Loading...
HomeMy WebLinkAboutAPA677't ' '• ; ' -i \ f ~ l "t I ' . ! i . 'i ~i I ! . ,, -t . j~ ' I t .. \ J : '{~. I· '· . ; ' .i. ·-· - " .. ' \ ,, I :~ I .j l/ ,, t .t: a· F1CE MEMORANDUM ... - ... .. - ·-~ TO: J.W. Ha~n ~ \ "F-ROM: G. Krishnan ....... . . ' ~ -·-~ Dace: SUBJECT: Susitna Hydroelectric Project Nitrogen Supersaturation Studies SE D l ·-\~ ~ ~ . 0 ... v._ September 13, 1982 P5700.14. 53 I s:_.3,T.'J/\ · CLASK.;; :~:~;( l Ali><:~·r:·v Enc 1 osed is a copy of the fi na 1 draft of the report on Gas Con cent rat,. on F!-l~2 ?s ~~Jo! and 1enperature of Spill Discharges Below Watana and Devil Canyon Dam . .:.1.!£!._0_3: Pl case "ote that no graphics efforts have been spent on getting the "-,=~"~~~'';," 711 figures in tht. Acres standard format. This has been postponed ur:til ap=-teH~ i your review of the material and adv·ice on the inclusion of any field \Z ~ \ .1 1 ! meas'..lrc ·.;nts of natural supersaturation in the river. ~·1essers M. Bell' ~n~ I ~ < ~ J. G0'l'1a had .;xpressed an interest to receive copies of this report. lJ ; ! ~ z • Pl·:~se Jdvise if this c.1n be done at this time. \ .:JG . -j I )I ,~ (_J: CCV ~~losure cc:, J.D. Lawrence .A.F. Coniglio 1\'.R. Young H. Oyok/i). Crawford G. Krishnan I A"S ~. J l H I ! • ! i' . I - I 1--· I I . l .. ·; ~ii I ~ '1 J'.,- ·:;o -_, . ··-......, 0 I 1 /~-:"".:.,.~ ... / . ~ ·. ,- ,, '- ... .. ~ \.. .. INTRbnHefi$ ' ·'" ' GAS CONCENTRATION AND TEMPERATURE OF SP1LL DISCHARGES BELOW ~·JATANA AND DEVIL CANYON DAMS Supersaturation of atmospheric gases (especially nitrogen) in hatchery and aquarium facilities was first noted in the 1900's (1) and was ascribed as causing the condition in fish known as gas bubble disease. Supersaturation caused by entrainment of air in waters spilled over dams OL' the Columbia River was recognized as a problem for anadromous fisheries in the river in 1965. A comprehensive study (2) of dissolved gas levels in the Columbia River showed that waters plunging below spillways was the main cause of super- saturation in the river waters. Several later studies have confirmed the harmful effects of nitrogen sup~rsaturation to fisheries. The tolerence of ( fish to lavels of nitrogen supersaturation depends on the time of exposure, age, and species of the fish; dissolved nitrogen levels referenced to surface pressure aoove 110 percent are generally considered harmful (3). The state of Alaska water quality criterion is set of 110% for tot~l gas saturation in its ·,·fa ters. With this back9round, the potential problem of supersaturation of spill waters from the proposed Watana and Devil Canyon developments on the Susitna River / was recogniz2d early during the feasibility studies. Alternative spillway t facil~ies were studied to minimize such a potential problem, and a scheme ccmpffsing fixed cone valves and overflow spillway v1as selected for each devJ}opment based on detailed discussions with environmental :;tudy groups. l. This ~eport describes the gelected spillway schemes briefly and presents the analyse-s and field investigations carried out to assess the perfonnance of 1 the proposed' sc-hemes with respect to gas supersaturation in spill \•Jaters. A related concern on temperature of spill 'daters is also discussed. A suo.mary of the studies undertaken and the important conclusions are presented in Section 2. A short description of the proposed schemes is given . . /_-4_~·-"--... .,r I . ·' in tfction a. Section 4 details the eng·ineering analyses carried ovt. Results of ~ese analyses, field investigations, and their interpretation are presented in ~tion 8. The next se~tion presents the major conclusions drawn from these·~tudies. Appendix~ comprises the field study report and Appendix B '\ deals vnth the temperature of spill \vaters, its impacts downstream, and possible ""' ; -·-;::>1110· reservoir operarlon scenarios to minimize such impacts . ... ( I 11· ? .... / _.:l __ ~.,t.;. . ; I f ~ SUi·1~1AAY - .. Rel ·;vely'little informa~2on is available in the literature on the performance of fix'lep-cone valves to reduce gas supersaturation in their discharges. Published studies"'·(~ ?~-~~e aeration efficiency of Howell Bunger valves (the mo·re commonly known type of fixed-cone Vdlves) were reviewed, and a theoretical assessment of the perfot~ance of the proposed valve layouts was made based on the physical and geometric characteristics of diffused jets discharging freely into the at11osphere. Results of a companion study on assessment of scour hole development below high-head sp1llways (5) were used to estimate the pJtential .:i plunging of the valve discharges into tailwater pools at the proposed develop- tnents, and the resulting supersaturation in the releases was calculated. Spe~ific field tests were conducted at the Lake Comanche Dam on the Mokelumne River in California (6) to study jet characteriJtics and the efficiency of the existing Howell Bunger valves in reducing supersaturation level in the reser- voir releases. The analyses indicate that no sarious supersaturation of nitrogen is likely to occur in the releases from the proposed Watana and Devil Canyon developments for spills up to 1:50 y2ar recurrence int2rval. Field test results tend to . confirm some of the assumptions made in the theoretical analysis with respect to jet shape, diffusion, and gas concentration in the valve discharges. Several assumptions and approximations, albeit conservative, have been made in the a.nal_y.ses \vhich should be confirmed in later study ;:>hases, perhaps in a physical model. For the purpose of feasibility studies, hovJeVEr, it is felt .. that~~'he analyses adequateTy support the proposed schc:mes for their intended • pu r11ose . .... A rtated question of the yemperature of spi 11 'daters .Jnd its effects on the dc·.·mstream 'dater temperature has been analyzed dnd detailed in Appendix B. Simulation studies of tho t\vo-reservoir operations indicate that continuous .•. (24 hour) spills would occur in the ~cnth of August in 30 out of 32 years of simulation and in 18 out of 32 years in September f·lr the Case "C" operation which maintains a mini~um instantaneous flow of 12,000 cfs in August at Gold Creek. This sp·i 11 frequency is siiflul a ted for a system ener"'9Y demand in the year 2010 (Bettelle forecast) and assumes that the entire demand is ~et by ( / -"'--""--"· '' ... I . .. ·' Watda and {lev il Canyon deve 1 opments where poss i b 1 e. The spills wi 11 be gre~erand more frequent in the years between 2002 (Devil Canyon commissioning) and \010. 'Hhen Watana alo~e is operational (between i993 and 2002), 1 ess frequegt spills are simulated to occur. Reservoir operation studies are '\ current~y. ~eing refined to finalize acceptable downstream flows. "'· . ~--~ .. Temperature of s pi 11 waters at 1Jatana is expected to be c 1 ose to that of power flow, and hence, it is not expected.to create temperature problems dmvnstre2111 v1hen 1 .. /atana is operating alone (1993-2002) or 1dhen it spills into Devil Canyon. At Devil Canyon, hm·:ever, spill te!Tlperature is expected to be close to 39°F ccmpared to a power flow tanperature of 48-49°F in August and 45°F in September. This is based on the conservative assumption that the tenperature of spill water does not increase significantly while in contact with the atmosphere despite the highly diffused valve discharge. It is, therefore, considered necessary to keep the spill from Devil Canyon to a minimum to avoid u nacceptab 1 y low do;·.n stream tr::nperatures. The ana lyses indicate that by operating ~evil Canyon to ~eet most or all of the base load demand and with Watana generating essentially to meet peak de~ands and spilling continuously 'Nhen necessary, it would be possible to maintain dc'flnstream flow temperatures below Devil Canyon close to that of pc'.ver flow ,,·Jhile reducing spil-l frequency consicarably. During major floods (1:10 year or rarer), there will be significant spills from Devil Canyon in addition to the pm·1er flow resulting in cold slugs of 'dater dc·,·mstream. for a few days. · It will be necessary to establish criteria .. for ac<;eptabi 1 i ty of 1 ov1er temperatures for short durations in August and Sept~ber in consultation with fisheries study groups and concerned agencies. Cur/~ntly, do'dnstream \4!ater temperature analyses are being re1~ined, and ·.·:hen thei,results are available, the above spill tcnperatures and duration should be ;evi ewed to confirm d0\•;nstream temperatures during nonna 1 pmver operation as 1Ne"ll as flood events. If the projected temperature ·r13g ir,~e dm<Jnst ream is unacceptable, alternative means to remedy the situation should be considcced. These ii1ay include provision of higher level intakes to several or all fixed- cone valve discharges at Devil Canyon, multilevel power intake at Devil Canyon, limited operation of main overflow spillway (for floods 1:50 year or ~ore freauent) to improvP tanperature without serious increase in nitrogen super- saturation, etc. 3 /-A-~~ .. ~·. ~ I ; .;1 SCOPE' OF ANALYSES The tjective of the analy~es presented in the. following sections is to provid~1 an assessment of the performance of the fixed-cone valves in their proposed\SQ..n:fl9.~~,lition \'lith respect to their potential in reducing gas con- centration in spill waters from the Watana and Devil Canyon developments. The analysis is a theoretical study supplemented by available field information on performance of these valves for aeration. Field measurements were ccnducted on the Howell Bunger valves at the Lake Comanche d~m on the Mokelumne River in California. Results of the tests are interpreted ~c confirm some of the study assuii:pti ons. A related question of t2!nperatur·e of spill waters 1s analyzed in Appendix B. 7he data for the analyses has been drawn from the Feasibility Report (7). )· ~."' J ~'. •·· ;J .. ( \ / . .-d.~-----. "' I ; 4 -; SCHEMf: DESCRIPTION This \ection presents a shQYt description of the selected spillway and outlet faci 1 f~J es for the propos eo Watana and Dev i 1 Canyon deve 1 opments. \ \~ ,. ~; -·----4.1 -Scheme Description Selection of the discharge capacity and the type of spillway and outlet fa~ilities has been based on project safety, environmental, and economic con- siderations. ~t each development, a set of fixed-cone valves is provided in the outlet works to discharge spills up to 1:50 year recurrence interval. The main spillway comprises a gated control structure and a chute with a flip bucket at its end. This facility has a capacity to discharge, in combination with the outlet works, the routed design flood wh:ch has a return period of 1:10,000 years. A fuse plug with an associated rock-cut channel is provided to discharge fl0ws above the design flood and up to the estimated probable ~axi~um flood at the dam. D2tailed descriptions of the facilities are pre- S2nted in the Feasibility Report (7). ·.-he pr1mary purpose of the outlet facility is to discharge the spill v;aters up to 1:50 year recurrence in such a manner as to reduce potential super- saturation of the spill with atmospheric gases, particularly nitrogen. This frequency ,,.,as adopted after discussions with :..1vironmental study groups as an acceptabl~ level of protection of the downstream fisheries against the gas bubble disease. A set of fixed-cone valves were selected ~o discharge the spil1~'in highly diffused jets to achieve significant energy di sipation withjut provision of a stilling basin or a plunge pool \·Jhere potentially large .,.; sup~saturation deve1ops. The valves have been selected to be w~thin current 'dorfd· experience with respeet to their size .:1nd operating heads. At ~·latana, six 7~ inch diameter valves are provided and are located about 125 ft above . aver age i:'a i h1a t e r 1 eve 1 i n the r i v e r . The des i g n capac i ty of each '/a 1 v e i s ..... 6,000 cfs. At 9evil Canyon, seven fixed cone valves with a total design capacity of 38,500 cfs are provided at two levels 'dithin the arch dam, four 102 inch valves at the high level some 170ft above average tailwater level, and three 90 inch valves about 50ft above aver~Je tailwater level. The lower ( /_, __ !=._, .. • . .,! I A; val~~s have' a capacity of 5,100 cfs each and the higher ones 5,800 cfs each. In ~zing t~ese valves, it has been assumed that the valve gate opening will be r\tricted to 80% of full stroke to reduce vibration . .. , '\ .•. ( ·' 5 / _,_ ""--'-' ~ I .. ., ~ ENGINtERING ANALYSES \ ,., () Thi ~ectidn details the a_nalyses carried out to estimate potential super- satural~on in the releases from the Watana and Devil Canyon developments when the' (eservoirs spill. ' ... f -.. ~ ... 5. i -Available Data Fixed cone valves have been used in several water resource projects for ~ater control, energy dissipation, and aeration of discharge waters, and data on thei~ performance for such oprrations is readily available. However, no precedence has been reported on the use of such valv~s for reducing or eliminating gas supersaturation in spill waters. Manufacturer's catalog inf~nmation on Hm·1ell Bunger valves and Boving Sleeve type discharge regulators (both particular types of fixed cone valves) and the Tennessee Valley Authority Study (4) on aer'ation efficiency of Hm·tell 3unger valves form the specific data available. Theoretical analyses .e carried out based on the g2cmetric ~nd physical characteristics of diffused Jets discharging freely into the at~osphere. 5.2-rield Data Collection ...... A review of existing facilities where a potential for spilling during the .spring o~ 1982 existed was made, and the Lake Cc~anche dam, on the ~okelumne River i~ California, was selected as a feasible site for specific testing. )· -t\."" • The_l:omanche Lake dam is of the fOckfill type 'Nith outlet facilities fitted ... wit~ four Hmvell gunger valves. These valves are located at the toe of the dam and spray the discharge into c ;nfined concrete conduits cefore releasing .\ the ~·later to the stream . .. Outflow through the valves was aroun~ 4,000 cfs during the test on ~3Y 28, 1982. Water sa~ples were collected at several depths in the reservoir near the valves and at downstream locations and analyzed for nitrogen and oxygen concentrations. Details of the test procedure and results are presented in ,appendix 1. (" /,.-_,_ c ~ /' r 5.3/i[ Method of Analysis (all'clow from the fixed cone valves leaves the structure as a free-discharging J~t diffusing rad i a.l iy at the cone ang 1 e. The path of the jet depends on th~·~er~y of flow available at the valve and the angle at which the jet ' • .,... ,;:4 leaves the valve (assumed as 45°). Referring to Figure 5.1~ the path of the trajectory is g1ven by the follo'1ing equation (8): x2 y = x tan e -------( l ) k ( 4 Hn Cos 2 e ) where: e = ~ngle of the jet to the horizontal; k = a f1ctor to take ~ccount of loss of energy and velocity r2ducticn due to the effect of air r2sistJnce, internal turbulences, and disintegration of the jet (assL~ed at 0.9); H = net 2nergy of the jet, ft. n The proposed valve operation restricts the opening of the valve ~ate to 80% of full stroke. This may be interpreted as equivalent to ~reducing an additional head loss in the syst2m, thereby r~r:iucing the discharge to SO% of ~he theoretical capacity. The seneral discharge equation for the valve: ,.,. ~.~ • J QT = CA 12g hn k may then be written as: = CA /2g X ·all X h n (2) (2a) ( 3) I /:-!. -"· ~ .L I r 1where:· {~T = theoretical capa3ity of valve, cfs; A~... = area of v a 1 v e, ft; '1 C ·~coefficient of discharge (~ · 85 for fixed-cone valves); '· . --..... -hn = net head upstream of valve, cfs; Q0 = design capacity of valve, cfs. Equation (1) may be rewritten now as: xz y = X tan 8 -------------- 4 X (0.64 X hn) X Cos 2 8 k (4) Referring to Figure 5.1, the longitudinal throw of the jet is calculated with &~45° and -45° while its laterial throw calculated when e=0°. Vertical rise of the jet a~cve the valve is calculated as a simple projectile subject to gravity and neglecting air friction to yield a conservative value. (b) Potential ?Junging ~~pth of Jet(s) Into Tailwater Pool As part of the feasibility studies of the ~atana and Devil Canyon develop- ;nents) a study '.'las made by Acres on the scour ho 1 e dev e 1 opment bel ow high. head spillways, and the results therefrom have been used to estimate the potential plunging of the jets f1·om the fixed cone valves into {~ilwater. Figure 5.2 presents a definition sketch for the study ~· J carried out for a typical flip ~ucket spillway configuration. It ~ay k be readily observed that significant diff2rences exist between a "solid" ' jet leaving a flip bucket and the diffused discha~ge jet from the fixed- Cone valves in the available energy and its concentration in the jet . for·~ s co u r i n g d m·m s t team or p 1 u n g i n g i n t o t h e t a i 1 w a t e r ;J o o 1 . E 1 ~J at i on .. (5) was developed in the 3bove ~2ntioned studies to estimate scour depth for a solid jet: y = 0.24 q0.65 H0.32 ( 5) .· /-; -~-'." ,1. ,L I ; ~ -'~where: \ = es~imated scour c!J;pth, ft; q~~ unit discharge, cfs/ft; .. H =' ~t .. faJJ ... of the jet, ft. - This equation was modified to take account of the maximum discharge intensity, q 1 in cfs/ft 2 of the fixed cone valves assuming the long- itudinal spr~ad of the solid jet as equal to its flow depth at the toe of the flip bucket (Figure 5.2). This assumpation is expected to yield a conservative estimate of the scour depth for diffused jets. The fall height H ~·las taken as the drop of the diffused jet from the highest point of its rise to the tailwater pool (Figure 5.1). With these modifications, equations (6) and (7) were developed to estimate the scour depth due to the valve discharges at Watana and Devil Canyon, re- spectively. (6) y = •24 (ql )0.98 H 0.32 DC DC· DC ( 7) ~and DC represent Watana and Devil Canyon, respectively. Scour depths, as calculated by equations (6) and (7), give an estimate o.fl the de'Jth to 'Nhi ch 'tla ter may plunge s hou 1 d the jet fa 11 into a rfailwater pool instead of on solid ground. The values Yw ao;d Yoc are !, calculated for the highest intensity q\1 or q 1 oc \·Jhen all the jets are koperating at each of the develo~ments and taken as the plunge depth of the jets. '\ 5.4 -Su~ersatu~ation of Spills (a) Gas Concentration 1n Valve Discharges Results of the Lake Comanche dam tests indicate that the Howell 9unger valves have been successful in pr2venting supersaturation of the spills /r-c·" . .. "' I • A . itand, tn some extent, have reduced the gas concentration in the spill ~·.waters. t ( \ The Tennessee Valley·Authority studies which were conducted to assess l aera·t.i.on efficiency of the Howell Bunger valves, suggest that the dis-. -~· -..... charge fro~ the valves are well aerated. The test results indicated that small supersaturation (101-102%) of oxygen may be found in the spills but suggested that thi~ may be due to calcuiation procedure used. The report concluded that since saturation concentrations were not measured in the field, it is not certain whether supersaturation acually occurred in the runoff downstream. Based on the above tast results, it has been conservatively assumed that a 100% saturation level of atmospheric g~s is likely to exist in the valve dischar~es at \·!atana and Devil Canyon. Each cs~?Jnent of gas in the atmosphere will dissolve in water independ- ently of all other gases and, when at equilibrium (i.e. saturation condition) with the air, the pressure of a specific dissolved gas is equivalent to its partial pressure in the air. Approximating one atmospheric pressure to 34 ft head of water, the above relationship translates roughly to 3~~ saturation per foot of hydrostatic head. Thus, it may be extended that fully saturated water mass 'dhen plunging into a ' .\~ool would develop a supersaturation of gas at the rate of 3% per foot of J plunge provided th0t adequate supply of air is entrained. "'' (c}k Sas Concentration in Downstream Discharges Average ~m·1er flows 't the two developrrents curing spills have been ... esti~ated in the reservoir simulation studies. For the current analyses, it is conservatively assumed that these powerhouse discharges will be fully sat1rated. Estimates of final gas concentrations in the total downstream discharges is calculated assuming the laws of dilution to hold for mixing discharges at different gas concentrations. {" /~ J, ~ l -1. • . t. .• • ., ~It is assumed that spills from Watana will get completely mixed in the foevil Canyon storage during their passage through 26 miles of reservoir ,~nd tll'at no supersatu_ration would build up in the reservoir due to watana spills. '{ .., , . ... . .,. l k • • .;:-At. .. t ! ' ..• f ... ·· . 1 > :.u a: N _., .... d z ~ a: 0 u.. t \ .. '' I I .. .___,a cu at:ons SUBJECT: .. r i t '-.J ~ -~"' \~ ~ ~ '\.1 ""'>: •I. ~ JOB "JUM8ER ------- FILE NUMBER ---~ SHEET _____ OF ___ _ BY ----DATE __ _ APP DATE \, \ \ \ \ - I- I I l l \ \ \ ·-------· -·-· !'AJL t I l .. // _/// / ,···· /. // // .• ,' ;' / / . . /~ ,/ I p '····'·'-J Q.. .-:) ~-. ~ • '-//. •· . . .. u·J I / , . ~ .:...-. .4 .(' .' <. {/ / I.J / • / -:k.::-JIH ....,_J -!-""- ..... . . ·r· ,· ....... r · · · ,.,-]) :;:.1- • """"·' I ..._; t .. wei:U t I l I I ,. l J. j l I !'' I " I I I I JOB~UMBER __________ __ Calculations FILE NUMBER ------- (' SUBJECT: -· SHEET ______ OF ___ _ BY------DATE __ _ APP DATE ---- : \ I I 1'- l' I I ic• I ! ,. -· _, '(_/a ---!- .. . \ > :JJ a: ;"! ~, I ... d ·r, : :... r -. . ~ -:..... I c. 1 . ' '""-'-' J.; '-"'··~ z ~ a: 0 u. ,..... rtGuea. S· \ I ( > UJ a: 0 z ~ X 0 u.. \) _ ___!_ ___ . --------~------· ---· ---·--~-...!::... .. _'j -~-.-._::~')!'~--'-' __ :_j__l Calcu!ations SUB • .IECT: • ·-.. g_, ____ _ :_;-.... " \ ) l '-. ... -..... _J j SP!LL'..v ~·1 {' / k7..ot...L.·.--J .:'1·-r GAl~ s:> ~ o "J rt} u L "·· ·'"' . ' t::" ·' ...,... ' "' f-.l ....1"--·-·\ ¥ f:t_tP I~ \;C..~ s. T ... CH-uTE) . ~:L -\.d ·------"-L-______ ;;-~ JCS .\lUMBER _______ _ FILE NUMBER ______ _ SHEET _____ OF ___ _ BY DATt: __ _ APP DATE ,, -•~' I I "'-! -- --- ,, ' \ ·~ ' N \ ( ------· -. ~· ... I I • ............ I ! ' = __ ··---~ ~~ I~ ,... '"'"..J I -·----:. .__; ,j' •. ~ i 1 ... II, ~ .f. 3:0 I -:-.,.... -·· -··<'11..1 I ,.. I • I ,.,... , -:-.. .:c. I .:::::.~!.-I_;, _._ ....!.,.. c-i=' rJ 'T! ... t ~ -K ·= I .... f J (" I • ~... ~I ~ Q :; (·I\ c li (.., T f:. -i= L I • ,-~ ; ,. .c..: T ;:, \· ( L!.. ~·.J I I ---·--""--- II '~:~ l .. ,_... r .. ~ -"' r ... .,";. . • • t •'· \ ~ .. . • J l I l I l l t 1 i \ /.,-_,_ . ! ., ~ 6 ~ RESUL,TS Tab~ 6.1 Presents the results of the analyses carried out to asoess the perf~ance of the fixed ci"one valt;es at the proposed Watana and Devil Canyon develop~ents in relation to the potential gas supersaturation of spill waters. Figures 6:·i ar.c:!..--5. 2 present the jet interference pattern and the areas of impingement. Estimated supersaturation in the spill discharges with a recurrence interval of 1 in 50 years is 101% at Watana and 102% at Devil Canyon. For more frequent spills, these concentrations are expected to be somewhat lower due to lower intensity of spill discharge and consequent lower plunge in the taih·Jater pool. For spills of rarer frequency, the main chute spillway will operate 1 ead ing to potentially greater sup ersa tu.rati on in the dm..,nstream discharges. Results of spill te:mperature analysis is presented in Appendix B . .. i I j j I I l I /-:--·'· -... ~ . /,· .· TABLE .6.1-RESULTS OF ANALYSES A" . . ( Oescr1 pt1 Orr\_ Watana Valves .... ' ~. 1. Valve Parameters 2. 3. -~- Diamet~r of fixed cone valves-inches Number vf valves Design capacity-cfs Elevation of valve centerline-ft Elevation abOVt average tailwater-ft Net head (hn) at the valve-ft Angle of valve discharge with horizontal-degrees (assumed) Jet Gecmetry Lcngitudinal threw-near edae-ft .J Longitudinal throw-far edae-ft ... Lateral throw-ft Imp i ng anent a rea of single jet-ft 2 Impingement a·tea of a 11 j ets-ft 2 Max irnum fa 11 of jet (H)-ft Jet Characteristics Average intensity of discharge of single jet cfs/ft 2 .. Maxi~um intensity (q 1 ) when all jets are ope;a.ti ng cfs/ft 2 Estimated plunge depth-ft I 4. Superl~turati on Estimates ( 1: 50 year ' " Design valve discharge-cfs Assumed simultaneous power f1ow-cfs Total down~tream ~ischarge-cfs 6 = flood) Assumed sas concentration in power flow-percent and va 1 ve discharge at va 1 ve-% ~aximum ga~ concentration in valve discharge below dam-% Maximum gas concentration in total downstrea~ discharge-% T 78 6 4,000 1,560 105 508 45 91 676 351 145,200 221,300 359 0.028 X 0. 028 0.168 0.3 24,000 7,000 31,000 100.0 100.9 l 00.7 Devil Canyon Valves Upper Level Lower Level 102 90 4 3 5,800 5,100 1,050 930 170 50 365 450 45 45 130 46 550 564 378 228 112 '250 83,400 173,250 353 275 0.052 0. 061 4 X e052 + 3 X •061 = 0.391 2 ( -l) 0. 6 \H-353 38,500 3,500 42,000 100.0 1 01 . 9 1 01 . 7 I I I I f I I I I ~· r; I I , J l ! J ! ! t I I I I ... .. 7 /-; ./ / • -"' ., 11 CONCLUSIONS 1. ~e ana.iyses described_ above indicate that the proposed wo~ld adequately prevent serious gas supersaturation in ·; a recurrence interval of 1:50 years. ~-- fixed-cone valves s~ill waters up to 2. Several assumptions have had to be made in the analyses with respect to jet characteristics and its potential plunge into tailwater pool. Field test results avail~ble are only indicative of the valve performance. In particular, the configuration of the proposed valves set high above the tail·.'later pool and their free discharge with the atmosphere differ signi- ficantly from the Lake Ccmanche dam arrangenent and the TVA test facility. In view of the nature of analyses and lack of precedence for the proposed valve arrange:rnent, it is reco!iTtiended that a physical model study be carried out to confirm the performance of the valves. I I I I l ~ I l I l r j, I 1 I ! l l ! ~ I ,... \_ > :JJ X N .. ., ,... d z ~ = 0 u. FILE NUMBER Cz!culations JOB NUMBER -------- -------- SUBJl:CT: SHEET _____ OF ___ _ BY DATE --- APP DATE J.-----..ii----------------------'··-...L--=========---====-..J )· . , ... 1 I . ~ ~\ .. \ _.J. '\ I.J-.-., r - I ., i. • " l., .. , \ .. .. --- ·• ~ -. -· - .~-. , ~ L ~' / ' --~ -~-----. ··--·-----1 "-L<> -~ ... ·---. . ·-· . -. - ...... I .., c I I I' . !"' .~ -=..J "-"" ... !:·' r'*-1·· ·-• !::-..... .:..';".' ':.. I ui p I ~'·l ~ f 1.'1 r t I r "··-A " ~ . ( ' . .. ... ,- r ~~ J! ...., ,.._ .. I ... . . ,'lit\ i·r-\ ,: f~ ":! (\, I , I I I I I l .j l I I I I [ j I I I I' 1 I r I I I l I l ! l l I, j r I j L r Calcula-:!ons SUBJECT: : \ "'\ .. \ vJv-L t-Jo 6 I 4 1- • ... -....___ .. , ~fr - 3 . . \ 5"' ~-............. ~ ry ..._ ', 0 pr·· J ~.::.{. ·.hT• ' -1:' ~ 'I?· .:;;) . •#> -·· j 1 r ... .... \ > ' !.!.1 a: N 1/..!--~V c;.. ]) tS-.::..i-i-•':'..-2 6£ fr:;...TTE ~ N 1.0 .... 0 z :E I.'(! P: NoB ir'i~-: ,..J T A-( S t\ ~r(._ T~ " "-( /'r N 1 ~ 1--..J a: 0 u. f JOB NUMBER _______ _ FILE NUMBER _______ _ SHEET _____ OF ___ _ BY DATE ___ _ APP DATE b ApP'(-'1(,.. c• .• JO_;r-6o~ 1 Je} ,· .. "-r'·cr~r T / ~ 2 ---.. ---~- -· _ _...... • I 1 • ::J I f J :.. 7'l t) 'A • .(' ··~~ ,.'"2"" .,._IJ. . .J,,. f\ .._,; -...__.. ..... ~ J 0 I ., --- 7 • ,,., 1- i, I I l [ f J !- l I ' l I 1 I r ! I I I l l I I ! ~ I 1 ! w --"'· ·~·-·~>--•_, ____ .....,..__._. c I .. i' REFS~ENCES . 1. rham; F.P., The Gas Bubble Disease of Fish and Its Cause, Bull. U.S. Fi~ Comm. 19(1899):33~37. 2. Ebel, W.J , Supersaturation of Nitrogen in .the Columbia River and Its Effect on Salmon and Steelhead Trout, U.S. Fish and Wildlife Service, Fish Bu 11 A 68: 1-11 . 3. U.S. Department of the Army, Engineering and Design, ~~itr"ogen Super- saturation, ETL-1110-2-239, September 1978. 4. Tennessee Valley Authority, Progress Report on Aeration Efficiency of Howell Bunger Valves, Report No. 0-6728, August 1968. 5. Acres, Sus i tna Hydroe 1 ectri c Project, Scour Ho 1 e Deve 1 opment Dm·mstream of H~gh Head Dams, ~arch 1982. 6. Ecological Analysts Inc., California, Lake Comanche Dissolved Nitrogen Study, June 1982 (see .~ppendix A). 7. ,Acres, Susitna Hydroelectric Project, Feasibility Report~ r1arch 1982. 8. U.S. Department of the Interior, Design of Sinall C2ms, Bureau of Reclamation, 1.·!ater Resources Technical Publication, 1977 . .)' • ,, .QI J I .... ..... . ' .......... ·' • .J' • # •• • j I ... L...u<E COM...WCHE DISSOLVED NITROGEN STUDY .c'rapared for Milo Bell P~O. Box 23 Mukilteo, Washington 98275 Prepared by Ecological Analysts, Inc. 2150 John Glenn Drive Concord, California 94520 June 1982 APPENDIX A I I I l I I I I I ! I j f 1 i I I I l I I j I · ~iitrogen ~s i~ th~ deep '\.later of a reservoir zay be slightly super-saturated due r to the nydro-stat:ic pressure of the overlying -water (Wetzel, 1975) .. Therefore I ~ater 1tlowing from a dam with a deep intake may contain a super-saturated concan-. .,. . trat~-<n of nitrogena If this excess nitrogen gas is not rapidly released into the atmos here, it may cause nitrogen gas bubble disease in fish residing below the : dam ou\fall (Conroy and He~n, 1970) • . \ A-study was conducted at Lake Comanche Dam, Mokelumne River, California, to determine the efficiency of the Hewell-Bunger Valve in removing super-saturated dissolved nit~ogen (N2) from the dam's ta±lwatero The valves spray outfall ~ater into concrete conduits before releasing the water to the stream. This ~as observed and photographed at Lake Comanche Dam on 28 ~y, \ 9?-2.-}98:.1, at a flow of 4000 cfs into the Mokeluwne River (s!=e accompanying photos). 1 This creates a turbulcut and aerated flo~ ~ith the purpose of facilitating nitrogen gas release to the atoosphere. By sa~pling nitrogen gas in the reservoir ~~ac the intake, and at several locations ~elow the outfall valves, the efficiency of the valve was obtained. ::..€IHODS In ordar to det=r..:1ine nic.cogen gas coi1ccntratio~s at various depths in the reser- voir, ~atar saDples were collected in Lake Camanche approx~ately 50 m from the ca::1 directly over the river channel on 28 ~!ay 1982. A Van Darn Bottle ·..;as lm.;ered from a ~oat to collect ~ater samples at depths of 0, 10, 20, 30, and 38.4 m. As reported by East :3ay :funicipal Utility District the dam intake was at a depth of 38.4 ~ (126 ft) \t the time of the sa~pling • ..1 . ~ "' • Once .Jaken aboard, each sa!:!ple ";olaS poured '""i th wininum turbulence i:1to an airt.:.5ht bott~ and capped in a ~anner that left no air bubbles in the bottle. Bottles •.o1ere placed in a cooler for transport3.tion to the lab. Studies conducted by St::.ve Wilhelos ·of the Hydraulic Laboratory, U o S. Arm.y ~?ater..tay E:·qeri~en t Station, Vicksburg, Hississippi (personal C.O~'"Unicat:ion) indicate that brief c:<?osure of cr;ep o:.:ater saoples to at::Jospheric conditions has little effect on nitrogen gas concentrations. However, he has found that periods of exposure to atnospheric I I J £ l ! I j f l ' ) I l ! ! I j I l I l 1 I l I I I ) j --. ( .. •' . . air bubbl~ during transportation can cause significant cha~ges in nitrogen gas r .L concent,fations, hence the need for re:Joving all air bubbles before transportation • . · Exces.4.., water. remaining in the Van Darn 3ottles was measured for temperature. The • ·1 atmosjhe.ric. pressu.re measured on site at the time of sampling •..;as 7 53 EtJl·. ~: At the\t=ailwater below the.dam, water was collected by immersing the sample bottles \ under the water and capping them in a manner that left no air bubbles in the bottles. Samples were taken at the outfall, 100 m below the outfall, and ZOO m below the out- fall. Water temperatures were taken at each of these locationse Bottles were placed in a cooler for transportation to the lab. At the time of sampling, the outfall flow was 4,000 cfs. The atmospheric pressure was 753 mm. The ~atar collected was analyzed for nitrogen gas (N 2 ) and oxygen (0 2) in a California Stata c~rtifi~d Water lab using a Carle Xodel 8700 Basic Gas Chromato- gram with a ther=al conductivity conductor several hours after collection. ..1 . , •• j ... t .... /. I l r- ' I r l I I 1 I ) l I r j t I f --_l I. ( \ Location Reservoir Dcm TailT..;ater .. .\t V'.1.l ve 100 :n dc·.,.-ns tream 200 ~ do;.u.s trea.m. .J ,.,. ~· I J .. 1 L ... Depth (m) 0 10 20 30 ~,8. 4 0 0 0 RESULTS N2 Temperature % (OC) (u~/1) Saturation 22.0 14.9 101 14.5 17.0 100 13.2 17.3 99 11.0 17.9 99 l\.}. 0 18.5 101 10.2 17.7 97 10.5 17.3 95 11.5 17.9 97 02 % ( o~/l )~ Sa t1J"r"2. t 9 .. 2 105 9.3 90 10.0 94 10.2 93 9.3 &2 11.1 9ll 11.2 98 10.9 98 I t L. !J' ~~·· ·.· ' . . ' . l'' ' li 1,; ~~ t r J I l j I· I l j I, I I . I l c i I I I ) !== I 1 l I j I I I l l r ( .. . . ! • i •"/ I i1 Conr~y, D.A., Publ~cations, '\ Wetzel;\,R. G. 743 pp • ..1 • I' .. , J '• i '~ Refer2nces and R. L. Herman. Textbook of Fish Diseases. 1970. T.F.H. Jersey City, New Jersey. 302 pp. 1975. Limnology. W.B. Saunders Company, Philadelphia. ! .. .. · .. . :' .. ' APP;f\miX B· SPI S AT HATANA AND DEVIL CANYON DEVELOPt~ENTS 8.1-OPERATIC~ OF ~ATANA AND DEVT~ CANYON C0r1BINED (Beyond Year 2002) (a) Spill Quantities and Frequency The monthly reservoir simulation studies calculate spill volumes as the flow required to be discharged from the dam to satisfy downstream requirements less the maximum turbine capacity, and does not restrict the turbine flow in relation 'to the actual energy demand of the system. Total energy production, as calculated, is the energy potential of the schemes. Usable energy is then calculated as the potential or the maximum energy demand, whichever is smaller. The turbine flows are not readjusted to the level of usable energy production. Tables 8.1 to 8.9 pres2nt selected results of the reservoir simulation studies which i, dicate this. Tables 8.10 to 8.12 are developed from the r2servoir simulation studies for adjusted turbine flows for two alternative generation patterns at Watana and Devil Canyon for the months of August and September when spills are most likely to occur. Alternative A assumes that whenever _~the potentia 1 energy generation fr·om ~~a tan a and De vi 1 Canyon deve I op- ,• .. ments is greater than the usable energy 1 avel, each development wi 11 / share the usable ener·gy generation in proportion to their average heads. i . " However, in the months when Watana outflow, as simula+ed, is not sufficient to generate energy in proportion to its average head, Devil Canyon will make up this difference. This operation is r2quired in such years when Devil Canyon is being drawn down to meet the minimum dovmstream flow requirements (years 1, 2, for ex~mple). Alternative R assumes that Devil Canyon 'r'lOUld generate all the energy possible consistent with downstream flow requir~nents, and Watana would cnly operate to make up the difference in years when energy potential is I I l I I ! l \. l r !1\ tji I: j 1 l! 1.\ 'I fl i l j j i ------"--·---~~~------·-~--------------·-i"; •. -~-----~-~--·-~----.. -----------·-_:_~J . .. ' , -~greater than usable. This assumes that all the ene~gy from Devil Canyon is 't t useable as base load on a daily basis. Battelle load forecast (1981) l: tends to confirm this assumption for the year 2010. However, during earlier ,\~ears, such operation may not be fully possible. It may be readily seen from Tables 8.10 to 8.12 that frequency of continuous spills (24 hours) from the reservoirs in the months of August and September is significantly greater than presented by the reservoir simulation (Tables 8.3 and 8.6). The analys0s SUlfmarized in Tables 8.10 to 8.12 indicate that Devil Canyo,; '.vould spill in 30 out of 32 years in .~ugust and 16 out of 32 years in Septe::nber for the Case 11 C11 operation ~'>'hich maintains a minimum instantaneous flow of 12,000 cfs in August at Gold Creek. For down- stream discharge requir-ements greater than 12,000 cfs at Gold Creek, it is estimated that the frequency of spills may not be increased signi- ficantly. ~owever, the volume of spills will be larger to make up for increased flow requirement. The above spill fr2qu:.=ncy is simulated for a systc:m anergy denar.d in the yea·r 2010 (Battelle Forecast) and assumes that the entire de:11and is met by Hat ana and Devi 1 Canyon deve 1 opments Nhere possible. The spills will be greater and more frequent in the years bet~een 2002 (Devil Caryon commissioning) and 2010. It m~y be s~en that operation Alternative 2, which provides for maximum possible energy generation from Devil Canyon while Watana is allowed to JSpill, results in signif;cantly reduced spill frequency from Devil .. • j Canyon. This type of operation is expected to be advantageous with ·) .. regard to downstream water quality (see Section 8.2). loll .. Severa 1 i ntennedi ate di stri buti ens of g 2nerat ion bet·Neen ~Jatana and D~vil Sanyon is also possible. A recommended operation will ~e derived after finalizing the do~nstream flew r~quir~ments and the refined temperature modeling studies which are c~rrantly in progress. '-r I I I I I I,, I I /. l j i I /. I l I l '\ . . .. i (b);jSpi11 ,, ( i) • Jl • ' J .. ' t .... Qua 1 it1_ Spill Temperature Figures B.l and 8.2 are extracts from the project Feasibility Report (7) and present simulated temperature profiles in the Watana and Devil Canyon r·eservoi '(S for the months June to September. Refinement of reservoir· temperature :nodeling is currently in progress, but the differences between the revised profiles are not ~xpected to be very significant from the ones presented here for these months. Tanperature of spill waters at Watana is expected to be close to that of power flow, and hence, it is not expected to create t2::1peratu re p rob 1 ems dm·ms tream \•I hen Watana is operating a 1 one (1993-2002) or when it spills into Devil Canyon. At Devil Canyon, however, spill tErnperature is expect2d to be close to 39°F ccr1pared to a poHer flow tenperature of 48-49°F in August and 45°F in Saptenber. This is based on the conservative assumption that the tanperature of spill water does not increase significantly ~hile in contact with the at~osphere despite the highly diffused valve discharge. It is, therefore, considered prudent to keep the spill from Devil Canyon to a minimum to maintain as high a dovmstream tanperature as possible during spills. The operation Alternative 2 indicates that by operating Devil Canyon to generate as much as possible during these months and \vith '.·Jatana generating essentially to :neet peak ·~~mands and spilling continuously \·Jhen nece:5sary, it \·~auld ]e possible to rna i nta in dm'Jns tream flow ta.rnr eratures be 1 ow Dev i 1 Canyon c 1 ose to that of po~er flow. During major floods (l :10 year or rarer frequency), there will be significant spills from Devil Canyon (see 7ables 8.10 and B.ll) in addition to the power ~lew resulting in cold slugs of ~ater dm·:nstr·eam for a fe\v to several days. It \·Jill be necessary to establish criteriJ. for acceptability of lm·Jer temperatures for • I I • . • i ... ~ l short durations 1n August and September in consultation with fisheries study groups and concerned Agencies. Currently, down- stream water temperature analyses are being refined, and \vhen the results are available, the above spill temperatures and duration should be reviewed to confirm downstream temperatures during normal power operation as well as flood events. If the projected tenperature regime downstream is unacceptable, alternative means to remedy the situation should be considered. These rnay include provision of higher level intakes to several or all fixed-cone value discharges at Devil Canyon, multilevel power intake at Devil Canyon, limited operation of main overf-low spillway (for floods 1:50 year or more frequent) to improve downstream water temperature without serious increase in nitrogen supersaturation, etc. (ii) Gas S_u_e.~L~~turation f .• It do~=s not J;·p-::ar (from Table 6.1) that there ~·muld be sig; ificant advantage in spilling frcm ~atana as compared to spills from Devil Canyon in t2nns of gas conc2ntration. r l I I I r / ( l I I I 1. I I• I l I j· l .. i' . ,., B.2'~ OPERATION OF WATANA ALONE (1993-2002) t '. Bef~e Devil Canyon is commissioned, ~~atana would operate alone, and spills requiied to maintain downstream flows will have to be made through the fixed- cone valves. Reservoir simulations indicate that, generally, spills would be of lower magnitude during this operation due to greater percentage of flow being used to generate usable energy. It is believed that the rivsr reach of some 30 miles between Watana dam and Devil Canyon ~<~auld les~en the; impact of spill temperai:ure and gas concentration below Devil Canyon and would pose less problems, if any, compared to the case when Devil Canyon development is also ccmmissioned. • I I ~· " -· ,0 ( ( ( c ( ( ( ( ( (. ( ltlfLOW <CFS, 7 u '} 10 11 1:! 13 H 1::. lt. l 7 18 19 ::!0 :!1 UCl •\l19.Y 32'/Y. 1 459::!,9 6::!8$,7 •1::!18.9 3Wj9,:! 4102,3 4::?08.0 60.1'1. 9 3o>:~U,O ~ 1 £) ~;. :; ov4S.,3 4.:.17.6 !j~o0.1 t.lS7.1 1\7:,9 ,I\ :..:!:!1.~ 3::?.-.9. 8 ·l<i19.0 3135.0 :! lO'L 1 37o0.0 4'1'79.1 4 301.::.! JO~,.!,.::; 30tJ8.El 5679.1 :!97 L ~ !:.793.9 377a.9 61~0.0 64!:..8.0 -r v 1. \"'. /iOV :.!U:-J3,t 1107.3 ::!170.1 2756.8 1599.6 ::!0:11.1 lSBS.l 2:?76.6 :-?!n~.9 17:!'1.5 .:?:?13.5 ::3::?7.8 2:!f.3. 1\ ::?!JvB.Y 17&Y .1 ~1Ml.:! 1565.J 1::!0:-!.::! 1934.3 1354.9 10.1 u. 9 ::!1\'/6. 4 ::!~t37.0 l Y77. 9 1]'1'1.7 l47·L4 1601.1 19:'t,.7 ::! t. •l!.. 3 194•l.Y J5:?tJ.o 3297.0 I<EC 11 c.IL 9 906.::? 1501.0 l::!Ul,::! 111':13.6 15'19.:.. 1038,6 !707.0 :!:!5&.::J 1115.1 167:! .. ) 1973.2 1760. ·1 1706.'1 1194.7 1070.3 1::!03.6 1.121.6 170·1.2 753.9 ].Q'J. ·~ 16U7. < lY!.7.4 \~46.5 'J 3 1 • ;:, 1::!76.7 876.2 1 6EJ7. ~, H79,1 1312.6 2032.0 1385.0 U l::,. I noa.o 1 ;:> 74 .• ::; 818.9 1067.~ 13fll1.1 fi16.Y 1:\73.0 HUU.6 1081 ,(i 1400.4 177'1.9 l60E:.9 J:~va.9 U~:!.O 862..(1 1060.4 110:!.::! 1id7.c. 61'1.::? 10'1'7.1 lb7u.'i 1031.5 7l1t..4 1:•1!>.8 7!"..7.8 J3'iB.7 j ~·77. 9 11Jt..[J 1470,0 1!47.0 AVE '151J,l 20~2.4 1404.6 11~7.3 ru. • ., 11. I 673.0 8-11.0 n 1 1. 7 ov3.1 1o·.o.:. 7!:.4.b ll(H.O 1011.7 9'1S, 0 ll1d. 'i 1304.6 12':;7.~ l1b'lo7 7fll • i. 71'2.7 984.7 lOjJ. ~ 1::.60.4 607.~ t0:!.1 777.'1 1491.4 lllGv .. :! 6P.'I.9 1110.3 J.l3.:! 1'2v2.'1 1267,/ 107,:i.4 1233,0 971.0 978.9 -------------~--------------------------,---------------------- • I' 1"1 I I·' ({ l v l" ~. • { 1 .,. (I tj (J.V' ••• ~ •} • 1 c.l'i.t< 73:-..v 6 7\:. 7 63Ll.::! tlu t• • 1 69·i. ·I 17'35. (i n \.:, 6Y•l,O ., l.t • 1 D3J. Cl 1 II h, tl tHU, f. fjC)), :i '1~·1. 7 r, ti 'I • :, 1:>60.4 6&.:..0 ":i :• 'I • I 7 J 7. 1 t:'66.0 f.l73. s· 1):•;, 1 1041.'1 6%.7 1111),1; 1:!56,/ 1101.:! 1177.0 fl89.0 L' !It; I .lilt.. b(l ,,,;(J.l :j·,',!,,'l t-.42:.:.1 !il<;' . .l.4 t-~1 .. t. :3:?(1.4 lJu:!.:! llH'I.i.l 113:.!7,9 197i.it..o lo4)b.( 1:':!0~.5 13\•.3.? 'I:! H.$ :!!o77~.4 :::~llC•.Y 1 ;'J5r., .\ 11~71.0 1 3 I 1 :! , 0 l 5 •i .~ 7 , 2 :' 1 II ... '>' , U li' ] :'i 5 , 3 1 r t. f: I , I> 1 1 t. 1 :1 . !:• 94:!.o 1l~9n.~ lV,,/.,7 1~Y8J,6 ::!U4~v.6 il6~.~ 'i"liJ.I:i t.71l •• t :!1H!JJ.4 :!3787.'i' ::!1:i~i.v 134/l~·.n 71G.3 l:!9t3.3 ~7171.8 :!~&31.3 19153.~ 13194.4 91~.1 10176.: 2n~1~.u 19916.9 t7317.7 14H4t.t t:·.-.~-.4 Y'J':J7.8 2~!097,6 197::~.7 t8fl'\~.'l 597\J,'/ h t< ~ • i' 1 v l 4 0 • C. 1 It:~ :• 'i • b :> il 'IS :.;. 1 :> ;\ 9 'I 0 • 'I l ;> 4C. 6 , 't 11) .. ') • 'i 1 :1 u 14 • '1 1 'i::! ,j 3 • 'I I .,. ~ v 0 I 1 1 '1:\ ..... I u. 0 & ~ •• c. 1965.0 11r,l7.Y ~~'/b4.l J96J~.& 19'180.:> 1014~.:> 14!',7.'1 ILH::.~ :: .. •;<117.1 :!341:5.7 19l'lfll.t 127'1.' .. :. 71 t-• o 1 ! • ;:>~"I , :> :0 (> U ~ • 4 ::! fl 7 6 7 • 4 :: 1(1 I J , 4 1 Co f. 0 v , 0 609.::! .3:•711.8 •I:!IHJ.'r :!00Ll:•.b H( .. lltt.:• 7::::>4,::? 1~~~.1 1LY6~.0 Jl213.0 23:!3~.~ 17JYI.l l~22~.e 1 3 3 tf • 4 l () 9 ·l • 1 :• ~' 9 :\ c; • 6 1 6 1 :J 3 • s 1 ... 2 y 0 ~ y 9 :11 4 • 1 a ·I 'i • 7 1 ~! :-, ·,::.. ~ : • ,, 7 1 1 • 9 :: 1 9 a 7 • 3 :· ,, 1 c, 1 . ~ 1 ·3 t 1 ~ • •, 1 ~ i' c. • 7 1 :• tl.'t • 7 ::> :, <"1. o :.? ::! C· a:> • s 1 4 1 4 7 • ! . 7 u. :· . e 1 :> ~ 1 • 6 9 :~ 1 3 , j· I .I 9 r. ~· , 1 1 4 fi 4 3 • 5 7 7 7 I • '1 4 ~ "0 , 0 911 < .. 1 ~ .J \ o. 4 113 Y 9 , 0 1 6 4 1 0 d 1 h ·'"· L 8 7:? :.0 'l • 1 813.7 ~H~7.:> 2/61~.8 ::!11::!6.4 :?744o.6 1210~.9 J3 o ~ •. 4 1 n ~ ; .;. 1 ::> 1" :' 9 , ::. 1 9 a:::! o • :1 1 7 ~ u 9 • :. 1 o 'i'::. ~; • 7 914.1 7::>57.0 :!.,f1~,9.3 lf.3::;1.1 1801to.7 (i0.9~'.7 8/),9 12fiP9.0 11780.D 15971,9 ll~~t,7 'i]~o.~ 1::'11.~ 1167~.:! ::!6689.:> ::!3430.4 15126.<> 1307~.3 IO~Y.H 8~JB.B 1Y994,0 17015,3 1A39J.~ 5711.5 1201.4 ~369.4 3135::!,8 19707,3 16A0/,3 JU613.1 Hou.4 JJ:>JJ.:-: u:•77.::! 1B:H1s,2 1341:::!.1 7132.6 1317.9 1:'!3~9.3 ~2904.8 24911.7 166)0,7 9096.7 1404.0 10140.0 :!3400.0 26740.0 18000.0 11000,0 1103.0 10406.0 1/~~3.0 27840,0 3l43fo,O 12026.0 H~H.J 1112.6 10397.6 22122.4 20778.0 184il.4 10670.4 ( ( ( ( Tn l....le P.... . 2. L i 'L>Ilv.· _,. f'(JWf::htiUUSE. fL(JL. { LFS Ia\, OCl IHIV ~e/h.1 U47'\,J) ll~ti~.l :: 62~4.5 73~4.0 )102.0 "ric_ "'' ,. 6.B'14. 1 ·1a3v.:: 3 7~o8.3 9549.1 11617.4 4 bbbl.U 10527.6 11397.~ :.. 71~4.J bY7b.6 11JOv.2 6 o8J4.o 9110.1 11665,9 7 7077,7 89o7.1 11155.0 u 7163.4 9655.~ 118:!3.4 9 ee.o~.9 10~~'·' 11738.1 lG oo43.4 9108.!:. 11:?31.5 11 0140.9 959:!.5 11788.7 1: bY:;l.7 9i:iv3.o 116::?2.3 ~~ 7t13.0 9642.~ 11676.8 14 h~l~.~ Y8H7.9 11825.1 1~ blt:!.5 916b.l 11311.1 16 7734.6 9747.2 1l16o,7 17 &1'16.6 ~Y44.3 11320,0 :!6 ~7 .:!U :!9 30 31 32 o2·1L. ~ t.'l~'l.4 6ll 0. 4 638!..6 6198.0 61i)L~ 7"276.6 bl'lt..:? 6::!43.9 1'16:"•4 .:::. 61 ~. 7. l IJ7t.Y.3 6iJ'Ih. 7 9099.8 9082.6 85131.:' 11:?38.0 9111.3 118:?0.c'. B7J.3.9 1vB70.3 7578.3 9136.9 74Cr~.S' 90:?1.9 7:•qo,'\ 11~77.0 93::.t..'i 11362.'1 7 ~ :· '} • .I 9 :; 1 6 • " 7Joi.3 8U13.6 !i'}li(l. 1 1 099:?. b 7.:'0:!.:! 11673.1 100:•4.3 1ltJ!..~.3 n .L-:;. 1 6 n 7. 1 10930.5 1H'::!l.9 110HL5 ll;j01.1 Fr [, t11'}J,S 7~·,4,'1 El.\1'14.7 i3:::o.:? 6 s ; o • a 1 2 c ~ 1 t (· 8H~1.3 7"'t4.: 0395.7 7:!:.4.'1 8664.!. 1196~. 1 8:'.93.7 8949.6 'io94.:: 8&'.57. 8 8977.:? S'/.::!4, 0 '.J&!L7 11685. 6 8'128.7 8"!39.8 i!o37.::! 8f.79. v '119'1.4 Bl96.0 P137.8 8090,4 9:?17.7 81U8.3 H3h3.1 U.31.3 A33 L 6 I:!:' YO, 't 'iVJ!,.::. 'l 'I 0: •• ::! 9?.73.:? 117:!3.7 /•lf.JCJ. 3 7'1\jL 7 74(,13.0 7R4"2.:? 76'1-1. s· 7 "-Ci:!. :.· 77"i':.!.J 7~'~1:j. 0 7SlO.o 7b17. 'I 743-l.u 74"2:::..9 71:. i7 • 9 7684.5 e:~ J 3. t. 7260-7 o651.:; t.ol6.G 81'14.6 7e!..3.4 7-:i'lJ.l 63~ 1. B 73'/i •• 'I 71156.1 /'7"20.<; 77llll.o 7886.:? 7624.:! 63or .... , 11 C"'-~' u !I t I o; .. c. J. h nJ~~,jt/ 6!,).:,. I 3 o330, •1 r, 1!:/. tl ::. ~='~1 . (I c.. :z J ,, • :f f,:: :• L • I· .:_.31\j. J t,.\]·,,t, c.~~','. l C.3f;.:.h hi\: •• l o316,(. o·:t,H .. ! ... 371. 'l 6 1/111.7 t.&f.J. 'j ,.,.5}\.11 t.37:!.f. 6j,W, •1 c.:~U4. 6 •'• ~~I • 4 6'1t.1. 'I 630~.1 6::'./11,1:1 63-J:.!o'l 1.3:.'1. 9 . ~ ,, ... ,., • 1 ~r,~q.~ !· •i l) 4 • ~t ~~~~u.~ r. 71L 3 .•,(l'ol , 0 ~J~ t 7 .. s :., tlt I , '? /' j :-<~ ': ... :~ t.•i bt I .. ~ 1 14 i ... ,. ~ ~~ .. , r.:? . ._,, !""1H:•(t • !J f,}!d • 4 !d:l6. l !:.Yol.l r.t~ ,,.~ 1 • 4 b'lli•l. l ~·,:IBl,f. '",)'J':. ... 7 ~620.6 :;:,1," . 0 tt;.V::!3.4 ,,:,'II . :> 6vll7. :• 1>415.4 !i799.:! I i ,·, ,~ .JIIol o ·• v ~ • c: 1 J .• ~ • s· 'I :• ·1 , • [1 f 'II\ 3 . c 77/!.,.(J ,;-"'..:-.~ •. ~ .:~ 7 • :•. 7 lj :\ 3 . 7 Lt :, r) !'"· • :' J <• 7 1 ~ • 1 7 :> <i" • 1 o; ,, r. =' • 7 71·1'1.7 7Y49.:' 711'1.7 Ml'l.b tj•1\·tl.S ~.n:~.~.4 l • .:-4 ',". (• '1 I ·1:'. ~. /; 1 ':' • l l (• t.:. t • :: •J:)"Jl.~, tJ:.:...\.:' ~,:. 3 9 . 1 1 \l ,; .. '-l . 't /':•7o.7 7bJ;,.'t ~~ 6 " :2 • J n ~ 1 ::, • :-; 8 I 'I f. , ;~ 9 '/1 t· , 6 IJIQ,.,,3 lfJ1'13.~. 6'lJ..I.I:l ~·h(l0.:1 4fl9::!.9 3t>3l.4 !:i li:J 0 • :J .~ ;> 6:! • 7 9td&.4 \0679.:! } 1 :• fl • J li::: :•.., • .:! 8:?~7.3 h/1~.:! M•7Y.:! 7 J :•t .• 7 fJ :· ll'r • 4 ;:~!J:!. 5 7i56.0 l! .. ~i l • 5 ~J~O~tt6 'f':,:,fi.B ,,71H .5 1 (17~~. 5 rdlt. 'I ~~874. q 8!.:!4. 9 609.:!.8 tilL !:..'lS.l c.J35.3 lvt:.OI.J 4'1Sl.C ~~~c..~ H2C~.~ 4~7'1.~ bWI7.V 7'700.3 o~Y~.J 1J~hY.rl 134~7.u 6844,4 1~744.0 13194.4 6~01.:! 63"2~.7 143C1.t.. ~310.~ t-1'11.1 ~t171.e 4A4~.6 10300.~ 1~4~6.9 4!.:1 ~·.4 ~1::.1'.6 1::!~~4.9 ~n.9.0 7837.0 10146.~ o~n1.5 176t:.~ 1J74t...2 5: i :· . ::. 1 1 ~ 1 l: • 1 \ v Hi (J • II 'liir 3 • .' 4:..0::~.3 oBoc.l ?l~c.."':" 4:•/(j. 8 5]30. 1 0 l!.il>. '\ /'164.::! 49B~.::i 3776.7 73;"7.:: '197::!.5 1<•~4. 7 ·171>9. 5 90~.1 .l:i 6734.3 ;,oo.~. ~ 1 b:'~<·· (j ~.HHI), ':' ~· P.::! 1 • 8 s:1 63. R 7r,36.o lj :·, '1 :·, • :-j ... j 1 ~·' :{ fl:1 .L1 • b c..;o::.3 /!.t.'/.4 7:•4 7.::; :.,.;7(),f, 7~;-a.q.: 16:.!25.0 ; • .'..1:!. 0 13n7:!.9 o01~.~ 56b7.v 4ov3.1 4~' 'lB. 9 10'1!.5.7 403o.:! 12c.B1.6 ::.:no.::; 10t.13.1 ~u:-~ .. 6 75~7.5 7~/H,l 9096,"1 tJ036.::; 101~1.7 11000.0 7212.3 19J'/1.o 12026.0 ( £\VE' 7346.5 8988.6 10944.3 1:1681.2 7fo43.7 64::'1,£1 !Hl7::!.6 747'1.'1 l~9!i.O 6~47.0 llli4c\,7 9;\6L? ( ( ( ( ' Tor.!._, ( .J. :..\) ~\}.:'t,Cv· .~ f{) !iV\ll,:' I ) ·J, .. •\1·) .. ·-· ....... . ....... --:; Sf lLLS tCFSi . •. .r·· OCT NOV Lti:C .J .~.u Hb M.ith tar ;"-M·' I Jlltl .HJL .;Ill'; !:>E.J \J,O 0,(1 o.c. o.v C•. C ''• \1 \J .•:, (I' (t 0.\.1 \.1.0 {i ••• o.v :! o.o o.o 0.0 0.0 o.o (t • (. v. (, i.,.(J (),(j o.o v.o 0.\.1 3 o.o o.o o.o (j,(J o.o o.c. c.o Lt ' (, (',,(j 0.0 o.v o.c 4 o.o o.o (.. 0 (J,(J o.o (i,(i v.v (! • \.1 o.u 0.0 v.o o.v ( :.. o.o o.o o.o (i,\i o.o o.o C,,v (j,{J o.o c.o G.O (j,(j 0 (l,(j o.o o.o 0.0 (),(i (j • i) v.v o.u c.o .• 0 o.o o.o 'I o.o 0.0 (j,(j v.0 o.v (i,(J .... (J G.(J u.o •J ,(! (J,(i (i,(i ( 8 o.o o.o (i,(j o.o o.o Ci,O v.o 0,11 o . .:. v.c o.o o.o 9 o.o o.o (j,(j o.o o.o 0.0 0.0 c.o o.o \.1,0 o.v o.o 10 o.o o.o o.c o.o o.c 0 • (I o.o o.v c.o (j,(j o.o o.o ( 1 I o.o o.o o.o 0.0 ll.O o.o v.o (i. 0 o.o 0. (t 0.0 o.o J:? o.o o.o o.o 0. il o.o (,,() 0,(1 o.v o.o o.o o.o o.o 13 (o,(i o.o o.o o.o 0.\J li . (1 (.. (· 0. C• o.o o.o 0. (J o.o 1·1 o.o 0.0 o.o (J,(j c.v o. (! li.O o.o c.v (j,() o.o o.o 1 •• ·' O.v o.v o.o (j,(j ~. c* 0. ,, v.v v.o o.c. o.v u. C• c.o 16 o.o o.o o.c o.o o . .:.. o.c. 0. (. (J,(J o.o l),(J o.o O.ll Jl ii.O o.o o.o o.o o.o (),(J 0.0 o.v o.o 0. (t o.o o.o J IJ o.o o.o 0 .• 0 o.o o.o u.o (1,0 o.o C• 0 o.o G.(, o.o I 'I o.o G,O o.o o.o 0.0 0.(1 o.o v.o o.o o.o c.o o.o ~0 v.o o.o o.o o.c o.o o.o o.o (I, 0 o.o v.o 0.0 o.c :>1 c..o c..o (J,(i o.o o.v 0. (• ii.O il • (I (J,(j o.o o.o O.G :! : .. 0.0 o.o o.o O.{i o.o \i • (i \/,0 (i. 0 0.0 G.V v.o O,G :'J o . .:, v.v o.o v.o O.Ci \.1.0 o.o o.o o.o o.o o.c c.o :•'I v. (• c.v G.O o.o v.O (i,{) o.o u.o o.o 0.0 o.o o.o ... , .. -~ o.o u.O o.o 0.0 0. C• c.v 0.(1 o.o C.CI o.o .0. 0 (j,(j :!6 li,O (i,(J o.o 0.() o.o u.\J o.o o.o o.o o.o o.o o.o ::7 o.o o.c. o.o o.v o.o o.o o.o o.v o.o o.o 0. (t o.o :.·u o.o o.o O.G 0. (• 0.0 o.o o.o o.o o.o o.o o.o o.o :"1 o.o o.o C·. 0 o.v o.v o.v c.o o.o o.o o.o o.o o.o l :~o o.o o.c v.O 0.0 o.o o.o 0.0 o.o o.o o.o 0,0 o.o :51 o.o o.o o.o 0.0 o.o 0,0 G,O 0.0 o.o O.G o.o o.o 32 o.o o.o o.o o.o o.o ( o.o o.o (i,(i (), 0 o.o ::!755.0 o.o fiVt:. o.o o.o o.o o.o 0.0 0 .• 0 o.o o.o o.o o.o 136.1 o.o \ 1._, ( ( ( ( ( ( ( :! :.! 4 . .. 6 7 IJ 'I 10 11 1 ~ D H A VI:. OC1 :•:!t.9 :" ·l..L .I :!.97-2 3'18.9 :!I.> fJ. 'l '2"17 .9 :::!62.1 34~.9 :!60,9 :SlY. 7 1<..0.H :•99. 0 33::..::! :::!136.'>' NOV :'73.S 3~&.7 i9~.6 337.3 3!j1,2 336.8 3o::!.7 3Y!..5 112.1 360.3 368 •. ! 362.:::! 371 .1 . '· 1•( c 4 :"1. 3 34::0. •1 4 41 .... 433. -, 4:-!S .& 413.7 4:?4.3 449.7 "146.8 4:!7.'2 44~.4 4·19. 8 451.8 4'19.8 (GWIIl Jhtl 31 :•. :· .\1 :•. 0 :~ =' 'l • 3 .~ l 2.11 J:?:! • ·I 313,c.. 31:?~3 :i33. 0 361.0 3:!2. 1 :n-l.o 3.~oll • :!· 34l.t3 3.\v. 6 3:!1.6 ::! 'I c •• t. :? •11 • 6 :·~. 7. 1 ~ ~.,J. b 24~.:; 2 4.v :!·H. 3 :!!i:i. :!JO • ;t 2S7.o :-~2 ~ -'1· :! 6 v , 'I 2'17.7 ir-L'\ ~ (' .• ~ ilt'll· :! :'7 • ti 2:'7.'i -:!"2'1.:1 2:'111. :• ~:jJ). 9 ~:.,:;. h :!:1 j•. / :!:!7.0 .':'b. 8 I (•7, .• ll lli ..... ,. J 116. i !llu,IJ j ll•i • fi 1 113. i lf,~, ·I 1 'l~j. J 207. 1 lf:l:..3 ::'0(),(, ~ 1-1. •, 2:1 1. 4 1H7.J 1'19.8 ,,,.,, •1111.1) :~:·1.4 :'?4. l· 232.b ~9~.:! ~~·1. ~ :!S2.0 ~·97. 4 30to.Cl :!73.6 Ul.3 262.1 JU11 18/. 4 JJ4.9 27o.4 377. ti :"~~.:? 2/IL 1 :?:•.q. 0 1'1'£..3 3 :•1. 7 3/8,9 3v4.'1' 276.2 .JUL 1tY,(J 1 ti .... t1 ::?14.8 ltl7. 7 1 /1 • ~ '"lt"., "") ...... _ .... 234.6 :' l =~ . , :14.J :, 1 7 • ,.J 4 '10. ~~ :! •l ~~ • 'I ::!49.9 ~99.::. ~Jc'.~ ·~,H. 7 l.Y4.::: :171.8 j H!o, 0 49~.'1 411.5 :; i l . c; 300.8 ll : . fl 503.1 20&.5 1\7~.'\ 4:'6.~ ·~1-1 ..... 9 4flo.O 111. a J:><~o.a 3434.3 J:J-14.8 3:'60,9 3ct.c>.7 4016.7 3708,9 3426.4 3546.7 3:::ill. 9 38(i 1 • l 431:11.9 '1117. 5 ~~4.6 2&~.9 3no3,2 '~~.) 618.7 3745.9 :::! :q . (-. 2 1 3 • 1 ::; ;> 4 4 • 3 633.:::; 5~1.4 4035,7 2:'R.9 2~9.1 3~36.1 3~5.7 :::!03.2 3121.9 ':!'>6.'1 16::0.1 2f>41.5 ~~Cl.9 l~H.7 2~18.0 33!:.. 2 -.(t7:6 ___ 375."'a,....""9;---- :!:,a. c. :::•>B. a 3:?:?7 • .,. 31~.6 1:.o.::: 2913.7 2/l 9 I ~I :?90. !j 28:'l. ~· ,!()9 .. ~ 307.3 396,4 756.0 3-42,1 4fl3 .; ~00.6 404.7 180.5 :.146.9 419.:. -1:.a.o 355,4 3402.3 3::!17 .::! 341 ~L 4 3302.9 33}0,0 :~9-18. 4 4169.3 3507.0 .. TO. L\.c ~: •. 5 Dev~l /''l r~.\1~ ... ~ la\.tl~ c.J.Al< c. C) t Q.JI .;_j\.0• ·' I ""'" ....... , ) # ~, ,, ' . ,. -· ..... ,, .... ...,..,.. ---.'1 fOWEhHOUSE FLIW ( cFi {. ,,.~"' .. OC1 NOV ld~C JM.C FE!.< IIMI• Mf.. 11ft( ,I IIi~ ,I ilL (,lJf, bE.f• ~7\4.:. fi79~.:, 114-,l.i.'f H~>:! U. 1 7)11t;.9 () 1 t. 'I • l 7'1,.',.11 c,::, ,:,2 .. s ... .... 1 , ... .:.e._ 8363·'1 1vY'\0.6 ol4'J.u =' 6~87.4 7447.9 8'1:!3.1 791'3.3 o·13 7. o 6fi:!O. :·, !'.7~.e. 6 ~:•e 1. 7 It H.Hl, 7 r:~;a~.9 IC.t:t.O.O l 1:!07.8 3 ti:!Ol,.) 99lfi,O 1187:!.. 9 YQ,·,O. !i 7":>'16.'1 l)'lnO.J '/ '11 (l. 6 J,H'\!:o • 't 11\i:.Oc.,S' a:.;.r .. 5 1 (J/~ /. ~ \0:!93.7 'I l01Li.7 11010.3 11666.8 e:-.:1". 4 /3'TIJ,B 6•161 •• ~ 7n7-t. 9 l 0 IJt. c 1:"1/04,/ l1~6·1. 0 1 (I~. 'i 7 . 0 8149.3 .-6996,7 9100.1 11:'i03.::. B8v0.9 7:iH~.'i' 61!.'1. () 711(1. 7 Y:J'lO.u J 0980 ..s &37·1.1 9'f-l.;. 0:.0JY.9 ( ... ,, i' ill:? • J 9805.8 119(14.4 9~:~~. 'l 7 •/:'ti. •) 6 ~11-tJ. ·1 /c'oYJ. •I <'-•1/~ •• 1 1 • r :• ·! • 2 'i' I I l , :? I:~ 7 b;\, :• J3i63.:?. 'J 76:!9.8 9167.6 113:!3.0 [11}91J.::.. 7~·4 c.. 3 64'1'1.:? 74 '1'1. 6 'l'le6.tl 137t.J.:? l:!:!:!~.J 13Je3.:_1 1.\7C.J.:.! b 1:1:?17.:? 1015:?.8 12103.0 '7' I 6C., 0 fl04:?. 1 6500.R 7/ol.b 7C.u2.3 1:"4'13.1 8379.6 10849,;> 1:\763.2 ( 9 10205,5 11187.3 1:!378.0 1001::!.1 /B6$,4 6470.1, l-tl Ol. 3 7:_-lll.R 10:>64.9 8463. •. tCo79.a ~936.8 10 66;iO. 1 7.SCi1.1 11'187.3 Uf.l9 L 7 7U1:2.3 f,:,l) 7. 9 ·;::.~o.o 'i'0!;5. 7 9:.::!7.9 7no.4 1176.~.~1 13763.2 ( ll 9042.6 1Ci001.7 12127.9 9:'63.0 7~93.4 6490.9 71:108.2 u.I·U./ / J OIJ, f; 6\:19.3 10476. 1 llEl'\fi.1 12 1 OO!i3 .3 102'11.8 12'!79,::! 1UO.S:?.6 8216.8 !:.f. t, !., • 7 Y 4 :, II , !j 9:!17,L 1:\4::?7. 7 Bu7'},fl 110<'11.~ 1v:.:?J.Y D U441,3 '19:?3.1 1:?095.1 937:!.6 EI066.6 64U6.1-ft~t\i:!. 7 t. 13::!. ~ !:.5763.2 ll~r·G.:! t37o3.:.! 1376:;.;: 14 9:!1j'i,6 1v07:..o 1~012.4 907:'.7 80'10.6 ... 'l:t•l• 4 7'Hib. 3 'l'l""!~. 7 1:•o9.;,4 12463.3 l:; 7.'> ~. 2 11777.2 I r . ·' 1:19b0.:? 9464.4 11~03.5 bf;5~.7 7~·!.i3. 4 6·1 !i?. 7 74.£<,6 7.' JoJ.~ 1:'13:!.6 1 1 70 0. ~-1114:'•.1> 8:>A~. ,1 16 67:!5.9 100:'4.1 11:?77.:? R;.(l:!,l 74b:?.O o·H:.!.'I 7i'RO. '} 7\•!·~. r. 1 (•/Of. 2 '1.\bO.O 1 Oc.6~' •. ~ I :oc 3 .:> 1 7 9471.;.'1 9::!86.0 !1594.8 005:).5 7B·lv. c. 6~ 17. I! u:Du.l3 Ct4~i7,9 t:\(t='2.3 1:1.," . ., --"C~ .. 1u4H.b 5!-Y4 ,J 1U c4u9.Y 7B09.7 114£:J1.3 8934.7 79:?1.~ 6~16.:> 7.-:,7:~.5 t-1~:-~. 0 1 :!Ovl. 1 'i~' o:!. 0 D763.::! 13763.:! 1'1 75 • .:,7 .::! )':JII:~ •!:.. 1::!046.1 9428,() E!'l'\l.Y 67111,,'j fltH'Iol tH.j], d 1176~.::! 99'14.'} 11)9:'lfl.$ ss 0'1. ,,. 20 6 4 4•1. 5 7:?~:.1. 0 1070'1.7 ~:_-163.4 7335.0 04:J~iu i' 77 1t.::! ~;!:~:i.A ntBti.O 97!4.3111601.6 tt-:>o:?.sJ 21 6tH'i',O 77i.J3 ol 9:!31.6 fJ:!5U.:i 6757.9 7016.4 60::! 1 • ,. 607fl.1 t~ .1 ~) • 3 [;06::!.:! 10o72,fl :-.~:!~.5 ~:! 711~.:! 79Uti. 3 S'·109 .3 831:!.1 67tJ:,..:! 7033. •i 6069.9 57!:J1.:! OI'·HO. 9 H~71, 6 10405,<; 5.!.~6.0 .., .. -.l 6721.1 75o~.7 9040.'0 7'132.2 6909.1 6r.67. c. 661 tL 6 11 ~.9 7. fl 1 .no 3.:! Y36&.'l 11 364. 1 1 ":'o~ .• 1 :!<; 76:"10.:. y:; U. H l J 0J 0:. • 'I fl716.6 7i'Hl .a "''l~d .7 7~J3:!. 5 5911.'1 11)07•\,8 c, 'I'CJ 1 • 8 ll1tiH.l 615~.0 .,,-_.., o6Jl, l 7417.5 &8tl5.4 7860.1 63Y'i.1 oAvt.b 56/:!.9 6786. :• 7!Jf;l. 7 1 o:'3Cl. o 11037.0 ~6:?0.1 !!6 66o1,9 7506.3 90:>3.4 U0:?4.3 65&3.7 "B l::.. J 5b6l •• 1 '1'114.7 13 I ::i::>, 2 100134.9 109•11.6 !, :!03t:l. 9 :?7 998S,::? 923:?.0 111:!4.3 8'113.6 75::!9.4 64tH .9 76·13. [J 7:>58.4 96 .•4. 1 Bfl9:?.6 11'197.7 608:!.3 ::a C,/36. 0 7c67 .::! 913.L 1 8054.9 t.547.o tdl:!.l ::;7YU.~ 6'19C-,2 137c'o3.::! Yl17.'J 11\31.2 9519.0 ::!9 9Y U!.:! to!',d'l.u 12:•.;o.r. 'f 6 'I:! • {) 9178.::! ... :.:•y. 0 tJ601J.:? 6364.3 74!11,0 8.!.3 1/. 0 109 \r,,:::; ::i973.'\ ( 30 6U:!!j. 1 76if •• £l 9004.:! 79/J.fj 6~,(~3.~ 664:!. :1 ::;7o7.J ~·'164. 0 9787,f. l007fl.6 H)64b, 7 9R28.7 Jl YuoJ9.a U:Sc-7.:! 1:! 1.:.2. 4 Y45U,7 tHdo,:! 64tJe;,Y ~46•1.7 6f.6::i. 3 11 ~U9. 9 11:!96.::. 1:? j iiY:'l-·1 n 4::!. o 32 9870.6 11447.3 11670.'1 Bfl6:.i.7 7742.:? o467.'t 7HJ2,6 6B01.7 8205,8 10608.3 13763.:! 13493.0 l AVE 8077.1 9180.8 11070.6 8769.! 7508.8 6565.? 7480.3 71\t-7.7 10!o6t'>,O 9454.:? u :.H. a i668.6 (. ( ( l •} :.:;,_: 1/.s ·-r~\ I Jl4~ ~. .() ·Jn lJJ ~ , Nlo~ll, c.1 ( ,Jo.-... ;oil\.. ;; ..... .. . .,..._._.....~ .. SflLLS (CfS) l OCT uov liEC J•'•tl FU• tifth Hfh !It'\ y Jilt I JLJL Alit• Sf I (),(J o.o o.o v~v 0.(, o.v v~v \),0 o.o 0.0 0.0 11.0 ::! 0.0 o.o o.o v.O o.o o.c. v.v (j,(} v.o o.o t),(j o.o l o.o o.o o.o o.o o.o v.o v.v v.o (J,(i \.l• v. C· c.o 4 o.o o.o o.o 0.0 o.o v.o c.o o.o 0.\1 0. (· c.o o.o ( 5 o.o o.o 0.0 0.0 o.o o.o v.o o.o o.o o.o o.c. o.o 6 o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 ,49.:! :!:'o.C 7 o.o o.o o.o o.o o.o o.o o.o o.o 914.::! o.o :• 'l.i i' • ;:. :!73:!,o ( ij o.o o.o o.o o.o o.o o.o o.o o.o o.o O,(i o.o 970.7 y o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 10 o.o o.o _:~.o o.o o.o o.o o.o o.o o.o C•' v 9~::..:-1:;1'-6.4 1 1 o.o o.o o.o o.o (J,(j o.o o.o o.o v.v u.o o.o o.o 1:'! o.o o.o G,O o.o c. 0 o.o o.o o.o o.o o.o o.o o.o 13 o.o o.o o.o o.o ',J. 0 v.o o.o o.o 1~~5.6 o.o 6:!53.7 1004.0 14 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 2564.::! o.o l!J o.o o.o o.o . 0. 0 o.o o.o 0.0 o.o o.o o.o 0.0 o.o 1o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o O.i) ~1179.9 17 o.o o.o o.o o.o 0.0 o.o o.o o.o ,J,O o.o o.o o.o lU o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o 6nP.!•. :s 1965,0 1'/ o.o o.o o.o o.o 0·.0 o.o o.o o.o lfll.'l.4 o.o o.o o.o .20 o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o .21 o.o o.o 0,() o.o o.o o.o (',, 0 o.o o.o o.o o.o o.o ;.! =~ o.o o.o o.o o.o o.o o.o o.o (i,O o.o o .. o o.o o.o .23 o.o o.o o.o .0 .o o.o o.o o.o (1,0 141l.,!j o.o o.o o.o I. 2 41 o.o (j,(i Ci.O o.o o.o o.o 0.0 o.o 0.0 o.o o.o o.o ~!J o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ·o. o ( :!" o.o o.o o.o o.o o.o o.o 0,0 o.o o.o o.o o.o o.o '2'1 o.o o.o o.o o.o o.o o.o o.o o.o 0,0 o.o o.o o.o :?ls o.o o.o o.o o.o o.o o.o o.o o.o l~JC.,:! o.o o.o o.o ( .29 o.o o.o o.o o.o o.o o.o v.o o.o o.o o.o o.o o.o 30 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o :u o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ( 3:! o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o 12217.9 o.o t.VE o.o o.o o.o o.o o.o o.o o.o o.o lhr-.3 o.o 1002.2 3!:.4.5 l ( c ( c (. (. ( - 1:. . ~I r \1 ~'\:..1'/ . .. . EHEF.GY ff.On fiESEF.VOJF. '• (GIJIIJ OCT 1 .:!17o0 ::! 19C.,O 3 2u6ol 4 328.1 ~ 22:i.4 t. :!53o4 '} :!47.~ 0 .:!66o5 'i 331.0 10 20b.ll 11 293o3 j:! 3:?t .. 1 13 .:!13.13 14 3vl.3 l!i :>'il.3 1i. ::!83.0 17 307. •1 lU :?Gl.3 1'1 .:!1!:. 0 4 :!Co :?OJ .• 6 :!1 :!OJ o B i.f __ :?l~L5 :!J ::oo.o :?4 247o2 :!~ 197.3 :!6 19Bo:! 27 3::!3.9 :?E:i 200o4 :!9 3::!1. 7 30 :!03.1 31. 319.5 32 320o2 AVE NOV '276.1 214 ... 311.3 31::i.~ 291.9 110.3 :!IH .8 318.7 351.!! :!3!,.9 3!3.9 3::!1.5 311 • o:; 31l .. 2 ::!97.1 314 .c. :?91 's :?43.6 31l0 .H :!:! 4 • ·1 2:! 1 • u :!30.0 ::! 1 i. u :!9'1.:! 214.:? :! 1 }.; • 1 :.>u9.u ~:?O,fJ ·~J::!. 'l :'19.3 3::..!..8 3!39.~ 283.0 l•EC 371.7 266.1 38!:.0 1 378.4 373.1 388 •. 7 367,3 392.6 401.5 37::.c. 393.1 391L3 39::!o:3 389.6 373.1 :!/t..c. ?37.7 293o9 :!78 • .2 :?£JS.5 :!99.2 27':,,0 :097.1 :~2'1. 7 :>BIL 5 300.4 3:!6.4 30 4. 0 ::!91Jo3 ?77 .5 216.!. 176.7 22::!.~ ~16.8 ~.:!:!. 1 ?1:?.3 2 2 I , 1 23~.6 230.4 ::!29.5 :!'14.:> ::!41.6 ?J6 •. \ 235,6 221,3 :1(J'J,j 2\l:'.'l 2 \i'}. f, :.!09.6 ~()9.~j ;! l 0. ·~ 210.6 :?tv.li ::!\)'],') :•11.1 ;-> 1 (J. 5 :!1!:...6 :>1(),1) :!09.;> 20'1.4 230. :, 170.!:. :?:>Y,7 :! '11. 1 :.!.~I • 6 TH:~.:.. :? 50.9 :?40.6 ~~· 1 • l :.' ;\;'\. ·1 ;~ ~ .. , . ~ :!Y:l.:! ?t.].6 ~=J'f. ~ :?Jo.o MitY 17~ ..... 276.:! 3:>4.H 30:"j,6 ~07.'1 J(l3. 3 2•16. 1 ::31 • c :• 'I (j • l :!bl.J :'1:...7 JJB.v 2J'i.5 .JUH 23J. ·l :"c'>0.7 :~~!j.7 398.c 344.7 349.r. -~:~::!. 0 .. \'1::!. ~ 322.:! 43:!.0 J79.o 371.4 365.~ 275.& 219,2 :OY,U ~41.~ ~~~.Y 336,1 376.1 ?67.::! ::!::!9.7 ::!11.4 :!~B.S ~0&.9 40P.El 37::!,4 289,8 ::!J::!,l ::!lJ,J ::!J7o9 ::!D4.3 401,0 350,7 3u~.8 ::!47.0 ;>}~.1 ~1'1.::! ::!76.7 432.0 346.7 ~&B.O ::!14,Y ~OY.4 ~41.0 19Yo4 ~13.1 214.8 ::!45.7 JU1.6 :?Go,~ 1/~.4 190.8 JR:>.9 .JUL ::tb.3 :!7·i. 7 :!74.8 ::!74.5 :!bt1.7 ?Y5.7 396.5 271.5 :.?72.!:, ~~E-.:! ::!n7.6 :'({8.0 373,3 4il'1.Y 37'1.7 304.3 .:?6~.4 3:?3. 1 3:!:'.6 31)4,6 239.9 :>h(J,(J :047 •. ~ ltl.!.3 :>\J 1/.J 114.0 171.1 JS'::.4 :?!:..!:..0 :>74-.-c.--:;4'Y-:-~oo 0 ::.----:!TI;:s-Jt."",~ . ...,:.-· --3:07.1 -• .,.,:;--4"':""'~:"-· -. o.,---·303. 6 37Ll. ::!6:!.7 ::!::!U,O ::!O'io3 233.5 Jt-15'.4 3lo.3 ::!83,3 ~65,9 :>37.8 176.7 203,3 1bY.1 214.5 ~J7.l 320.8 :?6B.~ :?3ij.7 l/6.9 2~~.n 16~.~ 1~::!.8 41::!,9 3::!7.1 3c.O.U ~74,U ::?.:0,6 ~JO,~ ::!Jb,9 ~~:>.~ 3~1.~ ::!R3.0 ::!11.7 ~4o.7 179.6 ::!06.1 173.0 199.6 4J:>.o. 29~.8 397ou 314.4 ::!19,6 ~11.H ::!t6,0 ::!03.9 ::!33,9 ::!76.0 ::!67,9 237,5 176.6 201.'1 l6U,4 171,9 306.8 3~6.9 394.5 306,6 ~35,4 210.4 2b::!.4 ::!13.~ 357.::! 366.5 378.~ 267.5 2~6.6 ~09.8 2~2.2 217.9 257.6 344ol 353.::!. 279.7 .216. 9 209.7 330.1 303.5 ,;uG 5£f' 3;\7.'1 1/7.'1 :nc..9 344.3 3'1::!.4 31&.0 331.1 ::?17.7 31!i.4 2S'l.~ '146.'1 '11.!.0 446.4 43::!.0 344.'1 4:->3.9 3:\6,5 179.3 •Hfo,£1 4.S:!,O 3.'f:l.o 363.:, 35!i. :• 3:\0.0 4 4 J.. • 1 'I:~:?. 0 44c..4 369.7 31-&.4 :>::;8.c. 34:!.'5 4:'7.6 327.8 170.4 446.4 43::!.0 3'lb.~ 178.9 3 J) ~~ • 3 1 7 11 • 6 317.r. 167.6 3 \1 '1 . ..;'..:,."'---7:1f, 4 • 0 3(.4,6 3lb.9 341.0 177.1 331.2 lol.B 3 •I e . 4 17 o • 9 3!i0. s 175. 1 334.fJ 344o7 400.5 416.4 31>4.!f 2'14.0 11:! .o 307.9 3U7. 4 42:i.b 296.9 11/Hl 3v2c.~ 2656.9 3375.2 3577.6 n21.a 3663. u 3B51ol 3640.5 3441.4 350&.1 3440.'1 3o1:!.7 3891.3 3El93.9 3!"'·09.3 3!j45.0 3341.1 3C.b2.:? 3540.7 ::!9:i1.9 .::?!198.1' :'£>~ 3414.2 31HO.:? :>7::!9.6 306::!.~ 3:'59. 7 3Ut.6.8 3304.3 2'>'33.1 3611.0 3713.8 3361.9 ( ( ( l L ( ( l ... 1\11 ()•Z L ! • i F V\ il· .. ~ '/ 'N,:'\,{ 0..\1' ;• i "J::),J v;l ( OJV<'jt•H I OT tal EUF.I\GY f f.OitUC(I• C Gt.Jll > OCT r.ov (•£C JMI f £ (1 (,1 h 439.7 594.0 ~DO.~ ~BD.U 4~/.0 4Jo.O 41~.4 ., 4 J 9 • 1 4 H B • o 6 1 1 • 6 !J 'i <t • 7 4 1 B , :; •1. I ;• • H ~ t> tJ • 'l 3 5£3.3 670.0 827.0 6,3.~ 469.7 4Jh.O 416.4 4 677.0 741.~ BJJ,A ~90,$ 4~6.3 43U.u 4'14.1 ~ 507.9 6~9.~ OG~.9 607.8 46U.G 43o.0 416,4 6 ::.21.B oo-4.5 63:?.4 <'-J~.u ·tiJ6.J 4:~6.1 4JI.Il 7 5:?5.4 624.6 79l.o ~U7.9 46~.4 438.0 41o.4 411•. 7 1 :_.;,(I ~;)[,,!::, 5UC.::! 44v.::! U 548.~ 681.4 84~.3 630.1 494.~ 430.1 4~c.3 500,4 9 676.9 7'16.1:, IHB.J 611$.7 'lfH.:'! •1.111.1 1:iu •. ·• 483.0 10 ~69.7 57b,O 799.0 610.6 4U0.1 4JB.O 4JH,p 541.:? JUH 11:•o. 'i 4'>''i'. y ~0 I. 'i' 713.7 :J ., 9. 1 r. .. ~ ~ •. 'l i!O'i.9 7:'0.3 6·oo. 3 11 613.0 674.2 B4J.O n3•t.4 4S'J.1 ·llu.l ll4~i.J r.r.4.6 419.4 J :' 6 7 6. <; 6 U Y .• 7 B 41J. 1. 6 B 4 • 6 50 4 , 0 4 ·lJ • 3 5 ;\ 7 . 7 6 \J l , 3 ''13 .• ::? J) 57:?.6 67J.7 844.~ 64~.U 497.2 4JU.2 48!J,O 4h9.3 ~10.9 14 636.~ 6b7.~ 839,4 6:!4.9 494.0 4Ju.t 416.~ o49,J 6b4o6 1~ 611.0 641.4 603.3 !J91.1 466.4 4JU.0 416.3 4A3.:? 7~u.9 16 586,0 600.~ 791,3 ~89 8 464.1 4JB.O 44Q,J 4~3.4 6~9.6 11 6~9.J ~21.~ ao~.6 6DB.& 4UJ.6 ~Jh.l 410.o 440.3 706.o lL 4~~.6 565.Y 799,8 612.7 4a~.5 4~~.1 4~9.2 ~G4.t 113,7 1~ S:?G.l 6~0.6 840.3 647.9 5!7,9 4~6.0 505,3 ~/0.4 191.1 20 443.5 5~2.5 760.~ ~73,0 4~4.3 43U,D 4J7.2 443.u 414.0 :?J 4JB.6 4~7.4 ~98.~ 5,~.8 394.4 137., lfi~.u JJ~.9 :!Y9.7 _;>;· __ 12 9::. !__ -~ ul•..:_!_::?t ~ ! ! __J,! ~t .!..9~.!.!. 1..!..· :!.5 _ _:4 ~ l ~~.J ~ ~..!.!..___;!~~f'..:.•-.:,7--=:!'-'9'-'7'-''~4:'- 2J 439,6 4uu.S 703.2 ~93.~ 469.1 44~.~ 4h9.1 71~.5 Cl0.7 :?·l !..3:!.9 1:.':.~.7 bO'J,J 60.;.o 4110.3 4:~fi,J 4:'4.!.. 4:\9,B :;7f:,IJ :!:.; 09.1 4hlJ,(} o:'7.::! ~<\9.0 41U.9 <l.i1.9 360,\ ~tO!L\ 4:H.:? ~6 ~J9,0 4UG.l ~9~.6 52/.6 3~~-~ 4d~.O 360.J 443.1 74/.:? ~7 663.7 621.1 77U,9 ~U4.9 464.5 4JU,Q 4,},3 469,1 530.1 :! U •I 19 , 0 4 1m • 1 r, '19 , 9 !, •HI , 9 4 .\ b • 6 •U II • 1 i 79 ol 'l 11. 7 8 0 Y , 3 A VI.: :.6l.,l 4 :~9. 3 676,'} 1:.77.0 'lOu,9 4Hti. i 761.4 77q.t 618.9 U4b.l ;',<t<;. 7 u·iu.t 816.0 7.67 .7 t.64.0 :.11. 4 651.9 612.1 601.2 500.~ 4 .il. 0 495.~ 478.2 4J~.~ 4~0.0 416.6 4~4.1 'l.H!.U 1/LY 4o4.Fl 61U.1 43u.~ 4&~.o 469.3 6~G.a 4JB.l 440.6 477.4 470.0 43l\.9 ~00.2 60cL3 .JUL 437.3 4! !., • tJ 4119.:) .If.:'.~ 4:H',9 ~'l'7.y 7.53.:! 497,9 47::!.::! 439.5 43~.7 501L2 7~7.8 740.9 759.4 5~6.0 4:>4.'1 ~s:•. 9 !:;93.7 4 <'-1 • 0 4:!4.6 4 'if. • l ::itl7.6 4<'-'1·6 461.0 t>04o4 46U, :=, 564.8 4f.4.Q 611. ~ 670.5 615.2 s:u~.2 AUG ')90. 7 ~A0.6 !jjl~.h !J 4 4, I '1/.4.0 944.9 590.8 586. :j 8')5.4 564.H c.r-9.9 1140.6 1018.;> 715.0 c.o.o; • ~> ·j~,9. 4 107'i.Y 575.4 713.9 61'1.'1 590.~ 699.U ::i'i«t. 1 61\3.9 5';7,9 641,0 617.7 544.4 t.!J~.o 79b.9 1:!02.-\ 707.0 SEf 363.0 113'1.7 7:!.9.5 5!"·9. 5 ~f·!f I J 944.8 935.:? 969.0 11:l7,fl 907.4 fl.\0.0 716.9 918. 1 781.5 545.5 l(J.I G.. 3 1B3. • 9~;3. 4 408.0 3131.8 3:?9.11 3:·~. 'I 7:! 4. 6 3~5.9 11::!. I 6f.4.3 J7!j,7 6'18.7 360.5 t.:·,I\,A 806.9 882.1 652.3 I.' I ANN 5947.8 6J4i.6 6009.5 712:!.4 6:i88.R 7.!i30. 5 i'Bo7.7 7349.3 6867.8 705'1.8 695::!.3 7bl3.7 8:'·73.~ 8Dllo'! 717:::.~ 7~90.9 6585.4 U.97. 9 7076.8 6073.8 5240.1 7173. 1 6400,0 567J.3 641:14.5 o·17c. 9 6484.3 0<'.07.:! 630:! .1 7759.4 7883.2. ( ( ( ( ( ( l ( T"' fd ~., TOl t.L US!il!l...F.: ENCf.GY "(GUill l ., J 4 5 6 7 i:J '} Ji) 11 OCT ·119. J I'J<i.O 4U8,0 670.0 741.:! 6:!9.::! 66'1.5 624.6 66 l.4 746.6 570.0 6/4,:! 6l:9,7 oJ3. 7 6u7.6 ... 'l .1 • ., olJ(i,U 6~7.::; 5&!J.9 o!iO.o EHiO. V 61 l •. c. 8::?7.0 811.'1 80:!.'>' 83:::.4 791.6 84:!.3 048.:! 799.9 U41, U 848.1 B-'14 .1 83'1.4 1103.3 791.3 806.6 799.0 U40.3 7aO.::! !jiJt..tl !.oJ ~ • 7 ~~3 .. :> !iYO.~ c.u7.u b3:!,8 ~ai· + ·9 o"HJ.l 68~.7 610.6 6J ... 4 6LH .~ 6•15 .l:i 6:!4.9 ~.91.1 !oA9, 8 60f.l.6 b1:!.7 b47.9 ~·13. 0 ffb ·1~.7. 0 41b • .3 "\6Y.7 45c..J 46fi.C. 4bo.3 4o!..4 4'14.::? 4tl4.~ 4tiP,l 'In .1 $04.0 497.::! 494.0 466.1 464.1 481 • ·~ 485.5 517.'1 .. ""j4.3 1\,l!{. 0 'l.~ I. h •Uti. !i 4 :\I • \• 4 {1<,0 ·LH1.t 4:{c::. 0 'lJB. I .1Jf. • I 4.Hl. 0 •\ :5 u. 1 443.3 43o.l.:! 4 JU. l 1Ju,(l 4:~H, 0 q,Hl. 1 4JU. I 4::it..(l 'I.HJ • 0 590.5 !'..26.8 Jl'H.4 ·!37.:• l: \ i 11. 't. ,j . ( 'Le).J·~ l (' C\M to l• 'll '" 1\ Jt,O. ·1 '11~.4 ·H·l.l 41 6. •l 4:q. I) 416.4 ·'Lio. 3 4:to .~ 41u.u 4 ·1 ~. 1 !Jil.7 'lH!J.o 416.4 •II 6. "i -140.3 IJ/(),() 44u.; 4!Ji',O 5UV,:J ~43.1 ~j 4\3. 1 ·l'l 0.:! :; 'l :~. 1 .:..oo. '\ 4tl,\. 0 !..~1.2 ::, ~t3. l ~., 3. 1 4119.3 ., J:i. ~ 4 I).~ • 4 ·140.3 .1111~ 420.'1 '1'/'),y sol. 9 ~.:~:! . k) 5:3::!.8 ~.:\::?. d ::i3:'.e :. =~::! . 1:1 419.4 53:!.1:1 ~3:•. b r.:\:• • B !:.33.1:1 !.:1.:-. 8 53~.8 .JUL 4tlY.5 4<':':.:' 439.9 ~:!O.Il 5:.!0.9 497.9 J.7~. 2 4 :w. !J •l :~~·. I !jUU.~ !:.::!0.11 ::.:1 0. tJ 5::?0.1:1 ~~u.a 4'34.4 ~~(J. t. ~~c..o 5jU .. ~ 5~j(,6 !:.•\4. 1 5~0.6 s~.o.;. s:;o.6 5~0:6 s:-.o."' ~~o.c ~!,V,b s~o.o 5!"t0 t t. $",0 .... :i :; 0 • b ~~0.6 SEf' "\63. 0 !:.lt..O ::;76,0 5~·9 .5 ~~~.3 !:.76.0 57t..O 576.0 3117.13 516.0 576.0 t76.0 576.0 576.0 ANN e.'t47.::? 5R43,8 6.S::!6.0 6807.3 6485.4 66::!8.0 651:!.5 6728.t. 6764.::! 6428.5 .Lf-.6::!. 6 ' 94.9 61i26,0 681.0.1 6551.3 ot-.L4,S 6403.3 ~~Y.~ ~43.1 ~3::!.a s::?o.a s~o.~ 576.o 6507.1 ~o~.3 ~43.1 ~J,,u s~o.u sso.b 408.o 6~93.5 4\7,::! 44J.B 414.0 ~61.6 550.~ 38!.9 5910,5 39.1 :J63.'l 677.0 507.9 5::!1.8 S:!S.4 !1'18.6 676 .9. •169. 7 61'l.O 6/6.9 57::!.6 63o.~ 611.~ :;.u6.8 6:~9 .3 4!.::!.6 ~20 .l •h3.5 4.,&.6 ·U'/,1 ~Y¥.1 ~~7.0 Jti4,!. 4J/,J ~r--4 Jy--; 6--:un;: ~.-7v3: :;--~.'11 ::r-· -46~: !···--1 '1!· •• :1 J~•'~'·~ I :\,\li.9 :•Y'),7 4::?·'Lo 550.6 3::!9,8 ::il76.3 _y.~ dU_J~~ ... ._?_ __ _:on! 1_1'!!! :) __ ~!?.Q: t. ___ 3:>:-! 7 ••• ;:;2z7. 3 A 24 532.9 650.7 [J~~.3 60J,O 4H0 • .3 4J~.J ~~ 439.1 408.0 6::!7.~ ~49.0 418.¥ 437.9 AV( 1!'1.0 66J.7 4 'i J. (o bt~t:J .. l 43'1.1 676.9 677.0 543.8 4Hb. 1 o:.'/,1 4HH,1 7\HL 'J 4 HI).·~ 767, ·I 77 4. 1' !1-yS'. 6 77b.9 '5'1'1.'1 I:HU .1 5YY.7 EH&.l 816.0 767.7 FCihfCASl [I£'11ANh fo'IEt>GY (GIJIII llC 1 617 .o tiUV 777.6 !:.::!7.6 ~{14.'1 !. '111. ·t t.6•1. 0 :.., .i i • .., 6~1. 9 61::!. 1 .lftN 773.8 JH!J,O 4.Hi ,;, SOO.o 'l.H .<l 49~.!J 4/Ci. 2 f(£1 'l.itl. 0 43fl.\l •l.1 tl • 1 4~0.:.' 4.\ti,O 43fi.L 'l.~tl.l 438.9 MHI\ 662.2 'ltlY.t !;4J •. 1 ::.3:!.8 5:!o.a !J~;o.~.~ ~n.o 635L:o 4~4.5 '·H•).8 ~:\2,8 4c'-Y.o !1!":0.l• 385.9 6313.5 ]o0.3 S05,1 431.:! 4bl.O ~::;0.6 31::?.1 5:iP.O.O 360.3 4:1 7.3 3/'t,l ~·1{1,\3 3./\. 'I 4H:',O HO •. b "1'13 .1 469.1 441.7 _4.16. f, 116·1. a 169,3 477. 'I 481.7 53:..1 • 8 53::?.8 53:•. 8 11 r.~t. 1 $3:!.8 !,:S:_l, B 470.0 497.6 .JUN !'o:!\1. B 4e.b.5 S:!O.Il -!54.6 !:.:!0.0 5:>0.8 5:!0.8 487.5 .llll ~-20, B ~·.)o,o ~~0.6 5!".0. 6 5i}A, • •:_ 5GO ,l.t r.rjo. b :l!iO, 6 576.0 375.7 !".76.0 3c>O,S :)76.0 !:i76.0 576.0 501.:! E£f• 576.0 51:l60.8 6361.2 5953.9 6607.2 5946.5 7009.'1 6830.8 6392.9 7784.9 ' I l 4 . I •. ~~c.." € 'i\. ~~~ 'I ~i'r ...... \.,~,A Po~ ~~--t.. ,j 2 lo I I \)_ (2 6 ·~>Sh t --. • 3a. 7 ·9 33£:, '7 3J.t2 4 3/ {" 4 LJ ~~~. L 4L:b t..1 {;!..~ .L, 3~ 7·~ -1-u ~·Lt . ; L1&·S" ~~6·~ :Sl7.(' 3Lfl.o 331 '2.. _ ... [j ~ . .., ~ :)1.)• ~ !, L ~ 4 .... 3 $1. 1., ~-7~·?:. 312'-l 3o~·l 3/5·1~ ~ld 7 304·7 3oo·7 ~-<-J ~ .... 0 -?lu·4 .;.L,q-f ~Lr1·7 ).L,-f 0 262· { 3J1.o Jh·2.. 3~1·7 .:211 ~.& ~53·7 2b1·7 )J.td. ~ 21:; 6 "~ 1r 3. J ]ol I 2bo·l ~~'hg .:.4 J. g ~~. 11 2~o./ -;-(....c...r) ~....:...._, Q c [;. - -• I . 77~7 117 2_ 7716 76 n -ls-8, J, lSJf" 173& I o l)_':J.!. 7 7-Ga 7 6 /,s~· /}(.)~ 916 .!" /OI.~S"" 7 7/S" I Dl S'( 8'1 1J ~ 5"2-8 1b/:s 774S 9t~o /() {3~ 7 716 - sr·;t C' f!. . . /6. !2}3 -7 .-i () 0 113~ :,-,7 q J _,.., • : ~~·r I ~ ?!,2. l.J I ' I .?'3}· ) . . ?l 1L,. ~ . 1-:.6 ·s 1 l •• ~ 1'-1~· ~ "'1-.-l ; ,:c:,. 0 /l. ..:.~ 7 £.1-~ j '0 I .., -I J' ,/ : .... a -::-J ,_, .. ,t u jL,~L J~;.t.J ;;.77 ';27.~ I ')_ 7] ~ • 4M;· {, ld J_ 2 L,/4 ' ~14J..., ;3/..f/ -s 6 I 6 IS2·c .;;1-~S II.! e; .;L.;.) 6 (, ~6 !.a '1 I, .•, .., ..,; '-' ..... /0 ~).,I /D71. 7 /o.rt 7 9 •(72. I Z7.6; I ' !/, ·~. '-'·-- /o£/.. '7 11 "1 I ... (.) ..... I I I • I/ •'.,.) ~·· J'" ) , I \, ·-• .... ~~~. ; ..... J '.o '-- I .. '\ ' ..... I • / 1: .. t,;' i _, I 1.1 II " " ;; ,... (.., ....... II -.. ..:.. ~1 ..! J J .i ,, 7 7 I .,.._ I I/ ::-I I ..- J ~ 111 It, &I;~ I : ., I, =' ""' .. ~ 0 c 0 a ),4-4 I . I """ .. """ ..... ... • .. 4 --...... ~-~ r-• _ .... . ' 'd I ' .., . ...I . '• -· . . . .. '1'?.-0--< ;~ ... ,,~r.J I I , ,..,_ l J I. ' \ I ,. ; j ..) \7 I .:_, ;..7 ' , .. ~~ 0 13. I I t:"'~"'3'f r. j? :ot~ ...... 11' ;'V , C. I "' 0 _,.- 5)/ g ... "'. 0 "~·, ~52 0 "' ,. -'2 ';2.. ~ :A.o] (, I I 2~e.....-vC~i-c Crerrcd.:\·o-.... ll..s~blt_ ,_,a_ ... J'I .J t..J~A.. ~ -;.~d p..,.'/' 0. 7, 't~.,., .../ t:j ;.1,/'1 t..~:.e k;. ,~,-, ~~~""" IN!o.-,.i~ fo!:.::ii-:.14... J~-.~~ "{ lA/I ~:& ~~ j ~ c;~;}' "b~·t u.-...._~..._ 3 ao._3 ~6o·~ ~4S-9 ... I .-~c.<;; 3o/ b 3ol. G "L6J...l ;;; 3 J. (;, 3~0 ·L, l) ~ 1 Jot, q .., " . :.;._ 0 s'f·<l I • '-" 77;5 772L, .: I ~ ~ _, '-I 71..-t..:(, ( '-.' ( ?710 c ~ .~ ., -... -- ; ... A ~ .. r..r ~ 1 o I I • I • 'I .. , . 77 If 77ol 7/o~ - 0 0 0 0 0 0 v ;;. 5 7& 0 <82 ::rqs 9 11 s 3 0 c /12 J ;;; 7 ,.. ..... , .... ,.l~ ~ J_;. 7 c:'J :2·..., ,.., .. i -u·. . ~· .... · .. I 2o2-> 1 ~ , 1 .~: .,..._.,-- -.. "" ,.v ... - /.l (" ,, I .. - 5071 S""tl 2 :lbTJ S77~ ,;_yg3 ~ '., ~~.:...1.::. , .. t• 1 :J.:. ~ ' 64j6 I -..., -.. -f'l-' S/1( .-1?--t ~ G l.-1' .I .,< '-1 DIS.- L~ ,..../ ';;) -·1 )3 (-:J37 773. ~ J .,_ .J-/ 1o61 31 !~100 l /~3s.- 2~ II ~/ l""J .'4..11 7 I~'-; I_:: I .L, ~' ._.l ~ • :; 'I 1 ... I 7.., ;;.:;. -:.-. . ~ ~ 1 '"I I I I I ! t-:· r I l ! l I ! I 1 I i > I . I l ~ r I I l \ ! I I I I ! I I I f 2. ·r /0 II 12 ~~ I~ :r 1£ \) ( ~ I :: ~ 7· / J.S ,!..,.LI 1.J ~2. 0 ! ..., :: !::1 --r-....,·1 I ;q. 3 -; -7 .:.!.::>1· I l. ?. & /64-o ~ 1/ .11 ........ 17/.J I I I 'I ., '6 ; /'J. '1 17S. I 172 0 42~, 6 .: !.Jf' l ; L,7, 7... -; 1-: I v'-"'~ ~ l18·q /7:?·G /h 7· b I(, I.J o ~.J.. 7. I {77. } ,;: I~ . ) ' I I I .,~:b' ii:r•} =-~ 1.!(, ·4 (71 0 6/Sb 77:J.-o 71£iQ s-13 ~ II·.· . " .. I 7-71 '1 7 :.7·-'/ .• -..1 • ...., .1 :? .?' I ' ~ c. I ·" ..,.... 0 c..:. ..!_. _,--·"'\ ,., / e· ., ... ' ·.' ....._.:; 0 3 2:5 I 6 'JoY ., ~ 71.. c.:! ._. t • .., 0 0 !J.osl 0 i101. ; 1 •; ·6 7 ~};1 ss ::J 4 177 1 344·5 3! ~-0 .:..47.) Ul!· L1 Lt -;:2 c I ;q "/ . I ~ .... ~ ./ ,....~, ~ }-I J 'l.J f .,. -I l • --' -~ ,...,-:2 A I ( - ,• !~ I ,.., .... u- Slb1) 177 .1 I' ' _ .. I.~ 17"' I 4 0 .d.:.-.-. -.-.~ ·~--~:t.·.A ,• ~.~-;-~...-... -<:.-.l-. -~\-,---:l,.t:t--.-u...---.... -.-.. ·-(-:..--.-;--n "'--~-='--; __ L_'-f __ .b~ s~s 'I I -fJ l'.:..)g /02../LJ :; ll1 -1 ? ... ~ ,j c-- I "'7/ .., .::: !_::> _") 117 7 7 -' -. 1 -7' -:, :. ,·:;; ~ t l;j-;2.. ,-":-' "* II' ~ • qrl~ I 'J I I ::::; .... ~ 1 :: r 1 :) j ---.... . --. ..:,..; I ';C 6 .· ..... 0 .- ..... ::) ... -1 .. J • !I I , ! l ' 2200 L 1.. ,-.. I , ... It ' --SE? ·--.lUG .: (~ f .. .. 2190 l ! I JUL 2160 ' I l l 2140 r i l 2120 j I t l 2150 \ I I 2080 l ! j ! I ! 2050 r \ l I t l ~-;,.._/ ''"""' 2040 ~ I u.;: I z I () * 0 2020 t -! l- < l > l !.JJ i .....J 2000 lJJ l9SO l i960 1940 1920 1900 1------------- I 1 --~----~'.--~1------~----------~'----~ 32 34 36 38 40 •42 44 46 48 50 52 54 TEMPERATURE {°F) .I V/ATANA RESERVOIR T'EMPERATURE PROFILE I - ! nnrn_.: ... -.. -~ ~~·"··----.---. .,I ....,, .. , ... -------. . . . ... 't '!' . its"lJ I • 1440 --AUG I ! 1420 j ··-JUL !' I I l 1380 I 1360 1340 1320 1300 - ('\, r.: v_ I.&. I! 0 z l2.80 0 -1- 4 > 12SO L.rJ ...J L.rJ 1240 1220 1200 1130 1160 L~-~--~L----~'----~--,--~~--~----~--~----~ --~--~--~----J 32 34 36 38 40 44 46 so sz 54 DEVIL CANYON RESEiiVC:R TEMPERATURE PROFll.~E ! ( MILO C. BELL .. . !ol( 2:3 r.~ ~ .. --.~.-:~ • .. ~:· ;t Mf~ef?e E1 \1 ~ ~ D I JUL 0 6 1982 MEMORANDUM C' -• • • ~~·-_ ~·_' ~ .. ~:-· -Ftu~-'.~~./l£,1! G, J(r~ 1-----__ _j :;;.;"' JUN 14 1982 sr-..--r ·-'I ' .. 1\fQ I c:;._._:. •\ •. _ , .• ·1 Lake Comanche Dissolved Nitrogen Stu~y - ' ~'/CfsusJECTw· ----------------------------- z ~ 0 !:-.. -(~ ----=--, -, "'!( ..... u -= I z . --1----. ,. I y"'' ) VT~ .. ·1 .@· •. :I I H..t GIRl I Fr.:Aj I r-t t • . . I I -- -AC.t..SKA ?:JNEH AUTJ-:O~ITY SUSITNA FILE P5700 .If. r'l I am enclosing a copy of the report on th~ nitrogen study 1 along with the only slides that ~ere made. I want to get this to you as quickly as possibie so have not bad negati~es mad~ here. Do you mind having ~his doue and se:1ding them to me so the copies we have are cot'plet:e. .. : ... 0 Pt . ~-8-1.3 r Jl.A. ~~ C\ '\'"£-V-l~t. ~ ~ ./~!~~) -~ I I ( . . • LAKE COMANCHE DISSOLVED NITROGEN STUDY Prepared for Milo Hell P.O. Box 23 Mukilteo, Washington 98275 Prepared by Ecological Analysts, Inc. 2150 John Glenn Drive Concord, California 94520 June 1982 ) • () Nitrogen gas in the deep ~ater of a reservoir ~ay be slightly super-sattirated due to the hydro-static pressure of the overlying water ~Jetzel, 1975). Therefore ~ater flowing from a dam with a deep intake may contain a ~uper-saturated concen- tration of nitrogen. If this excess nitrogen gas is not rapidly released into the atmosphere 1 l.t may cause nitrogen ga.s bubble disease in fish residing below the dam outfall (Conroy and Herman, 1970). A study ~as conducted at Lake Comanche Dam, Mokelumne River, California, to determine the efficiency of the Howell-Bu~-;ger Vo.lve in removing super-saturated dissolved nitrogen (N2 ) from the dam's tailwater. The valves spray outfall ~ater into concretP conduits before releasing the water to the stream. This was observed and photographed at Lake Comanche Dam on 28 May, 1981, at a flow of 4000 cfs into the 'Xokelumne River (see ar':'ompanying photos). This creates a turbulent and aerated flow with the purpose of facilitating nitrogen gas release to the atmosphere~ By sa,pljng nitrogen gas in the res2rvoir UQar the intake, and at several locations below the outfall valves, the eff:i.r.iency of the valve T..;as obtained. :·fETdODS In order to deter.~ine nitrogen gas concentrations at various depths in the reser- ·;oir, ':vater Sr'lr:!ples ,...;ere collected in Lake Comanche a?proxi!nately 50 m from the dam directly over the river channel on 28 Hay 1982. A Van Dorn Bottle was lowered .E:0m a boat to collect \.later saraples at depths of 0, 10, 20, 30, and 38.4 m. As r: !?Orted by East Bay Mtt::licipal Utility District the dam intake was at a depth of 38.4 m (126 ft) at the time of the sampling. Once taken aboard, each sample was pour-:d '..lith minimum t'l.rbulence into an airtight bottle and capped in a manner that left no air bubbles in the bottle. Bottles were placed in a cooler for trausportation to the lab. Studies conducted by Steve Wilhelr:::s of the Hydraulic Laboratory, U.S . .Army 1olater..:ay Experiment Stat ion, Vicksburg, Xississippi (personal co~unication) indicate that brief exposure of deep water sa':lples to atnosphP.ric conditions has littl~ effect on nitrogen gas concentrations. Houever, he has found thRt periods of exposure to at~ospheric - I l. r I ! l • I . . --~------------~~ air bubbles during tr~nsportation can cause significant changes in nitrogen gas concentrations, hetlce the need for recoving all air bubbles before transportationG Excess water remaining 1n the Van Dorn Bottles was measured for temperature. The atmospheric. pressure measured on site at the time uf sampling was 753 r-m. At the tailwater below t~e dam, water was collected by immersing the sample bottles under the water and capping them in a manner that left no air bubbles in the bottles. Samples were taken at the outfall, 100 m below the outfall, and 200 m below the out- fall. Water temperatures were taken at each of these locations. Bottles were placed in a cooler for trRnsportation to the lab. At the time of sampli~g, the outfall flow ·..1as 4,000 cfs. The at::no_'pheric pressure was 753 mm. The T:ate.r collected rvas analyzed for nitrogen gas (N 2 ) and oxygen (0 2 ) in a California State Certified Water lab using a Carle Model 8700 Basic Gas Chromato- gram with a thermal conductivity conductor several hours after collection. , I . I l . < 1 . \ I • ' • I • :J .•. I .• I .l '·I I i Loc3tion 1 ,, ... -:..,....,.,.oir ,, •\.~-.:.,i,_r.., v .. ~----- 'J:::n Tailuater At Valve : 100 m d Otms ti:e '3m :200 !ll do\instream 1.0 0 • co • 1 . ! Depth (m) 0 10 20 30 38.4 0 0 0 RESULTS Te.:1pe rat ur e (DC) 22.0 14.5 13.2 11.0 10.0 lQ.2 10.5 11.5 - (mg/1) 14.9 17.0 17.3 17.9 18.5 17.7 17.3 17.9 Nz % Saturation ) 101 100 99 gg 101 97 95 97 02 i. (mg/1), Saturatior 9.2 9.3 10.0 10.2 9.3 11.1 11.2 10.9 105 90 94 93 82 94 98 98 I , ~ I ~ ' References Conroy, D.A., and P. L. Herman. Textbook of Fish Diseases. 1970., T.F.H. Publications, Jersey Citys New Jersey. 302 ppa Wetzel, R. G. 1975.· Limnology. W.B. Saunders Company, Philadelphia. 743 pp.