Loading...
HomeMy WebLinkAboutAPA246ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT TASK 3 -HYDROLOGY HYDRAULIC AND ICE STUDIES MARCH 1982 Prepared with: ACRES AMERICAN INCORPORATED 1000 Liberty bank Building Main at Court Buffalo, New York 14202 Telephone (71'6) 853-7525 Prepared by: R&M CONSULT ANTS, INC. 5024 Cordova Street Anchorage, Alaska 99502 Telephone: (907) 279-0483 HARZA-EBJ.\SCO Susitna Joint Venture Document Number · Please Return To DOCUMENT CONTROL .. 'I 5 -ICE PROCESS ANALYSES Geographically, the Susitna River upstream from Talkeetna can be divided into three major segments. The upper segment above the Oshetna confluence, the middle segment reaching to just below · Devil Canyon, and the lower segment from near Indian River to Talkeetna. The upper segment flows southward from its various glacial origins near latitude 63°30'N for some 90 miles to latitude 62°40'N. The elevation in this segment decreases from about 2,600 feet at the toes of the glaciers (which rise to above 10,000 'feet) to 2,150 feet. This is a fall of sime 450 feet at an average slope of about 5 ft/mile. No notable concentration of fall occurs in this segment. The middle segment flows westward with a slight northward trend for about 90 miles from the Oshetna River confluence near longitude 147°25 1, .. 1 to the downstream end of Devil Canyon (Indian River confluence) at 140°25'W and 62°50'N. The fall in this segment is about 1,350 feet to elevation 800 feet, providing an average slope of 15 ft/mile. Concentrations of the fall in the middle segment occur in four reaches: at the Oshetna River, at Vee Canyon, just below Devil Creek, and in particular, at Devil Canyon. The lower segment flows in a south-southwesterly direction for about 40 miles from Indian River to near the town of Talkeetna at 150°05'W and 62°20'N. The fall in this segment is about 450 feet to elevation 350 feet at an average slope of about 11 ft/mile. No notable concentration of fall occurs in this segment. Downstream to Talkeetna where the Susitna flow conJoins with those of the Chulitna and Talkeetna Rivers, the Susitna1s course is southward for 75 miles to sea level at Cook inlet at 61 °20' N with an average slope of 5 ft/mile. No concentration of fall occurs in this southern segment of the r·iver. 5.1 -Field Observations The geographic orientation of. the river on the south slope of the Alaska Range results in air temperatures increasing along its course from the headwaters to the lower reaches. Whereas this temperature gradient may be due in part to the 2-degree latitudinal span of the river, it is probably due primarily to the 3,300-foot altitudinal difference from the lower to the upper reaches, as well as to the proximity of climate-moderating ocean waters to the lower reaches. In any case, the gradient gives rise to a period of time in the early stages of freezeup (late October- early November) in which the lower basin temperatures are s14/L 5 - 1 above thP freezing point while the upper basin is at subfreezing temperaturas. This was the situation observed on October 17, 1980, with late afternoon temperatures (4:30 p.m. ADT) above Watana being 30°F or lower while the temperatur·e at Talkeetna was at about 39°F. Presumably 1 a similar springtime period occurs with temperatures straddling the freezing point at some inter- mediate point in the basin. This point would move in an upstream direction with upward trending temperatures (i.e. springtime) and downstram with downward trending temperatures (i.e. autumn). In both cases, this pattern of temperature affects the sequence and timing of ice cover events. As noted 1 on October 16 and 17, 1980, the foregoing autumn temperature situation was seen to prevail. Glacial melt fr'om the headwaters cooled enough in its course through the relatively mild slope of the upper segment of the river to produce notable quantities of frazil flock and slush pans (15-25 percent surface coverage) under post-dawn air temperatures of 18°F to 14°F. In the fast-flowing rapids of the middle segment, relatively large quantities of frazil were being produced, which augmented the inflow of ice from upstr'eam loading 1 to surface coverage of the river as high as 75-85 percent. As inflows from major tributaries along the source of the upper and middle segments had little, if any 1 ice content, the near-freezing temperature of the glacial melt is judged to be a significant determinant of the origin of ice from which a cover will deve::iop and, therefore, of the timing of that development. Thus, the summer collection and storage of heat in the proposed re5ervoirs in the upper reaches of the river will produce significant changes in the autumn temperature regime in the downstream reaches and, therefore, in the timing and rate of cover development. Details of the obs(=rvations made during the river freeze-up (1980) and breakup (198'1) may be found in the Ice Observations report ( R&M I 1981 b). 5.2 -Modeling. of Ice Processes (a) Description of the Computer Models Acres• in-house computer models HEATSIM and ICESIM were used to simulate the ice processes in the river reach above Talkeetna. HEATSIM simulates a daily heat balance in the river reach to determine water temperature progressively downstream. Details of the model and its calibration to simulate Susitna river reaches are presented in Appendix A4 to the main Feasibility Report. The model is used to predict water temperature in the river and to determine the approximate location and time when water temperature reaches 32°F. This location is used as input to the ICESIM model s14/L 5 - 2 ..... \. ~·~, i; ; \' J which simulates the formation and progression of an ice cover and the water levels associated with the processes. The following paragraphs describe the ICESIM model in some detail. s14/L JCESJM Model Input Input data to the ICESIM model include streamflow, river cross-sectional details, and an estimate of ice flow into the study reach. Physical coefficients such as ice density, cohesion, and ice cover friction (Manning's n) are also input to the program. Standard values available in the literature are used in the model. Aspects of flow characteristics such as ice erosion velocity and critical Fr·oude number for ice cover progression should also be defined. Based on the literature and field observations made in 1980-81, values were estimated for these parameters and are Jisted in Table 5. 1. MadeJ Backwater Calculations The ICESIM model includes a subroutine which calculates backwater profiles in the river reach to assess water levels at different cross-sections. The routine is similar to the H EC-2 model described in Section 4 but is less sophisticated with respect to hydraulic computations in order to accommodate the complexities of the ice process simulation. Effectively, this simplicity translates to less precise water· level calculations (±1 to 2 feet), as compared to HEC-2 modeling accur·acy which is to better than ±1 1 , but it is considered adequate to provide representative results. This model was calibrated against the HEC-2 model results for a single river discharge as discussed below. Historically, freezeup has started at a river discharge of around 4,000 cfs at Gold Creek in the end of October and progressed above Talkeetna until late November/ early December when the discharge dropped below 3 1 000 cfs. Calibrating the backwater routine with observed water levels for a river discharge of around 3,000 cfs at Gold Creek proved exceedingly difficult due to critical or near-critical flow conditions encountered In the river reach analyzed. Post-project winter discharges will be considerably higher (around 10,000 cf.s) as discussed in Appendix A1 to the main Feasibility Report. It was therefore decided that the backwater routine should be calibrated against the H EC-2. model results for a discharge cfose to the 10 1 000 cfs. Field measurements 5 - 3 of water levels in the river reach had been made for a natur~l streamflow of 9, 700 cfs (at Gold Creek) and have been used in the calibration of the H EC-2 model (Section 4). It was considered appropriate to use this discharge to calibrate the backwater routine of the ICESIM model as well. A comparison of the HEC-2 and ICESIM routine calculations is presented in Table 5.2 which indicates a reasonable agreement between the two model resu Its. Modeling of Ice Cover Formation and Progression The model simulates the formation and progression upstream of the ice cover given the location of the leading edge of ice cover and the time of its occurrence. The model checks the stability of ice cover and adjusts its thickness consistent with ice supply, river goemetry 1 and hydraulics of the flow. The ice thickness is adjusted either by telescoping of the cover or by thickening, and the model proceeds to the next section upstream. Except for occasional minor bridging, the steep river slope in the reach does not permit ice progression by bridging. This is also generally confirmed by the river observations in 1980-81. Model Calibration An attempt was made to calibrate the ice process simulation model with the field data collected during the 1980 river freezeup period. It became apparent that the model could not simulate numerous critical or near- critical flows that occur in the river 1 due to the relatively large lengths of sub reaches modeled. Several intermediate river cross-sections were synthesized between surveyed sections to reduce these subreach lengths. Nevertheless 1 the model has been used to simulate ice formation and progression at average post-project winter flows. Several qualitative checks have b~en made to assess the accuracy of this simulation. These include general heat balance of the river waters, river hydr·aulic characteristics as observed in the field, and comparisons with similar studies elsewhere in the northern climate. It must be emphasized that precision of predicted water levels in the river under post"·project ice conditions is rather limited (±1 to 2 feet). However 1 the width of the uncertainty band in the modeling does not have a s14/L 5 - 4 l I I significant impact on the simulation of the ice regime of the river above the Talkeetna confluence, due to limited · progression (see Section 5.3). 5.3 -Results of Simulation Studies Studies wer·e conducted for the following stages of project developments: (a) 0 0 0 During construction of the Watana dam. Only Watana development operational. Both Watana and Devi I Canyon developments operational~ Watana Construction Stage During this stage, no significant change in the river regime is expected since natural f~ows in the river below the damsite will be maintained with the proposed diversion facilities. No simulation of this condition was carried out. (b) Operation with Watana Development Only Heat balance analyses were made using the HEATS I M model in the 35-mile river stretch between Watana and Devil Canyon damsites. The analyses indicated that the temperature of the power flow from Watana would reach close to 32°F below Devil Canyon by about the third week of November under average climatic conditions. This is about a month later than under natural conditions and would delay the ice progression above Talkeetna by a similar interval. It was determined that an ice cover will be formed above the Chulitna confluence around the end of November with ice generated from the reach below Watana damsite. Ice simulation studies indicated that the ice front progressed upstream at roughly 0.3 miles/day, a rate less than one-eighth of that observed in 1980 (Table 5.3). The front reached some 15 miles upstream by the end of January, after which a thermal decay of the ice cover is expected due to increased air temperature and reduced cooling of the power flow from Watana. The ice cover formed in the reach above Talkeetna is expected to melt in place by the end of March, and the decay will proceed further down- stream thereafter·. It is unlikely that any ice jam of significance will occur above the Chulitna confluence. Below the confluence, it is speculated that ice cover formation will be delayed by one to three weeks due to tower· and delayed supply of ice from the Susitna, but progresDion of the ice front would not significantly differ from that under s14/L 5 - 5 l l l· [. I f I l ! t I l t, I ----------------------------· natural conditions. However 1 the decay of the ice cover is expected to start earlier 1 by the end of March, due to warmer waters from the power development. Significant increase :n water temperature from that under natural conditions is not expected near the river mouth. (c) Operation with Watana and Devil Canyon When both developments are operational, the temperature of power outflows from Devil Canyon is expected to be close to 39°F during the winter months (se1: Appendix A4 to the main Feasibility Report). As it progresses downstream, water becomes cooler from heat exchange with the atmosphere. By early January, it is expected that this water will coal to about 32°F near Talkeenta (see Figure 5.1). It is expected that very little ice cover will be formed in the river reach above Talkeetna under average weather conditions. Due to the warmer water temperatures above the confluence, ice cover formation and progress in the lower river will also be delayed. It is expected that ice contribution from the Chulitna, Talkeetna, and Yentna Rivers will cause an ice cover to be formed in the lower river, but this cannot be quantified at this time without field data on such ice contributions and further observations of river· freezeup phenomena. (d) River Water Levels Under Ice Cover Conditions Under natural conditions, significant staging occurs at several points in the river during ice cover formation. Table 5:4 presents staging observations made during the 1980 freezeup period for selected locations in the river. With increased flows in the winter under post-project conditions, a significant rise in water level during ice cover formation can be expected near Talkeetna. Table 5. 5 presents estimated water leveis under pre~~ and post-project conditions. Below the confluence, the rise in water levels during ice cover formation under post-project conditions will progressively decrease downstream. . More detailed river cross-section surveys and river freezeup observations will be necessary to confirm these estimates and speculations. 5.4-Reservoir Ice Cover lee cover formation and growth in the Watana and Devil Canyon reservoirs will be substantially different from that in the corresponding river reach under natural conditions. An s14/L 5 - 6 assessment of the formation, growth, bank-ice deposition, and eventual decay of the reservoir ice is presented below. The initial ice cover on the reservoirs is expected to be formed with some 100 freezing degree-days (°F) after the surface water reaches 32°F. Based on available climatic data and the reservoir thermal modeling (see Appendix A4 to the main Feasibility Report), the in itiaJ ice cover wi II be formed towar·d the end of October under average weather conditions. Once a stable cover is formed, its growth is accomplished chiefly by conductive heat loss to the atmosphere. Figure 5.2 presents estimated ice cover growth in the Watana reservoir over an average winter season. Devil Canyon reservoir ice cover would progress similarly. The only difference would be that several miles of this reservoir immediately below Watana dam may have open water year-round due to outflow temperatures from Watana of 39° F or higher. Near the power intakes at each developn·.ent, open water stretches will be present because of larger ve!oc·ties, as well as significant mixing with warmer (39°F) waters in the lower Jayers. Under normal operation, the Watana and Devil Canyon reservoirs will be drawn down by about 90 and 50 feet, respectively, toward the end of winter. Thus, the ice cover formed on the surface would be deposited on the banks as blocks, with sizes varying from a few inches to about three feet. The deposits will be generally irregular and cracked due to irregular bank slopes and drawdown rates. Most of this bank ice is unlikely to melt until about the end of June, or earlier if the reservoir level is raised with spring floods. The ice cover in the reservoir itself will essentially melt in place. By late February or early March, the ice cover will slowly start to disintegrate with higher air temperatures and increased solar radiation on the surface. Operation of the power intakes may slightly alteJ~ the disintegration of ice cover close to the intake with convection mixing underneath the cover. It is expected that the ice cover in the reservoirs will completely dissipate by the end of IVIay or early June, with war·mer inflow waters and the onset of spring. During the period between March and May, the ice cover may become structurally weak due to the disintegration process, though its thickness may still be two to three feet. s14/L 5 - 7 TABLE 5.1 CALIBRATION COEfriCIENTS USED IN ICESIM Manning•s 'n 1 of Ice Critical Froude No. at Ice Front Erosion Velocity Density of J ce Cohesion of Ice s14/L 5 "' 8 0.050 0.120 6. 5 ft/sec 47.0 lb/ft3 0.145 psi TABLE 5.2 COMPARISON OF HEC-2 AND fCESIM BACKWATER ROUTINE RESULTS Computed Water Surface Elevation (ft, msl )* Cross-Section No. HEC-2 ICESIM LRX - 3 344.0 LRX-9 378.1 379.0 LRX -15 452.5 453.5 LRX -21 510.0 511.7 LRX -27 542.9 544.4 LRX -34 616.0 615.8 LRX -41 659.9 659.8 LRX -47 690.6 690.3 LRX -54 733.2 733.8 LRX -61 832.9 834.2 LRX -68 850.6 * For Gold Creek discharge of 9700 cfs. s14/L 5 - 9 TABLE 5.3 ESTIMATED ICE COVER PROGRESSION ABOVE TALKEETNA Post-Project Conditions -Average Year Date December 1 December 15 December 25 January 10 January 20 Location of Leading Edge* Rivermiles No lee Cover 102 105 109 112 Section LRX-7 LRX-10 LRX-12' LRX-15 * With Watana only operational. s14/L 5 -10 . l TABLE 5.4 OBSERVED RIVER STAGING DURING ICE COVER FORMATION -1980 Location Talkeetna (LRX-3) Gold Creek Downstream end of Devil Canyon Devil Canyon Dam Site (Devil's Elbow) Immediately upstream of Devil's Elbow s14/t 5 -11 Approximate Maximum Observed Staging Above 10/17/80 Open Water Level 3 -4 ft. 5 - 6 ft. 12 -15 ft. 10 -12 ft. 3 -15 ft. \ I I I I I I ! ' ' TABLE 5.5 ESTIMATED WATER LEVELS AT SELECTED RIVER SECT!ONS River Water Surface Elevations (feet) Cross-Section Natural Ice-Post Project Conditions 2 Number Cover Condition 1 Open Water 3 LRX-3 349.0 345.0 LRX - 5 N/A 358.0 LRX - 6 N/A 362.9 LRX - 7 N/A 366.9 LRX - 8 N/A 373.8 LRX - 9 381.0 379.0 LRX -10 395.0 391.6 LRX -12 421.0 421.9 LRX -13 437.0 437.4 LRX ... 15 450.0 453.5 LRX -16 457.0 456.1 LRX -19 N/A 486.9 1 1980 Freeze-up data. 2 3 4 N/A Average discharge 9,700 cfs at Gold Creek. With Watana and Devil Canyon both operational. With Watana only operational. Not Available. s14/L 5 -12 With Ice Cover 352.7 362.4 366.5 370.8 378.1 . 389.8 405.4 430.4 445.4 455.8 457.2 no ice 4 It· U1 t 1-' w I 45.0 40.0 lt.. 0 11.1 cr :::1 ... c( a: 11.1 a. ~ w ... a: 11.1 ... < ~ 35.0 30.0 RIVER MILES LRX SECTION c( z !:a: ..Jw :::1> x-ua: 3 100 6 9 10 w "' :! u 110 w N z w!l<: 11.1!1<: ~~ ~~ zl!l :0:11.1 uw <eta: c(O: :::10:: :.:a: ..Ju :eu uu cnu ~------6 6 0~~ e __.....x ~ 120 14 15 18 20 27 29 LONGITUDINAL THERMAL PROFILES POST PROJECT AtlD NATURAl CONDITIONS z c( ::=: 0:.: z!l<: 0: c(IIJ IIJ ..Jl!l -11.1 ;r; g5 Oa: en i!::u 130 1'10 33 35 38 Ill '17 51 53 5'1 LEGEND Q NOVEMBER 0 DECEMBER X JANUARY 0 FEBUARY 6 MARCH w (!):.: j'!w a:W oa: n.U NATURAL WATER' "fEMPERATURE IS A CONSTANT 32.°F THROUGH- TillS PERIOD WITH WllTANA AND DEVIL CANYON DEVELOPMENTS 53 150 60 02 68 FIGURE 5.1 RIVER M1!.ES LAX SECTION 35 30 25 -z - U) en I.LJ 20 z Y: u ::c 1- w ''J u - 15 10 5 0 OCT. I : /~ . 0 l I 0/ I / I ~e I ~, I /t I 0 I / j 0 . / I I 0 ; ! I ~/ ~ I I I i I l /l i ! I ; i l 0 l l l ' I I I . I l . I ~<V 1 l I I f l I I I 0 y .i I I I I 1 ! i l 7l I I 0 ' I I ! i ! i 0 I I I ! I I ® l ,/ I . ~ I . 0 30 60 90 120 150 DAYS ESTIMATED ICE COVER DEVELOPMENT IN WATANA ·RESERVOIR FIGURE 5.2 6 -REFERENCES Barnes, Harry, H., Jr., 1967. Roughness characteristics of natural channels. Water-Supply Paper 1849. United States Department of the Interior Geological Survey, Washington, D.C. Bray, Dale J., 1973. Regime relations for Alberta gravel-bed river·s. In: Fluvial Processes and Sedimentation. National Resear·ch Counci I of Canada, Ottawa, pp. 440-452. Chow, Ven Te 1 1959. Open-Channel Hydraulics. McGraw-Hill Book Company, New York, New York. Croley, Thomas Computations pp. 710-718. University of E., II., 1977. Hydrologic and Hydraulic on Small Programmable Calculators. Section 34, Iowa Institute of Hydraulic Research, Iowa, Iowa City, Iowa. Hyd~ologic Engineering Center (HEC), 1~73. profiles programmers manual. U.S. H EC-2 water surface Army Corps of Engineers, Davis, California. ----~ 1 1976. HEC-2 water surface profiles users manual with supplement. U.S. Army Corps of Engineers, Davis, CaHfornia. Kel!erhals, R. and Dale I. Bray, 1971. Sampling procedures for co~rse fluvial sediments. In: Journal 2f Hydraulics Division, American Soc:sty of Civil Engineers, New York, Vol. 97, No. HY8 (Aug.), pp. 1165-1180. Limerinos, J. T., 1970. Determination of the Manning coefficient from measured bed roughns•ss in natural channels. Water Supply Paper 1898-B. United States Department of the Interior Geological Survey 1 Washington, CL.C. R&M Consultants, Inc., 19f:s1a. Hydrogr·,-:phic surveys. Task 2 - Surveys and Site Facilities, Subta5k 2.16 -Clos@oUt Report. Anchorage, Alaska. December. R&M Consultants, Inc., 198'1b. Ice observations. Hydrology 1 Subtask 3. 03 -Field Data Collection. Alaska. August. TasJ~ 3 Anchorage, R&M Consultants, Inc., 1981c. Preliminary tailwater rating curves, Letter Report by Richard Giessel to Acres American, Incorporated. Anchorage, Alaska. R&M Consultants, Inc., 1981d. Regional flood Susitna Hydroelectric Feasibility Report, Anchorage, Alaska. December. susi6/y 6 - 1 peak studies. Appendix B .4. R&M Consultants, Inc., 1982. River morphology. Susitna Hydro- electric Feasibility Report, Appendix 8 .9. Anchorage, Alaska. Januat,y. Sargent, R .J., 1980. Variation of Manning's n roughness coefficient with flow in open river channels. (Original source un knol.!vn). U.S. Army Corps of Engineers, 1975. Southcentral raHbelt area, Alaska, Upper· Susitna River Basin, J nter·im feasibility report. Appendix 1, Part 1. Alaska District, Anchorage, Alaska. susi6/y 6 .. 2 s14/m1 ATTACHMENT A STAGE-DISCHARGE RATING CURVES, STUDY R!'"ACH OBSERVATION SITES ----~,......,......- NOTES ON RATING CURVES 1. Rating curves are provided for the following water level observation sites: URX-101 URX-106.3 URX-111 URX-121 LRX-68 LRX-62 LRX-45 LRX-35 LRX-28 LRX-24 LRX-9 LRX-4 Susitna River near Deadman Creek CSR* Susitna River at Watana Damsite CSR Susitna River near Watana Damsite Streamgage Susitna River near Devil Creek CSR Susitna River at Devil Canyon Staff Gage Susitna River at Portage Creek CSR Susitna River at Gold Creek Streamgage Susitna River at Sherman CSR Susitna River at Section 25 CSR Susitna River at Curry CSR Susitna River at Chase CSR Susitna River at Chulitna River Confluence CSR 2. The sites are in order by upstr~am-to-downstream sequence, with a space separating the Upp~r Susitna Study Reach from the Middle Susitna Study Reach. 3. Streamflows plotted on the curves were determined by adj~sting the recorded flow at the nearest streamgage by a factor based on drainage area. The two streamgages used were the USGS gage at Gold Creek and the R&M gage near the Watana Damsite. Adjustment factors are given on each rating cu;ve. * 11 CSR 11 =crest-stage recorder. susi13/e ) ' ) l z 0 'l-Id: !> l.u ~~ I i i l ! ~tl ~~ I 1 l t I l l ' 1517 1516 1515 1514 1513 1512 1510 1509 1508 •I v -' • ' i ·~ '6 '' 1 : ~ t ; I ·! I_ • I i 't 'I! p !I I I t • I ti '->! .. • J., • i I ' l I :r 1 . ! j··. . t I ,. l " . !·' ! J . ~ 1 I ''''·' I j.!",• I tl;;l I ! .; _:.: i .. i i i ' I 1 ~ I ! t' l ., l -I· t .. " ... -""--1 l L l . i . , ,,000 2 ' i . • 1-1. j ' ' I l "• . . ; ., J . -i I 01 I -13-80 0 . I d.i 11-2 -81 .. : l ;· I .j.j '•!, ! ! ! I ; ! ' l ~ ~ * Q (C. F. SJ ·II'' : I ! ;: l"'l.l:til,-1 ..• I • 1 , I I i I i J' ... .J . ' I ' 1 o,ooo * Q = ( QWATANA) {0.969) ~ I'. I·' ,J I :· I I ; I I I I I : I l I 'i 11; I . I • I :;_ I !· i •': l . ; .. •'' ' ·1 ·' ',j: .. l .. 'l I .S -. I I.:.. ,1 '·· -• I' .I j 1. .3 l ' ! . I _2 I I· i . 1 .. :oo,oc ,_ -· -. J . I) ) ( -' J J I l I l ' i I I ! j ' j1472 I Il462 '1461 !1460 1459 '1458 1457 I ·1456 I i 11455 . 1: ll • '1454 :1453 .. r i ~ · • j I. l . I ••-. : •! ! . ~ ~ * ! I ! i 'I 1 ' . . . t i t I . . . I :' ; . ! • I ~ . j . . i 1 . t I . • I . . : f .. ::. k ,. ' 1 j. I j I i . I ) .• •; i .,, I •• i 'j ! . . .. . ( ' . I .. !C· · It! "1._:~ Lt. ,_·t • .. ,: · ~-.;tot~ ~~ i '1 ~l l 1..: I · I l j . I f ; i l' ,, J 'lj 1'' ! l .. ; ,l ! : ! l '!;. : l l i ; : ~ ~ • ; ~ !' l!· ! . ·I'· -;-·' ~ I 1000 ' ' . ' .. • ' .. I ~ I ; I • 3 I ; ' l ' . ~ ~ .. I I • Q .. * (C.F.S.) I I. ' ! .. i ,1 .. ~ "t' ,·, }'J •l J ... ,. ........ J l ' .. . i <' ' 1.· ' ! ; .(. I .i i! I•;; I• ( I ' I , i .; . ! ; 0,000 I •• 1 I i I I I • I l ; . ,, ' . ' . . l • ' ,. i . I ~ ~ t j i i ; 5 G 7 8 9 1 . I . : .. · .:.; i • ' ;. : · . · 9 '!' ' :7: i :i 'J: . :; ; I~ : ; :: : j-: p .1· .. . ! . ., ··-_1: ...•.. :. ·r: ." .. ·~· I .. . j _, ; ... 1 r . -· . . . . . -... . ;-i : . . ... . +t· t-~ . ~t ... ~ ... • ,._r ..... ,...._ ... ,. .... --v ::1 ·'I:. ::l·i;· :P.f:•l:!·::;; :·i.-7 ._· ; . ' . , . . . .• ··p~ .... : ·-. r· ., , .. . . . . -- • I I :· l ii ,lp ., '!. :::: ,:_, .. '" ! ! · I j,;;t :;f! ' ! ! ! li ;; .:•: .:j•• (:'. ' . • , • • t • ; : ' . • • j . I ~ ' j ·;. .. ~ .... ,. • • ·••·. " . :. , .•• , •· __ v t. I . I ! 1 I I I . I l I l . !·;: .. l ... , . I . . ,-, l I , . · I : . J :. ... I' l -.~.. : ·. t . ' . . t . ·J* 4 1 ".-:J . . ' ' . .I ~ : I I . ; l . I I I : :: l ·I ., ' ·<··.I .. I f t ' • ~ ! -; J ' • • : I '. . i I . ' 'j' ·I i . I ...... . > i .::1· ; j ~ rtj:~·~l· , 1-'.1; : 'I ; ·I. ' i . :; I . : ; :I '!: .. : ., .. ' . :· 1 ~ . ·1 )· r·T·::I·l (-.. 1 1: .. J ' . l'i' i '. I · . i ·: ! .. . . I . ~2 I • j ;; I ; • ' . I : ~ i. ' I I I .. : I ·t ~ . ; : ! ' ; I :: ~. ·!· ·. :I! i ! . ' i ,· 8..,.3-:81 ·il ·, I J; '. ' . . 07-12-81 ·'' : ~ i ·I . .. ,, . , : i ·1· . I I .t ' . .. 1 7-30-so · .~ 1 :=i ·: r;·: : • • t • • I ,. 9 . i . ,lj . ' l• .... ··r .. ~ . 0 ·1 · · r 7 t ' "I . i j i ~ . I I I i . I I · r. : ···, I i ·. ! ! '.1 l I l I , : I '., : I i 1 I -···! . ' l • I : . I . i . ! : ., u :; j ·.j . '.t ·. ~ . I ~ t I 4 ~ l ; : f ~ ! ' t ; : 1 .: ' ' ' . ·i· . I .. : . till,; •. I I ! . • , ·; .. I :! ,· .. ~ l . I . . ' I . . . : 'j I' II .. : : ; • ! I '' I' .1.: . !: t j I • . , . . ' , J I L1 i ; , ~ 1 I 1 l , • , ' l;j '! l '!:,~-· ·.,'· ,. : i.· ! i . . . ll ; : •.• I ll '·I ;.,. :. ; I . 1 • I. ' . (~ *(O=OWATANA} I 1,1111111111111111111111111111111111111111111 ...................... ~~ ............ 0 ................ _. .. ~••--•=m~=~-===~~~~~~~:-~===~ ,, ~ ~. r ' 't {! - ; .. l :1 _J J . -! (/) . I ~ f f- '1 w ' t w IJ.. ! -I z 'l ' 0 t l .... <t ~ > w i _J l w l ! I w j ; 1444 .1443 "1442 ! (.) ""\ ~ i I n:: I '\ :J en 1441 1440 I 1 1439 0::: w !:t 3: I 1438 i . j 1437 . I I . i • 1 ~ 1436 J- :I: (!) iJJ :t: !.LJ ~ :1435 I~ ! l J l ~ 1434 ·C> ; . i J t I • I I t I f 1433 lOOO . ' '. ..: ·I ' T .. ~ .... * ... . l I. i l I f ' l. t I • ' : !t ! I t ~ i ~ , . nti."'"+-Li~"'-~·'1(•') A 1 l I il I • i . ' 'i I ., I. I, I. i . -·I I : '. t : rl.; :j· . I:. ; . ' . ! ·~ I ! 1 I .. ~I 6 ' • 1 ' I . ! I I 1 r .. ·! I ·I 1 . . DISCHARGE I I 3 5 ( C.F. S.) 6 I. i 7 H I . i ' i .. i I I I . I I I i ,, ,ll I I ! i I !. I I l ·I ! ' ! j I . I ; I i I ! ; I ! . .. ! l 0 1 0 . 1 I ' . 4 ' I i l I. 5 6 7 8 9 1 • ! ' . .,:. . ' .• t• I' I . ;j . ; : I , ; . i . . .·. I 1: :.: I ... .. .'·._. : .. ··.·~:;I.; .. 0. ! :. tl . :: ·~--:;I .. :I,~. 0 l 'r • ·' • j ;': i .I .. , . j:' 1 5 'J L. FIGURE E.l.l .j ·i i1 i r: ; J[ . ~:;~~I~C~~~;.E · · . '!(':':\•:'! 'h/·· 1· ..... SUSITNA RIVER NEAR WATANA .I .. oAMsiTE I 1 r (URX-111) i '1 ·,: ··1·:· 'I ' • I I. I i ~ ,• 1 I i 0 : l i . l L· ' i. ·l <· ·tl' :\ > . ,:j; l: ; ' ' I :: I I ': l. ~;: :I ' 'I l . ; ' . I; I '0 !" ... ··,'· I: llj. ·,'.; ·.· ,:,· .. ·: .• ~, 1 . ; i . I ·t. .. l. l 't! .,, I .• o 1 1 , • • ; , l . : ! ·, . ! I • '. ;d ' I 'II ; !: ' ;;.l 'I ' I . l. l' ·d.: I : l !j!l ::1: .l·,. i i . : .. , .J. ; . !r ~,~:t.:.: ., : .: 'I· l ' I . '1! l: . :'I· .. j· .. 1 :' .. ! . , . .:.l , .L! ...... . l t I 1 00,000 I '1 ., 6 7 ~ 9 1 I !! ~­!_j . :n ~ - ::( > J.J ...l .u :l227 l I I l ! i 1217 1216 1215 1214 1213 1212 1211 1210 '1208 t • l ' I ! ' i 'I : ~ I ! i I, . ,,:. '~ ... • . . .. . . .. l .. . i I + '1 . l ., :I : I i . i • I I l ; . ~ l ; i ~ I' ,. I ! i ! •I l i I I' I .. i . 1. ·li ;I I I . : i . 'l i. . I . ~! _.;+ . . . I .• l. 1 ... . I J I STAGE DISCHARGE RATING CURVE SUSITNA RIVER NEAR DEVIL CREEK . i I .. . I ~ j I. (l . I. . I l •.• I J ; ~ CREST STAGE RECORDER ( URX.~ 12 I) . • I ( : . . ., • "41 ._I ' ' .,. j::;! . f:; ; . ! * . ! : :-;.i : ' ! i 't I:: ; . : :I • , i . i i :. ' : J ; . !. .1 '· : .l . . I , . 11 ' f .• " t 1 !J 1' , : . l ~ ! • . I , I ~ i ~ . i 'i i j I ; ' ' l . i I ;! 7 • ~ ; I • I~~ I ; . .. .. I . I '~~<j . ! i I' r ! r : 'l. r: l f, r ! I , J'· j f' I I I = I':!;! . ,. • • 'I :! ! I . '. : ~ • f ! 't .. , ± '!' .. J I l··; . . I ~ . . ! . ! • l : ;. i l l •j • . i l l ·, i I I l :' l . 1: ' l • I ! . 4 ·i, l 'I· ~ ~ , I l I I I I .. I l' I. 1 i . : .~: ... ;,ooo i I ! l: • : j • f' I!;; , l .... -.• t : j . ' ~ ; ~ ... •· .• J. ' . . I : ! l. . ' I ::.: . I; i ' .. 1 '11~2-810 : 'J ! ' ' . l I :f ; f '. i i: i:. t I l. . ' ~ I ~. ;i • ~ I l I . ' ! . j •. i· ' f ~ J I .. ' . ! : ! . I \ • j . I j '~ • i ' 1 l ~ .•: I . . ,. l I ''! I i '! I l . i l l ' .t l I .I, ..• ,,.,.: r l l I ! I I •I' '] ·: . i. ,j i ! i ! I d I I I l I I I ·• . • ! ' . j I ': ' ! .7-31r-8l0 9-17-81 ·5-24-81 o,ooo . ; ~ : .. i· I i ! ... :. . ' I :· l ! t f ~ : i l I ~ I ' I • ! i,i' : t. i· :I : ' l I . ~ : I .. I : i . j,. ·I 'I t " '· l' I ~ l i I l ' , I · .. Q (C.F.c )* * Q = (QWATANA) ( 1.079) . l ! 07-12-81 , . i I ' ! ' ; ' l ...• I ·• J .. r· I . I .. l !· ' ., I l 1. \ i. l, ·. I ·I i ;· i :: i" I' ' i l L 1 . .. 'I .,. .. J •. lJ .... 5 .... ·• .!.:• . r~ .L .·• ~· i.OO,OO -_j . CJ) . :E - "l . 1 LO! ,: ·:l i H hliC • ~· .'{ 3 GYGU . Kt:LJf '' t:L l< !:!:. ~E:fi 1-0. !L,\Ol HI II'· \ J lj 7 3 9 1 • \...r' . '' ~· 2 3 ,, .. r 1 e ·1 1 *o: (0 GOLD CREEK) (0.942) • v d 3 4 5 6 .. 7 8 9 1 I J ~ i 7 8 9 1 '?' _l t t z 0 -r- ~ w ..J w f ~ I I i .. :850 i ' 840 .839 838 .837 !836 '835 J t .834 i ,833 I 11 • I ,• l I I '832 !J::I J I 0\ l I 831 T' I : .r ' I ' ' . ' l ! t ! . '. .. i . : "' ~ . 1 ......... . ' 2 i' J ~ . r I . i ;-j" 3 * Q (C.F.SJ r I I 'I l ., '· i' ., .l. ! :_.1 l ·' I .·t t ·I: I 'I • " : l .. ,' •' ,t :11;. : I ·-. ' I 3 10,000 i l I I I ' . ~ ! ' j ! I I I . I ' I I ! ! I \ t I I . :' \ . . 'i • I ' l I ' I I . '! ' . i ' : • I 3 *a= (Q GOLD CREEK) (~:>.942) ' G ~~····· I . . ~'.i ~l -. :· n. ~:, .,~I (1 f. I i~· I ~ ! . I d l '\ .I I L 9 8 7 6 5 31 1- J: (!) 5.0 1 ., 1 1 r wi" et o trw e ·r· • -str snz=ft' il >4 ~ i,i•: C- t.OGM-?ITH~'!C .;.: X & c-.•1 ti!S htt!t rn. ~ ... ~ . EH co. t.:fo. 1 ··us\ 1 1 .r- :. I 2 • t 3 Q (C. F. S.) 4 5 1 4 5 nvrtr r=r r iti;, 'w.dA · 7, .. -.. ~ .. 1IG 7323 8 y 1. I t g 100,000 .. ·.·. 1r . : ' l t ~ l l j . l t l II ' '. l. I 'i ' l j J ' : j l ·-j l j . ' -·· .. .. . I ! I T" 1 • • • l . 1' '1-.:, I • :. ' ..•. l l '. f' it ;< 1 j.! 1 .. ! ' I I I . -·! :" i 'i i . i 1 I : ; ::I :; t' r . ; ! .. i; I '-t . ' I, I; I l J l ! 1 3 5 ·!:; i ) ':.j . :I :'' . ~ .. . I ; ... I . I' ! . , ·r ! J. I '' } .. /, I .:: !.. !j, j 1 .. '' d 1 '1 • l I' I I, .. ··-~·Tm,, unfal~ ' ---·. -" ~ ··-· --'-~ ..;.._{~ ........ -~· ~\<.-.- • •• IJ ' '' l .. .l .. '. '! 'I ,} I ·.1' I 1 1 l; ·1 i • I ; I I ,. lj I . . r l _t ,----------~--~------~------- 1 --------·---~-~----~---"--~~-~---·-·-·-· -----------~~-~~-----. ~-. -.·.--·. ----····---···----~---~-~. --·-0 - I v v ~~~-·· · ·· 1 ! I I j I I f 1 1 ;~, I ()J ~· ' j 630 l . ~ .J . ' tJ) . ~ z 0 .... <t > L&J _. L&J i t .. • . .. . 620 6.19 618 617 GIG 615 614 613 612 . ' 'i. J . I I . I I . . . . i ! 1 '!: l. I . 1 . ·.I . i j' l j '. . ' ': l i ~ ,; ' i- I I . ; ,, i! I I ,, . 1 '' i ! ! . . ; ,· ! i l . .j I i I "l 1 . : . I I t l. ; l v I ·' 1 . , '· . I l· · I ·. :: !: ' ! . l ! f• l ' I~ ! l t: ., .. j· t ' I I' ·1 r. , .if• > l'i:: l ; ~ ; : I 1:: I 1 :: . ~ !: , I * Q: Q GOLD CREEK I ! ~ ' . l ! I I: ' ~." I ._,/ 7 8 9 l J ~~ ·~i ~; ~i : l d l :l y l . ' ,,-r ·1 ! , I i , I I .:J \ ! ! l 1 l l .! \ I ! I t ~ j r l l l .~\ . ' -. ....J . (/) . ~ - z 0 !i > w ...J w ;;i l .0 4 -""----- L\)3' r1• t+: .h: ·~ .. ,_, , t-· t."' LLut. Ll.. <'-;: .::!,t:H (.0, ·~·"'~ .11 U :i A I 4 'I ' * Q = Q GOLD CREEK • -...__.; 5 6 I ( ! I l I \ • I • !!:' I f--1 0 528 527 526 525 524 523 .522 521 :520 . 519 . l • i 1 'i I t . " I j• ·• ! l • .. j I 1 • j I . l i • i ·i I i' ' i f •l I . l i l. j I. f , I ' .I I STAGE DISCHARGE RATING CURVE SUSITNA RIVER AT CURRY CREST STAGE RECORDER LRX-,24 ' . I ! I I t •. . l: . I . i . . ~ , . . t •• ; l . . i .I I i . . .; I , ! l 'l I . ·.'·I ·' ~· I • ·.·.···', l ~:r 1:. I I ! . i ; 1 .J : ! ' .,. II ... I ; .; '1 :I j· I ·1 · . :1 I . j • " . 1 • : • I ~ • .. , ' ~ ! I. , ·! i ; ., ' :', I •' , . :.t t i 't • I'.._ ' l • I i I i . • j ! ,·!' l • I l . l ; .. 11-8~80 l I I .j i I '1 I ·I ~( :l .. ... ~ ,· ,J ~ j t•· ~ ' tl I l ' I ; ' . ,. ' ' ' j I : i ' I t<: .• R · i 1 1 000 Q ( C.F. S l* * a= a GOLD CREEK . ',: ,~. .. . ···y ·: j. l i i I ' t '!. ·r· . ' h ., . .:..../ ,, I 1 . i ·. . I , () I l . ... 1 .) I.. l •' r j :: j .j' : . ,. '; i .: ! .. : . 1 I i I• ; . , I . : I ~ l :. ,, . ! !' :: . I : . . .f . ~ ·:~ ~tJ . . I ·~"'J ... i · 1 1 • i ;, I . I. 'I , . I • "r :t 't •, ' .: • . ; : ! . i I I I : 1.; ' ' I I J ;; ' • I j f • • f J 1 4 ,, i •· l ..... ~ '. '. , l :I' ~I;! I ,j I •f ,. :Hj. :: 1· ·1 ; :,. -! I I . 1t' ·I ·i'! '\ l ll:l: /iII· / '!. . ' I l i I •' I : I : ' ~ I •J: ...... , : ' : .'• l; ' . . 7-29-80;: (, l '· . .. j . 4 ••• j.l' . I : ·I ·; I ' j • l ··.-: ; I •. 1 ··1 .. , i ~ 'I I . • . I ; .! 1 . ; I •' I • I I . t' t' i , .. , .. : I 1' . I. I . . ! . 'l I • ' i ' ., l I •. i ::: .l· .,~, If. I '. I . ' ! . ; i I : i . '• r. ' . 1 1 f- ~~ en :E I; 10 l}- l<( l> ;w _J w f I I t i I l l I i !390 I I l l I !380 :379 378 377 376 1 373 ' • > l I . I ~ ~· f i. l . 'I ; . :I. f1 .. . ! . .. .•. .. .. l (.>· • • ·It I ; I .t~f 11.; ~ ( .. d, ~ . ~!. I. ' . i •• ' I ' ') 1 J , • t • .... i .. • I I 1 ! • I I . . . i t ~ i t : ; .. L I I ~ I ., i I ! . l l 7 8 9 1,000 • / ,,...... ,.,... .......... l . i ! 1 . i Q l '1 * (C.F.S.) t' •I . I ·I ! . . .. !!' I. . !;. l j, ,. i j ! '; l o,ooo I ' l • ' ' . I l . j 'l I lj ' r • J 'i i I i .. I :I i I ' ' ' l I I I l f *a: ( 0 GOLD CREEK) ( 1.030} '' .. . .. 5 • 6 7 ~j :· 1 l. .. 1 . ) ..8 H ... + -e- l360 ' ,350 349 348 347 346 345 344 343 342 -·-.. ,. .• tt **-----.--'..:....'' -----~-.;.._---------w....----~- ,j ~ . ' t i:. ' : .•' I J l ! ! . ' I ' I ' I ! . l i l ! . ·. ·l c C• ' '· ' j . I I . I ; 1 ! l i ' I (' . I J· ::·j :! . ~ ! : ~ ' t I · .. l .. 1· t I I ...... . ; ::., 1 I l I I ., I 1,000 . . I l . I ' . ~ • ' I •• l ! I I . • : : l I ' J l ' i ~ ~ i . l . ~ ~ ' ' i f ; I I i . i . :.-!' \ l. . • <.. 'f Q (C.Fd * ;,.' ~ ' .t: l i ~·: .. j •' I: .. 6-2-81 ) 4 5 6 7 ;·,; 'j 1 ... ·;r~:r I . t , ·l··· i .. ; ' ' ' l. '~: I ' ' : '! 'I .j ' ' ;·; f ... ; ., . ; . " 1 :. ! • f ·: ' '· ·t ~J . -! ·. · .•. ·• . 1 . I . 7 ' . ~ . '. :' I . l . I 'I . "i ! · · · 1 • . •••• 6 I : . ! 'j i . ·, I t' ' j ~ • . t) I :',' 1 : :; I,;;:_·!:, .. · '1 . . . ··r· :··I· .. : : I : : I i . . . !f~ .! .. ' .1 ···I ., .. !··· ~J I I ~ ' i ; l '· ' ' i ! ·j 7-27-81 i f ,· ! ' I " I I I I 1 • . I ·.I : : ' l • I ; 7:-29-ao 1 I • ' 7-31-80 l ' i j l ! • J .. 2 8'-31-81 6-19-81 5-22-81 ' I ! I . ! I l ! > ~ 9-6-80 10-14-80 . l·. ~!: j. I ' I I· ! ·' f l o,ooo ~ I . i I I .. . l . j ' .. I ' ' l .; I • 1 j i ·· ·. '· I . i• ; L;· i · :, ~ * i ' . ,· ' .. I ' r, * Q = ( Q GOLD CREEK}( 1.030) i i ! ' i· .• 0 I I 1 '~ . ;.;::\ '"'-. ...,_~~--~--_,..,.._-------~____,..~ ... ~·~..,..-,.'~~--...-....... *,...., -4'>1P-"" '~'""_......,.,.... ____ •• "'.-•. ·.".~.-~~·. ~-·~--_., ~· --·-•·,...,~·'---•·~---<.---..~---~..-..-n'--"'"~~~.._.......,.___..,._<' _ _,._~~.,__-~--·,·~-.-~---~ • ' ~ • ~~ • • ~•-