur either during high summer flows or during ice jams on the main river channel. The flow of water, sometimes the entire discharge of the main river during ice jams, carves a side channel through the floodplain. Such an occurrence of a jam forcing water· and ice into an existing slough was observed on May 15, 1982, at both Sloughs 8A and 9. Surface velocities of up to 10 feet per second were observed. Vegetation between the slough banks is relatively young, indicating that this ice jam flooding may be a frequent occurrence in these sloughs. Old ice scars on the trees on the slough banks also verify this. Comparison of aerial photos· from 30 years ago (Figures 2.1, 2.2 & 2.3) shows minor changes in both Sloughs 8A and 9 but verifies that these sloughs did exist then. This is not the case with Slough 11 (just downstream of Gold Creek) which did not exist in 1950. At the present each slough is connected to surface flow from the mainstem Susitna only when the flow in the mainstem is high enough to overtop the berm at the upstream end (head) of the slough, or by backwater at the downstream end (mouth). The flows required to initiate these surface water connections are unique to each slough. For Slough 9 the controlling berm at the upstream end begins to overtop at a discharge of approximately 23,000 c.f.s. at Susitna River at Gold Creek (visual observation). This berm is very unstable and shifted quite often during the time it was overtopped. Slough 8A has two entrances. The berm at the upstream entrance overtops at approximately 30,000 c.f.s. and the berm further downstream o• .,.tops at 26,000 c.f.s. Both of these berms seem quite stable and have a f~rowth of small willows on them. When a slough is overtopped the flow from tha main river dominates flow conditions in the sloughs. 2.2 -Flow Regime in Sloughs When Upstream End is Closed Each slough along the river is unique, and therefore must be looked at separately. Slough 9 -When flow in the mainstem Susitna River is not enough to overtop the upstream berm at about 23,000 c.f.s. (Figure 2.4), then flow in the slough is derived from two sources, surface runoff from small streams and groundwater inflow. There are two small streams which originate off the hillside above the railroad tracks and which feed into Slough 9. Both of these enter the slough at its bend near the railroad tracks (Figure 1. 2). s17/d 2-1 l .. L ~I ,, To quantify the respective amounts of water comtng from surface runoff and groundwater, discharge measurements were made within a few hours of each other at each incoming source of water and at the downstream end of the slough. These measurements were made using standard discharge measurement techniques and a pygmy flow met~r. By documenting surface flows in Slough 9, theoretically the groundwater component of the slough flow could be determined through a <>imple summation process. For example, if the flow at the downstream end -of the slough were 5 c.f.s. and the two small streams each input 2 c.f.s. this would mean there was a 1 c.f.s. contribution from other sources, which would be groundwater flow into the slough. The measurement of open channel flows can never be mere than an approximation. Under normal field conditions an error of at least 3 to 5 percent can be expected, and in low flow situations, such as were encountered in the sloughs, greater percentages of error exist. Understanding this we can look at the data obtained from these measurements. SURFACE WATER MEASUREMENTS AT SLOUGH 9 Downstream Slough Stream Stream End of g, 0 % Date 98 #1 #2. Slough 9 Groundwater Runoff 8-25-82 1.00 0.68 dry 1. 72 61 9-9-82 0.74 1. 76 0.13 2.96 36 Surface runoff contributed approximately 39% and groundwater 61% downstream discharge in the slough during a relatively dry period summer on August 25. Measurements made during a rainy (upstream berm of slough still not overtopped) showed percentages runoff contribution and 36% groundwater contribution. 39 64 of the of the period of 64% The major percentage of the groundwater inflow originates near the upstream end of Slough 9 from an area referred to as Slough 98 in ADF&G reports. The flow from this area is assumed to be all groundwater as there is no obvious input of surface water. Other areas of groundwater seepage and upwelling were noted in the sloughs. These are detailed is Section 3.3. The actual origin of the groundwater (mainstem river or local) must be determined to assess the impact of the proposed hyd roelech·ic development. Slough 8 -The berm at the entrance to Slough 8 (Figure 2. 5) is much higher than the one at Slough 9. Overtopping of the berm occurs at a flow of approximately 30,000 c.f.s. at Susitna River at Gold Creek. When the berm is not overtopped there is no surface flow in the slough until the area near well 8-6, where a small spring emerges. Downstream of this spring six small cr·eeks flow into the slough. During rainy periods these s17/d 2-2 f I ' ... .. IJ streams provide the majority of the flow in Slough 8 when the berm is not overtopped. Some upwelling was observed but only near the shoreward side of this slough. It would be a difficult task to measure th~ flow in all these streams to determine their contributions but the streamflow record in these sloughs shows a large increase in flow during rainy periods when the upstream berm is not yet overtopped. 2.3 -Winter Regime of Sloughs Based on limited observations from the beginning of the winter season of 1982, it appears that the ice cover in the mainstem plays a great role m determining the winter flow conditions in the slough. The leading edge of the ice cover on the Susitna River reached the area of Slough 9 in mid-December. Measurements of water surface elevation were made in the vicinity of Slough 9 on November 22, 1982, when an ice cover was not present, and again on December 21 1 1982, after a complete ice cover had formed. The ice cover staging and constriction of the channel caused water surface elevations in the mainstem to increase five to seven feet (see Table 2.1 and Figures 2.6 and 3.21). This winter water surface elevation is comparable to an open channel flow elevation of approximately 30-40,000 c. f. s.. It is not yet known how this will vary through the winter 1 or its affects on the water table in Slough 9 B. Comparable data on stage are not yet available for Slough 8A but an interesting occurrence took place in winter 1982. An ice cover formed in the mainstem near Slough 8A in late November. Once this hrppened the increased stage in the mainstem allowed water to flow into the side channel above Slough 8A. The dow•··,~tream end of this side channel was obstructed by ice an thus this flow was shunted into Slough 8A. Estimates of this flow vary from 50 to 150 c. f. s. and have continued from the beginning of mainstem ice cover formation to the date of last field observation, December 21 1 1982. s17/d 2-3 TABLE 2.1 Winter Water Surface Elevations Mainstem Susitna near Sloughs 9, 8A and 21 RM Location (all WSE in Mainstem) Mainstem near Slough 9 130.1 xs 33 129.7 200 yards upstream of x s 32 129.4 near upstream end of Slough 9 128.9 near upstream end of island 128.5 near downstream end of xs 30N3 Mainstem near Slough 8A 126.5 126.2 126.1 near upstream entrance to Slough 8A near groundwater l. . 8-1A xs 29 Mainstem near Slough 21 142.3 142. 1 141.8 s17/d xs 57 xs 56 2-4 Elevation (M.S.L~) 11-22-82 12-21-82 611.65 606.62 599.89 594.05 593.12 612.10 608.16 606.50 601.66 597.88 572.77 569.74 568.80 752.90 752.67 746.40 1951 t/dl AERIAL PHOTO COMPARISON 1951 to 1980 SLOUGH 8A FIG. 2.1 1980 i '· ·' \:. L .. t/d3 1951 AERIAL PHOTO COMPARISON 1951 to 1980 SLOUGH 9 FIG. 2.2 2-6 1980 1951 t/d2 AERIAL PHOTO COMPARISON 1951 to 1980 SLOUGH 11 FIGo 2.3 2-7 1980 PREPARED BY I R&M CONSULTANTS, INC. • ;T· ~,, •• \ I e3 I I \ 1 \ \ I l I I I LOCATIONS OF BERMS CONTROLLING CONNECTION OF MAINSTEM FLOW INTO SLOUGH 9 AND MAINSTEM DISCHARGE AT GOLD CREEK WHEN FLOW IS INITIATED. FIG. 2,.4 . .. ": .... ~ ... ... :.·;:.: . ...... . . ~ ..... ACTUAL LOCATIO~:~::;:. IS 400 YDS. UPSTREAM OF LOCATION SHOWN. I t--1 I I -t--l PREPARED FOR: I .. • PREPARED BY I : ... :·:: ::;;~·::.'.~~.: ::; ... :·.-~ ~. ·~ ~ --.w--~.;.;,"~...:.··:_:· ·:...:_";·}: ._=:;:\~ .1::· . . ... ·.·:t ~ : ·::~.";_, ~ . • t .... ~~ ;_:~--. LOCATIONS OF BERMS CON/TROLLING CONNECTION OF MAINSTEM FLOW INTO SLOUGH 8 AND MAINSTEM DliSCHARGE AT GOLD CREEK WHEN FLOW IS INITIATED. FIG.· 2.5 R&M CONSULTANTSt INC • C.F.S . PHcPARED FOR• ~~~~ ~::::::::::::::::::::::::~---------------------------·--------------....... ___________ _.,.., ____ ...... -........... ,/o< ..... ·-.......... --·--··----_.".....,.-... -.. _._.._ ...... _ ......... _ ..... ~~ ......... , ..... ~ ......... _ ... ,, .. , ........... _ ..... , ........................ _._. •. ______ .... .. I : • • .. 1\:>. ' ..... 0 LRX 31 ··--:----·---...... ---* AIAINSTE:Af WAT£R SURFACE: ELEVATION (FROM HEc-2) 34, 5oo ------. 17. ooo ___ -. 13, 4oo __ -. ~ Stt r 11 s.,,CJ G::.::;j C'<~v(l 1J lliJLIIJLC J f:(f2!] couaq ll !JOvtoc<~ ~----------~~ .,., '""~ '>-oo ·- • • ... ~ ~ .... f ..• .,., .,, :-~.\ ,. . .. ... \ 1 -~ \:;, 1.! • .! . i ,, ' (, ' • ! 1: I .. 3 -GROUNDWATER STUDY 3. 1 -Introduction Summer flow in the sloughs depends on local runoff and groundwater· input into the sloughs. It was al!>o observed (Trihey, 1982) that flow existed in these sloughs during winter when runoff was not contributing to the flow in the slough. This suggests that much of the slough flow during winter may be contributed by groiJndwater. It was also noted in 1981 that the: intragravel water temperatures in the slough~ were 2-4°C. This f~levated temperature caused the slough to stay unfrozen through the winter and it is believed to be an impo1rtant fac:i.:.or in the survival of salmon ~embryos (Trihey, 1982). J n order to assess the effec.t of post-project changes of extstmg streamflow patterns on groundwater input to the sloughs, it is needed to determinE: the origin of the groundwater. To accomplish this three methods were tried: 1. assessment of the direction and rate of groundwater flow in the floodplain upon vvhich these sloughs exist. Observations would be made through the year and during specific streamflow events on the mainstem Susitna River. This was accomplished through monitoring of a number of wells which were established in the areas of Sloughs 8A and 9. 2. modeling of the groundwater temperatures. 3. a test program to assess the feasibility of using environmental isotopes. It was concluded in a separate report (R&M 1982b) that the use of dye for the tracking of groundwater would be unreliable because of the problems associated with the absorption of dyes in soils. Thus, this technique was not used for this study. 3. 2 -Stratigraphy Sloughs 8 and 9 and all sloughs along the river are part of the modern floodplain of the Susitna River. The modern floodplain consists predominately of cobbly sandy gravels with silty mantles in areas between and adjacent to the main channels. Above and immediately adjacent to the modern floodplain lie a series of fluvial and glaciofluvial terraces deposited as the Susitna River re-established its channel and adjusted to changes in grade following the late Wisconsin glaciations of Soutt'tcentral Alaska. The terrace deposits generally consist of coarse sandy gravels overlain by a few feet of sandy silt and silt overbank deposits. Alluvial fan deposits have formed on the floodplain and terraces where tributary streams encounter these lower gradient surfaces. The valley floor and side walls above the terraces are thought to consist of glacial tills composed of gravel, sand and silt, probably representing deposition during several s17/d 3-1 .. .. glacial events (the last of which ended about 10,000 years ago). Older Pleistocene sequences of glacial and glaciofluvial drift may underlie the terraces and modern floodplains. Bedrock underlies the unconsolidated materials at an undetermined depth. This stratifica~i.vn was partially verified during the installation of wells in the river floodplain. Well Jogs (Appendix A. 6) show well graded sandy gravel overlain by 0 to 10 feet of silt and sand. The gravel contains well rounded cobbles and boulders t to 6 inches in diameter and contains no silt. This gravel existed in all holes drilled, although the density varied at different depths. Since no wells were established that were deeper than 43 feet, no data are available on the actual composition of the material below this depth, or on the depth of a boundary bedrock layer. It has been assumed for all calculations that this glacial till continues down to bedrock, and that its coefficient of permeability is the same at all points and in all directions. A reasonable assumed porosity for glacial till of this type would be close to 0. 20. An estimate of permeability using a relationship between particle size and permeability develooped by Hazen (Lambe, 1969) gives a value of 69 m/day for the single sample analyzed. The U.S. Army Corps of Engineers estimated a permeabi I ity of 305 m/ day in similar glacie>fluvial alluvium near Fairbanks (Nelson, 1978). A permeability of 100 to 1000 m/day should be expected for this type of soil. 3.3 -Areas of Visual Groundwater Observations Surface water disch9rge measurements at Slough 9 determined that a large portion of the water in the slough originates from groundwater input. This input was observed in many areas of the sloughs as seepage from the slough banks above the water surface in the slough. It was also observed as upwelling flow in numerous places, on both the river and shoreward edges side of the sloughs. This upwelling is a flow of water moving up through the slough channel. Locations of these upwelling areas are detailed on Figures 3.1 & 3.2. These locations were documented by ADF&G personnel during the first week of October. Quantification of the rate of groundwater flow into the sloughs can be obtained using a device called a seepage meter (Figure 3.3). Seepage between the groundwater and the slough can be measured directly by covering an area of sediment with an open bottomed container, then measuring the time and change of water volume in a bag connected to the container. Knowing the area covered by the container, the amount of seepage per unit area of slough bed can be determined. The Darcy velocity of flow through the soil can be estimated by the. relationship V = Q/ A. If a random pattern of samples of groundwater ii1put to a slough are made, then a reasonable estimate of total groundwater input to the slough can be determined. s17/d 3-2 • ~ ~ l. ~ i1 " \ A single pre-freezeup test of a seepage me1:er yielded the following results. Location: Slough 98 Depth of VVater: 1 . 5 feet Sediment Type: Gravel and silt Date: 1 0-15-82 Time: 12'15-1600 = 225 minutes Volume Change: greater than 3000 cm 3 = (Volume Change, cm 3.:....)_---=-_ (elapsed time, seconds) (area, m2 ) (3000) (13,500 sec.) (.255m2 ) 3 .·4 -Groundwater Contours From the observation wells established in Sloughs BA and 9 general c•ontours of groundwater elevations were drawn for various times of the year. These contours were drawn based on the data obtained from the wells shown on the mapsheets, with intermediate elevations extrapolated Jfrom these known elevations. Figures 3.4 thru 3.11 illustrate these contours for Slough BA. During periods of time when the river stage was stable the flow of water was through the island in a downstream direction, with a slight gradient away from the center of the island both towards the sloughs and towards the main channel. Limited sampling during the only hydrograph rise that occurred after the observation program was set up indicated that during rising river stage the groundwater contours and thus the flow of groundwater shifted rapidly toward the direction of the slough. In Slough 9 analysis was concentrated around Slough 98 as this was shown to be the largest source of groundwater input. During periods of time when the river stage was stable the flow was directed into Slough 98 110m both the river and from the area upland of the slough (Figures 3.12 through 3.21). Data during the occurrence of a rising river stage is not yet available, but it is likely that this rising river stage will increase the gradient of flow into Slough 98. An early season (April 26, 1982) observance of well levels showed very little contribution of flow to Slough 9B from the upland area. An observation made after an ice cover had formed on the mainstem Susitna (December 21, 1982) showed no contribution of flow to 98 from the uplands yet noticeable flow was observed in the slough. ,. Continuous data from Datapod recorders operating on four of the wells In the area of Slough 98 since September 1982 are not yet available. 3.5-Groundwater Hydraulic Calculation The basic elements of groundwater flow are related by the Darcy equation: Q = KA dh dl where Q is the flow of groundwater, A is the area through which flow occurs, dh/dl is the hydraulic gradient (the change in hydraulic head over a distance along the line of flow) and K is the hydraulic conductivity of the material. Using Darcy's law and assuming. isotopic soils in the river floodplains, the seepage velocity of the groundwater flow can be estimated where contour data are available. During July, which was fair·ly dry with the river stage very stable, the head difference between Slough 98 and the mainstem Susitna River was observed to be approximately 0. 91 m (3 feet) on two occasions (July 1 and July 20). The distance along a flowline is 274 m (900 feet), resulting in a hydraulic gradient of 0.0033. Using this gradient, assuming k = 100 m/day and assuming horizontal flow, the Darcy velocity of flow through the soi I can be estimated. Assuming v = Ki = K v = 100 m day v = 100 m day K = 1000 m/day v = 1000 m day hl - h 2 ( ) L ( 0.91 m ) 274 m (0.0033) = . 33 .l!J:.... day (0.0033) = 3.3 m day In the area of Slough 8A the same type of calculations yieid the following. .. ~ ~ ~ ~ ~ • i Distance along h1 -hz Flowline I Assumed Date (m) (m) ---(m/m) K (m/day) V (m/day) Comment 4-2G 0.91 335.4 .0027 100 0.27 Ice cover 1000 2.70 9-3 1. 52 701.2 .0022 100 0.22 Stable flow 1000 2.20 14,000 c.f.s. 9-1Ei 0.91 304.9 .0030 100 0.30 Peak of 1000 3.00 hydrograph 31,000 c.f.s. Permeability for the gravels has not yet been defined, but assuming a ransJe of 100 to 1000 m/day indicates that in either case the Dar'cy velocity through the gravels is fairly low, due to the small gradient which drives the ·Flow. Rapid rise and fall of the river stage, plus concurrent monitoring of the river stage and the groundwater levels, were needed to verify this movement of water and the permeability of the gravel. Only a single event of this type occurred during the observation period. The data obtained from this event were not complete enough to produce a value for permeability. 3.6 -·Groundwater Temperature Analysis As previously noted it was observed during the winter of 1981-82 that the tempt~rature of the intragravel winter in the sloughs was 2 to 4°C. This elevated temperature in the sloughs is thought to be due to the influence of th~! lag time of the water moving through the ground to the sloughs. TempE~rature measurements taken in shallow observation wells through the summe~r and fall are tabulated in Appendix A.2. Temperatures in the wells generally ranged from 2 to 6°C with temperatures increasing through the summer. Temperatures in the mainstem Susitna River ranged from 0 to 10°C. Analysis of the ground thermal regime was undertaken by Acres American, lnLorporated, and is described in a companion report to this one (Acres, 1983). 3. 7 -En vi ronmel1tal. t sotol?e Study A test program to determine the feasibility of using env'ronmental isotope tracers for water source studies was conducted in the fall. of 1982. An .. environmenta4 isotope is a naturally occurring or man made isotope (which the investigator cannot control) which may be useful in hydrologic studies. Oxygen -18 ( 0 18 ), triti urn, and de uteri urn are three en vi ron menta I isotopes which can be used as tracers of water. Depending on the source of the water the isotope content of the water will vary with th·~ result that the water may attain an isotopic signature unique to that water source. Samples from the mainstem Susitna River, from the groundwater originating from upiand of from the sloughs, and from the sloughs were analyzed for their oxygen-18, tritium, and deuterium ratios. If the isotopic signatures from the different water sources are sufficiently differe.nt then the relative contributions to the sloughs of groundwater from uprand of the sloughs and of intragravel flow from the river may be quantified through a simple mass balance equation. Sample analysis was done by the Department of Earth Sciences at the University of Waterloo, Waterloo, Ontario. The samples frorn the area of Slough 8A were taken on July 18, 1982 (QGC = 25,400). The samples from the area of Slough 9 were taken on July 20, 1982 (QGC = 22,900). The results of this testing for tritium, oxygen-18, and deuterium are shown below. RESULTS OF INITIAL ENVIRONMENTAL ISOTOPES ANALYSIS Tritium Oxygen-18 Deuterium Sample (±8 T. U.) (± .2) (± 3) Susitna River +64 -21.0 -169 Slough 9B +82 -19.3 -148 Well 9-3, upland groundwater +39 -17.7 -1:~7 Stream entering Slough 8A +49 -17.8 -143 Slough 8A +63 -17.5 -145 To understand these results some background on the two isotopes is needed. Tritium is a isotope of hydrogen whose half IHe is 17.35 years, Its concentration is measur·ed in tritium units (T.U.) where 1 TU = 10-18 tritium atoms per hydrogen atom. Tritium is produced both naturally by cosmic neutron bombardment of nitrogen -14 af\d by man as a by product of atmospheric nuclear testing. The natur-a! production of tritium has been estimated to be from 4 to 25 T. U, btJt concentrations up to 3000 T, U. have been found in Alaska, since the adv.~nt of nuclear testing in 1952, which have completely masked th,~ natural pl~oduction. A general guideline for the use of tritium isotope in hydrology studies is that if the water has less than 5 T. U. ~ then it originated frvin precipitation which fell prior to 1953. If the water has more than· 5 T.U., then it originated from precipitation which fell after 1953. For this study it was hoped that a significant difference would be found between mainstem Susitna water which is partially composed of glacial melt (old precipitation) and local groundwater (new precipitation). Looking at the results there was a significant difference but not in the way hoped for. The mainstem sample (glacial melt and recent precipitation) contained a greater concentration of tritium than the local groundwater. Testing of the sample from the slough showed a higher concentration of tritium than either the mainstem or the local groundwater. This was not expected, as the concentration here should have beeri between the two extremes. Oxygen-18 is a stable isotope of oxygen which occurs naturally in water. The concentration is expressed as a ratio of heavy to light oxygen (o 18;o16 ) as per mil percent differences relative to a reference standard, Standard Mean Ocean Water. The oxygen-18 concentration of water is controlled mainly by the differences in vapor pressures and freezing points of oxygen-18 and oxygen-16. When water vapor condenses, the rain or snow which forms has a higher concentration of oxygen-18 than the vapor from which it formed. This process is called "fractionation''. As 'lhe water vapor moves inland as part of a regional or continental circulation system, the process of condensation and precipitation is repeated several times, progressively depleting the residual water vapor with respect to oxygen-18. The isotopic compositio;" of a rain or snow event is strongly controlled by temperature. For practical purposes, the temperature dependency results in (Sklash, 1982): 0 0 0 0 An Altitude Effect: oxygen-18 becomes more deplete with altitude. A Distance to Source Effect: Continental precipitation is more depleted in oxygen-18 than coastal precipitation. A Paleoclimate Effect:. Precipitation fallen under cooler climates which existed in the past would be depleted in oxygen-18. A Seasonal Effect: Winter precipitation is more depleted in oxygen-18 than summer precipitation. All of these factors seem to point to the idea that the water in the mainstem Susitna, originating from areas of higher elevation and containing a large percentage of precipitation which had fallen under cooler climates or as snow, should have a lower concentration of heavy oxygen than the local groundwater near the sloughs. Our initial sample testing showed this to be the case. Deuterium is an isotope of Hydrogen (H 3 ) which occurs natut·ally in water. Its response to the prC'Icess of fractionation is similar to the oxygen-18 isotope. There is a possibility that the components of slough flow can be determined by their isotopic signatures. The results ft·om the initial tritium testing do not show much promise. Although only one sample was tested it is likely that future testing using this isotope would not be worthwhile. The oxygen-18 and deuterium initial results were more promising, as they followed the expected pattern. A significant problem in utilizing the environmental isotope technique is the travel time of Susitna River water as intragravel flow. The Darcy velocity of the groundwater is generally quite low because of the low driving head. The stratigraphy and permeability of the gravel islands and bars are quite variable, further complicating the interpretation. In addition, the isotopic signature of the river water is believed to vary throughout the year. Because of the variability in isotopic signatures and in travel time through the gravels, it is difficult to determine what isotopic signature for river water should be used when estimating the contributions from different sources. s17/d 3-8 ~ LOCATION OF UPWELLING PREPARED BY • PREPARED FOR: OBSERVED LOCATiON OF GROUNDWATER UPWELLING R&M CONSULTANTS-INC. FIG.~ 3 .. 1 SLOUGH 9 11 .. • • It • '"' ;?'. >-: .:.,• ,:; : ;.: :0·:.·., ;:) ·: ,,,. :.'!;:,: .. . (.,) I -0 A&M CONSULTANTS, INC. ··:::. ... ;,: .; ~ * ..... ~ LOCATiON OF UPWELLING OBSERVED '-OCATION OF GROUNDWATER UPWELLING FIG. 3.2 SLOUGH 8A PflEPARED FOR: ~==============~~-----------·-------------,-------------·----·"'-'-'---·_;_..__.._"'"_'~·----..... -------_!:..::====:::! • A : WATER SURFACE SLOUGH BED • o • • • 1 • •o" 1 o o ~ •''•• •..:i""'v • --o 0 • • ... _, ~ A -Plastic bag to collect groundwater B -End section of a 55 gallon drum Figure 3.3 Seepage il!eter 3 -11 ,. ... .. Date 4-20 4-21 4-22 4-23 4-24 4-25 4-26 Precipitation* (mm) 7.0 0.0 0.0 0.0 1. 6 0.0 0.0 PREPARED BY I R&M CONSULTANTS, INC. Temperature* (OC) QGC 1. 7 1. 5 1.2 0.1 1.1 4.4 1. 0 Ice Ice lee Ice Ice Ice Ice FIG.· 3.4 cover cover cover Date: cover cover QGC: cover * cover Precip. and temp. data from Devil Canyon Climate Stations. GROUNDWATER CONTOURS SUS.ITNA RIVER· AT SLOUGH SA SCALE: 1 11 = 1000' observation well groundwater elevation 4-26·-82 lee Cover PREPARED FOR: 1!:========== ... ~ ..... ••• ••• u.-,...,...,. ___ ..,. ______ .,..,..,...._fll~--.t..........---------------------------------====::!J I • • • r----....... ....... ............ ._.. ...................... ..__,_, ______________________________________ "'!! Precipitation Temperature Date (mm) (OC) 8-28 3.2 9.8 8-29 13.2 9.8 8-30 27.2 8.5 8-31 7.8 9.8 9-1 9.4 10.3 9-2 11.6 9.2 9-3 7.8 8.3 • "I• I FIG .. · 3.5 R&M CONSULTANTS, INC. QGC 12,400 12,200 13,100 16,000 17,900 16,000 14,600 --......... -...... ..,_., GROUNDWATER CONTOURS SUSITNA RIVER ·AT SLOUGH SA SCALE: 1 11 = 1000 1 Legend 0 1160011 Date: QGC: observation well groundwater elevation 9-3-82 14,600 PREPARED ________ &A__, ..... ~.....-...-..... -otlii ..... ------·-·1>-·------------- FOR: Jf ,. .. Precipitation Date (mm) 9-3 7.8 9-4 0.2 9-5 1.0 9-6 0.0 9-7 1.8 9-8 0.2 9-9 0.8 9-10 0.2 r r..:.. '" :~ .~ ·' •• R&M COHSULT.ANTS, JNC. ------~----------------------~--·-·----···~ ..... ----..... ----------------------------------~--------------------~ Temperature QGC (°C) 8.3 14,600 7.8 14,400 9.9 13,600 10.3 12,200 10.9 11,700 9.2 ') 1 '900 9.3 13,400 8.7 14,400 FIG.· 3 .. 6 ....... .._._. -- GRu~ "~DWATER CONTOURS ·SUS.ITNA tiiVER ·AT SLOUGH SA SCALE: I II~ 1000 I Legend • 1160011 Date: observation weP groundwater el-.1. Jation 9-10-82 14,400 PREPARED fORt [!::::::::::::::::::::::~--------------------------------~,~--------------------------------·-------*------------------------·--------• .. .. .. Climatic Summary for Preceeding 7-Day Period Precipitat~e>n Temperature Date (mm) (°C) 9-10 0 '.) ·-8.7 9-11 7.6 3.7 9-12 3.6 5.7 9-13 28.6 6.6 9-14 19.0 8.9 9-15 29.8 12.2 9-16 11.2 8.6 ;:3~ ...• t '... . .... ~\ QGC 14~400 13,600 13~200 15~200 20,200 28,200 32,500 Legend • 11 600 11 Date: observation well groundwater elevation 9-16-82 3'1 ,400 .. ·-· ····--PREPARED FOR: J;:~~~~~----------------------·-· ---------------------------~====~1 FIG. 3.7 R&M CONSULTANTS, INC. GROUNDWATER CONTOURS SUSITNA RIVER· AT SLOUGH SA SCALE: 1''= 1000 ~ • •. • (,.) I -' m Climatic Summary for Preceeding 7-Day Period Pr·ecipitation Temperature Date (mm) (°C) QGC 9-14 19.0 8.9 20,200 9-15 29.8 12.2 28,200 9-16 11 . 2 8.6 32,500 9-17 9.4 5.4 32,000 9-18 10.0 7.9 27,500 9-19 18.6 7.7 2-1,100 9-20 6.0 7.5 24,000 fJJ,.:.;.!-.J. -~ ""'--· FIGo 3.8 R&M CONSULTANTS, INC. GROUNDWATER CONTOURS SUSITNA RIVER· AT SLOUGH 8A SCALE: 111 '= 1000 1 Legend • observation well Date: groundwater elevation 9-20-82 24,000 PREPARED FOR: ~==========~-------·---------------------------------------------~Ill~ • • .. '::' :'0 :~·,;,:o ,:; ;; .: :~·: , ... ;''' ·'·\'1~,' ... ·~: ::: ": . (,.) 1 """" " CJimatic Summary for Preceeding 7-Day Period Precipitatjon Temperature Date (mm) (oC) QGC --- 9-29 7.4 6.0 12,400 9-30 8.4 4.9 12,500 10-1 2.2 12,400 10-2 3.3 11,700 10-3 2~8 11,000 10-4 1 .3 10,500 10-5 0.1 9,800 PREPARED BY• R&M CONISULTANTS, INC • • • Legend • 1160011 Date: GROUNDWATER COf~TOURS . SUSITNA RIVER ·AT SL.OUGH .8A SCALE: 111 = 1000 1 observation well groundwater elevation 10-5-82 8,300 PREPARED FORt • .. • _ . .,.....~_, .. ......, •• _....,.w __ ,.. ______ .._..,.,.__ •.......... ____ _...._._,...._ .... ,..~..._ ....... _ _,......,.. .. .....,.._...,..........,_.__..,.., • .............., __ .,_.. •• -~----------------------·-• (,) I ..... Q) Date 10-7 10-8 10-9 10-10 10-11 10-12 10-13 ....... Climatic Pr'eceeding P r'ecipitation (mm) PREPARED BY I Temperatu r·e (oC) 0.5 0.1 0.1 -2.0 -0.7 1.1 -2.4 8,480 8,400 8,440 8,480 7,500 FiG.· 3.10 r3.ROUND WA l'ER COt~TOIJRS SlJSI'rNA RIVER AT SLOUGU SA s CAL E: 1 11 = 1000 I ·----------·---------·-.. -· .... -·------· ..... ___ ...._ __________________ _ Legend • observation well 11 600 11 groundwater elevation Date: 10-13-82 QGC: 7,500 PREPABEO FOn: .. • ,. • " ~--~---------------------------------------------------~-----~-------------------------w---------------,---~·~-----·~-·-----,·--~--------------~ Date: Note: . .. ""-~ ,~ .. ": ... t .. 12-21-82 *~. . ~ ... : . . ... : :. . . Winter flow., ice covet~ on mainstem. Jamming causing partial diversion of mainstem flow into slough PREPARED BY • R&M CONSULTANTS, INC. FIG.3.11 574 4Ae574.76 575 576 GROUNDWATER CONTOURS SUSITNA RIVER. AT. SLOUGH SA Legend • observation well 11 600 11 g .... oundwater elevation PhEPAREO FOR: '---------------------------------------.. --... ----·-~ .. ..-............. ~----, ...... ~-... ---·-----·---··· .. ~-----·-.~- I r· I I I I I I I t I l • • • Date 4-20 4-21 4-22 4-23 4-24 4-25 4-26 Precipitation* (mm) 7.0 0.0 0.0 0.0 1.6 0.0 0.0 Temperature* (OC) 1. 7 1.5 1. 2 0.1 1.1 4.4 1.0 QGC Ice cover Ice cover Ice cover Ice cover Ice cover Ice cover Ice cover * Precip. and temp. data from Devil Canyon PREPARED BY • Climate Stations. -~. re?il~/J .... . ..._, {}" ~ I \:I : R&M CONSULTANTS, INC. FIG. 3.12 GROUNDWATER CONTOURS SUSITNA RIVER AT SLOUGH 9 SCALE: 1"; 1000' Legend • 11 600 11 Date: observation well groundwater elevation 4-26-82 Ice Cover PREPARED FOR' 11 I • .. • • ••_.11'1 _ Mll[~ ._-~ -...r ..-. J .~.::••:....:..... ..::·:;·\;;t. ··::·t:..... "4-'·.......~~. .,:~,"\....::.. '.~:\ ~~~~:;:";':"-':':':~.........-(::;'::-:::':;:':". .::-:: PREPARED FOR: Ice cover,just before breakup groundwater elevation 5-11-82 Legend •observation well Date: QGC Z "600 11 <- dJ~c:> .j ____"Int-...-._--....__..._......._.......~....06"...~....__··.__'_............._.........:......_..__~.~.• ~ca GROUNDWATER CONTOURS SUSITNA RIVER AT SLOUGH 9 SCALE:III~IOOOI QGC Ice cover Ice cover Ice cover Ice cover Ice cover Ice cover Ice cover FRG.3.13 0.9 4.7 5.1 4.9 3 ..0 5.1 3.0 Temperature COC) 0.0 0.0 0.2 0.6 4.4 3.2 3.2 •:Mt;i .' b <•ftn ,_,...._ P rel;ipItation Date (mm) .~,~-....~ 5-5 5-6 5-7 5-8 5-9 5-10 5-11 R&M CONSULfANTS.INC. ~ I I\) ..a. .........._._._--Iit-.-.'II ---..--1 •,..Il'--"(.......~""---....r ~ r----- l' J1 PREPARE.D BY! J!j~=:-::=====::::::=:::::::=::=:::'~--_._..._.......__:~--_.....--..:...__-....-........................u-.'._ t>• • Date S-17 6 ... 18 6-19 6-20 6-21 6-22 6-23 ... Precipitation (mm) 0.0 1.8 0.0 10.8 0~4 0.0 O,.(J Temperature (OC) 11.4 10.9 14.3 8.3 10.5 11"8 14.2 24,000 25,000 Legend • 11 600 11 Date: observation wei I groundwater elevation 6-23-82 25,000 ~P~R~E;P~AR~~EO~~B~Y~·;:~~;;~~-----------------------------=~~~:--::·~N~~::~~---~-~--~-~-~·~·;·--~-----·-·----·-··-----·--·-·~---~-----._---~~· GROUNDWATER CONTOUR$ ·SUSITNA RI.VER AT SLOUGH 9 SCALE: 1 11 ~ 10001 Mfll~ ·----·-------------------------~·~·-.. ..._..._.._ ... ____ ,.,._.. ... __ '-'"' ... _.....~a.-...... -;;..._ _____ li R&M CONSULTANTS, INC.J I ~ • " • • Climatic Summary for Preceeding 7-Day Period Legend Precipitation (mm) Temperature (OC) QGC " observation wei I • Date 6-25 6-26 6-27 6-28 6-29 6-30 7-1 2.0 0.0 0.0 0.8 0.0 9.2 1.6 16.5 15.9 14.9 12.7 13.0 13.6 10.1 25,000 27,000 24 1 000 2L,OOO 116Q011 Date: QGC: groundwater 7-1-82 25,000 !~;P;R:E~PA~R;E~D~=B=Y~·;;~~:;:;----------------------------~~::::::~::~::::-----·--------------------~--·---··-----·-­ GRQUNDWATER CONTOURS SUSITNA RIVER AT SLOUGH 9 scALE: 1 .. ~ 1 ooo' FIG 3.15 R&M CONSULTANTS, INC. ==============~--------------------------------------·-··-·--------------~--- elevation • )t ' ' Date 7-14 7-15 '7-16 7-17 7-18 7-19 7-20 ,.. l PREPARED Climatic Summary for Preceeding 7-Day Period Precipitation Temparature (mm) (oC) 1.8 12.0 2.2 11.4 7.6 11.1 2.4 13.2 13.2 12.2 0.0 15.7 0.0 15.0 BY• QGC --- 27,300 25,600 25,600 25,300 25,400 24e90Q 22,900 -.. FIG. 3.16 R&M CONSULTANTS, INC. r I I I I I I \ I I I GROUNDWATER .CONTOURS . SUSITNA PIVER AT SLOUGH 9 SCALE: t":d 1000' l \ \ t--t I t I \ I I \ ~ Legend • 116QQ11 observation well groundwater elevation 7-20-82 22,900 PfiEPARED FOR: I ! ' • (,;) I I~ I I Date 8-31 9-1 S-2 9-3 9-4 9-5 9-6 Precipitation (mm) 7.8 9.4 11.6 7.8 0.2 1.0 0.0 P,REPARED BY I R&M CONSULTANTS, INC. , Temperature (OC) 9.8 10.3 9.2 8.3 7.8 9.9 10.3 16,000 17,900 16,000 14,600 14,400 13/600 12l200 J FIG. 3.1 7 GROUNDWATER CONTOURS S·USITNA RIVER AT $LOUGH 9 SCALE: I"~ 1000' Legend • 1160011 Date: observation well groundwater elevatic:;n 9-6-82 12,200 PREPARED FOR: • r Climatic P ,~eceedi ng P r·eci p itation Date (mm) --·- 9-14 19.0 9-15 29.8 9-16 11.2 9-17 9.4 9-18 10.0 ~-19 18.6 9-10 6.0 :1 PRE'-'ARED BY• R&M CON SUL7ANTS, INC. f Summary for 7-Day Period Temperature (°C) QGC --- 8.9 20,200 12.3 28,200 8.6 32,500 5.4 32,000 7.9 27,500 7.7 24,100 7.5 24,000 FIG. 3.18 GROUNDWATER CONTOURS ·sUSITNA RIVER AT SLOUGH 9 SCALE: I"; 1000' Legend • 116QQ11 Date: QGC: observation well groundwater elevation 9-20-82 24., 000 PnEPARED FOR: • • ---·-··.__.......,...._, _______ ...,. ______ ........_ .. ~ ..... ....._ ..... ___ ·~---..._._.......,... .,.,...__.,.,._....... ... ...... _,......_...... ____ _ ----------------.-......·----·· ... ~ ~ A/ /, Climatic Summary for Preceeding 7-Day Period Precipitation Temperature Date (rnm) (°C) QGC 1 10-1 10~2 10-3 10-4 1 10-5 10-6 10-7 ? ') -·-3.3 2.8 1. 3 0.1 2.3 0.5 12,400 11,700 11,000 10,500 9,800 8,960 8,480 FIG. 3.19 GROUNDWATER CONTOURS SUSITNA RIVER AT SLOUGH 9 . scALE: 1"= 1000' I I \ 1 I I I l I t+-+-1 Legend til "6QQ11 observation well groundwater elevation Date: 10-7-82 Q GC:: . 8, 480 frlEPABFD ron '--==========~-------.. ·---·-· .. ---... ··---··-----··-····-··· ... -·-.. ~--·--,··Jo ... ----··-·---·-·--·--·-•"t ----·~---... ·-.. -............... -.. __ ....... ...._-·---·-·""-"' --··------• • Date 10-9 10-10 10-11 10-12 10-13 10-14 10-15 / /4/ /~, '. . ; .: : :.~: ;--:'·'·: :•. I I Climatic Summary for Preceeding 7-Day Period P r·ecipitation (mm) Temperature ---"(~Cl __ 0.1 -2.0 -0.7 1 ~ 1 -2.4 -5. 1 -6.6 PflEP.t.flED BY I 8,440 8,480 7,500 7,000 I I I I 1 \ I I Legend '\ ~ ... '\,;' '.:'· \\ '<: "\ I I I I -t---t--{ ., "600" observation weH groundwater elevation Date: 10-15-82 QGC: 7,000 PflEPARED FOfl: ~~=·~=~~~~.~~~~~~~~~-~. ·~~~-~-~--~-·~~GR~~;~~~-~~N~~----w·------------------~~~~~~ t'~M cousuuAtns._tuc_.. FIG. 3.20 SUSITNA RIVER AT SLOUGH~ Jfi ... ~ .. ~~·~~·~ SCALE: 1 11 = 1000 l!h i] --.. -- --··-------· -·· -··--.......... _,..,..._,.,.,,,,,," ....... 4 .......... -... ---·-~--···...,..·--·-............. , ... --.-•• .-.., .. --···· .................... -....... ,,.._..._ .... -............ 1 ._._ • ......,..._ ..... , ___ ........ , ....... ____ ._ .. _, .... "" .. -............ ,.-............ ,, ... ~ .... ~; .... _ .... ·-···-· ... -·-....... ___ ., ___ ..... -; .... , • .. Date: Note: PREPARED BY I 12-22-82 Winter flow, Ice covt.:r on mainstem R&M CONSULTANTS, !NC. FIG. 3. 2 1 e9 I I I I GROUNDWATER CONTOURS SUSiTNA RIVER. A"f SLOUGH 9 Legend • llfiQQII observation well g :ollndwater elevation PREPARED FOR 1 • • 4-CONCLUSIONS AND RECOMMENDED FURTHER STUDIES Much has been '.earned this season about the sources of water in Sloughs 8A and 9 during the summer and fall seasons. There are three contributing sources of water. Overflow from the Susitna River dominates at a stage unique to each slough. Surface runoff dominates dut"ing periods of wet weather when the ber·m is not overtopped. Although yet to be fully documented, groundwater input dominates during dry periods and winter. Wells situated near the sloughs indicated they gained water from groundwater input from both their shoreward and river sides. Direction of flow of groundwater from the river was in all cases downvalley and toward the sloughs. Permeability for the soils in this area is high but the hydraulic gradient driving the flow is small, resulting in a low seepage velocity of the groundwater to the sloughs. Upwelling groundwater has been documented on the river side of the sloughs. This high seepage rate on 'the river side of the slough suggests that this water is coming from the river. This may be verified with data obtained from recently installed deeper wells at Slough 98 or possibly from a revised environmental isotope sampling program. Although the surface flow in the sloughs 1s controlled by various factors, the groundwater component of this flow is partially controlled by the river. Variation of river stage due to project operation will affect the amount of groundwater input to the sloughs differently depending on the season. In summer when the flows are reduced from the mean natural streamflow, the amount of groundwater input to the sloughs from the river will be decreased due to a decreased driving head. In winter when flows are greater than the mean natural streamflow, the change imposed upon the slough will depend upon formation of an ice cover. If no ice cover were to form the input of groundwater to the slough may be decreased due to the lack of staging that accompanies a pre-project winter flow,. although increased flows will partially or completely offset this. If an ice cover were to form stage would increase beneath the ice cover, resulting in a relatively large gradient pushing the groundwater toward the sloughs. The driving head would be somewhat reduced along the islands if the upstream berms were overtopped, allowing water to flow into the side-channel. Recommended future studies include: 1 . 2. sl7/i Continued observations of sloughs through the winter. Continued observation of well levels and temperatures th t"ough winter, with monthly readings and maintenance of Data pods. As part of these observations, more emphasis should be placed on water surface elevations in 4 -1 • 3. 4. 5. s17/i the main stem Susitna near to the sloughs studied. Importance should be placed on obtaining data during the spring hydrograph when a rise in river stage will demonstrate the affect of river stage change on the groundwater, although snowmelt and possibly rainfall infiltration will have to be allowed for. Quantification of groundwater input "i.o sloughs through use of a seepage meter. Although this input has been documented visually it has not been quantified and this method may be applicable to other sloughs. An environmental isotop~ program making use of the recently established wells near Siough 98 and the oxygen-18 isotope. A study of this type may de:termine the origin of this upwelling groundwater with more confidence than has been previously obtained. Use of surveyed elevations of other non-studied sloughs and the mainstem nearby to determine the relatio11ship of the slough thalweg to the mainstem water surface elevations. 4 - 2 fl tl ~ . . j J l J Bl BLIOGRAPHY Acres American, Inc. 1983. near Sloughs. Susitna Alaska Power Authority. Groundwater Flow and Temperature Hydroelectric Project Report for Alaska Department of Fish and Game. 1982. Phase I Final Draft Report. Susitna Hydro Aquatics Study Program. Report for Acres American Incorporated. Lee, David R. 1978. A Field Exercise on Groundwater Flow Using Seepage Meters and Mini-Piezometers. Jou rna I of Geological Education v. 27, p. 6-10. Lee, David R. Lakes and p. 140-147. 1977. A Device for Measuring Seepage Flux in Estuaries. Limnology and Oceanography, v. 22, Lambe, T.W., and R.V. Whitman. 1969. Soil Mechanics, John Wiley and Sons, Inc., New York. Nelson, Gordon L. 1978. Hydrologic Information for Land-Use Planning, Fairbanks Vicinity, Alaska. U.S. G~ological Survey, Open-File Report 78-959, Anchorage, Alaska. R&M Consultants, Incorporated. 1982a. Studies. Susitna Hydro Hydrology. American Incorporated. R&M Consultants, Incorporated. 1982b. Program for Groundwater Tracking Unpublished Report. Hydraulic and Ice Report for· Acres Preliminary at Susitna Testing Sloughs. Sklash, Michael, G. 1982. The Use of Environmental Isotopes in Groundwater Surface Water Mixing Problems. Report for R&M Consultants, Inc., Anchorage, Alaska. Trihey, Woody, 1982. Personal Communication. s17/i3 • .. s17/i4 APPENDIX A. 1 GROUNDWATER ELEVATION DATA AT SLOUGH 8A & 9 .. s6/g2 S.G. Date x-s 29 Apr. 26 May 15 May 27 June 24 June 29 573.45 July 18 Aug. 3 Aug. 5 Aug. 6 571.61 Aug. 9 571.61 Aug. 27 Sep. 3 571.06 Sep. 5 Sep. 10 570.97 Sep. 20 572.84 Oct. 5 569.80 Oct. 13 -not obs.erved s -silted d -dry 8-1 579.47 581.16 581.42 581.26 580.99 580.41 581.41 d d APPENDIX A.1 GROUNDWATER ELEVATION AT ~,·LOUGH 8A Well No. 8-3 8-4 8-5 8-6 575,42 574.39 574.76 d 576.31 577.87 573.94 574.91 573.22 577.54 575.06 574.99 573.11 576.38 575.00 574.94 fi72. 98 575.69 574.89 574.83 572.89 576.18 574.87 574.77 572.97 577 .4'1 575.10 574.97 573.17 575.54 574.64 574.56 572.90 578.45 575.32 575.30 573.44 576.57 574.90 574.77 573.03 574.74 574.06 d 572.78 8-7 8-8 8-9 572.79 568.24 568.42 573.43 569.91 568.62 573.32 569.36 568.56 573.23 569.03 568.55 573.13 568.61 568.40 573.12 569.09 56R.43 573.32 569.66 568.52 572.96 569.12 568.31 573.58 570.33 568.91 573.15 569.64 568.37 572.78 568.16 • s6/g3 Date 8-1~ Apr. 26 566.15 May 15 May 27 565.30 June 24 565.15 June 29 565.34 July 18 565.54 Aug. 3 Aug. 5 Aug. 6 Aug. 9 565.56 Aug. 27 Sep. 3 565.76 Sep. 5 Sep. 10 565.75 Sep. 20 566.00 Oct. 5 565.70 Oct. 13 -not observed s = silted d -dry r , 8-11 565.64 565.49 565.79 565.51 565.83 566.28 566.70 566.12 APPENDIX A.1 GROUNDWATER ELEVATION AT SLOUGH 8A (Continued) Well No. S.G. 8-12 8-1A 8-1A 8-2A 566.33 s s s 564.38 572.63 572.32 572.23 572.19 572.33 572.35 571.85 571.86 571.83 571.79 571.75 571.73 564.29 571.81 d 571.61 d d d 571.24 d 571.41 570.99 d 571.16 d d 564.44 573.24 573.33 573.25 d 570.39 d d d d d 8-3A 8-4A QGC Ice Cover Breakup 25,200 27,000 23,550 17,800 16,300 571.87 16,000 571.81 16,300 571.05 571.26 12,000 571.87 572.32 13,800 571.74 572.28 571.36 572.24 13,400 573.42 573.72 22,900 571.22 573.09 8,300 570.48 572.58 7,500 :>u/g 1 ll<• w 9-1 ,_. ___ ---9-1A 9-3 9-4 Apt·. 26 603.06 603.62 r·.1c1y 11 b07.7l 605.42 604.46 f•l<.Jy IS M<•Y 27 6ll7.b8 606.62 604.47 June 23 608.50 606.66 604.77 July ti07.94 606.22 604.67 July 20 &Ul. 32 605.67 604.03 Aug. 2!:l GOS.Y9 60.:J. 69 d !..t .. p. b CuE.i. 16 605.50 605.70 604.16 S~;.;p. 9 b06.08 605.27 605.49 d !":>t.:p. 2:J bC8.01 6(J7 .07 607.65 605.23 Oc.t. 7 (j(J5. i:H3 605.21 605.29 603.97 Oc.L. 15 b{S.81 604.85 604.91 d ;:;:; •w l t•blit' rvt;d .. .. .::. !i j lt <"tl ,J .:: •It y APPENDIX A.1 GROUNDWATER ELEVATION AT SLOUGH 9 \Veil No. 9-5 9-6 9-7 9-9 9-10 9-11 603.33 d d 603.01 600.32 600.06 604.51 604.15 602.68 601.20 601.21 604.00 604.76 604.34 602.45 s 601.16 604.40 604.91 603.02 s 601.69 604.11 604.48 602.78 604.08 s 601.38 603.81 604.08 602.30 600.99 601.07 603 34 d 601.05 602.56 600.34 600.28 603.61 d 601.32 604.37 600.50 600.46 603.60 d 601.14 604.22 600.43 600.35 604.74 604.62 602.78 605.07 601.37 601.49 603.52 d d 603.26 d d 603.39 d d 602.9'1 d d ~ .. , ,._ .. ,. ~ ........ 9-"13 9-14 9-15 598.53 d 594.14 d Ice Cover· 694.09 594.57 593.90 Ice Covet• Br·ealwp 599.94 s s s 600.64 s s s 25,000 600.40 s s s 23,300 599.55 s s s 21,500 d d 593.66 592.74 12,000 11,000 d d 593.74 592.83 12,800 d 594.29 594.77 22,900 d d 593.76 d 7,500 d d 593.66 d 7,000 s17/i5 APPENDIX A.2 GROUNDWATER TEMPERATURE DATA AT SLOUGH 8A & 9 s6/g6 APPENDIX A.2 TEMPERATURE DATA FROM OBSERVATION WELLS AT SLOUGH 8A Date Well No. May 27 June 24 June 29 Aug. 9 Sep. 3 Sep. 10 8-1 0.5 0. 01 0~06 8-3 0.0 5.0 4.9 8-4 4.5 7.0 7.5 8-5 4.5 5.5 5.6 8-6 2.1 3.0 3.5 8-7 7.0 8.3 8.6 8-8 ow 8.0 8-9 6.1 10.0 8-10 7.5 6.0 8-11 0.05 8-12 s s s 8-1A 8-2A 8-3A 8-4A Main stem d = dry well ow = open water no temperature data - = not observed s = silted well 5.9 7.3 8.1 8.1 7.4 7.4 6.5 6.1 8.7 8.4 6.4 6.6 6.8 8.2 7.7 7.0 7.4 7.4 6.8 9.2 10.0 s.o 6.6 7.0 6.5 6.2 6.0 d d d d d 6.3 6.3 d 4.~ 4.9 5.3 6.4 6.7 9.0 8.8 Sep. "_20 6.6 8.1 6.7 6.7 6.8 6.8 6.8 7. ~J 6.5 6.1 5.8 7.6 6.6 5.4 7.2 6.5 • s6/g7 Well No. Oct. 8-1 d 8-3 6.2 8-4 4.5 8-5 5.4 8-6 6.1 8-7 5.0 8-8 4.0 8-9 5.0 8-10 5.1 8-11 5.1 8-12 d 8-1A d 8-2A d 8-3A 5.0 8-4A 5.1 Main stem 1. 9 d = dry well APPENDIX A.2 TEMPERATURE DATA FROM OBSERVATiON WELLS AT SLOUGH 8A (Continued) Date 5 Oct. 13 d 5.4 3.2 4.0 5.0 3.6 2.8 d d d 4.4 4.1 0.0 ow = open water no temperature data - = not observed s = si.lted well s6/g4 Well No. May_ll 9-1 1. 2 9-1A 9-3 2.0 9-4 1. 8 9-5 4.0 9-6 2.0 9-7 1.3 9-9 ow 9-10 1.0 9-11 0.5 9-12 9-13 9-14 2.0 9-15 3.0 Main stem d = dry well APPENDIX A.2 TEMPERATURE DATA FOR OBSERVATION WELLS AT SLOUGH 9 Date May 27 June 23 July 1 Aug. 25 Sep. 6 0.05 2.3 7.8 7.0 0.05 2.4 1. 4 4.8 5.8 2.0 3.6 6.0 d 6.3 1. 0 3.2 4.5 6.6 6.4 1.0 4.9 5.5 d d 0.0 5.5 6.4 d 11.3 ow ow ow ow ow s s s 5.9 6.5 1. 0 0.5 0.8 5.2 8.3 1. 0 4.0 4.5 d 5 s s d 5 5 s 4.5 s s s 7.4 9.4 10.0 8.5 ow = open water no temperature data - = not observed s = silted well Sep. 9 Sep. 20 6.8 7.2 6.0 6.1 6.0 7.0 d 5.8 6.3 6.7 d 7.4 11.1 10.3 ow 7.8 6.5 6.5 8.5 8.4 d d 5.7 4.7 5.1 7.6 8.4 6.6 s6/g5 Well No. Oct. 9-1 5.2 9-1A 4.5 9-3 6.2 9-4 4.0 9-5 4.7 9-6 d 9-7 d 9-9 4.2 9-10 d 9-11 d 9-12 d 9-13 d 9-14 4.3 9-15 Main stem 1. 9 d = dry well APPENDIX A.2 TEMPERATURE DATA FOR OBSERVATION WELLS A.T SLOUGH 9 (Continued) Date 7 Oct. 15 2.7 3.4 6.2 d 3.6 d d 3.8 d d d d 4.0 0.0 ow = open water no temperature data - = not observed s = silted well APPENDIX A.3 CLIMATE SUMMARIES FOR SHERMAN WEATHER STATION MAY-OCTOBER 1982 s17 /i6 r • . I~ & M c· C) N .::-" l J I ·r A N ·r <:--:1: N c~ . f\ • .,. • ...) -••• ...:> .'> r ~:; t.J ~:; :1: ·r N (~ 1--1 Y X) ~~ CJ 1::: 1... 1::: c~ ·r ~~ :1: c~ F~ 1=<: Cl .. T t::: C~ ·1· f 1 t MONTI-ILY SUMMl~RY FOR SHERMAN WEATHER STATION DATA TAl< EN DURING May~ 1982 t \ t RES. RES. AVG. MAX. MAX. 'DAY'S i • MAX. KIN. MEAN WIND WIND w~nm GUST GUST P'VAL MEAN MEAN SOLAR I DAY TEMP. TEMP. TEMP. DIR. SPD. SPD. DIR. SPD. DIR. RH DP PRECIP ENERGY DAY DEG C DEG C DtG C DEG H/S H/5 DEG tl/5 I DEG C iiM WH/SQH ----------------------------------------------------------------------------------------------------- 1 ***** ***** ****! *** **** **** lt!fl **** *** ** ***** **** UffH 1 ~ 2 ***** ***** ***** *** **** **** *** **** *** ** **~** **** ****** 2 3 ***** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 3 4 ***** ***** ***** *** **** *¥** Ul **** *** ** ***** **** ****** 4 5 ***** ***** ***** *** **** '~*** *** **** *** ** ***** **** ****** 5 6 ***** ***** ***** *** **** **** *** **** *** ** §**** **** ****** b 7 ***** ***** ***** *** ill* **** *** **** *** u U*** II** ****** 7 ,, i 8 t' ***** ***** ***** *** **** **** *** **** *** ** ***** **** **"*** 8 . 9 ***** ***** ***** *** **** U*lt lfll **** *** ** ***** **** **lt*** 9 10 ***** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 10 11 ***** ***** ***** *** **** flU *** **** *** n ***** **** ****** 11 12 ***** ***** ***** *** **** fiB\ I •"*** **** *** ** ***** **** ****** 12 . 13 ***** ***** ***** *** **** **** . *** **** *** ** ***** If** ****** 13 14 ***** ***** ***** *** **** **** . *** . **** *** ** ***** **** ~HUH 14 15 12.7 -1.8 5.5 253 .5 .B 295 4.4 \1 17 -19.4 0.0 7080 15 16 13.9 -3.4 5.3 043 .9 1.0 035 5.7 NE 22 -25.0 o.o 13150 16 17 1,.6 -1.8 5.4 176 .b 1.3 148 6.3 ssw 23 -21.4 0.0 6?88 17 18 11.4 -.6 5.4 198 .7 1.1 199 5.7 ssw 34 -15.1 .2 4478 18 1:, 19 12.1 -1.7 5.2 046 .4 1.1 215 7.6 NNE 26 . -23.2 o.o 6795 19 20 10.6 -1.6 4.5 175 1.2 1.7 143 7.6 s 29 -19.8 0.0 4990 20 21 12.2 -2.0 5.1 233 .7 1.4 305 5.7 s 27 -19.9 o.o 6700 21 22 14.9 -3.9 5.5 165 .4 1.1 142 4.4 s 19 -25.1 o.o 7715 22 23 15.8 -1.5 1,2 033 1.3 1.5 02b b.3 NNE 16 -24.9 0.0 7945 23 24 14.7 -.8 j .o 184 .6 1.4 181 7.0 ssw 18 ·21.5 0.0 5008 24 25 11.1 2.1 6.~, !78 .2 .9 213 5.1 s 45 -b.b 2.4 3155 25 26 10.5 1.1 5.8 2~2 .6 .9 lBB 3.8 ssw 41 -14.7 .2 2880 26 27 12.3 2.b 7.5 205 .4 .9 179 5.7 ssw 54 -9.6 1.2 3015 27 28 11.2 3.4 7.3 225 1.3 1.4 229 8.3 sw 42 -7.6 2.8 4458 28 29 10.8 4.8 7.8 220 1.5 1.7 232 4.4 ssw 27 -14.3 .4 3460 29 30 16.0 1.1 8.6 302 .2 .9 142 3.9 N 39 -17.2 .2 5933 3G 31 20.9 -1.0 10.0 052 .9 t.2 072 5.7 E 23 -22.1 0.0 a:~78 31 MONTH 2U.9 -3.9 6.4 193 .3 1.2 229 8.3 ssw 30 -18.1 7.4 97125 GUST VEL. AT MAX. GUST MINUS ':) t-INTERVALS 6.3 GUST VEL. AT MAX. GLST MINUS '1 INTERVAL a::: '7 .;,, GUST VEL.. AT MAX. GUST PLUS 1 INTERVAL 3.2 GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 3.2 - NOTE: RELATIVE HUMIDITY READINGS ARE UNI~ELIABL E WHEN WIND SPEEDS ARE LESS THAN ONE METER PER SECOND. SUCH READINGS HAVE NOT BEEN INCLUDED IN THE DAILY OR MONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT. **~"* SEE NOTES AT THE BACI< OF THIS REPORT *.X•*-x• ' I i ' c·· C) ;-...,_,~ .;::~ t J 1 ···· :~ --1 ·r -:::· oJ' • I • -..~ o ••• I ( G ....... '-•~ .~ HOUI~I .''r' PR EClP 1 Tt~tTl ON SUi'ir1(.H~Y FOR SHE!~ M~tN WE.f~THER BT f~tTI ON DATA TAKEN DURING May~ 1982 PRECIPITATION VALUES ARE IN MILLIMETERS HOUi~ ENDI~lG 1::;. I=<= C) ... T 1::: c:: ·r DAlE ulOO 0200 0300 0400 0500 0600 07UO OBOO 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 DAiE ------------------------------------------------------------------------------------------------------------------------------------- i 2 3 4 5 b 7 B 9 10 11 12 13 14 15 lb 17 1B 19 20 21 22 23 24 2.5 26 27 28 29 30 31 **** **** **** **** **** **** **** **** **** **** *~** **** **** **** *~** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ~fli **** **** **** **** **** **** **** **** HH 1: ·~** ·HH ·H!-itf **** **** HU **** H*i **** **** **** **** **** **·l·~ ffU **** **** **** wUI **** UH **** H** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ~*** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ***~ **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** *~~* **** **** **** **** **** **** **** **** **** **** ~*** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ~*** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** i~** ***~ **** *~** **** **** ~*** ~*** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **~* **** **** **** **** **** **** 0.0 o.o 0.0 o.o 0.0 0.0 0.0 0.0 o.o 0,0 0.0 0.0 o.o 0.0 o.o o.o 0.0 0.0 O.G 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0,0 o.o .2 0,0 o.o o.o o.o o.o o.o o.o 0.0 o.o o.o o.o 0,0 0.0 0.0 o.o o.o o.o o.o o.o 0.0 o.o 0.0 o.o o.o 0.0 o.o 0.0 0.0 o.o 0.0 o.o o.o o.o 0.0 o.o o.o o.o 0.0 0.0 o.u o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o.o 0.0 o.o o.o 0.0 o.o 0.0 o.o o.o o.o 0,0 o.o 0.0 0.0 o.o 0,0 o.o o.o 0.0 o.o o.o 0.0 0,0 o.o 0.0 o.o 0.0 o.o 0.0 0.0 o.o 0.0 0.0 o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o 0.0 o.o 0,0 0.0 .2 .4 .2 o.o 0.0 0.0 0.0 0.0 ,4 ,2 0.0 .2 .B o.u o.o o.o o.o o,o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o n.o o.o o.o u.o o.o o.o o.o o.o o.o o.o o.o o.o .2 .2 o.o .2 .2 .4 .4 .2 .4 o.o o.o .4 .2 o.o 0,0 .2 n.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o &.o .2 o.o o.o o.o o.o o.o o.o o.n o.o o.o o.o o.o o.o o.o 0.0 0,0 0,0 o.o 0.0 o.o o.o 0.0 o.o o.o o.o o.o o.o 0.0 o.o o.o 0.0 o.o o.o 0,0 0.0 o.o o.o o.o 0.0 o.o 0.0 o.o 0.0 0.0 o.o 0.0 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o.o 0.0 .2 o.o o.o o.o 0.0 o.o o.o o.o 0,0 o.o o.o 0.0 0,0 0,0 o.o o.o 0.0 o.o 0.0 o.o o.o o.o 0.0 0.0 o.o o.o 0.0 o.o o.o 0.0 o.o 0.0 0.0 o.o o.o o.o O.G 0.0 0.0 o.o o.o 0,0 o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o .4 o.o o.o o.o 0.0 0,0 0.0 o.o o.n o.o o.o o.o o.o o.o o.o o.o 0.0 0.0 o.o o.o o. o o. o o·.o 0.0 o.o 0,0 0.0 o.o o.o 0.0 o.o o.o o.o o.o 0.0 0.0 o.o 0.0 0.0 3.0 0.0 o.o o.o o.o o.o o.o o.o 0.0 .2 0.0 0. 0 .2 .2 ~.0 o.o 0.0 .2 .2 0.0 0.0 o.o 0.0 o.o o.o 0.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 a:::. ~ M (""" (.. N <""" l J I ·1· """ N ·y· <""" i' .-.-x I ., .J ... :) . ... a·~ I I .... ::'ll > :J: N c:: I . ~:;; LJ ~=~ :1: ·-r-N A I··J Y I) I~ C) 1::: L.. t::: c:: ·r I~ :1: c:: 1:) I=<! C) .. T 1::: C:: ·r MONTHLY SUMi1ARY FOR SHE.RMc~N WEATHER STATION DAT?1 TAKEN DURING June> 1982 ( RES. RES. AVG. MAX. MAX. DAY'S HAX. HIM. MEAN WIND WIND WIND GUST GUST pI VAL HEAN MEAN SOLAR DAY iEMP. TEMP. TEMP. DIR. SPD. SPD. DIR. SPD. DIR. RH DP PRECIP ENERGY DAY DEG C DEG C DEG C DEG H/S ti/S DEG li/S % DEG C Hli WH/SQM . . ----------------------------------------------------------------------------------------------------- 1 20.0 -.4 9.& 224 1.2 1.5 239 7.6 sw 18 -21.7 o.o 6800 1 2 9.7 3.0 6.4 176 .2 .9 213 3.8 sw 59 -1.0 19.4 1898 2 3 15.3 .6 B.O 293 .4 .9 186 3.8 NW 34 -19.1 o.o 6685 3 4 16.6 -1.2 7.7 241" 1.0 1.5 .. 226 8.3 WSW 28 -19.4 1.0 5920 4 5 10.4 6,0 8.2 036 .2 .4 026 1.9 NE 65 -2.1 12.0 2298 5 6 11.5 6.4 9.0 269 .2 .6 012 2.5 sw 61 2.2 10.4 2388 6 7 11.6 5.7 8.7 231 .3 .7 232 5.1 sw 58 -.5 6.8 2573 7 8 17.2 4.3 10.8 226 .5 1.0 232 5.1 sw 43 -15.8 .2 5645 8 9 14.6 4.5 9.6 048 .2 .5 346 2.5 ENE 44 -4.1 .4 3380 9 10 17.7 6.9 12.3 226 .3 .• B 228 7,0 sw 49 -5.2 3.8 296!5 10 11 13.9 6.1 10.0 218 ,5 .9 229 3.B ssw 31 -11.3 1.0 3853 11 f 12 13.8 .3 7.1 241 .1 .7 .212 6.3 ssw 55 -3.2 4.2 3380 12 13 14.6 .6 7.6 205 .2 .6 246 3.2 sw 37 -21.2 o.o 4705 13 14 17.2 2.9 10.1 224 1.6 1.7 243 . 7.0 sw 30 -14.7 o.o 6813 14 -...._ 15 8.3 5.9 7.1 208 1.0 1.1 232 3.2 ssw 53 -3.0 12.6 22G5 15 16 9.2 5.9 7.6 214 .9 1.0 253 4.4 ssw 53 -2.5 4.4 2068 16 17 19.2 3.5 11.4 251 .3 .a 184 3.2 ssw 3b -19.4 0. 0 69b5 17 18 20.1 1.7 10.9 058 .7 .9 051 5.1 NE 43 -22.3 1.8 4558 18 ,19 20.9 7.7 14.3 230 .9 1.3 237 6.3 sw 23 -13.7 o.o 6740 19 " 20 9.5 7.0 8.3 225 1.1 1.2 229 4.4 sw 55 -1.5 10.8 2240 20 21 15.9 5.1 10.5 221 1.2 1.3 245 5.1 sw 37 -12.5 .4 5733 21 I 22 18.5 5,0 11.8 222 .8 1.0 217 5.1 sw 30 -19.2 0.0 6413 22 l 23 2'3.0 5,4 14.2 237 .5 .s 219 3.8 sw 30 -24,9 0,0 7355 23 l 24 26.4 3.1 14.8 219 .5 .8 207 3.8 sw 33 -25.0 o.o 8468 24 ' 25 27.9 5.0 16.5 125 .1 .1 213 3.8 ENE 42 -13.~ 2.0 7298 25 26 25,6 6.2 15.9 236 .4 .7 207 3.8 sw 28 -30,0 0.0 6833 26 27 25.9 3.9 14.9 213 .3 .a 221 5.7 sw '35 -19.6 o.o 5430 27 28 18.4 6.9 12.7 215 1.1 n.3 265 5.1 ssw 33 -8.7 .a 5455 28 29 18.8 7.2 13,6 257 .3 .B 117 3.8 ssw 23 -16.6 o.o 6103 29 30 20.0 7.2 13.6 057 .1 .8 224 6.3 NE 42 -11.8 9.2 3823 30 /.. MONTH 27.9 -1.2 10.7 224 .5 .o 226 8.3 sw 40 -12.7 101.2 146985 GUST VEL.. AT NAX. GUST i'11.NUS 2 INTERVALS 7. 0 GUST VEL. AT MAX. GUST riiNUS '! INTERVAL 6.3 GU~3T VEL. AT MAX. GUST PLUS "l INTERVAL. 5.7 GUST VEL. AT MAX. GUST PLUS ".) ,. .. INTERVALS 7.0 NOTE: RELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE u::.:ss .. , THAN ONE METER PER SECOND. SUCH RF.:ADJ:NGS HAVE NOT BEEN INCLUDED IN THE DAILY OR rlONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT, .X.·X·~·* SEE NfJTES AT THE B~1CI< OF THIS I~EPORT oX•**•Xo ,. ' ',c ~~ ~~~x i'"l c:. CJ t·-.! ~:; tJ 1... ·-r .-:::-. , ..... ~ ·r ~:; _ .. :t: ~--~ c:: • ;, ~=> t.j ~==-:~: ·r ;--.... ~ .-:·;-. i··l Y X) i=< C) 1::: L. 1::: C~ ·r F~ :1: C:: F' I~ C) .. T E:: C~ ·r r HOUi~L Y . PRECJP IT~'iTION SLH'lr-iC:~R Y FOl~ t>HER 1·1r~N WEATHER STc:.)TJ.ON DATA TAl< EN DUi~ ING June.' :l982 f ; l PRECIPIT(~TION \)Ai.. UES c:~.RE IN N ILL I rfFTEl~ S HOUR ENDING \ DATE vlOO 0200 0300 0400 0500 0&00 6700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 .. DATE -------------~---------------------------------------------------------------------------------------------------------------~~-~--- 1 i n.o o.o o.o 0.0 o.o 0.0 o.o o.o 010 0.0 o.o 0.0 0.0 010 o.o 0.0 0111 010 0. 0 0.0 o.o 0.0 Q~O 010 2 1.2 1.2 1.8 1.0 LB 1.8 2.2 2.4 2.2 .6 .2 .4 .2 .2 o.o .4 o.o L6 .2 o.o 0.0 o.o o.o 0.0 2 3 u.o 010 010 010 0.0 010 010 010 0.0 010 o.o 010 010 010 0. 0 o.o 010 0.0 o.o 010 o.o o.o o.o 010 3 4 ulo O,G o.o 0.0 010 010 0 I 0 0.0 010 010 u.o o.o 0.0 o.o o.o o.o 0 I 0 0 I 0 0.0 010 010 12 .4 .4 4 5 i.O 1.2 1.2 1.6 ~B .a o.o .4 , ''" 14 0.0 010 , •£.. 12 .4 .2 0.0 ') t£. .4 .4 .B .6 .6 14 5 b .6 1.8 1.0 .6 .2 .2 010 0.0 .2 o.o o.o 1.0 .b .4 ,4 .4 .a .6 .2 .2 .6 .4 .2 O.fi 6 i 0.0 .4 ') o.o o.o o~n 0.0 o.o a.o 1.8 .a 1.4 1.0 o.o 0.0 0.0 j o.o o.o .6 .2 .2 0.0 o.n 7 II .. ''- ~ . B ':) 1£; il.O o.o 0,0 0,0 0.0 o.o o.o 0.0 0.0 0 '0 010 0. 0 o.o 0.0 o.o o.o 010 o.o 0,0 0.0 o.u 0,0 0.0 8 I 9 o.o I o.o 0.0 0.0 010 O.il 0.0 o.o 0.0 .2 0.0 o.o o.o 0.0 0.0 o.o .2 ii.O o.o 0.0 o.o 0.0 o.o 0. 0 9 iO o.o o.o 0.0 o.o 0. 0 .4 O.il o.o .2 0.0 o.o o.o o.o 0.0 o.o .4 1.0 .4 1.4 0. 0 o.o 016 0.0 0.0 10 11 .2 o.o il.j) ;l o.o .2 j .o. 0 0.0 o.o 0.0 0 I 0 010 0.0 o.o 0.0 0 I 0 o.o o.o O.il il.O 0.0 0.0 ,2 11 .... •'- 12 .4 .2 o.o .2 o.o 0.0 'j ,&; .2 12 0.0 0,0 o.o .a 1.2 .6 0.0 0.0 0.0 .2 0,0 0 I il 010 o.o 0.0 12 13 o.o o.o o.o o.o o.o 0.0 0.0 0.0 o.o 0.0 0.0 010 0.0 il.O 010 o.o 0 I 0 0.0 0,0 o.o 0 I 0 o.o 0. 0 o.o 13 14 il.O 010 0.0 o.o 0.0 0.0 o.o o.o 010 0.0 o.o o.o 0. 0 010 O.il o.o 0.0 0.0 o.o o.o 0,0 0. 0 o.n 0.0 14 r 15 o.o o.o o.o 010 .B 'l ' "l ') 2.b 1.0 1.0 1.0 .8 .2 .2 o.o j 0.0 0.0 o.o 010 o.o .4 o.o 0.0 15 ...... £.11.. tl.. 16 ') ,.c;. .4 lb ,4 1.0 .s ,b .2 .2 0.0 0,0 0.0 0.0 o.o o.o tl,O o.o o.o o.o o.o 0,0 o.o o.o o.o 16 17 i)li) 010 0.0 o.u o.o 0.0 0.0 ~.0 0. 0 0.0 o.o o.o 0.0 0 I 0 o.o o.o 0.0 o.o o.o O.il o.o o.o o.o 0,0 17 18 0 I 0 n~o o.o O.ii 010 0.0 o.o 0.0 0.0 o.o 0,0 o.o o.o 0' 0 o.o .2 ') II.. .a .4 0.0 0.0 o.u .2 0,0 18 19 o.o 0.0 o.o 010 010 o.o o.o 0.0 o.o 010 ii.O 0 I 0 0.0 0.0 o.o o.o 0.0 0 '0 o.o 0.0 0,0 0. 0 o.o o.o 19 20 !i.O .2 .8 1.0 1.0 1 ') 1.2 .6 , .6 ,b 12 .2 12 .4 ,6 .2 .2 0.0 .4 0.0 .2 o.o 14 20 .c:. .o 21 .2 o.o 0.0 j I{;. 010 o.o 010 il. 0 O,Q 0,0 010 o.o o.o 1110 010 o.o 010 0.0 010 o.o o.o 0.0 o.o 0,0 21 ')'j r..~;; 0,6 0. 0 0.0 o.o 0.0 0' 0 o.o o.o o.o o.o 010 o.o 0,0 0,0 o.o 0 I 0 o.o o.o o.o 0' 0 o.o o.o 0,0 \i,O 22 23 o.o 0.0 0.0 o.o o.o O.il 010 010 o.o 0.0 ii.O 0' 0 0.0 0. 0 010 0.0 o.o o.o 0,0 0.0 o.o o.o o.o 0,0 23 24 o.o o.o 0.0 o.o 0.0 o.o 010 o.o o.o 0 I 0 o.o o.o o.o 0.0 o.o 0,0 o~o o.o 0.0 0 I 0 o.o o.u o.o 0,0 24 25 il. 0 u.o 0.0 o.o o.o 0.0 0 t 0 o.o o.o 0,0 o.o o.o o.o 0,0 .a 1.2 o.o o.o o.o 0,0 0.0 o.o 010 o.o 25 2& n.n 0,0 o.o o.o il. 0 010 010 o.o 0,0 0.0 o.o o.o o.o 0' 0 o.o 0 I 0 o.o o.o o.o O.il 0,0 o.o o.o o.o 26 27 0.0 ii.O 0,0 il.O 010 o.o o.o 0 I 0 0.0 o.o 010 o.o o.o 0 I 0 o.o o.o o.o 0. 0 o.o 0.0 o.o o.o o.o 010 27 28 010 010 ,2 ·j tl.. 0,0 0. 0 0,0 o.o 0 I 0 010 0 '0 o.o .2 I~ o.o 0 I 0 010 0.0 o.o 010 o.o 0 I 0 0 t 0 o.o 28 29 010 o.o o.o o.o 0. 0 o.o 0. 0 0,0 0.0 0.0 o.o o.o 0.0 0,0 o.o o.o 0.0 o.o o.o 0' 0 o.o 0.0 o.o 0. 0 29 30 o.o o.o 0.0 o.o 010 o.o 010 o.u 0.0 0. 0 0. 0 o.o o..o 0 I 0 1 .2 1.0 o.o 1.8 2.4 .s 1.8 .2 0,0 0.0 3ii r I~ & M (""" C) :-.. I <: .. t J I ·-r· A· ... -..! ·r -::--• • ., • I~ .... :> • ••• i .... :> ;-:t: N c:: . r i MONTHLY St.H1i'1 r~RY FDR SHERMr:!tN WEATHER STr~TICIN DATA TAl< EN DURING July~ "1982 .. ; i. RES. RES. AVG. MAX. MAX. DAY 1 S MAX. MIN. MEAN WIND WI tiD WIND GUST GUST P1 VAL MEAN l'iEAN SOLAR DAY TEMP. TEMP. TEMP. DIR. SPD. SPD. DIR. SPD. DIR. RH DP PRECIP ENERGY DAY ~ DEG C DEG C DEG C DEG MIS MIS DEG MIS % DEG C M!i WH/SQH I \ ~ .. ---------------------------------------------------------------~-------------------------------------.. 1 14.3 5.9 10,1 224 1.0 1.2 245 7.0 sw 32 -9.9 l.b 5283 1 2 17.2 3.6 10.4 217 .3 .7 204 3.8 ssw 32 -19.6 .2 5740 2 ' 3 20.7 1.6 11.2 220 5 1.0 216 5.1 sw 24 -25.5 0.0 8:520 3 " 4 21.5 2.3 11.9 228 .9 .1.3 219 7.0 sw 30 -19.0 0.0 7173 4 5 19.9 5.0 12.5 209 .7 -1.1 212 4.4 ssw 28 -19.1 0.0 7458 5 b 21.1 5.5 13.3 220 .4 .a 225 3.8 sw 26 -25.2 0.0 5948 6 \. 7 29.6 2.5 16.1 036 .6 .8 358 5.1 ENE 46 3.0 0.0 8283 7 B 19.5 7.1 13.3 221 1.5 1.7 23/ 7.0 ssw 38 -4.4 .2 5235 8 9 21.4 9.7 15.6 211 .5 .7 222 3.8 ssw 38 -11.4 0.0 5585 9 10 15.6 9.4 12.5 215 .9 1.1 239 5.1 ssw 62 3.2 1.6 2173 10 11 17.1 10.5 13.8 216 1.2 1.2 222 4.4 ssu 47 .7 .4 4348 11 l 12 14.3 9.4 11.9 202 1.1 1.1 20fi 4.4 ssw 50 1.0 3.2 2505 12 13 19.5 7.7 13.6 278 .2 1:' ~019 3.B s 49 -11.8 .4 5508 13 ,.., 14 19.6 4.3 12.0 208 .7 .9 201 3,8 ssw 49 -3.0 1.8 4695 14 15 14.6 8.2 11.4 215 1.2 1.3 . 228 5.1 ssw 51 -.5 2.2 4350 15 -- 1J 16 14.6 7.6 11.1 225 .5 .a 214 4.4 sw 51 -1.8 7.6 4000 16 17 18.2 8.2 13.2 209 1.0 1.1 208 3.8 ssw 50 -'3.4 2.4 5610 17 18 18.1 6.2 12.2 236 .4 .7 /!11 3.2 ssw 44 1.9 13.2 3995 18 19 27.7 3.6 15.7 058 ,2 .6 052 3.2 ENE 32 -14.0 o.o 7688 19 20 25.0 4.9 15.0 220 .a 1.1 208 5.7 sw 23 -17.5 o.o 7395 20 21 15.3 9.7 12.5 214 .7 .8 218 3.8 ssw 53 2.0 11.4 1735 21 22 15.3 9.7 12.5 228 1.2 1.3 244 5.1 sw 52 -.1 11.6 2815 22 23 13.9 9.5 11.7 229 1.1 1.2 246 5.7 sw 59 5.2 31.0 1643 2'3 24 13.6 10.2 11.9 217 1.2 1.3 242 5.7 ssw 61 2.9 16,2 1903 24 25 15.2 10.5 12.9 218 .a 1.0 230 5.1 SSw 63 4.6 33.6 2225 25 26 17.1 8.5 ~2.8 348 I 0 .5 209 2.5 N 51 -1.0 o.o 3055 26 27 18.3 10.2 14.3 210 ,5 .6 203 3.8 ssw 44 2.9 .2 3310 27 28 21.1 7.0 14.1 228 .b .9 239 4.4 sw 29 -2.6 .2 4450 28 29 14.3 10.2 12.3 223 .9 1.0 220 4.4 ssw 63 3.9 8,4 3150 29 30 12.7 10.0 11.4 210 ,5 .7 227 5.7 ssw 60 3.6 23.6 1890 30 31 18.8 7.1 13.0 239 .o .5 339 3.2 ESE 30 -6.6 0.0 4843 31 MONTH 29.6 1.6 12.8 219 .7 .9 245 7.0 ssw 44 -5.2 171.0 142307 GUST VEL. AT Mf..)X, GU~>T M:tNLH3 2 INTERV?'d ... S 3.8 '., GUST VEL, AT MAX. GUBT MJ.NUS '1 INTERVAL ';) 1::' 1:;. I \J GU~3T VEL. AT MriX. GUST Pl-US '! INTER~JAL 1.9 GUST VEL.. AT MAX. GUST PLUS ;~ INTEHVAJ_S l I 3 NOiE: REI.:.ATIVE HUMIDITY READINGS ARE':: UNR I~LI ABLE WI-lEN I;JIND SPEI::DS c:!tRE LESS THAN ONE METER PER SECOND. SUCH RE:f1DINGS HAV~ NOT IlEr:::N INCLUDED IN THF.:: DAILY 01~ MONTHLY MEc~N FOR REL(.~TIVE HUi'1 J. D I TY AND DEW POINT. ·X.·X. :X·~· SEE NOTES AT THE BACI< OF THIS REPORT ~·*i.t:··x- t ,. 1:; .. · .~_-:.~ -,~~ ( ........ :-...,J oe::· l J I .... -::: -..... J ··r· oe:·-~ • -·· 1.... I " ..... ;, . ... I I I I . ....> :· HOURi. Y P R EGJ. PIT c~T :r. ON ~3Ur·ii"1ARY FOR SHER rlc~N ~_.!JEf:1THER STc~TJ:ON t DATA Tt~i< EN DURING J'tt1Y.· "1982 PRECIP ITr:itTIDN Vc:itUJFS ARE IN i'-\ I I...L I riF:TEi~ S t HOUR Ei\!D I NG DATE ulOO 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 DATE ------------------------------------------------------------------------------------------------------------------------------------- 1 u.o o.o 0.0 .2 o.o 0.0 il.O 0.0 o.o 0.0 o.o 0.0 ') ') 0.0 0.0 0.0 0.0 .B 0.0 'j O.fi 0.0 0.0 1 I ... .~ •'- 2 0 I 0 010 010 010 0.0 0 I 0 o.o 'j II,;. 0 I 0 o.o o.u 0.0 010 0.0 010 010 0.0 o.o 0.0 o.o o.u 0.0 0 I 0 o.o 2 3 0.0 0.0 0.0 010 0. 0 o.o 0.0 0.0 010 0.0 010 0.0 o.o 0.0 0 I 0 0.0 0.0 0.0 o.o o.o 0,0 0 I 0 0.0 ii.O 3 4 0.0 o.o 0,0 o.o 0 '0 0,0 0.0 n .o 0.0 0' 0 O.fi 0.0 0' 0 0. 0 0.0 o.o o.o o.o o.o o.o 0.0 0.0 0,0 o.o 4 5 u.o o.o 0.0 0.0 o.o ii.O 0.0 0,0 0.0 0 I 0 010 o.o 0 I 0 o.o o.o 0.0 0 I 0 0.0 0 I 0 010 0.0 ILO o.o 0.0 5 6 0,0 0.0 o.o 0.0 o.o 010 o.n 0 '0 0.0 O.li 010 0.0 0 '0 o.o 0.0 010 010 o.o 010 0.0 o.o 0.0 o.o 010 b 7 o.o 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 o.o o.o o.o o.o 0.0 010 0.0 o.o 0.0 016 0 I 0 0.0 0.0 o.o o.c 7 a 0.0 010 O,il 0,0 0 I 0 0.0 0.0 0 J 0 010 0.0 O,fi u.o Q. 0 0. 0 0.0 0. 0 0.0 0. 0 0.0 0 '0 o.o 0 I 0 o.o 'j •I.. 8 9 o.o 010 u.u o.u n.o 0.0 0.0 0.0 0.0 o.o 0.0 0. 0 0.0 010 0 10 010 0. 0 0.0 o.o 0 '0 0 I 0 0.0 o.o o.o 9 10 o.o 0.0 0.0 0.0 o.o 0.0 o.o o.o o.o 0.0 12 o.o 010 0 I 0 o.u 010 o.o 010 o.o .2 ,8 O.ii .... 12 10 I" 11 .2 0.0 0.0 12 o.o 0.0 0.0 0.0 010 o.o 0 9 0. 0 o.o 0.0 010 o.o 0,0 0.0 o.o o.o 0,0 0.0 010 0. 0 11 12 o.o 0. 0 0 .li 0,0 010 0.0 .6 'j •'-.4 .B 14 o.o 010 0. 0 0,0 o.o u.o 0.0 010 010 O.fl 010 .4 .4 12 1~ 'j .~ .2 010 0.0 010 0.0 o.o 0.0 010 0.0 0.0 o.o 0' 0 o.o 0,0 o.o o.o 0. 0 010 u.o o.o 0 I 0 0.0 0.0 1:3 14 0,0 o.o 0. 0 o.o o.o 0.0 o.o 0 '0 010 o.o 010 o.o o.o 010 o.o 0.0 0. 0 14 .2 0' 0 0.0 0,0 0. C1 1 'j tL 14 15 1.4 .2 0.0 .2 .4 o.o 0.0 o.o 010 o.o o.o o.o 0. 0 o.o o.o 0 I 0 o.o o.o 0,0 o.o 0.0 0.0 o.o o.o 15 1b 0.0 .2 .4 .6 16 1.0 1.0 .4 .4 'j ,c;. 'j •'-o.o 010 o.o 010 010 .2 12 o.o 0. 0 .8 .4 lb ,4 16 17 .6 .2 o.o 12 o.o 0,0 010 0.0 0' 0 010 o.o o.o 0 I 0 .2 o.o ., "· 0 I 0 0.0 o.o 010 010 ,4 ,2. .4 17 18 .b 1.0 2.8 2.4 1.6 1.8 1.6 lb .a 0.0 0.0 o.o o.o o.n 0,0 0 I 0 010 o.o 0.0 0,0 o.o 010 0 I 0 o.o 18 19 il.O 0.0 O.il o.o 010 0.0 o.o 0.0 0,0 O.il 0.0 o.o 010 o.o 010 0' 0 o.o o.o 010 o.o 0,0 o.o 0.0 il~O 19 20 0 '0 o.o 0.0 0.0 0,0 0. 0 o.o 0.0 0 '0 o.o o.o o.o 0,0 0.0 0 '0 0.0 0 I 0 0 I 0 o.o 0.0 0.0 0,0 0. 0 0,0 23 21 0.0 0.0 0.0 o.o 010 0 '0 0.0 .2 010 'J II-.2 14 14 o.o o.o o.o .2 o.o 1.8 4.2 1.6 1.6 .6 0. 0 21 22 0.0 1.4 .6 o.o 0.0 0,0 0,0 0.0 0.0 o.o o.o o.o 0 I 0 0,0 o.o 0 I 0 0' 0 0' 0 ,b 1.2 L4 214 210 2,0 22 23 ') ') 4.2 4.2 3.6 1.6 1.8 2.8 3,4 1.4 1.4 .a 1.0 .a ,6 o.o 010 o.o o.o o.o 0 I 0 o.o I . 4 12 ., ... ~...~ ,I:) t:.) 24 o.o 0. 0 .2 .2 0 '0 o.o o.o 010 0 '0 010 0. 0 010 0 '0 0. 0 0,0 .4 1.0 L6 1.8 212 310 212 1.8 1.8 24 25 1.8 2,0 2.0 ':l , ~.b 4.2 414 4.0 4,0 4.0 216 1.4 .4 .2 0 I 0 010 0.0 0 I 0 o.o o.o o.o 0.0 o.o 0,0 o.o 25 26 o.o o.o 0.0 o.o 0,0 0,0 0' 0 u.o o.o o.o 0 I 0 010 0.0 0 '0 o.o 0 '0 0,0 o.o o~o o.o 010 0 I 0 0.0 n.o 26 27 0.0 0.0 0.0 0.0 0,0 ':l •l. o.o 0.0 o.o o.o 0,0 0' 0 o.o o.o o.o 0,0 0,0 0,0 010 0 '0 o.o o.o o.o o.u 2.7 ~ 28 o.o o.o 0.0 o.o o.o 0.0 0,0 .2 010 o.o 0. 0 o.o 0 I 0 o.o 010 0 I 0 0.0 0 I 0 010 0.0 0 I 0 0 I 0 0 '0 o.o 28 29 o.o .2 0.0 .b 1.4 14 .2 ,I\ 1.0 'J o.o .2 0,0 0,0 ,2 1.0 12 .2 .4 12 .2 .4 ,8 .2 29 ·~ 30 2.4 412 1.8 1.2 1.2 1.2 .4 12 0.0 1.0 ,4 14 1.8 1.8 2.4 l.b 1.4 .2 0,0 0' 0 o.o o.o 0.0 0 I 0 30 t 31 0.0 o.o 010 0.0 0.0 0 I 0 o.o o.o 010 0.0 010 o.o 010 0,0 0,0 010 0,0 0,0 o.o 0,0 o.o o.o 0 I 0 o.o 31 ·~ & M C"' C) N <""' l J I "l" A N ·y-<""'" •"' • ...::> • ••• •• I .,.:) > 'TN(""' • • •JA • i - ? <:·· l J c: .. T "l" N A .... :~~ . ...) .. 1-~1 Y l) •~ (:l 1::: 1. •• 1::: c~ ·1· s~ :1: c:: a:) •~ (:) ... T t::: c~ ·r ,, ;. MONTHLY SUMMARY FOR SHERMAN WEATHER STATION DATA TAKEN DURING Augu~t~ 1982 I RES. aES. AVG. MAX. HAX. DAY'S HAX. HIN. MEliN WIND WIN]) YIMD GUST GliST pI VAL ttEAH HEI;H SOLAR DAY TEHP. TEHP. TEMP. DIR. SPD. SPD. OIR. SPD. DIR. RH DP PRECIP ENERGY DAY DEG C DEGC DEG C DEG H/S HIS DEG H/S % DEG C HK WH/SQH _________________ ...... . ------·------------------ l 20.2 2.5 11.4 857 .7 .B 871 4.4 ENE 42 -2'3.1 o.o 6840 1 2 22.8 .9 11.9 050 .6 .'7 Ott 3.8 NE 41 -21.1 0.1 7455 2 l 22.7 1.'3 12.0 21~ .3 .6 204 3.2 ESE 1,7 -24.4 o.o 6821 3 4 22.9 2.2 12.6 212 .~ .6 214 3.2 sw 48 -18.9 o.o 6590 4 5 22.1 5.7 13.9 212 .7 .8 193 3.8 sw 32 -6.9 .2 5459 5 6 24.3 3.5 13.9 05b .1 ,5 222 3.2 E 29 -18.0 0.0 5D45 b 7 17.8 4.1 11.8 216 .4 .7 253 5.1 E 41 -.3 9f6 3203 7 8 29.7 t!.7 11.7 959 .2 .8 219 3.8 NNE 30 -8.9 9.2 4788 8 9 13.3 8.3 10.8 211 .5 .6 235 5.1 ssw 42 -.1 6.4 2370 9 10 13.2 1.9 10.6 210 .6 .6 216 5.7 ssw 51 1.2 4.6 2428 10 11 20.& 3.6 11.8 203 .t .6 089 2.5 sw 26 -16.8 .2 59DS 11 12 21.3 1.5 11.4 207 ,J .6 -237 3.8 sw 21 -20.8 o.o 6178 12 13 22.0 5.6 !3.8 221 ,4 .7 250 4.4 E 28 -17.3 1.0 5971 13 14 16.3 9.9 13.1 200 .2 .4 288 'l 2 ~· ssw 57 1.0 2,4 1798 14 --. 15 17.7 8.0 12.9 214 .7 .9 212 3.8 SSY 50 -3.9 2.0 422i 15 ~ 16 15.3 7.8 11.6 214 .9 1.1 221 5.7 ssw 44 -7.1 .4 5710 16 17 15.3 7.5 11.4 119 .1 .5 216 2.5 ssw 58 -3.3 4.0 2603 17 18 16.1 3.1 9.6 023 .1 .3 022 1.9 ESE 41 ***** 0.1 2628 18 19 19.9 2.8 11.4 058 .2 .3 048 1.9 ESE 32 ***** i,O 3783 19 20 22.9 2.6 12.8 060 .2 .4 054 2.5 ENE 29 -18.7 0.0 5388 20 21 21.2 2.0 11.6 212 .5 .7 190 3.8 sw 26 -11.8 1.0 5531 21 ?2 21.3 1.8 11.6 212 .4 .6 249 3.8 ssw 24 -14.8 a.o 5140 22 23 17.0 8.6 12.8 289 .6 .7 247 3.2 ssw 52 1.0 1.2 2790 23 24 18.6 8.3 13.5 214 .5 .1 225 3.8 sw 36 -2.9 .2 3733 24 25 16.4 8.4 12.4 204 .7 .8 208 3.2 ssw 50 -4.2 1.2 :f.i35 25 26 2G.O 2.3 11.2 276 .1 .5 230 3.2-J E 30 -7.9 t.O ~'b3 2b 27 21.8 tl 10.6 041 .5 .6 937 4.4 HE 27 -23.6 1.0 4925 27 28 17.3 2.3 9.8 185 .t .5 201 4.4 ENE 30 -4.2 3.2 2483 28 29 11.1 8.5 9.8 Oi7 .t .2 947 1.9 NE 43 ***** 13.2 1788 29 l 30 10.2 6,8 8.5 042 .2 .3 043 1.9 NE 51 ***** 2'7.2 1080 30 31 13.Q 6.5 9.8 091 .1 ,5 204 3.2 NE 53 -.9 7.8 2203 31 MONTH 24.3 .1 11.6 202 .2 .6 216 5.7 ssw 39 -10.2 94.1 132158 \' GUST VEL. AT MAX. GUST MINUS 2 INTERVALS 3.2 GUST \,:EL. AT MAX. GUST MINUS 1 INTERVAL ? &::-, ... w GUST VEl-. AT MAX. GUST PLUS 1 INTERVAL 3.8 GUST VEL. AT MAX. GUST PLUS 2 INTERVALS 2.5 NOTE~ RELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE LESS THAN ONE METER PER SECOND. SUCH READINGS HAVE NOT BEEN INCLUDEfJ IN THE DAILY OR MONTHLY MEAN FOR RELATIVE HUMIDITY AND DEW POINT. *•Xo:X:~· SEE NOTES AT THE BACK OF THIS REPORT ***~· • 1 :~ • "1""= ("" (") • ....._. <:·· l J I ·-..·· ~-. ··~ 1 "T" oe:·· """' ~< -I _, • ' of ~.:~~ • ••• ' t: :.-; I ""t ~.) > :t: i....J c: . I··' y Y) ':::. (""1 !==· I '::· (""• "T" .:~ ••• (""' ' ·' J"'i:\. .Ji ..... ··-Jl..... ..,. ~ • • _.,. .. I HOUI"~LY PRECIPITI%TION SUMMARY FOR SHERMAN WEATHER STATION D.~TA TAKEN DURING August.' 1982 t ! ~ PRECIPITATION VALUES ARE IN MILLIMETERS HOUR ENDING '· DATE 0100 0208 0309 0408 1500 0600 0700 0810 0900 1000 1100 1200 1380 1400 1500 lbDO 1700 1800 1900 2000 2100 2200 2300 2486 DATE ----------------------------------------------------------------------~·-- 1 8.0 o.o 0.0 o.o 1.0 a.o o.o 8.0 9.0 0.0 o.o 0.0 0.0 0.0 0.0 o.o 0,0 o.o o.c o.o o.o 0.0 0.0 o.o 1 2 O.D 1.6 o.o e.a 1.0 0.8 Q.l 0.8 0.0 0.9 0.8 o.o o.o o.o 0.0 o.a 0.0 0.8 8.0 0.0 o.u 0.8 0.0 o.o 2 3 0.0 o.o 0.0 o.o a.o 0.0 0.0 i.O I.Q 0.8 o.a l.i o.o o.o 0.0 0.0 o.o o.o o.o 0.0 0.0 o.o 0.9 o.o 3 "\. 4 i.O 1.8 ~.0 O.i 9.0 0.0 o.o o.o o.o o.o 0.0 o.o o.o 0.0 o.o &.0 o.o o.o O.D o.o a.o G.O 0.0 o.o 4 5 i.O 9.9 o.o 8.0 o.o o.o t.O o.o o.o 0.0 o.o 0.8 0.0 6.0 0.0 .2 o.o o.o o.o o.o 0.0 D.O 0.0 0.0 5 6 o.o o.o o.o o.o o.o o.o o.o o.o D.O 1.1 o.o 0.0 o.o o.o o.o o.o o.o o.o o.o o.o 8.0 0.0 D.O Q,O t .) 7 D.O 0.9 0.8 0.0 o.o O,P 0.6 0.8 0.0 o.o o.o o.o 0.0 0.0 l.b 1.2 1.2 1.8 2.2 1.2 .4 0.0 0.0 8.8 7 B 0.0 0,0 .2 D.O 0.0 9.9 o.o o.o 8.0 o.n O.D o.o o.s 0.0 0.0 0.8 O.i .4 .6 2.2 2.6 2.4 .4 .4 a 9 .2 .6 0.0 0.8 0.0 .b .2 0.0 o.o o.o o.o o.o .2 0.0 .2 .2 0.0 o.o o.o· o.e .4 3.8 .B o.o 9 18 o.o o.o o.o a.o o.o .4 . a .6 1.0 .2 o.o 8.0 0.& .6 o.o .2 o.o .4 o.o o.o .2 .2 0.0 o.o 10 ..... 11 o.o 0.0 .2 o.o 0.0 0.0 e.o 9.0 8.0 0.0 o.o o.o 0.0 o.o G.O o.o 0.0 9.0 e.o o.o 0.0 8.8 0.0 o.o 11 12 o.o o.o 0.0 8.0 o.o 0.1 0.0 o.o 0.1 0.1 o.a 0.1 o.o 0.0 o.o o.o o.o 0.8 o.o o.o 0.0 o.o o.o 0,0 12 13 o.o o.o Q,O 9.0 1.0 0.6 c.o o.o o.o 0.9 o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o.n 8.9 0.0 o.o 13 ~- H 1.0 8,0 e.o o.o 8.0 'J . 2 .2 O.G ... 1.0 .4 o.o o.o o.o 0.0 o.o 0.8 1.0 o.o Q.O 0.0 0.0 o.o 14 ... 15 0.0 ·"' 1.2 .2 o.o o.o .2 o.o 9.0 0.0 o.o 8.0 0.0 o.o 0.0 0.8 0.0 o.o o.e 0.0 0.0 o.o 0.0 o.o 15 16 8.0 o.a o.o o.o o.o 0.0 o.o n.o o.o 0.0 a.o o.o 0.0 o.o o.o o.o 0.0 o.o 0.8 8,0 Q,O 0.1 .2 .2 16 17 .2 D.O .2 0.8 .2 o.o .4 .b .a .4 .4 .4 .2 .2 0.0 8.0 0.0 o.o 0.1 0.0 o.o o.o o.o n.o 17 t::; 18 o.o o.o o.o o.o a.o a.o Q,C 0.0 9.0 a.o O.Q 0.1 0.1 0.0 o.a o.o o.o O.il o.o o.o o.o a.o o.o o.o .18 i9 o.u 8.1 o.o 0.8 0.0 0,0 0.0 0.0 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o 1.0 o.o o.o 0.6 o.o o.o 19 20 8.9 o.o o.o o.o o.o o.o o.o 0.0 8.0 1.0 &.0 0.0 0.6 0.1 o.o o.o o.o o.o 0.0 o.o o.o 0.0 o.o o.o 20 \.::, 21 0.8 9.8 o.o 0.0 O.i 0.0 8.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o Q,O o.o ft,O o.o 6.8 1.0 0.0 o.o 21 22 o.o o.u 0.3 0.0 0.9 0.0 0.8 o.o 0.8 8.0 o.o o.o 0.1 0.8 0.0 o.o o.o o.o o.o o.o o.o 8.0 0.0 o.o 22 23 9.0 0.1 .4 o.o .2 .2 o.o .2 .2 o.o o.o 1.0 0.0 0.0 o.o 0.0 o.o o.o o.o o.o o.o 0.0 0.0 o.o, 23 24 8.0 0.0 o.o o.o 0,0 o.o 9.0 0.0 1.0 Q,O o .• o 0.0 o.o o.o o.o 8.0 8.0 .2 0.0 0.8 o.o 0.0 0.0 o.o 24 \:i 25 .2 6.1 o.o 0.0 8.0 o.o 0.0 9.0 0.0 0.0 o.o o.o o.o o.o o.o o.o 8.0 0.1 o.o o.o o.o 0.0 .B ') oJ~ 25 26 e.e .6 •. 2 .2 o.o 0.8 0.9 o.o o.o 0.0 o.o 0.~ o.a o.o 0.0 o.o 0.1 o.a 8.0 0.0 o.o 0.0 o.o o.o 26 27 0.9 0.0 o.o 0.0 O.i 9,0 0.0 o.o 0.0 o.o o.o 8.0 0.0 O.il o.o o.o 0.0 9.0 o.o o.o o.o o.o n.o o.o 27 •tt 28 o.o 0.8 o.o o.o o.o o.o o.o o.o 1.4 o.o 0.0 o.o .2 o.o 0.0 o.o Q,O o.o 1.8 ·.2 o.o o.o .4 o.o 28 29 o.o O.B 9,0 .b 1.2 1.4 l.b 1.4 1.4 .6 .2 .2 .8 o.o ,6 .8 ~2 o.o .b o.o .2 .b .4 ,4 29 30 .b 1,0 .a 2.2 L4 1.0 1.2 4.2 2.4 2.2 1.6 2.4 1.2 1.& .a 0.0 .2 .4 .6 .2 .2 .4 .6 .b 30 31 ,b .B .6 .a 1.0 ,2 .~ .2 o.o .4 ,2 .2 .6 o.o o.o a.o o.o 0.9 0.8 .6 1.0 0.0 .2 o.o 31 -l \ 1::. ~ ~ ~ ("' (") N <""' l J I ·y· A ...... I ··~-<""' '<;,. .r:~ ...... -~ -I -.:) -... I •• I "<: D -..:::> > :.: N c~ . ~:) l.J ~:> :1: ·r i":-! A 1··1 Y 1) I~ CJ 1::: L. r::: C~ .•. I~ :1: c:: . t==-I~ C) ... T 1::: c:: ·r ~ MONTI·ILY SUMrlARY FOR ~:>HERi'i~~N WEATHEF~ STATION DATA TAl< EN DURING Sep tet1ber .' 1982 ~ RES. RES~ AVG. HAX. i~AX. DAY'S ~ MAX. MIN. MEAN WIND WIN'Jl WitfD GUST !GUST pI VAL MEAN MEAN SOLAR ! i_; DAY TEMP. TEMP. TEiit>. DIR. SPD. SPD. DIR. SPD. DIR. RH DP PRECIP ENER~~~ uAY DEG C DEG 1: DEG C DEG M/S tt/5 DEG !~/S % DEG C Hti WH/SQH --~---------------··-----------.. ·---------------·---------------------------------------- 1 16.6 3,9 10.3 045 .2 .5 186 5.7 NNE '36 -4.3 9.4 3155 1 2 14.7 3.7 9 •} at. 223 .3 .6 220 3.2 sw 27 -7.5 11.6 2835 2 3 11.5 5.0 8.11 043 .2 .4 043 2.5 NE 50 -.6 7.8 1845 3 4 13.8 1.8 7 .a' 202 .1 .4 187 2.5 ss~ 16 -12.9 .2 3073 4 5 16.7 3.1 9.9 050 .9 1.0 047 5.1 NE 20 -9,9 1.0 2255 5 6 15.3 5.2 10.3 186 .5 1.1 135 6.3 ssw 32 -5.7 o.o 1578 6 7 14.3 7.5 10.9 214 .9 .9 213 4.4 ssw 40 -3.7 l.B 2615 7 B 11.9 6.4 9.2 208 .6 .7 208 3.8 ssw 33 -4.6 .2 1878 8 9 12.9 5.6 9.3 202 .o .3 215 2.5 ESE ** ***** .a 1718 9 10 12.6 4.8 8.7 037 .1 .3 021 '.) r: &;. • ,J NE ** ***** .2 2030 10 11 7.9 -.6 3.7 044 .1 .5 238 5 .. 1 E 51 -3.2 '},6 1190 11 12 11.8 -.4 5.7 051 .4 C' ,,J 074 2.5 ENE 46 -7.6 3.6 2968 12 13 8.7 4.4 b.b 037 ,. ,,;J ,6 055 2.5 NNE 61 .2 28.6 978 13 14 10.6 7.1 8.9 ~47 ¥) ,t; .3 213 1.9 NNE ** ***** 19r0 940 14 15 .17.0 7.3 12.2 t~46 .1 .a 220 5.1 NNE 48 1.6 29.8 2093 15 \,. 16 12.1 5.0 8.6 223 1.7 1.9 220 10.2 sw 33 -7.8 11.2 2313 16 17 8.2 2.5 5.4 053 .4 .4 065 3.2 NE 72 -.1 9. ~\ 1198 17 18 12.6 3.7 7.9 0:53 .3 .5 212 3.2 E 52 -1.4 10.0 1488 18 19 9.4 6.0 7.7 204 .1 .4 224 3.8 Slol 62 .9 18.6 775 19 20 9.5 5.5 7.5 15J .o .3 243 L9 ENE 53 .1 6.0 1265 20 21 10.0 5.1 7.6 1b9 .1 .6 21il 3.8 HE ** ***** 3.4 1291 21 22 10.2 -,9 4.7 239 .2 .6 214 5.7 WSW ** ~iU** 5.0 2150 22 ~ 23 11.8 -3.3 4.3 034 .4 .6 OU5 3.2 NNW ** ***** .2 33b5 23 24 9.9 -5.1 2.4 OlD .3 .5 (';39 3,2 E ** U*!l o.o 2418 24 25 11.1 -3.0 4.1 129 .1 .6 218 3.8 E ** ***** o.o 220g 25 26 8.1 2.2 5.2 049 .3 .5 083 2.5 ENE ** UUf 19.4 1248 26 27 9.9 -1.4 4.3 072 .2 .7 207 '3.2 ESE ** ***** 6.2 1770 27 28 7.3 -3,0 2.2 081 .4 .5 110 1.9 ESE ** iE**** 5.4 1340 28 29 9.4 2.6 6.0 074 .3 .9 208 ·L4 ENE ** il**** 7.4 1605 29 30 7.2 2.5 4.9 215 1.0 1.1 198 !5.1 ssw ** Ui~** 8.4 17B5 30 MONTH 17.0 -5.1 7.1 155 .1 ,/J 220 111.2 ENE 35 -3.9 232.~ ~i7356 GUST \JEL. c~T Mc=~x ,, GUST MINUS 2 INTERVALS 5. '7 GUST VEL. AT M~~x. GUST t1INUS 1 INTERVAL 8. <)> GUST VEL. AT r1AX. GU~)T PLUS 1 INTERVAL 8.9 GUST VEL. AT Mtt)X I GUST PLUS ':> ~-INTERVALS 8.9 \ NOTE: RELATIVE HUrt I D 1 TY REf4DINIGS Ptl~E UNRELic~BLE WHEN WIND COI::'I""DC ,,,, t:.l::. \:) ARE 1 -r's _l:.o,. THAN ONE METER PER SECONI>. BUCH r~E(~DINGS HAVE NOT BEEN INCLUDE!) IN THE DAILY OR MONTHLY i'1EAN FOR RELr~TT.VE HUMIDITY c~ND DEW POINT. :X· :X· -x· -x· BEE NOTES AT THE :f.{(~CK OF THJ:S REPORT *'Xo*•x- .. :1: N c; . HOURLY PRECIPITATION SUMMARY FOR P!-IERMAN WEATHER STATION DATA TAKEN DURING SepteMber-.' 1982 PRECIPITATION VALUES ARE IN MILLIMETERS HOUR ENDING DATE 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1!00 1200 1300 1400 15~0 1600 1700 1800 1909 2030 2100 2200 2300 2400 DATE ------------------.. ___ ,_ _______ -----------------------------------------~-------------------------------·---------------1 .2 2.0 1.2 o.o 1.2 .2 o.o o.a o.o o.o 0.0 O.Q 0.0 o.o 0.0 0.~ o.o o.o 2.6 2.9 o.o o.o o.o o.o 1 2 0.0 o.o 6.0 0.0 o.o. 1.0 4.0 2.2 .2 0.0 .b 0.0 0.0 G.O 0.0 o.o o.o o.o o.n o.o .4 o.o .b 2.6 2 .. 3 2.2 1.2 1.6 .2 •. 2 ., ''" o.o .4 .a .6 .2 0.0 .2 0.0 0.0 o.o 8.0 o.o 0.0 0.0 o.o 0.0 o.o o.o 3 4 8,0 o.o 0.0 o.o n.o 0.0 0.0 0.0 .2 o.o o.o o.o o.o o.o o.o o.o o.o 0.0 0.0 o.o 0.0 o.o 0.9 o.o 4 5 . 0.0 0.0 .4 .4 0.0 o.o .2 0.0 o.o o.a 0.0 o.o 0.0 o.o o.o o.o o.o 0.0 o.a o.o G.O o.o o.e o.o 5 6 o.o o.o 0.0 0.6 G.i o.o o.o o.o 0.0 0.0 o.o o.o 0.0 0.0 0.0 0.0 o.o 0.0 o.o o.o 0.0 G.O o.o o.o b 7 o.o o.o .2 .6 .B o.o .2 0.9 o.o o.o 0.6 o.o 0.0 o.o o.o a.o 0.0 0.0 0.0 0.0 o.o 0.0 o.o o.o 7 8 ~.0 0.0 o.o 0.9 o.o o.o 0.0 0.0 o.o 0.6 o.o o.n 0.0 o.o 0.0 o.o 9.0 o.o o.o o.o 0.0 0.1 0.8 .2 8 9 o.o 0.0 .2 0.0 0.0 0.0 0.0 o.o 0.0 o.o 0.9 o.o 0.0 0.0 0,0 o.s o.o 0.0 0.0 .6 o.o o.o 0.0 o.o 9 10 o.o o.o o.o o.o o.o .2 0.0 8.0 0.0 o.o 0,0 9.9 o.o 0.0 O.Q 0.0 o.o o.o o.o o.o o.o o.o o.o 0.0 10 11 o.o o.o 0.0 .2 9.0 .4 1.4 .b .a t.B .6 0.0 .4 1.2 o.o 0.0 o.o 0.0 o.o .2 o.o O.G o.o o.o •1 ·~ 12 o.o 0.0 0.0 o.o • 0.0 0,0 0.0 o.o 0.0 0.0 0.0 0.0 g n .u o.o 0.0 o.o 0.0 0.0 u.o .4 .6 .2 1.2 1.2 12 13 1.2 2.2 2.2 1.8 t.B t.b 3.0 2.2 t.B t.b 1.0 1.6 1.6 .4 0.0 G.O Q,O LO 2.0 1\ II v.u .6 .b 1.0 o.o 13 14 .2 .2 .2 .4 .4 o.o .2 o.o o.o .2 .2 o.o o.o 0.0 .4 1.0 A .8 3.0 1.6 2.0 .2 1.8 2.4 2.8 14 15 2.8 2.2 1.4 2.0 3.2 3.0 2.4 .b 0.8 o.o o.o o.o o.o 0.0 o.o 0.0 0.0 1.2 4.0 5.2 1.6 o.o o.o .2 15 16 .2 .4 2.2 4.0 1.0 .2 .2 o.o .2 o.o" 0.0 0.0 o.o 0.0 0.0 0.0 o.o 0.0 o.o o.o .2 .o 1.0 1.0 16 17 2.0 1.8 2.0 1.0 .2 .4 L2 .a o.o o.a 0.0 o.e o.o o.o o.o 0.0 0.0 0.0 O.Q 0.0 o.o o.o o.o 0.0 17 18 .2 o.o .2 o.o o.o o.o 0.0 .2 o.o 0.0 0.0 o.o 0.0 o.o .2 .a 1.2 1.0 .B 1.6 2.2 .B .a o.o 18 19 o.o 0.9 o.o 9.0 .2 .b .2 .2 .2 .2 .a 1 4 1.0 2.4 1.6 1.2 .B 1.0 .6 1.4 .b .4 1.4 2.4 19 20 .2 .4 .6 .4 .4 o.o .4 0.0 .2 o.o 0.0 o.o .4 .a .4 .2 .2 .2 0.0 .2 .2 o.o .b .2 20 21 0.0 9,0 .2 o.o .2 0.0 o.o o.o o.o o.o 0.0 .4 1.8 .b o.o o.e 0.0 0.0 O.G 0.0 o.o o.o o.a .2 21 22 0.0 O.Q 0.8 .2 .4 o.o 0.0 .2 1.2 1.0 1.6 .2 o.o 0.0 o.o o.o .2 o.o 0.0 0.0 o.o O.Q a.o o.o 22 23 o.o 0.0 o.o o.o o.o 0.0 O.G o.o .2 o.o o.o o.o 0.0 o.o 0.0 6.0 o.o O.B O.Q o.o 0.9 o.o o.o o.o 23 24 0.0 0.0 o.o o.o 0.0 o.o 0.0 o.o o.o o.o 0.0 0.0 o.o o.o o.o 0.0 0.0 o.o 0.0 0.0 D.O o.o O.G 0.0 24 25 0.0 o.o o.o o.o 0.9 0.0 o.o 0.0 o.o o.o o.o o.o 0.0 0.9 0.0 o.o o.u o.o o.o 0.9 ~.0 o.o. o.o 0.0 25 26 0.0 o.o 0.0 o.o .2 .2 .6 .b o.o 0.0 o.o 0.0 o.o 1.6 2.0 2.0 2.2 o.o .4 .B 2.2 2.0 3.6 L6 26 27 1.0 .4 .6 .6 .4 .4 .4 .2 .2 o.o .6 .2 l.Q .2 o.o o.o 0.0 0.0 o.o o.o o.o o.o 0.0 0.0 2i 28 o.o G.O 0.0 0.0 o.a o.o o.o o.o 0.0 o.o o.o o.o o.s o.o 0.0 .2 .a .a .6 .4 .4 1.0 .a ,4 28 29 .6 .a .2 o.o .2 0.0 .4 o.o .2 o.o 0,0 0.6 o.o o.o o.o o.o o.o o.o o.o .2 .b 1.2 1.6 1.4 29 30 .6 .2 .2 .2 o.o o.o o.o 0.0 o.o 0.0 o.o o.o o.o 0.0 .2 .B .4 .6 1.4 .4 .4 .2 .2 2,6 30 ·-·------ ~~~ ~ M (""" (""J i'<· 1 <:"" l J e ·y· A· N . ..,. <:"' D"i. .... 'X I .... . u "!: .... ) • •••• t ~ .... J! ;>- MONTHLY SUMMARY FOR SHERMAN WEATHER STATION DATA TAKEN DURING October} 1982 RES. RES. AVG. MAX. HAX. MIN. MEAN WIND WIND WIND GUST DAY TEMP. TEMP. TEMP. DIR. SPD. SPD. DIR. DEG C DEG C DEG C DEG M/S ti/5 DEG MAX. GUST P1 lJAL MEAN SPD. DIR. RH li/S % DAY 1 S MEAN SOLAR DP PRECIP ENERGY DAY DEG C MH WH/SQM -----------------------------------------------------~--------------------------------~--------------- 1 4.5 -.1 2.2 059 .2 .4 210 2.5 ENE ** ***** **** 1308 1 2 7.6 -1.0 3.3 064 .3 .4 349 2.5 ESE u ***** **** 2088 2 3 7.4 -1.8 2.8 067 .9 .7 ti50 4.4 ENE ** **Ul **** 2350 3 4 7.8 -5.2 1.3 073 .a .B 096 3.9 ENE ** ***** **** 2733 4 5 6.1 -5.9 .1 063 1.6 1.7 047 7.6 t~ ** ***** **** 2751 3 b 5.6 -1.1 2.3 060 1.4 1.5 075 6.3 ENE ~~ ***** **** 1920 b 7 1.8 -.8 .5 061 .a 1.0 062 4.4 tHE ** fiUlU **** 755 7 8 1.8 -1.6 .1 Q4B .4 1.0 927 3.2 ENE ** ***** Hl!f 855 8 9 2.4 -2.2 .1 216 1.1 .8 212 3.8 ssw ** fltif!ff **** 763 9 10 -.4 -3.5 -2.0 214 2.3 1.2 219 5.1 ssw ** ***** **** 1020 10 11 2.0 -3.3 -.7 060 1.1 1.1 043 5.7 ENE ** ***** **** 765 11 12 2.0 .1 1.1 060 .4 .4 047 1.9 NE ** w**** **** 538 12 13 .5 -5.2 -2.4 031 ... .6 214 3.2 NE ** ***** *'** 345 13 14 1.3 -11.5 -5.1 079 1.0 .7 on 3.8 E ** ***** **** 623 14 15 1.2 -14.3 -6.6 048 .7 .6 028 2.5 E ** ***** **** 150i 15 16 -.a -7.5 -4.2 *** ·lffU .7 *** **** *** ** ***** **** 293 16 17 5.0 -8.4 -1.7 026 .3 .4 026 1.9 NNE ** ***** **** 835 17 18 2.4 -11 ~0 -4.3 153 .1 .4 Qqb 1.9 s ** ***** **** 1540 18 19 .B -4.2 -1.7 *** **** .3 *** **** **' u ***** **** 24l 19 20 .7 -13.8 -6.6 *** **** .6 *** **** *** ** ***** **** 630-28 21 -2.8 -12.8 -7.8 067 2.3 2.2 084 7.6 ENE ** ***** **** 893 21 22 -1.5 -10.6 -6.1 058 2.1 2.3 057 7.0 NE ** ***** **** 1485 22 23 -2.0 -15.5 -8.8 080 1.5 1.6 055 6.3 E ** ***** **** 1241 23 24 -3.4 -19.4 -11.4 076 .6 .7 081 3.8 E ** ***** **** 1323 24 25 -4.3 -21.5 -12.9 096 .2 .4 124 1.3 E ** ***** **** 1193 25 26 -20.8 -24.6 -22.7 01'9 ' ,5 ,5 877 2.5 ENE ** ***** **** 153 26 27 ***** ***** ***** *** **** **** *** **** *** ;.f ***** **** ****** 27 28 *~*** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 28 29 *'*** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 29 30 ***** ***** ***** *** **** **** *** **** *** ** ***** **** ****** 30 31 ***** ***** ***** *** **** **** *** ***~ *** ** ***** **** *U*H 31 MONTH 7.8 -24.6 -3.5 068 .a .5 047 7.b ENE ** UUI **** 30135 GUST VEL. AT MAX. GUST MINUG <:) ,_ INTERVALS 5' 1 GUST VEL. AT MAX. GUST MINUS 1 INTEl~ VAL 5.1 GUST VEL. AT Mr~X, GUST ?LUS 1 INTERVAL 5.7 GUST \)EL. AT MAX. GUST PLUS 2 INTERVALS 5.1 NOTE: RELATIVE HUMIDITY READINGS ARE UNRELIABLE WHEN WIND SPEEDS ARE LESS THAN ONE METER PER SECOND. SUCH READINGS HAVE NOT f.!EEN INCLUDED IN THE DAILY OR MONTHLY MEAN FOI~ RELATIVE HUMIDITY AND DEW POINT. ~·*•Xo* SEE NOTES AT THE BACK OF THIS REPORT ~·:X.·Xo·X· • APPENDIX A.4 DAILY DISCHARGE SLOUGH 9 s17/i7 • s13/t14 TABLE 2.1.3 DAILY DISCHARGE SLOUGH 9: 8/10/82-10/14/82 "' Gage Height Water Surface Discharge " Date (ft) ( ft, msl) (cfs) 8/10/82 1. 03 593.71 10.0 8/11/82 1.01 593.69 8.7 8/12/82 0.98 593.66 6.9 8/13/82 0.96 593.64 5.9 8/14/82 0.95 593.63 5.5 8/15/82 0.95 593.63 5.5 8/16/82 0.94 593.62 5.0 8/17/82 0.94 593.62 5.0 ~ 8/18/82 0.93 593.61 4.6 8/19/82 0.93 593.61 4.6 8/20/82 0.91 593.59 3.9 8/21/82 0.90 593.58 3.6 8/22/82 0.89 593.57 3.3 8/23/82 0.88 593.56 3.0 8/24/82 0.87 593.55 2.7 8/25/82 8/26/82 8/27/82 8/28/82 8/29/82 8/30/82 8/31/82 9/1/82 9/2/82 9/3/82 9/4/82 9/5/82 9/6/82 9/7/82 9/8/82 9/9/82 0.88 593.56 3.0 9/10/82 0.88 593.56 3.0 9/11/82 0.89 593.57 3.3 { 9/12/82 0.89 593.57 3.3 9/13/82 0.98 593.66 6.9 9/14/82 1.06 593.74 12.4 9/15/82 9/16/82 9/17/82 9/18/82 'icc s13/t15 TABLE 2.1.3 (Continued) DAILY DISCHARGE SLOUGH 9: 8/10/82 -10/14/82 Gage Height Water Surface Discharge " Date (ft) (ft, msl) (cfs) 9/19/82 9/20/82 1.74 594.42 339 '-9/21/82 1. 72 594.40 315 9/22/82 1. 51 594.19 138 9/23/82 1.24 593.92 37.3 9/24/82 1. 11 593.79 17.2 9/25/82 1.02 593.70 9.3 9/26/82 1.00 593.68 8.0 .. 9/27/82 1.07 593.75 13.2 9/28/82 1.02 593.70 9.3 9/29/82 1.01 593.69 8.7 9/30/82 1.02 593.70 9.3 10/1/82 1.03 593.71 10.0 10/2/82 0.98 593.66 6.9 10/3/82 0.95 593.63 5.5 ~· 10/4/82 0.98 593.66 6.9 10/5/82 0.92 593.60 4.3 10/6/82 0.90 593.58 3.6 10/7/82 0.92 593.60 4.3 10/8/82 0.88 593.56 3.0 10/9/82 0.87 593.55 2.7 10/10/82 0.86 593.54 2.5 10/11/82 0.86 593.54 2.5 10/12/82 0.87 593.55 2.7 10/13/82 0.85 593.53 2.3 10/14/82 0.84 593.52 2.1 \.. Note: A dash (-) indicates missing records. t ... 'I APPENDIX A.5 LABORATORY TEST REPORT ON GRAVEL GRADATION s17/i8 LAEiCRATORV TEST REI=IORT R&M CONSULTANTS, INCo ENGINEERS GEOLOGISTS PLANNERS SURVEYORS TEST ON Susitna Subsurface Investigation R&M PROJECT NO. -=..25~2:::.:3:.;1:::..4-=----­ CL!EN~PROJECT~~~-~-~~--~~~--~~-~----~ LAB NO. ~G~-~1~~~~- SOURCE ________________ SUBMITTED BY R&M FIELD NO. ------ SAMPLED FROM_....;.S..;;.;.l...;_-)u_g,..._h_9_I....;.s..;;;;l __ a_nd ___ DATE SAMPLED 9-21-82 DATE R EPO RiED __;;9;_-....;:::2.;::,2 -__;8:.;;2;__ __ LOCA Tl 0 N __ B:::.a~n~k~o~f:..-.!aiS~l~ou.\6.:g~hu...... ________ DEPTH --·----DATE RECEIVED 9-22-82 -- GRAIN SIZE DISTRIBUTION CLASSIFICATION %PASSING AS SPEC. UNIFIED AASHO FAA COMPACTION SIEVE REC.EIVED -3/8 11 - 5" % + 10 OPTIMUM MOISTURE....,.,- 4" %+3 MAX. WET DE;NSITY 3" %GRAVEL MAX. ORY DENSITY 2" %SAND ===I CORR. MAX. DRY DENSITY 1 1 /2" 100 %SILT % FRACTURE __ 1" 89 %CLAY METHOD . 3/4" 82 FSV NATURAL DENSITY_ 1/2" 69 LL NATURAL MOISTURE 3/8" 60 100 PL WEIGHT LOOSE #4 48 79 PI WEIGHT RODDED #8 CLASS . #10 40 68 TOTAL WT. TESTED # 16 GMS r -# 20 31 52 REMARKS -# 30 # 40 16 27 #50 # BO 3 5 I # 100 2 3 # 200 O.l O~J. .02MM LL. u .005MM a. --. I COARSE SPEC FINE· SPEC DELETERIOUS MAT. >- MINUS #200 MESH ... -Vl SOFT FRAGMENTS z COAL & LIG. OR LT.WT.PT. w a CLAY LUMPS >- STICKS & ROOTS 0:: FRIABLE PARTICLES 0 SPECIFIC GRAVITY ·- ABSORPTION . FINENESS MODULUS SULFATE SOUNDNESS FREEZE-THAW RAifO L. A. ABRASION LOSS GRADE . - DEGRADATION VALUE THIN-ELONGATED ,· ~-·~··1".. . -t.>f"«"'' ..... MOISTURE-PERCENT . ··· .......... ORGANIC COLOR "'"' ~ .,.,..... • .... 't ~ '.... • 007656 • .. . U.S. Standard Slwt Openlnga In ktehu U.S. Standard Sieve Numtere Hydromtter !) . 100 4 3 2 11/2 I 3/4 1/2 3L8 3 4 6 ll 10 14 16 Z) 30 40 50 6070 100 140 200 270 0 u 1\ I I' I '\ .~ I I I I ·' I I I I I !' ' . ' 90 ~ ~ . ~ 10 ~ c\ ,\pc: -:.. ..... '~ I\ 80 -~ ~ i' 20 .. ~ ~ . "=' ·\ 70 :-' 30 -\ ..., r\. '\. :E -40 01 .c 60 '(j) 01 " (j) 1'\ ~ 3: "'~ > ~'• ..0 >-50 -50 ... ..0 C1l ~ (IJ ... !\ .... -~ ~"'-. 8 i.L. r' ~ u c 40 "'-. 60 1: C1l r\ C1l (.) (.) ........ ' ... ..... cf C1l a. 30 ~ -70 1\r\. \ 20 ~ 1\ 80 I'\ 1\ "' \ . 10 •i 90 ~ ~ 0 200 100 50 10 5 I 0.5 0.1 0.05 0,01 0.00!5 0.001 100 Grain Size in Millimeters COBBLES _GRAV_El I SAND I SILT ffi CLAY Coarse Fir.e Coarse Medium I Fine I -SAMPLE NO. ~!STURE DRY LL PI CLASSIFICATION a DESCRIPTION CONTENT DENSITY -Sam_ple taken from banks of downstream end of slouoh 9 . ·-.. DRAWN BY 1 ~~· f C) . \!!. ! • ·i: .;.t'i"'~ '• ~ .. f t··;·.··~ 1 .. 'J .~·· ~ 11 ,, ~~· $; :\:l~· .• ~ ::'\\JiP·~~j !if. t':.t~-}~ V.:-~~\llf ~;~M!l:~i lf=Jl-rl· APPROVED BY .. rf1~~:4..• , •. : •.• ' ~ ~ • I • ., • • •~ "} •• ~ ' I ;ta • ~ •/ v!~~.~·j· .. J~:~7\1·~· -:· • !l!,..~, ·"i-i"r,l· ~·7,4 p.t·t.,. N.· r,1 ,.,, . ···1·,..~~ .. , DATE ct-23 .. ~ .... t. ~, t-•f "''~·./! ,_.. ,, ...••. ~··· ... ~'kJ /I:~. ld '. R&M CONSULTANTS, INC. . PROJECT NO. 253314 s 17 /i9 APPENDIX A.6 OBSERVATION WELL BOLE LOGS .. ;<.. ..... ·,·: .. .. .. .... > w c: N 10 .... d z ::E a: 0 l.L JIIR JOB NUMBER Calculations ~FILE NUMBER SUBJECT: ) ,_ trV {;. // ? SHEET J ;f'/7-/ CC-c:noCy BY ~ APP ........... . (_, ~~ . ........ \ t:::) • ·: , : ".. . {) /) ,: ... ,'-J . . -() .0~': .. ·. ·o· "" ... 0~ 1 .... ----10-0 .· " . . ·.· -; 0 c:?. .. • -• d1 • :. O·;·o . . . ; .. ; :,0 :·a-·-_ ... • ·o .. . ·o· . 0 • .. ~ -~ .· •• I_/' cJ --:.:.. -· ;_ -~o.o ··o: . .; o . 0 .. . . . • ··.(1 · .. :D.·· . . . " ·a·. •: . ' •. (} : 0. ·~:~ :-4 0 r----... ·· Jo.-o a or. P"F dP.e £" r11t:=t::1 <fd.en<r..v r"tV£ ;v ~e"" ~~~ S"-:JAA::~ / $'<7r7<:;-6~r1:G 4_.-<!:J Ckfl:T' LC'J; I c-.,,.,. ~c~c PK"-ru,-"-". A?e"/:4......, /'?:1 --{ _s-. ~. ~.-<4!?? s~.-7 1.r 142-;T" p-,.~ 1 ~-o rU:JevJ C:"f.r.-~:r /'5/0/, 7? OF ..s' DATE '1!-f..o I DATE • > UJ a; d z; ~ a; 0 u. 8'.0 __ .,..)sz,___! Calculations SUBJECT: :. o· ··.; '· .. ··a··:o :·. : ~~A.t? 0: ·:,o· ··a \ . P.·o·h .'(2:U ,. ··o .. ~ .~ d -'J-·· <li.O _: ~·:'i', t~··· .. 0 4~ -·. · .. o ~. 0 • ·o . • tS l ,: .. ". ~ .. ~·~ .-"t • • 0 •. "' . ....... 0 ' : .. :. ·o . JOB NUMBE R. __ -~.P....;;..5...;.J..;;;o;..tl..:.·...:7~7 __ FILE NUMBER. _______ _ SHEET :.l. BY ji! 112~-'Jtlft:t.. APP OF S DATE tf~/J..l ' I DATE v c:-e-y ,lf"??-4--o -"..e.; c-t:..1 ;(/ c t:vc t ( 1"'4' r K t::.-~ / E?I'>' p.c:n:.~ 1 c./~ .( t::k:>J€ _.[J "~cu P'<£::.V:SIE' / I ~OCJ-~~- ~ 4 • .A.)~ - .l 3'-- .,.. > w a: ~ .,.. d ~l ~~ -·- Calculations SUBJECT: 19/7-J ; :[) .. "' ~ . /'\·· ?::J·~ a .. . . ~ . ·:o ··. . -. ·:c;· · . . .. (} /.() - ;t C .o tioT. iff' #CJ'-e JOB i'JUMBER_...,.....:/_:7.:..5"_/_0_;._/......:/ __ FILE NUMBER··-------- SHEET 5 OF ~ DATE t,4(8 .1 > APP DATE • ... > w a: N ll) ... 0 z ~ a: 0 u.. A~IR Calculations JOB NUMBER / :lj ;>o /, n FILE NUMBER SUBJECT: 'fj t. dV ~ /:7" q SHEET '7" OF BY .l?,4tl DATE /J/1-~ C:t.='r72<J6.';/ APP DATE GIU?. sv~ a""'(J./""' r/-ve ;;-v ~rl' Jc ~~"~q $?"~ .-?,._-' c.¢"9.--t::L. , ~ . $''7""-"0 J (; ~y{_"'Z. ..,..c.,;;~ C4/'tf1]t-e..r.., R-?' .s N:!"(" p.-e. ~ t:..£/ro.4. .., S.iZ?6lv y OOddc.<J'J 41-~ c,z:-yvec. W//?7 $''7A-<? p-.-<'77?1!.,-y, v£'o/ .) t{_L/_.f ..l ' -~ .. ( () / ..:-.......,_ 3 " 6 ~ ~a. ~==v~--+----------------------~ _L b T.D, - .... OWN. R!b CKO. . R&M CONSULTANTS, INC. DATE, l..f-/2. i!NDINaaR• DaQI.COI•T• P1..NN81'1• aUR\IaVCR. SCALE.. , . -. I I. . - 1?: ts ' - -- I -0 w '=.l t.. GR.ttoso G-Il. Pr v E '- --------- Jr<.. T'r SA.rJD !-t/ 0~ G tt.v::r. C.J -------- Cit= rt ·: fi,._!: .S:t 'T' ~ .. ~ ~ J c.:..., ~ell i-f. ..rfr; •• ~ ...J --- GRA v(;: t.. , -----·7 VF. ;t ,. f" :r ,.... ·~ .!:I t.T b""o""""'-' .,_;. '"' """' ~ .... 11 o ... t ----· --g,S" - Sr t..Ty ~.ltlNO '-' J o ~ & A ,..;x c. J -Jo' T.n . • F. B. GRID. PROJ.NQ OS 2 J l't DWGNQ .. .. ' "' Lc-.,.1 tl t'J~.l l:J-9-'i 1 . 4_~ 1-{~!2-g.-?. , Lf::...t"'l.-~"L ;' Q 0 l , r } .. . ' ~..:.. . ! I I ~ ~I \ , ~ "' 2 SANDt GR,<\I.I~t. "In p. N''( \ Srt. • 't ..5 At-J I) '-'/OR(;. AN:!: W LARG-E 1.-" { h n) C.611 0 Ll;! l: ... " . . $' w.o. "' . - -b, T.O. . .. -h•s l re.c.. \:. G g' (r.. ... J <: cal.!..\~ ) -. Io' .. - w.D.-%..... -----~ --!tJ" -. . Gr~Av~L. , ( I i. 0. . . . . I . _, \.. , j OWN. (?B F. a. CKO, . GRID. DATE. Y-3"2.. PROJ.NQ CJI"'~J l'f SCALE • '-f _., ~ -~ '- " w 0 ,"' .~ '., ~ FJ. pJ J;. .!;:r. l.. I :"'4 (, '/ / ~-;. ------/,f / I.S s A-rJ 0 '( G ~AV-1::-L 'ro ... .-..lnl Co J.,l, It'S. I~"·····..: t I tj " cl.c. ... .,le• ... ., s . -~ w.o. , S T.D. - . ... . . L , OWN. R.tl t CKO, . R&M CONSULTANTS, INC . DATF;. Y-22 CNOINEOIRfl OCCI.COI!IITIS PL.,-NNCA• aUR\I.VCRG SCALE. I '• -: " - .. ' J . / .~ .... -. I / 0 F.:t"'£ .S.:!'c..l '-I o e. <. A t..tL c. ~ --- f:r((A-vi=.t. \,.J-.e.\\ e u.J.,..( t-o ....... J .,J. c ·l:.ble.J ~ . . -2. 7, F. B. GRID. PROJ.NQ t:>f"l..J 1 'f nwr. NO 0/ I " 2." w.o. -L --t---1'--- , OWN. Re. CKO, . DATE, ~-;-:t ..,_ R&M CONSULTANTS, INC • .NDINII.CRa a•CI.C::IDiaTa PLANNaAa DUR'Iola'rQRIA SCALE. . ' ~. / I ~ 0/ '(ri<Jr.S+ --------- V E t< '( ~I .V E: .S I L T )'Y\oi.s + b ro"'""' " ------ s/ 9/ ,; t:t.s T.D. F. B. GRID. PROJ.NO. or~ Jr .. y nwr. un .J .. r I ~ k s.s"' w.o._!_ --- OWN. (.((3 CKO. . DATE. 'i-JZ SCAL~. l •. . "' 0 o R c. ti "'X. c...s ------0 .r"' S..:rl..T . ---· ---U / I 1 Lf,S' w.o. . ;g_ . GR.Ar:F.c.. 6 "' T.O . .. . . R&M CONSULTANTS, INC . I!NOIN55Aa 08CI.DOI•Ta PI.ANN.Ra !!UA\I.VCRa ~ . 't ·~· l'f i· ,, ~:-.. L .SI L.T ! -- G (<f+IJE t... . I --- - . ' 0 -3 ' , 1./.S T. 0 . . F. B. GRID. PROJ.NO. ().f"2.J 1-f DWGNQ • • r "' 9-11 '-1-·1 '-1 -2 "2. , C) r! .. ~·· S"r L ,. . . $r l ·~ ~':J .. f. ·t ':-~---2. I -}. --- ?) f.roo.~~ ~.l" l T' {~1..1\~r 2.7' & ---£,.., . £:z:L.T . - G(('A OJ E. I- q' ~ 'f w.o. . . . , OWN. f£3 CKD. . DATE. 'i-~2 SCALE ! '; -' ::};! ' If . . I 1 ~ i , !f; , 2. l.l:.l; , . • 'f' . . , T.D. - l t:;-I 2 Y-t'-1-S'l. SILT ------- G t<AV ~L - . . . 6' .:r' "-o S/.S I. • . F. B. GRID. PROJ.NO.. 0!"1.! 1'1 owr. NO, " , J .J v ' I ! • .{ i .:!. '~ ~· ,. 2.' t.a: 6' w.o. . OWN. p, rl. CKO. . DATE. 4-J: 2, SCALE. 1 ~ ? I . , 0 Sx t. T --------G~AIJI:.L ------- $.x t.. T --------- ' GRAVEl.. . # R&M CONSUL-TANTS, INC . ENOtNIIIIRa aaQ&;.CIDISTa PLANNaAM aU!t\laVCIAII .,. . " J; 0.1 Sx t. T - - GRAVE;L ..,. 7 'y w.o. -- . - . . I -- ~ . • 0 , -uS." t. , 'g F. B. GRID. PROJ.NQ orz J 1y OWG.NO. • • ,- '#tj-IS" . Lf-llf-i2 -· i ' ! j . .. SILT .. '"2.~ w_ --- -. G f<Au E.t- S,; ' w.o . Y!-- . . ; . " ~ OWN. r<rs CKD. . OATE, '-J-$2 SCALE. j ~~ 7 ,. 0 I . ~ --2.3 . !;'/ • . - - . . . I ' I . ' . ; F. B. GRID. PROJ.NQ IJS"2.JIIf DWG.NQ '] J "" ' 1 '-- t '- ' J ' ' J ._J ._) .J J ,. f.f t. i! # 2-I t.t-IS-~l.. o' ~ ~~ J.S ..:. I I I I s' w.c. OWN. (<.,G., CKD. R&M CONSULTAr\JTS, INC. CNDINII&f'll DIICLCDIBTII PLANNEI'lll BURVEVQRIII C~AV€ L -- F. B. GRID. PROJ. NO. o.s 2 J l '-/ DWG.NO. .. -r' !XJ t. ~ 0 --. \ii 1/ ~ -'-1 ' ,. 3.'7 +----+---- - t;.s-'~ G' ({ ~ v .E.(.._ ·vv.o. -::;:-.l---1--------------S. a 'T. o • .. J_ __ J-____________ ,. ?.s' r,o. I ___..) l~---------=~,====~==========~~=~:~ f. B. OWN. R.a. CKD. . DATE, '1fj t. SCALE. ,~~ ... ; / ,__ ______ ..,.""'1 GRID. PRO.J.NG. OS'2 . .l I~ OWG.NO. ' l 1 .__j \ l 'l,. •. J I ........ _J i d I J • I .. \!:) I • J.S . , f f. f i "-. -4:- Sit..1" -~------.-2. 7' GRAIIE.L . vv~o. , S.:< 1',0, . ~.s, w.D. . - 1 I ' c•/ .·• ~· . v' ..t . ~; .. ~· " ~ ·V - . I 0 . ~X t..l -------2. s I G~Avi:..L- J, ----r-----, 0 .Sx~..; C. rc. j ctJ "'• t sh ... J w .. \1..; ""r . ----·----- ~ GII.AVF.;t.. , '1 r.o . . . I L----~-----~··~------- 0 ~ , -W ,;: < c N • ~ ,; ~ o • J ::;D OWN. RB CK!l . DATE. '7/.3 1. --M CONSULTANTS, INC~ S IA.J.IT/\111 G tt D ... "" o w rt r~ tt .s -n..o ., PROJ.Na. on ., L. :;:~eeR~ aaai.DDI•TIII Pl..t\NNaRa »Uf'VavaRa . . . ~ I T SC~L.E. r:. 2.1' DWG.NO. • 4-I' -fl '-, o/ ( 0 ~ O.<l • ~ ~ s r'-l"' } ~:tt.T ; '" ~j ---------I. s' ~r----------. G R A\J Et.. ~ GRAVE'--. , '3.5 w.o. 9 " 3.1 -w.o. . , 'f.S T,O., .. . ~ . . . . . . I . . ~-" , OWN. {((3 Cl<i.\ . DATE. Lf-. rz. SCALE. t " .,, R&M CONSULTANTS, INC . liNDlNIII[IOia DliCII.DDI .. TC PI,ANNIIA• BUAV.VCA8 t..ov..r , r~:;~----- J'11APY II PRO~.t-4.0. O.t2 J 1'-f l t DWG.NO. l W ttT•t f~ r . iJ ~-q LJ-I & -8 "l . :r ~:rt..T J. 1. " ·, ------ G KA I.IS: c.. 3.L/ # ~· w.o, . . . ; OWN. R.'/3 CKD. . DATE. o/-Rz \ SCALE. I·~ 7' -ll ~-!() " ·Lf-/1.-g '2. 0 ·--~[1 I . /. 2 " S:r L T U.lr, ""'-........_, r---- G((AUi;.t- 4 , . , " S:? -w.o. 7 .. . I --- - ' ., "' 0 , --[.o . 6.s.-.. T.JJ • . JrB. GRID. PRO!), NO. OS Z...1 1 't oWG.NQ ..; • . ~ 0 -II <J :JJ.S'-It. LJ-11.-~?... /' '1-H-g c, 01 6 ..,. O,t.; Ji! p .... ~;-o r?c. f.lJVrcs '-'/ S OM'=. .S.t: &..T ---------- S x t, r S:r.t...T I / r-----'I Lf.o , ------~ -----. . . (;~4-VEL s'-='!:-. , . GtH\liGL. -: 6 T. c. w.o. b, _![ . . , w.o. 6.s T,O • . . . I ' I OWN. (?(!, CKD. . DATE, l..f-8 2 · M CONSULTANTS. INC. R & CIIIOI.aat•T• PI.ANNa.-a Bl,jRVIIYORS C!NOINEIIRII ' SCALE. I 1 '-' , ... . . . . I ~ . . - F. B. GRID. PROJ.NO. tJjz J 1'-f (;)WG.NQ ~ c. ! c. ~ ..1 APPENDIX A. 7 DETAILS OF WELL INSTALLATIONS AT SLOUGH 9B s17/i10 B 0 0 0 n I I u 0 -> w a: 0 r---------------------------------------------------------r------------------------·' lrw; till Calcu1lations. SUBJECT: r-----~ ;.• sn.""" ~ I ;,_CJ tJe .. h'"h/,,T Sc-Te. -,~,1) ~~ \ .. I . ! I • " ]7·'1 A"" .l'.IJ.· .ft:AC~ (/CIIf-.YJ/t', (9-J A) r I 11 t'V(. s.s .... t, 0 4c-Y/";.~,,. .l'e<t t:~l­ lf·" /D,') ro<y J'lt" IJ.·I 5 LcJ (/t: // -:l ,, PvC. /1l,fl. - fl%~f9t.. l',u>1r!' I { '·} /TI< '"d. ~ ,1,t:) ( dt~;~ f.l? :---, •• f'Vt. t I 9·'( j}(!t.y rl•" /0.'? Jj Jo.o tt Itt JOB NUMBER f.I 'JCJ/. "?? I=ILE NUMBER,. _________ J SHEET __ --L--OF $ BY ~~~.-r.. DATE~- APP DATE ~ J,J 18 ("1-lA) STtf: 1/~ ~.t sn -~P I f{ ~0 . ·~·" :; ! '''I : A;ll..y ~· r~ I .