HomeMy WebLinkAboutAPA677't ' '•
; '
-i \ f
~ l "t
I ' . ! i .
'i ~i I
! . ,, -t . j~
' I t ..
\ J :
'{~. I·
'· .
;
'
.i.
·-· -
"
.. ' \ ,,
I
:~
I .j l/ ,,
t
.t:
a· F1CE MEMORANDUM ... -
... .. -
·-~ TO: J.W. Ha~n
~
\
"F-ROM: G. Krishnan ....... . . ' ~ -·-~
Dace:
SUBJECT: Susitna Hydroelectric Project
Nitrogen Supersaturation Studies
SE D l ·-\~ ~ ~ . 0 ... v._
September 13, 1982
P5700.14. 53
I
s:_.3,T.'J/\ · CLASK.;; :~:~;( l
Ali><:~·r:·v
Enc 1 osed is a copy of the fi na 1 draft of the report on Gas Con cent rat,. on F!-l~2 ?s ~~Jo!
and 1enperature of Spill Discharges Below Watana and Devil Canyon Dam . .:.1.!£!._0_3:
Pl case "ote that no graphics efforts have been spent on getting the "-,=~"~~~'';," 711
figures in tht. Acres standard format. This has been postponed ur:til ap=-teH~ i
your review of the material and adv·ice on the inclusion of any field \Z ~ \ .1
1 !
meas'..lrc ·.;nts of natural supersaturation in the river. ~·1essers M. Bell' ~n~ I ~ < ~
J. G0'l'1a had .;xpressed an interest to receive copies of this report. lJ ; ! ~ z • Pl·:~se Jdvise if this c.1n be done at this time. \ .:JG . -j
I
)I
,~
(_J: CCV
~~losure
cc:, J.D. Lawrence
.A.F. Coniglio
1\'.R. Young
H. Oyok/i). Crawford
G. Krishnan
I A"S ~. J
l H I
! • ! i'
. I -
I 1--·
I
I
. l ..
·; ~ii I
~ '1 J'.,-
·:;o
-_,
. ··-......,
0 I
1
/~-:"".:.,.~ ... / . ~
·. ,-
,,
'-
... ..
~
\.. ..
INTRbnHefi$
' ·'" '
GAS CONCENTRATION AND TEMPERATURE OF
SP1LL DISCHARGES BELOW
~·JATANA AND DEVIL CANYON DAMS
Supersaturation of atmospheric gases (especially nitrogen) in hatchery and
aquarium facilities was first noted in the 1900's (1) and was ascribed as
causing the condition in fish known as gas bubble disease. Supersaturation
caused by entrainment of air in waters spilled over dams OL' the Columbia
River was recognized as a problem for anadromous fisheries in the river in
1965. A comprehensive study (2) of dissolved gas levels in the Columbia River
showed that waters plunging below spillways was the main cause of super-
saturation in the river waters. Several later studies have confirmed the
harmful effects of nitrogen sup~rsaturation to fisheries. The tolerence of
( fish to lavels of nitrogen supersaturation depends on the time of exposure,
age, and species of the fish; dissolved nitrogen levels referenced to surface
pressure aoove 110 percent are generally considered harmful (3). The state
of Alaska water quality criterion is set of 110% for tot~l gas saturation in
its ·,·fa ters.
With this back9round, the potential problem of supersaturation of spill waters
from the proposed Watana and Devil Canyon developments on the Susitna River
/ was recogniz2d early during the feasibility studies. Alternative spillway
t
facil~ies were studied to minimize such a potential problem, and a scheme
ccmpffsing fixed cone valves and overflow spillway v1as selected for each
devJ}opment based on detailed discussions with environmental :;tudy groups.
l.
This ~eport describes the gelected spillway schemes briefly and presents the
analyse-s and field investigations carried out to assess the perfonnance of
1
the proposed' sc-hemes with respect to gas supersaturation in spill \•Jaters.
A related concern on temperature of spill 'daters is also discussed.
A suo.mary of the studies undertaken and the important conclusions are
presented in Section 2. A short description of the proposed schemes is given
. . /_-4_~·-"--...
.,r I . ·'
in tfction a. Section 4 details the eng·ineering analyses carried ovt. Results
of ~ese analyses, field investigations, and their interpretation are presented
in ~tion 8. The next se~tion presents the major conclusions drawn from
these·~tudies. Appendix~ comprises the field study report and Appendix B
'\ deals vnth the temperature of spill \vaters, its impacts downstream, and possible
""' ; -·-;::>1110· reservoir operarlon scenarios to minimize such impacts .
...
(
I 11·
? ....
/
_.:l __ ~.,t.;. .
;
I
f ~ SUi·1~1AAY
-
..
Rel ·;vely'little informa~2on is available in the literature on the performance
of fix'lep-cone valves to reduce gas supersaturation in their discharges. Published
studies"'·(~ ?~-~~e aeration efficiency of Howell Bunger valves (the mo·re
commonly known type of fixed-cone Vdlves) were reviewed, and a theoretical
assessment of the perfot~ance of the proposed valve layouts was made based on
the physical and geometric characteristics of diffused jets discharging freely
into the at11osphere. Results of a companion study on assessment of scour hole
development below high-head sp1llways (5) were used to estimate the pJtential
.:i
plunging of the valve discharges into tailwater pools at the proposed develop-
tnents, and the resulting supersaturation in the releases was calculated.
Spe~ific field tests were conducted at the Lake Comanche Dam on the Mokelumne
River in California (6) to study jet characteriJtics and the efficiency of the
existing Howell Bunger valves in reducing supersaturation level in the reser-
voir releases.
The analyses indicate that no sarious supersaturation of nitrogen is likely
to occur in the releases from the proposed Watana and Devil Canyon developments
for spills up to 1:50 y2ar recurrence int2rval. Field test results tend to .
confirm some of the assumptions made in the theoretical analysis with respect
to jet shape, diffusion, and gas concentration in the valve discharges.
Several assumptions and approximations, albeit conservative, have been made in
the a.nal_y.ses \vhich should be confirmed in later study ;:>hases, perhaps in a
physical model. For the purpose of feasibility studies, hovJeVEr, it is felt ..
that~~'he analyses adequateTy support the proposed schc:mes for their intended
• pu r11ose . ....
A rtated question of the yemperature of spi 11 'daters .Jnd its effects on the
dc·.·mstream 'dater temperature has been analyzed dnd detailed in Appendix B.
Simulation studies of tho t\vo-reservoir operations indicate that continuous .•.
(24 hour) spills would occur in the ~cnth of August in 30 out of 32 years of
simulation and in 18 out of 32 years in September f·lr the Case "C" operation
which maintains a mini~um instantaneous flow of 12,000 cfs in August at Gold
Creek. This sp·i 11 frequency is siiflul a ted for a system ener"'9Y demand in the
year 2010 (Bettelle forecast) and assumes that the entire demand is ~et by
(
/ -"'--""--"· ''
...
I . .. ·'
Watda and {lev il Canyon deve 1 opments where poss i b 1 e. The spills wi 11 be
gre~erand more frequent in the years between 2002 (Devil Canyon commissioning)
and \010. 'Hhen Watana alo~e is operational (between i993 and 2002), 1 ess
frequegt spills are simulated to occur. Reservoir operation studies are
'\
current~y. ~eing refined to finalize acceptable downstream flows. "'· . ~--~ ..
Temperature of s pi 11 waters at 1Jatana is expected to be c 1 ose to that of
power flow, and hence, it is not expected.to create temperature problems
dmvnstre2111 v1hen 1 .. /atana is operating alone (1993-2002) or 1dhen it spills into
Devil Canyon. At Devil Canyon, hm·:ever, spill te!Tlperature is expected to be
close to 39°F ccmpared to a power flow tanperature of 48-49°F in August and
45°F in September. This is based on the conservative assumption that the
tenperature of spill water does not increase significantly while in contact
with the atmosphere despite the highly diffused valve discharge. It is,
therefore, considered necessary to keep the spill from Devil Canyon to a minimum to
avoid u nacceptab 1 y low do;·.n stream tr::nperatures. The ana lyses indicate that by
operating ~evil Canyon to ~eet most or all of the base load demand and with
Watana generating essentially to meet peak de~ands and spilling continuously
'Nhen necessary, it would be possible to maintain dc'flnstream flow temperatures
below Devil Canyon close to that of pc'.ver flow ,,·Jhile reducing spil-l frequency
consicarably.
During major floods (1:10 year or rarer), there will be significant spills
from Devil Canyon in addition to the pm·1er flow resulting in cold slugs of
'dater dc·,·mstream. for a few days. · It will be necessary to establish criteria ..
for ac<;eptabi 1 i ty of 1 ov1er temperatures for short durations in August and
Sept~ber in consultation with fisheries study groups and concerned agencies.
Cur/~ntly, do'dnstream \4!ater temperature analyses are being re1~ined, and ·.·:hen
thei,results are available, the above spill tcnperatures and duration should
be ;evi ewed to confirm d0\•;nstream temperatures during nonna 1 pmver operation
as 1Ne"ll as flood events. If the projected temperature ·r13g ir,~e dm<Jnst ream is
unacceptable, alternative means to remedy the situation should be considcced.
These ii1ay include provision of higher level intakes to several or all fixed-
cone valve discharges at Devil Canyon, multilevel power intake at Devil Canyon,
limited operation of main overflow spillway (for floods 1:50 year or ~ore
freauent) to improvP tanperature without serious increase in nitrogen super-
saturation, etc.
3
/-A-~~ .. ~·.
~
I ;
.;1 SCOPE' OF ANALYSES
The tjective of the analy~es presented in the. following sections is to
provid~1 an assessment of the performance of the fixed-cone valves in their
proposed\SQ..n:fl9.~~,lition \'lith respect to their potential in reducing gas con-
centration in spill waters from the Watana and Devil Canyon developments. The
analysis is a theoretical study supplemented by available field information on
performance of these valves for aeration. Field measurements were ccnducted
on the Howell Bunger valves at the Lake Comanche d~m on the Mokelumne River
in California. Results of the tests are interpreted ~c confirm some of the
study assuii:pti ons.
A related question of t2!nperatur·e of spill waters 1s analyzed in Appendix B.
7he data for the analyses has been drawn from the Feasibility Report (7).
)·
~."'
J
~'.
•·· ;J
..
(
\
/ . .-d.~-----.
"' I ;
4 -; SCHEMf: DESCRIPTION
This \ection presents a shQYt description of the selected spillway and outlet
faci 1 f~J es for the propos eo Watana and Dev i 1 Canyon deve 1 opments.
\
\~ ,.
~; -·----4.1 -Scheme Description
Selection of the discharge capacity and the type of spillway and outlet
fa~ilities has been based on project safety, environmental, and economic con-
siderations. ~t each development, a set of fixed-cone valves is provided in
the outlet works to discharge spills up to 1:50 year recurrence interval. The
main spillway comprises a gated control structure and a chute with a flip
bucket at its end. This facility has a capacity to discharge, in combination
with the outlet works, the routed design flood wh:ch has a return period of
1:10,000 years. A fuse plug with an associated rock-cut channel is provided
to discharge fl0ws above the design flood and up to the estimated probable
~axi~um flood at the dam. D2tailed descriptions of the facilities are pre-
S2nted in the Feasibility Report (7).
·.-he pr1mary purpose of the outlet facility is to discharge the spill v;aters
up to 1:50 year recurrence in such a manner as to reduce potential super-
saturation of the spill with atmospheric gases, particularly nitrogen. This
frequency ,,.,as adopted after discussions with :..1vironmental study groups as an
acceptabl~ level of protection of the downstream fisheries against the gas
bubble disease. A set of fixed-cone valves were selected ~o discharge the
spil1~'in highly diffused jets to achieve significant energy di sipation
withjut provision of a stilling basin or a plunge pool \·Jhere potentially large
.,.;
sup~saturation deve1ops. The valves have been selected to be w~thin current
'dorfd· experience with respeet to their size .:1nd operating heads. At ~·latana,
six 7~ inch diameter valves are provided and are located about 125 ft above .
aver age i:'a i h1a t e r 1 eve 1 i n the r i v e r . The des i g n capac i ty of each '/a 1 v e i s
.....
6,000 cfs. At 9evil Canyon, seven fixed cone valves with a total design
capacity of 38,500 cfs are provided at two levels 'dithin the arch dam, four
102 inch valves at the high level some 170ft above average tailwater level,
and three 90 inch valves about 50ft above aver~Je tailwater level. The lower
(
/_, __ !=._, .. • .
.,!
I
A;
val~~s have' a capacity of 5,100 cfs each and the higher ones 5,800 cfs each.
In ~zing t~ese valves, it has been assumed that the valve gate opening will
be r\tricted to 80% of full stroke to reduce vibration .
.. ,
'\
.•.
(
·'
5
/ _,_ ""--'-'
~
I .. .,
~ ENGINtERING ANALYSES
\ ,., ()
Thi ~ectidn details the a_nalyses carried out to estimate potential super-
satural~on in the releases from the Watana and Devil Canyon developments
when the' (eservoirs spill.
' ... f -.. ~ ...
5. i -Available Data
Fixed cone valves have been used in several water resource projects for
~ater control, energy dissipation, and aeration of discharge waters, and data
on thei~ performance for such oprrations is readily available. However, no
precedence has been reported on the use of such valv~s for reducing or
eliminating gas supersaturation in spill waters. Manufacturer's catalog
inf~nmation on Hm·1ell Bunger valves and Boving Sleeve type discharge
regulators (both particular types of fixed cone valves) and the Tennessee
Valley Authority Study (4) on aer'ation efficiency of Hm·tell 3unger valves form
the specific data available. Theoretical analyses .e carried out based on
the g2cmetric ~nd physical characteristics of diffused Jets discharging
freely into the at~osphere.
5.2-rield Data Collection ......
A review of existing facilities where a potential for spilling during the
.spring o~ 1982 existed was made, and the Lake Cc~anche dam, on the ~okelumne
River i~ California, was selected as a feasible site for specific testing.
)·
-t\."" • The_l:omanche Lake dam is of the fOckfill type 'Nith outlet facilities fitted ...
wit~ four Hmvell gunger valves. These valves are located at the toe of the
dam and spray the discharge into c ;nfined concrete conduits cefore releasing
.\ the ~·later to the stream .
..
Outflow through the valves was aroun~ 4,000 cfs during the test on ~3Y 28,
1982. Water sa~ples were collected at several depths in the reservoir near
the valves and at downstream locations and analyzed for nitrogen and oxygen
concentrations. Details of the test procedure and results are presented in
,appendix 1.
("
/,.-_,_ c ~
/' r
5.3/i[ Method of Analysis
(all'clow from the fixed cone valves leaves the structure as a free-discharging
J~t diffusing rad i a.l iy at the cone ang 1 e. The path of the jet depends on
th~·~er~y of flow available at the valve and the angle at which the jet ' • .,... ,;:4
leaves the valve (assumed as 45°). Referring to Figure 5.1~ the path of
the trajectory is g1ven by the follo'1ing equation (8):
x2 y = x tan e -------( l )
k ( 4 Hn Cos 2 e )
where:
e = ~ngle of the jet to the horizontal;
k = a f1ctor to take ~ccount of loss of energy and velocity r2ducticn
due to the effect of air r2sistJnce, internal turbulences, and
disintegration of the jet (assL~ed at 0.9);
H = net 2nergy of the jet, ft. n
The proposed valve operation restricts the opening of the valve ~ate to
80% of full stroke. This may be interpreted as equivalent to ~reducing
an additional head loss in the syst2m, thereby r~r:iucing the discharge
to SO% of ~he theoretical capacity. The seneral discharge equation for
the valve: ,.,.
~.~ • J QT = CA 12g hn
k
may then be written as:
= CA /2g X ·all X h n
(2)
(2a)
( 3)
I
/:-!. -"· ~
.L
I r
1where:·
{~T = theoretical capa3ity of valve, cfs;
A~... = area of v a 1 v e, ft;
'1
C ·~coefficient of discharge (~ · 85 for fixed-cone valves); '· . --..... -hn = net head upstream of valve, cfs;
Q0 = design capacity of valve, cfs.
Equation (1) may be rewritten now as:
xz
y = X tan 8 --------------
4 X (0.64 X hn) X Cos 2 8 k
(4)
Referring to Figure 5.1, the longitudinal throw of the jet is calculated
with &~45° and -45° while its laterial throw calculated when e=0°.
Vertical rise of the jet a~cve the valve is calculated as a simple
projectile subject to gravity and neglecting air friction to yield a
conservative value.
(b) Potential ?Junging ~~pth of Jet(s) Into Tailwater Pool
As part of the feasibility studies of the ~atana and Devil Canyon develop-
;nents) a study '.'las made by Acres on the scour ho 1 e dev e 1 opment bel ow
high. head spillways, and the results therefrom have been used to estimate
the potential plunging of the jets f1·om the fixed cone valves into
{~ilwater. Figure 5.2 presents a definition sketch for the study
~· J carried out for a typical flip ~ucket spillway configuration. It ~ay k be readily observed that significant diff2rences exist between a "solid"
' jet leaving a flip bucket and the diffused discha~ge jet from the fixed-
Cone valves in the available energy and its concentration in the jet .
for·~ s co u r i n g d m·m s t team or p 1 u n g i n g i n t o t h e t a i 1 w a t e r ;J o o 1 . E 1 ~J at i on ..
(5) was developed in the 3bove ~2ntioned studies to estimate scour
depth for a solid jet:
y = 0.24 q0.65 H0.32 ( 5)
.· /-; -~-'."
,1.
,L
I ;
~ -'~where:
\ = es~imated scour c!J;pth, ft;
q~~ unit discharge, cfs/ft; ..
H =' ~t .. faJJ ... of the jet, ft. -
This equation was modified to take account of the maximum discharge
intensity, q 1 in cfs/ft 2 of the fixed cone valves assuming the long-
itudinal spr~ad of the solid jet as equal to its flow depth at the toe
of the flip bucket (Figure 5.2). This assumpation is expected to yield
a conservative estimate of the scour depth for diffused jets. The fall
height H ~·las taken as the drop of the diffused jet from the highest
point of its rise to the tailwater pool (Figure 5.1). With these
modifications, equations (6) and (7) were developed to estimate the
scour depth due to the valve discharges at Watana and Devil Canyon, re-
spectively.
(6)
y = •24 (ql )0.98 H 0.32
DC DC· DC ( 7)
~and DC represent Watana and Devil Canyon, respectively.
Scour depths, as calculated by equations (6) and (7), give an estimate
o.fl the de'Jth to 'Nhi ch 'tla ter may plunge s hou 1 d the jet fa 11 into a
rfailwater pool instead of on solid ground. The values Yw ao;d Yoc are
!, calculated for the highest intensity q\1 or q 1 oc \·Jhen all the jets are
koperating at each of the develo~ments and taken as the plunge depth of
the jets.
'\
5.4 -Su~ersatu~ation of Spills
(a) Gas Concentration 1n Valve Discharges
Results of the Lake Comanche dam tests indicate that the Howell 9unger
valves have been successful in pr2venting supersaturation of the spills
/r-c·" .
..
"' I • A . itand, tn some extent, have reduced the gas concentration in the spill
~·.waters.
t (
\ The Tennessee Valley·Authority studies which were conducted to assess
l
aera·t.i.on efficiency of the Howell Bunger valves, suggest that the dis-. -~· -.....
charge fro~ the valves are well aerated. The test results indicated
that small supersaturation (101-102%) of oxygen may be found in the
spills but suggested that thi~ may be due to calcuiation procedure used.
The report concluded that since saturation concentrations were not
measured in the field, it is not certain whether supersaturation acually
occurred in the runoff downstream.
Based on the above tast results, it has been conservatively assumed
that a 100% saturation level of atmospheric g~s is likely to exist in
the valve dischar~es at \·!atana and Devil Canyon.
Each cs~?Jnent of gas in the atmosphere will dissolve in water independ-
ently of all other gases and, when at equilibrium (i.e. saturation
condition) with the air, the pressure of a specific dissolved gas is
equivalent to its partial pressure in the air. Approximating one
atmospheric pressure to 34 ft head of water, the above relationship
translates roughly to 3~~ saturation per foot of hydrostatic head. Thus,
it may be extended that fully saturated water mass 'dhen plunging into a
' .\~ool would develop a supersaturation of gas at the rate of 3% per foot of
J plunge provided th0t adequate supply of air is entrained.
"''
(c}k Sas Concentration in Downstream Discharges
Average ~m·1er flows 't the two developrrents curing spills have been ...
esti~ated in the reservoir simulation studies. For the current analyses,
it is conservatively assumed that these powerhouse discharges will be
fully sat1rated. Estimates of final gas concentrations in the total
downstream discharges is calculated assuming the laws of dilution to
hold for mixing discharges at different gas concentrations.
{"
/~
J,
~
l
-1. • . t.
.• • .,
~It is assumed that spills from Watana will get completely mixed in the
foevil Canyon storage during their passage through 26 miles of reservoir
,~nd tll'at no supersatu_ration would build up in the reservoir due to
watana spills.
'{ ..,
, . ... . .,.
l
k
• • .;:-At.
..
t
! ' ..• f ... ·· . 1
> :.u a:
N _., ....
d z
~ a:
0 u..
t
\
..
'' I I .. .___,a cu at:ons
SUBJECT:
..
r
i
t
'-.J
~
-~"' \~ ~
~
'\.1 ""'>:
•I.
~
JOB "JUM8ER -------
FILE NUMBER
---~
SHEET _____ OF ___ _
BY ----DATE __ _
APP DATE
\,
\
\
\
\
-
I-
I
I
l
l
\
\
\ ·-------· -·-· !'AJL t
I
l
.. //
_/// /
,···· /. // // .•
,' ;' / / .
. /~ ,/ I
p '····'·'-J Q.. .-:) ~-. ~ • '-//. •· . . .. u·J I / ,
. ~ .:...-. .4 .(' .' <. {/ / I.J / •
/
-:k.::-JIH ....,_J -!-""-
..... . . ·r· ,· ....... r · · · ,.,-]) :;:.1-
• """"·' I ..._; t ..
wei:U t
I
l
I
I ,.
l J.
j
l
I
!'' I "
I
I
I
I
JOB~UMBER __________ __
Calculations FILE NUMBER -------
(' SUBJECT: -· SHEET ______ OF ___ _
BY------DATE __ _
APP DATE ----
:
\
I
I
1'-
l'
I
I ic•
I
!
,.
-· _, '(_/a
---!-
..
.
\ >
:JJ a:
;"!
~, I ...
d
·r, : :... r -. . ~ -:..... I c. 1 . ' '""-'-' J.; '-"'··~
z
~ a:
0 u.
,.....
rtGuea. S· \
I
(
>
UJ a:
0 z
~
X
0 u..
\) _ ___!_ ___ . --------~------· ---· ---·--~-...!::... .. _'j -~-.-._::~')!'~--'-' __ :_j__l
Calcu!ations
SUB • .IECT:
•
·-.. g_, ____ _
:_;-.... " \
) l '-. ... -.....
_J j
SP!LL'..v ~·1 {' /
k7..ot...L.·.--J .:'1·-r
GAl~ s:>
~ o "J rt} u L
"··
·'"' . ' t::" ·' ...,... ' "' f-.l ....1"--·-·\ ¥
f:t_tP
I~ \;C..~ s. T
... CH-uTE) . ~:L -\.d ·------"-L-______ ;;-~
JCS .\lUMBER _______ _
FILE NUMBER ______ _
SHEET _____ OF ___ _
BY DATt: __ _
APP DATE
,,
-•~' I I "'-! --
---
,,
' \ ·~
' N
\
(
------· -. ~· ...
I
I • ............
I ! '
=
__ ··---~ ~~ I~
,... '"'"..J I -·----:. .__;
,j' •. ~
i
1 ...
II, ~ .f.
3:0 I
-:-.,.... -·· -··<'11..1 I ,.. I • I
,.,... , -:-.. .:c. I .:::::.~!.-I_;, _._ ....!.,.. c-i=' rJ 'T! ... t ~ -K ·= I .... f
J (" I • ~... ~I ~ Q :; (·I\ c li (.., T f:. -i= L I • ,-~ ; ,. .c..: T ;:, \· ( L!.. ~·.J I I ---·--""---
II '~:~ l .. ,_... r .. ~ -"' r ... .,";. . • • t •'· \ ~
.. .
• J
l
I
l
I
l l
t
1
i
\
/.,-_,_ .
! .,
~
6 ~ RESUL,TS
Tab~ 6.1 Presents the results of the analyses carried out to asoess the
perf~ance of the fixed ci"one valt;es at the proposed Watana and Devil Canyon
develop~ents in relation to the potential gas supersaturation of spill waters.
Figures 6:·i ar.c:!..--5. 2 present the jet interference pattern and the areas of
impingement.
Estimated supersaturation in the spill discharges with a recurrence interval
of 1 in 50 years is 101% at Watana and 102% at Devil Canyon. For more
frequent spills, these concentrations are expected to be somewhat lower due
to lower intensity of spill discharge and consequent lower plunge in the
taih·Jater pool. For spills of rarer frequency, the main chute spillway will
operate 1 ead ing to potentially greater sup ersa tu.rati on in the dm..,nstream
discharges.
Results of spill te:mperature analysis is presented in Appendix B .
..
i
I
j
j
I
I
l
I
/-:--·'· -... ~ .
/,· .· TABLE .6.1-RESULTS OF ANALYSES
A"
. . (
Oescr1 pt1 Orr\_ Watana Valves ....
' ~.
1. Valve Parameters
2.
3.
-~-
Diamet~r of fixed cone valves-inches
Number vf valves
Design capacity-cfs
Elevation of valve centerline-ft
Elevation abOVt average tailwater-ft
Net head (hn) at the valve-ft
Angle of valve discharge with
horizontal-degrees (assumed)
Jet Gecmetry
Lcngitudinal threw-near edae-ft .J
Longitudinal throw-far edae-ft ...
Lateral throw-ft
Imp i ng anent a rea of single jet-ft 2
Impingement a·tea of a 11 j ets-ft 2
Max irnum fa 11 of jet (H)-ft
Jet Characteristics
Average intensity of discharge of
single jet cfs/ft 2 ..
Maxi~um intensity (q 1 ) when all jets
are ope;a.ti ng cfs/ft 2
Estimated plunge depth-ft
I
4. Superl~turati on Estimates ( 1: 50 year
' " Design valve discharge-cfs
Assumed simultaneous power f1ow-cfs
Total down~tream ~ischarge-cfs
6
=
flood)
Assumed sas concentration in power
flow-percent and va 1 ve discharge at va 1 ve-%
~aximum ga~ concentration in valve
discharge below dam-%
Maximum gas concentration in total
downstrea~ discharge-%
T
78
6
4,000
1,560
105
508
45
91
676
351
145,200
221,300
359
0.028
X 0. 028
0.168
0.3
24,000
7,000
31,000
100.0
100.9
l 00.7
Devil Canyon Valves
Upper Level Lower Level
102 90
4 3
5,800 5,100
1,050 930
170 50
365 450
45 45
130 46
550 564
378 228
112 '250 83,400
173,250
353 275
0.052 0. 061
4 X e052 + 3 X •061 = 0.391
2 ( -l) 0. 6 \H-353
38,500
3,500
42,000
100.0
1 01 . 9
1 01 . 7
I
I
I
I
f
I
I
I
I
~· r;
I I ,
J
l
!
J
!
!
t
I
I
I
I ...
..
7
/-;
./
/ •
-"'
., 11 CONCLUSIONS
1. ~e ana.iyses described_ above indicate that the proposed
wo~ld adequately prevent serious gas supersaturation in
·;
a recurrence interval of 1:50 years.
~--
fixed-cone valves
s~ill waters up to
2. Several assumptions have had to be made in the analyses with respect to
jet characteristics and its potential plunge into tailwater pool. Field
test results avail~ble are only indicative of the valve performance. In
particular, the configuration of the proposed valves set high above the
tail·.'later pool and their free discharge with the atmosphere differ signi-
ficantly from the Lake Ccmanche dam arrangenent and the TVA test facility.
In view of the nature of analyses and lack of precedence for the proposed
valve arrange:rnent, it is reco!iTtiended that a physical model study be
carried out to confirm the performance of the valves.
I
I I
I
l
~
I
l
I
l
r
j,
I
1
I
!
l
l ! ~
I
,...
\_ >
:JJ
X
N .. ., ,...
d z
~ = 0 u.
FILE NUMBER Cz!culations
JOB NUMBER --------
--------
SUBJl:CT: SHEET _____ OF ___ _
BY DATE ---
APP DATE
J.-----..ii----------------------'··-...L--=========---====-..J
)· . , ...
1
I . ~
~\ ..
\
_.J. '\ I.J-.-., r -
I ., i. •
" l., .. , \ ..
.. ---
·• ~ -. -· -
.~-.
,
~
L ~'
/
' --~ -~-----. ··--·-----1 "-L<> -~ ... ·---. . ·-· . -. -
...... I .., c I I I' . !"' .~
-=..J "-"" ... !:·' r'*-1·· ·-• !::-.....
.:..';".' ':.. I ui p I ~'·l ~ f 1.'1 r t I r "··-A " ~ . ( ' . .. ...
,-
r ~~ J! ...., ,.._ ..
I ... . .
,'lit\ i·r-\ ,:
f~
":!
(\,
I ,
I
I
I I
I l
.j
l
I
I
I
I
[
j
I
I I
I' 1
I r
I
I
I
l
I
l !
l
l I,
j
r
I
j
L
r
Calcula-:!ons
SUBJECT:
:
\
"'\ ..
\
vJv-L t-Jo 6
I 4
1-
• ... -....___ .. ,
~fr -
3 . .
\ 5"' ~-.............
~ ry ..._
',
0 pr·· J ~.::.{. ·.hT•
' -1:' ~ 'I?· .:;;) .
•#>
-·· j
1 r ...
....
\ > ' !.!.1 a:
N
1/..!--~V c;.. ]) tS-.::..i-i-•':'..-2 6£ fr:;...TTE ~ N
1.0 ....
0 z
:E
I.'(! P: NoB ir'i~-: ,..J T A-( S t\ ~r(._
T~ " "-( /'r N 1 ~ 1--..J
a:
0 u.
f
JOB NUMBER _______ _
FILE NUMBER _______ _
SHEET _____ OF ___ _
BY DATE ___ _
APP DATE
b
ApP'(-'1(,.. c• .• JO_;r-6o~ 1
Je} ,· .. "-r'·cr~r T
/
~
2
---.. ---~-
-· _ _...... • I 1 • ::J I f J :.. 7'l t) 'A • .(' ··~~
,.'"2"" .,._IJ. . .J,,. f\ .._,; -...__.. ..... ~ J
0
I
.,
---
7
• ,,., 1-
i,
I
I
l
[
f
J
!-
l
I ' l
I 1
I
r
!
I
I
I
l
l
I
I
!
~
I
1
!
w --"'· ·~·-·~>--•_, ____ .....,..__._.
c
I ..
i' REFS~ENCES .
1. rham; F.P., The Gas Bubble Disease of Fish and Its Cause, Bull. U.S.
Fi~ Comm. 19(1899):33~37.
2. Ebel, W.J , Supersaturation of Nitrogen in .the Columbia River and Its
Effect on Salmon and Steelhead Trout, U.S. Fish and Wildlife Service,
Fish Bu 11 A 68: 1-11 .
3. U.S. Department of the Army, Engineering and Design, ~~itr"ogen Super-
saturation, ETL-1110-2-239, September 1978.
4. Tennessee Valley Authority, Progress Report on Aeration Efficiency of
Howell Bunger Valves, Report No. 0-6728, August 1968.
5. Acres, Sus i tna Hydroe 1 ectri c Project, Scour Ho 1 e Deve 1 opment Dm·mstream
of H~gh Head Dams, ~arch 1982.
6. Ecological Analysts Inc., California, Lake Comanche Dissolved Nitrogen
Study, June 1982 (see .~ppendix A).
7. ,Acres, Susitna Hydroelectric Project, Feasibility Report~ r1arch 1982.
8. U.S. Department of the Interior, Design of Sinall C2ms, Bureau of
Reclamation, 1.·!ater Resources Technical Publication, 1977 .
.)' • ,,
.QI
J
I ....
.....
. '
..........
·'
• .J'
• # •• • j
I ...
L...u<E COM...WCHE
DISSOLVED NITROGEN STUDY
.c'rapared for
Milo Bell
P~O. Box 23
Mukilteo, Washington 98275
Prepared by
Ecological Analysts, Inc.
2150 John Glenn Drive
Concord, California 94520
June 1982
APPENDIX A
I
I
I
l
I
I I
I
I
!
I
j
f
1
i
I
I
I
l
I
I
j
I
· ~iitrogen ~s i~ th~ deep '\.later of a reservoir zay be slightly super-saturated due
r
to the nydro-stat:ic pressure of the overlying -water (Wetzel, 1975) .. Therefore
I
~ater 1tlowing from a dam with a deep intake may contain a super-saturated concan-. .,. .
trat~-<n of nitrogena If this excess nitrogen gas is not rapidly released into the
atmos here, it may cause nitrogen gas bubble disease in fish residing below the
:
dam ou\fall (Conroy and He~n, 1970) •
. \
A-study was conducted at Lake Comanche Dam, Mokelumne River, California, to
determine the efficiency of the Hewell-Bunger Valve in removing super-saturated
dissolved nit~ogen (N2) from the dam's ta±lwatero
The valves spray outfall ~ater into concrete conduits before releasing the water
to the stream. This ~as observed and photographed at Lake Comanche Dam on 28 ~y,
\ 9?-2.-}98:.1, at a flow of 4000 cfs into the Mokeluwne River (s!=e accompanying photos).
1
This creates a turbulcut and aerated flo~ ~ith the purpose of facilitating nitrogen
gas release to the atoosphere.
By sa~pling nitrogen gas in the reservoir ~~ac the intake, and at several locations
~elow the outfall valves, the efficiency of the valve was obtained.
::..€IHODS
In ordar to det=r..:1ine nic.cogen gas coi1ccntratio~s at various depths in the reser-
voir, ~atar saDples were collected in Lake Camanche approx~ately 50 m from the
ca::1 directly over the river channel on 28 ~!ay 1982. A Van Darn Bottle ·..;as lm.;ered
from a ~oat to collect ~ater samples at depths of 0, 10, 20, 30, and 38.4 m. As
reported by East :3ay :funicipal Utility District the dam intake was at a depth of
38.4 ~ (126 ft) \t the time of the sa~pling •
..1 . ~
"' •
Once .Jaken aboard, each sa!:!ple ";olaS poured '""i th wininum turbulence i:1to an airt.:.5ht
bott~ and capped in a ~anner that left no air bubbles in the bottle. Bottles
•.o1ere placed in a cooler for transport3.tion to the lab. Studies conducted by St::.ve
Wilhelos ·of the Hydraulic Laboratory, U o S. Arm.y ~?ater..tay E:·qeri~en t Station,
Vicksburg, Hississippi (personal C.O~'"Unicat:ion) indicate that brief c:<?osure of
cr;ep o:.:ater saoples to at::Jospheric conditions has little effect on nitrogen gas
concentrations. However, he has found that periods of exposure to atnospheric
I
I
J £
l
!
I
j
f
l
' )
I
l
!
!
I
j
I
l
I
l
1
I
l
I
I
I
)
j
--.
(
.. •' . .
air bubbl~ during transportation can cause significant cha~ges in nitrogen gas r
.L
concent,fations, hence the need for re:Joving all air bubbles before transportation • . ·
Exces.4.., water. remaining in the Van Darn 3ottles was measured for temperature. The
• ·1
atmosjhe.ric. pressu.re measured on site at the time of sampling •..;as 7 53 EtJl·.
~:
At the\t=ailwater below the.dam, water was collected by immersing the sample bottles
\
under the water and capping them in a manner that left no air bubbles in the bottles.
Samples were taken at the outfall, 100 m below the outfall, and ZOO m below the out-
fall. Water temperatures were taken at each of these locationse Bottles were placed
in a cooler for transportation to the lab. At the time of sampling, the outfall flow
was 4,000 cfs. The atmospheric pressure was 753 mm.
The ~atar collected was analyzed for nitrogen gas (N 2 ) and oxygen (0 2) in a
California Stata c~rtifi~d Water lab using a Carle Xodel 8700 Basic Gas Chromato-
gram with a ther=al conductivity conductor several hours after collection.
..1 . , •• j ... t ....
/.
I
l
r-
' I r
l
I I
1
I
)
l
I
r
j
t
I
f
--_l I.
(
\
Location
Reservoir
Dcm TailT..;ater ..
.\t V'.1.l ve
100 :n dc·.,.-ns tream
200 ~ do;.u.s trea.m.
.J ,.,.
~· I
J ..
1
L ...
Depth
(m)
0
10
20
30
~,8. 4
0
0
0
RESULTS
N2
Temperature %
(OC) (u~/1) Saturation
22.0 14.9 101
14.5 17.0 100
13.2 17.3 99
11.0 17.9 99
l\.}. 0 18.5 101
10.2 17.7 97
10.5 17.3 95
11.5 17.9 97
02
%
( o~/l )~ Sa t1J"r"2. t
9 .. 2 105
9.3 90
10.0 94
10.2 93
9.3 &2
11.1 9ll
11.2 98
10.9 98
I
t
L.
!J' ~~··
·.· '
.
.
'
.
l'' '
li 1,;
~~
t r
J
I
l
j
I·
I
l
j
I,
I
I .
I l c
i
I
I
I
) !==
I
1
l
I
j
I
I
I
l
l
r
(
.. . .
! • i •"/
I i1
Conr~y, D.A.,
Publ~cations,
'\
Wetzel;\,R. G.
743 pp •
..1
• I' .. ,
J
'• i
'~
Refer2nces
and R. L. Herman. Textbook of Fish Diseases. 1970. T.F.H.
Jersey City, New Jersey. 302 pp.
1975. Limnology. W.B. Saunders Company, Philadelphia.
! ..
.. · .. . :' ..
' APP;f\miX B·
SPI S AT HATANA AND DEVIL CANYON DEVELOPt~ENTS
8.1-OPERATIC~ OF ~ATANA AND DEVT~ CANYON
C0r1BINED (Beyond Year 2002)
(a) Spill Quantities and Frequency
The monthly reservoir simulation studies calculate spill volumes as the
flow required to be discharged from the dam to satisfy downstream
requirements less the maximum turbine capacity, and does not restrict
the turbine flow in relation 'to the actual energy demand of the system.
Total energy production, as calculated, is the energy potential of the
schemes. Usable energy is then calculated as the potential or the
maximum energy demand, whichever is smaller. The turbine flows are not
readjusted to the level of usable energy production. Tables 8.1 to 8.9
pres2nt selected results of the reservoir simulation studies which
i, dicate this.
Tables 8.10 to 8.12 are developed from the r2servoir simulation studies
for adjusted turbine flows for two alternative generation patterns at
Watana and Devil Canyon for the months of August and September when
spills are most likely to occur. Alternative A assumes that whenever
_~the potentia 1 energy generation fr·om ~~a tan a and De vi 1 Canyon deve I op-
,• .. ments is greater than the usable energy 1 avel, each development wi 11
/ share the usable ener·gy generation in proportion to their average heads. i . " However, in the months when Watana outflow, as simula+ed, is not
sufficient to generate energy in proportion to its average head, Devil
Canyon will make up this difference. This operation is r2quired in
such years when Devil Canyon is being drawn down to meet the minimum
dovmstream flow requirements (years 1, 2, for ex~mple). Alternative R
assumes that Devil Canyon 'r'lOUld generate all the energy possible
consistent with downstream flow requir~nents, and Watana would cnly
operate to make up the difference in years when energy potential is
I
I
l
I
I
!
l
\.
l
r
!1\
tji I:
j 1 l! 1.\
'I fl i l j
j
i
------"--·---~~~------·-~--------------·-i"; •. -~-----~-~--·-~----.. -----------·-_:_~J
.
..
'
,
-~greater than usable. This assumes that all the ene~gy from Devil Canyon is
't t useable as base load on a daily basis. Battelle load forecast (1981)
l: tends to confirm this assumption for the year 2010. However, during earlier
,\~ears, such operation may not be fully possible.
It may be readily seen from Tables 8.10 to 8.12 that frequency of
continuous spills (24 hours) from the reservoirs in the months of August
and September is significantly greater than presented by the reservoir
simulation (Tables 8.3 and 8.6).
The analys0s SUlfmarized in Tables 8.10 to 8.12 indicate that Devil
Canyo,; '.vould spill in 30 out of 32 years in .~ugust and 16 out of 32
years in Septe::nber for the Case 11 C11 operation ~'>'hich maintains a minimum
instantaneous flow of 12,000 cfs in August at Gold Creek. For down-
stream discharge requir-ements greater than 12,000 cfs at Gold Creek, it
is estimated that the frequency of spills may not be increased signi-
ficantly. ~owever, the volume of spills will be larger to make up for
increased flow requirement. The above spill fr2qu:.=ncy is simulated for
a systc:m anergy denar.d in the yea·r 2010 (Battelle Forecast) and assumes
that the entire de:11and is met by Hat ana and Devi 1 Canyon deve 1 opments
Nhere possible. The spills will be greater and more frequent in the
years bet~een 2002 (Devil Caryon commissioning) and 2010.
It m~y be s~en that operation Alternative 2, which provides for maximum
possible energy generation from Devil Canyon while Watana is allowed to
JSpill, results in signif;cantly reduced spill frequency from Devil .. • j Canyon. This type of operation is expected to be advantageous with
·) .. regard to downstream water quality (see Section 8.2).
loll ..
Severa 1 i ntennedi ate di stri buti ens of g 2nerat ion bet·Neen ~Jatana and
D~vil Sanyon is also possible. A recommended operation will ~e derived
after finalizing the do~nstream flew r~quir~ments and the refined
temperature modeling studies which are c~rrantly in progress.
'-r
I
I
I
I
I I,,
I
I
/.
l
j
i
I
/.
I
l
I
l
'\
. .
..
i (b);jSpi11
,, ( i)
• Jl • ' J ..
' t ....
Qua 1 it1_
Spill Temperature
Figures B.l and 8.2 are extracts from the project Feasibility
Report (7) and present simulated temperature profiles in the Watana
and Devil Canyon r·eservoi '(S for the months June to September.
Refinement of reservoir· temperature :nodeling is currently in
progress, but the differences between the revised profiles are not
~xpected to be very significant from the ones presented here
for these months.
Tanperature of spill waters at Watana is expected to be close to
that of power flow, and hence, it is not expected to create
t2::1peratu re p rob 1 ems dm·ms tream \•I hen Watana is operating a 1 one
(1993-2002) or when it spills into Devil Canyon. At Devil Canyon,
however, spill tErnperature is expect2d to be close to 39°F ccr1pared
to a poHer flow tenperature of 48-49°F in August and 45°F in
Saptenber. This is based on the conservative assumption that the
tanperature of spill water does not increase significantly ~hile
in contact with the at~osphere despite the highly diffused valve
discharge. It is, therefore, considered prudent to keep the spill
from Devil Canyon to a minimum to maintain as high a dovmstream
tanperature as possible during spills.
The operation Alternative 2 indicates that by operating Devil
Canyon to generate as much as possible during these months and
\vith '.·Jatana generating essentially to :neet peak ·~~mands and
spilling continuously \·Jhen nece:5sary, it \·~auld ]e possible to
rna i nta in dm'Jns tream flow ta.rnr eratures be 1 ow Dev i 1 Canyon c 1 ose to
that of po~er flow.
During major floods (l :10 year or rarer frequency), there will be
significant spills from Devil Canyon (see 7ables 8.10 and B.ll)
in addition to the power ~lew resulting in cold slugs of ~ater
dm·:nstr·eam for a fe\v to several days. It \·Jill be necessary to
establish criteriJ. for acceptability of lm·Jer temperatures for
• I
I
• . •
i ...
~
l
short durations 1n August and September in consultation with
fisheries study groups and concerned Agencies. Currently, down-
stream water temperature analyses are being refined, and \vhen the
results are available, the above spill temperatures and duration
should be reviewed to confirm downstream temperatures during normal
power operation as well as flood events. If the projected
tenperature regime downstream is unacceptable, alternative means
to remedy the situation should be considered. These rnay include
provision of higher level intakes to several or all fixed-cone
value discharges at Devil Canyon, multilevel power intake at Devil
Canyon, limited operation of main overf-low spillway (for floods
1:50 year or more frequent) to improve downstream water temperature
without serious increase in nitrogen supersaturation, etc.
(ii) Gas S_u_e.~L~~turation
f .•
It do~=s not J;·p-::ar (from Table 6.1) that there ~·muld be sig; ificant
advantage in spilling frcm ~atana as compared to spills from Devil
Canyon in t2nns of gas conc2ntration.
r
l
I
I
I
r
/
(
l
I
I
I 1. I I•
I
l
I j·
l
..
i' . ,.,
B.2'~ OPERATION OF WATANA ALONE (1993-2002)
t '. Bef~e Devil Canyon is commissioned, ~~atana would operate alone, and spills
requiied to maintain downstream flows will have to be made through the fixed-
cone valves. Reservoir simulations indicate that, generally, spills would be
of lower magnitude during this operation due to greater percentage of flow
being used to generate usable energy.
It is believed that the rivsr reach of some 30 miles between Watana dam and
Devil Canyon ~<~auld les~en the; impact of spill temperai:ure and gas concentration
below Devil Canyon and would pose less problems, if any, compared to the case
when Devil Canyon development is also ccmmissioned.
• I
I
~·
" -· ,0
(
(
(
c
(
(
(
(
(
(.
(
ltlfLOW <CFS,
7
u
'}
10
11
1:!
13
H
1::.
lt.
l 7
18
19
::!0
:!1
UCl
•\l19.Y
32'/Y. 1
459::!,9
6::!8$,7
•1::!18.9
3Wj9,:!
4102,3
4::?08.0
60.1'1. 9
3o>:~U,O
~ 1 £) ~;. :;
ov4S.,3
4.:.17.6
!j~o0.1
t.lS7.1
1\7:,9 ,I\
:..:!:!1.~
3::?.-.9. 8
·l<i19.0
3135.0
:! lO'L 1
37o0.0
4'1'79.1
4 301.::.!
JO~,.!,.::;
30tJ8.El
5679.1
:!97 L ~
!:.793.9
377a.9
61~0.0
64!:..8.0
-r v 1. \"'.
/iOV
:.!U:-J3,t
1107.3
::!170.1
2756.8
1599.6
::!0:11.1
lSBS.l
2:?76.6
:-?!n~.9
17:!'1.5
.:?:?13.5
::3::?7.8
2:!f.3. 1\
::?!JvB.Y
17&Y .1
~1Ml.:!
1565.J
1::!0:-!.::!
1934.3
1354.9
10.1 u. 9
::!1\'/6. 4
::!~t37.0
l Y77. 9
1]'1'1.7
l47·L4
1601.1
19:'t,.7
::! t. •l!.. 3
194•l.Y
J5:?tJ.o
3297.0
I<EC
11 c.IL 9
906.::?
1501.0
l::!Ul,::!
111':13.6
15'19.:..
1038,6
!707.0
:!:!5&.::J
1115.1
167:! .. )
1973.2
1760. ·1
1706.'1
1194.7
1070.3
1::!03.6
1.121.6
170·1.2
753.9
].Q'J. ·~
16U7. <
lY!.7.4
\~46.5
'J 3 1 • ;:,
1::!76.7
876.2
1 6EJ7. ~,
H79,1
1312.6
2032.0
1385.0
U l::,. I
noa.o
1 ;:> 74 .• ::;
818.9
1067.~
13fll1.1
fi16.Y
1:\73.0
HUU.6
1081 ,(i
1400.4
177'1.9
l60E:.9
J:~va.9
U~:!.O
862..(1
1060.4
110:!.::!
1id7.c.
61'1.::?
10'1'7.1
lb7u.'i
1031.5
7l1t..4
1:•1!>.8
7!"..7.8
J3'iB.7
j ~·77. 9
11Jt..[J
1470,0
1!47.0
AVE '151J,l 20~2.4 1404.6 11~7.3
ru.
• ., 11. I
673.0
8-11.0
n 1 1. 7
ov3.1
1o·.o.:.
7!:.4.b
ll(H.O
1011.7
9'1S, 0
ll1d. 'i
1304.6
12':;7.~
l1b'lo7
7fll • i.
71'2.7
984.7
lOjJ. ~
1::.60.4
607.~
t0:!.1
777.'1
1491.4
lllGv .. :!
6P.'I.9
1110.3
J.l3.:!
1'2v2.'1
1267,/
107,:i.4
1233,0
971.0
978.9
-------------~--------------------------,----------------------
• I' 1"1 I I·' ({ l v l" ~. • { 1 .,. (I tj (J.V'
••• ~ •} • 1
c.l'i.t<
73:-..v
6 7\:. 7
63Ll.::!
tlu t• • 1
69·i. ·I
17'35. (i
n \.:,
6Y•l,O
., l.t • 1
D3J. Cl
1 II h, tl
tHU, f.
fjC)), :i
'1~·1. 7
r, ti 'I • :,
1:>60.4
6&.:..0
":i :• 'I • I
7 J 7. 1
t:'66.0
f.l73. s·
1):•;, 1
1041.'1
6%.7
1111),1;
1:!56,/
1101.:!
1177.0
fl89.0
L'
!It; I .lilt.. b(l
,,,;(J.l :j·,',!,,'l t-.42:.:.1 !il<;' . .l.4 t-~1 .. t. :3:?(1.4
lJu:!.:! llH'I.i.l 113:.!7,9 197i.it..o lo4)b.( 1:':!0~.5
13\•.3.? 'I:! H.$ :!!o77~.4 :::~llC•.Y 1 ;'J5r., .\ 11~71.0
1 3 I 1 :! , 0 l 5 •i .~ 7 , 2 :' 1 II ... '>' , U li' ] :'i 5 , 3 1 r t. f: I , I> 1 1 t. 1 :1 . !:•
94:!.o 1l~9n.~ lV,,/.,7 1~Y8J,6 ::!U4~v.6 il6~.~
'i"liJ.I:i t.71l •• t :!1H!JJ.4 :!3787.'i' ::!1:i~i.v 134/l~·.n
71G.3 l:!9t3.3 ~7171.8 :!~&31.3 19153.~ 13194.4
91~.1 10176.: 2n~1~.u 19916.9 t7317.7 14H4t.t
t:·.-.~-.4 Y'J':J7.8 2~!097,6 197::~.7 t8fl'\~.'l 597\J,'/
h t< ~ • i' 1 v l 4 0 • C. 1 It:~ :• 'i • b :> il 'IS :.;. 1 :> ;\ 9 'I 0 • 'I l ;> 4C. 6 , 't
11) .. ') • 'i 1 :1 u 14 • '1 1 'i::! ,j 3 • 'I I .,. ~ v 0 I 1 1 '1:\ ..... I u. 0 & ~ •• c.
1965.0 11r,l7.Y ~~'/b4.l J96J~.& 19'180.:> 1014~.:>
14!',7.'1 ILH::.~ :: .. •;<117.1 :!341:5.7 19l'lfll.t 127'1.' .. :.
71 t-• o 1 ! • ;:>~"I , :> :0 (> U ~ • 4 ::! fl 7 6 7 • 4 :: 1(1 I J , 4 1 Co f. 0 v , 0
609.::! .3:•711.8 •I:!IHJ.'r :!00Ll:•.b H( .. lltt.:• 7::::>4,::?
1~~~.1 1LY6~.0 Jl213.0 23:!3~.~ 17JYI.l l~22~.e
1 3 3 tf • 4 l () 9 ·l • 1 :• ~' 9 :\ c; • 6 1 6 1 :J 3 • s 1 ... 2 y 0 ~ y 9 :11 4 • 1
a ·I 'i • 7 1 ~! :-, ·,::.. ~ : • ,, 7 1 1 • 9 :: 1 9 a 7 • 3 :· ,, 1 c, 1 . ~ 1 ·3 t 1 ~ • •,
1 ~ i' c. • 7 1 :• tl.'t • 7 ::> :, <"1. o :.? ::! C· a:> • s 1 4 1 4 7 • ! . 7 u. :· . e
1 :> ~ 1 • 6 9 :~ 1 3 , j· I .I 9 r. ~· , 1 1 4 fi 4 3 • 5 7 7 7 I • '1 4 ~ "0 , 0
911 < .. 1 ~ .J \ o. 4 113 Y 9 , 0 1 6 4 1 0 d 1 h ·'"· L 8 7:? :.0 'l • 1
813.7 ~H~7.:> 2/61~.8 ::!11::!6.4 :?744o.6 1210~.9
J3 o ~ •. 4 1 n ~ ; .;. 1 ::> 1" :' 9 , ::. 1 9 a:::! o • :1 1 7 ~ u 9 • :. 1 o 'i'::. ~; • 7
914.1 7::>57.0 :!.,f1~,9.3 lf.3::;1.1 1801to.7 (i0.9~'.7
8/),9 12fiP9.0 11780.D 15971,9 ll~~t,7 'i]~o.~
1::'11.~ 1167~.:! ::!6689.:> ::!3430.4 15126.<> 1307~.3
IO~Y.H 8~JB.B 1Y994,0 17015,3 1A39J.~ 5711.5
1201.4 ~369.4 3135::!,8 19707,3 16A0/,3 JU613.1
Hou.4 JJ:>JJ.:-: u:•77.::! 1B:H1s,2 1341:::!.1 7132.6
1317.9 1:'!3~9.3 ~2904.8 24911.7 166)0,7 9096.7
1404.0 10140.0 :!3400.0 26740.0 18000.0 11000,0
1103.0 10406.0 1/~~3.0 27840,0 3l43fo,O 12026.0
H~H.J 1112.6 10397.6 22122.4 20778.0 184il.4 10670.4
(
(
(
(
Tn l....le P.... . 2. L i 'L>Ilv.· _,.
f'(JWf::htiUUSE. fL(JL. { LFS Ia\,
OCl IHIV
~e/h.1 U47'\,J) ll~ti~.l
:: 62~4.5 73~4.0 )102.0
"ric_ "'' ,. 6.B'14. 1 ·1a3v.::
3 7~o8.3 9549.1 11617.4
4 bbbl.U 10527.6 11397.~
:.. 71~4.J bY7b.6 11JOv.2
6 o8J4.o 9110.1 11665,9
7 7077,7 89o7.1 11155.0
u 7163.4 9655.~ 118:!3.4
9 ee.o~.9 10~~'·' 11738.1
lG oo43.4 9108.!:. 11:?31.5
11 0140.9 959:!.5 11788.7
1: bY:;l.7 9i:iv3.o 116::?2.3
~~ 7t13.0 9642.~ 11676.8
14 h~l~.~ Y8H7.9 11825.1
1~ blt:!.5 916b.l 11311.1
16 7734.6 9747.2 1l16o,7
17 &1'16.6 ~Y44.3 11320,0
:!6
~7
.:!U
:!9
30
31
32
o2·1L. ~
t.'l~'l.4
6ll 0. 4
638!..6
6198.0
61i)L~
7"276.6
bl'lt..:?
6::!43.9
1'16:"•4 .:::.
61 ~. 7. l
IJ7t.Y.3
6iJ'Ih. 7
9099.8
9082.6
85131.:' 11:?38.0
9111.3 118:?0.c'.
B7J.3.9 1vB70.3
7578.3 9136.9
74Cr~.S' 90:?1.9
7:•qo,'\ 11~77.0
93::.t..'i 11362.'1
7 ~ :· '} • .I 9 :; 1 6 • "
7Joi.3 8U13.6
!i'}li(l. 1 1 099:?. b
7.:'0:!.:! 11673.1
100:•4.3 1ltJ!..~.3
n .L-:;. 1 6 n 7. 1
10930.5 1H'::!l.9
110HL5 ll;j01.1
Fr [,
t11'}J,S 7~·,4,'1
El.\1'14.7 i3:::o.:?
6 s ; o • a 1 2 c ~ 1 t (·
8H~1.3 7"'t4.:
0395.7 7:!:.4.'1
8664.!.
1196~. 1
8:'.93.7
8949.6
'io94.::
8&'.57. 8
8977.:?
S'/.::!4, 0
'.J&!L7
11685. 6
8'128.7
8"!39.8
i!o37.::!
8f.79. v
'119'1.4
Bl96.0
P137.8
8090,4
9:?17.7
81U8.3
H3h3.1
U.31.3
A33 L 6
I:!:' YO, 't
'iVJ!,.::.
'l 'I 0: •• ::!
9?.73.:?
117:!3.7
/•lf.JCJ. 3
7'1\jL 7
74(,13.0
7R4"2.:?
76'1-1. s·
7 "-Ci:!. :.·
77"i':.!.J
7~'~1:j. 0
7SlO.o
7b17. 'I
743-l.u
74"2:::..9
71:. i7 • 9
7684.5
e:~ J 3. t.
7260-7
o651.:;
t.ol6.G
81'14.6
7e!..3.4
7-:i'lJ.l
63~ 1. B
73'/i •• 'I
71156.1
/'7"20.<;
77llll.o
7886.:?
7624.:!
63or .... , 11
C"'-~' u !I t I
o; .. c. J. h
nJ~~,jt/
6!,).:,. I 3
o330, •1
r, 1!:/. tl
::. ~='~1 . (I
c.. :z J ,, • :f
f,:: :• L • I·
.:_.31\j. J
t,.\]·,,t,
c.~~','. l
C.3f;.:.h
hi\: •• l
o316,(.
o·:t,H .. !
... 371. 'l
6 1/111.7
t.&f.J. 'j
,.,.5}\.11
t.37:!.f.
6j,W, •1
c.:~U4. 6
•'• ~~I • 4
6'1t.1. 'I
630~.1
6::'./11,1:1
63-J:.!o'l
1.3:.'1. 9
. ~ ,, ... ,., • 1
~r,~q.~
!· •i l) 4 • ~t
~~~~u.~
r. 71L 3
.•,(l'ol , 0
~J~ t 7 .. s
:., tlt I , '?
/' j :-<~ ': ... :~
t.•i bt I .. ~
1 14 i ... ,. ~
~~ .. , r.:? . ._,,
!""1H:•(t • !J
f,}!d • 4
!d:l6. l
!:.Yol.l
r.t~ ,,.~ 1 • 4
b'lli•l. l
~·,:IBl,f.
'",)'J':. ... 7
~620.6
:;:,1," . 0
tt;.V::!3.4
,,:,'II . :>
6vll7. :•
1>415.4
!i799.:!
I i ,·, ,~ .JIIol
o ·• v ~ • c: 1 J .• ~ • s·
'I :• ·1 , • [1 f 'II\ 3 . c
77/!.,.(J ,;-"'..:-.~
•. ~ .:~ 7 • :•. 7 lj :\ 3 . 7
Lt :, r) !'"· • :' J <• 7 1 ~ • 1
7 :> <i" • 1 o; ,, r. =' • 7
71·1'1.7 7Y49.:'
711'1.7 Ml'l.b
tj•1\·tl.S ~.n:~.~.4
l • .:-4 ',". (• '1 I ·1:'. ~.
/; 1 ':' • l l (• t.:. t • ::
•J:)"Jl.~, tJ:.:...\.:'
~,:. 3 9 . 1 1 \l ,; .. '-l . 't
/':•7o.7 7bJ;,.'t
~~ 6 " :2 • J n ~ 1 ::, • :-;
8 I 'I f. , ;~ 9 '/1 t· , 6
IJIQ,.,,3 lfJ1'13.~.
6'lJ..I.I:l ~·h(l0.:1
4fl9::!.9 3t>3l.4
!:i li:J 0 • :J .~ ;> 6:! • 7
9td&.4 \0679.:!
} 1 :• fl • J
li::: :•.., • .:!
8:?~7.3
h/1~.:!
M•7Y.:!
7 J :•t .• 7
fJ :· ll'r • 4
;:~!J:!. 5
7i56.0
l! .. ~i l • 5
~J~O~tt6
'f':,:,fi.B
,,71H .5
1 (17~~. 5
rdlt. 'I
~~874. q
8!.:!4. 9
609.:!.8
tilL
!:..'lS.l c.J35.3 lvt:.OI.J
4'1Sl.C ~~~c..~ H2C~.~
4~7'1.~ bWI7.V 7'700.3
o~Y~.J 1J~hY.rl 134~7.u
6844,4 1~744.0 13194.4
6~01.:! 63"2~.7 143C1.t..
~310.~ t-1'11.1 ~t171.e
4A4~.6 10300.~ 1~4~6.9
4!.:1 ~·.4 ~1::.1'.6 1::!~~4.9
~n.9.0 7837.0 10146.~
o~n1.5 176t:.~ 1J74t...2
5: i :· . ::. 1 1 ~ 1 l: • 1 \ v Hi (J • II
'liir 3 • .'
4:..0::~.3
oBoc.l
?l~c.."':"
4:•/(j. 8
5]30. 1
0 l!.il>. '\
/'164.::!
49B~.::i
3776.7
73;"7.::
'197::!.5
1<•~4. 7
·171>9. 5
90~.1 .l:i
6734.3
;,oo.~. ~
1 b:'~<·· (j
~.HHI), ':'
~· P.::! 1 • 8
s:1 63. R
7r,36.o
lj :·, '1 :·, • :-j
... j 1 ~·' :{
fl:1 .L1 • b
c..;o::.3
/!.t.'/.4
7:•4 7.::;
:.,.;7(),f,
7~;-a.q.:
16:.!25.0
; • .'..1:!. 0
13n7:!.9
o01~.~
56b7.v
4ov3.1
4~' 'lB. 9
10'1!.5.7
403o.:!
12c.B1.6
::.:no.::;
10t.13.1
~u:-~ .. 6
75~7.5 7~/H,l 9096,"1
tJ036.::; 101~1.7 11000.0
7212.3 19J'/1.o 12026.0
( £\VE' 7346.5 8988.6 10944.3 1:1681.2 7fo43.7 64::'1,£1 !Hl7::!.6 747'1.'1 l~9!i.O 6~47.0 llli4c\,7 9;\6L?
(
(
(
(
' Tor.!._,
( .J. :..\) ~\}.:'t,Cv· .~ f{) !iV\ll,:' I
) ·J, .. •\1·)
.. ·-· .......
. ....... --:;
Sf lLLS tCFSi . •. .r··
OCT NOV Lti:C .J .~.u Hb M.ith tar ;"-M·' I Jlltl .HJL .;Ill'; !:>E.J
\J,O 0,(1 o.c. o.v C•. C ''• \1 \J .•:, (I' (t 0.\.1 \.1.0 {i ••• o.v
:! o.o o.o 0.0 0.0 o.o (t • (. v. (, i.,.(J (),(j o.o v.o 0.\.1
3 o.o o.o o.o (j,(J o.o o.c. c.o Lt ' (, (',,(j 0.0 o.v o.c
4 o.o o.o (.. 0 (J,(J o.o (i,(i v.v (! • \.1 o.u 0.0 v.o o.v
( :.. o.o o.o o.o (i,\i o.o o.o C,,v (j,{J o.o c.o G.O (j,(j
0 (l,(j o.o o.o 0.0 (),(i (j • i) v.v o.u c.o .• 0 o.o o.o
'I o.o 0.0 (j,(j v.0 o.v (i,(J .... (J G.(J u.o •J ,(! (J,(i (i,(i
( 8 o.o o.o (i,(j o.o o.o Ci,O v.o 0,11 o . .:. v.c o.o o.o
9 o.o o.o (j,(j o.o o.o 0.0 0.0 c.o o.o \.1,0 o.v o.o
10 o.o o.o o.c o.o o.c 0 • (I o.o o.v c.o (j,(j o.o o.o
( 1 I o.o o.o o.o 0.0 ll.O o.o v.o (i. 0 o.o 0. (t 0.0 o.o
J:? o.o o.o o.o 0. il o.o (,,() 0,(1 o.v o.o o.o o.o o.o
13 (o,(i o.o o.o o.o 0.\J li . (1 (.. (· 0. C• o.o o.o 0. (J o.o
1·1 o.o 0.0 o.o (J,(j c.v o. (! li.O o.o c.v (j,() o.o o.o
1 •• ·' O.v o.v o.o (j,(j ~. c* 0. ,, v.v v.o o.c. o.v u. C• c.o
16 o.o o.o o.c o.o o . .:.. o.c. 0. (. (J,(J o.o l),(J o.o O.ll
Jl ii.O o.o o.o o.o o.o (),(J 0.0 o.v o.o 0. (t o.o o.o
J IJ o.o o.o 0 .• 0 o.o o.o u.o (1,0 o.o C• 0 o.o G.(, o.o
I 'I o.o G,O o.o o.o 0.0 0.(1 o.o v.o o.o o.o c.o o.o
~0 v.o o.o o.o o.c o.o o.o o.o (I, 0 o.o v.o 0.0 o.c
:>1 c..o c..o (J,(i o.o o.v 0. (• ii.O il • (I (J,(j o.o o.o O.G
:! : .. 0.0 o.o o.o O.{i o.o \i • (i \/,0 (i. 0 0.0 G.V v.o O,G
:'J o . .:, v.v o.o v.o O.Ci \.1.0 o.o o.o o.o o.o o.c c.o
:•'I v. (• c.v G.O o.o v.O (i,{) o.o u.o o.o 0.0 o.o o.o ... , ..
-~ o.o u.O o.o 0.0 0. C• c.v 0.(1 o.o C.CI o.o .0. 0 (j,(j
:!6 li,O (i,(J o.o 0.() o.o u.\J o.o o.o o.o o.o o.o o.o
::7 o.o o.c. o.o o.v o.o o.o o.o o.v o.o o.o 0. (t o.o
:.·u o.o o.o O.G 0. (• 0.0 o.o o.o o.o o.o o.o o.o o.o
:"1 o.o o.o C·. 0 o.v o.v o.v c.o o.o o.o o.o o.o o.o
l :~o o.o o.c v.O 0.0 o.o o.o 0.0 o.o o.o o.o 0,0 o.o
:51 o.o o.o o.o 0.0 o.o 0,0 G,O 0.0 o.o O.G o.o o.o
32 o.o o.o o.o o.o o.o
(
o.o o.o (i,(i (), 0 o.o ::!755.0 o.o
fiVt:. o.o o.o o.o o.o 0.0 0 .• 0 o.o o.o o.o o.o 136.1 o.o
\
1._,
(
(
(
(
(
(
(
:!
:.!
4 . ..
6
7
IJ
'I
10
11
1 ~
D
H
A VI:.
OC1
:•:!t.9
:" ·l..L .I
:!.97-2
3'18.9
:!I.> fJ. 'l
'2"17 .9
:::!62.1
34~.9
:!60,9
:SlY. 7
1<..0.H
:•99. 0
33::..::!
:::!136.'>'
NOV
:'73.S
3~&.7
i9~.6
337.3
3!j1,2
336.8
3o::!.7
3Y!..5
112.1
360.3
368 •. !
362.:::!
371 .1
. '·
1•( c
4 :"1. 3
34::0. •1
4 41 ....
433. -,
4:-!S .&
413.7
4:?4.3
449.7
"146.8
4:!7.'2
44~.4
4·19. 8
451.8
4'19.8
(GWIIl
Jhtl
31 :•. :·
.\1 :•. 0
:~ =' 'l • 3
.~ l 2.11
J:?:! • ·I
313,c..
31:?~3
:i33. 0
361.0
3:!2. 1
:n-l.o
3.~oll • :!·
34l.t3
3.\v. 6
3:!1.6
::! 'I c •• t.
:? •11 • 6
:·~. 7. 1
~ ~.,J. b
24~.:;
2 4.v
:!·H. 3
:!!i:i.
:!JO • ;t
2S7.o
:-~2 ~ -'1·
:! 6 v , 'I
2'17.7
ir-L'\ ~ (' .• ~
ilt'll·
:! :'7 • ti
2:'7.'i
-:!"2'1.:1
2:'111. :•
~:jJ). 9
~:.,:;. h
:!:1 j•. /
:!:!7.0
.':'b. 8
I (•7, .• ll
lli ..... ,.
J 116. i
!llu,IJ
j ll•i • fi
1 113. i
lf,~, ·I
1 'l~j. J
207. 1
lf:l:..3
::'0(),(,
~ 1-1. •,
2:1 1. 4
1H7.J
1'19.8
,,,.,,
•1111.1)
:~:·1.4
:'?4. l·
232.b
~9~.:!
~~·1. ~
:!S2.0
~·97. 4
30to.Cl
:!73.6
Ul.3
262.1
JU11
18/. 4
JJ4.9
27o.4
377. ti
:"~~.:?
2/IL 1
:?:•.q. 0
1'1'£..3
3 :•1. 7
3/8,9
3v4.'1'
276.2
.JUL
1tY,(J
1 ti .... t1
::?14.8
ltl7. 7
1 /1 • ~
'"lt"., "") ...... _ ....
234.6
:' l =~ . ,
:14.J
:, 1 7 • ,.J
4 '10. ~~
:! •l ~~ • 'I
::!49.9
~99.::.
~Jc'.~
·~,H. 7
l.Y4.:::
:171.8
j H!o, 0
49~.'1
411.5
:; i l . c;
300.8
ll : . fl
503.1
20&.5
1\7~.'\
4:'6.~
·~1-1 ..... 9
4flo.O
111. a
J:><~o.a
3434.3
J:J-14.8
3:'60,9
3ct.c>.7
4016.7
3708,9
3426.4
3546.7
3:::ill. 9
38(i 1 • l
431:11.9
'1117. 5
~~4.6 2&~.9 3no3,2
'~~.) 618.7 3745.9
:::! :q . (-. 2 1 3 • 1 ::; ;> 4 4 • 3
633.:::; 5~1.4 4035,7
2:'R.9 2~9.1 3~36.1
3~5.7 :::!03.2 3121.9
':!'>6.'1 16::0.1 2f>41.5
~~Cl.9 l~H.7 2~18.0
33!:.. 2 -.(t7:6 ___ 375."'a,....""9;----
:!:,a. c. :::•>B. a 3:?:?7 • .,.
31~.6 1:.o.::: 2913.7
2/l 9 I ~I
:?90. !j
28:'l. ~·
,!()9 .. ~
307.3
396,4
756.0
3-42,1
4fl3 .;
~00.6
404.7
180.5
:.146.9
419.:.
-1:.a.o
355,4
3402.3
3::!17 .::!
341 ~L 4
3302.9
33}0,0
:~9-18. 4
4169.3
3507.0
..
TO. L\.c ~: •. 5 Dev~l /''l r~.\1~ ... ~ la\.tl~ c.J.Al< c. C) t Q.JI .;_j\.0• ·' I ""'" ....... , ) # ~, ,, '
. ,. -· ..... ,, .... ...,..,.. ---.'1
fOWEhHOUSE FLIW ( cFi {. ,,.~"' ..
OC1 NOV ld~C JM.C FE!.< IIMI• Mf.. 11ft( ,I IIi~ ,I ilL (,lJf, bE.f•
~7\4.:. fi79~.:, 114-,l.i.'f H~>:! U. 1 7)11t;.9 () 1 t. 'I • l 7'1,.',.11 c,::, ,:,2 .. s ... .... 1 , ... .:.e._ 8363·'1 1vY'\0.6 ol4'J.u
=' 6~87.4 7447.9 8'1:!3.1 791'3.3 o·13 7. o 6fi:!O. :·, !'.7~.e. 6 ~:•e 1. 7 It H.Hl, 7 r:~;a~.9 IC.t:t.O.O l 1:!07.8
3 ti:!Ol,.) 99lfi,O 1187:!.. 9 YQ,·,O. !i 7":>'16.'1 l)'lnO.J '/ '11 (l. 6 J,H'\!:o • 't 11\i:.Oc.,S' a:.;.r .. 5 1 (J/~ /. ~ \0:!93.7
'I l01Li.7 11010.3 11666.8 e:-.:1". 4 /3'TIJ,B 6•161 •• ~ 7n7-t. 9 l 0 IJt. c 1:"1/04,/ l1~6·1. 0 1 (I~. 'i 7 . 0 8149.3 .-6996,7 9100.1 11:'i03.::. B8v0.9 7:iH~.'i' 61!.'1. () 711(1. 7 Y:J'lO.u J 0980 ..s &37·1.1 9'f-l.;. 0:.0JY.9 ( ... ,, i' ill:? • J 9805.8 119(14.4 9~:~~. 'l 7 •/:'ti. •) 6 ~11-tJ. ·1 /c'oYJ. •I <'-•1/~ •• 1 1 • r :• ·! • 2 'i' I I l , :? I:~ 7 b;\, :• J3i63.:?.
'J 76:!9.8 9167.6 113:!3.0 [11}91J.::.. 7~·4 c.. 3 64'1'1.:? 74 '1'1. 6 'l'le6.tl 137t.J.:? l:!:!:!~.J 13Je3.:_1 1.\7C.J.:.!
b 1:1:?17.:? 1015:?.8 12103.0 '7' I 6C., 0 fl04:?. 1 6500.R 7/ol.b 7C.u2.3 1:"4'13.1 8379.6 10849,;> 1:\763.2 ( 9 10205,5 11187.3 1:!378.0 1001::!.1 /B6$,4 6470.1, l-tl Ol. 3 7:_-lll.R 10:>64.9 8463. •. tCo79.a ~936.8
10 66;iO. 1 7.SCi1.1 11'187.3 Uf.l9 L 7 7U1:2.3 f,:,l) 7. 9 ·;::.~o.o 'i'0!;5. 7 9:.::!7.9 7no.4 1176.~.~1 13763.2
( ll 9042.6 1Ci001.7 12127.9 9:'63.0 7~93.4 6490.9 71:108.2 u.I·U./ / J OIJ, f; 6\:19.3 10476. 1 llEl'\fi.1
12 1 OO!i3 .3 102'11.8 12'!79,::! 1UO.S:?.6 8216.8 !:.f. t, !., • 7 Y 4 :, II , !j 9:!17,L 1:\4::?7. 7 Bu7'},fl 110<'11.~ 1v:.:?J.Y
D U441,3 '19:?3.1 1:?095.1 937:!.6 EI066.6 64U6.1-ft~t\i:!. 7 t. 13::!. ~ !:.5763.2 ll~r·G.:! t37o3.:.! 1376:;.;:
14 9:!1j'i,6 1v07:..o 1~012.4 907:'.7 80'10.6 ... 'l:t•l• 4 7'Hib. 3 'l'l""!~. 7 1:•o9.;,4 12463.3 l:; 7.'> ~. 2 11777.2
I r . ·' 1:19b0.:? 9464.4 11~03.5 bf;5~.7 7~·!.i3. 4 6·1 !i?. 7 74.£<,6 7.' JoJ.~ 1:'13:!.6 1 1 70 0. ~-1114:'•.1> 8:>A~. ,1
16 67:!5.9 100:'4.1 11:?77.:? R;.(l:!,l 74b:?.O o·H:.!.'I 7i'RO. '} 7\•!·~. r. 1 (•/Of. 2 '1.\bO.O 1 Oc.6~' •. ~ I :oc 3 .:>
1 7 9471.;.'1 9::!86.0 !1594.8 005:).5 7B·lv. c. 6~ 17. I! u:Du.l3 Ct4~i7,9 t:\(t='2.3 1:1.," . ., --"C~ .. 1u4H.b 5!-Y4 ,J
1U c4u9.Y 7B09.7 114£:J1.3 8934.7 79:?1.~ 6~16.:> 7.-:,7:~.5 t-1~:-~. 0 1 :!Ovl. 1 'i~' o:!. 0 D763.::! 13763.:!
1'1 75 • .:,7 .::! )':JII:~ •!:.. 1::!046.1 9428,() E!'l'\l.Y 67111,,'j fltH'Iol tH.j], d 1176~.::! 99'14.'} 11)9:'lfl.$ ss 0'1. ,,.
20 6 4 4•1. 5 7:?~:.1. 0 1070'1.7 ~:_-163.4 7335.0 04:J~iu i' 77 1t.::! ~;!:~:i.A ntBti.O 97!4.3111601.6 tt-:>o:?.sJ
21 6tH'i',O 77i.J3 ol 9:!31.6 fJ:!5U.:i 6757.9 7016.4 60::! 1 • ,. 607fl.1 t~ .1 ~) • 3 [;06::!.:! 10o72,fl :-.~:!~.5
~:! 711~.:! 79Uti. 3 S'·109 .3 831:!.1 67tJ:,..:! 7033. •i 6069.9 57!:J1.:! OI'·HO. 9 H~71, 6 10405,<; 5.!.~6.0 .., ..
-.l 6721.1 75o~.7 9040.'0 7'132.2 6909.1 6r.67. c. 661 tL 6 11 ~.9 7. fl 1 .no 3.:! Y36&.'l 11 364. 1 1 ":'o~ .• 1
:!<; 76:"10.:. y:; U. H l J 0J 0:. • 'I fl716.6 7i'Hl .a "''l~d .7 7~J3:!. 5 5911.'1 11)07•\,8 c, 'I'CJ 1 • 8 ll1tiH.l 615~.0 .,,-_.., o6Jl, l 7417.5 &8tl5.4 7860.1 63Y'i.1 oAvt.b 56/:!.9 6786. :• 7!Jf;l. 7 1 o:'3Cl. o 11037.0 ~6:?0.1
!!6 66o1,9 7506.3 90:>3.4 U0:?4.3 65&3.7 "B l::.. J 5b6l •• 1 '1'114.7 13 I ::i::>, 2 100134.9 109•11.6 !, :!03t:l. 9
:?7 998S,::? 923:?.0 111:!4.3 8'113.6 75::!9.4 64tH .9 76·13. [J 7:>58.4 96 .•4. 1 Bfl9:?.6 11'197.7 608:!.3
::a C,/36. 0 7c67 .::! 913.L 1 8054.9 t.547.o tdl:!.l ::;7YU.~ 6'19C-,2 137c'o3.::! Yl17.'J 11\31.2 9519.0
::!9 9Y U!.:! to!',d'l.u 12:•.;o.r. 'f 6 'I:! • {) 9178.::! ... :.:•y. 0 tJ601J.:? 6364.3 74!11,0 8.!.3 1/. 0 109 \r,,:::; ::i973.'\
( 30 6U:!!j. 1 76if •• £l 9004.:! 79/J.fj 6~,(~3.~ 664:!. :1 ::;7o7.J ~·'164. 0 9787,f. l007fl.6 H)64b, 7 9R28.7
Jl YuoJ9.a U:Sc-7.:! 1:! 1.:.2. 4 Y45U,7 tHdo,:! 64tJe;,Y ~46•1.7 6f.6::i. 3 11 ~U9. 9 11:!96.::. 1:? j iiY:'l-·1 n 4::!. o
32 9870.6 11447.3 11670.'1 Bfl6:.i.7 7742.:? o467.'t 7HJ2,6 6B01.7 8205,8 10608.3 13763.:! 13493.0
l
AVE 8077.1 9180.8 11070.6 8769.! 7508.8 6565.? 7480.3 71\t-7.7 10!o6t'>,O 9454.:? u :.H. a i668.6
(.
(
(
l
•} :.:;,_: 1/.s ·-r~\ I Jl4~ ~. .() ·Jn lJJ ~ , Nlo~ll, c.1 ( ,Jo.-... ;oil\..
;; ..... .. . .,..._._.....~ ..
SflLLS (CfS)
l OCT uov liEC J•'•tl FU• tifth Hfh !It'\ y Jilt I JLJL Alit• Sf I
(),(J o.o o.o v~v 0.(, o.v v~v \),0 o.o 0.0 0.0 11.0
::! 0.0 o.o o.o v.O o.o o.c. v.v (j,(} v.o o.o t),(j o.o
l o.o o.o o.o o.o o.o v.o v.v v.o (J,(i \.l• v. C· c.o
4 o.o o.o o.o 0.0 o.o v.o c.o o.o 0.\1 0. (· c.o o.o
( 5 o.o o.o 0.0 0.0 o.o o.o v.o o.o o.o o.o o.c. o.o
6 o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 ,49.:! :!:'o.C
7 o.o o.o o.o o.o o.o o.o o.o o.o 914.::! o.o :• 'l.i i' • ;:. :!73:!,o
( ij o.o o.o o.o o.o o.o o.o o.o o.o o.o O,(i o.o 970.7
y o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o
10 o.o o.o _:~.o o.o o.o o.o o.o o.o o.o C•' v 9~::..:-1:;1'-6.4
1 1 o.o o.o o.o o.o (J,(j o.o o.o o.o v.v u.o o.o o.o
1:'! o.o o.o G,O o.o c. 0 o.o o.o o.o o.o o.o o.o o.o
13 o.o o.o o.o o.o ',J. 0 v.o o.o o.o 1~~5.6 o.o 6:!53.7 1004.0
14 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 2564.::! o.o
l!J o.o o.o o.o . 0. 0 o.o o.o 0.0 o.o o.o o.o 0.0 o.o
1o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o O.i) ~1179.9
17 o.o o.o o.o o.o 0.0 o.o o.o o.o ,J,O o.o o.o o.o
lU o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o 6nP.!•. :s 1965,0
1'/ o.o o.o o.o o.o 0·.0 o.o o.o o.o lfll.'l.4 o.o o.o o.o
.20 o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o
.21 o.o o.o 0,() o.o o.o o.o (',, 0 o.o o.o o.o o.o o.o
;.! =~ o.o o.o o.o o.o o.o o.o o.o (i,O o.o o .. o o.o o.o
.23 o.o o.o o.o .0 .o o.o o.o o.o (1,0 141l.,!j o.o o.o o.o
I. 2 41 o.o (j,(i Ci.O o.o o.o o.o 0.0 o.o 0.0 o.o o.o o.o
~!J o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ·o. o
( :!" o.o o.o o.o o.o o.o o.o 0,0 o.o o.o o.o o.o o.o
'2'1 o.o o.o o.o o.o o.o o.o o.o o.o 0,0 o.o o.o o.o
:?ls o.o o.o o.o o.o o.o o.o o.o o.o l~JC.,:! o.o o.o o.o
( .29 o.o o.o o.o o.o o.o o.o v.o o.o o.o o.o o.o o.o
30 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o
:u o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o
(
3:! o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o 12217.9 o.o
t.VE o.o o.o o.o o.o o.o o.o o.o o.o lhr-.3 o.o 1002.2 3!:.4.5
l
(
c
(
c
(.
(.
(
-
1:. . ~I r \1 ~'\:..1'/
. .. .
EHEF.GY ff.On fiESEF.VOJF. '• (GIJIIJ
OCT
1 .:!17o0
::! 19C.,O
3 2u6ol
4 328.1
~ 22:i.4
t. :!53o4
'} :!47.~
0 .:!66o5
'i 331.0
10 20b.ll
11 293o3
j:! 3:?t .. 1
13 .:!13.13
14 3vl.3
l!i :>'il.3
1i. ::!83.0
17 307. •1
lU :?Gl.3
1'1 .:!1!:. 0 4
:!Co :?OJ .• 6
:!1 :!OJ o B
i.f __ :?l~L5
:!J ::oo.o
:?4 247o2
:!~ 197.3
:!6 19Bo:!
27 3::!3.9
:?E:i 200o4
:!9 3::!1. 7
30 :!03.1
31. 319.5
32 320o2
AVE
NOV
'276.1
214 ...
311.3
31::i.~
291.9
110.3
:!IH .8
318.7
351.!!
:!3!,.9
3!3.9
3::!1.5
311 • o:;
31l .. 2
::!97.1
314 .c.
:?91 's
:?43.6
31l0 .H
:!:! 4 • ·1
2:! 1 • u
:!30.0
::! 1 i. u
:!9'1.:!
214.:?
:! 1 }.; • 1
:.>u9.u
~:?O,fJ
·~J::!. 'l
:'19.3
3::..!..8
3!39.~
283.0
l•EC
371.7
266.1
38!:.0 1
378.4
373.1
388 •. 7
367,3
392.6
401.5
37::.c.
393.1
391L3
39::!o:3
389.6
373.1
:!/t..c.
?37.7
293o9
:!78 • .2
:?£JS.5
:!99.2
27':,,0
:097.1
:~2'1. 7
:>BIL 5
300.4
3:!6.4
30 4. 0
::!91Jo3
?77 .5
216.!.
176.7
22::!.~
~16.8
~.:!:!. 1
?1:?.3
2 2 I , 1
23~.6
230.4
::!29.5
:!'14.:>
::!41.6
?J6 •. \
235,6
221,3
:1(J'J,j
2\l:'.'l
2 \i'}. f,
:.!09.6
~()9.~j
;! l 0. ·~
210.6
:?tv.li
::!\)'],')
:•11.1
;-> 1 (J. 5
:!1!:...6
:>1(),1)
:!09.;>
20'1.4
230. :,
170.!:.
:?:>Y,7
:! '11. 1
:.!.~I • 6
TH:~.:..
:? 50.9
:?40.6
~~· 1 • l
:.' ;\;'\. ·1
;~ ~ .. , . ~
:!Y:l.:!
?t.].6
~=J'f. ~
:?Jo.o
MitY
17~ .....
276.:!
3:>4.H
30:"j,6
~07.'1
J(l3. 3
2•16. 1
::31 • c
:• 'I (j • l
:!bl.J
:'1:...7
JJB.v
2J'i.5
.JUH
23J. ·l
:"c'>0.7
:~~!j.7
398.c
344.7
349.r.
-~:~::!. 0
.. \'1::!. ~
322.:!
43:!.0
J79.o
371.4
365.~ 275.& 219,2 :OY,U ~41.~ ~~~.Y 336,1
376.1 ?67.::! ::!::!9.7 ::!11.4 :!~B.S ~0&.9 40P.El
37::!,4 289,8 ::!J::!,l ::!lJ,J ::!J7o9 ::!D4.3 401,0
350,7 3u~.8 ::!47.0 ;>}~.1 ~1'1.::! ::!76.7 432.0
346.7 ~&B.O ::!14,Y ~OY.4 ~41.0 19Yo4 ~13.1
214.8 ::!45.7 JU1.6 :?Go,~ 1/~.4 190.8 JR:>.9
.JUL
::tb.3
:!7·i. 7
:!74.8
::!74.5
:!bt1.7
?Y5.7
396.5
271.5
:.?72.!:,
~~E-.:!
::!n7.6
:'({8.0
373,3
4il'1.Y
37'1.7
304.3
.:?6~.4
3:?3. 1
3:!:'.6
31)4,6
239.9
:>h(J,(J :047 •. ~ ltl.!.3 :>\J 1/.J 114.0 171.1 JS'::.4 :?!:..!:..0
:>74-.-c.--:;4'Y-:-~oo 0 ::.----:!TI;:s-Jt."",~ . ...,:.-· --3:07.1 -• .,.,:;--4"':""'~:"-· -. o.,---·303. 6
37Ll. ::!6:!.7 ::!::!U,O ::!O'io3 233.5 Jt-15'.4 3lo.3 ::!83,3
~65,9 :>37.8 176.7 203,3 1bY.1 214.5 ~J7.l 320.8
:?6B.~ :?3ij.7 l/6.9 2~~.n 16~.~ 1~::!.8 41::!,9 3::!7.1
3c.O.U ~74,U ::?.:0,6 ~JO,~ ::!Jb,9 ~~:>.~ 3~1.~ ::!R3.0
::!11.7 ~4o.7 179.6 ::!06.1 173.0 199.6 4J:>.o. 29~.8
397ou 314.4 ::!19,6 ~11.H ::!t6,0 ::!03.9 ::!33,9 ::!76.0
::!67,9 237,5 176.6 201.'1 l6U,4 171,9 306.8 3~6.9
394.5 306,6 ~35,4 210.4 2b::!.4 ::!13.~ 357.::! 366.5
378.~ 267.5 2~6.6 ~09.8 2~2.2 217.9 257.6 344ol
353.::!. 279.7 .216. 9 209.7 330.1 303.5
,;uG 5£f'
3;\7.'1 1/7.'1
:nc..9 344.3
3'1::!.4 31&.0
331.1 ::?17.7
31!i.4 2S'l.~
'146.'1 '11.!.0
446.4 43::!.0
344.'1 4:->3.9
3:\6,5 179.3
•Hfo,£1 4.S:!,O
3.'f:l.o 363.:,
35!i. :• 3:\0.0
4 4 J.. • 1 'I:~:?. 0
44c..4 369.7
31-&.4 :>::;8.c.
34:!.'5 4:'7.6
327.8 170.4
446.4 43::!.0
3'lb.~ 178.9
3 J) ~~ • 3 1 7 11 • 6
317.r. 167.6
3 \1 '1 . ..;'..:,."'---7:1f, 4 • 0
3(.4,6 3lb.9
341.0 177.1
331.2 lol.B
3 •I e . 4 17 o • 9
3!i0. s 175. 1
334.fJ
344o7
400.5
416.4
31>4.!f
2'14.0
11:! .o
307.9
3U7. 4
42:i.b
296.9
11/Hl
3v2c.~
2656.9
3375.2
3577.6
n21.a
3663. u
3B51ol
3640.5
3441.4
350&.1
3440.'1
3o1:!.7
3891.3
3El93.9
3!"'·09.3
3!j45.0
3341.1
3C.b2.:?
3540.7
::!9:i1.9
.::?!198.1'
:'£>~
3414.2
31HO.:?
:>7::!9.6
306::!.~
3:'59. 7
3Ut.6.8
3304.3
2'>'33.1
3611.0
3713.8
3361.9
(
(
(
l
L
(
(
l
...
1\11 ()•Z L ! • i F V\ il· .. ~ '/
'N,:'\,{ 0..\1' ;• i "J::),J v;l ( OJV<'jt•H
I OT tal EUF.I\GY f f.OitUC(I• C Gt.Jll >
OCT r.ov (•£C JMI f £ (1 (,1 h
439.7 594.0 ~DO.~ ~BD.U 4~/.0 4Jo.O 41~.4
., 4 J 9 • 1 4 H B • o 6 1 1 • 6 !J 'i <t • 7 4 1 B , :; •1. I ;• • H ~ t> tJ • 'l
3 5£3.3 670.0 827.0 6,3.~ 469.7 4Jh.O 416.4
4 677.0 741.~ BJJ,A ~90,$ 4~6.3 43U.u 4'14.1
~ 507.9 6~9.~ OG~.9 607.8 46U.G 43o.0 416,4
6 ::.21.B oo-4.5 63:?.4 <'-J~.u ·tiJ6.J 4:~6.1 4JI.Il
7 5:?5.4 624.6 79l.o ~U7.9 46~.4 438.0 41o.4
411•. 7
1 :_.;,(I
~;)[,,!::,
5UC.::!
44v.::!
U 548.~ 681.4 84~.3 630.1 494.~ 430.1 4~c.3 500,4
9 676.9 7'16.1:, IHB.J 611$.7 'lfH.:'! •1.111.1 1:iu •. ·• 483.0
10 ~69.7 57b,O 799.0 610.6 4U0.1 4JB.O 4JH,p 541.:?
JUH
11:•o. 'i
4'>''i'. y
~0 I. 'i'
713.7
:J ., 9. 1
r. .. ~ ~ •. 'l
i!O'i.9
7:'0.3
6·oo. 3
11 613.0 674.2 B4J.O n3•t.4 4S'J.1 ·llu.l ll4~i.J r.r.4.6 419.4
J :' 6 7 6. <; 6 U Y .• 7 B 41J. 1. 6 B 4 • 6 50 4 , 0 4 ·lJ • 3 5 ;\ 7 . 7 6 \J l , 3 ''13 .• ::?
J) 57:?.6 67J.7 844.~ 64~.U 497.2 4JU.2 48!J,O 4h9.3 ~10.9
14 636.~ 6b7.~ 839,4 6:!4.9 494.0 4Ju.t 416.~ o49,J 6b4o6
1~ 611.0 641.4 603.3 !J91.1 466.4 4JU.0 416.3 4A3.:? 7~u.9
16 586,0 600.~ 791,3 ~89 8 464.1 4JB.O 44Q,J 4~3.4 6~9.6
11 6~9.J ~21.~ ao~.6 6DB.& 4UJ.6 ~Jh.l 410.o 440.3 706.o
lL 4~~.6 565.Y 799,8 612.7 4a~.5 4~~.1 4~9.2 ~G4.t 113,7
1~ S:?G.l 6~0.6 840.3 647.9 5!7,9 4~6.0 505,3 ~/0.4 191.1
20 443.5 5~2.5 760.~ ~73,0 4~4.3 43U,D 4J7.2 443.u 414.0
:?J 4JB.6 4~7.4 ~98.~ 5,~.8 394.4 137., lfi~.u JJ~.9 :!Y9.7
_;>;· __ 12 9::. !__ -~ ul•..:_!_::?t ~ ! ! __J,! ~t .!..9~.!.!. 1..!..· :!.5 _ _:4 ~ l ~~.J ~ ~..!.!..___;!~~f'..:.•-.:,7--=:!'-'9'-'7'-''~4:'-
2J 439,6 4uu.S 703.2 ~93.~ 469.1 44~.~ 4h9.1 71~.5 Cl0.7
:?·l !..3:!.9 1:.':.~.7 bO'J,J 60.;.o 4110.3 4:~fi,J 4:'4.!.. 4:\9,B :;7f:,IJ
:!:.; 09.1 4hlJ,(} o:'7.::! ~<\9.0 41U.9 <l.i1.9 360,\ ~tO!L\ 4:H.:?
~6 ~J9,0 4UG.l ~9~.6 52/.6 3~~-~ 4d~.O 360.J 443.1 74/.:?
~7 663.7 621.1 77U,9 ~U4.9 464.5 4JU,Q 4,},3 469,1 530.1
:! U •I 19 , 0 4 1m • 1 r, '19 , 9 !, •HI , 9 4 .\ b • 6 •U II • 1 i 79 ol 'l 11. 7 8 0 Y , 3
A VI.:
:.6l.,l
4 :~9. 3
676,'}
1:.77.0
'lOu,9
4Hti. i
761.4
77q.t
618.9
U4b.l
;',<t<;. 7
u·iu.t
816.0
7.67 .7
t.64.0
:.11. 4
651.9
612.1
601.2
500.~
4 .il. 0
495.~
478.2
4J~.~ 4~0.0 416.6 4~4.1
'l.H!.U 1/LY 4o4.Fl 61U.1
43u.~ 4&~.o 469.3 6~G.a
4JB.l 440.6 477.4 470.0
43l\.9 ~00.2 60cL3
.JUL
437.3
4! !., • tJ
4119.:)
.If.:'.~
4:H',9
~'l'7.y
7.53.:!
497,9
47::!.::!
439.5
43~.7
501L2
7~7.8
740.9
759.4
5~6.0
4:>4.'1
~s:•. 9
!:;93.7
4 <'-1 • 0
4:!4.6
4 'if. • l
::itl7.6
4<'-'1·6
461.0
t>04o4
46U, :=,
564.8
4f.4.Q
611. ~
670.5
615.2
s:u~.2
AUG
')90. 7
~A0.6
!jjl~.h
!J 4 4, I
'1/.4.0
944.9
590.8
586. :j
8')5.4
564.H
c.r-9.9
1140.6
1018.;>
715.0
c.o.o; • ~>
·j~,9. 4
107'i.Y
575.4
713.9
61'1.'1
590.~
699.U
::i'i«t. 1
61\3.9
5';7,9
641,0
617.7
544.4
t.!J~.o
79b.9
1:!02.-\
707.0
SEf
363.0
113'1.7
7:!.9.5
5!"·9. 5
~f·!f I J
944.8
935.:?
969.0
11:l7,fl
907.4
fl.\0.0
716.9
918. 1
781.5
545.5
l(J.I G.. 3
1B3. •
9~;3. 4
408.0
3131.8
3:?9.11
3:·~. 'I
7:! 4. 6
3~5.9
11::!. I
6f.4.3
J7!j,7
6'18.7
360.5
t.:·,I\,A
806.9
882.1
652.3
I.' I
ANN
5947.8
6J4i.6
6009.5
712:!.4
6:i88.R
7.!i30. 5
i'Bo7.7
7349.3
6867.8
705'1.8
695::!.3
7bl3.7
8:'·73.~
8Dllo'!
717:::.~
7~90.9
6585.4
U.97. 9
7076.8
6073.8
5240.1
7173. 1
6400,0
567J.3
641:14.5
o·17c. 9
6484.3
0<'.07.:!
630:! .1
7759.4
7883.2.
(
(
(
(
(
(
l
(
T"' fd ~.,
TOl t.L US!il!l...F.: ENCf.GY "(GUill
l .,
J
4
5
6
7
i:J
'}
Ji)
11
OCT
·119. J I'J<i.O
4U8,0
670.0
741.:!
6:!9.::!
66'1.5
624.6
66 l.4
746.6
570.0
6/4,:!
6l:9,7
oJ3. 7
6u7.6
... 'l .1 • .,
olJ(i,U
6~7.::;
5&!J.9
o!iO.o
EHiO. V
61 l •. c.
8::?7.0
811.'1
80:!.'>'
83:::.4
791.6
84:!.3
048.:!
799.9
U41, U
848.1
B-'14 .1
83'1.4
1103.3
791.3
806.6
799.0
U40.3
7aO.::!
!jiJt..tl
!.oJ ~ • 7
~~3 .. :>
!iYO.~
c.u7.u
b3:!,8
~ai· + ·9
o"HJ.l
68~.7
610.6
6J ... 4
6LH .~
6•15 .l:i
6:!4.9
~.91.1
!oA9, 8
60f.l.6
b1:!.7
b47.9
~·13. 0
ffb
·1~.7. 0
41b • .3
"\6Y.7
45c..J
46fi.C.
4bo.3
4o!..4
4'14.::?
4tl4.~
4tiP,l
'In .1
$04.0
497.::!
494.0
466.1
464.1
481 • ·~
485.5
517.'1
.. ""j4.3
1\,l!{. 0
'l.~ I. h
•Uti. !i
4 :\I • \•
4 {1<,0
·LH1.t
4:{c::. 0
'lJB. I
.1Jf. • I
4.Hl. 0
•\ :5 u. 1
443.3
43o.l.:!
4 JU. l
1Ju,(l
4:~H, 0
q,Hl. 1
4JU. I
4::it..(l
'I.HJ • 0
590.5 !'..26.8 Jl'H.4 ·!37.:•
l: \ i 11. 't. ,j . (
'Le).J·~ l (' C\M to l•
'll '" 1\
Jt,O. ·1
'11~.4
·H·l.l
41 6. •l
4:q. I)
416.4
·'Lio. 3
4:to .~
41u.u
4 ·1 ~. 1
!Jil.7
'lH!J.o
416.4
•II 6. "i
-140.3
IJ/(),()
44u.;
4!Ji',O
5UV,:J
~43.1
~j 4\3. 1
·l'l 0.:!
:; 'l :~. 1
.:..oo. '\
4tl,\. 0
!..~1.2
::, ~t3. l
~., 3. 1
4119.3
., J:i. ~
4 I).~ • 4
·140.3
.1111~
420.'1
'1'/'),y
sol. 9
~.:~:! . k)
5:3::!.8
~.:\::?. d
::i3:'.e
:. =~::! . 1:1
419.4
53:!.1:1
~3:•. b
r.:\:• • B
!:.33.1:1
!.:1.:-. 8
53~.8
.JUL
4tlY.5
4<':':.:'
439.9
~:!O.Il
5:.!0.9
497.9
J.7~. 2
4 :w. !J
•l :~~·. I
!jUU.~
!:.::!0.11
::.:1 0. tJ
5::?0.1:1
~~u.a
4'34.4
~~(J. t.
~~c..o
5jU .. ~
5~j(,6
!:.•\4. 1
5~0.6
s~.o.;.
s:;o.6
5~0:6
s:-.o."'
~~o.c
~!,V,b
s~o.o
5!"t0 t t.
$",0 ....
:i :; 0 • b
~~0.6
SEf'
"\63. 0
!:.lt..O
::;76,0
5~·9 .5
~~~.3
!:.76.0
57t..O
576.0
3117.13
516.0
576.0
t76.0
576.0
576.0
ANN
e.'t47.::?
5R43,8
6.S::!6.0
6807.3
6485.4
66::!8.0
651:!.5
6728.t.
6764.::!
6428.5
.Lf-.6::!. 6
' 94.9
61i26,0
681.0.1
6551.3
ot-.L4,S
6403.3
~~Y.~ ~43.1 ~3::!.a s::?o.a s~o.~ 576.o 6507.1
~o~.3 ~43.1 ~J,,u s~o.u sso.b 408.o 6~93.5
4\7,::! 44J.B 414.0 ~61.6 550.~ 38!.9 5910,5
39.1
:J63.'l
677.0
507.9
5::!1.8
S:!S.4
!1'18.6
676 .9.
•169. 7
61'l.O
6/6.9
57::!.6
63o.~
611.~
:;.u6.8
6:~9 .3
4!.::!.6
~20 .l
•h3.5
4.,&.6
·U'/,1 ~Y¥.1 ~~7.0 Jti4,!. 4J/,J
~r--4 Jy--; 6--:un;: ~.-7v3: :;--~.'11 ::r-· -46~: !···--1 '1!· •• :1
J~•'~'·~ I :\,\li.9 :•Y'),7 4::?·'Lo 550.6 3::!9,8 ::il76.3
_y.~ dU_J~~ ... ._?_ __ _:on! 1_1'!!! :) __ ~!?.Q: t. ___ 3:>:-! 7 ••• ;:;2z7. 3 A
24 532.9 650.7 [J~~.3 60J,O 4H0 • .3 4J~.J
~~ 439.1 408.0 6::!7.~ ~49.0 418.¥ 437.9
AV(
1!'1.0
66J.7
4 'i J. (o
bt~t:J .. l
43'1.1
676.9
677.0
543.8
4Hb. 1
o:.'/,1
4HH,1
7\HL 'J
4 HI).·~
767, ·I
77 4. 1'
!1-yS'. 6
77b.9
'5'1'1.'1
I:HU .1
5YY.7
EH&.l
816.0
767.7
FCihfCASl [I£'11ANh fo'IEt>GY (GIJIII
llC 1
617 .o
tiUV
777.6
!:.::!7.6
~{14.'1
!. '111. ·t
t.6•1. 0
:.., .i i • ..,
6~1. 9
61::!. 1
.lftN
773.8
JH!J,O
4.Hi ,;,
SOO.o
'l.H .<l
49~.!J
4/Ci. 2
f(£1
'l.itl. 0
43fl.\l
•l.1 tl • 1
4~0.:.'
4.\ti,O
43fi.L
'l.~tl.l
438.9
MHI\
662.2
'ltlY.t !;4J •. 1 ::.3:!.8 5:!o.a !J~;o.~.~ ~n.o 635L:o
4~4.5 '·H•).8 ~:\2,8 4c'-Y.o !1!":0.l• 385.9 6313.5
]o0.3 S05,1 431.:! 4bl.O ~::;0.6 31::?.1 5:iP.O.O
360.3
4:1 7.3
3/'t,l
~·1{1,\3
3./\. 'I
4H:',O
HO •. b
"1'13 .1
469.1
441.7
_4.16. f,
116·1. a
169,3
477. 'I
481.7
53:..1 • 8
53::?.8
53:•. 8
11 r.~t. 1
$3:!.8
!,:S:_l, B
470.0
497.6
.JUN
!'o:!\1. B
4e.b.5
S:!O.Il
-!54.6
!:.:!0.0
5:>0.8
5:!0.8
487.5
.llll
~-20, B
~·.)o,o
~~0.6
5!".0. 6
5i}A, • •:_
5GO ,l.t
r.rjo. b
:l!iO, 6
576.0
375.7
!".76.0
3c>O,S
:)76.0
!:i76.0
576.0
501.:!
E£f•
576.0
51:l60.8
6361.2
5953.9
6607.2
5946.5
7009.'1
6830.8
6392.9
7784.9
' I
l
4
. I
•.
~~c.." € 'i\. ~~~ 'I
~i'r ...... \.,~,A Po~ ~~--t.. ,j
2
lo
I I
\)_
(2
6 ·~>Sh
t --. •
3a. 7 ·9
33£:, '7
3J.t2 4
3/ {" 4
LJ ~~~. L
4L:b t..1
{;!..~ .L,
3~ 7·~
-1-u ~·Lt .
; L1&·S"
~~6·~
:Sl7.('
3Lfl.o
331 '2..
_ ... [j ~ . ..,
~ :)1.)• ~
!, L ~ 4 ....
3 $1. 1.,
~-7~·?:.
312'-l
3o~·l
3/5·1~
~ld 7
304·7
3oo·7
~-<-J ~ .... 0
-?lu·4
.;.L,q-f
~Lr1·7
).L,-f 0
262· {
3J1.o
Jh·2..
3~1·7
.:211 ~.&
~53·7
2b1·7
)J.td. ~
21:; 6
"~ 1r 3. J
]ol I
2bo·l
~~'hg
.:.4 J. g
~~. 11
2~o./
-;-(....c...r) ~....:...._, Q
c [;.
- -• I .
77~7
117 2_
7716
76 n
-ls-8, J,
lSJf"
173&
I o l)_':J.!.
7 7-Ga
7 6 /,s~·
/}(.)~
916 .!"
/OI.~S""
7 7/S"
I Dl S'(
8'1 1J
~ 5"2-8
1b/:s
774S
9t~o
/() {3~
7 716
-
sr·;t
C' f!. . .
/6.
!2}3
-7 .-i ()
0
113~
:,-,7 q J _,.., • :
~~·r I
~ ?!,2. l.J I
' I
.?'3}· ) .
. ?l 1L,. ~ .
1-:.6 ·s
1 l •• ~ 1'-1~· ~
"'1-.-l ; ,:c:,. 0
/l. ..:.~ 7 £.1-~ j
'0 I .., -I J' ,/ : .... a -::-J ,_, .. ,t u
jL,~L J~;.t.J
;;.77 ';27.~
I ')_ 7] ~ • 4M;· {,
ld J_
2 L,/4
'
~14J...,
;3/..f/
-s 6 I 6
IS2·c
.;;1-~S
II.! e;
.;L.;.) 6 (,
~6 !.a
'1 I, .•, ..,
..,; '-' .....
/0 ~).,I
/D71. 7
/o.rt 7
9 •(72.
I Z7.6;
I ' !/, ·~. '-'·--
/o£/.. '7
11 "1 I ... (.) .....
I I I • I/ •'.,.) ~··
J'" ) , I \, ·-• .... ~~~.
; ..... J '.o '--
I ..
'\ ' .....
I • / 1: .. t,;' i _,
I 1.1 II " " ;; ,... (.., .......
II -..
..:.. ~1 ..! J
J .i ,, 7 7 I .,.._
I I/ ::-I I ..-
J ~ 111
It, &I;~
I : ., I, =' ""' .. ~
0
c
0
a
),4-4
I . I
""" .. """ ..... ... • .. 4 --......
~-~ r-• _ ....
. ' 'd
I ' ..,
.
...I
. '• -·
. . . ..
'1'?.-0--<
;~ ... ,,~r.J I
I ,
,..,_
l J
I.
' \
I ,.
; j
..)
\7
I .:_,
;..7
' , .. ~~ 0
13. I I
t:"'~"'3'f r.
j? :ot~ ...... 11' ;'V
, C. I "' 0 _,.-
5)/ g
... "'. 0 "~·,
~52 0
"' ,. -'2 ';2.. ~
:A.o] (,
I I
2~e.....-vC~i-c Crerrcd.:\·o-....
ll..s~blt_ ,_,a_ ... J'I .J t..J~A.. ~ -;.~d
p..,.'/' 0. 7, 't~.,., .../ t:j ;.1,/'1 t..~:.e k;. ,~,-,
~~~""" IN!o.-,.i~ fo!:.::ii-:.14... J~-.~~ "{
lA/I ~:& ~~ j ~ c;~;}' "b~·t u.-...._~..._
3 ao._3
~6o·~
~4S-9
... I .-~c.<;;
3o/ b
3ol. G
"L6J...l
;;; 3 J. (;,
3~0 ·L,
l) ~ 1
Jot, q
.., " . :.;._ 0
s'f·<l I • '-"
77;5
772L,
.: I ~ ~
_, '-I
71..-t..:(,
( '-.' (
?710
c ~ .~ ., -... --
; ... A
~ .. r..r
~ 1 o I
I
• I • 'I .. , .
77 If
77ol
7/o~
-
0
0
0
0
0
0
v
;;. 5 7&
0
<82
::rqs 9
11 s 3
0
c
/12
J
;;; 7
,.. ..... , .... ,.l~
~ J_;. 7
c:'J :2·...,
,.., .. i -u·.
. ~· .... · .. I
2o2-> 1
~ , 1 .~: .,..._.,--
-.. "" ,.v ... -
/.l (" ,,
I .. -
5071
S""tl 2
:lbTJ
S77~
,;_yg3
~ '., ~~.:...1.::.
, .. t• 1
:J.:. ~ '
64j6
I -..., -..
-f'l-'
S/1(
.-1?--t ~ G
l.-1'
.I .,< '-1
DIS.-
L~ ,..../ ';;) -·1
)3
(-:J37
773.
~ J .,_
.J-/
1o61 31
!~100 l
/~3s.-
2~ II
~/ l""J
.'4..11 7
I~'-;
I_:: I .L,
~' ._.l
~ • :; 'I
1 ... I 7.., ;;.:;. -:.-.
. ~ ~
1
'"I
I
I
I
I
!
t-:· r
I
l
! l
I
!
I
1
I
i > I .
I
l
~ r
I
I
l
\
!
I
I
I
I
!
I
I
I
f
2.
·r
/0
II
12
~~
I~
:r
1£
\)
( ~
I
:: ~ 7· /
J.S ,!..,.LI
1.J ~2. 0
! ..., :: !::1 --r-....,·1
I ;q. 3
-; -7 .:.!.::>1·
I l. ?. &
/64-o
~ 1/ .11 ........
17/.J
I I I 'I ., '6
; /'J. '1
17S. I
172 0
42~, 6
.: !.Jf' l
; L,7, 7...
-; 1-: I v'-"'~ ~
l18·q
/7:?·G
/h 7· b
I(, I.J o
~.J.. 7. I
{77. }
,;: I~ . )
' I I I .,~:b'
ii:r•}
=-~ 1.!(, ·4
(71 0
6/Sb
77:J.-o
71£iQ
s-13 ~
II·.· . " .. I
7-71 '1
7 :.7·-'/
.• -..1 •
...., .1 :? .?'
I ' ~ c.
I ·" ..,.... 0 c..:. ..!_.
_,--·"'\ ,., / e·
., ... ' ·.' ....._.:;
0
3 2:5 I
6 'JoY
., ~ 71.. c.:! ._. t • ..,
0
0
!J.osl
0
i101.
;
1
•; ·6 7 ~};1 ss ::J 4
177 1
344·5
3! ~-0
.:..47.)
Ul!· L1
Lt -;:2 c
I ;q "/ . I ~
.... ~ ./ ,....~, ~
}-I J 'l.J
f .,. -I
l • --' -~
,...,-:2 A
I ( -
,• !~ I ,.., .... u-
Slb1)
177 .1
I' ' _ .. I.~
17"'
I 4 0
.d.:.-.-. -.-.~ ·~--~:t.·.A ,• ~.~-;-~...-... -<:.-.l-. -~\-,---:l,.t:t--.-u...---.... -.-.. ·-(-:..--.-;--n "'--~-='--; __ L_'-f __ .b~ s~s
'I
I -fJ
l'.:..)g
/02../LJ
:; ll1 -1
? ... ~ ,j c--
I "'7/ ..,
.::: !_::> _")
117 7 7
-' -. 1 -7' -:, :.
,·:;; ~ t
l;j-;2..
,-":-' "* II' ~ •
qrl~
I 'J I I
::::; .... ~
1 :: r 1
:)
j
---.... . --. ..:,..;
I ';C 6
.· .....
0
.-
.....
::)
...
-1
..
J
•
!I
I ,
! l
' 2200 L
1..
,-.. I , ...
It ' --SE? ·--.lUG .: (~
f .. ..
2190
l !
I JUL
2160 ' I l
l
2140 r
i
l
2120 j
I
t
l
2150 \
I
I
2080 l ! j
!
I
!
2050 r
\
l
I
t l ~-;,.._/
''"""' 2040 ~ I u.;: I
z I
() *
0 2020 t -! l-
< l
> l
!.JJ i
.....J 2000
lJJ
l9SO l
i960
1940
1920
1900 1-------------
I
1 --~----~'.--~1------~----------~'----~
32 34 36 38 40 •42 44 46 48 50 52 54
TEMPERATURE {°F)
.I
V/ATANA RESERVOIR T'EMPERATURE PROFILE I -
! nnrn_.: ... -.. -~ ~~·"··----.---. .,I ....,, .. ,
... -------. . . . ... 't
'!'
. its"lJ I • 1440
--AUG I
!
1420
j
··-JUL !'
I
I
l
1380 I
1360
1340
1320
1300 -
('\, r.: v_ I.&.
I!
0 z l2.80
0 -1-
4 > 12SO L.rJ
...J
L.rJ
1240
1220
1200
1130
1160
L~-~--~L----~'----~--,--~~--~----~--~----~ --~--~--~----J
32 34 36 38 40 44 46 so sz 54
DEVIL CANYON RESEiiVC:R TEMPERATURE PROFll.~E
!
(
MILO C. BELL .. . !ol( 2:3 r.~ ~ .. --.~.-:~
•
.. ~:· ;t Mf~ef?e E1 \1 ~ ~ D I JUL 0 6 1982
MEMORANDUM C' -• • • ~~·-_ ~·_' ~ .. ~:-· -Ftu~-'.~~./l£,1! G, J(r~
1-----__ _j :;;.;"'
JUN 14 1982
sr-..--r ·-'I ' .. 1\fQ I
c:;._._:. •\ •. _ , .• ·1 Lake Comanche Dissolved Nitrogen Stu~y -
' ~'/CfsusJECTw· -----------------------------
z ~
0 !:-..
-(~ ----=--,
-, "'!(
..... u -= I z
. --1----. ,. I y"'' )
VT~ .. ·1
.@·
•. :I I
H..t
GIRl
I
Fr.:Aj
I r-t t •
. . I
I
--
-AC.t..SKA ?:JNEH
AUTJ-:O~ITY
SUSITNA
FILE P5700
.If. r'l
I am enclosing a copy of the report on th~ nitrogen
study 1 along with the only slides that ~ere made. I want
to get this to you as quickly as possibie so have not bad
negati~es mad~ here. Do you mind having ~his doue and
se:1ding them to me so the copies we have are cot'plet:e.
..
: ...
0 Pt . ~-8-1.3 r Jl.A.
~~ C\ '\'"£-V-l~t. ~ ~ ./~!~~)
-~
I
I
(
. .
•
LAKE COMANCHE
DISSOLVED NITROGEN STUDY
Prepared for
Milo Hell
P.O. Box 23
Mukilteo, Washington 98275
Prepared by
Ecological Analysts, Inc.
2150 John Glenn Drive
Concord, California 94520
June 1982
)
•
()
Nitrogen gas in the deep ~ater of a reservoir ~ay be slightly super-sattirated due
to the hydro-static pressure of the overlying water ~Jetzel, 1975). Therefore
~ater flowing from a dam with a deep intake may contain a ~uper-saturated concen-
tration of nitrogen. If this excess nitrogen gas is not rapidly released into the
atmosphere 1 l.t may cause nitrogen ga.s bubble disease in fish residing below the
dam outfall (Conroy and Herman, 1970).
A study ~as conducted at Lake Comanche Dam, Mokelumne River, California, to
determine the efficiency of the Howell-Bu~-;ger Vo.lve in removing super-saturated
dissolved nitrogen (N2 ) from the dam's tailwater.
The valves spray outfall ~ater into concretP conduits before releasing the water
to the stream. This was observed and photographed at Lake Comanche Dam on 28 May,
1981, at a flow of 4000 cfs into the 'Xokelumne River (see ar':'ompanying photos).
This creates a turbulent and aerated flow with the purpose of facilitating nitrogen
gas release to the atmosphere~
By sa,pljng nitrogen gas in the res2rvoir UQar the intake, and at several locations
below the outfall valves, the eff:i.r.iency of the valve T..;as obtained.
:·fETdODS
In order to deter.~ine nitrogen gas concentrations at various depths in the reser-
·;oir, ':vater Sr'lr:!ples ,...;ere collected in Lake Comanche a?proxi!nately 50 m from the
dam directly over the river channel on 28 Hay 1982. A Van Dorn Bottle was lowered
.E:0m a boat to collect \.later saraples at depths of 0, 10, 20, 30, and 38.4 m. As
r: !?Orted by East Bay Mtt::licipal Utility District the dam intake was at a depth of
38.4 m (126 ft) at the time of the sampling.
Once taken aboard, each sample was pour-:d '..lith minimum t'l.rbulence into an airtight
bottle and capped in a manner that left no air bubbles in the bottle. Bottles
were placed in a cooler for trausportation to the lab. Studies conducted by Steve
Wilhelr:::s of the Hydraulic Laboratory, U.S . .Army 1olater..:ay Experiment Stat ion,
Vicksburg, Xississippi (personal co~unication) indicate that brief exposure of
deep water sa':lples to atnosphP.ric conditions has littl~ effect on nitrogen gas
concentrations. Houever, he has found thRt periods of exposure to at~ospheric
-
I l.
r
I
!
l
•
I
. .
--~------------~~
air bubbles during tr~nsportation can cause significant changes in nitrogen gas
concentrations, hetlce the need for recoving all air bubbles before transportationG
Excess water remaining 1n the Van Dorn Bottles was measured for temperature. The
atmospheric. pressure measured on site at the time uf sampling was 753 r-m.
At the tailwater below t~e dam, water was collected by immersing the sample bottles
under the water and capping them in a manner that left no air bubbles in the bottles.
Samples were taken at the outfall, 100 m below the outfall, and 200 m below the out-
fall. Water temperatures were taken at each of these locations. Bottles were placed
in a cooler for trRnsportation to the lab. At the time of sampli~g, the outfall flow
·..1as 4,000 cfs. The at::no_'pheric pressure was 753 mm.
The T:ate.r collected rvas analyzed for nitrogen gas (N 2 ) and oxygen (0 2 ) in a
California State Certified Water lab using a Carle Model 8700 Basic Gas Chromato-
gram with a thermal conductivity conductor several hours after collection.
, I
. I l .
< 1 . \ I •
' • I • :J .•.
I .• I
.l
'·I
I
i
Loc3tion
1 ,, ... -:..,....,.,.oir ,, •\.~-.:.,i,_r.., v ..
~-----
'J:::n Tailuater
At Valve
: 100 m d Otms ti:e '3m
:200 !ll do\instream
1.0 0
• co
•
1 . !
Depth
(m)
0
10
20
30
38.4
0
0
0
RESULTS
Te.:1pe rat ur e
(DC)
22.0
14.5
13.2
11.0
10.0
lQ.2
10.5
11.5
-
(mg/1)
14.9
17.0
17.3
17.9
18.5
17.7
17.3
17.9
Nz
%
Saturation
)
101
100
99
gg
101
97
95
97
02
i.
(mg/1), Saturatior
9.2
9.3
10.0
10.2
9.3
11.1
11.2
10.9
105
90
94
93
82
94
98
98
I ,
~ I
~ '
References
Conroy, D.A., and P. L. Herman. Textbook of Fish Diseases. 1970., T.F.H.
Publications, Jersey Citys New Jersey. 302 ppa
Wetzel, R. G. 1975.· Limnology. W.B. Saunders Company, Philadelphia.
743 pp.