Loading...
HomeMy WebLinkAboutAPA83Wayne Coleman Harza Engineering Company Attention: Susitna Hydroelectric Project Transition/Hydraulic Design ,,,-The following are enclosed: Descriptioro I Title Report~ Subtask 6.14 Seoul' Ho 1 e Deve 1 opment Downstream of High-Head Dams .. Date: March 9, 1983 Acres Job No.: P5701. 70 Drawing. Number Revision Number Number of Each 1 Code* ~;~~.,·· .· ~~ch~~--------------L--~-__....;..._-f-:-..:..__--l---L---h · ~h: .. · Intern a i Manos -1," t~'~· R. Ruggles,11 Ice Conditions Affecting Diversion Tunnels at Watana 11 , Jan. ·6, 1982 • Crawford, "Watana Reservoir Filling 11 , October 14, 1982 • Simon, 11 Aspects of Filling \~atana ervoir11 , December 29, 1980 .. Crawford, "Watana-Emergency Drawdown" ctober *, 1981. • A -For Approval or Comments fl ,_ For Construction C -See Explanatory Letter IX -FC»r Information E -For Purchuing . F .... Drawings Approved G -Drawings Approved Except ., Noted ·H - •.. ,;. ACRES AMERICAN INCORPORATE[• ., ·~ .. LIB. ERTY BANK BUILDING '~\l AT COURT BUFFALO, NEW YORK 1.4202 Telephone: 716-853-7525 Telex: 91-6423 Plelise Sign and Return Acknowledgement Copy. 1 1 1 1 Copies to: (First t;opy) Yours very truly, h.!t."d.. c~~ ACRES AMERICPN INCORPORATED David Crawford Lead Hydraulic Engineer ORIGINAL t •l ~ 'i ~ ' ; ~ ~ ·~ i l ,.! j ! .i 'i 1 ~~ i ·J ;~ ,, j) '!i l: l ,{ J ~ li r [ ' I l i I -·--.......,.._ ..... I s ' SUSITNA HYDROELECTRIC PROJECT ' ._, OFFICE MEMORANDUM TO: J.W. Hayden Date: October 14, 1982 FROM: D .. Crawford File: P5700. 07.07. 03 SUBJECT: Watana· Reservoir Filling ---------------------------~---------------------------------------------------------·~ d) As per your request, I have revised Watana filling analysis to include the following: Inflow based on statistical analysis of thr~e year moving annual mean flow Case C dm't'nstream flow requirement Construction schedule as per Feasibility Report Flood protection as per feasibi 1 i ty Report Analysis of annual mean discharge at Gal~ C•eek and Watana has been per- formed to determine the three year moving mean f1 ow i fr-om this three year series, an estimate of the 1q 50 and 90 percent probability level flows is made. These percents represent the percent of time the given flow will be e:<ceeded. Figure 1 shows a plot of the three year flow against probability for Watana and Devil Canyon discharges. The monthly distribution of the 10, 50 or 90 percentile flows is assumed to be equal to that of the long term average distribution of the flow at Gold Creek. The monthly flows for the three flows at Watana and Gold Creek are given in Table 1. Also, in Table 1 is the long tenn average flmv at Gold Creek and the monthly (Case C) flow requirement at Gold Creek. The construction schedule for the main dam at Watana is summarized in Table 2. Flood protection during filling is assumed to ensure for at least protec~ tion from the 1:250 year flood volume, except during early construction stages with cofferdam control. During early construction stages, the protection is 1:50 years. In all estimates ~~flood volume requirements account has been made of outlet capacity and the changes to this capacity due to construction of expansion chamber, etc. The reservoir filling for the 50 percent inflow case (median flow) is shown in Figure 2. Discharge requirements at Gold Creek are exceeded in all years except for 1992 where the requirement is matched. . •. J.W. Hayden - 2 October 14, 1982 Reservoir fi 11 i ng requires three ~pri ng runoff periods to a chi eve full poo 1 elevation; hor1ever, unit commissioning could start in the fall of 1992. Normal power op~rations (as per energy simulations) could commence in May 1993. The fi11ing under the higher inflow of the 10 percent 'level is marginally faster than for the 50 percent inflow case due to spillage for flood pro- tection. Unit contnissi oni ng could commence in September 1992 for· this case with normal operation in April 1993. Under the low inflow case (90 percent level) the reservoir fails to r~ach normal ryperating level and requires a further spring runoff to reach normal pool. However, levels are such to allow unit commissioning to commence in June 1993. Figure 3 shows the filling sequence. Details of the filling sequences for the three inflow cases are given in Tables 3, 4 and 5 • In summary, Unit comnissioning can begin about October 1992 for at least the median (50 percent) inflow. Normal operation could commence in May 1993 for inflow greater than the median inflow. Flows with less than a 90 percent chance of occurring (dry) would nesult in a delay of ten months in commissioning to June 1993. It requires about three years to fill the reservoir to levels at which normal power operation can commence. Continuing studies: DC/kt Encl: Detennine critical percent inflow at which commissioning is delayed past January 1993. ~~~# David Crawf!'l'rd as cc: C. Debelius Month ~1ean Oct 5757 Nov 2568 Dec 1793 Jan 1463 F~b 1243 Mar 1123 Apr 1377 May 13277 Jun 27658 Jul 2438.3 Aug 21996 Sep 13175 Annual 9703 f ' ';.' ,-,, Table 1. Discharge at Gold Creek and Watana Target Flow 2000 1000 1000 1000 1000 1000 1000 6000 5!:-78 6000 6480 ~tJBI.f 12000 9300 q{OO Gold Creek Flows (cfs) Inflow 10 50 90. 6453 5733 5073 2878 2557 2263 2010 1785 1580 1640 1457 1289 1393 1238 1095 1259 1118 990 1543 1371 1213 14882 13221 11699 31002 27541 24371 27331 24280 21486 24655 21903 19382 14768 13119 11609 ·10876 9662 8550 Watana Fl O\'IS (cfs) Inflow 10 50 90 5272 4713 4213 2352 2102 1379 1642 1468 1112 1340 1198 1071 1138 1018 910 1028 919 822 1261 1127 1008 12158 10870 9715 25326 22644 20238 22327 19963 1 jY342 20142 18008 16095 12064 10787 9641 8885 7944 7100 ~ 'c,y ~ # •• Table 2. Watana Dam Construction Schedule Year Quantity Accumulate-d Fill Quantity Elevation .. MCY MCY FT . .. 1987 3 -.:c •.: ...... 0 . . ' 1988 6 9 1989 12 21 1660 1990 13 34 1810 ' 1991 13 47 1950 < • i -~) 1992 12 59 2130 ~ • l 1993 3 62 2210 . . . . . ~ ,:_; ,;: f.(_ ... ,j .... ·; """: _ ..... ...... r· *-'= • "'"':- t;-'1: .Q•t.. !.;J;;f;~ ~~'·· 4"-: -·. ~­-~ ,. ...... . .j! ... . . .,. ... ~\·· .' . ··=~=··· ... ?~·: . t. ( 11\-Q;, \.E. 3, c WATANA RES. FILLH:o: 10/. rt~FLOW;. CftSE C ( YEAR ftTH INFLOW R[V'D DIS TOTAl rLe~ ~ STOR~GE FLOW 11lJTFLOW (1/S tOCr..THJN Aflf.lt'F'i tlrl 1 1 82415.4 61504.0 82415.4 1640.0 o.o 1 2 63218.2 55552.0 63218.2 1393.0 o.o c 1 3 63226.1 .S1504.0 63226.:1 1258.0 0;:!) c 1 4 75054.7 5952o.o 75054.7 1544.0 ~J:c . l ·1 ::; /17765.6 201487.1 _747765.6 14882.0 0:~ ::;.'!. .... -.. -.--:..: . 1 6· .. 150·7403-.5 -5952o.o ""·· ::.1-ft0?-403.5 31oo1 .o .. ·o~ c 1 7 1373199.8 61504.0 1373199.8 2733o.o o1:(J . .·· -1 8 1 2 3 8 813 • 5 4 6 0 4 8 0 • 4 1 2 3 8 813 • 5 2 4 6 55 • 0 0;~0 . • !~ !"" !!1 r. u·· "'~-. ? .• !~· L •, .! C· 6·- C ·' ··t: ·. ('r:- .. ~ ~--~~-· 1-----9·--· .. 7-18049.3 _:_~~92.653.4 ...... 718049.3 14767.0 1 10 ·324249.1 61504.0. 324249.j 6453,0 1. 11 139991. o 59520. o 139991. o · 2e79. o f.-12 -~·100989.6 ·-6·1504.0". ·100989.6 ....... -. .:...20:10,0 ~'1 .. 2 1 8 2 41 5 • 4 61 so 4 • o 8 2 41 ::; • 4 16 4 o • o o .~o 2 2 6:5218.2 55t'i32.o 6J2tS.2 t:s93.o o'l~<· 2 -""-3-· . 63 _ 26 .1 . -·61504 •. o .. · 63·226 .J~ . --12-sa. o o-ro 2 ·4 75054.7 ·5952o.o 75054.7 1544.0 o:tl~ 2 5 7 4 7 7 6 s • 6 2 o 1 4 8 7 .1 7 tt 7 7 6 5 • 6 14 a a 2 • o o ·t;p . .. 2 ._ 6 . 15 o 7 4 o 3 • s ~:·· · 5-9 52 o • o . . 15 o 7 4 o 3 • .:::; :. · . . 31 o o :1 • o o.;:o 2 7 t37J199.B 6t504tO 13731~9.8 2733o.o o~t ~ 8 1238813"5 · 460480.4 1238813.5 24655,.0 o;:j> .2 ..... -9-718049.3 39·2653.4.-718049.3 -··14767.0 o-;;~. ~~~ c 2:.. to 324249.1 61504 ~ o :52·1219 .1 6453. o o f:t, 2 11 1399$'1 .() 59520.0 13999 j • 0 2879.0 0 ·~ 2:-12 100989.6· .. 61504·.0 . 100989.6 · --2010.0 oO:t. ·-· 3 .1 B24t5.A 61504,0 824t5.4 164o.o o;t 3 . 2 6 3 218 • 2 55 55 2 • 0 •r."' . 6 3 21 8 • 2 ~ 3 9 3 • 0 0 ~ 0 ~ .:_,. ., •" ·3'·· .J · 63£i_-6.1 .st~·5o4.<Y=-63226.-1 · .·1238.o .... o~; ( . ·. 3 . 4 7,5054 • 7 _ 59529,0. 75054 • 7 ·-·-1.544. 0 O!.i9 ·::·· . ,3·:-51 ~· 747765.~A.~-·~· ~.0.1487.1 .. · -'7'4?765.6 ... _ . ..t~B82.o . ·.P.~· ::';.~~~ ~r:4. . ··"'f ~-·~:-~~.:,-. .... """'··-• .. ..._.. ·•v· r:--..··-c-... _. ... ..... -f"!" ..., ... I:" --.--·~ • ~ •• • . -... • ..,. ----·-~·-~--.. ¢:""-··1 ;)07403-. 5-!:::-·-~-S'9 . .)2\hO~~·-:tOT40~ •·v -··-'-·-iHOOh 0 · · -· ·-::.::0 . 3 7 ~373.199.8. · ·-o1504.o 1373199.8 273:Jo.o o! ......... ¥ -~;:;N4!-( ~ :! .. ~ . .:. ~-· :;· .. _;.:~~i"" ;~ ~ N ~ ::00::~··· 3 8 12 3 8 813 • 5 4 .~ 0 4 R 0 • 4 1 2 ~H~ 813 • 5..--21/J 55 I (} 0 • 0 3 •. 9 -718049.3 392653.-4 71B049.i. 1476/.o o • .b 3 1 0 3 2 4 2 4 9 • 1 615 0 4 • 0 3 2 4 2 4 9 • 1 6 4 5·3 • 0 • 0 • 0 3 -~11 139991.0 59520.0 1.39991.0 287S"·.o o.o . ( 3 12 100989.6 61504.~ 100989.6 2010.0 o.o 4 1 a~4t5.4 ~1304.0 82415.4 164o.o o.Q 4 2 63218.2 55552.0 63218.2 1393.0 o.o (. · .. ·---4 ... ..J -"--63226.-t.:. .. -6-150~.o.. ·63226.·!·-: .... · 1·25B .• o ~ o~q :: ·-4 4 75054,7 39520o·O· 7~)054.7 1544.0 0.~ c il 4 5 747765~6· 201487,1, 534485.6 -1l414.3 213280;0 ..... .• . . • • •. ,,.... ·~L--• 1 coo.., "03 ·c: -·. . c:9c:zr.· o•·~ .. 11 '"'07"\"1 ., -~ . .t::.'l~·.l.ao " . . 71 66.,01 ~.!.·--...... · --··~----~-"\:J •..t--r .· t"'\J--~ ....... -v v ·v-r. ~ ·7 ""f.'Q'' ... .._.,.....,._.~ ....... ""'o-•-.:···-···u-. o ~ (. :;_ 4 ·. 7 1 .~73199.8 · · 61504.0·. 3265.j.9.~· 1031~.9 104.S6~o~· :•! 4 8 L .. 38813.5 460480.4 · 922j3~L .. • 1950o.1 3166 .... 0. 4 :9 718049,3-392653~4-401369.3· 9446.4 J166RO; 4 to 324249.1 61504.0 324219.1 6433.o o.tl I : J "-!.,J .·! :"* .._ ;: .. .: -~ ~.· (_ . : 4 11 139991;o 5952o.o !3999J.o . 2879.o o.d 4:.... .. 12; 10098~-•-o ... :. 6150A.o-.~ l009B9.l-. ·· ·" 2010.~ o.-q .'J .. -· •-•'-<•"•"--~---"--•-( H WSEL CREST EL FT FT 1460.0 1536.·') 1460.0. 1536.0 1460.0 1536,0 1460.0 1536.0 1460.0 1536t0 ··-1-4oo •o:: 1536.0 1460.0' 1536·. 0 1460.0 1536.0 1460·.0 1536.0 146Q~.o 1536.0 1460~0 '1536.0 1460.0 1536.0 1460.0 1536.0 1460.0 1536.0 1460.0 1536.0 1.4.60. 0 157~.5 1460.0 1601.0 -1460.0 1616.9. 1460.0 1632.8 '1460.0 1648.6 1460.0 1660\0 . 1460.0 1660.0 1460.0 1660.0 1460.0 1660.0 1460.0 1660.0 1460.0 1660.0 .... -1460.0 bS60. 0 1460.0' 1697.8 1460.0 1725·;4 -1 466;'() -!-751 ~-7 1460.0 1772.0 1460.0 1792.2 1460.0 -~ ~. 1810:. 0 .. 1460.0 1810.0 1460.0 1810~0 1460.0 1810~0 1460.0 1810~0 1460.0 1810.0 1460.0 . 1!310.0 1460.0 1838.3 162f.O 186~ 9 . -~-1699 ··'4 --~~·-_:._ ·1887·. 6 ... 1823 .. -1~. .. 1909.6 1851.2 1929.9 1874.9 1950.0 1874.9 1950.0 1874.9 1950.0 1874.9 1950.0 ( ( c c ( ""' ~· ... ~~·· c c c ~~ ( c (.;. ~ . ~ :(· . ~ ( ( ( (. (. ( YEAR MTH 1 NFLO~l ..,. 1..\l..t 8241~.4 j "' :~ 63218.2 ... ~· ...t 3 63::26~1 5 4 75054.7 5 5 747765.6 5 6 llltJ :t507403.5· .-7 137319!7'. s ..; 5 8 :1238813.5 5 9 718049.3 C" ...J l00C..1 .324249 >1 5 11 139991.0 5 12 100989.6 6. 1. .. _ -824.15.4 6 2 ,6~218.2 6 3 63226.1 ·-·, 6 4 __ 75054.7 .6 5 tlfl1 747765.6 6 6 150740~ •. 5 6 7 -137.3199.8 . 6 8 1238813.5 • 6 9 718049.3 6 10 324249 •. 1 6 11 139991.0 . 6 12 100989.6 SUM 38606264. $ ·--.. .. - = I I•; .. ~ i~ ' ~·r, • <J t:.·; ·-· . .. .,.._, .. -·· .. . :~ .. ·~·~~ --·-----·--.. . . . f~EQ' (I D / S FLOW 61504,01o(.U TOTAL UU1FLliW 82415.-\ ~.3218.2 61504.0 63~~6.j 59520.0 ~9520.0 :~ 0 1 tj !17 • t 'l1 \, 2 0 1 ·18 7 • 1 c;•~C"?O oTm.. 59r.:;"O '"' -,J..,. • -::,_.-w~. • '' 61504.0 555416.8 460480.4 5~1943.~ 392653.4 392p53.4 6 t 5o 4 , o .. 6 u~ o 4 • o 1oo0 59520.0 61504.0 61504.0 :35552·0 61504 .·0 59.520. 0. 201~:7.1 59520c.O 61504.0 4,S0480, 4 3<~2653. 4 61504~0 39520.0 61504.0 .. 5 9'520 ., 0 IOD6 62731.6 e2415.4 6321.8.2 63226 • 1lD"l.b . 59520.0 2014R7 ~ 1 626576.S 61504.0 9753t.9.5 718049.3 324249.1 139991..0 100?89.6 29137270. ·--.. ---·--.. ··-~ -~ ... -...... _:::-:: ......... ,~--!.. ... • ··-~ ...., __ .... 4-.t. ~.. . .. . . .. ··-···~ ........... ___ _. .. . " .... ~ ·---·------~ • ' .. r l i rt.DW @ STOR~GE ( D·~ LOG~TION ADOIT pN 164o.o o.~· 1393.0 0,0· 125B.o o.·:· 1 2 8 3 • 0 1 5 [i 3-1 • ·, . 61/00.0 !346:08. : . 6675.0 14~7R83t~ 14033.6 B177BJ~o: 13161.9 706870.0. ... 9300.0 21 B 1 •. o 1527.0 13.88.0 1640.0 1393.0 12;58. 0 1283.0 6000.0 .~003. 0 32539~:i t 9 I 262/'45 t 1 ~= 80471.(. ·1553~. 7 546278.~ 880827 .(· t31A695.l · 2037j • 6 . . 26344 4. ( .... 14767.0 .0453. Q .• 2879.0 2010.0" .. ..... -. ... ___ ...... -:1!~~-j~:=.. :-:.~ .. ~ .. ~~ ...... -..:....:. .. ':' ·. ......... _ ..... USEL F'f 1271).$ 1874."9 187•L 9 18:1 6 •. t t9l.4.~~ 2036.j 2065.5 2077.9 2088.0 2091.1 2092 .'6 2092.6 20~2.6 2092.6 2093.2 2111.9 2140.5 21.7:7. 8 218~;-o 2185.0 2185.0 2185.0 :,_lj85.0 CREST EL fT 1?::~o.o 195,j,o j 950 ... 0 1988.5 ::o::2 .• 7 2()54 :2 20Bh3 2107 ... 1 2130 .. 0 2130,0 2130.0 2130.() 2130.() J~ ·~~:s. 2130.0 . 21~0.() 2145.6 2159.4 2172.6 2185.7 2198.B 2210.0 2210.0 2210.0 2~!10 .o •· .::f~~· ·"!'' ,. ~· ~ l ,. ,· 'j><o.f.· lr ,.._, ~ -............ _ ..,-·-·~· ---- ..... ( -- -· I l~e:,LE" Lt l ~~;~T;.:J,i R! ••• : !LLlPG! 50~ INtLOW! C~sr C ( y E. r:f·· Mll! INFLOW ........ ,,.... l...,., '·~~ ( ( REI? I [I ft/S TOT til now ~ STOR,!:GE 41-;~L Cf\:E·; T FL f-'LOW UllTfLOW OtS LOr: ,"-\'1 UlN t~ :.: n1: T I · • ~.• !-1 Ft \....,;.,. ... Jj \ ....... •I 1 73681.8 61S04 :•) 7J . .:81.B 1457.0 I).O 1460.0 ... l53~ .. 0 I !!;G"' ( .1. t" 1 ") 36:):;1.? !355:32 i 0 '3·~~·i51 c 9 1.~38.0 o.o 1.460. () J.5}/ .• 0 .... • J C"l~~~ ..... 56522.2 56522.2 1118.0 o.o 1460.0 1536.0 L t.JO~..:;...:.. • ._ 1 4 67079.0 59520.0 ·67079.0 1371.0 . o.o 1460.0 1536.0 f: c 1 5 668548~5 224428.1 \)68548. 5 13221·0 o.o 1460~() 1536.0 1 6 1347770.9 65650.6 1347770.> ·2754:1.0 o.o 1460.0 1536.0 1 7 1227804.3 133033.2 1.227804.3 24280.0 o.o 1460.0 1536. 0· ~ ,... ... 1 8 ·1107564.0 498489.9 1107564.0 11903 .• 0 o.o 1460.0 1536.0 1 9 -64204.2.3 41467!3.8 642042.3 t3120.0 o.o 1460.() 153( 0 1 10 289S68. ~) 61504.0 289868.~ 5732.0 o.o 1460.0 1536.0 ~ 1 11 125111.0 59520.0 125111.0 2557 .. o o.o 1460.0 1536.0 1 12 90287.9 .6 1!)04. 0 90:..~87. 9 t 78~-· .. Q. __ o .-o 1460.0 1536.0 2 1 73681.8 61504.0 . 73681.8 1457.0 ~-~ 14t.o.o -1536.0 2 2 56551.9 555'52.0 5'6551.9 1238.0 o.o 1460.0 1536.0 c 2 3 5652.2 .. 2 56522.2 56522.2 1118.0 o.o 1460.0 1536.0 1573.5 ..__ ... -.... _ -·--· ..... !"'· 2 4 ·67079. 0 59520.0 67079.0 1371.0 o.o 1460.0 c "'" ") 5 668548.5 224428 t1 668548.5 13221.0 o.o 1460.0 1601.0 -") 6 13477-70.9 65650.6 1347770.9 27-541.0 o.o 1460.0 1616.9 - '"" 2 7 1.227001.3 l3303:5. '2 i2~~78{)4. 3 ~1280.0 o.o 1460.0 1632.B ~- .,; ., 8 1107564.0 498489. c;· u 07564.0 21903.0 o.o 1•l60. 0 164tL 6 .:. , 2 9 642.042.3 ·414675.8 ·642042. 3 13120.0 0.-0 1460.0 1660.0 ,.,. 10 28986S.3 61504.0 289868.3 573~.0 o.o 1460.0 1660.0 -· t. 2 11 125111.0 !39!520 .(j 125'111.0 2557.0 o.o 1460.0 1660.0 2 12 -90287.9 61504.0 .. 90287.9 ___ JJ. s C:..LQ__ o.o 1460.0 1660.0 3 1 73681.8 6 t~'i04. 0 736:31.8 1.1::;7.0 o.o 1.-160. 0 1o6o:;o • 3 2 56551.9 55552.0 56551.9 123s.o::.. o.o 1460.0 1660,() 3. 3 56322.2 36522.2 ~)6:5~J2 t 2 1118,0' ~ o.o 1460.0 1660.0 3 4 67079.0 59520.0 67079.0 1371 • 0 o.o 140:.0.0 1697~8 • .-· ;. 1 "!. 3 5 669548.5 224428.1 •. 668548.5 13221 .o . o:o 1460.0 1725.4 l!'l.c:>O .... 3 6 1-34-7770.9-.. 1., ~56 50 ,. 6···-·-t 3 4 7 7 7 0 • 9 .. 27·541,0 -. 0 .:o ---t46o.o -1751 • 7 3 133033.2 1227804.3 1460.0 1-772 :o· -.. ---l!f~ 7 1227804.3 24280.0 o.o ,( 3 B 1107564.{/ 49ti489.S' tl !) 7!)64 t (l ~!1.103. 0 o.o 14:)0.0 17'7'2.2 ' -3 9 642042.3 414675.8 642042.3 13120.0 o.o 1460.0 1810.0 3 10 ;:89868. 3 61504.0 289868.3 :t 5732.0 o.o 1460.0 1810.0 ( :~ ~.1 12~5111. 0 5Y;i:·!O • 0 1 2 !51. 1. 1 , 0 f':357 • :,) o.c 1:\6(1.() 1810.0 3 12 r;·o2s7. 9 61504.0 s·o2s7. ~· 1780.0 o.o 1460.0 t81C·.o 4 1 73681.8 -61.!504.0 7:1,681.8 1~ 1!57. c~ o.c-V\.!)0.0 1.810.0 ~ 4 2 56551.9 5~552.0 5t.551 . 9 123B.o o.c. 14'60. 0 1810.0 ~1 . -3 . . ·56522. 2· -56522 .. ·-2-56522.2 1118.0 Od> 1·460. 0 1810. 0 .... '" \:1.o.O 4 4 67079.0 59520~0 67079.0 •. 1371.0 0 .'.{) 1460.0 1838.3 a: 1-5:"o • -.. --4 5 668518.5 224428.1. 4:~ !5'.26 8 • 5 'Y7::i3.3 213280. 1626.0 1863.9 ··4---6 ·--13477-70.-9--.. 65650 ... 6 ··103109.() .s; -~·-·. 22?2() • .1\ 316680. ·-1699.4 1887.6 4 7 1227804.3 133033.2 181124.3 72c·1.9 1046680. 1823.j 1909.6 ' @; 4 B 1107564,0 49S489c9 790~?.4.0 16i'!:i4.1 316680. 1851.2 1 1929. B 4 9 .642042.3 414675.8 .. 4jJ167!:i.a -· 9300,.0 2273t.6. 1868.2 1950.0 4 1.0 289868.3 -51:301 J 0 2005!J4.8 427':?.8 89313. 18i'4.9 l950.0 ~ 4 11 1251.11.0 59520.0 125111.0 2557.0 o. 1874.9 1950 .l) 4 -· 12 -. .9..0287. 9 h 1 ~)04. 0 ' 90:..187 •. 9 . 1785.0· ... o.o 1874.9 1950.0 t l (.. I ' . ~-'-~---·-M· ( I T~~LE. S : ( Wt~ • Ml,; r:·t '> • F!._Lrrw: ~· • .~ H.ct t ·::-. w : :.: r, r-. r c '!;~> ~-/t ·. _;,· ( lE:.~~~ MTH 1 tW I Lli.J j.·u~ 'It JI/S TOTAl. FliiW ~ S TOfi'l=1GE wsn. C F: F. ~· T E I. ~·'f. FLUW OlJl FL 111.1 [1/S l.~Or.tt fl ON Allf.tTTHt" FT FT i~, 1. 1 6~870,8 61504,0 . 6!:;870.P 1290.0 o.o 1460,0 1<:'-:'L ~ { ' .. J ._~ _, .. ·~ 1 2 5055~.J 30!):)~ t J . 50!l!:i2. 3 1.09.$.0 o.o 1460.0 152'·~ •. ' :l '7 50556.3 50556~3 505~;6. J 990.0 o.o 1460.0 le-· ~ ... ~~·!·. ,, r 1 4 5999o.2 59520.0 5999.:..2 1214.0 o.o 1460.0 1536. 6~ ,, "' 1 3 397511.4 247000.0 59/!Ht. 4 tJ.l,99.0 o.o t46o.o 1536.<5' 1 6 1204565.8 111123.8 1204565.8 24371..0 o.o 1460.0 1536.0 c 1 7 1097354.4 174425.3 1097354.4 2148t .• 0 o.o 1460.0 1536.0: 1 8 989906.8 535884.4 989906.8 19382.0 o.o 1460.0 1536.0. 1 9 573332.3 ·13.~341.1 :.> 13H32 ,.3 ti.610 t 0 0>0 t4.so.o 1536.0 ( 1 10 259116.3 61504.0 2::i9l16.3 5073.0 0. 0. 1460.0 1536.0 1 11 111838.1 59520.0 111838.1 2263.0 o.o 1460.0 1536.0 1 12 80693.3 61504.0 80693.3 1580.0 o.o 1460 • .() 1536 d) ... 2 1 65870.8 61504.0 65870.8 -r290. 0 d o.o-1536.0 .• ( 1460.0 2 2 50332.3 305:J2.3 f)05::i2.3 1096.() o.o 14.SO.O 13:!6.0 ") 3 50556.3 50556.3 t:05~t-.3 990.0 o.o 1460.0 1536.0 ..;. c 2 4 59996.2 59520.0 59996.2 1214.C' o.o 1460.0 1573.5 2 5 597511.4 247000.0 5975U, 4 u 699.0 o.o 1460.0 1601.0 "). 6 . 1204565.8 111123.8 120456!3.8 ··24371.0 o.o 1460.0 1616.9 "- c 2 7 10973:54.4 174~125. 3 1097354.4 ~148.S.O o.o 1·160. 0 1.~32.8 2 8 989906.8 535884.4 939906.8 19382.0 o.o 1460.0 1648.6 2 9 573832.3 436341.1 573832.3 '11610.0 o.o 1460.0 1660.0 ( ,!;:: 10 259116.3 61504.0 259U 6. 3 5073.0 o.o 14.~0.0 1660.0 ~; '"l 11 111838.1 59!'i20. 0 11. 1.B38 .1. :~263.0 o.o t4t.'~.1t0 1660.',) "- 2 12 80693.3 61504.0 8069~.3 1580.0 o.o 14-!:o.o 1660.0 7 1 65870.8 .$1504.0 65870.8 -1290.0 o.o 1460.0 1660.1) c '"' 7: 2 50552.3 50552.3 5053;;:'. 3 .. 1096.0 o.o 1460.0 1660.0 .., 3 3 50556.3 50556.3 ..... 50556.3 990.0 o.o 1460.0 1660.0 c· 3 4 59996.2 39520.0 59':196. 2 . 1214.0 o.o 14lJJ.o. 1697.8 ~.· • 3 5 597511.4 247000.0 59751:1.4 1:1699.0 o.o 1460.0 1725.4 .. ·'· .. 3. 6~~ . 1204565.8. -111123.8 !.; 1204565,8 24371-.o o:o ·1460.0 1751.7 ... ...... -·-( 3 7 1097354.4 174425.3 1097354;)1: 21486.0 o.o 14~.0.0 1772.0 3 8 989906.8 !B!J!:1B 1. 4 98'7''706. 8 19382.0 o.o 146<). 0 1792.2 573832.3 43.S341.j 11610.0 1460.0 1810,() ~~ 3 9 ~738.3::~. 3 o.o -z 10 259116.3 61504.0 :"59111.>,3 5073.0 o.o 1460.0 1810.0 ( ..., -, 11 111838.1 59:·20. 0 111838.1 226~.0 o.o 1460.0 1810.;) .., 3 12 80693.3 61:)04.0 8069~.3 1580.0 o.o 14.'Sr.). 0 1810.<) ( 4 1 65870.8 61!304.0 65870.!3 t290.0 o.o 1.!i60.0 HiiO.J 4 2 50552.3 50552.3 505S2,3 1 09e .• o o.o !460.0 1810.0 4 3 50556.3 50556.3 50556.3 990.0 o.o 1460.0 1810.0 .. (. 4 4 59996.2 59520.0 59996.2 1214.0 o .~o 1460.0 1838.~ 4 5 597511.~ 247000.0 384~~31. 4 8231.3 213280.0 1626.0 1863.'? ··-4 6 12.04565.8 c111123.a:. ·-887885, B · 19050'.4 . 316680·;..{) :1699.4 1887. 6· <. 4 .7 1097354.4 174425.3 174425.3 6480.0 . 922929 ;.;1 1812.1 1909,6 { 4 8 989906.8 535884.4 549476.1 12221.0 4~~0430. B 1851.2 1929.8 4 9 573832.3 436341.1 43634l .1 9~oo.o 1:_'{749:1 .~ 1£161.5 1950~0 (. 4 10 259116.3 61 ~)04 t\) 799':!.7.6 21!39.6 179HH3..8 '1.874. ~) 1950,0 4 11 111838.1 595'20.0 1j1838.1 2263.0 o .~o 1874.9 1950.0 . 4. 12 ·-.. 80693~3 61504.0 80693.3 . 1580.0 0 ~:O 187-1.9 1950.0 ( .. (_ :i .... < ..:l' •..;.·.J.'·;e":._ . , ..... ~ ~ .. _~ . "" :-~ "' ( ( ( (" r (' ( c ( c ( $ ~c c. . ... . . ~--.: • ( (. { c ( l ( T hi!>\. e. s c._o ~ ''t-...) ~ e::t::::. fUH~ ~'!; H Htf LtJt.l REa' n .c::s TOT(,I. CLCtkt UU"tTU!~I .. 1 .S5870,C ..} 6 1 .-;. :) 4 • I) .'.,5870 .·~ c.• jJ ., 50552.3 50::i5~. ~ ~i(.i552. 3 . -::, 3 5~)55.5 t ~ .. SO!:t5t .• 3 !505~( .• .s .:: 4 5997'6.:.;:: 595:20.0 5952~). {i ..t "" r:: !397~11. 'l !:!·17•)00. 0 ::17(}f)Q,(; jJ -! 5 {, 1204ti6s.s 111123. ;;: j j 1l2.~ •. 9 5 ., 1097334. ·1 174·12!3.3 1.l<!J425.3 ~ 5 8 989906.8 535834.4 53588A1 • 4 5 9 573832.3 436341 .1 4363-1j.j 5 lQ 259116.3 .St504.0 61504.0 ..,. 11 111038.1 59!.J20.0 59.520.0 ..1 5 12 80693,3 61504.0 61504.0 6 1 65870.8 61504.0 61504.0 6 2 50552.3 50552.3 50552.3 6• 3 50556.3 50556.3 50556.3 6 4 59996.:! 5'7'5::!0.0 59520.0 6 5 597511.4 247000.1.) 24700(1 + 0 6 6 1:~045t·S. 8 1111.23.:5 1UJ23.9 6 7 1097354.<; 17·4~~2::!. 3 1. 7+12.5. 3 6 8 989906.8 535884.4 535fl8.LJ.4 6 9 573832.3 436341.1 4362\41 .1 6 10 259116.3 61504.0 61504.0. 6 11 111838.1 !39!320.0 59520.0 6 12 80693.3 615()4.0 6151')4.0 SUM 30830756. 2:!180114. . ~. Ft.·;'..! I? .1T0f.';.\!.:E U/'-I f.tittT Itli~ :'IT I ft J -r •; !J ~~ 1 ::~t 0 . ,"", t .. ('\ f'· • ;:l ·:9:1,t:# 1 20~~. 0 ,-.()Q:) t 0 6000.0 ·'>·'lBO. 0 12000.0 9300.0 tR.50. 0 1384.0 12~8.0 1219.0 1.096.0 990.0 1206.0 6000.0 6000.0 .',480. 0 12000.0 9300.0 1860.0 1.384.0 1268.0 }1.':!7035!). ') .. ) (.;. ) (• : l't .. ) ..: -,... .., ,. ... ""'· 3:JO"'• t j • Ji. J {6'3441 • .. t s· 2~:·;·~~~7, 1~ 454{)22 I 4~ 1~7491 .• ::-· 197612.:-~ 52318 1 19189.3 0. (y 0. f)l . 476. 2~ -·'""'o""' :11 -J: ,) ;..'"t ""'. ~ .. • .. '• ~ j 093!14:1 I-:;.; •"\""'l"')t,,)Q .... 7 .:_~. 7..:... •... .,..: 454022. /:} 137491.2 . 197;512.::::. 523t:3 1>. :. j9l89.3 ~ ... .... ~· ::. :0. . t· i 1 I> ~ ~ .... !{ t~ ..:. !";r ~ .,, ~· '" ... ~-·· '!:7 :>:< ~--n.; .~ .. r.f .l. i .ts: 1 ~:. ~ IJSEL r; ~s-F'- rr f HP4,9 l97il). (I 187 l.' l'?fs(• 0 l€:'1 .. ~ tC.5t).·~ 1874.•;· 1988.S ::;;01..0 :::022.7 J.9.<S7.7 2054.2 ·. 01 ~i. 1 20?.1.3 2fJ35 .s . 2107.J 204.:?.-:f 2130.0 2051.0 2130,0 2053.0 213·~!.0 2053.7 2130.0 2053.9 2130.0 20;)3,<1 2130.0 2053.9 2130.0 2053.9 2145.6 ~f .. P7. 3 2159.4 2107.8 2172.6 ~13:?.7 2185 I ~7 215:2.1 2198.8 2155.8 2210.0 216:t.2 2211).0 2162.6 221(}.() 2163.? 221(.1.Q .:._ •. .!' .. ) " \t I ; --;7--.;:~:~~:r-I·::;;:;::-....,-,.. M?OC t rr mr ,..,. ,...., = '" " -"""--· •• , j / (j \: ) ) z 0 2200 2000 .. . ~ . . . ~-,,.--/ , ---:----#I' .• WATANA DAM CREST ELEVATION~ ~;:::::.:::-------y-~· / ~'/ 90% ~ _ __J '/'/ !i > w ..J w 1800 ~~ ~-' ~-----/... ~WATANA WATER LEVELS 1600 1400 1990 40 30 I') 0 )C "' ..... ~ w 20 (!) a:: < :r (J (I) 0 10 0 1990 10% EXCEEOENCE PROBABILITY ----· 50% EXCEEDENCE PROBABIUTY -----90% EXCEEOENCE PROBABILITY I I I ·[ GOLD CREEK "FLOWS 1991 1992 TIME (YR) WATANA WATE~ LEVEL.S AND GOLD CREEK FLOWS DURING RESERVOIR FILLING ......----- FIGURE E.2.76 ' " z 0 2000 ~ > 1800 liJ ...J liJ 1600 40 30 I') 2 >< .. -~ w 20 (!) 0:: !'! u Ul 0 10 - 1990 10 o/o EXCEEDENCE PROBABILITY -----50o/o EXCEEDENCE PROBABIUTY -----90% EXCEEOENCE PROBABILITY _ WATANA DAM CREST .ELEVATION TANA WATER LEVELS GOLD CRC:EK .FLOW . .> TIME (YR) WATANA WATE~ LEVELS AND GOLD CREEK FLOWS DURING RESERVOIR FILLING --·--RE·---E 2 76 FIGU • • ( e en., w,., ...1::. u.,. >-- u~ :; j I ! ' N U" c .,.j-----.=;- 1 ~c Cic: 0 .... [iiJ OFFICE MEMORANDUM TO: FROM: I. Hutchison/D. Crawford A .. Simon Date: Olecember 29, 1980 F lie: P5700. 07 e 06 SUBJECT: Susitna Hydroelectric Project Aspects of Filling Watana Reservoir Attached are the notes concerning the probability of filling Watana Reservoir taking into account a dam construction schedule of six years. 1 ' AS:ccv Attachments • A. Simon • ··- ,,- { \ :n1 ing ~latana reser'/Oir" filling probabilities were calculated based upon th1e dam constructiort schedule and making the following assumptions: 1. The do\fmstrearn discharge is 2000 cf!S., 2. There •i: s no reserve for f1 cod contr·o1. 3. The filling procedure starts at the end of the fourth year where the probability of overtopping the dam is only 2%. Results: The probab i 1 i ty of filling the reservoir at the end of the 5th year 'is zel"O. The probability of filling the reservoir at the er.d of the 6th year is 61~~, but the probability of having 8000 af or more is 90%. At the end ,.,f the 7th year the· prrJbabil ity of having the r-eservoir full i!!i 96%. The normal 0~1 eration of the reservoir can start at the end of the 6th year decreasing th~ probability of having the reservoir full at the end o~ the 'th year from 96% to about 80%. ·-· ( I. > w a: 0 z ~ a: 0 u. I r-----------------... ________________ " ·--..--------------~ Calculations JOB NUMBER-=------ ~ SUBJECT: t~ W {wa:v •....c \-· ~ . Ce~· ... 'y~ ~4oo -J.~ I 'n""o -~/0"0 t7o.~ -1e~~ \~2-~ 1 L"l So .A't!b -'L....\ o-o '2.1 c~ -'"2. " ......, ~-"-r .. ~ Fll,.£ ~.JUMBEA -------SHeET ___ ~-----OF ___ _ BY A._j ~ DATE ---APP DATE . ~o,ooo 4oooo f\ w w f-1-u. c( c( 0 0 0 cr: (/1 a: w --, w CD <l m :! ::E :l :l z 1-z ~ w m w > A. 0 -l: A. .... lL (I) CD c( •02. . o4 . (, g ' ,----.-------...a::IP' 0 4: $"" ' Pf J l • A3U Z9l 'ON ~~UO:I ,fi ~) -, ~.;,~ ..... / { -> w a: N ll) -d Z. :E a: 0 LL. Calculations SUBJECT: \J.j~~~ -~ CUM'J L~t··n·J ~ fLDt.•p,...i:,.;\ ;::\HJC..\\oJ.J o~ T~ iJ.l t.:.\o~~ ~tau~\ u ~ ,._ t--------....;~;;,;0;;..;\U..;.~..;.>..;,~~~~;;..· .;..N__;b;_:,\S. C.~~ ~ ~ ~-c.h r c~~) J-4co l'-~~) ?~ob • ~ ~ , - . ~ ·~ "") & Cf '"' II 12 '!. ,.., ts li, J ;., J !z l !~ 2.o 2-' -,.., '-- ~ ,t. ... ... < ... ,j ft!j\b <; \ 0,-o b 4Ci 2, ~b7g (; 7q9 7S2b -, ~12 78Lt(; 7l1bl ~Ob-o ,~o72. ~~2.-o '2~ ~·~ ..... ~ \ ~4b \ CS 1--t c~ 7 ,... .t'· ~--t-o 8b.&4 2 7 b"'l ~ 9 ~-?!'} ~qbb ~. t 2~ ~ \Llll ') ~0" op,-;' ..,J _;,. --...::> { 0 2.h4 2.~ I {,. o.o4. · 41'1o ~ ~l.rC)?;: '+'?8 L)-1<1 ~ s-SC\& ~"'b -S''1'2. bo~ b6S~ ~7GC b~~ 6'7~~ 7~2...:, 7\~t:t -~ ,... ( ':>"0 ..., !.~·~ •'!' "" •• r. ::'. .!..w. '-" c.o o 0 I \ t; 0, 2 C:. -,... ,, IT-~. ~ -. , .; e, Y.l ov~ 0.'$1) o, S'"Y 0.~~ o.b'l. (:>. 6 'S"" c.;? 1 o. s=r- c.s~ '0 ,Ci 2.. 0 t"' l . \.;. JOB NUMBER~------ FILE NUMBER ______ _ SHEET ____ OF __ _ BY. J..-.J S DATE ---APP OATE '" I '~ ~ w ~ u. ct <( 0 0 a I a: a: w \/) w Ill ft& :e 1 :e :l 1-..:l ;:) z z lU w Ill ... w >-Q. 0 iL ::J: 0. .., U) OJ Ill( ul ., 'i< ·r·· 'g . r· :) At => 2. ::z. ~ u 2 ~ (} .F -..... ,_ aJt 0 -<. r t~ c 2 0 ~ )"-·-.... a- ~-co 3 ..J ---::J .:0 u ~ .t u 6! -w ca iii 3 () :l ()... Cl) f!f:?l I M : ~~ : • l!!oo... . . . ----~ ·-------'"·-··-~~-~· ...... . . ... . ... .. ..... .... _ .. _,... ____ ........ _____ ---· ------·--t ': i u 1\·l. ~·il> l. "2. n ··• f"l l. ·' L (~ I"'._, •) L ~' t"":'f\ ·~ ··" I t-Jii\ '"· '- "'-· ~ . "' .. ·-· . -· " .. ------··-··------··-·---.... ..,. __ . .. .. --··---. ----··---......:..1 '"2,.....o.nA 0 ~ 06 ''2 ·~~ (.t1.7bo) I . • -I I ' . ~ \ ~ • . ~ •:::., • , I I r t t ~ '-'o-oo 0 0 • 0 ~; • 2~ !{,0 (~ S7..Q) I 7 •' £~\:"?<~) 0 0 D . () ~ t. 0 (~l~<>) 8o.~Do 0 0 b 0 { H ol.t o) 17°"0 0 0 0 () (\\'l;'&~) --· \J~~: *'-L\. ~ ~ 1""11.'1~~ • A c J' (~ -t:-t: t" 1· ' "' Tl'-~ t-l u t.\ ~i;fl~ r l"-l P M.l\ ,., Tl-\"~ i ~ S.. .. • c.\·~ 'Jt>i·a ~.,-~·tt:S .,...., I , ' FhiAL_, I '?...iloo 4·001.) bo\DO 'lb•:)OO 'j'?o~ w ~ hftT\H.! t-u. <( !-----·-··-·-...... ~·-.; ..... ..- 0 0 0 '1.-ool!!> 0 ~ 0 ~ \2 0 \7~ • D l+ o.·? a: ll: u1 ~ w m :k m ~ ~ :J :l z ti z w m _, w G. •0~ ' ·?_'() '7~ -o~ . . j.C) 0 X > Q. l.\-0oO 0 ., u. II) m oct d ::2 .5 ..; , -p: <. booo I 03 .2.o " 't) 0 0 . 7 7 . -~ ~ :2 ~ < 2 cl .J ..... ~ .a 8 U..o.o 0 0 .o~ ·4 7 ~ -;J ;-#~ ~ U) .( .:t () c: 1 :t ~i ' 0 ~ , ... 0.. f1700 0 0 0 0 ·-10 ~ ,.. L--·-. L_ ____ . ---·----·-· 3 .... • ../1 -'i ::J ..... --.. -----~~----~ .. --- 0 .:; u ~ ~ w cu til J 0 ::J en ¢..- E~3 &it" : ·= ·= l .I\3U t9l ·oN WllO:I • /"""':.:,. l~ '·· .. :. . ~. ) CalcuJ·ations JOB NUMBER ____ _, __ _ FILE NUMBER --------SHEET OF --------- SUBJECT: ~ A~ ~4 BY DATE APP DATE --- ee:a - 4. 4ooo o.o I, 0 e>.o (),'C o.ol'l. o. 0'1 ~ J. 0 -( 7 c.:> • o 10· ';j o. oo L:.. e. oo~ ) • 0 ) '-··' I o. 0 c. 0 o. 0~ . o8.4 • 2Cl4 7 0, 0 '"' t • ....Jio -> w a: N "' -.J d z ~ c: 0 u.. -· ... y: ··~ \I' ' ' ... ,. TO: FRO tV/: SUBJECT: OFFICE MEMORANDUM R. Ibbotson Date: October 8, 1981 File: P5700.06 D. Crawford cc: Susitna Hydroelectric Project Watana -Emergency Drawdown . As per your request, we have completed reservoir emergency drawdown analysis to determine elevation versus time re1ationshipsc Discharge capacity was assumed to be that given by Figure 1 for the various facilitieso Powerhouse capacity was omitted to give conser- vative estimates. Plots of reservoir elevation vers~s time are given in Figure 2 for a wet year (wettest in period 1950-1975, year 1962) and for an average monthly flow year. Also differing starting times of drawdown were considered. It appears that Watana Reservoir can be drawn down to acceptable levels in approximately 14 months with the given discharge facilities. ~ -~ __b_ ___ \ .~ . . \A,.).~ot::::C:t\. David Crawford DC:md -. . ... ,. • ~J • l . -::-oo o J:! 'j "' .. t! \J \j) \J ~ -•:;Jb~ i . I i -!Boo-· 0 I J l . , __ ~ •o - .. \ ..... ' ' .. .,.. ,; ~~ ~,"' ·.: , • • ._ "T' ' .! ...,...._... •"" "w ..... .. ' ...... , ..... -........ Tv .,, ',\ E.f C•: + { ~t ( 2.: 1) o. Ln: (,) ·~~---·-=] •. :-L .. .': ) I 0 :J T '._ c::\ + \ ""fu 'it,) SU It ,, ' ' -\-? ' ~ -··-· -·-:--. ; t ; I •··--.... --.. -· .. ______ ... _ -· •• ~ tJu-··' ..... ··~ ,. en ·c: e m ~ .. l' • 0 Q) -0 c -m r+ -· 0 :J (/) 1-------··- . I L. i ! ~---·--. (/J , c... :I: -0 m ,.., (0 m "' -i ;z z c c ~ 3: . Dl Dl 111 m :u t-:u . .....,..., \I \5"" ..... D -II\ _) ' T; ··" e -\''''•·•f ~ ~) 0 '-' "T1 0 ' () .. j I { !1 ~j ~1 f ;l " ' r t r: I j I '! l .d -., ( \. "' > w a;: d z ::E c::: 0 1.1. C~lculations ~~~~ SUBJECT: N e.ro.t:., Q. Wo-..\-o.V'.co ~~~0-' • . -L---~·-· -··-------·-·-···· lA--ve We.\- I \\U,.I lbo' - r-q_""\\ I '2.51 r~J ~B~ \\II ~.. i IQ3 14SI }'I IOU OS \\~'34 .J '2..3CA3 "~ 6o\ 1 I ?..o~l.L4 '-~ t.l43,. -.; ' ( 'bol z.. \ ct '0~-, I-\ s robllf-t "'2. I LJ..b . 0 43.~4 '-1 b'?. ~ ,..~ 10.0 -z. '-'Z.b!. .,....._ r3Bs llbo -· '~AT' 2-SE? , •. !$ •• • Ill IF UJI = JOB NUMBER - FILE NUMBER SHEET OF BY DATE APP DATE DR'f ~\q boe bBb I "2.. b '2. 931Lt I~ t::tb'Z.. 1'-'1 U4-U 111'2 4 'Z.bO 3 rss-. I?.SS 1S4 r;; tt:: ~ -... IT n:; m ~ • . [L ww~HH IIIHIH*III fl t!t11ffil+IT I , ... ··-, •• : ' .. r .. ··-Hft mttllttnTI rn fPl uti l!!fllijii~UIII~'{I:nt ·•u ·:n !'!I .:u t"fllt;t, fl!HfF' t!tl ;;:::t ::trttt_·" •tttl:ff;!t 1-tJ:! p.:l::...-uftttttlij' 'tm filllif !fr.l: !ftffrfltfuti!J• 'fll!:lll •ttfll[H :t:uttl :,. ;tH :~0! ;.tlmHllinan H:t t::t d .. u .. :H.it):! .:h nH :til !1:~ ttr; :!11!:!: •ft; .. l!t •. htltliiHt~: :t f tnl tWIIi IH ltt.r 1.!!.. !t rlll!'l:l; !•: ILif .!::r~irc :~:. !iLt !.:uJ ·u ... , ... , ............ ·~~-····t~·t .. ·~u·' · ··~m·;· ·t~t t·" ..... t • ,, .. ·_'llt!'t-i" ·m··~··tli-t .... ,,.,, 1 -~ ,, tl'll'l" 1···~~~ .. : -rr:-:-1, .. ~ ltr· l" ~·m ... ~ · ·" 'tr:·• •tn~:r: "'I tp·· I • .... I • •. • •· ·u• ''!'t!ll:!: • ~~::: ut • , • ~~-: ·•·t:!u ,~ ~~ •ttl •t• II 't "' '1" • ,, ..... """· i!:f'"J: ~~t-*1'"4t '"t~, H!ltt~~ tH+ ... ; 4 ... ~~ ~~ t 1..._...1 ~ · ".i 14rt t+:fli=i l . •;H ttt """' •• l!tl • L lit ~ •. :!5 :!:: :. · :t:-; fH-mm Hn ~~mm ·.. ~ ··. · h+l+ • w t+>. ~~-~· •• '~luw~~ · . :Tlt+JJli,uH tr-tiJHt l'tt'l Hu t:.:,u;.; ~:: ::::1: t\, t.!, 1 '"'" ti+ +t~;~!+H U::l ~~ • ii ;:.ilf t:UI.f': •• ....... u: •. 1tttttm ttlt lit.! t • . -~ -8• i 1+!-r=IH ... l'f::; trl H-!1'1' .. tl I~~ .. ttl:t lt1:1:l t: ~ p:: fS!r.t: H. Lt!..t !:H.t :Itt .. tu:~~~F .. .t!.! l:4f. WJJ rt. ;li J.t.Ul.t!::t u~ .:!: nr·!i:: l!ll~l!it:!lim' ~·,.~:t: H-!> WI! ~::tt·-t~· ....,. tt+n H-rr:f:tn:t:;:;:t·t;mi:H+tlrntcH• 1-itt~l-l' ..... tm rtt+h-m ~ 1r::n ml ''"I!Jll rr>· .. · ~~'!'"' , .. ·~-........ ···· .u_tttu~-tat+d: s!i:.~ tm '-ti! t.~~t:tt t+t · . . ... . .. • ~ • t~ ttr.· ,;.w, ~ ttll1tt.t~ th!~Ui :.H H-i! i~~l4f1~H; H;! i~ ij ++ IT ff ~ H••·t~Hll~ ,.._4-~ • +H+tJml[~• H+l "rl r'' illtCT.f~, 00 ffi"~'''ll" ••t·~li'U" "!! '"' 't'• • .L ••• • ~ 'tH ..... ~-!• • "'LIT ~· 'It!. L. II: 'I ·:: .............. ~ -..-, L!l:tJ t• · "y r"Lu::L ~ +-!4 • ; L4 rf+1 'H. -~ :_:.;t ::~~ t:..t: h<t mtl+f# rf IT [!lti miT i~ ~1l [ill ~r lliHW .. ,. It IT mill till ff l~ ~Ht m; = 1+4+1+4~ !IlliiEfi ~ O~Et £tr Ef ~ ~ ~tH .... ~ ... IJ' . ~ . . .. i ~ ~;.fl. rF. EE IT fi"[fllU~!:itrrrm u ~ A: r~ f± l:l..'tt~; .• 1 tLiJ IF ~111 itt:t !HI ~ im :!t: Ufi: :!!i!' ~ ~ I:L l+tJ: ttt 1!ff j t::"!' .... t ... ,.~ ru:m :tl!l iffj n t ~~ ~ ~~m+ ~:.:. :·~= :w :t ~t tEF tf::!"!-tt. ;::r , .. " t::r !t·" t~:: ~; ~ ... w , •• 1-Utt:. .. ;t m ~ :rr :r 11+:: ~ 11", •• .~ tJ ... .14..! W l itl!f . .W .!tl1 tW J!'l ~l :!lti;i; ifr':" :q:l:; tttt 4ti n"!'!SJ.:Tfr:ltH! ~.,t r;:r+. :1~1 t~:; n:: :p;:::! tH± "' tltt~t:~$~! ~tH ::ttlf~~ :;u~ :-.t: tt:. IW m; l!t' '"t 1-H-, .. :.:•· ... -u··1··-~t~ ..t.++t rn.r nn ttti ~N~ t:a :!> !::r 111.: mt !tn r": tw 1 ~~ ..:ur-.:~:;·:; ::.: · ~~~ t:tt1 ~ ·H~ ::it tft1 >.;-;!' :;~ t~:· :::: iW.-...-Iiill ..... ;· ....... ··r .. .. '•1!:Dtl ~ ... , .. ,, ...... . t .~~ Ht1 t:u. a:.;: nn :~;: mr,1 ttiilll:i P'! 1JII pti ::n l::; :::: :::: H!u • n~'r r .11. ~t ~~~. t ..• ; •. ··~· ·~~ liJt!llln_lllltit!H Iii! HH !Hlr!!~ ;l;';' i:1 ~ott:, I t:ntll tU U:lil.llh Em ~rt u!"" • • .. • :_1. Ti:t !•!: ::tr:: r H , . .. .. .. .. • ~2"\ •• :~~· I t ~.. • ~ • -•-~ '19',;;:.~······ ;. ::: :: ::t! t.i jif: 'W"' I~ tb. !Hh:!;t lw· H. · .... ~w·-!! 11;; '''! !!!i .. •1t· ttr •• ~, :U. IH; htl ~- l !~' !.t ~ ' ... - ~uu~ ·u;.kt It:' li'fi{llli .... ::~ r!! rUWiil lilli I i! . rf~ P.Ji ~W.fmtr ~-'·fir·-!~~~; .HH ~~ t1:• HU ffi ['" nJ fl '• 1 u1 m-Etr,:-:+., I! i~u~f.'!'iw~1 lliii3 .. m~_~ll"i!~•i t~:~·; 1: ~:~;' 1+ ,ilq.l~.~tt t~f11+t+II1~1:~#Ufl.l.hi.h !H:, • ·· n w · 't::: "f' :~ · · . Jh.:. •d"!l!!i~ ;: .. t :: '"''ltil' :r• ·u• •· .... , .. It'!~ t I> It ;,1,r :~;. ::,..,:.:: +--' tttP~I•;•h+t•IIJ•lt- l:fi~I'+'Mi+i •••. ,...._.tr'u~ ~~~~1.-l tl ' ... ~ .... .,. ........ ':» 111Ba. -m.unDt , u $1H:l>tl II l< t i:JNI J1 OJ. Dl X 01 03>.'1 laiR Document Transmittal • Wayne Coleman Harza Engineering Company Attention: Project: Susitna Hydroelectric Proj ect Subject: . Transition/Nitrogen Supersaturation The following are enclosed: ,, Description I Title 1. Technical Paper~ • Fickeisen~ D~H., and J.C. Montgomery, "Tolerances of Fishes to Dieoolved Gas Supersaturation in Deep Tank Bioassays", Battelle, Pacific. Northwest Laboratories, Richland, WA. Trans • .Am. Fish. Soc., Vol. 107, N~ 2, 1978. • Wold, E. "Surface Agitat~rs as a Means to Red~ce Nitrogen Gas in a Hatchery Water Supplyn. The Progressive Fish CUlturist, Vol. 35, No .. 3, July 1973. • Nebeke'r, A.V. and J.R. Brett, "Effects Qf Ajr-Supersa.~"-H:atea UatJ~;'Eon Survb.7ai of.Pacific Salmen-and St.~s". 'J!l.:ano. :Am. Fish. Soc., Ntr:-~-;-r97·&.- • U.S. Army Corps of Engineers, "Nitrogen Supersaturation", ETL 1110-2-239, September, 197 8. Date: March 9, 1983 Acres Job No.: P 5700 .. 73 Page 1 of 2 Drawing Number Te~ i>Q..fo.. h.t~t.~ av-.cl o~'1 ~<2.11\ •t:~.:tro~~ 9~ ~ho 9. o.+{·eci' -Fnh ~v.avt~e>..l ,y., ~\lt ·<;.\A~Q t!.A tv.~ \e.d... VJ:.\\e.Q • lv-.bt ~ V!Qs.i'C04 rc ·\A) [\..0\ \3 I \C1iS Revision Number Number of Each 1 1 1 1 Code* ~~======~================================~====================~======~======~~====~ • A -.For Approval or Comments B -For Construction C -See E~pl•n•tory Letter ~ -For ·~nformltion E -For Purchasing f -Dr.wings Approved G -Dr.winus Approved Exc&pt as Notw H - ACRriS /:\MERICAN INCORPORATED t/ll)O LIBERTY BANK BUILDING ~J\IN AT COURT BUFFALO, NEW YORK 14202 Telephone: 716-853-7525 Telex: 91-6423 Ploase Sign and Return '\cknowledgement Copy. Copies to: (First copy} Yours very truly, David Cratvford Lead Hydraulic Engineer ORIGINAL 1 I 1 Toh·r~tnt•t•s of Fh;lu.•s to Dissolved Gas Supt•rsaturation in Deep · ':~ Tank Bioas!!-aYS · : · .... : . " ,..,. .. ' D. ll. FICI-a:ISE:'l A:'tU J. c. :\10:-iTCO:\IERY Brllt•·ll••. Pari{ir 'it~rtlw·r•st Luburawrirs. ·~' Rhhlrrnrl, If tt.shingtun W:JJ2 , : . ~~-.. ABSTH:\CT· ~-· .' .., ... ,...-t><~~-.b,j:;'; ,. :~ ! .... •' ' '' hour ~ru·• 1•-•. t h~l· "''rt' lt·~H·•I fur t~tlt•rnn•·•· t" .Ji~l'ttht'•l almtt~plwti•· ga~ ,.up•·r~ntumtiun in 10· · Ud) f,, .. .~ .. -J\ ... 1~.•-•·•1 .. n m• tl1J11 lllllt•s tu tlt•ath ,Jt l'uur h•\r•l• uf J!3~ •aluratiur. tlw h1-h tli~piJ\I'd lhl' fullu\\101! im·rt'a•inj! urdr·r of lttlt•ranre: muuntain \\hih•fi\.h t/'rtl.<t>Jiillnt rnfliumsunil <. <•Utthrual ,,' truul 1':\u/mo tlur~tl ..,. larj!l'"''alr• suC"kt•r ICutrlltnmus madrrurhrilrul < torrrnt :;!'ttlpin tCo~tttu rlwtl~t•llsl. lnc·rt•a,inl! l•yclwHatw J•rt!'SUtt> dut-tu wal!'l' dt•pth n•dun•d tlw lt'\!'1~ uf ~aturatinn uf y, db>ttlwd ga~•·s ami inrn·a~t·d sunh·al. 1'urrt•nt :-••ulpin~ lf!'il'all~ tlt•n•IOJil'c.l larJ!I' buhhll'~ t•f gas whit-h t·au~t·d lht•UI Itt llnat anti "uuld c•untrihult• .indm·t·dy In Jt·atit, ' The '#·. , •. J•li Riwr is a dt·ar mountain spec·lhdy. Tht• etunpuruble tiuws fur v. hilt•-• stn•ur ,. <It'\' 111 the• Culuml·;u Rh·l'r. lt fish Wt'rt' 23.0 and 50.5 h. rt.'l'Pt't'tivt>ly. Both ~UJijlllrt~ art i~1portunt ~pod fi.~lwry for SJlt><'it•:' W!'rt' lel's tnlt•rant !han rainbow nwuntaitt \daill•fi .. h tl~rosopium u illi!tnl.\lllli trout tSu·lmo guirdueri J or dtinouk. l'almon IG~ranlll and c·utthrual trout tSa/uw r/arki IOumrlimrlw.'i tshau \"t.sdltt l hut mon.• toi- IRic·hanbunJJ \\hic·h arc· ruattirwly planlt•d by ('J'ant tiwu stt•t•llwad· trout. Tlu.•v also n•- tlw )luntana Dc•tmrtnwntof Fi!>h u111l Ganw. portl'J that pt'rmittin~ t•utthroat trutl! to lrnpuuntlmc•nt of the· rht•r hy Lihhy Dam Slllllld in :t 2.5-m dc•t'JI tank im·t't•a,.c•d lun!!- luc•Htc•d Hppwxima!d~· 2H J...m up-.tn•am fmm tc·rm. sun hal rdath c· In that i • a LO-w dt•t•JI Lihhy. jJmllana. lla:co n·:-ulh•d 111 atmo:-plll'r-tank. 'll i<' ga,. supc•r,..aturation of tilt• rht•r watt•r. ;<.ItTIJOD~ Ch:lll1!t'~ in abundaut·c· uf'impnrlant !>pc·!'it·~ Tt•J-1!-Wl'rt'. l'ondU<"It•tl in a sinl,!h•. lly- ha\t• lll't'n nott•d l~t·t• Di~t·u:-~iunl ami {!a:-plunll-JitwtP .lt•t>p tank. 2 111 Mfttarc• arnl buhlllt· cli:-t·a"t' \\U,. lr} pt~rlu•,..itc•tl to Ill' a :oli:;ltt)y o\t'r 3.2 Ill Jc•ep. Tlw lt•vd of ::atu- ,primary c'<ltl"*' of fi:-lt murtalitil'l', ralion 111 \\hic·h a gruup 1,f fi:-:h wa:o <'X(Hil'\'tl Thi-. papt·r n•Jlllrl:: tltt• n•:;ult:-;,[ t''-Jic·ri-was C'lllllrollc.•d by ::u:-pt•nclin{! t'U{!I'tl li:-h ut ' UH'IIb tu tll'lt•rminl' g:u:: :-up,•r:-aturatiun tul-prt•dt'lc•nnint•d dt•ptlt .. alnn~ tlw saturation :c•nttH't':-uf ft•ur fi,.lt :-JII'I'it·:-. Tltt f \H'rt' !'t'· {!r.ttlic•nt in tlw dt•c•p tank. llt•nr{!o La\\ I 1lc·c tt·cl lta .. t•tl un alumdaiJt·c· ill t!tt• 1\:uul!•twi :-otall•,-tlwt rht· :-nluhility uf a ~u:-in \\Uit'l i:- IHt\ c•r lwh\ t·t•JI Lib I" I> am and 1\:nott>n:ti 1 • · · luwarh n•latt•• to 11:-g:a:.-plt:t!ot' partial prt•:o-. ~', ; Iran ... t•t·c•nuntic· or n·t·n·t~lional \alu ... lw-~un·. :\ ,,atc•r cnltllltn 11 f unifi•rm !!lt!>, 1•1111 • lh:t\ iur arul habitat <'nn:<itlt•rution:;. and im-c·c•t~tratit•ll ,~ill tl~t•rc.fun• Jw 1·omt• Jc•J-:-Slllu- pnrtaut•c• in tit•· f'"od l\t'll. In ~ttltlitiun I•• rttlt•d a:-: Jmlm::U!ti<' (ITI':-"Ill'l' inl'rt':t~c·!: dut• mutmi.Iill \\ hil<'ft .. h and t•llllhroat tmut. l•• .. t to clt·ptil. Tilt' tlt'/!l'l't· 11f .tlo:-ulult' l'UIIII'ittl1111 'l•JII't'll'" llll'lttdt•tl Cato.,twnll.'i murhrcwltt·ilus Sl''(l at a !!hc·n tlt•ptlt. ;. rna~ Jw appr11,j. (.;iJ.Inl daq..:t•l-t'al•· -.uc·kt·tl \dtif·h l'lllll[lri"t' nHtlt•d hr till' furrnuiu .'i: .:: s,~:l I + .:/101: ' 1~11' majorit) of' Jj,.IJ h!uma~l' in tltt· rivt·."· and ,, ltc•rt• S 1, is tlw :-;urfac·•· '; ~alul'ution ~uul = ; · (.ot/11.\ ~hotlwu.\ 1!'-ru:thllturn·~Il sc·ulpml. , ;:-; IIH'il!-llrt•tl in nlt'tt•r;-:. Tlri:-. prilll iplt• 0 f .til-~~.,., .· ~~~~ltlJ.:-I~c·•!. ~"l.··r:~JI·c• .~~~Ia. 1~•r tltt'~<' spt•-_ solvc•d .t-:a~ uhy~it·~ il' th.t· hu:;i~.· fur till'' t·on-· ·l.·j · t It all. lu!u" c1 '" • tudu · ~~~ 1 utth~oat tro~ll c•t•pt ul h) cirH~ tutw pn'"fllrl' C'llltlJit'il"llliott ·. : a:n•l \\ lult•IJ~'h. and ·~•·m·~n!'tratc· h}clrm;tutu· arul tiw "t•ritic-al zorw .. of )l.flJic•r)I.H!IIt'ttlitlll "'· •• · ·, p:n• .... un· c•um flt'll"atw~s tor 1''1'1'""' ga~ t••m-.ma \\ lc•\' t'l ai. 1 1Ji'6: \\ t·itkaurp I !Jj,): I hu·\~~,:" ..,;"> · t~·mt. Blah111 c•t al. I I CJ • i•l ll'f'"rll'd \\ lutt·lt~II , . 1 1)75J. :. ·1 , • ·.... .. . : ,, •• • · . . . . . <~ :;~ 1-!$~ , teo Ill' ~nun• tult•rallt tlhtll !'UIIltrual ,\j~lt n~t•-':> · •··· .. '. · ' ~. ,; · · ·,>:.'(1:;:.~>·.· d, ll> llllH'l' Itt cic•alh ul 21.(} illlli JI!),;> h fur. I l'~t· 1,f1 1r,utcl O•llllt' dm: 1' •I iint 11\ ll,tllr•lft• t•Jltf1 ;'~~:.~, ·.".,,•, .! ,f ,.f .,l, ·f!· f ~t•l l'·~~, "'"H··•t" .ff-~ .. h;., ~ .. ·~·t~ · t: , : ... , . .. '-:..! -~~~,;_:;;!~ -~·--:; t.:;~.·-·· .. ·~"*'*' 71!'-· ~'M' t• I• I ., .. ,·, "t JJ. _, 1..4•~' , __ 1 ;..L..L'o:..' ..... ·~J..~,_~;.t~-"W.....-:.~1~~~. 4' f"J& 1\(:..-'~~•r,. ~ ·hUJ. ... lU.· ,_..,,J,•t"ll' ..... . -··· • : , "\t'~''""'7'Wf<!it'Wf EXJIII!-Ilrt• l'a~t·s '"t•re t'Uil!'lructt'd of \ex-'l'AIIL~: 1.~1'~·~t ~u.~ ,,., , 1:. tlr tlu• tlt•t•JI Jmrk (sur}lrt~l(li~ '• •· . ; 't arc~!-mt•!ih on stainless steel rod frame~<. A l••r•r! "'! IJ:zt:r ~uwmritml, :·; '· ;.. -:. muslin slt•rve JH'rmittt•d ·removal uf dt•ad ca~ l•·>~·l . .. . ;. ,, ·"it :r:·· ·>. hsh uttdt•J \\ att•r. · Cagt•J; · Wt'rt' $USpt•nd,•d ' ~'; •ahirallnn, Tank ''''J•th: m ·, '{~,.;;. •;"'_::; from atljul'talM" sll<'lf brackets on the sidt-----··i;--.-· -· -··-o::it-~~ · · ~-~~ . of till' dt•t•p tanK. Tht• supports were lucatt·d 12-~ ' ·· 0.65 · , · · l'n thai l·aC'h ('Uj!t' Wa$ cent<•red at the dl.'pth 120 t.oo ; ·'* fur ith !luminal gas lt.•vel !Table 1). Cagt•s l~~ , ~:~~ : · ··; :i·::~~f wt•n· about 1 m !'ttllan• and 20 em high. •·· ,~;~;>~: \S~;~,f:.:·-•,:c'~ .·; Cnj!t' hl'il!h1 rP~llht•d in ~onw raJH!t' about · tl1t• nomin.al l,!U~ lt.>vel. At tlw mu;t l't'H'rr ca~e ttht• UJillt'r t·agPl. thit'o rangt> wa~ It•""' thun 3' ( nf ~aturatiun. Smalh•r cages ( 15 c•rn X 15 <"Ill X 12 t•ml wt>re placed inside the larg1•r <'Ul,!t':-or din•etly ~u~pended from the bruPkt·l~ for lt•:<tinl! torn·nt sculpins. Filtt·rc·J Columbia Hin·r wah·r wai' sup- .Pli<•d at aH•arly 75 literimin. Temperutun• was C'lllltrollt•d at 10 ± 0.5 t. Supersatura- tion wa1-gt•nt•ralt•d in a pn•ssurc• vessl'l that n·1·c•i\ I'd pumpNl watt•r and t•omprc·~:-t•d air. Tlu· t•xh•ut t•f :<aturation was <·tmlrolled bv uat·kprt·:<~un•. prl'l'Stlrl' dHJ flo\\ air. an~! lwil!ht ,,r tht• air·\\Utt•r intt•rfa<·e in tlw prt':-- . · sun· "''~,..,·!. all .. r \\ hi!·h wt•n.• adjusrabl<'. AftPr !-UJit•r:-aturation. tlw \\illt.•r l'lltt•rt•ll tfw lwttorn ol tht· dt•t•p lank tlu·nu~h a Y-diffu:-- t•r. \\ hie·h rt'l-llltt•d in uniform mixing and rnp'ul difl u:-ion of int•ominl! water. Ga~ lcvds werc mnnitut't•t.l at lt•ast dailv h! a \\ e•i:-s satun•nH'tl'r IUi~!-ooln·d ,!!U>' tt·n·- siollll'll'rl!Fkk<'h:t•n 1'1 ul. 19751. Saturation \Hl'-<·alt•tdatt•d from tht• formula S = 1001P,,1m + P •. tl -PII, .. IW 01 trn· where S = JH'I'\'t·ntul!e' di!':ooln•tl :.ra:-saturatit 1. P.11m = t·,Jmnwt rie pn• .... un·./'.a1 = t!i!'~ttlved I!•'" tt•n,tntt l•aturomt•lt•rl. and Pu,,~ = \'UP••r ptt'"•lll't' ol' '' al<•r. Little or nn \Uriation in ~as lt•n::;ion o('- l'tlrrt·tl lwt\\l't'll the' lop and hutt,•m of llw dt•t•p tank.. \\It it-t. \\a~ 1:~2 :t: 3'.i :,( t•quilih- tlllllt ;;utur;ttit•n at till' .. urf'tt<'t'. Tt11llJII'I'<I- tun•, rt'l'ord<'d at lt'a:::-1 daily. ::;hmH·d It·:-::; than 0,5 C diff1•rt•twt• lwt\\t't'll tvp and Lut- tont. Tt•n t•uttltwat 11 toUt. mountain '' hitt•fi:olt. .; ·' or lt•rrt•nt H'lllpiu!-. ur fiH• largt•st·alt• ::;twk- " c•r!--1\'t•rt• loa.lt·el in eat•h t·a~t~ ut tin" ~urfaet11 • Tlw C':ll!t':-''''It' }o\lt'rt'd to the• dt•!'irt·d , dt•pth. '1\n• ll'l'lit•utt• h·!-1!-\H'Il' rlln fur muuntuin \1 ltitt'li:-h ami t•ullhn•at lt'out. untl l'otll' \\Pr~· run t'or tnnt•nt ~<e~\llpin,.;. iltHl ' ~l' 'l·~~t :.ii,, . ~-' ... tt.':.-tt•d at t•twh ~aturatiun lt•\t•l t•x<·t•pt !>l'Hfi- pins whi(·h had 40 fish at t'at•h len•l. The t.•xposurc p!'riod was 10 day!'. Contrill fish ,;: "'Pre held at the bottum of tilt' dt•ep tank;:. \dlt'rt' ga~ :-aturation \\ai' lOO''i. Test animal!' wcrc moniii•H·el and dt·atl " "'_":('' ..... ,·;, ~ . ·, fish removt•d daily. To avoid l'Uisiug tht> • eagt~s. '\ lueh coulcl ('aU~t~ tlt't·umpress~iun , "~~·· and t.·mlmlizat ion. fish "'l'rt' t·het•kt·d by a sc·ulm di\ t•r. E:o..hakd hn•athiu:.: air cau~t·•l l'o::ght dt•l!u:-dlieation uf llw \\at•·r. !Jut siau·c · diving tinw wa~ usually lt•ss than 20 miai !(•st results wen• nut cmt~idt•n·d Ill be signifi- cantly altt:rt•tL The dht·r n·nwved all dt•a.d li~<h and n•portt·d till' ntuHiwr 111' li\'1' li.:h ami tltct:;e tli..:playin:.: loss of l'quihlvJ ium or nth.t•r manil't•statinns of gas buhhiP di~t·a:;t>. All elt•ad li:-lt Wt're examial!'el fnr signs uf gas bubhlt• dist·a~t·. Tltosl' di~playing no ex·· tt•rnally \'h-ible· ~ip:ns wt•n• nr•t•a·opsit•d h• de- tl•tmint• t•au:-e of death.· Fi,.t. IH'I'l' Ull 'lllllt'd to han• tlit•d from gas Ullllhl•· tfi,.t>a~e if lhey hat! t•xtl'fnul si:.:ns of it. • .. ' •· )lountain \1 ltitt•tish and l<lll!t'n•ale sut•hr wt•re t•ollt·t•lt•d hy elt•t·tro..:luwking in thf' lmH•r Yakima Hht•i'. \\'a:-ltinp.lou. and ht•lt! in t'tll\l'rl'lt• powl!-0 or lilll'rp.la-.l-ta.nks contin- unu.;J~· flu:-lu·d with at·rutPd ( :ulutnLia Hivt•t' '"Htt•tL Tmn•nt :-:c·tlll,ill:-\H'I't' t•ullt•<·tpd' b; -> :-l'init~l! from tlw Fil'ht•r· Bh•·r. \lnlttana .. The·~ !'wt•n• he·ltl at tht• \luntana Departnwnt z. ••f Fi~h untl (;unH' t\lLtJo'(;l Lil.hy llatt•lu•r)4 ,-, in ~"l'l'illl! \1 utc•r prior tu trau ... portuthlll "' illlt' . lahurittury. \\ t'l'tsluJH' ·ulllttnat truut \\l'l'e · ubtairwd l'rntn tlu· :\ll>Ft; halc'ht•ry at Lt:w-. istm1 111. Tlti' ;;lut•J... of 11'1•111 b n•pllh'tl tu lut • . uJH' of tlw It'\\ a•·•mtinu•l! pu11• ~train~ tilr . \\t•:::.tslopl' t•utthrt~at. .,·t · · , -.•; I Fi~h :-;t,wb \\ Prt' mainlaiu•·t~ at uur labet-o 1'l'"'' :. n ... \: , .• llt'!:tll'•' ('o)tttuhi:l·· Hly_t!J: •'.•, . ~~=1>0"-~ --'..-~"':. ,_,.,,.~ .... ...::...-""'"""""-· 373 TRA~S. A:\1. Fl"fl. SOC., VOL. 107, i\0. 2, l9i8 100 MOUNTAIN WHITEFISH c. 80 -·~ '"' <:.> « w ~ :3.• 60 ,_ -· !! a: ..:> :if ... 40 2: ... .t' -· =· < :t zo. "'' 2 4 6 8 10 EXPOSURE Tlt.IE IDA YS I 1-ift;tu~: 1.-llortaltt\" rut!'.\ o{ m!lllntuln 11hitr/l:~h 1\t• p•iWd tu til~solut/ ~:as stlpl'rsalllmtimt •. Vum/Jt•rs bt•· 3tlll' run·l'.t uri' fl"rr..-ntugr totlll gus salllmti11n. watt•r until h·~t1·d. Jnitially water ll'lll(lt'fa- tu:n• "'a~ adjttl'lc·tl to matdt that of native :>t'm•am:-; at tht• tina• of t•ullt•t•tit~n. Fi~h ''''re j!I1tttJ:Jally at:dimated up to 10 C and were lwld at the te~t temperature 1 ·,rat least 10 du!'"· Cutthr11at truut. whitt·fi: h. and su<"k- t'r~· \H'rt' h·d hatel:c•ry trout fl llets. In ad- clith•n. sm·kt'rl' furajred ii•r alg:ai l-·!1\\ th in tlll'i·r larl!t' tank. S<·tllpins ''Pre fed · uLifex w11rrr.~. ~uC'kc·r t'I!!!S. and salmonid fry. ~nlllt' uf tht• muuntain \\ hitefi~h dt•\ t'l- II(II'J:! sil!n~ uf pil'C'inl' tUllt'rC"ulosi~. a ditll!- llll"f!l c·uufirna•d h\' tht• W t>stern Fi~h Di~­ t"a"'" Lalwrat~try iC5. Fi~h and Wiltllift• .Sc·nrc•c•l in SPattlt•. A few fi~h died frum thi~ • cfi .. c·:.N• prim-It• lwginning of te~ting. but mnrl<itlitic·~ wt•rt• It·!-~ than 10'(. Tlw diH·a~c· c·ar1 he· n•adily Ji~tintrui~hed frnm ga:-buh- }JII' di:'c·a:-t• hy a trainc•d uh~erver. Ph:c·ine tu!J,•reulusi~ den·lops ttVt•r a period c•f up 111 2 ur Jltlfln• yt•arh. ~e<•rop::ies ensured that tuhc•rc·:ulosis was nut a prime factor in the mortality of test fi!ih. m:Sl'L1S Alllu$h tlwt dit·d or di::playt'd Joss of t'(jUi- ltltl iurn tfurint! tt·st t•xpo::un·~ l!'hliWI'Il ~il!ll" 1 .-:: 80 z CUnHROAT TROUT ..., u a< w e: >-!-4 ,_ :::; ~ a< 9 <: 40 ... > ;:: "5 :::> :: => u 0 (.__..:: __ ......__ 0 z 4 6 8 10 EXPOSURE TIM£ lDAYSJ Fu;nu; 2.-1/ortnlity rut,.s of" rutthroat trout t•,tpo.<t•d tu tltssr•lt •·tl I!UI ~llflt'rstttllmtiwJ. Vttmbt•r.l ln•sitlc• ('/Jn'fl lilt' fJI'TC'I'IItll,:t• tvtal j!ll.~ satllration. l. nt•<·run;·it·:-t'li.t't'fll a~ nult•.d hdow. Torrc•nt S<'ulpin HJIIWan·d to dit• ,,f t•xhuustiun as a n·sult of l'lrlll!l!lilll! al!air1~1 pnsiti\'t' bu•ly- am·y dut· tn l'll.lrt.•nwlr lar{!t' j!a:-; bubLles Lt•- low thl'ir pc•t•torallin:;. Only two control fi!:lh dit•cl duriul! tht• lt•:-t~. Both wert' mount.tin w hit1•fil'h l\:ith ach a rwNJ pi~·wine tuLc.•rculo- sis. inducliug lt•siun:-: in kidw·y and livt•r tis- ;': 80 z ~ cr ..... ·'= 60 >- ' ·lARGESCAlE SUCKE~. ~~~· ."~: .. ,. ~? .. '! ., -:::; <C ,_ a< ~ 40 .... > ;:: :5 => :: zo ::> (..) .· FICKEI:;EN AND MON1'Gmu;nY-GAS SUPERSATURATION i .379 100 ,. TORRENT SCULPIN ;::: 80 . :z "' u 0: ..... !:: >-bO • 1-::; ~ 0: ~ "' > ·;:: < -J => ~ => u 2 4 8 10 EXPOSURE TIME IDAYSI Ftl:t u~: t-llortuliry mit'.< ~~r turrt•nt sculpin !'Xfws•·rl to tli.<stdrt'd f!.'tls suprr.mtumtion •• Vumhas bl'sitf,. <·un·••s ttrr• fl!'rrt•ntu~!' total gus .saturation. "'liP. :-.:mw of the euntwl fish had any sign:; of ga~ !Jubhlt' Ji~t.>UH'. :-.:om• nf tht• otlwr It·~ I fish had vbiblt• signs of tuberculosis. ~o ~la­ ti!:'tir·al •·orrt'latilln was found between dail:1 mortality ral<>s and random variation:; abuut tht• mt·nn dissoln•d gas saturation. The ran- dom \'ariutions wi.·n· lt•ss than tlwH· that u<·- cur in tht' Koot(•nai Rh er below Libby Dam . .llotwtuin lf'lritefish Tolt•ratH'<'S of mottnt:.!in whhrlish wt•n• lowN than those ~~r tlli' other spt'dt•s testt·tl. All \\ hitt·lish tcstcu at 128~'( lCJtal gas sulll- ration dit-d in lt•:;s than 2+ h. At 12·l~"c sat- • uration thry Wl"rt' all dt•ad after -1-8 h. En·n at 116''i :-laturation'all were dt•ad uf'tl'r 96 h tFi~t. 11. ~h·dian tinwt~ tn death ( L T50l wt•rt• 12 h ut 12sc·;. 1-l h at 12-lt:'C'. 50 h at 120t'(·, • ami ·lS h at ll6l( tutalgas sutun\,ion. 1·~·-' ' Cutthroat Trout Cutthroat trout wt•n• unly slightly n~ 1re tulcrant than Wt'rt' whitl'fish !Fig. 2). All t'llt- thruat wert> dead aftt•J' :H hat 12SCc ga~ !:'Ut- uratiun. b,· -1-8 h at 12·lt'(. and bv 72 h at 12or;. sattiratimi. Otw fi~h of the .20 testt•d ,..llr\'i\'t•d tlw fulllO tluv~ at 116''(: sttu.:-atiun. --· ~ · ~.:.., ·~ ' 1 w .. \ n ·t lOOr-~----------------------~ ~" TORR~NT SCULPIN ;::: :z .... 80 u 0: ..... !:: "' "' 0 _, 60 == => 0:: lD ::; 40 5 s w > ;::: 5 20 => == => u 2 4 6 8 10 EXPOSURE TIMt 101\YSI FIGl'Rt: 5.-Ra/1'< of t'l[uilif~rium(o,,,, /i1r torrrnt srltlf•in t•.rpo~t·d tt• di.~soll t•d gcu Wfll't.wtllflltiun. ,Yumhl'r$ bt'side clln't'S .,,. ;••rcentugr tut11l gtu stlturatiun. Large.w·alt• Surlwr Largescale su<·kers Wt'rl' rncm~ tu1t•rnnt than salmonids: 90C:( survht·d the 10-clay test at J 16tr saturation. At 128'X. saturutiun all suckers dil·d in 72 h (Fig. 3). L 1'50's wert> 3·l h. 6i h. and 103 h at l2H('i•, 12-1-%. and 120r;. saturation. resp<'cth·dy. Torrent Scultlin Torrent !.Wulpiu v.a~ till' mo:-ot tvlt•mnt spedt·~ tt•stt•cl. CutiS(' or dc•ath UJ>pear•"~ ~I) be t•xhaustion t•aused by ~trugl,!.les against positin· lnwyaney. Bunyarwy rl'suhed frum gaH bubbb: as large as ~:.t uf butly sizt• that . for~nc•d unch•r or near thc· Ju•t•tural lin~,:, causing los~ of equilibrium and floating .. :\lc!rtality C'Ur\'l'S Wl"r..: not as st~·ep as thu!:'c~ fo11 1 th<• other speci<·s testt·tl Wig. 4) and tmly at 128'.'(-saturation was till' L 1'50 retkht•cl (at! 10 days). None vf the• sc~ul11ins died at U?c--r ;;aturatiun and signs ul' gas bubblt• dis-. ease wt.>rt• rare' at that gas lc•vt•l. Unlike ulla•r species, there ,.,.us a signific·ant tinw lag ht d • tween bss nf equilibrium and dt•ath for st•ul • pins (Fig. 5). Mt>dian timc• tc1 luss of equilih •. ~., .. , ~· ~ ~··~''";,,,. ":1..: r11 h. Hl!i h~·anti2:V. l 380 ' TRANS. AM. FISH. :;oc., VOL. 107, ~0. 2, 1978 mscessroN p::.ctment ot Fish and Game staff has con-" Cutthroat trout had a median time to ducted extensive electroshoeking studir•s dr,•ath un t•xpusure to 120CC gas supersatur-between Libby Dam and Kootenai Fal\s. altinn 11f 3 ~ h. while Bluhm et al. (1976) re-They found changes in relath•e abundance ·,; portt-d a value of 119.5 h for cutthroat tested immediately below the dam from appro~j- in a !>halluw tank. Our results with whitefish mutely 50C( muuntain whitefish. 507c sut·k-: agn•t• vt•ry l'losdy with those of Blahrn et aJ. ers. and }~"( trout {mainlv <·utthroat and r(l9i6l \\ith uu.·tlian timt>s to death of 50 h rainbow) prior to operatio~ of the dam to and 50.5 h. n•spt.~<:tively. The cutthroat trout about IOCC whitefish. 90f.C· suckers and less testt'rl wt•rt• dt'emed in excellent condition than 1% trnut after the dam was closed and and. with tht• t•xceptiun of the few cases of gas sattJ.ratiun levels excePded 13011-. Sign!> tullt'n·ulusis anwntr '' hitefi~h. tlw remaining of gas. bubblt' disease were found on ab1~ut fish stll(·ks wt•n· lwalthv. As far as can be 80C'c of the '' hitt'l1sh and "uc·kt>rs. The nurn- dt•tt-rmim·d. test fish };ad not been previ-ber of fish with gas bubble dist'ase de- ou:::ly t'XJwst•J to signifi<'ant levels of dis-creased with distance downstrPam '"here soln•d !!US SliJH·r~aturatinn. They Wt>re all supersaturation levels Wt>re redu<•t·d !Bruce tempt•ratun·-u<'climated and thus nut ther-:\lay. personal eurnmunication). ThPse field mally strt•sst•tl during testing. Careful han-data are consi~tent with our relative tolt•r- dling prt'Vt'Utl'd dt•et,mpression during test-ance data fnHn whieh we would predil't ing. w!Jj,.Js othHwise might cause more greater mortalities to whitefish and trout rdpid t•mlmfi;.atiun. than to suc•kt•rs. Appan.•ntly tlw shallow Tum•llt ~<·ulpins lost buoyan<'y t'IHltrol depth uf tht• rh·<·r or aspt•f'l:::. of fil'h beh:tvior after .H'\'t•ral ilays CXJHISUrt.' and floatt•d have pre,·ei\ted sig:nifi<'ant <'ompensalion whir.•h would make• tlwm easy Jlrt•y in na-fn,m the g:a:: supNsaturation l!<'nt•ratt'd hy tllrt'. Jt is unlikc•ly that a sculpin would n•-Libby Dam. The e,·idem't' indicates that di::-- <'m't'r from Jlll!'itive huuyaney as bubble' size solved gas SUJII'rsaturation ha:-: bt•t•n a prim<· wuulcl :.:rllw dut• to n·duC't't·'! in hydrostati<' fa<·tor in dwn~t·S in Kootenai Hin·r li~h JIUJit e prt•ssun· as it llnatt•d to • he surface. Scul-ulutiuns below Libby Darn. ('· pin:: may lw t'XJltiSt'O tu nig.ht•r gus satura~ • ti1111 lt·vd~ than utlu•r SJH'C'it'l:O hy inhabiti · ACK:SOWLEDG:'\IE:STS ... shallmH·r art'a:;. Tlwir H·ndt•m·y tn bef!(lmt• Tlw author~ apprt'cialf' the ·:on ::f.Rruct• ' lmuyHnt t·n~un·~ a lli~dt mortality ralt' and ~lay. lluntana Ot·partnu:nl of Fh:lt anti makt·:-tllf'm rc·atlily dch~(·tablt.• in gas-t~u-Ganw. for hi~ assistance in obtain in!! torrent •• ' 1 Jlt•rsaturatc•d !-trt•atns. sculpins and cutthroat trout. E. \\". L1,1sty; '. / AJ;plkatimt uf our hiua:-lsay n•sults lfl prt•-Bu~!t'llt•·;.;orth\H'st. aidt'd in dt•sign of tlu•'~.-/ dic·t t•ITt•,·ts 11f air sup<'r-.at.urution on river deep tunk. :\1. J. $dmt•idf:'r. Battl'llt·-~urth-: uq!uni:o.nts n·quin·s <lt•tailc•cl dl•pth distrihu-west. contrilmtc d h> tlw f'XIH'rinwntal ([,..,;. 'titlll data frum whklt hydrn~tatir• COlllJH'tl-sign. lit-and C. D. Bt•ckt-r. Battdle-~nrth! satiun m:tv Ia-t•alc·ulatr•d. Otliwrwise tht• as· we:;t. re\'i<'\n•tl the munu::-cript. Slllll[llion 'must ht• madt· that all llrganisms This study was suppurtpcJ by the u.s .. ,· .~ arf' afft•c·tecl at ur rwar rin·N~urfaet• pn·~-Army C_orps uf Engineers. under contra<.;t~~!· 1 sun·~ and !.avt• nu <·ff<'f'tin• hnlrostatit· n~uttbt•r D_ ACW-67-75-C-00+9. ~: .. ::_·:~_-J;.ll ~ ·-~~ ·, <'Clillpt·n:-atiun. Tltb assumpdon · prodU<'t'S · · · · , . an c•stimul!· uf maximum t•ffl'et. Actual ad-• m:FEHI-:~o.:s '~~··i r-.r·' \ t•r~t· t•ffc·l'l!>-\\ illl11• ~IIIli I'\\ !.at .It's:::. but can-\' s '..:_\ ·· nuu,s. T. 11 .• n. ,, c:o:-o:-ot.lr. ,\,u c:. R .• :-;Yu~"~·-.. .,," 11111 bt• t•stinH!Ic•tl un tiH· basi~ 1•f existin:r IIJ76. Ga-•ur ... r•aturaliun r<·•t'arc•h, ;'1/atiunal \1,, <i ]I; ., 1 d:tla. Tlw 1\uutc•nai Hi\f•r in the• an·a of in-, rin<' 1-'i~r.••ril•,. ~~·n·kt··l>n·••·"ll Fadlit)'. liJ!,l '!..¥,::.;:' lt•n•.::t j ... rdati\'t•ly slJUIIow prt•dudin.,. t'lllll•' ·. 197-t:l'al!l'~ 11-19 in D. II. firkt•i~•·n anu.~l.~;!. }··':~· .. .,. ~··hnt•itl•·r. ···I· c:a,. huhhl .. ,/1<1';1<1'. t~C!:Ii'·1*~J1t'~:·~·-;~ ' E d:,."*"J,,-.• ~fl·•h:-r-. ,, ·· .. ···-~ .... r!·•'~H~! l_ . '- FICKEISE~ AND ~10;\TG<n!ERY-GAS SUPERSATURATION '• ! .. ~ l "' test tanks. P:~gc!l 1-10 in D. II. Fil'kt•i$en and \I, J, Sclulf'ider. eds. Gas bubblt> di~l'a~t·. Prut•l'ed- ings nf a work!~hup hrld in Ril-hlantl. \\ ashingtnn. Ortulwr 8-9. ·197-l. ERDA CO:W-i HiJ33. Fttt·a:ts~::-~. D. H .• :'.I. J. Sr.II:-JF.II>f:R, A:-;u J. C. :\fo~n­ co:o.tERY. 1975. A crnnparath·r t>\·aluation of the Wt•i~<s saturomt>ter. Tran~>. Am .. Fish. Sur. 11H:!ll6-H20. !St·t' al~h Cumm!•nts. Trans. Am. Fish. Sue. 106t61:6-h'i-6-J.8.l ·. :;·l: '· ., i -~-. ~ ··~.~~· ~ HARVEY, II. II. 1975. Gas dist·a~r in fialwl!-11 review. ---.. ~ Pal(es ·l50-J.85 in W. A. Atlamll. ed. Chemistry · <;< and physics of aqut>ous gaH snlutiun>~. Electro· · . dll'mic·al Sudety. Prin!'l'lon, New Jt·r~c·y. 521 pp. , WEITKAMP. D. E .. AND ~1. KATZ, 19i5. Ht·~nurcl.' and litt•rature review nf cli~&olved j.t:l~ ~UJII'isaturation and gas buhblt• disl.'ast•, Envlttonmt•ntal Study Se-.~ rics. Sc•attlt· :\Iarine Laburnlurh·~. U22 Stone Way North. Sc•attle. Wa~hington. 71 pp. ' ~~t,::>~·.·, ·,~< . ,_;., .. ... ;,. .... .. SURFACE AGITATORS AS A lviEl.~I~S TO REDUCE NITROGEI~ GAS 11'-J }14. HATCi-IERY \Y! ATER SUPPLY EINAR \VOLD Bureau of S1>ort Fisheries and ·wildlife Dworshul: National Fish 1-latclcerlf, Alzsahka, Idaho 83520 NlTROGE~ st:PJ-::RSATl'R.A.TlOX A~D rrs EFFECT on fish (g:1s bubble disease) has Lee:n ~ prob1en1 in some fish lwi.chery operations for a nurnber of Yecn·s [.5" 7, S, fl_. 10" 11]. G:1s lm.bbJ~? disP~lse h1 fish is chnracte:dzed by ~m:1U En11Jo1i in 1.he yas- cular clerl!eni.s of the fins. giUs, ~nd skin. rrhe bubble dh .. ense muy not kiH the flsh outright, but may eausc smnn 1·uptures in tJ1e skin J11ak- ing the 11sh n1ore su:?ctptib1e i.o ~eco~1dary dis- <:<tse infections. \Y(Jod [1 O] cr1~1~id·~·red the foJimying IlHJ'ogen satnratlon ]eye]s as d£>trinwntal or Jei.hal for snlmon ( Oncorh?ti:ch~ts ~p.): 108 io 1 (l.fpercent f ,,,,. '*O'Jl~.~.,c fl'" ''"'1{1 YCI'll1"' J·'J·l'•"••,.1 :•Jt".·~· J(l·D-1.o ,I.C, . .,l ,.; "" 4..:(-\ " •"' l<t..( "' • \. ~ ,..{<..._". J.J..I C"U' l:t:~ 1''-·reeut fo1· o1uer fn6er:ih:g~. ~~nd ycf'rling~; n:nd J J B percent :f\,r ~idn1b~. \Yesigard [9] sho\';ed ih:.tt adult cl~h~o·)h: s:.h:wu (0. fJ:·lzaw- yt ..... cl.rt) hdd jn wai..e:r ,-.·it h 11itn."1.;·,\.!1l c:ontt>JttTa- ti{lUS :lt J J G pc:rC"ent ~~:hd <,i!\J'1 (~('\'{:lor~r-d dt•fi- nitc ~:~n~1}Ji~)rns of g~.::s b~1hhle di;-;.::-;:~e. II~,ryey ~md ~:m!th UiJ 1 cJ.-I)l'ti•d i.hat ~~~hu·atkm lcYt'ls of 1 OS pen:eoi : •rud!~'·e<l t'as h~lt:>ie dist·•~:.:.c jn trr.ul flngedi!Jg'S. ,,.yaH mH1 B:·i11ingen [11] rcpur(1.:d thni 1 ::>2 J.e:·•.t!lli l>iirogeu :-·a.i nration in :.nOn gd11 1!:l1dlt:ry kH1.:·{l ;d1 jti\ •"lJ;}c ~~~1ln~on ~·m1 f,l ,., 11it ild u::.i 1 lti.'fJ ~wi:·dnJ ri) i:\ !) hnnrs. At J)W(•J'f1J~!l; x~n ~(I}H\l FL.h } r ddH·ry, si<!el- lH~ad yoll:~!-.at: fry }u h1 in W;•i<n ·wJi11 107 r~cn·­ eent nii i·ngt•ll }.:tf m·:~n1.1n tlt\' h·r~··t d !;as bul,blc d):,:•.:;::;e ('4•U~iH!{ iL· lt1 io Ho: t I1Ji ·.ir1.: down in tht~ W~!tc~r. \Yl·f·n th,.· 1 ··ii ro;~\'ll 1( ·•t•] w.ns T\•chltt.~d to 1 O;j !kJT{·ni ilw f1 y ncl"E!:J::h 111 n lh\~ ne\\. cn- \.1. •'•''l''.''•'l~ .,,,,1 ',•f~n 1 •f•{l~ it·~ • ..• ~}i'J·•) L''·'~'.L!l~l.llg" J .~ .. ~ ... ,..... \I! .,~,_.,... ... 11¥'1'1·~ .,.~'. .. .......... ., ... ;;t·~ j,·iti·.'l~. s:i:t:<! high dirt"•;:• ll s:d~=r~·i:,m h·\·p]s arc 1 'l ,• l'p '1 1 1'\ ~~·:1 1 ''J''"' ' •1 .. ~•,•• ./I I , • .,, it'•'(1 ~~ l.:, 11"\'(\1 liP' II 4, " ; , ~ 11 \Ill l ~ J o1 f J • , -1 " .... " J ~ ~ -. l , .,.. ' ,( ..4 \; t f ~ \,~ , t I 1. ,. q .. ,,l .. 1 rr:-, ~·~ >·t•t••tf 1·., 1 ··ic·ll 1 ·1·~~ , ••. ,,< .. 1' -=tl''"J-' J t ~ ~ l .. l• If l 11 . #, ....... I .. ,(. 41 .,. .. 4 "' " ·' \ ( ( ' I 1"' • • ... .. • • 1'"'"'., "'\ "" .... 1:1,1. .. 1 ;11 ., J {' 111 \' 1. ~('11 ]' •. 1:~ J"' l.t tl'. :· .. J ti.• ~11<; ... .t •• > ;L i, .l<H. • { ' ·,• <.,I ,f'k .. . " " .. I " ............ SeYeral methods for aerating fish hatchery water supplies h.nve been used successfully [3" 4, 7, 8]. Rucker m1d Tuttle [8] found that nitro- gen saturation was reduced frmn 144 to 101 percent \Yhen water 1vas dropped in a series of troughs to create thh1 sheets of w~ter. Harvey m1d Cooper [4] used a structure with baffles set at right nngJes to reduce Jl]trogcn saturation from 1HL5 to l 02 percent. Erdman [3] U5ed a spray i.o ~leraie a heated \Yater supply. Rucker a.1d Jf.H.\;cboom [7] used a bafilcd flume to re- duee nHrogen gas saiurntkm from 120 to 115 percent. At Dv:orshak N~ltional Fish H~tchery, lo- ed0cl ) .G mHes belo·w D\\~orshak Dmn on the X orih Fork of the Clearwater lliver in Ida1l0) a \Y<ri.er 1.rentment fnciljty was constructed to ]H"OYil1c a settling bnshl. and aeration facility f(lr low oxygenated reservoir \\'aier. 'sim.:e dams Ila\·e differeni cbnracteristic effects on nitrugen :~atur:tUon [2], the effect of Dworshak Dan1 on the Wtd8r quality of the lm1chcry supply wr.s nnlnHnrn. During the s.prillg of J H72, 2 1000 to ;~o,noo ~:uhic· f('L'i 11cr second water w:1s relc·m:cd c1own the q ilbn1y frt'~m 1hc Jm\~ JpyrJ outlet (\:lt·r:di .. nl.:t~O) at Dy.,·~_,r~hnk n:~~n. Th:s ,,·:·4 <:r phm,g\•<1 lJJ!O tlH.! .:-UlE::g-k:Yin (\'·:dt.:'2' ~m:f:H·e elt•Y(itlOll f.l/!1, bottom cle\·atic·n ~1:~1) entrnp- pillg' air :.ml tl'<':tiing nii l'c•gc·n 1cvP]S ranging I frnlr. 1 J ~' i o 1 :HJJ,t•rc·\:ltt s.ai nrailon. Lhning ".his iinw ~ w f:t~"<.' l1tl'\.·h:tnicaJ ag·iiutor~: <~rigin;:l]y h1. i:lllt·<1 f1•r usc ns ;,vl'<:lors su<·t:t·~~sfn11y re-t tLtt <·d • :i: ru(~t·n to lt·Yels (tcecptnble for i!:;h t;UJ1 :~h' J»Hl']IO:~(.l$. l ~F!7CH1PTJO:\f OF FAC!IITIES Tho , ... ·~h·1· t !'t.~Hhilt.:nt f:tdlity at Ih\·m·sLil k "\";~~ ; •. ,,;·,1 fl: h JJ:dd1eQ, js :.1 large concr•·te ~·'1 l! ·.ru ,.·hh a iotnl '""'liim(! Df ·17 1G'iG cu1•ic •' .: ~ \ 1 • 'l ; --~ .. ,co.;-_, ;: ... ~ ,,. ._:t i{: .• •• I. ... , . ~· " • -#' > :..::.= · .. ~:..:· ; . ..:;.:,_· --~~::::..--·. ;:..:.-1!<..... ·-:::..~,-.:..: ;,.:f';;":;-::•:.:-::;;.;_,::fj:::_~:::=~~ .~~-;::.:.;,;£.~:. r( f f f I ~­ ~.,.~~ .. ,., .. f:: ·~· .. .. ~ h..:-.. r " . h-i . .;.J' ~-~ •. .,./ f f t [ I l . t .. ..:-.:. '~ ....... ! ---....... _ ...... .., -.. -·-.'l. _ ... - . .. :• . ·~· ... -.-., ·-' -. ... . . ' .......... '""4-""·-- -· .. :=-: . -, .. .. :.,. -~ ·' ~ ·~ ,.!_ ..... - . . " -... ~ ... """ ... •-* .. ---- -· .... ,.. ·... .. .... ·... ,.,,_ ....... ~ .. ' . ... . .... .. . '•-.... ..... ot ..... _ ......... """ ~-,_. *• _ _..h .. ~ .. ~ ............ ~ .... "" .. ' .. .. ..... -.. \ \ .~ . , " \ • l : l Figur(! 1.-\X1ntc-r trt-<!tmcnt LKility with nerarors 2, 4) 5, 9, 10, and 12 in nt'cr.nion. feet (05;6,G·11 gnlltms) (fig. J). TwelYe 30~hor~e­ power !'-\Urf:tcc aora1ors wHh a gl?ar nlHo of 25. 6: 1 are platfm·n1 monnt cd ;md ~i1pported on steel brjdgcs (fig. 2). The impeller \\"hjch ro~ 1aies at 75 rpm 5s nn hlYC·rted c.:onc ,.,.Hh blades radhrUn:.r. oni ward from H ho~s at Hw center. A~ the jmpcJlcr turns, it drnw:-; ilw '\\'aiel' up- wnnUy tc,v;;n·d.s ihe hns~; it i~ JH'OJh.>ll!.!ll out- wanlly jn n Jm,· i rajrdor.r ~lS a :flnc ~prny. The hatc·hery W;li.t1 r snpp]y j;:; d~'1l\'('recl io the water ir<~:dment f:tdlHr from i.he riYer 1Jy •mY . . . et>lllhina1i•.tn c)f t:ltrt'<' 10,GOO-nnn :mrliwn }{.OOO- m1m }Wmps. Tl:e ;wndrn·~ m\.1 in::1a1k·d )n illl ve l(}WS wHl1 fonr ;tc'l':ltor::; i11 0;n·h row (1ig-. :i). TJw W<l1(:r lt:Y:..•l h~ m:dslf:tiJwd hy a weir in )'ro~ vi<k a (li]!H?Hl(JU!~ dvptll for J,1•:;.t :•t:l'ntur L,fll_ cieuer. (~0 ,¥~·-J·'JlT "C"J'r")'-T ('J'J1") .\.l'JO''f -~ ~ '\ , I \ ~ · ~ I \, , " , 1 .1. J \. J ....... Al'.'D :'-.1:\l:\'TE:'\:A,~<CE CO~TS 'file wato· irl'•::1mc:HL f;.eilHr d~·~t·l·jhecl in ilth-; l\'P~',l't ('\bi~ ~ fi7 ,ri27 to tr,n•.1 nwi in J !H:.S I ' with each acrai0~ costjng-~G/lOO. 'rlh! pnrnving f:-tciJity to clelhN' water frnm ihc rin:>r to ihe n<:•rat drs cost n.1 n dditin11a1 $::>81,000. \YHh :i nlte of 3._G miHs/kHotraH~hour i.hc cost of opt·raiing enc-h :t<:l'ator 1~ $-G LSO })fir month. Th0 cm~t of labor :mel snpvllcs is a}1Pl'Pxinmic..:lv $dO <l ye':u· with ~ix ;·nan lwnrs of l:1bor rc~ quil·-.·<1 fnr c•a('h :.~·1·dur. . 1\JE'fiiODS 1'\itrog~')n and oxygen Jc~vcl::. \\'ere nwn~lil'L'd from ;.;:n1lphl!{ of \';nh-r uhi.ained frc·m illl~ :-\orth Fu1·h. of the ("h!al'waiL·r J1jy(•l' <llHt tl:c c·t11li~·lli of th<.' \\'at<. .. l' h'Ntimt>nt fadli\.y. An:Jy~i~ fot··~ diY:~, h·(•(l nit I\lg·cn ww; nwdt• 11~dng n Ya n S.l~·J\t' ~ m~d\ ·mt'iri<' },!tltlcl r.as ;,wtly;.(•l' 1~1'1 1'lfh·d fot• wah'r d('tt'l'l~liJJatjr•llS (<i]. l )j:-:.~cdvvd o'\yg<:ll ,, wns nnalv~·~t·l1 mdng· tl!c .\:.dd<' lW 1tlH:c;dinn nf ' . th(' \\Tinldt•r J1t·fhud [1], Al'il1y:-~t'S of \\":i11•1' !:=:lmrd(~s Wl:l'l' 111::~1,_• ''· Hh <:tHnhinntion~ of ,, to 12 nt•r;ltors in t: 't! ,., hh ~ flow~ of 1 ~l/,!)0 :1:;1l g7/J00 gpm. k';: ~ ')!~~ .. i . : ~ . ·~ ,, .. -.· ~ ··'·:. ·-5 . ' . . .~ . . . .. AERATOR DRIVE UNIT STEEl SUPPORT Figure 2.-Platform-mounted aerator used .in water treatment facility. t Ef"FlUENT CJ !:w.ll~· I b WElR: 8 8 0 0 I )... 8 8 8 8 FLOw Fl.<.lW 8 8 0 G ........ _ _.... __ ,__ -.... --.... ,.------..--,_.,,.., Vigu:c: ).· . I.ncatiPn n{ nf+r«Htas in w;!{er tn·.Itnwut f..H:Ui~y ;ts int!k.!H·d hy nutnbcn:d citl..'l<'~. . vor ... ~:;i xo. ?., .Jt:LY 1!173 I RESULTS A 1ninhnum of four agiintors was Jtlecessary to reduce the nHrogen levels from 1Jl5 to 130 percent saturation to an acceptable level." Some combh1ations using four agitators we:re not as efficient as others and only 1·equced the: nitrogen levels to 108.8 ·percent. This decreasa in effi~ ciency was due to location and spacin,g of agi:-, tators. -F'our corner agitators were less effident than four agitators set in a line perpendicular to the flow. Efficiency of the aerators increa:sed with incre.ased flow rates. The results of nitrogen and oxyg-en determiJmtions with regards to flo\'\T, ien1perature, and number of aerators operath1g are shown in the table. Enough Jata have been obtained fron1 tests rPn at Dworshak Nat~onal Fish Hatchery to c~n1onstrnte tlwt agitation provided by surface aerators provides an excellent n1ethod for :re- ducing SUJ)ersahn·ation of nitrogen to levels acceptable for :fish propagation. REFERENCES . 1. A:\lEf!ICAN rt.'BLJC Hc;ALTH AssOClATlONl A;,\JER- CAN '.\'.·\Tt:n \VOJ(KS AsSOCIATION, and 'WATl~R }>OJ~­ L"CTlOX CO:-\'fHOJ. PI:nE?..ATION. 19G5. S!nlldal'd mt>U10ds for the rxamin.1.Uon of wder and waste water, 12th <'clition. 7130 p. 2. EUEL, \VI;$ LEY J. l9G5. Suvcmmturation of 11itroc;en in the Colum- bia Rivc1· and its ('ffect on ~almon and stc·el- hcad trout. li'ish<:ry Du1h:tin, Yol. GS, 1w. 1, p. 1-11. 3. };m)~lA~, Ji'HEm:RICJ\: S. 1901. How a heat pump improved water condi- tions nt a flsh l1atch<:ry. Ashrac Jom·nal, P<>b- J'nar:y JDGl, }J. G:!-G4. 4. H . .;~:\1--:.Y, H. H., and A. C. CtWl·l:R. 1t•l)2. Ori!{in and tl'l'~ttnwnl <•f a ~·~ll•t 1 ;.;d~n·:di:d Tin·r W<ltt~r. Intc·rnatiowtl ral'ific Snlnwn Pish- Cl'if'S Ct•mmi~~ion, :Progl'P!':; R<~l~ort D. J:"/ p. 5. H .. \l:n~Y. JI. H., ami S. B. S'll'l'II. 1001. SUllc•rsaiura~i(lll of tlt" wn{<·r .S'tJlply •md f\r't'lll'll IH'P f)f pts·hlbl,}\! tli:taF:l! <tt Cilltic; 'Lnkc: Trout liCi!l')lt ry. C:w:ttJi:m Pish Cultu:ri~t, no. :~o. 11 • :w 47. r.. ounT:-:t~, n. n. H1:11. A n;,,.:;f.,:d \';tn Sly1a~ !1f11L<·,{ for !!a· dc- ti'I :::ill:Jt ;\,!\ C•f lE:-;;oh·c ll • :.:~ t~l'll :~:uJ tutal <:<tl'- h Ill dioxitl<' in walt·r. Phy:::o 1 n~;kal 'I ·!ng-y, Vt1l. 7, UO, 4 1 p. [t.j:2 .. fd!), '7. I!t'chn~, H. R, :mel K. HOilG!:~:!ll'l~l. l!<il:t Ob~t'lTati0llC\ tm ga~·lmhhh• dh·tn ... ·u of fi:;h. Pl'~'}~r"~:$~vc Fi;; h-ru1hu·i:-;t, vul. 15, no. l, p. 24. :!0 . / 8. RUCKER, JiOnEnT R.~ and EDWhlU> M. TUTTLE. · 1.948. The removal of excess nitrog-en in a hatch- ery water ~upply. Progressive Fish-Culturist, val. 10, 110. 2J p. 88-90. 9. 'VESTGARD, TilCliARD L. 19G4. Physical and biological aspects of gas- bubble disease in impounded adult cl1lnook sal- mon nt J\IcNary spawning ch:mnel. Transac- tions of tl1e American Fjsheries Society, Yol. 93, no. 3, p. BOG-309. 1Q. '\Yooo, JAMES \V. -:.:; 1968. Diseases of Pacific salmon, their prcvcntioll ~:-:~. and treatment. State of \Vushington, Dcpnrt-:::: .. :rnent of Fisheries, Hntcnery Dh-isit>n. :~~~ 11. Vt~'ATT, ELLIS J.1 and KlRK T. BEINI:.:'GEN. ;;;:;;: . 1971. Nitrogen gas-bubble disease related to a ~~:. ·Ji hatchery water supply from the iorchay of a ~~~~~~ z1 high-head re-rcguluting dam. Research Re-c.::E.:. ports of the Fish Commission of Oregan, ·vo1. :::::~~. 3, Noven1bcr 1971, p. 3--12. · ~~;~ . ,.. ........ ~ ~=~~::: !-,..,~-.. ';"::·: ~-:.;:;: t•··•t Stmmzary of uitrogen aud O>:ygcn m](;/yses tcith SC't'aral combinatious of flows, tcmpfralures, and twmbcrs S.~:: -r,:~.-::. of aerators operating . .::::;. ----------------~----------------------------( ...• Aera.to1·s operating 123456 Flow (gpm) 7 8 9101112 --------------37,000 1245 7 810 11 ------------------37,000 2356 8 9:.1112 -----------------37;000 1346 1 1 9 10 12 ------------------37,000 1 3 58 10 12 ---------------37,000 12 3 10 1112 -----·---------37,000 1 4 7 JO -----------------"'--37,000 2 4 811 -~-·---------· ------37,000 3 G 9 12 ----------.. ~····-~--·· 37,000 f3 10 12 -·-----··---·--·--·-37/HJO 5 s -----------------------37,000 110 ----·------------------:J7,Cl00 1 2 4 7 Rl 0 ----------------1!1,!i(10 14 110 ------------·-----·· 19,500 1 ·1G I 4.9 4.9 5.5 5.5 ::--''·" 6.8 G.S 6.0 G.O G.O G.O ... '7 <>. < !1.2 ~-2 .,.,. -'""' ___ " Percent saturation ---------------------··--· Nitrogen (Van Slyke Method) I11fluent Effluent 127.0 101.0 127.0 102.6 l1G.9 104.0 118.5 104.3 118.5 102.8 118.6 10SA lJS.G 101.4 116.9 102.8 J 16.9 108.8 118.5 107.1 llG.D 110.4 l1G.8 112.3 117.3 102.8 l Hl.S 101.8 ... -_..--~, ........ ·------...... ..,-,,--~-.. __ __,__...,.....,. -·-· Oxygen r:::::: CWink!er .Jlethod) f::::: ---------·-·-"-""'' Influent 122.0 122.0 114.~ 117.0 117.0 117.1 117.1 114.8 114.8 1]7.0 11•1.8 114.7 1 :?.1.9 ] 17.9 -4 '", ___ ... -~ Effluent 1;":'::~ ----.. --5.·"'·7-7..~~- 100.6 102.2 ~03.5 102.8 99.8 101.0 99.4 99.7 lOp.G 10.t2 108.4 110.1 10~.9 liXU t••··· ........... ~-··· ' .......... ~····· ~ ~~t:>: t•••· ....... ~ .... , ........ ~ ........ ........ '!, ....... ~~ t:::: .. ........ ~~--... ::.:. ~:-~~. t::: ... r·. ::~~ .. ~=: •·· ... ...... •.. .. .. ··~-t'l> ••• ;:~~'. -....~·· .. ' ........ ....... .. . :.-~!,.;; ... ... ........ '"~o-"' ·~· ... -. -·· ~ ....... -'•t"•' .. • ,; ... 4-• ....... ~ :~: .. ......... .. ·t·to .. 1" .. . . .. f:· .. ). ; . " . .. i:;;-... .. ~:.j]:,;, ~t~r¥: ' . , ..... ,. t j·-. f; .., i ., ••· 11 ""•" #C ....... It \ ·'' n rr 1-N h• 'n' ·~ i',"~l!-'',?•'" l'h'" 11.1 I OJ1'l f'uot.:.f m ( ••.:o~l lltu.un .• TEtvtPERATURE AND OXYGEl'l-NITROGEN GAS RATIOS AFFECT FISH SURVIVAL IN AIR-SUPERSATURATED WATER At.AS V. Nt.no:t K. A. Kt.NI liAL<"K and FA'c't· D. BAKI.K U.S. Environm.:ntai Protection Ag.:nc}. Corvallis Environmental Rc:>l!:trch Lahoratory. Wcsiern Fi~h T\l\icolng) St:ttion. 1350 S. E. Goodnight Avenue. C'"'n.tllt.;. Ort.:gon "!~~0. liS.A. Alhtr:.u::t Ju\«!oik Sh:dni!:Hl tn:mt :.~nd Jml!nile chinook. coho and soc~c}C salmon v.\!re tested at thiTcrcnt temperature!. t!S • 9 • 10 • 1:! • l5 . I X and 20 CJ .11 the !>ame concentration of air-supersatumtcd .. \atcr. Supcr~aturalt.:d wawr cont-cntrations in dilfcn:nt tests were 115. 116. 117, IllS <md 120"., satu- mtion. lncrl!<tS\!d temperatures c~IUscd a signilkant (P < 0.005} im:rcasc in stcelhcad mortality. a signili- c:tnt incre<~se (P < 0.025) in chinook deaths. hut no ~ignilicnnt ~!ITcct on colw or sockcjc mort:tlity. Rcgrcs~ion moJd data for steel head indk<~h! thut a I 0 C increase in temperature ''ill decre:tst: the time to 50"., death h} a factor of 2.7. e.g. from J90h at H C to 70h at ll:S C. when tested at the sam!! total Jis)oh!.!d gas pre!>:.ure. E!Tc:..:ts of dilfcrcnl oxyg\.·n nitrogen gas mtios on !ish monality at the same total dissolved gas prc~sure in supcrs:tlur:ttl!d v.ater were dt.:monstratcd with ju\'l.:nilc stcclhcad trout. Mortality wus rapid (time 10 50"., death in I 6 h} ''' 140. 135 <.~nd IJO'' .. '>:.Ituwtion. \\ith lbh tl)ing more rapitll) ;Ls the ratio of o\)gen nitrogen Jccrca~cd (decrease in 0~. intrca~c in N~J .. \1orwlil) p.mcrns were similar at 125",.: time to suu .. death nccurrctl in 5 :m h. "'ith more rapid 1.kaths t.'ccurring as O>.)gcn {O~,·N 2 ratiol was decreased . .. -___ .. ·' 1:'-lTRODl'CflO~ The \-arying solubility of gases in \'<atcr at different tcmper.lturcs is \\ell kno\\n, anti tt.:mperaturc tolcr- am::es and oxygtn rcquirem.:nts of a vnril!ty of fishes and :tqu.nic organisms nrc knO\vn for a \'r'idc r.:mgc of conditions anti with some toxic substances (Cou- tant & Tall:1udgc. 1977). Howe:\ er, there b little infor- mation on the effects that tcmpcr<.1 urc or varying OX)£CI1 nitrogen gas r:1!h)'i r.1ay have on the kth.llity of air--:upcr'i:tturatt:d water to llsh and lllhcr aq!l.Hic life. An in..:rc<t'>c in the temperature of '>;tturatcd \\,tier v.ill $UJWrs;tturalc the v.att!r .1 gas~s (Sht.•lfnrJ & I .ee, l9l3; Dc~1,.)nt & Miller, 1971). but liltll' is .10\\0 of the ~..·rr~cts wht:n l!c..h arc ~uhj~.·ctcd to the ~lffiC CtH1CCntnitlOll Of ;rir·'iUpt:f'•ii!Ufalcl..' water at dtf- facnt tt.•rnpcratures. Thr\!c therm.d studi··~ have con- sidt:rcd -.onw .a ... r•~t:l!:t of the inter .u:ti~)n nf ll:mpt:raturc :md 'up~.:rs.tturati{.tll (Cuut~mt & Gt·unway. 19M~; Cbcl 11 al .• 1971; Ht'ttck <'l of. I'J76}. Fkkti"'!n t'l a/. p976} d:termi!lt:d cfft:>cts of d~!Tcrcm lt.:mpcr:tturcs on H.tck bllht:~ld (htulurus lllt'ltH} c;urvh·al ut tht! "<nne g.ts k-.ds.llll!} fl.Hmd litlk o" no dTt•ct of -;up~rsatur.llh•n \}l1 the toknm~c of the lhh at tanp~r.llllrcs of X • 12·. 16· ~md 1fl C. !\1<Jrccllo t't dl. (IY7~) .,h,,·,,.r•d th.tt l~.;re \H·rc no ~ignific.:ant dTccts of lct;'i"'c::,,Ic ,,n l~t '>\11 •hal l.'f rn~·t,h.Hkn {fir. uwrti.J 1\r.J''': ... ·) .:I d:f· I i.-.r ·:lj'(.'(').tt!.r.sth•n '-,:,:1.:c.:! .r~,tt~.,ns 1~ • ,·,,u.d .,.,t,rk l.•n dT.:t.:t'i uf \.tr) it~~ t1\ ~ :;,;. 'i .:nd . 'l... r ·f ' ! .. ~ 11 ,. ·r•'!{tlt .. ·I ' ,. -~ 1"' n c ,t 'r ' ' :. • • :..••!! •· .I ., ". " 'I -. ,. . .. '\ \ ·'."' • .: h t'. t,' .~ ~ '"";-..), .. · :,;·.~ ;,., ,,,..~d~ .. t.~.,~'HJ t. :d~ ·ln. ~~·'J ~' t.: ~ --~~~ b.y Nebeker ('l ul. (1976a) with juvenile sockeye salmon. sho""cd that varying gas compm.ition of supcrs:uur- utcd v.atcr can affect flsh survival. Nitrogen gas. wl'i~h forms a significant portion of the total dis- sohcd gas pressure, is a major factor causing mor- tality, though oxygen docs cause scv,.:rc C\tcrnal signs of gas huhblc disease. R uckcr used 119 11 ~ tl'ltal gas saturation aQd varied the OdN 1 ratk1s. Nchckcr t•r al. used 120, 125 and 13011 ,, total '•dl!fati~m \\ith ~cveral Ol.tN 2 ratios. The 1\H1 i''~l''rs '-l·•>'m.ui;c other rekvunt litcrntufl~ that nccd not he citl'd ;tg.!in here. The purpose of the prc'>L'nt study \\i\S to ~h:tcrminc if Jin~rcnt temperature~ might h,tvc an dTt.'t:t on the survival of juwnik vdmnn ;mJ \tt.·dhcad at a Cf>n· stunt ~upcr~atur.llion Ct1l1C\.'tlll~llion and to prc\~·nt tl.lla for jll\cni!c -.tcclh~·ad trnut (Salmo li·llr,IJit rt} lt~\lCU at <.,t!VCfill tot.d di•.•nhcd gJ\ pre•.\IHC ll.'\ds and O~.N-2 riltio.;. F1\l1 <:tct:lh,.·.al IW\It •.tn•'hs (Salmo .;.m,!J:ai) •• :•lJ ;;Jh'nik d~:nl'"t. tC'''<"r/,111(/;u, '''"~'''!\1/:ol. \.'uho (0 l,,,,~,lrl. .mu ···'dqc ~d·, 1n .10 JhrLt) V:crc rt:.tr~·d fr.,m t:':'" ,st the Wt; ldn h,h r ''""'·'t!~ St.JIIon f't.,h \\t·r .. • 1\:J ,t ·"~ ··ilh 0:~·!'· il '-1·1'··1 l .·.11 n ... , .uld \\ t'r~· ,,-, !tHI.Ik,l I:) J.· .t '• 111· J·-L•tt.lt : •r n '·.~·.t .. :11: ,,d,, f . ..f, rL' tc·.;. ·£:. ·.· nh ... lc~ ,~f: ·~,i':c r n~\J~~, !. Jr~r~'"· t<tdl ,;,tft<·d·t·s 1 5 (4 ,•.1; ''ll'li:Ha·.;.J t!.,,•j f,·.r It •.. 1•.L: .c lnh v.t'rl! t,•.tctl Jl --15 .. :n:.:hs c.f ,.~1! d··• <11;: ·I l. ' ••C' tl,·•y '••!r\; ,;'111·!1<; .;~,.! v ;-,~,j l'.H• ~ar~~~r~;z~~:i~~~,::;:z;:~, ~~·.· ~~~~:;.ill~teJ( .. :;;T~-,~~-----~:~~-~~~~~-~---~-~_.._~·-,---·-~·~-~~·-~~,~-·-~<·~!-~.~---~·~--"~~·~~·--~·~-----~~:.~;~~r:~~.~~~-,~···7:·· P Fl ctt TR ifi&Uilill .. 5"-:errm -.,..,~~ ::<'!~ .. JOt) AtA:-. V. NJHIJ...tR. A. Kt:ST HAn"K and FA\'E D. BAKU T.thl.: I Tim~~ tu 50 .tnd ~(}" .. da:.lth fur JU\'.:Olk :.t~clhcad trout and juwrtilc S<X:kc)c. chinook and coho salmon ut dtlf~rcnt ga!> ~tlllfl1llon level!> and v.:H~r tcrnpcr~tl\lrcs. Each value rl!prcscnts time to 50",. dcat.h. using :!i) fish for cndt t..:st tank Mean m..:;t~urcd " .. Numinal Test tot:tl t!:J'i w:lll'f Tim~ to 50"., c.kath (h) Time to ::?0",.. death lh) numh.:r ~.11 ur.t t h •n • h:mp ( ('J \tccUw;td 'nd.cy~..· chinook coho sh.:clhctld snckc)c chin no~: coho ------ II 'J 6 H IU.:! 45 M2 235 70 .29 .f7 152 II 'J ~ 12 84 51 H4 II 61 30 55 195 II 'J.7 lb 35 63 J9K u 27 37 54 JbO 119.3 20 40 57 53 :no 28 34 40 5! ., I 14.3 lU 510. :It fl.fl 320. J80 II 114.5 1:! 505. 40K 11-fl 2M5. 115 u 11-U\ 15 :!61'1. J05 u.n ISO. 156 ~ ll-t7 IK 202. 158 ll-ll l07. l J5 n. 480 3 ll tl.l 9 462. 22J 515. 418 175. 108 165. 177 116.2 12 242. 252 395. 525 141. 158 214. 205 116.2 IS 19J.IUS 490.470 9:!. 57 154. 173 I 16.4 18. 7:!. 52 JIJ. 453 39. 37 162, 212 4t II 6.5 9 160. J9J :!K7. 456 101. 1.27 116. 158 I 16.8 12 211. I!D 397, 603 MB. 1:!2 112. 195 I i7.0 15 I?R. 143 11-11 93. 87 272,320 116.8 IN 102. I 13 n.n 55. 54 n.n 5 120.4 9 45. ~ 11-11 29, 35 Jl. 30 120.~ 12 4·t 40 a.a 28. 27 43. 39 1~0.6 15 -tJ. 40 49. 36 30. 28 34 • .21 ).21.~ Ja 6 120.2 10 56 49 90 43 31 20 46 JO • 120.9 12 33 .;~ 55 41 20 23 31 26 : 1103 IS 42 50 55 17 41 29 . Jl il '119 6 18 32 37 J! 46 24 22 11 {) ..,_ 7 117.2 9 121 226 44() 230 56 128 200 100 117.8 12 123 250 311 276 73 131 220 156 117.5 15 96 216 235 319 7c 104 1~5 172 117.6. 18 62 332 205 1)6 45 105 94 58 ·---··-- • Cunlrol tanJ..s rc-nmincd ncar l8 C and 100"., saruratitlO at all times. t T\\ o tests "'ere t:ompktcd ;II each l~·mp~·r a lure. t The formuht BP + !J.P . B P + t.P -I' P 100 = 0 ,, sat. was u:;cd for thts tcsl only. Other t«:'its used -• · ---~ x tOO= 1$., saL X BP BP ~ S.ttm:ttion lcvd .,,gnllk•111tl) higher tlwn other tanks. ~.bra not used. ln-.utli.,Jcn\ ,,h:.1th:. h> ..lChJc\1.: 51l ur 2t)"., mllfl •. dtl). mally he: migr~tting dov.n to the oc,.an: AH:r;tgt• fork l~ngth \~.t~ 15 em: nw.tn hhltlcd \~oct wt \~.1s J2 g \h'.tn )tcr:lhc-~td :il/1.: \\hen t~·:.tcd 10 mt\t'd g.~:.c:s r.mgcd fH•tn 5 ~ g (7 9 em) to -Hl5g tl6.:! em). tkp...'ntling up,,n age: anJ ti;nc of )ear ta:l>tt•d. <. 'hiJw,>J.. r.mg~·l frum .!J X g ( l.! fl <.:u) to 95.M g (~Ofl~.·m). :.nd.c)c fr1H1t b.6g tXA~tnl tu 1115g (:!09cm). anJ C:1'ho frtltn .!0.5 g (II 9 ~.·mJ to 51 6 g ( 16.7 em) .• tgain tkpcudmg un :1g1.· ;u,d timc: of )C:tr lc-.tl.'d. lliJt<r .m,J tt·,t·j;KiJit.r llnchhum.th:d •• tcr.tlrd '~ell wah:r "''" usl.'d for .Ill !.:st- ing .mJ h.td !hi.' f111l,mtng .ncr..tgl dtotf.h ll'ri)IH;!I: h;:rdnl.'ss (<bC.Jl'OJI 31 mgl 1 :;d} .. du11t} l.t~C.1COJI .!Jmgl"1 ; pH 7.1 W.tt~o•r dwmtl".JI .tnal)'c:. v.crc n•n.lu~.:teJ .tl.'l:Md• inl! to the: :\rncr11 .. •n Pt.bilc lk.thh !'.~'''..: ,., 111 tl'i7ll. \\~ncr tcrnp\·r..~tun:. \c.:l,.,·u} ,naJ fl,,., r.1h: "'~re l'Ofill'nlkd, :wJ n.liUt.tf pftnltlf't'fhHJ \\,1'). Ultfllt'd ,I,HHll! ll''>IIOg, T ~·'>I f.tul!lt4'" ..:urht,h·J of fhc N H).J hht:tt•l.t~.., t..~nk!., e.H.h \\1lh ,, \\Oller dq'~~h uf (·0 .. m .mJ ~~-~~~.unmg J fu'.Jr• dt.t:r;L•r.;d n:lun nd "'~'<: fi.,r h:">ling 4 !'l•'oP' uf li·.h ,u thl! '·1a'lc ~"·'1'· t'••B.t!t<~n ,,r t···~·.,., dwc I., h 1.n1l h.td a '>C:p:r.Jit:' ··.;f•.'f\.:h,LAlh'O t·•l.:'l,tl•ll tSd··~tl d <JJ, f';':'(,/t) .,.J ~·rc 1-1. 11\f V..ll ,;.•1"'-'f'>JWf.ll J l') t'iit'• !1' ~ J.;'•11l,l•i;,'·,,t'd ,ur nc .ur .11nl OJ ~~t ~: i.t'l. l"!n y, o~,·t h:t prc"'lurc: .n~.l IL;·n ,, k.t•· IC:,! th\.' ,.,,,•.:1 ~ :1 .. tl.c ~v·l •. d \. T! <C r":r .. et:nt salw.J!ion v..ts ~·t'l•lt ,c!kd by !he .: .• <t':mt of Jit (.:nd gases! mct~·tcd into the lc~t ,~.ttcr. Bcc:w-;c '>tlp..:rSJhu· atiun ,,( g,ts in \\at..:r ir11:rt'.t'>CS \dth dc\.tlt'u tcmp!ir.lturc. :t dtlf~rc:nt amount t)f g.ts h;td to be :hhkd .1t r:;t~h t~m­ p~r ;tturl.' tu maint,tin th~! ~;unc !Ot.tl p.:r ~..r:nl .,.thu-.nion. A Van Sl)kl! g;IS .tnal),cr. the W,n\-kr nwllwJ !ill dic;~ol\~:d ox:rgcn • .tnd .1 \Vchs ''llurtllllc:tcr ''ere u ... t:d to tktcrrmnc •.;t nr<tti~m 1.'011\:l'<Hiall~ms. The formub IJP + t\P-l"P;B1 x 100 ,;; u., ~.tturall.m. '~ ltl.'re JJf .;: tliU1t.hflhl'riC pCC'I,,\ICC, ~\J' ·,;; '<,ltUfOI:h'll!'r (\';1.!:11g, .md rp "'" '~:tt..:r vapor p!l': ,,,rc. '>\.1':1 \l'ii.'J to \;,lk~1! lie l..tJI dissol\cu gas prc\~Luc \\ ith thl.' Wl'i~') .. ahtll·llldt·r P~r \t"fll u:t)}.!Cil aOU nitrot~C'O ( 'i >Hgt•li) '>.11\lT.IIIllll \.du.::. \<.fit d·:tt.rr.llll\.'U U\iilg the m~.·tl,\lJ:o. ;tnd l.tkul.lll•!ll., ":ltb.·J b) !'-kh-:1-.cr ,., ul. { 1'1:'&,11 Tt·mpt•rmurt• It''' ing Fh.h ''ere~ tc,tcd .Jt ~··. 9. 10. 12·. 15, 18' .1.lHJ :tl C at hlt.tl !Ia:; ~upr:r!>atul;tti.m~..\'lll(t.:ntrati\IHS of liS. 116. !17, 118 .ttuJ 1:!0"., (T.tblc ll fn t'Jt:h l.wk tlf '>\ljr:r~J:ura:~ \\ ;;;~t·r 1·ne or 1 v. ,, tt<\h \\etc ~.whlu~'kd ,1t t',l(.:h tt::rw~~ .:··::- v.uh I'(•~ !C''II ~\lfC pa '>j·~•it."'i, ;o lhh r.:r .:.s~~:. :\f!C!'I' .~~.!:· w . .:a.\n hl u•,t f..l~.IHh~ .mJ temJ·I.'t;.t!::rc!>. tht: \\..ttt:f H$ ··~ll" r .dt,~ •'< .l. f<l•1 ;'.t:'!l:~ ""''Ill X h l•l t..:.:~t.h tc\1 k\ch :~~ fi·h ·'>'It:,,.··~ :.··.t •• ·•;,;r ·.l'.:lt: . ..,,l':·r· "m,llcd .-.•n;1 , ·'1 • l r ; Fig. vivti j I I wer~ I qucj invL wa-. tim: the w~~ gmt sign (reg ., ) '-llillon ~ ~U lish I~ C\lhO 15~ l'J5 A6() 51 30 26 31 30 100 156 172 SH , s~H. r (and r"<1tur- r Jlur«=. 1 t.:m- "Jtion. 1J for u~cd •rmulJ BP '~ . .tnd 1\·l,il r ..:cnr • .... .:rc tlla(d :!fJ c I, fl7. .:l' -~C J,_,·h· . T!c IL • \ • :"L Fi~h sonhal in air-supcrsaturat«=d ~at«:r 301 .c .c ... 0 .. "0 ~ 0 .0 0 -. .. E 1- 20 a Water temperature, •c Fig. l. Effect of different exposu, t«=mperatures on the sur- \h·al of juvt:nilt: Stcclhcad trout at four different concen- trauons of supersaturated water. were being produced. Fish \\<ere observed for morwlity fre- quently during the day and evening. especially during tests in\ohing h1ghei concentrations. Time to 50"., dcuth {L T50} v.as determint:d h) plottrng cumul..tttve mortality agamst time on Jog-probh paper. A straight line was fitted through the points and where it crossed tht! 50~ o mortality m~rk v.as considered the time to 50~ .. mortJ.Iity (L'f50) for that group of .:!0 t1sh. The slopes of the Iinel:. (Fig. I) were not significantl} d1ffcrcnt !>O they were set equal to e.1ch other (1egn:s!.ion of log (L T50)). Mi'l:c•d gus rt•stiny Fish were tested at total gas supersaturation conccn· !rations of 125. JJO. IJS and 140~{. total dissolved gas w!th 37 different oxygen· nitrogen (02 /N1 ) ratios. ranging from 40"., (4.-t mg 1) 1~ 307"., tH.J mg I) 0: saturati"1n; and 96 l6:!"u nitrogen saturation (TahJe 2}. In each tank. of supersaturated water. two or more lt!sts were completed at each 0 .:IN l gas ratio and supersaturation conccn· tralion. with 10 or 10 fish u~ed during each test. Fhh \l.cre under c~ntinuous obser\'ation until gl eater than so~ .. had died. Fish were transferred direct!> to the supersaturated water from holding tanks at the same tcmpcraturl!' f.J2 'C). rather tt.un being placed iu the ranks prior to super' ~turat­ ing the w.•tcr. Time to 50" 0 dcu:h (LT50) \O:as determined in the same mannt:r as in lt:m~rature testing. Temperawre tests The effect of different temperatures and constant supcrs(tturation concentration on survival of the juvenile stcdhead and salmon varied with specks (T·1ble I). Increased temperatures caused a vcr:y sig- nificant (P < 0.005) increase in stedhead mNtality. a significant (P < 0.025) increase in chinook deaths. but no significant effect on coho or sockeye mortality. Using regression models, highly significant (P < 0.001) and significant (P < 0.005} temperature effects were shown on steclhead and chinook. respect- ively. For sorkcye and coho, such regressions did not show a significant effect of ll~mpcrature for either the LTSO or the LT20. Tiibk ;!, Summary of .mean time to 50°~ d~ath for juvcnik stcdhcad tro· I at 125. ... I 30. 135 anu 140°;! tot a I Jissol\'cd ga~ prc:.surc <tnd 'ar} ing 0 21'N 1 ratios ____ .. __ ....,_ --... -·---··-------··--~------ 135" 0 total gas Gas conccnlnltion "44.2 93.0 95.7 995 117A 120 2 1~3 s ~~~ s 1::!9.4 0" l .. • -«) 5 107.~ 110 I 131.7 1.'53 P56 . I.:! N O• 2 0 146.6 133.4 l.H.5 IJ2.2 138.1 125 9 125.3 l ::!58 125 6 l J5"., hltd g.Js N .... 1 ... 159 6 14:!.3 l~.s 0 117 3 I ~6.1 I J) J I :'!S 9 ·rt4 Mean time to 50"u deuth (h) 4.7 -«i.9 K2 5.0 16.5 16.7 I:! 0 200 Li.5 Mt!.m time io 50° Q tkath (h) 2.5 1.6 2.3 JO 2.7 I S I 5 57 I JO~ ... total gas Gas couccntrati<m ol~~ Nl~~ •45.9 99.2 100.4 128.4 129.2 139.0 1400 140.0 166.4 151.8 138.1 1383 131.1 130.!:: l~g 0 l2S.2 127.8 121.1 140 ... ., IO!JI gas G.t$ com:t:ntralion 0 1";, N!"·~ 566 990 H~l 1~82 140.9 JS7.1 ~~~) 0 .:!.17 9 3tl7t} 16~.4 151.9 1~0.3 141.4 14<>.7 129.1 ~~~ I 11~0 96 I Mean ·~me to :,tl'' .. dl.'ath (h) 3.7 4.2 4.5 5.0 4.2 55 6.0 5.0 5.5 Mc•m rime to 50",. d!:<llh (h) 1.7 1.9 1..7 2..2 2.0 1.7 1.9 45 so .. .. ... ... At~S V. 'SIIIIJ...O,, A. Ka~T HA\('~ and rA\L D. BAJ.:IJC. These dat:t indicate the likelihol)d of increased murt~llity of stcdhcad trout and chinook salmon ju\cnih:~ in supcrsatur:ued wutc.:r at higher h:mpcra- tures. Apparcrnly coho and .sockc)c arc not signifi- cantly ;~ffcctcd. us long as the tertlpcmtures are below thll~ \\ hkh do ntH Jircctl~ l.';lUsc h.·m~r .tturc-rd..HcJ mortahl). Thc supcr~atururion cnnt:c:ntwtions used during this stUd) arc nl!ar the 96-h LCSO \a lues (50" .. mort:.tht) ufter 96 h) dl!tt:rmmcd from pn.:\ aous studies (Bouck t'l til., 1976) und hmc been shown to otcur in the Columbia and Snake Rivers (Ehcl & Paymond. 19761. Rt:~reo;'iJOn d.Jl:.t for .stt.'t:lhc:~tJ trout in 1his stud) indicah.:d that a I 0 C dc:crcasl! in tempc:rature: will int:n:asc the LT50 by a factor of 2.72: if the LT50 for I J ~·· .. saturation ut IH'C \\US 70 h it would be ncar 190 h at 8 C (Fig. I). Tl·"·re was no ~igniJkant diffc:renc~· in L T50 at diffc:rent h:mpcratures for sock- cy<: juveniles. A$ mentioned in the Methods section, the formula used to calculate supersaturated wata concentrations subtracted water vupor from the saturomcter rending. In test No. 4 water vapor was not subtracted during cakul.Jti~ms to sec: if this would rc:.uh in sun·hul dara different from the other 6 tem •. h c~m b-e seen (Table I J th:.~t simibr mMtalit) \~ould cx-cur \l.ith either mc:tlwd of cakul..tting supas.llur.l!c:d \\atc:r C(.)ncentr:trkms. It is apparent from this study that the tempo;;· rlture of supcrs.aturated -.... ater ma) h:l\ e an effc:ct on fish suP. iv..tl. de~ndin.g un .spedc.s :.tnd toi..!l dis.soh c:d g:t.s pressure. Thcn:fl'lre, \\:.Hc:r h:m~.:rJturl! :.hould tx• Cl'ln- sidcrl!'d v. hen determining if k\e)s of su~r~J.luration are safe for a lhh ~pecies in a ghen \\atcr S)Stl!m. This app:tn:nt biological difference due to tempera- ture increase is diiT~rt:nt fmm th..: physico-clwmic:.tl in~reusc in supcn,aturadon whcn watc:r is heated und !Jccumes supcrsatur.Jted, Jn general. air sur~·r.;utu­ ratk·n in wutt.:r v. ill increase 2S.'u fur every I C rise in water lcmpaature. i.e. water \\ill h•.! Mt~rsaturatl'd to l25''u if tcmpt.'r<ttore i!! mist•d from 5 to J5'C. \\'hen thl! tt:mpc.:r,alurt: of u \\iller ~y-;tcm incrca~cs. eilhcr naturally fn,m ~ol.tr insol;~tilln or from thc:rmul spiings. arti/kially due to man's acthitics. or dw.! to :.1 t'ombinath'~n of holh. the rt:'iultant tcmpcralur..: may havl! a ddct\!ritHJS effect on lhh popul<llklnS. If the v .. ·atcr is ~urJcr~aturutct.J by ::.pilbgc over darns and suh'L'4ucnt!) ht::llt:t.J. fish and invatchratc popula~ ll1.lllS \\,lllld be scti\lU~I) thrt•..ttcnt.•d, t( lH.H Cl)ll1ph:tc.·ly d111unatt.•d frtHll .tlfc'L"h:d JtL';Js, • .\fh:t·J Y•l'l h'SIS As in lht: tv.o c•ulirr studics by Rucker (1976} with cot1 o \alnwn .wd Ncbcl-.cr et a/. (1976) \l,irh 'iOCkey-: !>alnwn. the prc ... cnt ~tud} ~ith •a~:dh~ad show~·d that !hen~ w ao; a t-.igmfit:ant diiTt:rc:n~.·c (I' <. 0 05) in llrnl! lO dt:ath dl ddi~rcnt 0.! Nl r•llli.)) 'dwn li.h \~ere t.·~r~.·d ..tl th«:: '>.HllC 1~\t.ll dt••.oh~.·.J ~.1:,. ,~r.~.·ure: Fhh ,Ji,·J r .!pt.Jl.> ~~~ I·HJ ;Ind 05<~ u ,,,r u; .\ 11, w 1th lh h d:ing u;"re <1 ~1id .. ly ,\l the 1 n•\~·r '''\{•"!1 llllf••itn J.lli.1<;. ·~! .. "·~ r,;:;.·c::~n nl,~tk t~p J L"'t I, ~ .. · •kr ;·•·.Jr· tion of the Iota\ gns. Mortality also occurred mere raph.lly at the lower 0 2 jN 2 rutius ar 130" ... M~lrtality pallcrns m 115 11 ,. were simil:tr to the otb!r three! lotaf gas Cl)ncentnuions but the L T50 incr~ascd as the oxygen concentrations increased (Fig. 2). The lower l1\}gcn .:vn~cntrJtions iu the fL1ur h.'St!i~ -4.S mg J -• al 1.!5'' ... 4.9mgl-1 at 130".,. 4Amgl·1 at 135"., and 6.1 mg 1· 1 at 140"., ma) ha\e contributed '~) the mor- talit} caused by supersaturation. but this v.as not dl!termincd due to the rapid mortality at the high nitrogen Jereb needed to maintain the desired Iota! g.b prc55uro. In plo1ting the dfects of difft:rcnt 0 2/N 2 ratios on the;: survival of sh:elhcad {time to 50",, dc:lth) at the same total dhsolved ga;; pressure. it was found that the :>ume results could be obtained using di,.,ohed OX)gcn rather rhan ol. Nl ratios. making the graphs simpler to prepare and understand. The curves in Fig. 2 show. based on the d:.ttu a\'i!il.tblc. \'.hat the time to death might be at different 0 2 k\ds and total dissolved gas pressures. We were unable to construct a reasonably ~implc mathematical model whit;h fits the pJitern:. found in Fig. J. ~ The cune (XI showing time to 500 o mon~lity for jU\enile coho ~almon from Rucker ( 19i6J 15 sup¢rim- pnsed on Fig.~ to see ho\\ it compar.;$ with (he data in }his pa~r. Although the mortalit) patlern ''as similar. the time ro death cannot b<! compared be~ause more tolerant c. 'lo salmon v.ere u:>ed in the Ru.:J..cr stud). and stedhead trout \.,en: used i11 the pre5ent stuJ~. At 1~5" .. tN:!l gas :.aturt.ttior. steelhead died most rapidly at the lowest 0 2 concentration of 4.8 mg l-1 (0 ~,'N 2 rntio of 44.2;1-tQ.61. indicating thai the! low OX)gen-high nitr<)gcn combination was rapidly ·lethal. with so~Q mortality occurring at 4.7 h 1.!'\pO!>UfC. AI the higJ1est 0 2 concentration of I-1-.3 mg 1· 1 l0l/N2 ratio (.1f I :9.4/125.6). the L TSO w:J.s I 6.5 h. 4 times as Jnng as I he I~N ,•r 0 :!IN! r .uio. rh"' Ill\\ 0: \ ·)l.l centr<ltion oi 4.9 mg 1· 1 (0!. N! r;~tit.l of 45.9,151 8} at IJO"., had 50''., nwrtalit) at 3.7 h. \\hile the high 0! com·l·ntratlun ~)r J8mgl-1 to!,N.! r••titi.of· 20 . ftg :J ffft•\.'(\ flf \'J(~'II!! (}! ~! P~a••, .tl I '5. • ~·I .mJ I ~II" .. "''·" th''·•~IH,I t!.ll' ; r1 •t•t~ • •n • "d! . ! \~.t!-ttl\ Jl [)J~..t t,f R'~Jt.J ~r {~l -,.!,uv.rl"'& !~'I l.'\ IH ., rt,if t,•tsly .uc • ; ·. · ;1:1; ,,.;d . :. t 'e t. .. 0 il I.• ..,. or tn rcc total as the 1.: J,n, ~r ·:: ! I .tl ~ ~r.J ht: mot· \ .J'-1\\)l ht: hi£~ ::J tol~l uio:. on l :tl tht! nd th:.tt l"'''tll\~J !!raphs lf\CS in h;n the r1J total )O~lrUCl 1i.:h tits 11ity for ilpcrim- hl! Jata rn \\as mpared I tn the in the d most mgJ~l :)1c low ~· lc-thal. ure. At 102 1'2 ~ times ) 1 cnn· I 151.8} I~ high 110 of .?:1l IH ,f {!till l66.5 'J :!1.11 haJ. an LT50 of 5.5 h. The d1lfcrcncc is r.u& .::~ g.rt:.sl d::O th~t ui l~s·· .. !x"l:au ... c the lut.sl g.s!> .concentra~ion of 130"., kill!. fbh more rap1dl}. T<Jhl.:: 2 _gives u summary of the times ,,, 50"~~ dc:1th (L T50} for sh.·dhl·:td trout f,lr c:u:h cotaJ gas con~cnlr<llinn .1.1d e .t.:h 0; ?': r:ui~,.,. :\ stg.rwi..:..tnt ~h .. tngl! in the r~uio of ll\)gcn to nitrogen in :.ir-~upcrsallln.llt'd water v. ill result in a i:hangc in th1: IL·thaHt) of that v.atcr to fbh. If photv- S)n:hcuc ;H.:th!t} l'l.::Cur~. diS!>ol\cd O~}gcn in the water will increase, the I ota.J dissolv~d gus pressure will increase, and the oxygen/nitrogen r=.~tio will change, unl~ss the water is \'igorously ugitatl!d. Tht: actual nitrogen cr.mccntrution muy dl·crcase due to the physical stripping of nitrog~n from the water column :ts (1xygcn hubbks rise to the watcr surface. In most instances water temperature increases during active photosynthetic actidty because of incrcuscd in- solation. This increased v.:.ller temrx:r:uun: resul!s in an incrc-ase in t.hc totaJ dissolved gas pressu~c. or supersaturation. If the tt;mJ1<!rarure of the water in- creases without inc•eased phl>tosynthcsis (from algae or higher aqua~ic: pla.11s) the oxyg~n nitrogen nHio (0 211N 2 ) may not ch~mge significantly though the tot;tl per cent supcrsaturatiQn will incrcasc, lf the tcmf".!r<l~ ture stays the same dt:ring incl~::.lsed photos)n!hcti~~ activity (e.g. un afgal bloom). the 0:~ N:! ratio will increase due to greater amounts of o.\ygcn h~ing pro- duced. Jf •he tempaature incrca::;cs during an algal bloom. supersaturation levels and the 0 2/N 2 n~lio \\ill increase, depending up.on the n.Hc of temperature and 0 2 changes. The other main cause of change in the 0 2 /N 2 ratio is biological n:~piration, or .. use of oxygen by algae. higher plants, bacteria. fishes, etc. This decreases Ot)gen in the v.atcr, }oY..cring the oliN~ ratio and the total dissohcd gas pressure, or supcrs.tturation in the water. Man may radkally alter aquatic s}stems b) introdudng nutrients '1\l:i<.h :aimulatc .dgal gnmth or incrca~ b<.~ctcriat n."'>rir.Hi~m. c.tu'iing C\'cn greater fluctuation in the 0 2,N 2 ratio. The results of this study are: consistent with those d P.ucker (1976} and ~h:hd.cr ,., ul. (1976). lncrca\<:d tgal air ~.upcnatur•:Jtion cau~s grt:atcr fll(lr!alitj and a reduction in the LT50. An increase in the am~un: or OXygen (\kcr~ta~c in nitrogen), ~;Ct!ping tht.' total gas saturation t~·\el thl! same. \Ull redu-.;c tin: mur l<tlity and im;rc:a~ th~.· LY50. Com•'t\-1'1}'. an incrca .. t! in the oi!rogc:n t.'l.lllt.'l'ntr.lliPn (tic:ctl"J'\1! in O'l\)~~n) ~c~.·ping the g-1s s·uur.tti,ln ror,cc:ntr.llion the ";!me, , ... 111 in· c:u.J(,<! the murtl!it> a11d dt.:~ft'.a·.e the L'l 50. The .... ork d Kr>iit!!l d ~J! {\97!~} •.ln)v.l"d dr·MI} tho.~l if fi~h Me fW,fl\l'd from '-UP f', .• l;!L$h••i \,;ttc:r p:ior Ill dt·.Hh !~ey 1::!1} fl'l.'bH'f. [ i•h ;•;: •1 tl~hd' ,'lill~l{iC hft.• f;i .• } bt: ahlc ln t ,J.::-.:St: bri('~ U 1 ·~·t:.r kHh t.•f ~~~r" I'·: l\,1 ,,:,.n h~::.,.-i!~.,C! .~ff'~'l:o't.i ~3 .h'f {r·. :~'''u!t~ft: .~!zd i L ~ ')0• l ~. •1'.. ,,, :f. ,t. ·, ·,., tl 1,, l .,. . ., •• ,,fr •'I L\ .. , , .. 1 · ,, ,. •~..t , .. {"'""4''! ~~~~~i'il,'(~,. . , "··~~:.;. ~~, .. , ~ '"\-._ .,.., '-••••o <nd f,;i!.h r':"'t'''·'~''··n ~. i~o·s .tt •··~.n! F.:r'"('r ·},•.1:l•s .,. !h L_l,~;·.i:ln~f {'.f , ·,:t>':i. ,,,,.,!.d•n,; ;l.t,.• d ~~~)' I J .•• in 'c.' J ~~·r ', !il ·.I • ~, '". i ! t)4 "~2 ·.~'~"'i J03 in ... upcr~uuratctl w;ttcr would h~.· useful in predicting C).tcnt of fbh mortalll) in !ho!>c ~uu:.stion!t. • Ac J..m,wlt•d!!l'lllt'IJI.\ • We wish l.o thLtnk D,. Don Picn:c. Orcgnn State University. Dept. of Static;tics. fur his v:tlu· ~thlc :t\:.i-,t.tncc. Don S!l'Vens. Rohcrt Trippel. J.lmcs Andros :.~nd J;tm~ Na~h for :.~ssi:;t:tncc during lish'tc:.ring. and the Ort:~oo Dcp.trtmcor of Ft:-.h anJ Wtldlafl! for fur· nis;ung ~~)ur~cs of tish c~g:.. \\ c :IJ.,\) tlmn'-J1ld ~h:C'r:tu) anJ Stt:\l' Weill for hdp with g~s ;tnal)sc:. anJ \\atcr chemical ana i} sis. RF.FF.Hf.NCf:S American Public Hc:tlth Assm:iat ion. et cJI. ( 1971) Stunclttrtl ftlt•tlwds ]i1r r.ht• E-ccmtinm i,m of U'at er und Wa.'ilt!l\'dt er. 13th Eon. New Y,uk. Bouck G. R .. Ncbd;cr A. V. & Stevens D. G. (1976) Mor• tality. sallw:llc:r ad;tptation :md rcproJuction of fish «Jur· ing gas su~:-satur:tth)n, U.S. Ell\ ironment:.! Prutcction .-\gc:ncy. EPA-6\.lO.'J-76-050. !NTIS. Sprin~lield, VA. 22161.) Coutant C. C. & Genoway R. G. (1968) Final report on an explorator} study of iotcraciion of incrcas'-'0 tempera- tun: Jnd nitrogen su(X:rsatur.ltion on mortJlir~ of adult. salmonids. B:mdk Mcmori:ll Institute. P3l.ilk North· \\est Laborat1.1rks. RichJand. WA. ~8 No\crnb•:r. 1968. Coul.Jnt C. C. & T:~lmadge S. S. (1977) ThcnnJ, effects. J. War. Po/1111. Control ~Ft:tl. (Lileraturc Re\i::V. Issue). 49{6). 1369 l425. DeMont D. J. & Miller R. W. (1971} First reponed inci· dc:ncc of gas-hubhk disl.'l!se in the heait."d cllluent l'lf a steam generating l>t:ltion. Proc. ?5th Ann. S.£. Alsoc. Gamt' Fi~h Comm. 392-399. Ehc:l W. J .• Dawley E. M. & Monk B. (1971) Thermal tolerance of juvt·nile pacific liafmon and stcdh~!ad lrout in relation 1~ ~upcrsa•ura,ion of nitrogen gas Fish. ttull. 69{4}, 833-843. F.bcl W. J. & Rn}mood H. L (1976) Effect of atmospht·ric gas sup.:rc;aturation <m salml'O and stl'clhcad !rout of ihc Sn<.~kt! illlU CohJmbia rivers. Afar. Fhlt. Rt'l. 38(7), 1·14. MFR Paper l 191, July. 1976. r1ckdsen D. H .. Montg~'mery J. C. & HanfR. W. Jr. {!97li) Effect a( temperature on tokrJnce to d1ssohcd gas su~r­ s,!turation ofblad; bullhead, JcttJitmn mt>las. Gc.n Bldl!,lt• DiH:'t.Jst•. (Edited .b) Fid.eisen D. H and Schneider M. ),) Pwc. Workshop Hdd Richland. \'.'A. Oct. l:l-9. !97-t. (tJ S. ERDA. Tech. Inf. Ce-nter. ,)Jk Rldge. TN. CO~F-741033). Knlltel ,\1. D .. Stc\·ens D. G. & Garton R. R. f ffect of h~ drosiaiic pressure on sun ivai of steclhc.Jd !hlut in air-5UfY.!•Saturatt"d water. Trans. Am. Fhll. S '"· \TO he puhli~ht'd~ ?.L .. dJo R. A .• Jr .• Krat.:1ch M H. & B trtlell S, F. (1975) Ev<~luation of .altcrn.tlh'c solutions to ~·~~ huhhk diwao:,c mmt.tlity oi rnenh.Hkn :11 rilgnm nudear p\,'l\loer .,tation. Suh,ililled to no~hm fdi!.t11l Co .• YAEC-1037, B,hton, Mas:.. 1\'~·lo,·k~·r A. V,, C.m,l G. R. & Sh.:'ri'OS D. G. (1976,1) Car~ th'fl Jhnid..: ;u,d (','O 11-~·n niffl'l!l.'n r.1lit•S as ftctor:. .tlft'Ct~ ing \.t '·:11'0 '>!In •hti in .tir·'IIJ~~·r-,.ll!n ,lll.'d ''.Her. Tr~m-;. Am Fnh, Sot il.!'i!1), 42::1 429. Nr:l ~·~ t~r A \' . $;l'\, rH. D G .r .. Br~.:tt 1 R I l'r'l>hl f-ffctts o( £d!: '!t'l{X'I'·~Iut,,l\'J \\;!!Cf ~~n frc~hv.,Ul'r 34U;l\IC 111\Cf• trbr;1tt~ G:h Rur!.lt• Dht>.i't'. {1\hlcd h) F1d.ci~t"n D. H. <WI Sd.Jl(~d··r !'.1 J'. pp, Sl 65 Prt'~· Wt,rJ.!>h.;·p Hdd Rit hl,mtl, WA. ()~_·t. ~ 9, w:-.; US l' K t:>A Tech. Jnf. <~\th·r. (1,,}. fbdt•t•, T~. C'O~F.741033. P. :d ~:r R. R. ( 1 97(•) (1;1~ I :.~'hlr: di.;~,·.l'·e: rhorta!ilic'i of t:dHl li;tl,,i;'O. On. tnh) •:.·l11n ~i,ut<·h. m w.1tcr v.,th t:un· \l,;nl hlf,!l !~·l!l j't~,--.-.ure i.!Wj J1fTetclll ~a) t;'•lfl r:ltrq•tm r.ll 'S. ft,h Hu 1l. 1.\41. 1 .1~ ,S 9fH. \;l' !~t>Hf v r { ·\lh·~ w c. tPtPJ The rc.ICII•'1''· d li.!,t>s h• i• ldi· !.l~-\1:•·,-ht'd !.• ··<; J, n{l z,..,J 14. :.•7 -:u.f!. • , .. -: ,., . • .. ... ~ \ .. ,. ~] ·j ~- ~ i ·., ~~ > r ~ ~ . ' l I. r \; .. .. . ·~ D ~~~~'Iyp~m 0t7 'l1·H~.~ AC~v ...t' ... l'\. ·1~--.... ~ -... ,. .. .~..~. Office of the Chief of Engineers \~ashingt.on, DC 20314 · Engineer Technical Letter No. 1110-2-239 Eng ineerin~1 and Design NITROG2:·J SUPERSl\TUR..~TIO:OZ ETL 1110-2-239 15 Sep~ember 1973 1. Purpose.. The purpose of this letter is to pro".ride guidance for tne evaluation and identification of those proje~t~ with hydraulic·structures having the potential to produce nitrogen supersaturation. 2. Anolicabilitv. This letter applies to all field operating agencies hav1ng respcnsibili:ties for the· design of Civil Works prpjects • 3. References. -- a. ER 1130-2-334 b. ER 15-2-11 4',, s·· .. ~ .., J.O.t:toaraP.lV • ............ --"' ... .... a. ER.lllG-2-1402 b. EN 1110--2-1602 c. Ei\1 1110-·2-1603 ~ .)II' Discussion .. a~ Nitrogen supersaturation and associated fish mortality du~ to gas bubble disease has occurred at Ccrps of Engineers projects on the· Columbia River in the Nor~h Pa~ific Division ~NPD) ::d'ld more recently at the Harry s. T·ruman project: in th~.:: Missouri River Division. Nitrogen supersaturation can result at any hydraulic structure from entrained air introduced by the spillway-stilling basin action~ As the flow is subjedted to hydrostatic pressure in the stilling basin 1 a portion of the entrained air is driven into solution before it has the - opportunity to rise to the surface and escape into the at~o­ sphere. A potential problem situation will exist if the charec:ter i.stics of the flow within or do~1nstrerun ·of the ,, ' . .r----. '\... ~ " . ;::?4 1110-2-2 3 9 • l5'Sep 78 stilling basin are such that the flo'w-l does not have the necessary turbulence to degas or~purge itself of the excess dissolved nitrogen. Flow conditions below proj0cts con- C:uciv,z to rapic ec;uilibrc.tio~: with thE:· atrr.osphc::·c are s~allow, turbulent streams~ The reaeration and s~s transfer characteristics of deep, slow moving rivers or downstream reservoi~s are relatively small. Generaliy, fish wi~l· not suffer fro:n gas bubble disease so long as the~l swi-w in depths below 15 feet. At thos~ depths the ext~rn~l and inte~­ nal gas pressures on fish are a~oroximatelv ecua1 • If the ----' ... .....,. fish swim to the surface, ho~ever, the internal gas press~r~ exceeds the external'gas pressur~ on the fish re~~lting in gas embolism or gas bubble disease. The tolera1lce of fis!1 to levels of nitrogen supersaturation depends upon the ti~s of exposure an~ the age and species of the fish; however, dissolved nitrt3en levels referenced to surface p~essure above 110 percent are geLe:-ally considered to b~ harmful. (Figure 1.) b. The phenomenon of nitrogen supersaturation below· hydraulic structures i~ co:nple=-~ and .~epenas upon a nu~ber · cf factors~ Normally the probleTii c~ nitrogt;•:n supersaturatio41 has been associatea with aerated £lcn·IS plungidg into aeep· stilling basins with slow moving downstream flow conditions~ If the hydraulic jump in the stilling basin is a free j0mp, suffi- cient turbulence should be present.to degas the flow so that dissolved nitrogen levels referenced to surface pressure will ~ot exceed 110 perc~nt. If the hydraulic jump is submerged, the flow may plunge to the bottc~ of ·~~e basin. · With submerged ·hydraulic j urr,p flow· condi +.:ions, the change in "'o;uentw~' of spillt·7ay OJ.~ cutle·t \-Jorks releases due tc a. \:ypical SO foot ~~dius toe curve subjects the flow to· a pressure: about 1 .. 16 times the hvd.rost.atic · nressure on~ ~:ha":-aor.on due ·to· .the ---dov;nstream tail water. The· j l1Tilp ~1ill · be:come· fully submerged when 1:.he ;.ailwater. depth is greater ·tha~ appro:~imately 125 percent of the· ·theoretical· c12 .~ value~.""'' It should b~ not.~a that roller buck~t stilling, basir.s are· designed for tai)··- waters. great-;;r .than 125 percent of a 2 ... · In general, if .:for. a· g).ven discharge the·· tail water, exc2:.us a depth of 23 feet and, if the tailwater depth is greater than 110 percent of theoretical d 2 (partially. subillerged ju~p) and if flow conditions downstream of the project are not cor.f.ucive for degassing the flow, the potential for·nitrogen supersaturation exists ~nd should be ·inve~tigated. c. Nitrogen levels can be determined by measuring total g~s content with a gas saturometer and subtracting dissolved r .. .. i . ..-· ! . ' .. ·~ .. ..._.. ~,. -lO:.! G 0 ~ i..:n -z • •• 3 I I I I ~ ~..:.~~ ~:~1 ~ G:::ZO: r: !'I f.:.-.:=:. 1110-2-2 ":;• (J ..J .. Scp 78 .. ..... ............... . !: .. ,_ .... -· ' ....... . . ~ " .. ' .... ~ . . ;. ·~.' ... .. '" 'E::r L _ ·111 o:. 2-2 .3 9 · .15 Sep 78 ' . : ~~· . : oxygen content measured or bv using a calibrated gas chro~ato-~~ ( graph. Techniau.es to estimate the percentage of nitrogen ·-=-,·"f£ ·;-;t. tlsGpersaturat~on below a hydraulic ~tructur.e have o~en ,..,.· .. ..--: .• ~:.-.?''t · ~~'cevelopea. by NPD c!ld by the u.s. Bureau of R.;:cl~~~atioi'l (USER) .. · Inclosure 1 gives a su!Th-nary of the development ~=-!d evaluation procedure for the ~?D method~ Inclosure 2 giv2s a summary of the USBR method. The technique developed by NPD was besed on . . . .... .. ,. ~ ... :~~ ·:;"· r·~ ... -~· ..... .. -······ .... . ............ ~··· .... • "'*••' ................. :::::;:~:::::.· .... -~ .. 1 ........ ... _ ............ , ....... .. ··~·· .............. ... ... "! ............... "'! •• ....... . ..... . .......... _ ....... ... ..................... •••"!••·"····~ .., ... '!" ............... . ·-········· ······ ··-········· -······"~····· ·····---··· ... ~"!······-­·-·'"····.....,·· ::::r::::::: .. -. .,.. ... "!' .......... . projects in the Columbia River Basin. The spillways are all gate-controlled ogee crests and with the exception of The Dalles, they have similar stilling basin charactaristics. 'rhe NPD method should be used to evaluate the effects of .. -···-·-..... ,. _ structures similar to those in the Columbia River Basin. The coefficients for this technique are based-9n thesE: types of structures. The technique developed ,by the USBR is more general than the NPD technique and ufilized data from a wider variety .. of hydraulic structures. The USSR technique should oe used t~ evaluate the effects of structures othet than the type found in NPD. Both techniques compute downstrea~ nitro-· • gen concentration values by considering such variables as upstream concentration, headt·:ater ano tail\&wyatel: elevations, head loss, angle of the jet, residence time of the .bubbles, ana pressure conditions in the basin. d. If measurements or estimates indicate that a potential .for nitrosc~ supersaturation problems exists, then detailed v moael studfes of the project may be necessary to develop ~--alleviation ~easures. Assistance in the studies car. be ~bbtained from the Waterways Experiment Statione Also, tech- nl·c-1 -ssJ·-~-nce e-ft hQ ob~a1"noa~ fp~-~~~~ ~~~ ~ec1c-~1 .1 c; a . ;;;;, ... a1 o.•• _.._ 1.. 1 ..... _ ..;... -·\.• ... L. \....&.1... ... -•• ..:: J ""'.1. ~. Interagency Steering Committee on Reaeration Research and the Committee on Water Quality (referenc~ 3b). Requests for th~ services of either. o= these coillmittees £hould ba coordin~te.d through HQDA (DAEN-CWE-H) \~ASH DC 20314. .. 6. Action Required. Review all reservoir projects, follo~ing the proceaure~ outlined in Inplosures 1 and 2, to determine potential for nitrogen supersatura~ion problems unaer all operating conditions including interim conditions during con 7 str.uction. .. a. Existing Projects. Report results and proposed corrective measures in Annual Division ~·;ater Quality Reports (reference 3a)~ b. Projects under Planning, Design or Construction. Report results and propo~ed alleviation measur~~ if reguired in -.. .... ~· ... "" ... &. - _. ........... ,. ....... . .................. .,~ -~-. ........... .. ... ,..,..,.,. • .,_,.,.To -~:.::: .. ::::;: .. . ·····-··-..................... .................... "'" ··~····-··~· ...................... -~····· ....... .-..;~········· ...... -.......... .. ................ .................. _ ............... .. ··••1'••······· ........... --··~·-····· .................... ....................... •••"!• ............ . ............ -.. , .................... '! ·~···· ....... . ·-·······•'"" ·:::~:::::.:.·.·. ··-······-· -······-··-············"' ............ ~·· ·----· ;.'.1--.· ,, -. [) ' ;, / ·i.;-. ::--.: ; f ... ·' \ .. ·G···-,. . ,:; Ef:"lr .ll..J 1110-2-239 15 Sep ·78 appropriate portions of Survey-Feasibility Reports, Design Memcranda, Det~ileo Project Reports, etc. FOR ~'HE CHIEF OF ENGINEERS: 2 Incl as '/ --:7-) L~ _, __ -,.::::-. I .,, r~...-.-- rr-o~·~-::::~ B r---.,. L-rs / n nJ:J..i;\,.. • 1il.L.: .1. Chief, Ensineering Division Directorate of Civil Works . . .. ., ! ..... . "' ·~·~· .,.,; . .... ~ < ..... ··-· ..... ....... "'"'"""" ...... "" ........... ....... ··-·~ ...... ··-· -4•••· ··-· -··.,~··-··· ·--· ............ , -··· ..... . -·· ····--"" -·····-··· -· ....... , .. ..... ~ ... ... ..... _ .. _ .. ····-·- .. .. .... ,. ..... -~· ·-·-· '!'. ·-· · . --·· ............ ,.. ..-.. ·· ......... ~ ~·· ,., .... ... ·-···· :.:t~:' ......... . .,. ........... -.. -.. .. ·••"!:•'• ·:"-·••" . ' .. ::::: . . .. .. -.... . ...... . . ·-· -· ~ ···~· .. .. .. ..... ~ , .. '' .. " .................. ....... '···~ . .. .._ .... ~ 1'<1-• ...... . ::;•' :::.~.-: .. , ··~ ... ~•·' II••• ..... .,., 0. ., ~' ....... . ··~" ······~ ..... ~ .... <! ...... ... ... ··~"' ·::; ~;::::·, '"'-!. ;;~· ,;:;;:; :~1, .............. ~:;," ::::·. ')~ •••• • .... 1 ~ :·: ·:·: ~ .. ~ ~~ . . :: ::~·. r .... ... . ' l ' . 11 ": 0-,.1 -" 0:_ {I - ----·' DERIVATION OF THE SPILLHAY-STILLH\G BASH~ HODEL* Consider the conceptual representation of the stilling basin sho~1n be 1 m-J. t.; . ; L . . . . . ... ... . ! lH I l . . I s I I ~ CONCEPTUAL RC:PRESENTAl iON OF SPlLLVvAY-STlLLING BASIN COMBINATION The water parcel indicated in cross-sectiorr by the shaded area moves through the stilling basin, decelerating and increa:·ing in height~ It extends laterally the full effective width, u of the stilling basin as illustrat~d in Figure 3 of the· main report. ... I ' ·•11•·• .. --"' ' ... ... ., -··-·· .... ... ·~·-··· ....... -~··-· ~ -........... . ....... ~---····"' .. --~ ........ . ..... ·-·'"··· ..................... ....... ·-··-~':..:: . ..,.-::.-.A.:-. .................. ............... -... ::::: :~:~~-:· .. ... .. ........... . ................ ....... ....... -.-~ -· ··-·~·" .............. ·-·-···-··· ···-.......... . .... .......... .. ........ _ ...... .. ................. -··-········ ................ ...... ............. . :::::;::::: ... ~---··••*•"'· .,. ............ . ·····-·-···· ··~······ ..... ................... ·········-· ::: .. =.= .. : .. ::.::::. ................ ··-· •<i•-............ - ·····--·· .................. .. .............. ... _ .................... . .................... ···"'··-......... ..... ....... ............. _ .............. .. :~:::::::::-:.~· --~ ........... .. .................... ...,. ....... i ..................... ........ -~······ ............... ........... --·· .. -·· ..... _ .. ····~··'f••• ......... _ .......... . .. ................. . . ........... ~····-........... -... . -·· ....... .. .. ............ . ...... ..... . ........ .. ......... -~ ~" .. ¥ ................ ... .... •••<~·•• . ............ .. ...................... ..................... . ............... . .................. --·-·.,······ ............ -.. -····· ~-... ... ···"!· .. .. -·· ......... . ., ....... "'*"'"' ·--·······~ ...................... ., ................. .. .. .-......... ...,_ .. . !.:::::::::: ........ .,or••••" ::-::.. .. :::::::: :·::. :::~:::! .............. ., ¥ ........... ~ ........ ~······· ;::~:::·::::~ ..... -. .................. ... .......... ..... ~ ......... . ~· ............. ... .............. ~. -· ......... . ........... '!!-••• ................... . ,., ......... .. :::::::··.:·:-" '0 ........... . We now make the following assumptions for the water parcel and stilling basin: Inclosure 1 . lc For that length of spillway that is in operation at a given tirne, the disch~rge is uniform along the US Ar:my Corps of Engina~rs, 1\ot'th Pacific Division, Ja;:mary 1971 ' . . , !':': c..· • 78 ,..._:.:J' .. n:p crest (this is equivalent to assum~Ii·g ti:c.t th~ P)"'Opert·i es of the \'!.a ter parte 1 are cons t&nt c.·l ong any 1 ine pal'·alle1 to the spi 11Hay crest). 2. The va1ue :t is the initial d£:nth of th~ s.oili befot·'e 0 . . • the jumr>. It is computed as: \'I here q H = y 0 = fl.__ = v 0 a discharge per foot.along the crest total reservoir head above the stilling basin f1 oor. 3. The only effect of the roller which overl~as the ~ain flow is to increase the static pressure within the water na;--cel bu e.n ai;twU:1t ~ 1.1 •.• r .J 0;:; l 4. A g-iven mass of air M.A. is ~r:ti~c.ineJ as into the water parcel at the poi~t x = . ,. 1 I. • .. h L • .. -""' • I I ' unlTor~ y c1str1~u~ea w1~n1n tns water passes through the stilling basin. ptrrce 1 as it 5. t!Je various \•later p~r-ce1 1 s 6. ·The disso1 ved nitrogen uni fcrm1y cii strib~:ed. ••• .: .:. ;-• .: J~ ~e n I loll l f. \.oil ., ., ""' ... A 1 -1 ~ ~Ut\.. .... t.w 7. Rate of nitr·ogai1 disso1utic 1 : !{tin th~ v1c:t2r parce1 ·is governed by Fickian diffusion as: where : M -the mass of dissolved r..iti"O£en in th·~ \ta-:er par·cel, K. = rate coefficient, iJ 2 • ·~ ... ••• . ....... i ... . ·f~·~.,.-.. ,~··~· ................. ,.. (A-2) , .. , .. .. ~. ' "' ..... ' . '.~ .... . .::-· .... _:::! ...... ·- -· .... ,., ........ ··--· .. .............. . "'"""" ......... ~ ... , ............... .. ...... ......... .. ........ . ...... . :::".~ .:::-: .. · .... ····~ ••• .,.!',.. ... .... ... ........ ,. .. ••"!•• .... -,.. .. .. ·-·· ......... . ....... .. ...... ~·~ .................... •••••f•••••• ................. .... .. ~ ' ...... .............. .......... ·--- :.:"'" ........ "':" .. ................. . ............ -. ............ . .. ...... . ' ,. ' . ·····~ ... .. ....... · .. ·.·:. .... ; ~::· ... ·~, ' ......... ·.• .. ;.* • ........ -...~.~; I c;. c· '' 11 -1 r;_ ?.-? .... .:. --v -__ ,-4# .15 Sep 7b l = total surface area of the air bubbles ccntai ned in the Hatf=r po.rcr:!i, effective saturation· conce;.-~r·ation of dissolved nitroge~ in the·w~ter narcel, and c = actual concentration of dissolved nitrogen in the water parcel. With these assumpti or-;.s, \~e can nC\'l define the pa ra:Y:eters M~ A, a.nd C~ 1!1 in equation A-2 as functions of the location of the water parc~l in the stilling basin. ·Assumption 6 a11m>Js us to \•Jrite the mass M as the product of the concentration c and the'volume of the water parcel, where tv is the eff~cti ve ;,Ji dth of the sti 11 i ng basi r,l of gates open) x {width per gate). :1 e ,,\ = (num.l.bn~, . . , ~.., """' The saturation concentratio~ of a gas such as N2 or 02 that is only slightly soluble in water is govat·ned by Henl'Y 1 S La\'1 which states that the equilibrium or saturation concentration of the gas in solution is directly proportional to the pressure existing at the gas-liquid interface. In the \'later parcel the pressure P at an elevation z above . the stilling basin floor is (P..-4) .. where P is the atmospheric {or baro~etric) pressure, 0 . are the densities of the roller and main flo\'/ as shO'.·m Hence, the saturation concentration at any elevation z rdv211 as: ... 3 and in in the: Ct. parameters Fi otrre ;;;J A-1 •. the parcei . 1$ , : . .. . -~· ··~ ·--••' .. ,.. ···~ .. .. • ••• 1 ... ··~~~· It ~ ••• { ..... . .... ... . -:.~ ~~:~:. '"":'~ .. ~ .• 1.5 Se:.: 78 \ ,•. -~e 'v,,;. ,. S . ···-~-... l'. \;;;I c sat the saturation concentraticn In equation A-5, tha press.ur.:: t_c~, ·,,., h~.:: ., .... ,· .... s -'"" II....... ~il ;.~ ec;uai:ion A-5~ it is seen that cE v:1~·ie:s lir:e~r1y ~·:1th z. -.... ... -~ 1 t ,,,·:::: tW&lV ••• .,. that +li' ~ ~''e""a~o or ~~-r('.J_ ·.,·' -""'.:..ur-.... .:-,-c,..~-,.,..~ .......... -... .:_., c --vi;:. ....... ~-f::;jJ ... a~c.."we s'"\.00 CL.I\o~.:i ..;: ..... ~ •• l..tC.~IV••:o-E fli •'•f..;:.. ... , __ parcel is the value of c . at mid-deoth, or at a = u/2: Thus. sa~ · v • = (,. '•\ .. . ... , .... , ..... . \. ~-' .- Noting that t Yj = D-y gives the final form of cE as = ( .'\_ •7\ "'-J The total surf~ce &rea A of the ~~r bubb1Es in tha wa~c~ p~rcel depends distrib~tion. It is not unreasonable to ~x~ect that the entr5i~ad mass f · ,,., ..... , be c'4 .-.: •. ,·· uted ... -.. ,...n-the , .... \ . .; ...... ·· h' .... ~~-: ._,. .:::~·-~-s .:r -.-·-,-n ... ·r 0 a1r y",ll 'e;,:,..,f 0 O.ih'-' I~ I va.· ..... ~ !..~..li..·l-.., ·-~: ; I 1..4 .. ,·;HI 1...;. similar to that shewn below. . .. B = fraction of total air mass in the water parcel with bubbles having a mass iess than or equai 1. 0 ---,----·-----··~71 ! to nb 0 The volu:"l~ vb of an air bubble with mass nb can be found from th~ iqt:al 1 :o-t '-.............. I ~- .. I • ... .. -. ~ . -· . . .,. .. .. ~ -. ... ~ ~ '~ . ..... .... ' ... .._.,. .... " .~. ._..,.. ... ,.. ... _ .. ................... ... ............ .. ........... 4,. ..... . f'... . ....... ~ .... -... ···~ .... ,. .. "' ........... . .......... . ~·-·~·· ~­... ,.. ··~ . ....... -. .. ..... .... -· .. ••• t .. era ttll 'W m R T p ::: ~ = = number of uni ve1~sa1 absolute the total !''~ v b = moles of air in gas constant, temi)era~ure, and pressur·e in the the bubb1e, bubbie .. E'I'L lilC-2-23$ 15 Sf:p 73 In equation A-8, m can be replaced by nb/28a9 \\'here 23.9 is the wolecular· \·~eight of ai1<o;. The diameter db and the area Ab of a sphere are given by: db = (6 rp :,r vb, Ab = r.db 2. ~!a\'J) combining equations A-8 and A-9, .the following ex;n .. ~ssion resu1ts for the surface area A., of an air bubble with mass n-: 0 "b {A-9a) {A-9b) (A-10) Thus, if the total air mass entrair:ed per unit volume of v:ater at Y 0 is M,., the total air bubb-fe surface areas A', per' unit vo1um: of \•later is P.. . found fr·om the bubbie size distribution and equation A-1u as .. A I = or A' 1 ,,~ . J 1 .f..,. -"I ;, ...~"'::) ,.~A ,.,.. tw . ., ... \} 5 . . ~ .. ··~ ' """ .... . . . . . ... . ···~ . (A-ll)' (A-12) I • . . . . . .... """ "' .... ;:. ""'""'~~~ . . . ···~ ·~·' .... ·-···-...... . .... . .... _ ... , ... :::~ ........... . ..... ~ ...... ., ..... ~ .. .. .::· .. :.~~ .. :.. "''f"'•"' .. -·· .......... . .. . . .., ........... ............. .......... .. "" .......... ~ . ·~ •..:• ~ ............. .. ... ......... .,. •·· .. . . ~ ..... .. ..... , ..... ' ..~ ......... . ··~-. ... . . .... ..... ...... ., .... ... ..... ...... . ., ... ......... ..... •.. ... .. .. . . ...... .. ~:: ::·· 'r ::ur .. l c.-in:.:1iy' to get the tt:ta1 bubbie surface a.rea in tho;: r:ecessai"'.Y to integ1"ate equatio;, A-12 over the volume i.e. , -. . . P ...... C·'"' ' .. • • 1· c-Cll '-• I!J .J. • uf the p~fc.e1 A = f f f A 1 cJ:::iiw dz ox tJ z Applying assumptions 4 gives and 5 and substituting for A' e ...,.,:).~.1·o·t "''t..u ~ • y ·: A --J dz ---p2/'is z=O Replacin1 ~with equation A-4 and integrating, .4 = Sut.$tituting (D-y) for y 1 giv.es the fina1 A = . ,,.t...e""e n•J l 1' ::: 3 ( §_~cg_)o/3 Jl f.;-1/3 """" AA ct 23.9 l'.tA rr.b ~w 0 . . If t . . f ,.~ c ' · ,.. . . A "' ~ ., · ,.1! r!e expressions or ,.:!:t E:~ ann 11 -.·rom equt:n:.icn -.:.~ r-,-, anu A-15 respectively ar~ substituted into the rate.expressions give~ in equation A-2, there results . u ,., ............... ~·-~~··· *~······ . .. ····~" .... ' .................. ··-.• '' •• -·· t•• ,., •••. ·~···"""""" ... (,. '\ '·' . ,I_.,."'. ~~ "\ -. { 'I •c.\ A-j ~'l {A ... ,., . -I t'i J • .. ' .. ....... .... . ' 11•••• ··~· ..• . ... . .. .... ···~·-· ............. , ... ..... ' ........ ~ .... ··~. ·:: .. ~ .. :.;:.::..·~· ····~ ....... . .... ,. ...... .. ........ ,. ......... . ~!:!: ~:!~!~: .............. ....... ... ~ ....... " ····~ •-t••••• -!1 ..... ,. ........ . ....... .... ... ...... ,. ...... ... ····~ ......... . ..... ···~ .. . ... ,.. ·····""' . ....... ···~··"· ...... ···--. .............. , .. ..... , ...... .., ...... .. ................... ,.. ... ~··· ......... . ·•·•·••11••••• •• ·"t' .... ••••-<~•• .. ·~ ........ .. . .... ~ .... . . ~ ·• ........... .. :·: .. ~~·.!:.·~ ............ ·-· .. . . . .. ......... .......... ".~-:.-.:·: . .. ., ....... .... . ....... , . ..... . ... ...... ,. .. .. . .......... .... ~ ..... ' . ~. . .. ·····~ .......... ......... ....... ¥-··· ::.·:.• ... ;. .......... ~, .... . ,. .. ,.,,...,,. . .... .. . . .......... . .......... ......... ,.,., f ..... " • .... ..,.~. :~!~~ .... • ··~···· ...... !< ....... . ..... ....... , . ..... ··•··· ' ·:· ,• · .. ••.·: . .... " .... ~. -. .......... . ····· ~····. 1~..-.. -....... . .... . .... . .... . .. ~·· :::' ::~!· ..... .. ·~· .:.=~": ·.~~:" ........ •• ,. •. fi•··~ ·::;: ,::!:; ·• ....... ····· . . ... ·• .. •· .... ~ .... , . t ..... . . ~' ,. ·~~ ~.. .. ...... ... ·~' .; '" ~'' c ... • r (!Jc;;} XLY.." Lrp + a D + (c:-c~ )u] l/3 J'1 L.o o O"" frp + a D.-(a -a)u]~* -cl l:· 0 0 0 2 w v 'J E~'iJ 1110-2-239 15 Sep 7& ,.P + a D L o o ~!e can now Nrite -rate expression ~~ in terms of the iocation in the sti11ing basin by using the l"elationship a:r: ac = a de ydX {A-18) dtdZ whei"€ v is the velocity of the par~el and q is the discha\'·ge per unit \•Jidth of the stilling basin. In addition, we defir.e a systsm parametr .. r X, 'l!hi ch \•;a h~i 11 ca 11 the errtrc.inm2nt coetficient_, as K = KTKA = 1 ( 6.!TiR)'2/3 J.l. •.); 28.9 1 [p2ftl(L ·~Afn;}'sdB] 0 Substituting equation A-18 and A-19 into A-17 gives the e>:pr"ession for the concent·rati on change in ··;he vlater pa rce 1 as a.c d.'C . r(P +cxD-(a -£.y)]C'*-C·J-~ L o o o 2 The solution is obtaioed as fo1lm·ls. Evaluate the pressu~--6 terms at D-l·Y the midpoint of the sti 11 i ng basin y = _---2.c tct ,Jbti ir1 2 de a:£ = !£ [ [P + ~ (D + Y .) ] l/3 q 4 0 7 . . (A-1~) {A-20) . . .., ............. .. ..... ~~····· ;;:· ":::~~· .. ~:_:·.::.:· .... _: . . ......... " ~·'"' .. ~_._ ...... .... ·••ll•• ~ ;::: ··::.'<!~ .. •• .. .. ·-· ......... . ............ -....... ··•·"-........ ·"'·•·"· .................. .... ............ . 7..:.:~~ .-..·::.·:~ .... . ... , ............ . ..... .... 4 .. . ....... .......... .. .... ......... .., • ~ ..... • .... '!'" .. . ···~ ......... .. ............. .,. > "'"'""' ···--~· .. """'"' ......... " ..................... ·······-···· ................. ::: .. ·::::::· ... ·:. -.................... .. ......... , ...... _ ... .............. .._ •"i·-~··•t••' . -~···-···· ... ........... ... ........ .. ~ ... , . .,., ... . ......... .. .. ... ~ " ... :... . ............... ....... ........ _.~ ... . -' . . . . .. "'. *"'" * ~ ... .. ... . ....... .. .... ,.._. • + ·~ .... ' ~. ~ ...... ' .. ..... ··;~:"'' ···'t······ ... ·::~.: ..... : .. ""' ···~ .. .. ,, .... •· . : .:~::; .. .. .. ·~. . . . .... ..... -t: .'~!~· ..• . . . •· .... . . • I \=:nere p - let = Re·~~;riting equation A-21·, with these substitutions gives which has the solution .. lf t;pl/3 X C = PC* + k.e q : (A-23} • Evaluating ::;quat i on A-2 t, at a; = 0 , where c ec; u:. 1 s the fo i":;b.\Y con cEmt:-wti :m C• and at ,.,.. = r. '·'n'ael"::._ c equals· t:''". s~~ 111· "',., ,.., ... co,.... co""cn ... -~ ..... ~t.; ~"' ,... .,~; ~, ..:s p:~ ..... _ n u...,. c.. a. "~ .. w..,. n ,, ~il"'• c~ '"'" ""S!i .; &o.;;H.t the spilhqay-stilling basin fi'"JOdel as , (f" ""'"' *"""" • ..... ~ . ~ ~ ......... ,. .. ·. . ..... ...... .. . ..... , ...... ... .... .... , .......... ·-· ............. : • .-.... :~ ..... *. !.:"' .... :· .. ::·.~ ...... , ... . ....... ...... w ... •1'f"' '4'<t•• ... ~· ..... , ..... ..... .... .. '~~•• 't• " '""' ... . ' ' I .,...--:-... .<1 • --" . . ...... . · RESIDE~'CE TDiE = t = r:JL/ Q = DL/ q ~ L/V R s !; TOT:~ H~~ LOSS = F~ -F.-D-n = E-(Irrv~ /2~) ~ -y· . I.. ~> EN~GY LOSS ~\TL = E = hL /t~ ... AVE. PRESSiTRE. ::; P = P + a:o (li-Y ) + ·cx.(t+Y ) 0 ~ 0 4 c (;.,. -· 0 . . . ll OF S'!'ILI .. I1:G :C-..:\Sil~, L c s -PC* 1/3 (Pc;* -cl!J exp ( -! L AP ) q 1/3 1/3 -fp + !! (D+Y )l . J 1/3 . o.:(D+Y ) L 4 ° J -llP ~ -() 4 K-o (T-20) L llP ~b ~ a.:!. • a & b are e::r..:>iric:r..JJ.v . " ~re sho~rrt belov:: • NQDEL l"'f'i .,..,~ .. , ..... -ll"\..., ..... '"!\ •• ~ s \./J~·-r. t . .:......,~~ ..... .!._ _.......__ ____ --PROJECT c n ~-- Little Goose 1.00 0.09 Lower Ho:1.u:nental 1.00 0.09 Ice t.·~-ho-1. C~; (') "::'t) ••'-~ ,:,.. . ~· . . .. . .. ... ~~. L!.t' ·~" !:" :./ .;., iiJ"'Tt""' -'~"' ~ .... T' ~. . ... .. ' j . Tl .... fJallf;!s 0.50 0 <'Q ,~;: ,.C\ Bonn~ville .... 1.00 1.90 Hater ..................... ~ ~ • ''". • . t •• ' .. ~ . "'"t1Q I) ,.~~ 1. . -~ .......... . ·-,.,... •• ......,;< .. L ... • T ~ ~ater Temperature. b 2.t.5 ') I 5 .. '-~ , "·"'' ... ...... ·• "' . . .. ~ ....... ? ·a .... .) 1 "0 _ . ..~ .:-. ..... ~··. f. 41 .. • .... I~ " .. 9 ,., J.. ..,~. • ... .. .. ...... . ..... ......... ,.._ ... '"! ... ~ ...... ~ .. ..... ,. ....... .. . .. ' . ... ·~ ....... ~ ... .· . . G.· ..... ••• •• " ..., ~ - ,... __ ~ ~...._-~~~ """0 .. , •.. -,,,LLI::: C 1'\.~~'-VI "" .. •. 1 .-;.-. ., t,::tK ..... FISH c;;, t.Aj:;:~i(_.' ~C"E:l. 97-....._ :--.. ~ ;--·\ I I I / .. -I • .~.:. . . . ..,.... ,. ...... ' .. ,,. ........ . .... "":·· .. .............. •· ....... ~ . . .. ~······· . .. . .. .. . •• * ", • .,, t····:••, .. .. . ' ........ . ... . ...... ·~;. , . ...... ... . '"'·~ .... . ~···' ""*"' ••• ,, ·~'llil'<l .... , • .. , ..... . . ,. .... . ..... ..... . .... ,. ..... . liJ:••·· ..... . • ,. .. ••+•• • I C'l,.-~. ,... ,.. . !lo.IJ .... E ._ ,.-\ l::-. \..).:-:A h t McNARY ,, ~ I 11, "' ,-- 1 l 15 Sep 7S UTYL!: GOOSL: \ '""'""-.,.. '"'" 1 \ ·\ ·~-~ ~-: ir.::r::-:n·r;·.-:;;;:,=.---,::_.~~-·:··:r--·---- :::.:; Vt.lor..!YS z~~~,:a_ ,• l•J .!'ltTS P. ,~._, ... -\ ·.4 ::...•~ .. (fi.J =:-· ~ r~-=-=--==-~1 ~. .. .._. __ --~:: 1 ~T.~Ll.CJJ!:~ -J J l ~~ • ~ ... -.&::.t;;-= '\! : ~i "' 1\.t.J,;;ATIC'I LCel( t 1 .. ( ...... !I i .. 'I'. PR.:.'DJC'T'TO'• "1:-D'S~O'"'r;!) G!:~ ... --..._, ....,_ ,.. ..J ~VL. . ... -.J ,,,., ~ ... :n7')~-·--" \~~,-·-·c·---· .. -·,.'1 nJ. ;,~_,1'-~~..L!.\.... ....., -~i.J · -~ ~.::..:-.... by ?E·rr.y L. Johnson~/ ancl Danny L. Kir.g3/ 15 Sc.-::-; 7 & .. ~ith the i~cr~ased interest in tne effects.of hydraulic s~ructures on the dissalved qas concentration of the f1ow, it becomes desiratle to be able to ~redict how particular structures ooeratinq under specific c~nditions ~ill chanqe the dissolved qas concentrat~on. - At e~istin9 structures a predictive ability would enable the facility opera~or to se1ect the method of release that 'ii0u1d have the most desirable effect on "" h e · · 1 ~ · "" · .1: '" ·1 .... t t rl .... • d · ~ th t • · \.. a i s s c v e \.; q as con c en t r a \.. 1 on o • '"r. e i mv . ~"' r c o vp e v. a ;.. 3 1 n 1 ca .. e a .. n e chanqe in the di~solved 9as concentration is depen~e~t on the tyoe of structure throuqh which the flow passes, the maqnitude of the discharse, the barometric pressure, a~d the water temperature. To establish an operating criteria fo~ . each ~tructure based on actual measure~ent of r~sulting dissolved gas conce~­ trations would be a difficult task. A predictive ability.could yield an understandin~ of a structure's potential ~nd allow preoaration for the possible consequences, even if the structure had never operated. A 1 ')O ~ with a predictive ah i 1 i ty des i g:-1ers lftou 1 d have an c. d.\:! it i one 1 factor which could be considered io structure selection. Deoendi~a en the situation~ it is conceivab1e that the dissolve~ gas potential misht even control the desion. Planners could also use a predictive ability to ev~1uate the potential effects of a sin~le hydraulic structure, or a series of hydra~lic structures~ on a river. Initially~ the dissolved gas concentration above the structure (both oxygen and nitroqen) is equal to the concentration established by the inflowin~ stream. The nitrooen, beinq relatively inert, will maintain this concentra- tion for cuite so~e time. The oxycen, however, especially in the lower depths of a resevoir, may be depleted from the decaying of oraanic material. Thus, if water is re1eased it may be lew in dissolved oxy£en and yet may conceivcJ1y be hiqh in dissolved nitroqen. Furthermore, the water may be high in biochem- ical oxyqAn de~and (BOO) which would reduce the dissolved oxy~en concentration in the stream below the dam. Therefore, the analysis should be able to evaluate how effectively structures increase depleted gas concentrat~ons as well as evaluate whether supersaturated conditions might be cre~ted. Such nreriictive r.;ethods have been developed for the spillways of the U.S. Army Coros of Encir.eers da~s on thA Colur;;bia ~iver (1). ~·~ost of these structt.:res, are aec~etrically similar. They are low h~ad, run-of-the-river str~ctures, •11ith ::Iate-t:cntro1led o~~e ·soiih·:a.vs. ihe sti1i1na b.:.sins are also of si:iti13r desi~n. This similarity enabled the developme~t of a pr~dictive analysis that is nuite satisfactory for the str0ctures considered. ~i.~ Bureau of Recla~a­ tion h~s f~w structures that correspond to these Colurbia River da~s. In c:enera 1, P.ureau s true tures vary w i cte 1 y in type a:-td s 1 ze. Thus, a wuch more ~en~ralizorl prerlicttve analysl~ is required for sianificant application: ·-----·-_.__.., _____ _ '4 .. • •• _ . .," ............... _ .... ..,. .... ·~ ... -.~. ·.1. ~ •• -. . .. . ..... \..".! ~:~~--t .... \4.... • • ·-·· 2/ }~ydraulic Engineer, Bureau oi Rec la:~:e1=io:1, Denvc:t:, co.toraco :2./ Chief, Hydraulics Brnnch} Burcnu of Reclar.mtion, Den.·vcr, Colorado Inc losurc: 2 to'\ ... •+'{•-•l'-........ .,. ~ ....... . ..... .._ ·- ... . ........... . .. ··~··. ... . ·~ ~ . ~ ... ,. .. -...... ~. ~ ....... .. .. ........ ., I~ . -.~i ':;-:, r •• ; , ·.,-1-CJ-, J; .... .. ............. ............ ·~··· ......... ....... ~·· ........... ..... .. .... ,,. ... . ...... ... .. i .• ••. • 't . , I I • -;~-... ~ ' ~-i (t_-. r ... -:, ~"' ~··---.. :.; :;_·,· . .:•, .. 1.5St,.·p7a· :~s a .b.:sis for development of the analysis, the ·ro11ovdng data were co11ectec: 1. 2 ~ 3. 4. 5. Reserv0ir water te~oerature, dissolved oxyoen co~c~ntr~tion and • J . , dissolved nitrogen·concentration at the elevaticn frcm which the wat~r is withdrawn ~ Oischarqe and a retard of which qates or valves are operating if releases are being controlled · Tai1water elevation, temperature, and dissolved oxygen and nitrogen concentrations in the tailrace Local barometric pressure Photooraphs of the structure ooerating and dimensicned drawinas of the structure's confiquraticn By fa11 of.l973 the monitorinq prooram of the Bureau's Enqineerin9 ard R~seart:h Center had reached lfi sites and had observed 24 structures in operation. Fo;"":v-nine different operatinq conditions had been studied. In acditiGn t!'::e ~ . Paci.fic Northwest Reaion of the Bureau of ReclaPation has closely studied Grand Coulee Dam and rr.ade observations at 35 other sites .. The Upper f·1is.scuri Reqion of the Bureau h-as oerforrned monitorino at Ye11owtr:li1 r~fterb~y Ow";l. . -Combined, these data provided an adequate base fro~ which the predictive • analy~1s could be developed .. Analysis The process of gas transfer is descr·ibed by the equation: C(t) = C5 -(Cs -c1) e -Kt where C{t} = final dissolved gas concentration Cs = saturation co~centration Cr = initial concentration K =a constant of proporticn~11ty t = time (1) C(t), C5 , and Cr are concentrations in ~a/L of w~ter. Equation 1 shcP,·is that the final dissolved r,as concentration, C(t), be1o·.~ a hyC.:--aulic structure is deoendent on the initial concentr·ation, CI~ in the reservoir, the saturation conGe~tration, C5 ,in the stillin9 basin, th~ lencth of time, t, that qas is being dissolved into the flow, and a constant, K~ th"1t would be expecterl to vary with the specific hydraulic structur·e and oneratin·a condition. c1T \iill be either set 11~ a knO\·m level or asswr'ed. The "'th·r thr-oo Q':l""~met-ers r t ana· V\ at·a cJo~j:\n'"1 ,nt On tllo t~rr,,::. c.f st!•c'"U¥-C) ....,._._.~ -..• I~-. t-~• \.,1•• ,_. ,'-'5' ' !i •*•J -·-\)_. ~·-• r..:: ... _,._._ • "-' \.. I~, oceratino cc!idition, temperature, ar~\i h~rc0etric pr·essi.we. Efforts \•:ere directed at evaluatina C5 , t, anrl K co~putationally. Th~ saturation concentration level, C5 , in the sti~lina basin, is dependent on the pres sure that can he deve 1op~d in the basin and the h'ater ter::nerature. The oressure obtained in a stillinq basi~ is dependent on the depth of water over the flo·" in which the buhhles .::;re entrainc~d and the barometric pressure. Thu·~~ surface water at sea level will hold 33 nrrcef!t r;o1~e Sl;"s t.h~n c:;:Jrfac.::. .,.;-:h;""' at }!1 •:1:;1/Jtio:t nf connn ft (?::~'1 :'"'·'. ,.'\1~0. ',•.t.1tq~· ,. ... ~ ~'-1.:; t::l)l'"f::~ ,...~·r. • I • .: ·1 ] r l • L. ::'. .., • ,. ,. , , • <. • ,. S ,. . , ~ • i ' • .•· , • • f. •• ,• ., ( I :.., • ,· •• • C ~ : • · • - • ~ : ",-, J ~ ( J t ,. ~ _ • ' J fJ f : : •-!...: t • L. ~ r.! • :~ • 1 • ..... " • • '!! " " • • ... ! ; I ;:; .. •..: \.; t _ • . ... • , .. • e ,.,. •• t i.. •, .,. J • "1 • ! i • .... ., • • • 1 .. • • 'I' ' .. .,_ • :_"' ( ; ~ • ~ • :: ·•1, f 1 (' t -t> I ~ •· ' • t ~-f '' • : 1 <f • \ "' • • • • • • of • ' ' t " .. 2 . . . ,': . .,·rn"' f.~,",;~ ··.! ·' 's:~.: ~·1. _., ... ·-~ .. . .. .. ..... -· ... .. ; .. .. -...... . .. . .... . ETL lll0-~-~3~ 15 S~p· 7b ... llll"'t:vs~.; .... .:,.,__ :·n:') -~:.-..... c·~.:_ c ... •t--~ ..... r. ...J .... ,·l,, ;, 1~t"'"l.;...l·r,-, ..... ····-r..-r---: .......... -~C7· .... ~ •. LV•!Ua~:utr~. t tt..: e.'"': "".J G.u~t;"-' ...,:.' Gc .. J , ,:..,.t,.,.w\.•~L. U&i-· .:: .: ..... ~i .. ,_t.::;t-''tr~, i\..,. }J•_~...s.l~·:: ;:". .!"'::;. r" 0 '-, :0 'r ,-. :"\ "' ' I ~ t i--!!:! I I ~ ::£y h n s : -• ; ,:: i ,. ;;, r :\ .-, r• S h ,-.. U 1 _.; ·~ ::;. f' 0 f' S ~ ,.J .::l ,~ 0 ,f i n t-~ (.) ......... " '-, .... _.t_ ... u'--"<.;;;J ,1..... ....c 1\..:.1,, •'--n~ (~, ... , .. v "" .J_ ...... -...:~· ._t... • ' "-''- ..... ... --;-. T .... • <tJ ~ • .e·:~iu.a ... 1cn or t.,5 . 1n dns analysis ::ieasur-2d baro:::et;:c :;!·Ess~res · ... ere -~ . he 'I A 1. 1 a"' -1 a T .: ·--..: -, -' , .,.. "" -'J • ~ .. -....... -~ .. ... ·~ .: " .,. G. .. ~,...,. 0 s lJ~t::G W'r n c...... IJ -..;; ...... :ec.sur·eu ;,•c.:ues ..:2.rc 110\,. c..:;..:-..~~.~ ..• S•~CiovC.I c. ...... - phere was ass~~ed a~d barooetric pressures were com~.~~~a ~cccrdiGS to e~evat~~n. The ~epth of water over the flow in which gas is bei~g dissolved is ge~~ra11y ~2pendent on the depth of water in the stilling basin. Thus, variatiJns in the tai1water elevation will have so:i1e effect. Tt1rous:·i:; .. r: this anaiysis a water ~epth equal to two-thirds of the basin de~th was used to ccm~ute sa~ura­ tion concentrations. ·It was thcuqht that initially the fafrly co~pact jet frc~ a ~pill~ay or outlet would penetrate to the flea~ of the still~ng basi~. The flo\" vmuld then be deflected dO\"r"nstrea:n ar:d out cf t~~ !Jasin. ;.s the flew ~oved throu3h the bas~n it would be diffused and its velocity reduced. This diffusion would be linear and result in a trian;~:~r pattern with the average depth th~ough the diffesion being two-thirds of the total basin depth. Bubbles risinq frc:n· the flow. and ific0mp1ete flO\>! pen·~tr·J.t~cn would tend tG reduce this average depth, but the t~o-thirds ~epth was cGnsi~ered representa- tive and therefore used in the analysis. A major point of support for the t\.;o-thirds depth assw:iption is th2 fact that later 2-ppi :cations proved tlie assumption reasonable. If the flew being studied doe~ ~ct penetrate to the b .a.. -t' 1 th . . . . -.&:'1 ... • • b . . ~· . o~.. ... cm or ·ne poo .e-max1mum cepr.~ OT , ,o, .. , pene~..rat1or, ;.~ay e usee 1n \.n1s calculation in place of the basir. depth. Evaluation of C5 is achieved by st:r.G~r.s the bcTomet;'ic p~·~ss:..:re ar:d t\·;o-thirds of the basin depth (expressed in ~ of Hg) and dividing this total press~re by standard atreospheric pressure {760 ~~ of Hg) to obtain the ave~ag2 absolute pressure on the disso1ving bubb:es 1n. terms of atmos;;h;;!r·es. This avera9e abso1ute ~ressure is then multiplied by the dissolved sas saturation concentra- tion at sea level, for the desired water temperature, to cbtain C5 . The next parc.:neter from equati(;:\ 1 to be considered is t.he time, t. It is representative of the length of time that the inflowing jet with e~trained air is under pressure in the s~illing basin and, thus, the 1ength of tiree that sas is being dissolved in the flow. Consideration cf ti~e revealed two possible 11. -ita"". ""'S ,_. • C l' t 1 ;.1.-,..,, e :;1·rs-'-.; ... 1 ...,. •• , ..... 5°"-..... ;,.,~· ~,·,,~n m, l.i0:1. ~o.fiJ.\.o OU 0 COn ro .l.:. '/'-l':l ••. t., •'-~'<.. .. ·...:•'-' ,_c;,. ... t .... t~ .. y ,._, sufficient ti~e the entrained air ~~~~l2s wou1d rise cut of the flew and e~d the dissolving of sas.· In soffie cases it would seem that an evalua~icn of this b.ubb 1 e rise ~ i ~e co:.; 1 d be used to r~:vresent t i:T.e. On the other band, s itua- t ions miGht occur 'l'lhere the f 1 ov,· ·.d ~h en~ra i r.ed air· 1,·;~1U ~ d oass throuch the . . . _, h • d h ,J. -'1 .... ,; h 1 .. . . . . f . , . ~ .... . -· J: • uas1r1 an, ~~e t.i2T •EC!...eu to as .a. :-:w c~~~::. 1n a a~r·1y sr.cr .. ~..1me. 1nere.ore, ~ :,., e "' c &. 0 0 a l 1 p ... r. ._ h 0 ,&:' 1.-.: ...... e r O I"" u ; Y'" f:': ~ :,.., r ,_ r ~ • 1 ... I r T' 0 ,~ -,-.:: I. \,. rl"l u c h J. r. O ~ ;l s ; n l.. l t ~ L.,. \.J t -; & 'j t,. I & l.. J II t ._ "-! I • _; \.,: I V \.. t • t: t l.i t\ \, t-' _;; ;, .;.: \... • I t V -\.. t t ~ ._,. .,.. I I C '"'J.ri .--nr.:::(·~""~ t.. o· •'rl· ... g thl.S ::n'l~''S ;S "h.::. 'l"'s··n·-..7 io .... , . .,ro ":"":lr!e ""h::l.._ e-i~~··::Y' vi 1'-1 '::r1 •-.;:,r;::ih,. l.o ~ .I " .,.I•.•·.! I !,.,..._ u.:. '-''"i-Jv • ,; '1·•.:1 Ill(.'-' '-"'"''-, ;..o,:,_, ...... , t-.. r. .. ~_-.-~ ..... ;,"',,·,P ,...,..r;r..J~ '""l.gh ... ho c,....; .. ;c-1 ;~ ~n-rl'r""l'r s;" ,_ .. ;O""S For oach ;;".,.,w· V t:. .• ~ -:J •..::, I v l. ;!I t •I \, U t: I • \.. I :: ' • ; I .;> tJ t: '-'-I 1..-.. C 1.. l I • • '-, , IV condition and structure studied, twas eval~1ted f0r both limitations. The sm.Jller of th~ t·h'o cr.mputed valw~s \'li:S cons1d~=red ·:;·,p1icr.!!Jl2 to the part1cu1ar situation and was '.Jsed in the re!:>dl11dr-2r of th~ analysis. ·.: ~-~ .... " .-.. • ·.-.• t.· .. ~ .-t"'" .... --: -"" , • • ~ •• ~ r-• r.'"" --~ •• ,.J. .. 1'-...,, ........ _.\,..; ... , . . ~ : ~ ~ r, : : : =~ . .: : ~ .. :.., :. . .: ·. ~ -. ~ : .: :.. , :. # ~ • • • • ••• on bubbl~ rise ti~e, t1, was evdluated by dividing ~ 3 *' •••• ,..;._·~·····-~-. ..,. \ • e .,J •.: ~ • ,... ~ r \ ..., .. t'-. t I:,_,_ .) 4 J t . l . . ~ ca:cu ~~ea verttCdi Cl (' . . .. ' •' . ... ........... , .......... -. .. . . : ;.' J•. y'i• :: ,. .... ~l ,.. -"' .... -~ I '-.• ::~~~-C~~:-1ess e·1 the .~et .?.7. l:he tai1t·-'J.ter surf~~~ h_v th~ te~'7.iina1 ris .. :· ve1oc:ty of J..-:-:. ~.-•• :..-.'!. o .. t..,.;-;)1 :.·r.--1 ·:. ..... ~or :L. ···s ~~ .... .,v-.-i.loc~ •h;,~ .-. ., ~c:s·•..-..-I ~ 02"'"' . , \. t:.: ...;u.u·~·•'=-• t.•.Y ,,\,.., .. .-.,.J '-1'-·, tc.. f\G l~t.::... ........ ;.,\:.!1 \. •. _._ ·-·•· \J._, ut•,.;;(. ~~-.-.•""--lr;:;i I' .. "' ., -·-\ .. ~ ·• .. -~ ~ ...,... L... • h t... , - ' .• l• t-h -.J... \ .. , -t • ,.. ~ ~ • 0 ! n ~ 1 • -~ '"',... \ ~ • _.; ..,. , •"'\ ;... .: &. I ~ ~ • .' -, , ' ; .__ ~ _. ' e :., -? , l! ~h ' ; 1 ; t• 'i'( \. I u L ; • ": 0 r e lo.. I; • : •. ·• r";I) I • U I \· {.~ i .J '-I l. J C : • ; • f: :; f\ 1 \. .' $- .(\1.2 r::/si yielded the r::ost consistent res:J1ts with .resp:::cz. to ot·s~;,ed pr-otJ~y;::: ( ~?nditicns. Also,. when an ana1ysis was dev~loped that predicted!~ {enua~io:'l lj · .}Ci:t t\·iO ~i1r.er:sion1ess· para:neter's, it was fo~nd that t.h:~ 0.02r.-inc~-dir.:'lett:.r b~hj1e y~el~~d predicted values of K that ~ere consistent with the predictEd values of K based on the basin retention time. Basin retention time. -Computation of th2 flow retention tixe, t2. in the hcs1n iS cccor:ipllShed ~.Y dividinq the path 1er.9th of the fio·.CJ by th~ avera~e flow velocity alonq the path. The path 1enoth is ~enera11y controlled by t~~ 1-• • Th th 1 th .. t' ...! • t ,. t' . . • • . h ..... • u~s1n snaJe. , ,e pa~ eng 1s ne ,,1s ance rrom ne po1n~ at ~n1c ~ne Jet enters the tailwater oco1 to the po~nt at which the majGrity of the flow i~ directed toward the surface and, therefore, into a lower pressure tone. If a large po~tion of the flow is deflected upw~rd at a point by baffle pierst for exa~p1e~ this point would be considererl t~e end of t~e path. To compute the averaqe flow velocity over the path lenath, the first step is to obtain th~ jet velocity at the tailwater surface lor at the s~art of the fio\~ po.th) from the previous analysis of b:.;bb1e rise tir.ie. To deteni:ir.e t:.o;e avera9e flo•.·! velocity, the velocity at the end of the pa.:th must be -found. This is d6ne throu9h the use of fiqure 1 which is a su~~ary of information .J: .J• ""' • d'-J: ' ' V d' • 1 '?' d II '3) (': • ,. .rom s'tuu1es OT Jet lt.us:on oy .ev Jev1c1 \-J an r.e:-:~y \ ~ \:bser'vat1on or velocity distributions in jet diffusions indicates that half of the maxi~un velocity would be an approximatiGn of the jet's avera~e velocity at the 2n~ of . h f l "" , Th . , . + . h , ~ "' i-d . . & • ..-~ • • t .. e O\'.' pai.n. • 1s avercae ve :cc1..y m19 .• -c a.so .,.e evat~a~.e oy cHviuH~g ~ne discharce, 0, by the channel cross secticna1 area, A, ~hich would assu8e --o;;iolete d1ffusion of the jet. The larqer c~ the co:nouted velocities shou1o ~ used, since the averaae jet velocity at the end of tfte path could be · i,iqher, but not lower than the averaae ve1~c~ty throuah the full cross section. The velocities at the he9inni~~ and end of the flow p~tl1 are th£n ~vera92d, ·then this averaqe is divided into the flo~ path lenath to obtain th2 basin flow retent~on time (t2). As previously sta~ed, the value of t to be used in equation 1 is the smaller of the two cc~pu~ed values (tr or t2). The final term in equation 1 to be evaluate~ is K. K is u~like the other terms evaluated in that it is not directly re~resentative of any specific physical parameter. K is a measure 9f the .::;b i 1 i ty of a part i cu 1 ar s tructu1~2) operating under a particular condition, to dissolve gas. It is representative ,. d "' . J.. • J . d th t t . . h . ' .1. t ... or the ·ec;ree or a1r ent.ralnrren~ an e ra e a 'itnlc. tne wa~.er· a· t.ne qas-liquia interface is replen~shed. • It a~peers that K is dependent only on t~e hydraulic performan~: of the basin. Attempts. to find a predictive procedut~e that could be use.:! to eva1ucte K resulted in the curves shown in figure 2. To obtain these curves the orototype data were manipulated into various para~eters until useable results ~ere found. Only dissolved nitrcaen data were used {n the develappent due to th2 st~bil ity of nitroqen. At a few of the rt:servoir·s data \vere collected· 3t several depths. These data indicated that dissolved oxysen conc~ntrations may vary 'r:licely throuoh the depth of a reservoir but that dissolved nitrocen ~ cG~centrations are fairly constant. ~t scMe other reservoirs disso1v~d cas •· ... :..,.. ·•~Y"::. ~,·i~.:.r"!"n.i t··~;,, r.;~,.'!~ ~~· .. : c•~w~·.:.:r·r .. ;.""' f~r.r ::-':"':-.-"• .. ,~+ ............... , ... ,.:""-·~-.... .... .. .... -.-. . --. .. .. -..,. . .• ... ... . . ~----.. . """' . ~ . . ' ... . .. .... .. . .. -.. . .. -..... . . r.· r ( ~. •• 15 Sep ii:.. ~; • ··r· '; t-~-....... •ha• •'h-·-~,u o~ ·· 1·.:: ..J~"'~n,; ........ -..... J •• ,,. -:-:. ... --.... ~""'ers ""1t'1e r-" ... s .. I il-l....a ';; ~ ~·4\Jr.~ '-"& ·~ J.:tt: ./c. e l ~~ _, ·....;~:---e 1\.;etl ~ V!: ~t'\\) :"'"' ... _, c. .. tc;.l.. • . .., . 11 \.,. ; c; ;_; I v t 'n e ' I ..... i 0 ,.. .: t y h ·~ -r' H .:> :--h 0 t a :, "! • . -~ r.. ..... c .. ,-.:: c.·· -;:. -: ~ v ~ ..1 :. ,.J "h " -;-:!. t -t ~ \,1 .1 •' , '6 t. & \.,.. ' .,_ t t :_ :;u ) '\/ !' \,A • !_ l 1 '-.._ f 'ff a¥,.., I ..1 U 1-I --\.,;. • l \J'-\.J L.i ._l \ .... • t ._ .~: , "·· -.:::. ~ ;.., ·1 -......... .:. ' X H I" . . . -.. ' cv J:... 1· t • .... ;w u ... ~..a~ t:;~.p.r. • 'V• ... iS an ere:sy gra.a1eni:. pcicfi:e~er ror ~.-ne , lO"t'; re ~·-"'·"s t~J'"'I. --....~··-...L a.:-· ""'.-... :~-.:.""' •'-..... ---·~ , .... ~r-c:•h 1'r. ""'he b.,. . .:n C'1 er tc.\.t:: ... "~ '""·u~ .. r. : ~::nergy 1n \,. •. 2 , 1vW -.u ~.. •• ;:; ~c.~.-:a 11:: ••• J;..u • 1.. c . ."l, .. r which the energy is· dissipated. The sreater the va;ue of Hv/X the mo~e t~~t~1ent the basi~ flew and the larcer the resultino K value. The oath J J • 1enoth used corresponds to t~e va1ue oft se1ectEd. If ~2 is applic~ble, the~ the value use8 fo~ X would te :he pa~h length used to evaluate t2. EJt ;,: t .. 1·s ~ .... ""l.;cable t' -·· "'=-.... ---:... • ..:· •... ..: h,., ...:-J·-.--.•ne ""he ,.;.r:~-·1·\!;!1 II l op!-' I . , ne pa~.-n ICtls~·l 15 C.uJJS·-€~u I,V l.!e:..~ .... s I 1.. I c:::. I~'-" v ... th 1 • h ,.. h .... . . ~ , ... . .. . . 1--.. • \-,. .&. • t' . . . "' pa · eng .. :. ror t e ;..1r.1e 1n~.erva i, .... ~.:!~... 1s, t .. e leiigt" or t. ii.ie ne ovon ieS. remain in the jet. Flew deceleration is assG~2d linear and the ratio of t1/t2 is multiplied by the total velocity drc~ ~o deterr~ine the velocity drcp along the adjusted path le~g~~. Th2 ~verage veloc~ty along the adjus~ed .path is then computed (initial ve1ocity minus one-half the velocity drop) and m~,~iplied by t1 to determine the aajusted path length. The other para~eter on which the ~alGe of K is based is a ratio of the shear Dn,....i..,!:)'"Pr 0.:: ~he :e4. •0 i·h.:::1 :-+-t-.......... $ Se-... ;-.,·" ::1rea -·· .. :~-,e •a:-:,,,:~z.o."" , ....; ..... ~\..-1 i.. J 1.. 1.. ~.o.So;;; JC:~.o :::, :._, '-':, -L.l.. .U:d:,: '-' C.\.. '-'' I. ; InC•'-'-' c Th . .~. . -. ' . '" "" . . -h ~ sur, ace. .. iS .. erm 15 a measure 0-: ~:tie JE:.. c::;;::p.~c~.ness ~:'G snape~ i.e s,.2ar peri~eter for a jet is defi~ed as t~~ length of the je:'s perimeter ove~ h1ich a shearing action is occurring be~w2en the jet a~d the water of the stilling basin pool. :=or a free jet plui.igi:-:~ into a pool the :,h~2.t perimet~ .... wou1c equal the total perim~ter of the ~et, while for a flow ~&ssing down a chute spi11way and into a basin the shear perimeter would be the chute width at the tailwater surface. Situations exist where the walls cf the stilling basin are offset fro~ the jet entering the b~si~. If this offset is s~a11, questio~s may arise as to whether the sides of the jet should be included in the shear perimeter. This is a j~dgment factor and is probably best handled by individ- ual consideration. Another co:ni.iOf: structure that r.1ight raise a siini1.::r question would be a hollow jet valve discharging into a poole Altho~;h t~e flow ~ou1d have a ring-shaped c~ass-section~ cn1y the outside peri~eter sr.oulc be included in the evaluation. In Ci2neral, if it G.ppetrs that siqnifi- c a:1 t shear rd 11 occur a 1 eng the section of pet"' irr.et er· in question then those l~ngths should be included in the analysis. With the evaluation of K from fic~re 2, eauation 1 may be c.pplie~ and the final dissolved gas concentration, C{t), deter~ined. The prototype data we~e u~ed ~xteGsively to evaluate the coefficie~~~ that are a~plied thrc~ghout the a , ..... :s T'n~s e-; ·--1 a ..... ~,...-..... ,. ;.s !""1~ ... .-:~ .. -.r" :...o ... =l•·s;:l OJ: .. h::l c .... -... • ... x:~y r.:: Or.liJ.:>I • I I l:!p.rlt.d. PiJ·U ......... I IIIC.III...i•..l\o'-•, ................. ..; .... i ~ ..... Vhi,t-'1!:::: ci. u. the flo~s being consid~red. Very few o~ the s1tuations studied have clearly de f i ned f 1 o '~t con d 1 t i on s t h a. t arc ·,.,· ;.~ i 1 s u i t e d 7 or d i r e c t an a 1 y s i s • i ~ o t on ; y are the jets tha~ leave the spillway chutes, the valves, and the g~tcs often ~u~te cc~~lex, bu~ the stfllinq h~si~ ooo1s are ecuJlly complex. An~ ana~ys~s ... ~ .... •-• ..,~.~-... :~-•• • ..... ,.... __ .: .... ~~ .... ..--•• .A •• ,~ r .. · .... ;~.~ : ...... ,."',\· .. -..... · .... ,...,.,~ j,.· ... e ·-cr.,..~,..,,,. ,..~-.• , •.•• ,_ ..................... • •...••...• -;: · ·"' •..•. -;: .... -" ~· ... u·C'-t':'C!J,r_~~.;E: .. .. ... . . .... . -. -~ -·-· .. . . ,, .,. 1--.. ~ -4 •• --·.-~ .... :: Lt I#:' . ~:. . .: .. . .... • : • •• -<II ~ -r l ..... • • • • ' ( -. ,__ . .-.. ... .. ---... • • f • The coefficients can !.it: ir.i:.erp:-e:td to siGnificance Qf 'the v2rf'bus facto:-s. 5 • I .-·--' _ ... ._,_ ..... __ .,.." ... . .. yte1a ....... _ ,. . .. .. ,. - ................... '"::: ;::: .... ... ,. ........... ,. -~· .............. .,. ..... ...... <,.,:' ~ "'"' .... ..... ::.~~. .. ' .. ~ . -~ -~ ... . .. .,. .. "': --\..-.... • C I>- Inclu~ed with the exa~p1e is a drawinq o~ t~e st~uct~re {fi;~~s 3} ana p~otl- . . ( - -4 ) -t . 'T'"' + ., • . . ~ . . . . granns .. -:-1gure · or opera 1on. 1ne co;;-.;:>u .. a~.H:ns ar2 cesc:·L·SQ s::ep !.:J' s·ce~·. A11 critical points and ol1 judc:~ents or ~ooroxim~ticns 3rc discvssc:d ~n:.: tb.: results of the analysis a~e comoared t0 actual field findin~s. Rasu1~s a~2 also included for e;amo1es for ~hich ~he caltulations are n~t shown. Varia- t i or:s be t·11e'?n th~ obse~ved and ca 1 cui a ted d i:s ~o 1 ved a as ccn centra t ~ ons r:.a v t·e .. .. at .:.._.:~"+ed to sev"'ra1 factors c,·rs4-a•'.-4 :"\ro 1~;l~...,_. O"'""' o+ +~~-·-a ... ~. -\-·""'("\_: ____ .... · •-• ••~"·'-. \:, • • ._, ~•U )J u..,,u ·J ''c • -• t::-.u :J '.,. .;1:1Ju• -.::.;.. '-~ is that th2 entire analys~s was based a~ averace prototype ~ata. Th~refore, saGe struct~res will fit the analysis ~etter than others ~nd some structures "'\'1 ~11 y·lo,·...l -ere a-cur:')te· pr~dl·,.~.,:)~ re~l ,.:.._ " .... ,.. ....... d S1·,...,~::1·c·""J-'"'"'" .... .-.-o<-,,a -IU tu~. L. t4 c: '-"-'-';. ~.;.\...:!:>. h ::t:\_..•_:,: \.1 J.I <!•!'-~v~•""·C t variation would be errors in measurin~ the prototvoe disso1ve~ cas ccncen~r~-.... J tions. The che~ical analyses used are ~ot co~pletely accur~~e, but even ~o~e . .... ' ..... ~ lmoar~an~, sa~ptes m-y-b-.. c-!1 .... ,....c.~,..;. ~r--.... --~1 '-~c:: ~-·--;-..... ~~ 'f"'!, .. ,, .. ~e··r~s-~:·-•i,.-,.c t \.. IC\..\.t;;;l..l i ,,:.r r 1::~ ,-.;,;_ .,;;._.,. Q; ·-.,...,._ ; ';.; t;;; :::: •• <..::::.., .. c of the total flow. E ~ -··• t t' L• • x~re~e errors or tn1s sor may or ~av nc DE o~·vlous. tn ~ _, 1 • ..! • s r('l ..._ -~ .: ~ .. I , ,... h l• "'""' -• .. I-• -., ..J rl : .:,. 1• ,. ~ -i severe. cases, two or mere reaL-. nq ..,,,_r~ c:..vu.;, c8 :c w. c:. Gc·d:: ~O:~·e a~.;~.:, ... uhc, assurance. Var:~tions due to errors ifi data co:lection ~ay te s~all or t~ey C _ may be ou i te 1 a n~e. App ·i i cc:t ion of t:·1e ana l~,·s 1 s a~d use of the gr~phs r::a~: -·also n::su1t in some error, cut th1s ern:;-· should be sma1l. Ali fattcrs · ~·considered, the results are very encoura~i~g . E -~ .. o .. ,..., Xc:··~ I r.:. ... h_ 7. t: Reservoir water surface e1evaticn = 3136 ft (974 ~) Tailw. _c·r surface eievation = 316B ft (965 rr;) Sarc~etric pressure = 677.mm Hg t'-t .,... +-em-e-:ltu"·c. -4 4 ·c ~ c: e. .. '··iJ 1 \,;. • ... -• , Discharge = 3550 ft3fs (100 m3/s) Reservoir disso1ved nitroaen concer.trat1on Reservoir dissolved oxyoen concentration = = 104 pt:;cent 85 percen~ of s aturc.:. ion The structural dimensions 1n fiaure 3 and the phot~praph in r1gure 4 are also available. Frcm these sources the follo~inq ter~s ar2 dedu~ed: Hv = 31gn -316R = 2R ft (8.5 m) Anole of jet penetratic~ ~ 25· R~sin depth ~ 3163-3l~fi = 22ft (6.7 R) Basin flow path lenGths'/. ~< .. 95ft (29m) It ~hould ~e observed thdt no head loss was jel ve~ocity h~ad, ~v-For this part~:~1~~ ~ r: , .. # t ... ' ... ' . ·~' , ....... ~ . . ~ ........... . . ... ... , ................ . " ... -•, ... . ,. .~ included in the -s...,.... •• _ .... ,Y..!') rh'r .:J\.or •..1\wv'--i.C , ...... ~ evaluation of tne ..,rc:-•t""''~ '"""' I ._ ..... _, .._ ........ '-·· - - - -·.--, -4 ~ -:. It,..' .... -· -... • -~-- ... -. ~ .. ~ ............. ... _. .... ··~ ·~--.......... ... ............. ···~ ................... "'""''"'' -· . . . ......... ~· the s t: i 11 in~ basin pco 1 is shor·t ard unobs t r~·c ted. Bet :.::.:st-:: of thE cl1<1~:; ~ ng ~ i ... -:::\ '"'.-; • ,... .: 1 o··· s 'l ... i ::0 -n ;. s . ; t--•· 0 • s '"h :':) ,;: ;. 1. ~ , ' ,. r. ;.. . 1 •• .. ·,. r.:; ~.. • .. -. r .. -,·..,:--·~ ~-.... ~ 'J \:t ""• .. \.a'..-l.! -•..,. ::!1~"1 "-•"~ ~-! • , .. a .. : : .. (: • •· : ~ '~ !.!!"": !~ ,.•a penetrat iC:!l • ... ·as appr-ox 1m~! ted to be 25 ~ belo•..t h0rizont:·;. The bas i:1 dc:~th cf 22 ft (5. 7 m) .-1as co;r:puted for th~ deeoest port. ion of t~;··~ p:-oi. Fir.~llyl the r-ll"'!•w o;~t-n ··nnl'lt-h y o+ r-s ·~~ {..,1'1 \ . ·-.. :~-~-01 '• ·~·:-d;,.. ... ., c~ .1-...... J' ._: .... ~" , ..... ., .... , "~ ., :} 11. t..:-l7!J 1s aop.o ... ;l,.c.~.. ..... ~.: -··:. :.:>1..c.n _ .c; .•• "'r.c 'i:'lint ·..-1 ~.-~r-c. ~"'~it-:.'" • ..,,.., .. 1.-4 ::~4-.::.1·n c 1• ... ...-if 1·c"l,t •-.;.. ... ,.,~.!-~~; .... ,.. i·.-.·~i--o ~~"~rt c:-.,.,-1 nf - -I _. • • • _ • ·... \. t 1 ·-.,; -"" 1 l '\..1 'looA , \..J ._.. ... ..,.. ,...~, • • .:,): '-... • • ~ • '-~· _ ! '"' -v ,.., '-• , ; \.o _ .,. , I _ -• "'.._ .. • ... -" the b~sin. It was reasoned that ~t-the end sill a larc2 vortion Gf tn~ flow will be ~ef1ected upward~ the flo~ hill no lc~~~r be u~~e~ the higher pr~ssure, and dis:;phiP.q of g.1ses in the ba~;in ~.,.ill t-e csrrp1ete. The$e approxir;.!tions are rp;it~ rJugh, but a,ttt:"mpts to refine the e·;a1uatio~i~; ,.:,:iu1d yie~d cr,ly slight i;~provements and ~ould call for and indicate u~warr~nted accura~y. The ~bsolute d~ssolved nitrogen ccncentration in the reservoir is evo.iuc.ted as the first steo in the analysis. This is acco~plished by referrins to apprcpri- ate standa~d tables and obtaining the nitrogEn sat~raticn concentration for the·~"pecific ·.·:ater te!11perature (4.4 OC) and r:-:ultip1yi'll] ~t by the relative reservoir dissolved nitrogen concen:ration {!04 percent). C1 = (1.04) (20.?) = 21.5 mg/l Next th~ potential absolute dissolved nitroge~ concentt·~ti0n for the stilling basin is ccmputed. As stated before~ it is de~endent on the barc~ctric ·pressure~ water temperature, and ·basin depth. Two-thir~~ of the basin depth is assurned dS the avera~'= depth ?v-:::-the .f10\or Hhile the :~.-~s is beii:·j dissolved. Using this .=pproximat\c.n an aver·tJ.I]~ r.teS$!Jr-t'? on the flo·;; (in atmnsp:1eres) is co~puted and multiplied by th~ ~bsolute dissolved nitrog~n concentration obtained earlier. This term has been adjusted to structure 1 s elevation. If the atmosphere may be used. reflect the barcQetric pressure barometric pressu!"e is unknown, Two of the terms (C 5 and C:r) of.eq:Jation 1: -Kt C(t) ·~ C5 ·-(C~-Ci) e the a -sta::.::!ard h ave now been e v a 1 u a t e d . Tt" t i r:'le , t , t h a t g as i s h ~ i r~ g d i s s o 1 v e d , i s the next ter:-a of interest. The bubble rise tirne, t1, is ev~iiuated first. To do this, the vertical dimension of the jet at the tai1water sur~ace is • found. The 28-foot velocity head yields a velocity of 42.5 ft/s (13.0 ~/s). The discl1arge is then divided by the ve1ocity to obtain a total flow cross sectional area for thr8~ ~ates. 3550/42.5 .-: rn.5 ft?. {7 .r. r:12~ Assumir1q ,~rjlJdl flo·~ thr·owjh t!·Kh r~s:;lts in a flow crt"·~-:. sectional ~rea of 27.8 ft2 (2.6 m2) for~ a sin!11e c~1te. '..:hen equal flm·1 C(i!~ditions are assr;r:•ed for the g,:;t~s, the .1n.:!ly:.~s of e~ch it:divic•JJl a:;:~e is idQntical and, thut;, the? .~n.11yc:;i:; of th~' fln·...t for ·~r.1y or.e 'l·lte \'li11 pr·f'dic~ the p·~t-fov;;lcncc of t\1,• •·t~~ in-. c;tr-11r~.•:~"t~. !f :tt •. '"' ·,. ,·!·n·:~ c;~·r.tic:-~!1 .~~·•'1 is thnn d!vir!~d ' ' I ' ~ • : • l • • .. • 4. • • ' • • ~~ . ~ : : \ - . l !tl ) 7 ... ............... ,. .. ., ........... . ......... ~... ... .. ........... . . . .. ~ . ~-·-· ... " ... Sh:.r'· th·~ flo~ ... is not hcr-iz:onta1 th-.: flu\·; (. ~ ~l.·;_._~ ~ .. ~10 1,~ 0& o~no~-,~~Cln to ob" t. a1"n •he • '-' '"" I .-'·''-'-''\.&••• II-' o.. 3.5/cos 2s· ~ 3.5/0.9063 = vertical dimension of "" 0 ~­,J.. ... T t (1.2 m) eosin~ If this distance is ther divided by the te~ninal bubble velocity, a bubble rise tir:e, t, .is obtain~d. t1 = 3.9/0.696 = 5.6 seconds Tt , .. h & •• f1e ,eno'-' en t 1me, t, is also evaluated by considering the length of time that the flow is at fiqure 1 are used. depth, R0 . e && .. • .... '-\ • .... .... • T ~ ,_, . tL • an •, ec'-1ve ~.;ep~.rl HI t.m: was 1n. o ~,..;O u11s n-=: curv~s 1n First, the flow path lenqth, .x, is divid2d by the flew X/8 0 = 95/3.5 = 27.1 : The flow width (L 0 ) is then divi~ed by the flow depth. l 0 /B 0 = 8/3.5 = 2.3 F i (lure 1 is then refer•red to and the rat ·i o of the max imun1 VQ 1 oc i ty, ~1:--::, within the velocity distribution at the enj c& the flow oath to the initial flow velocity, V 0 ~ is obtained. Vm = (0.36)(42.5) = 15.3 ft/s {!.7 ~/s) If the averaae flow velocity at the end of thc ~~th is t~~n ~ssu~~d t~ be one-half of Vm, an a•teraaP. veior.ity t.hrouqh the b.~sin can he deter;riined. V F ({15.3)/2 + 42.5}/2 = 2S.l ftis (7.7 m/s) . An averaqe velocity at the end of the path has~d on cross sectionll ~rea·and discharae would be: 3550/((22)(28)) = 5.8 ft/s (1.8 m/sl This is 1es~ than (15.3/2) or 7.7 ft/s (2.3 m/s), so 7.7 ft/s shculd.be used. The n.:r~h lenqth divided bv this avcraqe veloc1ty qivAs thr; b.:.:sin retention .. t ; ~~, . . ·" '-'\ tz = Q5/?.5.1 = 3.8 secr.no:; ihe srna 11 ~r of the t\·10 ccmou ted t i n-:f"ls is th~ oqe th~ t is ::nn 1 i cab l~ to the oroh'lem. For this nart.ir.ular c.1'>e, the sh'.irt,~r time is 3.H secor.t!s., the time , 1 ... ~ "•rv ~ 1 h.v;r~d on t.hP f ln· .. , ve loc: 1 tv. ~···~~ .• ;~. ,! -n··:., tr) j\.) .~,.:~~ 1,\l•.'·d l.:, ~:. io l"!f'~J iy ; tnHrP ~, r.wo ~.Jr\~m:--Lt:: ·-. l•l'l l \.. c •• . . ~ (' ... n • '' , ..1 ..-• ~ • . "'• .. . -. • I'": •. ~· . . . , . • il•'-t:=I ¥.::41 t,;:>'::l.J I~ .:t:::.•C\,.; l.'fl U:.l~iil lt!~t:IH .. lC'll :.,.;a,;t:, l..l.c ;.;c.~ Iii f IU\l ~•C.\:.:1 l€:it~·.,.;; t-·v'"' ~ .. ::l~ .c,..c,.... •j;r ... "'-··-in,.., ..... ___ :),~. ") : ··c:'"'r1 If ti···) c-·a11er •;-p res ·l .... s fr0i.i \t..·c::J• .. L .• t.~.-'• ....... _ ~..:!S. ~·=·-··"'-'-r.r ·--lS u.~t::.... 1..:. ... :.· • ~,.,,_ u:... t~e co~s~deration of the bubble rise ti~e then the f~ow path length to be used ;("' "'1~~, ..... ,...t:l-"" ·~~ ~ .. ,,.1·~ .r:·lo·' ..... ~ 1 •r. .-""'_,. ~h"' r-~-..... -:~ ....... ,...."'\.. ...... ~ •• o •.;·-:"). · ·--.:>-· ~ .... _.: '-••·= ;.;:.:,II ..... p-.1..11 en9~.. .•. rv. 1..\::: ;,r..;;l.,Jl~-tJ•v;.,lc;; •• , ~r. .... l.ur.~. :cscd 0~ ~he basi;. retentic~ time is the S~cller SO the initially deter~~d~cd path lenath of 95 ft (29 m) ts used. Therefore, Hv/x -?O !n----._t, I ~:; 0.295 For anpiication of fioure 2, the second para~eter that must te evaluated is • . • • .c t' ~. . . 1 t \.ne ra-e i o o, n-2 s.1~ar pe;"" 1 i.iAter en a tn of the jet. Fo~ this orcbleP the shear jet height for each si~e or of the jet to the cross sectional ~rea p·r: r i t.1e ~ e r i s the jet 'I'! i d t h p 1 us the 8 + 3.5 + 3.5 = 15.0 ft (4.6 m) The cross sectional area has already been found to be 27.8 ft2 (2.6 m2). -h """ &. • • lat:S LaH~ rat.10 lS 15.0/27.8 = 0.54 The value of K is 0.1 from figure 2. The user will note the possibi~ity of interpol3tion error. All the tet~s may now be substituted into eauation 1 and a dissolved nitrocen concentratior that is not corre:ted for barometric . . pressure is obtained . C(t) = 27.4 -(27.4 21.5) e-{0.1)(3.8) = 23.4 mg/L If this is then divided by the saturation concentration, the per·cent nitrogt:n saturation is obtained. 23.4/20.7 1('\0 X l\J = 113 percent : The obs2rved value for nitro~en, N2 was also 113 percent. To obtain a pred1cted absolute concentration, multiply the precicted percenta~e by the absolute concentration adjusted for barometric pressure. (1.13){677/760)(20.7) = 20.s mg/L of N2 Considerinq dissolved oxy9en, we compute: • Cr = {0.85)(12.9) = 11.0 mg/L where 12.9 ~q/L is the saturatic~ concentration of oxysen at 4.4 ·c. A1so: .. .. . -,...., -...... · .. -·. _.. ... . . . .. K = 0.1 ., q ... . ' ,, the ca 1cu :.~t ions ahov~. C(t) = 17.1-(17.1 -11.0} e -_,~, i ',_ c" ,u ... J\~.uJ = 12.9 percent oxyoen saturation calculated i~:· 12e9/12.9 x 100 = 10n oercent o~served value for oxygen, 02 v:as a 1 so 100 pei-:ceni:. An ap~roximation of the percent total dissolved qas would be~ .. (100) (23.4 + 12.0)/{20.7 + 12.9) = 105 percent This consi~ers nitrocen and oxyqen, which together comprise over S9 percen~ o~ the total dissolved ~as. ~ Several other examples were calculated with the follcwinq results: · Structure Spillway with roller bucke~, three qates operatinq Ca 1 C!.l 1 a ted N2 02 20i~ 197% O~serve(: p.; v,.. ·''2 (. 1 OCt~"' 11 ~ ··'" -' 21" Chute spillway into hydraulic G • jump bas in ·'~Auxiliary outlet works (four dis- char9es) thrcuch spillway .. ,,. ·.1. ... 0 lti8 112 145 , , 6 J.J. lOS 147 130 4/ • face into hydraulic ju~p basin Chute spillway with flip bucket and shallow plunqe pool 153 "i::"J ,.., .. I..,J 1'"~ ~4 10~ 152 '\C:':' !...J-.,~ 153 1-... ~~ 158 "2-3/ .L ::> - 2/ 103 1/ Considerably less after dilution by powerplant discha~ge. 2/ Data r.ot available. 3/ Relieve that gas escaped fro:n sample. 4-/ ?ass ibl_v lo'..;er because of heavy oraanic loading. Conclusi0ns J 1';2 tfj ..J --1 ~5 4/ ~· r -4/ 1_,. . .t.~iJ 2/ 1. Given the velocity head of the inflow jet at the tailwater surface, the 1 -,. r . or. ... h . e... 1. n '-0 t 'h-:.. -: , .; ~ &.. t~ "" '"': ..... -h-~ ,--; '· h r-..: t"' ~ ;, -") ar:rJ .e oi PP.ne._ra .. lon ,. '-"e ,1 •· '-"~ 1...::.1 ,\..,o::.t..r:::l, t.r.r..: ::,, c.;::>t. o, 1..:1e ..Je , .... n;; b ~sin 1 en!l th and de:1 t h, the '"'a tPr ter.:per a tort!, the b~ rci.'etr i c pr·es s Ul-e, and the initial dissolved qas levels in the r~servoir, the dissolved qas levels that will result from the passace of flow throuoh a hydraulic structure can be d · .. rl • t h L " a ... c 1 r · ... '' '·-.J •• ' -.. 1 .-~ : .... s c ... '-,..., + .. "' pre~lcd:. \'!1', reason~u1e ~ .1 "lLr. •'•\Ji.At:• ~ ...... l,J•c t:-:1 .;e ~s;:;, .... c ;~-e2.~.. ;:: .. • .. ~· .. ~-~--:~: 1!""; ....-ef~n·:-,.~ ;r• ... j '·,,,,~ ••• 1.,~:;* r;: .;·!,. ~,~·~ .... :.; ~ .. -. ~ ... : ~4.;~::. ~;. ·· .. r.: :··:::'.:::~ . .' ' .. ..... , . ....... . .. -·-...... :..-. -,.. -· . . .. l. 1~2 ~Jslc equat·1Cil concentrations is: ,J·--ve .. to--·.J !"·o \Jt:::: j.i:::~ - ., .. ,..,.,. ........... -.. -"\·• ·~.,..l\,...-...;.i;J l-' • ,, :l ¥f ''- . .. ... ~ 0 i s s 0 } ·.tt~ ;j C(t) = Cs -(Cs -CI) e ':."here C(t) is the dissolved gas concentration cr;:ateL: r;y the hydra:J1ic struc- tt:re, C I is the di sse 1 ved gas con cent rat 1 on· in the ;-f~!~lvo i-r, Cs is the saturatej disso1ved aas concentretion at a deoth which is two-thirds of the J . • ~ 1.. • • ~· "" • • f .... .. . . .c ~ • d . . . . max1~um oas1n aeo~n, ~ 1s resresentat1ve o ~ne 1enct~ o, ~1me ur1n~ wn1cn t ~ ~ w gas is being dissolved, and K is a constant that var~es with structure a~d operating condition. A method is developed for prediction of the K value. 11 . .. . .. ,. ., ...... ... ..... _ ..... .. ..... ~-·. ....... ~ ....... . ...... ...... .. ..... .. ...~ ... .. "!•+• ,. ... . ..... , ··~··· " .. '"..~ .:::.·:: .. ... . " ' .... ~ :."cu• ':.'.'~!:! ... "' ......... . ..... ... . ...... ....... . ...... . .. ... . ,.. .. .... . ...... . .... .. "'"" ... .. ... ... .. ..... ... ... •<~~•· .. . .. . . .... . .. ... r . ~~;· l 1 ! -.. . . . ·,..., ... • ' ~ + ._., :~.~~!:!~! "'•, .. .. . "' ~ ~ . '·--.. ' .... ~ ~ _j .. 1 . 1 • 2 Ve,,~.:-,:,',..h \I \f unl·.;:.t:US;·--n o.t: S1~t ,.::» .. s '"1·~~., Ci·~1·+-e o·~;.t::,,..~ Le ...... ~t.. • I ,\ U ,_! C 'I' I... a •, ~ • I I • , V a e I "" I • U .. \J-l. r. I.. a I 1 Ill '• l l o i \... _ I i.'!! 1..11 - ~idth Ratios~» Colorado State University Hydraulics Paper go. 2~ Dec~~ber 3 • l a .. -.. c~ He;1;y, H. R., Discussion of "Oiffus·1on of Sub::1ersed ... :ets," Pc:.per No. 24;~9, pp. 687-694, Transactions of the Az7.erican Society of Ci-.:i1 Engir.eer·s= Vol. 115, 1950 • l"i -- 0 > ........ ~ > ~ I w ~.;;(;' .~ <4--<\ " ~: . =! :;r: . --· ~~ " • ~ ~ , . . ·-~ --r-1---'-1: .... Y ·--· -+-r±-~--=c·:t=~b===· = ::·1= ~~~---+~~·.=_!.:=~ __ ·:~=-,~=:--:'! I I .. I . 0.6.-t···--- i : 0.51-.l~.;- ' ~· 1 J I I l---1--~ DIFFUSION OF SLOT JETS L 0 = ORIFICE WIDTH 8 0 = ORIFICE HEiGHT o. -1 ' • -j ---·-~ I I I I V0 = FLOW VELOCITY AT ORiFICE VM = Ml\XIMUM VELOCiTY AT D!·STANCf. X t I -rue: nAcur.:n 1 IM~~ r:7r:'PQs:'C::r:NT J\.M I 11'-Vr'hJII ..... LI L.U't'-V' t•~t , • ..._~~,,I r,l"' ---·---"· -· --- EXTENDED RANGE fOR SUPPORTED I I ~ I : JETS. . ' 0.2: _ .. ~:·:---ern-~-~ ,, --,-,----~--~ •. i I : ~ : --1-1-+1-+-1 +1--- 1 • I . • I : . i I • I I ; ! ! . I l j ; . }--1 -------~--~ .oo ~~ ~-r -. • I • 01 I • : -~-1--- .C(;, • · 1-· ---t---t-- .0! -! · +-~ -r•--'----1--- .0• . } . . ··---·- •I . .c: : f·_J I . ; I 0 .. ~-----, --· • ... l . • 1 . I I • I • • ; I .. "r' ;..i .... ~ ..... t-' ..... V1 ...... 0 !Ill ... f'V --:-.J I !....; -...! t.-J :-o \O 1-··-·c-------l l . . ,.. I . . --- • 1 r. 9 10 15 20 ~0 100 150 200 500 1000 1500 2000 •1Cl00 :o< I Oo . . FlGUHE l -Dtf'FUSlON OF SLOT JETS . . +-• .. ... +-•• ! • • . ... .. • :... . ·: ·• .. . "' . . '• .. ,;··~·::~::·· :i!~>L::: . .• ·~. ~<:: .~:.! ''ill:;;; ;:;;;:::;;!!;;; .jii ;; . q ;:( : i· ; : ii11 iJ ::~; 11·~ ·; ·:·· 1 : : H : :: :~:: ::., .. ~ ~ : · ! i H ; i·: ! ~ P ;i ~ ~ . . . ~ , . ' .. ., ...... ~ .... . . . ~i;;·i~·' ., ... . ~~ ?t.; •. -"':··-. -----_...;;____ . . ------___ ., ___ .... ----...---------~..---. . . . . ; • ! ~:':-------;..___,_ __ ...... __________ .....-_____ , ____ ~-------- ' t ( 2t.' • -~ l '; ·l /> l . . ! ?.:. _,__...::.-__ __;___,__.;;.;;......;;_ __ +-_ _;_ __ , <!-----.--~--...;.._---~ ,...._ ________________ ' ' i i I 2~Jr'' --~--~.~.--~~------~------------~---.----~-- ! : ' I I :~;---~--~--~-~------------~----~--...;_ __ __;_ _______________ __ I I ~?r---------~~--------~--·._----~--~·-----~--~--~--~--~~~--~----~' --------. j t 21r------~--~--~~--------~----~--~--~--~----~----~----~--------...;_------~--------. ! 'I N ·---'-:'---1---=---------~---t--L--...:--...,:_ _ __._ ___ ._.,._ _____ -__ __.....__ FIGURE 2 - ·~ EVALUA11~W OF K 11 .. ·- ------·---- .. I . I I ..,.---~-... .. -··-··-······· ....... ---··· ,__ .. -. ------._ • ...-....... --... £:L-; ) "i ~ t·-'~-.. :.-.':7 ·-----·------.._..·-----·· ·----.:.J 'is ··s~-;, 78 ~---·"'!'..,..., __ .-.,.._,_.._.__ ' . 'L...__, '' J ' I , .. • I f< <••h --:~; ;' .j=<i : r r. I · ... ! "' ' I I : I • \ ::. ....., \ ·~~;;_-,: 'l' -... .. j ! . :>ii ~~;· t r-~: .. > ~I ''"'I \ ;>--... • ~ ' I !I / ·._. . )/ ! •• -\ I. ~· / '·~;.:: ,, l --~:..:.....-,• . '-..:-__ ... ~ :/ / X:; .. :; c-~ c; . ~ ' .Y ,• .' "": :J • l /' i • ~, .. :,;: ~;·;-; • I ~-~:.· .. \ .:---...... ' ,..-.. .-/ ,..,.,- ( ... ~ • •• :~ ·• i • • '\ ,;· , ... :.. ~ . ,., l ..... ~~~::' I :. • -· 't \ ........ • I f -~, .t':·.::_,. .. ·.::-,:::_,. ..... "'A' ·~t.c.:-..:;~;<.~$ • l ~--....,._.,..=;~:=\ I • I • O::j ' { '• ,,· \,. ,_., '-r ' -, ' : I . .. 1 \ \ l • r •. ' ,~ ,"-... • ' \ \ : ·: __ _... • ..----.. •.• ~ '!· I . ~/"' _.+t ......_ i • ' I . ----~-:. ....... ·.:..:;.:~~--. I I~ , . I I \ \ \ r..-··1'"!. ~;.!. ... :.:.--... -~--..... .., ~ • . ·---. •• . ... : I ._ ,~.· .,. { . ; .. f • \ • .; • ~ :: .. . 9 i ' il \ \ \ '·· ~ l -~: . .:r:~· .. ~-----r.·c:---"·-:~--· ; ... ~~~ ·.-~-I ;' I l \ \ \ . -;:.;::..,__ .. ., .------~~ I ~ :....!1 ; • •• • • • : .,. '•' .,, \ \ . \ .:-..!. • •• l, I t •• • • • • .. -_,.__,"--'---I I I I ~~-• • -·----~ '_.,.-__ . • I \~~-~·-~~o··~~·~f~. l \ ~ ""-.... --...... \ / ~'-CO~ I •• -~ • I \ \ ' ' ~ \ f' ( ,, rlOUS" I I; I I ..--\ '\ "-.. 'y i /)-h . ! i • t l .. 5 i f t . ·I i l I \ '/ I / i -· \ ,.,-·"' I/ I ~/ I I I ' l I e:r .. 31 ~-r so-\ r j ~ r PLAN I I El. 320-4.60 -.\.:~:·u SLUtCE:V.!A'f SE.CTION ...... r \ \ \ ~ i i I • ) l l l ,- .... ' I I •• f, ...... " -"\~ •• ...; __:.,_,.... • .:~;. 11 .... ~-~ .. ·-·.·;·:---.. ,_.,.;__• -----·1 . ... -, : q I ~-~ I ' ,-------------~~~-~ L--------·----"----_.,..,_____,. .. _ ....... -----"-ONOOf'"--n""'·"·-'1-.. -.. -~-,,-------.. \ '4 •l , ...... . .,. ___ _ IG .-. ..., 3 F . tL•t"..r. - .... ~..... . . ....................... -,·-c·"'•T•'\• -.!.~ F.X .. ~~·i?i.r: !.!\C;)J~."·I• SJ .... • .l. r:. ....• .:. 15 .. ••••~~or•• ""'""'*"'" • ··••<~••••• ~ ·~ . .. . .. I . . Document ·Transmittal Wayne Coleman Harza Engineering Company Date: March 9, 1983 Acres Job No.: P5700. 73 Attention: P~~ject: Susitna Hydroelectric Project Subj~tt: Transition/Nit~ogen Supersaturation' The fc,lowing are enclosed: Description I Title Reports • P eratrovich, Nottingham & Drage, Inc., "Nitrogen Supersaturation Study", Jan~J:ary, 1983 Acres .American Internal 'Memos • D • Crawford, "Nitrogen Supersaturation Downstream of Susitna Developments • Discussion Paper", Aug • 4, 1981. " G. Krishnan, "Nitrogen S1fpersaturation Studies", September 13, eA -For Approval or Comments B -For Constructio:l c -See Expl•natory Latter R -For Information E -For Puichasing r: -OriiWings Approved G -Dr.wings !\pprolled Exef!Pt u Noted H - ACRES AMERICAN INCORPORATED MD LIBERTY BANK BUILDING -A.lN AT COURT "'8UFFALO, NEW YORK 14202 Telephone: 716-853-7525 Telex: 91-6423 1982. Please Sign and Return Acknowledgement Copy, Page 2 of 2 Drawing Number Revision Number Number of Each . 1 1 1 ~c Copies to: (First copy) Yours vG, y truly, ACRES AMERiCAN INCORPORATED David Crat.vford Lead Hydraulic Engineer ORIGINAL ""'!'. Code* • • • SUSITNA HYDROELECTRIC PROJECT NITROGEN SUPERSATURATION STUDY Prepared for: Acres American, Inc. Prepared by: Peratrovich, Nottingham & Drage, Inc. ~anuary, 1983 ... . . . --. -. " SUSITNA HYDROELECTRia PROJECT NITROGEN SUPERSATURATION STUDY The followinr ,letter/report presents results from recent studies undert~ken. to. assess the potential problem of gas supersatul~ation of spill waters from the proposed Watana and Devil Canyon dama. In particular, th~s study investigated the ,otential levels ot• gas supersaturation due to elimi!.tating fixed-.'Jone ·valves ~t the Watana damsite. The preliminary draft sub!Ilitted in. December 1982 has been .reviewed by personnel at Acres American, In\;. , and the Alaska Departm~nt of Fish and Game. Recommended changes and review components have been incorporated where appropriate. 1. Study Aporo~ch In the time available to carry out this study, the following elements. have been covered: 0 Review of studies to-date as des·cribed in Acres Offioe Memorandu~ from G~ Krishman dated September 13, 1982. o Review and sur.mnary of limited relevant literature available on dissolved gas supersaturation. . o Analysis of available data on natural river cond.itions received from· Alaska Department of Fish and Game. . . ' o Prediction of the range of supersaturation values for spills from Watana reservoir only and fo~ bot.h Devil Canyon and Watana dams. 2. Baseline.Conditio~ Dissolved gas· concentration studies conducted by the Alaska Departm~r~t of Fish and Ga'Tle on the Susitna River in the vicinity of Devil Canyon attempted to . answer two questions. The first involved variation of gas supersaturation with discharge; the other involved determination of the decay rate of the supersaturated condition downstream from Devil Canyon. ! . . . •. .• . . Figure 1 shows a plot o'f results from a continuous. recording tensionmeter located just "bel.ow Devil Canyon. A relatively good relationship is shown between total gas pressure and mean daily discharge at Gold Creek. This linear regression analysis was improved by averaging the range of ga$ press~res for the lower flows. At each mean daily flow level between 11,000 and 17, 000 cfs, the range of recorded gas pressure vall:les are averaged ~nd this average value with the corresponding flo~ level has been used .in developing the regression lineo The relationship could be further improved by · using the continuous chart from the Gold Creek gauge to provide insta~taneous streaLtflow corresponding. to the hourly measurements of dissolved gas. Peaks in di:ssolved gas concentration corresponding to storm events could .be plotted more exactly and resu~t in a tighter fit of data points to the lineo Further refinement would require adjustment ·of the data to account for the high concentration of. data points at lower ~t~eamflow levels. These adjustments would not significantly change the slope of the regression line for total gas . pressure. versus discharge, but would improve the strength of .he relationship. The second part of the ADF&G field program involved development of a supersaturation decay rate at varying flow level:l. Using data points from f·L.eld studies ·in 1981 and 1982, a set of decay curves have been developed for dissolved gas below Devil Canyon. Data from the 1981 field season suggested ~ that the rate of decay of supersaturated dissolved gas ·was dependent on mainstem discharge. A similar relationship was shown in data collected from . the Kootenai River below Lib'by dam in Montana (Alaska D.epartment of Fish & · Game, personal communication)·. Howevel: ... , recent data. summer of 1982 on the Susitna River did not improve the the 1981 data. collected during the · relationship shown in ' . . . The main conclusion from analysis carried out by Alaska Department of Fish and Game is that dissolved g&s concentrations for the 11.8 mile river reach below Devil Canyon can be predicted using discbar·ge and distance downstream as two. significant variables in multiple regression analysis. Channel morphology also appears to play a significant role in influencing decay rates. If the upper line on Figure 2 is divided into two segments with decay rates determined for both parts., the slope of the upper section would be .. .. 850 ~ .840 (J} .. (( ~ .J <( 830 r rJ I• I > 820· II :J u fi 8 .. .W 10 .. .~ u.. 0 . ~ aoo ,. ~ 790 {~ \:--. _ _. Iii • • • • ~ \ • • .. • • • • • • • • 0 c ·--~~:,O:c • ,,....,., • • A .,.. .... / R 2 : .B3 Ill • e• ., • SUSITNA RIVER . DISSOLVED GAS VALUES ..JUST BELC\1\f DEVIL CANYON . AUGUST B~ SEPTEMB~R 3Q , 19B2 ( RE;CEIVED FROM A .. D .. F. & G .. ) ., . ' 780 . -. . . -..4 --' 10,000 12,500 15,000 17:~500 . 20,000 22,500 25!1000 27,500. 30,000 . 32,500 .MEAN CAlLY DISCHARGE AT. GOLD CREEl·< ' ' ' ~ . . (Cf..ISIC FJ;EET PE.:-1. sa·coND] · ·· • ~ . • " tt.. approximately -0 .. 030 while the lower part representing the river reach below Indian River would have a steeper slope due to. changes in river slope and morphology (Alaska Department of Fish and Game) o Additional data points are needed to confirm this hypothesis. Finally, studies ha~e shown that decay rates are ~roportional to the particulate content in the water which provide additional gas nuclei fort bubble formation.s To more accurately predict saturation levels, information must be gathered on the relationship between particulate content ano rates· of supersaturation decayo With the decay coefficients, an exponential function has been used to model the decay of gas saturation in the Susitna River downstream from Devil C9nyon: where: y = y = concentration of dissolved gas at a given distance downstream+ 100 a = percent saturation at initial point -100 -b --decay coefficient . x = distance downstream from initial point (miles) This basic function has been used in all of the following calculations to . . ... determine decay of supersatQrated dissolved gas in the downstream direction~ . 3. ·wa~ana Reservoi~ Only For this part of the study, the decay curve at Q = 16,000 cfs has been used to determine decay coefficients downstream of the proposed Watana dam. Using the curves presented on Figure 2, the coefficient is -0.038. The river slope and morphology in the reach between the damsite and Devil (1./ Creek are simila:r to .that of t.he measured reach downstream of Devil Canyon. ·'''' .. . . -.. .. .. . . g) t:J '0 QJ ,!i 0 rn Cl) •r-f A r;:j +' 0 E-i ~ 0 •rl ~ b .. , ('J Cll +' ~ u H ~ :~ )~ 120 ... 110 109 100 107 106 105' 104 .... . • .. . -:s5 . N=6 -b=.054 . . • .. .. . . . ! • . . . . . ·•· . . , l . 103 r . . 102 ~, .. .,11moN lbe!i-:OJ--*' I 1>-l:•rJ-•woc,.,;li! __ '_•hftMRMUBAI _, .. 2 ~..:'W¥DiW""''@*M2f;..,,........,+,.-·..,"'3J miles below Devil Canyon . ' . I '-~ SUSITNA RIVER·. . . . DISSOLVED GAS DECAY CURVES .. . . . .. (RECEIVED FROM ADF&G} .. . ' . . . ... . . . .. FIGURE 2 I ,,•! . . • Therefore·, ·a decay coefficient of -0.038 has bee.n used to determine changes in supersaturation level below the Watana da.Irlsite to near-Devil Creek .. In the reach from Devil Creek through the lc:-wer end. of Devil Canyon, the pattern of increase and decay of dissolved gas concentration observed may also vary with discharge, but insufficient data base ex~sts to define ~he relationship between dissolved gas and discharge through the length of the canyon. However, data collected on che Kootenai. River near the Kooten Falls suggest that waters with elevated dissolved gas concentrations entering an area of entrainment, such as the rapids of Devil Canyon,. may only partially dissipate (Alaska Department of Fish and Game, personal C':ommunication) •. Therefore, significant reductions in dissolved gas levels throvgh Devil Canyon would not be expected if higher than natural concentrations enter the rapids.. In determination o:f decay rates in the Susitna River during early. years of dev·elopment with only the Watana dam on-line, no change in dissolved gas concentrations has been· applied to wa-ter travelling thttough Devil Ca,."lyon. The remaining stretch of river from the lower end of Devil Cany~n to Gold . Creek is expected to show a similar exponential decay rate as the river above Devil Canyon. Table 1 summarizes the percent saturation predicted at key locations downstream af the proposed Watana dam using the exponential decay function and · a decay coefficient of b ~ -0~038o Determination of the initial saturation· level below Watana has not been finalized due to uncertainties ~n the eff~o; on dissolved gas saturation levels of powerhouse operations, outflow water temperatures, and distance of fall and depth of water plunge below the dam. An expected range of supersaturation values has been tested and the results shown on Table 1. Review of limited available literature indicate that levels could exceed 155 percent 12 ; for the Wa tana dam 110 to 155 percent represents the expected range assum~~g no fixed-cone valves are used. High volume spills falling over the spillway could c~use significant scour in the plunge. pool below the dam. Supersaturation levels resulting from entrained air bubbles going into solution as water plunges through the depth of "this scour hole .) could yield the values on the upper end of this range. ' . . .. .. e DISClWlCE I...mER END AT AT CF AT AT WATAN.~ ~ SATtRAT!CN 1EIJ'lL IEV'1t 1EVIL PCRrACE CIL!l DAH BruJW WATANA mEEK rANYCN C'ANICN OiEEK QtEEK 16,CXX> cfs 155 115 115 114 109 130 113 .A.s.st.ma 113 113 1GS 145 112 l'D 112 111 1CTT 140 110 change 110 110 106 135 109 in 109 1® 105 13> 109 elevated 108 . 109 105 125 107 dissolved 107 1C17 104 120 105 gas 105 1(}5 103 110 103 ~;..;eilS ·~-........... 103 103 102 35 1 14 . . . Asst.JIPtialS: o Supersaturaticn level be1G1 Watana d:Un Will rot exceed 155%. o Slope fran Watara damsite to nesr Devil Creek is si"i!iJar> to slope fran belai Devil Csnyoo to Gold Creek same expcnential · "-'"a.Y rate usej. o No change in saturati.C\1 level t~ Devil Canycn l-.'hsn wate:-enters at elevated level. 0 Expcnential decay: y = ae-b>c where b = -o .. o38 a= initial % saturaticn -100 y = resulting saturaticn + 100 X : distance travelle;:I ' . . .. .. .. • The levels of dissolved gas at Portage Creek and Gold Creek in some cases exceed equiliQrium satu~ation·or 100 percen~; however, fish exposed to these p~edicted levels should be able to avoid the supersaturated conditions .by moving to greater d\:lpth$ in. the mainstent S;z.si tna River, or by moving to side channels and sloughs fed primarily by gr~~1dwater and downstream of inflowing tributaries where dilutj.on or-mainstem .river water m~y reduce levels .of super.saturation. Studies on the Snake and Columbia River• system have shown that generally fish either avoided areas of supersaturation or assumed a deeper vertical distribution during periQds of high ~upersaturation 12 • 4. Devil Canyon and W~tana Dams On-Line The ne.:xt step in this study i:;J to consider the effect on downstrettm water quality of eliminating fixed-cone valves at the proposed Watar~ dam after the Devil Canyon dam has been commissioned. in the year 2002. Review of the Acres American, Inc., weekly energy simulation co~puter printout has shown that, in fact, the year 2002 represents a worst case situation in terms or volume of spill at Watana. Dul"ing the early years of operation of both dams, the ~ generating capacity greatly exceeds the ~nergy demand. As a result a lessor- proportion of . ~utf'low from Watana will be run through the powerhouse afid volume of spills will be higher tha.n in later .fears. This assumes that the Devil Canyon developmen~ would be used for base load power generation and Watana for peak load. . . A summary of the maximum and a'Verage weekly spills at Watana and Devil Canyon · dams during the summer months for year 2002 demand i~ presented in Table 2. ~ . . . These maximum values represent the maximum spill for a e;iven WeE!k over the full 32 years of simulation. The number in parentheses gives the year in whiah that maximum is predicted. The average values represent the average spill for-a given week using the 32 years of simulation.. From these an average spill fm~ each month has been computed .. In review of Table 2, it appears that spills at Watana during the month o.f' September in year 32 of the energy simulation output represent a worst-case situation. The average September spill f¢r that year is 32,680 cfs. This is • a result of high inflow to the rese~voir already at full capacity and zero . . . .. .. . . IJJ "'-.,' ',; T~UIE 2 lmKKLY SPilL RA'IE AT WA.TANA Al'ID tEV!L CA.r.rn:;N DAMS BASeD tN YEAR 2J02 o:M\ND WAN.~ (YR.) AVERACE (YR.) AVERACE JT.LY 0 0 18,523 {13) ~9 6,379 (13) 199 24,573 (7) 2,344 12,925 (7) 855 30,933 (14) 52~ 22,636 (14) 2s801 AVG. 2,080 AtliT.El' 26,909 (14) 9,529 17,904 . (14) 3,837 26,044 (9) 11,470 1.6, 783 (9) lJ,l!65 211,599 (32) 12,327 13,399 (31) 4,3)4 36,483 (18) 14z0~ 28,083 (18) 519~6 AVG. 11~8110 liD,954 (10) 14,5110 32,851 (10) 6,191 . 39,811 (~) 12,476 31,299 (3?.) 3,855 33,888 (32) 10,252 24,397 (32). 2,510 24,733 (32) 82279 14,317 (~) 1 '7140 AVG .. 11,387 . . . 15,862 (9) . 5,ll44 4,816 (9) 373 18,031 (17) 3,545 7 .,'(55. (1.7) . ~55 15,083 (32) 3,!J82 14,926 (~) ~2 9,646 (Z7) 12207 0 -... AVG. 3,420 Notes: o Year in ~tl:eses oorrespcr.ds to year' of m:cdnun ~kly spill taken fran Acres ~""ioan, !oo. , ener-gy simil.atioo o::mr:ute;r prd.ntcut. o All vall.leS reported in rubio feet per~. . .. .. . . I'. '' • • powsrhouse flow. For all further determinations of dissolved gas. levels, this spill rate has been used~ It represents a worst-case situation and also corresponds to discharge at Gold Creek during one of the 1982 field sampling trips carried out oy the Alaska Department of Fish and Game. Table 3 lists the percent saturation at key locations computed using the decay coefficient and exponential decay function determined for+ this flCIW levei under natural . . . conditions. Seve~al assumptions have been mad.,. in developing this table wh~ch should be kept in mind when reviewing it. It has been assumed that: 1) Watana releases liill not mix completely in the Dev~l Canyon reservoir btlt travel through in. the upper 100 feet of the reservoir. Forces of wind mixing and thermal regime in the Devil Canyon reservoir have net been determined at t.his time, therefore their effect on the behavior ·of inflowing water from the Watana rc~6~~o1r cannot be considered. Results from on-going computer thermal modeling of the Devil Canyon reservoir could negate this first assumption, but for simplicity all water entering the reservoir is assumed to remain in the upper layers~ 2) Water drawn !"or the powerhouse at Devil Canyon v~.j_1 come from th~ upper 100 feet of the reservoi~~ . . Design drawings in Volume 3 of. the Feasibility Report show the power intake at· Devil Canyon in the upper 100 feet of the reeervoi~. . . . 3) There will be little or no decay of dissolved gas supersaturation during travel time through the reservoir generally due to insufficient mixing .. Studies on the Columbia River system have shewn no significant change. in dissolved gas levels during travel time through each reservoir. ( 10 ) The reason given is laek of mixing in the water bodies resulting in limited interaction at the air-~~ater interface • .. . ·-·" TAIIE3 wmNA AND lEl!L CANYCN DAM> • m ~ valves at Watana --~--------------~----------~--------· '-----~~----------------- -~ ~. .. , -~ . ' ntsCliA.R{E AT WAN. I\ DAM. 32, CXX> cl's miles (x) dchnstrea"Tl Asst%Iptioos: % SATtBATI<ll BaDW WATAN.~ 155 150 145 140 135 13} 125 1-20 115 110 105 0 AT 1Sts::NA cmEK: 1118 1144 11ID 135 131 126 122 118 113 109 104 4 lEV"11 miL CANYCN oomN TAILRACE ~ PORrAL 148 144 11!0 '135 No 131 126 Decay 122 118 113 109 104 0 o St:q:>~turatim level Oe'J.a.l Watan.:; dam will rot exceed 135%. o No detay between Tsusena Creak ccnnuence an1 Devll Caoycn cutfall. o Fla-t t..1.roU3h Devil Canya1 ~will rot be f'urwtlEr> m;>ersaturate:h o Coostant ~tial decaY. do..mstream: fran Devil C!=nycn tailrace portal: y = ae-bx: wtere b = -0.033 a= irdtial.% saturatim -100 sfllJ1 y =resulting satura.ticn +100 ~· X= dis~ tra.velled AT AT P<mAtE a:LD. CliEEK C1EEK: 147 130 143 128 139 125 134 122 130 120 125 116 121 113 117 111 113 103 109 106 104 103 . 1 14 .. .. • 4) Powar generation at Devil Canyon will not significantly change the s~t,ersaturation level of water drawn from the reservoir. Passage of water through the penstock and turbines at Devil Canyon by nature of the op~ration is unlikely to result in release of dissolved gas from solution. If anything the power generation process wol;lld tend. to inore~se supersatur;ation levels. by 2 to 5 percent in· water that may already be supersaturated. This is the case on the Columbia Ri~er system. (5) However 1 for this ~:tudy di~sol ved gas levels are assumed to be unchanged going through the powerhouse. It" these assumptions hold, Table 3 shows potentially harmf'uJ. levels of dissolved g~s at Portage Creek and Gold Creek. Looking back at Table 2, it appears. that. these elevated levels of dissolved gas could be sustained for several oons\~cutive weeks. Studies in fish hatcheries and natural river systems have shown that f.i,sh can tolerate inte-~mittent periods of supersaturated conditions depending on species and life stage; however, continuous expos~re results in high mortality ra~es.<12 ) Holding to the same assumptions presented above, travel tim~s through .the Devil Canyon reservoir tmderw worst-case and average conditions have been computed as a check on Table 3;; The average weekly· spills at Watana under year 2002 energy demand are averaged to yield monthly values o: inflow to the Devil Canyon reservoir. Tributary inflow is assum~d to be insignificant; · These have been used to compute travel ·time and determine the likelihood of · filling the live storage of Devil C~yon reservoir with ~upersaturat.ed water. Sheet 1 of 3 shoHs that for \vorst-case spills at rlatana the. travel time is 5.5 days. This sheet also shows the water travel time using the total reservoir storage is 16.8 days. This would indicate that in certain yeat'S of' sustained high spills at Watana, i.e. year 32 of the year 2002 demand simulation; the. live or total storage water at Devil Canyon would be supersaturated. Water drawn through the power intake and eventually released would be at a level of supersaturation potentially harmful to fisheries resources downstream. () " . ,,;~ ~· ,;t. "' .... .. .. I • Sheets 2 a.nd 3 show that under average. conditions, using average weekly spills at Watana, this possibility still exists, though it would be somewhat reduced due to the longer travel time and greater possibility of mixing. During periods of high spills at Watana, spill rates at Devil Canyon are also relatively high. The position of the fixed-cone valves m~ar the bottom of ~he reservoir at Devil Canyon will draw water from the hypolimnion which should not be supersaturatedc This assumes that thermal stratification will develop in the reservoir ln spite of relatively short water retention time. Movement of the water through the valves, the fall to the exi$ting tailwater elevation, and travel through the lower end of Devil Canyon will result in dissolved gas. levels aproaching the levels observed under natural conditions. Though still supersaturated, it may serve ·to dilute powerhouse flow entering the river at higher dissolved gas levels. However, it is believed that resulting values downstream will b~ higher than under pre-project conditions. In summary, it appears that elimination of fixed-cone valves at the proposed Watana dam would result in an increase in the level~ of dissolved gas ' downstream of the proposed Devil Canyon developmento However, addi~ional field data on· existing levels of saturation through Devil Canyon and the downstream decay rate of supersatul.,a-tion at ~-.,.~ious dischc;.rges is needed to confirm the relationships used in this analysis. Also, th9 degree of wind-induced mixing and the. thermal regime of Devil Canyon reservoir will allow more detailed analysis of the behavior of the inflowir!g water from · Watana and posible. dilution efrects due to mixing. BIBLIOGRAPHY 1. Acres American, Inc. 1982. Susitna Hydroelectric Project F·easibility Study -Volume 3, Plates. 2. Bouck, G. R. 1980. Etiology of gas bubble diseas~. Transactions of the Ame~ican Fisheries Society 109: 703-707. 3.-Bouck, G.R. i980. Introduction to air supersaturation in surface wat·er: a continuing engineering and biological problem. Proceedings of a Symposium on Surface Water Quality, June 2-5, 1980. Minneapolis, Minnesota. 4.. Bouck, G.R. 1982. Gasometer for monitoring dissolved gas pressures. Transactions of' the American Fisheries Society 3(4). ·· 5. D'Aoust, B.G. and M.J.R. Clark 1980. Analysis or supersaturated air in natural waters and reservoirs. Transactions of the American Fisheries Society 109: 708-724. 6. Ebel, W.J. and H.L. Raymond '976. Effect of atmospheric gas supersatu• . ration on salmon '"1~ steelhead trout of the Snake and Columbia Rivers. Marine Fisheries };eview Paper 1191 , July, 1976.. ·· Harvey, salmon. H.H. 1963. Ph.D. Thesis. Pressure ln the early life history of sockeye University of British Columbia. 8. Krishnan, G. 1982. Susitna Hydroelectric Project Nitrogen Supersaturation Studies, Acres Office Memorandum. September 13, 1982. g. Peterson, L.A. and G. Nichols 1982. Water quality effects resulting from impoundment of the Susitna River. Prepared for R&M Consultants, Ocotober 15, 1982. 10. Roesner, L.A. and W.R. Nort.on 1971. A nitrogen gas· (N 2 ) model for the lower Columbia River prepared for Portland District~ u.s. Army Corps of Engineers. Report Noa 1-350. January 1971. 11~ Schmidt, Do 1981e Summary of key findings of 1981 dissolved gas investigation of the Susitna Rive~ in t~e Devil Canyon vicinity. Unpublished report. ! 12. Weitkamp, D~ and M. Katz 1980e A review of dissolved gas supersaturation literature. Transactions of the American Fisheries Society 109: 659-702 .. . . .. .... • PERATROVICH, NOITINGHAM & DRAGE, INC • 1506. West 36th Avenue, Suite 101 ANCHORAGE, ALASKA 99503 (907) 2n -8633 / 1"'-. .::>..:. ~ SHEET NO-----~~--~---------------- ._§ /."1 • IF-·' I CALCULATED BY 7. V /,.., ..,...,_ ~· .:: ~; .. - CHECKED BY__.---.------~------~~ SCALE OF----~-------------- OATS------~.-------~ i . •1 ! 1 1·. ,·.· j' 1• I. 1" I' i :1 !. ,: i . . -: i i l I ,i i, f J ; . tn ' l l ! I ! ! ! l I l ; i b QD Jt:. i t---1--+--L..-a..r.t:~a.().e::'__L'I,AJ4~.eL~;t-.J@-'t-t!~-+-: . "r ~.?..,..._;_Q_:-~.-~.._-+-~-+--+--f i I, i?! -~: ,· i l! '! l j i l i !"! j l I j j I!' ' . l . . ' I ' • : •• : I ! ! "! • ; : J ' • '2' ~-• . . ' ' I : . . l l;:. /'1 ~ A I A! : . ' ' i ---4--f£.Ad'!"-...if-il~lfl.l..£?-."'D~~-N-Jr-llfflP-y--2-~tlZ,}--~1f~1 ,~~;--+' ---+~--i'1!:-+1 -+-i :--+-~--+--+---!--1-j . : ~, 11,. i,,. 1 i. 1 r 1 J ·--~~--· i ! t l ~ i ~ ! i i ! 1 ~ l 1 i i i· i 'l t r-1 l j r- : I j ' l l -~l ! f i_ ' • ! l l ; j .I I } I t--~~--~~--~-+--~:t:::tf~ :r.:;-~~~~·+l----~----+-----~--~----~----~----~---..i-----r----+-----7---~-----+----~i----~----~----+---~~--~-----.~.--~.~ l_, ! 'I • t----;f---;----+----+---.i...---l 1 ! : l l l I i ! . ,k: r~-h t ). ~ ! l l ll I l 1 fl · l r ! I A~~/!~"~,. J~ o~ • .:...l-1 j 1 ! r-'c! ! ~.! i ! f i -+--...-:--'--·....._::r~~-"""-~ .. ---· -r-:::I.--. 4-• .1-1 : ;( s~S":o~~11--)(-i:---···-.------,....__.._,............,_--+-_,.,...·- l 1 : i" d· -r:-1 · i 1 f , 1 r 1 ; • 1s fr,!<t-op ~Gfoj 1 .. , i '7_2...lci...e.~ ,.;.~.~ 1 i , l I l I l. ~l l i 1 1 . • ; 1 1• 1.-~--~i . ..., . l . ~y-l! I I I I i l ~ I l . I !l· I I , .1 1 1 I . 1 , l 1 , f ' . I · 1 ~h 1 T I·. j J J I I I ·j, ~~· r i, J I 1, 1 WI' ~--+-1 --,...--r--~--+---r-4 ---''~-~;'--'Sf~-~-r-o~Pn-f i i I J' i I 1 1 I I l I - l i-I l ! l ·i I . -~·-~---+---+--l1--+--->----+---r.l ! I i : 1 ·.:. I I l 1 i * 1· . 1 ~ . 1---L__j !II-.I 1. t L ·--+-·-:---+--+---i----+--~--tr~- ~~----r--+~--~--~j--~,--~~~~·~--~~--~~--+l--~l~~~--~~--i l I l I ~··--+~--,_--~~~_._~--~-·-~i--+--;~~~~~ I . ! i 1! l 1 i! 11,1111 t 1 1 l L ~~+,,-~D-.~~---u~ ~~~2~~~-~ ·I 1 .• ~. i i 'f l l • ! j • i ! ., l I ! l l l I I . j i ~~ ,. I l ~. . ; L-1--l 1 1 1 • l___t 1 l I 1 I . ___ J . l i i i ' l 'I' ll l l j I l 1 l I --r--·-+---!--;:r;.~..:.L.z;:~-4.. _.....__-_! 1 l I . i f l 1 : § ' i ' l ! 1 i '· I· ' f t__L_~L··-~--! l l_;.._.; ___ ~-~~-1---l ___ _l_,l __ _j ___ ~! tj l._.L_L.l I _!_J ____ , ....,i:---+--+--· j ! i l ! ; i 1. I ! ~~· : I ! i i i I l I ' I i ! ., : t. · 1-1: ; • 1 ~ ~o , ... ; r ! ·! i t t • J __ :.._,_i ___ :~ 1~.3..£~_0_ ... ~.~.!:-: : __ P~..!1:t .• --f<---!lo,.~.z. . .OO~ .• ~-G-~l"' 1-.y----··-...:.. 7J.1 ... 1 __ ..__+--·--* l l ' i i i . . . • • ! . . ,, ~, ' i I.....,.., B '1".~ A . :..,.. ,., ) ' I . I l j ~· j i j j i l ' 1 Q i ; l ! j : l j t l : } p "t 00 _.,._.... CJ~ : •· --'-----:-!·~·-L-.... 1-... _:..___: ~--L~ ?..<4':P. ~~:..Cl . .i .• -~P~C -:-~ .. -... .2----!.--=-.t __ :.~ ._!__L_...;_ ... _..~-·--.. L--.!..__..;...·--il"·--=·---"!'1--...:...--- -l i I i ! . ; l l l j L' I ' l ; 1: i I ., i i ; l i j i i i I l ~ 1 , ' l • 1 ! j ' ; ' 1 ; ' ! : • : ! ! j .,.~ ·-,~ ....... ~-···--._._~--... ~""'-..,.---.to~--·..,.--··-" ..... .....,. ...... -: ............ ....., .. .,...,..-....... -·~---r-----+-· . -"-:---...-.........,._,.-.. -··--,.~·-r- ; 1 : • ! ' 1 1· i ; d' 1 i : r ! : . . : ! f • • -· · • * .. A .. . l .. ~ ~ . . " -, • l f . ! ' ':::' ; ". ; g. a:..c.,~ : ! ! ! ; l : ' : l i ----------;:-· __ ._.. __ ........,_. _..;----..,:._ ,J,!;l .•• ,..... t-•·• .• ,.. ..• ~ .. ,~...J . .,.·-----··--.. " ... ;...._ ........... ---,--...----t .... -.;..----·--~~--·'-·--'----<-~-..-.----• ~ • 1 i i i ; : i t ~ 1 : : • i i i J .. ! ~ : * ! ~ i 1 I . 1 : i I : i * t ~ t ! t .. l , -' , t • L t ' l . l l . l : . . , l ~--,..----·--r---1---+·-·-.. ·-·~-~~ .. ~~-.. -+---r· -·; --;-.,-·~··r~ -··~·r~... _;. _ _, ____ "T---r--..1-~~--... ·····~--t---·-~·~-... ~~ ........ -..... -~---:---...... --.... ·~~ ... ·- ' i t ' • ' j' ' l : : ; i l ; l .• • ' • f ' ; . l : • : . ; • j ___,.__... __ _,.--..;--... ..:..-..... ~ .. -·---~·-·~ ... -.... ~ ...... ~ ...... ,...~4·" __ ....:, ............. , .. ~ ... -· ... -.. ~ ............. ,._ ....... _.,~ ..... __ ":'·· .. -·;······-.. ·t ~ __ ._. ---__ .._ __ ~ ; ; • 1 • • • ! : i i l • ~~--.:.~··-~--_~,--~~-L"_l_·.-·-·rl=.· ~~-~·~·-!.-.*.~~~ .. c:·.~~=r_~ ..... --,-.--·..,._,_ ..... _ ... ~~ ......... -._--~··r~""'"'!"~·-....... _! .... ·-·-:·--··T··· .. ···~-1 # t : ~ ' . ~ • :: • . • i l • r I ~ ~ : ! • ,; • i ~ ; } t ~ ; • ; " ·~·· ... ---·---.,....... ........ ._ __ r·-· ···~·-·.-. .... --~~....._~ ... ~·· .. ·-•••" .-............. _ .... ,. ........ .,. .... _._...-.... , . ..,.,..-,. .. .__ __ ... ~"'" ....... ' ~--·-.. ....,·•·-··--..... .,._, .. ...., __ _..,_ ..... ..;.,..~->WH-.. ----..----.;---!----f . ~ ! i ; : I i " l t i • ! i ~ ~ • '· l 1 ... --,----·-... •-----~~·----~.--+------~··~':'" ....... -••!•""-...... ·-·--r ...... -,~--;....-.__.,..... . -~..-----......---........ ---·~:---~--+--. i ! i l • ------+---·--------·-.. ~· . j _ __J. __ ,L_, .. l._.J _ .. _ : ~ J -+-~__J-! ·--f--~---:-· i j i : l ' j f : J j I ; I ! j J ; i l 1 j1 " ' t 1 ! t : l 1 t__._j ! .. i ~ ~ . ~ ...... ·r-:.-__ .;_ _ _,.--... --·· --.. ·---· .. --~-...... -........ -... ,... .... -·-r--,.-.-~1-.... -' ,-----...... ,...__.,_ ..... -.~·----r-·--r---,-...... r---;---r-.... ----;..-1 l ~ • ; ; j I j ! 1 1 i i i • t i i 1 . l . l ' • ' : ! ¥ : ' • I I PERATROVICH, NOlTINGHAM & DRAGE, INC. 1506 West 36th Avenue, Suite 101 ANCHORAGE, ALASKA 99503 (907) 277-8.633 JOB 8z.Ot:.6 SHEET NO.--z __ o.._£_,.;;;3..__ ____ __. __ CALCULATED BY ~c;z,:,).y::.-~t..: or.-----------------~- DAi'E-..:./_._4~·E;::..::3:,..;. --- CHECKEDBY--~-----------------­~r-------~--~----~----~--------~----------------~~--~S~C~A=LE~================~==~====~======~~====;=; --~ ..... ----L-._L __ --~ ~-~ :.-_.......~ _ _L_!--!----~_; -~~---.. !--1---~ -·-!. ;_;_·_! ~-! j_~.: ___ j· ! I l . i DATE----------------~ l.; ': ~!: i l i .. 1 ~ i 1; l. ~.; i ~. i,: i "'7".,. 9 ... r-J r.7 ~.A J.-~~,. b,., )('t LJ. A ....., ~ ~~ <:: ·r ,=,:;0 1..;..., l v.· · i.; Jo. ~=-1 ;, '"="DEJ.,..; ~ i "'oiN'..ci "'......;.""' "'r.~ __ ,_, _ _,__,_~ /. r. ""· ·-•.. ·a ·'-·-----F' . .F.-..CJ. r..~.r...":.:._we.; •. !.....~. _ . ..-...~-t;;;;. .r; .1 .,e ... ,_ ~-" .~ ~ A---:-.t7.-" ~t:!.. _ .• y. ....... _. -~--.. ··-. _ r. .. Li:...~J r..~.-.c.......~---• i · i i r { ! i . l ' .. ---:--r--..;---+-.. -.1--... ·--·-· ___ .......___., . -__,....,--·----t--~-~·--4-~1~--+--+--+--+---l J 1 i i ! j j ! j i l i i . . ~ i 1 l I -~~-~-f----+--la.YC..IV!l~ i w-r~e:kl-L.S:.e /.~ t..-!-®lt&Jaia.Ma._+---!!---+--+----!-'.:..· __,:-_,f.! ~-+-·-rl.~-----~'r-...,.. ~t-11. - 1 ; ! . ! l . ; : I 1 l ! j' j : 1 1 1 1 i ; i • i 1 , ·i .i l t -'--:---+-.;,.---'--·....__.e...&~r:.Cti Olh.' __ U(~gl <' (LQG,.~~-c.t!:I.L!..?Y..t.J.._-l--+---+' -+~,· ---4-~-· --+--~-..:;._-+l _. __ l I I l I r l I IiI I i 1 l J it t---:---~---L-·-~--·~;.__~ : ~ -t J ; . i : 1 I ; -!--+' --+---l---i'i---Jr----;.·---+---1 ·---r--+-....... --+-__ ... l __ ,!-1--!i--ft;u.t!<.Y-1 , a_ka.U 1. l t l l ! ! l 1 l : l l I I -i--+----+---i---!b.:t<a:.~t ll 811! d I i t .j_j--+--• r i i i 1 1 1 ! i 1 J. i i t , .~ ! ~e.~_Lf....3le-z ... · -~----f---+--+--+--..J..--; I i ' ! .,.. j 1' l ~ l 1 i i l. • ' 11 • ·-1! I J ' li ~ ' :-d ; ! ~ i -• __ _. __ +--r---fi~. --=~-~--,_-la..err:ze..~e_ 1 1 ~..:t.;.2r.it 1 ; 1 i • ! . 1 • I . . . . . . j' I -~--~ ·,.-! j I : i ! ! ! I ~ : i I i . . ~ i ~-~---' : ·--+~--+--~---~---~~--~--+---~----;~---+----+---~~--~·~·~--~--~~·----~·----·1 i r---r-i j ,. i i i 1 •. 1 i i f l I I I i,:_ ~ I •--i..---;!--.L~".?"vl:L ;TL.uc::J. ! 1 1 I I i i . ~_~-+~~ ~---4~--,~.---+~i--~i----lr---+l·--~ .• ~---~.l.t---~--+---+---~---~---+---7,i--~i~--~--+---~--~~~--~~--~--~----l ! ! ; ; i ! ~ ~ i > L ~ j j ___ !_~~~ _ _Lc.i l I i i I 1 J-_i l ·-'-~-~-+--+icz"" . ..-.::> r~ o c.'.f~n~' o. ei•{;;r ....... ,--+1 -...,:r--fi---+1 -a-;tl. . -.--+; ,..,.--+-·--i-1. --~r----+.--r--1 -~ i J. .) . t 1 -"-1 • 1 ( i ~1 -=~s-ooo ·Fi: xi • l /.-'1 I , _ _.......;_~-+--!:IJ;.;:.t.J'_,~--+ a-o·e-o--ef-::t--i ' ' : • ' 8~~.0.0 ;::.Jt,.o~"-4-----+-_.... __ l i ~ i ' l i i I ll I' ~~.· I I' ·.!,: ,~ l. I ' ·r I. r . 1 ' , .l l 1 1 , l . , 1 • I l . t I I I ! 1,' j ,. !,,· l ,. I I i i... l8~ l d . ! ., i l l il r-r· l --~·~1 i.l ;,: .1. 1,. ·!: ! i; t ~ ~. l i ! . If j ~ --+--+--4-·--i,-----.i~---~;...--... l -. -+-! --~. -~1-ll I I l i I 'i ,_./ l i l I i I l 1 ! l_ ; ! l j l l l l 1 1 ·1: aur. f.~-l I d..:>: •• Gro i . . l • I ! ·--....;---+--"'--r-~r~-;~--!---·r-i --:-.1 ...... .-._ ·~·· --r~--~·$"-s:roo.~-r-)(-+ ... --."""'"'"'l'~~-i~--!!....-'i;__-+ __ +-l I I ! j i l I II B tf/() l .1 I I i l 8 1 ... ~-;Tt::l i I I ll. ·. l i !' I l .·--,;.--.;-!! -+, l ~+-I i ! • ·--=---:---r--:---r--:-·.: -~~ 1 ; 1 J_ ! Lu_ ' ·--+---··;----';--~-....... !-._ .... 1:--__,,:----!....-- .! i 'l ld.J! I I i j l j l li f i 1 .. ·· l_. • I : ! ./,.., (.>...,.., ioo • • l I i i I . .l 1-----+---l----+--+---:~--+· --+---.li'-~-·-~-·-7·-" -r-I · ~ ; l 1 , • 1 1 ·1 l I 1 i · i j' j l . j i l i I . l i I l . ....... --~--.. . -----.......-'--·-I ! ~......... ---r--!---r---+----.----:-· ,J_____. __ j ; ; l . ; i l ; I ! l l l ! I I ! j . • I' • i .. ' 'I; I ~ .. .. l i i j ' ~ j 1 t : i 1 I ~ , :sr:: l'J..,T:t1.~t:P· 1 -:1-.~ s-~o! . ' : · l · · ~l ! ; ! --....;--·r---;--r· .. '-!~ •. ~· -· . ;·-.. ~-i---r-== .. :-"-· . .. ... . ~.--: .. --r.-3-s-:~o!:)·t!?·~l, -o.-;'d-:o· .. ··-o-i:--+-_r -+,--iir--+--;---r---!--+-t---i • l l • l • l ! i i ?j ? !:!; 7 ; l j. j '1 ~It' 7-. l • ! I l I• ' 1 ' ! ~ ! : · · · ! t ' I : .,J 0 ! ; 1 1 , ! . ! l : l j I ~ ; J f I ·-~r----:--~---·~·~-4--;--~---r--r-·--... ·r· ... -z~·-· ~---;----~-r··---r--·--:----,-·s--,--~-, _,---r-..... ---..;--- 1 l : l j • 1 I J I 1 l! l l i I 1' J l ' i. l l l I : ~ i ~;: l! l 1 ~ t i ~. l; i!. 1 ~ t .. ...-------.....---· ....... --'""--to·--·----· ... ..,...,.._..._ ___ ........ _._ .. __ ,,r-.. ·-·-;.----. .;. ... -.... ..,..._."_,_,__.,...,. __ ~--'"'"!i--...;..----r---~--~--!---+-- .; l ! . 1: i.· l !.i . ~· l //'j _; i ! l1 J1 l i I i t l l I j . r . , • ! J !,Cf t:{:4!d .-• • • i f ! ! I ! ! ! i ·-~-r-:-~---······~ .. -'!· ...... ~ .... ·t-··---·1~-r .. -· ·- 1 r .... 1,-: ·-·-r· .... -~~---r-.. ..,----i-Oh7 1 t ·-- 1 i-...... ;.,-r .. -··a--;-·-..,...--r~-· - . : i ' . . • . l ! . l ! i ; l : i . l l ' ---;---i--~--~ --:---~·~·-.. ~---.. -1--... r---·r-·-i ·-·r-·~-···-t~··-· .. -+-+---~--...1---·. , "-----···-r-----r--~--.;_-- i : ~0....;_ Gl I i _.,!.. _; : l! l ! : l ; :I ' ; . \.J.or:.r: .. ·.-..--. .. ~o· ::?·--~ o'! . ! . . , ------·-·-·,.·----· .••• ..;;.;w ... '" ~ ··••••· .. '! ___ ... .t ... ~-.... ~ ...... -... ~ •• ·--~,_..... ... .... ·o O· ........ w .............. -........ _.""..__...,.. __ ,. ............. ~ ............ --. . ; ' i • : . ,, _, ..... _. ,r, : ,._1 :,~ .• : l ; : ; I : I l f ;-. * • . ~ ; ~ : lt : ·t:;; w ~·Co ~ : ! l ~ : t : l t . . . • : . .?:?:. ~0 ; i ; 1 ; • . • • i . ~ j : ! .. ~ ~ ; _ ... -~ •• .,.... ........ -~·~---·· ............... ot._, •. ~-·-""t--·-'"i"'· ..... -· .,. ..... ""!'-... .,.. .... "": ............ -.~-· ...... ·-·~---~!"--t-..... --.... -i. ........... ~.-~-.... • .;. •. ____ .,._.,_,.._~-~-----.----- : 1 l : : · ; i ::~ ~ ,;._ ~ " ~ : i . 1 : i I ; i I ; t : ~ ! ! r ._.......---.. ....;;----·······l .... _ ........... ~" ....... _ ......... -~ .... ....____ __ .... ., ...... ~.i...l ~t::......... 0-.'j-.................. '!,._..,.._.,_._., .. , ·--....... -.... "' ·-.... _ ..... _..;... ..... __ ; ___ ~--...... -J .. -....... !-llof ... .;-~! ___ ...... _ : • ~ ' • : : t. • ~ ~ ~ ; ~ ! ; l: i ~ ; : . : . . :.:r,. .. ..• 1 ... .. w,::u:r 2"_.&.1 !l.T.lf!tlll<., ~ u-. OIUI -..... •. • j 1 !, i ' ,• ' ! •. PERATROVICH, NOTTINGHAM & DRAGE, INC. 1506 West 36th Avenue, Suite 101 ANCHORAGE, ALASKA 99503 (907) 277-8633 . l . 1 -i. i j 3 o(':;J SHEET NO.-..-.._;...:....:.....;~=.---~---OF---------------------~_..;? •//":..;'~ (" .... l.CULA'fED BY 7. &:;./F?CLr ~c~ / 7 ,, DATE__;/~· _4;..._• _8...;3:;;.._ __ CHECKED BY----~~-----------------DATE--------------.--- SCALE i I l I ! .j l ' J i l ' I I ! j l I i -!._j I I ' . ~ l ' l i 1 J I· .l l ! l ! .! ! 1 ! ~-I I I i I . i . . i l 1 ll '! J • .;-.... • ( ( TO: Distribution FROM: D. Crawford SUBJECT: Susitna Hydroelectric Project Nitrogen Supersaturation Downstream of Susitna ~evelopments. Discussion Paper Introduction FILE: P5700.07.06 Nitrogen supersaturation has been identified as a potential lethal problem to fish populations downstr•eam of Watana and Devil Canyon dams. The extent of the problem can be gaged by considering the extent of spills and the method of spilling. Generally, the lower the spills the less of a problem nitrogen supersaturation will be. The method of spilling (valves, flip bucket, stilling basin, or cascade).will determine the level of saturation. The question of nitrogen supersaturation has apparently been raised due to experience from the Columbia River. The analogy that the Susitna Development will be similar to the Columbia River is in many aspects err~neous. The Columbia River, in the United States, is an almost fully developed river and forms a classical cascade with one dam spilling into the reservoir of the next. The amount of storage available on the Coiumbia is limited so that spillage along the system is a common occurrence. This, consequently, causes a buildup of saturation levels progressively downstream. The . problem was severe causing serious damage to fish populations and required extensive remedial action. The high nitrogen supersatL ;:tion levels and the consequt:)ntia~ high incidence of gas bubble disease in fish have been lowered ~y alterations to spillway flips and with increases in powerlious·~ capac·ities. The later change plus the developments of Mica and Revelstoke have substantially reduced the frequency ahd magnitude of spills. Lower spills and the structural alterations have reduced the s~turation problem to a tolerable level. . " ( ( In comparison to the Columbia River, the Susitna River development has considerable storage and regulation at Wata.na resulting in a low frequency of spills. The powerhouse capacities at Watana and Devil Canyon are con~iderable and further reduce the need to spill. Consequently, the analogy between the Columbia and Susitna Rivers is not correct from several aspects... Other aspects which differ between the river are operation; fish passage, tributary inflows, and length of reach downstream. · Nitrogen Sqpersaturation Nitrogen supersaturation will result when aerated discharges are subjected to pressures greater than atmospheric. Generally, the plunging of a jet, such as from a flip bucket, into a pool greater than 30 ft will result in saturation levels up to 150%. The critical level at which fish become seriously affected is generally accepted at 116% although regulatory authorities use 110% as a water quality stand&rd. Levels in excess of 116% saturation would eliminate, given enough time, most fish occupying the top five feet of a river, This level and greater. ~an be tolerated by fish which swim to greater depths. The greater tolerance is due to hydrostatic compensation which increases the tolerable saturation level by about 3% per foot of depth. Exposure tim~ to lethal levels of saturation required to ~eriously damage fish populations is dependent upon sevc."'al factors. Generally, fish will show significant recovery from elevated saturation levels (up to 125%) if exposure time is limited. Analysis of Watana Spills To illustrate the levels of nitrogen supersaturation downstream of Watana due to spills, an analysis of floods has been performed. This analysis assumes that the spill facilities at Watana consist of the following arrangement: .. I •\ ( Powerhouse: Service (H-B valves, Expansion Chamber): Auxiliary (Flip or Stilling Basin).: Capacity ( cfs). 12,000 18,000 15,000 >15,000 Operation WSEL ~ 2, 20.0 QINF > 12,000 WSEL .::_ 2,200 QINF > 30,000 2s200 ~-WSE~2,205 WSEL > 2,205 The analysis considered the thirty year period used in energy simulation analysis and floods with given return periods up to 1:100 years. The latter assumed peaks and hydrograph shapes derived by R&M CO''lsultants for the August-Octobet, per·iod. Historical Spills The energy si mt{l ati 011 mode 1 s hawed that four years in the thirty year f period had spi·n~ge. Obviously, ·use of the monthly flow model will not indicate the true day to day operation of powerhouse and spillway. Daily discharges were determined from streamflow records at Gold Creek prorated to Watana to give an indication of the daily flows. Table 1 shows the discharges for days in \'Jhich all three discharge facilities operated. ( The historical period indicates that a total of 15 days in the 30 yl':!ar period had spil.ls from the auxiliary spillway. This represents0 raverage\ ~frequency of operation of one day every two· years. Assuming auxiliary spillway, service spillway, and powerhouse discharges have saturation leJel of 140%, 100%, and 100%, respectively. The maximum saturation obtained was 118%. Fourteen of the fifteen days had saturation levels below 116%. The mean saturation level for the fifteen days was 110% .. The above historical analysis has assumed no initial storage of discharges exceeding 30,000 cfs or limited auxiliary spillway discharge to 15,000 during the first five feet of surcharge. If some initial storage was ~ave assumed, saturation levels would be reduced and would have not~exceeded I • ( • .· (' ... 114%. However~ an increase in the number of days that the auxiliary spillv;ay operated would occur. Flood Spills Floods with given return periods have been analyzed as above and show similar results. For these flows a discharge limit for th~ auxiliary spillway of 15,000 cfs has been assumed for water surface elevations 1 ess than 2 ,205. ft. The 1:100 year flood would result in nitrogen supersaturation for 14 days. Smarler floods show a reduction in the number· of days of supersaturated conditi.ons. However!! the maximum remains at 113%. The 2 year flood results in no elevated saturation levels. The results of this analy:-1is are given in Table 2. Devil Canyon The nitrogen supersaturation problem downstrea~ of Devil Canyon is pJtentially more severe thar. at Watana. By proper design of spillwdy facilities that do not cause plunging conditions, the supersaturation of flows can be maintained within acceptable limits.· Analysis of spill occurrences and nitrogen levels have not been carried out, but a qualitive assessment of the discharge facilities concludes that with the inclusion of Howell-Bunger valves into a service spillway facility, the nitrogen saturation levels downstream should be acceptable. Other Considerations A further consideration is the dissipation of supersaturated conditions under turbulent flow in the river reach downstream of Devil Canyon. This reach would provide some reduction of saturated conditions, however, no quantifiable rates of dissipation could be estimated due to inadequate data on the reach and on typical dissipation rat·es. Obvious1y, further analysis would be beneficial, but qualitively, the conclusion would be that saturation levels would be significantly requced by the time the flow reaches Talkeetna. .. ... .. • I" ' cl i l~..\h ~ Nitrogen saturation levels are also Canyon reieases by tributary flows. further reduce the problem. r~duced due to the d~~uatian of Devil This is also significant and would Summary This paper is intended for discussion and to aid in determining the extent of the nitrogen supersaturation levels t_hat can be expected from the proposed spillway facilities. Obviously, changes in spillway design will effect any conclusions drawn here so a reassessment of this feature is required for final design. The main conclusions from this assessment are: 1. The saturation level downstream of Watana due to spills resulting from a 1:100 year flood are acceptable given the proposed operation .. 2. The saturation level downstream of Devil Canyon are also acceptable for the 1:100 year flood occurrencE! and the proposed spill.Jiay facility. 3" Saturation levels will significantly dissipate downstream due to turbulence and diluation effects. Discussion and comments are requested on the above analysis. DC:ccv Distribution: T. Lavender J.W. Hayden J.D. Lawrence K.R. Young G. Krishnan R.K. Ibbotson D. Crawford L I i ••• •' ., ( ' . 1\ ~~ ( Year of Occurrence 1955 1959 1960 1967 NOTES: TABLE 1 Residual Nitrogen Supersaturation Levels and Duration:Historica1 Analx.sis Discharge {cfs} Powerhouse Service Auxiliary 12,000 18,000 18,000* 12,000 18,000 15,600* 12,000 18,000 12,600 12,000 18,000 5,300 12 5 000 18,000 8,700 12,000 18,000 1,100 12,000 18,000 2,800 12,000 18,000 3,700 12,000 18,000 3,800 12,000 18,000 18,400* 12,000 18,000 23, 900it 12,000 18,000 12,500 12,000 18,000 8,400 12,000 18~000 7,800 12,000 1B,OOO 1,300 :Sa tura ti on. Percent. 1..15 1.14 1.12 1.06 1.09 1.01 1.03 1.04 . 1.04 1~15 1.18 1.12 1.09 1.08 1.02 * Probable use of storage. Discharge wou'ld be limited to 15,000 cfs. . . ! ( ··~ . (, • 1:100 Flow N2 % 1,100 1.01 4,500 1.05 8,000 1.08 15, 000.3./ L13 II II " ,. H " H ,, ,, lt II ,, h ,, v h II \I 15,000 1.13 3,100 1.04 NOTES: TABLE 2 Residual Nitrogen Supersdt~r·cttion Levels and Duration -Flood Freauency Analysis ' ( ~ Auxiliary Discharge cfs11 Return Period 1:50 1:10 Flow N2 % Flow N2 % -· 670 1.01 4,200 1.05 3,800 1.04 12,200 1.12 15,000 1.13 11,900 1.11 II II 5,800 1.06 II 3,100 1.04 II II II II 15,000 1.13 2,400 1.03 1:5 Flow N2 % 5,000 1.06 . 4,700 1.05 Y Powerhouse and service flovJs assumed. 12,000 and 18,000 cfs, resrect·ively .. ; Zl \;\(;'·.to.,. 0Cl,t!:. o:\ \~ .. ,C"f.'J~ c~ ;,- ' , •.. : if., t ,, UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195 TO: TYPE OF SUPPORT REQUESTED: TITLE OF PROJECT: PRINCIPAL INVESTIGATOR: A}10UNTED REQUESTED: DESIRED PERIOD: UNIVERSITY OFFICE TO BE -CONTACTED REGARDING GRANT OR CONTRACT NEGOTIATION: DATE: 12 January 1981 OFFICIAL AUTHORIZED TO GIVE UNIVERSITY APPROVAL: \vEYERHAEUSER COMPANY Research Contract Ore-Aqua Coho Scale Analysis Robert L. BurgnPr Professor and Dixector Fisheries Research Institute College of Fisheries, WH-10 University of Washington Seattle, Washington 98195 (206) 543-4650 $ 6,662 15 January 1981 -1 April 1981 Grant and Contract Services Rm 22,. Administration Bldg., AD-24 University of Hashington Seattle, Washington 98195 (206) 543-4043 < £-:le'~-~-Ll~ ~=~o-"}4~ . Principal Investigator --~,._., ....... -.... ··-·----·-··-+>· -...... ___ ,._..,.,,_~·-·-·-.... ··~· . Donald R. Baldwin, Dir0ctor Grant and Contract Services t ' .. ·· ~.,&';.' , 'a';w· .. .. t .. OFFICE MEMORANDUM TO; J.W. Hayden Date: September 13, 198,2 FROM: G. Krishnan File: P5700. 14.53 SUfiJECT: Susitna Hydroelectric Project Nitrogen Supersaturat~on Studies Enclosed is ·a copy of the final draft of the report on Gas Concentration and Tanperature of Spill Discharges Below Watana and Devil Canyon Dams. Please note that no gr~phics efforts have been spent on getting the figures in the Acres standard format. This has been_postponed until after your review of the material and advice on the inclusion of any field measurements of nettural supersaturation in the river. Messers M. Bell and J. Douma had expressed an interest to receive copies of this report. Please advise if this can be done at this time. · GK:ccv Enclosure cc: J.D. Lawrence A.F. Coniglio K.R. Young ~J. Dyok/D. Crawford ------------------------~---~-- G. Krishnan AI' ., 1 INTRODUCTION GAS CONCENTRATION AND TEMPERATURE OF SPILL DISCHARGES BELOW WATANA AND DEVIL CANYON DAMS Supersaturation of atmospheric gases (especially nitrogen) in hatchery and aquarium facilities was first no~ed in the 1900's (1) and was ascribed as causing the condition in fish known as gas bubbl~ disease~ Supersaturation caused by entrainment of air in waters spilled over dams on the Columbia River was recognized as a problem for anadromous fisheries in the river in 1965. A comprehensive stcdy (2) of dissolved gas levels in the Columbia River showed that waters plunging below spillways was the main cause of super- satur-ation in the river waters.. Several 1 ater studies have confi nned the harmful effects of nitrogen supersaturation to fisheries. The tolerence of fish to levels of nitrogen supersaturation depends on the time of exposure, age, and species of the fish; dissolved.nitrogen levels referenced to surface pressure above 110 percent are generally considered harmful (3). The state of Alaska water quality criterion is set of 11:~ for total gas saturation in its waters • . ~Jith this background, the potential problem of supersaturation of spill waters from the proposed Watana and Devil Canyon developments on the Susitn& River was ~ecognized early during the feasibility studies. Alternative spillway facilities were studied to min1mize such a potential problem, and a scheme comprising fixed cone valves and overflow spillway was selected for each development based on detailed discussions with environmental study groups. This report describes the selected spillway schemes briefly and presents the analyses and field investig&tions carried out to assess the perfonnance of the proposed schemes with respect to gas supersaturation in spill waters. A related concern on temperature of spill waters is also discussed. A summary of the studies undertaken and the important conclusions are presented in Section 2. A ihort description of the proposed schemes is given in Section 3. Section 4 details the engineering analyses carri·ed out. Results of these analyses, field investigations, and their interpretation are prese~ted in Section 5. The next section presents the major conclusions drawn from these studies. Appendix A comprises the field study report and AppendixB deals with the t€!lJperature of spill waters, its impacts downstream, and possible reservoir operation scenarios to minimize such impacts. 2 -sur~MARY Relatively little information is available in the litar~ture on the.perfonnance of fixed-cone valves to reduce gas supersaturation in thei1· discharges. Published studies (4) on the aeration efficiency of Howell Bunger valves (the more commonly known type of fixed-cone valves) were reviewed, and a theoretical assessment of the pertonna.nce of the proposed valve 1 ay~~tts was made based on the physical and geometric characteristics of diffused jets discharging freely into the atmosphere. Results of a compan~on study on assessment of scour hole development below high-head spill?JJays {5) were used to estimate the potential s plunging of the valve discharges into tailwater pools at the proposed develop- ments, and the resulting supersaturation in the releases was calculated~ Specific field tests were conducted at the Lake Comanche Dam on the Mokelumne River in California (6) to stu~y jet characteristics and the efficiency of the existing Howell Bunger valves in reducing supersaturation level in the reser~ voir releases. The analyses indicate that no serious supersaturation of nit~o~en is likely to occur in the releases from the proposed Watana and Devil Canyon developments for spills up to 1:50 year recurrence interval. Field test results tend to confinm some of the assumptions made in the theoretical analysis with respect to jet shape!* diffusion, and gas concentration 1n.the valve discharges. Several assumptions and approximations, albeit conservative, have been made in the analyses which should be confinned in later study phases, perhaps in a physical model. For the purpose of feasibility studies, however, it is felt that the analyses adequately support the proposed schemes for their intended purpose. A related question of the temperature of spill waters and its effects on the downstream water temperature has been analyzed and detailed in Appendix B. Simulation studies of the two-reservoir operations indicate that continuous (24 hour) spills would occur in the month of August in 30 out of 32 years of . simulation and in 18 out of 32 years in September for the· Case 11 C11 operation which maintains a minimum instantaneous flow of 12,000 cfs in August at Gold t;reek. This spill frequency is simulated for a system energy demand in ·\he year 2010 (Bettelle forecast) and assumes that the entire demand is met by ' . { • . .. <;r· ' ' po;., r. j I l . j . ~ ! ' . . f J )-! r,4~ l't !J!, I ) ;•t, ~L···· . ' ,;( ' ~'f J ' F~,~ ~~ Watana and Devil Canyon developments where possible. The spills will be greater· and more frequent in the years between 2002 ( Devi 1 Canyon conmi ssi oning) and 2010. ~Jhen Watana a 1 one is operati ana 1 (between 1993 and 2002) ~ 1 ess frequent spills are simulated to occur. Reservoir operation studies are currently being refined to finalize acceptable downstream flows. Ter::perature of spi 11 waters at ~Jatana is expected to be c 1 ose to that of power flows and hence, it is not expected to create temperature problems downstream when Watana is operating alone (1993-2002) or when it spills into Devil Canyon. At Devi.l Canyon, ho't1ever, spill temperature is expected to be close to 39°F compared to a ·power flo~.t temperature of 48-49°F in August and 45°F in September. This is based on the conservative assumption that the tempel'·ature of spill water does not increase significantly 'IJhile in contact with the atmosphere despite the highly diffused valve discharge. It is~ therefore~ considered necessary to keep the spill from Devil Canyon to a minimum to avoid unacceptably low downstream temperatures. The analyses indicate that by operating Devil Canyon to meet most or all of the base load demand and with \tlatana generating essentially to meet peak demands and spilling continuously . when necessary, it would be possible t-, maintain downstream flow temperatures bel o~; Devi 1 Canyon close to that of power flow \'lhi 1 e reducing spi 11 frequency considerably. • During major floods (1:10 year o~ rarer), there will be significant sp;lls from Devil Canyon in addition to the power flow resulting in cold slugs of water downstream for a few days. It will be necessary to establish criteria for acceptability of lower temperatures for short durations in August and September in consultation with fisherias study groups and concerned agencies. Currently, downstream 'IJater temperatL're ·analyses are being refined, and when the results are available, the above spil1 temperatures and duration should be reviewed to confirm downstr·eam temperatures during noY"TJal power operation as well as flood events. If the projected temperature regimn downstream is unacceptable, alternative means to remedy the situation should be considered. These ~ay include provis~on of higher 1evel intakes to several or all fixed- cone valVe discharges at Dilwil Canyon, multileve'l power intake at Devil Canyon, limited operation of main overflow spillway (for floods 1:50 year o~ more frequent) to improve temperature without serious increase in nitrogen super- saturation, etc. "' .... ·· ·' ' l": ' '-~ '/. 3 ~ SCOPE OF ANA~YSES The objective of the analyses presented in the following sections is to"· ... provide an assessment of the performance of the fixed-cone valves in their proposed tonfiguratio.n with respect to their potential in reducing gas con- centration in spill waters from the Watana and Devil Canyon developments. The analysis is a theoretical study supplemented by available field information on performance of these valves for aeration. Field measurements \vere conducted on the Howell Bunger valves at the Lake Comanche dam on the Mokelumne River. in California. Results of the tests are interpreted to confinn some of the study assumptions. A related question of temperature of spill waters is analyzed in Appendix B. The data for the a!1a lyses ·has been d1rawn from the Feas i bi 1 i ty Report · (:) . ... t ·' I' l 4 -SCHEME DESCRIPTION This section presents a short description of the selected spillway and outlet facilities for the proposed Watana and Devil Canyon developments. ~.1-Scheme Qescription Selection of the discharge capacity and the type of spillway and outlet facilities has been based on project safety, environmental, and economic con- siderations. At each development, a set of fixed-cone valves is provided in the outlet works to discharge spills up to 1:50 year recurrence interval. The main spillway comprises a gated control structure and a chute with a flip bucket at its end. This facility has a capacity to discharge, in combination with the outlet works, the routed design flood which has a return period of 1:10,000 years. A fuse plug with an associat·ed rock-cut channel is provided to discharge flows abeve the design flood and up to the. estimated probable maximum flood at the dam. Detailed descriptions of the facilities are pre- 6, sented in the Feasibility Report (7). The primary purpose of the outlet facility is to discharge the spi11 waters up to 1:50 ~~ear recurrence in such a manner as to reduce potential super- saturation of the spill with 0tmospheric gases~ particularly nitrogen. This frequency was ·adopted after discussions with environmental study groups as an acceptable level of protection of the downstream fisheries against the gas bubble ~isease. A set of fixed-cone valves were selected to discharge the spills in highly diffused jets to achieve significant energy dissipation without provision of a stilling bdsin or a plunge pool where potentially large supersaturation develops. The valves have been selected to be within current \'/Orld experience with respect to their size and operating heads. At ltlatana, six 78 inch diameter valves are provided and are located about 125 ft above average tailwater leve'( in the river. The design capacity of each valve is .6~000 cfs. At Cevil Canyon, seven fixed cone valves with a total design capacity of 38,500 cfs are provided at two levels within the arch dam, four 102 inch valves at the high level soma 170ft above average tailwater level, and three 90 inch valves about 50ft above average tailwater level. The lower - 'Jalves have a capacity of 5,100 cfs each and the higher ones 5,800 cfs each. In sizing these valves, it has been assumed that the valve gate opening will be restricted to 80% of full stroke to reduce vibration. ' '. 5 -ENGINEERING ANALYSES This section details the analyses carried out to estimate potential super- saturation in the releases from the Watana and Devil Canyon developments when the reservoirs spill. 5. 1 ~-· Avai 1 able Data Fixed cone valves have been used in several water resource projects for wats~ control, energy dissipation, and aeration of discharge waters, and data on their performance for such operations is readily available. However, no precedence has been reported on the use of such valves for reducing or eliminating gas supersaturation in spill waters. Manufacturer•s catalog information on Howell Bunger valves and Boving Sleeve type discharge regulators (both particular types of fixed cone valves) and the Tennessee Valley Authority Study (4) on aer·ation efficiency of Howell Bunger valves form the specific data availabl~. Theoretical analyses are carried out based on ~-the geometric and physical chat"'acteristics of diffused jets discharging freely into the atmosphere. 5.2 -Field Data Collection A-review of existing facilities where a potential for spilling during the spring of 1982 existed was made, and the Lake Comanche dam~ on the Mokelumne River in California, was selected as a feasible site for specific testing. The Comanche Lake dam is of the rockfill type \~ith outlet facilities fitted with four Howell Bunger valves. These valves are located at the toe of the ~ dam and spray the discharge into confined concrete conduits before releasing the water to the stream. Outflow through the valves was around 4,000 cfs during the test on May 28, 1982. Water samples were collected at several depths in the res~rvoir n~ar the va 1 ves and at dovmstream 1 ocati ons and analyzed for nitrogen and m~yg en t~ concentrations. Details of the test p1·ocedure and results are presented in Appendix 1. . .. ..__,,_~ .... -,.,.~~~ .... ,o.<.-.• ,u--..~ ........ .._--,~~~«''W' __ ..._~ _ _,..,_,, *".";;--->,........_..._~-...-·~-·, ....... ...,,. 5.3 -Method of Analysis (a) Flow from·the fixed cone valves leaves the structure as a free-dischatging jet diffusing radially at the cone angle. The path of the jet depends on the energy of flow available at the valve and the angle at whi~h the jet leaves the valve (assumed as 45°). Referring to Figure 5.1~ the path of ·the trajectory is given by the following equation (8): x2 Y = X tan 6 -__ __;,.;. __ , --( 1) where: a = angl~ of the jet to the horizontal; k = a factor to take account of loss of energy and velocity reduction due to the effect of air resistance~ internal turbulences, and disintegration of the jet (assumed at 0.9}; Hn = net energy of the jet~ ft. The proposed ~alve operation restricts the opening of the valve gate to 80% of full stroke. This may be interpreted as equivalent to producing an additional he·ad loss in the system, thereby reducing the discharge to 80% of the theoretical capacity~ The general discharge equation for the valve: (2) may then be written as: (2a) = CA /2g x ·64 x·h~ (3) where: QT = theoretical capacity of valve, cfs; A ~ area of valve, ft; C = coefficient of discharge (~ · 85 for fixed-cone valves); h0 = net head upstream of valve, cfs; Q0 = design capacity of valve, cfs. Equation (1) may be rewritten now as: x2 y = X tan 6 ----.~-~------ k 4 x (0.64 x hn) x Cos 2 e (4) Referring to Figure· 5.1, the" longitudinal throw of the jet is calculated with 6=45° arid -45° while its laterial throw calculated when e=0°. Vertical rise of the jet above the valve is calculated as a simple proje(:tile subject to gravity and neglecting air friction to yield a conservative value. (b) Potenti.al Plunging Depth of .Jet(s). Into Tailwater Pool As part of the feasibility studies of the Watana and Devil Canyon develop- ments, a study was made by Acres on the scour hale deve 1 opment be 1 o1t1 high head spillways, and the results therefrom have been used to estimate the potential plunging of the jets from the fixed cone valves into ·tailwater. Figure 5.2 presents a definition sketch for the study carried out for a typical flip bucket spillway configuration. It may be readily observed that significant differences exist between a "solidn, jet leaving a flip bucket and th~ diffused discharge jet from the fixed- cone valves in the available energy and its concentration in the jet for scouring downstream or plunging into the tai1water pool. Equation (5) was developed in the above mentioned studies to estimate scour depth for a soii·:l jet: -~ .:':1· where: y = estirriated scour depth, ft; q = unit dis~harge, cfs/ft; H = net fall of the jet, fta This equation was modified to take account of the maximum discharge intensity, q1 in cfs/ft2 of the. fixed cone va 1 ves assuming the 1 ong-· itudinal spr·ead of the solid jet as equal to its flow depth at the toe uf the flip bucket (Figure 5.2). This assumpation is expected to yield a conservative estimate of the scour depth for diffused jets.. The fall height H was taken as the dt"OP of the diffused jet from the highest point of its rise to the tailwater pool (Figure 5.1). With these modifications, equations (6) and (7) were developed to estimate the scour depth due to the valve discharges at Watana and Devil Canyon, ne~ spective ly. Yw = ·24 (ql w>0.92 Hw0.32 (6) Y = .. ~24 (q 1 )0.98 H. 0.32 DC DC DC (7) W and DC represent Watana and Devi ·1 Canyon., respectively. Scour depths, as ct!lculated by equations (6) and (7), give an estimate of the depth to which water may plunge should the jet fall into a tailwater pool instead of on solid ground~ The values Yw and Yoc are • calculated t'ur the highest intensity q 1 w or q1 pc when all the jets are operating .at each of the developments and taken tlS the plunge depth of · the jets. 5.4 -Supersaturation of Spills (a) Gas Concentratjon in Valve Dischar~ Results of the Lake Comanche dam tests indicate that the Howe1l Bunger valves have been successful in preventing supersaturation of the spills r , ·~ (b) (c) and~ to some extent't have reduced the gas concentration in the spill waters. The Tennessee Valley Authority studies which were conducted to ·assess · aeration efficiency or the Howell Bunger va·!ves, suggest that the dis~ charge from the vaives are we11 aeratede The test results indicated that sma 11 supersaturation ( 101-1 02%) of OX.''Jen may be found in th~ spills but suggested that this may be due to calculation procedure used. T~! report concluded that since saturation concentrations were net measured in th~ field, it is not certain whether supersaturation acually occurr~d in the runoff downstream. Based on th~ above test results, it has been conservatively assumed that a 100% snturation level of at~ospheric gas is likely to exist in the valve discharges at Watana and Devil Canyon. Supersa_turati on Due to Plunging Each component of gas in the atmosphere will dissolve in water independ- ently of all other gases and, when at equilibrium (i.e. saturation condition) with the air, the pressure of a specific dissolved gas is equivalent to its partial pressure in the air. Approximating one atmospheric pressure to 34 ft head of water, the. above relationship translates roughly to 3% saturation per foot of hydrostatic head. Thus, it may be extended that fully saturated water mass when plunging into a pool would develop a supersaturation of gas at the rate of 3% per foct of plunge provided that adequate supply of air is entrained. Gas Concentration in Downstream Dischar~es t \ ~ Average power flows at the two developments during spills have been estimated in the reservoir simulation studies. For the current analyses, it is conservatively assumed that these powerhouse discharges will be fully saturated. Estimates of final gas concentrations in the total downstream discharges is calculated assuming the laws of dilution to hold for mixing discharges at different gas concentrations. ~~) " • ~: ;ct _.: . ..; ,~ ~·~' / "} It is .assumed that spills from Watana will get completely mixed in the Devil Canyon stor~ge during their passage through 26 miles. of reservoir and that no supersaturation wou'Sd build up in the reservoir due to \'latana spi 11 s. .... > w 0::: ~ ,l C'4 1.0 ~v,;; -0 z ~ a: 0 u. · ,.. Calculat-ions SUBJECT: J ' ~... : ),._.. .t ak~ : r ~~e_ 4 ~" " ~ \~- ·~: cu: >~ 1\ . ~- ~ JOB NUMBE R----.•"'"""-""'!""'----'-- FILE NUMBER __ _.____... __ SHEET OF __ _ ------ BY .. DATE_.......,__ -------- APP DATE . . --. \ \ \ \ . ' I \ ! v!.....-----~·--~-::.;·=-=----· -- _._.,.__\. rt ~ -j -;:~~ ·-·-· ·>t l j ·------------·~-----··-------- .... . > w 0::: f!) N 1.1.., .... d z :E 0: 0 u.. Calculations ...... -.._ ·~:. ~ ...... .,. ) f2r.:: e.P. \to I£. . SUBJECT: SP)t..Lw t'c--tf .:" · fZot..t...w ~t-f --·--~ -- L-----------------~ o::..J ..S_; ~ •. :S • --.t' 3-- ; : ...) JOBNUMBER ______ ~-------- FILE NUMBER_......:.. _______ _ SHEET ___ __..._ OF·_ ---:o- BY DATE __ _ .APP DATE 'MY I N<.3 ·f:. rt'l£= N l ! Ai;.e.t\ ,.--.. ... 'c . ' ~ :.J:)e-~,N~T'-:'1'.) Skr::r~l-1 ......... , ~· .;;;,)~Liy .Jf 1 ~K·:J M C ~t t, TE. ~ ~ L' ( ';-~. ! "!c..: I: sr~~~~A. l 6 -RESULTS Table 6.1 presents the results of the analyses carried out to assess the . performance of the fixed cone valves at the proposed Watana and Devil Canyon developments in relation to the potential gas supersaturation of spill waters. Figures 6. l and 6. 2 present the jet interference pattern and the areas of · impingement. Estimated supersaturation in the spill discha. 1es with a recurr~nce interval of 1 ·Jn 50 years is 101% at Watana and 102% at Oevil Canyon. For more frequent spills, these concentrations are expected to be somewhat lower due to lower intensity of spill discharge and consequent lower plunge in the tail~Jater pool.. For spills of rar·er frequency, the main chute spilh>~ay will operate 1eading to potentially greater supersaturation in the downstream discharges. Results of spill temperature analysis is presented in Appendix B. ' ,, TABLE 6~1-RESULTS OF ANALYSES Descr~ption 1. Valve Parameters Diameter of fixed cone valves-inches Number of valves Design capacity-cfs Elevation of valve centerline-ft Elevation above average tailwater-ft Net head (hn) at the valve-ft Angle of valve discharge with horizontal-degrees (assumed) 2. Jet Geometry Longitudinal throw-near edge-ft Longitudinal throw-far edge·ft Lateral throw-ft Impingement area of single jet-ft2 Impingement area of all jets-ft2 Maximum fail of jet (H)-ft 3. Jet Characteristics Average intensity of discharge-of ~ingl e jet cfs/ft2 Maximum intensity (q 1 ) when all jets are operating cfs/ft2 Estimated plunge depth-ft Watana Valves 78 6 4,000 1,560 105 508 45 91 676 351 145,200 221,300 359 0.028 6 X 0. 028 ':'.: 0.168 0.3 4. Supersaturation Es~imates··n:so·year flood) I ., • ., Design valve discharge-cfs 24,000 Assumed simultaneous power flow-cfs 7,000 Total downstrea~ discharge-cfs 31,000 Assumed gas concentration in power flow-percentand valve discharge at valve-% 100.0 Maximum qas concentration in valva discharg~ below ~am~% Maximum gas concentration in total downstream discharge-% 100.9 100.7 Devil Canlqn Va]ves ,,.. .. . Upper LeveJ Lower Level 102 4 5,800 1,050 170 365 45 130 ,rt50 378 112,250 173,250 90 3 5,100 930 50 450 45 46 564· 228 83,400 353 275 0.052 0.061 4 X •052 + 3 X •061 = 0.391 38,500 3,500 42,000 100.0 101.9 101.7 <.'I .,.. > w IX: • N U) .... 0 z :; cr: 0 u.. Calculations SUBJECT: 2 ~- ·; ,_. --- A-·-·- ::. .--. ~ -.. - J&L_~.!.' !..' '--.it,.__ _______ ----~---------J 1~---!i----~-· -··· . ··--~-··-·~ ... t,.. ... , t:.. I ('I~ p 1 N <3 f *·1 f' f.j 1 f: t ·~·· t; ~\) () \ i.l f" ' ;J r , _ .. c: -· JOB NL;MBER __ .;__......_.:..---- FILE NUMBER_,.. ___ _,_....;.,.._ SHEET _____ OF ___ _ BY " DATEC---=--- APP .. DATE f_ l "=' : n; ti . ) a.J·_·, _,..:;. -. > UJ a: N 1.0 .... 0 z ~ 0: 0 LL. Calculations .J~IR SUBJECT: .. .. ·· . .. " V A--·LV F-]) c~::ct+Ai:. 68 fr4-TTE .;<. ~..J IN) PINt$ E rf\F I'~Jr r--c F-t\ Fer'-.. Tc=. v r L-c ir.t·..c 1 (' t...J ··. . .. 4 JOB NUMBER FILE NUMBER SHEET OF BY DATE APP DATE ... --· .. ---.. _ .... -·~ .-· -. 0 I 7 l:n' '2-' 7. I .. - 7 -CONCLUSIONS . 1. . The analyses described above indicate that the proposed fixed-cone valves would adequately prevent serious gas supersaturation in spill waters up to a recurrence interval oi 1:50 years. 2. Severa.l assumptions have had to be made in the analyses with respect to jet characteristics and its potential p1Jnge into tailwater pool. Field test results available are only indicative of the valve perfonnance. In particular, the configuration of the proposed valves set high above th~ tailwater pool and their free discharge with the atmosphere differ signi- ficantly from the Lake Comanche dam arrangement and the TVA test facility. In view of the nature of analyses and lack of precedence for the proposed valve arrangement, it is recorrmended that a physical model study be carried out to confirm the performance of the valves. REFERENCES 1. Gorham, F.P., The Gas Bubble Disease of Fish and Its Cause, Bull. U.S .. Fish Comm. 19(1899}:~3-37. 2. Ebel, W.J., Supersaturation of Nitrogen in. the Columbia Riyc;r and Its Effect on Salmon and Stee 1 head Trout, U.S. Fish and Wi 1 dl i fe Se·rvi ce, Fish Bull. 6B:l-11. 3. U.S. Department of the Army, Engineering and Design, Nitrogen Super- saturation, ETL-1110-2-239, September 1978. 4. Tennessee Valley Authority, Progress Report on Aer~·.tion Efficiency of Howell Bunger Valves, Report No. 0-6728, August 1968. 5. Acres, Susitna Hydroelectric Project, Scour Hole Development Downstream of High Head Dams, Ma.rch 1982. 6. Ecological Analysts Inc.3 California, Lake Comanche Dissolved Nitrogen Study, June 1982 (see Appendix n). 7. Acres, Susitna Hydroelectric Project, Feasibility Report, March 1982b 8. U.S. Department of tha Interior, Design of Small Dams, Bureau of Reclamation, Hater Resources. Technical Publication, 1977'. \ . LAKE COMANCPE DISSOLVED NITROGE~ STUDY Prepared for Milo Bell P.o. Box 23 Mukilteo, Washington 98275 Prepared by Ecolcgic.al An~lyats~ In~. 2150 John Glenn DFive Concord, Jalifcrnia 94,520 June 19S2 APPENDIX A • Nitrogen gas in the deep water of a reservoir may be slightly super-saturat,ed due to Lhe hyd~o-sta~ic pressure of the overlying water (Wetzel, 1975). Therefore water flowi~g £rom a dam with a deep intake may contain a super-saturated concen- trat:lon of n:J;troge.n. If this excess nitrog~n gas is. not rapidly released into-the . atmosphere, it may cau~e n~trogen gas bubble disease in fish residing below the dam outfall (Conroy and Herman, 1970). A·study was conqucted at Lake Comanche Dam, Mokelumne River, C~lifornia, to determine the efficiency of the Hewell-Bunger ValvP-in l:'emoving super-saturat~d dissolved nitrogen (N 2) from the dam's tailwater. Th~ valves spray outfall water into concrete conduits before releasing the water to the stream. This was observed and photographed at Lake Comanche Dam on 28 May$ \~2-~~ at a flow of 4000 cfs into the Mokelumne River (s~e accompanying photos). I This creates a turbulent and aerated flow with the purpose of facilitating nitrogen gas release to the atmosphe~e • . By sampling nitrogen. gas in the rese.rvoir near the intake, and at seve:ral locations below the outfall valves, the efficiency of the valve was obtained. ~/ METHODS In order to determine nitrogen gas concentrations at various depths in thg re:ser- voir, water samples were collected in Lake Co~nche approximately 50 m from th~ dam direc.tly· over the river channel on 28 Hay 1982. A Van Dorn :Bottle was J.owet;ed from a boat to collect. water samples at depths of 0, 10, 20, 30, and 38.4 m. As reported by East Bay Municipal Utility District the dam intake was at a depth uf 38.4 m (126 ft) at the time of the sampling. Once taken aboard, each sample was poured with minimum. turbulence i~to an ~irtight bottle and capped in a manner th~t left no air bubbles in the bottle. Bottles were placed in a cooler for transportati~n to the lcb. Studies ~onducted by Steve Wilhelms of the Hydraulic Laboratory, U.S. Army Waterway Experimen.t Station, Vicksburg, Mississippi (personal communication) indicate that brief expo~u~e of deep water samples to atmospheric conditions has little effect on nitrosen ~as concentrations. However., he has found that periods of a."'Cposure to atmospheric:. . ' . ai:t"' bubbles d~ring transportation can cause significant changes in nitrogen gas concentrations, hence the need for removing all air bubbles before transportation. Excess water remaining in the Van Dorn Bottles was measured for temperature. The. atmcspheri~ pressure measured on site at the time of samplil1g was 753 mm· .. At the tailwater below the dam 7 water was col.lected by immersing the sample bottles· under the water a-nd capp:l.ng them in a manner that left no air bubbles i-g. the bottles. Samples were taken at the oc.n~.fall, lCO m below the outfall, and 200 m below the. out- fall. Water temperatures we·1:·e. taken at each of these locations"! l)ottles were-placed in a cooler for transportatif~~' to the lab. At the time of sampling:~ the out~all flow. was 4,000 cfs. The atmospheric pressure was 753 mm. The water coll~.cted was anal:,rzed for nitrqeu gas (N 2 ) and oxygen (ii 2 ) in a California State C.ertified Water lab u.::~1ng a Carle Model 8700 Basic Gas Chromato- gram with a thermal conductivity condu•.!tor several hours after collection, ! (:; ,, ""':\:' ·RESULTS ): ~. ;· ;. ' . Nz Depth 9.i:.~perature % Location (m) .. -·~ (mg/12. Saturation _{111g/ll Sa -- Reservoir 0 22.0 14-9 101 9.2 105 10 14.5 '17--0 100 9.3 90 20 13.2 17 .. 3 99 lOvO 94 30 11.0. 17.9 99 10.2 93 38.4 10.0 18 .. 5 101 9.3 62 Dam Tailw~ter A.t Valve 0 10.2 17.7' 97 ll.l. g, .. 100 m downstream 0 10.5 17.3 95' ll.Z 98 200 m downstream 0 11 .. 5 17.9 97 10 .• 9 98 Re:c erences f\:~: Conroy, D • .A .. ! and R. L. Herman. Textbook of Fish Diseases. 1970~ T .F .H.. Publicatio~s~ Jersey City, New. Jersey. 302 pp. Wetzel, R. G. 1975. Lia~ology. W.B. Saunders Company, Philadelphia. 743 pp. APPENDIX B SPILLS AT WATANA AND DEVIL CANYON DEVELOPMENTS B.l-OPERATION OF WATANA AND DEVIL CANYON COM~INED ,.(Beyond Year 2002) (a) Spill Quantities and Freguenc~ . ' The monthly reservoir simulation stud:es calculate spill volumes as the flow required to be discharged from the dam to satisfy downstream requirements less the maximum turbine capacity, and does not restrict the turbine flow in relation to the actual energy danand of the system. Total energy production, as calculated, is the energy potential of the . schemes. Us~ble energy is then calculated as the potential or the maximum energy demand, whichever is smaller. The turbi nf~ flows are not readjusted to the level of usable energy production. Tables B.l to 8.9 present selecte~ results of the reservoir simulation studies which indicate thisa Tables 8.10 to 8.12 are developed from the reservoir simulation studies for adjusted turbine flows for two alternative generation patterns at Watana and Devil Canyon for the months of August and s~ptember when ·spills are most like1y to occur. Alternative A assumes that whenever the potential energy generation from Watana and Devil Canyon develop- ments is greater than the usable energy level, each development will share the usab 1 e energy generation in proportion to their average head~'i. However, in the months when Watana outflow, as simulated, is not sufficient to generate energy in proportion to its average head, Devil Canyon will makP up this difference. ·This ope_ration is r·equired in such years when Devil Canyon is being drawn down to meet the minimum downstr-eam flow requirements (years 1, 2, for example). Alternative B assume.s that Devil Canyon would generate all the energy possible consistent with downstream flow requirements, and Watana would only operate to make up the difference in years when energy potential is 0 greater than usab 1 e. This assumes that a 11 the energy fl .. om. Devi 1 Canyoll: is useable as base l1ad on a daily basis. Battelle load forecast (1981) tends to confinn this assumption for the year 2010 .. However, during earlier years, such operation may not be fully possible. It may be readily seen from Tables lL10 to 8.12 that frequency of continuous spills (24 hours) from the reservoirs in the months uf August and September is significantly greater than presented by the reservoir simulation (Tables 8.3 and 8.6). The analyses sunmarized in Tables 8.10 to 8.12 indicate that Devil Canyon would spill in 30 out of 32 years in August and 16 out of 32 years in Septenber for the Case "Cn operation which maintains a minimum instantaneo~s flow of 12,000 cfs in August at Gold Creek. For down- stream discharge requirements greate.r than 12,000 cfs at Gold Creek, it is estimated that the frequency of spills may not be increased signi- ficantly. However, the volume of spills will be larger to make up for increased flow requirement. The above spill frequency is simulated for a system energy demand in the year 2010 (Battelle Forecast) and assumes thatthe entire demand is met by Watana and Devil Canyon developments where possible. The spills will be greater and more frequent in the years between 2002 (Devil Canyon commissioning) and 2010~ It may be seen that operation Alternative 2, which provides for maAimum possible energy generatton from Devil Canyon while Watana is allowed to spill, results in significantly reduced spill frequency from Devil Canyon~ lhis type of operation is expected to be advantageous with regard to downstream water qnality (see Section 8.2). Several intermediate distributions of generation between Watana and Devil Canyon is also possible. A recommended operation will be derived after finalizing the downstream flow requirements and the refined temperature modeling studies which are currently in progress. ' tJ'' •' '· ~ ., ·'. ~- {b) Spill Quality (i) Spill Temperature Figures 8.1 and 8.2 are extracts from the project Feasibility Report (7) and present simulated temperature profiles .in the Watana and Devil Canyon reservoirs for the months June to September. Refinement of reservoir temperature modeling is currently in progress, but the differences between the revised profiles are not expected to be very significant from the ones presented here for these months. Temperature of spill waters at Watana is expected to· be close t.o that of power flow, and hence, it is not expected to create temperature problems downstream when Watana is operating alone (1993-2002) or when it spills into Devil Canyon. At Devil Canyon, however, spill temperature is expected to be close to 39°F compared to a power flow temperature of 48-49°F in August and 45°F in Septanber. This is based on the conservative assumption that the temperature of spill water does not increase significantly while in contact with the atmosphere despite the highly diffused valve dischargea It is, therefore, considered prudent to keep the spill from Devil Canyon to a minimum to maintain as high a downstream temperature as possible during spills. The operation Alternative 2 in9icates that by operating Devil Canyon to generate as much as possible during these months and · with.Watana generating essentially to meet peak demands and spilling continuously when necessary, it would be possible to maintain downstream flow temperatures below Devil Canyon close to that of power flow. During @ajor floods (1:10 year or rarer frequency), there will be significant spills from Devil Canyon (see Tables B.lO and 8.11) in addition to the power flow resulting in cold slugs of water . downstream for a few to several days. It will be necessary to establish criteria for acceptability of lower temperatures for short durations in August and September in consultation with fisheries study groups and concerned Agencies. Currently, down- ?tream water temperature analyses are being refined, and when the results are available,.the above spill temperatures {\nd duration should be reviewed to confirm downstream temperatures during normal power operation as well as flood events.· If the projected tenperature regime downstream is unacceptable, alternative means to remedy the situation should be. considered. These may include provision of higher level intakes to several or all fixed-cone value discharges at Devil Canyon,.multilevel power intak~ at Devil Canyon, limited operation of main overflow spillway (for floods 1:50 year or more frequent) to improve downstream water temperature wjthout serious increase in nitrogen supersaturation, etc. (ii) Gas Supersaturation It does not appear (from Table 6.1) that there would be significdnt advantage in spilling from Watana as compared to spills from Devil Canyon in terms of gas concentration. 8.2 -OPERATION OF WATANA ALONE (1993-2002)_ Before Devil Canyon is commissioned, Watana would operate alone, and spills required to maintain downstream flows will have to be made through the fix~~d-­ cone valves. Reservoir simulations indicate that, generally, spills would be . of lower rnag~itude during this operation due to greater percentage of flow being used to generate usable energy. It is be 1 i eved that the river reach of some 30 mi 1 es betl"Jeen Watana dam and Devi 1 Canyon wou 1 d 1 essen the ·impact of spi 11 temperature and gas concentrnti on below Devil· canyon and would pose less problems~ if any, compared to the case when Devil Canyon development is also commissionedo -~---~~-------~----~------------- ~ESE"F:Vr.r f. l ( lNFLOW (CfS, OCl NOV ItEC JHii H. f.. HAP. Af'K liM .1UN JilL ,;II(; sn· 1 4719.9 20S3.t. U68.9 Sl!i.l ~11· 7 !j(,)' .l hRO.l fl:~55.9 t,li-13::!.1 19193.'1 v.~ t.·: ,6 7320.-4 2 3.:!99.1 110~~.3 906.2 aoa.o 673.0 ~:~19,R 130:!.2 11t49.e 18:•17.9 197.66.0 1647·8. 0 17::!05.5 ( 3 459.:!.9 217(•.1 1501.0 l:n4 .s 841.0 73~.0 B\13,9 4216.5 .:mn3.4 .:!/110.9 P3sr.. :\ JJ:.i71.0 4 62SS,7 2756.8 1::!81,2 818.9 611.7 670.7 13fi.:!.O 15037.2 21469,8 1'l3:::i5.3 1c'.6P.l.l> 11513.5 s 4219.9 1599,6 1183.6 1087.6 803.1 638.2 942.6 116961(:j 11J4i'6.7 11>983.6 20420.6 9165,5 ( 6 38S9.2 20:i1.1 !M9,S 13ti8 ,J lO!iO.S SH6,1 91o.a .s11 a. 1 :!1.8Eil.4 23787.9 2lr)3'l.O 1344:0.FJ :; 4102.3 15!38 .l 10~i:::6 a16.9 754,fl 694.>1 71S.3 12953.3 27171.8 25831.3 19153.4 13194.4 8 4:!.09.0 2276.6 1107.0 .1373.0 1189 .o 935,() 91fa.l 10176.2 2ti:!75.0 19948.9 17317.7 HB41,1 ( 9 60:54.9 293~.9 2!'!58.::; 1480.6 10'11.7 9 J .~.::; 1 :u.s. 4 9957.8 2~097,8 197Z2.7 UlR-1:~.4 5978.7 10 3668.-0 17:!9.5 1115.1 1081.0 949.0 694.() flf!5.7 10140.1!. 1 fl<l:-!9. c. 204'13.! ;?3940.4 12466,9 1l ::i16~.:l 2213.::i 167::?.3 1400.4 u:;a.9 961.1 11)f.9. 9 HOH.?. 1:3:!33.4 19506,1 193' .!3 tl 16085,6 1.::! 6049.;3 23.::!7.8 1973.2 1779.9 1304.8 1331.0 1965.0 13f.37.9 :!2i'&o!.l 19639.8 l9400e2 10Ho.2 13 4637.6 ::!263.1 1760.1 1608.9 1257.4 l\7h.8 14fi7,1 113.)3.5 :;(,017.1 :!3413.7 19RP.7,1 12746.:: 14 5560.1 :!508.9 1706.9 DOS, 9 1184.7 9R3,/. 77&.6 1::1299.2 ";(){>(-.::.. 4 2B767, 4 :!lOll .• ~ lCHlOO, 0 15 Sle7.1 l7f:l9.1 1194.7 852.0 7Sl. • 6 r.75.!l 609.2 ~!i78 .·a 4:!R11, 9 20082.6 14C.4~.:· 7f.?4.2 16 4759.4 :!368.2 1070.3 963.(1 772.7 807.3 1?~:! .1 l09M •• o :H213.0 23~3S.S' 17.~-J·l.l 162~5.t 17 s~:~t ·=' 1565,3 1203.6 1()60.4 984.7 9tH.7 1338.4 709·1. l =!~·9:~9. 6 16153.5 17390.9 9:?14 .. 18 3269.8 120~.2 1121.6 1102.::! 10.51.3 8t19. r., 8·19. 7 12:l'i5. 5 :1 '1711,9 :!1987.3 :Oi,)ll1·!'i 13:.7:!.~ 19 4vl9.o 1-934.3 1704.2 1617.6 1560.4 1:::i60.4 1576.7 1 ~ fl:-!r •• 7 2~'.o/(l4. 0 2208.:!.8 14147.!• 716:• .. 6 20 3.135,0 1354.9 753.9 619·2 607.5 686.0 11'61.6 9313.7 1 :~9b:•. 1 14843.5 777!.'; 4::·c.o. o ( :u 2403.1 1020.9 709.:5 636.:! 602.1 62-1.1 9H6.11 ~S:;6.4 11399. Ci· Hl410.1 ln'2;.:Ls 7:!~4.1 ., .. 3768.0 2496.4 168;7.4 1097.1 777.4 717 .l 1313.7 :>H!i7.~ :!/c!.J ~. 8 .:!11::!6.4 ::!7446.6 1::18e,t;> .... 23 4979.1 2587.0 1957.4 1670.9 1491.4 J:,c.c..o !305.4 1!i~73.1 :'/Jl.:'9.3 198::!0.3 17f.(J9 • !1 109~5.7 ( 24 4301.::! 1977.9 1::!46.5 1031.5 1000.2 ~73.'1' 914.1 7.:'67.0 :!~\Eif-9. 3 lf.3r.l ,J 180lc.o7 8091)','? zs 30:56.5 13!.i4.7 93l.6 786.4 689.9 ~~~7. J a/1.9 12aa9.o 11780,6 15971.9 1:.i:J:-!.'i.'7 97Se..':.! 26 3088.8 1474.4 127£.7 1~!5.8 1110.3 !041.4 l2l1.~ 11672.2 26689.:! 23430.4 i5126.b 13075.'3 ( :;!7 5679.1 1601.1 876.2 757.8 743.2 690.7 lO::i9.8 El)-38.8 19994.0 17015.3 lR393.~ 5711 I 5 28 2973.5 19::!6.7 ~BB7, S :\348.7 120:'!.9 tt1().fJ 1203.4 8569.4 313-52.9 19707.3 llfiO'J, 3 , .. 0613.1 29 5793.9 2645.3 1979.7 1577.9 1267.7 1256.7 HOB, 4 11231 .r. l ?~~'77 .2 18385.2 13412.1 7132.6 ( 30 3773.9 1944.9 1312.6 11.36.8 1055.4\ ttot.2 !317.9 1231..9.3 22904.6 24911.7 166/().7 9096.7 31 6150.0 35:!5.0 2032.0 1470.0 1233.0 11'77.0 1>104.0 l0l40.0 23400.0 26740.0 teooo.o 11000,0 32 6458.0 3297.0 13BS.O 1147 .o 971.0 BE19,0 1103.0 10406.0 tnn.o 27EI40.0 JJ4Jr..o 12026.0 ( AVE 451:5.1 2052.4 1404.6 t1S7 .3 978 • ., lh11J.J 1112.6 I0397.o 2::!922.4 20778.0 1lH.U.4 10670.4 ( ( ( (. ( (. ( . ' f·OwEr\tiOUSE. FLOw <CfS1 OC1 NOV I•EC. J,!.t; FFI-HHF. {if' I\ llfi\' Jlh~ JilL fill(; ~E.F 1 56/f. •• :; £:1474.4 11295.1 li'391.9 7::94.9 ..;:~n.;. ~ ;,4 !.6 •. ~ r;;;;:J.j • 7 539'1'.7 4546.1 f,!;:; .~. 9 19G(i, :-1 ( :2 6234.5 7324.0 910:2.0 8~64.7 7326.2 6~51.2 5554.2 ?r;·::;')o. 3l<- "'r><->uF:t• 68'14 .1 163(1,;! 65.76.a 1:!0~1.6 3 7568.3 9549.1 11617.4 BEl51.~ 71!94.2 6366.9 r.o\57.6 6409.6 7389. S' 5719.7 6135.3 10B01.3 ( 4 8661.6 105:27.8 11397 .t. 8395.7 7:264.9 6365.1. fi~46.Et 9!'•U • B P.943.e 4991.6 a:~=' o • ., 8:208.5 ~ 7194.3 697816 11300.2 8664.~ 74G613 6?.671fl r.404~4 7775,0 7!!69. 2 4:i79.7 5917.9 7900.3 6 • 6834.6 94=30.i U665.9 S9.f15.l 7703.7 ".ill fi • 9 ri61H .11 6627.3 7933.7 6692.3 13:'!R9.!i t3H7.a ( 7 7077.7 8967.1 111S5.0 8393.7 7408.0 o~3l..3 54:.:2.2 B?C.~.~ 1071:2.1 8844." 1:!744.0 1319414 8 7183.4 9655.6 118::!3. 4 6949.8 7El•i:!. 2 63'30.4 r.71~.3 7:!09al c;:ir.?.7 6001.2 6328.7 14301.6 9 8BO::i,9 10~26.1 l\'738.1 oto9'!.~ 76Y4.9 ,,~r;l. 9 no:-.1. o 7144.7 7949.:! 5316.5 1>111\.1 5471.6 !0 6643.4 9aa.5 11:?31.5 af,57. a 7b02.2 e324•0 e.417.5 7ll9.7 Ml9.S 4845.6 10300.(1 D4C.6.9 11 6HQ.9 959:!.5 !1788.7 6977.2 77'7'2.1 6339.? ~flt-1.9 8J!\l8,6 ~/t3:?.4 4H~rt.4 C.l3flo6 12:!84.9 !2 89'31.7 9803.0 116:!2. 3 9/>24.0 7958.0 6~'3B.f\ 7l:!Yo7 6649, C• ct , ·1:.! • r, ~H.'~9, 0 7837.0 10146o:'! 13 7613.0 964':·4 l1S76.8 9185.7 7910.0 6343.1 6·1bh. 3 7/4'?.l 1 (lb!Ji •• ~ 9S'61o3 li'U.!:!.::! 1:::!746.::! 14 853::..~ 9Bi-1i'>9 11825.3 aaas.c. 7837.9 637!i .• l.l !i47::i.6 93:a.o tJc.~3.7 9EJ6!":.:?. 1·1.·.11-!,3 lvbO(I,o 15 816::!.5 9166 .l 11311.1 8128.7 7434.8 6369.1 54::i2,9 r.r .. 39 ol 10761.9 9fl63.'/ 9051.8 7:"e24.~ lh 773-l~S 9747.2.11166.7 8'139.8 7425.9' 6362.8 ::ifl::>0.5. 7576.7 7RJ0,9 6'1~0.::> 6734.3 16225.6 17 9196.6 8944.3 11320.0 El637.::! 76.'37.9 6:st:i .1 11179.7 6612.3 Fl~1S.!J 450o.3 1,()0.~. i ~612.0 18 624~ • .2 8581.2 11236.0 ;:f-.79 .o 7684.5 6316.1> r-~91.2 83%.~ 97H.e: 1.1866.1 11!>?60.0 1367::!.9 19 69'14.4 9:513 I 3 11820.6 119-1.4 8::!13.6 1.,!568.?. 1.7:H, 4 a:5oc.. J 10193. ~. 715o.7 SIHll), 7 oo1~.~. 20 6110.4 8733.9 10870.3 8196.0 7260.7 6371. ·~ :'i736.1 69:33.8 tifiOO • :.:' 4:'1 7G. a 9Ft21.8 5667,(1 :!1 6385,6 7578.3 9136.9 8137.8 6651.3 6']18~7 596lo7 .:jfl92.9 J-'>31.4 53'30.1 8?83.fl 4oo3.1 ~:! 6198.{) 7402.9 9021.9 809014 6616.0 6883./ ~fl97.4 5160.5 3:!62.7 6/SI .. 4 7r·36. 6 4~48.9 .,-6163.2 7!!1)0.4 11~77.0 92'\1.7 8144.6 637:~.8 64f31) .1 9618.4 1067912 7464.2 f.l!j9!),!"j 11Jli'65.7 ,..) :!~ n.76.6 9356 .• 9 1.1362.9 8~>oa.a 7653.4. 6372.6 ft:Jfll.b 71?1'1.3 :tb'll.S 4985,S "'i' 1 r. • ;{ r.n2s. 1- 2!i 6l96.2 7.3:!9.3 Y5i6.1 A363.1 7313 .l 65.i9 • .., 55Y:5~7 8226.2 !:i56S,6 3776.7 a:~.~~~.~.. 4036.2 26 6:243.9 7361.3 8813.6 7831.3 6351.8 or.a4.6 Sb20o6 8257.3 9n3s.e 73::!7 .3 oli02.3 12681,/J 27 B6ft4,S 8980.1 1099::>.6 8334.6 7396.4 6:H7.4 ~:564.0 6716.2 ~:>784.5 4972 d) 7~169 • ., 5330.~ 28 6157.1 7202.2 8673.1 8290.9 7856.1 6•l6i.t;' 6023.4 l>B79.2 1 onr.. s 7(1El4.7 7247.::; 10613.1 29 6769.3 10024.3 11£155.3 9:~95. 5 7S'20.9 6305.1 b!i41o2 77':'1-•• 7 6,\J j I •1 4789.8 5<\70,[> fo02~.6 30 6096.7 7236.4 8167.4 7.906.::! no a. 6 o::i7H.a 6007.2 1'3'289.4 ~874.4 7527.5 7fi7Ho1 9096.7 31 9099.8 10930.5 11921.9 9;;>73.2 7BB6.2 6342.9 b415.4 i252.5 8:)24. 9 8036.5 10151.7 uooo.o 32 9082.6 11o:5a.s 11:501.4 8723.7 7624.2 1!3~)9 .9 :';799.2 7356.0 6092.8 7212.3 19:491 .o 1202610 ( AVE 73 .. 6.~ 8988.6 10944.J 8681.2 7543.7 6421.B 5872.6 7474.-t 7f19~i.O 6::!47.0 f\846.7 9361.9 ( ( ( ( (. l SPILLS <CFS) OCT NOV DEC JHN fEll HHR flf'R n>~Y JUN JUL HI If. SEF' 1 o.o o.o o.o o.o o.o o.o o.c 0, C• o.o c.o G .\l o.o :? o.o o.o o.o O,(i o.o o.o o.o o.o o.o o.o o.o o.o 3 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o Odi o.o 4 o.o o.o (..,Q o,o o.o o.o o.o o.o o.o o.o o.o o.o ( 5 o.o ij,O o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 6 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 7 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ( a o.o o.o (). 0 o.o o.o o.o o.o o.o o.o o,o o.o o.o 9 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 10 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ( 1:1 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ·0.0 o.o 12 o.o Q.() o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 13 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 14 o.o o.,o o.o o.o O.(i o.o o.o o.o o.o o.o o.o o.o lZ o.o o.,o o.o o.o o.o o.o o.o o.o o.o o.o o.o o,o 16 o.o o.o o.o o.o Q,(i o.o o.o o.o o.o o.o o.o o.o ( J7 o.o o.o o.o o.o. o.o o.o o.o o.o o.o o.o o.o o.o JB o.o .o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 19 o.o o.o o.o o.c o.o o.o o.o o.o o.o o.o o.o o.o 20 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o (). 0 o.o 21 o.o o.o o.o o.o O, C• O.(; o.o o.o o.o o.o o.o o.o :!::! o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 23 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 24 o.o o.o o.o o.o o.o o.o o.o o.o o.o 0 •. o o.o o.o ~!j o.o o.o o.o o.o o,o o.o _o.o o.o o.o o.o o.o o.o ( 26 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 27 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.(1 o.o 28 o.o o.o o,o o.o o.o o.o o.o o.o .o.o o.o o.o o.o ( 29 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 30 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 31 o.o o.o o.o o.o o.o .o. 0 o.o o.o o.o o.o o.o o.o ( . j2 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ~755.0 o.o ( AVE -o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o F.l6,1 o.o (_ ( c ( ( ( ENERGY Ff\OH RESERVOlf\ 1 <GWH; OCT NOV [if:C JiiU FE!< HAl-. _M•f. 1-ifl~ JUN JUL Al.Jft SF.fo Mm t '221.9 318.G 429 •. 3 312.2 :!'10.6 2:~8 'J 18::..~ :!3(1,!j 187.4 1l.,.. (J ~J3.:"' lfl5o0 29~1.2 ( !.'? 243.1 273.5 345.4 312.0 241.6 23!j.O 1R9,9 ~A1.0 :!~9 .~ 180.8 :!:;j3,8 495.4 3?90.8 3 297.2 358.7 441.9 3::t9.3 247.1 :!~B.!l Sflo.7 2:'4. ~ :'!'it .• 2 214.8 ~3flt ;I 411.5 3434.3 ~ 318.9 J9:j .6 433.!'5 312.1 ::.!.19. 6 ~~!a • ., 200,0 327.4 314.9 187.7 ~H.s 311.9 3544.8 "' ~a~.z 337.3 429.8 3:!2.4 245,9 :!2e.r. 1A4.B :'74.1!. ~fo4.4 173..::! ~='~. ;· 300.8 3::!60 .• 9 ( i.J 6 2611.4 351.2 413 .• 7 333.~ 254.0 227.8 19,3.3 232.8 :!76.4 :!5~.2 :a;.5 :a:•. a 3&66.7 7 277.9 336.8 424.3 312.3 244.3 2?7.4 1ff5t4 292.2 377.8 336.6 498.~ 503.1 4016.7 ( 8 :!92 .1 362.7 449.7 333.0 ~!jS,O :!27.3 19::i.7 ::?r.4.3 :{::>a. 2 2.26.4 2<i5.~ ~i-tr..o 3708.9 9 345.9 395.5 446.8 361.0 2!i3.7 2:!8,2 207.1 2:;j2.0 278.1 199.7 249.9 :!08.5 3426. 4 10 2,60.9 312.1 4::!7.2 322.1 2!50.7 2:!1. •• ] lS;j,J 251.2 224.(i 181.3 399.5 170,1 3546.7 ( 11 3.!9.7 360.3 448.4 334.0 257.0 227./. 200.6 297.4 l 9<fo. J H.S.l 23io.2 466.5 3Z11. 9 12 3S0.8 368.3 449.8 3fjfJ. 2 ::!-1..:!. 4 227.7 21'\,!j 3vo.o 321.~ 7 ~:!0,?. 30<1.7 396.~ 3801.1 13 299.0 362.2 451.8 341.8 260.9 227.9 221.4 273.{J 378.9 3B4.5 694.2 4R6.o 43·81. 9 14 33::i.2 371.4 419.9 3.10.6. ~!19.5 2:!a .s 1f~7. 3 331.3 304.9 336.0 S7J..e 111.9 4117.~ l::i 320.5 344.4 430.2 313.6 !!45.2 22B,ri 186.4 193.6 379,6 379.7 354.q 286.9 3663;2 16 303.7 :u,6. 1 4:!5.5 314.0 2H.9 229·1 19'1.1 267.4 273.4 241.8 2t,.2 ~ 1 c1a.1 3745.9 J7 321.9 33&.0 430.6 :..(:>1. 4 251.9 226.7 211.::; 233.4 24,'7o2 169.1 231.6 213.1 3:'44.3 18 245.2 322.3 427.5 3.22.9 2::i3.4 2~6.7 H'l. 3 :?fi9o7 ~i41 • 9 ~:19.8 633.::; 5~1.4 4035.7 19 274.7 349.8 449.6 342.1 270.8 235.9 231.2 293.7 3:19. 1 271.t 22~.9 2~1 9 .l 3:136.1 , I 20 240.0 328o1 413.5 304.9 239.4 228.6 196.2 244.4 200,9 1:;j7.1 3:.5.7 203.2 3121.9 21 234.8 265.6 3::"3.7 281.1 202,8 228.4 196.4 1fs8.1 116.9 1B•l. 7 296.9 162.1 21-41.5 !!2 ..,..,-=-• 2f!6.1 319.1 279.7 202.2 228.0 lSS,O 165.6 1 CS, 1 240. r• :.!£10.9 159.7 2646.0 _ ..... J. 0 23 239.6 270.6 428.5 3H.i 26.8. 6 2::'8.9 221.9 341.0. 37£1.7 284.0 335.2 417.6 3756.9 24 285.7 J:H.s 432.2 320.3 252.-t 2:?.8.7 191.0 250,4 262.6 186.3 2:;a .o 205.1,8 3227.9 :!5 241.~ 27.3.9 361.3 311.2 242.1 234.6 J 91.2 :?~0.5 194 ol 140.2 312.6 Jr.o,:J 2943.7 ( 26 240.8 27J.9 331.2 288,8 208.1 235. :' J 9j • 4 290.2 J~H o4 277.3 2'19' :. 4R3.4 3402.3 27 339.9 337.3 418.1 310 ol :!13.9 227.9 t90.3 236 • .; 236.6 185.:5 290 di 200.6 3217.2 28 238.6 267,5 328.2 308.2 259.1 232.0 206.1 242.:! 377.3 '2~r:.o 2B2.r. 40.4. 7 3415.4 ( 29 314.4 376.5 451.1 349,'} 261.2 2~~6 .s 2?.4.0 272,8 :!20.~ 179.6.,r !-11)9,1.. 188.!;; (J3d2.9 30 236.2 269.0 331.8 ~93.9 254.2 236.1 205.5 292.9 311.6 284.6 307.3 341!..9 3370.0 31. 357,4 410,6 453.6 345.! 21!.0,1 227.8 219,6 2:,,r;. a :?Ci'R.6 304 .• 0 396.4 419.:-i 3948.4 32 356.8 414.11 437.5 324.6 2:;j1,4 2?8.3 19R.4 2:i9.5 :?1~.4 '271.1 756.0 4fs8.6 4169.3 ( AVE 286.9· 336.0 414.3 321.6 2-\7.7 229.2 199.8 262.7 276.2 234.8 342.1 355.4 3507,0 ( l :· •• Devil ~lou . .)~ c ( PDWEkHOUSE FLOW CCFS) OCT NOV ltEC JAN FEEl ~IAR Hf·R HA'( .I LIN .IUL AUIY SEJ' 1 67\4 • .s 979S.S 114SB. 9 fl528.1 71t1B, 9 IJ461.t 11.~~... a 6562 •. 5 ~436.2 8363.4 109.,0.6 6149.8 ( 2 6587.4 74'17.9 8923.1 7913.3 6437.h i-62B. r. ~756.6 sr.et.7 fl:i04. 7 8~8'5.9 1 08ao .·o 11307.8 3 820'5 .I.. 9918.0 11873.9 Y060, 5 · 7S96, 4 1..460.1 7410.6 8815.9 R02o.9 84i\1t 5 10727.:! 10293.7 4 l0U3o7 11010.3 11666,8 8:i76.4 739a.8 6461.6 7fl74.9 10136.6 1:'704.7 8564.0 10~97.0 8149.3 5 6996.7 9300.3 llSOJ.S 8800.9 7::iS2.9 61S9,1) 7'170.7 9540.0 1C980,6 8374,1 997\,6 8219.9 6 7812.3 9865.8 11964.4 9225.9 7928.4 6483.'1 71>93.4 M75.1 11 J 34.2 9!17. 2 137b3.:.0 1'3763.2. ( 7 7629.8 9167.6 11323.0 8498.5 7r.46.J 6494.2 7449.6 9'166.8 13U.3.2 12225.1 13763.'. 13763.2 8 8217.2 10152.8 12103.0 9160.0 BO<l2 .l 6500.R '7761. 6. 7682.3 12493.1 8379.6 10849.2 13763.2 9 10205.5 1UB7 .3 1~378.0 10012.1 7865.-4 6470.1. EIJ01.3 7211. ~ 10~64.9 8463.1 10679.8 5938.8 c 10 6640.1 7603,1 11487.3 HB9:J, 7 78=32.3 M507, 9 nno. o 9055.7 9627.9 79UJ, 4 q?P·l.• 2 13763.2 11 9042.6 10001.7 12127.9 9263.0 7993.4 6490.9 7888.2 8343.2 i'10ii.R a:i39. 3 10476.1 11848.1 12 lOO:'jJ.J 102411.8 12:!79.2 ll)062t6 8216.8 .;/)4)6.7 94rH!. :1 9217.5 t:i 427. 7 8879.E 11061.4 \0623.9 ( 13 8441.3 9923.1 12095.~ 9~72.8 8066.6 6486.1-El:i02.7 6132.5 .13763.2 1!508 .:! !.3763.2 13763.2 14 9::!99.6 too;s.o 1:!012.4 9072.7 80-10.6 .64:''iCi. 4 73AB,3 9925.7 1~094.4 12483.:5 1371..~.2 11777.2 15 8980.2 9464.4 11503.5 8:i54o7 75G3.4 6457.7 7418.6 ]1<,10. ~ 12132.6 11706.9 l1Hfo .f'~ 8?{.-~, L 16 8725.9 10024.1 11277.2 El:i02.1 7482.0 .6442.'1 77fl0,9 70!i3.:i l070P..2 9380.0 ioo69.~i J:.<7C. 3. 2 17 9478.4 9286.8 11594.8 BR55.5 7840.n 65l7.R 8338,8 6457.9 1~022.'3 ~:'56.2 10414.6 5:i94.3 18 o489.9 7809.7 11481.3 8934.7 79.21.5 6~i16,:.:! 1nn.s a;1r.~.o 1:!801.1 9962,0 13763.~ 137c!>3.2 19 7567.2 9ti82.5 12046.1 9428.0 8431.9 6786.ti fl8"11el 8637.8 13763.2 9914 ,91109~0 .s 5909,9 f :!0 6444.5 7253.1> 10704.7 ~?63.4 7335.0 6455.0 7774.2 b!.!~~5. a 6'18fl.B 9714.3 uno4.c. 6/0~.~-- 21 6849.0 7703.1 9237.6 8258.5 6757.9 7016,4 60:!1.9 607fl.1 n:~r.J .. :; ao6:!.2 l0672.a ftfl~!2.5 2:! 71.75.2 7988.3 9409.3 8312.1 6782.2 7033.4 6069·9 5751.2 6f>B0,9 B::i71,6 10405.9 5696.0 23 6721.1 7565. 7· 9040,0 7932.2 6909.1 f~67.6 8618.6 11!i97, B 1:~763.2 9360.4 1 Dn4 .1 J(l:>o&.t 24 767.0oS 9:i:J3.s 11503.4 R716.6 778l.E.' 6'lfi3.7 7532.5 5913·4 t0074.S 8901.8 11 HIH .1 61'5::!.0 ::!5 6631.1 7437.5 9885.4 78,!,8.1 6399 • .1 6&'>01.6 5672.9 6786.2 7:i:ll • 7 10230.6 11037.0 5620.1 26 6661.9 7506.3 9023.4 8024.3 6~83.7 6815.1 5866.1 4914.7 13l52t2 10084.9 "1o94l.6 1~038.9'' 27 9985.2 9232.0 11124,3 8<l73o6 7529.4 6481,9 7643.8 7?58.4 9604 el 8~92.6 11497.7 6082.3 l 28 6736.0 7c!>67.2 9133 .l 8054e9 6547.8 6712.1 5798.5 6?96.2 l37C.3.::! 9117.9 11131.2 95H.O • 29 9918.2 105fl9.8 12.240.5 96Y:!.O 8178.2 1,529.0 8608.2 6364.3 7451.0 8639.0 109:\1 •• 5 5973.4 30 6825.1 7615.8 9004.2 7977.8 6G03,6 6642.3 !:i707.7 54164.Q 9787.~ 10078,6 . .tQ646o7 98:!8.7 3.1 9849.8 11367.2 12162.4 9458.7 8036.2 6486.9 8464.7 6C.65.3 11379.9 11298,5 12347.7 1:?342.0 ( ( 32 9870.6 11-447.3 11670.4 8863.7 77<}2.;! 6467.~ 7Rl2,6 680:1.7 8205,8 10608.3 137c!>J.Z 13493.0 ( AVE 8077.1 9180.8 11070.6 8769.1 7508.8 6565.? 7480.3 7'167.7 10b66.o 9454.2 11544.8 9668,6 ( ( l l • • • 1.-:~ .(, Sf' ILLS (CfS) ( OCT NOV ltEC .JAN FEB tiAR AF·r~ HAY Jlltl JUL A tiC• SEF' 1 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ( 2 o.o o.o o.o o.o o.o o.o J.O o.o (i,O o.o o.o o.o 3 o.o o.o o.o o.o o.o o.o o.o o.o o.o (\,(.< 0, C• o.o 4 o.o o.o o.o o.o o.o o.c. o.o o.o o.o 0. C• o.o o.o ( 5 o.o o.o o.o o.o o.o v.o o.o o.o o.o o.o o.o o.c. 6 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 949.:: :?26.0 7 o.o o.o o.o o.o o.o o.o o.o o.o 914.2 o.o 24~i7 .2 ::!732.6 ( a o.o o.o ~.o o.o o.o o.o o .• o o.o o.o o.o o.o 970.7 9 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 10 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 963.:? l!jb6o4 11 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 12 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 13 o.o o.o o.o o.o o.o o.o o.o o-o 1!i::i5.o o.o 6253.7 1004,0 14 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 2S64.2 o.o 15 o.o o.o o.o • 0 .o o.o o.o o.o o.o o.o o.o o.o o.o 16 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o =:tfl79.9 17 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 10 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o oMI:i,J 1965.0 lS' o.o o.o o.o o.o o.o o.o o.~ o.o 1Rfl,4 o.o o.o o.o ~0 o.o o.o o.o o.o o.o o.o O.Q o.o o.o o.o o.o o.o 21 o.o o.o o.o o.o o.o o.o o.o o.o (1,0 o.o o.o o.o 22 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o t 23 o.o o.o o.o o.o o.o o.o ().0 (1,0 1416.5 o.o o.o o.o 24 o.o o.o o.o :>.o o.o o.o o.o o.o o.o o.o o.o o.o. 25 o.o o.o o.o O.!i o.o o.o o.o o.o o.o o.o o.o o.o ( ~6 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 27 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 28 o.o o.o o.o o.o o.o o.o o·.o o.o 1:?.16.2 o.o o.o o.o ( 29 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.~ o.o 30 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 31 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o l 3:! o.o o.o o.o o.o o.o Q•O o.o o.o o.o o.o 12217.9 o.o AVE c.o o.o o.o o.o o.o o.o o.o o.o 165.3 o.o 1002.2 354.5 (. (. ¢ "~~ ' ' p ,_. 14 ~ .. _S:::t!~ !'!.~~~4-z~~~·.t~. I. • • ,,... :=t.h-> ud. ., F H J·~ I J '} Po lt. ~d, ().·e TO.bf ~.? ' '"I ~I&'~ rvl o~ !;Jr,. 1 l:-: . t.. ENERGY FROI't RESERVOll\ :! (GIJHi OtT NOV [IEC ( JAN FEE' HAR Af'R HAY JUtl JUL AUG SEF' tdW 1 :!17.8 276.1 371.7 ":!'16.6 216.5 209.7 230.5 210.2 233.4 21>8.3 3~7.Y 117.9 3026.5 c 2 196.0 214.4 26o.1 ~37.7 1'16. 7 202.9 170.5 175.9 2r.o.1 214.1 33o.9 344.3 2856.9 3 266.1 311.3 385.1 :!93o9 222.5 209 .r. 229.7 276.2 2~tj.7 274.8 .342. >1 JJa.o 3375.2 4 328.1 345.6 37Bd 278.2 ?.16.8 209.6 ::!H.l 32~.a 398.8 :!74.5 .331.1 217.7 3577.6 ( 5 :!25.-4 291.9 373.1 285.5 :!22.~ 209.::i 231.6 :;o:;.6 3"14 •• 268.7 315.-1 2rt4 • .4 3327.8 .c; 253.4 310.3 380.7 299.2 232.3 210.3 2313.!3 207.1 349.5 295.7 4"16 • ., • •M:~.o 3663.1:1 1 247.::; 287 .e. 367.3 ":!75.6 221.1 210.6 230.9 303.3 432.0 396.5 4"16.4 432.0 3BS1.1 B 266.5 318.7 392·6 297.1 235.6 210.£1 240.6 246.1 392.2 271.5 344.9 4?3,9 3640.5 9 331.0 351.2 401.5 324.7 230.4 209.9 2!:.J.l 231.0 3:!~.:! 272 .• 5 336.5 179.3 3441.4 10 208.8 235.9 372.6 ~8e.s 2::!9.5 211.1 233,4 2!.'0.1 302.2 :!513.2 ... lr. 0 8 432.0 3S08,1 ( 11 293.3 313.9 393.-1 300.4 2.14 .~ 210.S 2-14.5 ::!67.3 223.1 267.6 328.6 363.!) 3440.4 l2 326~1 321.5 398.3 326.4 241.6 :.!15,6 293.2 ~9r..3 ~:u .5 2~8.0 35:i.~ 330.0 333:.!.7 13 273.13 3t1.5 39.2.3 304 .. 0 n6.J :a o • ., 263.~ 215.7 43::! .• 0 373.3 446.4 1:~2.0 3B9.l , 3 H 301.3 316.2 389.6 294.3 235.6 20~.2 229.0 318.0 379.6 404.;9 4"16.4 369.7 3P.93.9 l!:i 291.3 29?.1 373.1 277.5 221.3 209.4 230.0 239.5 371.4 379.7 31>0.4 258.6 3~09.3 16 283.0 314.6 365.8 275.8 219.2 209.0 241.2 225.9 336.1 304.3 342.5 4::'7 .6 3fi45o0 17 307.4 291.5 376.1 ?87.:! 229.7 211.4 2r.8.5 206.9 4(18.9 265.4 327.8 170.4 3341.1 18 207.3 243.6 372o4 299 .• a 232.1 211.3 237.9 2o4.3 _,01,8 3:23.1 446.4 -432.0 3&&:!.:! 19 215.4 300.8 390.7 31);j. 8 2'17.0 2:'0 .t 274.2 276.7 432.0 322.6 346.5 178.9 3540.7 ( 20 203~6 224.4 346.7 268.0 214.9 209.4 241.0 199.4 :?J 3 ol 304.6 34P..3 178.6 2951.9 21 203.8 221.8 274.8 245.7 181.6 ::!OB.fi 173.4 1BO.S 3R:?..9 239.9 317.5 167.6 :!!:199.7 22 :!13.5 :?30.0 :!80.0 ?47.3 182.3 :?09.3 174.8 171, I 392.4 255.0 3()~,/. 1/.4.0 ~6:!9. :• ( :?3 20C',O ::!17.8 :!74.6 249 •. ::! 200,5 216.3 267.2 371.~i il:~~!.O '3:':3. 6 364.6 311>.9 3414.:! 24 247.2 299.2 373.1 282.'? 228.0 209,3 233.5 lf!9.4 316.3 283.3 341.0 177 .t 3180.2 ~5 197.3 214.2 265,9 ?37.8 P6.7 :?1)3.3 !69.1 214.5 n1.1 320.8 331.2 161.8 .?729.6 ( 26 198,2 216.1· 268.s 2313.7 176.9 21)~~ .a 1r.a.9 15:!.8 412.9 327.1 3•18.4 370.9 3082.2 27 323.9. 289.8 360.8 274.8 2?.0,6 2JO.~ 236.9 23:?..~ 3(11 • 5 2R3e0 3ftO,S 175.1 3:>59.7 28 200.4 22o.a 271.7 240.7 179.6 206.1 173.0 199.6 .<\:1:?.0. 29~.8 3ft~. 2· 294.0 3068.8 29 321.7 332.4 397.0 314.4 239.6 211.9 266.8 203.9 233.9 276.0 334.13 tn.o 3304.3 l 30 203.1 219.3 267.9 237.5 .176.8 201.9 168.4 . 17 j. 9 306.8 326.9 344.7 307.9 2933.1 31 319,5 356.8 394.5 .306, B 235.4 210."1 2/-2.4 213.5 357.2 366.5 400.5 387.4 3811.0 (. 32 320.2 355'.:3 378.5 2137.5 226.13 2()9,6 Zl\2o2 217.9 257.6 344.1 4'16.4 ·123. {l 3723.8 AVE 256.9 283.0 353.2 279.7 216.9 209.7 :?29,7 2:'\7.5 330.1 303.5 364\o'i' 296.9 3361,9 (. ( { (. l ( =;; ·~ ~ • • • . , -... ~ ~-· ' \ B o 1~'1 J tl (' -· Pol ev~i.· ,,) \o t~ {' 1\i} O•J 1: I F VI ~·-~j '/ I ..J•u ~, 'Na...f.c..v. .. a• 1 "Del v>t c. 0-M-ytt•.·t.. TOTitl ENF.RGY f'F:OJ::UCEI• <GWH> OCT NOV [IEC JAU FEB ~iAI\ {;f'F: MY JUN JUL AUG SEf' ANN 1 439.7 594.0 800.9 58s.e -157.0 438.0 4U.4 4 "10 •. 7 4:!0.9 437.3 5~H , l 363.0 5947.8 ( :! 439.1 488.G 611.6 519.7 418.3 4:47 .a 360.4 157.0 -499.9 455.6 ~90.? f.l39.7 6147.6 ·a 563.3 670.0 8:!7.0 il23.2 -469.7 438.0 41A..4 soo.s 501.9 489.5 5R0.6 729.5 6809.5 1 677.0 141.2 811.9 590.5 -456.3 438.0 44., • .1 6:&2. ~ 713.7 46,.2 575.6 sr.9.ei 7122.4 c 5 507.9 629.2 ao~.9 607.8 468.0 438.0 4l6.4 sao.!! ::i99.l 439.9' S44.1 sr.r..J 6r.sa.8 6 521.8 66-4.5 832.4 632.8 486.3 436 .l 431.8 "140.2 /-:?5.9 547.9 91.4. 0 9.114. a 7530.5 7 525.4 624.6 791.6 S87.9 465.4 438.0 416.-4 :iY!i.4 809.9 733.2 944.9 935~2 7867.7 ( a 548.6 681.4 842.3 i-30 ·l <\94.2 438.1 436.3 500,4 7.70.3 497.9 590.8 969.0 7349 .• 3 9 676.9 716.6 948.3 685.7 -194.2 4:il~.1 4~i8.?. 483.0 600.3 472.2 586.5 387.8 6867.8 10 469.7 578.0 799.8 610.6 480.1 ~38.0 41B.e 5<11.2 !i26.2 439.5 B-tS.<t 907.4 7054.8 11 613.0 674.2 841.8 634.4 491.1 438tl 445. 1 !)64.6 -119.~ 435,7 564.8 a:io. P 6952.3 12 676.9 689.7 948.1 684.6 504.0 443.3 537.7 601 •. 3 7~3.2 508.2 c>u9.9 716.9 7613.7 13 572.8 673.7 84.4. 1 64.5.8 4.97.2 438.2 4.85.0 489.3 Bl0.9 757.8 114.0.6 918.! 13?73.2 14 636.5 687.6 839.4 624.9 494.0 438.1 4J 6.4 649.3 684.6 740.9 1018.2 731.5 sou. 4 15 611.3 64.1. 4. 603.3 591.1 466.4 438 .(l 416.3 433.2 750.9 759,4 715.0 54.5.5 717.2. 5 16 586.8 680.8 791.3 569.8 464..1 4.:H~. 0 440.3 493.4 609.6 516.0 1!.04 .6 1046.3 7290.9 17 629.3 627.!5 806.6 60S • .S "IH ,6 ua.t 470.0 440.3 706,0 434.4 !j!'j9. 4 383.6 6585.4 18 45:!.6 565.9 799.8 612.7 4E!5,S 4:~a .1 429,2 !&riJ).J 743.7 582.9 1079.S' 7!)3. 4 -n.97. 9 19 520.1 650.6 840.3 t-47.9 517.9 456,0 505o'3 5'l·Q. 4 791.1 593.7 575.4 -408.0 7o7t..e :!0 443.5 552·~5 760.2 r;n.o. 454.3 438.0 4:\7.2 443.8 4""' • 0 4/.1,6 713.Y 381.8 6073r8 21 438.6 4137.4 S98,!:i 5:!6 • 8 384.4 137.2 359.8 330,9 299,7 4:4.6 61-\.1 . 329.J:l 5::!40.1 22 439.1 488.1 599;1 527.0 384.5 4:~7. 3 3~i9. a 3:-t..7 ::!97.4 495.! 590.5 3::!:?.7 5277.2•r•«-M .23 439.6 488.5 703.2 !:;93.2 469.1 445.2 489.1 71:!.5 IUO. 7 SB7.6 699.8 734.6 7173.1 24 532.9 650.7 805.3 603,0 480.3 ~:•a .. l 4:!4.5 439.f! u7B.8 4clo9.6 599.1 385.9 6408.0 25 439.1 488.0 627.2 549.0 418.9 4:i7. 9 360 •. 3 505.1 4.:51.2 4.61.0 61\3,9 31':'!,1 5673.3 ( 2,6 -439.0 -488.1 599.6 527.6 385.0 -t:H~. 0 360.3 443.1 147.2 (\04.4 597.9 8~4.3 6484.5 27 663.7 627.1 778.9 584.9 464.5 -\38,0 41:?7. 3 469.1 538.1 468.5 641.0 37::i.7 (1476.9 28 439.0 488.3 599.9 518.9 438.6 1\.38.1 379.1 4.11.7 809.3 564.8 o:n .? 6YB.7 6484.3 ( 29 666.1 708.9 848.1 664.0 soo.a 43S,2 490.8 476.6 454 •. 1 .o\54.6 544.4 360.5 6607.2 30 439.3 488,3 599.7 531.-4 4.:51.0 1.~8 .o 373.9 464.8 618.1 611.5 652.0 651\.R !.303.1 31 &76.9 767.4 848.1 651.9 495,5 438.2 4f12.0 469.3 6!ir.. a 670 .• 5 796.f 806.9 7759.4 ( 32 677,0 n<t.t eu.o 612.1 478.2 138.1 440.6 477.1 470.0 615 • .2 1202.4 882.1 7883.2 ( AVE 543.8 618.9 767.7 601,2 464.6 43E1,9 429.5 :;oo,2 606.3 s:~a.2 707.0 652.3 6868.9 l I J ( l ( (. a7 __ _y·, ==-= ~.··•= :·· ,, " =-.. w ''·T,#(' ... ·-. -;f:? : ... J~ iiif~4:Sb 1%~::::.:::-.. .. · .... , ...... """' • i • ,. T~fd.o i?). C\ 1•w('J I {) ' ~{ ~.t~ L\e -'? (l,r\ Polo 1: VI Jl~ ..j '1 tM w 0... ' ,} •. v-._(), . ~ 'blbf·) ( (. ().,V-y!) lA TOTAL USA tiLE ENCF:GY CGWH> OCT NOIJ ltEC JAN FHt MF.: Af'R lillY .I liN JUL AUG SEP r.tNN 1 439.7 :'591!.0 800.9 S8a.e 457,0 4313,0 416.'\ 440.7 420.9 437.:3 sso.r. 363,0 5947.2 ( :? 439.1 488,0 611.6 549.7 418.3 4~7.11 360.4 457.0 4Y9,9 4!·:.-i •. 6 S!:i0.6 576.0 5fl43.B 3 563.3 670.0 827.0 6::!3.2 169.7 43fL 0 H~.4 500.5 501.9 489.5 s::;o.c. 576.0 66:!6.0 4 677.0 741.2 811.9 590.5 456.3 4~e::.o 444.1 543.1 r.J~.s 4.:t.:::.:! S5C,6 5:i9.5 oao7.J ( 5 507.9 629.2 802.9 607.8 468.0 4:~£!. 0 416.4 543.1 532 .. ~. 439.9 544.1 6!:i5.3 6.Q85o4 6 52loB 664.5 632.4 63:?.8 486.3 438.1 4:H .a 440.2 532.8 520.8 550.6 576.0 6628.0 7 525.4 624ou 791.6 r.s7.9 ~~5.4 438,0 416.4 r.4Jo1 53.:?.,8 520.8 5r.o./-.. 57/•oO 6572.5 ( 8 548.6 681.4 81!!.3 630.1 494.2 4:iH , 1 '1:16. 3 500.4 ~32.8 497.9 5:::i0.6 576.0 6728.6 9 676. 9. 746.6 848.2 685.7 484.2 438.1 456.2 4R3,0 :i:i:!. a 47:!.2 5S0,6 3fl7o8 67&4 .2 10 469.7 578.0 799.8 610.6 480,1 ·438. 0 4Je.a 541.2 :026 • .2 4;~9 .fj ~r.o.~o 576.0 6428.5 ( 11 613,0 674.2 841.8 634.4 491.1 438.1 445.1 543.1 419.4 435.7 5~0.6 576.0 6662.~ 12 676.9 689.7 848.1 684.6 504.0 443.3 537.7 543.1 532.8 509.2 550,6 576,0 70N,9 13 57:!.8 ~73.7 BH.1 645.6 497.2 4JB,2 4BS.O 4fl9o3 !i3?.,8 520.8 550.6 576.0 6826.0 l4 636.5 687.6 839.4 624.9 494.0 43Bol 416.4 Z43o1 faJ?,B r.?o.e sr.o.6 576.0 68.!>0.1 15 611,8 6 4.1. 4 803.3 591.1 46~.1 4;ia. o •116. 3 433.2 !i3:!,S ~20.8 550.6 54:1.5 6551.3 16 586.8 680.8 791.3 589.8 464.1 4:.~a. o 44013 493.4 m;?..e s2o.a Sf!{), I!> su .. o oM4.s . 17 629.3 627.:5 806.6 608.6 481.6 4JR,t 4:10.0 440.3 532.8 434.4 550.6 383.6 6403.3 18 452.6 565,9 799.8 612.7 485.5 438.1 429.2 fo4 J .• 1 532.8 520,8 550.6 5U •• o 6507.1 19 520.1 650.6 840.3 1!-47.9 517.9 456.() 505.3 543.1 r.3~.s s2.o. a SSO.b 408.0 6t.93.5 20 443.5 5S2.S 760.2 !173.0 454.3 43!3.0 437.2 443.8 414,0 461.6 550,/. 3B1.e 5910.5 21 438,6 487.4 598 •. 5 5~6.8 384.4 •137. 2 3~)9 • B J:~a. 9 2'i9.1 424.6 550.6 329.6 5176.3 :!2 439.1 488.1 599.1 527.0 384.5 437,3 359.8 336.7 '29?.4 495.!1 5§0 ·-~-~~~ !? __ __ \5237.3" t 23 439.6 4f.113,S 703 • .:! 59:3.2 469.1 44~i.:.2 <lHY.l 543.1 532.8 o:w.e 550.6 576.0 6351.1 24 532.9 650.7 805.3 603,0 480.3 438. i 4~!4 .5 4:l9.8 532.8 469.6 ::mo • .!> 385.9 6313.5 ::!5 439.1 408.0 627.:! 54.9.0 413.9 ·137. 9 31.0,3 505 .l 431,2 461.0 :mo.& 312.1 55BO.O ( 26 ~39.0 4llflol 599.6 527.6 3fl!i.O 1.~a. o 360.3 4 ~l.l :i3:!,8 520.8 s~so. 6 576.0 5260.0 27 663.7 627.1 776.9 r.84,9 464.5 438.0 427.3 469.1 532.a 46Bo5 5~0.6 375.7 6381.2 :!8 439.0 488.3 599,9 5113.9 4:ia.t. 131'1.1 379.1 441.7 532.8 520.8 !JS0.6 S76,0 5953.9 ( 29 666.~ 708,9 848.1 1!>64.0 500,8 438.2 490.8 476.6 454.1 454.6 5'14.4 360,5 6607.2 30 439.3 4Sf.I,J 599.7 53l.IJ 431.0 43Ao0 37.'5 .9 4£>4.8 532.8 520.8 S!:j0,6 576.0 5946.5 31 676.9 767.4 848.1 651.9 495.5 438.2 -492.0 1169.3 ~;:i2. 8 520.8 sr.o. 6 ::i76.0 7009.4 t 32 677.0 77~.1 816.0 612.1 478.2 ~38 ·1 440.6 477.1 470.0 520.8 S~iO, 6 576.0 6830.8 AVE 543.8 Hr 618.9 767'.7 601.2 46'1.6 438.9 .. 29.51 ~81 t 7 <t97.6 .. 87.5 s:io. 2 501,2 6382.9 { ( ( FORECAST DEMAND El-IERilY (GWH) ( OCT NOV ItEC JAN FEB HAl'{ APii: •lAY JUN JLIL AUG SEf' 677.0 777.6 B48.2 773~8 732.5 662.2 590 .... : •.. ..;. 1 53?.. B S:?O,B ·s::;o .6 576.0 . 7784.9 l • I ,l i l • i' I • f • • I p c-,+~~ :.l J 8:.\ \ { 1 3~7·9 2 3'3b ·? 3 3~2 4 4-38 1•/ s o/~4 (;, ~L~~·L 7 4L\&{, <6 Y!4 .q 4 32b·.)" t o .~.titS· g " 3'2§.(, \1.. 3-SS ·2. ( 3 t.,L1b·l1 f4-lJl!b•l.t ~~ \? l 8 l ' ~ AI ~~ cl.l :iJ4 .360. c, '2_ I-') t" "'""" '"1. .... ".:. 3:).. 7·~ 4~~·4 54&·~ ~~&·3 3\?.( ~D1·b s~4·6 331 2- .3 LJ g_ t! ~SO·~ 2!5'·2. 3';L(i. ;4l,. 7 4oD·~ t...tt~L, ! ~12.· Lt 30~·1 E!S·4 304·7 3b0·7 e?Sf. o .5)4·~ ~J.rq·l :t;.,-J.o co{.t[q. 7 ..22,1·0 2b2· I 3.;ll. 7 J~~·o ~53·7 2 b1· 7 J)jd. 6 212 6 Jlt3· I 30/-I 2bo·l ;;1::8·1 3~lt--.8 r:.;.,. 1· g I ~ ,.), ;Jt~.,1 ' :2-~o. I 7716 7r.s~ /738 /00~2 77~0 7671-"' ?{:,qg 1702.. 8/6I' 101s~ 77/'t" /DI:!/ 8'1 '?J c3 fr'z/S 1b/:S 77J.,S 96oo S1o'- :..?J.,s-G g..s:z2 '--. --·L --.-,..,..,... .__......,.. - c~(DV\ .... ., Av...."~ ~r S.;,o 0 126 r' 113~ 69~tlf .ttsa 33o4 I 2.26 f 8 6 '2-9 • . /D72.. 7 /o .. r17 9172.. . I '2 76 3 I ~""-',./.? ..; -.,.J '3 Lt 4 4 -3 6 a •u ; I I 16 !.· 78 ';)_ 3 LtiY Jl_J 1.,1..\ J3.l..f I 36/6 /S'8? I 3!,!· 3 j -. I JJ.A ·:> ~!) ,,.. 'J'"-.... ,~ 4 .;. /.':'j;?...o 1/ (: !' ~· I .,..., /Co,: -"-I ; I ' ,, .. -, c<1.2.S .:.·~ !' ~ ,_, ... ...:,' IL _..,, '•J'/ ,, . ._},.., ( t!. 0 ,_f(. •" I .,. .-I-· .... -,· -;:__,-,~ ... (. ... ., . c;l .-I :;.;:.. '-~ -..... t • ., ...!.1 ~ , ;,LI•I• Lt 6 4 z. Lt';:.,·~ I 8 9 G 9 4b~ ·~ II •I -(·. {I -f • • Ill ~ t )o 111 fO,L:-, I ..... ~1/. .' ' ,,.. .... '.-..... Q 0 ~"-':7 .,.. -hi--. 0 0 0 :; v 0 0 0 I ll j1 f 1. ~ • • I I !- 6./1 l. t::-11\ .e ... 3 'f r. :Ye...~ ; Pc:t1q ...... 1,· .,1..l'' I s'f\1..\-,,~t~J ,. j 1 Gwt"' 2.. I \ t.:_ 13 Ll. ,_ •} I • .~ \7 IE. ' !:.\ .. ' ..... ... . . . . ·- ~ss.g Q2 .38-l.. ::2.44.-:- 2-'2.-8. 7 517· :{" dtt1·1 .311 -~ 3ot.,•i ~1' L,. '2..- S'?I· g 2'1.6·? 3bs·7 Pfb 1_ · 28o -t; 33~·2- :<s 2. o 3f2·~ ~Lt'JS ~~ o·(" :'',j 7 '3 -. 1£/..sa.blt.. ~f:!."::J't ,J b.J~ ~ !:..e.vl-1 ~~v-... j Nl(;).xi~ p-ose.ir...l~ "JW-Vr~ eJ . I p..., D ... t,·(),.,.A)_ G ~/,~;f. ~.u-..-~ ... .., . ; !J..A~!f.J .e.~~ a-.-r 'b~l ~~--- ?u14 s 2.7.S· '? 3 ao._3 3oo·~ :2 4S~Cf .., -. ,_.' ,... ... o ....... 3of.~ 3at b :?oo·1 ..,. I 2,,of. G 'L6'l.l ;211-6 3oo·L, ~J. S·1 7-.s u A ;-.,:.o 3oo\l zoo·r.:' 0s76 ~/? .. ~ 77)5' 764":1 ·- 6/!i.:/ 772L, :JI .. Y1 71,73 76q2- 761q 6 72_L, ... , '"4 ... , .. ~lo I 7?/( 0 D 0 .C> o. SD72.. 0 C) ~' 7& 0 <gz qqg '7 6?:;.6 13S3 0 0 8S:S'D 0 /636 c 0 /32 . -. /[, 7 77o/ .2/.l~ I 7 /0~ {J.f L1.z '0 ~ 1,;:.. 7 2'22·7 .I~.!J-2 "Jo~· I 1.,.-::tr /, .,J ··~ 2o2-J !~·· ... ! ...... J ' ' tJ t,f-/ • .:. S537 -567-'f ~712 :lb/) s~;.Lt 4.,-::-JO ., ... ,cr L,g~· S" '3J.,; ~ '77S"' d-(.ig 3 S'~ 1..,-3 $1tl3 G~bl.r 6tt66 4770 Slt~ S/'?( 773 6Lr?- o to6!3 f · /()/00 l /~3s.- 2.S It I SU II II CjsJ, 4177 4221 I ~ .. _, /071 0.--17~' /:) 6o I;;. I 1..1 0 (' <t . ~-.- j . ,... --~~-~-----,-·-~~·-··~ --·--. -,, r t I, j. ;! ••• . ,j I I I J 2., b ? 10 ( I 12 {2> 16. ;f IG \ ") ]& 11 .4~2.. q !7tJ. 3 3 .::o ·O '·-. -,.:i • .'· u 36.'7·7 ~s·a ~ 4~7·6 I'?D • t, ~3.l·o \ "'], • ::4 • C I l ?/., /(;./,8 ~7o·7 17.5'.) "'/' """" 172 .o .. ,, ... "'\ ~"1· 17Cj. =- ~~ ;8· b J ltt6. J d-111· .,_ ,:)1,~· 6 .2-l,&· b ~S8·G ;H,7·~ 3(3·b ~..!.2· b 178·'1 f7g.(.,. /b7· b lbll 0 ~)..7. I f 77. 1 51~ .. I dilt~ ·I /7)') &ld:d.r. I7:J..o -..:1'1_ r ! c<..F.J 7 q.:.;o . . si27 7Cf2o f'l ·~ 'i .. ' 7 ... •-';'l:-'/ I .,. 71&t boa '2.. 0 ~37S 6 ~ ;., 7 Jg~g c 0 ..... ..... LJ.osl 0 3J~·O .!.47 ·? U~·lt J .... "" .. """\ .:..}.:.,_ u "' ~ 2.3.· c; f "l q '? . 'I~ I • • • .: t ·-.. _. ., s J. ./ ,., '""" tQ J _., / :...; .. !'~,;.) I .... • :' ::J ·~ f • ., ,_ l ··-... -~ l7~·b I I • I \;i..J 0 177 1 I • . :."'"~ -. -I;./ •? /IJ 2-jJ.r 211, q Z '2 ~.:J /3 76; I ";·71-. .... Q ._:, . .... 5tZ1 )2761 } 1,~ !., c !S76 3 /Ji7 7 £S/4 1~7~ l ~/0 ~o;..jh '0 2-o/J 6}52- I ... •' ::' ··I "r -...," ..,. • ~ ....... :§"! f ,j • 0 0 " /S'ZS 0 0 /004 0 :1 0 0 0 ..... v I t I 3 I .Sa 7· 4 _,,;.,~ .2. ,;T).& 11 :).!.;. ~ :"~ ·--"--~'=-; :!: .. ----=---::_· :_' __ ·(.,.., .----'~-_1I __ ..J_"7"' ___ s:. ..... ...,_f:' :;_t::...1 ____ ...,1-_l; -."-_&_ .L~._t_~ ...... ·r_~. ____ ::J ___ j 7 "1-I •·T' ;.., I !~ ""' 0 t { , I l 1 AS.SL&.'""'":.:.:. pr"'t<'u,\.\ \.~ ~\..'1..\!..'•·J'/ a.,., .u..-....... .., .. :.. ::-rt c:t .b"'\St:S f !~~-..liMIIIIIIil--------~~-~~iii!IIIJIIMHIIi~~1~!e::;:~:;;J;I'7':::':-·::t':Ai3~~:;r:;;;-:;;:""'::::-:;;;.;:r.r:•;;;-t~~~"-:-:'-·"·'~'"'>'V""~--·"-:o-·,~-·~·---,-:;~~-~--,; 1 " • 2200 ~-.... --I .. .. .. 2180 2160 2120 2180 2080~--------------~------ 2060 ~ 2040 II.; - --SEP · --AUG I JUL i i ~ 2020~----~--------+-------~~~~-r~----~----~~~------~~----, .... < > LaJ ...J 2000 LIJ 1980 1960~--------------~------- 1940 1920 1900 1---------+------- 32 34 36 38 40 42 44 46 48 .50 52 54 TEMP€.~ATURE (°F) . ! WATANA RESERVOIR TEMPERATURE PROFILE r=l~ AVERAGE YEAR CONor; IONS J'lJ~~ THROUGH .sm.Pre.M~ -• I ar."~~: l! 1 j/" --~-~:--:~:--... ~~. ~ •• · • ,.,.. ·:· ., .. ~ ~-:-"":~~~~i~:--::"':":·::~--: .. _,.... ..... -~ .. -.~.:-"-·:-:;~~c·~:-..,.·~·7 ...... ~·~o;...,_..~~-··..----.-""' ..... -~ .. ·~~.__...-:---"' .... --~~···,··::-. ~.,_ ......... ~~~·;""r'!~~·- 4> ' l\ 4460 ., 1440 142.0 1400 1380 1360 1~40 ~--~------4 1320 1300 - z 1280 0 -~ <( > U.l ...J U.l 1260 1240 I·' • . . SC::P .. --AUG -JUL .. 1220 . -·------------~----·-.J-1----+-------......__--+-------~-........! S200 1180 uso ~--~----------+---~--;-------~---------~--~~-----~---------~ 32 34 36 38 40 42 44 46 48 50 54 . ,.. .... .. ... TEMPERATURE (°F) DEVIL . ,, ' \ I, I