HomeMy WebLinkAboutAPA146Tyo'L..
" ~ Tvon.e J.akl'!
~ SuSttn .. u .. I ..
Lak-eLou.ist!-
KEY MAP
SCALE I: 3,000,000
ALASKA POWER AUTHORITY
Anchorage -Fairbanks Transmission lntertie
Economic Feasibility Study Report
December 1979
~ INTERNATIONAL ENGINEERING COMPANY, INC. • : ~ ROBERT W. RETHERFORD ASSOCIATES
Chapter
1
2
3
4
5
CONTENTS
ABBREVIATIONS
INTRODUCTION
SUMMARY AND CONCLUSIONS
2.1 Study Summary
2.2 Conclusions
LOAD FORECASTS FOR RAILBELT AREA
3.1 Energy and Demand Forecasts Range
3.2 Demand Forecasts for Gener<Ition
Planning .i
3.3 References
SELECTION OF INTERTIE ROUTE
4.1 Review of Earlier Studies
4.2 Survey of Alternative Corridors
4.3 Preferred Route for Transmission
Intertie
4.4 Field Investigations
4.5 Preliminary Environmental Assessment
4.6 References
TRANSMISSIGN LINE DESIGN
5.1 Basic Design Requirements
5.2 Selection of Tower Type Used in
the Study
5.3 Design Loading Assumptions
5.4 Tower Weight Estimation
X
1-1
2-1
2-4
3-1
3-8
3-10
4-1
4-1
4-1
4-3
4-4
4-11
5-1
5-1
5-2
5-2
Chapter
5
6
7
8
CONTENTS
TRANSMISSION LINE DESIGN (Continued)
5.5 Conductor Selection
5.6 Power Transfer Capabilities
5.7 HVDC Transmission System
5.8 References
SYSTEM EXPANSION PLANS
6.1 Generation Planning Criteria
6.2 Multi-Area Reliability Study
6.3 System Expansion Plans
6.4 References
FACILITY COST ESTIMATES
7.1 Transmission Line Costs
7.2 Substation Costs
7.3 Control and Communications System Costs
7.4 Transmission Intertie Facility Costs
7.5 Cost of Transmission Losses
7.6 Basis for Generating Plant Facility Costs
7.7 Generating Plant Fuel Costs
7.8 MEA Underlying System Costs
7.9 Construction Power Costs for the Upper
5-3
5-4
5-4
5-5
6-1
6-4
6-10
6-12
7-1
7-4
7-5
7-5
7-5
7-6
7-7
7-8
Susitna Project 7-8
7.10 References 7-9
ECONOMIC FEASIBILITY ANALYSIS
8.1 Methodology
8.2 Sensitivity Analysis
8.3 Economic Analysis
8.4 References
i i
8-1
8-2
8-3
8-8
..,T_-,--,
CONTENTS
Chapter Page
9 FINANCIAL PLANNING CONCEPTS
9.1 Sources of Funds 9-1
9.2 Proportional Allocations Between Sources 9-5
r-9.3 Allocated Financial Responsibility for
Participants 9-7
9.4 Costs for Reserve Sharing and
Firm Transfer 9-11
9.5 Financial Plans for Future Staged
Development 9-12
9.6 References 9-13
,.....,
10 INSTITUTIONAL CONSIDERATIONS
,... 10.1 Present Institutions and Rail belt
I Utilities 10-1
10.2 Alaskan Interconnected Utilities 10-3
r"" 10.3 References 10-5
!"""'
APPENDIXES
/""""
Appendix
'*""" A NOTES ON FUTURE USE OF ENERGY IN ALASKA A-1
!"""' B TRANSMISSION LINE COSTS ANALYSIS PROGRAM (TLCAP)
B.1 General Description B-1 -8.2 Computer Program Applications for
Optimum Transmission Line Costs B-2
!"""' B.3 TLCAP Sample Outputs B-6
r-. c MULTI-AREA RELIABILITY PROGRAM (MAREL) C-1
i i i
CONTENTS
Appendix Page
D DATA AND COST ESTIMATES FOR TRANSMISSION
INTERTIE AND GENERATING PLANTS D-1
D.l Data and Cost Estimates for Trans-
mission Intertie D-1
D.2 Data and Cost Estimates for Gene-
rat 1 ng Plants D-13
D.3 Data and Cost Estimates for Supply
of Construction Power to Upper
Susitna Project Sites D-24
D.4 Alternative Generating Plant Fuel Costs D-38
E TRANSMISSION LINE ECONOMIC ANALYSIS PROGRAM E-1
F TRANSMISSION LINE FINANCIAL ANALYSIS F-1
iv
-i
r
r
-'
Table
3-1
3-2
3-3
3-4
3-5
3-6
5-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
TABLES
Anchorage-Cook Inlet Area Utility
Forecasts and Extrapolated Projections
Fairbanks-Tanana Valley Area Utility
Forecasts and Extrapolated Pojections
Combined Utility Forecasts for
Railbelt Area
Load Forecast for Upper Susitna Proj-
ect by Alaska Power Administration
Load Demand Forecasts for Railbelt Area to
Determine Statistical Average
Forecast
Peak Load Demand Forecasts for Railbelt Area
with Range Limits for Sensitivity Analysis
Conductor Size Selection Criteria
Existing Generation Sources, Anchorage-
Cook Inlet Area
Existing Generation Sources, Fairbanks-
Tanana Valley Area
Load Model Data, Anchorage Area, Probable
Load Forecast Case
Load Model Data, Fairbanks Area, Probable
Load Forecast Case
Load Model Data, Anchorage Area, Low Load
Forecast Case
Load Model Data, Fairbanks Area, Low
Load Forecast Case
Loss of Load Probability Index for
Study Cases IA and ID, Probable Load
Forecast Case
Loss of Load Probability Index for Study
Case IB, Probable Load Forecast Case
v
Page
3-11
3-12
3-13
3-14
3-16
3-17·
5-6
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
Table
6-9
6-10
6-11
6-12
7-1
7-2
7-3
7-4
7-5
8-1 to 8-6x
9-1
9-2
9-3A and 9-3B
A-1
TABLES (Continued)
Loss of Load Probability Index for Study
Case IIA, Probable Load Forecast Case
Loss of Load Probability Index for Study
Case IA and ID, Low Load Forecast Case
Loss of Load Probability Index for Case IB,
Low Load Forecast Case
Loss of Load Probability Index for Case IC,
Probable Load Forecast Case
Cost Summary for Intertie Facilities
Present Worth of Intertie Line Losses,
1984-1997 Study Period
Cost Summary for Generating Facilities
Summary of Alternative Generating Plant
Fuel Costs
Alternative Costs for Construction
Power Supply to Watana and Devil
Canyon Hydropower Sites during Con-
struction of Upper Susitna Project
Differential Discounted Value of Base
Year (1979) Costs
Alternative Disbursements of Capital
Investment for Generation Expansion
Allocation of Total Project Costs
Between Participants to Alaskan
Intertie Agreement
Allocated Costs for Reserve Capacity
Sharing and Firm Power Transfer
MEA Statistical Summary -Past,
Present and Future
vi
Page
6-22
6-23
6-24
6-25
7-10
7-11
7-12
p:.--:.;o".,
7-13
7-14
8-9 to 8-21
9-14
9-15
9-16 and 9-17
A-4
-
r
-I
r I
Figure
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
4-2
4-3
5-l
5-2
FIGURES
Comparative Net Energy Generation Fore-
cast for Combined Utilities and Indus-
trial Load -Railbelt Area
Projected Range of Net Energy Genera-
tion Forecast for Combined Utilities
and Industrial Load, Railbelt Area
Projected Range of Net Energy Gener-
ation Forecasts for Combined Util-
ities and Industrial Load, Anchorage-
Cook Inlet Area and Fairbanks-Tanana
Valley Area
Comparative Annual Peak Demand Fore-
casts for Combined Utilities and
Industrial Load, Railbelt Area
Projected Range of Annual Peak Demand
Forecasts for Combined Utilities and
Industrial Load, Railbelt Area
Annual Peak Demand Forecasts for Com-
bined Utilities and Industrial Load,
Anchorage-Cook Inlet Area and Fairbanks-
Tanana Valley Area
Peak Load Demand Forecast with Range Limits
for Sensitivity Analysis~ Anchorage-Cook
Inlet and Fairbanks-Tanana Valley Area Loads
Peak Load Demand Forecast with Range Limits
for Sensitivity Analysis~ Railbelt Area Loads
Nenana-Fairbanks-Tanana Transmission
System
Anchorage-Matanuska-Susitna-Glenallen-
Valdez Transmssion System
Cook Inlet-Kenai Peninsula Transmission
System
230 kV Tangent Tower
345 kV Tangent Tower
vii
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
4-12
4-13
4-14
5-7
5-8
Figure
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
7-1
FIGURES (Continued)
Non-Coincident 1975 Peak Demands,
Anchorage and Fairbanks Areas
Independent System Expansion Plans,
Anchorage and Fairbanks Areas, Probable
Load Forecast Case
Interconnected System Expansion Plan,
Anchorage-Fairbanks Area without
Susitna Project, Probable Load Forecast
Case, Case IA and ID
Interconnected System Expansion Plan,
Anchorage-Fairbanks Area with Firm
Power Transfer, Probable Load Forecast Case,
Case IB
Interconnected System Expansion Plan,
Anchorage-Fairbanks Area with Upper
Susitna Project, Probable Load Expansion Case,
Case II
Independent System Expansion Plan, Anchorage-
Fairbanks Area, Low Load Forecast Case
Interconnected System Expansion Plan,
Anchorage-Fairbanks Area, Low Load
Forecast Case, Case IA and ID
Interconnected System Expansion Plan,
Anchorage-Fairbanks Area, Low Load
Forecast Case with Firm Power Transfer,
Case IB
Case I -Alternative A and B
Case I -Alternative C
Case I -Alternative 0
Case II
Construction Plan for Upper Susitna Project
viii
Page
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
7-15
r
r
-
-
Figure
B-1
D-1 and D-2
D-3
D-4
FIGURES {Continued)
Transmission Line Cost Analysis Program
Methodology
Nomogram Calculates Economy of Scale in
Power Plants
Estimates of Future National Gas Prices
Estimates of Future Coal Prices
ix
Page
B-4
D-45 and D-46
D-47
D-48
ac alternating current
ACF annual cost of fuel
ACSR aluminium conductor, steel reinforced
AlA Alaskan Intertie Agr~ement
AML&P Anchorage Municipal Light
and Power Company
API\ Alaska Power 1\uthority
A.R.R. Alaska Railroad
AVF avcraye value factor
bpd barrels per day
BTU British thermal units
C[/\ Chugilch Electric Association, Inc.
CFC Cooperative Finilnce Corporation
de direct current
DOE U.S. Department of Energy
EEl Edison Electric Institute
FFB Federal Finance Bank
FGD flue gas desulphurization
FOfl forced outage hours
FMUS Fairbanks Municipal Utility System
ft feet
gal ga 11 on
GVEA Golden Valley Electric Association, Inc.
GWh gigawatt-hours (million kilowatt-hours)
HEA Homer Electric Association, Inc.
IIVIJC high voltage, direct current
IArAT Inter·ior Alaska Energy Analysis Team
IECO International Engineering Company, Inc.
IEEE Institute of Electrical and
Electronics Engineers
I SER
kcmi 1
kV
Institute for Social and
Economic Research
thousand circular mils
kilovolts
kVa kilovolt-amperes
kW kilowatts
kWh kilowatt-hours
ABREVIATIONS
X
LNG liquid nitrate gas
LOLP loss of load probability
MAREL Multi-Area Reliability, a computer
program developed by PTI
MBTU Million British thermal unit
MEA
MVA
MW
NESC
NOx
O&M
ORV
PCF
P.l.
PRS
PTI
REA
RI
RWRA
SIC
SCGT
Sll
Matanuska Electrical Association, Inc.
megavolt-amperes
megawatts
National Electrical Safety Committee
nitrous oxide
operations and maintenance
off-road vehicle
Plant capacity factor
point of intersection
power requirements studies
Power Technology, Inc.
Rural Electrification Administration
radio interference
Robert W. Retherford Associates, Inc.
single circuit
simple cycle combustion turbine
surge impedance loading
TLCAP Transmission line Cost Analysis
Program, a computer program developed
by IECO
TLEAP Transmission line Economic Analysis
Program, a computer program developed
by I ECO
TLFAP Transmission line Financial Analysis
Program, a computer program developed
by IECO
tpy tons per year
TVI television interference
USA
USGS
VAR
United States of America
United States Geological Survey
volt-amperes reactive
CHAPTER 1
INTRODUCTION
CHAPTER 1
INTRODUCTION
This report presents a determination of the economic feasibility for a
transmission line interconnection between the utility systems of the
Anchorage and Fairbanks areas. It includes an objective evaluation of
the specific conditions under which the intertie is economically feasi-
ble. An interconnection between the two previously independent power
systems will reduce total installed generation reserve capacity, provide
means for the interchange of energy, reduce spinning reserve require-
ments, and provide the means for optimum economic dispatch of generating
plants on the interconnected system basis. The later integration of the
Upper Susitna Hydropower Project into the interconnected Anchorage-Fairbanks
power system would serve to increase the benefits already available from
early operation of the intertie. The work described in this report was
performed under the authority of the 26 October 1978 contract between the
Alaska Power Authority and the joint-venture of International Engineering
Company, Inc. (IECO) and Robert W. Retherford Associates (RWRA).
Alternative system expansion plans were developed and analyzed during
this study for each of the following areas:
• Independent Anchorage area
• Independent Fairbanks area
•
•
Interconnected Anchorage-Fairbanks area
(generation reserve sharing option)
Interconnected Anchorage-Fairbanks area
(generation reserve sharing and firm power transfer option)
1 Interconnected Anchorage-Fairbanks area (with inclusion of
the Upper Susitna Hydropower Project)
1 - 1
This study confirms the economic feasibility of the Anchorage-Fairbanks
transmission line interconnection as well as the possibility of an early
implementation date for the project, prior to longer-range development
of the Upper Susitna Hydropower Project. This study also establishes
additional intertie benefits from the supply of construction power to
the sites of the Upper Susitna Hydropower Project. It also evaluated
potential benefits from firm power supply to Matanuska Electric Associa-
tion•s system at the intermediate Palmer substation of the intertie.
Preliminary financial and management plans for the implementation of the
project were developed and are presented in the last two chapters of
this report.
An Intertie Advisory Committee, composed of managers of Railbelt area
utilities with the chairmanship of the Executive Director of the Alaska
Power Authority, was formed. During the performance of this study three
Intertie Advisory Committee meetings were held (4 December 1978, 8 Jan-
uary 1979, 14 February 1979, and 18 May 1979) to review factors related
to the intertie and to discuss preliminary findings of this study. The
following Railbelt utilities were represented on the Intertie Advisory
Committee:
• Anchorage Municipal light & Power (AML&P)
• Copper Valley Electric Association (CVEA)
• Chugach Electric Association (CEA)
• Fairbanks Municipal Utility System (FMUS)
• Golden Valley Electric Association (GVEA)
• Homer Electric Association (HEA)
• Matanuska Electric Association (MEA)
The Consultants wish to acknowledge the valuable information, comments,
and support received from the managers and engineers of the Railbelt
utilities, and the Alaska Power Administration during the performance of
this economic feasibility study.
1 - 2
,.,.,-.
CHAPTER 2
SUMMARY AND CONCLUSIONS
-\
CHAPTER 2
SUMMARY AND CONCLUSIONS
The purpose of this economic feasibility study is to determine the
conditions under which a transmission interconnection between the util-
ity systems of Anchorage and Fairbanks would be economically feasible.
Following are the important aspects of work performed and the conclu-
sions of this study.
2.1 STUDY SUMMARY
A. Load Forecasts for Railbelt Area
Load forecast is the basis for system expansion planning. The most re-
cent load forecasts for the ut·ility servite areas in the Railbelt area
were examined to establish the basis for projection of future trends.
The sum of the most recent forecasts made by the individual utilities in
the area has been selected as the upper growth l"imit to the forecast
ranges for the Railbelt area. The median forecast prepared by the
Alaska Power Administration, as a revision to the Susitna Project Market
Study, was selected as the lower limit. The statistical average of
these two forecasts was calculated and used in this study as the
11 probable 11 forecast.
The long-range 11 probable 11 load demand projections in MW for the load
areas are:
1980
1985
1990
1995
2000
Anchorage
573
977
1581
2402
3446
2 - 1
Fairbanks
153
231
338
477
663
Combined Area
749
1194
1896
2842
4054
B. Selection of Intertie Route
Alternative transmission corridors considered in previous studies were
analyzed as to access-ibility, cost of right-of-way, transmission line
design, and environmental and aesthetic considerations. The preferred
corridor described in the Susitna Report, along the Parks Highway from
Anchorage to Fairbanks, was selected for the intertie route. It was
selected because of its favorable length, accessibility, and environ-
mental considerations. This corridor was further defined by preparing
preliminary layouts. Field trips to important sites along this 323-mile
line route were made to confirm the suitability at this corridor for the
intertie.
C. Transmission Line Design
To provide a basis for intertie cost estimation, conceptual designs for
230-kV and 345-kV transmission lines and substations were made. The
transmission Line Cost Analysis Program (TLCAP), a computer program de-
veloped by IECO, was used to select optimum designs. The results fa-
vored relatively long spans (1300 feet) and high-strength conductors.
Tubular steel, guyed towers and pile-type foundations were selected for
both the 230-kV and 345-kV lines as being well suited for Alaska condi-
tions.
D. System Expansion Plans
To determine the intertie 1 s economic feasibility, alternative system ex-
pansion plans were prepared with and without the Anchorage-Fairbanks inter-
tie. System expansion plans were developed to meet both the 11 probable 11
and 11 low" load demand projections.
2 - 2
~~~-·
r
!
r
To assume a nearly constant level of power generation reliability (LOLP
Index) for all system expansion plans, a multi-area reliability (MAREL)
computer study was performed. Annual load models for both areas were
developed. The load models indicate that there is little diversity
between the loads in the Anchorage and Fairbanks areas.
The 1984-1997 study period was selected to best suit system requirements.
The earliest year when the interti~ can be operational is 1984. Based on
optimistic assumptions, the last generating unit of Upper Susitna Hydro-
power Project will be on-line in January 1997.
E. Facility Cost Estimates
Cost estimates were developed for alternative system facilities to allow
for economic comparisons. All costs were adjusted to January 1979 levels.
Transmission line costs were calculated by using the TLCAP program. The
same computer program calculated the line losses.
To provide a means for optimum economic dispatch of generating units on
an interconnected system basis, costs for control and communication sys-
tems were included in the intertie cost estimates. Cost estimates for
new generating plant facilities (gas-turbine units and coal-fired steam
plants) were based on cost information in the Power Supply Study -1978
report to GVEA, prepared by Stanley Consultants. Appropriate Alaskan
construction cost location adjustment factors were applied to derive spe-
cific site cost estimates.
Construction power costs for the proposed Susitna Project were calcu-
lated. The results indicate a clear advantage for utilizing the intertie
as a source of construction power.
2 - 3
F. Economic Feasibility Analysis
The economic feasibility analysis of the intertie was performed by
discounting two cash flows (independent and interconnected systems) to a
common year and then measuring the project benefits by the net present
worth value. Facility costs for those new generating plants not af-
fected by the introduction of the intertie were excluded from the anal-
ysis. The Transmission Line Economic Analysis Program (TLEAP), a com-
puter program, was used to analyze the sensitivity of different escala-
tion and discount rates on the capital costs of various alternatives.
For principal investigations to establish definite feasibility analysis
a 10% rate was used to discount cash flow in constant 1979 do 11 ars.
G. Financial and Institutional Planning
A preliminary financial plan for implementation of the transmission
intertie on a progressive basis was developed. The probable composition
of institutions and participating utilities for ownership, management,
and operating responsibilities is reviewed in this report, and present
arrangements and possible future requirements are discussed.
2.2 CONCLUSIONS
The study shows that:
• The 230-kV single circuit intertie, having a 130-MW line load-
ing capability (Case IA), is economically feasible in 1984,
based only on benefits due to reduction of generation reserve
plant capacity (reserve sharing). The net present-worth or
the benefits are $12,475,000. The benefits become marginal
($945,000) if intertie costs are increased by 25 percent. In
the case of 11 low 11 load forecast scenario the benefits are $2,704,000.
2 - 4
,.,....
I
-
-
• An increase in benefits is obtained if the 230-kV single circuit
intertie {double circuit after 1992), in addition to generation
reserve sharing, includes firm power transfer capability {Case IB).
The benefits are $24,054,000 or an increase of 93 percent over Case IA.
Additional benefits due to supply of construction power to the Upper
Susitna Project sites are $5,579,000.
• The 345-kV single circuit intertie {Case IC) is not economically
feasible in 1984 based on the two scenarios developed in this
study: generation reserve sharing only and reserve sharing plus
firm power transfer capability. In the second scenario the results
are negative ($-426,000). Further studies are recommended to pursue
the economic feasibility of the 345-kV intertie because from technical
point of view the 345-kV voltage is more appropriate for the trans-
mission distance between Anchorage and Fairbanks.
• The 230-kV single circuit intertie with intermediate substa-
tions at Palmer and Healy {Case ID) is economically feasible in
1984. The benefits are $20,344,000 including the power sup-
plies to MEA system to Palmer and the proposed Upper Susitna
Hydropower Project sites. If i nterti e costs are increased by
25 percent the benefits become $11,656,000.
• The fully integrated interconnected system operation generates
additional benefits which are not quantified in this study. These
benefits could be due to:
Decrease in spinning reserve requirements by reducing the on-line
plant capacity for the combined system.
Coordination of maintenance scheduling which would improve
combined system security and provide cost savings.
Economies from optimum dispatch of generating units on the
interconnected system basis. It is definitely recommended
that a multi-area production costing simulation study be
perfonned to establish these additional benefits.
2 - 5
• Expansion plans for the interconnected system with the proposed
Upper Susitna Project were developed to detennine the effect of
this project on the interconnected system expansion plans, the
displacement of thermal generating units, and intertie transmis-
sion requirements with Susitna Project.
e If an early 230-kV transmission intertie is constructed in 1984,
due considerations should be given for constructing the Anchorage-
Susitna portion of this intertie for 345-kV and operating it tem-
porarily at 230-kV.
' The average value of energy transfer cost (1984-2015) thru the
230-kV intertie is 8 Mills/kWh at 55 percent load factor when
financed by 40/60% REA/FFB loan package and municipal bonds
issued by Anchorage and Fairbanks.
• This Intertie Feasibility Study is only a part of the over-all
power system expansion plans for the Railbelt area. Further
studies will be required to establish definitive characteristics
for this transmission intertie. These studies should be closely
coordinated with the future expansion plans of all utilities in
the Railbelt area.
2 - 6
CHAPTER 3
LOAD FORECASTS FOR RAILBELT AREA
3.1 ENERGY AND DEMAND FORECAST RANGE
CHAPTER 3
LOAD FORECASTS FOR RAILBELT AREA
The basis for establishing a range of future load projections for the
Anchorage -Cook Inlet and Fairbanks -Tanana Valley areas, together with
a combined forecast for an interconnected system service area in the
Railbelt, was obtained from an examination of previous forecastsl1 com-
pared in the Battelle Report of March 1978 (Ref. 1). These were examined
in relation to a combination of the most recent utility forecasts pre-
pared for the REA and an August 1978 revision of previous forecasts for
the Upper Susitna Project, issued by the Alaska Power Administration in
December 1975 (Ref. 2).
A. Range of Energy Consumption Resulting from Battelle Study
The Battelle study provides a compendium of previous forecasts and an
analysis of assumptions intrinsic to their projections. It attempts to
eliminate low probability scenarios and select a range of utility and
industrial loads for the intertied Railbelt system. The following summary
of annual energy consumption, excluding national defense and non-
interconnected users, represents the definitive results of the Battelle
study:
Annual Consumption-GWh
Upper Range Limit
Interval Growth Rate
Lower Range Limit
Interval Growth Rate
1974
1,600
1,600
1980
3,400
13.4% 15.3%
2,600
8.4% 9.6%
l/ See Section 3.3 for references used in this chapter.
3 - 1
1990 2000
10,800 22,500
10.2%
8,500 16,000
4.0%
Battelle selected this energy consumption range after carefully evaluating
the methodology used in several previous forecasts and relevant assumptions
pertaining to economic factors. Two load studies were deemed most appro-
priate to future load projections for the Railbelt. They are, in order
of preference, the Upper Susitna Project Power Market Study by the Alaska
Power Administration, and the report Electric Power in Alaska, 1976-1995
(Ref 3.) by the Institute for Social and Economic Research (ISER) of the
University of Alaska.
1. Forecasts for Anchorage -Cook Inlet Area -From the several
load forecasts corresponding to various growth scenarios of the ISER
study, Batte 11 e se 1 ected Forecasts 2 and 4 as most appropriate for the
Anchorage and Cook Inlet area. These forecasts assume limited petroleum
development, which was considered to be the most likely prospect. The
assumptions underlying the scenario for limited petroleum development
are:
1 Petroleum Production will be 2 million bpd in 1980, and 3.6
million in 1990.
1 A natural gas pipeline will be constructed from Prudhoe Bay
through Canada.
1 An LNG plant for natural gas from the Gulf of Alaska will be
constructed.
The assumptions regarding electrical energy consumption are:
•
•
Sector
Residential
Commercial/Industrial
Case 2 Case 4
Moderate Electrification No Growth
Growth as Usual
3 - 2
Minimum
Electrification
-
r
,f"'
The ISER study did not include new industrial consumption in forecasts,
other than expansion of existing loads served by utilities. However, it
did relate utility forecasts to economic scenarios, in which future energy
consumption was quantitatively projected according to specified assumptions
of petroleum development, population, aggregate income, saturation levels,
and average usage per customer.
In 1975 the Alaska Power Administration prepared forecasts for the po-
tential power market of the Upper Susitna Project. The forecasts con-
tained projections of industrial load for existing and possible future
installations. Battelle modified these projections to include the follow-
ing assumptions:
• In addition to gradual expansion of existing refinery capacity,
a new 150,000-bpd refinery will be built by 1983.
An aluminum smelter with a capacity of 300,000 tpy will be
constructed, to be on-line by 1985.
• A nuclear fuel enrichment plant, included in previous load
projections, was deleted from future industrial load.
Industrial development in the interior region was assumed to
be excluded from the load area of an intertied Railbelt system.
A summary of industrial facilities included in the Battelle forecast for
the Anchorage and Cook Inlet area is as follows:
Existing Facilities
Chemical Plant
LNG Plant
Refinery
T-imber Mills
New Facilities
Aluminum Smelter
LNG Plant
Refinery
T-imber Mills
Coal Gasification Plant
Mining and Mineral Processing Plants
New City
3 - 3
2. Forecasts for Fairbanks -Tanana Valley Area - A similar evalua-
tion by Battelle defined the most probable forecasts for the Fairbanks
and Tanana Valley area. It assumed that industrial development in the
interior region will consist largely of self-supplied mining operations
in remote areas. Thus, load growth will be attributable only to utility
customers in the service areas of the Fairbanks Municipal Utilities
System (FMUS) and the Golden Valley Electric Association, Inc. (GVEA).
In the judgment of Battelle, the most likely consumption range for the
Fairbanks area is bounded by the mid-range projections of the Upper
Susitna Market Study, with mid-range forecasts prepared by the Interior
Alaska Energy Analysis Team (IAEAT) (Ref. 4) as the upper bound and the
ISER Case 4 as the lower bound.
3. Combined Forecasts for the Railbelt-The Battelle energy and
demand forecast range for the combined utility and industrial load of
the Railbelt, encompassing the Anchorage -Cook Inlet and Fairbanks -
Tanana Valley areas, is shown graphically on Figures 3-1 and 3-4, re-
spectively. These are intended to serve as background comparisons with
combined utility forecasts and the revised projections of the Alaska
Power Administration for the potential market of the Upper Susitna Project.
B. Forecasts by Utilities and the Alaska Power Administration
The most recent Power Requirements Studies (PRS) of the REA utilities
(Ref. 5) in the Anchorage and Fairbanks areas were obtained, together
with the most probable load forecasts, as projected for the Anchorage
Municipal Light and Power Company (AML&P) and the Fairbanks Municipal
Utilities System (FMUS).
Tables 3-1 and 3-2 provide tabulations of utility forecasts and extrapo-
lated projections to the horizon year 2000, for the Anchorage -Cook
Inlet area and the Fairbanks -Tanana Valley area, respectively. The
Valdez -Copper Valley area is not included in the forecasts for the
3 - 4
r
r
r.::,l
I
~
I
r
,....
' tf
Railbelt, as these load areas are assumed not to be interconnected with
the intertied Railbelt system until after the completion of the Upper
Susitna Project. As the PRS provided load projections for a base year
and at two 5-year intervals, interpolations were made on the basis of
assumed compound growth between reported values. On the further assump-
tion that growth rates will decline progressively to the horizon year,
extrapolations were made of net energy generation with growth rates
declining from reported values at 5-year intervals to 2000. These
growth rates were applied on the assumption that there will be no abrupt
transition to low growth rates. Rather, growth will diminish in gradual
steps as markets are saturated and the effects of conservation and price
elasticity reflect in future energy consumption levels. Reported load
factors were interpolated for intermediate years and the trend extrapo-
lated to the horizon year to obtain projections of annual peak demand.
The utility forecasts were combined for the Anchorage -Cook Inlet area,
the Fairbanks -Tanana Valley area, and the total Railbelt. Table 3-3
provides tabulations of net energy generation, load factor, and annual
peak diversified demand. It is obtained by the application of coinci-
dence factors to the sum of individual ~;~tility peak demands. These load
forecasts are shown on Figures 3-1 through 3-6, in comparison with load
projections prepared in August 1978 by the Alaska Power Administration
for the Upper Susitna Project, as revisions to previous power market
forecasts evaluated as part of the Battelle study. A summary of the
Alaska Power Administration load forecasts is given in Table 3-4. These
forecasts include only utility and industrial load projections on the
assumption that national defense installations will not be supplied as
part of the interconnected system load. Since the Battelle forecasts
also excluded load forecasts for national defense installations, direct
comparisons can be made. The range of Alaska Power Administration load
forecasts for peak
% Differential
from median:
demand and annual energy was
1980 1985
High + 8 + 21
Low - 8 -18
3 - 5
as follows:
1990 1995 2000
+ 31 + 41 + 54
-27 -33 -38
The range of load forecasts exhibited this diverging spread from the 1977
base-year load level. The industrial load projected by Battelle was
included in the Alaska Power Administration forecast range on a selective
basis. The differential between the 11 high'' and ''extra high 11 forecasts
is an additional 280 MW of load, representing an aluminum smelter. The
11 lOW 11 forecast excludes the load projected for the New City.
C. Comparison and Selection of Forecast Range
The forecasts of net energy generation for the Railbelt are shown on
Figure 3-1. Curve 1 represents the combination of the most recent
forecasts for municipal and REA utilities, as presented in Tables 3-1,
3-2, and 3-3. The forecast aligns closely up to 1990 with the upper
bound of the Battelle forecast range. Beyond 1990 the divergence arises
from the different assumptions made in regard to growth rates in the
1990-2000 period. The upper bound of the Battelle range exhibits an
abrupt change of growth rate, from 15.3% to 10.2%, applied to total
energy in the Railbelt, while the combined utilities forecast exhibits a
more gradual transition to lower growth rates. Although many economic
factors will contribute to lower overall growth rates in energy consump-
tio, a reasonable approach to establishing an upper limit has been
taken, in that individual utility forecasts were assumed to decline
without abrupt change. This assumption is based on the fairly constant
percentage expenditure from disposable income for energy needs, as
determined by the study of future consumption patterns in Alaskan service
areas (Ref. 6), the results of which are given in an extract from the
RWRA report (Ref. 7) presented in Appendix A.
Accordingly, the combined utilities forecast has been selected as the
upper limit to the possible range of total energy forecasts for the
Railbelt. The median forecast prepared by the Alaska Power Adminis-
tration, as a revision to the Susitna Project Market Study, has been
selected as the lower limit to the forecast range for the Railbelt.
This recently prepared forecast exhibits lower growth than the 1975
3 -6
r
1
r
\
r
I
r
r ~!
-I
r"
I
forecast for the Susitna Project, and represents a prudent choice for a
conservative growth scenario.
Figures 3-2 and 3-3 show the relationship between.the combined utilities
forecast and the range of forecasts prepared by the Alaska Power Adminis-
tration. The effect of the aluminum smelter load can be observed as the
differential between curves 2C and 3C on Figure 3-2, and curves 2A and
3A on Figure 3-3. The median forecast also excludes the aluminum smelter
load but provides for a reasonable realization of the industrial potential
in the Anchorage area. In setting the lower limit of the forecast range
in the context of the considerable industrial growth potential of this
area of Alaska, it is thought that the selected forecast range will
provide a good test of the economic feasibility of establishing an
interconnection in the Railbelt.
A similar comparison of forecast demand can be made by reference to Fig-
ures 3-4, 3-5, and 3-6. The combined utilities demand forecast is below
the upper bound of the Battelle range until after 1985 and aligns in
fairly close proximity until 1990. Beyond 1990 divergence occurs based
upon the assumption discussed previously in relation to energy growth.
The median demand forecast for the Susitna Project, prepared by the Alaska
Power Administration, exhibits a growth characteristic that roughly par-
allels the lower bound of the Battelle range between 1985 and 2000. As
the low growth limit to the range of demand beyond 1981 selected for the
interconnection study, it represents a moderately conservative view of
overall growth potential.
Prior to 1981, the short-range combined utilities demand forecast is below
the median forecast for the Susitna Project, approximately at Battelle mid-
range. The demand forecasts for the Susitna Project may be observed in
relation to the combined utilities demand forecasts of Figures 3-5 and
3-6. The selected range of demand forecasts represents a moderate to high
expectation of a continued growth of the Railbelt economy through the end
of the century, this being accentuated by the interconnection of utility
systems in the area.
3 - 7
3.2 DEMAND FORECASTS FOR GENERATION PLANNING
The range exhibited by load forecasts for the Railbelt Area is consider-
able. Therefore, it remains to select definitive demand forecasts for
generation expansion planning that are a reasonable representation of
anticipated load growth under projected economic conditions.
A. Selection of Peak Load Demand Forecasts
The combined utilities forecast is appropriate to a high growth scenario
that may not be possible under future economic constraints and prevail-
ing trends towards greater conservation. The median forecast by the
Alaska Power Administration does not include the entire industrial load
potential that could be realized by a steady commitment towards economic
growth in the State. It also specifically excludes the possibility of
development of the aluminum smelter in the Anchorage area.
The selection of the statistical average forecasts, given in Table 3-5,
for peak load demand is consistent with the moderate to high expectation
of continued growth in the Railbelt economy. The natural resources of
Alaska, particularly oil and gas, will largely determine the extent of
future growth possible within the State. A steady pressure for addi-
tional domestic oil and gas supplies for the lower forty-eight will be
engendered by the continuing energy crisis within the United States.
The impact of additional exploitation of the North Slope on the State
economy will be reflected in continued growth within the Railbelt.
Thus, the conditions are present to ensure the realization of optimistic
expectations for moderate to high growth of load demand.
B. Forecast Range for Sensitivity Analysis
In order to determine the effect of load growth on the economic feasi-
bility of the Anchorage-Fairbanks Intertie, a suitable range of load
growth must be established for sensitivity analysis.
3 - 8
r
i
r
r
r
The uncertainty associated with a load forecast increases with time, so
the range of demand should also increase with time. The values given in
Table 3-6 correspond to a range of load demand that steadily increases
through time from a bandwidth of + 1% in 1979 to + 21% in 2000.
The long-range load projections for the Anchorage-Cook Inlet and Fairbanks-
Tanana Valley areas are shown on Figure 3-7, with their corresponding
range limits. The diversified demand for the combined areas of the Rail-
belt is given on Figure 3-8, the peak load rising to approximately 4000 MW
in the year 2000.
3 - 9
3.3 REFERENCES
1. Battelle Pacific Northwest Laboratories, Alaska Electric Power:
An Analysis of Future Requirements and Supply Alternatives for the
Railbelt Region, March 1978.
2. U.S. Department of the Interior, Alaska Power Administration, ~
Susitna River Hydroelectric Studies, Report on Markets for Project
Power, December 1975.
3. University of Alaska, Institute for Social and Economic Research,
Electric Power in Alaska, 1976-1995, August 1976.
4. Interior Alaska Energy Analysis Team, Report of Findings and Recommenda-
tions, June 1977.
5. Rural Electrification Association, Power Requirements Study for:
Alaska 2 -Matanuska Electric Association, Inc., May 1978
Alaska 5 -Kenai-Homer Electric Association, Inc., May 1978
Alaska 6-Golden Valley Electric Association, Inc., May 1976
Alaska 8 -Chugach Electric Association, Inc., May 1976
Alaska 18 -Copper Valley Electric Association, Inc., May 1977.
6. E. 0. Bracken, Alaska Department of Commerce and Economic Development,
Power Demand Estimators, Summary and Assumptions for the Alaska
Situation, June 1977.
7. Robert W. Retherford Associates, System Planning Report, Matanuska
Electric Association, Inc., January 1979.
8. U.S. Department of the Interior, Alaska Power Administration,
A Report of the Technical Advisory Committee on Economic Analysis
and Load Projections, 1974.
9. Federal Power Commission, The 1976 Alaska Power Survey, Vol. 1, 1976. ~·
10. U.S. Army Corps of Engineers, South-central Railbelt Area, Alaska,
Upper Susitna River Basin Interim Feasibility Report, December 1975.
11. U.S. Department of the Interior, Alaska Power Administration, Bradley
Lake Project Power Market Analyses, August 1977.
12. Tippett and Gee, Consulting Engineers, 1976 Power System Study,
Chugach Electric Association, Inc., Anchorage, Alaska, March 1976.
3 -10
]
w
-I-'
] -~--·~. 1
Anchorage Municipal
Light and Power Comoan1
Net Lead Peak
Energy Factor Demand
Year {GWh} _ill_ __D:i!1_
i979 633.6 58.1 124.4
1980 699.4 58.1 137.5
1981 770.6 57.9 151.8
1982 8.47 .3 57.8 167.3
1983 929.6 57.7 183.9
1984 1,017.5 57.€ 201.8
1985 1,110.8 57.4 220.8
1936 1,209.5 57.3 241.1
19!37 1,313.2 57.1 262.5
1:!88 1,421.6 56.9 285.0
1939 1,534.2 56.8 308.5
1990 1,550.5 56.6 333.0
1991 1,769.8 56.4 358.2
1992 1,891.3 56.2 324.1
1993 2,014.4 56.0 410.5
1994 2,138.0 55;8 437.2
1:195 2,244.9 55.6 460.9
!996 2,357.1 55.4 485.7
i997 2,475.0 55.2 511.3
1990 2,598.8 ss.o 533.4
1999 2,728.7 54.8 568.4
·2000 2,865.0 54.6 599.0
Gr-owth ilates:
Repcrtec L ogi st i c Cune 3
"'') ~ 'I ·-~-1 1 ~·1 ern·•·] ~1 .. '1 -~~] r~l
TABLE 3-1
ANCHORAGE -COOK INLET AREA
UTILITY FORECASTS AND EXTRAPOLATED PROJECTIONS
Alaska 2 -Matanuska Alaska 5 -Kenai
Electric Association, Ir.c. Hrnr..er Electric Assoc., Inc. Kenai Cit.z: Light Slstem
Net Load Peak
Energy Factor Demand
{GWhi .J!L (MW)
280.4 47.5 67.4
332.8 47.0 80.8
395.1 45.5 97.0
468.0 56.0 116.1
559.3 45.0 J41.9
668.3 44.5 171.4
7~8.6 44.0 207.2
954.4 43.5 250.5
1,140.0 43.0 302.6
1,322.4 44.0 343.1
1,534.0 45.0 389.1
1,779.4 46.0 441.6
2,064.1 47.0 501.3
2,394.4 43.0 569.4
2 ,705. 7 49.0 630.3
3 /l57 .4 50.0 698.0
3,454.9 51.0 773.3
3,904.0 52.0 857.0
4,411..5 53.0 950.2
4,852.7 St..O 1,025.9
5,337.9 55.0 1,107.9
5,871.7 56.0 1,196.9
13.7% {1977-1982)
19.5~ {i983-1937)
Net Load
Energy Factor
(GWh) _l!L
275.2 55.0
336.6 55.0
411.6 55.0
502.0 55.0
572.3 55.0
652.4 55.0
743.7 55.0
847.9 55.0
967.0 55.0
1,083.0 55.0
1,213.0 55.0
1,358.6 55.0
1,521.6 55.0
1,704.2 55.0
1,874.6 55.0
2,062.1 55.0
2,268.3 55.0
2,495.1 55.0
2,744.6 55.0
2,964.2 55.0
3 ,201. 3 55.0
J,457.4 55.0
22.3t (1977-1982)
14.0~ {1983-1987)
Peak
Demand
(MW}
57.1
69.9
85.4
104.2
118.8
135.4
154.4
176.0
201.0
224.8
251.8
282.0
315.8
353.7
389.1
428.0
470.8
517.9
559.7
615.2
664.4
717.6
Net Load
Energy Factor
(GWh) .J!L
34.4 56.0
37.5 56.0
40.8 56.0
44.4 56_(;
48.1 56.0
52.1 56.0
56.4 56.0
61.1 56.0
66.3 56.0
71.5 56.0
77.0 56.0
83.1 56.0
89.5 56.0
96.5 56.0
103.5 56.0
111.1 56.0
119.2 56.0
127.9 56.0
137.3 56.0
146.9 56.0
157.2 56.0
168.2 56,0
8.8% (1977-1982)
8.3% {!983-1987)
Peak
Demand
~
7.0
7.6
8.3
9.1
9.8
10.6
11.5
12.5
13.5
14.6
15.7
16.9
18.2
19.7
21.1
22.6
24.3
26.1
28.0
29.9
32.0
34.3
-----~] 1
Alaska B -Chugach
Electric Association, Inc.
Net Load Peak
Energy Factor Defoland
{GWh} .J!L {M~l
1,108.9 53,0 238.8
1,283.0 54.0 271.2
1,467.8 54.0 310.3
1,679.1 54.0 355.0
1,920.9 54.0 406.1
2,197.5 54.0 464.5
2,509.0 54.0 530.4
2,810.1 54.0 594,1
3,147.3 54.0 655.3
3,525.0 54.0 745.2
3 ,_948.0 54.0 834.6
4,421.7 55.0 934.7
4,863.9 55.0 1,022.2
5,350.3 55.0 1,131.0
5,885.3 55.0 1,244.1
6 ,473. 9 55.0 1,363.6
7,121.2 55.0 1,505.4
7,69().9 55.0 1,625.8
8,306.2 55.0 1,755.9
8,970.7 55.0 1,900.6
9,688.3 55.0 2,048.1
10,463.4 55.0 2,211.9
15.71 {l977-l9ac)
14.4~-{1931-1985)
----~-------------~-----------------·------------------~--~---------~~----------------------~----------·------------------~-----------------------------~---Projected 5.0% (1995-2000) !6.0% (1933-1992)
13.0% (1993-1997) .w.cn (1998-2ooo)
12.0,; (l'?<A3-:992)
lO.C% (1993· 1997)
B.Dl (1998-2COO)
7.8% (1988-1992)
7.3'1 (1993-1997)
7.0% (1998-2000)
12.G~-(1986-1990)
!0.~ (1991-1995)
S.C~ (1995-2COO)
TABLE 3-2
FAIRBANKS -TANANA VALLEY AREA
UTILITY FORECASTS AND EXTRAPOLATED PROJECTIONS
Fairbanks Municipal Alaska 6-Golden Valley
Utilities S~stem Electric Association~ Inc.
Net Load Peak Net Load Peak
Energy Factor Demand Energy Factor Demand
Year (GWh} {%) {MW} {GWh) {%) {MW)
1979 144.3 50.0 32.9 450.0 46.3 111.0
1980 153.0 50.0 34.9 501.8 46.6 122.9
1981 162.2 50.0 37.0 559.5 46.9 136.2
1982 171.9 50.0 39.2 624.6 47.2 150.9
1983 182.2 50.0 41.6 692.6 47.3 167.1
1984 193.2 50.0 44.1 768.8 47.3 185.5
1985 204.7 50.0 46.7 853.4 47.4 205.5
1986 217.0 50.0 49.5 947.3 47.4 228.1
1987 230.0 50.0 52.5 1,050.0 47.5 252.3
1988 243.9 50.0 55.7 1,155.0 47.5 277.6
1989 258.5 50.0 59.0 1,270.5 47.6 304.7
1990 274.0 50.0 62.6 1,397.6 47.6 335.2
1991 287.7 50.0 65.7 1,537.3 47.7 367.9
1992 302.1 50.0 69.0 1,691.0 47.7 404.7
1993 317.2 50.0 72.4 1,843.2 47.8 440.2
1994 333.0 50.0 76.0 2,009.1 47.8 479.8
1995 349.7 50.0 79.8 2,189.9 47.9 521.0
1996 367.2 50.0 83.8 2,387.0 47.9 568.9
1997 385.5 50.0 88.0 2,601.8 48.0 618.8
1998 404.8 50.0 92.4 2,809.9 48.0 668.3
1999 425.1 50.0 97.1 3,034.7 48.0 721.7
2000 446.3 50.0 101.9 3,277.5 48.0 779.5
Growth Rates:
Reported 6.0% (1978-1990} 11.5% (1977-1982}
11.0% (1983-1987)
------------------------------------------------------------------------Projected 5.0% (1991-2000)
3 -12
10.0% (1988-1992)
9.0% (1993-1997)
8.0% (1998-2000)
~7·
~"'~
1
TABLE 3-3
COMBINED UTILITY FORECASTS FOR RAILBELT AREA
Anchorage Cook -Inlet Fairbanks-Tanana Valle~ Combined Load Areas
Net Load Peak 1 Net Load Peak 2 Net Load Peak 3 Energy Factor Demanc:i=-/ Energy Factor Demand~./ Energy Factor Demancj.:::./
Year (GWh) (%) (~W) (GWh) (%) (MW) (GWh) (%) ( MW)
1979 2,332.5 56.1 475 594.3 47.6 142 2,926.8 55.3 605
1980 2,689.3 56.4 544 654.8 47.9 156 3,344.1 55.6 686
1981 3,085.9 56.2 627 721.7 48.0 171 3,807.6 55.6 782
1982 3,540.8 56.0 722 795.9 48.3 188 4,336.7 55.5 892
1983 4,030.2 55.7 826 874.8 48.3 207 4,905.0 55.3 1,012
1984 4,587.8 55.5 944 962.0 48.3 227 5,549.8 55.2 1,148
1985 5,218.5 55.2 1,079 1,058.1 48.4 250 6,276.6 55.0 1,302
1986 5,883.0 54.9 1,223 1,164.3 48.4 275 7,047.3 54.8 1,468 w 1987 6,633.8 54.6 1,387 1,280.0 48.4 302 7 ,913.8 54.6 1,655
1988 7,423.5 54.7 1,548 1,398.9 48.4 330 8,822.4 54.7 1,840 ...... 1989 8,306.2 54.9 1,728 1,529.0 48.5 360 9,835.2 54.9 2,046 w
1990 9,293.3 55.0 1,928 l ,671.6 48.5 394 10,964.9 55.0 2,276
1991 10,308.9 55.2 2,133 1,825.0 48.5 429 12,133.9 55.2 2,511
1992 11,436.7 55.3 2,360 1,993.1 48.5 469 13,429.8 55.3 2,772
1993 12,583.5 55.5 2,587 2,160.4 48.6 507 14,743.9 55.5 3,032
1994 13,842.5 55.7 2,836 2,342.1 48.6 550 16,184.6 55.7 3,318
1995 15,208.5 55.9 3,105 2,539.6 48.6 596 17,748.1 55.9 3,627
1996 16,575.0 56.1 3,372 2,754.2 48.7 646 19,329.2 56.0 3,938
1997 18,074.6 56.3 3,663 2,987.3 48.7 700 21,061.9 56.2 4,276
1998 19,533.3 56.5 3,947 3,214.7 48.7 753 22,748.0 56.4 4,606
1999 21,113.4 56.8 4,244 3,459.8 48.7 811 24,573.2 56.6 4,954
2000 22,825.7 57.0 4,569 3,723.8 48.7 873 265,49.5 56.8 5,333
Diversified Demand
for Coincidence Factor: 11 0.96 2/ 0.99 II 0.98
1.
TABLE 3-4
Sheet 1 of 2
LOAD FORECAST FOR UPPER SUSITNA PRCAJECT
BY
ALASKA POWER ADMINISTRATION
1977 1980 1985 1990 1995
ANCHORAGE-COOK INLET AREA POWER DEMAND AND ENERGY REQUIREMENTS
(Excluding National Defense)
Peak Demand {MW)
Utility Loads
High 620 1,000 2,150 3,180
Median 424 570 810 1,500 2,045
Low 525 650 1,040 1,320
Industrial Loads
Extra high 32 344 399 541
High 32 64 119 261
Median 25 32 64 119 199
Low 27 59 70 87
Total
Extra high 652 1,344 1,914 2,691
High 652 1,064 1,634 2,411
Median 449 602 874 1,234 1 ,.699
Low 552 709 890 1,127
Annual Energy (GWh)
Utility Loads
High 2,720 4,390 6,630 9,430
Median 1,790 2,500 3,530 4,880 6,570
Low 2,300 2,840 3,590 4,560
Industrial Loads
Extra high 170 1,810 2,100 2,840
High 170 340 625 1,370
Median 70 170 340 630 1,050
Low 141 312 370 460
Total
Extra high 2,890 6,200 8,730 12,270
High 2,890 4,730 7,255 10,800
Median 1,860 2,670 3,870 5,510 7,620 Low 2,441 3,152 3,960 5,020
3 -14
2000
p:J;~.-
r·-· --,
7,240
3,370
1,520
683
403
278
104
1""--',
3,863
3,583
2,323
1,424
13,920 ;w-·, 8,960
5,770
3,590
2,120
1,460
550
17,510
16,040
10,420
6,320
r-
1
l
r I·
'!i
r
-i'
('!""'
i
)'
-I
!"""'
I
2.
3.
TABLE 3-4
Sheet 2 of 2
LOAD FORECAST FOR UPPER SUSITNA PROJECT
BY
ALASKA POWER ADMINISTRATION
1977 1980 1985 1990 1995
FAIRBANKS-TANANA VALLEY AREA POWER DEMAND AND ENERGY REQUIREMENTS
(Excluding National Defense)
Peak Demand (MW}
Uti 1 ity Loads
High 158 244 358 495
Median 119 150 211 281 . 358
Low 142 180 219 258
Annual Energ~ {GWh}
Utility Loads
High 690 1,070 1,570 2,170
Median 483 655 925 1,230 1,570
Low 620 790 960 1,130
COMBINED ANCHORAGE-COOK II~LET AND FAIRBANKS-TANANA VALLEY AREAS
Peak Demand (MW}
Extra high 810 1,588 2,272 3,186
High 810 1,308 1,992 2,906
Median 568 752 1,085 1,515 2,057
Low 694 889 1,109 1,385
Annual Energ~ (GWh}
Extra high 3,580 7,270 10,300 14,440
High 3,580 5,800 8,825 12,970
Median 2,343 3,325 4,795 6,740 9,190
Low 3,061 3,942 4,920 6,150
3 -15
2000 .
685
452
297
3,000
1,980'
1,300
4,548
4,268
2,775
1,721
20,510
19,040
12,400
7,620
Year
1979
1980
1981
1S82
1983
w 1984
1985
I-' 1986 (J) 1927
1988
1989
1990
100" JJl
1992
1993
1994
1995
1996
1oo-JJ I
1998
1999
2000
TABLE 3 - 5
LOAD DEMAND FORECASTS FOR RAILBELT AREA
TO
DETERMINE STATISTICAL AVERAGE FORECAST
Anchorage -Cook Inlet Fairbanks -Tanana Valle~
Alaska Power Statistical Combined Alaska Power Stat1stical Combined
Ut i1 it; es Administration Average Utilities Administration Average
Forecast Median Forecast Forecast ~;edian Forecast
c~~w} Forecast (MW} (MW} (MW) Forecast ( ~~~-~) ( ~1W)
475 546 511 142 139 141
544 602 573 156 150 153
627 648 638 171 161 166
722 698 710 188 172 180
826 752 789 207 184 196
944 810 877 227 197 212
1079 874 977 250 211 231
1223 937 1080 275 223 249
1387 1004 1196 302 237 270
1548 1077 1313 330 251 291
1728 1154 1441 360 265 313
1928 1234 1581 394 281 338
2133 1315 1724 429 295 362
2360 1402 1881 469 310 390
2587 1495 2041 507 325 416
2834 1593 2215 550 342 446
3105 1699 2402 596 358 477
3372 1809 2591 646 375 511
3663 1925 2794 700 393 547
3947 2049 2998 753 412 583
4244 2182 3213 811 432 622
4569 2323 3446 873 452 663
Combined Load Areas
Combined Alaska PoHer Statist ica 1
Ut i1 it i es Administration Aver.oge
Forecast ~led ian Forecc.st
(r!;'li) Forecast (r1W) {r!tl}
605 685 645
686 752 719
782 809 796
892 870 881
1012 936 974
1148 1007 1078
1302 1085 1194
1468 1160 13111
1655 1241 1•:48
1840 1328 1584
2046 1419 1733
2276 1515 1396
2511 1610 2061
2772 1712 2242
3032 1820 2.126
3318 1935 2627
3627 2057 2842
3938 2184 3061
4276 2318 3297
46C6 2461 3534
4954 2614 3734
5333 2755 4054
w
.......
-...J
TABLE 3-6
PEAK LOAD DEMAND FORECASTS FOR RAILBELT AREA
\-J I TH
RANGE LIMITS FOR SENSITIVITY ANALYSIS
Anch~rage -Cook Inlet Fairbanks -Tanana Valle~
Lo wer ?eak Load Upper Lo1~er ?eal-: Load Upper
Rc:nge Jer-:~nd Range Range De r::and Range
Li mit* F orec~st** L i-:-:it Li~it* Fo r ecast** L i r:1 it
Year ~ ~H·-1) . __lGD_ __Gill_ (!·f..l) ~
1379 508 511 514 140 l41 142
1938 570 573 576 151 153 1 55
1931 635 638 641 163 166 169
1982 702 710 718 175 180 185
193 3 765 789 813 188 196 204
1924 832 877 922 202 212 222
198 5 908 977 1046 218 231 244
1936 985 1030 1175 232 249 266
1937 1068 1195 1324 248 270 292
1988 1156 1313 1470 264 291 318
1939 1250 1441 1632 281 313 345
1990 1350 1581 1812 300 338 376
1991 1451 1724 1997 317 362 407
1992 1562 1881 2200 337 390 443
1993 1677 2041 2405 355 416 477
1994 1 800 2215 2630 377 446 515
1995 1933 2402 2871 398 477 556
1995 2070 -2591 3112 420 511 602
1997 2215 2794 3373 444 54 7 650
1998 2365 2998 3631 469 583 697
1999 2525 3213 3900 495 522 749
2000 2697 3446 4195 522 663 804
* Low load forecast case in this study.
** Probable load forecast case in this study.
Combined Loc:d Areas
LOI'Ier Pea~ L0ad Up;Jer
Range :;:;::;" -,d ~a01 g e
Limit* Forecast** L i~it
~ ~ :.\',!) ~
641 615 649
744 749 754
790 70::;. J~ 802
874 831 883
949 974 999
1031 107 2 1125
1121 1194 1267
1212 1314 141 6
1310 1448 1586
1413 1534 1755
1523 1733 1943
1642 !896 2150
1760 2061 2362
1888 2242 2595
2021 2426 2831
2167 262 7 3087
2319 2842 3365
24 76 3051 3646
2644 3297 3950
2820 3534 4248
3004 3724 4564
3203 4054 4905
w
N
(J"J
3: ::;;
0
~
::!: w
0
:.: < w .:>.. _,
<(
::> z z <
1979 1980 1985 1990 1995 2000 FIGURE 3-8
----~-____ ,_. _____ ----· ---· -:--.--·-·--.---------~--~--------i-·-
-i
~ : . . . . f.
f_:_:; ---. ;·
5ooo:--~~~~~~~~~----~-~7-~~~~~==~~~~~~~~~~~~~~~~~~~~~~~~~==~~~~--~-~-
.. -.
40~0-~~-~~-~~~--~~~--~~--~~--~~--~~~~~~~=+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
---······-·--. ---------:
-;-
2000~~----~---------+---~--~----~--~--~---+~c_~~~--~-=~
i -l c:_::-: ~: :.::::-' , -
t ---------.---• --
~ ~~~-~: ~--_: : ~-------· -----i----+----+---+--"'--;...,.,...""'-~-=--;::
. -----'----~-'-+ u--~..:tE--E--;-L--TI·-r··--+-'-t): -'-+;+ -------B----~ -~<:~,=~~-':J~~-~~-!-~~~!:~hf~t~~-=;:~if$*!·:-t+~~~~t~
·[~·>·i -.. : ;__ -~ -· --:
UPPER RANGE LIMIT
PEAK LOAD DE:~. AND {PROBABLE l
LC~ER RANGE LIMIT
PEAK LOAD DEMAND FORECAST
WITH RANGE LIMITS
FOR SENSITIVITY ANALYSIS
RAILBELT .AREA LOADS
"'Tl ......
G"> c:
:;;c
1"1'1
w
I co
· CHAPTER 4
SELECTION OF INTERTIE ROUTE
r
r
,-.
I
~ ..
I
4.1 REVIEW OF EARLIER STUDIES
CHAPTER 4
SELECTION OF INTERTIE ROUTE
A number of studies have considered the electrical interconnection of
the Fairbanks, South Central, and Anchorage areas (Refs. 1-8). The
·susitna Hydroelectric Project Interim Feasibility Report (Ref. 2), here-
after called Susitna Report, reviewed a number of alternative transmission
corridors in considerable depth. None of the studies included a specific
route for a transmission line. The Susitna Report provides an excellent
inventory of topography, geology, soils, vegetation, wildlife, climate,
existing development, land ownership status, existing rights-of-way, and
scenic quality and recreation values by corridor segments of about S-mile
widths.
4.2 SURVEY OF ALTERNATIVE CORRIDORS
Alternative corridors reviewed for this report were those along or near
the Railbelt region between the Anchorage and Fairbanks areas. A recon-
naissance (by USGS Quad 1 s and local knowledge)~of routes connecting the
'~ Railbelt area to Glennallen was also made to provide a basis for estimating
the cost of such a connection at a later date.
4.3 PREFERRED ROUTE FOR TRANSMISSION INTERTIE
The preferred corridor described in the Susitna Report was further de-
fined by making an actual prel·iminary layout of a def·initive route (with
some alternatives) using engineering techniques. This preliminary routing
provides a basis for refining cost estimates, displaying a definitive lo-
cation for use in studying potential environmental impacts, and providing
a specific engineering recommendation for use in right-of-way negotiations.
4 - 1
The preliminary line routing is shown on the accompanying maps, Figures
4-1, 4-2, and 4-3, these being spatially related to the key map on the
inside of the front cover of this report. These routes come from a working
strip map of l" = l mile (USGS Quad 1 s.) on which these preliminary routes
are drawn. The route was plotted by an engineer with nearly 30 years of
experience with Alaskan transmission systems. It was also visually in-
spected throughout much of its length over the Parks Highway from Anchorage
to Fairbanks.
The definitive line route was established within the preferred corridor,
with due regard to the following restraints, insofar as they could be
identified in this preliminary review:
• Avoidance of highway rights-of-way, which are better locations
for distribution lines that will be required to serve homes and
enterprises served by the highway.
• Avoidance of telephone lines, because of electrical interference
problems. (An open-wire telephone circuit exists on the
entire length of the Alaska Railroad right-of-way.)
• Avoidance of aircraft landing and takeoff corridors, including
all lakes of sufficient size to accommodate small floatplanes.
Where lines may cross landing patterns, at least 1/2 mile is
allowed from the end of runways or lakes, so that special de-
signs are not required.
• Avoidance of highly subdivided land areas and dwellings.
1 Avoidance of crossings over developed agricultural lands.
• Selection of routings that provide for minimum visibility from
highways and homes.
4 - 2
/"""'·
i
F""
I
r
•
•
Avoidance of heavily timbered lands .
Selection of routes that provide for minimum changes in grade
as the terrain will allow.
1 Parallel alignments with property lines are favored, if not pre-
cluded by other considerations.
1 Avoidance of sensitive wildlife areas, if practicable, and co-
operation in regard to construction and operating restraints
where lines pass through such areas.
1 Alignments located in reasonable proximity to transportation
corridors (roads, railroads, navigable waterways) so that con-
struction, operation, and maintenance routines are not inordi-
nately difficult.
4.4 FIELD INVESTIGATIONS
Principal engineers of the IECO-RWRA team made field trips by helicopter
and surface transportation to important sites and typical structures of
existing transmission lines in both the Anchorage and Fairbanks areas.
Particular attention was given to lines using designs developed especially
for Alaskan conditions of muskeg swamp, permafrost, and flood plain.
These designs have had more than ten years of successful service, and
are the basis for more recent tubular steel structure designs now being
installed on Alaska projects.
Actual field records of Resident Engineers and Inspectors on Alaska trans-
mission line construction projects were analyzed along with contractor bids
for these projects to provide authoritative basic data on the actual man-
hours, materials use, and dollar costs of completed transmission lines.
4 - 3
4.5 PRELIMINARY ENVIRONMENTAL ASSESSMENT
A. Description of the Environment
1. Point MacKenzie to Talkeetna-The corridor travels north along
the east flank of the Susitna River Valley, an extremely wide and poorly
drained plain. Heavy forests of bottomland spruce and poplar, interspersed
with muskeg and black spruce, are typical. The soils vary from deep,
very poorly drained peat to well-drained gravels and loams, with the well-
drained soils being more abundant. Although permafrost is almost absent
in this lower part of the Susitna Valley, the poorly drained areas are
subject to freezing and heaving in the winter.
A sizeable concentration of moose inhabits the lower Susitna River
Valley. This valley also supports black and brown bear and a moderate
density of water fowl.
The proposed transmission line route generally follows a 11 tractor trai 111
(USGS designation) to three miles northeast of Middle Lake. Here, at
the approach to the Nancy Lake area, an alternate route (A) may be used
to avoid this area. The proposed route (B) is located in marshes and
wetlands, between Papoose Twins and Finger Lakes, across the Little Susitna
River. The corr·idor then travels northward along the east side of Lynx
Lake, Rainbow Lake, and Long Lake where it crosses the Willow River. Here
alternate routes (A) and (B) rejoin and intersect an existing 115-kV MEA
transmission corridor at the Little Willow Junction and a proposed corri-
dor to Anchorage on the east side of Knik Arm. Travelling north, the
corridor crosses several major tributaries of the Susitna River including
Sheep Creek and the Kashwitna River. In this area the terrain becomes
more rolling, and the relative proportion of well-drained soils support-
lng thick poplar-spruce forests is considerably greater than to the south.
The corridor then travels some five miles east of Talkeetna to the Bart-
lett Hills P. I. (point of intersection).
4 - 4
,-
'
r
I
-"-
r
r
<,
2. Talkeetna to Gold Creek-From Bartlett Hills P.I. the corridor
crosses the Talkeetna River near the confluence of the Talkeetna and
Chulitna Rivers, where it follows the west bank of the Chulitna River
at a mean elevation of 600 feet. Where the Chulitna River curves east-
ward, the corridor travels northward, along the Susitna River Valley,
through forested uplands, gradually rising to an elevation of 1000 feet.
The uplands above. the valley support sparser forests, and increasing
amounts of permafrost soils are encountered. At the 1000-foot elevation,
one to three miles east of the Susitna River, the corridor crosses Lane
Cr-eek, MacKenzie Creek, Portage Creek, Deadhorse Creek, and numerous other
small tributaries of the Susitna River. It then crosses Gold Creek and
the Susitna River, 1-1/2 miles east of A.R.R. Mile 265, to the Susitna
Junction, one mile east of A.R.R. Mile 266. At the Susitna Junction, the
proposed Devil Canyon-Watana-Glennallen line meets the corridor.
3. Gold Creek to Glennallen-The corridor parallels the Susitna
River to the proposed Devil Canyon damsite and then travels east to the
proposed Watana damsite. The vegetation in the canyons varies from up-
land spruce-hardwood to alpine tundra. Soils vary from poorly drained
river bottoms to unstable talus. Permafrost occurs in this portion of
the corridor. Some localized moose populations are crossed. The corridor
passes through low lake areas west of Lake Louise until it intersects the
Richardson Highway at Tazlina. From Tazlina the route follows the
Richardson Highway into Glennallen.
4. Gold Creek to Cantwell -The transmission corridor travels north
some 1 to 3 miles east of the Alaska Railroad between elevation 1500 and
2000 feet. The timber density becomes successively less in this area.
This portion of the corridor is a good bear and moose habitat. Shallow
permafrost occurs in this portion. The corridor crosses several major
and minor tributaries to the Chulitna River including Honolulu Creek,
Antimony Creek, Hardage Creek, the East Fork of the Chulitna River, and
the Middle Fork of the Chulitna River. The corridor area is of medium
scenic quality and is not readily accessible, except at the Denali Highway
Crossing.
4 - 5
5. Cantwell to Healy-The corridor rises to the 3200 foot level
along the west side of Reindeer Hills and then descends into the Nenana
River Valley. It follows the east flank of the Nenana River northward
at the 2200 foot level, through sparsely timbered country. This is an
area of high scenic quality especially in the canyons. The terrain varies
from rolling hills and valleys to high passes and sharp ridges. Habitats
of moose, bear, and Dall sheep are traversed. Bedrock is exposed in the
canyons. The corridor crosses several tributaries to the Nenana River
including Slime Creek, Carlo Creek, Yanert Fork, and Montana Creek, and
the Nenana River itself. It also crosses the Alaska Railroad at the
Moody Tunnel, near A.R.R. Mile 354 and the Healy River. The boundary of
Mt. McKinley National Park is on the west flank of the Nenana River.
6. Healy to Ester -The corridor leaves Healy and crosses the Parks
Highway near Dry Creek. It then roughly parallels the west side of the
highway at elevation 1500 feet, crossing several tributaries to the
Nenana River. It crosses the GVEA line 1-1/2 miles north of Bear Creek,
the Alaska Railroad and the Nenana River at A.R.R. l~ile 383, and the Parks
Highway. The route then parallels the GVEA line. The corridor crosses
the Tanana River at the Tanana P.I. and follows the Tanana River flood
plain for several miles until the route again crosses the highway where
it travels on the west side of the Bonanza Creek Experimental Forest.
The route parallels the GVEA right-of-way the rest of the way to Ester.
The Healy to Ester portion of the route passes through some private lands
(mining claims, homesteads, etc.), as well as near the towns of Healy,
Lignite, and Nenana. An archeological site exists near Dry Creek. Portions
of the corridor are heavily forested and provide habitat for moose, caribou,
and bear. Poorly drained areas in this corridor are subject to potential
permafrost degradation and frost heaving.
4 - 6
-
r
!
r
r
B. Environmental Impacts
Construction and maintenance of other Alaskan transmission systems has
shown that most negative environmental impacts caused by a transmission
system can be minimized. Golden Valley Electric Association, Matanuska
Electric Association, and Chugach Electric Association have constructed
and are operating several lines on poor soils and under harsh climatic
conditions. Except for anticipated slight visual impacts, most environ-
mental impacts caused by a transmission system would be far less than
those of many transportation and communication systems. Specific areas
to be impacted are discussed below.
1. Ecosystems -The major positive impact will be on human environ-
ment, while adverse effects to the other ecosystems will be minimal. The
route has been selected to avoid adverse impacts on these ecosystems
wherever possible. The human environment will be benefited by the pro-
vision of energy, vital to the growing state of Alaska. The development
of many potential renewable energy resources will be made feasible by the
Anchorage-Fairbanks intertie. The project will contribute to the reduction
in costs of electrical energy, improvement in reliability of electrical
service, and enhancement of opportunities for renewable energy resources
(such as hydro and wind) to displace non-renewable energy resources (such
as gas and oil) for the generation of electricity.
Alteration of vegetation patterns will affect wildlife. This corridor
traverses many areas of moose concentrations, and moose should benefit
from the introduction of brush resulting from regrowth on the clearing.
Since the clearing must be maintained, this brush area will last for
the lifetime of the project. Animals such as squirrels will suffer loss
and displacement. However, their faster reproductive rates will allow
their populations to adjust rapidly.
4 - 7
Construction itself will affect wildlife. Larger mammals may temporar-
ily leave the area to return after the construction activity. Smaller
animals will suffer individual losses, but should recuperate rapidly once
construction is completed. The density of forest in portions of the
corridor will allow animals to move only a short distance to avoid contact
with construction activities.
Vegetation suppression, by whatever method, will periodically remove
cover from along the right-of-way. However, due to the surrounding
cover of the uncleared forests, this impact will be insignificant.
2. Recreation-The corridor will approach several recreational and
wayside areas in the lower Susitna Valley. The largest of these is the
Nancy lake Recreational Area. The corridor will also approach the Denali
State Park, but will be separated from the Park by the Susitna River.
This corridor will provide access to areas previously difficult to reach.
The largest such area is that south of Nancy lake to Point MacKenzie.
Dense forest and muskeg limit travel.
Further north the corridor parallels the east border of Mt. McKinley
National Park, being separated by the Parks Highway, the Nenana River,
and the Alaska Railroad.
3. Cultural Resources -The National Register of Historical and
Archaeological Sites lists the following sites which will be approached
by the transmission corridor: Knik Village, Dry Creek, and the Tangle
lake Archaeological District. The line will be routed to bypass these
areas.
During construction and preconstruction surveys, other archaeological
sites may be discovered which may be eligible for nomination to the
National Register. This is a positive benefit of the corridor, as ar-
chaeological and other cultural resources are often difficult to find in
the great Alaska wilderness.
4 - 8
r
r
r
r
4. Scenic Resources -The southern portion of the corridor does
not traverse any areas of good or high quality scenic values. The northern
portion is, however, more scenic than the southern portion. In the north-
ern portion the fairly continuous, moderately dense forest will provide
ample screening from transportation routes. Further south, the forests
are more intermingled with open muskeg. Glimpses of the transmission
line will be seen from the highway or railroad through these muskeg areas.
South of Nancy Lake the transmission corridor and the transportation cor-
ridors diverge, and although cover becomes more sporadic, the line will no
longer be visible from the transportation routes. The transmission line
will not be visible from most of the Nancy Lake Recreation Area.
As the Alaska Railroad and the transmission corridor approach Gold
Creek, the valley becomes more confined, and screening becomes more
difficult. However, it appears that the line can be concealed through
most of this portion.
The corridor passes through an area recognized as being of good to high
scenic quality from Devil Canyon to Healy. The possibility of screen-
ing throughout this area varies from moderate in the southern portion
around Chulitna, to minimal in the Broad Pass and the upper and lower
canyons of the Nenana River. Scenic quality will be impacted, the im-
pact being a function of existing scenic quality and the opportunity
for screening. The proposed line design will incorporate weathering
tubular steel towers which blend well into the environment. Non-specular
conductors might be used where light reflection from the line would cause
unacceptable adverse visual impact. Impact in the Nenana Canyon will be
high; impact on Broad Pass will be moderate to high; impact elsewhere
will be moderate. Two favorable factors mitigate the impact somewhat:
1) the corridor is not visually intact as the Alaska Railroad and the
Anchorage-Fairbanks Highway have already reduced scenic quality some-
what; and 2) the major views south of the canyons are to the west, toward
the Mt. McKinley massif, whereas the transmission line corridor lies to
the east of the transportation routes.
4 - 9
5. Social -Some economic impact can be expected, as flying services,
motels, restaurants, and entertainment facilities receive business, not
only from the transmission line workers, but from related personnel. Due
to the high cost of a low-load tap on a high voltage line, the likelihood
of use of the energy by small communities along the corridor is remote.
However, in places where the demand could justify such a tap, it would
pr'ov ide a re 1 i ab 1 e source of e 1 ect rica 1 energy for growing communities.
C. Special Impact Mitigation Efforts During Construction
Right-of-way clearing will be accomplished by approved methods such as
the hydro axe, and chips will be spread along the right-of-way. The
line will be screened wherever possible. The towers will be designed
to blend into the environment, thereby reducing visual impact.
Movement of men and equipment during construction will be scheduled to
avoid excessive damage to the ground cover. This is generally accom-
plished by winter construction. The tower design will allow movement
of men and equipment along the right-of-way centerl-ine, thereby elimi-
nating the need for an access road in addition to the transmission line
clear-ing.
Major river crossings will be required over the Talkeetna River, Tanana
River, Healy Creek, and the Susitna River. Minor stream crossings may
be made either by fording or ice crossings. Special efforts will be
made to avoid siltation of fish streams. Oil will be carefully handled
to avoid spillage. Where larger quantities of oil are to be stockpiled,
dikes will be constructed to protect against spills.
Since most of the construction will occur far from communities, noise is
not anticipated to be a problem. Suitable muffling devices will be used
to protect men and wildlife from excessive noise.
4 -10
fi''',
p-
,_,
1"
,....,
-
Prior to and during construction, special efforts will be made to consult
with State historical and archaeological authorities, the Soil Conserva-
tion Service, the Bureau of Land Management, the Alaska Department of
Fish and Game, and the U.S. Forest and Wildlife Service, and any other
agencies having jurisdiction over the construction area, in an effort to
ensure sound environmental practices.
4.6 REFERENCES
L
2.
Robert W. Retherford Associates, North Slope Natural Gas Transport
Systems and Their Potential Impact on Electric Power Supply and Uses
in Alaska, March 1977.
U.S. Army Corps of Engineers, Southcentral Railbelt Area, Alaska,
Upper Susitna River Basin Interim Feasibility Report, (Appendix I,
Part II (G) Marketability Analysis, (H) Transmission System, (I)
Environmental Assessment for Transmission Systems, December 1975.
3. Kozak, Edwin, under the direction of J. R. Eaton, Performance
Characteristics of a 350-Mile Electric Power Transmission Line
(Fairbanks to Anchorage), A project in EE 494, Department of Elec-
trical Engineering, University of Alaska, June 1973.
4. Ch2M-Hill, Electric Generation and Transmission Intertie System for
Interior and Southcentral Alaska, 1972.
5. Federal Power Commission, Alaska Power Survey, 1969.
6. Alaska Power Administration, Alaska Rai-lbelt Transmission System,
working paper, December 1967.
7. The Ralph M. Parsons Company, Central Alaska Power Study, undated.
8. The Ralph M. Parsons Company, Alaska Power Feasibility Study, 1962.
4 -11
EXISTING TRANSMISSION LINES
INTERTIE ROUTE
ALTERNATE INTERTIE ROUTE
NEW LINE SCHEDULED FOR CONSTRUCTION
-···-···-FUTURE LINE
"'"'"'"' ''" SUBMARINE CABLES
UTILITY SERVICE AREA
ROBERT W. RETHERFORD ASSOCIATES
CONSULTING ENGINEERS
A DIVISION OF ARKANSAS GLASS CONTAINER CORP. ~
w;., \ \ 1 ~~\
NENANA-FAIRBANKS-TANANA TRANSMISSION SYSTEM
---EXISTING TRANSMISSION LINES
INTERTIE ROUTE
ALTERNATE INTERTIE ROUTE
NEW LINE SCHEDULED FOR CONSTRUCTION
-···-.. ·-FUTURE LINE
//// ,,,, SUBMARINE CABLES
UTILITY SERVICE AREA
FIGURE 4-2
lt"~l ROBERT W. RETHERFORD INTERNATIONAL ENGINEERING COMPANY, INC. •• CONSULTINQ ENGINEERS
::; ~-. -~ A MORRISON -KNUDSEN COMPANY ~ ' A DI VISION OF ARKANSAS GLASS CONTAINER CORP.
f ~ ~.~'{fj!J~ 'l!r z~~ ~~,J:,., -~~~~=-· .:r1fi\t~""-~~)\~--.-~~;~f{~~~r:-~nr · (;.L-__ •• ~--'
ANCHORAGE-MATANUSKA -SUSITNA -GLENNALLEN-VALDEZ TRANSMISSION SYSTEM
: .. ..
• Nord
}O' hla nd~.O •
"' Su s ond,()
0
BARREN
..
ISlANDS
Aiol1 k <> ~c'J Ha'bo' Island
~No too lslo,.,d
o•
• OCh•Sw@ll /:.land
NG SOUND
~Stor•y Island
~C~@/eak ulond
f to no iS land ~Naked Is/end
PRINCE lVILLI ,\/ SOUND
:·i:i: Seal ls /ond
.. &Ji~ded Islands
LEGEND
EXISTING TRANSMISSION LINES
INTERTIE ROUTE
ALTERNATE INTERTIE ROUTE
NEW LINE SCHEDULED FOR CONSTRUCTION
-···-.. ·-FUTURE LINE
///;'
"" SUBMARINE CABLES
UTILITY SERVICE AREA
SCALE 1:1000,000 I ELEVATION IN METERS
INTERNATIONAL ENGINEERING COMPANY, INC.
A MORRISON -KNUDSfN COMPANY
----·
ROBERT W. RETHERFORD ASSOCIATES
CONSULTING fNGINffRS
A DIVISION 01' ARKANSAS GLASS CONTAINfR CORP.
COOK INLET -KENAI PENINSULA TRANSMISSION SYSTEM
CHAPTER 5
TRANSMISSION LINE DESIGN
r
-'
[\
I
!
r
5.1 BASIC DESIGN REQUIREMENTS
CHAPTER 5
TRANSMISSION LINE DESIGN
Experience in Alaska with both wood-pole H-frame, aluminum lattice guyed-X
towers, and tubular steel guyed-X towers with high-strength conductors
(such as Drake 795 kcmil ACSR) has demonstrated the excellent performance
of lines designed with relatively long spans and flexible structures.
This general philosophy has been followed in establishing the input param-
eters for the Transmission Line Cost Analysis Program (TLCAP) used to
optimize line designs for the Anchorage-Fairbanks Intertie study. Sample
outputs of TLCAP and descriptions of the program methodology are found in
Appendix B.
The results of this computer analysis for 230-kV lines favor relatively
long spans (1300 ft) and high-strength conductors (such as Cardinal 954
kcmil ACSR). This confirms the previous Alaskan experience and contributes
substantially to a more economical design, as Chapter 7 will illustrate.
5.2 SELECTION OF TOWER TYPE USED IN THE STUDY
Due to rather unique soil conditions in Alaska, with extensive regions
of muskeg and permafrost, conventional self-supporting or rigid towers
will not provide a satisfactory performance or solution for the proposed
intertie. Permafrost and seasonal changes in the soil are known to cause
large earth movements at some locations, requiring towers with a high
degree of flexibility and capability for handling relatively large founda-
tion movements without appreciable loss of structural integrity.
The guyed tower is exceptionally well suited for these type of conditions.
Therefore, the final choice of tower for this study was the hinged-guyed
X-type design, which has been considered for both the 230-kV and 345-kV
5 - 1
alternatives. These towers are essentially identical in design to
towers presently used on some lines in Alaska, which have proven them-
selves during more than ten years of service. The design features
include hinged connections between the leg members and the foundations
which, together with the longitudinal guy system, provides for large
flexibility combined with excellent stability in the direction of the
line. Transverse stability is provided by the wide leg base which also
accounts for relatively small and manageable footing reactions.
The foundations are pile-type, consisting of heavy H-pile beams driven to
an expected depth of 20 to 30 feet depending upon the soil conditions.
Tower outlines with general dimensions for the two voltage levels are
shown on Figures 5-l and 5-2.
5.3 DESIGN LOADING ASSUMPTIONS
According to available information and experience on existing lines,
heavy icing is not a serious problem in most parts of Alaska. NESC
Heavy Loading is presently used for all line designs throughout the Rail-
belt region. However, there are locations where Light Loading probably
could be used. Some line failures have occurred due to exceptionally
heavy wind combined with very little or no ice. Such locations should
be identified and carefully investigated prior to the final line design.
In this study, NESC Heavy Loading or heavy wind on bare conductor (cor-
responding to NESC Light Loading) was used, whichever is more severe.
5.4 TOWER WEIGHT ESTIMATION
In order to arrive at realistic tower weights and material costs for
the study, actual tower designs for both the 230-kV and the 345-kV
5 - 2
-
-
..,
-
-
r-,
I
r
\ /
r
r
alternatives were obtained from Meyer Industries of Red Wing, Minnesota
(Ref. 1). This company has designed similar towers for other lines in
A 1 as ka.
Based on these reference designs and additional manual calculations,
tower weight formulas were developed to account for variations in tower
weight due to changes in tower height and load as a function of the type
of conductor used.
5.5 CONDUCTOR SELECTION
Conductor size (see Table 5-1) was selected by the use of the Transmission
Line Cost Analysis Program (TLCAP) which was specially developed by IECO
for this type of study. Given an appropriate range of conductor types
and sizes, span lengths, and other pertinent data, TLCAP determines the
most economical conductor-span combination.
The program includes a sag-tension routine which calculates the con-
ductor sag and tension for a given set of criteria. Using this informa-
tion, the tower height and loads are then determined for each discrete
span length. These values are then applied to the tower weight formula
with the pertinent overload factors included.
In the process of this analysis, the program also evaluated the effect
of the cost of the power losses over a specified number of years. The
power losses were minimized by varying the sending and receiving end
voltages by ~ 10% and by providing required shunt compensation at both
line terminals. Applicable material and labor costs, together with pro-
jected escalation rates, were included to enable the program to calculate
the total installed cost of the line. A discount rate of 7% per annum
was used for the determination of the present worth of transmission line
losses.
5 - 3
For this particular study, material and labor costs were obtained from
11 as built 11 cost information realized on recently completed (138-kV and
230-kV) lines in Alaska.
5.6 POWER TRANSFER CAPABILITIES
Preliminary transmission line capabilities, based on surge impedance
loading (SIL) criteria, were obtained from the National Power Survey Re-
port (Ref. 2). Additional investigations indicate that for the 230-kV
alternatives (Cases IA, IB, and ID), the calculated intertie power angle
is near 30 degrees. To improve the 230-kV intertie's steady state and
transient transmission capability, series capacitors will be necessary.
Interconnected power system studies should be performed to determine the
final series and shunt compensation requirements. Such studies are out-
side the scope of this work.
5.7 HVDC TRANSMISSION SYSTEM
Because of its asynchronous nature, the interconnection of two isolated
alternating current (ac) systems by a point-to-point HVDC transmission
link provides the desired power exchange without being prone to inherent
stability problems. Furthermore, HVDC transmission can provide stabilizing
power, and be very effective in damping system oscillations. While the
state-of-the-art in HVDC technology is advancing, the resulting develop-
ments are keeping pace with inflation.
Preliminary investigations have shown that HVDC transmissi~n, using 180-
kV mono-polar transmission and ground return, is competitive with single-
circuit 230-kV ac transmission in the transfer 130 MW of power over 323
miles. However, if the point-to-point transmission link is required to
supply intermediate locations with power (either initially or in the
future) then it is unlikely that de transmission can be competitive with
an ac alternative.
5 - 4
' )
-I
I
-
~
l
{
r
r
r
5.8 REFERENCES
1. Letter from ITT Meyer Industries to Robert W. Retherford Associates,
Anchorage, Alaska, January 15, 1979.
2. FPC Advisory Committee Report No. 6, National Power Survey, Vol. II,
p. IV2-12, 1964.
5 - 5
CJ1
0'\
_) J
TABLE 5-l
CONDUCTOR SIZE SELECTION CRITERIA
Optimum ACSR Loa~/
Case and Voltage Line Length Conductor Per Circuit
A 1 te rnat i vJ-1 Interconnection (kV + 10",q (miles~ (kcmil) (M~J l
I A & B Anchorage-Ester 230 s/c 323 1/c -954 130
I c Anchorage-Ester 345 s/c 323 2/c -795 380
I D Anchorage-Palmer 230 s/c 323 2/c -954 130
Healy-Ester
I I A Anchorage-Devil Canyon 345 s/c'}j 155 2/c -954 600
Devil Canyon-Ester 230 s/cl/ 189 1/c -1510 185
Watana-Devil Canyon 230 s/cl/ 27 1/c -2156 488
11 Case I Alternatives exclude the proposed Susitna Project; Case II Alternative A includes the Susitna Project.
£! 100% voltage support at both ends.
]_/ Two si ngl e-ci rcuit 1 i nes on the same right-of-~'/ay.
Note: s/c = single circuit; 1/c = single conductor; 2/c = two conductor bundle.
'""<-· J ---J ,J ) .,,'---.~ .J ~ c~--~ J ,c_ "I
··--···
.~--J } L. ~.J ~.J .... J ~ .J J
FIGURE 5-1
20'---•J..ol~c-------20' •!
I~
-
89:3'
-
230KV TANGENT TOWER
~··'\
5 - 7
FIGURE 5-2
l~""'""f------27' ------i~ll ...... f------27' -----ll>--11
-
-
94.7'
·~·
-
345KV TANGENT TOWER
-
5 - 8
CHAPTER 6
SYSTEM EXPANSION PLANS
-i
-
CHAPTER 6
SYSTEM EXPANSION PLANS
One benefit of transmission interconnection between two independent power
systems is the reduction in the installed generating capacity that is
possible, while maintaining the same electric power supply (generation)
reliability level for both the independent and interconnected power sys-
tems. To calculate this reduction in installed generating plant capacity
(megawatts), generation expansion plans had to be developed for both the
independent and the interconnected power systems.
This chapter describes the actual process used in the generation expan-
sion planning for the independent power systems of the Anchorage and
Fairbanks areas, and for an interconnected Anchorage -Fairbanks power
system. Generation expansion planning is a rather complex process. A
brief description of the somewhat simplified method used in this Economic
Feasibility Study is described below.
6.1 GENERATION PLANNING CRITERIA
A. Generating Unit Data
Existing generating unit data were obtained from the Battelle (Ref. 1) and
University of Alaska, August 1976 (Ref. 2) reports. These available data
were reviewed and updated using new information obtained by IECO-RWRA
engineers during interviews with the managers of the Railbelt utilities.
The updated existing generation unit data is presented in Tables 6-l and
6-2.
Preliminary information on near future (1979-1986) generation expansion
planning, including probable generation capacity requirements, for the
AML&P and CEA systems was obtained directly from the two utilities. More
6 - 1
detailed information on GVEA generation expansion plans was available
in the review copy of the report Power Supply Study -1978 (Ref. 3) and
the Report on FMUS/GVEA Net Study (Ref. 4).
B. Installed Reserve Capacity
At the present time, there is apparently no uniform pol icy as to the
required installed generation reserve margins for Alaskan electric power
utilities. By definition~ the installed generation reserve capacity
includes spinning reserve, 11 hot" and "cold" standby reserves, and gener-
ating units on maintenance and overhaul work. No effort is made in this
study to separate the installed reserve capacity into spinning and other
types of reserves. Utilities in Alaska currently keep spinning reserves
to the very minimum, mainly because of the no-load fuel cost incurred by
the spinning reserves, and because most generating units in Alaska•s
Railbelt area are quick starting, combustion turbine-type units. This
situation may change in the future when new larger, slow starting,
thermal power plants are constructed, exceptions being hydro plant units
which can be started rather rapidly.
To develop alternative generation expansion plans for this study, guide-
lines for installed reserve generation capacity had to be established.
A minimum of 20% reserve margin or the largest single unit at the time
of peak system load was decided on as the installed generation reserve
guideline. In general, the 20% value is close to the actual installed
reserve margin of most u.s.A. utilities. Recently, the Department of
Energy•s Economic Regulatory Administration reported the following for
the 1978 winter peak load of the lower 48 states:
"According to the forecast, total available power resources
for the lower 48 states will total nearly 500,000 MW. Peak
demand is anticipated at 380,000 MW, for a reserve of nearly
120,000 I~W or 31.5 percent. The lowest reserve -the 21.1
percent -will occur for the southeastern Electric Reliability
Council, the DOE said, with the Mid-Atlantic Council experi-
encing the highest reserve margin at 45.1 percent" (Ref. 5).
6 - 2
-
-
-
-
....
-
C. Unit Retirement
Except for the Knik Arm Power Plant (CEA), no other generating units were
reported for retirement by the Railbelt utilities during the 1980-1992
period. Later, to include the effect of the proposed Susitna Hydroelectric
Project and to obtain a better economic analysis, this study period was
extended through 1997. An assumption was made that the generati~g units
available from 1980-1992 will also be available from 1993 through 1997.
Many of them, however, will serve as system standby reserve units.
D. Generation Expansion Planning
To-program the economic feasibility study and to establish transmission
line interconnection benefits, generation expansion plans for the 1980-
1997 period were developed for:
• Independent Anchorage area system.
• Independent Fairbanks area system .
• Interconnected Anchorage-Fairbanks system (intertie for re-
serve sharing only).
• Interconnected Anchorage-Fairbanks system (intertie for re-
serve sharing and power transfer) .
• Interconnected Anchorage-Fairbanks system (with Susitna Hydro-
electric Project).
Basically, generation planning includes three aspects: forecasting future
loads (previously described in Chapter 3); developing generation reserve
and reliability criteria (discussed later in this chapter); and determining
when, how much, and what type of generation capacity is needed (which is
discussed below).
Generation timing and capacity were determined by the most probable load
forecasts for the Anchorage, Fairbanks, and combined Anchorage-Fairbanks
areas, as described in Chapter 3.
6 - 3
Unit sizes for the alternative system expansion plans were determined by
the ability of the power system to withstand the loss of a generating
unit (or units) and still maintain reasonable system generation reliability.
In determining unit sizes, due consideration was given to the valuable
generation expansion planning data for the 1979-1986 period which was
obtained by IECO-RWRA engineers from the Railbelt area utilities, and as
the power system grows the economy of larger unit sizes.
IECO-RWRA engineers determined the type of generation mix for the expan-
sion plans based on:
1 Preliminary planning information obtained through interviews
with Railbelt utilities.
• Information available in the Battelle Report and Alaska Power
Administration's January 1979 report draft (Ref. 6).
• The judgment of IECO-RWRA power system planners.
Most of the planned generation additions are baseload-type thermal steam
power plants burning coal, gas, or oil as fuel. They are mixed with a
few additional peaking-type combustion turbine generating units using
natural gas or oil as fuel. It is assumed that in the later years of
this study many existing combustion turbine generating units, presently
used as baseload or intermediate units, will become peaking or standby
units.
6.2 MULTI-AREA RELIABILITY STUDY
A. Purpose
The PTI Multi-Area Reliability (MAREL) Computer Program is used for
alternative generation expansion planning, mainly for its ability to
maintain a nearly constant level of generation supply reliability in all
cases. This approach provides a nearly equal reliability level as far
as generation ability to meet the load is concerned. The MAREL program
6 - 4
-
-
-
-
-
-
-
r
I
-
r
r
! '
I""'
j ,,
I
r
gives reliability equivalence to both individual area and interconnected
system generation planning alternatives. The MAREL program manual (Ref.
7) introduces this program with the following:
11 The PTI Multi -Area Re 1 i ability Program MAREL determines the
reliability of multi-area power systems. It has been written
in FORTRAN IV for use on a PRIME 400 time-sharing computer.
Reliability indices computed by the program include system
loss of load probability (LOLP), LOLP values for the indivi-
dual areas, probability of various failure conditions and
probability that each transmission (intertie) link is limit-
ing in the transfer of generation reserves from one area to
another.11
MAREL program results helped determine the effectiveness of a transmission
line intertie between the Anchorage and Fairbanks areas, and established
the amount of generating capacity needed to give the individual areas
approximately the same LOLP as for the interconnected system. MAREL
study results are also applicable to the alternative which includes the
Upper Susitna Project. In this instance the study became a three area
reliability study with the Susitna area having only net generation and
no load.
B. Reliability Index
To perform individual and interconnected system reliability studies (MAREL),
it was necessary to select a reference system generation reliab-ility index.
As described above, the MAREL program uses LOLP calculation techniques
for each study case. For each load condition the program user adjusts
input data, specifically generator unit sizes, generator types, location
of generating plants, and intertie capacities, to obtain generation ex-
pansion plans of near equal reliability for various alternatives. The
LOLP method is very much the adapted method used by U.S.A. utilities
during the last 30 years. According to the IEEE/PES Working Group on
6 - 5
Performance Records for Optimizing System Design, Power System Engineering
Committee (Ref. 8):
"This {LOLP reliability) index is defined as the long run
average number of days in a period of time that 1 oad exceeds
the available installed capacity. The index may be expressed
in any time units for the period under consideration and, in
general, can be considered as the expected number of days
that the system experiences a generat·ing capacity deficiency
in the period. This index is commonly, but mistakenly,
termed the 11 loss of load probability, (LOLP)11
• A year is
generally used as the period of consideration. In this case,
the LOLP index is the long-run number of days/year that the
hourly integrated daily peak load exceeds the available in-
stalled capacity."
There is no standard value of LOLP which is used throughout the electric
power industry. However, one day in ten years is a very much accepted
value by the lower 48 utilities. Since to the authors• knowledge, LOLP
index has not previously been used in Alaska, it was decided to use one
day in ten years as reference LOLP index in this study. The use of this
LOLP index may imply larger generation reserve margins than are presently
used in Alaska, but an equal or even lower LOLP index is justifiable for
Alaska for at least the following reasons:
• In very cold climatic zones the loss of electric power may be
more critical than in more temperate climates.
• There is very little ·information on existing generation and
transmission outage rates in Alaska. Therefore, there is more
uncertainty about the study input data.
• At_present. most of the power systems in Alaska are independently
operated. In case of emergency, utilities cannot rely on help
from neighboring utilities or power pools as can most of utilities
6 - 6
J!!lllll
I
-
-
-
-
--
-
r
....
-
....
-
C.
in the lower 48. Therefore, a lower LOLP reliability index
is justifiable.
• Higher planned generation reserves may be needed to provide
protection against possible unplanned delays in construction
of new larger thermal units.
Program Methodology
A general description of the MAREL computer program methodology is con-
tained in Appendix C. The particular program application to this study
is 11 Planning of interconnections to achieve regional integration and
more widespread sharing of generation reserves 11 (Ref. 7). Briefly, the
program models each area as a one-bus system to which all generators and
loads are connected. Transmission interties between areas are modeled as
having limited power transfer capabilities and specified line outage rates.
The method assumes that each area takes care of its own internal trans-
mission needs.
D. Load Mode 1
Annual load models were developed for the Anchorage and Fairbanks areas.
Daily peak load data for 1975 were obtained from AML&P, CEA, FMUS, and
GVEA. The Railbelt utility representatives agreed that 1975 was a typical
year with normal weather conditions. The 1975 load models were converted
into per unit system for the MAREL program. The computer program multi-
plied this 1975 load model (input) by the respective study year peak loads
to obtain annual load models for each year of the study. Forecasted
annual peak loads and the per unit annual load models for the Anchorage
and Fairbanks areas are shown in Tables 6-3 through 6-6. Annual demand
curves indicating biweekly non-coincident peaks are shown on Figure 6-1.
Figure 6-1 also indicates that there is very little diversity between
the loads of the Anchorage and Fairbanks areas .
6 - 7
E. Generating Unit Data
Information on existing generating unit data, as indicated in Tables 6-1
and 6-2, was used in the study. Unit base ratings were rounded off to
the nearest megawatt in the study. Sizes for new generating units used
in the expansion plans are indicated on Figures 6-2 through 6-8.
Generating unit outage rates, which are required for calculating LOLP
indexes, were obtained from the most recent Edison Electric Institute
(EEl) report on equipment availability (Ref. 9). The rates for combustion
turbines were obtained from the actual operating experience of CEA and
GVEA at the Beluga and Zehnder Power Plants. The EEl publication defines
the forced outage rate as:
Forced Outage Rate = FOH/(SH + FOH) x 100
Where FOH represents forced outage hours and SH represents service hours.
Generating unit outage rates used in the MAREL study are indicated below:
Unit Designation
Combustion Turbine*
Hydroelectric Plant
Thermal Steam Plant (small units)
' Thermal Steam Plant (100-200 MW)
Thermal Steam Plant (300 MW)
Forced Outage
Rate (%)
5.5
1.6
5.9
5.7
7.9
*The Forced Outage Rate for combustion turbines was based on the follow-
ing ·information:
• CEA experience at Beluga during 1977-1978 period, six units
base loaded.
6 - 8
-
-i
-
-
-
-
-
-
-
-
-
-
-'
r
I
l
r
-
-
-
Unit availability
Scheduled maintenance
Forced outage
87% of the time
8% of the time
5% of the time
Therefore, the calculated Forced Outage Rate equals 5.4%.
• In 1975 GVEA experience at Zehnder Station, Units No. 1 and 2
provides calculated Forced Outage Rates of 4.2% and 4%, re-
spectively; however, these units were basically standby units.
F. Generating Unit Maintenance
The MAREL program automatically schedules generating unit maintenance
within the specified restnctions. For the purpose of this study, it
was assumed that no unit maintenance will be scheduled during the November-
March winter season.
G. Intertie Data
The MAREL program models the transmission intertie by limiting intertie
transfer capabilities and considering intertie outage rates. No load
loss sharing method was used. This means that one area will share its
generating reserves only up to the limit of intertie transfer capability
or available reserves in the other area, whichever is limiting. The
forced outage rates (on a per year basis) used in the study for trans-
mission and line terminal equipment are indicated below:
Line Voltage
(kV)
230
345
Forced Outage Rate
(per unit/100 miles)
0.00113
0.00225
Note: The following outage rate was used for both 230-kV and 345-kV
line terminals: 36 hours/10 years.
6 - 9
6.3 SYSTEM EXPANSION PLANS
A. Planning Study Period
Based on generation planning criteria and the results of the MAREL re-
liability study (previously described in this chapter), alternative gener-
ation expansion plans were developed. The 1984-1997 period was selected
for the alternative expansion plans for the following reasons:
• 1984 is the earliest year when the interconnected system can
be operational.
• The 1992-1997 period includes the Upper Susitna .Hydroelectric
Project, based on the optimistic assumption that Watana Unit
No. 1 will be on-line in January 1992.
• The study period is long enough for the present worth economic
analysis method, and includes most of the costs and benefits
obtainable by the introduction of an intertie in 1984.
To close ~he gap between the existing generation systems and the first
study year (1984) of the intertie economic feasibility study, generation
expansion plans for the independent Anchorage and Fairbanks areas for
1980 through 1983 were developed. Information on planned generation
additions supplied by the generating utilities in the Railbelt area was
used for this purpose.
B. Independent System Expansion Plans
Generation expansion plans for the independent Anchorage and Fairbanks
systems were also needed to calculate economic benefits of the inter-
connection. The planned generation additions consist of thermal base
load and peaking units. They do not include the Upper Susitna Project
(Watana and Devil Canyon Hydro Plants), which are only included in the
6 -10
-
-
.....
-
-
,....
i!
r
,....
!
interconnected system expansion plans. The independent Anchorage and
Fairbanks generation expansion plans are indicated on Figure 6-2 for the
probable load forecast case and Figure 6-6 for the low load forecast
case.
C. Interconnected System Expansion Plans
Two cases of system interconnection were studied-Case I, direct inter-
connection between Anchorage and Fairbanks (Ester), and Case II, inter-
connection between Watana-Devil Canyon with Anchorage and Fairbanks sys-
tems. Under Case I the alternatives were developed as follows:
• Case IA includes a single-circuit 230-kV transmission line
having 130-MW power transfer capability allocated for reserve
sharing only. This plan is shown on Figures 6-3 and 6-9 for
the probable load forecast case and on Figures 6-7 and 6-9 for
the low load forecast case.
• Case IB includes one single-circuit 230-kV transmission line
(1984-1991) and two single-circuit 230-kV transmission lines
(1992-1997) having the following generation reserve sharing
capabilities: 100 MW (1984-1987), 130 MW (1989-1991) and 190 MW
(1992-1997). In addition, this alternative has a firm power
transfer capability of 30 MW (1984-1987), supplying 14% of peak
load in Fairbanks area in 1984, and 70 MW (1992-1997) supplying
18% of peak load in Fairbanks area in 1992. This plan is shown
on Figures 6-4 and 6-9 for the probable load forecast case and
on Figures 6-8 and 6-9 for the low load forecast case.
• Case IC includes one single-circuit 345-kV transmission line
having a total of 380 MW power transfer capability allocated
for generation reserve sharing and for firm power transfer.
The case is similar to Case IB (230 kV) except that only one
345 kV line is required during the 1992-1997 period. This plan
is shown on Figures 6-4 (similar) and 6-10.
6 -11
• Case ID is the same as Case IA, except with intermediate switch-
ing stations at Palmer and Healy. This plan is shown on Figures
6-3 and 6-11 for the probable load forecast case and on Figures
6-7 and 6-11 for the low load forecast case.
Under Case II, only one solution was studied: two single-circuit 230-kV
transmission lines from Watana to Devil Canyon; two single-circuit 230-kV
lines from Devil Canyon to Ester (Fairbanks); and two single-circuit
345-kV lines from Devil Canyon to Anchorage.
D. Reliability Indexes
The results of the MAREL study show loss of load probability (LOLP)
indexes for independent system expansion plans and plans for an inter-
connected system (with and without the Upper Susitna Project), and are
indicated in Tables 6-7 through 6-12. As previously discussed in
Subsection 6.28, the LOLP index of one day in ten years (0.1 day/year)
was used as a reference standard throughout the study for comparing
different alternatives. During the performance of the MAREL study
the LOLP index was kept as close to the standard as reasonably possible.
6. 4 REFERENCES
1. Battelle Pacific Northwest Laboratories, Alaskan Electric Power,
An Analysis of Future Requirements and Supply Alternatives for the
Railbelt Region, Vol. I, March 1978.
2. University of Alaska, Institute for Social and Economic Research,
Electric Power in Alaska, 1976 -1995, August 1976.
3. Stanley Consultants, Power Supply Study-1978 for Golden Valley
Electric Association, Inc.
4. Alaska Resource Sciences Corporation, Report FMUS/GVEA Net Study,
Vol. 1, May 1978.
6 -12
-
_.,
J
-
-
-
,_
I
I
-
i
5. Electric Light and Power, Capacity Can Meet Winter Peaks -DOE,
November 1978.
6.
7.
8.
Alaska Power Administration, Upper Susitna River Project, POWER
MARKET ANALYSES, Draft, January 1979.
Power Technologies, Inc. PTI Multi-Area Reliability Program (MAREL),
Computer Program Manual , September 1978.
11 Reliability Indices for Use in Bulk Power Supply Adequacy Evalua-
tion'', IEEE Transactions on Power Apparatus and Systems, Vol. PAS-97,
No. 4, July/August 1978.
9. Edison Electric Institute, Report on Equipment Availability for the
Ten-Year Period 1967-1976, December 1977.
6 -13
6 -14
iF""
I! 'I ·: ·~
!!"""'
,....
'I
" 1]
r""
r
r
I I
r
,....
,~"""'
Unit
Name/Location Reference ---
TABLE 6-2
EXISTING GENERATION SOURCES
FAIRBANKS -TANANA VALLEY AREA
Unit Rat i n9
Year of Base Peak
Install at ion Type (kW) (kW)
FAIRBANKS MUNICIPAL UTILITIES SYSTEM {FMUS)
Fairbanks Chen a 1 1954 ST 5,000
Fairbanks Chen a 2 1952 ST 2,000
Fairbanks Chen a 3 1952 ST 1,500
Fairbanks Chen a 4 1963 ST 20,000
Fairbanks Chena 5 1970 SCGT 5,350 7,000
Fairbanks Chen a 6 1976 SCGT 23,500
Fairbanks Diesel 1 1967 Diesel 2,665
Fairbanks Diesel 2 1968 Diesel 2,665
Fairbanks Diesel 3 1968 Diesel 2,665
GOLDF:N VALLEY ELECTRIC ASSOCIATION {GVEA~
Zehnder Sub. Unit 1 1971 SCGT 17,553 20,000
Zehnder Sub. Unit 2 1972 SCGT 17,553 20,000
Zehnder Sub. Unit 3 1975 SCGT
Zehnder Sub. Unit 4 1975 SCGT
Zehnder Sub. Units 1-7 1970 Diesel
Healy Unit-1 1967 ST
Healy Diesel 2,500
Northpole Unit 1 1976 SCGT 64,800 70,000
Northpole Unit 2 1977 SCGT 64,800 70,000
U. of Alaska Units 7&8 Diesel
Delta Diesel
6 -15
Dependable
Capacity
(kW) Remarks
17.400 Peaking Service
17,400
3,500} Leased to HEA
3,500 (1977-1979)
12,900
26,200
5,100
500 ~1obi l e Unit
TABLE 6-3
LOAD MODEL DATA
ANCHORAGE AREA
PROBABLE LOAD FORECAST CASE
ANNUAL PEAK LOAD IN MW
(1983-1997)
709. 077. 977. 1080. 1!96. 1313~ 1441. 1581. 1724. 1881.
2041. 2215. 2402. 2591. 2794.
INTERVAL PEAK LOADS IN P. U. OF ANNUAL PEAK LOAD
(26 INTERVALS I YEAR)
.U333 .6667 .7404 .7500 .6571 .6346 .6122 .5865 .5481 .3353 .5224 .3168
.4904 .5032 .4968 .5160 .5737 .5769 .6154 .~827 .8429 .8526 .91351.0000
DAILY PEAK LOADS IN P. U. OF INTERVAL PEAK LOAD
(260 WEEK DAYS I YEAR)
1. 0000 .9769 ,9731 .9t§36 .9500 .9462 .6962 .8731 ,81577 ,8423
1.0000 .9303 .9663 .9663 .9615 .9615 .9519 .9519 .9423 .9375
I. OLHJO .9913 .9784 .9027 .9697 .9654 .9437 ,9307 .9221 .8918
I. OUiJ() .9829 .9487 .9359 .9017 .8889 .8889 .8846 .8333 .• 8034
! .0000 .9512 .9317 .9171 .9171 .9073 .9073 .9024 .9024 .8976
I, 000[) .9048 ,9798 .9747 .9646 .9495 .9444 .9343 .9293 .9141
1.0000 .9686 .9634 .9529 .9529 .9476 .9424 ,9372 .9058 ',9058
! .ooou .9781 .9727 .9617 .9563 .9563 .9344 .9344 .9071 .9071
I • (i(}c)() .9B83 .9883 .9825 .9825 .9708 .9708 .9649 .9591 .9415
l. \)00\) . 9')40 ;9620 .9701 .9581 .9461 .9401 .9341 .9281 .9162
1 • (l\l,:ll . '}?39 .9877 .9571 .9571 .9509 .9509 .9448 .9202 .8589
~ . 0·.' ',') . ')')38 .98t4 .9689 .9565 .9379 .9379 .9379 .9255 .9255
l. !lO(l,) .9010 .9684 .9620 .9494 .9494 .9430 .9367 .9304 .9177
l . 000() .9004 .9739 .9739 .9673 .9608 .9542 .9542 .9477 .8824
! • l!000 . 9El73 .9745 .9554 . 94.·90 .9490 .9427 .9427 .9299 .9299
' . ll CWO 1 . 0')00 .9935 .9671 .9806 .9742 .9677 .9613 .9548 .9484
1.0000 • •)938 .9614 .9689 .9627 .9565 .9565 .9441 .9441 .9379
I . (l(lil(l .9777 .9609 .9441 .9274 .9106 .8883 .8715 .6715 .8045
•. \hJ(ll) .9944 .9944 .9722 .9722 .9722 .9611 .9276 .9222 .9222
l ,Ul:OO • <)943 .9896 .9896 .9687 .9583 .9531 .9375 .9323 .8802
! • t~ (~ :· 0 .•JB59 .9484 .9437 .9390 .9296 .9249 .9202 .9155 .9014
1, {)!Ill) .9962 .9658 .9466 .9466 .9087 .7985 .7757 .7719 .8555
~ . \hltl() t ,11()()0 .9887 .9662 .9549 • 9511 .9474 .9398 .9361 .9323
J • \llHII.! . •i754 .8632 .8596 .8421 .8386 .6386 .8386 .6386 .8175
I. tHHh} .'HHO .9679 .9519 .9359 .9327 .9327 .9135 .8654 .8045
1 • 01)0() . 'i7ao .9730 .9614 .9614 .9575 .9575 .9537 .9421 .8340
6 -16
~
.5064
.8301 ""''I
J
~
~
I
""""'
"""l
,I!II!Kl!
~
~
~
r
r
I
r
r
(
r
I
TABLE 6-4
LOAD MODEL DATA
FAIRBANKS AREA
PROBABLE LOAD FORECAST CASE
ANNUAL PEAK LOAD IN MW
( 1983 -1997 )
196. ~~~-231. 249. 270. 291. 313. 338. 362. 390.
416. 446. 477. 511. 547.
INTERVAL PEAK LOADS IN P. U. OF ANNUAL PEAK LOAD
( 26 INTERVALS I YEAR~
41. B7590. ()1)900. 73710.76040.57490.59710.56630.51 110.43240l41130. 38330.37470.3587
n. :l 5~mo. ~mono. 41770. 420 1 o ~ 43730. 46190. 53190. 57490 .89 190; 93370. 9349 1 • 00000.7690
DAILY PEAK LOADS IN P. U. OF INTERVAL PEAK LOAD
(260 WEEK DAYS /YEAR)
: • illliHH). 'i7480. 94670.94670.94530.93130.89480.86540. 84290• 8177
:.00000.93670.92790.92790.90510.89980.88050.85940.82790.7891
l. 00000. 9(}330. 96670 .94830·. 94000.92330.90330.88000. 86670'. 8267
1.00000.97580.96120.94510.86910.83200.82390.81100.79000;6769
1.00000.90500.98290.95940.95300.94660.91880.90810.90170~8825
!.00000.99790.99590.98770.97940.95880.93620.90530.89300.8827
r.onooo.9U4B0.95010.93710;91970.89370.88070.87200.B6120~8091
l . 0\hlOO. 96ll70. 96150.95190.93510. 91590.88700.88220. 87980~ 8558
l. 00000. ')9150. 99150.99 150.97160.96870.93180.89200. 88920'.8693
! • 0(;00 I. 00000.96120.93130.92840. 92840.92240. 90750.90450.8955
l.0~000.99040.99040.94550~92310.91990.91670.91350.87820J8558
1.00000.96720.95410.92790.92460.90490.89840.89510.87870~8721
1.00000.96920.96920.95890~95890.94520.94520.93150.92120~9041
I • 00000. (Hl')60. 97220.96870. 95830. 94790. 934·00, 92360.92010. 8507
1.00000.96770.93870.93230.91290.90320.90320.90320.87100~8677
I. 110000. 87350.87060.86760,86460.85880.84710,84410.83820.8059
t .llOOOO. 94440.90640.90640.89470. 82750.82750.82460.81870.8012
1.00000.99720.97750.96350.96350.94940.93820.93820.91010.8904
1.00000.99470.96810.93090.92820.90960.90690.90160.88830.8856
t.onooo.9BB50.93300.91450.90990.B96I0.88910.88450.86370~8568
1.00000.99150.98080.97650.94020.92950.92740.91880.91450,9017
t.n0000.96690.91180.89260J88840.79890.73970.64460.61020.6088
1,00000.97710.91050.90790~90790.89340.88950.88550.86320~8434
l.I~0C00.97Il0.86330.83050.81870.79630.79240.74510.73320.7201
1 . tll:ooo. 99510.98160.97300.97170. 955ao. 91650.88450.82430.6818
!.00000.99840.93930.92010.89940.88980.88500.84820.81310.7971
6 -17
TABLE 6-5
LOAD MODEL DATA
ANCHORAGE AREA
LOW LOAD FORECAST CASE
ANNUAL PEAK LOAD IN MW
(1983-1997}
765. 832. 9.0'8. 985. UJ68. 1156. 125.0'. 135.0'. 1451. 1562.
1677. 1800. 1933. 2.0'70. 2215.
INTERVAL PEAK LOADS IN P. U. OF ANNUAL PEAK LOAD
{26 INTERVALS I YEAR}
.U333 .6667 .7404 .7500 .6571 .6346 .6122 .5865 .5481 .5353 .52241 .5160 .50641
.4904 .5032 .4968 .5160 .5737 .5769 .6154 .~827 .8429 .8526 .91351.0000 .8301
DAILY PEAK LOADS IN P. U. OF INTERVAL PEAK LOAD
(260 WEEK DAYS I YEAR)
I. 0000 .9769 ,9731 .91538 ,9600 .9462 .8962 .8731 .8577 ,8423
I. 0000 .9808 .9663 .9663 .9615 .9615 .9519 .9519 .9423 .9375
l • 0000 .9913 .9784 .9827 .9697 .9654 .9437 .9307 .9221 .8918
I. 0000 .9029 .9487 .9359 .9017 .8889 .8889 .8846 .8333 .• 8034
t. 0000 .9512 .9317 .9171 • 9171 .9073 .9073 .9024 .9024 .8976
I. 0000 .9048 .9798 .9747 .9646 .9495 .9444 .9343 .9293 .9141
I. 0000 .9686 .9634 .9529 .9529 .9476 .9424 .9372 .9058 ·.9058
l. 0000 .9781 .9727 .9617 .9563 .9563 .9344 .9344 .9071 .9071
I. 0000 • 9f183 .9883 .9825 .9825 .9708 .9708 .9649 .9591 .9415
1 • 00110 .9940 .9020 .9701 .9581 .9461 .9401 .9341 .9281 .9162
1 • (H)(Jll . '>939 .9877 .9571 .9571 .9509 .9509 .9448 .9202 .8589
I • (Will} .')930 .9814 .9689 .9565 .9379 .9379 .9379 .9255 .9255
I. 0000 .9810 .9684 .9620 .9494 .9494 .9430 .9367 .9304 .9177
!.OIJ()O .9804 .9739 .9739 .9673 .9608 .9542 .9542 .9477 .8824
I. 0001) .9873 .9745 .9554 .9490 .9490 .9427 .9427 .9299 .9299
! . oouo 1. 0')00 .9935 .9871 ,9806 .9742 .9677 .9613 . • 9548 .9484
I. OODO • ')<)30 .9814 .9609 .9627 .9565 .9565 .9441 .9441 .9379
l • (HIIlfl .?777 .9609 .9441 .9274 .9106 .8083 .8715 .8715 .8045
• . lhH'a .')944 .9944 .9722 .9722 .9722 . 9611 .9278 .9222 .9222
l. Ot.:Ou . ')')48 .9096 .9896 .9687 .9583 .9531 .9375 .9323 .8802
1.nn~·n • i) 1159 .9484 .9437 .9390 .9296 .9249 .9202 .9155 .9014
1 • 0•: oll) .996~ .9650 .9460 .9460 .9087 .7985 .7757 .7719 .0555
! . \HH!O 1 . 11000 .9807 .9662 .9549 . 91) 11 .9474 .9398 .9361 .9323
l.uUO() .•)754 .8632 .6596 .8421 .8386 .8386 .8386 .8386 .8175
I • 0000 .9840 .9679 .9519 .9359 .9327 .9327 .9135 .8654 .804:S
I • OlHH\ .97:30 .9730 .9614 .9614 .9575 .9575 .9537 .9421 .8340
6 -18
-
-
~
""""'i
-,
-
"""!
~
,...,
ii
t!
,,.....
r
r
1"'""-
1
!"""'
i
188.
355.
2.fl2.
377.
TABLE 6-6
LOAD MODEL DATA
FAIRBANKS AREA
LOW LOAD FORECAST CASE
ANNUAL PEAK LOAD IN MW
(1983-1997)
218. 232. 248. 264. 281.
398. 42.fl. 444.
31J.fl. 317. 337.
INTERVAL PEAK LOADS IN P. U. OF ANNUAL PEAK LOAD
( 26 INTERVALS I YEAR)
o. B7590. 69900.73710.76040.57490.59710.56630.51 no. 43240.41150.38330.37470.3:587
0.35380.38080.41770.42010.43730.46190.53190.57490.89190.93370.93491.00000.7690
DAILY PEAK LOADS IN P. U. OF INTERVAL PEAK LOAD
(260 WEEK DAYS I YEAR)
1.00000.97480.94670.94670.94530.93130.89480.86540.84290~8177
1.0uooo.9a670.92790.92790.90510.899B0.88050.85940.82790.7891
1.00000.99330.96670.94830~94000.92330.90330.88000.86670~8267
1.00000.97580.96120.94510.86910.83200.82390~81100.79000;6769
1.00000.98500.98290.95940.95300.94660.91880.90810.90170.8825
I . 00000.99790. 99590.98770. 97940.95880. 93620. 90530. 89300', 8827
!.00000.98480.95010.93710.91970.89370.88070.87200.86120.8091
1.00000.96870.96150.95190.93510.91590.88700.88220.87980~8558
1. 00000.99150. 9915(). 99150.97160.96870.93160.89200. 88920'.8693
l.OC001.00000.96120.93130.92840.92840.92240.90750.90450.8955
!.00()00.99040.99040.94550~92310.91990.91670.91350.87820J8558
I. 00000.96720.95410.92790,92460.90490.89840.89510. 87870', 8721
l . 0'(}000. 96920. 96920. 95890·. 95890. 94520. 94520. 93 150. 92120'. 9041
1.00000.9B960.97220.96870.95830.94790.93400.92360.92010.8507
1.00000.96770.93870.93230.91290.90320.90320.90320.87100~8677
1.00000.87350.87060.86760.86460.85880.84710.84410.83820;8059
1.00000.94440.90640.90640.89470.82750.82750.82460.81870.8012
1.00000.99720.97750.96350~96350.94940.93820.93820.91010.8904
1.00000.99470.96810.93090.92820.90960.90690.90160.88B30~8856
l. 00000.98850.93300.91450.90990. 896 10.08910. 83450. 86370·. 8568
1.00000.99150.98080.97650.94020.92950.92740.91880.91450.9017
l.00000.96690.91180.89260JOB840.79890.73970.64460.61020~6088
!.00300.97710.91050.90790.90790.89340.83950.83550.86320.8434
t.00000.971l0.86330.83050~81870.79630.79240.74510.73320.7201
1.00000.99510.98160.97300.97170.95580.91650.83450.82430~6618
1.00000.99840.93930.92010.89940.80960.88500.84820.81310.7971
6 -19
TABLE 6-7
LOSS OF LOAD PROBABILITY INDEX (LOLP~/
FOR
STUDY CASES IA & I~/
PROBABLE LOAD FORECAST CASE
Anchorage Fairbanks
Study Independent Interconnected Independent Interconnected
Year Ex pans i orJ-1 Expans i o nil Expansi oJ-1 Expansi ani/
1984 0.0262 0.0063 0.8193 0.0066
1985 0.0123 0.0275 0.1446 0.0242
198~/ 0.0199 o. 0113 0. 2868 0.0236
1987 0.0247 0.0208 0.6795 0.0546
1988 0.0408 0.0698 0.1140 0.0278
1989 0.0290 0. 0613 0.2318 o. 0376
1990 0.0242 0.0625 0.0593 0.0652
1991 0.0184 0.0595 0.1550 0.1276
1992 0.0168 o. 0259 0.0276 0.0269
1993 0.0539 0.0297 0.0586 0.0598
1994 0.0393 0.0296 0.1583 0.1358
1995 0.0307 0.0622 0.0373 0.0426
1996 0. 0901 0.0568 0.0899 0.1014
1997 0.0676 0.0367 0.0441 0.0419
ll LOLP in days per year.
1:./ 230 k V s/c, 130 MW reserve sharing only.
}j See Figure 6-2.
!!._/ See Figure 6-3.
~/ Starting in 1986 includes Bradley Lake Hydro Project.
6 -20
~
~~
_,
"""'
~
""'!!
~
111111\
r
I
r
r:--
r
r
!
I""' ,,
\
I.
r
r
r
TABLE 6-8
LOSS OF LOAD PROBABILITY INDEX (LOLPt!/
FOR
CASE I~/
PROBABLE LOAD FORECAST CASE
Anchorage Fairbanks
Study Independent Interconnected Independent Interconnected
Year Expansi oJ-1 Expansi on:±-1 ExpansioJ.I Expansio~/
1984 0.0262 o. 0077 o. 8193 0.0018
1985 0.0123 0.0329 0.1446 0.0096
1986 0.0293 0.0220 0.2868 0.0152
1987 o. 0288 0.0306 0.6766 0.0299
1988 0.0482 0.0799 0.1140 0.0300
1989 0.0330 0. 0677 0.2318 0.0394
1990 0.0265 0.0680 o. 0593 0.0670
1991 0.0193 0.0633 0.1550 o. 0130
1992 0.0189 0.0644 0.0276 0.0227
1993 0.0546 0.0703 0.0586 o. 0354
1994 0.0427 0.0550 0.1583 0.0654
1995 0.0326 0.0991 0.0373 0.0369
1996 0.0931 0.0838 0.0899 0.0506
1997 0.0676 0.0520 o. 044-1 0.0244
ll LOLP in days per year.
~/ 230-kV transmission system with reserve sharing and firm power trans-
fer capability.
'l/ See Figure 6-2.
±I See Figure 6-4.
6 -21
TABLE 6-9
LOSS OF LOAD PROBABILITY INDEX (LOLP)-.!/
FOR
CASE II~
PROBABLE LOAD FORECAST CASE
Anchorage Fairbanks
Study Independent Interconnected Independent Interconnected
Year Exeansio~/ ExeansioJ/ Exeansio~/ ExEansi oJ-1
1992 o. 0189 o. 0476 0.0276 0.0972
1993 0.0546 0.0418 0.0586 0.0299
1994 0.0427 0.0235 0.1583 0.0244
1995 0.0326 0.0070 0.0373 0.0089
1996 0.0931 0.0226 0.0899 0.0207
1997 0.0676 0.1240 0.0441 0.0461
ll LOLP in days per year.
l:..l Includes interconnections between Devil Canyon-Anchorage (345 kV),
Devil Canyon-Watana (230 kV), and Devil Canyon-Ester (230 kV).
ll Interconnected expansion for three area system: Anchorage, Fairbanks,
and Upper Susitna (generation only). See also Figure 6-5.
il See Figure 6-2.
6 -22
·~·
-·,
-:
~
!"""
,.....
r I ~
. .-\j
r il
r
I
r
r
r
,......
!
,....
,....
i
TABLE 6-10
LOSS OF LOAD PROBABILITY INDEX (LOLPt!/
FOR
STUDY CASES IA-& I~/
LOW LOAD FORECAST CASE
Anchorage Fairbanks
Study Independent Interconnected Independent Interconnected
Year Ex pans i or2./ Expansio~/ Expansior2./ Expansio~/
1984 0.0262 0.0063 0.8193 0.0066
1985 o. 0123 0.0275 0.1446 0.0242
1986 o. 0199 o. 0113 0~2868 0.0236
1987~/ o. 0134 0.0527 0.2697 0.0501
1988 0.0095 0.0068 0.0329 0.0035
1989 0.0724 0.0701 0.0741 0.0222
1990 0.0309 0.0376 0.1511 0.0207
1991 0.0350 0.0533 0.0061 0.0387
1992 o. 0182 0.0334 o. 0591 0.0502
1993 0.0359 0.0351 0.1207 0.0173
1994 0.0190 o. 0264 0.2499 0.0264
1995 0.0129 o. 0211 0.0340 0.0463
1996 0.0075 0.0601 0.0711 0.0152
1997 0.0393 0.0393 0.0207 0.0225
ll LOLP in days per year.
!:_I 230 kV s/c, 130 MW reserve sharing only.
11 See Figure 6-6.
il See Figure 6-7.
il From 1987, figures include Bradley Lake Hydro Project.
6 -23
TABLE 6-11
LOSS OF LOAD PROBABILITY INDEX (LOLP)-!/
FOR
CASE rs_g/
LOW LOAD FORECAST CASE
Anchorage Fairbanks
Study Independent Interconnected Independent Interconnected
Year Expansi oJ-1 Expansio~/ ExpansioJ.I Expansio~/
1984 0.0064 0.0012 0.4650 0.0006
1985 0.0105 0.0225 0.0807 0.0044
1986 0.0232 0.0745 0.1515 0.0176
1987 0.0217 0.0918 0.2697 0.0393
1988 0.0121 0.0090 0.0329 0.0037
1989 0.0869 0.0822 0.0740 0.0238
1990 0.0344 0.0428 0.1511 0.0219
1991 o. 0393 0.0602 0.2557 0.0413
1992 o. 0189 0.0366 0.0591 0.0515
1993 0.0366 0.0393 0.1207 0.0180
1994 0.0209 0.0288 0.2499 0.0271
1995 0. 0133 0.0207 0.0340 0.0024
1996 0.0078 0.0126 o. 0711 . o. 0195
1997 0.0427 0.0692 0.0207 0.0029
ll LOLP in days per year.
ll 230-kV transmission system with reserve sharing and firm power trans-
fer capability.
ll See Figure 6-6.
if See Figure 6-8.
6 -24
~
.....,,
~
~ '
~
-,
-
-,
~
,11111!1\
-"!
r
j
r
-
r
TABLE 6-12
LOSS OF LOAD PROBABILITY INDEX {LOLP~/
FOR
CASE IcJ./
PROBABLE LOAD FORECAST CASE
Anchorage Fairbanks
Study Independent Interconnected Independent Interconnected
Year Ex~ansioJ-.1 Exeansio4/ Exeansi oJ-1 Exeansio4/
1984 0.0262 0.0063 0.8193 0.0066
1985 0.0123 0.0275 0.1446 0.0242
198~/ 0.0199 o. 0113 o. 2868 0.0236
1987 0.0247 o. 0208 0.6795 0.0546
1988 o. 0408 . 0.0698 0.1140 0.0278
1989 0.0290 0.0613 0.2318 0.0376
1990 0.0242 0.0625 0.0593 0.0652
1991 0.0184 0.0595 0.1550 0.1276
1992 0.0168 0.0616 o. 0276 0.0388
1993 0.0539 0.0666 0.0586 0.0620
1994 0.0393 o. 0511 0.1583 0.1198
1995 0.0307 o. 0971 0.0373 0.0486
1996 0.0901 0.0830 0.0899 0.0699
1997 0.0676 0.0516 0.0441 0.0354
l/ LOLP in days per year.
~/ 345-kV transmission system with reserve sharing and firm power trans-
fer capability.
1/ Se~ Figure 6-2.
!ll See Figure 6-4. The 345 kV {Case IC) is similar to 230 kV (Case IB)
except that only one 345-kV line is required during the 1992-1997
period, instead of two 230-kV lines.
~/ Starting in 1986 includes Bradley Lake Hydro Project.
6 -25 ~rf~\ t P,RMrt
U.S, : ··:· -.,:··:•·~nr
0.9
I()
1'-0.8 en -~ o. 7
llJ a.
~ 0.6
::> z z
<( 0.5
ll..
0
::> 0.4
z
0 0.3
z
<(
2 w 0.2
0
0.1
NON-COINCiDENT 1975 PEAK DEMANDS
ANCHORAGE AND FAIRBANKS AREAS
FIGURE 6-I
I 2 3 4 5 6 7 8 9 10 I I 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
TIME (TWO WEEK INTERVALS)
6 -26
""""" i
"""'l>,
'J ·----')
~{)
.::.z:c
"·Y" --·· --
:seo:
36CC -·--·~
::'>"~'
32G::
:;:: 30CO
:;
2800
0"1 0 c::
0 25C'O
_J
N "" '""-! c:: Z~J':; u..J a.
0 2200 ;z
<
>-t: 20:JC
u < a.. !BOO c::
u
0 1600--w
_J
_J
~ 14:)0
t.~
='=
IZOC
ICIJC I !~':~ s ·=zl
600 I
sccJ
<+:o
0
!979
J • ,-' r --·
____ _J
IX~
, A_,tH 7 t7Sl
I A'"; 75 •Zl,l
1'~'7'. 4 t7i :,
BE:..:J S ~St,
------1 ']
LEGEND
:.JNIT AODI'ri::JN
INSIALLEO CAPACITY IN MW
IN S':"ALLED CAPACITY LESS
LARGEST UNIT IN MW
AN<H 8 -t7S
!NTL 5 +7!
1--'~_>o _ _J,-------J 9-67 1---'-_jl ___ --J _____ ....
-~-~
1960 1981 1982 i9 63 1984 1 19ss
-1 -~~} '~-~, -C'~, ~---,
; COAL 3
1986 1987 1 1983 1989 1s9o 1 1991
P£A~ AI +7
1 ~ l ~~,
~-_:_ _____ Fl G U_R~ -~--_2_
ZS2S
~---l0E~ 3 •JD:;
I?C<'"Z •?e,
I
I;E:< 1•>:c:l
ANCHORAGE AREA
792 ----------L--=·--!.·7~,3~-=:::=J=-===-=----~
--..,--,-,_--.J
FAIRBANKS AREA
-·------·----____ ,...
1992 i 1993 1994 I 1995 I 1996 I 1997' I 199S!
INDEPENDENT SYSTEM EXPANSION PLANS
ANCHOR.4GE AND FAIRBANKS AREAS
PROBABLE LOAD FGRrCAST Ct.SiC ~m
.. ___,___ 1
0
-'I _) _j j ___ J J _J _.) J ) ________ ,)
.:__:,_· '>:-"' ,..._,. •:... ---
I
:=~~_:::,,f"'-'-'-:::::J <Ok~:;'oo ·JI-------~
~----
1
I ! ~-~~.__J
~~~~:~_:~~~o~_J_ I ~C:-::::11 I ___ _J
J
I zszg _ r ____ J
I .
__ .:_,__J.
, I -----'
__ j •:--_·t::L~~: ! ---~-J-~:-: A-· ---;--_____ , __ -_.-_=----~=--~~
J
------~----_:,______ ----------t
. --·~=•=-=1
INTERCONNECTED SYSTEM EXPANSION PLAN
ANCHORAGE-FAIRBANKS AREA
WITHOUT SUSITNA PROJECT
PROBABLE LOAD FORECASt CASE 8/79
) ,,I c.l ·-:..:;;: ... ) J
(") "T'J
)> .......
U') G":l rn c:: ;;o ....... f'T1
)>
0"1
12"> I w .......
c
•c•
O't
N
1.0
LARGEST UNIT
36CO-
UNIT DELETION
3400 --
3 2'JO ------
;>: 3CCJ
2
2SC'C a
<:(
0
...J 2600 ----·.
"' <:(
'-'-' "-24CO ------------------· ----------
0 z
<:( 220·:'
>-
I-
u 2.000 -··--.. ------------
""' a..
\BOO·····----· -·-· --<:(
u
0 w
...J !600
...J
<:(
I-
C') 1400-
z
1200 ·-----···
lOCO-· -··-···--·--··---··------------
600-
400 ;::_·_-_-_· __:_· _____ _
200 ·-------------------
---------~----·-_ _-_ .. ~--~----~
------··--* . rOAl +SOO•l
ClJAtA -+ZOO:
I
1-------!---_.J
l
1----...J
I
30!0 ~--_ _J
I
FIGURE 6 :_1.
1--'l"'-8"''~'---'----J
I ___ __,
Z5Z8
2328
.2.12.'8 I 1----'1---_ _j
I
AHCH 3 +78
1928 ···I
l-_;_:-'--'----....!
I 1828
I I-
1-----....J
I 1--''-"6:.:28..._~,-----J
147'2.
,---'-"""----!-- - ---'
I -----1
----...J
• ; r
__________ j ~------~-~ __ __c__ ___ _ ----;----------;--------------~----
' _]__
PEAK LOAD
DEMAND
70 MW _____ -· ·----··----r
POWER TRANSFER )j< *
::;<:'*TWO 230KVLINES (1992-1996)
0
) 1979--f-19_8_6 Tl9elj-I9ai-]19-83_i __ I984T 1985 I -1986-1 1987--I-19-88Ti989n[--i99oT-199"1-r-,992 r 1993T-199_4_f_i995-TI9"9u·l997 r !99i i
INTERCONNECTED SYSTEM EXPANSION PLAN
ANCHORAGE-FAIRBANKS AREA
WITH FIRM POWER TRANSFER
PROBABLE LOAD FORECAST CASE 6 '"'
a
ct
0
0'1 ...J
:.::
<t w c.. w 0 0 z
ct
>-
1-
<.)
c::: c..
<t
<.)
0 w
...J
...J
ct
1-
l/) z
zacc .----:---~---.. -
2600 ----
-·~r·-·;.
2400 ____ ., -----------+-----7-·---+---
:: -.•.. · cP '~t-+ fffl.s.,. 1-"'=-"--'-'~:_"'",,828=--!1-----!
1800 .·------·--------------~--' l ' ' -
f -! -----1----------------1 L~-, ·_ .:.; --------t--=~----~-.. -
1600-;---~_j~_-.-~-----:---·4t--:-:-::~~---_:-:~~i:-~---:-~{~:-~---~·-4_t-~-~-~+r-::-i~~+l:~~--l
1400 ~: . __ ...:-:~:-::·:-:-
----.... 800 i -·-,-·---~ ..
.-•
600i--~-· t--------·· .---
~--------
1-__ . __ _j_:_. _____ , ____ _
I
I 1-...... "'-----ll-__ _....~ _____ : ___ _
I
I
1----~--~-~-:::.-_J.
I ___ ...J
PEAK LOAD DEMAND
··1 1 -·------:--
L...:.~~.:__:=.:_:~::_:_::: i ::.::.·
t: -.l
i·
UPPER .SUS I TN A PROJECT
.. ---i ___ _j
----' ~ :t_·-----,--
400~i-=-~~t=~~~~~~~~:t==t==~~~~~~~~-==~~~~=t==~~=~~~~~~hit=~~r==t==f=~==~~==~====t-=====r=~ r· ' __ -___ _:'.
-J } ,}
•• J .,J j J
199o 1 1991
"} \-~-.... 1
INTERCONNECTED SYSTEM EXPANSION PLAN
ANCHORAGE-FAIRBANKS AREA
).
WITH UPPER SUSITNA PROJECT
PROBABLE LOAD FORECAST CASE 8179
j _, ) l
n "'T1
:P 1-1
(.1) Ci)
IT1 c ;;o
1-1 ITI .....
0'1
I
(.11
J
>~,
0
< ::r. 0
...J
--<
..o.l -:L
0 z <
>-t:
u <
""' < u
a
u..:
....1
....1
<!
!-v-: z
~1 -~--. '} } "~) ,-~~ 1 ~--l •·~-l ~~') ~~ ~~". ~-~, ~ -) -"'--"~ )
---------'FIGURE 6 - 6
INSTAi_i_EO CAPACITY JN MW
3S::'C
INSTAI_i_EO CAPACITY i_ESS . .
LARGEST UNIT .IN MW . ------~--~-~--------.----
32CC --~:·:----,----~-:-::-----:------. --;-·---:-:-~>-:--:~:::-::-:-:::-:-:-:-"~:------'~---::--·~-;--~----. ----->-·----->----·;..· _;__........:..::......,
! GUt i -3-Y)•
L : :> ~--
~.c:-c
--~ _!-. --I -. -r (a.\L 5 ... ,we.
. --. -i-
2800 ---~--~·--------------------. _______ _,_ _______ , ______ +:---'·:_ ____ , _____ ~·------------. ---------------,-------~.--'-'~---.1
! . Ca.4:...4 -tZC::1
Z6CO
' . ' -----------------~----------~------------~--~-----------------------~--
,:_.....::.;<3:.:':..5 --'-- -_j
"f.
----,-----~ ---~-~---~-----
·1
'
zzoo ,__z;..'.;;.z;;._...J _____ J
Z041 1
-1-~---1---
1647 f.----_)
2000 ----,
~-------------------------~-------~-~-·-----=-~-----~==r-------·f· ==="i
' 1'----+, -----!
,_....:..:..:..::......_,, I
r----_j
---------~~:r.~·':-:-''-'_':"_=-:-:,r=='---'c::J 1800
. -
-----------. --------------·-'···
ANCHORAGE AREA
is:;c--....... , .. ~-------1'---'-=----._...,J,--"""-__,
I ,_...:..:c:..::......-:-_:-.:_ .::_·.::_ -.::_ .=-·......:-,; 1400
·-··-~1
-------------i
.----~
ICCG
sco CCALFZ. JIY,)
60;] -------
.;oo =~~-~-~~-~·~--==--~~-=...;._;_=~~~~-~~...;.e'~--~--~~=·~· ~-~-!~;~~;~~;:_;~-~-!t::-~-~~-~-~----~;:_~·__:~~~~~,;~==··~~-~--~--~~·~-"f! :--=.::_~-~-~---~._:__~--·. p~·-~-~A-~K~_:__~-L-O:.:.A·~·-D:._~-~=D~E=::M~:._A-~·~~~-::_:-D~:._~--~_:_:~_JI' ~-~-~-=-=--~-=-~--:~---~-=~-::=-c-=-_--~--~-=-~--~-~-=--~-~· ~F~A~I R;B~A~N~K~S:~A~R;. EA~= ---~
zoo = ---------. ...,. ----. ------'--" ~
LOWER RANGE CASE
1988 1989 1-19.90 /991
INDEPENDENT SYSTEM EXPANSION PLAN
ANCHORAGE-FAIRBANKS AREA
LOW LOAD FORECAST CASE
0\ c
<t
0 J
w ~
<t 1'\) w
(L
0 z
<t
>-1-
u
<t
(L
<(
u
0 w
-' ;;.
1-
Ul z
---------r-------
'---------,-----------c -------------------"-----•-----··-
!ZOO INSTALLED CAPACITY IN MW .:~-,--~=-
3600
-i-
--l-
---~ -
____ j INSTALLED CAPACITY LEss··-__ ~~ __
3.:oo ~--_:_: ___ lOCO ___ LARGEST UNIT IN MW --· -----_]--
-------------------r-------+---
UNIT DELETION
i -·'---·-------------,-------~-
·-t· ---+---3COO
·!
2800
-·-I
800 ~--·-· ---_-_+L----'--------,....----i.
400
i
.. -I -... ·r.:~:: j
.) J
-·-----·------,-----------:--------_._ ______ _:.___~----__ -;----------
Z9C! I ~=---!1 I
r----J
,_~n.:.;<>~'-...1 ...... -__ J
I
I
J........:;Z;;5D::I_.J
1
_ _ _ _ _J
-_,
~-__ _J
3301
---'
. I ,_--'''""''"54,_-!-..:_ .:_-.J
I
r-=~1 I
·----l
f-------~----J -I
-----I . ___ ...:._..,._j
l _· !---
<cJ sJ .J, ,_)
,. --------------------------------··--:--------=-:!
__ j
,
-~
t994 T 1995-!1996 I· t997 r-,9-9D
INTERCONNECTED SYSTEM EXPANSION PLAN
ANCHORAGE-FAIRBANKS AREA
LOW LOAD FORECAST CASE
• I l ) l
("") ,
:X::. .......
"' "' ..., c ;;o .......
:X::.
...,
0"1
~ I ....... .......
0
l
0'1
w w
-1 ) -l -l -) ) -) -""""---... 1 --J ~, ~-l ~-~1 ~~~) --------l Lc~c, ----·~ )
0
<;t
0
__J
"' < ..u
::..
0
;z:
< ,_
!:::: u
~
<;t
u
0 w
::l
~
U)
z
LEGEND
400C !.~<eH6 +1%: UNIT ADDITION
3800
~ __ _; __ __:_:_______ •-----------~-
l2.M
~6C.O --------·· -
' ____ J
3400 ------<':Jil
~000 -----------·
2600
INSTALLS:C CAPACITY IN.
INSTALLED CAPACITY LESS
LARGEST UNIT IN MW
.!
FIGU~E 6 -8
i
--------------~-----
r -~-
!3<:1
' ··;
-~ __ ·-i-----·-· _--:-· ·--~--~~-~-~ 3001
!'-----'--------. I
---'-~·
--'-------,----~---
COAL3 t-200
NCH II +104
2354
I
- -I
F----:_:'7.::,0:.,.1 --!----_J
I
F-_::.:ZSO::::;_I --!-_ '-_ j
. --·-~-I .
2ZCO ---j--~---; _ _:_:_:~:.:.:.1 : _ _:_::_:__:_ __ ,'=_ =~7-:--F=-:---,--____ _
' I~RAD\1 +50 :
r----l
I
Zl54" ~~~~--~
2000
1800 . -·-------~--------+--------~
1600 ----------------;-~~
1400
1200 ~------· -~~~~~.
'
1000
eRAD~ z .-sol zoso
I ----r-=-~-=-:J
J-...:=..:::___ _ __;_.;___J_ -~-.-/
I -,
70 MW
FIRM POWER TRANSF"ER
----. -------------------,
RANGE CASE ____ _,
; -. . . . -. :~ j
---'---+-----r----~ :J~_:__:___:,~ ____ : ______ :_· ·_ -~-'----· _:__-_-__ · _-__ :_:_]
. . I 1-'. • ... ---~
----·-· L --.. -. .. t-· · --·-· j -~~~-=~r~-~-:~~=-~-~=~~r~=-~~~:~-·----~t------·---~------l--~-~~~r~~~~-t=~~~-~---------~ ----------------------------j
' --·--:~---1---=:~! --.;::: .. -r::::;---~---· ----'---------!---'--;'--· _ ___; __ . -· _--f--.----------------------~~~·_,~;f~~~~·~~~-~-i~~~~-:~_I;E:::::::~;::~c,::~:~:s~=-800
600 :__ ___ -~:_: __ ~---
400
o,-
1
;-... ·! ---... ----- - -
r979-TI98o_f_i9sr-j'l9s2_l_i983--j-t9~4T-fi:1a·s-ri·9-86TI987-·i--19s·e-r-I9~TI99o-Qri,992TI~-93"T-1994-l ~l-995r-199s-l1997--TI9¥]
INTERCONNECTED SYSTEM EXPANSION PLAN
ANCHORAGE-FAIRBANKS AREA
LOW LOAD FORECAST CASE
WITH FIRM POWER TRANSFER
n "Tl
):» ,_.
(/) G)
rn c ;:o ,_. rn c:o
0'1
I co
'..::! ::.3 V'll., ;-.... ; 230KV TIL ;-' .. --; /3$.BMVA ~~~-5~·1 [/3f?/.?30KY! 10 J ;c 1 ~~) b21'-CY~ '-Q-/. (323m.) "0--" .J.. "-0-"' l '-0-/. ~
-'--' ~
1 -23X/2M'AA ~ 4Xi2MIAA J
T
i3XI6MVAR
ANCHORAGE ESTER
CASE I
Alterr;atives ll. & B
~ J l •• J J l .• ~J -l ) J '-(-;:_. ,._,} ,.,,_ .. _;.
·-.. J •• l .J I J l
--·"'1 -··---, -l l
__ /) ~, --) J J ._, ----·--,
•.
ANCHORAGE
-'"1 ~--~l £--~-C ) ~-, 1
ESTER
!G84 ti.VA .-----+-----, [ 138/345 KV:!. 10;/.
-< ~---
fg
l-15MVAR
CASE I
Alt!Zrnafivz C
--
,~
lfg
,~
L---------------------~----------------------------------------------~--------------~----~
-1
20MVAR
·....:..= 3/1'/I:J._ c~ 230KV TIL --·-r<v··~., t-~-:::'~v .;iC.,./"1 li ~"{Yl'-{Y (40m) :--..y ... '--!:Vl '-[]--" (19/m-) . .., -n , 'I c~ ( 4 X i2!vf\AA
'---...... --...... -;.
* 6
t.u
ANCHORAGE PALMER
~-J -f J -~~ l J \·'~''----
,_,
~~ ~ _,J J _J .I
20MVAR
r'--J.
~1'-Q--"1'-0---" (92m)
I ~.'"* '-------~
HEALY
J J [.. .. J ,J
f31CB!'{W o/ [f53t'<'30 -10;· ~1'-(}-"l'Q/. F-±3XI2M~
l, 1 3XfGMVAR
ESTER
CASE 1
A!"terT!dfi\/.Z D
J J :;,..;.:-·-c) "'·'-<l
., .....
"' c:::
::0 m
01
I ,_. -
I
I
0)1
--·
2::x:: .::--.~.:.. c t .,..
A ,\:C.HORAGE
i J. 200MVAR
!55 m)
23Ci<'l -;-/L
I (189m)
(189m)
230kV
(27m) (27m)
4'X!80MVA
DEVIL CANYON
230KV
1 l 666
3 X 343MVA
WATANA
ESTER
CASE I£
.,
.......
'"' c: ;;o
fTl 0)
I ......
N
CHAPTER 7
FACJL ITY COST ESTIMATES
,-.
!
-
.-
7.1 TRANSMISSION LINE COSTS
CHAPTER 7
FACILITY COST ESTIMATES
The transmission line costs were obtained from past and current experience
of the Consultants with the design and construction of transmission lines
in Alaska. Cost data was escalated to 1979 levels and a factor of 1.46
(AVF =Average Value Factor) was applied to total costs to give an average
value for construction in the area. The AVF includes a 10% addition for
anticipated difficulty with the constraints associated with the selected
1 i ne route.
A. Alaskan Experience
Facility cost estimates for alternative transmission intertie designs
are based on an in-depth analysis of pertinent Alaskan transmission lines
that have been built and are now in successful operation. Analyses were
made based on actual experience to develop material and man-hour costs,
together with specific installation requirements for structures, con-
ductors, and footing assemblies. In addition, typical right-of-way
clearing costs and other costs associated with the solicitation and
obtainment of right-of-way easements, permits, and environmental reviews
were gathered to provide representative costs for estimating component
items for the Anchorage-Fairbanks Intertie.
The first Alaskan transmission line capable of operating at voltages as
high as 230 kV was the Beluga Line. It was constructed for Chugach
Electric Association (CEA) in 1967 by City Electric, Inc. of Anchorage.
This line traverses about 42.5 miles of undeveloped land, of which about
65% was muskeg swamp. No roads existed to connect the line right-of-way
to any highway or railroad, requiring that access be by water (Cook Inlet-
Susitna River), by air (helicopter), or by ORV (off-road vehicle). One
major river crossing was required along the transmission line route.
7 - 1
The Beluga Line was constructed of aluminum lattice, X-shape, hinged-guyed
towers and Drake (795 kcmil ACSR) conductor by the Contractor. Using one _.
tower assembly yard at Anchorage, the Contractor made extensive use of
helicopter delivery of men and materials with ORV equipment during winter
weather to construct the line. This project was completed at a cost of
about $50,000 per mile, including right-of-way clear·ing.
The hinged-guyed, X-shaped tower proved successful and has since been
used for the following lines described below.
1. Knik Arm Transmission Line-230 kV (Aluminum Lattice Towers,
795 kcmil Drake ACSR Conductor), 1975. This line was built using Owner-
furnished material by force account and contract methods. The Owner (CEA)
installed the piling and anchors, and contracted for the right-of-way
clearing, tower erection, and wire stringing. Piling and anchors were
installed using ORV equipment to carry the power tool for installing
anchors and the Del Mag-5 diesel hammer and welding equipment for the
piling work. City Electric, Inc. accomplished the tower erection and
wire stringing using helicopter and ORV equipment.
Summar~ of Actual Costs: $/Mile
Construction Cost 87,294
Right-of-way Clearing Cost 19,049
Right-of-way Solicitation Cost 7,706
TOTAL (w/o Engineering) 114,049
2. W·illow Transmission Line-115 kV (Tubular Steel Towers, 556.5
kcmil Dove ACSR Conductor), 1978. This line was built by contract using
I
Owner-furnished material. Right-of-way clearing was accomplished by one
contractor and line construction by another (Rogers Electric -an ex-
perienced Alaska contractor). This line contractor used a vibratory
driver to install the 811 H-pile with great success. (This driver has
-
since been used to drive 10 11 H-pile for another line. In one case, the -~
tool drove a 14 11 H-pile for a sign support. The contractors are preparing
~
I,
7 - 2
....
,. ....
-:T
"""' I
-
to drive more 14 11 piles for a new CEA line.) The introduction of the
vibratory pole-driving technique, together with the application of the
tubular steel, hinged-guyed, X-tower is expected to realize substantial
cost savings on future transmission line projects.
Summary of Actual Costs:
Construction Cost
Right-of-way Clearing Cost
Right-of-way Solicitation Cost
· TOTAL (w/o Engineering)
$/Mile
73,863
10,312
4,909
89,084
B. Material Costs
The estimated cost for the tower steel, as well as the physical character-
istics were obtained from ITT Meyer Industries (Ref. 1). The cost of
stee 1, therefore, has 19.79 as the reference year.
The cost of foundation steel was taken to be $0.31 per lb for WG Beam.
This value is somewhat conservative, as the current market price is
$0.22 per lb.
Prices for insulators and conductors have a reference year of 1977; there-
after, the price was escalated at 7 percent per year through 1979. The
cost of right-of-way was based on actual average values paid by utilities
in the same area as the proposed lines. Other factors used, that provide
good indication of projected costs for the transmission line are:
• Terrain Factor -This factor is used to correct the number of
calculated towers per mile to actual towers per mile.
• Line Angle Factor -This factor is used to increase the ef-
fective transversal load on the tower, and accounts for the 3°
design-angle for the towers.
7 - 3
• Tower Weight Factor -This factor is used to increase the total
estimated tower weight, to account for heavy angle and dead-end
towers.
C. Labor Costs
Labor costs were obtained from actual construction experience, obtained
by the Consultants 1 construction records for transmission lines built in
Alaska. This information included the cost of labor and a detailed
breakdown of the man-hours required for every specific task included in
the construction program. A multiplier of 1.33 was applied to the
estimated cost of labor for this period, which then was multiplied by
1.1 as explained in 7.1 above to obtain the 1.46 AVF indicated above.
D. Transportation Costs
An estimated unit cost of $100 per ton was taken to represent the trans-
portation and shipping costs from the Pacific Northwest to the line route
staging depot, including loading and unloading (Ref. 2).
7.2 SUBSTATIONS COSTS
For this report, the facility costs for substations were obtained from
the U.S. Department of Energy 1978 version of the previous FPC publication
11 Hydroelectric Power Evaluation 11 (Ref. 3). As the values included in
the publication are list prices, with 1977 as reference year, they were
adjusted to 1979 values by using the U.S. Bureau of Reclamation Index
(Ref. 4). The cost of the substations includes the shunt compensation,
required at both ends, for operation from no-load to full-load. No re-
active power (VAR) compensation support from the source generators was
considered in this study.
7 - 4
-
-·I
-
-
.-
7.3 CONTROL AND COMMUNICATIONS SYSTEM COSTS
Control and communications sytems costs are included in the intertie cost
estimates. The system is necessary to provide effective control of power
system operations, and economic energy dispatch throughout the ·j nter-
connected Anchorage-Fairbanks area. The cost estimates include a power
line carrier type communications system, a digital supervisory control
and data acquisition (SCAOA) system, and automatic generation control
equipment.
7.4 TRANSMISSION INTERTIE FACILITY COSTS
As previously discussed in Chapter 5, transmission line costs were calcu-
lated using TLCAP. Computer printout sheets indicating input data and
the calculated results for all five intertie alternatives are shown in
Appendix B. Costs for substation facilities and the control and communi-
cations system were added to the transmission line costs, thus obtaining
the investment cost for the total intertie facilities. A cost summary
for each of the five alternatives studied is presented in Table 7-1.
Detailed cost estimates and supporting data are included in Appendix D.
7.5 COST OF TRANSMISSION LOSSES
The Transmission Line Optimization Program (TLCAP) for the selection of
the optimum span-conductor combination~ includes the cost of demand and
energy losses for long transmission lines. The loss components are opti-
mized by varying the voltages at the receiving and sending ends. The
program assumes 100 percent volt support at both ends. Table 7-2 presents
the present worth (1979) costs of calculated transmission line energy and
demand losses.
7 - 5
7.6 BASIS FOR GENERATING PLANT FACILITY COSTS
Cost estimates were prepared for all new generating plants (five gas-
turbine units and five coal-fired steam plants), and associated substation
and transmission facilities which will be affected by the transmission
interconnection. The costs for the facilities are summarized in Table 7-3.
The most recent cost data and estimates available for both gas-turbine
and coal-fired steam plants planned for the Railbelt area was used as a
basis for the generating plant estimates. The three principal sources
of cost data and information are included in the references at the end
of this chapter. The Battelle study report (Ref. 2) provided background
information and specific factors to determine applicable Alaskan con-
struction cost location adjustment factors. The Stanley Consultants
report to GVEA (Ref. 5) provided detailed cost estimates for both the
104-MW coal-fired plant at Healy and combustion turbines at the Northpole
substation in Fairbanks. These estimates were then used to derive refer-
ence costs for other gas-turbine and coal-fired units of different capacity
at other Railbelt sites. The nomogram developed by Arkansas Power & Light
Company (Ref. 6) was used to determine the 100-MW reference cost estimate
from reported costs relevant to the 104-MW coal-fired plant at Healy.
The same nomogram was then used to determine plant costs for unit ratings
of 200 and 300 MW, taking into consideration economies of scale. Sub-
sequently, the Alaskan construction cost location adjustment factors were
applied to derive site specific cost estimates.
Cost estimates for the associated transmission facilities were obtained
from cost data developed during this study for the transmission intertie,
the Stanley Consultants report (Ref. 5), and typical costs experienced
in recent Alaskan transmission projects.
The cost estimates and supporting data are contained in Appendix D.
7 - 6
-
-
-i
-
-
-
-
-
-
-
r
-
-
7. 7 GENERATING PLANT FUEL COSTS
Benefits in addition to those resulting from generation reserve capacity
sharing will result from the supply of firm power over the intertie. An
analysis was made of the relative generation costs for both independent
and interconnected system expansions to determine the comparative economic
advantage of firm power interchange. The fuel cost component of operating
expenses is the salient factor which affects the economic comparison of
alternative system expansions. Therefore, a year-by-year analysis of
alternative modes of generation was completed for each period during
which firm power transfer over the intertie is possible, as follows:
From
1984
1992
To
1987
1996
11 Case lB.
Duration
4 yrs.
5 yrs.
Transmission Intertie Firm Power Transfer
Capacity % Power Loss]/ Energy~/ %Energy Loss]/
30 MW
70 MW
6.9
6.9
145 GWh
337 GWh
1. 05
1. 05
21 Annual Transmission Capacity Factor of 0.55 assumed for analysis.
Fuel costs were estimated utilizing the trend curves from the Battelle report
for future natural gas and coal prices in the Rai"lbelt area. The energy
loss component of firm power transfer over the intertie was considered, in
estimating the total cost of fuel required to generate sufficient energy
in one area to displace a block of energy otherwise generated by a local
plant in an independently supplied area.
A year-by-year analysis of the comparative cost of generation is given in
Appendix D. Table 7-4 summarizes these costs. Although this analysis is
germane to the confirmation of salient considerations regarding the economic
feasibility of the intertie, this level of study of fuel costs is in no
way a definitive substitution for a detailed year-by-year analysis of pro-
duction costing for the multi-area interconnection.
7 - 7
7.8 MEA UNDERLYING SYSTEM COSTS
The construction of transmission intertie with the intermediate substation
at Palmer (Case ID) provides an opportunity for Matanuska Electric Asso-
ciation (MEA) to purchase power at the intermediate substation at Palmer.
Information in the System Planning Report (Ref. 8) indicates the following
MEA system expansion investment cost for transmission lines and substation
facilities with and without the intertie:
Interconnected System
Independent System
Independent System
$1,356,000 (1987)
$6,646,000 (1987)
$2,004,000 (1992)
The above costs are in 1979 dollars, values were escalated by 10% from
1978 to 1979 level. These values were used in an economic analysis to
obtain additional benefits for Case ID.
7.9 CONSTRUCTION POWER COSTS FOR THE UPPER SUSITNA PROJECT
Completion of the transmission interconnection, prior to the development
of the Watana and Devil Canyon sites of the Upper Susitna Project will
enable the supply of electrical energy for construction power. A tempo-
rary wood-pole line to the sites will be supplied from a transmission tap
along the intertie route, near the junction of the site access road with
the main highway between Anchorage and Fairbanks. Generally, isolated
diesel generation is used at such remote hydropower plant sites.
A comparison was made of the relative costs of isolated diesel generation
and energy supply to the sites via the tap-line. Table 7-5 shows alter-
native cost streams through the construction period corresponding to the
introduction of the Watana and Devil Canyon units to the interconnected
Railbelt generation expansion, shown on Figure 6-5. The construction
schedule, as outlined on page 94 of the Interim Feasibility Report (Ref. 7),
7 - 8
-
-
-
-
r
r
I
l
r
~·
-I
was followed to establish the time frame for economic comparison of alter-
native modes of construction power supply. Results of the economic com-
parison indicate a clear advantage for utilizing the inte,rtie as a source
of construction power.
7.10 REFERENCES
1. Letter from ITT Meyer Industries to R. W. Retherford Associates,
Anchorage, Alaska, January' 15, 1979.
2.
3.
4.
5.
6.
7.
8.
Battelle Pacific Northwest Laboratories, Alaska Electric Power:
An Analysis of Future Requirements and Supply Alternatives for the
Railbelt Region, March 1978.
DOE, Federal Energy Regulatory Commission, Hydroelectric Power
Evaluation (Final Draft), August 1978.
U.S. Bureau of Reclamation, 11 BuRec Construction Costs 11
, Engineering
News Record, 22 March 1979.
Stanley Consultants, Power Supply Study - 1978, Review Copy of
Report to Golden Valley Electric Association, Inc.
Power Engineering, 11 Nomogram calculates economy of scale in power
plants", Volume 83, February 1979.
U.S. Army Corps of Engineers, South-Central Railbelt Area, Alaska,
Upper Susitna River Basin Interim Feasibility Report, December 1975.
Robert W. Retherford Associates, System Planning Report, Matanuska
Electric Association, Inc., January 1979.
7 - 9
TABLE 7-1
COST SUMMARY FOR INTERTIE FACILITIEs!/
Total Cost at 1979 Levels {$1000}
Case IA Case IB Case IC Case ID Case II
1. Transmission Line:
Eng'g. & Constr. Supv. 3~012 3~012 7~988 3~012 15~442
Right-of-Way 8~837 8~837 7~573 8,837 12,994
Foundations 8,445 8,445 12,160 8~445 22,966
Towers 21~615 21,615 33,990 21~615 64,974
Hardware 477 477 477 477 1~096
Insulators 503 503 755 503 1,396
Conductor 10,761 10~761 17~663 10~761 36,946
Subtotal 53,650 53,650 80,606 53~650 155,814
2. Substations:
Eng'g. & Constr. Supv. 1,352 1~352 1,855 2~816 6,902
Land 57 57 46 81 185
Transfonners 1~703 1,703 3,291 1,703 11,917
Circuit Breakers 1,093 1,093 1,323 1,953 6,410
Station Equipment 1,223 1,223 1,933 1,345 4,375
Structures & Accessories 3~628 3,628 3,978 4,026 16~411
Subtotal 9,056 9,056 12,426 11,924 46,200
3. Control and Communications:
Eng'g. & Constr. Supv. 125 125 125 165 200
Equipment 2,375 2,375 2~375 3~135 3,600
Subtotal 2~500 2,500 2,500 3,300 3,800
Total Baseline 1979 Costs 65,206 65,206 95,532 68,874 205,814
Y The interest and escalation during the construction and other financial
charges are excluded from the costs in this summary. These costs are not
relevant for the economic analysis and they appear only in the financial
analysis (See Chapter 9 for Case ID).
7 -10
-
1111!1!1,
]
i .,
1111!1!1
'
IIIII!!!
-'
-,
-
-,
1111!1!1
-
iWI
-'
r
.....
-'
-I
i
!"""'
r
r
""""
....
....
-i
-
TABLE 7-2
PRESENT WORTH OF INTERTIE LINE LOSSES
1984-1997 STUDY PERIOD!/
Case $ X 1000 {1979)
IA & ID {230 kV) 5,410
IB (230 kV) 7,071
IC (345 kV) 6,429
II A (230 & 345 kV)
Anchorage -Devil Canyon 11,476
Devil Canyon -Ester 7,076
Watana -Devil Canyon 2, 708
l/ Cost of losses, energy, and demand, escalated at 3% per year.
7 -11
TABLE 7-3
COST SUMMARY FOR GENERATING FACILITIE~/
(Costs at 1979 Levels-!/)
Installed Cost Total Cost-Y
Unit Name Code Jj T,l~J_I MW Thousand $ $/kW Thousand $
Northpole #3 NORT 3 SCGT 69 24,385 353 27,934
Beluga #9 BELU 9 SCGT 71 33,548 473 42,498
North pole #4 NORT 4 SCGT 69 24,385 353 25,185
Anchorage PEAK A2 SCGT 78 22,620 290 23,400
Northpole #5 NORT 5 SCGT 69 24,385 353 25,185
Anchorage #11 ANCH 11 Coal 104 99,084 953 105,636
Unit F2 COAL F2 Coal 100 130,000 1300 151,980
Unit No. 5 COAL 5 Coal 200 200,000 1000 212,245
Unit No. 6 COAL 6 Coal 300 274,000 913 292,250
Unit No. 1 GEN 1 Coal 300 274,000 913 292,250
Unit No. 2 GEN 2 Coal 300 274,000 913 292,250
}:__/ Investment costs adjusted to January 1979 levels, excluding IDC.
21 Code name used in MAREL study.
ll SCGT-Simple cycle combustion turbine, ·includes NOx removal equipment.
COAL -Steam turbine, coal-fired with FGD equipment.
!!.l Total cost includes substation and transmission costs.
2./ The interest and escalation during the construction and other financial
charges are excluded from the costs in this summary. These costs are
not relevant for the economic analysis and they appear only in the
financial analysis.
7 -12
$/kW
405
598
365
300
365
1016
1520,
1061
974
974
974
""""!
J!llll1
.,
l!ll'll
.1
~
-
"""'l
-
-
-
-
I""'
I
I
I
-
-
,-.
I"""
' '
-
r~
-
r
TABLE 7-4
SUMMARY
OF
ALTERNATIVE GENERATING PLANT FUEL COSTS
$ 1000 (Escalated)
Independent Interconnected
Year S_ystem O~eration S_ystem O~eration
1984
1985 8,468 7,648
1986 9,324 8,498
1987 10,267 9,029
1992 6,851 8,324
1993 7,212 8,654
1994 7,933 8,016
1995 8,654 8,745
1996 9,015 9,109
7 -13
TABLE 7-5
ALTERNATIVE COSTS FOR CONSTRUCTION POWER SUPPLY
TO
WATANA AND DEVIL CANYON HYDROPOWER SITES
DURING
CONSTRUCTION OF UPPER SUSITNA PROJECT
1979 Baseline Costs -$1000
Isolated Diesel Tapline Supply
Year Generation at Site From Intertie
1985 2,835 267
1986 695 483
1987 697 481
1988 696 478
1989 3,055 752
1990 1,324 902
1991 187 734
1992 623 430
1993 623 419
1994 -sool/ 304
1/ Negative sign indicates that resale value of generating
plant exceeds cost of generation in final year.
7 -14
-
~
-
"""!
~
-
-
~.
-
~
I
-
-I
-
r
....
I
SUSITNA TRANSMISSION
TAP STATION 230/69kV
UPPER SUSITNA RIVER PROFILE
RIVER MILES 120-290
MAIN TRANSMISSION LINE
(~\
6> \
<;0' ' ~ -,
&o I
u'lc \
FIGURE 7-1
HAN:~M1::;01UN CORRIDOR
ANCIIOHAGE · FAIRBANKS INTEfrfiE
();/ ( ~)-\
I
I ,,
u
·,r:All
~---1 (I 'J 10 15 ~'OM1Ies
' ~ ~~ .
. ;·' ,~~
UPPER SUSITNA HYDROPOWER DEVELOPMENT
(Source: Plan of Study for Susitna Hydropower
Feasibility Analysis by Alaska District
U.S. Army Corps of Engineers, Sep. 1977)
CONSTRUCTION PLAN FOR UPPER SUSITNA PROJECT:
Ref. Inter-im Feasibility Report-P.94, IJ) Army r:orp~ r)f fngin@~r~. 1? !),t,i_. 19n
Construction Period for Selected Projects:
Watana Dam - 6 Years
Devil Canyon Dam - 5 Years
Total Period -10 Years (1 Year Overlap)
SUGGESTED REVISED SCHEDULE:
Ref. Chapter 6, Figure 6-5
First Unit On-Line at Watana -Beginning Year 1992
Last Unit On-Line at Devil Canyon-End of Year 1996
Period of Overlap in Construction - 2 Years
Due to Introduction of First Unit at Devil Canyon in 1994
7 -15
' \_
CHAPTER 8
ECONOMiC FEASIBILITY ANALYSIS
-
-I
r-
1
~
i
CHAPTER 8
ECONOMIC FEAS IB IL ITY ANALYSIS
An economic feasibility analysis was perfonned to determine which system
expansion plan provides the best use of available resources for supplying
electrical power to the Railbelt area. Alternative system expansion plans
and faci 1 ity cost estimates were developed in Chapters 6 and 7. In this
chapter, the results of the economic feasibility analysis are presented.
8.1 METHODOLOGY
This economic analysis uses the conventional present-worth model. Annual
capital disbursement tables, on a year-by-year basis, were prepared for
independent and interconnected system expansion plans. To evaluate these
plans on an equal basis all capital disbursements were discounted to the
1979 base year and then totalized for each plan to obtain a single 1979
present-worth value for each plan. The difference between the two present
worth values is the net present worth or project benefits. This approach
does not include additional capital disbursements after 1997. Such dis-
bursements will be required later to replace retired facilities. However,
the extension of the present-worth model over the whole life of the pro-
posed intertie will not significantly affect the results of this feasibil-
ity study. The year 1997 was chosen as the final year of the study period
to include the last unit of Upper Susitna Hydropower Project (Devil Canyon
Unit No. 4).
Figures 6-2 thru 6-8 in Chapter 6 show that many plant additions for
both independent and interconnected system expansion plans do not vary.
Therefore, in this economic analysis, facility costs for the new generat-
ing plants not affected by the introduction of the intertie are not con-
sidered. Also excluded from the analysis are plant fixed operation and
maintenance costs. The exclusion of these O&M costs will somewhat favor
tne independent system expansion alternatives.
8 - 1
Only capital costs are used to evaluate generation reserve capacity shar-
ing benefits. This simplification is based on the assumption that an
average operating cost of generation for reserve sharing is approximately
the same in the Anchorage and Fairbanks areas. To account for generating
plant operating costs with reasonable accuracy, a multi-area production
cost study would be needed. The multi-area production cost model simu-
lates an economic dispatching of generating units in the system and com-
putes expected fuel and variable O&M costs based on the energy (MWh) out-
put for each unit, taking into consideration intertie transfer limits.
Since such a study is outside the scope of the present work, a somewhat
simplified method was used in this feasibility study. It is definitely
recommended that a multi-area production cost study be performed as the
next step to finalize this Intertie Economic Feasibility Study.
8.2 SENSITIVITY ANALYSIS
A computer program was developed by IECO to analyze the sensitivity of
different escalation and discount rates on the capital costs of various
alternatives. This program, the Transmission Line Economic Analysis
Program (TLEAP), provides the following outputs:
• Tables indicating independent minus interconnected system
costs, discounted to the base year 1979.
• Separate tables indicating the discounted value of base year
(1979) costs for the independent and interconnected systems.
• Cost disbursement tables for alternative system expansion
plans. These tables also include intertie line losses.
Computer printout sheets indicating input data and calculated results
for all alternatives included in this economic feasibility analysis are
found in Appendix E.
8 - 2
-
-
-
-
-
-
-
r
-
r
I
r-.
I
r
8.3 ECONOMIC ANALYSIS
Tables included in this chapter and in Appendix E indicate economic ana-
lyses for a range of annual escalation rates of 0% to 12%, and a range
of discount rates from 8% to 12%. For principal investigations below,
a 10% discount rate is used and cash flow for facilities under conside-
ration is expressed in constant 1979 dollars, only the fuel related
energy costs are escalated. The 10% is regarded as the appropriate
discount value for Opportunity Cost of Capital and is now required by
the Office of Management and Budget (Ref. 1) for economic analyses to
determine benefits for all federal projects.
For the purposes of the economic analysis, it is the discount rate cor-
responding to the opportunity cost of capital which is used to calculate
all present values of costs and benefits; the particular cost of in-
terest actually paid on bonds or other obligations is irrelevant since
it bears no relationship whatsoever to the project•s internal rate of
return. It is only a financial (or budgeting) parameter. Therefore,
the interest during construction and other financial changes are ex-
cluded from the economic analysis. These charges appear only in the
financial analysis.
A. Benefits Due to Generation Reserve Capacity Sharing (Case IA)
Three cases were investigated to determine intertie benefits due to
generation reserve capacity sharing alone; the 230-kV single circuit
intertie between Anchorage and Fairbanks. In all cases 130 MW of power
transfer capacity was allocated for generation reserve capacity sharing
purposes. The economic analysis results indicate the following benefits
due to intertie (differential of present worth}:
Load Intert i e Cost Reference Benefits ($ x 1000}
Forecast {Percent} Table {PW 1979}
Probable 100 8-1 12,475
Probable 125 8-1x 945
Low 100 8-1-LL 2,704
8 -3
The above results indicate that the 230-kV intertie is economically
feasible based on generation reserve capacity sharing alone.
Sensitivity of the results to variations in escalation and discount rates
are indicated in Tables 8-1, 8-1x and 8-1-LL. Computer printouts indicating
details are included in Appendix E.
B. Benefits Due to Generation Reserve Capacity Sharing and Firm
Power Transfer (Case 1B)
Six cases were investigated to determine combined 230-kV intertie benefits
due to both firm power transfer and generation reserve capacity sharing.
These study cases have one 230-kV single circuit line during the 1984-1991
period and two single circuit 230-kV lines during the 1992-1997 period
except for low load forecast case (Table 8-3LL) when the second 230-kV
circuit is added in 1995. The economic analysis results indicate the
following intertie benefits (differential of present worth):
Load Intertie Cost Reference Benefits ($ x 1000)
Forecast (Percent) Table (PW 1979)
Probable 100 8-3 24,054
Probable 125 8-3x 12,533
Low 100 8-3-LL -2,626
If the above intertie benefits are combined with the additional benefits
due to supply of construction power to the Upper Susitna Hydropower Project
site (see Section 7.9), the economic analysis results indicate the following
benefits (differential of present worth):
8 - 4
-
-
-I
-
~"""
r
r
f""'
-!
r
I
r
Load Interti e Cost Reference Benefits ($ x 1000)
Forecast (Percent) Table (PW 1979)
Probable 100 8-4 29,633
Probable 125 8-4x 18,112
Sensitivity of the results to variations in escalation and discount
rates are indicated in Tables 8-3, 8-3x, 8-3-LL, 8-4 and 8-4x. Computer
printouts indicating details are included in Appendix E.
c. Benefits Due to Generation Reserve Sharing and Firm Power
Transfer (Case IC)
Two cases were investigated to detennine 345 kV intertie benefits
due to both: generation reserve sharing only (first line) and genera-
tion reserve sharing combined with firm power transfer (second line).
These study cases consider one 345 kV single circuit line between
Anchorage and Fairbanks. The economic study results indicate the
following intertie benefits (differential of present worth):
Load Intertie Cost Reference Benefits ($ x 1 000)
Forecast (Percent) Table (PW 1979)
Probable 100 8-2 -3,556
Probable 100 8-7 426
The above results indicate that the 345 kV intertie is not economically
feasible based on the conditions specified in this study. Additional
studies, including interconnected system production costing, may prove
the 345 kV intertie feasible.
Sensitivity of the results to variations in escalation and discount
rates are indicated in Tables 8-2 and 8-7. Computer printouts indicating
details are included in Appendix E.
8 - 5
D. 230-kV Intertie with Intermediate Substations (Case ID)
Four cases were investigated to determine additional benefits due to
supply of power to the I~EA System at Palmer substation, and construc-
tion power to the Upper Susitna Hydropower Project. These cases include
a 230-kV single circuit line between Anchorage and Fairbanks (Ester),
with intermediate substations at Palmer and Healy. The economic anal-
ysis results indicate the following intertie benefits:
Load Intertie Cost Reference Benefits ($ x 1000)
Forecast (Percent) Table (PW 1979)
Probable 100 8-5 17,814
Probable 125 8-5x 9,125
If the above intertie benefits are combined with the additional benefits
due to supply of construction power to the Upper Susitna Hydropower
Project sites (see Section 7.9), the economic analysis results indicated
the following benefits (differential of present worth):
Load Intert i e Cost Reference Benefits ($ x 1000)
Forecast {Percent) Table {PW 1979)
Probable 100 8-6 20,344
Probable 125 8-6x 11,656
Sensitivity of the results to variations in escalation and discount
rates are indicated in Tables 8-5, 8-5x, 8-6 and 8-6x. Computer
printouts indicating details are included in Appendix E.
8 - 6
-
~
-,
~
-
-
r
i
r
r
r
E. Intertie with Upper Susitna Hydropower Project
Only system reliability (MAREL) analyses and facility cost estimates
were developed for this alternative system expansion plan (Case II~
Chapter 6). The economic feasibility analysis was not performed for
this alternative because:
• The methodology of this economic analysis is more appropriate
for thermal generation systems. It is not applicable to a
large mixed hydro/thermal generation systems. A multi-
area production cost study~ involving extensive analyses
of optimum hydro operations in conjunction with thermal
plants~ would be required to obtain accurate results.
t A draft copy of the Upper Susitna project report prepared
by the Alaska Power Administration (Ref. 2) was received
by the Consultants in the course of this study. It includes
revisions to unit ratings for the Upper Susitna Project
used in the MAREL analyses (as described in Chapter 6). The
new total installed capacity is 1573 MW, versus the 1392 MW
installed capacity used in development of the expansion
plans analyzed in this report.
A study should be perfonned to accommodate the above revisions to
the Susitna power ratings and change to the production economics
due to major hydro substitution for thermal energy. The study should
examine in detail the economic feasibility of Susitna hydropower, due
to the displacement of large increments of thermal power.
For reference, Figure 6-5 in Chapter 6 indicates the initial expansion
plan developed for this study. This figure also indicates the thermal
generating unit displacement by Upper Susitna Hydropower units.
8 - 7
MAREL study results indicate the following intertie requirements for
maintaining the study criteria of equal reliability system expansion
with introduction of Upper Susitna power:
Period
1992
1993
1994-1997
8.4 REFERENCES
Requirement
One 345-kV S/C line to Anchorage
One 230-kV S/C line to Fairbanks
One 345-kV S/C line to Anchorage
Two 230-kV S/C lines to Fairbanks
Two 345-kV S/C lines to Anchorage
Two 230-kV S/C lines to Fairbanks
1. Business Week, Economics, Pages 96-97, February 19, 1979.
2. Alaska Power Administration, Upper Susitna River Project
Market Analyses Report, March 1979.
8 - 8
-
-
-
-
···~.·.}
-~------~-----~.:---·-·------------.. --~----------·-···-----------------.. --
IlLilS"-A PIJ;·;fl~ AlJftiOI?l l 'f
AtJ(H(J"A.GE-FA!R•:Ji\;-JKS INif:RTIF
f: C 0 !\ U •': I C F 1:: AS I h T L I T 'f S T i t i)Y
CASE IA, 230 kV GENERATION RESERVE SHARING ONLY
. PROBABLE LOAD FORECAST CASE ·· · ·· -· ----
. . .
OJFH~EN1IAL OlSCOUNTF.IJ V'ALUF OF 8ASE YE.AR (1979) COSTS
INDFPP;OEN1 SYSTEM COSTS MINUS PITERCO~;NtCTEI) SYSTI:.M CUSlS
(IN $l00U)
TAHLE 8-1
----------------------------~---------ESCALATION RAJtS-----------------------------------------
0 I Sll~llf·Jl IP. ill '.> 'r. h% 7 "1. H "1. 9% l () :1: I D.: 1 i'7.
B.~J
H. L:'S
1'1,51)
f\,75
9,il0
q.,:c.,
,, • ') l)
9. t')
1 0 "{: ()
l () .<'')
!11,'-JO
1 (J. 7 5
I l • \l tl
J 1.2 ...
ll. ';\()
J l • 1 '-,
l ,2. (\()
Note:
1 (;, 'll '\
.t i. I 75
l 1 I 1.1 I 4
\ 1 I h .S lj
11, W3o
l ,~ i (J 2 0
I r' ,j HI\
~~·''" l?,•J/5
1 ?. " 5 ~; h
! ? I J \i 3
12,7'-J"l
l ?. I A 7 'I
],),Q£.'-1
l~l{)fJ/
! ; , (l '-, '.)
1 3, li '15
2,4)4
3. i!<L-.!
3,927
~,oil
S,?S&
~,l'o'.i
(,, ;, 'l?
6,9fl3
7' '• 91
7 1 U()q
i1, 1.; J I
f.,l\3-1
«,.?51
9,':-49
9, 'i'• 3
I P, 2o 1J
1 ,, , ':Jb2
-\, ,>! ro
-,.>'j 1
64 7
l , 'j() 3
2 1 51 II
5,01'1
.~, "() 0
:l , /j l) l
5 I J 5 f.\
':1 I (' ij Q
6, .~?.~
b,'iu7
7,5"111
/,1151-1
1\, }09
e, n2
9, 129
-'>,r_.b2
-:J, .'l 0 1
-31 )]'-)
~2, 321J
-[I 321
-371
'J31
1, 3H')
2 I I <,'Lj
2, 91}(\
3 I i:-!' ':j
IJ t _s 7 1
5,0!'-1
5,6)0
6,?.0':\
6, 7~2
7,2o5
-Il,u'-1?
-'-l,ol9
-n,?.o')
-b,9l7
-5, 7'~2
-ll,':lliH
-3 I lj AI
-.-',<J30
-1 I !J .S I
-'-11:\4
41'-:i
I I 2bi3
.?,076
2,1:\41
3,'J66
4,?.S?.
4,900
-li.111'."h
-t•,,/71
- 1 iJ, l _) j
-1<.',">79
-tl,QGo
-Cl I t>/d
Ad,339
-7., 0':>9
-5,1\41
-IJ 1 h ,0, (>
-S,SRl
-,2,~7,/j
-J,'.>iJ()
-:.95
301
l, I'.>?
1,9'.>~
-,>:,,147 -_', ti, I rJ a -.:; .. l, g(lf)
-2 5, i) q t) -.St,7Sn -~~ i ,u)f.)
-? 1, I .$6 -c!Y,llill -3'-1,!79
-!'l,<.'nli -?1,]91 -36 I 'j!J U
-1 7, ,, !lh -?':i,Oll -511 1 (II "(
-15,756 -2_$,1)1JO -31,<>0'.>
-14,166 -21,102 -29,)01
-t?,b2l -14,<-'':i? -27,1l9Q
-ll,lll9 -!7,1JI:jh -<''J,'/41-t
-9,"/47 -t'->, hJ<' -2~,91'.1
-8,LI11 -]f.l, 145 -21,065
-7,1.$9 -l<',o~>2 -!9,27,'>
-':i,ll21;1 -11,202 -I 7 I •I H b
-4, "llb -9,,;()Q -1'.>,1l16
-3,61:\() -1'>,41:1?. -14.223
-2,6)7 -/,?11'. -!2, 103
- 1 , t>4 7 -6,014 -11 .2S3
In early years of the expansion plan capital requirements are higher for the independent
system plan, but in the later years capital requirements are higher for the interconnected
system plan. As-the discount rate increases, the-sum of present worth decreases more for
the interconnected system plan than for the independent system plan, therefore, the
differential of the stimS of the discounted values increases with the increase in the dis-
count rate.
Due to larger capital requirements in the later years of the expansion plan, the increase
in the escalation rate causes a greater increase in capital costs for the interconnected
system. As a consequence, ·the differential of the discounted values (benefits) decrease.
Refer to-APPENDIX E for capital disbursement tables and tables of discounted values.
-'>ltt!"l2
_..,)' !<', 3
-~,!),1>00
-II 7 1 II 58
-4ll,'Jll
-41,663
-3e,(nd
-.Sn,53.S
-55, HIH
-31,4':;11
-2 'I I I t\ 1
·27,005
-?4,~~?
-2?.,'~$4
-21,05<l
-19,219
-J7,4flb
:3 AUGUST 7'1 ALASKA Pl.ll'i~l-l Al.llHOJ,illY TABLE. 8-lX
co
....
0
.J
il'lCHORAGt.-F:.IRt3Af•f<:S lNlERTIE
C: C f1 ~,, l ~q C F E A S I •H L 1 J Y S 1 lJ f) 'r'
CASE IA, GENERATION RESER'~ SHARING ONLY
TRANSMISSION LINE COSTS INCREASED BY 25%
PROBABLE LOAD FORECAST CASE
l) IFF ERE NT I A L D fs C 0 U td C: 0 Y A L U t -0 F 8 AS ( yt A R ( 1 9 7 9 ) C 0 S T S
lNDEPE~DENl S'r'STt.M CUSJS MINUS INTERCONNECTED SfSTEM COSTS
(IN $10\JO)
--------------------------------------ESCALATIU~ RATES-----------------------------------------
U I S C PUt' J I)/. ll'f. ')% 6% 7'7. 1;% 9% I 0 ~ I I I.
.. J
kAlE:_ -----------------------------------------------
H.ll() • 1 , •l I (1 -11,771; -15,92/ -2ll,t\'17 -26.1:!0'1 -53, 74P. -u2,019 -'->!,642 -o2.~t>O
I'.<'S -1, li'lo -Ill, M q l -l<l,':l':iO -14,~9tl -i?.':>,c-'53 -31,91Jb -39,1J2ij -l.l'-1, O')IJ -S9, 13?.1
r;.~o -., l14 -10,()48 -13,rl24 -18,360 -2S,lbil -30,17') __ ,1,125 -4b,'::J77 -5o,910
f. /5 -'i~-<.S -'-1, ('1J7 -12,<'<-17 -17,178 -22, 35U -2d,IJ/3ll -5), 710 -4'l,206 -5 1J, 122
q. ll ll -1'1 -t', lj t\'j -11,'117 -16,0'>?. -20,907 -<'•>• i\h£1 -3~,7'111 -ill, 9 _) 7 •51,4SI
'1,2'> l.ill -7,7t,l -11,032 -I'J, 9 7 'I -19,705 -2S, .'i23 -31,962 -3'-1,7{>1:> -aK,i:\'-1~
'1.So lj I> I> -7, (17 Ll -10,190 -U, '1':> 7 -ltl,•J73 -2~,1-\IJd -30,207 -.H,MIIl -~b,<l4b
'1.1') 7 I Q -1:>1 IJ22 -9, .Srl9 -12,'-li\2 -17,247 -22,440 -?.0,S29 -~s,·1oo -«a, 102
10.00 <liJ <; -"i, 1<0) -rl,o27 -12, tl')ij -lo,l7b -21,09'} -26,</26 -B, 7<;JH -;j I , A') 7
10,<'';> 1 , 1 t' I -';>, 2 1 () -7,"103 -11,171 -1':>,107 -14,1:\10 -2'i,!d!> -31,979 -3'1, 101:1
!0.'10 1, )n 1 _,,, o':''l -1,215 -II), BO -Ill, I) t)/j -IK,St-1') -2'i,<fr'fl -~1),23il -57,b':>l
1 '-' • 1 c;, 1 ' ') /j" -11 I I ~?. -b,'H>2 -9,',29 -13,116 -l 7, Ill ') -22,':->c?A -21".~)7Ll -.S':i,oH2
\ 1 • •J ,} I , 7? I --$,o$2 -S,9ill -1\,lt>"A -12. 1'-10--1n,20/-l -21 d 'I! -c'o,'-IH.S -3~.191)
I l • 2 S j,/iAI -3, 1 :-i'l -., ' S"d -B,04<J -I I, 30H -IS,23.S -19,414 -2'),461 -31,9'-15
1 I • ':> () 2, l) 50 -2,7!2 -ll,7911 -/,)')<; -10,.:!6tJ -111,217 -!P.,b9') -.?<I, 0 tlb -30,2oCl
1 1 •. , ";, 2' \ bb -2,<'59 -LI,c't>S -1>,701 -9,o6d -LL248 -17,53\J -22,olo -21i,t>l8
11.00 2,291 -l,li89 -j,/63 -i:>,079 -H,~07 -12,32':) -1b,lll8 -21 d8 7 -27,03Cl
Note:
This case is similar to the case pres-ented in Table 8-l, except for the increa-se in
intertie costs by 25 percent which caused an increase in capital requirements for the
interconnec-ted-system expansion plan. -For case analysis refer to note in Table 8-I.
J J .J J J j j • J J '<'-''"~ J
12% ----...
-75,1:\89
-72.533
-t>~,92ll
-h5,658
-hc:',S?d
-S9,S2'1
-so,b56
-'l3,903
-51,26',
-Qf\,7_)tl
-46,,~HI
-LJ3,99<,)
-41,719
-39,&52
-37,ol~
-35,bb5
-B,798
J J ) -~
~. )
28 AUGUST 7q ALASKA POWER AUTHORITY
ANCHORAGE • FAIRBANKS !NTERTIE
ECONOMIC FEASlBILITY STUDY
TABLE 8•l•LL
co
I-'
I-'
CASE IA, 230 kV, GENERATION RESERVE SHARING ONLY
LOW LOAD FORECAST CASE
DIFFERENTIAL DISCOUNTED VALUE Of BASE YEAR (1979) COSTS
INDEPENDENT SYSTEM COSTS MINUS INTERCONNECTED SYSTEM COSTS
(IN $1000)
•••••••·~~-·-·······-~---·-··--·-··•••ESCALATION WATES·--·-·--········~·-••••••••••••••••-·-~•·•
DISCOUNT 0'% 4X 5% 6% 7% fl% 9% lOX tit 12%
R A Tt:: ::::::: -------·--------===== -----====: ===== -----===·== s.oo 41292 61955 71203 71 166 61765 C,l904 4,475 21351 •619 •11,605
8.25 lll095 61860 7 r1 6 7 71206 61903 6 r I 6 7 41895 21964 232 -1,466
8.50 3,897 6,751l 7,1 14 71225 7 I 0 I Q 61396 51272 31523 lr0\6 •2,409
1:\. 75 31691\ 61·o38 71048 71225 71 1 0 0 61593 51607 41031 11 13b •1,430
9.00 31499 61513 bl966 7,1207 7 ,!63 bl759 5190ll lll119l 21391
q.25 31300 6, 'H9 61876 7 I I 7 2 7,203 61897 6, I 65 4,906 31001
9.50 3 I I 0 I 61237 61773 71 122 7,?24 71008 61392 51278 31552
Q.75 21902 6101\8 6,660 7,058 71225 71095 61588 51610 41053
10.00 2,704 51933 6.537 61981 7,209 7, 159 61753 5,904 41507
10.25 21507 51772 61406 61892 7,! 7 7 71201 o 1 891 b I I 63 41917
10.50 2 I ~ 11 5,606 6,267 61791 7.129 7,223 71003 6 1 3f\8 5,284
10.75 2 I 116 ~1435 6 I 121 61681 71068 71226 71090 b I C,IH 51613
11.00 11923 51261 51969 6 I 56J 619'13 71212 71 155 61748 51904
11. 2S 1 ,7 31 5,083 5,811 6,433 6,907 71 11\2 7, 198 61885 b I I 6 I
11.50 11541 41902 516!l7 61.?96 6180'/ • 7 I 136 71222 6,997 61385
11.75 1, 3':13 Ql718 511l79 61 15 ~ 6,7 0 I 71077 71227 71085 6,578
12.00 11166 4 •. '> 32 51308 6100Q 61584 71005 7 . .2 I Q 7 ,151 6,742
Note:
In the early years of the expansion plan capital requirements are somewhat lower for the
independent system expansion plan (less new generating capacity is required). In the later
years capital requirements are lower for the interconnected system plan. As the discount
rate increases, the sum of the present worth decreases more for the independent system
plan, therefore, the differential of the sums of the discounted values decrease with the
increase in the discount rate.
The above analysis is applicable at the lower escalation rates. Due to marginal differences
between capital requirements for both independent and interconnected expansion plans, at
higher escalation rates the situation reverses, the differential discounted values (benefits)
increase with the increase in the discount rate and decrease with the increase in the
escalation rate.
Refer to APPENDIX E for capital disbursement tables and tables of discounted values.
•5211
312
11083
1 r 79 I
21442
31037
31580
410711
Ql522
41927
5,290
5,615
5190Q
co
I -I
I
I
)
23 AlJGUST 79
D 1 scour~ r
f< AT t
1".\10
ii.?.S
M.'::>ll
(X) d. 7'::>
~~ • 0 l~
...... 9.2'>
N '-1 • '-, (,
~. 7'>
1 :) • ll (J
Ill.?'>
\ll • s"
L;. 75
1 1 • ·~ ,:
ll.h
tt.'Ju
I 1 • 75
12.lJiJ
J
ALASKA PO-ER AU1HOR1TY
ANCHU~AGE -FA1RHANKS INTERTIE
I:.CUNO~I I C F EAS 1 f3 ll IT Y __ STuO_Y ___________ _
CASE IC, 345 kV GENERATION RESERVE SHARING ONLY
------------.PROBABLE LOAD .FORECAST._ ---
[IJFffRcNTIAL f:!ISCOtJNTfll VALUt (_lf BASt: YEAR (!979) COSTS
I NDH'EfliJI:.N! SYSH:.M COSTS ~1! NUS If'< T ERCONNI::C lED SYSH./4 COSTS
( I I~ !liiVvO)
TABLE 8-2
-------~------------------------------[SCALAliON RATES-----------------------------------------
OX ... k S% b% I%
----------------·----------
-iJ , f\ f., b -IO,rlo9 -15,279 -II">, 167 -J9,t,(l1
_,,. ,, 7 q -\ l• • .5':>•1 -12,6'13 -I ') I lj l 2 -!8,b9i'l
•4,1li.HI -'-l,i)b':J -l2,<J51 -l:.J,b92 -J7,rlY:i
-···~ll2 -<I. IJ 0 I -I l , •I fj"' -14,00<:> -17,011
-lj , 1 3;; -h,li':J9 ""I 0, 9'i•.J -13,.)'-,} -tb,?C'')
-~. ·n ~ -1:\, ..,,J u -l•),ll3t> -1?, 72P. -I 5. /j {'I
-3, 1'2'1.1 -M 1 ]43 -9,9V.7 -12,1.S:.. -14,7'->o
•$,t-,;<':;, -I, 7 bb •9,'-lf\3 -11,':>68 -11.1,075
-5,':>~6 -7,'-itJ>'. -9,1)<12 -11,029 -13,423
-3··•5h -7,070 -IJ,o22 -1u,<Jt7 -12,<102
-3.3?5 -6, 1 {J 4 -il,22.:t -1(),0?9 -12,210
-3,2<'2 -o, l~, .. ~ -7,i>47 -9,565 -I 1 , o 1, b
-.,. 127 -,,ISH -l,i~l:.ld -9,123 -!!,tva
... ; , 0 tJ (~ -'::>,0/ltl -7, I iJ'! -~.704 -l0,')9o
-2,45'l -S,o3J -b,d27 -5,30'::> -10,109
-2,,til> -':l,38tJ -o,522 - 7 I 92 7 -9,6<15
-2,<119 -s, 159 -6,235 -7.~o8 ~9,204
ill. 9% 107.
---------------
-?~,l>'JI::! -2fJ,4?! -n,'lti''
-?2,51:.13 •27,1SO • 5<' 1 tj 59
-?\,':>So -?5,9S':> -.SI,OStl
-21),574 -211,771 -29,oil7
-19,o.So -;>3,6Sil -c'B, 37<'
•Jtl,734 -22,'J4.5 -27,111
-l7,8B2 -21,'::>75 -25,913
-17,063 -20,olll -24,761
-lb,2R2 -J9,ob'l -23,658
-l':>,S35 -1"',179 -22,o03
-1«,825 -!1,92R -21,')93
-Ja,t43 -17,11S -20,r.21
-1:!.,1',94 -to.535 -19,7v2
-12,1:i75 -l'J,':J4b -lll,B!9
-12,285 -14,1:187 -17,973
-11,722 -14,210 -17,lo5
-11,1/36 -13,5b<l -16,393
.J
I!%
-----
-'-10,4')0
-31),700
-37,0?3
-.S':>,lJ!5
-3'i,87ll
-32, Fi7
-30,9!32
-2'-l,b?b
-21:1,328
-27,083
-2':),892
-21.1,751
-23,651:1
-n. 612
-21,611
-20,6';,2
-1'<,735
J
12%
--·---
-47,93i.J
-45,893
-43,936
-1.12,059
-1.10,259
-3i:J,':J32
-3b,57b
-35,28'1
-B, 766
-32,307
-30,908
-?9,567
-28,282
-,n,OS1
-25,871
-2LI,71ll
-23,658
-1
):>
CD r-
rrl
(X)
I
1"\)
.. ~ .. 1
-·----··--~.
oJsco•1;,r
~ ... :. 1 c.
k ... ;,·1 rJ ,..,,:,
I' • ') (i
o. I<;
9, r) ()
'f.;?~:J
9.l.,O
c • i ';,
J ,1 • ,, 11
1 tl. 2 ':J
00 I 0 • "ll
I t.r • l':>
..... 1 l • \10
w I I. 2')
1 l.'Ju
l l • ,,,
1 2. (I 0
t\LAS~i\ Ptl~tK AilfhORiiY
~NC~~~b,;t.,._--.;!:_-Ft..{i-\ds\~~".5 !~.;TE~TlE
f:C~~~.,;n~1 iC FF::~.SlSIL11Y S~ttO'f
l
CASE IB, 230 kV, GENERATION RESERVE SHARING
PLUS FIRM PO\.ffiR TRA.~SFER
PROBABLE LOAD FORECAST CASE
L'InEr<EII.TlAL IJlSCUl>NTED VALliE [l ~: RASE:. YEAR (1979)
I NUE: ,.>F_ oll)c N f S'!'SiEM cosrs :--!It-iUS 1•·:11:.RCOIIINI:C lED SYSTEM
(lN SlOOG)
l }
TABLE 8-3
COSlS
COSTS
---------------------------~----------ESCALAilON RAlES-----------------------~----------------~
fl ~! W7.. ',Z 67. 77. i':l~ •n. 107. 114 12! ------·---------------------------------------------
~'~, 7 ?.6 cS1.'>1~> ?.c.>,uS4 2t~,2S2 l7, .'\'? .s 1 il 1 f. 7 C ll,v9c 6,GL!ti 1'21 -'l~Olf\
? 1 4., t~ 1 ~ c5,',~>S 22' ~'!') 20, 74') 1/i I~ 'j j 1 '::>' 7ij () ;?., 12!1 1' 7 2 3 2,372 -o, G':> S
,'U,t,J'/ ?_ ~:,, 7 P. H 22' 1 r!" 21,203 1 'I, 1 !J7 lo,'l7K 13, 1 tl6 1),'152 3,!lL!4 -2 ,i!7tl
£' <4 , ') rj 9 2 s' Q(i 7 2 .s 1 n 2e 21 , o27 ]9,713 11,c'09 11l,028 10,075 'j,21.12 -51:19
?·!, tJbi\ 2lJ 1 \ 0, l'i,S05 221017 ?11,21.10 17,t'oil Jll,HQH 11.1Sl 6,561! I , 0 I b
,) lj, j 1"' 211, 51., ?.'jl')':i! 22,577 20, 72~ 11:1,55o 15,71o 12,179 7,1;2'j 2,':>1l5
<' 11, {' 7 'I 2·~,q~"\t,.) ?. ~, 17 •l 2?., !Oo ?. \ , 1 fllj I q, 136 16,4!i(1 I .3, 14ll 9,016 3, qq 3
2 l' l 7 l (' il,.., (> 3 2~r'l73 (!_ j r I) (1 7 c 1 1 htl tj (<JI(>Of J7,20q 1<~10So 1 0, Ill 1.1 ':>,569
?. -. , [1 S 'I 2~ I t:)SR {!lj, 1llQ 2.S,?i<l ? 1, <.)()) 20,219 17,KR7 1ll,9l':i I 1 , 2 l I 6,1:<76
?. ~ I ') ~ 1 241754 2:1, )Oil 2~,';>29 22,3?0 2 \[, 7 \)C::, 1H,523 1 s, 7 21l 12,220 7, q 16
2\,M(lU 211 I {Q .s c II, 4 3;) ?3,7S2 22,b7H 2~,1S7 I 'I , I l 1:1 16,41\':i 1 ·s , 1 7 11 9,091
t?S,n6? c'<J,>\)C, 2«,':iS2 2519')1 l,?,971) 21,')1'} I 9, b 111 17,201 lll,07S 1 0 , 2 (J 11
2 $, '., 1 K ;'l .. ,~h) ?.4,o<Jil ?4,l('tl 2S,cS2 2\, 9h 1 2•),192 U,f\73 I'', 921l 11,2">1:1
t?3,3o9 ;?ll' ~ '0 241l?.o 2'l '2~·· 2 L 119'1 22, 317 '20,675 1 il , 5 ll 3 1':,,'{('<} 12,?">'>
2 5,? 1 .. 2u,tl7q 2IJ, 7/< 7 211,11\9 '2.5,723 2?,ol11J ?.1,123 19,093 lb,ll78 13,197
23,1>':>3 21~ , .. ~ 6 u 2r<,r\31 2 11,'53~ ?.3,92.~ 2~,91jll 21, s 39 1'1,644 J7,lli7 1U,Of<7
2?1~'':111 /?Ll, 1'\')3 211 1 /) t'-1 2IJ 1 o5? i?l.l,lOO 23,217 211921.1 20,!59 17,H53 ILI,928
00
I w
AUGUS I 1'1
DISCr.n;~•T
~ h If_
r..uo
!1.?5
tl.:,o
M.7':)
o. loO
<~.c'->
9. "(j
<J. 7..,
ll' • {I {l
1 l 1 • t? s
OJ 10.')0
lf,. 7';
J1 • (I 0 ..... 11.?') ..p. l I • ') 0
l I • 1 <,
I 2 • li 0
,\LAS"·' f'll•~tf{ ,\illHtWJlV
AN c H \! ,, h r, E -. F A !1<1\ A •• K s I N H R 1 1 E
~CQ~nMIC F~ASIHILITY STUOY
CASE IB, 230 kV, GENERATION RESERVE SHARING
PLUS FIRM POWER TRANSFER
TPJrnSMISSION LINE COSTS INCREASED BY 25%
PROBABLE LOAD FORECAST CASE
l)lFFt:RENTlAL i)lSCOUNTED VALliE OF RASE. YEAR (I'H9) COSTS
INDEPENDENT SYSTEM COSIS MINUS INTERCONNECTED SYSTEM COSTS
(IN $\000)
TAMLE 8-.>X
----------------------------~---------ESCALATION RATtS---------------~-------------------------
!II,. 4/. ':)% bi. 7% ----------_._ ___ ----------
12, .'Ill 0,11~ 7, ~ 2 6 S,Q2b 2, 1 )6
le',1Jb7 o,1181 ·1, >~ I 1 '),648 2, 41 7
12, Stl9 9,1.122 t\,26£1 b, 233 3, 65 1J
I ? , 'i <! o l!l,l\>1 H,t>P.l b, 71'1 4' ~'i I)
p,C,';tl I u, 'l24 q' 0 ':l I 7,2'-fo '),OilS
12,':\1)7 1•J,o'l7 Q, q (J ~~ ., , 771:1 5, ()21
l(',':;n"i lv,«43 9,li3A ~..~.2~1) (>,201
1 2, ')')II I I , I <-fl I 0 , 1 <1 .~ P.1 6tl<J o,7Llo
l?,':>B 11, .5 73 I 0, 3'14 9, OLI 2" 1,2S7
12,')04 IJ,'j')H 1 () t,., 61 9, Ll () 7 7, 1.1;6
I;:>, II 'J6 11 , 7 2') 10,'107 9,7/.Jo 5, 1 1:<5
L:', il ;>I 11,!-\7') 11.133 IO,OoO fl,oOlJ
!.?do9 12, \l \)" 1!,33f\ llld'Jl 8,995
l?.,~v'l 12,l2'J 11,')2<J 10,619 9,35'1
12, ,?IJ Ll 12,221:1 1 1 1 I> q 2 1\l,dh':) 9,o97
12, 11?. 12,316 ll,fi/J4 1 1 , I) 9 1 10,011
12,1)9'; 12,.3'11 llt'HR 11,297 10,302
.J
H% 9% 10%
---------------
-1, IHO -':>,769 -10,9!17
-llo':i -ll,')r.'Jt -9,561.1
4£10 -3,£113 -t\,211
I, 315 -2, <.II I -h,9;'4
2, I 3 3 -l,'l01l -'>,700
2' q •) b -tj') \) -ll , 'J 5 7
3, b :' b ll':i4 -3,1•.~2
tJ,.)2') I , :~ I 0 -2, )f:\ ~
1.1,'?7";, 2, 121 -I ,31:\7
':),')87 2,887 -£143
b, 1 6 3 3d> 10 451
b' 7ll 4 I~ 1 294 1,209
7,212 ll,<.J:~tl 2, I 0 2
7,ofl9 S,':>Ll6 2,tl61
1'1' 1 35 6,115 3,';7i\
~.';:152 6,6':ib 4,25b
8,9Ll2 7' l b 1 lJ,89o
J
I 1%
-----
-17,202
-l'-i,Ll99
-13,1176
-1 c, BO
-10,1'57
-9,!154
-1',!19
• 0 1 /i If (\
-S,o4\J
-4,LJ9!
-5,39'1
-2,31>2
-1,378
-4'HI
442
ld£'.2
2,077
12%
-----
-2<!,54!1
-?2,':>?2
-20,591
-IH, 74~
-16,'?90
-t':J,31lJ
-IS,i\'>
-I.?, I 90
-10.7.513
~9,3':>4
-8,036
-b,7P.2
-:,,',()}\
-4,4':,3
-3.371.1
-i!, 3£18
-1,374
-1
6;
r-rn
co
I w
X
.. J
28 AUGUST 79
DISCOUNT
RATE
a.ao
8.2'5
8,50
8.75
9,00
9,25
9.50
9.75
10,00
10.25
10,50
10.75 co 11.00
11.25
I-' 11,50
(J1 11,75
12.00
J
ALASKA PO~~R AUTHORITY
ANCHORAGE • FAIRBANKS INTERTIE
ECONOMIC FEASIBILITY STUDY
CASE IB, 230 kV, GENERATION RESERVE SHARING
PLUS FIRM POWER TRANSFER
LOW LOAD FORECAs-T CASE
DIFFERENTIAL DISCOUNTED VALUE OF BASE YEAR (19791 COSTS
INDEPENDENT SYSTEM COSTS M!N0S INTERCONNECTED SYSTEM COSTS
(IN UOOO)
••••••••••••••••••••···~····••••••••••ESCALATION RATES••••••••••••••••••••••••~••••••••••••••••
n 4% '5X &X 7X ex 9l lOX llX l2X
::~:::.: ===== ===== ===== :.::::: =-~--::::.:: :::=== a:==== c::;:
·729 4,879 b,790 8,952 11 , 39'5 14, 152 17,258 20,7'55 24,&69 29, 111
•99& 4,430 6,279 e, 373 10, 7H 1!,408 16,416 19,802 23,&11 27, 892
•1r25tl 3,995 5,786 7,813 10,10ll 12,688 1'5,601 18,881 22,569 26,711.1
•1r503 3,S7S 5,309 7,271 9,490 11,993 14,81£1 17,990 21,562 25,57&
•1,743 3,169 4,847 6,7£18 8,896 11' 321 1£1,053 1 7' 129 20,S89 24,476
-1, (n6 2, 776 4,401 6,242 8,322 10,671 13.318 16,297 19,6118 23,1113
-2,200 2,396 3,969 s, 752 7,767 10,042 12,606 15,493 18, 738 22,385
•2,1.117 2,029 3,552 5,279 7,231 9,43£1 11,918 14,714 17,859 21,391
•2r626 1, b 7 4 3, 149 4,821 6, 711 8,846 11,253 13,962 17,008 20,431
-2,828 1, 3 31 2r759 4,378 b,?oq 8,278 10,609 13,234 16, 186 19,502
•3,023 999 2,381 3,949 5,724 7,727 9,987 12,530 15, 390 18,603
•3r212 678 2,016 5,535 S,254 7,195 9,384 11r849 14,621 17, B4
•3,394 368 1, 664 3,13ll 4,799 6,680 8,802 11 ,1 90 13,876 16,894
•3r569 67 1,322 2,747 4,360 6,182 Ar2~8 1 a, 55 3 13,156 16,081
-3,739 -223 992 2,372 3,934 s, 700· 7,693 9,936 12r£160 15,294
•3,902 ·S03 673 2,009 3,52 ~ 5,234 7, 165 9, 339 11.185 1£1,533
•1.1,060 •77S 364 1, 658 3,12£1 ll,785 &,654 8,7b2 11,133 13, 797
-I
~ co r rn
co
I w
I
r r
?3 ~li~USl 79
I)I;,cr'u~n
'"'A It
t< • I){)
~.25
~-<.')()
t' • 7 5
" • t1 tl
u.,.:)
'1.:>()
9. 7<;
I \J • ll 0
I L•. 2':>
i ii • ':> •)
co i '-' • I':>
) ~ • \I (I
I I • r' ·:,
~ 11. ')(r
0\ 11. 7':>
12.110
) j ~ -·
~ L 1\ S K 4 f' il~>l L ~· 1\ I I T t 'I) f: ! I Y
ANCHUkf•G:: -Ffi!RH.\NKS 11'-Tf_Rll!:.
lCO~U~lC F!:.I\S!HILT!Y STUDY
CASE IB: , 230 kV, GENERATION RESERVE SHARING PLUS
FIRM POWER TRANSFER & SUSITNA PROJECT CONSTRUCTION POWER
PROBABLE LOAD FORECAST CASE
i)J r F U< f: N T I A L DISCOUNTED VALIJE OF I::\ A Sf Yt:. A R (197<)) COSTS
I N[>F PE I·Jl)t.N 1 SY S T E:t-1 cosrs MH,LJS 1'-iTlRCO"!NECTE.D SYSTEM COSTS
( HJ $1000)
TAULE o-t!
·-----------------~---------~---------ESCALAflU~ HAltS-----------------------------------------
0/. 1.1/. ':>% b% I% P% 'i% \(1% 117. 1?t
------------------------------------.... --.... ------.... ---
51, ).11() 3?.,21?. 31,731 _Fl,/4t\ c'J., 2ll9 ?/,!')1 ?4, 564 20,71:\5 lo,.~t)3 10,791
.~ I , t) ~ I 51. 5':>\i 31,'1iJA 31, 0 tJ I 29,<:>79 ?.{,71~2 ;?':i, 11! 3 21,7(13 17,SS.2 12,330
30,/l')C} 32:,407 32,USR 31,51)2 50,072 2t\, 25'1 ?S,t\70 22,71'1 lC\,730 13,7A7
S<1, 1:> 7 ~ 3?. , 114 3 3(',1f;3 ) l , ') 3Ll 3(1, 1~?9 21\,7'14 ?~:>,':>47 25,':)97 1 'I , tU~ 0 1 ':>, 164
.~~·I 11 7 H _,?,litd: 3?,;>il') 31 , 7 .H, S I) , 7 <; 1 2'1,2SH ?i,l77 ?iJ,lllR ('(I, /'.H 4 lh,llh',
'·Uu!lt-!>2, /J~ij 3c,~n.> )!,<JI?. 3 1 , \) lj?. ? <)I h f\ lj 27,1o1 <''Jilt'7 21. fl.66 1 7 , & "'/j
~ •J, n oH .>?, /l ~11 3,', ·1? 1 32' Ill)? )1,!>01 30,072 {' t'· , 5 I) I 2':>,'1<)4 2 2, 7 H '! IH,H':>?
2 '!I H., 3 ~?, ,, [I? 3f!,t1~;d 32, !il7 31.531 3o, ,, <'o 21ilfl00 ?tl, ':J 7 2 23,o"i3 1'1,'14'->
('41hS:S :v. 351 5?,47tJ 32,?1:\R 31 I 733 30,146 2'1,?5'1 2 I, I 4'l zq,'lbiJ 20,973
(.'<l I ·I'• 1 ,S,'1 2H4 3 2, 117 h 3r"?, 'S61'. 3 1 , ,, () tl S I , 0 3 1~ ?9,61:10 2l,770 2">,222 21,940
,.'"', I in 3?, Plli1 5?' (J~,I\ 3?,'-lc(, 32, \1'1 7 3!,292 3\J,Ub') ?t<, 5l)':) ?'),'!?9 22, f\119
r? X' u ·.! 1 '> 2 , I I !J 5? 1 •L>rj 3?, !j b 'J S?, 1112 31 , ':>?0 30,illh 2fl, l<JH 26, Sll'l 23,702
2ii, I <~2 .5 (., I ii {) _; !u',~/4 3? 1 Llilij 32 r c'l<"i 3 1, i? I !>{I, 7 ~ 5 ?'1,2"d 21,20'> 2/.l,')Ol
c! 11 , II C, 'l 3t,f\t<':) 3?, '>I (I 3~, .:.J (~ j_} :s2, 3~>"i ~~J,,;q"' 3l,U2(J 2'1,670 27,77.~ 2'Jr249
<' ll , ?. I I 51,1'Jo !>?, 2 .'>2 32,u7U :s 2, 'l2 'J 3?.,0Llb 31,2/b 30,052 25,502 2':>,941'1
2/,t:lt:>l 31, bIb 32, l4ll 3?.,438 ~2.~<b"> 32,112. 31,0:,04 30,39q 21:1,700 ?h,600
27,709 3\,llbb 32,1l37 32,391 32,4tlo 32.27":. 31,104 30,115 2<1,240 27,207
J. J _J ~J _.J c)
'"'-······
,J J .J ,) .J ,,
,c.• .•.• J J
2 5 1\IJGUS I 74
OlSCOU~l
I?.\ TF_
1:<.00
M.?.C,
t.. '::IU
tJ.7C.,
<l.PO
'1.25
,_,. '> 0
4. 15
\ \) • iJ II
OJ lli.~?
.. t. 1 t> • c, {'
1 0. 7'..> .... I I , llll -..)
11.25
l l. so
l 1 • 7 5
11.00
J ,-.. l
ALA5KA 1-'UWf:f.: /ltJIHUh'I1Y
ANCHURM~l:: -'FA!J.ItlAN.<S !NTI:.Hllf:
t C 0 fJ 0'·: I C F f: ,\ S If' T L I T'l' STUDY .
CASE IB, 230 kV, GENERATION RESERVE SHARING PLUS
FIRM POWER TRANSFER & SUSITNA CONSTRUCTION POWER
TRANSMISSION LINE COSTS INCREASED BY 25%
PROBABLE LOAD FORECAST CASE
l)fHf:I\!ENT)AL UlSCOUNffl) VALUE (JF 8ASE YEAR ( 1979) COSTS
INDEPf~Df:NT SYSTEM COSTS MINUS l~TERCUNNECTEU SYSTf:H COSTS
(lN 'HO\•Ol
}
TAHLt a-ax
-----------------·-·----~---·---------ESCALATIUN RAT~s-~-------------------------·-------·---~-
•)% 4~ ':i ;.; b% 7'1. BZ 97, 10% II X 12X -----===== ----- ---------- ----- --------------------
)!;,.!<>\ 1 f., () h9 l 7, 02 11 1':>,5?.5 I.;, 1142 IO,t-1119 I, ':J 0? .3,3')0 -1,721 -7,835
1>-~,t<<'S 1>-~,?oo 17,.3?4 IS, '144 1'~,1)')':) I l , S 71:l H,O;?q 4,1195 -319 -b, 139
I tl I ]IJ 4 1/.i t /j 41 I 7, ')9p 16,352 l4,'j79 12.?60 Q I 2<lt s.':i76 1,00'1 -II. ':>27
\h,t,.,) PI, '-44 1/,1.142 !6,oi\Q l':>,Ut>':) 12,1199 I 0, I 08 6, ~141'\ ?.,?OEl -2,qq5
)l'o,C.,r>9 lr, 7ho PI, Oo3 I 7 I Ills l"i,':>lb 13,49o 11),!\/C:, 7,'51>2 !,,<leO -I, 542
Ill, 4 o '' 1><,~31\ IH,?.hO 17,51.$ 1 ., , 4 ~II Ill , 0 c; 3 l I, ':>'IS 8, 4 7 I 4,',1\1:\ -lb3
ltl,$'>5 lb,'I.H 111, 'I Y) II, ':> 1111 lbdl'l 1 1J~":J7(' lc,no 9, .S<'II '),o'>4 1,1ll5
ll-',i?.$7 1°,007 JH,''il'\1\ }7,1'129 lb,I17.S 1':>,054 12,'102 10,H4 l;o,ot>l 2, -~85
IP.,IIc 1 ,, , {J(l(J l/\,7<'0 lH 1 ()ll<l 16,49/ 15,":102 I 3, IJ 42 lO,I:l'12 7,61') 3,5':>9
1 7 1 ')Ill) 19,1\)9 Ill, H)!, PJ,2ll6 1/,291~ l':>,~lo I4,UIJ4 ll,bU5 1:1,510 II, 67 1
1 I , <l L1 3 I 0 I 1 ;I) 111,·~.u li\1 LJ21 17,':>1Jt.l 11>,29/:1 11.1,')',/l 12,271 9, .~':>6 '),722
I 7 , 7 C)!) 19, 14'1 14,004 ll:l,'17ll lf,l}\)1:1 lo,b':)O l';,O!,t> 12,t\<Jo I 0, 1 '),? 6, 71 b
17,".':>2 IQ,l49 1 ·~,(I IJij lti,707 11l,Oi:'l\ 1~>,472 1'l,4HO I .3, 4 II I 10,901 7,b':>5
17,39'1 1 <~, HS 19, !Ill'\ J/l,i12l IH,i:'2':J 17,2ol'l 1':>,1)91 \1~,02R JJ,oO':> H,C,IJI
II.CLl2 19,109 19,1)11 lc:\,416 18,11!)0 17,':>37 ln,271 l1J,':>'S7 12 .26o 9,377
17,UHO 19,072 19, I ':>3 IR,9'?1J 1.91':153 17,7ll1 16,621 t<;,OI2 I 2, !HY:) 10, I b!J
16,41'> 19,0?.4 I 4, I <;1.1 19,05o llj, 61::11 11l,Oll1 16,942 1'),4')2 15,464 10,905
l
D I SCC'.J'-T
f. A Ti:
~ • (i I)
1-l,h
1:1.~0
/<. 7 s
q • ll I)
9,2~
9,':>0
'I • I')
1 lJ • I, l)
IU,25
1 (I • ') (\
co ! (! • I ')
I I • 1) n
J 1 • .,! '>
....... 1 1 • ':> J co 11. 7')
12.vo
CJ ,J
A l ~ 5 K A f' U w [ H /II J 1 H ll !< I T Y
II N C Hl.' R .\ G E. -' F A I fW A >~ K S I I'. T E. R i I !::.
F CD N U 11 I C F E A:::; J ti I L I l Y S T lJ D Y
CASE ID, 230 kV, GENERATION RESERVE SHARING
WITH INTERMEDIATE SUBSTATIONS
PROBABLE LOAD FORECAST CASE
D!FffRENf!Al DISCOUNifU VALUt OF HASE YFAR (1979) COSTS
[NI)!:.f'E.'<0£NT SYSTEI~ ClJSfS '~!NUS lNTI:.RCONNECTf:D SYSTEM COSTS
( IN $I u 0 \l J
TAI:ILE e-c;
----------------------~----~----------ESCALATION I?Al[S-----------------------------------------
ll% il% '>% h% 7"/.
------------....... _ ----------
1 e, c~ b u IT,'JSU 1 t>. <)92 IS,t!Y·J 1 L ~31
I 11, qo6 17,72>1 lb,IJSM I'), t> 111 JS,q;>q
It!,.)~) I 1 , r< ~<, '> 17,101 15,9').$ lil,SPLJ
1A,2U. I p., I)<' b I 7, Sc' t! lo,i't>'i 1 ·~,>:\I 2
1 .9, 1 q •l I>\, ! 1J H 1 7. ':>21 \b,':>t>O I'>, 21 u
1 ri , 1 lj ll lr\,(''13 l 7 , I v 1] lo,il27 I ':>, ')>In
I rl • II I i) II:·, 5 ·~ ~ J7,eno 1 7, •J 7 \) 1':>,9~2
l 7, <I I t:l II.\ • !Jl 7 [I\, () 0 2 1/,292 lo,c''i~
1 7, HI 4 Iii, q 7 b 1 n, l?o 1 7, 1192 Jo,S<'t1
I 7, 7 ll 4 IH,5i'2 1 il, 2 311 11, on Jo, 79':>
17,')1-9 l ~·. ·~ ').., 1~,32'> 17,d5') I 7. (1 il 0
I 7 , J 7 o 1•1, ':> 7 h IH,q02 !l,Q'{fl, 17,2b2
I 7 , .~ •I" I h, '-> 1'. ':> ld,q64 I R, I o 4 l7,uh'J
17,217 1'1,..,82 I •I, 51 3 1 ;\, 2 Jl.j 17,oi',£,
I 7 I •) /'.5 ll:i,.., {J 9 l H, S 4 t1 I tl, .) Cl 7 !7,804
lo,9•l9 l",')Ll7 lli,Sf2 11:\, 5A6 17,9<;,tJ
16, i\ I o Jt;,':ll'i lR,St\3 P,l, 4':>1 18,Ufl2
J CJ .J ~ ] .. J ·--· ... ,J ·-·
1)% 9% I 07.
---------------
I I , 1 0 0 rl, I 6 fl il, r)52
I I, 7 35 8,91>7 5, 5 1~ I
12, .HO 9, 7 21 t:.Jtil7o
12,!iH9 10,4~1 !, 36?.
I S , 11 l .5 I 1 , 1 0 () f\ • I q F\
I 3, 'IO?. 11,729 H,9R9
};J,:$')9 lt!d?O 9,734
[Q, 1P.5 12,o74 1 0, il}ti
1'->tlt\2 13, sq4 11,! ll 0
lS,')SO 13,htl0 II , 7 2 3
l'~,tl9l til,S~':> 12,309
]fl,207 111,/59 I 2, H6\)
lo,4'i/ 1 ':>, I S 11 13d7o
lo,lo5 1'),..,21 l.~. !;')'-/
]7,U09 1 S, H61 [II , .5 i I
17, 1:'32 I b, 1 7o 14,7,!,,!,
17,43') 16,i.l67 15tli!b
.. 1 J l .._, I
1 1 7.
-----
157
1, 363
?.,SOil
,!,,595
4,625
S,oOl
o,S?S
7,il00
tl,c2H
'1,009
9,7il7
I 0, 4 u :~
1 1 , I o ll
I 1, 71 H
12,299
12 I 1\!.j':)
13,3':>8
l J
127. -----
-'),122
-3,665
-2,21',0
-963
21l'l
1, IJ 71l
2,t>O~
3,61\0
i.l,b96
'::>,660
b,';i7!J
7,4311
8,256
9,030
9,760
!O,i.JSO
11,!00
.J .l
co
I
(J1
.. I
OlSCUUIIT
kll I(
h,OII
II 0 (~
"·~()
f\,1-.
9,(!0
<t.?.~
4,50 ., .7')
tu.uo
ll1 • i".>
CX> Jl•. ':! ()
li1.7">
I I • 0 J
....... 11.2'--1
1.0 1 I • ')I)
11.7':!
12.00
l
AlASKA f-'Owtt< AliiiHJI< l I Y
ANCHORAGE ~ FAIR~ANKS JNl[RllE
ECO~UMIC FEASIHILTTY STUDY
CASE ID 7 GENERATION RESERVE SHARING PLUS
INTERMEDIATE SUBSTATIONS
TRANSMISSION LINE COSTS INCREASED BY 25%
PROBABLE LOAD FORECAST CASE
1
OJFF[Rt:NTIAL DISCOIJNl[D VALUE:. OF J;ASI: YE.AR < 1 Q7<n
!NO[ PENDENT SYSTEM COSTS MINUS I NTERCONN[( TED SYSTtM
(!Ill .$1000)
TABLE ft-Sx
COSTS
COSTS
-------------------~------------------ESCALATION RAT£:.5----------------------------•·-----------
0% £1% ~% t)% 7% 1:\% 9Y. 107. 11% 124
------------------------------ --------------------
'~r1~') ;,,772 ':),£120 3,bl>!. l.IJ39 -!,31Q -ll,of\'il -",755 -15,oll -1qr3o3
q, !Ill 7,1)£13 '>,71'>3 4, LB i!,Ol,b -'j 77 -3, 778 -7,6':!1 -12.2!15 -17.783
Q, I 9 7 ., , i>QIJ 6,121 ll,57~ 2,591:1 125 -2,<11';) -brb01 -ll,Oc2 •lbr27b
. -<1,2115 7,')2Q 6, 1136 £1,91\Q 3, 1c'll 78<1 -2,09') -~rh03 -q,~tq -1£1,83ij
q,lll/.1 7. 7 -~0 b,l29 ~ r -~ 17 3r6?b I, 1H 7 -1,319 -ll,h'5') -ii,o73 -1 3, 'l oo
"', J<l") 7, 9 H 7,0(11 '),740 ll,(l'l') 2,UOQ -~HI.I -5,151.1 -,7,')f\3 -12,15Q
Q, I 1'1 1!,)01>1 ·1,2s2 b,tHH Ll,~35 2r5bfl IU -o:?,HqQ -IJ,')1~6 -1 0, q 12
•lrl"i'> f\,269" 7,rlt\4 o,:sqs 1.1,91JI) 3,094 171 -2,.01\1\ -5,S59 -9,7?5
9,12') H, II} S 7,697 o,bl'.b s,:s~s 3,590 1,394 -1,31Q -tJ,o.21 -~.sqq
q,uHq 8,5llu l, f\9 5 6,9'i9 <;;,o9f 4,057 l, 9~2 -5QO -3,7.30 -7,517
Q, Ut17 l\ rhO 3 A,tl72 7,211 b, 0 ;<; II r ~QS 2,., )8 100 -2,tlall -b, IJ92
fo.,q4Q 1:\. 1 b 7 1'. ""3 'j 7, IJ£11~ 6,:~')1) 4,907 .S,Ot>1 751.1 -2,0H1 -S,'>Ib
1_;, 9iJo tl,l\')ti 8 1 .)IU l,b5A brbllLI '),293 5,'>55 I, 37 2 -1..319 -4,589
~,Mh~ 8,Q~H 1-\, ':>1 (> 7,t\Stl br<)l7 ~,6')4 £1,020 lr9'>6 -~96 -3,707
tl,~C?5 'l,OOt> tl,n36 8,03t> 7, 1 7 0 o;,qQ2 l.l,£15b 2,501:1 a a -2,t170
fl,7'l8 9,063 8,74i'. 8,201 7,£10'1 6,308 '1,867 3r02~ 7H -2,07'1
8 1 MI7 9, 109 8,B.S5 8,3':>1 7,620 brb02 5,2S2 3,520 1,.350 -1,319 ..
);!
tXJ r
f'T1
co
I
(11
X
~--l
ALt.;)!<. A PU"Li? AliH•t:f/]1 Y
A~Chu~tG[-FA!R0A~KS l~lt:R!lf
ECUNUM!C ~EaSI~ILJTY STUOY
CASE ID, 230 kV, GENERATION RESERVE SHARING
--· --------------------WITH ·INTERMEDIATE SUBSTATIONS & SUSITNA CONSTRUCTION POWER
PROBABLE LOAD FORECAST CASE
~ -·--------~---------·-------·-·--·--·--------~------·---. -
f) IFF r:RUJ 1 I t,L DU\CUUNlE1> VALli!: OF nASI:: YEAR (1979) COSTS
I ·.; U f. P I; '" 0 t r.. T SYSTti'> UJ~IS t-ii~us l ~~ I 1::: R C (1:'-: I·J!: C l t I) SYSHM COSTS
( IN li i i)V 0)
T AfiLE B-6
-----------------~--------------------I::SCALATIUN HAJfS------------------------------~----------
() T SCOU'·J T t) i! JJ% ':>% h •. -"' 7'!. H% 9% !Of. 1 I f. li'X
,, ,, ll --------------------------------------------------
h • I} r. c I , _'i '' ') ? 1' 3h l ?(I' o ·n I 'I' I) 1) y Ill , I 0 1 1 '', U I\':> 15,41)!:> ]0,?)9 6' 1 q I) I, 29o
" • <:.., ; I , ?:1 '• 2 \ t 1-ll" 3 ?(I' 1\7 7 I 'I, '1•.14 l A,'_; 1 8 li>,t>)'< 111' r.' 0 il l I,! I I 7, 50 I 2,6':>1
r • ':> r, (' l ' ,_, Ll i'1,'>t!U 21, V':>S 20, Pi?. l H, 'i •.l 'I I 7, l':>b I II, 1169 Il,'16Ll 0,352 3,'?37
h • ,., .? l ,\I] t\ 2 \ , of> (j i?l,?.l2 ;>(l,'l30 I '-!' ? ., 'I 17, h H I 5, 'I 'I 7 !2, 762 9' ~ •I'> ~. 156
". llil ('11,1;'1') ?\,1?.3 21 'jill-\ ? \)' ,,,) 5 19,~1\') jM,•Jil') JI,,Ofj', 1.$,'->H 1U,21\~ 6,31?.
4. ?') r.'\<,7uo 21' "171! ?.l,ilt>'::> ('1),(1')1~ l4,t\Hq lo'\,4'1'1 lo,t>·sq )Ll,dl\ II,J7c:.' 7,407
!; • L.. ~i 2 ()'I> $\l C l , I~\.).$ ?.1,'>6':) ?1,03~ 211, I'> 7 1 il.' i< 8 $ 1 7' 14 "! 14, Mil I 12,00~ (l, IJ4:5
\) .. 7 c_) 2<.1' ;140 ? l, >PI 21 ',,ll7 2!,1'-11 ?0,<.105 I 'I, c:.' 3 7 1 7, o25 1'>,':>03 l 2, 7 'I 7 9,Ll23
I n. l_, {, ,) II , ) •I '·I 21, >12n ?!,71?. 21 d29 211, t~e'l }9,':>b2 jK,Oo9 )6,01)') !.5,'J39 1 OdSO
1 ,) _co:; 2V, I "4 r.' 1, H 1 1\ 21, foe 21 '•I L) 0 ?O,M)l !'f,c.bO ]I),LlFJI 11>,1>3() 14,237 l 1 '2 .-'b
00 ]II .'-,•) <' ()' !) .s<< ?1,79'1 21, 74 I c'l ,':>49 2 1, 0 I I 2 o, I 3 .S lll,bo2 !1,131) ]IJ,M93 12,0':>2
I0./':1 .\'f,tl/\,) 21,11:10 2 i , 11 II'\ 21,6$3 21,170 20,.)f.l 19,(:'1':) 1 l' (> 12 1'),')0,1) 12,i:l31
II • 0 0 19,71 7 21,72"1 2l,rl.?!> 21,701 2\,)C)Q ;>O,nOo !'I,'J39 1 A, ll':i 5 lo,Otl':l 13,'J6ll
N I 1 • e'J ]9,')')1 2\,olc! ? ], £121 21,7')~ 21,1<\0 2\l,l:ll)l:\ 1'1,1:337 18,463 lo,o2~ 14,2':>5 0
1 I • ':> o 19,)C<2 21' t>l () 21, t\0 II 21 ,791 i?I,SB 20,9Aii ? 0, I 09 ll\,1:\'42 I 7, 129 14,904
11. 7'-, l9' 2\)9 i?I,~-~Q 21' l7b 21,Hl? ?!,ot9 2l,! 49 20,.$57 1"1, !'IS 17,600 1~,51ll
12.00 I q, d 311 2l,il59 21,7)7 ('1,i\2') 2!,o8"1 21 '29 0 2(1' ':il:l2 19,5lo 1,,051; 16,085
"' '-"".
\-· J J J •._ e~ J .J J j • .l .. J .J ] J J ·--.{--.I
~ 3 •' Ut>IIS I 79
f) 1 S ClltHJT
h A Tf
6,1.!0
}l. 2':,
/I.':> (l
H. i '1
4.PO
G.c?S ·;; . "(1
,, • 1 ':)
ll'.OO
\li.?'S
cP tu.'io
1 u. I 5
I l , 0 0
N ll.t!C:., ....... li.SO
11.7')
12.00
-J 1 J
,\I. AS I\ A Pl'l·lt" '''-' THUIH I Y
hi~Ct·t•l"'I\GE. -f ,q><!<t.ra,s l'HI:.RT lE
I:.CtlrHJI'lC H:t.Slrl!LJIY SlUuY
CASE ID, 230 kV, GENERATION RESERVE SHARING
WITH INTER}lliCIATE SUBSTATIONS & SUSITNA CONSTRUCTION POWER
TRANSMISSION LINE COST INCREASED BY 25% -
PROBABLE LOAD FORECAST CASE
D t 1-F t. PEN T T A L D I S C til J N 1 E D VA LlJ t. lJ ~ 1:3 AS E YE A~ ( I 9 7 q } C O_S T S
INOEPL~DI:.~T SY~lt.M COSIS MJN~S lhTtRCUNHtCTED SYSTEM COSTS
{It< blOOO)
-------------------~-------~----------ESCALATION ~~Arts-----------------------------------------
OY. /j 4 'J% t>'' r. 17. H/. 9t lO'X. llt 1<'%
------.-.... -·-----------"'!" ---------------------=--------
12,0'10 [(},')?,9 9,50o t\,032 6, l 0 tl 'i,oo6 629 ~3,0Hft -f,'-)7(; -t2,'Hio
1 2, IJ 11'-ll),}'i!:l Q,l\02 <1, 4 S? b,6?9 ''• .S2M 1 ' 'l "ll -2,071~ -o,.S'lf\ -il,ll67
IJ,9"a \u,CJI->7 10in7':i P.,l:i04 7, I I I IJ,'I'>1 2,234 ·11113 -':>, 1/9 -l<l, CJS9
1 I , ') 5 i J 1 I 1 ')f\ 10, ~26 9, 1'10 7.'::>74 '),53/ ?.,<171 -20.5 •11 1 068 •1-3,719
1\,4i}S l l , ~ I 1 \ (I 1 '.> ':> 0 9, •l 7 0 1-1,001 6,089 .s,o6o 61>0 -.5,01) -7,lll.l5
1 j , 1\') 2 I 1 , l il 7 1 il, I hb 9, 7 h 7 H,LIOO o,bOo '1,!>22 1,LI/o -2,012 -6,?31)
1 I , 7 '< ~ ll,'Jbl:\ lO,'I':>o 10,0LJO lj,/7i 7, () q 1 4,9ll0 c,cLI/3 -1. Otd -5,077
1 I , 1 ;> 7 11,tJ7.$ l I, 1 ?H 10,2'12 9, II b 7' ., lj h 5.'><>2 2,'177 -16) -3, 'lfl!
tl,n'Jt, 1 1 , 'ftl II 1J,(>fl.) 10,'::>?5 CJ,LJ5i'J 7,971 6,069 3,o6b 690 -2,<Hi0
1 1,':.79 j),l'li.l2 1 !,i.J21 1 u, 1.n 9, I i2 1\, .So 7 6,'JH3 4, H6 l t I.J <)] -1,9")2
I I , 'J9 to 1l,'H•6 I I, •,114 10,92':> 10.01)6 ij, 7 .H l,Oo', 4,'1?<J 2,<'bl -1,014
1 1 , •j () '/ I I , 'I'J 1\ 11,o'i1 I I, 049 )ll,?'il:l 9,Ut12 7, ':> 1 7 s,soo 2 1 9H5 •124
lldiM ll,'l'li! 11,745 11,2':>'5 1 0, 1IIP'1 CJ,I.JQl 7 t I)IJ 0 b, O'iO 3,ho6 719
1 1, ?; 2 lr',ll?7 IJ,>\2'1 11,.~9') 10,701 9,o98 8.5 ~6 0, ':>I><) 1.1,.\10 1, 51~
lltl.-'2 12,0£lo 11, o91 11,'>20 10,6'11.1 9, '472 8,701.1 7,01.10 1.1,918 2,274
ll,ill/1 lf',l!'l'l I 1 , '< IJ b 11 ,6?..'1 11.069 10,2.?1.1 9,0'18 7,'1119 '),Ll91 2,990
lv, 91 1 t;>,054 1\,989 11 .7 25 11,22'/ 10,45o 9,3b7 7, 911 b,031 3.bbb
J
23 1\lJGUS i 74
i) I S C 0 li ~I T
f<Alr
t~ • \' I, i
b.2':>
n.')n
8.7'>
y. l} !j
9.;>c.,
y. <:,,,
00 9. t:j
1 v. \} ,}
N liJ.2':>
N 1 0. ·~,)
1 (). 1 s
! 1 • d ll
!I.e'S
1 1. ':>v
l 1. iS
12.LJ
} ~-· •• "
ALASKA Pili'ii:hi AuThOR I l Y
ANCHORAGt -FAI~BA~KS INTEHTIE
tCO~UMIC FEASI81LITY SlUDY
CASE IG . , 345 kV, GENERATION RESERVE SHARING PLUS
FIRM POWER TRANSFER & SUSITNA PROJECT CONSTRUCTION POWER
PROBABLE LOAD FORECAST
OIH'E~[r-JTJ,\L OISCCJU:<Tfl) VALUE UF HASf n·AR (1979) COSTS
I N i) t Pi: 1.; iJ Et' T .s y s 1 [t>'l CUSTS hI ''lJS 1 r, T t: RCUN'Jt:.C I tD SYSTtr~ CUSTS
C I~:· :f. I 0 () 0)
TABLE 8·7
--------------------------------------ESCALATION RA1ES--~--------------------------------------vi; t-,~%_ 'J% t>% 1% t\% 4% 10% II% 12%
---------------------------------------.------
-1 I ~·!'4 -n 1 4Ci'J •i1 I I)~/) •] 1 1 ci• I) •1 lj 1 .~ f 'J •1 i:J 1 11 b •22 I 'JIJ1 -21, 160 -53,!:\bO -401'159
-!l?.il .,, , •J 3S -13 I ObG -1(),",/j'~ -131 '>4l) • 1 71 j ) ;~ -21 1 5')/j -?b 1 3Ll9 • 321 l ')(\ -391013
•1 I 1 c2 -S,nut -1,')32 .QI/192 -12. 11< "> -1 b, 1 5'-f -?012l':i -241499 -3tl 1oUI:i -.S7,141;.
-97'1 -~, 190 -1. (l 2 3 -'112bh •1J 1 '/i:J1 -1'>1?49 -141128 -231709 -2910b7 -351363
-il,lll -<4. 'd) 2 -bl')iJl) •I) I Cl 7 '=, •11 I 261 -14 I 5FII -!f\1090 -221iJ17 -2716)1 -3.516':>3
-12i:l -t.;,q.)o -bldr:\5 -61113 -lu 1 'Jt'l2 -131'JSiJ •1 7 1 1 0 t) -211299 -21:-,2.39 -321016
-b1b -y, v9! -:o,o':11 -11 St'J -<.j 1 'J .StJ -121 7bb -101 1 ss -20, 174 -24191)1 -301449
-';; 1 -3, 1ho -";124? -7. l) 7.5 •'J 1 _q 1 •1? 1 (lj 0 -1 ':i1 cS-'l -14,099 -<'~1 o3Ll -21:l,'l49
-'<?.n -.S, 4 ':J'l -4,BStJ •6 1 ',4<~ -lll72.5 -11 1.H•2 •1 <j 1 S9':> -1f\lun -221iJ11 -271513
-31~ ij -.5. 17 j -£..i 1 I~ 9 C -6,)39 -til 1611 -!IJ 1 n22 -U,'J7o -171044 -21,2':>3 -2t>ll39
-270 -21<.!01 -t~, Jil7 -51 1 (/9 -1 1 o54 -91976 -121795 -161159 •20 1 14] -24 1 R2S
-2us •2 1 l)iJ 7 • 3, R? .S -')13l!2 -I I 1 s 1 •9 1 3n 1 -!2 1 0S2 -151267 -191079 -2.51567
-!Lib -;.>I .'J (J'J -31 'J 1 7 -lj 1917 -6 1 oSI.! -t-1 777 -1113iJ3 -1414lb -ll:l10biJ -221565
•Y') •2 1 15o -31 ?3;) -41554 -bl201 -61222 -l0 1 tJ69 -1316()4 -1711)41~ -211215
-Sl ..... 1 , lf 1 rj -2,959 -'.!I 210 -':>177) -7 1 oG4 -1 i) 1 02 7 -12,1:130 -161 169 -20,115
-1 ~ •j I]{):'; -?1 I \15 -51 1-\.>-\(J -s~3o1 -11144 -91417 -!2,093 -1512o':l -19,065
1 :l -1,oli2 -2,467 -31'::>1il -41'1i:lcl -6,719 -8,63t> -111390 -141442 -18,060
.) J ·-· J J ] ] J .J • ) JJ J J ) ""'" .. ,, .. )
CHAPTER 9
FINANCIAL PLANNING CONCEPTS
r
l
-I
r
;>-
1
I
,.,...,
I
-
CHAPTER 9
FINANCIAL PLANNING CONCEPTS
The approach taken towards the financial planning for the intertie faci-
lities represents an initial effort to structure the financial package
required to implement the Railbelt interconnection. The concepts in-
cluded in this chapter are intended to be representative of the condi-
tions under which funding would proceed but are in no way ~efinitive re-
commendations. Rather, they are anticipated to stimulate discussion
amongst the participants and increase the understanding of projected
financial obligations.
The proportionate allocation of total project costs between participants
has been determined in relation to the tangible cost savings derived from
the interconnection and represent an equitable division of the total finan-
cial burden. The acceptance of these allocations by participants to an
Alaska Intertie Agreement (AIA) will require individual utility financial
positions to be evaluated. Provision has been made for projected debt ser-
vice to be analyzed for each participant, to facilitate the eva1uation of
financial impact on individual utility operations. What follows is an ini-
tial exploration of possible financial arrangements, which will serve as
a starting point for successive evaluations by each potential participant
as more definitive financial plans are evolved.
9.1 SOURCES OF FUNDS
An initial appraisal of possible sources of funds has been made, to
determine a combination which will be both financially advantageous and
appropriate to the principal division of cost savings between REA and
municipal utilities.
9 - 1
The following sources were examined:
• State of Alaska revenue bonds floated by APA
• REA loans negotiated by APA and participants
• FFB loans negotiated as part of REA loan package
• CFC loans negotiated in conjunction with REA loans
• Municipal bond issues by Anchorage and Fairbanks
A. State of Alaska Revenue Bonds
As State of Alaska revenue bonds would be legally secured by project
revenues, a complex formula for revenue generation would be required
to arrive at an acceptable level of cash flow to repay the bonds. The
formulation could be based on wheeling charges for power flow over the
intertie but the number of participants and the differences between
their operational requirements could prove an insupperable obstacle to
the realization of a final agreement. It is thought that the issue of
State bonds should be deferred from present consideration, until such
time as a combined generation and transmission project is ready for
funding. Within the confines of the Railbelt development, this would
be appropriate when consideration is given to the financing of the
first hydropower development of the Upper Susitna Project, together with
its associated transmission facilities.
Although APA bonds have been retained in the Transmission Line Financial
Analysis Program (TLFAP), for analytical purposes, consideration has
been given only to the remaining sources in these initial financial
plans for implementation of the intertie. The transmission intertie
facilities represent what may be regarded as the first stage development
of the ultimate transmission system that will be required for the Watana
and Devil Canyon hydropower plants of the Upper Susitna Project.
The financial sources discussed in the following sections were con-
sidered for composite funding of the Anchorage-Fairbanks Interconnection.
9 - 2
-
-\
r
r
B. Rural Electrification Administration (REA)
The prospective participants, with the exc~ption of the Anchorage and
Fairbanks municipal systems, are all REA utilities of the Alaska Dis-
trict. Therefore, a combination of REA insured and guaranteed loans is
assumed for the maximum amount of total project financial requirements
allowed by federal regulations. REA loans are normally limited to 70
percent of total project costs; however, as OMB restrictions are ex-
pected to affect future REA commitments for project funding, this 70
percent limitation was taken to be the magnitude of a loan package com-
prising both REA and FFB loans. The percentage division between the
two sources varies, recent past experience and future projections indi-
cating a range of possibilities, with the FFB portion considerably larger
than that of REA.
In the present study, a range of between 20/80 and 40/60 for the combi-
nation of REA/FFB loan funds has been assumed for analytical purposes,
these percentages being applied to the 70 percent limit for the total
loan package, as a proportion of total project costs.
REA loans carry a 5 percent interest rate and have a repayment period
of 35 years, the first three years of which require interest only.
C. Federal Financing Bank (FFB)
REA makes guaranteed loans through FFB as a source of supplementary fund-
ing for REA utilities. Interest rates for FFB vary but are generally
within the range of 9 to 9-1/2 percent. An average of 9-1/4 percent has
been used in the financial analysis for this study. A s·imilar 35 year
repayment period to that for REA insured loans is normal, with the first
three years of interest only also applicable.
The combination REA/FFB loan package offers a means of financing 70 per-
cent of project costs with a minimum of negotiation, as precedents have
9 - 3
been set for this type of financial arrangement. The goal of negotiation
would be to maximize the REA loan portion and secure the best interest
rate applicable to the FFB loan.
0. National Rural Utilities Cooperative Finance Corporation (CFC)
CFC makes loans to REA utilities to supplement REA funds, although these
loans are generally used for distribution type facilities. It is possible
that a CFC loan could be obtained for a transmission project such as the
Intertie but for purposes of this analysis it has been assumed that CFC
funding will not be required. If at the time of negotiation there is a
definite advantage to be gained by inclusion of a CFC loan portion with
sufficiently attractive terms, the resultant impact on the financial plan
can be determined.
E. Municipal Bonds
Anchorage and Fairbanks municipalities both have the authority to arrange
financing for a portion of the project by the issuance of tax-exempt,
general obligation bonds. As separate bond issues would possibly be made,
the bonding rate pertaining to Anchorage could differ from that of Fair-
banks. A recent bond issue by the Anchorage Municipal Bond Bank to cover
G & T expansion on the AML & P system realized a bond rate of 6.48 per-
cent, with 20 year maturity bonds. A rate of 6.5 percent has been used
in this study for the projected Anchorage bonds, with a somewhat more
conservative level of 7 percent assumed for the Fairbanks bonding. Both
sets of bonds were assumed to be of 20 year maturity.
9 - 4
-
-
-
9.2 PROPORTIONAL ALLOCATIONS BETWEEN SOURCES
In the ultimate financial package for the Transmission Intertie, the
final negotiated amounts for debt financing and bonding will be agreed
to by APA and AlA participants. To arrive at the final allocation of
total project costs between possible sources will require a concerted
effort on the part of APA and AlA participants, in the successive ne-
gotiations with REA and other federal funding agencies such as FFB, to-
gether with the officials responsible for decisions relating to issuance
of municipal bonds.
To assist with an evaluation of financial positions in relation to pos-
sible agreement on questions pertaining to proportional allocations
between sources, the Consultants offer the following approach for fur-
ther consideration.
• A combination of REA and FFB funds would be used to finance
a total of 70 percent of project costs. In order to examine
the relative improvement of composite financial terms by
changes to the percentage allocation between the two sources
over a range of combinations, the following allocations were
evaluated:
Allocation within loan package
Allocation of total project costs
Combination REA/FFB -%
20/80 40/60
14/56 . 28/42
• The balance of funding, 30 percent of project costs, would be
obtained from the following bond issues:
Percentage allocation by municipality
9 - 5
General Obligation Bonds
Anchorage
18
Fairbanks
12
In preparing a financial plan to follow this approach the following
analysis was completed us·ing computer programs TLFAP and COMPARE. The
results of this analysis are contained in Appendix F, Sheets F-1 thru F-29.
1. An initial run of TLFAP was made with the following allocations
and assumptions for funding terms and conditions:
Project Funding Source Interest Rate
14% REA 5%
56% FFB 9.25%
Above loans have 35 year repayment period with interest only for
first three years, during construction period.
18%
12%
AMU
FMU
Above bond issues have 20 year maturity.
6.5%
7.0%
2. On the assumption that the overall financial terms can be im-
proved by changing the proportions of the combination REA/FFB
loan package, a second run of TLFAP was made with the following
adjustments:
Project Funding
28%
42%
Source
REA
FFB
Interest Rate
5%
9.25%
All other components of project funding remained the same.
It is of interest to compare the composite interest rate for project
funding to determine the overall improvement in financial terms.
The net effect was a decrease from 8.9 to 8.3 percent for the entire
project funding, including all financial sources.
3. To translate this improvement into a present value for purposes of
comparison of the respective loan packages, two runs were made using
program COMPARE to determine the differential present value of future
debt service associated with the two REA/FFB combinations. A net
reduction of $1,472,000 in total financial costs was realized. These
computations are shown on Sheets F-27 thru F-29.
9 - 6
·~
'
-,.,
i'
-
,.....,
'
9.3 ALLOCATED FINANCIAL RESPONSIBILITY FOR PARTICIPANTS
A. Basis for Assumption of Financial Obligation
The approach followed to determine the allocated responsibility for finan-
cial participation and debt service matched the proportions of total project
costs to allocated cost savings derived from interconnection. The cost sav-
ings to be realized from implementation of the transmission intertie are
several, these being derived from:
1. Reserve capacity sharing, resulting in cancellation or post-
ponement of in-service dates for certain generating units that
would be required with ind~pendent system expansion. This in
turn results in a reduction of total capital investment.
2. Improvement in overall economics of system operation, within
the limits of potential power transfers over the intertie.
3. Reduction in capital expenditures for transmission expansion
that would be required if the intettie were not built. A
definite saving of this type would be realized by Matanuska
Electric Association (MEA) if their system could be supplied
from the Palmer bus.
4. Reduction in the cost of construction power for the Susitna
Project, by use of a transmission tap-l·ine.
Of the above cost savings, the first and third have been fully quantified
in this study, the second would require a detailed computer analysis of
the operational costs using a multi-area production costing program. In
estimating the cost advantages of power transfer, a simplified analysis
was made of the potential economies to be obtained from substitution of se-
lected generation blocks on the basis of fuel cost only. This demonstrates
adequately the potential for cost saving but is no substitute for a com-
prehensive analysis of system operation. This would provide a breakdown
9 - 7
by year of the production cost for each unit on the system, whether inde-
pendent or interconnected, and would include both fuel and 0 & M compo-
nents. The simulation of economic dispatch for unjts on alternative sys-
tems is essential for a definitive apportionment of the operational sav-
ings between utility participants.
Accordingly, the allocation of cost savings has been determined on the
basis of reduction in capital investment by reserve sharing and the elimi-
nation of certain expenditures by MEA for transmission expansion. The
cost savings to the Susitna Project is not germane to the financial allo-
cations between utilities and has been excluded from analysis.
The cost savings from reserve sharing have been determined by segregating
capital disbursements for generating units affected by interconnection
between the respective utilities owning and operating the particular
units. Table 9-1 indicates the annual capital disbursements by generat-
ing utility for independent and interconnected system expansion, together
with the cumulative present worth for each of the investment streams.
Cost savings for each participating utility are given by the differential
present worth between independent and interconnected investment streams.
To these are added the cost savings to MEA for elimination of alternative
transmission supply facilities by establishment of the Palmer bus. The
cost savings are derived as follows:
Participating Present Worth of Future Investment -$1000
Utility Independent Interconnected Cost Savings
AML&P 103,647 91,869 11,778
CEA 236,840 229,941 6,899
MEA 2,097*
GVEA 43,203 43,203
TOTAL 63,977
* MEA Cost savings obtained from Section 8.3C on P.8-6.
9 - 8
-
J
-
~
.:! ..
-.
• I
,-
l""'
!
-
r-
!
r
The large magnitude of savings accruing to GVEA (68% of total) should be
subdivided between GVEA and FMIJS, as the municipal system will also benefit
directly by association with GVEA and the continued purchase of power
generated by GVEA will ultimately be reflected in the customer rates of
the FMIJS service area. To approximate the division of savings, a long-
term average ratio between ·load forecasts for the two systems in the Fair-
banks area was taken to be representative of relative magnitudes and re-
sulted in the following apportionment:
GVEA FMUS
Percentage Allocation of Cost Savings 56 12
No further breakdown of allocated benefits was deemed appropriate at this
stage; however, it may well be that other utilities such as Homer Elec-
tric Association (HEA) may decide to assume a minor share of the responsi-
bility for debt service of the total investment in support of the project.
In which case non-generating utilities can participate on an elective ba~is
and future analysis can take into consideration minimum funding participa-
tion as a percentage of the total. The only utility which is not an imme-
diate direct beneficiary of the intertie is CVEA. Although TLFAP contains
a provision for later participation by this utility, it is not anticipated
that CVEA will exercise this option prior to the connection of the Glennallen-
Valdez system to the Railbelt system, following completion of the first
stage development of the Upper Susitna Project.
The assumption of financial obligation was taken to be directly related
to the proportionate division of allocated cost savings. The basis for
financial apportionment of total project costs is as follows:
Part i C"i pat i ng
Utility
AML&P
CEA
MEA
GVEA
FMUS
TOTAL
Cost Savings
$ 1000
11,778
6,899
2,097
35,827
7,677
63,977
Percentage
Participation
18
11
3
56
12
100
These values of percentage participation were used for financial analysis.
9 - 9
B. Allocation of Total Project Costs
An attempt was made to relate the allocation of project costs between par-
ticipants to physical facilities in sections of the intertie. Table 9-2
contains a division of total project costs on a percentage basis and a
breakdown of percentage allocations between participants, to relate their
percentage allocation of total project costs with projected potential
ownership of physical facilities within their own service area.
The allocation of costs was aided by considering the logical division of
the total facility into three sections:
Section
I
II
III
From
Anchorage
Palmer
Healy
To
Palmer
Healy
Ester
Distance (Miles)
40
191
92
% Total
12
59
29
The costs included in Table 9-2 pertain to Case ID transmission facilities
for the probable load forecast expansion, consisting of a single-circuit
230 kV transmission line with intermediate switching at Palmer and Healy.
This also allows the realization of investment participation by MEA in the
AlA to the extent indicated in Table 9-2, which corresponds to the allo-
cated percentage for MEA. These costs are assumed to be largely asso-
ciated with the Palmer substation. Similarly, the costs allocated to FMUS
are assumed to be related to the Healy-Ester line section, on a joint basis
with GVEA.
C. Allocation of Debt Repayment and Sinking Fund Payments
The responsibility for loan servicing and payment of sinking fund install-
ments is shared by utility participants, in direct proportion to the cost
savings derived from the interconnection. A tabulation of the annual
payments by each participating utility is given in Appendix F, Sheets F-13
through F-18. It should be noted that the annual payments do include the
pro-rata share of payments to the municipal bond sinking funds tabulated
on Sheets F-19 and F-20. The totals are given on Sheets F-21 through F-26.
9 -10
-
-\
-
r
r
r
-
9.4 COSTS FOR RESERVE SHARING AND FIRM POWER TRANSFER
An analysis was made of the relative costs of reserve capacity and firm
power transfer for the two alternative financial plans. Tables 9-3A
and B provide annual costs for reserve capacity and firm power transfer
based upon the total debt service per year required for the two alter-
native financial plans, including REA/FFB loan packages in two propor-
tionate combinations.
The division of costs between reserve capacity sharing and firm power
transfer was made on the basis of the line capacity which was allocated
to each specifc purpose. The total transfer capacity of the 230 kV
single-circuit line is 130 MW, this being divided into 100 MW for re-
serve capacity and 30 MW for firm power transfer. The annual costs for
firm power transfer were converted into energy costs equivalent to
wheeling charges for load factors of 40, 55 and 70 percent and energy
transfer of 105, 145 and 184 GWh, respectively.
The cost streams progressively diminish according to the magnitude of
total debt service for the transmission interconnection facilities.
The following summary tabulation provides an indication of the average
values over the 32 year loan repayment period, following the interest
only three year construction period.
AVERAGE VALUES FOR RESERVE CAPACITY AND ENERGY TRANSFER
Reserve Energy Transfer Cost
Combination Capacity Equivalent to Wheeling Charge
REA/FFB Cost Energy Cost -Mills/kWh
Loan Package ($7kW7Yr) (40% LF) (55% LF) (70% LF)
20/80 43 12 9 7
40/60 41 12 8 7
It may be observed that the average values correspond approximately to
the actual values at the year 2003.
9 -11
-
9.5 FINANCIAL PLANS FOR FUTURE STAGED DEVELOPMENT
The following is one possible way to plan for funding successive expan-
sions and extensions of the projected interconnection of Railbelt utilities. ~
A. Interconnection Extension Between Systems
The implementation of the Anchorage-Fairbanks Transmission Intertie will
cause Railbelt utilities to examine their system expansions in relation to
those of other utilities, to determine mutual benefits of additional trans-
mission facilities to firm ties between adjacent systems. The cost of
associated facilities could be financed on a comprehensive basis, pos-
sibly on more advantageous terms than if attempted by individual utilities
or municipalities. The cost of such additions to utility systems could be
met from a revolving fund administered by APA, on behalf of the participants.
One possibility for application of major funds for system extension would
be the interconnection of the CVEA system to the Anchorage end of the
intertie. The participation of CVEA in the AlA would then be desirable,
with possibly a small allocation for initial intertie facilities, prior
to the determination of the timing and cost of the facilities to link the
initial interconnection with the CVEA system at Glennallen. This could
be implemented on a separate basis, or as part of an integrated plan for
transmission of hydropower from the Susitna Project.
B. Expansion of a Susitna Transmission System
The implementation of the Susitna Hydropower Project would require that a
comprehensive financial plan be followed for funding the generation proj-
ect and associated transmission facilities. The large increments of power
possible from the Susitna development would require the expansion of the
initial intertie, to receive energy for transmission to Anchorage and
Fairbanks.
9 -12
-
-
....
As part of the comprehensive financial plan, the funding of transmission
line and substation facility expansion through time could be arranged on
the basis of total incremental funding, with partition of costs and finan-
cial obligations between APA and utility participants, on a similar basis
to that used for this initial approach to first stage financing of the
transmission system interconnection in the Railbelt .
9.6 REFERENCES
1. International Engineering Company, Inc.
Financial Planning Model
2. Moody's Bond Record
~ 'Tax Exempt Bond Fields by Ratings'
-
....
'Tax Exempts Vs. Governments and Corporates'
January 1979
9 -13
TABLE 9-1
ALTERNATIVE DISBURSEMENTS OF CAPITAL INVESTMENT FOR GENERATION EXPANSION
$1000
(1979)
Anchorage Municipal Light & Power Chugach Electric Association Golden Valley Electric Association
S~stem Ex~ansion S,lstem Extansion System Ex~ansion
Year !2W' Inde12endent Interconnected Inde12endent -nterconnected Inde12endent Interconnected
1979 1.0000
1982 0.9151 2,009
1983 0.8885 8,037 10,959 7,670
1984 0.8626 30,139 31,539 10,959 20,264
l.D 1985 0.8375 37,172 31,539
..... 1986 0.8131 21,127 ~
1987 0.7894 7,152 2,009
1988 0.7664 8,-037 7,555
1989 0.7441 30,139 5,480 17,630
1990 0.7224 37,172 21,920 5,480
1991 0.7014 21,127 82,200 21,920
1992 0.6810 7,152 101,380 82,200
1993 o. 6611 7,020 58,450 101,380
1994 0.6419 7,020 16,380 22,820 58,450
1995 0.6232 16,380 22,820
TOTAL pw 103.64 7 91,869 236,840 229,941 43,203
NOTE: Present worth obtained using 3% discount rate, equivalent to 7% cost escalation and 10% discount rate.
J .J I ... -~I .J J
---1 -/] ~] J ---~ ---J
Anchorage
INTERTIE COMPONENTS
\.0 Transmission Line
...... Substations: U1
Anchorage 3976 (6)
Palmer
Healy
Ester
Cant rol & Communications
TOTAL
AlA PARTICIPANTS
AM&LP
CEA
MEA
GVEA
FMUS
] -~------1 ----) ---J --] ' --l
TABLE 9-2
ALLOCATIOn OF TOTAL PROJECT COSTS BETHEEN PARTICIPMTS
TO
ALASKAN IrHERTIE AGREEMENT
A I A
SECTIONAL INTERCONNECTION DIVISIONS
Palmer Healy
Section I Section I I
40 M 191 M
PROJECT COSTS -1979 $1000 (%)
6644 {10) 31,726 {46)
717 (1) 717 (1)
717 (1) 717 (1)
1,450 {2) 400 ( 1)
12,787 (19) 33,560 {49)
ALLOCATIONS OF TOTAL PROJECT COSTS (%)
( 8) ( 10)
( 8) (3)
( 3)
( 36)
,.., __ -1 -1 ---1 1
Este.-
Section I I I
92 r~
TOTAL FACILITY
15,282 (22) 53,652 (78}
3,976 ( 6)
1,434 (2)
1,434 ( 2)
5' 080 (77,) 5,080 (7)
1,450 {2) 3,300 ( 5)
22,529 {32) 68,876 {100)
(18)
( 11)
( 3)
{20) (56)
(12) ( 12)
Year
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
TABLE 9.3A
ALLOCATED COSTS FOR RESERVE CAPACITY SHARING AND FIRM POWER TRANSFER
WITH
Total
FINANCIAL PLAN ALT. 1 -20/80% COMBINATION REA/FFB LOAN PACKAGE
AND
MUNICIPAL BONDS
Cost of Reserve Capacity Sharing and
Firm Power Transfer Based on Capacity Allocation
100 MW Reserve
(Annual Cost of 30 MW Firm Power Transfer
Debt Service Reserve Capacity) Annual Cost !Ener~y Char~e -Mi11s7kWhl
(1979/$1000) ($1000) !$71<W7'i'r.) ($1000) (40% LFl !55 LFl (70% LF)
8,670 6,669 67 2,001 19 14 11
8,523 6,556 66 1,967 19 14 11
8,376 6,443 64 1,933 19 13 10
8,229 6,330 63 1,899 18 13 10
8,082 6,217 62 1,865 18 13 10
7,934 6,103 61 1,831 18 13 10
7,787 5,990 60 1,797 17 12 10
7,640 5,877 59 1,763 17 12 10
7,493 5,764 58 1 '729 17 12 9
7,346 5,651 57 1,695 16 12 9
7,199 5,538 55 1,661 16 11 9
7,052 5,425 54 1,627 16 11 9
6,905 5,312 53 1 ,593 15 11 9
6,758 5,198 52 1,560 15 11 8
6,611 5,085 51 1,526 15 11 8
6,464 4,972 50 1,492 14 10 8
6,317 4,859 49 1,458 14 10 8
6,170 4,746 47 1,424 14 10 8
6,023 4,633 46 1,390 13 10 8
5,876 4,520 45 1 ,356 13 9 7
3,515 2,704 27 811 8 6 4
3,368 2,591 26 777 7 5 4
3. 221 2,478 25 743 7 5 4
3,074 2,365 24 709 7 5 4
2,927 2,252 23 675 6 5 4
2,780 2,138 21 642 6 4 3
2,633 2,025 20 608 6 4 3
2,486 1,912 19 574 6 4 3
2,339 1, 799 18 540 5 4 3
2,192 1,686 17 506 5 3 3
2,045 1,573 16 472 5 3 3
1,898 1,460 15 438 4 3 2
9 -16
-
~-
""""
.....,
-
-
-
-.
...,
"""!
-
~
-
j
.....
-I
!I'll!!
-
TABLE 9.3B
ALLOCATED COSTS FOR RESERVE CAPACITY SHARING AND FIRM POWER TRANSFER
WITH
FINANCIAL PLAN ALT. 2 -40/60% COMBINATION REA/FFB LOAN PACKAGE
AND
~
MUNICIPAL BONOS
-Cost of Reserve Capacity Sharing and
Firm Power Transfer Based on Capacity Allocation
lOO MW Reserve -Total (Annual Cost of 30 MW Firm Power Transfer
Debt Service Reserve Capacity) Annual Cost !Energy Cnarte-Mi11s7KWnl
Year ( 1979/$1000) {$!000) ! $7KW7Yr. j ( $1 000) (40% LF) (55 LFl !70% LFl
I""" 1984 8,194 6,303 63 1 ,891 18 13 10
1985 8,061 6,201 62 1,860 18 13 10
1986 7,929 6,099 61 1,830 18 13 10 -1987 7,797 3,998 60 1,799 17 12 10
1988 7,665 5,896 59 1,769 17 12 10
1989 7,533 5, 795 58 1,738 17 12 9
1990 7,401 5,693 57 1,708 16 12 9
1991 7,268 5,591 56 1,677 16 12 9
1992 7,136 5,489 55 1,647 16 11 9
1993 7,004 5,388 54 1,616 16 11 9
.... 1994 6,872 5,286 53 1,586 15 11 9
1995 6,740 5,185 52 1,555 15 11 8
1996 6,608 5,083 51 1,525 15 11 8 -1997 6,475 4,981 50 1,494 14 10 8
1998 6,343 4,879 49 1,464 14 10 8
1999 6,211 4,778 48 1,433 14 10 8
2000 6,079 4,676 47 1,403 13 10 8
2001 5,947 4,575 46 1,372 13 9 7
r""
2002 5,815 4,473 45 1,342 13 9 7
2003 5,682 4,371 44 1,311 13 9 7
r-I, 2004 3,337 2,567 26 770 7 5 4 I
r
2005 3,204 2,465 25 739 7 5 4 -2006 3,072 2,363 24 109 7 5 4
2007 2,940 2,262 23 678 7 5 4
2008 2,808 2,160 22 648 6 4 4 -2009 2,676 2,058 21 618 6 4 3
2010 2,544 1,957 20 587 6 4 3
.... 2011 2,411 1,855 19 556 5 4 3
i 2012 2,279 1,753 18 526 5 4 3
2013 2,147 1,652 17 495 5 3 3
2014 2,015 1,550 16 465 4 3 3
2015 1,883 1,448 14 435 4 3 2 ....
9 -17
CHAPTER 10
INSTITUTIONAL CONS lOERA TI ONS
r
-
r
-
CHAPTER 10
INSTITUTIONAL CONSIDERATIONS
The Intertie Advisory Committee has proven itself most useful during this
study. It has enabled initial discussions to be held between potential
participants in the projected interconnection of Railbelt utilities via
the Anchorage-Fairbanks Transmission Intertie. This committee represents
a sure, first step towards the formation of a continuing, viable, cohesive
entity, through which the intertie can be built and the resulting benefits
realized by the continued expansion and operation of the interconnected
utility systems in the Railbelt.
10.1 PRESENT INSTITUTIONS AND RAILBELT UTILITIES
The predominant pattern of ownership management and operating responsi-
bility by public power organizations in Alaska is exemplified by the
prospective participants to an Alaskan Intertie Agreement (AlA). In
addition to REA and municipal utilities in the Railbelt, it is anticipated
that both the Alaska Power Administration and the Alaska Power Authority
would be parties to the AlA. The probable composition of institutions
and participating utilities is anticipated to be:
• Alaska Power Authority
• Anchorage Municipal Light and Power
• Chugach Electric Association, Inc.
• Homer Electric Association, Inc.
• Matanuska Electric Association, Inc.
• Golderi Valley Electric Association, Inc.
• Fairbanks Municipal Utility System
• Alaska Power Administration
The above group of utilities may be joined by Copper Valley Electric
Association, Inc. at a later date, to extend the interconnected facilities
to the Glennallen-Valdez system.
10 - 1
A. Statutes and Limitations
The enabling legislation for the Alaska Power Authority (APA) is con-
tained in HB 442 for the legislature of the State of Alaska. It provides
for the establishment of power projects and the authorization to proceed
with developments that wi 11 serve 11 to supply power at the 1 owest reason-
able cost to the state's municipal electric, rural electric, cooperative
electric, and private electric utilities, and regional electric author-
ities, and thereby to the consumers of the state, as well as to supply
existing or future industrial needs 11
•
APA would mainly act on behalf of the municipal and rural electric util-
ities as a party to the AlA. Therefore, it is not presently anticipated
that the authorized 11 powers to construct, acquire, finance, and incure
debt" would be required for the Intertie Project. Rather APA could
integrate and coordinate the efforts of the other participants to
the AlA, to ensure that an expeditious approach is maintained during the
course of the project.
APA is in an excellent position to coordinate regional programs with its
state-wide involvement. For example, such coordination may assist in
the process of securing an abridgement of the two county rule for the
transmission intertie. left unresolved, such existing statutes may
otherwise constitute a roadblock to the realization of the benefits to
be achieved by interconnection of systems of participat-ing utilities
over the large geographical area encompassed.
B. Jurisdiction and Service Territories
The A 1 ask a Power Authority exercises juri sdi cti on over power projects in
Alaska as a State entity. It parallels the Alaska Power Administration,
which has federal jurisdiction in Alaska for the United States Department
of Energy in Washington, D.C.
Both State and Federal entities have statewide responsibility in Alaska.
10 - 2
~
I
-
-
-
-
-
-i
-
.....
'
The service territories of the municipal and rural electric utilities
are shown on the maps of Figures 4-1, 4-2, and 4-3 in Chapter 4. The
confines of the Railbelt result in elongated geographical service areas.
Such areas are particularly appropriate in relation to the transmission
corridor for the intertie and enable the delineation of easements along
the route to be made relative to existing transmission and distribution
facilities in the area.
10.2 ALASKAN INTERCONNECTED UTILITIES
To provide an identity for the utility participants to the AIA, it is
suggested that the name Alaskan Interconnected Utilities (AIU) be adopted
by the existing Rai"lbelt utilities to be included in the institutional
and management plan for the implementation and operation of the intertie.
A. Present Arrangements and Future Requirements
To a certain extent, the operating utilities in the Anchorage and Fair-
banks areas have already evolved mutual interests. These interests now
need to be augmented, to satisfy future operat ·j 11g requirements.
Prior to interconnection, there would be a need to coordinate revised
planning for system expansion, the scheduled construction of facilities,
and the separate building programs of each utility. A Planning Sub-
committee of the Intertie Advisory Committee, composed of technical
staff from AIU, would be desirable in the near future if this program
is implemented. This planning subcommittee could be empowered to
resolve joint planning problems affecting participating members.
Later on, an Operating Subcommittee would be required to determ·i ne oper-
ating procedures and coordinate system planning policy, working towards
centralized economic dispatch for the interconnected system. The need
for communications facilities will also need to be addressed, together
with the mode of overall system control and data acquisition for inter-
connected facilities.
10 - 3
B. Evolution of Institutional Framework
In any approach toward projecting institutional requirements for the
establishment of the necessary framework to support the Anchorage-
Fairbanks Transmission Intertie, it is essential to preserve a
sense of perspective towards the future and allow for the possibility
of integrating the presently conceived plans and concepts within a
larger and more comprehensive institutional structure. This is par-
ticularly appropriate to the task of system interconnection, when
successive expansions are necessary to accommodate the incremental
additions associated with major generating plants.
In the case of the Railbelt, the possible implementation of the major
hydrop?wer developments of the Upper Susitna Project, would require
that the institutional structure required for the transmission inter-
tie be compatible with future institutional needs of the Susitna devel-
opments. Thus, whatever institutional changes would be brought about
by a program of hydropower development of the Susitna should represent
only a transition between organizational requirements keyed to trans-
mission system expansion without the facilities of the Susitna develop-
ments and with the addition of major hydropower sources, such as Watana
and Devil Canyon.
The evolutionary approach to effecting this transition is preferable
over an abrupt change of institutional structures and it is thought
that, with the acceptance of a pattern of multiple participation in the
planning, financing, implementation, and operation of the Intertie, a
suitable mode of proportionate involvement can also be considered for
applicability to other transmission facilities required for the Susitna
Project. This division of fiscal and managerial responsibility can also
be extended into the operation of the system.
In this way a maximum of local utility participation can be achieved,
with a financially beneficial allocation of total project costs between
funding sources to arrive at a least financial cost package to multiple
borrowers having pre-arranged sharing of debt-service obligations.
10 - 4
-
"""'l
'
-
-
-
-
-
-
....
!"""'
I
'
....
-f
-
-
r
!
I
I
10.3
1.
2.
3.
REFERENCES
Battelle Pacific Northwest Laboratories, Alaska Electric Power:
An Ana1ysis of Future Requirements and Supply Alternatives for
the Railbelt Region, March 1978.
University of Alaska, Institute for Social and Economic Research,
Electric Power in Alaska 1976-1995, August 1976 •
House Bil1 442 in the Legislature of the State of Alaska, Finance
Committee, Tenth Legislature-Second Session.
10 - 5
APPENDIX A;
NOTES ON FUTURE USE OF ENERGY IN ALASKA
-
-
r
,_
I
.....
I
~
I
-I
~""'
I
r
APPENDIX A
NOTES ON FUTURE USE OF ENERGY IN ALASKA
Power requirements studies analyzing historical data and forecasting future
trends have been regularly accomplished for the REA-financed electric
utilities in Alaska since they began operation. These studies and their
forecasts over the years provide an interesting perspective as to the
changes in use of electricity and the change in numbers of users, but do
not fully account for the forces that produce these changes.
It is observed that electrical uses increase as the dreary, manual rou-
tines of everyday life are displaced by the equivalent electrically-powered
devices. This allows the human effort to be directed elsewhere or elimi-
nated. Electric lighting, water pumping (many Alaska homes have their
own water systems) and heating, clothes washing, refrigerator, freezer,
vacuum cleaner, dishwasher, cooking aids, radio and TV (education and
recreation), lawn mower, chain saw, etc., all direct electrical energy
toward improving the quality of life and making human effort more pro-
ductive.
The typical Alaskan family is becoming more productive as a unit through
an increasing percentage of the family partners entering the community
group of wage earners. Increasing income allows the family to seek out
new means of improving the quality of living.
There are on the horizon a number of technological triumphs that will
undoubtedly find uses in those communities where the families ~an assign
some of their resources to enhancing their lives. The home computer with
its implications of many more 11 robots 11 to come and the electric car are
just two of such items nearing the scene.
These considerations certainly support the trends of electrical energy
use that are being forecast and could well result in the forecasts being
A - 1
exceeded, if the rising standards of Alaskan life are maintained into the
future.
The following paragraphs are a direct excerpt from a system planning re-
port (see Ref. 7 in Section 3) completed in early 1979 for the Matanuska
Electric Association, Inc. of Palmer, Alaska. This electric system is
the oldest REA-financed system in Alaska and the statistics cited which
relate the use of electrical energy to the average family earnings over
a period of 35 years of actual history and a forecast of 15 to 25 years
are interesting indeed.
*INTRODUCTION
The accomplishment of long-range planning requires that data be estimated
for future conditions and that technical answers for those conditions be
evaluated in a prudent manner. Technical answers to a defined set of
conditions can be readily developed using state-of-the-art methods. An
occasional set of conditions prompts innovation when conventional methods
appear limited; but, it is demonstrably clear that the estimate of future
conditions is the single most significant factor affecting the ultimate
value of a long-range plan.
It will be noted in the following System Planning Report a great effort
was made to provide accurate and detailed historical data. A better
understanding of the nature of electrical consumers and their actual
performance amidst the set of observed environmental restraints (political
and natural) is bound to be enhanced by such data. It is believed that
forecasts of future conditions will also benefit in sufficient measure to
make the effort a bargain.
* Excerpted from MEA System Planning Report, January 1979 -see Chapter 3,
Ref. 7.
A - 2
-
-
-
~ I
r
The understanding of a long-range plan in the context of the whole growth
of a community or region and in terms more useful to the consumer of
electricity and his representatives is believed extra difficult today
because of environmental concerns, high inflation and other cost aberrations.
To provide some perspective that is intended to illuminate the broad
impact and position of the MEA electric supply system on its service area
a tabular listing of significant MEA statistics is included herewith on
the following page, Table A-1.
This table contains the 35-year history of MEA and a 20-year forecast
based on the data in the Long-Range Plan. The numbers listed may surprise
the reader at first inspection but this simple listing of historic
factual data and related future estimates serves to demonstrate the power-
ful influence of electricity on the quality of life and the productivity
of the MEA service area.
A - 3
):>
+>-
. j
MEA STATISTICAL SU~~~RY -PAST, PRESENT JI,N!J FORECAST
Ave. No. Ave. )lo. ~1i 1 es Canst. Ave. Cost Average Average Average ~v!::n"cne Portion
Served (v1/o LP) of Per Purch. Revenue Revenue 8ill/C0'1St. "F;~;fy of
,l,verage Average Line ~i 1 e Po\'ler Total Sales (w/o LP) (w/o LP) :~c~e I nco:ne
Year k',,hf Mo. kWh/~o. Dist. T~ans. Dist. $! k/lh S/k~·:h $/kWh $/:-.10 0 S/"o. Percent
(1) (2) (3) (4) ( 5) ( 6) (7) (8) (9) (lO) ( 11)
1942 210 188 90 2.3 0.020 0.0628 0.1074 5.07 1 ~r 2.9 m 4'1 0 .,:J
1954 1401 1393 313 4.5 0.0196 0 0 0450 0.0531 17.82 590 3.02 --sn -m -0
1965 3134 3113 708 4.4 0.0114 0.0348 0.0366 25.40 885 3.9 95T "694 03
1977 9434 9352 1430 6.6 0.0128 0.0359 0.0368 48.50 2243 2.4 T5TS" T318 ~
See Footnotes
Level I 16693 16510 2212
( '82-85') 2100 1785 241 7.5 0.0187 0.0546 0.0559 99.78 3303 3.02
Level II 30510 30060 2705
('87.,.'92) 2199 2488 269 11.3 0.0348 0.0692 0.0705 175.30 4853 3.60
Level I I I 55744 54956 3041
('92-'99) S7T4 3494 293 18.3 0.0488 0.0829 0.0837 292.45 7131 4.10
The basi .. c historical data was taken from the REJI, From 7. Each column is explained as follows:
.J
{1) The year of operation -MEA first energized its system on January 19, 1942. Level I, II, and III refer to the Load Levels of the December
1978 Long Range Plan. The years in parenthesis are estimated dates ~men these levels might be reached.
(2) The total average r.umber of consumers with LPs and their average monthly energy (kWh) use.
(3) The average number of consumers (w/o LPs) and their average monthly energy (k\~h) use.
(4) Miles of line at year end.
(5) Average number of consumers served per mile of distribution line-Columns (2) divided by Column (4).
(6) Cost of purchased power-at Levels r, rr and III these are estimates developed by RWR from miscellaneous sources. These forecast are
believed to be consistent with other elements of the forecast.
(7), (8), and (9) For levels I, II and Iri the figures resulted from a generalized forecast of costs using the investments i~cicated by the
Long ~ange Plan escalated at 7% per year, the operating costs per consumer escalated@ 7% per year and the rurchased power costs of Col-
umn (6). It \'las also assur.~ed that there would ~e 10% losses of energy and that VEA margins would be 10% of Gross Revenue.
(10) The estimated average family income is developed from old payroll records, the "Statistical Abstract of the U.S." (Public by Bureau
of the Census) 1977, and "The Alaska Economy, Year-End Performance Report 1977" (Published by Alaska Department of Commerce and Econo-
mic Development). Future income estimates made by escalating 1977 nunbers at 1.08 per year which is the approximate average growth rate
of income for the last 35 years.
(11) Column (9) divided by Column (10) multiplied by 100.
.J J J J J I ~} .J .J .] .J .I "' ..·~·-J ·-
.. 1
APPENDIX B
TRANSMISSION LINE COST ANALYSTS
PROGRAM (TLCAP)
APPENDIX B
~~ TRANSMISSION LINE COST ANALYSIS PROGRAM (TLCAP)
r
!
r
B.l GENERAL DESCRIPTION
The Transmission Line Cost Analysis Program (TLCAP) calculates the in-
stallation, operation, and maintenance costs of a transmission line using
a detailed unit cost model. It also automatically determines the 11 optimum 11
span and conductor size combination. Applications include the following:
1 Voltage Selection -TLCAP examines the relative economics of
various voltage levels.
• Span and Conductor Optimization -Span and conductor are opti-
mized simultaneously to provide a matrix of present worth costs.
Sensitivity of present worth costs to assumed discount rate is
also automatically included.
• Tower Type Selection -TLCAP compares the cost impact of alter-
nate tower types.
B.2 COMPUTER PROGRAM APPLICATIONS FOR OPTIMUM TRANSMISSION LINE COSTS
Choosing the most economical voltage level and other line parameters for
any projected transmission line is a complex problem. It requires the
simultaneous consideration of a multitude of interrelated factors, each
of which will have a decided influence on line performance and the
installed and operational costs of both the line and the overall system.
The installed cost of a line increases rapidly with the voltage used.
For typical single-circuit ac lines, the cost increase is approximately
in direct proportion to the increase in voltage. On the other hand, the
load carrying capacity of a line increases with the square of the voltage,
B - 1
but this is partially offset by the increase in phase spacing and the
resultant increase of line impedance.
Another factor affecting the load carrying capacity and line cost is the
size of the conductor and the number of conductors per phase. Since the
installed cost of the conductors may constitute as much as 28% of the
total line cost, the selection of the conductor is an important decision
in any line design.
For EHV lines, conductor size selection is first governed by two basic
electrical requirements -the current carrying capacity and the corona
performance in terms of corona loss radio interference (R.I.) and tele-
vision interference (T.V.I.). As the line voltage increases, the corona
performance becomes more and more the governing factor in selecting con-
ductor size and bundle configuration.
If consideration is given to the electrical aspects alone, there is an
optimum solution as to the size and number of conductors for each voltage
level and load carrying requirement. However, the size of the conductor
affects the loads on the structures supporting it, as well as the sag,
tension, span length, and tower height and weight. All such factors
influence the total cost and economics of the line. Hence, both the
electrical and mechanical aspects must be considered together in order
to arrive at a truly optimized overall line cost. Often a solution which
is entirely satisfactory from the electrical viewpoint alone will be
in conflict with the mechanical requirements. This is particularly true
at locations where heavy ice loading is encountered. For example, a
small conductor in a bundle of three may meet all the electrical require-
ments but may be entirely unsatisfactory mechanically due to excessive
sag and overstress. This results in higher towers or shorter spans with
more towers per unit length of line than would a larger conductor in a
bundle of two. A large number of conductor and phase configurations
must usually be tried before an optimum solution is found for a specific
voltage 1 eve 1 .
B -2
-1
-
-
-
r
-I
I
,....,
I
i
r
The voltage level for any given line should be chosen on the basis of
its effect on the system to which it will be connected. This may re-
quire medium-or long-range estimation of load flow. For example, it may
be more advantageous to build a single 750-kV line instead of two 400-kV
lines. Each solution has its own impact on the system with respect to
reliability, stability, switching over-voltages, transfer of power, and
possibly the cost of future expansion. In other words, the line should
be custom designed to meet present and future needs of the system within
which it is to operate. It should also provide for the lowest overall
cost in terms of investment and operation. Without proper attention to
future needs, the 11 lowest initial cost solution 11 for a line between two
given points may not necessarily be the most desirable or satisfactory
one.
In addition to the variables mentioned above, there are numerous other
line parameters that must be considered to properly evaluate and compare
the various solutions. A few of the more important ones are:
•
•
•
•
Conductor material, size, and stranding .
Tower types, such as rigid or guyed, single or double-circuit,
ac or de, metal or wood.
Foundation costs .
Wind and ice load criteria, and their effect on tower cost
through transverse, vertical, broken-wire, and/or construction
1 oads.
• Number and strength of insulators.
• Insulator swing and air gap.
• Applicable material and labor costs .
• Investment charges, demand, and annual energy loss charges.
To accurately assess all the complexities and interrelationships, and to
integrate them into a totally coordinated design that will produce a line
of required performance at minimum cost, a carefully engineered computer
program was developed by IECO. Program methodology of TLCAP is shown on
Figure C-1. Briefly, program elements include:
B - 3
FIGURE B-1
TRANSMISSION LINE COST ANALYSIS PROGRAM (TLCAP)
METHODOLOGY
I Tower Design Studies
\ It
Tower Weight Estimation ·
Algorithm
--
Electrical & Mechanical Right-of-Way Costj
Performance Specification
\ It \ If \ I/
Unit Material & -Transmission Line Cost / System Economic
Labor Costs -Analysis Program -Parameters
I II I I\
Transportation CostsJ Inflation Rates!
\ It \ l \ J
Input Detailed Optimum Span &
Data Design & Conductor Cost
Summaries Capital Cost Summaries
Summaries
~
I
\
B - 4
. -
-'
:'
~
I
:l
•
•
•
Conductor Selection - A large variety of conductor sizes and
strandings are on file for automatic use by the program. De-
pending upon line voltage and load, the program determines the
minimum power and energy losses for each conductor studied .
Insulation Selection -The program calculates the incremental
cost differences caused by changes in the insulator length,
which together with other studies of system performance indi-
cates the best insulation for each voltage level. To ensure
maximum transmission capacity, the minimum possible phase spacing
is used with each type of tower, considering clearance to tower
steel and insulator swing.
Tower Selection and Span Optimization -The installed cost of
towers represents a large portion of the total line cost. There-
fore, this item is given special and careful consideration in
the calculations. The installed cost of a tower is usually a
function of the weight of the steel used. A considerable dif-
ference in weight between different tower configurations can be
experienced, even in cases where the loads are identical. If
to this variable, the variations in loads due to conductor size,
bundling, and climatic criteria are added, it becomes evident
that correct tower weights can only be determined by an actual
tower design in which all the variables are properly considered.
Therefore, the optimization program is complemented with a tower
design program. Appropriate foundation· and insulation costs are
added to each tower solution to obtain the total installed cost
per tower location. This information is then used by the opti-
mization program to determine the optimum span length (the span
that results in the lowest tower cost per unit length of line)
for each conductor configuration being considered.
In processing these criteria, including a present worth evaluation of
annual energy loss and other time-related charges, the optimization pro-
B - 5
gram arrives at a long-range minimum cost solution for each voltage level
investigated. However, as previously mentioned, the final evaluation of
the adequacy of a line should be based upon its pr~sent and future effect
on the system as a whole. Therefore, the lowest cost solution for a
select number of conductor configurations, with their specific electrical
characteristics, should be tried in a few additional system study runs
to obtain a proper basis for a final decision.
B.3 TLCAP SAMPLE OUTPUTS
Sample outputs of the TLCAP computer program are shown on the following
pages. The output cases are listed below:
• Anchorage -Fairbanks, 230 kV (Case IA).
• Anchorage Fairbanks, 230 kV (Case IB).
• Anchorage -Fairbanks, 345 kV (Case IC).
• Anchorage -Devil Canyon, 345 kV (Case II-1).
• Devil Canyon -Ester, 230 kV (Case II-2A).
• Watana -Devil Canyon, 230 kV (Case II-3A).
E - 6
-
.-*If
~
,-.
'""''
.. ~··~·1 1
INTEk~AJIO~AL ENG!NE~RING CO. INC
SAN FRANCTSCO C~LTFORNIA
TRANSMISSION LINE COST ~NALYSIS P~OGRAM
VERSION 1: 23 FEB 1Q79,
ANCHORAGE-FAIRBAN~S INTERTIE CASE lA
230 KV TRANSMISSION LINE COST ANALYSIS AND CONDUCTOR OPTIMIZATION
SYSTFH ECONOMIC FACTORS
STARTING YEAR Of STUDY
fNOING YEAR Of STUDY
HASE YEAR FOR ESCALATION
~11\XI"'.UM CIRUJIT LoADING
AVERAGE CIRCUIT LOADING
DEMAND COST FACTOR
tt:FJH;y COST ~ACIOR
V ~ R C (IS l F A.C 1 (] R
CAPITAL COST/DTSCUUNT RAT~:
M!NfMIIM
MAXIMUM
NlJMFlfR OF INTERVALS
Oli.M COST FACTOJ.I
RIGHT OF wAY COST FACTOR
RIGHT OF WAY CLEARING CQST
I~TEJ.ItST DURING CONSTRUCTION
FNGINEERING HF
DATE: 12 APR 79 TIME: 9:29:47
•••••••••••••••••• • • •
INPUT DATA * •
* ••••••••••••••••••
INPUT VALUE:.
1979
1996
1977
136.8 ~1VA
41.0 MVA
B.o $/Kw
13,0 MILLS/KWH
0,0 $/KVAR
7,0 PFRCENT
10,0 PERCENT
1
1,5% CAP,COST
715,0 $/ACRE
14'30,0 $/ACRE
0,00 ?: lNST.CST
11,00% INST.CST
REFERENCE YEAR FOR INPUT
-------------~----------
1992
191/2
1979
1979
19HLI
1979
1979
Jq79
IJ:j
I
00
; .•
A~CHOR~GE-FAJRRA~~s INTFRTIE CASE !A
?30 KV TRANSMISSION LINF COST A~ALYSIS AND CONDUCTOR OPTIMIZATION
OATE: 12 APR 7q TIME: q;?q:~7
lONI>UC TOR lJ~TA
--·------------------·-----------------··
"JtJ'1'lF~ "'HI f'I-1AS[
(fl'J~UCl •)P SPA(. PH;
VC'LlAGt
VIILTAG'-VA'<I~JIU'l
Ll.'•E F'-"I'Uf.'·l(Y
Ff.['i,..EAT••l'< LOSSFS
lPli,. LF-1GTH
Pu..;ER F.\( [nR
w t r. 1 HER 0 AT A
(),0 IN
230 i<V
10,00 PCT
oO CPS
(),00 K_,/MI
~23,00 MTLES \ o,qs
---------------~---------------·------·--
'H)(JMY·' R A l r, f-·' L l fi ATE I. PI !N/HR
K~ ll' f ·~· J" f.: A Plf-.'-LL J)IJilt.l!ON 1 11RS/YR
A\[·if.Gf R A PrF ~ ll t<ATF 0,03 !N/HR
A 'v F.'< A ::;r f.J t. T '<FAll llliiiAT !0~1 o3t> HRS/YR
"1 A X I t~,.JI St;l),,f-.\ L L 1-/Alf': I .ll 7 lN/HA
·~~X I" J'·· S t J\1 "F ! l l. t)III-IATION 1 HRS/YR
AvtJHGF ~IJt'"~~LL •u.rE 0,13 !N/HR
A~ F R ,, (, ~ Sfli[),,fALl 111.JI< AT I ON 2o~ HRS/YR
RtLATIVf AIH -lf'JS I TY 1,000
,J I ] J ,I
········****••••••
* * * l"'PUT OATA
* * ·-·*··········•**•
GROUNJ)wiRE DATA
0 NUMBER PER TOWff-1
DIAMETER
Wt.lGHT
0.00 IN
0.0000 LBS/FT
J J ,) J J
MJNIMisM
MAXIMUl1
INTERVAL
J J
SPAN DATA
J CJ
1200, FT
1&00. Fl
100,0 FT
_J •' cc~
l l
,_, _____ J ,_ .. ,"., __ , ) ---,_) ··-----, ----} l ---=---) l
ANCHUPAGE-FAIRHANKS INTERTIF CASt IA
210 KV TRANSMISSION lINt COST ANALYSIS AND CONDUCTOR OPTIMIZATION
DATE: 12 APR 79 Tl~E: q:?9:47
SAG/TENSION Dt.SJGt-.j FACTORS
------------------------·-
******************
*
* *
INPUT DATA *
*
*
******************
) _, 1 ')
t.Vf.RYOAY STRESS TEMPERATURE
ICE A~D WIND l~MPENATURE
HIGH WIND TFMPtRATURt.
EXTREME ICE TEMPERATURE
liO •
o.
110.
30.
DEGREES
DEGREES
DEGRfES
OEGf.IE.ES
F
F
F
F
ICE AND WTN~ TENSION (PCT UTS)
HI~H wiND TENSION (PCT UTS)
E.XTRE~E ICE TENSION (PCT UTSJ
ICE THICKNESS WITH WJNO
MAX DESIGN TfMP fOR GND CLF.ARANCE
t.DS TFNSION (PCT UTS)
NESC CONS TAN I
TOTAL NUHRER OF PHASES
PtiASF $PACfNG
CONDUCTOR CONFIGURATION FACTOR
GROll NO Cl.f Af~MJCf
NO. OF INSULATORS PER TOWFR
INSULATOR SAFETY FACTOR
STRING LENGTH
I, VEE, OR CUMAINATION
HlUNDAT J(JN TYPf
TERRAIN FACTOR
LTNE ANGLf FACTOR
TOWER GROUNDING
TRANSVERSE OVERLOAD FACTOR
VERTICAL OVERLOAD FACTOR
L(lNGI TUDINAL LOAD
MISCELLANEOUS HARDWARE WEIGHT
lOWER WEIGHT FACTOR
TOWER WEIGHT ESTIMATION ALGORITHM
120. DEGREES F
20. PE:.RCENT
0.31 LBS/FT
TOWER DESIGN
3
20.0 FEET
1.0?
28.0 FEET
ll8
z.so
6.5 FEET
3
ll
1.06 PER UNIT
• 01\bll
0
2.50
1.50
1000. LtiS
0.11 TONS/TOWER
1.02
TOWER TYPE q: 2l0KV TOWER
WIND PRESSURf WITH ICE
HIGH WIND
EXTREME ICE
DISTANCE. BETWEEN PHASES:
D1
[)2
03
[)4
05
or.
T~ : O.OOOlo*TH••? -3,09797•TH••0.3333 -O.OII9li5•EFFVDl •
o.l7167•fff!UL t O.OO~lO•TH•EfFTDL t OoOOlbO•TH•tfFVUL t
18.37911 KJPS
"} )
50. PfR(tNT
50. PERCENT
70. PERCENT
o.So II'IIOtfS
4.00 LBS/SQ.f'T.
9.0 lBS/SQ,FT.
0.50 INCHES
20.00 FT
?0.00 FT
40.00 FT
0.00 FT
o.oo FT
0.00 FT
'l
A~CHORAGE-FAIRSANKS !NTE~Tlf CASE !A
2~0 KV T~ANSMISSlON LINE COST A~ALYSIS A~D CONDUCTOR OPTIMIZATlO~
. ~ATE: 12 APR 79 TJH[: 9:29:47
-·*****•••••••**** • •
* INPIJT DATA
• •
····~·······•*****
CO~JDUC TUR SUI-IMARY
************•••••
TEp.1P,COF.F,
STRANDING UNIT WEIGHT OUT.DlAM, TOTAL AREA MOOUlUS AIYHA•E-6
ID I;IJ'1RER NAME:. S!7ECKCM) ( AL/S T) (LI:lS/FT) (!NCHES) ( s IJ • IN • ) (fF/E:.b PS!) PER OF_G F
-----------·--------------------.. _.,. ______ -----------------------------
21.1 (,kflSilE A K 636,0 26/ 7 O,F\750 0,9900 O,'JHO'I I I, 0 0 1 (). 3
I;]:;J ?:. f GRE T 656,0 30/19 0.9fll:i0 1,0190 0,1>154 I 1 , 50 9,7
I 21:> FlAMINGO bbb,O 24/ 7 O,F\590 1.0000 0,5914 10,55 I 0, 7
t-'
0 27 GA"J'<f T 61:>6,0 261 7 0,91i:l0 1,0140 O,oOi\7 11,U0 1 0. :s
2H STILT l1 ':i. 0 24/ 7 0,9210 1,0360 0,63Lll\ 10,55 I 0, 7
n STARLING 715,0 ?.hi 7 O,'IR50 1.0510 0,6535 11 • 0 0 I 0. 3
)f) Rtfhi!tJG 715.0 30/19 1.1110 1.081() 0,6901 1 j • 50 9,7
) I CUCKOO 795,0 24/ 7 1.021.10 1,0920 0.70S3 10.">5 1 0. 7
3.? lHI A" F 7'15.0 2bl 7 1,0940 1. l 080 0,7261 1 I , o 0 I 0, 3
B TfRN 795,0 45/ 7 0,8960 1,0630 0.6676 9,40 I 1 • 'l
.S4 CO>,;DOR 7'15,0 '::>4 I 7 1. 0 2110 1,0930 0,70'>3 10.8'5 I 0. 9
35 MALLAIW 795,0 30/19 1.2350 1,1'l00 0,7bhR I 1 • 50 9.7
3!:> Rili)I)Y 900,0 £15/ 7 1,0150 1.1310 0.7069 9,40 I I , 5
H C A 'JAR Y QOO,O ':>'H 7 1,1'590 1.1620 0,7'18'> 10,5'5 I 0, 9
31-1 PAfL 9'::>£1.0 4'5/ 7 1,0750 1.1650 O.ROil 9,40 11.':1
3? CARDJraL 954.0 51.1/ 7 1. 22'10 1,19b0 O,f\1.164 10,85 I 0. 9
.J J ] J _) ) _) J ,J .J "J .. J .l J ) J l .J ._._,_j
.., ____ --.. ·~· ;,_,__..·--
·~
<c ) ) l ~--~ 1 -) -~~~. ') J ) -~] l ,--:o.-. ) << l -~} ~-1 ··-J -... ~} )
ANCHORAGE-FAIRBANKS lNTfRTIF CASE IA
230 KV TRANSMISSION LINE COST ANALYSIS AND CO~DUCTOH OPTIMIZATION
DATE: 12 APR 7~ TI~t: 9:29:47
*****•••··········
* * .. INPUT Dll TA •
"' * ••••••••••••••••••
CONDUCTOR SIJI~MAHY
•••••••••••••••••
AC RESIST.
ULT.TENS, GFOM,MEAN THE:.RM,L!MIT AT 25 DEr.C IND,REt<CT, CAP.~EACl.
I[) 'J!J'-jf'\t:.H NAME STRfNGTfi(LAS) RADIUS(FT) PRICE<$/LRl (AMPf_HfS) (OHMS/MILE) (OHMS/1-ItLEl (MQHM-MILI':.S)
--------------------·---------.. --______ .... ___ ,.
---------
______ .... ..,. ___
-----------------------
;>q (;fdlSflt AK 2">000 .o 0,0335 0,62811977 790, 0,1ll'S2 0,4113 2,o3Ll7
O::J ?S F GHl T 31<;00.0 0,0.551 0,609/1977 870. 0,1447 0,4060 2,o136
I ?b FLI\MTNGO 23700,0 0. 0 535 0,640/19/7 810. 0.1399 0,4118 2.6291.1
f-'
I-' :>f I~ANI~E l 211200,0 0,03'~3 0,609/1977 1\20. 0,1373 0,4042 2,6347
?i\ S l J L T 2L,'i00,0 0,0347 0,6?.7/1917 f\40. 0.1320 0,40hb 2,61.l00
;>q SlAi-<Ll"1G ?!l!OO,O 0. 0 Y)5 0,60fl/1977 850. 0,12'-14 O,LIOSQ 2,bl.l5'3
~0 RE!lr<ING "$1"600,0 0,0372 0,612/1977 1\60. 0,1213El 0,399.? 2,'lhbl
51 ("lj[l\(}0 27!00,0 0,03t>o 0,636/1977 900. 0,12!4 0,3992 2.5502
~2 DRAKE 31?00,0 0,0375 0,62211977 910. 0,1172 0.349? 2,5450
B HRN 2?'100,0 0,03'::12 0,677/1977 1'90. 0,111-\ll 0,4060 2.S7b6
34 ((l"J()()f.l 21-\'}00,0 0,0368 0.6~S/1977 90\J, 0,117? 0,1.100? 2,55')5
~s MAL LAP[) ~l'lll 00. 0 0. 0 592 0,599/1977 910. 0. 1162 0,3928 2,518h
36 RUODY 2 'J /~ 0 0. 0 0,0374 O,b7ol1977 935, 0. 1-0 82 0,39?8 2,50ll0
~7 CANARY 32300,0 0,0592 0. 63311977 950, 0 • 1 0.4 0 0,3928 2. 5027
V\ RAIL 26900,0 0,03R5 0,67111977 970. 0,0998 0, H49 2,5027
)9 CARO!NAL 34?00,0 0,01104 0,632/1977 990, 0,0987 0,3902 2,4816
)
td
I
1-'
N
j J J
A~CHOWAGE·FAIRriAN~S !NIE~liF CASt lA
2.;0 KV lPANSMlSS!ON LINt COSl A..,ALYSIS AND COI\o()UCTOR OPT!MJlAT!ON
DATE: 12 APR 79 TI~E: 9:29:47
• ,. INPUT OATt.
• • ..
****•••*******••••
UNIT M~IERIALS COSTS INPUT VALl!f REFERENCE YEAR FOR INPUT
PRICE OF Tflr;tR MATERIAL
P~ICE OF CO~CRETE
PRICE OF GROUND "IRE
INSTALLED COST OF GROIJtWING SYSTEM
T 0 1'1 F R S FT lH'
TrJwf R ASSE~IRI Y
FOUNDATION SUliP
FOIJNDAT!ON ASSP1HLY
FOUNDATION lXCAVAT!ON
PRICf. OF MISCELLANEOUS HARD,..ARE
!JNIT LAfiOR COSTS
RFFFRENCE YEA~ LABOR COST
S T R I '< G G R 0 ll N fl w I R f
STRING LAHOR MARKUP
tiNI I TRANSPORTAl ION COSTS
--~·----~-~--------------
TOwER
FOUNDATION CONCRETl
FOUNDATION STEEL
CONDUCTOR
GROU~D '~IRE
INSULATOR
HARO.,ARF
J I J J J
0,9":>7 $/LB
0,00 $/CU,YO.
0,000 $/LH
0. 00 $/TOWER
1751. $
0,4')5 $/LB
0. $
4140,00 $/TON
0,00 $/CU.YO.
290,00 $/TOWE.R
24,00 $/MANHOUR
0,0 :'</MILt
4,2 PER UNIT
100,0 $/TON
100,0 $/Yf)
100,0 $/TON
too.o snoN
100.0 $/TON
100.0 $/TON OR $1M••3
100,0 $/TON
,,) J ,) )
1979
1977
1977
1977
1979
1979
19/9
1979
1979
1977
J J ) J
~ ') '~'~-'"} .~~ J
CWdJUCTlJR
-·-·-~~~~--·-
Nrl. KCH SPAN(FI) --------
t:;:;
I 3'1 951.1. 1300. I-'
tJ-.1 y:; 79"i. 1300.
3':.> 795. 1 II 0 0,
3"7 '100, i300,
3q 'I ':J II , JIJ 0 () •
37 900, 1400,
3'~ 7<J5, 1'l00,
3? 79S, 1300,
30 71 5. I 30 0,
.3() 71'), 1<J00,
~" 7<JS, uoo.
3? Fl":.. II.! 0 I).
3'1 9511. 1500,
3i\ 9C:,/J. 1 300.
3<J 951J. 1c'OO,
3 i 900. 150 0.
3tJ 79'), 1 1.10 0.
3') 795, 1600,
30 7 I S. 1':>00.
3':1 79':;, 1200,
31 QOO, 1200,
29 71S, 1300.
21.1 636. 1200,
3c' 79'), 1500,
3h 900. 1300.
"-~) ~---1 ) -)
A~CHU~AGE•FAIRBANKS INTERTIE CASE IA
230 KV TRANSMISSION LINE COST ANALVSIS AND COND0CTOR OPTTMIZAfiON
DATE: 12 APR 79 TIME: 9:29:47
****************•*********************
*
*
*
*
AUTOMATIC CONDUCTOR SELECTION
ALL QUANTITIES PER MILE
*
*
*
*
**************************************
CAPITAL COST/DISCOUNT RATE OF 7,00 PERCENT
-------------------------------------------
INSTALLED COST
-----------------------·--·------------------------··------------MATERIALS TRANSPORTATION INSTALLATION ENG/I DC SUBTOTAL
-------------.----------' ---·---·-------------------
61'\JIH, 3831.1, 84796, 9328, 166104,
64664. ~5721. 82616. 9088, 160089.
6537S. 3684. 1:12031. 90?3. 160113.
67?99, 377?... 84608, 9307, 161.1986,
695'12. 3A2P., 84613. 9314, 167367.
68697, 37bb, 8449l.l, 9291.1, 1662':11.
66Fl79, 361\9, 8.?176. 9039. 16171:\4,
6'.:15')8, 368'.:1. 831\93. 922il, 162364,
h3510. 3615, 82301, Q05.S. IS847fl.
61.1.:'04. 3'176, H1729, 8990, 1SI\49A,
651\07. 3659, 84359. 9279. 163104,
66784', 3669, 83683. 9205, 163342,
711\43. 31:170, 8':l337. 93P.7, 170437.
701~6. 3831 • 86787, 95l.l7, 170300.
703R6, 4035, 87082. 9579, 171080,
70983, .5807, 85172. 9369, 169331.
67235. 3653. 8429fl, 921.5, 161.1459.
69124. 3735. 82979, 9128. l649o6,
65702. 3580, 81896. 9009, 160187,
66809, 3916, 8'5020. 9352, 165176,
69631. 3977. 86926, 9':;62. 170096.
64091. 3'593, 83683. 920':>, 160573.
'58648. 3.345. 82481. 9073, 153'548,
bf\81'13. 3 701. 84257. 9268. 166109.
fl9499, 3780. 86&82. 9'.:13':>. 169496,
~ ~ ) l --~ l ---··-~ ) )
PRESENT wOt<TH
~-----------~------------------------·
LINE LOSSES OK.H COST LINE COS1
·---------------·-----------SUBTOTAL SlJRTOTAL TOTAL ----------------
32600, 3?84, 201981-l,
39120. 3151 • 20?35<~.
3'1120. ~1b1, 20?39<J,
3l.l543. 32':l7, ?0?7A'l,
321>00, 3322. ?0328il,
34S43, 3?94, 204f)P,k,
391?0. .5206, ?Otd 09 •
39523. 31'15. 20Svi'.2,
1.14166, 31 12. 20575b,
44166, 3122 • 2057H7,
39'199. 3209, 205913.
39523. 3.?26. 20 h~O 9 1 ,
32600, 3.$97. ?0~>433.
32997, 33 71. 20bhhl.
3?600, 331\5, 207Cib':l,
3451.13, 3369, ?0724?.
39599, 3248, 20730o,
39120. 3282. 207)67,
41.1166, 316 7. 207520.
39120. 3254. 20l'l49,
34':>43. 3 361 • 207<J99,
44801.1, 3!':>0. 20R527,
52193, 297S. 208715.
39':>23. 3?95, 20FI926.
36096. 3351. 201'\942,
0:1
I
f-J
*"'
J t:.·.--,,, J ,r
A~CHURAGE•FAIRBANKS INTERTIF CASE I&
230 Kv TRANSMISSION LINE COST A~ALYSlS AND CD~DUCTOR OPTJHIZAT!O~
lN.'ilALLFD COST
llh't AK!l(Jw~ llll At-< I I T 'I'
~-------------·-------
CONf'UC TOR 1511110,
GRilLI~J!Jo'l IRE 0.
l'JSttL h Tflh:S ?07,
IIARI',·; Ai<E
TOI>irfiS 4,3
FOU'·.IIA T IONS /J. 3
RIGHT !IF wAY 13.
IOC It r-.Glt~ft:.Rl'JG
---------------TOTtLS
LOSS t'.Nlll.YSIS
--------------------· RESISTANCE LOSSES
CORO~<A LOSSES
---------·~---·-·---TOTALS
J J J ,._,._ -· ~ J
DATE: 12 APR 79 Tl~E: 0129:47
***********-************'*****
* .,. COST OUTPUT PER MILt
PRESENT VALUt WATE
7,00 PERCENT
*
····~··············~····••****
CONDuCTOR MIHBtR : 39
9511, KCMIL 1300, FT SPAN 87,7 FT TOwFR
MATfRIAL TRANSPORTATION INSTALLATION
COSTC$) TONNAGE COSH$) COSTC$) ----------------·------------------------
FT 14086, 9. 73 973, 182'>7.
FT 0. 0,00 o. o.
UNITS 1313. 1 , 1 II 2114,
1429, 0 ,Ill 47,
lJIH T S 381:170, 20,31 2031, 260 19.
UNITS 3327. '538, 22280.
ACRES 91?0, 111?41,
9328. -------------------
bl:\147, 31,65 3834, 84796,
PRESENT VALUE ( $)
DEMAND LOSSES ENERGY LOSSES TOTAL LOSSt::.S
-------------__ ..., ___ ... _4_.,. __
----------~-245BR. 7992, 32'>80,
0. 19. 1 9. ---------------------
24':>8R. 8011. 32600.
_,I J ,) ,.I .: .. _ .... J } J .... J
TOTAL
COST($) -------
3331 b.
0 •
1'5'>7.
11177,
bhl/21.
?614'5,
i'73b],
9321J, ..................
166101.1,
) J J
-l )
INTER~ATIO~AL fNGINfERING CO, INC
SAN FRA~CISCO CALIFORNIA
TRANSMISSION LlNf COST ANALYSIS PROGRAM
·VERSION 1: 23 FEB 1979,
ANCHORAGE•FAIReANKS INTERTIE CASE IB
230 KV TRANSMISSION LINt COST ANALYSI! AND CONDUCTOR OPT!MlZATtON
PATE: 12 APR 79 TIME: 9:37:07
SYSTFM ECONOMIC FACTORS
******************
• *
* •
INPUT DATA * •
******************
INPUT VALUE
-------·---------------................•.......
STARTING YtAR 0~ STUDY
ENOING YFAR Of STUDY
BASE YEAR FOR FSCALATION
MAX!Ml!M CIRCl:JIT LOAI)ING
AVEf~i~GE Clf<Clll T LOADING
DEMAND COST fACTOR
ENFRGY COST FACTOR
VAR CUST FACTOR
CAPITAL COST/DISCOUNT RATE:
MINJMIJM
MAll I r~UM
NIJMAFH OF INTERVALS
OS.M COST FACTOR
RIGHT OF ~AY C~ST FACTOR
RIGHT OF wAY CLEARING COST
INTtREST PURING CONSTRUCTION
ENG!Nt.ERING FH
1979
199b
1'177
l3b,8 MVA
tJ9,2 MVA
73,0 $/KW
1.5,0 fHLLS/KWH
0,0 $/KVAR
7,0 PE:.RCENT
10,0 PERCENT
1
l,S % CAP,COST
715,0 $/ACRE
Hl30,0 $/ACRE.
0,00 X INST,CST
11,00: lNST,CST
1111Jil
1'J'1i!
tq?q
1q7q
19111.1
PHI~
1'Hll.l
111711
tq?q
1 91'1
.J
ANCHORAGE•FA!R~AN~S INTFRTI~ CASE IS
230 KV TRANSMISSION LINE COST ANALYSIS AhD CONDUCTO~ OPTIMIZATION
L D N I) U C I f) f.? D A T A
'ill"iJf q Pt11 f'HASf
Cll-'JDlJC TOR SPA C H<G
VOLT.\Gf
V!JLThG( V~lll~l!ON
L l ~ t. F q' lJ U E r; C y
FAJ~nEAlHtR LOSSES
LINE u··IGTH
POiitR F!CTOR
>'tATtH:Y f\ATA
MAX1MJ'1 RAP~FAIL RAH
'H ¥ 1 MU!-" RAINFALL OUI<A T I (J'-J
AvERAGF fH!NrALL r<A rt
AVE>1/•Gl RAINFALL iJIJfiU !O'J
MAXiMJ:1 s~.o.-.r ALL f!AH
MAX!MrJM BNO~FALL DUI~ HI ON
AVfi:RAGJ" 5NOO'Ji=" AU_ RAa
AVt:fL~Gt SNO~FA6L fJURAT!ON
iH.LATI>'E AIR DCNS I H
0,0 IN
230 KV
10,00 PCT
60 CPS
0,00 KW/M!
'23.00 MILES
0,95
1. 18 lN/HR
1 HRS/YR
(),03 lN/HR
tJ311 HRS/YR
!. 8 7 !N/HR
1 HRS/YR
0.-13 IN/HR
264 HRS/YR
1.ooo
J
DATE: I? APR 79 TIME: 9:17107
•••••••••••••••••• •
*
*
INPUT DATA
GROIJND~IRE DATA
*
*
0 NlJMbE!< PER TOWER
DIAr~ETfR
WEI GMT
0,00 !N
0,0000 LBS/FT
J J J
MINIMUM
MAXIMUM
INTERVAL
f.J J
SF'lAN DATA
J ,,I
1200, FT
1600, FT
100,0 FT
J ·•~.;)
-l
bJ I
I-'
-.,J
) J
A~CHORAGE•FAIHBANKS INTERTIE CASE lR
230 KV TRANSMISSION LINE COST ANALYSIS AND CO~DUCTOR OPTI~lZATlCN
DATE: 12 APR 7q TIME: q:37:07
SAG/T~NSION DESIGN FACTORS
tVfRYDAY STRESS TEMPERATURE
!CF AND WIND TEMPERATURE
HIGH ~IND TEHPtRATURE
~XlRf~E:. ICE TfMP~RATURE
MAX OESIGN TEMP FOR GND CLEAHANCE:.
EDS lENSION (PCT UTS)
NfSC CONSTANT
TOTAL NUMRER OF PHASE:.S
PHASt SPI>ClNG
CONOliCTOR CONfiGURATION FACTOR
GRilUNf) CU:ARANCF
NO, OF INSIJLATORS Pf.R TOWER
INS\ILATOI< SAFETY FACTOR
Slf.'ING U:NGTH
I ' VU', OR CO~'BINATlON
HliiWH T [ON TYPf
Tf>;RAIN FACTOR
L I '·IF ANGLE FACTOR
JO..,FR bROUNOlNG
TRANSVERSE OVFRLOAD fACTOR
VERTICAL 0 V HH. 0 ~ D F A C T OR
LONGITUDINAL LOAD
11! SCH LANE OUS HARD~ ARE. WEIGHT
TO.,FH .;EIGHT FACTOR
TQ,.;tR wEIGHT FSTIMATION ALGORITHM
*
* •
II>IPllT DATA
• •
• ••••••••••••••••••
LID. DEGREES F
o. DEGRFES F
40. OFGRFES F
30. fJEGREES F
120. DEGREES F
20. PERCENT
0.31 L8S/FT
TOwER DESIGN --.. ·--------
3
20.0 FEFT
l.O.?
28.0 FEfT
48
c?,50
6.5 FEET
3
4
I. 06 PE.R IJNI T
.0864
0
2.~0
1. 50
1000. Lf!S
0. 11 TONSITO.,E.R
1.02
TOw~R TYPE 9: 230KV TOWER
ICE AND WIND TENS[ON (PCT UTS)
HIGH WIND TENSION (PCT UTS)
EXTRE~E ICE TENSION (PCT UTS)
IC~ THICKNESS wiT~ wiND
WIND PRESSURE WITH ICE
HIGH wiND
EXTREME ICE.
DISTANCE BETwEEN PHASES!
01
D.?
lH
D4
D5
Db
TW : O.OOO!h•TH••2 • 3.09797•TH••0.3J33 • 0,089U3•EFFVOL •
o.775h7•EFFTOl t 0.005IO•TH•FFfTDL t O.OUlbO•TH•E~~VDL +
18.H91i' ~II-'S
1 1
')0. PERCENT
50. PERCENT
7fJ. PERCENT
o.SO ltJCHES
4 • 0 0 l. ~ S I S r~ • F T •
9.0 t.BS/SQ.fl'.
o.~o INCHES
.?o.oo fT
20.00 FT
«O.OO FT
o.oo F T
o.oo FT
o.oo F"T
A~CHOkAGE•FAI~HANKS INTERTIE CASE IB
230 KV lRA~S~lSSJON li~E COST A~ALVSJS AN~ CONDUCTOR OPTIMIZATION
DATE: 12 APR 79 Tl~t: 9:37:07
••**.****•******** • • INPUT D A T.l> * • ·············*****
CONDUCTOR SUM~1ARY
*****•*******•***
TEMP, CUFF.
STRANDING UNIT WEIGHT OlJT,DIAH, TOTAL AREA MODULtJS ALPHht•b
TD NU'HJE R N M"E SllUKCMl (Al/ST) (L5S/FT) (INCHES) (SO. IN,) (EF/E6 PS Il PER DEG F
--··-------·--... --.. -------_ .... _____ _____ .... .,. --------·--·----------------·
2'-l GkOSREAK 6-,6.0 26/ 7 0,8750 0,9900 o.ssoq I 1 • 0 o I 0. 3
2':> F GR f T tdb. 0 30/19 0,9880 1.0190 0,6134 I 1 , 3 0 9,7
2n FL~MINGrl 666,0 2/J/ 7 0,8590 1.0000 0,591/J 10,5'> 10. 7
1:0 27 r, Ar~f,F r 6b6,0 26/ 7 0,91fl0 I , 0 Ill 0 0,6087 I 1 , 0 0 10. 3
I
J--1 ?"I s r 1 LT 715,0 2lll 7 0,9210 1,0360 0,63ll8 10,':15 I 0, 7
00 ?.9 SlAPLl"'G 715,0 ?61 7 0,9850 !.OSlO 0,6':>35 I I , 0 0 I o • ~
3 r) Rt_l),; I t<G 715.0 30/19 1,1110 1,0510 0,6901 11 • 3 0 '1,7
3 t (IJ(KQ() 795,0 24/ 7 1.0?40 1,0420 0,7053 10,':>5 1 0. 7
3~ DkfiKE 795,0 26/ 7 1,0940 1,1080 0,7261 11 • 0 0 1 0. 3
33 f!::.f.HJ 795,0 ll5/ 7 0,8960 1,0630 0,6676 9,40 11 • 5
3 I CUNl'Ok 79'1,0 5ll/ 7 1 .02 1~0 I , 09 3 0 0,7053 10,115 10,9
3':> HALLARD 795.0 30/19 1.2350 1.1400 0,7bt-B 11 • 3 0 9,7
3;, PU['OY 900,0 45/ 7 1,0150 1,1310 0,70o9 9,40 11.5
3/ C AoJAtl Y 900,0 'jlJ/ 7 1. !590 1,1620 0,7955 IO,ii'J I o, 9
3>\ RAIL 9':,4,0 45/ 7 1,0750 1,1650 0,8011 9,40 I 1 , 5
39 CARDINAL <l54,0 54/ 7 1,2290 1,1960 0.8464 10,85 I 0, 9
J ) _j j J _l
········) l
ANCHORAGE•FAIRBA~~S INTE~TIE CASE IB
230 KV TRANSMISSION LINE COST A~ALYSIS AND CONDUCTOR OPTIMIZATION
DATE: 12 APR 79 TIME: 9:37:07
******************
* * .. It-.~PUT DATA *
* *
···············•**
CONDUCTOR SUMI"ARY ......................
AC ~ESTST.
lJL T, TENS. (;EuM,MEAN THfRM.LIMIT A T 25 DEG c IND,RI:.ACT. OP,REACT.
Ill NUfHlER NAMf STRI::NGTH(LBS) RADIUSCFT) PRICEC$/LB) (AMPERES) (OHMS/MIL U (OHMS/MTLI:.) (MOHM•!-1!U 5)
----··-----·----------------------------------------------------·-··-------------------
24 GROSH[AK 25000,0 0,0335 0. 6i?A/ I 'l77 790, 0,11<52 0,4118 2.6347
?S EG!-!ET 31500.0 0,0351 0,60'1/l'l77 870. 0.1447 0,4060 2.6136
26 FL.\MINr.O 2.3700,0 o. o.n5 0,640/1977 8 I 0. 0.1399 0,4118 2,6294
b:;j ?7 GHJNf. T 2o2ll0,0 0,0343 O,b09/1Q77 820. 0.1373 0,4092 2,6347
I ?i\ S T ! L 1 ?5"i00,0 0,0347 0,627/1977 840, 0,1.320 0,4066 2,61100
1--'
\.0 ?.9 Sl A~LING 28100.0 0,0.355 0,608/1977 8')0, 0,1294 0,4050 2,6453
"30 fH D1d NG 34600.0 0.0372 0,612/1977 860, 0.1.?88 0,3492 2,5661
.31 CUCKOO 27100.0 0,0366 0,636/1'177 900 • 0,1214 0.3992 2,S502
32 Dh'AKE 31200,0 0.0375 0,622/1977 91 0. 0,1172 0.399? 2.54">0
33 TF ~'' 22900,0 0,0.$52 D,b7ll!'l77 890, 0,11f\R 0,40hll 2,576b
.34 CU~iiJO~ 21l'i00,0 0,0368 0,63">/1977 900, 0.1172 0,4002 2.5'555
v; MAll AIW 31:<400.0 0,0.$'12 0,599/1977 91 0. 0,1162 0,3928 2.5186
.36 RUDDY 25400,0 0,0374 0.676/1977 935 • 0.1011.? 0.3'128 2,501::10
.37 CM;A"Y 32300.0 0,039.::' 0,633/1977 950. 0.1040 0,39.?.8 2.':J027
3'3 RAIL ?6900,0 0.0385 0,671/1977 970, 0,0998 0.3949 2,5027
3'1 CARDINAL 34200.0 0. 0 ,. 0 4 O,o32/1977 990, 0,0987 0,3902 2,<!816
c ")
tp
I
N
0
}
ANChURAGE•FAIR~ANKS INTERTif CASE IR
250 K~ TRANSMISSION LINt COST A~ALYSIS AND CO~OUCTOR OPTIMIZATION
DATE: 12 APR 79 TINt: 9:37:07
*
*
*
INPUT DATA *
*
lr
········~*********
WJlT MATERIAlS COSTS INPUT VALUE REFERENCE YEAR rOR INPUT
-------------------------------
PRICE OF TU~lR MATERIAL
PRICE OF CONCRETE
PRICE OF GHOUND Wl~E
INSTALLED COST Of GROUNDING SYSTEM
TOWER SETUP
1 o~~n~ ASSE t1RL Y
r OUNDA r !Or-. St. TUP
FOUNDATION ASStMBl Y
FOUNDATION EXCAVATION
PRICE OF MISCEllANEOUS HARD~ARE
UNIT LAROR COSTS
REFERFNCF YEAR LABOR COST
STRI'J!; GIWUND w!f<F
STRING LABOR MARKUP
UNIT TRANSPORTATION COSTS
TOWER
FOUND AT !ON CONCRE H
FOliNf"lATIUN STEEL
CONDUCTOR
GROUND WIRE.
INSULATOR
HARDWARE
J
""'.
·P'•·~'"···· ~)
0,957 $/LR
0,00 $/CU,YD,
0,000 $/U3
0,00 $/TOWER
1 7 ') 1 • $
o,4SC:. $/LH
0. $
4140,00 $/TON
0,00 $/CU,YD,
290,00 '!;/TOWER
24 • 00 $/~~MHWUR
o.o $/"'ll f.
4,2 Pt.R UNIT
100.0 $/TOt~
1 0 0. 0 $/YD
100,0 $/1 ON
1oo.o $/TON
100,0 $/TON
1 0 0 '0 $/TON OR $/M••3
100,0 $/TON
) J ~,J J J
19H
1977
1977
1977
1979
197q
1919
1979
1979
1977
,.J ,} J I
Cfli\tllJC TOR
---------~ J l) • KCH SPAN(FTl --------
tJ:j 39 'lt.,lj. 1300,
I
N 37 900, I 30 0,
1--' 3'i 79'), I 3 0 il,
35 7'15. 1400,
~q 9~1.1. 140 0.
57 900, 140 0.
35 795, 1')00,
~2 79S, 1300.
59 9Sil·, 1~00,
311 7'15. I 3 0 (J.
~I\ 9':>4, 1300.
'>2 705, 1400,
30 71 5. 1300.
30 715. 1400,
39 954. 120 0.
37 900. 1500,
34 795, \400,
55 79'1, 1600.
37 900. 1200,
3') 1'1'1. 1200,
30 7 1 c,. 1500,
36 ~oo. uoo.
51\ 90:,4, I 400,
32 795, 1500,
29 715. 1300,
---)
ANCHORAGE-FAIRbANKS INTERTIE CASE IB
230 KV TRANSMISSION LINE COST ANALYSIS AND CONDUCTOR OPTIHilATlON
DATE: 12 APR 79 TIME: 9:37:07
*************************•············
• •
*
*
AUTOMATIC CONDUCTOR SELECTION
ALL QUANTITIES PER MILE
*
*
* •
CAPITAL CDST/OISCOUNT RATE OF 7,00 PERCENT
INSTALLED COST
---------··----·----··-·-----------------------------------------MATERIALS TRANSPORTATTON INSTALLATLON HJGITDC SlH:lTOTAL ------... ---------------------·------____ .,....,. ..... -·------
61\ l'l 7, 3834, 81l796, 9328, 166104,
672'19, 377 2. H460f\, 9307, 161l9o6,
6461>4, 3 7 21 • R2616, 901\8, 160089.
6537'), 3684, R2031, 9023. 160113.
69552, 3828, 84673, 931ll, 167367,
68697, 3766, 84494, 9294, 166251.
661\79, 36/:l'l, 82176. 9039~ 161784,
6~5~8. 36R5, R3R93, 9228, 162361.1,
718'13. 3870, 85337, 93137. 170437,
6~1\07, 3659. All359, 9279, 163104,
70136, 3£131, 86787, 9547, 170300,
667811, 3669, 83683, 920~. 163342.
63510, 3615. 1:12301, 9053. 15847R,
1>4201.1, 3.S 7 6. 81729, 11990, 1584911,
70~H6, 4033, 117082. 9'579, 171080,
70'11:\3, 3il07. 1'.5172, 9369, 169351.
6 7 2 35. 31:>53. 8'~298. 9273. l6ll459,
69124, 3735. 82979, 912il, 164966,
69631, 3977. A6926, 9':51>2, 1700'16,
661\ll'l, 3916, 85020, 93':52. 165176,
6':>702, 3580. 81896, 9009, 160187,
69499, 3780, R6682, 9~35. 169496,
7?348, 31'6 I. 87234. 9591:>, 17.3039,
6888.). 3701, 8425?. 9268, 166109,
64091, 3593, 836R3. 9205, 160573.
PRES!: NT WORTH -------------R--·---------------------
UN I: LOSSES 01'.~1 COST LINE COST ,.,. __________ ______ ,._ ---------SUllTOTAL SUBTUTAL TOTAL
--------
___ ., ____
3'5856, 32H4, 205244,
37993, 3?57. 206235,
43028, 3151, 206267,
IH028, 31 b I , 206302,
35HS6. 3322. 206545,
37993, 3294, 207538,
43028. 3206, 208017.
43461\, 3195, 209027.
3'>856, B97, 209t:>B9,
4354':5, 3209, 209558,
36293, 3371. 209963.
431.168, 3226. 210036,
4856 I. 3112. 210!51.
411'>61, 3122. 210182.
35HS6, 331\5, 210321.
37993, 3 369. 210693.
IH~IJ<i, 3241\, 211251.
4302fl. 3282. 211275.
37993, 336 I. 211450,
43028. 3?')1.1, 2111.157.
41\561, 3167. 21191'.:!.
39701. B~l. 212547.
36293. 3440, 212771.
431l68. 3295, 212871.
492?2. 3150, 212944,
0:1
I
N
N
.. J
ANCHORAGE-FAIR~A~KS INTFRTIE CASE JA
230 KV TRA~SMISSION LINt COST ANALYSIS AND CONDUCTOR OPTlMflAliON
' !N~TMUD COST
hf.l~ Af<.ll(i,,t, rWANIITY
----------------------
CONDtJCTflR 1~840.
GROLJf'D" I ~t 0.
I N;llJL A TOi~S 207.
H!,fif)"ARf
JO.,ft-iS 4.3
F OlHdJA T I O'JS 4.3
RIGttl OF ;~A y 1 3.
IDC/fNGPH-t:RING ...... _____________
TOIALS
LflSS ANALYSIS
-----------------~·· ~ESISTA~<CE LDSSfS
COROI'.A Lt1SSES
--------·--·------~· TOTALS
.,,
·-~··.:) \;~" . .J ' J
DATE: 12 APR H Tl~E:..: 9:37:07
" •
*
*
COST OUTPUT PER MILE
PRESENT VALUE RATE
7.00 PERCENT
CONDUCTOR NUMHfR = 39
•
" *
*
"
9~4. KCMIL 1300. FT SPAN 87.7 FT TOwER
--------~-----------------~--~-----~--·-------~----
MAT!:.RIAL TRANSPORTATION INSTALlATION
COST($) TONNAGF COST($) COST($) ------·--------.--------------------------
FT 14086. 9. 73 973. 18257.
F r v. o.oo 0. o.
UNITS 1313. \ • I 4 244.
1429. 0.47 4 7.
UNITS 38870. 20.31 2031. 26019.
UNITS 3327. ~38. 22?1'10.
ACRES 9120. 18241.
9328 • ---------·----·-----·-----
68147. 31.6~ 3831.1. 81.1796.
PRF.SfNT VALUE' ( $)
-~---·~-----------------------------------------------------------l..lfMAND LDSSE:.S ENfRGY LOSSE:.S TOTAL LOSSES
--------------------------
________ .,.. ___
21.1588. 1121.19. 35837.
o. 19. 19. ---------------------
2458f!. 11268. 35856.
.J J ,~ ~·"' J ,~J .I J J '~ .. 1
TOTAL
COST($) -------
33316.
0.
1557.
14 77.
66921.
26145.
27361.
9328. _ ____ ..... _
166104.
J cJ .J.
-)
c:o
N w
"------l ,.~----) ·--~---, --) ) ~-l ---) ') -~':·-,--. ) '1
INTERNATIONAL ENGINEE~ING CO, INC
SAN FRANCISCO CALIFORNIA
J
TRANSMISSION LTNf COST ANALYSIS PROGRAM
VE~SION ?: 02 AUG ]979,
ANCHOPAGE-FAIRBANKS INTERTIE CASE I-C
34~ KV TRANSMISSION LINE COST ANALYSIS AND CONDUCTOR OPTIMIZATION
DATE: 15 AUG 79 TIME: 14:06:42
*
*
INPUT DATA
• • •
) )
SYSTEM ECONOMIC FACTORS . INPUT VALUE REFERENCE YEAR FOR INPUT
RASE YfAR FOR PW ANALYSIS
[rJI) I% YF.:AR OF STUDY
~ASt YEAR FOR FSCALATION
MAXiMU~ CIRCUIT lUftD!NG
AvfRAGE CIRCUIT LUAOlNG
OFAA~D COST FAClOR
ENERGY COST FACTOR
Vf.R COST FACTIJR
CAPITAL COST/UISCO!JNT RATE.$:
O~M COST FACTOR
RIGHT QF WAY COST FACTOR
RIGHT OF wAY CU:ARING COST
!NTEPtSI DURING CO~ISTRUCTION
f.r<Gli<EERPrG F!:F
--~-------------·
1979
t9n
1'/77
I 68, 11 MVA
58,9 t~VA
73,0 $/KW
1 3. 0 MlLLS/KWfi
o.o $/'<VAR
7.0 PERCENT
1 0. 0 PERCENT
1.5 'l: CAP,COST
715.0 $/ACRE
1430,0 1/ACRF.
0,00 r. PJST ,CST
11.00 7. INST.CST
1984
19R4
tn9
19-79
198!1
198!1
1 9f\4
1 ) ~)
J
A~CHURAGE-FA[ASANKS !NTfRTIE CASE I•C
3U5 Kv TPANS~IS~IO~ LI~E COST ANALYSIS A~D CONDUCTOR OPTIMIZATION
DATE: 15 AUG 79 TI~E: !U:Oo:U2
*
* INPUT DATA * •
* •J******•*********
CONDUCTOR DAU G P 0 lHJ 0 w I R E DATA
·--------~------------------~------------
'IIU~f3E ~ PE'R PfiASE
(()NIJII[ T I)P SPA(. I 'Jr.
VOL I A •.;F
VOLTAG~ VAPJATIU~
lIN[: "Pl OUHlCY
F A I R w E A I f~ t 1J l Ll SSE S
LINE LFNGTH
PuwU~ FACTOR
WE.ATHE~ DATA
2
I 6. o
311')
10.0!1
hO
t. 70
323. 0 0
o.os
I ~I
KV
1-'CT
(.PS
~WI~ I
MILES
-----------------------------------------
MAX I ~1Uf' R A I fJF All RATE I , 18 IN/HR
MAXI MU"1 RAINFALL I)IJ R h T I £J N I HRS/YR
AvERAGF RA[IJFALL R h 1 E 0,03 PI/HR
A'/f''HCE fH HJ!''AL L ll 1 JIJ ~. r 1 u ~ b3b HRS/YR
MAXP1UM SNO~>:F AlL RATF t. f\ 7 lN/HR
f'AXIMUfA S 1<0"F ALL DlJkATTUN 1 ~!RS/YR
AVE=/hGr SIJO,..F ALL RAT f ',; 0. 1 3 IN/HR'
AVFRhGE SI<OwF ALL l)llf-IATIU"J ~hll HRS/YR
RELA,TIVE AIR IJ[NSITY 1.000
,} ''&'·<·< .l J \,--L J ) ,I
NUM~ER PER TOwER
I)JAMETER
WEIGHT
J ,J l J
0 MINIMUM
. _ 0,00 IN _____ MAXIMUM
0,0000 LRS/FT INTERVAL
.. 1 J l
SPAN DATA
;' ] J
1000, F:r
1600, fT
100,0 FT
l ,)
N
tn
)
A~CHGRAGE•FAIPBANKS !NTERT!E CASE I•C
14~ KV TRANS~!SSTO~ LINE COST ANALYSIS A~U CONDUCTOR OPTIMIZATION
DATE: IS AUG 79 Tl~~: 1U:O~:I.I2
SAG/TENStUN ~ESIGN FACTORS
EVERYDAY STRESS TEMPERATURE
ICE A~O wiND Tf~PERATURE
Hl~H W!~D TE~PERATUR~
EXTREME ICE TE~PERATURE
~Ax UFSTGN t~up FOR GND CLEARANCE
fnS ~~~S!~N (~ll UTSJ
tJf SC CU~JSTA~JT
TO l AL NIJMRER OF PHAS~S
PHASE. SPACING
cnNDUCTOR CONFIGURATION FACTOR
GRO•INf'J CLE ARA"JCI:
Nn. OF TNSULAT~PS PER TOWER
l ~ S I ! L a Hlfl S A F E 1 Y F A C T 0 R
S 1 R 1'1 I! U: !J[_, Hi
I, VEE, I.IR [!l~~r\ TNA T TUN
FOUtl,lJAT TU'J TYPE
Tfi-'Ri\PJ FACTilR
LJt-if' ANGLF: FACTOR
1 O"FR GPIJUND 1 ~Ji~
TRAriSVERSF: Ovf RLOA[) F-ACTOR
VF'kT !(AI rlVf~L!JA{) FACTOR
L W J G I T I) I) J ~J A l l U A I)
M I SC[t.l At•F.UIIS HAf![lWAkE WE I GHT
Tn>jER wEIGHT FACTOR
TUWfP WEIGHT ESTIMATION ALGORITHM
• •
*
UJPU T OAT~
1.10. DEGREES F
O. DEGREES F
llO. DE\,REtS F
30. Df:(;Rf ES F
120. DE.GRE~S F
?0, PERCENT
0. 3 t Ul S/ F T
TOWER DESIGN
3
27.0 F~ET
1.00
32.0 FEET
7?
2.50
9.5 FEET
3
1. 06 PER UNIT
.01161.1
0
2.50
1. 50
1000. U:JS
0, II TONS/TOWER
1. 02
Tn~fk TYPE 10: 3ll5KV TOWER
" " "
ICE AND WIND TENSION (PCT UTS)
~IGH WINO TENSION CPCT UTS)
EXTREME ICE TfNSION (PCT UTS}
ICE THICKNESS WITH WINO
WIND P~ESSURE WITH ICt
HIGH WINO
EXTREME ICE
DISTANCE BETWEEN PHASES:
01
02
03 oa· -·
DS
06
1~ : O.OU043•T~I~•? • 0.992ltl•TH••O,b000 • O.I0371•EFFVOL -
0.273~5•tFf TUL + O,OOS03•TH•EFFTOL + O.OOIHI•TH•EFFVOL +
20.77701 ~.TPS
,···. l
50. PERCENT
SO. PERCENT
70, PERCENT
O.SO INCHES
ll,OO UJS/SQ,FT,
9.0 LBS/SO.FT.
O,SO ItJC~ES
27.00 FT
27.00 FT
5£1.00 FT
0.00 FT
0. 00 FT
0,00 FT
TO NlJ"HHR Nf\ME _.,,. ______
?'"I S T Af.i L PI r,
tc 30 ~~ [[1 I, I ~H;
3 1 CUCI\OU
N ~2 I) I! A K E
0"1 3.3 H RN
3 lj CONI) OR
35 lql.l~IW ,., 11Ur11JY
37 CA~IARY
311 R~JL
Vl C~RD!rH>.L
lJO ORTOLAN
t.'ICHOi'AGE-FAIRElANKS lNTERTlt CASE I-C
345 KV TRANSMISSION LINE COST ANALYSIS AND CONDUCTOR OPTJM!ZATION
DATE : I 5 AUG 7 9 T P~ E : Ill: 0 6: ll 2 __ -~ _
. -----~~----
STRANDING
SIZHKCM) (AL/ST)
----------------
715.0 26/ 7
715.0 30/19
7'15.0 2/JI 7
7'1'),0 26/ 7
7'15,0 lj')/ 7
79'),0 Sll/ 7
795,0 30/19
'1()0.0 liS/ 7
900,0 5/J/ 7
9')11. (\ 1.15/ 7
9'lll.O SiJ/ 7
103:'J,O tJSI 7
******************
* I~~ P IJT DATA *
* *
******************
CONDUCTOR SUMMARY
UNIT WEIGHT OUT.DIAM.
(LflS/FT) (INCHES) ----------------
0.9A50 1.0510
1 • 1 II 0 I. 0131 0
1,02/JO I. 09?.0
1,0940 1 • 1 01\0
0.1:1960 1,0630
1.02/JO 1.0930
1,2350 1.1400
1.0ISO I • 1 3 1 0
1 • 15 q 0 I. l 620
1.0750 1.1650
1.2?'10 1.1'160
I. 16'l0 I • 21 3 0
--------------
TOTAL AREA
(SQ. IN.) --------
0.6'535
0,6901
0.7053
0.7261
o.6676
0.7053
0,7668
0.7069
0. 7985 0: p, 011
0.8ll6ll
0.8678
MODULUS
(EF/c6 PS J)
-----------
I I. 0 0
11. 30
IO.'lS
I 1 • 0 0
9,1.10
10.85
11 • 3 0
9./JO
10.115
9./JO
10.85
9.llO
-------
J
TEHP.COEF.
ALPHA*E•6
PER DEG F
----------
10.3
9.7
10.7
10.3
1 1 • s
10.9
9.7
1 I. 5
10.9
I 1 • 5
10.9
1 I • 5
ID N!J'11"JER NAME
... -------·
tx:l ?9 STIIRLJN(;
30 Rff)W!NG
~ 1 CliCKOU
N 3? ['\RAKE
""-1 ~ s TF.I<'J
3 j [IJ'JI)[)fl
~5 M h l. l A R I)
36 R II f) I) Y
37 CANARY
lfl RAIL
39 CAPLJ!I~Al
QO ORTULAN
ANCHORAGE-FAIRbANKS l~TEHTIE CASE l•C
lQS KV TRANS~ISS!UN LINE COST A~ALYSIS ANU CnNOUCTOR OPTIMIZATION
DATE: 15 AUG 79 TI~E: 1ll:06:a2
I.ILT.TENS, GEOM,MEAN
S Hl E ~H; T H ( l R S ) PADIUS(FT)
---------------------.....
21<100,0 0,0355
3llhOO.O 0.0572
27100,0 0.0366
31?00,0 0,0375
22900,0 0.0352
?1<0::.,00,0 0.056tl
31'lll () 0. () 0,03'12
? 'J II II 0 , () 0,037£1
32300,0 0,0592
?nouo.o O.OSAS
31J 2 0 0. 0 o.oaoa
213900,0 O,O£J01
**********•*•••*••
INPUT LJATA • •
CONDUCTOR SUMMARY
•••••••••••••••••
THFRM,LIMIT
PPICEC$/Lfl) (AMPERES)
...... ---..... -.... ----------
0.605/1977 RSO.
0,612/1977 RoO.
0.636/1977 900.
0.622/1977 '-110.
0,677/1977 R'-10,
0,63":l/1977 900.
0,59'-1/1977 910.
0,676/1977 ens.
O.b33/l'177 950.
0.671/1977 970.
0.632/1977 990.
0,670/1977 1020.
AC RESIST.
/IT 25 OEG c
(OHMS/MILE)
-----------
0.129lJ
0. 1281\
0.1.?1ll
0,1172
0.111:11'1
0.1172
0,1162
0,10tl2
0,10£10
.o. 09'-18
0,0987
o.o921l
IND.REACT. CAP,REACT.
(OHMS/MILE) (MOHM-MILES)
--------.---------------
o.aoso 2,6tJ':)3
0,3992 2,5661
0,3992 2,5502
0,3992 2,5£150
O,QOhO 2.5766
o.aooc: 2.5555
0.3<J28 2. 5 Plo
0,3928 2.5080
0,3'-1?8 2.5027
o. )'-/lJ'-1 2. 5027
0.3'-102 2.lJ/l16
0,3902 2,£11';158
J
N co
l ,f
345
ANC~DDAGE-FAIR~ANKS !NTEQT!E CASE I•C
KV TPANS~!SSION LINE COST ANALYSIS AND CONDUCTOR OPTIMTZATION
________ DATE: IS AUG H TI~-<E.: 14:06:42
**************•**•
•
PIPUT DATA * •
*******•********••
UNIT ~ATFRJALS COSTS INPUT VALUE REFERENCE YEAR FOR INPUT
PRJC[ OF TOWER ~ATERIAL
PqiCE. UF CONCRETE
PPICE OF G~0UND WIRE
P~STALLElJ cnsT OF GROLI•'JDING SYSTEM
T I),, F:f~ sF Tll p
TfJ,..fR IISSUWL Y
FOUND AT I U11 SE. T UP
FOUNI)ATIU~ ASSEMBLY
F n u 'Jll" r r u ~~ F x r AvA T I o ~~
PRICE 11 F ~~ 1 S U. L l AN E 0 US H A R lJ W APE
liN IT LABOR COSTS
R ff-F I< EN C F:: Y fAR LA A 0 R C 0 S T
STfdtJG Gf<OlJN() l-ITRE
STRT~H; l.ARIIP MARKUP
IJNU I'<ANSPURTATiflN COSTS
--~-----------------~----
I
Tf)l~FR
FOUNOAl!UN CONCRETE
~-0 LJ',J IJ h T I 0 N STEEL
CflNDIJC TOR
(,RO!JrJ[) W!Pf-_
I NSIJL h TOF<
liAF<lJ..;ARE
¥'
__ I .J ,I _j
0,957 $/LB
0.00 $/CU.YD.
0,000 $/LI:l
0. 00 $/TOWER
1751. $
0,455 $/LB
0. $
Q!4o.oo snoN
0.00 "t/CU,YD,
290,00 $/TOWER
24,00 $/MANHOUP
0.0 'b/MILE
u • ?. P E. R 1.J r~ I T
131.0 $/TON
131.0 $/YD
131.0 $/TON
131.0 $/TON
131,0 $/TOr~
1~1.0 $/TON OR $/~*•3
131,0 $/TON
f
" -~·· "''-_I J .J
!979
1977
!977
1977
!979
1979
1979
1 •'H9
1979
1977
J J ..; J l ··"' I
"--·-"} --~ 1
..., _____
l 7 --~
CO'Ji)UC fllR
---------Nl), KCM :)PAN(FTJ -----... ·-
0:1
35 7'-15. 1 300.
N .55 ?CIS. 10 no,
1..0 30 7l c;. I 3 0 0.
3S 7 ... '5. 12 n li.
30 71'), 1 ~ r) li •
37 9()(), 1 3 0 0.
32 79'), I 30 0,
3"i 7'1'5. 1'>00,
H 951J, 1 :.s 0 0.
37 q (I 0, 1 2 r) ().
30 q ') IJ • I 20 0,
30 715. 1 2 0 ().
)l.l 7'-IS, I S 0 0.
52 795 ·-I 20 0,
29 7 1 ., • I 3 0 0.
3 0 • 7'-IC:,, 1200,
30 7 15. 1':>00.
32 79S, 1 0 0 0.
37 0 I)(), Ill o o,,
?.o 7 1 5. 1 2(1 (1.
_39 9';,11, ] l.j 0 0.
29 7 I r; • l (j 0 0.
34 795. 140 ().
35 79'), I I 0 v •
3 7 900. 1 I 0 !: •
~~--") ..
} ,..,, "] -;5:. ___ -· '1 ~---~] ~-----1 .-~1 J
ANCHOPAGE•FAI~BANKS INTERTIE CASt 1-C
345 KV TRANSMISSIUN LINE CDST ANALYSIS AND CONDUCTOR OPTIMIZATION
DATE: IS AUG 79 TJMt: 14:06:42
AUTOMATIC CONDUCTOR SELECTION *
* ALL QUANTITIES PER MILE *
* *
CAP I T A l C 0 S T I I) T S C 0 l I fJT P A T E U F 7 , 0 0 PEP CENT
PRESENT WORTH ($)
) '1 l
------·-----------·-----------------·-------·-------~--------------------·----------------------------------
INSTALLEO CUST LINE LOSSES 08.M COST LINE COST
--------------------·--------------~--------------~------·--·--------------------------------MATE:.R!ALS TRANSP, INSTALL. ENGJNEtR, IDC SUBTOTAL SU~TOTAL SUHTOTAL TOTAL ---------------· ----------------· --------... ______ --------
lOf:\?53. h4f12, 1 1 0 01:\h. 24730. 0. 249551. 46122. 3372, 299006,
1 I (In 3q, IJil/'\_5 • I OIH\1!9. 207'-11. 0. 250162, 4612.?. 3381, 29'-1665,
10'>62?.. 6257, 10936A, 24337. 0. 2455f\ll, 52150. 331 q. :.SO!OS3,
lfl77'-l'-l, h':!57, 112490, 24953. 0. 2')1799, lib In. 3403, 3'JJ32'J,
1073;?4, 1',2S3, I Ol:ll OS. 2 1J385. 0. 206066, 52150. 3325. 3015Jl,
11 2fll 2. h':>79, 11264A, 255211, 0. 257563, 01403, 3481. 302iJiJ7,
1042'>5. 1139':,, 111472. 2ll'Hl3. 0. 25210b,' ll7191, 3ll07. 302703.
---~---·-·----· -· I 1 3 o 2 I • 65">(), 1081>17. 2':>101. 0. 253289, 46122. 3023, 302R3ll,
114706, 671_0. I I ~ 01:1 ll, 2')795, o. 260295. 39129, 3517. 30 C '< 'J I ,
11151-'S. h608. 111JIJ90, ?.5574, 0. 2SP.061. 41403. 348 7. 30 2'1') 1 •
113?.t:'P., f-736, I \ ll q I ':i. 2'>1-\37. 0. 260716. 39129. 3523. 30)367.
10':>?32. h3~6. 1117R7. 24')69, 0. 2U79,?1.l, 521':>0. 3350, 30 30,)1!,
10'-IS711, h337. 1\1951. i?501JI, 0. 25.?6R7, li7S90, 31J15. 303.,91.
I 0 HI 21 • 6 1J3<1, I I _511 t> R • 25083. 0. ?53111. ll7191. 3420. 3037?2.
10S9SS. 6199, 1101:171'1. 211534. o. 2117':>65. ''l3308, 3345. 30U2!9,
to-/'-1'11, 6369, 1137711, 25095. o. 253229, 07590. 3022, 3042U?,
110237. 63\o, 10711')7, 21.l685. 0. 20QOQ5, 52150, 3366. 301.161 I,
1 , 1 (\ 0 "i. 6432. 1 I 0 1:> 1'1 fl. 2'>182. 0. 2')4106, 47191. 3ll34, 304731.
Jl')h79. f. t)3 1 • 11202U, 25777. 0. ?bOll<'. 4lli03. 3515. 305029.
jf)I.J.<\b~. t-,(:'lJb, ll281fl. ?.Oo39, 0. 2llR632, 533013. 3360, 30530(),
1176?0, 1--765. !1 2'113. 2o050, 0. 2h?913. 39129. 355 3. 30'.>590,
1 o 1111 eo • h2 33. II 0 1 u 3. 211730. o. ?49545, 533011. 337 2. 306?2S.
112220. f-386, 11132.?. 252'-IC. 0. ?.':>5220. 07':i90. 3049, 30t>2'.>Q,
I 08P. 31. 6 11 fl. 116?63. 25099, 0. ?.':>7312. U6122, 3477. 306911.
1 1 I SCi 0. 6 ., 30. II 77 f'JS. ?.5970. 0. ?6206':>. 41003, 3'->lll. 307ooq,
o::l
w
0
.. :!
!NSTALLFD COST
L~ R E f, .1<. f1 0 w r'
·-------------
c o 'J n u c r oR
GRO\JN[),.,JHE
I NSIIL A I nHS
Hl\h>fi•-IARF
10;-.U<S
FrllJ';l)A l TCJ"JS
A~C4UQAGE-FAIR9ANKS INTEHTlE CASE I-C
31.l5 KV TPA~SMlSSJON LINE CCST ANALYSIS AND CONDUCTOR OPT!~IZATIQN
DATE: 15 AIJG 79 TI~E.: I£J:06:U2
----·--------·---
QUhrq lTV ------·-
316/:'n, Fl
n. Fl . -
3 I 0. UNITS
II. 3 UNITS
lJ. 3 UNITS
*
*
COST OUTPUT PEP ~Il E
PPESt'J T VhLUt RATE
7,00 PERCENT
***'***•**••••••*•••··········
CONr:lUCTCJH N\JMPER : 35
795, KCMIL 1300, FT SPAN 89.3 FT TOWER
-· MATERIAL TRANSPORTATION
COSf($) TONNAGE COST($) -----------------------------
3">171, 19,56 2":>63.
0. o.no u.
2582, l • 7 0 l!BO,
!R7U. O,lll 62.
tl31:12t.l, -? 33. IJ I -4377.-
b('RQ, 1 0 IS,
>< 1 (Jfl r OF WAY (107Ff) l 3. ACRES I 21 6 7,
----------------------------------
SUll-TOIALS 11111:197, 55. 15 81.197,
!DC
tNGPJF[PING
PRE SC. IJ I i><ORTH 10R253, 6482.
IDC
ENGINEE.RING
PRfSFNT WORTH ($)
INSTALLATION
COST($)
------------
33947,
o.
ll9735.
1.120511,
1851:>5, ------
11.11.130 1 •
110086,
--------------------·------------------~--------------------------L 0 S S MH L Y S T S
RESISTANCE LUSSES
COkONA lUSSfS: INSIJLATORS
CONDi.JCTOI<
1f!TALS
I ·~·
DfMAN[) LOSSES
-·-----------25LIIl3,
l62LI.
-------
27107.
j J: J
ENERGY LOSSES
---·--·------ll.l/.11.11 •
3\LIS.
11130. -------
1q01'5.
] .. ~·I J J
TOTAL LOSSES
I
3<~qzu.
47aH.
lll30.
Llbl22.
J
TOTAL
COST($) .................
71681 •
o.
3062.
IQ3b.
!37<136.
IJ93lJ9,
3073?. -------
291.lb9S,
0.
32LII6, -------
TOTAL 327111.
2?LIIl21.
o.
2LI730,
--~----
TOTAL 2Liq5S I.
I
1 l
INTERNATIO~AL ENGINEERING CO. l~C
SAN FPANCISCO CALIFORNIA
TRANSMISSi0N LINE COST ANALYSIS PROGRA~
VtRS!ON 2: 02 AUG !979,
ANCHORAGE-DEVIL tANYON CASE IT•I
34'5 KV TRANSMISS!lHI LINE COST ANALYSTS AN[) CONDUCTOR OPTTMTZArti}N;
DATE: IS AUG 79 T!Mt: 15:56:14
**•***************
I ~IPllT OA 1A *
*
* .tl**•••••••********
SYSTfM tCONOMIC FACTORS INPUT VAI_Uf REfERENCf YEAR FOR INPUT
RASE.YEAR FOR P~ ANALYSIS.
f; <Gl'l t_; Y f A R (W 3 T U C' Y
AASf YEAR FUR FSCALATION
~AYJMUM CIRCUit LO~UING
AVE:LIAGE CIRCUIT LOAUING
n[MA:·m ens r r AC rn~<
f~fRGY COST FACTnR
VAR COST Fl>.CTliP
CAPITAl_ COSTIUTSCOU"<T R~TES:
0><.~1 COST FACTUP
Rl(;11T 0~ ,,Ay COST FACTOR
Rl(;HT OF ~ftY CLEARING COST
INTEQESl UUR!NG CONSTRUCTION
f '< l~ I 'l E. F R I ~' G F t r
197'1
1997
1977
631.6 MVA
31J7.4 MVA
73,0 $/KW
13,0 MILLS/KWH
0.0 $/KVAR
7.0 PERCENT
10,0 PERCENT
1.5 '1. OP.COST
715,0 :1>/ACkE
l'no.o li/.l.CRF
0.00 % INST.CST
11.00% !NST.CST
1992
1992
1979
1979
19f\4
1984
1984
19f\4
1479
1979
w
N
]
~~CHORAG~-D~VTL CA~YON CAS~ IT-I
345 ~y TPA~S~ISSIJN LINE COST A~ALYS!S AND Cr~~UCT0R OPTlMllATION
DATE: IS AUG 7q Tlvt: 15:~6:1~
CON1'lUClOR OAiA
' -----------------------·-----------------
illiJMBE"'l PER PHASt
CONDUCTOR SPACING
V'Jl TAGf'
VOLT,GE VAR]ATIUN
l l 'J E r ><l rw F ~' C y
FAH.-.EC>\THf:'< lUSSFS
L!Nf L.~'<l.TI-1
Pllrd:.R F AC l nR
WE::AlHtR DATA
2
11.'.0 IN
3115 1\V
10.00 f-'[T
biJ [PS
1.70 KI'<IMl
155,00 ~ILfS
0.0 5
~----------------------------------------
MAXP'UM flA fNFALL fJ ,\ T ~-1 • 1 ~ !NIH~:
MAX]M~'1 '<ATNFALL. lllli<ATTUI\J l e~RSIYR
AVHAGF PA[r-.Ft,Ll. iH TE 0,03 I': I I< Q
AVERAGF RfdNFALL Ill if< A 1 i UI\J t>3h HPSIYR
MAX ].v<J'·\ S~·JOr;f. ALL .;'AT F. I • R 7 I ~J I HR
~"'t.t..I·~J~ Si;[Jv; FA l L i)LIRATTU"' HRSIYR
AVf•iAGF sr,[l,.,F ALL r< A It 0. 13 l'J 11-'R
A v F 'I~ (;t: Si,[l,.;FAL L DIIRAT!ti'J Cbr..t f1f'31YP
RELATlvt. ATR l)[iJSlTY 1 '0 0 0
J ,I .J .. 1 J J
****************~~
* *
l"PIJT [)AlA *
*
••***********~****
GROLJNO..,IRE DATA
NUMBER PER TC'IWFR
OIAMETER
0
o.oo l"'
0,0000 LBSIFT wEIGHT
J .J J I .. ~1 ,I
MINIMUM
i"'AXIMUM
INTERVAL
c,.J ... J
SPAN DATA
I .J
1000, FT
lb\JO, FT
100,0 FT
.... J '-'l ...•... )
w w
i]
A~CHOQAGE-DEVIL CA~YO~ CASE If•!
~aS KV IRANSMJSSIO~ LlNE COST A~ALYSIS ANO CONDUCTOR OPTIMIZATION
DATE: 15 AUG 7Q TI~~: !S:5o:la
SAG/T~NSlU~ nESIGN FACTORS
EVERYnAY STRESS Tf~PERATURE
!Ct AtJl) ••!NO TP'PEHATURF
H l G H w I'm T F >I P F: Ph T UP f
IXIREM~ j[f: TfMpf:PATUPE
MAX DFSIG~ T~~P ~OH GNU CLEARA~CE
~ D S T F ~. S I il1'l l PC T ll T S )
~~ESC CO~'STANT
TOTAL NUMA~R OF PHASES
f'Hr.SE SPAC!~(,
CONDUCTOR C~NFlGU~ATlON FACTOR
GROIJN[) CLEA>=1HI(i'"
~Hl, UF lNSULt..TUPS PFR TOV.tR
IN!)LJLATOh' SAFF:lY Ft.CTOR
STRI:~r, LFNl;TH
I, VEF, OR CUMtlTNt.TION
FllUNllATIOtJ TYF'E
lFtd-'ATr·.! FhCTUP
LTNF A~~Lf FACTOR
l [)~;fR G'H:iJ"'i) [ ~H;
TRANSVt~Sf OVFRLUAD FACTOR
VFh'T [CAL nvfh'L llhD FACTOii
L 0 N G I T tJ n JIH, L l U t.. D
M I S C U L At< E u 0 S t1 !\ R 0 wARE WE. I G H T
TOYiffi r<F.lr..HT FACIOK
----·-·---~----------------------
*
*
*
JNP[.tj DATA
ao, f'lEGREt:S F
0. f'lEGf?U::S F
(10, DE.GREtS F
30, flf_GREES F
1?0. Dt:GRf'tS F
20, PERCF_.'I T
0. 31 l t3S/F T
TOWER DESIGN
3
27,0 FHT
1,02
3?.0 FEF.T
72
2,50
Q,'i FEET
3
(j
\,06 PeR UNIT
,Of\t>IJ
0
2.'::>0
!,50
lOOU, U.lS
0,11 TO~iS/TOwER
1 • 0 2
T0wfR TYPE 10: 3aSKV TOWER
ICE AND WTNf'l TENSION (PCT UTSJ
HI~H WINO TfNSlON (PCT UTS)
EXTREME ICE TENSION !PCT UTSJ
ICE THICKNESS wiTH WIND
~INf'l PRESSURt wiTH ICE
HIGH WINO
EXTREME ICE
DISTANCE BETWEEN PHASES:
Dl
02
03
[)II
05
Db
T•·l = rJ,Oi!O<I~•TH'*2-O,Qq2lll*TH**O.o0()0-0,1037l•F.FFVDL-
0.275~~•LF~TOL + 0.0U'i03•TH*EFFTDL t 0.00\B\*TH*EFFVDL +
2 () , 7 i 7 (I 1 K J 1-' S
1 l ···~·· J
'50, PERCENT
50, PERCENT
70, PERCENT
0,50 I NOlES
£1,00 U1S/SQ,FT.
Q,Q LRS/SQ,FT.
0,50 INCHES
27,00 FT
27,00 fT
5£1.00 FT
0,00 FT
0,00 FT
0,00 FT
10 NU'ifH.R ~IAr-<E
---------
29 SHRL!NG
30 PEn,.,[NG
OJ 31 CliCK PO
32 Di< h K E
w B HR~
.j::> 34 C (;'-;;,np
~5 ,'-1 A l. l ~ R 1_1
36 Pllf"\[}Y
37 C A 'J A P Y
38 '<ATL
39 CARLi T r1 A L
IJO OPTOL•\N
J .-... J .l I
4NC~ORAGE-OEVTL CANYON CASE II-1
345 KV !PANS~ISSTON LINE COST ANALYSIS A~O CO~DUCTOR OPTIMIZATION
DATE: IS AUG 79 TIME: 15:56:14
STRANDING
SIZECKCM) (AL/ST)
-------·-
_.,. _____
71"i,O 26/ 7
715,0 30/19
795,0 t!.4/ 7
79'i,O 26/ 7
7'15.0 £15/ l
74"i,O 54/ 7
7'-15, 0 .30/\9
9(10,0 45/ 7
CJOO,O 51J/ 7
QS4.0 45/ 7
9~/J. 0 C,IU 7
10.S3.0 45/ 7
J .J J .J
****•••**•~*******
" .
J"!Pllf D!'.Th *
* *
***~**************
CONDUCTOR SUMMARY
*•***•*•*****•***
UNIT wEIGHT OUl.DlAM,
(LRS/FT) (INCHES) ----------------
0,9P.50 1.0510
1,1110 1.0810
\,0240 1,0920
1,0<140 I.IOP.O
0,8960 1.0630
1,0240 1,09~0
1,t!.350 I • 1.£10 0
1,0150 1.1310
1,1590 \,\620
1.0750 I • l b"iO
l,t!.290 1,1960
1,1650 1,2130
.I .. J .. 1 .J
TOTAL AREA MODULUS
(SQ,JN,) ·(EF/Eb PSI) -------------------
0,65~5 11 • 0 0
0,6901 I 1 • 3 0
0,7053 10,55
0.7261 11.00
0,6676 9,40
0,7053 10,85
0.7668 11,30
0,7069 9,40
0,79R5 10,85
O,ROI1 ·-' -··-···-·--9,40
O,R464 10,85
0,8678 9,£10
------------
,. I I,__ .J
TEMP,COEF.
ALPHA•£-&
PER DEG F
----------
10.3
9,7
1 0. 7
I 0. 3
I I • 5
I 0 • 9
9,7
1 1 • 5
10.9
11 • 5
10,9
I I • 5
J J .J
TD Nll'1RER NAME.
---------
OJ C'"' STAPL!'IG
30 RI:P~>!'lG
31 CUCI\IlU w 32 ORhi\E c:..n
33 1 E ~Hi
3/l CIJ'.![;IlR
Vi ~·A l.L h ><I)
3o RUI)UY
'>7 CfiNA'n
3'3 PAlL
39 C A Rtl I NAL
LJO OkTi•LAN
M!CHORAGE•UE::viL CANYON CASt:: IT-1
3US KV TRA~SMlSSION LINE COST ANALYSIS AND CONrUCTOR OPTIMIZATION
DATE: I~ AUG 7~ TIMC:: 1~:56:14
·~··~··········~*·
* l'J P liT D A T A
•
**••*•••**~**•*•••
CONDUCTOR SUMMARY
•*********•••••••
AC RESIST.
~LToTENSo GEOMoMEAN THFRM,LP.'IT AT 25 OEG C-lNDoREACT. CAPoREACT,
S1RE.~:GTH(LBS) RADIIJS(FT) PRICE($/LR) (AMPERES) (OHMS/MILE) (OHMS/MILE) (MOHM•MlLES)
2HTLi0o(\ 0,03">'; OohOP./1977 R~Oo 0 0 l29£l 0~4050 2o6453
34600.0 0,0372 O,bl2/1077 860, D.l2tlfl 0 0 3992 2o5661
27100o0 0.0366 0,63(>/1977 ooo. 0,1?14 o. 3992 2,5502
31?00.0 0. 0 375 0 0 t>22/ 1977 <II 0 o Oo1172 0,3902 2,5450
220(>0,0 Oo0352 O,b77/1077 R90o O,lltlfl 0,4060 2,5766
.?fl<;uo.o 0oO.S6tl 0,635/1977 900o 0,1172 0,4002 2o5555
3KIJ \) () 0 () Oo0392 OoS0'.//\077 010o 0, 1 I 62 0,3928 2o~1116
2'JUl!Oo0 O,OS74 Ooo7t>/1977 93'5o Oo101:\2 Oo39213 2o50AO
32.)00.0 (),0392 O.oB/1977 9:-.o. 0.1040 0,3921:1 2 0 5027
2o 0 00,0 o.o3R5 Ooo7l/io77 970. Oo0998 0,3949 2,'j027 -----------
)I.J? I)() • 0 Oo0404 Ooo32/l977 990, o.o9tJ7 Oo3902 2,4816
2dQJlO,O OoOiH)l Oob70il977 1020o Oo092'l 0,3'102 2,4658
l
J
w
0'1
I J J
ANCHO~AGE-O~VIL CANYON CASE Il-l
345 KV TRANSWlSSIO~ LINE COST ANALYStS AN0 CONDUCTOR OPTl~IZATION
DATE: IS AUG 79 TIM(: !5:56:1LI
* P<Pl' T Oil T A * ,.
*
~•****************
IINTT ~lATF.RIALS CQSTS I'JPUT VALUE
P~IC[ OF TOWER ~ATERIAL
PRICE OF CONCRET(
PRICE OF GROUND wTRE
PISTALLF:D COST OF GROlJNDING SYSTEM
T0><F R SF TliP
T 0 ,, E fi A S SF M p, L Y
FOU'JU/ITTON SETUP
FOUNDATION ASSEMBLY
F fJ i 1 ~JI) h TI 0 ~, F XC A V A T I 0 N
PRlCl liF MISCELLANEOUS HARDWARE
urnr LhhOR COSTS
REFERENCE YEAR LAHOR COST
SHITNG GROltNO ~JRE
ST><TUG Ll\1-<0R ~·ARI'.lJP
UNIT TRANSPORTATION COSTS
TOw F. R
FOlJN!)ATTON CONCRETE
fCJLJ'JilATION STEEL
c o~wuc TOR
G'~lli !r~n w I Rf:
INSIILATO~:
t1 (\ i·il ) " 1\f'( F.
.~J I J '"-~j .. J
0,957 $/LB
0,00 $/(U,YD.
o.ooo $/LB
0,00 ~/TOWER
1 7 ~ 1 • $
o.ass ,'li I L tl
0. ~
Lll 1~o.oo 5/TON
o.oo 'li/CU,YD,
290,00 $/TOwER
2LI,OO $/MANHOUR
0,0 $/"'JLE
Ll,2 PER IJNJl
2?5.0 $/TON
225,0 $/YD
225,0 $/TON
225.0 $/TON
2?.5.0 $/TON
225.0 $/TON OR $/M*•3
2?5. 0 tilTON
.J ]
RF.FERENCE YEAR FOR INPUT
I
1979
1977
I 977
I 977
1079
1979
1979
1979
1919
I 977
... J J --~ ..... J
~' J .,~··-, ~~~ .--]
CONDUCTOR
---------\10. K C 'I SPAN(~\) --------
OJ
39 954. I .3 0 0 •
w 39 954. 1200.
-......! uo I 0 3 ~. I <' t)ll •
39 ot, t!. l4f10,
40 10 B. I .3 o 0 •
57 91)0. I 30 II.
37 900. 1 c:' () 0.
40 I 03 L I 1 o 0.
37 '100. I 4 0 ().
59 9')4. 1 l ()(I •
.38 9')4. 1?00.
.3R 954. I 30 0. .sq 9~~. 1 s n u.
40 lOB. IL!Ou.
.3R osq. 1 I n ll •
37 0(11). I I" u.
35 795. I .3 0 1J •
35 79'1. 14 0 I).
37 9UO. I ':> 0 U •
3? 954. 11.100,
35 79'1. I';>Ou.
3') 7'!'). lc:'OO.
32 7'! s. I ) 0 0.
36 9110, I 20 U.
34 79'), 1 30 il.
~--~ --~
,.,,~-, ~~1 -1 c·~·~ f""-'~c•>"-' 1 ----~~] .. 1 1
A~CHCRAGE•OEVIL CANYON CASE IT·!
5US KV 1RA~SMISSION LINi COST ANALYSIS ANO CONDUCTOR OPTI~IZAT!ON
DATE: IS AUG 79 TIME: 15:56:10
**************************************
•
* •
*
AUTO~AT!C CONDUCTOR SELECTION
All QUANTITIES PfR MIL[
*
*
*
*
**************************************
CAPlTAL COSf/DISCOlli~T RATE. OF 7.00 Pf:.RCI:NT
-~
PRESENT WURTH ($)
r -~~ 1 ···-1 '~l
---------·----------------------------~---------------------------------------------------------------------
INSTALLED COST LINE. LOSSES O&M COST LINE COST
-----------------------------------------------------------------
__ .. ___ .. ___ ... -----------------
'LHERl~LS TRANSP. U<STALL. F~<GlNEfR. IDC SlJI\TOT AL SURTDTAL SUfHf'JTAL TOTAL
-----------·-----------------..----------------------------
111l706, r.Hl7. 10o~li3. 2''>10'J. 0. ?.53320. 103751. 31i 2 3 • 36 0 IJ 9ll o
11 ~228. 6733. 10'1119. 25199. 0. 25027"/. 1037')1. 3436. 361466.
11771'.2. 6835. I I I I il 9. 25934. 0. ?616'17. 96912. 353b. 362145.
I 17620. (:,71:>3, IOS670. 25306. 0. 25S.S58. IO.H':il. )OS I • 362560.
I 2 0112 0. hi'oh2. 109426. i'6038. 0. ;>6;>747. 96912. 3551 • 363209.
112Rt2. h'J77. IOoBS. 24R.30. o. 2':>0SS.3. 109b9S, 3386. 363634.
l I HilS, r. 6 (q, • 108671. 21!9.33, 0. ;>5159U. I 0%95, 3UOO. 364689.
II o89G. h<l03. 11LJ3£AO, 2ol9b. 0. 2o4.337. 9b<ll2. 3572. 361.1821.
1151170. 6o29. I05Hn. 250.?4. 0. 2'::i2')16. 10969S. 3412. 365623.
II 3 H3, hRS.:;'. 11.?1158. .?Sr. H. 0. 2SR700, 103751. 3Q96. 365947.
!ILI0'14. h65'::i. 110421. 2S"i21l. 0 • ;>S759H. IOSI3R. 3 1< 8 I • 366218 •
I I 1 •; I 0 • 61> 7 f.. 10d644. i?Sh II. 0. 2'>8002 • IOS13f\, 3492. 367073.
l?JI\t\0, f,t<92. IO':i'iR5. 2S779. 0. ?1>0134. 103751. 351'). 367400.
!;>4hRL f:,llR2. IOK9i\2. 26U7 L 0. 2o7117. 96912. 361 0. 367h39.
11lJ23i. t-.152. II)Mo6. 2SR09. o. 260438. 1051.~8. 3519. 36(j096,
1 I I 'i k <l • h7?1:\. 1124!1. ?'1.379. 0. 25609/l, 1006'-lS. )116 I • 3h92':>3.
101);>')3. (,II p 0. IO<libh. ? lj 0 19. o. 242978. 123194. 321\3, 369455.
111)059. h•H\1). 102%2. 2lJ OllR. 0. 241,069. 123194. 32A':>, 369">0A.
119B<.l'>. o/5':>. !050130. ?SIJ90. 0. 2":>7.:;?0. 109695. 3476. 370391.
1216il5. (,791). 11Hll4?.. 2o02 ·~. o. 262o01. I 05 I 3P. 3509. 3712bR.
I I .3112 I • t,'-, IH<. 101721\. 2113 4 3. 0. 2ll"o40. 12 31 'l4. 3)19. 372154..
lnll"'l. t-'1">'-i. 1070D3. 21131.l9. 0. ?l.l'570S. 123llliJ. 33?0. 372::>20.
I'' '1? ') s. 6)05. IO'J?iO. 2Cl2'11l, 0. 2ilSI">.3. 12Uh75. 331 3. 313141.
]1 3IJ Cl/1, h'1 1lb. II llO .$7. 2')309, 0. 2553AO. IIUS!J'i. 34'il. 373311'}.
!O<Jl.1R, t-.~H4. IOSS29. 21lB7. (). ?4'1'178. I ?UIHiS, 3319. .373781.
J
Q~CHUOAGE-OfVIL CANYON CASE I!-1
345 Kv IRANS~ISSJON LINE COST ANALYSIS A~O CONDUCTO~ OPTIMIZATION
DATE: 15 AUG 71 TI~E: 15:56:1~
* *
* COST OUTPUT Pt~ MILE *
* PRESf..'>T VAL! IE RATE *
* 7. 0 0 Pft"(Ct:N1 * • *
·············************~****
CONDUCTOR NUMREP : Y?
954, KCMIL 1300, FT SPAN 9~.7 FT TOWER
!NSTALU'D COST
t5Pr_ At-Jlt)W"J
MATERIAL
COST($)
TRANSPORTATION INSTALLATIO"l
CONOUCTO><
G~Ol.ll';[);, T RE
lNSI.ILA Tll~S
HA f!f)y, hf.<E
Tf1•,rhS
F ()Lr~,~-·A 1 T :J'JS
RTGI•I LIF b><AY (113FT)
!:>UH-TOiAL~
IDC
f..Nt; I NFE:. ~I •rG
PPESE'IT b><ORTH
!DC
ENGINHRING
LOSS ANALYSTS
RESISTANCE LO~SES
11UANTITY
3!6b0,
0.
31 0.
4,3
~.3
1 /J •
COKO\A I USSfS: INSIILATOR$
CONnUCTOf.?
lOT ALS
.... 1 J
FT
FT
UNITS
6341~9.
0.
4436,
321'-J,
1542o':'i.
10790,
2.?11\1,
UNlTS
UNITS
ACRES
11~706,
DF.~1ANn LOSSES
5~177,
69b,
';31\72,
] .. J
TONNAGE -------
19.1J7
o.oo
I • 7 0
0,47
3'i. 79
------
57.43
PRESENT WORTH ($)
ENERGY LOSSES
l.lt\OoR.
ll.lt?R,
31 ~.
J
COSH$) COSTC$)
--------------------------
~380,
0.
82~.
107,
8052.
1744,
------
15107,
6707,
5826~.
o.
90323.
72256,
19697, __ .. ,. __
2~0540,
106803, --------------
TOTAL LOSSES
101?45,
219~.
3! 3.
1 0 57':11.
TOTAL
COST($) -------
126091~.
o.
5260,
3326,
252640,
84790,
411\77, -------
513987,
o.
56539. -------
TOTAL 570526.
228216.
o.
2':>104, --------
TOTAL 253320.
J
-1 -~J ~-~l --~-1 .···--1 ---1 -1 ~~~ l 0] ~--)
INTER~AT[~\AL E~GINEER!NG CO, INC
SAN F~o~CISCU CALIFORNIA
TRANS~ISSION LINE COST ANALYSIS PROGQAM
VEt;>S!ON ?.: 02 Al!G 1979,
DfVIL CANYON-ESTER CASE !T-?A
230 ~V TRANSMISSION LINE COST ANALYSIS AND CONDUCTOR OPTIMIZATION
DATE: 16 AUG 74 TI~E: 1~:14:31
******************
*
*
*
INPIJT DATA *
*
*
***************~··
] -1
SYSTEM ECONOMIC FACTORS INPUT VALUE REFERENCE YEAR FOR INPUT
RASE YEAR FOR pw ANALYSIS
ENfl!NL~ Y[AR OF STUDY
RASE YEAR FUR ESCALATION
MAXI'-111~1 CIRCUIT L(JADING
AV~RAGE CIPCUIT LOADING
f) c." A 'I[) C r1 S T FACT 0 I<
F~tRGY COST FArlOR
VhR COST FACTIJP
CAPITAL COST/IllSCOUNT RATES:
r:Jio:.'~ COST FACTOR
RIGHT OF ~hY cnST FACTOR
R ![:: H T I)> "AY Cl tARING C 0 S T
I:JT~Dt:ST /)IJRJrJG CONSTRUCTION
P•Gl"'EFfnr-<G Ft"F
1974
]'107
147 7
I CJ4. 7
I 0 7 , I
73,0
I 3. o
o.o
7.0
1 0. 0
1.5
715,0
llJ 3 0. 0
o.oo
1 I , 0 0
------~--·--·-------------
MVA 1 C)CJ2
MVA ICJCJ2
$/KW 197'1 -· --· ---···-MILLS/KWH 1979
$/KVAR 19~4
PERCENT 198£1
PERCENT 1913£1
Y. CAP.COST 1984
$/ACRE 19H
$/ACRE 1979
% INST.CST
~ lNST.CST
1 J
OJ
+:>
0
0 f ', T L C .\ \ v c_1 '< -::: S H R C A S E I I - 2 A
230 KV fCA~SviSSIUN LINE COST ANALYSIS ANO CONnUClOR QDTIMIZATION
-------___ _: _______ DATE: lb AUG 7"1 T1'-'E: .. I3:1~:3t ______ __c._
COrJOUCTQR DATA
~----------------------------------------
NtJMrit=l PFR PHA~f
C[)"J!)IJCTUR SPA( T~d; 11,0 IN v (11_ T a::; F 230 ~. v
vo L r ~.:;' \IARl/ITlU'J 1 0 • (ll) PCT
L J 'J t. ""t r!UEIJ( Y 60 CPS
FA [l(r,E/dH[P LOSStS 0. 0 0 K"l"l
L I fl r L ~ •Jr; T H PlO,[lO Mll ES P[r<'lf_R F.~[TO" (l,QS
WeATHER DATA
------------------~----------------------
'1AX[M,_IM IHir~>At.l RATF I • l I' 1"-IHK
"'AX)'1U'I R A I'<F ALl I)IJR~TTO'J I HPS/YQ
AVf-YAGE flAINFALL Rqf 0,03 1'-:I"R
AYf:'IA:,E' Rh!NFhlL IJlJRATION b3b H.R$/YR
'1AX!M'J'1 S~J()i'JF ALL RATE I , R 7 p;;HR
MAXI"'J" SNONFALL rl\IRATIO"J I HPS/YR
AvEI'lhGf': 5'J0r.F' ALL R h T t '> 0. I 3 I •: I "ii-i·
.\vE.=?,,~;F SNP~'<FALL f)IJRhflU"' 26•1 HP$/YR
RELATlV[ A[h Uti~S [ lY I. 0 0 l)
'
.J
NUMBER PEP.
DlAr-if.lF.R
WEIGHT
***-'**···-····••*-**
*
* I'IPUT I)ATA *
GROUND<'I!RF. DATA
TC1<'1Ef~ 0
0.00 IN
0,0000 LBS/FT
.J .J
MINIMUM
MAXIMUM
INTERVAL
SPAN DATA
100{'. FT
!CJOO, .FT
100,0 FT
DfVlL CA~YON-ESTER CAS~ 1I-2A
230 KV TRANS~ISSION LINE COST ANALYSIS AND CO~DUCTOR OPTIMIZATION
D~lE: 16 AUG 79 TJ~E: 13:14:31
SA~/TENSlON nESJ~N FACTORS
fVERYOAY STRESS ffMP(RATURE
IrE ANU wiNO Tt~PERATURE
HIGH WIND TEMPERATURE
EXl~[Yt ICE IFMPERATURE.
M4X Uf:S!(~'J U:~H' ~·tJI'I t;ND CLEARANCE
tnS IFNSin~ (PlT UTS)
r;f: SC CONSTANT
lOT ~L NIJM8E.R Of PHASES
PHASE SPAC!Nt;
CO~nUCTOk CONFIGURATION FACTO~
GRUII'in Clf ARA"ilT
Wl. llF Jr,~)l!LAfllRS PFR TO,.F.R
INSIJLA101'1 SAFF.TY FACTOR
S lRT ,,r; l.t >J(; TH
I, vtl:, Uli C0~1bl11ATION
fOU~JLJATlO'J TYrE.
TFtJRAIN FACTOR
LINE ANGLE F~CTOR
tn..,fR (;ROiJNDINt;
lRANSVfRSF OVftJLUAD FACTOR
VERTICAL nVfRLUAD FACTOR
UH<G[TlllllNAL UJhO
MISCtLLAf,[lli!S HAt<OwARE WEIGHT
lOwF::R r~f!GHT fAClUI'I
TOwER WtlGHT ESTJMA1ION ALGORITHM
-----------------------~---------
**'*i***~·~····'**
• *
INPIJT DATA *
*
•*****'****•~*****
1.10, DEGREtS F
o. DEGREES F
lJQ, DEGREES F
~o. DEGREES F
12 0. ')£ GfifE.S F
?0, PEPCENT
0. 31 l.tlS/FT
T\J~ER DESIGN
3
20,0 FEET
1 • 0 2
28.0 FEET
41\
2.50
6,'5 FEfl
3
lj
1. 06 PER UNIT
,Ofl6l.l
0
2.50
1,50
1000, Lt3S
0, 1 I T 0 NS I Tll W F.: R
I , 02
TO~ER TYPE. 9: 230KV TOwER
ICE AND ~IND TENSION (PCT UTS)
HIGH WIND TENSION (PCT UTSI
tXTRtME lCt TENSlON (PCT UTS)
ICE THICKNESS WITH wlND
~INn PRESSURE wiTH ICf.
~I It; H WIN f)
EXTREME:. ICE
DISTANCE BET~EEN PHASES:
Dl
02
03
011
DS
Db
TW = 0,00016~TH••2 -3.0~797•TH••0.3333 -0,01\945•E:.FFVDL -
0.275b7•EfFTLJL t 0.005IO•TH•EFFTDL + 0,00160*TH•EFFVDL +
Pl.)7QJ? KTPS
.' l
50, PERCENT
SO, Pf:.RCENT
70, Pf:.RCF.NT
0,50 INCHES
4,00 LHS/SO,FT,
9,0 L[J$/SQ,FT.
0,50 INCHES
20,00 FT
20,00 FT
40,00 FT
o.oo FT
0,00 FT
0,00 FT
ID Nli'1REP
---------
3'5
0::1 ~b
37
~
3':\
N 3'1
llO
'n
ll2
u 3
/J (J
/J 5
lib
ll7
45
ll9
50
S I
,r::, ~
')3
')IJ
55
J
-------------
DEVIL CANYO~-ESTER CASE II-2A
~30 ~V TRANSMISS!O~ LINE COST I~ALYSIS AND CONOUCTnR OPTIMIZATION
_______ DATE:_I6 AUG 79 TIME: 13:1ll:31 __ ~~-------
* 1 ~J P U T lJ A T A
*
*********•~·*~•~c••
CONDI!C TOR SlJ'1MARY
*****************
-----------------------~---------~-~---------~--------
STRANDING UNIT WEIGHT OUT.OlAr-1, TOTAL AREA MODULUS
NAM[ Sl2'fCKCMJ (AL/ST) CLBS/FTJ (INCHES) (StJ.IN.) (Ef/E6 PSI)
------------------------------------------------------··
~~All A q D 7Y"i,O 30/19 1. 2 35 0 1.1ll00 0.766(1 11. 30
h'LifllJY ooo.o £15/ 7 1.0150 1.1310 0.7069 9.110
CANARY 900,0 sv 7 1. 1 "i90 \,16?0 0,7985 10.85
<'~fiT! 054.0 liS/ 7 I • 0 7':i 0 l.loSO O.R011 9,ll0
CA'?I)TfJAL 9C,L!,("l sa; 7 1.2?90 I. 1%0 0,1\llhll 10.85
f) R T (IL AN 1o.n.o •l"i/ 7 1.1650 1.2130 0.8678 9.£l0
CURLE\\ 103~.1"1 511/ 7 1.5310 l.?ll60 0,9169 10.8'5 -------·-R L II F_ .JAY 1 I I 3. 0 45/ 7 1.zs:.o 1.2')90 0,93llb q,lJO
F[>.jCH 111~.0 "ill II 9 1.4~10 1.2930 0,98lJ9 10.30
R U 'I T T r" r. 11 Y?, 0 liS/ 7 1.34110 \,3020 (. 00 I 0 9.ll0
G'iACI<:L~-11 Q 2. 0 Sll/19 t.S350 1.3330 I. O'J52 10.30
K I I f ~ R IIJ 127?.0 £15/ 7 1. <d'-10 l,,ll')O I. Obf\0 9.ll0
Pt'~-AS ANT 127?.0 5 1J I 1 9 1.6'3')0 1. 3820 1.12':>6 10.30
fJIPf'F.R I 55 1 • 0 £15/ 7 1.5220 1.31:150 l.t:SSO 9.£10
"APliN 1351.0 ';4/19 1. B70 !,ll?UO 1.19':>9 10.30
Allf-IUL INK 1431.0 US/ 7 l.b\30 1.11270 1.2020 9.LIO
PLrJvfR lll)I,O 'jiJ/ I q 1.81JOil 1,11650 1.?663 10.30
NUTHATCH 1'110,0 liS/ 7 1.70~0 \,U6b0 1.?61'10 q,uo
PAPL<OT 1510. I) 51J I 1 9 1,91J20 1. 5060 1.3366 10.30
I_AP~.lNG 1Sq0,() !JS/ 7 1.7920 1.S020 1.3350 9.£l0
F AJ__ CPN 1590,0 511/19 2,0q£iO 1.5 11'50 1.11076 10.30
.J J .J
TEMP,COEF.
ALPHA•E-6
PER DEG F
----------
9.7
1 1 • 5
10.9
11 • 5
10,9
11 • 5
10,9
11 • s
10.8
11 • s
10,8
I 1 • 5
10.13
I 1 • 5
10.8
1 I • 5
10.8
1 I • 5
10.8
1 1 • s
10.8
... J
-1 ---1
ID .'JU..,RER NA~!:
--------·
co 3', "AL_L fiR I)
3b RUI'lDY
37 CANARY
~ 3'1 PhiL w 3q C r, P D 1 ~~ h L
41) (Ji<l lll AN
ll I CURLF"'
U2 !:'LIIl:.J A Y
Ll) F l ~IC H
44 !3U~J T T NG
45 r.><ACKLE
lib fl!TIF~N
47 Pf!F h SA~ T
IPi DJPPEfi
4<J ~ARTTr:
50 QfH'Ol l r.JK'.';
"il PLi1YFR
52 rJUT t1A TC:H
'c; 3 PARRnT
5IJ LAPwiNG
'55 FALCON
• :
-~ ---1 -l ~--1 ----~1 "1 -1 l -'')
DEVIL CANYON-ESTER CASE J!-2A
2JO KY lPANSMlSSJON LINE COST ANALYSTS AND CONDUCTOR OPTIMIZATION
DATE: lb AUG 70 TIME: 13:14:31
* • 1 ._.PI IT DhTA
* ••••••••••••••••••
CO'I!DI_ICTOR SU'-1~1ARY
********""**•*••~~:
AC RESIST.
liLT.TENS. GEDM.MEAN THF.RM.LP11T -AT 25 fJEG c
S 1 R OJG T H ( L R S) RADILIS(FT) PRICt:: ( $/UlJ (AMPERES) (OHMS/MILE)
--------------------... ·-------------·--------.. --·-------
3/'lllOO.n n.o3a2 0,500/1077 9 I 0. 0.1162
2':JLJUO.O 0.0374 0.676/1977 935. 0.1082
3;>~00.0 0.0392 O.b:B/1977 950. 0.1040
?ooO(I,O 0.03KS O.h71/!977 970. 0.0998
31l?OO.O 0.0404 0,632/1'117 9'10, 0.0987
?Hanrl.O 0. 0 <I 0 I 0,670/1977 !020. 0.0924
~ 11 JJ 0 • 0 0.0420 0.628/1977 I 0 4 o. 0.0913
)l)OQ(J,O 0,0(!16 0,66'1/1977 1 0 7 0. O,ORIJI
40;>00.() 0,0436 o,..,l,9/tC?77 10'10. o.oRS'i
3.3.?00.0 0,0431 0,665/1'777 I I 2Cl. D.Ofltl8
1131 0 n. tl O,OLI'i! 0 • b 11 2 I \ '-1 7 7 1 I 3 0. 0,0797
35£lU0,(l O,Ollll'5 O,bb')llr'll7 I I b 0. 0,0760
(j ll A\! 0. 0 0,0£J6b O.o~8/IG77 I I 8 0. 0.0750
3 7h on. 0 O,OLJ59 0,663/1°77 121 0. 0,072.3
4{hll0,0 0,0!.11-lO O,to311/I077 1230. 0.0708
3<~Rnn.o 0.0 1J72 0,662/1977 1?50. 0.0686
51! /j () (). () 0,04'-IIJ O,to37/1977 1 no .. 0,0671
4 I HlO. 0 0,0/.lf\':i O,h6'~/IQ77 I 3 0 0. O.ObUO
5'3?00,0 o.O'i81l 0,6'l,0/1977 1320. 0.0602
£131-lOO.O 0.0497 0.660/1977 I '3 Ll 0 • 0,062~
56000,0 0.0521 0,6'36/1'177 !360. 0.0612
l -· ') --1
IND.REACT. CAP.REACT.
(OHMS/MILE) (MOHM-MILESJ
-----------------------
o. 'H28 2.5186
0.3928 2.5080
0. 3928 2.5027
0. 3'1119 2. 5027
0,3902 2.4816
0,3902 2,LI6513
0.3!)1J9 2,/JlJLih
0,38b0 2.£13/ll
0.3R02 2,4130
0.3817 2.£1077
0.3759 2.31'166
o. 3no 2.3A13
0.3722 2.3602
0.3738 2.3602
0. 3bM 2.33311
0.3712 2.33313
0.3648 2.307ll
0.3670 2.3126
0,3b?2 2.2862
0.'3o3R 2,29.15
0.3580 2.C70Q
J .J J
CEVTL CA~YON-ESTER CASE II-2A
230 KV TQA~S~ISSION LINE COST A~ALYSIS A~D CO,DUCTQR OPTI~lZATJON
_ _ _ ________ DATE : I 6 A !J r, 7'1 T I~ E : 1 3 : ! 1.1 : 3 1
*
"
INPUT DATA *
*
UNIT MATERIALS COSTS INPUT VALllf REFERENCE YEAR FOR INPUT
PRICE OF TUW[R MATERIAL
PI;' I Cl: OF ((INCRE 1E.
PPICI: 0~ G~OUND ~IRE
l'lSTALLED CflST OF GROUNDING SYSTEM
T n.-<F I~ SETUP
T n 1'1 F R A S S F ~~ R L Y
Fllll'lf)f. T I U~-: SETUP
FIJIJNl)h T TON 1\SSE"'113l Y
FOti~-II)ATION E;<C:AVATION
1-'PICI: OF MJSCFLLANEOliS HARDWARE
\!NIT LAfiOR COSTS
RE~EPENCI: YFAR LA~OR COST
STRJ~G G~OUNO .. IRE
S Tl\ J !~{; L ARtJQ MARK\JP
UNIT TRANSPORTAl!ON COSTS
--~----------------------~~·;
T0~-<Ef-l
F[llJ"<IJA T ION CONCR!: rt:
FOIJfiDAT!ON SlEEL
CO!'-I!JUC TOR
GRUIINO WIRE
I ~JS\JLA TOR
Hi\RI)WARE
J ._J
0,957 'li/LR
0,00 'li/Cil,YO.
0,000 S/Li-3
0,00 $/TOWER
1 l5 1 • $
O,IJ55 $/Ltl
0. ~
IJillO,OO $/TON
0,00 $/CU. YD.
290.00 $/TOl-lER
2iJ,OO $/MANHOUR
0,0 $/Mit.E
4,2 PER UNIT
225.0 $/TON
22').0 $/Y[)
225.0 $/HlN
225.0 $/TQ"J
225,0 $/TON
225 .o $/TOtJ OR $/M**3
225.0 $/T(1N
.I J
1919
I 977
1917
1977
1979
!979
1979
1979
1919
I 9 77
1979
I 977
J .J J
~--1 --1
CONDUCTOR
0::1
_ _, _______
·~ (I • O:CM SPAN(F"f)
~ ------.. -
U'i
'i3 I<; In. 150().
iJS I I U?. 1.30\l,
53 I 5 I 0 • I 4 0 0.
lJ5 11 rJ?. 1 4 f\ rl.
S3 I 'i I 0 , I i! tlll •
iJC) I 3 <;, I , 1 _s 0 o.
lJ 7 \272. 130(1,
U3 11 I~. 1 _so o.
51 1'1 5 1 • 13 0 0.
ll3 I I I 3. 1 '-'f) 0 •
lJ7 I 2 7 2. 14 0 0.
Llo 1151 • 1 4 0 I).
lJ') I 1 9 2. 1 2 01).
':ll !lJ 31. I IJI) ll •
u I 1 n 3 3. IS 0 0.
lJ q' I 3S 1 , I 2 00.
II 7 1 2 '2. 12 0 0.
':l'i I 'i'IO, 1300,
51 llJ 31. u 0 1),,
w I I 0 3 "'>. I II 0 0.
4"7, I I 1 3. 1.? 0 I).
':-5 I c, q n. ]t.j (I 0.
5'5 I ':i q 0 • I 2 CllJ •
lJ I 1 on. 1 2 no.
iJP. 1 351 • I 3 0 0.
~-1 --1 -~ ') --·---1 -~--1 --1 ---~«"I
D~YIL CA~YO~·ESTEP CASE 11-~A
23Q ~V TQI~S~lSSIUN LIN~ COST ANALYSIS A~O CO'IOUCTOR OPTIMIZATION
DATE: 16 AUG 70 TIM~: 13:1~:51
*
*
*
AUTOMATIC CONnUCTOR SELECTION
ALL ~UANT1.TIFS PER MILF
•
*
*
*
······················~···············
CAPITAL COST/DISCOUNT RATE OF 7,00 PERCENT
PRESENT WORTH ($)
1
-~--~-------~---------------~-------------------------------------------------------------------------------
INSTALLEn COST LINE LOSSE.S O&M COST LINE COST
---------------------------------------------------------------------------------------------'1Aff.PJ~LS TRA'JSP, INSTALL. f.NGHIEF.R. TOC SUtlTOTAL SURTOTAL SUBTOTAL TOTAL _.., ____ ,. __ ----------.. ~---------------------------- --------
77"iOO. /j 4 7 ':i. 77~09. I 7 'i I 0 • 0. 17h693. 26?0 I. 23R8. 21'l':l322.
7193?. /j \)"' 5 • 7':i'il0. lo6611. (]. 16Rio4. 3'::>3R2. 2273. 20511tlo.
7919?.. '~41\o. 7o292. 17597. o. 177568. 26241. 2U00, 206209,
733?'1. llORO, 71llJ ':'>6. 16705. 0. 1oRS7l. 353H2. 2278. 206231.
76778. Ll s 1 7. 7WJS2. 17627. (l • 177fHU, i'62U I • 2£JOU, 206519.
7'j070, ll2'l I • 76S2'S. I 7 I uP, () . 171034. 311 61. 2338. 206533.
737~11, Lt 20 I • 7oiRT. lo9SLI, 0. t7108o .. 331U2, 2312. 2065<J0,
7n5'12. 3°97, 7'it92, loll7o. 0. 166257. 3817lJ. 22lJT, 20667R,
7o"'>'l7, ll 3 f\ 5 • 761\72. 1 73•l2. 0. 1 7£J 9oo. • ?oU29. 2365. 206787.
7ton. v-~n. 7" 1 57. 16'i 12. (1 • 1obol7. 381 7 4. 22'S2. 207(1<13.
7'))27. 112 05 • 7':)?.26. 1702). o. 17171<2. 3.3142. 2521, 2072U5,
766f\5. 11,!08. 7'J'i77. 17222. 0. 1737111. 3 I 1 61 • 23£J8. 207290.
',.> 71111<6, llllJ 2. 7nc<,o, 16R) 1 • 0. 11:>9839, 353H2. ?295. 207Sl6.
71\n':>l. /l_!,Q?. 7'j<l_3C), 17U22. 0. I 7580£1, 291J29. 2.376, 20760P,
6<"~27?. )'-11 (1. 7LJ075. !o29R, 0. lblJU64, ll1005. 2222. 207692.
7 lllJ 2 <; • /j 3 ~ t:\ • 7R300, l 72 7 7 • 0. 1 7/1 s Ll (). 3 I 1 61 • 25'56. 207857.
7_)151. /j 2 1l9. 77Q(lJ, 1 7089. 0. 17?<l£J3, 33142. 2:no. 207916.
7905R. 1.1':>66. 775UI. 17728. o. \78fl9U, 26692. 2UI7, 208003.
7S715. lJll2H. 78650, I l 4 65. o. 176238. 29U2o. ?3P.2. 20ROU~.
70670. 301 3. no 56. 1b33R. 0. 16Lit\65. U1005. 222H, 2013091\,
7011:>1. 110 5S. 770bh. 1664\, 0. 1&702-!J. 38174, 2269. 20R36R,
R I) 7 '-J?. l.l')f\0, 7bh'•?. 17821. 0. 17'153'). ?b692. 2ll30. 20130'::>7.
]i;?._'IF\. Ltb0o, 792b7, 17P.30, 0. 11\0010, 266'12. ?U 33 • 20'113/.l,
hf.RI3. 3<}76, 7bR.29, 1oi.J5"1, n • 16607':>. UI005. 221J4, 20032U,
7 b 07 0. 11,!3LI, '77504. 11359. 0. 175166. 31875. 2567. 209lJOA.
c;c
~
O'l
. . J
DEVIL CA~YO~-~STER CASE II•2A
?30 KV fQANS'-'ISSION LINE COST ANALYSTS AND CONOUCTOR OPTIMIZATION
!NSTtoLLED COST
B R E ~ K I) 0 W 1-J
--------------
C0 1<flUC T nR
GROilr-.rJ•·rTRF
1 " S U L h fr.1 R S
HAt<[J<.Akl:.
Tn~'r"~
~ OUNl)d T IONS
RIGHT UF WAY !101FT) -----.. ---.------
SUt:l-TOTALS
!flC
ENGINEERING
PRESENT llfl~TH ,,
I DC '/
E"JGINE"ERING
Lf')SS ANALYSIS
RESISTANCE LOSSES
QUANTITY ..... _____
151\40,
n •
207,
4. 3
4. 3
I ? •
CORONA LOSSES: INSULATORS
Cflt-muc T 01-1
TnTALS
J J
FT
r1
lli-Jl T S
UNITS
UNITS
ACRES
0 h T E: I b AUG Fl T I '-'1:.: 13: 1 'I: 31 _ _ __ ---~--
****~*********~··••••********* ., ., CO~T OUTPUT PER 1>1!LE
PRESE"lT VhLUE. RATE
7,00 PERCENT
53
"' .,
•
"'
!<j!O, KCMIL
C 0 ~ D U C TO I~ N ll M R E R :
1300, FT SPAN 84,9 FT_TOWfR _____ _
Mt.TERIAL TRANSPORTATION
COST($) TONNAGE COST($) ..... ---------------------------
tJ9<171. l'j,38 3tJb 1.
0. o.oo o.
?957. I • I 4 549,
3219. O,IH 1 0 7.
q l 0 0 tl, 2! • 1 1 4 750.
7493, 1 2 1 1 •
1989':), -------__ ,.. ___ ------
!74')44, 31'1.10 10078,
77500.
PRESENT WORTH ($)
JNSTALLATIOfll
COST($)
------------
IJ5797,
0.
b02Q7,
50178.
17667, ------
1751189,
···--·---------------·-----~-----------------·--------------------DErHND LOSSES
13781,
o.
13781 •
ENEf~GY LOSSES
1245q,
o.
1 •
1~460,
J
TOTAL LOSSES
2b2tJO,
o.
1 •
262tJ1.
J
TOTAL
.... J
TOTAL
COST($) -------
qq22q,
o.
3507.
3326.
1'56006.
'51lll82.
37C.,b?, -------
3'58'511 •
o.
39tJ36. -------
39HtJ7.
15q183.
o.
17'510.
.J
l
____ ,l ·---1 --1 1 , __ 1 ~---~-o 1 1
INTE~NATIO~AL ENGfNEtRING CO. INC
SAN FRANCISCO CALIFO~N[A
]
TPANSMJS~lnN LIN~ COST ANALYSIS PROGRAM
VERSION ?: 0? AUG 197~,
wal,.I\JA-DtVJL CANYON CASE IT-3A
230 ~V JRANS~ISSION LINt COST ANALYSIS AND CONDUCTOR OPTIMIZATION
DATE: I~ hUG 79 TIME: 16:29:16
*·~···········~··· •
*
* ******************
INPUT DATA *
SYSTEM ECONOMIC FACTORS INPUT VALUE REFERENCE YEAR FOR INPUT
J..\ASi: YF A.R FOH f''" ANALYSIS
F cW• [ '1 (; 'r f. A H 0 F S T tJ D Y
'1,\Sf:: Y'>:A'< .FUf< FSCAt ATION
Mfl~IMUM CIRCUIT LOAUlNG
IVFFIAGE Cl!IClJ!T LOADING
OFMA~n COST FAtTOH
F\~~GY COST Fft(Tnk
V·\R [11$1 f A[T110
CAPl i~L (iJST /iJTSClJI.HJT RATF.S:
r:;c,Y COST FA[l(IR
RIG•1T UF ,..Ay CflST FACTOR
Ri~HT nF ~Ar CLfARJNG COST
T ;,r t.'-1 LSI fl l If< I,, r. r: 0 1\i S T R U C T [ 0 N
F>'<Gl '!d:R t r,r; H F
1979
!907
1977
514,0
2R2.7
n.o
13.0
o.o
7.0
l 0. 0
1.':>
71':>,0
1430,0'
o.oo
1 I • o 0
MVA
MVA
$/KW
MILLS/KwH·
$/KVAR
PERCENT
PEF;CENT
% CAP,COST
$/ACRf
$/ACRE
I. lNST,CST
" JNST.CST
\992
t9n
1979
1979
191\l!
191'14
19M
I 91'\ll
!979
1979
,.~I&,A-DtVIL CANYON CASE II-3A
230 ~V fQ~~S~ISSION LI~E COST ANALYSIS AND CO~D0CTOR OPTIMIZATION
DATE: I~ auG 79 TI"~: 16:?9:16
••••••••••••••••••
~
INPUT DATA •
****••······~·····
GROUNOI'<IRF:: OATA
-----------------------------------------
'IIJ'1:1t"' PPI PHAS[
CO'i')!IC TOR SPAC!IJG
Vl.!L 1 tt ::;~
V()Li~.~:;-VAR]t.T!OIJ
L I .\J E ~ =-< t.. r~ u f \1 C Y
FAI~~~~THLR LUSSES
Ll';E ~Ft;r;rH
PtJ1itR FACTLW
~«EATHi:-R PATA
1
0. 0
230
10.0!)
biJ
o.oo
2 7. f);\
n.os
IN
l'-V
'-'C T
CPS
~,,I •.• I
~ .. 1LES
-----------------------------------------
,V, A X [ JA J v, R4P;FAI.L f< A r 10 1 , ! R p,; /1; ;<
'1AXl"J" RATI\FALL iJ!I•< AT TON I ~·uS/Y.q
AVF><A~;f RA[t,FALL RATE 0. Q ~ I ... I --·R
AVE"<~i,f'" PA P•F ALL l)l It< A l T ur~ t;';h h;;>SI'r'R
MAX J'I,J:~ S''Jf)" ~A I. L f/ A If' 1 • 8 7 PU•iR
MAXI'-'J'I $1\ir]riFAlL {)IIR/ITTON t HRSIYP
A¥ E•n:;l' s:,Q,F AI L R~Tf 0. I 3 I,, I..,~
A~ERA:;<: S'·Jn~ F AI_ L IJIJi; AT I UI.J 2b!J HRSIYR
R[LAT[Vt ATf/ IJE r,s IT 'r' I • 0 f1 0
J .J
NiJMHFR PFR TOWER
I")IAM!:TER
WEIGHT
J
0
0.00 IN
0.0000 LElS/FT
,.J
MINIMUM
MAXIMUM
INTlRVAL
J j
SPAN DATA
J
1200, FT
1600, FT
100,0 FT
J J
~ITANA-SEV!L CA~iON CASE !I•3A
?30 KV ]UA~S~ISSIO~ L I~t COST A~ALVS!S A~U C~~DUCTOR OPTJM!ZATIUN
LlATE: 1<; AI!G 79 TP.'t: 16:29:16
[V~RYflAY STRESS TF~PERATURE
I C t. •HJLl fi p; n T t. '1 f-F k !d lJ R E
H I G f< "' T r.J D T E ~~ P f R A T U R f
EKTHF~E ICf TFMPfPATURF
"AX UtSTG'J TP'·I' ~Of< (,rJI) CLEARANCE.
f n S i F ;, S l fi \1 ( PC T ! I T S J
i,! t ~·1 C r. () ~ J S T A r-J T
TOTAL N!JMRER OF PHASES
PHAS~ SPA[ I NG
C 0 i'v I) IJ C T DR C 0 1'1 F I G UR A T I 0 !~ FA C T 0 R
GROIJrll) [lfARA~JCF
:<r1. UF T USUL.A Tf_WS PFR TOWFR
I ~! S I I l A Trlfl SA F F T Y F ACT 0 f./
S T K I \; r; l t ~\ L~ T t1
I , v f F , ··' !< C r·, M tll N A T T 0 N
Ftir.l'!i)A r I U'r f YPt
I F i< u ~ l ,'J F A l. T I) R
LINE ANGLF FACTOR
TD>"~F I< (,Rill IIJI)! Nt.
T u A '·! S V i' 'l :; F il v F '' I_ U A 0 F A C T LJ R
V t >i f l C' A L n V [ ~·! I I ~ [) r A C J () P
L(l ~' G I T I j f) ]'I A {_ L IJ ~. i)
~I.T3CI:LLMJFl!1.1~3 r-i~HO,..AI-1~ ,_ETGHT
TO•·E>l _,f[C~HT FACTOR
TQWF~ ~tl~HT ~STT~ATION ALGORITHM
***************~**
*
P<PIJT ()ATA *
*
***1t****'t****~****
lJ(). DEl.'-IEE:.S F
0. DEr.>.:EtS F
lJO. EiE:.GREE:.S F
"S i) • r'lfGRFES F
12 0. OEGRfE:.S F
?0. Pt:YCENT
0. 3 I L BS /F T
TOWER DESIGN
3
20.0 FE.ET
I • 0?
2A.O FEFT
lJfl
2.50
1>.5 FEE'T
3
il
1,06 PER UNIT
• 08hll
0
2.')0
1 • "0
I 0 0 i). Lf1S
0.11 TONS/10~ER
I , 0?
ICE AND WIND TENSION (PCT UTS)
HIGH WIND TENSION CPCT UTSJ
EXTREME ICE TENSION (PCT UTS)
IrE THICKNESS wTTH WIND
WJND PRESSUPE ~ITH ICE
HTGH WINlJ
OTSTANC~ BETWEEN PHASES:
Dl
02
03
()(j
05
06
Tw: o.noOJh•TH•~2 • 3.09797*TH•*0.3333 • O.OA91.13*E.FfVOL -
li.c'75hl•tHTI:l t O.OOSlO*ill*cFFTDL t O.OO!t>O.tTH•E.FfVOL +
1R.379!? KIPS
l
so. PERCENT
so. PERCENT
70, PERCENT
o.so Jt~CHES
q.oo LBS/SQ.FT,
9.0 LBS/SQ .FT.
0,50 !NOiE S
20.00 FT
20,00 FT
IJO,OO FT
0,00 FT
0.00 FT
0,00 FT
JD "iU'1P.ER r-JAMF ----------
to S2 ~UTHATCI-1
53 PAD~rJT
54 LA f'" I:, G
(.TI 55 F /1 L C n ~. 0 So CtHI" Ak
S7 P.LIIi::.Rli?D
':iB 1\ 1 ;'I
.J _I
rlATANA-DEVIL CANYON CASE II-3A
230 KV lRANSMlSSION LINE COST ANALYSIS ANU CONDUCTOH OPTIMIZATION
DATE: 15 AUG 79 TIME: 16:29:16
ULT.TENS. GEOM.MEAN
STRI::.NGTI11LRS) RADIUS(FTJ
1.!!600.0 Q • 0 ~~A~
'i3.?!ll). 0 0.0501:1
43ROO.O 0,01197
'ibOOO,O 0,0521
':i~hOO,O (1. 0~ '51.1
l:diJ()O.O o.o~AH
50'HiO.O 0.0'>70
J ) ,I J
•
* •
INPUT DATA *
*
*
CONDUCTOR SUMMARY
***********•*****
T11ERM.l!MJT
PRICf($/LBJ (AMPEPES)
0.664/1977 1300.
0.630/1977 1320.
o.o00/1977 1340.
o.o~o/1°77 1360,
O,b7~/1977 11140.
. O,b7Sil977 1 b 1 0 •
0,699/1977 1.600.
J J ,J )
AC RESIST,
AT 25 DEG C IND.REACT.
(QHMS/Mllf) (OHMS/MILE)
0,06119 0.3670
0.0602 0.3622
0.0623 0.3638
0,0612 0.3580
0.0560 0.3'l48
0.0475 0.31.11.13
O.OLII:lO 0,3 1J80
.. l J
CAP.REACT.
CMOHM-MILES)
2.3126
2.2862
2.2915
2.2704
2.2387
2.lbll8
2.1806
J I -~·
-1
Ji) \JIJ'IflE. R Nt.:·tE
--·-·----
OJ '>2 NUTHATCH
53 PARt<nT
s~ LAPw Jt.Jf.
U1 'J') ~AI cnr·• 1-'
<ih CIPii\A~
')7 ><1 tlciJ I RO
<,c~ ~ !1• I
¥-ATA'JA-r.EVIL CANYO'J CASE 1!-~A
250 KV TRA~SuiSSTON LINE COST ANALYSIS AN~ CnNDUCTOR OPT!~!ZATJON
DATE: 15 AUr. 79 liME: 16:?.9:16
StZUKCM)
I 'i 1 o. 0
1510.0
1':;90.0
1'190.1')
17.'10.0
~1':11>.0
?\1>"1.0
STRANO!tJG
f4LISTl -------
ll')/ 7
54/19
ll5/ 7
54119
84/19
R4/l9
'1 2/ 7
• • •
1"<1-'llf DATA *
*
*
CO~WIJCTOP SUMMARY
*****A-**"•*••••*•
UNIT WE:.I GHT OUT.D!AM.
(LAS/FTJ (!NCHESl ·-------·-------
1. 10~0 1.1Jo60
1.91J20 1.5060
I. 1920 1.5020
2.04ll0 I. ')450
2.071.j0 l.hO?O
2.5120 1.7620
2.5040 I. 7 5'10
TOTAL AREA
(SQ,JN.l -.. --... ---
1.?61'10
1. 331)-6
1.3350
1.4076
1.51?0
I.R2fl0
1. 7760
l
TEMP.COEF,
MODULUS ALPHAt>E•6
(fFIEb PSl) PER OEG F
--·---------------·--
9.ll0 11 • 5
10.30 10.8
9.ll0 11 • 5
10.30 10.8
9.05 I I , 3
9.05 I I , 3
9.25 12,0
.]
U1
N
.... 1
RITANA-~EVIL CA~YON CASE IJ-3A
230 Kv TPANS~ISSIUN LINE COST ANALYSIS AND CONDUCTOR OPTIMIZATION
DATf: 15 AUG 79 TIM[: 16:29:16
******************
* *
* INPUT DATA •
*
*****~****•**~****
Wd T MAT F: RIAl S C n S T S INPUT VAL U F REFERENCE YEAR FOR INPUT
-----------------------~--·----
PP!Cf 0F TO~ER MATERIAL
PQlCE OF CONCRETE
PRICE: llF Gf<nUNLJ "'T RE
l~ISTALLEt> Cf.>ST OF GPOUNDlNG SYSTEM
rn,,u; sETlJr'
rn ... F'R ASSf.t1RI Y
FfliJt.J[lA T TON Sf TUP
FflUNUATTUN ASSEMRLY
Fnu'•I!I\ITiJ~J FXCAVAT!ON
PRJC~ OF MISCELLANEOUS HARDWARE
UNIT LAbOR COSTS
R E H R F N c't: YE .A R LAB 0 R C 0 S T
STRP•G GrllliJND f>llRE
STh'TN(; LARl1R MARKIJP
UNIT lRANSP041AT!UN COSTS
1 n.·,FJ<
F n ti''JiJ A T I () N C 0 r• C R E. T t
FOUNPATTON STFEL
UlNPUC T nR
GRU!IfW wIRE.
lNSIILATOf<
f1 .\ R lh< A f.< E
0,957 , /Lt~
o.oo 'f./CU.YD,
o.ooo $/Lf3
o.oo $/TOWER
I 7 51 • $
O,li5S $/L H
0. .~
IJ!IJO,OO $/TOIII
o.oo $/CU,YD.
290,00 $/TOWER
2li,OO $/MANHOUR
0,0 $/MILE
11,2 Pf:.R UNIT
225.0 $/TON
2?5. 0 $/YD
2?5.0 $/TON
22S.O $/TON
2C'J. 0 $/TON
2?':!,0 :!>/TON OR
225,0 $/TON
.J .l .J
I cnq
1917
1977
!977
1979
1979
1979
1979
1979
1977
1979
1977
CONDUCTOR
---------c:c 'ill. K[M SPA'J(FT) --------
CJ'1 57 2156. 1.3110. w
57 21'ib, 1llOO.
57 ?.156. 12 0 0.
t)f3 21 t• 7. 1 5 no,
'; 7 2 ~ ') 1-:. l s 0 0.
S'\ 21o 7. 1200.
5'1 21 b 7. ! q 0 (J.
'57 ?ISh. 1-nnu.
':!6 I 7 I' 0. 1 .50 0.
':)6 1 71i (\. 14 0 ().
58 2167, IS o \1,
S.h 1 7 K 0, 1200.
53 I 'i I o. 1 _, (! ~) •
S6 1 7RO. 1 ')Oti •
53 I 'l I 0. i 41\0.
53 IS I 0. I SO<J.
':)3 1 o; I 0 • 12 (l 0.
55 1">40. 1500.
<;R 21 h 7. 1 b t) (J.
Sn 1 7 ;J, (\. ·1 t')OI).
55 1SJO. 1 1.1 no.
53 I r:; 1 <'. I" n u.
c;s 1 'JO 'I • 1 ')O o.
'J? IS1l1. \200.
55 1 S'it1. 1 ,' 0 I) •
) ---,
~'TA~A-nEVll CANYO~ CASt !J-3A
?30 ~w T~A~SMJSSION Ll~E COST ANALYSIS A~J CONDUCTG~ OPTI~IZATIO~
JATf: 1~ AUG 79 TI~E: 16:29:16
AUTOMATTC CONDUCTnR SfLFCTION
ALL ~UANT!T!tS PF~ M]Lf *
* * *****************************••·······
CAPITAL COST/DISCULI"lT PATF OF 7.00 PERCENT
----~-----··---------------------·---------
PRESENT WORTH ($)
.. ·~~.) -.·1
-------------------------------------------------------------------------------------------------------------
I ~• S T a L L E [) COST LINE. LOSSES O&M COST LlNE COST
-~------~-----~--~-~--~~-----------------------------·------------------------·--------------MATf.<<J.\LS TRA"lSP. HJSTr.I.L. E"<GI~E.FR. IDC Sl.lt3TOTAL SlJFHOTAL SUC!TOTAL TOTAL
------------------------_____ ..,.. ___ -----------·---· --------
A<><ji)O • <;100. AOll19. 19.?60, 0. 19ll31J9. Ill 0 ')II 0. 26?6. 337515.
021c'3, <;l')S. 7492R, 1 9 II 9 3 • o. !96698, 11.10540, 2658. 339896,
Q() 1 3 7. '521.?. P.27S9. ]9<;9?. 0. 197700. 140.,40. 2672. 340911.
92tll5. '>120, /lc?.H~. 1971j0. 0. 199603. lll2049. 2697. 344350•
9':-7t,9. c; ,.!6;. /l01Kf\. 1993ll, 0. ?01155. 140540. 2718. 344413.
02?54. 5199. 1'.4?211. 1991P. 0. ?.01640. 1112049. 2725. 346414.
9';:,<lK9. <;??I • 11?3.~5. 201'-10, 0. 203134, 142049. 2753. 348537.
1 no lbS. <;Ill 7. RIU1. ?OSlll, o. ? I) 7 2 711. \.ll O':i 110. 21301. 3'50615.
1-12 7tJIJ 0 4 h '711. 78631. 1826R. o. 18ll.S36, 166?66. ?491. 353093,
Rl.IO':l 1. ll70'!. 719bb. ll\439, o. 181>066. l66?t>6. 2514. 354/l46.
10067?. '5 3A 1 • A.F'II. 201'\]9, 0. ?1008-L 1420ll9. ?839. 354971.
R; I)') I • Q/9.?, P.10?9. 18620. 0. 18'7890. 166266. 2539. 356695.
7'7'-:JOO, I~ 4 7 ') • 77209. 17C,10. 0. 171>693. 174055. .?388. 3S8137,
f\f\llbM. 479';. 7 H 0 I" 0 • 18799. 0. I 8 <J 7 0 1. l6tJ266. 2564, 358530.
7419?. ll4~6. 762'i2. 1154 7. 0. 17756H. 179055. 2ll00, 359023.
RJ7t.o. 4S4':l, (ht1H7, llP.b.3. 0. 18025'l. 179055. 2436. 361"7<16,.
7'-li)R). ill>·) 7. ROOLlR. 18014. o. Ull1f32. 179055, ?457, 363294,
7'iP':,P.. IJ':lob • 77Sill. 117 28. o. 178894. 1112109. 2417. 36:S420.
I06S'i2. ')')9<1. P,4Rll7, 2lh70. o. ?IR667, lll204q. 29~5. 363&71.
'li'l!/1. IJ'J? 7 0 71< 7M 1. 1tJ33h. 0. 195115. 166?66. 21>37. 364017.
p. :) 7 '!?. IJ5KO. 7M•ll2. I 7 R21. 0. 1791\55. 1112109. 2430. :Sb43B.
A'Jl 1,!-\. iJI)ll'!. 7 6'121. 182'c11->. 0. !Boon. I 790':>5. 2ll95. 366174.
R31J 00, linlll • 7oil':l3. 1 ~091J. 0. I fl?':ifHl. I 821 0 9. ?ll67. 367164,
7£'GOS. IHI\3. 7 14 11'1. I 7 0 0 /J. o. 171590, 193450. 2319. 31>7338.
RI!St>O. 117 ?<'.. RO~<I3. ll:l21 9. 0. 183H46. lfl2109, 2484. 368439,
AA[A~A-DEYIL CA~YON CASE I!-31
230 Ki TgA~SMISS!ON LINE COST A~ALYS!S A~O CONDUCTOR OPTI~IZATION
!"JSTALLfll COST
BRE.AilflUwr~
cor.ouc 1 (1;1
GROilf'D"' T RE
I ~!Sill~ l f!f-IS
HARIJI'Af.:F
Tf1 ,; F >-1 S
F (1LP I[! A 1 I UN S
RIGHI UF wAY (104FT)
Sllb-TrJlhLS
IOC
E"lGI~•Et.PJNG
PRESENT ~ORTH
IDC
E"JGTNElPlNG
LOSS a~HLYSTS
RFSISTANCF IOSSFS
OUMiT I TY
15t\IH1,
() .
2ll 7.
!1,3
4. 3
1 3.
COfWI'.A LUSSFS: l'lSUl ATf1-<S
(.flr,;),IC T f1R
TOTALS
FT
FT
UNITS
UNITS
UNITS
ACRES
0ATf: IS AUG 79 Tl"E.: 16:?9:16
• •
COST QIITPUT >'F.4 "~ILE
i-JPlSUJT VAll If RATE
7, 00 PfRCF'll
* •
•
*
*
*•*•****'****•***'*A****t*****
2156, KOHL
MATERIAL
COST($)
o905Q,
o.
2957.
.5219.
QH')4/,
7493,
20/Jol.
2017?7.
89569.
I 3 IJ 0 , F T S P A N 87,ll FT TOioifR
TONNAGE
!9,90
o.oo
I . ILl
0,47
22.Ro
PRESENT WORTH ($)
TRANSPORTATION
COST($)
4Ll76.
0.
5119,
107.
511J4,
I 2 I I •
11487.
5100,
INSTALLATION
COST($)
41\9/JO,
o.
63832.
50178,
18170.
181119.
------------------------------------------------------------------LlEMANO tOSSES
731119.
o.
. ]
ENERGY LOSSE.S
l
t>6721.
o.
o.
6o 72 I •
TOTAL LOSSES
1405110.
0.
o.
140540.
.J J
TOTAL
COSTCS) --··-·--
122466. o.
3507.
3326.
1&7522.
58ij82.
38650. ···----
39QTB.
o.
113377. -------
TOTAL 1137710.
17508q,
o.
19260. -------
TOTAL 19Q3Q9,
J
APPENDIX C
MULTI-AREA RELIABILITY
PROGRAM (MAREL)
-
SUMMARY
I?RCGRAM
ELEMENTS
liND MODELS
MULTI AREA
RELIABILITY PRCGPJ\M (l'IAREL)
SCHENECTADY, NEW YORK 12301
APPENDIX C
!3ULIEI'JN
PTI/103
Page 1 of 3
518 374-1220
The Multi-Area Reliability Program (MAREL) computes the Loss of Load Proba-
bility (LOLP) reliability index for electric generating systems of several
areas interconnected by a transmission network without any restrictions on
the network top:~logy. The program permits the study of large r:cwer IXJOlS
and reliability councils as well as individual utilities imbedded in an ex-
tensive interconnection. The program is intended to be used in the design
and analysis of generation systems and the interconnection capability re~
quirements needed to share reserves among the interconnected areas. The
program may be used for as many as six or seven interconnected areas modeled
directly. A greater number may be accommodated by developing equivalent
systems. The output includes area and total system LOLP indices as well as
data or the probable causes of failures and their locations in the network.
The program structure is flexible so that load and capacity models may be as
detailed as required and at the same time, the complex evaluation of ::he
individual area reliability levels may be performed with efficiency.
The structure of MAREL is shown in block form on Figure 1. Input data may
be provided for each case or partially supplied by saved case files. ~e
program structure is set up to analyze one year at a time under the control
of the user. This facilitates the development of system expansions inter-
actively or with a series of runs on a batch basis without the risk of the
possibility of using excessive computer time.
I ~J
CAPACITY-
PROIW3ILITY
TABLES
LOAD
MODELS
WJ!U<ING FilES
FIGURE 1
MULTI AREA
RELIABILITY
EVAWATIW
STRUCI'URE OF MULTI AREA. RELIABILITY PR<XiRAI1
c -1
SAVE
FILES
1
PTI/103 Page 2 of 3
PF.C.GAAM
APPLICATIONS
• Loads are modeled by area with distributions of peak
loads for each 'season' of the year. A season may be of
whatever length is appropriate for the study, weeks,
months, or longer intervals.
• Capacity Models are developed for each area for each
season of the year and are available capacity-probabil-
ity density tables.
• Maintenance Outages are simulated either by adding the
capacity on outage to the appropriate area and season
load model or by modification of the proper capa-
city-probability table. Maintenance may be prescheduled
and input or done automatically within MAREL by an
algorithm designed to level available area generation
reserves over the year.
• Transmission Interconnections are modeled by the use of
a linear flow network which models the limitations on
individual tie line transfer capabilities considering
their forced outage rates {if desired) without restric-
tions on the network configuration or topology.
• Program Controls are set by the user to establish the
fineness with which the loads and capcities are rep-
resented and to set tolerance levels on the LOLP com-
putations to save unnecessary computer effort and cost.
• Program Output may include area load and capacity models
as well as maintenance schedules, three sets of both
seasonal and annual area and SJstem LOLP indi~es, the
probabilities of various failure modes. That is, the
program automatically calculates area LOLP values as
though the area were isolated and then two separate LOLP
values with the actual interconnection. These two LOLP
indices represent the extremes of possible operating
policies concerning the sharing of generation reserves,
{1) sharing only available reserves, and {2) sharing
load losses up to the transfer limitations imposed by
the network. Pailure mode probabilities show the prob-
abilities and locations-of failures caused by generation
shortages or transmission limitations as well as com-
binations and indicate the probabilities that each
individual tie may be limiting. These data are useful
in developing reliable system designs.
• System Size is not restricted except by limits on accep-
table computational effort and cost. Past PTI system
studies have included two interconnected reliability
councils represented by nine or ten areas and incor-
porating approximately 500 units for a total of 100,000
mw of generation.
•
•
•
Generation reliability level analysis which includes the
effects of the interconnected system for the expansion
planning of individual utilities and power pools.
Planning of interconnections to achieve regional inte-
gration and more widespread sharing of generation
reserves.
Evaluation of the reliability benefits of strengthening
ties vis-a-vis additions to generation reserves.
c -2
-
r
-
!""'·
'
Pri/103
AVl'.ILABILITY
AND SUPPORT
FOR FURTHER
L"lFDRMATION
l/78
•
•
•
Page 3 of 3
Assistance in locating weak portions of a system in
order to locate new bulk power facilities for maximum
reliability improvement.
Analysis of the reliability benefits of new joint-
ly-owned plants located remotely or within one system's
territory.
Evaluation of the ability of individual utilities to re-
liably survive the postponement of new plant additions
in their own and interconnected systems.
MAREL is available for use at PTI for studies by individual utilities or
groups of systems. It may also be leased for installation on a client's
computer. The lease entitles the user to:
• Complete set of source code for all modules including
all MAREL activities and subroutines.
• Engineering and program reference manuals.
• Installation on a suitable PRIME 400 computer at the
client's site and a training seminar.
Installation on other computers is feasible but will only be done on the
basis of charging for the time and expense required.
Since PTI is a consulting engineering organization and uses MAREL in studies
for clients, the program is continually being enhanced and updated.
While updates are not included in the MAREL lease price, PTI will offer all
significant MAREL improvements to lessees at add-on prices.
PTI can assist MAREL users in the development of system equivalents where
their use is attractive to the user.
Contact: C.K. Pang, Senior Engineer
or
A.J. WOOd, Principal Engineer
Power Technologies, Inc.
P.O. Box 1058
Schenectady, N.Y. 12301
Tel. (518) 374-1220
Telex 145498 POWER TECH SCH
c -3
MULTI-AREA RELIABILITY PROGRAM (MAREL)
SAMPLE OUTPUT SHEETS
FOR
TWO-AREA RELIABILITY STUDY -YEAR 1989
• Interconnected System Expansion Plans, with Firm Power Transfer
(years 1984 through 1987 and 1992 through 1996)
c -4
.-.
I
-"~} n (J'l ~~~<l ·"~"-~~-} Lc ) 4··:'} l '" -•~) ·-·~, "-j "" ... ~~ ) l ' IECREL *TIE89 0 1/ 1 8/79 1 1 : 01 PRT018 "'"'*:i<''';:**:!t*-"'*~~,.~*Oi::i:)/::i:~~*******:t.*****~~**~~~~:l:***********~<:::i:*******~***:l"-*~~:i:*:.':*~~***~~*:i:**:i:*~~:t:~":)/:;,"-"'t:l::i:'l/:;{.~~··"'··"**;~:(.::i(~~* ;·~· :Z*!''~**~~~*;.t:>(!:~:;:~:*~~~'!******~-;*<;,":*:.,~-:~:~'!*-'~*****~*;-:~**********-:t-i:**-*****:i:*********:.~.:t:*!r":*!t:*~~**:;:.**;·~**';("...;f:*~*!i~~:;*>,::f::t:::.<:::***:?.:.'~~ ., ... )/:)/: ** .... ~ ** .... ffi'th' h'hl\'WW mrw 11'1-ili'W "''WWWW w ~~* .... 1{ 1{ w w 1{ w ~{ 1{ ** ... ~ .... ~· 1{ II' 1{ w l{ ,., ** ····:--w 1.'\;I{W w 1{\·I'HW W'HWW ,., ** ..... w 1{ '"' HW H w ** ... ,, ,., 11' w w 1{ w w w· w ** ····· 1{\{1y 1\1il~V.'W wrrw w w "''h'W1oltT 1·mwww ** .. ..,. :.~* ...... ** .... ** ...... 1fhwlm \{\','\{ 'h'hli'IVW KlfH 1vV.'1v ** ;:; ;~: www w w 1{ 1Y w ,., w ** ····· "'"''\{ w w w w· ,., w w :~:;: ... 11'\V l1l'i' 1{ w ll"''·t'h"'\{ mvw "''h1Vll' ** ....... 11'lvl{ 1{ w w w w w ** !:!':,~ w w 1·/ w w "' 1{ ,., w ** ::· ~!: w Tfh"i{ ""~'''''W mm 1>.'1flY *-:!: . ~·-** ** .... ** ~-> **:t~:-:~~**~~**~!!!~.":~~~*~:***;t;r.::~*;f;;~~:.~**!f.**~~**':~*****~****;r..~~*:::~**~**********************;;:,****~*:t;*'****::t::t!***~*** ~.::.c~*"':;;:;<:i:**~**~'*~:*~~*:::~::i<~:******""**********~~*********~~***********************************************•~*:f.*****
n
~ ... J '"' J
POWER TECillrQLOGIES, INC.
I-WLTI-AREA RE.LIADILITY PROGRAM:
MULTI-AREA RELIADILITY PROGII.AM-MABEL --
----VERSION : NOVE~lliER 15, 1978 ----
----POHER TECHNOLOGIES, INC. ----
**********************
** ** ** 01 -18 -1979 **
** ** ****~*****************
B T U D Y C A S E:
****************************************************************************
** ** ** ANCIIORAGE -FAIRBANKS TRANSMISSION INTERTIE. ECONmUC FEASIBILITY **
** ** ** 2-AnEA ItELIADILITY STUDY-YEAR 1989 : INTERCONNECTED -l/15.11979 **
** ** ************************"~*****;~*********************************************
.) ;,,; J J J ) J J J .) l ~.) .J <._I j J .J
POWER TECHNOLOGIES, INC.
MULTI-AREA RELIADILITY PROGRAM'
1
***:lt*******************;~:t.:l:******************************'******************** ** ** ** AllCHOI\AGE -FAIRllAJU<S TRANSMISSION ll'ITEI\.TIE ECONOMIC FEASIBILITY **
** ** ** 2-hRF.A RELIADILITY STUDY-YEAR 1969 : INTERCONNECTED -l/15/1979 **
** ** **************;r.*************************************************************
YEAR OF STUDY = 1989
PROBABILITY T9RESHOLD = 0.10E-07
FAILURE PROB. THRESHOLD = 0.20E-08
PROD. RATIO FOR LOAD LEV.=
ROUNDING MW STEP SIZE "'
0.0100
1
MAX. NO. OF AnEAS WITH NEGATIVE
!1-\.RGIU TO DE EXANINED = 2
MAX. OF CAPACITY STEPS =
-----SYSTErt DATA ---
NO. OF AREAS OR BUSES 2
NO. OF AREAS WITH GENERATION = 2
NO. OF AREAS WITTI LOADS
NO. OF LINES lHTll OUTAGES
NO. OF FIRM LINES
=
=
2
1
0
50
n
co
.) J
POWER TECITNOLOGIES, INC.
MULTI-AREA RELIADILITY PfiOGRAH•
AJICIIORAGE -FAIRDANKS TRANSMISSION Il'ITERTIE ECONOMIC "FEASIBILITY
2-AllEA IlELIABILITY STUDY -YEAR 1989 : INTERCONNECTED -1/13/1979
-----DATA FOfi LINES WITH OUTAGES -----
---AVAILAnLE CAPACITY Pfi03AlliLITY ---
LINE NO. 1, LinK NO. 3
TIE FROU AREA 1 ANCllOn -TO-AREA 2 FAIIlBA
LEVEL CAP( FOR> CAPC REV> PfiODADILITY.
1
2
0
130
0
130
-TIME USED IN CPUS : INCREMENT =
J
0.004000
0.996000
2, ELAPSED =·
•
2
J· ) ' .·· -J J CJ {'•Y•c•
''') J-.. ,,) /~) " .. l ,---·,--)
~..,. ___
l ----l 1
,...--_ ) ---l ·~\ --·-,c-} ') ~-. } '"l J
POWER TECH10LOGIES, INC.
MU1.. T 1-APJ.:A ru:L I ABILITY PTIOGRJ\M l
GENEnATOTI UNIT DATA FOTI ANCHORAGE-FAIRBANKS STUDY
'f\10 lillEA SYSTEU JANUARY 15 1979
SUH!IARY ON CAPACITY, PEAK LOAD AND MAINTENANCE : AitEA ANCHOR.
SEASON 1 2 3 4 5 6 7 6 C}
IUSTALLED
CAPACITY ( Mlil 1747 1747 1747 1747 1747 1747' 1747 1747 1747
PEAK LOAD C MWl 1200 882 789 752 729 725 826 886 1441
INSTALLED RESERVES
n MW 547 865 958 995 . 1018 1022 921 861 306
\,0 PERCENT 45,58 98,07 121.42 132.31 139.64 140.97 111.50 97.18 21.24
CAPACITY ON
MAinTENANCE < J'I.W) 0 135 227 256 286 287 188 122 0
RESERVES AFTER MAINTENANCE :
MH 547 730 731 739 732 735 733 739 306
PERCENT 45.58 82.77 92.65 98.27 100.41 101.38 88.74 83.41 21.24
UNIT RETinEMENTS AND INSTALLATIONS t
NO, U1l!T CAP<Mli> F.O.R. ItET/INST SEASON DATE
1 COAL 2 200 0.057 INST 1 1/1989
POWER TECIEWLOGIF..S, INC.
~1UL T I-AR..t.:A RELIABILITY PROGRAM'
CEr!EfiATOI\ UniT DATA FOR ANCHORACE-FAIRB.hNKS STUDY
TWO AREA SYST£1'1 JANUARY 15 1979
SUMMARY ON CAPACITY, PEAK LOAD AND JI1AINTENANCE ; AP.EA F AI RBA.c.
SEASON 1 2 3 4 5 6 7 8 9
INSTALLED
CAPACITY Otw> 335 385 385 385 385 385 385 385 385
n PEAK LOAD < ffi{) 274 177 135 119 112 130 136 166 313
~
0 INSTALLED RESERVES
l1W 111 203 250 266 273 255 249 219 72
PERCENT 40.51 117.51 185.19 223.53 243.75 196.15 183.09 131.93 23.00
CAPACITY ON
l1AINTENAIICE <m{) 0 14 55 72 100 65 54 25 0
RESERVES AFTER MAINTENANCE :
H1'1' 111 194 195 194 173 190 195 194 72
PERCENT 40.51 109.60 144.44 163.03 154.46 146. 15 143.38 116.87 23~00
UNIT RETIRENENTS hND INSTALLATlONS t
riO. U1HT CAPOni> F.O.R. RET/INST SEASON DATE
.....•... ) ) ) j .) _ .. -, .. J ) ) ) ,~ ,} J ) --_) ',..~, ~-J ,J l .. _ ~.1 ~ J
·~ -.,-·-: ''\ y-'
) 1\ l 1
n
t-'
1--'
~,~, ,.--·-----} ') c) <--,
POWER TECITNOLOGIFS, INC.
HULTI-AREA RELIABILITY PROGRAM
". -··<>) . --~, - l
CENEilATOR UlflT DATA FOR ANCHORAGE-FAIRBANKS STUDY
THO AilE!\ SYSTEM JANUARY 15 19?9
Sillii11\RY ON CAPACITY AND PEAK LOAD BY AREA
AREA ANCHOR FAIRBA ------------
PEAK LOAD SEASON 9 9
fNSTilLLED CAPACITY CMW>
AT AIIUUAL PEAK 1747 385
ANNUAL PEAK
LOAD < '!'I'b') 1441 . 313
IITSTALLED
IlESEHVES ( MlO 306 72
RESERVES IN PERCENT OF
JIJINUJ\1. PEAK LOAD 21.24 23.00
ARE.4. HE I GHTED AVERAGE
Uli IT FOR < PERCEHT) 5.46 ?.42
AREA ANNUAL A VEilt\GE
l't\ l NTENAilCl~< P EllCENT> 9.65 11.11
)
} j J
?Oli'E.Il TE.CITNOLOC I ES, INC.
TWLTI-AREA RELIABILITY PflOGRAM:
CENEMTOR UNIT DATA FOR ANCHORAGE-FAIRBANKS STUDY
THO AI\EA SYSTEM JANUARY 15 1979
-----SUfflfARY BY AREAS----
AREA flO. OF UNITS CAP. (1111-1)
1 ANCHOR
2 FAII\DA
---------------------36
24
1747
385
SEASONAL IlESEriVES IN PERCEUT OF PEAK LOADS
AFTER MAIHTEriANCE OF UNITS FOR TilE TOTAL SYSTEM
· SEASON RE~ER\'""ES ORDER SEASON RESERVES ------------------------1 44. 6<!·~4 1 9 21.5:307 2 07.2521 2 1 44.6404 3 100.2164 3 2 87.2021 4 107. 1132 4 6 8fl.613R2 5 107.6100 5 7 96. 4.·657 6 1CO. 1H71 6 3 100.2164 7 96.4657 7 4 107. 1182 8 a a. 6.!132 8 5 107.6100 9 21. tl507 9 6 100.1871
. ) ~l .J ; .J ~!f-• J .. J J -... ~ J I ) J ··. J
,,,,~ -1 -···J ----)
n
....... w
--1 ) --J
POWER TEC~~OLOGIES. INC.
i'IULTI-J\nE,\ RELIABILITY PROGRAM'
) ~J J )
CF.NEMTOR UNIT DATA FOR ANCHORAGE-FAIRBANKS STUDY
THO ArtEA SYSTEM JANUARY l:J 1979
J
MAINTENANCE SUN:r!Al\Y BY MW AND PERCENT OF TOTAL AREA CAPACITY c
SEASON AREA ANCHOR AI\EA FAIRDA ----------------------------
1 0 o.oo ·0 0.00
2 13() 7.73 14 3.64
3 227 12,99 55 14.29
4 256 14.65 72 13.70
5 286 16.37 100 25.97
6 287 16.43 65 16.86
7 lll3 10.76 54 14.03
8 122 6.93 25 6.49
9 0 0.00 0 0.00
AREA EFOil 5.4550 7.4169
SYSTEM EFOR = 5.8093
EFOR : WEIGDTED EFFECTIVE FORCED OUTAGE RATE_Ilf PERCENT.
*** END OF PROGflAM MNTCE ***
Tim: usED m crus INCREMENT =
TINE USED IN CPUS INCREl'IENT =
t'** AREA 1 ArlCIIOR ll/\S NO UNITS ON ***
~:t:* HAlNTEHAHCE FOR SEASpNS .: 1 9 fl'**
*** AREA 2 FAinnA HAS NO UNITS ON ***
2. ELAPSED =
0, ELAPSED =
4
4
) ' -}
;<;;j,;~ HA I NTENA!lCE FOR SEASONS
POllER TECnNOLOGIES, INC.
l'!ULTI-AREA RELIAIHLITY PROGRAJif
M:cnoM.CE -FA.IlillMII<S TRANSMISSION IftTERTIE ECONOMIC FEASIBILITY
2-A.REA IlELIAlliLITY STUDY -YEAR 1989 : INTERCONNECTED -1/U/1979
---LOSS OF LOAD PRODABILITY AT VARIOUS AREAS ---
AT AI\EA
PRODABILITY
ISOLATED
PRODABILITY
WITII LLS
PROBADJLITY
WITHOUT LLS
1 ANCllOR 0.149268E+00 0.798471E-01 0.676829E-0l
2 FAIRBA 0.190494E+01 0.90967~E-Ol 0.394379E-0l
SYSTEU 0.915377E-01 0.915377E-01
NOTE : LLS = LOAD LOSS SHARING
***** ALL PRODADILITIES ARE IN DAYS/PERIOD *****
--.I "-~• I J '~'" _J
PO~~R TECa~OLOGIES, INC.
rfULTI-AitEA RZLIAIHLITY PROGRAM'
1\NCHOMGE -FAIRDANKS TRAl'fSMISSION INTERTIE ECONOMIC FEASIBILITY
2-AnEA RELIADILITY STUDY -YEAR 1989 : INTERCONNECTED -l/15/1979
PROD/I.BILITY OF :mNHIAL CUTS -
CUT PRODADILITY CUT MEMBERS<LINXS>
1 0. 792771£-0 1 2
2 0,570032E-03 1 3
3 0.116904E-01 2 3
***** ALL ~RODf~ILITIES ARE IN DAYS/PERIOD *****
J J .J J J ~• ,_} _,l ~ .. ;J ,J ~ _, • --
,
("")
......
-.....!
'J
POWER TECflNOLOGIES, INC.
JIWLTI-AREA RELI.I\BILITY PROGRAM!
AI1CIIOMCE -FAIIUl.i\NKS TRANSMISSION INTERTIE ECONOMIC FEASIBILITY
2-AH.EA HF.LIAIHLITY STUDY -YEAR 1909 : INTEnCONNECTED -1/151'1979
--MINIHAL CUTS AND DEFICIENT NODES<AREAS> ---
CUT PfiODADILITY NODESCARE.i\S) IN DEFICIENT REGION ----------------------------------------~-
1 0. 79277 lE-O 1 1 AllCIIOR 2 FAIRBA
2 0.510032E-03 1 ANCIIOR
3 0.116904E-01 2 FAIIIDA
***** ALL PRODADILITIES ARE IN DAYS/PERIOD *****
n
POllER TECIIDOLQGIES. INC.
!·illLTI-ARE.!\ P..ELIABILITY PROGRAM
AUCIIOMGE -FAinBANI<B TRANSMISSION INTERTIE EGOlVOJ.IIIC FEASIBILITY
2-AREA. 1\ELI./\BILITY STUDY -YEAR 1989 : INTEllCONNECTED -l/15/19?9
LirfE LINK
PilOEADILITY TIIAT EACH LINE IS LIMITING ---
DESCRIPTION TOTAL
A R E A TO A R E A PRODADILITY
FORWARD
DIRECTION
REVERSE
DIRECTION
3 t ANCHOR TO 2 FAIRDA 0.t22604E-01 0~116904E-Ol 0.5?0032E-03
***** ALL PRODABILITIES ARE IN DAYS/PERIOD *****
_,I .J .-J _l ,I I J .I J ,J ~-···F••• _}
------] ""l --J
n
-\.0
-.-·-·-'] "-] 1 1 -----1 .~ --1 c.<·~~: J l ] 't l li
POWER TECirn'OLOGIES, INC.
MULTI-AREA RELIABILITY PROGRAM:
sEAsON -----
l
2
3
4
5
6
"l
8
9
YEAR
ANCHORAGE -FAIRDANKS TRANSMISSION INTERTIE ECONOMIC FEASIBILITY
2-/IIlEA R.ELIADILITY STUDY -.YEAR 1989 : INTERCONNECTED -l/15/1979
ISOLATED S ITUATJON -SUMMARY :
AREA LOLP IN DAYS/PEniOD BY SEASONS•'
J\Il.EA AltEA
ANCITOit FA I RnA ------------
0.0021 0.3096
0.0000 0.0071
o.oooo 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
o.cooo 0.0000
0.0000 0.0000
0.1472 1.5DB2
0. 1493 1.9049
J ]
... · l
n
N
0
o.l
.?OWER TECITI'iOLOC I FS, I l'TC.
HULTI-AREA RELIAI3ILITY PROGRAM"
AlfCIIOI\AGE -FAIRDANKS TRANSMISSION Il.'ITERTIE ECONOMIC FEASIBILITY
2-AREA RELIABILITY STUDY-YEAR 198«) : INTERCONNECTED -1/15/1979
ISOLATED SITUATION -SUNHARY :
EXPECTED N1i-DAYS LOSS BY SEASONS.
AflEA AREA
SEASON ANCHOR FJ\InDA -------------------
0.09 7.45
2 o.oo 0.14
3 o.oo 0.00
4 0.00 0.00
5 0.00 0.00
6 0.00 0.00
7 0.00 0.00
B 0.00 0.00
9 3.87 44.23
YEAR 8.9548 51.3097
.J J J -_y .J .J .I .. l <· t J J I J
l ~-·-1
n
N
1--'
''] ,,~-] ..... ,-,·-1 J
PO~~ TE~P~OLOGJES, INC.
r::-JLTI-AHEA Il.ELIJ\BILITY PROGRAM'
-.-,
~-. <-·"C--' '] ·---) -~
ArlCIIOMGE -FJ\IRBJ'.NKS TRANSMISSION INTERTIE ECONOMIC FEASIBILITY
2-J\I'..EA llELIJ\niLITY STUDY -YEAR 1989 : INTERCONNECTED -l/15.11979
ISOLATED S ITU/\TION -SUfofi'IARY :
EXPECTED MH DEFICIENCY DY SEASON.
ArtE/\ AilE A
SEASON ANCllOil FAIIlBJ\ ------------------
1 42.38 24.04
2 13.37 19.22
3 0.00 0.00
4 o.oo o.oo
5 0.00 0.00
6 o.oo o.co
.7 0.00 0.00
8 o.oo 0.00
9 60.24 27.85
INDICES FOR TilE YEAR
MW-DAYS 8.95 31.81
LOLP-DAYS 0. li; 1.90
E( IDD 59.99 27.20
I ""'"'-) l
n
N
N
J I I
POf.'ER TECHnOLOGIES. INC.
HULTI-ArtEA nELIAlliLl'I'Y PROGRAJ11
SEASON ----
1
2
3
4
5
6
7
8
9
YEAR
_)
AllCI!OMCP.. -FAIIIDANKS TRANSMISSION INTERTIE ECONOMIC FEASIBILI'IY
2-/\nEA IlELI!illiLITY STliDY -YEAR 198') : INTERCONNECTED -1/l:i/1979
INTERCOrH!ECTED UITII LOAD LOSS SIIJ\RING
Ail.EA LOLP IN Di\YS/PERIOD DY SEASONS.
AilE A AREA
ANCHOR FAIIUlA ------------
0.0004 0.0020
0.0000 0.0000
0.()000 0.0000
0.0000 0.0000
0.0000 o.oooo
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0794 0.0890
0.0798 0.0910
i.,._,,l ,_ __ J ' .. J ~"-~J -~~-'-' .I J I I . ~, ... 1 J )
n
N w
] l -J
POWER TECHNOLOGIES, INC.
~TI-AnEA RELIABILITY PROGRAM:
-1 1
ANCllOMCE -FAIRBANKS TRANSMISSION INTERTIE ECONOMIC FEASIBILITY
2-i\REA RELIABILITY STUDY-YEAR 1989 : INTERCONNECTED -l/15/1979 •
INTERCONNECTED WITII NO LOAD LOSS SHARING
AREA LOLP IN DAYS/PERIOD BY SEASONS.
AREA AREA
SEASON ANCI!OR FA I IillA ---------------.....
1 0.0003 0.0017
2 0.0000 0.0000
3 0.0000 0.0000
4 0.0000 0.0000
5 0.0000 0.0000
6 0.0000 0.0000
7 0.0000 0.0000
8 0.0006 0.0000
9 0.0673 0.0378
YEAR 0.0677 0.0394
-l
.J .J ,) J (_, __ J J
POWER TECmlOLOGIES, INC.
MULTI-AltF.A RELIABILITY PROGRAM:
AJ;cnoRACE -FAIRBANKS TRANSMISSION INTERTIE ECONOMIC FEASIBILITY
2-AREA nELIABILITY STUDY·-YEAR 1989 : INTERCONNECTED-l/15/1979
---SYSTEM RESULT STJmfARY IN PER UNIT --
PROOABILITY OF SUCCESS EVENTS
PROrlABILITY OF FAILU11E EVENTS
"' 0.999648E+00
= 0.352068E-03
PROOABILITY OF NEGLECTED UNSPECIFIED EVENTS!= 0.270125E-08
SUM OF TIIE ABOVE 3 PROBABILITIES ,.. 0. 100000E+Ol
PROBABILITY OF UNCLASSIFIED FAILURE EVENTS = 0,620649E-09
*************************************************** *** NOTE: TIIE SUU OF THE FlllST 3 ~lUST BE 1.0000 *** *** 'HTIHN REASONABLE TOLERANCE. ***
***************************************************
DEFINITION OF EVENTS :
SUCCESS ALL LOADS SATISFIED.
FAILURE orm OR ~IOilE AREA LOADS NOT SATISFIED.
UNSPECIFIED : NOT IDENTIFIED AS EITHER SUCCESS OR FAILURE.
UNCLASSED FAILURE : CAUSE OF FAILURE NOT ESTABLISHED.
CAUSE OF FAILURE IS INDICATE!) BY MINHIAL CUTS.
TOTAL ELAPSED TilliE IN CPUS = 20
***** END OF PROGRAM l'IAREL *****
J ~J J .I -. J .~---~ .I "··J J ~ _;,:.:;;.' J .... J .I
N
Ul
... --) ... J ]
Al!Cl!ORAGE -FAIRBANKS TRANSMISSION INTERTIE ECONOMIC FEASIDILITY
ANCITORACE -FAinDAUKS TRANSMISSION INTERTIE ECONOMIC FEASIBILITY
2-AREA nELIADILI1Y STUDY -YF~ 1996 : INTERCONNECTED -1/15/1979
2 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0
1 1 1 4
1996
O.lE-07 0.2E-07 0.5E-05
0.010.10
2 1 50
2 1 0 2 2
ANCilOilFAinBA
1 2 2'
0 0 0.004009
2 130 130 0.996000
I.OAD DATA m PER UNIT INTERVAL DURATION CURVE
TWO AREA SYSTEH JANUARY 15 19?9
1 1 1
2 10 26 9 14 1933
1 0. 01 1., 00 0
1 1 1 1 1 1 2 2 3 3 4 4 s 5 6 6 ? ? a a 9 9 9 9 9 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AilCIIOR 20 0. 0
781. 077. 977. 1080. 1196. 1313. 1441. 1531. 1724. 1881.
2041. 2215. 2402. 2591.
.8333 .6667 .7404 .75CO .6571 .6346 ,6122 .5U65 .5401 .5353 ,5224 ,5160 .5064
.4904 .:032 .4960 .5160 .6737 .5769 .6154 .6827 .8429 .0626 .91351.0000 .8301
1.0000 .9769 .9731 .9538 .9500 .94G2 .0962 .3731 .057? .8423
1.0000 .93~3 .9663 .9663 .9615 .9615 .9G19 .9519 .9423 ~9375
1.0000 .9913 .9784 .9C27 .9697 .9654 .9437 .9307 .9221 .8918
1.0000 .9829 .9187 .9359 .9017 .8089 .flflR9 .UU46 .0333 .C934
1.0030 .9512 .9317 .9171 ,9171 .9073 .9073 .9924 .9024 .0976
~0000 .9340 .9793 .9747 .9646 .9495 .9444 .9343 .9293 .9141
1.0000 .96C6 .9G34 .9329 .9G29 .9476 .9424 .9372 .9050 .9038
1.0030 .9701 .9727 .9617 .9G63 .9363 .9344 .9341 .9071 .9071
1.C030 .93C3 .9~83 .9225 .9E25 .9703 .9703 .9649 .9391 .9415
l.CO:>O .99";0 .9[120 .9701 .9GC1 .9461 .9'!·01 .9311 .92Bl .9162
1.0000 .99n9 .9077 .9G71 .9571 .9509 .9509 .9~~8 .9202 .C589
1.0000 .99J8 .9814 .9609 .9365 .9379 .9379 .9379 .9253 .9255
1.0030 .9810 .9681 .9620 .~4~4 .9494 .9430 .9367 .9204 .9177
1.0000 .9004 .9739 .9739 .9673 .9608 .951~ .9542 .9477 .6824
1.0000 .9073 .9745 .9554 .9493 .9490 .9427 .9427 .9219 .9299
1.C0001.C~OO .993J .0871 .9~~~ .9743 .9677 .9613 .9G40 .94C4
1.0030 .9930 .9H14 .96fi9 .9627 .9563 .9GG3 .9441 .9441 .9379
1.oooo .9777 .9G09 .9411 .9274 .9106 .eeu3 .G715 .D?l5 .G015
1.0000 .9944 .9944 .9722 .9722 .9722 .9611 .9273 .9222 .9222
1.0030 .99?3 .9C96 .90?6 .9607 .95~3 .9~31 .9375 .9323 .0002
1.0000 .933~ .9~C4 .9~J7 .9390 .9296 .92~9 .9202 .91~5 .9014
1. 0000 . 9962 , 96SG . 9'!6D . 9'!63 . 90C7 . 79B5 • 775.7 . 7719 . 11535
1.00001.0000 .~UC7 .9662 .9549 .9511 .9474 .9393 .9361 .9323
1.0300 .9754 .8632 .0596 .C421 .83H6 .G335 .8386 .D3C6 .6175
1.0000 .9840 .9679 .9519 .9359 .9327 .9327 ~9135 .0654 .0045
1.0000 .9730 .9730 .9614 ,9614 ,9575 .9575 .9537 .9421 ~6340
2 FAinnA 20 0.0
196. 212. 231. 249. 270. 291. 313. 338. 362. 390.
PAGE 0001
.. J
N m
AJICIIORAGE -FAIRBAr{f".S 'I'I\i\NS.MISSION HITERTIE ECONO!I!IC FEASIBILI1Y
?16. ~46. <,77. 511.
o. :)7:;90. 69900.737 10.76040.57490 0 59710.56630. 51110.43240 J 41150.38330.37470.3587
0. 353C~. 33~ao. 41770.42010.43730.46190.53 ICJO. G74?0. 139190,93370,934~ 1. 00000.7690
1. coono .. 9?4:!~. 9~670. 946?0 .94·~30. 93130. m4nO. 3654·0. n~·~9o. B177
1 • G" JC 0 o 93670 o 92790. 92700. C) 05 10. C')l)g(). Cfl!)GO. G:'i9·~0. 13!!790. 7BC) 1
1. cc:;;:o. 993:~0. 96670. 94r:.:w. 94ooo. 92330. 903~30. i!WJo.a. GuG7o. e267
1. CG:)J0. 97;j~!').% 120, 9"!::; 10. C6910. C320~. ~~390. C 1100.79000 J 67'69
1 .l:OvOO. 935(J0. 93290.%94.0. 95300. 94560. 91BBO. 901110.90170. Gu25
l. OO:'JOJ. 997()0. 99590. 9B770. 979<!0. %Cl!O. 93620. 90;}30. 0 1)300. CC27
l.COJC0.9U~n3.95010.93710.91970.89370.Ce~70.87200.86129.E09l
1. OCJCO. 96G70.% IGO. 95190.93510.91500. 8n700. lli!220. 8798~. 8550
l.OOJ00.99150.991~0.99150.97160.96870.03lfl9.8~200.fln020.8693
l.OOJOl.OGGC0.95120.93130.92~40.92810.92340.90750.901~0.8055
1. CC;);;J. 990<·0. 9')0'10. CJ<!.350. 92310.91990 ,I) 1670.91350. B'7B~O. fl55fl
1. 0(/J~·J. 967~d.%410. 0271)0. 92160.90490. fiJB'!!O. G% 10. B7e70. 8721
l.OC~C0.96920.96020.958~0.95H90.94G20.94J23.931G0.92120.9041
1.00~~~.~G9G0.97220.96870.95330.94790.93100.92360.92010.0507
l.OOJCJ.96770.93U70.93230.91290.90J20.90320.90320.U7100.R677
l.G0000.373~0.C7060.06760.C6460.8~833.8~7l0.81110.83B20.8059
1. OOJ:)O. 9·~.-:~o. <;CMO. 90;&<:.0. f./)470. G27GO. i3:!7GO. n::N60, EH B70 • UO 12
l.COOC0.99'l20.977~0.96350.963G0.940~0.9nD20.93320.91010.8904
1.C00~0.99~?0.96810.93C90.92820.90960.90690,90160.8RD30.8836
1.COOC0.93~J0.93300.91450.90990.R9610.0CJlO.Cn450.86370.8568
l.C01C0.991G0.9BDC~.97650.9~~20.92950.92740.91C39.91450;9017
1.COJC0.96690.911C0.892GO.COC40.79890.73970.64460.61020.60B8
1.C01C0.97710.910G0.90790.90790.89340.80~50.88~50.R6320.8434
l.COJGJ.9?110.86330.83050.81870.79fi30.79240.74510.73320.7201
l.C0CC0.90510.9Bl60.97300.97170.95533.91650.084G0.02430.6010
! . CO;)GO. 900!,.0. 93930. 92C 10. S99·HL flfl,{)~m. 3BJOO. 84320. Gl310. 7971
G£Ti£ItATCH UriiT DJ\TA FOR ANCIIORAGE-FAIIillJ\IHCS STUDY
TI.'O AilEA SYSTEH JANUAitY 15 1979
1 1 1
•2 1 l.OE-12
AHCHOR 44 12
1. ()
1 AHCII 1
2 1\flCil 2
3 AnCfl 3
4 "..I:cn 4
5 .J\IICH 5
6 r,r:cn 6
7 AHCf! 7
0 AHCII7S
9 tJICH 0
10 BELU 1
11 c:::LU 2
12 llELU 3
13 IlELU 4
14 n:.-:LU 5
15 BF.LU 6
16 U:::LU 7
17 I~E.LU B
tn DEitlf 1
19 r.~mr 2
::o .m:.IUl 3
15 0.005
15 0.055
19 0.055
32 o.orm
37 0.055
12 o.o:m
73 0.055
21 o.o::m
73 0.055
15 0.055
15 O.CGG
54 0.055
9 0.055
5·~ 0.055
60 O.C55
63 O.C35
60 0. 035
B 0.055
20 0.055
24 0.055
.J .J
PAGE 0002
J .. J .... )
~--1 ' --~ ---] ,_ -J ---1 1 -~----I _,,_ 1 ---1 -~'1 -1 -1 1
i\NCITORAGE -FAII\BANKS Tll.ANSHISSIOH INTERTIE ECONOUIC FEASIBILITY PACE 0003
21 INTL 1 14 0.055
22 IUTL 2 14 0.055
23 INTL 3 19 0.055
24 COOP 1 B 0.016
25 COOP 2 B 0.0t6
26 Krl!T A 15 0.059 R · l/1986
27 IJiTL 4 71 0.035
23 IIITL 5 71 O.O:i5
29 INTL 6 71 0.0:35
30 IJIT'L 7 71 0.055
31 l!O::Erl 1 O.O::i::i
32 EKLliTH 30 0.016
33 UZLU 9 71 O.OG::i N 1/1986
34 ,ua;u 9 70 0.05:) N l/1985
3:3 AI1CJI10 104 0.057 rf l/1986
3& COAL 1 200 0.0:::)7 N 1/1937
37 AIICII 11 10<1· O.OJ7 n 1/1993 .,..,
uu COAL 2 200 O.OJ7 N 1/ 19G9
39 COAL 3 200 0.057 N 1/1990
40 CO;\L 4 200 O.O::i7 N 1/1991
41 CO.'\L 5 200 0.057 N 1/1992
.n 42 I'CAKi\1 7B 0.055 N . 1/1993
43 CEll 1 300 0.079 N 1/1994
4-J. GEH 2 3CO 0.079 N 1/1996
N 45 PEAKI\2 7B 0.055 N 1/1995
'-J -99
COOP 1
COOP 2
EKLUTN
-99
1
9
-99
.FAiflDA 26 12
1.0
1 CITE IT 1 5 0.059
2 cm:n 2 2 0.059
3 cnr~n 3 2 0.059
4 CIIEU 4 20 0.059
r. CIIEH 5 5 o.o::m ...
6 CHEN 6 24 O,O;j5
7 !JIES 1 3 0.29G
{} Dlf.S 2 3 0.295
9 DIES 3 2 0.295
10 ZEEH 1 17 0.055
11 ZEEI'l 2 17 O.OJ::i
12 ZEllrl 3 4 0.0()5
13 ZEHU 4 ·1-o.o::;::;
14 zt:r:HDi :1 0.295
15 7.El!HD2 3 0.!<:05
1u ZE!IiiD3 3 0.20:i
17 ZEBHD4 2 0.295
tn ZEt:rm5 2 0.:?.95
19 IJE!\L 1 26 0.059
20 UEAL D 3 0.,295
N cc
.... 1 J
Ail'CIIOIL4.GE -FAIRDANKS TRANSMISSION INTERTIE ECONOMIC FEASIBILITY
21 n:mT 1
::!2 HO!'.T 2
::!3 u:..LASK
::!5 COALFl
::!7 CO/\.LF2
213 COALF3
-1)9
-')9
1
9
-99
65 0.055
6() 0.055
5 0.295
100 0.057 N
100 0.057 N
100 0.057 N
.J .... J ; ' J . ,,_,,,)
l/ 1988
l/ 1992
l/1995
PAGE 0004 ,
, .I I
APP~NDIX D
DATA AND COST ESTIMATES FOR TRANSr11ISSION
INTERTIE AND GENERATING. PLANTS
"""' ! 0.1
""""" A. I
!"""-
!"""'
r
r-
!""""
,.....,
r
r-
II""'\
APPENDIX D
DATA AND COST ESTIMATES FOR
TRANSMISSION INTERTIE AND GENERATING PLANTS
DATA AND COST ESTIMATES FOR TRANSMISSION INTERTIE
Cost Summary and Disbursements for Intertie Facilities
Total Cost at 1979 Levels -$1000
Case IA Case IB Case IC Case ID Case II
1. Transmission Line:
Eng•g. & Constr. Supv. 3,012 3,012 7,988 3,012 15,442
Right-of-Way 8,837 8,837 7,573 8,837 12,994
Foundations 8,445 8,445 12,160 8,445 22,966
Towers 21,615 21,615 33,990 21,615 64,974
Hardware 477 477 477 477 1,096
Insulators 503 503 755 503 1,396
Conductor 10,761 10,761 17,663 10,761 361946
Subtotal 53,650 53,650 80,606 53,650 155,814
2. Substations:
Eng•g. & Constr. Supv. 1,352 1,352 1,855 2,816 6,902
Land 57 57 46 81 185
Transformers 1,703 1,703 3,291 1,703 11,917
Circuit Breakers 1,093 1,093 1,323 1,953 6,410
Station Equipment 1,223 1,223 1,933 1,345 4,375
Structures & Accessories 3,628 3,628 3,978 4,026 16,411
Subtotal 9,056 9,056 12,426 11,924 46,200
3. Control and Communications:
Eng•g. & Constr. Supv. 125 125 125 165 200
Equipment 2,375 2,375 2,375 3,135 3,600
Subtotal 2,500 2,500 2!500 3!300 3,800
Total Baseline 1979 Costs 65,206 65,206 95,532 68,874 205,814
Capital disbursements for each of the above cases are given on following
computation sheets, these being identical to those later used for financial
planning purposes with selected alternative.
0 - 1
CAPITAL INVESTMENT DISBURSEMENTS FOR TRANSMISSION INTERTIE
CASES lA & IB
1. TkANSHISSION LINE
ENGINEERIN& AND CONSTRUCTION
SUPERVISION
RIGHI Of. ~jAY
fOIINIJAIIIJN:l
10WE~S
HARDWARE
JNSULATOHS
CONDUCTOR
SUe-TOTAL
2. SUBS lA Tl ONS
ENGINEtRING & CONSTRUCTION
SUPERVISION
LANO
TRANSFORMERS
CIRCUIT BREAKERS
STATION EQUIPMENT
STRUCTURES & ACCESSORIES
SUB-TOTAL.
3. CONTROL. ANO COMMUNICATIONS
ENGlNEtRING ANO INSTALLATION
SUPERVISION
EQUIPMENT
19131-1
452
0
0
0
0
0
0
270
57
0
i)
0
0
0
0
1961-2
70:.3
U09
u
u
0
0
0
29&2
270
0
0
0
0
0
270
0
0
1'182-1
0
&&2~
0
0
0
0
0
ooc6
270
0
.341
219
2115
72b
1800
0
0
1982-2
'392
0
UIIO
0
0
0
II
2&72
270
0
590
383
428
1451
3128
0
0
1983-1
o'1.3
0
td ll'l
'HiT
72
~~
1b14
1634b
135
0
59b
383
428
11151
2'193
0,4
95\)
1983-2
723
II
0
11888
405
428
9147
225'11
135
0
170
109
122
0
~37
71
11125
TOTAL
3012
8837
Hllll'l
21615
477
503
107&1
53oso
1352
57
1703
1093
1223
3o28
9o5o
125
2375
----------------------------------------------------------------------SUB• TOTAL.
TOTAL
TOTAL FOR YEAR
0
779
0
0 0
3233 1:1428
4012 0
0 1004 1119& 2500
5800 20!342 24o24 b520b
14226 0 4&9o7 b52Ub
CAPITAL INVESTMENT DISBURSEMENTS FOR TRANSMISSION INTERTIE
CASE IC
1. TRANSMISSION LINE
EN~INEERING AND CONSTRUCTION
SUPt:.RVISlCI'I
fllG11T OF I'!AY
FUUNlJAflUNS
il)•IFHS
"IAiW~AHE
I NSIJL ~ l ORS
COtl'llJC TOll
SUIJ-TLITAL
2. SUBS TA 1I ONS
lNGI~Et~lNG & CONSTRUCTION
SUf't':i1YJ::ilUN
I. Mill
I H ~NSFllHMERS
~!NCU!T HRlAKERS
STATION [~UIP~ENT
ST~UCTURES ~ ~CCESSORIES
1981-1
1198
0
0
0
0
0
0
11'18
371
Ill>
0
0
0
0
SuH-TOTAL 417
l. CONTHOL AND COMMUNICATIONS
ENGlNEEfllNG ANU INSTALLATION
SUP~~V!SION 0
EQUIPMENT 0
1961-2
1997
1a•n
0
D
0
0
0
3690
371
0
0
0
0
0
371
0
0
1982-1
0
5b80
0
0
0
0
0
5b80
371
0
o':i8
2o5
387
79b
247o
0
0
1982-2
1038
0
3283
0
0
0
0
4322
371
0
J 152
lib!
o77
1591
4254
0
0
1963-1
1837
0
8877
15290
72
113
2649
28844
16b
0
1152
llb3
b71
1591
40b8
54
950
1963-2
1917
0
0
16&95
405
&42
15014
3bb12
16&
0
329
U2
193
0
840
71
1425
TOTAL
7988
7573
121b0
33990
477
755
17bb3
80b0b
160:.5
4o
3291
1323
19H
3978
125
ins
----------------------------------------------------------------------sue-TOTAL
TOT.&L
TOTAL F OH YEAR
0
1&15
0
0
112o1
587&
0
8156
0
0 - 2
0
8575
16731
10011
3391&
0
1496
391109
72925
2500
95532
.95532
-
-
-
-
-
-
-
CAPITAL INVESTMENT DISBURSEMENTS FOR TRANSMISSION INTERTlE
CASE ID
t. TRANSMISSION LINE
ENGINEERING AND CONSTRUCTION
SUPERVISION
RIGHT OF WAY
f0UNOAT10NS
towfH!I
HARDWARE
INSULATORS
CONDUCTOR
SUR-TOTAL
2. SUBS TA liONS
ENGINfERING & CONSTRUCTION
SUPERYISlON
LAND
TRANSFORMfRS
CIRCUIT BREAKERS
STATION EQUIPMENT
STRUCTURES & ACCESSORIES
1152
0
0
0
0
0
0
1152
56'5
81
0
0
0
0
753
2209
n
0
0
0
0
2962
'i63
0
0
0
0
0
0
6628
n
0
0
0
0
6628
563
0
'5111
391
?69
805
198?-?
"i92
n
??110
0
0
0
0
2672
563
0
"i96
684
471
1610
693
0
tolt>"i
9727
72
75
l6lll
18346
?8?
0
596
684
1171
1610
723
0
0
11!18!1
liO"i
1128
9147
22591
?82
0
170
195
B5
0
TOTAL
3012
88]7
flllll"i
21&15
471
503
10761
'i3650
2816
81
1703
1953
1345
4026
---------------------------------------~------------------------------SUR-TOTAL
3. CONTROL AND COMMUNICATIONS
ENGINFERING AND INSTALLATION
SUPERYISJON
EQUIPMENT
SUB-TOTAL
TOTAL
TOTAL FOR YEAR
0
0
0
1096
0
563
0
0
0
3525
11&21
2369
0
0
0
0
0
n
0
b"i96
15"i9?
3642
71
1254
1325
23313
0
782
911
1881
25348
118661
119211
lbr;
l13'i
BOO
688711
688711
CAPITAL INVESTMENT DISBURSEMENTS FOR TRANSMISSION INTERTIE
CASE II
1. TRANSMISSION LINE
ENGINEl~lNG AND CONSTRUCTION
SUPERVISIO"l
R!GHf OF WAY
fOUNDhflONS
TU><Ek3
HA><O>tAHE
l~"::uLA TORS
LUNDu~TOH
SU!l•TOTAL
2. SUfiS! ATIOI~S
t~GI~EE~!NG & CONSTRUCTION
S<JPi:.><VI;;!ON
LAc<D
Ti<A'JSFllRMEf<S
CIMLU!l HMEAKERS
STAilON EQUIPMENT
STHUC1URtS & ACCESSORIES
1981-1
2316
0
0
0
0
0
0
23!b
1360
185
0
0
0
0
SUB-TOTAL 15b'5
3. CONTHUL AND COMMUNICATIONS
tN~INEtR1NG ANU INSTALLATION
SUPERYlSIUN 0
tUUIPMtNl 0
1981·2
l861
32119
0
0
0
()
(i
1360
0
0
0
0
!)
1380
0
0
1982-1
0
9114b
0
0
0
0
()
1380
()
2383
1282
875
3282
9203
0
0
1<;82-2
2007
0
o20t
0
0
0
il
8208
1380
0
1:171
22414
1'531
6564
15890
0
0
1983-1
3552
0
1b7b5
29238
1bll
209
551.12
551171
690
0
4171
22411
1531
b5bll
15200
86
111110
1983-2
.HOb
0
0
l573b
932
1187
31140'1
72964
690
0
1192
6'11
4l6
0
2960
114
21!>0
TOTAL
1511112
12994
229M
6li97U
1096
1396
3&9'16
1558111
b902
185
11917
!>'110
ll.HS
16411
116200
200
3600
----------------------------------------------------------------------SUB-TOTAL 0
TOTAL 3882
TUUL FOR YEAR 0
0
81189
12371
D - 3
0
189118
0
0 1526 2271l 3800
211099 72197 78198 205814
1130117 0 150396 205814
B. Case IA & IB, Anchorage-Fairbanks Intertie, 230 kV s/c Transmission
System, 323 Miles
1. Cost Summary
T/L Cost @ $166,104 per mile
Anchorage Substation
Ester Substation
Control and Communications System
TOTAL
2. Anchorage Substation Costs
1 138-kV Circuit Breaker
Structures and Accessories
1 138-kV Air Disconnect Switch
Structures and Accessories
4 13.8-kV, 12-MVAR Shunt Reactor Bank
Structures and Accessories
4 13.8-kV Circuit Breaker
Structures and Accessories
4 13.8-kV Air Disconnect Switch
Structures and Accessories
4 10 -48 MVA, 138/230-kV Autotransfonner
Structures and Accessories
2 230-kV Circuit Breakers
Structures and Accessories
4 230-kV Air Disconnect Switch
Structures and Accessories
Land 2 acres
TOTAL
D -4
$53,652,000
3,974,000
5,080,000
2,500,000
$65,206,000
$ 86,000
108,000
11,000
38,000
420,000
315,000
154,000
119,000
31,000
64,000
1,020,000
538,000
338,000
407,000
70,000
232,000
23,000
$3,974,000
-
-
-
-
'*" I
3. Ester Substation Costs
1 138-kV Circuit Breaker
Structures and Accessories
1 138-kV Air Disconnect Switch
Structures and Accessories
3 13.8-kV, 12-MVAR Shunt Capacitor Bank
Structures and Accessories
3 13.8-kV Circuit Breaker
Structures and Accessories
4 10, 46 MVA, 138/230-kV Autotransformer
Structures and Accessories
3 230-kV Circuit Breaker
Structures and Accessories
9 230-kV Air Disconnect Switch
Structures and Accessories
3 230-kV, 16-MVAR Reactor
Structures and Accessories
Land 3 acres
TOTAL
$ 86,000
108,000
11,000
38,000
265,000
198,000
116,000
89,000
984,000
516,000
507,000
613' 000
157,000
528,000
474,000
356,000
34,000
$5,080,000
C. Case IC, Anchorage-Fairbanks Intertie, 345 kV s/c Transmission
System, 323 miles
1. Cost Summary
T/L Cost@ $249,551 per mile
Anchorage Substation
Ester Substation
Control and Communications System
TOTAL
0 - 5
$80,606,000
6,195,000
6,231,000
2,500,000
$95,532,000
2. Anchorage Substation Costs
1 138-kV Circuit Breaker
Structures and Accessories
1 138-kV Air Disconnect Switch
Structures and Accessories
1 13.8-kV 16-MVAR Shunt Reactor Bank
Structures and Accessories
1 13.8-kV Circuit Breaker
Structures and Accessories
1 13.8-kV Air Disconnect Switch
Structures and Accessories
4 Ul -48-MVA, 138/345-kV Autotransformer
Structures and Accessories
2 345-kV Circuit Breaker
Structures and Accessories
5 345-kV Air Disconnect Switch
Structures and Accessories
4 10 -33-1/3-MVAR, 345-kV Shunt Reactor
Structures and Accessories
Land 2 acres
TOTAL
3. Ester Substation Cost
1 138-kV Circuit Breaker
Structures and Accessories
1 138-kV Air Disconnect Switch
Structures and Accessories
1 13.8-kV, 15-MVAR Shunt Capacitor
Structures and Accessories
1 13.8-KV Circuit Breaker
Structures and Accessories
1 13.8-kV Air Disconnect Switch
Structures and Accessories
D - 6
$ 86,000
108,000
11,000
38,000
112,000
84,000
39,000
30,000
8,000
16,000
1,936,000
725,000
653,000
340,000
114,000
330,000
882,000
660,000
23,000
$6,195,000
$ 86,000
108,000
11,000
38,000
132,000
100,000
39,000
30,000
8,000
16,000
-I
-
-
~'
-i
-3. Ester Substation Cost (Continued)
4 10 -48 MVA, 138/345-kV Autotransformer
Structures and Accessories
2 345-kV Circuit Breaker
Structures and Accessories
5 345-kV Air Disconnect Switch
Structures and Accessories
4 10 -33-1/3-MVAR, 345-kV Shunt Reactor
Structures and Accessories
$1,936,000
725 '000
653,000
340,000
114,000
330,000
882,000
660,000
~ Land 2 acres 23,000
$6,231,000 -
D.
r
r
TOTAL
Case ID, Anchorage-Fairbanks Intertie, 230 kV s/c Transmission
System, 323 miles
1. Cost Summary
T/L Cost@ $166,104 per mile
Anchorage Substation
Palmer Substation
Healy Substation
Ester Substation
Control and Communications System
TOTAL
$53,652,000
3,976,000
1,434,000
1,434,000
5,080,000
3,300,000
$68,876,000
2. Anchorage-Palmer, 230 kV s/c Transmission System, 40 miles
T/L Cost@ $166,104 per mile
Anchorage Substation
Palmer Substation
Control and Communications System
TOTAL
0 - 7
$ 6,644,000
3,976,000
717,000
1,450,000
$12,787,000
3. Palmer-Healy, 230 kV s/c Transmission System, 190.5 miles
T/L Cost@ $166,104 per mile
Palmer Substation
Healy Substation
Control and Communications System
TOTAL
$31,726,000
717,000
717,000
400,000
$33,560,000
4. Healy-Ester, 230 kV s/c Transmission System, 92 miles
T/L Cost@ $166,104 per mile
Healy Substation
Ester Substation
Control and Communications System
TOTAL
5. Anchorage Substation Costs
1 138-kV Circuit Breaker
Structures and Accessories
1 138-kV Air Disconnect Switch
Structures and Accessories
4 13.8-kV, 12-MVAR Shunt Reactor Bank
Structures and Accessories
4 13.8-kV Circuit Breaker
Structures and Accessories
4 13.8-kV Air Disconnect Switch
Structures and Accessories
4 10 -48-MVA, 138/230-kV Autotransformer
Structures and Accessories
2 230-kV Circuit Breakers
Structures and Accessories
4 230-kV Air Disconnect Switch
Structures and Accessories
Land 2 acres
TOTAL
D - 8
$15,282,000
717,000
5,080,000
1,450,000
$22,529,000
$ 86,000
108,000
11,000
38,000
420,000
315,000
154,000
119,000
31,000
64,000
1,020,000
538,000
338,000
407,000
70,000
234,000
23,000
$ 3,976,000
-
~
I
-
-
-
0 - 9
8. Ester Substation Costs (Continued)
9 230-kV Air Disconnect Switch
Structures and Accessories
3 230-kV, 16-MVAR Reactor
Structures and Accessories
Land 3 acres
TOTAL
E. Case II, Anchorage -Upper Susitna -Fairbanks Intertie
345 kV 2-s/c Anchorage-Devil Canyon 155 miles
230 kV 2-s/c Devil Canyon-Ester 189 miles
230 kV 2-s/c Watana-Devil Canyon 27 miles
1. Cost Summary
$ 157,000
528,000
4 74,000
356,000
34,000
$5,080,000
Anchorage -Devil Canyon T/L @ $506,640 per mile* $ 78,529,000
Devil Canyon-Ester T/L@ $353,386 per mile* 66,790,000
Watana -Devil Canyon T/L @ $388,698 per mile* 10,495,000
Anchorage Substation
Devil Canyon Substation
Ester Substation
Watana Substation
Control and Communications System
TOTAL
* Includes two single-circuit lines.
D -10
23,160,000
10,109,000
11' 339,000
1,592,000
3,800,000
$205,814,000
I
-
-'
-
-
-
-
2. Anchorage Substation Cost
2 138-kV Circuit Breaker
Structures and Accessories
2 138-kV Air Disconnect Switch
Structures and Accessories
7 10-210.5-MVA, 138/345-kV Autotransformer
Structures and Accessories
9 345-kV Circuit Breaker
Structures and Accessories
18 345-kV Air Disconnect Switch
Structures and Accessories
2 345-kV, 200-MVAR Shunt Capacitor
Structures and Accessories
Land 5 acres
TOTAL
3. Devil Canyon Substation Cost
3 345-kV Circuit Breaker
Structures and Accessories
6 345-kV Air Disconnect Switch
Structures and Accessories
7 10-90.3-MVA, 230/345-kV Autotransformer
Structures and Accessories
6 230-kV Circuit Breaker
Structures and Accessories
12 230-kV Air Disconnect Switch
Structures and Accessories
Land 4 acres
TOTAL
D -11
$ 172,000
216,000
23,000
76,000
8,516,000
3,404,000
2,938,000
1,528,000
408,000
1,191,000
2,647,000
1,984,000
57,000
$23,160,000
$ 981,000
509,000
138,000
399,000
3,418,000
1,466,000
1,015,000
1,224,000
210,000
703,000
46,000
$10,109,000
4. Ester Substation Cost ~
$ -2 138-kV Circuit Breaker 172,000
Structures and Accessories 216,000
2 138-kV Air Disconnect Switch 23,000
Structures and Accessories 76,000
7 10 -65-MVA, 138/345-kV Autotransfonner 2' 086,000
Structures and Accessories 1 '253, 000
6 13.8-kV Air Disconnects 46,000 ~ Structures and Accessories 96,000
6 13.8-kV Circuit Breaker 232,000
Structures and Accessories 181,000
6 13.8-kV, 6-MVAR Capacitor 264,000
Structures and Accessories 200,000 """"r
9 230-k V Circuit Breaker 1,523,000
Structures and Accessories 1,838,000 ~
18 230-k V Air Disconnect Switch 314,000
Structures and Accessories 1,055,000
~
2 230-kV, 80-MVAR Capacitor 968,000
Structures and Accessories 727,000
~ Land 6 acres 69,000
TOTAL $11' 339' 000 -
5. Watana Substation Cost
~
3 230-kV Circuit Breakers $ 508,000
Structures and Accessories 613,000 -
6 230-kV Disconnect Switch 106,000
Structures and Accessories 348,000
Land 17,000
TOTAL $ 1,592,000 ~
~
-
D -12
-
-·
-'
0.2 DATA AND COST ESTIMATES FOR GENERATING PLANTS
B. Cost Estimates and Disbursements for Generating Plants
Note: Only specific units affected by interconnection of
Anchorage and Fairbanks systems are considered:
1. Northpole #3 (NORT 3) 69 MW SCGT in Fairbanks Area.
This unit is necessary for independent system expansion.
Will not be required if interconnection assured.
Rating -68.6 MW (net) Combustion Turbine
Fuel -Distillate from North Pole Refinery
Ref. Table B-1, Appendix B of Stanley Consultants Review Report
For 1983 Installation:
Unit Cost =
NOx Cost
$31,482,000
1,387!000
Subtotal $32,869,000 or $476/kW
Assoc. Transm.1/ 4,783!000
TOTAL $37,652,000 or $546/kW
See Also: P. 45 of GVEA Power Supply Study -1978 by Stanley
Consultants & P. 28 -Table 10 Escalation Rates.
GNP Deflators
Period
1983-1980
1980-1979
Labor (~ 20%) Material (~80%)
1.085 1.07
1.095 1.08
Summary of Costs:
Facil it~ 1979 Baseline
Gas-Turbine Unit $24,385,000 or
Assoc. Transm. 3,549,000
Total Capital Investment $27 '934 '000 or
Disbursements -$1000
Pre-Oeerational Period 1st Year (1983)
Gas-Turbine Unit 7,315 (30%)
Assoc. Transm. 355 (10%)
Total Facilities $7,670
Composite
1. 075
1. 085
Costs
$353/kW
$405/kW
2nd Year (1984)
17,070 (70%)
3,194 (90%)
$20,264
l/ Relocation of facilities and expansion of existing Northpole substation.
D -13
2. Beluga #9 (BELU 9) 71 MW RCGT in Anchorage Area.
This unit will be postponed for one year by interconnection,
from beginning year 1985 to 1986.
This unit will draw on Beluga gas reserves for fuel supply.
Design of unit is assumed to be simple-cycle, similar to
existing units on Chugach System-Ref. Beluga Units 1, 2, 4, 6, & 7.
Estimated Cost of Unit:
From Reference Cost Estimate for NORT 3 at Fairbanks
Cost at Bus-bar of 69 MW unit $353/kW
By comparison for 71 MW unit $350/kW
Now applying Alaskan construction cost location factors from
Battelle Report, Table 6.3, P. 6.12
Applicable factor from Fairbanks to Beluga = i:~2 = 1.35
Estimated Cost = $473/kW or $33,548,000
Disbursements:
Pre-Operational Period
Independent Expansion
Interconnected Expansion
Proportion of Total
Investment -$1000
1st Year
1983
1984
30%
10,064
Associated Transmission Facilities:
2nd Year
1984
1985
70%
23,484
Transmission Line (allow 50 miles)@ $126,000/m"ile
Total Cost of Line Facilities= $6,300,000
Substation Additions at Beluga and Knik Arm = $2,650,000
Total Transmission Line and Substation Facilities= $8,950,000
Disbursements:
Pre-Operational Period
Independent Expansion
Interconnected Expansion
Proportion of Total
Investment -$1000
Transm. & Substations
Total Facilities
1979 Baseline Costs
1st Year 2nd Year
1983 1984
1984
10%
895
D -14
1985
90%
8,055
$42,490,000
-'
-\
-
3. Northpole #4 (NORT 4) 69 MW SCGT in Fairbanks Area.
This unit is necessary for independent system expansion.
Will not be required with an interconnected system.
Scheduled In-Service Beginning Year 1990
Unlike NORT 3, no transmission additions will be required, with
completion of relocation and expansion of the substation.
Considering only cost of unit with assoc. transf. and swgr.
For 1979 Baseline Cost Levels:
Total Capital Investment = $25,185,000 or $365/kW
Disbursements:
Pre-Operational Period
GT unit, transf. & swgr.
1st Year (1988)
7,555 (30%)
2nd Year (1989)
17, 630 (70%)
4. Anchorage Peaking Unit #2 (PEAK A2) 78 MW SCGT
This unit is required for both independent and interconnected
systems but in-service date is advanced one year with intertie.
Basing cost of addition on Northpole Unit 4 installation -
i.e. SCGT unit with associated transformer and switching.
Estimated cost based on rating, with allowance for scale.
For 1979 Baseline Cost Levels:
69 MW GT Unit Total Cost = $25,185,000 or $365/kW
78 MW GT Unit Total Cost = $28,080,000 or $360/kW
Now applying Alaskan construction cost location adjustment factor
from Battelle Report Table 6.3 P. 6.12
Applicable factor from Fairbanks to Anchorage = 1/1.2 = 0.83
Total Capital Investment = $23,400,000 or $300/kW
Disbursements:
Year
1
2
Independent
1994
1995
Interconnected
1993
1994
D -15
% Total
30
70
Cost -
$1000
7,020
16,380
5. Northpole #5 (NORT 5) 69 SCGT in Fairbanks Area.
This unit is necessary for' independent system expansion.
Will not be required with an interconnected system.
Scheduled In-Service Beginning Year 1997
The addition of this unit completes the expansion for the inde-
pendent systems of the Railbelt Area, the time frame is such that
for interconnected expansion, with the staged increments of hydro
capacity from the Susitna development, the last unit at Devil
Canyon would be on-line beginning year 1997.
Similar to NORT 4, no transmission additions are assumed to be
required, such that power would be delivered from the expanded
Northpole Substation to the existing system.
Considering only cost of unit, with associated transf. and swgr.
For 1979 Baseline Cost Levels:
Total Capital Investment = $25,185,000 or $365/kW
Disbursements:
($1000)
Pre-Operational Period:
GT unit, transf. & swgr.
1st Year (1995)
7,555 (30%)
D -16
2nd Year (1996)
17 '630 (70%)
-
-
r .,
6. Anchorage #11 (ANCH 11) 104 MW Coal-Fired Steam-Electric Plant.
This unit will be required for independent system expansion but
will be postponed, with interconnection, from in-service 1988
to 1993.
Cost estimate for this plant is based on Healy Unit 2 estimate
prepared by Stanley Consultants, with applicable Alaskan con-
struction cost location adjustment factor.
From Stanley Consultants Report to GVEA, Appendix A, P. A-1.
For 1984 Installation Date (1978 Cost Levels):
Healy Unit 2 Plant (Without FGD):
Plant and Equipment
Contingency
Total Construction Cost
Eng'g., Legal & Overhead
TOTAL
Escalating @ 10% to 1979 Cost Level
Total Baseline 1979 Cost
without FGD =
$102,924,000
3,088!000
$107,012,000
14,982,000
$121,994,000
$134!160,000
Now Including Cost of Desulphurization:
Plant and Equipment $111,174,000
Contingency 3 !335 ,000
Total Construction Cost $114,509,000
Eng' g., Legal & Overhead 16,031,000
TOTAL $130,540,000
Escalating @ 10% to 1979 Cost Level . .
Total Basel·ine 1979 Cost
with FGD = $143,520!000
Associated Transmission Facilities:
or $ 990/kW
or $1029/kW
or $1173/kW
$1290/kW
or $1069/kW
or $1101/kW
or $1255/kW
$1380/kW
Assuming relatively short transmission line with substation facil-
ities required, for connection to existing AML&P transmission
system in Anchorage area.
Cost Estimate for Transmission Line:
Transmission Line (allow 30 miles) @ $126,000/mile
Total Cost of Line Facilities = $3,780,000
D -17
Cost Estimate for Substation Facilities:
Equipment
Contingency
Total Construction Cost
Eng'g., Legal & Overhead
TOTAL
Escalating @ 10% to 1979 Cost Level
Total 1979 Baseline Cost
Summary of Costs:
$2,700,000
203,000
$2,903,000
377,000
$3,280,000
$3,608,000
WO/FGD W/FGD
Coal-Fired Plant (104 MW)
Transmission Line
Substation Facilities
$134,160,000
3,780,000
3,608,000
$143,520,000
3,780,000
3,608,000
TOTAL $141,548' 000 $150,908,000
Now applying Alaskan construction cost location adjustment factor
from Table 6.3 P. 6.12 of Battelle Study Report:
From Healy to Anchorage -Location Factor = 1. 7/2.42 = 0.70
Applying this factor, Total Costs = $99~084,000 $105!636!000
or = $953/kW $1016/kW
Disbursements -$1000
Coal-Fired Plant (ANCH 11)
1979 Baseline Costs
Pre-O~erational Year: ~ Total W07FGD W7FGO
IndeQendent Interconnected
1. 1982 1987 2 1,878 2,009
2. 1983 1988 8 7,513 8,037
3. 1984 1989 30 28,174 30,139
4. 1985 1990 37 34,747 37,172
5. 1986 1991 20 18,783 20,093
6. 1987 1992 3 2,817 3,014
Associated Transmission Facilities
5. 1986 1991 20 1,034 1,034
6. 1987 1992 80 4,138 4,138
0 -18
-
~
"""\
~
'
~
""""'
....
-
} -
r
!""'-.
I
-
r""'
i
i
7. Coal-Fired Unit F2 (COAL F2) 100 MW in Fairbanks Area.
This unit will be required for both the independent and inter-
connected system expansions, with generation reserve sharing only.
However, with both reserve sharing and firm power transfer, it
is replaced, together with COAL 5, by a 300 MW unit (COAL 6).
This unit will be very similar to ANCH 11, which in turn was
based on the Healy Unit 2 Plant, as reported by Stanley Con-
sultants. The unit costs will be increased proportionately,
to allow for the change of unit size from 104 MW to 100 MW.
This has been economically scaled using the nomograph
(Figures D-1 and D-2) in this appendix.
For Generating Plant COAL F2:
Plant Cost Estimates:
Without FGD
With FGD
1979 Baseline Cost Levels
$120,000,000 or $1200/kW
$130,000,000 or $1300/kW
Associated Transmission Facilities:
Assuming a plant site location at or near Healy, the trans-
mission line and substation requirements are similar to those
required for Healy Unit 2. Reference Stanley Consultants
Review Report to GVEA, Appendix A, P. A-1:
Transmission Facility Costs:
Equipment and Material
Contingency
Construction Cost
Eng' g., Legal & Overhead
TOTAL
D -19
1979 Cost Levels
(1.1 x 1978 Costs)
Transmission Substation
Line Facilities
$15,510,000 $3,348,000
465!000 100,000
$15,975,000 $3,448,000
2,455~000 102!000
$181430,000 $3,5502000
Disbursements -$1000
Coal-Fired Unit (COAL F2):
1979 Baseline Costs
Pre-Operational Year: ?{; Total W07FGO W7FGD
1. 1986 2 2,400 2,600
2. 1987 8 9,600 10,400
3. 1988 30 36,000 39,000
4. 1989 37 44,400 48,100
5. 1990 20 24,000 26,000
6. 1991 3 3,600 3,900
Associated Transmission Facilities:
5. 1990 20 4,400 4,400
6. 1991 80 17,580 17,580
8. Coal-Fired Unit 5 (COAL 5) 200 MW in Anchorage Area.
This unit will be required for both the independent and inter-
connected system expansions, with generation reserve sharing only.
However, with both reserve sharing and firm power transfer, it
is replaced, together with COAL F2, by a 300-MW unit (COAL 6).
The cost estimate for this generating plant was obtained by scaling
costs from a base reference of 100 MW to 200 MW, using the nomograph
(Figures 0-1 and D-2) contained in this Appendix. Then Alaskan
construction cost location adjustment factors were used to determine
the cost relevant to the Beluga site in the Anchorage Area.
From Healy to Beluga-Location Factor = 2. 75/2.42 = 1.14
For Generating Plant COAL 5
Plant Cost Estimates:
Without FGD
With FGD
1979 Baseline Cost Levels ($1000)
Healy Site Beluga Site
$165,000 or· $825/kW
$175,000 or $875/kW
D -20
$188,000 or $ 940/kW
$200,000 or $1000/kW
-
-·I
~"""'
I
-
-
I""'
i
I
-\
'( I
Associated Transmission Facilities:
Assuming a section of transmission line and substation facilities,
for connection to existing transmission system in Anchorage area.
Transmission Line (allow 50 miles) @ $174,000/mile
Total Cost of Line Facilities = $ 8,700,000
Substation Terminal at Knik Arm =
Total Transmission Facilities
Disbursements -$1000
Coal-Fired Unit (COAL 5)
Pre-O~erational Year: %
1. 1986
2. 1987
3. 1988
4. 1989
5. 1990
6. 1991
Associated Transmission Facilities:
5. 1990
6. 1991
3,545,000
$12,245,000
1979 Baseline
Total
2
8
30
37
20
3
20
80
WO/FGD
3,760
15,040
56,400
69,560
37,600
5,640
2,450
9,795
9. Coal-Fired Unit 6 (COAL 6) 300 MW in Anchorage Area.
Costs
W7FGD
4,000
16,000
60,000
74,000
40,000
6,000
2,450
9,795
This unit will not be required either for independent or inter-
connected system expansion for generation reserve sharing only.
However, with reserve capacity sharing and firm power transfer,
it will replace both COAL F2 and COAL 5.
The cost estimate for this plant has been derived from the cost
for the reference 100 MW plant, using the nomograph (Figures D-1
and D-2) contained in this Appendix. This enabled consideration
of economies of scale obtained when the unit capacity is changed
from 100 to 300 MW and the differential costs associated with the
two sites, according to the Alaskan construction cost location
adjustment factor, similar to that developed for COAL 5.
D -21
Plant Cost Estimates:
Without FGD
With FGD
1979 Baseline Cost Levels ($1000)
Healy Site Beluga Site
$200,000 or $667/kW
$240,000 or $800/kW
$228,000 or $760/kW
$274,000 or $913/kW
Associated Transmission Facilities:
Assuming a section of transmission line and substation facilities,
for connection to existing transmission system in Anchorage area.
Transmission Line (allow 50 miles) @ $240,000/mile
Total Cost of Line Facilities = $12,000,000
Substation Terminal at Knik Arm =
Total Transmission Facilities
Disbursements -$1000
Coal-Fired Unit (COAL 6)
6,250,000
$18,250,000
1.979 Baseline
Pre-O~erational Year: % Total WO/FGD
1. 1986 2 4,560
2. 1987 8 18,240
3. 1988 30 68,400
4. 1989 37 84,360
5. 1990 20 45,600
6. 1991 3 6,840
Associated Transmission Facilities:
5. 1990 20 3,650
6. 1991 80 14,600
D -22
Costs
W/FGD
5,480
21,920
82,200
101,380
54,800
8,220
3,650
14,600
-
~.
~
~
10. Coal-Fired Unit 2 (GEN 2) 300 MW at New Site in Anchorage Area.
r-This unit is required for both independent and interconnected
systems but in-service date postponed one year with intertie.·
~
I
-
For Generating Plant COAL 6:
It is assumed that site will be near to previous plant location at
Beluga, in sufficient proximity to assume cost basis to be identical,
with difference only in the time frame for construction.
Cost estimate for plant and associated transmission facilities are
then identical to that for COAL 6.
Disbursements -$1000
Coal-Fired Unit (GEN 2)
1979 Baseline Costs
Pre-O~erational Year: % Total WO/FGD W/FGD
Inde~endent Interconnected
1. 1989 1990 2 4,560 5,480
2. 1990 1991 8 18,240 21,920
3. 1991 1992 30 68,400 82,200
4. 1992 1993 37 84,360 101,380
5. 1993 1994 20 45,600 54,800
6. 1994 1995 3 6,840 8,220
Associated Transmission Facilities:
5. 1993 1994 20 3,650 3,650
6. 1994 1995 80 14,600 14,600
D -23
D.3 DATA AND COST ESTIMATES FOR SUPPLY OF CONSTRUCTION POWER
TO UPPER SUSITNA PROJECT SITES
The requirements of the combined Rai.lbelt area generation expansion, with
inclusion of both Watana and Devil Canyon power from the Susitna develop-
ment, schedules Unit 1 from Devil Canyon in January 1995, only 3 years
after the first unit goes on line at Watana Damsite. Assuming as a first
construction schedule that of the U.S. Army Corps of Engineers, the con-
struction periods are 6 and 5 years, respectively, for Watana earthfill
dam and the concrete arch dam at Devil Canyon. Thus, with the generation
staging of the plan for interconnection, the total construction period
would be 11 years, with pre-operational construction periods of 6 years
for Watana and 5 years for Devil Canyon. There would be concurrent con-
struction during 2 years.
Prior to the first unit on-line at Watana, construction power would be
required for 6 years at Watana and 2 years at Devil Canyon. It is assumed,
for purposes of analysis, that separate provision would need to be made
for the full construction power needs at both sites. From estimates by
the Consultants:
Connected Load
Watana
Devil Canyon
4000 kW (est·imated at 3750 kW)
3400 kW (estimated at 3350 kW)
Operational Assumptions for Both Sites:
6 months/yr intensive operation @ 0.65 LF
6 months/yr light loading @ 0.30 LF
Corresponding to construction planning assumptions of U.S. Corps of Engineers.
Figure 7-1 of Chapter 7 shows the recommended sites at Watana and Devil
Canyon for the Susitna development and the routing of the tap line to the
sites from the transmission tap station, located on the main transmission
corridor for the Anchorage-Fairbanks Intertie. The tap line can later be
used also for a subtransmission circuit for distribution in the area,
following the completion of the construction program.
D -24
~
~
-'
~
'
-
·-
-
-
-l
A. Alternative 1 -Cost of Construction Power by Diesel Generation
(This will constitute benefits for B/C analysis)
Basic Assumptions:
1.
2.
Diesel units purchased for Watana will be used for a period of
6 years and then sold at depreciated value.
Diesel units purchased for Devil Canyon will be used for a period
of 5 years and then sold at depreciated value.
3. No provision will be made at Devil Canyon for tapping 230-kV
line from Watana once energized, due to prior purchase of
diesel units for construction power.
4, Diesel units will be installed in multiples of 675 kW net/unit.
6 units at Watana 4050 kW net capacity
5 units at Devil Canyon 3375 kW net capacity
From previous construction power estimates for diesel unit installations:
1979 Cost = $700/kW
Installation for Watana construction power units would be made in 1985,
ready for service in January 1986.
Escalating@ 7% through 1985 -Cost Level = $1050/kW.
Installation for Devil Canyon construction power units would be made in
1989, ready for service in January 1990.
Escalating@ 7% through 1989 -Cost Level = $1377/kW.
Cost of Diesel Installations:
Watana = $1050 X 4050 = $4,252,500
Devil Canyon = $1377 x 3355 = $4,647,375
This capital investment would be disbursed in 1985 and 1989, respectively,
for Watana and Devil Canyon.
D -25
Cost of Diesel Operation During Construction
Basic Assumption: Maximum Coincident Demand = Connected Load
This, incidentally, introduces a measure of maximum loading which tends to
compensate for an initial lower estimate of construction power requirements
by a factor equivalent to projected diversity.
Average Energy Usage Per Year:
Watana 3750 (0.65 + 0.30) 8760 kWh = 15,603,750 kWh
2
Say 15.60 GWh/yr for 6 yrs.
Devil Canyon 3350 (0.65 + 0.30) 8760 kWh = 13,939,350 kWh -2-
Say 13.94 GWh/yr for 5 yrs.
Operating Characteristics of Diesel Units:
Fuel Rate Assumed -13 kWh/gal (diesel fuel)
Base Price for Diesel Fuel -41. 2 t/ga 1 (1977 actual)
Plus 5% Allowance for Lube Oil -43.3 ¢/gal
To be escalated @ 11% to 1980 and 7% thereafter.
O&M for diesel units estimated at 5% of total cost of incremental generation.
Year Watana Dam Year Devil Canyon
1986 $1,118,500
1987 1,198,100
1988 1,280,800
1989 1,371,200
1990 1,468,000 1990 $1,311,800
1991 1,569,400 1991 1,402,400
1992 1,501,300
1993 1,607,300
1994 1,708,800
D -26
-
-
-
DIESEL GENERATION OPERATING COSTS
Diesel Fuel Including Lube Oil O&M Total Operating Cost
Year t/gal mills/kWh (mills/kWh) (mills/kWh)
!"""" 1977 43.3 33.3 1.7 35.0
1978 48.1 37.0 1.9 38.9
!"""" 1979 53.3 41.0 2.1 43.1
1980 59.2 45.5 2.3 47.8 -1981 63.3 48.7 2.4 51.1
f"""'. 1982 67.8 52.2 2.6 54.8
1983 72.5 55.8 2.8 58.6
.,..... 1984 77.6 59.7 3.0 62.7
1985 83.0 63.8 3.2 67.0
1986 88.8 68.3 3.4 71.7
-1987 95.1 73.2 3.6 76.8
1988 101.7 78.2 3.9 82.1
1989 108.8 83.7 4.2 87.9
1990 116.5 89.6 4.5 94.1 ,.,..,
1991 124.6 95.8 4.8 100.6
1992 133.3 102.5 5.2 107.7
1993 142.7 109.8 5.5 115.3
~ 1994 152.6 117.4 5.9 123.3
r"'"'·
I
~
""""' i
! D -27
Depreciated Value of Diesel Units:
Basic Assumption of 15-Year Service Life"
Assume Straight-Line Depreciation
1. Watana Installation
Installed Cost (new) = $4,252,500 (1985)
Depreciation/Year = 283,500
Depreciated Value (1991) 6-Year Period = $2,551,500
2. Devil Canyon Installation
Installed Cost (new) = $4,647,375 (1989)
Depreciation/Year = 309,825
Depreciated Value (1994) 5-Year Period = $3,098,250
Discounted Value of Benefits (Diesel Generation Alternative)
Base Year 1979 (Discounted @ 7%)
Year
1979
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
PWF 1
1.00000
0.66634
0.62274
0.58200
0.54393
0.50834
0.47509
0.44401
0.41496
0.38781
0.36244
Construction
Cost ($)
4,252,500
4,647,375
-2,551,500
-3,098,250
Operating
Cost ($)
1,118,500
1,198,100
1,280,800
1,371,200
2,779,800
2,971,800
1,501,300
1,607,300
1,718,800
(-sign denotes assumed resale value)
D -28
Total Cost
($)
4,252,500
1,118,500
1,198,100
1,280,800
6,018,575
2' 779,800
420,300
1,501,300
1,607,300
-1,379,450
TOTAL PW 1
Present Value
($)
2,833,611
696,535
697,294
696,666
3,059,482
1,320,655
186,617
622,979
623,327
-499!968
10,237,198
-
-
-
-.
-
-
-
-
-
r""
1
B. Alternative 2 -Cost of Construction Power by Temporary Tapline
(This will represent costs for 8/C analysis)
Basic Assumptions:
1. Same loading conditions and time frame as per Alternative 1.
2. Sequence of temporary construction as per previous assumptions.
3. Reuse of substation equipment possible after construction program
completed but no salvage value on line material. (Note: Possible
reuse as distribution line to recreational areas.) Assume resale
value of substation equipment to be depreciated value based on
25-year life of facilities.
4. Cost of power based on wholesale rates in Railbelt area.
From previous estimates for line and substation facilities:
Construction Costs:
69-kV subtransmission line $3,200,000 (1985 level)
Susitna tap station+ Watana substation facilities
Baseline cost level = $26.50/kVA (1979)
Escalating @ 7% to 1985 (6 yrs)
Construction Cost = $40/kVA (1985)
Total Construction Cost = $400,000
69/4.16 kW, 5 MVA, Substation at Devil Canyon (1979 levels)
Transformer $45,000 fob factory (Virginia)
A 11 owing 5% for shipping and handling, etc.
At jobsite cost = $47,250
Fused Disc. Sw. = 2,750
Structure, Cone, pad, etc. :::: 5,000
TOTAL $55,000
0 -29
Construction Costs:
Equi prnent
Labor
Design
60%
30%
10%
$55,000
28,000
9,000
TOTAL $92,000 or $18.4/kVA (1979)
Substation would be installed in 1989.
Escalated at 7% from 1979 levels.
1989 Construction Cost = $36.2/kVA
Total Construction Cost= $181,000
O&M For Tem~orart Construction Power Line Maintenance
69 kV Wood Pole line -Approximately 40 miles 1 ong (11
Total O&M
Year $/M Costs ($)
1986 330 13,200
1987 345 13,800
1988 360 14,400
40 M Total 1989 380 15,200
1990 400 16,000
1991 420 16,800
29 M Total{
1992 440 12,800
1993 460 13,300
1994 485 14,000
+ 29 M)
Note: That due to overlap in construction schedules for Watana and Devil
Canyon the capacity of the Susitna tap station will need to be
doubled by addition of second 5 MVA transfer. This will be moved
to spares inventory after 2 years.
D -30
-1
-
~
1
-
-
-
-
....
r
I
~
I
~
!
Cost of Construction Power Supplied over Temporary Line Facility
Based on information from RWRA 2/1/79
Wholesale rates for Railbelt area, with combination of Susitna
Hydropower and large coal-fired plant feeding interconnection.
Year
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
2000
Rate of Change
8%
7%
5%
Wholesale Rate
(mills/kWh)
17
18
20
22
24
26
28
30
32
34
37
39
42
45
47
50
D -31
Cost of Energy (mills/kWh)
Bus-Bar Substation
Note: 1977 Cost Levels
27.3
31.0
33.2
36.2
30.2
33.5
36.6
39.1
Conversion of Total Energ~ Rate to 2-Part Tariff """"
Assumption: 100 MW Power Transfer at 0.6 LF is 525.6 GWh/yr.
"""' i
Total Revenue 50/50 Revenue From: Eguivalent Tariff ~
Bulk Rate for Bulk Rate Demand En erg~ Demand Rate Energy Rate
Year {mills/kWh2 ($1000) ($1000) ($1000) ($/kWh) (mi 11 s/kWh) -;
1979 17 8,935.2 4,467.6 74.5 8.5
1980 18 9,460.8 4,730.4 78.8 9.0 -
1981 20 10,512.0 5,256.0 87.6 10.0
1982 22 11,563.2 5, 781.6 96.4 11.0 ~
1983 24 12,614.4 6,307.2 105.1 12.0
""""'!
1984 26 13,665.6 6,832.8 113.9 13.0
1985 28 14,716.8 7,358.4 122.6 14.0 """
1986 30 15,768.0 7,884.0 131.4 15.0
1987 32 16,819.2 8,409.6 140.2 16.0 -
1988 34 17,870.4 8,935.2 148.9 17.0
1989 37 19,447.2 9,723.6 162.1 18.5
,
1990 39 20,498.4 10,249.2 170.8 19.5 -
1991 42 22,075.2 11,037.6 184.0 21.0 I
'
1992 45 23,652.0 11,826.0 197.1 22.5 "'"1
1993 47 24,703. 2 12,351.6 205.9 23.5
~
1994 50 26,280.0 13,140.0 219.0 25.0
.,
Allow 5% adder for line and substation losses -assume the resulting rates are
applicable to price construction power.
"""'' I
-,
D -32
-Cost Estimate for Construction Power
-Assuming same loading as for diesel generation alternative.
L Watana Damsite (3750 kW 1 15.6 GWh/tr) ,....
Demand Rate Energy Rate Construction Power Costs
Year ($/kW) (mills/kWh) Demand ($) Energt ($) Total ($)
1986 138.0 15.8 517,500 246,480 763,980
1987 147.2 16.8 552,000 262,080 814,080
1988 156.3 17.9 586,125 279,240 865,365
1989 170.2 19.4 638,250 302,640 940,890
1990 179.3 20.5 672 '375 319,800 992,175
1991 193.2 22.1 724,500 344,760 1,069,260 -
2. Devil Canton Damsite (3350 kW 1 13.94 GWh/yr)
Demand Rate Energy Rate Construction Power Costs -Year ($/kW) (mills/kWh) Demand ($) Energt ($) Total ($)
1990 179.3 20.5 600,655 285,770 886,425
1991 193.2 22.1 647,220 308,074 955,294
1992 207.0 23.6 693,450 328,984 1,022,434
1993 216.2 24.7 -724,270 344,318 1,068,588
1994 230.0 26.3 770,500 366,622 1,137,122
r
D -33
Depreciated Value of Substation Facilities
Basic Assumption of 25-Year Service Life
Assume Straight Line Depreciation
1. Watana Substation
Installed Cost (new) = $ 27.6/kVA (1985)
== $138,000
= $ 5,520 Depreciation/Year
Depreciated Value = $104,880 (1991) (6-year period)
2. Devil Can~on Substation
Installed Cost (new) = $ 36.2/kVA (1989)
= $ 181,000
Depreciation/Year = $ 7,240
Depreci~ted Value = $ 144,800 (1994) (5-year period)
3. Susitna Tap Station/Watana Bus Tap
Installed Cost (new) = $ 262,000 (1985)
Depreciation/Year = $ 10,480
Depreciated Value = $ 167,680 (1994) (7-year period)
To transfer 5 MVA facility from Susitna Tap to Watana.
Cost of removal and transfer == $30,000 (1991)
Cost of second 5 MVA step-down facility at Susitna tap.
In 1989 for Supplementary power to Devil Canyon = $343,400
Depreciated value after 2 years = $315,900
0 -34
-
-
-
-
-
-
r
0 -35
0 -36
r
-'
r I
t
-I
r
r I •
I
I
r
I
r
I
r
L -I
!
r
' I
SUMMARY
BASELINE COSTS (1979)
ASSOCIATED WITH TWO CONSTRUCTION POWER ALTERNATIVES
$1000 {1979)
(Independent) (Interconnected)
Diesel Tapline
Year Generation Su~~l,l
1985 2,835 267
1986 695 483
1987 697 481
1988 696 478
1989 3,055 752
1990 1,324 902
1991 187 734
1992 623 430
1993 623 419
1994 -5oo.Y 304
11 Negative sign indicates net resale value predominates over costs.
D -37
0.4 ALTERNATIVE GENERATING PLANT FUEL COSTS
The year-by-year analysis of comparative fuel costs follows:
A. First Period (1984-87) -Firm Power Transfer of 30 MW, 145 GWh
Year
1984
1985
Interconnected System Expansion
The number and type of generat-
ing plants is identical to that
for each system operating inde-
pendently.
Independent System Expansion
Each independent system would
be supplied by operational
units on basis of economic
dispatch to meet individual
area needs.
The determination of relative economic advantage to either
system, of a firm power transfer, would require a detailed
analysis, necessitating production costing of economically
dispatched units for the Anchorage and Fairbanks systems. It
is a reasonable measure to delete the comparison of marginal
advantages accruing for this year of operation.
ANCH 9 -78 MW SCGT is added to
AML&P system, obviating the
need for both NORT 3 and BELU 9.
Two units are required in
Anchorage area, ANCH 9 -
78 MW SCGT and BELU 9 -
71 MW RCGT, together with
NORT 3 -69 MW SCGT unit at
the Northpole Station in
Fairbanks.
As a first approximation, the relative generation cost advan-
tage may be determined by estimating the respective fuel costs
associated with the generation of 145 GWh of energy by either
ANCH 9 or NORT 3, taking into consideration different primary
fuel costs and thermal efficiencies. The unit ratings are
sufficiently close to justify this analytical approach, on the
basic assumption that equivalent energy would be generated
during the year by the two units. An adjustment would then
be made to allow for the differential cost of supplying line
losses in the transmission intertie, which would amount to
1. 5 GWh/yr.
D -38
-
-
,
-
-
-
-
r
~
i
!
l
Comparative Fuel Costs:
ANCH 9 -78 MW SCGT
From Battelle Report (see Figure D-3)
See Figure D-1
Trend Curve for HR8444 New Gas
with 8% inflation and escalation
1985 Fuel Cost = $3.60/MBTU
Net Heat Rate = 14,500 BTU/kWh
Annual Cost of Fuel (ACF)
to generate 145 GWh:
ACF@ 0.21 PCF~/ = $3.60 x 145 x 14,500
= $7,569,000
NORT 3 -69 MW SCGT
From Stanley Consultants Report P. 21
1978 Fuel Cost = $1.98/MBTU
Escalating @ 10% per year!1 :
1985 Fuel Cost = $3.86/MBTU
For distillate from North Pole refinery
From Table 6, P. 22:
Net Heat Rate = 15,130 BTU/kWh
Annual Cost of Fuel (ACF)
to generate 145 GWh:
ACF@ 0.24 PCF~/ = $3.86 X 145 X 15,130
= $8,468,000
The total cost comparison is in favor of ANCH 9 generation to supply Fairbanks.
Total cost of generation, including loss component = $7,648,000.
1986 BELU 9 -71 MW SCGT is added
to CEA system, the inter-
connection having served to
delay the in-service of the
combustion turbine by one year.
It is assumed that this unit
will be operated for supply to
CEA system only during first
year of operation.
ANCH 10 -104 MW coal-fired
plant is added to AML&P
system for both independent
and interconnected system
expansions. KNIK A -15 MW
thermal power plant (CEA) is also
retired from both expansions.
The relative economic advantage is attributable to the fuel cost
differential between distillate for NORT 3 generation and Beluga
gas for generation by either ANCH 9 or BELU 9. Selecting ANCH 9
as in the previous analysis for 1985:
!/ 7% inflation + 3% escalation.
2/ PCF = Plant Capacity Factor.
D -39
Comparative Fuel Costs:
ANCH 9 -79 MW SCGT
1986 Fuel Cost = $4.00/MBTU
Net Heat Rate = 14,500 BTU/kWh
Annual Cost of Fuel (ACF)
to generate 145 GWh:
ACF@ 0.21 PCF = $8,410,000
NORT 3 -69 MW SCGT
1986 Fuel Cost = $4.25/MBTU
Net Heat Rate = 15,130 BTU/kWh
Annual Cost of Fuel (ACF)
to generate 145 GWh:
ACF@ 0.24 PCF = $9,324,000
The cost comparison is once again in favor of ANCH 9 generation to supply
the equivalent amount of energy over intertie, as would otherwise be
generated locally in Fairbanks.
Total cost of ANCH 9 generation, including transmission loss = $8,498,000.
1987 This is the first year of operation of COAL 1 -200 MW coal-fired
plant on the Anchorage system. As this would be the first year
of operation for the first major coal-fired plant in the Railbelt,
for either independent or interconnected expansions, it would
be thus common to the two alternatives. The relative cost
advantages would then again be determined by consideration of
the relative generation cost for ANCH 9 and NORT 3.
Comparative Fuel Costs:
ANCH 9 -79 MW SCGT
1987 Fuel Cost = $4.25/MBTU
Net Heat Rate = 14,500 BTU/kWh
Annual Cost of Fuel (ACF)
to generate 145 GWh:
ACF @ 0.21 PCF = $8,936,000
NORT 3 -69 MW SCGT
1987 Fuel Cost = $4.68/MBTU
Net Heat Rate = 15,130 BTU/kWh
Annual Cost of Fuel (ACF)
to generate 145 GWh:
ACF@ 0.21 PCF = $10,267,000
Total cost of ANCH 9 generation, including transmission loss = $9,029,000.
0 -40
-
-
'-
r
,....
'
r
I
r-
!
B. Second Period (1992-96) -Firm Power Transfer of 70 MW, 337 GWh
Year
1992
Interconnected System Expansion
. Interconnected operation obvi-
ates the need for COAL 5 -200
MW unit in Anchorage area and
COAL F2 -100 MW unit in Fair-
banks area. Comparable genera-
tion is maintained by COAL 6 -
300 MW unit in Anchorage area.
Independent System Expansion
COAL 5 would have to be added
to Anchorage system and COAL
F2 to Fairbanks.
Comparative economic advantage is determined by relative magnitude
of fuel costs, for either COAL 6 or COAL F2, to generate same
energy.
Comparative Fuel Costs:
• COAL 6 -300 MW
From Battelle Report (see Figure D-4)
Fuel Cost in 1992 $2.60/MBTU
Net Heat Rate 9,500 BTU/kWh
ACF to generate 337 GWh $8,324,000
• COAL F2 -100 MW
$1. 90/MBTU
10,700 BTU/kWh
$6,851,000
The comparative advantage in this case moves to the use of Healy coal. However,
as with interconnection, the unit COAL F2 will be eliminated in favor of the
economies of scale associated with the COAL 6 unit. Without production costing,
it is not possible to determine the overall economic advantage of introducing
COAL 6, so for present analysis it is assumed that no economic energy transfer
is possible. However, as a first approximation, the fuel costs for this year
will be entered into economic analysis to consider the effect of the differential.
D -41
1993 ANCH 11 -104 MW coal-fired unit
added to AML&P system in this
year for interconnected ex-
pansion, after an interval of
five years following the in-
service date for same unit with
independent expansion. PEAK A1 -
78 MW combustion turbine also in-
service from beginning of year.
PEAK A1 -78 MW combustion
turbine in-servi~e from beginning
of year, for independent ex-
pansion of Anchorage system.
Of interest in this year is a comparison between the cost of
energy generation for ANCH 11 and COAL F2 using the same source
of fuel, Healy coal. Thus, the relative advantage of either
generating at the existing plant site at Healy or in the vicinity
of Anchorage may be examined for similar capacity units having
the same thermal efficiency, to determine the economies of
energy transfer by intertie.
Comparative Fuel Costs:
• ANCH 11 • COAL F2
Cost of Healy coal in 1993 $2. 4/MBTU.1/ $2.00/MBTU~/
Net Heat Rate 10,700 BTU/kWh 10,700 BTU/kWh
ACF to generate 337 GWh $8,654,000 $7,212,000
Once again the comparative advantage lies with the generation of energy at the Healy
site. However, with interconnection the need for COAL F2 disappears in favor of
the economies of scale attendant on COAL 6. It may be noted that the cost differ-
ential in favor of Healy disappears if the COAL F2 site would be moved away from
Healy for environmental reasons to say Nenana. In this case, the cost of generation
would be approximately the same whether coal were transported either to Anchorage
or Nenana, as the transmission loss, associated with ANCH 11 (104 MW) generation
and transfer over the intertie, would be compensated for by the slightly higher
heat rate to be expected with the 100 MW unit of COAL F2.
11 Delivered to Anchorage plant site.
2/ Delivered to Healy plant site.
0 -42
-
-
-
-
-
-
-
-
.-
-
r
r
-I
-r
1994 As GEN 1 -300 MW coal-fired generating plant added for both
independent and interconnected system expansions, the previous
combination of ANCH 11 and COAL F2 can again be examined to
determine the differential cost of fuel.
Comparative Fuel Costs:
I ANCH 11 I COAL F2
Cost of Healy coal in 1994 $2.5/MBTU $2.2/MBTU
(Minemouth Generation, FOB Tipple)
Net Heat Rate 10,700 BTU/kWh 10,700 BTU/kWh
ACF to generate 337 GWh $9,015,000 $7,933,000
It may be noted that due to divergence of fuel cost trends after 1993, for coal
delivered to either Anchorage or Nenana, rather than minemouth, the economic ad-
~antage moves progressively towards generation at an Anchorage location, with
transfer of the equivalent energy over the intertie. However, in 1994, it is
possible to transmit energy generated economically at Healy to Anchorage over
the intertie.
Total cost of COAL F2 generation, including transmission loss = $8,016,000.
1995 COAL F3 -100 MW coal-fired
plant is introduced to the
Fairbanks area and PEAK A2 -
78 MW combustion turbine is
added to the AML&P system.
Interconnection results in the
postponement by one year of
the 300 MW GEN 2 in the
Anchorage a rea.
GEN 2 -300 MW coal-fired plant
is introduced to the Anchorage
area with independent system
expansion but the 78 MW com-
bustion turbine PEAK A2 is not
required in addition to the
large coal-fired plant. COAL F3
is added to the system in the
Fairbanks area.
As COAL F3 is common to both the independent and interconnected
system expansions, it is of interest whether the gas-fired PEAK A2
in Anchorage could economically displace the equivalent energy
generated by the coal-fired unit COAL F3 in the Fairbanks area.
D -43
Comparative Fuel Costs:
Cost of New Gas in 1995
(HR 8444-8% infl. +esc.)
Cost of Healy Coal in 1995
(Minemouth Plant, FOB Tipple)
Net Heat Rate
ACF to generate 337 GWh
There is a definite economic advantage
transfer over the intertie to displace
• PEAK A2 • COAL F3
$7.70/MBTU
$2.40/MBTU
14,500 BTU/kWh 10,700 BTU/kWh
$37,626,000 $8,654,000
to co a 1 generation at Healy and energy
gas-fired generation in Anchorage.
Total cost of COAL F3 generation, including transmission loss = $8,745,000.
1996 GEN 2 -300 MW coal-fired
plant is introduced to the
Anchorage area, the inter-
connection serving to post-
pone its in-service date by
one year.
PEAK A2 -78 MW combustion
turbine is introduced to the
AML&P system in Anchorage.
In this final year of analysis, it is of interest to compare the
relative economic advantages of coal-fired generation at either
the Fairbanks (Healy) or Anchorage (Beluga) sites.
Comparative Fuel Costs:
Cost of Beluga Coal in 1996
Cost of Healy Coal in 1996
Net Heat Rate
ACF to generate 337 GWh
e GEN 2
$3.3/MBTU
9,500 BTU/kWh
$10,565,000
• COAL F3
2.5/MBTU
10,700 BTU/kWh
$9,015,000
Once again it is more economical to generate in the Fairbanks area and transfer
energy south over the intertie to Anchorage.
Total cost of COAL F3 generation, including transmission loss = $9,109,000.
0 -44
-
_,
-
-
-I
r
FIGURE D-1
NcxTKJ~Jram ca cu ates
CXXJI IUIIIY U SCCl8
ir1 rx)wer pants
By JAMES McALISTER, Arkansas Power & Light Co.
Historically. the ~er unit cost of
larger power plants has been less
than that of smaller plants. The
proportionality was examined in
some detail in the article "Economy
of Scale in Power Plants" in the
August 1977 issue of POWER ENGI-
NEERING Magazine, p. 51.
The basic equation is:
(C,/C7 ) (MW 1/MW2 )P
Where:
C, · cost of plant 1
C~ cost of plant 2
MW 1 capability of plant 1
MW:. capability of plant 2
P proportionality factor
For many years, this proportionality
factor averaged about 0.6, which led
to the so-called "Six-tenths Power
·Law." However, as explained in the
article referred to above, extended
project schedules and inflation
cause the factor to increase
This nomogram solves the equation
and permits a cost comparison of
plants of different sizes. It assumes,
of course. that they are essentially
identical in construction technique,
design and time frame, and that the
only significant difference is in size.
Example: A 200-MW plant can be
·built for $200 million. Find the cost of
a similar 1000-MW plant.
Solution: (1) Connect unit ratings of
200 MW and 1000 MW on the MW1
and MW 2 scales, and mark intersec-
tion with Reference Line X. (2) Align
this point with assumed scaling fac-
tor P = 0.6 and extend to cut
Reference line Y. (3) Connect this
point with 0.2 on C 1 scale and extend
to C 2 scale. Read answer as $0.53
billion. £ND
To obteln en extra copy ol this article,
circle 206 on Reader Service Cerd
____ , _____ ---------------------------
R1llions ol dollars
MW1 y
UJ z
::J
UJ u z
1.0 UJ a:
li 0.130
UJ a: 0.120
1.5 104
POWER ENGINEERING/FEBRUARY 1979
D -45
Mr•qiiWil\1 co~po~hlilty
MV\11
1500
1000
MVV1
X
w z
X
L&J z
_J
MW~
100
c1
D -46
Bill lOlls oi dollars
1.0
1.5
y
w z
:J
w u z w a:
li
L&J a:
Flliil()llS Ol dolliHS
1.0
1.5
y
L&J z
:J
w u z w a:
li w a:
FIGURE 0~2
0.53
-
-
""""\
-I
,....
-
~
:::1
~
CCI
E
E
"-
il)
10~
5
0.5
I
~
I
HR 8444 NEW GAS1 1 l
8% INF. & ESC.
5% INF.
AVER. REFINERY
CRUDE OIL ACQ.
PRICE~
SURVEV14l
RW RETHERFORD
ANCHORAGE<&l
WELL HEAD171
BELUGA/CHUGACH
WITH PALNG19l
BELUGA/CHUGACH
ABSENT PALNG11o1
I I
'-...-/
POSSIBLE LIFE
BELUGA FIELD
COMMITIED RESERVES
0.1~----~------~------~------~------~------~----~
70 75 80 85 90 95 2000
YEAR
ESTIMATES OF FUTURE NATURAL GAS PRICES
FIGURE D-3
(Source: Battelle Final Report 'Alaskan Electric Power', March 1978/Figure 6-6)
D -47
FIGURE D-4
10~--------------------------------------------------~
1.0
::l ..... co
E
E
" <l)o
HEALY COAL
FOB NENANA
INTERIOR ALASKA ENERGY
ADVISORY TEAM -
FAIRBANKS
GVEA HEALY
EXPERIENCE
BELUGA
\
INTERIOR ALASKA ENERGY
ADVISORY TEAM -HEALY
0.1L-----~~----~-------~-------L-------L------~----~
70 75 80 85 90 95 2000
YEAR
ESTIMATES OF FUTURE COAL PRICES
(Source: Battelle Final Report 'Alaskan Electric Power', March 1978/Figure 6-7)
D -48
APPENDIX E
TRANSMISSION LINE ECONOMIC ANALYSIS PROGRAM (TLEAP)
,......,
,-.
,....,
'
r
,-.
-
,....
r""'
-I
-
TABLE 8-1
TABLE 8-1x
TABLE 8-1-LL
TABLE 8-2
TABLE 8-3
TABLE 8-3x
TABLE 8-3-LL
TABLE 8-4
TABLE 8-4x
TABLE 8-5
TABLE 8-5x
TABLE 8-6
TABLE 8-6x
TABLE 8-7
APPENDIX E
TRANSMISSION LINE ECONOMIC
ANALYSIS PROGRAM (TLEAP)
CASE IA
CASE IA
CASE IA
CASE IC
CASE IB
CASE IB
CASE IB
CASE IB
CASE IB
CASE ID
CASE ID
CASE ID
CASE ID
CASE IC
E - 1
2> AUGUST 79
DISCOU'iT
'<AT!:
1.\,PO
1).2':J
tl.So ..
<:1. 75
9. 0 !)
9,25
'I • "\)
'!,7')
]I) • 00
1U.2')
I 0. '1 0
1 u. /5
(Tl 1 1 • ,; I)
11.25
1 1 • 5 ()
N I 1 • l S
12.oo
DISCOUNT
~AlE
~.no
1-1.2':)
fl.'JO
lj. 75
9.1)0
9.2':1
9.':JO
9.7S
1 0. I) 0
I0.2S
tO.':JO
] (I • 7 ')
1 1 • u 0
11.25
11 • s n
11.1">
12.00
J J J
D I 5 C 0 Lf'• T E 0 V.!LUE
ALASKA POWER AUlHO~ITY
ANCHORAGE -·FAIR8A~KS INT[RTIE
ECONO~lC FtASIBILITY STUDY
OF BASE YE.A~ (1979) INDEPEIIIDENJ
IN $1000
SYSTEM cosTs
-----------------------------------------ESCALATION RATES---~---~-------------------------------
li% 41. 57. 6% 7Y. 8% 9% 10% 11% 12%
=====:::= ======= --------------======= ---------------------======= ======= -----------------------------------
2 ,,,. , ,, 7 (' 3Sq,1{)9 31'.,~, 971', 427,474 '16'!,977 516,90.3 "ioti.,712 62~,909 689,048 75'3,73o
2)9, ~h'> 34o,.>35 .H<0,203 417,69'; 4"i9,(l79 ':JOII, 760 ':l55, 1811 610,5~'1 672,263 71~0, 046
23 ., , "59-I 331:1,';81 37\,o75 £108,193 4tH:\, 493 1192,967 542,0i.IR 596,209 65':1,972 721,910
229,')56 B 1,11.10 5td' 5131> 3'~8,960 431\,209 41:\\,'513 ':129,292 '>82,005 6ll0,159 701J,309
2 2 !I, ,3 'I 7 32.3, 90·'l 3'55,)21\ 389,9137 :<28,211 ll70,386 ':J1o,903 568,213 62tJ,fl0H 687,225
2d:, 2b2 .31o.~6h )t.l.,, ij'/'j 3R1,266 4113,'107 4')'1,"i76 50'-l,f\70 ':JSLI,820 b09,903 67{1,641
21 ':i, 7'Jfl, 31 \1 , u 2 ·~ 33°,~7R Y/2,787 409,1)70 t.l£19,073 "193, 181 '541,1:112 ':)95,430 6'i4,51Jl
2 11 , 4 'J 1 50.3, 3or• 332,471 3h ll, 5115 3<.J9,1'.'17 43':\,f\67 4P1,fl24 529, 117 'il:\1,375 631\,909
2U7,2!7 2CJt:J,I''12 325,2o/ 356,5.30 390,981 428,<.J47 47U,789 ':116,903 ':)67,124 62.3,729
203,093 29iJ,':J91 .31!1,2",9 31~8, 736 382,312 1119,5U5 <160,066 504,97tl '>'::>4,4611 60tl,986
l<l9,1)76 21'4,'-161 311,'1 1J3 341,1'}6 37S,R83 409,932 ll4'1,b44 493,390 5111,581 594,667
1 <l"\, I 62 27':<,49<.1 30l.i,iiJO 3B,7!:13 365, 1)/i 6 400,820 439,513 48(',129 529,065 580,7'}7
1 <1] , )tJ i:l 272,bf.7 296,~':)7 326,611 351,711.1 391,959 420,o65 471,185 S1b,903 567,244
11:'· 7. fd l 267,(•3<l 292,076 q 9, 6 32 3119,960 31:1.3,343 420,091 ll60,511o 50':i,0H'I ')51J, 114
1 !J 'l, I) P8 261,':J3L• 2P.C,,963 312,131.12 342,<117 374,963 410, 7A1 450,204 lJ93,')9b 'jlJ1,355
1(111 1 11"{6 2':16,112 2AU,i)13 506,234 B5,071:1 36b,l:ll1 401,728 1140,!1J'I llll2,lJ29 52H,o5')
177,035 2':J•), 953 27q,220 299,1:102 321,936 3Sf:I,Rtl2 392,'123 430,372 471,571~ 516,903
DISCO~:,TED V.~LUE Of tlASF Yt AR (1979) INTt.RCONNECTED SYSlEM COSTS
IN 'li1000
-----------------------------------------ESCALATION RATES-----------------------·---------------
0% 47. 5% b•t. 7"1. 1:1% 9% 10% 11 % 12%
--------=====;::::: -------___ ,.. ___ ======= ======== -------======== ======= -------======= =====::= -------
2B, 560 5S1,h7'~ 390, 1HH 1.133,136 l.ii\1,019 ':JV1,3f\9 ':19.3,859 61:>0,105 !35,1:\711 1-1!5,988
228, I'll 31.13,033 380,:161) IJ2<', IBb lJ6tl,69d ':120,531 578,278 642,59lJ 714,202 793,899
222,9HO )34, nSIJ ~71,028 '111,S73 1.156,758 507,104 563, 1P.II 625,633 69':>, 151 772,510
217,022 S2~>,S28 S t> I , 'J 13.3 401,2114 114'::>,18o 1.194,092 51.18,560 609,20? 676,699 751,797
21 ~,011 .5 1 l:l , t> 11,., 353,0\S 391,309 4.35,969 u8l,i.IB2 S3ll,389 595,C84 6Sfl,fl25 731,731:>
20tl,242 311,000 .3'.14 , lJ 11.1 381,6)6 liZ 3, 0 911 l.l69,2o0 ':J20,b56 577,860 6ll\,509 712,3011
2ll3,610 303,':>1<2 336,072 372,257 lJI2,551 4':)7,1.112 507,31.16 5o2,9111 621.1, 731 693,i.i79
]49.112 29o,3RS 527,'-!HO 363,160 II 02, 32"1 114 5, 925 49ll,(li.l5 51.18,1129 o08,474 675,2ll1
191.1.74~ 28<J,'.l01 320.1<'9 354, .Bb 392,1.112 1131.1,788 i!8\,93A 5311,38<1 592, 720 657,569
19(),1191 2ec,625 312,511 .~4rJ, 776 3!'2, 796 lJ23,91-1tl £169,ot2 520,779 577,450 oilll, 1.1114
1Hh,3/~ 27 t, \) lj 5 .3115,11~ :B l, 1.171 ')73,1.1btl lll3,513 11':)8,05 11 ':J0/,58':1 '51:>2,bll9 623,1-147
1 t12, ) t> II 2o4,bSb 297,'liJ3 329,1.1!2 3o4,i.llf\ ~03,354 l.lt1o, 6'52 4911, 792 S/.18,300 o07 ,760
I 7 P., 116 9 26~,4">5 290,979 321,':>'12 3':J':l,o3H .3'1.5,ll99 lJ55,593 I.Jfl2, 3Rb ':J.~lJ,3H9 59?,166
I 111, o b 2 2':J7,i.13i.l 21:14,218 3!4,1l02 3LJ7,119 383,93tl 42ll,hb7 470,3S':J '1?0,900 577,048
17\,000 2S1.51<1 277,o5i.l .306, 6:$4 53H,t\51 374,661 41'~.461 iJ';8,1:>~6 507,R19 56£?,389
lb7,421 245,'1011 271,2111 299,41:12 Bo,826 3o5.oS9 40'1,365 £14 7, 36"( 1195, 132 0:,118,174
163,'?1J! 2Litl 1 39i 26',,091 i9?,5~tl 3?.3,03o 3'::>o,923 394,':169 4 )b, 3f\(> 4f\2,1'>27 '131.1,389
'~~~ .J _j ,)
~-
,]
"""~-
_J ,_,_.,,.dJ J ,J j J ,~,J J J
i?l AUGUST 79 ALASKA POWER AUTHO~llY
ANCHORAGE -FAIRBANKS JNTfRTIE
ECONOMIC FEASIBILITY STUDi
. -·-·· -·--·-----------·------------------· ---
CAPITAL DISBURSEMENTS . FUEL COMPONENT OF OPERATING COSTS lN ___ $1000-FOR --------------IN-$(000 FOR -----
ALTERNATIVE SYSTEM EXPANSIONS ALTERNATIVE SYST~M EXPANSIONS
INDEPENDENT INTERCONNECTED
COSTS -$79 COSTS -$79
lNOEPt::NDE.NT
E:SCALATtD $
HHfRCONNECTED
ESCALAltD $
--·--------~-------------------·-··
1"1"1
__ L_ __ -----------
·W
1919
19>l0
1 Q p. 1 ll , () 0 1 ------------
1952 2,\1<19 Jti,22B
1983 2b,bbb l!b,9b7
_______ ! 9HLI_ _ ___ 81 ,9ll2 ______ _1 1, 515 __ ------· ----~---~------_,.,.,.-
19d~ 37,172 32.062
198b 21.127 492
1987 7.1~2 2,412
1988 7,555. 8,473
1989 23,110 30,549
19'10 ----------2 t, 920. _4 3, () 38
1991 82,?00 4:~.411
\992 10!,3d0 R<J,69ll
1993 ':>R,li":>O 108.723
199(1 29,840 75,13(1
1'~95 lo, 3AO 23,106
1996 . ---····-----270 ----------------~--~¥_...,.~......-,_... ----------
1997 254
1979
19A(l
1981
)9/32
1Q8.S
198/J
1985
19136
19tH
l9R8
19tl9
1990
1 91}1
1992
I9'H
19<14
tr-1'15
t«l~ll
Jq~?
ADOJTIONAL DISBURSEMENTS
IN $1000 FOR
UNDERLYING TRANSMISSION SYSTEM
lNDEPE,~DHJ"I INTERCONNECTED
cosrs -S79 cosTs -579
SUSITNA CONSTRUCTION POWER COSTS
JN $1000 FOR
ALTERNATIVE MODES OF SUPPLY
DIESEL GE.NEMATlON lNlEHTIE TAPLINE
COSTS -$79 COSTS -$79
}
TABLE 8•1
23 AUGUST 79
DISCOUNT
HAlt
1'>.00
ti.25
11.'10
b. 75
9.(1{)
9.25
9.'"10
9. 75
10.uu
!!!.?.':i
1 0. ',o
I C! • 7 <J
1 l • IJ 0
rn I l • i~ 5
l I • S 0
. .p. I I • 7 5
12.00
DISCOUNT
RATf;
8.00
8.25
'd • ') (l
d.lS
9.00
9.25
<1.'10
9.75
1 \1. 0 t)
10.25
IO.So
10./'j
11.\Jil
11 • 25
11.50
11.75
t2.00
J
ALASI\A I'01otEH AliTHORlTY
ANCH0~4GE -FAIRBANKS lNTERTlE
ECQ~O~!C FEASI8ILITY STUDY
TABLE. 8-lX
DISCOUNTED VALUE OF BASE YEAR ll979) INOEPENDE~l SYSTEM COSTS
IN $1000
-~-----------~-~---------------~----------ESCALATION ~ATES--------------·-·----------------------
07. 4% 5% 6% 7"1. 84 9% 10% 11% 12% -------======= ---------------------======= ======= ----------------------------------------------------------------------
2'J 4. 4 7 i' 35<~,109 388,97B 427;474 469,977 ')16,903 568,712 6~5,909 689,048 758.736
2~'1.~65 3ll6,235 3d0,203 lj 1 7, 695 Ll59,079 50<1,760 555,184 610,839 o72,263 740,0116
(> _$ •l , ~ 0 I~ 33d,S81 37\,675 •.106,193 1J48, 493 L!92,967 5£12,0£18 59o,209 655,972 721.910
229,556 33l,lllLl 363, _SH6 39ii,Y60 ll38,209 £181.513 529,292 582,005 640,!S9 704,309
2 2 'J I ':\ /j 1 323,90il )C,':i. 328 389,91'.7 428,217 470,_51-16 516,903 568,213 624,808 687,225
220,262 31o,bo8 347,~95 381,266 Ll!8,507 Ll59,57b 50'-l,tl70 5':it.l,820 609,903 o70,6111
21':>,/qi:l 31 \), 1_12 4 339,1i7B 372,7'07 IJ 09 r (j 7 0 4'-19,073 <J93, 181 541,812 59~,'-130 6511, ':>41
2ll,ll')l )(13,368 332,471 36'J, SuS 399,i397 438,867 481,82L! ')29, 177 581,375 638,909
207,217 29o,to92 32'),267 35o,530 390,981 1121:1, 9t~ 7 470,189 Sto,903 5o7,721.J 623,729
2 :) _), 0 9 3 290,591 318,2':i9 31J8,73b 3fl2,312 Lll9,305 L!o0,066 50LI,97tl 55li,46L! 608,986
199,076 2t\Ll,4ol H 1, cl43 3Lll,t5o 373,81:\3 Ll09;932 ll49,oll4 493,390 5ll1,':->!:l1 59ll,667
1'!5,!b2 2lb,ll9'-l 304,tll0 333. 71'3 3o5,686 400,820 Ll39,513 482,]29 529,065 580,757
1Yl,)1-ltl 272,hf!7 29;;,357 32o,61l 3':,7, 71 1J 3'11,95'1 '-129,665 47\,18") ')16,903 567,244
ll:l I , b .. ~ I 261,034 292,076 3!Y,o32 349,'160 383,3ll3 1.120,091 ll60,546 ':iU'J,084 ')",4 ,11LI
1/:l4,008 2oi,S30 285,963 312,1:\42 5ll2,ll17 374,9o3 Ll!0,781 450,20ll li93,S96 ">41,3':15
180,4'76 2':>6,172 2!HJ,013 30or231J 335,078 366,811 401,728 llll 0, 149 ll'32,tJ29 528,955
177,!l!d 2'JO,<.J53 27!.J,220 299,8v2 327,936 3511,882 31.}2,923 430,372 ll71,574 ')16,903
DISCOUNTED VALUE IJF Bt~SE YEAR (1979) I NTE RCOtmEC TED SYSTEM COSTS
IN $luuo
------------~----------------------------ESCALATION RATES------------------·----------.----------
0% 4% 5% 6% 7% 8% 9% 10% 11% 12%
======= ======·= --------------======= ---------------------======= -------------------------------------------------
245,1183 36'),Hf\7 4QIJ,905 L!4tl,371 496,7'05 S50,701 610,731 677,551 751,908 834,625
2'10,lll1 3"i7,12o 39S,OS3 431,2f'J3 41:lll,33.2 536,706 59">,008 659,893 732,0I:lll 812,379
235,098 34b,629 _Hl'J,~99 Ll2o,5">3 '-172,2ol 523,1LJ3 579,773 642,786 712,882 790,83LI
229,939 _)ll0,386 Ho, 23 3 t.l}6,!39 460,559 S09,997 56':i,009 626,211 69'-1,281 7b9,967
224,92tl 332,5'09 367,2LI5 40o,04V 449,213 !)97,2':>4 550,701 610,150 671:>,259 7119,753
220,061 :>2'i, IJ29 )58,527 396.2ll5 431:1,212 '-1811, 900 S36,tl32 594,')86 658,798 730,171
21 s, 332 311,09ti 350,1)67 31:lb,74LI 427,5ll3 Ll72,922 523,3fl8 0:,79,500 641,8/b 711.197
210,737 ~0'-1, 78Q 34t,d59 377,527 Lll7,195 461,306 510,353 564,877 625,,477 692,811
?.uo,272 3U<',o95 333,894 3613,51)5 !l01,157 li50,042 Q97,715 550,701 609,581 674,994
2vl,933 295,1:1(}7 32o,162 359,907 397,419 1.1.)9, 116 485,ll58 536,956 594,172 6")7,72LI
197,711J 28<1, 12tt 316,6':1>1 351,4Ho 387,9"11 ll2tl,5!7 473,~72 ':i25,62tl 579,.233 640,985
193,61'1 <'H~~, o2o 311,372 3Ll3.312 37A,B02 L!I8,23LI Ll62,042 510,703 ':i6l.l, 748 62LI, 756
ltl9,b?.b 276,319 30<~,c9B 335,37" )69,905 L!Ot\,251 1150,857 £191:1,!6/ 550,101 609,022
11-1'),749 27U, !'I$ 297,~29 32/,67o 3ol,268 391:l,576 llliO,OO':i 486,007 537,078 593,766
tl:ll,97il 26<1,2il2 290,757 320,197 Y:i2,8B5 31'19,180 IJ29,LI76 474,211 523,865 '578,970
178,310 251:1,41:>1 2'0Ll, 2 77 31<'.,q_s5 3Ll L!, 7llb 380,059 llt9,258 1~62,765 51l,Olltl 564,!:120
I 14, 7'12 25<', M43 2 77, 9rl_~ -~v':l, !Hq 33o,tltJI.! 311,20o L!09,j41 L!Sl,t>59 L!98,612 550,701
·.J J J
23 Allt~tiSI 79
1
ALASKA POnEri AliHHlRllY
ANCHO~AG£ ~ FAIH~A~KS INI[~TIE
ECO~OMIC FEAS19lLllY STUDY
------------------
__ --~-~--_____________ CAPITAL OISBURSEI-IENTS FUEL COHPONENT OF OPERATING COSTS ---------------~--~~---$-i-OOl).-FOR
1979
1980
li.Jtit
191:'2
1983
191:14
1C!>J5
19t'o
}<lk7
\908
\9P.9
1990
1'191
19<12
1q<.f~
1'1-lll
\9<1')
. 19 116
1Q97
!979
19~0
19~1
1982
19t\3
19134
1985
11.Jilo
19~7
1981:1
19~9
l 1NO
l9Q1
1992
1993
199ll
}Q9':)
190b
1997
IN $1000 FOR
ALTEH~ATIVE SYSTEM EXPANSIONS ALlERNAllV£ SYSTEM EXPANSIONS
lNOEPEI'IOt:NT
COSTS -$79
INTERCONNECTED ______ I NDEPENDEN l-INTERCONNECTED
ESCALATE() $ COSTS -$79 ESCALATED $
2,009
2b,bbb
81,9£12
37.172
21,121
7, 1 ":>2
7.555
23,110
21,920
11?,200
101,3•10
')!;,ll'jO
29,~·J0
1o.31:\0
5,014
17,7tl5
5~.709
11.515
32,062
£192
2,iJ72
8,475
30,54~
U3,03R
1~3,£111
89,o94
108,723
75. \3<1
23,106
270
254
ADDITIONAL DISBURSEMENTS
IN $1000 FOI<
UNDERLYING TRANSMISSION SYSTEM
lNOEPEnDUJ T 1NTEkCOi~NECTED
COSTS -$79 COSTS -179
SUSlTNA CONSTRUCTION POWER COSTS
IN $1000 FOR
ALTERNATIVE MODES OF SUPPLY
DIESEL GENERATION INTERTIE TAPLINE
COSTS -$79 COSTS -~7q
) 1
TABLE 8-lX
28 AUGUSl 7q
DISCOUNT
RATE
8,00
8,25
8,50
8,7':1
9,00
9,25
9,50
9,75
10,00
10,25
10,50
10,75
I 1 , 0 o
11 • 25
I'T1 11,50
11,75
12,00
0'1
DISCOUNT
RATE
8,00
8,25
8,50
8,75
9,00
9,25
9,50
9,75
10,00
10.25
10,50
10,75
I 1 , 0 o
t 1. 25
11,50
1 1 • 7 5
12,00
,) J ~··~ .... I
ALASKA POwER AUTHORITY
A~CHORAGE • FAlRAA~KS lNlE~TlE
ECONOMIC fEASIBILITY STUDY
TABLE 8•1•ll
DISCOUNTED VALUE Of BASE YEAR (197Q) INDEPENDENT SYSTEM COSTS
IN $1000
a-•••••••••••····-···-··•-·••••···--·-···ESCALATION RATtS••••••••••••••••··-••••·•-•••••··••••••
0% 4% 5% oX 7'1. HX 9% lOX 11% 12%
======= ====::;: ======= =====;: -------======= ======= ======= -------======= -------____ ,.. __
238,103 373,719 418,575 1.168,876 52':1.259 588,1.132 65'1,178 738,366 826,958 926,017
232, 028 363,6'11 tJ07,220 456,025 510,725 'J71,998 640,1>10 717,398 80 3 ,2'14 899,327
226 ,IIJ2 353,981 39o,227 ll'.l3,586 496,654 ':>56,0Q':I 622,643 697,112 780,403 873,513
220,437 344,57H 38">,583 431,543 483,037 540,704 605,258 677,485 758,25/l 848,542
214,906 335,470 375,276 419,884 469,854 525,1107 588,!132 65H,492 no,IB2 8.?4,384
209,545 3?6,648 365,293 !IO~,':i93 !1"17,090 ':)11,386 572,1!17 640,112 716,099 801,012
201J,347 318,101 35'J,624 397,b59 1144,732 IJ97,1l24 556,382 622,322 696,03':i 778,396
199,306 509,820 314 6, 25 7 3H7,069 ll32,764 4H3,906 5111 , 121 60':>, 102 676,616 756,510
!94,1117 301,795 337,182 376,811 421,173 470,8\6 526,345 5Ml,432 657,8!C1 73':1,328
189,676 294,019 328,390 366,873 409,946 458,158 512,037 57?:,292 639;625 714,825
185,076 286,482 3!9,869 357,?44 399,070 44':1,859 498, 1Hl 556,665 622,007 694,978
180,oll.l 279,176 311,611 347,914 381:l,':l35 43:3,965 48!1,761 5111,531 604,950 675,763
176,284 272,093 303,607 338,873 378,324 tg2j>,442 471,762 526,871.1 58B,4}2 657,159
172,0A2 26'J,226 295,RI.I9 330,110 368,431 411,278 459,170 512,677 572,435 639,1lll.l
168,001.1 2'JH,S67 288,526 321,616 358,843 400,460 4llb,CI70 498,925 55!:1,942 621,697
16ll,046 252,110 281,033 313,381 349,550 3<>.9,977 435,148 485,602 541,934 601.1,800
160,203 ?4<;,846 273,961 305,398 31.10,541 3/9,816 423,693 472,694 527,39lj 58f!,ll32
DISCOUNTED VALUE OF BASE YOR (1979) lNTE.RCONNfCTEO SYSTEM COSTS
IN $1000
••••••••••••••··-••••••-•••••••••••-•••••E.SCALATION RATES------·-··--·---··-----·----·---·------
ox 4% 5% oX 7"1. 8% 9X 10% 11% 12"1.
-----------------·---======= ----·--======= ======= --------------======= ------------------------------------------
233,811 366,765 411,372 461,709 ')J8,ll95 51i2,528 654,703 736,015 827,576 930,622
227,934 .556,831 400;054 448,819 503,821 565,831 63':i,714 714;431.1 803,0b2 902,7'13
222.245 347,227 389; 113 lg36,361 489,641 549,699 617,372 693,')89 779,387 875,922
216,739 'B7 ,940 378,536 1!24,319 475,937 ':>'4,112 599,b'51 673, ll55 75b,522 A49,972
211,407 328,957 36H,308 412,o77 462,691 519,01l8 '582,528 654,001 73ll,ll35 82!!,909
?06,245 320,269 358,417 401,421 1.1119,887 5011,!189 565,982 635,206 713,098 800,700
201,246 311,864 3411,851 390,537 437,50R 490,4lb 549,990 617,044 692,1!82 777,313
196,ll04 303,732 539,';:,97 .580,011 tJ25,':i'H3 476,fll1 534,53!1 599,492 b72,562 75ll,718
191,713 295,1:'16.5 330,645 369,830 413,963 463,b':i7 519,~92 582,':>28 b53,512 732,886
187,169 28H,247 321,984 3'J9,981 u02,7o9 450,937 50'>,146 566,130 63ll,707 711,788
182,765 280,876 .313,602 350,453 391,9lll 438,636 491,178 '>50,276 616,723 691,398
178,!198 273,741 30S,490 341,233 581,465 tg26,739 ll77,671 53tg,948 599,337 b71,689
174.361 266,833 . 297 ,"639 352,312 571,331 tg15,230 464,607 'J20,1?6 582,528 652,637
170,351 260,1ll4 290,038 323,677 561,5.?4 404,097 451,971 505,792 566,275 634,217
166,463 253,666 282,679 315,319 352,034 393,324 439,74R 49],928 ')50,557 616,ll07
162,693 247,592 275 1 S5ll 307,228 342,AII9 .582,900 427,422 478,517 535,356 599,!84
159,037 241,314 268,653 299,394 533,957 372,1:111 1.116,479 ll65,543 520,652 582,528
.J I .) .. ;c.J .,.,, .. ,.1 J J J J I j ) J . ·-J
.·~~]
28 AUGUST H
1979
1980
1981
1982
1983
198£1
1985
1986
1987
1988
1989
1990
1991
1992
1993
199ll
1995
1996
1997
1979
1980
1 <HH
1982
1983
198£1
19R5
1986
1987
1988
1989
1990
19Q1
19Q2
1993
199£1
1995
1996
1997
ALASKA POWER AUTHORITY
ANCHO~AGE • FAI~SANKS INTERTIE
ECONOMIC FEASlSILI1Y STUDY
CAPITAL DISBURSEMENTS
IN $1000 FOR
ALTtRNATIVE SYSTEM EXPANSIONS
INDEPENDENT INT~RCONNECTED
COSTS • $79 COSTS • S79
18,629
58,823
16.380
2.600
23,£135
78,550
130,300
131,780
79,930
30,375
17,630
t1, 0 1 I
14, 228
llb,967
11,515
32,0b2
ll92
llb5
ll3b
£110
2,9A6
23,799
78,892
130,b23
132,084
80,216
23.090
25£1
ADDillONAL DISBURSEMtNTS
IN $1000 FOR
UNDERLYING TRANSMISSION SYSTEM
INDEPENDENT lNTERCOI-lNECTED
COSTS • $79 COSTS -$79
.FUEL COMPONENT OF OPERATING COSTS
IN SlOOO FOR
ALTERNATIVE SYSTEM EXPANSIONS
INDEPENDENT
ESC ALA ltD S
INTt::RCONNECTED
ESCALATED $
SUSITNA CONSTRUCTION PO~ER COSTS
IN $1000 FOR
ALTERNATIVE MODES OF SUPPLY
DIESEL GENERATION INTERTIE TAPLINE
COSTS • S79 COSTS • $79
-.. }
TABLE 8•1•LL
J
23 AUJ;lJ!) 1 I 'I
DISCOUNT
I<ATE.
t<.vo
c>.25
~.:.o
!:l.75
~ • •JO
9 • .?<;
'I.':JO
"1.75
I !) • II I}
10.25
I ,; • ._, o
Ju.75
I I • ll 0
IJ.;:>S
I I • ') 0
11.15
I 2. l' 0
ALASI\A PUWFH, 1\\JTI.IORI fY
ANCHO~AGE -FAIRBANKS INTERTIE
ECONOMIC FEASIBILITY STUDY_
DISCOUNTED VALUE OF SASE YEAR (1979} INDEPENDENT SYSTt~ COSTS
IN l>IOUO
TABLE 8-2
----------------------~------------------tSCALATIO~ RATES----~---------------------------------
01 4% 5% b% 7% 8% 9% 10% 11% 12%
=======
251,4~2
2Jo,071
2'11'), illl7
235.766
2~v,n23
226,015
221, ~55
216,TH2
?12, Sil9
2t'8,<l3S
203,tLSll
1<JQ,7£1LI
!'IS, 7td
19!,flt\1
11\P.,IIJ2
JMIJ,,I21
!iHJ,I'\.53
=======
3o7,521
35o, 1 ~9
y,o,9o>J,
.543,088
.53 S, II 0 3
.327,"136
32.0,o7B
313,b24
306,166
300,(196
293,615
287,309
2tH, 177
27S,211
('1)9,407
26~,7<:;9
2511,26.5
======= <104,713
30'),342
.386,242
371,404
36tl,l:l19
360,Lli:IO
352,377
)4<l,'::!03
33&,fl50
329,412
322,182
315,152
308, HI>
.SOI,o69
295,203
2P,H,91ll
2P,2,1"15
======= Lll!5,o()7
435,430
,, 2'l, ;:>r-,13
4\5,3H2
40':;,.791
396, iHb
387,429
.S78,6.39
370,099
361,801
3")5,736
3~5,898
33tl,27H
3.30,f\69
323,660
3!6,6t:.J
30'1,!147
---------------
491,538
479,82£1
1~61", 4').4
L1 '). 7, 11 I 7
ijllb,703
43o,299
4t?o,19o
416,313!1
40b,i)53
397,59£1
3H8,S98
379,8':i':>
371,361
:563, I 04
355,07/
347,273
339,o86
--------------
542,088
528,991
516,28.5
503,94"1
49),979
480,358
469,077
4';>8,123
1147,1186
IJ3/,15LI
427,119
417,370
ll07,tl98
391:1,691.1
~ll9,7t.j"'
.HII,055
372,601.1
=====::=
59fl, 088
583,£1117
569,243
555,461
'><l2,081:1
529, I 1 0
51o,S1<'
'>Oil, 2BLI
492,412
111:10, 88£1
46'-1,689
ll58,f117
448,256
431,996
428,021'1
418,3£11
408,928
--------------
660,126
643,75Q
627,885
612,487
597,54tl
583,054
'lb!J,'-188
555,338
'::!42,0fl8
529,226
':>16,738
504,613
!.192,837
4131,1.101
470,292
459,£199
/J£19,01£1
DISCOUNTED VALUE OF BASE YEAH (1979) INTERCONNECTED SYSTEM COSTS
IN $1000
--------------728,81~8
1 1 o, 5.5o
o92,818
t:>TS,61').
658,9?.9
b£12,744
627,041
bli,80LI
591,018
582,ob8
5btl,7.59
555,217
542,081:1
529,3£10
516,960
50£1,936
493,25o
======= 80£1,970
78£1,529
764,711
7£15,£195
72n,861
70R,789
69!,260
67£1,255
657,757
6£11,7£18
626,213
611,134
596,£198
5B2,2B9
568,49£1
555,0<Hl
542,088
-----------------------------------------ESCALATION RATES---------------------------------------
0 IS C Ll U ~H 0% 4% 57. 6% 7 i. fl% 9% 1 0% 1 U 12%
.l
RATt
b. (l 0
1:1.25
(1.50
1:!.75
9.1)0
9.25
9.5u
'J.75
IO.uo
lf1.25
10.SO
ll1 • l')
11 • 0 0
ll.2S
11.50
11.75
1.?.{!0
==::::====
25br32B
250,/50
24"),332
t'UO,U69
234,9~5
229,9P.7
2<'5,!':!9
220rllbl
215,90')
?11,£171
2t•7, !59
202,9o6
1"18,flE<Ii
l'li1,9.?1
1'1!,11<>2
1i'7,j0J
u•3, oS2
.J
=~====::
37B,.590
369,ll93
360,8o3
352,489
:5LitJ,.)o3
336,476
32ti,tl21
321,389
)14,17£1
307,\bB
300,.363
<'93, 754
28/, B4
281,097
275,036
26'J, 1.4 7
2t>.5, 422
--------------
Lit 7 , ') 9 1
407,995
.59fl,299
3H8,1:191!
379, {69
370,91o
362,524
3S3,986
3£15,1:192
33H,035
330,40<>
322, '199
.51'-J,i-\~15
30tl,o1T
3vc,o3o
29':>, 1~56
289,028
--------------
4b2,074
4"iO,fl42
439,950
42"1, 388
•t~J9,!4.~
409,204
399,563
390,207
3R 1, 1 29
312,.518
.5o3,/o5
355,462
347,401
339,57.5
.3H,9H
324, ..,IH
317,ll'l5
J
--------------
'>11,139
1198,522
486,289
474,429
/J62,927
LIS1,773
4!10,95£1
1130, £159
420,276
1.110,396
IIOO,BOI::I
391,502
31l2,!!69
3I .5, 100
.565,186
3":.6,919
348,890
--------------
56':>, 71~6
551,575
537,1\39
5?4,5?£1
Sll,o!l~
£199,097
486,9')9
IJ75, 18o
463,767
Ll52,o90
4111, '/<12
L13!,"i13
421,~92
411,569
402,0.54
392,778
38.3,'7<10
--------------
626,509
610,597
'>'-15, 1 77
5130,2.32
565,7£16
551,703
5HI,08/
52!1,tl5'J
512,081
£199,663
487,ol7
475,932
46£1,'>94
453,S92
li£12,915
Ll.5?.,5<il
422, Jl92
.J
======~
694, 110
67b,2LI8
658,9ll3
61!2,173
625,922
610,170
59£1,901
':180,099
56':;,71~6
551,828
5~8. 3.51
52'l,239
512,540
500,;?19
L188,Zo5
£176,bb':>
'16'::!, 401
--------------
769,298
7£19,256
729,8£10
7ll,030
b92,803
b7S, 1£11
6':18,023
b41,LI30
bi?5,3LI6
60'1,751·
594,630
':179,967
565, {Lib
':.51,952
':138,5 70
525,':188
512,991
--------------
852,90£1
830,£122
808,bll7
787,551.1
767,120
747,321
728,136
709,5LILI
691,523
o7l.I,OSS
657,121
6£10,702
o2LI,780
609,3£10
59£1,365
579,£138
5b5,11Jb
23 AUGUST 7"1
;
ALASKA PO~EW AUT"OWITY
ANLHUNA~E -fAIR~A~KS INTERJIE
t~U~UMIC FEA~IHIL!IY STUDY
-------------------------~-------
----------------· ______ --------------(~PIT AL_ DlSt3URSEM[).If5 FllE_L_C_Q~~\)NENT_(JF __ !)PERAllr.!G COSTS
!N SlOOO FOR
ALTtRNATlvt SYSTEM EXPANSIONS
1 <r;Q
l'IHO
------·---------·-------14~1
19132
191:13
19.'\1.1
lq/:'5
1 •J 15 b
19h7
1968
1 'H'i 9
19'10
1991
I 992
]4'13
19911
1995
1996
1 9•17
1979
191'10
1931
l<lf\2
l'HB
}9tlll
191:15
1986
l<lfl7
191:18
191}9
19<10
)941
1<192
1993
1994
l <J(j'j
1996
1 9'H
IN ~1000 FUR
ALTERNATI~E SYSTEH tXPA~SlONS
INUEPENOtNI
COSTS -H9
2,009
26,bbb
_ --· _ ___ IH , 9 iJ 2 .n. 112
21,127
l, i 52
7,5~5
2.5.110
21,920
82,200
I <J t , 3 ~ 0
SK,il':>O
29, 1:\;1 0
23,93~
17,b.50
I ::n ERC ONNEC T E 0
COSTS -H9
ll,~l2
lt\,056
72,!:>01.1
--------11, 326 -·
31,t\Bb
'528
2.31 q
/3,')29
3\J,b\)1.1
1.13, 042
4~,463
89,973
101:1,41\t\
75, HH
23.3£17
£199
1.173
ADDITIUNAL DISBURSEMtNTS
IN $1000 FOR
UNUERLYJNG TRANSMISSION SYSTEM
l~DEPENOENI INTERCONNECTED
COSTS -$74 COSTS -$79
INIJEPHIOENT
ESCALATED $
INTERCONNECTED
ESCALATED !i
SUSITNA CONSTRUCTION POWER COSTS
. -IN $1000 ~OR .
ALTERNATIVE MODES OF SUPPLY
DIESEL GENEHATION INTERTIE lAPLINE
COSTS -i79 COSTS -$79
} l
TABLE 8-2
23 II.IJ!;IJS1 /q
DISCQil:l;f
f.iAif.
t-.no
11.25
H,')O
i<. 7 5
9,00
9.25
9,',0
9. 7S
I 0. o 0
10.25
10.')0
I 0. 7 'i
,...., I I • co
11.25
11.')0 ...... 1 I • 1 c.,
Q 12.00
D I SCOtlN T
KATt:
1:'.0(,)
8.25
1:1.~0
H.75
9.00
9,25
9.':10
9,15
10.00
10.25
IO.':itt
1 () • 75
I 1 • II 0
I 1. 25
11.':>lJ
1 I • 75
I2.VO
"'
,.J
ALASKA PU~ER AUTHORITY
ANCHORAGE -FAIRBA~KS lNTERTIE
ECOhOMIC FEASJAILITY STUDY
TABLE 8-3
0 I SCC1UtHEO VALUE OF BASE YEAR (1Q79) II'IIDE:.PH!DENT SYSTHl COSTS
IN $1000
-----------------------------------------~SCALA liON RATES--------------~------------------------
OY. i.l% 5~ b% 7"1. 8% 9% 10% 11% 1?X
======= ======== -------======= --------------------------------------------------------======= ---------------------
11':;-(1, iliJl ~:>llo,F<h7 70~,932 711,231~ 852,3H6 9_3':,, Ot>ll 1,0?.6;007 1,12t>,021 1,23':>,993 1.356,869
<H 0, ':iS A 1>32, l ;q o9c,oll'::l 7':iQ,2tn 1:13?,ll"-6 913,013 1,001,606 1,099,020 1,206,111! 1.323,827
430,93'3 o17,i:ll3 b7b,P.Ob 7111,101 P.13,tl80 l:l91,S78 977,1:192 1,072,784 1, I 7 7, 086 1,291,712
lj 21, 57 4 605,1'.77 661 , IJ 0 I 724r6b7 79 4, 2112 870,7112 9':ill,81l4 1,0l!7,287 1,!<18,1l82 1,?60,512
l.IJ?,il58 ')90,320 646,1115 708,101 775,923 850, 48/J 932,1J39 1,022,507 1r121,l!71J 1,?30, 199
l.l:1 3,5rt2 ')77,12P. 63l,P.3il 691,9P.7 758, 109 1:130,787 9IO,o511 998,420 1,091J,I:I38 1,?00,7llll
3'?<l,9Y:? 56'1,292 ':l!1,6':J!l o7o,312 1 II<) r 7 R 7_, /:111,c32 All o , 1l 1'\ I 97'5,006 1,061-!,9£18 1.172,120
3Ao,0>22 'j')J,709 o03,M.':itJ obi,Oo3 72'>,929 793,004 flb8,1Hl6 9',2,2!11 t,Oll3,7!n 1,14£1,300
371"1,323 559,6110 '::> 91) t 4 <' <J bl1o,?25 7 0 1 , ':i 3 :j 77li,BI'oS 84/:1,863 9~0,107 1,019,317 1,117,258
3J,),331 527,804 '::l77,!J'j3 o3!,787 b9l,':i83 7';7,260 829,386 901:1,583 995,530 1,1)90,971
3,2,5"8 '::>11>,282 So <J, o.~o 617,757 676,0o3 7'-10,113 810,1141 887,650 972,400 1,065,414
35l.l,9/~ 5<''i,Ob3 'i52, ,?.lj6 bl) lj, 061 660,959 723,430 792,011 867,290 9£19,907 1,0£10,564
3--17,':i<?2 iJ'l4, 139 ':i lj 0, [I:\ I\ 0:,90,/119 6<16, 260 707,!96 774,081 8tJ7,ll65 928.031 1,016,399
)·Cj \) 1 ~'-i <J '-IIU, SO 1 '-i2h,--<L18 57/,791 651,952 69!,398 756,635 828,218 90o,752 992,899
)~"5.~7<J '-l 7 3, ltJ I ">17,01o 5~:>5, 171.1 61d,025 676,022 739,658 809,1172 88o,OS2 'H0,0£11
52o,S<~2 IJ6.3, U49 SOS,t\133 552, !:!1:\9 601.1,11.-,7 66\,0'ib 723,136 79!,.?31 865,91.S 91J7,807
519dln q')3,218 LI9S,Oll0 51.l0,925 591,2o", 6£16, 1-!86. 107,055 773, l.l80 8!16,318 926,177
IJ 1 SCOUN T [I) VALUE OF BASE YEAR 11979) INTERCONNECTED SYSTEM COSTS
IN $}000
------•----------------------------------ESCALATION RATES----------------~--------------------··
Oi. ll% 5% 6% 7"1. 8i. 9~ 10% 11% 12'%
======= -------======= --------------======= -----------------------------------------------------------------------------
42<,, 71S b23,S51 b/:lt>,l:\99 756,982 f13q,l.l93 920,195 1,0]<1,91£1 l,tl9r573 lr23Srl72 1.362,807
1115, 8 ~ 0 6Vi3,'57il 670,250 7 31\, lj 7 3 fii..S,914 897,3t3 989,!178 1,091,297 1,203,7£12 1,327,880
4\)6,320 59'-l,02') 6511,080 720,1198 793,933 875,100 9611,786 1,063,852 1rl73,2LI2 1,293,990
397,U2t> '579,890 6311, 312 7 0 3, 0 110 77!1,529 8'::>3,533 91.10,1:H5 1,037,212 1.143,61!0 1, .?61, 1 0 1
31{7,Q0l) ';1:>6, 157 o23,11S 6f\b,Otl3 755. 6!14 1:132,590 917,541 1,011,350 1,114,906 1,229,183
3 7 q, .:?•l'-1 'SS2,1:111 6(}6,287 669,610 737, )80 812,251 89ll,942 9B6,2tJ2 1,087,1115 1,198,201
371l,oo0 539,1:!il2 593,1:11:10 6':>3,606 H9,S99 792,1196 872,995 961,861 1,0">9,933 1.168,]27
362,3')1 52"1, 2 56 579,<'81 638,05o 702,325 1B,307 1;51,680 938,186 1,033,639 },138,930
~5'-1, 269 51'-1,9/:l"'i 566 r 2 7 IJ 622,91J5 68'i,':Jll2 75ll,b66 830,976 91':i,192 1,008,106 1.110,582
3'-lb,il\)7 503,071 ">53,0£19 o08,2':i9 6h9, 2B 73o, 555 8111,863 89.?,859 983,310 1,083,055
3~H,75R 119 I, i.J t19 5'-lO, 192 595,98':> 653,38tJ 718,957 791,323 871,l6"l 9">9,226 1.056,323
Bld\5 'li-\U,22~ 527,t.>93 5/:10,110 o37,9;H 70!,1:l'::>5 772, Btl 850,089 935.832 1r030,360
32q,(175 ilb0,?.71 515,')40 ':ibb,621 623,tlOI:l 685,2V:i 75~,689 8?9,t>l2 9\3,106 1,CJQ5,1ll2
317,•J25 l.l':)B,62o 503, 123 S53,S;;J7 60o,453 669,081 73':>,960 809,715 891,027 980,bllll
~10, leo lll.lt<,26o !!92,230 54 IT, 755 59li,J0.3 6')3,)78 718,535 790,379 869,573 9S1:!,8LILI
>O)Illk8 li3R,11'\9 litH, 052 528, 35 1J 51'\0,')44 631-\,112 701,597 771,586 8ll8,72b 93>,720
29b, q;q~ LJ211, 3.85 1170,!79 Sto,29tt 5o7,1o'l 623,t!70 685,131 753,321 828, £11:!5 911,250
·•>·""'] • J J '-'··"' .J J J '\-o~.~ .) ,_.c.;J .J .. ... J
rn
..... .....
1979
1980
19f:<1
19tl2
t9e3
1 91HI
198'5
191\6
t987
I 91Hl
1 91'-9
J9lll!
1 9 'I I
1092
!993
1994
1995
1996
1997
-----·---1979 1980
1981
---------1 91)2
1983
19~1.1
1985
ALASKA Pl.l~[P? AUlfHI!.'JlY
ANCHO~aGE -FAl~HAN~S !NJ~NTIE
ECONO~IC FEASIHILITY STUDY
~APlTAL DISBURSEMENTS
I'l $1000 FOR
·ALTERNATIVE SYST~H EXPANSIONS
!~DEPENDENT INTERCONNECTED
COSTS -~7q COSTS -~79
4,0\1
2,009 1<lr2213
2o, 6•>6 1.16,9o7
81,9<12 lt,';'j1
H, I 72 .32,097
27,727 6r00.6
33,5'52 2ll,lll'O
106,'555 90,673
11~5.210 1.35,9ll0
9£!,71:>0 11'5,716
1 19, IJ 75 1\3,]91)
1 <l I , 3':1 0 H9,b9Q
58, 4':ill ]08,723
29, 8 ~~ 0 75,1.34
23. 9.~5 23, lOb
t7,o~O 270
254
ADDI l!O~JAL DISi;URS[~l[NTS
IN $1000 FOR
UNDERLYING TRANSMISSION SYSTEM
INDEPENDENT INTERCONNECTED
COSTS -~79 COSTS -$71
fU~~ COMPONENT OF OPERATING COSTS
.. IN $1000 FOR
ALTERNATIVE SYSTEM EXPANSIONS
.. JNOEPENOENT
. ESCALATED $
8,468
9,32£1
10.267
6r851
7.212
7, 9 33
8,65£1
9,015
INTERCONNECTED
ESCALATED $
7,6£18
8,1198
9,029
8,32£1
8,654
s.uto
8,745
9.109
SUSITNA CONSTRUCTION POWER COSTS
IN $1000 FOR
ALTERNATIVE MODES OF SUPPLY
DIESEL GENERATION INTERTIE TAPLINE
COSTS -$79 COSTS -$79
. ·------------------------------. ------------------------------------· --~---------~~-
1986
l4H7
191itl
191-\9
199(\
---------!<I'll
1992
19'-'J
1991l
]90",
I 44(>
]Q~l
.. -l
TAI.iLE 6-5
23 AUGUSl 79
DISCOUNT
RATt
H.UO
·". <'5 M.50 ..
tl.7'i
9.1_\C)
4.2'>
4.')0
9.75
1o.oo
10.25
10.':>0
10.7S
1 l • 0 0
rr1 1 1 • 2 ':>
1 l • 'i (l
1--' 11 • 7 5
N 12.00
------·.-··--· DISCOUNl
RATE
8.00
8.25
ll.So
/j. 7 s --·--·---<f.vo
9.2'>
9.50
9.75
10.00
10.25
10.')0
10.75
11. 0!)
11.2?
I 1 .SO
11 • 75
12.00
.J .) j
ALAS~A POwER AUfHORilY
ANCHO~AGE -FAIRBANKS lNTERTIE
ECONOMIC FEASIBILITY STUDY
TABLE 8-3X
DISCOUNTED VAL~E ~F-~ASE YEiR £1979) INDfPE~D~NT SYSTEM COSTS
IN $1000
-----------------------------------------ESCALATION RAT£5---------------------------------------
0% £1~ 5:1:: 6% 7% II% 9% 10% 11?.: 12%
--------------======= ======= ---------------------------------------------------------------------------------------------------
<! 5 (I 1 llrl1 o<lo,Mt>7 701:1,932 777,23<l 852,386 935,0t>ll 1,02t>,007 1,1C'o,021 1,23':,,993 1,356,869
ll!!Q,5')8 t-32,139 69(!,645 759,218 832,i.15o 913,013 1,001,606 1,099,020 t,2\li:>,1lll 1,323,827
IJ.SI),9~8 t>l7,.'\13 67t:>,80t> 7£J1,701 813,080 891,578 977,892 1,U7?.,78<J 1,177,086 1,291,712
iJ;_>j,'i71l 605,877 bi:>l,li!Jl 72i.l,bb7 7 9IJ I 2<J 2 l:l70,71J2 954,844 1,0£17,287 1,1llf:I,R82 1,2oll,512
·Hi'. IJS8 590,3<?0 o1Jt>,il1':> 708,101 77';,923 8';0,1J8/J 932,ll39 1,022,507 1,121,li7/J 1,230,199
LIO.~,'ili2 ')77,] 21:1 tdl,83'> 691,987 758,109 B3\l,7fl.7 910,658 998,420 1,091.1,838 lr200,7Qll
YllJ I 9)') 56<~,292 ol7,o54 67b, )12 7tJ0,7tH M.11,o32 Hl:\9,<1131 975,00b 1,068,9Qfl 1,172,120
Ho, 5<'2 ')')1,799 60.5,054 bb1,0o3 723,929 79.5,00'1 861'1,81'\8 9'.>2.i'41 1,0'1~~.78~ 1,14ll,300
-~ 7 p,, ~ 2 3 ')39,o4U 590, 1l2ll oilo,225 707,')3.!4 77£J,885 IW/3,8o3 930,107 1,019,317 1,117,2')8
370,357 527,P.O<.i 577,353 o31,7fl7 o91,5H3 757,260 829,38o 908,583 995,':>30 1,090,971
362,558 51o,282 5b/J,630 617,737 o7b,063 7li0,1t3 810,£141 1387,650 972,400 1,065,414
3~1J,978 505,063 552.246 60IJ,Oo1 660,959 723,ll30 792,011 867,290 9<19,91)7 1,0ll0,564
3117 I ')'-12 <l'l,J, 13° 540, 111[3 590,7ll9 oll6,2ou 707,196 174,081 l:\tJ7,ll85 921'1,031 1,016,399
34l1' )l)'.j q~3,'>C'l 52H,<l<'H) 577,791 63\,9'52 o91,39H 75o,635 828,218 91)6, 752 992,1399
3 3 3d 79 4 7 _) 1 J IJ 1 ?17,01t> 565,174 611:1,025 t>lb,022 739,o58 809,472 8Ro,052 970,0ll1
326, ';IJ2 <l63,0«9 505,883 552,1'1119 o04,1Jb7 oo\,056 723,136 791,231 8b5,913 9ll/,807
319,876 Ll53,21tl <495,0/JO 540,925 591,265 61Jo, 486 707,055 773,480 tlllo,318 926,177
DlSCllUNTED VALUE OF BASE YeAR (1979) INTERCONNECTED SYSTEM COSTS
IN $1000
-~·-·-·----------------------------------ESCALATION RATES---------------------------------------
0% Uf. 5% 6% 7% 8% 94 I 0% 11% 12%
--------------======= -------======= --------------===:::=== ------------------------------------------___ ..,.. ___ --------------
<J31l,030 o37,754 701,o06 772,207 8')1) 1250 93o,ll95 1,0:.H,776 1,137.008 1,2"i3,195 1,381,433
II<' Fj I 09 1 o22,o58 o84,d34 753,570 1329,539 913,ll78 1,006,197 1,106,585 1.221,613 1,3Lio,31.19
4\tl,lJ29 t>07,'191 668,5lJ1. 735,<~o9 809,426 891.129 9!H, 365 !,080,995 1,190,963 1,312,303
qo9,o)c, 5<13,739 o52, 715 717,B8o 71",9,H92 tl69,LI27 957,255 1,054,211 1.16!,211 1,279,261
3'-;19,ii'i9 579,P.01 o37,BLI 700,1'105 770,919 13/H:\ I 351 933,81.13 1,028,207 1,132,531 1,2LI7,190
391, ll15 56h,Ll31 622,390 684,209 752,ll88 827,881 911,1011 1,002,957 ],10Ll,292 1,216,058
3112,374 553 I -~4q 607,867 668 I OtH 7 34,582 807,996 889,026 978,1137 1,077,067 1,18'>,834
373,9t>8 51lll,b31 593,751 652,41tJ 717,183 788,t>79 P.67,'>7H 954,624 1,050,631 1,1<;6,LI90
3o5. 7'-lo 52>~,268 580,030 637,18<1 700,277 769,910 846,742 93],491.1 1,024,957 1.127,996
3S7,831l 51o,<'ll.., 5o6,oaJ o2?,3R1 o83,t147 751,673 826,1.199 909,026 t.ooo,o21 1,100.325
35o,uot ')0iJ,5'>7 ')').5,723 61)/,991 oo/,1)71'. /33,951 80o,H31 8!\7, 199 975,HOO 1,073,1.150
"5/12,')57 49),188 5ilt,113 59tJ,Oil1 o52, 555 716,726 787,711 8b5,991 9'::)2,269 1,0ll7,346
33'), 22.~ '-Hl2, Ul 52t:l,ii50 '>!l0,399 o37,2o5 699,98£1 769,1tH 84'}, 38.~ 929,408 1 I 021 t 988
.328,085 ll/1,376 51b,'12tl 567,172 622,59tl 6!:13,709 751,089 825,357 907,195 997,352
321,135 ll60,913 '.>O':i I f2Q 554,S09 608,328 oo7,!lfl7 733,540 1305,893 885,o09 973,lll5
3!/J, HO <J'iO, 733 1~911, u 40 541,7<11', 59<J,ij<;5 652,503 71&,4~0 7S6,97!.l 861l,t>31 950,•1';6
3U I, 782 <ti.I0,!'\2tl <I!:\3,0o2 5£>9,o2~ ",80,963 o37,51.1ll 699,89S 7()(!,51:!3 f\1.14,2/J1 927,552
---~----· I .) --~ -.J ~t J .,.A·"•••• c .• ~-' ) .J j J ~ ;d J J
..... w
--,
1979
!98U
19-'.!1
19~2
19R3
19Ri.j
19!:\5
191\o
l9tl7
1988
l<i'iQ
1900
t ')9 I
19'12
!9<13
199/.j
19<15
1'19()
1'-''H
1CI79
1980
!9R1
1982
)
~LAS~A PU~lR AU1HORI1Y
ANCHVHAGE -FAl~HA~KS INJEMTI[
ECO~OMlC FEAS181LITY STUDY
CAPITAL DIS8URSEME~TS
I"l '!i1000 FOR
ALTERNATIVE SYSTEM EXPANSIONS
l~DEPENDENl INT[HCON~ECTED
cusrs -$79 cosrs -!79
2,009
2o,ol\b
81,9·~2
.H.t72
27,727
.B.5S2
106,555
tu5,210
'l'~, 7oO
1 l 0 ,1.j7")
101,3~0
')11,'~50
29,81.10
23,935
!7,o.SO
5,0!£1
17,785
·58,709
11 ,551
32.097
6,006
24,£120
90,b73
135,940
1!5,71b
1U,!9t{
t9,69ll
108,723
75,134.
23,10o
270
254
ADOITION-L DISBURSEHEN1S
IN $1000 FOR
UNDERLYING TMANSMISSION SYSTEM
INDEPENDENT INTERCONNECTED
COSTS -$79 COSTS -$79
FUEL COMPO~ENT OF OPERATING COSTS
Jll $1 0 0 0 F 0 R
ALTERNATIVE SYSTEM EXPANSIONS
lNOEPEIIIOE.NT
ESCALATED $
8,4o8
9,32'1
10,267
6,851
7,212
7,933
8,654
9,015
INTERCUNt.E.CTEO
ESCALATED $
7 1 o4R
8,498
9,029
8,3?1.1
1\,654
a,o1o
8,}U5
9.109
SUSITNA CONSTRUC.TION POwER COSTS
.. I~ $1000 FOR
ALTERNATIVE MODES OF SUPPLY
DIESEL GENERATION INTERTIE TAPLINE
COSTS -$79 COSTS -$7q
~-~· ··-------. !983
19~11
!9H5
19/ib
19"7
191:18
1989
1990
1991
1992
1993
1994
1'l 0 5
J99o
19'-l7
28 AUGUST 7tJ
DISCOUNT
RATE
8.oo
8.25
e.5o
8,75
9.00
9.25
Q.5o
9. 75
10.00
10.2')
10.50
10.75
I 1 • 0 0
11 • 25
fT1 11.50
1 I • 7 5
...... 12.00
.j:::.
OISC.OUNT
RATE
a.oo
8.25
8,50
8.75
9. 00
9,25
9.50
9. 75
10.00
10.25
to.5o
10.75
1 I • 0 0
11 • 25
11.50
11. 75
12.00
J ,} ,-
ALASKA POWER AUTHORITY
ANCHORAGE • FAIRHANKS lNTERTlE
ECONOMIC FEASIBILITY STUDY
TABLE 8•J•LL
DISCOUNTED VALUE OF BASE YEAR CI9H) INDEPENDENT SYSTEM COSTS
IN S1000
••••••••••••••••••••••••••••••••··~·-···•ESCALATION RATES··~·····••••·••••••••••••••••••••••••••
ox 4% St 6% 7X 8% qx lOX 1U 12X
======= ======= ======= ======= :::;::: ======= ======= ======= ======= =======
237,690 352,1.149 389,84Q 431,534 477,Q81 529,713 587,311 651,414 722,726 802,024
232,026 343,607 379,955 420,ll60 ll65,585 515,836 571,777 634,027 703,268 780,253
226,529 335,031 370,360 409,724 l.l':d, 568 502,386 556,724 617.180 684,417 759,164
221 .t n 326,713 361,055 399,312 4111,917 489,349 542,134 600,855 666,153 738,734
216,009 318,642 352,029 389,216 ll30,621 476,710 527,992 585,033 648,454 718,939
210,977 310,812 34~,274 379,'123 419,667 461.1,1155 511.1,283 '569,698 631,302 699,759
206,090 303,214 33ll,779 369,924 409,043 452,S72 500,992 554,8 B 614,678 681,172
201,342 295,840 .326,537 360,709 398, 739 441,049 488,105 ')40,1.121 598,564 663, 157
196,7~0 288,683 318,539 351,769 388,7'H. 429,872 475,608 526,448 582,943 645,696
192,250 281,735 310,777 3ll3,093 379,045 ljJ9,031 463,ll87 512,899 567,798 628,769
187,896 274,990 303,242 334,674 369,636 408,':114 451, 732 ll99,759 553,112 612,359
183,6o5 268,41.11 295,9?1\ 326,503 360,500 3Q8,310 440,.328 1.187,015 538,1\71 596,447
179,552 262,082 2813, 827 318,572 351,6ll5 388,1109 ll29,26'> 1.171.1,653 525,059 581 , 0 18
175,555 255,906 281,9.32 310,872 34.3,044 378,801 418,':131 462,661 511,663 566,0511
171,669 249,908 275,2.37 303,396 334,690 369,476 408,11':1 451,026 498,667 551,541
167,890 241.1,081 268, 734 296,138 326,591 360,425 398,006 439,736 48o,060 537, 4b3
164,216 2~8,420 262,419 289,0139 318,722 351,639 388,195 428,781 1173,827 523,806
DISCOUNTED VALUE OF BASE. YEAR (1979) INTERCONNECTED SYSTEM COSTS
IN 51000
•••····-~---·~·w•••••••••••••••••••••••••ESCAL.T!ON RATES•••·•••••••••··-···--····--·-·••••••••••
ox 4% sx ox 7% ax 9X 10% lU 12%
======= =====::c= ======z ======= ======= ======= ======= ======== ======= =======
238,419 347,569 383,QS9 1122,582 1.166,':186 515,562 570,0':13 630,6':19 698,037 772,913
233,022 339,177 373,675 412,087 454,846 502,429 555,362 614,225 679,657 752,361
2Z7,783 331,036 364,':i74 401,911 Lj 4 3, 1164 489,698 51.11,122 59tl,299 661,848 732,450
222,695 323,138 355,747 392,041 432,428 417,3')6 527,32\J 582,865 61.14,591 713.158
217,753 315,474 31.1/,182 3tl2,468 421,725 465,389 513,939 567,904 627,865 694,463
212,'153 308,036 338,873 373,182 ll II .345 453,784 500,965 553,1.101 611,654 b7bd4b
208,290 300,818 330,810 .361J,I72 401,276 41.12,5.30 488,38o 539,340 595,940 658,787
203,759 293,1:111 322,98':1 355,431 391,508 431,61£1 476,187 525.707 580,705 641,766
199,356 287,009 31'),390 31.16,948 382,032 ll21,026 1.161.1,355 512,486 565,Q35 625,265
195,07A 280,405 308,018 338,716 372,836 410,753 452,878 1.199,o65 551,612 609,268
190,919 273,9'12 300,861 330,725 363,913 400,786 441,74') 4P.7,229 S37 ,722 593,756
186,876 267,761.1 29:\,912 322,9o8 355,252 391,115 430,9LILI 47'j, too '>24,250 578,713
182,9116 261,71') 287,164 315,1137 31.1o,dll':i 381,729 1.120,I.Io!> 463,463 'JI1,!B3 564,124
l79,t21.1 255,839 280,610 308, 125 338,685 372,61'1 410,293 452r108 498,506 S4Q,974
175,407 250,130 2711,245 301,025 330, 76 I 363,776 400,422 441r0QO 1186,208 536,247
171,792 244,584 26A,v62 291.1,129 323,0b8 35':>,191 390,841 430,397 474,274 ':122,930
168,276 239,1911 262,055 287,431 315,597 346,8':>b 381,':141 420,019 462,694 510,010
------1 -··''-'"' J J ,.l J J ._ .. _.,j ·-·"-·',. J .J _) J } J ,J ) -,-"<--\. -· .. , . ., -... J
'j ----1
28 AUGUST 79
TTl
.!"-'
U1
1979
1980
1981
!982
1983
1981.1
1985
19Bo
1987
1988
1989
1990
1991
1992
1993
19911
1995
199b
1997
1979
1980
19/H
1982
1983
1981.1
1965
19Bo
1987
1988
1989
1990
1991
19'l2
19'1~
199ll
19'10:,
194b
1997
1
ALAS~A POwER AUTHORITY
ANCHORAGE • FAlRBA~KS INTERT!E
Eta~o~rc FEASIBILITY STUDY
CAPITAL DISBURSEMENTS
IN $1000 FOR
ALTERNATIVE SYSTEM EXPANSIONS
INDEPENDENT INTERCONNECTED
COSTS • SH COSTS • $79
u, 0 1 I
11l,?28
1~,o.29 ~o,9o7
58,B2.S .11.':151
16.3130 32,097
526
1.195
43o
/>,bOO 5,890
33,955 22,30b
116,630 90,119
122.100 123, 3b3
72,8SO 73,001
37,275 70,091
7,555 2fl6
1.7,b30 270
2'JLI
ADDITIONAL DISBURSEMENTS
IN S1000 FOR
UNDERLYING TRANSMISSION SYSTEM
INDEPENDENT INTERCONNECTED
COSTS • S79 COSTS • $79
FUEL COMPONENT OF OPERATING COSTS
IN $!000 FOR
ALTERNATIVE SYSTEM EXPANSIONS
INOE"PENOENT INTERCONNECTED
ESCALATED $ ESCALATED S
8,uoe 7,6!18
9,324 8,1198
10,2b7 9,029
8,654 8,74'5
9,015 9, 109
SUSITNl CONSTRUCTION POWER COSTS
IN $1000 FOR
ALTERNATIVE MODES OF SUPPLY
DIESEL GENERATION INTERTIE TAPLINE
COSTS • S79 COSTS • S79
1 ···-·)
TlBLE 8•3•Lt
2.s AtH_;usr T'l
DISCOLI'H
r<AH
e.oo
8.2'1
~.so.
8.7CJ
9.00
o.2S
'J • ':J (I
9. I':>
I 0 • 0 0
10.<''::.
10.'::>0
11). 7 5
I l • o fl
1"1'1 i 1 • <' 5
I 1 • CJ !I
...... I I. 7'i
0'\ 12.vO
OlSCOIJNT
~AT t
l'l.ou
t~.25
li.SO
13.7'1
9.00
9.25
9.~0
9.75
10.00
10.25
lv.c,u
ll'.7S
11.00
I I • 2S
1 1 • 5tl
I 1.75
12. vo
ALAS~A PO~tW AUTHORITY
ANCHORAGE -FAIM8AN~S INTEHTIE
ECONOMIC FEASlijJLilY SJUDY
DISCOU~TEO VALUE OF HASE YE4R {19/9) INDEPENDENT SYSTEM COSTS
IN $1000
tABLE 8-4.
'---------------------·----------------~-----------------~--------ESCALAl!UN RATES-----------------------~---------------
0% 4% 5% 6% 7% 8% 9% 10% It% 12%
-------======= -------======= -------======== ------------------------------------------------------------------------------
·~utl,ll?b 'C>b0,5bb 725,o?._?_ '193,213 l:lo<1,7ol 9':d,QQ9 !,04t>,S25 1,JiJ8,507 1,260,188 1,383,148
'1 '; 'I , 'I') 3 o<IS, -~b"i 1(17,:)37 77U,!j/2 649,•'175 9.$1,S10 1,021,701 1,}20,8/.lll 1,2<:'9,80o 1,349,':>37
... d i), \ 1.19 t) 5 I) , 7 7 II 1:>90,'-107 7S7,(l3f'. 1-524, 153 900,691 997,5711 1, 091.1, 1':)6 1,200,286 t,3to,886
<J 30, hll<l o1o,S79 675,218 759,1:>911 1:110,516 81l!:\, U91 97£1,122 1,061:1,<:'20 1, 171,o02 1,285,163
U2lr311 ooc,/6!'J b59,95o 722,112<1 741,927 l:lo7,P.72 9':>1,32£.1 1,0£.13,010 t,lll3,72o 1,254,340
1-+1?, ?._62 5H0,32<.1 c'IS,IOB 70t),LI15 77 5, 790 847,822 929,158 1,018,5011 1,116,632 1,224,387
a 1.'), 45 0 C:.,lb,c'">O 630,oo0 69 0, 1~">2 7~6, JllR 8,'1!,32!1 907,606 9'14,~:>80 1,090,.?97 1,195,276
3'l<J,'lh/ '::>t:d, ">21 61o,60! o7<1,920 75tj,9P,1 t\09,360 886,647 <i71,Sio 1,01)4,696 1,166,981
3Mt:>,SOI' '::>'::>1,131 60r',QJ<.~ oS'I,ti\J8 7<'?.,29<:' 790,913 8oo,261.1 941:1,992 1,u39,8\J5 1,139,477
37t:-,3hiJ ')59,070 589,o02 oa':>,101 70o,OLI7 772,967 8'J6, 438 927,087 ),015,603 1,112,737
370,450 527,327 S7o,o39 630,7il7 690,239 75':>,S08 827,151 905,782 992,0o8 1,086,739
>o<:',700 515,1193 56£J,(ll9 616,855 671.1,856 738,519 808,389 885,1)',9 9"69, 1 79 J,061,ll58
>':>5.161 C,{)tJ,750 ':)51,732 oo.S,292 6'j9,!'>1l5 721,987 790, I B 864,899 9llo,916 1,036,872
~ u 7' 1\?5 lJ9~~,GI6 539,161 ')<>0,0K?{ 61.1':>,30/:l 70":!,897 772,369 l:lll':l,285 925,259 1,012,961
\'lU, hr:-,q Lll::\'1,,3SU ':52i\, 1 I 6 577,252 631,119 690,236 7')5,01:11 H2o, zoo 901.1,190 989,702
5~5.69i.l IJ73,(!66 516,761:1 "io4,713 ol7.~il5 674,991 738,25':) 81)7,629 883,o91 967,075
3c'br /i'lll 465,0<13 ':>0'1,715 C,C,2,520 603,1'\54 boO, 11.19 7?.1,877 189,555 863, 71.15 945,062
f) I SCOUiJTED VALIJt OF clASt: Yt:AR (1979) lNTERCONNECTt:D SYSTEM COSTS
IN $1000
-----------------------------------------t:SCALATION RATES---------------------------------------
ox 1.1% St. 6% 7% 8% 9% 10% 1U 121.
======= ======= -------======= ======= ======= ---------------------======= ----------------------------
11211,1\20 bi:'H, 09'~ 69I,H91 162,4611 flli0,512 926, 799 1, 022,162 1,127,522 1,2£.13,886 1,372,357
IJ!I\,9]7 1>15,1ll5 675, 129 7Ll3,EI31 1<19,706 905,768 996,':)58 1,099,061 1,212,254 1,337,207
1Jl)',l,2<i0 59A,3o7 oSI:l,di19 725,735 799,681 881,408 971,704 I,07!,ll37 I , 181, 5So 1,303,099
"t,'·IQ 1 Q 52 '>84,!36 6£15,03':) 7GH, 160 780.147 1:159,o97 947,575 I,Ollll,o2.S 1,151.,762 ),269,999
59tJ,!\B S/0,30P. 627,~:>71 o'll, OR8 761,176 838,61!1. 924,147 1,018,592 1,122,841 1,237,875
5 >' I , ·~ >i 5 5Sb,H71 612,7lit.l 674,503 742,7£18 815,139 901,398 993,31ft 1,09ll,7bb 1,206,693
313. ~b2 5113,1'\12 5913,239 t>S8, 3'10 l24,tlll7 79B,252 879,305 968, 776 1,067,509 1,17o,42ll
3o S, 0 I 11 531,119 '~8ll,l43 642,733 7o7,ll':io 778, 93'-1 857,848 9lll.l,944 1,041,0112 1,147,037
3';6,875 51o,781 570,41.13 6?7,':)19 690,':>59 lbO, 167 837,005 9<:'1,798 1,015,31.11 1,1l!l,504
3<Hl,<.IS7 50t>,7Ro ss7,126 612,733 o7ll,l39 741,933 816,/58 899,316 990,382 1,090,797
3·•1,2':><l 1.19'), l<:'ll C,l.l••,l/:11 ':>91:1,360 658,182 7211,216 797,0116 817,477 966,139 1,063,889
3_q,7'-,9 IJI\_S, ?l:ll.l 531,S<l5 5flll,390 o<~<:',67.~ 706,991'1 777,973 85o,2o1 94(>,590 1,037,756
5c:'a,'IL'J5 '-17?, lSi> 'JI9d51 570,1:\08 oi?/,':>91'! o90,?o':> 759,399 IHS, bi.lo 919,712 1,012,371
H•J,3ol 4 be,,, 3 v '507,4')7 ':)57,oP2 b 12, <UL} 67i.l,OOI 741,549 81':>,615 897,48(> 987,712
3t2,tJC,8 1.151,':>9rt 1~95, ;J84 51.1ll,7o<:' 591:\, o91~ 6':itl,l90 725,tl05 796,149 87S,Ii88 9o3,754
5l1 5, 733 l.l<ll,llll9 '18 <I, o?ll 552,275 5tlli,K'I\l 642,819 70o,7S1 777, 2~9 8')1.1,901 9Q0,47b
?9Q, IKb 4H,'-)7o <J73,u11; C,?l),1~0 C,7),jh9 6?7,874 690,17.S 7':>8 ,}.1110 834,50Q 917,8':>b
J J I _J J .I
....,
......
........
--------
----···--·----
1979
19KQ
19~1
191:12
\'183
1'!84
!085
1986
191:17
l'l813
19.'\'-1
)990
1 'I 9 I
\992
)495
1994
l99'j
1'1'-16
1'.197
1979
19H()
191\1
1982
19H.3
191'4
191:15
l9ilt-
)Q/<]
191-'8
19tJ9
14911
1'1'11
1992
199 ~
1'-l<l<j
19'1';
1991)
I 9'1 I
}
ALAS.._A PIJ.,FR AUTHOHlTY
A"'CH•Jf.ll\t;E: -FA l !.riiA!\11\S IN H.R 11 [
ECONO~IC ~tASl~lLJTY STUDY
CAPITAL DISoU~SEME"'TS
{1-; $1000 FOR
All EIH-iA TI v f SYSIEM EXPANS!O~S
lNDtPE.NOE"'T iNTERCUN!XECTED
COSTS -$79 CUSTS -'i79
4,011
2,009 14,228
26,66b l.l6,9o7
81,9!12 11, 5S 1
3 7, I 72 52,097
27,727 6,006
53,5S2 2/.l,£120
106,555 9(),673
1!15,210' 1 5':.>, 9/J 0
9 1•, 760 115,716
ll9,1J/'-; 11 3, 1 91_1
IOI,3t\O &9,694
5t\,Q':i0 1013,723
29,840 75, U4
23,9\'5 25, I Oh
17,650 210
2~4
ADO! T IO~JAL DlSBUfiSI:::MEIHS
IN $1000 FOR
UNDE~LYING TRANSMISSION SYSTEM
INUEPENDE~r I"'TERCONNECTED
COSTS -~79 COSTS -179
6,6116 1,356
2,004
FUEL COMPON~NT OF OPERATING COSTS
IN $1000 FOR
ALT~RNAT!VE SYSTEM EXPANSIONS
INO~PE"<DENT
ESCALATED $
8,468
9,324
10,267
6,1351
7 r? 12
7,935
8rb':i4
9,015
INTERCONNt:C H::D
ESC ALA TED $
7,646
8,498
9,029
8,324
8,65(J
8,016
8,745
q,1oq
SUSITNA CONST~UCTION POWE.R COSTS
IN $1000 FOR
ALTERNATIVE MODES OF SUPPLY
DIESEL GfNERATION lNTERTJE TAPLJNE
COSTS -$79 COSTS -$79
2,835
b95
697
696
3r0'>5
1 • .324
187
623
623
-500
2b7 .. 483
481
478
752
902
7311
Li:SO
<Jl9
3011
1
TABLE 8-CI
ll Aur.us r I<~
D lSCOi_lrH
I-< ATE
'1.uo
B.2S
i:I.SQ
d. 15
'l.ill.!
9.2'>
q. ':dl
9. 15
I o • 0 fl
10.2';
Ill, So
1u.7S
I 1 • i.' 0
rr1 1 I , 2 'i
II. Sf'
...... 11.7'i
00 tc>.uo
DlS(OLiNl
RATE
1:1.(10
8.2')
~>.':to
8.7')
9.00
'-1.25
9,50
9,7')
1u.no
10.2"1
IO.':tu
J 0. 75
11.00
I 1 • 25
1 I • 50
l J • 75
lc.OO
I 0 Ll .)
ALASKA PU~f~ AUIHO~llY
ANCHORAGE --FAI~BANKS !NTEHTlE
ECO~O~IC FEASIHILJIY STUDY
TABLE 8-liX
lJTSClliJNTED Vt.LUE OF F!ASE YEAR I 1979) INDfPt:.ND!:NT SYSTEM COSTS
IN $1000
-~-~---~-~---------~~-~~---~----------·--ESCALATION HATES---------------------------------------
04 ll7. 5% 6% 7% H~ 97. 107. 11% 12t -------======= ======= -------======= -------======= ======= --------------------------------------------------
llbU,tl2b ~oJ,.56o 723,1J2?. 795,215 ~\1)9,161 953,9Q9 I,Ollo,':>25 l,[lltl,307 1.260,[81:1 1,383,148
ll'~9.'-153 o4'-,,_~b5 707,037 7 1 Lj , .fl 7 2 8Q9,U75 '131,510 1,021,701 1,120,84ll 1,229,80o 1,31J9,537
Lj ·'I!), Ill 9 !• 3 (', 7 7 4 o90,907 757,058 1-\29, 753 909,697 997,574 I, 09'~,! 5n 1,200,2.86 1,316,886
4 5 !j, 6 0 4 blt>,579 o75,21d 759,69Q l:ll0,576 IH\I),ll91 974, 122 I,06H,22U ],171,602 1,255,!63
'J21,311 o0?,7611 6':'>9,956 7?2,H2'~ 7b1,'~27 667,872 9':-JI,524 1,0IJ5,010 t,lll3,-726 1,254,3110
lj 12,262 SHe;, .'>29 bi.l':i, l OH 7 0 o, tJ I 5 7 B, 790 P,47,i:l?2 929,158 I,UJ.H,'i()Q 1rll6,o32 1.224,387
II'' ~, ~ Scl :)7o,25U 63ll,6b0 0 9 lJ, IJ ';. 2 7':ib,J4fl t12tl,3?ll 907,oOo 9'11l,ot\O 1,1)90,29"1 1.195,276
~9·1, 'lt> 7 r,6~,521 olb,601 o·7~~, 920 l3t:J,9i37 809,360 l:lfl!), 61~ 7 971,':do 1,064,696 1.166,981
V-<1:1, SuH 551,1)1 1>02,91'-l I)C,9,501:l 7?2,292 /90,91) 8bb,2bli 9<Hl, 992 1,0)9,M05 1,!39,477
37B,3o4 53L>,IJ7u 5il9,o02 6ll':i, 101 70tJ,047 772,967 846,438 927,087 1,015,603 1.112,737
370,,J50 ':J27,.527 576,63"1 o30, 7fl7 690,259 755,508 1'>21,151 905,782 992,068 1,086,739
)t)2,7ll0 51'>,1:193 564, t)! 'l bl6,tl55 67ll,l:l"i6 73~-<,519 130b,389 bl:l5,0')9 969,179 1,061,458
:> ':> ':>, I o i 'J()tJ,7'J9 551,/.32 60~.292 659, .~1'15 "12 I , 9 fl 7 790, u 5 864,fl'-/9 946,916 1,036,872
"'iiJ7,62S 495,916 'i5'!, 167 590,08/'1 6ll5, Hlrl "105,1397 772,369 54"i,285 92':>,259 1,012,961
_$/J (I 1 b0'-1 llfl3,3':i4 521<, I 16 ')77,232 631,\19 b'I0,23o 75':>,081 l:l2o,200 90Q,190 989,702
35.$, 694 Q75,0oo Slo,768 564,71.5 b\7,50') 671J,991 758,255 807,629 81:\3,691 967,075
5t:'t>,H9ll ll63,1.)4.$ 505,71':> ':>52,520 603,85ll o60, 1«9 721,577 7119,')55 863,74':> 945,062
01SCOUNTE:.D VALUE OF !-lASE YtAR (19 70) !t~,TERCONNE.CTEO SYSTEM COSTS
IN $1000
--------------------------~--------------ESCALATION RATES---------------------------------------
OY. LJ<; 5% 6% 7% 8% 9% 10% 114 12%
======= ======:: ======= -------======= ======= -------======= ------------------------------------------/j!J\,!34 o~<?.,?97 7(16,'-,91; 777,o90 85t>,269 0 1J3, 101 1, 0 ")9, 0 2 5 l,l41J,<J"i7 1,261,909 1,390,9811
ll31.!2ll 627,1!99 6R9, 71' 75H,928 l:l35,ll?1 910,932 1,015,278 1,116,349 1,230.125 1,355,676
IJ21,'-l0(1 612,3.33 to73,.511 740,706 8\5,174 l:l97,436 981:\,283 1,081:\,580 1,!99,277 1,321,1112
4 I I , 'ill 0 C.,07,ai:IS 657,'>76 723,00':5 795,511 57':>,S91 961<,01':> I,Ool,t>22 I, 169,333 1,288,159
402,742 5~'-1,042 b4I,FI93 70':>,809 716,411 1:\5«,376 9lli.),IJ49 J,05S,ll<Hl 1,140,266 1,255,882
.3<13,796 570,491 &2o,81~/ 68'1,102 7':>1,fl''io 1'133,769 917,')6/J 1,010,o:B 1,112,045 1.224,5ll9
Sti5,095 S'J7,H9 h!i:',225 672,1:\t>tl 750,tl5\) f\13,752 b9':>,336 985,353 1,084,643 1,194.131
.37o,o31 5'~·•,514 59H,OIIJ 6')7,091 722,315 79t.J.,.305 b73,71J6 961.383 1,058,0311 I, 164,597
3bH,3q6 5.32,()bb 584,199 641,/51'. 705,2'J'-I 71':>,411 852,771 938,100 1,032,!<J3 1.135,918
.5t>0,3>i4 51'4,"'1)? S70,16'J 62b, 135'l b8t'>, 155 "157,052 552,394 915,1Jf14 I,Oo"!,O<:J3 1,108,066
1,52,'~1<7 ')OH, 191 557,711 ol2, 56b b72,b7b 75'1,210. 1:\12,':>94 t\93,511 91:12,712 l,Obi,Ot6
1,45,001) 491,, 744 ':>45,015 'J'JII,2f\l 657,0IJ8 72!,B69 793,553 872,11>2 959,027 1,05l!,7ll2
537,bl5 .J/3':>,611 S32,t>68 51:\'I,SH') 6lll,eS5 70':>,014 l74,o53 8':>1,418 936,014 1,029,217
3.H1 ,ll26 IJ71~,71lll ':>20,1>':>9 '>71,267 627,0/B 688,629 756,1J7tJ t\31 , ?S 7 913,6':>4 I,QOII,II19
323,428 'lhll,?4ll 50o,97!:i 558, ~16 oi2,12U 672,699 738,810 511,663 891,925 980,325
31o,6lll 45~,403 ljQ7,616 ')£l5,7!8 5'-lil,7"i2 657,210 721,63') 792,ol7 810,807 '1'36,912
1,(>4,9/? 44'1,019 <t86,i61 '::>.5.3,llh':i se5, lo7 642,\ll9 7()11,93':> 77LJ,I03 8':>0,280 934,! 58
-,.J J J if,''-' .J _, ,I ~.eel .,.) J .. ,J J '~-.I
i! 3 hl)\iiJ!' i i'l
I"T1
1979
!9(\U
I '71:\l
19f\2
191'13
19R4
191'.5
19~>6
l9R7
l<lf\8
I 9fl9
1990
1991
19'12
1993
l</'lil
19<15
19<l6
19<17
1979
1980
19Al
19R2
1 9!15
1 <H< 14
191:\'5
1</~b
19H7
191:\8
I<Jt'9
1 '190
J </9 1
1 <1Q2
1993
1994
1995
199b
19<J7
l
ALASKA t>OI~t.!-1 A!.llHUWIIY
ANCHUWAG[ -FAlHKANKS !NTEWTIE
ECON0MlC FEASlHllfTY SlUDY
CAPITAL DTSBUNSEME~TS
IN .itOOO FOR
ALTER~ATIVE SYSTEM EXPA~SIONS
lNOEPENOENl INlERCO~~ECTtO
COSTS -~79 COSTS -$79
2,009
2o,666
t\1,9~2
37,172
?..7,727
B, 5'>2
1uo,5'lS
1'6,210
4'1,760
11<1,'175
101,350
'::iti,I.I'Sil
29,8il0
23,935
17,o30
5,014
17.71;5
58,709
11.5'>1
32,097
6,(!0o
2<J,Ll20
90,673
135,9QO
115,716
113.198
il<l,b94
10H,723
75,13Q
23,106
210
254
AD!Jl Tlil~-J~L DlSAURSE•1EN1 S
HI $1000 FOR
UNDERLYING TRANSMISSION SYSTEM
l~UEPENDENT lNTEHCUNNECTEO
COSTS -179 COSlS -179
----------~-----
1, 35&
2,0011
FUEL COMPONENT OF OPERATING COSTS
IN $1000 fOR
ALTERNATIVE SYSTEM EXPANSIONS
INDtPENOENT
E.SCALATEiJ $
8,1.168
9r32ll
10,267
6,8~1
7.212
7,933
5,651.1
9,015
INTfRCONNECTEO
ESCALIITEO ~
7,648
8,1Jq8
9,029
8,324
8,651.1
8,016
8,745
9,109
SUSITNA CONSTRUCTION POWER COSTS
II~ $1000 fOR
ALTERNATIVE MOUES OF SUPPLY
DIFSEL GENERATION INTERTIE TAPLINE
COSTS -$79 COSTS -$79
2,835 267 -~-~-----·--·-----~----------------------695 483
697 1181
o9b 478
3,055 752
1.321.1 . 902
187 734
623 430
623 ll19
~5QO 30ll
)
TABLE 8-IIX
23 AUG•JST 79
DISCOUNT
RAlf
8.00
I:I.<'S
c.'JO
5.75
9.00
9 • .?5
<i.':JO
'1.7",
1 u. ,, p
I 0. ,<~
I \> • ·c
1 C • I ')
f'T1 1t.ou
11 .25
1 l.')v
N 1 1 • 7 5 0 }2, (I()
DISCOUNT
h'ATE
B.oo
8.25
~-~0
8.75
9 .lHl
9.25
9.So
9.7S
to.oo
10.25
11.1.':>0
1U.7<;
I I. I• o
11.25
tt.so
l I • 7 S
12.00
QL~S~A PUwt~ AUTHO~llY
ANChORAGE -FAIRAANKS INTE~TIE
~CUNOMIC FtASIHILITY STUDY
DISCUUNTED VALUE OF BASE YEAR (tq79) INDEPENDtNT SYSTEM COSTS
IN $1000
TAI:ILE 6-5
-----------------------------------------ESCALATION RATES--------~--------------------------~---
07. 4% 5% b% 7% f\7. 9t lOt 11%. 12%
======= ======= -------======= ---------------------======= --------------------------------------------------------
;o'JS,710 373,6"2 £11l,tl07 ll5),201 ll99,483 550,738 607,">02 670,367 739,91:\':, IH7,076
o::' '> 1) , 3 1 1 .5o':>, 1 ')tJ ·Hl1,6CI/I 41!2,573 4117,603 ':>37,460 S92,662 65),7~3 721,<l56 796,376
?;•5, ()I) 1 3Sb,fli:59 392,on3 '132, 25 ~ 476,072 52 1~.57"> 578,265 631,698 703,41'\1 776,307
239,~!,7 54H,1:!59 31:!3,o'l3 <l22.233 llb<l,878 512,0b9 S64,29S 622,094 61\6,059 756,845
2 !,4, fl13 3<ll,(l57 >,?•J, 980 412,501 ,.<;<1,009 1199,'130 5')0,731:1 606,'154 669,154 737,97~
22'1,Q2iJ 33_s,47,. 366,514 403, 1)1.19 iJ43,45'j 48/:1,11J5 537,':>80 ':>92,264 652,7')4 719,666
N.0.,,1o/ 32t>,]04 351:\,df\9 ~9.~,Hh7 455.~05 ll7b, 104 5211,/:IOtl ~lf\,007 636rtl113 701,909
c'?u,537 _'ilii,<~4u ~50,.::'95 3134,947 II c? .3. 25 0 ll65, 5'1 3 ')12,408 5611,170 62l,L102 h8ll,682
<'lh,il30 _q I, <17'1 342,Sc'6 37o,279 413,579 IJS4,/:l03 S00,369 ~50,738 606,417 1:>67,966
/ 1 t, b4 s 305,205 5 3'l, 9 7 3 36/,1'-'Jo 4 ()(I, 18 3 4llll,322 481:l,o71:1 537,6'18 591 rl:lB 651.746
·'' ! I .S /1 29H,o1~ 321,o31 5S9,6o9 39~,0':JLI ll 311 ,, 1112 'l77,325 525,037 577,154 &36,004
?•.•),212 292,.::'13 320,1.192 351,711 31:\o, 1 e2 424,2"iU 1166,297 S12,7'l2 56<l,O'l7 620,723
1 99, I 61 21'\':>,983 313,550 543,975 "371,~':>9 414,640 li':J~.~84 ':>00,801 550,138 605,590
1<1':>,21~ 279,<1.::'2 306, 199 536,455 369,118 40~.300 l)£1~,176 48'1,202 537,1114 591,!189
l 'i 1, q l ?7·~,1)2':) !J()0,232 329, 13R 3bl,050 396,223 43S,063 471,956 525,261 577,506
tH7,b?6 2nb,2&o 293,1:1 1•3 322, ()('iJ !J'J5, 1 oe 587,399 '•?5,236 466,9f\9 '>13,069 S63,927
II', ~, 9 7 7 2o2, 1u2 ?.1'.1,621 31'J, Ill~ .3 11 ':J, 4 0 4 311:\,821 41~,oll'l 4')6,353 '>01,225 550,738
DISCOUNTED VALUE:: OF BASE YEAh' (1979) INTERCOIIJNECTED SYSTt:M COSTS
IN $1000
-----------------------------------------ESCALATJO~ RATES-------------------------------·-------
0% IJ% 5% 6% 7% 8% 9% 10:( 11% 12:(
=====-== =======::: ======= -------======= ---------------------======= ------------------------------------------
?.37,!Jt0 .$56,112 ~94,816 437,9o2 486,0')2 5)9,638 599,334 665, IH 5 739,828 822.198
231,90') 3L~1,4ct> 385,040 426,963 473,o79 52':>,725 583,695 648,243 720,092 800,01.12
22b,o':>tl 5~9,003 37'J,5o2 416,301 '~61, b88 512.244 ')68,':>41.1 631,222 700,978 778,587
221,565 .$30,!<33 361>,312. ll05, 96tl ll5Q,065 IJ99, 180 553,1i64 614,752 6/3.2, 464 757,808
216,1,]9 322,<~00 ~~7,459 39S,9112 1138, 74o !11\b, ">1 7 539,638 598,756 66!1,529 737,683
211.815 315,221 3t11J,ti14 3Ho,2?5 '•27,131'> 47ll,21l3 52~,851 5113,27'5 61l 7, 15 3 7!8.188
?ll7, ISO )07,i62 540,LJ21'-376, 197 !117,21:13 462,344 ':>12,488 561:\,273 63ll,3t7 699,301
202,bl9 300,'J2u 332,293 367,6')') <l!l7,012 <l5tl,il08 499.~3/J 5~3,732 614,002 681,002
19~,.?16 ?95,4<f9 !>24,399 351:1,787 3'/7,050 439,&21 486,975 ':>39,638 598,190 66.$,270
193,959 286,6131 316,740 !J':!O,lf\3 3Hl,!J88 '<2H,772 1174, 798 52~, 971.1 582,864 646,08';)
189,162 c'IJv,Vo3 )09,506 5<1l,t134 37b,Oi4 4!11,250 462,990 512,727 568,007 629,1130
1t>S,7112 273,o37 302,041 333,135 .H)t\, 920 4iJII,044 ll':!1,53fl !.199,882 553,o03 613,285
pq,Hl'i 261, ~qb c<JS,<l~o 3?S,I371 3oO,IJ'lo 391l,142 '14 0. 4 30 ll87,425 539,6313 597,b3LI
117,991'\ 261 d39 21'\I:\,2Rt> 318,23'1 ~')1,532 38!:1,535 429,6')6 47S,~4LI 526,096 58.:',!160
174.2116 25~,455 2HI,ntl3 310,531 343.221 579,213 419,202 465.625 512,962 567,71J6
170,677 249,7ll0 275,271 303,6)8 33'J,154 370,167 409,060 45<:',256 500,221l 553,477
lb7, 167 244,lb7 269,0LI4 2<fi> ,.t,~LI 327,323 361.386 399,2lll !141,227 Ll87,1:167 539,6.38
J "" J ,-1 J .J J I ~J .J' J I
Z3 -"UGUST 7~
f'T1
N ......
197'-1
lOtiO
19>31
19H2
!9t\3
19~11
l 9 K-5
l'-11'16
Jql:\7
19i\ll
191•9
)9'10
J qr~ 1
1 'I'} 2
1993
!994
l'-14':>
1096
1'1'17
1979
1980
1481
19M2
1983
I q_p. II
190~
1'-l~o
lql-\7
I llh8
191:'4
1'1'10
l<l'-11
!9'12
1943
!944
1995
J9<ln
)'197
l
ALAS!I.A POnt!~ Al!lfil'Rl TV
ANCHURAGE -FAlNHAN~S l~IERTIE
ECONUMiC F~ASl9ILITt STUDY
CAPITAL DISBURSE~ENTS
1
IN $1000 FOI<
ALTEA~Al!VE SYSTEM EXPA~SIONS
FUEL COMPONENT OF OPERATING COSTS
IN $1000 FOK
ALTERNATIVE SYSTEM EXPANSIONS
--·---
INDEPENDENT INTERCONNECT~[)
COSTS-579. COSTS-$79
4,621
2,009 15,5911
2b,6b6 1.18,1:\74
~1,9112 -----!1,515 ---------------
37.172 32,062
21 ,1<'7 492
7, !52 ?._,472
7,')':15 lhll73
23,] 10 30,')Ll9
21,920 £1~,031:1. -------------------
82,2110 l.j_$,!1ll
101,3':\0 89,o94
58,450 10!:1.72.S
29,840 7C,, 134
23,935 23.106
U,tdO 270
2511
ADDITIONAL DISBURSEMENTS
l NDI::YENDEN T
ESCALA T£D $
-----· -----------
INTERCONNECTI:.D
ESCALATED $
--·---~--------
IN .1>1000 FU~
U~DERLYING TRANS~ISSION SYSTEM
SUSITNA CONSTRUCTION POwER COSTS
IN $1000 FOR
ALIERNATlVE MODES OF SUPPLY
I rwEPUJDf.hJl
CDSTS -"1>79
lNTERCO:IINECTtD
COSTS -$7'1
1.~56
biESEL GENERATION
cosrs -$79
INlEIHIE TAPLIN£
COSTS -$79
1
TABLE 8-S
Z5 AUGUST 7'1
DISCOUNT
,; A Tl:
8,1'0
1"1.25
~.':ill
K. 75
() ~ (.1 0
'1,2'>
'"i,SO
'1,75
I ll. (l 0
IO.<'S
I 0. ':>(I
1 o • r c.,
rn I I • '' iJ
I I , <'5
I I • S 0
.N I I • 7 5 N 12.00
DISCUUfl.l
~Aft
a.oo
8.2':l
8.50
8. 75
9.00
9.25
<~.~o
9,75
1 0. ,) 0
10.25
10.'::10
IV. 1':!
1 I • 0 0
11.25
11.50
11.75
12.(10
.. "1 .t I
ALAS~A POWtR Al)THONllY
ANCHORAGE -FAIRBANKS INlERTIE
ECONOMIC FEASI8ILI1Y STUDY
TABLE 8-SX
DISCOU~TED VALUE OF BASE YEAR (19791 INDEPENDENT SYSTEM COSTS
IN $1000
----------~------------------------------ESCALATION RATES-----------------------------~---------
0% 4% 5% ox 7% 8% 9% 10% 11% 12':<
-------======= -------======= ======= ======= ----------------------------------------------------------------------
2SS,770 373,662 4!1,1107 «':d,201 49<?,41:\.S 550,731:1 607,502 670,367 739,985 f\17,076
250,)11 3t>S,ISI.I 401,tl91:1 41.12,573 1.187,t>03 '::-37,1.160 592,662 653,783 721,4':!6 796,376
? rJ ') 1 i) (J 1 3"it>,KI:'9 392,o63 432,25.~ iJ7o.072 52t.i,575 S7fl,265 637,698 703,481 776,307
2.~0,I'd7 3'lt1,1'59 38),693 422,233 46'-l,tl7tl ?12,069 56ll.c95 622,094 o8b,OS9 7<)6,84':!
c' VI,; I 3 )1.!1,051 37 11,9111) 4)c',50! "54,009 !199,930 550,7.38 606,95ll 669,t':!ll 737,972
22CJ, '12£l 533,471.1 366,51<1 <103,049 Lll.l3,tJ5'J 488,11.15 537,580 592,26<1 65c',7Sll 719,666
225,167 326,104 3:.1i,2H9 )03,,.,h7 iJ_)3,c'05 l.i7b, 704 52tJ,i\(18 578,007 636,81.13 701,909
220,537 31tl,9LIO 350,295 31:111, <:147 423,2Su 465,593 512,1.108 56<1,170 621,402 684,682
2lb,030 311,975 3LJ2,Sc?o 37o,?.79 413,579 I.I<)I.I,M03 ')00,36'l ')50,738 60o,417 667,'l66
211 ,I,<J 3 30S,203 334,973 367,RSo I.IOLJ,ll:l3 4<1LJ,322 <1!18,678 537.b98 591,873 n51,7li6
2U7,371 29/:J,611:1 327,o31 3S9,o6'l 3'15,05ll 1.134,1LJ2 LJ77,325 525,037 577,754 636,0011
N3.212 2'12,213 320,1~92 351,711 386,11:12 421.1,250 £166,297 512,71.12 5b4,0li7 620,723
199,1ol 2i<'),~l'3 513,<;50 31.13,91':! 317,559 1.111.1,61.10 <l55,S84 500,801 ':!';1),738 605,890
1YS,215 27<:1,922 30o, 10<:1 336,1..1')3 369,178 405,300 445,176 <189.202 537,814 ':!9l,liB9
191.371 274,025 300,232 32<:1,13tl 361,030 396,223 <135,063 477,936 52S,261 ')77,506
11~7,62o 26H,2Rb 293,d 1J3 322,021.1 3')3,108 3R7, H9 425,236 46b,989 513,069 ':!63,927
1d.S,'Il7 262,702 287,621 315, lOS 31.15,1.104 37H,821 415,681.1 456,353 501,225 550,738
DlSCUlJNTELl VALLIE OF !:lASE YEAR (1979) INTERCONNECTED SYSTE.M COSTS
IN $1000
-----------------------------------------ESCALATION RATES-------------------------------~-------
0); 1.1% 5% 6% 77. 87. 97. 10% 1U 127.
======= ===-==== ======= -------======= ======= ----------------------------_____ _.._ ----------------------------
2 1Jo,6l":! 3bb. 1;1{19 liO"i,9RI\ LILJ9,539 1.19~, t)llll 552,057 612,191 679,121 753,5'l6 f\36,439
2 1J1,130 358,111 .S'lo, 115 438,113'1 485,561:\ 538,037 596,4lll 661,4314 733,141 814, 15'l
2.~S,thl4 3<19,595 3fl6,S42 1127,678 473,1..171.1 ':icLJ,li50 SA1,180 644,299 711.1,509 792.582
23\l, 6:~2 341,335 371,257 <117,2/.lll <161,750 511,280 56o,390 627,6'l7 695,878 771,683
22'J,oll'l 333,320 3613,251 <107,121.1 LIS0,383 496,513 ':!52,057 611,bO'l 677,828 7':!1,438
220, 7<>9 32'),':>43 359,":!14 397,310 1~39,360 486,137 538,164 S9o;018 660, B 7 731,825
21<),911{1 317,996 3':!1,037 387,790 42t1,670 4711,136 52<1,695 580,'l06 643,388 112,821
211 dill 310,671 342,811 371:1,554 418,3ll2 462,ll99 511,637 566,258 626,961 69li,ll06
2uo,90"i 503,'161 33<1,8('8 3()9,593 4ll8,('1.14 451,213 1.198, ''175 552,057 611,039 676,560
202,'J511 2'1o,b57 327,080 360,1:197 391.\,I.IP.6 440,26'::1 486,o96 S38,2~8 595,603 65'l,262
190..521.1 C'tl<l,95':l 319,SS9 352,LIS8 389,019 1.129,6<16 ll]IJ, 787 524,93o 580,639 642,li95
!9ll,2!3 2P.· 3,1.146 312,2':17 34'1,267 379, tl32 1.119,343 llb3,235 511,981:1 566,128 626,240
1'1(1,215 271,124 305,161 336, 31o 370,9lb 1~09, -~46 452,029 49'l,429 ')52,057 610,479
IH6, 327 270,9tiiJ 2'18,282 328,S'l7 362,261 399, 61J5 441,157 41'17, 24 6 ':138,410 595,196
11~2, 546 26S,Ul9 2'l1,S96 321, J 0 2 353,1160 390,23\1 430,607 475,427 525,173 51)0, 375
t71';,86fl 25<1,22LJ 2!:15,1(>1 31.$,1123 3£1':>, 704 381,091 420,369 463,960 ':112, 332 Sob,001
175.290 2';3, '::~92 27tl, 192 3 ()I,, 1 'J ll .B7,785 57?.,220 i.!lV,ll32 452., 833 li99;f\75 ·552,057
J J I .I J .J il I .J .I ~J .~· .:1 J J
N w
1979
l 1Hl0
I Q/11
1'1£12
l'l/13
l'lt<4
1~!-<'>
J<l>\t)
191:!7
191:lt1
11/liQ
1 QfJ ll
19'11
1 'I 'I~
1 9'13
1 q ·~'I
1'14':1
JQO!:I
)<147
11179
t91i0
I 9/i I
19iic?
14113
19~.:1
JQ~O:,
JQflo
14117
1-l"A
I ~.-14
14'11)
14 '1\
1Q<.Il
l\.1<,13
LY~tl
l'l<l'>
1'-1'-lt>
JQ'lf
IHI\S"A P!l"EI.' AllnHH<fTY
At-.C~t(Jt-!A(;t -fAl14fHINK5 PII!:.IHlE
;tco~O~lC ~EASIBILITY STUDY
CAPlT~L OJSBUHSEME~TS
I\i UOOO FOH
~LTERNATIVE SYSTtM (XPANSIO~S
HH>EPI:~:OENT l~TE.HCOi~NECrE.D
COSTS -~10. COSTS -$79
2,009
~o.t>i>b
111,9.:J2
'37, I 12
.? 1 ,J ?.7
7,1':::~?.
7,<;r.;5
i?l,!IO
21,920
t'>?., 2•) ()
I o I ddl!
") 8, ~~., ()
?.9,840
iB, 9.S':i
17.6'0
5,0111
l7,HlS
';8, 7l)q
11,':115
32.06«!!
492
(!,tt72
a,t~73
30,549
1.1 ~, 11 )1:1
(l ~ 1 q I I
1:\9, n9:J
I (I 8 , 7 i' J,
7<:;,L34
2.St!Ub
270
;?~U
AD l)! f I I H• A L D I s tW H s ~ ~·EN T s
iN $1000 FIJH
UNO~~LY!t•G lHANSM[SSION SYSTEM
~~~EP~~OtNl !Nl~RCUN~~CfED
cu~TS • ~79 COS1S • ~79
1.3'56
2,004
FU~L tO~PONENT OF OPERATING COSTS
IN $1000 FOR
ALTERNAllV~ SYSTEM ~XPANSIONS
yr.otPE.NOENT
ESCALATI:D $
INTERCONNECTED
ESCALAfED "'
S0SITNA CONSTRUCTION POWER COSTS
IN $1000 FOR
ALTERNATIVE MOOES OF SUPPLY
OIESFL GFNERAFIUN INIERTI~ TAPLINE
COSTS • $7~ COSTS -$79
D1SC0!1'H
fJ Jl ! f-_
Ct. lH•
11.r''">
M • "> r)
1_1,7.,
'I. 1l 0
'1.?<,
'1,'-,P
9. 7 ')
10.00
10.25
1u.-:,o
1u.75
I I • 0 tl
rTJ I l. 2S
I I • c., I)
N 11 • 7 '-,
+=-' 12. oo
I) 1 SCChJN T
RATt
8,0{1
6,25
A.-:,o
~.1S
q • Q I)
9,25
9.SO
9,75
10.00
10.25
10.50
10.75
l I • o u
11.25
1 1 • 5 n
1 1 • 7 c.,
12.00
··-·-·
~<c~~ , __ , J
ALASKA PUWt~ AUTHURllY
A~CHOR~GE ~ FAlRrlANKS INTERTIE
ECONOMIC FEASldiLITV STUOY
TABLE 8-6
!JlSCOUtHED liALUE OF 13ASE. YEAR ( 19 79 J I NOE:.PE~Of: NT SYSTEM COSTS
l.N $1000
---~---~---------------------------------ESCALATJU~ RATES---------------------------------------
04 ll% 5% 6% 7'1. 8% q:, 10% IIX 12X
-------==~:::=== -------======= ---------------------======= ----·-----------------------------------------------------------
?t>l,!.1?7 3Hl,Vl9 419,1~02 461,11oo 501:\,9U 56(1,973 618,607 on2,lllt 155,044 831.230
"'"'", ;~bb 57?.,3ob i! (I<) r 7 } ll 451,0P.3 496,1'43 51J 7 1 lll;l'i 60~,5£12 665,'>85 75U.,247 810,239
?Sil, O') 7 36"5,'l5d ~ 0 0, 3'14 4liO,S9<-I lit\5, 127 53£1,401 581:1,925 6£19,258 716,017 789,885
2£14,795 3">S,ltl9 ~'11,2.?2 £130,'1013 £173,752 ">21,698 574, lliO 65S,LII4 6'18,335 770,146
23'1,676 3£17,.'151 "5R2,3o0 LJ20,515 llb2,10o ">09,367 ':>60,'173 61t;I,OO:,I 681,181 751,002
2$·•,o94 34U,l3., 573,/SO Ill 0, 9 0 5 £1')),91:\0 £197,3'14 5117,610 1:>03,137 66£1,538 732,43<'
<'2", ''u;, B2,il3b -~os, 5.P.2 liOI,56R. 4•~ I, 562 4115,769 ':>3£1,638 5t\H,663 6£18,389 714,£117
22'), 127 S25,3i!o 551,25•) !,92,497 ll_) I , I~ 112 '-1 7 lj, Q 7 9 522, 0 '13 57!.!,613 632,717 1:>96,937
220,')_~4 31b,251 .Sll'.l, 3llo · 38 s, 6i\l ll21,610 463,51,3 '509,1\13 560,973 617,506 679,976
21o,l!h2 311,)61~ 3ll1,661 57'),11£1 £11?,"057 452,tlo2 497,936 5£17,130 602,7£11 663,515
211,71)7 ~0'-l, obO B!l, 190 366,786 Qu2,771J IJ!l2,51ll tl8o, 400 ":>3!.!,870 588,liOo o47,538
20/,i.!o6 29~, 1£10 326,925 35R,b'll 395,75~ ll32,ll')9 !.!75,194 522,381 51<1,1188 632,028
20,,536 291,79o 319,~60 350,fl20 584, 9tl·~ !.!2.?,o8H 4t,ll,307 510,.?'51 560,973 616,971
1'19,312 28~,, o25 312,9Hfl 34~~. 1o7 37o,!.!59 £115,193 1153,130 £198,468 0:,£17,847 60?,351
I 'i 5, 392 2l<i,t>20 3 () 6, .) 0 3 355,724 3b8,171 1.!0),963 IIIJ5, 4')0 £187,020 535,099 '>88,154
\'lJ,S/~ ?..i :,, 17o 299, '19'1 321\, llll 4 360,112 39<1,990 4:B,4o1 u75,13'17 522,71£1 574,366
I117,R'jl 261'\,0BB 293,1171 321,4 1~2 552,27';; 386, 2&1" ll£'3,750 1.16">,089 510,682 560,973
I; I SCUUN T F. I> VALIJE OF BASt: 'l't A R (197'1) INTERCONNECTED SYSTEM COSTS
IN $10110
-----------------------------------------tSCALATION RATtS---------------------------------------
I)~ ll '; 5% 6% 7'1. 84 9'1. 10% 11 t 12%
-------===::=== -------======= -------======= ======~ ---------------------------------------------------------------
2)9,':>fl2 559,h52 39M, 725 1~42,277 £190,812 ':>1~11, BIHI 605,121 672,193 7£16,85£1 829,93/.1
23ll,223 3';;0, 6t< 3 388,1:151 £131,175 478,.S25 531•,8tt9 589,342 65£1,466 726,94& 807,588
221\,9<'3 5!!2,378 579,289 4.20, 41 3 !.!66,223 517,21.15 57'-1,05':> 637.29'-1 707,665. 785,948
223,771 3 3 4, I :, 1) :no, o 1 o ll09,97r'o i.!':>ll,1193 50£1,061 ">59, 2'n 620,658 688,989 7&11,990
?IR, 71\l 32t>,12H 361,012 399,861 4£1:,, 121 491,282 54£1,888 60£1,539 670,896 744,690
213,9c9 31~,56o Y)2,2Bil 390,()51 432,095 478,895 530,976 ';)88,91'1 655,367 725,025
?09,?16 31t1,h3ll 343,1\IH 380,':J3'J ll21,40ll 4()6,1:186 517,1191 573.782 636,381 705,974
2 0 lj, 6.31 305,525 B':i,61lll 3li,~Ob 411,056 40:,0:,,242 50£1,418 559,110 619,'120 687,514
2fJ0, I 90 ?'lo,Ll31 327,b3U 362,353 400,981 043,951 £191. 71.1£1 Sllll,888 603,967 o69,625
1'15,Ao8 21l'J,')ll6 519,900 353,obo 391,227 '-135,001 ll79,ll55 551,100 58t\,504 652,289
I'll rbt>l:l 28t',no,> ~12,)93 3£15,231 .S81,7hll £122,380 L16l,'J37 .,11,n2 ':>75,':>13 63S,ll86
JK7,S<:>t> 27t>,37.~ 305,107 537,0':>8 372,':>83 412,078 II ')5, 9 7 9 ':>0£1,769 ':>0:.8,'180 619,198
1«3,nlM 2 7 \) f (I] 2 2911,034 329,119 St>3,o7ll 1.!1)2,083 ·~ll<l, 768 Q92 ,t 98 5'~Ll, nf\8 603,407
179,7o1 ?.td,453 29 l , 1 b 7 321.1~13 355,029 39(',385 4B,H'I3 £180,00'> 551,223 588,096
17b,U11 2SI'i,ll1!) 284,q99 313,93~ 346,t.>38 382,971~ ll23,3lll £168,178 517,969 573,250
172r3o(J 2':>2,237 2Hi,o25 506,1)7\J )38,493 H3,!:lll2 413,105 4':>6, 'lOll 505,114 558,852
lt>~,H17 2llo,o29 27 1, 7 3i~ 299,t>.l1 HO,":>H5 364,977 lj()3, 168 4LI5,572 1!92, o'-14 544,888
.J ---~1 .. J --.I J ... J J ... J ""--J J .I _,) J --I .J
N
U1
Alll$1\11 I'!I,.H? IIIJH•U,;-JfY
ANCt!Ori'Al.t. • 1-AlRHANKS lNI(RTlE
FCONOMIC FEASl~IliTY STUOY
l
-----------·----~
----------~------~-----_CliP 1 TAL 01 SHURSE!-!ENTS fUEL CO~PONENT OF OPERATING COSTS
1111 $1000-FOR
ALTERNATIVE SYSTEM EXPANSIOIIIS
I'H 0
I'~ I' 0
1 9 1-i I
lliH2
19~3
----~-------_l Q {-II~
I <11i5
t9A6
1'-H37
llii'R
19H9
1 9') l)
1491
lll'l2
19'13
\90£1
1<1'15
1946
lllll7
1979
1980
19!:11
)Qf\2
1Yo3
198£1
19!:15
191<6
19h7
l'H~B
. 1 llh9
19<10
19"11
I <192
\993
19'-14
j90')
19'/o
1'19'1
IN 'HOOO FOR
ALTERNATIVE SYSTE~ EX~A~SIONS
2,ou9
26,666
i\1, 9LJ 2
.57.172
21.!21
7.152
7,555
23,110
21,920
Mc,2oo
Ill l di:lO
51\,4':JU
<'9,840
23,95':7
17,630
£1,621
15,59£1
4R,~\7!1
11,51<;
32,0o2
1492
2,472
8,li7:S
30,<;1~9
<l3,(l3i\
£13,411
89,69 1J
lOi'-,723
7';, 13£1
23.106
270
c'SU
ADDITIONAL UlS8URSEMlNTS
IN $1000 FOR
U~DERLYING TRANSMISSIO~ SYSTE~
!~DEPENDENT INTERCONNECJEO
COSTS -il9 COSTS -$7ll
1.356
2r00ll
!NDEPENOENT
E~CALATED $
!NTE.RCOI-.NI:C TED
ESCALATED $
SUSITNA CONSTRUCTION POwER COSlS
IN $1000 FOR
ALTERNATlVl MODES OF SUPPLY
DIESEL GENFRAI!ON lNTERTIE T~PLINE
COSTS -$79 COSTS -$7Q
(:),855
b95
697
69b
3,055
1,32£1
187
623
623
-~00
2b7
U83
£181
478
752
902
nu
1.130
£11Q
3ull
TABLE 6•o
25 AUGtiST 79 ALASKA PU~f~ AUTHUHllY
ANCHUHAGE -· ~AIR~ANKS JNTERllE
ECONOMIC FEASI~Il ITY STUDY ____ ~-
TABLE 8-bX
~ ~--~----------
o 1 scuur~ r
HAl~
fi. 1_1 0
e.2'::l
e.so
f. • /')
9. l.; 0
9.25
9 • .,0
4. 15
I u. 0 ll
10.2"-,
1\• • ., 0
11• • I r::;
1 L • ii 0
J'T1 11.25
11.'}{1
N 1 I • 7 ':>
0'1 12,()1)
D IS C n u r·• T
I< Art:
M.PO
8.2'>
t~.~o
8.75
'1.•J0
9.25
9.SO
9. 75
I 0. il o
10.25
U•.<:>O
10.75
1 I • \1 0
11.?.5
11. '::iO
I l • 7 S
12.0()
-. ,,,,.
DISCOUNTED \IALUE Of tlASE YEAR C 1979} p.ii)EPEi--iDENi SYSTE.,-COSTS
IN $1000
-----------------------------------------ESCALATION HAlES---------------------------------------
()% 4% '>% b% 7"4 8% 9% 10% !IX 12%
======= ======= -------======= ======= -------======= -------======= -----------------------------------
?~.>l,oc"l 3i'!I,OI<J tli9,£J(I2 461,.0.f\6 SCJtl, 9 U '::l61l, 97 3 618,607 61:\2,1.111 7':13,01.14 1'.31,230
2'-;5, :lbb 37?, ~bb Ll(l9,75'J ll')\,01'15 t.l96,t\43 5117,1J88 6(15,':>42 66.,,5!\3 75ll,247 1-110,239
2t:;(i,OC,7 3o3,9.,1!-u0(l,5111.1 41.10, C,Oij 1.11:15, 127 53 !.1, 110 I 51-11',925 649,2':>8 716.017 789,885
2J 1~,l<l5 Y:-i">,7i'o9 391,i2;> 430,'-l{Jtl ,, 7 5, 15 2 521,69H 574,7/JO 633,419 691'., .B5 770,146
2"1,0 ,':>/6 )t.j7,HSt 382,360 ll2ll,515 462,706 ',tJ9,367 560,973 611:1,051 6fll,!81 751,002
?S£J,6'-l'~ 340,1~1> 573,7'>0 4 I<), 9!) 5 lJ'} I, 91\l> 4Q7,394 547,t>IO 603,137 notl,'::l3H 732,432
i:'29,1:\'IO . 3 52, o ·s" "36';,3.'\2 401,561\ ll '' I , '> h 2 ••85, l o9 53ll,638 58fi,663 6ll8,389 /1ll,417
2?:5.1(!1 32':1,3lJ6 3"-J/,250 5<J2,497 1.131,402 474,1.179 '::l2c,043 574,613 63.:?,717 b96,937
?21),'i3'-l 311-1,257 34'l, Sllo 31:13,6111 421,1>10 463,513 509,1113 .,1:>0,<173 b17,SOo 679,976
2 I b, li62 31 1, 3b4 3i.il,t>6l 3 7 5 , I I tt 412,057 4',2,662 1~97, '1.~1.> C,£!7,730 60,;?,/41 663,515
2LJ,H>7 3(o:J, '>bO 331.1,1QO 361>, I tit> ll02,774 lJ4<',514 IH:It>, 400 'l54,R70 St\ll,llll6 oll7,538
;>c,7,,"<,6 2'11', 1110 32o,92'> 3Sd,b91 593,753 'd2, 459 475,194 522,3/ll 57LI,48~ 632.028
2i 1 5,356 2'-~1 , /9o 319,H60 550,~20 31-14,98a 422,b81; llb4,307 510.2'>1 '>oO,<J73 616,971
1"9,312 2h5,h25 312,'/t:\1:) 343,167 376,459 413,193 1153,7 30 498,'l6H ':Jill ,l)ll] o02,351
!45,.~92 274,620 30o,303 3Y::i, 721.1 568,171 40),963 4115,450 487,01!0 535,099 588,154
191,573 273,776 1!99,7'>9 321:1,41:14 360,112 5'-11~, 99 0 433,461 475,897 522,714 57£!,366
l h 7, 1151 i!.bf:\,!)111.\ 243,<-171 321,41.12 552,275 31',6,267" 425,750 1~65, 089 510,682 560,973
n I sc uur, T E.D VALIJE OF IHSE HAR !1979) INH RCONNEC TFIJ SYSTEM COSlS
IN $1000
-----------------------------------------ESCALAT)UN RAT£5---------------------------------------
l!% 1.1% 5% 67. 7% 8% 9% IO% 1U 12X
==::==== ======= ======= -------======= -------======= --------------------------------------------------------
,>~ll, Q,P. 7 )7P,431i 40'-1,897 ll5.5,fl53 502,b04 ">57 ,.507 617,978 &11'>,499 760,622 84<1,175
245,~'-lil 361,':>&7 399,'132 44l',o51 490,214 ':)Lj 3, 160 602,088 667,657 7liO,'::l95 1:!21,706
2 38, •)69 352,971 39V,268 1.131,790 <H8, 009 529,1.150 5Rt>,691 6':.0,371 7?..1,196 799,944
232,1:\LI':) 344,b~2 3RO,tl9o 421 ,251:1 466, I 77 51o,lol '::i71,769 633,622 702,403 778,865
2r.7, 71 53o, 5'1l) ~ 7 I , 50 11 lll1,0LII.I 4';£!, 705 '}03,278 557,307 6tl,H2 684,194 758,445
222,Au2 32t<,oKii 562,<JHLI 401,138 4ll3,':>80 490,78£1 543,2fll:l 601,662 666,':>51 738,662
?11:1,1}55 5i!.I,Obf\ ~5Ll,l.l26 591,5?8 4'>?,/91 478,678 52'-1,698 '::l86,ll15 649,452 719,4911
213,'-100 513,672 3'lo,J22 3fl2,205 422,326 ll66,.933 .,16,'>21 571,636 632,1:!80 700,918
('(l!:\,1-\71', 3 (!6, <j 9 ~ 338,065 373,1')9 412,174 tJ5C,, ':>IJ3 505,74ll 5',7,307 6l6r81o 682,916
2t!LI,'lf\3 290,522 330, ?LIO 36Ll,3tl1 1.102.525 4ll0,4'-/4 Ll91,3'::i3 ':>45,41LI 601,243 665,1.166
2•.10, 21 () t!Q2,75i.l 322,bl.lb 3"-J'J,/361 592,769 433,776 419,53S 529,9111 5R6,14':! 648,5':>1
I96,0'::l7 286,1112 31':),271.1 3tH,':J9? 5H5,495 il25, 377 46/,677 516,815 '>71,505 632,152
l42,0LH ?..79,791i )Ot\,11'> 339,.')6'; 314, ljQ<j 413.CI:I7 .. ll'::lt>,"!..67 -5()11,202 5')7,307 616,252
1~8,1)91 275,598 30I,lo3 331,7/1 3o5,75b 403,ll9':> lll.l5,394 {jQ1,901\ 5£13,537 600,833
1 Iii.! , 2 11 .267,574 294,412 3?11,204 357,277 393,991 434,746 479,9B1 530,180 585,880
I tJ•.i, 5S5 2bl,721 287,!;1';3 516,1:\55 311'l, OiH 3All,766 ll211,413 4btl,408 511,223 571,376
17o,9ul) 2So,l!~il 2H I; Clf\2 >09,718 341,047 H':>,HI t .q4,583 1.151,178 c,oa,&52 557,307
I i-~ ,J ,, • __ ,_ ,. .J •• .,-1 {;. ,, .• _J ,. •
rn
N ........
,, --1 ''1 -1 -~ --'1 --·~dl 1
ALASKA PO~><fR AUlfiOHJlY
ANCHUH~Gt -fAl~HA~KS JNlfRflE
~CU-OMJC FEASI~ILilY STUDY
l ~l
_ -~-----· ____ . _________ C 4P l TAL D I Sf::lURSE "~EN T S FUEL COMPONf~T OF OPERATI~G COSTS
IN J>1000 FOR
ALTERNATIVE SYSTtM EXPANSIONS
19/9
1980
I 'Jill
I 91!2
19>H
19Hll
1 9 l_i':)
19116
J9H7
1965
l9fl9
1990
)991
l'l<.J2
I 'Fl.)
194ll
1'195
19'16
19'-17
1979-
1960
1981
19112
l9fl3
19.'JLI
19H5
19<lb
1987
19~8
1 914 <)
19'-10
1<}91
19"12
19'n
14<1(1
19'1':1
I 9'lo
)997
I'< ~1000 FOR
ALTtR~AllvE SYSTEM EXPANSJOo,;S
JNDEPE .. Dt~l l~TERCU~NtCfED
COSTS -l79 COSTS -$79
s.ota
2,009 !7,755
2b,bb6 58,709
!:II , 9 it<' 11,515
37,172 32,061
21.127 IJ92
l ,152 2 ,.IJ] 2
7,555 l:l,tl73
23,110 30,5ll9
21,920 1.13,03R
fl2, 21) 0 43,1J11
11) 1 , 5tH) 89,69/J
5R,4'i0 10ti,723
29, 8 ij 0 1':1, I 34
23,9.5') 23, I Ob
17,6.50 270
251.1
AODITIUNAl DISblffiSEMENTS
IN .'f> I 0()0 FOR
UNDERLYING TRANSMISSION SYSTEM
I~UEPENDENT l~TERCO~NECTED
COSTS -119 COSTS -$79
2,004
lNDtPENIJENT
ESCALATED $
INTtRCONNE"C TED
ESCALATED $
SUSITNA CONSTRUCTION POWER COSTS
JN $1000 FOR
ALTERNATIVE MODES OF SUPPLY
DIEStL GENERATION INTERTIE TAPLINE
COSTS -$79 COSTS -$79
2.835
695
697
696
3.0~5
1r324
111 7
6<'3
b23
-soo
267
.. 1.183
lllll
ll78
752
902
734
430
419
304
:1 ---,
TABLE 8-bX
23 AUGUST 79
DISCOUNT
RATE
1:1.(11)
B.<'5
'l.':JO
d.75
9.vc
'1.25
9.'>0
9. 7C:,
I I) • l)l)
LU.r'')
1 0. ') lJ
l 0 • 7 ':>
1 I • 0 o
ITl 11.25
-I_. I I • ')0
N I 1. IS
00 12.uo
DISCOUNT
,(A Tt
I'. l' tl
1:1.2'>
~:~.<;o
8.7")
9,011
9,25
Q.~o
9,75
1 0. 0 tl
10.2':!
10.')0
10.75
I 1 • 0 0
11.2'>
11.':>0
II. 75
12. •.1 0
ALASKA PO~ER AUTHO~lTY
ANCHD~A~E -~AIRBANKS JNTE~TIE
~CUNOMIC FEASIHILllY STUDY
TABLE 8•7
[.'JSCOU'~TED vALUE -OF BASE YEAR ( Iq]9) PlOtPENDE~JT SYSTEM COSTS
IN $1000
-----------------------------------------ESCALATION ~AI~S-•-------------------------------------
0% 47. 5% 6% 7'X. 8% 9% 107. II% 12%
======= ---------------------======-= -------------------------------------------------------------------------------------------
2h5,4o1 1105,61.10 £14l,llb9 /JI:\3,553 ">24, 729 581,0f\4 637,955 700,932 770,o69 8£17,886
279,50? 5'il.l,l.l2o '.131,253 472,01'> 51 I, I 39 561,095 o22,1J0c t:Jf\3,633 l':Jl,£123 826,£167
21.3,512 5tJS,477 '~21, .5 32 1.16l,OPCI 50il,41H 5S3,51H 607,512 6oo,o54 1".32,758 805,699
267,4tll:l 376,782 41l,o96 450,320 1.195,055 5LHI,31J2 592,1>69 o50,'J75 714,65/J 785,559
?ol,t\25 3ol1,334 L~uc, 53~> ll39,'140 41:\I,S5o '121,551 '1713,459 65ll, 71:!1 697,092 766,027
256, ~1?. ~60, 125 393,2142 429,859 ll70,5S1 51':>,13/J 564,6o7 o14,45ll otl0,051.1 747,082
250,450 352, l'~o 31:\4, '4 0 6 IJ20,065 459,£JH8 503,078 551,27H bOll, 580 665,523 728.703
2£J':J,73ll 344, ~91 37'::i,820 410,551 'lll/:'.,937 491,370 538,280 ':>90, 142 blJ7,lltl0 l!O,f\72
21-10,657 33o,H51 367,1474 401,)06 1~313, t>811 llt\0,000 ':>25,659 576,127 b31,911 r)93,570
25';,716 329,':>21 3'i9,563 592,322 1.1?8,730 IJ6fl, 95o 5 u, IJ05 562,'::i20 o1b,798 676,779
230,906 322.~95 Y-> 1, IJ] 7 5H3,'l9U 419,0'::i4 4511,227 ':>01,500 549,3013 t>02, 126 660,483
226.223 31'),461 3ll3, tlU9 51':>, 102 '~ 0'1, t>S 1 447,803 489,'135 ':>36,477 '>R7,8H2 641J,b64
2?],bo3 3 0 ll, 7 11:1 .~3n,)5'l 36o,B5! ql)l),':J13 IJ37,b75 {J 78,706 524,015 'J7::J,O'::il 629,306
?17,?.23 502,\511 329,102 3SB,Ii213 5'11,629 427,1B2 1.167,794 511,911 '::it>O,ol8 6IIJ.396
?l<'rl~'ll:l 29~,/77 322, tl50 Y:>i, 02o 3H2,995 411:1,26':> 457,190 ':lOU, 151 547,572 ">99,917
2L•H, 6h6 28'i,'1o7 3\S, ll:lB 343,439 374,596 40h,965 446,1184 488,72.6 ':>34,1:199 ':i85,855
20ll,Sl:l2 283,5214 50tl,'J13 53o,O':i9 3ot:>,430 399,9?4 43b,ll68 477.623 522,587 572,197
DISCOUNTED VALUE OF BASE YEAR ( I 97 9 l INTtRCONNECTED SYSTEM COSTS ... IN $1000
------------------•----------------------ESCALATION RATES---------------------------------------
0% 4% 5% bi. 7"1. 8% 97. 107. 11% 12%
-------======= -------======= ---------------------------------------------------------------------------------------------------
2Hh,QO'j lJ 1lJ, 1 3 ':i t.l5V,105 494,593 Sll4,101J 599,201 o60,'J02 72/:l,h'-12 t:!Oll,529 888,8115
?<'0,578 I.IOO,llt>l il3'1,322 1Hl2, ':>61! 530,679 584,209
..
64.5, 756. 709,982 7B3,o21 f\65,1179
2 fij r /~ 3 4 391,0]"1 42i:\,tlo4 470,900 ':)17,665 '"J69,678 62/,')21 691,853 "763,365 842,1:!47
26>1, ·~o7 3t.l1,'-172 418,fld 1.159,':>H!:l ')OS,Oll2 5':>5,':i91 611,79.7 67ll,285 7ll3,7<.10 820,922
2o2r'>71 '> 73, Uo liOB,876 4ll8,ol6 492,1'>05 ')41,932 ':>96,'Jll9 657,258 72<J,723 799,681
25 I, 0 11 o 3o4,561 399, 52':> iJ37,972 480,9!d 521:1,688 581,767 6"40, 753 706,293 779, 098
2'JI,':>61:l 356,237 390,057 1~2 7, 641~ 1!69,419 51<>,!!44 567,433 624,754 688,430 759,152
2'H>, 2') 1 34H,l56 3!31,062 ll17,1:>24 458,248 ':i03,3tlo 55 3, 5 3'l 609,242 b71.!14 739,821
2'n. os3 31.10,311 372,331 IJ()7,f\99 IJI~7,411 1191,302 540,0'lll 5911.200 651.1,327 721,083
236,0o0 332,o92 5b3,1:l5Ll 391:i,4o1 '' 3o, f\94 IJ79,':i7P. 526,979 579,614 63~,051 702,918
2H,176 .$25,294 355,624 .SHQ,299 42o,o81:l 4611,203 51LJ,296 ':>65,1~61 b22.2b8 685,307
2('o,427 3111,1011 3ll7,632 3RO,'l0<.1 lllb. 782 11':>7,164 501,990 ':>'}1,71~1~ 606,961 6b8.231
22lrt\!O 311,121 B9,f\71 371,/b!l 407,166 446,ll51 LI90,0')0 'J38,ll3l 592,11£1 651,671
217,318 30ll,545 332, B2 363,381 3Q7,fl30 1136,0':>3 478,1163 ':>25,515 577,713 635,611
212.9'j0 2'-17,754 .)2"),\lO'l 355.237 58H,766 425,9')9 ll67,217 512,982 '>b3,741 620,032
?1)8,!>99 291, 35iJ 517,t19ll 3 117, 3.2S 379,91)3 4lb,lC:,9 456,301 500,819 sso .. u~q "604,920
2<.! cl, ':ib'l ?1:15, 126 3.10 I '1i\O 3 _sq ,61l0 371,414 olio,6/n 4LJ'J, 7011 Lll\9,013 517,029 ')90,<?58
... I _] J J 1· ___ -_, .J . .. ".:1 J .. 1 ._cc•~ .' _l 1.· .• _,_l J .J J
fTl
I.
N
1.0
23 AU.;u:; I 79
1979
!9~0
l<lf\1
t<Ji32
!983
19fl£1
19(15
1 'H\6
191l7
19il/j
!91'9
1990
!491
1992
!993
19'-IQ
!995
t'IYo
!997
1979
19130
191'<1
1902
1983
19~£1
14~')
1 <:ji-\ 0
1987
19Mil
19~9
J9<lO
J90J
1992
1993
19'HI
199')
I 9'16
I q<l7
1 ~.
A!. AS;<. A POWI:-R AIJII~OIH I Y
AHCHUNAGt -~AIWHA~~S INTFATIE
ECONOMIC FEASJdlliTt STUDY
CAPITAL DIStlURSE.MENTS
l\1 $1000 FOR
ALTERNATivE SYST!:M E)(PA'ISIOI\IS
1Ni)£PFNDENT PITE RClJ"'NEC TE 0
COSTS -H9 COSTS -$79
4, 8 7 2
2,009 !R,056
26,6nt> 7<',604
~ 1 , 9 112 11,326
37,112 3!,Rilb
21, 12 7 328
7,1')? 2,319
-7, s~c:; fl,')29
23, 11 (l 30,&0Q
2!,9~tl £1~,092
82,200 43,<163
lO!,~oO fi9, 9 73
58,Q'JO 10H,91'.fl
29,1\'-10 15,31)7
23,0_$'3 2 3, 3 117
I 7, t> 3 v /~99
473
ADDITIONAL DlSRURSEMENfS
IN $1000 FOI<
U'JDERLYING TRANSr~TSSTO"' SYSTEM
JNIH:OPENDU~T l 1~TtRCUNNECTEO
COSTS -$7Y CUSfS -i79
FUtL COMPONENT Of OPERATING COSTS
IN $1000 FO!'<
ALTERNATIVE SYSTEM EXPANSIONS
lNOfPENDI::NT
ESCAL.AltD $
·1!,461'\
9,32ll
tu,267
6,A51
7,212
7,933
8,65£1
9,015
lNTERCONNECTtU
ESC ALA TI:::D $
7,648
8,498
9,029
8,32£1
8,654
8,016
8 r 7IJ5
9,109
SUSITNA CONSTRUCTION POWER COSTS
IN $1000 FOR -
Al.TERNAT I V~D-£5~ OF SUPPLY
,.
DIESEL ~fNERATION INTERTIE TAPLINE
COSTS -579 COSTS -579
2,835
o95
697
696
3, oss
1,.)24
187
623
623
-5()0
2&7
403
481
478
752
902
73£1
430
lll9
304
APPENDIX F
TRANSMISSION LINE FlNANC IAL ANALYSIS
-
APPENDIX F
TRANSMISSION LINE FINANCIAL ANALYSIS
ANCHORAGE-FAIRBANKS INTERCONNECTION
SEM1-ANNUAL DISBURSEMENTS
FOR
TRANSMISSION INTERTIE FACILITIES
(TLFAP)
1979
BASE-LINE
AND
ESCALATED
COSTS
F-1
,
I w
11J AUGUST 79 A~CHOPAC.t -F4IRdANKS lNTfRCUNNECTlO~
LT'Ilf
NO
172.0
17LJ.(l
176.0
17R.o
11:10.0
18?.0
184.0
186.0
189.1)
190.0
1 q 1 • 0
?00.0
202.0
204.0
206.0
208.0
21(1.0
21 1 • 0
215.0
216.0
217.0
21R.o
?19.0
220.0
2n.o
224.0
22&.0
nA.o
2~0.0
232.0
234.0
ns.o
1. TPANS''1lSSTliN L !"'f
t'JGRG 1'. cnt'Jqf"'. SIIJ..>Ft-~v.
R I(, H T li F ~JAY
Ff1U"JDATTU"JS
TOi><FRS
1-iAt<DwARF
I NSLIL.A T flkS
CONI)U(lnR
SFMI-ANNUAL OJSAURSEMENTS FQR TRANSMISSION TNTERTTE FACJLITitS
COSTS INFLATEn FRnM 1979 BASELINE
IJ,2
0
0
0
0
0
0
7fH
2298
0
0
0
0
0
1982-1
()
7lbCI
0
0
0
0
0
440
0
256<;
0
0
0
0
AlO
0
121?
11379
BU
813
1Pt88
87Q
0
0
144b4
493
520
1112q
TOTAL
Bo5
9llo6
9777
25843
577
bOB
13017
---·-------------------------------------------------------------·----SU~-Tt!TAL
? • St.lf~!' 1 fl. T T U'IS
ENGRG 1<. (fl',ST. SUPf_RV.
LAND
TRAIIiSFUP>-1fRS
CIRCUJl KPf'ai\FRS
STATIO~ f~Ul~MtNT
STRUCTURtS R ACCFSSf1RTE.S
4<:J2
t;63
t1 I
0
0
0
0
~081
Cjl:'b
0
t1
0
0
0
7169
bOQ
0
lob A
422
~91
M1
b)IJ
0
670
769
r.do
1 A 1 1
329
0
697
AOO .,.,,
1A84
343
0
207
238
164
0
62653
3064
81
1Q43
2229
t 535
41566 ------------------------------------------------------... --------------·--
SURTnTAL
3. CO~TROL. h"lD CnM..,IJf\JlCATIONS
fNGINf:E.QPJG AND i'ISTALLATTON
SlJPfRVJSJL)'j
tQUTP"''fNT
SUR-TUTAL
TOTAL
Su~'!Af.iY (lf. PQICE f:SC4LATION
AT A.O~ PA
644
0
0
0
109h
0
586
(l
1 4 1
2562
0
0
0
9730
44111
0
0
0
8.3
1467
111:)50
?7213
qs1
t 1 II
22Bq
2110~
197
H'J6
A0021J
1 1 15 0
1
-
-
-
ANCHORAGE-FAIRBANKS INTERCONNECTION
ALTERNATIVE FINANCIAL PLANS
70% PROJECT FUNDING WITH REA/FFB LOAN PACKAGE
l14% -REA LOAN @ 5%, 35 YEARS (20%) l ALT 1 l_56% -FFB LOAN @ 9\%, 35 YEARS (80%lJ .
l28%-REA LOAN@ 5%, 35 YEARS (40%}l
l_ 42% -FFB LOAN @ 9\%. 35 YEARS ( 60% 2J AL T · 2
30% PROJECT FUNDING WITH AMU/FMU BONDS
18% -AMU BONDS @ 6~%. 20 YEAR MATURITY
12% -FMU BONDS @ 7%, 20 YEAR MATURITY
F-4
1t> AUGUST 79 A"<( rl(l><A Gf -F='AlRI1A"<I'.S T~lt.RCO!II'II[CTION 20•80 RlA-FFB
FU•<OING snu~Cfs ANO
P>TEPtST on><T'4G CU"lSTwliCTI(lN
L 1 'liE lOKI-I 11'11;1-2 IQ82-1 1082-?. 1<;83-t ll'lR3-2 TOTAL
~0
4100,0 FuND!r~G Sur.t.<rt <;
1101,0 APA tHli<O 0 0 0 0 0 0 0
402.1) Q[A LOAN 153 c;n llo? 1039 3fi1EI 4318 11203
403,0 CFC L fl A'! 0 0 0 0 0 0 0
Ullll,O Fl'"l:l L(lA"f 614 20'53 5£l4Q 415'5 15273 17270 t1U81U
/Joc;.o A"'U SHU'<[ lff<" lOAN 197 660 17~1 I:B5 £lQ09 5551 14404
406,0 F ~~ Ll SHl)Ql lf"'"l LOAN I 32 ·~qO 1168 P.90 32n HOt 9603
liOP.,() -------------------------------------~--------------------------------
liOQ,O TOTAL 109h .36t>h 9730 71.11 Q ?721"3 301139 80024
£110.0
Lill,(l l'JT!:.REST 11tt"' 1 I1G r o '1 s r R 1 J c T I n ''
411?,0 APA l"jfll,[1 f) 0 0 0 0 0 0
413,0 REA LOAN 2 I 0 3'~ o£1 124 ?26 460
UILI,O CFC LflA'l 0 () 0 0 0 0 0
415,0 FFB Lfl/1"-14 71:1 249 1.171 Q2t 1673 31.1 oc;
1.116,0 A"'ll! SH(lt<J lf><M LOhN I 0 53 173 32P. 6U0 11 6' 2366
1.117,0 ~"'U $HURT r F!< .. liJA"J 7 35 1 I b 211'1 427 775 1578
1.1?0,0 ----------------~--------------··-------------------------------------
iJ2l,O T 01 ~L y~ 171.1 C:,72 1081 211? 31'138 7809
1.122,0
I o AlJGtl S 1 7<1 ANCHORAGE -FAIRBANKS JNTE.RCONNECTION 20•80 REA•FF~
DFHT TARLF Af\11')
'"'T"1 COMPOSITE INTERfST RA Tl
I
U1
LI'IIf 1981-1 l9H1•2 IQH?-1 1982-2 1983-1 1983-2 TOTAL
"JO
1.130.0 l OE~T A SSII...,f I) H'f EACH UTILITY
ll32.0 A"4l 6 p 18 0 0 0 0 0 18
1!34,0 CfA I 1 n 0 0 0 0 11
1!36,0 >1f A ~ 0 0 0 0 0 J
ll3R,O HE A 0 tl 0 0 0 0 0
llll?.o Po! US 12 0 (l 0 0 0 12
lii.II.I,O GVE:.A '}6 0 n 0 0 0 5o
l.lll6.0 CVEA 0 (l 0 0 0 0 0
f.tl¥7.0
UI.IR,O
ltll9.0
ao,o,n DE. AT AS~!IMFU bY f'AfH UTILITY
1.152.0 Al-4l ~ fJ ll'l7 bbO 1 751 1331) u9oc; 5551 ltii.IOLI
.:a5a,o CfA I 21 1.103 1070 A1o 3000 3H2 8803
q')b.O MEA .33 I 1 0 292 U3 A18 925 2401
£15R.O Hf' A 0 0 0 0 0 0 0
l.lo2.o f"'US 1.32 IJ40 1 I bA R90 321'5 3701 q603
IJblJ,() GVf:A hiLl 2053 5449 tJI<;~ 15273 17270 I.IUA1t1
Ub6.0 C VE A 0 () 0 0 0 0 0
IJoA,O ----------------------------------------------------------------------
470,0 T(ITAL DEbT !096 36ob 97.30 71t1Q 27273 30839 A0021.1
!t7?,0
tt7ll.O
1.176,0
51o;o C0>1POSlT[ !NlF~fST PAT!:: o.o~:~q 0,0 0,0 0,0 o.o o.o 0,08Q
J J ] .J J I ~
j J ) I '-~---. j J .I ~· J _j .I J
] . ·-1 1 ) ·-l 1 ·-... 1 ) ) J ] ) ·-.1 l 1
lb AUGUST 7Q AIII(H(IIUGE . FAIRBANKS INTERCONNE.CT JON 110•&0 REA•FF8
FUNOlt.IG SflURCfS ANO
INTERESt DURING CO"JSH<UCTION
Ll"<F 1981-1 1981-2 191:12-1 1Q82-? 1983-1 19133-2 TOTAL
NO
1100.0 F UNLl H.(: SOl If./( I: s
1101.0 APA !j(ll~[) 0 l) 0 0 0 0 0
1102.0 I'IEA L(lAI.J 30 7 I 027 2725 2077 7b3b Ao3'5 22407
403.0 CFC LOAt.J n 0 0 (1 0 0 0
4011.0 FFR LOMI !lt>() 1'540 40R7 51 1 b 1111')<; 1l9~3 Ho10
110'5.0 AMU SHOJ.I T TFf.ll'l liJHJ 197 ob'l 17':>1 IB<; 11909 5'5"::.1 11111011
1106.0 F"!IJ SH()J.il !FI-lM l 0 A•~ U.? IIllO 11 t>A 1'\90 5273 HOI 9603
408.0 -------------------------------------------------------------------·--1109.0 TOTAl 1096 3bbb 9730 71119 27213 308H 800211
1110.0
1111.0 I~•TE.RI:ST Ulin 11<1~ CU'~S HIUC T I ON
111?.0 liP A AflNfl 0 0 0 0 0 0 0
1113.0 REA LflA"J I~ 21 b1 127 249 ll':>? 920
4111.0 (F(. LOA II.> 0 0 0 0 0 0 0
415.0 Fftj L(lAN 1 I <:,7 1 A 7 3'::.4 b91 12~<; 25':)11
1116.0 AMU SHUQT TF~M LOA!Ij 10 ':)3 173 3lR b40 11 b 3 23oo
417.0 P1U SHIH~ T Tff.l"" l 0 A~• 7 35 t I b t'tA 427 775 1'578
1120.0 ------------~---------------------------------------------------------421.0 TOTAL 3 t 165 543 1027 lOOb 3645 11118
422.0
'"n I b AliGIIST Fl ANCHO~AGf -FAIRBANKS lNTt:RCONNEC T JON 110•&0 REA•FFB I
0'1 DEBT TABLE Ar~n
COMPOSITE INTEREST RATE
LINF: 1<181-1 1 1HH-2 1<ll:!2-l 1<l82-? 1983-1 (Q83-2 TOTAL
"JO
1130.0 % 11fRT ASSII'~EI) !H EACH UTILITY
1132.0 AilofL g, ~ 1R 0 0 0 0 0 18
1.1311. 0 (fA 1 I 0 0 0 0 0 1 I
llJo.o ME A 3 0 0 0 0 0 3
43R.O I-lEA 0 0 ,-0 0 0 0 0
41.12.0 f. "'US 12 0 0 n 0 0 12
11<14.0 6VEA 5o () 0 0 0 0 5o
llllb.O CVEA 0 0 0 0 0 0 0
11117.0
11118.0
IIL19.D
11'50.0 DEAT ASSLJ'1flJ 8Y EACH UTILITY
11~2.0 A"1L (1. p 197 boO 1751 133'5 <1909 5551 1111.1011
11511.0 CEA t 21 1103 1070 816 3000 3392 8803
115&.0 "4[A 33 1 1 0 29? 223 818 92'5 21101
1151".0 hfA 0 0 0 0 0 0 0
llb2.0 FMUS t.Si? 1140 11o8 890 3273 3701 9&03
11()4.0 GVEA b14 2053 5411Q <lt'i<; 1 ~?7 3 17270 11118111
llo&.o CVEA n 0 0 0 0 0 0
468.0 ----------------·-------------·----------·----------·------------------1.170.0 lnTAL Oftjl 1096 3bbb 9730 71119 77273 30859 800211
IH2.0
111q.o
47&.0
'i10,.0 COMPOSITE INT.fRfSl RAT[ 0.083 o.o 0~0 o.o o.o o.o o.oal
I 5 AUGUST 79 ANCHORAGE -FAIRBANKS INTtRCONNECTION 20-80 REA•FFB
DEBT SERVICE SCHEDULE
LINE 1984 1985 I 98b 1987 1988 1989 1990 1991 1992 1993 1994 1995
NO
152.0 APA
154,0 SINKING FUND 0 0 0 0 0 0 0 0 0 0 0 0
15b.O INTEREST DUE 0 0 0 0 0 0 0 0 0 0 0 0
158.0 -·-----------------------------------------------~--------------·------------------------------------------· lbO,O SoFUND+INTEREST 0 0 0 0 0 0 0 0 0 0 0 0
I b I • 0
lbb.O REA
1b8,0 REPAYMENT 350 350 350 350 350 350 350 350 350 350 350 350
171.0 OUTSTANDING 10853 10503 10153 9803 9453 9103 8753 8403 8052 7702 7352 7002
172,0 INTEREST DUE 5b0 543 525 508 490 473 455 438 420 403 385 3b8
1711.0 ------------------·-------~-------·------------------------------------------------------------------------· 17b,O DEBT SERVICE 910 893 875 858 840 823 805 788 770 753 735 718
177.0
182,0 CFC
1811,0 REPAYMENT 0 0 0 0 0 0 0 0 0 0 0 0
187.0 OUTSTANDING 0 0 0 0 0 0 0 0 0 0 0 0
-n 188,0 INTEREST 0 0 0 0 0 0 0 0 0 0 0 0
I. 190.0 ----------------------------·-------------------------------------------~-------------------------------···--..! 192.0 DEBT SERVICE 0 0 0 0 0 0 0 0 0 0 0 0
193,0
198,0 FFB
200,0 REPAYMENT 1400 11100 11100 11100 1400 11100 1400 11100 11100 1400 1400 1400
202,0 OUTSTANDING 4311!3 112013 110bl2 39212 37811 3blll1 35011 HbiO 32210 30809 29409 28008
203,0 INTEREST 111115 401b 388b 3757 3b27 31198 33b8 3238 3109 2979 2850 2720
204,0 -------------------·------------------·-----------------~------------------------------------------·--·--·--20b.O DEBT SERVICE 55116 54lb 5287 5157 5028 11898 47b8 4b39 11509 4380 11250 11121
207,0
212.0 AMU
214.0 SINKING FUND 371 371 371 371 371 371 371 371 371 371 371 371
21b.O INTEREST DUE 93b 93b 93b 93b 93b 93b 93b 93b 93b 93b 93b 93b
218,0 --------------------------------------·-----------------------------------------------------------------·---220.0 S,FUND+INTEREST 1307 1307 1307 1307 1307 1307 1307 1307 1307 1307 1307 1307
221.0
228.0 FMU
230,0 SINKING FUND 2311 234 2311 2311 234 2311 2311 234 2311 2311 234 234
232,0 INTEREST DUE b72 b72 b72 b72 b72 b72 b72 b72 b72 b72 b72 b72
234.0 -------------------------------------------------------------------------------------------------·--·-------23b.O S.FUND+INTEREST 90b 90b 90b 90b 90b 90b 90b 90b 90b 90b 90b 90b
250,0 TOTAL REPAYMENTS OR
251.0 s. FUND PAYMENTS 235b 235b 235b 235b 235b 235b 235& 235b 235b 235b 235b 235b
253.0 TOT INTEREST DUE b314 blb7 b020 5873 5726 5579 5432 5285 5138 il991 11843 11696
255,0 ---------------------------------------------------------------·--------------------------------------------257,0 TOTAL DEBT SERVI 8b70 8523 837b 8229 8082 79311 7787 7bll0 7493 734b 7199 7052
.J .] J J J J
l 1 l ] ) --]
--~.--~---·-· •--.
15 AUGUST 79 ANCHORAGE -FAIRBANKS I NTE RCONNEC 1 I ON 'IO•bO REA•FFB
DEBT SERVICE SCHEOULE
LINE 198'1 19tl5 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
NO
152,0 APA
15'1,0 SINKING FUND 0 0 0 0 0 0 0 0 0 0 (} 0
156,0 INTEREST DUE 0 0 0 0 0 0 0 0 0 0 0 0
158,0 -------------------------------------------·----------------------------------------------------------------160.0 S,FUND-tiNTEREST 0 0 0 0 0 0 0 0 0 0 0 0
1 b 1. 0
166,0 REA
lb8,0 REPAYMENT 700 700 700 700 700 700 700 700 700 700 700 700
1 7 1. 0 OUTSTANDING 21707 21006 20306 19b0b 18906 18206 17505 16805 !biOS 15405 14704 14004
172,0 INTEREST DUE 1120 10tl5 10'50 1015 980 945 910 875 840 805 770 735
174,0 ------------------------------------------------------------------------------------------------------------176,0 DEBT SERVICE 1821 1786 17'51 1716 loll! 1645 1610 1575 1540 1505 1470 1435
177 0 0
182.0 CFC
184,0 REPAYMENT u 0 0 0 0 0 0 0 0 0 0 0
187,0 OUTSTANDING 0 0 0 0 0 0 0 0 0 0 0 ·0
"Tl 188,0 INTEREST 0 0 0 0 0 0 0 0 0 0 0 0
'-· 190,0 ----------------------------------------------------------------------------------------------------------·--OJ 192.0 DEBT SERVICE 0 0 0 0 0 0 0 0 0 0 0 0
193.0
198,0 FFB
200,0 REPAYMENT 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050
202.0 OUTSTANDING 32560 31510 30459 29409 28359 27308 26258 25208 211157 23107 22057 21.006
203,0 INTEREST 3109 3012 2915 2817 2720 2623 2526 2429 2332 2235 2137 2040
204,0 -------------------------------------------------------------------~---------------------------------~------206,0 DEBT SERVICE 4159 4062 3965 3868 3771 3673 3576 3479 3382 3285 3188 3091
207,0 ~
212.0 4MU
214,0 SINKING FUND 371 371 371 371 371 371 371 371 371 371 371 371
216.0 INTEREST DUE 93b 93b 93b 93b Cl3b 936 93b 936 93b 936 <no 9lb
218,0 -----------------------------------------------------------------------------------------------------·---~--220.0 S.FUNDtiNTEREST 1307 1307 1307 1307 1307 1307 1307 1307 1307 1307 1307 1307
221.0
228.0 FMU
230.0 SINKING FUND 234 234 234 2311 234 234 234 234 234 234 234 234
232,0 INTEREST DUE b72 b72 t:>72 b72 b72 672 b72 672 b72 b72 b72 672
234,0 --------------------------------------------·------------------------------------------------~------------·· 236,0 S,FUND+INTEREST CIOb 90b 90t:> 90b 90b Cl06 90b CIOb 90b 90b 906 906
250,0 TOTAL REPAYMENTS OR
251,0 s. FUND PAYMENTS 235b 2356 2356 2356 2356 2356 2356 2356 235t:> 23Sb 2356 2356
253,0 TOT INTEREST DUE 5838 5706 5573 5441 5309 5177 5045 4913 4780 4648 4516 4384
255.0 -------------------------------------------------------------------------------------------------------··---257,0 TOTAL DEBT SERVI 8194 8061 7929 7FI7 7665 7533 7401 7268 7136 70011 6872 6740
15 AUGUST 79 A~CI-101HGE -FAIRBANKS INTE:.RCONNECT ION 20-80 REA•FFB
DEBT SERVICE SCHEDULE
LINE 1996 !997 1998 1999 2000 2001 2002 2003 200/.1 2005 2006 2007
NO
152.0 AP,\
15~.0 SINKING Fu•w 0 0 0 0 0 0 0 0 0 0 0 0
l5b,O INTEREST DUE 0 0 0 0 0 0 0 0 0 0 0 0
158,0 ------------------------------------~-----------------------------------------------------------------------lbO,O S,FUND+INTE:.QEST 0 0 0 0 () 0 0 0 0 0 0 0
I b I. 0
lb6,0 RtA
168,0 REPAYMENT 350 .350 350 350 350 350 .350 350 350 350 350 350
171.0 OUTSTANDING bo52 b302 5952 Sb02 5252 ~901 ~551 ~201 3851 3501 3151 2801
172,0 INTEREST DUE 350 333 315 298 2110 2b3 2~5 228 210 193 175 158
17/.1,0 -------------------------------------------·-------------------------------------------------------------·-·-176,0 DEBT SERVICE 700 OR3 o6':> b~R 630 613 595 <;78 560 5~3 525 508
1 77.0
182,0 CFC
18~.0 REPAYMENT 0 0 0 0 0 0 0 0 0 0 0 0
18 7. 0 OUTSTANDI'.Ili 0 0 0 0 0 0 0 0 0 0 0 0 , 188,0 INTEREST" \) 0 \} 0 0 0 0 0 0 0 0 0 .. 190,0 ··------------------------------------------------------------------------------------------------~---------1.0 192,0 DEBT St:RVICE 0 0 0 0 0 0 0 0 0 0 0 0
193,0
198,0 FFB
200,0 REPAYto<E:.NT 1~00 1~00 1/.100 1~00 1~00 1~00 1~00 1~00 1~00 11100 11100 11100
202.Q OUTSTANDING 2b60B 25208 23807 22/.107 21006 19606 1B20b 16805 15~05 1~00~ 1260~ 11203
203,0 INTEREST 2591 2Lib1 2332 2202 2073 19£13 181~ lb8~ 15511 1/.125 1295 11bb
20/.1,0 ----------~----------------------------------·-----------------------------------·---·-----------····---------20b,O DERT SERVICE H91 38b2 3732 3b03 3~73 33/.1~ 321~ 308/.1 2955 2825 2b9b 2566
207,0
212.0 AMU
2111,0 SINKING F UNO .371 371 371 371 371 371 371 371 0 0 0 0
216,0 INTEREST DUE 936 93b 93b 936 936 936 936 936 0 0 0 0
218.0 -------------------------------·---------------------------------------·---~---------------·-------------·-· 220.0 S,FUND+INTEREST 1307 1307 1307 1307 1307 1307 1307 1307 0 0 0 0
221,0
228.0 F_,U
230.0 SINKING FUND 23~ 2.3~ 23/.1 23~ 23~ 23~ 23~ 2.3~ 0 0 0 0
232,0 INTEREST 11UE 672 672 b72 b72 672 b72 672 b72 0 0 0 0
23~.0 ---------------------~-----------------~-----------------------------------------------------------·--------23o,o S,FUND+JNTEREST 906 906 90o 90b 906 906 90b 90b 0 0 0 0
250,0 TOTAL REPAY"'E"'TS OR
251.0 s. FUND PAY"ENTS 23'56 2356 235o 2356 235b 2356 235b 235b 1751 l 7 51 1751 1751
253,0 TOT INTEREST DUE ~5~9 /.11102 ~25"> <l108 3961 381/.1 3bb7 3520 176"> 1b17 11170 1323
255,0 -------------------------------------------------------------------------------------------------·-----------257.0 TOTAL OEtH SE:Rvr b90':i b758 bb1l b46~ b317 6170 6023 587b 3515 3368 3221 3074
1 I J .J J J ) J .J
l l
15 AUGUST 79 t.NCHfli<AGf -FA lfHIA•JKS T'<TE.RlQNNECTION 40•60 RE.A•FFB
DEBT SERVICE. SCHEOULE
LI~t 199o 1997 1998 1999 2000 2001 2002 2003 200'< 200S 2006 2007
NO
152.0 A f.> A
15ii,O SINKif><G FUND 0 0 0 () 0 0 0 0 0 0 0
1'>6.0 INTERtST DUE 0 0 u 0 I) 0 0 0 ll 0 0 0
158.0 --·-------·--------·-------------------------------------------·----------------------------------------·---160.0 S,fUND+TNTEREST 0 0 0 0 0 0 0 0 ;; 0 0 0
161 • 0
l66o0 REA
1b8.0 REPAYMtNl 700 7 (I 0 700 7\JO 7 0 0 700 70() 700 700 700 700 700
1 7 I • 0 OUTSTANDING 1 3504 1?6011 11904 11 ?0 3 10503 91l03 910.3 81103 7702 7002 6302 5602
172.0 INTEREST DUE 700 665 630 ':>9':> 560 5c5 490 1155 LJ2Q 385 350 315
1711.0 --------------------------·------------·----------------------------------·---------------------------------1 7b 0 0 DEflT SERVICE 1LJ0() 1365 1.331) 1290, 1260 122<; II 9 0 liS<; 1120 1085 1050 1015
I 77 o o
182o0 uc
18ilo0 REPAYMENT u 0 0 0 0 0 0 0 0 0 0 0
18 7 0 0 OlJTSTANOING 0 0 0 0 () 0 0 0 I) 0 0 0
"TJ 18~ .• 0 INTEREST 0 0 0 0 0 0 0 0 0 0 0 0 I l90o0 -" -------------------------"·-----------~---------------------------------------------------------------------0 192.0 DEflT SERVICE 0 0 0 0 () 0 0 0 0 0 0 0
193.0
198o0 FFB
200.0 REPAYME:NT 1050 1050 1050 1050 IO':lO 1050 1050 1050 1050 1050 1050 1050
202oO OUTSTANDING 19956 1H90b 17855 16805 I 5 75 ':> 11170£1 13654 126011 1155.3 10503 9ll53 6ll03
203.0 INlER~ST 19113 1846 1749 1652 )5<jll 1457 1.360 1263 1166 1069 972 87tl
204o0 ---------------------------------------------------------------·----------------------------------------·---206.0 DEAl SE:.RVJCE ?993 2896 ?799 2702 .?60S 2508 2ii!O 2313 2216 21 19 2022 1925
207.0
212oO AMU
21ii.O SINKING FIJND .371 3 /1 371 371 .371 371 371 3 7 I 0 0 0 0
216.0 INTEREST DUF 93o 93b 936 9.)b 93'b 936 936 936 (J 0 0 0
211lo0 -------------------------------------------~------------------------------------------------------------·--· 220o0 SoFUNO+PdERE:SI 1307 1307 1.3 0 7 1307 130 7 1307 1307 1307 0 0 0 0
221.0
228.0 FMU
?30.0 SINKING FIJNI) 234 2.311 2 .3i~ 2 3ll c34 23ll 2311 234 (> 0 0 0
232.0 INTFRFST DUE b72 672 672 672 h72 672 672 672 0 0 0 0
23ilo0 -------------------------------------------------------------------------------------------------------·----236.0 S. F UNO+ T ~~ T t REST 90o 906 906 906 901, 906 906 906 0 0 0 0
25o.o TOTAL REPAYMENTS t)~
251.0 So FUNO PAYMENTS .2.356 23':>6 2.356 <:'356 235t> 23S6 2.356 2356 I 75 I 1 7 51 1 751 1751
253.0 TOT INTEREST Dl1E ll252 ll120 3987 385<; 3 72.$ 559 l 3459 3327 1586 11.15£1 1322 1189
255.0 ---------------------·-----------------------------------~-------·-------------------·-----------··-----~---257o0 TOfAL lJE f:H SE:.RVI 6601:1 6i170:. 63113 h2ll 6079 5947 <j8J':> S682 3337 320ll 3072 29ll0
l '5 AiJGlJST 7Q A'I(HORAGf. -FAIRBANKS !NTE.RCONNtCTTUN 20-80 Rt4•FFB
DERT SERVICE SCHEDULE
Ll'-E 200ft 2009 2010 20 II 2012 c:>ol3 ?.01<1 201'5
1\1[)
1':.2.0 APA
151!.0 SINKING Ftn,o (l 0 0 0 0 0 (J 0
151:>.0 !NTERE.:iT DUE. 0 0 0 0 0 0 0 0
158.0 ·-~---------------------------~-----------------------------------------160.0 S.~lJNDt fi<TU<!:S T 0 0 0 0 () 0 0 0
161 • 0
lbo,o RE.A
lb8,0 RE.PAYMP-IT 350 v;o )50 v:;o 3'5 \) .~50 350 3')0
I 71 • 0 OLITSTANDI>.IG 2«'51 21ll I 1751 1400 10'50 700 350 0
1 7 2. 0 11\lTfRF:ST DuF I 4 0 123 lO':i 81'1 70 'H 35 18
174,0 ------------------·---------------~~---------·---------------------·----176.0 DI:~H SI:.RVICF. <19(1 4n 455 43R 4?0 /J 0~ 385 ~bR
1 77. [)
182.0 CFC
184.0 RU'AY"'f.NT 0 0 lJ 0 0 0 () 0
187,0 DLITSTANf'l"JG I) 0 0 0 0 0 0 0
"'T1 188.0 INTEREST () 0 0 0 0 0 0 0
I 190,0 --------------~--------------·---------·--------·-----------------------__. __. 192.0 DE~T Sf:.RVICI: 0 0 I) 0 0 0 0 0
193,0
198,0 FFR
200,0 REPAYMENT I'~ 00 1400 1'-100 1400 1400 11!00 1400 1400
20;::>.0 Ol!TSTANDlNG 9f<03 8Q03 7002 560;::> 4cOI 2801 !!I 0 0 0
203.0 INTERI:ST 1036 907 777 bQil 518 389 Z59 130
20U,O -~-------·-------------.-------------·------------·-·-----------------~--20b.O DfAT SeRVICE" 2437 23!l1 217~ 2041l 1919 1789 1660 1530
207.0
212.0 AMI)
211.1.0 SINKING F UNO 0 0 0 0 0 0 0 0
216,0 lNTERfST OUE 0 0 0 0 0 0 0 0
218.0 ------------------------------·-----------------------------------------220,0 S,FlJND+INTfRtST 0 0 () 0 0 0 0 0
221.0
228.0 FMU
230.0 SINKING "''-'"[) 0 0 I) 0 0 0 0 0
232.0 INTEREST DUE 0 0 0 0 0 0 0 0
2311.0 --------------------------------~---------------------------------------236.0 S.~UNDt!f-JTERFST 0 0 0 0 0 0 0 0
250.0 TUTAL REPAn•PHS OR
251. 0 s. FUN[) PAYMENTS 1 751 I 7 ~I I /51 I 751 1751 l 7 'll I 751 1751
253.0 lOT INTEREST f)Uf 117b 1029 81l2 735 588 441 291! 147
255.0 -------------------·----------------------------------------------------257.fl TOTAL IJE t' T StRVI ?927 2780 2633 21!86 2339 2192 2045 1898
J J J J J j J J J -· ,_] .J ,I J ,I ~J ·~j .. c.J .J .J
J 1 ) 1 1 )
15 AUGUST 79 ANCHORAGE -FAIRAAIIIKS I NTI::RCONNEC T I ON £10-60 REA-Ff'B
DE:.I:lT SERVICE SCHEDULE
LINE 2008 2009 2010 20 11 2012 2013 2014 2015
NU
152.0 APA
154.0 SINt<H;G F!JND 0 0 u 0 0 0 0 0
151:>.0 INTEREST DUE 0 0 0 0 0 0 0 0
158.0 ------------------------------------------------------------------------1t.o.o S.FUNDtTNTEREST 0 0 0 0 0 0 0 0
161.0
16o.o ~EA
1oR.o REPAYMENT 700 700 700 700 700 700 700 700
1 7 I • 0 OUTSTANDING 4901 £1?01 3501 2801 <'I 0 I 1400 700 0
172.0 INTEREST DUE 280 ?45 210 175 140 105 70 35
174.0 ------------------------------------------------------------------------171:>.0 DEBT SERVICE 980 945 910 875 8£10 805 770 735
I 77.0
182.0 CFC
184.0 REPAYMENT 0 0 0 0 0 0 0 0
187.0 OUTSTANDING 0 () 0 0 0 0 0 0 ,.,
188.0 INTEREST 0 0 0 0 0 0 0 0 I _..:; . I 90. 0 ---·-----------------------------------------------------------------·--N 192.0 DE tiT SERVICE 0 0 0 () 0 0 0 0
--I 9 3. 0
198.0 FFA
200.0 REPAYMENT 1050 1050 1050 1050 1050 1050 1050 1050
202.0 OUTSTANOI"JG 7352 6302 5252 4201 3151 2101 1050 0
203.0 INTEREST 777 680 ':!83 486 389 291 194 97
204.0 ------------------------------------------------------------------------206.0 OEFlT SERVICE 1828 1730
207.0
1633 1 "i3b 1439 1342 12£15 I 14 7
212.0 AMU
214,0 SJNKlNG f-UND 0 0 0 0 0 0 0 0
216.0 INTEREST DUE 0 0 0 0 0 0 0 0
218.0 ------------------·-----------------------------------------------------220.0 s.FUNDtiNTEHST
221.0
0 0 0 0 0 0 0 0
228.0 FMU
230.0 SINKING FUND 0 0 0 0 0 0 0 0 232.0 INTHifST DUE 0 0 0 0 0 0 0 0
23'1.0 -----------------------------------------·------------------------------236.0 S.FUNDtiNTER~ST 0 0 0 0 0 0 0 0
250.0 TOTAL REPAYMENTS OR
251.0 s. FUND PAYMENTS 1751 17':!1 1751 1751 1751 1751 1751 1751
253.0 TOT INTEREST DUE 1057 925 793 6b1 529 396 264 132
255.0 ------------------·-----------------------------------------------------257.0 TOTAL DEBT SERVI ?808 2676 2':144 211 1 1 2279 2147 2015 1883
IS A\IGUSl 79 A\IC•WiHGE • FA!~84NI(S INltRCONNECTION 20•80 REA•fFH
DEBT REPAY"'ENT A"lrl SP-iKING FUND
ALLOC AT !0"1 13Y LIT!LITY
L1'lf 1984 19~5 198o to87 !988 I'H\9 1990 I 9·9 I 1902 1993 19911 199'l
NO
3S2,0 A''L 1'. p
~C,ll.O REP~YM£!\1 A·'1UUNT 424 ll.?ll ll21.1 1.121.1 42iJ 42iJ 1.124 1.121.1 1.124 iJ21.1 1.121.1 1.121.1
.35/l,U OUTSlA!\[)1'-Jb <H70 4574 ll.379 1.1181.1 " .39119 3793 3598 31.103 3207 3012 2817 2bi.Z
3b0,0 !Nlf_RF_Sl DUE I I .3 7 I 11 0 I 0 8·~ 1057 I 0 31 1001.1 978 951 92':> 1191\ 872 111.15
361.0
362.\l CEA
364,0 REPAYMENT AMUIJ'd 25<l 259 2"i9 259 259 .?5o 259 2':19 259 259 259 259
.3o8,!l 0 tl T S T II 'IJ D ! N (; 2qlr; 27o<J 2o7o 2"><)7 2tJ37 2318 2199 2079 1960 1841 1721 1602
HO.O P·ilf>IEST Dlif bO'i 678 ob2 6iJ6 o~O 611.1 'j97 581 565 549 ':!H 517
3 71. 0
372,0 MEA
374.0 R~PAYMUJl H101.1NT 7 I 7 I 7 1 7 I 7 1 7 I 71 7 I 71 7 I 71 71
378.0 OUTSTA~WJN[; 70'j 7o2 730 6''17 6b<J 632 bOO 567 5.35 502 1.169 1.1.37
380.0 INTEREST flllf I~Q 11:15 lA 1 l7b 172 167 ltd 159 151.1 150 11.15 11.11
., 381 • 0
1 31l2.0 HtA ..... .381.1,0 Rfi-'AYMI::Nl AMUUNT 0 0 u 0 0 0 0 0 0 0 0 0 w 388,0 OUTS I AND! r~(.; v 0 I) 0 I) 0 0 0 0 0 0 0
390.0 INTERfST flU[ 0 0 () 0 0 0 0 0 0 0 0 0
H1.0
402,0 ~MUS
1.101.1,0 RfPAH1E:.NT M10UNT 28~ ,?83 21:\3 283 283 283 283 2fl3 28.3 2fl3 283 283
1.108.0 OUTSTANOJNt; ~1110 30':)0 291Q 2789 265'1 2529 2:)99 22b8 21J8 2008 1878 1748
1.110.0 !NTfREST OUF. . 7 <;8 71.10 722 705 bR7 669 b52 b31.1 bl7 599 '581 '564
411.0
1.112.0 GVEA
1.111.1.0 ~fi-'AY"lE:.NT AMOUNT 131'1 1319 I 31 q 131 Q 1.31q 1319 1319 1319 1319 1319 1.31 q 1319
41b,O CUMULAlTVE 1319 2b3~ 395/l <;27 7 b59o 7915 9235 10551.1 118 7 3 13192 11.1512 1'5831
418.0 OUTSTANDlNI.l 14/:13<l 11.1231 13o211 !.301b 12ll0Q IIROI 11191.1 1058b 9979 Q371 8761.1 8156
1.120,0 INTERF.ST flUE 3S3o .3ll53 B71 3289 320b 3124 3042 2959 2877 2795 2712 2630
1121 • 0
ll22.0 CVEA
1.124,0 REPAYME:.NT AMOUNT 0 0 0 0 l) 0 0 0 0 0 0 0
1.12b,fl CUMlllAlJVf 0 0 0 0 0 0 0 0 0 0 0 0
428.0 OUTSTANfll'lll 0 0 0 0 0 0 0 0 0 0 0 0
1.130,0 INTEREST flU F. tl () 0 0 0 0 0 0 0 0 0 0
J J I J J .I
--. l ~-. 1 l ]
15 AtJGus r 79 M•CHORAGE • FAIRBANKS INTERCONNECTION 40•!>0 REA•FFB
DE: t:ll REPAYMENT AND SINKING FUN()
ALLOCATION BY UTILI TV
LINE 1984 1985 1986 1987 1988 1989 1990 1991 1992 I 993 1994 19<15
NO
352.0 AML !(. p
354.0 REPAYr-IENT AMOUNT 424 424 421.1 424 1.124 424 421.1 424 421.1 424 424 11211
3':>8.0 OUTSTANDING 6') 37 !>284 603? 5779 55?7 52711 5022 11769 4517 4265 11012 37&0
3oo.o · INTEREST OuE 1051 I 027 1003 979 956 932 908 8811 f\60 R31 813 789
361. 0
362.0 CEA
3611,0 REPAYMlNT A"''OUNT 259 259 259 ?5<1 259 259 259 259 254 259 259 259
36R,O OUTSTANDING 3995 5840 3686 3532 3378 3223 3069 2915 2760 2606 2452 2298
370.0 INTEREST DUE 6112 628 613 599 584 569 555 5LIO 526 511 1197 1182
371.0
372.0 1o1EA
3711.0 REPAYt-<ENT AMOUNT 71 71 7 I 71 7 1 .,, 71 n 7 1 71 7 I 7 1
HB.O OUTSTANDING 1089 10'17 1005 963 921 879 837 745 753 7 1 I 669 b27
380.0 INTEREST DUE 175 171 167 163 159 155 151 147 1113 139 135 1 32
381,0 , 382,0 HEA I ....... 3811.0 REPAYMENT AMOUNT 0 0 0 () 0 0 0 0 0 0 0 0 _.,. 388.0 OUTSTANDING 0 0 0 0 0 0 0 0 0 0 0 0
390.0 INTEREST OUf' 0 0 0 0 0 0 0 0 0 0 0 0
391. 0
1102.0 FMUS
1104.0 REPAYMENT AMOUNT 283 283 283 283 283 283 283 283 283 283 283 283
1108.0 OUTSTANDING 11358 4190 4021 31153 36R5 3516 33118 3180 3011 28113 2675 250b
1110.0 INTEREST DUE 701 685 669 653 637 621 60':> 590 5711 558 5112 52b
1111.0
1112.0 GVEA
11111,0 REPAYMENT AMOUNT 1319 1319 1314 1319 1319 1319 I 31 9 1319 1319 1319 1319 1319
1116.0 CUMULATIVE 1319 2638 3958 5277 6596 7915 9235 105511 118 73 13192 111512 15831
1118.0 OUTSTANDING 20337 19551 18766 17980 17195 161109 1'5624 ILI838 111053 l 3267 121182 11&96
1120.0 INTEREST DUE. 3269 319') 3121 3047 2973 2899 2825 2751 2677 2603 2529 21155
1121. 0
1122.0 CvEA
4211.0 REPAYM!:NT AMOUNT 0 0 0 0 0 0 0 0 0 0 0 0
1126.0 CUMULA T J VE 0 0 0 0 0 0 0 0 0 0 0 0
428.0 OUTS lANDING 0 0 t) 0 0 0 0 0 0 0 0 0
430.0 INTEREST DUE 0 () 0 0 0 0 0 0 0 0 0 0
I 5 .l'IGl!ST 79 AN(HClRAGE -F~!RAANKS lNHRClJNNECl ION 20-80 RU-FfS
i)t_ tl T REPAY'"~ENT Ar·W SI"'K!NG FUND
ALLOCATION FlY UTILITY
Ll NE \'l'lb !9'17 1'1'18 1'1'1'1 200\l 2001 2002 2003 2001.1 2005 2006 2007
NO
352.0 AML " p 354.0 RI:PAY'~ENT AMtlUr. T 424 424 424 424 424 424 424 4211 315 3\S 315 315
3SB.O OUTSTAr-<[){NG 2426 2231 2036 1840 1645 1450 125') 10')9 <173 1387 800 714
.3oO.O !NTERlST r)UE t\19 7'12 lbb 73'1 713 I;>B7 660 6311 H8 2'11 265 231'1
361.0
36?..0 CEA
364.0 REYAYt-<UH AMOUNT 25'1 25'1 259 2';9 2C,'I 2':l'l 259 259 19.3 1'13 1q3 193
36fi.O UUTSTANOli\JG 14B.l 1363 1244 1125 1005 886 767 647 595 542 489 436
370.0 {NTfRfST DUE ':>Otl 484 '168 452 436 420 403 387 194 1 78 162 1116
3 71.0
372.0 I" E. A
374.0 REPAYMENT A'1CJUNT 7 1 71 71 7 I 71 71 7 1 7 1 53 53 53 53
378.0 OUTSTANDING 40~ 372 B9 307 (!71:! 242 20q 177 162 148 133 11'1
380.0 INTERfST DUF 136 132 128 123 I 1 q I Ill I 1 0 106 53 ll9 411 40
381. 0
-.., 382.0 HI: A
! 384.0 REPAYMUJT AMOlJ"H 0 0 0 0 0 0 0 0 0 0 0 0 _,
<.Jl 388.0 OUTSTANDING I) 0 0 0 0 0 0 0 0 0 0 0
390.0 INTE::RF-ST DUE 0 0 0 0 0 0 0 0 0 0 0 0
3'11. 0
'~ 0 2. 0 PlUS
404.0 REPAYMENT AMOUNT 21:\3 283 21'1.3 283 283 283 283 283 210 210 210 210
ll08.0 OUTSTANDING 1618 1ll87 1.35 7 1227 1 0'17 . 967 836 70b 649 5'11 534 476
410.0 INTEREST DUE S46 528 511 493 475 4')8 440 422 212 I 'Ill 176 159
lj 11 • 0
ll12.0 GVEA
414.0 REPA HIE.N T MtOUNT !51 9 1319 131 q 1319 151'1 1 319 1319 1319 980 960 980 980
llii:>.O CUMULATTVE I 715 U 18llo9 1971'19 211 08 22427 237ll6 25065 26385 27365 283115 29326 30301>
418.0 OUTSTANDING 754'1 b'llll 6333 ')726 ') 1 18 ll511 3903 3296 3027 2759 2490 2221
420.0 INTEREST OUE 2541:1 2ll65 2383 2301 2218 2136 2054 19 71 9A8 'lOb 623 741
421.0
ll22.0 CVEA
424.0 REPAYMENT AMOUNT 0 0 0 0 0 0 0 0 0 0 0 0
ll26.0 CUMULAlJVF 0 0 0 0 0 0 0 0 0 0 0 0
428.0 OUTSTANDING 0 0 0 0 0 0 0 0 0 0 0 0
430.0 INTEREST QUE 0 0 0 0 0 0 0 0 0 0 0 0
J J _) J .J I j l,_:,
"'
J J \ ... " . J .J ]
l 1 -~ ) .. l ··· ... l 1
15 AUGUST 79 ANCrlORAGE. . FAIRFlA~K:S tNH.RCONNEC T I ON llO•bO RU.~FFB
DEi:lf RE.PAY"lENT AN f) SlNI\ING FuND
ALLOCATION BY IJT I L I T Y
LI:-.JE 199t> !997 1998 1999 .?000 200t 2002 2003 200£1 2005 2006 2007
NO
352,0 A,_.L & p
354,0 REPAY"~ENT A "~LliJN T 42'~ 424 L12LI ll2LI £124 LI2LI 42LI 424 3t5 315 315 315
358.0 OUTSTANDING 3507 3255 3002 2750 2497 2245 t992 1740 1596 1453 1309 1166
3t>O,O lo'JTEKEST Dl!f. 765 7ll? 718 694 b70 646 623 599 285 262 238 2tLI
361. 0
362.0 CEA
36LI,O fiEPAYI-IENT A"'fJU"lT 259 259 259 259 254 259 259 259 193 193 193 193
368,0 OUfSTANDING 21ll3 1989 tf\3S 1680 1';.26 1372 121 7 1063 976 888 800 712
370 .o INTEREST l)l)f ll68 4':>3 ll3<1 424 litO 395 380 366 174 160 145 I 3 1
3 71.0
372.0 MEA
374,0 fiE PAYMENT AMOUNT 7 I 7 I 7 I 11 7 1 71 7 1 7t ':13 53 53 53
378.0 OUTSTANDING 585 5ll2 ':)0() 458 416 374 332 290 266 242 218 19LI
380,0 INTEREST flUE 128 124 t20 116 1t2 !Of\ 104 100 LIB 4LI 40 36
381.0 ,
I 382.0 HEA
....;.., 38ll,O REPAYMENT AMOUNT 0 0 u 0 0 0 0 0 0 0 0 0
0'1 388,0 OUTSTANDiNG 0 0 () 0 0 0 0 0 0 0 0 0
390,0 INTEREST DUE 0 0 0 0 0 0 (J 0 0 0 0 0
391,0
LI02.0 FMlJS
404.0 REPAYMENT A"10UNT 283 283 283 ?f:\3 283 283 283 283 210 210 210 210
408,0 OUTSTANDING 2338 21 7 0 200t tAB 166';. ;)11.196 1328 1160 1064 968 873 777
1.110,0 INTEREST DLIE 5t0 494 li7B ll63 £147 431 415 399 190 171.1 !59 11.13
Lj 11.0
412.0 GVEA
414,0 REPAYMENT A~OUNT 13t9 1319 1319 1319 tH9 1319 t319 1319 980 980 980 980
416.0 CUMULATIVE 17t50 t8469 19789 21108 22ll27 23746 25065 26385 27365 283ll5 29326 30306
418,0 UUTSTMIO!NG 10 911 t0125 9.SLIO 8')55 7769 6984 6198 5LI13 496b Ll520 1.1073 3627
420.0 INTEREST Dllf 23Rt 2307 223) 2159 2085 2011 t937 18.63 888 814 71.10 6b6
1.121.0
Ll22.0 C Vf.A
1.121.1.0 RFPAYMI:.NT Al-l OLIN T 0 0 0 0 0 0 0 0 0 0 0 0
1.126.0 CIJMIJL AT I Vf 0 0 () 0 0 0 0 0 0 0 0 0
1.128,0 OUTSTANDING () 0 0 0 0 0 0 0 0 0 0 0
1.130,0 lNTERE:ST DUf 0 0 0 0 0 0 0 0 0 0 0 0
1", AUGUST 79 ANCHORAGE -FA!R~ANKS t"'lERCONNECTION 20-80 REA-FFB
Df:I:H REPAY"'ENT A 'II) SINI(!I'.IG FU"J[}
ALLOCATION t;Y UTILITY
li"'E 2006 2009 2010 2011 2012 2013 2011.1 2015
NO
"JS2.o A"'L ~ p
351.1.0 RfPAYMtNT A'10U"lT .SIS 315 315 315 515 315 31':> 315
358.0 OUTSTAI'iOING 628 S4l 1155 3o9 282 196 11 0 23
360.0 JNTERfST l'lUE 212 185 159 132 lOb 79 53 26
361. 0
362.0 CEA
364.0 REPAYMENT AMDlHJl 195 193 1<n 193 193 193 193 193
36A.o OUTSTAN0!NG 3RI.I 331 27h 225 1B 1c>O 67 14
370.0 INlERE.ST DUE 12<1 1 I 3 Q7 R1 65 49 32 16
3 71.0
372.0 "1EA
374.0 REPAYMENT A1140!1NT 53 53 53 53 53 53 53 53
378.0 OUTSTANDl"JG 105 90 76 61 117 33 18 4
380.0 INTEREST nut 35 31 26 2?. PI 13 9 4
381.0 ., 382.0 HE:. A I .....::. 38'1.0 REPAYMtNT Ai'IOUrJT 0 0 0 0 0 0 0 0
......... 388.0 OUTSTANDING ll 0 0 0 0 0 0 0
390.0 INTEREST f)tJE l1 0 0 0 0 0 0 0
391.0
1102.0 F"'US
1104.0 REPAYMENT Al"lJUNT 210 210 210 210 210 210 210 210
408.0 OUTSl ANop,r, 1.118 361 503 246 188 1 3 1 73 16
410.0 INTEREST Dllt I 4 I 1211 lOb 88 71 53 35 18
411.0
1112.0 GVEA
414.0 REPAYI'IE.NT AMOUNT 980 980 980 980 '180 980 980 980
416.0 CUMULAllVt 31286 32266 332117 311227 35207 36181'> 37168 38148
418.0 l1UTSTAND!NG 1953 16tl'l 1416 111!7 878 610 341 73
420.0 lNlFkEST DUt: 6<;Q 576 494 412 329 247 16"l 82
421.0
112.?.0 CVFA
£124.0 REPAYMENT AM()IJNT 0 0 0 0 (} 0 0 0
1126.0 CUMULATIVE 0 0 0 (} 0 0 0 0
428.0 LIUTSTAHI)ING 0 0 0 0 0 0 0 0
430.0 lNifRfST flUE 0 0 0 0 0 0 0 0
I ...... 1 .J J I 'J
l ,··~· 1 l
~15 AUGUST 79 ANCHORAGE -FAIRAANK.S INTE.RCONNE.CT!ON U0•60 f.IEA-FFB
OE8T REPAYMENT AND SP-11\ING FUND
ALLOCATION BY I.J TIL IT Y
LI'IIE .?008 ~009 ?010 2 01 1 2012 ?013 2014 2015
NO
352,0 AML & p
3'::>4,0 REPAYME.NT AMOUNT 315 31'> 515 315 31S 3l'l 515 315
3')A,O OUTSTANDING 1022 879 735 59? 448 305 161 1 7
3b0,0 INTERFST DUE 190 167 143 1 1 9 95 71 Ull 24
361.0
3b2,0 CEA
364,0 REPAYMENT AMOUNT 195 193 195 193 195 193 193 193
36A,O 0 U T S T A N 0 PIG 62') ')57 449 3o2 274 186 98 1 1
370.0 INTEREST DUE 1 1 b 102 87 73 58 44 29 15
371.0
372.0 MEA
374,0 REPAYMENT AMOUNT 53 53 55 53 53 53 53 53
378.0 OUTSTANDING 170 146 123 99 7'::. 51 27 3
380,0 INTEREST DUE 32 28 24 20 16 12 8 4
381.0 , 382,0 HEA I
""""' 384,0 REPAYMENT AMOUNT 0 0 0 0 0 0 0 0
co 388,0 OUTSTANDING 0 0 0 0 0 0 0 0
590,0 INTEREST DUE 0 0 0 0 0 0 0 0
391,0
402.0 FMUS
404,0 REPAYMENT AMOUNT 210 210 210 210 210 210 210 210
40A.O OUTSTANDING 681 586 490 394 299 203 107 12
410.0 lNTERE.ST DUE 127 1 1 1 95 79 6 s 4fl 32 16
411.0
412.0 GVEA
4111,0 REPAYMENT AMOUNT 980 980 980 980 980 980 980 980
416.0 CUMULA T T VE 31286 322bb 33247 34227 35207 36188 37168 38148
411'1. 0 OUTSTANDING 3180 27 34 2281 1841 1394 947 501 54
420.0 INTERFST DUE 592 ')18 444 370 296 222 148 74
421.0·
422.0 CVEA
1.124,0 REPAYME"JT AMOUNT 0 0 0 0 0 0 0 0
426.0 CUMULATIVE 0 0 0 0 0 0 0 0
428.0 OUTSTANDING 0 0 0 0 0 0 0 0
430.0 INTERFST f1UE 0 0 0 0 0 0 0 0
I~ AtlGllS 1 7q 1\N(HORAGf -FATR8ANI\S I "'TtRCONNEC T TON 20•80 REA•FFB
STNI<JNG FUNO ACCUI'IULATIONS
LIIIE 1911<! l'HI"l l98b 1987 1988 19R9 1990 !991 1992 1993 fCI94 19CJS
NO
soo.o APA
502.0 S,fiJUD 1-' ~~ r 0 n 0 0 0 0 0 0 0 0 0 0
501!,() ft.jTI'RFST !h f liND 1) 0 0 0 0 0 0 0 0 0 0 0
'i06.0 TO I Ill l " F Uf·lfl l' •) 0 (1 0 0 0 0 0 0 0 0
')20,11 A"'ll
522.0 s. FU"'Il tJ •A l HI HI HI 3 71 571 HI HI 371 371 371 371 371
S2Q,Il PJTfh'fSl (-lt>f ~ IINf'l tl cQ 'ill 77 tOo lH 170 20& 21!3 283 32'5 371
'526,0 rn r AL l N F If 'Ill 371 76h IIRl tn3"o 211? 2621 3162 3759 4 3'5 3 500b 5703 &1145
')50,0 F'111
53<'.0 s. FU'J() f'MT 2 3·~ 2 5ll 23~ 2 3£1 2311 231l 231l 231l Hll 234 234 234
551l,O INTI'RFST (HI Fll" f) I) I b 311 53 B 94 I 1 7 1'12 tb8 t9b 227 259
536,0 In T 4L I 'J 'I I'll) c'\<l IHl<; 753 10110 I .)1~ 7 lb7b 2027 21103 280& 323& 3b~1 4190
"'TI
I ,_.
1.0
LINE 199b 1997 199R 1999 2000 2001 2002 2003
"10
'500,0 APA
502.0 S,FliNI' PMT I) 0 0 0 0 0 0 0
501l,O !NTfREST n ~~ f'll Nf'l l) 0 0 0 0 0 0 0
SO&.o Tf1TAL I'' r I fiJr) 0 0 0 0 0 0 0 0
520.0 AMU
52(>,0 s. FUNIJ p,..q 371 HI .HI HI HI 371 HI 371
521l.O INTFfH ST rHJ ~liND IJI Q II 70 ':)25 'i83 btl') 7 11 7R2 85b
526,0 TOTAL lN F lltJI\ 72V-, !\(176 ll972 9'12b \ 0QIJ2. 12024 13177 1111101!
"dO.O FMU
532.0 s. FUND '"'~· r 23<1 231l 2~<1 231l 2H 231! l311 2311
'534.0 lNfER~ST Of'< F II"'D 2Q3 :5.)(1 570 lll2 <l"i7 SOb 557 &13
53,&. 0 TOTAL IN FU"Jf) ii718 ~282 '}IJ8b b'5H 72211 79611 8756 9003
J J J • .] " J ' J J J 1 J J
1 l l
I ') AUGIJS T 74 A~<j(!-IORAGE -FAllolflANKS I "'H RCONNEC T I ON ll O•bO RE.A-FFB
SINKING FUNO ACCUMULATIONS
L I ~E. 19~~ 1985 PH\6 1987 1988 1989 1990 1991 1992 1991 lqqq 199'5
NO
500,0 AP.A
502,0 S,FIIND PI-IT u 0 0 0 0 0 0 0 0 0 0 0
50q,O INTERfST (HJ I' li"J() v 0 0 0 0 0 0 0 0 0 0 0
506,0 TOTAL Ut F IJ"Jl! 0 0 0 0 0 0 0 0 0 0 0 0
'i<?O.O AMIJ
'>.?2. 0 s. FUN[) P"T HI HI 371 HI HI 371 371 HI 371 'HI 371 371
5?/J,O lNlERfST fl N f. IIIIo [) I) 211 50 77 lOb tH 170 ?Ob 243 ?83 325 371
526,0 I OTAL IN F •J N n Hl 766 1 I fl I 1635 2112 21>21 3162 3739 £1353 5006 5703 b44'i
530.0 F.,, J
'"n. 53?.0 s. FUN[) P'-11 23~ 23£1 23£1 2 3/J 23£1 234 234 23£1 23£1 <:>34 2Jij 234
I
N' 534,0 INTfi<FST f1"J I' IINfl 0 lb 3£1 '}3 73 94 tt7 1£12 168 196 227 259
0 536,0 TOTAL IN FUfJI) 23" £18') 7<;3 101.10 13£1 I 1676 2027 2403 2806 3?36 3&97 4190
LINE IQ9() 1997 1998' 1999 2000 2001 2002 2003
NO
500,0 APA
502,0 S,FIJNfl PMT 0 0 0 0 0 0 0 0
504,0 HHERfST ON FIINO (l 0 0 0 0 0 0 0
506,0 TfJTAL IN l'tJI\Jil 0 0 0 0 0 0 0 0
520,0 A "'tt
522.0 S, FUNtJ Pi-ll )71 371 H1 371 HI 371 371 371
524,0 INTEREST f1N fiJND ~19 qJO 525 583 &45 711 782 856
526,0 lOTH IN FtJNO 72 S') 80 7t:o 8<H2 9926 10942 12024 13177 14404
'>30,0 FMU
532,0 s. FUND PMT 2J~ 234 23£1 ?34 234 ?34 234 234
53/J,O INTERfST or~ ~ fiNO 2'H HO 370 41? 457 '506 557 613
536,0 TOTAL iN FUN[) ll711i 528<:' 58A6 o"iH 72?4 7961J 8756 9603
15 AUGUST 79 20-80 R!;A:"*f"fB
L!'IE 198'-1 19<15 1986 1987 19~8 I 91'19 1990 1991 !992 1993 l99Q 1995
"JO
551.0 CUM,PR!N/S,FUND* 235o (j 712 7067 9423 II 779 14135 16490 !88Q6 21202 23558 25914 28269
5'52.0 CUM, lNTE:RtST 6314 12LJ81 18501 2!1373 30099 35678 41 I 0 9 4639Q 5!532 56522 61366 66062
55.LO ---------------·--·~-···---------4------------------------------------------------·-------------------------554,0 CUM, DUH SE><VlC ~b7() 17192 255o8 33796 4lH78 49812 57600 65240 7273!1 110080 8727q 94331
555.0
556.0 * NOTE: THE SP•I<J'<t; Fu•~o ~EPAYMF.NTS TAKE. INTO ACCOUNT
557,0 THE: FACT THAT lf<HREST 15 ACCRUING ()N THE FUND,
558,0 THE TOTAL OF THIS LIN£, TrlEREFDf.IE, wiLL NOT MATCH THE
559,0 TOTAL PROJECT COST
560,0
560,5 CUMULATIVE PRINCIPAL AND S H11<1 NG f'U"JD PAYMENTS
561.0 APA 0 0 0 0 0 0 0 0 0 0 0 0
562,0 RE:A 350 700 1050 1400 1751 21 0 I 2451 2801 3151 3501 3851 4201
563.0 CFC 0 0 0 0 0 0 0 0 0 0 0 0
561.1,0 FFB 1400 2801 !1201 5602 7002 8LJ03 9803 11203 12604 1/.IOOLJ 151105 16805
565,0 AMU 371 7'-12 I I I 3 148!1 1855 2226 ?597 2968 3339 3710 4081 41152
566.0 FMU 23il <168 103 937 I I 71 1405 1640 1874 2108 2342 2577 2811 -n 567.0 -------------------·-------------------------------------------------·--·----------------------·------------I
N 568,0 TOTAL 2356 4712 7067 9423 II 779 14135 16490 188Q6 21202 23558 259111 28269 --' 569.0
570,0 !NTERI:ST ON S l Nl\ PIG FUNDS
57 I • 0 APA 0 0 0 0 0 0 0 0 0 0 0 0
572.0 AMU 0 24 74 I 51 25 7 395 565 771 I 0 1 !I 129b 1622 1993
573.0 FMU () 16 50 103 17b 270 387 s2q 698 894 1121 1379
574.0 ------~--------·---·------------------------·----·----------·--------~-----------------------··-------------575.0 TOTAL 0 41 124 254 433 665 952 1300 I 7 1 1 2190 2742 3372
576,0
578,0 GRAND TOTAL 235b 47'::.2 7192 qb77 122!2 14Hq 171143 20146 22913 25748 2Bb56 31641
~J J J
~ l l J .l ~~-} J J .J .~J J J .I c~ ·-'" ~J ] .. .J
... l ·-.. -1 -~l, c•···-·'"l 1 -~~-\ --~1 -~] -J ---· l <-·-c~-l l ~----1 -) ')
15 AUGUST 79 1.10-oo REA·FFB
LI~E 19fiLI 1985 1986 1987 1988 1989 1990 1991 1992 1993 199£1 I 99'
NO
551.0 CUM.PR!~IS.FUNU• 2356 Ll712 7067 9423 11779 1'1135 16£190 18f\LI6 21202 23558 2591£1 2826
552.0 CU"1. !NTE.RI:ST 5838 I I 54 3 I 7 11 7 ;;>2558 27867 .B04LI 380fl9 £13002 47782 52430 569£16 6133
553.0 ·----------------------------------------------------·-----~------------------------------------~----------554.0 CU"1. DI:8T SERVIC 819LI lb255 21.111\~ 3191:!1 396« t) £17179 5LI579 618£18 68981.1 75988 82860 8960
555.0
556.0 * NOT!:: THI: SINII;!NG FurW REPAYMENTS TAKE J I~ TO ACCOUNT
557.0 THE FACT THAT P•TI:RI:ST IS ACCRUING ON THf FUND.
556.0 THE TUTAL OF r HIS L I Nl:, THF-.RHORE, WILL NOT MATCH THE
559.0 TOTAL PROJECT COST
560.0
560.5 CUMULAT!Vf. PRINCIPAL AND S!Nt<ING FUND PAY"1E.IH S
561.0 APA 0 0 0 0 0 0 0 0 0 0 0
562.0 REA 700 1£100 2101 2801 3501 4?01 4901 5602 6302 7002 7702 8£10
563.0 CFC 0 0 0 0 0 0 0 0 0 0 0
56«.0 FFA 1050 21tJ1 3151 £1201 525? 630? 7352 8£103 9£153 10503 11553 1260
565.0 AMU 371 7£12 1 113 148£1 185') 2226 2597 2968 3339 3710 £1081 £145
566.0 FMU <!34 468 7()3 937 I I 7 I 1£105 16£10 187£1 2108 2342 2577 281
"T1 567.0 ---------------------------------------------------------------------------------------------------~-----·-I 568.0 TOTAL 2356 Ll712 7067 9423 11779 1£113'; 16LI90 188£16 ?1202 23558 25914 2826 N
N 569.0
570.0 INTEREST UN SINKING FUN US
571.0 APA 0 0 0 0 0 0 0 0 0 0 0
572.0 AMU 0 24 74 151 2'5 7 395 565 771 1014 1296 1622 199
573.0 FMU 0 16 50 103 176 270 387 529 698 894 1121 137
574.0 ---·-----------------------------------------------~-----------------------------------------~------------~ 575.0 TOTAL 0 41 12ll 25£1 ll33 665 952 1300 1 71 I 2190 27£12 B7
576.0
578.0 GRANO TOTAL ?356 £1752 7192 9677 12212 14799 17443 201£16 22913 25748 28656 3164
1 5 AUGUST 7G 20-80 RU-FFH
Ll'IE 1GGo !9'!7 1998 1999 2000 2001 2002 2003 2001.1 2005 2006 2007
'10
551.0 CUM,PRl'I/S,FUND* 30625 329~1 3533 7 37692 1.10048 ll2404 1.14760 1.1 7 116 48866 50617 52367 54118
552,0 CU~1, I~TEREST 7 Oo 11 75014 79269 83377 137338 9115 3 94820 98340 I0010ll 101722 103192 104516
553,0 -------------------·---------~---~---------------------------------------------~-------------------------·--55ll,O c U~1. DEAl SERVIC 1012~o I 0 7995 tt460o 121070 1c'7387 I B'>57 1 395 79 145455 148970 !52 338 155559 158633
555,0
556,0 * NOH: THt. SINKING FU'ID REYAYMENTS TAKE INTO ACCOUNT
557,0 THE FACT THAT INTEREST IS ACCRUING ON THE FUND,
558,0 THE' TOTAL OF THIS LINE, H<f REF ORE, -'ILL NOT "1ATCH THt
559,0 TOTAL PROJECT COST
560,0
5o0,5 CUMULATIVE PRINCIPAL AND SI'<KlNG FUND PAYMENTS
Sol. o APA 0 0 0 0 0 0 0 0 0 0 0 0
562,0 REA u55! 4901 5252 5602 5952 6302 6652 7002 7352 7702 8052 81103
563,0 CFC 0 0 0 0 0 0 0 0 0 0 0 0
5o4,0 FFI:l !R20b 19606 21006 22ll07 23807 25208 26608 ?8008 29409 30809 32210 .B61 0
565,0 AMU 41l23 5194 5565 5936 6307 6678 70ll9 7420 7420 7420 7420 7420
566,0 FMU )01.15 3279 351ll 3748 3982 4216 4451 /~685 4685 4685 4685 4685 ..,., 567,0 --------·------------------------~---------------------------------------·-----·-----------------------·--·-I
N 568,0 TOTAL 3062':l 32981 35337 37692 400!J8 42404 44760 47116 48866 50617 52367 54118 w 569,0
570,0 INTt.Rt.ST LJN S!~KlNG FU"'DS
571.0 APA 0 0 0 0 0 0 0 0 0 0 0 0
572,0 AMU 24 1 I 21'\82 34 0 7 3990 4635 5346 6128 69811 6984 6984 6984 b984
573,0 FMU I 6 73 2003 2373 2785 3242 3748 4305 4918 4918 4918 4918 11918
574,0 --~------·------·----·----------~----·-·-~·~---·------------------·-----------------------------------------575.0 TOTAL 1.1081.1 41\85 5779 6774 71:177 90'14 10433 11902 11902 11902 11902 11902
576.0
578.0 GRAND TOTAL 34709 378o5 4 1 1 I o LJ4467 1.17925 51498 55193 59018 b0768 62519 64269 66020
'=· ~ ,.I I -~ ] I J '"'" J J c •.• c.! .I -J J .J J ,J .
--..
J --~--.
15 AUGUST 7'?
LINE
NO
551.0
552.0
553.0
554.0
555.0
55&.0
557.0
558.0
559.0
560.0
5&0.5
5&1.0
5&2.0
5&3. 0
564o0
5&5.0
5&&.0
5&7.0
5&8.0
569.0
570.0
571.0
572.0
5.73. 0
574.0
575.0
57&.0
578.0
CUM.PRINIS.FU~D*
CUM. INTEREST
30o25
65'::182
32981
69702
1'198
353_37
nosq
37&Q;:>
77544
2000
40041:1
81268
?001 2002
447&0
88317
2003
47116
91644
2004
(lf\866
93230
2005
50&17
94684
200&
52367
96005
2007
54118
97195
----------------------·---------------------------------------~----------------------~----------------------CUM. DEAl SERVIC <1&207 102&83 10902& 11':1237 121316
* NOTE: THE SINKING FUND REPAYMENTS TAKE INTO ACCOUNT
THf FACT THAT INTEREST IS ACCRUING ON THE FUND.
THE TOTAL OF THIS LINE, THEREFORE, ~ILL NOT MATCH THE
TOTAL PROJECT COST
CUMULATIVE
APA
REA
CFC
FFB
AHU
FHU
TOTAL
PRINCIPAL AND Sl~Kl~G FUND
0 0
9103 9803
0 0
13o"i4 14704
4823 ':11 <14
3045 3279
30625 32981
INTEREST ON SINKING FU~DS
APA 0
AMU 2411
FMU 1673
0
2882
2003
PAYMENTS
0
10503
0
15755
55&5
3'>14
35337
0
3407
2373
0
11203
0
1&805
5936
3748
37692
0
11904
0
17855
&307
39R2
40041:1
0
4635
3242
1C7263
0
12&04
0
18906
6678
4216
42404
0
5346
3748
133077
0
13304
0
1995&
7049
4451
447&0
0
&128
4305
138760
0
14004
0
21006
7420
4&85
4 7 t 16
0
&q84
4918
14209&
0
14704
0
22057
7(120
4&85
488&&
0
6984
4918
145300
0
15405
0
23107
7420
4&85
50617
0
6984
4918
148373
0
1&105
0
24157
7420
4685
52367
0
6984
4918
1513ll
0
16805
0
25208
7420
4&85
54118
0
6984
4918
---------------·------------------------------------------------------------------------------·------·------TOTAL 4885 '5779 6774 7877
GRAND TOTAL 34709 37865 IH 116 44467 q7925 '51496
10433 \1902 11902
5'5193 59018 &0768
11902
&2519
11902
&4269
11902
66020
.. ..
"'T1
I
N
U'l
J
1'::1 o\UGUST 7q
lii-lE
NO
551.0
552.0
553.0
5">£1.0
555.0
556 •. 0
557.0
558.0
559.0
560.0
560.5
561.0
562.0
563.0
564.0
565.0
566.0
567.0
568.0
569.0
570.0
571.0
572.0
573.0
574.0
575.0
576.0
578.0
-.J
CU~.PNINIS.FUND*
CUM. INTEREST
CUM. rlBT SERVIC
2008
55868
105692
2009
57t>l 9
106721
1643110
2010
59369
10760£1
I o6973
2011
61120
108339
169459
* NOll: TH~ SINKING FUND RtPAYMENTS TAKE INTO ACCOUNT
THE FACT THAT INTEREST IS ACCRUING ON THE FUNU.
TH[ TOTAL OF THIS LINE, THEREFORE, ~ILL NOT MATCH THE
TOTAL PROJECT COST
CUMULATIVE. PRINCIP~L AND SINKING FUND PAYMENTS
0
9£153
APA
REA
CFC
FFt:l
AMU
FMU
0 0
8753 9103
0 0
.35011 36411
7421) 7420
1161\5 11685
0
37811
7420
11685
0
9803
0
39212
7420
4685
20!2
0
1015.5
0
<10612
7£120
46115
2013
6<1621
!09368
1 73989
0
10503
0
42013
7420
4685
bb371
109662
176034
0
10853
0
Ll34!3
7420
4685
2015
68122
109809
177931
0
11203
0
4481£1
7420
4685
------------------------------------------------------------------------TOTAL 55868
INTEREST ON SINKING FUNDS
APA 0
AMU 698£1
FMU £1918
57619
0
69!:1£1
£1918
59369
0
6984
4918
61120
0
6984
119111
62870
0
698£1
Ll918
64621
0
6984
49111
66371
0
69811
4918
68122
0
6984
4918
-----------------------------------------------------------·-------·----TOTAL 11902 11902 11902 I 1902 11902 t 1902 11902 11902
GRAND TOT~L 67771 69521 71272 73022 74773 76523 7827£1 8002£1
J J -I ·-I , ___ ,J 1 .. .I J
20•110 REA•FFB
j I ,I .I .J
,
I -
N
C'l
--] ] ] l
15 AUGUS I 79
LINE
NO
CU~.PRIN/S,FUND•
CUM, INIEREST
·--]
2001\
SS86t:l
91\252
2009
57619
99177
1 -j
2010
---l
2011
61120
100631
-~
2012
62870
101160
-~-1 r.---
2013
6ll621
101556
1 ~]
?Dill
66371
101821
-1
2015
68122
101953
551.0
5~2.0
'553.0
S~li.O
555,0
5~6.0
557.0
558.0
559,0
560,0
560,5
5b1. 0
562.0
563,0
56li,O
565,0
566,0
567,0
5MI.O
569,0
570,0
'571.0
572.0
5H.o
57li,O
575,0
576,0
578,0
------------------------------------------------------------------------CUM, DERT SERVIC ISLI120 1'>6796 159340 1617':11 16ll030
• NUTE: TH~ SI~KING FUND REPAYMENTS TAKE INTO ACCOUNT
THE FACT THAT INTEREST IS ACCRUING ON THE FUND,
THE TOTAL OF THIS LINE, THfNffONE, ~ILL NOT MATCH THE
TOTAL PROJECT COST
CUMULATIVE
APA
NEA
ere
FFB
A"''U
FMU
TOTAL
PRINCIPAL AND SINKING FUND
0 0
17505 18206
0 0
262S8 <'7308
7ll20 7ll20
ll685 ll685
'>5868 57619
INTEREST ON SINKTNG FUNDS
APA tJ
AMU 698ll
FMU 4918
TOTAL 11902
GRANO TOtAL b7 771
0
691l4
4918
11902
69521
PAYMENTS
0
18906
0
283'59
7420
ll685
0
6984
4918
11902
71272
0
19606
0
29409
7420
4685
61120
0
698Q
4911\
11902
7 302<'
0
20306
0
30ll59
74?.0
li68S
6?.870
11902
74773
I 66177
0
<'1006
0
31510
7420
4685
64621
0
6984
4918
11902
76523
168192
0
21707
0
32560
7llf>O
ll685
66371
0
6984
ll9!8
11902
7827ll
170075
0
22407
0
33610
7420
ll685
68122
0
6964
4918
11902
8002ll
l 1 -] ---] -~ I
ANCHORAGE-FAIRBANKS INTERCONNECTION
FINANCIAL COMPARISON
OF
ALTERNATIVE REA/FFB LOAN PACKAGES
(COMPARE)
F-27
PRESENT VALUE COMPARISON OF REA/FFB COMBINATION LOAN PACKAGES
Discounted @ 14 Percent
?0 All~,tJS T 74
ALT.l-20% REA@ 5%/80% FFB@ 9 1/4%
35 YEAR AMORTIZATION
INTEREST ONLY
L l '•~
Nll
1100,0
1102.0
!104,0
81?.0
815,0
1\C'O,O
112?,0
L I I; I;
"JI)
1\UO,O
llll?.o
IIOU,o
AI?,O
A!'),O
~20,1)
Ac?,O
Ll IC;f
"JO
'I() 0. f)
llo?.n
II 0 11, tl
Rl?. n
'11'>.0
R?,n,n
112?.0
J
r----• 32 YEAR REPAYMENT PERIOD
YEAR [I 5 b 7 q 10 11
AOJiJSl~f\ "F t\ I SfRV!CF. FOR;
LOAN I (REA) I) 1 7 Q2 5'>b ~Ill e•n 875 115a 8110 R23 805 788
L04N 2 ( FFB) 0 101'1 595 <'L'B~ 49Qb llA811 11772 111>59 ll5117 41.134 432l IIllO
------------------------------------------·---------·-------------------·--·----------------·--·------------TOTAL jl l?'i oRb 21>39 <;QO/ 5 777 5oll7 5517 538 7 '5257 'H27 4997
f!lSCl•1 11\Ttn v A I II~ " I u<> '>21l I 7A I 311'17 :r.ooo ?5H nos 1!188 lbl7 1383 1182
PR[St•!T 'v ~I II f_ ,?1-dh~ n (l 0 I) 0 0 0 0 0 0 0
12 1' 111 1 'i I b 1 7 18 19 i?O 21 22 23
Afl.JUSlfi;. Df •I I St"VT(f FU~:
LOAN I (REA) 77ll 7':J3 735 718 700 biB bb5 bliB &30 bl3 595 '578
L£11\"1 ? ( FFB) ~~oq r 39/l'i 3f\B HbO ~bll6 353"1 31123 H11 ~198 308b 29711 26bl
---·---------------------------------------~---------·--·--------------------------~·---------···-----------TOTAl 111'161'1 <!7\R Ubi] I\ ljlj 7 p, ll3118 U?IB U088 3q';iR 362q 3b99 35b9 .3113 q
I J l ;j [ ,J: I • T F !1 V ~ l ,•F 1 0 I I) Ao3 no h~l 5><1 lJ')C, 3R 7 3?8 279 23b 200 lb9
PRFS~•·T > AL"r ,, 0 0 0 0 0 () 0 0 0 0 0
;>t.J <:'5 ?,6 n ;>!l 2Q '0 31 32 H 34 35
AilJIJS IFL> I' F 'l T S~t.>vTCF FUR:
L!IA'" 1 (REA) """ <, ,J ~ ':Ji''i "Jl)R ljQI) ljn 1.15'1 4:SR 4i?O ll03 3115 368
l n "-\I ? (FFB) ? 7'1'-' 2637 ?.':J?iJ 21.11? ?2Q9 ?1b7 2075 1962 lll"iO 1738 1625 1513
--------------------------------------------·------------------------·--------------------------------------]II TAL ,309 ~ 1 7 Q 51)U9 2Q(Q 2790 2bb0 ?':J>O 2400 2270 21110 2010 1680
I) r s r u 1 , -, r t. , ' V ~ [ ~If I fi l 12() I 0 I ll') 71 bfl ">U ll I 34 21\ ?3 19
PPt<iE'\1 .• ~ L I I~ 0 n ll n u 0 0 0 0 0 0 0
.I -.I I ] ' t;.;._ -_, J .J
,,_] ~---1 ]
PRESENT VALUE COMPARISON OF REA/FFB COMBINATION LOAN PACKAGES
Discounted@ 14 Percent
ALT.2-40% REA@ 5%/60% FFB@ 9 1/4%
35 YEAR AMORTIZATION ?0 AUGUST 74 INTEREST ONLY 32 YEAR REPAYMENT PERIOD
LT'IIf YEAR \) 2 ~ 4 5 b 7 8 q I 0 I t
NO
aoo.o Al)JUSTFO ll F rl T SF~VlCE FOR:
AO?.o LOAN 1 (REA)· t) ~4 1R'J 7 I I 18?0 1785 I 750 I 11 5 1680 lb4'5 toto 1'57'5
R04.o LOAN 2 (FFB) u HI ~~ lj'J 1 7 1 3 3747 .Sbb' 3'57q 3494 HIO 332& 32112 11'57
Al?.o -----------~------------·-----------------------------------------·-----------------------------------------A15.n TOlAl 0 115 o3tl 242/J "151>11 544R s.s2q '>210 ">091 4Q71 48'52 4731
Ri!.O.O GISCUI'tlll n v Ill IIF ;, l\10 4115 1b.St:> 3297 ;>~~0 24?8 2082 1711':> 1">2Q 110Q I 120
112?.0 PPI:St.• f V ~ [ I! t ,>tj I"' Q 1 () 0 0 lJ 0 0 0 0 0 0 0
,
I
N
1.0
lT"--E 12 1 ~ 14 15 lb I 7 18 I q 20 21 22 21
1110
800.0 AUJUSTFU I>E rl T SE~VTCf FuR:
R02.0 lOAN 1 (REA) 1 ')I~ 0 15U5 1470 I 435 1400 n~>5 lHO 129'5 12&0 122'5 I I qo I I so;
804.0 LOAI\J ? {FFB) 3l• 7 3 2Qt\Q ?404 2820 273b 2b5? 25&7 2483 l_J3QQ 231'5 2210 2111&
812.0 ---·--------------·-----------------------------------------------------------------~-----·--------------~·--81'5.0 T 0 T 4L ~b 1 3 . <UI'IIJ 4 .S7'J .42':>6 4131> 4017 J8Q8 3778 3b5Q l'5UO JUll .no 1
A2o.o DISCOtt~<TEn V,\1 Uf '1')1\ 1:1111 bQ4 54b 50H liB .\b'l 313 2bb 22& 192 162
fie??. 0 PRESf~T V h L I I[' (l 0 0 0 0 0 0 0 0 0 0 0
Ll"'f ?u 2'5 2b 27 ?8 29 30 ]I 12 B 1U .\'5
NO
800.0 AOJUS Tf 0 Df 1-'T SFPVTCI" FUR:
AO?.O L(lAN I (REA) 11 ?1,) 1085 1050 1015 QSO Q4'5 QIO 87'5 840 80'5 770 73'5
eou.o LOAN ? (FFB) ?Ot>2 1Q77 t89.\ 1809 1725 lb40 t5'5b 1472 138 7 1303 12 I 9· I I 3'5
812.0 ---~----------------~--------------------------~---------------------------------------------·--------------Al">.o TOTAL .\IRl 30b3 2943 2824 2705 2':>8b 211&1> 2347 2228 2108 1qeq 1870
fl20.o OISCI!ttr-.;Tf_f' V t.l UF IH I I 6 98 H? b9 SR 48 40 34 2A 23 lq
'1122.0 PRESt NT v AlliE u 0 0 0 0 0 0 0 0 0 0 0