HomeMy WebLinkAboutSusitna Hydro Project Supplemental Responses Vol 1 1983::IYDHOELECT.!~IC
...... ;'~~--,
-• V...Jl•_,.~•
~ .... .-"
.,f ~ ~rro-• 11:'-It...... "'
jj ~1 i:Di: itJ~i ,
··' .... • , t:" . _ ·-;'!"',...~· · .. ,..r~-s· _ .. ,.
i;•..,¢•-_....._.,.,_.,.,..t,~· ..J<vo.-v)JJ~
I •
'·' ...... ~ .. ·'!"~ ...
... • ;.. 4
W \J ,t.aU.i V
. Enclosut"e 1
Susitna Hydroelectric Project No. 7114
Schedule B, Supplemental· Information
CONTENTS
Exhibit E
1.
2.
3.
4.
So
6 ..
7.
8.
9.,
10.
11.
Gene~al Description of the Locale • • • . • ,. •
Water Use and Quality • • • .. • • • • .. • • •
Fish, Wildlife, and Botanical Resources
Aqua.trc Resources • • • .. • • • • .. • • .. •
Tex-restrial Botanical Resources • • .. • • •
Terrestrial Wildlife Resources • • • • • • ..
Historic and Archaeological Resources .•••••
Socioeconomics • • ~ o • • • • • • • • • • • •
Geological and Soil Resources' ••••••.••
Recreational Resources • •. • • • • • • • • • •
Aesthetic Resources • • • • • • • • • • • • .• •
Land Use • • • • • • .• • • • • • • • • • • :. •
Alternative Locations i ~.,D.esigns, and
Energy Sources • • . ;: ·· • ·.•.. • . .• • . • • • -..~ • • •
List of Literature • : ..• · • .,. • • • .. .o··. • • .1.. •
' .
Transmission Facilities
12 ..
13.
. Status of Facilities • • • • • •
' ~lectrical Environmental' Effects
. ~ . . . . .
• • • • • • •
n Engineering
14. General • • 0 • • • • • • • • • • (' • • • • .. • 15. Exhibit F and Supporting Design Report • • • • 16. Exhibit G • • • • .• • .. • • • ~ .. • " • 0 • • •
Need for Power
17. Exhibit B • • • • • • • • .. • • • • .. • • 0 • •
18. Exhibit D • • • • • • • • • • .. e . • .. • • • • •
19. Additiona1:supplemental Reports Required • • •
20. Financial Plan • • • • • • • • .. • • .. • • • •
Volume
No additional
information
required
I
II
II
II
II
II
II
II
II
II
II
II
III
III
III
III
III
III
III
'!
•
EXHIBIT E
2. Water Use and Qua~~~Y
Provide copies of the original photographs, with dates, and an estimate of
mainstem flow at Gold Creek when the aerial photograr>hs in FigfLires E.2.11 to
E.2.20 were taken. Provide· similar sets of photographs at hig.h~ .medium, and
low flows to document channel stability, wetted surface areas!, etc., in fut-
ure Aquatic Studies.
Resp~
Copies of the original photos in Figures E.2.11 through E .. 2.20 (Exhibit E;
Volume 58) are contained in Supp lementa 1 Attachm~mt 2-1 as SA 2-1-1 through
SA 2-1-16. The photos at a scale of 1 11 :4000' we!re taken c.n 24 August 1980
by North Pacific Aerial Survey and represent a mainstem flow at Gold Creek
of 18,000 cfs. Photographs of this reach of the river for varying flows
{low, middle~ and high) will be taken during August-Ot~tober 1983.. Copies of
these aerial photographs will be provided to FEBC as they are made
available •
2-1-l
• . ·. . )
•
•
EXHIBIT E
2. Water Use and Quality
Provide camp lete references tJ all cross -sect.i Jn data and staff gage data
for locations indicated in these figures.
Response
References to Cross-Section Data:
.Cross-sections LRX-1 to LRX-6:.~ including cross-sectional plots and a des-
crti pti on of substrate and vegetation present, are contained in: R & M
Consultants, Inc. 1981.. Susitna H droe:lectric Pr-oject Hydro ·ra'"'hic Surve_\fS
Closeout Report prepared for Acres American Inc.. This document is included
as part of our .response to your request for literature, Exhibit E, Chapter
11.
Additional mainstem cross-sections: LRX nos.: 1, 1.1, 1.2, 2, 2.1, 2.2,
2.3, 3, 3.1, 3.2~ 3.3, 3 .. 4, I 11 4.1, 4.2, 4.3, 5, 9.1; 10.1, 10.2, 10.3,
18.1, 18 .. 2, 18.3, 19.1, 20.1! 20.2, 25.1, and 28.1 are contained in: R & M
Consultants, Inc. 1982. _Susitna Hydroelectric Project Hydrographic Surveys
Report prepared for Acres American Inc. This information is included in
pp. 2-2-4 to 2-2-32.
II Cross-sections for sloughs 22, 21, 20, 19, 16, 11, 10, 4th of July Cr-eek,
Slough 9, SA, Lane Creek Slaugh, Slaugh 6A and Whiskers Slaugh are also con-
tained in the above cited 1982 Hydrographic Surveys Report. They are con-
tained in pp. 2-2-33 to 2-2-84 •
2-2-1
Cross-sect:ional data for Portage Creek, Jack Long Creek, Indian River~ Gold
Creek, unnamed tributary at river mile (RM) 132.0, 4th of July Creek,
Sherman Creek, unnamed tributary at RM 123.9, Deadhorse Creek, unnamed trib-
utary at RM 121.0, Little Portage Creek, McKenzie Creek, Lane Creek, Gash
Creek, unnamed tributa~~y at RM llO.L, and Whisker$ Creek: are contained in: R
& M Consultants, Inc. 1982.: Susitna Hydroelectric Project Analysis. Pre-
·pared for Acres American-inc. This is included in pp·. 2-2-85 to 2-2-99 •
. Additional cross-section survey data not illustrated in Figures E.2.1~~ to
E.2.20 were :collected ·by the Alaska Department of Fish and Game· (ADF&G) at
Sloughs SA, 9, 168, 19, and 21. This information is contained in: Alaska
Department of Fish and Game. 1981. Susitna Hydroelectric Project, Final ·-Draft Report. Aquatic Habitat and !\';stream Flow ~hase I Final Draf~ Report.
Page E-5-190 and Appendix EE. The FERC staff has a copy of this document ..
In the Devil Canyon to Talkeetna reach, ADF&G collected cross-section data
·in the following sloughs: Whiskers Creek, Lane Creek, 11, 168, 20~ 22, SA,
9, and 21. This information is presented in: Alaska Department of Fish and ()
Ga'ne. 1983.. Susitna Hydro Aquatic Studies Phase II Basic Data Report·.
Figures 4-A-31 to 4-A-39 and Tables 4-E-19 to 4-E-56. The FERC staff also
has a copy of this document.
References to_Staff G-.!ge Data
Staff gages were installed and mon·itored in 1981 and 1982.
Data for 1981 are presented in: Alaska Department of Fish and Ga.11e. 1981 ..
Aquatic Habitat and Instream Flow Phase I Final Dr'aft Report. Staff gage ...
locations are· shown on pp. E-5-174 to E-5-177, and are included in
pp. 2-2-100 to ~-2-104.
2-2-2
-... ::<-
c,'
. "
. I. (! ~
'
.. ,
7
-} .
•
Data are listed on pp. ED-1 to ED-27. Crest gage data for 1981 in the main-
stem Susitna River are listed in: R & M Consultants Inc. 1982. Sus1tna
Hydroelectric Project Field Data Collection and Processing Volume 3, pp.
E-7 to E-1.9. This is included in pp .. 2-2-105 to 2-2-117.
Information on the staff gage sites installed and monitored in 1982. in the
Devil Canyon to Talkeetna reach is contained in: Alaska Department of .Fish
and Game. l983o Susitna Hydro Aquatic Studies Phase II· Basic Data Report~
Staff gages at tributaries between Dev·i 1 Canyon and Talkeetna are shown in
Table 4-1-3-3, staff gage dctta from mainstem Susitna River sites . in
Table 4-A-2, staff gage data for sloughs upstream of Talkeetna in
Table 4-A-3, and staff gage data at the downstream end of Slaugh: 9 in·
Table 4-II-4-2.
2-2-3
. ·,'
-,·-
----~--·--------------------~--------------------------------------------------~--·-·----~
I
c -
SUSITNA HYDROGRAPHIC SURVEYS
\
"'
I
I
I
I
I
I
,.~
I
I
f\,j
I ' I
I
\_
' I . c
0 ~ ~. ------~~~--~-,--~------~--~1 -----+------~TT-------r------~t
> I J • I 1V Ia I
Ia I
I
' :j
I
I
I
I
fftr!f'Nlt=D DY: ·-l'fU!fAN!D POR: j ~~ .. ----------------. . I
N CROSS-SECTION Number 1.· A ro. [C.' '1,'
i n•u OONSUi.TANTS. INO. HvnL~ I
.N '----------II J ' ~=====-----------------------------------------------------------------~----~----------~-
.~. e
n
i
\.)
SUSITNA HYDROGRP.~PHIC SURVEYS
A
I \
I ~ .... .. ~ I ' J! ~· I .!:; I ' I I I
( ll \
\ c ,I -
'
c
0 :g
> (l) m
_,---,
""" OON'SULT"NT:J. tNO.
-
I
' I
i ! • I I ' I I I I I I I I I I ., ,., I
I
I
I
I
,'1
/:
•
,
e
8
\
:(
I I
CROSS-SECTION Number 1.1
I
f ' \
I \ I
I I
f
' I
I
··-· , ....... ,.:·-···--·~--··------· _., -· ~., .. ~,.,.,,..., __ .., __________________ _,.,...;.._ _________ ~ __ ............ ___
·I I
:()
I
J!:j
. ~'
SUSITNA. HYDROGRAPHIC SURV~--___ _.__~f.
I
I
..... I
\ {\ ' t!
'' 'I '• ~
I
I
I
I
I at '.:'/'~ J
-~~--~------+-------~~~---T------~~--~~~--~--4
c -
' I
I \ l
I I
l
•., ''".-•
nte~DAAI!D FOn: , • ~m~er.~M~e=o~ .. ~~·~-------------------~----------------·------~-------------------------------.. __ _
' A~~t~ I CAOSS-SECl"ION Nurnber 1.2
RaM OONSULTANTIJ. INO.
I :N
l. t..::=:==::.........-----------------------------.......,..._ ___ _ •
N
' .·t' ' ' ..... _ ....
,..-~ .. 10
.~.
_.{ '\
{.t \
~·
.;~ . -.
•
rl c
I -~· •
c
0
~ .
0 m r
N
' (\1,.
•
•
SUSITNA HYDROGRAPHIC SURVEYS
I
I I k
I ' I ;• I·, .. ;:1
I . I
I .
I I
' -· I I
CROSS-SECTION Number 2
I
'
·!l_· :' '' '" ............. -·
~-_ . flAM OONtiU~TANT"• UIO" ·.
_lt::('::::_~-~------· ---------· ................. ---~,-------~--------------,. ............. --__..~--·--.. _........
< •• ' •• , • .,.,,' • • I I l H'
c ....
I
·.
SUSIT~JA HYDROGRAPHIC SU-RVEYS
' ' \
\
\
' i
I
\ :.
'-I \ :
eVi
\ 1 I \.I I I I
i I
I • ,.
\ I
' \
f
J:
';
Pni!P.Afti!D 8Ya "'i!r'.MI!D fOft: I ~~..;....;.;..;-------..-.--------------------------·-·----=----",
I.
~~~t~ l
nowaw w<o owhoa.m a u • oowom=••=•u--wwwwwoowno uno ••••• ,; ,· a aowaaow•..,.. o nw • _. __ ....,_.,......-.. _ _. __ ,_ • ._..... .... -...,.,...,...n•· .. ,_,._.._ • ...,._J
CROSS-SECTION Number 2.1
SUSITNA HYDROGRAPHIC SURVE'fS
\ r.;
I \ :·
.~ I • \I
I
I e I
• \ :.J ..... ) ' c I • •
...... I •
,J
' v f
c
0
~ ' li ' m
I
:s
•
T _rl.,.,... arw
CROSS-SECTIOl'-l Number 2.2
.
'~i~~~-~--~·-~~~---~-~==-=·· "-·=~~=·~~=~~~-=~-~=~~~~~~--~~~~-~--~~-~-~~·-~n=~~--~~-··~~~~~·~~-~~·-~~~-~~ • ,, •.••.• .;11,. ' • I I
c:: -
I
SUSITNA HYDROGRAPHIC SURVE~'S
f,
• .
L~~er.~M~e=o~aM~·------~--------~--------------------~~~~~~==~~=-~~~~~~=~~~!~~~·
CROSS-SECT~ON Number 2.3
'c.. : .)" .. · ·~
_,•!'"'~~.
/ ·,
1" f ~
-~ ..... :~ ...
)
' J
.,;j
ut.
I
c -
~
t m
. SUSrTNA HYDROGR-APHIC SURVEYS
\
\
\
\
\ I
\ I
,
I
I
I
I
I
I
I
I
I
I , ... ....J '
CROSS-SECTION Number 3
·-.~ .
I
~-:::::.~·~:.._ . .-Jl!i "-: .o.#.'~,.,..:'%:&::.,: .,. _.,; -.! • .J..,a, "'&!."'.,;;, ·:.-1tu:·.~-~~~~-...:~1~,.Y•"i~~llftf=="'=-===-=-=--"""""==----=--.....,._.,..._....,......,_,.._==-=s:.__,..,..,..__,,,..,. ___ .,..,,....,.....,._.,~ • .......,.,., ... =:....,-.::.•~•..,.,,,.~ .....
I
7
SLJSITNA HYDROGRAPHIC SURVEYS
c -• r-
' I
\
\
\
' '
I
I
I
' ' \
I -,17.
1\.. . --' I .. ,. -
I ', / ..
c
0 ~ ~------+---~--4---·+---~~-----+-
i; :
iil I I
I
~ ,
' I
'
__ /
I
I
-------~------~------ti--·----1~·-M
"'
CROSS-~SECT~ION f\iumber 3.1
('~ r , ,.
~
' .frf,l"'l1~ -~~:"'!l :~·~·l•l . Yt"'r.i!:Jl' t't'f.''1 PI'~
'· r\ ..
' .. 1
I I
I • •
•'""""!"".! t-.·· ... ;. '*? ?"'.:*·). . . . ' ' . . .
. . ' . ' .
r--------=~~-·-----·~·=~··-·=·~-~----·--~·-=-n~-·----~--~----------------~--~----------------...-...---------~~·-• r s
....,
.f
J c -
c
0
~ \
... \~\ Q) m \
SUSITNA HYDROGAAP.HIC SURVEYS
I ' r \
\
I \
\
\
;+ -' ' .\. ~
'-... _ ____.....,
~
1 a
' ' I
'. '
•
I l
... I I il I M II I' I I'Ti"
I
I
\
\ . /
\!
• ..i~· -?"··· . .:_.::" ..;.__ ·:::~~.
.. --~· ...... --·~·-·-·----~·-·~·--·-------~----~-.----~~~--------~--~~~~~--~~~--~~~~··_P~~~~ --. -----"---·-·-. ---nus""·--•·& =••-·•IP'it;zm=••·=•-17'7 • ·· t · u "''b!.te· .• • • t •· e, + ·~· = • ··• • • ' -
CROSS-SECTION Number 3.2
• •I t •. f'olti11 I 1.
1
SUSITNA HYDROGRAPHIC SURVEYS
' I
I i I
\ \
I \/ " •
,.
\ c I ,, I ·-' \ ' I
\ I \ I ' ( I \ I \1
C, ' 0
I ~ ' t
Q) .1'
iD ' ........
I
I
I
ff'-lf'AMD POitl ------------
CROSS-SECTION Number 3.3 ·
' ,:NL::::....----...._-~------------:-------------------
i . ' -~
·N
t
\
0 l'f~' -. .. .
~ ' __. -<.
.T ~~~f~ !
-·------~---·----~
J
I
'
'I
., .
~.·~~~~.·~ '(.
c -
'\
/~~:~~
SUSITNA HYDROGRAPHIC SURVEY'S
r--,' . 1
' \
' f.f ~ ' ~~· ~· ~~~~~~~~~~.w~~.w~~~~~.w~~~~
CROSS--SECTION Number 3.4
• •• • ·H·~·n·
I
I I'' · ·· · · "" rr· · ··
0
I
1\.)
~p
'
' .. >
f ~·--~~----·~~··-•-p-m-~--~--~~~~w~•~m~•-~=·---~m~u~~=-•---~-~-~·~~-·~w-•~~-··~~-~~+t~~-~~=--w~.~----·~u-~••~c•~~·-···~•• ,_, ~~~, ~
,~> SUSITNA HYDROGRAPHIC SURVEYS
I
I
I
I
' ' ' .... u at
c ' -' I i
• c I 0
I =s ,r, J > .,
m
,!\~~'"\!
.,)
-~Will·
I
I
' »
I
' I
\ ' \...J
'''1''1
!
e • . , I I I
I \· ' ..
I
I
I
I
. ~
' ' \
'\) I
I I
,,
'
F">, t'l\!,.tAI\et',' .~ ,; .
WW:W .-W&ar."'.4 .... WMa_.,i _ _....,,._. ___ , -------tS_W4_L ____ ,.... _ _.., A....,UAW_,.=,_-....... "'"'a ilr.MSi ia_.,WJrmilO&....,iCW_.,., ........ Sll_iliFW.__,,.,....i G.,..i,U4JWJ---M ..,...,., Ji.._.lW ._,.1?. ~,· -.....c ....... c ....,...,. --·· ...,..,C,AJ.......-.r•..,................_..._......,-_._ --··~·---·-"'--··--
; 't NM dotuaULTN¥ra. INO. CROSS-SECTION Number 4 . . . . ~b~f~ •.• ·. I~J . g
*: l , ,.._..._..--~__...,_..._,. _ _., _____ ._~ ..... .,.,.._.,._.Wll_,.,::ar•._w._w_,. __ ,___~--,.,..w,_.,; ____ m""""=-------=.....,m.....,mr-..-.... ---_._.._....,.~~~·;,.... ,. .: ·-' .~ e \ .
\ .· \ ' ~ ~. ~· . l:uU ••
~· -·
------
• I .. I ~·~ u
SUSITNA HYDROGRAPHIC ~URVEYS
:. n
I
:j
)~
c -
f d f·l·•. $'llitliJ1! __.. ... ~f t"!t -;,:.r-.~C:.=t.W.'t!r.tr~~~....... """""'* ::o:aw~
~~~----------------~-
I
l ..
' \
I !'
A!\
I \1 \' I ~
I
I
I
I
I
~ Jj 1.< 1'1. ,\ .• J: -·~ ~ .. ~,~-
••· t ..•
.. ~: -'.· . :
I
,_,, ,.::,
' . ' _.._ ______ ._..,.._~-------------'"" -· ..... ii4:1tsWc4: ... --.... IM,jiiiW•IiW PCW .. _MI'Y.,..,......~·WWT~~~.--, ,
SUSITNA HYDROGRAPHIC SURVEYS
I
I
l
r----~--
~
I .
I
a
\
i
I
(
I
I
I
\
\
' ""'
CROSS-SECTION Number 4.2
i
l.
.. r
.. ~ ~ fi-'""' . ~ ~· ~ l"~'i
~).
I
.)
;.I
c -
\ I \I\ . I \ v
,, .
\
,_<b·
t ~ •
SUSITNA HYDROGRAPHIC SURVEYS .
:\1\ ,
,~, I' v
I \ I I
'
/'' " : '\}
. \
\
,.1
' . \ r
' '
' '
. \
. -~-.. . ~·•--'. -' .
'-.: '-' , 't" -· ',.·. ' '
I
,.,. ... oOHsua.T.Al'fl"i'.tNo. . CROSS-SECTION Number 4.3 " ,, ,. A~~t~
.... _, -'~~~ • .:-~--'. : ' .. ' .At~......_, • .,.......,.A
.-:.-' _;: .. , _;,. l-.Jl &-.... •"•" ,J£..M :..0. •1£-A ...... 11, 1-..... ~..,.•"""•'"totl+'lf,.. .. oiS.,........,..I.W.:..M.Sti .... "'"-._,_ltJI,I,a.-._'3o~iU•~•·--~"Q ..... 1'11"\,o~~--"1.--~.;v;.r,-:"&~· .. ~ ....... ---~~, ........ #iM,f,..,a,.tioooO-\ ......... j,A..U, ... .I~t4Ma .... ~."'.C..•.....,._.. ... ,.~ .... "'",....,..., __ ., .. , ;·o~'l.tl"'$t.-;.-.a,._.U:_"'rlfj-· ....... ...,~li'~llf~.,n. --~......-_,""' A,.l• .~"!!' '" ,.r *'..,. ' _.. . . , . . . l
I \
~
. '
' '
SUSITNA HYDROGRAPHIC SURVEYS
•'v l
,....._,
' • I
,
I
I
: • ,. 4Ht
' c -~ ~ • • • of,. ,.. ~
' . ~ . ~
t
I
' I
I
' • I
' '
\
\
\
\
'
CROSS-SECTION Number 5
• . 1 ~ • •!' ' • ~ • ~,.., _··. .... • : ..... •
I
r
.. • •. ' t'
----------------.. ..::.-____ __...............,~_.,........:-' ·~·-____ ......__..,__....___ ____ ..;....,.__...~· .......... _ ............ t : ' .·.:;,·
I
.
SUSITNA. HYDROGRAPHIC SURVEYS
1
') a • r 1 ~ 1 a a t 1 a F.
•!
I
------~------~-----· ~-------+--·,----~
c: -
-·-~ ~ / '
\
\
\
\
' ~---+---4---~--.,_.._..,.._ ___ .__,c----e
/
~ ,,
~
" k. ~)"
CROSS-SECTION !'~umber 9.1
' l ; ~,
',i\,
. .
I
I
-1
.,...
~ kM~ · W ~ WJ& ~· WJ ~-l~1 ~·~.
....: --
e:
0
~ t'i m
SUSITNA HYDROGRAPHIC SURVEYS
~:"i.itll'
•· ' '' ~d·n
I
I
' I
I
' I
.
' \
\
\ .\
\
\
CROSS-SECTION Number 1 0.1
(
/
I
I
~" • ' ":'". ·.. •• • • • ·~ ;; "'.· • ':· • '!;.~. ,, < ~· ... --· .. ; .. ; ~ ,. ~ ' • :: "~ • _. &
'
,,
I
. •.. . . ..· ... · ;.r•
': -. ', ,:
.... ' . ,," ' \'" .•. :
.· i . ·-.
" .,
~--~------~---------------------------------~~~----------------~~~~~---~~~-
i i
. .
• 0.·;.~· l . ' to.> .
(X)
I
SUSITNA HYDRCJELECTRlC PROJECT
c .. _
c
j~~---*------~--~--+-----~~-----*------~-----~
G)
iiJ
PR4!1'AN!O f'Ofti
. ._._...._ ;.;;;,;;:;.....;;...;;.~ .... ~---.----------------~---....;.;.._----------~~····~-.-~
CROSS-SECTION Number 1 0.2
~----~------~--~-----------------------------------------------·-------~-.•
: (•
I
rJ
0
c -
c
.0
SUSITNA ·HYDROELECTRIC PROJ,ECT
e
~ ~-----*-------P----~*---·~~~--~~~----~--~~~
(1) w
CROSS-SECTION Number 1 0.3
-I .,
/
l.).
I
! • •·.,,• . ..----...-------------------------.,..., .. ___ _....----------~-~-------___,....,......__,_ __ ___.._;..·,
t·
t~
w
0
:N ....
<j)J ie
c -
c
0
I :g
a;
iii
SUSITNA HYDROELECTRIC PROJECT
('--,
: \ I \
I
I
I \ I
I
I
I
I
\
'
l'fti!PM!!D ..-a Pft&!I'ARE~ f'OI'eS 14.!:=:.;:::~~.:.:=...-_,-----,_.,...._....,...._._.,., _ _..._ ..__, ---.-=-w_,,_,.,., ..,.;,..;;;._w.,.....uo-uc• -·= .,_lA ._.. _ __,n,..,...••·--.,....:a::.,..,.., ,wz...,..hH.......,, .. ,_. ,.,...., ..... ,..,...,.. •--• _..,. ____ ,.._._ __________ -·~ " .,. ____ • ..... t
CROSS-SECTION Number 1 8.1
' -~ ............ ..--...-------------------__,_..,----------~---------------
.f\.i v,
. t.JI •• ·.;; .. . .. ~ y~
. '\ I It ' ' r I 1,
SUSITN.A HYDROELECTRIC PROJECT
I l \
I t I ...., I \ I
3! I \ I I
l \ I 0
I I \ J c •""'._/ ·-
' ' c::
0 ' :g ' > ' (.1
\ ill
\
'
CROSS-SECTION Number 1 8.2
c
0
11'
«<)
ii1
:! ~ .•. : ... ·
A ===-Wi#l--~ Wi.acwa.===c 410i4011ii·U--•·==··-IIi #41 -=-· a•w ill P.l •t~-....~-.,_'!'·;.'a;i 4 .. ·M ::i!+'.;
1
i ..
SUSITNA HYDROGRAPHIC SURVE'tS
I
I
I
,
I
L...-.-ii'<!ao• ~............,~_.,.,_.,.. _ _,~ w.w_..wa•s;; -•» ~~-=-•:r-:s ¥!l'r->=-==--=rm""'s""'w_.,..., • ....,=•........,,..,•....,•--=""'''w.,..,.,.mm:: . ..,.a:::""" .. '*""""' _...,.,.,....,. '"""'""'"""'''"""ewr.rscr.=m"""""""·,......,"'"""''"',.,. .. w,..m_.as-.w::z=-==""""'"""'"::a:s'"-'""'x::t::'li.L,...wmr.,...,srwon=a...-•w ....,,,_,..., •. ,,..,. .. """'m'*"•·'""*'-,...0' ·...........,,_......, ,...., .,.....,,,__,.,.,,,~,.............. ... -....-.-.. -:---_,.,.,.,.....--11
I I> ·f'•.tf' .. llf' -:.,.......~., ~ (........,,.
• • . d&Hl
: ..... ·: ...
·.1
.J
c -
••.. .J l • ~JI l..:~
SUSITNA HYDROGRAPHIC· SURVEYS"
I
I
• •
...
\ I
\ ' \
t ' \ ., I\ . \ ,---, r' . ' J \
u
\ " • , I I \ J
i \
' "l : Q
\. , _ __J I l
' I \
CROSS-SECTiON Niumber 1 9.1
\
.. Jl .&MI!$1• .· I. rlli~,,...,~ .
. ··-=··-·-·-··-----·-~----~·~ .......... .;..,: ;.: .f.'
.. ·. " " ; . '\ ':. ··.[·1£ ... :
.:, ' '. ' ' ~ .. : .
·. ~,.' . . ' '
SUSlTNA HYDHOG RAPHlC SURVEYS
r~"Tora 1 ~ 1 1 1 1 1 u e
1
\ 1 1 1 1 a 1 e·
•• • h I -'~ ·'
j
l
' ·;
j
.()~ .. J q . ~---~-----ol..f.+.---of----+--..---i--••,.;;a.__ . ._--~1 I
r~ r-"'!· r,.,._,.., ~ 1 , ~.
~-: ... ·~ ... · IIF.:/ ... :! '"t~:.""·. ·~ .... · ..... _1!8 ___ .. •, • ' l ...
. I
lt
.
n
I
1.-.J
Jl
'' ... '
" '""' . I
N
'
c -
SUSITNA HYDROGRAPHIC SURVEYS
I
I
I
44 i•
__ ,
-
I
,..----...
~
' ....
" ' '
PIWP'AIUID I'Ofil ,
I p ===rz:=:-=c -re c·r=:=··-·=::::w·o·=i:= ..,. ,. ...... _.;.:..~. ~ ... t!'
CROSS-SECTION t~umber 2,0e2
_. 4 .e. I .i • ·-t• I i ~t , .J,. r. t I ' o ~ '., ' J ..... • (I .._, ' f .-~·• ~ . . . ..
•• •
. 't··:·•;<"
' ·~·' ; I ,'' ';
·. '-, ..
___ .......,..,...,.._ ·-·t"j•nll· • eo• =e• .'M _t =ri 'I;"'"• ''1M W'''bet'l&la'' "' '" ,. ttt -etMt=M: t···-·n Wr Mf_W_""_t·-td it"-"-MWI. : , •••• t~ .. L.·=n"t~--··ient'l'!'!"'' tiJ• '?' ••" _._, 'C'! 'W ''Ill 'GilA~ ............. ....._._...._,.......,..~ .................. .....,.,...
SUSITNA HYDROGRAPHIC SURVEYS
""' , .... 'v, I ' I
I I
' (
l/1! I I , I ~ ' ' .E I ., .. ' I -
I ' c \ -' I a
c I I 0
~ I " .,
co I
,_,
m \
\
\
-+
~~~··~=··~~~~,~D~· ~~~~~~~~----~~~~Y·•~w-w~n~·-"·~·--··=-·-···-···-· .. ~'··~·---·---·~=~·=-··-·~ .. ~-·-=-·•--·-·n-,~·-··-···-rr-··-n~.,~---~·-·u-·~·-·-•w-·~··-··=a·~· ·~"~"~·-··---· ~··-··~--~~~------'-fW_._P~-~~rO~
CROSS-SECTION Number 2 5.1
N··
' :t ,·. n&ta· O.OPULTAHnl~ .tHO.
~· ••• <,;·~~· •... ~:._:~ •• ·--:· t...-L<•'> .~. "' ... .-.---·----~· .. .a ........ '-•---'........_., .. ~..__,_.a.,z.....u..:..L~C....-:.: .. ,,., ....... , .. , ... ., ... ,. ' • ·'4
! w .
. •· . .. .. , ,, --\' ~.r . ..
' ' ~
SUSITNA HYDROGRAPHI-C SL~RVEYS
...
•
f
I
I
~
(
I
e
I
' .
\ ~ ;' ·~····.·~ .. ··-"'.f_.!J',_· .
-. r.(. . ~ . .
<'_, I
,\ -.
. .
,.
... ~
.... ~
-
... ~
' ' \
' ' .
•
' ' \
...........
....
CROSS-SECTION Number 28.1·
~:
.~T .... f':-1 .... •',!t .·,. ".~~. ·~' • ~·,, ,~•-1" • •.
\
\
\
i
'
1.. L' }•. , --~.---··~·--. . .
'~ . '
' : ~---~
I
A· ~··.
.~
)· ,....__ _____ __.__._.__ ____________ __._,...._.....__ ..... ___________ ................................. ~ ........ __ .:-~:-~.: ;·~;;~·~-~ .
. . ' '. I>..
N
' 'N
I
VJ .w
, I Ra.M _;~~.s;~LTAtfrs. INO,
·~~"· ; .
SUSITNA HYD'ROGRAPHIC SURVEYS
J •• • •·t' '' •t
cross s~ction SL2 2 1 44.8H4
Date of Survey: JULY 1 o. 1 982
,. I
I
PR~PAAEP FOft: . .
a. .
1
l
I
I
I I
N
' N
I w
.....[:_
U U L-11
. '
SUSITNA HYDROGRAPHIC SLJRVEYS
TfTI I I
c I ·-
Pfti!PARI!O ttY: ~Ftef'Aftf!D f'OA: · -~~."~~~----------~------------------------------------------------~--~---;
' .. ___.........---
~ 1 ( J f
W. ..r:;,
f
'. •
. ~-. . . ~ •
. .,,
k. \ ~ ·~ •
SUSITNA HYDROG RAPH·;c SURVEYS.
cross section SL2 2 1 44.452
Date of Survey: JULY 1 0, 1 982
-........ ·-?-· --...;.;....··· ---.--·~--..:1"";_1~~~:~~ ........... --~----~------"".-.....--........... ---.------__::..-··-·-·~ ... ~···-' • f1~ ~-~ , . . • ' • I t•'' ,,
••
' .. '
" .,,
I
PREPARED POR:.
.. ..... ~ . ....
. '(,
----------~~--------------------------~------~--~----------~--~------~~~
,. -:
SUSlTNA H.YDROG RAPH IC SURVEYS '· .
l .
. , ..
~-----~.~~------4-------~-----~~-----+~~~------~
PAEPAAEP fOR: ·
cross section SL2 2 1. 44.·2W1 .
Date of Surv~y: JULY 1 0, 1 982
~.;;(:;.....' ___________ ,.. ___ ~·
. .• i
J j. fd'
·, '
·~,,···~
' • '
. ......._---.,.~---•_.___... __ ~-~--~>!!'Jt.JI......, '-•••• r,..,._...__.,..._..,_.._ .... _.....~-_._,....,..,..,., _____ ,.. ___ .~•-'* CS:._tl'_. •• _______ ~~~~.., ..... ,...,..,. • ._.~..,...·-~·~-...i...,.,,..,;~.-· ,.~ ... /~~-· .... :·-•; !]: '
'
c
0
:t:i m > Q) w
SUSITNA H··YDROG RAPH IC SURV.EYS .
' 1 1 1 a a 1 1 1 1 1 1 ' 1 1 1 1 1 ; G 1 1 1 1 1 1 1 1 1 • 1 1 • 1 1 • 1 1 1 1 1 1 1 'I 1 1 5 1 1 • • .. , a I~' • ~ w I' r • : · :
.. ' .. •.• • •• t .. . '. . I
.. ""'"•
.I . . ...
~ '/·''
~; I
I
I
I
, .
.,
I .
-raePAAeD D.V: PRePAReD fO~: a-:..;;..__:..,.---.,....;.;._,..._..;.;.;.--------_..-----------------------------------·---~ ... -~---.w----
'
cross section SL21 i 1 42.0H9
Date of Survey: JULY 11,1982
.. ,_... .--~-.. ~ .... -...... --. -..-· __._..._.__....,.._~,.._.._--~--·-....--·--------~·-.. ....,._....,._---------·-· ........._____. ___ ......,., ___ __.. ... -......... -.---~-~~·,...;..--..-...
l • • • . f ... ~·
.... ~ Q~N%5~~!-"NT.S, . ~NO~ )
, ,
... I(.. '.... ..~ ........ .,. .... ""'* '
SUSITNA HYDROGRAPHIC SURVEYS
..... .•
----------
I
I
cross section SL21 1 41.958
Date of Survey: JULY 1 1, 1 9 6 2
I
,.,..-.
(
\
\ ,, ... , '
''\'"·· ' . . ·-
~ .
\.. ·' ' ; \ " ) ~:
PREPARED FOft: ·
'.
Jt0
l I
jN
j,w
' C'\ <·~ .
't
•
. .
.....
Q)
Q) u...
c ·-
•
SUSITNA HYDROGRAPHIC. SURVEYS
, ~ -I j-t·f-•
cross section SL21 1 41.857
Date of Survey: JULY 1 t, 1 982
I /lf CO_,y-;; s:. ~
,
tv;Tl/
TlJ7Ji.~~
'/(
I
··~
N
< j ±
.. CJ
i f PIU:!PARED DY:
c ·-
c
0
SUSITNA HYDROG R.APH IC SURVEYS · ·
;: .• '"Til II ' I' II I I
~
..
•··
··~ -·~· .. ··-
PREPARED FOR:
~~ ' . .,.._., __ ............ "' ,'•,-.
. . ,.,.
• l .
.....
E))
Q) u..
c ·-
• •• ' .
'
SUSlTNA HYDROGRAPHIC SURVEYS . . I
I
.PAt:rAfteD DV: .-~....,...._-------------------------------.:..----------P-:--Ae,_PA_R~_D_Po_A__.:
!::""'.. . ' .............. __._......c-f
~:""~~-. A&M CONSULTANTS., INO. ·
; <:;:..... ... ('
cross section SL21 1 41.7A5
Date of Survey: JULY 1 1,1 9 8 2
-~~--~~----~--------------------------------------------------~-------------~
' --... ~ ------~-----· ---·-------------~-·:---.,..-~.-. ......:..~:......;... .... ,.. ..,__ ,.,._~-~-,......_.~~~;· ...
: .. ;",.yvt~ . •· ' If lh ·~-
~~,____,..:.~----·------------------.w.l~ilii!iililiiiiliiiiiiiiiaili .......... ~~=~~-~·-·~-'"'' ········ .......... ., .. ,,_ .. ,, .. , .... -."·····" ............. ___ --~-----··".-..
-Q)
Ql
U-
c ·-
c
0 :;:;
co > Q) m
-
SUSITNA H.YDROGRAPHIC SURVEYS
. ~ . . ....
...
m as
fa
cross section SL21 1 41.3A4
Date of _Survey: JULY 1 2, 1 9 8 2
~~· \
I~ . . . .
I
I
l r
I
~
l
I
r
1
I
'
PftEPARE!D IFOA:
"" . I • '· . If
· AlitA ·coNSULTANTS. INC.
• -. .1
SUSITNA HYDROGRAPHIC SURVEYS
___ J_~--
cross section SL21 1 41.0A3
Date of Survey: JULY 1 2(.:1 982
-~ _-,--, .. . -~<f!-~____,.....,... --:----·-----------·----------· ........ --·-·-·--· . • ••• .. .... -•'!" .... ~ ... ~···--.-.. ---.. ~--__ ._ •. ..., ~ ··--
...
I
PfiEPAREO FOR:
·' r~·~· '• .
• • • • • • • • • • 0 • • • • • • • •• • • • • ' • • • • • • • • • 0 • • • .. • • • ' • ., •• ~ • • • .. •
, ~.~.~~~·-...:,;:i.r:...-t"~~~:;~::1.~·~t~~!$A;.~~.,.~.~~,.,~5;~::~~-A~;,..~.,;~.-~'t~~'.,-·~~.:~-~-~.,;:,·r::~;.,.. ~""~'S~r: .. ~~~~"'l;~~ ~~~-~~~~:~:·~~: .... · .. ,; ·;;~,.~~~~~~:~.~ •. ;,~.:":-,:~t,-:r:~f. . . . . . ' . . ,.,. ~ .., ~ ,.• ' . ..
'!.' •
. ,·
SUSITNA H.YDROG RAPH IC SURV.EYS
cross section SL21 1 40a8A2
Date of Survev: JULY 1 2, 1 9 8 2 ~ ··.
••••• =n •s• ........ ._._ .. a-. .. .-~~N
•••• ,.
, ' -, _.
,__._.;........,... __ ........,._. _____________ ~---·------...;__~~---__,;_.----:--'----...., ~·I' ,j
SUSITNA HYDAOG RA,PH IC SURVE'v'S
c ·-
cross section SL21 1 40.6W1 .
Date of Survey: JULY 1 2, 1 982
I
'
I
. I
·• I
i
I
I
I
I
i
. I
L~~~~~~~~--~~~.--·~------~~~~=-----------------·--------------~--------~----~ ,~ ~ I:;:; ., ft
' ·~ . '
_ _,,. ... ,...,._-J ........ _ ...... ~ .. ·~-;.'. ''''"'":. ·-
. h.,,
~~~L~~L~
SUSITNA HYDROGRAPHIC SIJ'R\/E.YS. ,_:,,
I
. f
cross sacti.on SL2 o 1 40.6H3
2
.. ~.··r.,o ... · CC
Data of survey: JULY 2 7. 1 9 8 ~VnLU
~~--------------------·--------~~~--~ .;---_________ ,_ _________ ._._. \,
\ .·
"' • tfU ---------------...................... ~~~~~~~~~==~·=
f
1
': l
. I
I I
',: tJ
. . ' ; .N
' ...t:.
·___J
····~ . '
-' ~"
....,
Q)
Q)
lL
c ·-
SUSITNA HYDROGRAPHIC SURVEYS
r' -
'·:·,·\ .: .. ·· ..
·. rflf!PAAeD BY; flfte',..AftED FOR: . 1~~~~----------~----------,~-----.----------------~--------·-----------------~t
cross section SL2 0 1 40.252
Date of Survey: JULY 27, 1 982
, ;.. ·\:1 _f!IO'.;:~~--.:--:·r--~~·-.·....-, •. -•. ~ .. -... -.. -__,....,...-----------------··--.. , .....
..
. N
r \ .· N
, • I
f-.~
I
I
:~ rfti!I'AAI!D DY:
......
Q)
Q)
LL
c ·-
SUSITNA H'YDROG RAPH IC SURVEYS
• t •
cross section SL2 0 1 40.1W1
Date of Survey: JULY 2 4, 1 9 e 2
I:
\
-
__, ,;,
I
. . •,...
•' I
--~----------~-------~··----------------------------~------~----------~------~~~
;:J'\ SUSITNA HYDROGRAPHIC SUAVEr'S
...... .. li Q)
cU .. , ... u..
I
c ·-
c I I· 0 :;::.
co > G)
iii
J -PREPAf~f!O DY: PREPARED fOfi: ... -.:..::.:.::.:..:...::.;.::::......::::...;;.;.._,..__.._ _______ "'---______ .........._ _________ ~-------·~~~~
cross section SL1 9 1 39.8W1
Date of Survey: JULY 2 4, 1 9 8 2
;,
. ,,
..
;I
f
I
' t
I
I
'
I ......
Q)
Q)
l u..
I -c: .. , ·-',.
c
0
+7i
RJ > Q) w
r~tePARED DV;
.AioM OONSU~TANirS. INO.
~ I ' ' .
···•"'·~~
SUSil NA H.YDROGRAPHIC SURVE'fS
• < • It II
cross section SL1 6 1 38.3H4
Date of Survey: JUL'r~ 2 2, 1 9 8 2
... ,. ··--·-·. \ : .. . ....... -· ..
f.l
~ . . ·
.
i
I
..
PREPARED fOfll~ .,
1
.
,. ~·· ' ..
SUSITNA H'(D·ROGRAPHIC. SURVEYS
,. -·
c I ·-
-( ____ ___..
n-----_. .. ___ ,_-t-----+-----t-----t----1------t
I
PitEPAAl!D OY: PREPARED fOR: ·•
•
cross section Sl1 6 1 3 8.053
Ra.M: OONSULTANTS. INC •
Date of Survey: JULY 2 4, 1 9 8 2
. ··it...· ...... ·.'.;..',.::......,. ....... ·.· ....... ··. -~-------.....___ ______________ . _____ .,.,_ __________ __._,_;...__;.~~
. il
•
;
,,
~--------------·~---------~--------------------·--------------------------------~~__,
·'
; i
l
I N
I \
.!N
' .\A I .. 'f'J
-Q)
CD u,.;
c: ··-
c
0
:;:l co > Q)
iiJ
SUSITNA HYDROGRAPHIC E.t'IJRVEYS
~
cross section SL1 6 1 3 7.952
Date of Survey: JULY 2 2, · 1 9 8 2
I
PftEPAHeD .FOi=t:
AG~t~ I··-----~·~-------·-----------__,1-o) .. _ -------------------~lmr---___.
--~ ................ ___ ":.,. ... ~---· .... ~---~ ~·--·-... . ... !. ... .......
I
l
I
·1\J
' N
' 'V;
' \ w
.....
Q)
Q)
lL
c: ·-
c
0 :p
f.'Q > Q) m
SUSITNA HYDROGR-APHIC SURVEYS
·--+· ·-·----~·--
. .. I J.
f~~~~l, • • .l~.u It uJih.tl11.W ~~ • • lLu..J~~..ul.UJ.I l,~~h~~~...a...L~.&...&...I
cross section SL1 6· 1 3 7.8W1
Date of Survey: JUL~l' .2 2, 1 9 B 2
I
';
; ·~
:. /
I I
I I
I
. 1
I
N
. ' V\
,...t..
. .
SUSITNA HYDROGRAPHIC ·sURVEYS
cross section SL 1 1 1 3 6.5H4
Date of Survey: JLJLY 2 8= 1 9 8 2
l-
.
( \ I
T F .',
I
PREI?AFIED ~OfJ:
•
ft&:M 'CO~~U ... TANTS., :lNO. l ~ : >: ::: . . . . . . 0: .: . . I
I!! = il
, , '
' .)
SLJSITNA HYDROG RAPf-IIC S.UR·VEYS
'.
.. .. ... . . ...
cross section SL 1 1 1 3 6.50.3
Date of Survey: JULY . 2 8, 1 9 8 2
-' ' ' ~1t~'1"t .. 4!~"r ~:;: .. s.~-,._~ ... ~';;"-~cy;'h" ,~ .. ,4 i!~h~.~:.;-.:~¥"-"
~ ' I >' • ' •' /. • .... 0 ,.·, •I , )I A~"' <' • t :'~ 1J
' ' ' ~. '' , ......
'·r:
I
PREPARED f'OA: .
SUSIINA HYDROGRAPHIC SURVEYS
cross section SL11 1 3,5.7S2
Date of Survey: JULY 2 8, 1 9 8 2
'
.,.; '
PftEPAReP FOR:
·--· ____ .,..........,. .......... -,_...,..-.-.-·-···-·-----~~----·----':. ~~
' ------:-----·~.....--------··--··-···~--
..... ttilil--_..........;......;;... • .,.--.. _,·-. • • ,,,, ______________ ..,. _____________ .. __ _. ........ ...
/ ••
.......
Q)
Q) u..
c ·-
•
.
SUSITNA HYDROG RAPH:IC SURVEYS
l •
. • .
. . .. ..,
------------
• ., • j .• t '·-•• ,
cross section SL11 1·35.5W1
Date of Survey: JULY 2 8, 1 9 8 2
I
PRePAReD FOrt:
' '
~;' '
l''"'
' ' .;;;:
.
SUSITNA HYDROGRAPHIC SURVEYS
' .
!
I
I •• I .
I
' cross section SL 1 1 1 3 5.151
Date of Survey: JULY 29, 1 982
~ ~ • • f • l '
, .• ..: .•. · . '
,f ·'"' ,.
•o •• ~ ....., .
I '
\
. \
PREPARED FOR:
.
cross section Sl1 0 1 3 4.151
Date of Survey: JULY 2 9. 1 9 8 2·
. -~·------~~~~~-~------------~----------------~~----~----------~~~~
~ ' -,
. :. <~
SUSITNA HYDROGRAPHIC SURVEYS
. . '
I
• I
PREPARED FOt:i:
,~ • ' J t H
,I
tv
l
N
.. '
6" -
' ......,1.,,
·'·l!fl!lt"l' .
••
SUStTNA HYDROGRAPHIC SURVEYS
. . .. .... ..
cross section 4TH OF JULY 1 31.1S1
Date of Survey: JULY 30, 1 982
. '
. · . . -' ; '
I l
; J . I
ttJ
t . 'N I .
I '. ;~ I"'
. ' .,
I
PREPARED FOA: .
cross section SLOUGH 9 1 2 9.3H9
; :. ·Aa.M OON:SU~eTa. INC.
~--------------~------------
Date of Surv~: AUGUST 1, 1 9 8 2 G•,,, ~ ."'G, •/IJu I' · . A~~t~ ·•
f. ' . ~ ., .,,, .
\ ----------....---------
...
' ,·
i
.r
; I
. .. Lw \, ~ ~ ,.
. .
SUSITNA HYDROGRAPI-IIC SURVEYS
-Q) .. .. -.•
CJ.) ' LL ... ,,.
c ·-
g g g
~ ~----~----~~----~----~------+------+----~
>.
Q) m
cross section SLOUGH 9 ·1 2 9.358
Date of Survey: AUGUST 1. 1 982
' . '
I
PAEPARED r:ott:,
~· •• I•"
_.' !· . I
SUSITNA. HYDROGRAPHIC SURVEYS·
.....
I Q)
i Q)
i U-:
c I .....
; .
cross section SLOUGH 9 1 2 9.4T7
Date of Survey: AUGUST 1, 1 9 8 2 A. r. D.···. c .... e ... ·.~ .
. . . 1 .. ,8 .. M CON.SUL:...,·q ~---~----------~.~-------------------, ftvnLJ -~ -~,-.
\, .
'. ' < -~. • •••
•• '•
"' '-l
\ •• ·.< :·. 1"
. '\ '
. •. ,
•i ~ ' . -: r --~~----------------------~--------------~~------~~----~~--------~----~~~~~~ ••. J
-~ .u·
lL
c: ·-
0
, • ._...~ ... ~ ,g • • .....
SUSITNA HYDROGRAPHIC SURVEYS
cross section SLOUGH 9 1 2 9.5T6
Date of Survey: AUGUST 1, 1 9 8 2
-~
"' -~ .. ,••' ................ --·-------------·------·-----------·--··--·--·~----.. -----·-·--·· .......... ~ ... ~ ........ ·~' ... .
'·
. .
I
f>ftEf'AFIEO fOfl::
; ..
j
f l
• ~ I
l
i
I
.
. j .
'.L. j
··~ ~. --
----------------------------------,----------~----------------~--------~--~: .
-Q)
cu
lL
.
SUSITNA HYDROGRAPHIC SURVEYS
I,
• .
.. .. ...
cross section SLOUGH 9 1 2 9.255
Date of Survey: AUGUST 1, 1 982
~
I
Pftef"AAED FOR:
------------------~--~-----~~----~
' '
' .• 'ltli•' -
" '
------------------------~----------------~------------~~--~--------~~~···~
•.tJ
. ' .N
' ~~
. PAI!I"NU!D DV:
......
Q)
Q) u..
c ··-
, A&M CONSULTANTS. ONO.
I .
. . . .. ...., .
cross section SLOUGH 9 1 2 9.054
Date of Survey: AUGUST t~ 982
I
PREPARED fOR:
.....
Q)
Q) u ..
'., '
.J .E J
,, . '
~t • .-.l.u
.
SUSITNA HYDROGRAPHIC SURVEYS
I •
. • .
.. . .. ......
cross section SLOUGH 9 1 2 8.853
Date of Survey: AUGUST 1, 1 982
,...._....,...._ -.... ~ «
I
·.~·· . ~. L.lc.-.4 r'*"~ .. ·-r "···-~ ............... -~--------~---···-----... ,-----------,.,_--·--·--~--...:·----·-·--..---------·-··-···~ ··-·--· ----! .... ; ..
• 1 ' • · .. ~ 'i ;
(t'
,.-.' • ' .-l
--~--------~-------------------~--~----------~----------------------~~--~
SUSITNA HYDROGRAPHIC ·SURVEYS ' ..
I •
.. ...
. .:-. . . ...... .
..
. ..
cross section SLOUGH g· 1 2 8.4W1
Date of Survey: AUGUST 2, 1 982
.
tp
00
0
N
N
\
-:--] c
-Q)
G)
LL
IC ·-
c
() :p
co > Q)
UJ
..
stJSITNA HYDROGRAPHIC SURVEYS
..
'•
• I ...
. . .
;I . •. .. .
• •I I .. ..
, • I .. '. 1'.
.
cross section SLOUGH 8 1 26.659
Date of Survf ... i AUGUST .4. 1 982
·)· .. ...__..... --_.. .. ...,:
.-
I
I
I
J
. .
••
tp
OJ
N
rt
' {\,J
I
-J
•~'
'' ! •
-------• -..... ,.~•· o4'#.
.....
Q)
Ol u..
c ... ~
c
0 ·-..... co > Q) w
''
t
"'
. .
SUSITNA HYDROGRAPHIC SURVEYS
., .. . ·:,
I . .
I I . ..
1 ' •
.. .
I
• I
cross section SLOUGH 8 1 2 6.558
Date of survey: AUGUST 4, 1 9 8 2
•• lo "'""'" ...... ~-••• -.,. ___ ., •• ··-..... ..
t t~ f I J f• •• u 1!
; . :'.-.
'c>
PftEPAftED FOR;
-Q)
CD
LL
!f c (X) ·-~
c
0 :;::.
ro > Q) -w
. q
SUSITNA HYDROGRAPHIC SURVEYS
.
I
'I . . . .
' .
. ,
I· ,I
I . .
••
• I ..
•I . ·~' I .. .
I J
' ••
~ ..
~ ~ -~
cross se'ction SLOUGH 8 1 26.5S7
Date of Survey: AUGUST 4, 1 982
'-'
I
f"AEf'Af1EO fOR:
-·-··--..
I
i
j I
·~ --·-·· ._J'-:7 '' • "'" I
J
....
Q)
Q)
lL
tp
o:J
C'\ .5
-~
c
0
:t:l m > Q) w
·,
. Ai.M OO~SU~:rANTS. DNO~ l
••
;
SUSITNA HYDROGRAPHIC SUR.VEYS" ·
.
I
'I . . .
I •
•t
• , . . ' I . .
•I I
..
' I
I 4.
I I
~ ...
I
''cross section SLOUGH 8 1 2 5.956
. Date of Survey: AUGUST 4, 1 9 8 2
I
·~~--~~-~·-c ~----------·-..~~----------------------~------------~--~--~--~~
~ ..... _ ···~ ...... ·:... ...... _ _......_ .. --,--.-....... ••••• • ••• • •• '*' ~· .. ·••l ; ......... ..
........
CD
Q)
LL
. tp
w c m ·-
Pfll!f'Afii!D BY:
· fi&M CONSU~TANTS. INO.
SUSITNA HYDROGRAPHIC SURVEYS
.:(
• I
'I . . . .
I •
••
I· •• I .. .
fa
..
' I ...
··I ....
I
:
.•
• I
I •• .. ...
.. ~ .. -•• --......... 4 • ,. ... ..
. . ;. . ' ' .. ' .
....
cross section SLOUGH 8 1 25.755
Date of Survey: AUGUST 4, 1 9 6 2
.'0) ~ ~
~ . w•·-•··--·------·••• "'' .. •• -" ...._/
·~
~
. ... -. tg)l,'' . ,.
'•' ' ~. ·~· '
r ,,
N
' ' '\ \II"'' ·.~ .• \4,~ •. : ...
'
' -
!-r.J
~ .-.J.'
.V)
--' .
PAC!PAff!D .. av:
....
Cl)
Q)
lL
c ·-
•
... . .
...
SUSITNA HYDROGRAPHIC SURVEYS:
c
0 ~ ~----~------~-----+------+-----~------+-----~ ~
Q)
iiJ
'•
I ... . . ..
:• . · . ..
'
...
'~ !
I .. .
I l .. , ..
·'
cross section SLOUGH 8 1 2 6.1H4
Date of Survey: AUGUST 4, 1 982
..• :·.~, .. ,
' . i
,J ' , T ·. . .
. ' . '
' . :
..
" • .
I
I
. .. ,
I
... i'AI!PAhEI> PCIIOl . I
l
~~~. f· ~· •,· . ' . ~ .
• ·, . . . ·~ I
.•.. ·. ··•·· .. ·. ,:. ...•.. · ..
-··--..... --• --···-·--.. •••• "···~··· .. -----~------------·· ......... ""!#-~··,.; ~-"'
fi"M CONSULTANTS. INO. I
SUSITNA HYDROGRAPHIC SURVEYS,
cross section SLOUGH 8 1 2 5.753
Date of Survey: AUGUST 4~, 1 9 8 2
I
' ' ;, '·t'
: ':; f
. ' -, ' '
. . ...
' '· . '
..
I
PREPARED FOR:
-.. ------------------------------·;f''·"'.t-----1~·
·.~
u.~ ·~ ••
1\I.M OON3ULTANTS. INO.
•' J.
SUSITNA HYDROGRAPHIC SURVEYS
cross_ section SLOUGH 8 1 2 5.652 • I I Date of Survey: AUGUST 4, 1 9 8 2
. ....... _,, ... ,.
--· -~--· ... ,~~ ... ~~~==~-::ilii:tt'i5W'iiiiiii«~}i iii1iiiii;;iiii· ii7573trt?iil&iiii. ----s iiiiiiiii;-iiiiiiiiiiiiiaeiiiiiiiim?iiiii'-iiiiWiiiii--'iiii-•.. lEiilillfi?illiilii~t-,B<AT·ar·mUiifiiiliiiii .... ~--~·-sr 'iiiil:i~·x·iiiiliii ... #Erilillillilt" Wilioililitttttt-··--,-i. .. .i ....... -· ....... ............___-~~---
,,
•, •',••
' '
I . . ) v~ ., . ·•
I
PHEPARED f'Oft:
. '
I
I
.·-.. ~·-,.
tp
'-0
0\
-en
Q) u.
c ·-
c
0
~ cu > Q)
w
. . .
ltl'' !a ..........
SUSITNA HYDROGRAPHIC SURVEYS·
cross section SLOUGH 8 1 2 5.2W1
Date of Survr'l.: AUGUST 4, 1 9 8 2
1, ~
_..;....._;__ ______ _;,__ _ __.._ ________ ~-------... --------------------
f j • ' • t
. . .
i
I
I
:
I I .
1
I
l
'
---------------··-·-··. ··;;....-.-·• ...... -·-·--·; ...... , ..
SUSITNA HYDROGRAPHIC SURVEYS
'/_:
. ' ,·
Jlilef'AAED _lilY; PftEPAREO fOR: ~~-~--~--~------~------------------~----~~----~~----~----~~------~-------,
cross section LAN·E CA SLO.UGH 11 4.1H1
Date of Survey: AUGUST 1 6, 1 9 8 2
' ,j
SUSITNA HYDROGRAPHIC SURVEYS
~ t ,. 'i t: f
. . .
cross section LANE CR SLOUGH 11 3.7M1
Date of Survey: AUGUST 2 4, 1 9 8 2
( \
.i
--~
I
I
L
I
t
1 .•
. I
PftEf'AftED FOfi: ·
•. : ' ~} •,
~
------~--~--~--~----~------·~-~·--~--~~-----~~----------------------------~--~--~
......
Q)
~
c ·-
c:::
0
.,
SUSITNA HYDROG RAPHlC SURVEYS
I
~ ~------~------~-------+--------~------+-------~------~ co > Q) m . I
'•
() t~,~~~;~.~~~~~~~~·~· ~~~~~~~~uu~~uu~~~~!·~'~·~·~•·~~o~O~~~ ..
f .. ! .. ,
I ..
, , cross section SLOUGH 6A 1 1 2.2W.1
1:. Date of Survey: SEPTEMBER 2, 1 982
a......-----------__,....,___.. _______ :----~----..;...---------........_---------------------....,..,.... .. .
.
• ,_ \ .. -t ·'• '
... .-_ 11-••••• 'f •• ,... t ,•h •• ,,;·~-o.l···'~'l f'41t':lf.:: (i' .,.,_ ... , ..... _ ......... , .. "'Pf"J .......... ,..~~'".~'""""""'·~P.'IV'"~~~,,..,.t-,.'"1"l"'f'~'!'l'-"'rt~ft't't~tH11·---"'"~~ ... t,., ......... ,.~"""""'"""' .. ~\. ... _ .. .,.. .•. i~~-~lf ... , .... "" ........ ~ ........... .., •• , ... _._ ..... ' _.t .... -~-· "' .. __ ,~. ~ filii
N
' #
N
(
oQ
fV
-Q)
Q)
LL. .
. 5
c
0
I
SUSITNA HYDROGRAPHIC SURVEYS
~ ~-----~------~------+-----~~-----+------~----~ co
~ m
· t I .If P
. cross section WHISKERS 1 01.6H4
Date of Survey: AUGUST 11, 1 982
~------------------------------:::----->'4 . ~ l)
I ..
•• ,_ , ........... t .. ~:' ...... ~~.~ ~--~-· ... -~-·-··ul.•"'"
••
.....
Q)
Q)
lL
O:J
~ .. 0
0) c ·-
N
' N
' cO w
••
c .
SUSITNA HYDROGRAPHIC SURVEYS
cross section WHISKERS 1 Ot,4S3
Date of Survey: AUGUST 11, 1 982
• ~::, .V. _,. '
•
' ·;. :;.
~ ': -.. t
I
PREPARED FOH:
. iJI'~
UJ
lJ
{'v
' N
\
0()
.·~
C>
~ .
'
SUSITNA HYDROGRAPHIC SURVEYS·.
~
Q)
Q)
U-j
c: ·-
'-:..o,
· Pt'tiPARSP P"Ofti:
cross section WHISKERS 1 01.2W1
i'·.
r
~N
; ' .N
' . OQ'
. "' •'
• ' -
-c---• o ............ n
SUSITNA HYDROGRAPHlC '-SURVEYS . . .
~----~~----1~---~+------~-------r------~--~~
I
·---1
MOUTH cl= PORTAGE CREEK X-SEC
•',,, ,,,
''
-,.,.,,;
. ~· ' •''
•
I
uM ·
N
. ' ;N
I
~·JM ..
',,/'
........ _. .... -...... -. ·~ .....
MOUTH JACKLONG CREEK X-SEC
.. i
~ ........ ~~ .. -... .,_~· ......... ,.-.... --··---
---1 ................ ~,.~-·-----'011·--· .. ..-.-.. -..-....... .. .... ····-----· ·-----
• .. .. " ' . ·ol..-.;.!' .... 1... -,J .. ·~··~-.·~
I
MOUTH INDIAN RIVER X-SEC
I I J I . ~···~ ·~····~· .
. , . ,.
,,..:.---... _.....-oolt .... 'lo ·-·--... _ ..................... _.t_.....,.. .. .---. .. -.........-........ .._...,._...,.,..... ............. __,......_. __ ............ -__ ....... __ ............,..~_.,.,..,...~ .................... .......,.._.._ ................ _ ..... ___________ ......_~ .......... _ ............. _....
·' ~
J • SUSITNA HYDROGRAPHIC SURVEYS.
MOUTH GOLD CREEK X-SEC
( ·-
,''
' . '
'"' -• .,, <(c
~--~·~~-"-:--).
. ·.··t
j, SUSITNA HYDROG RA.PHlC SURVEYS
I
.'1 . . ... _.. ......... .,..._...-. ... . ...........--. ...... ~...-. ____. -.... ____..
TRIBUTARY AT RM:·132.d·X~SEC: . .
R.&M OONBULTANTS, INO.
-~ .._...;r. .................... .:..~ .. 4-,, -~~-t. .... ~ .. io( <ll!".t ........ ....._.._~-----------·-......... -_...,..; __________________ , ........ --.---· --------·· -----... --"""·
•··-•-. . . . ' ,. I • , tt·•l·l ·•
I
! I
l
I
I • • ' f
j ..
.. u1 -~ wq~ li~ .)i~· '~\., ,A'*.---..... ,-:~~~ . .J/A -·-~··-·-' •t ';)"'" ·~ .
~~ W. ~., ~ · i~1i w. ·, Wi· L~'-~r
>, •, ' ~I
SUSITNA HYDROGRAPHIC SU.R'VEYS
N
' N
I
r't"··
......[)
0
4TH OF JULY CREEK MOUTH X-SEC
< _ .....
N
' N
f
'4,)
t ·r.
(
MOUTH SHERMAN CREEK X-SEC
Date of Survey: JULY 30,1 982
-rv
\
N
. ' . .;.,.J)
N
PREPARSP BY;
I
SUSITNA HYD·ROG RAPHJC ·SURVEYS
---. .--• ~ -... --• .,._-·----- -.. ----.... A.
PREPARED FOR. l
-A~~[J i
1 \ • ·f·
. . ·---:.1
I
TRIBUTAA'l AT AM 1 2 3.9 X--SEC
t: J -r t '' --------------------~-
I\
c=
••• •
\ ' ! :
SUSITNA HYDROG RAPH I.C SURVEYS
g ~·----~~------4-------4---~~~------r-~~~r-----~
ro > Q)
ill
R&M OONSU ... TANT$~ JNO.
DEAD HORSE CREEK. MOUTI-1 X-SEC
. ,, '. ,,, .....
•••••
. ,l
I
'
. ~~~t~ ·.
>'
__ ----:-_____________________________ ..._...,. ________ ;.,...;.... ___________ ;..,-.· ','
I
~
I
.&::>.
0
N
• ·N
' ' ....0
,-~::_
c ·-
I
c
0 ;a
t'O
i) -w
SUSITNA HYDROGRAPHIC SURVEY'S
TRIBUTARY AT AM 1 21a0 MOUTH ·x-.. SEC
..,, 't-••• f f f ·-II t
.. ...... ~ ..... .,. .... -..
/il! ... ,111\
.... -;i•nrtl ''lfiA:J'. 1l Hli r
••
',
'
I
SUSITNA HYDROGRAPH.IC SURVEYS .
.
LITTlE-PORTAGE CREEl(. MOUTH X--SEC·
•
• ... ,.. It ·t·l •••
'. '·
,., .'), •'
' !. l\.l
i. I"
\
N
; i l
. ....()
.l 6'
SUSITNA HYDROGRAPHIC SURVEYS
MACKENiJE CREEK MOUTH X-SEC
l
• I 1 II II ·
l ' ~blr· l.!· .iL .•••. ':II . • . . ~ .• ~.:JL ~S" .....-:;::;.:::'~
SUSITNA HYDROGRAPHIC SURVEYS·
I
. .
LANE CREEK MOUTH X-SEC
. ..
. . ., ,$.U OONSOLTANTtt. IN<l-
, • "' > ~ .. ~'·b; ' 'c ~ ·... .~. ' . . . . ~
-------·--------------------~--------
\
~·
I
U1 w
~'~ _..--.
rtaePAMD~,
..
SUSITNA HYDROGRAPHIC SURVE\lS
.... _ _.... _____ ............
~lRIBUTARY AT AM ~.~ 1 041 X-SEC MOUTH ~ ~~~t~
-. ... J ....... -... ____ ........._ ____ .....;,_ ___ .___.....___; __ __...._~
' ~ ·N
\
.....1)
•--.£).
[ " ·-
c ·-
. SUSITNA HYDROGRAPHIC s·uRVEYS ' .
I
,
. . '
i l
• f'f.· 't2SP,\;115D fQrtt . I .~.~~· ... ~e~=~=e~o~·~~·----------~-----------------------------------------------~----~·---•·!~l, .. WHISKERS CREEK X-SEC MOU1'"H WI"
·~======~==----------------------------------------------------------~----~~· .. ~ ~ ,, };
I '' 't fi·tj '' ,
~-. '
r ,·1, "• .;_ ~· ...
·' , . I·' . . . t . .:~ .
-. Table. E.5.5. Location of staff gages instal.led in the Susitna River drainage.
Summer 1981.
LOCATION
Fish Creek
Alexander Creek Site A
Alexander Creek Site B
Alexander Creek Site C
Ahd~rson Creek
. Kroto 51 ough Houth ·
Mid-Kroto Slough
Mainstem Slough
Deshka River Site A
Deshka River Site 8
Deshka River Site C
Lower Delta Island
L itt1 e Wi.l1bw C.reek
Rustic Wilderness
Kashwitna River
•
STAFF
·GAGE·#
YEOllA
YE0218
YE021A
YE031A
YE041A
YE041B
YE042A
YEOSlB
YE051A
YE052A
YE061A
YE061B
YE061C
YE061D
YE071A
YE0718
YE072A
YE081A
YE082A
YE083A
YE0818
YE0828
YE083A
YE091A .
. YE0918
\'E092A
YE092B
YElOlA
YE1018
YElOIC
· YElOID
YE111A
YEll IS
YE112A
YE121A
YE122A
YE123A
YE124A
YE131A
YE132A
YE133A.
SUOllA
SU0118
SU011C
SU021A
SU022A
. E-5-174
. '
RIVER
MILE
7.0
10.1
1.0.1
10.1
23.8
30.1
31.0
40.6
40.6
40.6
44.0
44.0"
45.0
45.0
50.5
50.5
50.5
58.1
61.0
GEOGRAPHIC CODE
15N07W27AAC
15N07W06DCA
l6N07W32CCB
16N07W30ACD
.17N07W29DDO
17N07W01DBC
18N06Wl6BBC
17N06W05CAB
19N06W35BDA
19N06W26BCB
19N06W14BCA
19N05Wl9ACB
19NOSW19ADC
19N05Wl7BCD
19N05W17BCB
29N05W27AAD
•. 29NOSW23CBC
29N05W27BAC
21N05W25CBD
21N05Wl3AAA
2-2-1'00
---
...,~ Table E.5.5 • I.ccation of staff gages installed in the Susitna River drainage.
. --.. >' Summer 1981
S.rAFF .RIVER
.. ·LCX!ATION GAGE # MILE GEX::GRAPHIC CODE
Fish Creek '' YE;OlJA 7.0 15N07\V27AAC
Alexander creek ·s.i te A YE021B 10 .. 1 lSNOTh'OGOCA
~21A
Alexander Creek Site B YE03lA 10.1 l6N07W32CCB,
Alexander Creek Site C YE04lA 10.1 l6N07W30ACD
-mo41B
YE042A
Anderson Creek YEOSlB 23.8 17N07W29DDD
Y.EDSlA
Ym52A
.Kroto Slough Mouth YEOGJA 30.1 17N07W01DBC
YE061B
YE061C
Y.ED61D
Mid-Kroto·Slough J!E071A 36.3 18N06Wl6BBC
~71B
YFJJ7:A
Mainst~ Slough Y.ECSlA 31.0 17N06W05CAB
YE082A
Ym83A
.-~ l'EDSlB
YEC82B
Y2083A
Desbk Ri . s. .... " ..... ,a. .. . ver .· .l. ... e n. 'm091A 40.6 19N06W35~
YE091B
YE092A
Y.E092B
Deshka River Site B YElOlA 40.6 19N06W26BCB
YElOlB
Y.El.OlC
YEJ.OlD
Deshka River Site c YElllA 40.6 19N06Wl4BCA
YElllB
Y.Ell2A
. ... -Lc:Mer Delta Island YE121A 44 .. 0 19NOSW19ACB --YE122A 44.0 l9N05Wl9AOC -
;.
YE123A 45.0 19N05t'Jl7BCD
YE124A 45~0 19N05Wl7BCB
Little Willow Creek YE131A so.s 29NOSW27AAD
YE132A 50.5 29N0$>123CBC
YE133A 50.5 .29NOSW27BAC
Rustic Wilderness SUOllA 58.1 21NOSW25CBD
SUOllB
SUOllC
Kashwi tna River SU02lA 61.0 21N05Wl3AAA
SU022A
• E-5-174
0419A
10
Table f~S .. S (CoJ1tinued) -~ ; ·-·:·' -.
STAFF RiVER LOCATION .. GAGE # MILE GEOGRAPHIC CODE
Caswell Creek. ... SU031A 63.0 2IN04W06BDD SU0318
SU0-31C Slough West Bank SU041A 65 .. 6 22N05W27ADC SU041B
SU041C Sheep Creek Slough SU051A 66 .1. -22N04W30BAB SU051B Goose Creek {Lower) 1 SU061A 72.0 23N04W31BBC SU0618 Goose Creek (Lower) 2 · SU071A 73.1 23N04W30BBB SU072A -
SU073A
SU072B
SU0738
SU073C Mainstem West Bank SU081A .74 .. 4 23N05Wl3BCC SUOBIB
SU081C Montana Creek SU091A 77.0 23N04W07ABA SU092A
·~--SU093A Rabideux Creek SUIOIA 83el 23N05W16DDA Mainstem 1 TAOllA 84.0 24N05W10DCC TA0118 Sunshine Creek TA021A 85.7 24N05Wl4AAB TA021B Birch Creek Slough Tfl~031A 88.4 25N05W25DCC TA0318 Birch Creek TA041A 89.2 25N05t·J25ABD TA0418 Cache Cr~ek Slough TA051A 95.5 26NOSW35ADC . TA0518 -... .. Whiskers Creek Slough TA071A 101..2 26N05W03AOB -TA071B
TA072A .
tvhi skers Creek TA081A 101.4 26NOSW03MC TA081B Sloagh 6A TA091A 112.3 . 28N05W13CAC TA091B
TA092A lane Creek TA101A 113.6 28N05W12AD!: TA102A . TA103A ~
i TA103B ..
. TA103C I
'-I -~;:: TA104A .... ~ II
• Mainstem 2 TA1l1A 114.4 28N04W06CAB . ~
.. TAlllB " .' ~ ~ ' !, ,, ' i • f t' .t E-5-175
2-2-rl02.. I~, ·-~-,,
·:;,
,;:;'./
'<\ '\\. ' ~ ,,
\ ',
\:~ble E~s.s. (Continued) \,_t . ._. .
STAFF . LOCATION · · . GAGE #
Mainstt!m·· Susltna -curry
Susitna Side Channel
GCOllA
GCOllB
GC021A
GC02l8 Mainstem Susitna -Gravel Bar GC031A
Slough SA
Fourt!1 of July Creek
Slough 10
S1ough 11
GC031S
GC03IC
· GC041A
GC042A
GC051A
GC051B
GC052A
GC052B
GC061A
GC061B
GC061C
GC061D
GC071A
GC072A
GC071B Mainstem Susitna -Inside Bend GC081A
Indian River
Slough 20
Mainstem Susitna -Island
Portage Creek
GC0818
GC081C
GC091A
GC091B
GC091C
GC091D
GC092A
GC092B
GC092C
GC092D
GC101A ,
GC101B
GC101C
GC102A
GC1028
GClllA
GC112A
GC1128
GC112C
GC112D
GC121A
GC121B
GC121C
.GC121D
GC121E
GC122A
GC122B
GC122C
GC123A
E-5-176
RIVER
MILE
120 .. 7
121.6
' 123.8
125.3
131.1
"133.8
135.3
136.9
138.6
140.1
146.9
148.8
GEOGRAPHIC CODE
29N04WlOBCD
29N04Wl1BBB
3QN04W26DDD.
30N03W30BCO·
30N03W03DAC
3lN03W36AAC-
31N02WI9DDD
31N02W17CDA
31NG2W09CDA
.
31N02W11BBC
32N10W27DBC
32N01W25COB
; -... . ...
t
i
i
f
·I I ~
Table E.S~S (Continued} ~· .. '1. ':
. ' ·' .
... "-_, STAFF RIVER .. tOCATlON GAGE# MILE GEOGRAPHIC. CODE '
~ .. Sunshin~ Base Camp F
< Fishwheel EB 1 SBOllA ; 79.0 24N05W36BDC c: SB012A
., _ .. _, 580128 Fi'shwheel EB 2 SB021A 81.0 24N05W25BAO Fishwheel WB 2 SB031A 81.0 24N05W26BAP'-c ·-J':'i shwheel ~lB 3 . SB041A 81.0 24N05W23CCA Talkeetna 'sase Camp
East B,cank Sonar TBOllA 101.0 27N05W26DDA Upper East Fishwheel TB021A 101.0 27N05\~26DDD Upper West Fishwheel TB031A 101.0 27N05W26DAC lower East Fishwheel TB041A 101.0 27NOSW35AAA lower .We~·,·_; Fishwheel TBOSlA 101.0 27N05W35AAB West Banf· Sonar TB061A 101.0 27N05W260DB Curry Base
In Front of Camp CB011A 120.0 27N04Wl6DBA CB0118
CB011C
CB011D
Lower East Fishwheel C8021A 120.0 29N04W16DBD CB021B
West Bank Fishwheel CB031A 120.0 29N04WlOBCC
--
I
'· t
E-5-177
~.,,
J
J.
J
~l
-~1
-_l
-~·
-1
~J
~1
_]
"1 ~. , • .. _
·~-]
·-:-.. -
. .
ATTACHMENT E.2
STREAMFLOW (PARTIAL)
s11/d7
.
y-'··
; ·.
. -. -
4
-.
.
(/)
2 3
I~ .•
. ~-
1·· I· !-l-4-·i4~1~H~i~~·~I·I+H·I~ ..
• ,_ 1 ..
4
-~ -, ..
I·· -'• 1
" 1-
N
\
N
' -....
-
z• ·-o 9_
l-.i
<!I
> w 0
...J w 5
, ·· · I i
I 1-I·· I· II
1517 -:-~,-:1:-:.:T.:-t-:1-:f-1-I-I~·+H··H-H H H-I-I Hili 1 lril
151 -
151 5' ··1-1--~1-+1
! 151 4 l·-',-_+-1_·1-1-1 -i-1-l'-1-l·>
1513 ··1-
i I i I I·
151 I· :-
4 • !1 RJ t ~~-f~~~~~
1::. ~:: I·
1-t· I!
:r 151 0-·
. I I • I· ' l . -. .
I •I I ,. ·
I ' I·
• I· I·
? I pOh ~.-
-· -~ 1-
·--1-1-I·
•• ~ ·I· 1-a
6""'"
---·-~-li-•··-1-1--f .. l
-I·!·
l.OGARITHMIC•2 X J C\'t:U.s
Kt:Ut'fi::L 6 f.!OSER CO. •uuL IH U $4. v 46 7323 ..
I : : •if I; I! ... •' .. 1.•
11-1-J-1-1-1-
_,_ -1-1-1-,.
11-1--1·-11-;_,_
~r.--·I-· ·.
1.·::1:.;. t=f: F 1: -. .-~ ''''··--='-:t·-=1--=:~J: .;;;a;;.1.;;;;1:.1.. ~: r• ll' ·· l·r:· j: 1.:-~,:..:t~: -1·,. ~~ :-~0 ~·-:, ...
-;;1-·1-1··-.__.!.oo~ ... .U .• U..LI.I • -f. i-i-·+ !-I.
1=\:;:l=t:_ 1::: 11 ': ~:~\·1-1-1· I·
·-1-I 1',-... +t+HHHHIII ·:.:,_·i:.l:.::l~--~-1-1·· ~ -1-1--1··1-i·l··· 1-~1-.. f-· 1·1·
1·-1-~ 1-f-1··
1·-i·-1··1· 1--J-.J-1-M-1-1-1 ~-II' . 1--1-·1-H· 1-i--1-1· 1·-I L 1·-f-·1·-1-t-
111--·1-~i--1-1-1-1-·1-1-+ v 1-· :-1--1·-i-1-1•-l-t-1-l·
1--1-1·----1--1-·1--l-1-1-
1--1--f--I-1,-1-+-1--J...-1.. , ...... ~ ...... , ~
1··-1-1-1-~--~---1-1-·1-1-
1·-1-1·-·1·-I· I· 1-
1-1 ..... .. 1-I·· I·
i .
. ._)
I .
' .
• i
.. • •
ilJ..j:+-1-f.J+I-1-I·HHl Ulllllili-11· _4 • t rtllll . ~
..3
_2
II till
. ·~·
I 0
I
1
J
• 1
I ...
1--1-1;1-~-1·-1-1· 1-1-•
• I • I-J-L.llLUJ..I.~.W.I.LW:j!WllllliiJ!f-LJiL..L.LJ.UUfJ.Wf.UUfl~Uf--L-' .. -!-I-J-L-L-1+.f-L.U-L.LU.&.J.tl..I..U.LU.UtJU.UWWf-JJL.L.Lf-~.WltJ.U!lUJJJ.-J-J--l-I.-J-L-I-I-..L..f-A...Ll..J...J...UJU-illllW.I.LIUJI.ilClJJ-U-I..4J.l.UJ.U.U.JUIJfU-UI·-1 '• ·l· '-•• 508·!-1-L-.&....L~I 1 1 I; I ·I 1 '•',1 I I ·:,I I, 1 I I I \ I I
......... w
J .t1l. 2 3 4 5 6 7 8 9 1,000 · .. ·:.··: .. 2 .. _ .. ~.. .1 3 .u.u..' 4 5 .' ·((:· .} 8 9 101000 2 3 4 5 6 1 8 } 100\0~
\ . ~-; . . • . . .. . 7 a ... ... '
'. . ..... •'
•t . . .
. .. ...
• ·• r
~-.. ~. C ·-.; F.S) ·· · .. : ... : ·' .··:: ~.-·:t ~·=··· ·; • . . :t... • 0 II (QWATANA)(0.969) ........ .• .. •'( ,.itl~llil
: ...
tl•l
li :· .
LOGARITHMIC•2 )(, CVCLES
I<EUFfr.L 61 ESSER CO. &IADI IN US A
·.
1-t-1-1--+-+·1-t-1··1-i·l-1
:--1-t·-t-1-
: ·-1-I--IH·-1-1-
1-1-t--1-t--HH-
i-f-·--t-1-1-1-1-·H·+
!t! ! . i
11--1--1•.,-h-•F-f--1-! •• ~
..
I • . .. (?\ .. ··:·. ::·~·. ... ' . t • • ~ ' . • ·t· ·· . .' j • . . . ··.·
...
.
"46 7323
·.·
. .
•. 1-1--:.:.. rl ~ ............. _ .... !-
-1--1-·1-1-i
·-1·-1--1·-~-11~1-
-i-lf···l·-1-·1-1
.
.,
· .
. .. . . .
I·
l:t·t-1··1-H
li
7 8 g. 1
___ 4
___ 3.
·--2
_9
.8
_7
.. 6
,.
H1H'Ifllll' • ,)
-·1
_3
.• 2
f1
N
\ .
iOO
{'
\~
') ..
•
2
3
•
3
!i
I
4
I ~ ~(': LOGAHITH MIC •' f. 3 t.: ,., Ll a
"\9 .t;l KEUtfEL. til £:i!iLit 1'1), r.t•u 1tilhA.
:;
1:.~. 1-h .:. 11~ i<
I • •.-:: 1.: 1::. ·= ~~ [:.i I? r::
1:~. i:-:; 1.::~ 1:':: i::.
·,; r= I-; t=: ·::
~= ::.:· 1-·
I··· I~ ::. :: 1:~ 1::. f-.· .
1--
1:::. -· 1=-: 1-I :I-:
I:·;· :: ~~· ~: ·:.I .. 1-.. 1:: 1.: -1-
1-· I· .
f'" • I • '·· 1-
1 .. 1-· , ..
,. . . .. ~-<·· ,_ 1-
·-1-' .. -1-
. ··I· -· 1-.
-· , .. I··
-··I· .... 1-.
;:: r!
! ! H! 1;:
l!!i illW It: I I
' .
i! . ,
;
i
l ;.
I·· . I 1--·
·i-· 1-
, . . -1--1-b. 1-I· I·
II
•• I,~ -1...:
.• I.
I I ' I I
5 6 .. o• 9 1000 (
I'
'• ..
~ ....
• 1 • • ••• '
v
..
2
I I . :
~I;
·~F
f·
I•
-
,j
. .,
4 . 5
I IIIII
11m1
l! j!
r'!
I!
IIIII I
! !
46 7323
6 I I.]''. 8 9 1 .
! I
I··" I -1-1.:: 1::'. I :
1-1 ... l·1: I-
I·· .. ,--1--1.,-,. I• i-1-1..;.., ..
!-1-1·-t-+-f-t-1 .. I • 1 ... ,
1·-·-·1-1·-.-f-·1-
·,
J'
2
·r.
•,"
f'.l
N
• -0
"-.{)
'J
8
7
6
5
4.
3 .
2. -_j .
(/)
~ -I
Z!J 0
!il
> wo _.
ws
2
1
\ ·i W' .,_..., • v
. _J . -. :-IT ;-... I iT r ....... ·~ . !-!-;·!' i·!·
-·-· .... . ..
• :--i-· • .
I·
·I-:·• .•
1217·-~
I~ I 6 . .~ .. 1.:. · r-·
1215 ·i:-1-I··
12J 4 1-
1213 --1--
121?;--i ..
. i i 12' I I •I·
: I I l . I
I ' I · 12,oL f
~~~tl : : !_
~ J' •• • I.OGAUIHIJ.HI." •-' .•• t &..YCI.I:!;; ~·'\.1:,; I ltllll'fl LIt I, .... Jj (..1), ·l"•t IIIIISil
I I I I
!j 6 1 a. 9 1,ooo 2
' '
• •• I ' II tl ·•
t •,
. .•. "., ' ~~
v
I
.3 •l 5
a < c.F. s.>*
46 7323 J
I I I
7 B 9 10 1 000
I I
4 5 6. 1 a I
3
I
? f: , .. 6
. .
* Q = ('lWATANA)(I.079)
....
·.: ., ....
I ,46 7323 ·· .... ) "'-')
.-
"0
• I I II II
()
-
'I -• _. .
(/) • ~ -z 0 ..
-9 !ia > w 7 ..
~ 6.
5
I··
-1--..
.• !--,-
•·-··-~-1-1-·1-
1-i---..
, -.. I· -.
859 ..
858-:~-,_
85' .. ..;; 1-' ·1-_,-1,-f.·l-l-1-l-1-f·I·!I+I·II-IH
856-'.'·-~· ~~~J-J-1-1"+~~~-~-···
855-+-.1-J-
• I
854· 1·-I· I·
I i ! · I•
4 . 853 i-J ..
· I. ·J;--1-1-1;. H-
I , ~ i. 1-1: 3 ·· 85; 1·1· : .,-!. -'·
' . -
.2 851 i-·-.. , ................ I : . I • .. -1-!1-1-
. •• 1·-I·
---I·
LOGARITtiMIC•Z X 3 CYCLES
I<EUtfEL Dl ESSER CO, UADliiiU'A.
-I· I·· 1
··-..I·-J .. -j .. I-·-1··1-1--J-1-
'-· 1·-,.. ...
I·· 1-·
1-1-·1-·1--t-1
•• v. 46 7323
-~-·-·1·-1·1·
-· . ---··I-
III·-I--I·· "
1-,--1· I·
111--f-f-1·-1-.
=~ · ·. ~ : ;.;n ~~: ?r ~J: =:r : ~· .. : ... ~i IT 'J. ~ l~I!J!; l!i ·~:i ~~ !. ~ : ..
1
-:-• • !If l:t 'l; ~ -1-iH;..r+H-t,-l:i·H·1-I·HHH HHIIIHIIIIIIJ-ii+H·HH+I
~· .... ;, .. : ::~ 1! ~~I! a11.#HH-H ~~~~~=:-l-l·~l--1-l-1 ·-i-l-:·-l-tlt111fllrf1JiltiUiTttttHtf'Hiini!JI:rjflt-.;..rt=i11::'1~.f:t.T-J:i:t. ~ It 11 ... ..... .. , ........ ~r::-:-;;r:-1·::~~~~ ~= 1-~~ ltii~·" ~!I 1~::1::1:1·+::1:.1··
! :_ I:: , I= 1:::1:: 1:: I-· . 1:.
~ 1 ... ' C::. ~·11 L n ~ I ·-~-·· 1·-1-1-1--
.: ,._ ·I-fl. ro "'~f. '• ·• !3[~. t·-1:. I{ I·
-e(-J 9 -a1 ~~ f4 ;1 31 :ir:..-!lt -r.-r.:-~1
.. 1-t+I-Hi
:: VI .. ·.. 1: I·
. ...: ~:::. • .~'.I" r . ~-:-:1-;:-;.. .. _1-;·1-:
-~ . I·· I::~ 1·:; ::. I -I . ·--1....-1-1·• I'· •
) _1 ·.;~. !-... r---~-' · u•-+-f-t·-HI-,·t-+++f-1-lrl+H ~ .... ,,'f' / r21 1::-1::: .• t:. :. -ITi!·'·,.r, __ ~.:. -~~~:·'i ~=-~: _, ... , ...... ~-~ .. -~t-1 •• +
jj: I· I•
1
" • l~ ..... u, R'.;..' :~T) 1·.: ::: •. 1·-'I· •• 1--1-i--• . •• i m r'"-1.., AB•-· ·o :11 ·-----1-...
I·-:... ·t IE ~· I( ,., ... -··· -1-+-·+4-·~ ++HI-H·IIHI
-· • I·•· I· f .... I -·
111111
1---1-··-1-·-1·--··
1-·-I-, ... ,. 1-• .•. -I· I-
I-· -·1--.. t-J .• ~·•·· 1.. '"
i-· _,_ -·-~~-11-1-1 1-1~--1-1-1--
1-··-·i-,---·: ...
. -1-I • ,. -· -· •• ---• i--1·-. -• .. .
___ 4
ltllllll ·---2
__ l
_9
.8
_7
__ 6
I IIIII -4
1·-3
I-.. ,_ -,._, __ ,_ .. l .. -l--l--·-.. 1~11
,_ ·!--·1·-·!-•.• -· -·-1 .. .
I. ,8' l::rl).....l-1-L.L..L-L.-4.JU..1..1.J.L.U..:..f.U.L.u.LLL1f UJ.U.UI', . .Liu..Lf.L.I.LJ ti..U.'fu.I.I,IF ,,_ 1.-.,1-J,.._I -1-L-l...LJ!..f-L.LU'-l.Lic..U.f.LU.L.U..U..lf.l..lLUJ.lU~LLJ.l.Ll.LJ.l.W.JillllJII.W~-1-..l-1-l....l-L..LJ..-4-U-LJ...J..L.I..LLIJ.LlllllJ.JL.Lf.:.l.UJliU .1..l.I..JI.J.U.:UJllllj • ~ I
1'-N 1 I I I I I I I I I I I I I I
1 2 3 4 5 6 7 8 ~ 19,000 2 3 4 5 6 7 8 9 ... 100 000 2 3 4 5 6 7 3 9· 1 .. Q (C.F.S.)
' ,, I ' It I I "
N
' N
' --
8--
] __
6_
5-.
4 __
2---• -' • tJ) . .
~ -
7" --·:'::-
--.:... r··--I-'
I· 1-1-,.:.I·
1=-1'::· '-'
·• I • I· I • , •
-1-I· j:: 1:: 1.;.1: 1 •
•• :. 1·1·· F
• • 1-1--HI++·+-H-H-+1-1-H+I ,._-,..:I·= i··
:.:: I: 1.: , •
~-t-·1-!•• ,.
j_
1 {3~ ---·.-~ ..... _-~-•·-+-ii·
-1-'-1·
-· '--I·
1·-- -.. -1--
-t---t--1· -· ·-I •
~-. -
-I·· -
.. • I·
2! ~' 840-J.-.f·+.,.,-1-++
0 9 Ia:~~--__ -ro..,..;:;~· ·:
1-8-838 -- -i-~ 7. :83"
~ 6 836-r-H·-
W 5. ! I· I·. I· . l8 r1-:=r-~~
4 . 1834 -I-l-
l I 1--,_
J. 831-,. I· h· I· I·: I· I·•
. . -er~<
1·-
2
1. .
I·
.. • • ... I·· •
I I ~ LOGARITHMIC •2 X 3 CYCLES '\~I:; KEUffEL a. t:$!;EI1 CO. f.IADl IN U 5 A.
7 8 9 1
1111--1--1-,.-··I·
1-· ·-·I-··.. I··
1--i·-.. 1-··
1--·1--··1-.
;:: ~=·I:· r:: 1--l=
1.:: 1:.: I· 1: I·· f::
1-1-1-1--1-1=
I= 1=1=1:: I= 1.:
1--1-·1-····1-
1-· -I-i· '··I-
-· ·-·1-1--I··
--· • i·· -1·-
--1-r·--1---·-1·-~--I ..
2
V, .... ·. 'l if (l'o
46 7323
3 4 56 7891
1
11111 ~~ 1--·1-1·--1-t-,--t-
-1-11--1· ... ··--·-11·-1--1-
-~-1-1·-··-11·· ·-
1-.. . :·: 1::-·1.:: ::: , .. '.
111111 i-· 1--I· · I IIIII :-_ 1.:: I~:~~: -~·I: -
-1-1-·----·1-·i--· ·-i-( ...
1-,--···I· ·-1---.. ···i--·-... , ..... -• I··
---···-1-
·--1-... 1--· '"' -I--,_... -· -f··
1·-.. 1--1-,-· -·1----1--1--11-1-
2 3'
I ttl Ill
~71+R=I-I-H·H
IIIII
Iii Ill
I IIIII
___ 2
1---• _9
.8
_7
._6
• _ . --·-1·.. I .. ·-.. _ -· 1-1-
) lo;~u·.•ILLLllllLJ..l..LlJLJJll.l~lllllWlJJ!lllilUUt.LWLJ.lllLl.Jl.lllJllllJWlJ.-'-·J.-l_.l-LLL...W+L.LLLU.UL4-J..IU.Wlllll:l.lJJ.IJUq..LJ..ll.lllll.lJ.lllLllJU~Wll.-·-J-..L-LJ....LJ...W...f-U..LU..Lll..l.JllJ.I..IlJWJUUUllUJ-U...L.LfJU.U.JiLLUJillllluUf·
1
0JI I 1 1 I 1 I I I I I 1 1 I I I I I
1 • 2 3 4 5 6 7 8 l I 000 2 3 4 5 6 7 8 9 10.000 2 :~ 4 5 6 7 8 9 1
0 ,. s. = s ) ., . . \ ll
r
• I• I II II
~
~·
4
~=~~-~~-~~·~~~~~~·r~·~t~-~~~~~11
8 --.. 1·--· 1-
J 2 3
7 .. --· ,_ -.:1,;_1--1·4-J . -
6.--.
5 ..
t
I
.. -: :.:.:._
:_
"'r:·----
-
• I·
• I·
.. ,
I!
I
2 3 4
li
LOGAI~ITHMIC •2 X l CYCLES
I<EUI'f EL Oo ESSER CO. IIAIJ( Ill lt 5 A.
5·6 7891
I I
i-1-'·-1-1-, ..
-1--· -1-1-1-
1-
I IIIII
1-
1·-
-1--· 1-• -1-... , __ , ..
-· i--1··-
·::.:.; .::; ·:-: r::c:
::: -·:. ::: i-=-;, 1 .. ; ;.;-= -;:; ~ :: ; = ..:. -:: 1: ,....;
::. '-:~ ::. 1:: i-· , ... ·:: 1·-1-I:,
,.: I··· i::-:: 1:: 1·1-1·: 1.:: ,·:· 1--I=
: 1:-:. i=-~ 1::. 1; 1:: 1·-j: 1::.-I= 1:-;, L= I· 1.~ ~::: ~ I~ t~ = I~ = I= I= -: r-i :.-I::· ;.::-1-~:: 1.;;:
:-1;::: ,.7. 1'.:. 1:: .:: 1:: " 1.:
-1-· = 1:: 1:-. I-,:. I= ,.:. .-
1·.:: r:: . ..
I··· ':. :. ~-· -· ,-1-..
i-1·-,-·-
~--
-:;
1:
I· I~
i·
,::: 1-1-
1--,_ -I·· -1----I-f-. --i-··-1-·
-I-
I.:.
-· i--···ii··
I I I I
5 6 7 8 9 1000
• ,. I • It I' .
~
I
2 3 4
I
i·
f·
I·
I
·2' 3 4
Q (C. F. 5. l
I
~
46 7323
5 6 7 8 9 1 2
I IIIII
I I I I I
5 6 7 8 9
1=~=1=-'-f.-':: t= ~=· i -~
-··-·'•-I--.-i-1-.. -· ,_,_ ·-1-
--1-· 1 .. .::1=,.. 1.:: 1-, ..
-.. 1-· I -1:: I·
=1::. . -·-1-.
-1-1·· .
-1-1·-• !-•
..... 1-I·· ·•
-1-!·· I·
•• I···.-1-· I·· -·~~-+-~-~-~-l·...l-l-
·-1·----· :-1-... -·· 1-
1-,_ -· .. ..
1-,-.. .. !· ....
I I
10 000 2
3' 4
' 3 4
..
5·6 7891
I I I !
I IIIII
I IIIII
I I 5 6 l 8 I
--1
---9
---8·
!---7
1·--6
·--5
___ 4
___ 2
___ l
__ 9
.• 8
_7
__ 6
fi
rd
_2
N
rJ
' -...........
2 3 4
3 -
-.
. -I • en .
:E ,-'. 1-
3
2 15!}~-····-~
,. I· I·
!·. • •• "' -
I-· •• -·•• I•
• I-'<
•· I·· • • . 1·1·
···1··1-1--. .
LOGARITHMIC •2 X l CYcu:s
Klf:Ut'fEL tlo ESSE.R CO, NAill Ill U.U.
I I '!
1
•1!
5.6 7891
1--1-·i--I-..
1---1-·r· ·-I·-·
111-·•-•-1· ! ..
1-1--·1-
2
.::.. 1-If .• :. •. : :.1:: t=
p.: rt· ... f-:? :: 1.~ I~ -1.:::: I::.: t::: .:: ~-~~L-:1::.:::.,.~ I~
=I= t::: ,-:: . , ..
-1 .. .
1-1--'.
·~ I"'
, __
1-
i • ..;. 1·-· .•. 1--,--~-I·
, ... 1--. I·
1-1·-i---·I··
:-1-·---1-1-
:-1-· r---
1 ;551·~uu~-l,~~~·~. ~~~~~
2 3
,•-
I I I
4 5 6 7 8 ( I 000 2 1 ( . 2
... ; tt ..
w w
v 46 7323
', . '''''I' I ;.
ll t t
..
3 4 5 6 1 8 9 1 2 :s· 4 5 .6 1 8 9 .1
j . 1 --( 1---9
i
8 ·--
~;::: 1:::: r-:.: 1~: 1;1;;
1::: ~ I= ::: ::.17 17;: ,:
---7 !=? ·~ 1'::: I~ :. !~: : ::::-:::: 1::: ::: :: -. I~
--6
,·.::: ::: 1:: ·:: :: , .. 1~-: ;:: 1:.: .. -· -r:. -
·--5
I= r= t= :: ::. I· .. = ~ 1::: :! .: -
---..
I IIIII
·~ rg !:~ = i ~ .;..
:.:. 1=--::= -F.: 1.:: :.: 1-
= t= I=· = 1:::. -1-.•. -1 ... 1:: I~ 1:
J 1-~-
=· 1-+-I~
= I= ~ :: 1:::-
-1-I· ___ 2
-•.
I IIIII ~-··I-.
-·1-j----r·--·--1-~·
1-· 1i:~~!l ---1
I! m r ~r-.. ~9"! l _9 i~ ·S 'i II
_8
'! _7
6
f\
IIIII I~
_3
I IIIII -2
I I
2 3
I I
6 1 8 9 topoo 4 . 5 3
Q ,, .=".S.)
L~~ I ·~;: lj \:1'1111·~ \ < J t •• L '-'--Jf,._ I·....._ ..... Ll&l:~ ... AIJ--...
'-•' .,
~ 2 3 4 5'6 7391 2 3 4 56 7891 2 3 4.5 6 7891
. -.-rrn-rl J]11 1 t :illlnmhr~rn'nn' lrlh·r' lll:illll' !' -I '. I 111
1
: .. IIJI . 11
1 I:':~.'-:::.. . •
1
1 r· .L· II
1
[1) n' I I • ( • ___ I 'i~-i--r i"f'"fr .. ftJl ·f I lui !Jli I'' !{jiJ ijj 1,1H!'! 1 11 l!t!l-r ~ ~;t· ~. '~: : .. :. . . . .. . 1 '. . [ I i ~-.·: ·:~ · .. ~ ' r-·~-' . ., .. _n, Ill il_ . . '~==:
I. --.. . . --l-... ~, I I ''I' i j!lj :' 11 1 Hi -r f'-. . • . • I . . ,r· ----.. --. . . . . j I I ' •I I I ; : . . . . . . II ·.-: :::. ~-.-. • : . I 7
--y·-• . 1 ---
! -'-:-r.--~-f.· .. _ J. . ! !·
1
, I I' ,, . ·r.. ~~·_sTAGE .o~scHAR,~~ ~R~ rlt1GJ ~v,~vE ·::.. -~· =· ~ _ ... ·. _ _ .
1
. ~til
1
.1 .. ___ 6 LL-~ .... ·. 1.11 11 l t. lUi J .
1 1 i' ~ sus1r~A f,UVE.!rAT . .cuR~vl: m,:,Jilll'l''' ~ ~, ~;: ~ ~ ; ·:: : . _ . . ~ 1 ·1 1 . . 1
___ 5
---1--l 1-
1
-t:t· r, , .,
1
,j. '''
1
"i'1 H ,,, ,,, ! ·--CRfST! =~:r!.\,~E, R~ r-Q'!JI ~~-.. : t · r~t f';;'~ .,.;-; t ;: ; :~~ -· -· 1· tr, 1~,--· ,1 ___ 4
,,-;1-f ... ,.r __ f.!! .,.,,r r ,,,.,~,,ii~l' rr ~T II I "1:~~·-:-:~"t·~:-._:~1:-I.T .·: .· :· :· I =::.=::.:::. ::..:~7: ' ,r n,· .. I ~.~:-····I i I'. '" ,. ,, .... I II :. .. ,•: ... ;.; .. :.,.:.:: .. :.:.:· ... -... · ... i :.:... . ·-----·-::.!=-· :_ -~.... I II··.
I h I I . I I ... I •. • l ~ II.' I I I i ,, :::,.:· · .. ·:: ;_ ~ : : :. : :: ·~: .. : . . ,, :, ~ : ,I ~-=. ~ :~ .~: ~ ~· ~ ~-. . . I I I ·. f ·. --·--r-··r· --. . . . n . r -. I . . .. . .. 1 -~--- . . .. . -r-. t ,. . ·1-1+-l+t+H -I , I :~ :.: .: -: : .-: ~ ~ ': : . : ... : . . . : : : . . :: = ~ :: ·~ ... .! : : .. : • • I : . . I ! ............ ·--. . . . . --···· ....... ·-.. ..
: ! ,, . 'i' . I :II . I~ I i :.:r.: ::· . ·: :. :· :· ~: :. :· ' . . . ,,, . ! I -= :: :: _: .-. .: :~ -: -. . . . I ,, .II I
-.i.~.-~-. -I· . I ,,:1:. .. ~li_:J...=. ... .. .... . t .. . ·---·-.. •• • · .•• 1' .. i1 ~~, .. ~---2 ·j-· . ·!l' ·] rl·,~lll ' ~.:.:. -.~ -:.-.·.:~:.~::.:: . ·:.. I ===·= ·::·-::: .. : .-.. II II . • i!. I ! I I I --. . .. . . ... -. . . . . . ·-· --·-.. -.. -. .. I II!
; I ~ ' f . I I I I" I i. I . . . .. . .. . . . . . . -· -· . . . . . I ' . .
, . ' I' ! I'! ·'!II IIIII. ~,., I I I 11! ~-I: -....... : --.. ~ .. ' . I I I' . . . .:. :~ ~--.: :· .: -.... I I I : ll, . ,,
;_~ _:_.1_ .1... ]ll'ilill1
1lji: .l.i .1!· ',·=--=~· .. ··.·~~~~~~-··: .... ·:. t. : .. · =·=~~-~-~~~.-~ .. ·:. ·. . j'lj.l.l,l! !;~, IJ ___ I
:· 1 ~~8 -· ' · r ., ·~1 r 1 -----·--~~ .. · -,, · ·· ---·· ... · · · 11, • <6"· • .9
·· -26 ; ,. 1 flj lr '!llll'lj'l :ill !I 1 'Ill I i{l .:.t:. ·:· .. ~· ... · •. : r t li. ~1 ; •1. ·. .J 'Ill: .. ::::-:. · .... · .. 1 , I I · 1
'1-A •11
1i!'! I ;, 1: ~I 1: 8
; o : --·~-~--=,,T · ,.li·iJil r,11fn 1·
1
.. u·l'l'~·-::.:-:~:::-:::f..::==-·=·· · T 1n~1 11 i,1 ,.·: ''T, i
1
,·::-.... :.: .. ~-r-#~·-·:r-:z~aw"7J ...... :-r·t··il .. , ~~~·-, 525 -· ·-~------· 1 . 1
1
,·1.,
1
•• tl~· . .l., . 1 U 11 ~i -:.~..:._ ~ ·~ ·. -· . . 1. 1 1ji . 1. ~ l1 -· ·-----· · . ·1L1 ·~,·· r7, .. ·3h80 ... . 1 _7 ·~ 52 I . /., I l;ll!lj!l!: il I I ·I·,:-.~-~-·-:: .. ·.·! l 1: :'~ .. w. fl.'~=:=-:::·.'. : I I ,ll.' ;'•il!j' ! .6
I I i 1 ·, Prj ·I 1!1'· •• lq II IJ I 1 . .:1. · · · ·-I J jll · I J11!l --· .:j.i 1
J r' . II f 1li II' I''' 1 I ·, 523:-· 1"1 ..... li· rir :ftr'l 1
'1ill;··; l!il i~r~~!.,.I!L·:_\~::~::.:-~,--: .--.... ·'1 1 ·~ · . ~iii l·~·~ff 1· · ..... · tit 'Jr llr· .,
:; l i ., -l.lj·' ,,, ,.,:i,,,ll!ll··:ldlt "l"·ll! l:i!:~"U~:::; .. ~:=~-=---.: .. : : I 1·i'l'l· ·II .: .: .,.,,!l:llll.:.:~~:l. I .. 6..:.19-81'· 11-''l'··,,,.,, ·1]'1' jll_)
• I I J I I j I I! I ,p! ,;, .. ,,,1" I' t I 1t~l :.1· ~ . -;-: :: . ·. : . . ·. . . . I I '1 Hl'··i ·, I l ,I .. · . I • I . 'j I' I I I II t' i I I 'I 4
52121 t· . ·(,. 1 . -,. . .ill I r !ll'i il I II'I'T ,. 1-=-1:' .. :::·.It::~.'~ :' .... I . t ·n l' I~ tl,r T' ·r ~· ;.l ,.,i H1l' .l::. • ' 9i~ 21 ~0."1'1 ·t '·]it' l ilf ri:' . . 11'1 ljll -.
l I I 11' ., llif,!!!li ,·. 11111 ,,il:.t: . .r=·:::·~:::~ .. ;:+ ~·. 11fllli 'li 1',··.· . llJ,!l:.·:: g.,s-:ao' r "It··, 'l 1 I li!l'l 1l I i l1ilili _3
'i 521
I II I I .. I I' I ,,,.,,. I • • . -• .. . . • I I '1 ·1
,,, I . . I ' I I II I'' ' 'I , .
• , t I f I II til :l jl tl:j; :, ... : . .. II' Ill' I' ~10 .. 4'80:.. . ' t ··I iii· . ' I
.:, !-,r ·.II l:!lq llt'll'''"'·l'l:l·j!'ll! lj'll''ljj!.-:,:~·.---·-.·~~-~· ..... ~~· I, lil'i~l·:,.· 1·11·11·1111~':>::::.::<·-T· .. -· ·. 'il,li t;l·;.. l'l'l
I f .,,. t .I !ill ti:lliJ 11 I I ,,:1: ....... . . ~ . :: . . . I JJ1jl !I''• ,,ti I l ·. :::: ·~ . . I' . ·I i, I I fi! j 1 ~ ~~o·T~--~-----· · · f 1"1 rWjl ··· · · ~~~~-~~:~ . __ :_ _-1( 11,v·· 1: .. Eor, !11 ~=~;:--:~~ ------.· · r t 1 · • , -
2
N i · ..
:~I ~~9. ·. :. : ' ' . ' '. 1 ~ -!l ' ' ';---.. ' -, ll, ' ' - ' 1 1 '1, .. ~ -~.:~.:: > .. ' l: ' ,-ll. ~ ' ' .. ' I'_)
1 2 3 4 5 6 1 s 9 1 • ooo 2 3 4 5 6 7 a 9 Jo, ooo 2 3 t1 5 6 1 8 9 t
Q ( C.F.S.)
. --.lt.1.! ' ,. I. It II ..
t' ~ ~ ~ ~· ~ I ~ ? ~ ? ~ ~ ~ ~ ?• ~ ? ~ ? ! ' ~ ~ 1 • ~ ~ ? ~ 9 l
I ' •• --1
__~ __ LL L J o' t __
1
JL .
1
. ''~t~~11l!WIH ~11-ll-' '.!.", • ,, .... -9
I I I j I IJ. Ill! ! !~11,11 '1 I lff !I I . : . . I ·--8
·--. J . l-. r .! It d J·lil 11 11ill 1· I. . J ~ ~( ,; -~-,-~~~~~-~~~~H,. v~:w~~fc~1~fal1tt~vl11~~:; ~; :>: ' ;: . . . II :: ~:
-H-->-
7 1-· , 1 I ~i 11 I ,p 1 1117 :· :; .0
· C E}ri 1 'TA~~r:lf1F ~01 ~-~ ! 1;", \~~9 ~ ~ ~< :: · . 1 ... -5 . . I I . :
I
. . ~ .
.... -..... . -...... ..
--7.:-r:-:··-.-"' ,, .... ..... . . ... . . .
-· --.J
{)"
~ t I j I I I I I I I I I I I I I ' I I I I I I I I I
3 4 5 6 7 8 9 t.ooo 2 ') 4 5 6 7 8 9 10.000 2 3 4 5 c~ t:J~7 8 9 1
( •' /
'• \C.£ f;'
Q :J .)>..,'L''-..
I I ' I II .. M>II.i.IIL
i· ' t ••
~-~ \..../
•',
2 3 4 5' 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4·. 5 6 7 8 91
I ' o I I \ I I 1 I I I I I I I I I I I I I I I I ~.--r-r-,T'"'T""T' II -rh-lTT"M1 rT'TT'1'! I :·lltllll ~~IT Till TiTTJfrr· '1·.,~ijg· .. T ·I I . . . I 'II"·H ~. . ·.:' r:l ::, ·.: .: : . :' . ; .. . !.! : '1111.' r·!
11
---r-H--1-r-Tl-j--·I·· l!·lt~.: :1:: li!'ti:+rH.u !·i,·· :···-=-1~·-H~ -.. · ~. · 1 t·tr -. . , .... :.-:..~-:·--· -~ n1t · + 1 --·····1-~--!r-· -h ·t .,-{l'·j'l,tilij 1'. ll!i!l ~~~ . f·.~-~-::-~j;;;~---~ :·:-. l ,,lij! ·.:.·. I. :~;··~.-\~~~-:;·: · .. ·.· j' t··~·l! I
I -· _..:.,·..... I· ·t· · ,1:1 ... · · I -· -~r:tijiH.Fi 1 ~l te 1' ~ · ~~ •• · .. :, .:1' , It . ::::-:. .. ._:· ·.. ' ... ' I • 'f • I I • • I I ·-..... J. • • • . l I . I 11 •• I . ' . • . ---.. " . .• . ' . . . ' I ..
l
I
•-·1-.. , """ -t, ,,. ,,f'l1·l·" I l I+·' 1
l'_;
1
' i! lrl• 't;jll'1 :j'-::-:-·~:---l-::; ·•• l', '' 1
... -.~l ... : .•.. ·. 1~:·''h 1· ~ 11 II·:~J;.cR.E-~r ~· .. fleE ~E~o~of ~·.~ x~ 1 ~ --~~-:::.:-·::-~.:::;;:·.~; ... . 11 1. 1 ~ 1
---·-----. -il·t·.!-·1'1 ',~1111-~·'1. di''I~J. ·. ·-~-·-=-~=~=:>.: . 'f~~jl· It I ~Ill~~·:.:=~._·:~:·:.::: . .-:. ·-r I." .. ,-~-~-h 'f . ·, Ill'+, . Jl,u,l·l ;~~~~~~=-~~~~~~:;-:-:L ·=· Ill., _ ... ; . u,'i·l ~~~~;~;,~;~~-~<~-~~-.·.:. .. .. ::. . . t I I I I . . -..... -.. .. -. . . .. . . ' . . li I' • • .• -· • • -.. .. • • " • . I . -~-,~ ·---,,-~ -i .-.. :· .. 'I r , ',~ ;l:l~ .. . I r P~~ ~-=: :~ ~~ :~: ~ ~ :: =· ~ ~-~ ~ ~ : -: =; . . • . . I~~~ r ·r: . .. l' 1 ~ ~ ·f ;~ ;; :: ~ :· ~ .· < .. -. : . I :I+.H -I+H+I-!1+1 I
...... --: • • I • • • • I . . I ,. 1--f----... -. . . . ' l . I I -I--·---- . .. .. . . . . . . ..
: ' I I . I i ! . I I :--i::: :. -. : . : ~: .. : :: : .. : ::: : . =::: :_: _:: ~ ~: :. : . . I ,,,
3 60~-----.... 1 ... I" ' . 1 1,!'. f ~I ..:..-;:... • -: • • -• • . • • . I ·. . ---·:~ . .. . . . . . . . 1 : ijlt!l_ 1 ~ I . . . I I I . I • --.. --• . . . . • • • ---•• ·-• .. • .• . . . . ' I I I ~ .. . . ' ,,,1, I l . =r= :.: -= = :: ~--.:: . :. = ·.. . . . . ,= = .: : : .: .... · ... ·. . I II ' , L
• ,. ·-1·--..... -- . .• • • • • - ---· --• • . I I I I
I
:. --.:· -~ lftll.l,· ,~,~~~·~I II ,-~=~-:>::::: ::--:.. :: ~=~~sj'~pl~,_m;~::~:::~~j~·m~~~!'.,t.~,r~·~ II
350 -1--• ---. . • .. 1 t' f ~ I . -. t I ·--~, ·t ~-.JI . I I 9. 1 ' ' 1 1 I 1 r 1 •• ·-i=-.:.: ·:· ·. -=: ::.: • · ·: · · · ' I' 1 : · I .. '.::! ... • s 19 · e1 1 11 i·'1 'i1 1 ' 349 :-... +!.-" I' -! !_,j 1 l I I ! :!1: . r . I ·r'r ;=-~~ ~~ .. ~ -~ . f-· : =-'. ~ : . : :: " . ., 1 .,t : 1(\ ·A_ ..... I ·r • ! -':: ,· . + . I l ~H u~ 11 II· . ·{ ; ! I I. ! I I 111! • I • ! ! . ! .. : .. · .. . . . ; . : It I I . : ~ ~I jT • . ·I 5 .. 22~8 I ' I I IJ ~~II ·:t. I I I :·
,_ 347i..:.l-l·--: ---i-fl ~ uj,!l~~t!;ltl~l~,.· , .fi t IH!:j,~ ~·=:=~;;~-:-< ·\ +t, :Wilkl·::· ·:· ,,. iol\~~:~;~~~~"=ijll~· ... ·1~~:·: .-'i ,. ~, i!fjl t~ft . . II 11.
il. 346-r·-----. nr-u,~,i,n,, .. 1 t. t!lr===!-~=-~·.::.:::~ ... ~.~-=: :· .. ~-!~,_:;;··tH ,.:·: ·: 1. il11t"' .. ~~:: ... :.··+ .. --_:1·-+I+ IH It'+ __ 6
'
• I • I I I II I I'll I I . I Ill, .. : . . . :· : :: :.. :. : . . . ~ I -. ' I l!l . ~ .. : .... : . ,. . I I II .: II I I
:1 I I I ' j I . ,.q . .. .. . .. . . • . .1'! I i· ' .. . . . I 1
:1 '
.· .!! ~~~~ ,-~·-.,,,.",,.,,,,jl:,~.',.,i,,,!,j~,~i~·t!t~--·' ...... ~=~: ........ : ._.,.IJ!l,p,.:,~,-n 1·1'1~~~)~~~"".: ___ :_;,t __ ~., ... [! ... ~.~~ ' J,! '''·· ~, f'"'!lll,~~,~
I I ,,, t I !I I' I "I l ,, :II I ·t ~ llt I ill .. I • . • :· • • I I ·. I :1 I I :. ·.: ' . . ~ . ' i I :· ~ I fl I
: .· ~.4 ~1---"IT. tl· l'l''!'il'li 'Jill~. ''Wli· II I'(+>> :' . . I 'j IJ~ ;,, . . 11 ~ -s-7[ : ~t' _, ... ..~ nn I' . .
11
'"
I • -, . \ . 'I .. , . . . . ' ' ., I' I' I I • I .... .. ·-. .. . 11 I
! I . . . . .... ,,l.l! 'jl 1 ' 1·=1::.~.-~-·:7::-·. _.:·.. : l·rll!i! '7 .... . I ~:=:-~ ::: .. ~:->·: ........ :. ·t. .. ,. I' ,:1! .. . ,
2. ~·42 ·-t' . ·_ .... --.. ,' .. · rl' I tJ!I til,!l· _,i J ·, ,I .,i ~:{:~. ~-~ · .. ·:-: ~ ~.::... .. .. .. I l . : I :.:: :"::: :~ :~: .: :: ·." > :· -,. . . q.,. r,l'tl ,,,, .. .. . I . ,,1 ' I I i ,, i :: . ·:· -·: : :~ ~ .: -:: ~ . . . : . .:: :.. = :. : : : :. . : . I I ,,,, ' ; . . I' I I I I . ~-.-. : :.:. ~.--~ :. : . . . : . . I . r . --· ·---.•. - -·i . • . . I
~ :1· ·. -:. · J
1
·: ·-· 11
11. ,
1
1t ~~~ 1 ,:,t;~-~-~~,~:: : ·. 1
1
I~ , · ·~ ~~~Ef~-> :--:: · · 1
• ~r
1 ;. .• . .. .. : . llil,l I !!JI i I l l lifl .. ~ ~ -.. . .. ... .. . ' . ! ! ill· li ·---,_ . --" . . 1 '
- t • :_:._ -' tiL... . lllil-.. . " ... ....... . .. -.... -I.J..L.J.I.f-J..L.Ll.f..U..U •
1 1 I I I I I I • I I I I I I I I 1 1 I I I I I I I I
2 3 ·1 5 ·u 7 B 9 ltOOO 2 3 4 5 6 'l 8 9 10.000 2 3 4 5 6 7 8 9 1 -I
-J 1
.,.,.,,11,
;-··
,{ .
"'··
•
•
EXHIBIT E
2 •. Water Use and Quality
Coment. 3 .. <p: E-2-17, para.l)
Provide stage-discharge· diagrams for a 11 gaging stations on both main stem
and tributaries.
Response
The stage.;.di scharge diagrams for the continuous gaging stations. on the
mainstem Susitna River and its tributaries are attached. These· stations
i.nclude:
Six Mai'nstem Stations
. -
:Dena 1i ·
.·Cantwe-ll (Vee Canyon)
Watana
·Gold Creek
Sunshine
Susitna Station
Ten Tributary Stations
River Mile
290.7
223.0
182.1
136c.6
83.8
25.7
Maclaren River near Paxson 259.9
Portage Creek 148" 8
Indian River 138.5
:chulitna.River near Talkeetna 0 8.5
Talkeetna River ne.ar Talkeetna 'i$7 .2
Wi 11 ow cr~eek near Wi 11ow 48. 5
Deception Creek near Willow 48.5
Oeshka River near Willow 40"5
Skwentna River near Skwentna 27.5
Yentna Riv~r near Susitna Station 27.5
2-3-1
N
I w
\
N
1-
\U
uJ u..
/
\ SUSITNA RIVER . ~• DENALI
. . .
t
l'.JI·•·•· /.'t•·tritr t·r.
.. •t ........ '
.
'
-z
0
t-
;! 42
~ 41
w 40
-~= ·-:•:: ':.r.· ~f-1-1-J· ..
1-
5--f·-·-1-1-1-
1-·1· t-1-•·+++ ,_,_
t-· f-· . -J-.
1-~-1-· H··· ~-
1-r-· -1-+·+·-1·
._ w 39 I= ~ ~
IJ.. 38 cr
::l
1-~-
(I) 37 E..:: 1-
r:
~r-
1435 ~·-:::. r= r-. i·
1434 1-f-1··
1·-r • .... ,. 1·-1-....
1-,_ f-· 1-+ ~ ~
r--'-I-+-L..,F-1.-'J-J.-1-+.J
1--1-+oi.,.:A ,_,_.,.
,-; ~ 1·-, ..
.lri--+--t--11-~ J.· ~·
1-f--J..-1·· f-+· I·
14!3 _,_..t--&. ........ ~~··-~
1000 2
PREPARED BY •
I IIlli
I
5
1111111~
I HHHIHIHI ltlllll
1-
1-J-~ ~--~-
JIIIU-1--1-·11-1-~-I·
1111111-t.-..&.-1·~ 1-f·
I I
i 3
' . '
II IIlii
111111 .
I IIIII
6 7 8 ~ 10,000
01 S CHARGE Q (C.F.S.)
-•-r··t· .. !_, ..
1-
f-
·-~-
-
1-1-I-
f.:
1-f--1-~~:: ....
11-11--1--+--t-H-
. ·-~·-1-1--
llllllllllli 111-.-1-JI-I · ...• f-·
~ ioo,ooo
STAGE DISCHARGE RATING CURVE
SUSITNA 'RIVER NF,AR 'NAT ANA
Ill
••• IJ
..
. 11m 11 ~ 1 ~ , ~If
1 1.H.Uiillllll
4 5 ~789i
PUEPAREO fOR'
Figure 2 .. 1.1 ~Ill.~.
··------------------~----------·----·-
l.
"
1
9
8
7
6
4
3
2
~
::>
~
IJ
1
I --
---
!-
--
-
--
--
Q
~~' -<.
·.!>
\-u.
w.
...!)
t
\fl
N
9_
8_
]_
GL
5_.
4_ ,_.
3_
2 -
L
' Jll w (J ..
' \I\
r • 2 3 4
I I
I
2 3 4
LOGARITHMIC •2 X 3 CYCLES
KEUf'FEL 81 ESSER CO. MADE IN U.S.A.
5 6 7 8 9 1
rmn :~=-
--~-( X
I\
\
I•
..
1·-
1-
1-
-
5 6 7 8 9 ()(./(• .·
... ••
2 3 4
'l~
I·
2 3 l
46 7323
5 6 7 8 9 1 2 3 4 5 6 1 8 9 1
! I I I
~h1Jff . -
II I IIIII flfllll ll: --~t 111111 1= '· ~I IIU t= --Hll I IIIII
I IIIII --I IIIII
--
--
I --
m~ --
I IIIII
,II IlL .UII' 111111111: 11111111:
_9
_8
7
_6
_5
-· t:) -~~ p 11 ~~~~ ~ _4
= ~ ~i ~ ~: 'IJ b ~ .. ~ f.IIUI i-
= ~ lr; !A ~~~. "~~ ~ 3
!-
!~-~ ~! ~·! I"' ~\
~* :r'l J~( f·
I oH II ,,~ _2
'J! ill .~t I·\ I~ . ;. ~
1-· ~-1-·-I·· 1-·
. I··· "
! -
1111111 IIIDl _I
I I .., I
5 6 7 8 9 1 ,, .. 2 3 4 5 6 8 9
N
\ w
t
---.J
t •
. .
•f• I !,t .!• .• ! .. ::. r tt: •.. ....
~ ! ~ _.:t~r• . " .. ... & ••• . ~ . .. .
•JtO' ..... · •. --, .....
:., t .• :! ' ~·. ..
: 1, ' " ... ·'It~-:.;-· i ...... .
...... : .. .
• t :·t • , • !~. :: .
'.; ';._.:: :::•
.. .. . .. . ..
. .
. .. .. .. .
... ... .
! ! I'
•'' . ~
• t ...
.• :~;: ::::-::: ·!::;:;:t:t:-r~ !·:· .~ • :::.::~: :":!:·.:~::;~:;:·· ···:-,~:: ... u •
:. ;~.!·• .... :••,,._.z•.., ::~::t ::•, :·4::·.::.·:·1·:! ::·--;·~·· . · :· !. • ,. 'J. • • • ... • •• •• •• • • •• •t• • • • ........... ,_,.... ... • ,. I I ... I ••. I . ~ .... .. . . ' .. ' -~ ..... ' •· , ~ . , .. ,:_. ... :·; :~~!· j·:. ·; •. ~.l~ ... ~:, .;·: ·;;:•·: • .. •::,•,··:: ;,!!. .. ' .. _. ..... ··~ -~l·· ···-,. ····~· { .. t •••• ,, • , •.•• ·f·· , ... ! ... _. ·:"·~·· .... .; ...... _.. ..... , ..... -··~'· .·· ...... """ ...• ._..,, ._,. ...,.
' I _ · f I ~ •••• •t t t e l f ' • • I • o • . II <4 o • f f ~ -~ ' , o t • '.. • .... t ., .,. I j • • _,., , I • .. ., • _,, • ''. ' ...... '
# : • II '.t ••• _. f o I 1 • f • • '._ I a ff .· •. f• 'll -f •• ' 1 ~ ilo.
' & ·f -' ~ f-• • • I •~ • . f ., f 4 _.. • t t f f, t• ••t••J _. .,., • • • •, • '"•!·-·. ··:·;•ftt ~··-::1: :~·:··:-:::~~·_· .. ·~:-=:-::~:·:·: ,:-:· .\ !~:··t · · . ::···:: ~ ::.·.r: · ·; :~ ·~t~:·.,.· ::rJ./: ·.! ~·: ';. ".'·:~: .... ·r:
t• r t·~• ••••~· ,,, ... ._ • •• •••• •• • -•••u 1>'4 • '-,-,l-.1 ••.J. •.f. ""' ' ~:·!·~ f •!: , •• , ... ,:•i•••:f-!' .. • .. _. •• ~ ....... ; • ·-.... ._ • a., • •• I :·.·,~ .t· ····.:1-.. ·i~t:.··.:;:•,H;!." ..... -·.~ .... :!'""!·11'.! ,t
• • • • ~ 4 • >-... • I .I . • • i. ' ... ... l ·I· ~ ' . : : , .:i .. ·" .. !.· .. ::::·~ .• : ..• ,·~· ,· '"····-.·. • . • , .~ ,• ' .::• ~~ ... ~f· : •• ·: •• ~·:/t .. t •• ·~~ -:•·.· •••• • ~· .~J. •• , •• , ••••••• ' ••• t•f'•jo ....... ,.. ••••. -f ·--,_. t;. .. .. .... ..... . .. ,... ~ .. :!.•:t 4 -tt' 1'1 .,. ! .. : •• ~:.!'of:·:. f I •! ••,~ ,jo f ;,!' .. ,: ~···. ••
• • t t ~ :: • ::! • H •: • •• t. ~~ ; : : i, I • • ~. , ; :. ! t: fl -, • t t
_ft • •• • • ... • ' .... • • :-
• •• • • ,, • t · •.. ::.::,:. ·.t · : • ... ~ .r ... ·•
f. ~· ~! I ~··"'~!!"' :t : :•!••::: .. * ~ •• ·!·t ...... . . . ;· ... r~::~~ .: • :. ; . : ... !". • ·;:
• • ·····--· ••• J ••• ' •••• ! .
• ~.\";"; ., : ': ~· •• 't4 :.
. . . .. ... ~ .. ' .... ~ ' ' . . ' ...... ' ',., ""
. . . :. · . . ... ..
!'
I .
...
. ;')0 • •• :i:-:i·:;~ .. ~ :!:1:•:·•:!:;; ,: 'i"' !H t•o ':'· ... :?;Z. 1-1 (' p • .:· ••. :!· ..... ":i:
1 ~:•·: :;:.; .. ·:i•. ej
• ..
i
' . :···,1·! ;i 2i :. 't •• ..... ~~·~·~ <::·!·: i .... .!· ~ .!~~: ·,· ~ : • :.~ .-j ~ ' . • • -r, ·• * .. • .. • • ~ •..• . ~ .,_ -...... , ··-,. \.. • . . .,\. .~=· .... • . ' .. . . ... •. . • ' . . . ...... :· • "'!-. ,.,,,.,., •. ,! . .:..\' ,... ., .•. ·.~:-=~·-·· :!· ··:~·.:-r:·~····· •·"! .. ···;: •.
i'zo!: · ·1Q ·ta• : z \ · . ..·.· :::· :. ;:: . · ·: . :. , . . .. : -~.' ' !'\ •'i.••. :·· .!_, \" I ·• • • • •••··'"'. • • L ,, t "r' .,.,. • t ' • t• ' • •• •• •• • ~. ' •• Z ~-.. ···)··-· , . .. . . ... ~ ~..._, ... . ...... ............. .. .. 4
. '
I . ..
,,_ • f-.. "'I--....\.. ,_. -~-• :. • .. ............. ""'''"' ~f •• ·'······...... .. • ::·:~·· . lP . • . \:t=Jr'· .-·~ ·.·~· \. :.._ ... ;,-: ·~~ :: =-.: ~. ~ : ..... ! ~ :.: . .-.. . . . . . ,: .
, I "'• •\ : ~,. •••t •" • .i•: ·--•i•' ••~ •' J
•f-,. . '.,'• ~~ . • ;·.,. ·.::::: <~.;:; 'l ·; • ··:. : .. I : ::·: ::( ... ::.~.~~: :\ ~ ;:.;. ·~~~ .::.:·~:.f::.:~·;:=!:::.:~···;~:.::::i.=·-~ :~:· ,J .,, . ····t~,· .... '
.. • • ;..,..,.. .... '. \.. .. .... t ·~ •• • ...... f ...... '. • tt •
. . . ., ..... .
'
,,.. -
II • ,.,~ • • ... ' • • .. \ ...,..,. • • ; ... f -··· • .. .. ; •••• '· • • .... • •• ., • ~ ;""'' J.. ~,. •••1 t\••• • \'*~Itt tfttlt ·••• t;•• .t .. •• *ol•t t tft ~
9.D
'I •
• * i
. . ... .,
' • ... ·~:-::•• -0 ~--·~-~I • I •\f 1-•l•l •t~i:t•l;.. ~··:--""0'"'•• •·~···f.~;·•·~~ •!!'·-:::;:-"•-:•!,.;"' !;u ~,.. ,. :·'::!: "\ .. ,,, . ' ...... ,·:;:. ·:·····"
=: :, ..... ~ ..... -:. :i::··! :!·:;: ,. :.'\·::::·.~:..: .. ·: ,; :HU:~:-~:=-:;·~·:.::.-·f·:·;!:.:::·::.:-• *"':'
,•"!-r:.. ·~:··· •••• , •• ,. ~-~·· ! ::. !. · ........ 4·i: .••. ·'~!''!~!·.~~ ... ,~·~· ., •••••
,~.. u!..f•:·:•! •; ···~-~ .;~:;·.:~::.:H: •••-• :·· .. :":••• ~~=·~·::::·: ... ;.: .. J. :.
• t • •. , ; • ·1 ~ • . .\+ • : ': " '" ' . .. •• ! • _. .. t•: :, •! • ~ ~· • " ': ~ *: • <it ••• ••• t '~ f; t t' • • •. " • \ o o I I • t oo li 4 : :.. ·• :: + ..,..;. ~ ~:: ••• " "f "' !:: ...... :: ._ ... 1:1'~·. f· ·:~·,:-·:: .. !.-·--····~--::,·:·······~ .. ······:-::··:;. .. ............... . .... ... ... .
:.· . I ' • . ......... ; , ... !. • r • " .. . • • . .• :·.,,!rr.:!.! <i::: .. ~· ·· . · :t· ~: ... z •• .-:·:· \~ -·= 1:·:· ·::. · ·· ...
... . . . .
::! · .. ~-····· .. :·'. i .... :i: .. · .. ;~·~ ~1··· .. ·"!:i ·!"'·t:::! . .. ... ~,..... .~-·~·.. '!" .. ~:··.~:-:··:.""•::••;·•:
• •• ..... · .! ·:;.. = ! .. = H ;; • • I .. : , .. : :-: i .. , . : i .. .N_o: ....,. ·~ ! = ~.: :: .~ ~ . . ! ~: ...
••• •4 !: .·f •: • • .·.: •. ;,,· •: ,: ~ •. ,:, ·, • .: I ••• ,: ••• • ,.'. •· : "'• •. t "". . • .c:. ~ .. • ... • t ! .. .. .. . ' :~ .... . . :. . --. . . . . \....---·-__ .............. ·---·---·------·-. ... .. .... • ..... •• •• ••• r.,.·. "-~:.·-•.••• ·.·:.·r·· •• · ·.··.~···. . I. ~... . f , _. .... •. • • .. . ... • •. •
. 1
.:. I •• ,;: ·~ .:~ :u I·;·. • I .. . . ... , ... · · • .. · •. :. :·: ·L:·:.·. • .:t· ;: : . • •• OrT ~~ 1 7 . : -~ .. :. ;.:·:::::;:·;·;: .. ~~::::;=.::::~ =·<i-·~!·:~:;.:!f~:·;~~f~;-:~:·~i ... ·=·~: ~4 .\ -•• :,~ :~:. : ••••
-~ ~-.:.ii:..: .. :.!:!=:!i:;.:!;:._:_·;~:r,·u:;-~t:: .:~· .: .. : i: :.!:!~!.~;;!:·:.i•:::~i.. i .... · ~· .. , .. _. . ... · ... ~::.1 ... :··: ..f :·:· •• ;~~~ ..... :;. ... :·
.. .. . . ... ,.
...... ""~· ........... ,-: ........... r· l ., .• i:. . ....... ·: ... . . ..... , .. .. • .... ~.., ........ ,, .••• t•·J.:t~. ': ...... ~··~· ......... , ... ,. ,. ··~····· :·:,·:.·:.· ..... ~ t~·,~~ .. ::.:: ...... . · ·:· .. :.·.··. ~·:· :~":~,:~·;;.::· .• ~ :::u· :.~ :1• ·~ · ... • :. : .. ~. : .• ::.: . ....~···· ~:. ... ............. . •..•.•• _. , .......... -..: ••
· .
~ .-. 10 .. :. • • •• • ..... •••·••-:·~· .. .. r • . • • .. • · t • •• •• ·•··~ """ • • • •.-I•. • • ........ " • • • • • • , ·• .... •• • ~·~ • .... •• •It••••• •• 1 .. • • • • • ....
• • • • • f • ~ fl fl •• I t•l• • t t ~ • • "4-" • 0 I • 11-• '" !I ' 0 1 .-• •. ~" • ·~I 4 ' ' "0 • f ' ''1 'f' , •' •l .~.. • l " I
4 •• -. • • a • l f" • 1 • ""' f••• ... t• ; • • '"-• •" • t • 0 t •••••. ·• •• • f • 0 • •-' I' • • .0 I •. • 1>
1 t. t • •• , o 1 • t t-J ' ~ f 't ill •
!·! ·~: .. : ';; :_ ~ .... :. ·~;;t•!".·;: .. J··:~::;: .:···;::.:.:• .. ·~j:::···~:!·:: . .. ... . .... ··:·.:;;l._,~;:':~::::.:~·:._ :: .. t. :::;: •••
:: ~: · 11· t! ~.:; f~." t;.£!!~i1ftH:1r.:·J r ::1: ~~ ~ -~: ·1: 1!'r1·:· !!! ~:1:: !. d:: t J:; •f" ;. ; .. · : :. : .r! · •. · · :. ·.·: ·. · ·.: ··:·:.: ·:. ::.· .. :.,~:.·;;i! :·~.: ·:; .. ·: ::.~ 1~· ... ·:.:_::·:1~::.~.::.··:-:.:r_:· .. ~.= ·:.r; !.·: .: ;-:.:.5:. i ~.: --:
t' ~I''!'" ···J, ... I .... ,.,, •. ,, ....... •·s··,•j•.•J•••&1 ... ,.. ' • I I 'I I • • • ., ., ,. • • .. •• • ~ ,,._. .... _. __ • •••:•-•! • • • •• •• •J •· • • ~ t • • .. , I .• ,_.., • ... ' • • ... •• •. ,.., ,. •• ••••••-•• • _. • • • .... •••t• • •• .• , ... • t" • • • I' • . r ..... , .............. , ••• , ••• , ......... , •• ~ ·•• '•·t·----··~· ....... ,. •.. , * • ·~.. • .... • ....................................... , ...... .
I • • . .. • ". , .. ~~-~ •t! I' .•. ,., I.... .. . . .•. , ................... I. • ... ·. •. •, .·.• •. · ......... 4 :• .. ·.·••· •• · ........ ·• ••·· .... f'·' ·,···.,.· •• · •· ............... ·.· .·· ' -; • ·• • •· I • I . • ·, .•• •• .•• ••• ••. ••• .·.·.··, ..... •·•••· ·' ·• • •• • •. • • •. ••.• .l·. :: •• '"', •• • •I'• · .. • ·. ...... ......... I ! I I ' II l I ~ ~~:.1 •• ~ 6 ._, ••• 4. •'-· • Ottfl.tl!••i••••••j I• t•t••>f-................... t-•• t ,._,~•·•• !It. ... • t •••••• • "' •• •It'· •• I,.. ••t ,., If~ t•··~ tf I •• ~ • "t ...... .
(
• • ! .. I 11 •• : , : ... : • : ! : : : ~!:. ;:·, ;! ::·,:" • ; ! : : • ! ~ ; •••• : r: ;:!!: ·:~:: .• ' :·: :· t : :·:! ., ~; •. : :. : : ;· : : ; . ~ :-: : • ·' . : ~ r·: .. :•::::: ~ ::·: : : _H : q.~ :. ~ .: •• ~ :; :; ! .' :: •.• : ' : : r; : ·: :: ~ . : l!: , ... • •.
• • I t t •••' t i • .. ._ •••••"'"'"!' ••t••t•• • I !'I t t •• ···••••••••••••·••••~ •••"•r•t-•r•• ••~··•• '"j'''·!" .,,· • : ·: • ::! : ! ..• ..: .... ; .:· .... :·.:.~1 · .. "· .. :...:r: :~! •........ ~ .......... • •. · •. :: .. t. ·.: • • •• _. ·~-r··-·· .... t ......... ·~·.. ....... •• • •• • • • ...... _. ........... , ... ~ .. ,. ...... ~.·· .......... 1 ........ , ............ ,, ........................... , •• 11> ••• , ..... r··· ., .... ~· .. t ••••• _ ........ t •. , ....... z ................... t. ····.• . ,. ........... ·1··· _ ............ , .............. ·········~········ ·~' ........ tl .................. ~·-····r· . .., ............ , f.:~! :t: tt:;!,~J:: I ;.:t.;~!1.i'! :~!~:;:••·.~.: H:,:~ ~~~;:;:::!,J!:::f;.,,! ,:•;.:: !' .: : .. ;• •' 1:~'.t!;!;.;:;:::.:;;.;Ji: ,f .. :• !~' :.;•,•;·•.: .;-•:•u~ • ~ , ••••• ~ •••••• " •• ., ••• r ••tt••·•J·••• . • • · , •• ·•·•• ·•· · •••• ·•• • • • ••• .•• , •. : .... , . . · .._ • •. •• ••••··••••··•·, .. • • · • · f' •J•' • ••· •• ·~·•• I •. ... . ,f .... 1 ., .. :--............... 41 ................................. 1 ......................... ····~·~-1 ............ !-'1' ....................................................... o1; ........................................ 4 ..................... ,_ ........ .
1 .j,,._.,, •••••• ,, ....... , ••• , ... h ··• .... ,._, •••••• , ............ , •···•i'"''•J"'' ·· ~······~ ··· ·! ..... ••••••••••• • • ··t•••·~·······~·~·c··"'·i · ··~· · ., J 1, ., ....... .,., ..... , •••••••••• •. 1 ............... · · ····:·::.··i ··~·· t· •· • ..... t·: . , ~:.!--;·:~!:.·: :;:,:·::.·,!.!:1 1~.::::1 .:.::·~:,;·:.::·,:·:· ·.!.·:.:·· •. ·
-r ~.· • ·.:.!---'"!1::":.·.:.;: .... !;!:!~~!:. :.!!tt:· •.. ·:r ... :·!,t ••• · • !!4:!!".: :;i: ::~:. •• . . ~ ..................... i ............. h •• u •.•• ,, ····1· ... ·: ! ; ::. ... , ......... r• ••.. , ............. t .... -•• ....... 1., ............ , ................ 1a. ..... . t.. _. , ... i,. .... !···:·~· .. ·· •....... ,u. •t· -~·• ..... -,J ............. , .•
..... , ··~· ' ............. , ....... ,, •• :J .............. 4 ... .-ti ••• "~·· •• ,,., ..... ~, ... 1 •... , ....... •t:••J•········-·· •.·· , ..... , ....... , ......... ,., ., .. ........ , .... I~ ......... , •••••• , ............ ···~······~ ..... ••t'l'''t•:•· ., ........... ,.~ .................. ~ ............... ···~,.···. ••• ·.·.!
J ••.• ~ .. ~ ..• ' ..... ;, ....... ,.,.,, ...•.•.•. , : .... ···~··~······· .j•t> •• •• • ... ~~·~-·······,·········· •• ~·· ............... ~ ·t • fl. ..... -:.•·11. -,1! •• f•' 11 • •ll:itt it;tjtltl tl• "' •ltf~:•J~ •••"'• 11 '1 ... ,~••l ;! t-.... , •••• •t•••;••·•"•Pt•• ••& •• ,.;tff ~·'t "•tHtJ•-tr· l• •• tt • (
; .. .., ...................... ····.·······~····:·•·· .............. ····:t' ., ·: .. ,.t .. ,., ... --··•t··'· •• , .... ,·· ... ,r·.·.··.• .. ·. :-·~.,: ............... ,., .... ,, •..•.•. :t •• , •• ··•·-···,··+· .... ·'· .. .
f
·~-.I~..... •t• .; .. t)t·· , .. •·· .•••••••• fjt'4J , ..... ~j--.... ,: •• , ··' ., •••••. •""'' i "I • !.····~· .. , .... ~., ..•.... .., ... , .. "' .. , ••i ~·········· .,,. ~t· ••
·f. J •I ,., ~·~t· '~· .•.. ,, .. ~-~~····t•'' ·•A· •• t ••••• , , ••••• ··'···.~I I I t••·,.~ ·.·1 ~-'!••HI ·:•••:•:f·· •• '': ~ .• , .... ,. ··'· ,_. P· • ,,. ,, "'": .•.. : ........... : ..... , .. •·!•• .. ,.,, ..... , .... 1 ... a •• ~ ,f . '"' ···•·•o·' t.a.,. .•. ~ ~.1 •.•. ,., ••• f ....... t
"4. '"It ~ ' .... ••••• ••• t .... :. i~l .... ····~···' ..... ,. !t •• ~ ...... :. I ............... ~,· ·~· •. I· . ~:'''" .. , .•••.•..• ~.t t
• •· . .,........ • ' ~ ·· .. • .. , I ,. ' 1 I t . .. ·~~ '.: ~ ... :. J!tt ••.•• l ... :!•··"'·······!···· ......... ,,~ .. ·r····· ., ... ,._.. .. .... ... . ...... ········ ....... ,... .. : ..... -~ ! ...... _.. ...... :. ......... ••·•••• ~::-., !•"'t•--.t ,!.: ..•.. : •• :+o .......... ' ••• l •• •!••• .......... , •• ; ••• , '! • ' ~·· • ._.,.. .. ,,.., • '' i 't .. ~., ... , .• :.; •.• ,. •• , .., : .. • : . . ·I . , . ~ •. ~ ,. .. ; :' . • 'I: • • : .. 1· • ; • t • :.. • :! . . : t • , • ' ,. ! : .. ' ..... I. . . . • • ~ . ... .. # • , • • • • • ... ' • .. • • • • • .., , : " • ~.I . •
f •I• J •.• l ............ i ,,,t!••a·~~· .:. I·· ' ...... r··•l•f,:•;'·· ..... , ........... , ... ·'· .. . .. ·.: , .... ······f·l·,·tr ..... : ·~ ,· ... : ····· I'. .,. i . ... . .. ' J • • .. If I. ~ ' • f I ._ . • .. . . I t I 1'-t~•t• • • .. ,,~t •t'••·· t; •• s;. i'"1 ''t ·•' ·•· • f •·· •:a -t•• •• , •• '-... • • · ~ • ·' 'i"' • · · • •,· ~ ... : ........... ,,.!'·-·-··• · '., •. · ... ... ... ·~-··· ~ •·· I fd.. .. • J ~ ·~ :........ .. ~. :-!tt:• .... !&.:..:.:.;..~..LJ..!..L& • .-.-.• : .... ~-·"""-· .. --...! ... .!..!..&:.,._._ ........ ~ ... ·-.... -! ..... _J.., ···-. ,· ......... ,... ... .... __ ..... _....,..L, _ _..,,,, ......... ....__ .. __ ........ ·--···..-·
.. ..,_ ... •·• __.! ....... .. ~tJ(;; 0()0 T fl .. w,plll ~~~ , ,.,,,"" l."'}(itlf) .,.,
... ·.
... .. ,.
~.f
I I '.
' ..
.·
'·
. .
.. ..
'•
,•.
.. :•; . ~·-:·' ... : .
.·•
. . -
. . ..
I
. ..
.. . ..
~· ~ . " ... '.i:; ! • . ,. . . . . .. .
r• •••••• •• ,.. ...... _. '"~~••
.. . ....
. ......
'.
..
, .
' ..
• I
·.
...
•.
. . .. :
...
· ... I'' . . .-. ~ .
": t
: 'It~ ·~.. , . ;; ; ': ;.:. ·:
• jo --··· .... tJ •• ,. lr• ·-· ................. ~ ...
•'· . . '' ·-...... .. : ::··".. ~-.. ··"· ... .
. . . ... .,,. .. • • ·• •• ~ • it· ., i . : .. ... ,. ... .. ...
' ,,~
... ·~·· . ..
••• ~ ,lj
• • ._ j. f ~ ; ,t • .... .., ............ ~ ....
', -• ' : Q 0 <> • ' • ' w ... V ;. • '0 -·: ."' • :• ': •, • " •. " • "• " • ·. I " ,. ' " • • , • . • • • • • • • • •" • ! '· ' • : • ~· J ':, ~ • ..
. ,. . ·~w ~......,.. . . ·,. • . ~~·~ .
... w w
"' .. . . • •
' ~ i:
Ul'tiTED ST~TES DEPARTMENT Of THE INTERIOR
9-Z1t-G IREV. 11·6!11
:!;:!~g-p ii
r:m rm'=t rEm ~u rn l!!li
1:!~
UIIIH
s
1;:
t!:!
11m
't ~i
·=-~~ ::;;: ~
t .. -. t:: :1 ~-.... ,., Itt::
~~:: .ffi l:m~!~ tnt!t ..---~-~~~~ t.!
li
I~
r1 n.c \cu-e n R . neat-P u. ')( ~ o VI
GEOLOGI~AL :SURVEY cwAi~,.·;_~~0~11 c 1 ~ 0j.;11 ~~ ... ·-"'ft"''AATING ~UE FOR.·· ............ -----••• ···-----.. ' ....... j
'
~ . -t
I .
(
=-::::;:.:; -=·-
f· ,_ 1-
·-· :-_,_ 1-f-
' ~ ft t=-=t=l.::t:::t:::J:t:lt.:t~~-1 _ S..,u -l+•t++·-lt·ti+H
_j
U)
:t: -··-·-1-1·-
t-· t-· 1-1-
1-+-t-1--,_
1-·--
84n ·· -... -·····
-· ·-....J r-.-: .. :,. ,. ...
t-1--1--t -i;;.o ~
1---'-I---··· ... ·--1--1--tt-1-~-
'-f-···I·
t--1-+··11-_,.,_
J-·1-·1--1 .. -.•
8 39g.J-~..J-JI-I-...L.& . ...I
100
PREPARED BY •
·,
111111
II~~
i
DISCHARGE Q
I t
6 7 8 t lOOO J
i ••
n
IIIII I
111111 !-
!llllutt
ll!llll
I IIIII'
HiHtf .... !ll~mmmuuJIIIIIIIIII
!lilt
.... ,
11
.. ,,. ...... 1111.
.!!
I llflll~ .. .. ,
~--~·· .I I
.
'. 1u. I
.. tl 1nnnn ~ ! a , • 4
(C.F.S.)
...
I • Ill'. ., .
l ~ f ~
PREPARED FOR'
II IIIII
0 ~~; ~ ~~~~TANIS, IN~ l ~ I ·~tll'l '-..../ Figure 2.2.1 1111 ~====~::::::::::::::::==~~~----------------------------------------------------------·~--------------~-:~::.~~~~~-=-==·-=-=~~~~~-~., '
I
: • • ' ' / • • • • • • ~ • • • _· j • ~ '• . • ·• ' • • • • . • • • • .. • • ... ~ : • • • ' e '-• • • •' -• • ~ • I • • • ~ ' • . ' . ' • • :: ' • '.
-• ' • . . .......... . • . • . .... ~ . ~ --~~7¥~~ · _ . ,.,. . . ... , . ~-.. iftl': .! .li , ·---'-'" .. , • ''~-·~:rrr::..·~~;·,~.-:;:· . . • ··~ •,., · .. '1. •• ... : • ..",, ~.:.
mrn
:-=: ~-~~
...
.11111111'
II Iliff--r-f:
~ .
-~ illl II
·-· ':-: ~-= ~: -~
:IIIII IIi
-::;: ·->~ '· §: '--=:':::: ~
~· = ---~=-~= ":'" :;::
F ,..:.: ~_: I;·
i=: f= 1=-~~ :: ,_
~ 1-;;:::: r= !=-I:: ... i-I· -= ·-·
,_-. ,_ 1-= :· r:
:::. ·-· ·-· == "" ~ ·---:-· 1---· ·----'. -1-· ·-. .. ---
6.5· -,_. ---
·-·
~
~ mm: 1-f-
1-1-r7' ;...,_,_
f-1·-,_ 1-· i-,_ IL
f-· 1-f-.•• 1-~
r-• i·-,-,.
i--i-· .. ::J, -~ I/ ti ~-
... -'-· ,_ ·--.. !-
; 5.5 =· =· -,; ..,, ""' 111111 :5.4 ---: -· :.:-:.:: 111111 1-~
t:::' l:::. t~-: 1:: -'2 '"" fE 5 . ..,
!= :·= ::: ::-:: t: 1.":
-
t-f:= :.::· "' [:: I;
:.: 5.2 ~ ~ -·--1-· ~ (!) i---f::: I .• := ::. ,_ -5.1 ::: 1-· .•
w -f--·
:.: --· 1-·
5.0 :;:: ~: ~: ·= == r.:: 2: w ?.'
(!) ~. = ::. ::-. ·-.
~ ::; ,;.:. ;.:: ~ 4.9 1::: t= F-,_ . ' IIIII II = (!) ~ r-·:~· t:::. 1:: r=: r-:. ··-!-·;
·--~-f--
4.~ .. = :::: ·.: ·-·· = ·-' , __ ·:.I· ~II II lit -..I -· -· ::-
f
_, --: ... • .. 1111~1 4.7 ·-·· :._ -L .... . . ,_
1-:;
~-,. I· I· 1·-I -;:
~--1--, f-, __ .... 1-· I· ,. , .. ~
,_ 1-1--
.•. ·-1-·-1-I· I• .. ... _,_ ·-. f·-..
I ---, __ ,_ -.. r·· .. !
,_ ·-1-··
' .
4.6 ~-,-
~ I ~ ! I I i 7 a I I
io 3 ~ ) 7 8 ;} 100 4 .; 4 i) ( ~ looo 4 5 9 I
PREPARED BV• DISCHARGE 0 (C.f.S.). PflEPARED FOR:
. O ~-! K'§ fN\ ~ . ' STAGE DISCHARGE RATING CURVE ~mtr~ l~R-.A-. ~ w I
nau coNsuLT'. TS, me. ' I iNDIAN :_liVER \ . ,0) Figure 2.2 ·' ------·---· -' -.... ·---·-·---~~----
N. .,
t ~· v ...
t --
' •
u·mED Sli.H.S llf"'~hl\lfNT ,JF THE INTERIOR
...
-
§
•; ..
j, •
GEOLOGICAl SURVEY CWATitl I'IUOUIOc;IC' D•~•I•O .. R Tl~·:j CUR\'E fOR.
rc rn i. Pr~t st:o·.~
·----.~. -.......... -·-· ' "":'
\,J
\
JJ
' -
~ ...
u·.IHC su.ns ou·:·hif.'L"'t or ltt£ tNttHtOR GEOLOGICAL SURIIEY ,.,. .. u,. .,ucu .. cn ''"'l'o"' RATING Cllr;\11:· FOF
!1 :n;.~ IRE~ tt.(;1t
[1f.rn ll~n !g inm;~mm: rur ttmm;; !:!.:i! ~; ri ! ! ; ,IJH rtt I m~ IHH!liH m: IH! fHii!t::i ;~ i!: ; ; :
r:.: ~-: ~· : .. ~ ..... ~~nnm 1~r ,.,.,.".
·It flig rmi lmi I ttl! F.~~:;-~-
tt:::-t: H•~• d>t ftl
•!: 1~1 r-t:r
.HI E!O:fi !Hi m tii
:-:: :-:::;·
·~~· ~;.;~ +r'-•· rr;;_ ~;;; ~~~~
~;"+
:;::
.:::: ;;:: 1:~:1
t;;~t:~:
l.~ :-:!~l;fj'""'''~
'!'!1' 1:~:: I rt~ -H-!~ ~~~ 1~!11
..1.
F-E 'ttl=i i!'H tr ani !i :!i !!!!
11" 1'1 ·~ I+ H
r=r~r;-;:-:.i$
rt·r:!. t~r:;.H::! t·•·t .
l ... ~!~t~--+
.,. ... ,.trr
:m:m: !!:! :I:: :~
II" ·~
..
g~p::; ::= !!!::
• ~H~~ IE~~~~:
It~'
f···· ~~ h:
""t:::~
'-11:~~
-~:·1·: '"
[~i
it
...
il!l
''1''
H:
lri:::
+
DISCHARGE 114 CURIC r££: PER SECOtiD
--~ ·-----------
r:
!i
IH-
-·-· -----~·--~---------------------------------
r-· •·•·
· · · · • · • · · · • ~ · • • · Btn. llo. i
::::;; 1r !~
:mr~ :~:
t··r·· Hii: iH
·~ 1*-· ~I .......
~n.
·--1-
: :: ~=;.~ ::1 :E~";~::.'-~r = ,.~!~~-o :E~i IT t~:; .... ~ .
.~.9f· : :t~ ·~~=l::t•"
I : ; : ! : : : :::! : i
!tt
----~--------------~----~-----------
•I
. . . .
l . . . .
.•
10 ·oiSCHI\RGE 1'1 CIJRlr r(l I P[R Sl~C ',:_'1
N
\ w
' -
'tl·£'7 .:. ~•,1 tlt l••n ttl Ill f I: (I) !li .• . •• llol, ....... ~·--f"T'"-~-···-•· .. ~rr·.~~~~. -.. 1 ~-~·-,..-eo-·-._.. .... ....., .... , . .,.,,r•··"·""• .... , ......... 1""-,, .. ! •. _., .... ,., ......... ,:.'·,., ... t ,, .... ,:r·t••' .. Ot.,.~ ..... ,.~H .. ! ... ;,.; ..••.•. n .••••.. h .. '*'v .. "!•t·t•······,. ...... . Kl .... ••••\t ,.la•l••••••"'••••ttHU•t•ij"""I'•J'a'••••••••tjt~•~H•h•h"l••••!•••·~t~H•~•••·.~Jt• •t~~<.,•••• •t • ~I I •oou•llo"l""l''''l''"~•••·•~ ""t•t 'I~· ' "'t 'l. ' I I I I ..................... , .... , •••••••••• ~:···· • t• I • t't ttdit•••tt,•• .,,,,, ...... +ltu• *""t•!''•• •u• "''l._ .. , .. u f •t •••• ,,,_ •••• • •' !•• .,.~. ••" . ~_. . . •••u••jhUI••u ••• •••• •••• ••••~,. ·-1 ~ . • '". J 't. ' I I . . . . I • • I • I ... t ~. t ••••• t ••• .......... • ...... '.... •• ~ ~ ~ t•t,.. ~--•·• t .:.._., •••• •••u•ut!Hju•••• •t•ll'l~' •t.Uh•tt ~un•tt• t tt • ••1• •• ,.,, • ' l • l • t ••i•••• -••t••••• tu.fohl •••• ti•t '"''' t'" • • ti L\ i 1 to l:: • • • "tt ••••th•! •lttlltu • lt•lt it i ~··;•••t •;t•'·•~• t i" ••l• • ••••1•••• ! t ' f ~ ' t I 1! t' 1 t 1 u '•:•• .. ::~:::::::: ~. ·~~ ••••h!'']''"'lu'~ f+' t •'•••1••••1•••• " .. • . ±x:--~.. II' .... ~ ........ ;, •••• h ..... ..,... ..... i+~ ...;. •• { .. ,., ..... ,'!"! HIT t•t-· tt•• u .. ·r· .. • ., .. -... ,! • .. jl" .. ' t• ,,,, I ,, •: .. •• • •• ••ltt••h •!•• .,., "-lf J I'• .... •Ht • "" F .• ~ i fltt'i:T'1r1 .. tti~: ::•~l::mnlll1:t:: ttit ',tu'ttt.tt:·1 ::~: :!1; g, ,w1li:··1ai: ~,·1·:1 1·r, t ill'! .1HH !l:'!ll',,l!,!i::H::: 1rhtf!::: ill!:::: jjl: II tr't 1·H :::: :r:: .. -= · ,._;,-! •• ••if••'-••••tHhlihtl"'' Jl ,h ~UiH u•e•u•tlt •t• utt"'" •!1 •t1 • •• tt••it ,Un•h••u• t'••"'•••tJiut tt t t '•~••••••, ..... -~ t i~· ····-··~· ...... , ....... .,, .••• ,.,. !H• i···l···· ......... t ., i!l .... ~·:•: .. "..!.t ............ tt··:.,, .... f''"''t••<~••···· ·-··tt•·· *'!''''' ....... ,.,:. T t. ·,::.J··=·t··~~-· . ....,..1 ••""'t-+••" •••••••• "'"I''' __..._ tt•• •••• .... ,,.,...... 1 'I I .,.. ... • • • r-: ,.• l 'I'' 'I-. ht• .... ,., .. • '• • +•• • tfttfUI'' ~ 'lal f ,._li •••• •h• '-·•1' ·•·•·•••••• .. ,,, .. , ...• ., .... 1"•·1••• ''" '"'""""'''" • t'' •h•"'':•·;. !,r,;l '!' •t~' '""'"'"'"'"" ··~··~ •'' '''f'"l'l'l!,,l.t{••••••ot•t"•• ~·-: .~:::::;::·:::!·::::;:~:: ::::.t~:: ,~.t::,·1·;· trt: :::: Hr:•1:!:t .;:: 1t~: :~:! tt:: .t ... tl!r'' t t :.:: !:~;1':':1::::::::: ::::•tt!: :·1a ~.:: l''!!th: ~· : tt:: :;!: :::: ~-, ,_..tt.. .. t•,..~•••••t •••• J,._.,~•••-.hh• .... t••tl •J ........ ••ththtt~t~ Ut 'J" !!!: :t.Li.r. ... it ,,,,f,,,, •••• t._; .......... , • ...,1!1 .... •!:•1:::: f,f,1-. •n• •••'f'''t ••••-•. , ........... • :;;:-;-t:::t::t:m.:::::::~::!:~:::: ~:··~:. n!!lli:!:: :•,::1:::.! r!-:' 'lt" : .. ~: .,,, 1• t • ~: • ~~~~t~:::•s l::::::ti!U::::::: !!!! ~;:: ::,1 !::: •::a:.:: 11,! ::u !::;1•:::: ,.. _ _ .. , • ......,., .. !'·•·••t••t•t•••.,. ••••••Utf'•,.t••" tt•i '''' •••• '1'' • u uh 't'tff t• 't':' ::U I' J •1 t'!' ' ltt••lt n•••r• • ... ,._ .. •t••••'t:!: !!t.tilllr .... l•uh;;.;L..:..:.!.' ~;..;.;.:. l•ll• .... • -~_t::-L:--r--;.!..t! ;::.:::.!:: :!llU!!::lli!!i;~~~:, .t:t H.!! :.;;::u;m;H-!::. :..!ll.:.! •'"!; .:w.~~ +:+:·1.:!t:·:~:1 HHr'r!Ht!:!Hffi: HH-~~!t: :::: if::t!:::i:::! ;::~ r:rrJIT!! -:: [·~~ ...... • •.. •t•tt ................ r .. , .. , .. ··• tt•• ., •• , .... ·p•• .. ·· :::· :::: u:: :::: : ~ i ·! t ._ •• l!·•l".:. ·t:' .... !:t: .. :•;· :::iU!J:::::: ::~ ........... , ... , :·,.. •··· :h:,:::: D :·E:r~ •. it!!.i:~::t~1!!l!H!HH:.:u:u.;:1r;r:t!H! nr1·1:H:!tHJ:::: t!ii tlH :~:: :::: t: :!,.!ti! .~::1·::;! ~::i·ji!H::::H:i:; ::t: ::H Hi: HHHH'j:::: Ji·:1: :Hi HHiiH: ~ • ..:.1·-:~p·:.rr=-1 :TIT£!1iii::::HiH~1iHifngl .. ~ r,: .,i,ff:1' :,:1;1 fii:t r,r,H~ii!,it't' it :::: ·,.f:: :!:: ~·1• : i ll i £! ~ li iii.~~:: HH '1·HH:!HfHHI t i :; fi ::: ,;:gilig il!Liig ,· :t.llrH ::::.:::: :: :.: .... :. ·tt:: ::::t.::::H:u::.:: t!i· .. ·•· t... ... . ......... -·~ ···t .1:: u·: ... :.:. ... rt ... :. .. ···~r··· :··· :··•::::.:::: :::~1npr.: .. h .... r·u":· .: .. :::-: :•::,:::: _ ll1L~1!1~', ~~~~~~!~~ !llll'~~~~ I!~ 11111~~~·!1u~1! ~:\L~! l1' ~\]l!uf: ~~ -~~t.H.\,1·1~1: \'I, I~ ~~~~11111~1 ~j1 ~ ~l1'!1·ft' ;~fijn!: 1tlij1!Jt~li 1~1~1 ~ ;:; t ... :t:UJ·~t:s: •• trt~ ·:... •t:• ! .. ,::u ~u t. :tt~ .: ~~ I : I 'tl'. : t ht! .IE 111 . ~t-: t ••• rn:t;:•:•t::: . ::. ·t: .:. , •• tujil·ur + r; rf ::•! :::: ,., ._ Ei~t ·tffirt:•1: :-tn!HHi. ::,nt:.:::: ~t!i" .t!' :ht Ph tH: ;!!: : t .. lt,i HH i!:l ·i:! i~: :i_if! · !! HH i1H PHti!!t,nn: !i!i .i !HJ.ilrtb:u!t:n tr 1 .. ::!: u;! -· • .. •-t·~. t... ~ .:.t ••. :!!!!!!!· :.:.::'"!:! • f ... ~ !·•t .t •• t.:!! t.!! , t ! ...... :! ... .. •. •. ~ 1 :-: r:·~.:b ~h·t:·~.::::~. :--~ ,.J~f.H·, .. :.~H.t , ... :.• ·p: :::: ·::: : r : 1-:: ::.:.:: :~:. :::: .: •• m :::: r t. ·!tl J' r t!!!: t::.w:: ~~ • -;~ •• .:.: ..::· · +~-~1·. • :•:. ·:1r: .... fi::-::-:!:· :-: :~ ti: ! ':jr:rt :·1, tt: ~ ~!:: 11 !: r::. :·:· •--· · · · ·· ;-:-:ntrnr::mH::mmm::r::i!filTI'~mr:q: :!!!jim r:: i::: i!H mi ! rq 11 n .p 1i :!:.!:u l::·:l:m!di:::l1!I:! !.!iJH!: •1.J.1! !:: Lfttrr-'t' m: :!;! .: tljt" ijli !P i!!i jmii. ::~:nu[m 1m H-i i !'I fi. t :, :: ii:· i:u m:m~r:::n:: q In !J!!l!ln ! 1 •:l Fit 11 il !!H m: •·. : : •.: :.:HI::: n :ll "'UijllliHmw•Hf•: I• uhd.h!~iill ii!f+i,:ci· :m m JU ! r: l n I • ~ ·' Hfi~':Uf• 'p:;:l:4:HTH 1"rH -+i!tn' H1n:!:i~ . . .. ·;: ~:~ c ~.1 H ~-H n tWH::;l !TI:::,(I'!W!m;!r I :·II i I iifi!Ftilili!! !H!Iim~m 1:!:1 gg !l!IHM·Li:_r HI· nt!l!li !I! I~( 1!ill!~iliHHii+ hI!!: l{illrni'!IUI~!II HH !!i! l:H g ~-··~ ..... ~ .......... ····t• •r;;u•·•··t. if• ' , .. ···~;;t~H-tt! '!.. ··-·-T rn ·i!H ·;:tr.t~rrr .. tr-~·:,;1111 mt Itt!! I'll 1'1' --r.r.::rJ:---;±.:::-h:r•1:m ::ihjrrl mri;;:: :i!:•1t!PIIlfi1!1 p :Tik!fln·P;! ·q !~-~:::: iill l"! i 1' ·Ill If 1rHmfflll!l !l;lHH::::!!iJ i! H!itll!jh. 11Ui· ttd 11!::~: ~ : t rr~==-:~ !r! .. :..::: ::.:t.t: u:u::::: t~l! ! .t .. ·m;.~ll:.:·I .:tt h !!~\ •!1 :i·S 0 t • .. •• . nn·" n!;fffii n .. :;~,:;:-" ;, nit tn IIi tii• ff•i• 1:*1 ••• ~ .... :~:-.a::r+.:tHiwm: m::ffii ffii!l:H '!ii!ll',tl: r: J;~J;:l;lh~ tl FR~~~:1 !!il i r t . l IIi! djii!lHffil'liimt,~~Hi~m illiJ~!1flu; '!Hi .:. m~ ~ :~-----t-· ... r; •••••••• t ................ ···U ..• t: '0 ...... rr r.; i.-r.!llt!L:;., it.. Hii ~ tffi ·u~ ~~~;-;n;ltttf••t"p·:lt ;·":i l t I''' t••• ..... "4'1 .... ..::'b~f.crtH:Hiti:!!l mmm llii!ii!l nrrr,m i i iili nn !.! f K . if. !lii tr;. :: ~! tlh! m tH: Hi!~; ~!om: ::!:It!!.':: lil: I • :fi :!;~ :;~; ~ %~J.:i:±f±t.±Hill±fltH~ H'illi!' ilt~~;,.i.Hi f't'tl I .,~~'11! ~~ t ·~ tir~~ . . . ITm ffllllii!Wil!~ ~~~ nu !HI !1!! !Wli I HHt,llh! !;!! : fE~i tthli lHimlii4~r~ t. tl·ll~i!l I H· '~l . --. . t h: Hf!tll ttll~~l!l'!t ~;.1 nnu ::H th: IIIII' ll.U ttrtt~'~ii : . n::tH 1UJ :r.:t~.H t ~ ~·!·I ul~ 1trf I I r·,"~l . ·. I tHfln IU :Hl.'j!: ;;itll !t u,, w tlj·l . ~. Ufllt~i t I • tfill~m In!~ 11lltilii1a"i~ !t m,lilllmi •t:i !!h H ~~!li! Ml . u it~~!!L ~;;l;~::t!;E !!'!: 'til~!!:ml. utl ~ ft ~ :pt ~ .. .• i! • ·r mr.:I-Z:t~ Tt t ~h F' b. I + ~~ •• r:t: t· . H •••. Hfmii"'"t; ... , ..... -· ~ •ri 1' nu !II rtt f! uTim>;t .. -~~~ ~Iffiffhlii·iil!r¥rij ttHtiJ!lliit~H iit!it' ,ii!l~· tt=tn'ijiHiiiF!=:;;;ffi.fJ i!f.ij:1,l .. H~ H •. ~; ~ :i\ ~mrlftllilim \ill !~ ii!J~ itffl ijj Jill!!~ WIT ~ ITtli .I ! ur N}; d'.fti ' ~ ~ .~:'.~\Ito~ ill! rl~: .i~ll~i:. ~! it;!!! ! 1l'!!~!~~~ i ~ ~?:1liiffi~w.+1~~~*nlHIH~',!WIIl!! ~~ ~~~~=ui·~~ !mP.l~!~~~.t 1~'!~H1lU!,!ll fl}fff~l ... 1 n ., i rJn~iiH11; HWRH Hit !W 1n!~~mw1!!1~tu umm~HI ; g =.I rHH ii~rpH!iHi~!Wllil! llilit~~~~~; ·i\u ~.: t! l!l't l!llli! I ·f . »ill !illlir!ffi!!J E{;f;~:r.rf\. • B. ·t lm·hU,i u.~lm fu~ .: fl:.i ,., ~"-'·-iT ;-r.-• 'ttl··l··' . ., ;'\,1 •••• n t:i', ... l. I ~· I .• • 1 1-t:r~: H !Ill ~m·· H m tiil n ml' I I II :! I! ~il"!f i:!iif·ii @IIi· :t:a": ~ ;.:. 'P.! ·,: !jji! l rl .,. I •• :;~y: : . HH-i! li.;;, I 'H . It lli~mmmn~tfli~ 1::! t·j:t(l:tnittt~ttii {ifillhUUtiflhffil~-t9P~ ~1 hi r..l l,ffili!·iHITtifl n I: b~-Effl: ·ti: . : 'ltln!: li.!:i iii fHf H!IHh: .. ;i!!~"dh~um!: .:: ~ .. ! :! r: ~ ~: ;r~~::~:::: :::::t:::t::::!::7:~~:~::mm .!:::w,: H .:E!!Hmn:!!!I·H-Hffift-t l l ~. ·ttttl?itii!!!IW\'-!!!U:!!! t~tttftfli!!HI!lH 11!!1!!11 ~t!J11t! HH !::P-.. tt· ........ ···L!__!_:,.;.; ..... ~ .... ::::t=:~;:!\.--:'\ .. ~~-~dt. :: l:al!n: H•:·::H ::··1::.:~ :.:...~.:..u ... l' . ::;..:: :· ... ~ ..• :,;.:::::.:~.:;;~·· ""-i~~! ''Illii· :-r;r·· ••..... i.__ .... · ,.. t, .............. n~.:r.:·, .... ····r5-··'(:. ..... I 'II"""' t•d•·t'l .. 1! ····r. t •·t I rTt I• 'I""" . ····:·" ·::·::1;:·:•:.1: tt::: .11!''··1 t t :: !!!! :::: · ..• . '8' . •. '•·•··I··~• ...... , .. 1 ......... ~ ~:n.~ ... ,., .. ~ .. ,..,., ,,.,, .... , ....... •. • • •. .. . ···; .. ··;·······,·•• ··.,: ·••·'l''l''l';'j" i • •lo· ... , ••• !! " ' • • .... • •••••••• •••:•• .. :· ·:•··:.: .~ tNn~· ·.·illi· ., .. , l!',U:· n~~:::: .. !: &::~! :_: ·r ~ ~ :· .. !,11. ,,...,:;..,_._a~....,... • • • •••• ~· ,, ,.... -•• t I" •• I ·~······· ••.• ,, ... ·~........... ~.N~~·t.. • ....... t•••· t •·t· ... . • • • .,..... ..... · .... ,..: • t• HTI' ..... I '"II • I' ••••. ,.. . -• J t r ... &. .......................... : .. t•••n•t' "--~ ..... ,. Ulo lt:'f"'' •t ••• .., •• u 't• ...... :·uu; ' ..... l:'L .... ;·.: ... ~.iJit .... ' •• r ....... 1 ....... ' ~ ~ : ·r -I·.f .t!L :l.!f•!!"tt ffi:r:t11: .:!f'i::rf:::l!t! if f ·uS f ... f,,:;: 1' ; .. ;J t•:: ;·::•: ~·•. 1 !• :!'!' :~:::;.-;:::::;.(l!Jf: UUU: 'JljU1j~J !ftt ::t: t:t: c ::~~ HtY+ffi·• . • ......... t:s:.lt ... t •...• "'~ -.:ltm~·· .tt• llf· •.. .t .• r'r· .& •• t. I· 1 . ..: ............... • "1'"1'' ·'·t:m1l!JI 'I .... •••. .~ '" .. · .. ~: -H~Htf:: ::;:.::H!fn:z:::::~~::: j!:IH·i t!:::r!H 1 ~ !H! :=!: :::H .+·~-1· · =t· .. ::t:: .. :n:!!H::::::::::~n: :.i.HjiUi u1·~:ffi • f· :,1·: :::::::: <! ,~ ·• I 1ft1f t!••·t•••• •r·•''l!'ll""ll:;; ;::. "'· .... .,Ill"'"'' II , ... ll"fll'· ... t. ·f ill''rJ· "''"Ill""!""'"' 't'-:;'t!l @.ill"t .. tl'l!•ll•!! I jl• "f"' :••· ,., " ·t .. • •• .:::::: :.::u: .• ::.:~ "~ ~:.;......., :::1·:a .. t::::: :t rr::.!t.U if:: ~:.i_ • ,~.·: l •• : ::.t::.:::::: :~.;·z,; •• ·.·:. 1:;n:.-: a:::.::.::.: '"" :; • • ••• ~~'! :":!'t"':":':t .::-:::-:: ·I\ 1'N .::t :•"' ·~n !:t! T... -~:-;· :-:;:: • • ~~ : • :'!: t =:tt!t: ........... , ••••• • •• m. • :::t ~ ... ·J f!~r.nttr.~t.~i Ht:r:m~;~i;;~~ t!~,1!,~ru=,;m!,':~·:,~mm! ~~.:~imml!~,~,,': H¥.,!~,::b,;:l::,i ~~~-Jt_wl~~! !,!,~1m! -·~+r .. \ ,1.. ·~~n~,:ll!!lrritl~l~!,·.l.;liji,; tt!!:,i~;;·H~'U;tf~:,; tm~~~~' ·~m~,!i!i:; ~ :.,:::tlt·~~~!\i't,· I· "'l:l•-·· .•. •• 11 •••••• ,., .... ~= I!\! 'II I tjl1 I ' !"I!' ....... I . i$.'1 ........... v lili ,,JI•H lUlU:' ~ l ·~:--:;_.r •-• . ._.. • • ..:.:: !J ... ~_!!H! ,!:;,.!!! ~:" ;:'\l •:.. • ,t :•1 !Ill ill J• 't•: U:• .. G'\.;... I • lo m• tt!•tuh tt " _,, • I ·~Hth. ~ E-m--. I •• rtt• "'Fi"··tw· .... ~-~i··· ·r•t•!•lln. . ., r "I I'll ::r-I !1:. fll'' il7lf r I "I , •. ,, ... ·:!t .. ·m I [lli•t• ' lh~or ... ltiNII ~i!! •r·mm···n :t-..1 ...tt.t !•t: ... : :•.:t':tt: ,.;: :::! .• t~rt: !,! : u· ·: • . ll! '"tt .: ,. . rc.! t~ l'-1' t • ::.tt!l!t'• ::;: -'-tt t U • t t:• t:!:: rr::l. :: :.:: t::~ .~.Q ....... 't. :.: :!.:~ :!~: t:.t:·:c t:!! · • L1:.~ ~ ~:tJ~'· Uf! 1:!' t·-!1. :·:: :1!. • M _ 1• t... . ... ·:: 1 .. :.;;;; J~ ... 1•• "~ • ill~iliJ l u :u· 1··~ :•·:.+d r H.! 1 i!ii: m: m~lll'~:1·h!Pmi [: ~'R.;Biit'' £!1· 1·,~.;fll::'1 1 :f 1t:1~ r'!!'r ilii ~I. : :. il' • il 'r'ffil : ::ll:mm! : n 1tit 'u'H 1"'illi!il:=!! lifo ! it:1• m::fmr .I:., •••••.• ~ ••• 1 ••••••• 1 1 I Ill+"· I ::imJ. 'I II !· ... . l n. . ;; 1••• ~ ,. t.ll •• • U. {ff .. "l':::l'"" ~ tul ffi' I •• • 1 .... 1 .. ~ • >•I ru •...•• l~r. 'l -.• l ..... :::~:rffiHHnr-·1 :.!::: "·1~1 : ts • "jl!j'l1:i: ·n: it: t ltt .:r; . ._,i-J ·!:fl"tli.· .• l:t; ~~~~.:::. tr! • •! :::1 • H •. • •:· :-r f tB' :iii m: ~ ·~l~i:ti. r~~ ~rH~!:1tP.ritfufur:i11'!i~',~ ~t~~1 ~r w,~, ·1ni1~~~ -~ 'IH1! ~tt"l:~,i .~,~~! · ~~1: 1-·,;hi~:-,-~~-!~~:;~i !I ~~ 1'j !t",1r:,l'1·1~ '·1: lit1, ~ ~!;i ~,1·~1 :1;~ ~ ... , .. H !H ·'=!''"!:.! !!'""tl ~--§1~ ltl·l 'l'l!fl I 1111 I• ~ .,II' 11·: .. 111! I l II ! ;.!a jl It !11 () ~·~'.. 1ltr ·H j;:. !:!! liF ll!i.ll:. ~~n~·· :;; l;;tll.ljill·: !IIIII' ::: . I 11 .1f=i 1111 t!" ·q: t 1 it! 11 ~il ~ 1! pu:, -1 "t• r.;:~tj Tft~l! !:::Ill.;: h !!:!j! ~~\; ,"jj ,:;; ~~·:: i : I ti i ,,,ll; J · 1i J i !,,; .. ,::, ·~ !' I ffiJit .n,jtj ~ f rlllfii ~~~ tf:fttt:~l.~ t ,lf~J;::;I!!t·ia::l:•.:!l·~·!:i!~ll~:;:r:~.:u: I'll ,,,,· f~~~~~~~ 11!11'!1!" I I '.!~"1'1'1' t ltftrl'!l!':. i:f.rT.t77.Hf~1~!fi:li :m :;i: :,:,;:m:; ~~~1~ ~;Htllill!!ilm: I ,,11·1·1., · 1~ 111•1! If ;1! ,U:,I:li l :11 t::1'f.i:· !lh!, •1 [I'! 1.: Fl: ·1 ··:tt:!! •,t! .i:l :;::'11.!! ,:;1:!:: .1~;~·~::!.::".:;!::!!11 f!: li I ~1: !a ·1· i, :.,l:;:~t!.! 1·., ·~~ .• !!,'! ! •• ',1!!! ~ t.!'tf! ,!.! .t., !.__l_j•~ ... l,t!It·· •··• ..... ,,,. ,,., JI'"·!S..~··!I"" 'l"l"'" lilt I• ·Itt"' t f t i~~ fll rl•··r , ........ ''" ........ II"" ( tt j' .... .. ....... • ;-:71 ... -...... ,.....Lf ........ '''I' .. ,... i -.;'.l""-• • • • ... , ••• , •• • It ' •• , . . I I 'II ........ . .. t ... • ••• ..,I ., "ll t t ··t· , ••. =-fr..: !" tt:rJttt::::t: ::;·I:J;,":::t:!:: t :ua:~:it!~: 1:::::.:: •:: t if 1 . tfjlt! .. · t • :·: t t~t:!::::: t•,tt :• ''Ill :.11', . •1 t! t :tn -!.t:: I ~::rn:FI!l!~r: :::! :::t!l:::j:!!! d!;;::{i:~t; :::::::: t!:: i tj , !: :.11 1:. . 1 i 1: ffi1 .1:! ::!lilt:::::: :: ::11 .t !11 I!.!::.! ! . tl!: w· •:-.. "l. ,.: . II .. I ~·1=:::--,~::1-:~:.:::: r:: ~-=!,;: !:S~i:r:::i :i!:.:::: I !. rr:: 'ii· j!,"j nl • a H t H . rrrm,.·,:, .. ,::::::!· .• t"Mfl ~· 'I''' :,·;,'1 .: t.:. :.:.:!. :t::::u: :::: 'j': ·11:a::u fl! ::fl~:.a1::z. :.:a:::: t: t:: :.1~ ••• ,: ~ 1:1 1: "' ~ 1 ::::• .:tin 1" •. 1. . ·--· • -· •[·~! .......... I t., ....... . . "t: !il ~ •••••• ,,.11'1'"" II' I I •.• ' •• I.. .... • . • I ' ..... , ........... t I .• ' .. , tl'j'll'l''"'f :-::-:-:'1:'::':.:-rH}-:t:t:: :t::: I; !:·::r:::: t!!:-1~~:~·:::•·:: : .. :,::;: .,.f tt:: •!:: ·:1' tt1"t['!"~ t ::. !! :::::::.:::-.::::: ·:--:.":t ~: :11: t I Itt::;: ·~· ••• I Ef.·· ......... : ·········t· ........ ,l. ~ .. !-.: ...... J .............. t '· ij" ... , :. I t-!. •t '1 t ,,., l"JI'f'l'''' .................. l ... 'II 'lll't• ::.: £.· ::. ,::-::•!•: :::uu::.u:.1:::: .::e1:~: ·:.:•:::~ :·:11::1:: :; •:: ·:: :::: . :-:~ ~ l•'• •. :.::.·::a; :::::::::1:::: •• : :11•: I 11: .:.: 'l[[Uf!lLJllillliiflltil~l~ll!!llilli;m[f~ill!ltl!lllililil HH HJ111ili lminiHtH .tfm:l -rr!illlilllllll!li!llill!~:~ilillli :~::uu: ~~::: ~ :t:: till~~ [•J t·• •• I. t n' I"'': •.. ""l""":"•···tl• I.' :li, to.~ ••. , .... ""l'li·IW' I ·~·. .. ... ,. I I ! • f I 'I tt I r•r•f:· ., .. r··, ... , .. 'I [II' 1~1 . '"' ""I'll"' l'l'I+Hf'"! ft{t~ •t·· . ::t.::~~.::r:!::.·::!::!·,::::l:::.!:i~! .. :~~;r.;i:!:t:r:.;l'l' ljn!it:ta• 1 l'l 'II l!i ttltn'!!:q, .. ·::::!!tt ,; • .-t·H::u.:!! 1: ttt;u;.:! ··'-~-~···· : •....... !'"· .~.u .•.. l ... , ... ;:t.~·~·"•t"ll'"''l''' I t "!'''' ... 1 I' 1 lli'J'nt·l-pl,.ll .. t .............. u•· .... t ... u.lu··tt 'l flttl·•·!" 4-!'::-.. ~;... .. r::-:~~!~: ~:::~::::·~~·:~~:~: t~~:,:~~ .. :'1 .. :!. ~·:l'li ·: • ' f~:: ~::: !::; •:: r! !t 1~:: t;'!.! .. :t::~!!:::.t :::: r.;: '}I! •:r!·tult:·, t~• t, •. :: t :: ..... _·•····--........ !·· .•... r ..... •I '''tl:'"~'"'··t·•·· + :!1· 'tl' ...... , ... , . , ·1!~'1 !' ... ,,.r ... u ........... l''" ·•t•lt·lt .. t .... ,,. t, II" t"l"t' ·l:.!:~::r-r:::-:::t1r:::.=.:.:~l;!:!EE::·!~ !l~1...: .. :~:::~::a,~!·,;!: l. ... ~ :.u: H!: :;~ J_;_l '.!.!...-i .... lli:::ll!t.HllH!lli:E!l.t!.::. ::.: :.i·:::l!! :::::t::: tt. :: .::. !L: f:····· ............. , .. t .................. ·};f:, .... t!i· .. , .. , .... u •... '·r·r~····~··" ... , .... ~~~· ..... , ............ , .............. ·r·· .. ~~~~~ .......... t··· ....... . •·· .. -·····r•···•• .. ·•••··•'-•• ·t•'··'-··!•••""••'!~t;'\ .• ''' ·••tf'"l'JI ' ···· •••• t•• • • • • I'JI'll •t••••·•••••• •••••••• .. , ••• •t•• ''1"'~ .... ., .... •:•· ••t ••·• .... . .. .. _,..., ........................ , ...•.• , ••. ·• ···~··~ ·•• •·•· 'I' 'I'~ ••·• •••• "' l I • • •. • • •• •••••t••r•••• .... " ... ' ····~· "' t4t• , ............ t ~· ·• :··· •••• ::.:.-:=+.!+.:-:: :itfi!!H:::::!:!:i::::n::::l:;:fJ~~i!ll ... ::t;:::l!':-ll::: 1 !a i·::: HH !!H ·~ .. : r ·ii~: u:i!iH:H1:ii:H:::::::::::!rt!l :::: rh!HH! Hii!'i!H t:!: t~:: :i:: ::::~ , ~--·1.:··············: •••••••••••••• , .... ,l •• !J\:1:)·~··1····~:. ... :. ,, , .................. J,!1··mmt··· .!., .................... h ...... l1 ..... ,.,r .. t. ·=·i ... : .: .. ,:·: :·:·::: ::·: ::::~ :gn:::~smm~d ;i~ iNH~mff!:;t:g: ;;4 J • T::: :~ gg ~-~1-L:-= ·p 1 :i ·::· H!-:Hf!li1:~mgi! :1:H~ri!+!s: ~:::··:.: ! = :: u: !ill ·m .. :·~ J1 LLtiii:!!i~~iiigi;=H:g:Ht:;~g::H;::~~H H~Haf~ idi1l~ii l I un fg: HH L~ E iLtitf iff! ~~:~;f:~::g~:g:::::g:~i:~if!i!illfHi~H! !if!l!iii :!:: iiii !Hijh!l ::::l::ji1:n::·:::~. ::::::::::~::::.:1:•·;:!:::: n:·•1:rn:::!j:!:: ir!: t::: !:j1:::· ::::~·::·1 p•: n::r:r!11i::::::d::::::.:·1·::!: ::::It::: I:::!:::· !:!1 :l:i :::::::: ·w.;.:.'' ·: i..ll4:.:.u:~:.:::un;.::.:.:::-:.:.:~ :.m H.i! m: w!..m= u !.m ih: m:Lw · • ':: =.t::mm~; •• mu:m::m.:ut ·:~~mmu i.llll!ll!U.:.uniu tm :Pl. l"•w.o• IIJittrnv..,l loy• co ) t)ffi,. Jo:"IJI'I"P~, • ---··-.. -·-+-. .. .. .. ~ ... -.l -. ,_t__ .
NJ ' ' w
... .... ... ....
...
..J
:.J
-
~
..:..
...
·~ ~
'.)
UNITED 5it..1ES f.lr'-4RHifNT OF THE lt.TERIOR GEOLOGICAL SURVEY IWAUft RUOUIIC:U f}l\11510 .. r.fAli'I,G CUR\iE FCR
ig
: ~ :I_ t.,_J
·----~ .:..:.=.~.=-:: ... -· ---~--~·---... -...::! /
I
I
UNITED STATES OfP.RTMENT Of THE INTERIOR GEOLOGICAL SURVEY IWA1111 ftUOUIICU' DIVIIIO"I RATING C:JRVE FOR ••••
9·279·G I REV. t 1·671
N
I
~f ~-~:: .. ~ t:~.t~
~
.... ... == ... .., ...
.
"" 'I ~¥
w
1!.~ ... ~~
-~
I'
.
!---
~I.!. ~:
r"-=\_i·
t:.
l~
·"-1'\ •'\ ;. .A:J
IY ,,
::~.
,,
I• ....
liiN~
l:L ~~;
!!:: :::;;
0 ·-· ~ ,.,..,.,
I:-:=::-;-:-:..;:~
' • )
····-··---------·-·····--·-------Btft. 10.!!3
I
!
. ...
!
,,, :, .. ,., '
l
I
!
I
I
J
·-·t
!
:
-j
.,
... w ... ...
!; ...
r§
"-
~ .; ._,
N
\
JJ
' --· ~
-,
UNITED Slt.Tf.S Gf"•Rnt£NT OF ~HE INTERIOR GEOLOGICAl SURVEY cw•n" 11u~u•c•" '""''o"· RATING Cl.URV£ FOR ••••
9·279·G CREV I 1·671
=
f i
!
~]-++ ' , . i•
.,,
••••
'~nl I! ·-fiA
~:·~-:= n;.~ . .O •
F•
1::
:-::
--'=~ ~.:::::
-~---
~~ -~-···-
·~ ~:.::::.h-+-i ,.,. ... --'
~§. : ... ~;-!!::1
~: ::±:::J: ;
J:".!
rA ~~ r;::~i=-...:~
f-0-.,.... ... r-!:t: t !' ~:.~:
H-t± t:-I~~ ·--,,,~
t·•-i••·li ...
~ rt I~E l~f~
~ ~ 11 iFH 1111
u '
OISCHI\RGE I'~ CIIRIC H• .>LCO',;:J
.. ··-. . .. ·----'----~
> ~· -· ....
.·. '
: ~
!-·
: ·-:
....
•••• ----·----· ··••···••··· -----· -· Stn. :lo.t.f.4
••";;.."'''" I =:r:
~~=n~~n
~;;:::r.~:;;:~
;~;;,
I
•'
i
t
1.
I
I
J
I
., _________________ -..:11 ___________________________________ _
l
i
.... ... ... ...
.t-
..J ... ...
~ -§
-::
~ ._,
N
' .(jJ
I -
-,;; .!"':., .:. .r=.:=
~= =~· f-~·:::
~;_; :.E ;:;::
r:-;.:B:i I~; ti~l:E
E:H
~± ~~
'~1 t I HE;~==~=
t==:.
ift
J1 i I !I
~==:
:...:
II_ . ~
!
l!.
ll IJ
-··
-____,.
R,. 'CL'RVE roR .•••• GEOLOGICAL SURVEY own•• "tsC'Iu"cH ro\ •·~"'
. .
.... ~~'''""~'~~~.:;;_
•·:::-!~ • • ·•·t=.·•r:~'' t= ::::::: :=t:: 1:;.::~::::;::;:::::: 1:::~ t=--=
:-!"-·
i~;..;;.;... •• , .......... ==~· ~~~ f~ ::::: -
l:tr:~t-~: . .,
'k
; ~ ~~ -·· :'\.'\
I• ....! !; 1!·..!\'-.Y
~=-z:;:N; V\: 1!:: .::= :::
t: :::.
: ~:::~ /"'" ·:::: ............ -~ --....... t~-:J::
.-:::
···~· ·-:-~
·-
.•t.
ll·ll'li
#
DISCHARGE IN CUI!IC rEf.l PER SECO!lO
'. ---------------------j
.,.........,._ ,.., ....... --
==
: l ::
••
, .....
::::::::. mg:::.
' ••••• ;:-: 1:::::
t·•
-:::: ::::
··-··· •t-·· , ___ -·
:::::::::-: ~! ~., ;H
IEH I:!;; ll!
r~· ~!"!! '!!
~H
~~-·-: ...
~~~
:=.!: l!!i
i;§ 1::--r: '~ I!E
!!~
l:::~:~ t:~;.:i:.:~~
;=: !:== 1:~;: t·~~-
;_;. ;;,;;l~ ,~slUt! :m :=1:-!E-; :::: , ..... ~; :~:
• :-;-:.: 1:!.:£ :~~ :;:: ~t~:: :~m ::::
I~!'!~ :!!~
, "'":.;;=== ========:o;:::::.-::i ~~m~Il 1m: [£!
::=t.::::
l
I
!
i
!
I
_t I
I
I
I
i
I
I
!
!
•
'·
EXHIBIT E
2. Water Use and Qua 1 i ty
COIIIE!nt·4 (p •. E-2-17 1 para. S)_
Provide data used to prepare Figure E.2.66 and a detailed discussion
<includi~g input data) of this use of HEC-2.
Response
The data ·used to prepare the stage-discharge diagram on Figure E.2 .. 66 were
obtained during 1982. This information is contained in Table 1 (taken from
11 Preliminary A!isessment of Access by Spawning Salmon to Side Slough Habitat
above Talkeetna," Trihey, 1982, and from Table 411-4-2 of Alaska Department
of Fish and Game. 1983. Su~itna Hydro Aquatic Studies Phase II Basic Data
Re~ort, ~olume 4, Part II).
The referenc£. made on p. E-2-17 to the use of the HEC-2 analysis for deter-
mination .of the backwater profiles pr·esented in Figure E.2 .. 65 is incorrect.
The water surface profiles for mainstem discharges of 12,500 cfs and 22,500
cfs were based on field observations taken on August 24, 1982, with a slough
flow of approximately 3 cfs and on -August 2, 1982, with a slough flow of 20
cfs, respectively •
2-4-1
i)
Date
8/24/82
8/25/82
8/26/82
8/27/82
8/28/82
8/29/82
9/02/82
9/03/82
9/04/82
TABLE 1
Comparison of water surface elevations (WSEL) at the
entrance to Slough 9 and the average daily mainstem
discharge at Go 1 d Creek, 1982.
a WSEL
(ft)
590.03
590.19
590.24
590.04
589.98
589.91
590.82
590.51
590.42
Gold ·Creek
Discharge
· (cfs)
12,500
13,400
13,600
12,900
12,400
12,200
16,000
14,600
14,400
Date
9/05/82
9/06/82
'9/07/82
9/16/82
9/17/82
9/18/82
9/19/82
9/20/82
9/29/82
WSEL
(ft)
590.16
589.91
589.84
594.09
593.71
592.86
592.37
592.36
589.98
Gold Creek
Discharge
(cfs)
13!1600
12,200
11,700
32,500
32,000
26,800
24,100
24,000
12~400
aADF&G gages 129.2 W1A and W1B.
The water surface profiles for mainstem flows of 16,000 and 18,000 cfs were
determined by using Figure E.2.66 (attached) to obtain the water surface
elevation at the gage location. Since pools existed upstream of the gage
location at flows of 12,500 cfs and 22,500 cfs, it was assumed that pools
also existed at 16,000 and 18,000 cfs. Hence, the water surfaces at the
intermediate flows were drawn in as a horizontal surface upstream until they
intersected with the water surface profile for a flow of 12,500 cfs at the
upstream end of the pool.
2-4-2
.
·~
.lrD
m
a
11
m
~· ..
~·· ' R1
al
B)
E]
E)
[]
if]
r'J .... :.J
594.0
C'l) 593.0
:t:'
·CQI
::>. g
"' &1..
0
:1:
~
;::)
0 :!.
~ 592.0 .... .
ti
z
2
~ ·:;
"' ..J
LIJ
LLI
(.)
~ 591.0 a:
;:::) rn
a:
"' ~
:t
590.0
589.5
~
1-
' .
~
1<-
~
~
"""
1-.
•
I 1-I
I
/
10
I ·;
,.
I
.
. .
v I
.
L
I I I I
I
. !
I I i
I I .
I -.. .
I •
,,
•
15 20 25. 30 35
MAINSTEM DISCHARGE AT GOLD CREEK (1000 CFS)
OBSERVED WATER SURFACE ELEVATIONS AT
MOUTH OF SLOUGH 9 FOR ASSOCIATED
MAINSTEM DISCHARGES AT GOLD CREEK . .
DATA SOURCE ; ADF & G 1982
'2,--.3
40
'
FIGURE £.2..6$
•, ___ . . '·
•
• ·--.. ... ,
EXHIBIT E
· 2a Water Use and Quality
Coaaent 5, (p. _ E-2-20, para. 1)
Provide data on particle size distribution for suspended sediments collected
over the annual range of discharges for the Susitna Rivera
Response
Susitna River discharges at Gold Creek are least turbid in winter (p. 2-5-2
attached) and most turbid during the months corresponding to maximum dis-
charge (p. 2-5-3. attached, taken from Peratrovich, Nottingham and Drage,
Inc .. , 1982). Winter turbidity is less than 20 NTU's, while turbir.Jity in
. -
May.,· Jun~, July, August, and September may exceed 1~000 NTU's. ·i·he size
c~_s,:tr-f6uti on of suspended sediments during the periods of maximum riverine·
turbidity have been analyzed as shown on p. 2-5-4 attached (taken from
Peratrovich, Nottingham and Drage, Inc .. -> 1982). Susitna River suspended
sediments are 15-20% (by weight) smaller than 2 microns (mean diameter),
25-35% smaller than 10 microns and 95-100% smaller than 500 microns.
Tables from the Water Quality Annual Reports of 1980, 1981, and 1982 by
R & M Consultants, Inc., (pp. 2-5-5 to 2-5-44 attached) contain data des-
cribing the turbidity particle size distribution. Suspended sediment size
distributions from four sampling locations on the Susitna River during
different months and different years are shown an pp. 2-5-45 to 2-5-51
attached •
2-5-1
References
Peratrovich,-~~~t~;ngham and Drage, Inc~ and Ian_ P.G. Hutchinson, 1982.
. • It, :
Susitna Reservoir Sedimentati·on and Water Clarity Study. Pr·epared for
Acres American. Inc., Anchorage, A laska!t 35 pp.
R & M Consultants, Inc. 1980. Sus·itna Hydroelectric Project Water Quality
Report. Prepared for Acres American, Inc., Anchorage, Alaska.
R & M Consultants, Inc. 1981. Susitna Hydroelectric Project Water Qualitx
.· Report. Prepared for Acres American, Inc., Anchorage, Alaska.
R & M Consultants., Inc. 1982. Susitna Hydroelectric Project Water Quality
Report. Prepared for Acres American, Inc., Anchorage, Alaska.
2-5-lA
. :;;
u L '· u u· u u . u u u ( ~~~ • ·~
1500
:;·1000
f-z -
)-
f--0 -CD
0: 500 :;) ....
0
.
. .
I
.
0 16 27
D v G
' -',~2b
-1-
.
~
•le ,
c~
p
• L.... ·-'-
13 15 21 18 0 4 ' 0 0
c T s ss 0 v G c T
3 13
s ss
I I I I I I II I II I II I ILl I 111111111 till I ILIIJ
SUMMER WINTER
.
I
.
~~~
u ~,.. 4 ,.
-·
--0 I 3 0 0 0 6 1--
0 v G c T s ss 1--
ICI d ~~I Ill I I I I II I I I
BREAKUP
0-DENAtJ ·· V-VEE CANYON 9-GOLD CREEK c .. CHULITNA T-TALKEETNA S-SUNSHINE SS-SUSITNA STATION
(\J
I v, ' . . cJ
NOTES:
LA. CRITERION:SHALL NOT EXCEED 25 NTU ABOVE NATURAL
CONDITIONS (ADEC 1979).
1. a.. ESTABLISHED TO PREVENT THE REDUCTION OF THE
COMPENSATIOt.t POINT FOR PHOTOSYNTHETIC ACTIVITY.
WHICH MAY HAVE ADVERSE EFFECTS ON AQUATIC ll FE.
DATA SUMMARY' -TURBIDITY
SQl,fRCE' USGS AND RB M
e MAXIMUM
-MEAN
e MINIMUM
NO. OF OBSERVATIONS
LOCATION
, .
FIGURE E.2.81
"••--·~-·~ .... ~--t -,----· ~ ...----t--t--~~l---~ . -;-. .-. .... ::s;:21?--' ~ _.;:::;:::-.. -· ;._~.;_! ~;?."'""":":-! I 1 ...#' . --~ ~ ' ' I ---~ ~ ' ' ' ' " ~. ' ' -~-' : I I . ' I I • ,-. ! . I 1 I ' ! -' t -I I .-~-:1 : l . I . . ' . I • . I I I I ~__.;.-.... : 1 ._ --r • : I ! h~~-~--:--:~·~·-r-:---':--'r-' I . ~l.. • I i -I I I \ I I 1--.-l I Rl I IT I t I ; __ __l____l_ t_. r-~ ' I I I l I !: I I I t 1 I I I I ! t IT! I I i I' I i I I I I I I i I I I I I ' I ! I I I I : I I l ! • I :\: I I I I I I : I I I ! i I ! : I I t I • I • I I ! I I I : I I i : I i i i I ! t I I, ! i I I . I ; i : !_'\.!,I I I I l I I i i I l I l I • I • . ! I t • ! I 1 I I I : ' I I 1 I i I I j I I I . ! i I I I l i I I I I I I : : I ' t I ~ I I J I l ·-~ I I I I I I . ! i I ! I i I i I ! ! I l t ! I I I ! I I Ll~ ~ i I I ! i I I I : I I I I I j'\ MAXIMUM : I I I I lt:il:!tl il' .lilt· ltl It I I~ 1,, .• ' II! if I tiillilll! II l!ll !!II 11!1 ·lll~ll.J,...~i.in;illlllil~·ltl !1.1 ll!llllll !ltl :==1 -['----·~ .r--.::=..!...: i : i I .'___ __ G ~ 7 __ 6 __ s __ : 4. __ == 3 __ p -= E . ._rz_ -X~ ~ ' .. ···--~A.VER"A-r.: ' .....-; 1-i I -~-. ,., ' ' I . r ' . .-·~--• ~ I .---I -----.----r S ;, I I I " t I :.....! .. ,........ ,..... : I i I I I I .. ~~-! • , "' I ( • • I ·~ l • I I l I I I ' _\_I • • f I f ~ I L; l I ::I I I t • • • • I I I : I • I I I • ... ' i I • t ' t • ' I ; ) , , • • ! 1 ! : 1 : 1 n I , 1 1 1 1 ' 1 : ; , 1 • , 1 • 1 1 1 I l I ( ' :! • :I I i ! I I I I I I :11 I I I I I I I I I ! I 1 I I: I I ; I :.: i ; I 1 I I I I 1\l I ; I I I I i I 1 I 1 I .. 1-• I I • t • • I ' : i : I ; l I I I I I I ,, I I I I I I I I I I I I I I I I i I I I I I \; ! I I I I I I I I \! I I I I I ! I I t ., .I I . . I = ~ : T7l t 1;: ... I I I, i I! i i i I I I I I I i I I I I I I ltf I I I I I I I I I I I I I I I I I I I I I I !\1 ! I I I I I I I ,. I i I I I I! I I I rT . . --. '-......... ·. -~ ~:; -~} . .· ..-,_ ~~~;-~~~~~~r+~~~~-r~~~~~~~~~~~~~~~~-~~+4~~~+U~+4~~~~~~ --1u0· . 9 a_ p--=r-. ~ 7 -·~ES=-_ .... _...;;:=-, -;·..) 6_, ; 5 -~ --·-r. -~ 3_ ~-E= -l:--:'{' -~· ~-,_._ :\------.:.\~ '-~MUUMUM-I 1 I I l , I I • 'T' t: ; . o 2-, .. ; : · I -:. ' • • • -I • I I I • • I.! ~·nos-LsL.e!.s-_;_s!_.H '·-o: ~~w~ -'~A; ··-u·_E~st:i::W ' · I • • ' . . ~ . : :J. • . . . , , . , . . Y = n LW ,_ ... · • • : · H-~ :_. . ; : ; : ~ . :-: ; I I i I I • I : : ; ; USED.IN :DEPOSITS :MODEL. : I • ~~ , • 1 i. : 1 • 1 • 1 1 , r ! , T T . • 1 . . ' . . 1 i -, 1 1 . , I . . 1 T r 1 I ! • • -l • I •. I i ' I ..! : .l _1 I I j_ I I J. I I I I _l ; j_ ! I • .l j_ _l I I I I I I I ! I I I I I I T I • I I .. i ; : IT I I !I! ! I I I i ! I I I I I I I I I ! ! I I I I I I i I I I I I I I I I I ' I i I I I I I I l I I i I ! I I I . i I ., I : I ! I I l I I I J I L ! I I I I ' I I i . I I I I I I -, I :-1 I _/_ : I I i I I I I i .I ! _ i l I ·1 -~ l ! 1 I I 1 T 1 I I I f T 1 T !11 Tit IIi it 1 11 1111 1 11-ri il 1 11 1 tll:_u_Lj 1 ! I 1 l I I :11 ! 1 I I I 1 ! 1 I ! I I I 1 I I I ! ! I 111 I ! I I I . I I I I I I I !x__L_Llj MAY JUN .JUL AUG SEP 1o1 · X -~USITNA RIVER AT G.CLC C:=iEEK . . ~l:CIMENT CONC2NT~ATICN=-SUMMER V J.\LUES li\ILV [1952-·.,SS.,]"~ . . . _;-"' ... -,.. _, --~ :u :f) -::~ aoes NOT aNcLuoe 19a1 usGs DATA· FIGURE 5.1 ffl:BATf1QY!ff1J!9TTI~G!'fAM & CRAQf;~ ~·~· I ~ ~. ·--·-· I l I I t· ' " I!C I . I. 11 ! i ~ ! -~ ~· i f if ~ ~ ~. ~~~~ . ~-r. lil;: i t 'S f I I' i· i I I ~ l t I I I I ' ' "E'iiffiNEEAING CONSUL f A.N TS -z,...::S'-3 I f' l . ""
w
N -(/}
w .....
.0 -t-o:
c(
ll.
z. < :c
t-
a: w
!
~
lit.
••
1 00 r
!
90
80
7:
80
60
40
30
:~·'1 20 l'b9~~~ ··1tW ~~i~
10 :k~l iM~· .-
rT IJ l .8o2
T .
·---
.•
1-1-
1-1 ..... • 1-· ---1-· 1---I-
1-
1--,_
I··
~I.! 1-· -1·-1-1-·
1--· ... .: I·· ~~ ;;
i-· --·~ , ~-I··
1-... ,....1-1-" ,
~~ ~~ 1-1-1-~ '·· ~ 1·-1-r' ·-~ ... . --~" Ill!~~ .... r.: ~
TI
1-~ 1-~
1£ ,.l. 1.--
~>(! 1·-1-~ I--" ;-fo'.
111111r
~ .-i'· 1-· 1-
tJ tt
I· 1-· 1 ... 1·-
1-... 1·-I• r-
t" 1-1-· -
1·-1-1·-··I ..
1·-1-1--· -
i I 1--1-· 1·-1-· I •
.004 .008 .o 16 .031 .062
t-1 -.----------SIL y"--. PARTICLE SIZE' '"';,,1 ·-
llill lilt i Jl I If I :1 w:nm: l'j"
IIi I! I•'~
. ~ru~ ~'l) . .... ~
I IIIli ~
111111
~~·tH. PI
~~!;'. ~
1-r 1·-fl'~
~ ~-"'~ I~ i-;I"
I"
t•· ~I~' !-
"" :1
't i-i·-1-· ~ ~ I
\ .·-... _
I"
I' v , .
i-·· , r-
111111!-1--1-1-· 1-1-I· I·
1-
1-r-
lUI II 1-1-
1--1-~J 1·-1-, ..
; .. . -)SSI:~.I.S p: ~W-~~u:~ :1:. tisBt X i:: j;l~.~
.~I~~~--o~Pja:h ·· ·· !· •• ~ J ---·-·-.•. ··-· 1·-1---·--·-1-· 1-
·-, ... r-1-·
·--·-, __ ,_, r ..
-· -... ,_ r-
·-·--~ !--· .. -
.126 0.26 0.50 1.0
.S.AND-· ------------t
(') SUSHTNA RIVER AT GOLD .CREEK. ~ . AVERAGE MCNT~L V PARTICLE SIZE t;IISTRIBUTIDN
. .
..
' . -t... ·it . .... . .. . '. .
,., •·• ~·•-·•o•N••·~---~~~n·~~~~~~M-~~··~-~~~,-~~~~~~~~~~~,~~~~~~~~~~~~"~~~~R~~~p-~~~~~~~~~
'0 '•111 .,
...
. ·' -· );
"" ·~,
.......
• ..
..
i ....
4
1
J
]
t
l ...
'l
'j
-~
J
j
I]
. :
~
i
)
~ ,__ _____ ;,;__......_.., _________ ~...._ _____ ,..._-:.:-%-._,_
SUSITNA HYDROElECTRIC PROJECT -
'
PREPARED' .. BY:
R&M CONSULT .At+TS. INC,.
PROPERTY OF:
i\laska Power Authority
334 W. 5th Ava.
Anchorage, Alaska 99501
APRIL 1981~
PREPARED FOR:
----_ALASKA POWER AUTHORITY-~------..r J ·
,. ~;;::-·2JZE, "Microns
.
<1 . .;s :~
:S-10
10-20
20-50
>so
SAMPLE, NO.
w
TABLE 2
SUSPENDED SEDIMEN"f ANALYSIS -September 5, 1980
SUSITNA RIVER NEAR CANTWELL (VEE CANYON SITE)
. ..
----------------""---COUNT/sq mm -% ---------------
SAMPLE 4
" 3207-99.57
7 -0.22
4 -0.12
1 -0.03
2 -o.os
DATE/TJME -
SAMPLE 9.
2335-98.52
23-0.97
6-0.25
1-0.04
5-0.22
SAMPLE 14
1ns-s1.21
26 ... 1.42
12 -0.66
7 -0.38
6 -0.33
._
• Milligrams/Liter STATION* INT. TIME SUSPENDED SOLJDS --1 s-s-ao 5:15 p.m. 0 + 15 49 sec 33 2 9-S-80 5:26 p.m. ,... 0 + 35 42 sec 36
"\ -3 s-s-ao 5:30 p.m. 0 + 55 42 sec 35 4 9-5-80 5:35 p .. m .. 0 + 75 42 sec 54 s s-s-ao 5:45 p.m. 0 + 95 40 sec 63 6 9-s-ao 5:50 p.m. 1 + 15 44 sec 36 7· s-s-ao 5:55 p.m. 1 + 35 44 sec 68 8 s-s-ao 6:00 p.m. 1 + 55 44 sec: 62 9 9-5-SO s:~s· p.m. 1 + 75 52 sec 74 10
~ 9-s-ao 3:08 p.m. 1 + 95 52 sec 68 11 s-s-ao 6:10 p.m. 2 + 15 48 see .
73 12 9-5-80 6:13 p.m. 2. + 35 42 sec 72 13 9-5-80 6:15 p.m. 2 +55 48 sec 78 14 9-s-ao 6:20 p.m. 2 + 75 4S sec: 84 15 9-5-SO 6:25 p.m. 2 + 95 50 sec 67 16 s .. s-so 6:30 p.m. 3 + 15 48 sec 82 17 s-s-ao 6:35 p.m.
. 53 .. 3 + 35 51 sec 18 9-s-ao 6:45 p.m. 3 +55 so sec 56 . •• •
Right Bank (edge of water) is at Station 0+05 •
. , ~
. l.eft Sank (edge of water) is at Station 3+85.
StJsi4/d z .... S"__.,
.·, -8-..
~--
.; :
:~
"-
....
... , .. .. ,
t.
·~ ' .
itr·
"
.~
J
]
]
~]
1
·J
]
l ,
J
..... -
TABLE. 3_ "·~ . . ' . .
.. · SUSPSNOED SEDtMENT ANALYSIS -'september 17, 1980
SUSI1.NA RIVER NEAR CANTWELL (VEE CANYON SITE)
Particle Size Distribution, Microns
SamRJe No. SAMPLE ·DESCRIPTION <s 5-lO 10-20 (!0-50 ->so
3: "-·, sta 0+70,· 9-17-80, 5:46 98.53 0.96 0.30 10~ 15 0.06 p.m.
8 Sta 1~70~, 9-17-80, 6:11 p.m. 98.83 0.44 0.23 (1.10 0.40 13 Sta 2+·10, ·9-17-80 6:19 p.m. 99.19 0 .. 30 0.10 0.07 0.34 . I
. Milligrams/Liter SAMPLE NO. DATl:/TIME STATION* INT. TIME SUSPENDED SOLIDS
1 9-17-80 5:30 p.m. a + 30 30 sec 167
2 9-17-80 5:39 p.m. 0 +50 50 sec 170
3 9-17-80 5:46 p.m. 0 '+ 70 55 sec 174
4 9-17-80 5:48 p.m. 0 + 90 55 sec 185
""'"---·~ 5 9-17-80 5:51 p.m. 1 + 10 55 sec 196
6 9-17-80. 6:06 p.m. 1 + 30 36 sec 425 .
1 9-17-80 6:09 p.m. 1 + 50 36 sec 325
8 9-17-80 6:11 p.m. 1 + 70 30 sec 331
9· 9-17-80 ·6:13 p.m. 1 + 90 30 sec 218
10 9-17":'80 i5:14 p.m. 2 + 10 30 sec 201
11 9-17-80 :S:16 p.m. 2 + 30 30 sec 513
12
~
9-17-80 :S:.18 p.m .. 2 +so 30 sec 169
13 9·17-80 &:19' p.m. 2 + 70 30 sec 436
14 . 9-17-80 6.:21 p.m. 2 + 90 35 sec 418
15. 9-17-80 6:23 p.m. 3 + 10 35 sec 591
16 9 ... 17-80 6;24 p.m .. 3 + 30 35 sec 322
17 9-17-80 6:26 p.m. 3 +50 40 sec 342
18 9-17-80 6:30 p.m. 3 + 70 45 sec 163
19 9-17-80 G:35 p.m. 3 + 85 60 sec 300
1'"' '• 't ' Right edge of water is at Station 0+00. \d
' ...
',.J Left edge of water· is at ·station 4+00.
z..,-s-·t-':" l ··;
•" "Of\ ..
susi4/d -9-.. ~
• .... .-·: ..
·. misc.S/ti
WATER QUALITY ANNUAL REPORT
TABLE·4
SusPended Sediment Analysis·-October 18, 1980 Sus~tna River Near Ca1=1tweH (Vee Canyon. SJte:)
·.-.. ----.;..-.. -------.. --Particle Site Distribution-% ---------... ---------
S.ize Microns Sample 3
< 5 17.() 5-10 12.7 10-20 5.4 20·50 4 .. 4 >so 0.5
100.0%
Sample NC?.:_ Date/Time Station~ -1 10-18·80/12:30 p.m. 0+07 . 2 10-18-80/12:35 p.m. 0+36 3 10-18-80/12:40 p •. m. 0+70 4 10-18·80/12:43 p.m .. 1+05 5 10-18-80/12;49 p.m. 1+38 6 10•18-80/12:51 p.m. 1+74 7 10·18-B0/12:55 p.m. •2+07 8 10-18-80/12:59 p.m. 2+38 9 . -
10-18-B0/1:02 p.m. 2+73 10 10-18-80/1:06 p.m. 3+08 11 . .. 10-18·80/1:10 p.m. 3+39 I
Right edge of water is at Station O+oo.
Left edge o£ water is at.Station 3+78.
·10-
Sample S Sample ~
82.6 79 .. 5 8.1 15.5 4v5 3.2 4.2 1.2 0.6 0.6
100.0% 100.0%
Int. Time Mi If i grams/Liter
Suspended.Solids
120 sec. 6.0 90 sec • 6.,6 75 sec. 4.8 60 sec. 4 •. 2 60 sec. 4.6 SO sec. 6.3 72 sec. 4.4 72 sec. s.o 72 sec. 7.7 80 sec .. 7.4 80 sec. · 5 .. 8
' -"~; :
~ ,, ' -
r
'
,_ -J --
i:'
' -,
' .......
-.,
!
; .. ~
' ~ ,
i ..
_., .
i
.J
I =1 -,
-. J
"
~
4
,';
1
_J
.. ·: _.;._.
Semele
10 . ..,
J 11
12
J
-11'
~J ----~~-''
-y
J
1
..,
-!
~i
1 _ ..
9 .-s.
T
•• ..
"" .
. i
No.
misc.6/t2
/. ' -.
WATER QUALITY ANNUAL REPORT
-TABLE 5
Suspf.!nded Sediment Analysis -January 13, 1981
Susitha River-Near CantweiJ (Vee Canyon Site)
Particle Size Distribution
Sample No. 11
Size, Microns
< 10
10 .. 20
20..,50
. 50-100
>100
Count/Sg. mm
1600
15
5
2
0
98.7
0.9
0.3
0.1
0.
100.0%
; ~
Oate!/Time Station Int. Time
Milligrams/liter ___ /
Suspended Solids
1-13-81/2:20 p.m. Left bank 40 sec. 0.1 , ... ,3-81/2:30 p.m. Center 40 sec. 1.0 1-13-81/2:35 p.m. Right bank 54 sec. 1. 7
•
-11-
:
. . .
:,..~~· .... ;;. ·~--..... -.---"!--!"'" ___ . -·
mlsc.6/t3
. .
. WATER. QUALITY ANNUAL REPORT
TABLE 7
Suspended Sediment Ana!ysjs -October 16, l~BO .
Susitna River at Gold Creek
-------------------Particle Slze Distribution-% ""'---·---------""'·----
•
,.
i
·"f
j
]
]
1 -~
1 •... ··., .....
...
S.tze · Microns Sample 2
< 5 77.4
5-10 13 .. 2 ., 10-20 5.6
20-50 3 .. 3 >so· 0.5
100.0%
§:.atnf;?Je ·No. . Date/Time Station* , 10-16~80/4:22 p.m. 12+45
2 10-16-80/4:28 p.m. 12+76
3 10-16~80/4:34 p.m. 13+11
4 10-16-80/4:40 p.m. 13+46
5 10-16-S0/4:43 p.m. 13+81
6 10-16-80/4:48 p.m. 14+16
7 10-16•80/4:54 p.m. 14+51
8 10·16-80/5:01 p.m. 14+86
9 ': 10-16-80/5:05 p.m. 15+21
;ll
. . * Left edge of water i,s at Stat-ion 12+01 •
Right edge of water is at Station 15+64.
Sample 5 Sam..,le 8
-,·~
78.1 74.1
11.6 13.4
7.4 6.4
2.3 .5.7 .o .. s 0.4
100.0% 100.0%
Milligr~ms/Llter
Int. Time suseended ~olids
120 sec. 8.4
90 sec. 9.0.
54 sec. 9.2
40 sec. 7.2
48 sec. 11.0
49 sec. 8.0
60 sec. 7.8
sa sec. 8,0
100 sec. 1.2
mise.6/t4
. WATER QUALITY ANNUAL REPORT
·' .'TABLE a·
Suspended Sediment A~alysis -January 14, · 1981
Susitna River-at Gold Creek
Particle Size Distribution • . Sample No. 4 _
\..)'
§ample No.
4
5
6
:
Size, Microns
< 10
'10-20
. 20-50
S0-100
>100
Date/Time
1-14-81/3:00 p.m •.
1-14-81/3:15 p.m.
1 ·14-81 /3 :· 35 p.m.
Count/Sg .. mm
. .
Station*
left bank
Center
Right bank
96
9
11
3
1
lnt .. Time
55 sec.
70 sec.
120
.,
sec.
* There wel:'e a few s.pecimens of fibrous material appr~ximately.
1000 microns in length.
.-16-
%
80.0
i.S
9.?
2.5
0.8*
100.0%
MHHgrams/Liter
Suspended. Solids
0 •. 4
10.6
10.4
2-5-ll
, •• '*' • . ,., ' .. ' ~. • •• ~
. } '
"'.:;:..;:;.....~
\~ .. ·.
' (f ·i.· . . ,.,~ '. '
.... -,
1 .. ...,.
1
I
~
: : ,
-,
-l
.~.
.,
'I ,
' ... r
'1
' .'
J
t
SUSITNA HYDROELECTRIC PROJECT
. .
~
?REPAREO BV:
WATER QUALITY
ANNUAL R·EPORT
1981
····~~· llho:o''"~' ·--------".!. .: :· ·. .. . ... . . ·. ~ROPERTY OF:
: : ~~~:Iaska~= Power Authority
i ~· 334. W. 5th Ava • • j •
;·~-~Qhorage, Alaska 99501 •
r •
DECEMBER 1081
R&M CONSULTANTS, INC.
.
PREPARED FOR:
.___ ____ ALASKA POWER AUTHORITY ___ ~~-. -----~~'~
G.....,...; s-t G.,
i
I
.. --,;
l l
-1
........
. . ·. .. :
:.~'
" "!
ill ' ...
~·
.,
;1 ..
l
i
... .
·"
. :-4
•. l
l
~
..
TABLE 3.3
R&M CONSULTANTS, INC.
SUSPENDED SEDIMENT ANALYSIS
SUS!TNA RIVER AT VEE CANYON
Date: September 5, 1980
Water Temperature,: 5.3°C
Instantaneous Discharge: 5,040 c.f.s .
REW: 00+05
LEW: 03+85
Sample No. Time Station Sediment ( mg/!,.)
1 5:15 pm 00+15 33 2 00+35 36 3 00+55 35 4 00+75 54 5 00+95 63 ·s 01+15 36 "7 01+35 68 8 01+55 62 9 01+75 74 10 01+95 68 11 02+15 73 12 02+35 72 13 02+55 78 14 02+75 84 . 15 02+95 67. 16 03+15 82 17 03+35 53 18 6:45pm 03+55 56 . .
" Average 61
Particle Distribution
% by Size
Size
(Microns) Sample: 4 Sample: 9 Sample: 14 Average
5 99.57 98.52 97.21 98~43 5-10 0.22 0.97 1 .. 42
~ 0.87 10-20 0.12 0.25 0.66 0.34 20-50 0.03 0.04 0 .. 38 0.15 so 0.06 0.22 0.33 0.20 .
Suspended Sediment Discharge (Tons/Day): 827
·.
Slisi4/u 3 -1.1
~....-s:-
·-··---'-·-~-----
··~.-·
~ -
"'' ... : .• ~/"'
{ ~f(
.. '
;.
' -:; '
•
. .
•
. TABLE 3.4·
R&M CONSULTANTS, INC.
SUSPENDED SEDIMENT ANALYSIS
SUSFTNA RIVER AT VEE CANYON
Date~ September 17, 1980 REW: 00+00
Water Temperature: 5.9°C LEW: 04+00
Instantaneous Discharge.: 14,200 c.f.s.
Sample No. Time Station Sediment (mg/1.)
1 5:30pm 00+30 167 2 00+50 170 ·. '3 00+70 174 4 00+90 185 5 01+10 196 6 01+30 425 7 01+50 325 8 01+70 331 9 01+90 218 10 02+10 201 11 02+30 513 12 02+50 169 13 02+70 436 14 02+90 418 15 03+10 591 16 03+30 322 17 03+50 342 18 03+70 163 19 6:35 pm 03+35 300
Ave,··age 297
Particle Distribution
Size
% by Size
(Microns} Sample: 3 Sample:· 8 §_ample: . 13 Average
5 98.53 98.83 99.19 98 •. 85 5-10 0.96 0.44 0.30 0.57 10 ... 20 0.30 0.23 0 .. 10' 0.21 20-50 0.15 0.10 0.07 0.11 50 0.06 0.40 0.34 0.27
Suspended Sediment Discharge (Tons/Day): 11,345
susi4/u
:
1
-1
;
J
~1
1
1
TASLE 3.5
R&M CONSULTANTS, INC •
. SUSPENDED, ·SEDJM.ENT ANALYSIS
SUSITNA RIVER AT VEE CANYON
Oate: October 18 '· 1980
Water Temperature: 0.0°C
lnstant~neous Discharge: S,OOO c.f.s.
<" • ----·
t
REW: 00+00
LEW: 03+78
Sample No. . Time Station Sediment (mg/1.)
1
2
3
4
5
6
7
8
9
10
11
Size
(Microns)
5
5-10
10~20.
20-50
50
12:30 pm 00+07
1:15 pm
Sample: 3
n.o
12.7
5 .. 4
4.4
0.5
00+36
00+70
01+05
01+38
01+74
02+07
02+38
02+73
03+08
03+39
Particle Distribution
% by Size
Sample: .6
82.6
8.1
4.5
4.2
0.6
Average
Sample: g,,
79.5~
15.5
3.2
1.2'
0.6
Suspended Sediment Discharge (Tons/Day): · 77
susi4/u 3 ... 13
6.0
6.6
4.8
4.2
4.6
6.3
4.4
5.0
7.7
7.4
5.8
5.7
Average
79.7
12.1
4.4
3.3
0.6
___;.·
••
• .
.. .. -
'
TABLE 3.6
. R&M CONSULTANTS, INC.
SUSPENDED SEDIMENT ANALYSIS
SUSlTNA RIVER AT GOLD CREEK
Date: October :16, 1980 REW: 12+01
Water Temperature: 0.0°C LEW: 15+74
Instantaneous Discharge: 7,000 c.f.s.
Sample No. Time· Station Sediment (mg/1.:.2
1 4:22pm 12+45 8.4 2 12+76 9.0 3 13+11 9.2 4' 13+46 7.2 , .. 5 13+81 . 11.0 . . _...
14+16 8.0
0
7 14+51 7.8 8 14+86 8.0 9 5:30pm 15+21 1.2
Average 7.8
Particle Distribution
% by Size
Size
(Microns) Sampl~: 2 Sample: s Sample: 8 Average -5 n.4 18.1 74.1 76.5 5-10 13.2 11.f$ 13 .. 4 12.7 10 .. 20 5.6 7.4 6.4 5.5 20-50 3 .. 3 2.3 5.7 3.8 50 0.5 0.6 0.4 0.5
Suspended Sediment Discharge (Tons/Day): 147
; ~ '
. '
susl4/u 3 .. 14
·'
. ..... ,
j
... ,
.J
--1
--..J/1
1
' .i ....
·1
" " l
l
'1
1
1
.
.....
'\\
TABLE 4.5
R&M CONSULTANTS, INC.
SUSPENDED SEDIMENT ANALYSIS
SUSITNA RIVER AT VEE CANYON
Date: January 13, 1981
Water Temperature: 0.1 °C
Instantaneous Discharge: 5000 c. f. s ..
Samefe No. Time Station Sediment (mg/1. 2
10
11
12
' ' .
'Size
(Mt-::rons) -·
<tO
10-20.
25-50'
. 50-100
>100
2:20 p.m. Left Bank
2~30 p.m. Center
2:35 p.m. Right Bank
Particle Distribution
% by Size
Sample: 11
98.7
0.9·
0.3
0.1
0.0
Sample:
Average
Sample:
Suspended Sediment Discharge (Tons/Day): 12
susi9/J 4 -2'1
-
0.1
1.0
1. 7
0.93
98.7
(). 9
0.3
0.1
0.0
·~.-5-1-;f·
' '
"-.~.<
•'
· ......... .
-~· '
•
.. .. .
L
....
TABLE 4.6
-R&M CONSULTAN.TS, INC.
SUSJ?ENDED S.EPiMENT ANA.t.YSIS . .
SUSITNA RIVER AT VE.E CANYON
Date:· ,· -May 20, 1981
. Wa~er Temperature: S.SI;)C
Instantaneous Discharge: 9810 c.f.s.,.
~ample No:.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Size
(Microns)
<10
10.-..20
20-50
50-100
>100
Time Station
4:34. p.m. 00+50
00+75
01+00
01+25
01+50
01+75
02+00
02+25
02+50
02+75
03+00
03+25
03+50-
5:25 p.m. 03+75
Particle Distribution
% by Size
Sample: 4 Sample:-8
97.42 97.77
1. 74 1.69
0.72 0~46
0.10 0.08
0.02 OwOO.
Suspended Sediment Discharge (Tons/Day):
susi9/j 4 -22
REW.: 00+05
.LEW: 04+00
Sediment (ms/1. ~
150
130
120
120
140
120
130
130
120
140
140
130
150
130
Average 132
Sample: 11
97 .78· c\
_1.54.
'0 .. 47.,
0:19.,,
o.oa-·
3 483 I .. -· ..
,·, t
,•)
Average
97.66
1.66
0~55
0 .. 12
0.10
, __ s· _-.,-_o.r<··
""""" . . _· . -~ Ql
-'-
··'
..
1
i .J
i ..
1
1
l
l
1
l ;
.,.
1 ..
·•
TABLE 4~7
R&M ,CONSULTANTS, INC.
· · SUSPENDED SEDIMENT· ANALYSIS
~ -. '
SUSJTNA RtV'ER AT VEE. CANYON
·Date: -June 18, 1981
Water Temperature: 11. 9°C
I n~·cantaneous Discharge: 11 1 600 c. f. s· ..
1
2
3
4
5
6
7
8
9
10
11
. 12
13
14
.. . ..
Size
(Microns)
·Time
2:30 p.m.
3:15 p.mo
. Station
00+50
00+75
01+00
01+25
01+50
01+75
02+00
02+25
02+50
02+75
03+00
03+25
03+50
03+75
Particle Distribution
% by Size
SamPle: 4 Sample: 8
REW: 04+25
LEW; ·tmTOO
Sediment (mg/1.)
300
310
310
300
310
300
300
310
340
320
340
320
320
350
Average 316
Sample! 11
99.05
0.62
0.23
0·.08.
·-Average
-
r'l .
l . ""'\ :.
•·. .
· ..
<10
.10•20
20-SO
50-100
>100
97 .. 88.
1. 70
0.39
0.0~
0.00 ·.
98.49
1.19
0 .. 25
OoOS
0.01 0.02
98.51
1.17
0.29
0.06
0.01 .. ~) ,•.
Suspended Sediment Discharge (Tons/Day): . 9 1 860
susi9/j 4 -23 ~ .. .,s-tcr
. ' . . . '
• .
~· \
' .......
•
TABLE 4.8
R&M CONSULTANTS, INC.
SUSPENDED SEDIMENT ANAL YS!S
SUS.I"'T"NA RIVER AT VE~ CANYON
Date: . Jl.lne 30, ·1981
. W~ter Tempera~ure: 7. 9°C
REW: 04+00
LEW: 00+00
...
... '
~
._. .,
Instantaneous Discharge: 13,700 c. f .s.
·§~mple No.
1
2
3
4
5
6
7
8
9
10
Size
(Micronsl
<10
10-20
20-50
50-10(}
>100
Time Station
S:OO p.m. 00+15
00+40
00+80
01+20
01+60
02+00
02+40
02+80
03+20
6:30 p.m. 03+60
Particle Distribution
% by Size
Sample: 3 Sample: a ;a
98.26 97.14
1.48 2.5~;
0.23 0 .. 2~'
0.01 o.oa·
0.02 0.01
§ediment (ms/1. )
Average
Samp!e: 9
97*95
1.90
0.11
0.01
0.03
140
160
195
180
160
200
180
190
160
150
172
Aver~se
9'7. 78.
1 .. 98
0.19
0"03.
0 .. 02 .
Suspended Sediment Discharge (Tons/~ay): 6,339
susi9/j 4 -24
l
"'
-i
1
.J
i
J
"~-
~ .. .....
' l
-'
_..
J
1
i
l
j
1
1
1
j
;·]
)
< 1 J
1 ~ ...
• !
j
.. TABLE 4.9
'fi&M CONSULTANTS, INC.
susr~~·eNDED SEDIMENT ANALYSIS
SUSI'l"'NA RIVER AT VEE CANYON
Date:· August 2, 1981
Water· Temperature: 8. ·1°C
Instantaneous Discharge: 26,375 c .. f.s.
R r:.w: 04+1.5
LEW: 00+00
Sample No. Time Station Sediment (mg/1. )
.
1
2
3
4 s
6
7
8
9
. 10
. ' .
Size
(Microns)
<10
10~20
20-50
50-100
>100
-4:00 p.m. 00+15
00+40
00+80
01+20
01+60
02+00
02+40
02+80
03+20
4:45 p.m. 03+60
Particle Distribution
% by Size
Sample: 3 Sample: 6
91.82 93.22
6.02 4. Sff_
1. 77 1.62
0.26 0.26
0.13 0.05
Average
Sample: 9
94.90
4.04
0.93
0.01
0.06
Suspended Sediment Discharge (Tons/Day): " 59 1 526
susi9/j .4-25
600
710
905
850
840
S30
960
860
840
830
839
Averag!.
93.31
4.97
1.44
0.20
0.08
~--·~
L. ~ -
••• . .
~ '\ .
••• ~ .
.. ... . ..
• '-.
. f
. TABLE 4.10
R&M-CONSU'L TANTS, INC.
SUSPENDED SEDIMENT ANALYSIS
SUSITNA RIVER AT VEE CANYON
-Date: August 3, 1981
Water Temperature: 8.1 °C
Instantaneous Discharge: 29,420 c.f.s.
Sample No.
1
2
3
4
5
6
7
8
9
10
Size
(Microns)
,<10
10-~0
20•50 ..
50-100
>10
Time Station
8:00 a.m. 00+15
00+40
00+80
01+20
01+60
02+00
02+40
02+80
03+20
8:45 a.m. 03+60
Particle Distribution
% by Size
Sample: 3 -Sample: 6
95.54 95.59
3.39 3.35
0.92 0.91
0.08 o.os
0.07 0.07
REW: 04+15
LEW: 00+00
Sediment (mg/1. )
805 ....
860
705
705
770
790
750
760
725
680
Average 'df55
Samel~: ·g. Averag!,
'94.54 95.22
3 .. 64 3.46
1.42 1.08
0.29 0.15
0.11 0~08
Suspended Sediment· Discharge (Tons/Day): 59,750 ..
susi9/j -4 -26 .
·f"l . ·-::::-". .· • .. ....,_-.. 'c;....-.., -. c... c......
Z: .
1 • j
1 -.
.; .
1
TABLE 4.11
-R&M ·coNSULTANTS, INC.
SUSPENDEO SED1MENT ANALYSIS
~USJTNA RIVER AT VEE CANYON
· Date:. August 3, 1981
Water Temperature: 9. 8°C
Instantaneous Discharge: 28,000 c. f.s.
REW: 04+15
LEW: 00+00
Sample No~
1
2
3
4
5
6
7
8
9
-1·D
Size
(Microns)
<10
10-20 .
20-50
50-1·00.
:>100
Time Station
2:30 ·p .• m. 00+1.3
00+40
00+80
01+20
01+60
02+00
02+40
02+80
03+20
3:15 p.m. 03+60
ParticJe Distribution
% by Size
Samole: 3 Sample: 6
93.69 95 .. 55
5.02 3.60
1.03. 0.69
0 .. 21 0.13
0.05 0.03
Sediment (mg/J. )
730
545
590
510
720
670
550
595
570
675
Average 616
Sample: 9 Averag_!
95.32 94.85
3 . .59 4 .. 07
0 •. 82 0.85
0.2!1 o. 18
0.06 0 .. 05
Suspended Sediment Discharge (Tons/Day); 46,400.
$(JSi9/j 4 -27 2--5-Z$
-· ..
;/~~--r:~-t. "1
f ·~ -·
.,I '
' ' ~ ;
•·_".\ . " . . ~'
--
.. . -
L
' •
TABLE 4.12 .
R&M CONSULTANTS, INC.
SUSPEND.ED SEDIMENT ANALYSIS
' ' ,. : ~~
SbSJTNA RJVER AT VEe CANYON
Date: September 15, 1981
Water T-emperature: S .. 9°C
Instantaneous Discharge: 7790 c.f.s.
REW: 04+10
LEW; 00+00
Sample N~
1
2
3
4
5
6
7
8
9
Size
(Micronsl
<10
10-20
20-50
50-100
100-250
250-500
>500
Time Station
---.w.
12:45 p.m. 00+40
00+80
01+2!)·
01+60
02+00·
02+40
02+80
03«.-20
1:30 p.m. 03+60
Particle Distribution
% by Si&e
Sedi~,nt. !mg/k) ~ • >
54
so
44
43.
49
46
62
32
44
Average 47
Sample: 3 SamplE!.: 6 Sample: 9 ~verage
97.60 97.53 96.90. 97.34 1.65 2.03 2 .. 61 2.10 0.47 0 .. 28 0.26 0.34 0.06 0.04 0.04 o .. os 0.10 0.07 0.12 o.to. 0.12 0.00 0.07 0.08 0.00 0.00. . o.oo 0.00
·.•
Suspended Sediment Discharge (Tons/Day): 98!;1
susi9/j 4 ... 28
\
1
:
j
..;.
..
.:
TABl..E 4.·13
R&M CONSULTANTS, INC.
SUSPE~DEO SEDIMENT ANALYSIS
SUSITNA RIVER AT GOLD CREEK
Date: January 14, 1981
\Vater Ternperature: 0.3°C
·Instantaneous Discharge: NA
S~mple No. Time Station Sediment ( mg/i .. 1
4
5
6
Size
(Microns)
<10
10-20
20-50
50-100
>100
1500
1515
1535
Left Bank
Center-
Right Bank
Particle Distribution
% by Size
Sample: 4 Sample:
80.0
7 .• 5
9.2
2.5
0.8
_.
Average
Sample:
Suspended Sediment Discharge (Tons/Day): NA
susi9/j 4 -29 '
4.1
10.6
10.4
8.4
Averaaf!
80.0
7.5
9.2
2.5
0.8
,,. ... ~·),., .
~ '-.
'J"--·-'"'·
• -~ ~:::.--, r
... . ~
1.
••
TABLE 4 .. 14
R8.tM CONSU l.T ANTS I INC.
SUSPENDED SEDIMENT ANALYSIS
SUSITNA RIVER AT GOLD CREEK
.Date: May 27 1 198'
Water Temperature: 10.5°C
Instantaneous Discharge: 14,400 c. f .s.
REW: 04+34
LEW: 00+56
Sample No~ Time Station Sediment (mg/1.2 --
1
2
3
4
5
6
7
8
9
10
11
12
Size
~Microns)
<10
10-20
20-SO
50•100
>100
4:11 p.m. 00+90
01+18
01+46
01+74
02+02
02+30
02+58
-02+86
03+14
03+42
03+70
4:40 p.m. 03+98
Particle Distribution
% by Size
Sample: 4 Sample: 7
97.94 97.29
1.62 2'.23,
0.36 0 •. 46 o.os 0.02
0 .. 03 0.00
Suspende~ Sediment Discharge (Tons/Day):
susi.9/j 4 -30
73.
71
64
69
71
75
69
68
64
5·1
53
49
Average 55
Sample: 10 Average
'
97.94 97.72
1 .. 62 1.82
. 0.36 0.36
0;;05 0 .. 04 o.og 0.02
2,520
-·--4' "· '
J
• 1 f A
j
j
..f • J
~
1
' ..;
....
J
i
J ..j
i
' J
l
1
1
~
J
..,
i
..1
1
1
. . ·
':.
~
1-.
~ ...
...
TABLE 4.15
R&M cqNSUL TANTS, INC.
.... ~
. SUSPENDED SEDIMENT ANALYSIS
SUS.ITNA RIVER AT GOLD CREEK
'Date: June 17, 1981
Water Temperature: 12.8°C
Instantaneous Discharge: 17,700 c~f.s .
REW: 04+13
LE\V: 00+00
· Sample No. Time Station Sediment (mg/1.)
1
2
3
4
5
s
7
8
. 9
10
11
12
.. -..
Size
(Microns)
< 10
10-20
20-50
50-100
)100
4:30 p.m. 00+50
00+78
01+06
01+34
01+62
01+90
02+18
02+46
02+74
03+02
03+30
5:-10 p.m • 03+58
Particle Distribution
% by Size
§_ample: 4 Sample: 8
98.24 98.32
1.64 1.25
0.06 0.30
0.06 O.jO
0 .. 00 0.03
Average
Sample: 11
97.76
2.15'
0.06
0.03
0.00
Suspended Sediment Discha.rge (Tons/Day): 7/i90
susi9/j I
4 -31
160
180
150
150
180
160
150
150
140
150
130
110
151
Average
98 .. 11 , .sa
0.14
0.06
0.01
·~-i
)
·........v
..
:·· ~.
' .. .
~
"--•
TABLE 4.16
. R&M CONSULTANTS, INC.
SUSPENDED SEDIMENT ANALYSIS
SUSITNA RIVER. AT GOLD CREEK
Date: June 30, .1981
Water Temperatu_re: 7 .3°C
Instantaneous Discharge: 24,550 c.f.s.
REW: 04+14
LEW: 00+00
Sample No. Time Station Sediment (mg/1.)
1 8:00 a.m. 00+84
2 01+26
3 01+68
4' 02+10
5 02+52
6 02+94
7 03+36
8 03+78
9 10:00 a.m. 04+20
Average
Particle Distribution
% by Size
Size
(Microns) Sample: 2 Sample: 5 Sample: 8 ··--•
<10 97.85 96.28 95.64 10-20 1.97 3.34 3.85 20-50 0.16 0.36 0.48 50-100 0.01 0.01 . 0.01
100-250 0.01 0.01 0.01 250.,.500 0 0 0.01 >sao 0 0 0
Suspended Sediment Discharge (Tons/Day): 12,060
o;· $.:;.< J 4 -32
230
190
190
210
180
160
150
160
150
180
Average
96.59
3.05
'0.33
0.01
0.0,1
0
0
---~---------...----..--..... .....;........._,._~;__. __ ,.,.,., ........ .
.•
.it.
;·.1· ..... ' . r .. : ..
1 ....... ...ill:·
;: ., ..
':j
. ~
:1
:1
•:1· . ..-
. ~~-j
:1
:1
. t
1
'j
' t !
1
J
J
!
1
~
1
..
I
l
TABLE 4.17
R&M CONSULTANTS, INC •
SUSPENDED SEDIMENT ANALYSIS
SUSITNA RIVER AT GOLD CREEK
Date: July 1, 1981
Water Temperature: 8. 6°C
!nstantaneous Discharge: 21,900 c.f.s
REW: 03+90
LEW: 00+00
~lmple .. No.
1
2
3
4
5
6
7
·a
9
. 10
11
Size
Q!J.icrons2
< 10
10-20
20-50
50 .. 100
>100
Time --··--Station ·-
1:00 a.m. 00+-~0
00+70
01+00
01+30
. 01+60
01+90
02+20
02+50
02+80
03+10
1:45 a.m. 03+40
Particle Distr·ibution
% by Size
Sample: 3 Sample: 6
97.04 97.73
2.:74 1.81
0.19 0 .. 33
0.02 0.04
0.01 0.09
Sediment (mg/L 2
100
100
100
110
100
110
105
110
94
99
74
Average 100
Sample: 9 Aver~ge
96.82 97.20
2.87 2.47
0.28 0.27
0.01 0.02
0.02 0.04
Suspended Sediment Discharge (Tons/Day): 5,900
susi9/j 4 .. 33
'Z-s-~q
} .
•
.. -
L
·~ •
TASL.E 4.18
R&M CONSULTANTS, JNC.
SUSPENDED ~£01.MENT ANALYSI-S
SUSITNA RIVeR AT GOLD, CREEK
Date: August Z, 1981
Water Temp.erature: 9 ~ac ·"~.
Jnstantaneo;..rs ~ischarge: 51,000 c. f .s.
REW: 04+20
LEW: 00+00
Sample No. Time Station Sediment . (mg/1 • )
1
2
3
4
5
6
7
8
9
10
Size
(Microns)
< 10
10-20
20-50
50-100
100-250 '
250-500
>500
12:00 noon 01+12
01+40
<n+Sa
01+96
02+24
02+80
03+08
03+36
03+92
1:00 p.m. 04+20
'Particle Distribution
% by Size
Sample: 2 Sample: 5
98.39 97.56
1.08 1.63 .
0.34 0.55
0.05 rl~04
0.12 0.15
0.01 0.05
0.01 0.02
Aver,age
Sample:· 8
97.90
1.80
0.29
0.01
C:16
'0 .. 03.
0.01 '
Suspended Sediment Discharge (Tons/Day): 57,600
susi9/j
260
250
380
270
300
450
750
640
450
450
420
Average
97.95
1.44
0.39
0.03
0"14
0~03
0.01
:; .
'
..J
-,.
i
1
':·
t .. .
.!i
;
l ..
"!
·'
"'
TABLE 4.19
R&M CONSULTANTS, INC.
SUSPEND.ED SEDIMENT ANALYSIS
SUSITNA RIVER AT GOLD ··cREEK
Date: August 3, 1981
Water Temperature: 9.2°C
Instantaneous Discharge: 46,000 c. f.s.
REW: 04+20 ·
LEW: 00+00
Sample ,No·~
1
2
3
4
5
6
1
8
9
-1\0.
.. -..
Size
(Microns)
<10
10-20
20-50
50-100
100-250
250-500
>500
Time Station
12:40 p.m. 01+12
01+40
01+68
01+96
02+24
02+80
03+08
03+36
03+92
1:15 p.m. 04+20
Particle Distribution
% by Size
Sediment (mg/1.)
850
1200
900
850
770
875
780
720
560
600
Average 810
Sample: 2 Sample: 5 Sample: 8 Average
97.90 97.05 97.59 97.51
1.52 1.93 0.64 1.36
0.41 0.61 0.58 0.53
0.04 0.19 0.04 0.09
0.12 0.17 0.10 0.13
0.12' 0.04 0.04 0.03
0.00 0.01 0.01 0.01
Suspended Sediment Discharge (Tons/Day)! '100, 000
susi9/j 4·-35 ?--5-31
"-<· '.
H.
..... ·,.,
\....,
• •• >
.. .. .
4
TABLE 4.20
R&M CONSULTANTS, INC.
SUSPENDED SEDIMENT ANALYSIS
SUSITNA RIVER AT GOLO .CReEK
Date: September 14, 1981
Water Temperature.: 6o8°C
Instantaneous Discharge: 12,600 c.f c$.
REW: 03+78
LEW: 00+00
Samele. No. Time Station Sediment (mg/1.)
1
2
3
4
5
6
7
8
9
10
Size
(Microns)
<10
'10-20
20-50
50-100
100-250
250-500
>sao
1:00 p.m.
1:30 p.m.
00+84
01+12
01+40
01+48
. 01+96
02+24
02+52
02+8.0
03+08
03+36
. Particle Distribution
% by Size
Sample:. 2 Sample.:_ s
97.60 96.51
1.63 2.85
0.39 0.44
0.18 0.01
0.13 0.16
0.07 0.02
0 .. 00 0.01
45
75
94
112
84
47
67
42
72
47
Average 69
Sample: 8 Average
97 .. 16 97.09
2.18 .2.22
0.60 0.48
0.03 , o·. o1·
'0.01 0.10·
0 .. 01 0 .. 03
0.01 0.01
Suspended Sediment Discharge (Tons/Day): 2,S40 ·· ·
susi9/j 4 -96
<'
' .
-]lli._ ::~ .;~~. ; ~ -·· -..
.·
.. .....
..--...
. ·
"~ .. , _ ..
~ ...
. •.... ' ~. 'J .
1
j
' . 1
J
1:
-t
~ .
~
1 ..
..i
;-··) ... ..
~
J .. -: ... .
1
j
~ • -
'1
.f
! .,. .,
j
_(
4
J ,. ...
t ~
' .
t •~ l ! ,.,.
i
?
f
1
r16/t4
:' .
:
ATTACHMENT D
PARTICLE SIZE AND CONCENTRATION ANALYSH~
OF LAKE AND RIVER SEDIMENTS FROM ALASKA. ' . ' " -
t f"o
i ...
1 •
. ·•
PARTICLE DATA LABORATORIES, LTD.
115 Hahn Street • Elmhurst, Illinois 60126 • (312) 832-5658
September 14, 1982
R & M Consultants Inc.
5024 Cordova
Box 6087
Anchorage Alaska 99502
Attention: Mr. 3rett Jokela
Subject: · Particle Size and Concentratio1n Analysis of Lake and
River Sediments From Alaska
PDL Project: I-6849
Gentlemen:
Introduction
Seventeen samples of lake and river water were received for a
standard electronic particle size and concentration analysis via
the Elzone computerized particle size analyzer.
Four samples were subjected to a density gradient analysis to
determine the relative density of distribution of the minerals
present.
A pe~rograpnic analysis was conducted on four samples via polarized
light microscopy to determine the relative quantities of the various
minerals present. All microsoope observations and density deter-
minations were. conducted by Mr. M. Bayard.
Results _--.,__... __
The results of the petrographic analysis are listed below in Table I.
All samples are similar in mineral content except that the lake water
has a .smaller aver.age partice size distribution than the river water.
We would expect this because of sedimentation effects present in the
lake water.
Table I
PetrograEhic Analysis of Susitna R1ver and Eklutna Lake Water Samples
Mineral
Augite
Quartz
Diatoms
D-1
Percentile
5 to 10
15
15
7_-5-35
. ~-
. ~··· i " ·' .-""'· < •
PARTICLE DATA LABORATORIES, LTD. .. '"'l· ~ .. _4«_"_
SeDtembe:r 141 1982 ~-& M Consultants,
PDL Project I-6849
.
Inc.
Table I
.. ..
. ..,..
Petrogra~abic Al1!l sis of Susitna River and Eklutna.. Lake Water Sam le.S
Mineral
-.....
'
.. .
Musoovite
l~ixed Feldspars
:r::ron Oxides
Illmenite
Percentile
15 to 20
25 to 30
10 -15
about 5
Calcite l -2
·"--· Table 2
Density Distributions
!ample
. Susitna Rivet Depth Integrat~d
.s &.,., ,. :.II(. A "', """~ ,., J I -t 8 :a.
Composition Percentage
<
Eklutna :take 2 Jul 82, STA 8, 4SM
Ek.~utna Lake 2 Jul 82, STA 8, SM
. 60%.
.15%.
25%
SO%
10%
10%
70%
15%
lS%
Eklutna Lake 2 Jul 82,· STA 8, 15M 70%
25%
5%
D-2
Density
Range
2.7 -2.9
2.9 -3.2
2.6--2.7
2.80 -2.84
2.90
2.48 ... 2.55
2.85 -2.90
2.90 -3.05
2.6S -2.85
2.74-2.80
,!;: '
~2-. 74
. 2.a -3-.9
_I
1 ..
l
l
i
1
·1
1
PARTICLE D11TA LABORATORIES, LTD.
-3-
Septernber 14, 1982
R & M Consultants, Inc.
PDL Project I-6849
Table 3 summarizes the concentration and size distribution data for
each of the required samples. It should be noted that these-sample
were dispersed in a 4% by weight ~odium pyrophosphate electrolyte
and ultrasonically treated so as to eliminate an agglomeration
that may have occurred between original sampling, transport and
final analysis.
Your data appears in two formats:
l) Frequency Data
2) Volume or Mass Data
The frequency data .is analagous to a microscope count in whicr: c:;everal
hundred particles are sized and tabulated by their projected c..' .uneters ..
Standard fine particle mathematics are then used to calculate the
various statistical parameters. In an electronic analysis we typically
count between 50 thousand and 100 thousand particles per sample.
At your request, we have performed a concentration analysis for each
sample. This additional analysis i!: included 'With each particle siz
distribution run• Due to the limitations of the technology, the low--
est size measurable is a function of the largest size present in the
sample (dynamic range). This limitation in one form or another is
present in every type of electronic particle size analysis. The data
is reported. on the basis of counts/liter of sample over some indicated
~7ange. This range must be considered when evaluating data. Since
all d~ta is in permanent magnetic storage, it could be possible to
nc.,rmalize data about some common reference point a:t a later date.
Tha mass data is analagous to a sieve analysis in which the results
are expressed as a weight percent greater than or equal to an in-
dica·~ed sieve (micron size) •
I
Concluding Remarks
Due to the vacation schedule of Mr. Bayard and the arrival of your
samples, no photographic work co11ld be completed at this time. Upon
his return on September 27, your pr?ject will ~e his primary ~oncern.
If you have any questions regarding data or techniques involved in
acquiring your results, please do not hesitate to conta~t us at
Particle Data Laboratories.
Respectfully submitted,
~.:Y~k
Richard Karuhn
Director
RK/lk
o-3
--
-·~ '~ . ...:.;;,:,.-~""'
~
f. '•.
PARTICLE DATA LABORATORIES, LTD •.
... 4-
September 14, 1982
R & M Consultants, Inc.
PDL Project I-6849
Table 3
Concentration and Particle Size Summary
.Sample. I.D. Counts/Liter Mass ·Median Count Median
Siie Size
l. Susitna River 8/r•/6'-
Depth integrated 761814,800 16.67 2.89
2G Lake ·Inlet 50 Ft.
Upstream 34,2~6,000 46.25 3.44
3. Lake Inlet
Creek Mouth 129,360,000
.
4. 18 Jun 82,.STA ll, 20M 84,783,000
5. 17 Jun 82, STA 4, 24M
6. 18 Jun· ~2, STA 9, 14M
60,.946,000
51,786,000
7. 17 June 82, STA 4, 19M 104,788,000
8. Lake Inlet Surface 71,148,000
200 Ft. into Lake
9., 15 Jul 82, STA 9, 1M 129,180,000
10. 15 Jul 82, STA 11~ 1M 52,254,000
11. 15 Jul 82, STA 9, 14M l8B,495,000 . . .
12. '15 Jul 82, STA 11, 28M 19,034,000
13. 2 Jul 82, STA a·, SM 145,691,.000
14. 2 Jul 82J' STA 10, SM 229,.996,000
15. 2 Jul 82, STA 8, 15M l9ly1Sl,OOO
16. 2 Jul 82, STA 14, SM 126,603,000
17a 2 Jul 82, STA 8,45M 284,282,000
D-4.
25 .. 46
12.83
3~6·8
3.10
3.56
4.86
3.10
4.09
2.10 .
33.34
3 ... 56
3.10
3.32
3.32
3.95
2.89
1.93
1.53
1"'53
1.53
1.82
1.53
1.60
1.53
la59
1.76
1'076
1.68
1.76
l. 76 ...
--
'
"'
J
~·
CONCENTRATION ANALYSIS BY COMPUTERIZED ELZONE 11ETHOD
~
1 R & M CONSULTANTS!" INC. ...
'4
.~ J SAMPLE I .. D. :SUSTINA RIVER DI::At=·TH INTEGRETED Rj"f· 232 BY USGS-S'o.-fO le-i t!ljrJ/82.
COUNTS/LITER:768149000C0.96-23.84 i'1ICRONS RANGE> I T;~BUf_ATION
:
DATA ;t,;,
SEF·
: ID 6649 DATE Q • 1 SIZE-NORMALIZED COUNT DISTRIBUTION j TOTAL = 768149
l !:HNL SIZE COUNT I:HNL SIZE COUNT CHNL SIZE COUNT J 18 .95 93 !SO 2.89 23333 !32 8.76 1958
.,
~
19 .99 47 51 2.99 24496 :33 9.07 1612
. -::t
I 20 1.02 165 52 3 .. 10 21988 84 9.39 1246 21 1.06 3138 !53 3.21 21931 85 9.72 1113
..
22 1.10 6105 54 3 •. 32 21779 86 10.06
J.
1092 } ""'-1.13 7069 55 3.44 19824 87 10.42 959
..:;~
24 1.17 6536 56 3.56 18018 as 10.79 891 25 1.22 6872 57 3.68 19199 89 11.17 728
.;
26. 1.26 6915 58 3.81 16353 90 11a56 834
t ..
$ 27 1.30 7364 59 3.95 15741 91 11.97 499
"" ~
1 28 1.35 7553 60 4.09 14761 92 12 .. 39 734
:: 29 1.40 8969 61 4.23 12780 9,.. 12.83 458
;;
~ ~ 30 1.45 8780 62 4.38 11792 94 13.28 478 I 31 1.50 9592 63 4.54 10915 95 13.75 441 l 32 1.55 10462 64 4.70 9014 96 14.23 353 33 1.60 10649 65 . 4.86 10284 97 14.74 306 34 1.66 11539-66 5.03 8917 98 15.26 348 f 35 1.72 12945 67 5.21 8027 99 15.79 191 36 1.78 14664 ·68 5.39 . 7311 100 16.35 178
1
37 1.84 14944 69 5.58 7053 101 1.6. 93 186 38 1.91 14931 70 5.78 6538 102 17.52 138 39 1.97 17636 71 5.98 5269 103 18.14 137 4<> 2.04 18526 72 6.20 5101 104 18 .. 78 85 41 ., 1?' 18392 73 6.41 4017 105 19.44 93
.........
42 2;1'9 19363 74 6.64 4086 106 20.13 93 43 2.27 21562 75 6.87 3738 107 20 .. 84 38 44 2.35 2.0977 76 7.12 3488 108 21.57 57 45 2.43 22920 77 7.37 3072 109 22.34 33 46 2.52 23553 t 78 7 .. 63 2778 110 23.12 29 f 47 2.60 25011 .79 7.90 2313 111 23.9'4 ~2 48 2.70 23971 80 8 .• 18 2096 I 49 2.79 23455 81 8.46 2089 .
! :J: j • l .
i
' .. •
i .
. . .,.
-z --s-Jcr i
l
t ~
D-5
-PARTICLE SIZE ANALYSIS BY ELZONE METHOD -PA~TICLE DATA LABORATQRIES,LDT;
1t5 HAHK STREET·-ELMHURST~IL. 66126-TELEPH6NE:C312)832-56S8
CLIENT: R S H CONSULT~NTS~ INC. 9 SEP 82 :DATE
SAMPLE: SUSTINA RIVER DEAPTH INTEGATED 6849 : JOB NUMBER
~---pie..( 11/•'1/8 ~
VOLUME <MASS> DISTRIBUTION FROM DISPLAY AREA: 4
===================~==~===
INI>ICES
VOLUME MODE = 17.32 MEDIAN = 16.67 MICRONS AND LARGER
GEOMETRIC VOLUME MEAN = 15m85 +/-15.72 < 99a21%) SKEWNESS = -.09
ARITHMETIC VOLUME MEAN = 19.56 +1-12.19 < 62.33~) SKEWNESS = .18
FOR ?LOTTING F'ROBAB I LITY ON LOG F'APER:
PERCENTILE: 00.1?. OF VOLUME IS AT 64.15 MICRONS AND LARGER
PERCENTILE: 01.0/. OF VOLUME IS AT 55.00 MICRONS AND LARGER • PERCENTILE: 06.07. OF VOLUME IS AT 42.00 MICRONS AND LARGER
PERCENTILE: 22.0?. OF VOLUME IS AT 27.50 MICRONS AND LARGER
·~. F'ERCENT!LE: 50.0% OF VOLUiiE IS AT 16.67 MICRONS AND LARGER
PERCENTILE: 78.07. OF VOLUME IS ATY"" 9.72 MICRONS AND LARGER
PERCENTILE: 94.07. OF VOLUME IS AT 4.68 MICRONS AND ·LARGER
PERCENTILE: 99.0% OF VOLUME IS AT 2.63 MICRONS AND LARGER
PERCENTILE: 99.97. OF VOLUME IS AT/ 1.65 .MICRONS AND LARGER
COUNT <FREQUENCY> DISTRIBUTION FROM DiaPLAY AREA: 5
===========================~== . INDI~S
COUNT MODE = 2.79 MEDIAN = 2.99 MICRONS AND LARGER .
GEOMETRIC COUNT MEAN = 3.11 +I-2.69 ( 86.597.) SKEWNESS = .12
ARITHMETIC COUNT MEAN = 3.87 +I-3.30 ( 85. 06/~) s•(EWNESS -.33 -
FOR PLOTTING F'ROBABILITY ON LOG i='1~F'El~:
PERCENTILE: 00.17. OF CQUNT IS AT 31.59 MICRONS AND LARGER PERCENTILE: 01.07. OF COUNT IS AT 16.93 MICRONS AND LARGER • PERC.ENTILE: 06.0/. OF COUNT IS AT 9 .. 07 MICRONS AND LARGER
....... f•EJi•CENTILE: 22.01.: OF COUNT IS AT 4.86 MICRONS AND LARGER F'EKCENTILE: 50.07. OF COUNT IS AT 2.99 MICRONS AND LAI''GER f•Ef~CENTILE: 78.0% .OF COUNT IS AT 1.97 MICRONS AND LARGER f•ERCENTiLE: 94.0/. OF COUNT IS AT 1.30 MICRONS AND LARGER G., -:-S-4/0 PERCEN.t'ILE: 99.07. OF COUNT IS AT .86 MICRONS AND LARGER PERCENTILE: 99.9% OF COUNT IS AT .61 MICRONS AND LARGE·R
D~6
~.·.l,
.~
,,J
CLII;NT: R l·M CONSULTANTS, .INC. •. 9 SEF' 8.2 :Di~TE
SAMPLE: SUSTINA RIVER DEAF'TH I NTEGATED 6849 :· JO.B NUMBER
F'ARTICLE SIZE VS. COUNT (+) AN.D %OF COUNT LA~:GER THAN SIZE (~)
GRAPH -FROM : TO : · -S~~IP: ? = 1
f) 25 so 100 75 r If a !1 ~ a e If ~ e a If a 8 e D ! a e 8 D a • 8 8 8 D D e e 8 D ! 8 e 8 8 D 8 D e If 8 D e 8 e D ! a a D 8 8 8 ~ 8 e e • ~ e D e ! .26>+
:::'~~-'
.3S>"f-
)·+
'' ... 46>+
·:. ... + . .
.61> + ..... ... +
• SO> +
> +
1 ,06> +
~ .. +
1~40> + .•.
+
.. •'
1.84>
> + :1 ..
2.43>
> +
3 """l"' .• ·~ .. ,=· . +
+ .. :. ..
4.23> +
+ > + 5.58> + > + 7.37> +
"'> ... +
9.72> +
> .. . + " 12.83> +
~-=-+
16.93> +
~:-+
29.47>+ ....
~a ..;} ' J ...
. ...
67.71)+ ' -. ;
. J f i . I . .. 1\~ • a· • • • • ·• • o .• • • ·w "' • u • a • 11 '• ~ • • • • a ~ • • • • • • 11 • • lf • • • • • • • • • • • • .., a • 111 • 11. .., a ·•· • • • • • • 0 32768. 65536 98304 131072
-~,"'
~~5:.-t..fl·
rl-7
-F'ARTICLE S1ZE-ANf'l-YSIS BY ELZONI!: i'1ETHOD -I:. ARTICLE DATA LA~ORATOii:IES. Ll>T .. =
115. HAHN Sl~E:ET -ELMHUJ;:ST 1 IL. 60126 -TEL.EPHONE: ( 31:2 > S32-!5~SS .
CLIENT: R & M~'-CONSULTANTS!' INC. 9 SEF· 82 :DATE
SAMPLE~ susri~A RlVaR .DEAPTH INTEGAT~D · 6•49 ~ dOB NUM,ER -. . ' . . s /i"J /9 a. .
~~"TOTAL IN TABULt~TION~ TOTAL COUNT ul~ VOl-UME IN ANAl-YSIS TABUlATION .
DATA -ID 6849 DATE 9 SEF'
SIZ-E-NORMALIZED COUNT DISTRIBUTION
TOTAL = 2562671
'Cj
CHNL SIZE COUNT CHNL SIZE COUNT CHNL SIZE COUNT
17 .26 2 44 1.72 83684 71 11.17 166.95 18 .28 2 45 1.84 95044 72 1la97 15209 19 .30 7 ·46 1 .. 97 104955 73 12.83 13726 20 .33 13 47 2.12 113761 74 13.75 12011 21 .35 20 48 2.27' 121048 75 14.74 10339 22 .37 36 49 2.43 12'6674 76 15.79 8r::!7 ~ w 0 23 .40 61 50 2.60 129700 77 16.93. 7061 24 .43 108 51 2.79 130000 78 18.14 5749 25 .46 189 s~ 2.99 12792·2 79 19~44 4613 ~
26 .49 .310 53 3.21 123576 80 20 .. 84 3629 27 .53 494 54 3.44 116384 81 22 .. 34 2848 ,. 28 a 57 771 55 3.68 104605 8"' 23.94 219.8. . ..... 29 .61 1219 56 3 .. 95 93646 83 25.66 1700 " 30 . ~ 1894 57 4.23 83757 84 27.50 1297 .,·ow·
31 .70 2802 58 4.54 75163 85 29.47 970 32 .75 ·4057 59 4.86 67722" 86 31.59 740 33 .so 5752 60 5.21 61104 87 33.85 552 34 .. 86 8211. 61 5.58 55593 as 36.28 408 35 -. 92 11483 62 5.98 49383 89 38 .8.9 292 36 .99 15408 63 6.41 42748 90 41.68 207 37 1.06 20258 64 6.87 36863 91 44.67 148 .38 1.1$ 26118 65 7 .. 37 32648 92 47.88 100 39 1.22 33615 66 7.90 2.9119 93 51.31 66 40 -1.30 42359 67 8 .. 46 25859 94 55.00 38 ...
41 ·1. 40 51554 68 9a07 23078 95 58.94 18 42 1.50 61548 69 9.72 2.0520 96 63.17 a 43 1.60 72106 70 10.42 19528 97 67 .. 71 2
DISPLAY AREA: 4
·.
..
CLIENT:, R .. -~-M ·CONSULTANTS. INC. 9 SEP 82 :DATE
. SAMF'LE:: SUSTii~A RIVER DEAPTH INTEGATED 6849 : JOB NUMBER
F'ARTICLE SIZS" VS. VOLUME J+) AND ~ Ol= VOLUME. 'LARGER THAN :~rz·E <~>
GRAF'H -FROM : TO : -S~{IF·: 7-2
0 25 50 ' 75 100 ! • • • • ~ • • • ~ • • • • • • ! • ~ u • • • • • • • • • • • • ! • • • • • • • • • • • • ~ • • 1 • • • 0 • • • ~ • • • • • • • ! .86>+
::=-+
1.08>+
:::--+
1.36>+
1. 72) +
~· .:=-+
2.17> +
.... ·"' 2.73>
3.44>
>
4-!133>
5.46>
>
6.87>
8.66:>
10.91> •..
•• <#
13.75>
17.32>
'
+
... .
..,1 a·a~·. .. . ,..
27 .. 50>
34.65> .... ...
43.65>
55.00>
69.29> +
\.
+
+
+ ...
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
·.
+
+
+
>+ ·i
! • • • • .. • • • • • • • • .. • .! "' • • • • • ... • • • • • ., • • -! • • • • • .. • • • • • .. 0 • • ! • • .• • • • • • • • -~ ~ • • • ! -~"
0 2.09715E 6 4.19430E 6 6.29146E 6 8.38861E 6
D-9
•
• -·
. .
PARTICLE SIZE ANALYSIS BY ELZONE METHOD -PARTICLE DATA LABORATORIES,LDT
115 HAHN STREET -ELMHURST,IL. 60126 -TELEPHONE:(312>832-56~8
CLIENT: R & M CONSULTANTS, INC. 9 SEP 82 :DATE
SAMPLE: SUSTINA RIVER DEAPTH INTEGATED 6849 : JOB NUMBER
. 8/17/P'-.
,.,TOTAL IN TABULATI!JN= TOTr~L COUNT OR VOLUME IN r~NAL YSIS
TABULATION
DATA ID 6849 DATE 9 SEP
SIZE-NORMALIZED VOLUME DISTRIBbTION
iOTAL ~37958937
CHNL SIZE VOLUME
12
13
14
15
16
v :t7
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4., , ..
43
44
45
46
47 .
48
49
50
.93
0 #
It I 0
1.00
1.04
1.08
1.13·
1.17
1.22
1.26
1.31
1.36
1.42
1.47
1.53
1.59
1.65
1 .. 72
1.79
1.86
1.93
2.00
2.08
2.17
2.,25
... ~., 34 .....
28
83
132
2710
8325
12435
13461
15742
18071
21502
26292
32378
37812
46650
54497
65754
84213
107601
122573
146675
186290
213372
246935
305980
342995
419729
492249
573849
2.43
2.53
2.63
2.73
2.84
2.95
3.06
3.18
3.31
3.44
3.57
3.71
3.86
,4 .. 01
. 618739
682656
785169
836380
902038
1004350
1033747
1153894'
1238607
1305394
1386599
CHNL SIZE VOLUME
51
52
53
54
55
56
57
sa
59
60
.!, 1
62
63
64
65
66
67
68
69
70
71
72
73
74
75
. 76
77
78
79
80
81
82
83
84
85
86
87
sa
89
4.17 1461136
4.33·1520464
4.50 1615831
4 .. .68 1716951
4.86 1819602
5.05 1954195
5.25 2037958
5.46 2198857
5.67 2326588
5.89 2469201
6.12 2517390
6.36 2603621
6.61 2697760
6.87 2795345
7.14 2921287
7~42 3138735
.. )2 3262085
rS.02 3439966
8.33 3578517
8 .. 66 3773250
9.00 3985998
9 .. 35 4175116
9.72 4400951
10 ... 10 4720822
10.50 4994368
10.91 5259312
11.34 5592651
11.79 5915794
12.25 6386353
12 .. 73 6673118
13.23 7060864
13.75 7290997
14.29 7671742
14.85 7876144
15.43 7874619
16.04 7906464
16.67 7987280
17.32 8000000
18.00 7928014
D-10
CHNL SIZE VOLUME
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
1-;19
120
121
122
123
124
125
126
127
128
18. 7'1 7937483
19.44 7~47236
20.21 7853900
21.00 7727175
21.83 7575461
22.68 7281022
23.57 7090060
24.50 6872016
25.46 6659054
26.46 6419549
27.50 6266254
28.58 5990698
29.70 5842865
30 .. 87 5579647
32.08 5327950
33.34 5071671
34.65 4798201
36. 01 45438.90
37.42 4221621
38.89 3998038
40.41 3737836
42.00 3487012
43. 6'5 3262757
45.36 2854257
47.15 2620499
49.00 2346607
50.92
52 .. 92
55.00
57.16
59.40
61.73
o4.15
66.67
69.29
72.01
74.84
77.7_9
80.t~3
2132528
1741967
1511037
1180547
843250
532023
296192
164476
99567
21072
6287
12678
9292
--'
SUSPENDED SEDIMENT SIZE DISTRIBUTIONS
. . .
FOR. THE SUSITNA RIVER AT:
1) MACLAREN RlVER NEAR PAXON
2) DENALI
3) CANTWELL (VEE CANYON)
4) GOLD CREEK
-· -------·· -· "'!"·--
·'
"j,:.fs,tt-: .... "~3"~-_.:/. ..:tc .,~_~qo .. !i .... P-'3 :c_ J./o~-· s-1 67 __ ro 95 _../t;o ~~
;A_ds.t __ ~ ?;."Jtl£_--~p ___ .....5.1& ---_S;9.l.c.?__ I "l; ,_ e,_ . '-?: ____ 3 ;-_ --·-'!J.P _k_7 __ ·-. ~'1 -~b. --!it:.:-' __ ...c
-ft!/"f~, -~~30.. _ .?-:.1 ~. 2. n-1 'J '! [_O _ .• :-__ -. ... . _ . _ _ ·-_ "3d., _ -·~I ___ .....;J'lf_. __ 9.t:*f:...,. teo
.· !"f·.,/!~. _ ~1 o$9 .. ;?:· 2-. !-_-;.&.j ~,_ ttov . 1 J' '2.S" 35"' '-/'l-s-2 t~-77 Cf I . 9¥ 1'
t./ d:.r>-.---lrf-'1£.,. .:l z /CfO __ !.!?':" .. -----------... _._ --... --------·--~':' (,.~7 ----· :?( ___ 'j e ____ _/.C
7 hfbo _ . __ ?-J S:,JO _ f.~ _ 7 ~-"7 _ _ ~?"':! ·-. ~~ ... _ 7:_lf 3 "2 . '-/' _ .• ~3 ?~ J> 0 . .t:t~ , f4' l 0
;J;.-.f:::o __ :..:1-.?.~.~Q__---~bS" --~r.{GO __ . ~-z.. L1'----~-~-3d' ... ~&/. .... ?~-----~j. _9_'1_ ____ q_tj __ _.jo
.,1:/t.'r _ .. ~1 VO..._ . !_ ':4;. •. -~1:2 __ .3/2:-~_'?_ . -'-~. _ ,_-; ~ 3[:, .4~--.J?r-.. ~~· :. £!5"'. .. _ ~ i' {':
r!:"l-lk.L-. -.::..·b~CJ. _____ r ' -~G_'3o_ ___ _l~_ooD _____ ~?..-. --JO .... WJ:::_ .. sS. .. __ 'j_y_ -·-... ?~ _______ ¥_'] ---qs--ft.~-/C:
~!;rh-.. 3_.$"~~-' _.....Jt.3..!!:f__ ~· b!l~ __ _}_? __ ::l...c.l __ )~·:L 4 ~ ~!:!_ ____ f:._k __ ___10 -cr ') CJ9 I'-
~(;..j.J,:;...,__~~7-P. ___ ~-~~ ~----';L'ro ... --1:7 .. 3-E£... _l.~ __ _!_'f__.J3 ____ 'i!/_· :...f?._L ___ . ~.f .. ____ fd' ______ ff __ ... 'rct · _ '!: . ·:-;"' . . . . .
7/. ·-· ·. .~ ?J>O . lf ... _;:~7 . ---~~'}~---=---s---· 1_3_ _ ~j_ ... _ 4~---·-£"L.-.. -~ 3 --·-·-'=tf' __ 'J'1 .. __ I'?!:_
!,Jif. s-~o _____ J _.:z(p.Q.___J_o1 t.foFJ 10 2..c.' 2:S: .!:/_g _____ ':/'1.. _ ~~---'?.-~ · ii! --~' ,.. I-~
.,f,dk"-.. -~0 . ___ /..5':-...... :Js-'! _ -~~-'2.v_ Lfi. ___ ~t/_ .. 3'-/ ':/.7... ___ 6:::3 .. &.~. ___ ]_'-/_ '8J~. ,7_ ____ {&:'
=t~J~!L..-!f-L:1.D .. .3-'-'~----2.9.... 2._74 ___ - -.:= __ .=::. ...... --=----~-:;·:2... S8, ____ 73 ___ ,. ¥9 -~ ... /C
,f~olt:?~_21 t,"iQ ___ Is-____ ..s:_fD_.__~9w __ ;;..1 _ ~~ ___ 3., ____ -~f ..... .£'1. ... "-;. __ ?.~ ----~er ____ tj'-/ ____ !
.,fi.(bs: __ 2J. f1o ___ 1_3 __ ~--_ ?.!Ji) ___ -~-5:):,..~ _ »_ ___ 3.'-____ 1{( __ s':J ... _ t:,_7... __ 7 ~-... .8~ e;.tt 9."2 ___ 1 c
i::A(~:s-____ ?.~=1--_3£. ---~-__ --~ .. ----'1~--~--=-.... _:-______ -:-:.-_. _-:-_____ .f:l5: ;:l-.-. ~·.~ . <!'f.) __ ...i.l!.. •
;/3}/,C. ,. .... -~~l~r:J ~-'-----5:~1. --4~~-~--I e>_~(' ____ ;.l ...... ..=/ ?-. .. __ f-1_'1_. . . S"':(. . ~-~-7/ ___ /_'(_ ____ (':_
1'/~':1/"--~~'to ___ j_g· __ .__ .. !:11?_ --?J81g .. :-·---:: . -::--··-_ .~ _ _ ---·-·-· -s-~_ . '? ~ S'f' tf<f ... lQ
er /;:;/"'' . ,.. .f.~':l '·-· _ ~.2 ... -. _ .kS'". . . ~!?---=-. :-::-::. . . . - -4 ~. ___ "f.?= 8'1 .. 1 a o_ . _/.q
::.l!k!G..'2~~~~-"J-() . ~ ·. ·-·-'rJ'L_ .. fj.3_'{_t!_. __ '-~---'?-~? l/-cJ
-;f:.~lh7-.. 41 030_ --· 3.. .. --_1.77.. ~3?." --1?. 01 '2.~. '3 6
t}lf,}i.::L __ Q2-r?_ ... _P-:.S: ~ -·---1/i'-/.0 • !..t ~P.O. __ 7_ . !._0 .. 15""_ l '1._
-, f,~f7t/. 2:;...,~'!. _ t.~ _... .. . S?s-' _ ~2or1o rs--.. 2.. ~ .~t:t 38
-,f.2sf.,r_~ 2,1o0 .. (_?:-_..,. q "-"---.:=t-'l'Lo _I t . . 1 G, .A 3 .. .1.~
•
' ~ ~ .. ~ ---· -·-~ -
!· ..
,.. ......... .;.. ---.. . --·--· .. "" ..
__ £_Jj ···-.. bl __ S''f.. _;:¥>. q~ ___ fj'
.tt s:. s-? . 7.;. q 5"' q er _ it.:
.'.2:-4 3/ . .3:1. ~-~~-. -?f:>~~--lt;?J
. L.f· .f1 b ""£)· ... .. • ~ t? ; . 'f "&.... .. 'f..Cj _,.:to
_'{J.. ---:_ --·----=--. _ _::-__ .:...._ Cf_:i,.., _.._ ... J.C
.. --.,.... '!""" ... .__ .
··-~ -· __ ,.---·--..•• :. ··-· -• ..... • ---· -----·--1-•• ... ·----·-·
__ " ____ ., ...... -... ... _,._ -•. -. .................. ~ ....... .....
... ~·---~~-_____ ...._~·----~----'"'~~!' -__ ,_ .. _ ·---------·· ·-·-... -___,_ ___ -'!. ___ tll _____ .,
·--... ll:--
·--'!"· ··--,._-
··-··-----·--~ .. --.
r 1. __ S'k.sf• Sec) • !;fl "jj,C.,,...-I!'"r
;
i -·· ·-... ?r. r.:,r., 1fta14
. .
i .
-.
-~ • j I \ --/=. . .f .. ,.,t..y . If""'\. ----.---...
~)'·· I -
t .... .-
i ~ .. -.. I '=' . t ~'-. I I" ... . • ~ ··-:::,.. .... ,~11:' ... "" .o.J,.-, . .,~z ...... -. 2 .. ,.. ,4!5t'.-.:-,.; __ ,....., J
llr-./£_~-· {?70 __ j_Q __ ... _...;2.J~?-:.c.? ... '~:J~_o _::.E __ k8 __ 3~~-_. &/3.,.... _s'"o &.] ___ .. -;;s-_ .. t' _ Cf.:> :::
7/~_~[;_'6_. _ _J..].f: v ___ !/ ____ . ...:J.r'i.iJ? __ _;t:,r;.:P_ .. 10 _!1 __ . I 8 _____ ?::f:, . _ :-s-_____ £E._ __ --~ ~ __ S.E ____ 9L__;
~/:_:/~a.~ ... ~t~rJ _ .?-? f'1'l-..-·ptJ 1r .. zl :..1 3'-'to p r:' ___ J? 9 '1. ; .
.,/tUf9 _ S)bl.o ?-_! s-9').. t:~no l~. 1'1 :21 2..7 J~ ~r; _ ~I a?-c:t_3 _ _;
· :/,.~J ~q __ ~f._ 'I c) :. __ _[_7__ ... ·'"" 0 '-[o~ _ ;.£'!:' ,_,-:_ __ 2.-~-___ 27 __ 1 ~ . _ .S:J_ -·--b 7 · __ ? '1 ____ ~ 3 ____ !0'= 1
'f/lf,[!"_! ____ I;'J70 3b -:.t~B ~,3~0-. ---~'-(-~ d'.l_. _q l?: I
;f":J,t}:_...__J./t-';ftO ___ ~S"" ____ :;:2..~. _JCr~~~. ~'l.-2-i _ ~-~ ... 1/8. ~r;> __ {:,g ___ -::?f ___ qj ______ _lor:?_ ___ _
7/f:/btJ __ -~ ~b0:_ __ /0 _ _J.;J:_ ?0 __ ,::z~_'/oi? ___ /:::!_ __ ~2--; ____ .?_9 ______ ~-, __ .!:f..'J_. ____ p ~ .:_ ____ 79 ----!!11 ..... ____ -~-7 ____ _/
;:J'l.:fc.p· __ ..J:,_?::$_0 ____ l_Cj . _ fr_f.?_?fJ_ -'-~!.oo_ ./_'] ___ .:a.o _ ·z..-r: __ .. 3':/.. _____ :/_':/ __ ·---~~-----?!. ___ ~1 ______ fqo __ _L
?/'5-lkJ. · !,o?Q ___ . J 2.____ , ~,.~~-3). ~o.o ---1-!_. __ _1 1 --'-~--__ ?:_c_/_ ____ ~_fj ____ 5_~-_ -~L_'-i ____ EJ.~-__ :
I ~ .
t/z:f=.!_..J..!;-3f?()_ _____ 3 __ ·-~ F:;g q_~t!.;q _ .1 C) ___ J. ~-_ -~ '/ ____ 1") ____ f_b _____ {;,3. __ . 8 ?_ . -~-:/ '--· 9? ~ .,__ !
j ~ ~/-:.._:}_~'1.. _!.1;1.0° 3 '-t-;,?f~--_4~ :~9.. ... .!L __ ~f. __ _lf__L{_k .. _5:{:, ___ ~1-_ ?L ___ '(3 ;oo~·
7/z.-J/,7.. -~~c?~ . .ff:_ _____ J ·pa'! __ ?4$"" ~ _ --~---'L ___ ?.._? ___ J'q . ~-____ G_4. ~ ."?~ g-, ~
'l/1'~./f" --· :?-1 -;.jj'O . .:1. '-:/_ .. . ~5 S::. . 21 1~"--. '? -· 13 __ f i .. . :2 -~--• _2"f __ -~ ~ . _ _ 4b G, ~ ..,~ . '
7}3/t~::, ~-;:)~---.:2.. ---_l;rl'l~--l.'f,~t>_ ___ J-1 J.'l __ ;.1 ____ J ~ "I---· r_.t-1_ .,~ _____ q I .. q Cf_, ___ .f~
r./t_r~L~ tf,3ot)· _:3 ______ ~~~o-~i.;tqo .. te..l _ I? .. _ ?:3 ___ 3/ ___ _:;3_ .. _ n... ___ -~-J' ____ ? 't ___ . 9 ~---~ t
: 7 j,ofktd _ .'!1 ~'1"--·--· 8 ______ .. ~3E~·-· _:;,_r.,oo ___ -fQ ___ I::!_ __ -2-o ____ -:t.._?.:' ___ _33_ __ . -~~e.____ 7 '? .... ~~ . 7L ___ ,
. &J/zd~t1 ___ ¥iQ._ -3S::.._·~ _____ it?o __ ~()__ __ -__-=--=---.. -=-----:-____ .. __ .L~ _______ :zq __ .J{_ ···--_f"~ _ _!_
. ~~z.~ft:s--· '1;-lt./D _ 2£ _____ -~7;)_ ... ~3:?0 .... __ --· _-::-_ ~ .. , __ __ . _-"3"2.. . .. SJ'._ 9r.J '1 '7 I c.
?/?~[6.s__ -13u.> __ 1_5:__ ___ ~-!iOt!... --~~ '~~-. 12..:. J.~ 2.-t:-' 7..~. "3.., L/C:,-s-'"l-6~ 73 c
. 7/r.:f,s---~~0 . lb. __ ·-.~'1':/D .2:?,l41" )'l.. IS 3./ !i> 4? 6-b ·-'gO '1',. /00 I
,~h/_~;s:_ ____ ~{>!fO ":J:;-_ .. _L3_'tD ·-?ti"f~---... '-... 3 .. '-/ q s-C::, __ C( '?-:-~--b~ _____ /,
·sA-if~, ~iJO 3/ 11 .070 Sjt_U'_ .2.. 3 ' Jc.f -;_~ 33 -,r.J q'>-9-1 tc.
? /:/~--9'80 ... J_ 7. .. 1 ~ 1'l1 . 3"'5'l'0. . _t_f) I'{ _ If:[ _· 7.-'-/. . '-~ _ 3 L} '12 ___ . -~-7? c
tJ,.,du~ _: -~2..1(} .. !.'J-:. _ . . ~f7 I:~ 7D[; • L/ 8. l.l/ 2:-~. 2-., . '-(. 0 ·--_b 0 .•.. _ g Q. Cf.1.-_ J ~f~Jff:,z__ s-,?'{0 ':0 _ ··-~ lfi.O .• l~t_ov I 3 .~ .. _/{ 12.. .. 5' 1 ::Jtl. ________ qs:_ _ .. l_~_o ___ 1:.
7/if't _ ~uo G> l/!t:J 2~i€P_ ···-.1? _-:2._~ ... 3£?_ 3~ 'l'l -· .6/ ?~ _ 93 .. -tot;>---.f.
t/:A.o./t::g ... ~:B'.'Ic:t .13 __ __ l./~3v ·-"=1 ~ _. _ J.C:, 2-2-. 3 0. . ..:if?.-~~ .... .b 6 7-, q_L.. I o ~ .. -. _ __I<.
J,j,JGS.-.. -'lb3 __ qt-J . . . -~" 22-~_· .. ··--___ s,..~·-· .... b9 _ .:f 8' ___ /:;'~ .. £
?/;;j/?!1:._-:--~0.Z:Q. .. _~--------'/"3.1? .. _3~700 __ .::J-_1 __ :2:-b .-!?_..!{t_ -~-'---·-··?0 .. ?.!,...} ••. q~----~--'19 ----.0:. ~~3_qJ-,"t~--'~l()_O ____ ~-_ ~/:,90 L~~~-.2:-.2 ___ 3_7_ .t..f8 s-8. J:~S'" .. 7} ··-~~ .. _f!/_'" -~~-t~:.· .. _ Y
,f~•/7 "1~~-.1''"-· _?:-:j ........ 'J..k?,. ____ !_~t~----1.~--I? ~3 .... 3l. ___ :f.2..: _____ ~~~----··'·72... .... :?..:?L: .• i'~ .. --3: E!lad:Js:._~f! u .._ _ ___;.b. 9 rts ~,~ __ .{1-. ___ , 7· _~!:I-. j 3 . _ _:ifp__ _, r.f__ __ 'B._";h_ ____ { f.L ....... _.:i J. ,i r ..
*:f~-~{,s--~ 7[0 __ --~~ -_;-. 3! ', Jbt:? 1'1 __ ... ~b .. ? I f&' I
!"!~':Jl?~-~~.t~-___ 22-______ ~.~~-. :~ l5~--r3 . !_) ~! ____ :·~ ___ '15 _____ --~;_I ___ .6_~ ____ l.? ___ 1g 1
,,., c'> ~1 tt'o _, ft. ~":( -;., ~.~~ ~t. ,!'} .,·~ ..... ., c!_ -;! J:,,. .,~ :.:; "( ov ' I I, 1: ' s-7~ -;().., I ' J -.:;;-"1 --... !:;) I -, ... ' 7
'f/2j-,b _ ~i;.b~. . J.. 3 . 'f7 i£, '7 o(J I C. ~~ ;a~ :!6' '"li bV _ 7""3 tS 9t./ ,.
1 ~rz?L~' .1,:~2D 1>1 1!-s-"""'" -__ . _ _ -: __ .. _ ~s ___ ?.'-'.. ..,tt_ 7'cr
b/r/77 _ ~ :3,~'" 2. b /;30 'J ?$.0 2-_ /, I .f!; I b 4-, '{q b/ ... ?t .. _ t(O
-;/r-1??__ .F;S.~t?__ L)_ · ___ 1/SIO _;s_.~ov . 7. ,, . ~~ ?"3 :,(9. $'?_ b"3 7~ rf:J .. -·
2ht!-,, _ 1:; "?P~--__ L .. ··-'.r-'~"v . .?'15!!~~ _ .. 9 _ __,, .'2:~ .3~ __ ~?_ ~ s:-.. :sO. . __ 93 9'! '
!:t/2-t.f.,_., _ _!_;ICJ.f.!_ .. ~7 __ _/2-k/ .. __ 6}.-.;. ··---~ -___ ---·-·----=---~2-_____ 9?. _____ 73.__ -~-t}f_ t:
Gf?tr/7!!f__~J02 __ _j~-_____ J..,_o __ JJ-13D_Q ·--· L'-/ __ 1~-~-~---:22 _ ___3_2:, ____ ~-~ .. G I _?2 __ f, f
'1:..?1?3.. ___ ~qs_i} ·-.!. +. -. ''3."'/ l.b,o.q{J_ --'2 Q --:!-_,.. ____ 3~-----"! - -s:ti._ -· G.J -.. 72-__ 3.,?. . '18 !~
'i 'ilQCj -c!ir'O:-;~ -JbS" ,,:;~ ---;-_~--!.;_ ·_-_-~ -----·-~-----·---;-----''~-_6::L.. --;~---· .... ··-~~---~ .. ~'"'f.L __ J,S"# .;_ ··--~ ..... ...f.E'2.. .. ____ __ __ _ . ·_ &f . ---~9 .. _.. ,
::.f;;.'!Jso. _ -"ltoo .:a. 3 3(;7.-1.1, a.() rJ ,, 2. ~ 3o . :1' ... __ 4..'-' .. 5"1./ ~4 ;'{ 9tJ:... tt:.
S'hlf/BJ_ ____ ;t?_,_r), __ _..2-_b ______ $';_?~ .. ~I ill,'?_ __ . 12. 1"/ _____ ?:£.._?-?_ "3.~-___ s-:"[ ___ k:;__ ?-, d-?';'1 _ ---~
b/:..-U
1
BJ. ~~;b · _?_ -·· J.j,.'?:: .. ~f:'o~ ~ ._ ~.., .. _'I'?. ___ .S:¥_ ... ,.., ____ ?? -· __ f:Jo _____ qfj ___ /c
1/2-1/SJ__ .11J'2-r)P_ • / .. ~ _ ••. !9:? _ 1~:-c~ ... --=------~----.~~---'1?-:: ___ n.._. _tg_ _____ -,~ · ... 'f?f_ q? __ (.c
:l~.slti--J,J.Q~---Lk ___ ... __ J.s . .rL. ~~-7'P ____ ,, _ ~~. _ 2.;1_ ___ ;_:/_ ___ ~ 9 _____ s.f~·---_.ro ___ ?.'J __ . __ 1fl __ _J.J
• .. , ... ""' ... ... ....... -
_, ·~"' ---. -~ .. ~ ..
•
--..-...
. -. ~--
------__ .. ___ .. -...
.... ----
•
... . _, ___ --'"" -_, __
---···---·---....... -:. .... -..
... ~ .... -·-
----y;.-.-. ·-~-.... "' -·-·-
'
--.......... -
... ...... ---.... --··,-
.... __ .......,. ... "'!, .. -... -
-.. -.__._.._._ -.... ~-, .... -~
'' " . 'r' /. -----. --~~ --.. ~......_~~·--... _..._.,_,. .. ------.._.,..... -.----
!
I
~r 1 : ,. · · <rt -""" . i -. ., . .~r· "'.~ ..
, t .. . l
" 0 .... t • J ~' _!(.f\, '
,. t t
• o4• ~It) : ( r~-r/riJ~,J
• I
I j--Sw..s('· Se'rJ, f"c.ll J:.,·" ... ,.(er
I
I ---·---~ F ,('t' 1(tQtll. ' -·--..... • I J t .
;.e~zl't~ •• eo'!~""' ,l"eg,.,"" .~:~rf, .... NI .&!/~-, .cf.z,.-.12!',..-
://ft.,_ __ ~3,tlJ'! ____ f:':L. __ 21 ;_q!?_. _)6~.r:~! _·!3 ..... 23 .. 3_1. 3<:t. __ -{9 G3 ____ 7_1 'lo_
-J/J.<:k~_:_u,r_-:;_~---~f:J.~--.B_L"-. __ _;?,.5~.,-~ . .:::.1{ ~:l..·-·· "38. -·-·1g_ ~J' .. _ b.'t _?{:,~
9/,.fb-:-: .:·~~~~~ . ?:-.'2. 2.1q .. -~'E~ '{_.to I? ~~ . ____ :_o .~:r _ ~~-_ i>.'!
·;z;A:. _ 1S,4:)V _ J. 7 .. 4os . '',f,;t) 10 . 11 1 !J ~ o -::.~ 3l:f _ s-'1 z-:.
·-qb -
9-, l
~;~ -~l
II
Cf7 >l
;(;-/~!:. .. -.:a~p.0!2 ____ ?. __ z,.,~~ _f_ll~l.;.J _ _!1. --~I_ ___ J.f:. ___ ~~ -.-3'£.__ s:.1. ___ ?.o ________ ';.l/ -· _'1~ ~-·j
?/-z_db3. ~~#ou _ . ~-1,3~Jt> ;~~c>cJ -· q ... 172... I? -;._.J _ .3'-f . !,;'*() bl .2f::..
q !'! /f::.:S~ 121.£?Q. ___ _?-?-_ .. " .i7Q _ ,.'J._(;1 b~O _2;0_ . ;..~-. 1.~ t.{ 3 !"!' ~ ( _. .2~ _ _. _i_f___ ..
~L-aok~ ___ 61.f.~tl-·-.3 'f ____ l{, .. ··-?.7 t.f7_C?· __ . _I~ ___ /!" __ .,.?-~--_ ~-"? _. _ }b,_ 4_'/-. ___ .. 5""¥.-. ___ 71/
"(;{ ':/ ___ ..!do,f::E ____ CJ./ . ~f:-,9.. __ L1rj.r)!?.rJ •• -::--·--~-_ . =-__ .. __ :$ ______ .s4> __ _ "'"
-y(-;::;/qr../ 1~,~"0 ~~ 720 ~'l. .,," ,,_,_/_Cj_ __ ~-~-2.1.._ Lj~-----f~----~~ ??
~ {q{~r.I_ ___ Sj.'-£.;_ --~2 :z._()o _. ~i':I..L .. -~-___ -:·---=----:: ___ -=--_ '{~ _ _ S'"j .,. 7~
:d.fkk.r 2.~~" ~-IJJ:c!'? ... _?..~3o"_ ___ _!_i_ __ ~'7--:?~ .3..~. ___ :f'J ______ ,t;p ___ /"3 _____ ~'2~---
--,J.r4itz.--~J~.~. __ .4_3:._ __ g9'~--2'ttfc£. _ !..:57. _ ~'?.-___ .ll_::r _____ s I_ ~.., ·--, ~--;2
r/dJ.te_ I..P..,fDO ___ -; 1. _ _:,eo ·-'~i~v__ '7. 1 ,_ 1., z2-. _ ~~ 3 'i' . ~'-7~ I
ct/:ct..~!~-_fl,.?."~-. _;._f ___ .. _ t:r .. e'3 . --=----··· .... ·-· _. _ 1b 4_q 74 I
&/.7f,,., 'i20a_ J _'t__ .. _ L/1'7 _ '',t?.tJP... s--1 _,3 __ '? _ __ '2.:~ _ .. "3 7 _ _ __ n_ -· __ e3 ___ __ q 8___ _ ,
~J~o/o:; __ ~t_~r.i_ ----'-·-----~':f.Q._J:?11!!!._ ____ 1_3 ___ , :z.! _____ 3.'l.. __ 4 L __ s:_I ____ C._~ --·· 7_-, t:f_l __ ICJ_tJ ·--
-; .bJk:L.!.~---3-j_ ______ -~~~ __ . .z.!~~ ___ .Ll.._ __ L'i_. _ ~.X ___ ~2.-_."ff::, ______ f:,____ .:2 '-··-~--"' ?_ 't_'j --'
t/-;:;/J,-,_ ;I,,Jfil) __ !~---]~8 __ 3_'/;t.oo ... 1';2-. : '" -23_. 30 -· ~-? '-li ft:,/:, sct 91 /:..
:1_[-:.J.':J_ .7/fSiJ _____ i~---__ t.f"L} ____ ~l:to. 12. ____ 1? .. ':-3 :.-a .... 33.. '3? J./'3 7"
. b t?Jr.; _J5j6" tJ .!G. _ 3i.P. !{J1 3ov _ . . . 3S"' S2.. <6 3
7/2 .. '1_/~y_. ~ "J.IJil 10. 1/l"io. '"""0..-1 7 .. ·-.:J.. '-( $"l-J.{S )3 7 I . 7.'1 . q J
t:t4J /c..
'?'! -I
Cf ~--. (L
s/t;Jbr ~b'1d_ 30 .72& t~ooO -33 &..) 8' I 97 /
'fi4f{bf-15jf"., __ . ~~= I,I'i>O _ ?~l{oo ~ "3. 3 I . "3{:, _ s-D b 2. 7) .. 83 .. :f!-: q'1 I
/{:._rtft:t'(_....JtJ1 &rJ_0_ • .'Z-7_ 7/J. -;c>JI.foO IJ 1?. 2-$"_ 33 '/;, s-t:,. ______ ?_!_ ei>... .9'1 .
. . $"'/.lj,fi;£ .. ~~ :(oO 2:-.S:. bf::l .. ~3ot~ r-.. . R -~-0 43 . 5'_9 .. _ .~9.-_ ... 3s-_ /
?/1?L7t?. to/too ~" b3"2.. 1?, bat? ... (3. . I? '3 ~ "S 1 6 3 .8~ --'?&
S}.t.l/:zo ·-· J::1 !tJ.t2... __ ?-3 .S"q2.;. __ {~3r?.0 ...... 12-. 1¥ z ':l-. _ :2-Z _ . :s, s-.~0 68' ... a'_'? . '(P . I
I
tt/t1/~o ___ ."'{v'io ___ _"33. .. 2:'3&::, ~'/&to CJ IS'. '2.1 _:-__ q~ ~3 .· 7b __ t:?~~_,~ /~
~ ...... ~ -
ip4.l' l_J~:l.!'JL .. .I?---:--·-11 ?l?a _ b~ ,..,Q .z ~ .32 .. '}6, ____ '1_(:,_. _ ss> . . & ? .. ?.'7.. .. 9.1 _.. 'l~. _ L
. th;/.?:.L ... 11'""-_./.'2--: .. -· '1:1=-.1131 f~_q_ . -~q -·'·-"~-1.3. 4":1 s-.':1.. 6' _ .. 8'2-.. 96~ 100 J'
8/Jo/7'2.!-'_I~!Jot'.._/..S ..•.... ¥&./<1._ ____ '1~;/_'!'?__. _Lt./ ___ Z'"l-.~!.-. -~' ·-f.lf ___ .• _f.S: ___ _21./. __ ..;J'f;;,_ __ . _ "Y~:=-~:~
----·---------~.........,. __ ...._._ .. -----------· -.-·---.__. --......;;.-.. -· --~-----------..~---. ......._~.
2-5-50'
..... ·------. . _.. . -;-~ . -i . . . . r . --.. -· . ---. , , , -,-f·1;~~-" ·,• ' ?'a J,.· "l~~ ~· .{ . : : ,.., c.r I· l . s-~ • p . S'e.l • ru t »· • • , ,.,
1 -" . ·I . -. . . . I ~ -,. . . . l I . -------4 _:-~=w. .... .E:J.~..., .... ' .. . . cQ .. t. : .;.·!(~. . . • -~.-...._ --... _F:.-~~. ilta.... -. • -· -.• -'--· • -.-_·/.:: .f. ... :&.Y :• lf.t;,_
' I · • · t I !ni~ . j(c{r\ ~ ,c.,..-;~);,(.']_ ~'":'f~n. (t;f•f_itl.~'!l Le:z.,.,.., .• :o'!~""' . .-csl'ft...\ .e-Jf. .. ~. ou""-~ .qt-z,....,. A J-;t ....... ,'2sr..,-
~ ·.·._-. ..
---.. .. ~
7 /rr:,f53 -___ 2/17CQ.._ ·--..!.E.: ----4+tq .. -9 ~3='0_ -'-'-. -:2."/ -... ?-::--.. ~':/. --"! I 7 7._ -_J' 5--~"" --. --/O:')
--~f~k?.;--~ 1 ~"!0 --.-~--tL_!/L'=--·-11-:.i:; ~ _ 1$" · _2_! __ .-~.s: ___ ........ '-/"/. ___ -.._s:_._l, ·-···-!__/ ___ . ~q.'L.:.. __ :t~ __ ._I:(__;. ;:.!:.....• _
~~!~h~:·_J,~k_f!v..._ _ -H _ . _Ll_f!~ . '7{7-'~ ·-7 ' 13 . ttf 27 JjS t"2--_.. ___ !'.,.__. -'1·'-
-;j,!f)s~ _ ~~q~o .17 ~-~ 1 .£?'-"v 2 3 2-Z ;z 4tt s-q 7"/ . z-b qs-~.'1.1
7/71-21/s.r:.J~. 9.."?9_ . ...;..1 ... ___ .2.~:zo ~P-.1j ooD. ..~s---· .. ~t? --~f-__ .. ?.~ ___ fr ___ 7_:J.. __ f;, ·----~~ __ }r;o_· __...:...
s-/el~~ .. ;,..1 t:y to" •.. :2.2.. . ;oo _ ~~~~Do _. r'} ..... 2 3 . 2:.~ .~ 9 "-' 'P "-, ;o .9.?:-____ t:J_'f
· ~}tF/;c ____ l~$'-'9'"~ 3-k __ ~ ;o .. s, 110 _ 2 1 "2-b 1.!" 4 ~ ;~ G 'f_. . .E_3. -~;&::: ___ --'-'"'-~ ___ .. !.
Ff:.!f.r,-__ --~4,.0~0 __ l:) ij_~S". .l.'1;1:P0 __ .•• ::. 2. 7 ~'l _ '3f __ ~4'__ . 5"1· __ .? 3_. fJ' ___ -~ 7_·_ . 1
. ~ l~s}_! ~---~~-lr~.TJ-____ :3_(. __ --~..3 ____ . .E.o L!__ ---=-_ --~ . ___ ;: ___ __:-_____ ::. . . __ q£ ______ q f ___ , rJ..g_ _..!.t~.E ___ ,
;-/;:-_kc, ~~.l~O---. ~·. &,_'1.!:/_ __ s"' ooe)_-=-__ 1/ _____ ~s-. _ t!l ___ ;_L __ ... ~.i ... _ _6.4.-.. .. P? qq !
G./-JJ_7 .~3riq_f:?._ ...... 1..". --~:(3 _ .. ...!Jlf;~P" ... .!1.... __ Jf:, _.,. _ _!.2_ ____ '2-t./ ___ 30. ___ tj'j_ _,:z... ·-· g'} ···-. qg~ __ . . ~l• .. ·· ..• _.·',rt... __ · ___ -.-~3·()." .. ____ 7 ... -1,~10 . ,,~~!D .. ---~-':/ ___ '3_.~-"-Q_-~$ _____ fP."'------·"-~---_ cto ... _ .. &J.::J _ . .1~"---
~--.·h.-~-~!"P.~ _Jj ___ ~J$g __ -Lr!r"/)~ ... J '---~r:_l-2;. __ ':1~----~P r 1-'3 .. ___ 'J! ·~., . '"" . ,
.~(~o.b.'?._ .;.gr-~D .• __ 2..P _____ l1 0d_O _ r"'.'lrS".f!..O. ~.9. .. 3'1 . ·--'-!.~ f' ... _ ?f? g¥ . q I . '1'? 1"0
t~~/$..:l_ __ ..!_'J;_7ofL~" --~;.ftO_"".S:~3"~-2-v -~-7..-.. ...JZ_.~J! . '~----_ i:L _ ___!f])__ 9"-. too ____ _
rh,J.s!J __ ?:-~'-o_o_ !li __ ~::.oe .... !?-~R.~"' _1-/ ..... 2o ·---~r _____ #:2.-:. ___ .. s-.9 ___ "Z .. ___ €'1f. ___ 'Jb __ .L""-·-__
. r/z~tls!:J-· _;3.rt~~iL ---'-'-~-------~!Jc)V __ .J.~f!P __ _t:$_~ !.2. .. -z·~-$:1 ___ "fs _/o:J_ __ -f'~ -·· _ q_~ --'-'? ... tL..-__
: q/C:_&_, __ ,~.?t!g __ .:?·7 _____ $.1:2:-____ Zfz,;~~~--2-"---.:..'8 --.3.i _ _.__. t./._'] ___ · -~{ ____ ?.j ___ C(__f_ --~f! ____ 'l
d,tf/~')... _ . ~~"II>. ._f?,_2, ______ ~ '/.~0-..... ~i~~p ___ JL.. _/3 _ I h. _ . ~r_ .)_ '-/ f,o _ .. ?.? Cf -:J..~ • f!t' '!f. . . .•
: 7/Gf,.,_ ___ 2..!j'd..'!. __ iL. ___ ~sz. _ -S2;~-3.C? __ :_ q:;. ·. _ Sb._ ~9. .,~ __ a'/.. ?1. .. '1' leo
:. 7/IG(p ;_,_;'7fJI. /}? -. ~ 31{ lt!J, £,()0 . lq 1-.., 3'8 /"'2--~ ..f 7, 'g L Cf) . q ?' . . --·'
ff/IIJ;,~~-t.4.;~or:. ~/. __ . ~e>.!. ..... ~'~ll _____ '"'-.'-' :J-'7 "3? so 5Ti _____ 6'1 -~-'2 .. 9-:;_. __ ,
?/!.~/'"' 15jftJr) 2.~ s-t73 ~~"teo t? 2s-33 e~.; s-s &,f' ..,, 1r, et? 1
11/n/7.!/-... ~I!'V.. ... .3.b. ---__ Jt&'" Jf1.J."-"tJ __ 7o_ $J. .'18 _ t,C .. ?9.. YC. . .. _.Cf:l. .. _:t_-, /Ot::J_ ••• -~
{[til]s __ !~:1:9 ~ __ 2-?=-.. .. '--'·" . 5 "":,oq_ .t.J .. &:, • _. o; . f'j . 2. J .3 '{ ....... __ S':'l-. . . _? ~ _ CZ. ~. _ _ ,
b/.2:Prl.5; __ 35jSOV .. 3 .. ·-S.'l'l _ .. _£!:,000 S:. \ .. .LI .. J'8. ~:t----· 4?. __ --~-0 .. ___ .Jb ·-.. f;jJ ......
: 7/17/_?f' ... ?=1.1{00 : 8 . 1:130 .?'f., ?OQ. _/j ___ '-Z. 'S.~. S3 (:,' . . ... 7 -,__ ? S"" ...... 92-·-:; --_9'f!t· ___ _/ t
r/:2.5[.1.5:. _l5;3~0 _ . .4:i._ _,.2:2 .~" .. -~-3~~ __ - _ -_. • -: ·---.... :=-..... --· 7 I .. :? I ..... _'1:$* lr:>() ,_; 4 "h:l ~-' s;.s:oo .. :2-"J . -:.~ {. 2-,3 </" --. ---·---·-1/3 --s:~ . ? ~ ··--9.3. •. r ..
~'" .. ,.f._··7i~-J:ir-~q __ J_L : ...... _;~r_ t~cocJ __ ~1 _ ll ... _ tS":-~.l ... -.3.'-f_. :./ i ·-. ~:2.. . ~ . ·--~9~ .. ,.. ~~
(:(q{7b:,_ .. -a.qJ7..f?_G__/~ .. 'lo I. ~1!'i.? --"'--·-_{, ··-· 9. I~.·. 1-, _ · .. 21./. _ 2..8. _ .!./.~ .... t/ ... ,. .S
i{J/?t,. _ _Jt/1 f:Jo_f:L.P/---. -~~---~~Q.... __ :__ -.. ·---=---·--=--~--k.7... __ 2~ .. ___ }t_'i.~ _.J..~~ ·~--<
tlr.:i./.J(;, __ Le7~p_q__.2-!f ____ !:l$..l/ . ~~Boq.__!_)._ ... -L./ ___ 4..1.._. __ ]j_ ___ t;) ______ s-... rt ......... ,~ ___ .. e./ ___ ,'!J'... ~~
6-lJ -..,.,
_ _.--
. i
<-{ ! _.. ,·,..J I
"_i'!l. • • ..;".14.~1~' .. ., • .,. !
. ' · ..... ; i (\ ( t;J .. r/4~.,1
• • ,. <I!
..
l
I
.;/:~/,-, -· ;: *'!~o __ ,.l/.2. __ .1:··.':)_ . _ 1,~7-_v
:: J._:··/-;7 __ 1'1~?-tJ_O... ____ ::J ----t.I!Q. --':1 ':::: ~t? ~-
. ~ . 7 -·· _q_
..... -,:...,.
~'·-... --:/:;. ,_f_. ~.J-y
I
!
i· ---{
1
• il!f"" ....... ~ .ce:t .... -.. Jzt,. ... .~SQ ... ~. ·~ !"~-.... I.: I
I ql./ _____ 1?,.'/_ .g.7_··. 9'·--~ ~
_17 ______ 2_7 ____ '/"i _____ b'L_?~~--;:Q_ __ :ict .ll
{J.;}/7 "7 .;-.~coo o, ~ Cf, '-: /.t" oao .2-. 4 ' 1 I
..... "!" • -• ·.1-~ .. -I ... "I 40 -':...--. .-·7 . 1_. i
'l
7/~?./77 ... 2-.11 ::oiJ. 2o ~.14 ;,-,1 ~ov '" t!t :;c( 1./4 -$'/ .. _70__ ~~ q~ .. 9'1 __ . '
r/to{:J? .. ~aa.:>_ 2/_ {,~b .2£:JOO_ 13 .. ! ~ _?-1 ___ .!&f _: --~~-__ Gf__ __ :z:f_ ..... ~~ _ '15'" __ _
;/t7]-;;p ... t!f1 ~"cJ 21 ~qg _ ~b1 ~oo ~ : r r I ___ , 7 ~'1 ~ct ?e q c. i
;/i:f?..t_.,.lg:-q>J..~. ~-3-_ q:;e_ .. 4~.J!~~ __ If, I~ z.t; 'II !"*/_ '-7 _.:zi_ ttl ___ 'J? ____ _
7/roltt. ~~ 7_00 ____ 1j ______ ~~~L __ t:{},.rti.~ _((:, __ ~I __ 2_7. ____ 3;./ -~'-1..0_ ... l./ '".?. ___ ;&:, ______ 7'2. ___ ~/-·----~.
~J;j_]~Q~!.~_'fp_D ___ 3 J . ~f?IO;_ _ .391 JoD .... ~---_ 1 ( . jk__ .. 2..3 ·-----3:J.. .. _':}3 ___ LS":---. :%~ .. ---'f3 I
7/~Ja..p_ .i'i1 .'f?~.-~----2'Z. __ .,?..=t1 .~~~ • .2-._1 --~.3 __ ~_?__;;-'f 'i__l _____ 'df!t ___ ~, po _5'_7.__tr.
!"/v./2J .. _Ls-,~, ~~~-__ ;2_t:r ---· ''-'~-_?;_q'fp _ _g_ ___ Jo._ .L'/ __ ,q _ --~-~~----3_/_ .. -~ J -··-' _?. ·--9P. _ ' ·
~~~3l3_l_.!..J~~D -:J-5 . ]2./ .!5~7~()~----'?:4 ___ .3_2_!/b_$".!) ._1?.1 ___ ?0 __ :?/ __ ·--~~-·----t:f(... ___ } 'C
;/~lLti .. .!::/'2.1 '::a:) ____ ( ______ r:;J~.--!f;~oo -·-r? _2~ __ 3,.L__ 3q . Lfi._ __ s;? __ . ~-? _ .9? _ '-f 7
:;fJ7lSL _,.._,,bop __ ro .. IS"~ '"3or) 7 to :..1 2.? __ "3_& '79 {;'f e-b 1o~ li:~
------··--------------· ·----------------. -··----· --------------
----=------·-- . ----·---· -·--.,_ -·-·-----------·-------+ --·------~ ---~--"-~ -----
-.. -~'""!'---------------......--~·-----.,.---------·" --·-------·-·----------· -----·-·--------.. _ ... ~-··
-----·~-·-¥-<Of----·--...
-~-~-"'· . .. -
-·----· . ·------....... :-~ ---......-... -~-. ?--5. ~-~ !:::· ____ ._
•
' (' ~ ... ;....._ -·~,1
--~ ----· -·--··-... ~----.. ·~ .. _, __ _
-~ ...... ;-·-·
........
... •4<-••• -·~--·-------~-------.-.... -------·--~,~~~
'j \~
---..--~--··-· """!----------....... ... --..... ---. -~----~ -----------------~----~-~--~-----
... XHIBIT E
2. Water Use and Qua 1 ity
C01111ent 6_. (J?,:., E-2-28, para. 4)
' -Provide data on the contr-ibution of organic matter to suspended sediment
concentrations . at each sampling station in the Susitna River on a season a 1
basis.
Response
Suspended organic matter is technically measured as particulate organic car-
bon (POC) in samples from aquatic environments. Total organic carbon (TOC)
in aquatic environments is composed of both particulate (POC) and dissolved
( D.OC) fractions. The parti cu 1 ate (POC) fraction of (TOC) in -1 otic en vi ron-
ments such as the Susitna River may be expected to vary from 10-15 percent
of the TOC (Wetzel, 1975). Measurements of TOC in the Susitna River range
from 1 to 10 mg/1 (U.S. Geological Survey data summary by R&M Consultants,
Inc., 1982. Task 3-Hydrology, Water Quality Annual Report}, therefore POC
estimat~s in the Susitna River potentially range from at least 0.1 to 1.5
mg/1.
Two measurements of POC exist for the Susitna River at Gold Creek (see
attached data summary from Susitna Hydro Aquatic Studies Phase II -Basic
Data Report Volume 4, Appendix 4-0-6). There were on 23 June, 1981 (POG = .
0.9 ing/1) and 30 March, 1982 (POC = 0.1 mg/lL, No additional measurements
of POC in the Susitna River main channel exist to our knowledge. Additional
measurements of POC concentration exist for selected .s laughs. These data
are also presented on the attached data summary from Susitna Hydro Aquatic
. Studies Phase II -Basic Data Repm·t.
2~6-1
. ..
'" References -· '"•
(l) R&\1 Consultants, Inc. 1982(1 . Task 3 -Hydrology.. Water Quality Annual
Report. Anchorage, Alaska.
(2) Alaska· Department of Fish and Game, 1983. Susitna Hydr·o Aquatic
Studies Phase II Basic Data Report. Volum~· ~:L' Aquatic Habitat and
Instream Flow Studies, 1982, Appendix 4-D-6, Page 4-D-78.
(3) Wetzel, R. G. 1975. Limnology_. W. B. Saunders, Co .. , Philadelphia.
743 pp.
2-6-2
·,
•
' J
SUSITNA HYDRO AQUATIC STUDIES
PHASE I I BAS I C DATA REPORT
Volume 4.
Instream
and
1982.
Aquatic Habitat
Flow Studies,
A pfe,l'l.ilicU ~-;r
-by-
ALASKA DEPARTMENT OF FISH AND CAME
Susitna Hydro Aquatic Studies
2207 Spenard Road
An~horage, Alaska 99503
1983
Z-t,-3
,. .... ·.." 1. . . : .. ~~·.-: "' .. ~ ~ . : ~ · ..
.
'
J:.
' \::}
'
ORAF!
ADFG01/:t06
Appendix Table 4-D-6. Sunmary of provh.ional Wi)tcr quality data for sloughs BA. 9, 16B: 19, 21, and maJostem Susitna River at Gold·
Creek, collfJcted by ADF&G and USGS in June, July, and s,eptember, 1981, aild in January and February, 1982 •.
Parameter
physfcal ~nd field Parametersb
*Water Temperature oc
Air Temperature
Of'
Streamflow (discharge)
ch
*Speci!ic CQnductance (field)
umho /em
June
July
September
January
March
June
July
September
January
March
June
July
September
January
March
June
July
September
January
March
Slough
8A
15~5
11.2
3.5 o.s o.s
21.0
16.0
8.0
6.4
551o0
2.8
140
117
135
193
142
Slough
9
14.2
10.9
5 .. 6 o.s
0.5
20.1
14.0
7.5
2.9
714.0
1.5
14!)
12'•
113
121
143
Slough
168
14.0
9.0
4.8
1.5
2.0
15.5
---
0.7
503.0
0.3
71
72
64
59 .
59
Slough
19
s.s
9.8
1.8
2.0
1..0
3.0 ---
0.2
o~o
<0.1
l't6
127
150
148
129
..
s•ough
21
10.7
11.3
2.'•
1.5
1.5
23.0
-11.0
3.7
142.0
0.43
226
130
205
221
196
aSloughs and matnstem Susitna River were sampled o~ 2 or 3 consecutive days in each month (except January) as. follows.
Susitna River
at
8A 9 16B 19 21 Gold Creek -
June . 25 2'• 23 23 24 23
July 21 21 22 22 22 21
Septemb~r 30. 30 28 29 29 28
January 20 10 20 20 20· 20
March 31 30 30 30 30 30
bParameters f•iorked with an * are averages of transect pofnt measurements (see methods).
-·· indic~te~ data not available.
Susitna River·
at
Gold Creek
12. '• 10.5
0.4 o.o o.o
~,780.0
42,500.0 . ·a,s4o.o
1,520.0
.. --
119
172
260
266
"'·~···· .. ,.f.j.p ... .._.~ •. . .
'"'' ' ... • • '
..
DRAFT
ADFG0t/t06
Appendix Table lt·D-6 (Continued).
---..
Susttna Rtver
Slough Slough Slough Slough S1ough at
Parameter Date 8A 9 168 19 21 Gold Creek -
Nutrients -Cont 1d
Phosphorus, total June o!os 0.01 0.01 0.01 c!0.01 0.12
mg/1 P July 0.27 o.lta 0.14 0.01 0 .• 38 0.02
September .( 0.01 <0.01 < 0.01 . (.0.01 <0.01 0.02
January £0.01 <0 .. 01 ~0 .. 01 0.02 0.01 0.01
March 0.01 0.01 0.01 0.01 0.01 0.01 --
Phosphorus, total June Oo2 <: 0.1 <0.1 <o.1 <0.1 0.4
mg/1 P04 July o.e 1.5 0.4 <0 .. 1 1.2 0 .. 1·
September 0.1
January 0.1 <0.1 0.1
March <. Oo 1 <0.1 <0.1 <. 0.1 <.0.1 ---
L • 0 Phosphorus, dfssolved June 0.03 0.01 0.01 0.01 ~0.01 0.02
' mg/1 p July 0.01 -'0.01 <0.01 (.0.01 <.0.01. " 0 .• 01
'l September 0.()1 ~0.01 < 0.01 !(0.01 <0.0'1 0.01
00 January < 0.01 <0.01 <. o. 01 0.02 0.04 0.01
March < 0.01 ,0.01 < 0.01 <.0.01 -<.0.01 0.01
Carbon,. dissolved organic June 1 .. 9 2.1 1.4 1.3 2.0 2.8
~ .• g/1 c July 13.0 9.0 3.3 6.2 6.0 18.0
September 1.5 1.7 1.9 2.2 1.1
January 1.4 1.3 0.5 0.7 0!5
March 1.4 0.7 0.7 1.4 1. 'j 1.6
1 . . I
\Citrbon, total suspended org~ntcaJ June 0.2 0.2 o·.2 : 0.9l ...;.......mg/1 .... e----~ .......... ~ ... !. .. "" ........ '. ~ .... .»·J ~., ............... July 0.2 0.5 o.o 0.0 0.3 t•o .. '
September 0.1 0.1 0.1 0.1 0.1 ~--i January o.o o.o . o.o o.o o.o ---..
March o.o o.o o.o 0.1 0.1 0 1; .~·=l;J
.N Trace Metals
' Arsenic, total June 1 1 1 2 2 G
~ ug/1 At July 2 5 4 1· 5 1
September 2 1 1 " 2 I. ---
I Janul.!ry 2 2 1 2 2
,Y\ March 1 1 2 1 2 2
I .
.•. "'.~ .. · ·~ ', ' EXHIBIT E
·2. Water Use and Qua 1 ity
.,.., •-~
-Colilent ·7 (p. £-2-28, para. 41"
The discussion presented here suggests the existence of data (10/mg/L, 2o20
mg/L, 5690 mg/L) beyond that given in Table E.2.20. Provide these data.
Response
.9
The additional data for suspended. sediment concentrations referred to on
p. E-2-28, para. 4, comes from data gathered and reported by the U.S.
Geological Survey 1982 Water Quality Annual Report (December 1982) by R & M
Consultants, Inc.; Tables 2.4 through 2.11. Pertinent sections. of this
· • report are enc 1 osed •
• .. '2-7:-1
s3/U1
Agency:
Station:
Elevation:
Laboratory Parameters (1)(3)
Ammonia Nitrogen
organic Nitrogen
Kje 1 dahl Nitro9en
Nitrate Nitrogen
N
f
Ni tr.i tO Nitrogen
To.ta l Ni tro.gen
"1J
'
Ortho-Phosphate
Total Phosphorus
rJ·
TABLE 2.ta
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
R&H CONSULTANTS, INC.
'Vrr'CANVON 1980 .. 1982
,900 FT.
.27/.26/.13 ~09/.09/.13
.63/.85/.34 .22/.08/.34
.79/.C,5/.47 .26/.17/.47
.19/.30/-.09/.30/-
-/.01/--/.01/-
• 92/. 85/. '17 .39/.17/.47
.05/.02/-.03/.02/-
.ta9/.07/-.03/.02/-
(
\
.16/.19/.13 6/2/1 9/ta/1
• 49/ .l&O/. 34 8/3/1 'J/3/1
.60/.52/.47 9/4/1 9/bJ/1
• , •• ,. 30/-5/1/0 10/4/1
-/~01/-0/l/0 9/ta/1
.61/.52/.lt7 9/3/1 9/3/1
.04/.02/-,, 2/2/0 9/4/1
.1lf/.05/-6/2/0 10/-ft/1
S3/t •... '. . 'f ',.. ....
Agency:
Station:
Elevation:
lab~ ra tory Pa rame ~&.£! ( 1 ) ( 3)
(Continued)
Alkalinity, as caco)
Chemical Oxygen Oamand
Chloride
Conductivity, umhos/cm@ 25°C
True Color~ Color Units
ua rdness, as caco
3
(It)
Sui fate
Total Oissotved Solids
_ _,.,.. ·~
.... ..., ~ tf.eUl..!HJ.e~Jl!!~!!.~.§a tJ da. .J1
Turbidity, NTU
Uranium
Rad!.oac.tivity, Gross Alpha,
pCi/1
Total Organic Carbon
Total Jnor9anic Carbon
Organic. Chem5ca Is
£ndrin.
ti.ndane
TABLE 2.4 ~ continued
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
R&M CONSULTANTS,. INC.
VEE CANYON 1980 -1982
19()0 flf.
Maximum
60/66,/-
39/13/8
11/18/4.5
150/190/-
175/30/15
76/122/40
9/18/4
170/157/100
1150/1lt/93
720/2.5/25
-1-1-
-1-1-
-1-1-
-l-1-
·.
Minimum
40/66/-
8/6/8
3/16/li.5
150/190/-
5/5/15
49/78/40
2/11/11
38/115/100
25/0.6/93
8.7/.35/25
-I-I-
-I-I-
-/2/-
-/2/-
-1-1-
-1-1-
Summer/Winter/Break-Up
Mean
'-'6166/-
20/10/8
6.7/17.5/4.5
150/190/-
70/15/15
58/103/40
6/14/4
98/141/10()
3·58/6.0/93
1.56/1.3/25
-l-1-
11.6 .± o. 6/
10.3 ± ().6/-
•/2/-
-121-
-1-1-.. , .. , ..
Number or
Detectable
. Values
4/1/0
8/4/1
7/4/1
1/1/0
9/4/1
10/4/1
10/4/1
10/4/1
'10/lf/1
14/4/1
0/0/0
1/1/0
0/1/0
0/l/0
Q/0/0
0/0/0
.rota 1
·Number of
Obseryations
lf/1/0
8/4/1
10/4/1 .
. 'l/1/0
9/4/1
10/4/'J
10/4/1
10/4/1
)0/4/1
14/lf/1
5/2/0
1/1/0
0/1/0
0/1/0
3/1/0
3/l/0 .
N
f
N
lV
N
' ·~
' ·~
. s3/u3
Agency:
stat ioo:
Elevation:
La bora tory Pa I'B'!leters ( 1) ( 3)
(Continued)
Methoxychlor
Toxaphene
2, '4-D
2, 4, 5-JP s i 1 vex
Elements (Dissolved)
. Ag, s i lvor
AI. Aluminum
As, Arsenic
Au, Gqld
B, Bo:ron
Ba, Barium
I.H, Bismuth
ca. Calcium
Cd, Cadmium
Co, Cobalt
Cr, Chro~ium
cu, Copper
.fe, I ron
.uglr, rcu ry
.. '""'~·
\ .. .
TABLE 2.4 -continued
WATER QUALITY DATA SUM~tARV
SUS ITNA RIVER .
R&M CONSULTANTS, INC.
VEE CANYON 1980 -1982
1900 fT.
Summer/Winter/Break-Up·
Maximum Minimum Mean
-1-1--1-1--I-I-
-I-I-.. , .. , .. -1-1-
-1-1--I-I-_,_, ...
-I-I--I-I-_,_, ..
-;.~_,_ -I-I--I-I-
2.2/.18/-1.6/. "'/(6/-l.li/. 18/-
-I-I--I-I-_,_,.,.
-1-1--I-I--1-/-
-1-l--I-I--l-1•
.12/-/-.07/-1-.10/-/-
.19/-/• .19/-/-• 19/-/-
23/41/13 13/25/13 l!i/33/13
-l-1--1-1--I-I-
-l-1--I-I--1-1-
-1-1--1-1--1-l-
-1-1-... ,_,_ -I-I-
''· 0/.37 I. 08 .05/~37/.08 1.1/. 37/.06
-I-/--l-1--1-1-
.-'"{"·
Number of
Detectable
Values
0/0/0
0/0/0
0/0/(J
0/0/0
0/0/0
3/1/0
0/0/0
0/0/0'
0/0/0
7/0/0
1/0/0
10/4/1
0/0/0
0/0/0
0/0/0
0/0/0
9/1/1
0/0/0
. '
Total
Number or
Observi' t ions
3/1/0
3/1/0.
3/1/0
. 3/1/0
10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
10/4/1
10/3/1
10/3/1
10/3/1
10/3/l
10/3/j
10/3/l i
~)
;..r y·
.·)a
"' r
"' w
rJ
\
~.
' .V\.
Agency:
Station:
Elevation:
Laboratory Paramelars (1) (3)
(Continued)
K, Potassium
Mg, Magnesium
r1n, Manganese
· Mo 6 Molybdenum
Na, Sodium
N i, Nickel
Pb, Lead
Pt, PI a ti nw~
Sb, Antimony
Sa, Selenium
Si.6 Si I i cor; ··
Sn, Tin
Sr, Stroot iwn
r 1. Tl tan him
wp· lungs ten
v, Vanadium
Zn, Zinc·
tr •.. Zi rcooium
TABLE 2.4 .., continued.
WATER QUALI TV DATA 15UMt.fARY
. SUS ITNA f\1 VE'R
R&M CONSULTANTS, INC.
VEE CANYON ~980 -1982
1900 FT.
Summer/Wioter/Br~~k-Up
Maximum Mfoamum Mean
5.0/9.0/1.6 1. 7/2.0/1.6 2.3/5.2/1.6
3.4/7.6/1.7 1.2/3.8/1.7 2.4/5.2/1.7
• 10/-/-.071-1-.09/-1-
-1-1--1-1--1-1-
5.1/12.0/2.0 2.4/6.3/2.0 3.4/8.0/2.0
-1-1--1-1-.. , ... , ..
-I-I--I-I-.. ,_,_
-1-1-. -I-I-_,.,..,_
-1-1--1-1--1-1-
-I-I--I-I--1-1.-
6.9/5.0/1.7 2.0/3.7/1.7 3.5/4.,/1.7
-1-1--1-1--1,-1-
.08/.13/-.05/.06/-.06/.10/-
.24/-/;., ,13/-/oa • 18/-/-
-/.•U--/.4/--/.4/-_, .. ,_ -I-I-_,_,_
.01/-1-.071-1-.01/-1-.. ,_,_ .., .... ,_ -I-I-
Number of
Detectable
-'~"":W..ru!__
9/3/l
10/li/1
2/0/0
0/0/0
1~/4/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
i0/4/1
0/0/0
9/3/0
3/f)/0
0/l/0
0/0/0
1/0/0
0/0/0
· ·Tots 1
Number or
Observations
10/4/1
1Q/4/1
10/3/0
10/3/0
10/lf/1
10/3/1
10/3./1
10/3/1
10/3/1
10/3/1
10/4./1
10/3/1
10/l/1
l0/3/l
10/3/1·
10/3/1
10/3/1
10/3/J
N , I
N
~
(\j
\
~
\ ·"
63/U!)
( 1 )
(2)
( 3 )
(It)
: 't
Table values are mg/t unless noted otherwhe.
' All values for free C02 determined. from nomograph on P~ 297-of Standard M&thod, 14th edition. .
Samples for all parameters except c~hemJcal oxygen
demand# dfssolved and suspended.
sol ids, and turbidity were f~ ltered.
Hardness calculated by .R&M personne11,
:~.,:_,_.· . . ,.
. l
-::.-.:...
1\J
• 1\J
l1l
N
' ~
' 'tJ ...
sl/u26
Agency:
Stat ion:
Elevation:
field Parameters (1)
Di$solved Oxygen
Percent Saturation
pH, pH Ooltli
Cb:t.ductivity, umhos/cm@ 25°C
:r~mpo ra tu re, °C
Free Carbon Dioxide (2)
AlkaOini.ty, as Caco 3
Settteable Solids, ml/1
Laboratory Parameters ( 1 )( 3)
Ammonia N c tr:ngen
Organic Ni trogeo
'Kjeldaht Nlttogan
Nitrate Nitrogen
Ni tr•f te urtrogen
Tot.a 1· tfi trogen
Ortho-.Phospha te
Total Phosphorus
. '
TABLE 2.5
WATER Q~ALITY DATA SUMMARY
. SUSITNA RIVER
R&:M CONSULTANTS, INC.
GOLO CREEK 1290 ~ l962 b/6.5 fl. .
Summer/Win~er/Break-Up
Maximum
12.8/11J.1/11.5
110/101/102
7.8/7.8/6.7
163/2119/106
12.8/0.8/10.5
8.6/20/-
64/74/-
0.6/-1-
.21/.52/.08
.'lts/.81/.34
. 4.8/.99/.35
.B6/.:11t/-
-1-1-
5 .6~/1. 3IJ/(L 35
.10/.02/-
.fll/.02/.06
Minimum
8.6/13 .. 3/11.2
81/100/101
6.6/1.1/6.4
75/84/105
6.6/0.0/10.3
2.1/3.2/-
25/46/-
0.1/-/-
.02/.32/.08
.05/.34/.27
.06/.66/.34
• Hi/. 12/-
"'/-:/-:
.~5/.66/.34
.01/.02/-
.01/.01/.08
Mean
11.2/13.8/11. 4
101/101/102
7.3/7.4/6.5
128/179/~06
9"'6/0.2/10.4
4.4/10.7/-
44/65/-
0.4/•/-
.09/.li2/.08
·''9/.51J/.31
.87/.82/.35
.32/.21/•
-1-1-
1.22/1.00/.35
.04/.02/-
.12/.02/.08
Numbe.r or
Detectable
---·~ruJaes
10/3/2
9/3/2
6/3/2
15/5/2
15/5/2
5/3/0
5/3/0
7/3/2
11/2/1
10/3/2
11/3/2
10/3/0
0/0/0
H/4/2
3/l/0
10/2/1
Tota I
Number or
Obseryat Ions
10/3/2
·9/3/2
8/3/2
15/5/2
15/5/2
5/3/0
5/3/0
7/3/2
'1li/4/2
10/3/2
tiJ/5/2
16/5/2
14/fl/2
11/4/2
16/l/2
16/5/2
s3/u27
Agency:
Station:
Elevation:
tabo ra tory Pa rama t~Ws ( 1 ) ( 3)
(Continued)
A l ka I J n i ty. as Ca CO 3
N Chemical oxygen Demand
I
N Chloride .en
Conductivity. umhosjcm @ 25°C
True. Co ! or~ Co I or Un i t s
Ua rdness. as GaC03(11)
SUlfate
Total Dissolved Solids
TS S -~a.l.....Su&pandod ... EEo.Udtil'
Turbidity, NTU
N
~
~ ' .
OQ
Uranium
RadioactivitY~ Gross Alpha.
pCi/1
Total Organic Carbon
Total loorgan~c Carbon
Organic Chemicals
Endrin
Lindane
TABLE 2.5 -continued
WATER QUALIIY DATA SUMMARY
SUStlNA RIVER
R&H CONSULTANTS. INC.
GOLD CREEK 1980 -1982
676.5 fT.
:''.
Summer/Ui nter/Break-Up
Maximum
36/57/-
211/16/12
14/29/10
37/165/-
110/40/15
97/121/IU
14.8/17/6
103/188/90
1255/8/56
728/1.2/19 .. , .. ,_
5.5/2.0/-
3.8/1.0/-
12/11/-
f1i nl mum
28/57/-
1.3/2/fJ
4/9/6 .
37/165/-
5/10/10
31/67/IJl
1.0/9. 5/5
63/100/87
56/1/49
14/0.3/15 .. ,_,_
2.6/2.0/-
1. 4/1.0/-
8.6/4/•
-I-I-
~J-1-
Mean
32/57/-
10.9/6.4/10
1. 3/19/8
37/165/-
50/20/10
50/87/43
6.7/13.6/5.5
66/135/89
268/6/53
199/0.8/17
-I-I-
li.~/2.0/-
23/1.0/-
10. 5/ll/-
-I-I-
-I-I-
Number or
Detectable
yatues
2/1/0
14/5/2
10/5/2
2/1/0
7/l/2
11/5/2
16/5/2
16/5/2
16/5/2
22/3/2
0/0/0
2/1/0
8/l/0
8/1/0
0/0/0
0/0/0
Total
Number. or ..
.Observations
2/1/0
16/5/2
12/5/2
2/1/0
7/3/2
ll/5/2 ..
16/5/2
1~/5/2
16!5/2
22/3/2:
4/2/0
2/1/0
8/1/0
8/1/0
3/1/0
3/1/0
S3/U28
Agency:
Station:
Elevation:
lai:mra tory Pa ramete£.§ ( 1 ) ( 3)
(Continued)
1\l Methoxychior
I
1\J Toxaphene .......
2, '•-D
2, 4, 5-TP Si I vex
· Etements ( D i s sa I ved )
Ag, S.i I ver
AI, Aluminum
As, Arsenic
Au, Gold
8, Boron
oa, Barium
8 i, Bismuth
\'1 Ca, Calcium
( .
Cd, Cadmiwn
~· Co, Cobalt
' cr, Chromium
-Q cu, Copper
fe, J roo
'~ :~ Ug, Nercury
~~~%i~ .. ~ .. • ..• ·.·. _.,.-
TAatE 2.5 • continued
WATER QUALITY DATA SUMMARY
.SU~ I TNA RIVER
R&M CONSULTANTS, fNC. . GOLD CREEK 1980 -1982 676.5 fT.
SummerLHinterl8reak•Ui!
Maximum Min!mum Mean
.. , .. ,_ _,_,., ., .. ,_
-l-1--I-I--1-1-
-I-I--1-1--I-I-
-I-I--I-I--I-I-
-:/-/--I-I--1-1-
.70/.18/-.08/.18/-.39/.18/ ..
-I-I--I-I--1-1-
-1-1--1-1--I-I-
-1-1--I-I--1-1-
.11/.05/.07 .06/.05/.05 .09/.05/.06
.19/.07/ .. .19/.07/-.19/.07/-
33. 5/311.4/14 10/21/14 16.0/26.5/14
-/~/--l-l--I-I-.. ,_,.,. -1-1--1-1-
-I-!--I-I--1-1-
-1-1--I-I--1-1-
2.3/.35/.07 .07/.35/.07 .77/.35/.07
-1-1--I-I--I-I-
,t:
Numb.er of
Detectable
.,...., ~a lues
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
2/1/0
0/0/0
.0/0/0
0/0/0
7/1/2
1/1/0
12/~/2
0/0/0
0/0/0
0/0/0
0/0/0
6/1/1
0/0/0
...
~~:4 ·lit4
· .Tota I
Number of ..
Observations
3/1/0
3/1/0
3/1/0
3/1/0
7/3/2
6/3/2
7/3/2
7/3/2
7/3/2
7/l/2
7/3/2
12/5/2
7/3/2
7/3/2
7/3/2
7/3/2
7/3/2
113/2
'
N
I
N
co
(\.)
\
~·
l ..........
·.C) ..
S3/U29
Agency:
Station:
Elevation:
Laboratory Parameters (1) (3)
(Continued)
K. Potassium
Mg, Magnel)ium
Mn, Manganese
Mo, MGiybdenum
Na, Sodium
Ni, Nickel
Pb, Lead
Pt, Plat inurn
Sb, Antimony
s~. Selenium
Si, s i I icon
So, Tin
sr, Strontium
T J' Ti tan.ium
w, Tungsten
v, Vanadium
Zn, Zlnc
Zr, Z.i r.con i urn
~-~' ~
{
. f ·~~!'?! ·~~·· •·
. -··
TABLE 2.5 -continued
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
R&M CONSU~TANTS, INC.
GOLD CREEK 1980 -1982
676.5
Summer/Winter/Break-Up
Maximum Minimum Mean
2.0/2.7/1.9 0.9/1.2/1.8 1.6/2.1/1.9
3.1/10.0/2.0 1. 2/3.2/2.0 2.2/4.9/2.0
-I-I--I-I--1-1 ..
-1-1--l-1-~I-I-
10.2/21.1/4.1 2.8/7.1J/3.9 5. 1/ H • 1/lt • 0
-I-!--1·-1--I-I-
-1-1--1-!--I-/-
-J-1--I-I--1-1-
-I-I--I-I--/•/no
-I-I--1-1--I-I-
5.9/5.0/2.5 2.6/3.9/2.1J 3.5/4.4/2.5
-I-I--I-I--I-I-
.09/.19/.07 ~06/.10/.06 .07/.13/.07
.14/-/-.11/-/-.13/-/-
-I-I-.,jl-1--I-I-
-!-I-.... , ... ,_ -I-I-
-1-1--I-I--I-I-
-I-I--I-I--I-I-
(
~~
Number of
Detectable
vaiues
12/ij/2
12/5/2
0/0/0
0/0/0
12/5/2
0/0/0
0/0/0
0/0/0
0/0/.0
0/0/0
7/3/2
0/0/0
4/3/2
2/0/0
0/0/0
0/0/0
0/0/0
0/0/0
..
·"' .-
Total
. Number or
Observa.t ions
12/4/2
12/5/2
7/3/2.
7/3/2
12/5/2
7/3/2
7/3/2
7/3/2
7/3/2
7/3/2.
7/3/2
7/3/2
7/3/2
7/3/2
7/3/2
7/3/2
7/3/2
7/3/2
. '.•
\•"
(l) Tab~e, values are mg/1 unless noted otherwise.
(~) .All ·Values forrree C02 determlned.rrom nomograph on
p. 297 of Standard Method, 14th edition.
(3) Samples for all parameters except chemfcal oxygen
demand. ~Hssolved and suspended
solids, and turbidity ~ere filtered.
(tl) Hardness cat cu 111 ted by R&M pe rsonne t.
• i ~.J. ..... '": .. ~ ~···.·:
......... . . '.. ' ·>l ·• i
. ·····::.: ..
' . .
N
I -w
0
N
' ~
' --.....
~
s3/U22
f i e I d Pa ra meters ·( 1 )
Dissolved Oxygen
Agency:
Station:
£lavation:
Percent Saturation
pli, pH Units
Conductivity, umhos/cm @ 25°C
Tempera t.u ra, oc
Free Carbon Dioxide
A I ka I i n i ty, as caco 3
Settleable Solids, ml/1
laboratory Parameters ( 1)
Ammonia Nitrogen
Organic Nitrogen
l<je I dahl Nitrogen
tl it rate Nitrogen
Nitrite nitrogen .
To,ta I Nitrogen
ortho-Phosphate
Total Phosphorus
(l~
TABLE 2.6
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
U.S. GEOLOGICAL SURVEY
NR. DENALI 1957 -1982
21&1&0 FT.
SummerlHi nterLBreak-UI!
Maximum Minimum Mean
-1-1--I-I--1-1-
-I-I--1-1--1-1-
7.9/7.6/7.2 7r2/7.1/7.2 7.6/7.1&/7.2
226/1&67/121& 121/351/121& 161/400/121&
10.5/0.0/6.5 0.0/0.0/1.5 5.5/0.0/4.0
5.2/25/5.8 1. 5/5.5/5.8 3.1/12.9/5.8
75/161/47 1&2/112/47 55/136/IH _,_, .. -I-I--I-I-
-I-I--!-!--I-I-
-I-I--!-I--I-I-
-I-I--I-I--1-1-
.09/.07/.05 0.0/0.0/.05 .03/.04/.05
-1-1--I-I--!-I-
-1-1--I-I--I-I-
-1-1--1-1--1-1-
-1-1--1-1--1-1-
\
Number· of Total Detectable Number ar
Values ObservatIons
0/0/0 0/0/0
0/0/0 0/0/0
11/3/1 11/3/1
18/3/1 18/3/1
1&7/3/6 147/3/6
11/3/1 11/3/1
11/3/1 11/3/1
0/0/0 0/0/0
0/0/0 Q/0/0
0/0/0 0/0/0.
0/0/0 0/0/0
11/3/1 11/3/1
0/0/0 0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
i ')
I ··-*'
s3/u23
Laboratory Parameters ( 1)
(ContinuiJd) .,
A II< a I i n i ty, as ca CO ., ...
Chemical oxygen Demand
Chloride
Conduc,tivity, umhos/cm@ 25°C
True Color, Color Units .
tta r·dness, as CaC03
Sulfate
Total Dissolved Solids
IS'S >-(lg,~ ... t.l.,..~t.t~PWJdellLSoJ..i.dl
N
' ~
'
Turbidity, NTU
Uranium
·RadioactiVity~ _Gross Alpha,
. pCi/1
Total Organic Carbon
Total lnorganir: carbon
Organ~c Chemicals
'\ 'tnd~in
Li.ndane
fMaxjmym l
-1-1-
-1-1-
11/30/4.2
-/-/-
10/5/30
87/181/50
31/39/9.2
-I-/-
(U§2.ijJ.al1190 .... ,.,
-l-1-
-1-1-
-1-1-
-1-1-
-1-l-
-1-1-
-1-1-
TABLE 2.6 -continued
WATER QUALITY DAlA SUMMARY
SUS I TNA RIVER
•ttj .. :.· ·-·~· ...... . . : ,' · .... ·,
•
Minimum Mean
-1-1-
-1-1-
1.5/19/4.2
-/-/-
0/0/30
52/135/50
13/36/9.2
-/-/-
85/5/102
-1-l-
-1-1-
-1-1-
-1-1-_,_, ..
.. , .. ,_
-1-1-
-1-1-
-1-1-
4.7/23.3/4.2
-/-1-
5/5/30
67/157/50
17/37/9.2
-/-/-
1163/7/542
.·-1-1-:-.
-1-1-
-1-1-
-1-1 ..
-1-1-
.. , .. ,_
-1-1-
Number of
De~ectable
Va'l ues
0/0/0
D/0/0
11/3/1
0/0!0
14/3/1
11/3/1
11/3/1 .
0/0/0
45/2/8
0/0/0
0/0/0
ti/0/0
0/0/0
0/0/0
0/0/0
0/0/0
. ·~ '
Tota 1
. Number o.f
Observations
0/0/0
0/0/0
11/3/1
0/0/0
14/3/1
11/3/1
11/3/1
0/0/0
'•5/2/8
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0 .
N
I w
N
N.
l
~
' """'' ,~~
A.gency:
Station:
Elevet ion:
Laboratory Paramet-ers. ( 1)
(Continued)
MethoxycllJ or
Toxaph«)ne
2, 11-D
2, 4 ... 5-TP Si I vex
Elements (Oissolved)
Ag, .Silver
At,, Aluminum
As, Arsenic
Au,. GOld
B, Boron
Ba, Barium
Bi, Bismuth
ca, ~alcium
Cd, Cadmium
co, Coba.l t
Cr, Chromium
cu, copper
fe.,. lron
Ug, Mercury
~·re:
'·•, ,.
·'~7-':·R
TABLE 2.6 -cor,tinued
WATER QUALITY DATA SUMMARY
SUSITNA R(:VER
U.S. GEOLOGICAL SURVEY
NR. DENALI 1957 -1982
24ll0 fT.
Summer/Winter/Break-Up
Ma)(irnum Minimum Mean
-1-1--I-I--I-I-
-1-1--1-1--I-I-
-1-1--I-I--1-1-
-1-1--I-I--I-I-
-I-I--I-I--I-I-
-1-1--I-I--I-I-
-1-1--1-1--1-1-
-1-1--1-1--l-1-
-1-1--I-I--l-1-
-1--1-_, .. ,_ -1-l-
-l-,,1--I-I--1-1-
29/51/17 17/lll/17 21/46/17
-I-I--I-I--I-I-
-1-1-.. , .. ,_' -1-1-
-I-I--I-I--1-1-
-I-I--1-1-..;.,_,_
-1-1--1-1--l-1-
-I-I--I-I-.. , .. ,_
{
' ·~-"
Number·· Of
Detectable . values·· ''
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
11/3/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
n:~·ta 1
NUrnb'({r Of
Obsery'a t ions
0/0(0
0/0/0
0/0/0
0/0/,0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
11/l/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0.
,· ')
~ . .,i~fi.
1\.)
I w w
N
' ~
• .......... v,
s3/u25
Agency:
Station:
Elevation:
Labora to!"y: Parameters (1)
(Continued) .
K, Potassium
Mg, Magnesium
Mn., Manganese
Mo., Molybdenum
Na, Sodium
N i, Nickel
Pb, Lead
Pt, PI' at inurn
so, Antimony
Se" Selenium
s i .. Si I icon
sn, Tin
sr .. Stroot I urn
T f, Titanium
w, Tungsten
v .. Vanadium
Zn» Zinc
Zr, Zirconium
f.;k. ... ~ ·.
lUiL .I
TABLE 2.6 .. continued
WATER QYALITY DATA SUMMARY
SUS I TNA RIVER.
U.S. GEOLOGICAL SURVEY
NR• DENALI 1957 -~982
214110 FT.
--------------~s=umme r/.Wi nter/Braak-Up
Maximum Minimum . Mean
3.6/6.6/2.3 1. 3/6.3/2.3 2.6/6.5/2.3
6 .lt/16/1. 9 1 • 7/6. 8/l. 9 3.5/10.3/1.9
-I-I--1-1--1-1-
-1-1--1-1--l-1-
10/23/3.6 2~1/15/3.6 4.3/Hh 7/3.6
-1-l--l-1-~t-1-
-1-1--I-I .. •/0:/u
.. , ... ,_ _,_,, -1"'1-
-1-1--I-I--I-I-.. , ... ,_ -I-I--l-1-
-I-I--I· I--I-I-
-1-l--I-I--1-1-
-1-1--1-1--I-I-
-I-I--I-I--I-I-
-1-1--I-I--I-I-
-1-1-... , .. , ... -I-I-
-1-l--/•/u .. , ... ,_
-/-I--I-I--I-I-
l ~ Table va I ues are mg/1 un I ess noted otherwise.
Nuf.1ber of
Detectable
Values
11/3/1
ll/3/1
0/0/0
0/0/0
11/3/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
.O/OiO
0/Q/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
Total
.Number of
Observations
11/3/1
11/3/1
0/0/0
0/0/0
11/3/1
'0/0/0
0/0/0
0/0jO
0/0/0
0/0/0
0/0/0
'· 0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0 .
-
IV
I w
~
rJ
(
·~.
' .........
""
$3/tH8
Agency:
stat!on:
· E I eva t ion;
field Parameters ( 1 )
Dissolved Oxygen
Percent Saturation
pH, pH Units
Conductivity, umhos/cm 0 25°C
Temperature, oc
free Carbon Dioxide
A.l ka.l in; ty, as CaCO 3
Settleable So I ids, ml/1
La bora tory Parameters ( 1)
Ammonia Nitrogen
Organic Nitrogen
Kjetdahl Nitrogen
NitritE'! Nitrogen
Totat Nitrogen
Ortho-Phosphate
Total Phosphorus
' .· (t
C .. '
TARLE 2.7
o·
WATER QUALI TV DATA S'UMMARY
SUSI.TNA RIVER c '
U.S. GEOLOGICAL SURVEY ' .
VEE CANYON 1962 • 1982
1900 FT.
summerL~InterLBreak-ua
Number of ., Tota.l
Detectable Number «.lf
r:taximum Minimum ,M,ean ~alues. ObservatiO!l.§
,..-;· ..
... , .. ,_ ... , .. ,_ -I-I-0/0/0 otoJ6<_,··
. ':1
-I-I--I-I-_,_, ... 0/0/0 0/0/0 r
~.1/-/7.6 7.2/•/7.6 7.7/-/7.6 9/0/1 9/0/,1
187/250/136 91/250/114 146/250/125 20/1/2• 20/1/2
13.0/0.1/7.0 1.0/-0.1/2.0 7.9/0.0/1&.3 49/4/ll '"' 1&9/4/4
I
6.8/-/2.2 0.7/ ... /2.2 2.6/ .. /2.2 9/0tr; 9/0/1
59/-/44 39/-/44 52/-/41& 9/0/1 9/0/l-
.. , .. ,_ -l-1--1-1-0/0/0 0/0/0 .
-1-1--I-I--1-1-0/0/0 '01,0/0 ·.
-I-I--I-I--1-l-0/0/0 0/0/0
-I-I--l-1--1-1-0/0/0 0/0/0 . ,}
.88/-/.16 .00/-/.16 .20/-/.16 9/0/1 9/0(i
-1-1--I-I--I-I-0/0/0 0/0/0
-I-I--1-1-~I-I-0/0/0 0/0/0
-I-I--1-l--1-1-0/0/0 0/0/0
-1-1--I-I--I-I-G/0/0 0/0tO
N
I w
U1
.
--rss-
N
.1
,.1
• •
"·,:.....,.
~.
S3/U19
Agency:
Station:
Elevation:
laboratory Parameters ( 1)
(Continued)
A Ur,a I in i ty, as caco3
Chemical Oxygen Demand
Chloride
Conductivity, umhos/cm @ 25°C
" True Color, Color Units
lla rdness, as caco 3
Sui fate
To.ta I Pissntved So I Ids
~...tlJJ.!l.I.IJ!!!f!!UoJJ.d.&.J~
Turbidity, tHO
Uranium
·RadioactiVIty, Gross Alpha,
pci/1
To'laf Organic carbon
I Jcotne l.norganic carbon
!/
/organic chemicals
// ll ,_. Endrin
I,. Lindane
'
TABL£ 2.7 -continued
WATER QUALITY DATA SUMMARY
SUS llNA RIVER
U.s. G[Q!OGICAL SURVEY
VEE CANYON 1962 -·1982
1900 fT.
.
~~t~'~ · •. · · •.~ · ,<. · ·Li ... ::~:. -~!-.... '~
. ··-. .
Summer/Winter/Break-Up
Maximum Minimum Mean
-1-1--I-I--I-I-
-1-1--1-1--l-1-
9.2/-/7.Ji 2.1/-/7.4 5.3/-/7.4 _, .. , .. -1-1--l-1-
40/-/30 5/-/30 10/-/30
76/-/54 ll2/-/54 63/-/54
18/-/12 7.5/-/12 14/-/12
-1-l--1-1--1-1-
@g;lq/726 lf&/14/661 799/14/694
-1-1--1-1--1-l-.. , .. , .. -l-1--I-I-
-1-1--:1-1--1-1-
-1-1--I-I--1-1-
-1-1-... , .. , ... -1-1-
_,_, ... -I-I--I-I-
-I-I--I-I--1-l-
Number or
Detectabl9 va IL!.ruL-
0/0/0
0/0/0
0/0/0.
8/0/1
9/0/1
9/0/1
0/0/0
36/1/2
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
'0/0/0
0/0/0
· Totar--
NUrnber of
pbservations
0/0/0
0/0/0
9/0/1
" 0/0/0
8/0/1
9/0/1
9/0/1
0/0/0
36/1/2
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
N
• w
~0'\
(')
\
.~
l
' ·c.Q
[·.
:~~
s3/U20
Agency:
Stat ion:
Elevation:
La bora tory Parameters ( 1)
(continued)
Methoxychlor
Toxaphene
2, 4-0
2, It, 5-1'P Si I vex
Elements (O!§.solvedl
Ag, s i aver
AI, Aluminum .
As, Arsenic
Au, Gold
B, Boron
Da, Barium
B i, Bismuth
Ca, Calcium
Cd, Cadmium
Co, Cobalt
G!\, Chromium
cu, Copper
c:'e, Iron
IJr· Mercury L . ·~,
TABLE 2. ·r .. coot i nued
WATER QUAUTY DATA ::JUMMARY
SUS ITNA RIVER
, U.s. GEOLOGICAL SURVEY
VEE CANYON 1962 1982
1900 FT.
Summer/Winter/Break-Up
Maximum Minimum Mean
-1-1-.. , .. ,_ .. , .. ,_
~1-.1--1-1--I-I-.. , .. , .. -1-1--/-I-
-1-1--!-1--1-1-
-I-I--/-I--I-I-
-1-1--1-1--1-l-
-1-1--I-I--1-1-
-1-1--I-I-.. , .. , .. _,_, ... -I-I--I-I-
-1-1--/~/--1-1-
-1-1--1-1--l-1-
27/-/17 llt/··/17 21/-/17
-I-I--1-1-~/-1-
-I-I--I-I--I-I-
-I-I--1-l-... , .. ,_
-I-I--I-I--I-I-
-1-1--1-1--1-l'-
-1-1-.. , .. , .. -1-1-
(
Number of
Oa tect.a b I e·
vatues
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
9/0/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
Total
Number or
Observations
0/0/0
0/0/0
0/0/0'
0/0/0
0/0/0
0/0/0
0/0/0
u/O/O
0/0/0
0/0{0
0/0/0
9/0/1
0/0/0
0/fJ/0
G/0/0
fJ/0/C.
0/0/lJ
0/0/0
S3/Ut!1
.
TABLE 2.7 -Continued
WATER QUALITY .DATA SUMMARY
SUSITNA RIVER
Ayency: U~ S. GEOLOGI.CAL SURVEY
Station:
E I BV<lt i; ion:
VEE CANYON 1.962 • 19t}2
1900 fT. .
Summer/Winter/Break-Up
Maximum Minimum Mean
laboratory Parameters (1)
')
(Continued)
&< .. Potassium 7.3/-/2.8 1. lt/-/2. 8 3.5/-/2.8
11g, Magnesium l&' '•1-/i!. 4 l. 1/-/2 ... 2.7/-/2.4
Hn.., Manganese -l-1--I-I--1-1-
· Mo, f"lo t ybdenum -I-/--I-I-... , .. ,_
Na. Sodium 6.3/-/la.S 2.1/-/ta.a a.a!-l••.a
N i, Nickel -1-/--1-1--I-I-
Pb, Lead -I-I--1-l ... _,_, ..
Pt, Plat inurn -I-I--1-l--1-1-
Sb, Antimony -1-1--I-I--1-:-1-
Se, Selenium -1-1--1-1--I-I-
Si-S.i I icon -1-1--l-1--I-I-
sn, Tin -!-I--1-1-1-1-
sr. Stroot ium -1-1--1-1--1:..1-
T i • Titanium .., .. , ... -I-I--1-1-
w, Tungsten -t-1--I-I--I-I-
v. Vanadhun -I-I--1-1--I-I-
Zn, Zinc -1-1--I-I--I-I-
Zr, Zirconium -1-1-_,_, .. -1'-1-
· :: '· 1. TabJe va J ues are mg/1 unless noted Otherwise.
Number of
Oa.tectab I e
Values
9/0/1
9/,0/1
0/0/0
0/0/0
9/0/1
0/0/0
0/0/0
0/0/0
.0/0/0
0/0/0
Q/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
Tota 1
Numbat' of
Obse rya t Ions
9/0/1
9/0/1
0/0/0
0/0/0
9/0/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0,
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
~ .;
\I ·'·
N
s3/Ullt
Agency:
Station:
Elevation:
' field Parameters p)
Dissolved Oxygen
Percent SaturatAon
PH. pH Units ·
a Conductivity. umhos/cm @ 25°C w
·co Temperature. °C
{'J
' -t-1
l
f')
~
~.-·~·\'
f rea ca rbon 0 3 md de
A~kal inity •. as caco3
Settleabe·a '$alTos. ml/1
La bora torl' Parameters ( ll
Ammonia Nitrogen
Organic Nitrogen
Kjeldaht Nitrogen
Nitrat(}' Nitrogen
Nitrfte Nitrogen
Total Ni tragen
Ortho-Phosphate
Tc)ta I Phosphorus
(~.
, "d\o.l
t~~~. . 'f.m· ~ . . ::=.-'-.... ~ -• .-,,~ -. ~
TABLE 2.8 ,,
WATER QUA~ITY OATA SUMMARY
. SUSITNA RIVER
U.S. GEOLOGICAL SURVEY
GOLD CREEK 1949 -1982
676.5 fT.
Maximum Minimum
13.3/15.8/111.1 9.5/11.0/14.1
110/110/111 83/77/111
7.9/8.1/6.0 6.5/7.0/6.5
227/300/147 90/164/70
14.0/3.5/6.0 0.4/0.0/1.0
20/16/24 1.1/1.2/2.9
87/88/47 23/49/25
-I-I--l-1-
, r·.
.33/.08/.13 •. 01/.03/. 13
.39/.44/.07 .10/.16/.07
... , .. ,_ -I-I-.
.36/.32/.69 .02/.05/.05
... , ... , ... -l·l-
.60/.66/-.25/.44/-
.03/.03/.04 • 00/ .·01/. Ota
.23/.05/.09 .02/.01/.09
'•' >
Number o.f To tar-Detectable Numbe'r or
Valces · Observations Nean
11.9/13.9/14.1 9/5/1' 9/5/1
102/97/111 6/5/l 6/5/1
7.3/7.5/7.0 66/31/7 66/31/7
147/250/97 66/32/7 66/32/7
9.2/0.1/3.1 39/12/8 3'9/1~/8
5.8/6.2/10.8 57/26/6 57/26/6
51/72/33 62/30/7 62/30(7
-1.-1-0/0/Q· 0/0/0
.16/.06/.13 7/5/1 7/6/1'
.27/.29/.07 7/5/1 7/5/1
-I-I-0/0/0 0/0/0
.12/.16/.24 55/25/7 55/25/7
-I-I-0/0/0 0/0/0
.50/.51/-5/6/0 5/6/0
• ()1/. 02/. 04 11/4/1 12/lJ/1
.13/.03/.09 7/6/1 7/6/1
"'
tv
I
w
\0
·-:!s
N
' .,J
c
"' """"'"""
S3/Ul5
TABLE:~.8 '!." C()ntioued
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
\9~~oy: · '··u.s·. GEOLO~t.~Al .SURVEY}
·Station; :.·:-.l:if~·llv~~GOL().CRE 6<-4-9110· ....... 198~
~~yac;ionr, ... ·:!. 676.1.6 fT ..... ~ ... ~ . . •'-•'· ~ -·····--.,. ~ '
~aboratory Parameters ( 1)
(Continued)
A I ka I i n i ty, as CaCOJ
Chemical oxygen Demand
Chloride
Conc:luctivi ty, umhos/cm @ 25°C
True Color. Color Units
lla rdness, as caco 3
Sui fate
Total Dissolved So I ids
~ s~~~~e~d=d·. ~~.!..~ ~~ ~ ..........................
Turbidity, NTU
Orao itm~. -.Radioactivity. Cross Afpha •
pCi/1
Tota I Organic Carbon
To.~al ~norgan!c carbon
Orgar~~c Chemicals
Eodrin
Lindane
'., •"
45/85/27
-1-1-
15/35/7.6
1Jt2/289/115
115/10/50
107/120/56
31/38/11
140/171J/90
~1 ~~~~~21
1~oT.7h/29
.331~1-
1.8/-/-. .
2.6/5.5/10.0
-1-J-
-1-l-
-1-1-
Minimum
35/82/27
-l-1-
1.4/6.2/1.8
114/266/B!t
0/0/5
35/60/30
1.0/12/5.0
55/133/53
7/1/120
42/.10/29
.12/-/-
0.5/-/-
1.4/1.1/1~8 _,_,...,
-1-1-
·-1-l-
Mean
40/83/27 _,.,,_
5.5/22/4.4
128/279/100
10/5/25
6lti98l39
16.1/21/7.6
93/154/66
740/12/621
126/.40/29
.25/-l-
1.3/-/-
2.0/2.6/5.9
-1-l-
-1-1-
-I-I-
Nllmller or
D!:!tectabte
va·t ues
5/3/1
0/0/0
6&./28/7
5/6/2
55/22/6
62/28/7
61/28/6
li3/18/6
' 5._6/10/13
~
5/21;1
3/0/0
3/0/0
2/3/2·
0/0/0
0/0/0
0/0/0
I ,, •
_'_·r~ ... TP:ta I
tlum!Jer of
Observations.
5/3/1
0/0/0
62/28/7
5/6/2
55/22/6
62/28/7
62/28/7
Jtl/18/6
56/.·'·~l;lJ
5/2/1
3/0/0
3/0/0
2/3/2
0/0/0
0/0/0
0/0/0·,
~--
N
I
~
~q
N
' "1-1
' N r
s3/u16
Agency:
Sl;a t ion;
Eaevatinn:
L:lboratory Parameters ( 1)
(Continued)
Methoxychlor'
Toxaphene
2. 4-0
2, 4, 5-TP Si I vex
Etemeots {Dissolved)
Ag, Silver
AI, AlUminum
As, Arsenic
AU, Gold
B, Boron
Ba, Barium
Bi, Bismuth
Ca, Calcium
Cd, cadmium.
Co, Cobalt
cr, Ch rflriR i tAm
cu, Copper
fe,. I ron
tlg-1 Mercury
(" ·-· '', >
TABLE 2.6 -continued
WATER qUALITY DATA SUMMARY
SJj)S,JNA RIVER
U. S. GEOLCG I CAL SURVEY'
GOLD CREEK 1949 -1982
676~5 rr.
Summer/Winter/Bre~k-Up
Maximum Minimum Mean ·
-I-/--I-I--1-1-
-l--1--I-I-.. , .. ,_
-I-I--I-I--1-1-
-1-1--1·-1--1-1-
.000/.001/-.000/.001/-.000/.001/-
.. , .. ,_ -1-l--l-1-
.002/.002/-· .001/.002/-• 001/ •. 002/-
-I-I--1-1--1-l-
-I-I--I-I-.. , .. , ..
.031/.()60/-.000/.060/-o010/.060/•
-I-I-.. , .. ,_ -I-I-
37/39/16 11/24/9.9 20/30/13
.001/-/-~001/-/-.001/-/-
.000/.001/-.000/.001/-, .000/.001/-
.010/-/-.000/-/-.005/-/-
.005/.001/-.003/.001/-• OOIA/. 00 1/-
-.14/.015/-.04/.015/-.10/.015/-
.0002/-/-.0000/-/-.0001/-/-
~-• ~! . ,; ........ II'~,..* • f •
' ''
Number of.
Detectable
Values
0/0/0
0/0/0'
0/0/0
0/0/0
2/1/0
0/0/0
3/1/0
0/0/0
0/0/ ..
3/l/0
0/0/0
62/26/7
2/0/0
1/1/0
2/0/0
3/1/0
6i1/0
2/0/0
Total
Numbar of
Observatfons.
0/0/0
0/0/0
0/0/0
0/0/0
; ·' ~
3/1/0
0/0/0
: 3/1/0
0/0/0
0/0/0
3/l/0
0/0/0
62/26/7
3/1/0
3/1//0
3/1;/0
3/J/(J
6/1/0
3/1/0
·:··
~~·-.-~· .. ·~.·~-= ,_4~~---~~··~ .. -=·~:~· w-~-~~~~~i;··~.·.~.:~-~:-.·.-.~-=~·-.··-~~-~~.: .. ~· s· :·~-~~ .. · . , ·, wo\M 41 . -. f,.it.lt . ·1 .. J1. ·• Ularc ~ •=i'. ·, '\i.l # -~. •""· ~-· . ·'' . ··: · .: · ~1. ft · ' '.; ~ ~·J :, , :; .-· IJ.) 'I
. -*' • . . · · · •• · .~ · '" · • , n · f
. ' ' . . .
. .
• • v
('1
(.
....!
' r-t·
. ..,.,
s3/u17
~~gency:
Station:
Elevation:
laboratory Parameters (1)
(Coot i nued)
K. Potassium
Mg.~ Magnes i urn
Mn, Manganese
Mo, Molybdenum
Na, Sodium
N.i, Nickel
P.b, Lead
Pt. PI at i num
Sb, A•lt imony
Se, Selenium
$ i, s i I icon
so, Tin
Sr. Strontium
T i ,. T i tan i urn
w. Tuogstem
V, V~nadilJm
Zn, Zinc
~r~ Zirconium
TABLE 2.8 ... continued
WATER QUAUTV DATA SUt-iMARV
SUSITNA RIVER
~o~o g~~~~G~~~~ ~u~~~~
676.5 FT.
Maximum
IJ.IJ/5.0/1.7
7.8/8.3/2.8
.18/.003/-
-/-/-
6,.5/17/3.8
.• 000/.001/-
.001/.003/-
-1-1-
-l-1-.
.001/-/-
-/-/-
-1-1-
-1-1-
·-1-1-
-1-1"'
-1-1-
.0liU-1-
-1-l-
Summ9 r /WInter /8 rei'l k-Up
Mlnfmua Msao
1.0/1.2/1.2
1.2/3.6/0.3
.00/.003/-
-l-/-
2.LI/5.2/2.8
• 000/.001/-
.000/.003/-
-1-1-
-1-1-
.000/-/-
-/-/-
-1-1-
-1-1-
-1-1-
-1-1-
-1-l-
.006/-1-
-1-l-
2.lj/2.l/~.4
3.2/5.4/1.7
.036/.003/-
-l-/-
Ll.l/11.3/3.1
.000/.001/ ..
.000/.003/-
.. , ... ,_
-1-1-
.000/-l-.. ,.,_
-1-1-
-1-1-
-1-1-
-1-l-._,_,_
.Ot0/""1-
-1-1-
Number of
Detectable
VaJ.Y,ss
52/22/5
62/26/7
7/1/0
0/0/0
52/22/5
2/1/0
3/1/0
0/0/0
0/0/0
3/0/0
0/0/0
0/0/0.
0/0iO
0/0/0
·r!J/0/0
0/0/0
3/0/0
0/0/0
To tar--"
Number of
o!lservatlons
52/22/5
62/26/7
7/1/0
0/0/0
52/22/5
3/1/0
3/1/0
0/0/0
0/0/0
3/1/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
3/1/0
0/0/0
s3/U10
Agency:
Station:
Elevation:
field Parameter§ ( 1)
Dissolved oxygen
Percent Saturation
pti 6 pH Units
Conductivity* umhos/cm 8 25°C
Te.mperature, °C
Free Carbon Dioxide
Atka I inity. as caco;3
SettleabJe SoJids, ml/l
Laboratory Parameter..§ {1)
Ammonia tllitrogen
·Drganic tti trogen
Kjeldahl Nitrogen
Nitrate Nitrogen
Nitrite Nitrogen
ToUI Ni.trogen
Ortho-.Phosphate
Totat Phosphorus
TABLE. ~.9
WATER QUALITY DATA SUMMARY
SUS41NA R IV.ER
U.S. GEOlOGtCAL SURVEY
SUNSHtNC 1971 -1982
270 ~·1'.
------------·~--------------~summer/Winter/Break-Up
Maximum
13.3/13.8/-
107/914/-
7.7/7.3/~
170/242/-
12.1)/0.0/9~2
3.9/-/-
43/71/-
-1-1-
.37/.06/-
l. 10/.42/-
-/-/-
-1-1-
-1-1-
2.30/.72/-
.0~/.04/
.33/:.01/-
Minimum
10.6/13.0/-
99/90/-
7.1/6.2/-
61/225/-
3.8/0.0/9.2
2.1/-/-
25/63/-
-l-1-
.06/.03/-
.19/.18/-
-1-1-
-1 .. 1-
-1-/-
.71/.42/-
• Of)/~ Of!/-
.05/.01/-
Mean
12.0/13.4/ ..
103/'~2/-
7.4/6.9/ ..
115/232/-
8.6/0 .• 0/9.2
3.1/-/-
36/66/ ..
-1-1-
.19/.05/""
.63/.29/-
-/-/-
-1-1-
-1-1-
1.17/.61/-
• 02/.0ltJ-
.15/.01/-
Number of
Detectable
Values
5/3/0.
2./3/0
7/3/0
9/3/0
9/3/1
3/0/Q
6/2/0
0/0/0
6/3/0
6/3/0
0/0/0
0/0/0
0/0/0
5/4/0
3/1/0
6/2/0
..
Tota I Numlle r ·. t:i f
Observations
5/3/0
2/3/0
7/3/0
9/3/0
9/3/1
3/0/0
6/2/0
0/0/0
6/ll/0
6/3/0
0/0/0
0/0/0
0/0/0
5/11/0
3/l/0 .
6/4/0
. ~. ~···h·. .
. . t~~·1
liiiJll
s3/U1.1
Agency:
Station:
E I eva t ion:
Laboratory Parameters ( 1)
(Continued)
Alkalinity. as caco 3
Chemical Oxygen Oer11and
Chl.oride
C9nd~ctlvity, Umhos/cm@ 25°C
True Color, Color Units
Uardness. as CaC03
su.l fate
Tdtat Dissolved Sol1ds
fi.JttdJiu.spendad...So.IJ..dsL
Turbidity, NTU
Uranium
. RadioactiVity, Gross Alpha,
pCi/1
Total Organic Carbon
Totai Inorganic Carbon
Organic Chemicals
Endrin
Lindane
TABLE 2.9 • c~qtlnued
·-,-
WATER. QUALITY DATA SUMMARY
SUS ITNA RIVER
' .
U.S. GEOLOGICAL SURVEY
SUNSifiNE 1971 • 1982 270 FT. .
summer/Winter/Break-Up
Maximum
148/141-
-l-1-
7.3/21/-
129/233/-
100/0/-
72/96/-
13/18/-
101/141/-
3510/2/508
300/1.3/-
-/-/-
-I-I-
3.2/0.8/-
-/-/-
-l-l-
-1-1-
M i n I mum . Mean
28/63/..,
-/-/-
2.2/16/-
82/222/-
8/0/-
33/87/-.
3/16/-
51&/130/-
288/1/508
160/.20/-
-/-/-
-I-I-
2.9/0.4/-
-/-/-
-1-1-
-1-1-
41/70/-
3.7/18/-
115/229/-
44/0/-
50/91/-
10i17/-
70/134/-
1485/2/508
233/.67/-,,
-l-1-
-l-1-
3.0/0.6/-
-1-1-
-1-1-
-1-1-
Number or
Detectable ,'values
6/3/0
0/0/0
;9/4/0
6/3/0
3/1/0
9/4/0
9/4/0
8/4/0
·5/2/1
6/l/0
0/.0/0
0/0/0
2/2/0
.fJ/0/0
0/0/0
0/0/0
~· ' ,
Total Number or
obse'rya t l ons
,,
6/3/0
0/0/0
9/4/0
6/3/0
·, 3/1/0
9/4/0
9/4/0
6/4/0
5/2/i
6/3/0
0/0/0
0/0/0
2/2/0
0/0/0
0/0/0
0/0/0
·s3/u12
Agency:
Stat ion:
Elevation:
laboratorY Parameters ( 1)
'
(Continued)
Me thoxych I or
N Toxaphene
I
~ 2, 4-0 ~
2, 4, 5-TP Si lvex
Elements (Dissolved)
.Ag, Silver
AI, Aluminum
As, Arsonic
Au, Gold
B, Boron
Ba, Barium
Bi, Bismuth .
Ca, Calcium
Cd, Cadmium.
N Co, Cobalt
' cr, Chromium
..iJ cu. Copper
' Fe, 1 ron N .
" UP Mercury
(. ..
, , \, ./ -rrr1' :· ~
TABLE 2.9 -continued
WATER QUAL.ITV DATA SUMMARY
SUSITNA RIVER
U.S. GEOLOGICAL SURVEY
SUNSHINE 1971 -1982 .
270 fT.
Summar /Win te r/8 rea k-:-UP
Maximum Minimum Mean
-I-I--1-1--1-J-
.. , ... ,_ -1-l--I-I-
-1-1--I-I--I-I-
-1-1--1-l--I-I-
.000/.000/-.000/.000/-.000/.000/-
-I-I--1-1--l-1-
.003/.001/-.002/.001/-.002/.001/-
-!-/--I-I--1-1-
-I-I--.f-1--I-!-
.07G/.040/-.000/.040/-.032/.040/-
.. , .. ,.~ -1-l--l-1-
23/31/-11/28/-16/29/-
.000/-/-.000/-/-• 000/-/-
.000/-/-.000/-/-.000/-/-
.020/.0'fO/-.000/.010/-.010/.010/·
.005/.004/-.003/.004/-• OOit/.. 004/-
• 250/. 01&0/-.060/.010/-.160/.025/-
.0001/.0001/-.0000/.0001/-.0001/.0001/-
Number of
Detectable
Values
0/0/0
0/0/0
0/0/0
0/0/0
2/1./0
0/0/0
3/1/0
0/ib/0
0/0/0
3/1/0
0/0/0
9/11/0
1/0/0 .
1/0/0
3/1/0
3/1/0
5/2/0
2/1/0
''
) . ~
Total
Number.J)f
Ob se rvE.I"~'on s
0/0/0
0/0/0 . -
0/0/0
0/0/0
3/1/0
0/0/0
3/l/0
0/0/Q_
0/0/0
3/1/0
0/0/0
9/4/0
3/1/0
3/1/0
3/1/0
3/1/0
5/2/0
3/1/0
') ;} I ,-.. ··· .. ri'rr · · ,.,,.
..
•,~·~·l...Y.",i'""~
~·~ . ..': \
N
I
·~
'"'"'
N
" ~
(
.N
''"1J
S3/U13
Agency:
~;.at ion:
~:: 1 eva t eon:
Laboratory Parameters ( 1)
(Continued)
K, Potassium
Mg,. Magnesium
Mn, Manganese
Mo, Molybdenum
Na, Sodium
N i, :N icke 1
Pb, Lead
Pt, Ptat-lnum
Sb, Antimony
Se, Selenium
s i' $ i I icon
sn, Tin
sr, Strontium
Ti, Titanium
w, Tungsten
v. vanadium
ZH, Zinc
Zr, Zi rconlum
.. ~ .... . . --
~ .. '
TABLE 2.9 -continued
WATER QUALITY DATA SUMMARY
SUS llNA R I VE(l
US. GEOLOGICAL SURVEY
SUNSHINE 1971 -1982
270 FT.
Summer/Winter/Break-Up
Maximum Minimum Mean
2.8/2.1/-1. l/1. 6/-1.5/1.9/-
3.5/~.5/-l.lf/4. 1/-'2.3/lf.l/-
.020/.00lf/-.000/.000/-.009/.002/-_,_, .. -1-1--1-1-
... 4/'!1/-1.9/10/-2.8/11/-
.002/.002/-.000/.002/-.001/.002/-
.001/.008/ .. .000/.008/-.000/.008/-_,_,_, -1-1--1·1-
-I-I--1-1--1·1-
.000/ .. 000/-.000/.000/-.OQ0/.000/-
-1-l-·1-1--1-l ..
-I-I· -I-I--l-1-
-1-1-.. , .. ,_ -I-I-
-I-/--I·· I--I-I-
-I-I-... , .. ,_ -I-I-
-1-1--1-1--l-1-
.020/.030/-.006/.030/-.012/.030/-
-1-l--I-I--1-1-
Number of
Detectable
Values
9/~/0
9/lf/0
5/2/0
0/0/0
9/4/0
3/l/0
3/1/0
0/0/0
0/0/0
2/1/0
,0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
3/1/0
0/0/0
'~ •.··~ ~
I .· ·' ··bia:J. . b1' ·tJ· ~'·: ,J~.· . . . ,. .. , • I . ~'a.; _, . ·~~ ::· , :t .... ~··~ r. :.~ •••• ••• •••
' ~ ., ' . ' _. . .
. .. ~
Total
Number of
Observations
9/~/0
9/lf/0
5/2/0
0/0/0
9/4/0
3/1/0
3/1/0
0/0/0
0/0/0
3/1/0
. 0/0/fJ
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
3/1/0
C/0/0 ',,',
s3/u6
Agency:
C)tation:
Elevation:
laboratory· Parameters ( 1)
Ammonia N!trogen
Organic Nitrogen
Kjetdahl Nitrog3n
Nitrate Nitrogen
Nitrite Nitrogen
totat Nitrogen
Ortho-Phosphate
Total Phosphorus
\
f'fio.
~ ... .,_
TABLE 2.10
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
U.S. GEOLOGICAL SURVEY
SUSITNA 1955 -1982
40 FT.
.19/.09/.21 .00/.00/.01
1.5/.46/.70 .16/.00/.16
-1-1--1-1-
.00/.19/-.00/.19/-
~J-1--1-1-
1. 70/.99/1.20 .26/.24/.67
.02/-/.02 .0.'?./-1 .02
1.10/.38/.29 .03/.00/.01
(
\
• Oltf. 04/.08 12/10/3 12/10/3
.60/.27/.43 12/9/2 12/9/2 _,_, ... 0/0/0 0/0/0
.00/.19/0 1/1/0 1/1/0
-1-1-0/0/0 .0/0/0
.72/.55/.92 2.2/17/4 22/17/4
.02/-/.02 l/0/1 1/2/1
.40/.05/.14 23/20/7 .23/20/7
1\.)
I . . ~ ......,
r) ()
' .t
...J.
f
N''
oO
1·" ,.._ ,-
s3/u7
Agency:
Stat ion:
Elevation:
tabora tory_Pa rameters C 1)
(Continued)
A I ka I i ni ty, as c~co3
Chemical oxygen Demand
Chloride
Conductivity, umhos/cm @. 25°C
True Color, Color· Units
Hardness, as caco3 *
SUlfate
Total. Dissolved Solids
LTOW«SU&panded .. SoJJd8H
Turbidity, NTU
Uranium
·Rad ioactivi typ G"ross A I pha ..
pCi/1
Totar Organic Carbon
To.ta I Jnorga"ic Carbon
orgaofc ~hemicaJs
End rio
Lindane
TABlE 2.10-cootlnued
WAtER QUALITY OATA.SUMMARV
SUSlHfA RIVER
U.S. GEOLOGICAL SURV.EY
SUSiTNA 1955 -.1982
l.O FT.
summertWinter/Break-Up
Maximum Ml~tmum Meaa
.. 9/76/34 lt6/63/27 '-47/71/30
-I-I-... ,_,_ -1-l-
6.7/18/4.6 1.2/5. 7/3.1 2.7/13/3.7
133/222/10~ 114/208/94 122/217/99
10/0/-10/0/-10/0/-
66/96/48 44/73/36 54/85/39
20.7/20/10 1.0/15/3.7 13.2/17.3/6.7
114/139/71 56/109/51 13/123/65
2367/12/663 158/2/257 71J5/5/li61
790/3.0/160 21/1.0/25 233/1.5/69
-1-1--1-1--1-1-
-I-I-_,_, ... • I _,_. ·-
11.0/4.0/9.1 2.7/0.4/3.8 4~4/1.6/6.0
-I-I-... , .. ,_ -1-1-
-l-1-.. ,_,_ -1-1-
.... ,_,_ -1-1--1-l-
,,-., '
Number or
Detectable
Values
3/4/2
0/0/0
24/2~/7
ft/4/2
2/2/0
25/21/7
25/21/7
24/20/7
21./19/5
18/13/5
0/0/0
0/0/0
"1/9/4
0/0/0
0/0/0
0/0/0
\ ·,
\
.... Total
Numbet' of
Obse rva t i o!l§.
•• >0 •
3/4/2
0/0/0
24/21/7
lf/l&/2
14/4/0
25/21/7
25/21/7
2lt/20/7
21/19/5
18/13/5
0/0/0
0/0/0
7/9/4
0/0/0
7/10/4
7/10/ft
tt
p .
N
I
~
CX)
N
' ,J
I
lN
()
&3/U6
Agency:
Stat ion:
Elevation:
Laboratory Parameters (1)
(Continued)
Methoxychlor
·TGxaphene
2, 4-0
2, 4, 5-TP Si svex
Elements (Oissolvedl
Ag, Si.lver
AI, Aeuminum
As, Arseni4".:
AU, Gold
8, ao.~on
Ba, Barium
Bi., Bismuth
· Ca, C&lcillm
L<l ,, Cadmium
Co, cobait
Cr, Chromium
C\J, Copper
f'e, a rem . c
Hgt He;rcury
TABLE 2.10 -continued
WATER QUALITY DATA SUMMARY
SUS. t VNA Jll VER
U.S. GEOLOGICAL SURVEY
SUSITNA 1955 -1982
40 FT.
Summer/Winter/Break-Up N.umber .of
Detectable
_ya fue!L_
Total
Number or
Observations
-1-J-
·.l-1 .. _,_,.,.
-I-I-
.000/.000/-
-/-/-
.003/.003/.001
-1-1-
-1-1-
.200/.0i&0/.020
-/-/-
22/31/15
.001/ .. /-
.0~7/.002/.001
.030/.010/.005
.007/.004/.006
.1160/.060/.190
.0002/.0000/-
Minjmum_
-I-I-
-I-I-
-I-I-.. , ... ,_
.000/.000/-.
-1-/-
.001/.000/.001
-1-1-
-1-1-
.027/.040/.020
_ ,_, ..
111/23/11
.001/•/-
.001/.002.001
.000/.000/.005
.003/.000/.004
.020/.060/.110
.0000/.0000/-
.Mean·
-1-1-
-1-1-_,_,_
-1-1-
.000/.000/-_,_, ...
.002/.001/.001
.. , ... , .. _,_,_
.068/.0it0/.020 _,_, _
17/27/13
.001/-/-
.003/.002/.001
.010/.005/.005
.OOit/.002/.005
.096/.088/.152
.0001/.0000/-
0/0/0
0/0/0
0/0/0
0/0/0
lt/2/0
0/0/0
13/6/3
0/0/0
0/0/0
7/4/1
0/0/0
25/21/7
1/0/0
5/1/1
5/2/1
7/7/4
12/9/6
5/2/0
m:r·· -~ .. ~· ttm -~
I I ~· ' ~-·-, . \.1 l~l
1/101'•
7/9/lt
2/6/2
2/6/2
8/6/3
0/0/0
13/9/6
0/IJ/0
0/0'/0
8/6/3
0/0/0
25/21/7
13/9/6
13/9/6
13/9/5
13/9/6
13/9/6
13/9/6
·IJ
,j
Agency:
Sta t}-?n:
Eleva'tion:
laboratory Parameters ( l)
(Continu~d)
~ ., .
TABlE ~.10 ... continued
WATER -QUAL~ TV DA'fA SUMMARY
·susiTNA RIVER
U.S. GEOlOGICAL SURVEY
SUSITNA 1955 • 1932
40 FT.
--------------------....;~::.:u~· 1nme r/W I nte r/erea!s-Up
Maximum Minimum Mean
...
c'-1
, . >'
Num.ber of
Detectatlle
yatues
·rota c
· Number or
Observation!
•t .
iJ ,
1,:
"'.· '
TABLE 2.11 ~·
' ' '
TURBU'iiTY AND SUSPEND-ED 'SEDIMENT ANALYSIS OF
Lf.·.
.Jii.
THE SUSlTNA, CHULITNA AND TALKEETNA-RIVERS ·r· " ~ I
3 .-..I
Suspended
Ssdiment [ ---Oate1 Turbidity2 Discharge4 '
Date Concentration .
Location Sample-2 Analysed (NTU) (mg./1.) (CFS) f
Susitna a~ Sunshine 6/3/82 6/11/82 164 847 71,000
Parks Highway Bridge 6/10/82 6/24/82 200 414 64,500 f
(RM. 83.3) 6/17/82. S/24/82 136 322 50,800 t S/21/82 8/3/82 360 755 78,300 r
'
6/28/82 s/·""'0" 1056 668 75,700
10{04
7/6/82. 8/3/82 352 507 46,600 [ 7/12/82 8/3/82 912 867 59,800
7/19/82 8/18/82 552 576 60,800
7/26/82 8/18/82 696 1180 96,800
8/2/82 J/18/82 544 704 62 4GD ~E ·' '
8/9/82 3/26/82 720 746 54,000
8/16/82 8/26/82 784 728 47,800
8/23/82 ·9/14/82 552 496 38,600 '~-">1
8/30/82 9/14/82 292 ' 439 39,800 ~---~
~-,.
9/17/82 10/12/82 784 1290 86,500 )';-
· Susitna Below Talkeetna 5/26/82* 5/29/82 98 t (RM 91) . 5/28/82* 6/2/82 256 43,600
5/29/82* 6/2/82 140 42,900
5/30/82* 6/2/82 65 38,400 & 5/31/82* 6/2/82 130 39,200
6/1/82* 6/2/82 130 47,000
\ .....
Susitna at LRX-4 5/26/82* 5/29/82 81 r
"(RM 99) l!l
Susitna near Chase 6/3/82 6/11/82 140 769 35,800
(R.R. Mile 232, RM 103) 6/8/82 6/24/82 130 547 44,400 I
6/15/82 6/24/82 94 170 24,200
.,
6/22/82 8/3182 74 426 31;000
6/30/82 8/1&/82 376 392 30,200 I 7/8/82 8/18/82 132 155 20,700
7/14/82 8/3/82 728 729 30,800
7/21/82 8/18/82 316 232 24,900
7/28/82 8/18/82 300 464 30,800 I 8/4/82 8/18/82 352 377 22,700 '
8/10/82 8/26/82 364 282 20,000
8/10/82 8/26/82 304 275 17,700 I S/2~Va2 9/14/82 244 221 16,800
8/31/82 9/14/82 188 252 19,300
9/19/82 10/12/82 328 439 28,700 .·~~
~
2-50 ,-7~3~ 1 :1
:
"" .
e Location
'•'
· Susltoa ate Vee Canyon
.(RM 223)
,. '
Chulitna: (Canyon~
(RM 18) /
'
Cbulitna near Confluence
(RM l'
Talkeetna at U.S.G.S.
., Cable
(RM 6)
TABLE 2.11 (continued)
Date1 Date Turbidity2
' Sampled Analysed (NTU) e
6/4/82 .' 6/11/82 82
6/30/82 8/3/82 384
7/27/82 8/18/82 720
8/26/82 9/14/82 320
6/4/82 6/11/82 272
6/22/82 8/3/82 680
S/29/82 8/18/82 1424
7/7/82 8/3/82 976
7/13/82 8/18/82 1136
7/20/82 8/18/82 1392
1/27/82 8/18/82 664
8/3/82 8/18/82 704
8/11/82 '8/26/82 592
8/17/82 8/26/82 1296
8/24/82 9/14/82 . 632
9/1/82 9/14/82 ~ 9/18/82 10/12/82
5/26/82* 5/29/82 194
5/28/82* S/2/82 272
5/29/82* 6/2/82 308
5/30/82* '6/2/82 120
5/31/82* 6/2/82 360
6/i/82* 6/2/82 324
6/2/82 6/11/82 146
6/9/82 6/24/82 49
6/17/82 6/24/82 1 28
6/23/82 8/3/82 26
6/29/82 '•. 8/18/82 41
7/7/82 8/3/82 20
7/13/82 8/3/82 132
7/20/82 8/18/82 148
7/28/82 8/18/82 272
8/3/82 8/18/82 49
8/10/82 8/26/82 53
8/17/82 8/26/82 82
8/24/82 9/14/82 68
8/31/82 9/14/82 37
9/20/82 10/12/82 34
2-51
Suspended3
Sediment
Concentration
(mg./1.)
424
813
1600
1030
1200
1250
1010
960
753
1250
843
523
1550
1340
311
216
164
321
100
226
226
180
2.12
198
263
276
301
Discha·rge4
. (CFS)
11,500
19,500
29,000
20,700
22,700
23,100
31,900
23,300
21,300
21,900
18,200
17,300
29,200.
17,900
14,200
11,400
l2,400
10,700
6,750
8,880
8,400
14,200
8,980
6,980
6,230
5,920
9,120
14,800
TABLE 2.11 (Continued)
Date
Suspended3
Sediment
Concentration Discharge4
····Location
Oate1
Sampled Analysed
Turbidity~
(NTU) (mg./Ll . (CFS) .
2.
3.
4.
5/26/82*
5/28/82*
5/29/82*
5/30/82*
5/31/82*
6/1/82*
' ~ ~
5/29/82
6/2/82
6/2/82
6/2/82
6/2/82
G/2/82
17
39
21
20
44
55
5,680
6,250
5,860
5,660-·
7,400
9,560
*Refers to samples collected by R&M Cons.ultants, all other samples were
collected by U.S. G. S.
·R&M Consultants conducted all turbidity measurements.
Suspended sediment concentrations are preliminary, unpublished data
pi"ovided by the U.S. Geological Survey.
Discharges for "Susitna at Sunshine" and "Susitna Below Talkeetna" are
from the U.S. Geological Survey stream gage at the Parks Highway
Bridge at Sunshine.
Discharges for· "Susitna at LRX-4" and "Susitna near Chase" are from the
U.S.G.S. stream gage at the Alaska Railroad Bridge at Gold Creek.
Discharges for "Chulitna" and "Chulitna near Confluencen are from the
U.S.G.S stream gage at the Parks Highway Bridge at Chulitna.
Discharges for "Talkeetna at U.S.G.S. Cable" and. "Talkeetna at RR
Bridge" are from the U.S.G.S. streamgage near Talkeetna.
2-52
~~ .... ~
. ._
-. "/
'· .. ··.· .
' ' . -~
~I ' ' ·~ '
.~ 1
-~
)11·
!I!
~;; .
:S::
.
ill
IE
IE
. ~ '-
I[
r·· :.,
:-·~ -
~ ~
1 1'l
.~ .
.Oil
I[
sl1/aa ·
REFERENCES '
~.._ <',
American Public Health Association. 1981. Standard Methods for the
Examination of Water and Wastewater, Fifteenth Edition. APHA,
Washington, D. C.
Environmental Protection Agency. 1979. Methods for Chemical Analysis ·of
· Water and Wastes. Environmental Monitoring and Support Laboratory.
Cincinnati., Ohio. EPA-600/4-79-020.
McNeely, R.N ... , V.P. Neimanis and L. Dwyer. 1979.
Source Book. A guide to water quality parameters.
Directorate, Water Quality Branch. Ottawa, Canada.
Water Quality
Inland Waters
·Office of Water Data Coordination, Geological Survey. 1977. National
Handbook of Recommended Methods for Water Data Acquisition. USDI,
Reston, Virginia.
R&M Consultants, Inc. 1980. Water Quality Annual Report -1980.
Prepared for Acres American, Susitna Hydroelectric Feasibility Study.
R&M Consultants, Inc. 1981. Water Quality Annual Report -1981.
Prepared for Acres American, Susitna Hydroelectric Feasibility Study.
Skougstad, M.W., M.J. Fishman, L.C. Friedman, D.E. Erdmann, and S.S.
·Duncan. 1979.. Techniques of Water Resources Investigations of the
United States Geological Survey. Book 5, Ch. A 1, Methods for
Determination of Inorganic Substances in Water and Fluvial Sediments.
U.S. Governmental Printing Office, Washington, D.C.
UNESCO -WHO Working Group in Quality of Water. 1978. Water Quality
Surveys. A guide for the collection and interpretation of water
quality data.· United Nations Education, Scientific and Cultural Orga-
nization, World Health Organization.
2-53
--.
EXHIB·IT E
. 2. Water Use and Quality
'''-'
·,,,
' . ·~
. ;··provide data on suspended .. sediment concentrations in slbughs on a seasonal
•• _c.,';_ -"' --·
' . . ~ '
RespOilStt
·' ? r
Data regarding ~uspended sed.imerit concentrations in sloughs are c~nta.ined in
·the Alaska Qepartrnen.t ·of Fish & Game Phase II Basic Data. Report~ Volume ·4,
. . . . ' . . .
Aquatic· Habitat and Instream Flow Studies, ~982~ The ·a:~.tached· pages con-
tain selected segments of Appendix Table 4-D-6'1see highlighted data).
2-9-1
I ··'
l
I
1
.i
J
' .· i
.i ;
-\1 --·'!~··~·--_____ ., .... ,. ,-.---· ..... ·.·.~. •"' ••• r .. ---...... -~..,...., ••••• • • ~ • ·-· : ' 1\.
"!',~ .......... , .. f"~tr.... . ' --J& ~ -. ...... · ' ... " .. ,,~ ... ~ ~ .. ,.
S . --....... • . . • 'J~"f,•-.. • r .. ...,, .,.-~...,. .. . -· J.-. ... " ,.. - . '"""",... ... D .. . -' -~-.!"' 1:11 oc·Jry a.; .. _........ • .. tiil ~ •• tent i.S£Jr.~t>~r
-by-
ALASKA DEPARTMENT OF FISH AND CAME
Susitna Hydro Aquatic Stu~ies
2207 Spenard Ro~d
Anchorage, Alaska 99503
1983
.. .......... ~-.. . . ... :"' ......
'•
.J:.
' tj
'
-
tutArr
1\0FC.U 1/.t.OG .
l.~~r.en_di~·~Ta .. ~-1-~-~ ...... ,~-... s.J. Surrmary of provisional water quality data f·pr sloughs 8i\, ~~ 16B, 19, 21, and mainstcm ~os1t:nil IHvt:r at' Cold ~-"'~ .. -__ , --~ ::.i. Creek, coHected by AOF&G and USGS in June~,. July, and September, 1981, and in January and Fchruary, H182,.
=======~============================================~~=====-~ ~-~-
Parameter
Physical and Field Parorootersb
*Water Temperature oc
Air Temperature oc
Streamflow (discharge)
cfs
*Speci~ic Conductance (field)
umho /em
June
July
September
January
March
June
July
September
January
March
June
July
September
January
March
June
July
.September
January
Harch
S~dUgh
8A
15.5 n.z
3.5
0.5
0.5
21.0
16.0
SeO
6.4
551.0
2.8
140
117
135
193
142
Slough
9
1'-.2
10e9
5.6
0.5
0.5
20.1
1~.0
7.5
2.9
714.0
1,5
145
124
113
121
143
Slough
168
14.0
9.0
'• .8 1.5
2.0
15.5
0.7
503.0
0.3
71
72
64
59
59
Slough
19
s.s
9.0
1.8
2.0
1.0
__ ..
3.0 ---
0.2 o.o
<0.1
146
127
150
148
129
Slough
21
226
130
205
221
1Q6
aSloughs and mainstem Susitna River were sampled on 2 or 3 consecutive days in each month (except January) as follows.
\.~.···-· .. ···-·····~--~·f: .... ~ .. :.. . .... ,..·.~·· ....... ~ .•. ~~G~~:: ~~~.e~.J.
J ~-at !A~~~"-· 16B ,~, l! .. ll.~-.. ~,ld. c~,!~~ ..... ~.~~ .... ~
1' June.·. ··~·~ .•. , ~$ -..J .... .' Zft .; • ~~ '"!f .~~ .••. ~'! t;ot·.1.• . ~'. ~~ •• • • • J~!.~u1i'·~f!·~:!.P:~··21··r.y. ·~· 21 · ··· · 22 ·.=.·;~.(. 22 ~~:.:.22::,t;""'~~ith:~.·J21jo1~i.u;..,,~J,~.,.
~, i..,~Se.pt~, ... ~{;{il~ ... 3Q:ifi:.'J":,,3Q..-.... ~23 .v.~;~29 tl1ot 29.~lf . .-ll~.t'1'1i<' .~~ .;..,,) . .Jl.JJ:..'Af ~-J' . - . . 20 20 . 20 20 20 20 . . . ' j . J~::~.:~~~~~~r~1~t!'.-·~-'3t~.e:-3o"·•··3o ~~':6·£\.ao :i!i-. 30:.':f~~.LiiA-t~·'30 t:~~-~llfJ
~ ......... ~.r .... t.:ts; ..... ;.:,·.,~., w.c.a·~ ... ~w.~ .... ~..-..,.uw-. . ..,,J~~ :...tt.t~ ........ "~..~~~..a.)-.-t:'ifd;;~J.t ~~ott ••
bParameters marked with an * are averages of transect point measur~;ments (see methods) •
.,. __ indicrttes data not available.
:Susi toa RiveJ·
at
Gold Creek
119
.172
260
266
t
Appendi" lable 4-D-6 (Cont~nued) ..
Slough Slough
Parameter ·~ 8A 9
fh}rsical and field Parameters -Contvd
.. ---
Alkalinity (lab) June 47 33
mgn CaC03 July. 41 39
Septembor 4'l 36
January 64 36
~ 1 March 46 42
Turbidity June 0.9 Q.6
NTU July 130.0 130 .•. 0
September 1.1 0.6
..c:. January 0~4 o.s
• March 0.1 0.1
0 • '. ~ :L [s":![J"t~.· .. •~·~~-".!~~ .I •• j. ·~· (.
~
' .
t • 'j
Sediments, discharge suspended June 0.02 0.02
tons/day July 327 .. 0 804.0
September 0.01 o.o
January
March
---
'So.l ids, residue at Hl0°C June 88 100
mg/1 July 70 75
September 82 69
January 111 73
March 92 93
~ Solids, sum of constituents June 93 91
mg/1 July 61 68
I
September 71 71
January 120 76
~ March 86 Bl
I ( ~ {
' -..
Slough Slough
168 19 -----.,..-
24 52
24 52
26 62
30 53
27 so
0.5 0.4
43.0 2.5
0.6 0.5 o.s 0.) ..
0.1 0.1
. . .. .
.~.
o.o o.o
145.0 o.o o.o o.o
_,__
51 94
41 81
42 95
38 iB
42 80
47 9rl
43 89
48 9ft __ ..,
92 ...
43 65
'. ()RAfl
A0f001/t06 .
Susitna River
Slough at
21 Cold Cre:ak
63 45
·1•7 35
61 ljt~
63 83
64 82
0.4 ,100.0' nso.o 170.0
\I o.s 5.5
0.5 Oo7
0.1 0.1
5 3~7 ·~ as& 680 .'. . . ~
44:1 It
() ! • 2* f . ··-~ ~ . 8J ""'-......... -......,. .....
OoO't· 1,570.0
136.0 78,000.0 o.o 1.,020.0
33.0 .
137 79·
78 74
119 101
114 152
l2lt 160
130 83
68 65
120 80
130 165
127 1.60
,,,
i' 1' ...
r
EXHIBIT .E
2. Water Use and Quality
/C01a•ent ·10 Cpo E-2-29, para. 4)
ClarifY, reference provided in Figure E.2.79 and explain procedure used to
create this figure.
~spans~.
Reference
.The reference for Figure E.2.79 is R & M Consultants, Inc. 1982. Susitna
Hydroelectric .... Project, Reservoir Sedimel"_';~ioQ.; prepared for Acres American
Incorporated.
Suspended sediment rating curves shown on Figure E~2.79 (attached) are based
on the results of periodic suspended sediment sampling on the Susitna River
at Denali, Cantwell, and Gold Creek and the Maclaren River near Paxsono
Table 1 give the period of record, number of samples collected and range of
observed suspended sediment discharge with corresponding water {water-sedi-
ment mixture) discharge.
The suspended sediment rating curve at each station was approximated by a
power relationship of the following form:
Qs = A(q)B
2-10-1
.,..
in which:
q
5
= suspended sediment transport in tons per day based· on observed
suspended sediment concentration and corresponding water dis-
charge;
q = water (water-sediment mixture). discharge, cfs;
A = constant, an index of re 1 ati ve erod i b i 1 i ty in the watershed; ·' '
B = slope of the sediment ... discharge rating curve m• logarithmic paper.
The above equation was fitted to the observed data at each site by the least
square method. The resulting relationships are given in Table 2.
2-10-2
,_.,.' .
l ~ '{~j
~' . ~
~ ·!~·}
, I ,;
TABLE l
,..-/"
. J~ANGE·-~oVER WHICH SUSPENDED SEDrMENT O'lSCHARGE EQUATIONS ARE
. VALlO AND PERIOD OF RECORD OF OBSERVATIONS
station
Susitna
River near
Denali
Maclaren
River· near
Paxson
susitna
River neai'
Cantwell
· Susitna
River at
Gold Creek
1/ •.
Period Number
of of
Record ~~les
Jun. 1958 -51
Aug. 1980
Jun. 1958 -32
Jul. 1975
Jul. 1962 -37
Aug. 1972
286
Observed Range of Sediment and
Water Discharge
lL 21 Ql.}tfs q5-;tons/day
Max Min Max Min -
13 ,700~/ 96~/ 1ss, ooa11 2211!
·16,00#' 6242/ 5, 32cPi 4??.1
26,00rJi5750101 196,00~1 528 101
s2,ooo!li1oo!Y 218, ooo 131 2y)..21
2/ q = streamflow -Qs = suspended Sediment Discharge
31 Uate of observation
-:;1 August 11, 1977
~~ October 1, 1964
6/ August 30, 1974
il August.· 22, 1961
8/ September 30, 1966
9/ August 16, .1967 y01 Ju1y 8, 19o3
IT/ September 28, 1967
rll Date not available.
Til May 1, 1952
-July 26, 1957
2-10-3
-
~ ' ''
TABLE 2
.. SUSPENDED SEDIMENT ·DISCHARGE EQUATIONS
SUSITNA RIVER BASIN
... Station
Susi tna River near
Dertttli'
Mac!..aren River. near
Pax scm
Susitna River near
Cantwell
' \,
Susitna River at
Gold C'reek
Number of Coefficient of
Equation Samples n Determination (r2)
q5 = 1.43 (lo-4) q2.122 51 0.891
q5 = 8.04 (lQ-6) q2.523 32 0.931
qs = 6.33 (l0-8) q2.784 37 Oo881
Qs = 2.39 (lQ-6) q2.354 286 0 .. 135
q = Streamflow, cfs
9s = Suspended sediment discharge, tons/day
2-10-4
I'
.
u
i I
!
;
,;
• ·o . ' . "-· 'l • •'" . . . . . "
. . • . --!(. • . • • • ': . .:. ' .. -, . ~ .. • ., ·"l'~. be~ ~ -; • ' ' • · · · · · ·· · · · · · · · -~ · ·· ... ~ · ... · · · ~ -· ·· .~ · · · · .. ~ ~ o· · o · ,. .. 1· · . . . ----fi . • ' \ . ' \ "" . J ' -• • • • ' ~ ~ '· • ~ ~-· . '!' 0 "6t . . • 0 • . • • • • . ' • .
,. ., • ' ·V -• ._ • '-C ~ • ~ .. ~ •• ,,,. ' •;~"" I ·~\•' ;. • • •• "' ' • • '' t • • • ' ~" -.
• ......,...... 11111111!1!111' ~· ,.,...., • • • -.... • • •
bt> ~o·
<;·~ j<S
40 ~
3,0 Jd
-U)
I.L. 10 0
0 9
0 8 0 -7 -w 6 (!)
0::
<( 5 3: u
~
~
U) -4 0
3
2 ~~
~
-·"
I
I-'
~ ~
L ~ v k-" r-
..,. v ~
~ ~
.J"
~
~ ~
/
,./ v ~ ~ v L /
~· / ~
l
.
! .. ..
-./""
• = ~~·
.~ ~ .~ ......
~~.
.,. ~-~ v
SUSITNA RIVER AT · .,/ y ~"""' .. ,,,.. ~.,....
GOLD CREEK v/ ~ l _,...;P v~ . ,...
~~NARIVER ~'...-! . ~-"""
v v NEAR CANTWELL
(VEE CANYONl / ,._
~ ,~ -~ -io-" ../
~ ~-,.,.
~ ~
~, .
""'MACLAREN RIVER v ~--,-'
NEAR PAXSON ~·~---~ -
.
1,000 2 3 4 5 6 7 8 9 10,000 2 3 4 5 6 1 8 9 100,000
N
'
-... · ...
t .. • '
:SOURCE• A$ M f9G2 ·\
SUSPENDED SEDIMENT DISCHARGE (TONS I DAY)
SUSPENDED SEDIMENT RATING CUR\JES
MIDD.LE AND· UPPER SUSITNA RIVER BAS!NS
./ ~ ~·
~ """ v ~~ v--v~ ~ .,,.
..,;;.• . I ~---~ . . .,.,..
.,; ~SUSITNA RIVER
.·.
. NfAR DENALI l I
-
.
l ~ . ,.
2 3 4 5 6.7891
fiGURE E. 2. 79
I tl
EXHIBIT E
2. Water Use and Quality
Coc.ent ·11. (p. E~2-32i pa!"a. 2)
provide data on bio1ogica11y available and total soluble phosphorus concen-
trations in the Susitna River water for each water quality sampling
station.
Response
Data referred to in this paragraph (Figure E. 2.87) are found in Water
Quality Annual Reports 1980, 1981, and 1982 by R & M Consultants, Inc. pre-
pared for Acres Arrerican, Inc. Pertinent excerpts from those reports are
enclosed as pages 2-11-2 to 2-11-83 of this response.
The data are presented in the tables of those reports:
Water Quality Annual Report, 1980 -Tables 1, 6, 9, 10, 11, 12
Water Quality Annual Report, 1981 -Tables 4.1, 4.2, 4.3, 4.4; 5.1, 5.2,
5.3, 5.4, 5.5, 5.6, 5.7
Water Quality Annual Report, 1982 -Tables 2.2, 2.~, 2.6, 2.7, 2.8, 2.9,
2.10
Additi ana 1 measurements of soluble phosphorus are avai 1 able for selected
riverine sloughs and the Gold Creek River Station in the Susitna Hydro
-'
j\quatic Studies -Phase II Basic Data Report, Volume 4. Aquatic Habitat and
"·"" . lnstream Flow Studies, 1982, Appendix 4.0.6. These sections are also
enclosed as pages 2-11-84 to 2-11-100 uf this response.
2-11-1
TABLE I
\VATER QUALITY DATA -SUStTNA RIVER
NEAR CANTWELL (VEE CANYON SITE)
. Fleld Parameters (1 )
•
Di.ssolved Oxygen
P~reent Saturation
pi·t > pH Units
Conductivity 1 umhos/cm @ 25°C
Temperature, °C
Free Carbon Dioxide (2 )
Alkalinity 1 as Caco3
Settleable Solids, ml/1
.
Labor-atorv Parameters
Ammonia Nitrogen
Organic Nitrogen
Kjeldahl Nitrogen .
~itrate Nitrogen
Nitrite Nitrogen
Total Nitro en
Total Phosphate
Alkalinity
(1)(3)
Chemical Oxygen Demand
Chloride
Conductivity umhos/cm @ 25 °C
True Color, Color Units
Hardness, as CaCO (4 ) 3
Date
6/19/80·
..
i2.4
98
7.8
5.7
2.0
47
0.1
0.26
< 0.1
0.26
0.19
<0 .. 01
0.05
-
28
3
• 150
-
51
Date
8/8/80
8_. 7•
82
7.9
144
9.3
1_.7
54
< 0.1
~ .. --
.......
0.15
.. ~--
0.03
-
12.6
9
-
40
76
- 5 -
•
OA"rE SAMPLED
Date
9/5/80
-~--..
.... --
7.8
171
5.3
3.6
81
< 0.1'
0.10
0.22
0.32
0.15
<0.01
0.09
124
11
-
10
69
Date
9/17/80
9.7
84
7 .. S
124
5 .. 9
4.5
63
< 0.1
< 0.05 I
0.'62
0.62
0.09
<0 .. 01
0.10 -
156
8
-
45
55
Date
10/17/80
" .. 13.8
104
7 .. 6
142
-0.1
5.5
88
~0.1
0.26
0.28
0.54
<0.10
<0.01
Date
1/13/81
10.7
84
7.2
242
0.1
22.0
187
,. << \.1,.
•'
<O.OS
0.85
0.85
<0.1
<0.01
<0.01 0.07
66: 106
6 12
18 18
190
10
90
'
'
(continued)
Sulfate
Total Dissolved. Solids
Total Suspen¢ed Solids: -
;::::;
Tur·bidityl NTU; ·
Uranium •
Radioa~tivlty, <.1r:oss Alpha, pCi/1
, Total . O!"ganic Carbon
Total. Jnorgani~ ·Carbon
-Org·ariic Chemicals
~ .d· • ~n rtn :;. . "\"' Lrntlane . . I
. II
L Met~loxychlor-
.. ~ '
Toxaphene·
'
2, 4~0
~~ . ~, 4., 5-TP SiJvex
.CAP Scan
Ag, ·snver
AI, Aluminum
As, Arsenic
•
Au, Gold
S, Boron
Ba, Sarit.un_
Bi, Blsmuth ....
Ca 1 Calcium
Cd, Cadmium
Co, C·obalt
Cr, ChrC)mium
Cu, Copper
Fe, Iron
Hg, Mercury
K, Potassium
''
.Mg! \.Magnesium
~, Manganese
Mo., Molybdei"tum
susi4/e
•
•
6/~9/80
4
70
242
94
----......
,. .......
---..... _
--------
----
<O.OS
1.6
<o.os
< 0.05
<o.os
<0.1
<o.os
13
<0.01
<o.os
•< 0. OS
< 0~05 .
2 .. ,
< 0.05
~( 1.0
. 1. 4
< 0.05
<o.os
• •
8/8/80
9
90
310
97
<O.OS
11.6±0.6
.. -.....
-----
< 0.0001
< 0.001
. < 0.05
< 0.001
<o.os
< 0.005
<O.OS
<0.1
<0.1
<o .. os
< 0.05
0.11
< 0.05
16
< 0.01
< 0.05
< 0.05
< 0.05
4.0
< 0.1
2 .. 3
3.4
0.10
< 0.05
9/S/80
9
114
25
10
-~---
ca--•
---·-------
!D--.-
-... ~-
---..
<O.OS
0.28
<0.1
<o.os
<o.os
<o.os
<o.os
22 . < 0 .. 01
<o .. os
. < 0. 05 .
< 0.05
0.46
< 0.1
2.1
3.1
< 0.05
< 0.05
9117/SO .10/~7/80 l/13/81
7
38
132
33
----
----
~.-.--
--. .. .,
.. __ Clio
----
_..__.,
.... __
<0.05
2.2
<O.l
<o.os
<OoOS
0.07
<o .. os
18
< 0.01
<o.os
~0.05
< 0.05
2.7
< 0.1
5.0
1.2
0.07 •
<·o.os
13
;115
8.3
'·1.8
........ _._ __
----
-21 -·
.. ~--
----~ .... _.,
-----
<0.05
0.18
<0.1
<0 .. 05
<0.05
~0.05
<0.05
28
<0.01
<0.,05
<.0.05
<o.os
0.37
<0.1
<1to0
4 .. 5
<0.05
<0~05
16
149
0.6
0.35
<0.05
' 10.3+0.6
106
. <0.0002
<0 .. 004
<0. '1
<0.005
<0.1
<0.01
<0.05
<0.05
<0.1
<0.05
<0.05
<tl~os
'~0.05
36
<0.01
<0.05
• <0.05
<0 ... 05
<o.os
<o.,
2
'7./l
<.Q.iO$
,. f."!.o· • ·o·s· ' ~~· .
. .
.1
. '
"' "" (1)(3) (continued) ,. laboratory Parameters -
6/19/80 . 8/8/80 9/5/80
· Nat Sodium 2.6 2.4 5.1
Ni, Nickel < o .• o·s < 0.05 < 0.05 .., < 0.05 Pb, .lead < 0·.05 < 0.05 •
Pt, Platinum < 0.05 < 0.05 < 0.05
Sb, Antimony <0.1 < 0.1 < 0.05
Se, Selenium <o.os <o,. 1 <0.1
Si, Silicon . 4.8 . 5.3 3.6 . '
Sn, Tin < 0.1 . < 0.1 < 0.1
Sr, Strontium <o.os 0.06 0.07
Ti,. Titanium '0.13 0.24 < 0.05 .w, Tungsten "" . < 1o0 < 1.0 < 1.0 v, Vanadium < 0.05 < 0.05 < 0.05
Zn1 ~inc < 0.05 < 0.05 < 0.05
Zr, Zirc;onium < 0.05 < 0.05 < 0.05
(
1
). Table values are mg/1 unless noted otherwise. (2)
•
9/17/80 10/17/80
3.5 7~2
< o.o5· <0. OS .
< 0.05 <0.05
< 0.10 <0.05
<0.1 <0.1
<0.1 <a~ .. ,
6 .. 9 4.1
< 0.1 <0.1
0.07 0.10
0.17 <o.os
----<0.1
< 0.05 <0.05
< 0.05 <0.05
< 0.05 <0.05
All ·vaJues for free co2 determined from nomograph on _P.
·~··(l) . Method, 14th edition<>
Samples for aU parameters except chemical oxygen demand,
297 of Standard
suspended solids, and turbidity were filtered.
Hardness calculated by R&M personnel .
dissolved and
(4)
..
•
susi4/e -7-
..
/
l/13/8.1 ,,
6.6
<0.05
<0.05
<0.05
<:0.1
<0.1
5.0
<0.1
0.13
<:0.05
0.4
<o.os
f: • ~: ' <o. a~--_)
<0.05
I :
susi4/e6
TABLE 6
WATER QUAL.ITY DATA ... SUSJTNA RIVER
AT GOLD CREEK
F!eld Parameters (1)
DATE SAMPLED
l
Dissolved Oxygen
Percent Sati·\"'ation . { J' ' .
pH, pH Units
Conductivity, umho.s/cm @ 25°C
Temperature, °C
... Free Carbon Dioxide (2 ) ~ ..
. ·· AJ kalinity, as Caco
3
··, · Settleable Solids, ml/1
Laboratory Parameters (1 )(3)
Ammonia Nitrogen
Organic Ni~rogen
Kjeldahl Nitrogen
Nitrate Nitrogen
Nitrite Nitrogen
Total Phosphate
Alkalinity, as caco3
Chemical Oxygen Demand
Chloride
Conductivity, umhos/cm @ 25°C
.JII True Co10r 1 Color Units .,. . .
Hardness, as Caco
3
... 12-
Date
08/08/80
8.6
81
7.8
169
11.7
2.1
55
< 0.1
......
... ._ ...
-----
0.18
-----
< 0.02 -
13.8
14
-
45
62
Date
10/14/80
14.0
100
7.8
167
0.0
3.2
74
<<0.1
0.32
0.34
o.ss
<0.10
<0.01
<0.01
57
8
16
165
10
74
Date
1/14/81
'13.3
101
7.1
249
0.3
23.0
144 .
«O. 1
<O.OS
0.81
O.Sl
0.18
<0.01
<0.01
90
16
29
------
10
121
Field Parameters (=t )(3 ) (continued)
SUlfate .
_Total_ Oissotved Solids ..
Total Suspended Solids . .
Turbidity, NTU
Uranium
·. Radioactivity 1 Gross Alpha, pCi/1 . .
·. 'Tatal Organic Carbon
Total Inorganic Carbon ..
Organic Chemicals
Endrin
Lindane
Methoxychlor
Toxaphene
2, 4-0
2, 4, 5-TP Silvex
·ICAP Scan
Ag, Silver
AI, Aluminum
As 1 Arsenic
Au·, Gold·
a, Boron
Sa, Barium
Bi, Bismuth
. Ca, Calcium
Cd, Cadmium
Co, Cobalt
Cr, Chromium
Cu, Copper
Fe, Iron
Hg, Mercury
K, Potassium
Mg, Magnesium
Mn, Manganese
I
Gold Creek
·os/uS/80
12
74
175 .
58
<O.OS
2.6±0.4
----__ _,_
< 0.0001
< 0.001
<o.os
<0.001
<O.OS
< 0.005
<O.OS
0.7
< 0.1
<o.os
< 0.05
0.08
< 0.05
15
< 0.01
< 0.05
< 0.05
< 0.05
2.3
~ 0.1
1.8
2.7
0.05
-13-
(cont .. )
10/J4/80
10
100
. 7.7
0.9
_em_._
.... --
....... __ .. _
---------
~----.... __
---------
<0 .. 05
0. '18
<0.1
<0.05
<0.05
<0.05
<0.05
23
<0.01
<:0. OS
<:0.05
<0 .. 05
0.35
<0.,
<1
3.7
<o·.os .
~ ..
1/14/81
16
188
< 1
0.30
<0.05
39
.. 90
<O.OOC
<0.00'
<0 .. 1
<' ~I'\: .,., __ " __ ,
<0. I
<0.01
<o.os
<:0.05
<0.1
<0 .. 05
<0.05
<0.05
0.07
32
<0.01
<0.05
<0 .. 05
<O .. OS
<0.05
<' ...
\~J
2 ~·
10
<-O.a:
2...-11--4
• -.
(cont.) \ Gold Creek
.. · . . {1)(3) (continu~d) 08/08/80 10/14/80 Field Parameters · ·
~.·•
Mo, Mc1lybdenum <o.os <0.05
Na , Sodium 3.3 s.s
Ni# Nickel <o.os <0.05
Pb, l.ead # < 0.05 <0 .. 05
... Pt, , Platinum <O.OS <0. OS
Sb~ Antimony <0.10 <0.,
Se, Selenium <0.1 <0.1
Si, Silicon 4.6 4.2
Sn, Tin <0.1 <:0.1 ..
<o.os 0.11 Sr-1 Strontium .
Ti1 Titanium 0.14 <0.05 ...
w, Tungsten
'• .. '
<1.0 <0.1
v, Vanadium <o .. os <0.05
·r• Zn.f Zinc <:o.os <O.OS
Zr1 Zirconium <O .. OS <0 .. 05
·Table values are mg/1 unless noted otherwise.
(1)
(2)
(3)
. AU values 1~~,. free co2 determined from nomograph on. p. 297 of Standard
Method, 14th edition.
\, ', .
Sa.mples for... a~1 parameters except chemical oxygen demand, dissolved and
suspended solio~ 1 and turbidity were filtered.
(4) Hardness calculated by R&M personn!Jll •
•
•••
susi4/e8 -14-
" "·.:. .. ~~~~---··--"-·'·'·"-~-·~~ ...................... .
1/14/81
<0 .. 05
13
<0.05
<0.05
<: 0,.05
<0.1
<:.0 .. 1
5 .. 0
~ <0.1
0.19
<0.05
<0.1
<0.05
<0.05
<o.os
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
Ag.en.c:y: u.S . Geological Survey
•
Station: Nr. Denali .Elevation: 2440 Ft.
1957-1978
·Field Parameters (1 )
Dissolved Oxygen
Percent Saturation
pH, pH Units
.
•
Conductivity, umhos/cm @ 25°C.
Temperature, °C
Free Carbon Dioxide
. Alkalinity 1 as caco3
Settleable Solids 1 ml/1
Laboratory Parameters <1 )
Ammonia Nitrogen .
Organic Nitrog~n
Kjeldahl Nitrogen
Nitrate Nitrogen
Nitrite Nitrogen
TABLE 9
MAXlMUM
7.8/7.6
20SL467
10.5/-
68/161
.09/-
MINIMUM MEAN
Summer-/Winter
7.1/7.1 7.5/7.4
121/194 157/349
0.5/-5.5/-
1.5/4.~ 3.2/10.8
42/57 54/116
.00/-.05/-
NUMBER
OBSERVATIQNS
..
15/4
18/4
50/-
ll/4 ~ '
t
~ .. ~u
11/4
>15/-_____________________ .._,,_, -
~· !ota;~;tr~g~ ;.~S~;P~;aieha~
Total Phosphate
Chemical Oxygen Demand
Chloride
True Color, Platinum-Cobalt Unit
Hardness, as caco3
susi4/i4
___ , ______________________ , _____________ ~--------
l:i..0/30 .. 0 2. 0/3. a· 4.8/19.0 11/4
87/181' 5.0/84. 64/139 ll/4
-17-?... -It-8'
.oratory Parameters ( 1 ) (continued)
MAXIMUM
• 23L39
. Total Dlssolved Solids ...!f0{270
Totar. Suspended Solids 5690/-
. Turbidity# NTU
Uranium
Radioactivity, ·Gross Alpha, pCi/1
To tat Organic; Carbon
~ 1''otal ·rnol"ganfc Carbon.
Organic Chemicals
Endrin
fiindarie ·
ethoxychlor
Toxaphene
21 4-0 .
21 4, 5-TP Silvex -IC'AP Scar•
Ag, Silver-
AI, Aluminum ..
As, Arsenic • .
Au, Gold
B, Boron
Ba I Barium .
Si, Bismuth
Ca, Calcium 22L5l
Cd, Cadmium
Co, Cobalt •
Cr, Chromium
_cu, Copper . •
susi4/i/
MINIMUM MEAN
Summer/\Vi nter
9l31 15/36 .
72/109 91/204
85/-1350/•
17l23 21L4o
-18-~
"'•'~-
NUMBER
OBSERVATIONS
11L4
li/4. •
32/-
lll4
-
.. ,
L ·b· t Pa~'"' .. amete .. s (1 ) a ora cry .
Fe, Iron
Hg, Mercury
K, Potassium
Mg, Magnesium
Mn,· Mang.anese
Mo, Molybdenum
Na, S\':1di urn •
Ni, Nickel
Pb, lead
Pt, Pfatinum
Sb, Antimony
Se, Selenium
Sl, Silicon
Sn, Tin
Sr, Strontium
Ti, Titanium
W, Tungsten
V, Vanadium
Zn, Zinc:
Zr, Zirconium
•
•
MAXIMUM MINIMUM MEAN
Summer-/Winter
4.0/.06 0/0 1.0/.03 -
3.0/6.6 1.'3/3.6 2.5/5.8
3.8/16 1..7/6.2 3 .l/9.3
o06/.0~ 0/.01 .008/.01
_10/23 2.1/3.8 4 .. 3/15
NUMBER
OBSERVATIONS
.
ll/4
11/4
11/4
10/3"
ll/4
-------------------------...
--------------~~··----------------------------------
(1) Table values are mg/1 unless noted otherwise.
susi4/i/
' -19-
WATER QUALiTY DATA SUMMARY·
SUSITNA RIVER
Agency:
S:tation: Vee Canyon
(Nr. Ca..nt"'!ell)
1962-1972
o. s. Geo~o~rical Survey
Elevation: 1900 Ft.
"
1eld Rarameters (l)
issolved Oxy~~n
. c' -'
er-cent S~turation
• > ~
H, pH Units
' ' ' ~
ond~ctivity, urohos/cm @ 2SC)C
, emperature, °C
I
rE~arbon Dioxide ..
· ~Jnity, as; CaCO..,._
'~.
· ettleable SoHds 1 ml/1
abora!ory Parameters <1 )
Nitrogen
T!!BLE 10
MAXIMUM MINIMUM MEAN
Summer Values Only
8 ~ , + :" . 7 .. 2 7.7
250 91 ~50
13.0 1.0 7.7
6.8 .7 2.6
59 39 51
NUMBER
OBSERVATIONS
10
38
10
10
---------------------------' ,,
rganic Nitrogen
je!c;l~hl~ Nitrogen .... .. _._'
. itrate Nitrogen
' --~o~.a~a~~------~o-~o~· --------~··:20~·-----------l~o~----
itrite Nitrogen
otal Nitrogen
~§.~:!.~~~·~e~~;J·.
otal Pt1osphat~
harni cal Oxygen Deman,f
rue Cotor1 Platinum
-" ,,: '
• arcj.ness, as, Ca<:o 3 ••
susi4/i1 -20-
..
!f
Laboratory . Param.eters (1 ) (continusd)
Sulfate II
, Total Dissolved Solids
T.otal Suspended Solids
Turbidity, NTU
Uranium
Radioactivity 1 Gross Alpha, pCi/~
Total Organic Carbon · ..
Total Inorganic Carbon
qrganic Chemicals
Endrin
Lindane
I Methoxychlor
Toxaphene
2" 4-D
2, 4; 5-TP Silvex
ICAP Scan
Ag, Silver
AI, Aluminum
As, Arsenic
Au, Gold
B, Boron .
Ba, Barium .
Bi, Bismuth
Ca, Calcium
Cd, C.admium
Co, Cobalt
Cr, Chromium .
Cu, Copper
-susi4/i/
MAXIMUM
18
110
. 2790.
MINIMUM ME·AN
Summe.r Values Only
7.5 14
66 90
34 804
NUMBER
OBSERVATIONS
10
10
38
~----J--------------~-----------~------------
j
.. ,..
--------------------------------~-27 14 21 10
2-11-l~
-21-
Parameters (1)
Fe, Iron
Hg; Mercury
K., Potassium
Mg, Magnesium
Mn 6 Manganese
Mo, Molybdenum·
Na, Sodium
Ni, Nickel
Pb, L.ead
• Platinum
Sb, Antimony
Se, Selenium
Si, Silicon
Sn, 'Tin
Sr, Strontium
Ti, Titanium
W, Tungsten
V, Vanadium •,.
Zn, Zinc
Zr, Zirconium
•
.
MAXIMUM
12.0
7.3
4.4
MINIMUM MEAN
Summer Values Only
.as 2.9
1.8 3 .. 4
1.1 2.7
NUMSER
OBSERVATIONS
10
10
10
----------------------------~----~--~------
6.3 2.1 3.9 10
(1)
Table values are mg/1 unless noted otherwise •
..
••
.
susi4/i/ -22-t.--lt-13
•
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
•
AQ.ency: u.s. Geological Survey
Station: Gold C:reek Elevation: 676.5 Ft.
1949-1978
Field Parameters (1 )
Dissolved Oxyg.en
Percent Saturation
p~~ pH Units
~ond~ctivity 1 umhos/cm @ 25°C
T-emperature, °C
Free· Carbon Dioxide
Alkalinity, as Caco 3 .
S.e~tteable Solids 1 ml/1
Laboratory. Parameters <1 )
TABLE ll
MAXIMUM
J? S.l.-t.-I
106/-/-
8.0/8.1/8.0
·227£:300/121
;)..3.5lO.SL8.0
20/16/24\
az,a~aLao
MINIMUM MEAN
,, ..
Summer/Winter-/Break-ue
11.!/-/-12.0/-/-
96/-/-102/-/-
6.6/7.0/6.5 7.4/7.4/7.1
90/164/82 162/248/65
1.0,0.0/1.0 8.6/0.5/3.4
1.1/1.2/5.6 5.6/6.3/8.0
30£:49/29 52/70l48
NUMBER
OBSERVATIONS
·:31-1.:.
3 I I . t=l-
31/20/8
60/25/7
22/5/7
60/22/5 ~ " . \ \ 64/23/3 "''-'.-'
Ammonia Nitrogen
Organic Nitrogen
Kjeldahi Nitrogen
Nitrate Nitrogen
Nitrit~ Nitrogen
Total Nitrogen
,36/. 32/ •. 29 .1J2L.05L.OS .13/.14/.17 58l22/3
-o~a-~b~~P~.i~ ~-osst. '' •
Total Phosphate
Chemica·l Oxygen Demand
Chloride
True Color, Platinum-Cobalt Unit
Hardne$S, as CaCO 3
susi4/i7
15/35/4.5
20/5/50
107/114/113
-,~1-
1.4/9/1.8 5.4/22/3.2 60/25/4
0/0/10 8/3.5/28 52/20/6
35/60/32 61/97/60 58/24/3 ..
f )
0'
otal DissolVed Solids
otat' Suspended· Soljds
urbidity, NTU
., .. '. ranaum
MAXIMUM
28/38/27
134/167/70
2630/76/1330
MINIMUM MEAN
Summer/Winter/Break-ue
4/13/5.5 17/21/16
51/102/48 93/149/55
2:3/1/120 832/18/652
NUMBER
OBSERVATIONS
63/22/2"
59/26/4
59/8/11.
~~~~v~;G~ssAl~a,pdA :'~ot~~~~-----~2~-'~1_-~1_-___ ~2~~~-~~----~~3~/-~~-~·--
otal Organic Carbon . . .
otal inorganic Carbon
rganic Chemicafs
Endrln
.dane
Methoxychlor
Toxaphene
2~ "4-D
~~ 4, S-TP Silvex ·
ICA'P Scan
Ag, SUver
AI 1 Aluminum
As, Arsenic
Au, Go'ld
81 Boron
Ba, Barium' .
-Si, Bismuth
Ca, Calcium
Cd, Cadmium
Co, Cobalt
Cr, Chromium
• Copper
susi4/i/
1
.· ..
---------------_.-·--------..
-------------------------· .. :~
37/11/-37/24/-19/30/-58/26/-~~----~~~~-----=~~~--~~~--
•
•.,.'r-
----------------------------~--
-24co
.. ...,
Laboratory . Parameters (1.)
F~, tfon
HQ.l Mercury
K, potassium
Mg 1 . Magnesium
Mn 1 Manganese
Mo, Motybd~num
Na, Sodium
I'H, Nickel
Pb, lead
Pt1 Platinum
Sb, Antimony
Se, Selenium
Si, Silicon
Sn, Tin
Sr, Strontium
ii, Titanium
W, Tungsten
V 1 Vanadium
Zn, Zinc
Zr,. Zirconium
·MAXIMUM
.46/.:03
.4.4/S.0/1.7
6.3/8 .. 3/7.4
.~8/.0
6.5/17.0/2.9
• MINIMUM MEAN
NUMBER
OBSERVATIONS
Summer/Winter /Break -up
0/0/-.16/.01 27/21/0
1.0/1.2/1.3 2.4/2.3/1.6 49/19/3
1.4/3.6/.3 3.3/5.7/2.~ 55/27/4
0/0/-23/2/0
2.4/5.2/2.8 • 4.1/11.0/2.9 48/19/2
-
_________________ _, ____ ---rt .,. 1 ..
\, . .,......,.,,
------------------·····. -. -----
(1) Ta~le values are mg/1 unless noted otherwise.
susi4/i9
·J •• .. ,.!).... .
-&;;:-u-•
z,,....tl-_1 {,
.· ~:::::
.,
~
\~./
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
Agency:
, Station: Sunshine
·1971-1977
U.Se Geological Survey
Elevation: 270 ft$
Diss-olved oxygen
. Pel-eent Saturation··
·pH, pH Units.
Conductivity, umhos/cm @ 25°C .
·.Temper-ature, °C
F!ti~;;~:$o;:~~:
TABLE 12
MAXIMUM
12.8.
102
io6
~
170
12.0
. 3.9
43
MINIMUM .
Summer/VIinter
12.0
97 99
7.1 7.4
100 132/242
4.0 8.0
2.1 3.2
25 37/il
NUMBER
OBSERVATJQNS
3
6/1
6
3/1
Settleable Solids, ml/1 ------------------------··-''
Labc:rratory Parameters (1 )
Ammonia Nitrogen
Organic Nitrogen .
Kjeldahl Nitrogen ....
Nitrate Nitrogen ...
Ntt.rite Nitrogen
. Tqtal Nitrogen
':>rtho• Phosphate
T~~aiJJl;~rj;J
Chemical Oxygen Demand
Chloride •
. True Color~ Platinum-Cobalt Unit ..
Hardness I as caco.3
, • . ,..,.. .
-/.05
-/.18
~----~-·------~· ·-------------·'~·~4~2--~--------------
.12 .oo .07 4
•:toGG.m.
~-. --~------------------------------------------
"7. 3 2.7 5.3121
72 37 . 54/91
)
'4-fl--l(r}"· · .. :~
"·-,:2 "
susi4/i4 ~-
-26-*
"·
Htt· Zl 'l?J NitS trfttrtrtr -rt ..
Laboratoty,,f!!:ameters (1 ) (continued)
-' .;:;::::..-
MAXIMUM
Sulfate -12
T<ltal Dissolved Solids SJ..
T;otal'-Suspended Solids 3510
Turbidity, NTU
Urani'-'m
Radioactivity, Gross Alpha, pCi/1_
Totai Organic: Carbon
Total Inorganic C2lrbcn
~rganic Chemicals
Endrin
Lindane
Methoxychlor
Toxaphene
" 2, 4-D
• 2, 4, 5-TP Silvex
I CAP Scan
Ag, Silver
AI, Aluminum
As, Arsenic
Au, Gold
B, Boron
Ba, Barium
•
Si, Bismuth
Ca, Calcium 23
Cd I Cadmium
Co, Cobalt
Cr 1 Chromium
Cu, ·-Copper
susi4/i5
MINIMUM MEAN
Summer/Winter
!
.
5.7 9.6/17
102 77/137
288 1419
1:2 17/29
-27-
' ..
..
NUMBER
OBSERVATIONS
3/l
3/l
6
3/1
. ""
:"'-
~/
z -11-18'
Fe, Iron
Hg, Mercury
K, Potassium
Mg, :Magnesium
Mn, Manganese
Mo, Molybdenum
Na, Sodium
Ni, Nickel
Pb, Lead . \Iii' Platinum
Tb, Antimony
Se, Selenium
Si, Silicon -
Sn, Tin
Sr, Stra,ntium
Ti, Titanium
W, Tungsten
V, Vanadium ...
Zn, Zinc ·
Zr, Zirconium
•
.MAXIMUM
.18
,,a
3.5
.02
4.4
MINIMUM MEAN
Summer /Winter
.06 .12/.01
1.1 1,7/2.1
1.6 2. 7/4.5
0 .01/0
1.9 3.0/11
NUMBER
OBSERVAThONS
2/1
3i1
3/1
2/1
3/1
--~------~----------------------------------------
--~~-------------------·~ ~-------·----------------
..
1"~able values are mg/l unless noted otherwise •
•
•
susi4/i6
\
z.-11-1q
-28-
'0
TABLE 4.1
R&M CONSULTANTS, INC.
1981 WATER QUALi·1Y DATA -SUSITNA RIVER
AT VEE CANYON
NOTE: Oa;sh indicates data not available
Date
,
1/13/81 5/20/81 S/18/81 · 'o/30/81
,, (1) Field Parameters·
Dissolved Oxygen 10.7 10.4 ----11.6
Percent Satur~tion 84 83
__ ... _ 99
pHt pH Units 7.2 6.6 7.8 7.7
Conductivity, umhos/cm @ 25°C 242 100 120 124
Temperature, cc 0.1 6.5 11.9 7.9
Free Carbon Dioxide (2 ) 20.0 ----..-3.2 2.2
Alkalinity, as caco3 99 ----79 41
Settleable Solids, ml/1 <<0.1 ¢0.1 ¢0 .. 1 <0.1
Discharge c. f.s. . 1 1 800 9:810 11,600 13,700
Laboratorl! Parameters <1 )(3 )
Ammonia Nitrogen <0.05 0.13 0 .. 12 <0.05
Organic Nitrogen 0.85 0.34 0.63 0.39
KjeldahJ Nitrogen 0.85 0.47 0.75 0.39
Nitrate Nitrngen <0.1 <0 .. 10 <0.10
:~itrite. Nitrogen <0 .. 01 <0.01 <0.01
Total Phosphorus 0.07 <0.05 <0.05 0.49
Alkalinity, as Caco3
_., __ .. ._ ... -------·---
Chemical Oxygen Demand 12 8 8 16
susi9/j 4 -5
·-
TABLE 4.1 -CONTINUED
1/13/81
Laboratory Parameters (1 )(3 ) ( Cont1d)
Chloride
Conductivity, umhos/ em @ 25 oc
'true Color, Color Units
Hardness 1 a$ caco 3 ( 4 )
Sulfate
Total Dissolved Solids
Total Suspended Solids
Turbidity 1 NTU
Uranium
Radioactivity 1 Gross Alpha, pCi/1
ictal Organic Carbon
Total InorganiC::' Carbon
Organic Chemicals
Endrin
Lindane
Methoxychlor
Toxaphene
2, 4-D
2, 4, S-iP Silvax
t
JCAP Scan
Ag, Silver
AI, Alt.:nUnum
As, Arsenic
Au, Gold
B, Boron
susi9/]
18
----
10
121
16
149
0.6
0.35
<0.05
10.32:0 .. 6
23
106
<0.0002
<0.004
<O.a
<0.005
<0.,
<0.01
<0.05
<0.05
<0.10
<O.OS
<0.05
4 .. 6
Oate
5/20/81 6/18/81 .... -
4.5
.. ---
15
40
4
100
93
25
----_ _. __
40
46
----
----
-..---
--------
.... --
<:0. OS
<0~05
<:0.10
<0.05
<0.05
s .. o
__ Gil ..
5
49
8
170
340
66
--..a-____ ...
11
46
---------.
--·----------
<0.05
<0.05
<0.10
<0.05
<0.05
6/30/81
5.0
.......
20
59
7
91
130
29
----
23
59
<0.0002
<0.004
<0 .. 1
<0.005
<0.1
<0.01
<0 .. 05
<0.05
<0. 10
<0.05
<0.05
'[
'r.
.,
1
t
' • • •
1
' ...
l
'"
...
i
"rABL.E 4.1 -CONTINUED
Date ·-
1/13/81 5/20/81 6/18/81 6/30/81 0--
Laboratory Parameters <1 )(S) (Cont1d)
Sa, Barium
<0.05 <0.05 0.07 . . 0.11 ..
Bi, Bismuth
<0 .. 05 <0.05 <0.05 0.1.9
ca, Calcium 36 13 16 19
Cd, Cadmium <0.01 <0.01 <0.01 <0.01
COO/ Cobalt <0.05 <0.05 <0 .. 05 <0.05
Cra, Chromium <0.05 <0.05 <0.05 <0.05
I
.cu! Copper <0.05 <0.05 <0.05 <0.05
Fe, Iron <0.05 0.08 0.05 0 .. 07
Hg, Mercury <0.10 <0.10 <0.10 <0 .. 10 -·
K, Potas~ium 2 1.6 2.0 2.1
Mg, Magnesium 7.6 1 .. 7 2.0 2.8
Mn, Manganese <0.05 <0.05 <0.05 <0.05
Mo, Molybdenum <0.05 <0.05 <o.os <:0.05
Na, Sodium 6.6 2.0 3 .. 3 4.6
Ni I Nickel <f).OS <0.05 <0.05 <0.05
Pb, Lead <0.05 <0.05 <0.05 <0.05
Pt1 Platinum <0.05 <0.05 <0.05 <0.05
Sb, Antimony <0.10 <0.10 <0.10 <0.10
.Se, Selenium <0.10 <0.10 <0.10 <0.10
Si, Silicon 5 .. 0 1. 7 2.0 2.6
sn, -· <0.10 <0.10 <0.10 <0.10
i 10 °
Sr, Strontiurrt 0.13 <0.05 0.06 0.07
Ti, Titanium <0.05 <0.05 <0 .. 05 <0.05
susi9/j 4 - 7
TABLE 4.1 • CONTINUED
Date ·~f!trl, ..
1/13/81 5/20/81 6-./"£8/81
~Laboratory Parameters
(1)(3) (Cont'd)
w, Tungsten 0.4 <1.0 <1.0
. v, Vanadium <0.05 <0.05 <0.05
Zn 1 t.inc <0.05 <0.05 0.07
Zr, Zirconium <0.05 <0.05 <0.05
(1) Table values are mg/1 unless noted otherwise.
(2) All values for free co 2 determined from nomograph on p. 2.97 of
Standard Method, 14th edition.
6/30/81
<1 oO
<0.05
<0.05
<0.05
(3) Samples for all parameters except chemical oxygen demand, dissolved
and suspended Eiolids, and turbidity were filtered • .. .. .
C4) BardD.ess calculated.by R&M personnel.
)'susi9/j 4 - 8
,
J
.J
.l
]
~,
Jl
1,
\.I
TABLE 4.2 ,.
R&M CONSULTANTS, INC.
1981 WATER Q~ALITY DATA -SUSITNA RIVER
AT VEE CANYON
NOTE; Dash indicates data not available.
Field Parameters (1 )
Dissolved Oxygen
Percent Saturation
pH, RH Units
Conductivity, umhos/ em C9 25 °C
~c Temperature,
Free Carbon Dioxide (2 )
Alkalinity, as Caco3
Sett!eable Solids, ml/1
Discharge c.f.s.
Laboratory Parameters <1 )(3 )
Ammonia Nitrogen
Organic Nitrogen
KjeJdahl Nitrogen
8/2/81
11.8
104
7.1
108
8.3
----
---'-
1.0
26,375
0.27
0.52
0.79
8/3/81
12.6
107
7.0
106
7.5 __ _._
----
0.9
29,420
0.09
0.48
0.57
Date Sampled
-.. ..
8/3/81 9/1~/81
12.3
107
7.2
103
9.1 __ .....
.... --
0.7
28,700
0.11
0.63
0.74
12.6
110
7.7
162
5.9
3.5
62
<<0.1
7,790
<0.05
0.45
0.45
~0/7/81
13.2
102
7.5
130
0.0
5.5
57
«0.1
<4,500
0.09
0.08
0.17
Nitrate Nitrogen 0.13 <0.10 <0.10 <0.10 <0.10
Nitrite Nitrogen <0.01 <0.01 <0.01 <0.0.. <0.01
Total Nitrogen 0 .. 92 0.57 0.74 0.45 0.17
~~ ·~!..,.,,r~ .... ; ·'*'*"••••• ,, -,. !!!iOi !? ., , .•"flf':· .... Po..~4!t:'lrf!"'~ ~~·~· • · . · · Orthc~Phasr.haie'··~"';:.·~:-E~:r~~·~-:.~&*f-s:;;e¥i.tP"wt!*"!t:".l;;.~o· ,;:'f!-: .. ~.:;:~"r--'<·;·a·· · o~ .... : ··~~· ~.~:<· :·o:·\ ·a· r· · ·· ~·''"··:;.;;.--;;,.r.:.-·"':· ~-·, •. ..,:tto!!·~~o~J"P·~-""\ =
...... w•·-~ -· .. ~~r-' ••. ·-·.~ ~ ... :: •• ·~:':;.•7-'•i..""'-:·"-::.·•.'~:::: .• :·~• ;;~:::. ~:"'~o •·: • .· •.· .. • '~' .. " .. • ., . "'ir.,U" •. \.-:.1." •.• · • ~ . ., c;:, :::.~/ ,es;; """"*· .aw4:6..:·~E&~··-·=syw~;$V'b""'''~l~.i;.~;~';;H-L'""~~ti.o;.;~.:!'ii'n'.;:;o.;.·;;~·.:n; .. t·r.-,:..,· ,_......no...., .. ;.:.......... ,., ... .-..,.~-...~~, ,• ;.., . .;,,•;.,..,~.... '.
Total Phosphorus <0.05 0.08 <0.05 <0.05 <0.'05
Alkalinity, as Caco 3 44 46 40 60 ----
susi9/j 4 - 9 ?_,-II• -z,q
TABLE 4.2 -CONTINUED
Date Sampled -----~------~~~~~-~---------------10/7/81
(1}(3)
. LabC"lratory Parameters
(continued)
Che!fric:al Oxygen Demand
Chloride
Condu.:tivity, umhos/cm @ 25°C
T.rue Color, Color Units
Hardn.ess, as caca3 (4 )
fJ Sulfate
Total Dissolved . Solids
' .•... ·
' .... ~
TDtal Suspended Solids
Turbidity, NTU
Uranium
Radioactivity s Gross Alpha, pCi/1
T.otal Organic Carbon
TotaJ. 1 norganic. Carbora
Organic Chemicals
Endrin
Lindane
Methoxychlor
"'roxaphene
· 2, 4-D
2, 4, 5-TP .Silvex
ICAP Sean .,
Ag, Silver
AJ, AI umlnum
A:;,, Arsenic
Au, Gold
B, .Boron
susi9/j
8/2/81 8/3/81 -
27
<1.0
., ....
150
51
4
90
1150
108
<0 .. 05
----
15
54
-----
---------
---------.---
<0~05
<0.05
<0.10
<0.05
<0.05
4-10
39
<1.0
.-.---
150
51
2
105
870
120
<0.05
----
20
56
----.....
... -------.... .,.
----
<0.05
<0.05
<0.10
<0.05
<0.05
8/3/81 9/15/81
20
<1 .0
175
51
2
91
745
112
<0.05
.... --
·13
49
.... ca
----
.... --
----__ .__
----
<0.05
<0.05
<0.10
<0.05
<0.05
8
6 .......
50
72
8.
120
40
8.7 .
8
16
-----
301
78
11
143
14
2.5
<0.05 <0.05
5.0±2.5 ----
------c.---
60 ----
<0.0002
<0.004
<0 .. 1
<0.005
<0.1
<0.01
<OoOS
<O.QS
<O~ 10
<0.05
<0.05
1,_,
.. _ . .,
--~-
----------_ .. _ ..
. . <0.05
<:0 .. 05
<0~\10
<0.05 .
<0 •. 05
,; , ..
•
TABLE 4.2 • CONTINUED
•
Date Sameled
8/2/81 8/3/81 8/3/81 9/15/81 10/7/81
Laborator:t Parameters <1 )(J) --· -·
(continued) . ... ..
Ba, Barium 0.12 0.10 0 .. 10 <0 .. 05 <0.05
Bi, ·Bismuth <0.05 <0 .. 05 <0.05 <0 .. 05 <0.05
.
Ca, Calcium 17 17 17 23 25
Cd, Cadmiun <0.01 <0.01 <0.01 <0.01 <0.01
Co1 Cobalt <0.05 <0.05 <0.05 <0.05 <0.05
Cr, ·Chromium <0.05 <0 .. 05 <0.05 <0.05 <0.05
Cu, Co.pper <0 .. 05 <0.05 <0.05 <0.05 <0.05
Fe, Iron 0.13 0.10 0.08 <0.05 <0.05
Hg, Mercury <0.10 <0.10 <0.10 <0.10 <0 .. 10
K, Potassium 1.9 1.9 1. 7 2 9.0
Mg, Magnesium 2.1 2.0 2.1 3.4 3.8
Mn f Manganese <0 .. 05 <0.05 <0.05 <0.05 <0.05.
Mo, Molybdenum <0.05 <0.05 . <0.05 <0.05 <0.05
--
Na, Sodium 2.7 2.5 2.6 5.1 6.3
Ni, Nickel <0.05 <0.05 <0.05 <0.05 <0.05
Pb, Lead <0.05 <0.05 <0.05 <0.05 <0.05
Pt, Platinum <0.05 <0.05 <0.05 <0.05 <0.05
Sb, Antimony <0.10 .<0.10 <0.10 <0.10 <0.10
.
Se, Selenium <0.10 <O. 10 <0.10 <0.10 <0.10
.
Si, Silicon 2.2 2.2 2.4 3.2 3.7
-Sn, Tin <0.10 <0.10 <0.10 <0.10 <0. 10
Sr, Strontium 0.06 <0.05 0.06 0.08 Oo06
Ti·, Titanium <0.05 <0~05 <0.05 <0.05 <:0.05
susi9/j 4 -11
TABLE 4.2 -CONTINUED
Date Sampled
8/2/81 8/3/81 8/3/81 9/1S/81
L b t Par. ameters (1 ){3)
a ora orv
(continued)
•
<1 .. 0 W, Tungsten · <1.0 <1.0 <1 .. 0
<0.05 <0.05
Vanadium <0.05 <0.05 v,
<0.05 Zn, Zinc <0.05 <0.05 <0.05
<0.05 zr, Zirconium <0.05 <0.05 <0 .. 05
(1) Table ·values are mg/l unless noted otherwise.
(2) All-values for free co 2 determined from nomograph .on p. 297 of
Standard Method, 14th editiona
{3) Samples for all p~r'ameters except chemical oxygen demand, dissolved
and suspended solids, and turbidity were filtered • .. " -(4) Hardness calculated by R&M personnel ..
•
susi9/J 4 -12
10/7/81
<1.0
<0.05
<0.05
<O.OS
t
r
t ••
.f'
t t ,4
.
L.
, . .
:~
'
.. . .. '
TABLE 4 .. 3
R&M CON-SULTANTS, INC. ,
1981 WATER QUALITY DATA -SUSITNA RIVER
AT GOLD CREEK
I ,0
1 ·' ~·
NOTE: Dash indicates data not available.
Field Parameters (1 )
Dissolved Oxygen
Percent Saturation
pH, pH Units
Conductivity, umhos/cm @ 25°C
Temperature, oc
Free Carbon Dioxide (2 )
Alkalinity, as caco3
Settleable Solids 1 • ml/1
Discharge c.f.s.
Laborator~ Parameters
(1)(3)
1/14/81
13.3
101
7.1
·2,49
0.3
20.0
74.
¢0.1
......
<0.05
0.81
0.81
Date
5/27/81
(A)
11.2
102
6.7
105
10~5
....... -
----
¢0.10
14,400
<0.05
0.34
0.34
5/27/81
(B)
11.5
101
6.4
106
10.3
----
----
<0 .. 10
14,400
0.08
0.27
0.35
. . ..
6/17/81
---ell-
... .., ....
7.7
126
12.8
3.0
64
~0.10
17,700
0.09
0.39
0.48
Ammonia Nitrogen
Organic Nitrogen
Kjeldahl Nitrogen
Nitrate Nitrogen 0.18 <0.10 <0 .. 10 <0.10
Nitrite Nitrogen <0.01 <0 .. 01 <0.01 <0.01
'
'·~ .....
Total Nitrogf!n 0.99 0.34 0.35 0.48
-a•:.:.!'\ft;.po_::;;;h,"!' ,~~Ah~.?.i ... ;.-..?ff~t&V~~~C}'t~~.)!!,.£:.:'!ti'fo¥GS.W tW'<-41$8!-1<~-''*'i\...-;::t?"~~-'-''•"" ""'*'"11-.f'!"*''"~w.w"" ,. .... -.J'<l•.......,.."':':'~,...,.,.,. ~··~--·~~·...,'+',."' ... ~ n.ua• asp ate •:. . . . . ~ c•;''~"'' ··-···""!"~.<·;·~'-·····~lf'll.' ,......'1"~.··.·-l> :·"··<··a Q"' ··. . ~<· ·~··o-r. -. J!l"'a 01 ~. . '""''"';,...... ... ;,.. .~ · ... :~:: , ... _ ·.·.:_:;..;.}.: :·•;~ .~:;.:·: ~u .• u ..:".:: .~.~ ... ·~'·· _ e. ,._.. · .•• u.. ,· "' ., ·t;. •.. "' --a-• --·---• . -» -.. fllliii>.,CW6'"'s ct c·m • m•·>ll>fc..V&'r v-'iV'zW''Hffr'-<fiS·liw)l"'?-;;;::;&e~:~r1·"'.t»••••HZ-;;::.::.,J-,.."'"··· • --· _,., ·· . -·· -.~ ·':tt .• •· _ ...... .., .• , ·-· H ~ 1
Total Phosphorus <0.01 0.08 <0.05 <0.05 >
AlkaHnity, as caco 3 -------------·~ .. ·.
susi9/j 4 -13
> .
TABLE 4.3 -CONTINUED
Laboratory Parameters (1 )( 3 ) ( Cont'd)
,-... ~ .
·Ch4!mical Oxygen Demand
Chl.oride ; ~ ' .
Canductivityr umhos/cnt @ 25°C
True Color 1 Color Units
H . 'd . c ,...0 (4 ) ar ness, as a.... 3
Sulfate
Total Di.ssolved Solids
Total Suspended Solids
Turbidity 1 NTU
Uranium
~adioactivfty 1 Gross· Alpha, pCi/! .
Total Organi~ Carbon
Total Inorganic Carbon
Organi~ Chemicals . -· ..
Endrin
Lindane
Methoxychlor
.Toxaphene
2, 4-D
2, 4, 5-TP Silvex
IC.AP Scan
I A91 Silver
AI, Aluminum
As 1 Arsenic
Au, Gold
B, Boron
susl9/j
1/14/81
16
29
81---
10
121
16
188
<1.0
0.30
<0.05
2.0±o.4
39
90
<0.0002
<0.004
<0.1
<0.005
<0.1
<0.01
<0.05
<0.05
<0.1
<0.05
<0.05
4 -14
5/27/81
(A)
8
10
---ca
15
43
6
90
56
15
----.... _.,
15
41
____ ..
----.... a..
.. ., ...
------
<0.05
<0.05
<0.10
<O.OS
<!LOS
Date
5/27/81
(B)
12
6
10
43
5
87
49
19
.. ---
--tia-
25
44
----
---· ----
·--·-o
--------
<0.05
<O.OS
<0.10
<O.OS
<0.05
6/17/81
~~
12
5
------
5
52
5
98
120
31
-----......
41
45
------____ ..
---~
-----·
.._ .....
~-----
<0.05
'
<0.10
<0.05
<0.05
TABLE 4 .. 3 -CONTINUED
Date
1/14/81 5/27/81 5/27/81 6/17/81
(A) (B) "•
Laboratory Parameter~ (1 )(3 ) (Cont1d)
. .. . ..
Ba, Barium 0 .. 05 0.07 o.os:~ 0.06
Bi, Bismuth 0.07 <0.05 <0.05 <0.05
Ca, Calcium 32 14 14 15
....
Cd, Cadmium <0.01 <0.01 <:0. 0\~ <0.01
.
Co, Cobalt <0.05 <0.05 <0.05 <0.05
Cr1 Chromium <0.05 <0.05 <:0.05 <0.05
Cu, Copper <0.05 <0.05 <Oo05 <0.05
~~-'
Fe, Iron <0.05 0.07 <0.05 2.0
Hg, Mercury <O. 1 <0.10 <0.10 <0.10
K, Potassium 2.0 1.9 1.8 2.0
Mg, Magnesium 10 2.0 2.0 2.6
.. Mn, Manganese <0.05 <0.05 <0.05 <0.05
Mo, Molybdenum <0 .• 05 <0.05 <0.05 <0 .. 05
Na, Sodium 13 4.1 3.9 3.8
Ni, Nickel <0.05 <0.05 <0 .. 05 <0.05
Pb, Lead <0.05 <0.05 <0.05 <:0.05
.
Pt, Platinum <:0.05 <0.05 <0.05 <0.05
Sb, ·Antimony <0.10 <0.10 <0.10 <0.10
Se, Selenium <0.10 <0.10 <:0.10 <0 .. 10
Si, Silicon 5.0 2.5 2.4 5.9
c
Sn, Tin <0.10 <0.10 <0.10 <0.10
Sr, Strontium 0.19 0.07 0.06 0.06
Ti, Titanium <0.05 <0.05 <0.05 0.11
'~,
~~usi9/j
s·
4 -15 cz._.. I 1-3o
• . . '
TABLE 4.~ -CONTINUED
Laboratory Parameters (1 )(3 ) ( Cont'd)
Wr Tungsten
Vr Vanadium
Zn, Zinc
Zr 1 !:Zirconium
1/14/81
<1.0
<0.05
<0.05
<0.05
5/27/81
(A)
<1 .0
<0 .. 05
<0 .. 05
<0.05
(1) table values are mg/1 unless noted otherwise.
Date
5/27/81
(B)
<1 .0
<0.05
<0.05
<o:o5
(2) All.values.for free co 2 determined from nomograph on p. 297 of
l3tandard Method, 14th edition.
6/17/81
<1.0
<0.05
<0.05
<0.05
(3) Samples for all parameters except chemical oxygen demand, dissolved
and suspended solids, and turbidity were filtered.
(4) Ha~dness calculated by R&M personnel.
(A) Grab sampling method.
(B) Depth -integrated sampling method •
. ,'
•
« ~~ • "· '.'
'l~lt-31
SIJSi9/j 4 -16
r~ . ~~·.
t.r
~
ji
J
;J
if ~
I
TABLE 4.4
R.&M CONSULTANTS, INC. ~ •
1981 WATER QUALITY DATA -SUSITNA RIVER
AT GOLD CREEK
E: ' Oash indicates data not available.
Date Sampled
6/30/81 7/1/81 8/2/81 8/3/81 .....
iss~!y_~d Oxygen 13.4 13.4 12.5 13.2
Saturation 114 116 113 115
· , pH Units 7.0 7.3 7.5 7.3
ctivity, umhos/cm @ 25°C gg, 109 75 91
emperature, °C 7o3 8.6 9.3 9.2
ree Carbon Dioxide (2 ) 8.6 3.3 ----__ .. ._
kaHnity, as CaCO 33 25
.., ___ ----
3
ettteabfe Solids 1 ml/1 0.1 <0.1 <0.1 0.60
9/14/81 10/8/81
[2.8 14.1
107 101
7.4 7 .2r t .
FS-.:.._ ·j
144 162
6 .. 8 0.8
4.8 9.0
45 46
«0.1 <<0.1
2,4,550 21,700 51,100 46,000 12,600 6,300
(1)(3)
ia Nitrogen 0.07 0.08 <0.05 <0.05 <0.05 0.52
rganic Nitrogen 0.48 0.39 0.63 0.67 0.74 0.47
jeldahl Nitrogen 0.55 0.47 0 .. 63 0.67 0.74· 0.99
itrate Nittogen 0.22 Oo 17 0.32 0.18 <0.10 <0.10
itrite Nitrogen <0e01 <0.01 < 0 C"' . • I
I
o1:al Nitrogen 0.85 0.74 0.99
~··-~';."':"'1-.... ,_.,....... •. t"'_~ .. ::.~""""':"''*"'¥'\'~"t "' ..
<0.01~ 0.01 a.
'
0.07 <0.05 <0.05 <0."~
Al!kalinity,
~o~.
as Caco3 ---------28 36 .. ~._,._ '0' ,._._ ...
susi9/j 4 -17 Z--11-3'2-
1 '\
TABLE 4 .. 4 ... CONTINUED
Date Sampled ------~----------~~~~-~~~--~-----------
·. .• . (1)(3\ Laboratory Parameters · ~.
·(continued)
Ct-iemlcal Oxygan Demand
Chloride
Conductivity 1 umhtls/cm @ 25°C
' ~-. ·' .
True Color, Color Units
Hardriess 1 as c~co 3 (4).
.lfate
Total DissoJved Solids
Total Suspended Solids
Turbidity, NTU
Uranium
Radioactivity, Gross Alpha, pCi/1
Total Organic: ·Carbon
T'otal Inorganic Carbon .
Organi.e Chemicals.
Endrin
Lindane
Methoxychlor
Toxaphene
;'
2/ 4-0
. 2, 4 1 S•TP SiJvex
JCAP Scan •
Ag, Silver
1\ I A h , .... ;.-u 11'1'1.
,..,. t I """'• .,. •' •" • ._., n
As, Arsenic
~ Au, Gold
a, Soron
. susi9/j
6/30/81 7/1/81 8/2/81 8/3/81
24 12 23 24
4 5 <1 <1
.. Cia-~ ---.-.., ___ .. ___
30 20 90 110
40 47 31 43
s.s 5.2 1.5 2.4
68 79 f1 96
140 68 490 1255
29 18 64 86
.,;-·---~~--<0.05 <0.05
----_ ....... -----.... _. ...
20 10 16 14
41 44 34 44
........ -<0.0002 ..... ~-. e • ., ..
_.,.. __
<0.004 _ ...... al!l---
----<0.1 ------~--
.. -... -~ <0.005 -----.... .__
----<0.1 ----... ..,.. __
__ .. _ <0.01 ---------
<: 0. 05 <0.05 <0.05 <0.05
4!' 1\ 1\C: 'VeV.., <0.05 <0.05 0.08
<0.10 <0.10 <0.10 <0.10
<0.05 <0 .. 05 <0.05 <0 •. 05
<0.05 <0.05 <0 .. 05 <0 .. 05
4 -18
9/14/81 10/18/81'
18 2
f) 14
.... -.. ~·----
50 -40
62 68
6.2 9 .. 5
99 118
57 7.7
14 1.2
<0.05 <0.05
5.5±2.5 --··-
33 . 34
61 ....... .a
<~)..0002 .. -~-
<U.004 ..... _ ..
<10.1 .........
. "'~
<0.005
__ .. _
<:0.1 ---.aa
<0.01 --.......
1'.•
<0~05 ' <0.05.
<n n~ ,..,. v~ <t.l..,OS.
<0.10. <0. 10
<0.05 <0 .. 05 .
<0.05 <0.05
f, ~ ·~--ll-33 t
1.
-, . -
r
I
!f . ~
l
fT• ... n ~
n .. ·
\.'
r. ..•
'(
~
r
? .t•
~.
l'
t
'-~ ...
.. r
·1\.
TABLE 4.4 -CONTINUED
Date Sameled _,.
"l 'I--''
6/30/81 7/1/81 8/2/81 8/3/81 9/14/81 10/8/S'"t --.-·-
/! : ~"
[
Param~ters (1 )(3 )
. ..
. Ba, Barium 0.09 0.10 0 .. 09 0.11 0.11 <0.05
Si, Bismuth <0.05 <0.05 <0.05 0.19 <0_.05 <0.05
..
Ca, Calcium 13 14 10 14 20 22 ,,
Cd, Cadmium . <0.01 <0.01 <0.01 <0.01 <0.01 <0.01.
; . c•
Co, Cobalt <0.05 <0.05 <0.05 <0.05 <0.05 <0 .. ()5
Cr, Chromium <0.05 <0.05 <OoOS <0.05 <0.05 <O.(Jf
Cu, Copper <0.05 <0.05 <0.05 <0.05 <0.05 <O.o~·~~"
Fe, Iron 0.07 0.07 0 .. 10 0.07 <0.05 <0.05
Hg, Mercury <0.01 <0.10 ~0.10 <0.10 <0.10 <0.10
K .. I Potassium 1.4 1.5 1.3 1.9 2.0 2o4
Mg, Magnesiurn 1.8 2.8
l':'L;
1.4 1.9 2.9 3 .. 2 ..
Mn, Manganese <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
Mo, Molybdenum <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
Na, Sodium 3.8 4.3 2.8 3.4 6.2 7.4
. Ni, Nickel <0 .. 05 <0.05 <0.05 <0.05 <0.05 <0.05
Pb . I L.ead <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
Pt, Platjn~m <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
Sb, AntimO':'Y <0.10 <0.10 <0.10 <0.10 <0.10 <0, 10
Se, SeiEanium <0.10 <0.10 <0. 10 <0 .. 10 <0.10 <0.10
Si, Silicon 2.6 2.8 2.6 2.7 3.4 3.9
Sn, Tin <0.10 <0.10 <0.10 <0.10 <0.10 <0.10
Sr, Strontium 0.06 <0.06 <0.05 0.06 0-0~ 0.10
Ti1 Ti~nium <OoOS <0.05 <0.05 <0.05 <0.05 . <0.0$~ • ,_ . ' ~
""
_,
susi9/J 4 .. 19 2:'~11-31/
(
TABLE 4.4 -CONTINUED
-Date Sampled
G/30/81 7/1/81 -8/2/81 8/3/81 9/14/81
. . (1)(3)
Laboratory Parameter!!, ·
~ I'·'
(contiou.ed) ~ ,
•
.. \ W·,-;]:~ng$:ten ·'
V 1 Vanadium
Zn, Zinc
Zr 1 Zireonium
'
<1.0
<0.05
<0.05
<0.05
<1.0 <1.0
<CJ.OS <0.05
<·0.05 <0.05
<0.05 <0.05
'(1) Table values are mg/1 un.less noted other~ise •
.
<1.0 <1.0
.<0.05 < o.os~
<0.05 <0.05
<0.05 <0.05
(2) All values for free co 2 determined from nomograph en p. 297 of
StaJ?-dard Method~ 14th edition.
(3) Samples for all parameters except chemical oxygen demand, dissolved
and suspended solids, and turbidity were filtered.
(4) Hardness c:alcul~ted by R&M personnel.
susi9/j 4 -20
·[
10/8/81 [
<1 .. 0
<0'.05
<0.05
<0.05
r -
r
L
J!
i
r
'
~ :.: . ~~ ·, ,j;i.,
"--'
..
l 0 :t•
rl J)
-·
~ield Parameters <1 )
, ..
Dissolved Oxygen
Percent Saturation
pH, pH Units
TABLE 5 .. 1
WATER QU"}LITY DATA SUMMARY
SUSITNA RIVER
Agency: U.s. Geo 1 ogi ca 1 Survey
Station: .. ,. f-IR. DENALI -1957-1981
Efev~tion: 2440 FT.
Summer /Winter
.Maximum Minimum
---.,.
7.8/7.6 7.1/7.1
•
Mean
-
7.5/7.4
Conductivity, umhos/cm @ 2S°C 205/467 121/194 157/349
Temperature, °C
Free Carbon Dioxide
Alkalinity, as Caco3
Settleable Solids,. ml/1
labor§itory Par'atneters (1)
Ammonia Nit~en
Organic Nitrogen
Kjeldahl Nitrogen
Nitrate Njtrogen
Nitrite Nltrogen
Total Nitrogen
10.5/-
5 .. 8/25
68/161 -
--..
.09/-
-
0.5/-5.5/-
1.5/4.5 3.2/10/8
42/57 54/116
-
-
-
.00/-.05/-
..
. .. Number
Obser-
. vatiohs
-
15/4
18/4
50/-
11/4
11/4
15/--
~· ~ • 'I [, • A > • ~ , t, ~ , f , '· • , • • ". _ _..-'-~ .-.. ;, •• • ., •• ~ •. • ·• ~· .,.. • ,,_:'-"i,•C ,,~~~,'f~~ . . . -· .
Total Phosphorus ---
AlkaHnity, as· caco3 -... --
Chemical Oxygen Demand ---
Chloride 11.0/30.0 2.0/3.8 4.8/19.0 11/4
5.2
•
••
susi6/s8
(1) .Laboratory Parameters
(continued)
Conductivity, umhos/cm @ 25°C
True Color" Color Units
Hardness, as caco3
Sulfate
Total Dissolved Solids
Total Suspended Solids
Turbidity, NTU
Uranium
Radioac:tivity, Gross Alpha, pCi/1
Total Organic Carbon
Total Inorganic Carbon
Organic Chemicals
Endrin
.Lindane
MethoxychJor
Toxaphene
2, 4-0
2, 4, S ... TP Silvex
ICAP Scan
~ Ag, Silver
AI, Aluminum
As, Arsenic
Au, Gold
B, Boron
Sa, Barium
Bi, Bismuth
..
Ca, Calcium
Cd, Cadmium
Co, 9obalt
Cr, Chromium
C':J.t Copper
TABLE 5.1 CONTINUED
Summer/Winter
Maximum
-
87/181
23/39
120/270
5690/-
350/-
---
--
---
--
---
29/51
-
-
Minimum
50/84
9/31
72/109
5/-
20/-
-
--
--
-
...
-
----
...
-
...
17/23
...
-
...
-
Mean
64/139
15/36
91/204
1004/-
176/-
-
-
-
-
---
-
-
21/40
-
•,'c
'.
__...,..-""
:-;::;:-__:_:=;:-;:::;:/"
susi6/s9
TABLE 5~1 CONTINUED
. Summer/Winter
· Maximum Minimum
La~or'ator~ Parameter! <1 )
(continued)
:Fe, Iron 4.0/.06 .03/0
-...
Hg, ·.Mercury
K Potassium 3.0/6.6 1.3/3.6
I
Mg, Magnesium 3.8/16 1.7/6.2
. .06/.02 0/0 Mn, Manganese
Mo, Molybdenum
Na, ·sodium lC/23 2.1/3.8
Ni, Nickel -..
-Pb,. Lead
Pt, Platinum -...
Sb, Antimony --
Se, Selenium -
Si, Silicon --
sn, Tin -
• Sr 1 . Strontium
Ti, Titanium -
w, Tur~gsten -
v, Vanadit.im -.~.
Zn 1 ·-Zinc -
'
Zr, Zirconium -..
(1) Tabl~ values are mg/1 Wlless noted otherwise ..
5.4 .
Mean
1.0/.02
2.5/5.8
3.1/9.3
.009/.01
-
4.3/15
---
-
--
. ..
Number
Obser-
vations
11/4
11/4
11/4
10/3
11/4
-
-
J .
'· .
•
•
susi6/s4
TABLE 5a2
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
Agency: U.S. Geological Survey
Station: VEt: CANYON 1962 -1981
Elevation: 1900 FT.
·~
----------------~S~u~m~m~e~r_V~a~lu~e~s~O~n~I.Y _____________ , __
Field Parameters (1 )
Dissolved Oxygen
Percent Saturation
pH, pH Units
Cond~'ctivity 1 umhos/cm @ 25°C
Temperature, oc
Free Carb!.:ln Dioxide
AI kalinity, as caco3
Settleable Solids, ml/1
Laboratory Parameters <1 )
....
Ammonia Nitrogen
Organic Nitrogen
Kjeldahl. Nitrogen
Nitrate Nitrogen
Nitrite Nitrogen
Total Nitrogen
Ortho .. Phosphate
•TcattrPhes,.JiNaFutAI x
AI kalinity, as Caco3
Chemical Oxygen Demand
Chloride
Maximum Minimum
--
8.1 7.2
168 91
13.0 1.0
6.8 .7
59 39
--
0.88 0.0
------
--
9.2 2.1
s.s
Mean
7.7
150
7.7
2.6
51
--
.20
'· -
·-
--
5.5
Numl•
Obse;·
vatior
:;..
lO
25
• .
•
38·
10
10
·---
10
...
--
lQ
i
J
~ ~
i ' • l • . j
l z .... ,,-3,
susiS/sS
Laboratory Parameters <1 )
(continued)
Conductivity 1 umhos/cm @ 25°C
True Col~r( Color Units
Hardness, as .cac.o 3
Sulfate
Total Dissolved Solids .
Total Suspended Solids.
Turbidity', NTU
Uranium
Radioactivity, Gross Alpha 1 pCi/1
Total Organic Carbon
Total tnorga~JiC: Carbon
Organic Cf1_~mical§"';'
-.. ;, . -~ ~--=-~ ::;.::::::.:-..
Endrin
Lindane
Methoxychlor
Toxaphene
;' ·.~·,' 4-0
_J \
~·;, 4, S"TP Silvex
.,
ICAF Scan
Ag, Silver
AI, Aluminum
As, Arsenic
Au, Gold
B, Boron
Ba, Barium
Bi1 Bismuth
Ca, Calcium
Cd 1 C~~mifJm
co, Cobalt
Cr, Chromium
Cu, Copper
TABLE 5.2 CONTINUED
Summer Values Only
Maximum
-
40
76
18
110
2790 -----
---
--
----
27 ---
5.6
Minimum
-
5
42
7.5
66
34
-
---
-
--
--
-
14 ----
.Mean
-
14
62
14
90
773
--
-
---
-
-
-
--
21
---..
. •
Number
Obser•
vations
-
9
10
10 .
10
38
-
""'
-
-
--
10
-
-
ll t
'--';:;~
sb$i6/sS ., TABLE 5.2 CONTINUED ' ,,
·Summer Values Onl;t
' Num(
Obse·
Maximum Minimum Mean vatic
'\ \\· . Laborator}! Parameters ~1)
(continued)
Fe, Iron 12.0 .05 2.9. 10
Hg, Mercury
K, Potassium 7.3. 1.4 3.4 lO·
Mg,. Magnasium 4.4 . 1 .. 1 2.7 10 .
Mn, Manganese • 23 0 .12 2
·"
Mo, Mo1ybdenum --
Na, Sodium 6.3 2.1 3.9 10
Ni 1 Nickel -
Pb, Lead -
Pt, Platinum ---
_.. Sb, An~imony -
Se, Selenium -"!' -
Si 1 Silicon -·-
Sn, Tin --
Sr, Strontium "' -
Ti, Titanium --
w, Tungsten --
v, Vanadium --
Zn, Zinc --
"ZI'" I Zirconium ---
..
(1) Table values are mg/1 unless noted otherwise.
5.7
· susi6/tl
TABLE 5.3
WAT.·flR QUALiTY DATA SUMMARY
SUSITNA RIVER
Agency: R&r-1 CONSULTANTS, INC.
Station: VEE CANYON 1980 -1981
Elevation: 1900 FT ..
· ~OTE: Not Detectable is abbreviated i1D
•
Summer/Winter /8 rea k-Ue.
. .. ..
Maximum Minimum Mean
. (1) . Field Parameters
Dissolved Oxygen 12a6/13.8/1Q.4 8.7/10.7/10.4 11.5/12.6/10.4
Percent Saturation 110/104/83 82/84/83 99/97/83
pH, pH Units 7.9/7.6/6.6 7.0/7 .. 2/6.6 7 .. 6/7.4/6.6
Conductivity, umhos/cm @ 25°C 171/242/100 103/130/100 129/171/100
Number
Obser-
vations ·
8/3/1
8/3/1
10/3/1
9/3/1 ~
11.9/0.1/6.5
--..,:~;., ... /
Temperaturt.!, °C 5.3/-0.1/6.5 7.7/0.0/6.5 10/3/l
. Frt:~ C2r:bon Dioxide (~) 4.5/20 .. 0/-1.7/5.5/-3.0/10.3/-7/3/0
AI kalinity, as Caco3 81/187/-41/57/-61/111/-7/3/0
Settleable Solids, ml/1 l.O/ND/ND ND/ND/ND 0 .. 27/ND/ND 10/3/1
Laboratory Parameters (1 )(3 )
Ammonia Nitrogen 0.27/0.26/0.13 ND/ND/0.13 0.11/0.12/0.13 9/3/1
Organic Nitrogen 0.63/0.85/0 .. 34 tm/0.08/0.34 0.44/0.40/0.34 9/3/1
Kjeldahl Nitrogen 0 .. 79/0.85/0.47 0.26/0.17/0.47 0.60/0.52/0.47 9/3/1
Nitrate Nitrogen 0.19/ND/ND r~D/ND/NO 0.07 /NO/NO 10/3/1
Nitrite Nitrogen rm NO NO 9/3/1
Total Nitrogen 0.92/0.85/0.47 0.39/0. 1Jf.0.47 0.61/0.52/0.47 9/3/1
P. aae,qs.e .. *!'£'!!'!!::#....].X.S,04Af4C. #(.)$54$JS! .. .QlJt#:""!CJ .. AC!pc*·~.! ll!l 4 -..'! P.54if!!FC,.'·¥. .J e .. ~. e __.,.._,,........._..~
-OPtf~piRfp.ft'i!U: · ". ..,.::~~c::.~r;:~~?~ ai~9ta.oz?r•o~ .·~ .~. ND:'ND/NB ·. ·· . · ~··. a· 06/·o· n1/ .. N~o-'~·-···y··~,·.· 31. 1· · .! ~ ~ .. . . _.,_.........,._.._~,.....:~t.... . I· .. , .• . /o,. --" • • • U · . . j
·+¢• I..,...''? . s"'tt .. rist*e·>ridt?ear-rye-.r~;.:rtzrte¥;,;.;e:?:f&1'Wet'i ... · .. , rc ....... --·· I, t,mn ''fd r =·em Me··· ;; rrtts·r.-·ku dtzl'd r CI~~;;;.,;.,.M'10Wm~;'··k" .. , .. '*'"' ..-~,
Total Phosphorus 0.49/0.07/ND ND/ND/ND 0.08/0 •. 02/ND 10/3/1
Alkalinity, as Caco 3 60/66/-40/66/-48/66/·· 4/1/0
Chemical Oxygen Demand 39/12/8 8/6/8 20/9/8 8/3/1
Chloride 11/18/4.5 f~D/16/4.5 4.7/17/4.5 10/3/1 \J~
s.a
. z. ~lt: '(" · .. ·
''
susi6/t2.
Laboratory Paramete'r.! (1 )(3 )
·(continued)
Conductivity, uJTA~os/cm @ 25°C
True Color 1 Color Units
Hardness 1 as caco3 (It)
Sulfate
Total Dissolved Solids
Total Suspended Solids
Turbidity, NTU
Uranium
TABLE 5.3 CONTINUED
Summer/Winter/Break-Up ~------~~~~~;.;..:..;~~_,;;;;,lb.-____ ...;,;":.
Maximum
-
175/30/15
76/121/37
. 9/16/4
170/149/1 00
1150/14/93
120/2.5/25
NO
Minimum Mean
5/10/15
51/78/37
2/11/4
38/115/100
25/0.6/93
8.7/0 .. 35/25
ND
72/70/15
58/96/37 l
6/13/4
98/136/100
398/7.6/93
. 68/1.6/25
Numt
Obse
vati~
-I
9/Stj
10/~·
Radioactivity, Gross Alpha,
Total Organic Carbon
pCi/1
ND
11.6+0.6/10.3+0.6 --
10/~.
10/~
10/3
10/~
5/2/
l/1/:
5/1/l
6/2/' Total Inorganic Carbon
~'""'ganic Chemicals
tndrin
Lindane
Methoxychlor
Toxaphene
2, 4-0
2, 4t 5-TP Silvex
ICAP Scan
'"Ag, Silver
AI, Aluminum
As, Arsenic
Au, Gold
8, Boron
Ba, Barium
Bi, Bismuth
Ca, Calcium
• Cd, Cadmium
Co, Cobalt
Cr, Chromium
Cu, Copper
23/23/40
60/106/46
NO
NO
NO
NO
ND
NO
NO
2.2/0.18/NO
NO
NO
NO
0.12/NO/NO
0.19/NO/ND
23/36/13
NO
NO
NO
NO
5.9
11/23/40
46/21/46
NO
ND
NO
NO
NO
NO
NO
NO/ND/NO
NO
NO
NO
NO/NO/NO
ND/ND/ND
13/25/13
NO
NO
NO
NO
l-6/23/-40
Scl/64/46"
ND
NO
NO
ND
ND
NO
NO
0.41/0.06/NO
ND
ND
NO
0.07/ND/ND
0 .. 02/ND/ND
18/30/13
ND
ND
· NO · •·
Nil.
3/1/
3/l/
3/1/
3/1/
3/l/
3/1/
10/3-
10/3
10/3
10/3
10/3 l
10/3 !
l0/31
10/3 .;
1or~
l0/3 .
10/3:
10/3;
(1) Table values are mg/1 unless noted otherwise.
(2) All values for free co 2 determined from nomograph on p. 297 of
Standard Method,. 14th edition • .
(3) Samr)les for all parameters except chemical oxygen demand dissolved
and suspended solids, and turbidity were filtered/' '
,(4) Hardness ~alculated by R&M personnel.
5.10
n
· ...
• ' i>•-~··-., • • •
.·., ' .
Laboratory Parameters (1 )
....
Ammonia Nitrogen
Organic Nitrogen
Kjeldahl Nitrogen
•
TABLE 5.4
WATER QUALITY 'OATA SUMMARY
SUSITNA RIVER
Agency:
Station:
U.S. Geological Survey
GOLD CREEK 1949 -1981
Elevation: 676.5 FT.
.33/.08/-
.39/.44/-
-.
.01/.03/-
.10/.27/-
• 13/.06/-
.27/.36/-
4/3/-
4/3/-.
Nitrate Nitrogen .36/.32/.29 .02/.05/.05 .13/.14/.17 60/22~
Nitrite Nitrogen .03/.01/-: .02/0/-.02/0l-2/3)..;
' Total Nitrogen .58/.66/-.25/.51/-. .47/.57/-. 4/3/·
119t .. _-.. •riA~-..-... •~.C .. :.¥'f-:.~fL-Yi~;;%-J52f./·,r;_~;!tff:f;4--..~o<;;.Jl~~---2!-.''H< _ t ... .:. 141,_a 1 ..... •~ :o+-• z .. ~".'~_,f'!""·fd'·. <"»r»< ~~·~ .. <~_. q!(«_. ,!Qila~~·~u--•e QOUA tH.
·_Ortbo-Phosphate ,.,.., .. .,;;;ii!~ww~~-~.0~1,..031-,..,r·-·-:,...,.QL..Ql/.:-L___.:,: · :. .... Ol/ ... 02[: "d ·;.,;·.·=' 9[2/1
+ -. • .. ' ... -~ --i. •It. <I ••
Tt;~tal Phosphorus • 04/. 03/-0/.03/-• 02/. 03/-5/2/1 ------:'
·-.
'-
.. .,. -
AI kalinity, as Caco 3
Chemical Oxygen Oemand
Chloride 15/35/4.5 1.4/9/1.8 ·•· sz/2s. 5.5/22/3 .. 2
S.ll
susi6/s2 ·
TABLE 5"4 CONTINUED
Summer/Winter/Break-Up
Laboratory Parameters (1 )
(continued)
Conductivity, umhos/cm @ 25°C
True Color, Color Units
Hardn~:s.st ascaco3 ..
Sulfate
Total Dissolved Solids
Total "Susp·ended ~lids
Turbidity 1 NTU
Uranium
Maximum.
20/5/50
107/114/113
'28/38/27.
134/167/70
2620/76/1330
-
Radioactivity, Gross Alpha, pCi/1 50/-/-
To~l Organic Carbon -
Total Inorganic Carbon
Organic Chem~cals
Endrin
lindane
Methoxychlor
Toxaphene
2, 4·0
2, 4, s~TP Silvex
!CAP Scan
Ag, Silver
AI 1 Aluminum
As, Arsenic
Au., Gold
B, Boren
Ba, Barium
Bi, Bismuth
Ca, Calcium
Cd, Cadmium
Co, Cobalt
Cr, Chromium
Cu, Copper
....
. -
0/-/-
--
01-1-
-
37/11/-
0/-/-
0/-/-
.0l/-/-
.OOS/-1-
•
S.l2
Minimum
0/0/10
35/60/32
1/13/5.5
51/102/48
7/1/120
--
-----
0/-1-
0/··/--
371'24/-
0/-/-
Ol-1-
01-1-
.0041-1-
·Mean
8/3.5/28
61/97/60
17/21/16 .
93/149/55
805/18/652
-
20/-/-
5.5/5/1.8
...
0/-/-
-
0/-1--
19/30/ ....
0/~/-
0/-/-
.. 005/-/-
.004/-/-
..
Number
Obser-
vations
-
52/20/6
60/24/3
65/22/2
61/26/4
63/8/11
3/l/1
1/1/1
---
21-l--
2/-/--
60/26/-
2/-/-
21-1 ...
2/-/-
.. j 2/-/-~"
<+,•"'
susi6/sS
. TABLE 5.4 CONTI·NUED
______ ___;s;;..;u::;;.;.m;;.;.;m.;.;.;e::;;.;.r.:-/Wlnter /Break-Up
Maximum Mjnimum Mean
.J Parameters (1)
Laboratory ...
(continued)
l' .46/ o03/-0/0/-.16/.01/-Fe, iron
Hg, Mercury .002/-/-0/-1-, .0011-1-
K Potas·sium 4.4/5 .. 0/1.7 1.0/1.2/1.3 2.4/2.3/1.6
. I
-Mg, Magnesium 6.3/8.3/7..4 1 .. 4/3.6/.3 3 .. 2/5.7/2.5
Mn, .Maog~nese .. 18/.0/-0/0/-.010/0/-
-· Mo, Molybdenum -
Na, Sodium 6.5/17.0/2.9 2.4/5.2/2.8 4.1/ll.0/2o9
Ni, Nickel 0/-1-OI-l-Ol-1-
Pb, . Lead ' ' OI-l-OI-l-01-1-
Pt, Platinum ·--
. '. st); Antimony -~· --.
'~ Se, Selenlum 01 ... 1-OI-l-0/-1-
Si, Silicon . --
sn, T.in --
Sr, Strontium ""
Ti, Titanium --
w, Tungsten ---
v, Vanadium -·--
Zn, Zinc .011-1-.0061-1-.008/-/-
Zr, Zire'dnium ---
. (1} !able. values _are mg/1 unless noted otherwise.
. •
5.13
--·--Numb
Obser·
vatic;t -:.i
f' ·~t '
• . .
30/21/
21-1-'r:
~ ...
51/18,~
57/27/.' ' '
26/2/Cf..
·" -
48/19t~ ,
2/ .. J-·~
2/-1-·-
-('
-(
-
.... (
-
' ~.-.
f~,
·::-.. ~
~ :"~-\~
susi6/t1
''
TABLE 5.5
-,: WATER QUALITY DATA SUMMARY
SUSITNA RIVER
Agency: R&M CONSULTANTS, INC.
Station: GOLD CREEK 1980 -1981
Elevation: 676.5 FT.
•
NOTE: Not Detectable is abbreviated NO
,, <' ~
SummerL!Vinter/Break-Up
Number -.. Obser-
Maximum Minimum Mean vations
Field Parameters (1 )
Dissolved Oxygen
Percent Saturation
pH, pH Units
Conductivity, umhos/cm @ 25°C
Temperature, °C
Free Carbon Dioxide <2 > .
Alkalin~ty, as Caco3
Settleable Solids, ml/1
Laboratory Parameters (l )(3 )
Ammonia Nitrogen
Organic Nitrogen
Kjeldahl Nitrogen
13.4/14.1/11.5 8.6/13.3/11.2 12.3/13.8/11 .. 4
116/101/102 81/100/101 108/101/102
7.8/7.8/6:7 7.0/7.1/6.4 7.4/7.4/6.5
169/249/106 75/162/105 116/193/106
12 .. 8/0.8/10.5 6.E3/0.0/1 0. 3 9.4/0.4/10.4
36/23/-2.1/3.2/0 17/13/-
64/144/-25/46/-44/88/-
0.6/NO/ND N:)fND/ND 0.1/NO/ND
0.09/0.52/0.08 ND/ND/ND .04/0.28/.04
0.74/0 .. 81/0.34 0.39/0.34/0.27 0.55/0.54/0.31
0.74/0.99/ND 0.47/0.66/NO 0.59/0.82/0.34
6/3/2
6/3/2
7/3/2
7/3/2
7/3/2
5/3/-
5/3/-
7/3/2
6/3/2
6/3/2
6/3/2
Nitrate Nitrogen 0.,32/0.18/ND NO/NO/NO 0.15/.06/NO 7/:~i'l.
Nitrite Nitrogen NO/NO/NO NO/flO/NO NO/NO/tiD 6/3/2
i. ~.
'
Total Nitrog_en ~ 0.95/0.99/0.35 0.48/0.65/0.34 0. 74/0.88/0.35 6/3/2
"':'"" . '.t "!"''~~·..-.::1:"'"".-:~ .. ::'f!!.ii?.!i.e;;i.0~·¢1*''5i!Ji.!L.-j..~i•·~ ....,.EPSfJaac.za ·' ~~'?? '·' '5~~ .... u.•!~~ ...... '~"··: ~.i.":"!".7'~-"'!:?'.7',...'~"" .. '?""-:"~.....,_,.~_.--~.-•
Ortho-Phose_hatf.t >:~-'>"::::.~f~--.:.;~r;~~.!-~-~:·~· Q;J0/0.02/ND' .. ·. NO/flO/NO: ·. · :. 0.01'/0 .. 01/ND 7/3/2.' ·· :::
-· .. · ,. · r·s ·r" * --· ·r•re:baeey·-sttMa,;sztai.iit6si.J.¥w·t.a1iif'li'qnOWrloert'·dt cs&DYft'·';<d''f' tit ..• E!· «t h .. , ·a&· id+· · ......... ·--H • · · • = · •• •• ,..;..,... -J.
Total Phosphorus 0.34/ND/0.08 ND/NO/fiD 0.08/ND/0.04 7/3/2
Alkalinity, a~ Caco3 ---_
Chemical Oxygen Demand 24/16/11.9 12/2/7.9 18/9/10 7/3/2
Chloride 14/29/10 ND/14/6 5/20/8 7/3/2
5.14
,,
. . i
\..;.;;.;;i/ .•
•
. susi6/t2 ·
TABLE 5.5 CONTINUED
Maximum
. (1)(3) Laboratory Parameters · ·
. (continued)
Conductivity/ umhos/cm @ 25°C
True Color, Color Units . (4)
110/40/15
62i121/43
·12/16/6 .
99/188/90
1255/7.7/56
86/1.2/19
Hardness, as CaC0·3
Sulfate
Total Dissolved Solids
Total Suspended Solids
Turbidity, NTU
Uranium
Radioactivity 1 Gross Alpha 1
Total Organic Carbon
Total Inorganic Carbon
Organic Chemicals
Endrin
Lindane
Methoxychlor
Toxaphene
2,. 4-D
2, 4, 5-TP Silvex
I.CAP Scan·
~g, Silver
AI, Aluminum
As, Arsenic
Au, Gold.
S, Boron.
Ba, Bari~m
Bi, Bismuth
Ca, Calcium
Cd, Cadthium
Co,,· Cobalt
Cr, Chromium
Cu, Copper
NO
pCi/1 -/2.6/-
41/39/25
6J/90/44
.ND
ND
NO
no
ND
ND
ND
0. 70/0. 18/NO
NO
ND
NO
0.11/0.05/0.07
0.19/0.07/NO
20/32/14
NO
NO
ND
NO
5.15
Summer/Winter /8 rea k-Up
Minimum
-
5/10/10
31/68/43
1.5/9e5/5
63/100/87
57/ND/49
14/0.3/15
NO
-/2.0/-
10/27/15
34/90/41
NO
ND
ND
NO
NO
ND
ND
ND/ND/ND
ND
NO
NO
0.06/ND/0.05
NO/ND/ND
10/22/14
NO
ND
ND
ND
Mean
50/20/13
48/88/43
5.4/11o8/6
82/135/89
329/5/53
43/0.S/17
ND
-/2.3/-
20/33/20
45/90/43
ND
ND
NO
ND
ND
ND
ND
0.13/0.06/ND .
ND
ND
ND
0.09/0.02/0.06
0.03/0.02/ND
14/26/14
ND
NO.
NO
NO
7/3/~
7 /3/;.
7!312
713/~;
1/3/"i.
7 /3/~.
' 3/1/t
3/1/c::
'•
3/1/t
713/'L
6/3/2; ..
7/312;:
1/312.
7/3/2 ...
7/3/2!,
7/3/2·
7/3/2
71
7/3/2
7/3/'2
7)3/2.
susi$/t3
..t
TABLE 5.5. CONTINUED
J..~-·:r:::,
Summer/Winter/Break-UE
Number
Obser-
Maximum Minimum 'Mean vations
. •· ' . (1)(3)
Laborator:t Param~ters
(continued)
Fe, Iron 2.3/0.35/0.07 ND/ND/0.05 0.67/0.12/,.06 7/3/2
Hg, Mercury ND ND Nt; 7/3/2
K, Potassium 2.0/2.4/1.9 1.3/2.0/1.8 1.7/2.2/'L9 7/2/2
Mg, Magnesium 2.9(10.0/-2.0 1.4/3.2/2;)0 2,3/5.6/2.0 7/3/2 . ..
Mn f Manganese NO ND r~o 7/3/2
Mo, Molybdenum NO NO NO 7/3/2
Na, Sodium 6.:!13.0/4 .. 1 2.8/7.4/3.9 3e9/9.6/4.QO 7/3/2
Ni, Nickel ~D '" ND t4D 7/3/2
Pb·, Lead r~o NO NO 7L3/2
Pt, Platinum NO NO ND 7/.3/2
Sb, Antimony rto NO NO 7/3/2
Se, Selenium i~O NO NO 7/3/2 J
~ ... _.._ ...
Si, Silicon 5.9/5.0/2.5 2.6/3.9/2.4 3.5/4.4/2.5 7/3/2
Sn, Tin NO NO r~o 7/3/2
Sr, Strontium 0 .. 09/0.19/0.07 N0/0.10/.06 0 .. 05/0.13/0.07 7/3/2
Ti, Titanium 0.14/NO/ND UO/NO/NO 0.04/f~D/NO ·
W, Tungsten NO NO NO
V, Vanadium NO NO NO
Zn, Zinc r~o NO ND
Zr, Zirconium NO NO NO
(1) Table values are mg/1 unless noted oth~rwise.
(2) All value$ for free C0 2 determined from nomog1;aph on p. 297 of
Standard Method, 14th edition •
. (3) Samples for all parameters except chemical axygen demandt dissolved
and suspended solids, and t"Ut;r:bidity were filtered.
(4) Hardness calculated by R&M personnel.
5.16
7/3/2
7/3/2
7/3/2
7/3/2
7/3/2.
Z-...;ff-SO
•
,'.; 1'
. susi6/s7
TABLE S.G j
-l
l :j
WATER QUALITY DATA SU.MMARY
SUSITNA RIVSR
-j
Age~,cy!
Station:
Elevation:
U.S. Geological Survey
SUNSHINE -1971-1977
270 FTs
il,
~( -·
' Summer/Winter -t
Num, ... i
ObsE. •
Maximum Minimum Mean vatia:
Field Parameters (1 )
Dissolved Oxygen.
Percent Saturation
pH, Pr units
Conductivity, umhos/cm @ 25°C
Temperature, °C
Free Carbon Dioxide
AI kalinity, as caco3
Settleable Solids, ml/1
Laboratory Parameters (1 )
...
Ammonia Nitrogen
Organic Nitrogen
KjeJdahl Nitrogen
Nitrate Nitrogen
Nitrite Nitrogen
12.8/13
-
7.6/7.2
170/242
12/0
3.9/0
·43/71
.28/.05
.77/.42
-
-
10.6/13
7.1/7.2
100/230
3.8/0 .
2.1/0
25/63
-
.09/.0j
.24/.18 . -
11.8/13 3/1
-/90 0/1
1.4/7.2. 3/1
130/236 5/2
8.1/0 5/1
3.1/0 3/0
37/tt7 3/2
--
.18/.·04 2/'i.
.5/.3 2/~ --· -...
.... -
Tot" I Nitrogen . . 2. 3/.7 . ~>;..Z!..:...4__ . __ 1/. 25 2/~ ;
~ ~ .. '·' , f..+=q~.~~~J.14£!~·.1f_; .. Wif!.S¥.:'.?*··4•;nys -~--. ~· .. f•·•~ ·~ ~ ..... :; · ·-"'.7":..4 ?. , ..... ;; ..
· Ortho!""Phosphate · ..... "·: .. " ··.:·. · .1'2/~12. . · 0[.:12 . . . . . ..• 06/12 3/·,
..... 'rtt Ptf i'S¥' '9 . S ·~ C r 'ff· "liijis)'kt ~,j'· ;j a·~·; "'it 'n3t •esb .. jp·t"p'y ~'" .. 7 w;sbr-....-•e>ze t#r-u·M t! II ... ~1¥!'1·.._. lio~ ............. ~ ..... We«6'1i '¢sa k. j
Total Phosphorus • 14/:01 • 07/ fl 01 · • 07/.01 2/}
AI kalinity, as Caco3 ... ~ ..
(:h .. emical Oxygen Demand ... 41!1
ChJoride 7.3/21 2.2/17 . 4.2/19 s/;
,1:: .
5.17
'
susil5/s.8
Labo~ltoty Parameters (1 )
(can:trnu•~d)
.
• I Cclrlductivity 1 umhos/c:m @ 25°C
Tr•t.le Color, Color Units
Hi•rdness, _as caco3
S~;df~te
T;C)~ial Dissolved Solids
TcdlL Suspended Solids . : . .
I ,..~.~,rbidity, NTU
tir·ariium
Ftadio'actlvity 1 Gross Alpha~,· pCi/1
·rl;,tctl ·Oraanic Carbort . ',. ""' .
·rotal 'lncrg11nic Carbon
~o~rganil_c Chemicals
Sndrin
lindane
Methoxychlor
Toxaphene
2, 4-D
2, 4, 5-TP ~ilvex
ICAP Scan
Ag, Silver
AI, Aluminunl
As, Arsenic
Au, Gold
B, Boron
Ba, Barium
Bl, Bismuth
Ca 1 Calcium
Cd, Cadmium
Co, Cobait
Cr, Chromium
Cu, Copper
TABLE 5.6 CONTINUED
Summer /Winter ~-' ------------~~~=-~-~~~----------------~ Number
Obser-.
vations Maximum.
100/0
72/91
13/18 --
250/1.3'
-
... ..
-
..
-
-
0/0
-
.003/.001
--
.07/.04
23/29
0/0
0/0
.01/.01
,004/.004
S.lS
Minimum
8/0
37/R9
3Fl1 -
200/1.3
----
-
---
0/0
-
.002/.001
--
0/.04
-
12/29
0/0
0/0
0/.01
.002/.004-
Mean
44/0 3/1
52/90 5/2
9/17 5/2
-~ ..
225/1.3
-
-
...
..
.002/.001
--
.04/.04 -
17/29
0/0
0/0
.005/.01
.003/.004
2/1
-
-
2/1
-
2/1
-
2/1
5/2
2/1
2/1
2/1
2/1
\,~)
$USi6/s9
!
/
. . p t (1) Laboratory · arame ers ---·-
(continued)
Fe, Iron
Hg 1 M~rcucry
·' ·'
K, Potas.sium
Mg, Magnesium
Mn, Manganese
Mo, Molybdenum
Na, Sodium
Ni, Nickel
Pb, Lead
Pt, Platinum
Sb, Antimony
Se, S~lenium
Si, Silic;on
Sn, Tin
Sr 1 Strontium
Ti, ·Titanium
W, Tungstan
V, Vanadi~m
zn~,· Zinc
Zr, Zireonium
TABLE 5.6 CONTINUED
Maximum
• 18/.01
.001/ .. 001
2.8/2.1.
3.5/4.5
.02/.004
-
4.4/11
0/.002
0/.008
..,
0/0
-
-
.02/.03
-
Summer/Winter
Minimum Mean
.06/.01
0/.001
1.1/.19
1.6/4.1
0/0
1.9/11
.001/.002
0/.008
-
0/0
--
-
.006/.03
..
.12/.01
.001/.001
1 .. 6/2.0
2.5/4.3
.009/.002
-
2.8/ll
.001/~002
0/.008
0/0
-
.01/.03
-
(1) Table values are mg/1 un.le~s noted otherwise.
I' 5.19 'Z-li·SJ
r
... £
Number
Obser~ ·
vatiC!f,..
2/lt
2/1
5/2 ir-.
5/2(j_
4/2 .
-o[
5/2
2/1 ..
2/lli-
. l
2/1
•
: Jr
--J.
-
-
Jf ·.· .~t'
l
J
!f:. ~ ~·
;-;
ll
susiS/s1
TABLE 5.7
WATER QUALITY OJ).TA SUMMARY
SUSITNA R!VER
Agency: U.S. Geulogical Survey
Station: SUSITNA -1955-1981
Elevation: 40 FT.
•
---~-----------~S~u~m~m~e~r/W~i~n~te~r~/:B~re~a~k~-~U~e ____________ __
· ..
Maximum Minimum Mean
Field . Parameters (1 )
-
Dissolved Oxygen 13/13.9/12.7 10~1/9.9/10.6 11.5/11.5/12.1
. 100/97/100 90/67/95 99/79/98 Percent Saturation
pH, pH Units 8.3/7.9/7.8 7/6.7/6.5 7.7/7.3/7.3
Conductivity, umhos/cm @ 25°C 168/225/120 90/179/85 120/205/94 -Temperature, °C 12.5/0oS/8.0 3.6/0/4.5 8.8/0/6.3
Free Carbon Dioxide --
Alkalinity, as Caco 3 57/75/39 39/58/30 44/69/34
Settleable Solids, ml/1 -""
Laboratory Parameters (1 )
Ammonia Nitrogen • 19/.09/.21 0.0/.01/.01 .. 04/.04/ .. 08
Organic NitTogen 1.5/.46/.70 .16/0 .. 0/.16 .50/ .. 27/ .. 43
Kjeldahl Nitrogen --
Nitrate Nitrogen -/.19/--/ .. 16/-... ;.18/-
Nitrite Nitrogen. ... --
Number
Obser--
vations
12/12/4
53/19/11
62/45/18
21/20/6(~
' '·
109/S2/3:r
-
52/30/6
-
15/7/3
12/9/2
-
0/2/0
Total Nitrogen 1.7/.99/1.2 .26/.24 .67 o72/.55/.87 22/17/5
-Orth0-~Phosphatft.· .. .-~:-::.:;;.;,· .. ~::~~-.~-~: .. :..;;.~f..;.l.O:f.··.:··= ... ;.;.:~~.: .. :.::, . .:.:.·. ~oa:·~~:·: >·.··:·~~ :· ·:. ·-/' ai· · . -~·~~O;:O~•l*+i';"?;M"''""""?
·'........ ..,._ · · ·, 't C'!'te .. _.,.. an+oW%~ ·e;;=~~ .. -~ ... 1}···"'""" .. -'''" ·.~ ~ ~-·~ · ~ ··.~.. :.. ~:--·.-· ' ·-· · ..... ~' .... .. .. ~!..~.::.:.~. ~._. ... ...:a-~~ -~ .... ~ . .:;:_i,:.,..,..,~.._J
Total Phosphorus · · ·--
Alkalinity, as c:aco3
Chemical Oxygen Demand
Chloride
--
6.7/18/4.6
5.20
---
1. 2/5. 7 I 3. 1 2.8/12.9/3.6 23t2t/GU
•
susi6/s2
.. ~·
-Laboratory Parameter~ (1 )
(continued)
Conductivity, umhos/cm @ 25°C
True Color, Color Units
Hardness,_ as caco3
Sulfate ··
Total Dissolved Soiids
Total Suspended Solids
Turbidity, NTU
Uranium
Radioactivity, Gross Alpha, pCi/1
TABLE 5.7 CONTINUED
Maximum
10/5/-
60/96/48
22/20/7.1
82/139/65
2980/12/683
790/3/160
-
Summer
Minimum
5/0/-
46/73/36
1/10/3.7
57/105/52
151/2/257
30/1/25
-..
'Total Organic Carbon 11/9.3/9.1 2.3i.4/3.8
Total Inorganic Carbon
Organic Chemicals
Endrin
Lindane
Methoxychlor
~oxaphene
2, 4-0
2, 4, 5-TP Silvex
ICAP Scan
-.Ag, Silver .,
AI, Aluminum
As, Arsenic
Au, Gold
B, Boron
Ba, Barium
Bi, Bismuth
Ca, Calcium
Cd, Cadmium
Co, Cobalt
· Cr, Chromium
Cu, Copper
-
-.....
-----
.
.003/0/-0/0/--
.003/ .. 003/.001 .001/0lcOOl'
2.0/1.0/1.0
22/31/15
.. 002/.002/ .. 002
.007/.003/-
.030/.020/.020
.007/.004/.020
5.21
-
.3/.4/.1
14/24/11
.001/.001/.002
.002/.002/-
0/0/ .dos · ·
.00~/0/.002
Mean
7.5/2.5/-
55/84/40
13/17/7
75/123/55
745/4.4/461
286/2/74
-
4.2/2.4/6.0
-
---
.001/0/-
-
4/4/:
.. ;
' i
8/10,~
~
-t
' r
i
-' -,
; -.
6/2/C
.017/.013/:001 10/Sr
--.... '
-
.8/.6/.1
-
18/27/13
.015/.015/.002
.• 003/ .. 003/~
.014/.008/.013
• 003/. 002/-~ 008
Z-11-SS
,,
'7/5/t.;:
-r
> 23/21~
-8/4/2.~
.. ~
9/6/q ..
8/4/Z'·
10/9/··
susi6/s3
··.. (1) r-ameters ··
Fe1 Iron
Hg, Mercury
K, Potassium
Mg, Magnesium
Mn,. M~nganese
·l'Jio, ··Molybdenum
N~r· Sodium
Ni, Nickel"
Pb 1 Lead
Pt,. Platinum
Sb, .~ntimdny
Se, Selenium
Si, Silicon
Sn, Tin
Sr, Strontium
Ti, Titanium
W '· Tungsten
V, Vanadium
Zn, Zinc
Zr, Zirc:cnium
TABLE 5.7 CONTINUED
Summer /Winter /Break-Up
Maximum Minimum Mean
.460/.160/.170 .010/.060/.110 .091/.091/.144
Number
Obser-
vations .
12/8/5
.0005/.0005/.0005 0/0/~0001 .. 0003/.0002/.0003 12/8/5
.0018/.0025/.0011 .001/.0014/.0008 .001/.002/.001 23/21/6
.003/.005/.003 .002/.004/.002 .003/.004/.002 25/20/5 .
/020/.030/~070 .004/.010/.008 .009/.022/.010 .. 16/8/5
-
4.0/8~9/3 .. 2 2.0/6.2/2.4 2.7/7.6/2.9 23/21/6
• 004/.003/-0/.002/-.001/.003/-4/2/0
.009/.004/.011 .002/0/.002 .003/.002/.005 12/8/4
---- - -
.001/.001/.001 0/0/.001 .,0006/.0009/.001 11/8/5
-------..
--
.020/.020/.020 .003/.003/.020 .012/.012/ •. 020 0/7/4 -...
(1) Table values ar.e mg/1 unless noted othe1."Wise.
5.22
:'~"
t c
• .
\
~
~
i
~
~ ...
'!
~
.;. t
· . . . . . .. . '
.· .
..
. .
..
~· '
........ .. . .. .
...
:.
~ ._,. ..
,.
'·
. ..
-.
...
.. . •
........ -.
.. . ...
. '. '"y '· ·~ . ..
..
·'
. .
-· . ' .~.
..
-.
.. . ·
. ·
. ..
. ·.
·. . . .. ..
.......
. .
. .
-· ··, ........
.-,· .: . . .. ' -... ,,
.• ., . ·.
~SUSITNA HYPRO~LECTRIC PROJECT=· ..
. ·
... . • !. ·' • I
.. 1982 .. .. .. , "'
' .. ,_
. ~ .
~· ..
. . -r-.-
_, ... ....
I
...
..
: ~ .
"
I• .,., _. .. •
"~ ~~ ...
~... ...... -
·:-..
.:
·-'4
'$-.....
f" -.:.: .. ..__
/
TABLE 2.~. -·
..': (;:'
· · "· ·:';·.·cr· , -. . R&M CONSULTANTS, 'NC •
. ~1982 .WATE.R QUALITY DATA -SUSITNA RIVER AT VEE CANYON (RM 223. 1)
.; ....
NOTE: .· Dash indicates data not available.
· Field Parameters ( 1)
Dissolved Oxygen
'r:! ,: .•
'Percent Saturation
pH, pH Units
· Date Sampled
2/4/82*
14.5
101
5.95
Conductivity, umhos/cm @ 25°C ~:·':\
Temperature, C)C ·
Free Carbon Dioxide (l)
AlkaHni~, as, Caco 3 S~ttleabfe Solids,. mill
t)ischarge c. f~·s.,
Laboratory Parameters (l) (3)
Ammonia Nitrogen
. Orsanic. Nitrogen
Kj eJdahl Nitrogen
~.-'a
Nitrate Nitr9gen
Total Phosphorus
AI k~'lirHty, .as, Caco3
Chemical Oxygen Demand
· Chlorioe
I·
ConductivitY, umhos/cm @ 25°C~
True Color, Color. Units
c) ;
o.~
,· -----
< 1
0.30
0.02
-----
13
18.0
5@ pH 7.1@ 12.8°C
2-14 •
W
., .
'
sl7/h.
. : . "(1)(3)
Laboratory Parameter~ · ·
(continued)
Hardness, as Caco3 (4 )
S:u:Ifate
Total Dissolved Solids
I
iotal Suspended Solich;
Tu.rbidity, NTU
Uranium
Radioactivity, Gross Alpha,
•... pCill_ .
·· ·' Total Organic Carbon ...
Total Inorganic Carbon
Ca, Calcium
Mg, Magnesium
K1 Potassium _
Na, Sodiurn
Fe, Iron
Si, Silicon .,
.) .......
Date Sampled
'2/4/82*
122
18
157
-
1.3
0.55
_' __ _
2
2
40.59
5.0
4.5
12.0
1.35
5.0
* Analysed by Northern Testing Laboratories, In<:., Fairbanks.
, (l) Table values are mg/1 unless noted otherwise.
(2) AU values for free co 2 determined from nomograph on p. 297 of Standard Method,
.14th edition.. •
· (3) Samples for· all parameters except chemical oxygen demand, dissolved and· suspended
solids, ang .~urbidity were filtered . .. -4) Hardness calculated by R&M personnel.
2-15 ..... ·,-·z 11· ...... ~-.... ·. ~ ~-..
· .sl sl7/h.
Nt
Fi
TABLE 2.3
R&M CONSULTANTS, INC.
1982 WATER QUALITY DATA-SUSITNA RIVER AT GOLD CREEK. (RM 136.7)
NOTE: Dash indicates data .not available.
Date Sampled
2/06/82* 7/10/82 7/16/82 7/23/82 8/05/82* 8/10/82*
Field Parameters (l)
Dissolved Oxygen
Percent Saturation
pH, pH Units
Conduc(~vity, umhos/
·.em@ 25°C
Temperature, °C
Free Carbon Dioxide (2 )
AI kali n ity, as Caco 3
Settleable Solids, ml/!
Discharge c. f.s.
230
0.0
11.7
110
183
12.0
21,700
11.8
108
157
10.5
24,200
11.6
105
117
10.5
23,600
10.8
104
149
12.4
----
16,300
11.4
103
124
9.6
L Laboratory Parameter~ (1) (3 )
Ammonia Nitrogen
Organic Nitrogen
Kjeldahl .Nitrogen . .
Nitrate· Nitrogen
<0.01
----
<1.00
0.34
0.15
0.50
0.65
0.28
0.21
0.51
0.72
<0.10
0.08
0.56
0.64
0.57
-----
4.80
0.86
0.03
0.06
0.29
Nitrite Nitrogen <O.Oi <0.01 <0.01 <0.01 <0.01
Total Nitrogen 1 .34 0. 93 0. 82 1. 21 5~ 66 . 0..35 ,.6M:It zp· ·h··.·=ij:?·@~h··:!"WtC I £1 ...... 9£ a:...:""x .. t_.._{+;E ri'!;;¢:;:11!4~.-.;.,!.\ • I A<qi$.4: :=~·!: -.;; \ ,!! .. , •>. hi #. I ·"'!"'< '• • •., • ~NM • .. ;a I !'!'""~-~.,..-'l : .. · o:: osp a e~ •. ··~ .~~~;·:~ .. ~::::~._ ; .. .:.u:.,v4:::·,:~:.;,:; <0:,01:.;. ~ .. ,. <O .... Ot: · <O .... Ot . .;.--~· ·~, ·· · v:.Ot ,. .
.... __ ~ .......... , ... 1 •> -*s 1 ft tc·...;; .. ,+ ·"M ·v -~-:·· ·· _,_ · '11<, ~ •':a:-;'f-1>· ..... ~ "" -~~·a· ;:. ..... _.;, ·. · J:,.... ___.~ .. ~ --.. --_, ~ ... • .. ·-, ~ ~ • ~· . · · 1 ~aa. _ -.......... ··-., -.... --·'rY ~tn*"i.J<··••n:rJ·.-t_., .• , .... s>e..,:-..lte. ------• ._4..,.,_....,.:,~~~~:, .. -:;-:~ ~ .,_ . . .. ,. ~ ... ~ .-... •;
T<>tal Phosphorus 0.02 · 0.10 0.21 0.43 o.'of~--·-o:o·r
Alkalinity, as Caco 3 ----43
Chemical Oxygen Demand 10.0 5.0 1.3 4.1 6~0 T .0 •
Chloride 26.0
·conductivity, umhos/cm @ 25°C----
-........ -....... u·
------
12.0
------True Color, Color Units
2-16
s11/h
i .....-~ •
··)TABLE 2.3. (Continued)
. · NOTE: Dash indicates data not available.
Date Same led
2/06/82* 7/10/82 7/16/82 7/23/82 8/05/82* 8/10/82*
Laboratory (1)(3) Parameters · ·
(continueuj
Hardness, as CaC03
(4) 104 97 48
Sulfate 17.0 6.1 <1 .0 <1.0 14.7 14 .. 8
Total Dissolved Solids 166 85 100 72 89 103
Total. Suspended Solids 1 580 56 213 231 206 -,,
Turbidity, NTU -------·---.
Uranium ---4")
-~ Radioactivity, Gross Alpha,
pCi/1 ---...
Total Organic Carbon 1.0 2.8 2.5 1.4 2.1
Total Inorganic Carbon 4 11 11 12 12
Ca, Calcium 34.4 ....... ----33.5 16.2 .
Mg, Magnesium 4.4 3.1 1. 7
K, Potassium 2.7 1. 9 1.3
!\.( I"«Ci,. Sodium 21.1 4.3 10.0
.. . . ..
* Samples that were ahalysed by Northern Testing Laboratories, Fairt:;,~r1ks. Other
laborCJtory analyses were performed by Chemical and Geologicar Laboratories of
Anchorage, Alaska. · ·-
(l) Table values are mg/1 unless noted otherwise.
(2) AI! values for free co2 determined from nomograph on p. 297 of Standa.rd Methods,
14th edition.
•
(3) Samples for all parameters except chemical oxygen demand, dissolved and suspended
solids, and turbidity were filtered •
• 4) Hardness calculated by R&M personnel.
..
s17/h
TABLE 2.3 (Continued)
N• NOTE: Dash indicates data not avai.lable.
F
Field Parameters (1)
:Dissolved Oxygen
Percent Saturation
pH, pH Unit$
Conductivity, umhos/ em @ 25°C
Temperature, °C
Free Carbon Dioxide (2 )
Alkalinity, as Caco3
Settleable Solids, mill
Oischarge c.f.s.
Laboratory Parameters (l) (3 ) ·
Ammonia Nitrogen
Organic Nitrogen
Kjeldaill-Nitr.ogen
Nitra,te Nitrogen
8/10/82
15,,400
0.07
<0.05
0.07
<0.10
Date Sampled
8/26/82* 9/04/82* 9/15/82* 10/14/82* -
10.5
95
6.83
135
10.5
12,000
0.18
<0.1
<0. 10
11.6
'iOO
133
7.8
13,500
0.02
15.00
0.14
11.1
103
7.8
29,400
0.02
<0.01
<O. 10
84
0.0
7,300
--.-; ..
<0.10
0.12
Nitrite Nitrogen <0.01 <0.01 <0.01 <0.01 --""-
Total: Nitrogen . . -.,.....~, r 1:111 "'~~~~~...,.~·-""•.,.. .. ___ • ,.. ... ~'o·r:ffia;.pfic)s:" li~t··~ .. N:•_t}H'f.',;;.-:~.t~:§~.f?~F< ... 'o 01)~' ~! .. s:*!:r~??"''.t ·a'v.£ ·a·,--.· .... o. ...... f .n,,. o" ~ .,~ ~ w ..... ~ ... "' ... a·· .. &0. 1: ~ "" ... ~ a ;.~, -~ ~
·' • .. ,p e-.,'H-r•','!'O< •. ~ •. -~:::.~~···~ •'' • ;~,,' '•• < . • • <•.J .... ,', ·. < . .----. '• • ' ·;. • · ··;; 'xi·s+'t -, · 'ei£"'eH'ii'~~,.-E¥GA't'itf .... ?i ti··P ·,,;;.· s:r·e--.-· · *" " .......... ,brei -·= .. -· ....... ·~-~~-.-..-·~·-
Total Phosphorus <0.05 0.02 0.01 <0.01 0.01
Alkalinity, as Caco3 ----37 40 35
Chemical Oxygen Demand 1.3 <1 .0 <1.0 7. 5
Chloride ·---8.8 6.4 5~2
Conductivity, umhos/cm @ 25°C 37 37 ----
True Color, Color· Units ..... --.
2-18
6.0
9.0
.........
s.17/h
f.rABLE 2.3 (Continued)
'-' -
NOTE: Dash indicates data not available.
Laboratory Parameters(l)
(4) Hardness, as CaC03
Sulfate
T eta I Dissolved Sqlids
Total Suspende:·d Solids
Turbidity r NTU
Uranium
Radioactivity, Gross Alpha,
pCilJ
Total Organic Carbon
Total Inorganic Carbon ,,
Ca, Calcium
Mg, Magnesi~m
K, Potassium·
Na, Sodium
8/10/82
-·-~·
6.0
100
181
-----
__ ......
2.0
8.7
Date Sampled
8/26/82* 9/04/82* 9/15/82* 10/14/82*
37
11.5
95
219
1. s
11
12.9
1.2
1. 6
6.7
37
11.5
68
60
----
2.2
9.6
12 .. 4
1 .4
1.4
6.5
3.2
83
231
3.8
8.6
16.,
2.4
0.9
6.0
67
15.8
104
7
21.0
3.4
•t.2
8.4
* Samples that were analysed by Northern Testing Laboratories, Inc., Fairbanks.
Other laboratory analyses were performed by Chemical and Geological Laboratories of
Alaska, Anchorage.
(1) Table values are mg/1 unless noted otherwise.
(2) All values for free co2 determined from nomograph on Pa 297 of Standard Methods,
14th edition. ·
(3) Sample$ for all p"arameters except chemical oxygen demand, dissolved and suspended
solids, and turbidity were filtered •
• 4) Hardness calculated by R&M personnel.
2-19
N
I w
0
,
s3/u22
Agency:
Station: •
E teva.t ion:
field Parameters ( 1)
Dissolved oxy9en "·
Percent Saturation
pit, pU Units
ConductivitY, umhos/cm @ 25°C
Temperature~ oc
frae Carbon Dioxide
A ll<a 1 i n i ty ~ as CaCO 3
Settleable Solids, ml/1
J.:aboratorY Parameters (l)
Ammonia Nitrogen
organic Nitrogen
Kjeldahl tH trogen
tU trate Nitrogen
tH trite Nitrogen
Total Nitrogen
.. C;;.....:·........--
...
• \-lATER QUAL I TV 01\TA SUMMARY
SUS HNA R I:X·.'ER
U.S. GEOLOGICAL SURVEY
NR. DENALI 1957 -1982
24lt0 fT.
summa r:ltl i n tar lB rea k .. u~
Maximum t1ioimum Mean
-1-1-_, ... ,_ ·1-1-
-1-1--1-l-.. , ... ,_
7.9/7.6/7.2 7.2/7.1/7.2 7.6/7 .l.j/7 .2
226/467/124 121/351/124 161/400/124
10.5/0.0/6.5 0.0/0.0/1.5 5.5/0.0/4.0
5.2/25/5.8 1.5/5.5/5.8 3 .. 1/12.9/5.8
75/161/47 42/112/47 55/136/!17
-1,-1--I-I--1-1-
-I-I-_, .. ,~--I-I-
-I-I--1-l--I-I-
-I-I--I-I-.. , .. ,_
.09/.07/.05 0.0/0.0/.05 .03/.04/.05 _,_,_ -I-I--I-I-
... , .. ,_ -1-1--l-1-
Number of ·tota •
Oetect.able Number of
'J.alues observations ..
0/0/0 0/0/0
0/0/0 0/0/0
ll/3/1 11/3/1
18/3/1 16/3/1
47/3/6 1.!7/3/6
11/3/1 11/3/1
11/3/1 11/3/1
0/0/0 0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
11/3/1 11/3/t
0/0/0 0/0/0
0/0/0 0/0/0
0/0/0 _...JU{!L~·
0/0/0 0/0/0
.~· ....
) ,,
J";~'
•,-···.
"
s3/u23
!! • Agency;
Station;
Elevation:
Laboratory Parameters ( 1)
(Continued)
A 1 ka 1 i n e tY, as ca co 3
Chemical Oxygen Demand
Chloride
Conductivity, umhos/cm@ 25°C
True Color, Color Units
Hardness, as caco 3
Sulfate
Total Dissolved Solids
·. >-Tota 1 suspend·ed Sol ids
turbidity, NTU
Uranium
RadioactivEty, Gross Alpha,
pCi/1
Total Or-ganic Carbon
Total Inorganic carbon
Organic Chemicals
Endrin
t.trldane
TA~t.E 2.6 -continued
,WATER QUAliTY PATASUMMARV
_SUSITHA RIVER
U.S GEOLOGICAL SURVEY
NR. O£HAtl '957 -19~
2440 fl.
Summer /W lnte r/Brea k·UP:~::---~_.,.----..~...;._-------,;..-----Number Of Total ---------·-~
Maximum
-1-1-
-1-1-
11/30/4.2
-1-1-.
10/5/30
67/181/50
31/39/9.2
__ ,_,_
(~~/1190
-1-l-
-1-1-
-1-1-
-1-1-
-I-I-
... ,.,_
-1-l-
Minimum
-1-l-
-1-1-
1.5/19/4.2
-/~/-
0/0/30
52/135/50
13/36/9.2
... , .. , _
85/5/102
-I-I-
-1-1-
-1-1-
... , ... , ..
-1-1-.. ,_,_
t:leao
-1-IU' _,_,_
Lt.7/23.3/4.2 _,_,_
5/5/3(J
67/157/50
17/37/9.2
-/-/-
1163/7/5112
-1-1-
-1-1-
-1-1· _,_, ..
-1-1-
-!-1-
-1-1-
Dnt.ectan a·e N.,ambe·r of
_values Observations
0/0/0 .
0/0/0
11/311
0/0/0
14/3/1
11/3/1
11/3/1
0/0/0
45/2/6
0/0/0
0/D/0
0/0/0
0/()/0
0/0/0
0/0/0
0/0/0
0/0/0
.0/0/0
11/3/1
0/0/0
111/l/1
11./3/1
11/3/1
0/0/0
45/2/8
0/0/0 .
0/0/0
0/0/0
'0/0/0
0/0/0
0/0/0
0/0/0
1.
N
I
~
N
\')
' ......... ..........
' ~
-~
s3/U2ta .,
'
Agency;
Station:
Etevetion=
baborat.orY ra rameters ( 1)
(Continued)
Methoxychlor
Toxaphene
2, 4-D
2, 4, 5-TP Si I vex
Elements (Dissolved}
Ag, Si aver
AI, Aluminum
As, Arsenic
Au, Gold
8, Boron
Ba, Barium
Bi 1 IUsmuth
ca, Calcium
Cd, Cadmcum
Co, Coba!t
Cr, Chromium
cu, Copper
.Fe, I ron
f•~Mercury
~ ... ».J"
' "
l'ABLE 2.6 -continued
WATER QUAliTY DAtA S.UMMARY
SUSITNA RIVER . .
U.S. GEOLOGICAL SURVEY
NR. DENALi 1957 -1932
24110 FT.
summer/Winter/Break-Up -
Ma><lmum Minimum Mean
-I-I--1-1--l-1--
-1-1--1-l-
_,_,_.
-I-I--1-l--I-I-
-I-I--I-I--I-I-
-I-I--1-1--1-1-
-"1-1--I-I--1-1-
-1-1--I-I--l-1-
-1-1--!-I-.. , .... , ..
.. , ... :--I-I--I-I-
-1-1--I-I--I-I-
-I-I--!-I· -!-1-
29/5'1/17 17/4~/17 21/46/17
-J-1--I-I--I-I-
-1-1--1-1--!-I-
.. ,.,_ -I-I-... ,.,_
-1-1--I-I--1-1-
-1-1--1-1--I-I-
-1-1-. -1-1-,.......,., .... -!-1-(
'·
\
.. ...... .... .,. ... "". "' ·~'! . "'
Number of
Detectable·
yalues
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
n/3/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
................. ~· .. '""'·• !14, ~"'--~ "'" .
Total
th.unber or
Observations
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
11/3/t
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
, .. ,..~~..,.,.
' H •/ ...
i
~
I w. w
N
\ -.....
""""""" .f ." ~·
Agency:
Station:
Etevat i~n:
La bora tory_ Parameters (1)
(Continued)
K., Potassium
r-ty, Magnesium
Hn, Manganese
Mo, r-to. ybdenum
Na, Sodium
N i. Nickel
Pb, Lead
Pt, Platinum
Sb, Ant ir,tony
se, Selenium
Si, Si I icon
Sn, Tin
Sr, Strontium
T t • Titanium
w, Tungsten
v, vanadium
Zn. ·zinc
ZT 11 Z i. rcoi'llUm
•
TABLE 2.6 -continued
WATER QUAllTY .DATA SUMMARY
SUStTNA RIVER
U.S. GEOLOGICAL SURVEY
NR. DENALI 1957 -1982
2~la0 FT.
Summer/Wintar/Break-Up .
Maximum Minimum ~eao
3.6/6.6/2.3 1.3/6.3/2.3 2.6/6.5/2.3
6.4/16/1.9 L 7/6.8/1.9 3.5/10.3/1.9 _, .. ,_ -I-I-_ .. ,_, ...
-1-1--!-I-., .. ,_
10/~3/3.6 2.1/15/3.6 ... 3/~6.7/3.6
-1-1--I· I--I-I-
-1-1-.. , ... ,_ .,.,;:,_
-1-:1--I-I--1-1-
-l-1--I-I--I-I-
_ ,_, .. -I-I-
_,...,, _
-I-I--I-I-
_,_, ..
.. , .. , .. -1-1--I-I-
-1-1--I-I--I-I-
-!-I--J-1---1-1-
-l-1--1-1--1-1-_,_, .. -I-I--r/·1-
I
-I-I-.. , .. ,_ -I-I· r
-I-I-.. , .. ,_ -I-I-
1. Table values are mg/1 Unless noted otherwise.
;;; . ;;
ttum~er or
Det;ect.able
ya.tues
11/3/1
11/3/1
0/0/0
0/0/0
11/3/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
•'• ·4
'
'.iet .~ Total
Number or '
g!:tse rva t i ons
/'1
11/3/1
.11/3/1
0/0/0
0/0/0
11/3/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
' 0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
' :..·''
..
s3/u18 •
Agency:
Station:
E lavation: •
Field Parameters. ( l)
Qissolved Oxygen
PerGent Saturation
N pH, pH Unit$
I ~w Conductivity. umhos;cm 0 25°C
.a;:.
Temperature. °C
Free Carbon Dioxide
A I ka I i n i ty, a s Ca CO 3
SettJeable Solids, ml/1
La bora torY Pa ;--a meters ( 1 )
Ammonia Nitrogen
Organic tHtrogen
Kje I dah I Nj trogen
Ni trnte Nitrogen
Nitrite Nit~oge!i
Total Nitrogen
TABLE 2.1
WATER QUAL I TV DATA SUMf1ARY
SUSITNA FHVER
U.S. GEOLOGICAL SURVEY
VEE CANYON 1962 -1982
1900 fT.
summer/Hinter/Break-Up
f1axlmum Minimum Mean
-1-1--I-I--J-1 ...
-I-I--1-1-... ,_,_
8. 1/-/7.6 7.2/-/7.6 7.7/-/7.6
187/250/136 91/250/114 146/250/125
13.0/0.1/7;0 1.0/-0.1/2.0 7 .9/0.0/1&.3
6.6/-/2.2 o. 7/' .. /2.2 2.6/-/2.2
59/-/44 39/ .. /44 52/r/44
-1-1-_,.,.,_ -I-I-
,.,_,_ -I-I-.,, .. ,_
-1-1--I-I-.. , ... , ...
-1-1-.. , ... ,_ -I-I-
.88/-/.16 .00/-/.16 .20/-/.16
-!-I--1-1-_,_, ...
-1-1-. -1-1-_, .. , ..
Number or
Deto.ctahie
yalues
0/0/0
0/0/0
9/0/1
20/1/2
119/l&/4
9/0/17
I
9/0/1
0/0/IJ
.0/0/0
0/0/0
0/0/0
'J/0/1
0/0/0
0/0/0
~~
\
To~a 1 .·.''""".
Number of .
Obseryations
0/0/0 ,,,
0/0/0
9/0/1
"
20/1/2
49/4/il
9/0/1
9/0/l
0/0/0
0/0/0
0/0/0
0/0/'0
9/0/1
0/0/0
0/0/0 ('\
" -......._.or.thG-Phosphat{~....-..~ ..... --···· .................... ·-1·1-···~· .... -....... -. .... ~ ........... -·1 .. 1.--1-bt OlO/O---·-·---........ oJ0/-0,;..
-.......... -' .... ,;. ·-··"'····· ... ·-·'-·~··--·"" .... '•·•" ... :. p ,, -· ~ ·-·~-·-·-·····-------·--·
( Tota~ Phosphorus -1-1-•/-/... -l·l-0/0/0 '0/0/0
"" ~'
N
I
w
U1
-r·c-r ... ..~
(\].
'\ ......... --f
·"'-·' .
-.1)
Agsncy:
Stat ion:
Elcvat ion:
laboratory Parameters (1)
(Continued)
A I ka I i n i ty,. aa caco3
Chemical Oxygen Demand
Chloride
ConductivitY, umhos/cm @ 25°C
True Color, co ior Units
Uardness, as caco 3
Sui fate
TtH .. a I Dissolved So I ids
'
-;>rota I suspended Sol ids
Turbidity, NTU
Uranium
Rad i oact ivi tY, Gross Atph&,
pCi/1
Total Organic Carbon
Total I no rgan i 'c Ca rbon
Organic Chemicals
Endrjn ·
Lindane
TAPlE 2.1 -continued
WATER QUAllTY DATA SUMMARY
. SUSlTNA RIVER
U.S. GEOLOGICAl SORV~Y
VEE CANVOtj 1962 -1982 .1900 fT. . .
summer/Wioter/Bte~~ ...... -.;:;U.c...Jt---. __ __,~-=--_;..~ ..... -....,..__..._.;,"'='-:"~::----
Numb~r Qf .. Tntal.
Maximum
oetect~bie Number of
ya lues o.bservatl011i Minimum f4ea~
-I-I-... , .. ,_ -I-I-0/0/0 0/0/0
-l-1-.-1-1-.. ,.,_ 0/0/0 0/0/0
9.2/-/7.4 2.1/-/7.4 S.3/-/7.4 9/0/1
-1-1--1-1--1-1-0/0/0 0/0/0
40/-/30 5/-/30 10/ .. /30 8/0/1 8/0/1
76/-/54 42/-/54 63/-/S4 9/0/1 9/0/1
16/-/12 7.S/-/12 14/-/12. 9/0/1 9/0/.1
-1-1--1-1--I-I-0/0/0 0/0/0
~14/726 34/14/661 799/14/694 36/1/2 36/1/2
-1-1--1-1-n'/•/• 0/0/0 0/0/0
-I-I--1-1--I-I-0/0/0 0/0/0
•
-1-1--I-I--I-I-0/0/0 0/0/0
-1-1-_, ... ,_ -1-1-0/0/0 0/0/0 ,
-1-1-... ,.,_ -1-1-' 0/0/0 0/0/0
-1-1--1-l--I-I-0/0/0 0/0/0 _,_, .. ..,_,_ ... , ... ,_ 0/0/0 0/0/0
i.
N
I
~w
(t\
rJ
\
--....... ......
' ·~
c,.
s3/u20 .,
•
Agency:
St(lt iorn
£1evat ion:
Laboratory Parameters ( 1)
(Continued)
Methoxychlor
Toxaphene
2, 4-0
2, fl I 5-TP Si lvox.
Elements (Dissolved)
Ag, Si tver
Al, Aluminum
"
As, Arsenic
Au, Gold
8, Boron
Ba, Ba.-:·i um
Bi I Bismuth
Ca, Calcium
Cd, Cadmium
Co; Cobalt
cr, Chromium
cu,. Copper
fe, 1 ron
(~' iercury
,..,.
.,
I
TABLE ~.7 ~ continued
WATER QUALITY DATA SU~MARY
SUSITNA RIVER . .
U.S. GEOLOGICAL SURVEY
VEE CANYON 1962 -1982
1900 FT •
' ' ~.
::._ ' ·\
Summar /Win te r!;..t' l~·B:.:..r.=.ea:;::,;· ku.. ... ...:U~f!:-· __ _._,...,__,__.__,.~__,..----,_..,.....;...,.:.....,..,..-
Nwnber or Ttltat
.Oetectab Ia ttuml,ler ·.of
yal~es ob~ryations Maximum Minimum Mean .b.
-I-I-., .. ,_ -1-l-0/0/0 0/0/0
-I-I--1-1--1-1-0/0/0 0/0/0
-1-1--I-I--I-I-'0/0/0 0/0/0
-1-1--I-I--1-1-0/0/0 0/0/0
-I-I-~t-1--I-I-0/0/0 0/0/0
-I-I--I-I--!-1-(\/0/0 0/0/0
-1-1-.. I-I--1-1"" 0/0foO \ . . :0/0/0·
-I-I--1-1--I-I-0/0;0 0/0/0
-1-1--I-I--I-I-0/0/0 0./0/0
-I-I--!-I--1-1-0/0/'0 0/0/0
-1-1--1-1-.. , .. ,_ 0/0/0 0/0/0
27/-/17 14/-/17 21/-/17 9/0/1 9/.Q}'i
-1-l--1-1--!-I-0/0/0 Q/0/0'
-I-I--1-1--I-I-0/0/0 0/0/0
-I-/--I-I--l-1-0/0/0 0/0/0
-1-1-.., ... ,_ -1-1-0/0/0 0/0/0
-I-I--1-1-_, ... ,_ 0/0/0 0/0/0 .
-1-1--I-I-( -I-I-0/0/0 0/0/U
\
\
.... ;;'"'"
.~ 'u•t ~ .... , . ., ~..-w··i»~f ... ,,..,...~~ •''"'·~If ..... rr.t"f
·;; ,·
C;
~
rJ
\ -..........
(
"' ;l
. --.,..
Agency:
Station:
Etevat ion:
laboratory· Parameters (ll
(coot i nue.d)
K, Potassium
Mg. r~agnes i um
t"'n. Hanga~ese
1·10, r-to ly:udenum
Na, Sodium
N i • Nickel
Pb, lead
Pt, Platinum
Sb, Antimony
Se, Selenium
Si, S i I icon
Sn, Tin
sr, Strontium
T i, Titanium
w. Tungsten
v, Vanadium
zn. Zinc
zr. Zirconium
•
TABLE2.7 • Continued
WATER ·Q'UAl.llY DATA SUMMARY
.USIT«A RIVER .
U.S. GEOl:!C~~i\L SURVEY
VEE CANYON 1962 -1982
1900 FT.
summer/~inter/Break~Up
Ma>dmum Minlmum M~an
7.3/-/2.8 1.4/-/2.8 3.5/-/2.8
11.4/-/2 .. 4 1.1/-/2 .... 2.7/•/2.1.J
-!-I--l-1-.., .. , ...
-I-I--I-I--1-l"*
6.3/-/4.8 2.1/-/4.8 3.8/-/4.8 .
-I-/--/-1--I-I-
-1-1--I-I--I-I-
-I-I--I-I--I-I-
-1-1--I-I--I-I-
-1-1--I-I--I-I-
-l-1--I-I--I-I-
-1-1--I-I--l-1-
-I-I--I-I--1-l-
-I-I--I-I--I-I-
-1-l--1-1--l-1-
-1-1--I-I--I-I-
-1-1--/OM/--1-l-,
r
·-I-I--1-l--1-1-
.. 1. T.abfe values aro mg/1 unless noted otherwise.
' .;: " ·.'
Numb\lr of
Detectzbte
.•vatues
9/0/1
9/0/1
0/0/0
'
0/0/0
; ;
9/0i1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
. Tota 1
Number of
Obser:~atlons.
"\'_--.,
... ;
9/0/1
9/0/1
•'
0/0/0
0/0/0
9/0/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
'· 0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
l •
N . I
w co
-... ....... ,,
·'1J
~
&3/Ulf& ,,
Agency:
SLat ion:
Elevation:
' Field Fararneter& (1)
Dissolved. oxygen
Percent. Sa t.U ra; t ion
ptt. p•l units
Conductivity, umhos/cm@ 25°C
Temperature. °C
free Carbon Dioxide
Alkalinity, as caco3
Settleable Solids, ml/l
La bora to ry Pa rame te rs ( l )
TABLE 2.8
WATER QUALITY DATA SUMMA.RV
' SUSI"rNA RIVER
U.S. GEOLOGICAL SURVEY
· GOLD CREEK 19119 -1982
616.5 fT. . .
Summer/Winter/Break-Up
Maximum
13.3/15.8/111.1
110/110/111
7.9/8.1/8.0
227/300/147
14.0/0.5/6.0
20/16/24
67/88/47 _,_, ...
• 33/.08/.13 .
.39/.44/.07
-1-1-
.36/.32/.69
-1-1-
.60/.66/-
Minimum Mean
9.5/11.0/14.1
03/77/111
6.5/7.0/6.5
90/161.&/70
0.4/0.0/1.0
1.1/1.2/2.9
23/49/25
-I-I-
..01/.03/ .13
• 10/.18/.07
-I-I-
• 02/.05/.05
-1-1-
.25/.44/-
11.9/13.9/14.1
102/97/111
7.3/1.5/7.0
147/250/97
9.2/0.1/3.1
5.8/6.2/10.8
51/72/33
-I-I-
.16/.06/.13
,27/.29/.07
-1-1-
.12/.16/.21&
-I-I-
.50/.51/-
NUniller of
Oot.ect;.~b:te.
Vatues
9/5/1
6/5/1
66/31/7
66/32/7
39/12/0
57/26/6
62/30/7
0/0/0
7/5/1
7/5/1
0/0/0
55/25/7
0/0/0
5/6/0
Total
Number of
Observa~ions
9/5/1
6/5/1
66/31/7
66/32/7
39/12/6
57/2.6/6
62/30)7
0/0/0
7/6/1
1/511
0/0/0
55/25/1 .
0/0/0
5/6/0
Ammonia Nitrogen
Organic Nitrogen
t<jetdahl Nil;irogen
Nitrate Nitrogen
Nitrite Nitrogen
Total Nitrogen ._,.otthw:.a.llos_pbate.)'.~;,·-w ...... b"""'·---·-·~·~03l.J!~L.J)fL.. ........ ~.,:.fU~I_:.f'Jl.J.~~~~~-.... ~.~~ .. ~...!.~Jl .. t~~ .. -~~ ... ~..: ............ ~ --~·---··.1-1/-4}4---,. ...... _, -.l2/&./.L ..... ~
Total Phosphorus • 23/.05/.09 • 02/.0l/. 09 • 13/.03/ .. 09 7/6/1 7/6/l
'\
N
I w
\0
~-r-1; ~
• v -.I
N
l
~
"'.:0.0..
(
..,.J.
. VJ
' "tl
•'
.. ·
Agency:
·station:
Elevation:
La bora tory Parameters ( 1)
(Continued)
A I ka I i n i ty, as CaC03
Chemical Oxygen Demand
Chloride
Conductivity. umhos/cm 0 25°C
True Co loi·, Co I or tJn its
Uardness, as Caco 3
Sulfate
Total Dissolved So I ids
~Total Suspended Sol ids
Turt'lioity, NTU
Urao.iom
ltodioactivity, Gross Alpha,
pCi/1
Total orgardc carbon
Total Inorganic Carbon
Organic ChemicaCs
(lldrin
Lim.tnne
('I
TABLE 2,8 • continued:
WAtER QUAU1Y .DATA SUMMARY
SUSITNA RIVER
U.S, GEOLOGICAL SURVEY
GOLD CREEK 1949 • 1982
676.5 fT.
I · tt-3
Summer/Wiq~er/Break-Up
Maximum MIn I mum f =t#a:.:.:n:.--_
45/65/27 35/82/27 40/83/27
-1-l--I-I--I-I-
15/35/7.6 •• 13/6.2/1.8 5.5/22/4.4 .
142/289/115 114/266/84 128/279/100
1t5/10/50 0/0/5 10/5/25
107/120/56 35/60/30 6lt/98/39
31/38/11 1.0/12/5.0 16.1/21/7.6
140/174/90 55/133/53 93/154/66
~ /2620")76/1330 7/~/12() 140/12/621
_,
180/.70/29 1&2/. 10/29 126/.40/29
.33/-/-.12/-/-.25/-/-
1.8/-/-0.5/-/-1,3/-/-
2.6/5.5/10.0 ..... .l.ll/1.1/1.8 . 2·.0/2.6/5.$)•
I
f
-1-1--1-1-W>l-1""
-I-I--1-1-_, ... , ..
-1-1-~ J_,_
I • -1-1-
~ = .
Murnbe.r of
Detectable _ ya l.~es
.. 5/3/1
0/0/0 .
62/28/7
5/6/2
55/22/6
62/28/7
61/28/6
43/18/6
56/10/13
5/2/1
3/0/0
~/0/0
2/3/2
0/0/0
0/0/0
0/0/0
.. Total
Numb~r or
Obse rva t'~ ons
')/3/1
0/0/0
. 62/28/7
5/6/2
55/22/6
6(:/28/1
62/26/1
43/18/6
56/11/13
5/2/1
3/0/0
•
. 3/0/0
2/3/2
0/0/0
0/0/0
0/0/0
I.
. -
~
~ I .r:::.
0
rJ
\ --...
(
...J.
-t.
s3/U~6 .,
Agency:
Station:
Elevation: ..
laboratory Parameters ( 1)
(Continued)
Methoxychlor
Toxaphene
2, ft-D
2, 4 .. 5-TP Si a vex
£!emeots {Dissolved}
Ag, Si aver
AI, Aluminum
As, Aa"senic
Au, Gold
B .. Boron
Ba, Ba.rium
63, f'ii smuth
Ca, Calcium
Cd, Cadmium.
co, Cobalt
Cr, Chromium
cuf.: Copper
fe,. iron
•(' Mercury
TABLE 2.8 ~ cont1nued
WATER QUALITY DATA SUMMARY
SUSITNA RIVER . .
U.S. GEO~OG&CAL SURVEY
GOLD GREEK 1949 -1982
676.5 FT.
. summer/Winter/Break-Up
Ma)timum MinimuM Mean
-1-l--I-I--1-1-
-I-I--I-I--I-I-
-I-I--!-I--1-l-.., .. , .. _,_, .. -1-1-
.000/.001/-.000/.001/-.000/.001/-
-I-I--1-1--!-I-
.002/.002/-.001/.002/· .001/.002/"'
-1-l--I-I--1-!-
-,'-1--t-1--I-I-
.031/.060/-.000/.060/-.010/.060/-_,_,_ -I-I--1-1-
37/39/16 11/24/9.9 20/30/13
.001/-/-.001/·/-.001/-/-
.000/.001/-.000/.001/-.000/.001/-
.010/-/-.000/-/-~005/-/-
.005/.001/-.003/.001/-• OOla/. 001/-
.14/.015/-.04/.015/-.10/.015/-
•. 0002/-/-.0000/-/t"~\
\
.0001/-/-
", .. ,;.1/;~l ..
<\
\ ,;
Number of
Detectable
Values
0/0/0
0/0/0
0/0/0
0/0/0
2/l/0
0/0/0
3/1/0
0/0/0
0/0/-
3/1/0
0/0/0
62/28/7
2/0/0
1/1/0
2/0/0
3/1/0
6/l/0
2/0/0
Total
Numb~r of
Observations
0/0/0
0/0/0
0/0/0
0/0/0
3/1/0 .
0/0/0
3/1/0
.0/0/0
0/0/0
3/1/0
_0/0/0
62/28/7
3/1/0
3/1//0
3/l/0
3/1/0
6/1/0
3/1/0
';.
• ',
)
p
" ~.:., .; ··l
N
e
.&::!-,.....
"' ' ~ ...........
•
"1J
Agency:
Stat ion:
Elevation:
LaboratorY Parameters ( 1)
{Continued)·
K* Potassium
.t-tg. r-tagne s i um
Mn, Manganese
Mo,.. Molybdenum .
tfa * Sodium
Ni. Nickel
Pb, Lead
Pt,. Platinum
Sb, Antimony
Se, Seienium
Si, S i I icon
Sn, Tin
Sr, Strontium
Ti, Titanium
w, Tung stem
v. Vsnadium
Zn, ZifiC
Zr, Zirconium
v,.
' ·, 4 -
TABLE' 2.J1·'' .. contl.oued·
W.~T.E!l QUALITY DATA 1.$\Jt'\MARY
SUS fTHA .R t VER
U.S. GEOLOGICAl-SURVEY
GOLD CREEK 1~49 -1982
676.5 fT.
summer/Winter/Break-Up
. Maximum Minimum Mean
... 4/5.011.7 1.0/1.2/1.2 2.4/2.3/1.4
7.8/8.3/2.8 1.2/3.6/0.3 3.2/5.4/1.7
.18/.003/-.00/.003/-.036/.003/-
_,_,_ .. , .. , .. -t-1-
6.5/17/3.8
4.1/11.3/3.1 2.4/5.2/2.8
.000/.001/-.000/.001/-.000/.001/-
.001/.003/-.000/.003/-.000/.00l/-
_,_,_ _,_,_ -l-1-
-I-I-
_,_,_ _, .. ,_
.001/-/-.oaot-1-.000/-/-
-1-1-
_,_,_ _,_,_
-I-I--I·/-.,., ...
-"1-1--1-1-
.. , .. ,_
-I-I-.. , ... , .. _,_,_
-I-I-_, .. , .. . .. , ... , .. . _,_,_ _, .. , ... _,_,_
r
• 0111/-/-.. 006/-/-.010/-/-
_,_, ... -I-I--I-I-
I
)'
HumbQr or
Oet.ectabte VaJues _
52/22/5
62/28/7
7/1/0
'0/0/0
52/22/5
2/1/0
3/1/0
0/0/0
0/0/0
3/0/0
0/0/0
'·
0/0/0
0/0/0
0/0/0
0/0/0
.0/0/0
3/0/0
0/0/0
·.' '·
. Tots l
Hutnber of
Observatlcms
-' '« . _( ' ...,
52/22/5
6,2/26/7
1/l/0
0/0/0
52/22/5
3/1/0,
3/lJO
0/0/0
0/0/0
3/1/0
0/0/0
oJo:,fJ
Q iJ/0/0
0/0/0
0/0/0
0/0/0
3/1/0
0/0/0
s3/u10
l
Agency:
Station:
E I ev.a tl on:
'
field Parameters ( 1)
Dissolved Oxygen
Percent Saturation
pH, pH Units .
conductivity., umbos/em ft 25°C
Temperature, °C
free Carbon Dioxide
AI ka I ini tY, as CaC0;3
Settleable Solids, ml/1
laboratorY Parameters ( 1)
Ammonia Nitrogen
Organic Nitrogen
Kjeldahl Nitrogen
Nitrate Nitrogen
Nitrite Nitrogen
.•
TAB.LE ·2.9
WATER QUALITY DATA SUMMARY
. SUS ITNA RIVER . .
U.S. GEOLOGICAL SURVEY
SUNSUINE 1971 -1982
270 fT.
summer/Wioter{Break•Up
Maximum
13.3/13.8/-
107/94/-
7.7/7.!/"1*
170/242/-
12.0/0.0/9.2
3.9/·/-
43/71/-
-1-l-
.37/.06/-
1.10/.42/-
-I-I-
-1-1-
-1-1-
2.30/.72/-
10.6/13.0/-
99/90/-
7.1/6.2/-
61/225/-
3.8/0.0/9.2
2.1/-/-
25/63/-
-1-1-
.08/.03/-
.19/.18/-
-I-I-
-I-I-
-I-I-
.71/.142/-
12.0/ll.ta/-
103/92/-
l.4/6.9/-
115/232/-
8.6/0.0/9.2
3.1/-/-
36/68/-
-1-1-
• 19/.05/-
.63/.29/-
-I-I-
-I-I-
-I-I-
1.17/.61/-
('} Totat Nitrogen
' tir.-OJitbodl:wiJUlllitJI.-· .. <. ... ....___ .. __ ,...... ......,_.....~ .. ··l-!.9~./..dl!ll: .................... ......_. ... ,J.R~(! g~t;:.... .... _. ···~ ····J· ~ .... ~.0~/. t ~14( : .. -.........
.33/.01/-.05/.01/-.15/.01/-
Total Phosphorus
Number of
Detectable
Val uefi:
5/3/0
2/3/0
7/3/0
9/3/0
9/3/1
3/0/0
6/2/0
0/0/0
6/3/0
6/3/0
0/0/0
0/0/0
0/0/0
5/11/0
a111o ..
6/2/0
Tota.l
tlumber of
~rvaticms
5/3/0'·
2/3/0
7/3/0
9/l/0
9/3/1
3/0/0
6/2/0
()/0/0
6/4/0
6/3/0
0/0/0
0/0/0
0/0/0
5/IJ/0
. ............. 3/1/.0
6/1&/0
.-
. • 1
N
I
~
w
-~
I
-d.
·~
Agency:
Stat ion:
Elevation:
Labo ra to r:v Pa rame te rs ( 1 )
(Continued)
Alkalinity, as caco3
Chemical Oxygen Demand
Chloride
Condu~tivity, umhos/cm@ 25°C
True Color, Color Units
Hardness, as CaC03
SuJ fate
Total Dissolved Solids
Tota 1 Suspended Sol ids
Turbidi. ty, NTU
Uranium
RadioactivitY. Gross Alpha,
pCi/1
Total Organic Carbon
Total Jnorganic Carbon
Organic Chemica!s
Endrin
Lindane
&.r, ·~I
TAPLE 2 .. 9 -continued
WAT~~ QUALITY DATA SUMMARY · · · . ·sustTNA RIVER
.V;;S~GEOLOGICAl SURVEY
SUNSHINE 1971 • 1982
270 FT.
summer/\iioter/Break-Up
Maximum
lj8/74/•
-I-I-
7.3/21/-
129/233/-
100/0/-
72/96/-
13/18/-
101/llll/-
3510/2/508
300/1.3/-
-1-1-
-l-1-
3.2/0.8/-
-/-/-
-1-1-
-1-1-
Minimum Mean _
28/63/•
-I-I-
2.2/16/-
82/222/-
8/0/-
33/87/-
3/16/•
54/130/-
288/1/508
160/.20/•
-1-1-
-I-I-
2.9/0.4/-
-/-/-
-1-1-
-1-1-
441/70/•
.......
3 .• 7/18/-
115/229/-
44/0/-
50/91/-
10/17/-
70/1~lll/-
1485/2/508
233/.67/-
-I-I-.. , .. , ..
3.0/0.6/-.
-I-I-
-1-1-
-1-1-
,
'
""'mber or
Detectable
-: •. :Ya 1 ues
6/3/0
0/0/0
9/4/0
6/3/0
3/1/0
9/tJ./0
9/fJ/0
&/4/0
5/2/1
6/3/0
0/010
0/U!O
2/2/0
0/0/0
0/0/0
0/0/0
Totaa ..
ttumber of
Obser\'ations
•
6/3,/0
0/0/0
9/4/0
6/3/0
3/l/0
9/4/0
9/4/0
8/4/0
5/2/1
6/3/0
0/0/0
0/0/0
2/2/0
0/0/0
0/0/0
0/0i'O
'
N
I
~
~
..
f
........ ........
' ~ oq
f f,: ·"!!'~ .;,:~
s3/u12
.,
Agency:
Station:
Elevath:m:
'
Laboratory Parameters (1)
(Continued}
Methoxychlor
Toxaphene
2, 4 .. 0
2, 4, 5•TP Si lvex
E~ement§ {Dissolved}
Ag, Si aver
AI, Aluminum
As, Arsenic
AU, Gold
0~ Doc-on
aa, Barium
Oi, Bismuth
Ca, Calcium
co .. Cadmium.
Co, Cobalt
cr .. ChromJum
Cu, copper
fa, l ron
(' Mercury
'
~ ~ ~ ~1l'l ~,
. .
TABLE 2.9 -continued
WATER ~UALITY DATA SUMMARY
SOSITNARIVER
U.S. GEOLOGICAL SURVEY
SUNSHINE 1971 -1982
270 fT. .
summer/Winter/Break-Up
Maximum Minimum Mean
-I-I--I-I--1-1-
-1-l--I-I--I-I-
-1-1--I-I--I-I-
-1-1--1-1--J-1-
.000/.000/-.000/.000/-.000/.000/-
-1-1--I-I--I-/-
.003/.001/-.002/.001/-.002/.001/-
-I-I--I-I--I-I-
-I-I-·.J-1--1-l-
. o·101. 040/-.000/ .Ol&O/-.032/.0taO/-
... ,_,_ -I-I--I-I-
23/Sl/· 11/28/-16/29/-
.000/-/-.000/-/-.000/-/-
.000/-/-.000/-/-.000/•/-
.020/,010/-.000/.010/-.010/.010/-
.005/.004/-.003/.004/-• 0016/.0011/-
.250/.0110/-.060/.010/-.180/.025/-
.0001/.0001/-.0000/.0001/-,0001/.0001/-
~'"""" ~
:t"""I1 ~ ""'~ t.L·~ ~~ ~,..'f) ~ .
Number·of
Detectable
Values __
0
0/0/0
0/0/0
0/0/0
0/0/0
2/1/0
0/0/0
3/1/0
0/0/0
0/0/0
3/1/0
0/0/0
9/4/0
1/0/0
1/0/0
3/1/0
3/1/I'J
5/2/0
2/1/0
~ . *fY.'l
•
Jotal
Number of
Observat lons
0/0/0
0/0/0
0/0/0
0/0/0
3/l/0
0/0/0
3/1/0
0/0/0 .
0/0/0
3/1/0
0/0/0
9/ft/0
3/1/0
3/1/0
3/l/0
3/1/0
5/2/0
3/1/0
if~ ~.!l -~~ ·~
I
N
I
tf,:l.
U1
.. rJ
\
,E:~
' f
~.
-~
• i:
s3/u
' {
Agency:
Station:.
Elevation:
laboratory; parameters ( 1 J
~ Cont .i nued)
K, Potassium
Mg, Magnesium
Mn, t-ta nga ne se
Mo, Holybdenum
Na, Sodium
N i, Nickel
Pb, Lead
Pt, PI at i num
Sb,. Antimony
Se,. Selenium
Si, S i I icon
sn. Tin
sr, Strontium
Tl,. Titanium
w ... Tungsten
v,. Vanadium
Zn,. Zinc
:zr. Zirconium
•
j
--
TABLE 2.9 -continued
WATER QUALITY DATA SUMMARY
SUSlTNA RIVER
US. GEOLOGICAL SURVEY
SUNSHINE 1971 -1982
270 FT.
summer/Winter/Broak-Up
Maximum M'nlmum · Haao
2.8/2.1/-1. 1/1.8/-1.5/1.9/-
3.5/lt.5/-l.lt/4.1/-2.3/lt.3/-
.020/.00it/-.000/,.000/-.009/.002/-
-1-1-
_,_,_ -1-1-
... 4/11/-1.9/10/-2.8/11/-
.002/.002/-.OOO/a002/-.001/.002/-
.001/.008/-.000/.008/-.000/.008/-
-1-1--1-1--1-1-
-J-1--I-I--I-I-
.000/.000/-.• 000/. 000/• .000/.000/-
-1-l-_, .. ,_ -I-I-
-1-1--I-I--I-I-
-l-1--I-I--I-I-
-1-l--I-I--I-I-
•/•/&> -I-I--1-1-_,_, .. -1-1--1:.1-,
'
.020/.030/-.006/.030/-.012/.030/-
-I-I-_, .. , .. -I· I-
NUI'I~tJ'e~ of
Detectable · ·_yalt;.t.!UL-
9/lt/0
9/lt/0
5/2/0
0/0/0
9/"4/0
3/1/0
3/1/0
0/0/0
0/0/0
2/1/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
3/1/0
0/0/0
. '~; TOta I
Number of
pbse rya t !.ons
9/4/0
9/11/0
5/2/0
0/0/0
9/4/0
3/1/0
3/1/0
0/0/0
0/0/0
3/1/0
0/0/0
0/0/0
'
0/0/0.
0/0/0
0/0/0
0/0/0
3/1/0
0/0/0
s3/U6
'I
Agcncyz
sa;at ion:
Elovation:
Field Paranteters (1)
Dissolved Oxygen
Percent Sa.tu~ation
pH, pll Unit;
ConductivHy, umhosjcm 0 25°C
Temperature, °C
free Carbon Dioxide
A~ka 1 ini ty, as caco3
Settleable Solids, ml/1
J.-a bora torY ra rame te rs ( 1 )
Ammonia Nitrogen
Organic Nitrogen
Kjeldahl Nitrogen
Nitrate Nitrogen
Nitrite Nitrogen
TABLE 2. 10 .
WATER QUALITY DATA SUMMARY
,• SUSITNA RIVER
U. S .' GEOLOGICAL SURVEY
SUSITMA 1955 -1962
40 FT ..
summer/Winter/Break-Up
Maximum Minimum Mean
12.3/13.5/12.4 10.5/10.6/11.4 11.5/11.6/12.1
100/911/99 90/74/97 97/80/96
8.3/7.9/7.6 7.0/6.8/6.5 7.7/7.3/7.2
160/225/116 90/182/85 122/205/93
12.5/0.5/1.0 2.0/0.0/3.4 8.4/0.04/5.8
8/17/19 0.6/1.6/1.1 2.5/7.8/6.5
57/75/39 36/60/30 44/69/34
-J-1-
_,_,_ ._,_, ..
.19/.09/.21 .00/.00/.01 .04/.04/.08
1.5/.46/.73 .16/.00/.16 .60/.27/.43
-l-1--I-I--I-I-
.00/.19/-.00/.19/-.00/.19/0
-I-I--I-I--I-I-
Number of
Detectable
yaaues
13/14/4
9/7/2
26/20/7
27/22/7
25/22/7
15/15/5
21/19/6
0/0/0
12/10/3
12/9/2
0/0/0
1/1/0
0/0/0
Tota I
Number of
Observations
13/llt/4
9/7/2
26/20/7
27/22/7
25/22/7
15/15/5
21/19/6
0/0/0
12/10/3
12/9/2
0/0/0
1/1/0
0/0/0
'' .. ·-
N
1
~ .....
rl
t ...........
"7
0(1· ........., ,.
_ ~~ancy:
Stat ion:
Elevation:
i.aboratory Pa ran1eters ( 1)
(Continuea)
A 1 ka ~' i n i ty, as caco 3
Chemical Oxygen Demand
Chlor!~e
Conduct.! vi ty, umhos/cm @ 25~C
T;ue Color, Color Units
Ita rdnes'i, as CaC03
Sulfate
lotaA Dissolved so 1 Ids
iota l suspended Sol ids
TurbiditY, tHU
Uranium
Radioactivity, Gross A I pha,
pC4/l
TutaJ Orgao.lc Carbon
Total .Inorganic Carbon
Organic Chemicals
Eodrin
th:~ane
•
TAtll..~ 2,10 ;.. c;lritiouod
WATER QUALITY PA!A SUMMAf\Y
SUS l TNP, a J\IER
U,S. GEOL6GICAL SURVEY
SUSITNA 1955 -1982
110 FT.
summer/\Jintor/Break-Ur;
Ma><imu~ _ Mln1mum Mean
49/76/311 116/63/27 47/71/30
-I-I--I-I--1·1-
6.7/18/11.6 1.2/5.7/3.1 2.7/13/3.7
133/222/104 1111/208/911 122/217/9'9
10/0/-10/0/-10/0/-
66/96/46 411/73/36 54/85/39
20.7/20/10 l.0/15/3.7 13.2/17.3/6.7
114/llS./71 56/109/51 13/123/65
2367/1.2/683 158/21257 7f.!5/5/ll61
790/3.0/160 21/1.0/25 233/1.5/69
-l·l--I-I--1-l·
_,_,_ -I-I--J-1-
11. 0/4. 0/9. , 2.7/0.4/3.8 4. 4/1.6/6 .Q'
-1-1--l~l-.. ,., ..
-I-I· -l-1--1-1-
-1-1--1-l--I-I-
·Number or
Uetectaba~
Values
3/11/2
0/0/0
24/~\/7
4/4/2
2/2/0
25/21/7
25/21/7
24/20/7
21/19/!>
18/13/5
0/0/0
0/0/0
7/9/4
0/0/0
0/0/0
0/0/0
,-ff f
·Total
Number of
~se~vations
3/4/2 .
0/0/0
24/?.1/7
4/4/2
4/lJ/0
25/21/7
25/21/7
211/20/7
.21/19/5
18/13/5
• 0/0/0
0/0/0
7/9/4
0/0/0.
7/10/4
7/10/11
tv
~.
~
(X)
<').
' ....... ........
I
Gq.
~
f' .
f
s3/u8 .,
Agency:
Station:
' E I eva t ion:
Laboratory Parameters ( 1)
(Continued)
1-tethoxych tor
·Toxaphene
2, 4-0
2, 4. 5-TP Si lvex
Elements (Dissolved} .
Ag, Silver
AI, Aluminum
As. Arsenic
Au, Gold
a, Boron
Ba,. Barium
8 i' Bismuth
Cap Calcium
Cd, Cadmium
cit . II Cobalt
cr, Chromium
CU; Copper
re, Iron
' .. "~ <
a(_ Mercury
~
(.;-/ .,_.-.....
TABLE 2.10-continued
WATER QUALITY DATA SUMMARY
. . SUSITNA ~IVER
U.S. GEOLOGICAL SURVEY
SUSITNA.1955 -1982
40 fT.
Summer/Winter/Break•UP-__.----~~~~~--~--~~~--Number of IPt~l
Detectable Number.or
yaHie..§..,_ Observafioos Maximum Minimum Mean·
-l-1--I-I-·I-I-0/0/0 7!10/4
-I-I-W)/-1--!-I-0/0/0 7/9/4
-l-1--I-I--1~1-0/0/0 2/6/2
-1-1--I-I--1-1-0/0/0 2/6/2
.000/.000/-.000/.000/-.000/.000/-4/2/0 8/6/3
-1-1-_, .. ,_ -1-1-0/0/0 0/0iO
.003/.003/.001 .001/.000/.001 .002/.001/.001 13/8/3 13/9/6
-I-I--I-I-
_,_,_ 0/0/0 0/0/0
-I-I--I-I--I-I-0/0/0 0/0/0
.200/~040/.020 .027/.040/.020 .068/.040/.020 7/4/1 6/6/3
-1-1-... , .. ,_ -I-I-0/0/0 0/0/0
22/31/15 14/23/11 17/27/13 25/21/7 25/21/7
.001/-/-.001/-/-.001/-/-1/0/0 1~/9/6
.007/.002/.001 .001/.002.001 .003/.002/.001 5/1/1 13/9/6
.030/.010/.005 .000/.000/.005 .010/.005/.005 5/2/l 13/9/5
• 007/ ~ OOJe/. 006 • 003/. ooo/. ooao .004/.002/.005 -u1t•• 13/9/6
.•a60/. 060/. 190 .020/.060/.110 .096/.066/.152 12/9/6 13/9/6
.0002/.0000/-.0000/.0~ 1-.0001/.0000/-5/2/0 13/9/6 ,,,
~· ~ ~-~~~
)
tJ
I
.s::.
\0
f'J
\
~ ........
f
·~
w
·7.-"·,r~ ~:
.\
s3/tt9
Agency:
sta.tion:
Elevathm:
laboratory Parameters (1)
(Continued)
1<, Potassium
Mg, l-1ugnes i u~
r1n., Manganec;.e
Mo .. Molybdenum
Na., Sodium
N i, Nickel
l'b, lead
Pt, Pf.a t i num
Sb, Antimony
se. Selenium
~i I SU icon
so~ l'irl
sr. Strontium
Ti., Titanium
w~ Tungsten
v. VanadJum
Zn,. ZiflC
Zr., Zirconium
.,
' I
TABLE 2.10 ~ continued
WATER QUALHY DATA SUMMARY
. SUS I TNA' R: I VER
U.S. GEOLOGICAL ·suRVEY
SU~ITNA 1955 ~ 198Z
40 F'f. ' I, '
summer/WI oter/Break•UQ. ·.
Maximum Minimum__ Mean
1.8/2.5/l.ll 1.0/1.4/0.8 1 ... /1.7/1.0
'
3.7/4.9/2.6 2.0/3.7/1.6 2$5/4~ 3/1'.9
.020/.030/.011 .004/.017/.008 .008/.023/.010
-I-I--I-I-
_,_, ..
4.0/9.0/3.2 1.8/4.9/2.4 2.7/7.7/2.9
.OOll/.003/.002 .000/.002/.002 .001/.002/.002
• 009/.0011/.011 .002/.000.003 • 004/.002/.006
-I-I--I-I--I-I-
·I-I--I-I--l-1-
.001/.001./-.000/.000/-.0004/.0008/-_,_, .. -I-I--1-1-
-I-I--1-1--1-1-
-1-.1--1-1-.. ,.,_
-1-1--I-I-... , ... ,_
-I-I--1-1--1-1-• ' _, .. ,_ -1-1--1-1-
.020/.003/.020 • OOit/. 003/.020 .008/.00:4/.020
-I-I--I-I--I-I-
Numbf;'r of
Dete~tabte
_yatues
25/21/7
25/21/7.
7/8/2
0/0/0.
25/21/1.
5/2/1
8/6/4
0/0/0
0/0/0
7/6/0
0/0/0
0/0/0.
0/0/0
0/0/0
0/0/0
0/0/0
5/1/2
0/0/0
Total
Number of
·.Obse rvirt; Ions
25/21/7
25/21/7
. 13/9/6
0/0/0
25/21/7
5/3/1
13/9/6
0/0/0
0/0/0
13/9/6
0/0/0
0/0/0
'II 0/0/0 .
0/0/0
0/0/0
0/0/0
13/9/6
0/0/0
c.
i
'
. .
SUSITNA HYDRO AQUATIC STUDIES
PHASE II BASIC DATA REPORT
Volume 4.
Instream
Aquatic Habitat and
Flow Studies, 1982.
A pfe.l't.dicu ~ -T
-by-
ALASKA DEPARTMENT OF FISH AND CAME
Susitna Hydro Aquatic Studies
2207 Spenard Road
Anchorage, Ala$ka 99503
1983
I
N
t ........
...........
l :
·a() v,,
•
Appendix. Tab!e lt·D-6.
• DRAFT
ADFCOl/tOG
Sunmary of provisional water quaH ty data for sloughs 8/\, 9, 168, 19, 21, anclmai n!itcm Susitna 'liver c:tt Goht'
Creek, collected by ADF&G and USGS in June, Julyp and September, 1981, and in January and Ft!bruary, 1982. •
8 Sloughs and mainstem Susitna River wer~ sampled on 2 or 3'consecutive days in each month (except January) as follows.
Susitna River
at
8A 9 16B 19 21 Gold Creek -June 25 24 23 23 2ft 23
July 21 21 22 22 22 21
SeptGmber 30 30 28 29 29 28
January 20 20 20 20 20 20
.March 31 30 30 .30 30 30
bPcararr.eters marked.with an* are averages of transect point measurements (see methods).
indic~tes dat;~ not available.
-
.l'
Appendi>. Table lf .. 0-6 (Continued).
Susitna River
Slough Slough Slou~h Slough Slough at
Parameter Date e:-. 9 16B 19 21 Gold Creek --
Physical ana Field Farameters .. Coot'd _,___.
Specif!c Conductance (Jab) June 153 158 70 1lf6 226 l4i
umho /em . July 118 124 71 129 131 114
September 132 113 64 130 205 170
Januar) 193 121 S9 148 221 260
March 1!t2 143 59 129 196 266
*Oislolved O~ygen June 10.8 10.6 10.8 9.4 10.7 10.8
mg/1 July 11.4 11.4 11.7 10.4 11.3 11.7
September 12.1 11.3 1i .s 9.5 10.3
_t:: January 7.0 11.7 6.6 7.7 9.0 15.8 • March 10.2 10.9 7.1 9.6 9.8 14cc2 0
'l *Dissolved Oxygen June 108 103 107 76 98 104 ...... (\) saturation July 104 105 102 90 105 104
September 94 93 88. 98 76 ---.
January 49 82 47 57 65 1.10
March 72 77 59 70 72 99
*pH (field) June 6.9 6.8 6.4 6.5 7.0 7.4
July 7.7
September 7.6 7.4 7.1 7.3 1.1 6.5
January 6.5 6.6 6.0 6.0 6.7 7 .. 5
March 6.6 7.0 6.4 6.5 7.4 6.7
pH (lab) June 7.4. 7.5 7.2 7.2 7.6 7.5
July 7.6 7.7 7.3 7.0 7.7 7.7
September 7.4 6.7 6.6 7.2 7.0 7.2
January 7.2 7.3 6.9 7.1 7.6 7.6
March i.2 7.1 7.1 7.2 7.3 7.5
•
Alkalinity (field) Junt> 39 24 50 62 8!"""•
mg/1 Caco 3 July 41 39 24 52 47 35
September 43 34 26 62 62
N January 62 34 • ' 24 39 62 82.
March it3 39 23 • 46 61 78 r
-l .......
:_, f r~{ -, cq
·~
c / .... ~~
·~
I,
..
'
• •
A!)pendix Table 4·0""6 (Continued).
J • . -• Slough Slough
Parameter Date 8A 9 _.,...,_
Ph,lsical and Field Parameters -Cont'd
AU<~linity· (lab) ,,,une 47 33
mm!1 CaC03 July lt1 39
September 42 36
January 64 36
March 46 42
lurbidtty June 0.9 0.6
NTU July 130.0 130.0
SC!ptember 1.1 0.6
J::. January 0.4 o.s
' March 0.1 0.1 C) • ~ Sediments, suspended
mg/1 June 1 2
July 220 417
September 1 1
January 1 2
March 1 3
Sediments, discharge s~spended June 0.02 0.02
tons/day July 327.0 804.0
September 0.01 o.o
January """'"" ---Harch
Solids, residue at 180°C June 88 100
mg/1 July 70 75
September 82 69
January 111 73
March 52 93
N Solids, sum of constituents June 93 91 I mg/1 July 61 68 ....... September 71 71
~ January 120 76 • c:q March 8G 83
~ .. 1:~--~.,.. r , . •. ' ,,,._,, . ·:~. l ...
r·" lo..
,,,
-:<Y
~~.· .~~· ' _ ........ ~,.,.,
~ ~ ...... --r--·~ ,........_. ~-....... "' ,..._,. ,._...,.. ~ ,.........., ' """---""-·--··-~'··~""' ...... "~--.. ~~ .................. ~""'t'.L;o<"y--i!}b~-
Slough Slough
168 19
24 52
2lt 52
26 62
30 53
27 so
0,5 0.4
43.0' 2.S
0.6 o.s o.s 0.3
0.1 0.1
1 1
107 8
1 2
0 1
6 1
o.o o.o
145.0 o.o o.o o.o
----
51 94
41 81
42 95
38. i8
42 80
47 90
43. 89
48 94
9l
43 65
~·
' .
SlOugh
21
63
If'/
61
63
64
o.''* 150.0· ,o.s -o.s
0.1
5
356
4
0
6
ORAfT
AOFC01/t06
Susitna River
~t
Cold Creek.
45
35
44
B3
82
100.~0c
170.0. s.s
0.7 o.r
327
680
44
2 e
O.Q4 1,570.0
136.0 78,000.0 . o.o 1,020.0 ---33 •. 0
137 79
76 74
119. 101
114 152
124 160
130 83
68 65,-
120 8Q
130 J6S
127 160
~·.,. ' ....
Appendix Table lt·D-6 (Continued).
-
( Susftn~ Rh!~r
Slough Slough Slough Slough Slough at 1/ Parame.ter Date 8A 9 168 19 2.1 Cold Crrrlek. · -",..__... .. .:.
Physical and Field Parameters -Cont'd \\ . \\ ... ·..::,
Solids 1 dissolved June 1.5 o.a 0.1 0.1 1.1 380.0
tons/day July 10't.O 145.0 55~7 O~O 29.9 8,490.0
September 0.62 o.~ ~0.1 . '0.1 0.1 t,~lQ.O
January ' ·--'---..
March .. .,. ---65?.0
Solids, dissolved June 0.12 0.14 0.07 Oa 13 0.19 0.11
tons/acre-foot July 0.10 0.10 G.06 0.11 0.11 0.10
September 0.11 0.09 o.oG 0.13 0.16 0.14
January o.1s 0.10 o.os 0.11 .0.16 0 .. 21'
-1= March 0.13 0.13 0.06 0.11 0.17 0.22
' tl Suspended sediment (\) June 7C • . .... _.,._
~ less than 0.062 mm sieve rliameter July 89 55 56 85 49
September ---81
January
March ---
"
Major Con!tituents
Hardness June 51 56 32 69 83 !i7
ntfJ/a CaC0 3 July 48 50 30 61 54 51
September 54 45 30 72 77 60
January 79 47 34 67 87 120
March 60 52 26 58 82 100
Hardness, non-carbonate June 10.0 17.0 8.0 19.0 21.0 12
mg/1 Caco3 July 7.0 11.0 6.0 9.0 7.0 16
September 11.0 11.0 4.0 10.0 15.0 16
January 17.0 13.0 10.0 14.0 25o0 33
t1arch 15.0 13 .. 0 3.0 12.0 21.0 19
Bicarbonate, incremental titration June .... !'~''*'-
~ mg/1. CaC03 July ---September 53 42 • . 32 75 75 11!1'••
\ January --tOot -·--....... • ---r
March ........ ---.. ......_
..........
• Q(l
oQ ( L
'\,
~ ...... }j
-~~ ,,
'"'" J
·~-~~,""~~ _' ::n:•u:lc:-~
•
Appendix fable 4-D-6 (Continued).
..
• p . • Slough Slough
Parameter Date 8A. 9 -
Major Constituents -Cont'd
Carbonate, incremer~tal titration June ---
mg/1 eaco3 July-~-----September 0 0
January --·· -~,...
Mllrch ~ .. ~
Calcium, dissolved June 1i'! 18
mg/1 ~ July 16 17
September 17 14
January 26 15
L March 19 17
t,
..J Magnesium, dissolved June 2.8 2.7
-.t' mg/1 Hg July 1.9 1.9
September 2.8 2.4
~•~nuary 3.4 2.3
March 3.1 2.4
Sodium, dissolved June 6.8 8.2
mg/1 No July 3.0 3.0
September 6.1 5.6
January 11.0 5.7
t~arch 6.2 7.Z
Sodium, (\) June 20 24
July 12 11
Septe~11ber 19 21
Janua.-y 23 20
March 18 23
•
N June 0.4 o.s
Sodium, adsorption ratio July 0.2 0.2
' September 0.4 0.4
......_, January o.s 0.4
......... March 0.4 o.s
' ~-
·~
-·
Slough Slough
168 ' ~1 19 -
'---• L----......
0 0
-~-· ..... ---
10 23
10 20
9 24
11 22
8 1.9
1.6 2~7
1.3 2 .• 6
1.6 3.0
1.G 3.0
1.5 2.6
.2.5 2.5
1.8 1.8
2.6 3.0
2.9 4.~
2.1 2.2
14 7
11 6
15 8
15 12
14 7
0.2 o. 1
0.1 o. l
0.2 0.2.
0.2 0.2 o. 2 0.1
DRAtT
.AOFG01/t06
··-Susftna River
Slough. at 21-. Gold Creek ...... ,.. ... _,
...... .. ....
0 ----...... :-~-
~~-
27 .19
18 16
25 1$
29 39
27 33
3.9 2.2
2.1 1. 7
1.5 1.9
3.5 4.6
3.6 4.5
12.0 4.2
3.4 3.4
11.0 1 .. 4
12.0 15.0
1.1.0 17.0
23 14
12 13
23 21
23 22
22 26
0.6 0.3
0.2 0.2
0.5 0.4
0.6 o.g o.s 0.8
AppemHx Table ,,..o~.6 (Continued}, (}
·· Su5!tn~ River
Slouuh Slough· Sl()ugh Slough Slough at
Parameter Date SA 9 168 . ~9. ··.: 2t Cold Creek -...... "
Nutrients • Cont 1 d
Nitrogen, total June a.s a.'• lt. 1 10.0 4.2 2.'t
mg/1 N0 3 July 3.4 3.5 3.3 9.3 2.9 2~3
September 7.4 7~3 2 .. 9 9.,0 4.9 .'/.a1
January s. 8 . 7.9 2.9 7.0 4.2 1.9
March 5.7 6.4 3.3 7.6 4.3 ·1.9
···---
Nitrogen, dissolved June 1.8 1.6 1.0 2.0 1.0 o .. ~.
mg/1 N July 0.7 2.2 0.7 o.6 ·
September 1.5 1. 7 0.6 L9 1.6 ().6
January 1.3 1.6 0 .. 6 1.2 0.9 0.4
March 1.2 1.2 0.6 1"5 o.a 0 .. 4
..r::
~ Ni t'f•ogen, total organic June 0.53 o .. e2 o.so 0.88 o;n 0 .. 34
l mg/1 N July O.ltO 0.54 0.31 0.45 0.44 0.10
September 0.41 0.17 0.44 0.18 0.28
" January 0 .. 18 0.50 ---0.18
\1\ March 0.21t 0.41 0.41 0.30 0,.21
Nitrogen, dissolved organic June Oo45 0.51 0.55 0.62 0.49 0~34
mg/1 N July 0.44 0.48 0.41 Oa43 0.21
September 0.36 0.44 0.10 0.49 0 .. 19 0.34
January 0.22 0.39 0 .. 15 . 0.14 0.20 0.15
Ha.rch 0.20 0.16 0.,22 ..... 0.19
Nitrogen, dissolved ai1111onta June 0.07 o.n C.10 0.10 0.09 0 .• 08
mg/1 N July 0.10 0.13 Oe13 Oo32 0.11t 0.24
September 0.15 O.llt 0.16 0.13 0.11 0.09
January 0.15 .0.08 0.09 o.oa o.oa 0.09
March 0.07 0.07 <.o.06 0.08 (0.06 0.07 --
Nitrogen, ~issolved ammonia June 0.09 0,14 0.13 0 .. 13 0.12 0.10
mg/1 tai4 July 0.13 0.17 0.17 0.41 0.18 0.31
September 0.19 0.18 0.21 0.17 0.14 o.12
Janua~-y . 0.19 0.10 0.12 0 •. 10 0.10 0.12
March 0.09 0.09 . o.os 0.10 0.08 0,09
-~ . .
f;
I ........ -....
1
--~
~ (-' "'.~-... I,
~ ..........
' ~ .... ··--'-. ~ .. _.. .
• •
<
Appendht Table lt-D-6 (Continued).
. .
Slough Slough
Paramet!!_ Date SA 9 -
.Major Con:lti tuents -O.»nt' d
June 1.5 1.4
Potassium,. dissolved Jul)' 1.6 1.6
. mg/1 K September 1.1 0.9
January 2.1 1.0
March 1.3 1.1
June 9.1 16.0
Qlloride. dissolved July 2.9 2.9
mg/1 Cl September 7.7 6.9
January 14.0 9.,6
March 10.0 13.0
..J:.
b June 11.0 9.0
Sulfate, dissolved July 1.0 11.0 ..
'-1 mg/1 so,. September 6.0 s.o
~ January 11 ~o 5.0
March 8.0 6.0
June. o.o 0.1
Fluorfdej; dissolved .July o.o o.o
mg/1 F September 0.1 0.1
January 0.1 0.1
March 0.1 0.1
Silica, dissolved June 9.7 11.0
mg/1 Si02 July 6.6 6.6
September o.o 10.0
January 10.0 11.0
Marcil 11.0 11.0
Nutrients
rJ Nitrogen, total June 1.9 1 .. 9
t mg/1 N Ju1y 0.8 o.a
September 1.7 1.7 ._,
January 1.3 1.6 .........
f. March 1.3 1,4
~
~
'l .
Slough S1ough
168 19
0.9 1.0
0.9 1.,6
0.9 1.1
0.8 1 .,2: o.a 1. i
1.3 0.9
0.9 0.6
1.5 0.9
1.1 3.5
1.2 1.1
4.7 13.0
6.0 14.0
5.0 9 .. 0 s.o 11.0 o.o 13.0
0.1 0.1
0 .. 1 o.o
0.1 0.1
0.1 0.1
0.1 0.1
10.0 10.0
6.2 10.0
10.0 10.0
11.0 10.0
11.0 10.0
0.9 2.3
0.8 2.1
0.7 2.0
0.7 1.6
0.7 1.7
DRAFT
ADFG01/t06
. .
Susitna River
Slou~h · at
21 Gold Creek
2.1 z •. o
1.9 1.6
2.1 1.$
2.D 2.1
2.1 2.2
20.0 5.6
3.7 12.0
17.0 11.0
20.0 24.0
17.0 27 .. 0
. 14.0 17.0
3.1 1 .• 0
10.0 < s.o
12.0 t7.0
13.0 13.0
0.1 o.o o.o 0.1
0.1 . 0.1
0.1 0.1
0.1 0.1
11.0 < s.s
6.6 6.2
11.0 6.1
11.0 12.0
12.0 13 .• 0
Oe94 o.s
o .• 2 o.s
1.1 0.6
1.0 . 0.4
1.0 0.4
N
\ ~ ........_.
f
--a w
,,
L • 0
I
;.., ..... ~
•
Parameter
Nutrients -~tont'd
Phosphorus-t~tal
Jtg/1 p
Phosphorus, total
mg/1 P04
:·PoosphOrui·,-dllsoiv~is · ·
. I ,... , .. . .
Carbon, dissolved organic
mg/i C
Carbon, total suspended organics
mg/1 c
Trace fl,eta ls
Arsenic, total
ug/1 Ar.
,,.,
'f•"<
' .
Date -
June
July
September
January
March
June
Jtrly
September
January
March
June
July
September
January
March
June
July
September
January
March
June
July
September
January
March
Slot~gh
8A_
0,.05
0 •. 27
~0.01
.t: 0.01
0.01
0.2
0.8
.....
(. 0.1
1.9
13.0
1.5
1.4
1.4
0.2
0.1 o.o o.o
1
2
2
2
1
•
Slough
9
0.01
0.48
<0.01
<0.01
0.01
<: 0.1
1.5
<O.l
2.1
9.0
1. 7
1.3
0.7
0.2
0.5
0.1 o.o o.o
1
5
1
2
1
·~ f\-:·-· .... ,,..
..
Slough· Slough
168 19
0.01 0.01
,0.14 0.01
<0.01 (.0.01
~0.01 0.02
0!'01 0.01
(.0.1 <0 .. 1
Oolf <0.1
....... 0.1
<0.1 <0.1
1.4 1.3
3.3 6.2
1.9 2.2
0,.5 0.7
0.7 1.4
---0.2 o.o o.o
0.1 0.1 . o .. o 0.0 o.o 0.1
._ 2 ' 4 1
1 2
1 2
2 1
.··
ORAFT
ADFG01/tq6
Slough
.21
~0.01
0 .. 38
~0.01
0.01
O.(U
(0.1
1.2
<0.1
<0.1
2.0
6o0
1.1
0.5
1.~
0.2
0 ... 3
G. 1
0.0
0.1
2
5
2
2
2
-' Susitna River
at
Go 1 d ··creek
().12 o.oz
0.02
0.01
0.01
0.4
0.1
0.1
0.1 .... , ...
2.8
18.0
1.6
0 .• 9
0.1
6.
1'
---
2
.. ,.,
·;-.,
6 ;:::;>
Appendix Table 4-0•.6 (Contfnued). .
~I
Susitna River
Slough Slough Slough Slough Slough at
9arametor Date sA 9 168 19 21. Gold Creek
~------Trace Meta 1 s ,., Cont • d
Arsenic, tott.'tl suspended June 0 0 0 1 1 5
ug/1 As July 0 3 '2 0 3 5
September 1 0 () 1 1 -~~
January 1' 1 0 1 1 ........
March "" .... 0 1 0 1 0
~
Arsenic. dissolved June 2 1 1 1 1 1
ug/1 As July 2 2 2 1 2 2
September 1 1 1 1 1 ~--)w
January 1 1 1 1 1
-&: March < 1 1 1 1 1 2
i
C1 Barium, total recoverable June 0 0 0 0 100 200 I
'-!
ug/1 Ba July 200 200 100 100 300 300
September 100 200 100 100 100 -~~
'() January 100 100 <100 100 100
March < 100 < 100 <100 <.100 (.100 100
Barium, suspended recoverable June 0 0 0 0 100 200
ug/1 Ba July 200 200 .70 so 300 300
September 100 . 200 100 100 0 ......
January 0 0 ......
March ItO
Barium, dissolved June 90 0 0 0 0 0
ug/1 Ba July ItO ItO 30 50 'tO 0
September o. 0 0 0 100
January 10(} ~100 (.100 .(.100 1CO ·--March 29 27 14 . 29 41 '60
Cadmium. total recoverable June 0 0 2 0 1 0
ug/1 Cd J~ly 0 0 0 1 0 s
N
September 0 0 0 0 1
January <1 ~1 <1 <1 ~1 ---
I March <1 <1 <:1 . . "-t -'1 <.1 ,.
""""-.........
' ...0
-t. ( .
·' ..
"'-· '"-
' }
~ '·~..V" ...
• • 7 DrtAFT
AOFGOt/t06
AppemHx TaMe lt-D-6 (Continued).
_._...
• • " ! Susi tn~· Rivet . ' Slough SlOUfJh Slough Slough Slough ' ' at
P~rarooter Oat:e BA 9 1GB 19 2~. Gold Creek· -' '
Trace Metah -Cont'd
Cadmium, ~ospended recoverable .•lJue 0 2 0 0 .........
ug/1 Co July -------..... '1111!'•• 4
September 0 0 0 0 1 --~
January ---....... ----Harch -·
CadmiumJ dissolved June 1 ' 0 0 0 5 <1
ug/1 Cd July ~1 (1 <1 (~ <1 1
September 0 0 1 0 0 ---
January <1 1 1 1 < 1
March <.3 <3 ~3 <3 ~3 (3
J:.. Chromium, total recoverable June 0 10 0 0 .... 40 u
b ug/1 Cr July 30 30 20 20 40 30
September 0 ~0 10 10 10
I
January 10 < 1 10 L10 <10
March 10 < 1 10 10 .<:.10 10
~
0
Chromium, suspended recoverable June 0 10 0 0 0
ug/1 Cr July 20 20 10 10 30 40
September 0 10 . 10 10 10, 20
January / -~~
March
Chromium, dfssolved June 10 0 0 0 0 0
ug/1 Cr July 10 10 10 10 10 10
September 0 0 0 0 0
January '10 1 C.:.10 <.10 .{10
March .( 10 <3 <....10 < 10 .c.10 <.10
N Cobalt, total recoverable June 2 0 0 0 2 a
J... ug/1 Co. july 5 6 2 0 7 11
September 0 0 0 0 1 '-.. ~
-.... January 2 1 1 1 L. 1 .~ .... -
March 1 1 2 " 1 L . 1
f
....().
V\.
~,·-'!,.-, .. '/
Appendix Table ~-D-6 (Continued).
Sufti t.na Ri. ver
Slough Slough Slough Sl.~ugh Slough at
Parameter Oate 8A 9 168 19 21 Qo 1 d Crt:ek • ·-
Trace Metals -Cont•d
Cobalt, suspended recoverable June 0 0 0 1 -·-
ug/1 Co July ---11
September 0 0 0 0 1
January 0 0 0
March ~--~--,---0
Cobalt, dissolved June '3 0 0 0 1 "-3
ug/1 Co July <3 ~3 (3. 4!'3 ~3 0
September ., 0 0 0 0 \.;
-'=
January· .2 2 1 ~1 2
March <.• ~1 ~1 "1 <.1 1 • • 0 •
0\} Copper, total recoverable June 3 2 ~ 2 2 31'
...... ug/1 Cu July 20 23 10 3 23 190
September 6 4 5 4 4
January 4 2 1 2 1
March 2 1 2 8 6 .2
'.t
Copper, suspended recoverable June 1 1 1 0 0 . 27
ug/1 Cu July 12 20 4 0· 0 190
September 5 3 3 2 18
January 3 0 0 0 3
March 1 0 1 1 0 1
Copper, d•ssolved June 2 1 3 2 2 4
ug/1 Cu July 8 3 6 7 5 5
September 1 1 2 2 1
January 1 2 2 2 1
March 1 1 1 1 1 1
Iron, total recoverable June 20 40 so 40 60 15,000
N ug/1 Fe July '13,000 16,000 5,800 220 18,000 19,000
September 20 90 .280 260 100
' January 20 140 20 10 10 ----March 10 30 It() 30 10 40 ..
f -....
(
~ ' . l. ·~
{ {
L
'""-'
.,
1.'\...lof..; . .::t$>,
'}
•.
N
• ·~ .........
f
·~
~
Ap9endix Table lt·D-6 (Continued).
Parameter
Trace Metals .. Cont'd
tron, suspend~d recoverable
ug/1 Fe
Iron, dissolved
ug/1 Fe
Lead, tQtal recoverable
ug/1 Pb
Lead, suspended recovErable
ug/1 Pb
Lead, dissolved
ug/1 Pb
Manganese, total recoverable
ug/1 Mn
' • . .
Date -
Jurae
July
September
January
Harch
June
July
September
January
March
June
July
September
January
March
June
July
September
Janu~ry
March
June
July
September
January
March
June
July
September
January
March
51Qugh
8A
10
13,000
10
0
()
10
't8
10
40
12
0
3
4
2
.(1
0
0
2
1
0
3
2
1
1
10
230
0
10
10
t.
Slough
9
60
110
30
60
1~
5
3
1
1
1
5
1
0
0 ---
f)
2
3'
2
·<.1
10
290
0
20
10
Slough
168
0 s.1oo
260
0
30
so
52
20
20
9
3
3
1
<'1
5
3
3
0
4
0
0
4
1
1
10
100
10
10
.(10
Slough
. 19
0
1la0
250
0
20
60
79
10
30
15
3
3
2
1
6
3
2
0
0
()
1
3
1
<.1
0
20
10
10
10
.DRAt:'T
AOf't01/t06
Slough
21
40
18,000
90
0 o.
20
97
10 '
20
11
15
2
4
< 1
9
15
0
0
-~-
0
5
5
1
<1
0
3t.'O
~l
zt~
<.10'
Susftna River
at
Cold. Creek.
15,000
19;000 ---
30
90
120
15
18
47 ---
18
47
0
0
3
250
320
10
.N
' ............ ........
• ....()
~-
-t=
' C)
'
112:11111 1 •
Appendii.< Table ~-D-6 (Continued).
Parameter
Trace Hetals ... Cont'd
Manganese• suspended recoverable
ug/1 Mn
Manganese, dissolved
ug/1 Hn
Mercury, total recoverable
ug/1 Hg
Mercury, suspended recoverable
ug/1 Hg
Mercury, dissolved
ug/1 Hg
Nickel, total recoverable
ug/1 Nt
June
July
September
January
t-iarch
June
July
September
January
_March
June
July
September
January
March
June
July
September
January
March
June
July
September
January
March
June
July
September
January
March
G! 1tat£&lld MLli £JSZit .i E Mr ! •• p 1 dliiil HIRI• V M!w ?'WPHW .
Slough
SA _......_
0
220
0
0
6
10.0 a.o o.o
10.0
4.0
0.1
0.1
0.1
~0.1 o. 1
0.1 o.o
0.1
o.o
0.1 o.o < 0.1
(0.1
3
14
1
i
1
Slough
9
10
280
0
10 :s
o.o
10.0 o.o
~ 0.1
< 0.1
0.1
0.1 o.o
,0.1
0.1
0.1
0.1 o.o
o.o o.o o.o
<. 0.1
.(0.1
2
18
0
2
<1 ' '
Slough
U)B '
10
90
10
---
o.o
7.0 o.o
~ 10.0
3.0
o.~
0.1 o.c
<0.1
0.1
0.1
0.1 o.o
o.o
0.1 o.o
<0.1
<. o. 1 .
2
6
1
~1
2 • '
Slough
19
0
10
0
0
6
o.o
9.0
10.0
<10.0
~ •• o
0., 1 o.o o.o t.o.1
0.1
0.1 o.o o.o
o.o o.o o.o
< 0.1 < 0.1
1
2
3
<1
2
SlougJl
21 ·~
0
290
0
10
~u-
0
8
0
10
3
0.2
0.2 o.o
0.1
0.1
0.2
0.2 o.o
o.o o.o o.o
"-0.1
<1!0.1
6
18
4
<1
1
Susitna River
at
Cold Creek
250
310
., ....
·--~
7
4
10
3
0.4
0.3 _ .... _
0.1
0 .. 4.
0.1 .....
0"0
0.2
<0.1
' 23
22
36 ---
2
·~)
I ..
•
Appell~ix Table 4-0 ... 6 (Continued).
: _: : :
A • Slough
Date OA Parameter -
Trace Metal! -Cont'd
June 2 Nickel, $Uspended recoverable July 12 ug/1 Nl September 1
January ........
March 0
June 1 Nickel, dissolved July 2
ug/1 Nf 0 Sep.tember <1 January
March 2
.J:. June 0 ' Selenium, total
tj July 0
ug/1 Se 0 • September
<.1
«> Jan~Jary
1
-.(:. March
June 0 Selenium, total suspended July 0
ug/1 Se Sep.tember o·
January
March
Jyne 0 Selenium, dissolved July 1
og/1 Se September 0
( 1 January ( 1 March
June 0
N Si Jver, total recDverable July 0
ug/1 A~ 0
(
September
<:1 January
<.1 ..._._ March
...........__
' ·~
. ~
~
y
!'~-_, ' ~' ' ~ ~ ~ ~ ~ r"r1 ~'·'' ~ ~
: : ;
Slough Slough Slough
9 168 19
2 1 0
18 6. 0
0 7 3
1 ...... ..... 1 1
0 1 1
0 0 3
0 0 0
1 .C1 .q
<1 1 1
0 1 0
0 0 0
0 0 0
1 <1 <'1
<1 <1 <1
0 0 0
0 0 0
0 0 0 . ----~-__ ..
0 0 1
0 0 1
0 0 1
<1 (.1 L1
<1 <1 1
0 1 0
0 1 0
0 0 0
<1 .C:.1 " 1
<.1 <' 1 (1
M ·~f!1l ~· n
•
on AFT
[\OFG!Jf/t06 •
Susitna River
Slough at
21 Co 1 d 'Creek ·
1 23.,
17 .29
4 . 29 ......
0 1
5 0
1 .£1
0 7
.tt
1 1
1 "-1
0 0
0 1
1
<1 ~1
1 0
0 0
0 0
' ---
0 0
0 0
1
41
1 . "1
0 0
0 0
0
< 1
(. 1 t.1
" •:r1 'r1 ·,r~·~
... •" "'' ,. . '~ .... ,
~ I • ., '' . . ... , ~
!
t
I
' i i
•" '
..r:..
• '()
I
~.
V",
(\)
I ...._
" ""'-
1
' C> q
Appendix Table 4·0u6 (Continued).
Parameter
Tra~e ~fetals ... COnt•d
Silver, suspended recoverable
ug/'V Ag
Silver, dissolved
ug/1 As
Zinc, total recoverable
ug/1 Zn
Zinc, suspended recoverable
ug/1 Zn
Zinc, dissolved
ug/1 Zn
.Q!!!
June
July
September
J!\nuary
March
June
July
September
Jarluilry
Ha,rch
June
July
September
January
March
June
Jull'
September
January
March
June
July
September
January
March
Slough 51()ugh
6A 9
0 0
0 0
0 0 ------
0 0
0 0
0 0
~1 <1
6!!1 ~1
2D 40
80 ,60
20 30
20 10
10 10
10 30
80 30
10 10
10 0
0
7 10
4 35
10 20
10 20
..::12 <12
Slough
166
1
0
0 ---.......
0
0
0
<-1
1
10
20
30
20
40
0
10
0
10
10
10
30
10
(12
4 t
~ """~
Slough
19
0
1
0
-·-
0
0
0
. 1
<1
10
10
10
10
30
0
0
10
0
20
10
10
0
10
12
"
,._.
c
Susitna River
Slough a1:
21 Cold Cteek ' -
0 0
'() 0
0 .... ...... '
0 0 .
0 0
0
<1 ---
.{1 1
10 60
60 120
20
tO ---
20 10
10 50
40 110
0
0
0 6
17 11•
20 5
10
~ 12 ""12
'·
· .. 6)
EXHIBIT E
· 2~ Water Use and Quality
.,,,"' ,· -
C~t.l2 (p. E-2~32 11 para. 5)
..-..:= ~.,_ . . . . .
_Provide references ·for, O\_ , data on~ ammonium concentrations {means and
ranges) in water at monitoring stations on the Susitna River.
Response
Data on anmonium concentrations in water at monitoring stations on the
Susitna River is contained in the enclosed reports:
l) R & M Consultants, Inc. 1982. Water Quality Annual Report. (See
attached tables: 2;4, 2.5, 2.6, 2.7, 2.8, 2.9, and 2.10 on pp. 2-12-2
2-12-32).
2) Alaska Department of Fish and Game, 1982. Susitna Hydro Aquatic
Studies .... Phase II Basic Data Report, Volume 4.. Aquatic Habitat and
lnstreaf!l Flow Studies. Appendix 4~0.6. (See p. 2-12-39).
2-12-1
Agency:
Station:
Elevathm: ,
Field Pa rame te rs (1)
Dissolved oxygen
Percent Sa tu ration
pU, pH Units
tJ
~ Conductivity. umhos/cm 0 25°G
·"" 0 Tempera tu r•e, oc
Free Carbon Dioxide (2)
AI ka I ini ty, as CaC03
. Set t 1 eab t e So I ids, ml/1
laboratory Parameters (1)(3)
Organic Nitrogen
Kjetdahl N.i trogen
<'l Ni-trate Nitrogen
Nitrite Nitrogen ' ~ Total Nitrogen
N Ortho-Phosphate
.(
.(J.J· Total Phosphorus
J .. :r.~._; .. ,.
f :!' •
. TABLE 2.4
WATEii'l QUALI TV DATA S~MMARY
SUSITNA RIVER
R&H CONSULTANTS, INC.
·vrr-cANYON 1980 • 1982
1900 FT.
summar/Whnar/Break-UP
Maximum Minimum .J;iaan·
12.6/1 .... 5/10.4 9.7/10.7/10.4 11.9/13.1/10.4
110/1:04/83 84/84/83 101/98/83
7.9/7.6/6.6 7.0/6.0/6.6 7.6/7.1/6.6 .
171/333/100 103/130/100 129/212/100
11.9/0.1/6.5 5.3/-0.1/6.5 7.7/0.0/6.5
'•· 5/20 .'0/-1.7/5.5/-3.0/10.3/ ...
81/99/-41/57/-61/81/-
1.0/-/-0.1/-/-0.1/-1-
.27/.26/.13 .09/.09/.13 .16/.19/.13
.63/.85/.34 .22/.08/.34 • 49/.40/. 31&
.79/.85/.47 .26/.17/.47 .60/.52/.47
.19/.30/-.OC)/.30/• .14/.30/-
-/.01/--/.01/--/.01/-
.92/.f\5/.47 .39/.17/.41 .61/.52/.47
.05/.02/-.03/.02/-.04/.02/-
.49/.07/-.03/.02/-.14/.05/..,
Number .or
oet~ctahte
....., ~a lues
li'V1
7/4/1
10/4/1
9/4/1
10/4/1
7/3/0
7/3/0
4/0/0
6/2/1
8/3/1
9/4/1
5/1/0
0/1/0
9/3/1
2/2/0
6/2/0
Total
Number or
, .ObservatIons
7/1&/1
7/li/1
10/h/1
9/4/1
10/fl/1
7/3/0
7/3/0
10/3/1
9/4/1
9/3/1
9/11/1
10/lt/1
9/fl/1
9/3/1
9/4/1
10/4/1
' . ,, .
' '"
N
I
N
}-1
s3./u2
Agency:
Station:
Elevation:
laboratory Parameters (1) (3)
(Continued)
A l ka I i n i tY,. as caco3
Chemical oxygen Oemand
Chloride
Conductivity, umhos/cm @ 25°C
True Col.or., Color Units
ttardness., as caco ( ta)
3
Sui r.a te
Total Dissolved So a ids
I .-r-.s ! .J ~ Tota I suspended So J ids
lurbidity,. NTU
Uranium
Rad ioact ivi ty,. Gross Alpha,. .
pCi/1
N
\ TOtal Organic carbon
""" "' Total Jnorganic Carbon
\ Org~oi.c Chemicals
.J::.. Endrin ..
J (~'JJna
TABLE 2;4 -· continUed
WATEIR QUAlr'fY DATA SUMMARY
SUS ITNA R t VER
R&M CONSULTANTS, INC.
VEE CANYON 1980 -1982
1900 fT.
Summar /WI nte r/8 rea k-Op
Maximum Minimum Mean
60/66/-40/66/-Da8/66/-
39/13/8 8/6/8 20/10/8
11/18/4.5 3/16/1&.5 6. 7/17 •. 5/4.5
"' 150/190/-150/190/-150/190/-
175/30/15 5/5/15 70/15/15
76/122/40 1&9/76/40 58/103/40
9/18/4 2/11/4 6/14/4
170/157/100 38/115/100 98/1 '•1/1 00
1150/11&/93 25/0.6/93 358/6.0/"93
720/2.5/25 8.1/.35/25 156/1.3/25
-1-1--I-I--1-1-
-I-I--I-I-11.6 ± 0.6/
10.3 ± 0.6/-
-/2/--/2/--/2/-
-/2/--/2/--/2/-
-I-I--1-l--1-l-
-I-/--1-1-_,_, ..
Number of
Detectable
~
4/1/0
8/4/1
"1/4/1
1/1/0
9/4/1
10/4/1
10/4/1
10/41/1
10/ll/l
. 14/4/1
0/0/(J
1/1/0
0/1/0
0/1/0
0/0/0
0/0/0
Total
Number of
Observations
4/1/0
8/4/1
10/4/1
1/1/0
9/4/1
10/4/1
10/it/1
10/ll/1
10/4/1
14/4/1
.5/2/0
1/1/0
0/1/0
0/1/0
3/1/0
3/1/0 ,.,)
_.J
/. :•:·•
N
I
N
N
N
\ .........
N
l
v\
.I ~-*, .. ;_
J~gency:
Stat ion:
Elevation:
Laboratorx Parameters ( 1) (.3)
(Continued)
Methoxychlor
Toxaphene
2.,. lJ-0
2, 4, 5-TP Si lvex
Elements (Dissolved)
Ag, Si Jver
AI, AI uminUln
As, Arsenic
Au, Gold
B, Boron
Ba, Barium
B i, Bismuth
C!J, Calcium
Cd, cadmiurn
Co, Cobalt
C.r, Chromium
cu, ~,Coppa r
Fes J ron
'';'' Ug, .Mercury
,. ·o
TABLE 2.4 -continued
WATER QUAL I TV OAT A SUMt-1ARV
SUSITNA RIVER
R&M CONSULTANTS, INC.
VEE CANYON 1900 " 1982
1900 FT•
summer/Winter/~reak-Up
' Maximum Minimum Mean
-1-1--I-I--I-I-
-I-I-_,_, .. -1-1-
-1-1--1-1--1-1-
-I-I--1-1 ... -l-1-
-I-I--!-I-
_,_, ...
2.2/.18/"" 1. 6/. 16/-1.4/.18/-
-!-1--I-I-_, .. ,_
-1-1--lor./--l-1-
-1-1--1-1--1-1-
.12/-/-.01/-1-• 10/-/-
.19/-l-.. 19/-/-. 19/-/-
23/41/13 13/25/13 18/33/13
-t-1--I-I--!-I-
-I-I-_,_, .. -I-I-
-1·1--I-I· -I-I-
-1-1--1-1--1-1-
4.0/.37/;08 .05/.37/.08 1.1/.37/.0&
•/n/•
_,_, ... -1-1-
------·~ ~ ~ ~·
iii
Number of
DetectabJe
yaloes
0/0/0
o/o/o
0/0/0
0/0/0
0/0/0
3/1/0
0/0/0
0/0/0
0/0/0
7/0/0
1/0/0
10/4/1
0/0/0
0/0/0
0/0/0
0/0/0
9/1/1
0/0/0
~., ·.,--,
Ill)
4>..<,. ,il
Total
Number' or
Observations
3'/1/0
3/1/0
3/'1/0
3/l/0
10/3/1
10/3/1
.10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
10/~/1
10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
r-1 ~ ..
..
·~ ··~·
N
, I
N w
(')'
( ........,.
N
l f
! '"' ·I
'
,:; ' ' ' ~'"\ ,:
Agency:
station:
Elevation:
laboratorY Parameters f 1) (3)
(Continued)
K, Potassium
Mg. Magnesium
Hn. Manganese
I-to, Molybdenum
Na, Sodium
N i, Nick~ I
Pb,. Lead
Pt,. Platinum
Sb. Antimony
Se, Selenium
Si, S iIi con
sn, Tin
sr, Strontium
Ti, T i .tan i um
w. Tungsten
v. Vanadium
z·n, Zinc
Zr. Zi rconi urn
(,,
•,
TABLE 2.4 -continued
WATER QUALITY CATA SUMMARY . SUSITNA RIVER .
R&M CONSULTANTS, INC.
VEE CANYON 1980 -1982
1900 fT. .
Summer/Winter/Break-Up
Maximum
5. 0/9.0/1.6 1.7/2.0/1.6 2. 3/5.2/L6
3.4/7.6/1.7 1.2/3.8/1.7 2.4/5.2/1.7
• 10/-l-.011-1-.09/-1-
-1-1--I-I--1-1-
5.1/12.0/2.0 2.4/6.3/2.0 3.4/8.0/2.0
-I-I--1-1--1-1-
-I-I--I-I--1-1-
-J-1--l-1-.. ,_,_
-1-1-. -I-I--1-1-
-1-1--I-I-_,_,,..
6. 9/5.0/1.. 7 2.0/3. 7/'1. 7 3.5/4.5/1.7
-I-I--1-1--I-I-
.08/.13/-.05/.06/-.06/.10/-
.21J/-/-.13/-/-.18/-/-
-1·'•1--/.4/--/.IJ/-
-1-1--1-1--I-I-
.01/-1-.07/-/-.07/-/-
-l-1--I-I--1-1-
!
\
Number of
Detectabie
vatue.s
9/3/1
10/4/1
2/0/0
0/0/0
10/4/1
0/0/0
0/0/0
0/0/.0
0/0/0
0/0/0
10/4/1
0/0/0
9/3/0
,3/0/0
0/1/0
0/0/0
1/0/0
0/0/0
Total
Numbet' of
n~seryations .
10/4/1
10/4/1
10/3/0
10/3/0
10/1./1
10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
10/4/1
10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
10/3/1
'
·~·
(l) Table values are mg/1 unless noted otherwise.
I • .
(2) All values for free C02 determined. from nomograph on
, .P• 291 of Standard Method, 114th edIt ton.
(3)
(It J .
_,..·:·~·~
Samples roc a II parameters except chemic~:~ l oxygen
demand. dissolved and suspended
$ol ids, and turbidItY were f i I tared.
Hardness calculated by R~M personnel.
~. ,';. .
·.~ . . ....
N
I
N
l11
(\)
( -..
rJ
;{
~
S3/U26
Agency:
Stat ioq:
Etevat ion:
field Parameters (1)
Dissolved Oxygen
Percent Saturation
pit, pit Units
Condu~:;tivity# umhos/cm @ 25°C
Temperature, oc
free carbon Dioxide (2)
AI ka I in i ty • as CaCO 3
Settleable Solids. ml/1
laboratory Parameters (1)(3)
Organic Nitrogen
kjel:dahl Nitrogen
Nitrate Kitrogen .
. Nitrite Nitrogen
Total Nitrogen
brLho-Ph~sphate
Tota I Phosphorus
TABLE 2.5
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
R&M CONSULTANTS. lNC.
IGorb CREEK 1930 • 1982
· £76.5 ··rr:-
summerlt~l nteclftre~I<-Ug
Maximum Minimum Mean
12.8/llt.l/11.5 8.6/13.3/11.2 11.2/13. 8/11 .Ia
'110/101/102 81/100/101 101/101/102
1. f!/7. 8/6. 7 6.8/7.1/6.4 7.3/7.4/6.5
183/2119/106 75/84/105 126/179/106
12.8/0.6/10.5 6.6/0.0/10.3 9.8/0.2/10.4
8.6/20/-2. 1/3.2/-4.4/10.7/-
64/711/-25/46/-44/65/-
0.6/-/-0.1/-/-0.4/-/-
.21/.52/.08 .02/.32/.08 .09/.42/.08
.74/.81/.34 .05/.34/.27 .49/.54/.31
4.8/.99/.35 .06/.66/.34 .87/.62/.35
• 86/. 311/-.14/.12/-.32/.21/-
-I-I--1-1--1-1-
5.66/1. 31&/0. 35 • 35/.66/. 311 1.22/1.00/.35
.10/.02/-.01/.02/ ... • Oil/. 02/-
.1&3/.02/.08 .01/.01/.08 .12/.02/.08
Number of Total
Detect~ble Number of
y_alues Observations
10/3/2• 10/3/2
9/3/2 9/3/2
8/3/2 8/3/2
15/512 15/5/2
15/5/2 15/5/2
5/3/0 5/3/0
5/3/0 5/3/0
7/3/2 7/3/2
11/2/1 14/4/2
10/3/2 10/3/2
11/3/2 14/5/2
10/3/0 16/5/2
0/0/0 14/lt/2
11/lt/2 11/11/Z
3/1/0 16/3/2
10/2/1 16/5/2
r :
I :
I
Agency:
stat ion:
Elevation;
La~m.rru;orY Parameter§: (1) (3)
(Continued)
A l ka. 1 in i ty _ as caco 3
N Chemical O><ygen Demand
I
N Chloride
0'\
,,-~' ,, j
\,·--"-
1,\
\\ \\rJ
~·~:, l
...........
·r-J·
t
-0
Conductivity, umhos/cm 0 25°C
True Color, Color Units
Uardness. as CaC03(4)
Sui fate
Total Dissolved Solids
TotaD Suspended Solids
Turbidity, NTU
Uranium
Rad!oactivity, Gross Alpha,
pCi/1
Total Organic Carbon
Tots I l.norgan ic Ca r:bon
Organic Chemicals
Endrln
lindane
TABLE .2.5 ... conth1ued
WATER QUALITY DATA SUMMAtW
SUSITNA RIVER '/
R&M CONSULTANTS, INO.
GOLD CREEK 1980 -196a
676.5 FT.
summer/Winter/Break-Up
Maximum
36/57/-
2ft/16/12
14/29/10
31/165/-
110/40ll5
97/121/43
14.8/17/6
103/188/90
1255/8/56
728/1.2/19
-1-1-
!).5/2.0/-
3.8/1.0/-
12/lt/-,
.. , .. , ...
-l-1-
Minimum
28/57/-
1.3/2/8
4/9/6 .
37/165/-
5/10/10
31/67/lt3
1.0/9. 5/5
63/100/87
56/1/49
14/0.3/15 . .. , .. ,_
2.6/2.0/-
1.4/1.0/-
6.6/4/-
-1-1-
-1-1-
Mean
32/57/-
10.9/8.4/10
7.3/19/8
37/165/-
50/20/10
50/67/43
6.7/13.6/5.5
86/135/89
268/6/53
199/0.8/17
-1-l-
4.1/2.0/""
23/1.0/-
10.5/lf/-
-1-1-
-1-1-
Hlunl>e r or
Oetectabae
Values
2/1/0
14/5/2
10/5/2
2/l/0
7/3/2
11/5/2
16/5/2
16/5/2
16/5/2
22/3/2
0/0/0
2/1./0
8/1/0
8/l/0
0/0/0
,0/0/0
...... ·;
.
Total
Number . o.r·
obsetvat:ions
2/1/0
16/5/2
12/5/2
2/t/0
7/3/2
11/5/2
16/5/2
16/5/2
16/5/2
2~/3/2
lf/'l/0
2/1/0
8/1/0
8/1/0
3/1/0
3/1/0
M ··~-
tv
I
-tv
-J
N
' .-..
rJ
. . t
c.:.:;.
.. ;:...
...
~ •
S3/Lt28
Agency:
Stat ion:
Elevation:
Laboratory· Paratneters ( 1) ( 3)
(Continued)
Methoxychlor
Toxaphene
2, •a-o
2:. t;, 5-TP Si I vex
Elements {Dissolved}
Ag, Silver
A l, Aluminum
As, Arsenic
Au. Gold
a. Boron
Ba. Barium
8 i. Bismuth
ca. Calcium
Cd, Cadmium
Co, coh~lt
cr • Chromium
cu • Copper
f~.,,. I ron
.( ·Nercnry
TABLE 2.5 -continued
WATER QUALil'Y DAlA SUMMARY
SUSITNA RIVER
R&M CONSULTANTS, INC•
GOLD CREEK 1960 • 1962
676.5 fT.
summer/Winter/Break-Up
Maximum H'nimum M~ao
-I-I--J-1-
_,,..,_
-1-1--I-I--I-I-.
-1-1--I-I-... ,_,_
-1-1--I-I--1-1-
~1-1--1-1--J-1-
.70/.18/-.06/.18/-.39/.18/-
-I-I--1-l-
_,_,_
-1-1--1-1--I-I-
-I-I--1-1--1-1-
.11/.05/.07 .06/.05/.05 .09/.05/.06
.19/.07/-.19/.07/-.19/.07/-
33. 5/31&. 1&/111 10/21/lll 16.0/26.5/11&
-1-:1--I-I--I-I-
-1-1--I-I--I-I-
-1-1--1-l-... , .. , ..
-I-I--1-1--I-I-
2.3/.35/.07 .07/.35/.07 .77/.35/.07
~.r"'~ft!'-,
I
-1-l--I-I-I -1-1-
~-~--·
Number··.of
Detectable
Values
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
2/1/0
0/0/0
0/0/tl
0/0/0
7/l/2
1/1/0
12/5/2
0/0/0
0/0/0
0/0/0
0/0/0
6/l/1
0/0/0
Tot a 1 ·
Number or
Observations
3/1/0
3/1/0
3/1/0
3/1/0
7/3/2
6/3/2
7/3/2
7/3/2
7/3/2
7/3/2
7/3/2
12/5/2
7/3/2
7/3/.2
7/3/2
1/3/2
7/3/2
'7/3/?
~
.,~
J
Agency:
Station:
Elevation:
LaboratorY Parameters (1) (3)
(Continued)
•
TABLE 2.5 -continued
WATER .QUALITY PATA SUMMARY
SUSITNA RIVER
R&M CONSULTANTS, INC.
GOLD CREEK 1930 -1982
676.5
Maximum
summer/Winter/Break~Up
Minimum Mean
N~ttnber of
Detectable
_Jfjt,lues
·-.,Tota 1·
Ntember of
Observatlons
s3/u30
('1)
(2)
(3)
Table vah.tes are mg/1 unless noted otherwise.
All values ror rroe C02 determined from nomograph on·
p. 297 of Standard Method. 14th ~ditlon.
Sa1np 1 e s ro f a J 1 pa ram ate rs e><capt chemIca I oxygen
demand. dissolved and suspended
solids, and turb.dity were filtered.
( lJ) Hardness ca I cuI a tad by R&:M pe rsonne I •.
...
0
''
.··-··· ' •.,.
TABLE 2.6
WATER QUALITY OAlA SUt<tMARY
SUS i TNA JUVER.-,
...
Agsncy:
Station.:
Elevation:
U.S. OEOLOGICAL SURVEY
NR. DEtfAll 1957 -1982
2440 FT,
summe r:dli nterLBreak ... UI! Numbe.r •. or . ·Tot~t
Ml: ~ i
Detectable Numbe.r or
t~ax I mum ..,~ •• mum Mean y:ah.1e~ · ObSB£V3~ions ..
. (.I· '
•
Field Pa r.arne te rs ( 1 )
Dissolved oxygen -J-1-
_,_, .. -1-i-0/0/0 0/0/0
.-
Per~snt Saturation -1-i-
_,;_,_ _, .. , .. 0/0/0 0/0/0
pll, pH Uni t.s 7.9/7.6/7.2 7.2/7.1/7.2 7.6/7 .. 4/7 •. 2 •11/3/1 t'l/3/1
N ConductivitY, umhostcm 8 25°C 226/1167/124 121/351/124 161/400/124 18/3/1 16/3/l
l w 0.0/0.0/1.5
1~7:/3/6 lt7/3/6
0 Temperature, oc 10.5/0.0/6.5
5.5/0.0/4.0
Free carbon Dioxide 5.2/2.5/5.8 1.5/5.5/5.8 3.1/12.9/5.8 11/!/1 11/3/1
A I ka I i n i ty, as CaCO J 75/161/47 42/112/47 5'5/136/41 11/3/1 ·11/3/1
Settleable So I ids, ml/1
_,_,_ _ , .. ,_ _,_, _ 0/0/0 0/0/0
~:-~bora torY Parameters ( 1)
-I-I--1-l-
_, .. , ... 0/0/0 0/0/0
-!·I-
_,_,_ -I-I-0/0/0 0/0/0
l<je I dahl Nitrogen
_ ,_,_ _,_, ... _, .. , _ 0/0/0 0/0/0
Ni u~ate Nitrogen .09/.07/.05 o.0/0.0/.05 .03/.04/.05 11/3/1 11/3/1 •
Nitrite Nitrogen
_,_,_ _, .. ,_ -1-1-0/0/0 0/0/0
Total Nit\ogen -J-1-
_,;., .. _,_,_ 0/0/0 0/0/0
ort~~-rhosphate -l-1-
_,_,_ _,_,_ 0/0/0 0/0/0
!/
lot;~ t Phospporus -J-1--I-I--1-1-0/0/.0 0/0/0
. !; I: i/
//
•'·
. ~ ··~ ·~
~;··.,:;::.·~
s3/u23
Agency:
Stat ion:
E I. eva t ion:
Laboratory Parameters (1)
(Conte.nued)
N A I ka I i n i tY, as caco 3 . I
w ...... Chemical Oxygen Demand
Chloride
Conductivity, umhos/cm @ 25°C
True Color, Color' units
lla rdness, as caco 3
Sulfate
Tota! Oissotved So I ids
--rs ~ Tot.a l Suspended So I ids
' J
Tu:·b i d i ty, NYU
f· uranium
Rad ioact 5 vi tY, Gross Alpha,
t pCi/J
::.
('J Total Organic Carbon
I Total anorganic carbon
........._. Or,gan~c Chemica Is
rJ
t (Qdri n
...... '€~ane ..t:.. ~'
. ;
TABLE 2,6 .. continued
WATER QUALITY OAl'A SUMMARY SUS ITNA RIVER .
U.S GEOLOGICAL SURVEY
NR. DENALI 1957 -1282
2lilao n. -
summer/Winter/Break-Up
Maximum Minimum Mean
... , .. ,_ ... ,.,_ _,_,_
-1-1--I-I-
_,_,_
11/30/4.2 1.5/19/4.2 4.7/23.3/4.2
-!-I--I-I"
_,.,,_
10/5/30 0/0/30 5/5/30
67/181/50 52/135/50 67/157/50
31/39/9.2 13/36/9.2 17/37/9.2
-1-1--1-1--l-1-
(569ot8/1190 85/5/102 1163/7/542
... _,_,_ _,_,_ -I-I-
-1-1--I-I-... , .. ,_
-I-I--I-I-
_,_,_
-I-I-
_ ,_,_ _, .. , _
_,_, .. -I-I--l-1-
_, .. ,_ .. , .. , .. ... ,., ..
_,_,_ -I-I-., .. ,_
("
Numbet pf
Detectable va 1 Uf.\..§._
0/0/0
0/0/0
11/3/1
0/0/0
14/3/1
11/3/1
11/3/1
0/0/0
45/2/8
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
Total
Number o·r
Observations
0/0/0
0/0/0
11/l/1
0/0/0
14/3/1
ll/3/1
11/3/1
0/0/0
tat)/2/8
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
""~ 'I );
"
....,
I .....,
"'
! ;
'
i .
I .
~ !! ,,
j ~ N .,
' . ......._
N
I
....... '-~·. .
' '-'\ .,:'
,:-·,
Agency:
station:
Elevation:
!J!boratory Parameters ( 1)
(Continued)
Metho.xych t.or
Toxaphene
2., 1&-0
2, II, 5-TP Si lvex
Elements (Dissolved}
Ag, Si tver
Ai, Aluminum
As, Arsenic
AU; GoAd
B, Boron
Ba, Barium
B i, Bismuth
ca, Calcium
Cd, Cadmium
co, Cobalt
Cr,, Chromium
cu, Copper
fg, I ton
Ug, riJercury
·!'' ,(
TABLE 2.6 • continued
WATER QUALIT'I DATA SUMMARV
SUSITNA RIVER
U.S. GEOLOGiCAL SURVEY
NR. DENALI 1957 -1982
·24110. FT.
---------------~surom--!!tlHt nte r/Brea k-UG~
Maximum · Minimum Hesn
-I-I--1-1--I-I-
-1-1--I-I--1-1-
-I-I--1-1--I-I-
-I-t~ -I-I--I-I-
··1-1--I-I--I-I-
-1-1--1-1--I-I-
-l-1--I-I--I-I-
.. , .. , .. -1-1--1~1-
-1-1--I-I--I-I-
-I-I--l-1--I-I-
-1-l--1-1--I-I-
29/51/17 17/111/17 21/46/17
-I-I--1-1--t-1-
-I-I--I-I-.. , .. , ..
-I-I--I-I--1-1-
-I-I--1-1--1-1-
-I-I--I-I--1-1-
-1-1--1-1--1-1-
___ ,,.,._,_ ... .,..._' '"''" ~,_,.,.,_, .. ,.... ....... -,.,"'-···
NllmbtH' Of
Dete~tahte
;yatubs
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
11/3/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
Q/0/0
# ' .. ...
,___,
.·.· l)>ta 1
Huwnber of {!bsorvations
Q/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
. 0/0/0
0/0/0
0/0/0
0/0/0
11/3/1
0/0/0
0/0/0
()/0/0
0/0/0
0/0/0
0/0/0
"n if' ..... ~,
• ' .,.. .,,., ·-r-~~~. ··-·--:---.. -·-.
~:
N
I w w
s3/u25
Agency:
Station:
Elevation:
La bora tor~ Par-ameters ( 1 )
(Cant i.nued)
K, Po·tassium
l-1y" Magnesium
Mn, Manganese
Mo, Molybdenum
Na, Sodium
rH. Nickel
Pb, Lead
Pt, Plat inurn
Sb, Antimony
sa, Selenium
s i' s i 1 icon
So, Tin
Sr·" S~rontium
Ti, Titanium
w. Tungsten
v, vanadium
zn, Zinc
Zr, Zi rcor.i um
TABL£.2.6-contlnued
~lATER QUALITY DATA ·suMMARY
SUSJTNA RIVER
U~S. GEOLOGICAL SURVEV
NR. DENALI 1957 -1982
24110 FT. .
SummetLWI nter-/Breok-Ue
i Maximum Hinlmum Mean
3.6/6.6/2.3 1.3/6.3/2.3 2.6/6.5/2.3
6.4/16/1.9 1.7/6.8/1.9 3.5/10.3/1.9
-l-1--1-l--t-1-
.-.J-1--1-1-... ,.,_
10/23/3.6 2~1/15/3.6 ••• 3/18.7/3.6
-!-I--1-1-... ,.,_
-I-I--I-I--1.:1-
-/-I--I-I--1-1-
-!-I--I-I--I-I-
-I-I--I-I--I-I-
-I-I--I-I--1-1-
-I-I--I-I-.. , ... ,.;.
-1-1--I-I--I-I-
-1-1-_, ... ,_ -I-I-
-1-1--I-I--I-I-
-!-I--1-1--1-1-
-1-1--1-1--1-1-
-I-I--I-I--I-I-
1 .. Ta)),i(M,afues are mg/1 untass noted otherwisa •
...,_~,
'· .
Numha.r of.
Detectable
v~ Utes
11/3/1
11/3/1
0/0/0
0/0/0
11/3/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0.
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
'· ... ·:: r.·,
Tota •·· N~mber of
Observation~
11/.3/1
11/3/1
0/0/0
0/0/0
11/3/1
0/0/0
0/0/0
0/0IO
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
' 0
,,_:,
<"
l ........
tJ
' ........
_,1 ..
• i
' ~--· ~ •'.
~{'
s3/Ul.
Agency:
Stat ion:
Elevation:
Field Parameters (1)
·Dissolved oxygeil
Percent saturation
pH, pH Units
conductivity, umhos/cm 0 25°C
Temperature, °C
free Carbon Dioxide
Atka 1 in i tY. as caco 3
Settleable Solids. ml/1
Laboratory Parameters ( 1)
organic N trogen
Kjeldahl Nitrogen
Nitrate NJtrogen
Nitrite Nitrogen
Total Nitrogen
ortho-Phosphate
Total Phosphorus
-~·-•• <
•
TABLE 2.7
WATER QUALITY DATA SUMMARY
SUSITHA R&VER
U.S. GEOLOGICAL SURVEY
VEE CANYON 1962 -1982
1900 FT. ..
summer/Winter/Break-Up
r-taximum
-1-1-
-1-1-
8.1/-/7.6
167/250/136
13.0/0.1/7.0
6.8/-/2.2
'J9/-/'44
-J-1-
-I-I-
-1-1-
-1-1-
.88/-/.16
-1-1-
-!-I-
-I-I-
-I-I-
~· ~-..... ...--·~ ....... it~
Minimum Mean
_,_,_ _,_, ..
_, ... , ... -1-l-
7.2/-/7.6 1. "ll-11 .6
91/250/114 146/250/125
1.0/-0.1/2.0 7•9/0.0/4.3
0.7/-/2.2 2.6/-/2.2
39/-/4~ 52/-/44
-1-1--I-I-
• _,_, ... -1-1-_,_, ... -l-1-
-1-1-
_,_, ...
.00/-/.16 • 20/-/ •. 16
""""'' ...
-1·1-
-I-!--I-I-
-I-I--!-1-
-I-I--I-I-
.. ~-..... ,_ __ ,.... r, .......... ,. t."·~:v.J ~ ... -1 .. -::':,.·.1\ IF 'I
.Numberof
Oetectable
Vatues
0/0/0
.0/0/0
9/0/1
20/1/2
Total
... ~u1nbtH" or
Observations
49/4/4 ("'-.
0/0/0
0/0/0
9/0/t
20/1/2
49/4/4
9/0/1
9/0/1
0/0/0
9/0f1/
' I
9/0/1
0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
0/0)0 e!o!o
9/0/1 9/0/1
0/0/0 0/0/Q
0/0/0 0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
.~, ......... -,...~ .. ~· ,.. .. "'""'!
I
,.........,.. ·~
s3/u19
Agency:
Stat ion:
Elevation:
Laboratos·y Parameters (1)
(Cootioued)
N A l ka l i n i tY. ~. as caco3
w
U1 Chemical oxygen Demand
Chloride
Coodu~:;tJv i tY, umhGS/Cm @ 25°C
True co tor, Co lor Units
uardnflss., as CaCQ 3
sulfate
Total Oisso&ved Sol ids
-rss ->fotal suspended So I ids
TurbiditY, NTU
Uranium
.Rad i o~ct ivi ty. Gross Alphs,
pCi/1
N
Total Organic carbon
T.ota l Inorganic Carbon
t Organic Che~'n i ca 1 s ......... . ' eN ~ End rio
•· L{;~ne ~
.~··
-:1
TABLE 2.7-continUed
WATER QUALITY DATA SUHMARV
SOSITNA RIVER
U.S. GEOLOGICAL SURVEY
VEE CANYON 1962 -1962
1900 fT.
summer/Winter/BrEak-Up
Maximum Ml n I mum Mea'o
-I-I--1-1--1-1-
-I-I--1-1--1-1-
9.2/-/7.4 2. 1/-/"'1 .4 5.3/-/7.4 . .
-I-I--l-1--I-I-
40/•/30 5/-/30 10/-/30
76/-/54 42/-/54 63/-/5-4
16/-/12 7.5/-/12 14/-/12
-I-I--I-I--I-I-
@.914/726 34/14/661 799/14/694
-I-I--I-I--1-1-
-I-I--1-1--1-l-
-I-I--1-1--I-I-
-I-I-
_,_,_ -1-1-_,_,_ -I-I--1-l-
-I-I--1-1--I-I-
-1-l--I-I--I-I-
.. ;
Number of
Oe.tectab le va t.uas
0/0/0
0/0/0
0/0/0
8/0/1
9/0/1
'9/0/1
0/0/0
36/1/2
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
Total---
Number of
Observations
(J/0/0
0/0/0'
9/0/1
0/0/0
8/0/1
9/0/1
9/0/1
0/0/0
36/J/2
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
'" ;r.~:
fJ ,_
N
I w
0'\
N
\. .........
1\l.
t
"" -~
Agency:
Stat I on::
Elevation:
La bora tor~/ Parameters ( 1)
(Continued)
Methoxychlor
Toxaphene
2, lJ-D
2, •• p 5-TP Sllvex
Element~ (Oissolvedl
Ag, Silver
A I , A lltm i num
As, Arsenic
Au, Gold
B, Boron
Ba, Barium
B i ,_ Bismuth
Ca, Calcium
Cd, Cadmium
Co, Cobalt
cr_, Chromium
cu, Copper
Fe, Iron
ng, Mercury
•
TABLE 2.7 • continued
WATER QUAUTY DATA SUMMAf\V
SUS I lNA R I VEil
U~S. GEOLOGICAL SURVEY
VEE CANYON 1962 -1982·
1960 FT. -
summan·/Wi nter/BreakvUp
1-taxlmum
-1-1-::
-1-1-
-1-1-
-1-1-
-1-1-
-1-1-
-1-1-
-1-1-
-1-/-.
-1-1-
-1-1-
27/-/17
-1-1-
-l-1-
~!-/.. ,_,_
-1-1-
-1-1-
Minimum •
-I-I-
-I-I-
-I-I-
-1-1-
-1-1-
-1-1-
-I-I-
-1-1-
-1-1-
-/-/-
1~/-/17
.. , .. , ..
. ~;-J
-J-1-
-1-1-
-1-1-
-1-1-
. .. . -
·~-···"--· .,, .. ~ ... -_..,, __ ,.,,~ .. , ~~·,.-.-,_. ~·
Mean
_,_,..,
-1-1-
-1-l--
-1-1-
.. , .. ,_
-1-1-
-1-1-
... ,., ...
-1-1-
-1--1-
-/-/-
21/-/17
-1-1-
-1-1-
-1-1-
-1-1-
-1-1-
-1-1-
~. . .. '
Number. or
Detec,table
ValUes
"c "'-,,
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
', 0/0/0
0/0/0
0/0/0
0/0/0
9/0/1r
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
',. ·,
. , l'o.tal ·
'• ~umber-or
Observations
: ~~ '
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
9/0/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
N
. I w
-.J
N
t
s3/u21
Agency:
Station:
Elevation:
Laboratoei Paranteter~ (1)
(Continued)
K~ Potassium
Hg# Magnesium
Mn, Manganese
Ho, Molybdenum
Na, Sod i Ulll
tH, Nickel
.Pb, Lead
Pt, Platinum
Sb, Antimuoy
se, Selenis.un
s i, Si I icon
so. Till
sr# stronth~m
T i • Titan hun
w, TLmgsteo·
v. vanadium
zn .. Zinc
Zr, li rconium
TABLE 2.7 • Contlnited
WATER QUAlJTY DATA SUMMARY
SUSITNA RIVER
U.S. GEOLOGICAL SURVEY
VEE CANYON 1962 -1982
1900 fT.
summer/W6nter/Break~Up
Maximum ·Minimum Mean
7. 3/-/2.8 l.ll/-/2. 8 3.5/•/2.8
tt.t&/-/2.4 1.1/-/2.4 2.7/•/2 ...
-I-I--1-1--1·1-
-1-1-... , .. ,_ -I-I-
6.3/-/4.3 2.1/-/4.8 3.8/-/4.8
-I-I--1-l--1-1-_,_, ... _, ... ,_ -I-I-
-I-I--J-1-... , ... ,_
-1-1-_, ... ,_ -I-I-
-1-1--1-1--1-1-
-J-1--1-1-• -1-1-
-I-I--1-l--I-I-
-1-1--I-I-_,_, ...
.. , ... ,_ _,_,_ _, .. , ...
_, .. ,_ -I-I--I-I-
-I-I--!-I-... , ... ,_
-I-I--J-1--I-I-
-1-l-o.)/·1--I-I-
1 •. :.liib~,va lues a.ra mg/1 unless noted otherwl se,
•' ',
Numb~\t of
-oetectab I.e va tues ..
9/0/1
9/0/1
9/0/0
0/0/0
9/0/1
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/G/0
0/0/0
0/0/~
0/0/0
0/0/0
0/0/0
Total·
Number of
Obse rya t i oos
9/0/1
9/0/1
0/0/0
0/Q/0
9/0/}
0/0/5)
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
• 0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
h)
I w
0')
N
t
"""' N
f
rJ·
Ag.ency:
Stat ion:
Etevatton:
•
.. field Parameters (1)
Dissolved Oxygen
Percent Saturati«'·tl
pil, pH Units
conduct. ivi t.y, umhos/cm @ 25°C
Temperature, oc;
Free Carbon Dioxide
A I ka I i n i ty, as caco3
Settleable Solids, ml/1
La bora tory Parameters ( 1)
organic Nitrogen
Kjeldahl Nitrogen
Nitrat• Nitrogen
Nitrite Nitrogen
Total Nitrogen
ortho .. Ph()sphate
Total Phosphorus
TABLE 2.8
WATER QUALITY DATA SUMMARY
. SUSITNA RIVER
U.S, GEOLOGICAL SURVEY
GOUl CREEK 1949 • 1982
676.5 FT.
summerlHintarlBreak-Ue
M~xlmum Minimum f:1ean
13.3/15.8/1la.1 9.J/11.0/14.1 11.9/13.9/14.1
110/110/111 83/77/111 102/97/111
7.9/8.1/8.0 6.5/7.0/6.5 7.3/7.5/7.0
227/300/11!7 90/164/70 147/250/97
14.0/0.5/6.0 o.ta/0.0/1.0 9.2/0.1/3.1
20/16/24 1.1/1.2/2. 9 5.6/6.2/10.8
87/88/47 23/49/25 51/72/33
-I-I--1-1-.:.t-1-
.33/.08/.13 ·.01/.03/.13 • 16/.06/.1.3
.39/.44/.07 "10/.18/.07 .27/.29/.07
... , .. ,_ -I-I--I-I-
.36/.32/.69 .02/.05/.05 .12/.16/.24
-I-I--l-1--1-1-
.60/.66/-.25/.la4/-.50/~51/-
.03/.03/.04 .00/.01/.04 .01/.02/.0r3
.23/.05/.09 .02/.01/.09 .13/.03/.09
Numb~r or · rota 1
Detectable Number o·r
~a lues Obs!;!rVations
>·~::.
9/5/1 9/5/1.
6/5/1 6/5/1
66/31/7 66/31/7 .. ' '
66/32/7 66/32/7
39/12/8 39/12[8
57/26/6 57/26/6
62/30/7 62/30/7
0/0/0 0/0/0
7/5/1 7/6/1
7/5/1 7/5/1
0/0/0 0/0/0
55/25/7 55/25/7
0/0/0 0/0/0
5/6/0 5/6/0
11/4/1 12/16/'1
7/6/1 7/6/1
N
·I
w
U).
.. ,-r-"("
• ,J -.J
("
\ .......
j (').
J
(
......,,
r
sl/u15
Agancy:
Station:
£I eva t ion:
laboratory Parameters (1)
(Continued~
A I ka I i n i tY., as caco 3
Chemical oxygen Demand
Chloride
comtuct iv i tY. umhosjcm 0 25°C
True Color. Color Units
Uardness, as caco 3
Sui fate
Total Dissolved So I ids
~Total suspended so 1 ids
lurb id i ty. .NTU
Uranium
RadioactivitY. Gross Alpha,
pCi/&
Total Organic Carbon
Total a norg~!l i c Carbon
organic Chemicals
End rio
Lindane
~~·~ 'i
TABLE 2.8 -continued
WA1ER .QUAU TV DATA SUMMARY
SUSITNA RIVER
U.S. GEOLOOICAL SURVEY
GOLD CREEK 1949 -1982
676.5 fT. ·
I 1J.-3 summer/WinterL&reak-Up
Maximum Minimum Mean
45/65/27 35/82/27 lt0/63/27
-I-I--J-1-
_, ... ,_
15/35/7.6 1.4/6.2/1.8 5.5/22/4.4 .
142/289/115 114/266/84 128/279/100
45/10/50 0/0/5 10/5,125
107/120/56 35/60/30 6lf/98/39
31/38/11 1.0/12/5.0 16.1/21/7.6
11&0/1711/90 55/133/53 93/154/66
..---.. /2620}76/1330 7/1/120 740/12/621
-....... -... ·
180/.70/29 1&2/.10/29 126/. ta0/29
.l~l-1-. 12/-/-.25/-J-
l.t:/"'1-0.5/-/-1.3/-/-
2.6/5.5/10.0" 1.1&/1.1/1.6 2.0/2.6/5.9
-1-1--l-1--I-I-
-!-!--I-I--I-I-
--1-l--I·· I--1-1-
,_,··
Number of
Detectable _ya IUB,§_
5/3/l
0/0/0
62/28/7
5/6/2
55/22/6
62/28/7
61/28/6
43/18/6
56/10/1~
5/2./1
3/0/0
3/0/0
2/3/2
0/0/0
G/0/0
0/0/0
Tnt a.-
Number or
obser~yations
5/?./1
fJ/0/0
62/26/7
5/6/2
55/22/6
62/28/7
62/28/7
1&3/16/6
56/11/13
5/2/1
3/0/0
3/0/0
2/3/2
0/0/0
0/0/0
0/0/0
~ ~ .
0 // ,/ ~ ,' • ....· .. ,. ' _.
, '. . ·, . ' . . . ~ .
• ' ' • • • q
/' _{
s.3/U.
Agency:
Station:
• Elevation:
•
TABLE 2.8 -conti~ued
WATER QUALITY DATA SUMMARY
$UStTNA RIVER
U.S. GEOLOGICAL SURVEY
GOLD CREEK 1949 • 1982
676.5 fT •
\ •
----------------------------~s~um~m=e~r~/~W~IQ~~·re~a~k=·~U~P------=-~--~--------~------Number or Total
Detectable Number or
N
I
~
0
rJ
' ~
N
\
tJ
u
LaboratorY. Parameters ( 1)
(Continued)
Methoxychlor
Toxaphen9
2. 1;-D
2, II, 5-TP Sltvex
Elements fOissolved)
Ag, Silver
AI, Aluminum
As, Arsenic
AU, Gold
B, Boron
Ba, Barium
Bi., Bismuth
ca, Calcium
Cd, Cadmium.
co, Cobalt
Crc Chromium
CU; Copper
Fe., t ron
fig, Mercury
"·, (-
Maximum
-1-1-
-I-I-_,_, ...
-I-I-
.000/.001/-
-1-1-
.002/.002/-
-1-1-.
-I-I-
.031/.060/-
... , .. ,_
37/39/16
.001/·/-
.000/.001/ ...
.010/-/-
.00,5/.001/-
.14/.015/-
.0002/-/-
Hlnlmum __ , --1-H::::e~au.n __ .Yatues Observations
·!-I-. _, .. ,_ 0/0/(J 0/0/0
.. , ... ,_ -1-l-'0/0/0 0/0/0
a:v"'•/--!-!• 0/0/0 ·0/0/0
-1-1--I-I-0/0/0 0/0/0
.000/.001/-.000/.001/-2/1/0 3/l/0
.
-I-I--l-1-0/0/0 0/0/0
.001/.002/-.001/.002/-3/1/0 3/1/0
-1-1 ...
_,_,,.. 0/0/0 .0/0/0
-I-I--I-I-0/0/-:0/0/0
.000/.060/-.t\10/.060/-3/1/0 3/1/0
-I-I-_, ... ;,.. 0/0/0 0/0/0
11/211/9.9 20/30/13 .. 62/28/7 6'l/28/7
.001/-/-.001/-/-2/0/0 3/1/0
.000/.001/-.006/.001/-1/1/0 3/1//0
.000/-/-.005/-/-2/0/0 3/l/0
.003/.001/-.0011/.001/-3/1/0 3/1/0
.04/.015/-.10/.015/-6/l/0 6/1/0
.0000/-/-.0001/-/-2/0/0 3/1/0
,..._ ..... .._ _,..._~ ~ ~-....,. ~· -~
N
l
~ ......
N
t ...-. '
',..J
• rJ.
4:.
:.~::'"::
s3/ul7
Agency:
St11 t. ion:
Elevation:
Laboratory Para~r~eters C 1)
(coot i nued)
1<, Potassium
1-tg_. Magilesium
Mn, Hanganese
Mo. Molybdenum
N~ .. Sodium
N i • Nickel
Pb .. Lead
Pt, Plat imam
Sb, Antimony
Se, Selenium
s i' Sit icon
sn, lin
sr, Strontium
T i I Titanium
w, TungsteJ ~
v .. Vanadium
Zn, Zinc
Zr, Zirconium
(' .
'"'"
•
TABLE 2.8 ... continued
WATER QUA~&TY DATA SUMMARY
SUSITNA RIVER
U.S. GEOLOGICAL SURVEY
GOLD CREEK 1949 • 1982
676.5 fT.
Symmer/Wintet/Break•Up
.Maximum Minimum Mean
4. 4/5. 0/l. 7 1.0/1.2/1.2 2.11/2~3/1.16
7.8/8.3/2.8 1. 2/3.6/0.3 3.2/5.4/l. 7
.18/.003/-.00/"'003/-.036/.003/-
-I-I-... , ... ,_ -1-1-
6.5/17/3.6 2.4/5.2/2.6 J,.l/11.3/3.1
.000/.Q(U/-.000/.001/ ... .000/.001/--
.001/.003/-.000/.003/-.000/.003/-
-1-1--I-I--1-1-
-1-1--I-I--I-I-
.001/-/-.000/-/-.000/-/-
-I-·!--I-I--1-l-
-I-I--!-I--I-I-
... , .. ,_ -1-l--1-1-
-1-1--1-1--I-I-
-1·/--l-1-_,_,.,
... , ... , .. -1-1-' -1-1-
.014/-/-.006/-/-.010/·/-
-1-1--I-I-_, ... ,_
I
( ' \
f.Jumber of
.Det~ctab'e .. ya 1 yes . _
52/22/5
62/28/7
7/1/0
0/0/0
52/22/':1
2/1/0
3/1/0
0/0/0
0/0/0
3/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
3/0/0
0/0/0
rota l .
NuinbQr of
Q!!serv.a t; i.ofls
52/22/~
62/26/.7
7/1/0
0/0/0
52/22/5
3/1/0
3/l/0
0/0t:.~
0/0/0
3/1/0.
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
3/1/0
0/0/0
'''\\ ,,
j'j
;.If
i
' ~ •
'
.rJ
' ........
N.
' N v,
•• ' .,:j! ~
&:3/Ul.
Agency:
Station:
Elev.Jttlon:
t
field Parameters (l)
Dissolved Oxygen
Percent Saturation
pH, pit Units
Conductivity, umhos/cm@ 25°C
Temperature; °C
Free Carbon Dioxide
A 1 ka t in i ty, as caco ;3
Settleable Solids, ml/1
Laboratory Parameters (1)
Organic Nitrogen
Kjeldahl tfitroger.
N u~ra te N.l t rogen
Nitrfte Nitrogen
Total Nitrogen
Ortho ... Phosphate
l'otal Phosphorus
•••• . '
TABLE 2,9
WATER ·QUALITY DATA SUMMARY
SUSITNA RIVER
U.S. GEOLOGICAL SURVEY
SUNSHINE 1971 • 1982
270 FT.
Summer/Winter/Break-Up
Maximum
13.3/13.8/-
107/91.J/-
7.7/7.3/'P'
170/242/-
12.0/0.0/9.2
3.9/-/-
43/71/-
-1-1-
.37/.06/-
1.10/.42/-
-I-I-
-1-1-
-I-I-
2.30/.72/-
.Oit/.04/-
.33/.01/-
Minimum ·Mean
10.6/13.0/-12.0/13.4/•
99/90/-103/92/-
7.1/6.2/-7.4/6.9/-
61/225/-115/232/-
3.8/0.0/9.2 8.6/0.0/9.2
2.1/-/-3.1/-l-
25/63/-36/68/-
-1-1--1-1-
.08/.03/-.19/.05/ ..
.19/.18/-.63/ •. 2.9/-
-1-1-
_,_,_
-1-1--1-1-
-I-I--I-I-
.71/.42/-1.17/.61/-
• 00/. Oft/-.o2i.o••l-
.05/.01/-.15/.01/-
Number of
Detectable
values_
5/3/0
2/3/0
7/3/0
9/3/0
9/3/1
3/0/0
6/2/0
0/0/0
6/3/0
6/3/0
0/0/0
0/0/0
0/0/0
5/4/0
3/1/0
6/2/0'
Tot~ I
NUmber of
Observations
5/3/0
2/3/0
7/3/0
9/3/0
9/3./1
3/0/0
6/2/0
0/0/0
6/I.J/0
6/3/0
0/0/0
0/0/0
0/0/0
5/lf/0
3/1/0
6/4/0
./
........ "
...
1\J
~ I
~ w
rJ
' ~
rJ
' N-
·~ '·
s3/il11
Agenc~:
Stat ion:
Etevat ion:
laborator¥ Pa rametru:§ ( 1)
(Conti m.aed)
A I ka I i n i ty, as caco3
Chemical Oxygen Demand
Chloride
ComJuc t i vi tY ~ umhos;cm @ 25°C
1 rue Color, co lor >\Jrt i e:.s
tlardness, a :1. CaCCJ3
Sui fate
Total Dissolved So e ids
Total suspended Sn I ids
Turbidity, NTU
Uranium
Raaioactivity, Cross Alpha,
pCi/1
Total Or~aoic carbon
··o~;a I anorganic carbon
Orapnic Chemica~e
l::ndrin
Li(ldaf,.a .. C< ~~
TABLE 2~9 -coot5nued
' WATER QUAL'fTY DATA SUMMARY
SUSHNA RIVER
U.S. GEOLOG&CAL SURVEY
SUNSHINE 1971 • 1982 .
270 FT.
·--------------....:S~y:1!:ml.l!lm~e..:...r/L,I.!Wi nte r/Break-Up
ttax I mum Minimum Mean
IA8/7&1/ ... 28/63/-J41/70/-_,..,,_ -I-I-
7.3/21/-2.2/16/-3.7/18/-
129/233/-82/222/-115/229/-
100/0/-8/0/-44/0/-
72/96/-33/87/-50/91/-.
13/18/-3/16/-10/17/-
101/141/-54/130/-70/134/ ..
3510/2/508 288/1/508 1485/2/508
300/1.3/-160/.2.0/-233/.67/-
-I-I--I-I--!-I-
-1-1--I-I--1-1-·
3.2/0.8/-2.9/0.4/-3.0/0.6/-
-1-1--I-I-.. , .. ,_
_,_, ... .., ... ,_ -1-1-
-1-1--I-I--1-1-
6~1\
>; -.1
-~~,,
·'
Number of
Detectable
Values
6/3/0
fJ/0/0
9/J4/0
6/3/0
3/1/0
9/4/0
9/4/0
8/4/0
5/2/1
6/3/0
0/0/0
0/0/0
2/2/0
0/0/0
0/0/0
0/0./0
F.·· Total
Number or·
Observations
:_1/3/0·
"""'~ II· '
-:-\.).\
0/0/~
9/4/0
6/3/0
3/1/0
9/4/0
9/4/0
8/1&/0
5/2/1
6/3/0
0/0/0
0/0/0
2/2/0
0/0/0
0/0/0
0./0/0
1\J
I
.s::a;
tl:lo
~)
t .....
N
a,
,, 1_} N
:11'· "t"_. ... ._..~~"'· '
I • &3/U12
AgencY":
Station: • E I eva ~!I on.:
La bora torY Paramo te rs ( 1 )
(Conti nw~d)
Metiloxycblor
Toxaphene
2, 4-0
2. 4, 5-TP Si I vex
E~ements (Dissolved)
Ag, Silver
AI, Aluminum
As, Arsenic
Au, Go~d
6, Do ron
Ba, Barium .
Bi, Bismuth
ca, Ca lci.um
Cd, Cadmium.
Co, cobalt
Cr:,, Chromium·
. cu, Copper
Fe~ ~ron
Hg, Mercury
,.., ..
. • ,' .
TABL~ 2.9 ~ continued
WATER QtrAUTY DATA SUMMARY
. SUSITNA RIVER
U.S. GEOLOGICAL SURVEV
SUNSHU~E 1971 "" 1982,
270 FT.
• J \ ' '
Summa rlW i nte r/Br~=-=a~k~..,.-=Opt;._ __ ~-:--·....;.__,..----=--...-,..--Numbei .or Total· Oeteot~ble Numb~r.of ya t ues Observat..ions Maximum Minimum . Mean
-l-1--l-1--I-I-0/0/0 0/0/0
-1-1-_,_, ... _,_,,,. 0/0/0 0/0/0
-I-!--I-I-_,, .. , ... 0/0/0 0/0/0 . .
-I-I-_, ... , .... -1-1-0/0/0 0/0/0
.000/.000/-.000/.000/-.000/.000/-2/l/0 'l/1/0
-l-1--1-1--I-I-0/0/fJ 0/0/0
.003/.001/-.. 002/.001/• .002/.001/-3/1/0 3/1/0
-1-1--1-l--!-I-0/0/0 0/0/(L.
-I-I--l.-1-
_,.,,_ 0/0/0 0/0/0
.070/.0140/-.000/.040/-.032/.040/-3/l/0 3/1/0
·1-1--1-1--I-I-0/0/0 0/0/0
23/31/-11/28/"" 16/29/-9/4/0 9/11/0
.000/-/-.Q00/-1-.000/-1-1/0/0 3/1JO
.000/-l-. ooru-1-.000/-/-l/0/0 3/1/0
.020/.010/-.000/.010/ ... • 010/.010/-3/1/0 3/1/0
.005/.0011/-.003/.001!/-• 001&/.004/-3/1/0 3/l/0
.250/.0l&O/· .060/.010/-.160/.025/-5/2/0 5/2/0
.0001/.0001/-.0000/.0001/-.0001/.0001/-2/1/0 3/1/0
.•
' . '~
"'' ,'"1
N
I
-~
U1
S3/Ul3.
Agency:
Station:
Elevation:
laboratorv .. Parameters ( 1 )
(Continued)
K, Potassium
Mg, Magnesium
Mn, Manganes~
I-to .. Molybdenum
Na, Sodium
N i, Nickel
Pb.., Lead
Pt, Platinum
Sb, .Antimony
Se, Selenium
s i, S i I icon
so, Tin
Sr, Strontium
Ti, Titanium
w .. Tungsten
v, VanaditUII
zo, Zinc
Zr, Zirconium
TABLE 2.9 u continued
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
US. GEOlOGICAL SURVEY
SUNSHINE 1971 -1982
270 FT.
summg r/W 1 ote r/Drea·k-Up
Maximum Minimum He go
2.8/2.1/" 1. 1/1.8/-1. 5/1. 9/•
3. 5/11. 5/·· 1.4/ll.1/-2.3/4.31'-
• 020/. OOIV-.000/.000/-.009/.002/-
-1-l--I-I--1-1-.
4.4/11/-1.9/10/-2.6/11/-
.002/.002/-.000/.002/-.001/.002/-
.001/.008/-.000/.008/-.000/.008/-
-I-I--I-I--1-1-
-I-I--1-1--I-I-
.000/.000/-.000/.000/-.000/..000/-_,_,,.. _,_, ... -l-1-
-1-1--I-I--1-1-
-I-I-.. , .. ,_ -1-i-
-1-1--I-I--I-I-
-I-I--l-1--I-I-.. , .. ,_ -I-I--1-1-
.020/.030/-.006/.030/-.012/.030/-
-I-/--I-I--1-1-
rata.-----\
Number of '•I ''
Oe:tectab le Number o.f
.· Vatue:~ pbseryat, i.ons
9/lj/0 9/lt/0
9/4/0 9'/11/0
5/2./0 5/2/0
0/0/0 0/0/0
9/4/0 9/4/0
3/1/0 3/1/0
3/1/0 3/1/0
0/0/0 0/0/0
0/0/0 0/0/0
2/1/0 ~i/1/0
0/fJ/0 0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
0/0/0 0/0/0
3/l/0 3/1/0
0/0/~ 0/0/0
rJ·
(
.~
('J
f
{'I
-P. ·f:.•.···· ..
• s3/te6 · ··
'
Field Parameters (1)
Agenc:~;
Stat ion~
Elevation:
Dissolved oxygen
Percent Sa tu rat ion
pH, pfl Units
Conductivity, umhos/cm 0 25°C
Temperature, °C
Free Carbon Dioxide
A I ka I in i tY, as Caco3
Settleable Solids, ml/1
LaboratorY Parameters ( 1)
organic Nitrogen
l(je I dah I Nitrogen
Nitrate Nitrogen
Nitrlte Nitrogen
Total N'trogen
or.tho-Phospha te
Total Phosphorus
•
.TAULE 2.10
WATER QOAL I TV. DATA SUMMARY'
SOSITNA RIVER
U.S. GEOlOGICAL SURVEY SUS~TNA 1955 -1962
40 FT. .
Haximuni
12.8/13.5/12.4
100/94/99
8.3/7.9/7.8
't60/225/116
12.5/0.5/7.0
8/17/19
57/75/39 _,_,_
.19/.09/.21
1.5/.46/.70
-I-I-
.00/.19/-_,_, ...
1.70/.99/1.20
.02/-/ .. 02
1.10/.38/.29
summer/Winterl~leak·Up
Minlmum Mean
10.5/10.6/11.4
90/74/97
7.0/6.8/6.5
90/182/85
2.0/0.0/3.4
0.6/1.8/lol
36/60/30 .
-I-I-
.00/.00/.01
.16/.0u/.16
-1-1-
.00/.19/-
-1-l-
.26/.24/.67
.02/-/.02
.03/.00/.01
11;5/11.6/12.1
97/80/98
7.7/7.3/7.2
122/205/93
8.4/0.04/5.8
2.5/7.8/6.5
IJ4/69/34
-1-l-
.04/.04/.08
.60/.27/.43 .. , .. , ...
.00/.19/0
-I-I-
.72/.5':J/.92
.02/-/.02
.40/.05/.14
Number of
Detectable
_jj_t Ides·
rs/1••/~
9/7/2
26/20/7
27/22/7
25/22/7
15/15/5
21/19/6
0/0/0
12/~·0/3
12/9/2
0/0/0
1/1/0
0/0/0
22/17/ll
1/0/1
23/20/7
_ .. ~~ ..
\ •\
' ¥ ......... '
·.J .
. .
! '
. ; Total. -,.
Number ,of
ObtJ~rvatlons ·
-~-
13/llf/4
'9/112. .
26/20/7
27/22/7
2'5/22/7
15/15/5
21/19/6
0/0/0.
l?/10/3
12/9/2
0/0/0
l/1/0
0/0/0
22/17/4
1/2/l
23/20/7
... -....
.. -,._·,.
~· ~'
N
I
~ ......
('l
'(
~
t'l.
' Vol
().
~ s3/u7
Agency:
Stat ion:
Elevation;
ballorator:v Parameters ( 1)
(Continued)
A ll<a I i n it~~ as caco 3
Chemical Oxygen Demand
Clllorida
Conductivity, umhos/cm 0 25°C
True Color, Color Units
Uardnesse .a~ GaCOJ
SUI fate
Total Dissolved Solids
Total suspended So' ids
Turbidity, N!U
Uraoi urn
Radioactivity, Gross Alp~a,
pCi/J
Total Organic carbon
Total Inorganic Carbon
organic Chemicals
t:ndri n
lifi.riqne lg·, .
"""'"
\ ..
TABLE 2.10 -continued
WATER QUALITY DATA SUMMARY
SU~ITNA RIVER
U.S. GEOLOGICAl SURVEY
SUSITNA 1955 -.19~2
40 fT.
symmer/Wioter/Qreak-Up
Maximum Minimum Mean
49/76/311. 46/63i27 47/11/30
-I-I--1-1--1-1-
6.7/18/4.6 1.2/5.7/3.1 2. 7/13/3.7
133/222/104 114/208/9'• 122/217/99
10/0/-10/0/-10/0/-
66/96/48 44/73/36 54/85/39
20.7/20/10 1. 0/15/3.7 13.2/17.3/6.7
114/13~/71 56/109/51 73/123/65
2367/12/683 153/2/257 745/5/461
790/3.0/160 21/1.0/25 233/1 •. 5/69
-I-I--1-1--1-1-
-I-I-_,_, ... -1-1-
11.0/4.0/9.1 2.7/0.4/3.8 4.4/1.6/6.0
-I-I--I-I--I-I-
-I-I--1-1--1-l-
-1-1-., ... ,_
if'Ob1
-1-1-
·,
-....:..;;.
..
Number of
Detectable
ya iuel_
3/4/2
0/0/0
24/21/1
4/4/2
2/2/0
25/21/7
25/21/7
24/20/7
21/19/5
18/13/5
0/0/0
0/0/0
1 /91'•
0/0/0
0/0/0
0/0/0
T9tat Number of,·
Observations
3/4/~
0/0/0
24/21Ft ..
4/4/2
4/4/0
25/21/7
25/21/7
24/20/7'
21/19/~
16/13/5
0/0/0
0/0/0
7/9/4
0/0/0
7/10/4
7/10/'1
,· j
""'"\,
\
'~.#-fi"
...
~l
.Agency:
Station:
ElevatJorn
Elements (Oib.::!:llved)
Ag, Silver
AI, Aluminum
As, Arsenic
Au, Gold
B, Boron
Ba, aa ri urn
8', Bismuth
ca, Calcium
rl Cd, t:.11dm i um
Co, Cobalt
\ cr, Chromium t """"" I N cu, Copper
1 • •
i . ..,.. Fe., eron
; -Ug, Mercury
~ .
' :•1io 4~" t(, ~ ;.c "' '
·'
••
TABLE 2.10 -contlnued
WATER QUALITY OATA SUMMARY
SUS ITNA RIVER
U.S. GEOLOGICAl SURVEY
SUSITNA 1955 -1982
40 FT.
.000/.000/-.000/.000/-
-1-1--I-I-
.. 003/.003/.001 .001/.000/.00i _,_, ... -I-I-
-1-1-_,_, ..
.200/.0140/.020 ,027/.0IJ0/.020
-1-1--I-I-
22/31/15 111/23/11
.001/-/-.001/-/•
.OOi/.002/.001 .001/.002.001
.030/.010/.005 .000/.000/.005
.007/.00IJ/.006 .003/.000/.00IJ
.460/.060/.190 .020/.060/.110
.0002/.0000/-.0000/.0000/•
.. ~
' .
.000/.000/-IJ/2/0 .8/6/3
-1-l• 0/0/0 0/0/0
• 002/.001/.001 13/8/3 13/9/6
-1-1-; 0/0/0 •0/0/0'
-I-I-0/0/0 0/0/0
.068/.040/.020 7/1&/1 8/6/3
.. , .. , .. 0/0/0 0/0/0
17/27/13 25/21/7 25/21/7
.001/-/-1/0/0 13/9/6
.003/.002/.001 5/1/1 13/9/6.
.010/.005/.005 5/2/1 l3l9/'!J
.004/.002/.005 7/7/11 13/9/6
.096/.088/.152 12/9/6 13/9/6
.0001/.0000/-5/?./0 13/9/6
f"o; ' ·-:-;\
·~
• J . • : • .. ... .,
~
t
I
•J
t
' I
~ :: .. :• . .
;, .I
l
J
i t
I . ; .. . . . ..
! •
' . . . . .. ·.'4
N
.j
.r;:..
\0
s3/u9
Agency:
Station:
Elevt1)t ion:
La bora tory Parameters ( 1 j
(Continued)
K~> Potassium
Mg~ Magnesium
Mn, Manganese
Mo, MOlybdenum
·Na, Sodium
N i, Nickel
Pb~ Lead
Pt, Plat inurn
Sb, Antimony
Se, Selenium
Si, S i 1 icon
sn, Tin
sr, Strontium
T i, Titanium
w, Tungsten
v, vanadium
zn .. Zinc
Zr, Zirconium
C.,
.-
, TABLE 2.10 -COO'tioO~d
WATER QUALITY DATA SUMMARY
SUSITNA RIVER
U.S. GEOLOGICAL SURVEY
SUSITNA 1955 -t982 tao rr •
summa r/W I ote r/B rea k•Up
Maximum Minimum Mean
1.8/2.5/1.4 1.0/1.4/0.8 1.4/1.7/1.0
3.7/4.9/2.6 2.0/3.7/1.6 2. 5/4. 3/1 .• 9
.020/.030/.011 . .004/.017/.008 .008/.023/.010
-I-I--1-1-... , .. ,_
4.0/9.0/3.2 1.8/4.9/2.4 2 .• 7/7.7/2.9
.OOta/.003/.002 .000/.002/.002 .001/.002/.002
.009/.004/.011 • 002/ ,, 000. 003 .004/.002/.006
.. ,_,_ -1-1·· .. , .. ,_
-1-1--t-1--I-I-
.001/.001/-.000/.000/-.0004/.0008/-
-I-I--I-/-... , .. , ..
-I-I--1-1--1-l-
-I-I--I-I--I-I-
-1-1--1-1--I-I-
-I-I--1-1--I-I-
-1-1--1-1· -t-1-
.020/.003/.020 • OOil/. 003/.020 .008/.003/.020
-I-I--I-I--I-I-
Number of
Detectable
value'S: '
25/21/7
25/21/7
1/6/2
0/0/0
25/21/7
.5/2/1
8/6/4
0/0/0
0/0/0
7/6/0
0/0/0
0/0/0
0/0/0
0/0/0
o/O/O
0/0/0
5/1/2
0/0/0
.~ ; .
Tota 1. •
Number of
Obse rvatH>os
25/21/7
25/21/'7
13/916
0/0)0
25/21/7
5/3/1
13/9/6
0/0/0
0/0/0
1'3/9/6
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
0/0/0
13/9/6
0/0/0
.. ·~······~-··-·-.. .....,.._.,... ........... ~ .. ...,. '• It ••• "'. •-" ~ . .. . ~ ...
E·'A._ •. ,.1 -
. • •• • • -.... ~ J!. -f"O .. ,.... -·--~ '\· ''-~ Sus=t·-,?. J<¥;~ Y. .. ~fra Documerfr'~6·" b r
SUSITNA HYDRO AQUATIC STUDIES
PHASE II BASIC DATA REPORT
Volume 4.
Instream
Aquatic Habitat and
Flow Studies, 1982.
A pfe,,.,JieU ~ -~
-by-
ALASKA DEPARTMENT OF FISH AND CAME
Susitna Hydro Aquatic Studies
2207 Spenard Road
Anchorage, Alaska 99503
1983
-
... •If •
N
I -tJ
t
.~
~
ORAFT ·
A0FG01/L06
Appendht Tabl~ 4-D-6. SuOlllary of provisional water quality data for slough:; BA, 9, 1GB, 19, 21, and mainstem Sulitt)il r(i~:'i~t at Cold
Creek, collected by ADF&G and USGS in June, July., and Septembr,r, 1981 1 and in January and f'cbru;;u•y, 1982, "
f:uamctet
~ysical and Field Parametersb
*Water Temperature Qc
Air Temperat'IJre oc
Streamflow (discharge)
cfs
*Speci~ic. Cond.,.ctanee (field)
umho /em
June
July
September
January
March
June
July
September
January
March
June
July
Sept~mber
January
March
June
Ju1y
September
January
March
Slough
__M_
15 .. 5
11.2
3.5
0.5 o.s
21.0
1G.O
8.0
6.4
551.0
2.8
140
117
135
193
lll2
Slough
9
1tJ.2
10.9
5.6 o.s
0.5
20.1
14.0
7.5 ---
2 .. 9
714.0
1.5
145
124
113
121
143
Slough
168
14.0
9.0
4.8
1.5
2.0
15.5
......
0.7
503.0
0.3
.
71
72
64
59
59
Slough.·.
.19
5.5
9.8
'1.,8
2.0
1.0
.. __
.3 •. 0 ---
0.2 o.o·
<0.1
146
127
150
148
129
Slough
21.
10 .. 7
11.3
2 ·'• 1.5
1.5
23.0
··--
-11.0
3.2
14Z .. O
0.43
226
130
.205
221
196
aSloughs ano ma~nstem Sus~tna River were sampled on 2 or 3 consecutive days in each month (e~cept January) as tollows~
Susitna River
at
8A 9 l6B 19 21 Gold Creek -4---June 25 24 23 23 24 23
July 21 21 22 22 22 21
September 30 30 28 29 29 28
January 20 20 20 20 20 20
March 31 30 ~0 30 30 30
bParameters marked with an* are averages of transect point measurements (see methods).
---indicates data not available.
Su;;itna Riv~r
at
Cold.Cree'k
12.4
10~5
0 .• 4 o .. o o.o
__ ..,.
-~--
1,780.0
42,500.0 .
8~5ljQ.O
1,520.0
119
172
260
266
' .
··-·,
!
. '
• A d' T . 1 4 [J . • ·~ .
· · ppen 1a~ abe --6 lCoot i nued). c., ~
\\ . r .• -··
.:~
Sus i. toa I.U vet
Slough Slpuoh Slough Slpugh Slough· . 'at
Parameter Date 8A 9 16B 19 2! Cold Creek --
Phxsical •nd Field P~rameters "' Cont'd
Specif!c Conductance (lab) June 153 1S8 70 •1lf6 226 141
umho·/cm July 118 124 71 129 131 114 . September 132 113 64 130 205 170
Januar) 193 121 .59 148 '221 26G
Haren 142 143 .59 t29 196 266
*Dissolved Oxygen June 10.8 10.6 10e6 9.4 10.7 10.8
mg/1 July 11 .. 4 11.4 11,.7 10.4 '1l.3 11.7
September 12.,1 11.3 11.5 ~.5 ~0 .. 3 ,; . ----
..J;: January 7.0 11.7 6.6 7.7 9'.,0 15 .. 8
• March 10.2 10.9 7 ..• 3 9 .. 6 9~8 14.2
C)
'l *Dissolved Oxygen June 108 103 107 76 '9(11 10ft -(\) saturation July 104 105 102 90 10!~ . 104
September 9'4 93 88 98 76 -... -
January .. ~ 82 41 57 65 110
March 72 77 .59 .70 72 99
*pH (field) June 6.9 6 .. 8 6.4 6.5 . 7 .o 7.4
July 7·. 7
5'}ptember 7.6 7.4 7.1 7.3 7.7 6.5
JanuaJ'Y 6.5 6.6 6.0 6.0 6.7 7.5
March 1;.6 7.0 6.4 6.5 7.4 6.7
pH (lab) June 7.4 7.5 7.2 7.2 7.6 7.5
July 7.6 7.7 7 .. 3 7.0 1.1 7.7
September 7.4 6.7 6.6 7.2 1 .. 0 7.2
January 7.2 7 .• 3 6.9 7.1 7.6 7.6
March 7~2 7.1 7.1 7.2 7.3 7.5
AlkaHn~ty (field) June 39 24 50 62 ,, ---
mg/1 CaC0 3 July 41 39 24 52 47 35
September 43 34 26 62 62 .......
January 62 34 24 39 62 82
N March 43 39 23 46 61 78 .
' --...
.rl
' ¥)
v \
DRAfT
ADFQ01/t06
Appendix Table 4•D-6 (Continued).
. ~; ·;~\
Susitna River
Slough SlotJgh Sjougtl Sloug~ Slough at
Parameter Date 8A 9 16B 19 21 Gold Creek -
Phlsica1 and field Parameten -Cont'd
Alkalinity (lab) June 47 l3 24 52 63 4S
mg/1 CaC03 July · _ 41 39 24 52 4.7 35
September 42 36 26 62 61 44
January 64 36 30 53 63 83
March 46 42 27 50 G4 82
Turb~dity June 0.9 0.6 o.s o.~ 0~4 100.0
NTU July 130.0 130.0 43.0 2 .• 5 150.0 170.0
St:lptember 1.1 0.6 0.6 0,5 0.5 s.s
..c. Januaty 0.4 o.s o.s 0.3 o.s o .. t
• March 0.1 0.1 0.1 0.1 0.1 0.1 " • \1 Sediments, suspended
mg/1 June 1 2 1 1 5 327
July 220 417 107 8 356 680
September 1 1 1 2 4 44
Januesry 1 2 0 1 (j 2
March 1 3 6 1 6' 8
Sediments, discharge st!spended June 0.02 0.02 o.o o.o 0.04 1,510.0
tons/day July 327.0 804.0 145.0 OoO 136.0 78,000.0
September 0.01 o.o o.o o.o o .. o 1 ,020;0
January ---March 33.0
Solids, residue at 160°C June 88 100 51 94 137 79
mg/1 July 70 75 41 81 78 74
September 82 69 42 95 119 101
January 111 73 38 iS 114 152
March 92 93 42 80 124. 160 .
('l
( Solids, sum of constituents June 93 91 47 90 130 83
~ rng/1 July 61 68 43 89 66 65
f'1 Sept~mber 71 71 48 94 120 60
f January 120 76 92 130 165
March 86 83 43 65 127 160
-~
" . .-··"'"<;.
.. ...,.._ ...
t')'
f
..,.)
·'t! I
.../: • (J
' ,j
~"'-~""
• Appendix Table 4-0-6 (Continued).
.
Parameter
?h~sical and Ffeld Parameters -Cont'd
Solid~. dis sa 1 ved.
tons/day
Solids, d • •olved
tons/acr~-foot
Suspended sediment (\)
len than. 0.062 nm sf eve
~or Constituents
Hardness
mg/a eaco,
J
Hardnes~, m-carbonate
mg/1 Catcl3
diameter
Bicarbonate, incremental titration
ntg/1 Caco 3
Date -
June
July
September
January
March
June·
July
September
January
March
June
Jaly
September
Januac·y
March
June
July
Septtm~ber
Jaouil'ry
March
June
July
September
~January
March
June
July
September
January
March
, .
Slough
8A
1.5
104.0
0~62 ---..,;» ..
0.12
0.10
O.H
o.Hi
0 .. 13
---89 ....
.....
57
48 54 .
79
60
10w0
7.0
11.0
17.0
15.0
......
53
---
Slou9h
9
0.8
1't5 •. 0
C.3
0.1'•
0,10
0.09
0.10
0.13
55 ---
56
50
45
47
52
n.o
11..0
11.0
13.0
13.0
---
42
, .... ---
'.
G
Susftna Ri:ver
SlougP• Slough Slough at ·-
166 19 21 Cold Cr.eek
" '
0.1 o.1 1. t. 380"0
55.7 o.o 29.9 a,4~o.o ., .e. 0.1 (0.1 0.1 2,3lO.o
-·-~ --~ ~--... ---... .... .......... ~.--,557·.0
0.07 0 .. 13 0.'19 . '0.11
0.06 ()_.,11 -~-1t 0.1C
0,06 o. ~3 Q.,1G C.14
o.o5 0.11 . 0.16 0.21
0.06 \\l.o11 0.17 0 •. 22
~-·-............ 70'
56 --·· 65 49 .. .... ...... . .... 81 ..... ;::.,~----·
-.-~ ~--
3.2 69 83 57
30 61 Sit 51
30 72 77. 60
34 67 87 120
26 so 82 100
a.o 19.0 21.0 f2
GoO 9.0 7.0 16
4.0 10.0 15.0 16
10"0 14.0 25.0 33
3.0 12 .• 0 21.0 19
...... ---,.. ... .. ..
--~ ---... .... .......
32 75 75 ...... .. ... ., ....
.,. ..... --·· ---
(')
' ""' rJ
f
v
~'<,,
Appendix Table 4•0·6 (Continue~\.
DRAFT
ADfC01/t06
========::::;:=====================:====================='\===:·,~ \ \ . '
Parameter
Major Constituents -Cont'd
. Tb )i •
Carbc~ate, incremental titration
mg/1 Caco 3
Calcium, dissolved
mg/1 Ca
Magnesium~ dfa&olved
mg/1 Hg
Sodium, dissolved
mg/1 Na
Sodhtm~ (\)
Sodium, adsorption ratio
Date -
June
July
September
Jamiary
March
Slough Slough
8A 9
··--
0 0
till!'•• -~-
Slough
168
·--_.,._
0
. -~-
Slough
19
---
~--
0
Slough
21
0
Susitrl;;, River
at;
Gold C ·::.:.ak _.!~ . ..,..~~
......
--------------~------------------------~-------------------------------
June
July
September
January
March
June
July
September
Januaa·y
t~arch
18
16
17
26
19
2.8
1.9
2.8
3.4
3.1
18
17
14
15
17
2.7
1o9
t.4
2.3
2.4
10
10
9
11
8
1.6
1.3
1.6
1.6
1.5
23
20
24
22
19
?.1
2.6
3.0
3.0
2.6
27
18
25
29
27
3.·9
2.1
3 •. 5
3.5
3.6
19
16
15
39
33
2.2
1.7
1.9
'•· 6· 4.5
---------------------~-------·--------
June
July
September
January
March
June
July
September
January
March
June
July
September
January
March
...........
6.8
3.0
6.1
11.0
6.2
20
12
19
23
18
0.4
0.2
O.lt o.s
0.4
8.2
3.0
5.6
5.7
7.2
24
11
21
20
23
o.s
0.2
0.4
0.4 o.s
2.5
1. 8
2.6
2.9
2.1
14
11
15
15
1lt
0.2
0.1
0.2
0.2
0.2
2.5
1.8
3.0
4.3
.21)2
7
6
8
12
7
0.1
0.1 o. 2. o. 2
0.1
12.0
3.4
11.0
1.2.0
11.0
23
12
23
23
2Z
0.6
0.2
0.5
0.6
0.5
4.2
3.4
7.lf
15.0 n.o
14
13
21
22
26
0.3
0.2
0.4
0.6
0,8
.,
.Appc,ndhc Table 4-0-6 (Contfm.H~~).
,. Su~itna River
Slough Slough Sl~ug~ 51~qgh Slough at
Parameter ~ 8A g :168 i9 21 t1o1d Creek
<J -
Wut~ients -Cont 1 d
Nitrogen, total ~une 8.5 3.·4 ~.1 ' 10 .. 0 . IJ.2 2.4
mg/1 N03 July 3.~ 3.5 3.l 9.l '' ~~9 %!';).
September 7.4 7.3 2.9 9'~0' ' ... "9 '2~7
January !;..8. 7.9 .2 .. 9 7.0 I 4.2 1~9
March 5.7 6.4 3.3 7.6 '4:.3 h9
-
Nitrogen, dissolved June 1.8 1.6 1.0 2.0 1.0 o.s
mg/1 N July
__ .,.
0.7 ---" 2.2 0.7 0.6
September 1.5 1.7 (i\.6 1.9 1.0 0.6
,January 1.3 1.6 0.6 '1.2 0.9 0.4
March 1.2 1.2 0.6 1.5 0.8 o.~t
..t:
~ Nitroge~-total organic Jum~ 0.53 0.82 o.so 0.88 0.37 O.llt ......., mg/1 N July 0.40 O.S4 0.31 0.45 0.44 0.10 ' September 0.41 0.17 0.44 0.18 0 .. 28
~ January ---0.18 0.50 ' -~· 0.18
\r\ March 0.24 0.41 0.43 0.30 0.21
Nitrogen, di~solved or9anic .. tune 0.45 0.51 0.55 0.62 o.:e-9 0.34
mg/1 N July 0.44 0.48 o.li1 0 .. 43 ().21
September 0.36 . 0.44 0,10 0.49 0.19 0.34
I January 0.22 0.39 0.15 0.14 0.20 ' 0.15
i Maret> 0.20 G ... t6 0.22 0.19
!
.... ~,.,.
June o.c? 0.11 0.10 0. 'iO 0.09 0 .. 08
July 0.10 ~ .. 13 0.13 0.32 C.11t 0.24
September 0.15 0"1~ !).16 0.1'3 0.11 0 .. 09
Janu·.,~y 0.15 0.08 0·,.09 0.08 o.o8 0.09
Haren 0.07 C.07 to~o6 o.oo (0.06 0.07
June 0.09 0.14 0.1'3 0.13 0.12 0,.10
Ju~y 0.13 0.17 0.17 0.41 0.18 0.31
September 0.19 0 .. 18 0.21 0.17 o .. 1~ 0.12
N January 0.19 0.10 0.12 0.10 0.10 o. 12
f March 0.09 0.,09 o.oa 0.,10 0.08 0.09
~
N
I ,,.,.
""'/' .. ...,.,
roJ
t .....
..c.
b
-..J
~ .
Appendi.x Tabla ,. ... 0-6 (Continued).
-~ .
Parameter
Major Constituents -Cont'd •
Potassium, dissolved
mg/1 K
Chloride,
mg/1 c~
dissolved
Sulfate, dissolved
mg/1 so4
fluoride, dissolved
mg/1 F
Si 1 ica, dissolved
,mg/1 Si02
t~utri ents -
Nitrogen, total
mg/1 N
----.,......;.w
~--.k!r
Slough Slough
Date 8A 9 -
June 1.5 1 .,It
July. 1.6 1,.6
Septe~er 1.1 0.9
January 2.1 1.0
March 1.3 1.1
June 9.1 16.0
July 2.9 2.9
Septemb'r 1.1 6.9
January· 14.0 9~6
March 10.0 13.0
June n.o 9.0
July 1.0 11.(1}
September 6.0 s.o
January 11.0 5.'0
March 8.0 6,.0
June o.o 0.1
July o.o o.o
September 0.1 0.1
January 0.1 0.1
Maret• 0.1 0.1
June 9.7 11.0
July 6.6 6.6
September o.o . 10.0
January 10.0 11.0
iiarctl 11.0 11.0
June 1.9 1.9
July 0.8 0.8
September 1.7 1.7
January 1.3 1.6
March 1.3 1.4
DRAFT
ADFG01/t06
Slough .. ·.
Su$ltf\it ri':iver
$lough Slough at
168. ,, 19 21 Cold Creak
-~ .. ~............,.." -,. __ -
0 .. 9 1.0 2.1 2.0 o .• s::::_--·;_ L.6 1.9~' 1,.6
0.9 1.1 2.1 1.S
0.8 1..2' 2.0 7~1
0 .. 8 1.1 2.1 .· 2.2
" . '
') o3 9,9 20.0 5•6
0.9 0.6 3.7 12.0
1.5 0.,9 11e0 11..0
1.1 ·~·~s 20o0 24.0'
1.2 1 .. 1 17.0 27 .. 0
,..._....
4.7 13.0 14 .. 0 17 .o
6.0 1~ .. o 3.,1 t .. o
5.0 9.t~ 10.0 <s·.o s.o 11. n-· 12~'() 11.0 o.o 13.0 13.0 1:! .• 0
0.1 0,1 0.1 o.o
0.1 (}.O o.o 0;,1
0 .. 1 0.1 0.1 o.r
0.1 0.1· f). 1 0.1
0 .. 1 0.1 0.1 0.1
10.0 10.0 11.0 s.s
6.2 10.0 ~.6 6,2
10.0 10.0 lLO 6.1
11.0 10.0 n.o 12~0
11.0 10.0 12.0 13,.0
·-· ·~c~
0.9 2.3 0~94 o~~
0.8 2.1 0.2 o.s
0.7 2,0 1.1 0.6
0.7 1. 6 1.0 0.4
0.7 1 '7 . , 1.0 0.4
• Appen~fx. Table 4-D-6 (Continued).
-··
'• .Susf~na ~lver
Slough Slough .Slough . Slough Slough at ""': ~ ' Cold Creek Parameter bate BA 9 168 19 21 \\' --··-
Nutrients·-Cont•d
. Nitrogen 1 tot~ 1 anvnonia June 0.08 0.10 0-.09 0.07 0.10 o.1~t
Mg/1 N Jt~lY 0.15 0.18 0.15 0.26 o.n 0.,33 ,)
S~ptember 0.15 '0.16 ·-0~19 o •. zo 0.17
J~nuary ~.07· .(0.07 O.t12 ·0.09 <0.07 o .. oo
March o .. 12 0.08 <0.06 0.08 .0 •. 06 0 .. 06
1'.'
Nttrogen, ammonia + dissolved Ofg~ntcs June 0.52 0.62 0.65 0.72 'o.ss O)•a
mg/1 N July 0,54 0.61 0.73 0.57 0.45
S.:~!:~ber 0.51 0.58 0.26 ·0.62 0.,30 0.43
January 0.37 '0.47 0.24 0~22 0,.28 0 .. 24
..r.. Ji,;,rch 0.27 '0~23 0.-24 0.30 0.22 o.26
I
~ Nitro~en 1 ammonia + total suspended ,June 0.09 0.30 o.oo 0.23 o.oo '0.06 ' ...J' orrJani c:s .fuly 0.01 0,.11 -~ ... .o .. oo o.oo o .. oo
"'-J mg/1 N S~ptember 0.07 o.oo 0.07 0.01 0.08 0.02
January 0.05 O.o21 0.06 0.37 0.03 0.02
March 0.09 0.26 0.14 0.21 0.14 0.01
Nitrogen, ammonia + total ~rganfcs June 0.61 0.92 0.59 0.95 0.47 0.4"8
mg/1 N July Oo55 . 0.72 0.46 0.71 0.57 0.43
SeptH~ber 0.58 0.56 0.33 0.63 0.38 0~45
January 0.42 0.68 0.30 0.59 0.31 0.26
March 0.36 0.49 0.38 0.51 0.36 0.27
Nitrogen, total nitrate and nitrate . .June 1.3 1.0 0.33 1.3 o.s 0.1
mg/1 N July 0.2 0.1 0.3 1.4 0.1 0.1
S"ptember 1.1 '1. 1 0.3 1.4 ()~7 0 .• 2
January 0.9 1.1 0.4 1.0 0.6 a.2
March 0.9 1.0 0.4 1.2 0.6 0.2
Nl~rog~n, dissolved nitrate and nftrtte June 1.3 1.0 0.4 1.3 O.lf 0.1
mg/1 N July 0.1 0.3 1.5 o.1 .0.1
September 1.0 1.1 0.3 1.3 0.7 0.2
January 0.9 1.1 0.4 1.0 0.6 0.2
rJ•· .March 0.9 1.0 0.4 1.2 0.6 0'.2
t "' N
••
.
J~
~ .~<.,
r>,
·DRAfT CJ AOFG01/t06
App,z,ndtx Tabl& lt•D-6 (Contim.IGd) .. ;,
,.
. 5U6itna River
Slough Slough Slough, Slough Slough a.t.
Parameter ·~ 8A 9 168,., 19' 21 Gold Creek
Nutrients,-C~nt•d
Phosphorusp total June OoOS 0.01 0.01 0.01 /..0.01 0.12
mg/1 P July . 0.27 0.48 0., 14 o.01 0.~8 o.oz
September -< 0.01 .(0.01 <0.01 .(.0.01 <O,.Ol 0.02
January "0.01 <O.Ot .c:0.01 o.o2 0,.01 0.01
March 0.01. 0.01 0.01 0.01 o.o1: 0~:01
Phosphorus, total June 0.2 <: o •.• .(0.1 < O~ 1 .(0.1 0.4
mg/1 P0 4 July 0.8 1.S 0.4 "0.1 1.2 0.1
September -IIIII!'-_ ....
--~ 0.1
January -------0.1 <0.1 0.1·
March <. 0.1 <Oo 1 <0.1 <.0.1 <0.1'
..t.
• 0 Phtlsphorus, dissolved June 0.03 0.01 0.01 0.01 .(.0.01 0.02
' mg/1 p July 0.01 .eo.o1 < 0.01 "o.o1 (.0 •. 01' < 0.01'
........ September 0.01 <:"0.01 < 0.01 <n.o1 .(. 0.01 o.ot, .
CX\ January < 0.01 <0.01 <0.01 0.02 0.04 O • .Ol
March <= 0.01 c:.o.o~ <. 0.01 <.O.Ol -<.0.01 0.01
Carbcm, dissolved organic Jur*e 1.9 2.1 1.4 1. 3 2.Q 2.8
mg/1 C July 13~0 9.0 3.3 6.2 6.0 18.0
September 1.5 1.7 1.9 2~2 1 •. 1 ---January 1.4 1. 3 o.s 0.7 o.s ---
March 1.4 0.7 0.7 1~4 1 .. 1 1.6
Carbon, total suspended organics June 0.1 ---0.2 0.2 0.9
mg/1 c July 0.2 0.5 o.o o.o 0.3
September 0.1 0.1 0.1 O.l o. 1 -·~-Januarv o.o o .. o o.o o.o o.o ---
Harth • o.o o.o o.o 0.1 c.·1 0.1
'\') Trace Metals
f Arsenic, total June 1 1 1 2 2 6
"""" ug/1 At July 2 s 4 1 5 7
·fJ' Sep\:ember 2 1 1 2 2
l January 2. 2 1 2 2
March · 1 1 2 i 2 2 ..t;.,
r (:_ "-4'~.
·~.
iJ
'. j'
~.-A.:· ........ ~ ~........, _,.......,
H'f""' ... ~ tf ~ · •u•A f-.. .A . "'' ,.... . •A.,, 10""'---· ... ,_ .... ' ..... . .
-' .. ·-.,. .. ...,,_, '""'"" ,.,.-~·~·· .. ''"''-"'"·'""·"'~ .. "
"~'
,_
Appendix Table 4'*0·6 (ContinJJed).
·•
' Susltn~ Rivar
Slough Slough Slough Slough Slough .oltt
' Parameter Date· 8A 9 1GB 19 21 Gold creek -___ ___...., .
Trace !ietals -Cont•d
-' -1 ' Arsenic, t'?ltal syspended June· 0 0 0 1 1 .5
ug/1 As July 0 3 :2 . 0 ' ~~ 5
September 1 0 0 1 1 I ., ......
January 1 ·1 0 1. 1 • ---1 (f ·March ----0 1 0 "
Arseni~. dissolvEd June 2 1 1 1 1 1
ug/i As July 2 2 2 1 2 2
September 1 1 1 . 1 1 _., .... ,
January 1 1 1 1 1
_,_,__
.I= March ( 1 1 1 1 1 ·~
I
0 Barium, tota 1 recoverable June 0 0 0 0 100 200 ' U!'j/1 Ba July 200 200 100 100 300 300
" September 100 200 100 100 100
__ ..
"l January 100 100 <100 100 100 ---· March < 100 <.100 <100 <.100 <.100 100
. ~
Barium, suspended recoverable June 0 0 0 0 100 200
ug/1 Ba July 200 200 .70 50 300 300
September 100 . 200 100 100 0 ---January 0 0
__ ,,
March ...... ---......... .. 0
Barium, dissolved J9ne 90 0 0 0 0 0
. ug/1 Ba July ftC ItO 30 50 itO 0
September 0 0 0 0 100 ----January 100 (10ll <.100 <.100 100
Hllrch 29 27 14 29 41 60
.
Cadmiun1 1 total recoverable .Iurie 0 0 2 0 1 0
ug/1 Cd July 0 0 o: 1 0 5
September 0 0 0 0 1
Jimuary ~i .(1 <w <1 <1 ---
N M~r.ch <1 <1 <1 "'1 <1 <.'1
t--...
'*-'~:...
N
' ' ·r . ~-,-;
-c, t,J
Appendix Tabl~ ll•D-6 (Contir~ued).
Parameter
Slough Slough
Date SA 9 -
Trace He til 1s -Cont'd
Cadmium, suspended recoverable June ~ .. -0
uglt Co Ju1y
__ ,_
September 0 0
January --· Harch .......
Cadmium, dissolve~ June 1 ()
ug/1 Cd . July ~1 <1
September 0 0
January <1 1
Harch <3 (3
..t-Chromium, total c-ecoverable June .0 10
l ug/1 Cr July 30 30
0 Se~tember 0 10
I January 10 <. 1
~ March 10 <1
0
Chromium, suspended recoverable June 0 10
ug/1 Cr July 20 20
September 0 10
January
March
Chromium, dissolved Ji:ine 10 0
ug/1 Cr · July 10 10
September 0 0
January '10 1
March .( 10 <3
rJ· Cobalt, total recoverable June 2 0
ug/1 Co. july 5 6
' September 0 0
January 2 1
"""" March 1 1
N:
' ~.
~ (f' ..
~ ...,.,
::·.·~~.c -r iJ .....
\·
Slo.,.gh
168
Slough
19
.2 .-0
0 0 ---..--
0 0
<1 .(1
1 0
1 1
-'3 <~
0 0
20 20
10 10
10 £.10
10 10
0 0
iO 10
10 10
0 0
10 10
0 0
C:.10 <10
<...10 < 10
0 0
2 Q
0 0
1 1
2 2
Slough
2l'
0 ·---
1
---
5
<1
0
<1
<..3
0
40
10
<10
C..10
0
30
10
0
10
0
~10
~10
2
7
1
L 1
1
DRAFT
ADFG01/t:06
Susitna Ri v.er
at
Gold Creek
z.·
Q--~
.... ..,
-'1
1 ·---_ ......
<3
40
30
10
40
20 ·--
Q.
10
:•.---·--
(,10
6
l1
·--Ill!,-
1
..
. ....,~~r-, W • Appendix Table 4·0-6· (Continued),
Slough Sh>ugh
Paramt:scer Date SA 9 -
Trace t-ietals -Cont'd
Cobalt$ suspended recover~ble Jt.~ne 0
ug/1 Co .)~1y !IIIII-----Septemtl:er 0 0
January 0 0
March · ~--
Cobalt, di~solved June c.) 0
ug/1 Co July <3 .C3
September 0 .o
-I= January·· 2 2
• M;Jrch <1 ..::1
0 •
~ Copper, total recoverable June 3 2
........ ug/1 Cu July 20 23
Septt~mber 6 4
January lt 2
J-tarch 2 1
Copper, suspended recoverable June 1 1
ug/1 Cu July 12 20
September 5 3
January 3 0
March 1 0
Copper, dissolved June 2 1
ug/1 Cu July 8 3
September 1 1
January 1 2
March 1 1
Iron, total recoverable June 20 40
ug/1 Fe July 13,000 16,000
September 20 go
N. January 20 140
March 10 30
l -rJ'
' ...t
V\· '
\
Sldugh Sl.ough
168 19
0 0
·-~-......
0 0
0 -~-..... ~--
0 0
<3" ~3
0 0
1 "1
(.1 c1
lt. 2
10 3 s 4
1 2
2 .a
1 0
4 0
3 2
0 0
1 7
3 2
6 7
2 2
2 2
1 1
50 40
5,800 220
280 260
20 10'
40 30
Slough
21
'1 .....
1
~--......
1
c: 3.
0
2.
<..1.
2
23 ..
1
6
0
0
1S
3
0
2 s
1
1
1
60
18,000
100
10
10
Su.&Jtna River
at
Gold. Cr6ck.
---· 11
~-~ ....... '
0
., .£. 3
.o
--· 1
31
190 .....
2
1.7
190
-·~ ,..,...,
~
4. .,
..... .,.
1
·• 15,000
1~,000
~-.. .....
ItO
,.,
'·'
:::_,-:.· ..
DRAfl
ADFG01/t06
Appendix Table 4-D-6 (Continued)a
~
Susi.toa :River
Parameter
Slough Slough ·· Slough Slough Slough at··
Oate BA 9 168 19 21 Gold Creek -
Jr~ce HetaJs -Cont'd
Iron, suspended recoverable June 10 0 0 0 ~0 15,000
ug/1 Fe .July 13,000 16,000 5,700 140 18,000 19,000
September 10 60 260 250 90
January 0 60 0 0 0 ---
March 0 20 30 20 0 30
-
Iron, dissolved June 10 60 50 60 20 90
ug/1 Fe July 48 110 52 79 97 120
September 10 30 20 10 10 ~~~
January 40 60 20 30 20
March 12 14 9 15 11 15
.&..
' Cj Leadfi total recoverable June 0 5 3 3 15 18
I
l1 ug/1 Pb July 3 3 3 ·3 2 47
September 4 1 1 2 4
January 2 1 <'] 1 .: 1
March "' 1 5 6 9 3
lead, suspended recoverable June 0 5 3 3 15 18
ug/1 Pb July 0 1 3 2 0 47
September 2 0 0 0 0
January 1 0 0
March 4 ... , .. 0
lead, dissolved June 0 0 0 0 0 0
ug/1 Pb July 3 2 0 1 5 0
September 2 3 4 3 5
January 1 2 1 1 1
March 1 <.1 1 (.1 <1 3
ty Manganese, total recoverable June 10 10 10 0 0 250
(
ug/1 Mn July 230 290 10.0 20 300 320
September 0 0 10 10 0 ---
........ January 10 20 10 10 20
March 10 10 ~10 10 <.10 10
rJ
I
~
~ c· .
Appendix Table 4·J)·6 (Continued).
' ' Susf.tlla, .River
Slough Slough 51qugh Slough Slough ~t
Parameter . ~~ate 8A 9 169 ·~19 21 . .Qold Creek
.-~""·.~ ......... ~-----
Trace Metals .. Cont'd
Hangane~e~ suspended. recoverable June ,0 10 10 .,··o 0 250.
ug/1 Mn July 220 280 :90 .10 2,90 3lQ·
September 0 0 '10 t 0 0 _ _.,.1111!'
January 0 10 ·O 10 .....
Hatch .6 5 ·---'6 ---7
' ~ ' ''h ..... '.~--.~ h" . ..•
[,'
Hang"nese, .di sso.l ved June 10.0 o.o 'o.o ·o.o 0 :ft
ug/1 Nn July 8.0 10.0 7~0 9.0 8 10
September o .. o o.o .. o.o 10.0 ·o
-(.: J6nuary 10.0 .(Do 1 ~10.0 <10.0 to
March lt.O .( 0.1 3.0 4.0 3 ;) -:;.7·
I
0
~ Mercury, total recoverable June 0.1 0.1 0.1 0.1 0.2 0.4
ug/1 t-fg July 0.1 0.1 0.1 o.o 0.2 0.3
September 0.1 o.o 0.0 o.o o.o
January L-0.1 ,0.1 <0.1 ~ 0.1 0.1 ---March 0.1 0.1 ·0.1 0 .. 1 0.1 0.1
Mercury, suspe~ded recoverable June 0.1 0.1 0.1 0.1 0.2 0~4
ug/1 Hg July o.o 0.1 0.1 o.o 0.2 0.1
September 0.1 o.o o.o . o.o . o.o
January ------March
Hercury, dissolved June o.o o.o o.o o.o o.o o.o
ug/1 Hg July 0.1 o.o 0.1 o.o o.o 0.2
September o.o o.o o.o o.o o.o
January (0.1 <. 0.1 <0 .. 1 (. 0.1 ~0.1 ---March (0.1 ~0.1 <0.1 . < 0.1 .c0.1 (0. t
f Hickel, total recoverable June 3 2 2 1. 6 2~
ug/1 Ni July 14 18 6 2 18 22
., September 1 0 7 3 4 l ,' 36
' January 1 2 ~1 <1 <1 ,, ,, ---('.) March 1 <1 2 2 1 2
(
"""' tV
t
~
~
Appendix Tab 1 e 4-D-6 (Cor. ti nu~d) • II'
--
Su;s ttna Ri 'llfl:r
Slough Slough Slough SloUgh Slough at
Parameter Date 8A. 9 ~.68 19 21 Gold Creek --·
Trace Metals -Cont'd
Silver, suspended recoverable June 0 0 1 0 0 '. 0
ug/1 Ag July 0 0 0 1 fl 0 "·
September 0 0 0 0 0 .......
January ------.......
March ---.. --... ~ ---
SilverJ dissolved June 0 0 0 0 0 0
ug/l As July 0 0 0 0 0 0
Septeillb~r 0 0 0 0 0
....r:.. January ~1 (1 .C:.1 • 1 <1 ---
March .!1 .(.1 1 <1 <:1 1
• 0
I Zinc,. total recoverable June 20 ItO 10 10 10 60
~ ug/1 Zn July 80 60 20 10 60 120
September 20 30 30 10 70
January · 20 10 20 10 tO ---
March 10 10 40 30 20 10
Zinc, suspended recoverable June 10 30 . 0 0 10 50
ug/1 Zn July 80 30 10 0 40 110
Septembtr 10 10 0 10 0
January 10 0 10 0 0 ......
l<tarch 0 20
Unc, dissolved June 7 10 10 10 0 6
ug/1 Zn July 4 35 10 10 17 14
September 10 20 30 0 20 5
January 10 20 10 10 10
March <:12 <12 (.12 12 .(. 12 L12
'
all
.) f
·~
·--.a
• EXHIBIT E
REVIEW STAGE 3 •
...
2. Water Use and Quality
·'coaaent 13 (p. E-2-40r-. para. 3)
Provide water le"els as a function of absel'·vation time for each well. Pro-
vi de data associ a ted wi t'h core dri 11 i ngs and piezometer insta 11 at·i ons. Pro-
vi de bathymetry from sa,mp led s l.oughs.
Response
Water level data for sloughs SA and 9 are presented as a function of observ-
ation time in Tables 1 and 2. The average daily discharge at Gold Creek for
the date of each obseArvati on is also presented. The location of the obser-
vati~n well is illustrated in pp. 2-13-62 to 2-13-63
• Wellhole logs for the shallow wells identified in Tables 1 and 2 are illu-
strated in pp. 2-13-6 to 2-13-19. Four deeper wells were drilled in Slough
9 during November 1982. Information associated with the core drillings of
these wells is presented in pp. 2-13-20 to 2-13-23. Generally the well logs
indicate well-graded sandy gravel overlain by 0 to 10 feet of silt and sand.
The gravel contains well roundad cobbles and boulders 1/2 to 6 inches in
diameter and does not contain silt ..
•
Details of the piezometer installatiCi~l for the deeper wells are illustrated
in p. 2-13-24.
Bathymetry in the form of cross sections and thalweg profiles for-sloughs SA
and 9 are presented in pp. 2-13-25 to 2-13-61. Locations of cross sections
are presented in pp. 2-13-62 to 2-13-63 •
2-13-l
N.
I ..... w
I
N
Date
1982
April 26
~1ay 15
May 27
June 24
June 29
July 18
August 3
August 5
August 6
August 9
. A.ugust 2:1
September 3
September 5
September 10
September 20
October 5
October 13
s ,= silted
d = dry
•
8-1 8-3
579.47 575.42
581.16 577.87
581.42 577.54
581.26 576.38
580.99 575.69
580.41 576.18
577.41
575.54
581.41 578.45
d 576.57
d 574.74
TABLE 1
GROUNDWATER ELEVATIONS AT.SLOUGH SA
. .
(In feet above mean se~leve1)
Wel'l No.
8-4 8-5 8-6 8-7
574e39 574.76 d 572.79
576.31
573.94 574.91 573.22 573.43
575.06 574.99 573.11 573.32
575.00 574.94 572.98 573.23
574.89 574.83 572.8;} 573.13
574.87 574.77 572.97 573.12
575.10 574.97 573.17 573.32
574.54 574.56 572.90 572.96
575.32 575.30 573.44 573.58
574.90 574.77 573.03 573.15
574.06 d 572.78 572.78
I}
~'-f '· ·,·
USGS Provisional
Discharge. -at
8-8 8-9 Gold Creek (cfsJ ·
~~ .,_ .. "'
.,
568.24 568.42 2,300
15~000
569.91 568.62 23~000
569.36 568 .. 56 26,000
569.03 566.55 29,000
568.61 568.40 25~,400
~9,800
17,400
16,300
569.09 568.43 11 ono
. ' 12,900
569 .. 66 568.52 14,600
13,600
569.12 568.31 14,400
570.33 568.91 24,000
569.fi4 568.37 9,800
568.16 8,040
Sourca-R&M Consultants, Inc. Susitna Hydrolectric Project Slough Hydrology Interim Report. Prepared for Acres American .
Incorporated.
I
\ <
N
I ...... w
I w
I •
Date
1982
April 26
.May 15
May 27
June 24
June 29
July 18
August 3
August 5
August 6
August 9
August 27
September 3
September 5
, September 10
September 20
October 5
October· 13
s = si 1t~d
d =dry
0
·.
J
8-10 8-11
566.15 565.64
565.30 565.49
565.15 565.79
565.34
565.54 565.51
565.56 565.83
565.76 566.28
565.75
566.00 566.70
565.70 566.12
. ~" . : .: . '
• . . ' . • c"::._., ~ •
• ·~;~ • •• # ' ••• ' •.':~. ••• .. •
' .. . . ' ·,_ ' . ~ ... . ~ . . ·.
•
TABLE 1 (Cont'd)
GROUNDWATER ELEVATIONS AT SLOUGH SA
(In feet above mean sealevel)
Well No.
S.G.
8-12 8-lA 8-1A 8-2A
566.33
s
s
s
564.38 57·2.63 572.32 572.23
572.19 572.33 572.35
571,85 571.86 571 .. 83
571$79 571 .• 75 571.73
564.29 571.81 d 571.61
d d
d 571.24 d 571.41
570.99 d
571.16 d d
564.44 573.24 573.33 573.25
d 570.39 d d
d d d
USGS Provts iC>na 1·
Oi scharge at .•.
a ... aA 8-4A Gold · ,Creek (Cf~)
...
·' ';_'
2',300
15',000
·23·;ooo
'\,, '26 000
. ' ·. 29,000
. '25',400
19,-800
17,400
571.87 ·16.800
571.81 17,000
571.05 571.26 12,900
571.87 572.32 ··14,600
571.74 572.28 13,600
571.36 572.24 14,400
573.42 573.?2 24.,000
511.::22 £:"7~ "9 .. ,.,.u g· aoo ' 570.48 572.58 8,040
Date
1982
April 26
May 11
May 15
May 27
June 23
N .. • July 1
~July 20
I ~ August 25
September 6
September 9
September 20
October 7
October 15
s = silted
d = dry
• ..
I
9-1 ~9-1A
607.71
607:58
608.5(}.
607.94
607.32
605.99
606.16 605.50
606.08 605.27
608.01 607.07
605.88 605.21
605.81 604.85
TABLE 2
. GROUNDWATER ELEVATIONS AT SLOUGH 9
(In feet above mean sea 1eve 1)
Well No.
9-3 9-4 9-5 9-6
603.06 '603.62 603.33. d
605.42 604o46 604.51 604.15
606.62 604.47 604.76 604.34
606.66 604.77 604.40 604.91
606.22 604.67 604-.11 604.48
605.67 604.03 603.81 604.08
604.69 d 603.34 d
605.70 604.16 603.61 d
605.49 d 603.60 d
607.65 605.23 604.74 604.62
605.29 603.97 603.52 d
604.91 d 603.39 d
',_,~_,,.,
· •.. _.,.J
. \~·,
·USGS Provis{ona 1 ·
• • 1 ' •
Di scha~ge -·:at·/·~
9-7 .9.-9
. ·.. . . ·. '. )'',1 . ' .
,· Gold Creeki tcfsl . · ,,
d 603 .• 01·· .2,300''
602.68 10.500 '•
15,000;
602.45 23,000:..
603.02 21,000·
602 .• 78 604.08 25,:000 ,'
602.30 22,900
601.05 602.56 13,400
601.32 .604.37 12,200
601.1~ . 604.22 13,400 '
602.78 605.07 24,000
d 603.26 8,640 .
d 602.91 7,1'10 .
N
I
' ..... w
I
U1
,.,
Date ·-1982
April 26
May 11
May 15
May 21
June 23
July 1
July 20
August 25
September 6
September 9
September 20
. ·October 7
October 15
fl •1( d .·. s #":Sl ~e
d = dry
.. •
9-10 9-11
600.32 600.06
601.20 601.21
604.00
5 601.16
s 601.69
s 601.38
600.99 .601.07
600.34 600.28
600.50 600.46
600.43 600.35
601~~37 601.49
d d
d d
TABLE ,2 (Cont'q)
GROUNDWATER ELEVATIONS AT SLOUGH 9
(ln feet abpve mean sealevel)
Well No.
9-12 9-13
598.53 d
694.09
599.94 s
600.64 s
600.40 s
'i99.55 s
d d
d d
d 594.29
d d
d d
9-14 9-15
" 594.14 d
594.57 593.90
s s
s s
s s
s s
593.66 592.74
593.74 592.83
594.77
593.76 d
593.66 d
.• , ':;.
~ ~ ·.
i
,,· :~
j
USGS Provi•sional
D·ischarge · at. . . . '
Gold Creek, (cfs:
2,30(1
10.,500:
15,000:,'
23,000,
27,000
25,000 "
22,900,
13,40(1
12 '200~>\:'
'(_I
13,400
24,000' .
8,640
7,110
I . :-!"
{:.,--'"'·\.
.l"' 1 '
\r-
•
'
4 ,_,
""-.: .. sr '1.. "
..
.
' . .
-~------.:
I ~---r~--------------------------~ ___ , ___________ ........ _ .........
OWN. A G. .....
CKO. -~
.a.t.T£. .!1•.1':.
Sc.:A,i-$ , .. ... ,
1 . -
3,
. .
.:-••
, -&-
' T.O. -
-..
•
Y· -=="' -
.
M'j',.2
: y .. u .. ~~ .4~. 0 c Jl'
r . .
.: •
f \N e.L &. Gll~t>O S Q ~A..-.v e c..· .~
... . .
. -. ----,
:J..S .
. ..
~ ;:-::-. ·.::-"' -.. . . .. ..... ~ .... . --.
Jrc. r•, .SA•D '-'/ Olf c n,.,:z. ,_.
-· ---..
[/F.f(' ·: FZ•~ ,,s:, '1"
z-fr: .... 5··~ I C6a ...... ; ... +. .J
..._...-..... -,,
_...,.' ,, ·• .. . .. . ..
" ~·:.:, ,.J,. ,~ ... . . ,
. .. . ----. 7
ve~· ~ tr r llot ~a ~:r c.,.
~:. .. ._ ...
~-.., ...... ;.n th.+ ,_ ---.
S:r: c..? T .s ~¥0 -I 0 ~ t! ~ ... l:. t..l .
/0' ;.~ . .
.
-.. ·-·-· . -. .
.
~
0
.
. .
.
.
I
.
..
I . . · . _, -
· . DWG f.!O. · ...
•
. l
1
j '
;i
·,l
t'
%' \ li
1 ....
·. l' ti n t' :!
I· ~~
·_:: . ..
.. , ..... "'" . ·:... . .:= .......
-
Jo' .
...,..,. -!:... +--t---•
~-
--
" .., ... : ;;.. ...... • .,._,....,M•"' •. .
---··--
.:
!'
o'
z
I I, T:·tJ •
,
]/ . '
~.
-·
S,..,.ot· G~.-.--~c. ·1#1>'/,..~'N'f
.L AR.• E ~·f. Ia ·~) C.•~ OLGl
•
·'
-ll' .....
0
,
•.
~ ~ . ..:_.._.. ... --.-...
,•
'! .•
-
•
.
I
1i ,.
-;
li ...
-~---..
t._.'i
lt -~-.-· . ; .
. ·~~
-~.
11 "'"'( '·.
:. "f-·· l-~1.
:I!;. :.rr~
v: r.s" __ :;.tfi~~ ....... +-------
S~ c;Pt ~res.,.Jit.L
, ..... J ... t c.l.t.l ...... 1----
1~.-c-~ -~ '' • .J ·•-•let
""'
•p s
~-0-~?Z-J-~--------~------------·--
--.
-: -!"'
~
r
.... .._i..-~i.--~--101------~~~---
•.
o'
J.S /
,
S T • .O.
•
• I
-1-'
-t..f .. f.l "'" "!;
"""")··.·. .t ; •. 0 f .•
.. . ~ . . . . -...
F:: ~~~~ S.Sc.T ~I OiC<"-AW~:..C..$
,lioo I.S'
-·
-=----.. ·-... .
"
. .
G-R,.vli.C.
..
""'.q,. \ \ 3r .. J..J.
'r-..-J (IJ' ceJ-1.1.-.r
'
c;
.
-.
.
.
, .
• .
.
I
•
.
-. --
-
•••••••• , .·
.
C<
'
··~-il''f;;:?:;"·: '):;.~'
, :t-/a I:.J ,.il,.~~
. ..,._ ...
-
,~c;.·.;:"-1
--~ ~~< ----..
-
...
()
,
--I,
-
---~ .......... . .
-·
•
~:r..T
...... ... .t t
--
·.
-
VE~'t f'.Xtli&
J'ft•l s +
\.h ... ~
... .. -..
-
.... ·-
-
.S~LT, (C'-IIt'f
- ---
-----
L-~--------~---
-~)
s'
·. :· It i:
, . ... ...
.·
........
·.
.. i
t. ..
; ..
·~
$.$;,
•q-tt •
., ·'-1~ 1:'-iih
-.·r.ilo.,.
--
w-4·" ---•
--
..
•
-............... _.,_. --.. ·-----·---------
awN. Rt:.~ ~L ••
C~l'l '!I ··~ . ..
OAT!. 'f·3Z.
~CAL£. ~~ : , ....
,
0
o.r'
•
• 9-lf;
. ..,._,~ -r~·
. -.-
-..,..._
. ·
-·
---~n.
---
.
4
•
o"
l
,
.,
Y.! T.O.
..
fJ:··J:·. " . . . ~ .
~J'""-....... 1 ______ ,_~~~---
. '·· · . i"'"i---..... __ .. _,.~ .........
PWO~HO. tJriJ i"'
owr; uo
. l
i
'I
'.
.... "
; .• ,_Jl. ..
. "1-1 "'._,'a '
~·· . -.
. .
l,. ••
: .. t-:-.:.
£tt."!" .•
~=l-'T
. .. ..
-. . .. .. -.
-" j ;.
-
men
-
-· --~---·----·
2 ... -1
. ~ ... ;: ..
--'":
:if '1-:' a
-'4-1'1"' g'L,
-
It • • . t ... .. .
~. ,, .
~''~
.. '"'!" ....... -, . ...
.• ---
:.~ . ;. ..
-._.,_, ---
~--~~------------------~-----------,
Cf T.D.,
··-... -.......
•
.. ..
... ; .
..
.. .
0'
.. ·; .· .··
i ~, .
.
·'
• t
g.s' ;.o.
,.
'
II : r
I
I
I
I
I
11
I
'I
....... ~ .. '
', '
I
.. ~ ' "'
' :··.: : "'' " -•• ~ : '#. ': -~-
r·
I -t:.. ..
..:~
"'II,.
f ~~
l~ ... ..
" l l
~~ • 0
.
a'
jf
I ·-
..
~ • . .
;t ..
#
u.i.
-·
-............. ---"1'
CAAvtlc.
~ -2•1 ~ ---
--3 •. $, -
w.a. •---~-----------------------.. ~'.
":.-
..
~--,-------------·--..e·--=11:1·
.Q.
·:"
S: r..T
--· ---
..... . ~ .....
,.,.,~
w~ ~~---+----------·----------m-----------
l
i·
I .. : ..
l.
I • 1
•..
i
~
. .
~
:;
.. · I -s
--
• -----.. ...-.. ---
~a. Yj_~--~-------------:;-
..
0
2.l
,
~,
•
,•
-... ~·-~: .. '
,. ...
~~~. ~----~~-----
. -. --
···-·.
•
~ . ~ ~
*?:-1
·. f£-1r~11.
--
t
I
•
u \.., \\ -•
ow" -C~<a--• 0 •
CKfl ... ~~~ ......... , .. _ .
OA~ "tJ'k-,. --·
S~l. " . \
t ... .a ..
0·'
--
•
.• •.
•
il 2-1..
"'"" 8 , ••. J "'L
-
~-·
---2"
--z.s ,
-. ~ . -: .1--+------------/,., $" 'T.D
., '
-
·' ...
'#.'t?.;·.t' • .,
;'\LJ:.. tt'o. ~2..·
.t:
.. : .. :
_._ .. _._...
·-------
-.
_.,..., --~·------
;: .. '.\;
...
....
•
, CJ.S" T.D.
.. . i
---
o+---it------------
~-+----·-----'-·---------
' ..
~ ·:. ...
·.,;,. ..
•
. .~
,
0
,
~.s
·, S.o T.D~
?...-13-IS: ·-·# .. ' ........
... --· \N 5 &.&. Ho-. ~ Lc-G.i :~ .... 7 .. , ..... ~ ...... .,;. '"':: ..... •).~~--·
s~ tZ 'rN·,.·· Gtt;,.~, ···i...~;:;·;,: l'tftlr
...
1 ,, ..
· ......... ~
''. ,i\ ..
"'-~~
~-·.::.,·
t .. ...,, .
~.
J.S' ; -
--
'~·f.' , '-w.Oo "":'
,
' '
S%'":':.
'+: ..
~· ..... ...... --
GRAVEl.
.
.,;.. ~· . . . .. .
~·-~\:.
~-~::~~-~ ~
~ ~~ .....
~ . . ~
'·'
-·
• ,. "' T.O. ~.4
-~~r.?'-'r ·'7".
!·~;:. ~
:.-.~~ ... ~
•
,
II ;·
.J:JZ· c.,
·'f-JS'·S''?..
I
--
--
'0 • ... _ ..
J:J ...
---
-____ .,__
.... ----·-
'2.S
,
._ .... i.S,. :{ +--r-
w.D. ----
'~~~.=::~-:· ...
·-:1~:·,.: ....
.:..-. .. ·:. ...
it~~:~~
-~ ...
~!',...; ...
.. ...
•
~·~'!e. ..... -.~~~ .--:~ --~-"" .. .
. "
. .
-·~~-------------·.
2-13 -1(,4/)
,'.
M ll•l.-~~
--
-··
--•
•
--2.S
,
-,~ 3 • ., --w.o. -;--:"'
, L--1------....... ----'i.S' :r;o.
-.
: :. ~. .
,; .• "' "• ....
..
... -.. ----~----
' .
.
··:'-i:; :· ;-~
. ;,. •.·•·
: -~
:.
•
.. · •'\ .. ~
J. • .... ~--
•
&.f• I i :t ·a.
-··
-·--.._ .... _ ..
-·· .... ~ ... · ..
. ...... -.... ~.-· ......
d•
.~
.) :: .,
,. .
,,
0 .
J
~
--,,
I . .s --
,
'I.S 1.0.
•
'<!~'•
I
k
I (~···.
... :J:,: .. :::~.=~~-~ ........ ~-....... _.2 __ _1~~~ ... -:::.~~Q~~-~~:-.. --rc~
• • cr • >
• ·. 6 i·"1
~ ..
.. . ,
w.o.
. .. ..
... -·· -.... 0
;
---I ., , .... --
.. .... ---·-;---,·--~ ..
•
~ ..
l~----------~~----------~1
"'f--lt-91.. Ill
I 0
~ --r---...... ·/.0 -
··---~-~----------. · .. ,
'.~-T.~ .
If' •••
. WS c. c. Hac. C L o &.t , • .. :.=~.:. ~. ----· -.--"~·· ..... ~-..-.. .. ·... . ..
. -. ~·-r ... ~ .......... ~·· . ...,_ .. \n ·~ "'!-~ Suez-;~-:-~ ... ~--,..,.,. ...• ,.., • ., .'
.. .. t -·~-•;
.·
.. .
1118· ·. ·-~~"!; ..• '
PftOtlHClMZ;JI., ' .
~QWG.HQ
.. . , .
-
•
:
DWM. RB
ex" ''<\::.. ..
OAT£. "''• I '1
S;ALE.f .. •1,
..
o'
..
! .
.. -R&M. CONSULTANTS, INC. ......... _ ........ ...., .. ........ ..,..,.,...
-~·---------------
w.c.
•
•
--
. """""'-----·--
~----i------------r..-----..-..-,--------------
•
-·.
................. : ~: ... .,._ ... ~ .. :'* ;. ..$." .., .... ,II!! ...
G~~e .. .:.. WAr~• · lT ... ·y.
...
. . .
\i • ~~
)/
I
* I
·-'
I .
f
I
I
. '
~
I .. .
~
I
t·
J r
I . .
l ;:
·I·
.J
.
.,..
1&1 ..
ci' z
2 .a:
2
---
I· -. . . . SU&.I.ECT:
_-.,'!'
\' . .• . . -.. . ;, ~~
• . .. . ... ... "'• • • o~." .• t:J.: . , ~ ~
• I • •· ...._·
.ti n.= ·. :-v .
.... ~ .•. ,o·::.:. -~
·.f.....] • /'\: .... ~ .... o ...... ·~ --__ .. ,0.(1
~ Ill •..... <i
.~a~-·~ .d.·~-.
• -.• IJI;;. • : ·. o: (1
~ ... . . . ·, :. . (/ ... "" •• • '--.1 ·o·· .... ·. . •..
·u • .• ~ ·o
·~ .· .•. ,.....,~· .. ~ ' ,
-.----~CII'-~ ··~:· .. -:.
•. Q .· .... • . • '<I
•• : t"""'\ :
•· ~ . ·.. . ·o· ... .. . ..... o . . .
: ei ¥
-~~·~. D
..,._ _ __,.. "JtJ~-~~ 4111'"· l'llt' "''. £
.. -......
.... ------·-
~c· ~ d'*"" fl#flt1~ I
OF_· ~<D
D.ATE '4#: .· j
DATE· = ..
,/f/HIIr . ~..:."'N~--~-,.:.~ ·4'-.,-,cu .., ., .4,,.,,-, • , ,
~ .
.... -........... "" .....
e'~,~ ~~· .,_,~ J.S. -,fir.
~~ s~ ,r ~ ;t:",-t! -f,_., ,co"'-'' £..,~ .. ~..,
/i
~~ ', _;.,
~ ~····~ .. ,.. .. ~~~-~ .. -.... ,...., ,;~.-~ ...r ..
DATE
~----:-· .. --~ ...... -.
#...., ~, t.Stf'ff,~~ "'*'f:JI dti*4•C"*'S W#'¥ 3'11_, --~
. . ·• :) • • • I ~ .... • ... t:J .. .
: (J. • : . . : :t:J ... . . . . . • ·t:J ~
. '·· .. 0 . •() .. ~ . ,, .... 6.
="· : .. :; . -"' ........ --..: .If J,tJ • _.. IIF ~
,1#1~4~"1" ~?~ ~ tliii?<~C. *"tr•"'ff
' ........ ,,. -
. . ,
JJ. ..\ • .J.J -4~ .
.zs·· t:~
. · .. :
•
-~ ... ,
_,·'
·.; l,_j!loji<~·
1'.'
•
--....
·-· > Ul a:
... -~·
~'1*1'1:. ,,.i~JP''
,.,.~ --··' ·.•-
-·:-.. -.... -.........
··~.
-. '
·-··~--,..--·
•
-~·-·~ .-... ........ ,.. --·.
,...~-~~~ .~· ... ; .. . ~· ..... -----~...-... '\ .. , ..... ~ . .._ ... .
... . -· ., ... . -· _ ..... ___ .,.
.•. ~-. _ .. ,:..:.. ./·: ·~-, : ..,.1'r• • .. ;:-._
,. ··-· ~~···· "' l ... ,.· .. ..-
.. .... ~ -·· ' . • ·-=---*~ .. t_. ..
. ······-
· ... -
. .
.. ~ _.,. -· ··----··*~--.......... -
.,. -· ~ .. '"'·--. ..... 7.-~1 3--"2....2. ~~;;:[f ~-
... ~ ... ,., ~----•4"·.....;_,_~ _,. .................. . "" .... ~ ....•
..... -··--·~· ........ .... ~~·. ~ !
! ~-~ ..... ~· ...
•
. ·
-> w a:
...
. ~"';' -
~;.;.., . ·,:;,:.~:;.
. "'
~~~f!<l':'(~
------.. ~ ... , ~ ~··t:L ,.,... t:.~rr41-4.s~ ~.v.J4', s~~~,~Y . -~~~ ,_.,IW,..,.& _,. SA!My. ·· ·-·':-.::'.a.-;-
' . -:'• .
•: I ~ • . . . : b~···--
..... "Ill
; ~ .. . . · .. . ·;....:
..r ·....., ="~ .. : ... · .•. ~s:~· ----.. •· .•. ' ~"A_ D • -., 4.1• ••
~~.o: :on.·
111'4tle.CJ ~ &~tillS' ~~,~ r,"""-' ,_,.,x,>-.
1'£#fl:l'
t:J e .. ,s,,_,_ 4"'~'-r. ,.t:/1#, ~,.., 71'-f~
:,:~ -
""'---..&·· '1'·' II•T td" ~
~.. • If-:'! ...
• ·, "":"! . .. . . ., ~--~" .. -. . ·
•
6-s ")
'•
.. -."-
..
t •.
-· . ~ ...
"~ ~~~·:' .·
.. ;:::...·· .,
. ~ • ....
t
. ~:~--_ .. ~: ···~~;:.:-:~~--:~ ··:.;,..:·r-...-:-~:-(--:~ ....... ~·;
-Calcula~tons ~ ·:~"
...
U. '·,· -~
•. ,t ,~) . ;.. ~
-i~ .. "£
_. .... __ ..
:: .. "'
..
,. -""=
:::~ .:.:.-~~·-.... "'!!!!· ~·1'.:1
..,.,&..0..
f•tl -·
·-·;---~ . ..,. ~ '
~~ .. ,~,;~-.:--:'~ ... t.;.:· •::· :.!' ... ~~':": :· .. ·._!.;--...
. ....
..
C#,..~_,-. .-
~.-·;..:"-·. :-.
··~ ..
. -. ··.·
.·
.·
JO~ ,.UMBER . ......,""P.~!1.-.'1tP-.1.;.:.· -='•'-•· --. ·, -~\:-' . .
Fi~ NUMBEft ;: :•' .:-. ,. ......., _______ _
SHEET _.:,;-l ':• OF_o:;.S~
DATE
"9~ .. .. . .. .. ... -.. ......... . ............ • .
I
-.U~'I
.t : fE.::7~~~::~: ... ·~~~;.:;
I . ~ . ... ·~-;;· . ·: .J£:.·2-;;~~
.J· ~~.a~
---~ • "'~. • .. -;.f • ,-;:"~ -: ...
.............
. -~
·. ·-· . .'-.. , . . ~.
-~
...... -:--
:.._~ ,.
t'INr
.·
.... ~ ........ ,.. • .. .:~~-,.!4 ..... :.
·~ ... .
~-· ... ~~-...
';..•.
~-"
•:
.. . ...
,'! .. -..
• ... ., . . .. .. ~ ... '. -... .. -·1 -··-...
·--·· .... _
I
1
l
t
t '• 1
., .. . : ..
.. t·
. t· . .
I •
t ! f . .
!, :
'
I. ;
;.
I i
II
l :
I·· ...
! .
I
·I .
; .
i
J •• \' ~'It:.... -.. '~
• • c~' •
POINT
Cross
1
2
3
4
5·
"6
7 ,a
"9
10::
11
'·1~ ·-13
1~·:,
1.5
.,·.MIN
·.MAX
. ' ..-
. $USI1NA HYDROGRAPHIC SURVEYS
c:roils section SLOUGH s 126 •. 6S9
'X' _____ _. __ __
'", Q .
$ection datal o.ooo
1.D. 000
·16.000
34~000
53.000
66.000
79.000
93.000
toa.ooo
.112.000
.119.090
ta&.QOO
133.000
138.000
142.000
o.ooo
142.000
. . . -. . ... .. -
Dat·e of Surve!J: AUGUST 4~ 1982
'Y' _ _. _______ _
: ·I . l.
519.1.50
577 •. 530
577.130
57?',530
575.'730
575.530
571~h130
577.230
57'1.730
576. 'i3D
575.430
574.730
575.130
!:$77 .130
579.840
574.'130
5?9.840
B-79
DESCRIPTION
ALCAP 126.6S9 ~B
TOP BANK
GROUND
GROUND
ALCAP 126.659 RB
. '
I
SUSITNA H.YDROGRAPHIC SURVEYS
't .. . . . · .
. • •
-.·. G)
'f tf .
0)
0
c ·-...
• .
c
0 :;:::;
co
~ m
N · Pfti!PARI!o av: • .: i f'REPAReo fOR: I t--------------........ -----------------------,___,__._..__ _ ___..._ ... -=·:
w
I • .. . ..
• I
o I
I I • t I 1 .. .. ..
cross section SLOUGH 8 1 2 6.659
Date of Survey: AUGUST 4. 1 982
.t
l,
..
I
I
I
•
PQINT
C~oss
l
2
3
4
5
6
1 s
9
10
.11
12
13
·-·
'X'
---.-------
sec1ion 'da-ta:-· ... ,. ,-
0.000
9~000
15.000
37.000
45.000
54.000
65.000
73.000•
83.000
93. ono .
. toa.ooo
116.000
123.000
WateF surfa~e dat~t
1 37 I 000'
a ?3.ooo
MIN
MAX
.· ..
. .. . . . .. ·-. ~ -
..... -
SUSITNA HYDROGRAPHIC SURVEYS
c~~ss sectibn SLOUGH B 126.558
Date of Surve,: AUGUST 4} 1982 .
:-
! • •
'Y' ---------
:· ·t . .
•
578.1.40
578.130
577.530
574~770
5'74.130
573.930
5'74.230
574.630
5'76.230
5.7·6.430
578.030
578.430
578.850
5'74.'7'70
574.630
5'73.930
578.850
B-81
DESCRIPTION __________ ...._ __ _
ALCAP 126~5SB LB.
TOP. BANK
BOTTOM
TOP BANK
TOP BANK
ALCAP 126.558 RB
LEOW WS
REOW WS
'•\
J r /,'
l ,
j
i
/f
SUSITNA HYDROGRAPHIC SURVEYS
c ·-
c
0 = ~----~------~----~------~----~----~~------~ ~
CD w
'•
I . . .
. •
.
• •• I .. ·~ .
I I
cross section SLOUGI; R 1 2 6.558
Date of S• (~~.,'.Jy: AUGUST 4. 1 9 8 2 .
, I
·~ ·-~·,..-
U··.···
PfiEPAftED fOR:
~·· .
~ ··~"'="'" ' ~-._·:.-~
~ ~, 1, • • ..~-,.'
"'" .... ,
POlNT ···.
Cro~s sect1on
i
2
3
A
5
Q :7' ,,.,.
'8:
9
10
11
12
'1. 3
14
ti~it·~·~
j/ \ Q,~ 000
·· s oon ',' ' .
1:3' 00 0
:{7·. 000
'26. 600 ;;6.'ooo
45.000
56,000
7'3. ooo·
82.000
lOO. 000
125.000
135·. ono
143. OOtl
Wa'ter" surface data:
j
l ·~ ·:\ 1 7 a 0 0 0
2 56.000 ••• ' .......
< •.
..
MIN
MAX
'n
• It .. •
o.ooo
143.000
......
SUS!TNA HYDROGRAPHIC SURVEYS
cross section SLOUGH 8 12b.SS7
Da~e of Surve~: AUGUST 4~ 1982
'Y' .DESCRIPTION ___ .,.. ____ C5...__ ------·-------------
580.790
577 .. 1 00
576.COO
572,560
572.000
5'71.900
ALCAP· 126.5S7 LB
•• .
: i . .
• l . .
'
571.80'0
572.560
5?3.900
575.100
575.400 ,,
575.300
5'75.900
575.'730
572,560
572.560
571.800
580.790
B-83
BOTT.OM
TOP BANK
GROUND
LEOW WS
REOW WS
2-J3~2'f'
•
' .\ . . . . ~ . .
t
-CD
4)
LL
-
lf c 00 ·-~
\
SUSITNA HYDROGRAPHIC SURVEYS
•• • l . .
' .
:,
J .. ....
I ..
~ ~ ~ -~
•• ' ~ •• 1
..
I ~ftEPAAED fOR:
t
I
I
I
I
CJ
1 ·. I
..• , .. , ••
Cro~s
1
2 -.!).
4
5
6
7
a
9'
10
11
12
13
. . ~ {; 14
15
16
11 •••• iS
1.9
Water
• • t •
l -~ lr-
'2
;' :.·/
·.·\. \' 4
\. -.~~'
~-
MIN
MAX
'
s~'t:ion
•• {,'""' #
s-urface
" . . .
_ ......
·-.
· SUSIJNA HYDROGRAPHIC SURVEYS
cr·QSS sec't i o.n SLOUGH 8 125. 956
Date of Su.r vey: AUGUST 4 ~ 1982
DESCRIPTION
-
'Y' ______ ._. __ .... ___ _
data: o.nno 511.400 ALCAP . 125 • 996 LB
11,000 570.580 BREAK
20. o:oo 569.280
26.000 567.900
29 i.oo o 56?.780 BOTTOM
'31. 000 568.140
33.000 569.280 TOP BANK
42. oon. 567.980
50.000 569.380
ol.O.OO 569i680 .BREAK
.t-7.000 568.640
82~000 568.480 BOTTOM
·98.000 568.380
111.000 568.380 BOTTOM
124.000 568.700
128.000 569.680 TOP BANK
147.000 570.180 GROUND
163.000 5?0.280
.'176. OllO 571.560 ALCAP 125.9S6 RB
data:
26 .tlOO 567.900 LEOW ws
31,000 568.140 REOW ws
SPLIT
&7o000 5681!640 LEOW ws
124.000 568.700 REOW ws . r ·\' ;
~~ :
o.ooo
=
S67o?80 ' 176.000 .. 571.560 . . --· . % --· • -.
B-85
<.I
·r.··.-_ J..
\E
[
[
[
[
I
-Q)
Q) u.
tp
0)
0\ c ·-
c
0
~ ro
~ -lU
-N PftEPAAI!D av: . ( ...._
VJ • w , (\J Aa.M CO~~., JLTANTS. INC.
. .
U. I ! .,-I . ~ ~ lJ ~. Ll . L.J ·, . . . .
~-.... --------:------------.... •H•,;...~ ...... --.----........,.:-~--.... f "' ,
.
SUSITNA HYDROGRAPHIC SURVEYS . . . .
. • 'I, . . .
.
l •
••
I r • I ..
. I
•
••
I . I . . ; . .
: I . . . ...
.. ....
B
. ... • ·· · · cross section SLOUGli 8 1 2 5.956 ..
I I
(, . Date of Sur(~'/: AUGUST 4, 1 982
. -
'
: ~
• I
I
'
. ..
POIN7
Cro$5
t
2
3
4
5
6
7 a
·9
10
~ 11
Water
1
2
.
;.,:"""" ·MIN .,
f J MA.X ~ •' \. .
. . ~-·:c. ~\ __ •
-sec-tion
..
<
'surface
-'-'" -·-
. B\JSITNA HYDROGRAPt\IC SURVEYS
7 ~~~ss section SLOUGH S 125.7S5
'X'
.... -..---~-~--
data: o.ooo
5,000
·t4. 000
15.000
24~000
34.000
43. ono
5b I 000
73.000
90.000
1 00~000
da't~.: .ts.oco
56.000
.0. 000
100.000
D·~~,.1:'e of Sur'Je!on AUGUST 4~ 1982
'Y' DESCRIPTION ., ... _________ _
-..--------~----
:
. ' . .
• l
568.370
567.950
566.650
565.640
564.450
564·. 050
564 .• 350
566 .• 040
579.350
567.150
567.560
566.040
566.040
564.050
579.350
ALCAP 125.795 !.B
BREAK .,
TOP BANK
BOTTOM
BOTTOM
GROUND·
AI-CAP 125.7SS 'LB
LEOW ws
REOW ws
,
·[
·E
[
[
[
(
•
. . . . · . . .. -. ..-... -• .. '(
B-87
;;'~1
. 2-13~33·t
f
-Q)
if
c ·-
..
. A&.M CONSULTANTS, INO. _,,.._,.L~ ."
I 1 I .. .• . I : l ·~ ~···~ l •• u
SUSITNA HYDROGRAPHIC SURVEYS
••
'I . .
' .
•I
I· .. .., •
• 0
' ..
•
• •
• I ..
I
~.
,I;
'··I .. ;,
f ..
·'
• I
cross section SLOUGH 8 1 2 5.755
Date of Surve~ AUGUST 4, 1 982 R t~
1 : t I
----~~----------~------------~·~~----------------------~--~ ..
••
l.
,.
POINT
Cross ~ection
t·;
••
2
3
4
···6
·1.
8
9.
10
\1
~·:MIN
MAX
·-
-
~-----------
dat.u;
29 .ooo
41.000 s1. o·oo
75.000
119 .• 000
172. OtlO
'215. 00·0
'264' 000
.296 i 01)0
?324~000
•334. 000
29.000
334.000
. . .... ·-··
•
. ·-
-
SUS~TNA HYDROGRAPHIC SURVEYS
cro$~., section SLOUGH B 126 .1H4
Date of' .Surve~¥· AUGUST 4~ 1992
'Y' --..... --~----
,57~.320
S74. 020
573.1'20'
57'3.520
5'73 •. 320
5?3.420
~7" .,.,.0 w ' ' '"' •. &;, c;;.
574.720
574.820
575.720
577'.120
57'3 .120
5'77.120
'i .y
; ·I ; . -. -
. -~-------------·.-.---·
ALCAP 12b • t H4 l-B
GROUHD
GROUND
TOE
ALCAP 12&.1H4 RB
. ..
·v·.~ .. . . :. -1
I
[
[
n
[~
[
-', [
·B-89
~.,1
2.-13-'3$;; J
. . • i
:tv
' Pfti!PMII!D aV: ..._
w
'.'(~
~: ~
•
c ·-
• . I ·~ .
.. • . t
~.·j ....
SUSITNA HYDROGRAPHIC SURVEYS
•
.
. . •
• •
:,
!· .. . '
•
.
I
'
'· .
..
: I
• • .
.
··I
I .. .
I
I
1' I . ..
.. ...
cross section SLOUGH 8 1 26.1H4
Date of Sur('"""/: AUGUST 4, 1 9 B 2
i
..
l
'·
Pftf!f'Afti!D fOR:
r
I
l
I . .. •
'
I .
!
I
I
I
r .
POINT ··
Crtt~s $e~-t;on
'1
2.
3,
4
5
6
7
·"'.a 9
10 ,,
11
12
13
14
~a'ter s.urT'aC:e
·'' 1
' 2 (. ·'
\ . ._
~ ·-MIN '{-c>~
MAX
.. :• 'l 1.
'"" . • 1 . ' .
. 'X'
·' ~~--~-~~CD
' ,,
da.ta_;
Q .ooo
3: OOQ
12, otUi
18.QOO
.af,OOO·
3'1. 000
44.000
524000
60.000
68.000
SUSITNA Hl'DROGJ~APHlC SURVEYS
eroS$ sac'tion SlOUGH 8. 125.753
Date of surve,~ AUGUST 4, 1982
.... , __ ._--~--
DESCRIPTION: _____ _,_ ... _____ _
ALCAP 125.7S3 LB
TOP·· BANK
BOTTOM .
., :. 73~ ooo'
570 I OJlO
549.830
567.530
5&'7 .130
5bo.530
565.360
563.130
561.930
561..630
562.330
563.130
~b5.35t!
510.030
570.900
tcOTTOM
7&,000
'
ao .. ooo
', '83 .ooo
da't.a 1
-'31.000
1(;1~ 000
0 I 000
83.000
( .
565.360
565.350
5&1.630
5'70.900
B-91
TOP BANK
ALCAP 125.7S3 RB
LEOW WS
REOW \a!:S
•
,i
< c
[.
. ' ·r
1 . -
[
[
I
I
i
l
j
:)
-~
• ... • ..,> .... ---• -·--·--·····--... -·~. '" .. ------------------·· .... , .. , ..
c ·-
c
0
'
SUSITNA HYDROGRAPHIC SURVEYS
i ~----~------~--~~------~---~-r------r-----~
w
I .
PREPARED fOR:
~·, ~ ' ·" ~ -
...,
-··
(··-; " '-.,
""
:.--~.·· .. ~ ~ .
;, ' .
POINT
~,...,._: ... -
Cr~$S· ~ection
t''
~·
'"" 3
4
5
6
7 a
9
10
'[1
12
13 -
14
11:r. w
l6
17
18
19
20
21_
"22
23
24
.25 .
26
27
'Water
1
2
4
5
1
8
MIN
MAX
surf'aca
.-•• .. ..
-,.,
~
SUS!TNA HYDROGRAPH:T.B
cross section SLOUGH 8
Date
'X'
--~---~~---
' data:
0,00(\
2. 000
5.000
'.Q,, 000
1'0 I 00 0
18.000
27 ~·ooo
38.000
52 .• OOQ
59.000
75.000
86. 0 00
100.000
103.000
1 06,0·00
117.000
132.000
145.000
158~000
163.000
169.000 ..
170.000
180.000•
192.000
201. Q.QO
204.000
208.000
data:
10.000
52.000
106.000
158.000
170~000
201.000
o.ooo
208.000
--~-
of Sur .;e~: AUGUST
'YI ... _.,_, ______ ...
571.470
571 n 160
569.260
564.660
563.750
5&2.760
562.760
563 I 060
563.780
566.860
567.960
567.660
566.560
566,360
564.560
56'3. 6&0
564.260
564.760
565.330
566~ tao
565.860
564.130
563.460
563 I 5<'~0
564.220
5&6.440
56'7.250
563.750
563.780
~65 .·41 0
565.430
5&4 I '130
564.220
562.760
571.470
B-93
-~·
SURVEYS .I '125.652
4~ 1982 f DESCRIPTION ________ ... _______
.[ •
ALCAP 125.682 LB .I TOP BANK
BOTTOM 'f
BOTTOM r
ISLAND
E BREAK .
TOP BANK
BOTTOM [
TOP [
DREAK
BOTTOM f
TOP BANK 1 .
ALCAP 125.bS2 RB
LEOW ws
REDW we: .:;:)
SPLIT
LEOW ws
REOW ws • ' SPLIT
LEOW ws
REOW ws
:I
• I • j
I
·.~
, I --,'~
f •
·.:J:. p
'!!··.· .. 1:8·.··. ~ r:, .· • -~,, .
. . . ·'·~ ~· . ~-
'
• • .
' I •
SUSITNA ·H·YDROGRAPHI.C SURVEYS
f'fU!PAFU!D POA:
cross sect.kln SLOUGH 8 1 2 5.652 ,,
( .
·Date of ~ .'-:<;vey: AUGUST 4, 1 9 & 2
.-·-·
•-~. ~
' il '.
c.
"'~•"
POINT
Cross.· $ec.ti·.on
'1
.2
3
4
5
6
8
'1
10
11
't2
13
. 14
15
'16
1'7
_ .. X I
--------~-.... --
'.
deita: o.ooo
6.000
12.000
14.:000
2'3.000
35.000
48o000
64.'QOO ao.ooo
9'7.000
114.000
. 133 I 000
151.000
165.000
1'73.000
188.000
193.000
W~t~r sur~ace data:
.,r
1 12.000 a 173.ooo
MIN
HAX
.--
o.ooo
193.000
e
-·-
SUSITNA HYDROGRAPHIC SURVEYS
cross section SLOUGH B 125.2W1
Date of Survey! AUGUST 4l 1982
'Y' _____ -.: __ _
s6a ,5to.
567.540
562.810
560 .140
55Si440
558.340
558.34.0
558.740
559.440
560.240
560.140
660.540
560.140
561.440
562.880
56:1,. 590
566.010
562.810
562.889
558.340
568.510
B-95
DF.;SCRIPTION
-----~ .... ---·--------
ALCAP 125.2W1 LB
TOP BANK
BOTTOM
BOTTOM·.
BOTTOM
TOP BANK
ALCAP 125.2W1 RB
LEOW WS
REOW WS
,
(i
2 l • . .. ,.,. : · .. , .. 1 ... . ~-~ ' ·~ :.· ~~
. )-~ '
' .. . ··-,... --··· .... :..... ""' --~ .
. .
SUSITNA HYDROGRAPHIC SURVEYS
. ------
' .
PA2PAfti!D POR:
• ~ \;) cross section SLOUGH 8 1 2 5.2W1 ~···..._._"_"M+-'c_o_N ~'_.,r,_"_N_T_"-:...·-•_N_o_ ..... • ________ o_a_t_e of._s_ur_v~_j_A_u_G_. __ u_s_r_4_, _1,_9_a_2...__._ __________ ~~f~
. ·"'',; .
. ..
I
L '. i
' I
•
I '
i
' . I
I
I
I
.
l
~·· {
POINT
---~---
.,D
Crns$ section
1
~·· t;;.
3
4
5
6
7
a
9
10
11
1~
13
14
15
1.6
17 •• ~. ·-·~ · .. M!N
.MAX.·
....
'I
-
. SUSITNA HXDROGRAPHIC SURVEYS
cros.s sect:ion ·LANE CR SLOUGH 114. 1H1
~--------
data: o.ooo
10.000
14.0()0•
17.000.
22.000
33.000.
53.000
75!000
89.000
118.000
136.000
160.000
180.000
189.000
20.5 i 000
215.000
222.ouo
o.ooo
222.000
Date of Surv~y: AUGUST 16 1 1982
---------
·~' r;-. 491,810
473. 6'20
473.220
472.920
4?3.920
474.420
474.520
414.82fJ
475.120
475,420
475.420 . 475.820
47c.120
475.720
475.720
475.120
476.230
472.920
481.810
B-97
.. -
DESCRIPTION
.-~-------~--... ---
ALCAP 114 I 1H1 LB
TOP BANK
BREAK
GROUND
GROUND
BREAK
TOE
REBAR 114.1Hl.RB
·I
·; . '
POINT 'XI
--~~r~-------------
Cross section data:
1 o.ooo
2 6.000
3 -20. 0 0 0
4 21 •. 0~0
5 26.000
6 34 I 000
7 46. 000
a 61.000
9 78.000
10 92.000
11 105.000
12 117.000
13 140.000
14 142.000
15 171.000
16 197.000
17 215.000
19 232.000
19 252.000
20 271,000
21 • 289.000
22 308.000
23 331.000
24 354.000
25 380,000
26 401.000
27 421.000
28 435.000
29 453.()00
30 464.000
. 31 .... A1s·.·o·oo
32 _:--= 48 1 t 0 0 0
33 489.000
34 49'7.00(!
35 498,000
36 508.000
Water surf' ace data~
1 34.000
2 117.000
4 142.000
5 489,000
MIN o.ooo
MAX 509.000 I
SLOU~f-l · 9
SUSITNA HYDROGRAPHIC SURVEYS
cruss section SLOUGH 9 129.3H9
Date of Sur~eyr AUGUST 1~ 1982
'YI DESCRIPTION
----~------... -----
606.770 ALCAP 129.3H9
605.430 TOE
605.630 TOE
606.130 TOP
606. 130 GROUND
605' 130
604.830 BOTTOM
604.830
604.'730
604.330
604.030 BOTTOM
605.090
605.430
605.020
604.330 BOTTOM
604.330
604.330
604.230
604.330 BOTTOM
604.430
604,330
604.330
604.230 BOTTOM
604.130
603.930
603.530
~ 602.530 BOTTOM .
I
602.730
602.830
603.830
LB
..---"'
( ~··,,. -.._._.... -;.
.. .. ---. . . ... -..... -. --·-. -C) .":"" ., •
. _:co~ BtrTTOH. . . . --·· .. . ·-·-.. . -. . . .
\.600 .730 _ .. · ·---·-· -·· 603.?60
605.230
. 607 .630" -···· -· ... TOP BANK
608.180 ALCA~ 129.3H9 RB
605.130 LEOW ws
605.09~ REOW WS
SPLIT
605_. 02.0 LEOW ws
603.760 REOW ws
600 a73Q ~ 0 608.180
B-60
·,
i •
N
' -v.J
' .J:.
V\
..
Cl)
.f
c ·-
c
0 ·-~ ~ CD -w
~
SUSITNA HYDROGRAPHIC SURVEYS
•
I
cross section SLOUGH 9 1 2 9.3H9
Date of Survey: AUGUST 1, 1 9 8 2
PREPARED FOR:
. ' ··-· ; .
POINT ·------.. ·------~---
Cl'CSS section data:
., :·o~ooo 1
~ a.ooo ... -19.000 ' ,j,)_
4 22.000
5 32.000
·6 43.000
7 57.000
8 69.000
9 84.000
10 93. oo·o
11 96.080
12 99.00.0
"13 124.000
14 131.000
15 147.000
16 160,000
17 ' 17'3.000
18' 188.000
19. 204.000
20 222.000
at 234.000
22 251.000
_.,'3 ,c;. 259.000
24 266.000
25 2'71.000
26. 278.000
.
Water suf'f"ace data~
1 22.000
2 93.000 -· . . -... . . . . .-. . . .
4 131.000
5 259.000
MIN 0.000
MAX 278.000
~
SUSITNA 1-fl'DROGRAPHIC SURVEYS
erose section SLOUGH 9 129.3SB
Date of Sur~e~: AUGUST 1~.1982
'Y' DESCRIPTION
-------------~---..~------
608~280 . ALCAP 129.3sa
606.540
664.240 TOE
602.940
602.340 BOTTOM
602.340
602.240 T.iOTTOM
602.140
602.540
602s710
603.240 TOP BAR
602.840 TOE
603.240
603.190
602.340, BOTTOM
602.340
602.440
602.346
602.340 BOTTOM
602.140
601.940
602.440
602.950
603,940
606.440 TOP
606.330 ALCAP 129.3S8
• r ,
602.940. LEOW ws
LB
~ -~:\
J
RB
602!99Q. REOW -~~ --...... -"·-·-. -. . -.. ~ -. . . . SP1..IT ·. · · . . -·· . -... · . -. . ..
603.190 LEOW ws
602.950 REOW ws
601.940
608.280
-
-----------------~-~~------· ·.· ··-·· ..
tv
' -VJ
' '
•
c
0
I m
• .
SUSITNA HYDROGRAPHIC SURVEYS
I •
'• .... . ....
··.-:·
---~
cross section SLOUGH 9 1 2 9.358
Date of Survey: AUGUST 1. 1 9 8 2 .
PREPAReD POA:
~---~~~,-----------------------------------------------------------~--~~~--~
·_, : .. ·-·~' -. ·-<)-' SUSITNA HYDROGRAPHIC SURVEYS
cross ~~ction SLOUGH 9 129,4T7
-Date of Survey: AUGUST 1 .. 1982 . .
·cross
·t
a
3
4
5
6
1
a
'· .:<)
.1 0
·11
12
13
.14
1:5 ~-
sectiQn
'X' .__c-.._, __ ... __ '
datat Q.aoo
3 .. 000
6 .• 0 l1 0
13. 000
21.000
2~.000
36i000
43.000
51..000
sa. oao
65.000
68.000
.11. 000
72.000
74.000
Wate.r surface data:
1 6.000 ·a . . ; . 6s 5 o o o
MIN·,;
·;ttAX.
..
a.ooo
74,000
"' .
I
. 'Y'
. 605·~430
604,000
601.870
601.030
600.530
600.330
600.430
600.530
600.930
601.030
601.840
603.230
603.136
605.130
605.660
601.870
601.840
600.330
605.660
. . -.. -~~ ~ . . .. . ... ..
B-64
DESCRIPTION ·
-=------------~·_W.O __ _
ALCAP \29.4T? LB
BOTTOM
BOTTOM . '
BOTTOM
BREAK
TOE
ALCAP 129.4T7 RB
LEOW WS
REOW WS
.kl).· ... '··
. .
' ' .
NM CONSULTANT$. INC.
SUSITNA HYDROGRAPHIC SURVEYS
cross section SLOUGH 9 1 2 9.4T7
Date of Survey: AUGUST 1, 1 9 8 2
PAEP'Aflf£0 FOR:
'\!
:: . ~ .
. <POINT
:cross section
t
~. 2
3
'4
5
0
7
a
9
10
11
1"' l§iio
13
'14
15
16
17
18
19
20
21
22
23
'24
2.5
26
27
as
29
30 ..
~ '31 ..
32
33
34
35
Jo
37
38
39
-40
41
42.
43
44
45
. ' t'
SUSITNA HYDROGRAPHIC SURVEYS cr~ss section SLOUGH 9 129.5T6
Date of·Survey: AUGUST 1 1 1982
'Y' DESCRIPTION
'X .. ----------------~---------------~tllli---
data:
0. 000 . 610.390 ALCAP 129.5To.LB
10.000 607.7&0 GROUND
14 ~000 607.360 'TOE
11:.. o o·o &09.360 TOP
22.000 609.160 BREAK
29.000 607.360 TOP
31..000 ao5.6bO TOE
40.000 603. 66\{)
44.000 604. 7oul
53.000 606.960 TOP BANK
·~ nao 607.060 GROUND
o ... ;, ...
&B. 000 606.660 TOP
73.000 603.870
76.000 603.660 BOTTOM
79.000 603.600
89.000 603.960 TOE
93.000 605.760 TOP BANK
102.000 oO?.ooo BREAK
106.000 607.260
112.000 604.960 LOW
121.000 605.060 TOE
123.000 o06a460 TOP
132.000 606.660 GROUND
141.000 606 .1&0 BREAK
145.000 &05.260 LOW
149.000 605.860 BREAK
156.000 " 605.260 GROUND r
I
165.000 604.860 LOW
606.160
r.·.···; ~t .. f .
·"·:· . ~-Clr ......... '
172.000 605.760. TOE --.. --..... ~--.. ·-·-.. 177.000 .tac;·.·,ioo .: --........ .606.560
. . . -... .. ... . . .... .-• -. . . ... . . . . .
194.000 606.260
198.000 605.4&0
201,000 602.920
212.000 602.2&0. BOTTOM
~a11.000 602.910
222.000 603.860
224.000 605.360
230.000 606.660 TOP BANK
235.000 604.860
241.000 606.660
2.54.000 &oo.&oo GROUND
270.000 606.360
280.000 605.960
284.000 607.410 ALCAP t29.5T6 RB u
J..latf!r surface data: 603.870 LEOW ws
l 1 73.00.0
~I 2 79.000 &03.800 REOW WS
4 201.000
SPLIT 2-13·50
602.920 LEOW ws
=: ?1"7 nnn t..n':" 01fl :> =nt.t hi~ P-b·6
~«
_o....:::.:.__ __ ~~··:L • .: •• .~4 --::··---.. , .• ..,., ~'~.-~~· .'--:'
' r
' ' ' • ' • ~------------------------···~· --------------------------------------------~----~
w
' V\
. · ·fla.M CONSULTANTS, INC.
SUSITNA HYDR.OGRAPHIC SURVEYS
cross section SLOUGH 9 1 2 9.5T6
Date of Survey: AUGUST 1, 1 982
'
........,......... ~"'" •·-.Iii'• • •-••••----• ... ·-·--....-----alt~r·.•·r.v.-..•·••--------~-----·-----·--···-·---·----... ----·-----~··-....... · J -•• ~ .......... ,. ·~-,
¥'; ; +' ~. : . .
f'l1~f'AftED FOR:
·. -,· . ' . . . '
I
l
I .
I
i l. .
. . . ~ . ., ~ ' : . . • -- . . "'.,,....-.s,..., ••· -. , .... • ' ,'. ~-~_;•.--.:··.·.-.:-/, ~ ·~.. •· ~-:--·,.._ !(-~~ .• j~ .. _.~~·,. .• ... ,. .. ~·# :l~~·~·\-!f.~.-~~· ·1'-;l~.~ •• ..--·~-~-~·h"•~---~.,....,( *"•·~·-·::.~.:'t::·;~-~ .,__...,~~:-' ·-~ ..__..;;.~~'1;-::~-;::.::.,;;;.;;.;::;;~;.;.-;,.;:-]:::;.;.;;;;;;;~tf;I;.;;,.,..Vl'.,'•" :.r5-·•·,t"""'.., If::_!!~·~ '""":~'il .. •{• ·• •.1·~· ."' ;:,~•; :
l
f
i
J
J • .
i
.
' .. ,
-'"""'' ·-· .. ·'~It;'" • .,.., .~ ·"" "~
_,
. ..._ ...• __:/,. _.,-• ... ""'''"''V"'~...S·.iir···,
.-,ac
.......... -
Cross section data:
1 ·"\' o~·ooo
2 13.000 .... 2'1'.000 ~
4 49.000
·5 51.000
6 5.9. 000
"'7 69 000 . .
·a ~/~ 79.000 • . . ~ . 89.GCO 9 :;..::,
'1.~ 99' 000
11 109.000
.12 119.000
13 129.000
14 •' 1411. oo-o
15 154.000
16 167.000
17 178.000
,,18, 189.000
19 205.000
20 214.000
21 220.000
Water surface data:
1 st.noo
2 205.000
MIN ., o.ooo
MAX 220,000
. -•,_-"1 . . -. -. .
•
SUSITNA HYDROGRAPHIC SURVEYS. '1
cro~s-$ection SLOUGH 9 129.2SS
Date of Survey: AUGUST 1, 1982
'Y' DESCRIPTION
--~-----------------------
605.080 ALCAP 129.2SS
605.090 TOP BANK
603.390 BREAK
602.890 TOP
601.41.0
600.090 BOTTOM
600.590
600 c 190
599 .790' BOTTOM
5?9·. 590
599.790
599.890
600.090 BOTTOM
601.390
601.490 BAR
601.490
601 .190
600.690 BOTTOM
601,490
604.490
606.010 ALCAP 129.2S5
601.410 LEOW ws
601.490 REOW ws
• ;
599.590
606.010
. . --... --. --. . -.~ .. ~~ .. . ··---. . . .. --. -
•
'·
B-68
C""· . l . --~
LB
-::·-r" ' ~ . ·, . }
~-,,.~J1
RB
·-----Oi ·-. ...... ' ... -----
f''
{ ' ' • f '
c ·-
:; fi&M CONSULTANTS. INO.
.
SUSITNA HYDROGRAPHIC SURVEYS
••
.. .. ...
cross section SLOUGH 9 1 2 90255
Date of Survey: AUGUST 1. 1 9 8 2
~ -------:.--..... ~· • ... .. ....... • .... ,..It, ......... --··-..-··· ......
' \) >
s ~~ , ~· ·,...·~J;~'A .. ;..'C.... ;~Htt;t:.~XO.n"""'tJre:t~\\ ·-·-,-..... ~ ....................... -.. •i•••..,..,"•·'...-,-'"' ..... --·-•" -*"--· ''• ··--..... 4.,·-·-.t~~ .. ,~
PitEf'AhED FOR:
--~---
Cross
.1
2 -.3
4
5
6
7
~
9
Water
1
2
·MIN
MAX
section
surT'ace
•,
' '
.~. -, SUSITNA HYDROGRAPHIC SURVEYS
c~oss sec~ion SLOUGH 9 129.054
0· .
Date o¥ Surve9t AUGUS~ 1~1982 \_:._} ' .
"X'
----------
da·ta: o.ooo
4.000
5.000
c;.ooo
11. 00 0 .
1.3.\100
16.000
19.000
21.000
data:
5.000
16.000
o.ooo
21.000
. . .----. . . . ... ;
..
-.y'
------------
" ;
---.. ... .. . .
600~190
595.740
595.010
594~540
594.540
59'4,640
594.980
597.240
597.870
595i010
594.980
594.540
600.180
. . -....
B-70
•
DESCRIPTION
---~-------... _, __ _
T.BM SPIKE IN TREE
BOTTOM
BOTTOM
TOP BANK
ALCAP 129.054 RB
LEOW ws
REOW ws
........ -.. --.. --·-. -. . ~-~.. ~ . .. : ~--..
:{
,.-'·\ '• ·~ . '
..
.....
CD
d.:
T c
.._J ·-1-'
c
0 ·--+4 E
ill
Pfti!PAfti!D IIV:
..
't
SUSITNA HYDROGRAPHIC SURVEYS
... ...
•
-·
cross section SLOUGH 9 1 2 9.054
Date of Survey: AUGUST 1~~ 982
. . ......... -··--............. ----··· .... ....,........_.... ..... ~ ......... .,,. ,, ' ·-··-' ·~"'"'''91"~-4 ..... ~I l ,, '• •" ' .... Ll'""'olil&t.IU8I-h<l,~-""""'·'-· ------·
\
PREPARED fOR:
. " :!,
POINT
---~-
,;,cross -sec titan
I '; . , __ .1
2
'3
4
5
6
1 a
9· "· ·~
10
1.1
12
'13
'1·<\
l5
16,
Water sur-ra•:e
1
2
MIN
MAX
·----~-... --
datal o.ooo
7.000
10~000
ts~oao
2b'. 000
37.000
49.000
59.000
72,000 as.ooo
100.·000
113.000
135.000
161.000
169.000
170.000
data:
15.000
135.000
o.ooo
170.000
SU.SITNA HYDROGRr~PHIC SURVEYS
cross s~ction SLOUGH 9 128.SS3
Date of Survey: AUGUST 1~ 1982
'Y' DESCRIPTION
--..,~-----------------~--~-..-
600. '1.0 0 ALCAP 12.8.853
599.130 TOP BANK
595.630
593.960
592.460 BOTTOM
592.360
592.5~0
592oo60
592.660 BOTTOM
592.860
593.160
593.360 BOTTOM
593.960
594.230
598.730 TOP BANK
598.940 ALCAP 128.853
593.969 1-EOW ws
593.960 REOW ws -
5 1~2.360
600 .1 00
\.
.I
LB
RB
0 ,
.
.. . -.. --, .. · -: --. .. ~. --·.~~."' ... ':"' .. · .... ~ .---. __ ...... ·-. . .
•
-~ ........... .. ·-
/
B-72
r •
c ·-
c
0 ·-....
g!
CD
iii
MM CONSt.e..TANTS, tNO.
,-.-..-... ..,
f
.
SUSITNA HYDROGRAPHIC SURVEYS
I •
• . .
I '•• I . ....
----------....._. ______ .....__. __
cross section SLOUGH 9 1 2 8.853
Data of Survey: AUGUST 1. 1 982
•
PRI!PAFIED POA:
~-----------------------------------------------------------------------------------~--------~---------
-------·--------------:-:. -=-:-::-.. -:--. ~. -------·--------=----=---:--:-:----------------------···---.
-------
CI'OS$ section
1
.2
'3
4
5
0
'7
:8
9
1.0
11
12
13
14
15
16
t7
18
19
20
21
22
23
~4 '""· 25
Wa-ter surf' ace
t ..
2
·MIN"'. . .
. MAX
•
w-., ,.;
SUSI~NA HYDROGRAPHIC SURV~YS
~~.oss see-r ion S~OUGH 9 128. ·4w1
-D~te of Surve~: AUGUST 2~ 1982
'Y' DESCRIPTION -
-----..-.aa-csat-
_ ... _...,..r_... _______ _
~-----~--
data:
OeOOO 599.080
3.000 594.830
4.000 594 .t '30
7.000 592. 130
18.000 589.980
29.000 589.180
40.000 588.480
49.000 588.280
57.000 588.480
69.000 588.980
79.000 589.25,0
95.000 589.660
105.1100 589.?90
118.000 589.980
132.000 590.080
145. o·oo 590.180
'156,000 589.?80
161.000 589.780
178.000 589.980
190·. 000 591.180
1.989000 592.240
208.000 593.830
226.000 595.830
229.000 59?.230
2'31.000 597.480
data:
'7.000 • 592.130 ,
I
198.000 592.240
: ~t=~·o·o o ·.: . . • w: --:~ •• . 5BB.2SO
231.000 599. 080
.. ..-... , ............. ·---~-_.............
B-74
ALCAP 128.4W1
TOP
BOTTOM
BOTTOM
BOTTOM
BOTTOM
BOTTOM
TOP BANK
ALCAP 12tL 4W1
LEOW ws
REOW ws
. --,... --.... . .
~ • --
. . '
-..... -. -·--·¥ ,._ ..........
LB
CL . ~
'
R.'3
--·--·-. . : ":., ...... ~-.
tr'll'l '. ~
•
N
' -
-::-·~~~· .... ·~·~""""-"···--~----· ·----------.. ...__......_--~--.., ..... ,. ____ ;·-.... -.. , .... ·-···•-t• .-.. -•. -........ ______ ..,. _____ ....... ----"'~ ...
' • "
c ·-
•
SUSITNA HYDROGRAPHIC SURVEYS
•• . ',,
.. . ... ~·
....
cross section SLOUGH 9 1 2 8.4W1
Date of Survey: AUGUST 211 1 982
PREPARED FOR:
-I -.; "-"""' .
• 6' 0 ,;
...
-ia'I'O .. . -
.. •••
.•
THALWEG PROF,LE
SLOUGH BA
( ' 'JJ '·,
<?-,;
SUl4FACE SU~SmATE TYPES
D IILfiiAII)
r::J lliVILI.~Itil
• COIILIIIOULII&e
---r:f.t-u?t:~.~, .. ·c:l·
IIUSIVNA AIYIII IIIAC:tw IIIIAIIIIIif•llll(...at
·~·.~.-~----~~~----,~,r~----~-----r----~~.=----r----~----~----~-,·~~---,-----,r----~~oo---;J-T®-.----.,,,-~----N,Ir~----n,l~~----~o~l~oo----e-olroo----,-~Too----,-,T~-~---i-JT,-~----KJ,-•oo----11,~~
STREAMBED ITATIOH~V>111U
Figl.lre 41-3-36. Streambed profile for Slough SA.
/~'\ ( :z
l; ;
~~..,~
• _i, ... t •• ·
..
> 110
lOIS
-i ::: ....... z
0 0
00 5 > Ill _.
Ill
.Ill -!) a: ..
..
,-)~ ~
' ." .......... w
\
()'
-~
~
..
t
Figure 41-3-37.
SlbUOIJ I ll!IJAMIED
0 PROFIL! STUDY ~llf:A
·;.;,.. A ITIIIEAMI£0 STATIOtj
_,....,.~I<, r.
STREAMBED ITATIOH C fill)
Streambed profile for Slough 9.
THAt..:'JlJ,£G, PROFIL~
.SLOUGH 9
SURFACe! $U6STRA1L~ TYPES
c::::::a liLY I IANO
~.!~i-J 4iRAYit. I !IIIUIII.I"
~ COIII.I I IOULDlft
CIUSIYhA .IIIVU ffiAf:~ tlv.lf·~lllft, ~l til•!)
.,
. 0
< ::
I
I • ....
I
(J)
FIG.· 1. 3 SLOUGH' 8 A
~.
f. 'j \ /
LEGEND:
• " Q
• ®
-
OBSERVATION WELLS
STAFF GAGES
DISCHARGE MEASUREMENT SITE
CONTINUOUS STAGE RECORDERS
CONTROLLING BERMS
STREAMBED.
CAO~~ ... 'Se.C.TiotJ S
"'~"" ~ ................. ........_ ......... _..___.. .............. --.... --------.......... _.._... ....... -------------~----------------·--------·-----... ........-.Gt· ...... -···-... --.. _..
....
I en
N
' ...... w
' G'"'
,(J-)
~·b!!.\ •
"' ..
LEGEND:
• OBSERVATION WELLS
Y STAFF GAGES
Q DISCHARGE MEASUREMENT SITES
• CONTINUOUS STAGE RECORDERS
~ CONTROLLING BERMS
<!.> CLIMATE STATION
--STREAMBED
c~os.s -5 c. cr1tYvr
PREPARED BY •
FIG.-1.2
R.&M CONSULTANTS, INC.
•
....
-...
SLOUGHS. g· &' 98
... ·.··--..
·':··~ . .. . .. . ••: . ... . ·.~·: .... ~
--·::~·
t"" ' ' ' "'""
-,,
...
PREPARED FOR•
EXHIBIT E
.
2. water use. and QualitY
CQIIIIeflt .15 {p~ E-2-4l)
·.Describe or reference the technique that has been developed for measuring
upwelling ;·n sloughs. Pr~vide the. date and mainstem flow at the time
groundwatP.r flow was estimat~d.
Response
•,
The techrrique for •. ~asuring upwelling water flows is contained in the
attached references in pp. 2-15-2 to 2-15-14.
Lee, D. R. 1977. A . Device for Measuring Seepage Flux in Lakes and
Estuaries. Limnology and Oceanography, Volume 22, p. 140 ..
,.;;;.;;...;..;;...;;.;.o·..;..:;,...:-
Lee:, 0. R. and J. A. Cherry 1978. A Field Exercise on Groundwater Flow
Using Seepage Meters and Mini-piezometers. Journal of Geological Education,
Volume 27, p. 6.
The date and mainstem flow of the Slough 9 groundwater flow measurements are
as follows:
Date Slough 9 Slough 9 Mainstem Flow
.Groundwater Total at
Flow Discharge_ Gold Creek
(cfs) (cf.s) (cfs)
08/25/82 1.00 1.64 13,400
09/09/82 0.74 2.06 13,400
2-15-1
} ,.-.
(
A device for n1easuring seepage flux in lakes and estuaries1
Abstract--Seepage flux can be me~ured
and samples of groundwater flowing into
lakes and estuaties coU~cted by enclosing an
area of bottom with a cylinder vented to a
plastic bag. The method has the adv~ntage
of not requiring measurements of · permeabil-
ity of bottom sediments. Seepage velocities
£rom -O.l-2.58 ,urns-" were. measured in Min-
nesota and \Visco~in lakes and in Nova Sf:o-
tia and North Catalina estuaries.
Where. seepage. inflow was rapid ( 0.4-0.8
}&Ill s·'). water collected with the seepage
meter \\r.JS chemically simila.r to water from
wells on ~e same flow path, and the distri-
bution and cltemistry of the seep:~.ge con-
curred with .a theoretical flaw net. The rate
and direction of seepage flux were correlated
with water surface elevation during a tidal
cycle. ..
Tltis paper describes a simple, ine:-.-pen-
sive instrument that . has been used sue-
1.\Vark W:IS sponsored in part by a grant from
, the Pelican River \V~tcrshed, Detroit L:tkcs, Mina
nesat~ to J. K. Necl, Dcp:~.rtmcnt of Bioltlg)•, Uni-
versity of North Dakota, Crand Forks.
cessfully to make direct measurements of
seepage flux in lakes and estuades (Table
1). The technique hns the advantage of
nQt requhing measurements of the perme-
ability. of sediments. The method yields a
sample of water suitable for chemical
analysis, and the equipment involved is
relatively inexpensive.
Evaluation and management of lakes
and estuaries often require specific in-
formation on water and chemical budgets.
All of the inflow-outflow components must
be .measured or estimated, and almost in-
variably the greatest uncertainty involves
the groundwater· component. Rarely are
direct measurements attempted, presum-
ably because the investigators believe
tl1at this would require excessive invest-
rnen~s of time and equipment. There is a
severe lack of methodology for site-specific
study of nutlient input to lakes via ground-
water (Uttonna:·k et al. 197 4), and ground-
Table 1. Seepage measurements ttsing sccpag~ meter a.t va.rious loc:~.tinns •
Y.aatioll
'Lake S:zllie, HN
(46.46'~.9s•s4't:>
Lake Huv!1, M.~
(4 7•33 'N,,95 •oa 'w>
l.;.Jke Mend.;,ta, Ht
(43.07'N, 88•25 'W)
Minas !:ssin. t."S
(44.$5'N,64.08')
!o;ue Sound, NC
(l4.42't;,76.45 1 W)
Duke tbdne ub,NC
(J4•4l'N,76.49'W)
. Seepage ~o.
velocity (Ua ~-'> ~ellsurcmt:nts
o.o1-2 • .sa 494
1.0 3
O.J2-0.4S, 2
o.s-i.4 6
0.32 1
-0.1-0.8 44
Bottoa tlaten:·
type depth (•)
l4::lnd, 0.2-2.0
cr:a"V4tl
sc-av.tl 1.0
s:and 0.7
arand 0 1.5-2.0
silt
s:sncl 0.9
sanct.. 0.1-1.5
Co£Mients.
~asureeunts ~de
around entire periphery
of the lolk.::, 1970-72
s~~th ~horc, S Aug 1975
Mendota P:lrk on north
:;hare, 10 c\ug 1975
m~asurcm~ncs made 4ur-
ing fallinG tide on
upper third of bdach0
25 Jun 1975
measurements made dur-
in& falllns tid~ ~bout
0 .l lll belav ~IL\l• 16
}lay 1975
measuremunts. m3de dur-
in; fal1ln~ :ln~ ris•
in& t~dc 0.1 m below
M!.V; ~ tt.:~.y ai4, lS-
16 .by 1'115 -----------------------------------------------------------------
LlM~OLOGY AND OCEAr\'OCRAPIIY 140 JANUAR\" 1977. V. 22(1)
.·
\::._:;,_) ..
.....
.. -· -· .. ,_ ______ , ____ ....___~-~----··-
Z-15-Z '
••
Notes 141
water surface ---------
Fig. 1. F'ull-section view .of seepage cylinder
showing proper placement in sediment. a--4-liter.
0.01'1-mm-membrane, pl&.St.:¥ Daggies Alligator b:tg
(open end beat-sealed}; b-rubber-band wrap;
~.64-cm•ID. G em long. polyethylene tube; d
~.79-cm-lD. 4.5 em Jong, amber-latex tube; •e
-r\o. 5'1.! one-hole ntbber stopper with poly-
~·· /Iene tube; . f:--15:. X 57-em-diameter epoxy•
coated cylinder (end-section of n steel drum).
\Vater flow .systenlS around lakes (Born et
al. 1974). and estuaries are poorly docu-
nlented.
. The ~tsunl approach for obtaining esti-
mntes of groundwater-surface water . inter-
action is to install observation wells on
land near the shore or in tlle water bnsin:
The wells are· tl1en used to obtain measure-
ments of the rlistrihution c,f the hydraulic
bea(l ;mel estimntcs of panncability. This
··is generally tlnsntisftlctory bec-ause it is sci-
do.~ feasible ·to cstitml.te ·permeability by
less · .th~m nn orcler of magnitude and be-
cause surface-groundwater interaction is.
often CQJltrtllled at or very near the sedi-
numt-w•\ter .interface.
I. thank J. X. Nee!. for guidance in the
initial plmscs of tl1is work. J. K. Neel, Q. L.
Gehle, J. A. Cherry, a~1d L. S. Cln>·ton pro-
vided comments •. 'Vork ~;pa~e and equip-
ment were provided by the staff of the
Lake Sallie Fisheries Station, !\linncsota
Depa~·tmcnt of Conserv~1tion, and .bv t11e
Dep~rtment of Geology, Virginia Poi}:tech-
nic Institute and State University. Part of
this W(Jrk appeared in my M.S. thesis ( Uni-
versity of North Dakota).
Groundwater seeping into standing sur-
face waters ean he collected bv covcrinCT
:tn nrea of la~ebecl with a. bottot~less cylin~
dcr ventecl to a deflated plastic bag (Fig.
1). The cylinder is turned slowly ( ~1 em
s·1 ), opcn~~md down, into. the sediment
until its top is about 2 Cl:l above the sedi-
ment surface. The vent h~le is ~levated
slightly so that any gas from ti~~ sediment
may freely escape. The cylinder is ~arked
and left for several aays to allow benthb
organisms to escape (although preliminary
measurements can be started immediately).
Then a stopper with tube is. inserted into
the cylinder hole ..
To collect a sample, a deflated plastic
bag is connected to the tube ,and left for
a specified time or until it contains 0.5-3
liters. Where surface water seeps into the
sediment, the plastic bag is filled with a
known amount of water before ,it is con-
nected to the tube. l\facroscopic seepage
velocity is determined as
1.075 v o=--t--,
where V is liters of water entering ( +
value) or leaving (-value) tbe bag, t is
hours of elapsed time, and v is seepage
velocity ( + is upward, -is downward)
expressed as micrometers per second. The
factor 1.075 converts units nf vohm1e, time,
and area covered by the cylinder ( 0.255
m~) to equivalent units of velocity · ( p.m
s-1 ) or seepage flux (ml rn·2 . s-1 ). The
macroscopic seepage velocity sl10uld not be
confused with the averrtge interstitial ve-
locity, which · is equal to 100 times the
seepnge velocity divided by the percent
porosity of tl1e sediment.
~1ost problems in measuring seep~ge are
due to improper placement of the. cylin-
der. If the cylinder is not positioned with
its hole near the highest point, gas from
the sediment accumulates and reduces
seepage. lvieasurements are also reduced
if the cylinder Hcl presses against the ·lake-
bed. lf the cylinder is pushed too rapidly
into the sediment, blowouts can eause er-
ratic results. ln m·eas where seditnent ac-
cumulates, the vent hole slmuld be ex-
tended with a short length of pipe.
Plugging from ulgal growth may necessi-
tate periodic examination nnd clei\lling of
the vent tuhe. About 5 ml of w~ttcr · un-
av<Jicbhly enter the plastic bng during
.. -... ..--~···
..
2-J~--3
t. It ;!.. ..... .. ..
c
(
\
14!! Notes
con,leCtion. _ A light\veight, ste_el fet:<.'t!-
picket, notched to hook the lower edge .'Jf
the cylh~der, helps in removal of the cylin-
der. It is easier to find the ·cylinders if the
tops are painted white. lv!ateriv.l for con-
structing each .~eepage meter costs $4 to
$9-(in !976} jf two cylinders are cu~ from
·one 55-gallon {208 'liter) drum.
The method will probably find its. great-
est application where surface waters lie in
hin-h to moderately permeable material.
without modifications, it is not designed
for use in the turbulent water o£ the surf
zone or· in rapidly flawing rivers. ln fine,
low permeability sediments, groundwater
velocity may be too low to measure with
this technique, or flow may be restricted
to distinct springs or leaks.
The principle of the method described
here was first used to measure water losses
from irrigation canals (Israelsen and Reeve
1944).: Other methods (Bower and Rice
1968; 'iVamick 1951; Zuber 1970) have
also been suggested to measure flo'~ into
or away from su·rface waters, but all in-
volve substantial cost and none is appro-
priate for sample co1lection.
Laboratory-scale tests were designed to
see if the seepage meter gave an accurate
rneasur~ of groundwater flo\v over· the ve-
locity range encountered in tl1e field. A
rectangular test tank 1.3 m deep and 1.26
X ~.66 m in area held a bed of sand ( 0.5-
0.125-mm-diameter grnnules, 4% silt and
. clay) 0.76 m deep. A permeable plate
supported the sand 10 em above the bot-
tom of the tank. Upward or downward
seepage through the sandbed was con-
trolled with a vmiable-heacl tank con-
nected to the water beneath the perrnenble
plate. An overflow pipe kept' 0.40 m of
water over the sandbcd. The seepage flux·
through the sand was contro1led by the
difference in the piezometric head mea ..
sured by two tubes~ one open to the water
beneath the permeable plate and one open
to the water above the sand. tvfeasure-
ments of seepage fi~tx were made at sev: ··
cral hydraulic gradients · ranging from
-0.071 to 0.097.
Rcpmducibility of velocity measure-
ment." was evaluated at Lake S~tllic, ~1in
nesota. Two seepage meters were placed
0.15 m apart. Simultaneous measurements
were made during 3 consecutive days nnd
at longer intervals over 2 months. The wa-
ter surface elevations were rp,corded for
Lake Sallie and nearby ~1uskrat Lake, 50
m away and 166. m higher.
A site near the Duke lvlarine Lab (Beau-
fort, North Carolina) was selected for ad-
ditional tests because there was a record·
ing tide. gauge operated by the National
Oceanic and Atmospheric Administration.
About 20 m southwest of the tide gauge,
three seepage meters were placed 0.65 m
apart on a line perpendicular to shore in
water about 0.4 m deep at mean low tide.
The sediment was composed of sand and
pieces of shells. Seepage flux was mea-
sured during 53-i9-min intervals over a
complete tidal cycle. \Vhen the tide was
above mean sea level, measurements were
started with 1 liter of water in the bag to
permit detection of seepage into the sedi-
ment.
For evaluation of the seepage meter as
a groundwater collection device,. a site was
selected in an area of fairly uniform
groundwater discharge at Lake Sallie.
\Vells were installed to intercept water be-
fore it reached the lake, ~md seepage
meters were placed in the lake adjacent .
to these wells to collect entering seepage
(Fig. 2). Wells, driven 1.72 to 2.1lm into
tl1e water table, were sampled 8 times dur-
ing 108 days. Only small mnounts of wa-
ter (0.6 liter) and soil (20 to 30 g) were
removed at each sampling.
v\~ter samples were either frozen and
analyzed several weeks later or stored at
0° to 5°C and analvzed within 48 h. Atn-~
monia, nitrite, and nitrate nitrogen, and
soluble orthoplmspha.te were determined
according to Stanclarcl methods (Am. Pub-
He Health Assoc. 1965, 1971). Specific
conducti\'ity wm; measured at 20°C with a
conducti~·ity btidgc. Chtodde was deter-
mined with a specific-ion <"loctmde. S:tm-
plcs were analyzed for tot&ll phosphate by
a persulfate procedure (Dominick 1971).
Filtration through tn<!dium-gmde filter
.• • ...
'\
Notes 143
shore
lc:tke
10 B K I n n
wells 8
rrH~ te rs I ;eepage
11 " N I n n n 9
c 1 nn n
12
n
--------------------.IIIJ--------..... __ Clio-____ __ ·" • ' I , . -----------·------------..:. .... _______ ----·
·. --------
10m
.f. .,.
I I f , ' . I I I , . .
I I I , I I
;> I I -------·-------------------.... .,." , ,
. . ------~---------/ , -----------.;;-----~--------' ,,llf' . ,' ._,_Q_____ .,-., · g roun.dwaf · _______ ..; ___ .. , ... "'
------~------,~------~-ar llowt· .,_tr ~ ---------.. ~nes ,...-. ---------------------------------------...... ____ ...
.
Fig~ 2;. Po~ition of w~lis and seepage meters where seepage-meter technique was evalu:1ted for
collection of groupdwater for chemical analysis. Flow Jines i!-low seep:1ge distrib~tion pattern. . -·
• paper (Sargent 501 or equivalent) pre-
ceded analyses for orthophosphate, nitrite,
and nitrate.
Regression coefficients for the relation of
vel"'~ity and hydraulic gradient in the ex-
perll~':\ental tank ranged from 0.998 to 0.994.
Resulb. for a representative seepage meter
are sh0\\:1 in Fig. 3. Slopes for the regres-
sion lines for seepage at iJiffcrent loca-
tions in the t:ost tank differed slightly ( 16
to 22 fer upward seepage and 9.1 to 20 for
downward seepage) probnbly due to. het-
~rogeneity in the test tank. However for
any particular location in the tank, tile
slopes of tl1e regressi011 lines were signifi-
cantly higher (at p = 0.05) for upward .
than for downward seepage. A 2-3-mtn
layer of fine clay particles accumulated at
. the surface of the sediment, and these par-
tides may have cot1trolled permeability by
impeding downward seepage more than up-
ward seepage.
Results of the C:<periments on simulta-
neous . measurement of seepage velocity
showed that veloc£ty for the t\vo seepage
meters always differed by about 0.1 p.m .,
s-1 and ranged from 0.596-0.854 p.m s-1
over the 2-month period (Fig. 4). Varia-
non in seepage velocity over time was not
significantly correlated ·with changes in
L"le relative elevation of nearby Musl.."Tat
Lake and Lake Sallie (Fig. 4). Changes
in atmosphelic pressure may have caused
variations in velocity by cbanging the per-
meability of the sediment (Christiansen
1944; Peck 1960). Small variations in ve-
locity 'vere reproduce~ with closely
placed seepage meters.
11easuremen.ts of ve1ocity and wnter
surface elevation during a tidal cycle at
Beaufort, North Carolina, are presented
in Fig. 5. Seepage velocity, measured \vith
three seepage meters, was significantly cor-
related with water surfnce elevation ( R =
0.853, n= 32). Seepage into the sediment
(groundwater recharge) was detected in
only 2 of 32 meas\trement.c;. The close
agreem~nt of the three seepage meters over
the tidal cycle showed that the technique
gave reproducible results ..
_((
(
. .
C~
.. .
(
.
•.
..
144 Notes
1.5
.:::-1.0 ..
£ upward seepage ../J :a. -• ,.. • ...
u 0.5 0 ...
Ul
>
w c < o.o D.
.!ill
Ul
"'
0.1
HYDRAULIC GRADIENT
·Fig. 3. Relation of hydraulic gradient and ve-
locity mc<ssured with seepage mete~ in experi-
mental tank. For upward seepage: \'elocity ::
( 19.07::!: 0.32) gradient+ (0.0220 :: 0.0012), R = 0.996, n = 29. For downward seepage: ve-
locity = -( 11.68 :: 0.94) gradient - ( 0.0028 ::!:
0.0110). R = 0.984, n = 1.
Along aJ\ 800-m segment of Lake Sallie
shoreline, ·· . seepage measurements were
made 5-160 ·m from shore. Near the mid·
poitit of this section of shoreline, a site.
wns selected for evaluation of the seepage
meter as a groundw~tter collection device.
At this site there was about 10 m of clean
sand and gravel below the water table;
the sand and gravel wns underlain by a
thlc~ relatively impermeable, clay layer
(USGS well records. M.S. r..-tcBride per-
sonal comm\tnication).
A flow net (Fig. 6) was drawn assum-:
ing isotropic-homogeneous conditions, rela-
tively low permeability of the underlying
c:1a}' compared to the sand and gravel, and
predominantly hodzontnl flow in the sand
and gravel around the lake. The flow net
showed that seepage velocity decreased
exponentially with distance from shore and
-...
g_o.s
·"'-C))oo
<""' ~uo.1
u.rO
~\.~~ . .
.,. .... .; ·....... ____ ..,. __ _, 1-•c.••
', ........... -w
> 0.6 '1/( ••
il
t----~-r------r---1 fJ-.-a. --
0 10 20
TIME (days)
60
Fjg. 4. Seepage. veloci~y measurc;:nents from
two seepage meters set 0.15 m apart, and rel:1tive
ete .. ·atioas of lakes Sallie and Muskrat.
that shallow groundwater was discharged
nearshore1 deeper groundwater farther
from shore.
Seepage measurements along the shore~
line showed that nearshore discharge was
rapid ( 0.3-0.8 p.m s-1 ) and th~t velocity
did decline approximately exponentially
~1.2 • ...
we o:a. <;:o.a .....
~~~wU
"'g0.4
Ill >
, .
' ' .. ,.
111 ...
I
..... ,
ll ..... , ,..... I a,
• . •
~ ,
•, I .,
'• " , , • •
..,...OD· :-..... -~• ~ ~---+--4---·~--·~--~--~-i
~·
w " o.a u > <~ ~ a • ;:, e .
"'-0..4 ••
c:c% •
...., 0 • •• .--. < ,_ .,..
.... ·····. .. . . . . . .. • • .. . .. . . .. . ...... 3: ~ OfJ·
w ~--.--·~~--~--~-~--~--~~ ~ 0600
I • ' .
1000 1400 i800
TIME (h)
Fig. 5. Seepage velocity l\nd wnter surface
elevation during tidal cycle at Beaufurt, North
Carolina, 16 May 1975. Symbols (.A, •, IS) de·
note different seepage nietcrs. \\'atcr surince de. ...
v~tion d:ttn w~s obtnin~d from NO:\A tide gauge
loc:1tcd at study site.
~ •.
. '
•
t.
-
Notes 145
LAKE SURF ACE
I
I
I
I
I
FLOW
LlNE
EQUIPOTENT! AL
LINE
IMPERMEABLE
BOUNDARY
Fig. G. Theoretical £low net showing distribution of groundwate.r disch3rge into Lake. Sallie. ,
with dist;lnce from shore (Fig. 7). Sub-
stantial seepage influx occurred 60-80 m
from shore, ·whereas the flow net showed
high rates :of flow to only about 15 m
from shore. ·Seepage distribution would
. be skewed lakeward in this 'vay if the hori-
zontal to Yertica.l permeability ratio were
about 1~: 1~ (Ccdcrgren·l96S), n common
feature· of glacinl outwash t~rrrun (\Veeks
1969}. ivlcBride nnd Pfmu1kuch ( 1975.)
bave also <liscussed the c1istribution of
· ·groun(\w,tter flow into l;tkes.
.r::'\ ..
1.0
E 0.1
~ ,. = u
0 , ..... ...
> 0.01 •
Yll0.311 (969)X
..... 0.754: ,..o.os
•
. .. •
10 120 160
FROM SHOU (m)
~!g. 1. .Relation o£ seepage \'elocity ::md dis.;
tance fro.m shore nlung, un 800-m shoreline seg-
ment nt Lake Sallie.
... ,.._ . . -
I
Seepage influx at the site adjacent to
the wel!s ranged from-0.4.-0.8 p.n1 s-1 .. \Va-
ter collected from the seepage meters ini-
tially contained high and varying concen·
trations of orthopl1osphate ( 0.21-1.15 mg
1iter1 ) which eventually stabilized in the
range 0.02-0.30 mg 1iter1, the ·average
concentration being 0.15 (Fig. 8). Ammonia
concentrations in the wnter collected from
the seepage meters \Vere also high initia!ly~
but there was a steady decline over a 2-
month period. AmmOllia levels dropped
below 0.25 mg liter1 after 900 liters of
groundwater passed through tl1e seepage
meters. An exception, seepage meter E,
con11istently yielded water containing over
1.2 ---i ..
.! 0.1 ... ... c = • ...
0 f o.c
0 :z: -• 0
• ..
..
• • •• • ••
Ia • •
• ·"' '
•
• ....
"
...... , ....... ..
"
I •
r •
ICV .......
• • •
•
2000 6000
10JAl HOW lH.OUGti ftU SUPIICl Jo\UIIt hileu1
Fig. 8. Phosphnte concentration. nrtd total
groundwnt-:~· discharged thro~agh fuur scepnge
meters O\'er 4-month period. ·
. .
2-1~-7
c ...
C.
146 Notes
Table 2. Chemical features of well water~ lake water, and velocity and chemical fentures of seep·
age at a Lake SalUe experimental site. 1971. .
Yell no.
8
10
11
12
l.akt
Seepa&•
.ete:
JS
JS
a
!
E
t
X .
It
N
I
Summar:y of
ei&ht samples
coll:ecter!
secaimont:l1ly
23 Oct
27 Nov
30 Dec
Liters
Orr.ho• Total
1'0~ PO-.
0.,30 G.49
(:0.17) (!1.64)
0.45 2.96
(!0.25) (:1.40)
o.u 4.05
(!0.12) (!2.65)
0.40 2.84
(:0.13) (!1.91)
O.lS 2.79
(:0.10) (:1.56)
0.20
0.07
0.09
0.40
0.14
0.28
through Velocity
meter* (usa s-1 )
23 Oct 1,510 0.623 O.lS
27 Nov 1 9 930 0.276 0.16
30 Dec 2,380 0.543 0.14
27 NOv 1.460 0.764 0.17
30 Dec.• 1.940 0.487 0.08
26 Hay 4.oso+ 1.03 o.Jo
27 ~v 1.240 0.492 0.11
30 Dec 1.780 0.743 0.21
27 Nov· 1.210 0.747 0.11
30 Dec 1.830 0.650 0.02
0.54
0.20
0.32
0.22
0.32
0.30
0.20
0.32
0.28
0.28
l.J.S
(!1.03)
0.46
(!0.29)
0.68
(:0.2.4)
3.42
(!0.64)
0.36
(!0.19)
0.02
0.03
0.16
0.13
o.os
o.oo
2.09
3.4
2.48
0.17 o.2o
0.11
0.16
Sp.
cond.
r.o,-N (umbos cm-1 ) Chloride
12.4
(:6.4)
24.3
(:11.1)
11.0
(!1.6)
31.8
(!5.1)
8.78
(!1.8)
0.026
Q.004
3.92
10.0
12.3
8.8
13.2
14
16.0
0.003
0.003
0.002
0.004
782
(:208)
• 493
(!41)
1160
(!103)
423
(!42)
3G3
384
4~0
459
490
530
480
30.1
(!:39.2)
56.6
(!50.3)
8.73
(!1.86)
65.0
(:17 .6)
9.56
(!2.3)
21.1
26.0
6.9S
10.3
6.37
s.s.
*This column shovs the volume of VAter vhich flowed through th~ seep3ge meter before the sample vas
collected. The avcra{te flgy during the pE"cc:edins; months was used to calculate this nwnber.
~This number. !or a sample collected in 1972. vas calculated using the autumn flow race.
2.0 mg liter1 NH3-N even after 4,000 liters
of groundwater and 9 months had pnssed.
However!t the phosphate concentrhtion in
seepage meter E was not higher than that
of the other meters at this site (Table' 2).
\Yells 9 and 11 (F~g. 2), located lakeward
of a septic tank, l1ad the highest specific
conductivity and the highest concentration
of orthophosphate, nitrate nitrogen, and
. cbloride (Table 2). Average ortbophos-
phate concentration of water from the
other wells ( 8, 10, a.1d 12) was in the same
range as the orthophosphate concentration
of water from the seepage meters ..
Some evidence indicated that n ~'1igh ni·
trate· zone capped the water table. The
seepnge inflow 7 m fron1 shore ( B and E,
Fig. 2) contained from 8.8-16 mg liter1
N03 -N, but in groundwater discharged 12
m and 17 m from shore; nitrnte concentra·
tions were <0.005 mg liter1 N. Average
nitrate concentrations in the shallow wells
near the lakesl1ore :canged from 8.78-31.8
mg 1itcr1 N (Table 2). ~fonthly samples
from a well 57 m from tile edge of the
lake contained 1.57-0.34 mg lite1-1 N03-N
at the surface of tl1e water table, but when
the well was driven 0.5 m deeper, nitrate
levels fell to <0.012. It is not uncommon
to find high nitrate concentrations. in shal-
low gro1.mdwater near the water table
(Behnke 1975).
·2-1s-
0 '0
-~·-·-...
Notes 147
Lake water contaL~cd less p!1osphnte,
less inorganic nitrogen: !ow'.!r conducth·ity,
and higher chloride L~an L-'r' ··epage wa-
ter (Table .2). Seepage wate1 contained
about the same amount or orthophosphate
and about the same !:onductivity as the
we1l water not affected by the septic tank. .
The ineX'Densive seepage meter was used
on moderhtely permeable sediment of lakes
aud ev:(uaries to mensure seepage veloci-
ties r.mging from -0.1-2.58 p.m s-1• \Vhere
seerage is upward,-the seepage meter
yif',lds a .sample of water which can be
used for chemical analysis.
For the velocity range encountered in
the field, a linear relation was observed
between measured seepage velocity and an
experimentally controlled hydraulic gradi-
~nt. Changes in the rate and direction of
seepage flux during a tidal cycle were cor.;.
rekted with changes in the water s1.1rface
elevation of an estuary. Closely placed
seepage meters gave reproducible results.
·Velocity and chemistry Q£ seepage in-
flow to Lake Salli~ thus Cl'\ncurred with
results predicted by tl1e theoretical flow
net: sha11ow groundwater discharged near-
. shor~ contained lligh concentrntions of ni-
tr!.4te, whereas: deeper groundwater, dis-
c;.:arged farther from sllore, contained very
little nitrate; nearshore seepage was rapid
nnd declined with distance from shore.
\Vhere groundwater (lischarge was rela-
~ivelr: rapid (0.4-0.8' p.m s-1 ), water col-
lected wlth the seepage meter became
chemically. consistent after about 4 months
and was cl1emically similar to water from
wells located along tlu~ same flow path.
Davi(l Robert [,ce
Department of Earth Sciences
University of \Vaterloo
\Vatcrloo, Ontario N2L 3Cl
References
1\J.tERtC.,N PunLIC liEAt:rn AssOCJATIO~. 1985,
· 1971. Standard methods for the exilmination
of wn.t:er and wastewater. 12th and 13th ed.
BEtL'lXE, J. 1975. A summary r.>£ the biochem-
.!stry o£ nit1ogen compounds in ground water.
J. Hydrol. 21: 155-167 •.
BoR:'r, S. M., S. A. S:.uTH, AND D •• ~>,... STEPHENSON.
1974. · The hydrogeologic regime of glacial-
tenain lakes, with management and planning
applications. \Visconsin Dep.. ~at. Resour.
Inland Lake Demonstration Projt:ct Rep. 73
p.
BowER, H., A."'lD R. C. fua. 1968. Revbw of
methods for measuring and predicting seep-
age, p. 115-120. In Proc. Seep:1ge Symp.
(2nd), Phoenhc. U.S. Dep. Agr. ARS 41-147.
CE;omcm::N, H. R. 1968. Seepage drninage and
flow nets~ \Viley.
CKRIS"l''A!':SE:-:, J. E. 1944. Effect of entrapped
air upon the perme:1bility o£ soils. Soil Sci..
sa: 35ih1G5.
Do!\m~rc~ D. D. 1971. Methods for chemical
anal}·sis of waters and wastes. EPA. Cincin-
nati. 0
!sR.o\ELS~. 0. \V., AND It C. RE.E:v&. 1944.
Canal lining ~periments .in the delta a~ea,
Utah. Utah Agr. Exp. Sta. Tech. Bull. 313.
52 p.
McBnmE, :M. S., AND H. 0. PEA~~KuCH. ~975.
The distribution o£ seep:1ge within lakebeds.
J. Res. U.S. Geol. Surv. 3: 505-512.
PEe~ A. J. 1960. The water table as nffected
by atmospheric pressure. J. Ceophys. Res.
65: 2383-2388.
Unoa..'JAR::::, P. D., J. D. C~tAPJN. AND K. M.
CaEEN. 197 4. Estimating nutrient lo:1dings
of lakes from non-point sources. EPA 660/
3Ji4-020. U.S. Gov. Printing Office.
'VAn:\'lC~ C. C. 1951. Methods of m~asuring
seepage loss in irrigation ean:1ls. . Univ.
Idaho, Eng. Exp. Sta. Bull. 8: 1-42.
\VEE~s. E. P. 1969. Determining the ratio of
horizontal to vertical permeability by aquifer ·
test analysis. \Vater Rcsour. Res. 5: 196-
214.
Zusm, A. 1970. Method for detenninin~ leak-
age velocities through the bottom of reser-
voirs, p. 761-771. In Isotope hydrology,
1970. IAEA.
Submitted: 11 January 1973
Accepted: 5 ·August 1976
2-15-.~
(·
(
'·
(
Introduction
A Field Exercise on Ground-vvater
Flow Using Seepage
rv1eters and Mini-piezometers*
D:Jvid R. Lee
Department of earth Sciences and
Department of Biology
University of Waterloo
Waterloo. Ontario N2L 3G1
Abstract
.;ohn A. Cherry
Department of Earth Sciences
University of Waterloo
Waterloo, Ontario N2L 3G 1
Basic principles a: physical hydrogeQJogy and the na.tu~·~ of the hydrologic i~teracti~ns
between groundwater and surface water can be .convtncmg!y demon.st.rated ~~ the field
using· two inexpensive and easily-constructed davtces known as the mtmature ptezo_meter·
and the seepage meter. These instruments have been successfully used dunng. a
hydrogeology field course at the University of Waterloo and have been adopted as a routtne
teaching aid. Seepage meters and miniature piezometers are inserted in the s_ediment of
shallow areas in lakes. estuaries. or streams. In a matter of a few hours, tl:le devtces can be
installed. monitofed, and removed. lnfcrmation on the direction and rate of groundwater
.flow can be obtajned. Hydraulic conductivity can be measured using s~v~ral types of tests.
Samples of the groundwater can be collected and. with field measurements of parameters
such as specific conductancP.. dissolved oxygen, pH, and chloride, comparisons between
groundwater and surface water quality can be made. Student investigations can include the
idetttification of groundwater inflow or outflow areas in lakes, streams, or estuaries,
measurement of the spatiai and temporal viarations in seepage flux through bot,om
sediments. and identification of zones of subsurface po:lutant migration intQ surface waters.
A day of equipment preparation and a preliminary site visit are prerequisites to the student
field activities. Materia is for a seepage meter and a miniature piezometer can be acquired for
less than 25 dollars.
Key Words: education, hydrogeology. groundwater, limnology, hydrology, water quality,
contaminant, seepage. field exercise, lake, stream, estuary.
This paper describes the use of two simple inexpensive
devices that enable students to measure the flow of
groundwater and to demonstrate for themselves some of
the basic principles of hydrogeology. A half-day field trip
t~ a shallow. body of surfqce water, preferab!y with a
sandy bottom, makes it possible for students to acq·uire
data that can serve as an impressive indication ")f the
dynamic nature of groundwater flow· in a natural setting.
The methods are rapid and direct and pro..,ide informa-
tion that cannot otherwise be obtained even if expensive
drilling equipment is available. The exercise involves the
use of seepage meters to measure groundwat~r flow
rates and the use of manually~installed miniature
piezometers to measure hydraulic head (groundwater
potential) and hydraulic conductivity. These methods
have been used durir.g field experiments in a
groundwater hydroloqy course at the University of
Waterloo and as a means of investigating groundwater-
flow conditions in Jake-and streambeds. The devices are
also being used in current rese·arch projects, including
thesis studies by undergraduate and graduate students.
Q is the flux of groundwater (volume/unit time). A is the
area through which flow occurs.· dh/dl is the hydraulic
gradient {the change in hydraulic head over a distance
ator.1g the line of flow (unitless)) and K is the hydraulic
conductivity of the material (usually expressed as cm/s}.
Hydraulic head is a measure of the energy per unit weight
ol the grpundwater. Textbooks on hydrogeology such as
Todd {1959), Davis and De Weist (1956) and Domenico
(1972) present more detailed discussions of the Darcy
equation and its significance in groundwater studies.
Figure 1 shows schematic illustrations of groundwater
flow near lakes. in lake bottoms, and in stream bottoms.
The flow systems are represented by isopotential Hnt::s
(contour lines of hydraulic head) and arrows showing the
direction of groundwater flow. In lake bottoms and
streambeds groundwater flow is upward, downward, or
horizontal bu_t is rarely non-existent. The direction and
rate of flow is dependant on the physiography. texture.
and stratigraphy of the subsurface materials. Locally, the
flow in streambeds and lake bottoms can vary dramatical-
ly, thus providing a variety of observational conditions
within a single study area.
The two devices described below provide information
( )
The basic elements of groundwater flow are related
through the Darcy equation.
dh Q= A - K •.
dl
·This work was s"Jonsored in part by a research
agreement with Environment Canada.
on the flow net and on the flux and velocity of water
moving along the flow lines at and near the interface. The
seepage meter and the minipiezometer also provide a
means of sampling the water tnat is either leaving or
entering the groundwater zone beneath the take or
stream. This cat"i often serve to demonstrate the influenc::e~-h-~"~ CY 6 JOURNAL OF GEOLOGICAL EDUCATION. 1978. v. 27
....
... • . •'
Fig. 1. -Idealized sections showirtg groundwater flow near
bodies of surface water. A. topographic highs are recharge
zones and the topographic lows (often occupied by lakes or
streams) are discharge zones: B. pattern of groundwater
discharge into a lake or estuary: c. longitudinal section of a
streambed indicating flow into the sec.•ment where the streaa. >
ed is concave. (A modified from Winter. 1976: B modified from
Lee,1977; C modified from Vaux. 1968)
of groundwate." on surface-water quality. In some cases it
is possible to demonstrate that pollutants are fed to lakes
or streams by groundweter seepage.
Miniature Piezometers
Piezometers are used to measure the hydraulic head in
geologic materials that are saturated under positive
pressure. They consist of pipes with slotted tips or well
points on the end. Piezometers are normally installed in
boreholes drilled b}' power auger, wash-boring, rotary
driU or cable-tool equipment. Piezometers installed at
depths between several meters and many tens est m~te1s
below ground surface have been used routinely by
hydrogeolqgists and soil engineers for several decades.
The miniature piezometer (mini-piezometer) is a similar
device bJ,Jt is smaller in size and is installed manually.
D
~~~ f~~~i~ ~i~~ 11 ~t~1~1tfi. ~1$.lli!il
-··::•• "'····-·r::.~······ -~ .. ·•·~ ...... ~ :l·.~··•·····:···'··· .. 1.-. ..... •.·····~····:·'·~·····-1 • ~~ i1.ii1 lljii~Ilil.,!f.~~ ;:; .. :.o:.::-: :::::;::::·::·::$$:: ::.~Y.~i~~:::~· :· :-:::i:·:.~·~:::.~:·i:: ::-:-:.tJ:.:~~~\~~;.;7::;~::~:~:: ~~ till ttl iliiHiit!i ~--"L1.t: ••• ,. ··~··~._:,r. ·····r~·.: .,.,, ~~ .. :.····•············· ·······~·-:.·-··:· ......... ~ ... -.... •. ~:::-... ~:::t;:t.···· ·::i:i .. ~:;.-'.:::;;.:;.:; ~ :;::::·:::.;.;-:=::::·:·: ~-:;::-:;:,::··~!~·:::.-.-:.::::::::::;. .... ;.::.. • .......... ~ •• ,. ·;!'··:-:,;..;....... "'i': •: .................. :. ·.·-·······-~-~--·.·.·.···· ····:-... li~I~:!Jlllltl
Fig. 2. -General features anci method of installation of a mini-
piezometer. A. casing driven into the sediment; B. plastic tube
with screened· tip inserted in the casi<~g: C. plastic tube is a
piezometer and indicates differential head (h) with respect to the
surface water: 0, plastic bag attached to the piezometer collects
sediment-porewater. (See text for details)
Figure 2 shows the general features and method of
installation of the mini-piezometer. The piezometer
·consists of a 0.31 em 10 translucent polyethylene tube
(approximately $0.12/m) with a perforated tip wrapped
with 0.2 mm nylon mesh netting or fiberglass cloth. The
netting protects the tip from influx of sediment. The
piezometer is installed using a 1.7 em IDsteel pipe that is
driven into the bed by hQ,mmer or vibrator. The casing
pipe is loosely fitted with 1.4 em (%Inch) lag bolts at each
end. When the steel pips is driven to the desired depth ~he
plastic tube is inserted and held in place as the pipe is
pulled out. The bottom lay bolt remains in the sediment
near the piezometer tip. Raised above the water level. the
translucent tube shows the head differential with respect
to the surface water.
·Small differences in hydraulic head relative to the
surface water are measured using a manometer that
overcomes the difficulties of observing head differences
• that are slightlY. above or below the level of the surface
water. The principle of the apparatus is indicated in figure
3A which shows how the difference in head between the
piezometer and the surface water may be elevated and
measured accurately. The equipment needed to measure
this differential head in mini-piezometers is shown in
figure 38. The meter stick is attached to a rod and
installed vertically next to the piezometer. The apparatus
is prepared for use by blowing water out .of the tygon tube,
using a rubber suction bulb. The bulb is squeezed and
released slowly allowing water to rise to a stat!(: level. The
JOURNAL OF GEOLOGICAL EDUCATION, 1978. v. 27 7
\
(
(
'
A
·--h
·~--·
I Hill '..., .. "/: .. ~J •::.·.·:········ .. ···=:~~~~·~ ~ * ~ ltillili~ W.!iB .. : .... ~-::.-:.·· ··~·~-.. ~· ..... -... ~··: ......... .
S lftl'!t ID
elaat l)laeuc ,.,., .. "_-
"'ater iliCil• •
\ . )~ ..........
•• ru I
pl•leP.tet er
Fig. 3. -The manometer used to measure differential heads in
minipiezometers. A. principle of operation: B, ~he field ap-
paratus.
levels in the two tubes are comparee to be sure no
bubbles of air are causing different heads in the two
tubes. One end of the tube is then attached to the
piezometer tube and ~he other is left in the overlying
water. When the water levels in the two tubes reach static
leve!s, the differential head. 6h, is read on the meter
stick. The vertical iwdraulic gradient is 6h/6j, where 61
is the depth of the piezometer screen below the
sediment-water interface.
To measure the hydraulic conductivity of the sediment
adjacent to the piezometer tip. two types of tests can be
conducted, a falling head test and a constant head test.
For the falling head test the piezometer tube is extended
vertically above the surface-water level and then filled
with water to· a condition ~f overflow. The overflow
condition is discontinued at a time that is recorded as. t
initial. The rate at which the water level in the tube
declines is then recorded. This can be facilitated by
taking stop-watch readings of times at which the wc:ter
level passes marked intervals on the tube. tf the hydraulic
conductivity is very high. the rate of water-level fall will be
very rapid. Increased accuracy can be obtained if the fall
distance is lengthened by extending the tube a couple
meters above the surface-water level or by feeding water
to the piezometer from a larger diameter reservoir .with
marked intervals. A constant head test can be performed
by placing a known volume of water in a plastic bag
att~ched to the submerged tube. The hydraulic head in
the submerged bag is the level of the stream or lake level.
The change in volume of water in the bag over a recorded
time interval is measured. Example results and calcula-
tion procedures are sumrnarized in Table 1. The
derivations of the equations used in this analysis were
first presented by Hvorslev (1951) and have been
summarized by Lambe and Whitman {1969). The cons-
tant head and falling head formulas are based on
significantly different assumptions. Comparison of
hydraulic conductivities determined by these two
methods can be an interesting en.deavor.
Where the hydraulic gradient is downward,
groundwater from the pier.omet.er can be collected using
8 JOURNAL OF GEOLOGICAL EDUCATION, 1978. v. 27
-·--__ .__ .. ......_ .. _.. __ .~~
· water surf11c•
Fig. 4 -Full section view of seepage mett!r showing proper
placement in the sediment. A. 4 liter. 0.011 mm membrane
plastic Baggies Alligator bag (open end wa:;} heat sealed); B.
rubber-band wrap; C. 0.64 em inside diame:C!r, 6 em tong.
polyethylene tube: D. 0.79 em inside diameter. 4.5 em tong.
amber-latex tube: F. 15 em x 57 em diameter epc.:<y·COq.ted
cylinder (end-section of a steel drum): G. 0.64 em iii3ide
diameter, polyethylene tube long enough to reach above the
surface ware:. E, No. 5~ one-hole rubber
stopper with polyethylene tube.
a suction b•Jlb or hand-operated vacuurn pump con-
nected to a bottle. Where the gradient is upward samples
can be obtained by simply letting water discharge from.
the piezometer tube. Where the gradient is weak or the\
material poorly conductive. the screened area of the
piezometer tip must be increased and suction must be
applied to obtain water samples.
11eepagc Meters
Seepage flux between the groundwater and the
overlying surface water can be measured directly by
covering an area of sediment with an open-bottomed
container and then measuring the time and change of
water volume in a bag connected to the con~alner (Lee .
1977). Two of these devices, known as seepage meters
(Fig. 4}, can be made by cutting 15-cm-long. end-
sections from a 0.20B m3 (55 gallon) metal drum. Seepage
meters can detect flux as 1ow as 0.001 cml/m2 s (about 0.1
mm/day) if the bag is left connected for a day or longer.
tn water over 20 em deep, a single tube through the top of
the seepage meter serves both as a vent for any gas
released from the sediment and as a connection for the
measuring bag. In shallow water an additional outlet ~ube
on the side of the seepage meter permits the bag to be
submerged as it must be to maintain the same
piezometric head in the seepage meter and in the surface
water.
I
In use. the seepage meter is pushed slowly into the
sPdimcnt and tilted slightly so that the vent will function
properly (Fig. 4). Unless the sediment surface is soft or
irregular. it ls often unneqessary to push the seepage
meter more than 8 em into the sediment to obtain an
ad:quate seal. The stoppe.r with tube is then twisted into\.:.~
cylinder hole. Where flow 1s upward, i~ is unnecessary to
. .
....... · ·v
.
· 'Tab~e 1. Sample field data and calculations .
; " .
. . Pie;ometer opservalion$ . ,
· PiezQrneter number; P1 Depth of screen below s~diment:
r'·lm
Tlme
1630
Ah,mm
35
'33
Gradient
Ahlj
,035 .
.033
.036
Elapsed ·Volume
tlme, mln change. cm 3
--
36.
1650
.1739
1705-1723. 18 . +12
· Hydrat.~lic .conductlvity calculation= Assuming a case G
screen (Hvorstev 1951). Co..,~t~.~t ~.,..~ tcsi ---------
o where
0 =diameter, intake. sample (em)
L = length; iri'ake, sample (ern) .;. ?
H ~= constant piezometric head (em)
q::. flow ofv;ater (cm3/s)
t =time {s)
m = transformation ratio. (K rlK v• )-5 assumed to eq·ual 1•
In= 2.3 log1 0 •
Therefore. K ra=
(12 cm3/10BO s} LN ((10 cm/.31 em)+ (1+(10 cm/.31 cm)2)·SJ
2"' (10 Ci,~l)(~.S em}
= 2.1 x 10"" cm/s
Seepage meter observations
Seepage meter number: SM 1
Depth of water: 0.2m · · .
Sediment type: ~and and organic matter
Volume Elapal<l Hydreullc
Tlme changt. c:mi Ume, min
163D-1G4! +126 18
S.~piQt
flux. ,.am/a
•.<450
+.496
+;<465
COf'!dudiYity, em/a
1.3 X 10"3
1650-1736 +355 ~6
1739-1752 • 94 13
Seepage flux calculation:
(volume change, cm3) 0,0643 Q,pm/s =
(elapsed time, min)
= {126) 0.0643
18 = 0.450 JJ,m/s
Hydraulic conductivity calculation:
From the Darcy equation K = v/S. where
v = Darcy velocity
S = hydr~ulic gradient, bh/bt,
K = hydraulic conductivity
1.5 X 1C'~
1.2 X 10"~
Therefore K = 0·450 J.lm/s 0.035 = 1.3 x 10"3 cm/s
• The effect of t~is assumption is small (e.g. if~= 10, K "=
2..7 x 10"4 cm/s; af m-: 1000, K "= 3.9 x 10·4 c;m/s.
..
.. • ~ ' • • •• f " .... · 'I ~" 1:
add a known volumf! of water to the m~asuring ba!;! •
before cc;mnecting it to the sc.epage me.ter.
The Darcy velocity. v, (volume per unit area per unit
time) is calcul;ated lrom the. relati.on 0.064JV .... t = v. where
Vis the volume of water (cml) entering or leaving the bag,
and t is the elapsed time (min). The 03rcy velocity is
e~pressed as micrometers per second {1 pm/s = 8.64
em/day). The factor 0.0643 converts units ol time.
volume. and area .co•Jered by a seepage meter (0.255 m2)
to equivalent units of velocity (pmls) or seepage nux
(cm3fm2 s}. The average linear interstitial velocity is equal
to the Darcy velocity divided by the porosity of the
sediment. For most sandy sediments. porosities .are in the
range of 0.3 to 0.4 (expressed as a fraction).
Student Activities
Students from the Universit)( of Waterloo used these
techniques to investigate tl:le migration of tritium-
contaminated groundwater to a small lake 3nd stream in
an experimental watershed at the Chalk River Nuclear
Laboratories in eastern Ontario. To minimize the number
of pieces of equipment required, this. exercise was
combined with stream-flow metering so the students
could rotate from one activity to the other. Each student
installed a piezometer and a seepage meter and
measured piezometric head during seepage-
measurement intervals ranging from 10 to 45 minutes.
Because of the difficult':( , .. , removing deeper casings by
hand. most students ef,..., .!d to emplace their piezometer
0.6 to 1 m into the secih~.~~;~. Each student conducted a
constant head test to.determin~ the hydraulic conductivi-
ty ot material near the piezometer screen. and then
removed the seepage meter so that subsequent students
could install the equipmenfthemselves.
The study sites met the following selection ~riteria:
wave height less than 0.3 m;
~Current speed less than 0.2 m/s:
Firm sand with very little gravel and cobble; and
Water depth 0.1 to 0.6 m.
Pr.eliminary measurements were made to be sure the
students could install the equipment and find seepage
rates high enough to complete the exercise en 2 to 3
hours. Because seepage rates are generally highe.st near
the shore. as illustrated in figure 1 B. and because
shoreline areas were accessible by wading. students
worked within 10m of the shoreline.
Data collected by one student and some sample
calculations are shown in Table 1. Piezometric head and
seepage rate generally decreased with distance from the
lakeshore but seepage rates were quite variable ir~ ~he
streambed. Current effects probably accounted for the
variability of replical.a seepage measurements in the
stream. Streambed heterogeneity probably caused
variability between points. No zones of downward
.seepage were found in either the lake or the stream. ·
Direct measurements of seepage fiux, made ~Jy the
students. showed that groundwater flowed into thl: lake
along the northern shore. A pore-water constituent (in
this case tritiated water) indicated that this seepage water
is contaminated by tritium. contained in waste waters
pumped into disposal pits located about 800 m north of
the lakeshore. The use of seepage meters and mini-
piezometers thus enabled the students with&n a very short.
time to draw conclusions with regard to the occurrence
and source of contaminants entering the lake. Analysis of
water from mini-piezometer.s in the nearby streambed
JOURNAL OF GEOLOGICAL EDUCATION,l97B. v. 27 9
--' .. -·
(
(
.
·~
·.'.~ .~:· :. ' ~ ;fi ' . ' -~
":; \ snowedrtotritiu~ eontam~hation despite Utepresen~a of
-F ~~onsiaerabfe tritium in the :~tte.atn itself. _
The dynamic-nature ~f1\the·.groundwater regime was
demonstrated jn ~vlisillfY i~'rtpressive manner by filling of
· th~ measuring bag att.nct!ect to-the Seepage meter. All but
2 of 14 piezometers h..ltlcti~ned pro perry as indicated by
raising and towedng lht~ ;piiezqrneter tube and watc_hing
-the. water level tan or (ls;a1ito a -static le.vel and by the
-constant-head respons\~~ctesJs. Failure to obtain respon-
sive piezometers was dtiliHOi}ifting of tne piezometer tube
whtre: pulling the casihl9· ::out of ·the sediment and
consequent loss of the nylor.i-mesh screen.
We, anticipate that a sir.ni.ta~· approach could be used by
others to teach general pdn(tiptes othydrogeology. This
exercis.e. could be in~ludl:td ~-s a part of an introductory
t:QurSa 111 hydrogeolog~· •. It could ~lso be used in
hydrology. limnology, get)mo\Pphology or sedimentology
courses; ·n c:ould serve as a. springboard for student
· ptojecm . de~igned to dete·rmil'e the importance of the
groundwater compQnent to1 the\ water budget of a lake or
pond. to identify contamrnant migration from ground·
water to st,~!face waters. tel study th~ effects of se~page
. flux .pn sediment chemis~flf, t)r ~Q study the role of
grpundwater in .fluvial erosion 4tncJ deposition. Because
these topics have tinly recently begun to receive research
atteotion, this work offers an opportunity and a freshness
which is attractive to student~i.
Planning. the Field Exercise • •
Sandy shores of gravel-quarry ponds. lakes. reservoirs,
and estuarias are ideal sites fo&· tl'lese exercises, but the
importance of making preliminltry meas~rements to
identifY suitable sites cannot . -be -overemphasized.
Seepage rates must be high entlugh so that volume
c:hanges o~ at least 50 cm3 can occur in the measuring
bag in t-2 hours. The sediment shQ~IId not contain rocks
which will bend piezometer drive-Cil~lings~ Strong wave
action and cu.rrents · interfere.' with accurate
measurements af· seepage, although. piezometers would
probably not be affected adversely. Mud bottoms may not
h3V;l SUfficient flOW to permit flUX measurement in 1-2
hours.
In estuari.es, whe.re tidal fluctuations induce -seepag~
flux through sediment. it may be helpful to consult tide
tables before planning a field exercise. At low tide, the
highest rates of upward .seepage and ths strongest
upward gradients occur (lee 1977), and it is easier to
install seepage meters at this time. Estimates of net
seepage flux will require measurement through an entire
tidal cycle.
In streams where surface-water velocity is low and
especially in sandy areas, these methods cari be used
successfully. In other stream environments, however. it
may be difficult to find suitable demonstration sites.
Downward seepage in streams may be induced where
permeability or depth of grave·l increases in the direction
of streamflow or where the longitudinal bed profile is
concave (Vaux 1958). These factors, heterogeneity and
current, make data from streambeds more difficult to
interpret th~n comparable data from quieter waters.
References Cited
Davis. S.N. and DeWiest, R,J.M •• 1966. Hydrogeology: John
Wiley and So~s. Inc., New York, 463 p.
Domenico, P.A .• 1972. Concepts and Models in Groundwater
Hydtology: McG;aw-Hill, New York, 405 p.
Hvorslev. M.J •• 1951, Time Lag and Soil Permeability in Ground·
water Observations: U.S. Army Waterways: Expt Station,
Vicksburg. Mississippi, Bulletin 36.
Lambe, T.W. and Whitman: R.V., 1969, Soil Mechanics: John
\Vtley and Sons, Inc., New York. 553 p.
Lee, O.R., 1977. A device for measuring seepage flux in lakes and
estuaries: Limnol. Ocet~:nogr., v. 22. p. 140·147.
Todd, OJ< •• 1959, Ground W.:Uer Hydrology: John Wiley and '"
Sons, New York, 336 p. · \
Vaux. W.G •• 1968, lntragrave~ flow in interchanga of water in a .... _ .. /
streaMbed: U.S: Fis.'rl Wildlife Service Fisheiy Bulletin v. 66, p.
479-469.
Winter, T.C.. 1976, Numerical simulation analysis of the
interaction of lakes and ground water: United Statfts
Geological Survey Professional Paper 1001.
-
EXHIBIT E
Water use and Quality
,.· '
CUIIJII!.!!t: ~6. (p. £&10~-42, para. 4)
Provide the. following information for tributaries at their confluence with
the susitna· River: bathymetry, morpho logy, and stage discharge re 1 ati on-
ships.
Response
No stage-discharge relationships are available for the tribJ,~taries which
wi 11 be inundated by the Watana and Devi 1 Canyon reservoirs. Discharge data
were measured on. selected tributaries within the proposed impoundment study
ar·ea in 1982. These data are contained in Table 1. ~~ean annual discharge
for each of the streams flowing into the reservoirs can be estimated using
the.following equation development by Freethey, G. W. and D ... R. Scully. 1980.
Qa = 0.0119 A0.99 E0.22 p0.93
where Qa = mean annual discharge (cfs)
A = drainage area (square miles)
E =mean basin elevat1on (feet above mean sea level)
P = mean annual precipitation (inches)
Information on the bathymetry and morpho1agy of Fog Creek, Tsusena Creek,
• Deadman Creek, Watana Creek, Kosin a Creek, Jay Creek, Go9sa Creek and the
Osnetna River at the confluence with the Scsitna River is contained in
Fig~res 1 through 8., A legend is provided for reference.
2-16-1
,,
/I
7 ..
_::_·.
. ~; i
. ~Cheecllakb Creek (River t~f.1e 152.4) large boulders are present at the
··mouth. Depths ,~re uniform and relatively shallow· at 3 to 4 feet.
c
At the confluence of Devil Creek with the Susitna River, the substrate con-
sists of large boulders, cobble and rubble~· The depth appears. ·to drop off
quickly but this has not been confirmed by measurement.. There is a 1 arge
·,>·clear pool at the mouth which is estimated to be 6 to 7 feet deep and which
drops off toward the main river.
References
' >-
Freet hey., G.W. and D.R. Scully. 1980. Water Resources of the Cook Inlet
, ·, B,asin, Alaska. ·. USGS Hydrological Investigations Atlas HA-620.
2-16-2
, .• ·• ~ . ~
\ ..
M VOLUME 5 -ADF&G -SU HYDRO
·UPPER SUSITNA RIVER IMPOUNDMENT REPORT, 1982
TABLE 1
Discharge data on selected tributaries within the proposed
· · impoundment study area~ 1982 ·
a Discharge
Tributary Date (1982) (cfs)
Fog Creek 8/15 269
9/12 307
Tsusena Creek 8/16 330
9/12 363
D~adman Creak 8/21 228
Watana Creek 8/15 229
9/19 557
Jay Creek 8/12 61
9/19 154
Goose Creek 8/19 79
9/10 150
-----------------------------:··
.a A 11 discharges were taken near the mouth of the respective stream with
the exception of Deadman Creek where it was taken approximately tht~ee
mi 1 es upstr.eam from the mouth.
2-16-3
r.J
0
l
I J!t'<'
1,,/
I silt
I ~ sand·
t: ]./. '.·1 II_ , If gravel -It, ..,;;
:I
' J/'
· ·! ;m., ·rubble j-5
I
. ,,
·. cobble S'-JO
l
l rock outcrop
cliff
.. l,J.f,J,/,J,:, cut bank
""'"' < ""'' undercut bank
~log
~~ debris pile
~beaver dam
----~·~~ flow direction
. ® eddy
\
LEGEND FOR FIGURES
•
·\01a a o" mixing zone
spawning redd
·• • • • • · , spawning area
.. p» ...
··"'•·····-···"' grass ..... ~ .. ~ ..
_,trees
shrubs
aquatic vegetation
overhanging vegetation
() SU HYDRO site marker
~ Hydrolab sample site
USGS sample· site
® staff gage site
<D thermograph ( intragravel)
GD thermoqraph (surface)
·· ·····"···-·· site boundary
--....
N
' '"""""""' .....
' ..
.~~
Planimetric map of Fog Creek
--r~ 8
....... ___ . --
qoo•
r. -• •
~-1 .;tc .:~l'
~ fo'f.t~P ~~
~
I
Site 01 (R.M. 173.9, G.C. 31N04El60BB).
..
..j
tt' c·
70
(\"\,
-
(_'-,
·~
~~',
•• !
500'
N • -
Planimetric map of T susena Creek -Site Ol (R.M. 32N04E36ADB).
·.r.,r• .. ··~ •••• --··-
·--1 t-L--_.·--------------------------------------------600' ==
•
..
Planimet~ic map of Deadman Creek -Site 01 (R.M. 183.4·, G.C. 32t,05E26CBD) .•
N
( -. .
Roc.k CIUf'
TtSII
I _...--•
l. . ............. ............
. 350'~---ED 194.o
--11(,;;...----S U S I TN A
RIVER---
Tr•••
\
Tree•
Bruah
~1ainstem Susitna River habitat evaluation site at W~tana Creek, RM 194.1, GC S32N06E25CCA.
I " • :J' . -0 i , . ... . li .. " .
t:r·"· .. -.. ............ ··'
. ... : .· ... · --------• -
f"'hJ11ZIIfeJ /l1>~f1A./.fll(ti>~ AMII A~
fo lt.r:.JG f...,.~ ,,; /!:wei-teA.ciPS. s;,;,,.1M
~rf /<:oSII\JOt • /lfll11. W11-f,,;.J p4.1J~A -J
.. 'TI··· .. .
. · ... , -
: Planimetric map of Kosina Creek -Site 01 (R.M. 202.4,. G. C. 31N08El5BAB}.
•
N
I ......
~
I . .......
0 •
.Sc.t I;.J'~ te~
~ea.e~es. Some.
e Jpe~; iltlf be·IV~ec tJ
··I'J• ~~ SAowtJ
A C<Uh11lf1Jtlr::.. ;',J ll.iJ
two C'AA~.,Jrl.r ... fk ,kr.,M ti.
fn~~..t.·ft.J I I 1-t 1·..5"4 deeJ~t?lt %e. tA. reA : h e·1 ~~e~
if, AN tk d ,~,.;' t ~'~ .. ~ ~'" ~~ r" ·I lt /c•Wt. ,.. ['A ,1 t-:rJ I / ,
{tit No 11-e b If; r..-, ,....
I? fill/A .r p Piw t'~r)
~If f&~• t:ki"J
c:/.:;e1 ,/A bei1~H
d /tC}~.J'
elrclr;, t ,rk, c A /tMtJf! I s (-.trt c--V~t
~e fs 11 ~ ;eA d··" I
I
cAAw,Jt ( •
.------------------·609'------------------.J
Planimetric map of Jay Creek -Site 01 (R.M. 203.9a G.C. 31N08El3BCC).
------· Uli!.ll •. t ••••• .............
~----------------------------------~~--------60~------------~~---------------------------------t
tv
I .......
,'" x-. Planimetric map of Goose Creek (Upper) -Site 01 (R.M. 224.9, G.C. 30Nll£32DBC).
---·-- --- -
.....
$228.9 ~\ .,....._.
,...--------. _, ._... ........... ----~_.;..,....._._ __
J-:in: I t:t" ~l~oS6 J"/.,1-J,J
0 sl. P.t !till• de}'tJ-.s
' tnl'~1 ,11 lk
(Aillly
Planimetric map of Oshetna River Site 01 (R.M. 226.9. G.C. 30Nl1E34CCD).
••
' ."'. i . .
,· •··. ~ ,,
"; '. ~
·-..
EXHIBIT ·E
2. Water U'se and Quality
COIBeflt 17 .lp. E-2-46, para. 2)~
Provide. the basis for extrapolating. HEC-2 water surface profiles outside the
raj1ge .of calibration flows (9,700 to 52,000 cfs at Gold Creek} listed in the
R&M ·11 Hydraulic and lee Studies'~ report. Provide references to any addi-
tional calibration data sets for the HEC-2 model. Provide methodology and
supporting data used to derive the estimated HEC-2 accuracy of ±1 foot.
Response
EXTRAPlOGLATION OF HEC-2 HATER SURFACE PROFILES
The HEC-2 analysis presented in the R&M 11 Hydraulic and Ice Studies" report
was carried out for Gold Greek flows ranging from 9,700 cfs to 52,000 cfs.
For Cross·-·section LRX-32 at River Mile 129.67 (Figure E.2.10), where a
potential navigation restriction was identified, the HEC-2 analysis was used
to estimate the water surface elevation for a Gold Creek flow of 6!1000 cfs~
the minimum su11111er flow proposed. Since LRX-32 was similar in cross-sec-,
tiona 1 shape at flows of 9,700 and 6,000 cfs, the rate curve for LRX-32 was
extrapolated to provide the water surface elevation for a flow of 6,000 cfs.
Pursuant to· this, an HEC-2 verification run at a Gold Creek discharge of
. 3,000 cfs demonstrated that the water surface elevation for a flow of 6,000
cfs was ,as valid extrapolation. (See Reference to Additional HEC-2 Calibra,-
tion Data Sets -below).
Figure 1 depicts the HEC-2 computed depth for Cross-section LRX-32 at a flow
of 3,000 cfs. The rating curve computed for the flows from 9, 700 cfs to
52,000 cfs has been extended to include added data points. Interpolation
2-17-1
between 3,000 cfs and 9,700 cfs, at a discharge of 6,000 cfs, indicates a
depth (2 .. 45 'feet) which. is consistent with the estimated depth in Figure
E.2.10 of Exhibit E in the License Application.
REFERENCE TO ADDITIONAL HEC-2 CALIBRATION DATA SSJ2,
. An HEC-2 verification run at a Gold Creek flow of 3,000 cfs was performed in
1981. The resu 1ts, including a comparison of computed and observed water
··levels for various cross-sections, are presented in Appendix A, attached.
All co~uted elevations are within ±leO feet of the observed elevations.
Methodology to Derive Estimated HEC-2 Accuracy
Manning's n values used in the calibration of the HEC-2 analysi~ are pre-
sented in Table 1 (attached) for four discharge conditions. A flow of 9,700
cfs was used as the base flow for Manning • s n values. For flows other than
9,700 cfs, an adjustment for n values was made as follows: ~)-
0 3,000 = (1 .. 20) n9,700
0 13;000 = (0.95) n9,700
"17,000 = (0.90) n9,700
"23,400 = (0.~0) n9,700
"34,500 = ( 0.81) n9, 700
05.2,000 = (0.81) n9,700
/ · ~ discussion of the rational used to adjust the
', -,ent is contained in R&M Consultants Inc. 1982.
ject Hydraulic and Ice Studies.
2-17-2
Manning roughness coeffici-
Susitna Hydroelectric Pro-
·:~"'\'
\~/
.•.. -'_' ,-: .·
r • '
••• ,_
· .. ···-"-· '" _,..t
1 ·, .
\.:.... '
._. -: •• •• ,.. f
I'
·"'
• ~ " "'.--> '
· cA.-cori\:;ari-son _of the· .computed w.ater surface· elevations using_ the respective
· ·.· Mannifig·•s • n 'Ia 1 ues . ~d observed waiter suM ace. e lev ati ons for main stern
~-ta.ti~rts<~here stage.d.ata was-_ ~vai lab le 1:$ presented in Table 2. _
. ':~
-~ . BaSed :o'ri-~~tre·':table of observe·d. and .calculated. water surface elevations, all
comphtecl: __ values except 9~~:-w~r:e ·withtn .±1 _ foot of the · observed values.
-. ' ' < . ' ·---:· The. one_ value that differe~ by fOOre than one foot differed by +1. 2 foot and
w~s at li~X-2S at .a flow·· ·a.·f 9;700 cfs.. Considering the possibility of a
--::; . ,_
small ·error in any \stage observations it was estimated thaf the accuracy is
±1 foot:. -
,;.
2-17-3
.n
--
~--
~0-
. u: 6.
:i~
0
_.4
LL.
lL.
0 3-
:J:
1-
Q..
,_
111111
11111111
111111~
rtlllll ll
1111111~1~1-l-H+H+H+H
IIIII
IH+IHIHIIIIIIIm~
lUll
IUI!l
I IIIII
1-
1;.;.
~·
~ 2-+~~~~~·14+~·~H~~I
11 1111111
1lllllll-&-l-l-i-I-I-I-I-1-H-I
111111
mm~~~~~~~~~~~~~U~~~~WWJWI~~IlU~J
~ \o,ooo 3
DISCHARGE, cfs
STAGE-DISCHARGE RATING CUR'1 ~
SUSITNA RIVER AT LRX-32
(NEAR SHERMAN)
) ~ QO,OOO
iUIIII11
1111111
l~\111\t .
1111111
IIIII I Ill
: llllliiii::IWU!I
111111 IUIUI
I IIIII
I IIIII
; 5 ~ ,·~.~
PREPARED FOR•
,_
APPENDIX A
0" 6087 e ANCHORAGE . .t.LASI<A 99502 !l P'"' 90.7•279·0483 •'TL.X Q!i0·~52El0 .R&M·'':ONSUL.TANTS. lN::;. -~02 4 C:~!iQ.Qy.A ·• ~ ,.. . . ... . ..
.. , ,.:: "• :·· .
JENGINE!5A~, '"·
GI1CILCGI!'ITS
IP'-A.NNEZ.S
S&J"AVE,VOIItS.. 1 ~-~.--
Septemf:)er 11, 1981 R&M No~ 052306
'
•
Project Manager
Susitna Hydroelectr-ic Project
:.:--->-·--
Acres American Incorporated
Liberty Bank ~.uilding
Main@ Court
Buffalo, New York 14202
Attention: 'Mr. George Cotroneo
Re: Run of HEC;2 on Lower River at 3,000 cfs, Subl:ask 3.06
Dear George:
As we discussed on the phone this week, I am sending you the results of
an HEC-2 run on the Devil Canyon -Talkeetna reach of the Susitna wit1l a
river flow of 3,000 cfs. The computed water surface elevations (W.S.E.'s)
agree within 1 .. 0 feet at all cross-sections where observations are availab_le.
The low flow did present some problems in the computations, however.
Initially, the channel n values were all increased by 1 O% from the values
used with Q = 9, 700 cfs. For comparison, another run was made with a 20%
increase i .. n n value. Both runs produced critical flow · at a number of
cross-se:ctions, but better agreement between computed and observed
W.S.E .. •s was obtained with the higher n•s. This rapid increase in n value
at the very low flows is to be expected .as the depth of flow more closely
approaches the size of the bed material in the channel .
2~17-$ ' .. ..
t.
-·
;t'
September. 11 , t981 ..
' Mr. Geo.rge Cotroneo
· Page 2 ·
., The table .below gives the observed ·and· compUted W. s. E. • s and the dif·
ferences between them for the crest gage cross-sections. The observations
were made on N~yember 11, 1980, when the flow .at Gold Creek was approx-
ii'nateJy 3,000 cfs. This was a full month after frazil ice first appeared in
the river, so it is possible there are ice effects at sorne of these locations.
;~Comparison of Water Surface Elevations at 3, 000 cfs. (ft, msl)
LRX fgmputed. Observed Difference --
3 340.2 ft. 340.2 ft. 0. 0 ft.
4 346.4 ft.
9 374.3 .ft. 375.1 ft. ..o. 8 ft.
24 519.1 ft. 519.1 ft. 0. 0 ft.
28 552.2 ft ..
35 615.0 ft. 614.7 ft. +0.3 ft.
45 681.1 ft. 681.4 ft. -o .3 ft.
62 831.2 ft. 831.9 ft. -0.7 ft .
.
ry:. ..
_,. . ~,
Some additional' attached sheets give specific comments pertaining to (~ __ ).
cross-~ections where problems were noted in the H EC-2 output.
}f. you have any questions or comments, feel free to give me a call.
V~ry truly yours,
. . . '
R&M CONSUL TAN~$, INC.
,,·~-.-~~---·
' .. •) . ·.
' .
Jeffrey ·H.
Senior Engineer
"'JHC/jcr
\
P,.E.
1 .
,jo'
t,
• \
~I "f • .o, ' • I " •
• • f, J' ' ,. • It ,., ;• . ; • \ ••• ... . ' ( 'l: I •• , . ,, t' I > . ~ . t:t.,.-. I:'.'~; • ; ._.._, t • , ~~ .. '_f. . .. ''. . ~ . : ,.., .... . . ;. . ' . ' r· .... ···-.. -·--.. --... ----~--~·---.... ., .. ;., .. ·-... _ ........ _ ·~~-;.
• .
•
•
•
•
•
Rl/09/0le
• •••••••••••••••••••••••••••••••••••••••••••••••••
~EC2 JELEASE O~TED NOV 76 UPDATED APRI 1960
£PAOR C~qR -~~~02t03t04
~ODJFJC4TIO~ -SO~S1,52t53t54
******~***~****~*******ft******~•******************
LC~£P. SUSITNA RIVEP--
SUM~~RY PRINTOUT
SECrJO G CUSEL VCH l\EPTH
.. 3.000 _,3000•.00 ___ 3,0e20' ... le31' 7.60
ltoOOO 30GOeOil 3lt6 a36,.... 6ell
/ ·0 2e3fl
s.ooo 3000oiHI 357.37 • f?• OOQ .. _ 3000•JUt ___ . ;J60 e62" __ -··
• 7.000 ~ooo.oo 36lfe'll'
2.0~1) ~0(10.(1!:1 369.99"' • 9 • 00 D •. _,_3C Ofl ~ QO 3711. ?6,....
• to.ooo 3000.~0 388a91,....
lteQOO 30D~eC:l lfi.17.67' • 12 • 9 o o ·-··-~o~p. (I Q _____ . ~ 19.4 E? ,.,. ___ _
• 13.000 3000.09
111.000 3000.00 •
• ....... *-*·-·
17.000 ~OOOePO 457.57/ •
·------------·-~ .....,...._.. " ..... iU
lc52
leR7 .
le99
le6.9
2.~5
le81
2.47
2e37
If .17
3e52 ....
5o 01
5e89
7.66
2· 71
6.67
7.80
3.76
3.68
ltel7
6.02
1e60
. ' PAG£
.......... ··• ._ ...
. ·-·-~--·-·-......-...,...-~-~--~ ~ .. ··k•• ·--~ ···--·--·-·-----~ .
•n • _. ____ .,. __
K•CHSL ENCST
o.co
2el6
leRS
lt8 !.00 . _,J~1.6?.!t91t 4!1t •29 ltO;!_~_r_'!1_ ... ~,.8l!!~.!t ........ _~--·--·· -·-·--==.J' . .
lta.oo 490.7~t ~t38·25 3173.02 5771.27 1r
1t 8. oo 19 1s. &3 ----e16.2-o __ ... 6 o~t9 .6tt -·-1253 ·M~ -----· ·--····-~· • 1.·-~J
.79 1506.7/t '. 573.36 1128.18
le02 60.~0 3595.67
.51
2.60
lelf5 •
•
.... 29 ... _._ .. !1 ~ ·-~~
1•60 IJISeCO
~-·-··--.. ·--------.. ---·~·---r-r----.,.-......-·----·---.. -· .. --..... _. ·---···· .·,, . ~ ''.. .
I
.. • .l•
I -. . . .
w i 14!/r-9/01.
21.000
. .,
23.000
27.000
28.C'l0
29.006
35.000
""" <:~ 36eQOO .D--37.non
36.000
39.000
.
• ... .... ~ ... l"' 1~ , ... '--"' ..... , •• ,.
a
3.UOO .co # .
3000.0.0
C"SEl
" lf92~·38::;;
506.56"
5Q8~r79-
l
Jooo~·oo-·~··· 5.ta. iH ,.· ··
300.0.00
3.000.00
3ooo •. ou 540._25 ...
.. . .... _ ............. ..
3(1COe0-0 552e2.lt-
3000.·£1(1
3CH.:o.op
3000.0t
3000~00
3000.00.
3000.CO
..
3DCOeOO
3000.00
301.10.(10
51:\3 .os /
610.79 ..-
615.00 r
625.08"'
VCH DEPTH
3e~R 5o66 le72
2 •80 2.57
4el9
2e2fl 3e86 lel8
lte80
5.12 le71
l.lfl) "2 e8lt
1a91
2oH1 5.oe:. le13
le63 9.5C -1.88
7.11 2.'t0 5.09
2·09 6e28 lelt7
2.34 2.75 .
3.50 2.1a
3UOO.OO r··-·~. 653al0 2elt7
~t.ooQ. 3ooo.og 6 58. S5 r 3 .1 0
2e27 3.78
-.. N
I ---
3&.00
36 .• 00 308.19 38.42 •. ':18
1:561.8-'t
'l1a1.11
-. i
-;~-'
-~
· 36 .or·-···1 095.~s----st.;r;'lu---1663.;l' -· · "~o1 ~96 ....... ~-· .. ·--··---·--· ······-~] ~·
,.2. oc 1313.96 . 526.01 2538.70 306/t. 71 .. .,..__ .... 1'----~ _....... . . ··-... -...
·~ .oo U37.7l · 31.0.64
• 2. "o ·-··-·-62s ~·2s ~·3oil·;91-"1'772·;si·-··· 21 o2lll2o • .. ---·-· ···· ··--------]
42oCO 1487.91 531.64 3522.65 40~4.28 ,..,. ---·-----• ,.-a•-•--0.. •.. # ,_..,..,.. __ ,...,. .. ,__.,.
670.95 385a-'~ 1192.0/t 2527.28
45.60
t5ti'o;a6-3e6·;s6-·3··7it. 76 ~··-3861.32 · · ·---·--·--· .. ·--·----~.---] ..•
it7t!~~---~~~.!!~~ ---~ lt282ol~ . 46~0·21 _ ....... _.,_
1503.93 600.55 2886.69
---···--·-·-·--] . '
,W.
"' , ........ -..... ' ....
42le99 '27Q•38 · 150~e7C • ..--· -·------, . .... J·~:~: 2625.49
6
1455.82 742.50 1854.27 2887.61 •
• ~-..... --................ _ .. _.,.., ....... -----·----------·· _,,.... ,_.,, __ ·• __ .... -. ......... f ___ ... _.,. _ _.. ........ -._ ... ···---·-·· ........ _ .• --.............. -....... -----------.,.~ ...... _____ ..,. _____ ... __ ,., __ ..,
J I I
·~ i""' . --------'ll( _______ ..,..,--r-~-.,. ,---~~-_______ ,_._
-~-. . . 0.
. .. . . ", .. ., . .
---:-~---;---·-...---·-----.. _.-------, ... -.....----.....--·--· -· .. ··---
•· f
•1
•
•
•
•
•
•
•
•
... ,. '
Pl/09
S(CNO
,. ... ooo
4Ee009
48e0Dfl
so.ooo
SlealO
52. !)0 0
.
53.000
~s.ooo
~91\DeOO
30UOoOfJ
3ooo.oo
3000o0£1
3000oGO
3u0lle00
3D!Hla00
c;.;sr.t
678.79 ..
6BleC8-
690.40 ...
700.53-
7~5·11--
713.55-
...... --.
3000e00 720e't8-
30(10 •. (;0
VCii
2.30
6.85
3 e2ll
2e6fl
. . __..._ .... . .... -·---.. . ·····--·· -... . . Sf..ooa 3ooo.oo 749.90" 2.1P.
57.?01) 3!t00e0(! 751.79"" lo99
3!1l!OeD9 761.71 .....
.. -·"' ·-~ ... --~--... ~ ...
3 0 0 0 • [! l) 78 2 • 8 6 ... 2 ·" 1'
6CoDOO
61 .!10 0 3000.00 828.62,.. 2o5f.l
3000.90 836.15..-• .c:;:;r · is.o;ii ___ 3orio;oo-·ue39.u ·~----..
.u _ f6oOOD 3000o00 81\2.26/
7.07
• 67.000 3ooo.no 845.64 2e09
-,. ~
·-·~--··6t.:ooo--3ooo. no ___ att 1.1a ..;::·--··-t.66
. .,,. ·~ ..... ___ ... _.. -.. ,, ... -·····
Ot:f' TH
7.5A -. 75
5e27
.49
s .. to 2.57
1. C3 -·52
3.21
6.35
5.12
5.94 2.55
5.50
6.29
4.81 2.57
2.27.
9.12 1e7A
ltlo75 -1.73
3o0l l9e1J
!:h06 3.79
17.28
,..-.
I
ltft .oo
60.()(1
6& .. 00
66.00
&6.00
66.00
~-_...,.,._...--··~·~~·-_...._......,. .. __ ...... •·"'!*'-~*f'"l'••• ..... . .
.. : ..... t ....
. -... --...... _,,..~-·
AREA TOPIIl D SSTA
859e0l-·-··-32i;35~·~065~S8
1304 •• 1 ·~·· 306e6~ •. 1229sf2
437.72 26le33 1761.67
•'
931' -~~·~·-· 385e3~-", 1731tel.2
1533.55
1002.66
1337.0~.
113J.te0
PAGt
CtUlST
3392,9~
153E: .. 5_R.:./
2023e00
1601.70
1&2lte60
100le55 294e59 12Ulte91 1q99e50
• -•• • •• ·-... ~ .. --!' ---····--··' • .of! .,.,.p..-...
1163.28 210.92 1003.16 121'te0A
1433.50 373.tt6 100le29· 1380e74
.. .. ·.~-·. ...........J, ' . ·:·, .•··· ~8 ;.·?l• .
•. ._,_~ ... -~ .• /I,
··•'::w.
l
·-..:----· ... .., _,._J
,.
• ,. ----·-------------·-··----·#• .. '"'_'_ --···~· .. -.. -..... --· ____ .. , ..... -.. ... ·---·-.... ·-~.~. -----._.,;.-------........ -........ --... ~· ~--·------------..
~~ :·· -~
"'
-..
...
• ·N .· .. ' . ...._
~
.J ' .. --,, • .. ~ .......... ~ ..... ~ ... ,, .. ,. ...... ~~._,.. f.·~~·--·. K_..,,_ .. --.-...... A~-""'"' ... _ .. ~, ... ,.... • ,.. .. -.• ~ ........... )ll~~~,.._... ..... ~~t.M;•Il • '• .._.· ~·A·~ .Jioolo-----~" ' ~ l» _.,,.., "'!"'...;,~<
81/09/01. . PAG( lf9 -:::; ~ f~, :
' .. .. .. ~ .. "',......,~ . .,... .
SU~~ARY Of ERRORS ............... -t-•·,.-~~·· ... ··-·~,--------
/.
rJ! UTI CP<J SECfJO: If .llOO PR'l~='llf:::: l CR 11 IC H C(Plt:l l'SSUtAEO _., ._ ~·~··-·-~--... ~P"'t·~ ~ ......
·.~
~·. CAVTJOt.: ~tctns: lt.QtJ.Q ~ROFJLt:= 1 PPOiMbLE MINUWtl SI"E.Clf!C U.LRb\'
C~UT JCIN .. SECtJ(l: •..• ~.!t! ~QCt.., •• P~Qf=ll.E~ 1 20 TFJ ALS A lTEMP!t:U TO BALAt~CE "'SEL c,./111 U0 TTJJ 0C·t~ SSEECcN,.o
0
= __ , ·1tr.;9·.·~llo2 Pp.~R~~fF,lJtl;:_ •
1
1 • CRITICAL OEPfU ASSUMED . . .. -· __ .. ~-• .• '-"-~-~.···-·.·-~·--.. --... ~-·--· ·---··· .. ~·~"~----l . ' •• c c "' ., . u &;. MltH:MUtt SPECIFIC ENCRGY
.. -··-•• ,. ·----· ... -""'-..·~-__.. ..... __ ,. ....... _..,. ~f ...... ,, ...... ~~-.-.-·""'-......,._
CAUTION SECNO;:: 24.500 PROFll(:. l
C:~UTJO~.-SCCNO~-.... 24!50Q._ PROfiLE= 1
CAlJTJCU SECNO: 2'ie5CO P.ROf-lLE.: 1
CAUTJM! 'SECNG=
CJ!IJTJO~ SECfH>=
CAUTJCN SECIJO:
C'~UTJnN SECNO=
CJIUTJCIJ SECi-'l:
tA UTlC~J SECf;O:
CAUTiON SECUO::
. . .
~$ .. .. ... --4' CAUTJOU SECNO:
Ct.UTICifJ .SECtJO::
CJ!UTJCf\' SE:C~O=
32 .rtHJ
32.~GO
3~ oil £It !I
•· ". . .
3f$000
3£..1')00
36.; flO o
I
ltlf .• IJ& 0
65.0(10
65.~0l'
65eOC~
PROFILE= 1
FROfiLE;:-l
PROriL(: 1
.....
PR\lF Ill::= 1
PRGFILt:= 1
PhCfllE= 1
PROFILE::: 1
.
Pff OflLE:: l
PROFILE= 1
PROFILE: 1
~...,. ·-·--· .. -· -··-· .... -...... -..... ---.---·-""-"""" "'"!'" ...
CR 1 TJ CAL OE.PlH ASSUMt:·.O
PROBAel[ ~~~J~UH SPECIFIC f~ERGY
Zl.O .TRIALS ATTE".~TED TO. BALANCE \iS[L--·--:-
CRJllCAl nEPT" ASSUMED
PRObABLE MINlfUK SPECifiC (~L~G'
-~----··-·~ ·-· .. ·-··· ····· ... -... ·;··-=---l_·.· .• J
. . I
' ''' , .. ,.,., ... '""'"'
20 T~IALS ATTEfi.PlED TO BALANCE l.iSEL •·
CRITICAL DEPTH ASSUME.D ..... --··---..__---..,...-----:-----------···~---·---·-'---------]· .
PROBABLE •'INIMIJM SPECIFIC U~lRbV •.
20 TRIALS ATTEMPTED TO BALAtiC( ~SEL ............... ,.._ ~ ............ -...... ..---·-·-.. -"'"''"' .......... '. "'"" ... -
20 TRIALS ATTE~PT£0 TO BALANCl ~S[L
..., ...... ,_ --·---.,.........._..·---
CRITICAL DEPTH A~SU~ED
P~QBABLE MINIMUf SPECIFIC ENERGY
20 TRIALS ATTE11PlEO TO .BALAl\CE WSEL ..
----··--·---. ~ .-... ~-· .. _ .... ··--"-"* -~-~-·---]
------~-· .. --.......... :. , __ ,...,_-.. ~·· ... . ·-·"' ~ ... .., -••
·-.. ·-----------·---..... --~ _ .......... ,.,_ ·-~··-··-.·-·l •
......... ..... ...... -~ .. ·---• .,._->A4 __ .. ._._ .... . ....
•• --·-·-·-----------·---. ,, --·-·-··--·-... -. ·-. ·--~-----l ••
. ' .•.. _t
.
.... , .. ~ • • ..... ,.,. '* ···~ ' ·-.............. --.. .f ···-------·----··----.... • • ~ .--
..... ------~-~·-· -----·--~------.. .. :. --·-·-·------~~=] ·•·· .
. .
.... ·-·· .. ··-· -··-·-.. --·----------··--. --··--·-----------___ ,__ __ ,_1
•·
,. •• , .. ·····--·---...... _,.._.., __ ......... ----..... ·-.. • ·-.. !" ... _ '
•••
~' ..... ~·-.. ~ .,_ .... ----~~· ____ ,. ___ .. __ .. ____ .... '"' .. ·---·. -····· ·-· -~-· , ...
'r).. j .
}\,._..~, ............ __ .· ~
;__'},"'''' .::; .
LRX
,, ..
19
24 .. 5
32
misc. 9/a1
comments. on 3, OOO•cfs ~ H EC-2 Run
Comments
Critical flow @ both n values. Critical depth does ..
not seem reasonable, based on channel slope (not -· .
especially steep), or geometry. Likely explanation
is that. assumed W .~s .. E,. @ 3 is not correct. Trial
w.s.E.. @ 3 is an observed elevation, but no
-u~
observation at 4 to a:ia for check. Tried
vario~s · starting W .. s. E.'s @ 3, from 0 .. 5 feet
lower to 1.8 feet higher --all produced critical
depth at 4. That appears to be what happens.
True W.S~ E @ 4 may be ·a little higher than that
,shown.
Critical flow @ both n vatues.. Depth is quite
shallow, and average depth is fairly close to
maximum depth ( 1.1 1 , compared to 1 . 61
).
However, critical depth does .!!!:!! seem reason-
able -perhaps it is 11 caused 11 in the model by the
great. distance from 18 to 19 (18,000 feet), making
the transition not too well-defined. The true
W.S.E. @ 19 is probably 0.5 to 1.0 feet higher
than the computed one given.
Critica.l flow @ both n values. Fairly steep bottom
slope to deep hole @ 24. Critical depth seems
reasonable, based on field observations of a ".-.
11 r-iffle 11 in the bend u/s of Curry at low flows.
Critical flow @ both n values.. Flow is fairly wide
and quite shallow (average depth is 1.25' and
maximum depth is 1. 5 1 ). Reach length from 31 to
2~r1-11
\
'
; "
46
51
65
" ..
misc.9/a2
• •
c$2 ·l$ rather·. l()ng/ .· so . transition is probably. not
too welt..,defined~ · Critical depth does not realty
seem reasonable -true le.vel is perhaps 0.5 -
1 ,.0 f~et·higher than comput~d.
Critical flow· at both n values. River goes from
shallow depth @ 36 to deep ·hole @ 35. Bottom
slope · is. .,'{~i rty ·steep 1 and existen~e of critical
depth at low flow appears reasonable.
Computation of W .. S.E. took 23 trials. Resulting
answer looks reasonable compared to other flow
levels.
Citical flow with 10%· increase in n, but not with
20% increase (W.S.E. = 0.1 1 higher). Avoidance
of critical seems more reasonable. There is quite
an expansion in flow area from 46 to 45, due to
re.latively great depth @ 45. Thus, depth close to
critical is probably justified.
Flow is not as close to critical depth when n is
increased by 20% as when increased by only 10%.
Thus, the former (20% increase) seems more
reasonable.
Critical flow with both n values. Bed is high at
river bend, causing steep bed gradient to 64.
· High ;bed also causes low flow area. Critical
depth at low flow se~rns reasonable.
,.
. ' :vt
~~ .,1 ... -
" .... ~'
X-Section. ·
. ·-·
3
,4
5-
6
.. 7
.. 8'
. 9
lU
'11 ~ 12 I
·--··
13
"4 " ..
15
16
17
1'8
19
20
21
22
.23
24
25
26
.27
28
-·-· ·., 29 ~
. TABLE 1
MANNING's n VALU5S USED FOR CALIBRATION
· · · OF SUSJfNA ., RIVE~ H EC-2 MOD.EL
~
..
0=9-700 efs · Q-17 ,000 cfs Q=34r5QQ cfs
.036 ~0324 ..
.040
.040 .036 .0324
.040 . 036 .. .0324
.040 .036 .0324
.040 .036 .0324
.. 050 .045 .0405
.055. .0495 .0446
. 055 .0495 . .0446
. 055 . .0495 .0446
.055 .0495 .0446
.055 .0495 .0446
.055 .0495-.0446
.045 .0405 .0365
.040 .036 .0324
.040 .036 .0324
.040 .036 .0324
.040 .036 .0324
.040 .036 .0324
.040 .036 .0324
.030 .027 .0243
.030 .027 .0243
.030 .027 .0243
.030 .027 .0243
.035 .0315 .0284
.035 .0315 .0284
.035 . 0315 . 0284
.035 .0315 .0284
Q=52, 000. cfs·
.0324
.0324
.0324
.0324
.0324
.0405
.0446
.0446
.0446
.0446
.0446
.0446
.0365
.0324
.0324
.0324
.0324
.0324
.0324
.0243
.0243
'!0243
.0243
.0284
.0284
.0284
~ . ..
.0284
.. 30
31
i32
33
34'
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
MA~~{~lJNG's. nc_\(ALUES USED FOR CALIBRATION
OF SUSITNA RIVER HEC-2 MODEL
(continued)
Q=9700 cfs Q -17, 000 cfs Q=34,500 cfs
~038 .0342 .0308
.038 .0342 .0308
.038 .. 0342 .0308
. 0361 .0325 . ,0292
.0361 .0325 .0292
.0361 .0325 .0292
.0361 .0325 .0292
. 0361 .0325 . .0292
.0361 .0325 .0292
. 0361 .0325 .0292
.038 .0342 .0308
.038 .0342 .0308
.038 .0342 .0308
.040 .036 .0324
.040 .036 .0324
.040 .036 .0324
.045 .0405 .0365
.040 .036 .0405
.040 .036 .0405
.040 .036 .0405
.045 .0405 .0365
.050 .045 .0405
.050 .045 .0405
.050 .045 .0405
.055 .0495 .0446
.055 .0495 .0446
Q=52, 000 cfs
.0308
.0308
.0308'
.0292
.0292
.0292
.0192
.0292
.0292 '·
. -.
.0292 .
.0308
.0308
.0308
.0324
.0324
.0324
.0365
.0405
.0405
.0405
.0365
.0405
.0405
.0405
.0446
.0446
-"' ..... .
V:_~,i
.
~ . Q'
'1 .
JO"'"'"'·
. . .
. {~ . ......,
susi4/x3
· · .. ·MA,NNING's n -VALUES USED FOR CALIBRATION
OF S.USITNA RIVER HEC-2 MODEL
(continued)
X-Section Q:;:9700 cfs Q-17 ,000 cfs 0=34,500 cfs Q=52, 000 . cfs -
J
56 .055 .0495 .0446 .0446
,, '·•
57 / .050 .045 .0405 .0405
58 .050.·: .045 .0405 .0405
59 .050 .045 .0405 .0405
60 .055 .0495 .0446 .0446
61 .055 .0495 .0446 .0446
62 .055 .0495 .0446 .,()446
·63 .055 .0495 .0446 .0446
64 .055 .0495 .0446 .0446
65 .055· .0495 .0446 .0446
66 .055 .0495 ·.0446 .0446
67 .055 .0495 .0446 .0446
68 .055 .0495 .0446 .0446
NOTES.: . -
1. · Discharges stated are for Susitna River at Gold Creek.
2. Tabulated numbers are main-channel n values. The highest
calibration .flow used (52,000 cfs) is approximately bank-full, which
avoided precise definition of overbank n values. A general val tie of
n = .080 was a~sign~d to all the overbanks to cover the occasional
flooded areas above the bank levels. For higher flows (i.e. 100-year
flood and PMF), in the 1983 analyses, overbank n valu&s were·
assigned as described in Table 4.10 in "Hydrawlic and Ice Studies,.
(R&M Consultants, March 1982) .
" ,, ,.· ., .... ·F Z -:~f· .. ·.,. ·J£.:,. A,
'··' : • '.·· 1' •• :
. ' '
1")
TABLE 2
OBSERVED A,ND CALCULATED WATER SURFACE ELEVATION {l)
DISCHARGE (cfs):.
...
•:,.· '•"'·
LRX4 Observed
<;:omputed.
( Corn-Obs) Difference·
.. ..
LRX9 Observed
Computed
' (Com-Obs)Difference
LRX24 Observed
Computed
(Com-Obs)Difference
LRX28 Observed
Computed
(Com-Obs)Difference
. ."/,'
LRX35 Ob~~rved
Computed
(Com-Obs)Differenc~
0419A
.. ·
9,700
348.1
348.6
+0.5
378.4
378.1
-0.3
521.3
521.7
+0.4
553.8
555.0
I
+1.2
617.3
617.7
+0.4
13,400
349.5
350.0
+0.5
379.0
379·4
+0.4
522.0
522.6
+0.6
555.3
555.7
+0.4
617.9
618.7
+0.8
27
1.7, 000
350 .. 5
350.8
+0.3
379.8
380.3 .
cJ-0.5
522.9
523.2
+0.3
556.0
556.2
+0.2
619.0
619 .. 4
+0.4
D3,400
352.0
352.2
+0.2
381.6
381.8
+0.2
523.8*
524.3
+0.5
,557.0
557.0
0
620.0
620.3
+0.3
34,500 52,000
~~__.....,._
352.9 354.6
353.1 355.1
+0.2 +0.5
383.1 385.4*
383.4 386.2
+0.3 +0.8
f ·• 0 < y
'-.....,.,..-"'
525.4 527.5
525.4 527.2
0 -0.3
558.2 559.8
558.1 560.1
-0.1 +0.3
621.3 623.3
621.6 623.3
+0.3 0
• ~ ~ ~ •' l -' . • ·,.~~
..• -: 1\t • ,·
.._, ..
'.
TABLE 2 contfn:p.ed
. ~BSERVED AND CALCULATED WATER SURFACE ELEVATION (l)
.DISCHARGE (cfs); 9,70.0 13;400 17,000 23,400 34,500
LRX45 Observed .684. 1 685.2. 685.9 687.0 688.4
Computed 684.0 685.1 685.8 687.0 688.1
(Com-Obs)Difference .. Q.1 -0 .. 1 -0.1 0 -0 .. 3
LRX62 Observed· 835.4 835.9 837.5 838.3* 840.7*
Comp11ted 835.1 836.4 837.5 838.:0 840.8
{Com-Obs)Difference ... o.3 +0.5 0 -0.3 +O.l·
LRX6S ()bserved 851.4* 852.2* 852.9 854.1 856.0*
Computed 850.6 851.8 852.8 854.0 sss.a
(Com-Cbs) Difference -o.s -0.4 -0.1 -0.1 -0.2
(1) Adapted from .. Hydraulic and Ice Studies" -Table 4.18
*OBS water surface elevation determined from rating curves •
0419A
28
52t000
690.0
689.9
-o.1
843-9*
844.2
+0.3
859.0*
858.7
-0.3
. "_,;.
·····.' -~ •• ':' •• j . -~'-
*'·· '-
• ;, . l
l ·._.,.
\.
,J',
''...'
..
EXHIBIT E
: ·2"-water Use and Quality ''
~t 18 (p. • -E~2-S7 1 fig.; E.2.23)
--. Provide a compl_ete, dastripti on of-the curve-fitting technique used to gener-
ate this frequency analysis.
Response
The curve presented on ·Figure E.2.23 was fitted by visual judgement. A Log
Normal and a Log-Pearson Ty~e I I I di stri buti on fitted to the data are shown
in Figure 18.1. Based on thes:e two curves, the 1969 low rlow of 5596 cfs at
Gold-Creek has a recurrence interval of about 2500 years for the Log Norma.t
curve and 125 years for the Log Pearson Type III curve fit~ rathet than the
1000 years stated on page E-2-57 of Exhibit E in the License Application!t
The adjusted 1969. flow of 7200 cfs at Gold Creek used in the analysis in the
License Application has a recurrence interval of about. 30 years and 20 years
based on the Log Norma 1 and the Log-Pearson Type l I I an a lysis, respective 1y •
•
2-18-1
1 . I
..
..
"
~
·N
·~ ••
ao
40
20
-(/) u..
0
0
0
0 --WIO
(!) 9
0:
4 8 J:
0
~, 7
6
5
4
2
l.OJ
~ :
. . .
.
'
• • • • •
.
\
.-.
. '
'
.
' ,,
0 • • • ••• Ill !'"a.. -~ .. ---~ • . ............... ~
~ ~
•wYI969
1.25 2 5 10 20
RECURRENCE INTERVAL (YEARS)
LOW-FLOW FREQUENCY ANAl:fSlS
0 F MEAN ANNUAL FLOW
AT GOL~(tf}:REEK
...
.
50 100
'··~···:.·l.lt
' ·. . ··. · .. · .•. !.· .. ··'~~·~ .. ·.:.·. ·. ;' ' ' • • < .
. . ··'. '
' .. ' . . ~.. . .
•' ,,
. .. '~. ·o
' ' .,,
I
·:~
l
. '
:-...... ~
500 l,OOO 10,000
.
I
' . .(t.l
..
3 ...
H---H-1-r-1-'-- - -.•
-I-l-l-·l-l-·1-l-........ 1-l·-l-l·-1-l--1-1--1-1-l-1--I--1-.
t---+-I--..~-~HH~-++++I--~-~-~-~~~J-HH-rrJ~-H~rrrrJ--
-;---
. -~-:rl-----. !... .~ ;
EXHIBIT E
z. Water use and Quality
Cccnnent 19 (p. E-2-~8! iab1e E..;.2-34)
' ~ ,·, : • < -' ' • ~ • ' ~ ~' • '
Provide a· table of pr:oposed minimum. flows which resolves the apparent con-
tradiction between this table (Table E-2-34) and Exhibit B (Table B.54),
especiallY fot the months of lowest post-project flows (Octob~r-May).
~esponse
Table E-2-34 is the correct table. This table replaces Table B.54 in
Exhibit B .•
In· T.able E-2 ... 34 the Gold Creek flows for the October-Apri 1 period have been . '
increased to 5,000 cfs... Monthly flows in the Susitna River during this per-
iod with Case C operation will normally average 8,000 to 11,000 cfs at the
Gold Creek gaging station. A minimum f1ow of 5,000 cfs is the maximum fJow
that could be guaranteed in the event of a reoccurence of a drOU!Jht as
severe as that which occurred in Water Year 1969 •
. :;: If this severe a drought were to occur, with Case C operation, approximately
4,000 cfs could be taken ·out of storage over the winter on a continuous
oasis. This .coupled with a natural flow of 1,000 cfs, would provide a total
flow of 5,000 cfs.
2-19-1
, ' ..•
..
'!
"
.:~
·-·(','
.; r\· -
.TABLE E.2.34: MONTHLY FLOW.REQUIREMENTS AT GOLD CREEK
' ,:i\;
... -f'
Case ( cfs )
MDNTH A Al A2 c C1 C2 D
OCT 5000 5000 5000 5000 sooo 5000 5000
,, __ ...... 5000 ·--·. NOV 5000 5000 5000 5000 5000 5000
-. DEC 5000 5000 5000 5000 5000
5000 5000
JAN 5000 5000 5000 5000 5000 5000 5000
FEB 5000 5000 5000 5000 5000 5000 5000
MAR 5000 5000 5000 5000 5000 5000 5000
APR 5000 5000 5000 5000 5000 5000 5000
MAY 4000 5000 5000 6000 6000 6000 6000
JUN 4000 500~-. 5000 6000 6000 6000 6000
JUL1 4000 5100 5320 6480 6530 6920 7260
AUG 6000 8000 10000 12000 14000 16000 19000
SEP 1 5000 -6500 7670 9300 10450 11620 13170
Notes:
OerlvaTton of transitional flows.
1 DATE CASE ( cfs )
JOL sEP A Al A2 c ct c2 0
25 21 4000 5000 5000 6000 ~000 6000 6000
26 20 4000 5000 5000 6000 7000 7000 7500
19 19 4000 5000 5000 7000 8000 8500 9000
18 18 4000 5000 6000 8000 9000 10000 10500
17 17 4000 5000 . 7000 9000 10000 11500 12000
16 t6 4000 6000 8000 10000 11000 13000 14000
15 15 5000 7{)00' 9000 11000 12500 14500 ~6000
. '
EXHIBIT.!
<"::
2. w atir use and Qua 1 i ty
Co ' I ent 21 (p. E-2-67! para. 3)~
Provide estimates of the magnitude of increase in suspended sediments -in
watana, Oevi 1 Canyon, and the Susi tna River associ a ted with vegetation re-
moval in the impoundment zones. ,
R1~sponse
. Quantitative estimates of ·the magnitude of increases in suspended sediments
in the proposed reservoir sites associated with vegetation removal are
difficult if not infeasible to produce at prese~t. The best estimates
avai·lable indicate that a very small amount of increased suspended sediments
would ·,esult from the removal of only the above ground biomass of traes lar-
ger than 4 inches in diameter. No plans are envisioned for removal of tree
root syster11s, brush or smaller vegetation which falls w·ithin the impoundment
zone.
The increased suspended sediments associated with tree r1~moval are expected
to be negligible when compared to the annual suspended sediment discharge
for the Susitna Piver at Go1d Creek (e.g., 8.5 x 1016 metric tons per
. year}. Increased suspended sediment discharge due to tree removal is
expected to be within the range of natr.&.ral variation for Susitna River
suspended sediment discharges.
Exact plans for the removal of trees from the impoundment zone have not been
defined. Factors to be considered in estimating increases in suspended
sediments must consider the harvesting methedology which likely will not be
firmly delineated until approximately 1988.
2-21-1
' .
·.'
2 ..
'\
Water' Use and Qfi-0'1 i ty
. EXHIBIT E
~.!'It 22 (p. E-2,..&7, para. 3; p. J-2-143t
provide quantitati've estimates of-increases in suspend?rl sediment concentra-
tions, in winter and in sunmer and the downstream extent of such increases
during construction of Watana and Devi 1 Canyon JJams.
Response
A preliminary estimate has· been computed of the suspended sediments added to
the river from gravel mining sites during construction of Watana and Devi 1
canyon ·oams. It is, estimated that 52,000 metric tonsl1 of suspendab le
particles (i.e., those less than 10 microns mean diameter) will be liberated
to the river during the May to September working season in each of the six
years during which gravel mining is scheduled to occur.
The ~stimate~ amount. is less than 1 percent of the 1952 suspended sediment
discharge of the Susitna River at Gold Creek during May to September, and
represents a 4 percent increase (page E-2-69, para. 2) in suspended sediment
load over the ~;unrner 1982 loading. Sufficient data does not exist tc c~'lcu
late meaningful .suspended sediment discharge statistics for summer, winter
or annua1 peri c,ds.
Details described in E-2-69, para. 2, 3, and 4 and E-2-70, para. 1, 2, and 3
explain how addlitions of suspended sediment will be minimized in winter and
during the primary processing of stockpiled borrow material. Disposal of
primary processing wash waters containing suspended particles is also
discussed.
2-22-1
Yrhe fi<'..ire 52,000 metric tons. per annual work season was derived -
from:
~0 million m3 x 0.01 {1% estimated loss _of mined material back to river
from oragline Operations) = 5.0 X 105m3 lost to river.
o 5.0 x 105m3 lost to river x 0~35 (Maximum Estimate of Potentially
suspend able Sediment.s pet Uni-t) = 1 .. 75 x 105m3 Potenti a'lly Suspend-
. · ab·le '"Sediments
o 1.75 x 105m3 SS x 3900 lbs. per m3 = 6.9 x 108 lbs. Potentially
Suspendable Sediments
o 3.4 x IOi ton Potentially Suspendable Sediments
or
o 3.1 x· 105 metric tons Potentially Suspended Sediments during six
years of grave1 mining.
o Conservative Overestimate of approximately 52,000 metric tons of
Potentially Suspenable Sediments per summer work season.
2-22-2
EXHIBIT E
2. Water Use and Quality
Provide. envi.ronmental cr.iter~a, used for selection and elimination of borrow
'·.:,. "
site~.
Response
Generic criteria used for selection and elimination of borrow sites
included:
;)
l). Q~antity. and quality of,available borrow materials;
2) Processing required (washing of fines);
3) Hauling distance, stockpiling site availability, site preparation and
rehabilitatipn requirements;.
4) Location with respect to riparian vegetation~ wet 1 ands or important
wildlife habitat;
.5) Abser-ce of archaeological sites.
Specific criteria and gravel harvesting methods wi 11 follow resource agency
guidelines as outlined in Supplemental Attachment No. 2-23:
References
U. S .. Fish and Wildlife Service. 1980. Gravel Removal Guid~lines Manual
for Arctic and Subarctic Floodplains, FWS/OBS-80/09.169 pp.
2-23·· .. 1
1
~1
:j
EXHIBIT E
-2~ Water Use and ·Quality
Provide data -on the quantity and particle size distribution of materials
lost through entrainment and erosion from borrow sites at other construction
sites in Alaska (e.g., Lake Eklutna Hydro Project).
Response
Data are presently not. avai 1 able to speci fica lly answer this request. No
studies relati.ng to th'i$ question are known to exist for Alaska. However~ a
P'!blication related to this topic is contained in Supplemental Attachment
Nill. 2-24 (SA2-24).
U. S. Fish and Wildlife Service. 1980. FWS/OBS-80/08. Gravel Removal
Studies in Arctic and j_ubarctic Floodplains in Alaska, 403 pp •
•
2-24-1
..
EXHlSIT E
2 . .
Prov-ide description pf methods fo~ preventing entrainment of backfi 11 mater-
; a ls. in river water and erosion of such materia 1 s into the river.
Respons_!
.Generalized de$cr~!).tions of methods for preventing entrainment and erosion
of backfi_]J materials into the river are discussed on pp. E-2-67 through
._· E-2·7G of the L icens.e· Application.
More specific guide:lines for mining gravel in subarctic floodplains ar~ con-
tained· tn Supplemental Attachment No. 2-23 (SA2-23): U. s. Fish and Wild-
lif~ Service. 1980·. FWS/OBS-80/09" Gravel Removal Guidelines Manual for
_Arctic and .Subarctic Floodplains, 169 pp.
,,
2-25-1
,
j .• !
'\JW
EXHIBIT E
2~ Water Use and Quality
COIIIII!Rt 26 (p. · E-2-75il parae 4)
_pas?
Provide coefficient values used in regression analysis and how they were
detetmi n'ed ..
Response
A regional analysis of low .. flow conditions ·;n streams of the Cook Inlet
Basin was performed by the U.S. Geological Survey in 1980 (Freethey and
Scully, 1980, to provide a series of equations for use by Water Resources
Planners to estimate flow characteristics for streams in the basin which do
not have long term flow records. This information is contained in Supple-
mental Attachment 2-26 which also describes the derivation of the equations
mentioned on p o E-2-75. The equations are pres.~nted as footnotes to Table
E.2.32 attached as pp. 2-26-3. Values of the coefficients were determined
by regression of flow data against basin characteristics from 25 gaging
stations in the Cook Inlet Basin. Values for the coefficients for (30) day .,
minimum flows with recurr·.ence intervals of 2,10, and 20 years are:
Recurrence Interval
Coefficient ? ... yrs • lO yrs. 20 yrs •
a • 132 .0839 .0656
b • 98 .98 .99
cl/ .20 .16 .15
~ .31 .38 .43
l/This coefficient 11 d 11 should not be confused with the subscript "d 11
shown in t.'le term Md,rt in the USGS regression equation. The subscript
"dn in the term Md,rt denotes number of days and is not a coefficient.
The footnote No. 1 for Table E.2.32 therefore should be revised as
follows:
2-26-1
(J
.' ::)" YMi~i~~m;.f.lows_ esti~ated from the: following USGS reg~ession equation
· , '" · ,-;, J~' (rfeetney and Scu 11y 1980).
... ,_; .where: M -minimum flow (cfs)
D = . number .of days ·
rt = recurrence interval (yrs)
A = drainage area (mi 2)
LP = area of 1 akes and ponds C percent)
J = mean minimum January air temper~ture ( °F)
a, b; c, .d = coefficients
2-26-2
...
..... ('ell' . . ' \ ;. . ., .
'
. ,.
Road A :5o-bey Minimum F~ow (efs>1 Peak Flows (ctsl2 . , .
Mlle Ar~e
OrefneQe Basin. Location CmJ ) R$currence lntervef <vrs) Recurrence Interval Cyrs)
2 10 20 2 10 25 50 . -------
•·
bana 11 HI ohwg~ to~~ Watane C~ti\1) . ~ornen1
lily Creek 3 3.7 o.a 0.6 0.5 25 54 78 96
Seett I e ·. C!'"f:Jek .6 \1.1 2 .. 4 1.8 '· 5 74 147 205 248
..
Seattle Creek t.s 0.3 0.2 Tl'"fbuta.ry 8 0 .. 2 10 24 35 44
Se~.ttle Cree'k · 2.7 o.a 0.5 0.4 13 29 42 51
Tr Jbut~ry 9
'
Brushkene C:reek 12 22.0 5.5 . 3.i; 3.4 115 217 299 354
Brushk~na Creek Sltp:-:·:.· 14 21.0 4.9 3.5 3.1 121 228 315 374
Upper Deadmen
20 12.1 3.0 2.1 1.9 64 127 177 211 Creek
Dae~dman Creak
Trlbutery 28 54.5 13.2 9.3 8.2 276 488 661 767
Watana to Devt I .
Can~on SegmenT
Tsusene Creek 2.5 126.6 26 19 17 780 1309 1744 2000
.Devil Creek 22 31.0 6.7 4.8 4.2 199 369 506 597
Devil Canyon to I
Gold Creek Ret I rose
-segment'
3
Gold Creek 0.,2 2s.o 5.4 3.9 3.4 162 304 418 497
NOTES:
1 Mini.mum flows estimated from the following USGS regression equa-tion CFrgethey and Scully
1.98Q).
where: M
d
rt
A
lP
J
a,b,e
a minimum flow (cfs)
a number of deys·
• recurrence tntervel (yrs)
a drainage eree (m!")
• area of lakes ~nd ponds (percenT)
a mean minimum Januery air temperature (•F>
• coefficients
2 Peak flows estimated from the following USGS regression equet1on <Freethey ~md
Scul Jy 1980>.
b Q • aA (LP + 1) c pd ·t
where: Q • annual peak dlscharge (cfs)
t • recurrence Interval (yrs)
A = drainage area (ml~)
lP • areas of lakes emd .ponds (percent)
P = mean annua I precl p ttatlon (l n)
apb,c,d • coefficients
3 Rat I road mJ le location.,
.....
Z.. -U-3
[
[
[
[
r
r
[
[
[·
[
'It
[
', ~';:i·
-~ _,, ~·-": EXHIBIT E
2. Water Use and Quality
E•2-77 • para. 1).
Provide details of regression ana.l.ysis "used for Deadman Creek including
::perivat)on of coeffici.ents and input data.
Response
The r.egression equation used to determine the 1:20-year, 30-day low flow for
Deadman Creek is the same regression equation presented in Table E.2.32
attached as page 2727-2. Also note the correction in footnote No. 1 on the
attached sheet. Values of the coefficients are:
a = 0.0656
b = 0.99
c = 0.15
d = 0.43
The derivation of the coefficients is discussed in the Freethey and Scully
(1980) Supplemental Attachment 2-26.
The input data are: Drainage area A= 172 square miles.
Area of lakes and ponds = 1.6 percent.
Mean minimum January air temperature = -4°F.
2-27-1
....
" ...
Ro~d A
3o-Day Minimum Flow Ccts>1 Peak Flows (cfs>2
Mtle Ar2a Cvrs> Recurr"!nee Interval <vrs)
Oratnaae Basin ·Location Cmi ) Recurrence interval
2 tO 20 2 tO 25 50 -----~
oena at · ~1 gS"g~gro ,oj Watana a men
LI ty Creek 3 3,.7 o.a 0.6 o.s 25 54 78 96
. 1.5 74 147 205 > 248
SQat1' l e Creek G 11.1 2.4 1.8
Seatti~ Creek 0.2 0.2 10 24 35 44
Jrfbutary 8 1.5 0.,3
. t ·,
Sea+1".1 e CreeK o.a. 0.4 13 29 42 . 51
Tr::6ut~ry 9 2.7 0.5 .
BrushkancCreek 12 22~0 5.5 3.8 3.4 115 217 299 354
BrushkanaCraek 3.1 121 228 315 374
Site 14 ~1.0 4.9 3.5
Up per Deadman. .
20. 12.,1 3.0 2.1 1.9 64 127 177 211 Creek ·. ·
'Deadman Creek
Tributary 28 54.5 13.2 9.3 8.2 276 488 661 767
.
Watana to Dev ll
Can~on Segment
Ts usena Creek 2.5 126.6 26 19 17 780 1309 1744 2000
DovJ I Creek 22 31.0 6.7 4.8 4.2 199 :169 506 597
Dev U Canyon to
Gold Creek Rallroac
Seamen1"
3
Gold Creek 0.2 25.0 5.4 3.9 3.4 162 304 418 497
NOTES:
1 Minimum flows estimated from the following USGS regression equation CFreethey and Scully
...
1980).
MJ. t a aAb CLP + l)c (J + lO)d b .,,r
where: M • minimum flow Ccfs)
·J> ,C = ·number of days
rt = recurrence tnterv2l Cyrs)
A • ~ratnaga area Cml ) LP s aree of lakes and ponds (percent)
J a tnean minimum January air temperature c•F>
a,b,c;,d = coefficients
ot~J(,>NA~... vs~.s
~t.&~eS!:IJO~
~QUA1"/0JJ
2 Peak flows estimated from the following USGS regression equation (Freethey and
Scully 1980).
.
where: Q = annual peak discharge (cfs)
t • recurrence lnterv~l Cyrs>
A = drainage area <ml )
LP = areas of lakes and ponds (percent>
P = mean annual precipitation (fn)
a,b,c,d • coefficients
' Rat I road mile location.
...
(i: .
r''l .~ c·
. c
r
·~
~
[
r
r:
< ... '} t_Y -
r
r
t
r
(
·~.
I ··A\
I 11\MP
'
EXHIB.IT E
i:. ~. '
2. Wa:ter Use, and Quality
. .-...
coniaeni' 31 Cp. E-2-91, para. 2; p, E-2-170)
. P.tovide quantitative estimates .of increases in suspended sediments resulting.
from skin slid.es, biomodal flow type slides, and shallow rotational slide in
''" • "" H
the. wata.na and Devi 1 Canyon impoundment zone. Document locations where each
type. of slide is lik~y to occur in each of the impoundment zones.
I. • •
Response
o•
A 11 wor.st case•~ scenario involving slumping of all the known potential
shallow slides· of ski.n types, bimodal flow types, shallow rotational types
and assorted frozen, partially frozen, and non-frozen block slides (i .. e. the
latter were assumed to be up to 20 meters deep) was calculated to poten-
tially yield a maximum of 2.0 x 108m3 of unconsolidated materials to the
river/resevoir. The assumption was made that particles of 10 microns or
les$ mean diameter (i.e. those which constitute silt, clay and colloidal
par·ticles taking longer than 30 minutes to settle one vertical foot) con-
stitute 11 SUspendab le sediments. 11 A conservative estimate was used· that
assumed 35 ·percent. (by dry weight) of the unconsolidated soil materials was
10 microns or less mean diameter. Thus, potentia 1 s 1 ides of both shallow
and block types were estimated to potentially contribute approximately 1.3 x
lOBmetric tons of suspendable sediments to the river/ reservoir.
Most of the s 1i des should occur aftev-impoundment of the Watana and Devi 1
Caijyon reservoirs. Therefore, the two reservoirs could be expected to trap
at least 75 percent (see reference in Exhibit E in the License Application,
P. E-2-138, para.· 3, and E-2-170, para. 3 and 4) of any
2-31-1
.;;'-;-_;
·-. particles added' to them. App'raximat.ely 33 million metric tons of suspended ~;'\ ~
, particulates (at a maximum) may pass through the dams to the downstream
environment as a result of potential slides of unconsolidated soil mate-r-
.. -ials. The actual ·amount will likely be much less than the maximum amount.
· Any downstreaill movement of suspended sediments due to soils erosion and
sloJ)e irtstabillty will ·take place over an extended period of time (probably
during· the T'irst five years· of reservoir operation), and should therefore
constitute only' a portion of the annual suspended sediment discharge of the
Susitna River at Gold Creek.
Further details of the locations of unstable soi 1 slopes within the reser-
voirs ~re presented in the attached maps (E-6-21 ~hrough E-6-45) ~·
2-31-2
(1
LOCATION MAP
"'}
. : li t• LEGE~ . ii. ·
____, , ' . Oil~ fAt; MAX!ut.n,l ..
-.· ---~£.1\ ~TING &;~V£~ . ··.--,..-f;i..f~t"
· 'buct llf FE:~ · .. · .·· "llOO-C~. ~.~SL· :'
-"' ... !j ..
. .· \l 0 . . ! . . .
1
' I
FIGURE E.&.zg
· ESERVOIR VlL CANYON·R. .
DE . INDEX MAP
..
... --
c...-... ~ .............. .
,.... •••• oetr ~ ....... ...
loCit .....
.,
•· ... ··~f;. . ....
\ ....... ~·-···
-: ... ~~.-..
--... ~ .......
\.'
.. . .. ... ""'· .•.
.. ••·a
-. ........ ___ _
..
DEVIL CANYON
SLOPE STABILITY Mf'P
: 1
!}
' LEG~NQ •· .)·,:~~~1 i'.
CJ ·~!I~ ~·-'·~·-~···"""·~<'•·
TYP£S. OF St.()~f •. tN<::TAPIII<t;ry'"''
1
1!
IJ
lll
III
'JCtlt')
...........
0
llf~HIJiiG
:t.t.OWS:.
SLI~ 'ivNFffO~t;~J
SliDING I i:fiiM~IICiST. ,
ttNCiT£$ AAEJ"< EICT~tlr:
l'A!!il41h' S!¢HtNG wt:TllR:n 'l1'"t \lttni·ISI:!PE
FCiT~Nfi4L $;.10~ • .
BEACHING l.NO FI.O\Vt''pp$$181.!! 1'1 DEirnu•~-dll'!el
NO~M~l. MAliiM\JM QPf,FIATIN\'li.'EII£1.
. flivt;rt Ult[$ · · ·,
I IlEFER '11) FtGIJRES E.&. I~. A.NO E 6 tO.:t'OR o£'i-Ati.EO
D!SCRIPJION OF TYP£ Of SLoPE triSf~BI!,l,T"(r,IODEL$ '
2 NO ClELtiCTlOif Cl' l'OIMAFIIO$T ARE>\ AIJQII£' El::tyA'{IQH· l!l!Q9F£Q' . . . . .
~ AREAS OF PQT~I. PtRM~ IIASEO' PRtNCiPJii.LY ·
ON AIR PHOTO INTERPIIETA'riON AN" WIU. REQUIRE
FOTIIRE VERIFICATiOO '•>. • •. , " • • '·
SCALE
c. .. .; ............. , ...... .
.... ... t~:-, • ...,. -.... ~
DEVIL CANYON
SLOPE STABILITY MAP
D ARE~ Of l"QTE:NT!AL PERMAFR0$1'
scALtY c:=~;os~;;;;;;;;;;2iiiooa F£tt
I
~ ...................... .
·~·· .... 40C:' ,.... ...... «'
..
~ .
DEVIL CANYON
SL<?PE STABILITY MAP
ll!ittiP
0 ~~~tis oi-~IIRRtNr' ~·. ~s.-.u-r;· ·
TYPES OF SL(JP£ INS'T4Bt!J;th . 0
1 8EAeHI('IG · ,:;
lt FLowS
:m SLIDING IUNFRO:EH)
· lll SLIDING J f'£~~F'i!OS'U . . . .
Ill DENOTES JliiEA fl<tEHr liPiD TY~ (lf' JN$T~
.J ltlrJ PRIMAR'I' ll~ActliOO ~~~en.IN Vlltli $1)~
I'OTMIAL $1.,1~ -'. .. . ·,
J •II BtAt;!fiNG AWD. 'f'WW$ ~$18!..E; .IN Ot:FiNto Mt.
--HORMAi. MAliiMUM OP£RATI~ U~Ytl. ·· · .· ·:
RIV£11 NILES \\ ' .
i'
I. REFER TO FIGURES £6.19 A,.O E.fl:2o .FOR OETAIL£0
DESCRIPTION OF TYP£ Of .SLOP£ 1N~A~lY MOD£LS
2 NO llEUNEATJON 0'' PERNAFIIOST AREA I<BOV£ EU.VATI!lff [,-' 2300 FEET . . .•
:'1 AREAS 01' POTENnAL PERMAFROST IU.SED· PRINCIPAt:l;Y .
ON AIR PHOTC ·INT£APil£TATIOf4. ANO WI!-L REOUI~
fi.ITUR£ 'IERII",CATION
""n,
o •ooo 2000 rttr
SCALE
:· •. .
DEVIl. CANYON
SLOPE · STA("j,'LITY MAP
I' }-f *''""'-
I_,
t_; ··~-.::~
1. l'IEF.:R 10. I'IGURES l:.f$.19, AND t.&;'ZO f'OR 'Of.TAiliD
DESCRII>TION OI''JYP£ ~ S~ INST~k!N liPD£t,;s.
-1 ' ., ·: :· ' .•• "":--~·: ... ··) . ' -,_-
2 NO llEUNEATIOIHI' PERr.lr.(ROST AREA Aaf,Y£ £L~ATIOtf
2!:10 FEET . . . ... . . ' . ,., )c~'·.~ .
. 3 AREAS OF POTDro~l. PEIIWII"Rosr BA::l£0 PniNi:IJ'ALt.Y
ON AIR PliOTO INTERPRETATION AA!Il WIU. ~M: · ·
fUTURE V£RIFICA1'1DN
c. .. ~ ............ ,.,. •••.
!
-~-
-+-•
&t•• •• _, •OGC 'Ceo._. ..... _ f(JIIf
.... n .:tt
I;·~~
I'
"; ..
'
DEVIL CANYON
SLOPE ST/'·BILITY ... ~~p . . j
.~~
' ~ \> . .--· ' . '~: • '.' ._· '-I .'' ·,)'·i>;'!~· c:J . Al'ltA$ or tui!J~Nl' ~· ~i\rU;~«T•r>:: .
•. . . -1-•. o·. : -,.' _:, ··< : · ... \·:-· :"·
TYPES OF St..OPE .II\I~TA~li.:J~":'(,. ·. .. . .; .
· J: !,!£ACHING
ll; fL(W!$ <• • ;;, .
llr SUOING;JUHf'IIOZ!:Jf) . :r
ll!: Sl.IOING.(f'!Rto!I~SJ')
Ill = t!£NOT£$ ,li\EA .EIC'ftNT ANb T•\'l't1;. Of' IHsTUI&.riY
J.IJ:IrJ · •· MiMARY tat-cHJ.~'»iS'''AI!U'f'r WIT~ 'Sf)~t POJ£NT~L. SI.IQ~ . · · · ..
r•n BEA~ir~G 4NO i'I.O'I4'S fii)SSIJSLf: J;',i;.Pfflf!~Ef) ~~A '
-..:__ NO!lMAi. MAXIMUM ~flATU«~ ttvtl~
RIVER .. ~llES .
(;-·.
NOTES ,...._,...-
I~ REFER ,.0 FIGURES E.il.19 AND' E.S.Z(l FOR :DriAli.t:D .
DESCRIPTION Ol' TYPE; OF SLOPe INSTAB~IlY Mcfuf:LS.
2. ~ lliLINEA1.j()N W i'tfildAfRO$T ARa AilQY.E £.:t:)IAT~ ·
. 2300· F£ET L • •• ·' •• i.'
3 AF!EAS OF I'OTEt{tlAI. P£RIAAI"P.Q::ll11ASW PRINCIPALLY
OH AIR PHOTO INTERFR£.TATIQN ANl' WILL ~It£ · ...,
FUTURE VERIFICA.TIOH .
o~~=·osoo;;· ;;;;;;· . ;;2;;;000 flET scALE 1: ..,..
tf ..... ,.. ..... "
'!."' -1-·-· .... u
!•tt• -.:.h
:· .. ~:~.~~ --... ~--:.--
• ; --, J •. a : ·-__ _...__,;
""' -..... ... -.. . ... .. ... -·-·-.
.· -----.. ..
·.
-·· ...
t ....
..:~._-................. ..., . -· .. ,
-lJJii/iatl.:.-
--
.... ·.; .... ..~' ..... ,, .
..... ~ . ..
.·
. ..
............. ·"
· ..
. ·
, ..
i'
• .
•.-·q
l \
. _! __ _
I
..
') ,.
D AllEl Of-'·Pot~TJAi. l>~fiMAFROi;l'
1. RI:FER TO FIGURES £.6,1!J AND E.&.~O I'OR·DETAltEO··
DESCRIPTION Of 1YPE C)F SLOPE JNSTA;-;II.ITY _t.IODELS
2 NO IJ€LrnEAfiON• ~ fE.RMAttiO$r A~Ell A!fP\'t EL£\/Atiotf 2300 f£t.'T . -
3 ~~~: ~!o~'W~~~~~~~o~~:~~~LY · .,
f!JTURE \'~fiiF.ICAt!Oit ,-, . .
',;
SCALE
'II
-~--:. ....... ., .............. ,
"" ••• tOOO , ................ IC(.
,..,, • .-c::c•
I
DEVIL CANYON
SlOPE STABILITY MAP
.•
NOTES
I. REFER .10 FaGI.Ii!ES £U$ AND £6;2(1 .FOit ~TAft.(j)· .
DESC$11P'ilON OF TV('( OF ;J'.OPt INSTA!ill,I'N.~oOEt$ .
~ HO ~Tjl)H ~· PERMAFROst JIR~ AllOY( ELEVATidt¥
· 2300 .f'£ET . '' · . ' •· . ·
3 AREAS 01" POTEtniAL PEAMA~ ~D ffill\IC:INI..L'/
CW AIR PHOTO INTERPRETATION Af~D WIU. fll'<.li.IIR£.
f'UTUIIE Vt:.~FICATJON •• . ' • · . "' · '·'.\ . ·~
' 1',
5 ___Ql'l·j-i ~ J "-:: 1~----~--------------~----------------------~~------------~----~~,~~ .. ~~--~--------~~~~~~--~~~ ~ ,~
--""!-
I
-~-· .
!
DEVIL CANYON
SLOPE STABILITY MAP
..
0 1000
SCALE C::::::, iZ tooo FEtr ., .
.,
0
<;.l.
fiGU~E E.G. 45
/.
~IGURE E.6,!f:
WATANA RESERVOIR
INDEX MAP ·------:--'-----~----
..
•l.r,.~0 /
AREA ot POTENTIAl PER . . ' .• hiAf~lt[
~ ...... .._. ......... J~ft•lt
•• .ooc , ............. «
SCAt.£ O
WATANA
SLOPE STABILITY MAP
.· (.) •.1. .. -m 6,
............. ..
;. .. ..
.:. .. ~ .................. .
..... •••• :,c( :. ........... «
WA1ANA ..... ,. , ....
~ i'*'' .ttj It .. ~" .. ·~ .. :
SLOPE STABILITY MAP
...
;)
'
1
ll'.
lit
~
lXI
.tC~J
I•lt
·~ {\ .........,, ........
c D AREA WPOTENTIAL P~MAI'I'I<lrt
NOTES
L !!Ef'ER r0 FIGUAES U;19 ~lfD £.1,20 FOW DET.\il;tb , --
.. DESCRIPTION Of TYP.t ot' $1.0H: INSTA811.1TY JiiOOElt'( · '
I -. .• .' ' -'D .... '· '· 2. NQ DELINEATION ()f'· PtRM.MROST AREA ABOvt· . . .
~3~ ,Ett;·" ' .
3. .AREAS 01'" POTENTJAl P£11MAfi!O$T BAst;p PIIINCIPAU,Y
ON. AIR. [liOTO INTE!IPRaTATfotUND cWII.L fiEOO\I!E . fUTOR VERIFICATION . . . . ·
',\ r;; ()';
'\l'
·~
• t.l '·t'Q
:.. .... "'., ........ ,,. .... .
...... "'~ ~-~ ..... 11! II'Y,
WATANA
SLOPE STABILITY
----··--:
I. . ,
~ .
}; '. ..
...
i
:u • 'llt
Ill :mx»·
.IEAC!I~
f!:QWS $!.11i1Na (OIW'ii!IU:If)
SuC!!Ni!:'ti'EIIIo!AFIIOST'j . . . . . , ,
DtHoTQ-iARU £XJ£t~T ~ TYH'.:o_f' tN$'1'Af{{:t,tr
:f'AIMAII'I' ai.\ci.Hil ~!f$tAIILITY,. WITH·~ . ·~-
f101tNTI,\I.; SUOING ' .. ' . . '
1'•lt, IIE~ANO'fi.OWS JoOS~Ikt.~.bEflt,jf;~
...:_ • ..._ NOI!MAI,: MAXIMUiol Ofl£tllllHC l.tl!l!t. ,
-•-·....;. ~II'.AI. loiiNIMUM Qt>EIIATIHG J;~Vj;L,
~IVER Mll.ES
tm:§
1. JlEFER TO flGOli£S .U.I9 AND at&.20 'Folil bETAIL£0
· llESCIIIPTI()N Cll' TYPt ~ . SLOJ:'E INSTABIJ.ITY ~O!?Q.S
2. NO OEt.INEATION OF I'ERJ,1AFRO$T AflEA lB~' Elt'l-'TIO!f
2300 FEET. . • '• .
3. AREAS OF POTElmAL PERMAFROST BASEo .PIUNCI~l.l.Y
'ON AIR PHOTO .INTi!fiPRETATiON AND Wlti. .R£QUiflf; ..
FUTURE VERIFIC4TION .
·---.
:..,' ,<
i
.-----
~'.
..
. ·:\~/.·
~ I ' ~!Jilt,
;.r
,;··
r
h ,. '
··--.:~ . .. . ..
. .
'•
-..... -. .: .... ~ -~~·
·~ r-.. ' ' .!'
. ·' . . '.i '\)....::·.
.. ~ ~, ·-· ,,
-··· ..
.....
•. --
rr-m
•,
,,--
!
.!4't .................. _.
) ... 111 :t• ····-... • ... "
. · .. -... r~: .~
... _ -<I.:
"'... -·~: . . ~· ~ :-'•. 'c ,....... ..: '!..~
•• ~ 4 ... ::.~;-~:·?~:·~,··.;
• . ... ..._.."' -. .. -., .... .., .. ~
.~·----
I . .. ... ·
· .. .... ,._ .. '-.....__ -~.... .... .. . ---
"--~-
•.
{) ;-
1
. '
~· ······ .. ·.· . . . ' : <:::.:::: c ,, ~' '
(3 Alit' As·« tUIIR(flf $1.QP(. iii$'1'AIIIUlv~ : . •
TYPES oF SI.OPE . tH$TAf:ltUTY•
% •tAi:IIIHC
X f'i.OW)
l!l: SLIQI~. C UHrltOtt") . ·::c
lt $LII)ING (~ .. f'ftt)St» . .
I'll .OEHOT£$ /<!ItA di.Etfr #10' ;tYi'( OJ' '"S'IAI,Ii.ITY
lJlltl ·. PfiiMARY BEt.CtliN(I tiiSTABii.IT'f :Wl'l'tl ~' .
FOTEIO'l~ ~ .. · · '· ' · . ,
OCA~~ AND f'I;OWS ~L£ Iff b(FfHED liRE.·
HOAM.AL MAXIMUM: OPi'MtiHG Lt~L
.. ·-~-.NOli MAl.,. MINIMUM OP.EAATI!o!G LEVEL
!'. htY£11 ~ES .
JI!OTES
L REFER 1'0 FtGUilE$ £.1.19 ,lNQ E.I:20'f'Ofl o£'i'AIL£0
DESCIIIPTIOO OF T\'1'£ OF SLOI'£. INSTAilt!.ITr YOOii:LS
Z. NO O£LtNEATION 'OF PERMAFI10$T .Afi£A ABO~ £1.EvAJ10i.l ·
2300 .FEE'(
3. AREAS OF POTENTIAL PEIIMAFliOST lAsED PRINCtl"'lf.LY
ON AIR PHOTO 'INTERPRE.TI\TIOI~ AHD WU. IIEQUlft£ · ·. ·
FUTURE VERifiCATION . . .
-
..
0
. ,~
.. .. :'1;
•'"""'
. , .•. ~
--"!-
.... .,, ....... .-. , ..... ,
....... ,., tOtO" c.-...-...... roe
.. ..
' . . .. .
..
.. ., .
I-IIJEO
...
WATANA
SLOPE STABILITY MAP
..
.. t,)
! .....
.,
[L::J · • .,ur ~ ~em
. TYPE~•Of SLQPE:.~,.·~!~JSIL,IT'f'~.
.% tbl:"ING ;. . ., . •.o·•··•··""..-. ...,-
X f"LOW,$, . .
• ~ ., WOl!IG (Uf411!0%E")
l!t $UOII«> tnllt.IA~orn .. · . ·
1%/ •·· Dtf!O'r£$ ~· ~'t£•n' 4NI) -t.~f'~ ~
%'flll;) P~~W&!IV 'I(~H!It~ !HSUIILtJY
f'QlEHTJA. ·~·-. . . :r .. :u: . .8£Aelll\'fll AN:!.~$ l'O$$iito(· ··~ LE.~ll~Q'"~~~lJ:::
--;o:.;;J HOIIMAI. MAXlMIJM OPt!'lli'I'IH<l-litV£l. •. . . .
... _.-NORMAL MINIMUM Olt~tAT~ a.J;vn. . : i.
. !'11\'I;R MILES, . . .. ,
NOTE$
I. REFER TO fiGURES L$.19 AND .E.6;2Q l'Qit I'£1~L£0
QESCRIP110N .OF TI'PE CIF $LOPE !NSTAeilllY ~
r_ NO l'laiNEATIOtf OF PERMAFROST ~liE.\ ~~~V£''.(i.£\.:mcti .. 23o0 faT . .. . .. . '•
~ AREAS OF I'OtEHTIAL PERMAFROST IIASEQ. f'RitiCl!'llLt.V
ON AIR ~0 INTERPRET'An(lfl AI-ID WILt. ·REO!Jift£
fUTURE 1/ERIFtCAnON . . .
l
I
.
{
• _j_
.... ,, ...... .,..... ........ . ..... ... . ,.. .................. ..
:.
WATANA
SLOPE STABILil.Y
tJ
~ ~ .. :11(~ ~ :.~ ~£~t.:~:ri:t~rcs:r••
X
:~:·
lit
'X
lXI
X lilt)
at;lC:HJHe
FLOWS,
SI,.!O!Nt; fuHf'RQtt:IU
S'-IDING l P'EM!AFRO$l'.l , . . ..
O£t;!)T£S ~ ElCTDff IUIO TY*'f J)j< ·l]II~TAJI~-'··
.Pfllt.fARY' lEACHING ~l'~IIIUTY WITH $OM( . ' .; .
POTEIITIAI. ·.$1.101HCl . "
X•X llf:ACIJ$ AND ft.(lW$ POS~·£'1 W!HtO AReA
..._...._ NORMAL MAl<IMUM OP(IJAT~ U:~
··--NOIIMAL J,!lt!tMUM !lP£Rill'lffG U:~ .
IUI{Elt MILEs
NOTES
L .REFER TO .I'IGUR£S E.CI.I9 ANP £.i.to i'Oil'.ociAILEO
liESCRlPTION Of! TYPE OF !iL'OP! t~TAIIIL.IT't .1olo0£t.S.
2. HO DEI.,INEA'f~ OF PER.'-'~ A1!£l ABo~ .l:L(\IA'I'!OH
~301) F££f
3. AREAS OF I>OTEttT'Jii. f'£RMAFII.O$T I,U.S£0. I'RihCIPA!..U
ON AIR PHOTO .(llfEI!PREYATION AND WILL nEOIJIAE
FUTURE VEIIiflCA'fiON. . ·
~ ;. . .
.... ., .................. .
"' ....... !(:. c.-..... -CJC
.. -·--.,.
I
·-,-
-I-I
.. •
., . ~ ....
.... , ....
·1-~1-
_l_ SLOPE
..
X
lt'
llt
Jlt'.
1%(
X (.)ltJ
!lf;~(;IU~
fLOW$ ;, SLibl~· tbNI'IIOZEtJ) c:
SUOI .. G ti'E:.!tf.lllf!IO$TJ · . .
bEHO:fES 111<£4 EXT~ .,.{1 "':VPJ; ~ JHSTA!,IILITY~
PlllMAR't (IEAI:IflHG. lnSTAt!iii.1'1'Y Wll!t SOM£.
I'OTEN'I'IA\,. ~~ .... ,. . ,. . .. ·. .
X·X bEIIC~.A~Il,OW$ PoS$181.£ IN 01;:1'!~0 ~
. ---HQIIMAL' MA'IIIM~ Of>tRAliHG Ll:VEL .
.,.. ___ NOftMAL MINIMUM Ol't;RATJN(l Lt't'£1..
lC IIIV~R. MILt$. ···:<> . .
\i
NOTES ___,........
I. RE:fER TO FIMES E.G.J9. AND £;.1$;20 !'Oft ~~~TAI,Ltb; •..
OESCRIPTIGN OF Tl'P:£ Of SI,OP£ INSTABILITY JoCQQELS"'
?' NO D~LINEATIOtt OF ,p£flMAF'ROST" AR£A, 'A~Ovt Et.tv4-htff .·0
~~o FEET . . .. ,;
!\.. AREAS Of POTEN'r!AL PERMAf'IIOST JJA$£1) PRINCIF'AU.Y·
~·1 AIR.PIIOTO INTERPIIETATI.ON AND WILt. llEOOIRE
FUTURE YERII'ICATION
SCALE
!
·~
~:. _, ..._,.,..,.. t-, I
... ., •••• ,.;. ...... t ...... 0:
WATANA
SLOPE STABILITY MAP
.......
I ..
. ....
I(N)
...
.. (,1·,
~/Q (J
f .:d AR£AS ·OF MMI(f $1.~; Ji~~~~~IJ~f
TYPES. Qf' SLOPE l"iSTABIUTY ~
%
.X
ll.t
llr
lXI
XClltf
NOTE!i
L IlEFER t:O I'IGUilf;S (:G;tt AND, t.&;zo f(.•~ l>ETAil.En
DESCRIFnON ~F TYPJ! .Of' Sl-1)1>.£. l~.lA81L:I'I'J' ~Oilg~
2. . NO DELINEATION QF PERMAFROsT AREA. ABO~'£' t:U:VAn!:IN .
Z300 F£0: .
3. A~EAS OF POTEiil'IA!:.. PERr.W'f!llST 1!.\sEI) PIIINCI~I,;l.Y
ON AIR PHOTO INTERPRE.TAT!ON AND WILL R£(lUIII£ .
FUTURE VERIFICAlllJN
0
SCAI.t
iooo . 2000 fE£1'
,.
~·:·
.,
.
··~ I) I
... fl ............. , ... _ ••• ..... •'"•tOOCt ~ ....,. _ _.__
•. ··-·-
..
1 •
i
. -·-.
l
_ . .....,
<:
x: • .let!M: ;;
~ flOWS: · · .·
lit '' SUO.~ tUfWI!O:~L ·.
lr SUD!NG. t~fft0$1')
l'f.l . 'D£:fiO'IU .... ~ ~ ..
l: 4lli:J PfiiUlMt lit~ .. ~Ailt.lT'I': iliiT>iL!U....r.
fii)T[NT.IAI;. ~ . . . '
X•lt I!I[ACMNG ~~~~ 1'0$~l:.t If( . .
--noftMAI. 'M.~Illlu..l .OPERATING u:va. ·
·-·--NOftlilAL JollNit.IIJU Of'£RAT$·.1.EVEl.
IIIV£1'1. Mt.Eil . .
('r,
~
' 1\.¥( '
L Atff:A 10 F~S. £.oUt ANP E.G',1fi0. fpft ~AI Uri
DESCRIPl'IO!i OF'. TYPE OF SlOPE: ti4STI\IIII.ITY N®ELS
2. two DELINEATION Of' PERMAF!l()S'f Afi~A · AllO'Jt: .i£l.£V411QH.
2300 Fttr ,,
3. AREA$ OF PoTEHnAI..PERMAFROST·eASEri l'fiiNCimL'r
ON AIR PHOTO lllfEfll'RETA110N AND wU: f!EOIME
FUTURE YEfiiFI~TtON • .
:o
0 1000. · tOOO FEtT SCALE
--;-
SLOPE
WATANA
STABILITY MAP
D . NT1AL P£1!MAFIIOSf AREA OF POTE , , .
SCAU:
,
'·*"'*·
.......................... ,
~ l•, tiOCt c..--........ -
--,-
!
WATANA
.. ·•
SlOPE STABILrfY MAP
-'
"
~-· ....
• . -,' . l ~ Cl ~('~)~II£• .$!:• ·"'"··'""""'""'
l'YP($ oF $f.l)~ JNSTABlLtfY't• •·
·% • lit . lir .
IU
.X (lltl
8E~.Cil!NG . Q;;/
. FI.GW$ :j ··'J •
SUOJ;io r VNFRot«ff, .
. $LIDING tf't:ftMA~OSfJ .. _ .
O(NOTES ~ EXWIJ ·AHO "n'r.t
fttrMAll\' II£•CHIH$ ltis~eil.lJY cW!itt f'OTE'UIIot. st.IDIHQ . . . ,. . .
l•X ~ACH4'.'t: ~tiD Mws -~$*!;£ IN. tiEF-1) .
.-... .... ..,. WI'!MAI.. MAXNIII4 \'JPEI'(AtiHG f.tYEL, .
-·-•-HORMAt MINIWM OPi:RAT~ L~V~ '
lC RIVEfl. MII.Etf
L REFER 'TO FIGtlfiES £.IUS A•lo ~,6;20 tOR tlE'I~iLEO ·
DE$CRIPilON Of TYPE Of SLOP£. iNSTABI'..;IlV ;t.t~
2. NO D~NEATIOif OF l'E!!,_,~ROST AilE~ ABOVE E1,.1N.t.1r!Ofl1 2~00FW . '·'
:1 AREASl'OF POl'EtmAI. PERM.VIiQSf WED l'R ... CIPAI.I.Y.
ON A!R PHOTO INlt:i!PRt:TATION 4NO W!ti. REOU!~E:" .·i . FUTURE; VER!FlCAi'ION . . ·. ,·
.o~~·ooos.;;;-.iL~oo.o FEEt SCAL£ l? 1 ... _
. ~-. ' .
""\.•)
I(N)
,,
!"'·· '"~:-~~~ ................. i ~-...... f611
,.(;
' e' T
.. -.
'0 iJ . -.
'
'
-~
··~-
.)· '-<
-~ .. ,)
+
+
+
_j_
I
,,
l -,-
1
..
\
'
I CI2J
...
I (}'[}
...., ..
I
WATANA
SLOPE STABILITY MAP
-'
KOTES --. ·
I. llEF£~ TO FIGUR~· E,G.l!l 4rio ~1$.20 f"Oif ;~TAII.tb ,
.. DEStllii'TION Of' . TYP~ q'-SI,.QP£ IN$T~8l!.rn' . 'liOoEt;s-
2. NO 0Ei.IPIEAYJ9N 01', ~RM~'!'' AREA .11.80~ -., ...... A • ...,, • . 2300 FEET -
a AREAS Ol' POTEmtAL nAM.f.t!.ilosraAStD mwct&t.v
ON AIR PHOTo llt!ERPR£TA'I'IoH At{? W.IU. ft£0011'1£ fUTURE _VE"IFII;ATICH . , -----
SCALE·
l
\)-.~ ')
--.
.c... ............. t•rt·•~
....... It~ ~ ..........
Jl-II
• ,. :
M .
SLOPE
I (}[)
__ ....
JI
. ' . ~
C] l'!tlis o,:,c~llttU· .
TYPES OF SLOP£ JNSTA!JilJ'O'~ \ .>~.
%. .. ••til$ . . ' ,• ' . . ' -~·
·~ :t:.!; lp'!f'j&Sz~NI ..
l'l_ SLI!JiHG (r~~FROstJ, · _ v: ...
1'1.1 0£MOT£SpiiE:Io;;:!l<TOtt ....,,fm'
I Clltt Pll. IMAR\'f~,tt(Ae.,_ ~HG_. IH$lAIII!.ilY . . ·.·. · f0l£Nl1l . $1.101i~· · . . ,. . · ..
x.,# llf:AC~ ,.,.nows toosslltt,l:'w od.iNttitJ!I
--t!OIIt.IAI., l..,~X~ OI'E.A.\T.~ J.£~
-·-·-JIOfll.tAl MIHIMIJM ~'(JNIJ.tl,tvEi..
X !liVER Mil.£$ . -·-:. .
D --' • ,.-: ,, .. , •. • <-, {~~---··' . •
AR~A oF POTPrtiAL PEl'IM~Fil(JfiT
NOTES'.. ..:.:-" <~-'
t REFEII 70't!GUR£$ ,E.&.u( ~D t~G.2~ F'OR•bi;;t~!Lk~·;
lltsclllPTi~ 01:-· 'r,I'PE OF :SI.O!'::. UtsYABILITY l!~
2. NO DELINEATION .o:" l'tR!oi~l _ ARE'A {/.HOVE 2ll00 I'E£t' . . . . ' .,· . ' .· .
o lOOO . 2000 'FEET .
fiGURE
~·
•
EXHIBIT E
2.. Water Use and Quality
C0011ent 32 (p. E-2-92, para •. l)
·Pr.ovide anaylsis of the effects of filling and operation of Watana on sus-
pended sediment concentrations and suspended particle sizes passing down-
stream through Wat.ana Reservoir.
Response.
Analysis of the effects of filling and operations of Watana on suspended
sediments {concentrations and particle sizes) passing downstream are provid-
ed in the attached reports •
2-32-1
\\
. -
SUSITNK.RESERVOIR SEDTMENTATION
AND ~ATER CLARITY STUDY
Prepared for:
Acres American, Inc.
Suite 305
1577 11 C" Street
Anchorage, Alaska
Prepared by:
Perat~ovich, Nottingham & Drage, Ina.
1506 West 36th Avenue, Suite 101
Anchorage, Alaska 99503
and
· Ian P .G. Hutchison, Ph~D.
Steffen Robertson & Kirsten
1510 w. Mississippi Avenue, Suite 210
Lakewood, Colorado 80226
~ovember, 1982
. '\
..
• ·-
-,
• .
. ..
.·
•
. t .
i·
~ . .
. \ . . ' ~ .:. .. .. · ·.•
..
• •
..
. if •
. ..... -...:-..-· _ ....... -.... -~ ...... ·
.. •••• '!; ... ' ..
SUSITNA RESERVOIR SEDIMENTATION .& WATER CLARITY STUDY
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
1. PURPOSE AND SCOPE
1 .1 BACKGROUND
2.
1.2 STUDY OF OBJECTIVES
1.3 SCOPE OF WORK
1.4 STUDY APPROACH
SUMMARY
2.1 PAST STUDIES
..
2 •. 2 SUMMARY OF CONCLUSIONS
2.3 RECOMMENDATIONS
3.. REVIEW OF AVAILABLE LITERATURE
4. SEDIMENTATION PROCESSES
4.1 GENERAL
4.2 SEDIMENT SETTLING CHARACTERISTICS
4.2.1 SETTLING VELOCITIES FOR S!.')HERICAL L 1T!GLES
4.2 .. 2 EFFEcr OF PARTICLE SliAPE ON SETTLING VELOCITY
4.2.3 EFFECT OF SEDI1£NT CONCENTRATION ON SETTLEMENT VELOCITY
4.2.4 EFFE~ OF FLOCCULATION ON SETTLING RATES
4.3 QUISCENT SETTLING IN THE RESERVOIR BASIN
4 ~4 RESERlrOIR l•D:XING PROCESSES
4.4. 1 THE ANNUAL CYCLE
lJ.4.2 PARTICLE MIXING IN THE EPILIMNION
4.4.3 VERTICLE MIXING IN THE HYPOLIMNION
• 4.4.4 OUTFLOW AND INFLOW DYNAMICS •
. 4. 5 REINTRA!NMENT OF SEDIMENT'
4.6 TURBIDITY VERSUS SEDIMENT CONCENTRATION
. -
as -· . SliP II
•
PAGE
iv
.v
1
. 1
1
1
2
5
5
5
1
8
10
10
11
11
12
.,3
14
15
18
18
20
20
22
23
23
,; ·~
u
•
TABLE OF C()NTENTS ( cor1tinued)
s. WATANA RESERVOIR SYSTEM .
5 .. 1· CLIMATE
5.2 HYDROLOGY . 5.3 SEDIMENT REGIME ...
5.4 RESERVOIR
6. ANALYSIS OF SEDIME:NT BEHAVIOR
6.1 QUIESCENT SETTL!LNG
6 .2 INDUCED MIXING
6.2.1 WIND INDUCED MIXING
6.2.2 WIND AND THERHAL MIXING
6o3 SEDIMENT REINTRAINMENT
1. PROJECTED RESERVOIR TURBIDITY
7.1 ?ROJECTEil SEDIMENT CONCENTRATION
7. 2 .PROJECTED TURBIDITY LEVELS
. . . . t" CES REFER";N .
APPENDIX A. BIBLIOGRAPHY OF ADDITIONAL INFORMATION SOURCES
-
It ' -iii-.
PAGE -·-
25
25
25
25
.26
27
27
29
29
30
31
34
34
34
35
Following Text
(}-
Table No.
4.1
5.1
6.1
6.2
6.3
6 .. 4
6.6
. -
LIST OF TABLES
~allowing P?ge
Comparison of Basin Characteristics ..
Partiole Settling Rates
Watana Reservoir Characteristics
Results of "DEPOSITS" Model Runs
Results of Quiescent Settling Analy~s
for the Watana Reservoir
Duration of Wave Mixing to 25-Foot Depths
Duration of' Wave Mixing to 50-Foot Depths
Water Velocities Induced by'Convective Penetration
and Wind Shear for June-August
Hypolimnion Mixing Scale, Jun~-A~gust
•
9
11
26
27
28
30
30
32
32
• 7 \~
~ . ~
-iv-"2 --1 '2,..• ·~
~ • ~ 1" • ~J : .. ( '>. ' ~· : .. • • , ".
-41
. . ~ ,.... .-....
•
' .
. . ..
•
LIST OF FIGURES
Fi,gure No.
1.1 Plan View Showing Watana Reservoir and Sampling
Stations Used ..
4:1 Depth ·or Particle Settling over Time
· 4.2 Comparison of Theoretical Values o,f K for Ellipsoids and
Observed Values for Ellipsoids and Several Other Shapes
4.3 Effect of Concentration on Fall Velocity or Uniform
Quartz Spheres
Sediment-Removal Function fo~ Settling Basins
"'
4.5 Revised Turbidity Versus Suspended Sediment Concentration
5."1 Susitna River at Gold Creek -Sediment Concentrations
(Summer Values Only)
5.2 Susitna River at Gold Creek -Average Month:y Particle
Size Distributi.on
6.1
6.2
Particle Size Distributions Predicted by DEPOSITS Model
Predicted Reservoir Thermal Profile
Relationship Between Mixing Depth an Percentage of Reservoir
Area Affected by Mixing
-. .
...
f 'l'
' . . .
i~
. .. . . .
...
1 • PURPOSE . AND SCOPE
1.1 Background
This report summarizes the results of the Phase 2 investigations· aimed at
determini.pg turbidity levels in the proposed Watana reservoir. The
Phase 1 studies· were completed by R&M Consultants, Inc., (Janua~y 1982).
These earlier studies devel:oped trap efficiencies for. tl"~e Watana .and Devil
Canyon reservoirs. Total sediment accummulation for each of the
"
reservoirs was also estimated.. An indication of what downstream river
turbidity levels were likely to be was also provided. These studies
included a brief description of the delta formation in the reservoir, the
likely behavior of glacial flour within the reservoir, and a general .. .
discussion on the temperature regime.
The Phase 2 studies which are described here. were initiated in order to
analyze in more detail additional data obtained on other lake systems
thr-oughout the world and to attempt to predict, on a more quantitative
basis, likely turbidity levels in the Watana reservoir.
A plan view of the proposed Watana reservoir and the sediment and climatic
data stations on the Susitna River used in Ph~se 2 studies are shown on
Figure 1.1 •
1.2 Study Objectives
The objective of the study is to estimate the range of sediment
concentrations and turbidity levels in the Watana reservoir for the
various months of the year. It should be stressed that the objective is
not to provide a detailed quantitative estimate, but rather to perform an .
exploratory type investigation to determine order of magnitude estimates.
1 • 3 §cope of Work
•
· The scope of work was outlined in a letter t~ Acres American, Inc. 1 ~), ·J
(Acres) dated April 19, 1982. A brief summary. of the proposed program ...,.
follows. . \
-1-
SAMPLING STATIONS
GOLD CREEK· . ..
WATANA.
......
+-PARAMETER
STREAMFLOW .
SEDIMENT DISCHARGE
WATER TEMPERATUt1E· .
STREAMFLOW
CLIMATE
·. WATER TEMPERATURE
STREAMFLOW
SEDIMENT DISCHARGE
. .
Peratrovlch 4. Nottingham. Inc.
f:nglnccrlnQ Consultants
\
'
FIGURE ~U
••• (\
&· . • " • • . . I .,. • '• ' o " \ •~\ '' ' '" ~ ~ ' '• ~~ • t' • ;~ • I ' • y l-.' ~ '• ' .' "' ' ~tl
' ..
(a) Obtain and review all additional data including:
o climatic data
o reservoir data
o S3diment data
o literature survey
(b) ..
Verify the sediment concentration · versus turbidity
relationship. "
(c) Conduqt quiescent settling analyses for the reservoir.
(d)
·~ ) .(.e
, Quantify tha wind and thermal mixing characteristics of the
reservQire
Estimate ranges of sediment and turbidity values for the
· reservoir for each month of the year.
Limited input to these studies was derived from•the ·thermal lake modeling
conducted by Acres American, Inc. (1982), on the Watana reservoir, and
baseline tut·bidity and sediment concentration data from Eklutna Lakt-
qollected by R&M (1982).
1.4 Study Approach
w
Under quiescent conditions, sedim,ent with particle size greater than about.
2 um that flows into the Watana 'reser,roir would practically all settle
out. Howev:er, the reservoir water is ·continually subjected to internal
mixing induced by meterolagic conditions. such as wind and temperature, as
well as turbulence induced by inflowing and outflowing water. Because of
this mixing, many of the smaller particles would not settle, but would
remain in suspension and contribute to increased t~rbidi ty levels in the
reservoir.. In add.ition, turbulence in the water ,also reintrains, sediment
•
that has settled out on the bottom of ,the shallot-t portions or the
reservoir perimeter, again contributing to increased turbidity levels.
. .
-2-
,r-., .
! i -.
t 4 ~
-.-~-l
..
Th~ basic approach to the study involved. a semi ... quantitive ev.aluation of'
t.he P. rocess descrJ."bed a~bove d · t d or eo-v al dJ." stl.· n t t k . · .. · . , an . oonsJ.s ·e 'i~. er · .. · c as s.
These include:
(a) Literature and Data Review
Literature and data relating to other glacial l::ikes Ul."lder
similar cond~t;ons have been reviewed. Any useful information.
'-
which could. be extrapolated to Watana has been. abstracted and .
summarized. Thi's information. is then. used to support some of.
the conclusions drawn from the simplified.sediment analyses.
(b) Descriotion of the Lake Sedimentation Process
• A detailed description of the likely sedimentation process has
been developed. It is based on current knowledge of the
Watana reservoir and documented descriptions of other similar
lakes and reservoirs. This description aided in the·
determination of sediment types and turbulent mixing ..
~,alyses.
(c) Description of the Watana Reservoir
All relevant data for the Watana reservoir has been assembled
and summarized. These data include a· description of the
monthly inflows-and sediment concentrations, sediment grain
size distributions, reservoir storage volumes and releases,
and monthly wind and temperature data.
(d) Analysis of Sediment Behavior
. -
The amount of sediment that would settle out under quiescent
conditions has been calculated for various sediment inputs,
reservQir elevations, and wi~hdrawal rates.. Following this,
quantitative ass,essments have been made or ·wind and
tempe~ature induced mixir.·.g current::$ in the reservoir. Use has
-3-. ..
I s;;_.,._..,.t:_ ... ::t;:. u:_ ..., c '• • . . -~ ..... _. ..... _ ... __ .......... ~ ............ ~
• ·~ . ".' ........ c ...
been made of the thermal · modeling conducted by Acres ( 1982).
Approximate turbidity-sediment concentration·. relationships,
previously developed by R&M (January 1982), have been updated
using additional Susitna River data, ahd also used· in the
analysis,
{e) Prediction of Reservoir TurbiditY,
. -
..
Based on the assumption that reservoir mixing velocities of
the same order of magnitude · as the particle settling
velocities would disrupt the settling process, typical ranges
of sediment concentrations in the Wat.ana Reservoir, nr~ar the
outlet, have been estimated. These sediment concentrations
are converted to turbidity using the approprl:ate turbidity
sediment concentration relationships •
..
..
·-c ... 3,~'l~
< • '·;., ·•. rc , • .,.,~ , •• • ..
•
2. SUMMA·RY
..
2 .. l. Past Studies··
The Phase 1 studies conducted by R&M (January 1982) on the lvatana
reservoir: indicated the following:
Typicr.tl sediment gradations of Susitna River water in the Watana reservoir
area are 15 to 20 percent finer by weight than·2 microns, 25 to 35 percent
1lo
·fineJ~ than. 1 0 microns , and 95 to 100 percent finer than 500 microns ( 0. 5
mm).; The sediment. trap efficiency of the Watana reservoir was estimated
to 'be between 70 and 95 percent with particles less than 2 microns
pc>ssibly passing through the reservoir. Under l¥orse case sedimei4tation
conditions of 100· percent trap efficiency, an estimated 472,500 acre.ft.
of sediment would be deposited in the reservoir over a tOO-year period.
Turbldity in tbe downstream .river WOQld decrease significantly during the·
summe.r months due to the large amount of sediment trapped by the
reservoir. It is likely that the turbidity _pt water released in the
winter months when a stable ice cover exists would be near natural
condit~·.ons, as suspended sediment in the near-surface water would settle
out once the reservoir ice cover reduces surface disturbance and
essentially quiescent conditions oacure
2o2 §umma\ry and Conclusions
Due to the complexity or glacial f'lour sediment behavior in lal"'ge water
bodies, tl'le general -shortage of quantitative data, and little direct
experience with large glacial feed reservoirs., the conclusions drawn at
this time should be oonsidered · quali ta ti ve. However, the following
conclusions are considered defensible and pr'ovide order of magnitude
•
quantitative values that should allow project personnel to reevaluate the
effects of reservoir water clarity on other physical and biological
aspects of the Susitna project. •
1. There will be some level of turbidity in the reservoir at all times •
. -.
-5-. '
2. It is likely t;hat sediment particles less than. 3 to 4 microns will
remain in suspension. This constitutes up to 20% or the summer
sediment · inpu,t" Maximv..m turbidity levels at the · out.let a~e on the
/1 -.. ! '
I . . .
order of 50 /NTU' s, wh.:Lch c<>.rresponds to a sediment concentration of
200 ~o 4oa 'mg/1. Minirnum turbidity levels Will be in the order of 10
NTU's. This corresponds to a sediment concentration of 30 to 70 mg/1 • ..
3. Order o.f magnitude turbidity levels at the reservoir outlet during
~ .
e!ach month appear to be primarily dependent on the travel time it . .
takes sediment slugs, delivered to. the reservoi.r during previous
st.tm.mers, to reach the reservoir outlet. Longitudinal· mixing,
.Primarily induced by wind turbulence, will tend ~·? mask the near
surface sediment slugs. Quantification of longitudinal mixing has not
been directly addressed within the scope of this task.
R~.,. tiind mixing is significant · in retaining sediment less than about 12
microns in suspension for the upper 50-foot water layer. ,.
5. Reintrainment of sediment from the shallow depths along the ~eservoir
periphery during severe storms will result in shcrt-term high
turbidity levels. This will be particularly evident durin~ the summer
refilling process when water levels will rise, resubmerging. sediment
deposited along the shoreline during the winter.
6. In spite of some limitations, th.e data gathered from outside sources
s~pports the.conclusion that Watana reservoir turbidity levels will be
in the range of 10-50 NTU's.
7. Preliminary results from the Eklutna Lake· study show summer turbidity
levels in the near surface layers to be in the range of 20-40 NTU's.
·This generally agrees with the range of turbidity values predicted fer
the Watana reservoir •
. -.. s-.. '
•
2.3 Recommendations
Should more reliable an1 accurate estimates of turbidity l~vels be
~~
required, ruther work is warranted to firm up predictions of se~iment
concentration and turbidity in the 1-latana reservoir. Some of the major
weaknesses in the current data base and analytical appr"oaoh i~alude the
-lack of knowledge of the .electrochemical behavior of the sediment, the
role of phytoplankton and· its effect on turbidity, and the simpJ-"~tic
. ' . . .'~:...;,.---
nat·ure of the ~nalysis of f(he sedimentation process. To overcome these
deficiencies, the folfowing study program is recommended:
(a) Conduct more detailed laboratory settling tests on river
sediment samples.
(b) Develop more reliable relationLlips between turbidities and
sediment concentration incorporating· the effects of
' phytoplankton g~owths should this be regarded important, and
incorporating results f~om USGS summer field program to
measure sediment discharge. •
(c) Apply a two-6imensional model to analyze the lou6itudinal
distribution of sediments deposition in the reservoir. The
model should incorporate the values of mixing velocities
derived from the Acres (1982) thermal modeling using a
diffusion type analogy. It is important to incorporate a
relatively long sequence (several years:) of representative
-
.
inflow and sediment concentration data in' these stuciles. This
will facilitate a more accurate determination of turbidity
ranges likely to occur in the reservoir ..
• .,
. ..
-7-
3ec REVIEW OF AVAILABLE LITERATURE
Under Phase I.· of the current reservoir sedimentation study, investigations
have been ongoing to retrieve any unpublished data or reports from those
references included in the Reservoir Sedimentation Report (January, 1982) and
to search out any additional information from sources worldwide •. ·. . ....
Appendix B includes a bibliography of all additional reports of data obtained
f'rom the literature·search. It has been separated into two parts; the first
containing references from New Zealand Lake studies, the second listing
additional general references on reservoir sedimenta'tion or the behavior of
fine particles in a water bodyo Efforts have been made not to duplicate those
p~blications referenced in the earlier reservoir sedimentation study {R&M,
January, 1982).
Compilation of information from these sources has been an on-going process.
Contacts in New Zealand have provided the most relevant information for
Susit11a. Table 3 ~ 1 summc1rizes the available basin and reservoir/lake
characte:t•istics for major study sites ..
Lakes Tel<apo, Pukaki and Ohau lie in adjacent mount~ain valleys at slightly
different altitudes. Each basin is a long, narrow glacial trough exposed. to
strong winds, primarily from the northwest, };)lowing down the valleys. Ther•mal
strati~ication is weakly developed and deep, and all lakes have a low chemical
content of the water (specific conductance at 25°C of 5.0~7.0 umhos/cm). ·-.
In general, the lakes are clearest in autumn as precipitation in the upper
basins falls as snow and inflow to the lakes is reduced. Turbidity increases
in the late spring as the snow melt period begins and flow increases. Inflow
to the lakes then carries a heayy silt load. The mean SECCHI disc readings
for one year wer~:~: Lake Ohau -9 .• 36m (30.7 ft.), Lake Tekapo -4.99m
( 16 • 37 ft. ) , apd Lake Pukaki -0. 57m ( 1 • 87 ft. ) • The maximum readings were
21.i4m (71-31 tt.), 7.0m (23.0 ft.), and 1.0m (3.28 ft.) respectively •
•
.
The literature reports that the differences in turbidity indicated by the U
SECCHI disc readings are related to silt content, rather than to algal
production arrecting light penetration.
. . -.. . '
-8-
...... •
' I
· ~he ~va:r~~t~ons in extinotion-depth appear to be 'due in part · to the percent of
"-' ~ '
each drainage ,basin· covered by glaciers.
However, . at this time, limitations on the data preclude making direot
comparisons between the behavior of fine sediments in the proposed Watana
res~rvoir ~and exi.ating ~ew Zealand lakes. Additiona~ suppcfrting data on
climatic charaQteristics, ioe regime., incoming sediment size distribution, and ·
seasonal tur.bidi ty or extinction depth for · each lake are ne.eded to complete ..
the analys5.s •
.. ·
. '
'"' ~ ...... ~ •. 1 •••• ---~ ... -· I . A;.
,•
# ,
• . ,
BASIN CHARACTERISTICS
Drainage Area (mi2)
Glacier Area (mi 2 )
' of Drainage Area
Annual Inflow (ac .. ft.)
RESERVOIR/LAKE CHARACTERISTICS -
Length (miles)
Maximum Depth (feet)
Mean Depth {feet)
Maximum Width (miles)
Mean Width (miles)
Surface Area (acres)
Elevation of Water Surface (feet) . .
Capacity, Total (ac. ft.)
A.verage
Live
Average
Maximum Drawdown (feet)
Live Storage/Total Storage
Total Storage/Surface Area
Length/Average Depth
Drawd<>t~n/Depth
Length/Average Width
Mean Water Residence Time
TABLE 3.1
COMPARISOt~ OF BASIN CHARACTERtSTICS
WATANA
5,180
29(J
5.9.
5,750,263
48
680
360
5
1.5
37,800
2,185
9,500,000
8,330,000
4,210,000 ~
3,040,000
140
0.44
251
704
0.21
32
635
EKLUTNA
119
6.2
5.2
234,300
1
200
-
0.7
OQ6
3,ll20
871
414,000
-
213,271 -
60
Oo52
121
0.30
11.7
646
PUKAKI
545
73
13.4.
1 ,557,41&2
14
230
-
5.0
24,460
1,624
3,780,400
-
--
-
155
480
2.8
418
NEW ZEALAND
TEKAPO
·s6,.. . . :-.
16.6
J.
2~9
989,990
15·5
395
226
-
-21,500
2,322
4,866~180
-
--
226
362
-
4.,2
847
OHAU
!&63
a.o
1.7,
917,·548
10.5
!423
243
3.2
13,3140
1,696
3,260,340
-· -
244
"22,8
.. 3.3,
612
., 4 • SEDIMENTATION PROCESS
• .......... -·
4.1 General
~
Sediment inflow to . the Watana reservoir is derived mainly from the
glaciers ... located in the upper portion~ of the drainage basin. The
sediment size generally varies from less ~han 2 microns (0.002 mm) to
1 mm. As the river flows into the :reservoir, the coarse fraction of
sedii:nent will settle out in. the upper reaches and form a delta deposit.
The finer particles will continue to flow into the reservoir whsr-~ some
will. settle. Some of the fine particles will not settle, others will be
, reintrained. and ultimately will be discharged from the reservoir through
the powerhouse or over the spillway.
Under quiescent conditions, as the water f~ows through the reservoir,
shear stress will be genera ted ar_ound the sides and along the bot tom and
density strata boundaries. These will generate some turbulence within the
reservoir which will keep some of the smaller particles in suspension •
...
Under actual conditions, a large reservoir such as Watana does not
experience these quiescent conditions. Continuous mix;ing processes are
generated by climatic influences on the lake's st.1rface and by inflowig and
outflowing currents. These processes create a substantial amount of
additional turbulence within the reservoir which would tend to keep the
smaller fraction or the sediment in suspension •.
Under actual conditions, a large :reservoir such as Watana does not
experience ~hese quiescent conditions. Continuous mixing processes are
generated by climatic influences on the lake's surface and by inflowing
and o'Qtflowing currents. These processes create a substantial amount of
additional turbulence within the reservoir which would tend to keep the
smaller fraction of the sediment in suspension.
The tollowing sections describe the above-mentioned processes in more
detail. Much. of the information has been obtained from the work dcrn.e by
Imberger and Patterson {1981)..
-...
-10-
. ' .
i .. '
,,
\.-
..
4.2 Sediment Settling Characteristic!!
. 4.2.1 Settling Velocities for Snherical Particles
Th~ '\~ehavior and rate of a particle settling in a fluid is not only
~ ~ -.
s:epent'ient on the fluid .. flow, but also on· the characteristics of' the
L r s~di~ent particles. Fluid flow governs whether the sediment particle
will be entrained, transported, or eventually deposited. In time and
space, the eventual d~position of very fine particles is also
~
. dep~ndent on the physical characteristics of the sediment. Size of
the sediment particle is the most ·important property. However, the
specific weight and shape .of the particle along with the
electrochemical characteristics of the fluid medium and concentration
of sediment in the fluid}' directly affect the sediment fall
ve~;ocity.
The classicaf relatiom~hip that define.$ the physics of' a sphere
falling within e. quiescent fluid medium is Stokes Law.
2
gd a .. t
w =-(-' )
18 ~
w = settling velocity
g = ace. of gravity
d = particle diameter
p = kinematic viscosity
6~ = sp. wt. of sediment
t = ~P· wt. of llquid
The above equation assumes the drag coefficient on the particles is
constant and is therefore only valid for particle Reyno'lds numbers of
less than 0.1.
Table 4.1 lists the settling velocities calcl.llated for particle sizes
•
,, ranging fro~ .0 .s ·micron to 1 mm. Values for the .1 IilDl .. to 1 mm range
(1.00. to 1000 microns) were obtained from curves roz: spherical
particles given by W .N. Graf' ( 19'71 ) .. All th~ above val'ues have been
. '
-11-
~: -··~
' ' )
. ,
.. . ,
i
,.......,,
!'·''
... . ' . fi .. • -. .
,• I . •
• ,, •
,,
TABLE 4.t
PARTICLE SEtTLING RAT~S
Particle Diameter Settling Velocity
of Spherical Particles Particle Reynolds No. (R).
J!?•G = 2.5 1 T = lJ0°Fl of SQhe~ical Particles
mm microns fps
1 3.1 X 10-1 61
0.5 1.5 X 10-1 14
0.2 4 .. 9 X 10-2 2
o. 1 100 1.6 X 10-2 0.3 ,
50 4.4 X 10-3 < .1
20 6.9 X 10-4 li
10 1.7 X 10-4 "
5 4.3 X 10-5 II
2 6.9 X 10-6 II
1 1.7 X 10-6 II
.5 14.3 X 10-7 II
Note: (1)' Values for R > .1 based on curves in ReterenoQ '(7) by W~H. Graf (1971).
(2) Values f'or R <. .1 based on Stokes equation
(3) Settling velocities ofJ.laoial sediment particles are based on
1/1.15 x velocity of sph'erical particles"
., ..
) ••
I>
Assumed Settling Velocity
of Glacial Pa~ticl~s
·. fps
2.7 X 10""'1
1•3 X 10-1
4.3 x io-2
' lolJ X 10-2
3.8 X 10-3
6.0 X 10-11
1.5 X 10-11
3•7 X 10-5 .
6e0 X 10-6
.1.5 X 10-6
3•7 X 10-7
. ... .. ~
\ (.; .
\,. .
(
.calculated for a temperature of 40°F and assumed. particle specific
gravity of 2 .,5. ( 1 )
Figure 4.1 shows the depth of settling with time in the upper active
layer for 2, 5, and 10 micron size particles using the settling
velocities listed in Table 4.1.
The above analytic te·chnique is for an ideal situation th3t would
reveal the maximum settling velocities that could be expected. As ..
previously discussed, even under quiescent conditions, the rate of
settlement would be less due to the influence of other physical
properties on the particle fall velocity.
Effect of Particle Shape on Settling Velocitt
Sediment grains are rarely spherical in shape and vaJ'Y from a
rod-shaped particle to a disc-shaped particle. Glacial sediments tend
towards a platy-type shape, but. the shape is dependent on the parent
mineral and process of decomposition. .t.
PreliminarY results from shape analysis of Susitna River ~ediments
show that .fiiler sediments tend tO'dards a platy-type shape due to the
relatively high percentage of mica and feldspar.
A study conducted by McNown, et al, (1951), determined the settling
velocities for various machine-shaped particles and related the
.resistance factor 1 K' to the shape factor 1 SF' , as shown on Figure
4.2. These tests were run for Reynolds numbers less than 0.1, which
are representative of particles less than sand size. The curves
represent theoretical results for ellipsoids {McNown & Malaika,
1950), The numbers beside each da~a point give the shape factor
{b/c), and the shapes used are indicated in the Figure.
----------------------------1Recent petrographi.c lab data indicates that Susitna River Sediment may have
higher mean specific gravity •
... -. ' -12-
'• .: : ~ .• ,· ' • ',. ·, • • ~ • • '. ' :· ... D ; • • • •. • . h • ..,_:·. -' ~ • • • •. ; • •· . • ' ·, • •
~'-.o>;,""':._•~·-~.;5~·~~ ~ • •;"'1("'"~"1~ .... ;~""*·1~#'i~l.'"'l•-'--~;!>-~~~ .. ~:::-..., .. ~~,.,.,..,.,.,..,."'~ ·:v~'-'"-'''""'"""'-""'""''" ... ~~· -~--~ · ~ •·• .-• '• • • •I • .• • . • ':· .
. ~· f ..
•
..
. ,
.......
Iii w u. -" z -1: w
0
.. ~
0
l:
~
0.. w
• Q
. ,
..
.~ ..
.. •\
1 .
·~·
. \ • I. -, . I ' ' . ' L I l t . I ' 1 I I I I I • ' . • ., ' • . r ·. ·t ~ ' , • .
.
·.: t! ! a :·1. f i~·,···~···l._il·! r. ll i'i" •I·: I ;l i". ·;--~··,---,····:· ·~· ·i ·.;. ·l~lt ~·rr ,-·: ri·; It itt .I i ; 1 :: ,. , .. ·,, • : ·:·.:· :··:·~·,'. ·:·~
i, ·, I J • ., . ! II I ·,1 I I . I I . . I -1 I I I I : I I I i I i I I I I I I ~ ' • l • J i I 1 : ' J ;
I . . ', , I '· .,. i l t.·. ·I ,f . -lt·_ ~I t ~ : ·' : . ·j ', ' I I ·~ , , J ' I ; . . r . ! I ; : ~· i ' : . ; ~ : : ' . t ; I ~ . . i l i I '· J . " I ., . li li : i ! f I ! I ! I d ll : : I : ; ~ : . ' :; . ; ~ ij i :_· : i
.; : I r! 't : l . . .I ! I . . . I·l· I I . , I. . I I ., ·, i· t' ' , ,· ! ,' I. I . : I ~~ . . . .,. ~ ; : i . ~ ! ; . ~
• • • I I . . . . I I I ,. . ' t • • ' ' ' I I • • ' f •
: I I ' ; : 1 ; 'll I . ! I . • • • ~ . • I i J i ! . I ! I I J· l I ! . " . ' • . t I t : i i i ! ! i ! : : l I i· -:. !· ·! I l ~. . . J I . : . ' . . ... . I ... J. .• I" j.. . . '. ' i'. •. I ... , •• , •• • f • • 1 . ., . :' .. ,
I ; ! :, ! ,' l I I J I I . . I . I . ,. I 'I' I . . L l I I' I I· ! ! I I ,' . I I ! . I : . ', . I ', ! • ! . f : • : : : I; i . iil:ll :. ·I .. I I 1·'!1 .. 1'.''' .... ,, ... ,1. ll•ll'i Ill II' . ;. ··t I J·ll ·;:. I ... ,l; :, •. ,.,j,j,; 'i:j: :1,,1 II II·· •.I•. ·I I '1': I 1'! !: l·,iit.~; .··t~·:i :1 1 i
• !' • t1 I I ! . ,. ( j I I I ,,.,, I l ! . 2,.. I . I 1,: .', 11 II' . ~ I ', I : I ! !. i ,. ·,~ ·, : ! : ~ :. : .: ; ; ! ' . ·.: : I : i_. ·•· :
I ' I I • ., I I I ~ I I I I I • • t t . I 1 I ; I : .j ! ·I ; I I I t I •. I I l. • ( • I I • • I I I I • : . I I • ' • .• I .•• ' • I 'I I
l_ I.. ,· • ~. .I !.· • ,! ~~.·I. ·r' t ~.. I . l ! I t l . . , ! . . : !.l. , ., ; , I , , : : : : . ; ,. l , ; ; . : • )' . • ·~ . ~ : ~ • i . . I I . ( . . . . l.l ' , ' ' . ! I ' I ' . I ' • ' ' r : ., I ·j· ' • • • • ' • •
• i.·. ·,·i.~· ·!. , ·_r, ~ •.. · ., •. :.: ·,,~ ... :',·. -~, :1 ·~·. ·~·1,·: .. ,1 ... , .. ,,". ~,. .. : .. ,~~,--t~J: ; : . :··l:i ri .I ·I",, .. :,·::,· ·;·t i : f I '·~ ; ;· .. ; ; • ;. :. 7 •• ' ;·: t"·,· :' ..
t I I I . : I . . . ~ : . I J I I i I . I I . :" . I : I I i I • ~ II ! I . j l . ! . . :
:ilj ''l' . I lj' I Jljt ,.. .• .., ,., , •• 1 .... I Jl•· !Jl:· :: !!i' ·'I'' 1 ,•,.,i 1i ::, i1,1 i ,_, ·•,:i,i:' i!'·.:
_. , ; 1 . • • I t I I I i 1 , 1 1 ; , I I • 1·11 1 ; 1 ! I ! 1 •
1
: ! : 1 : • ' • r , 1 1. , I •
f.;) i I I • ~ I' I I I I ! I I ''II II I I : ' .I : . I I I' j ·' I I I I f. • I i ! I I i . : . I • • f • . • ' . ~-II I' 'l; ·,: ·I' . i'l' 1: ', i. ! I I I I . i l. I I• I I ! l I I Ill t . I • l I ! l I ! I ; I : I : I : ; ~ . I i .. I l • • I . . . • I . I I I I I I . I I I I I I • I • . . l' I I I I I I I I J I I I I I ' I I • • . • • • I
.
1 .. ·l!,··'~!·._l,,··J! ... i,::l:! t,··-.~l·l~·--,·:~.-~i _i;_.··,':, ~ ~~-·~ !,t·i· .i, .. ,-.ll -~,~-:--~.I,J. :J·r,·J·-~1'11···!~·~: .. l,·Jt'I'TI: . i.; ~·i·-~ :,·. _J ~ .• ·~·!;; .: : ;~:
. . i . .,.. . . . I I .. t' I I I I ' { ; I . . ! . I ! . ! I . ! I . . I· ., ! ! ! ! . . . I I II 'II I I, I I I I ', I ',. ! I I i I I ' I' : • I • .
. : J 1 ·
1
: i , :1 ··II l;l • I 1 'II ., ·~~ ·1~ ~.1· . • · 1 ' 1
1
, r . 1 ; 1 ; : ~ 1 : ; , i
. • I ·I • t.l f . I I I I I I I I I ' I I J I I I. 'I I I • I I ! . I I • I I ! l . : .
Q
100
• j
I
·i
I
;;ll: .. , 'I :: ,'1 II· II I i II'. 11;·11 !J_·,t l:.!~~!·~;~l·~:: .. ;
. : ; ',· ,' =, i i ',• :: f I t. ·J ! I I I I .. ,. I I ,, II I t : ! . I I • . ! •. I . t t· • . I . • • I • I ; •
2001~~------~~~~~~~----~--~--~~~~._~--~----~~----~--~~~~
0 50 100 1 0 200
TIME (DAYSt
250
DEPTH OF PARTI'CLE SETTLING·
300 350
' .
OVER TIME. UNDER QUIE.SCENT CONDITIONS . .
' .
Engineering Corasullanls
400
..fiGU.AE-4.1 ..
1.8
1.7
1.6
l.S
:.: !.4 .:
0 u .:!' • ... c: .: ... = 1.3 =
1.2
1.1
. 1.0
\ \ ~a;o
~ \ r\ 7.7
\\ \ \
'l\13.~ IS.O
\
\' \ \ \
2.0 ~\ 4.0i\4.1 \
. ,~\1.0 \
2.0
1.8 a \'[\ ' 1\
1.~ ~\ \
... -~ ~\ 2.0_
K2.0 1.0 •.o ' ~\
\
.
f-· .
r:r.-II .. -~ ~--,-... /.tV I ..,.,
~ ~~
lv
" Spheroid
0 Prism ·-6 Double pyramid
o'Cylinder ,
• Oo~;bk2 co~ . .
\:·' ~·9.0 \8.1
1\ ~7.9
' 08.0
4.0 \ .
K ~ ... 7.1
-~ 6.1 v ~ _.,..
\ 4.0 J
!J~.l 4.0
i\ [~4 4.0
3.7 !I
i\\ ~ ~9'" v
2.0 / L8
4
\ ~ ~0 -~3.: ~ 1.0 1.9 lo
~ ~ 2.0 ~ v
1.0 ~ v
"""" -
0.9
0.125 0.25 0.5 1 2
Shape factor, ~ . ., ..
.
·1
I
I
. / I
I j
1/ 1/ I
!~, J, II
Vl ~:o:~f/
1.0~ ~0 ;/:~ ) . I
/.o A//
~A2.J v j
1// v
-
a 16
COMPARISON OF THEORETICAL VALUES OF K FOR ELLIPSOIDS AND .
OBSERVED VALUES FOR ELLIPSOIDS AND SEVERAL OTHER SHAPES
FOR REYNOLDS NUMBERS LESS THAN 0 .. 1 (McNOWN,et ala, 1951)
VANONI, V.A. ~1975) SEDIMEf.!TATlON ENGINEeRING
( i
~
-. ' ..... " PERATROVICH,.N9.IJ:!tt~HAM-& b"""R~Ge: ·i~c. .!··FIGURE 4·.,2
ENGIHEfRI:'G COUSULTANT$ . . • . . . . .. . •' ~;.....':) "l. ... 1,.. .
' ..... .. ' ' , ~
There is little difference between the· theoretical values for perfect
ellipsoids and . the observed values for ellipsoids and other shaped
particles. The values of 'K' based on the two .ratios, a/fbC and b/o
a~e with1n 10 percent of . the theoretical value for ellipsoids, thus
·indicating that the axisJ ratios represent the principal hydrodynamic
. features ~f the particle shape. These curves can then be used to
estimate.!O:ettling velocities of nonuniform shaped particles occurring
in nature. The value for 'K' is equal to the ratio of the fall
i
velocity of a sphere with the same volume and weight as the particle
,,
to t{:le fall velocity of the particle~ For example, comparing a 20-
micron sphere with an ellipsoid particle that has the same specific·
gravity, volume, and a shape factor of b/ o = 4 would produce a
resistanoe factor of 1 .15 for the ellipsoid. This means that an
~llipsoid with the ratio of dimensions presented above would have a
fall velocity of 15 percent les.s than an equivalent spheroid.
In the partiole size range being investig~ted here, there are few
particles that approach a spherical sbape5 As yet, no information is
available on the aotual particle shapeso. Fbr purposes of this study,
therefore, it has been assumed that a resistance factor of 1.15
applies. Table 4o 1 lists the oorrespondi·ng settling velocities for
these assumed glacial sediment particles.
Effect of Sediment Concentration on Settlement Velocity
The previous disoussion addressed a single particle settling in a
clear infinite fluid. Influence of other particles falling within the
water column could retard or accelerate the settling rate of a single
particle. I'f' the particle was one of an isolated group of similar
particles; the aettling rate of the partiole group and hence, ~he
single particle would tend to increase. This situation approaohes . .. .
that of flooculation. However, in the natural sy&tem that is
continuously being supplie~ by sediment, it is likely that a variable
speotra of sediruent sizes would be found .in the water cplumn. When·
this ocours, the interference between neighboring partioles wil1 tend,
to reduce their fall velocity, whioh Ls often referred to as hindered
settling. . '
-13-
.....
MeN own and Lin ( 1952) studied theoretically and experimentally this r··,~ ~\ .-
phenomena·, generating a ~elationship between the ratio of clear water
. .
settling velocity (W 0 ) and the particle velocity ln. a ·,fluid with a
' '.' ,. .
given sediment concentration (W 0 ). The cu .. ·ves shown in Figure 4.2 are
for·' an approximate theory based on the Oseen modification of Stoke·• s
theory for the motion of a sphere in a viscous liquid at a low
velocity. The curves apply fo1• Reynolds numbers less ?:.han 2, ~ihich is
representative of most of the par~ticle size range. being considered for
this. projeot. In refex:enc:b:~g Figure 4.3, the influence of sediment
concentration on the fall velocity can be significant when the
sediment concentration is around 0.1 percent or 100.0 mg/1. Susitna.
River suspended sediment C'oncentrations measured at Gold Creek
generally fall between 500 mg/1 and 2000 mg/1 when the discharge is
greater than 20,000 cfs. Concentrations within the reservoir,
however, are expected to be significantly lower.
As an example, if· the inflow to the res·ervoir has a sediment
concentration of 1000 ppm, it would be expected that the settling rate
would be retarded by about 10 percent. The-'rsclid lines on Figure 4$3
are representative for different particle , Reynolds number. For
particle sizes of 50 microns or less, the Reynolds number. is less than
0.1, therefore, the upper curve should be used for the· Susitna
Project.
As the sediment concentrations within the lake generally will be
significantly lower than 1000 mg/1, the impact on settling veloc.ities
will therefoi,e be much less than 10 percent. For purposes of these
studies, therefore, the effect of sediment concentration on settling
velocity has been neglectede
Effects of Flocculation on Settling Rates
If the mineralogy of the particles and the water chemistry are
• compatible, electrochemical forces will tend to hold. particles
together once they come in contact. Contact of particles and the
potential subsequent formation of an aggiomeration, or floo_, can be
. -
-14-. .
r.' -. .
't'i';o;< :;: / .f
i
o.e.
0 0.1 0.5 1 2 3 4 .
PERCENTAbE CONCENTRATION BY DRY WEIGHT, C,
(FOR QUARTZ SAND)
.
•
6 a 9
EFFECT OF CONCENTRATION ON FALL VELOCITY OF. UNIFORM QUARYZ'
SPHERES. (McNOWN. AND LIN, 19~2)
VANONI, V.A: (1975). SEDIMENTATION ENG!NEEAlNG
.. 1 .
-.
, ...
(
(
\
! .
i
1.
i ;
L·
I • .
' I
l
{ .
.. . (
7 ~ ... rr-.. _ ·&t·· ··~: , -. ~ ... -. . ,. . ~ ·. ~ . . ~ ... ~ . . . . . . . '· .. · ;_.:·.·n·~-
c;-t:~
'I
To date, no studies have oeen done on the flocculating characteristics
of the sediment in thE! Susitna River. However, metal shadowej:l
micrographs of sediment samples from the Susitna Riv~r near Chase shLJ
a significant amount of agglomel'ation. Petrbgraphic analysis revealed
that these wel'e composed of denser materials (pyrite, iron oxides, t~enite) agglomerated onto .lighter minerals (quartz, feldspar). More
thorough investigation of the processes of agglomeration and
flocculation would be needed to assess the impact of these processes
on sediment behavior, particularly settling rates. For purposes of
these studies, the effect of flocculation or agglomeration have
therefore been neglected.
11.3 Quiesc~t Settling in the Reservoir Basi!!
The approach used for esti~ting qUiescent settling involved application
of a reservoir sedimentation computer model. The model, DEPOSlTS, has
been developed by A • t~ard ( 1979) tor the design of sedimentation ponds •
n describes the sediment transport and deposition process in a reservoir
. as a function of the basin geometry, inflow h;•drograph, the inflow I
sediment graph, the sediment characteristics, the outlet structure\ •• / .
1
....
the hydraulic behavior of floW within the basin. The model detel;'mines
-15-
. ' .
•
•
basin trap efficiency, loss in storage due to sediment accummulation and
~ffluent suspended sediment concentrations. The. model has been verified
with data from. several different ponds and reservoirs located throughout
the nation, but not with a basin that has significant glacial flow and
sediment contributi.on ..
. In the model, flow wi th~n the basin is idealized by plug flow .concepts.
:Plug flow assumes no mixing between plugs and routes the flow on a first ·
.. in, first out basis with each plug .representing an equal time .increment.
Settling of the sediment particles is described by Stoke's Law of
Settlingo The reservoir bed is considered a perfect absorber of' sediment
and resuspension or saltation of the particle~ is disregar~ed. The model
accounts for the variation in sediment concentration with depth by
subdividing each plug into four layers. Selective withdrawal, at the
basin outlet,~· from these layers is provided for in the model.
The basic inputs to the model include:
1)
2)
3)
4)
5)
6)
1)
8)
Inflow hydrography
Viscosity of the flow
Stage-area curve f'or the basin
Stage-discharge curve for the basin
Stage-discharge distribution curve
Degree of dead stor~ge or short-circulating
Sediment inflow graph or load
Parti~le size distribu·tion and specific. gravity of th&
suspended sediment
For purposes ot" these studies, the model has been modified to accept · .
specified discharge values rather than a stage discharge curve.
Because it ignores dispersive mixing within the reser•1oir, the . model will
tend to underestimate the minimum discharge concentrations and
overestimate the maximum outflow concentrations.. This must be taken into .
account'when interpreting the results of the model runs •
. .. ~
·(__. •,
a· A second approach has be~h used t~., check on -the results of the model ~ri1
runs. !'t is described by H .T. Rouse ( i 948) and is based on work done by
· Camp (1943). This approach is briefl)t' outlined below.
The l·latana reservoir is a relatively long (48 n'liles) ·and narrow ( 1 1/2
miles basin) • For purposes ot" sedimenit deposition calculations, it can
· therefore by treated as a channel. l-later flows into the upstream end,
passes through the channel-shaped llasin, and flows out at ·the· downstream
end. Storage changes take· place whi,~h result in differences in the inflow
anct outflow rates. f<..s the sediment particles pass through the reservoir,
they· gradually settle out. The v~lloci ty or · flow through the basin
·gener.-ates shear stress along the boundaries, and hence, turbulence within
the reservoir. This turbulence tends to reduce the rate of settling,
particularly of the small particles.
Camp (1943) evaluated the turbulent transport function for two-dimensional
flow. He assumed the water velocity is the same at every point in the
channel and that the mixing coefficient is also the same at all points.
The functional relationship he developed is as follows:
(qs)e
(qs)i
in which
--w ,
t/p Vy
(qs)e = quantity of sedimen1;~ of given particle size in effluent
(q~)i ::; quantity o.t sediment of given particle size in influent
w = fall velocity of the given particle size
t/p = shear velocity
y = basin depth
n =Manning's roughness coeffi<!ient
. L = basin length
v : mean velocity of.' flow in basin •
-17-
..
•
•
•
-· I
·,
1 •
r
~¥
t •
l
( ..
.... .
i . . .
l .
( • .J
lJ
...
' -.
I ·•
I
..
l
I
This:·· function has been evaluated analytically and . v
experimentally. It is shown on Figure.J.i.ll.
4 D 4 Reser'voj.r Mixing Process
~ • ' ~ ~ ' ,>
As outl:!.ned bY Imberger and Patterson in Fisher et al ( 1979}, the
mixi~ processes occurring in the Watana reset'voir are · me.terol..,,...~ .. -
conditions and the inflowing and oUtflowing water. These processes
' ~ ..
tend to generate turbulent eddies within the reservoir Which conti "-""'"''~--)ill
stir the sediment in the water. The basic processes are .discusse
below.
The Annual Cycle
The annual thermal regime of the reservoir is currently being studi
by Acres ( 1982). Based O!l prelii!Jinary results from these studies, ~
well as earlier thermal modeling also conduct.ed by Acres (1982), t:
reservoir r s thermal regime appears to be rela t~L vely stable as compar
to more moderate cli~ate reservoirs and lakes.
During the winter D'.onths (November through April), most of the wat
in the reservoir would be at' 4°C (l!Oelp!). In the upper layer
temperatures would drop to o°C (320p!). During the spring and sumr
wa.Mil.ng period (May through July), surface temperatures WO'
gradually increase to approximately 9 to 1Q°C (48-S0°F).
reservoir would be reasonably well stratified with a thermocl:
located up to 50 meters (165 feet) below the surface. W~
temperatures below depths of approximately 100 meters (328 feet) we
remain at 4°C. During the cooling periods (August through Octobe
the surface water would cool down. Overturning would take place
the upper 100 meters as the surface temperatures reach 4°C. Dur
this period, the upstream 10-mile reach of the reservoil;' which
depths less than. 100 meters would probablY be subjected to comp:
overturning •
-18-~~-"l-~---11 .. ,, :::I
{
"' ~, .~" ... \ ''"·~~·~ .. ~ .. ~;)~
1 _ (gs)e ,_~.-
(qs)l
. : . I
0.2 --~---·:
l I
l
t
l
I
--~,,.,...,.., --'--""--"""-+---"'-----'----"i.o..-.1....:....;-. ------_.;._~~-f.
0.10 Wy1/6
Vn"V9
1.0 10.0
SEDIMENT-REMOVAL FUNCTION FOR SETTLING B~SINS
' . .
ROUSE, H~ (ed.), 1950, ENGINEERING HYDRAULICS "' ..
•
•
•
••
will tend to flow into . the near surface l~yers of the re~ervoir which
are the same temperature. During the spring warming period, from May
to June, the r-iver water, would .. war111 .at a quicker rate than the
reservoir surface, and, therefore, continue to flow into the· upper
layers of the reservoir. During the July to September period, river
water would start to cool more rapidly than the reservoir water. FlC\w
into the reservoir would gradually tend to enter a~ lower layers; and
towards ·.sep .. temb:~!'. the flow ~ould be ente(-ing the reservoir in tne
vicinity of the t;:termocline. As the lake water cools, the river .
inflow would gradually move back to the surface layers.
Based on the above discussion, it is evident that the sediment
entering the reservoir will flow in near the surface most of the
· year. The ex7eption is during the late summer and fall months \ihen it
would tend to flow into deeper layers near the thermocline. During
this period:, the qverturning that occurs in t~e upper layers of the
reservoir would provide some mixing of the sediment particles in these
layers and somewhat reduce the amount of sediment that settles out •
R&M (1982) is currently conducting studies on :Eklutna Lake, located
approximately 100 air miles to the south of Watana, in support of
ongoing model effor-t$. These studi.es indicate that Eklutna Lake is
subject to complete overturning during the fall period. In addition,
suffici~nt mixing forces over the length of the lake surface result in
little variation. in surface turbidity levels, regardless of the
distance from inflowing streams. Maxim\lLit turbidity is not always
recorded at the surface. Turbidity plumes below the surface have been
traced in the lake.
The observed behavior at Eklutna Lake and predicted behavior of the
Watana reservoir still need to be confirmed. The two are not
necessarily consistent in all respects. Data for a full annual cycle
at Eklutna Lake will be needed to strengthen assumptions and
conclusions about the similarity in behavior of the two systems •
-19-
• r
1
l
-l
'
i:!
·' \-
Particle Mixing in the Eoilimnion
The · major mi~ing foroes · active in the upper layer.s of the reservoir'·
F-lsher·et al,· 1979, include:
o penetrative convection
o. wina induced mixing
o mixing induced by inflowing or o~tflowing water
These are discussed in more detail be1Qw.
·(a) ~Penetrative Conv·ection
(b)
Th~ epilimnion would be subjected to diurnal temperature
fluctuations due to daytime heating· and nighttime cooling.
The depth of penetration or the short wave radiation depends
on the water clarity, but in the absence of wind there is
always an identifiable temperature rise and stratificati9n
layers during the sunlight hours* As night falls and
radiative heat losses begin to dominate the thermal exchange
at the surface, the surface layer cools and convective motions
mix the upper layers. Often these convscti ve motions proceed
until they reach the mature. thermocline whera tl-:.~y bef;in to
erode the stable temperature structure.
,;:•
Mixing Due to Weak Winds
A -wind blowing over a lake ex:~rts a stress on the water
surface that causes waves to form~ break, and transfer
momentum to th~ water. The wav·e motion, especially when waves
are breaking, produces turbul:ence j.n the upper l,t.tyer. This
turbulence then interacts with the mean shear in t,he upper few
.meters to produce further turbulent kinetic energy. Ofte'l
•
this. interaction
windward drift.
cells and they
produces a secondary motion a~"well as a mean
Such secondary motions are ca.lleq Langmuir
are distinguishable to an observer by the
-20-. ..
••
•
..
•
characteristic slick pattern associated with the. regions of
convergence. The net turbulent kinetic energy produced in
these upper few meters is then exported t;o the lower parts of
the epilimnion during turbulent diffusion or QY the advective
motion associated with the Langmuir circulation.
In addition to this stirring of the surface water layers, the·
wind will also cause the. water to accelerate so that. after a
ShOrt time the whole epilimnion will have a mean motion with a ..
velocity. The sbear associated with this mean motion may then
further contribute to the production of turbulent mixiag.
(c) Reservoir Behavior Onder Severe. Wind Conditions
So far, the discussion of wind mixing in the epilimnion has .
not taken into account the motion of the water in the
reservoir. The wind stress will initiate motion and move the ..
water in the epilimnion in the dir~.."':ction of the wind. If the
water surface is ·;-o remain nearly horizontal, as it does, then
the water in the hypolimnion mus.t counter this flow and move . .
in the reverse rlirection. A shear will develop across the
thermocline which will increase with ti,me until the
thermocline has tilted sufficiently to set up a hydrostatic
pressure gradient which just balances the surface stress. At
this stage the motion changes from a whole basin circulation
to two closed gyres, one each in the epilimnion and the
hypolimnion, and the shear at the interface will decrease to a
very small value. All the work done by the wind is then
either dissipated internally or used to de.epen the
epilimnion. T~e set up time is proportional to the seiching
period of the thermocline which may be as much as two or three
days, giving the wind stress ample opportunity to develop an
appreciable shear across the thermocline•
Vertical Mixir.!:Lin the Hy~.olimnion
Obse~vations in large lakes. using measured dist~ibution of natural or
· a~tificial traces indicate that veJ.•tical diffusive mixing in the
hypolimnion ranges from molecular diffusion to values up to 10-4 to
10-5 in m2 /sec ( 10-6 to 10-7 ft. 2 /sec.) (Fisher et al 1979, and
HambJ.in; 1982). In addition to this, sometimes relatively rigorous
mixing occurs. The only apparent explanation for this is that
although overall there is not sufficient kinetic ene~gy to cause
mixing, there are portions of the lake at any particular time where
the ene~gy density has been increased by some type of concentrating
mechanisms, allowing a local breakdown in the mixing of the
structure. The mixing is thus patchy and intermittent and quickly
collapses u11der the action of' buoyancy. Upon collapse, the mixed
patches elongate and interleave with themselves and their
surroundings, leading to steplike vertical density structureso
4.4.4 Outflow and Inflow Dynam.i.cs
Local mixing is generated in the zone where the inflow and outflow
occurs. Depending on the magnitude of the discharge, the outflow may
draw water from ·several layers within the reservoir. The velocity
field induced by the withdrawal will generate additional turbulent
mixing. However, for a reset"voiz• as large and as long as Wa tana, this
mixing influence is expected to be limited to a small local·area near
the power intakes.
A river entering a reservoir nearly always will be at a different
temperature, and thus density, ·than the surface water in the
r"eservoir. Upon entering the reservoir, it will thus push the
stagnant lake water ahead of itself only until buoyancy forces, due to
the density differences, have b~ome sufficient t~ ar~est the
inflow. At that point~ the inflowing water will either f'low over the
•
surface of the lake if it is warmer, or plunge and flow submerged if
it is colder. There are thr''ee distinct mixing regimes associated with
the inflow.
•>\
-22-'Z,~·,l~· j'
•
•
•
\.,..
I ~
i
•
2ool t.=~~~--~r-~--r-~~-r~--~~~----~~-r--~~~~~~~~~~ ~ -~=t· --~· __ ,_, -~~"-·-'~ ..... -"'·'•· -'-'----,~--· -~ _, "'t,-···-·-.... ·-p • -·-•• .___;,_ --~ ·-~ ·~· I~ •-· ·-:~ _.!: -r-~---r-·-----:----...:--:-1-J •• :..1---· -·• ·•·· -~-~ ..:; .• _, -... ·-. ~ ~l-.. : : -~ ~ --7:--~1 ·-;..I~~-.;.::~_::;:. . ~ i·~1 ~----: ~-:--t:-tr !··· ............ ·-~~ n-.. .
; • ·--~r-:~ .... --=~-~·-! •::~·--=~··':-• '• • -~-~·;~~ ··-•-:fr ··-·~-~·~ .. --.... ~ ·-
• ;: . I •· ··-~ .• ••• :. • • • •..• , ~··: •• • 0 v,--
• · • I • • · ·• -.. •; :~f-:-,: ~. • '• --:-;-r, ·~II', ·•i-:" , 1 ~-·• • • 1 r -:~ :~··-'• -• '¥
.. ~ ' • ~ 't t • • t :... : • ..;...... • ... -.! ~.:..._ ----~ .... ,_ ;-, • -~:--:-;_ ""7" • ,'! . : ... -:-~ -c:_... ~~ •-:---:-·~ •• -4, • • t '. 't f .. ,-~ • ;~--;--~ ' • -• 1·1 .. • 1 t ·r .. t• • t • •-. ... i .. • •t , , .• , e A -:--~~-:·,,:-.:._;.;.: ... ...l.:..--..:....--~--~~-··· ~
.... ' '4!i. t~ --~!i :~·· f•t•~ ... :,:: :.:J't:···;· . I ~ i ;,t :lt! ".: ll:i!!.,••: ~~·· . I -.. t'i-•. • • .· . ,.•:' '• .·· -:-::-•:~-!:'""" ,~ ·, 7 .. ,l,·-1,7'.1t•l I··A: ','!•,!_!""". ~~ .• ·.·07--. -.. ·:,A.·-.•. • 100 . . , . ' l 'l t f 't '. '. ~: .. ~ • \ ' 1 i I;,~ ~: l! : i! I • . I t ~
9. o .-:~:..:..:..-..:i:;.:.-·--~-: ----z· =:r:-w;···r-:t-'--=· -· -· · · :..= · -~--------....~--,. -~---·-..... :=~:.r: !..L-=-=~--·1· · .... · =--·:· -~-,-.-~-::-:::~=:: ..• ·-· .. '~ ·::.:=: ··:: :=-~. •===r-\!f:~==---;;:·:_ .:. .: . ==· ·== ;:::i=~~~~::= :::::t._
80 ~-.---_·-.::;_.::; z __ -===-==-.=::-:-==r~~r--·-=t: .!..::.=•-·-· --7."::~.--:----:::-_ .• .:;-.--=,~--~-?1--...;_;..;.--:..t.: .. -:;t:.==r=::· :.:.:!1/0: :-==~~1:::.;)e:.:~..::
• • 1 -r====:,._--::=J;:._ .-;;.r=:J:"_ -=·~ --. __ '== --:::r.: .:.:: ==-:::,;.r.::. ·~=~ ·:-.:.:r.:-::..;;::-~ -=--.:.=.._ ·--·-·--··-1---r-~----§E' .•.. ··-----====r:· ==-=t:· --·-$-. --~:-··--.· . ---~~--" -~--70 ---____ oo:;...: ·:..=·-- -.......... ...;. . ~L:......::c.'-:.-= ·:=~ --__ _. __ --........... ·• --t .
. -t· -· --. :! --=~=.;;;·::::} . . ---• ~--·-
60
· . ..:....:. .. = i.:.::.:-..=.::::...-=.:=:t.. ----~ .... ---::::l----•. ,. _ ... '"1""1:..:!!. ---... ~. ---· . ~·t:.r·· ····t---·-~-.. ,::::t=.:..
. -· ----- . -··· --· ·-· ~r-......-.. -...... I .:.---~ -::_ -'5?:~ ·-;t:._ .. ·-·--:-_ __;:__
----.:.t:··--·-... ·I~ -:-t ·~:~ :;::._.--i--:---..-. ~~::::t..-· ··r--i·
50 -+---- . .__,. . . :,.... --:-. . . . . . . ·:-r-:-;-:-.•. ..,.-;---------·+-·--.:. ... _,.. ~-... ·~· -i /., ... .. ::..;:: .. ..:· -.,_ .. :...::. -·---=-== =:-·-·r ...... --r---~ --=. ·=::::r --= --=:~-----.--= --~· -. ·-:-t:==.:;= ---: ·-: :~--=-=---==... .. -· ·-:: =..:::= =.:.:::: --~~----'~ _==.;;fa'•· :;:.'l-,.::: -==-=-=:::f' :.~ ::=:,:==:=:
--=:-~;-...:.--u.·:=--:::..;.=..:-=1~r=· ::;:::.;. ----~---• ·-· --:A: ~-=:::.:/.";t·-• ==· ·-.: ~ ··----·-:-::-... --.... ::-· ... =:-:r.=::=.;;::_ ----~ =-::..-::-.::: :---~ :..::::.~;.. -_____ g·::-==~ . .3.:.--:: :·~ =::E:= =~ ---=~
••• ••• •• I •• ••--·-r-· ·-· ----.. ._.__ . ..,.. •• •• • ·-• -----· -••• •• /•• ·-_:-•••t-oo• -----••t:: != ·:::-· . l::.~ . =---.. ~-!/ -1--------• ·--1---_,___
-----~ . t---
·~-
30_
-... • t ~ i ' I • t • I I ;. •!
i---
I -+-
:2 ?O ... -,., , .... _, .1 . . , .
z .,_, .
J l I •'
l . . ' I ' -=-:-; 1
l!'
__l_i: t
l . . ' . : ~ !
i ' i , I ;
1 , . : • . ! ! • !
,, ; >
·i--Q i i I 1 i I . I ' ; ll I :
' I I l ; I ! l ' i
-a:a £C 10. __
2 9---==--·-.-·t-·-8_ . --::t ·-
7 F--===-t:=:--
6-. ·--·
5_
=
-· ----
!··· •";t lfi
:! : .. ,•
• ••• ··:1 •l•w
I : ~ • . , ..
;: ... ,
I ....... '-.. h :·· . ; ;
: I a,
: I I
.,. .............
____,.~ _,...... ....... ~
--~·-~..,.
'!
I
! I
I
I
!
; .. . I I
I
i I
I I I :
. I . I ; ! I
I 1 I I
I ! I
! I !
··:-M+
. . . : ..
:· .. ..
-=; =-=:::::r=.r-=-p:o: c== ~~ =---==. ·=-·-=:;.r::-~...;
~-
. '
~:
t:.==:E -----:'t..""=:
·. ···-· 1~·-f-... ..
TUE=iSICITV vs SUSPENCEC SEDIMENT •
CONCENTRATION
l
1
1
I
]
-1
--
First, there · is mixing associated with the plunge line. Second, in
the: ease or the: unde:rf'lowing situation, the: bottom roughne:ss of'te:n ('""\ \~
leads to mixir1g, called entrainment, at the interfa-ce between th.e
reservoir water and the inflow~ Third, whenever the density of the
inflowing 'mter equals . that opposite in the reservoir, then the
··inf'lowi_.ng water ·~ill leave the bottom. and intrude horizontal1.y into
the reservoir· These intrusions may also occur ~ong tlle surface if
the density of the inflowing water is less than that of the surface
water.
.
4*5 Reintrainment· of' Sediment
.. Along the shoresline or the rsservoir, the convective and wind mixing
effects will reach the bottom sediment. Some or these sediments will be
resuspended and ~eintrained in the water. The maximum particle size and,
hence, the amount of .sediment that will be rei?tr.ained will depend on the
strength of the mixing currents. During high wind periods, this
reintra:tament can contribute substantially to turbidity in the reservoir ·"
8-lcng the $hotte.
4.6 Turb!Q?-tY 'ITersus Sediment Concentra.tiog..
Biological activity in the lake is dependent on light penetration, which
in turn, is a function of." the concentration of st.tspended matter. A
relatiC)nship is therefore required to convert predicted lake sediment
concentrations to turbidity&
R&M (1982) developed a regression equation relating to turbidity in NTU's
to sediment concent~ation in mg/1. The data was derived from measurements
Subsequent to these studies, at the Gold Creek and Vee stations.
additional. data have become available at the Susitna River station near
Chase. A new regressj on equation has been developed -<::ombining all the
available data and is shown in Figure 4.5 ..
Much of the subsequent analysis ·in this report is based on this
turbidity-sediment concentration relationship because of litc'i tations on\".;;~->
-23-
.,-
'
··-··. . .
••
~:.!
a
. . .
other available data. It is important t~ incorporate all .·additional. Qata
'from the_ USGS 1982 field sampling prog~am as it becomes available~.· 'Weekly
measu~~ment of' turbidity and sediment concentration in the ~ti,Sitna River
near Ch~s~ will provide data to verify the relationship presented here ..
· 'fhese results, -can then . be . modified to account for the variation in ..
l)ehavior in lakes and rivers\1
-24.-
1 ·~
zm II&&. A
. ·--~
1
1
1
j
]
J
]
]
]
1
]
• ]
J
]
1
1
-1
5. WATAN'A.RESERVO!R ·SYSTEM
·See 1 Climate. ·
Wind-induced mixing is one of the. principal mixing processes occurring in
the vlatana r~servoira Wlnds blowing over the reservoir surface produce
turbulence in the upper layer.s and can initiate water motion in the
direction of the wind.
To carry out detailed wind analysis, data from three weather stations in
the Susitna. Basin were reviewed. Data on wind magnitude· and direction
~rom the Watana weather station were selected for use in analysis. This
station most near>1,y represents conditions at the reservoir and also has
the most complete 1 ""rd ..
5.2 Hydrology
Case C intermediate flow and power conditions, presented in Volume 4,
Appendix A, of the .Susitna Feasibility Report, has been used to provide
baseline hydrology information for determining monthly reservoir operating
conditions.
5·3 Sediment itt=gi!!!d
Data from several sources has been compiled to define the sediment regime
in the Susitna River near the proposed dam site. Historical data from the
USGS on sediment concentration and particle size distribution has been·
summarized on a monthly basis for input into the DEPOSITS model using data
collected at the Gold Creek. Station. Figures 5.1 and 5.2 present average
monthly sediment concentration with maximum and minimum values::. and
average monthly particle size distributi<=!n· The crosses on both figures
indicate values used in the DEPOSITS model •
•
-25-
.-
i .. •
• 1-----.....-------·-;......
---+--=-..:=· --· -.;._--r-·-----; -, __ _
_ .. _._ _ _,._ ·---=-
-3
--+-·-
--. ~--·-. ..·
-~ ~--. . --·--·· . --=
. ~-. -----,~-..... f~. 1 1 t -:I: ,,-: --... --,-,
L-..!....__.,..:.. .. J t . ( ! I ' -I : ~~ l I ·-· ·-+---~ I · ---'t-r-r-r'-;-· r:-+~ .. ·~·+~~+-1-+_.:._-:--H-,..--:-i-++:..· -;;.....!.-i~..!-,-~~-=i=• :::::;::+~~:;:::::;:::4:::;:~::t· !·=1t:::::::::j ,,,~, --+~__;·~· ....J---.. ~--;lo"":':-:-. """!'-t~l--r--:1-:--t-H'-+' ~~-T-~~-T--;.-;.+~~..;.....!-1-' ~ i t I .-, ., ~-·;; 11 •I ,~,, .,; • f • 1 : •
1-:-:-~rt-~~+--f~~-H'-+1 ~4-++'~+'-4-1.1 . ...jiW.,I ~W...L..L..:::. . I i X I ! l I ! I t--+----:-4-...._ __ !...,._i-~..;.....;:..-J--'--+-' ...J.:++ ! I l I i I I ~~y--o:.+~,-.: •. ....;,;;....r-:-...l.., _;1~-+--i-. -!J-"'1':-T-f-+1-+i-T--: ,,~....:,;......;..., ....;...+-, --+-~,.-~--1'---L.J r-:q~~+·~· t' ~· t~tq~tt:W=-'b:1 ~'j1tj:jji:Tt±±il:1~~~-~ '\£~;~~~~~~~.;..~;~~,-~-,~i ...;.i-,-+-+l-T-!-1 ""'=-"+; MA'"X 1 MUM 1 i • 1
! l.. . . i i I i ! i I I I . ~!" . -._ I I I I I I I I -~-+-~,__;_...:.,-1
1 noo 1 1 1 1 1 , i 1 1 !.' TTl 1 -!-......,:--+-H--+-i-+-T-~-+-J--i.-....!...-'W...-4--!-!....~-1
. 9 F --= --=:3.:.._ ·: ----:=· --= l ~ ... ~ ~~, . ; i j l ·~'1.; I I ! I ! I I ! l I I I l I I --g-_:------.-:-=::::...._ ~ ~--== . i§§d. ;;";
8 --L -==-t=-:::::C:: =: ..... ---··---·-· ---t: ~-·--~ I 7__ ; __
6 __
5__ I • . ~. ·-. .. :::=r:-: r= -:_:___ --±::::;::= =t
::i 4 __
' " ~ - 3 __
z
0
·.
s_
7_
6_
5_
4_
3_
10
1---•
..
f--
' -··
.·=
I '
• I
• I
' .
---
H--t-.
' '
f i
1\
\•
\ i
l l I
. ...
..
I
1 I
., .
'~<.AVER~G
t I I I
_,
1 I o .,., I I f
• ,,, • I • • : r.:,_ ... ROSSES:-SHO.WiVAl;UEs..:...: ~~~·~·-~
~-~......!....: ~·-1-~-:H-; +-~~-+: -:1-++-H~...;:-+-HH-+-r-+-+-H+H++-++-~-+-,H---M_&J SED: itJ-:P EPO S I'! S :.M 0 DEL;-· +: -~---",'-"+-', .:...: ~
I I I I I I 1 ' • • • ' L ,_ I I : I I I I I
I ' I ! ; I I I I . I I I I I I
; ; i • I I I I ~I I I ! I
~ .
. SUSITNA RIVER AT GOLD CREEK . . .
·-tlt;eciMENT CCNC2NTRATICN=-S~N1IVIER VALUES
CNL V £ '1952--~ sa '1 :lf.-, _
FIGURE 5.1
& ORAG;t~' ::IN::C::·:::;::;:===:
,J DOES NO"f INCLUDE 19~1 USGS DATA ... PE,BATf3~H~9l!!.tiGHAM
ENCilNEER1NG CONSULTANTS z-:/z--t.f{
rJ
t
\,J
N
'
'J. I, I .
1nrrnn=--'1::-~I= F "':-:-· .. ·• · " -· · · · · · rr • II .. 11 =-.... ~·~-... , .. f-' •• ·•• ~ -• .. • ·r · · rt ru ru 'i llJf.!.E.!JlE r' ·:· '' · · ·;··
I ---. -~ ~--·_1-'-·. . . I ~Ill !l!J ~~ , . ~ -r·· 1'1· II . -~ ·-r---I-- - . • : : ..
---... . ·--... . I ' . I --.. -·-"'f-.. ,' '•' ' . ! ;.! ~ V: ~I-!, i I~ I ,~ fljo =--=~= -~ =,~-: ~ :. '-rrr~t~*'fi~~oo~ . ' i ~ , i ,:. ;t i /: r I I V/.111 I-ii' ,. f+J '-:-ft II { ~r;
-· · 1 · :: -------.. -----. . : : ~= = = ~ :. : :; ~; :)< ,~ 1J·' ~l, w,· · ··
1
", i u 1-1'. ,, !, i ~-~~-~-~~~·~~~~~~~~~-~-+~+-+-~~H-~·~-H~~--~~~Mffi#··~·~-~·~------~~---,-,1~ II _,lill· I~
1---·:----~· ·---~ ---....
---HH-t-.-J-H-
-1--• 1---!---1-1-f-·H-• • -• • ·
-1-1--t-11-1----
~ - -r--I-·-. . -. . . .
1111111--t-·1-l---•• --• .. . . .
. ..
.. .. . ..
--· 1-+-+ .. t-t-1· r-· -----.. ,.. ·l ~x,,=l-;!:~~:~~-_::~~-. : : lil''i !'. ~ri' I 111
~ 60~~~H~~~~~~H~I~11 ~11 ~~-~~~~-~H·--~~-~··~· ·fl··~t~~~~,~ .. ~ .. fl~ tn ~;---~-~-.... · .. l ~~h ~ t·· ~ dJ:~dL
...
. . ,,
-60 I • !.. I' . I l! l
.... I _I - . . I 11 j -'--I--p I~ • - . • . I ·, f· . 1 . . . ' i l I I II i' I ~-·· _, ___ ·_·~ _i· l 1 <~ .. ' ~=.,.t~-~---~ ... ·~XI·,. ::.. =~=~==~~=~==~~=-:·".. ~ ,,,, .,.1 ' !illi
... ~-.... ..:-... ~ -.... ~-"-·-· .. ·. .. -l-1---r----.. ---.. 'lill . 1 :!!il
~· 40 ---~ . H 1 ~-II ~-'.::;.?~c·r: .. :. :. :. . .. . . :._ =':-::: -::-:: ~ :: . . ... , j 'I IIi : ~~~~~~-~~~~~~~~! ~-30:. I ~~I: ~-·"~r-·t~~ '=-~ : ~-=~=~~~ ::_. : . il ll,:~~~·l .. r~t,iJ I!,·!;~ ~ .:1 Itt. ~ 1~. II· 1 [~!1 _,_.;.• '" _:· . ·· · 1 ·~~:-:-~-:-·---·· · · · ·-· · p: t;,d!l!, ! i) 1 1 il!
U: 2 ·,lu~ ;1.11 I ~ 1 j •· · --·-r---~--< · · · lX:::!r-CRossEs~.sHoVu:u ".Vi:' _us~m •,! 1 1!11 ~-0 tuG~~,~~ fi~~ r .. t1t ·--~-.. ·t----. . -... :::.Jt..l·~.b.EPdsar.s: M1 9D~,~.i ·I,·! ·l . ! I II !I~,'! ... · . . . f?Nttll! ~ ' ~}\. .. Ill p ~~ . .. .. ,1~ I I 'I I xAt · .. · .. ff 1-1 1_1:~:.. =-------r-~-~: .. ·.·.. .. '-:::=,·-==:~~=~-:.: · '. 1 ,I!· i l 1 ltlli
;10tf•-l! ~ I~ I : 'tt.j. . ~j ~ II i . . ' ~~~~; ~; ~; ~: ::::. . . I . . . o.J..U.LI,.I.ULIW.U.UU....."--'-: :~l~ ~ : : :: . : ' i I Ill iiJ II! :t! ,: lriiiU
.8a2 . . .004 .ooi .016 .031 .062 o126 0.26 0.50 1.0 . 1-... _____ ___.SILT.. __ ,.,. __ -r'-·-·-----S.AND-· ________ _,__.
'PARTI-CLE sizE·· (~m)
.
s·USITNA RIVER AT GOLD .CREEl<
~ . AVfRAGE MCNTI-2L V PARTICLE . ~IZE t;m.~IRIBUIION .. Fr. _)lE ·5 •2 .
tJ ·. ~u~tJ.AI~2~~~ ... NPTTJ!iGHAM & o ==E·=IN=C·== \.~-/ . ' @FNGINEEfUNQ CONSULT Atns . -::
' . -
•. '
j
During the summ~r ·.of 1982, an extensive sediment · sampling program was
.. .
. carried out by the R&M Consultants, Inc. , . and the USGS, to .improve
understanding of the existing sediment regime. ·Samples collected on a
weekly . basis through. the summer months · included turbidity, sediment
-concentration., and bedload. Analysis of the turbidity samples is
complet.e~ however, sediment concentration and bedload sample analyses have
not been completed at. this time. When these results become available,
they should be incorporated into the statistical analysis of turbidity
versus sediment concentration to add streng.th to the correlation.
For this report, existing turbidity versus concentration values for the
Susitna. River at Cantwell (Vee), at Gold Creek, .and near Chase have all
been combined to revise the regression line presented in the earlier
report. Figure 4.4 shows the new regression line used to convert .
predicted sediment concentration in the reservoir to turbidity .. .
;
5.4 Reservoir
Information on daily inflow to .reservoir and projected powerhouse flows
used in determining monthly water retention time, flow~thr?ugh velocities, ~
..
and live storage for the reservoir have been taken from the Susitna ..:.
Feasibility Report, Volume 4, Appendix A. Table 5.1 shows the. resulting
monthly values of the· above mentioned parameters used in this report for
modelling and analysis •
-26-
.~ . Ill $
•'"'-YI•,,..
·~r·•
..
•
•
••
MONTH
OCTOBER
tJOVEMBER
DECEMBER
JANUARJ
FEBRUARY
MARCH
APRIL
HttY
JUNE
JULY
AUGUST
SEPTEiiBER
AVERAGE
. \
1..'
AVO.
~513.1
2052.1&
11101&.8
1157 .]
978.9
698.3
1112'"6
10397.&
22912.9
20178.0
18lt31•1&
10670.1(
79112
(cf:s)
c
INFJ,.OW(ofs)
MAX. MIN.
61&58.0 21&03.1
3525.0 1020.9
2256.5 709.3
1179·9 619 .. 2
1560.14 602.1
1560.11 569.1
1965.0 609.2
15973-·1 2857.2
ll28il1 •. 9 13233·"
28767.4 1118113.5
311135.0. 7171.9
17205.5 11260.0
428111.9 569.1
(cfa) (ofs)
POWERHOUSE
FLOW
(ofs)
7370.5
8123.6
11135.1&
9535.0
9150.]
6865.!&
6176.9
5767.5
6099·7
5i183.7
9329.3
10158 .. 7
7963
(of:s)
I •
AVERAGE
FLOW
(ofs)
59111.8
5388.0
6270.1
531&6.1
50611.6
3881.9
36611.7
8082.5
1~506~3
13130.9
13880.3
10lt111.5
77111.5
(ofs)
..
• .
TABLE 5.1
WATANA RESERVOIR CHARActERISTICS
WATER SURFACE A'l END STORAGE
OF MONTH (tt.) (ao.rt.)
AVO. MAX. MIN. L~VE TOTAL
2177 2185.6 2122.5 3.98 X 106 ~»..27 X 10 6
2166 2173.~ 2112.6 3.67 X 106 6.97 X 10 6
2150 . 2155.9 2091·3 3.22 X 106 8 •. 51 X 106
2133 . 21]8.2 2081.2 2.75 X 106 8.0!& X 10°
2119 2122.0 . 2068.5 2.35 X 10 6 7 .• 6!1 X 106
2107 2110.0 205!1.5 2.01 x· 10 6 7.30 X 106
2097 2100.0 2011~).3 1.73 X 106 7.02 X 10 6
2106 2119.1 2045.2 1.99 X 10 6 7.28 X 106
2139 21611.7 i:075.9 2.91 X 10 6 8.21 X 106
2166 2190.0 2109.0 . 3.67 X 106 8.97 X 106
2181 2190.0 2130.3 11 .. 10 x· 106 9.39 X 106
2182 2190·.2. 2126.8 11.13 X 106 9~lt1 X 106 -· I
2150 2190 201&5.2 3.011 X 10 6 8.33 X 106
(ft.) (ft.) (ft.) (ac.ft.) (ac.ft.)
' •
VELOCITJ
(fps)
LIVE TOTAL
.009 .oott
.009' .ooll
.011 .ooJ&
.011 .• 0011
.012 .oolt
.011 .003
.012. .003
0.023 0 .. 006
0~028 0.010
0.02\ 0,01)9
0.020 0 .. 009
0:012_ .. 0.007
0.015 o.oo6
(fp:t) (fps) >~
·. flETENl'lON
Tlf·IE
(yrs}
LIVE TOTAL
·93 2.15
• 911 2 .. 30
'
·11 1.07
0.71 2.08
0.64 2 •. 08
0.71 2.60
0.65 2.611
0.34 1.211·
Oo26 0.78
0.39 0.911
0.111 Oe93
0.55 .1:25
0.60 1.711
(yr:s.)(yra.)
PESf;RVOIR
LEUGTJI
AT EtiD OF
MOfjTf!
~9.3 mil~s
IIB.tt . •
lt7.2
'46.9 miles
116.6 mflss
Q6.14
lt6.;;
116oq 'mUe:t
JJ'f.o mile:!
UB.II naUes
119.7 miles
.!2.: 6 toiles
IJ7. 7 rDiles
. 1
,, ·"
·hlrt
•
•
. . ,
' ,
6., ANALYSIS OF SEDIMENT BEHAVIOR
6.1.;Quiescent Settling
'"
a. DEPOSITS Model
In order to allow for an initital start-up period, the model was run for a
period of four average years. The resultant ste:ady state ;discharge
sediment concentrations are summarized in Table 6.1. The discharge values
range from_ approximately 0 to 60 mg/1 for the upp~r portion of a dead
•
storage area of 900,000 acre-ft., and range f'rom 0 to 100 mg/1 for the
upper portion of' a dead storage area or 5,290,000 acre-ft.
· An additional run was done assuming all the volume below elevation 2,050
feet to be dead storage., In this run, the discharge was assumed to occur
uniformly over the full depth of the active storage zone, i.e. above 2,050
feet,. The results are similar to those using a dead storage value of
5, 290,000 acre-feet. As mentioned in Section 4. 3, the program neglects
dispersive mixing.. . The range of values stated using all the different
dead storage areas is therefore probably over estimated.
The amount of dead storage selected represents a range from a minimum
value of approximately 10 percent of the total storage to maximum level
equal to the annual average difference between total and live storage as
reported in Table 5.1 •
The trap efficiency predicted by tht::se model runs ranges from 94 to 96
percent r depending on the dead storage area. The inflow and predicted
outflow sediment gradation curves are shown in Figure 6.;~ It can be seen
that only particles with diameters of 2 microns or less travel through the
reservoir tlnder quiescent conditions.
As the model does not take into account horizontal mixing, and because it
is diffiaul t to predict the actual amount of de~.d storage, it is not
possible to estimate the time variation of sediment concentrations at, the
discharge point.
-27-
_____.._ ...... ____________________ illlllilllllli&'llllil _______ .,;..__ ___ _
-~
1
1
.•
...
.
DEAD STORAGE
SIMULATION VOL\JME
CASE ACRE,;FT.
Quiescent 900,000
5,290,000
Volume below 2050* I·
Minimum 900,000
Mixing 5,290,000
• Volum~ below 2050*
Maximum · 900,000
Mixing 5,290,000
Volume below 2050*
TABLE 6~-1 ,,
RESUL'rS OF "DEPOSITau k\JDEL BUNS
SEDIMENT CONCENTRATION (tng/1)
INFLOW
SUMMER
PEAK AVERAGE MAXIMUM
1197 773 61
1197 773 95
i197 773 94
1197 773 211
1197 773 213
1191 773 224
1197 773 D 316
1197 773 316 -
1197 773 31i5
Note: * Assume uniform withdrawal over depths at d1scharge end ot reservoir.
limited tQ! upper 25% of depth at discharge end of reservoir~
/
\
I)
OUTFLOW
' ' . :TRAP
AYER~GE MINil.fUM EFFICIENCY -(%) .
30
56
54
84
121
134
124
179.
206
0
2
5
2
2
12
'3
2
-18
-~~
96.
9JJ
94 ..
93
81
a~·-
90
Bl .
78
All other runs assume withdrawal i,=:$
I ~ ,' •
• . . • •
.
w _.~~11 ~ .J 7C y
0 ~~ lw. li -t-,_ -·~ ~ a: H-
Q. UUI-~1~~~:: z ,_ -:-~ ~. ct
X 50 ~~i~(
t-~((t·IJ~ -J-1---.. ; 1¥:~ . :c ""'
Ol~~++~q~##~+ffiffiH00~8ff~~~~~HIOO~;I~;~~~~~~N~~~~~~~~~~ml~~~#t
I IIIII 1·--f-·..f--f-1-f-t-H-1-t-t-i·t-I·H·tH
· IIIII
I IIIII
1---1-1·-1-1-f.-1-1-
CJ 40 -f·+ ·UJ
3: .
1--,_ 1-~--~--~,.;' , ....
111111 . "' I'
v ~
·~~
·.~
·lit II
IIIII--
IIIII
""·--·l-f.~-1·· i-,
-·s.-+-~f-1--1-.' •:
···t--1-1··-1-,_
-·-4--1--1-" ' •.
1-J.-·1-1-·~1-
1---·-,_ ·-·-
111111·•·-1-f··-1--J-•.
1---1-
11111·-11--1-.. 1·--·-•.
111111·..-f--11-1-~l-1-1-1-·
•
. J
.
·t:
II li [ji
1 j m
i
il.
o~l·~~~~-~~~~~~1~~~~~~~~~~~~~~~~~~~~u~~~UJI~~ill~~~~~~~~~~~~~~~~~ ~' l... --·------·---~-1oMICRONS ~-~-------~-~.--..... ~0 ._ .. -~~~ .. ,..;f.....,i~ ........ ----·2--·MM--·4 __ .,e __ ~a -~
,_ PARTICLE SIZE . __ ....._
f w ..
-N PARTICLE SI2E DISTRUBUTICNS PREDICTED BY ·DEPOSITS MODEL
' FIGURE 8.1
·------------------'------·--.. --···-
b. Camo Curves
Tbe relationship shown in Figure 4 .. 4 was also used to calculate the amount
of sediment that would ·settle out in the t-la tana reservoir. The monthly
-sediment size gradation curves sho\rm in Figures 5.2 and the corresponding
settling velocities contained in Table 4.1 were used. The integration of
the total amount of sediment which settles out was carried out using
particle sizes of 0.5, Oe1 mm, SO, 10, 5, and 1 microno Monthly reservoir
velocities were calculated by the following equation:
QL
v =----=*
Vol
Where;
V = average longitudinal velocity through the reservoir (ft./s)
Q = average monthly outflow (ft. rs·)
K ;: length of reservoir ( f'l:. )
Vol = av~rage monthly reservoir volume (ft.3)
Reservoir volumes were obtained from Table 5. 1 , and an average reservoir
length of 48 miles was used. Reservoir depths were calculated by
subtracting the average monthly reservoir stage from the minimum active
zone elevation of 1, 950 feet, which is approximately 50 :feet below the
power intake elevation.
The results of these analyses for the svtmmer months are summarized in
Table 6,2. They demonstrate that a large proportion of the. sediment would
settle out and that only particles of diameter of less than 3 to 4 microns
would leavs the reservqir.
These results agree reasonably well with the DEPOSITS computer model
results. The following sections describe how these results should be
•
modified to give a more realistic indication of sediment concentration qy
incorporating the turbu.lent mixing in the reservoit.,.
-28-
•
. . ... ' .
t' •• ·i " -.. ' '
-..... ;
•
Mo11th
May
June
• July
August
September
•••
TABLE 6.2
RESULTS OF QUIESCENT SETTLING ANALYSES
FOR THE WATANA RESERVOIR
Percentage of Sediment
Inflow Running Through
-the Reservoir -~
4
10
21
16
17
Approximate Maximum Size of
Sediment Particle Running_
Through The Reservoir
(microns)
3
4
3
4
3
-.
6.2 In<::> .jd Mixing
Two approaches were adopted in quantitatively evaluating .. the mixing
ir1duoed by wind, thermal input, and the inflow and outflow. The first .
approach involved evaluating the effect of wind wave action only. For
each month of' the year, the total period in which wave heights exceed
critical values was evaluated. The critical wave heights were those which
induce an orbital current of 2 x 10-4 ft./s at depths of 25 and 50 feet
respectively.
.
The sec~nd approach involved using the results of the Acres (1982) thermal
modeling of Watana Reservoir. The· program was modified to print out the
shear velocities associated with wind and thermal mixing in the epilimnion
and with mixing induced by :tnflow and outflow in the hypolimnion. The two
approaches are discussed in more detail below.
6.2.1 Wind-Induced ~ixing
The main objective of this analysis was to determine the impact of
oscillating wind-induced currents on small suspended particles. A
particle settling velocity of 2 x 10-4 ft./s was arbitrarily selected
for this study. It corresponds to a particle size of approximately 12
microns (see Table 4.1).
..
Equations for calculating oscillating wave velocities at depth for a
given wave height and period have been developed by the U • .s.. Army
Coastal Engineering Research Center (1977). These equations wei~e
orbital velocities of 2 x 10-4 ft./s at depths or 25 and 50 feet
respectively .. Effective wind fetches were calculated for the
reservoir for each 22 1/2 degree directional component. Using this
information in conjuncticn with the .equations developed by the U .. S.
Army Coastal Engineering Research Centei" (1981) for determining fetch
limited wave height and periods, and the critical wt=t.J'e heights
•
calculated previously, the corresponding critical wave speeds were
calculated. These winds speeds were calc!Jlated for each directional
component f'or each month during 1·981, and for critical veloo_iti~s
-29-
.·
.
u~·
il d
•
occurring· at 25-and 50-foot depths respectively. Using these •· wind ·
speeds and ·the results of the monthly l<lind speed direction duration
analyse$., the •percentage of · time the critical Wind speed. ia exceeding
in each.month was calculated. For these analyses a water depth or 600
feet was used.
The results of th~ analyses for the open water period are summarizsd
in Tables 6.3 and 6.4. The percentage durations .reflect :the
integrated duration of winds from all directions during that month.
As. can be seen, significant mixing to a depth of 25 feet occurs
betueen: 35 and ·55 percent of the t.ime during the summer months excel}~
during the montb of August, when the prevailing winds were from the
north.. A significant reduction in mixing occurs at the 50-foot
level.
The wave orbital velocities above the indica ted depth~ inct•ease ov~r
the value of 2 x 10-4 as one gets closer to the water surfac~. This
means that in the.shallower layers, particles with settling velocities
much larger than 12 microns will be held in suspension by the wave
action.
The results of those analyses indicate that~ under cert·ain conditions, .
particles as large as 12 microns could pass through the reservoir. It
is important to remember that these analyses are based on 1981
recorded data and do not necessarily reflect average . ruon·chly
conditions.
Wind and Thermal Mixing
The, dynamic reservoir simulation model, DYRESM, is a one-dimensional
{vertical) numerical model for the prediction of temperature and
salinity in lakes and reservoirs. It is a comprehensive model, and
attempts to model all the mixing mechanisms within the reservoir.,
The model ~s provided Y{ith 6 hourly averat'l;.ed input C;iat.a, .including air:
and inflowing water temperature, long and short wave ra.diat:I.on,, ··and
-30-
I _1
' -...,; .. "lii
i
i
!
I
I
I
I
I
I
Month
May.~·
~June
;: July
·,August
Septembe~
.October
.November
Month
May
June
July
. kugust
·september
October
N·ove~ber
TABLE 6s3 ~ > •• "
DUR~:!ION. OF W.A.VE: MIXING TO 25-FOOT DtP!'i-~S ·
~ of Month During Which Wiad ''Naves Generate
Orbital Velocity Ext:eeding 2 x 1o-4 ft/s
.•.
~ •..t. .. ~ ...doa;,
40
41
35
8
30
35
55
TABLE 6.4
DURATION OF WAVE MIXING TO 50-FOOT DEPTHS
' .
% of Month During Which Wind Waves Generate
Orbital Velocity Exceeding 2 x 10-4 ft/s
4
2
1
0
t
0
12
. '
.. ..., 3' ..., <" ~ :J "': ... ~ ,, ~-=-1' ~·
o· ...
• •
I
.I
-l
i "'I
l
1
I :
... -~, .. ...,.....,.. ___ -.. -.... ··---' ~· q-~.-. • ...;.,._,.., ~·~-~---
~~~_._. .. ._ ........................................ BM .. .__..__..__. ____ __
. .
. -1
•
evaporation. c·: Withdrawal rates and changes in reservoir storage are
also specified·. · The mo9e1 then simulates the vertical mixi:ng due to
the meterologic forcing functicns and turbulence introduced by the
inflowing and outflowing water. It· is vertically layered and
calculates the temperature and salinity for each layer at the end of
each computational period. A detailed description or the model is
given by Imberger and Patterson ( 1 981 ) • Acres ( 1982) applied the
model to the Watana Reservoir for the May to October 1981 period. The
temperature profiles predicted by the model are s.!1own in Figure 6 .2.
Modifications have been made to the model in order to calculate and
print. out the shear velocities induced by the mixing process. In the
\
epilimn:i.6n, the root mean square shear velocity of the velocities,
induced by conv.ective penetration and by wind shear, and the
associated depth of mixing are calculated. This shear velocity is
assumed to be constant with depth over the caloulated depth of
mixinge
.·
Mixing in the hypolimnion is controlled by molecular diffusion and the
buoyancy frequency between the various reservoir layers, wind shear
transferred £rom the epilimnion, and the inflowing and outflowing
currents. The latter terms generally are several orders of magnitude
greater than molecular diffusion. The program prints out these
velocities for each of the reservoir layers for each calculation time
period.
When interpreting the results, it should be remembered that the model
is one-dimensional, and that all the mixing parameters are averaged
within each layer ~ver the entire width and length of the reservoir.
6.3 Sediment Reintrainment
As outlined in Section 4.5~ reintrainment of particles around the .edges of
the reservoir will occur., particularly during windy periods. Figure 6.3
illustrates the relationship between the. mixing depth and th:e percentage
of the reservoir area in which water depths are less than the mixing
depth. Tb,.is curve gives some !.ndica tion of how much of the lake surface
would be subject tc reintrainment. The .25-foot mixing depth calculated in
... ,
l -
. -
..
%
WATER TEMPERATURE ° C
1· 2 3 . 4 5 6 7
250 ..--..;....;a..~--t--L---+--..J....;.---l----L-~--..L_-4----L--J.
X1 •
I
i J .
!
' !
i
I
' f
j
I
I
I
I .
I . :
' 81273 812.43 :·
I
I
I
. ~811212
; I
200 -X2----------------------------~------~-+~~~8u1_: ________ _ _, '
X3
i
I
I
I
.~. 1. X4
·:c
' 1
I
!· I
i
150-r----------------~~~~----~--------~--------~-------i
·-
; -', .
I
I
! •
I . i
i
I
!
i
l
t
1
I :
iCO -1----~-\..-------'----....!----~~---~----
P5701.53
DC 30 SEP 82
•
SUSITNA HEP
RESERVOIR TEMPERATURE MODEL
WATANA
FROM ACRES AMERICAN, INC •. (._,-3 ( .. ;-st.(
FIGURE.G~2
. . '{. . .. .... ~
, I
.. .;,
···~ ...... .,.,
,.:~ ........
••
.·
?
• • • • • •. • ~ o& • • • • • • .. : • .. .:. • .. • •• • • -;-' • ·~ ·~.. t~ ... •• • :~ • "~ • • •• • • •
NOTE: CURVE VALID FOR. RESEi=iVOIR. WATER LEVELS
BETWEEN. 2050 _AND 2200 FEET_
.. .... ~,.-. .; .:" ..
51 -·a:· -0 401. > a:
·~o .
w.w 30 1-a:o.
u..w
01.1. ~-
wu. 20• < I -~< i .. !-W·
%0: 10 u.a<t ...
(.)
a: w a..
40 60 a.o 100 120 140 160 "i80 200
MIXING DEPTH .O=T)
·.. .
_F=;E!..ATJCNSHii= E3ET\ME5N MIXaNG CEc=TH ANC . .
f=ea:iCSNT AGa CF L~'U55i5:HVC;i=J At:;EA AFr:ac:..rEC ... ' -~ '
. BY 1\~IXING
•
• •
..
. . ..
. '
..
~ ~ ,,
' \ ~
,,
,I
' -:· .. ::,., -,_. ·.·.
-
.
Section 6.2 indicates that approximately B percent of' the reservoir ,r·\ ···~-I. • .·,-..
< < -
surface area would be subjected to reintrainment of particles of sizes 12
microns and les$, between 35 and 55 percent, of the time du;roing the summer
months (to be confirmed by r*eferenoe to thermal rJJodel output) •
Based on the above, it can be concluded that reintrainment would occur, .
but that it would not present a major problem except during severe storm
events when the wave mixing depth exceeds 25 feet.
The results of the preliminary runs conducted on Watana using DYRESM model ~
summarized in, .Tables 6.5 and. 6.6 indicate that under maximum. wind
conditions, the shear velo(:lity in the epilimnion and hypolimnion are
generally below 3 x 10-3 and 1.5 x 10-4 ft./s respectively. During calm
per-iods, these can drop to just above 3 x 10-4 and 3 x 10'""5
respectively. The epilimnion values bracket the order of magnitude
numbers calculated usirtg the wave equations as described in Section
6.2.1.
It should be noted that DYRESM Model runs to date have only been conducted
for the open water period. No data is available on the mixing that occurs
during the ice cover months.. It is, however, not expected to be very
dissimilar to the values quoted above for the hypolimnion during calm
periods.
The DEPOSITS Model was upda'i..ed to allow for the reduction in the
~-<
calculated settling velocities due to shear vel.Jcities. The effective
settling velocity was assumed equal to the qu''"escent settling velocity
minus the shear 'Jelocity. The upper quarter d~pth of the water plugs in
the model were subjected to the epilimnion shear velocity an the lower
three quarters to the hypolimnion velocity. As before, the inflow was
assumed to be ~Tell mixed over the full reservoir depth and all discharge .
was taken from the top one-quarter depth.
The results of these model runs are show on Table 6 o 1 • They indicate
that discharge sedimE'Jnt concentrations could range from below 50 mg/l
during quiescent conditions to over 300 mg/1 during windy periods.
<··32-
•
'·--.c<' .:
•
Month
June
July
Augu~~
·" '
Month
June
July
August
TABLE 6.5
' '
' ' '
':itOOT MEAN SQUARE SHEAR VELOCITY OF VELOCll':;;"C.ES
Il>IDUCED BY CONVECTIVE PENETRATION •' "-::,_
c-• • • ' • • ••• ' • -· •
AND WIND SHEAR
Average (fps)
1.6 X 10""'3
1.4 x ,o-3
1.9 X 10-3
TABLE 6.6
Maximum
2.6 X 10-3
3.0 X 10-3
3.7 X 10-3
HYPOLIMNION MIXING SCALE
Average (fps)
1.0 X 10-4
6o3 x 10-S
-4 1.1 X 10
Maximum
2.3 X 10-ij
1.1 X 10-4
2.0 X 10-4
',<:
Minimum
4.1 X 10-4
.5.0 X 10-4
·3.3 X 10-3
Min,imUJD.
5 .. 8 X 10•5
s.3 x 1o-s
5 ' -5 •3 X 10
... ,.
r~.·
.AS::
7
mentioneq· earlier, considerable care must be taken when interpreting. ~·~-·-·~
these results, as longi~udinal <1ispel."sion in tP.e reservoi;r is not taken·
into account.
near the dam.
reaches.· , ..
Also, these . value_s ~re .·.only representative of· condition~:{ ·
Higher abnc~ntrations could occur towards the upstream,
t \\~. : " •;-;,::.' :·:·,, . " I~
, ,.,"'. r
V.
--~t
-33-
.....
·,_.
7" PROJE.Cl'ED RESERVOIR 1'URBIDITY
All the anaytical work described above is based on limited data and very
idealistic models. In determining reservoir mixing velocities, the reservoir
has been treated. as a one-dimensional body of water. Tnis is a severe
limitation when one considers that tbe body of water is 48 miles long and
averages 1 1/2 miles wide.
In this section, an attempt is made to project ex!>ected reservoir turbidities
under post-project conditions. Because of the analytical limitations outlined
above, these. projections. must be regarded as tentativ!! order of mag~itude
estimates only. The values reported apply to conditions averaged over the
reservoir, and no. attempt is made to distinguish between conditions at the
upstream· and downstream ends respectively.
The first step in evaluating reservoir turbidity involves projecting likely
sediment concentrations in the lake by adjusting the values predicted by the
q~iescent settling calculations for wind-and thermal-induced mixing. The
second step involves converting these concentrations to turbidity using the
curves presented in Section 4.6.
7.1 Projected Sediment Concentrations ..
It is assumed that sediment particles within the reservoir will tend to
remain in suspension provided ·the mixing velocities are equal to or
greater than the particle settling velocitieso This approach tends to
overestimate the sediment concentration in the reservoir, as some settling
will still occur even when the mixing velocity equals the particle
settling velocity.
7.2 Projected Turbidity Levels
Using the suspended sediment concentration ve:sus turbidity relationships
•
given in Figure 4.4, the projected lake turbidities would b.e in the~ ra.,nge
of: 10-50 NTU's•
-34-
..
-....
:.
1: '{;
• l
.. .
List of' References for Sections 1 , 2, 4, 6 and 7
(1) <
.
R&M Consultants, Inc., "Sub task 3. 01 -Closeout Report -Reservoir
Sedimentation," January 1982.
(2) Acres American, Inc. -New Report -Results of Temperature Modeling.
(3) R&M Consultants, Inc. -New Report -Results of Eklutna Data
Collection Program.
(4) Fisher, H.B. P et als "Mixing in Inland and Coastal Waters," Academic
Press, 1979.
(S) Imberger, J., and J .c. Patterson, "A Dynamic Reservoir Simulation
Model -Dyresm: 5," Transport Models for Inland and Coastal Waters,
Academic Press, Inc. , 1981 •
(6) Simons, D.B., and F. Senturk, "Sediment Transport Technology," Water
Reservoir Publications, Fort Collins, Colorado, 1977.
(7) Graf, t;.N.; "Hydraulics of Sediment Transport," McGraw-Hill Book
Company, 1971.
(8)
(9f
(10)
(11)
'(12)
McNown,· et al. (1951)
McNown & Malaika, (1950)
McNown a..Yld Lin, ( 1952)
Camp, T .R., 11 The Effects of Turbulence on Retarding Settling," . '
Proceedings Second Hydraulics Conference, University of Iowa, Studies.
in Engineering, Bulletin 27~ 1943.
Rouse, N .T., "Engineering Hydraulics," John Wiles and Son~, !noe,
1949o
-35-
' •}
•
•
(13) Acres American, Ino. -New Report on Thermal Modeling of Watana,
1982.
( 14) Acres American, Inc. t ususitna Hydroelectric Project -Feasibility
Repo:rt'l Volume 4 -Appendix A, .Hydrological ·stud~es, n Alaska Power
Authority, 1982.
( 15) R&f-1 Consultants, Inc., -New Report on _Data Collected From the Eklutna
Lake, 1982.
( 16) Hartman, C. w. , and P.R. Johnson, "Environmental Atlas of Alaska, "
University of Alaska, April 1978.
(17)
(18)
(19)
Hamblin, P. • Persona·! Communication, Canada lake for inland Water,
Burlington to Ontario, September 1982.
,U.S. Army Coastal Engineering Research Center "Shore Protection Manual
-Volume 1," Department of the Army Corps of Engineers, 1977•
U.s. Army Coastal Enginee~ing Research Center "Coastal Engineerig
Technical Note -Revised Method for Wave Forecasting in Deep Water,"
CETN-1-7 3/1981 •
.
(20) · Ward, Al, Maan, T., Tapp, J., "The DEPOSITS Sedimentation Pond Design
Manual, u Institute for Mixing and Mineral Research, Kentucky Center
for Enel"'gy Research Laboratory, University of Kentucky, Lexington,·
Kentucky, 1979·
-36--· .. ~ ... :,_..~. ~·--' :r·: -~~c 'I 1~ ~ (II•"'"' • • ••
~· ''
•
I
;;:. j
(·
rm
lt ».,
I
! ' ) ·;
L .. ..;
. APPENDIX A
BIBLIOGRAPHY OF ADDITIONAL
INFORMATION SOURCES
•
. ,
' • ' \ • ~ ' .. ft •
•
PART I
NEW.ZEALANP LAKE STUDIES
Brodie, J .l~·., and J. Irwin, 1970, "Morphology and S~dirnentation .in 1-Takatipu,
New Zealand,,n New Zealapd Journal of Marine and Freshwater Reseet.rch, 4 (4):
479-96.
Study 7-lf the morphology of the lake floor has shown a srstem of current
17 chan·11els developed by movement of underflows related to flood discharges
of, inflowing rivers, o~ turbidity currents generated by slumping of
previoc:~ly deposited slope sediments. For Lake vlakatipu, . the surf~ce
waters are reported to be Qlear at all times due the continuous sinking of
turbid inflowing water.
Irwin,, J., 1968, "Observations of Temperatures in Some Rotor·ua District
Lakes," New Zealand Journal of Marina and Freshwater Research, 2(4): 591~
605.-
Irwint-J, 1971, :nExploratory Limnological Studies of · Lake Man~pouri,
South Island, New Zealand," New Zealand. Journal of Marine and Freshwater
Resea~·ch, 5 { 1 ) : 161~-77.
Lake Manapouri C·:~velops thermal stratification by mid-sUilllller and continues
into late tall~ Near isothermal conditione exist in late winter. Water
·i;emperatu:res below 200m is between 7.8° and 8.0°C throughout the year •.
Su:."'face temperature varies between 16.25°C in summer (January-March) and :::
8.0°C in winter (August· -Se};!tember). Tritium values suggest mixing has
taken p:!.1ce to at least 400m~
Irwin, J, 1972, "Sediments of Lake Pukak:L 1 South .Island, New ~ealand," _New.
Zealarr1 :"urnal of Marine and Freshwater Res~arch, 6( 4): 482-91 • ............... _,"'~ . "'"·~;.
!::~.... ~gh i most or the lake, excluding the delta slope, 80-90$ ·J of l:)_otto:n
·sediments are ·les~ , than 8 microns. At great depths there. i,s .litt+e
variation in spring and summer core samples.
,.,
'~···
.·~ ....,..,"".t ".-J .··.,. .. -~ ~ .. · ·. ·, .. ''-·· .,,; '-· ' ~ -~ . . . ; ' . .
~lo information is given in the repo~t on_ incoming suspended sediment size
distribution or alilnatio conditions for the lake. However, the lake is
reported to be t~~bid throughout the year with average depth of disc
·disappearances c/f 0.5 metel"So
Irwin,. J •, 1974, "t-later Clarity Records F:rom Tt-Jenty-Tvlo New Zealand Lakes,"
New .Zealand Journal of Marine and Freshwater Research, 8(1): 223-7.
Four lake types were studied:
1) associated with glacial activity
2) associated with volcanic activity
-3) ·formed by vrin<~
4). formed by landslide
Water cla':'ity values are greatest in lakes of glacial origin, as these are
generally the largest and deepest. However, values are affected by
glacial silt. Smaller and shallower lakes formed by wind aJ.'ld volcanic
activity have lower water clarity values.
Irwin, J., 1978, "Bottom Sediments of Lake Tekapo Compared With Adjacent Lakes
Pukaki and Ohau, South Island, New Zealand," New Zealand Journal of' Marine and .
Fre;3hwater Research, 12(3): 245-250.
Ai"ter travelling 1.3 km into the lake, 25 % of bottom sediments are less
than 4 micPons in size. However, water clarity values are low for this
deep, glaci~lly fed lake. Average depth of disappearance of the secchi
disc was lL,9m ir1 May 1971 and 1.6m in April 1974.
Irwin, J., 1978, "Seasonal Water Temperatures of Lakes 'Rotoiti and Rotoroa:
South Island, New Zealand," New Zealand Oceanographic, Institute Records,
4(2): 9-15.
Irwin, J., and R.A. Heath, 1972,. "Winter Temperature Structure in Lake
Atiamuri and Ohakur:J., New Zealand," New Zealand Journal of Marine and
Freshwater lfesearch, 6(4): 492-496 • .:...::...;;.;;;;.;--.......--.
( \
~
~;, '
. . ..
•
••
Irwin, J ~ , and V. Hilary Jolly; 1970, . ''Seasonal anl' Areal Temperature
Variation in Lake Wakatipu {Note),, n New Zealand Journal of Marine and
Freshwater Research, 4(2): 210•6
lrw.in, J. J. .and R.A. Pick~ill, in press, "Water Temperature and Turbidity in
Glaoial~'fed Lake. Tekapo," .New Zealand. Journal ·of. Marine and Fr'•eshwater
Research
Surveys or lake temperature. anci turbidity suggest a seasonal cycle of
lake-rive~ interactions. Waters are clearest in early spring. Inflowing
water either interflows or underflows down-slope to the .deepest basin ..
Coriolis force deflects inflowing water to the east. Lake water
·stratifies as summer progresses. Significant diurnal fluctuation~ result
from .water travelling through wide braided delta channel. Turbid water,
at 5 times the lake concent~'"ation, enters the lake as interflow. Winter
is associated with near isothermal lake water at 8°C but the lake remains'
turbid. Cold inflowing water (2-3°C) underflows to deepest basin ..
Jolly, V.H., 1975, "Thermal conditions," New Zealand Lakes, V.H. J:olly and
J.M.A. Brown, eds., Auakland University Press/Oxford University Press, p. 90-
l05.
Important thermal regime characteristics for the New Zealand lakes
investigated show:
1) The coldest temperatures occur from the end of June to
mid-August and full circulation for stratified lakes when
hotomictic would be at least three months.
2) Warmest temperatures are found from mid-December to mid-March,
but usually in January or February •
3) Thermoclines, partiaularily in large deep lakes, form late in . .
the warming period because of strong winds and develop very
deep epilimnia.
(/
·./
t .
4) .
·Many relatively deep lakes·do not permanently·stratify~· because
of" the turbulent waves !.3reated by winds blowing' over long
fetcheso
. 5) The annual temperature range is not as great. a.s that observed
in most lakes in similar latitudes due ·to mild oceanic
climate.
Jowett, !.G., and D.M. Hicks, 1981 1
11 Surface Suspended and Bedload Sediment -
Clutba River System," Journal of Hydrology, 20(2)': 121-130.
Pickrill, R .A., 1980, "Beach and Nearshore Morphology and Sedimentation in
Fiordland, New Zealand: A Comparison Between Fiords and Glacial Eakes, 17 New
Zealand. Journal of Geology and Geoohysics, 23: 469-480.
Piokrill, R.A., and J. Irwin, in press, "Sedimentation in Deep Glacier-Fed
Lake, Lake Tekapo, N'ew Zealand," Sedimentologr
Ma.jor controlling processes of sedimentation in Lake Tekapo:
1) Single dominant inflov :-:~. head of lake has resulted in delta
progradation.
2) Unde~flows appear to be predominant inflow mechanism during
spring freshets and floods.
3) Small changes in bed morphology can produce large changes in
sedimentation rates over short distances. Morphology controls
the direction and distance travelled by underflows.
4) Across lake varia ton in sedim<::ntation rates are controlled by .
Cor'iolis force deflecting inflowing water.
5) Seasonal cycle of sed. input .. controls temporal variations in
sedimentation rate and texture.
...
•
·-·
6) Lake level fluctuations redistribute coarse sediment
downslope.
7) Rotational slumping redeposits delta sediments down lake.
Pickrill, R.A., J. Irwin, and B.S. Shakespeare, 1981, "Circulation and
Sedimentati·on in a Tidal-Influenced Fjord Lake: Lake McKerrow, New Zealand,"
Estuarine, Coastal and Shelf Science, 12: 23-3.7.
Stout, V .M., 1978-, "Effects of Different Silt Loads and "Of Hydro-Electric
Developments on Four Large Lakes," Verh International Verein Limnol, 20: 1182-
1185.
Brief review of key basin and lake characteris~. ~s for Lakes Tekapo,
Pukaki, Ohau, and Benmore including physical features, mean· and maximum
SECCHI dine readings, and kinds of phytoplankton present.
Stou.t, V .M., 1981, "Some Year to Year Fluctuations in a Natural and in an
Artificial Lake, South Island, New Zealand," Verh !nternational Verein LimnoJ.,
21: 699-702.
Both chlor~phyll a content <~d zoo~lankton populations have retained
similar seasonal patterns. However, turbidity of the water in both lakes
during spring and summer months has shown significant changes from year to
year due to climatic variations.
Thompson, S.M., 1978~ "Clutha Power Development -Silt.ation of Hydro-Electric
Lakes 1 August, 1976," .§!1vironmental Imoact ReJZort on Design and Construction
:Prooosals, New Zealand Ministry of Works and Development.
~~~--~. ~
Report describes siltation problems in the Clutha River, processes causing
the problems and possible remedie~\.
Appendix 2 describes the method used to .determine the grain "~size
distribution in the total load of the river from the distribution of
sedilllent grain sizes on the lake bed.
" . . ,.
. ..
l l
.j . I
-..... ~7--l .. a~-qa. .... r.. .. -.Ma. .. • -,..._-2 •. .tJ ·~----
PART II
GENERAL INFORMATION
Baxter, R.M., and P. Glaude, 1980, "Environmental Effects of Dams and
Impoundments in Canada: Experience and Prospects," Can. Bull. Fish Aguat •.
, Sci. , 205: 34 p.
Brylinsky, M., and K .. H. Mann, 1973, "An Analysis of Factors Governing
Productivity in Lakes. and Reservoirs," Limnology and Oceanograohy, 18(1); 1•
14.
Data collected from 43 lakes and 12 reservoirs from the tropics to the
arctic showed .that variables related to solar energy input have a greater
influence on production than those related to nutrient concentration.
Morphological factors have little influence on productivity per unit
area.
Csanady, G. T.,. 1978, "Water Circulation and Dispersal Mechanisms, tv Abraham
Lerman, ed., 1_akes: Chemistry, __ Geology and Physics, Springer-Verlag Press,
New York, Pages 21-64
Conceptual model developed to describe lake hydrodynamics including
special . cases for long and narrow basins with discr;ssions on such things
as effect of bottom friction and coriolis force,. coastal jets, and
spontaneous thermocline movements near shore.
Elder, Rex A., and Walter 0. Wunderlich, 1972, "Inflow Density Currents in TVA
' Reservoirs," Paper 7, Intern?..tional Symposium on Stratified Flov1s~
Novosibirsk.
Irwin, J., 1975, "Morphology and Classification," V .H. ,Jolly and J.M.A~ Brown,
eds .. , " New Zealand Lakes, Auckland University Press/Oxford University Press,
Pages 25~56.
Kellerha;Ls, R., M. Church, and L.B. Davies, 1979, J'Morphclogioal Effect$ of U
Interbasin Ri.v~~ DiversiQns," Can. Jour~ Civ!' Eng., 6: 18-31w
' ,•
I
;::.J
I . '
-6 -
•• .
Kellerhals, R., and. D. Gill·, 1973, "Observed and Potential Downstream Effects
of Large Stor.age Project:s in Northern Canada," Proceedings of 11th
. -International CQ!lgress on Large Dams; Mad~id, 1973, Pages 731-75·3.
Kinnunen, Kari A.I., 1981, "Problems Connected with Modeling Artificial Lakes
in Finland," Unpublishgd Report, National Board of \vaters, Finland.
Kinnunen, Kari A.!., B. Nyholm, and J .s .. Niemi, 1981, ••Ecological Model of a
Subarctic Lake," Verb. Internat. Verein. Limnolt., 21: 102-108.
o Variation of EPAECO model calibrated for tempel"'ature with ice cover
and eff"ect of wind mixing on Finland Lake Paijanne.
o Max. surface temp. in early August ( -18°C).
C.l Thermocline at 10-20m below surface-average max. depth at 30m in
mid-september •
0 Becomes isothermal by early-mid November.
mid-May.
Stays ~sothermal until
o Effect of wind especially important in early summer when stratif.
peric1 starts. Without wind consideration simulated temperature
stratification is too steep.
Kinnunen, Kari A.I., J.S. Niemi, T. Frisk, To P~yla-Harakka, 1981, 11 Water
Quality Mo'deling at the National Board of Waters, Finland," Unpublished
Report, National Board of Waters, Helsinki, Finland.
o Evolution of th.e F!NNECO model from '!;.he EPAECO model.
o New model inoludes: mixing effect of wind
precipitation ~f phosphorous ...
new temp. correction
ice formation r,outine
denitrification process
~; :
~~3~~~lr:tf ,,
<.::<~·~
-~· '
0 . In·~e~tigation of some ri7er water ·qualitr models~
. -' . \. .
Kjeldsen~' J) .• , 1981, "Sediment Transport~ Studies in Norwegian Glani.al Streams,
1980," Report 4-81, Norwegian Water Resources and Ele~tricity Board, Oslo,
Norway.
Kjeldson, 0 .. , and G. 0strem, 1977, "Sedimen·t Transport Studies in Norwegian
Glacial Stream~, 1975," Report 3-77, Norwegieul Water Resources and :Ele~tricity . .,
Board, Oslo, Norway.
Ieuenen, .Ph .. H., 1968, "Settling Convection and Grain-Size Analysis.," Journal of
Sed ... Petrolog~~ 38: 817-831.
Lambert,. A., and K.J.. Hsu, 1979, "Non-Annual Cycles of Varve-Like
Sedimentation in Walenese, Switzerland," Sedimentology;, 26: 453-461.
0 multiple layers deposited in lake bed represent continuous-fed
turbidity currents generated by hyperpycnal inflow during river-flood
stages.
o Currents wi:Oh bottom velocities up to 50 em/sec·. were detected during
summertime even when the lake is thermally stratified.
a·
Lambert, A., and S.M. Luthi, 1977, "Lake Circulation Induced by Density
Currents: An Experimental Approach," Sedimentologi, 24: 735-741.
Saltwater was continuously fed into a tank of freshwater to model
turbidity underflows caused by flood-stage discharge.
In most cases the height of lake water dragged along by 'the underflow is .
about equal to the underflow thickness. Maximum return velocity occurs in
the lower (denser) parts of a lake basin.
/ .
Lee, Dong-Yong, W. Lick, and s·.w. Kang, 1981:, "The Entrainment and Deposition
. of Fine-Grained Sediments in Lake Erie," J. of Great Lakes Research, 7(3) 224-
. 233 •.
0
0
0
0
Provides quantitative data on the entrainment rates. Variations
depend on shear stress, water conterJt and t·ype of sedimen:t (size and
· mineralogy) • Vertical vat1iation in thin surficial layer active in
deposition -entrainment produce different entrainment rates.
effec~·or benthic organism not considered ..
Main cause of entrainment is oscillating wave action.
Report does not include settling, flocculation, and mechanical
degradation in calculations of sediment tran~{:lort in a lal-te.
Lerman, A., Devendra Lal, and Michael F. Dacey, 1974, "Stoke's Settling and
• Chemical Reac~ivity of Suspended Particles in Natural Waters," R. Gibbs, ed.,
Susuended .So:lids in Water, Plenum. Press, New York, Pages 17-44.
•
Organization for Economic Cooperation and .Developments· 1979, Joint Activity on
Multi-Purpose Hydraulic Projects: The Planning of the Vuotos Reservoir,
National Board of Waters, Finland.
0strem, G., T. Ziegler, S.R •. Ekmkan, H.C. Olsen, J. Andersson, and B .. Lun.den,
1971, Studies of Sediment Tra.nsport at Norwegian Glac:ter Streams, Stockholm
Univ.ersity, Department of Physical Geography, Report 12, 133 PPo
Ragotzkie, R.A.~ 1974, "Ver-tical Motions Along the North Shore of Lake
Superior," Proceedings from the 17th Conference on Great Lakes Researchj
Pages 456-461.
Slow net upward motion bas been documented in Lal<:e Superior. Vertical
motion extending f.rom as deep as 190 meters to near surface levels with .
ver.tical yelocities up to 30 meters per day have been observed during the
period of thermal stratification.
i) '
•
. I
i
t
f
l .!
-l .I
l
l
1
l
i
j
Ritchie,· J.C., Frank· Schiebe, and. J. Roger McHenry, 1976' "Estimating
· Suspended Sediment Loads f~oat Measurements of' Reflected Solar Radiation, tt
H.L. Gotterman, ed., Proceedings of the 1st Symposium on Interaction between
Sediments and Freshwater, Ams~erdam, 1976.
Data from temperate region lake has shown that a quantitative relationship
exists between surface suspended sediments and reflected solar
t•adiation .. .
Most. significant in the wave lengths between 700-800 mm.
Concent~ation of surface suspended sedimer·~ can be used to estimate total
suspended sediment noncentration in a vertical water column.
Scott, Kevin, M., 1982, nErosion and Sedimentation in the Kenai River,
Alaska," Geological Survey Prof. Paper 123.2_, 34 pp.
o Sediment concentration generally lower primarily due to storage in
lakes.
0 Give sediment concentration for Kenai River at Soldotna and
Kenai River at Cooper Landing.
-No turbidity me~~urements reported.
-No turbidity-sediment concentration correlation presented.
Shuter, N ., K~ Stortz, G. Oman, M. Sydor, 1978, "Turbidity Dispersion in Lake
Supet•ior Through Use of Landsat Data," Journal of Great Lakes _Research,
4(3-4): 359~360. . ...
Sly, PeG., 1978, "Sedimentary Processes in Lakes," Abraham Lerman, ed .. , Lake_s:
Chemistry, teology ·and Physics, Springer-Verlag Press, New York, Page.s 65-
89.
0 Review and discussion of various factors influencing sedimentary
processes in lakes including, but not limited to, lake morphology,
characteristics of inflowing sediment, and climatic settling ..
•
.
• ~ '!, .... """
·-· .=
•
" ~ ' ' • S;.: . ' > : .. • • • •• ._ ~"' ~ ,. ' ; ...... • ~ " • ~ ( ' .. • • ~ l . -:.. . _., ••
•. .. .. ~
Stortz, K., R.. Clapper, and M. Sydor, 1976, "Turbidity Sources in Lak.€{~
Superior}:" Journal of Great Lakes Research, .2(.2).: 393-401.
0
0
Strong correlation foun,e:i between . average turbidity and. average
suspended load of red clay in turbidity plumes.
Major source of turbidity due to shoreline erosion by wind driven
waves during ice free season.
o For maximum sediment concentration observed in plume = 20 mg/1
T(NTU). 18.5 based on correlation
S : 1.3 X T -4.0
o Sediment resuspension in winter with partial ice cover
= 106 metric tons
o Duri·ng severe storms: range = 5 x 105 metric tons of eroded
material/storm.
·Suggest 50% of lake turbidity comes from these storms.
Sturm, Me, 1979, "Origin and Composition of Elastic Varves,'~ Ch. Schluchter,
ed., Moraines and i.7 arves-Origin, Ger,:;,esis and Cl~ssification, A.Ac-Balkema,
Rotterdam, Pages 281-28~.
· Sturm, M., _ , i'lDepositional and Erosional Sedimentary Features in a
Turbi.dity Current Controlled Basin (Lake Brienz) ,n IXth International Congress
en Sedimentology, 5(2): 385-390.
sturm, M., and A" Matter, 1972, "The Electro-Osmotic Guillotine, A New Device
for Core Cutting," Journal of Sedimentary Petrology, 42(4): 987-989 •
"';
'
. Sundborg~ 19· ·eo ,
. . ' ''Symposium Theme No • · .J:V:
. .
Reservoir' Sedimenta.t~6nj'u
Proceedings . of· the I-nternational Symposiqm on River Sedimentation, Beijing,
China, March 24-29, 1980, :pages 1325-1333·
Sundborg, Ake, 1981, "Environmental Problems of Re~ervoir Development with
·· Special Regard to · Conditions· in Sweden," Proceedings ·of the ·International
Symposium of Reservoir Ecology and Management, Quebecj June 1981, Pages 63-
72.
Thomas,. R.L., 1968~ A Note on the Relationship of Grain Size, Clay Content,
Quartz and Organic Carbon in Some Lake Erie and Lake Ontario Sediments
Wunderlich, Walter 0., , "The Dynamics of Density-Stratified Reservoirs>, ---
Gordon E. Hall, ed., Reservoir Fisheries and Limnology, Special Publication
No. 8, Pages 219-231.
• . ·11'
Data from Tennessee Valley Authority field investigations are used to
illustrate dynamic reservoir processes and their influence on wate~
qu_ality. Water movement into, within, and out of, the reservoir in the
pre~~'-rn1:le of density stratification are described .
•
\::C
·~·;-.~c~.'.· .. .; ....
: .
~~~. z·--· ·1-1
.
. ··
:
~ ..... . .. .. .
i •·
. ... ------.:r~
'"~ .. 41 • . r
..
. . . . •
( .
!
•
!
t .
t
'
;
I .. .
r ..
l~
r ~-
.
!
f 4 ... .
~ "
•'&A ·-::(!. , Pi a •• i
ALASKA POWER AUTHORITY
SUSJTNA HYDROELECTR!C PROJECT
TASK 3 -HYDROLOGY
RESERVOIR SEDiMENTATION
JANUARY 1982
Prepared for:
ACRES AMERICAN INCORPORATED
1000 Liberty Bank. Building
Main at Court
Buffalo, New York· 14202
Telephone (716) 853-7525
Prepared by:
R&M CONSULTANTS, INC.
5024 Cordova Street
Anchorage,. Alaska 99502
Telephone: (907) 279-0483
~-3-z..--.~'
~ ~-..../
"'
• < ·--, u <'
1
t
l • •
'· ."' ; ' .
1 .•
. ALASKA POWER AUTHORJTY
S~SITNA HYDROELECTRIC PROJECT
.TASK 3 -HYDROLOGY
.. RESERVOIR SEDIMENTATIO~I
TABLE OF CONTENTS -.... ~ _.;---.;.,..;;;.,
LIST OF TABLES
LIST OF FIGURES
1 -PURPOSE AND SCOPE OF STUDY
2-SUMMARY OF RESERVOIR SEDIMENTATION
3 -TRAP EFFICIENCY
3.1 -Factors Influencing Trap Efficiency
3.2 -Trap Efficiency Estimates
3.3 -Trap Efficiency during Reservoir Filling
4-RESERVOIR SEDIMENTATION
4.1 -Sediment Load
4.2 -Unit Weight of Deposited Sediment
4.3 -Volume of Sediment Deposits
5 -SEDIM~NTATJON PROCESSES AND
SEDIMENT DiSTRIBUTION
5.1 • Delta Deposits
5.2 -Glacial Lake-Floor Distribution
5.3 -Glacial Lake Temperatures
S -RESERVOIR AND DOWNSTREAM TURBIDITY
6.1 -Pre-Project Turbidity
6.2 .. Factors Affecting Turbidity
6.3 -Post-Project Turbidity
7 • PRO ... JECTED RESERVOIR SEDIMENTATION
8 -REFERENCES
ATTACr·iMENT A -SETTLING COLUMN STUDIES
AT'TACHMENT B -ANNOTATED BIBLIOGRAPHY
- i -
~
PAGE
ii
Hi
1-1
2-1
3-1
3-1
3 ... 2
3-3
4-1 .
4~1
4-2
4-2
S-1
5-1
5-2
5-3
6-1
6-2
6-3
7-1
8-1
~'-zc. ... ?~
., .,
!"
,,
"
i
\, -
f •
I
' i
t
I
1 ~
~' -
.. .
_LJST OF TABLES
Number
3 .. 1
Title
Estimated Trap Efficiencies during .
Reservoir Filling
.. ii -
3.4
l\,
v·
.,.·
~ -z;:',.) ~ ~-.;·-z -ro ·
,
l .
l
(
I
.•. '
' ' .
L!ST OF FIGURES
3.1
3.2
4.1
... -·
' •""• 4.2·
5.2
5 •. 3
·s.4
5.5
5 .. 6
Title
... Trap Efficiency· Curves
I\',
·Turbidity. at Inflow' and Outflow Streams .
f~r Kamloops Lake, British Columbla ·
. Suspended-Sediment R~ting C1Jrves,
S«:Jsitna River ·
..
· · Suspended..-Sediment Siz~ Analysis,
Susitna River ·
· Delta Formation at Lake Mead and Lake
Li.~'ooet ··
'·
Temperature and Turbidity I so lines,
Kamfoops Lake
Schematic of Sedimentation Processes;
·· . Kamloops Lake
Water Temperature Profiles, Bradley Lake,
Alaska, and Kluane Lake, Yukon Territory
Temperature ProfHes, Malaspina Lake, Alaska,
and du.ring Strong Underflow, Lillouet Lake,
B.C.
Tempenrature Profiles, Garibal~i Lake, 8. C ..
6.1 Turbidity vs. Suspended Sediment
Concentration, Susttna River
6.2 Average Annual Turbidity Pattern,
Susitna River
6.3 Turbidity vs,. Time, Sett!ing Column Study
' ~ .. -
page
g .. s
.3-5
4-3
5-5
5-6
5-7
5-8
5-9
6-4
6-6
6-6
A.1 Suspended Sediment Concentration vs Time 1 A•2
Settling Column Sample (28,000 cfs)
A.2 Suspended Sedirraent Concentration vs Time A .. 3
Settling Col\; Sample (17 ,200 cfs)
-iii -
~
·~
!L
''!> ..
t
f
!
i
t •
f
\ ~·
j
t
l
' t .•
1 -PURPOSE AND SCOPE OF STUDY
The purpose of this report is to present the results of analyses of
_ .sedimentation within the proposed Watana and Devil Canyon
Reservoirs.. Analyses of the sedimentation were complicated due to
the large percentage of very fine suspended sediment contributed
by glaciers in the Susitna River headwaters, possibly making
results from the usual analytical techniques'to be in error.
The approach to analyzing the reservoir trap. efficiency was to
first analyze the trap efficiency of the reservoirs based on the
capacity-inflow ratio. A literature search was then conducted to
determine the trap efficiency of natural glacial lakes and to gather
information on their sedimentation processes. Settling column
·.studies of suspended s~diment samples from the Susitna River were
then conducted to eather empirical data. The information from
these three information sources was then assimilated to project the
reservoir sedimentation processes ..
The annual sediment load entering the reservoirs was estimated
using the flow duration sediment rating curve method . for the
nearest gaging stations and an estimated sediment yield for the
area draining directly into the reservoirs. The unit weight and
volume of the deposited sediments were estimated using standard
techniques.
Modelling of sediment . deposition within tk 1e reservoirs was
considered but was not deemed appropriate or necessary at this
time.. The settJing properties of the very fine 11 gfacial flour" are
such that it remains in suspension for long periods of time,
affecting . the reliability of the model. In addition, the estimated
volume of sediment deposited in Watana Reservoir is less than 5% of
the total volume of the reservoir. A large proportion of the
sediment will be deposited in the dead storage portions of the
reservoir due to the slow settling characteristics of the very fin.e
suspended sediments.
Turbidity .could not be assessed on a quantitative basis. However,
pre-project conditions were assessed, and a qualitative analysis
conducted of probable turbidity patterns in the reservoirs and
downstream river.
susi10/x ' 1•'1
\
(\_ \ .
•
2 ~ SUMMARY OF RESERVO'~ SEDIMENTATION
T.rap efficiency estimates based on detention -storage time indicata
that . 95~100 :Percent of sediment entering · Watana ,Reservoir would
,settle,. even shortly after filling of the reservoir starts.. However,
. data from Kamloops Lake, British Columbia, a 3 million a·cre-ft.
glacial Jake confined in a narrow valley, indicates th~ .. , up to
one-third of the incoming sediment passas thr9ugh it. Median
g~a~n size at the lower end of Kamloops Lake is about 2 microns.
For the Susitna River near Cantwell, about 15 percent of the
suspende.d sediment is finer than 2 microns. Preliminary estimates
indicate that between 70-95 percent of incoming sediment wc~Jid be
trapped in the reservoir, with particles ·smaller than 2 microns
possibly passing through the reservoir. As Watanzl Reservoir is
Jonger; deeper 1 and has ·a longer retention time than Kamloops
La'ke,. it is possible that even smaller particle sizes may settle in.
the reservoir. Under the worst case sedimentation condition of
100% trap efficiency·, an ·estimated 472,500· ac-ft. of sediment would
. be deposited in Watana Reservoir in 100 years.
DevJI Canyon Reservoir would have a slightly lower trap efficiency
than ·watana ·due to its smaller volume. However, most sediment
will be: deposited in Watana 1 the upstream reservoir. · Assuming
that both reservoirs have a· 70% trap efficiency 1 an estimated
109,000 ac .. ft. of sediment wouJd be deposited in Devil Canyfln
Reservoir in 100. years.
Three lnterdependent but distinci: .sedimentation processes occur in
glacial la~es. ·These processes. consist of: (a) deJta progradation
into the lake; (b) sediment density surges down the steep upper
slope, depositing material on the lake floor which had previously
been on the delta slope; and (c) river plume dispersion, which
spreads the fine-grained material throughout the lake. The
sediment-laden streamflow will initially spread through the lake
E!ither as surface flow, interflow 1 or underflow 1 depending on the
r·eJative densities of the Jake water and the stream water.
Turbidity downstream of the reservoir will decrease sharply during
the sumrner imonths due to the sediment trapping characteristics of
the reservoirs. Jt is likely that the turbidity of water released in
.· the · winter months will be near natural conditiuns, as suspended
. sediment in .near-surface waters should rapidly settle once the
. reservoir ice cover forms and essenti~lly quiescent c.onditions
occu~.
~' .
susi10/c 2-1
; ...
;•
;, ~
'
3 -TRAP EFFICJ ENCY
On;y a portion of the sedim.:!nt brought into a reservoir is normally
trapped and retained, with the balance being transported through
and carried out of the reservoir by outflow water. The ability of
a reservoir to trap sediment is known as its trap efficiency, and is
expressed as the percent of sedim~nt yield (incoming sediment)
which is retained in the reservoir.
3.1 -Factors J nfluencir.g Trap Efficiency
The trap efficiency o1~ a reservoir depends on the sediment char-
acteristics and the rat\~ of flow through the reserv~ir. As stream-
flow enters a rese.rvoi~, the cross-sectional area is increased,
resulting in a decrease in velocity with. a consequent decrease in
sediment-transport capacity. The coarse-grained particles are
dropped immediately near the head of the back w.a~er, with the
finer grains remaining in suspension until they ar~ deposited
farther into· the reservoir or carried out of the reserW'ir in the
outflow water. The percent of total sediment trapped in the
reservoir depends on the fall velocity .of particles and the rate at
which the particles are transported through the reservoir.
The fall velocity of particles in water depends on a number of
variables, inclydlnr; t-he size and shape of the particle, its chemical
composition and the vi$COsity of the water. · Electrochemical pro-
cesses play an important role in determining' the fall velocity of
fine particles less than 10 microns in diameter, such as clays or
glacial flour. In some arl,as, clays and colloids may aggregate into
clusters which have settling properties similar to larger particles,
and conversely, highly dispersed particles may stay in suspension
for iong periods of time and transported out of the reservoir.
Although no mineraloqic: analyses of suspended sediment from the
susitna River are available, there are mineralogic analyses of
suspended sediment from a number of surrounding glacial rivers.
Clay minerals (montmorillonite) were absent from all samples except
from the Knik -Matanuska Rivers, where Jess than 2 percent clay
minerals were deter:.ted (Everts, 1979; Tice, et. al, 1972).
The ·rate of flow of water through a reservoir determines the
detention -storage time. The ratio of reservoir detention -
storage time is influenced by the inflow voi 1Jme with respect to
reservoir storage capacity and the outflo"Y rate. Watana Reservoir
has a storage volume of 9,650,000 acre-feet, and Devil Canyon
Reservoir a volume of 1, 092,000 acre-feet. ·Average annual inflow
at watana and Devil Canyon Reservoirs is 5,880, 000 acre-feet and
s 630 000 acre-feet, respectively. Watana Reservoir will release a~pra'ximately the average annual inflow each year, so that the
average annual inflow to Devil Canyon should not differ
susi10/d 3-1
l.----
••
•
~ignificantJy from pre-project conditions. The ratio of capacity to
•nfJow for tha two reservoirs is 1.64 for Watana and 0.16 for Devil Canyon, ... --
The size and IC"Jcation of reservoJr outlets also influences ·the trap e!ficie~cy, . with ·bottom · outlets more effective in removing .· the
htghar sedrment concentrations· near the bottom. Either mufti--level
ou~lets or single outlets at . ~·depth of about 200 feet will be used.
Netther type of outlet ls neci"r the reservoir bottom. Consequently 1 the effects of the location of the rese·rvo!r outlets will not be
further considered in this study.
3 .. 2 -Trap Efficiency Estimates
Although several factors influence trap efficiency, the detention -
storage time appears · to be the controJiing factor in many
reservoirs. Brune (1953) developed the generalized trap efficiency
envelope curves shown in Figure 3. 1, which relate trap efficiency
tO the ·storage capacity -inflow ratio. Using the Brune curve,
thEa following ,.ange of trap efficiencies were estimated.
·Reservoir Caeacit~/ I nffow Maximum Minimum Median
Watana 1.64 100 95 97
Devil Canyon 0.16 96 84 92
The Brune curve was developed on dutenticn storage time.
However, the variation due to differing reservoir shape, operation,
and sediment characteristics has not been determined ( Gottsc:hal k,
1964). Using the Brune curve, it would appear ·that about
97 percent of the sediment entering Watana Reservoir' would be
trapped 0 Devil Canyon Reservoir would trap about 92 percent of
the ·sediment passing Watana Reservoir and any suspended sediment
picked up in the intervening river reach. Consequently, it would.
appear ·that very little of the suspended sediment load entering ·
wa~ana Reservoir would eventually leave Devil. Canyon Reservoir.
However, some concern has been expressed that the very fine
glacial flour would remain in suspension and pass through the
reservoir ·system. This may not be detrimental in the summer,· but
if it remained in suspension throughout the winter months, winter
releases would be turbid instead of clear, as is the natural co.n-
dition. ·Consequently, a literature review of sedimentation
(Att. B) in glacial Jakes was conducted to esti~ate the trap
efficiency of glacial lakes. Settling column studies of water
samples from the Susitna River were also conducted to determine
the sediment deposition rate under quiescent conditions (Att. A) ..
susi1J/d 3-2
Estimates of sediment' trap efficiency at two lakes immediately below
glacier-s were on the order of 70-75% (Ziegler 1 1973; ostrem~ · 1975).
ot· more relevance is trva e.stimate of trap e.fficiency for· .. Kamloops ·
Lake. by Pharo and Car·mack (1979). KamJoops Lake is somewhat
simila.r )n morphometry 'to Devil Canyon Reservoir. It is 15 miles
Jong . by l .. 6 miles wide, and has a volume of .about 3 million
acre-feet. Mean annuai flow of the Thompson River entering the
fake is about 25,000 cfs.. This results in a capacity -inflow ratio
of about 0.15, very similar to that of Devil Canyon.· Observations.
of turbidity at the lake inlet and outlet (Figure 3.2) led Pharo· and
Carmack to estimate that nearly one-third of the incoming sediment
ie carried through the Jake and not deposited, resultin·g in a trap
efficiency of about 67%. · ·
Use of the Brune curve on Kamloops Lake res• ... !!ts. In trap
efficiencies ranging from 84 to 96 percent. Thls would ses to
indicate that the sedimentation proce~ses occurring in this deep
glacial lake resuJt in a lower sedimentation rate than in those
reservoirs analyzed by Brune ..
For estimating the volume of sediment deposited in the reservoirs,
trap efficiency estimates were in the range of 70 ..... 100 percent. A
trap efficienc:y of 70 percent is considered the minimum efficiency,
and allows an e,stimate for the maximum amount of sediment passing
through Watana Reservoir and entering Devil Canyon Reservoh".
The trap efficiency of 100 percent allows an estimate of the.
maximum amount of sediment deposited in Watana Resevoir. All
bedload is assumed to be deposited.
3.3 -Trap Efficiency during R~~ervoir Filling.
The trap efficiency of a reservoir is sometimes reduced during its
fiHing period due to the reduced storage capacity. An anaJysis
was conducted to estimate the effects at Watana Reservoir. It wa.s
assumed that reservoir filling would begin in May. The increase
in reservoir storage was estimated using average monthly flows for
the :Susitna River at Watana.
The Brune curve was used to estimate the trap effic:iencies during
the fiJHng period. The results are tabulated in Table 3.1. The
high fJow in May and June fills the reservoir to such a level that
trap efficiency rapidly reaches the 95% level. The r·eservoir would.
be about 30 miles long within 2 months , after filling commences,.
Consequently, it would appear that sediment. deposition during the
filling period wouJd be similar to that during full pool ..
susi10/d . 3-3
\ ~·
u
•
TABLE 3~1'
ESTIMATED T-RAP. EFFICIENCIES DURING RESERVOIR FJLLJNG ·
)··.
::
end of Month
(1st Year -__ -~-.
May
:June
1-15 July
16-31 July ,.
August
1-15 September
16-30 September
susi10/d
·Flow at.
YJatana--( cfs 2
-: 10-,406.
221293
20,344
26,344 •
j-8~012
10,61.4
10,614
3-4
Required Fldw Trap -Efficiency
at-G·old Creek , (:Brune Curve)
s,opo
7,000 .
7,000
'12,000
12,000
12,000
7,000
83
94
95
·95
96
96
96
i
. ..
' . : . .
t
l. ;
PREPARED BY 1
100
90
.'eo.
~-~--o-
~60
Q,
Q .::so c ..
. 540
"CJ ..
fJ) 30
20
.. ·
l .~ I I
I l-I I
I 't I l I
I i I I
I I I
I I I
I I I I I • I I I
!nvetooe c~:rves for 1 I
normal ::onaed f!!S!!fVOif' I I I I
0 Normal I)Cf!Ced rese;vo·is
t---r-~~-~~--~~·~-;--+-+--+--io-~..; Cl Normal s:oncec res~rv01rs
...r111\ Slu•c:•nq or _vent;ng
ocerortons tn effect · I 0 O!!SIIfinq e:s.ns
· , 11 Sem••C!Y. t!~!rvo•"
O.OOS 001 002003COS007QI 02 0.3 C.S 0.7 I 2 3 5 1 iO
Co"actty•ln~low ratio, acre•ft capo::ly/ccre•ft annual inflow
(_Brune, 1953)
, .
sor------------------------------------------------
•
40
_......_ :INFLOW TUr:IBIDITY
~-·:OUTFLOW TURSIDIYY
.
JAN I ns I ... ,. 1 .&I•R•L 1 ... ,
• 1975
(Pharo and Car.mach, l979)
. .
3.1 -TRAP EFF'lCJENCY CURVES
3.2-INFLOW a OUTFLOW TURBIDITY LEVEt..S ·:~
KAMLOOPS LAKE , B.C.
. FlGVRES .3.1 ,3.2 ·
•
4 -RESERVOIR SEDIMENTATIO~·
4.1·-Sediment .. Load
Suspended sediment. -discharge relationships were established for
gaging site~ on the Susitna River. The rating curves for stations
near the proposed reservoirs are illustrated on .. Figure 4.1. Using
t.,e flow-duration -sediment-rating curve method, the average
annual. suspended sediment load was estimated for the following
four stations.
_ .. _,. _G..-.;;;a .. g:.;.;i n;..;.giiiiif,· ·_s;;.t.;;,;a;;.;t;;;.io;;.n:.:.... ___ _
Su~ ... na River at Denali
MaeLaren River near Paxson
Susitna River near Cantwell
Susitna River at Gold Creek
.
~ Average Annual Suspended
·sediment Load (tons/year)
2,965u000
543,000
6,898,000
7,731,000
The suspended sediment load entering Watana Reservoir from the·
Susitna River is assumed to be that at the gaging site for" the
Susitns ·River near Cantwell, or 6,898,000 tons/year. No bedload
data is available for this site. However, the channel is
well-armored, and little bedload movement. appears possible.
Bedload at Susitna River at Gold Creek is estimated to be
1.6 percent of suspended sediment load at. 37,200 cfs. Bedload
movement in the Tanana River, a braided glacial river north of the
Susitna River, is about 1 percent of the suspended sediment load at Fairbanks (Emmett, et.al, 1978). Consequently, bedload
ente¥"'ing Watana Reservoir was conservatively .estimated as 3
percent of suspended sediment load, or 207, 000 tons/year • ..
The sediment contributed by the tributaries directly to 'the
reservoirs was estimated from the unit sediment runoff per square
mile between the gaging sites near Cantwell and at Gold Creek.
The difference in annual suspended sediment loads at the two sites
was, divided by the difference in d~inage areas, resulting in a
unit sediment load of 412.4 tons/mi. . Bedloac:l is again assumed
to be 3 percent of suspended sediment load.. The resulting
tributar.y .sediment load is 429,000 t~ns/year of suspended sediment
and 13 1 000 tons/year of bedload at Watana Reservoi.r and
260,000 tons/year suspended sediment and. 8, 000 tons/year bedload
at Devil Canyon. The total annual sediment. load enter·ing Watana
Reservoir is estimated· as 7,547,000 tons/year. The estimated trap
efficiency of 70 percent for suspended s~diment results in an
estimated 5,349, 000 tons of sediment being deposited per year ...
with the full 7,5471 000 tons/year deposited at 100% trap efficiency •
s~si10/e 4-1
The . total annual sediment foad entaring Devil Canyon Reservoir
. conststs of the sedimsnt bypassing Watana at 70% trap efficiency,
2,198, 000 tons/year, plus the tributary sediment load of 268~:900 ~ons/year,. for a total of 2 1 466,000 tons/year. Using ·trap
efficaenc•es. of 70-JOO per.cent for suspended sediment results in
1,729,.000 · -2 1 198,,000 tons/year being trapped in Devil Canyon
Reservoir. ·
4. 2 .., .Unit Weight of Deposited Sediment
Estimates of the volume of sediment deposited in the reservoirs
require the unit weight of thi! deposited sediment. Published
values of 3 the unit weight of depc,sited ,sediment vary from 18 to
125 lb/ft. , depending on the sedirnent size, depth of deposit,
degree of submergence ·or exposur·e of the deposit, ~nd length of
time the material has been deposited. The initial . density for each
of seven sediment sizes was estimated using the Trask method.
The 50-year and 100-year unit weights were estimated us!ng the
Lane and KoeJzer method (1958) as modified by Miller (iS63). The
sediment size anaiysis developed by the Corps of Engineer$ (1975)
for the Susitna River at Cantwell (Figure 4.2) was utilized to
estimate .the percentage of each size range of suspended sediment
entering Watana Reservoir. The resulting average unit weights for
suspended sediment cjter ?O years and 100 years were. estimated at
71.6 and 1Z" 3 lb/ft. , respectively 1 assuming the sediment was
always submerged or nearly su~merged. The unit weight for
bedload was assumed to be 97 lb/ft .
4.3 -Volume of Sediment Deposits
Using the sediment loads and unit weight previously developed,
the following sedimentation volumes were estimated.
Watana
100% trap eff.
70% trap eff.
50-Year
· 240 1 000 ac-ft.
170 1 000 ac-ft.
100-Year
472,500 ac-ft.
334 1 000 ac-ft.
Devil ·Canyon w/Watana at 70% Trap Efficiency
. 100% trap eff.
70% trap eff.
79 1 000 ac-ft •
55,000 ac-ft.
1551000 ac·ft.
1 09, OOQ, ac:• .ft.
•,
Devil Canyon w/Watana at 100% Trap Efficiency
1 oo% trap eff.
70% trap eff ..
susi10/e
8,600 ac-ft.
6,100 ac-ft.
4-2
16,800 ac-ft ..
6,000 ac-ft.
.. 'Ul
\>; J
,•
J~,. ~ }~
II
.,./ .. {
I •
-., ....
u -
w
(!)
0::
<(
:r
0
(f)
.0
PREPARED
••
. ~ ;6_.
5_
4-
,. . . . . •
I,OOQ,_,_...L-L..t.....I-L.L.L.I..f-Lu..&..L.a.:..J..Lif-LU.I.IL.U.II~..L.Ll..f.J.J.I.l.f.lLU.jf-Ullf-WlflLUt-J.-L-IU-L..I-LJ'-'-f-J ............ .LU.J.J.fJ.UUULI~L.J..i-Lu.&.p~I.UfWLlflWJi--I-.1-1-"--'-11.-L-L.L.f..LIL..:-J,,:.LU.JIL.:.L&.L
1,000 2 3 4 5 6 7 8 9
10,000 2 3 4 100,000
SUSPENDED SED.IMENT DISCHARGE (TONS I DI'Y)
SUSPENDED SEDIMENT RATING CURVES·
UPPER SUSITNA RIVER BASIN
2 4 r. 6 1
PREPARED
f .
rJ
' vl
(')
I
. ...()
(\
~ ..
I
11.1 ... L!+. ~ j. i 1. ' •. J,.... I·· l .. .. ·.· .. ··. 'I' ..... . ....... , ...... : .f.'! ... 1 ... 1 .. . . ' . -~. .. .. I.... .... . ... :... .... .. 11.1 1 •:. f.•••; • • •· .. ., . ... .• .. • ..... ~ ..... ·~ I' ••• .. < I' ••••• : •••• ~··-~ t .. ,,, f • .... .
-:..·.·· .. .u ......... 1··· ····t·· ·~· ·· .. · . . . .. .. ... ... .... ,.. ... . ....... ~:.:: ···I·· . . . .. . -·-. -. .. . . -·· ... .. . .. . . . . . . . ... w·. . . . . . ...... . . . . .. ... . ! . ..
IU., 1--. -.· -i-......... ·--·-.· -r· ··· · -~·· ·-._, -·-..... ~ ·. ~!""--,--!... ·-·· ··-... ·~ •.. .. _ ............... ,. ·• ..... 0.. . ........... j ,.... • -···· • • • I P ..
) . . ............... ~ . . . . . .. . -~~-· . .. ·::.::.:::_• :·:-:.: :::: .:· t I ; ·" · • · •· • .... : · t ..... • • ·,. t • •• · " • -l " •
11 :!:~~~ ·i~~~ ... _~U~~-_ENoi~--~;,·t·tEliT S ·, ~E Ar~~L YS.I ~"!. . ·.~:·.::·:;-. ~ <: ll;:!! <:(:~ .. ::i .. l/( =i.-·-... ~
.... •· -..... .. •. • ~ -----I ~ •• -· ......... ..,..... . . , . • ...:·.J ..•. ..•• ,. : .
:d~u tlE. gGEtm §TAn on ... :: .:· .: . :.:: · :::: ::· .: .. Y. ·.,~ .
e1 .... _... •..•. SUS I HIA At GOLD CREEK • --··· -r-·--:-:-:-:-::--!-::f:{ -t~~J:) ............ -:!:·::~t E.:-~! ------SUSITtlA Near CAtH~~Ell j__j :·: :1 ; .. /!·· ~~~~ . .
liJ to :::: :::: --SUSITtiA r~ear OEfiALI ---,. ~ ~··v~1 --------~ · ·: :: 1.:.,_: . ----MACLAREN Hear PAXSOU :--:-· ~-t-•. ~:: ..:..-:-:. :. --~· . : • :i·· :;:: ~-...... .
• ·-••••• -• •• ., • -t ...... -, • ,....,._ --·~ I . I I
U) 10 : : • . . • . • -• ...L r-L. --· ·--- : : . . : .. ! : • : I . . • . ·-• - - _ .. -,_
Q . ..... • • - . • • . . : • . . :I . . I-' I': : ... ~ . 'L . '
W •••••• ·•• : I '''''I' 0 :••1:• •!, _,/ , .0 ..,... • • • "' ..... Jll I • .. "". . ~ . . . ~ .--.t{ 11 .••• • . • •. ~----·I .• •. •. "' ~ !---·---·-r·-
0 -.::.:·:·:· :::· .. '1 I I :. . .: :: : .. :·:.t·· :I' : k"'-,_.~...a... ! ~ ., . •• ...... • • • • ··I • . • . . • . • • . .... • I.Jl' • .. ...... ~ • I : 0 •• • • • • • • t • _...:.:... • • • • • ..... • I 41. ~-~.,.::r,..,. ~ • ,____;__co=·. -. 1-· _ -1--
10 .. • ... • . . • • • • . I I • •. • • ... • • • y . ! --~ ... I . I . . 3; ·:.: :·: :.~. :. I. . i . .. .. : :::. :. e"J.-~:..-~~'=' ; I I r. •
Z GO .... '• • :: .. , . : i . · . : · !_::,_~· · -~ ;.,., ·• 1 • ·-t--t--t--t-+-. . . . . L . . . : !~~"""~· ... ~ 40 : ···-·:: • __j__,._;_. . :. ~-~~---:.:_--:.. . :: ~ i --..:...., __ .
t-; : : . . : J~ : : I ~,.; • .... fo"-i . : ' -.· .• • ~-·. I·· . . ' . ; . I ; . . . . . . . . . . . . I i . ~.-~ ~-,.. . . . . . i . I .I
•· , .. • 41\ • .. --1·1"'"": ~:· ,_..-·• • ...... -• ·• .. ~ I
0:: 301-:-::-.. -. :-+-.-.. -·:-:-:-1 . -t--.--·-·::;;::o: ~-t:;.;;_;::;-I • • I • ' I . -ri-T--:---"
W ·~.:· .... ~! :,...,:....~-&--'1-"':"'!l i ... : .. :·,. i ....... ·····• ·•· :., .. I • z ······-·-· . . ~-. I • ·•· • •• • • ,. • • • • I : -zo ---·. -. ..:-J•r:.-.... ~ • • • • - ----
..... f-i, :...=U. L~. f.~_...~:"" ~ . . i. ! .'1'. _,..;..;..J __ :_: .:. .• '-!.:, ... ~ t.~ ... .::. -.· . .. ..:_:.L J.J, .• :~ .· ..... ·L ..... ·L .. : .. :.. . ... .... ' _..: t ~· .. . ___ .. .... .. . ... -- - -~i-. ----- - -.... " ... --· ,,.-· ___ ..... ,._ ...... ---·-· ·--~ ..
z -ru ~ . ~ : · ·I : ' : 1 L~ ~. = = : . · ·: : L, :: . i , i · . .. · . : ~ I : : ~ . ~ · : i::. ! r 1 : : . .
W IO -l-1-~ -·-~---·-!--·, ~ . :: ; : : ; .. : : ::.. . . .. . . . ,, . . : . : :: .. , . : I : .. : : : : : : : :::I::: ,. : . ,
~ • ~· :· ·-· •• . • • • • • • • • • ' t I • • • • • • I . , I ..
............... •· ... t !''"' \.,. · ·· I .
I --·· - --· ·---·-----~ 1·-- --~-.. ._ -, ·-, ·--· •· ..... -----_, ... -.!-.-l .... -· --... --· · t .. t~ .,,.,,. .'1· ,.,' • ·,• .. :: .. · ... • •. • .. •• • • ---:--.• ~-= · · · .. · .. · · 1· · ... · · · · · ·· · .. · I .. · .. I : 1 ·f n · :·;ii · :· ..... ..... : ..... +.. .. ··i -·· ~ · · · ... · = · · · • 1 · · · .. · · . I'
2 :}::::.·. l:::.·' ~::: :::: :::. ::· .: :· :;!: ::. :: : ·!·J:: . . .. . .. 1. , ,, ·.:. ::· : . , INTERIM REPORT . , ,,
1 :~p::;: ~::: :::: :::: :; 2. ~~ ~ ·::· :. : " . : ·:::·: ; : :: ::; : :::: .' _1:-,. • '::-'; ,:_ _ SOUTHCE NTRAL RAIL BELT l '·' ~D.· !~~~ ~:~: i~~: + :f ~-~ ~~:: .. '· --~ ~~;~:~·:. ~ : ~: ;:·.~~ ~:~: + ~ ~:,:f-.:: :~ ::~ ·: coi~::~~E ~~~I~~:s ill.·
o.u. . -~-• "i . i I : ' . .. . .. . . .. .. . . ' . . . ·-.. f.. ~ . I .. • .. • • .. • • .. ... • • .. .. • • II ···1;-· ill Hii1ii: · 'j · ·•· ... -1-r;·· :··· ............ r·:···· 1 1 i \ 't. t 'l L,
I. 1 b.OOI I .01 .I i.o
PARTICLE SIZE IN MILLIMETERS
SUSPENDED SEDIMENT SIZE ANALYSIS
SUSITNA RIVE'
PREPARED
. FIGURE £• .. ~,,
---~------------------------------------~-.... __ .
' •'
' • •
t ......
' .
•
5 -SEDIMENTATION PROCESSES AND SEDIMENT DJSTRIBUTION
·.-~,--.......o--..;..;...o.
Sediment distribution within a lake or reservoir ls· dependent on
several factorsr including sediment characteristics, inflow-outflow
relations, reservoir shape 1 and reservoir operation. When a ..
stream enters a reservoir, its velocity drops sharply due to the
large increase in cross-.sectional area, with a ·subsequent decrease·
in the stream's sediment-transport capacity. As the velocity
decreases 1 the coarser particles are depositeo in!tialiy, forming a
delta at the river•s mouth. Much of the fine··grained suspended
sediment is carried past the delta to be deposited in the deeper ,
parts of the lake.
5.1 -Delta Deposits
As a stream enters a standing water body the channt!f form and
process are altered in the backwater conditions. Bed aggradation
and reduced flow velocities extend upstream some distance from the
lake. Although most of the fine-grained suspended sediment
passes through the backwater zone, much of the bed load is de-
posited, thus lowering the bed slope and raising the water surface
and stream bed elevations. As the delta builds 1 ·the front forms a
shar:p slope break over which the remaining bedload is dumped .
As sedimentation continues, the river channel changes to
accomodate the changed profile so that sediment continues to be
carri~d to the delta front before being deposited. Examples from
Lak!;. Mead on the Colorado River (Lara and Sanders, 1970) and
glacial take LiJJooet, British Columbia (Church and Gilbert, 1975)
illustrate · the resulting morphology (Figure 5.1). A second
process, noted by Pharo and Carmacks (1979) in Kamloops Lake,
sr;tish Columbia, is that of episodic density surges which
redeposit material initially dumped on the delta slope. Sediment
density surges differ from the third process 1 that of river plume
dispersion (as overflow, interflow 1 or underflow) 1 in that density
surges are episodic and relatively short-lived compared to the
relatively continnous nature of river plume dispersion; sediment
density surges involve the redeposition of material already
deposited on the delta slope, rather than the uninterrupted
extension of river-borne. sediment into the lake; and sediment
concentrations within sediment density surges dominate the fluid
density and drive the downslope flow.
There will be considerable variation in th~ summer water revels at
Watana Reservoir, resulting in a complex delta formation at the
head of the reservoir, with the bed elevation· trying to re-.estabJish
equilibrium.
susi10/f 5-1
. ..
5.2 ""' GfaciaJ Lake-Floor Sedimentation
It, has been. noted by several authors (Embleton" and King, 1975;
Bryan, 1974) that glacial lake-floor deJ:.osits beyonci the area of
delta growth are predominantly fine, becoming increasingly so as
the central or deepest parts of the lake are approached. The
very fine material is the glacial rock flour which discolors the
wat~r of gJacial streams and lakes,. and which often requires long
p~rrods and quiet water conditions to settle (E.M. Kindle, 1930). ··
Deep lakes offer the best opportunities for the trapping and de-
position of the finest material. 1 n shallow gfacial lakes, the exis-
tence of more powerful currents prevents the settJing of fine
materia§, and often cause it to be washed towards and through the
lake outlet,. resulting in its loss from the lake.. ·
Glacial lake floor deposits are· often laminated, caused by sudden
changes of grain size from finest mud to slightly coarser silt
between successive thin layers, and often accompanied by a color
change , between layers. These laminated deposits are known as
rhythmites, with an individual pair of one fine and one slightly
coarser layer known as a couplet. The thin dark layer of a
couplet consists of very fine and partly colloidal material, repre-
senting a period of slow deposition under very quiet water con-
ditions, such as when a lake was frozen over in winter with little
or no meltwater entering. TheJ light-colored coarser layer indicates
a more rapid period of sediment deposition under more disturbed
t:onditions, such as when meltwater is entering the lake and lake
currents are spreading silt over the whole lake floor. Some
couplets form on an annual basis, and are known as varves. De
:ieer (1912) indicated that the fine lamina of a couplet was the
r~:.sult of deposition in winter when the lake was frozen and melt-
water limited.. The abrupt break at the top of the fine lamina
represents the spring thaw when new coarser silt enters the lake •.
Confirmation of this theory has come from pollen studies of rhyth-
mites, and from studies of. modern glacial lake-floor deposits, such
as that made by w ... A. Johnston (1922) on Lake Louise, Alberta.
NonannuaJ rhythmites may also form from sudden fluctuations in
discharge, such as from the bursting of an ice-dammed lake
upstream, unseasonaJ warm or cold spells, or periodic storms.
The deposition of the coarser laminae is attributed to t~rbid
underflows and interflows of denser sediment-laden water from
gJaciaJ meltwater streams.~ The . phenome~a of . un~erflow_ a'!d
interflQW have , been noted an numerous stud1es of sedJmentat&on tn
glacial lakes (Emerson, 1898; Kuenen, 1951; M~t~ews, 1956;
Gilbert 1973; Bryan, 1974 a, b; Theakstone, 1976; ZJegler, 1973;
Qstrear:,, 1975; Gu~t~vson, 19~5; Ph_aro and Carmack, 1979). The
frequency duratJon, and 1 ntens1ty of the underflows and
interflows
1
have been attributed to str:eam te':1pe~atu~e a!"ld sediment
load, temperature and susl?ended s~d1ment d1str1butJon rn the lake,
and take bathymetry, especJally near the stream mouth ..
susi10/f S-2
I -·
. . .
i
. • L.
\
The uninterrupted down lake transport of the silt and clay -sized·
material was noted as being due to the interflow process in
Kamloops l,..ake (Pharo and Carmack, 1979). During summer the·
lake surface waters warm more rapidly than those of the ·incc!'ning ·
river. The-river water first moves to the plunge line, where it
sinks .,and flow~. down along the slope of the delta as a turbulent
gravity c.~rrent. The plume entrains lake water as it sinks,
causing convergencr.' at the lake surface and resulting in a color
change at the plunge line. When the plume reaches a depth where
its density ls approximately equal . to that· of the lake water, the .
river plume with its large suspended load leaves the bottom slope·
and spreads· horizontally along lines of equal density (tempera-
ture), as ill_ustrated in Figure 5.2. The interflow is indicated by
the tongue of· turbid water extending from the face of the river
delta at a depth of about 20 m. The flow parallels isothermal .
surfaces, and is modified by the Coriolis force so that the river
:.pfume is directed towards the right hand shoreline in the direction
of flow. The preferential movement to the right ... hand side was
evidenced by both higher turbidity readings and coars~r sediments
along the right-hand shore of the lake. A schematic of the three
interdependent but distinct proces_ses controlling sediment trans-
p.ort and deposition within Kamloops Lake is shown in Figure 5.3 ..
As previously noted, glacial Jake-floor sediments become
increasingly fine as the central or deepest parts of the lake are
reached. Grain size distribution in Karnloops Lake varied from
0.5 mm near the lake inlet to 0. 002 mm (2 microns) near the lake
outlet. Accumt..~lation rates decreased with distance from the delta,
with rates of 8. 00 em/year adjacent to the delta det:reasing to
0. 35 em/year near the lake outlet. Not all sediment was deposited
in Kamloops Lal~e. Measurement of inflow and outflow turbidity
levels indicated that nearly one third of the 'incoming sediment was
not deposited, with the percentage varying with time. A.s
illustrated in Figure 3.2, turbidity at the· lake outlet increased
following periods of very high turbidity levels at the inlet.
5.3 -Glacial La.i<e Temperature_!
Deep glacial lakes commonly show temperature stratification
(Mathews, 1956; Gilbert, 1973; Pharo and Carmack, 1979,
Gustavson., 1975), although stratification is often relatively weak.
Bradley Lake, Alaska, (Figure 5.4) demonstrated a weak
thermocline in late July, 1980, but was virtually isothermal by late
September, and demonstrated a reverse thermocline during winter .
months (Corps of Engineers, unpublished data). Temperature data
for Kluane Lake (Bryan, 1974b) are also illustrated in Figure 5.4.
Selected thermal profiles f:-om Malaspina Lake, Alaska, are illust-
rated in Figure 5.5 (Gustavson, 1975), as are bathythermograms
showin the destruction and reforming of the thermocline in LiUooet
Lake (Gilbert, 1973) during periods of strong underflow.
· Garibaldi Lake, British Columbia, also demonstrates ,a thermocline :
in the summer months, as seen on Figure s,.s (Mathews, 19.56). , • ·~~~.
~ • [., <
,_ ·'
susi10/f .S-3
.
"'
,i •
0 ., ..
• > 0
.&:1
Ori~inal Col~m~do
.River profile
·o
PREPARED
c: ;g -a > •
. ~
Oistanca Ouni
. . Profiles of (A). Color:~do River at Lake Mead (after .Lara and Sanders. 1970, p. 155) and (B)
Lillooet River at Lillooet Lake, showin~ that the greatest accumulation on an established delta occurs at r.he
delta front and on the foreset beds. Lake Me:1.d datD. reproduced .by courtesy of the. Cnited. Slates Bureau of
.Reclamation.
(Church. and Gilbert, 1975)
DELTA FORMATION .
LAKE MEAD AND Ll LLOO.ET LAKE
-·
, ..
j
l
.I ' ...
. . .
•
.•.. '
' '
-e -
. .
'
__ ......
~~ ...... • ._ ____ .... ______ ., ___ 4.5--.. -.. -.,--... ,._...
. . .
.. .• . . .. ~ ... ;
120 . TEMPERATURE (°C)
......... ... ...... , ...
·;.:·; 29 JULY. 1974 . . . . 11
~" ·-~ .._..,.~=:·... . ... ·;~~ .. ~··.:.. ··~ .. ···.-; .. ;....;~ ··~ .• •· .. :.:,'Of••· .. ~: ··. -~--·: ··:!• ···.;;;·;·-:··· . .. .. :-~; ·: 140~~o~--------~s----------~,~o~--~-~---~~~--------~------~---~2S~
19
. ............
..... .. . ...... , ~ ,· .
TURBIDITY ( J.T.U.)
29 JULY, 1974
17
DISTANCE {km)
STATION
14 12 9 •
(Plan and Carmachs, 1~79)
6
~-3 4._--··9S
TEMPERATURE 6 TURBIDITY JSOLJNttS
KAMLOOPS LAKE
:~
I . .
. . ...
INFLOW
NOTE:
SLACK ARROWS DENOTE SEDIMENTATION: ~
LIGHT ARROWS C:!:NOTE F\..UID MOTION : =>
..
Schc:m:nic illustr::uion of sediment tr:msport :~.nd deposition mc:-.:h:misms assod:ued with ·:1
river ent~rins a. lake assumed to be temperature str:nified. Th~.cquilibrium dl!pth is that at which ~he
inftowiny river wnter has the sa,.,e density as the lake wnter. and at which the river water tlows
down t!1e lake. ·
(Pharo and carmachs, 1979)
SCHEMATIC OF SEDJMENTATION PROCESSES
KAMLOORS LAKE
-!I~ ._":'
·.
•
l ~ "-"'-,. 4 ~-~H--=~· •..•. _. ... (.a44f#
-E -
-~
1-
0..
L&J
Q
-e -
::::::
t-
0..
L&J
Q
W~TER TEMPERATURE, °C
0 2 4 6
\ T ·· f
,-\ -~~ 71? /Rn / . .
.20 ~--'~'~·~--~~--~~--~~----~-----+~--~'r/----~----~~~_, \ \ i I I • ' \ ' . . J
• . ' . I ! .I • '
\ .' .. I
l\ I I' • i I ' ; •I I . 1. I :
I I I ! I : I I • I :
t • • ,. • ' I o I
I . I I I • I : i I· • I
1\ 7
1473078(·\ i ' l :
1 • :y ; I I o I I I I
I '
l : \: : i
I I 1 , .\r i 1
I • . ; \ I I t I •
. fC":l"H~_,S "l~ . Nr..INF~RS· .'-r I I o I
•. ! I • • I
WATER TEMPERATURE, °C
0 2 4 6 8 lO
I . I l ' .
. l •I l : I
. 1: . l i
--~ • 1 I
·I 7J J ; '
I ; 2 !lB -·-' • . 1-.• I I
•"~ 20~----~--~~--~~~--~--~~.~~~~~--~i-----~-----~~--_,
40
60
'T ' • · I I ~~~-4----1----;---:-t---t,-. · I I
l ' .. /
: ,
. r
• 1
II
l j
I /l j · I
/: ··~·~~~~~~~~--~~------~----~ . i If. I
I
0 -• • : '
) I.
/
I ..
\ r· n vm ·~n 11-4&' , 1 ;;;17 ~ .,,
: . : I
! ! I
I • I
I . '
~~ ·~--~-+~~--+-----~~;u97.~,n,-____ -+------+---'~'--+---~·--· +------1 +-' I
I
.
I
1
> .
1
'
r:
,... ("f •••
PREPARED BV 1
.0
2:r
4.0 MALASPINA LAKE
i -en
201 SELECTED THERMAL a:
£1..1 .PROFILES
~ l
l.&J I . i~~z{ "' p.5 ~-• 1 rli,~::~
401 40 .. z
::
l-· a. t:", • 2.0 ~&. LaJ 0
Q l v a: 201 LaJ
t-. r <t
401 ==
WATER TEMPERATURE IN •c
• • .~\':tl~l" h"ml'fi':ltll':_C: thr!Jin~hnut ~f:\l,,ct•ina T.:d:r •l•..-1'a':l•t'~ with ,frTill ~\lr·lmnnll'rri.· ·•·m• .. t •
• f f':-'· ,nl,·:;uty m~trlmtcnt $l:tta."'n 1 hJ:. Jl "here llwrm:1l J•r .. ulo· \\ .... wr .. r·h~t 'I ''" t•rnltl•. :tl -~n•w •n•· .. r ..
nla"tnll11:d by d.1tc: t i/~1) on \\'hiclt thC?· wae ft'<;unlt'\1. l'rutilrs ma• .... ua-.1 in l'1;u
2
-e -
{Gustavson, 1975)
August
19 71
Bathythennograms sh~Jwing the dcstntc:tittn and refomin~t
of the thc:nnal struc:t:.1re of Lillooct Lnke a~soci att'd
with t.wo periods of s•trong interflow and underfl.o~.
Numbers refer to d~tes of the observations in July und
August 1971. •
{Gilbert 1 19731
!;::_,:·
{_~ .
'
\,_#
PRI!PA~·sn·· ·" ~<:
. .
. .
• ..... _
.....
-e -
:c:
f-a..
IJJ
Q
• ~ i '
l
I l
' . I
I I
'If! • 1
•• 1 t
• i
I I
_,
I '
:; I
.I
I I
I I I_
I I
t 1 ' ;
I I
I ' '
! ...
; .
i
...
. . , : I l i ' . . .
; I
. ~ I '
• I
! I • J •. : .
I ! ! : I • I
I I . !
I I I • I I
i i I I I ' i . I . I !
i 1 I j . I ! I t I ..
I I l I I I ' I. • • ! I
I I . I I • • • • I I • ' i • · .... , ... -...... ,.,. ... i ' : . . '
i I :"""' t-. ....,, ~~ ! I .. I • '
: ! I I 0 I :a 1 : . I ' I I
I I I I I I I ' • • ' . l • .
I I I . : . I
'I .; l : I I I ! I
' : ' • ! I ' ' :
I ' 0 I I I I I I ; I '· ; I .. .. I
t I • I ' I
I • . I I I I ! . ' I 1 i i.
o I
' . ' ~ ! !
'
.
I . . . ;
'
' I
. I
l
I
·! ' I . 1 I • • .
I •
I • i
I
I 250~--~--~----~--~--~----~--~--~----~--~----~~
R & M cor.:SUL.T ANTS.
..
WATER TEMPERATURE PROFIL-ES
GARIBALDI LAKE, BRITISH COLUMBIA
·i·FlGURE·
for:
I
I l ...
f
1.· •
r .
l
I
6 -RESERVOIR AND DOWNSTREAM TURBIDITY
.. The . reservoirs will have a significant impact o~ the turbidity of
the Susi~na River between Devil Canyon and the Susitna-Chulitna
confluence, with the river being considerably ress turbid in the
summer and possibly more turbid in the winter. A rigid
quantitative analysis Js not. possible with the available data.
H~wever, a qualitative analysis. discussing the interrelated factors
will shed some l.ight on the probable post ... project turbidity in the
reservoir and downstream of Devil Canyon. ·
6.1 -.E,re-ProJect Turbidit)_( . .
-·: . .
. Turbidity data for the Susitna 'River were reviewed for the Gold
Creek and Vee Canyon sites.. The U.S. Geological Survey
gathered turbidity data during 1974, 1975 and 1976, with turbidity
visually measured in Jackson Turbidity Units (JTU). R&M
Consultants measured turbidity using photoelectric detectors
during 1980 and 1981 at both the Gold Creek and Vee Canyon
sites1 with the data presented in nephelometric turbidity units
(NTU). The units are approximately equivalent, but due to the
subjective nature of visual observations, nephelometric means are
generally considered more accurate, esp~cially in the lower ranges
of turbidity (less than 40 NTU•s). C~
The nephelometric turbidity data was '!ogorithmically plotted against
verti(!afly integrated samples of suspended sediment concentration
for the Gold Creek and Vee ,Canyori sites. The plots, regression
equations and correlation coefficients for both sites ar~ shown on
Figure 6.1 o Best f~ts for the data were obtained by the general
equation .T = a [ss] , where T · is turbidity, ss is suspended
sediment concentration in mg/1, and a and b are coefficients.
Sediment concentration and turbidity have a very high correlation.
Available USGS data were also analyzed to obtain relationships for
discharge and suspended sediment concentration for the above two
ga~ing sites. The following relationships were derived for
turbidity, suspended sediment concentration, and discharge.
Susitna River near Cantwell
T = 0.3SS8(ss) ·8;0J6 n = 9, r 2 ~ o. sa
ss = 0.0000553 Q • , n = 37, r = 0. 703
Susitna River at Gold Creek
T = 0.2496(ss) ·;5~~1 n = 6, r 2 = 2· 95 ·
ss = 0.000673 Q • , n = 332, r = 0.585
The poor . correlation coefficients between . suspended · sedirn~nt
concentration and discharge are tc be expected on glacial rivers 1
where gtacjers contribute irregular amounts of sediment •.
susi10/s 1 6-1
u '
• -. '
}
Even t .. hough the determif'1e coefficients are rather poor, the
regresston equations are still useful in determining the seasonal
variation _ ·in · turbidity. The . turbidity-suspended sediment
concentration equations and the suspended sediment
concentration -discharge euqations were used together with the ·
mean daily flow summary hydrographs for the two sites to estimate
the monthly pattern of turbidity. The summary hydrographs used
are found in the Corps of Engineers Interim Feasibility Report
(1975).. The resulting estimated average annual turbidity patterns -
are shown on Figure 6.2. The actual turbidity patterns show
much greater variation in a single year due to the larger
variations in suspended sediment concentration.
S.2 ... Factors Eftacting Turbidity
Reservoir sedimentation processes described in Section 5.2 are the
main processes affecting reservoir turbidity. The sediment-laden
river will enter the reservoir as either overflow, interflow, or
underflow, depending on its density relative to that of the
reservoir waters. Once it reaches its equilibrium density level,
the inflowing river plume spreads horizontally along lines of equal
density. The flow parallels isothermal surfaces, and is modified
by_ the Coriolis force so that, the river plume is directed towards
the right hand shoreline in the direction of flow •
The turbidity at the reservoir outlet is al~o dependent on the
residence time of inflowing waters in the reservoirs. Watana
Reservoir has mean annual bulk residence time (volume/mean
annual streamflow) of 600 days, with Devil Canyon having a mean
annual bulk residence time of 60 days. However, the bulk
residence time varies with flow, with thf1 bulk residence time
decreasing to about 110 days for the mean annual flood entering
Watana. The residence times for summer flows are affected by the
relative reservoir level. As the reservoirs will be filling during
the early high flow periods, the residence time would be somewhat
increased above 110 days for the breakup flood ..
The long residence times indicate that an ice cover would form
before much of the la.te summer flow passes through the
reservoirs. Settling column studies (Attachment A) indicated that
suspended sediment rapidly settled out under quiescent conditions,
with turbidity also rapidly decreasing (Figure 6.3). Once an ice
cover forms, essentia)ly quiescent conditions will exist in the .
reservoirs, with wind action no longer disturbing the surface, and
inflow dropping to minimal levels. Consequently, relatively rapid
sedimentation should commence once an ice cover. forms, with
surface waters rapidly clearing beneath the ice. The turbidity of
inflowing waters is also quite low during this period 1 thus
contributing .little additional sediment.
susi10/s 6-2
. t ••
r,
i
L
1 t
1
~ . . .. _,, .
'P,
' -______ _. .............................................. ____________________ ~--~,~··~··:_' -~___j
6.3 -Post .. Project TurbiditY:
A discussion· of the timing of certain events occurring within· the
reservoirs and Upper Susitna River will serve to help de·scribe the
changes in the turbidity pattern. Breakup normally occurs in tate
April or early May on the Susitna River. Suspended sediment
concentrations and turbidity sharply increase in May, and remain
high into September, as the glaciers are contributing significant
amounts of sediment nurir.g tt,efr melt period. However 1 the ice
cover on the reservoirs will remain longer than ice now remains on
the river, as the lake ice will not be flushed out of the s~"stem by
breakup but will instead melt in place. Consequently 1 relatively
quiescent conditions will occur through most of the lake untn the
ice cover has significantly decreased, whic.h will probably not
occur until late May or· early June. Even though turbid water wiil
enter the reservoir in early May 1 an increase in turbidity in outlet
waters should not occu~ until early to mid-June.
During the summer months, tur~idity will increase as suspended
sediment concentrations increase at the reservoir inlet. Pulses of
sediment may pass through the reservoir when very large sedimertt
co11centrations enter the reservoir, such as during a large flood,
but they will be sharply darnpered. The pattern will probably be
similar to that shown· at Kanloops Lake on Figure 3.2, except that
the decrease should be even larger in the Susitna River system
due to relatively larger size of the reservoirs (longer residence
time) ..
Downstream turbidity can not be accurately quantitied, but
tentative estimates indicate that is possible that it will not exceed
maximum values of 35-45 NTU during peak flows, and will normally
be in the 10-20 NTU range during !1ummer months, based on
cursory estimates from flow suspended. sediment concentrations 1
trap efficiency, and reservoir outflow. Reservoir turbidity will
decrease in the downstream direction as the larger sediment sizes
settle out«>
rn September and October, inftowing turbidity levels to the
reservoir are significantly less than summer values, as the glaciers
contribute less meltwater and sediment. Ice cover on the
reservoirs will normally start to form about the third week in
October. Once the ice cover forms! essentially quiescent
conditions occur, and turbidity in the upper levels of the
reservoir shou;d rapidly decrease.
~ ~ ><~
·..__ .... ":-
v.
'2 -3 2 -toz.., ..
susi10/s · S-3 : -~·
-·
•
•
-·
..
-:,:)
t-z -
)-...
0 -al a:
:,:)
1-
~O('j. E ; ! ! I ! . I i : . ! ~ : ! ! ! ; :=+:
.
"~ . . ; I
I ' . / . . I . ' I -~ .r i .. . I • . t • I• -~ ; '! ~· ~ ... I I I i I I • • .:>U~I l N ~~ n; IYt:.:n ~I iLl
' I i I ·I . I . . ·a : : i I I 'I . ·-_ .. .:.. I ~ 1!\, y .,
i I ! < I . : I I I. I; :• !t'• ;,;11!1 I !I•' 1 I I I I I i II 'TUUl::Lr ~~1::""1\.. 1 !",):'" y: . I
100 I I. _! . , , : I··. li';. I : i : ; ! ::; il d t::i:I!IH I!H: I I I I ; I II I i j l! II I!! '!·I! .T7 · V.!~:· .. t
gn -~ ~~
ro
sn :;:
SQ
.40 _i
~n
20
... I . ·' . .· .
; . .,..~ • .
:I • : I , . ' I I I '/ . I!
.-••. l . . •I • .. I . ·lh · •• 1 I 1 J· ::. . .-;-,, .. ;
• l I .4..W. :;I '11, I I ' . . i -~-,, ·. ,•:•
-~ ~ 1 I I ' I I· . !!'!l I!•• . I • tl '-"" i" i! I h•l Ill! J J . i ! I I I! I II II • l!j I I :!!t l I ...• I ! ..
.. . i . . r•., • ; 1: ,.-:.: l:iH ii•i: lin. i i I i I I i Ill i i li ii :tl:i;i ' ! ,: .. ,, '• •
i ! t i II I 1 I 'd !i;: t : ! ~ l , .. I iii w ITII 111!1 fli! liill i I I I I I I I I il iTiTT lillll;;g ':I I
1n ~ ' ' 1 '' 'I! Jl '1 •! !••'' • .. l I Oil::"• 'I i!II!H• ::11 llll: I 1 I I ! I I I'll Ill til"h:· I
~--e ~.. ~
7
6
5
4
~
? ,.
'"" ""'"' ·c . .
Qt: .... 7 ' "I • . . . y ......... . . .
! ; --;-
1. •:: .
10
T -= n ;z.r;;;t:;;R ft.: .::l . , .. , I . ., '!! f"'l• ': ·l't a.c: ·IC ~\
• ;-;-1:. I •: --... . .., . . ' ··I · 'I' ! ! I I . ..... !t ,.;. ., I I ! I..! I I If i Ill .!"
r-= J !:H5
t • I
I I • .. • I .
2
I• : I • ; ! ... •: f!.i :: I , 1 ,,.,~ :::· : o· :Qc '.:I' 1: .:
' • ; ! • :....--. r::;i '; fl:~ !, .. ! l I i I I f . ; , .. 1:. . ..
-. l:i. lt : l il: 1:::1 .. !! ·,. l'•i I I i :I II iii ill I i: n t;:,; . I t • ' • •
4 5 6 7 s 9
100
I • I
I
2
SUSPENDED SEDIMENT CONCENTRATION
( mg I I)
..
.
4
; . .
; .
I~ . • !' l• .,1 1.:.·1· ...
i l j I ' 1 " ll,, 11 ... !•::1
=
I
.J
I• ··-!1• , ..
i
5
. .
I·· I• ,· : ·: .. . •' II•L
1: .:. •i!• ., .. H•il
I
! J i i
I I I
6 7 a 9
PREPARED BY' . l, -~ -z_ -/O 3 PRePARED. FOR:
TU R B I 0 IT Y V S.
SUSPENDED SEDIMENT
CONCEN'TRATJON
I"' A
.
..
... ~.
'~
::» ...
z -
>-
t-
0 -t'D a:: ::» ...
.. -.......
. ·----·------1··-. -.. ... ·-. . i·... .. -•. ~ ....
• -·--. t 'j ----I ; . ,.
. . l i t
,.._ -I' ' • ~..,..,_ ... "' ~ ----t , --e:~~+-----~~--·-·-·--·--~---_-____ ,~~----------------~--------------------·------------------
-.... 10 --.... "' ·' ' i . t •• ~ 1 --, ._ .... ..._,: i
._) -· --.. ,. . . i· . i -• . • ~ . -----r-1'"'-. ~.--'1 . -.--,-·-----... --------....;. ___ _ .... ·-· .. . .. , .... --··;-... --, ...... : .. --i ---·~ ··-1.
: ~~:;_-··--=:·::·~; ~ :~_:··J_· . ~~~-1-=--:-~~~~~·:.~:~.:-~~~;SV.Sl"J:N~.:RtV~~ AT GpLD __ c~E.E~. ;so. 1. _ ·::.~; : : ... :::.. .... '" .. -·±· ---. 1---:. -I -;---; ..• \ . ·-.i -.. ·-· L --; ... -l-·--· . . . L --... -••-·• :f.--·-. •i·--·-··~-·· .'-··-•-/'-i•-••··-· 1---· ,., .. ---·I • .... .,: -·-·•1""'' i . . -·-. .. . . I j . . -·-I .. . -· \ • . • -·: ·-· • : --I - . . . . ... - :
··------···--·-·· --;-·----~---··-;·--··M ·-, t .. -f---.:_J-· --· r --... ·j ·--·· 1 -~-1·---·:
I:: ....... --.:=--~~-=--=--=-~:-~·:. : .. J-: ... -: .. :j:. :·=-·j'1·-~c-1: -·· : i ·. ::~: 1. :..·~-~--~ -~-··.;: ----·t :.:-_ ··· · r:~ ~=· ~~--!~=-.-_:t=:.-.:::-l:~-=:~"":.r:-..:-.. :..-f~:-·:..:.= :l· ::::-:: lr · .: ·-t-=-=~=::~.=--:·+-~: ::-: J .· ··-.. · .. ·. :
' ! I '' ~ 'li , . .!. :--.~... ---~-: ~---±:--:}---~ --.: .. --.. 1['·---:-tx=----;· .l--·~---·---j---·--i -. -=·-_ -_ --: l·-·-. . · ·. I ----:J--,--:-. l---:-1·;-----· .... ,--------· ·: -·-· . ----· ..
! . ·--· i j--·--.J-·~-:-r·-j"""'-~-.. /+·-. l'"'t"l-·-:--+·----+-·--·------·l
';.. -·-·-· +--------.;-.;:.-:....·:-. ~·-~·r-------!-'""'--_ .. __ 1+-...:'-:-' ---~·~· ~· --i~~~·--..:,:·-~·-+· ~ii.·-~------1--~-·-------·--~ I ~ 1:1 • ' ~ f
r---:-.. . .._;-.-:-~'---+1 ~---~---4-.;-;_L~ Y.--=-:-·-~··'-~-...J..-__ 1_ ..J_ ·---~ -·····--~ ___ ·-• _ 1 • -., ;--r--: ·-· , ·T 1 .. • ~--!.. ---·· -~--'---· :----;-::~ · -\t-·; · .. -/ ~t::=..SUSITNA 'ElVER -4"-· -.. ~--·-' ~..:._-.--=------. ·-.··; _;_ ---1=---, . f ~~-: -~--: ·~r::-:~: j .. -B· ~EAR"'-tANIVJEIT--.J~-..:=
it ..... • •• I • • • . ,, I • • '\· 1/ __!____:_~ I 1 · . • • . :_ . • ~· : I e • : , • : ' • • ~ • , • • • 1 • ,---:--=-;
• ' • : • • ; ' : -. • : • I ! ' I • -=., -::,. • \ ': • t-• .__ . • ,-,
&....:.. • • ---l -: I . .. ' · --· : : · . _ ---.. --,--1
.• ·' '.• · .. I !· '.~ i: · .· ·• ~
i •. l • t • • • ·'I : : ~ :j . ·--Q1A'-\.-. I T . ------· --I : ,. : ' i • . ' a;. . •. • • • • • I ~ . I .
l • ; I ' : -;;-;-:--• : ; • . : ' • ; . _. ~t \-=1· . .J ' . I
! ; • • • ' -·. ,--;---t---.--:---·--~·-~-1·1.----· ,-·--·-~,
--_....:_---1--r · --, ·ir--~-t---1---,-,---···--r-------
...,_ I • $' __ __J I • 1 + \ . \ . . I :----- . : :~...:..-=:__t~:----: ; --;--. =-=-r·=------\ J... . ---·=i=----·~_1.., -'---••-• :----1. ~ --· I -.• ...:_,_ -i---· ____ ,+J-\-----+--:--··-~
. . . I : • I • . -i -:-:-' I . \I \ . 1----· ........
~ . -I~ : ; ~~ . --:-1-:-:-:±--1-:-'~--:-.-1-·-±--·'-·\,~ . j.:._:_-. ; . . . : '...lt L: ; : : ; -; . I ---::}: ___ :---,. . :_ -~-~=---~ ~.-,.-•-----=--'...;..._--I -----1-----~ ·-. -----f----.,· ---I : -· ' I , . I I \ . ~
t. "".., · : I l • i . I I . t· ·\-· i ; · .-···---I -H '----r------; ------------· : I . • I I I . I I ·-• . I
! -~ ----j• • --:::1--~----· ·-· -------·-----; . ---1-----.,~ .. ,:-: --:1 . -. -t-__:_~~~__!....-+---·-, ~
:--I, J. !-• -j.f------t -I . -\--·--\----r--------~ . -.------.-I ,, I ' I \. '-~ ·---'-----1+--------.o I =1.._ • .-:.--• 1 ...l_' ----,f-~~~-~--.. ~..1 L.---i-... ·----~-----· -·-Ji; • r-• ---1·-·--I I ----~-j·,,-----·--• -----.-------r ---.·-·--·------1-~ -~--·· .'--- . i ···----·--.....:··---·-J -------i----___ ..J. .. ___ .,. -·--· ·-----· • A. ____ ..,.......,.-• _.._._ --.
,_,....:._,. __!,.,_!, ___ ~ • .....!~ i. --~:~· .. --~-~ .L . .!..-'·-l·-..!.-...:_-\_..!..~--l ... ~-----L-1. ,•_ ':-.-! .. !..J_ .' ... !::)-:-'. -~.1 . , Fe J . • I • , , = -·--s·--JAH--Er·i MA -APR-:· MAY-'i-·iJUN--·t-JUt .... AUG-;-SEP·-: .. oc:r·-:· NOV'"i ·oe:-c-:1 L--------.. ·--r---·I .. --"---~ ---~----~-------r·--·--· . ..,·. ----1·----• • J , ! ' " I --~~ . • t _j ~-----i--·--:-·-·-···: ... -.. --i-·---,--j··---i---·--i---·--r-...:__ ,--~---·--.-·---!
TlME OF YEAR
* curves are estimates based on the mean daily flow smnmary hydrog.raphs and
£rom regression equations relating discharge~ suspended sediment
concentration, and turbidity. Turbidity in a single year displays greater
daily variation.
INC.
. .
AVERAGE
SUSITNA
,..;_r:;
ANNUAL TURBIDITY .PATTERN ~~ffi: RIVER
FlGURE 6 .. 2 . . . .....
•• '
•
-!---~·-.... . • .. -·--..-.............. _ ·-···,._·t
!_ .... ·--t----· . . ....... r-----..
___ ....,. __ _
• I --···-·t····-
... . .. --,.._.--~}----..... ·• ·-~··J-~~
·;------.. { .. ---------. ., ·-~---·~-...... ·---~-·-.. i ..... ·---· •• J ""··-·---~ ··--
-t ·-
. !
I ..
---• •• -~· • I t • ··----· , . ·--. --· ---.. . ---.. j -· . ·::.~-·-t ·-. -.. -. ·-i·--···· ;--· ----·-. -·~----[-·--. .. --r-------·-·, --;---J-···--... -------~-
... ---.·---·~--. -r---.--.-·• ... --__ _.._~---.. ·' . . -· ---·-·. --,---. -· ..--...-~ -----1 .... ·-.... --·--·---. . --~ --' ..... ,..._,--+-·-·-... -,....._ ... __ ~---···------· -·-
! __ , __ ..,;.._ ____ ,_,_____ ·-·-.. L_ ·-• -•.. -
---;:---·--.l--:
! ,., __ --_ _. ____ --~-..
! . --~ ... ___ ....;._..., ..... __ _
~----------~--~------------------------·-----------~----------------------1~------------=---~~--~~--------.. --------·~--·~--
---~----;--~-~-••-I
-:-----------------·--~··-----------------~~t---~·--------~---~ ~.---~----·--·~------~-----·-----~~--1-----~·--~-------·---~-----,f--·,,------------r---~--·-··---~ -'·---------~---1...--·--.... -·-----·--··
•·co.-----. .., --..---•
1111: .. -...... ~·-;·------.-----l---...----·----· -i···------.. /·-.... #'"
-----: -;-·-----~~-~--~----------.. -:_........... __ _..,;,4··-..... ----· . , ...... ........__ .. ~ ------....... .-. . . -... ·-' ----··-·-' ·--.. ~ . -·-·
. ·-. -!· ./--. -----·-:-·---,.. -.... ------------.A! ... ·'""'·----·------1---. ··----. -----··· ..
.. ,~ ........... -1· ··---···--.. -____ :_ ~ ...... ·-·-· ·-. ., .
---------------·-~-.-··_-_-___ --______________ ~~~·~-~·~~--~-~---_-_-··--.-·-~------·--.. -----~·----------~~---
-·---_ .... o -----,.., -----
.----•• II.) -··-___. _____ ... ·-
-· ------·-· ---··--·-----··--·--·-·-----·~~----· --~---~-------~ ~-----·---·~---~---!~~-----~~---------·~~~-; . .
_____ .............. .
___ Q. ·-·-:~~·
--~·-·-----.;..-------·-:---,-.
' _·· ...... -. -~~=:.
------.......-J..--• --...... -·•.;;
I .. _ _. ---...... •· ( nJ..N) · J-..tiOlS~nJ. ··· --":"·· ·· -~ . • . ·r .. ---.
·• ----· -~· -.. --·------··-· • -· ·--· .... * •• -··--.. ··-----:o--·-----"-(~,·: ·--··-·--····-----:----1----··-· .. ~. ·-··-. ~ --.... ·--.. -.... ~ .. _ ..... ! • • . f --··-··· . ---·-· -1.--··· ____ _. __ .... ···---~~ .......
.. ·.-
Q w a:
ct
Q,. w a:
Q,.
-Cl)
a:
::,\
0 :r.: -
L\.1
:!
....
>-=
Q r.u cr.:
~' w a: a..
-~·
-
(/)
>
>-....
0 -
a:
LLJ
> -a:::
<t z
1--(/)
~
(J')
>-
0
::l
1-
(/)
z
~
;:::)
..J
0 u :: ..
C)
z .,. -...J
1-
1-w c.n
. en .....
~ ::< ·!j
~ en z
0 p -. ... .. =
'. .. .. . .
( -
• <
«'
7 • fJROJECTED RESERVOIR SEDIMENfATION ¥< iLWS4A . .
Trap efficiency estimat~s using the Brune curve indicate
S,t)•lOO percent· of the incomin'g sediment:. will be trapped in· the
rt=servoirsl even shortly after reservoir fiiling 1 bt.it sedime.ntation
studies at glacial lakes indicate that fine glacial sedime~t rpay pass:
through the lake. Delta. formation at the head of the reservoir -wilr
be constantly adjusting to the changing water level. Sediment
passes through ·the channels on the delta to be deposited over. the
lip of ·the delta.. Depending on the relative densities of the lake
water-and the river, the sediment-laden water. win either enter the:
!ake as ovaf"flow 1 interflow, or underflow (turbidity current). It
ts probable that the turbid summer flows of the Susitna River will
in_itially dive below the $Urface, seeking ari equilibrium density
layer. T'he settling process wHI thery cqmmence somewhere below
the surface.
E~timates of the· total amoL!nt of deposition of fine fJ:aclal sediment
in the reservoi;:-os are somewhat uncertain., Glacial lakes
immediately below glaciers have trap efficiencies of 70-75%.
Kamloops Lake, B.C., retains abo,ut 66% of the incoming sediment.,
Sediment concentration at the cutlet of Kamloops Lake increased
during periods of high sediment inflow, which would correspond· to
high stream flows. Kamloops Lake is a natural lake, so retention
time of high flows decreases to about 20 days during the spring
freshet. However, Watana Reservoir has significant active storage
capacity. During the May -July period the reservoir will normally
be filling, so that outflow will be much less than inflow. 'The
increased residence time due to refilling of the reservoir would
tend to allow more of the sediment to settle. Once the reservoir is
fuJI, the.re may . be periods of increased turbidity downstream
following, periods of very high streamflow, s!milar to that evrdeoced
at Kamloops Lake on Figure 3.2.. The .median grain size at the
lower end of Kamloops Lake wa.s 0. 002 mm; and clppeared to be·
uniformly distributed across the lower end of the. lake. The
suspended sediment size ~nalysis for stations on the upper Susitna
River (Corps of Engineers, 1975), shown on Figur$ 4.2, indicates
that about 15 percent of the suspended sediment entering Watana
Reservoir (Susitna River near Cantwell gaging station) is smaller
than 2 microns (. 002 mm). The trap efficiency ·of Watana
Reservoir is estimated be between 70 -97 percent, with only the
material finer than 2 microns possibly passing through the
reservoir.
. .
The' minimum assumed trap efficiency for De~il Canyon ~eservoir is·
10 percent, based on data from other lakes. However 1 it is
possibie that the trap afficiency may be much lower 1 as only fine
material with very sfov. settling rates would pass through \Vataria·
Reservoir.
· susi10/h 7-1
.~~--------------~-----------·------------
..
u
.• ~··.· !!.
i
I, •
Bas4~d on th~ reslJI~ of the settling column studies~ (Att. A) m'uch
of the su$pended sediment still in suspension when ~n ice covE;~
forms would · settte,. as quiescent· conditions would -·soon b-e ·
. prevalent~· · ·
susi10/h
J
!
•
L.
' . I L ..
8 -REFERENCES
Brune, G.M. 1953. Trap efficiency of reservoirs. Trans. Am.
Geophys. Union, June. U oS. Dept. Agr. Misc. Publ. 970;
p. 884.
Bryan, M. L. 1974a.. Sedimentation in Kluane Lake. Pages 151-154
in V. C. Bushnell and M.G. Marcus 1 eds. Ice Fieid Ranges
Research Project Sci.entific Results, VoL 4. American
Geographical Society, New York NY 1 and Arctic Institute of
North American, Montreal 1 Canada.
Bryan, M. L. 1974b. Subfacustrine morphology and deposition,
Kiuane Lake, Yukon Territory. Pages 171.-1·87 in V. C.
Bushnell and M. B. Marcus, eds. I cefield Ranges Research
Project Scientificr Results, VoL 4. American Geographical
Society 1 New York, NY 1 and Arctic Institute of North
American 1 Montreal, Canada.
Church 1 M., and R. Gilbert. 1975. Preglacial fluvial and
lacustrine environments. Pages 22-100 in A. V. Jopling and
B.C. McDonald 1 eds. Glaciofluvial and glaciolacustrine
sedimentation. Society of Economic Paleontologists and
Mineralogists. Tulsa, OK. Special Publication 23.
Embleton, C., and C.A.M. King. 1975. Glaciai geomorphology.
pp. 532-558. John Wilny and Sons, New York, NY.
Emerson, B ,. K ~ 1898. Geology of
Massachusetts. U.S. Geological
Old Hampshire County,
Survey Monograph 29,
790 pp ..
Emmett, W .. W., Burrows, R. L., and B. Parks.
tr:;;f1sport ·in the v,c:inity of Fairbanks;·
Geological Survey, Open-File Report
Alaska.,
1978. Sediment
Alask~, 1977. U.S.
78-290 1 Anchorage,
Everts, C. H. 1976.. Sediment discharge of glacier-fed rivers in -
Alaska. Pages 907-923 in Rivers 176. Vol. 2. Symposium on
Inland Waterways for Navigations, Flood Contr~l and Water
Diversions. 3rd Annual Symposium, Coiorado State
University, Fort Collins, CO. Waterways, Harbors and
Coastal Engineering Div., American Society of Civil
Engineers, New York, NY.
(;~er, G. De. 1912. A geochronology of the last 12r000 years ...
cr. 11th lnternation Geological Congress, Stochholm, 1910, 1,
. p. 241-258.
susi10/i 8-1
*f:D" l""lilllli ........
[, :~
~
•
Gilbert, R. 1973. Processes of underflow and sediment t~ansport
in a British Columbia mountain lake. Pages 493-507 in Fluvial
Prpc7sses · and Sedimentation,; · Proceedings of the · 9th Hy.~rology ·· Sympasuim 1 . University of .A·Jberta/ · · Ec.tmenton.
Canada, May a-9. .Subcommittee on Hydrology I Associate
Committee on Geodesy and Geophysics, National Research
Q;ounc:if of Canada.. · · ·.
Gottschalk, L.C. 1964. Reservoir sedimentation, in Chow, V.T.
(edot). Hand.book of Applied Hydrology. McGraw-Hill, New
York ..
Gustavson; T .c. 1975. Sedimentation. and physical limnology in
progiacial Malaspina Lake, southeastern Alaska. Pages
249-263 in A. V. Jo·pfing and B .. C. McDonald, eds.
Gla:eiofluviaf and ·glacioJacustrine sedimentation.· Society· of
Economic Paleontologists ar1d Mineralogists, Tulsa, OK.
Special Publication 23.
Johnston, W.A. 1922. Sedimentation in Lake· Louise, Alberta,
American Journal of Science 204, pp. 376-386.
Kindle, E.M. ·1930. Sedimentation in a glacial Jake, Journal of
Geology 38, p. 81--87.
"
K(Jenen, P.H. 1951. Mechanics of varve formation and ·the action of turbidity curr-e~ts I Geol. for Stockh. Forh. 6, 149-162.
Lare, E .. W. 1 Koelzer, V .A. and J.M. Lara., 1958. Density and
compaction rates of deposited sediments. Proceedings .ASCE,
Journai of Hydr-aulics Division, Paper 1603, April.
Lava, J.M. and J.l. Sanders. 1970. The 1963-64 Lal<e Mead
Survey, U .. s. Department of I nter;or, Bureau of Reclamation
Report REC-OCE-70·21, 172p.
Mathews, W.H. 1956. Physical limnology and sedimentation in a
glacial lake. Bulletin of the Geological Society of Americ~~,
67:537-552.
Miller, C. R. 1963. Determination of the unit weight of sediment
for use in sediment volume computation, U.s. Bureau of
Reclamation Memorandum, February 1 i.
Ostrem, G. 1975. Sediment transport in glacial meltwater
streoms. Pages 101·122 in A.V. Jopling and ~.C. McDonald,
eds. Glaciofluvial and giaciolacustrine sedimentatson.. Society
of Economic Paleonta~ogists and Mineralogists, Tulsa, OK.
Special Publication 23.
8-2
.
l
~
I
1 ...
!
• \ .
:
L
f "!
. i .. ~.
",, ~
Pharo, c. H .. , and :e. D .. ···Carmack. t979~ · Sedimentation . prodesses
in a)shor:t residence-time. intermontane lake, Kamloops .. )·L.a~:c,
Srlti~h Columbia. Sedimentology. .2S :523-541~
Theakstone, W.H. 1976. Glacial lake s;adimentation,
.Austerdalsisen, Norway. Sedimentology, 23(5): 671-688 .
' -,'
• . )1.
Ti-c;e, A.Roj', L~W. Gatto,~ and D .. M. Anderson. 1972. ·The
mineralogy of suspended sediment in some Al.;tskan glacialc
streams and lakes. Cold Regions Research and Engineering
L.abo.ratory Corps of Engineers, U·.S. Army, Hanover'i NH· ..
Research Report 305. 10 pp. ·
. .
T·rask, . P.. (undated). Compaction of ·sediments. Bull, . Am.
Asso~.. Petrol. Geo_logists, 15, 271~276 •.
U.s. Army, Corps of Engineers, Alaska District. 1975.
Southcentr~ ~ailbelt Area, AJaska Upper Susitna River Baskl,
Interim Fea~ )iHty Report: Appendix 1, Part 1, Hydroelectric
Power and Related Purposes.
Ziegler, T. 1973. Material TransportundersokeJser i horske
bra-elver 1971: Rept.. No. 41/73, Hydrologisk avdeling,
Norges, vassdrags -og elecktrlsitetsvesen, 91 p. · (Ehglish
st..tmmary).
susi10/i 8-3
<.".:.
' '.~.--~ : ..
ATTACHMENT A . .
SETTLING COLUMN STUDIES
,.
f • •
§.ETTLJ NG COLUMN STUDIES
Settling column studies were conducted to· obtain data on the
settling rates of suspended sediment and on time based turbidity
levels of Susitna River water after it enters standing water.
Procedure
Two 55 gallon water samples were obtained from the Susitna River
near Watana damsite. These samples were taken in an area of
turbulent flow using a pump whose inlet depth was varied to allow
depth integrated sampHng.. The samples were retrieved at the
following flow rates and water temperatures ..
Sample #1
Sample #2
July 29, 1981 at 3:00 p.m.
Sept. 3, 1981 at 5:00 p.m.
28,000 c.f.s.
17,200 c.f.s.
The samples were placed in the settling columns, thoroughly mixed
and initial (time zero) samples taken from ports which were located
at 0.5, 2.5, 4 .. 5, 6.5 and 8.5 feet from the bottom of the column.
The. depth of water in the columns varied during testing as water
was removed for testing. In column 1 the average depth of water
was 9.2 feet and in column 2 the average depth was 8.9 feet.
Samples were taken at 0, 0.5, 1, 31 6, 12, 24, 48 and 72 hour
intervals and analyzed for turbidity (N .. T. U.) and total suspended
solid!a (T.S.S. in mg./liter). Air and water temperatures at these
times were also recorded.
Results .
Results of the settling column studies are illustrated for suspended
solids in Figures A.1 and A.2. In 72 hours, total suspended
sediment concentration decreased by 93% in the 28,000 cfs sample
and by 98% in the 17,200 cfs sample. Little density stratification
was noted in the 28,000 cfs samp;e during the settling period, but
was more noticeable in the 1-6 hour period for the 17,200 cfs
sample.
Turbidity revels showe~ a similar decr:ase. The composite aver_:age
for each time period as shown on Ftgure 6.3. Ther-e was lrttle
v;ariation in ·:;;Jrbidity with depth·. ~ ~\s wot;JJd b7 e:<p:c~ed from ~he
suspended sediment results, turbtdttV decreasea srgntf1cantly l wtth
r·eductions of 85 percent for the 28,000 cfs sample. and 94 percent
·for the 17,200 cfs sample~
susi10/g A-1
r /
' •
-t-
IL -w u
<(
lL o=
:J
U)
~ _.
w m
X
I-
D..
·~
'
I;
SUSPENDED SEDIMENT CONCENTRATION (mg/1) ..
SAMPLE COLLECTED ON 29 JULY 1981, I MILE ABOVE WATANA DAM SITE
PREPARED BY• WAtER T~MPE'RATURE (7/29/81) =501tf
ll&M CONSULTANTS, INC~
SUSPENDE·o SEDIMENT CONCENTRATION VS ~IME 8 DEPTH
SETTLING COLUMN STUDY
?A oon .. c.,;~ .. ~ J\ M PI F
i ' •
'
, • 4 ·o !. •
. I
f'l GUR E A.-:-J
. ·' . ... • •t•
r-~------------------------~------------------------------------------------~----~----------~
-...,:
lL -
w u
c:t
lL.
0:
:::>
(I)
~
0 _.
w
li1
(V ::1:
t-
0.. \ w·
\IJ 0
rJ
\, --.......
-t:.
SUSPENDED SEDIMENT CONCENTRATION (mg/1)
. ' : i ~ : I =, ., I I ' 'I ' . l I i I -rrr I ,· r i I I I : i i : i I ; ., .. i l ' ~ .· ' ., : ! :
: I ,c : I . . I i fO i fli( "ri : F )q I I i It !Hq ! I i I pdl~ ' . ; ! 3~0 • : 4~ ; ' ,.
I !,· \~· 0 l 7~1 ! 11 2il·l !I~ . II a 1 l 1 1 3 I I I J l I I ,,~ 1 ; I I , I · I · . · 1' · · J .. • T ; · · ,) , .•. 1 1 !\! \ I , • • 1 · • · 1 o P. 1 o ...4--1. r. M E4 , HouR
I : ; ! ~ ~ 1 , , 1 ' !\ i 1 , ! 1 ··r : 1 : ! : . J : : . ·, 1 , . ~-;: ··r· . , \, , I I ~~ ~-~+-.. -:-. ~--r---'1\ -I ll.J .. -· -:-: . : ~-~· f-=· ; ''('I' .. ; .J ·I ,~ . , . ·:· .. . ,, o! -• -...
1 a' . J ' l . ., I . . 1 • 1 , · 1 1 . ~ 1 • ,
> : .. 12. ~-
• I I
.. ~.:_·.1 ... -:.1. ! : 1-: . . l:ll! ~ . ,., I 1' .... : : . . 111. . '\. II i ; ! Ll : " Li I ; i : 1
1
I I I ~ II I ; I ! • ,.
i.t !. , .. '1 I ·r.-. I . -'"I . . r-·---+'-c:~-:--,:. :. . ---. .-.. ~ ... Rr Ttr· ··t·~~· .. ,. ··,1 ·-~··: i-;··,1 :·; .. , . ·: ·-· I_, ... -· i -~ -: ... .l I
·, I, ··1. : I -• •• • . .1 I i I I i I ·'I I \ I i I I : : I I I • I I • • I I • I I
I
t • ~ • • • I ! l I I ! I . I i . :-i .,, t ; ! . -] . -:· . -. J . I l ; . : I I i I ! I . I . ,. I :
. J·; : I : i I I . . . II -~ . -·-- . .. . . ' : \l ,, I I : ' : ' ! I ' ' ' ' : : : . I II :
·l .. r~:~~:,!-"· tit-·,.-L~---·++--~-_:·. ~~~--~":··=~~: .. · .. · b~-~--~~---<-~~~~---~;--~,-H·-·r!·L,~·:-r I· , .. ·:·' .... ;~·:-:·
I . . ' . . . .. . . . !\ I ' . : I ! • I I
I . . . . . I I I • I ' ; I . I • ; I . i ! :
·I··: 1 r . ll . . .. l . . . . .. ·. i , II . : I I ;:· i I I I 'I : . ~
I ! i j . ! L . ~ . . . :. . :· ~. ~ ~· . J. • . 1." i ; I : : l : . ~ i ~ : I I • I •
..... _._,_j. -t 1-1 .: ... ·-L--. - -i.-• ·---!-1-•. ·-··i-·1·\ 1--1--1-~--1--L-:-. ,.... -:..-f-f..J --l . ..:. ... .:...: -'-I-.'. . ....... ; . .. . . . .. ! • .: I .. .
! ,' ~i ·II i .JI II I I i . I I I I I t' I : II I I • I ! J! : I I~ I
I I ,. . I . i i I I I : I ' : : I i ! I I j t ~ • • 1,· .
. -1 I . I . I I
..J'~ •. ·_·_I .. ..~-11 J. r · : , i . J . ·I . I 1·1 I I : : I I ' i
' '·" ----------+--~---~i-• ..~.. -----------+: .J t-'--~-~ .. ,T ~-.. L·. . ·' • . -1:. n 1
t! ~~1-l+fr ~ fJ .. ~,-·. >: ~~~: ~ .. "--·--r--· -i~-· -rf-~.---fJ.· -~ :~r ~ ~ ·H ·I ! 1-l.ll (! : ; : I ; . : I . : : ! , I. ; 1
l
'
SAMPLE COLLECTED ON 3 SE.Pt .1981, I MILE ABOVE WATANA DAM S~TE
·WATER TEMPERATURE (9/3/8!) : 46" f PREPARED FOR• .
SUSPENDED SEDIMENT CONCENTRATION VS TlME a DEPTH
SETTL~NG COLUMN STUDY
17,200 CFS SAMPLE
_. • t .1.11 lt FIGURE
. -
• l ........
. I : . ..,
r .
•
-ATTACHMENTS
ANNOTATED BIBLIOGRAPHY
OF
SEDIMENTATION PROCESSES
IN
GI,..ACIAL LAKES AND RIVERS
...
.
'
I t
t -
\ L.
u
r -~ . .
INTRODUCTION
A . literature searc:h was conducted to obtain information on glacial
fake trap effici~ncy of suspended sedill"'~nts, with emphasis on
materials smaller than 50 microns. Relevant information will
provide a basis for predicting the fa·i:e cf suspend€:d sediments
entering the reservoirs of the proposed Susitna Hydroelectric
Pr~ect. ·
The bibliography contains annotations for 36 references with
rei~Y-ant information and a listing of 31 additional references with
no specific information. There· is information on depositional
processes when preglacial rivers enter standing water bodies
(Church and Gilbert 1975; Carmack, Gray, Phar-o, and Daley 1979;
Embleton and King 1975; Gilbert 1973, 1975; Gilbert and Shaw
1981; Hamlin and Carmack 1978; Pharo and Carmack 1979; Smith
1978; Sturm and Matter 1978), with details on particle size dis-
tribution for two ancient Jake environments (Ashley 1975; Shaw
1975). However, research reveals that rr:;~onstructing modern
depositional environments from analyses of ancient environments
may be misleading, as distance from source and shore and depth of
lake are not as significant as density, wind-induced currents, and
stratification (Bryan 1974a, b).. Furthermore, misinterpretation of
depositionaJ events can lead to overestimation of the time involved
1n deposition (Shaw, Gilbert, and Archer 1978). A method is
presented for determining sedimentation rates by radioactive fallout
(Ashley 1979). One study on a modern lake shows that suspended
sediment concentrations affect density stratification ( Gustavsor1
1975b). Two studies (Ostrem 1975; Theakstone 1976) address lake
trap efficiency and distance of deposition from the source.
The literature search included a review of University of Alaska
theses and publications of the University of Al.aska 1s Institute 1Jf
Water Resources and Geophysical Institute;-the U.S. Geological
Survey1 and the U.S. Army Corps of Engineers• Cold Regions
Research and Engineering Laboratory (CRREL). A computer
search was conducted on the CRREL Bibliography a11d on Selected
Water Resources Abstracts.
susi8/h B-1
' ' -
• .
•
.... -f.~RT I -_RELEVANT INFORMATION
1. .Arnb.<~rg, L., H .J. Walker, and J. Peippo. 1967.
load in the Colville· River, .Alaska, 1962.'
suspend$d
Geografiska
.Annaler. 49.A (2~4):131-144. ·
Oiscl.lssion of suspended sediment data collected during. one
year (1962) for hydrologic-morphologic: study of the Colville
RiVer delta. Three aspects of. suspended toad considered were~ quantity transported ln water; size of particles in
· suspension; and total quantitY transported in a given period
of time: .As unit volume increases, median grain size and
total load carried increases. Grain size analyses for samples
· representative of selected locations, depthS, and times are
presented. The amount and size of suspended material
increased with deptb at one location. ·
2. AshleY, G.M. 1975. Rhythmic sedimentatiOn in glacial Lake
Hitchcc:n::l<, Massachusetts-Connecticut. pages 304-320 in A. V.
Joplin9 and 6. c. McDonald, eds. Glacio:fouvial ancl glacio-
lacustrine sedimentation. society of economic PaleontOlogists .
and Mineralogists, Tulsa, QK. special publication 23·.
Discussion of seasonal silt and clay deposition (varves) in an
ancient environment. suspended sediment concentration
affects water densitY far more than temperature in glacial
lakes. The settling velocity of a 60 silt grain in 4°C water
. undisturbed by cilrrents is O.OS em/second. Therefore, such
a· grai"11 would settle SO m in · 1 • 1S days. However, silt was
found in all winter clay layers, and could indicate that lake
currents were present, preventing settling, or sediment was
jntrodueed year-round. Mean grain size of silt layers de-
pendS on location in the lake whereas g!"ain size distribution
of claY layers is uniform. Grain size; analyses are presented,
but there is no specific. informatiOn on the distance traveled
across the lake prior to deposition.
3. AshleY, G.M. 1979. SedimentologY of a tidal lake, Pitt Lake,
British Columbia, Canada. Pages 327-34S in Ch. Schluchter,
ed. Moraines and varves. Proceedings of an \NQUA
symposium· of Genesis and LithologY of Quat.,.rnarY Deposits,
' .
zurich, septerr.ber 10-20, 1978. A.A. satkema, Rotterdam.
Sedimentation rates were determined bY
137
cs dating
techniques. Grain size analyses were det~rmined for
190 sampleS and mean grain size distribution wass mapped.
Annual sedim¢nt accumulation equalled 150± 20 x 10 tons, of
which so% was coarser than so.
z-:>~,,-117
r •
:
:
1.
f
t~
. ...,_
. _,...,...... ....... --· ., .....
4. Ashley, G.M., and .L. E. Moritz.. 1979. Determin?l~ of
lacustrine sedimentation rates by radioactive fallout ( · Cs),
Pitt Lake, British Columbia. Canadian JournaJ of Earth
Sciences. 16(4) :965-970.
D!scussian of techniques for determining modern lacus.trine
sedimentation rates.
5. · Borland, W .M.. 1961 ..
streams in Alaska.
66(10):3347-3350.
Sediment transport of
Journal of Geophysical
glacier-fed
Research ..
Developed ~mpirfcal formula for sediment yield rates for
glacial drainage basins based on glacier area, total drainage
area, and length of watercourse. No differentiation by
particle size. Used five years of U.S. Geological Survey
suspended sediment data f "~m Denali and Gold Creek stations
to test formulc.o
S.. Bryan, M. L. 1974a. Sedimentation in Kluane Lake. Pages
151-154 in V.C. Bushnell and M.G .. Marcus, eds. Ice Field
Ranges Research Project Scientific Results, Vol 4. American
Geegraphical Society 1 New York, NY, ·and Arctic Institute of
North America, Mon:treal, Canada.
Study of bathymetry, thermal structure, and sediment
dt$tribution in Kluane Lake, 1968. A weak thermocline
developed in July and August, which \vas occasionally
destroyed by storm .. induced mixing. The lake is ice--covered
for eight months, and receives sediment from the Slims River
for four months. Statistical pai""amete.rs of grain size analyses
are presented. . Sedimentation is affected by density, by
wind• induced Jake currents, and by stratification as well as
by bathymetry, distance from shor-e and input, point and
sediment compositi'on. Highly turbid, cold glacial waters may
be sufficiently dense to flow across the lake bottom regardless
of thermal stratification. When the Slims River warms, it
flows over the lake.
7. Bryan, M. L. 1974b. Sublact..tstrine morphology and
depdsition, Kluane Lake, Yukon Terr-itory. Pages 171 ·187 in
v.c. BushneH and M.S .. Marcus, eds. Jcefield Ranges
Research Project Scientific Results, Vol 4. American
Geographical Society, New York, NY, and. Arctic Institute of
North American, Montreal·, Canada.
Discussion of processes aff.ecting sedimentation in lakes from
glacial streams. Bathymetric mapping of Klu~ne Lake in 1968
and 1970 revealed growth of the Slims River delta ..
Cartographic and statistical analyses of bottom sediments a,•e
presented. Finest sediments farthest from the Slims River
susi8/h B-3 2 ..... 37-!ffl'
-~ -
..
"!!· ic,
,~~ ............................. ·.-·····--------~--~--~ .. ~ " > • • ~ "•, , ~ "" ~ ~ .,.
' " . .. . . . . ' ' . )'
• were not in the deepest portion of the Jake. Distance from
~ource! d.epth of lake, and distance from shore are not signif-
.lcar:t 10 controlling deposition. Reconstructing depositional
enva.ronments based on sediment size analysis may be mis-
lead•ng.
8. Carmack, E.C., C .. S .. Jo Gray, C.H. Phar~, and R.J. Daley.
1~979~ Importance. of lakeriver interaction on tha physical
hmnology of the Kamioops Lake/Thompson River system
Limnology and Oceangraphy ~ 24( 4): 634-644.
Discussion of physical effects of large river entering a deep,
intermontane lake. No information of particle size analysis.,
9. Church, M., and R. Gilbert.. 1~l75. Preglacial fluvial .and
lacustrine environments. Pages 22-1.00 in A. V. Jopling and
B.C. Mc0ona£d, eds. Glaciofluvial and glaciolacustrine sedi-
mentation. Society of Economic Paleontologists . and
· Mineralogists. Tulsa, OK. Special Publication 23~
Discussion of deposition when proglacfal rivers enter standing
water bodies. Significant events are: aggradation on the
bed due to deposition of bed load extends upstream from the
lake, along with reduced flow velocities; development of a
high angle delta, with transport of sediment to the delta lip;
movement of coarse material over the lip and down into the
lake in turbidity flows (bottom flow); movement of river water
down the delta front to Jake water of equal. den:Jity (inter-
flow); movement of river water onto the surface of the lake if
density is less than the lake (surface flow) i deposition of
fine-grained material and formation of varves, of which the
silt (summer) portion is deposited by turbidity currents 1 and
the clay (winter) portion by the turbidity current after
stagnation, and then by slow, continuous settling fro~
suspension. Tur•bidity underflow is not a continuous event in
the melt season.. Varve formation cannot be directly
correlated to mean annual discharge, because a single large
flood can create a turbidity flew. Turbidity flows reswlting
in more rapid deposition depend on discharge, river· and fake
water temperature, thsrmal structure of the lake, quantity of
sediment suspended ir:t the t.ake from previous events, and
river and Ia ke dissolved sedlment concentraticns. No specific
information on particle size is presented.
10. Embleton, C..1 and C.A.M. King. 1975. ~lacia! geomor-
phology. John WHey and Sons, New York, NY. ~P· 532-558.
. •~·
Review of general crinciples affecting sediment deposition in
lacustrine environmer~ts with examples.. Lake floor deposits
become increasingly . fine toward center or deepest parts of
susiS/h B-4
;:·
~ .;. . '
• I
' :;. J . l
..
t
' ;rj . I
·~
. '
.
-:~~=~ _/, requiring quiet water and long settling periods.
Turbidity currents formed by cold, silt-laden stream water
are important ln distributing sediment across the Jake floor.
Rhythmites (laminated deposits) develop In cold freshwater
lakes receiving intermittent str-eamflow, and in some cases
form on an annual basis {varves). They can also forrn from
sudden fluctuations in discharge (bursting of an ice--dammed
Jake upstream) 1 unseasonaJ warm or cold -speBs, or p~riodic
storms.
11. Everts, C. H. 1976. Sediment discharge by glacier-fed rivers
in Alaska. Pages 907-923 in Rivers '76. Vol. 2._-Symposium
·on I nfand Waterways for Navigation.~ Flood Control and Water
_'Diversions. 3rd Annual Symposium 1 Co'lorado -State
University 1 Fort Collins, CO. Waterways, Harbors and
Coastal Engineering Div .. , American Society of Civil
Engineers,. New York, NY.
Investigation of glacial sediments discharged into the coastal
zone (Knik, Matanuska). Size distribution, composition, and
settUng characteristics of glacial sediment are important
characteristics in determining where the sediment will be
transported and deposited when it reaches the marine en-
vironment. · Based on particle size distribution analyses 1 it
appears that fine-grained particles pass completely through
the riv~r system. Ice margin lakes fringing glaciers are
depositories for coarse sediments. Clay minerals were absent,
which is significant because clay particles form aggregates
with other fine-grained particles and settle more rapidly.
This ab. :>ence may be common in other glacial areas because of
negligible chemical weathering in the source areas.
12. Fahnestock, R.K. 1963. Morphology and hydrology of a
glacial stream: White River, Mount . Rainier, Washington.
U.S. Geological Survey. Professional Paper 422A. 70 pp.
1nvest·igation of formation of a valley train by a preglacial
stream. Particle size analyses of deposited material showed
silts and clays were washed out of stream deposits. Analysis
of suspended load indicated that silt and clay stay in suspen-
sion and are carried out of the study area into Puget Sound.
13. Fahnestock, R. K. 1969. Morphology of the Slims River.
Pages 161-172 in V. C. Bushnell and R. H. Ragle, eds. Ice
Field Ranges Reseaf•ch Project Scientific Resul'ts, Vot. 1.
American Geographical Society, New Yor}~, NY 1 and Arct!c
Institute of North America, Montreal, Canada.
Investigation of the Siims River, a proglacial stream flowing
14 miles from Kasfawulsh Glacier to Kluane Lake. The river
is modifying a valley train deposited when the glacier was up
susiS/h 8-5.
=~--HW~_. .. _._. .. ~r.••····~ ..... , ........... K~'~+• .. a-·m••••~~·--•n .. .m .. .--.~.±------a~·------~----·'-----·# r· ,-·'illilil'tln· ----I -•
u
• against a terminal mol"'aine. It is regrading, ie, adjusting to
a. decrease iry io~d at the source by cutting in the upper
reaches and d~positing in the lower reaches. The Slims River
is also affected _by downstream changes · in the base level,
which is controlled by the exten~ion of the delta into Kluane
Lake and the variation in lake level. As the volume growth
rate of the. delta .. is not known, the sediment transport rate
~nnot ·be estimated. Suspended. sediment is predominantly
SJit and cfay. No data on particle size distribution.
14, ~addis, B. 1974. Suspended-sediment transport reiation-
ships for four Alaskan glacier streams. M.S. Thesis.
Unlvers~ty of Alaska, Fairbanks, AK. 102 pp.
_Investigation of suspended sediment transport relationships in
glacl~l streams at Gulkana, Maclaren, Eklutna, and Wolverine
glaciers~ Data on mean particle size Is presented for four
glacial streams for one season at sites near the t~rminus.
Sediment availability depends on amount of sediment, distance
travelled downstream, and mechanical nature of sedlment
lentra:inment (no spec~fic informatiC!n on entrainment) e
15. Gilbert, R. 1973. Processes of undarfiow and sediment
16.
transport in a British Columbia mountain lake.. Pages 493-507
in Fluvial Processes and Sedimentation. Proceedings of the
9th Hydrology Sympas·uim, University of Alberta, Edmanton.
Canada, May 8-9. Subcommittee on Hydrology, Associate
Committee on Geodesy and Geophysics, National Research
Council of Canada.
Description of processes invoh;•ed in formation of varved
sediment deposits in preglacial lakes, primarily underflow and
interflow. Underflow increases with increase of water and
suspended sediment infiow. Cores obtajned to determine
thickness and comparision of varves. No information on
part!cle size distribution.
Gilbert, R. 1975. Sedimentation
Columbia.. Canadian · Journa~
12(10):1697-1711.
-
in Lillooet Lake, British
of Earth Sciences.
Liflooet Lake rece~ves sediment from. a 3,580 sq km drainage
bqsin, of which 7% is glacier-covered. I nterflow and under ..
flow distribute sediment through the fake in summer when the
Jake is stratified. Factors affecting distribution are: density
characteristics of the lake and inflowing water,. as determined
. by temperature· and suspended sediment concentrations;
currents induced by wind and inflow; thermal structure of
the fake water, which determines the nature of circul.ation
patterns and allows interflow along· the thermoclln.e; diurnal
and seasonal fluctuations in inf1owing waters and se~:Ument;
susiS/h B-G ·
JrT:: .
::
·-: ..
:t
• .·.·I ' .1 ·. l ,,,
.
'
..
l .
t •
L:
·•
;
L
and the large annual volume of inflow (4.5 times· greater than
· the lake volume on the average). 1 nter-•fJcnAi; carries sediment
at the base of the epHimnion ·ta ·:the dls't~l end of the fake in
one to. two days. No specific informatio~'1 on particle· size.
17. Gilbert,· R. 1 and J. Shaw.. 198! ~ Sedimentation in preglacial
Sunwapta Lake, Alberta. Canadian Journal of Earth Sciences.
18(1) i 81 u-93.
Examination of hydrologic arid limnotrigic conditions of
Sunwapta lake, · ,9 small, preglacial lake in the Canadian
Rockjes. Sediment input · was measured and sedimentation
rates were calculated.. ·sediments of small, shallow Ia kes with
large and highly variable inflows are expected to demonstrate
·latera! and vertical variability, whereas those in large pro-
glacial lakes are more predictable due to modification by
large1 stable water masses.
18. Gustavson, T. C. 1975a. Bathymetry and sediment d.istribu-
tion in proglac!al Malaspina Lake, Alaska. Journal of
Sedimentary Petrology. 45:450-461.
See next abstract
19. Gustavson, T .C. 197Sb. Sedimentation and physicar limnology
in preglacial Malaspina Lake, southeastern Alask~. Pages
249-253 in A.V. Jopfing and B.C. McDonald, eds. Glaci-
ofluvial and glaciolacustrine sedimentation. Society of
Economic Paleontologists and Mineralogists, Tulsa, OK ..
Special Publication 23.
Underflow, interflow, and overflow water entered Malaspina
Lake, and the type of flow is dependent on the relative
suspended sediment content of the lake water and the In-
flowing meJt water. The 18-km long lake is density stratified
(increasing suspended sediment concentration with depth) but
not thermally stratified. No specific information on particle
size or trap efficiency is presented.
20. Guymon, G. L. 1974. Regional sediment yield analysis of
. 21.
Alaska streams. Journal of the Hydraulics Dlv. of.: the
American Society of Cjvil Engineers. 1 00( HY1): 41-51.
Analyzed Borland1s (1961) formula. Considered particle size,
but used an average particle size iri the formula. However,
concluded that partic~e size affects application of the formula.
Hamblin, P.F., and E.C. Carmack. 1978. Rivar-induc:ed
currents in a fjord lake. Journal of Geophysical Research.
83(C2) :885-889.
I , v
susi8/h 8-7 2-3 2-1"2.~
··rna· .. . ' . " . ' ... ~ . .
' . '
• ...
t
i
••
22.
Discussion of dynamics of strong flowing river entering a long~ narrow lake (Kamloops , Lake, B.C •. ). · River-induced
currents . influen·ce circulation patterns in a fjord lake.. No
specific 'information on sedimentation rates or particle size
analysis. ·
Hobbie, J.E. 1973. Arctic limnology: a review.
Pages 127-168 ln M.S. Britton, ed. Alaskan arctic tundra.
Arctic Institute of North America. Technical Paper 25. . .
Review of properties of . Jake in northern tundra regions ..
Thermal· .cycle of deep arctic Jakes is highly variabie, and
stratification i$' uncommon, ·occurring only in warm, calm
weather after fake waters rise to 4°C. Deep lakes maintain
circulation even when ice covered. Deeper lakes are re•
latively turbid as a result of glacial flour from streams drain-
ing active glaciers. Lake Peters is fed by glacial streams and
drains via a 1-km long 1 15-m deep channel into Lake Schrader
in the ·Brooks Range. Both are 50-60 m deep. Lake Peters
acts as a settling basin. When dense glacial wate:r enters ·
Lake Peters in June, it sinks to the bottom, and the lake. fills
upward with turbid water.
23. Mathews, W.H. 1956. Physical limnology and sedimentation
in a glacial ·Jake. Bulletin of the Geological Society of
24.
America. 67:537-552.
Garibaldi Lake, British Columbia, receives sediment from two
glacial streams with relatively low sediment content. Particle
size and composition of bottom deposit analyses revealed sJow
transport to site of deposition and slow rate of dep1:;,sition for ··
clays. No informatic~ eii amount of sediment passing through
system.
Ostrem, G. 1975. Sediment transport in glaciaJ meltwater
streams. Pages 101-122 in A.V. Jopling and B.C. McDonald,
eds. Glaciofluvial and glaciolacustrine sedimentatior,. Society
of Economic Paleontologists and Mineralogists, T'ulsa, OK.
Special Publication 23.
Recognized problems of utilizing glacial waters for hydro-
electric projects, specifically in reservoirs and turbines.
Grain size analyses of cores of varved sediments showed that
summer layers consisted of coarser material than winter layers .
(based on 20 micron grain size variation). X-ray diffraction
analyses showed that summer deposits contain~d more. quartz
(rapid sedimentation), and winter deposits.f more mic:a (slower
sedimentation). For one 1,800-m long preglacial' lake over
29 years, about 70 percent of the total suspended sediment
input was deposited.
susiS/h B-8 2 -3'2. -1a 1·
"· ~. "',... ' ' ._,
'.
..
j
i
..
~
~ ... -.
' .....
t
1 ·t
t
Discu~sion · of dynamics of strong flowing river entering a
long, narrow lake (Kam:oops Lake, B.C.). River-ind.u.ced
currents influence circulation patterns in a fJord lake. No
specific information on sedimentation rates or particle size
analysis ..
22. Hobbie, J.E.. 1973. Arctic limnology: a review.
Pages 127-168 in M. E. Britton, ed. Alaskan arctic: tundra.
Arctic Institute of North America. TechnicaJ Paper 25.
'.!"·
Review of properties of fake in northern tundra regions.
Thermal cycJe of deep arctic lakes is highly variable, and
stratification is uncommon, occurring only in warm, calm
weather ,.Bfter lake waters rise to 4°C. Deep Jakes maintain
circulation even when ice covered. Deeper lakes are re-
latively turbid as a result of glacial flour from streams dr~in
ing active glaciers. Lake Peters is fed by glacial streams and
drains via a 1-km long, 15-m deep channel into Lake Schrader
in the Brooks Range,. Both are 50-60 m dt:~p. Lake Peters
acts as a settling basin. When dense glacial water enters·
Lake Peters in June, it sinks to the bottom, and the fake. ·fills
upward with turbid water.
23. Mathews, W.H. 1956. Physical. limnology and sedimentation
in a glacial !ake. Bulletin of the Geological Society of
America. 67:537-552.
Garibaldi Lake, British Columbia, receives sediment from two
glacial streams. with relatively low sediment content. Particle
size and compositiqn of bottom deposit analyses revealed slow
transport to site of deposition and slow rate of deposition for
clays. No information on amount o·r sediment passing through
system.
24. Ostrem, G. 1975. Sediment transport in glacial meltwater
streams. Pages 101-122 in A.Vc Jopling and B.C .. McDonald,
eds.. Glaciofluvial and glaciolacustrine sedimentation. Society
of Economic Paleontologists and Mineralogists, Tulsa, OK.
SpeciaJ Publication 23 ..
Recognized problems of utilizing glacf.aJ waters for hydro-
electric: projects, specifically in reservo~rs and turbines.
Grain size analyses of cores of varved sediments showed that
summer layers consisted of coarser material than winter layers
(based on 20 micron grain size variation). X-ray diffraction
analyses showed that summe~ deposits ~ontain~d m~re quartz.
(rapid sedimentation), and wrnter depos1ts, more: mrca (s{ower
sedimentation). For one 1 ,800-m long proglacJai lake over
29 years 1 about 70 percent of the total suspended sediment
input was deposited.
susiS/h B-8
--... __
•
\ .
..
t
t
\ .
f .... .,
. f.".iiiillll ·· .. ·;:;-..,. ···~
l
I l .
f
'·
25. Ostrem, G., T. Ziegler, and S.-R. Ekman. 1.970. A study of
sediment transport · in Norwegian glacial river$, 1969.
Institute of Water. Resources, Dept"' ··of Hydrology, O::;lo,.
Norway. Report 6/70. Report for Norwegian Water
26 ..
· Resources and Electricity Soard. Translated from Norwegian
by H. Carstens. 1973. Institute of Water. Resout.·ces/
Unlversi:ty of Alaska, Fairbanks, AK. · Report 35. 1. voi~
Investigations were conducted 9n water discharge and sedi-
ment . volume measurements in glacial riv~rs above and ·at the
outlet of glacial lakes · to calculate the sedimentation of fine
material on the bottom of the lakes. Volum.e of ·material
available for transport is probably largest at the beginning of
the season. No data on particle size. · ·
Pharor C. H., and E. D. Carmack. 1979. Sedimentation
processes in a short residence-time intermontane .Jake, ·
Kamloops , Lake, British Columbia. Sedimentology ..
26:523-541.
Sediment transport and deposition in the lake is controlled by
three-interdependent processes: delta progradation at the
lake-river confluence; sediment density surges originating
along the delta face, which result .in turbidi:te sequences
lakeward from the base of the delta; and dispersal by the
interflowing river · plume, which, due to Corio lis effect$1
results in a higher sedimentation rate and greater fraction of
coarser material along the right-hand of the Jake. in the·,.
direction of flow. Suspended sediment concentrat~ons are
high above the thermocline where higher turbulence, main-
tained by wind mixing and river inter interflow; reduces
settling velocities. Particles settle rapidly on~e they enter
the hypolimnion. ·
27. Ritchie, J.C., J.R. McHenry, and A.C. GiH. 1973., Dating
recent reservoir sediments. Limnology and Oeeanogt\aphyo
18:254-283.
Discussion of radioactive 137 Cs dating. Method could be used
to date sediment in reserviors that have not been surveyed.
28. Shaw, J. 1975. Sedimentary successions in Pleistocene
ice-marginal lakes. Pages 281-302 in A. V. Jopling .and B.C.
McDonald, eds.. Glaciofluvial and glaciolacustrine sedimenta-
tion. Society of Economic Paleontologists and Mineralogists,
TuJsa, OK .. Special Publication 23 ...
IJiseussion of sedimentation in proximal portlon of. a .glacial
take based on interpretation on the ancient environment.
Mean grain size va!ues were determined for section~" of ,ea~h
facies from o to 80. No information on tr;ansport of. fine·
' "' , •. materials.
susi8/h B-9
,;. ..
;;t• ..
29. Sha~_, .. J. 19n~ Sedimentation irt an alpine fake during de~·
glacJatson, -Okanagan Valley·, Sritlsh Columbia, Canada.
Geografiska Annaler·. 59(A):221-240.
An~ient lake sediments were examined to develop a model of
alpane lake. sedimentation based on changing depositional
processes with time and distance from the ice margin.
30. Shaw, J., R. Gilbert, and J.J.J. Arct.'aer. 1978. · Preglacial
lacustrine sedimentation during winter. Arctic and Alpine
Research. 1 0( 4): 689-699.
Discussion of deposition of coarse-grained sediments during
winter in Lillooet Laka.· iviisinterpretation can lead ·to. over·
estimation of time seqences of deposition.
· 31. Slatt, R .M. 1970. Sedimentological and geochemical aspects of
sediment and water from ten Alaskan valley glaciers. Ph. 0.
Thesis. University. of Alaska, Fairbanks, AK. 125 pp.
Studied five groups of glaciers with different bedrock lith-
ologies; · Worthington and Matanuska; Castner and Fels;
Guf.l<ana and College; . Rend~ and Reed; and Carroll and
Norris. Particle size analyses and mineralogy of superglacial
and suspended stream sediments are presented. The
environment of transport has a much grea:t:er effect on grain
size than the nature of the starting material.
32. Slatt, R.M. 197·1. Texture of ice-cored deposits from ten
Alaskan valley glaciers. Journal of Sedimentary Petrology.
41 (3) :'828-834. . .
Revised and condensed portions of Ph. Do thesis (see above).
33.. Smith, N.D. 19i8. Sedimentation processes and patterns in
a glacier-fed lake with low sediment input. Canadian Journal
of Earth Sciences. 15(5):714·756. Snow melt and glacial melt
waters carrying relatively low suspended sediment concentra·
tions enter Hector Lake in the eastern Rocky Mountains,
Alberta. When stratified, wate·r and fine sediments enter the
lake · as interflow· and overflow. Grain size analyses were
conducted on 42 cores. Deposition varies left to. right as weJJ
as · distally due to katabatic winds generating downlake
currents in the epilimnion that are deflected SOlJthward
(rfshtward) by the Coriofis force.
34. sturm M., and A. Matter. 1978. Turbidites~ and varves in
Lake Brienz (Switzerland): deposit~ on of clastic detritus. by
densjty currents .. Pages 147-1~8 1n Ao Ma~ter and. M. E.
Tucker, eds. N!_od_ern and ancJ~.nt. lake se~?oments. lnte_r-
national Assoc•atJon of Sedm1entofog1sts. SpecJal
Publication 2.
susiS/h B-10
\
~~a~ . ..
•
35 ..
' '
Discussion of sediment transport .a\':"d deposition. by overflow'~
interflow, and un~erflow in a long, narrow 1 . deep basin witf":l
.rivers· entering at each .~nd. Fine-grah~ed sediments supplied
by overflows and lnterflows settfe continuo'-!sf)i during summer
· tf:lermaf .. stratification. Most of .th~ fine-g·t'~!~l~d particles
remain in suspension at the thermocline becau!?e>th~ vertica'l
density gradient is more dependent on temperature than' on an
· increase HT density due to· suspended particles. Ou'ring faH
turnover, · the remaining sediment trapped at the thermocilne .settles. ··
Theakstone, w ~H. 1975. Glacial lake . sedimeu'ltation I
Aur---terdalsisen, Norway. Sedimentology. 23(5): 671-688. ·
A lake· completel·y filled with glacial sedim·ents, over which
bra!ded stream deposits formed. A new preglacial lake then
formed. Discussion of bedding and composition ·of ancient
lake sediments. Initially, deposition was very slow in ·deep
(80 m) water. In another lake 300 m from a -glacier, about
75 percent of the sediment transported in suspension is
retained in the basin, but the amount retained in one day is
highly variable. The daily summer values excseded the
minimum by 200 times (data not presented) .
36. Tice, A.R., L.W. Gatto, and D.M. Anderson. 1972. The
mineralogy of suspended sediment in some Alaskan glacial
streams and lakes. Cold Reg.ions Research and Engineering
Laboratory Corps of Engineers, U.S. Army, Hanover, NH.
Research Report 305. 10 pp. ·
fnvest!gation of the role of chemical weathering of bedrock in
cold regions ·determined that no chemical changes occurred in
· fine suspended material. Suspended sediment samples were
obtained for X -ray diffraction analyses-: from galcial outwash
streams and lakes in seven areas (Chackachamna 1 Palmer-
Matanuska, Moose Pass-Portage 1 Valdez, Juneau, Mt. McKinley
· Natlonal Park, and Black Rapids).
su!s'i8/h B•11 2..-;~...-t~t-
,. ... '~.
(·.:-
PA~T U-NO SPECIFIC INFORMATION
1. Agterberg. F.P., and I. Banerjee. 1969. Stocha.stic: model
for the. deposition of varves in-glacial Lake Barfow-Oj.ibway
1 Ontario, Canada. Canadian Journal of Earth Sciences • . 6:62$-652 .
2. Sanerjeev 1., and B. C.. McDonaJd. 1975. Nature of esker
sedimentation. Pages 132-154 in A*V. Jopling and B.C.
McDonald, eds. Glaciof!uvia! and glaciolacustrine sedimenta-
tion. Society of Economic Paleontologists and Mineralogists,
Tulsa, OK. Special Publication 23.
3. Boothroyd, J.C. and G.M Ashley. 1975. Processes, bar
morphology, and sedimentary structures on braided outwash
fans, northeastern .. Gulf of Alaska. Pages 193-222 in A. V.
Jopling and B.c.. McDonald, eds. Glaciofluvial and
glaciolacustrine sedimentation. Society of Economie
Paleontologists and Mineralogists, Tulsa, OK. SpeciaJ
Publication 23 ..
4. Bradl~y, W. H. 1965. Vertical density currents. Science.
150(3702):1423-1428.
5. Clague, J .J. 1975. Sedimentology and paleohydrology of late
Wisconsinan outwash, Rocky Mountain. trench, southeas-tern
British Columbia. Pages 223-237 in A. V. Jopling and B. C.
McDonald, eds. Glaciofluvial and glaciolacustrine sedimen·
tation. Society of Economic Paleontologists and Mineralogists,
Tulsa, OK. Special Publication 23.
6. Everts, C.H. a11d H.e. Moore. 1975. Shoaling rates and
related data from Knik Arm near Anchorage, Alaska. CoastaJ
Engineering Research Center 1 Corps of Engineers, U.S.
Army, Fort Belvoir·, VA. Technical Paper 76-1. 84 pp.
7. Gilbert, R. 1971. Observations on ice-dammed Summit Lake,
British Columbia, Canada. Journal of Glaciology.
8.
9.
10(60):351-356.
Gustavason, T.C., G.M. Ashley, and J.C. Boothroyd. 1975.
Depositional seqt.Jences in glaciolacustrine deltas.
Pelges 264-280 in A.V. Jopling and B.C. McDonald, eds.
Glaciofluvial and glaciolacustrine sedimer:atation. Society of
Economic Paleontologists and Mineralogists, Tulsa, OK.
SpeciaJ '"ublication 23.
Guymon, G.l.. 1974. Sediment relations of selected Alaskan
glacier-fed streams. Institute of Water Resources, University
of Alaska, Fairbanks, AK. Report s1·. 17 pp.
susiS/h B-12 Z-3G-t2.·j'
•' , . .
10.;-=HC?bbie, .· J. E.; r ed. 1980. · Limnology · of , tu~dra . .ponds:·
Barrow, . Alaska. . _Dowden,. Hutchinson ancf::·-~_,R·~$$.," · l.nc.,
.. · Stroudsburg_, P.A. U$/IBP Synthesjs Serie$ 13. 514. PP~
11. Howarth, P.J,, and R.J. Price. 1969.. The proglaclaJ J~kes
of Breidamerdurjokull and Fjallsjokull, Iceland. Geographical
Journal. 135:573-581.
. .
12. JopUngt A. V •. 1975. Early studies on stratified drift. Pages
.,4-2l in A. V" JQpfing and B.C. McDonald, eds:. Glaciofluvial
and glaciolacustrine sedimentation. Society ·of . Economic
Paleontologists and Mineralogists, Tulsa, OK. Special
Publication 23.
13. Kin~le, ·E!M. 1930. Sedimentation in a glacial lake. Jo\.lrnal
.. of Geology. -38(1 )!81-87. ,,,
14. Lawson, D.E .. 1977. Sedimentation in the termlnus .region of
the Matanuska Glacier, Alaska. Ph. 0. Thesis. University of
Illinois, Urbana-Champaign, IL. 287 pp.
15. Long, W. E. 1972. Glacial processes and their relationship to
streamflow; Flute Glacier, Alaska. Institute of Water
. Resources·, University of Alaska, Fairbanks, AK. Report 18.
1 vel.
16. · Ludlam, S •. O. . 1957. Sedimentation in · Cayuga Lake 8 New
York. Limnology and Oceanography. 12(4): 618-632.
17. McOonaid, B.C., and w.w. Shilts. 1975. Interpretation of
faults in glaciofluvial sediments. Pages 123-131 . in .A. V.
Jopling and. B i c. McDonald I eds e Glaciofluvial and glacio-
lacustrine sedimentation. · Society of Economic Paleontologists
. and Mineralogists, Tulsa, OK. Special Pt:;Jblication 23.
18. Moores, EoA •. 1952. Configuration of the surface velocit)'
profile of Gulkana Glacier, central Alaska Range, Alaska.
M.S. Thesis •. University of Alaska, Fairbanks, AK. 47pp.
19.
2Q.
Moravek, J. R. 1973. Some further observations on the be-
havior of an ice-dammed self-draining Jake, Glacier Bay,
Aiaska 1 USA. Journal of Glaciology. 12(66):505-507. ,
R_eger, R,~O. 1954. Recent glacial history of Gulkana and
College Glaciers, central Alaska Range, Alaska. M.S .. Thesis.
University of AJaska1 Fairbanks, AK. 75· pp~· ':'
2.1. Rtrst, B. R. 1975. ·Fabric and structure :in glaciofluvial
sraveJs. Pages 238-248 in A. v.. Jopltng and 8 "c. McDonald I
edsl" Glaciofluvial .and glaciolacustrine sedimentation,; So~iety
of · Economic Paleontologists and Mineralogists, Tulsa, OK.
Special Publication 23.
susiS/h 8·13
,; '
. '
.. :
22. Rust"-B. R. , ancL R.. Rornan·eHii. 1975. Late quaternary
subaqueou$ outwash ·deposits near Ottawa, Canada.
Pages. 177·192 In A·~ v. Jopling . and El.C. .MeOonaJd, ·ads.
Giaciof!uviaJ and glaciolacustrine sedimentation.· Society of
· .-~Econornic· Paleontologists and -Mineralogists, TuJsa; OK.
Special Publication 23.
23. Ryder, J.M., and M. Church. 1972.. Paraglacial sedir.nenta•
tlon: consideration of fluvial processes conditioned by gfacia.;.,· ·
tion.. BuHetion of the Geological Society of America.
83: 3059"!"3072 •.
24., Saunderson, H. C. 1975. Sedimentology of the Brampton
esker and its associated deposits: an empirical test of
· theory. Pages 155•175 in A.V. Jopling and B. C. McDonald~
eds. Glaciofluvial and glaciolacustrine sedimentation. Society
of Economic Paleontologists and Mineralogists, Tulsa, OK.
Special Publication 23.
25. Setlmann, P. V. 1962. Flow and ablation of Gulkana GJacier 1
central Alask~ Range, Alaska. MaSo Thesis University of
Alaska, Fairbanks, AK. 36 pp.
26. Shira, D. L. 1978. Hydroelectric powerpiant ·siting in gfaciaJ
areas of Alaska. Pages 59-76 in Applied Techniques for Cold
Environments 1 Vol. 1. Proceedings of the Cold Regions
Specialty Conference, Anchorage, AK, May 17-19. American
So:iety of Civil Engineers, New York, NY.
27~ Slatt1 R.Mo, and C.M. Hoskin. 1968. Water and sediment in
the No,.ris ·Glacier outwash area·, upper Taku Inlet, south-
eastern Alaska... Journal of Sedimentary Petrology.
38(2):434-456.
zs.. Stone, K.H. 1963. Alaskan· ice-dammed lakeso As$ociation
of American Geographers: Annals. 52:332-349.
29.
30.
31.
St. Onge, O .. A. 1980. Glacial Lake C:,ppermine,
north-central District of MacKenzie, Northwest Territories.
canadian Journal of Earth Sciences. 17(9):13·10-1315 ..
Williams, P .. F. 1 and B. R. Rust. 1972. The sedimentology of
a braided river. Pages 183-210 in V. C. Bushnell and R. H.
Ragle, eds. rcefi"eld Ranges Research Project Scientific
Results, Vol. 3. Araerican Geographic Society, New York,
NY, and Arctic Institute of North America, Montr.eai, Canada.
vould., · e.P., and -r. Osterkamp •. 1978. Cold regions con-
siderations · relative to development of the Susitna · hydro-
electric project. Pages 887 ... 895 in · Applied Techniques f:.)r~
susi8/h B-14
:..
u
... .
t •
·j .
t
f
l
\.
Cold Environments, Vol 2. Proceedings of the Cold Regi'ons
Specialty Conference, Anchorage, AK, May 17-19. Amerfcan
Society of Civil Engineers, New York, NY. · '
susi8/h B-15
-·
•·'
. .
EXHIBIT E
2. Water Use and Quality
C01111ent 33 (p. E-2-!Je, para. 2)
Provide quantitative estimates of nutrient adsorption on suspended sediments
(e.g., glacial flour) that will be transp.orted into Watana Reservoirs. Pro~
vi de data on levels of exchangeable phosphorus in soils in the Watana and
Devi 1 Canyon impoundment zones.
~espons_J!
Quantitattve ·estimates of ~utrient adsorption on suspended sediments (e.g.,
·glacial flour) that will be transported into Watana Reservoir are not avail-
able at the present time. Data on levels of exchangeable phosphorus in
~vi ls il'l the Watana and Devi 1 Canyon impoundment ·zones do not presently
exist.
Additionally, to our knowledge at the present time, approved and standardiz-
ed methods do not exist for quantitatively estimating exchangeable phosphor-
us in soil samples. In fact, the definition of the term 11 exchangeable
phosphorus 11 is not standardized in state-of-the-art limnological
1 i terature.
The present level of knowledge about the Susitna River drainage basin and ·
the limnolog~ of the two propos.ed reservoirs ind·icates that the project
reservoirs will maintain a low productivity {oligotrophic) trophic status
due to phosphorus limitation (Peratrovich, Nottingham and Drage, Inc. and
Hutchison, 1982; Peterson and Nichols, 1982; Rast and Lee, 1978; Stuart,
1983; Vollenweider and Kerekes, 1980).
2-33-1
. ..
Data about nutrients attached to turbidity particles whi~h are potentially
ei<changeable with juxtapositioned microbial biomass are difficult, time con-
suming, and expensive to acquire. We hope that the FERC staff wil1 agree
with our position and withdraw or temper this request •.
References __ _, ___ ......._ ....
Peratrovicr,, Nottingham and Drage, Inc. and Ian P.G. Hutchinson, 1982.
Su[L~~~a Reservoir Sedimentation and Water Clarity'_ Study~ Ptepared for
Acr~s American Inc., Anchorage, Alaska, 35 pp.
Peterson, L.A. and G. Nichols, 1982.
]mpoun~nent of the Susitna River.
for Acres Arrerican Inc., Buffalo,
Water Quality Effects Resulting from
Prepared with· R & M Consultants, Inc.
New York, 18 pp.
Rast, W .. and G.F. Lee, 1978. Sunmary analysis of the North American (U.S.
portion) OECD entrophication project: nutrient loading -lake r&sponse
re 1 ati onshi ps and trophic state indices.. EPA-600/3-78-008. 455 pp.
'
Stuart~·; T.J .. , 1Sa3 ... The effects of freshet turbidity on selected .aspects of
the biogeochemistry and the tr.ophic status of Flathead Lake, Montana,
U.S.A .. , P':h"D. dissertation, North Texas State University, Denton, Texas,
229 pp ..
Vollenweider, R .. A. and J. Kerekes, 1980. The loading concept as a basis for
controlling eutrophication philosophy and preliminary results of the
OECD Progranme on eutrophication.~ Prog. Wat. Tech., Vol. 12, Norway,
pp. 5-18. IAWPR/Pergamon Press Ltd.
2-33-2
• '
~
·~ . (:2
EXHIBIT £ . . .....
-~ ..
2. ,water Use and Qual1ty ·
Provide real and simulated salinity data which show the accuracy of thE Corps
of Engineers salinity model for predicting saiinity in Cook Inlet at differ-
ent locations {e.g., Ncde 27) under different flow conditions.. Also~ pro-
vide parameter values used in these simulations and document the source of
the values used.
Response
Real and simulated salinity data for Node 27 near the Susitna River mouth
are pro'{ided in pp. 2-35-2 to 2-35-35.
Also provided is a user 1 s guide (pp. 2-35-36 to 2-35-171) for the computer
modeling effort conducted by the Corps of Engineers on the estuary hydro•
dynamics and water quality of Cook Inlet. The us~r·s guide documents-para-
meter values and their source for use ·in the Cook Inlet water quality model·
ing effort. An example prcb lem data set and simulation results are present-
ed on pp. 2-35-92 to 2-35-131 •
2-35-1
j ,c
. ..
.
"
'
,· .-
Volume3
WATER QUALilY,
~<NIK ARM .. UPPER COOK INLET
~ 10 20 . 30 nautical miles ___ ..J.. __ .._....;....JI
!
FJGURE 2 .. 5 Surface Salinity Distribution. in. Cook Inlet
2-15
-•
·~~·
NTERVAl..
o.5 s•A..
\.~Cr.JR
WTERVAL.
. t.\.2 s~
CON'I'Ot.R
IHTtR\AL.
OJ S%.
Ref. Kinney, Gr~ & Bum:~n, 1970.
•·
.
"" i ...
f • J
j
i
j·
I
' •
i ~'
l
...
i ..
• ' '; :"
;
t
t
1 .,
1
:!.
i
1
I
l
, __
,_
a. a. ,:
~ z -... < (4
•
-
OSSERV~D SALINITY REOUCSD FROM
ISOHAL.INE MAP REFRESENTING .
SEPTEMBER ~5-29. 1972 CONOiilONS · .
CCMPUTEO SALINiTY
ENO OF SE?T. t972
o.~----~~ ...... ~~--~--._.~~---:::;::.--~ t25 "1CQ 75 50 25
MILES FROM POlNTWORONZOF
LEGEND
OBSSRVED SALINITY REDUCED FROM
• ISOHALINE A' •P REPRESENTING
AUGUST Zl ~. 1912 CONDIT10NS
-COMPIJi'EO SALINITY
5NO OF AUG. 1972
o~~--~~~~--~·----~~~--~~~--~~-"'--~-~~ 125 11lD 75 50 2S 0 2!j
I
' I
~
5 '.II~ •z <-YZ
0
~ao
MtLES FROM POINT \YORONZOF
iS
= z < ,_ ...
1111: <Q
Wlloo
LEGEND
OBSERVED SAL.lNITY R50UCEO FROM
• ISOHALINE MAP REPR:SENTlNG
JAAY 21-28.1968 CONDITIONS
COMP\JTCO SALINITY
._ __ .....,e __ No OF MAY,1972
• • • •
2S Q
MIUS rROM POINTWORONZOF
... _,
FJGURE 7.4 Comput~d and Observed Salinity between Anchor Point and Knik Arm
7-16
I
:. ..
.
RESOURCE MANAGEMENT ASSOCIATES
~asea•r.n • o. .... '®'"eill • 0\DO'hco~II(!IIS ·
11 October 1982
~1r. Wayne ~1. Dyok
Acres American Inc.
·suite 305· · ·
1577 C Street
Anchorage. Alaska 99501
Dear ~tr. Dyok:
'HARZA~EBASC .,
Susitna Joint Venture
Document N'umber. ·
Please Return To ·
DOCUME£~T CONTROL
As au:thori zed by your 1 etter to Dr. Robert C!lr 1 son~ da tecl-Septem.ber
Z3a 1982. I· have performed a numerical modeling study to .determine the
effects of altered Susitna River flO\'JS on the salinity of Cook Inlet • . r~e following describes the results of this study.
·sac.kgroond ..
/
The construction and operation of the pt .. oposed · Sus i tna Ri"ve.r
Hydroelectric Project will alter the amount of freshwat~r which enters
Cook Inlet from the .Big Susitna· River. With this project!i infla;-Js
dur'i.ng the : high runoff summer months wi 11 be reduced and increased
during the low runoff winter months. To assess the effects of this
change in freshwater inflow on the salinity distr·ibution within Cook
Inlet, a numerical model previously applied to Cook In1et during a Corps
of Engineers sponsored study was used (1,.2).
. '
Model Application
The numerical model used in this application represents the e' -:.:A ~ry
as a series on nodes (discrete volume elements} and interconnecting
channels~· In the aggregate this node-channel representation provides a
2-dimensiona1 {i.e., 2-dimensional in the horizontal plane and uniform
vertically) description of the estuary including flow rates and
velocities and water quality parameter concentrations over time and
space.
The model representation of Cook Inlet shown in. Figure 1 was
developed in· the beforementioneti study. This model representation is
adequate for this study. therefore no modification or further
calibration was performed. To provide a more detailed description of
the model concepts and its ~pplication to Cook Inlet, excerpts from the
report to the Corps of Engineers (l) have been included as Exhibit A.
Typical hydraulic conditions were used for the study. f1onthly
average inflows from the various streams tributary to Cook Inlet were
provided by Dr., Robert Carlson. These tributary flows, including the
•
Suite200 Lafayette, Califomiii ~~9
~re and post Susitna Hydroelectric Project flews along with the model
lnflow locations are shown in Table 1 •
.
Study~ .. Res u1 ts ·
To ass.es.s the effects nf the proposed project on the sa 1 i ni ty of
Cook Inlet, the following hydrodynamic and dynamic water quality
simulations were performed.
··ca.ses 3 and 4 had very similar Susitna River flo\"1 and therefore the
effects· on Cook Inlet salinity were quite similar.
. .
post project salinities
are shown in Figures 2
salinities at selected noda1 locations are
1 hope that this bt~i ef summary of our modeling approach and results
meets the requirements ~of your project. It· has been a pleasure
providing this service to Acres American and I hope we are ab1e to
assist you in future studiesp ·
S1ncere1y,
:C~vv~
Donald J. 5mit{r)1,1..
DJS/th
cc: Dr. Robert Carlsen
Enclosures
/ '
(/ 'l ·.:
_r .. ,,
REFERENCE'S
1. Tetra Teth Inc .. I "Wati;!T Qua 1 ity Study, ,,'1<ni~'' Arm ana Upper Cook
lnlet, &~la7ka,n repor~ to the Corps yf .. ErY,~ineers!) s·eptember, 1J77.
2. Smi"th, D. J.~ "User•s Guide for the Estua_r-y Hyd'rodynamic and. Water
Quality Models~~~ Tetra· Tech· report to. the C()rps of Engineers,
Septemqer·. 1977 ..
. ..
•
•
;
~iJ ~~--""lt"-
·.~lb~· .. J . ,....,
··,'.
.....
l.l.J =:.
:;:)
t!'S:·
~
Ll..
-
1-
UJ
..;.J
:r.: -~
0
0
(..)
1.1.
0
z
0
~ ....
c::: r--
.•
');;.cl.i
' t.s
0::
0..
UJ c::
~
0::
0
;:!
L&J --..J
L&J z z < ::c: u
I
LLJ
Q
0 z
r
TABLE 1
' .. . ~
TYP I. CAL ft ~VER INFLOWS Ccflt TO CDOK INLET .
+.BIVI;B LOCATIDtt.:, _Qll_ .J:KrL ...DG... _:..WL ..fiL _t1A8.,_ ..Af!L .J:UJL ·..llU.tL . ;,ua.._ ...&HL _ge_
+
t;QDE· 27 •• CASE I ':iOO:S5 l26:SB BillS • 7906 7037 63:20 6979 60463 123690 131932 110841 6:1963
++
NODE 27 • • cr...sE 3· 3:2392 &9191 17()33 16109 14705 1350{; 13319 57611 1073fU U70!l4 ·aa:a341 626~9 .
++
t«k>E 27 •• CASE 4 32!84 19772 17&:20 Ua973" . 15922 14415 13640 ,5930 105702 116333 iQI73:i 63254
NODE u 6242 2768 1787 1616 1D30 1200 1218 . ::za.;a 72~6 1195:1 1389$ 112010
NODE 10 4441 2266 1267 794 631 :Ill 573 737 1519 4;93 74:14. 7079
NODE 7. 394 309 185 160 173 20:! :u9 7a3 40~ 280 ;i86 387
NODE 8 · 4:»90 2243 na1 U40 . 939 829 eao .1938 10669 ;1:1353 aa4t.l UIZ79
NODE 24 9Z:29 .44:19 3073 2317 1909. 1682 1667 3939 aat.sa 454;18 .. ,,.7 .:12922
NODE :tO. 7695 34D7 ;1068 .646 1399 .. 12iZ~ 1707 7493 :128070 474:14 3B6:t4 :Z09a:J
NODE .1~5 761 iZBS 193 '"" 119 121 l:t:S :161 2363 4049 3915 ~960.
NOD~ :SS !083 400 ao9 · 91 4Q .. , 100 1029 34B:S 2721 2130 IS,_
NODE 116 3700 2082 nu .1130 904 869 880 3427 '73:14 63~· 4200 iZBNt
+ .. PnE PROJECT wUBITNA RIVER FLOWS
. ++ •• PO!T PJIOJI!CT IUSITNA ftiWN Pl.DWI
•• ,.II._ • • II ... '! ..... --_____ ... . . .... _. ~ •"! ---·-_.........,.. .
•
NOOE.NO. 12
•
CASE 1 •• 0
CASE 4 •• +·
. .
270
o~~~~~~~T~a~:~~~~~~~~~~~~~~~~~~~~II~J-1~1~1~1~1~1~1~11~1-I~I~I~I~I~I~I~II~I~·a~a~a~~~~TI~I~I~I~IIMIMI~I~I~ITITITiriMr"J
300 . 330 360 390 420 450 480 . 510 540 570 ~tOO &30
JULIAN DATE
FIGURE 2
TE~1PORAL VARIATION IN SALINITY ~IITHIN COOK INLET NEAR
EAST FORLANb UNDER PRE AHD POST
SUSITUA HYDROELECTRIC PROJECT CONDITIONS ·
( ·.\
· .
i
' ..
-1.
0
(J)
•
3
G'")
' r
1'\)
0
§
-· Ul
§
.. -0
§
U1 §•
270 •, 300 330 6160
•.'
·' .
390
. . '
NODE ·.NO e . 26·
..
420 450
JULIAN DATE
CA.SE 1 o• ::o_.
CASE 4 •• +
1 .
I ,. -•· -,. • ._ I : •• ._ -••~.• •••~I•• __ ,.. • ~ -·•·-·-··--
FIGURE 3
... ' ,. .
TE~tPORAL VARIAiiON IN SAlJ.tUTY WITHIN CENTRAL COOK 'lNLET SOUTH OF .
THE. 5USITNA .RIVER UNDER PR£·· AND ·POST,-. . . .
. · SUSITfjA HYDROELEC.(RIC PAOJECt CONDITIONS .. ~
..
•••
. .
.
-1
0
(J)
•
:::3:
c-)
' r
~ .§ .
-tn § ' -~ 0
§
U1
§
. .
'.
·CASE t ... · 0
CASE. 4.e •. +
.
.
--
..
O-hl"""'-i__,..--..--r-Y""!.........-r-r_,...r....,l"""-a 'l'-' ~l,...,'r-1''""'11"' ...... , ...... 1.,...' ..... , '~'-'1~ l~'"'"~l._l_,..•_,.•....pi ..... r ..... , ..-I ,_, l~'"'"~lr""''la-•-1...,....* , ....... , ...... , .,...,, lr-r•-r•-;r-•...-• "~"""'1*,....,1 l~'""~l!"'v· 1-re ..... , ...-I,_, ar-IJr-ra-re..,...l n 1 1 • 1
5!70 aoo 3SO 360 390 420 450 400 510 540 570 600 6aD
JULif\N DATE
FIGURE 4
TEt1PORAL VARIATION IN SAliNITY WITHIN COOK INLET NEAR
THE SUSITNA RIV.ER UNDER PRE AND POST .
SUSITNA HYDROELECTRIC PROJECT CONDITIONS
• •••
I
' .. ' . '
.
CASE l .•. <>
t,a) CASE 4 .. ~ +
0 §-
rn . .
§
1\)
0
r ·,
(
-; §
0 rn -• U1
3 §
G)
' r -0
§
tJl
§
270 300 330 3£0 390
· i ·, 1 1 a 1 1 1 1 1 • 1 1 1 1 1 a 1 1 a · a· a a r 1 a 1 1 1 • "1
420 450 400 510 540 570 (,()() LSO
JULIAN DATE __ ... ~ -·-............... --..... -.-.. -... . ·-·--·-.. -· .....
. . FIGURE 5 .
TEMPORAL VARIATION IN SALINITY '~lTHIN KNIK AfUt NEAR
ANCHORAGE UNDER PRE AND. POST· , .
SUSITNA HYDROELECTRIC ~RQJECT CONDITIONS ',.-'' ·..-·:;
. '
•
w
0
~1 §-
I')
0
§· ~
-1
0
U) -• ut
::3: § en
' r
300 330
' ''
NODE'. NO. 50
. .
..
CASE t ... <> ..
CASE 4.~. +
.
. .
-, I I I I I I I I l I I I I • I II I I I I I I I ·, I' i l i ,.. I I I I I q ·I I I L I (C I. I I. I I ~ ' I l I I
360 390. 420 450 490 510 ·540. 570 £00 . ft30 '
. JULIAN DATE. ·
.-.... ..,. -~. ·~ '--·• ... !oo··--·----..
FIGURE 6
'TEMPORAL VARIATION IN SALINITY NEAR THE UPPER END OF
. KNIK ARM UNDER PRE AND POST
SUS:ITtiA HYDROElECTRIC PROJEC.T CONOlTION'S · ·~
\ .. '
. ..
·.
••
NODE .NO. 55.
. .
·.
CASE ;1 .• ¢
· ·· CASE 4· •• +
' I '
330 360
rri 1 1-1 a 1. i 1 1 1 1 1 a 1 1. 1 1 1 1 1 1 1 1 1 1 1 e 1 1 ·a 1 1 1 1 .' 1 1 1 a 1 1 1 1 1 r 1 t ' 1 1
390 . 420 450 -480 . 510 540 570 600 ,30 . .
.JULIAN DATE
FIGURE 7
TE~1PORAL VARIATION lN SALINITY WITHIN TURNAGAIN ARM
U~DER PRE AND POST SUSITHA ~
HYDRbELECTRIC PROJECT CONDITIONS
'.
EXHIBIT A
..
..
'
7.2 . Estua!%-~~~~1 Application to Water Quaiity itt ~'lc Arm :n~ ·--~-~l
Upper Cook Inlet
-Jr ... 7.2.1 Model Description ....
Th~ numerical model used iu this study was o~·i.ginally developed for
the California. State Yater Resources Control Boa:":'d {Evenson and Smith, . .
1974) and later modified for 208 planning studies on Long !sland~ ·New
York (Johanson, et: al. ,: 1977).. Further model modifications were made
during this proj~ct and instruction on the TQodel use can be found .i.n
the user's guide (Smith, 1977) prepared unde~ this contract. ..
The model. r_epreses:ts the estuarine system as a variable grid network of . " . uodes" and "channels." Nodes are discrete voluma ...tnits of waterbody, .. .
charai:t:erized· by surfac~ area, depth, side slope and vol~..ime. The nodes
~ .
are interconnected by.channels, each having associated length, width,
cross-sectional area, hydraulic radius, side scope and f-;-ictio·n factor.
t.later is constrained to flow from one node to another thro.ugh these
1-S
..
;,;.;,'
JIB •• •. ·-
..
~
.
'
"
...
defined channels, advecting and· diffusing wa.tar q~.ality const:f.tuents
bet:r.Jeen nodes.
.
'I?te .following are underlying assumptions of the estua1;y model:
o -The estuarine system is ~ell. mixed ver'tica.lly!
o The law of conservation of mass .is obeyed for water
quality constituents.
o Che~cal reaction rates may be estimated using first
order kinetics characterized by reaction.;...specific
. t"at~. coefficients.
·.
~The overall estuary model is composed of two separate components: a. . . -
hydrodynamic moc!el. (HYDRO)· and a ti.dally averaged· ·dynamic/steady-state
quality-model (AQUAL). These numerical models are used in sequenc.e so
. . -
that the results of the hydrodynamic. t:llC!del become input: to the qUality
. models. The.·advantage ~f dividing the overall model into mod~ar .
units is that the inrlividual model..s can be calibrated sep~rately.
Consider-able savings of computer tim~ is realized by storing results . . .
of the hydrodynamic. model on di.sk files to be used repeatedly in the
ealibration of the quality mod_el and during water quality evctluations.
HYDRO calcult£t~s. the .hydrodynamics of the estuary us;ing tidal time-
.
stage data at·the estuary_ boundary, hydrologic conditions, and estuary
geometry data such as depth, surfac.e area, tidal flat slope·and bottom· . . -~ roughness. HYDRO prepares a permanent file which portrays the ~o-
dimenslonal hydrodrrtamic characteristics of the estuary, including
tidally averaged values of flow, velacit:r;· volume, depth,. surfac:~ area
a~d parameters indicative of the d~spe~sive characteristics of tidal
mixing.
7-6
• . i
I
'
..-;· .. -•..... :· . ' '
''·->-.. '"
\j.
AQUAL, is.,: a tid;rlly avera_ged qUality model which ·c:ati be' operi·t~a· itt.
either a. steady-state or dynatn:ie {time dependent) -:;mode. ·to· slttiu.l:at~
advective ... 'tffus:t.ve.eransport as well .ae physic:alt chemical. and . . .
biological reaction$ of the, p~r~e.t:ers be:LJig· mo.del~d.. Net adiective
flows and disl)er$ion c:oefficien.ts :to simulate ;the effects of tidal ·
I
l
l . I
mixing· proVide .the physical mass .transpol:'t. The resu.lts ·are repre-.
sentat:1:v~ o; t;he t:wo-d.i:mens.;.ona~-d.i'Stri.bution· ·of ·daily av~rage .~uality
., conditions in the ·~t¥X'Y•. ·._,.
. ..
l'he dynamic mecie.· is used ~~n the estu~ry .quality does not approach . . ·• '
;st~ady-st~te w:lthil!.. the _P!!1'iPd o.f time ~he bQtmdary c:~ditioUs "&,~i~ · -~
constant. If: ·signific~nt c.hanges il1 tributary inflow ~5!cur before
· steady-state is approached, the dynamic operation ·giv~s mor.e repre~
~ ' • --~ ' ' '~ ' ' • "!-
seu~ative res_ults. In t:lie dynamic :mode, the model uses ~#ftr~les of
. .
th~ ticial. c:y<;les·as the basic time step and yields ave~age daily re-
, " j
sUlts.
. .
I
I
. .
'!he AQUAL code provides t~~ option to include· up to.four user-specified.
constituents in .addition to· the f~llowiug parameters which may be se-·
•
leeted for: silnula.t:ton.
..
1.. Sa~inity
..
2. Total Nitrogen
· 3. Total Phosphorus
.
4.:-Total Coliform Bacteria
· S. E'ecal Coliform Bacteria
6. Carbonaceous BOD ..
7. Nit,;'ogenous BOD
8. Dissolved' Oxygen.
9. Temperature
..
7~7 .... ·-.... .
(
A ~F!!::. de;ail.ed, d.~sc:ription of the model and i t:s use can bf.l-found, in . " ..
t~e· :Dlod~ _ do~umeri'tation. "l : ."-.
Hodel Adaptati_Qn ,}md Calibration
.-
__ -~ nod~~!lllile~ networ~ sc:helJie-has been designed ·to represent the ent::f.r~
. Cook !1?-le~ study area. This netwox:it, shown ii:l-Figure 7.1~ extendS-f:rOJa ·
Anchor Point on the south to the upper· reaches of Xnik Arm and _Turnaga~ _;
Ani. This network s~heme ~ploys a. ~oarse representation in-the-sou~-..... •
. em po;tiati of ~ook Inlet .wh~ra th~ impaet of developm~t ·in the Anch~~-l
age area :l$ small. In Up.per Cook Ililet axid ~-ik Arm, where imPact of. ./
• • • ':"!'"
waste disch_arge from the Aucho:z:oage _a:r.ea is greatest, ·-·~ more detailed J
, ·representation has been ut:Uizede .. l'he. node and channel data were
1
geneJ:ated from. Nat:ie~nal Oc:e.anic:. and At!DOsphe-:a:-ic Administration -(NOAA) f
. ' .
navigatiou charts numbers 16664, G&GS 8854, and 16660. The node and
channel data are presented in Appendix III. . I
l
Calibration of a tida:l hydrodynamic model entails a series of simu-
lations during which boundary conditions are held .constant and the
frictional resistance is adjusted. Rhen the tidal stage, current v~
locityj and· the high and low water time lai are adequately repres~nted
_throughout the estuary~ the ·hydrodynamic model can be considered cali~ .
bra.t:ed.
!'or model calibration,average ~97~.tri.b~t:ary inflow_ra.tes w~re.used.
An average tide was selected from tte daily predictions at Seldo~a -.. j
and a~justed to Por1: Graham, the NOAA. ti_de sta~ion nearest_· the s-ou1;h-1
erly boundary of the study ~rea.· .This: tide has approximately t~e same .
diurnal tide range aS that r!!port~d :!.n the 1973 NOAA 'tide Tabies. The .
1 results. of the comparison are smmnari.:z:ed in Table 7 .3~ Good agreement:
f '
betw-een the calculated values and tide'table predictions of tidal stage
and phase was observed at most locations •.
• 7-8 .... --... , . ..
I
I
• . .
Ill
• I
· FIGURE 7.1 NOdt·Channe! Nttwork Scheme of Cook Inlet Siudy Area . . . . ... .... -
.
.
Network
Node
Location Number
Port Graham 1
w .
·cape Ninilchik 5 . .
Kenai River Entr4n~e 11
Nikiski '12 . . East Foreland 12.
Fire Island 100
Sunrise, 'rurnagain Arm 58 .
Anchorage 124
North Foreland ·· 21 I
~orlft River Terminal 8 .
'l'uxeclni Channel 4•
,.. --"•·-· .. ~
.
" .
. . . · Talile 7.3
CALCULATED AND PREDICTED HIGH AND LOW WATER:·
TIME LAG AND DIURNAL TIDE RANGE
. . . 'Time Lag(hra) •
'High \late:t Low Water
Predicted Calculated Predicted Calculo,ted·
0 . 0 0 0' .
• 1 .8 .8 . 1.1 .
1.9 2.0 2~2 2.7
2.4 2.7 2.l l.J
2.6 2.7-2.9 . 3·.3 •
4.5 4.1 4.8 I 4.9 .
5.4 5.6 6r-:7 .1' ... o.o .
/. n -;;. 4.4 5.5 s.s .... ~ .
3.8 3.3 . 4.0 4·.1 . .. . 1.7· 1.7 . 2 0
• • 2.1 .
.1 .a .a .. 1.1 . .
•
·Diurnal Tidal Range(f.t)
' •
J?red:tcted . Calculated
c
.16,.5 16.6
19.1 18.1 .
.20.7 • 19.2
~0.7 20.0
21.0 20.0
27.5 28.9
31.3 30.4
29.0 31.8
21.0 24 .. 3
18.1 . 19.5
16.6 . 18.3
~··----· .. ··------·-~-.____;.___ --------·---·--
I .
,
\ \
,-fA. -~·
'
Comparisons between ce~mputed current velocities and those based on
:_,NOAAc: t1dal· curr~tJ.t':predictions were made. Figure 7. 2 shows .the cal-
c:ul~ted and P.:redic.ted tidal stage and tidal current: near .Anchorage . ~
' ;: .. ~ . . . . . . " . . ~ ~. " ~ .. · " ' . . ,:. . . .. . ...
off Pt., Woronzof. The tidal current predic.tiotts .we;e obtained by. ·· · . ." · ..
• 10 .0 • "'-
. applying corrections to the d!!ily predictions· at. t:he Yrangell Narr~. ·.: .
Bot~ ehe computed tidal stage and current velocity ~o~are well ~th
predict·ed values. . .. ..
.. . :. ... . ........
I. :~
~.
Surface current velo~:ity 4ata (Britch, 1976) measurei:i off Pt:; WrJronzof. !~::.
.· . . . .. . ,. · .. : ........ ~
were compared with c~rrent v~loc~ties calc1.1lated fo~ ~·· si:m.ilar period~~ ·A . .
Figure 7 .l shows . the results of the current velocity c:ompariscn1 along · 11
;
.
. with the corresponding tidal stage~ The ~i~al stage compar~son w~s. -~
~ed only to obtain the p1:·oper c\tP:'ent phase. . The model calc1llated
.. .. . ..... ·.
.. · current ve~ocities slightly· ·lower than those observed. Roweve:c, it wuld ...
be expected ·that vertical integrated currents·would be less than those·
measured at the surface due to lower velocities near the bottom.
. • I -:-r
·Based on the good agreement betWeen calc;ulated and repol:'ted tidal stage, l
. . . . . I
"ti;~~. 'Pb~se lag and current velocity, the hydrodynamic ":mci5~1 ca.u be . .f
I consi~ered cali.bzoated. '
Calibration of the vater quality model is accomplished by first setting . .
. boundary coudit:f.ons to observed va~ues and then adjusting dispersion co-
. .
efficient.s so. that the measured concentrations of a conservative wate~ .
quali t~ parameter ~r~ ma~ched . ad:equate~y. Salinity is particularly . .
suited to this procedure, since theconcentratio~sin the·tributary in~
flows are n·ear zero with the sole sou.rce of salitd~ being the ti4al
boundary.
.J
t
• • • .
l
I
I
'-' ~ . I
·,
•
Changes iil salinity take place ra~her slowly ~n such a large e~tua~;~~ ! . . t ..
. . . .
•
I
. consequently, a dynamic wate~ .quality simulation is r.eqti:lred · f~r d:S~: • . I
persion coefficient calibratl.on.. A steady-state approach "'.Jould resu.lt ~
in unrealistically high dispe"rsion coefficients for high flow eoadi~iiO~. ·~
a:ud low dispersion coefficients for low :fl~w condit~ons: . '' ... ·: -~=;~_; .;~i. : ... "':1·~ . . ..... .
• ' ~· ~ <' .H +# •'9' cl --l _,., • .ft... .• • • ,.,.:,... • • .. • \ t> '* .. .
.. ~ • ... ... •. , • 1',. .. .... • ........ ~""t!"t.·· ·-· .. -.:_. !~ ~ .., ...... "~ :'!·.,: r-+., ·-~·.. . :.. , .. 7 .CJ. • ... t ... ..,,_,. • "' •,. • .-f' .. •• ,. ....... ~ •• t:,_ ~ .... ·l-" ~"'t'
_......, <t • ,-~. ".. ·:.,..·~,. ~;.~-~·~·~.,:'~~:..,:.,.:.::of. _ ... ~·· •; -~ .. . .. .. ....... . . .. . . -,, .. ' . . ;
... II! ••<', • A .. oi!'lo --~· .r ~~:-.o:~-·!·-~:-·---..---:.•":_ ~:f$, .. --.r~~~-,.,.~ : I :· ~· ~· ~ · .,.._:.., •t ~ ...... • ·~ • "' ' l ._ ... • t .. • •·"""-·• •• t. ~ ,. !I'M~·~-~ .fl \~ ~•-I"""·· ~.: ·· .,,...:.• • ., -. • • a<· 'l•' ~,.; ·•••~ • ~~ .• -~ ... ~·~":-:7:...,.!,:..; ~-z.~·~1 ·•~'W.J ~.i~~! ~::-:~;;·:,,;.'.; ··~~:·t~·~;; ~~· •. ·:~~. :~·~··~f.~) :~~. · ·, .
...... -·-· .... • ... '"':., .• • . • •• -.. ........ •"':.o .. ., ..... _ ~ ~... .. •. _; .., .. -.....:....,!~:~.·· .. :t..·-: •• ", ;.,"" .. .
·-. , • '. ; l -~:;:;·~ t'!-. , •. ·:t .. i. -~. .• ' •• ·~·· .. \:~ .... , .• -· " ' ·" ... ~ ... ~·· ...... ,. .. -~'--· ~ .i£-. t "! '"JI!.-i ~~. ··l"!l." '! ..... · i*-~. . • " .. ·• ... ". :.·f~!. •;·~--.~·f""""'~·"'1~',..;,~_.. ... ~ ... ,.. ~ .. ;,.; ... J!'!l.~· ~'" . (.:'~ . • ·•;.".. •• • ;,.-.. ..-.:a· ............ ~~ ··~:-·,.,~·:... -~,. ... , .. Jt:;.: ..._rit/ •"' ···~-:· ' •• ) .. ~ . ·-· • • '. ' . . ·~ ~'li;;liil'··
.·
LEGEND -··
e PREDICTED TfOAL STAGE
;1. .... :
-COMPUTED TlDALSTAGE
...
.. as;;---------::!------=---...;..;..--+-.;.._---:!=~·---o 3 6 ·9 . . .·
HOUR
--0 -s~. 0
0 • ..J • u. -LEGEND
• OBSERVED CURRENT VELOt;lTlES
-~uMPUTEO CURRENT VELOCITY
-.e ·a:l
CD •• w -.10 I . I ,
0 3 a 9 12
'HOUR
FIGURE 1.2 Computed and Predicted 'Tidal St;Jge and Tidal Current off Pt. Womnzof
,.. ......
•
i
I
f
t
• I r
r j ·-
I
'l
i
' t
' !
i
I
I •
l
l
I
l ..
l _, .. \ .
\
..
..
;
' . !
'
. .
•
FIGURE 7.3 ~urre.nt Velochv Comp1red with Tidal Stage . .
.. .... ·~· ·--... ~ '* ... .. • ;• ... ---·' ... ~
LEOENO
TIDAL STAGE * (ESTIMATE fROM
T&OE TA,LE O~TAI
: ___. CALCULAYEO
TIME &HOURSt
..
. CURRENT VElOCITY
•. .
8 (E5TIMA TED fROM TIDAL
CURAENT DATAl
--CALCULATED •.. :Ia .
·a
~ -
ii •• !!!
-·-··-·4···-· ..... ________ .......
\
' ..
nov data ('0 .. ~. Geolog~~al Survey, 1913) for wat~r year 1972 (October,
1911? 'through Septe!:"'ber, 1972) tJere examined~ and the a~erage flows
I
during four"periods C?iuc:ulated for all major tributaries eo Cook Inlet.; . .
T"!-ble 7 ~ 4 is a S'nnm;.ufy of the stream ~lows. used for calibration.. The . . .
November, 1971 through Ap~il, 1972, ··period is representative of low
runoff. conditions and the mid-J~e, 1972 "through September, 1972, "ia . . "' . . .
representative ox high runoff condit:.ions c; The other ~ periods serve
as transitions between the major ~lotit conditions.
Surface salinity data for Cook Inlet: is available for the peric~~
May 21-28, 1968, August 22-23.~ 19_72, and September 25.:.29s 1972. To
calibrate the dispersion coefficients~ ~~e model was run dynamically . ..
for the entire 1~72 water year. A compc:rison between the calculated
, .
and observed salinity between Anchor Point and the end of Knik Arm are
·presented .. in Figure 7. 4. 'Ihe calculated. salinity at the eod of Au~st . . .
. .
!
I
! . '
and Septembe.r. 1972, c:ompare.s well with the-observed salinities at those
times.--The salinit~es observed during the May 21-28, 1968, period were· . . . .
compared w±th the computed end of May, 1972, salinities. The observed
and computed salinities for the end of May agree reaso11ably well, consider-
ing the dissimilar hydrologfe
The above comparison indicates that the dispersiott coefficients are
adeq118.tely calibrated. The dispe.rsion coefficients ranged from 2000
' to 6000 sq ft/sec along the axis of the inlet and Knik Ar.m an~ 200 to
. :
600 sq ft/sec perpendicular to that axis. These values are of the same
magnitude as thosa ~eported hy other investig~tors (Murphy·et al., 1J72)~
. ··-----·· .... ·-···-___ _...,._...._. __ .
,•
. .
·.
' . . .. ' .
. . .. ·~(' .. . . -~-
. .. ;
•
• I • .. . .
.• . !;
: ·' 1 . ,_ . 1
... "L • . . • . . ·-
; •
,., .. ·.·1· , t.,
.
Table 7.4 ·
FLOW RATES .OF MAJOR TRIBUTARIES ··TO COOK I~ET'
. . . ·• . .
..
. . . . . . Stream oct 1971
•'
Knik and Matanuska Rivers '7,170
Peters & CottDnwood Creeks 120
. Eagle. River . 191 .
Ship Creelt . . 126
Little Susitna.River 200 .
Susitna River 18,600 .
Kena:L River 4,800 . •
'*·--~--·
. .
.
.
'
Average. ·Flow Rate ·:(c.fs)
.
Nov.l971-May 1972-
April 1972 Mid-June 1972
.
1,420 . . 7;590 . . .
30 120·
. 51 210
: .
25' 114 .
60 .. 250
5,800 " 58,300
• lo310 ~ 2,590 . .
..: .....
.• , ... ·.·.····~.· .. ~-
~ ----~ .... :~
.
.
Mid-Jun~ 1972-.
Sept·l972 ·.·. ;
'·
31,200
280 . .
1,445
' ' . . 270 . . 1,800
'
77.500 .
.. 11.600
-
...
A.
G. r: -z
:i < "'
...
A. • .. > ... -z -.. < w
OSSCRVEO SALINITY AECUC~D FROM
• ISOHALIME MAP RE2RESENT1NG.
SS'TEMIJt.R 2$-29, 191'2 CONDITIONS.
_ COMPUTED SAUNITY
. ~NO OF SEPT. 1 5a72
s
0 125~----~~----~----~~----~----~~----~
20
tO
...
30
I
i
I
0
MILES FROM POINT\'!t'OAONZOF.
U:GEND
OBSCRVED SAliNITY REDUCeD FROM
• tSOHALJNE. MAP REPRESCNTJNG
AUGUST ZZ-23~ t9n CONOIT10NS
_ COMPUTeD SALlH!TY
END OF ~UG. 1972
Ylt.S FROM POIHTWOAONZOF
I
I
I
LEGEND
OBSERVED SALINITY REDUCl!:D FROM
• JSOHAUNE MAP RePRESENTING
MAY %1-2S. 1988 CONDITIONS
. .
COMP\.ITSD SAUNiTY
._..._ __ e;.:_NO OF MAY. 1972
• • • •
5
MJLE.S FROM POINTWORONZOF
..
FIGURE 7.4 Computed and Obs.erved Salinity between _Anchor Point and Knik Arm.·
7-16
•
i . } _;_.}.......,
.~ .•
EXHIBIT B
,.
) '
f '··
.'. ' .
. .
--.·rn•"--·1 • ~ '<' ' ~ ' • '1. • • ,.. ... --,. >-• • ' < ... • ' 't • -~· '. ~ : ~ ' ~ ... • • ~ ,::;~ ~ ;. ~ ~ • """ j
1
4
7
8
9
10
u
12
13
14
15
16
17
18
19
20
21
TABLE 8-1
CQ'I.PVTED s.<t.l..INIT1 CONCENTRATION-Cl'tO/L) AT saECTED LOCATIONS WITHIN ci:xJK I~
OCTOBER
APRIL
CASEttJ CASCtt~
29276 29278
.30281 30200
29033 29062
029609 29S03
27369 27409
29~99 29172
26976 27027
29035 28906
2~80~ 2S876
28:500 29332
26'10& 26762
;;IS892 2B7S7
24663 247:51
27943 27741
261S:Z 26244
28665 28519
2:5018 2S097
:una 27934
NOVEMBER
M~Y
CASE~·t ~ASEet~
29624 29:589
298:51 29831
28377 29371
29411 29:b9
2778:5 27784
29128 29031
27315 2733:5
29028 26910
26294 26319
28:508 283:50
270:10 2707:5
2S927 28799
2:5247 2:52Bla
2802:5 27824
26610 26641
28702 28:5:59
2:5:5St.t 2:5619
281:58 27971
23:5:55 :236:58 . 24294 24328
27444 27201 27:525 27284
. 22948 23058 .
27179 26904
22673 :%2783
27060-z ... ·.< 26?67
20786 20922
26212 2:5822
19717
2:5751
21082
26347
19023
2:541-1
18667
2:5271
19740
2:57:59
1:5:500
237?3
io:z:fB
24119
11''107
24:526
13961
22~4
198:57
25.90
21211
2:5966
.
19177
24921 .
1881:)
24749
19879
2:5301
1:5668
230:51
16402
23440
17269
:z:r:il0:5
14027
22149
1.4-;94
:Z2.313
23778 23817
271~ 26929
23:5:55 2:1:584
2699:5 26723
219!:.5 21939
260~ 2:571?
2104'1
.2:5324
2:2183
261:51
20403
::lS029
20149
24o73
21063
2:5348
17407
22,4:5
18043
230::!3
187lr.?
23~:51
16021
21209
163:50
21090
~!10:50
249~9
~204.
2:5823
20413
2463:2
20141
2~280
21066
249e2
17365
220EI5
!8009
2::!:591
18767
2:3224
1:5943
::!0738
16.C4<4
206:59
CASEitJ .CASEit:l
299~6 29763
29031 29104
28693 ' . 296:52
28804 :zseo2 •
28172 2B1:Ja
:za4a3 28460
27727 27705
::!S~Sl 28~16
26934 26806
27907 27923
27496 27468
::iS47l 2839::!
2:5'906 2:5S~
27328 27217
27104 27098
27960 2797::!
::!~OS 26178
27~51 27161
25068 2:5037
26~87 26473.
24o3o :24~&4
~:5993 2:5BSS
2+442 24377
2:5568 2:1:504
23019 22919
24::!88 24226
:!2279
~44
23253
24308
217'11
22717
::!1501
21881
22291
229:53
19114
188.10
19668
19369
20:314
20431
17911
16930
1ikl1:5
1lt446
221341
22974·
23153
24275
21:565
;;::!70:5
. 21:328
219:19
221~0
022985
1BS46
1:9976
19421
19:549
20099
~054b
17'68
17076
17e39
Ua774
.JANUARY
vY' .. Y
CASEttJ CASEtt3
29971 29900
2S291i 29393
28971 28906
27997 28041
28:514 29443
27491 :27::539
28116 290:5it
27696 27705
:!7335 27261
26625 26664
27903 .27847
27505 . 27507
27:572 27:512
2k557 26:564
. 2&785 26700
2:1:523 2~:578
25798 25684
024:570 24663
2540::! 25277
23608 23904
. ::!5239 25093
23056 23:234
23995 ~3792
::!1290 21~23
23347
19448
24199
21300
~'21:i48
19218
22663
19037
233:56
19394
20:158
14438
iU046
1:5033
21617
16283
19499
1227:5
197:54
U904
23089
197~
239?9
21~56
22579
19~35
22363
18439.
2:!101
19744
201:22
14910
20639
15314
212:12
16112
18959
12777
!9198'
1::!4-43
·FEBRUARY
___,;:lV9VST
CAS£•i GASEn
30100 30023
29135 282U
29219 29137
::!7399. il7477
l'tARCH
SEPTEMBEJ!
CASEttl CaSE!?
:30209 ~0127
28:58:5 i2S642
29437 29339
27362 274-48
29819 287::!4 ~9086 28971
::!6673 26775 . 26:577 26605
2946S 29379 28777 29665
26746 26826 26321 26430
27793 27669 2S17:5 ~8030
2~348 2,477 24918 2~065
&!8291 2S191
26-484 2&~63
270&8 26934
241~ 24314
27990 27894
2:5464 2:5~~~
:.27300 27169
24164 2430:5
2M24 26262
22790 22979
26085 2:1997
21847 22077
2:5942 25730
2128,\ 21 ~38 :. ... ..,
24849 24:56:5
19139 19472
24276
17439
-2~::!6
19333
2383S
l69S1
23li73
16000
::Z4:i!S~
17377
:Z1S07
12325
:22:139
1:301:5
22145
1<4198
20856
10295
21090
1016:3
23930
17819
2-t749
196:14
23472
17340
~941
1.7764
21::!~
12787
:u11t
1l47$
~267
1-4634 •
201£!4
1076(1
::!0398
10634
28612 .28499
::!6028 26141>.
27545 27372
23628 2:3804
;t:.~•
293:17 28~f
2:1284 :Z:S4':o.....;..~
2?'750 27:193
23931 2409A)
026979 26770
~30:1. 2:!:510
26680 26442
21s32 :a754
26~:53 26291
21154 -· 21389 -·.
:z~: u ~:1245
18'i92 19284
2:174411
19310
024696
169S4
24So48
16402
2~90
17649
22a9o
12967
237t2l
14669
:::!2039
110Q9
22245
11147
24668
17979
2~408
19~9
2407.5
16740
~6:53
14025
2:l1S& ':::!' 11~4
2144.
11~31
•
•
TABLE s ... 1
(continued)
C:~.FUTED SAL.INITY CONCENTRATION (l'iQ/L.) AT sa.ECTED LOCATIONS WITHIN COCK INL..ET
NODE • OC"n::IBEJi DECErlBER
JUNE
-26
31
35
43
44
47
48
49
~0
API:UL
1451)6 'l4644
~3378 22~30
12819
22419
12572
~337
.13000
21~4
.12717·
21343
US03 1~991
21824 20914
10~76 · 11lB1
21294 2041£1
10927 11127
21349 20456
10~14
20814 ..
10731
19971
10710
20056
10489 .. 10684
2122!i 20333 .
CASEU, 'ASE•3
' :16763 1lt642
21134 2073~
15003
20785
1~942
19607
14.948
20261
14795.
19181
t4ou . , 139o9
20160 19608
13116. tr-29
20078 ' -459
13178 13177·
1987:5 •9277
1~433 12497
20153 19474
12:530 . !2580
200:51-19387
12'127 12923
19427 18841
CASE,!! CASE•3
18594 18203
16379. 1670'7
16990
16384
16960
143&9
16666
16551 '
16507
14819
16079 1:576::!
15:504 1 :5639 .
1:5236 • 1499::!
1:5447 1:5432
15331 1:5069
14711 .141~2
14512
161~9
146SO
1:5611
14347
1:5976
!4<464
154S2
'1:5160 14896
1:U46 131CJs·
7466-7641 . 10:27:5 10341 12830 12697
72:i1 . 7182 l9:5~4 18791 17328 16714
.
· · i·U 7. ~270 9045 9126 11714 1162::!
4760 4721 'a696 17950 15769 15186
:5593
18300
. 4076
1703~
2!:5:5
14338
. 854
11285
213
8098
19
5098
103::38
20966
10231
2047:5
.. 1016~
204U
.10069
20109
.10241
·19:521
·4JB2
16367
Z!Oil
13764 8,..
10800
:217
1702
19
4780
10548.
20100.
10450
19660
10387
19601
102&1
19326
10429
18'196
8532
150:50 .
8612
14489
1122:5
4114
11149
. 4081
7100 711'7 9883 9836
12282 11815 1958 1943
4856 4899 7499 74:57
7477 7202 4~ 430
2961 2965 ' 5297 :5230
3282 3174 51 :51
148:5 1468 33:52 ~275
9i24 899 3 3
:554· :529 1878 17S9
e' s3 o .o
12:550 12:186 1~735 l45~
19776 19133 144.97 14421
·12000 12092 1~036 13916
:zooaa 19379 16361 16096
11900 12000 '13932 138:24
20123 19403 16:52S 16235
11637
19902
.U28B
19948
11751
1'1178
11422
19109
1:1:579
16426
12963
174:17
13504
16082
12948
169~.
.JANUARY
..M.Y ~se•s ~g,a
:i!OOS8 19:523
11337 11134:5
1~672 18146
11749. • 1220.0
18630 17969
10168 10748
17EI5:5 17326
10842 112:52
17103 16638
1056:5 10869
17199 1.Q714
9723 . 10042
16425
11406
16~67
106S8
16033
1160:5
1i!a153
10913
17066 16578
7886 8170.
15000 146:51
2::53:5 2ol6
13979 13694
1237 1276
1:3:522
1012
13247
10(;4.
1224:5 12018
3~9 34D
9796 961:5
'44 45
7373 7:1!09
3 3
:5067 4933
o ·o
3188 303:5
0 . 0
16666 16230
9320 95~9
:5969 1:5623
11805· 11930
15873 15:538
11966 12076
15:505
123:28
14796
~~
1:5:!0'P
12375
14578
1369::!
FEBRUARY
AVCUST.
CASEttl. SASE.•..3
21382 2C&86
984::! 10~82
20131
9598
20083
8578
194:50
~0045
19268
90:58 '
19::39~ 187CI2
87:5~ .9~71
187:a9 . 18085.
S36S 9730
18818 18156
7852 82.12
18113
8787
18246
8337
17531
9103
17645
8659
1870::! 18040
6642 69~3
168" 16309
2469 :2609
1:5902 15422
1332 . 1398.
1~476
1099
15018
1153
14260 13857
405 426
11796 11464
64 67
fi235 8948
5 . 5
6706 6456
0 0
~479 4250
0 0
18341 .177:22
7474 '7188 ·
17692 171:53
9014 '9291
17606 17~'?.!.
909~ 936~
17253
9413
16~4·
10:174
16761
~644
16130
10723
MARCH..
SEpTEMB£8;..
.~.A~EU CASE•3
:!2~99 21703
11302 11~7
iU394 20593
10073 10458
2134~ ·20409
9534 992,
20737 .. 1~~.09
91-44 951.11
201.38 19352
S~l~ SS6b
20~15 . 194.13
8302 Bc~O
19~85
8402
19851
8735
20107 .19304
76102 7931i
194~1 17734
4103 4:290
17:552 16916
2786 2919
17154
2408
16000 ts-442
1262 132:5
13:552 13090
339 358
10906 1.0498
. 51 54
a~os 7&:5:5
4 ~
:5722 5412
0 0
19787 19021
7930 8157
19203 18~06
8333 8~48
19127 iS437
8322 963:5
.18799
8~11
SS13.4
.89&9
~s1•:a
8701.
17$49
fi2;Ja
liO
100
101
102
103
106
107
108
109
110
111
115
117
t27
TABLE B-:1
{continued)
COMPUTED SALINITY CONCENTRATION (1'10/Ll AT sa..EtTrED LOCATIONS WITHIN COOK INLET
OCTOBER
APRIL
£ASE•I CASEtt:t
10692 10834
1.S8ao 1 a2:zo
11275 11362
18293 1769"'
1~039 1:2057
17643 -i.;'l12
~ 13014 1294'7'
16965 16:506
117~1 11936
21817 20893
l2212 12:ii'6
22124 21l:SS
11854 12029
21928 20974
11672 ·n959
21794 20860
11792 11973
21877 i.20937
U4S9 11675
2172~ i.20797
11:572 117:59
21750 i.20825 .
1127~ 114\67
21625 20704
10999 u1cn
21479 20:169
1134~ 11538
21644 207:!6
10959 11153
2146:5 20555
104\98 10691
21234 20341
11120 11311
21537 20~2,
10825 . 11015
21396 2049i
10.$84 10676
21232 20339'
9~94 9774
20767 19902
·889 1 r;o77
20396 19554
8233 9415
20034 . 19214
NOVE1'1BER
-. "'?-·":JY""--......, ...... -~W.. CASE•3
11132 11269
19609 1SB84
11143 11269
19291 19593
11267 11372
18874 1S216
11:574 11643
18360 17756
!3991 1:1941
20036 19492
14:537 14430
19787 19311
14177 14097
19780 19272
13921 13875
20024 1947:5
14081 1-4017
199:22 19394
13805 13758
19831 19285
·13853 13807
19948 19399
13617 13582
19771 19213
13366 13344
1963S 19068
13662 !3026
19855 19297
13342 1:3321
1959.1 19022
12946 12939
19392 18810
131\72 134-45
197:24 191~·
1:1244
19396
13~
18934
12948 12939
19344 12766
12.168 1218~
19842" 1824;,
11'51
18.4:32
10968
17966
11587
178:23
11019
173:12
DEC£11BER
,J!.JMi
CASElli CASEtt:J
12441 1247:2
181~7 17605
1::2067-' 12126
1 657!1 17971
1173~ 11916
1887, 18~
U~l:l 11609
19951 1i:3294
16072 15744
1'248 15413
16592 16386
14789 1:1110
16267 15894
14754 1-4996
16014 1:5690
15200 153~
16171 15921
15003 15203
1:1928 1:1601
14726 1.14891
15962 15638
14964 1:1114
1576:1 i5453
14:141 14\600
1:15-42 1:1249
1417& 1426:3
1.5797 1~90
14617 1-4740
1:1523 15231
14051 141:35
15179 J.4912
1.:3042 1:3093
15634 1:1335
14196 14297
Hl440 1:1149
13609 1:3694
15193 14914
12912 12965
14503 14276
11151 11161
1:3961
986.~
134\47
8630
13767 •
994:3
13:282
9,93
.MHU~Y
,JULY _
CdSt;ttl CAUE•~
14104 13960
1:109, 14982
13,31 1:3445
16113 15792
12941 12914
17103 16.672 .
12404 124:28
17917 17:391
179'0 '17306
10599 11026
18:307 17691
10395 10913
18025 17438
10207 10673
17802 17260
10~00 10919.
179-41 17375
10365 10908
17733 17187
999:2 10389
17759 .17216
107.94 10603
17594 17061
9710 10089
17401 16985
9298 9637
17617 17096
9721 " 10101
17395 16871
9172 9:515
17083 16:593
7787 8072
17477 169:17
921:2 9~64
17312 16801
9766 9096
17097 16595
7674 79~5
16489 16040
5777 :198~
16009
4542
1,169
363.9
FEBRUARY
AUGUST
·cAsE•s casc;n
1~912 15479
11849 US97
1:1171. 14906
12999' 12950
14493 1-4~93
142:10 .14091
13904 13686
15488 15213
1939:1 18683
9:19;1 9013
19900 1902:3
6596 9055
19S:il 18799
6399 6S2~
:t<73'4 16643
8:509 S92S
194713 18745
94~7 SSS4
19295 19579
816~ 9:572 .
19317 18605
9299 9708
1917~ 18469
7961 6354
1~oo=., 1S313
. 7652 8026 .
l'fARCM
SEPTEMi!f!
_ CASt;tt CASEO::I
17428 16918
9790\ ~
16792 16.3:51
10633 10751'
·16098 1~732
11626 11674
15:369 X'<l99
12740 12700
207:33 19890
9050 9424
21092 20192
9318 ~70:5
20969 19990
9036 1741~ ,to
20696 -198~~
9971 9!344-•
. 20906 19944
9021 9398
:!0640 1979:2
97'2 9121
2066:2 .19919
SS37 9207
20:5:30 19693
8:564 9926
20374 19:549
8305 6660
19192 18490 • 20:549 19714
7961 83S2 9:587 8948
18989 19301 20360 19537
75713 7949 82:59 9611
1S720 18053 20119 19315
6:589 6908 7599 7923
19069 18376 . 20437 19610
760:5 '1977 9:330 8682
18924 1S239
7317 ,.674·
19722 180:55
6517 6834
19187 175:19
5092 :5:329
17757
4\128
17:345
~10
17160
4328
16717
3470
20296 19477
910:3 8447
201:21 1931/a
'7563 1'SS6
19637' 1'6867
64:S2 6733
1Sti:'~,
4.914
NODE •
4
7
8
9
~ .10
u
12
14
16
17
18
21
.•
•.. <· ' '
22
TABLE B-2
.CfJMPJJT~D SALINITY CCNCENTFJATICN (KQ/~) AT sa.ECTED LOCATIONS WITHIN COOK lN.Er
CCTDUEJt
APRIL
£aSE! J 'ASEtU~
~9;!76 . 292S2
30291 30194
290:33 29069
296(19 29493
27369 ~7416
29299 29160.
26976 2703:5
2903:5 28993
2~906 2:5996
:i!9:soo 2e:u 5
267D6 26770
29992 28744
24663 24763
27943 27721
26182 262:53
2966~ 28:504
2:5018 2:5109
29129 2791:5
23:5:55 23671
27444 27176
22948 23072
27179 2b876
22673 22797
27066 26136
20196 201!}39
26212 2:5781
19717 19874
25751 25244
21092 21227
26347 2:5927
19023 19194
2:5411 24871
1S667 19932
25272 24697
19740 19996
2:57:59 2:52:5:5
1:5500 1.5687
23773 22991
U239 16421
24119 2i.174
17107 1729?
24:526 23944
1.o&04S
.-~070
H143 1431:5
2:3167 222:34
NovatBER
MAY
CASE•t CASE!,!
29624 29:586
299:51 29939
29377 29:372
29411 29339
27795 27796
29129 29029
2731!5 :27339
29028 29904
26294 26324
29:508 29:339
270:50 27090
!28927 29791
2:5247 25293
2902:5 27909
26610 26646
29702 29:549
2:5:586 2S624
291:59 27958
24284 24336
27:52:5 2~k6
23778 23824
271173 26912
2:3:5:5:5 . 2:35fJO
2699:5 .26708
2191:5 2194:5
~6062 2:5699
2104Cf 210:5:5
2:5::324 24946
22183 2:2210
26151 2~807
20403 20418
25029 24616
20149 20144
24673 24270
21063 21071
2~348 2~970
17407 17366
22:545 22096
19043 19011
23023 22~90 .
19797 18770
2::36!51 23218
16021
2120'9
162:50 1&:;!39
21090 21'.)091
DECEr'IBER
,JUNS.
CASE•J CASE•.!
29826 297:59
29031 29114
296,3 2965~
29904 2SB06
29172 28128
29483 2946:3
27727 27705
28~91 29!516
26834 26907 .
27907 27923
CASE•l, CASE•4
29971 29894
29298 26369
29971 29902
27997 29046
29514 29437
27491 27:546
29116 2B051t
27696 27711
2733:5 272:56
26625 26673
274&6 27469 • 21qo3 27943
29471 29:391 2750:5 27512
2:5906 2:59133
27329 27217
27104 27099
27960 27971
26209 26179
27251 27163
25068 25037
26597 ~6475
246:30 24584
2:5993 25994
24442 2437:5
25~~8 25515
23019 22916
242BS 24243
22:'79 22129
~944 23002
23:!:53 231 ~
24308 24293
21711 21:5:59
22717 22730
21:501 21319
21881 21994
2:!29.1 2:::;43
(229:53 23013
19114 18931
16810 19026
19669 19407
19369 19:599
20314 200BB
20431 20599
17911
~1C.S30
17:S4S
1713:5
1921:5 17818
164~ .16840 •
26432
25799
27~72 27S09
26:5:57 26:570
267&:5 2o69S
2:5:523 ~SSS9
2:5789 2:5678
24570 246SQ
2:5402 2:5269
23668 23924
25239 2:50tl2
23056 232'..57
2399:5 2:3778 .
21290 215:53
2~347 23069 .
19449 l9B26
24199 2398:5
21:30~ 21.SBS
22948 22:S:S¥
19218 19571
2266~ 22340
. 190:37 19479
~:3356 23082
19394 19781
::!0559 20096
14438 14955
21046 20606
15033 15561
21617 21224
16293 16754
19915
12923
197S4 191!51
11904 12490
FEBRUARY
AUCUST
:30100 30012
291:15 29~17
29219 29127
2739'9 27496
28819 29:"'13
26673 26795
28468 29:371
26746 2683n
27783 27658
25348 2~491
28291-29193
26494 . 26:573
27068 269~
241:54 24:331
27990 :27896
25464 2S:562
.
27300 271:57
241,6.4 2df320
26424 ,'26247
~7SO 23000
2608:5 2:5880
218~7 · 221C'IO
2:594:2 25710
21281 ~1~62
024849 24:536
191::38 19:503
r;ARC:H
fiE,TEI19ER
CASE~1 CASEU
30209 3011'7
295~~ 28640
29437 2q328
27::3&:2 274:51
·29~96 2S95S
26:577 26689
26777 29654
26:321 264:37
2917:5 • 28015
24918 25074
29612 29486
26029 26149
27545 27354
23628 239So
29357 28220
2:5284 2541:5
277:50 27561t
:23931 24101
26\'79 26748
2230:5 22:S23
26680 264U·
21:532 21767
26:5:53 26262.
211$4 &!.1402
2:5591 2:5206
18992 19:300
~4276 23993 25082 24621
174:39 178:54 1766. 17993 .
250:26 ~472i 2:5746 25370
193:33 1969:5 19310 19603
2:38::39 2:3434 24696 2.4::!07
169:5! 17378 1695~ 17302
23673 2~232 24:549 24021
16000 164:57 16402 167:53
2429:5 2390:5 2:5090 246~2
17377 17799 17 649 17979
21807 21191 22890 221:52
1232:5 t2S2B · . 1286'7 132:58
22239 21~53 23273 ~SG1
13015 1:3:519 13652· 140:36.
2274:5 22215 237.23 ~:3093
14198 14673 l14669 1:5040
20107
10901
21090 20317
10163 1067:5
22039
11008
21168
11406
22:24~ ·~13:56
U14'i! 11~40
~·
.. . . 3 .. ·'·' ') -3 <!""". _. . ~3· .. · ... . _,.. .. · ~. . ....
c "( ,,·
24
26
31
37
44
47
4a
54
TABLE B-2
(continued)
. . .
... _,~ ~, ~. · ·-~;.t -· ; ~ · ·J .\ .;; ~ /\. ~:~~~!' ... ~~---~ / . .> :J; ~· · .. ,f... :;;. ,:::!.1· ::~Af~;~l..2J~i.-~,titt~:~~: ~1.:...~ ;~·;; !) .,
OCTOBER
APRil. . ,
CASEitJ CASEI!4
14506 141,6~
23J7S 224~4
12819 13021
22419 21461
t::z5n t274o
22337 212:5,
11803 1201:2
21824 20827
10976 11202
21294 20325
10927 11147
21349 20369
10514 10.,2
20814 19884
.1049:5 10730
20912 t99o9
10469 10703
21225 20245
7466 76,5
19584 18708
6117 6281
18696 . 17971
3593 S745
18300 17496
4076 4190
17035 162~5
~155 2213
1433&1 1.3705
854. S74
11285 10751
213 ;!17
8090 . 7665
19 J9
5098 4753
10339 10!169
20966 ~0012
10231 10471
20475 19574
1oto5 1040B
20411 19:5lt!t
1ooo9 to3o2
2010'f 19243
10241 t04sa
19521 18719
CASF..!l CA5e.,4.
16763 16636
21134 20761
1:5003 14946
20785 ~026t!t
14942 147a7
19607 19220
1.ilOU 13970
20160 19~\19
13116 13135
20078 19440
13178 131Bi
19875 19263
124:33 12=!07
20153 . 19437
12530
20051
12927
19427
125E9
19355
1~27
18929
10275 ~03:50
1~328 10675
9045 qlt35
15769 !.5143
9532 6621
1:5050 14447
.7100 7185
12282 11780
4a5t!t -44903
71'" 7189
2961 2966
3292 3177
~~~5
924
554
85
i2550
,19776
1200Q
200fJS
l1'i'OO
201:23
11637
19902
U28B
19948
1<466
902
527
S4
12S94
19106
12i05
19:332
12013
19:.153
11766
19123
11~0
19045
DECEt1BEit
,!liNE
19~fil·~ l'3lSO
16379 16770
16990 16648
16384 16604
16966 16~90
14389 1<4996
16079 157 ... 7
1:5504 1!5668
15236 14982
1~447 1!5465
1:5331
14711
1:5055
14780
14512 14340
16149 15994
14650 14455
15611 15505
15160 14861
1314t!t 13227
12830 12691
7~31 7194
LL'714 11621
1~760 47.:!9
11225 !1146
4114 4099
9883 '9835
19~9 1947
7499 74:56
432 431
5297 5232
51 :31.
1978
0
14735
14497
14036
16:.161
13932
16:)25
1~:579
16426
1296~
17437
3270
3
17EI3
0
14\517
14447
13913
16103
13821
16~40
13~04
16080
1~5-4
16954
.JANUARY
.JULY
CASE!l CASE;tt4
200Eict 19475
11337 U867
18672 19104
11749 12246
19630 17912 .
10168 10796
17855 17283
10842 11294 .
17103 16602
10565 10906
17199 166"t6
9723 10078
16425. 16004
11406 U637
16567 i6123
10689 1094t!t
17066 165~0
7886 8202
1:5000 1~626
2535 :262t!t.
13979 13664
1237 1281
13522 1:3229
1012 1048
12245 12004
329 341
9796 9603
-44 46
7:373 7i97
3 3
5067
0
3198
0
16666
9320
!.5969
11805
15873
11966
1550:5
12326
14796
1:3779
4921
0
:3021
0
16198
9590
15600
1195S
15516
12104
"191
1239&1
1•\567
13709
FEBRUARY
AUCVST
21::362 20604
9845 l0319
20131 19374
9:598 ~0085
20083. 19171
8579 9100
19399 196~5
8755 9209
. 18729 18017
8368 Ef765
19818 16095
79!52 8245
19113 17474
8'187 '!136 .
18246 17~95
8337 8692
1B705. 17969
6642 6992
16844-16257
2489 2620
1:590:! 1 :5379
1332 !404
15476 14977
1099 1159
14~60 13923
405 42S
11796 11436
64 68
6706
0
4479
0
18341
7474
1769~
9014
17606
. 9090
17253
• 9413
16344
1057~
6431
0
4223
0
17658
7919
11102
9322
17027
9:192
161717
9671.
160 ••
1074.
,..ARCH
SEPT£MBE£!
CASEI!l CA5Et4.
:!2499 :!1611
1130~ 11674
21394 20~1
10073 10472
21341 20301
9534 9931
207:17 19614
9144 9530
20136 19:!6~
8:51:5 9884
20215 193:!2
8302 S66t!t
,.s·
19565 1877{
8402 87570L.--
19704 18~70
B22B 8~83
20107 A9~1~
7612 7953
18421 176~9
4103 4300
175:52 16847
2796 292~,
171:54 16473
240B 2520
16000 1:5363
1262 1329
13:55~ 130:U
339 3SS
10906 104~6
51 54
8205
4
5722
0
19767
• ?830
19~03
8333
19127
93:22
lB79't
S4U
1Bl:;l4
99&'t
76tt?
"
:5379
0
18934
S17•
~e4c'f
aa7t
l8:3o2 a•sv,
l&07i
e?:z~
t741Ul
CJ24r10-
NODE 4l
100
101
102
103
•• 104
1C$
106
107
lOB
109
110
111
11$
116
U7
127
•
TABLE B-2
(continued)
COMPUTED SALINITY CONCENTRATION U1Q/L) AT SELECTED LOCATIONS WITHIN COOK INLET
0CTD3ER
API:Ut.
t:ASE•t CASEU
10692 108:19
18BSO 1~l151
11275 11388
19293 176~
1:l039 12083
17.643 17059
130:\4 12972
16965 16462
11751 11957
21917 20905
12~12 12398
22124 21067
119:54 12050
21928 2098:5
11672 11890
21764 20772
11792 11'994
21977 20849
11489 ~1696
2172:5 20708
11572 11790
21750 20736
11276. 114&'7
21625 2061:5
.10999 11212
21479 20480
11348 11$$8
21644 20638
109~9 11172
21465 20467
.10498 10710
21234 20253
11120 11332
21~37 20536
10825 11034
21::!96 20403
10484 10695
21232 20251
. 9:594 li'791
20767 19916
8891 9093
20396 1946·9
NOVEMBER
-MAY
CASEU CASEt14
11132 11290
i9609 1881h
11143 11291
192?t 18:525
11267 1139:5
19874 18150
11574 11667
16360 17694 .
1~991 13941
20036 . 19497
14:537 14425
19787 193311
1417':' 14094
19780 192&9
t39:u 13876
20024 19478
14091 14016
1 t3'922 194~
13805 13759
19931 192S9
13853 13908
t994e 19402
13617 13:583
19771 19212
13366 13346
19638 19002
13662 1362'7
1-9855 19296
13342 1:3323
19591 . 1901o
12946 12943
19392 18799
1:1472 13446
19724 191:56
13244 13225
19396 18828
12948 12943
19344 187:5:5
. 12169 12191
19842 18224
11:551 11:594
18432 17795
DECEMBER
,JUNe
12441 1241n
19157 1757:J
12067 12141
.1857~ 17929
11731 11833
1887:5 !8179
11:512 1.6.28
189:51 .. 1823:5
16072 15725
1~249 1546:5
1~592 Ua162
14789 1:5171
16267 15973
14754 150:55
16014 1:S6Y1
15200 1540:5
16171 1:5801
15003 .1 :5258
15928 15582
14729 14931
15962 . ~~~619
14964 1:.\1.64
15765 1:5~136 .
14541 14706
15:542 15232 •
1~!76 1430:5
15797 15468
14617 147137
1:5523 15215
14051 14177
1 517Ci' 14897
13042 13129.
1S634 1:5318
i4196 14341
15440 15133
13609 13735
15183 1489,
12912 13001
14503 14264
u1:s1 "usa
13961 13757
9Sb2 98t.4
.JANUARY
.JULY
CASEMJ CAS!&tt"
141 04 T 1 :1955
15095 14894
13531 13446
16113 1':578~
1:2941 12920
17103 1664'1
12404 12438
17917 17355
17950 17262
10:199 11069
18307 17639
10395 10960
18025 17389
10207 10717
17902 17216
10:500 10961
17941 17329
~0365 108:51
17733 17142
9992 10430
17759 17172
10194 10644
17594 .17018
9710 lQ12'
17401 16944
9298 9675
17617 17044
9721 . 10~41
1739:5 16930
9172 95:52
17083 165:54
7787 8103
17471 16916
9212 9601
17312 16760
9766 9131
17087 16556
"7674 7995
16489 16005.
'J777 6006
16009 1556~
. 4542 4716
FEBRUARY
AUl;UST
13812 1:54:53
11848 U914
15171 '1481)9
12999 129~0
14483 "1~283
14250 1-4093
13804 13683
15488 15205
19395 18604
8:5902 9051
19800 18933
9:596 9096
18713
8864
19564
8963
19478. 18662
8457 8923
19295 184'"
8165 8609
19317 18:5~:)
8299 87-46
1'9174
7961
18391
8390
19003 18238
76:52 S060
19192 1~12
7961 838'7
1B?S9 1822'-
7578 7981
18720 17992
6589 6939
19069 18300
760:1 8010
SS924 1S164
7317 7707
1 S72~ l7'1B3
6517 6863
18167 17Al93
5082 5352
17757 17099
-4129 434.7
~ARCH
5EPTE1'15Ef!
17~29 16968
979-4 10003
,16792 16310
10633 10776
16098 1,701
11626 U689
1~388 1~077
12740 12709
20733 19793
90!Hl 9438
:21092 2QOB7
931S 971S
20969 19869
.,036 91.27
20696
8971
20806 1994:)
9021 9410
20640 19695
87'J2 9134
2066::! 19722
8837 9221.
205:30 19596.
8564 8941
2037-4 1~4:5-4
930:5 9675
20~49 19618
B~S7 Si162
:.!0360 19443
8259 ~-
:itO 119 19:!2:1
7598 7938
:20437 19:515
8330 B697
20296 1938:1
8103 8462
20121 1922-4
7563 7901
19637 18780
6452 6747
192~0 18~24
~6~1 5913
•
' .. -..
USER'S GUIDE
FOR THE .
..
ESTUARY HYORODYNAt·UC AND
WATER QUALITY MODELS
·Prepared for the
Depar.tment of the Army
Alaska· District
Corps of Engineers
Anchorage, Alaska
Prepared by .
Oonald.J .. Smith
Tetra Tech Contract TC-827
DACWSS-76-C-0044
September, 1977
Tetra Tech, Inc.
3700 Mt. Diablo Boulevard
Lafayette, Ca 1 ifornia 94549
(415) 283-3771
2._ .... l~~~ ,) ' . "
,.-. ) •..
>"
••••
II.
•
TABLE OF CONTENTS
INTRODUCTION. • ~ ~ • • • • • • o • • e • • • • • • • ,, . .. . . . BACKGROUND • • ,.. • • .. .. . .. .. • . • .. • .•
PURPOSE .AND. OS COPE. • . • • • •-~-.. ,. ·• ·• • • . . ..
,. •''
. f·10DEt DESCRIPTION. • _ • . . . . . . ~ . . . ~ . .
Conceptual Formu)ation •• ~-~ ~ ...... .
Program Qpgrational Sequence. • • • • • • •
General ModeliD9 Approach a ••••• . •-.
System Layout·_ .... . . ... . ~ .. .. . .
HYDRODYNAMIC MODULE • . • • • • • • • • • .. . . . .. .
INPUT REQUIRENENTS • • • • • • • • • • . . . -. .
PROGRAM ROUTINES • o • • • • • • • • e • • • • •
INTERPRETATION OF RESULTS ••• .. . . • • • • • •
• • • • • • • • • •
INPUT REQUIREMENTS • • • • • • • • • • • • • • •
PROGRAt-1 ROUTINES • .. • • • .. • • • .. •
-INTERPRETATION OF RESULTS ..•••••
• • • • •
. . . . ~
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
i
••
Page
. _,'
_,,.
3
3
3
4
7
. 7.
9
9
20
22
29
29
48
50
CC•
. .
.,\
..
. I" .~ ., '. ,. .. ,:.'_,;
;.,.,
,....,)
,/--.)"
r~"/
"~ ..... -..-~--""". !~·
Figure I-2
Figure It~~
'
LIST OF FIGURES
.. . . ~ . . .
Tidally Averaged EstuaryModel
Flpw Chart" .. .. .. • •· , .• ·. • • • • • • • • • •
Estuary Hydrodynamic Nodel
Subroutines • • • • . ; . . · •
;;
. .... . . . .. . ..
• • • • •
Page
2
6
21
49
i\· . il
.
l . ..... ·~·-···:&' > ', -~ . ~ . . . t -··· "• ...... ~·.,' .. . ... ' J~---... : 'f.:··-~
. LIST OF TABLES
Page
Table Il-1 HYDRO -Estuary Hydrodynamic Model
Data Requi rem~nts. • .. • • .• • • .. .. . • .. •. 10
• • •. i, • 30
• •••• • • . '
• iii
I. INTRODUCTION .
BACKGROUND
The Fede.ral Water Poll uti on Control Act Atnendments (PL 92-500)
of 1972 establishes specificr~quirements directed to the control
of point sources of pollution. The Department of the Army, Alaska·
District, Corps of Engineers v1a s given the res pons i bi 1 i ty to determine
the effects of various level::; of treatment and levels of wastevJater
affluent discharges, ~s defined in PL 92-500, on the water quality·
of Jpper Cook Inlet including Knik Arm.
Tetra Tech, Inc. was contracted to prepare the Knik Arm and Upper
Cook Inlet water quality report. Included in th~ study was the
selecti.nn and use of appropriate mathematical models to aid in the
evaluation of the effects of wastewater effluent discharges. The
models selected and documented herein are:
• A two-dimensional horizontal, complete mixed
vertical, dynamic hydrodynamic model interfaced with
• A two-dimen~ional horizontal, complete mixed vertical
tidally averaged dynamic/steady-state water qual i·ty
model.
This manual provides basic instructions for the set-up and use •
of the general estuary hydrodynamics and quality models. An example
problem data set and simulation results are presented in Appendix A
through D. The example utilizes the node-channel ·representation
{see Figure I-1) used for the water quality evaluation portion of
this project. A listing of the computer program codes for the hydro-
dynamic and wCiter quality models are presented in Appendix E and F. •
1
FIGURE 1-1 NonE AND CHANNEL LAvour FOR UPPER CooK INLET
iNCLUDING KNIK AND TURNAGAIN ARMS
. . Detailed descrJptions of the theoretical .. ba~kgrourtd !lnd rna the·-..
matical formulations .essential in the estuary model development are·
presented -in the Documentatfon ~eport*.
PURPOSE AND SCOPE
This manual· is intended to provide the user with information
which is fundamental in the set up and use of the estuary hydrodynamic .
and quality models. It includes general instructions regarding:
1 Geometric representations of the prototype system;
• Data requirements and .input· format speci ficatio.ns;
• Pr·ogram subroutines and computation a 1 sequence;
-• General modeling procedure; and
• Interpretation of model results.
.. t400EL DESCRIPTION
Conceptual Formulation
~" .
The numerical model represents the estuarine system as a variable
grid r.,:t\·JOrk of "nodes" and "channels... Nodes are discrete vo 1· ume
•
units of waterbody, character1?ed by ·Surface area., depth, side slope
and volume. The nodes are interconnected by channels, each having·
associated length, width, cross sectional area, hydraulic radius,
side slope and friction factor. Water is c0nstrained to flo\•/ from
rine node to another through these defined channels, advecting and
diffusing water quality constituents betv1een nodes ..
.
*Johanson, P.J., D.J. Smith, F.M. Haydock, and M.W. Lorenzen,
"Documentation Report for the .~r.tuary \~at~r Quality Models ...
A Report to Nassau-Suffolk Reg1onal Plann1ng Board, Long Island,
New Y.ork, May, 1977.
3
•
•
. .
••••
The fol'IO\-Ii'ng are underlying assumptions· bf' the estua~y ,ffiodel.
,, · 11he ·1estuarine system is \·Jell mixed vertica11y.
• The law of' conservation of mass is ·obeyed for water
· ·quality constituents.~
• ·chem1ca1 reaction rates may be estin:ated using first
order·· kinetics characterized by reaction-specific rate .
-c.oeffi cients.
Progr-am_Qperationa 1 Seguence
· The overat1 t\·m-dimensiona 1 estuary model is composed of two
separate components, a hydrodynamic model (HYDRO) and a tidally
averaged ,qua 1 ity model {AQUAL) •
The numertcal models are used i~ sequence so that the results
of the hydrodynamic modei become input for the \•later quality model.
The chief advantage of dividing the overall model fnto segments is
that HYDRO. can be calibrated separately and then used repeatedly
i rt the 'ca 1 i brat ion and a pp 1 i cation of A QUAL.
HYDRO calculates ·the hydrodynamics of the estuary using detailed
information about geometric configurations, hydrologic conditions and
predicted tidal time-stage relationships •. The equations of motion
and continuity are applied to determine the physical transport
"
mechanisms of \t/ater flows and velocities in channels» and volume
changes in nodes. The resulting data are averaged over the complete
tidal cycle and written on dfsk files to be used as "input to AQUAL.
4
.•
AQUAL combines formulations _for. biological and ch.emical
reactions with advectiva and diffusive properties in a mass balance
equation to ca1culate'tidal1y averaged water quality at.any location ...
and time. Required inputs include system geometry and tidally
averaged hydrodynamics fr.om HYDRO, boundary conditions~ dispersion t ' ' ' ' '
coefficients, point and non-point source, qual itylt reaction rate
coefficients, and met~orological conditions. The dispersion coeffi-
cients ar'e, used to estimate net dispersion in the prototype since
tidall~.induced advection is not directly modeled. AQUAL .may be
operated in either a steady'"!'state or dynamic mode. The final results . . . ''
in the steady-state mode are representative of daily average condi-
tions which would prevail if all inputs remained constant over time.
The dynamic mode·is useful for simulating. long-term change~ in water
:quality which result when system conditions .or v1aste inputs change
. ~ ·•
significantly over time. In this mode the mode1 uses tidal cycles
as the basic time step and yields average daily results. Figure I-2
summarizes the program opera tiona 1 sequence. for the t ida 11 y averaged
quality model.
The quality model can be used to simulate any combinatio.n of
the fo110\t~ing thirteen parameters and have the capability to include
up to four additional user specified constituents. Optional con~tit
uents may include any dissolved or particulate constituent with first
order decay, .settling and transfer between con$tituents through decay.
G:;'1init;:)
2. Total·Nitrogen
3. Total Phosphorus
4. Total Co1 iform Bacteria
5 •. Fecal Coliform Bacteria
6. Carbonaceous BOD
7. Nitrogenous BOD
8. Oisso1ved Oxygen
9. Temperature
10.-13. Optional Constituents
5
• ...
-.•.
•
HYDRODYNAMICS
MODULE
•
T IDALL·Y AVERAGED
ESTUARY MJDEL ..
, -
HYDRODYNAMICS DATA JNPUl'S
. . I T.tDAL STAGE
I PH'!SJCA.'. i.NI'J GEOMETRIC
:DATA
AVERAGE HY!iROLOG! C Mi!l iol;. TER )]·
CUALITY INPUT tATA
I !NFL.OW QUALITY
'I i\:.TE COEFFICiENTS
I CLit'.AiOLOGICiS.L DATA
OVER A TYPlCAL. TIDAL CYCLE
.·
T~.1JAL HYQtlCIDYUA!'UCS OVER ~
THE TYPICAL' TIDAL CY:JLE
t STil.GE
t C:UFIRENTS
•
'TtDAL HYDRODYNA:.".H:s 5EUlG
AV~P!!.G£D QVER THE ililAk
CYCLE
I
t . AV~RAGE STA~~
S AVERAGE CU~*ENT$
JAPE
INTERFACE I
L,
I DISFERSlCN COEFFlClENTS
I TltAL EXCHANGE RATIO
•
AVERAGE WI.TER QUALITY OUTPUT
AT VAR~OUS NO!IES At.~ t.ltlKS
FIGURE I-2 TIDALL~ AvERAGED EsTUARY MopEL
FLOW CHART
6
'
~-. . ':-" . '
General Modeling Approach
The first phase of.the modeling procedure is to "calibraten the
model using synoptic survey data from a suitable study period.
Boundciry conditions (tides, flows, vJ~ste discharges, etc.) \vhich
. charac.:teri ze the study period are input to the model and the results
are compared to in situ data.. Calibration involves adjusting ~ystem
coefficients or modifying the net'tJOrk until reasonable agreement
bet\·u:en model and pr·ototype is achieved.
Once the model has been calibrated, a second. study period may be
selected for model ~'verification". f~odel inputs are chan.ged ·in
accordance. with results of tr. is study period whi 1 e sys tern coeffi-
.cients and network geom~try are maintained. If agreement between
calculated and observed concentrations is good, the model can be
cons:idered verified-. If agreement is poor, the reasons for the
disc;repancy must be determined and satisfactorily resolved.. Any
adjustments made to the model at this point must also be sho\tJn to
improve the .calibration results.
The third phase of the modeling procedure is to evaluate model
sensit"ivity to modifications in sy~tem coeffici.ents, and,unit r·esponse
to changes in individual loading sources. This is accomplished by
examining the effect of varying <;>ne parameter \-lhile holding all others
constant. The sensitivity analysis allo\·Js estimation of the range
of resu)ts possible and the relative importance of each system
coefficient. The unit response analysis shows the relative importance
of various waste sources and bo~ndary conditions on water quality.
~ystem Layout
. _ The nonuniform grid system used in the numerical models enables
·"the user to specify gr·eater detail in areas where the ·impact of
po11utants is the greatest. Efficient util{zation of comput~r
7
,.
resources \'Jeighs heavily on jud~Ci()US preparation of the node and
channel system.. ~.mong the most important considerations are co~puta
tional time step i.ncrement, system geometry and location of \oJa$te
sources.
The computational (hydrodyrlamit) time step increment is gov~t·ned
by toe stability criteria of the channel according to the foi1c\·;ing
relationship:
\'lhere:
~t -
L =
9 =
R =
L -bt< v'OR 9
maximum hydrodynamic time step
channel length
gravitational constant
hydt·aul ic rad~us (approximately equal to the·
average channel depth)
Since the same time step is used for the entire system, a single
short deep channel can necessitate the use of a much smaller tirne
step than would otherwiss be required. Channel lengths should be
selected to minimize this constraint as much as possible without
< • interfering \·lith natural system geometry.
ln order to obtain the gr·eatest possible cor·respondence bet\·;een
model and prototype hydrodynamics it is important to attempt to,
align model channels with natural channels as much as possible. ln . .. . . ·'"'
addition, areas \·lith \'lidely varying characteristics {e.g. depth~
roughness) should not be combined in one node. Smaller nodes and
shorter channels ~re warranted in regions which are known to have
\-Jater quality prcblems or where major gradients in \'later quality
.
• parameters exist.
8
(1)
II. HYDROOYNAHIC ·t10DULt .
.
INPUT REQU IREf·1ENTS
The following inputs are required for the computation of estuary
hydrodynamics:·
• Physical and geometric character·is~ics of the node-
channel representation of the estuary;
• Tidal time-stage relationships at seaward boundaries;
• r·1eteorological and climatological data, including
evaporation, wind speed and direction, and precipitation;
• Point inflo\'JS and outflows;
• Non-point inflows; and
• Control specifications for computational options and
output formats.
Table II-1 outlines the card groups and format specifications
required to set up the hydrodynamic model card deck. These card
descriptions together with the illustrative example data presented
in Appendix A and the simulation results presented in Appendix B
sh9uld enable the user to set up, run, and inte1pret the results of
the estuary hydrodynamics_ model.
9
-
'.
Card Cal""d
Number. Column
Table Il-1
HY.DRO
Estuary Hydrodynamic Model
Data Requirements
Format Variable Descriotion
Card Group l -Title·Cards
.These heaaings w.i.ll be printed on s3ch page o:f the input. dat:a
summary.
la 1-80 20A4 TITLE ~1a in heading
lb. 1-80 20A4 TITL Subheading
Card Group 2 -Input/Output Control Card
• Two or three tidal cycles are normally required to reach s-teady-
state hydrodynamics. Results of the final tidal cycle for .each
hydrologic condition are averaged and stored through NSTEJl.D for later
~se as inJ?Ut to liQUALo Examples of the plotting options are presented
· in ~ppendix B.
A rent=mbering routine is included in the HYDRO code which arranges
the channel-node system to minimize storage and computational require-
ments. Internal renumbering should begin with a node located at some
extreme of the network such as a tidal boundar!f or lengthwise end o£
the system.
. 'za 1-5 1115
6-10
11-15
16-20
NSESON
NHPRT
·NQPRT
NTSL
10
Sets of hydrologic condition.s
(48 maximum)
Number of nodes specified for
printout (1-30 allowed)
Number of channels specifi~d·
for printout (1-30 allowed)
Number of nodes specified for
plots of mean tidal range and
time of high water (max. 48) ·
Table II-1 -Cont.
Card Card
Number · . Co 1 umn Format Variable .Description
· ...... ;··, ' "
Card Group 2 -Input/Output Control Card Cont ..
2a
.. ,b
t:~ •
Card
21-25
26-30
31-35
36-40
41-45
'1-5 1615
6-10.
•
•
•
Group ~
1-5 1615
6-10
•
•
"
NSTAGE
NTFLOW
NDYNAM
NSTEAD
NN
MDAY(l)
MDAY(2) .
•
•
•
t4DAY (NSESON)
JPRT(l)
JPRT(2)
•
•
jpRT(NHPRT)
Number of pages of· tidal stage
plots {3 plots per page)
Number of pages of channel
velocity and flO\-! plots (3
plots per page)
Not used
·HYDRO/ AQUAL interface unit
number
Node number to begin internal
renumbering
Number of tidal cycles for
each hydrologic condition
(~J ···.
Nodes specified for stage
printout {NHPRT nodes required)
Repaat card type 3 as necessary to conform to lindts set: on card
11
t ·-·~-·~--~-ss.~,n~
-. " < .,, " ~ • " •
• -.?
.............
... ' ~ ....
"'~· '/
•
,;.,,_ Card .· Card
Number . Column Format
Ca'td Group 4 .
4 leaS 1615
6-10
•
•
•
-Table tl-1 .. Cont.
Variable
CPRT(l)
CPRT(2)
•
•
CPRT(NQPRT)
.. ,
Description ·
Channels specified for
velocity and flow printout
{NQPRT channels required)
Repeat card type 4 as necessary to conform to limd~s set on card.2.
Card Group 5
5 1-5 315 NJPLOT(NSTAGE,l)
Node specified ~ . TOr
6-10 NJPLOT{NSTAGE,2) stage p1 ots
11-15 NJPLOT(NSTAGE,3)
Nodes specified here must: have been included in JPRT array
(card 3). NSTAGE (card 2) cards are required.
Omit: Cqrd 5 i:f N$TAGE = 0.
Card Gr·oup 6
6 1-5
6-10
11-15
315 NCPLOT(NTFLOW,l)
Channel specified for
NCPLOT(NTFL0\·1,2) velocity plots
NCPLOT(NTFLOW,3)
Channels specified here must have been included in C?RT array
(card 4). t:TFLOTv (card 2) cards are required ..
Omit card 6 if NTFLOT.,., = 0.
12
.. ~ e~· • ':\ -!; ·"~ ,_ J'F
_-:._'·~-e.:¥,·
Table Il-l -Cont ..
Card Card
Number ·co ltimn ";· Forma.t 'Variable
', -'"'.
··card· Group 7
7 l-5
6-10
•
•
1615 JTR(l)
JTR(2)
• ..
•
JTR(NTSL)
Oescri ption·
Nodes specified f6~
profile plot of mean
tidal range and time of
high water (NTSL nodes
required)
.Repeat card 7 as required to conform to the limits set on card 2.
Omit card 7 if NTSL = 0.
Card Group 8
Hydrodynamic time step increment t.;hich is based on channel
stability criteria can be determdned bg using Equation 1 or by
previewing invariant channel data output generated by the model .izl
a preliminary run usinf! a large hydrodynamic time step.
8 1-10
11-20
21'-30
31-40
4Fl 0'. 0 DELT ·
DELTQ
PERIOD
13
Hydrodynamic time step
increment, sec.
Printed output interval, sec.
Length of tidal cycle, hours
Anticipated maximum diurnal
range in stage within the
estuary ( ft)
• .
\~ Table ll-1 ·-Cont.
·card
, Number
Card
Column Format
.,
Card_Group_9-Node Cieometr.x
Vari:able _Description ·~
1\'oJe .numbers gr·eater tba:n 200 are not: allowed.. Averat;e nodal .
a·ept:h· at mean sea level can be estimated £rotn nautical c:h:rt:s keeping
in mind t:ba t · the charts · show mean 1 ow tr!a ter. Nodes with sizeable
tide flat areas require ·an estimate of change in surface area per
foot of change in depth. ·The x:a...y coordinate location of nodes
-relative to som= origin is ·measuz:ed in arbitrary units.
<,··
16-25
26-30
31-35
36-40
41-45
46-50
•
•
•
76-80
IS
2Fl0.0
3FS.O
815
J
AREA·
SLOPE
DEP
X1
Y1
NTEMP(l)
NTEfv1P(2)
•
•
•
NTEMP(8)
Node number
Water surface area at mean
sea levels sq. ft.
Change in surface area vlith
increase in water surface
elevation, sq. ft/ft.
Water depth at mean sea
level, ft •
X-coordinate, any unit
Y-coordinate, a.ny unit
Channels entering node
Repeat card 9 for eacb node in the system termina t:ing Wi tb a
blank card. A maximum of 200 cards (including t1Je blank card) j$
allowed.
14
'_) -
-Table Il-l ~ Cont.
carcJ ca·rd
Number c Column Format Vari.ab1 e Description
Card Group 10 .-Channe 1 Geometry.
Channel numbers g-r:ate.r than .300 are not al1o;. ... ·ed. Cha~nel 1 engtb,
av~ra.g~ widt.h, and t:he change i.n width per :foot o:f chang~ in dept~ in
tide flat areas (side slope) can be estimated :!:rom nautical cbart:s.
The hydraulic radius :i,s essentially equal t:o the channel depth .except
in ti.de flat. areas. v.·here it is approximately. eq.ual to t .. ~e avsrage,
cross-sectional area at mean se~ level di.·vided by t:..~1:e sl;;:ace t-.d,d.t(l
at mean sea level.. Channel roug:f:u"less, as rep:resentea bg 1-iannings
coefficient, is a function of channel conf.ig~:at:.ion, botto:.7 ro~g.l'l.TJess
and o.'Qst:ructions. Coefficients range from • 02 for sm~oth straight
ch.annels to 0.08 :for r.ough, irregular, obstructed cha:Jnels.
10 1-5
6-15
16-25
26-35
IS
4F10.0
N
ALEN
WIDTH
RAD
Channel number
Channel length, ft.
Channel width at mean sea
l eve1, ft.
Hydraulic radius at mean sea
1 evel, ft.
-
36-45 COEF
NTEMP (l)
NTEf4P (2)
SLOPE
Mannings roughness coefficient
46-50
51-55
56-65
2IS
·Fl 0. 0
Nodes at each end of channel
Change in width with increase
in water surface elevation,
ft/ft.
Repeat card l 0 for each channel in the system termi;)a ting t-.Ti th
a blank card •. A maximum of 300 cards (including tb,e b1ank card) is
alJ<:n·ted.
Card Group· 11
This subheading replaces the title read f:rom card lb and t''ill be
a .. ~.;th tn· e follm·ling set of hyd:rolog· ic. conditions. printe . ,.. ...
11 1-80 20A4 . TITL Subheading
15
~·
•
..... • : "-, ' l
"• .
,;.,
· .. Card
Number.
Card
Column ·,
•
Format
Table 11-1 ~· Cont •
Variabl~-Description
Card G.~oup 12-Hydrologic Input Control Switch
' .
Set NTEMP( ) = l to skip the following .inputs; new data will -b~
read if NTEf1P ( ) = 0: Hydrological conditions are assumed zero until
otherwise specified. Inputs are retained until repla~ed witb new
values.
12 ' 'l-5
6·-lO
11-15
16-20
21-25
26-30
615 NTEMP(l)
NTEMP(2)
Nla~1P{3)
NYEMP(4)
NlEMP(S)
NTEf~P{6)
Card Group 13 -Tidally Influenced Nodes
Read new tide data
Read new evaporation data
Read ne\'J wind velocity and
direction·
Read new point inflows and
outfl O\tJS
Read new groundwater inflow
data
Read nevo~ storm -v1a ter i nfl 0\-1
data
•
13 1-5 15 . NJEX Number of nodes with specified
stage relationships
Omit: card 13 i:f NTEl·!P(l) (card 12} = l ..
--------------~--------------------------------------~---------.
Card Group 14 -Tide Data
14a l-5 4F5.0
6-10
·n-15
16-20
JEX(NJEX)
NI
t4AXIT
NCHTID
16
Node number \aJi th s pee i fi ed
stage relationships
Number of points defining
stage relationship {must
equal 6 or 25)
Maximum number of iterations
·for tide fit (50)
Print control, tid~l curve
fit results wi11 be printed
if equal. to 1
' . . t .• t
, z.· .· ~ .. ~ .. ·.. ' . .a:........ ~ .. · -~ S.,.::>~ . . . · ... ··.... . . : ;.a
-. · .,Table Il-l=-Cont.
Card _Card
-Numb~r .. Column -F-ormat
.£ard Group.14 Tide Data
l4·b 1-5 ·16F.5 .0
6-10
11-15
16-20
•
•
•
Var.iab1 e
Cont.
TT(l)
YY(l)
TT{2)
YY(2)
•
•
•
TT(NI)
YY{NI)
Description.
Time {TT=hrs) and stage:
(YY=ft) defining tide wave (NI
pairs of data are reauired) . .
Repeat card 14b as required to define NI time-stage relationships ..
NJEX sets of card group 14 are required to define tides at all boundary
nodes~
Omit card group 14 if NTEMP(l) (card 12) = 1 •
. card Group 15-Evaporation
1-5 . 2IS
6-10
11-20 FlO.O
Jl
J2
EVAPA
First node of an ~vaporation
zone
Last node of an evaporation
zone
Evaporation rate, inches/
month
Repeat card 1.5 as necessary terxflina t:ing with a b1 ank card. A, ·
maximum o:E 20 e'\taporation zones are allowed ~'hich overrides the l;tlank
card requirement.
omit. card _gr'-.-.~ 1.5 i.f N'l'El.JP(2) (card 12) :::
--·--------------------------------------------------------
17
.·
_/
•' .
~-
.• -.... ,, "
('
-s
Cont.
Cafd Card
Number Column: Format Variable OeSocri oti on · . . -~ -. -
.Card Gr~up 16-Wind Velocity and Oirectitin.
16a.:
l£b'
l-5
6-10
1-5
, 6-lO
•
•
•
2l5-
"l6F5.0
Jl
J2
WlND(,l)
\~DIR(, 1)
•
•
•
WIND( ,25)
.6-1 0 {Fourth Card) HOI R (, 25.)
Last channel of a wind zone
Wind speed (mph) and direction
b1owing from (degrees clock-
. wise from"Y-axis) at hour on~
One set of val~es for each
hour
Four l6b car.ds required f~r ·each wind zone. Repeat: ca~C. c-rou:::> ~' -16 as necessary t.erminat:ing k 7it:b a blank card. l~C: blank card is
requix-ed if S wind zones (the maximum allowed} are defined.
Omit card group 16 if N'l'E1-!P(3) {card 12) = 1.
----------------------~-------------------------------------------~-------
Card Group 17 -Point Inf1o\·Js/Outf1o\·IS
17 1-5
6-15
16-25
IS
2Fl0.0
•
N
QQIN
QQOU
Node number
Inflow to node, cfs
Outflow from node, cfs
. Repeat as necessary terminating ~~tn a blank card. A maximu~
of NJ cards are allowed 1-1bere IJJ = nurrJ)er of nodes in tbe net;.work •
. omit card group 17 if NTEMP(4} (card 12) = 1.
18
'\
t '
2-3~-~:i.'':
••• '
1 ;r~·~::_.:~ ~ ~,,'f,:;~~
· Table I I-l ~ Cont.
Card
Number
_Card
Column Format Variable
Card Group 18.-Ground\·Jater Inflovls
18 215 Jl
6··10 J2
11-15 FS.O GBOUND
. '
Description
First ·node for ~h-ich grouna-
water inflow rate applies
Last node for which ground-
water inflow rate applies
Groundwater inflow rates cfs
Re]ieat: .~s necessary terminating with a blank card. A maximum
of J;';9 groundwa-ter .inf~ows are allowed.
Omit card group 18 if NTEMP(5) (c~rd 12) = 1.
----------------------------------------~·--~----·------------~----
Ca~d:Group 19 -Storm Water Inflows
19a 1-5 15 N Node number
6-10 l2FS.O TN(l)
11-15 TN(2) Average hourly storm inflows
(cfs) for first 12 hours of
• • tidal cycle
• •
66-70 TN(12j
19b 1-5 13FS.O TN(l3)
6-1.0· TN( 14) Average hourly storm inflows
• • (cfs) for last 13 hours of
.. .. tidal cycle
• •
61-65 TN{25)
' Repeat= card group 19 as necessary terminating kyitb a blank card.
A .maJ:irnum of 39 pairs are alJ.ot .. ,ed.
omit card group 19 if NTEI·!l' ( 6) = 1.
~
----~-------------------------------w o ·at card groups 11-19 for each hydrc1ogic condition. There ... ape. ·
must be NSESON sets as specified on card 2.
19
. 0 .
•• --. I PROGRAM ROUTINES ' .
i Figure !'I-1 surrmarizes the general structure of th~-hy.drooyn~mic
rnode1~' ·Complete descriptions of model structure and solution techniques . .
a:re included in the documentation report and wi11 not be duplicated
~-herein. The following brief synopsis is intended to s~rve only as a
guide to aid in the interpretatioh of model outputs.
The main program HYDRO coor·dinates the hydrodynamic cal ~u1ations·;
first reading title ·'lnd control information for printing and plotting,
and then calling GEOMET. This subroutine reads channel and junction
configurations, includfng interconnectivity of nodes and channels,
and computes invariant node and channel .data before returning control
to HYDRO.
HYDRO then calls NUt1BER which ren!lmbers the nodes internally so
as to produce a more efficient matrix configuration for tidally
averaged quality computations. The original numbering system is
retai.ned for output purposes. Control returns to HYDRO which prints
the invariant geometric data and stores duplicates on disk files for
later use in th~ quality model AQUAL.
The model then cycles through the following steps as often as
~ required to compute steady-state hydrodynamics for each hydrologic
condition. HYDRO calls TIDCF to fit the tide specifications with a
polynomial which describes the time-stage relationship at a seaward
boundary. Comparisons of observed and computed values are computed
and printed. TIDCF is called repeatedly until the time-stage relation-
ships are defined for each sea\·Jard boundary. Control is returned to
HYDRO \·Jhich then reads the t .. emaining hydrodynamic inputs. At this
point the major daily time step and quality time step loops are
initiated and subroutine DYNFLO is called.
20
TlDCF NUMBER GEOr1ET
HYDRO 'I
•. -.
OUTPUT
CURVE
SCALE PINE
PPLOT
FIGURE II-1 EsTUARY HYDRODYNAHIC t·10DEL SUBROUTINES 1Th • -'
21
r;
··= ~ l
OYNFtO sc>:l ves the eouations of motion:~ and continuity to determine
'• • . '. • • , ' -" 'j, ; ,,.' 'I ,• i, • ' • " . .-~ '
,fundamental~ ~ydrodyn~mic propertias includ;i pg ve1ocit.ias·, · dischar~es~ ·
·water volume-s, depths, surface areas and. channel .eros~. ~ec:tional ar~as ..
. DYNFLO ~is called tepeatedly to·; compute hydrodynamic pr·operties for ...
each simulation day of the .hydrologic period •
...
Control then rewrn~ to HYDRO which avera.ges the -resu1 ts of ~~e
final day of simulationover a complete tidal cycle and stored for
later use in AQUAL. Finally,. the subroutine OUTPUT is call~d \·lhich ·
prints the r~sults and controls the sequencing of the remaining sub-.
; . ' ..
routines \·Jhich.produce the user specified plots.,,
lNTERPRETATIOi·l OF RESULTS·
If errors occur in the node and channel inputs, one or more of
the following messages will be printed:
t JUNCTION NUHBER IS LARGER THAN PROGRAH DH·iENSlOr~S.
Junction numbers must not be greater than 200.
1 CHANNEL NUf;1BER IS LARGER THAN PROGRAf·i Dli·~ENSIONS. --
Channel numbers must not be greater than 300.
• CHANNEL CARD COMPATIBiliTY CHECK~ CHANNEL AND
JUNCTION •
Channel-junction interconnectivity is erroneous.
• JUNCTION CARD COHPATIBlLITY CHECK, JUNCTION -----AND ~
CHANNEL--·
Junction-channel interconnectivity is erroneous . .
22
'\ \,
Assuming ·a H~DRO/AQUAL interface unit~·rtumber,_ v1as assigned, the
. first printed output -(see Appendix Table B-l) shows the.+ node" ranumb~ring
scherne which is used internally in the steadj-state/dynamic tida11,y_
averaged 'quality model. The maximum' diagonal matrix width and the half
band widths are also sh.O\vn. The dimension limits in AQUAL will be
exceeded,if either of the half band widths are greater tha~ ten (10).
In ·this case the followi-ng error message is printed:
THE. HALF B.~ND ~JIDTH OF FOR EQUATION
NUMBER , NODE s EXCEEDS THE DIMENSION
L H·UTS IN PROGRAt~ A QUAL. PROGRA11 EXECUTION .
WILl-TERr·HNATE LATER. .
If this message is printed. one of th~ following modifications
is required.
a Select a different node which is located at some extremity
·of the network to begin renumbering (i.e., a tidal
boundary or 1 e:ngthwi se end of the sys tern).
• Restructure the grid system eliminating excess nodes
which extend laterally from the length\'lise axis of
the systeme
• Increase the DINENSION limits in program AQUAL.
When any of these errors occurs the model run 'Will continue until
invariant junction and channel data have been printed at \'lhich time
the simulation will terminate.
The next output (see Appendix Table B-2} summarizes the comptJ'tq~
tiona 1 and output c-entro l options specified on Card Groups. l·S,
23
< '
Iff· r•-'-~.;-' ~
.•
,&::\·· .... ··•
,,
• .d~-.....
Invariant. node and· channel d~ta_ follo\·Js· the c:ontrol summaries.
An. example of this output is. presented; in Appehd.ix Table B~3--and B-4.
ln addition to printing i-nput .data, s.ome computed data are included.-
·,,The column ·lab~1ed 0 t1AX·· THlE, SEcu on. the channel data .printout
"iS usef~l for. checking the maximum allowable computational time step.
' The hydrodynamic ,tim~ steJl fncrement specified in columns L·.S of
Card 8 must not exceed the small est value appe:a.-rtng in this co.l umn .• ·· ...
The user may wish to modify the network layout slightly by lengthening
channels or decrease the depth (along with an appropriate increase in
width) \•Jhich' will increase .the allowable time step.
The column labeled MIN ELEV, Ft on the channe1 data printout.
is the ~1ater surface elevation at \-lhich the channel \tJidth becomes
' .
negative. The column labeled t·HN ELEV, FT on the node data printout
is the· water surface elevation at \ihich either the nodal volume or
surface area will become negative •
The model checks to see if the anticipated lo\tJ water level is
exceeded by either of these minimum elevations. If potentia1 problems
exist, they will be noted by the following warnings incorporated in
the list of junction and channel data.
• NOTE· ... ~ * INDICATES ~~EGATIVE WIDTH -IS POSSIBLE w·ITH
ANTICIPATED TIDAL STAGEe
1 NOTE --* INDICATES THAT DEPTH OF CHANNEL ENTERING
JUNCTION IS LARGER THAN JUNCTION DEPTH.
The latter message is to aid the user in modifying
channel geometry data in the event that a negative node
volume or surface area is encountered later in the
hydrodynamic simulation.
24
:::..,.-: ..
• . **·-.. INDICATES NEGATIVE VOLlJME OR-SURFAC~:AREA IS
POSS.IBLE WITH ANTICIPATED 'TIDAL STAGE:.·
It should be stressed that these are only warnings arid may not
cause further pro.bl ems si nee the actua 1 noda 1 stage· often does--·Hot
reach the anticipated low water level. If any of these anticipated
problems materialize later i'n the simulation, error messages \·Jill
be printed and the model run terminated at that time.
The remaining outputs wi!l be r~peated for et)ch set of hydro-
dynamic conditions. Appendix·; Table· B-5 sho\·IS an exampl a of the
o,·~put which is generated when the TIDCF subroutine successfully fits
a polynomial with the input time-stage tide data*. The model will"
iterate until reasonable agreement is achieved bet\·:een observed and
computed values. The model computes and prints the individual and
total differences bet\·1een derived and observed time-stage r·el ati onshi ps.
These results should be checked for individual differences exceeding
5% of the maximum tide range which suggest possible errors in tide
data inputs. One or more of the follo\·ling variables may be the cause:
~ Erroneous time-stage pairs defining the tide wave.
• Insufficient iterations for the tide fit. (50 i~
usually enough) ..
• Irregular spacing of tidal extremes.
The next page of output {see Appendix Table B-6) summarizes the
evaporation, wind, inflo\'IS, and withdra\'lal data entered for the given
hydrodynamic condition.
*The user may suppress this o.utput (see Card 14a) ..
25
..
. ,,
'· ··-····· .···
• .
.
•• .....
f·1odel outputs .to. this poi~t may be previewed most cos.t-effec-
tively by setting the hydrodynamic ti<e step increment to well in
• .. > • • • ' • •• •• ••
e-xcess of a reasonable time step increment. The run·wil1 not go to
completion, however, the output which is gen.erated can be reviewed
for input errors.. The correct time step can be selected based on
derived chann_el data ;Output •.
Selecting too large a time step will result in an unstable
solution, terminates the runstream and cause the follm\'ing error
message to be printed:
HYDRODYNAMIC SOLUTION \~AS UNSTABLE AT HOUR __ __,__
IN CHANNEL , FLOW= CFS, DEPTH= FEET,
VELOCITY = FT/SEC
As noted earlier, termination of the runstream will occur if
negative nodai surface areas or volumes are encountered causing the
following error messages to be printed:
e NEGATIVE SURFACE AREA ENCOUNTERED AT HOUR ---
AT NODE , HEAD = FEET, AREA = ---SQ FT.
a NEGATIVE VOLU~1E ENCOUNTERED AT HOUR AT NODE --·
HEAD= FEET, VOLUME= CU FT.
If this occurs one or both of the following adju~tments in junction/
channel configurations are required:
• Increase depth of node.
• Decrease area slope (change in surface area with respect
to depth) in the junction. This adjustment may not be
applicable when tide flats are being modeled. ·
26
\'
•
·· · ,• necrease ·depth in· channels· which drain the junction'.
The channels \'lhich are sufficiently 'deep· to cau~e::~--"'~-:
the difficulty will have to be nqted in-the invariant
channel datapriritout~
Once all errors are corrected -the computations-wii) go to
completion. __ Appendix Tables B-7, 8-8, B-9, and Appendix Figures
B-1 through B-4 show examples of the model outputs. ·The folfowing
is a check list for testing the hydrodynamic model results before
proceeding to the quality codes:
• Check for steady-state hydrodynamics by comparing h~ads
at hour 25 with those at hour 50 for a given node. A
simil~r check of flows and velocities·for a given
channel should also be made. Differences of more than
11 indicate that the model should be run for a longer
period of time.
• Predicted time-stage relationships should be reas9nable
within th.e system.
• Check channel flows in tide flat areas to see whether
times of no (or very little) flow are actually
predicted.
, The values of average head should be approximately the
same everywhere except where there is a large net flow
or in tide flat areas w~ere average heads will be
greater since the flow out of these areas is stopped
when a minimum depth is reached.
1 The average ve1ocity should be near zero except where
there are net inflows-or rapid changes in velocity
such as in a narrow channel draining a large area.
27
'"'•""""'"·"' ~ .... :,~'t.:::Ti~dt:~ '"-~~~;;~-·.~-:-.....
1 ....
.;,,
·_;..
• Water ba1 ance at each junction should be zero except
·at tidal exchange nodes where it is. equal to the net
gain or loss at the boundaries.
• A flow diagram showing direction and magnitude. of
the average flows is useful in detecti·ng circular
.flow patterns. V/hi1e minor eddies are acceptable,
unexplainable major circular flows should be
corrected by adjusting the roughness coefficients
in the channels.
Modifications in roughness coefficients or node-channel configura-
tions may be required in orde·· to produce acceptable model-prototype
., J" . ~
conformance. Qnce tHe above requirements are met to the·satisfaction
of·the user5 the model is considered calibrated and water quality
computations can proceed.
. 28
;: J
INPUT REQUIRENENTS
The following inputs are required for the computation of
tidally averaged water quality: .
• Steady-state hydrodynamics as computed by HYDRO;
• Tidal exchange ratio and water quality at seawat"d
boundaries;
•
•
• Dispersion coefficients;
• Reaction rate coefficients (benthic oxygen demand,
coliform decay~ photosynthesis oxygenation, etc.);
t Meteorological data~ including cloud cove~, dry and
wet bulb air temperature, wind speed, and atmospheric
pressure; and
1 Control specifications for computational options and
output formats.
Table 11!-1 outlines the card groups and format specifications
required to set up the card deck for the AQUAL quality model. These
card descriptions together with the illustrative example data presented
in Appendix C and the formulation resu1::$ presented in Appendix .. o
should enable the user to set up, run, and ·interpret the results 'Of
the tidally averaged water quality model.
29
)
•
•
...... , •. \ . . .
• . 1
Q ·• I
••
. ' ..
..
D~' l
Card Card
Number Column
• Table Jl!-1 -
A QUAL.
Data Requirements
·Tidal. Aver--age Estuary .Quality Model
Variable Description
Card Group 1 ~ Title Cards
These headings will be printed on each page of the input data . ' ., .
summary.
la l-80 20A4 TITLE r:1ai n heading
lb 1-80 20A4 TITL Subheading
r------------------~--------~----------------------~~-
,.
Card GrouE 2 ... Input/OUtJ:!!:!t Control Card
2 1-5
·6-10
11-15
16-20
21-25
26-30
31-35
36-40
1015
•
NHYD
!DAY
IDELT
IALT
IPCYC
NJP
NPP
IEE
Sets of boundary conditions
First Julian day of
simulation
Computational time step
increment, hours
Print format option switch,
(IALT = 0 for standard,
IALT = 1 for alternate)
Printout interval, days
Number of junctions for time.
hi s tr, r:Y p 1 o ts ( 6 max. )
Number of concen.tra ti on
. profile plots (2 max.)
Number of iterations for
computing dispersion
coefficients. {De fault
value = 10, five is
usually sufficient)
l 30
'2"' "h:t> ··IJ' ~ . -~ j . t -
"'"" .. .....ill. . -.. '~ '" ·-
·-~
Card Card
Number . Column Fonnat
Table II!-1 ~Cont.
Variab1 e Desdription
Caret Group· 2 - I rypu t/Ou.tput Control Card -Cant~
2
4-.5-50
NFILE
IN QUAL
HYDRO/AQUAL interface\
unit number
Not used
Card Group 3 -Steactx:.State/Dynamic Mode S\vitch
Thg code allo;..-s the user to selec·t either steady-state or dynamic
solutions for each . set o£ boundary condi'tions. · Set IDYN (. .1 = 1 for
steady-state solution, IDYN ( ) = 0 for steady-state •
3 1-5 16!5
6-10 .
•
•
•
NOPERH(l)
IDYN(l)
•
•
Number.of days for fi'rst
boundary condi ti<;>n
Solution type selector
NQPERH(NHYO) NHYD pairs required
IDYN(NHYD)
Repeat as necessary to conform to limdts set on card 2.
--~----, .. ------------------------------
Cara Group 4 -Parameter Selection
set ISKIP ( ) = 0 to simulate any o:f the following 13 consti t;uents.
If IS KIP ( ) -= 1 the constituent w. ~.11 be omitted.
4 1-5
6-10
. ~ 15 ! -..
. ; 20
21-25"
1315 ISKIP(l)
ISKIP(2)
ISK1P(3)
ISKIP(4)
ISKIP(5)
31
Total nitrogen, mg/1 as N
Total phosphorus, mg/1 as P
Total coliforms, MPN/100 ml
Fecal coliforms, MPN/100 ml
:
z~?Js,-~.-12
. -........ ·
-' ·,.
' ' .• ;, . -~: "
.. a.·
' ' '"" .
·a t:t ,,
Card ··card
Number Column
Table I I l-1 .. Cont •
Format Variable Description
Catd Group 4 -Parameter Selection -· Cont.
4 26-30
31-35
36.:..40
41-45
4~-50
51-55
56-60
61-65
ISKIP(6)
ISKIP(7).
ISKIP(S)
ISKIP(9)
I~KlP(10)
!SKIP( 11)
ISKIP(l2)
ISKIP(13)
-Ultimate carbonaceous BOD,
mg/1
Nitrogenous BOO, mg/1
Dissolved oxygen, mg/1
Temperature, °C
Optional constituent #1
Optional constituent #2
Optional constituent #.3.
Optional constituent #4
Card Group 5 -Optional Constituent Name
!l'be names will be printed on tl'le first page of output for
optional const:.i tuent identification.
5 1-16 16A4 CNAME{l) l Optional constituent #1
CNAME(4)
CNAME(S) j·optional constituent #2
CNAHE(S)
17-32
CNAME(9) l Optional constituent #3
CNPJ·1E ( 12)
33-48
CNA~1E(l3) ~ Optional constituent ti4
CNAfi1E ( 1 6)
49.-64
32
. Table III-1 -Cont.
Card Card
Number "Column Format · Variable Description
Card Group 6 ~ Time Histor_y Plot Control
O~e to f:ou~ constituents mag be selected for time history plots.
Constituents are numbered from 1 to 13 in ~be order shown on card 4.
6 1-5 lOIS IPLOT{l)
6-10 IPLOT(2)
11-15 IPLOT(3)
16-20 IPLOT(4)
21-25 JPLOT(1)
26-30 JPLOT(2)
• •
• •
• • JPLOT(NJP)
Omit c:ard 6 if NJP (card 2) = 0.
Card Group 7 -Profi 1 e P1 ot Centro 1
Constituents for time
history plots (constituent
number)
Junctions for time history
plots (NJP junctions
required)
One to four const:ituents mag be specified for concentration
profiles. Constituents are numbered fr.om 1 to 13 in the order shown
on card 4.
7a 1-5 715
6-10
11-15
16-20
21 .... 25
26-30
31-35
NCONP{l)
NCONP(2)
NCONP(3)
NCONP(4)
IPDAY(l)
IPDAY(2)
IPPAY(3)
33
Constituents for concen-
tration profiles ·
(constituent number)
Julian day of profile plot
~'-..
_il' '
:...,t
,, Table III-1 -Cont.
Card Card ·
Number .Column Fo.rmat Variable
. ,.; -·.·--._". . '-'.)
Card Group 7 -Profile Plot Control -Cont*
7b 1-5
6-10
•
•.. '
•
2h-25
(Second
Card)
1615 NOOEP(l,NPP)
NODEP ( 2 ,NPP)
•
•
NODEP{2l,NPP)
Description
Junction for concentra-
tion profile {21 required)
NPP {card 2) sets of card group 7b are required.
Omit: card group 7 if NPP :: 0.
Card~Group 8 -Initial Conditions
A negative oxygen concentration signifies the f~act~P!l ot
' sat:ura tion. ·
. 8 1-5 215
6-10
11-15 13F5.0
16-20
21-25·.
26-30
31-35
36-40
41-45
Jl
J2
ALL (l)
ALL(2)
ALL(3)
ALL(4)
ALL(S)
ALL(6)
ALL(7)
34' .
First junction for which
data app1 i es
Last junction for which
data applies
fota 1 nitro·gen, mg/1 as N
Tota1 phosphorus, mg/1 as P
Total co1if.orms, HPN/100 ml
Fee a 1 co 1 if arms, ~1PN/1 00 ml
Ultimate ca"tbonaceous
BOD, mg/1
Nitrogenous BOD, mg/1
'
,-_ ..
/
Table III-1 ~ Cont. .._
------~~--~~--------~----------~----~------r~~ . Card
Number
Card
Column Format Variable
Card Group 8 -Initial Conditions ~ Cont.
Description
8 46-50 ALL(8) Dissolved oxygen, mg/1
51-55 ALL(9) iemperature, ::c
0 56-60 ALL(lO) Opti ana 1 constituent
61-65 ALL(ll) Optiona 1 constituent
66-70 ALL {12) Optional constituent
71-75 ALL(l3) Opti ta 1 constituent
R t: . . . th b 7 -L. • . , • .,. • • -• 7 epea as necessary terr.unat:J.ng w~ a _a-'Ui. care.. · luJ ~r.:.l ~.J.a_
condition cards are allot~ed, t.,here NJ -nur.'.ber of junctions in t:be
network ..
Card Group 9 -Dispersion Parameters
.;;1
=2
~3
=4
Dispersion coefficients provide a means for simula'ting estuarine
mixing~ Generally these coefricients are adjusted as required for
calibra t:ion' .based on a conservative constituent and then do not change
thereafter.
The tidally induced dispersion parameter (Cl) includes the e:ffect
of flow induced and tidal mixing. Open embagments and es'tuaries
which are st~on~ly influenced bg tidal effects will gene:ally require
a larger Cl than more protected regionse The values for this coe£ficie~t
genera.ll g range £rom 5 to 2 5 •
•
9 1-5 215 Jl First channel for which
data applies
6-10 J2 Last channel for which
data applies
11-15 2F5.0 Cl Dispersion parameter
35
,.-:--.1
J
•
Table III-1 -Cont.
Card , Card
Number ·Column Format Variable Description
Card Group 9 -Oispers ion Coefficient -Cont.
9 16-20 •••
Repeat card 9 as .required to define all dispersion z:o.Qe$ terminating
with a blank card. NC cards are allowed, t>.'here NC = number of c .. 7anne ... ~.:;;
in thenet:work.
Card Group 10 -Tidal Boundary Nodes
10 l-5 NBOUND
6-10 JBOUND(l)
• •
• •
• •
JBOUND(NBOUND)
Card Group 11 -Title Card
Number of tidal boundary
nodes (10 max)
Tidal boundary node numbers
This subheading .replaces tile tit:le read from card lb. It will be
printed_with the output: for the following set: of boundary conditions •
11 . l-80 20A4 TITL Subheading
Card Group 12 -Read/Write Control Switches
" Set NTEJ.!P ( ) = 0 to reacl nG:i data; skip if N'l'EJ.!P ( ) · :::: l. Hydro-
dynamic: conditions are n.ormally read iz-1 order :from the HYDRO/AQUAL
:Lnt:erface tape; however the file mag be repositioned if t:he user i-.'ishes
a camput:ation sequence different from t:hat of the hydrodynamic sirnul.at:i.on.
·posit:ive values of NPE.\!P(lO) will advance th~ file and negative values
will rewind it a specified number of records.
36
Table III-1 -Cont.
Card . Card
Number Column Format Variable Descriotion ~"
Card Group 12 -Read/Write Control Switches -Cont.
12 l-5 1 0!5 NTEMP.(l) Read ne\'1 hydrodynamic
conditions
6-10 NTEf,1P(2) Read new tidal exchange
ratios and quality
11-15 NTEf4P( 3) Read new inflow quality
16-20 NTEMP(4) Print aggregated inflow
quality if NTEMP(4) = 0 ..
21-25 NTEMP(5) Read new non-point source
quality
26-30 NTEMP(6) Read new return water
qual i ty increments
31-35 NTENP(7) Read t f.... . . new sys em ,:~r.:;~e r1c1ern:s
36-40 NTEMP(B) Read Qew meteoro.logical data
41-45 NTE~1P(9) Print weather data if
NTEMP(9) = 0
46-50 NTE~·1P ( 1 0) Position of HYDRO/AQUAL
hydrodynamic file
Card Group 13-Tidal Exchange Rati9s and Qualitt
The tidal exchang~ ra:tio :refers to the fraction of ebbing estua:r9 water t.;hich J.s lost .from the system at t~e boundary node a.na does not:
t values can range.-frvm 0. -l ~ re urn. "
13a 1-5 . " SX card id~'antifi cation
37
~:.-.
. • .-·
:·/~
· __ ....... _-_-}' '
-.'
•
' \t_;';
-.
•
. , .
• • A
--~~------------~---------------·~--~------~--------------------. Card Card __ .
--~---~umbe·r ·-Column -Format Variable ·· · Description ·
,z
Card Group 13 ..;. Tidal Exchange Ratios -and .Quajj ty ... Cont.
l3a lOF5 .. 0 XR(l)
.a • Tidal exchange"' rq tio
at each tidal input node • . .
• • XR(NBOUND)
If salinitg is not modeled as constituent 1 then it must be entered
as CEX(l;l4) for dispersion coefficient calc1.1lations. A .neg-ative value
:for -diss .. "'ilved oxygen signifie~ a fraction of sa'turat:ion.
13b 1-5 ·'5X
6-10 14F5.0
ll-15
16-20
21-25
26-30
31.,.35
36-40
41-45
46-50
51-55
56-60
61-65
66-70
CEX(l ~ l)
CEX(1,2)
CEX{l ,3)
CEX(l,4)
CEX(1 ,5)
CEX(1,6)
CEX(1, 7)
CEX(l ,8)
CEX(l ,9)
CEX(l, 10)
CEX(l,ll)
CEX(1, 12}
CEX(l, 13)
38
Card identification
Total nitrogen, mg/1 as N
Total phosphorus, mg/1 as P
Total col iforms, ~1PN/1 00 ml
Fecal col iforms;t MPN/100 mr
U1 tima te carbonaceous sqo, mg/1
Nitrogeno~s BOD, mg/1
Dissolved oxyge·n, mg/1
Temperature, °C
Opti ona 1 consti tuen·t #1
Optional constituent #2
Optional constitu~ht-#3
Optional constituent #4
• .
•
Table III~l ~ Cont.
Car.d . Card.
Number Column Format Variable Description
Card Group 13-Tidal Exchange Ratios and Quality Cont.
13b 71-75 CEX(l, 14)
_Repeat as necessary to de=ine conditions at
NBOuND cards are required.
Omit card group 1~ if NTE:~(2) = 1 (card 12).
Card.Group 14 -Inflow Quality
'I'he m::Jdel Y-.,il.L aggregate the water quality into a given node :.;hen
multiple point source inflows occur. A negative ::o::cs::::aticn s:.gnifies
a mass emission ra-te in pounds per day or equi~l'a.!e~t excapt ::o: oxygen
where it .signifies a frac-tion CJf saturation. No r:o:e t:.:::an SOO inflows
are allowed which can be distributed into a ·maxim~~ o= ~QO junct~ons.
l4 1-5 IS
6-10 14F5.0
11-15
16-20
21-25
26-30
31-35
36-40
41-45
46-50
51--55
56-60
JJ
QQ
ALL(l)
ALL(2)
ALL(3}
ALL(4)
ALL(5)
ALL(6}
ALL(7)
ALL(8)
ALL(9)
ALL (10)
39
Junction number
Inf1 0\·1, cfs
Total nitrogen, mg/1 as N
Totj~ phosphorus, mg/1 as P
Total col ifor·ms, NPN/1 00 ml
Fecal coliforms, HPN/100 ml
Ultimate carbonaceous
BOD, mg/1
Nitrogenous BOD, mg/1
Dissolved oxygen, mg/1
TemperattJre, °C
Optional constituent #l
A.~ .. ·.· ~ ····.~ .
. ""'!
() j
' ,) 1
•. ;. .
: -~ < '-
'
• . .
•< ' .
•
Table III~l -Cont~
Card , ca·rd-·
Number .~ Co 1 umn Format Variable
f_!rd Group 14 -Inflow Quality -Cont.
li4 61-65 ALL(11 ).
66-70 ALL(12)
71-75 All (13)
76-80 ALL ( 14.)
Description
Optional constituenf ~2
Optional constituent ~3
Optional cqnstituent ~4
Repeat as necessary terr.~n=~ing with a blank card. The blar~< card
is not. allowed when 500 inflo,.;s are specified •
. Omit· c~rd 14 if NTEl.JP ( 3) = 1 ·(card .12) •
Card Group 15 -Non-Point Source
These constituent concen~atio~s represent aggregated qual!t~ of
all non-point sources entering a given node or successi~e group of
nodes at the flow rate speci::ied in HYDRO. A negative dissol ited
oxggen concentration signifies a fraction or saturation.
15 1-5 16I5 Jl
6-10 J2
First junction fer which
quality applies
Last junction for which
quality applies
Total nitrogen, mg/1 as N
Total phosphorus, mg/1 as P
Total coliforms, f.iPN/100 ml
Feca 1 col iforms, f4PN/l 00 m1
Ultimate carbonaceous
BOD, mg/1
Card ~ Card
Number ... ·Column Format
Tab·l e I I I -1 -Cont.
Variable
Card Group 15 -Non-Point Source
15 41-45 ALL(7)
46-50 ALL(S)
51-55 ALL(9)
56-60 ALL(lO)
61-65 ALL(ll)
66-70 ALL(l2).
71-75 ALL{ 13)
76-80 ALL(14)
Descript·i(}:l .
Nitrogenous BOD, mg/1
Dissolved oxyg~n~ mg/1
Temperature, :JC
Discharge influence #1
Discharge influence #2
Discharge i~fluencs #3
Discharge influence #4
Repeat; as nec~ssary te-r:r..ina ting with a blank card. A maxir::um of
29 non-poinr. '"ate:-types are a11ow·ed.
Omi't card 15 i.f NTEJ.JP(5) = 1 (card 12).
Card Group 16 -Return Water
Return water t;o any node may origina't.e from as r..any as five other
nodes. The model aggregates tbe i~itia1 concentration given the
fraction from each nQae. Incremental chqnges specified on card lob
are then added to determine the retl.!rn water concentration.
16a 1-5
6-10
11-16
•
•
•
46-50
51-55
15
!5
F5.0
FS.O
Jl
NTEMP(l)
ALL(l)
•
•
•
NTEHP(S)
.
ALL(S)
41
Discharge junction
Junctions from \'lhi ch dis-
charge is withdrawn (NTEMPJ
and fraction of \·Ji thdra\'la 1
which is discharged to
junction Jl(ALL)
'."': •
•••• . .
r~
. Card Ci!rd.
'-Number Column.
Card Group 16-
16b 1-5
6-10
11-15
16-20
21-25
26-30
31-~5
36-40
41-45
46-50
51-55
56-60
61-65
..
Table 111-1 -C6nt •
Format · -Variable
Return Water -Cent~
-l4F5.0 ALL (1)
. -
ALL(2)
ALL(3)
ALL(4)
ALL(5)
ALL(6)
ALL(7)
ALL(B)
ALL(9)
ALL{lO)
ALL (11)
ALL (12)
ALL(13)
Description
I
I
Incremsnta 1 total n·i"trogen
Incremental total phosphorus
Incremental total coliforms
Incremental fecal coliforms
. Incremental carbonaceous BOD
. ·-,
Increm~ntal nitrogenous BOD
Incremental dissolved oxygen
Incrementa 1 temperature, · °C
Incremental optional
constituent.#l
Incremental optional
constituent #2
Incr,,ental optional
con~ .tuent #3
Incremental optional
constituent #4
Repeat card group 16 as necessary terminating with a blank card.
T.~e blank card is not required if 20 sets of card group 16 are
entered. Omit card group lo if NTE1.JP(6) (card ll} = l.
----~----------------------------------------~---
42
Table III~l -Con.t~ -. .
-,:. Card ., Card
Number'· Co 1 umn Format Variable Description_ ------~~--------------~~--------~-
•
Card Group 17 -Quality Coefficients
The follo;.,ing coefficients representing :first order declHJ kinetics
vary:a:s a_function o:f temperature, oxygen concentration, salinity,
light intensi.tg, wind speed and many other physical and chemical
influencesa: Optional. constituent may .include any dissolved or pazticulate
constituent with first order decay, settling and transfer bett-leen
constituents (i.e.; a1TZ110nia decay to nitrate). Rate coefficients of
constituents which may be o:f interest have been included. Typical values
{iie' 20°C) are as follow~:
Chemical, Physical and
Biological_ Coefficient
Stoichiometric equivalence between
optional constituent decay
Rate coefficient .tempe&ature adjustment constant
Carbonaceous BOD decay rate, day-l
-7 Nitrogenous BOD decay rate, day -
Coliform die-off rate, day -1
2 Total nitrogen benthic sink rate, mg/m /day
Total phosphorus benthic sink rate, mg;m2!aay
Alga~ pho~osynthetic oxygen production,
mg/m /day
Algae oxygen consumption due to respiration,
mg!m2Jdag · ,
Btu'ithic oxygen demand :rate, mg/m2 /day
-1 Reaeration rate, days
Armronia decag, day
-l
43
Range
of Values
.0-1.0
1.02-1.08
.1-.3
.05-.15
.5-8 .. 0
0-500
0-200
0-15,000
0-7,500
o-s,ooo
.l-10.
.05-.2
I
Table III-1 -'Cont.
Card Card
Number · Co 1 umn Variable Format
Card-Group 17 Quality Coefficients-Cont.
Chemical, Physical and
Biological.Coe:fficient
-l Nitrite decay, day
.. -1 Volatile suspended solids decay,f aag
Suspended solids settling, meters/day
17a
17b
1-5
6-10
11-15'
16-20
21-25
1-5
6 ... JQ
11-15
16-20
21-25
26-30
SFS.O
215
4F5.0
TYPEEQ(l)
TYPEEQ(2)
TYPEEQ{3)
QTEN(l)
QTEN(2)
Jl
J2
ALL(2)
ALL(3)
ALL(4)
ALL{5)
44
Oescripti.ott
Range
of Values
c.2-l •
.002-.05
0-2
Fraction of an optional
co.· 1tituent produced \·Jith
the decay at one unit of the
preceding optional constituent
{stoichiometric equivalence).
Rate coefficient temperature
adjustment constant for
carbonaceous BOD decay
(de fa ul t = 1 . 05)
Rate coefficient temperature
adjustment constant for the
remaining rate coefficients
(default= 1.03)
Junction limits for which
coefficients apply
Carbonaceovs BOD decay
rate, day-
Nitrogenous BOD decay
rate, day-1
Total coliform die-off
rate, day-1
Fecal colif1brm die~off
rate, day-
Card Card
Number ~ Co i nmn Format
Table Ill-1 -Cont ..
Variable·
Card Gr-·oup 17-Quality Coefficie~ts:-Cont.
17c 1-5 l5F5.0 ALL(6)
ALL(7)
11-15 ALL(8)
16-20 ALL(9)
21-25 ALL(l 0)
26-30 ALL(11)
.31-35 ALL(12)
36-40 ALL(13}
41-45 ALL(14)
46-50 ALL(15)
51 .,,ss ALL(16)
s·s-so ALL(17)
61-65 ALL(18)
66-70 ALL(19)
71-75 ALL(20)
Description
Total nitrogen ~enthic
sink rate,.mg/m /day
T'otal phosphoru2 benthic
sink rate, mg/m /day
Algal photosynth2''i.c oxygen
production, mg/m /day
Algae oxygen consumption 2 due to respiration, mg/m /day
Benthic ox2gen dema{)d
rate, mg/rn /day
Minimum reaeration rate,
day-1
Maximum reaeration rate,
di.iy-1
Optional constituents a1'1
through #4 decay, day-
Optional constituents #1
through #4 settling rate,
meters/day
one card l7a is required. Repeat sets of cards l7b and l7c as
required terminating with a blank card. No blank card is required if
NJ sets of card 17b and l7c are entered.
omit card 9roup 17 i£ !VTEl.JP(7) = l (card 12).
45
\'}
•
•
Tab1e III~l -Cont.
Card · Card
,-NUJllber Column--Format ·Variable-
·~Card Gro-t.ip TS ~ Meteoh:)logical Ccindi ti ons·
18a 1-5 !5
6-10 DAY
11-15 EPS
"' T6-20 AA
21-25 BB
.26~30 DE~J
Oescrlpti'on·,
. . .
.
Number o·f weather zones
(5 max.)
Julian date
East west longitude
switch (-1 fOr u.s.A.)
Evaporation coefficient
Evaporation coeffic!§nt
(Defau1 t = 1. 5 ;< 10 )
~let bulb/dew point;
S\·Jitch, dew = 1 for wet
bulb temperature
a
b
. Hourly meteo:r·ological c:ondi tions for. each weather zone are ..
computed by interpolation of the info.rmation supplied on card lBc.
18b
l8c
1-5
6-10
11-15
16-20
21-25
1-5
6-10
11-15
215
3F5.0
15
5F5.0
JWZONE(l)
JWZONE(2)
XLAT
XLON
TURB
J2
CLOUD
DBT
46
Junction limits of
\t~ea ther zone
Latitude, degrees
Longitude, degrees
Atmospheric turbidity
(2 for clear up to 5
for smo·g)
Hour of observation
Cloud cov~r, fraction
Dry bulb temperature, <>c
-.
2·. ?.-· ··tr .... · .<lr.·~.··~.·· .... jl' J . -t .. .;>~. ~:OJ \
Table I!I-1 -Cont ..
••• < ,., ' .-=-. -~~----._:..~·-------------~.;.;... ...... ...;... __ .;.....; __ .....,.. __ _..; .............. __ _
"': ·Card··· ~·Carel ·
_,N_. u_in_b __ ')e_r_· _c~o_l....:u;_m..:.;n_· _ _;,Fi.:o.:.r::ma:.t:....._..:.v.:a r:..1.:.:· a::.b:.,:l.:e_, __ . ____ _.:o.:e.:..:s tr i pt ion
i '
CardGroup"\,18-Meteoro1ogisa1 Cond:ition~-Cent~
l8c 16-20
21-25
26-30 ·'
WBT
~JIND
APR
Wet bulb or dew point
temperature
Wind speed, meters/sec
Atmospheric pressure, mb
A set of betw~~n. 2 ai:Jd 25 cards (type lBc) are requ.i.r=a :for aacb
weather. zo.ne. · EacJ:/~£et must begin· wit:h . v·alues for bouz + and enai:2g
· .· wi.;th valu~s fo~ ht:'ur 25. Repeat: set:s of ca~ds l8b and lEe as ::eq".Ji:reC.
to de;!ine all weatil~r :zones c;. ... !-lZOlvE sets).
Rep(:atcardgroupsll-18 as necessar·y to define all boundary
conditions. There must be NHYD sets as specified on card 2.
:.':::
•
.•,· .. ··· " X
.· .. }
,t·•)
•-?.·'
. PROGRAM ROUTINES
F~gure II.I-1 ··summarizes the general structure of the tidally
averaged quality model .. ·The following brief description is intended
' .
to serve only as a guide to aid in the interpretation;of mo9e1 outputs.
The reader is again referred to the documentation report for a more
thorough .... trea.tment of mode 1 deve 1 opment, ttJeoreti ca 1 consi dera ti ens~
and solut·,on techniques.
·' Thr~ main· program AQUAL calls INPUT to read system geometry,
hydrodynamics, input/output controls, boundary conditions~ dispersion
and system· coefficients and inflow quality. INPUT calls t•1ETDAT to
read meteoroiogical condition~, cbmpute derived conditions, and write
results. Control then returns to AQUAL which..directs SETUP, FORM and
SOL·VIT to compute salinity for dispersion coeffic:ien~ computations.
AQUAL then computes oxygen saturation based on salinity and tempera ..
ture. SETUP is then called to set up the final coefficient matrix
wh)ch is used in SOLVIT to compute the concentration of the water
quality consti·tuents in all nodes. The constituent concentrations are
determined in the following order:
•
• Temperature··
• Optional coefficients (us.er specified)
• Total nitrogen
• ·Total phosphorus
• Total coliform _
• Fecal coliform
• Carbonaceous BOD
• Nitrogenous BOD
e Dissolved oxygen
48
FORM
..
SOLVIT
. FIGURE I I I-1
METDA.Y
SETUP
INPUT
OUTPUT
CURVE
SCALE PIN~
PPLOT
TIDALLy AvERAGED QuALITY r10DEL.
SUBROUTINES
49
. (J
\~
AqUAL: then ta·1ls OUTPUT,· \tlhich cQntr.ol ~· the remaining ,_subroutines in
printing and plott·i ng the. results~~ The proce$S repea.i;.s. fo:r~" each:
set of· bounda·,.y cohd i tiops •.
' '
. ~-.
I-NTERPRETATION OF RESULT$
Provided input formats are correct and progre.m dimensi-ons ha·ve
not been exceeded the model .will print out invariant data inc1uding
.·"
7
" computational c~ntrol specifications, initial conditions~ and. dis-
persion parameters as shovm in Appendix Table D-1 and .0-2. .The model
will check the junction limits assigned to the initial conditions and
· print-the following message if errors .are found:
* ERROR * THE FOLL.OHING NODE LINITS ARE IN ERROR:
: ·' ···r;· . . ,
,' y• .The remaining outputs will be repeated for each set of boundary
conditions. Appendix Table D-3 shows an example of the ciutput which
summarizes exchange conditions, obser·ved and aggregatedt inflow
•.
. qua 1 i ty, non--point inflow qua 1 i ty, return water quality, ·system
coefficients, derived flot·l and wind induced reaeration coefficients.,
and coefficients used by nodes. If dimension limits have been
exceeded the runstream will terminate and one of the following
messages will be printed:
o WARNING ** THE HAXH·1UM OF 1·00 INFLO\~ LOCATIONS HAS BEEN
EXG-EEDED.**
• * ERROR * A MAXIMUt4 OF 29 GROUNDWATER TYPES ARE .L\LLOt~ED"
• * ERROR * RETURN \~ATER IS ALLOHED AT 20 NODE'S t·1AXIMUH.
tThe user may suppress this aggregated inflow quality printout.
50 ..... ~.,
'·'·.
Appendix>.Table D-4 shows an >example of the printout of cibset'\led
and derived meteorological data*. Wiilll'*•m&U45i~i5n'§fiei~fbrt
1fti'Dbi.hiMU57Rb&J1MtiP•ti1Uit~MI~Bl!~~J,ll#a· .
lift~ettft¢t{.1ft!1 diSI Since calculation of
dispersion coefficients is an iterative process, the last two values
of the coefficients are ~ inted for comparisoni If there is a sig~ifi
cant difference bet\'Jeen the values, dispersion parameter C4 may need to
be-reduced or the number of iterations -for computing dispersion coeffi-
Appendix Table D-7 shO\'JS the
alternate output ·format. Examples of the plotting options are sho\·Jn
in Appendix Figures D-1 and D-2.
Calibration of the tida~lly averaged quality model is accomplished
in two phaseso The first is to simulate a conservative substance such
.. as saiinity to establish the mixing characteristics of the est"ary.
The dispersion coefficients can not generally be specified
a priori. The procedure is to start with values \aJhich have proven
effective before and proceed, on a trial and error basis, to adjust
the coefficients untii model results compare reasonably well with
field data. The model is then considered calibrated for advective
and dispersive transport. The second phase of the moder calibration·
is to adjust reaction rate coefficients (benthic oxygen demand, photo-
synthesis oxygenation, coliform decay, etc.) until in situ data are
reasonably reproduced. ·
-----------------*The user may supptess this output.
51
•
APPENDIX A.
1• lb
2a
21;
3
4
5
7 ..
I
Table A-1
HydrQdynamic Model Input Card· Specification
5 10,' .. 15. 20 30 35 4Q 4S-SO
u;,.pEQ COOIC lJiLETt KJi%1{ Ul.l AND TURNaGAIN Art04
$1ttPL£ ;JlRI"jSl£tt
l . 6 • 211 l 1 0 . l2 l
J
1 12 2b a• 56 117
1& :12 !l 1Z7 lAO 15.7
I · l17 aq
't2 · s ~., tao
1 3 . 5 . 7 tO 1i t2 1 II t 7 20
t 15 't U 121 1~5 J27 128 Gl 46 G7 "6
s~o l&On 25 ~c
01 · q99,+7" ~0,+6 t5o ~te ~10 ol oa
~2 ~so.~' oo,+~ 130 ~oo 5~7 nt ol
~3 !50~+7 o~,+b 1~~ cs~ 525 ~2 ~3
OG · Q00,47 2D,+tt 150 b2U Stt4 041 06
~s &90.+7 oo~·~ 110 ~65 57~ ns c&
-~• son.•7 t!~•• 100 &~5 636 o7 ~·
07 7~t,•7 ~n,+tt too b~2 ~t• oB o•
01 370~•7 3~1 •&· 080 &SZ &bl t~ ll ori "ll20,+7 21-•• ~ oso t~s~ ·1ot s 1 · u
iO 690,•7 i2v+~ 060 702 &55 '2 ll
11 ab0 1 +7 0~1 +& lQO 7tA 693 tl tG
\2 · 2G0,•7 001 +6 13~ 711 129 JS 16
tl t20.-•7 o_t,+e:. 010 7!5 7D4 t7 21
ta o~r,+7 ~o.•• 100 72; 75~ t8 20
16 tq0,+7 oz.·~ os3 759 lS& ;a 25
ts ~o~.~7 z~.·~ 110 7o4 7§& 19 · lo n , 135,+'1 • uo, .. ~ oas Tt~b 110 ~3 25
JG . t'~"'••' tl',+t> 10 730 7tn ~4 26
19 . tGC 1 +7 07 1 •&. OQ7 7~~ 770 ·21 · lO
~o t~1.•7 oo •• ~ o~s 772 7!5 21 l~
21 ! b8 1 +7 · 01 i +b 0!5 7bf!. 799 2V ll
22 t16,t7 OQ,+6 055 GOo 7S! 32 35
2l 17&,+1 00u+6 080 7~b 609 33 35
2G 1b5,+1 Z5,+b 0~0 76& a32 3A l~
25' ·· o&R.•? Ul c•b 070 822 799 17 "0
2& · Jl0,+1. OO,+b OoO 817 SZO 38 40
· 27 . 09S, -."7 uo,+~ 022 ~15 e.ut 39 at
~~. · ·o&7,•7 oo,·~ o•s 839 · soe D~ 47
. 3S 070,•7 Ol,+~ 050 SS~ 799 G7 51
32 Ob1 1 •l 3 1 •6 ~~ 6b1 814 ~8 Sl
35 ~92,+7 20~•' o~o Sbu 7~! ~l 75
lb osa,+t oo.•b Ol& 87Q ab2 s; 75
37 2t 1 97 15 1 •6 1 d69 SZ' SS 56
G3 03q,+7 0~1 +6 OlS 9nt SbS &S bb
• GG 023 1 +7 03 1 +~ OC?S 901 878 &b b9
GS n2S,•7 Ol,+b 025 91l &70 &7 b&
Qb 05l,t7 15,+6 015 915 !64 68 b9
01 · 02~1 t7 18 1 +6 ~12 929 &d7 70 71
48 01Z,t7 22t+o ~ & ~36 696 71 72
49 ooS.•7 uYe•& 2 9Sa 899 72 73
SO 002~•7 10 3 +~ 1 959 ~~1 1~ sz o3b,+7 2B,+~ a as~ ato so 7b
Si to2,~7 lO,•b 030 887 118 77 7~
55 60
04
OS
07
tJS
10 u
iS
ltl
17
22
21
27
2Q
'2~
29
32
31
Sil
37
3~
]If
42
lH
QJ;
tOO
5l
St.& .,.,
7o
. 1·23
67
70
79 ao
ce so
18
23
28
33
li
101
103
55
78
127
65 70 75 80 1
106
1U 100
, '. ,.
·Table A-1 -(Cont.}
,,
i
·Hydrodynamic Model ·Input Card Specification
~ •• ·"""'1: ..... ~
-r 54 oc9i'+1 23,~EJ OiO !"S 800 ;. u !9: _· ,1 ss . OSfi ,.+ 7 :;o, .. c.-QZO. ~00 l~7 8.0 !1 '. !i . 56 062,+7 30-o+b 020 925 '1&" ~e &l
57 3!,+7 zo. •e. ·-15 <faJ 171 153 8G se as.•7 11l,+~ 12 ~-~'J;,.: 17:1 F." ss s.;-32,•7 15,·•• 12 ~.,:1 771 as ao '· oo 1!,•7 HI, •o. 10 9!'9 75q Ab
100 seo_, •t! 0 1 +6 ao 8£13 azo 101 io.:s 10/J ;·~· d 106 " 101 saQ·~ o, .. , 75 -. 839 8ZCJ 102 1041 105 107 tOe 31iG 11 •o tS,+o . > 10 6l5 !39 04 -as 1C8
103 2c9,~o t,+o ~-!"""-65.5 !29 too 100 111 ... u
tOG 2ll,.,.f) 0,4-fl ~0 850 !35 11'17 10" uo 112 Hl
105 rso, ~~:~ 10,+~ so !G7 81.13 1(18 110 11" tOo t"i;·•b 0,+1:1 /:SO ts~O 83& 1t1 112 us
107 tOl',+o o, •• 30 657 8412 ' 1 t3 11& 117
108 oo~•o ~,•o 6 ass 81.17 ' 11" no ,i 1 e
9 100 tb{l,+o .o. <>b 70 h7 &l7 us 1111 120 121 110 f7~.•o 5,+6 30 861 !~S 117 !U ti!Z
111 84,+t:i O,+b 15 !70 83Q 126 11' 123 125
112 Cb,+b 2,S+o 15 51.3 !31 1?.7 1Z'S t.2A 1Z8
H:S Sti ,+e. • 0 1 +tl ~s &7l.l 835 129 123 12" !29
111 sc.•e. 1o+O 30 879 .83o 1Z8 12~ 131 us. t24a+b 0,-+b 'SS 875 suo 121 130 l.:SZ 133 su. Siil1•+et 4:~+& uo 873 Sub 12Z t:SO 13" llS
117 I!! ,-+o o,+~ "s 851 8l.l0 111 1 2»2 t.lo 138 139
118 5b,+b o~•o 60 8!1 8~3 133 . 13" 13~ 137 140 141 • 119 bO,•e. i,+o 35 8151 Suo 1 :ss 1l7 1"2 teo 30,+~ C 1 otb lO a so euo no 143 JCS
121 cao,•~ C)e+o 90 8So ~4l 139 1l.l0 1"3 1'!1! 1-"o 1"7 11l8
122 l?.·~ ,•o so sao 8u6 11:11 !l.IZ lt.lll 1l.l9 150
123 l.3,+o t,+b 30 sc;o Sal us 146 151
SC!CI IU1 1 ~0 Oa+b 55 8CJl.l a.. a ta7 1St ~52 1541
125 33,·~ o,+o 70 aqt .. 8l.lb ta8 1U9 152 153 155 12~ 37.+b 1a+o cao 869 a~o~a 15U 1S3 15b
127 ~b,•o .0 1 +& ~s eQs $51 1~" 155 150 157
128 tlo.+o 1,+b so 6~7 esa 157 OS
01 090000 800()0 130 .o~e Ot oa 000~
02 Ci!OOOO 80000 130 .ot~z 01 Ol 0000
03 089000 osoooo zoo 0. 0'22 02 03 0000 OG tOOOOO 070000 121» • 022 . oe Ql.l . 0000
OS. oa~ooo osauoo llO ·a02a · 03 as ODOO
06 Ob4000 Qt!SiJOO uo eOci. 04 OS 0000
07 nq21laO 070000 130 ;~2e Oil oo 0100 oa 077000 09cuoo lO~ .D~e OS 07 oooo
10 09 O~.b~OO o7nudlo oso ,o~2 ... oo 07 0000 u 07SOOO O'lO'OOO oe~ e02S OEa Ot! 0300 11 Obo~OO 0&&0000 070 t025 0! 09 OlOO 12 Ob1000 110000 090 t022 01 10 0000 l:S ObSUOO oqsuoo 01!)9 ,oj)c 10 11 0000 u 0.\7.000 . a~Siloo 05\t e022 09 u 0000 JS 0$~00.0 01.10000 ObO e022 00 12 O:SQO a G&Oui)O 0~51)00 100 eC2~ 11 12 0000 . tr OlUh)00 oc3I)OO 070 ,o;.S u tl ouoo l S8 .~usuoo . 02lOI)~ 100 a022 H· 14 oooo J9 OCili)OO 030000 1 '30 t022 1t! 15 0000 20 OliO?O Ol~UOO OC\J• •022 SlJ 15 OOOQ -
•
Table A-1 .. (Cont.)
Hydrodynamic Model Input Card Specification
21 ozsooo 0412000 0!0 e0~2 ll 14 0000
/' -"'~-,'; zz ouooo Ol5t1_00 080 e:025' u h O!lOO
' Zl ouuoo' o.aaoao 1-GO .o;s2 111 17 ouoo
241 n5~ooo O.lf>OOO 130 ,ozs 15 u osoo
2S nllUOO O~biJ.OO 070 ,. o,z u 17 ocoo cf) OllUOO GSl\100 0'10 .,Q;tS H u ouco
27 nSOQ.OO ~.llllOO osu iOcS 16 1'i 0100
.2! ou•Of}O 0.\1.1)00 spo .ozz 17 20 ocoo
29 1!158000 0~1 !000 100 ... ozz 1! 21 ocso
30 OllOOO ,oi5?uoo '010 'a022 lCS ~0 0000
. 31 Ocii!OOO ossooo soo eD22 20 21 0000
32 0&1111.100 021000 oa~ .o?5 1q 22 020(1
ll t\SSOOU O~lOOO · oqo eOci 20 23 0~00
lo ('r>~OOO Ol~OO~ 0'70 a02S 21 zv 0100
" 3$ Ol1000 oaSyOO 0&0 a02Z 22 Zl ouoo ,,
l~ olqooo .052000 lO~ .o~z 23 24 ovoo
17 n.32D.OO ClOvOO CtbO .c~; cc 25 0"50
38 Ol800U "J7UOO us eOc2 Zl 2t» 0000
Jq OCibOOO ozsvoo 030 .o~s zu. . 27 0'100
410 035000 OlvOOO 0!0 ,o?.2 25 cb 0000
"t OlSOilO tl3oll000 0'70 a0?2 ztt 27 OQOO
' G2 o3looo OccliOO 065 e022 25 2c 0000
lllj nooo . 1!000 7 ,oc'S 27 102 12CO
~1 ozqooo. OJI~vou lHIO .o~z ~!. 31 00\10
10 G! 32000 1t.OCO so ,0?2 l2 100 0
,/~. 51 025000 02!0~0 oc:s ,022 31 li 01100
,( -:· . 5' I}C!&OOO OlGO~!' 0"0 .o?S ll 35 0500 (). ,.
5G oz?ono l.\22000 OAO .o?Z l! lo OOCiO ss 02ZOOC} C!Z2000 os.o vOt'S l2 31 0000
Set 030000 01221)0.0 OOft oC25 17 52 .1000
&S 1~5ou· 1~1)0\} 50 .~20 "l 125 30
b& oailOOO Q!SOQO OcS ·&0?.5 -"l IU& 0100
&'I Ct22000 01'1000 020 ,ocss ,.3 CIS 0100
&~ 023000 01cUOO 20 •. ocs CIS Cle 0100
69 t\25000 012vOD 20 .025 :0(1 4tb :100 'to 02'3000 OU:OOO 8 .o~s ~& IJ7 osoo
I '71 tlcJIIOO 605000 l eu25 w7 Ccl :~oo
72 OcOOOO OOGOOO 1 ,or.s •a n 100i1
73 01800~ 002000 0,5 ,('1~5 'JQ so 1000
7S Oc&IOOO 022000 V30 .~~5 35 lei 0000
76 ouuoo 030000 010 ,025 lit C:'"' 0000 ..,c:;.
77 1)3:5000 Oli')UOO 030 ,0(15 35 53 01.100
78 012000 OtQ\)00 035 ~ccs 3b S! 0~0\1
79 02~00U 01SOOO 68 oC2S S2 5'1 1000
80 Ol20DO 015\)00 041() ,o?5 53 ss 01C9
!t Ctc~OOU 025;)00 010 •. o?S 541 55 0500
82 QlSOOO 015000 35 a02S ss Sc 0.200
83 ftl{iliOO 012000 25 .o2c Sft 57 lOO
841 02b000 0.10000 20 .o~2 57 sa 400
&5 02'7000 020000 15 .c?c ~! s; 500
8b 03\000 tJOOO 15 .o~2 sq 60 350 eq 2'£1000 2'50~0 15 e025 53 511 0
0 ·roo &10000 12000 TS ,020 2o 25 0
sos 41000 12POO '7S .o2o Zb 10~ 0
S02 lllDOO 1!000 75• .ceo 26 101 0
SOl 1800, 1~000 60 t020 28 1CO 0
1041 17300 21000 GO .020 100 J01 0
•
Table A-1 .u (Cant"')
Hydrodyn~mic Model Input Car~ Specification
•.> • ,.,..
105 11~00 30000 u .~20 :ot 102 0
.lOb ~3000 14060 ~0 ,020 100 103 0
107 20500 15000 60 a020 101 104 0
108 21000 100(10 1 .o2s 102 105 10~ ·~)
to~ . UlOO 15-JOO ~0 ,c;tO 103 10" 0
110 1UOOO 1701)0 1" .ozs 104 lOS 0
.~. 111 13&00 9000 as· eC?O 103 10~ 0
112 IU10C 7000 75 ,020 104 lOb 0
123 15200 !Cino 25 ,022 lOll 107 0
tU 14000 '7000 7 t01.S 105 101:5 500 us HSilO !20~0 75 .o?.o too 10q :so
Uo ~400 1101)0 1" . e025 107 108 0 117 uaoo .. $~00 30 .022 107 110 0
118 13SOO bOOO ! .o~s 101! 120 300
11'1 lllOQ 5~00 15 ,o?.S lO~ 111 0 1~0 11500 11800 oS eO?O 109 11l 0
121 tSZOU uoo so e020 10~ 115 0
122 15200 12700 :ss .o?2 110 Ub !SO
123 · esoo ssoo 15 .oi!2 111 ·13 0
120 bUOO SdOO 15 ,ozs 112 Ul 0
125 7700 71)00 10 .ozs 111 112 0 J2b 1l Ot'O 'YOOO. 15 .or.s 37 111 0 1~7 15000 uooo s ,ozs 37 112 zsc 128 11000 ·3700 tS .o?.S 112 114 70
10 120 q1oo ilaoo 40 .o~z 113 114 0 130 10300 .;1500 ~5 e020 115 110 0 • 1li 8200 3600 :ss wO?O 114 117 25
132 lObO~ usoc $5 .020 115 117 0 Jll 12000 11600 oO ,020 115 11! 0
1lll 1&1500. a coo GO .o?o 1lb 118 0
l:SS 1.ta200 bSOO lS ,oz2 116 119 so
13i> suoo 10000 60 ,o,o 117 118 . 0
137 !000 10000 ~0 e02tl na 110 0 13! '!000 auoo 31i ,022 117 120 0 t 39 81J.OO lOGO 7$ ,o?O 117 121 0 tliO 1300 uooo 75 ,oao 118 tU 0 1&11 ~200 3000 as .o~o 118 122 0 tli2 7l00 3&00 lS .o~z 11CJ 122 60 1"3 10COO a coo bO ,()?0 120 121 0 1~4:1 1 OCHiO &000 &0 .ozo 121 122 0 1'~S &800 UlOO le) .ozz 120 123 20 J"b 7000 noo uo i.O?Z 121 til 0 1~7 12000 2.300 75 e02Q 121 12J& 0 tf.l& i0100 2700 !0 e020 121 125. 0 149 900.0 2500 75 .ozo saz 125 0 iSO b600 l::tQO ao .ozz t22 12tt ;o tSt t~oc-o aooc 35 .o~i:! 123 . 12Q 2~ 1SZ aono 10000 60 e020 12ct 125 0 153 8000 10000 60 e020 tas 12b 0 tSa lCOOO 3~00 so aO?.o 12a J27 0 155 10100 l'SOO 80 .ozo 125 127 0 JSo qqoo lCIOO so a020 ' 126 127 20 157 11800 !1)00 75 .oao 12'1 128 lO
~ 11 { ~lYE; YE l:t 1"'72 A'i.ERAGE TRU\JTARY XNFlOW.S
12 0 0 0 0 0 0
13
•• ' ....
Table A-1 -(Canto)
Hydrodynamic· Model Input Card·Specifitation
14a I ' so I
l4b {
•2,• •6,S 3,41 Ta.q· 9,~ ••• u., 7,• zz:1 -~.s 2a,a 7 1 A
15 ' 1l0 l.
16a ! 1~0
{
0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0
16b 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
H O~fJ0 1
27 :uooo,
~s 170,
17 01 tli'J, so 108&0,
60 l000 1
101 600,
117 ~'15: ua uo,
,~i { I ilO D
19
() •
APPENDIX B
,; •.
Table 3-1
Node Renumbering Scheme
CROSS REfERENCE·• • JNTEA~AL MOOf NUMBER V3~'!XffRNAL NOOf NUHB!R CU3!D JN QUALITY fhOGRAH AQUAL~~
I I 2 2 1J ' 4 A ., 5 6 e. 7 1 8 0 ' Jo n· ' 1l u u· 12 u u ,. .~ 15 15 !fl u u· 17 18 se u " lO· . lO
21 2l 22 zz 23 23 '24 211 ~5 .2S 2~ 2f. 27 27 26 28 29 100 lO · Ul1
31 102 32 lt 33 )2 )1.1 l03 )5 '104 )6 lOS 37 3S )8 3b 39 l7 1.10 to•
1.11 107 02 108 fJ :s 53 IHI 51! q; Ill 06 lli! 47 109 q~ ItO .," 55 50 . Sq
51 til 52 Sit,! s:s 115 ';50 116 55 56 56 U7 '57 ll5 58 119 59 51 ~c uo
bl ill 62 l22 e::s 56 btl 12,3 1)5 1211 f.tfl 125 b1 l2b bel 59 6'1 127 • 10 •o
71 ua u Q) 1:s CUI 71 liS 75 CUt 76 17 '77 ue 78 "' 79 so
T~E nlbEST TOTAL BAND "lOTH ]~ . u' THE HIGH 8~0£ RAXI"UH HICT~ lS ., ' ANO 1HE LON SlOE HAMIMU" WI01H u 1 ..
..
Table s.:...2
Computati ooa 1 and Output Centro 1 Opt·, ens
..
UPPER COO~ t~LETi KNlK 'R" AND TURNAG,IN AR"
S'MPL,£ PROBL£"'
NUK'BEA OF HYDR4UI.lC ec;·-.Dl TICkS
NU"SER Of TtDAL CYeLES PE~ CO~DITIO~
NUHBER OF HYDRAULIC TlHE StEPS PER ~~CI.E
NUMBER OF QUALITY TIME STEPS PER CYCLE
NU"BtA"DF TIDAL $TAG£ PLOTS
NU"BER OF TIDAL VELOCIT1 PLOTS
QY~AKlC HYDRAULl£ OUTPUT UNIT
$TEI.OY ST~lt HYD~AULICS OUTPUT UNIT
Tl~&L PERlODo HOURS .
RESULTS PRINTED lT THE FOLLOHING b JUNCTIONS
1 12 2b 49 5Ct 117
sa 72 as u1 ·. uo 157
~0.0.
25
1
I
0
12.
25,
TIDAL STAGE FO~ JUNCtiONS l 117 a9
T1DAL FLOW FOR CHANNELS 72 127 Sao
. .
. :;({
-~~.~~~ .,
. '
'
__ '_ ..
•. "
. . ~~
(' ~ c .. ;:., . -y,.
f '" '::: .
)
T~ble a ... J .'I
Invariant Channel Data .r:
·''
UPPER COOt< 1N(E1t t<NIK ARM AtfO 'TUftNAOAIN iRH
SAHPL£ PRD8L£H ,,
INVARIANT tHANNEL DAT~
CKA'fN£L LENGTH, FT WlD'fH, ,, HYIJ RAO, FT Kll't EL€Y, FT HANNINCS H !NO JUNCJIONS SID! .StOPE HAJC Tifft:, 8!C.
i '10000~ 80()00o i30,0 uo,o 8 C',22 l i o, Uq'S, c voooo~ eoooo. 130,0 uo,n ,Q~Z • J o • 329'~~ • ' 690001\ eooou, ~uo,o 200,0 ~o .. -2 l o. US'I,. . u 100000, 700ll0v 14!0,0 uo,o ,02~ 2 " "· I~&Y, 5 eoooo. (iAO'JOo 1 )11, 0 !30, 0 e02(! 3 !J ' o. nsa, 6 6U000e &sooo. 120,(' 12G,O • 11 022 Q s , o~ 953, 7 9lOOG, 7oooo, 130,0 taS,l ,022 ... f» _)o, ~,~.,.
8 77000, 9;t()OC 0 tos,o tos.o o0Z2 s 1 ' 0. l~t&a, q 66000, 700110, so,o so,o ,ozz ~ 7 ' u • I .l?U 1 lO 7sooo, unuoo, &'5,0 . i .n, 3 ,ozs b 8 300, lcPJO, u 6~000, dll00\1, 10,0 133, l ,025 e 9 Jou, llfd, J2 670~0. ttnuou, CIO,O 90,0 1 0lZ 1 10 ·o • lUt., u b50ll0, 91:0000, '10,0 '10,0 ,oa lo tl o, tuu, Ill 37000. ~';UOO, so,o so.o ,022 ~ u o. "'· 15 58000, Cl(1000, 60,0 91,2 ,o~z 9 u. lOO, Ud, lf> MOOO, ssuou, aoo.o 100,0 ,9c?2 il . IZ o, 965, J7 aaoo<J, i?}UOO, 10s0 70~0 ,tJlS u \.) o, uu. 18 hSooo. 21000, aoo, o IOOoO ~oz2 u lll •. o. 12~>~, lfJ 113~00 0 3noou. 130,0 1?0,0 ,022 12 IS o, bl4l, zo JIOOn, .)J\000, uo,o dO,O .o~z Ill ·~ "· 1(15i Zl zsooo, IIZOOOo uo,o 60.0 u022 ll ,, o, '411.!1. zz ~auoo, 2c;oou. 60,0 80,0 .o2s u ,I b o, us,
ll 'lt.IO(IU~ ~1000, lUO,O uo.o ,0~2 .,.
t7 o, .. ) ..
l.CJ S!!Ono. lbOfJO, Ill' eO ?Z,O .;Oc?.!i 15 &8 500, 8)S 0 Z.S ll~OO, Cl6000, 7(1,0 70e0 ,ozz h !7 o, , ll,
Zb JIOOO" ~)(100, uo,o uo,o ,025 l1 16 o, 70S,
C7 snuoo. ll0~''• 50,0 !;'1 1 6 ,oz!i 16 19 &oo, .1)5).
28 Ll!\(100: ]J01}0 1 10040 IUO,O ,ozz l1 20 o, Jr~,
2!1 Sf\000, 2nooo, too,o Ill, I ,oz?. IU ll ',5,0. 'He )0 nono. !.ooO(J, 10,0 10, n ,022 19 lO o, .• bl "· 31 20UOO, 55000. too,o 106. () ,Oc!2 ~0 21 o, &ISU, JZ ~UQf'IO, i1001J, 140,0 IHI 1 il •. 0?.5 "' ll .i()V 0 1001' ~1 SSU!IO" }1091>, '10,0 90 1 0 ,ozz 20 u g, CJllle )Q ttf\000, looou, 1o,o ttl., 0 ,0.:!5 i!l at~ aoo, Ubl,
35 J71)(1(J, Uc;tJOO, bO,O bO,O ~Oi!~ i!ie ll . o. '72--~ •. lb )91)(10. !t?OOU, too,o 100,0 ,oi:!i! 2J 211 o. u-r,
l1 l?.ooo •. .sooou, tiO,O bl,Q ,025 Zl iS !.0, b lOG
36 lf\OtHJ, )7000~ li5,1) u~,o ,022 1?1 2fJ . u. bi)lf . I N )1 11,1)00, 2t;OCI0 1 10.0 35,1 ,OC!!i i!q 21 f;)Qe llil"·
f «10 lSOOO • 30001), 60,0 81), 0 • Oi!l 25 . ~(J ~. bll
' .
IIA JSuC'o; ]t.IU00 1 70~0 70,0 -022 Zb ·u o, b'iU,
~ Ill 3101)0" 'li!UOO, 6';,0 bS,Q ,Ol.Z 2~ Q 28 u., ~'»J11
\1 ·iHI )llOOO, lniJO.O, 7,0 l I • Z .. o~s ·27 10~ lioo, un,
" \,. 41 21000. 1?000, 140,0 ~o.·o ,OZ( 29 ll o, &f.IO, • 118 nooo; lfJ'OUO • 50.0 ~o,o ,oa2 li! IOU o, ~, ....
()' NOtE • .. 41 IHOIC.TES ~tCAYIVE wtUT~ u POSSIHlt WITH AHJII:IPATED TlOAl ~ Tf&Gf -.....
Table B-3 (Corat.) (.\ --~· '
invariant Channel . Data
UP~ER (00~ INLET•
IA11PLl ,ROBLEH
KNIK ARtl AND TURNAGAIH ARH '
i . . '
INVARIANT CHANNEL DATA
CHAftNfr.. LENGtt4, fT tflnttt, Fj ttYO RADt ,., H!N ELEY, ,, HANNJNGS ~ ENP JUNCT H.!N.S OlOE SLOPE HA)C flHt, llC
51 i500.Q~ 2Auoo. ..... o 45,0 ,1)22 31 32 o, $06, Sl uooo. 211000, 1.10,o Sb,G ,Oi5 3& 35 !»oo. ~9le· 511 uooo. c2ooc, uo,o 110 0 0 ,02i! Jl lb o, ol'-• ss l200CI 1 ~~ooo, lO,O &0,0 ,025 lZ :n o, 10~. 5b 10000 1 2?,ocu, 4»,0 7,2 ,025 37 52 tooo. son, f>) usoo •. 11000, so.o 53,3 ,020 1.13 128 '"• 26J, bb ioooo. ar;ooo. 25,& 27,6 1 0l5 43 IJ4 100 1 S25 1 IJ7 220t)(J" hOOD, 20,0 21,7 ,025 4l ll~ IOU·, b. J, b8 2300~. azooo. ao,o 22al ,025 us Ub soo, tlllh. b9 25001>. 12000, iO.o 22,1 ,025 114 4t> aoo, ~9J O' 70 23000,. l bOOO, e,o U,l ,o~s "~ 111 ttoo, 16~. 7l uooo. 8001)., l.O "·' ,025 111 lUI aooo, ,. 7U, 72 lnoou: oooo, t.o .. ~ ,025 116 U9 tooo. 1~fl. 73 tllooo, ?,000, , ,s ,6 ,025 U9 su l 000 •.. 701, 75 2UOOO, 2Z000 1 lO,O 30,0 ,0&!5 JS 3b o. !198, 7b 1~000~ Joooo. 10,0 to.o .02) lb Sl u, ~79 •. 11 llooo. Jnooo, :so,o "'·5 ,029 l~ Sl ij()l), tl2Z, 16 31000. 1 qt)(h), lS,O 35,0 ,OC!S 3b Sl o. 7)7, H.• zaooo. 151)00, b6,0 15,0 ,ozs St! SLI aooo. ~2be &/) )2006. tc;ouo, .uo.o 47,6 .ozs 53 ss 100a Jaa, '· &I ~aooo. lsuoo, u~o Jl, 3 ,025 Sq ss soo., ~0 1 .• 62 JIOIJO~ 15000, 35,0 ~'i.7 ,025 ~5 Sb l.OO I 131, 61 30000, 1?.000•' ~s.o uo,o ,022 Sb 57 JO!Ja 18~t,
&4 ze,ooo, toonu, 20,0 2s.o ll022 •57 58 400, 7214. 85 i1000, JI)OOO, JS,O 20 0 0 ,oza 56 59' s.oo, 60~, 8h 31000 1 hODO, 15,0 11el ,022 59 60 lSO, · 92J, 89 2uono, 21i000 1 15,0 as.o ,025 SJ 5" o. 7l~o 100 uoooo, 1?000 1 75,0 75,0 ,020 2b 2a "· 72J,
101 cuaoo, ilOOO, 75,0 75,0 ,020 2b lliO o. Jcrt,
IOl 111000 1 IA000 1 75.0 75,0 ,020 i!b SO! o. 7~1.
l 0 l aeooo. li:JOOO, 60.0 bO,O ,020 28 100 u. lS'i, lOU IHOO, 27000, 410,0 tH>o 0 ,020 lOU lOl o. 194,
105 I hiJO, Jnooo, 13,0 u.o ,020 l 0 l. 102 o, ~uu,
lOb l)OOO. IIIOOU, 60,0 bO,O ,020 100 tol o. 1.15lt
107 205001\ 15000, e.o,o b0 1 0 1 0i!C lOl toli o. 410'1,
J08 21000, . 11)000, 1,0 12,1 ,o2S lOi! tO !a uo. 711!.
JOCJ 11300, lliOOOa 1>0,0 t!O,O ,.020 lOl lOU o, UJ, uo JUOOO, 17000, au,o 111,0 0 025 104 lO~ o. &.~21,
111 uoou~ " 9000, 65,0 05,0 oil20 lOl lOb o. 211.
N Ill JUIOO, 7000~ 15,0 75,0 0 020 10~ lOb o. l5Se
lil i5loo: 1\000, 25,0 lS,O ,022 aoq S07 o, lq9,
( ua 111000, ?()llO, 7,0 sq,o • oas 10~ lOU 500, &&7~ •
ll5 11500. 12000, 75,0 63.8 ,020 lOb 109 lOo ~I)I.J, w 116 ~1100, 11000, au,o 111,0 e025 107 108 o, 2iHi 8
"' ll7 11 flO~. 1)~09, !o,o 10,0 ,Oll 107 110 o, iU~,
' HOlE • • • JNDJC4TES NEGATIVE WIDTH ..... U POSSIIJLE HITH ANTICIPATED TIDAL UAGf
Q
. , ~ • • .·~ '~ ..
•;(,1 ·t .. G
c 'i (~
<~) ,·
··~
,. ,.
Table 8,~4
Invariant Node Data ,,
VPPtA COO~ INL£f, IUUK ARM AND TURNAGAIN AHH &LE PROBU.tt
P'
' '·
INVARIANT JUNC~lDN DATA
JUNCtiON AREA, H:S' SLOP£, HSflf'T DEPIHo FT HIN £Lf;,V, fT X•CU::IO Y•CORO C:HANN[LS fNTfRING ~UHtfiON
l .,.~it-o'. .. ·o &So,o uo, 0 blo,o U10,0 I z o'' 0 0 0 0 0 2 8500~ 'o llO,IJ llO,O boo.o 5Z7;0 l l* 4 0 0 0 0 Q l ~SfJO, 'o IQO,O uo,o t.~Ha,o 525,0 z l• 5 0 0 ·o . 0 0 q qooo, zo'o tSO,O 190,2 "~q,o , SIH&,O 14 t. 7 0 0 0 0 0 ' 6900, 'o 1lO, 0 uo,o bt~S.o 571.1,0 5 b 0 0 0 0 ~ 0 ~ f. sooo. aa'o son~ o no. a bUS,O 63b 1 0 7• 9 10• 0 0 0 0 0 7 7bOO, 'o ano,o lOO,O b82,0 bl9~0 8A 9 u 0 0 0 0 0 ' 0 3700, :so,o uo,o 121,1 ~sa,o t»tH ~o lo• .... 0 0 0 0 0 0 9 UlOO.,-2&,o so,o ~8 0 b 116~,0 701,0 ll• ll.l U• 0 0 0 0 0 10 b900e &l.o ~~.o 6b,b 70l,O 6':JS,O llll: U• 0 0 u 0 0 0 u llbOO, z,o 100,0 102,3 1U~O b9J,O IJ '" h 0 0 0 0 0 u zuoo. \1 A .So, 0 l JO I 0 7ll, 0 ?l'I,O IS 16 l1 &6 19 0 0 0 .. 1l 1200, I, o .10 .o 72,2 735,0 71.1'!,0 l7 21• 2~11 0 u 0 0 0 ll.l Q1o, ,o 100,0 aoo,.o 7Zil,O 7~u.o It! co ll l]ll 0 0 0 0 IS 2000~ zs,o uo,o uo,o Joq,o 7$6,0 SCI• 20 2q 0 IJ 0 0' 0 lb uoo •. 2-::.0 Sl, 0 ss.z l!i9. 0 1~b,O ~2· lS• 21 0 0 0 0 0 17 ll50, ,o DS,O 6510 7i.lb,O 710,0 2l• l5 lb 26• 0 0 0 0 u tcno. 16,0 71),0 109,11 731),0 7tH ,O 2~ i!b 29• 0 0 0 0 0 19 !400, 7,0 1.17. 0 ·st~.u 78b,O 170,0 27• :so• .ll 0 0 ' 0 " 0 ~0 t b I 0 .• ,o 9S,o YS,O nz.o lb'i,O 21J• )0 Jl• :u 0 0 0 0 21 lb&O, I , ll 65,0 tH, 3 7hi?,O 1YQ,O zqt-Jl• ]q 0 0 0 0 0 22 llbO, lj(\Q . ss.o bt.b 60b,O 1M, fJ ll lS P• 0 0 0 0 0 21 'no. ,o aso.o uo,o 7Qb 0 0 6U'1,0 H• 15 lo• 38• 0 0 0 0 21.1 I bSO.a 25,0 ttO,O bb 0 0 1t\1it0 UJZ,o ltu lb• l~ 0 0 0 0 ~ 25 880, 1, o 70 6 0 ll.l Hlc?,o 7~CJ 1 0 37 CIUIII til 0 0 0 t) 0 Zb uoo, ,o 60 0 0 uo,o Bl/1 0 tl20,0 lt\11 ijl) l.ll lOt 102 100 0 0
l1 950, 40,0 22,0 2l,7 IHS11) II" l , 0 ]Cit "'" Uq 0 0 0 0 0 l6 uo. ,o b'i,O b5,0 bl9,0 l'06,0 Ill 1.17 &00• &o 1 0 0 0 0 l! 700, l,O ~u.o .~7.0 bSI.I,U 7(;9,0 1!7 51 Sl 0 Q 0 0 0 3l 670; 3\.0 4), 0 lltlel 8bl,U B&II,U U611 51 ,. SIJ ss 0 . 0 v 0 )S qzo. 2u,o l0 1 0 29 ·'' 661.1,0 708,0 5111 75• 77• 0 0 0 0-0 J& sao, ,o .Sb,O lt-.8 0 Uh,O 802,0 scu 7S 1b 78 0 0 0 0 J7U zso. ts,o 9,0 16,7 669.0 l\lQ. 0 ss Sb Uti Ul 0 0 0 0
"] 3'10. u,o JS,O us,e 90&,0 6t.S,O f.') !II bb u 0 0 0 0 0
CUI 210. l.u 25,0 :u.s ~oa.o 616,0 bb b? u 0 0 0 0 0
/4S lS'J, l~O zs.o 30,7 qulo «110,1) b1 fll:i 0 0 0 0 0 0
rJ (fb ~do. J!,,o !5,0 221(1 '115 8 0 (\Hij. 0 bU a9 70 0 u 0 0 0 «&7•• 26fl, aa.~J !Z,O II~ • II 929.~ 0 IHii',;) 7CJ 1l 0 (I 0 0 0 0
' ueu 110,. 22~0 b,O 5,9 il18,0 8'1h,O 7l 12 0 0 0 0 0 0 UQaa 50. us,o 2,0 l • l YSO,O U9'9 10 'll.lf 7l 0 0 u 0 0 0 \.,J 50 lO, ao,o 1,0 ,2~0 9~9,0 901,0 71 0 0 0 0 0 0 0 u, 52•• )60, l6 •. 0 8,0 t2,Q uaz,u blQvO So 1b 7911 0 0 0 ~ 0
\ ~} lOlO..., IU,O JO I!) lb,b U87,0 7dU,O 77• 78 &u• ~9 0 0 0 0 -5'1 1.190 0 ll 0 10,0 !btl UQ~~o 6UOiO 79 81 89 0 0 0 0 0
() 55~• 5~0. 1o!o ~o.G 19.1 'lllt;,ti 1u1.o 8(1• &l &2• 0 0 0 0 0
~ NOH • • • JhOICaTES THAT DEPiH OF CH~N~EL £NTlRlNG JU~Ci)QN is LA~G~A THAN JUHCflON DtPTH • -· Jff~1CAT£C if EGA U ._,E VOl. UHf. GR AREA U _PQS$ UiLE WI.NT~CIP.llEO TJ[!AL UAGL ~' ,e/
~-,.~ ~-.:-. _... -~<'
'' •..
p
(~'
Table B-4 (Cont.}
Invariant Node Data
UPPER (OOK INLtTr tUUk ARH AND TUA~AGAIN·ARH ;~ ~ ' J. :·~
. :. <'' SAHPLt: PROBLEM. ' . '
'INVARIANT JUNCiiON DATA
JUNCTION AREAr MSP' SlOPE, HSF/Ff OEPTHr FT HIN ELEV, FT X•CORD 't•CORD tHANNtLS ENT~RING JU~CfiON
5& 620, . :so ·o zo,o Z0~7 <IZS,O 701.1,,0 (l2• e~" 0 0 0 0 0 i 51Ut 300. zo'o as,o 19 0 0 CJlJ], 0 tn,o &;s-. 60. 0 ~ 0 0 t o. 58 2,0~ 1 o "o 12,0 20,1 QS7,0 771.0 eu• &S 0 e 0 0 0 0 59 )~0. as"o ll,O 21,3 Yh,O na.o ft5 6& ~ I) 0 " 0 0 691tt U'O, 10 "o 10,0 lft 1 0 t;l89,0 75~,0 86 0 0 0 0 0 0 0 \ 100 '~o: ,o 60,0 60,0 8UJ 1 0 620,0 SOl IOl lOI.I u Ut~ 0 0 0 101 ;u, ,o 75,0 75,0 8l9~U ftli},O 102 lOCI aos 107 0 G 0 0 102 :suo, ts,o lO,f) 111,9 ts3~,u "J9' 0 ,,, lOS lOtS 0 0 0 0 0 JOl .22'19 ,t,.o 60,0 . 71,. 6S3e0 Oc!q,o lOb lOCJ HI• 0 0 0 11 0 JOl.l 231, ,o 50,0 so,o aso,o 6 Jc;. 0 107• l0 1h 110 H2* IU 0 0 0 10Su JSCJ. u,o IOeO ar;,,· HQ7 1 0 OIIJ,O uu llO l .... (I 0 0 0 0 toe, lfl9. ,o eo,o 80,0 860,~ 8Jb,"' Ill• au IU• 0 0 0 0 0 107 106, ,u 30,0 30.,0 857,0 ttuz,o IU H1» H7 0 0 0 b 0 I Cl8u lJOo 6\0 &,o ~~.o , ess.o 8tH,O "" ll6 au 0 0 0 0 0 109 ii-v, 0 70,0 ''0 .o 8&7,0 8J7 .o II SCI 1&9 120 Ui 0 0 .0 0 tao 178, s'u lO,tl J5 1 b &63,0 814S,O 111 1&8 ·~~· ~ 0 0 0 0 IIi eu, 'o 15,0 15,() tt7o,o tno,o lZb llq l2l ll5 0 0 0 0 lieU lib, z's lS,O 18,4 t17l,O e.H.o 121 ·~'i 121& IZ3 0 0 0 " \ Ill sa, ' 0 us,o QS,O o1u,o a.ss,o l20• Ill llti &29 0 0 0 0 HCI 52~ a "o lo.o sz,o lt79 8 U 6 Jb, 0 126 ·~~~ Ill 0 0 0 0 0 ' ..
115 uu~ 0 ss,o ~c;,o 675,0 eqo,o t21 lJO au Ul* 0 0 0 0 II b .ltl9~ "!o tto,o 37,2 en,u 8&16,0 lZt• Uo ;JIU 135• 0 0 0 0· 117 til;. ,o qs,o qS,O 8flt,O 6110,0 Ill I 12.* ll&a U& 13'1• 0 0 t 11& 5b, ,o tJO,O bO,O 86},0 81.11,0 Ill I ll.l &let l.U 140• •••• 0 0 119 60, I ,o JS,O 60,0 ttf}l. 0 6qb,O us U7 111~ .• 0 0 0 0 0 120 30. ,o 30 0 0 .)0. 0 t!Ob,O 840,0 1l6 l" l• lUSt\ 0 0 0 0 0 l2l oo. ,o 90~0 qo,o BO&,O 811},0 139 hO lU:J &qu a a e. 1•17 ll& 0 122 u. i.l • 50,0 50,0 68&,0 8~6.0 Ddl* l«~Za auu &qcu ISO* 0 0 0 "l IZl :u •. a,o Jo,o 33,0 690,0 ftql,O Hl!i ltibA lSl• 0 0 0 0 0 !~ci ou., ,o 5';,0 ss,o 6qtJ,O 8U'4 1 0 .,,., l'Sl ·~C!· lSU Q ~ 0 0 125 H. ,o 70,0 70,.0 691e0 6~bu0 auu• ti.ICJ(I! &5i! lSJ lS5• 0 0 0 lit» l7a t,o .!10,0 31,0 869,0 ·&1.18,0 ~50& t ~ J• t5b• 0 0 ,-... 0 0 .,-127 9(), 0 'l'i,O 95,0 895,0 6!1 •• 0 I SCI 155 ISb I Sf C1 0 0 0
c')
Uf) S3&, '~0 so,o --flfl,l 891,U e:e.o ~57• ~5 .0 0 0 0 0 0
ff01! • CHANNEL ENTERING JUNtTJtiN IS LAAG£R THAN JUNCTION DEPTH ;
\ -. JNDJCIT!S THAt DEPtH UF •• INO~CATES NEGAT!VE VOLUME OR ARt.A IS PO$Sl8LE WITH ANTitiPATEO JIOAL SUGt.
'""" v, • £'JUARY STATISTJt~ (AT HSL)
""' TOTAl VOLU~E, CU FT ~lll7·•tu a ' Tor•L ~uqrat! AR£A, SU Ff ,ll22+lir!
~~. HUN OFPTH, FT ,CJ951it0l
Tab]e B-5 ··
• Tidal Tim~-Stage Data
UPPER CDGk INLET, KNIK 4R~ AND TUqHlGAIN ARH
MATER YE4R &972 AVERAGE TR1BUT4~Y JNfLOHS ,,
tiDAL tOEFFICIENJS FOR JUNCTION ..
l
•ellOJ .,eon 1, Sal8 •• uu a797a . .... 0495 •,0606
TJME OfJSERVEO CO~otPUTEO 011f
•2,9000 •b,5001) •6,11705 1 0lCJ5
3 1 liOOO 7,qOOO 7,:S79lJ. .. ,0202
9,fl000 .. 9,0000 •9,0190 •,OlCJO
!6,0000 7,&000 ~.SCJ9b .,ouo~
2l 1 100() •b,SOOO •6,0705 ,0295
2&,uuoo 7,1.100~ 7o :UCJ8 .,0202
•1,125.0 .. u,ubl7 •a,suo •,0Sii4 .zsoo ,asoo 1 Ulllta .,1)15'1
li6<5Q 5 ,lb lb s,a.s•ta 0 07'15
u,9S~G 'I,CJ~h ll,'hJIIO •1 09lU
b,SOOO .. ,aooo • ,11 i!S ,0&!75
8,0500 •t-,5974 •6,519) 1 07iJI
&1,2000 •b,Sb&l •b I fi.J'H'; .,o715
U,at~oo "". 7000 ·~MtiO ,Ol«<O
lU,LI()OO 5 ,lb6t s.uzl ,05Ui!
11, 52SQ 5,5l11J 5,4829 •1 G5lQ a q. osrto ,S500 ,5239 •,02bl ,,
(0,5150 •'I 1 UliUt •4ol119 ,01)25
2l,HSO •l.l,iJbl7 •u,522t •,0!:.61£
25,2500 .~soo ,Cill&5 .,015~
z~!la2so s.J~lt. s,uJet. ,01115 :" l!'> ,~ I'
TOTAL ,899)
SUHHA.AY 8V HOU~
l le02 a s.~s 1 1;lo " 6.93 5 "~ 76 6 1.24 7 •a,ao 6 •btl7 9 .. 8,59 10 .. 8,09
lJ •7,19 IZ . •l:,91 ll ~14 '" 3,97 lS 6,65 ao 7,60 l7 6,65 l8 . 4, u 19 ,70 20 •2,7~
21 •5,32 2~ ·•.us 21 .s.es 24 •1,61 25 •c41A 2l:! 1.o2
J'
• •
{ •
0 -·
~;
.:.·"~'
()
Table B-6
Sununary of Boundary Conditions
UPP£~ COO~ IHLETt KNlk &RH ~NO TURNAG~I~ ARM
HATER YE&R J97i AVtqAGt TRI8UTARV lHFLOWS
JUNCTION TO JUNCTION [VAPORATIOM R&TEt 1NCHES/J40NTH
l UG 3,00
HOU~LY Nl~D VELOtJTY (HPH) AND DlREtTJUN ~DEGREES CLOCKWISE FRO~ NORTHJ
CHANNEL TO tH&NNEL
I uo
lNFLOW AND OUTFLOW DATA
u
27
CIS
q&
50
bO
108
U1
12U
!HFLCJtf, CFS
at~oo:oo
3301)0 ;oo u1o:oo
azo.oo
aorseo;u~ .Jooo,oo
t~oo.oo
75~00 uo.oo
JUNCTION TO JVUCtJON
1 un
JUffCTION
i
e,
ll I()
2l
.o (), ,o 0 •· ,o o, ,o o. ,o o,
NlfHDRAWL,., CFS.
,oo ,oo
,oo
,oo
.oo ,oo
,I)Q
,OC)
,oo
2
1
12
17'
ll
GROU~O rfi TE~ I Nfi.Utof, CP'S
,oo
.o o; ,o o, ,o o. ,c c. ,o o,
STORM HATEP SNFLOHt HOUR ANO fLOK, CFS
3 e u sa
2J
,o o,
,9 o, ,o o. ,o o. ,o o,
. 0
,',·t
..
4 ,o '• ' ,o . o,
9 ,o o. 10 eO o,
II .o o. u ,o Oo •• ,o Oo 20 ,o o,
lll ,o o, 25 "o c,
·•.
. .
' /t
/· •.-
I I
Table B-7 I ·-
Computed ;ime-Stage at Selected Nodes
UPPtR COOK tNL£T, KNIK ARf1 AND TURNaGAIN ARM
IIllER YEAR ''fU AYERAGt lAl&UtA~Y IN,LOW&
JU~tlliJN ~ JUNCTION u JUNctiOrl lt. JUNCTJON .,, JUNCTION s• JUNCUON lU
HOUR HUOCPEtt) ttUUCf£U). H!AD,fEEU HEA(J(fU.T) HtAOlfU:T) . HL'AtHf U.U
s.oo 1:o~ •7.28 -io:a~ l0,18 .z.ez •9,110
l,OO s,es •l,Zl vlla20 9,66 •1.111 •12,tl7
1.oo 7 ~0 l c ll .&,19 9 6 06 •ll.l2 •Jl,99
u,oo t.'«il s,.u .,aq 6oJ5 •il,llt •IJ,ol
5oOl) ., ~'I& . 8,01 5,61 1,11 •2,!»l l.~·
&,llO 1,2£1 tir98 10,15 7,1S 5, l6 lO, ~I
7,00 •2,110 7,10 t2,b8 1.~1 ll,25 au, I)
s.vo .. b,l7 II,UO sl,9b 9 1 Ub 15.05 114,79
9,00 ·cl,S9 ,79 s.us 12,1b IS,ot l2,ZO
10,00 . ·6,U9 •2 1 Mi l,!ll ll,bU ll .oq 7,(19
' ll,OO •7.19 •b,IU .l.ttq tZ,do 7 !112 a.u
\Z ,oo ·l~~n •9,H -b,b~ ll,7Q l,llb -~.~2
t l. 00 au •SO,)J •10,86 II), U •Z,ll .. 9.,38
u.oo l'97 •7 0 bl .,J,bl 'l 0 ltl •b,i~ •ll,J«»
\
u~oo b~b5 .. ,,9, •12,1'1 ~~.oz •11.1'1 •15 1 ol
h,OO 1~b0 a,ttb ·". J9 b.Jl "'"·'" •10,711
u~oo b,bS b,~9l 2,ua l,bO •7alt> .. ,99
JU.O~ c.,tl 9,2] &,t.tJl 7,12 • &! ' 7,0l
\9~00 ,10 9,~1& JZ,l2 b,bl ti,ll U,9l
20,00 .z,n 1,~1\ tl. b5 7,b6 11,81.1 as.~o
2\,00 .. s.12 14,!7 11o&5 10,60 lb,ll8 l5 .u
zz.oo •b,I.IS .~ . 1,1b D.so !Q,SS 11 .• 1.19
z.s.oo • s,as . . •2,35 2,76 ~"~ 2;! IO,b1 S,9S
2U,(IC ·l~b7 -~·"" .z.t«~ tJ,(IIJ b 8 1&l .12
• . 25~00 •,t.tl4 •7.51 .. b,bb U,112 l_, 7 0 •S,Ob
2b,on 3,02 •7.26 •l0a09 ao,87 •2,65 w9,.i6
27,00 5 6S •3.l2 ·11.16 9,911 •1,1.& •ll,~&IJ
C!8,00 7"30 J. 34 .. b,16 fl,ll •11,11 •ll,9b
" 29.00 b"9l s.:u •.lt.t 6,41 • •10.98 •11 1 CJ0
lo.oo ll,1b 6,07 5,63 7,17 .,&!.~?. ~.6\
31.00 1,2lf 6,96 to.lc; 7,20 S,lb 10,112
ll,OO ·2~00 7,73 J2.btl 7,ll \1,25 '"·'l
ll,OO -~ .. l7 l.!,tl() n.'~s 9,~0 15,1)5 '"·'9
]c,·, Ol) .6,5'1 ,19 &,qs ll,\9 ~~.o() l2.l9
35.00 .. e11 U9 •2,66 s.so ll. bb ll , o.9 1,0~
:Sb. a o "'1. 19 •b,IU .. 1,69 lC!,tH 1.&' lei'
n.oo .. }. q l
•9 ···~ .b.b2 \1,15 2,Ub .. q.~z
' 36,00 • ll& •lO, ll ' .,o,u7 10.71 -~.22 .q •. u
39,00 1 'n •7,1Jl .,;s,bl 9,ti2 .. tt,7l .. \l, .!7
\
~ ' liO~OO • b.,CJb "''·"' •• 2.17 1'.1,1)2 •11.19 ·i~,o$
' rJ ua.oo l,bO 2,67 -:.!:,lR s.ll •l4,fb ·eo,1u
"' uz.oo &,bS b,9] 2,'ti! '1,b6 •7,lb .. ,99
) l ~1 11 00 4,12 9,Zl 6' tJ9 l'ol2 •• n l 1 0f
i w IJlt,OO ,70 9,54 t2.32 ti,IJl a.u 12.91
·l us.oo .. 2.11 7,S6 t3 1 uS 7,89 u • .;~~ 15,5b
. f "' Ub,OO --~~32 U,l1 ,,,us lO,OO h,q6 t ~.a~
J.; ::\
~:\ "7.00 .b,a5 ,61 r,7b ll.~o lc.t.~8 11.~9
~ ; ' aa,oo .. s,as •l,l5 Z.,1b 14,22 10,6) ' S,95
~ j s tt9,00 .. l.,bT •5,«t4 .. 2,19 1l,09 "·· q~ -,,. ~u
\1 cal.Sl ... b."" l1 0 9l 1.70_,
,,
lllf),06. so.oo ··"" :) oq. • • !) (),·· jtl •:0
., ,, '
·~ ·::-::
\. ' ,, ., . ·n
I ....... ' [/
-,,
..... ~ .-~' .. ,
~· ' 'Table a·-s
·~ ' .,
Computed Flow and Velocity • Selected Channels lr.
'
UPPER COOK iNLEt, KNll( -'RM AI·U) TURNAGAIN ARt-\
MAtU YEAR 1972' lYEPAGE T'lll\UTARY INFLOW&
C"'ANtiEl: u CHANNEL 72 CHANNEL 8) CttANNEL Ut CHANNEL &ae CHANNEL "' HOU" Fl'lW \'El, F'lOW VEl., tLU .. VEL, tLOW VE\., flOH vu.. n.o .. Y£.L 1 (CF.S) (FPS) CCFS) (FPS) (CFS) (f'PS) CCF5) (f'PS) CCt ~) (FPSJ (tFS) (FPU
1 :o~ m5Sl61J7~· .z.ss •l9U06, •Ct,l2 •lUlbOOb, .. ;,oo o, ,oo ·11Jl3bb, •2,8l •leUJb!7 8 •J,q~
2 ... oo U03:?2i?S, 1,87 •l570Sb, -~.ot .,.ll3!b2S, .o,oo o, ,oo •SOtHH9, •l,Ol •lZ)bbbS 1 •l,ilb J.oo HO~S7tl\ S,b1 "'t 3Ul21 1 •lGcJl •88l86i!, •tJ,Qtl o, ,oo •b7'176, •,25 •2CJ~H'lft, •,111
q.oo 1&710525., b,CJQ •l 09';()7,. •1,6] •U'ICIJl~, .. zen •672, .. ,189. 9bTIAl,
3 ·'· f
le;,~$1HIII, ~.es
3 •· 00 l6l2!>8 H. b,Lt9 .. Q2'52·l, ... ,7,. IOLtllbli, . '1,02 •69893, •a.u lb28Sb,h 5,1& Llf)0$'ilb, , • 38~ e,.,oo l U6271AO. u,b1 ·791Jbl3, •1,69 lCJ21l26l, 5o5S •17811113, •Z,52 1517019·~ q,u.s ilt5·18YI, b 1 0S
7,01) Lt2Ql)08~ leb'l l';bll9a 2,10 250'1075, 5,76 •2Ulut, ·z .a" llll~UZ, '·'" 297.,ouo, ". 12' e.oo •SSb~f\Ol~ •2,3l OZ7l60, :s.su 252?.007, 5,00 •9J1'H • •,87 L17'»2U,
'· ).! 'll.S8lla (,.2,)
~.on•llC21b52. •5,5" l.lllfli? .. ; t l.lll 13l~l2,, c,'SS bll10' ,15 • :S9.JQOU a ..... ,~ •17S14292, •l·,,~o
lO.OO•tS~893tl. ... &,96 7Sl''111 1 .;09 •l3b?. JSo • •2wqs 7l5SlQ l,:H •llb)!h5, .. ;;.,, • UIJo TIJ 1, •5',51'
li.00•151210t.l1. .. e,,qe, .. z:;us.so, •2.o" •21U2!Jbl 1 .. 5,11 l8'.t96 • ~.sa •it!7tdl!Oe •tl 1 lb • 3t. l U,2ijfa, -.S,IU
ll., O(l•l2b71<17S, oot,1 0U •2lQ7U9 1 •Z,lll • i t\Ob JiJO, .. s.u 51~.i3 • ,99 oll)~6t,&11 1 •l 1 7U •Zl8U9 ttl a _.«,'lG
llaOIJ •6b2Zbll9 0
.,, • (IJ • II'H'l'J7, ... z.ao •lUb9J9?.1 •S,Ob o, ,oo ·8lbc!b~, ... , l, l 0 ... zo32Ulb, a)1 8U au •. oo -aorqze.:, •• Jtl •l!J~lOU, -~.oo •ltl\31191, .ll,9! .. ,oo ebt)lji)•HJ e •2,ll~ •lliSi!2tJ&, ol 1 Cl~ ...
15,1)0; 110211J('b, a,'ll •121ICJ79 e •1 0 90 ,.qJIHt51!1 .,,75 o. ,oo •)UQ'III j• •l,C16 •IJII)Sttfl 1 •l' ~,., lb •. oo l72\&Gt'8, ?,311 .-tQ6'1c.tft, "''• 03 "'n'HbU~, .. u,a~ o, ,01) SOUIJ He i! 1 Ql Hit~9CJ, l, l\
11.00 lf\li}P.)97. f,'ii! .. qzso,, ••• 76 lllf:Ol8, 2 .u .•Z9l.17, •Z~, ou l071lZl• !J,oz 309d5Yb 1 e. .to.
18.~0 '513 J ?197, 6~?8 ·70192, ·l~b8 I l'lli!O&, ti,8Q ,:;~z~oqull .. ~.ql l76b!JU, S,u'.i t.IQu'lOU7c hSto u.oo Qb')O'lbts. '3,7'1 •'i4':lll, .... u l 23571199, b,IU •2Z'l'I.Sl, ctl.~IJ JUtJ•I1!52 s . 11,2J c.~uzH.ts, S;bq
·zo.oo 1121ooa: ,u.s 2QS1,2?, lll2 l80Uli]U 1 5,A6 •191066. •1,78 'lbiJIJOJ, 2 1 bfl 2CI51.1 IVl a Ji JJ
21,00 .. Bbf.tiJIIl'\ •3,bl 57tt?.'l5. 3,.91 ZIIC!Ubi>S, t.o,S~ ·l«ibb~. •,Zb 2J.U30 1 ebJ 8c!SJI 1 ,0'
2Z,OO•tuzuS•J07, •b,ll u7166S 1 2,8fJ souuq, ,ql 7tH I '5 0 ,'18 •7UCIOSU 1 •Z,oS •lbb'159U 1 •J,U
~3.00•!SSl7b6l, .. &,8& ....-t!1~7UI, •1.115 •I'JlA&'lf, .o,za 70338, I,SI •lUibJS• •l,'ll •lQOlSbS, •!a. 'i$
211,00"'1 ]«H;797ij• •fJ 1 lHI •2Ht:Sil. •2:1" •ZIJfi"lOb, • ;,u ll20'1, 1,57 •12Zl7147, ..,t,ltb C:.l :J'f!JCJ lO 1 •S,tJ( .
2S,O~•l011lSSl1. •S,Ob •2;\SJ&B9 0 •il!,ZO •l731653 .• •5.114 J6c-1, ,ttl ·917')0(4. •l,U& •i!St1b~.,u, ., .. ~2
~CJ.~Q •SSO!lt5l 0 .~,Sl .. , 9ll7ti'J. •2,13 .;.l1H)9Z119 1 .o,9tl o, ,oo .tuzazt • •2,81! •.18117510, •le~O
27.011 UOtS;U, I,Rb ootS'l9Ul 1 •2,02 o\ ti!M~u. • 1.1,78 01! ,oo •SU'IltJS, ··2,0} •tasuua • •l,Cifi
ze.t~o uous~qu, S,bb •lll~S'I, ., t 9l -n llt\2'~, •QeU& o, ,00 •b9~QO, •,25 •;!QC1~1tJ 1 · •,118
29 0 00 lbb9ll61b: 6,1JJ •&1127!, •• ,61.1 .. ,q JQ(!I). •2,&7 .. b9l, •,SO 9t;JQ8i, ),db 2bt1"*bi!5, .... u
lu.oo 1.bH )uas~ 6,09 .. q ,Sqlb, •1.75 too:Jttll, a,oz ub98~!;1 •&,61 lbitd'fll, s,n ct&OU8l0 1 · .1, .u :u.on ll'77bli2CJ. 9,b7 •BII6~, •1.10 l<JI!UIIOIIc 5,55 •l76tl99. •c,Si! l!JlUJ)U, l.l,cas aq lllitd7, .ti 8 0D
32~oo · unauet, 1,b9 157r.7'3, 2,10 250861)2~ 5,1b •2l.i!i!IJO, •2,&b IU2llU, l,lil 297\J6~ I , ... u
33.00 •'JS71lSl, •2,ll QZlS51f 1 l,Sl i! 52 l«hH.t , s,oo •IJllHO, •.111 U71Jl'itl 1 l, t~ 9lUlO, i ;!J
3U~I)I)•1JOc!2H!, .;,sa Q91251'1, 1,21 l}lB2tt2, 2,5S 6.l2b2. .t'j •39l?Ltb, •l.l s .. ,7';~1121, 0~.~0
3S, OO•l5~8!1.?3~, ""·'ltl i'I,?C;;IH)1 ,a(, •l"Sb3US9, .• z,qs J'lSl~, iu l7 •ll6H5Y 0 •l.~i'l •l70til\10, •5,~j1
3.,,(1'»,tSI21tall9, .. ,,'lb •2';51llJ, •2,011 •i!t0~3UCI 1 •5,ll 1U87Cf. a.sa -az·r&lsu, ·"·'" •lb!tJI (8, •5.61
37.0il•l.!t17&,?3Q, •b,Otl ""2'-~1511, •2. 'q •lf\Ubl0b 1 ... .., ·' y 571il, !9.9 •I 0~1\M;}, • ), 7U •276l0.,2 1 •II,CfO
3~.00 .. t\b2LOlQ, •lJ,,I6 •lfWJll 1 •2.10 •lUb'U51, •S,Ota o, .oo ·6tb.i28, •l,lo •2u Ht.S6.1 ·J.8fl
l9. oo •IJIJ I qa 1-. •,le •IS~S~l!. -~.OQ .. litO i? IJ(J • .. u,91 o, ,00 •fJ!IhOIJi? 1 •2,&1~ •lliS2!.idt1• •~tYl uo.oo ll02hllb, 4,97 "'IC!9t62 1 .' •1,91 •9:S6bfll), .u,lS o, ,OG u lu 'i'lb l, •l,Ub •au~8S7, ·••n .('l os•,OI). UZlMl2~ 7,.)11 •Jll6f)l)'l. •1,6]. •f,97!!~.S. .li.Zb c, ,l!O 5'l.IU5uo, 2,1), ltlltt92, z. Jl
f· a i! "' 0 fl ,, t 8 a l !\ 'S ll \ ~ 'l. ?i!· .. ?i?~zq, ... 'lb Ol7iiOO, 2~tl .. j!q t:H ~ "z.ou ~,uno? a, !. , D.l 36Q»SJ2e ~.,~
CI),OO l'>lll0U11~ tJ,2tt ·1tJ?911, "'l .-~" u>~~• Jl&8 Ci 1 'HI •l2'li0t.JS• .. 2,111 l7b"t!Jil. S,CIS ~'lllb(JIIb 0 7 0 ~et w ""'~0(1 'H>SOU~. l,H .;5q';7'1, •i, Ul iO~:'J llZ, b,lO •22'1Qbl, •2.~9 I U611iji -'• ll e:i! 1 uo,?1CI~l. 'l,o! ....... o~. ·~o JlZS1SfJ, ,qJ 2957tlll 1 3,12 2'\QIJ';)1), 5,6tJ •1976B, "1,,16 ITbllUti, Z.,bb Zu~.S!.ib6• .s.u
I Cl '•. 0 b • "bu. ?.1 q • . ~.,.. !»111~'10, s. ?l ZfllU':J'.il, u,ss •l9rd2Q •,lb l.S?. l t>~ • • b·J 8c'ld'1, tll'l
&17,0(1•\•a?u~·.-·;a; •b.ll fl77'f'1U 1 2.,ua suansat. ~'H llH C?t.J, ,'lA .o?Uiil"''a, •t! e 0,~ •.ltph ~.., ~0 0 .... u .......... ut;.0(\·1~>'J l 'f19Q" ,.b,Rh •.! I ~~~I q, •l.u5 ... , Qj~lt!i '· -it~~· 7U Hit, I,~ l .. I ?. 1 I '' 7u , •l,1c • J<i:O~b)b, . .,.~~~ Q uq.r;u•tl"A7'l!l~P, •b,IIU ••H ~'.111 • .. c,&u ·~1'1'11\ It J, -~.zz ]J~OT, a,~., -itr!llf';)tt, •l.lc.Ob .. J J'h;qo~, b,fll •·
"""' S1),t,o .. , o7r,~ l'ici • •".i,IJb •23., 1'11, ·~~lO •11 lT!JtH, ··S.itt lbbb, ,tn .Q, ,.1Ji'Sb. . .. ), \\tt •l:,tlo~d&11 .·"'· !tl
Table B-9
Surrrnary of Miscellaneous Computed Hydrotiynam·fc Data
~PP!R COOK tNL[t, K~IK AAH ANQ TURNAGAJN AMH '
NAtER Y'AR \972 &VEAAGE tAI~UtAAY INfLO~S
l tO 10
ll TO 20
ll TO .30
ll tO &10
Q l TO 50
5 I 10 bO
U TO 70
7l TO ISO
IH TO qo
CJl 10 100
SOl 10 llO au to tzo
Ul TO 130
l •• ':u
.lQl'
.7&14
1,1161 ,ooo
.ooo
~000
.ooo ,ooo
.~oo
'·' u l,7UO
l,lbC&
AVtRAG£ YELOCITifD FOR A
l
l TO 10
ll TO lO
2& 10 30
l1 to qo
tq TO 50
51 TO bO
bl TO 70
11 ro oo
81 TO 90
91 to too
101 10 110
111 TO 1l0
121 TO JlO
ua to '"o
111: 10 l50
lSI TO it.O
•,luC!
•.2a&
.,ou9
,101
•,Oll
,01b ,ooo
•l.a«Jl •• aol
,OOA
to.Z2l ,on
•1 i?Ul
•• J11
•,1)9
•,0?.2
2
.,tlbb
,t;b7
,Qbb
a,u?" ,noo
l,U1
,1)00
,noo
,l)QO ,ooo
'·""'~ l,lZ&
l,lb6
tiDAl. CYClE
~
.,,09
.. ,220 ,,.,
o 1 Zl9 .,,as
~1)00 ·• ,oon ... ,sn
oo,IJJQ
,ooo
•oliO
,oZ'~
.. ,.q7
•,i'QS
•• aoo
,n112
l .,ut»S
,b7Z
,9l5 ,uou
lai!BO
I 1 O«HI
,QOO ,ooo ,ooo ,ono
1,110
t,2U
a,ne~
l
.,u'Stt
... 22'1
•,fJI\7
•,20l
,000
.,]111
,ooo
•,!AS
•,bbO
.oou ... uzl
.... lO& .,oos
•,29ti .. ,o,2
,o:n
AVEQAGE fLOWS FOR A tJOAL CYCLE
l
II
21
31 oa
51
61
71 a a
91
lOl
Ul •u•
TO I 0
TO lO
TO lO
TO 410
10 50
TO bO
10 70
TO DO
TO 90
to aoo
TO 110
TO 120
JO 130
I
•2511100•
IJ'i16,
•191065,
)9lt19A 1
·5836b,
•lObOI, o,
•10119&,
60 l1 0. o.
•liiU~~.
Jl7?Dl 1 aa•uo,
1.
• 211)(111),
•50Zil,
l020P6 1
·l02lfl6,
•lACitS,
o.
o.
•10612,
·1'1'1,
o.
,lOlbOZ 1
ClU'il')8 1
•69b69e
]
;,.45'H89 1
•50iib9,
79ftJ7,
.ft,)Mb 1 o,
;.uou'~, o,
•I Ollb7,
·ft70, o,
167098,
•5l~C15t
•7l&t.l5,
4
.oos .uo
,92b ,ouo
l,Jb5
2,Hft ,ooo
,ooo ,ooo
,ooo
1. 'b7
1,27'1 a,lub
(I
•,O'IS
a,Obll
•• t15
•,l2B .,zqca
•• 's;
,000
.ooo
a 1 b'tlj
,ooo
• a l2
•,216 .,z,.q
0 0JO
.. ,ot J •: ua
1.1
207UU,
·29ti!21,
•ll50i!ll~
9U.,9?,
•101l9q,
125QOit,
u~ o,
•9lU 1
o~
•Jqo&7,
•)1}96!».
•542Zb•
5 •,ooz
1 b7,U
le0:\0
le~RS
l, I ,2
2,19& ,ooo
,0(10
.ono .ooo
1.32"
1, ]tl
l,ll\5
5
•,Jfl9 ... ,,,&
• 010 ,oo9
.ooo
<>,3n2
.230 .,.,,
•o Q lt.l
.ooo
•1 0'ib
• 0 'l'
•,2f\7
... OlS
•,Olil
•ai!nb
s ,.zu<nn.
29~3b~.
130291&.
•C!70lble
n,
•ll922n 1
aa~u1,
.. qooaa; .•
. •9ll?,
n.
S2b7t,
Zl2225e ··1·
b
, Olt.l
,71.18
1,027
1,5~3
2,UJ}
2,t~95 ,ooo ,ooo
,ooo ,ooo
l,lttta
l,ll"f
l,l8fa
b
•,027
•,)1)7
.1~2 ,oo&
,ooo
•,Ob'J
... ]79
•• uso ..,,09«
.ollo
8 0Sb
,OOl
"'• l~U
•;011
,Oll
•,llb
b
.. zzha''•
•ll792b,
lblb~.
•l7bOCd 1 o,
l115U9 1
•2781,
•9llla
•97U 1 u,
&8U7b7 1
t0b7b,
•loi! 18 :Sl,
1 .us
.Jott a.ozq
1,757
61 t'b·IJ
3,06) ,ooo
,\)00
~<IOU
al.i.:'O
I ,Ztd
l,J'IIJ
l 1 U06
7
•,01.1]
•,139
... ous
"'e l03
•,!»6l
1 UCIO
•• ~us
.,j50
,000 ,ooo
•,ltd
• ,177
•,JOO
•,02d
.. ,u99
•,Ul
7
Qa]9U0 1
b2jS,
Jli)U~ •
bb056,
•lS0875, n,
•UIH' )1
•5014~,< . () ~
o,
1J8b7,
.. eJtq~t.
•ll'l}72.
e
,le7
,bbZ a,aou ,ouo
9,StaS
J, S.H ,ooo
,ooo
,ooo
,(100
t~~u 1
l. ;a~]
11 Ult.l
IS
•a22b
•,215
.. ; 1 a o •• zu1 ,cu:s
.ouo
•slbS
•• ;!~6
,ooo
,OGO
.. ,178
•,1&8
., Ji!l
•• l bi!
• o Ill .ooo
6
•kllU89,
•llibll,
ltJlbt&O,
•l0blb 1
llS7 8 o,
··7997,
,l.j~97,
o. o.
.sqsbt~,
•lHOl,
-:u~oq.
' ,C~Ol
,79Z
.ooo 0oou
10,051
l,Htt .ooo
.oou ,ooo
1 00!1
h.204
lelSl ,ooo
9
•1 0811
•albCt .,z&l
•.tl)
.ou\J .ooo
-.~n o,oo/
• • li\S .oou ,oq&
•• '" u
••lbV
.. ,,27
••• u .oou
9
4lc!bOS 1
•'~"lle
•2 1HH\qU •
•Di7l9e o,
0~
·280),
~lb5,
bJhOe
Oe
ll1tlbll•
•b'i,U 1
U'IIU g
jO
,2SZ
• 71}9.
eOOO
11 0110 .ao.on
J,H5 .ooo .ooo .ouo
t. uu
l,lOl
lelbl ,ooo
lO
•,2ll •• oal
'079
,O!J~
,OQO ,ooo
.,,,~s~
•• s~o ,ouo
··llb •• o~z
.~93
.1 li'S
•1 0ll
e 1 2~2 ,coo
lO
QIJ9ij.
•315'1Uo
21lt~Sl,
IOttl91 1 o, o,
•lODSS,
•b6Y02 1 v.
5Q700,
1Setl7,
l~btill,
ll19160,
.,
~
\
""' <t.l;
• -.. ...... -
...... ~ . -· ( . ) Table ·~o:..9 ... Conto ·.
Summary of Mis-sellaneous Computed Hydrodynamic Data
1 :Sl 10 IGO
aa~ TO tso
iS' TO 1&0
l TO '0
11 to z,
Z I TO lO
3l fO IIC
Ill TO 50
51 TO f10
61 TO 70
71 To &o
&1 To "'>
91 To too
I 01 TO 11 G
111 TO llO
Iii TO Uo
..,J5a7,
•IICJ,
JOlt,
1
l9C17119 ••• .o,
•2, o, o. o, o,
o,
oil
•lo •O, .. o,
•l£•7el,
.,zO&lO,
OiCJO,
19,
•J, ... .s.
uZe
Oo u,
o. o,
o. o.
2,
'· •Oe
.. J;zqt,
•2bOtJ5,
3309?,
3
29,
•Z, .a,
o,
•I' •3,
Oo o, o,
Oa
•1, .. a, o,
au: .z. ... :s • o. .. o.
CJ, o,
0, o. o.
••• ... o.· .... o.
5
13,
•3o
•2,
•C!, o,
5, o,
o. o, o,
2 • .. o. .o,
AYE~AGE hOOA~ YOLUHE (CU FT~
I
II
21
31 ,,
51
61 n
&!
91
101
Ill
121
TO
TO
TO
TO
lO
TO
TO
TO
to
TO
to
TO
to
to
20
30 ao
50
60
70
80
liO
109
llO
120
130
I
·'""7•13
,0618"'12
,t«Uil+~2
,lbt~+tl ,oooo
,oooo
,OO!tO
.oooo
.oooo
,(1000 ,l7n•u
,JUI)btSO
,l6!t~+ao
• l · ,II Oll+ l3
.. l130t ll
.&~07+ll
.Z~92+U
.onoo
;4CJll+lO
~o~uo
,0(100
.OOO(I
;rJtiOO
~ t.15 t lJt.IO
,87btJt09
,hUtU
3
.1189-t ll
,8&11U•ll
1 lt121U·12 ,ouoo
,I cta1t ll
,)Zilb+!l
,(IUUO
,OOfJO
,oooo , ouo•J
,11105+8'1
,21.195•10
111091tl0
tl
,&350+1 3
,9765+11
1 10lU.1l ,oooo
1 63J1HJ0
,10S&tU ,oooo
~0000 ,oouo
,OOGO • u ~2+ tl
,lblCJ•to
.~lJfJl-)10
5
,8970+12
,22i6+l2
,62ss•at
oC!OAI+ll
o6'1b2+J0 , uss.at
~001)0
.oooo
,001)0
o00f'f.l
c2nStlO
e69Rl•l0
• 2J-:;b•10
POS~~IVE AND NEG-TJVE
S lti~CJU752,
5 t b'l15iH!7:
,LO~S FOR E~C~ C~iNNEL
SCI9~bt51 1 2 U268qftio
lfl2tJQb~, b 89U570 8
IMJ17982~
lllb251l, ;qsJuzq, ~· 21'4USI ;.
ll !!t517bt:'6;
H 3233?75.
2! zazuos;
25 2Uh5flfw
29 :Jo~67q,
3l bq8i!ltii,
31 28S52ns,
"I 11 SCJCJ~,
us 0~
ll'l 0.
53 11))Q';)7.
S7 o,
~ 1 0.
f.l5 ltCfU(Ii'l,
~" )cal\auz,
2U2lqJI, 10 51l5~12lo
&55bess~. lq ~33132;
322Soao, 18 ~~73q21,
U7b29n• 22 ]~U~tJlJ,
Jlb2QJ, ~& •ns~oad,
560S7l~e 30 1175?~o
691873~, JU lS~Jllq,
2767JU7 1 3t 6}b6~lJ,
2lt.4l.SI, ~~~ ~l!831:•.SJ•
o. !;ft u.
n;; SO 0,
l~Jij]~~. 5q lbS67nl.
o, ')t) o,
"· '·l o. 11"2RSh 1 6~ ~O~~AI 1 l~o~~,. 10 zq2~~q,
122«11~3.
!Jbt!JS.Su, :sooouo;.
a u~·na'l,
l 0 jf177.
:sq21Jt~ll,
6l 1HIIJ?,
~~7.20Q6,
o. o,
tSHl77, o,
n.
~o Ubi\•
)Qjq l'.
uno,
~0279,
iDSOOeU,
•l2~Zt,
132<15,
•IIUC1 11
o332B7 1
7l1, o,
1,
.. 3.
"';1;; .. z.
J,
#j.
o. o, o, o,
•0,
•0, o,
7
8o
•2. o,
5,
41.,
le
Os o,
o, o,
··o,
•0.,
::oO,
"· •l,
•i!. o,
"· 1 t o. o, o,
o.
2,
•0, QDo,
6
.soo5+1Z
• 7525t11
,9723+11
eZ180+Il
,C17S2tU
~tstq+u ,oooo
.oooo ,uooo
,oouo
1
1 7U9+12
'l 1$7+12
,2JUb+ll
,llbZ•lo
1 5bU9•&0
,7606+10 ,oooo
,oooo
,oooo
aOOOU
8
,Z'l7hU
0 llf17+ 12
,aAIJ29tli
~oooo
,,lnt+IO
eflllfttlO ,oooo
1 (#000
,oooo
,vooo
• ~ i!! O·r.l l
a6lo9+io
9 UtS7+IO
• :U7b+&O
,1'100+&~
t9~S~+IO
I J L~9+ I 0
"lii.Sb•l 0
1 70~St&o
Z2l9.Z'59 D
Y5&1)8b;
SCltl•'ltH,
Q97Mb~,
61)ZIHI08,
5qb1~SJ,
ZU~i:0'1 11,
I!>.?.S~29,
IS&09CJdc
~Ult.Ob, o,
20tlh~ll.
2 .\'l,bb~ 0
193111,
(1,
o,
Cia! l'l ,., •
lbl~Yii,
2b78btl8,
'11 JJ«~u!;,
500bCJU4-~
Ub0.SI07 1
A93l6i!0 1
~D!l 1liH,
.iU,.,Sl S,
11l2P H 1
l tJ) ll!!l! 61
6BH2S,
o, z a•Htl.lf'.
~c;ul~fJ,
lttt•,$1),
0,
n.
"Ja.'IIJ7e
lJIIII~ j 8
32fllt
U860 1 o,
J97lZe
o'.S!.ll, o,
' •l,
•lo
"· .o,
1,
l II o,
0~ o, o,
•Ot
•O, o,
.. .,.
o,
fie
l,
h o. o. o.
-~. oi
•Oo
Oo
9 ,2az1+a2.
,671hU ,ooou ,noou
,lqqu•co ,snutv
9 000U
10
.S5410+U
8 J5Uhll ,oooo ,oooo
~ O·OOU
.oooo
1.oooo
a a tlfh' l
,2ll~tl0 ,oooo
1 r!lbO+Ot
1 l9UUtlQ
0 0000 ,oooo ,oouo
,c.~7uun
~~8.!1+10
119tJI)Qt09·
,IIOOG ,· ..
U USS79 1
1St~S'lUSJ 1
lb'lOSUif,
IHilUaz.
t)C!7 3~4.
7bSt\Ubl,
bfd )~09 1
lf''lOlt'c!e
l8b6S07,
C!lb~fHJ,
bOSU,
c!c'!IJ9.U,
"· 17Ull, o,
u,
lc-078&,
IOU)Gl,
tonaaas,
lbill$3,,
lb'l5~3l'l,
Ill J~O~$~
,s,~uz:rbe.,,
7J8Jt!6Q.
6\:«1119&0.
2o!JllH,
iOIIII~b9 1
lllllol,
lbl1i0 1
lll0f17, o,
AShol, o, o, zurn,
uu~•.
•
Table B-9 -(Cont.)
:
Summary of Miscellaneous Computed Hydrodynamic Data
Tl neas; 2e1e~. 7" Uo o. 75 3lb8Y, 'i!l7'114, h l65Z2S 11 :UlS!ait,
n U50lll, UOO'Ilb, 78 972'19"· 9279u2, 79 lo55""" )O(IliU~ ~(J ll'16ll6. Ut~~lcv:.$
8i :HIH'H~ 250027, ez H'll9l0~ ilCiQ!709. 81 ?t.IH02, 1~~511, 8CI Sl80SS, 5l6'Ct' ,,
ss lb'll1'i. 3&92bt,. e& lt1071b, Ul75U 1 87 o, o, ~~ 6 o, " 0. '
69 lZOc.i29, ae.sa&'l, 90 o, o, 9& v. o~ 92 o. o·,.
91 0'\ n, qca o. o, 95 d, o, 941 o, 0 ' I
91 o. llo cut o. o. q~ o. o, JOO l4U5'191 1 ·~h29l,
&Ql IIJOZllO, l82b78t. lOZ t!59'll98, i!U9SS'Ib 1 JOJ 1552659, ll65Sbl 3 1014 4180lUbe Sl'llt:-l,
lOS \95958~ lllllBf\a lOb il'~ a Ol9, USc.2ll. 107 JCJ30bSb 1 if, lll79'. aoa l5l114, n 6Jt:,
lOCI l511t.I02. l0bf~JR 11 ~·0 12l7 1U. 107160, Ill 13(1119]9, 11b76~8. Ul ~9'lu51J~· oou~ca,,
Ill l9llqo\ Ut121JS5Q ua Uf\CIOU1 873&5, us 2ll8~lb 1 i8BblOl, ll «, Hlll, ~TOub,
Sl1 26&91.16, lq6(\'IIJ 1 118 2'\7l(is ·51~25, ll«< UI£11J, llUbl.lbt llO 6ll99211. 411179,
121 l2'1C12SCI. lll2J25~ 1?2 l92b3So 262)0UCI 121 6bUCI;!1 141077, 1214 11971, J2cd 99,
125 1\71\9, b2'i27, ·~f» llUb'5b 1 i!lbCits6, 121 &iltJf\7, UbU59 1 aza !70bb, uo!»~~~.
129 )J!tl9b, 1102U9 1 130 ]QU9t9 1 212919, Ill loCJ007, :SI2'i~IJ, all IJ09Q5J, .CI2112 H,
Ill &171)ti7S 1 SU7l&, I)(J 16202'1, 151lb1J 8 135 210Ult1, 207Cil7 1 Slb 206tiGS, 1'11015 8
1)7 109i'O, 63t9J, ':.~ l2C1165 1 157b72, 139 371129, 3704b6, lUO 1Hil.ll95 1 14U«fbl2,
'"' 16!\bt\U. l'l87t':1. 1«2 '46b5.'1. lb91.16l, I'll 62,S 1 31.12o0 1 · I 'Ill 57197, b~l22 8
a cas l0ll14l. llOltllt~ ICib IZ3Cib4, · 1127&;5, 147 uso 15, 2bi6JO, au a J7711t~5 1 lhbU 1
11.19 )Ciftbh5, llJf\05 11 150 ~d57l7. 2bts6tiiJ. 151 21.2Yb&l 1 i999ll, 15~ lb10S, us as,
153 711109. U05U 11 15~ SOCI7t.!l 1 4'92590. 155 GT7JI7 1 S91l5U9 1 A .. 6 2S6t52&a 1 · 26bh&.
!S1 127 )54~~ 125UbiJ0 1
i·~UUHUH ttE AI) I HUIHUH HEAO ANO TIDAL RANliE
1 .9,0~ 1,b0 ,,:~2 6! •lf,2Q a,oe 17,32 l ·'1,27 6.1'1 u, ~ l " ·9,66 6e5Q 16,21
5 .. Q,57 6,5'1 1s:aa 0 •lO,Il c,. 01 19,20 7 •9,b5 A~CJO 16, 5U 6 •10,1'1 9,~0 l«i,SU
'I •!0,111 CJ,Uq l9,b2 iO •9,!19 9,0] 16,72 ll .. 9,'1b 9,21' 19,21 li! • iO, lS 9,bl 20,02
·~·11,08 l0 1 'l7 21, Sc; . ·~ -ti,Oti lO,Ciq ~s.aa 15 ·10. 96 l O,l6 21,Jfl lb •tt,H ll,U i!c•~"
17 •11,7'5 ll,l7 az.ql 11\ •11.&7 ll,Ub 1!2. 7l '" .. sa,f»s l1,9b 2u,SO ~0 •12,51) u ,94 21i,tJ]
i!l •IZ,LIU 11,'10 2U.JIJ 22 •ll. so u,oa 2b 1 58 2l •tl,:SS 12,CJ1 2b,ll i!U •11,25 1.!,67 iH)1 lZ
25 •U,9l u.c.s 27;51\ Zb •U,~6 ll.b7 27,55 27 •ll,OU lla bb, ,~7 1 SO 28 .. au,H l'l,2ii 28; 5.6
2CJ ,oo ,oo ,oo 30 ,00 .oo ,00 31 aol'i 1 2!) 1S,l2 2«i.~l 12 •liA,lO lS,U 29 1 •H
H .oo ,oo ,00 )Q ,oo ,oo ,GO lS •lUiti2 ~~ .. 10 30,l2 lb "'l"ab7 l s 1 Jb JO ,ul
37 •ll,b~ l5,57 21 8)9 liJ ,oo ,oo Jou 39 ~oo ,oo ,uo uo .oo ,(II) .oo
Ill oOO ,oo ,oo 112 ,oo ,oo ,oo 411 •lb 1 U9 lb,6b H,J~ ~q •lb,Ol J7,08 niu
lJ5 •1),86 11,11 10,99 46 .. ,],6~ 17,.!11 l0~9b 41 •r.1b &1,26:! l7,t17 liB t&,b9 h,2Q ll,SS
uq b.bG lG,35 7~7tJ ~0 b,12 1'4 1 S7 7,8~ Sl ,oo ,ou ,oo 52 •ll,tl l5,YCI 27" b
5) ·•"·71 lb,09 . l0.66 511 •l!,D lb,26 27 .l~ ss ... '1,79 1@ ,19 :u ,l6 ~b ... p~.e~ · lb,~2 3\ ,17
57 •U .. 95 u.uz lo.":u 5, •U,Oll u,,,b9 C!9,7l '59 oell 1 Uh 17.75 2'1,21 bO •l2 8 b8 lb,c:a9 l,,lb.
61 ,oo • 1 0Q ,00 bZ aao ,oo 1 00 bl ,oo ,oo ,00 b'l ,oo ,oo ,01)
65 ,oo ,oo ,oo 66 ,oo ,oo ,oo b1 ,oo ,oo ,oo b·~ ,oo 100 ,(II)
69 .oo ,oo .oo 70 ,ou ,oo ,oo 71 ,oo ,oo ,uo 12 ,oo ,CIO ,oo
7J ,oo .oo .on 7'1 ,oo ,oo 1 00 75 ,oo ,ou ,oo HI ,oo ,oo ,oo
17 • oo ,oo ,00 16 ,oo ,oo .oo 79 ,oo 1 f)Q . ,oo 60 .oo ,oo . ,oo
&I .oo ,oo ,or. 82 ~00 ,oo • 00. vl ,oo ,ou .oo 6Q ,oo ,oo ,oOO
as ,oo ,oo "00 66 ,oo ,oo ,oo 87 ,oo ,06 .oo .a a ,oo .oo ,no
69 .oo ,00 ,01'1 91) ,00 ~oo ,oo 'll ,(10 ,oo Goo 92 ,ou ,uo 1 .00
91 ,00 ,oo \00 qa ,oo ,oo ,oo 95 .oo .oo ,oo Qb ,oo ,00 ,oo " "'·
<"
\'.
'17 ,00 ,oo .oo 98 ,oo ,oo 8 00 99 ,oo ,Oil ,oo 100 •1U 1 lltf u.~o l8,98
' SOl •JI4,Uf} lC1 0 Uj 26,Cfl 102 • ". 09 1 q II s 1 zs. t•() lOJ •tu .ao 1~,6.\ zq,bq lOlJ •1'1,76 li~.6l l9 1 U
105 •12,78 141,91 21.bll lOb -a~.qQ rs, lls 30,03 107 -15.31 lS,IH lO~q9 11.18 •&2,1\9 as, as 28,01
w 109 •l'>,l7 15,29 lO,~lr 1\0 •l5 0 S2 JS,LIO 30,92 111 •ll,l:l2 as.s2 27 1 JCI 112 -as.sa 15,!:15 31 ....
'-'\ lll •IS ~ l~ as.so lo.tn ll q -as,«~tt tS,b2 .)1,06, us •l!i,4S 15,51 31.02 f.lb •15eSo ss.~e :u • a.,
' U 7 •lS,t~ll l5.7b la.~o 118 •tS,bU as.n ll .• q5 .119 .tl)~f.IQ as. 11 ll,«<b 120 •15,78 IS,87 ll.o~ -• 12' •15.7& l$,66 ll,bb lli! •15,7"1 lS,9(J 31,69. ll:J -ss.~s 15,95 31,80· 12U •15 1 9lo! U, Cilr 31,99 :.-.
....... US •IS,.e9l u.os )1.98 u• ·l5.9l lC~e06 n.u , 127 ~»If~. U 16 0 29 ·'32,149 ii'-8 .. , •• Jl .. &bal>O :S2 9! .
.f" . .;: .·:
,. '. l
·~ .
'•' ,•.:;
··~· ' • c
Table B-9 -(Cont.)
S'u!Jlmary of Miscellaneous Computed Hydrodynamic Data
Tl~.t Or HIHIHUM AND tux:uuH H~tiO, HnUP
l 'l,fJO u,oo 2 ao,n U,l, 3 l0,19 lbe11U t! 10,75 &6,&&
5 lO. 15 lb,Ol b u.ol u,u 1 ... 33 n.~s e ,,,1, H,.b1
9 12,11?. lll,QO IU ts,qz l7,6tt u 12' ,,, 18,00 t2 i2. ':l \IS, 6~
u ll,Z6 l8,9Q ill t l,2lt u,qq 15 u.u i8,Q~ lb ~ l,Qf i~,,.
u 13,!!7 l q 0 tq IO u.l'l lq, i1 ,., Uo15 ''•"2 20 i ',j, 7~ ''·'~ 21 u. 72 ! q. )l 22 I,.' t1 l'l,7!i 2.) 1 u .ll ''~81 211 su,u l9,tl6
25
'"· 3l
1'1,69 2b lii,:U 19,1JCJ 27 I u, 11 l'l,Bb (8 lll,t~J,, ~l),t),!
2'1 ,oo ,<'0 30 ,oo .oo 31 as,vb 2U 0 3b l~ ·~·I)' ZO,lb
3), ,00 vOO 3U ,oo ,oo 3!» 15,20 ao,ur lb n,n 2fli,SO
37 lfi,OO i!O,UCI 36 ,oo ,oo lY ,00 oOO CIO ,ou ,•Jo
I.IJ ,00 ,oo ll2 ,ou ,oo Ul ss, :n 20,5j Ut.t IS,t.'l Zt.I,Sb
115 lb,Oil i!O,S8 db 16, 3l 20,61 ll7 l1 ,b7 zo,CJl ae IG,UQ l~. 39
CIV 19,\ll 22,75 50 !ll 1 'H 22,70 5l ,oo ,oo !Sl Itt, Jq 20 l'h
51 lS,.hU 20,Sb Set lb,Ui! ao.se 55 &5,69 zo,n Sb lfl,ll 2l,l&l
57 lf.t,ll1 21,56 56 .,,,b 22,06 S'l 11 ,,., 22,19 60 .H,8l ll,SO
bl ,00 ,oo b2 ,oo ,oo bl ,oo oOD bCI ,ov uiJU
6;) ,ou ,oo t:u ,oo ,oo 67 ,01) ,oo &a ,oo .oo
b9 eOO ,oo 70 ,oo ,l)i) 7l ,oo .no 1Z ,ou ,oo
11 < ,oo ,oo 1V. ,ou ,oo 7S ,oo aOU 7b ,ou ell U
71 ,oo ,oo 16 ,oo ,oo 79 ,0(.1 ,00 80 ,no ,oo
81 ,00 ,DO ~i! 1 0iJ "00 tlj ,oo ,oo Oq ,oo ,.oo
ISS ,00 ,oo 66 ,oo ,oo 87 ,oo .oo 6tt ,oo .oo
&9 ,oo ,oo 'iO ,ou ,oo 91 ,oo tOO qz ,ou .ou
ill ,00 ,oo qq ,oo ,oo '15 ,01) ,oo qc, ,ov ,oo
97 ,t\0 ,oo CJtt ,OU, ,oo qq ,oo ,ou 100 111 1 5b zo·, 1 a
101 Jrt,S:S 20,111 102 Z,61 20,19 101 liJobll 20' 1'1 l 0~' l1J 1 bU 20,19
lOS l'.;,.i12 20,1? lOb 1U,b9 lD,C!a to7 au,qz zn,n lOCi 15. 7S 20,lb
IOQ I tl, 7 5 20,26 120 lS,CU zo.:s? Jll 15,7Z 20ell liZ &S,tu lC~lb
1!3 l11 0 Ai i!ll ,ll ll•! ae,qz 20,Jb a 1 ~ as,oo 20,l1J lib u.ol 20,&12
117 l'i,Ob .zo •. "l aaa IS,Od 20,112 U"~ as,ou 20 1 ff2 12U as, u Z0,41l
121 15,11 20~lll lZZ 15,1' 20,IIZ 12l 15,11 to, uz 1211 lS,ld4 20 1 IHI
125 &5",1 q zo.~q lib 15,1Q 20,Q&I au l5ol9 zo,ua uo as,zs 20,!!0
TOTAL EVAPOPA~lO~ RAJ!, as ,1 uaiHOS
AVEOAGE SU~FACE AP~Ar so Ft ,li:U+l2
AVERAGE YCl..IJtif. t cu FT 0 'il;J'h:a
AVf.AAGE· Dt?ttt, rt ,n1e•oz
r'
'l
~
(ll-···""'I·
I ......... .......
•l.,l
:.:~~~
rJ
' "" v,
(
-.. .......
•o,ooo t
I
I
1
I
I
l
I
I 0
I 0 0 lz,ooo:. ooo o
I 00 00
I 0000 0 r oooo o
1 tlOOO 0
I 000 0
1 goo o
t oqo o
J ooo 0
I OOo o ia,ooo ~ oooo o r ooo o
t 0000 0
TlOAL I 00 0
J 00 0
RANGE J 0 0
I 000 0
tr• f£tT 1 . ooooooooooo 0
I 00000 0
J' . OOOOOOOGO 0
,,,000 • 0
I 0
I u
J ·Q
J 0
I o
i 0
I 0
I 0
I 0 a.o~o • ooo
t
l
t ..
J
I
J
J
I .
,000 ~·•••••-••{••••••P~•I•••••"~·~l•••••••••I•••••~•·~I•••••••••I•••~•••••J•••••••••l••••••••~J•••••••••l 60o.o ~4o.o 6&0,0 72~~0 760,o eoo,~ aqo,o eeoco 92o.o ,.0.0 &ooo,o
)( ·• COOROJNUt:S
FIGURE B-1
'/
' \) .....
0,
;::..)
A
211,000 I
I
l
I
I
1.
I
I
t
t
22 0 000 ...
i
I
t
I
'• . I
I
I
l
t
~o.ooo •
I
I
TlH! !.
I
Hf I
I
HOURS J
l
l ,a,ouu •
1
1
I r
I
I
I
I r
1&,000 •
I
I
I
I
I
l J ~
I
'y' ...
,, .
...
•.
0
0
0
0
0
ooo
0
0
.-:'•-
t lq,ooo !·~~·~·-··1~--·~·-~•1•••••-·••t•~·••••••l~·~--~•-•f•••••••••l•••••••e•i•••••••••l••••~·v••J•~•·~·•••i &oo.a 6ao;o 6ao,o 120,0 76o,o . eoo~o e~o,o eeo,o 92o,o ,,o,o · aooo.o
X • COOkDIN~hS
FIGURE B-2 TI.ME OF 'HIGH WATER VERSUS X-COORDINATE·· . .
•
21 1 000 I
I
J
I
. ·i "'"'''
), . ,· ,~ ,:, d '· ,'
t
l . I
i ae..ooo -
i ·u Ill
I ll li 2 II & j Z
. I i& 2 l t2Z l l 2 l 122
1 I l2 2 I i! 2 ! 12 2 & U Z
I I 2 2 I l 2 I £ a 1 2 2
1 .I 2t 2 I lt 2 1 21 c I 21
122 I 2 i 2 I 2 1 2 l ~~ 2~ ! 21
t zz t 2 1 zz 1 2 s :u t i! 1 z 1 ·i: a
J 22 1 2 t i2 1 l I 22 I 2 l 22 1 2 A e.ooo • zzt 2 a 22 a 2 a 22 z t ~zzt z a r 00 222 I 0022 l l 06 2Z2 I 0022 2 t
I 0 0 l & 0 0 12a ~ 0 0 I I 0 0 U I
STAG[ I 0 01 l o l I 0 ot I 0 Ol I
I 0 I l 0 I 1 0 1 l 0 I 1.
JN l 0 10 I 0 10 1 0 I I 0 IO I
10 to a o ~o a, o to 1 o ao i
P£f1' I ! o I 0 u l o ln I 0 U l
I l 0 I 0 lO l 0 1 G l 0 l o l
1 to a o to to au to &o t
1000 • l 0 I 0 l 0 1 Q 1 0 I G 1 0 l
t I 0 l 0 1 Q lO I 0 l 0 I o U
I 1 0 I 0 1 0 Ia I 0 tO . I . 0 I
I I 0 IO 1 o 1 I 0 10 S 0 I
i I 0 1 t 0 01 t 0 I I 0 I
I t 0 1 l 0 et I 0 1 I 0 Ol
I I 0 l I 0 01 l 0 1 t 0 0 I
I I o 0 1 I 0 ·o 1 1 0 1 1 o 0
I 1 0 OJ l 0 l 1 0 0 l l 0 r a o oa 1 at ooa t •e.ooo • · a o .o 1 t s t o o 1 a ,
I l ·ooo l I I I 00 l 1
II I I I & l l I
Ill I l it I I
ttl I I &l l l
ftl I I li t I
I I 1 t I I l
1 Ia 1 a
-!1 "
::;
r . n . a , •16,00~ l•••••••~•r•~•·•~•.lf••n••q•••l•••••n•••I•~•••••••I••••·~•••I••••••~~•J•••~·~•••I•••••~•w•Jo•••~••••l .o e.o ~6,o 2q,o 3Z.o ~o.o ua,o 56,0 6~ao 12,0 a~~o
'fiHE JN HOURS
PLOT LEGENO JUNCTION 1 • 0 JUNCTJON 111 • 1 JUNCTION qy ~ l
FIGURE B-3 STAGE VERSUS TIME AT SELECTED NODE~ ••
,_,, ·.
. '~]
c; . ,,
(')
' -\,J
v, ,,
......... ....,.,.
~
\)
·'
~ ~
~~.ooo l
I
I
t
l
t
I
I
1
1
FTISEC
IJ.GOO "'
I
I
I
I
I
I 2 2
t 2 222 2 22
I 22 2 2 22 2 2 r 22 2 2 22 2 ...
.. • 000 .. 2. 2 z 2 0 2 2 ~ 0.
k 2 2 0 2 2 GO 2 20 I 200
I 2 .zoo 2 .2 0 2 2000 i! 2 o
I i 2 0 l 2 0 2 20 0 2 2 0
I 2 2 0 2 2 0 2 2 v 2 02 0
I ~ 2 o l 02 0 2 02 0 2 02 0
J 2 02 0 t ~ 02 Oil 2 02 0 I .2 02 011
I 2 0 2 Oll 2 0 ~ I l 2 OZ Oll 2 02 ~~ I
t Z o 210 I ~ o 2 l ·I 2 02 lO i 2 o 21 I
J ~ 0 21 0 l l 0 210 ' 2 0 2 0 1 2 0 20 ,ooo •1112 o 2 0 11121 o 20 IA2 0 2 o 1112 0 ~ o
I 21 0 ll 0 21 0 li!O 21 0 2 0 2 1 0 2 0
I 2 I 0 U 0 2 I 0 12 0 21 0 U 0 2 I o i2 0
t l I 0 li 0 2 I 01 2 0 2 1 ~ l 2 0 2 I 0 12 0
I 2 lOOI 2 0 2 lOO I 2 0 2 lOOt 2 0 2 100 l ~0 1oo2oo1 1 2 oooozooa 1 2 oo~o2oo 1 1 2 oooo2oo a 1 2 oo
I 2 II 2 2 Ill 2 0 2 ll 2 ~ II 2 0
12 2 2 I 2 2 2 2 2
! ~ 2 2 2 2 c 2
I 22 2 2 2;: 2 2
~~.ooo • 22 22 22 2l
I
I
I
J
I
J
I
I
...
I •8,000 f-~~••••••J•••••~•~•J•••~~--·~J••~•••••0 I•••••~••~I•••••••••J•••••~••5 I••••~•••~J~•~·~·~·~J~~·"••~•bJ
.o e.o lfl,o · zu,o 32,0 ao,o Qtt,o 5e.,o 61f,0 1 u,o 6t~1 0
Tlt.tE lN tfOURS
PLOT i~GENO CH~N~(L 72 • 0 CHANNEL 127 • I CHANN[L aao • l
FIGURE B..:4 CHANNEL VELOCITY VERSUS TIME IN SELECTED CHANNEL
APPENDIX C •
••
..
.·
Table C-1
Tidally Averaged Quality Model Input Card Specifications
la UPPER COOl( lN1.£Tr KN~K ~RH ~NO TURNAGAIN A~H
lb SAMPL:, PR!')!LEM
2 1 13~ 2q 0 ! 0 1 3 t2
3 d. l
4 0 0 0 1 t) 0 0 0 0 0 1 1
5 NH3•t.Jr JofG/1.. PR1Mfll03·~· f'IG/1. P~lH
7a 1 0 0 0 135
7b { s ' 10 11 t2 1G 17 20 21 26 101 107 115 117 1Z1 12'7
'IQ Cl6 CIS U9 so
8 { 1 1lO .1 0
1 16 10 3001)
9 { 17 tf:IO s#a
10 1 1 • 11 A VERidiE RUNOFF cONDITIONS • .STE.iDY STATE
12 0 0 0 0 1 1 0 0 0 0
13a t
13b ~~ 10
,25 ,01 0 0 0 It~ 10
.zs ,01 0 0 0 •1 10
.zs ,01 0 0 0 •1 1U
,zs ,01 0 0 0 "'1 10
14
,25 ,01 c 0 0 •1 10
..... ,
.z~ ,01 0 0 0. •1 10
.zs ,01 0 0 0 •1 10
.zs ,01 0 0 0 •1 10
30 335000 120 ctO 2 lS 20 .s
2'5 510000 30 75 b 15 17 ,s
'·' 17a 1 0 0 t,OB t,ou
17b 1 S lO ,2 ,1 l 0
17e 0 0 0 0 0 0 10 ,1
17
18a 1 t~S •1 0 0 0
18b 1 \;)O bl 150 2
18c { 1 .75 e 2 l !000
25 ,75 8 2 l 1000
G. -l>;"ll' .t· •
APPENDIX D •~, ..
'
•
'·
,.
'
•
..
Table D-1
Computation and Output Control Options
SlP4UL.ATlON BEGitlS ON DAY 135
TIP4E STEPS·OF ~" HOU~CS)
PRINtOUT EVERY 1 TIHr STEPC$)
HYDRAULIC INTERFACE UNIT lZ
ou•L.tTY !NTERFACr UNtT 0
NUMHER OF' SOUNOA~Y COUOl.T IONS 1
1 TlD4E STEPS FOR CO~DITlON 1 STEADY
THE FOLLO~TNG CONSTITUENTS ARE BEING ~OOEL.ED
·T. AL N
TOTAL. P
TOTAl. COL.!F
CARA.~lr.: ~Otl
NITPO SOD
OXYGE~
TEHP~RaTUR£.
OPP CONST 1 NMleN, MG/L ~RIM
OPP CONST 2 NOJwN, ~GIL PRlH
STATE
. .
Table D-2
Initia1 Conditions and Dispersion Parameters
UPPER COOK INLET, KNIK ARH A~D TURNAGAIN ARM
SUtPLE PROHLEti
ttn t tAe. QUALITY CONDtliONS
JUN 10 JUN TOT N TOT P T CUL r COL.
HG~L NO/lUGHL. N~/lOOML· HG'/L
J !30 ,oo
DlSPERSlON COE,fltJENTS
CHAN TO CHAN Cl
1 lb 10~
&7 160 s.
.oo
C.4
3000, ssoo.
,oo ~00
c son .N 1:\00 0 0 TE,..P
f1G/L MG/L HG/L c
;oo ,oo ,oo 10o0 .
•
•
CONST ! CONST a CUNST :s CONST .
UklTS UNIT& UNIT$ UNIT ..
aOO ,oo ,,o ·~ 1,} \. ·-, r
••
tv
' w
\J\
( .......
N
·~
• Table 0-3
Sulllllary of Boundary Conditions and System Coefficients
UPPE~ COO~ JNLET, KNIK A~H AND TURNAGAIN ARH
AVERAGE RUNOFF CONDitiONS • STEADY STATE
riliiio£ to•DITIOHS DU•INO HYOAUlOr.IC CYCL£
JUh EXCH EBB FlOOD lOT N TOT P T COL F COl C BOD
AATIO HCF&· 1\fCF S · MG/L HG/~ N/IOOHL N/IOOHL "GIL
I ,ao l&~ou lO • "lt'll .oo ,oo .,oo ,on ,oo
tNFLOk CONDITIONS DURING ~VDRAULIC CYCLE l
JiJ"« iNf'LOW ros TUT N
'"' p
T COL f CrJL C ROD ~ BOP crs tfG/1.. t"G/L ~GIL ~0/IOO"L ~0/iOOHL 'Hr;/l HG/L
aWl CltJOO,OO o. :zs ,01 ,oo ,oo ·oo ,oo \ 13000 t 00 fil :2s ,01 ,co ,oo ,ot' 0 00 us u7(1 0 00 o. .25 ,01 ,oo .oo ,oo ,ou
Cl& 12o.oo o. ,iS ,01 ,oo ,oo ,oo ,oo
so 108&\1,00 o, ,25 ,ot ,oo .oo ,oo .ou
60 IO'Hi,CIO o. ,25 ,01 ,oo ,00 \00 ,oo
10& bO(I,OO o. • i!5. ,oa ,oo ,oo ,00 ,oo
Jlll .~ lfi,OO Oe ~·zs ·"' r;OO ,oo ·oo ,0\)
ll7 ts~.oo n, 30,00 3tfl0 1 3!H05 .oo 120~00 90,00
115 I!I,SO ~\ ,. i!S, oo .. •;.oo 1 lOtOS ,GO 3o.oo 75,00
AGGq£GAYEO OUALITV
u a~oo,oo o. :ls ,oa ,oo oOO ·oo ,ou
27 l3oo·o,oo o. ,2'; ,01 ,oo ,oo 'on ,oo
us q7(1,0t) o. ··l.U7 ol1 ,.3Jt0l ~oo 'q9 2,Q7
tJ& azu i 00 o, ~1!5 .t'l ,oo ,oo 'oo ,ou
50 aoatuJ, oo o, .25. ,f) I ,oo ,uo 'QO ,ott
bO IOIH.ttOO 0'. :zs ,oa .oo ,fJO 'oo ,oo
108 bOO,OO o, ,25 ,(11 tOO ,(.II) 'oo ,Ot9
117 7s,oo o. tJ2.00 6,~0 p 7ilt0S ,uo lan'oo Ut~, oo
12Q aao,vo o, ,iS ,Ot ,tJ\) ,oo 'oo ,;, ':\., •
SYSTEH CVEFFtC1~NfS
JUN TO JU., 800 0£CAV COUF' Ot.CAV UENlHJC SiNK HATES ALGAL O)(YGEN
CARl\ Nllq fOUL H.C~L N p 0 PHoro RESP
II bAY 1/D,IY Hf/142/0AY nr.t»UD'Y
1 130 :rlo ,II) I :oo wOf) Oc o. o. n. !),
STDICHtOM~TRlt EOUJVALE~CE RlfWEEN nPTIOhAL tO~SJJ1UlNtS
t0'3T HO & ntC&V TO CONST NO '• leOO
tl~ST ~~ 2 9£C&Y TO t~~~T NO 1. .~u
tJhSl '•U l f)l.CAY TO tQ':ST Nn 11, atO
I
N BUD O)(Y tEMP CUN I CU'f 2 COPf S CON 4
HG/f. tiG/\, c UNITS UNitS UNIU Ut-I ITS.
.oo '·' ao,o ,oo ioo ,oe .oo
OXY TEHP COP4ST I CONSJ ~ cu~n J CONST •
HG/L t UNI T8 UHITS UNIU \i"':lU
• ._i
H,l 10,0 ,uo ,oo ,oo ,oo
ll,l 10,0 ,oo ,oo ,oo .ou ... ] 10,0 .• fl~ ,oo ,oo ,oo
it,l to,o ,oo ,oo oOO ,00
11,1 to.o ,oo ,ou ,oo . ,oo
as. :s IU,O ,oo 0 00 . ,oo Doo
U,l tu,u ,oo ,oo ,oo .• 00
ll,l 10,0 ,oo ,oo ,ott ,oo
l,O ts.o 2u,~Jo ,r;o o.OO ,oo
6,9 I!J,O 11, UCI ,5\l ,OQ ,oo
ll '3 10,0 ,oo ,oo . ,oo . ,00
11,3 10,0 ,Cl) ,oo ,oo ,oo
ll ''J IO,S .~6 ,Ol ,oo. ,oo
II ,l 10. tt ,oo ,oo ,oo .oo u. J 10,0 ,(JI) ~oo ,oo ,oo
II ,l IU,O ,uo • 09 '. oOO .. oo u ,l 10,0 ,oo ,oo ,oo o.OO
u,i ll,(' a.t, .n ~.ol ,oo ,oo
II, l IU,O ,uo ,oo ,oo e9!
RE"'t.RATION OPP tOtfST CIE·tAY OPP tUN5T $Eit~lH~
MIN HAM a l. ] • ' I. :s • &/OA't! &/DAY H/Dl\'
,o 10,0 ,ao ,co ,oo ,oo ,oo ,oo ,oo ,QO
Summary of Boundary Conditions a~d System Coefficients
ALt.. OTHERI t,ocao
f\.01'1 A NO h 1 hO \N~UClD REA!R4110~ CnEFF!CJtNT Af.JO COEfP; USfO DV NIJDt:.s, 8/0AY
a ,0\5 ~l>l7 ,ol7 ~ ~uao ,oa~ .c~a 3 1 9 i 0 , Ul9 ,.019 " ,ou • 03~ ,fJ)f) , ,022 ,OSCI ,OSQ 7 026 ,055 ,O'iS 8 ,j ens ,UbS ,bbS 9 iObCI ,105 .sns u 1 029 ,OSU ,05U ~~ ~Vll 8 UCI2 ,OUi u .o~7 .uu ,(117 u 1 0ZJ ;.0514 1 vSII
l& • (Ill ,191 ,aoa 17 ,oz2 ,c~a ,Ob4 l8 ,Oj)JI o.OTce 'Ulf! 19 ,au~ ,liO • tl 0
21 ,0~&1 ,ObU ,O~CI 22 ,o~o ebQb ,Of~{> &U .o?5. ,ou 1 Ubtl 211 ,Oll eO&l ,o&a
2b • 0 1.&1 .Ob& ,0&8 27 ,obZ e1&~ ·' IJ9 28 ,oc;q ,01.\J ,oft! Z9 ,ooo ,ooo .uou
11 ,070 ~sos ,aos -ll ,U79 ,121 ,lll 3l ,ono .oou ,!lOU lq ,ooo 0 000 ,uoo ,, ,110 ,lllb 1 lCib l1 "l.ISIJ ,360 ,w;e 38 .ono ,oou ,ooo lfl ,ooo ,OilU ,U()O
Ul .01)0 .ooo ,o(lo uz ,ono ,onu ,ooo Ill ,aal •'''-' ,iO) "~ ,IH t'J'lCJ ,tQu
l.lb e2A5 ,2Q2 ,2q2 U7 ,~2b 0 U~9 cS2b lid ,Su9 ,'ltlb g9bb IJ9 ,lUll l,Ufl9 a,HCJ9 5& ,ooo ,ono ,ooo 52 au~ ,Ulb ·"Jb Sl tlf»O ,l&9 i lb9 Sill .au ,uoo ,llllt)
Sb dUO ,2b5 ,2&S ~1 :zob ,JbB • .Sh6 56 e27l ,'lUI) ,IIllO SY .,zaJ ,147b ,147b
bl ,ooo ,ooo ,ooo ba \ooo ,ooo ,ooo b~ ,ooo ,uoo ,oou ~u oOO" ,ooo ,ooo
b& ,ooo .ono ,ooo &7 ,ooo ,ooo ,000 b6 ,ono .ooo .ooo b9 ,~;;oo ,uou ,ooo
1l ,ono ,ono ,ooo 72 ,ooo .~oo ,ooo 71 ,ooo ,ooo ,000 1Q ofJOO ,uou ,oou
7ft ,ooo ,ObO 1 000 77 ,~oo ,OPO ,oco 76 .ono ,ono .ooo 79 .ooo 1 llll0 eiiO(!
81 ,ooo ,ooo ,ooo ez ,ooo ,uoo ,ooo 8j .ooo 1 00ij ,ooo 6'1 .ooo ,OI)O .ooo
&b ,ooo ,ooo .ooo 61 .ooo .ooo ,000 86 ,ono ,ooo ,ooo 89 ,oou ,uoo ,uoo
91 .ooo ,ooo .~oo q2 ~ooo ,oou ,oou 9j ,01)0 .ooo ,coo qq ,ooo ,UCIO 1 01l0
96 ~:000 ,000 .ooo 97 ,ooo ~000 ,uoo 96 .ono .ooc. ,<IOU qq .oov ,ooo .ooo
101 ,os7 .o1~ ,o7z aoz .JaJ ,ll2 ~)f)] IOl 1 fJ1U 1 U87 ,091 lOQ ,Ottl .ao:r ,101
lOb ,0,5 ,vb7 ,o&r so1 ~tsl ,11s ,l1S 108 • ]ql , 127 ,311$ lOCI ,Obl ,017 .un
liJ ,lol ,ll1 1 327 112 ,1a9 ,Zl9 1 lU9 11.) ,tn7 ,l u .sao liU ,12'1 _tSc, ,15b
lib ,066 ,tl5 ,21s 111 ~,ou9 .tae .au uo 1 0Jl ,089 1 \189 U9 ,oul ,lJ8 ,138
12& 0 021 ,ObO ,060 lll ,olq ,107 ,101 liH e06l ~1U7 .1~7 nzq ,ol& ,0"11 ,097
llb aOll .aus .tas ~z7 .@uo .os7 .os7 126 .os-a .,103 ,101
'}
s ,Oil~
10 ,o2a
IS ,021 . ~Q ,1)20
2~ 1 U26
311 ,ooo
JS ,061
Q(l ,oou
"5 ,J9t,
50 1 JOO
5~ ,150
bO .~qq
b~ ,1.100
70 ,ooo
1~ 1 \lOU
60 ,uou
8S ,ouu
Q(J .uoo
9~ iooo
lOU .~51
10~ • .ssq
110 0 097
llS · 1 0b~
l20 1 lJ 3f!
&25 ,o2c
,.OIIl ,OI.Il
• 0611 ,QU
.~.,s .o~) .• osr J\051 .on • 0'17 ,ooo ,oou
1 2U .zu . ,,.oou ,ooo
• 1 qb el9o
lo7'~7 a,'"' ·e2.~~ ,l41~
.~ttb oSbb
1 00() ,ooo ,ooo ,uou
.• o 00 ,ooo ,ooo ,oou ,ooo ,ooo ,oou ,ooc ,ooo ,ooo ,ou ,uu
1 l7l ,JSij
,l4l9 ,&119
,097 ,09.7
,l7S ,&75 ,on ,on
'~~ ~
< •••
;.1. . .., ;
',~.
(')
' .. ,.,
""' ':' .......
t'l
·tr~
...
Table D-4
Meteorological Conditions
UPPtR COOK JNLET, XNIK A~" A~~ TU~NAGAlN ARH
AVERAGt RUNOFF CO~OJTIONS .. STEAUY 3UTE
'"
TABLE OF HETEOROLOGiC DATA FOR h[ATHER ZONE lt Jut.z·nou I TO ISO
140liR WINO CLOUD CRY BOLU ··~· ATHOSPH[HIC SHorn 'fAYE ~PEED crwr.R Yt:~P(HATU~E TEHP~RATURt:. PRE:ISUHE SOLAR
UiiSEC) FiUCTIUN (C) (C) (HO) (~CAL/t12/UCJ
I :s.s :75 7,0
'· 0
aooo, ,oooo 2 ],5 '75 '•" l,O SOUl), ,oooo •. ~ 3,5 ,75 7,G I, 0 10~0', .oooo a 3.S '\1S 7,0 l, 0 1001) .oooo 5 ),S ,75 7,tl 1,0 liJOn, Qoonr
b 3.5 '7'i 7,0 1,0 r~Joo. ,0100 1 l.S '7; 7,0 l. 0 anoo, , O~fJ.S 6. 3,5 '75 'f,'} e. o 1000, , O•tS~ 9 :s.s fl75 7,0 t,o 1000, ,Ottlltf
10 3,'5 :15 1,0 a. u .aouo. ,01120
il 3,5 :15 7.0 l, v !000, .• o•l!tb
12 3.5 '75 1,0 1,0 Ilion, ,JOLIJ u '3,5 ~1S 7,0 a. o lOOO, ,!07l
'" 3,5 .. rs 7,0 I,U lOOO, ,lOUj
15 3,S ._75 '1,0 1,0 fOOC\ 1 ,llYSb
h 3,S \75 7,0 l,ll lfJQI), • t 0620
17 l.~ ~~~ 7,0 a.o JUUO, 1
0 0blf8
to 3.5 7,0 l,u 1 o u·o, ,oq~s " "' 3.5 ,75 7,0 •• 0 11'100, ,Olb.S
20 3,5' ,rs 7,0 1 • I) 100(', ,,IJlOO ~.1 3,5 • 7'i 7,n a.o 1000, ,0001 ~l l.'l :n 7,0 l,O &000. ,OIJIJO Zl 3,5 :15 7,(1 a .. o lllCIO, ,ouou 211 3,5 ~75 7,0 a." IPOO, ,ouoo
OEh POttiT
-. '
LATITUD~ il ~•.o
l.ONGITUDE • a~o.o
tONC WAVE VAPOR
30LAH PRt.SSUN~
(fCCAL/HZ/$!;CJ CtttU
,Obl19 '· ,Ob(IIJ 7,
,O&tiY 7, ..
,Ob~Y J,
,Ocl!'l 7',
1 0biiY 1,
• Ob tf'l .,,
,(l()tl~ '· 11 0bll'l ' 7.
1 0t.U'I 7.
,Ot-1,1'1 1,
tObll'f 7,
0 (1t.U9 '7.
,ObCICI 1,
,OuU'l .,,
'I 0bCJ9 1.
1 U614'l 1,
1 1lt11JY 1,
,Ut~liY 1,
1 0hU'I 7,
,OhCIY 1~
0 0t.l.t"' 7,
,f)b"ll 1,
1 ObtJ9 f,
Table D-5
Dispersion Coefficients and Steady-State Salinity
CHAtmtL Ol~PERSIO~ tOEFf1CIENt3, 80 FT 15t& u.An i"'o I TE.RAT HlNS) ,
l ·ouo. &II'U. i 8934, &9j9, 3 J3j6, 13110 1 " 10!5, 7014. ~ ose•. 15'15, • , ... ,. ~SI.I, 1 soon, ~'HI \1 8 772 •• 7727, 9 I tJ JO o 11\J'f, 10 111'l· .,,.i, II sn~. ~?U, u bfl':l'i., bOt.'i, il 1l1U, 731111, IIJ IJq'i, q~ •• ~~ ~!>otl• ~0&10. lb uoo~. 110lU, t7 l?t! '· :S2.!9, !U SC!llt., !»a~s. &9 b':J1fl~ c,So!1, 20 7021 7111. ll 215, l~'.J. cl 2~c!&, lHo, ~J ~928, !1'1llo lU uzq, ~~~lb, 2S I 0.1; 1 lot, 2f.t 'S0'1, ~ ..... 27 i8U2, l611l, 24 U7ta7 1 07 lb, 2~ U$90 1 "J'IS' JO Ill. an. )l St~CJ, 550, li! l'lllo l'iJi!, 3.S ""u • 110 J9. )II l72b, 27 J6, lS tJIIu, &'lt., 3C. h2, 6bl, l7 li?Uql 22!»5, Ja )981.1, )1)9':, l9 9'11, ill.!7, llO ~~~.~. IS9 1 Cal ~u. llbt' Ill 27USQ 2711, tJJ o, o, 41.1 277, lu~. os o, o, lib o, "· "1 26~1o i1S!.t7, 116 3429, )UJu, UY Oe o, !»O 0, o. ~· zu~. 2111\r. 52 o, o, Sl lblh, &blB, !HI llt~7. lfl!J71 s~ 2 j •• zn, Sb ?H, l2'5s 57 o, o, 511 o. o, 59 o. o, bO Oa o, o, o, b~ o, o, bJ o, o. 6q o, o, ea; 21115 ij zu,o, I U'i, 1201), b'l JIO.i!, azuo, bQ 611, ll~J. fl'l Ill!~ a nc, 7tJ till, an, "1. SH. S&U, u 31fl, )Jh, 7l ~,. 90, 1U o, o, 75 69,. (j9. ,·I) Cl22. UlU 1 17 I Ob l, 10&11, 78 IJUI\ I llllfJ, 79 lltJ7, Clbtl, 60 2091, lOU, &!. lll, 1211 0 &l 19l :s. ICJlO, 8J U97, 1707. 8Q &4SC!'~ l.lae>J, 8!, illh atul, u 1101, ~H. ft? o, Oa au o, o, l\9 "·'"· Cl Jb 0 ""' o~ (1. 91 0, o. 92 Cl, o, '1j 01 o, ~q o, o, QS Ci, o, 9t. 9, o. 07 o, o, 96 0, o, QQ o, o, 10() 2ll Jl • l6ll, lOl l'iH, lS j/J, 102 Ho~. ])01\, llll • 611. 1671, 1014 4101\, Cll1ll 1 l05 JOO, lll, lOb 2lb '· i!icatt, 101 Ztd't, ~t.42, 108 191, 20l, i09 ilu1, 2~1.111 IHI ll!l, H5, Ill llll, lZI7, l t l C!!\7fl, 2R7ll, Ill l5b1Je 15bS 1 I!U J&4, l2b, ll ~ J9!>b, l9oc?, lib lllJ, IQ&II ll? ann, IOlO, lU 17i'. lh, ll9 bSII, hb(\, t ! 2{1 lliU 1 Hn, Ill :J1ZI, J7111 0 i22 1170, "'l· li!l btU, ftlib, Hu ~77. 511'1, &25 18U 1 l90, Utt 7~7. ?417, U7 10i?, zou, 1«!8 292, 311~. 129 21 :u. 21~"· llO flU, f>95, Ill lll,, l'·ll e. all l:\1:11, j!I.IQ'l, llJ 2tt .>t, 2(\bl, lllf ll )7. &1~7. ·all) ~!l e 9~s. I 36 Sll t S)CJ, lH IZ'i, ll8, llb I O~l, lOll), an JOjl)~ iO~S~ 1110 <i6!J8, H~b, Jlll lllJ, ll!>~. l ill 1192, suo. l (I j btJ, Ja, I Ul; U7 1 z jtJ. }liS 1111, ht. ac.c. 'Hill 1 aoo~. 1"7 2&50, 2&75., 1CIIl 3361, )tiUII, 1119 JlUl, lJil, 150 lUi, i.& 1 J. 151 II qqa azzs. 152 I'll I l '12. J5) 152 0 l!l~. l!J~ ......... , )CJ49, u.s ~0.!5 1 "esl, ,IU 1i ~ 1 a56 l17l, 2l9b., "' JA17 1 390],
Qlli;amremri&mir«r:r•
I lO~bO . ~ 30,16 ] 2Y 1 69 I ~9,711 ~ 2V.Z) , 29,Jil 7 2ftlb] lj 26,'U 9 27108 10 l7 ,11 • I 2f. 171 *l ih,lb 11 z;,Js '" 25.12 l'j 2~.02 ,. 21,1 0 91) 17 zu,uo lB ;2U,01 S9 ll, 7A ~0 2l,l9 Zl 2J.tfj l2 21 ~~~ 2l 21,62 l" 21.~&1 l.!i li,Ul lb lO,S& liJ~P lft 20,&10 211 .• 0 l JO ,IJ\ Jl ·q·q' ll ,ut Jq ,01 l'i 19. 8& 36 a•.eo 37 t<~,S8 l'i ,01 39 ,01 CIO I u I tq , 0 I Ill ,n1 4] U,Y9 IllS ll,Cil CIS 10,117 ,, 1,Jit 41 1,10 4, ,75 (IQ ''9 ~0 ,uP ~· ,01 . 5Z IY 1 7Z H n.n 5&1 &9,14 ss 19,bl !16 u.u Sf U,Jb Sft n ,zo s~ l!J,SS bO li!,UZ •• ,00 u ,ou b) ,(In bioi ,oo b~ ·"' (" ,, • 0 ~ h1 ,01 b8 ,01 f,Q ,Ol 10 I(.;' ,. .oo 72 ,oo ll ,uo 'Ill ,ou 7~ .ut \ 76 ,01 71 ,(11 '" ,ll I 7Q ,ill 60 i IJ' w &I , 0 I 82 ,01 b) I (Jl 61t ,0& bS ·"' 66 .oa 51 ,oo {,I) ,oo f\9 ,01 1HI .oo v, 91 ,oo ~.2 ,00 u ,00 qq ,oo 9~ ,(10 ,,. ,on • ~1 .oo 91\ ,oo 99 ,oo 100 20,J0 c at 20 1 )11 102 l'l,ll 10) ~O,Ib ~Oil .~.911 lOS I 9.1 l ....... ICfo 19, 9() 107 lG 1 (15 lOll u.u 109 J'l, 77 110 lb,l\1¥ N lll &<~.s~ llZ !'7 1 Ub ID 19,b7 1111 19,i'lb U5 a b. •us
" lilt u. 7'1 117 ll'i. s " IU n.~-5. 119 ar.u li!O JJ,(I'i (. • llQ U,.I.Jil tli! u.,o '1.) u • .n .. ·~~~ 16•. 70 t..:S h,ea ,. Ao-,os t~a I '!J..c!B . ,, U& lo.ro ur
()' ...
I •.· \
UPPtR COOl( 1'4Lf:T, l(fli~.AnM A~O IURNAGliH l~H
AVlAAGt RU~O'' CONOtiiONS • STEADY SlATE
.-:..::. ~BDW Ju,., -tOT N TOT Ill T COL F cm0,~~ :Wo on OSAT Tf.MP CCJNU I cor.sr z cu .. sr J CONSJ II
.. GIL "GIL 'iOIIOOHL NOIIOOiil. Hli/L HGIL tiGIL HG/t. c U~VIU ~ .. , .. UHIU ur-.a''
l l05fllb, ,Ol ·oo ~7(1·10 ,oo 0 0(1 ,oo 'l,l 9o3 10,0 ,oo ,oo ,Oi:i eOO ' l 30159~ ,01 ,IJn \ ll•ll9 ,OCJ ,ou ,uo Cl,l '1,3 10,0 .~o ,ou ,oo ,oo
] 29('ft~. ,Ol ,oo ,11•96 ,oo ·"" .oo 9,l '1,3 I 0 e l ,oo ,ou ,\JO ,oo a 2'~71t., ,02 ,oo 'b !·01 ,oo ,oo 0 00 9,J 9,3 l 0 •• ,flO tOO ,oo ,OIJ s ~qz JS.e ,Ol ,oo ,'-~~·08 eOO ,oo el'O "'·" t~,a 10,1 .oo .oo ,oo ,110 • l9JIIl~ ,I).~ ,00 ,tte.o& ,oo .oo ,uo 9,1.1 IJ,j 10,1 ,oo ,oo ,oo ,ou
7 l!~U. ,OJ ,oo ,&i!•OF ,oo ,ob ,(10 9,li 9,11 IU,! ,oo .u ,uo ,oo • , C!fiCIIJ~o ,cq ,on ,111·06 .,oo ,oe ,oo ll,Ci 9,11 to,l ,oo ,oa ,110" ,oo
q l7(111b, ,OS ,oo ,17'!'05 .oc ,oo ,oo 9,5 Cl,'5 lv,l ,oo ,01 ,uo ,oo
10 l11il, ,04 ,~o ,"? .. 06 ,oo ,oo 100 ~.s ·q,a IO,l ,uo ,01 ,oo ,oo ·u zun. ,os ,oo ,Ja.n~ ,oo ,ou ,CIO Y,S lf,5 I 0 ,a . 00 ,oa ,oo ,oo . . ·~ Ha,a, ,Ob .oo u.oq ,oo ,oo ,II() 19,01 q ,5 . 10.1 ,uo ,Cl ,110 .oo u 2'\Htt, ,01 ,fJn '23-0ll ,O<I ,oo ,00 9,6 ~,6 ao.a ,uo 1 01 ,oo ,oo ' 114 as au. ,CIIJ ,oo ,e~S•OII ,oo ,oo ,DO 9,b 9,6 JO,I ,uo eOl ,oo ,0() u l5t'211, ,08 ,oo ,tJIJ•OI.I ,oo ,oo ,uo 9,b 9,6 10,1 ,oo e Oi!, ,\10 ,OQ
ICJ l119Sl, ,Oel ,oo 1\79•0/f ,oo ,oo ,uu 9,6 11,6 to •• ,oo ,oz ,oo ,OIJ
11 2114ftJ, ,08 ,os ,i!l•Ol ,oo ,oo • ';0 ll,7 9o'7 10,1 ,0!1 1 0l ,oo ,oo u lCI(Ii>J.o n ,oa ,lO•Ol ,oo ,oo ,oo 9,7 9,7 I0 1 l ,uO, 1 0l ,uo, ,oo . ' 19 2n~o. ... Q 1>1 ,ai-ol ,oo ,oo ,oo 9,& 9.~. ao,a ,up ,OC! ,uo • 011,
20 2l20l, ,10 ,u ,12·02 ,oo ,oo ,oo 9,7 9,1: 10,1 ,oo 1 0.:! e\JO ,ou
21 H25l, • t 0 .os . '11-0l 5 0(/ ,OtJ ,flO 9,1 .,,., Jo,a ,oo ,Ol ,oo ,oo
ll ZJ~~z. 112 ,Iii u} .. nc'! ,oo ,ou ,(;0 '1,6 9,8· I 0 ,I ,uo 1 0l ·-,oo ,ov
ll lh?l. ·' z ·o 1 '89 .. 0~ oOO ,CIO ,(10 9,& q,g JO,l ,uo .u~ 1 (10 ,oo ' ' '1''•01 lt& lll)ud, 112 ,ol ,oo ,oo ,Ill ~.q q,q Slid ,vo ,o~ ,oo ,oo
2S liOH: .u ,oa : 11•0 J ,oo ,oo ,01 9,~ 9,CJ IOol ,oo ,OJ ~uo ,oo
(~~.,,oj, ,tl ,01 ~)7 .. 01 ,oo ,01 • fJ •. Cl,9 q,q 10.' .oo ,OJ ,oo ,ou
.itiilt 0 17 ,C!I ,.za.oo ,oo ,o~ ,Ol lOtll ao.z 10 I. ,uo ,Ol ,oo ,ou za lOJ'Ifl. ,Ia ,UI ,SI•OI ,OCI ,01 ,01 9,~ 9,9 10, I ,00 ,OJ ,uo ,1)0
ll l'liiQ), .u ,ot ~ac·no ,oo .ol ,uz "·' 9;9 U,l ,uo .OJ ,oo 1 0\l
ll a~»~s,c,, • I e. ((II , a t. •I'J 1 ,Of) ,OJ .u Clc9 IO,CI a o. a • "I, •".i .vo ,0(1
15 I'Hic;7, ,16 ,01 ,lbtRiJ ,no ,02 1 02 909 ,0,0 10,1 r.OO ,O'i .oo. ,oo
)b 191;J't, • 16 ,ol ~ J ti)O ,0(1 r,02 ,02! 9,9 u.o 10.0 ,tJI • (I~ ,uo eOO
3'1 IQ!J7U, ,16 ,Ill ':St:t Oi ,oo ,OS ,ou au,o ao.n 10 •• .ot !Ol ,uo ,oo
&I) l&tutS, . u ,ot :au.na ,oo ,r.s ,Oil lOsl ao,l IG,I ,OJ ,ou .• 00 . ,oo
·~ sa an, .u ,os ,Joeoo ~oo ,(1] ,I) II ao.s 1(1, '5 & 0, I ,us ,011 ,oo ,oo
Q$ lO'ilbe ,2q ,n2 o!Otl)l ,oo ,Ott ,01) su.s 10,6 HI, J ,ot .,Ol ,of) o {;O . •• 1'1l'lb, .~u ,01 'lltOO ,oo ,02 iol 10,8 10,11 ao.a · , u a ~.Ol ,oo ,oo
U1 :Ut9 1 ,lS ,oa :lft•OI ,O(I .~. ,ol 11.0 11, o 10, I .oil ,lll ,u:. ,01)
Cl't &t2. ,('5 ..oa ,n .. na 1 (10 ,no ,1)0 U.l H ,i? ao~• •. oo ,u ,oo -oo
"" 101, ,l'.S .u .,~ .. n11 ,00 ,01) ,oo ll,l u,z ttl, I ,oo ,0!1 ,110 ·"" so l, ,2S ,ul ~f:!o .. o; ,oo ,oo ,oo II, J 11 1) 10,0 ,oo ,oo ,oo ,oo
('1 H S97t'i, ·"' ,ca ,Db-tOO ,Oil ,01 ,ol l!l,O ao.o tO, I 1 01 .o~~ ,oo ,oo
S.ll J971J. .u ,ol ,11•00 ,.oo ,oa ,ol ao.o 10,0 10,1 ,(II) ,011 ,c.o ,oo
' '" 1 117 )fl, lu, ,oa ,llhOO ,o..-,(ll .1.12 su.u so. 0 ao.a ,oo 1 0CI ,oo ,co
5'5 l9b08, .h ,oa ,66·01 ,ou ,01 ,crt 10,0 , o .• 0. 10 1 I ,.oo • Qlj a CICI ,oo
c.,a , .. 191JS, .u ,01 ,n.n& ,oo ,01 ,01 10,0 ao,o lllel ,oo ,oq 0 •)0 ,oo ..,, '7 l"lU, ·" ,oa ,za.u ,ou ,oo ,oa I 0, l I o 1l ·~·· ,oo ,vll ,oo .oo
58 l'llc.t7 \ .te ,oa ,.,~.n] ,oo ,ou ,CIO 10,1 10,1 10~1 ~uo ,OJ ,oo eO\l
~ '" n~ ... , • .u _,01 ,ao-ol ,ou .oo ,oo lt19l 1.0 .z I o ,1 , !Hl ,OJ 0 ~'0 ,oo
-.. 60 UOIJ&, ,20 ,01 .ll•OII ,oo ,oo .uo ao,s to.s u.' ,oo •"l gOO ,O<J
N
"1l
••
~'
~ ~
Table 0-6 -(Cont.) ~
:":, '~3 ~ .. 't
Standard -Printout Format for Computed Water:Qua11ty •! '"
,.
UPP[Q tOOK I,.Lr;t., KNIK l~H AND TURfUC.IN un· TE ntA ·ncH,. lt.C,
AV~RAG£ RUNOH' CUND.I OO~S • STUOY UAU: LAfA'I'UTf., CALiil', -·
RUA~ITV RE$11Ltar DAY u.
JUH TO~ TOT .,. TOT P T COl.. F COl.. ' eou N BOO OX\' 0 UT '~"" CUNST I C.tllt_3 J l CU~If J C:ONJ14
01G/L H~IL Hr. II.. ~0/lftO~L ~0/I~OHL HO/l. HGIL· "GIL H~lt. i'. ~ c .lltdJ r s U,.IU .urdU u .. u.
100 loloJ, ,lU :o1 :u•no ,oo tOI ,Ol 9,9 '9,41 to.~ ,IJO ,u ,oo ,oo
lOl lOH1 9 ,l&a ,o' , l 'hOO ,oo '-,01 ·"' 9,9 "·" J·o .1 .• oo ,OJ .oo ' . ,oo
tn l'Ull, ·" :\ ,,. ~ 1J till) ,oo ,OJ .ul u.o to. 0 .J u, I ;Ill ,0) ,oo . ,oo
101 "20151.1, • i 5 .Ol ,~att~ou ,oo ,Ol ,oz 9,9 '9,4 to,a ,oo ,OJ ·• (10 .: • 00
to a s 99 )7 t ·' s ,ot ,tUtOO ,00 ;02 ,ol q,q li~'l I 0 ,I ,oa .u oOO .• 00
los )Qll$, .u ,oa ,lt'tOI ,nu ,01) eOQ Ill 0 I) 10 .o IIJ. l ~UI ,o .. _,oo ,0(1
lOb 'qq~l', • llj .oa ,lhOI ·"" ,Ol ,Ol 9.9 (I 0 "i to •• ,01 .u ,oo ·' .oo
lilt lq0~1. ·'' ._01 ,2'hO& .oo ~o~ ,liS ao.: . I o, 0 to.~ ,ul ,Oil ,Cto ,0(1
lU il!bi2, ,18 .ot ,~ltiJ! ,oo · ,Ob .ob ' IOeCI u~o ao.a ,ua .• 01.1 .t flO .n
&o!J 19773, all» ,u ,~2·~1 •(IU ,ol ,os 9,9 ·ao.o lb. I o 0 I ,C.l ,oo .• 00
liO JIJ"d't)· .u .,oa I.ICUftl ,GO ,01 ,04 to.o ao,o 10,1 ,tJl .o .. oOO ·9 oo
Ill ·Q~Q\', .h ,ot ~llltOI ~no ,QS ,Oli . Q,CJ ao,o I U, l ,til ,OJ ,oo ,oo
lll IQIIt-2, .17 ,ot 'I) ItO I ~OCt 1 0b ,OS IU,U hlo 0 lU, I • 0' ,OJ 8 00 .~o
Ill J9o(l~1 ah ,ot , .s~~o 1 ~OQ .o .. ,ua 'I,Y ao.o ll.l.& ~Ul ,o, ,oo . ,oo
ua ·q~b}, .u ,.ul ,l:st(l~ ,ou ,o~ ,oa I u ,·D lO, 0 10, a .• oz ,oc. ,uo ,oo
.liS lliflul, ,18 ,oa ,l!ltl>l ,00 ,Ill) ,u7 au.,o ·ao.o ao_a ,0£! .l)q ,flO ,ou
II b l1'1JA9 1 .u ,at ,bl•OI ,ou ,oe .u ttl.o u.o lit, I . ,OC! ,01£ 1 (10 ,GO
117 Ill lilt-, ,21 ._ol ,.so.oz ,on el7 a I t1 au.u IIJ,A 10~1 .ol 1 01f ,oo ,OQ
ll8 &JtJS7, .zo ,oa ,lhOl ~00 .•• 0 ,OQ u.o ., .. 10.1 0 Ill ,oc.t ,oo ,oo
11" )7tJ7c-, ,ilo .IH ,t~'hOI ,oc ,ctt • (; J iO." '"·' .,, ,I 5 02 ,oca ,oo ,OCI
120 th~o, ,r.i ~~~· ,l~to~ ,oo ,tl ,ll ao,o ID, I IO,l ,ui! .oca ,uo ,oo
) 21 l7bn(l, ,i!o .oa ,Dtl'l ,t\0 .It ,to .1 o.o liJ .• I l 0 .a ,02 .ou ·90 ,oo
uz J1ZQl, .zo 'Ill ,t!f'I+Ol ,oo ,09 ,ur; ..... lO .1 10,1 ,Ill ,ou ,1)0 eGO
12 J 17!1'1. .ll ,ot , lOtllZ ,ou ,ao aUQ \0,1 to~t H.l,l ,02 1 UCI ~u ,oo
li!ll tblq&J, .za .ol ,htnl ,O(J ,09 ,ua .1 u~ 1 JO,l to,l ,Ill ,oca ,oo ,oo
12~ 1~6('0, • 21 ,oa ,l?tl'll ,oc ,oq CiiiB lOti lOtl I o-I .u~ ,01.1 .oo ,oo
alo lHC11, ,i!l .,01 ,~"•n& ~00 ,IJII ~ua au. a ao.l 10,1 ,til ,Oil ,oo ,oo
!27 '"~~1. ,21 ,oi ,Uhll& .1)0 ,01 ,oi IUd •n.a '"·' ,Ol • u" ,oo ,oo
U8 ISle~>, .zz ,ua .lhOl ,oo ,oc, ,o7 ao,z to.l ICI,l ·"' ,Oi.! oliO eOO
• •,"
-, .
\ "
i
~
\
W_
"' ,, ~
....... ' N>
-Q
i
I
It zs
li ,,
Sl u
7J
01
'H
101
Ill
Ul
l
" ll
J&
"' 51
"' 71
&t
91
101
Ul
121
,-,.,
~ • ·_..!'. ~. )
't'"" .. T '-:J
' ·.' ~
Table IJ .. 7
'· ')
Alternative Printout Format for Computed Water Quality·-
(This pr·intout \1as not generated by the samr~1e problem)
Y!Afl OVH•tUC Slt1ULAT10N Oil $4\,JHl fY A~O StP' iNrLU£fiC! .
UPPER COOK J~L(f, KNJ~ ~pH AND TURNAGAIN ARH
JUNE • S[Pf RUNG,, COND&TtO~S • DYHAf.liC -30558~ ~ 3010ll. 3 i!117:tl. • 2'9662, ' • .1511013, u 2"!.0 :J. u 23l6ffe ... 229bll, IS u
Jll9!46, ll nuo, ~3 &7or;~. 2" lbl7o. 2S 26
SII96Q\ 32 IU99, 31 o. , .. o. ]5 3fl o, az o. os 55!ila a a 3297, us Ufp
o, 5l iCI3JZ~ 5} l47tlt sa I flU II, ss St. o, 62 o. bl o. 6Q o, 65 6b o, 7l o. 13 o, 1Q o, 75 7b
G-l\2 o. 8] o. 011 o. OS 8(1 o', 92 o. Q' o, 9Q o. 95 9b
15011: IOl I 3953 1 103 ICI8t;Cl, JOQ lb)IUI, 105 i06
t3Ul" II! uuH, Ill 13873. UQ IZ711, 115 !lb uass. Ul tHe, U1 tJJss. Uta tooao 125 12ft
2'J26S, ., zea ,,; e il7Ul,
~Hql, 17 ........ 21')7~ u 2&2)9,
15317. .MM!' !!~· Ua&ft 0
IIIII 'lS. ]f'. o,
ll '10. 47 llt1t UI:S 16,
U2ICI 1 sr 1)1)05, 58 ! ~ ;:~ 1,
o. fJ1 o. 68 o. o, 17 o. 76 .,
.. ! .., o, G1 o, 88 i)l o, 97 OG 98 o,
lti1HIS 1 107. 12711), 108 uno.
lz2qz, 117 IUU, liB IOIJJO, een, U7 7U8, 128 MIU 1
OPP CUNST l 1 UNITS fDA DAY lbO
a0t1 2 .oG , "to Q ,u s .u tJ • as 7 .zo IS ,u .:u IZ • )8 1l 'a) ... ,tiS 15 ,~~ 16 ,Cib 17 eii«J Itt ,5!
,55 2Z o6fl 23 ' 2CI ,56 25 a?o 26 .u 21 .s1 2& . ,n .• u
,97 :sa •• (1~ 3:\ ~00 )Q ,oo 35 a,oa ]6 a,oz 37 .... ]6 ,oo
,oo Cli ,oo CIJ 10 Alt ,112 115 ,35 QC, gl5 U7 • 0 :s CIG ,oo
.oo 52 1,06 JS1 I ~02 511 a.u 55 a;oi 5b ,96 57 ,&6 ,, .n
.oo u ,oo f:.l 'oo ,., ,oo fJIJ .oo 66 ,oo b1 ,oo bB .oo
.oo 7~ ,60 7) 'oo 71.1 ,oo 75. ,on 1fl .oo 17 ,oo 70 vOO ,oo u ,oo 81 "oo 8Q ,oo 85 .oo 86 ,oo 87 ,oo 8tJ ,oo
•'>0 9l ,oo 'lJ 'oo 'Ill ,oo '15 ,QI) '16 ~oo 97 ,oo IJU .oo
.&1 !Ol •"" ,,, ''~I l :;.11 ,.,s lOS a,oct lOb •"" 107 ... , t:»e a •" a.ao IU a.a~ ill a'o7 U4 '. :u 115 lelS llb a.z~ ill 1,69 au '· )2 •• )0 122 a.za tls a~.n u• 8. t7 U5 •• 15 126 a,u 127 ~e02 1211 ,u
• n,u,
a• !'iOlt
~' Oe
l'» o. n '. 59 uu~
"" o, ,, o,
.~ o, ,, Oo
109 l!Ub&&~ ... Uftrf,
' ,:u at ,u
29 ,oo
3'1 ,oo ., ;00 ,., ~56
6q ,00
n .oo
89 •. 91.1•
C)9 .oo tot a.u
••• a. u
,,
',,
u u
3(;
•o so
60
?0
80
~0 uo
110 uo
u u
JO
flO
~0
60
to eo
9{1
f.\;} 0
HO
UP
~~uo, ann, o, . o,
~.
ClfUO~ o, o, o. nan,
UJSIIa
101112.
,u ,u .u ,oo ,oo
• 30
aOO
.o~
eOO .u
I • #fJ
I,U·
D
..... w
0
PLOY 140 1 &
I
I
(I
109~UO
I 0000
1 oooo
I 000000
1 iOGO
I 000000
Z,IO+OI • ij00
I 000
1 0~
I '• 0000
! oooooo r oo~o
1 00000000
I . ooooo~
I 00000
OR C
r oo a,,o•o• • oo
l 0
t 0
I 0
I 0
I o
I 0 r o
J 0
J 0
f,oo•ol • o
I 0
o,oo
I 0
I 0
I 0
I 0
' 0 I C
J 0
1 ' . '' ·. 000
l•••••••••l••••v••~•l•••••••••l•••••·~~el•••••~~-·l•••••••P•f••••"••••J•••••••••J•••••••••l••OOQOOOOO
' 7 lO !& l~ I~ \f 20 ~~ 2~ lOt 107 tlS lt7 !ZI 127 ~~ Ub ~8 19 ~0
NOOE
DAY 0, THE YC~A llb • 0
·,}·
(; ..
\\'
..
, •..... : ,.
.-'
. "'
' bJ•
vt
(
.......... w· -
~-,-~.~, ,.
··-'
.· ~·.
c
\ YtAR OYHAHlt IJKULlYION oi llL~NIT1 AHO It~ iH,LUENCE
tiHr HUTORV TDI r·.OT HO• I
:,eo•o• 1 l O~lOOOOOOOOO
J 00000000 000490
I ooooooo 000
I 0000000 0000
J 000000 000
t ooooo ·ooo
I 000000 000
B OOGOot Iii I I 0000
10000000 . U I U l 00 z,ao~o• .. sa u a I U U 2C!222
l Ull 2222i U
I Ill 222 2\
1 u a uu 211
1 Ul 22Z-2. U
i I I I i!U ! I
1 IU i!U 22 l
I il 22 2 I
t a a 222 2 a
2aOOtOI • II U Z I
1 1 a z2 2 a
I U 22 2 U
HC/L,ecPH I ali 2 Z &
I II • 22 2 l
I 61 22 2 I~
I I ·• 2 2 I
I a Z 2 II ·~ u 2 ''
or. c
I ; 2 U
l,6o•o• • U . 2 U I 222 . : ll
1 zaz z u
1122 2 I 2
i ~
1 2
' 2 I 2
l 2
a,zo•o• • a I 2
I 22
I · 2
J 22 I · 222
I . 222 •
I 222
1 2
1 • . . o,oo•oJ l••••••••·l·········I·····•···•Q······-·I·•·······I·····~~··I·········l·•••·····l·~····-··1•···~·~·•i ~~ ao.o eo,o azo,o lbOsO zoo,o zao,o 2ao,o l2o,o l•o.o ooo.o
04'1
FIGURE D-2
HOD[ NUHB!AS 12 t ~ 26 o t •*' • 2
CoMPUTED CoNCENTRATION VERSUS TI~E AT SELECTED NoDES
(THIS PRINTOUT WAS NOT GENERATED BY THE SAMPLE PROBLEM)
{\ .-.
APPENDIX E •. {:
' ,·· ,;_
(')
' w
"' ' ~ w
w
e ... : C WYO~J )3 A ~AT~tMAfiCA~ NOO!L DEVE(DP£0 tO SIMULATE
C TH£ HT~qOOYHAMICS or AN (3TUA~Ye e.
OEVELOP~[Uf ~p TH£ MODEL ~-~ ODNE UN~~~ Th! 'PONSORS~I~ .
or T~£ ClLIF~~~IA 0£Plqi~E"f OF ~AT£R AE~OURCESr CALI~ORNJA
!TlJE uAfEq AtSO~Ae£3 CO~fQUL 80AA~ ANO THE NASSAU•SUFFOLK
-~GiO~JL PLANNJ~G 8UlROr ~E" YU~K 1
AODJflO~lL HijOIFltliiU~S h(~E H40E U~OER CONTMAtT NO,
oat~~s.r~.c~ooa~. ~lPaq~~~Nf OF tH! AR~Y~ ALAS~A OJSIRICT,
A~C~~q~~~' ALA~~A,
c c. c c c c c c c C QUE~fln~S a~G6RUl~G TH~ CO~PUIEN CODE ~R l~l HUOEL AP~LICATION
t $HfJIJl.i) tJf. l>l~t.CJED YO OUUAtU J, Sttlt"• TElfiA tt.CH, INt,t
C . 3700 HT, oran~q 9LVO,, L&F~YEifl, CALIF,, •a5a9 (ql~·28Ja)JfSJ
c;:.: CO~HON /TID/ NJlX,JE·(~~ltAX(7,80j;~,JT(5U)1 YY(~O),~EHl0D,JGH(200)
c
1. ~&NG£Cl~0,2),1LAGt~on,l) ·
CU,.HIJJf i(;E O'il JIJfl ( .!0.0), NC.il ~~ (j! p 0, It), NJIJNt! JOe) 1 2) t .,0 I flU 00 l
I, •SI~(Oltib)r~~tk(lnO)rU~Y(lOn),UtN(lOO)tAC3bO)tAC~CJ9U)
2. &b(JqO)rfV&P(iAOat&~(I~DltA3t2PO)tAS~C2UO)IAt(l~nJ,U(JOV)
l. r•H.( l!.O) tO[fJ ftl(i!!liH ,,., l!i'(l) vt.rrH 3G.J} 'R (3110 J 'v' ,liiU, ')( UOOJ
~; vOL(Za~),Y~~nu\,QI)Jn),ACAVtJJOU,~ASlVl(iiiO),AS~(lOU)
S, AA~~CJO~),OlPAVl(ln0),0(Pf~~f2R~l,,AI~~(J00JthAY~tlU0)
~~ ~Nfl9Ult~TtZ~0)1 QAY((JOU),~,,JnO),QP(JbO),P&~l(JOO),R0~(200J
7, A Sf '9U) 1 P!Jr.( JUO )t !if LO"' ( 2t11J), vAt\S UIJO) 1 VAVU JOQ) t Qr•C lOU)
8, ~ULAVl1!DUlJfULHilOU)t1SfJQQ\,VSQ(lOO)~~~~JUO),~~tiU0)
tO~HON;~IStl ~J,~C,LiLT,~LL1~,~~~l~P,h0SftP,t,rl,D£LI2,10AY
]; n~thtiDr~HP~~~.IJU,~f~MP16)rQtH~(Ift),~fLOuDCI0)
t0~~0~1 IO/ uP~t,~~~~~h~~~I,4~V~f~lf~Lti~))J~"I(JO),LV~tC)U)
1, piJTH(')'), Jtt)1 PQ1Y(~Hh \0) ,PIUntSOt ,.,,, .. UUitCSO) ,~,lf'LUf (~, :J)
2. 'lt::t,(}f(5,.S)1 TITI.fC.i'OJrTITLCll))tLTII'bJIR(II!\),PfT5t
~J~£~,,n~ ~di'1(S,2i,-l~~(5,2~),~orij(5,l~),UVUI(l00J•I~tl5)
Oi"l~StUM ~biY(q~)
nr~t~&t~' ~'•qc9J 'Jbl~St!~ Ev&VOC2')),q&INn(1~)1 EVAP~(20elS)rk~V·~(l~,21rSUM[VC~OOJ
pf~f,JIS HI'• [V&PI1 ( lflrlS J, teE YAP UOt l) • SU'iE V C ~OU)
tUH.GtP CP!ff
rttAL i.''' f~YIVAttNC!t~~CilrO~DT(I)J
OATA $t~~O/lH It SfAql/1~•1
(.u•• TiTLE HtFII'IIUiltl••
PlAD 15•iGOJ IIJL~e111L Joo ,o~~·t c;~aq,
UO '0~>4AJ Uhlri!UCI;lOII, 'Jt:TR~ TECtt HtC, t ,/lllt~OAUriOX, ILAfAYUTE• CA
JLlfU~~1A'1 1rtK 90x,tTIDAL HIO~DDY~&HICS PROGAAHI/)
·C C•••• G(~ERAt CO~f~UL fOA 3lHULAJIU* -NO ,RlNf
~fA~ (~~~l~J ~S~nO~'~"PPfe~UP~T,~t~L•NS1AUt,~ffLDMtNOY~I~,N3TEAOtN ,,
f.t[)Y,. ... c:O
RlliJ t~rll•H (HDAY(J),IJittln&tlH)
••lP:.•m.,•.•.,
IJ JIJ A 'J;, ft 'fJ
It~ IU~MAI ll•!~)
c:
RtAO ,,,120) tJPRtfl),l•ltN~'R1)
IIUD (St.f20) (CPAICUtl•lrN~Mf)
tF (NSTAn!,GT,OJ RtAO ($,130J CCNJ,LDf(I,H,,H•I•3J•I•l•H9lAOEJ
IF l~T,~Uw.GT,O) READ I~,ISOJ CCNC~LOICJ,N)1 N•I•'J•l•ltNffLUW)
UO FOIJHM Ul5» .. JtiH2hrO .
tF l~l~~.GT 1 0) HEAD CSti20J (JIH(J\,J•I,N18LJ
q~-0 l~,tunJ QCLYfDE~JO;PERIOOtD~IN
DMINIIOJIJNO,
• SIO ,oQHA I f hf: 'J; 01
NU~Il~c)~OOt•Pt~fUD/O(LIOtflol
~H&ft~~J~OQ 1 •P2UIUOiD£LitO;I
NIIPlAih:I~H~' f.P, , .. us I EP
.. PAfc~.-f'fJIQ
..
c • . C,, •• q[AD A~D P~OCESS SVSI£H GtOHEfftV DATA
IIEICihn
CALL GFO .. ET fNl~8J)
IF (Nl•IJ,j1,0t GO iO ISO c . • . Cu•• C.AlL ~f'NI•,.IJEIUfiG llf)UTJHE II" ST!AOy IUTl OUALUY fA'E II lt't.Cir&U
JF (U5TlAG,Gf 1 0) tALL NUMU[~ C~N)
c
ISO CONJ I NilE
If (N~:l0 1 99?) UEalt•l
wAIJE tb•llOl fiJLE,rttL wHilE ,~,.s&ot ~sEso~.c"nAYCI,,I•I,~sEso~t. -·
t~li11E fEJ., 170 ~ t11:1SJ£P ,NilSHPt N:J UGt;NtFLQW, NZOrNS6~PUI09
t&O Fd~~Af f'O~U~dlR OF HVOR&ULlC CU~OftiUNSt,t,O,ISI,t~~V~~tft Or flO&
ll CV(Lf.S P(R CIIIIDIIJt)'•'•TSO,hi~I.,U51Jtlftl5))
176 FOif14AT c·~tfHIIJHI\lR IU ttYIJIUII\.It IJttr Silt'S I'E• C'rtL!Iti'S~eUit'OtiUit
. IPER OF OU~LlfY JIHE Sl£1'~ Pl~ CYCtrL,t5U,J~/,1 ~kU~~t.R U, TCUAL til
i!r.£ PLUU · i, f!»IJ ,1 'il, t ONIJHttf.R Of 'fJO&I. VEt.OC (tV I'Ll' IS
l 1r11\0rl'i/,lllO.YNAHlt 11Y0"AUl.l\. OUIPUI Uffll ltf"lltiS>'tfOI
dTlAOY ~Ur£ tiYDIUVLICS lJIHPUf Uh1H t,t5UfJ51ti011UQ'-l't.HIUO, ttOU
'"''~ '~".~ !J .• ul) ~RUE t6t11\U) Nllf'kf fJPHiU),Ie&,l\juPRH u
180 Flllll-!&1 C' Nt5ULU flRittllo· AI fttl! Fnt.llJotiNGC,U,t JUNCUUUSI/IICIU a, Hd.h) \
t~NJIE (bti~O\ NUPHfr(CPNTCIJtl•l•"OPRl)
Ull FIJA'tAJ Ut·,511,1 AttlJ fUN THe:. FOLtOtolt,C.IJ"),t CH&NNlU'IIfiOJiti•UU
'-Nlff (flti!llOJ
2~0 FOPrAI (IUFUltO~I~G PL~TS AR£ ~AD[I//1
OU ,au I:~ D J tiSfAGE .
~HI1( fh,liUl 1NJPLUT(1,~),hD&iJ)
l\0 'OH"AI tiSICt 1 TIDAl SI.AGf fi•A JUNCtlh:fi)I,J!St
220 CIJ"-fll"4U(.
hO iUq 3:t,NifLUW
wqtfE rb,ZJOl C~Cf'LOI(I,~),N•••))
Bll ,. ..... ~At cas"• • ... , ... 'Lnw FnN tH''~••na •,usJ
2CIIt f.IJIH I IIIII:
C, 1 ,: ~>tit liE JN'/AIH£ttf t;~tJHt"IHV OA I A
lSO fll'lllll l"tOC,1 111~AitiAIIJ Cfi&NNfl OAUt/f',t Ct4atmU, Lf. .. DJH1 ,,
I Hllll••• f I IIYO ll~o, t f Hill lLEY• t'~ HANNINU N tt40 JU,.CUU
~fl'i $J_Rf -.Lnflt UAN II ttl, St f. 1 I J • ... ~
••
ti ..
i•
oo 100 J•&~~e ' ~
tf tNJ•I .. C(J,UotoeOl GO tO )00
tf (,'4QI)UI,uU.tt£.0) GU tO l6t
wqllt (t;.; Uul 1UL~t·f.lt1.,
t>:ft,llt '"··~~Q)
ht H•l ht
$lAIH l \•~UifO,
tCaRl,l\
t• t•t~&J),L~,O,OJ GO TU atO tuau,•J ·
~~ j70 l~,,fO~OO
1Uaf'f•ool -
tAad(J\•~tJl•I8•Ct(J)t(8(J)•V~•ACKtJ)J)IleO
ff lt~.~f,0 1 0l GQ lU iiO
ITO cc•• I I '•\•t.
210 Jt=~CJ'/~C~lJJ
T.C a.\ -.1••11 fC , I IS) .
If tH~C tlt•ICJ ,r,J, 0 1 0l 1 AND 1 JC,lt eOMIH) I"'R(IJ •3Uftl
ItO CUt~ t ,.,,,t_ .
IS(J)~tC . . .
kP(IE fb,JIOJ JtallN(llttltt(J),ij(Jir~(JJ,tC,CHH(J)t(HJijN~(J,")'~•l a;lJ,lC~1JJ,YTCJ) ·
tF (HIJI)(Il,IISh(ll,O) WR!,U (f.tllt'
)0~ tfiiH lt111£
lU fOU~AT ( I1 1 A \ 1-Fl )1 0,F au,o,r Ill,! ,p !41 1 lt.,Ualt 19t I8,FUe0fH4o0)
Jf (MOn(I&,~$)•U£,0) ~Rltl l•tJlU)
S!O rua~At c•o~O~f • • ~ lh~J~arE4 ht,AtiVE MIOTH I~ POS.IBL~ ~ltH ANt
lJCtPttrD·fJU4L ~fAGEt~
JJO FOV~At (~O~•lJNVAqfA~J JU~CIIO~ 04JA'/18 J0NCTI0" AR[A, ~3, aL
lOPE, ~aF/rf ~EPI"• ft HIN tL[Vt ft KoCUAO Y•&OR~ a 'wl~~fLS f~J£qi~G JUHCTlUUI/) ur:o
JI)•IJ t
r r :IJ.
C\U J9tt J•.l;t,_,
IF (~C~4~(J,J),f0,0) GO 10 l9D
JF C~Jn(IJ 1 t~),Nf 1 0) ;Q tO JIO
Wij(J! fb~llU)-flfLftTllL
"'"fi( f~,JSUJ
l•o ·II•& It•
flJ= IUt\IIJL CJI
fla •[ •a!HJJ
tecrif.PJri(JJ
'Uiif9,cSUIIO
Jf (AS~CJJ,Lt,o.o) Ga TO 370
·!h:t~·" ,,
AO )S~ J%l#l~OOO
. •
r~il~•o.l . . JAttOLtJJ~fU•CA,CJ)t(ASIJJ~ra•AS~(JjtJ/~,0
If (f4:Lt,O,O) '0 TO )60
lSO co·· r 'tmt
J•O 7t•ASCJ)/4~~~J~
JC••~&~1flC,t6J ~ .
I' (ld,(fd•fC)1 Gf~0 1 01oA~O,JC,LfeOMIN) SfA~Ct)•IY.RI
l70 C:O"ftiuut:
'>U Jftll ""I, 0
'f•t,(HllfC J," j
c
c
-._ ...
SURCIC\•,UAO
tJI (fC.Lf,,.SIN)) SUA(t&)•SUA&
soo tu~UNI.•E · . .. . . . . .
lftU 1£ t~, uo; .J, 5H'It9, •I JAR C9 J, A'ftJ),£111 CJJ, OE,.YH(J), f.C, JC C,U, YfJI I,(»CHAM(J,~J,,TAR(K),~·it~) u: eHUnUa·,U5),.U 11 0) IIIAJU U,•UJ
J'o tll~>~U~uE . . . . .. . . . . .· .. •oo FUq~~~ Cl~~la&,-6PfiO,Ot,tl,irOPfJSt11'j'•I•IIJ,t~'·l~ttlfi,ltf(ll .I ,AU)
If (*1 1JrJ(IJ,,~J,NI:,C) "RUE ilt,lllO) . . . . . . . . ..
•10 F'UiftU.f C tot,~UJt: • .o •. •'~or·c·,;.t£$ f"tfi\T OEPIH 01 CHAtlt.l(L £NUIUt.C JU'IC
lllll'l 1"1 UUtGflf fHA-1 JUtiCTIU~ IJVT•i•I;11CIIu INDICAIU ~UAlJV( VOL
21114£ OIC .UI(A U PnU.ULt WIT" ANfiCI .. 11.U tiOAL U•Gt.t) tA•IO/f~ .
w~Jft I~•UlO) TPtfE,fA · . . . . . .
UO fUifotll. (/1/lllti U1Ulllt U41UflCS (Af HSL3:•/$1¢',~C. .. iOUL VOt.li•U.,,: C
Ju tl tt.IJ 0 0,/'iii,Zllti IOfAI. liiJA,ACt Arit.:d, SU H1Ul,I,/Silt26H ;,.-
l(A~ o~P~~. rr ,taJ.~)
Jf 1Nl~.Lt.o) GU 10 4JO
P(tf(ttD HlO . · ·
~Qllf (h~OI ~J,ut,((NC~A~CJ~i),1~1;Mt,JtltNJ),((NJ~NC(H,JJ,l•lt2), ll (N C~ )., Na ~ 1 NC)
"JI) t.Uffll·'lll»t:
!I-CNlnolt •0) GQ TO, &aU
Ql~I~U •ln . .
~kllE (HJUJ NJ,Nt,&IQ
wRff£ t~l~J fJUN(J),CNCHA~CJtl,•l•itl)tJ•l,NJ),(NJU~C(Ntl)tHJUHCCH 1,2)~L(N(~),~If,~C~
•110 CU'•I I Nut; c .
Cttt• HtD'tAUt AC C0 .. 0111UNS &.OUP no ttln as~a,~~Eso~
~(l~ 1~•100) Tlil
nt•o c~,•~•, •lt"P
~UIJ£ J~•liU~ f1fL£,JITL
IF I NJ P'P I U .En,l) Gr) fO 160 c c.:,:, JN~Uf Tt~Al COUOITIONS
UfAO C'tllO) NJt~
w~l.•l:tua~~/PrA:oo
c
JHl &~SII ttc.l.~J!:ll
~[~~ 1~(~~0) Jf•(h),~l~~A-It,NCHTJO
PLAO (~,tu~) tl1lll•fY1J)~I•I,NI)
CA'L tJOC~ (NJ#HAX&J~~'"tlO,~)
~&5o w~ 11 ,. .. f.
w~ilt ~~~t\bl JIJL(•JllL
*bO If C~lfMP(l):lQ,I) GO TO 510
c"".. l v' , ...... 11 (j~
Pnl 1 /(jl,alo,S•ftbQ00 1 )
\/AI It ttt,Qlll)
479 ,UiftUlt'IIJH~CfiON TO JUNCfiD"' EVVOAAUOH RAU:, INCHfS/MO,.JlH/~
C IJO '"~~41 C*OWJU~LY ~VAPO~ATJO~ A~O 'A!NF~LL R4tEt/,t JUNC~IU~ '0 JUH ·
C ICifU~ I L~iPO~'liON, C~CijE~I~O~l~ I R~I~'AL~ri~(HtS/~UURt) oo cteu J•a,NJ
,~ . • ~'-; ,_r , '·'
'.
••
I ........ ,v
\1\
e
f.-::' •
800 tyiPtJ\•0 • no SIO fat.~l
H Y D It 0
•• -•t•o ,,.to~J J'•JZ•!VA~~
t' CJa.L~,O) GO TQ 5~0 . • ~£&0 (~,~~OJ C£Yl'0CJ),"AI~UtJ),J•1•1S)
w~JI((~tU9~) JltJlttYA~l ••o ,qq~•trJ9,ttr,rro,~J
C ~qftt ,,,aqo) JltJ2•£~APOtR41NO
t ItO FO~~•T tt~,J12,/tSt,l~'S~tJJ
t~!. \':I
~('V&Pf f1 IJIJl
\Ot VA:' C1, il•JZ
TA.9[ V'ohF
00 !l'l!) JaJ,C!S
500 fVIP~(IrJJ»JA .
C 500 t~tAFif(toJitf.'IAPU,(J)•F•AAifltl(J)It3210t
510 CIJ''ri•mt
520 CU"'TI .. tJ~
53~ IF (~IFHr(lJ.£0,1) GO 10 •00 c c,;.; wi~D V~L~CfJY AND OI~E(1iON
lolfiTE ibr!tUU) SIC Ft)DHll c•o~duqLT HIND V~LOClTY C"~Ht AND OtRtCTIOH (~EG~t!S CLOCKN
11 s£ '""" rmrttJt) ''• I CttAtt.,Et tU CH~'IN£L' I)
ruJ tJ7u 1= lfttJ
q£t0 (~t11R) JltJ2
,, tJt:lo~~J G~ tu s~o
~~JhD(f,t):Jt •
~"l'•Dt t•ZJ:tJl ~l-Q (~,§§~) CWINDCitJ)rWOtHCI~J),J•t,2S)
5SO fQq~ll (lbF~.OJ
J lU'I:J ~~Iff t6~560J J&,Jl,fJa~tNOCI,JJ,HnlftC~,JJrJ~I•~S) 560 ,uq~•r Clij,Jta,sct•,,~.a,,,~oJI•C••••sci'•'•·••'&,OJJJ
570 co·•rt·•uL
'"' crJt• r 1'-•tt. n· l"t,-ttrta),tf1Ttt•Ptslt'f.1Etl11'(6) ei.T •}) rtRIJa C6r5tOJ
StO F0q1'1 (//,, J~FLO~ &~0 nUffLU" DAT4 1 J
600 tF t~trH~(~J.LO,tJ G~ TO 6tt· c . e •••• JIIFl,O,.. AtrO Outf''LO"'
1'10 tllO J~!,NJ
flJti(J ):(I, 0
iJ•JUC IJ:o.o
6l 0 CIJIIT lt•t•L
w~ttE tb•~ZOJ ,
620 nt:t••At ( •OJtlNCUOH · INflUH, trs
plj b~(l J=t.~J . . .
plAO (c;,~>!l)) U40f»1NtOC!OU
•Jo r~~~•• tt~.t~~Q.tJ • ·
tr C~.tt,aJ ~q TO 660
~kill ru~~~~) ~,nqr~.uqo~
••o ru''"•' u~,ra ... z,, to,u
'it •I( '' hlliJ IPI
!)fj•J' •• , : IH~Uit
fl:!JO flt•H l••ttl.
t.l)t ru••r t••ttt.
HYDftO
67& i' C~T!H'C'J,tO.Jt Cd TO f•o e . c;; •• c~ou~o HJtEh JNFL~w
. DU 61)0 Jzt,"fJ
6110 QGIN(J\•O
. ~~lit f&•b.OJ
··~ FQqMtJ f'OJU,..CliON TO JUNCTION
1)0 ll!J fc:&,NJ
AlAO (~,7un) Jt,J2•GNOUNO
1~0 '0U~It (ZI~,rS,O)
~f lJj:Lr.nJ GO TO 719
~RitE (btll'l Jt,J~~G~OU~O
1j0 rORHlf (JQ,Ill,F!~jl)
PO llit JJzJJ,J1.
1iO n~t~lJJ)aGqU~ND
Ull ro,_r I Nut.
f,.o tF (tlfFf1~1 (6).f.D,iJ GO fO toO c c.:,: !fO~H ~AT~" !NflO~
1\Q 7'io J~a,z~
750 ~SI~(ut,J):O,
on hll .J=t ,NJ
'hO ~Qifi(J\Ul
u~l r~ t6,.Uol
fJQ tuq~tl C'bJu~CTJON 1 ,TZ1~•3tORK ~AT!~ nu fiiN Jcq,cao
At•o c~,76Q) ~.cr"c•,~•·•••a» Uo I'URii• f US, UF'l 0 0)
IF (N,r•J,ul GO 1fJ fiJO
D[AD r~,,qn) cr~Cil•l•lJ,ZS!
790. Fl)IIHAI lll'S•OJ
fAliiO
I'IIJ tlllfl I: &.1 l5 ,srtttJ;a, a:lttc n
ftOO t•=rl•t11IJ1
QSJ~tJ,~6)oJA/25 1 w~IJE fb,8IU) ~,,&,OSIH(J,Ilfl•l•2•1
810 FU~H41 Ci9•1fll(le,,.olll)
NiUN(N\aJ
n.o cw• r 1••uE e :So r.IJ't II ffUI:. euo .cwn Hmt
If (Nttlt,(f~OJ G~ 1~ 8t&
NIHil! fbill'iO)
e~o ru~~a• ,,,,,aocao~ tfoP
·. IPIJf:VI!liiS tfiHOifl ,,, UUOH
,JI')ii .
860 ruNtltiiJ[
t:I),O
on ll =llfl 111., u
w:~.l1\l/(,~0~1 &PEAIUO)
Lllroll;ft
nn hJU Jca,~il
no utu JcJ ,JB
rlfhtf 1 :.nen,o
PIII•Jil,J)ancO
·.
..
N
' w
lll
' -
·-
lli PAfYCI;Jla~,O
flO uv .Jaa,NJ
SU 14 EYtJhO,
JG .. CJhO
U4VE C.U•O ,O
"tJillJh(J.O
nvn 1 tJ \.~o. c,
yl)l., A'll; ( J. :.0. 0
OEPAYftJ):t)1 0
UULCJ\&1)1
tU,.Gf C .It I) a •l Oot
.... l,f l.Jtl)~\000
·o~J· .. ~., l~l,l leo TLAG(J;I}l~,O
M tl'ht H& &.ttl:
vsrnJ:n,o
AS 0•) 111'1 1 0
VAI\:JCil,:IJ•
&Cil,'(((t.~Jso,O
JISfH 'IJ:U 1 U
V:SQ(N).O,O
fUVl(t,~~CI,O
nut.t•,)=O,
IUVHHia:O
o•'Cffl=n
fl'tfh) =~
&tO VAVt.C .. pOp
O•l 990 t••l tfiJU
J•.ll• ,.,,
JG,.~Jhfl
Qflll'lOtNhO 1 0
qUUH '•):aC\ • 0 too tiJ•• 1 l•ml:. ·
c .. C~•-• n&ILY tlMl STlP lOOP
IUAY&:Mnavcrn
00 fO~o Jla&,IOAY
I fJ• I I c • . C1111 ~UA~IIV fJMt ~TEP LOO~
Otl IO~B lfl:r&,,.DSTf.,P
Jlf): ,,,
If (IO:LY ,JOHl GO lO tiiO
!IP.If J Clip If'
IIU q)Q J~I,NJ
o£PfHliJJieO•
VUL U tJ t.:aft 1
ASf•(,t hO. 0 tao r:u~ 1 ,., .. (
I)U 9l4' l•l,~fV
JI•Off:VAJI( I I I)
Jl=••h .,, ", l)
IW fJ20 J•JI,Jl
••
tlO 5U"LV(JJ&SU"EYCJ)tEYA,R(IriG)•AS(J'
0.0 'UO Hat,NC
nu(r.J•I'I,
AB('I)ao,
•:so vor,.••o.o c c;:,: ~~~D 'nACt
too fiiU 9SO Ncl,NC
tS~ 'lfi~O(JI)IIOaO
QU 970 I• l • UON
IF C~J~O(J,JQ~,L£1 0 1 0) GO TO tfO
Jl~~ .. lu\)(1, q,. ·
Jlc.,. .. hiDCitl)
1'10 \lbU .. :llJl,J~
IF J'tJttUCU•rU,UaO) GO Till UO
~IL;;NJU•IC ,.,, I,
•ut:::.Juuc c-.,.l,
KOU(NI-IJ .. X(ttl)
vo:rw••)•YCIIL)
IF (AP~(KO)tA~SCYO),LE.~,oj GO TO •~O
FWihOI~)c.wa~~ta,a,»••a-cuswwoJRca:&a)/57.•A7AN2Cxo,Yo)J•a sr•• •6o eo~Jr~uE · · •
910 Ct1NIINttl e
C fVAPO»&fJUij
OU f~IIU Jrq ortt!V
.ll : flf. VA I• ( f 1 l )
.l.!=•~t lld'C I, l)
flU 'J,U J:Jt,Jl
c tOO rv,PCJ\=fvAPRti~IU)
c:
CALL OyNfLtJ
Jt uo:L l ,IUH) GO TO USO
Fd'LIJA T( .. HPENII)
C:J IJ'lQ J:t,t'fJ
OEPAVltJ)~~~P4Vl~J)+0£P1HD(J)
OtPIMUtJ):Ol~fHb(J)/F
VI.ILatlJ\:V(ILU(J)/f.
&SII(J)zo\SUCJ)/F
990 [{Jfl flllflf
DIJ & QUn t4al, lit
mt (t~ ).:nil ( tl' n·
6CAV( (•t):.tr.4.VlCHhA0CN)
A!IC"il:AIJW)IF
1000 Vd(N):VU(NiiF
niJ I OJn J: I ,tiJ
If lUCu•NU, I) ,t.O,U) GO tO IUO
tA::IJ,U
nu 111 an 11.:', n· -
'if Ct.ltuAII(,J,It)olO,O) GO 10 IOZO
••:tl(lllH t ,1, IC)
&010 TA=t~tAUS(U(N))
lOlO SfLuw(J~co,~•r•~DELTO/VOL~J) ao 10 cu••t H•ul
If (Nln.Ll,l)) GU JO l05U ou &n4n J•I,NJ
H:s•uuur 1,
jO•O O(I)CU~Ih(K 1 JU)
k~ltf tNlO) Ju,(DtP1HU(Ji,VULCJ),4~8(J),QINCJt,aCJ~,aGINCJ),QUUlJ)
&,Ja&,NJJ,CQU(Na,AQ(N.,VQ(N)•~•&,NCl ·
•
n
(').
\.
~ .,v,
t
' w
.~·
lUO t01>4flt.att
lOU CO!IIfll'it!E c .
, l!FI,.OA.t. (Nif5 rEP I
1)0 10111 J•J,PIJ ar l"t~AN(J,IJ,[Q,O) GO TO IOJO
VOLAVESJ)cVQtAVE(J)/,
HlVEfJJa~AV[tJJ/r
&3lVl(J):~5CJI•ASK(J~~HAV[(J)
DlP~VltJJt~lPAV~(i)/F uu co•HI"•JE
HyOIIO
hi'J 1 Ol!n •:..:.a , ''~
til t••Ju••trtt, I l .Ln,O) GO. ft) Uet
V~f~J~yJQ{q)•VAVt(~J-•2/f
AS(~l•PSQ(»J•q&VE(~)••ll'
VS C"U ::;1111 II 'U ('HI ChI, 01)
AS(,.]:~~~l(q3(~J/(F•J,0))
~4Vlf»\~AAV((~J/'
Q&Vl(~\:Q&Yt(hl/F
y&bSl'.•i=VI~J(tll/f
VA~l(~\JVAV[(HJ/f
~Avtt~\:BA9lfhl/F
4CA1E(~)c&CAYlC~J/F
UIO CO'Jli~!uE nu ao~o ~.a,uJEx
0~ LIJfiP; ti J :1~f lO!ll)( N) If' . ~ l~to ol~utn\~o•q~'"~'' / IF Chl~•~lO.t~,V) GU tO 1160 I
~ tii.Cflt an. tt[af.-11.fl0'f CUE,ICIEtn:. (
j .. ...........
I)IJ IUn,J:a,NJ , '· J ;
su~v~·~·· . ' sutt.te•o,o
IUJ &\on '~=' •" Jt;l~.t·ta~lJttC, ar c~.at,o' GO to aaao
Jl=~JU~tC~r1) 1
J Z• .,JU•tt I'"..?)
lq£AC:=I\AY(.iN}~f tN(~). . . , . .. . • . . ~C~A~:p(~1•fM(J!J+~tJ2Jb/2•tiHAYlCJl)tHAYEC~ZJ)I2,
l'IU~AC:r~V••At t AH[ 1!.~ •UCtfAN •
vc•u.uc.r ~•tHhnJ lttCti*N) • •• •'
!\U'f ~II: ~lJMYH. Vtt'i~N. APE AC
1100 Ct~!U l'•d u u tn•.n nuet. . . .
~1111 t J hSUtiVIfQ llt '95/!UttA~
U U c•t•H Uiut. ·
Jf (UJ~,l~~01 C~ TO tt•t
tJO 11.31\ hi ;fiJ
l(dt'HU t i)
d(IJc.'r~ClttnSiNCKtl6)
iiJO Vl(J)a~LiutiJ
fVAPfl\at~i
I'll ll~tl Jai,~J
tf (~CMAN(J,&J,lO~QJ ;o TO 1150
K atHIIr• f J l
$UMlf(J~~SUHt~CJII,~JAl~"g5T£P)
I •.
c
c
(VAPCtJe~VAP(I)tSUM~yCJJ
ovnT«J,aotkCJJ•OGJ~CJ)•osauc~,z•J•oUUCJ»~suttevcJJ
OU 1111 n !!: II: I, 1\
IF J~Cu&N(J,~),tOeOJ GO JU ISSD
~·~c~•~cJ,~J ·
Fat,o
IF ('IJUtiC(~, i) ,£ri,JJ f••l oO
IIQO nvotCJi:DVDf(JJtF•OAVtCHJ
&ISO CU~fllftll
,,..._.
/ l'
•
·.·i;r·.
.
~: l ~ . ; .
'
Hhllf 1~3~) QERO,UFI.UUOt(OVOTCJ),~[PAYt(J),A5.V£(J),YO~AYtCJI•OCJJ
I, v r ( J I ;tllliJCJ) 1 IJIIR c JJ, J•l, NJJ, C ACAvf: lN) tOAVE CNJ, lt1 poe) ,ttAV£(N), u ,.,,
2,V~USi")•H•l,NCJ
lhO CCJNTINIIt.
IF CN~~.Gt,O) HAllE CN2U' CHDRCJ),otPAVt(J),J•ItNJ)
CAli. OUfPUJ tLfJJtt,mUAGE:,NIF'I.Otl)
1170 CONJI,.Ut.
IF 'N~~.GJ,U) E~D flL~ N~O
If CNJ~.r.T,O) E~D 'ILE ~JO
STOP
END
'-:.-
...... )
. ... .. )
• f
.....
I f ~ .......
-· ..
'II
c c c c c
t c
c u " y ~
&UB~OUtl~t CUAVt ,.,Y,NPftNC~tNPLoj)
bl~l,..,tO~ ~C~Pt,NCV),Y(NPt,hCV) N~tR~
ijPT•~u~ae~ OF IN'Uf POlN1S U~ lACH CURVE
NCI•~U~Ur~ U' cunY£$ ON ~ACH GqAPH:
~PlOT~•~I~TEQ KtY,
J' tHP~U1t • •lw N~ PAGt ~JtCt UA TJTLt 13 PRJNtf0 1 aCUifVlo OUU. t•Ul H4VE VUJ&tll.£ OIIU>'UTIONSt \;:iMJGE NEXT tARO
c e c
hl"£~SiUN ~ClOStll• YtiOl,l), N~t(~), OUHXI4)r OU~Y(Q)
CO~H~~ Ill~/ XLABCl&I,YLlU(.l,TlfLtC1l),HUAIZ(lJl,Y£"lC•ltiONIJQ
100
1~5 c c c
.ttUh\•l'£)0
¥-tl'at.uf lll
'IHlJ(:a.\•OE JO
YHI~=a .. ot]O
1)0 Uti 1\at,NCt
fl~•aPJ (If)
-DU 100 JcJ,N
tF (X(J,~),Gf,XK.X) ~ttl~aX(J,K)
If (I(JrK),Lf,.~tH) ~HlN3X(J,K)
tF lYC.Jtk).G1 1 YttU) Y~AhYCJtK)
IF (YlJ•~I,Ll 1 YHIH) YHI~eY(J,K)
tO•IH"'ttE
1'\UIU (I i=)ttJtl
011" II ( i l U ttU
r•LL ~rAlE (PUMI,~O.Og2,a)
OU'" (I i :a'otlta
I)U,.Y(l):'r'1l~
c•LL $r.•~t lQU~v.s,o,z,a,
D!J &n) t(:r&,NCV
Ut:'ll' fC If I
ll(~tl.~JaOij~t())
ll(lltl,l()ll(llltll((ll)
't INti t II J a()IIHY C))
Y C-It/, If J I OUH Y (I)
CU"~fiNUI:
ltft (IIC0il11lC ( J)
f\tL u =oUMat r" »
.l!LAIH )i :alP1IN
nu i 1 o 1•1 i.t o
1&0 ~L4UCJ•II••Lld(J)t0~Lfl
c ~'CAL•IUO.I(x~A8CII)•JHI~)
ft(i U, X &NO Y $CALli
C iDA" Y LAS~LO AND fACTORS c
'fH.fN&Otl'fJ ( )J
lift. fhi)U,.t(q)
YLliHoi•Yfflff
DO II S J• J, 5
liS YLAH{~.J)aYLA0(7•!JtD(Lff
v:ICAL•'lO.I c YI.Ad c I )•Y14Jif) c
• •
c c
c
c: c
c c c
uo us uo c c c
NCO•!Oo
CALl PPLOJ (o,o,~co,~'~Of)
DC• I
l)O l30 \.IC lt tJCV
tF (NPJ(L1,E~,OJ GO TO 125
~O:rM~C4L•(¥(1,L)•~~!~)
YO~YSCaL•CYCitL)•YHJN)
NPIJINfaNPJCL)
00 ll~ N=l~NPUI~T
Xl:ASCAL•Cit(N,L}•~"IN)
VJ•t~CAL•(Y~N,L)•Y~IN)
CALL PtNE txo,yo,xr,yr,~,NPLOt)
:t.J:H
YO=tl
CUIHINuE
ICZ:Ktl
CU'411NUE
NC•99
CALL PPLOT Cf,O,HC,NPLOTt
RETURN
£NO
CUNVE
JHIJIALI!i.,LOV OUJLI~l
JOINING XO YO ANO XT Yf
OUTPUT fiHA~ rLOf
. '
rJ.
' "" v,
• ' \f)
...0
•
b ' .. , .. u
5URR~VtlN( OY~'LO . . : . . tOMKO~ /TI~/ »J~X,J£V(tO\•a•tftlO);~,tfC50),~VC,O)rPEPIODoJG~C~OO) ,, a•~Grczu~,,,,,~•oc~o~.~• .
c
e
e
COH~DN1GtO~/ J0~(~001,HCH&~ClO.,ftj;~JU~tClOOtZJt~OINt2tU)
,, nSJ•c•~t2b),qGt~ClOOJ,~UUllOn),U!N(200),A(300),4CK(lOU!
,, a8(JOU~,tVAP(l~O)rl~(l~U),ASflOOJrAS~(2UO)tAT(lUOJ,8Cl00)
, 1 rM'f(lOO),DtP fH( lOU 1 t•f(lOOJ t\,.F'"'ClOO) 1 A C lUO J r Y( 10\l)' ll (ZOO)
,, V~Li1UO),Y(ZOOlt~(]UnJ,ACJVlflOUJ,ASA~fClUO)tiSP(lOOJ
, PAV[f JOIIl ,l)£li&Vt:(l00)t0li'I11!Jfli)UJ ,r:,.I•IOC JOOJ tHAV((i!UOJ
•t ~NC~RO),~f(lOO)rQAV[(JijO),narJOOJ,nP(JOU),hAVtiJOO),PUq(iOOJ
•• p!f!~UltAS~(I~O)•SFtO~ClOOJ,vAP3()00)1 VAVl(JOUitO~(JOO)
11 ~U\IV((l~ui,~~Le(lOO)tYSfJOOi,VSl(JOO),Vl(lOO~,vR(lUO)
co~"o~,113t/ HJ,~c,uELf•QlLld,~~stFPoN1SflP,r,rz,o£Ltl,aoAY
11 0 .. 1•1, l'h'l•tPtrt!Jell 11r·ttlt.t1Pfll),OlrtlfC 10) tU.LIIIIO{ ltiJ
tU'1HOH/lt:t/ ,.,., .. r, KPR r. hQilllt,rmJ'Rt, a r;UL tl u J, JPii t c Jo 1, (.PfH ( lo J
,, P~1~f~o,loJ,PAr~cso,Ju),P~1~fSO,l~),HUUWI~OJ,NJ~Ltii~S:JI
1 , :NCPLUif~,JJtTiflE(lO),tlt~tzo),Lfi~L,JYh(~BJ,NlSL
r•H£CEJJ tPffi
P(l\. lFPI
l;:iA l!ilt'P /fJF
i)l u f111f ''·" l)l:aOELT/31900,
TtU 1/ J~aUO 1
00 l70 l~at,NHPt~O
YZ•ftDrt..TZ
taUOlt.l
t•••• VEL~ttrlt3 AT TtOlLf/2
Ce•o• 'L~~s AI ftOELtle c fiG lOS N~i,ffC
If U<JU"IC:C~, U ,LEeOZ GO TO lOS e .
Cueuau tttrCII FUll DRY CR;U,O,, na CHAN"'~l.
$!'11:: l ('I J /It ( N)
1f (O~f,GJ.O,Sl GO TO lOO
vlf,.l='Z•o ,, .. ,.{1.0
r.tJ lJ tO'S
.. •
100 cu·u '"••E
tiL='IJU•JC (N, I)
i¥$ e
iHf:~JUtiC ftftl) •
OELVl~v,hJ•CI,•AfC~)IACN~)tDELfZ•CCYCHJ•ai/NNt)~S!elfJ•J•CH(HHJ•HC
a~u l /Lr"'UH
vl=v c~o; tliH v~
1Ew~:brLfl•&~(N)/H~J••I 1 ))lllJ3 .
~ElVl•~,~•CIIe11EHPt2,~AOSCV2))•S~~~CCitllEMP+ABSC2,tY2)J-•Z••••YI
... l)J
OfLYia.3JGn(DlLVI•Vl)
VT(~J:vC~JtU(LVItOE~YltOtLTi•f~JNO(N)/RNT
Q c .. , • v, c 111 ~ • • un
CO'III~IIl
Ct••• ~E~OS 41 ftOELT/2
00 1)!1 J•l,hJ
ISO
us
lCD us
130,
13$ c
C&tu
~ ... . c ... . c
c
rr CNC~AhfJtli.LE,~J GO TO ISS
IF IJCw.JJ4tOe9J GO YO liS
N:.JGW(,t)
'UJ:III f;t
uJ,CJ)aAXOr,.,.
1)0 uu Jcz,•
111=1•1 .
~fCJJ•~l(J)tA•CJ,N)aSINCYA~t8)t£XCI+)IN)tCOJCIAtfl)
r.U fU 1 JS c ll'l 1 lftut.: v= .,,. .. , J ,
~U~~=UnUfJ)•QJN(J)•OCJHCJJ•O!lNCL 1 tl0)tEVA'f~)aASCJ)
DO l~S ~c\,6 .
IF C~tH&N(J,KJ;L£,0) GO TO 130
III::NC~I"(J,~) ,
IF lJ,~t.~JU~CCN,IJt OU 10 120
SIJ,.r)::SJJ~D tl3 ( fl)
r.u '" sas SU'i:J: SIJI41).tJ( ,.,
CIJIIf! 'IIJl
~f(J)::H(J)•PELf2•JUij0/AS(J,
CU,.,11~r.ft:
CHA~~re AHEAS Af f•O£Ltll
VELOCITIES AJ f tOtLt
rLQ~S Af ••O!LT/2
• PrJ I" 5 Pi •=t , t1t
IF c•~Juuc ,.,, u ;u,u Gn 10 a•s
NLI:NJU~IC rN, 1)
.,tl:i~JtltiC (N, l) onu=!l ;s• c •H ,,.,,.. , •tfCMJ •tn Ckt.J •H CNLI J
TA:U(~)tAC~(NJ•OtL~
AFC~~~~~~JoU,~•CAC~j•TA)•DtLH
IUIT:AirNJ/TA
C•••••••• t~r:C" Fuq DRY (RgLit9eS rT) CH&k~!L·
IF (U~r,Gt,0,50J GQ TU 1~0 v c ,, J =v ·o
' I)(Njli.V 1
) • ••
.
r.o Hl l liS
hO CONI lh•JE
r>Et. Vl=?, •Yf ~N) •t ltd CN) /AT crd) +OEd•C C.YTCH)UI/ftNU•S2 1 I Ut)A lttfCH
IHJ•~f(~LI)/LENfN)
us c C••••
Vl=VlN\+OELV~ . .
TEHP=UrLTtA~(N)/qNJ••Itlll13)J
DtLvl:q,~•JCielfEt1Pti,•ARS~Yi))•S0~1CCI,IT(H,t2 1 e&ISCYI)~e•J•Ie•Yl
lui!H
~tLYl:.SJGNCQlLVItVll
V(~)sV(N,tO~LYI'O~lYl+D[LT~FWIND(N'I"Nf
~(tl):~.~•(n(NJtY(~)•AT(~lJ
C:l)NflNUE
~EAOS al Y+D[Ll CJEHPORARILY SJUR[D no PS Jc:a,rfJ
If (H(HAN(J,1)1 LE 1 0) CO TO 17~
I~ lJG~CJJ,EO.OJ GO T~ l5S
IH H~)
•••
.. 1; • ~ ,.. • .. -.... .. .. -..
i) .., ..... ~ ~. • ... o/ -
uo su
170 1n c C•••• c .....
c
lt'C.C(J)
~ •0qot
· . 'l•u(t,N~
• <. : ~il l·~·· ·. ~ ...... ,
D Y N , L 0
H~(JJ•~~(J)•AXf~~~)•3l~CTA•IO)+AX(~tloN)•CO~CT4•fD)
G!l l ') .t 75 · . ' ·
CU,.TI'•IIt
AS&J:As(J)~45~(J)•CHT(J)QHCJ)J
L3N~l~tJ) .
'U"''J::UilU ( J) •Q IN (J ) .. f~ClN(J) •OSINU., j JQ) +t.VAP(J 3 •ASCJ)
I)IJ 11)~ J<a&,& •
Jf (hC~&~tJIK),L[0 0) GU YO 110
N:a•ICH&.a J, I() t• (J,~!.~JU~C(N,l)) GO 1U 169
!'U"4::::Su"'thlHN)
Gl; fl) ,,~
sut•;)a!\u .. '2-n c J4 J cu·· r ·at,,,£
HhCJ1=~cJ»•UELT"sv~atASAJ c 0'111 ~lit.
~~~AA~I IC R&OIU5 Af T•OELt
CH•••'•EI iff( AS A' hUEL'
nil IISO t.:J,NC
J' (•tJt•••C(ti,IJ:LE~'H GO TO IU
fJi,.:!tJUttC ('I' J l
..,H:itJIJ•tC '~I 2,
CIEl ot=u :~ • (flU( N11) •H (NHJ tttf.I(NI,J •H(NL \)
~»P•f~"thJ tOll.~
JAI~(hitAC~(HJ•O(LH
A(~J~AIA)t0 1 ~A(U,N)tfA)A0fLH
fl ~ '')=\'a c•)"' r r·•·•t.
Cll~PIIJt J.(-4 MIIFACf. AREAS, \'I.')LUH~, O£ftTH
SHiff ~EADS AI ltl TO H ARQA~
rFrro,ro.antYt TlHEaTJHte~r
l'U cNU .Js I, NJ
fF cuc~•~(J,I),tQ,O) GO TO ZOO
O[LHr: .. -.(JJ-•<(J~
htPfH(tlr:Of~JH(J)~HELH
ISAJ•A~(J)tA~~(J)•O(LH
v~L(JJ2V~L(J)tO~~•(ASAJtAS(J~)•g!L~
UIJJ.aS&J .
TFCVULrJt,,f,V.OJ GO 10 1~1
JSVtJP:fSliiJ'•I .
~41~!Chti4~J r",J,H(J)tYOLCJt
IOl 1Ud~•trt~~t~•llvC YOL~Ht t~tOU~ft~~D AT HOURt•'7ti•' AT NOO£'
81 fll,t, uuo a•,n.a,t fUT, VI)LUHf ll'•f'~a2ft CU FJI)
U~ CO"H &rn,~
rrusc.u,r,r,o.u G~ m t!JS .,uflr.r,.,t,n) w.J,IIlJh.IHJJ
1,0 r~nutlti~~ILA~lvl SOPf&Lf A~Cl tUcnU~lERCU AT HOUAI,f7 1 ~
., I At "llntt,J(I•I; ttLAll al,fl'1 11 t HU, AREA .;,l~~J,~,e SQ ffl)
u••waasu•~···
•
zoo e c c
tii'(UinPeCY~::;~' O~.fO 202
eo~UHuE '"'
II(J,itHat(J!
JFCJO.~E.J~At) GO fO 200 JffH(Jl,L;akA~Gf(J~t)) GU TO iOZ
U~GE (;t, .1) ••HJJ
JL4G(J:& )aJ JH[
GU fiJ ?00 ,
JI(H(J\,~J.AA~G£(J,~,) GO tD lO'
qM•GE f.t, 2) ali( J I
U,AG(J;,Z)afJHE
CU'If h01t.
oo z a o "''IJ, m:
tf ft•Jti..,C('t, I) ,LE,O) llO Jl) l&o
JF (~U~(V(NJI,L[,l0 1 0) GO YU liO
IS I UP: 1$ ru.-tl
•.
~~Iff ~~~~~~) IH,N•Q(N),~(~),Y(N) Zo~ ruu~a 1 t •o•tYOII•JI)Y••A .. JC :\CJLUf 111~ · "43 UNSfUILl! Af tf(IUPtt "''•' ·~ I~ (~AU~tl 1 t1~''' fLU~ a!,~9cp,t Cfs, OE,fH ;e '' l
~ao c
c
C.
~
c
t c
H f ffi:J, VHfJCJfJ at,,.J 8 i1~f fl '$ft1J II 1
lf(ISin~.GT,~OS CO rn ~bl ·
cur• r 1 ••ut
IF Cll~,fO,lOAV~I)•A~D*(iH,£0e~~~tnOJ) GO YO lSS
ff :IO.Lf.IDAY) CU JO 170
8UH fUR LAIEH AV(RAGING
OU liS J._j,U.I/
0£PIHU!J\:OL~IHU(J)+D£PJH(J)
ll(lld(;J) CYOI.IICJ) !~JIL (Jl
AS~(~)::A~U(J)t49(JI,
VO~AU(tJ):V~LAVl(J)tVUL(J)
· H~Yt. ('J~::':f4\l~ <J) tttln
CIJN I h111t.
l)fJ ~ lU N: l 1HC
31111 t I U~'~:J ltl t:AW CttANN[L
If ((U(H)),Gl,0,4) GO JU Z~t
Q U ( II »::oN ( •• ~ "!I) ( tH
r.U rn ;»l'i
llO a~C~»•~PC"l+Ot~J
lZ' r,IJNII.NuE c
~AVEl~}tOAV~(h)tQ(~J
VAlli: (lj\&VAV( W\tVf'IJ
"3~1,tc~~~~~~tU(N)•4l
v,q,~,:~l~r~t•Vl~J··~
JUVt \t,t::t.&Vl Cll) tUC,.)
OIOf tl h Otl f tf1 t IJ( '' J
All( lj) :-a II f IU ; A ('IJ
It"' 1: ftt \ :·1• H t Itt I tl\ ~II)
VAII~(Ni~Vaij~f~lt4ijS(V(N) •
•
..
•
rJ
\
~
Ve
t .....
-t.
~' J
~l@ V8(N)a~8C~ltY(N) c
C SU~ TIDAL f6B Ah~ FLOUO c
OU 250 J•l,fiJEX
J•JEIC(JJ , oo no ua,e
tJ:a,.tt.tANU ,IC)
IF ~~.rUaOI GO TO 24S
,. •• i .
JF (f1JUNC('1 1 2)1 [Q,I) h•l~
,IF (F'IIO(~).U,G,J CO TO zn
nFLttrJlltJ h!lFLUIJD (J J UUS(O CHU r.o w ;cro
2)5 ~£ijb(J\~OEQb(JJtASSCDCH)}
2cO CU'*II~II'-:
lG5 CUIIrifllt~
l$0 CO~flNIJE
t
C &lORE OUPUT 0Af4 roR aUBS!GUENt PRINTOUT e
If CIH:NEcKPATt GO fO Z70
1C pq f :1\p!f T ~ PU'R l
155 lll~£=tliMEtS c
ta~h
lU c
stOHE UEAD~ TO 8£ PRiNTED
I'IU l611 I:: I, tlttPIIJ
MJPRI:,JPPJ' I,
PRTH(LTIME,J)•H(MJP~f)
CUNTINut.
C•••• ~TO~l FLOHS l~D VELOCJTI£1 TO Bl '"l~l£0
I'U l,') I~I,~UISRJ
r-tt PIH =t Pll" J)
PAfQtLTI"E•JJ:ag(HCPHJ)
P~TY(L\1~(1 J)ay(~CPRT)
2U CIJ'H I 'filE
l70 fUN Yf '•Ill:
ff CUJnPoEP •. OJ REIURN
28l ~~lf£C~·l8J)
28) 'fJ1114A 1' f t 0Ct.tUIP1El D.EPTtt AND 'tEI.OC lfyJ I)
k~I.El~,J~~) ~J,R(f),~Cit•I•I,HC) ·
Uo .rhqotUt~(l6,Zfle,U)
.. II!HfEftt•l~'iJ
205 ,bR"Aff'ON~O(L DEPtH$/)
h"lf((~~~Ob) Cf,H(l),I•&,HJ)
lOb fU~Hllt!OCI•,f?,l))
:ttllP
[NO
c
c
-.t .. AN•)OO
.,JlJ'U:~(IO
N•ll•~JU~tlq•HtHAN••l•l•
oo '0 J •I I fl
u ftJGCJho~o
C••u J\Jt.,flp~ OAU c
uo
lOS
NJ~:O
DU 100 I•I,HJUN
H(ljli:O:
.l'u 10~ J=t,e
••C'H'~( f ,J)&O
(0'1l JI,IIE
00 llO J•!,~JUN · R~1~ C~tiOS) J,AP£A,SLOPE,O£P,X&,ya,CN1£HP(K)rK•I,8)
rou~•t (JS,2FIO,o,JF5~0,61~) ·
IF CJ,tl,O) GO tO 12S
lF CJ,tt,"JU~J GO TO &IS
~AJif (f>di\J) J
rQ~HAI (10 ••• lRROA e~• au JUHCIIO~ NUH8!H1 1 J6,1 I$ LAAGEft THAN 7R
liS
llO us c , ....
c
&or.~AH ~~~E~SIONSf)
sJnP
ttJ'Illllll[
1f (J,r.i,HJ) NJ•J
tS(J):akU
i :SoC l J.J:a!U.UPC;
OlPl .. III&OfP
1tfJ)Zlt1
Y(JJUI
DO l.lu "'1,0
~C~&~(j,K)•NTEHPC~)
cot. fl~tuf cu•, II Not f.
NC•O
00 tlO Jot,"CHAH
nu uo J•a.z
NJUrtCl~tJa.O
• . ·. ..
,.
uo
us
l40
us
150
155 c
Cuu c
hO
us
170
us
uo
105
190 c c,. ...
c
CD~IINUt .
OU 150 l•lrHC"AN ~ Al~OCS;llS) ~,4L(M,Nt~T",qAO,C0£,4tHT£H,CM),M•l,l)tiL0'l
fOPHATt&5,UfiO,O,lJ,4FlOa0)
tF (U,(t:o) GO tO ISS
I~ C~elEoMC~AN) GO lD I*S
.,;Uft fb;IIIO) N
rOQHAf c•u ••* lqHOH ••• ~HANHfL ~UHO(M,,I,,t II LAN,CR thAN '"OG
lRA~ OI~~NSJ0N51)
.,WfiP
Ctfll f l'lul.
JF lrl,r.l,tfC) NC•N
t;litHNhCOf.,:-
ll'll"h'l t••
O(N):!"fiJiti
P(N):•hD
A I( (If l=r.OE f'
y(NJ:sii.U
A(IC (tf):SI.OPf
MJU~C(~,I)cHINO(~l["P(l),NtE~P(2))
~JII'Il. '.,, 1) SHAAO (NJ[HPC I) ,Hrt.HP(:t), r.n•n J••ttt.
CDHPAitUILtfY CHfCK
00 l1 0 t..:q , NC no Uo J •=a ,z
tF INJut.C(~,U 1 \.E 0 0) GO TO IU
JOUJIJNtlf•1 t)
00 lbU 1\:1,8
If (N,rD,,C~AN(J,KiJ GO TO 170
CO'IT IMJI:
Nt. X l I =•1~ Jll Ttl
wRIIE fb,lbS) NiJ FO~K~I (toC~ANNlL CARD COHPAIIBILiiY C~ECK, CHANNEL• liJJ,I .ND ~UN ar. fl ~H I I IJ)
CON I l•111f.
00 lqG Jcl,•IJ no an~ 1\=t,e
IF (~tuA~(J,~),L[,G) GO TU &90
NsNCIIA.N(J,I<)
no I H 1: It i!
JF (J,[~,NJ~UC(~,I)) GO TO A~S
co•~ 11'1111::
Nt. lC l f :u1t. )( I lt I
WU11( tbtlftO) J,N
fO~Hl~ (1 ~JUNCtlON 'ARO COHPAfl~l~tfY C~£CK, JUHC110~ 'eiJ,I ANO'
lHo\tltlf.l., t,Jl)
CO~IIt111E
CONlf"Ul
OlRIVEn C~A~~EL D•TA.
t~U &95 u:a,uc
H CNJuriC(N,I),L£,0) CiO ~0 US
.K(N)~llr17i9•AMCN)••212.200l9~
A(N)•IlthJ•II(H)
••
·OCOH~T
4TfN)11l(N)
t9S CONUttUf c .
C•••• DERIVfO JU~CTION DATA c .
1)0 205 J•i,l'fJ
If C~C"A~(J,IJ,EO,t) 00 TO 20S
VUl(J):-SCJ)•UEPTH(J~
1F '(lll.P·ltf(J) 0 GT ,O,) GO 'fD 20S
VUL(J):O•
lF (AStJJ.lt0 0,0t GO tO 20S
affthu:
VIJL Ut1l.: 1.1, o•J lO<i te~:t ,a
t~~:U[;t4ht(,f 1 H~
IF (tf,t,E,OI GO tO ZOO
~~~~~APl~·~c~J•LEN(N)
~ULO~t:YL ·~+R(h)eL~NC~t•ACM)
200 CIJN J I •ml
DLPI~(J)~ . ~f/A~EA
!Jill (JJ:Dl p·; , l)fU(J)
205 C u•U I it lit.
G:sustrr ll,U
fP:U
nil U5 fl:t I ,NC
I' (NJuNC('4,1),Efi,OJ CO TO US
O~:SU~ttA(~)+O~IN)cU
Tt•lf.•lri11/0G
Vffh):.~Tf
~25 CIJ•fll ; .....
r,.
ff(NrxaT.~T,G) WPJT£(b,2~7t
l!? FOq~llf'OPRIJGHAt1 E•lCUTION "ILL V!iHJNAYE ~ATER ~UE TO CHANN!L·• ~
,n(lr l"'rli.,PAUH!LifYIJ
RlHIAti c
rJ ' w v, ( ..... .s:.. ~ lOS llO 115 uo 125 uo 135 e e c ItO hS' • '· " u " a 2 n ~U8~0UTI~E.NUH8tRtNH) . . COH~D~/GEOH/ JUN(l001f~CHA~(tft0t~)0NJU~CC300t2~,SPACE(Ill56) •• t~DO~C200,~),J~OLDC10Utl)tJI~(i~O),NSTARTCl~),F1L~C600) CO~M0~;~!3C/ "J,NCtDEL1tDEL10,NhST£Pt~~3tt~eTif2•DtLYZtiDAY ,, O~INtiCtN~P~AQ,IIU,Nft~P(O)rO~DUClO),~fLOUD(IO) JSTOPII) t:SUotHao tsUHLao .,,,.;r • .,~ ,IIJ"H l )a-.S i &R Jill ran uo L•l.~ .,:~t~~u(h$T&~,L) 1F (~.l~.O) CO 10 l3S JfJPV~:•IJ!J'C (Nt l) IF '~St4A,EO,JOPP) GO lD IQS co fi.J •• 0 JOPPIN,JU.IC ( tl, Z) Jtii)Lll (I, 1) •JnPP J:.It I n:• t~u ..;11:11 " Nh:hC~&~(JqPP,~K) IF l~N:Lf.~J GO TQ 125 JJ~P~;,A~StNJU~C(NNtl)) IF CJJnPP,fl,JQPP) GO TU 115 NJU~C(~~tl)=•IA05(NJU~C(HH,2)) GO HJ tt!O NJU~CiH~tl)a~JA05(NJUNC(HN1!)J t 0'' II'IIJf:. c o•, t 1 .,.,t:. -..JU••CC•lt i )•ooJAP:IWJU'IC(N, I)) ~JU~C(H,l)s•JAPS(NJU~C,N,2)) crJ'' t 1 t.ul:. CONJI ~111E ICII HAIN LU~f' DO 190 IUJN•J,NJ Hill no &75 la!,lOO J•JtiOLo(f,l) JP CJ,Lt,O) GU tO 100 K&ih I JU'I(I< hJ 1)0 170 L•I•IS ~~~"'CHAa,(J1l.) IF (U,It,OJ GO TC 170 J~D~~taUS(~JUNC(N,i)) !I lJ.r~.J~PP) GO fO lijO JQPif::'IJti'·C (N1 J J fF (JJp?,LF.,O) GO TO 165 cc If) ,.,., J:JPII :a:utJt.( ( Nt l) 1F (JIIPf',lf:.O) t.J. TO 165 Ji11fL0 ,.,, 2 )t: JfiPP ....... () t;) : •.. ~. (·i uo .us hO 165 lJO ars lao us t t e 190 ItS DO ISS Mt&"t,e NN•t~CHAN(JOPP,KK) If (~H:Lt.o) GO fO 160 JJOPP•JABBC~JUNC(NNiiJ, IF (JJnPP,(~:JoPPJ GO TO l'O NJIJ~C ,,.~,.!) hJ4US(NJUNC (NN,U» r.O to tSS NJUNC(~N·•••·JADS(NJUNCCN~#I)) CllN f l fflll cu•n 1 uuf. CUN r 1'111!:. NJijNC(~,3)~~J49~(NJUNC(N•liJ .,.JIJtiC hit l) .... AU:UNJUt•C CN, 2i) CUIJJ I ~liE co•' r 1 ''"!:. CON f I r111f. 00 I~S JJ:l,ZOO J"ijLO(t,I)~JHULO~I•l) Jti'li.O.(I ,l)cO .Jf (Join\.."li,Uet:010) GU 10 &95 £110 OF HA Itt LOOP cum Wit£ C:UN J I t111E NP::tt "IHHC~ti!04) " u " e e " loa FU"HAftllCAOSS R£f[AfNC,.~ • :NrtnuAL NObE HUHOt~ Y$i IXflft~A~ HOPI aE ijuwurR (U3EO I~ OUlLltY PROGAAH AQUALJI/, 1\U .!110 N::I,NC OU lUll l(l'cl1.! !OO 'IJIH•C (N, I'~ I~ I AU (NJUijt(ft,KK)) ~Rill (btlO~) (J,JUN(J),J•ltNP) 205 f'UihtHtlO(Il,JSU . Dtl ~I 0 I( a l , NP J::,IU'II(I( J 210 .fPI(Jhlt nu v. ~«~1 ,,.P J=.~v· , I)Q c!i,'l) 1t .:1& N:I~C•HlN(J1H) If l».t£.~l G~ 10 2~5 ,IQPI1 tHI,JUI•C (ft' I ) ff CJ,•tt.,Jtlf'P) GO IU ZIS jiJPft::~~.IU'•C (N, .!) 2 i 5 (Uti J1 fill[ 2l0 2l5 uo '11(1(11( h,,.) IIJ IN(JOPP) C ()'I J Jll~tE. tfltlllttut: CU'II I ••ut: no ~su J;q ,t4P 1'1111=.1 fl46a:aJ ou .! 1111 K: I Ill If Uttnl!tc C J,K) oLE, 0) GO TO oUO l .. l•t•MJIIO.( liJIIOOC(J,tC), IH,'4) ~~~-2~AMO(I«OUOC(J,~),IHAM) ,.$. ._, ··'·. '• ·~;:
H u " e r "
~10 CO.,Tit4UE
JDJF!:IJi.t~ll•IHIN
JOIFl•IHAIC•J
tOif.?:t,r•tHIN
'tf CISu~H.Lf,JDI'I) 13UttH•IGIPI
JF Cl'"~l.~T.IDlF2J 1~0HL•tOIF2
~=~lWUfl~lflr!Dlfl)
tft~,L£,,01 GU tO 250
.,N11'199
. wHITECAt~-5) ~,J,JON(J)
~~' PU~HlJfiOf~t HAlF 84~0 WJOtH ort,lo•' 'OR tOUATION HUriD["'•I'
,, '• ~ODE•,t~,t tXC£t0' THt DIH~NSION Ll"llS IN ,ROGRAH AOUlLO ,,1•. P~UGMAH E•ECUT{OH HILL f£RH1HATE LATlRI) .
2SO tUifllt1UE '
1 S'l!l V 1111 SUttHt I SUHl
~qJJt f~tiSSJ lSUHT,tSUH~,ISUHL
255 FOR~trr•6T~l NlbE3T tOTAL OANO ~lOTH IS 1 tS,t , THE HIG~ SIDE HlXI"
tUM •lOTH IS'IS,t , ANO 1HE LO~ $10~ HAXlttUH HIOtM II'ISt/1/) ' e
hO CONrlflllt=
IJOaH4XOtiSUttHrlSUHL)
!tf.JUAH
EttD
• ~ • ... ~ < .. •• • • • : • ' ~
•'
r ;, •
-. : ......
~
~.
c
too
$U~~0Utl~E OUIPUT (~PUlNT,~51lGttNtfLUW)
tU~HU~ /110/ HJ[.,J[~llO)o&a~1,lOj,~,fTC~O),YYi50)tPERIOD,JGW(ZUO)
•• n&hGtl200tZ)~1lAG(~OOtZ!
tU~hOHiG£0~1 JOhtZOO\,NtwA~l200,G),NJU~C(lOO,ZJtNOI~(lO~t
11 nSl~C~\tlbl,QGIHC20~),00UC20~),Ul~(~OO)~AClOQJ,ACKCJOOJ
·~ a~()~01tEVlP(lOO),~~fJOUitASf20Q),AS~(2d9JtAfClUOJ,n(JOO) t"'q )\)II) ,J)FP IIi I lOU), II C &!Oil) •I.. PI ( JOII) t II (}?0), VC )00) e lC UOO) e•
•• ••
VIP. ( 2U Cl I 1 'fC I! 0 0 l , 11 C )0 Cl) , A C A \1[ f JOUSt AS A Ill ( 1.0 0) o A SlH Znu J
PAWt(lO~),O~PlVt(lOU)tDtPI~~tlOU),f~I~O{JUft),HAvf(IUO)
~~Clt10lt~llcnO),QAVL(J~U),Q6(JO~),OPlJiju),U&Vl(JOU),U~"Il00)
:; 11 !' ( )II G l 1 fl :tD ( i-111'1), Sf \.1114 I ell II, 1 y an:. C lOU), VA Vl C J 1)0 J, fltt CJOU)
,, yU~AVEC2~0~tVULhflOO),S,AL[(~J9J,~(Cinl,JJ,~~(I~J,)),hPIC~)
CD'4Htir.1 ~JSCI ••.s,ut,oFL t ,nli.I•J,Pin:'iHP,i'fii:,JtP,r, •~•tii.L fi!, &PAY
., . JlHI't 1 IDt'iHPLP•~, IIU,t•lt ~"l'fi'),IJ&:illH 10) ;U.LIIliiJl lUI
(UH .. i{J~ fiG/ f&PH ·~ .. Pit I. ltfll1 U I' tHflt•U I I r.•IL(IU 1 '~··Ill ( JIJ,, t>':H' )tU
11 plllH(~OJ 50 I ,Ptth(!;O, \II) ,PIIffJf~Q, )UJ tltiJIIM ('Jfl) pfiJI'LUf('i, J)
,, •ati'VlH"l ,)) t f IILht\ltL I I ttl ,J)tf(C16) ,NISL
C0Htt1Jif /l &'II liU6 Cll )t YLAO Ur) t II TLf! l~) t IIUN ll (ll), VUO C b) t IUfiiJQ
tNt£GlA f.PNI
AEAL lfN
Ol~l~SJO~ VEQ11lhtl),VffiTlf~t2),tfO~IZICJJt2)
n&U tf(liUUlb•Qr.i ,Aa!lfiHf,IUI lN ,~t3ttUURtllll!l ,]aQtl . , fiOlHI ,llllj{ '" tiiHr.UlJR~CI&!OIU&,lJiiTES ,}•QII
VtGJltJIIHIJllUtU!\CH~tiiH I•Q"fl ,utt rr/,lflllilC
lilt • u' QltGf, •"'' I, •Htt ..... P'lt IIH&-.' I
VlRil/~tt IJO,~naL ,aH AANtii~G~ '"~IN fthhElJ
~AU ,,
OAU
•• -~ llt•~~l ,~II ltQHN ,,H hOtQHURS I
nO lOS l•leNHPAJ,b
loo'flil(~tlO) TIJL
I
10 FO~"'' (IHitlOlu,ao~,erETH$ tECH &NCo 1 ,/&x,~oaq,aox,•LAfAY£TTt,
lCALJfQq~JA'tltiH 9Q.,IIIOAL •rO»GDVijAHit$ PNOGUA~I) . . ·
~~11£ C&tlOO) J~~lfi),Jpqil&tl)tJP~ft&•a),JPRf(ltl)rJPRfCI~q),JPAt
HitS)
,oa~Ar C'O'lJA,tJu~CTJONII5t• JU~CTJON'JS,t JUNCTJON'I~,I
I JU~CII~~·&s,• JUNCrlUNfJS,a JVHCfi~N'JS,/t
~ H1UP HlAV(I(lf) H(J0(f£l1) HEAU(tlET)
J ~t•Dtfftf~ "t-~lfE~T) HEAUCft~J»el) ,.,.o
OU lOS L:a,L-.~fHE ·•
TaJtO(I hHUH(ftPHf) .
t40U=4(L\J~I/)t~ll0 1
~qJJ( f~tiiUl ~UU~(L),PRJH(Ltl)rPRf~(LIIfl),,RJHCLtltiJIPHTH(L•ltJ
tS.~~J~fl,Jt~)tPRIHfLti+SJ
fOQMlf {IJW,tot2,fl~0 l,~FJ&e2)
PA(Nf 'LPh3 4NO VtLUCITJ£3
nO 1lU JcJ,NOPAf,b
..,,.II£Cr.•IOJ IJTL.
wAif( l&tll~) CPAf(l)tCPAJCitiJ•CPqJ(Itl),CPATCJtJ),~PRICI•~n,c,~l
J(l•~J
IOqnAI ~'u'l)c,t(HAhN(LIJ~,t C~~NN[LIJS,t CHANNt.L t 15,'
I (HAN~fl'l~,, CHANNtLII~,t CHAUN£Lfl5,/l
2q ILU~ ~(L 1 fLO~ YtL, ILOH VtL,
Jl, HUw Yt.L, fLO" Vf& ,1 /l~K,I(CfS) ('PS) ~jFP'J &tfJ) '''JJ (Cf~t (rPJ) &Cf3) tfPS)
Sl CII'S\ I)
~ou
t&.Ot4 Yt.
(tf3)
CCF3
•
·~0
us
c
uo
I.SS
1110
145 c
ISO
ISS uo c
165
lJO us c
190
ltO zas c c
0 u ' , u 1'
oo azo L•a,LTI~!
~~liE t~•l25' ~UUAlL),P~TO(L•J),PRJY(L~l)t'RYOCL•Iti),,RJVfL~J•I•~ &P~IOCL;Itll,PUIVCL•ltZ),PijfU(L,ItJ ,P~T~C~II•tJ,,ftfOtL,I~OJ,PftfYf~ 2,1•4J,PRfUCL,It5),PUfVCL~It5J . . .
ro~~AI CllX,F6,l,fl0;,,,,,2,,10a0 1 #7 1 l,fl0 1 0•flci~Flt 1 0,F7 1 1 1 fJt•f a,FJ,z,,ao.o;fi,Z)
tH~If(lt.tiUJ TITL on uu 1•1, 1 o
1Cill" ' •• ~Hill fb•IJ~) ClCULC3),J•t,IO)
ro~~Af r•u•v(HAG£ "fAD$ foq 4 IIO&L CYCLli//JII,It,tiiiJ rau a'11\ &t:e,ru,ao
Lc: It 'I
WUIIL ~~~~q~) J,L,(HAVECJJ,JaJ,L) Foij"'' c••·• to •as,aoFaa,JJ
Cli'H 1'1111::
wijJt£ fbti50J CICULCI)~J•I,ll)
roqnAI (1 0AV£HAC( Vll0Cl1l£S fOR • YlOAL CYtL!'/II&X 1 1t,tl&l)
Otl I b 0 J 11: I 1 NC s I 0
L=-i ,q
~~II£ ro,&S~J I,L-CYAVE(J),J•I•Ll
ro4"~' ''~·· ro •as,,oFa&,lJ CUNf INuE
~~II[ t••thSJ fiCOLCIJ•I•l,lG)
FUIIttlf (1 0AV£aU.Gt. fLOf.S FU~ A TIOal.· CYCLl'lllU,Jt,tUU ou a 1 5 l•l , ~c, ao
l=l•9
~~liE 1&,810) loltCUA~~(J),J~I,L)
I"IJq•IH(!u,t to fUtiOf&I,OJ r.nt• VI ral'lt.
w~IIE fb,aqo) C~COLCJ),J•I,~O)
ruuH&f c•ow~JLn OALANtt Al l4Cij Ju~CTION CCfSJ'II&IXtlt,,l&lJ
1)0 lOU 1•1 ,N.J,I 0
ll: i t9
W~IIE (b,JQS) 1 1 L,(HN(J),Jal,L)
FO~Hlf (JQ,I JO ltfl,tOf&l,O)
crJ'' r '·"l'l
w~llf f~IZQ5) CICOLCI)•l•l,tO)
rO~hAI (I04YE~AGE NUOAL VULUH£ (CU 'J)I,/II&~tift.lll) no ZIS Jat,NJ,lU
L'c 1• 'l
w~ITf (btliO) t,L,(VULAVt(S),J•l•L'
rnnHar '''•' ro o,I"•IOEll,~)
CUUIINUE
JA:zllf.L T/( .SbOIJ, •PrHIUD)
l)tl Uti II•I,NC
OP(t.I):QP(t.t)•U
QN(N)cnNHil• U
wHilE fb,Z~~) ((H4,0''~A),ON(NA)),~A•l•HC)
JO~"AT I'OPUSII&V~ AND N[GAilVI fLOW~ fOR tACH CHA~H(Liti 1 (4(Jlf
.~
; ' w v,
' ~
4:...
~
•
!UT&L fY'P~~AtiOU ~Att
TA:O,
jf~(A\.:U 8
00 lU Jet 1 HJ
T&~JhvOUVUJ)
)10 &f~llL:AIOf&t•ASAY~CJ)
'jlJs f&/ A flit AL
..
0 U T P·U f
w~lf!Chtil2) EVAP(I)tAlU1A~,t-rt6 .
312 FUP~Ifllll?~ TOTAL fY-PO~lTlO~ ~A1F• Cr3
c: . • c ••••
•• IZ~H AVlqAGE SUA,4Ct &REA, ~~ ¥1
,, ll~~ AV(UA~f vnLUM£~ CU rt
•• ll~~ Avtq&Gl DEPt~, f(
tiDAL ~l~GE PLOt
JF(JTRfll,EUiOt GO YO •10
OU o ll I :q , b
412 VlQf(li=v~qJlC&,lJ
DU u~~ J:q ell
•2o vuq ll u J = .. ,,:tl u u, a 1
F)U qlU .,::l,HI~L
.r•JJil (u)
YC(~,l):SPlt~'J)
JtCCI'ft hClf(J)
Ill J~PIU h~
J=l .
CAI.L C•!RV. UCtYC,ffPT,JrU
l')lj II Jc! I : ., fJ
13~ vtnf&li=vE~iltleZ)
Dtl Cl)lt Hct,fiUl.
J::,JIIf(H) •J• YC(~•Ii•1LAG(J,I~
1=1
CAll C!I~~[(IICtYC,N1tf11rU •u tt1''' !'mt
.. cvcl
l'lt1 l SO U S.•tCY
talll (I h'I·~UI.,l
OU l}G J:t,~PUJ~f
rtCJ• 1\:Ho•uHJI
2l0 Ytfl•l\••.o c C•••• 11~•~ sJacc PLOT
0•1 dl l•hU
,
•Nr:lf
61'f[lf
•'NtH
•NElli
lilt.£,
.,.,u~
•or.•S
',)
/ ..
•:2 ~ORtZCtS•HO~IZICI•I)
00 ~~b 1•1,6 • ~'~ vFqrcaS•~tR!'cr.z•
~0 2SS ~ei,NStAGE
(iO l"5 "':sl,)
no ll'i t• a, lo .
IF C~latnrf"•"J•ED,J~NfCLl) CO 10 Zli US CIJ~U•wt
210 DO ~es ~a&,~PUaNT
rcc~.~\sruY~f"•LJ
215 CO'!l h•J(
'·
~ALL C~~-l c•c,yc,~PT,NCV,~J
W~ff( !~•l~OJ (NJPLOT(~,N),N•t•)~
250 F()U•••·• Cl&>='dlfll,iHiii'I.IJT lt.GE.NO JUetCf&ON,lt,tH II .... " -IU~Cf!0Nt1 ,a,n~ c a.:o~ JUNC1ION,i4elli a IJ us cu~u auul c
C•••• YJOAL ~LO~ PLUI
Of) l 'I~ t :a I • fJ
ill V[~lC&jsV[Qfl(l,l)
~U l~O ~=lehfFLC~
1)0 lJO N:q ,J
M lbtJ L~l ,SI)
JF C~CPL~ICK,ij)efG,CPRY(LJt GO ID !65
ZtsO ti}rt I lt111L
lt.' (UJ lPIJ H:t,ttPUINY
tCC"•"~=PRIYC~•L)
2 70 c 0'11 I r.~ue:.
CALL ClltfVE (XCrY!je .. Pf,HCV;K)
WUIJ£ l&rl7S) {NCP~Uf(K,Ni,N•&,J~
275 rUf.l'111 UH0,30J(,1.&HPLOT l.tGENU c:w~NNtL.II,Iilt~ II o~ltH CH4~NEL,.l
ellpU'-f • lrl'lfl tHANNEL.ai,QH • ~) • '
lOO CUll I Jrm~
AlJUif'f ruo
j''
c
P i N E
SUQ~Ouyt~! ~tNt CMitYlrXz,ya,HSYH,NCT»
co~~~~IGfO~/ SPAC~(lOllSj,A(SitlO&\tr&~~CJOO)
OI.,.EN~,;Ui-1 3Y~CS-
OA1& SV" /lHOtiHl,IHZ/
&11&11ll'
unalll
AYU'f'l .vn::u
.. J4:a I
If (a»s(A~R•AXA)1 Lf,ABSCAYB•AYA)~ GO l~ liS
t SEI PA~A~(1ERS fOR X OIH£C1JnN c
uo
us
laO
c c c
II$
ICO
us
uo
IF (A•~,Gt,~XA) CO 10 100
UA&JCi!
UIJ=lll
IYA:'t'l
Ult:'ll
CU'' I I1r.11t:
JU:~HA•oS
txll:&llfH,S
1\'.UArat,S
1\'ft=l'tu,s
Ct.J•H f.I~J•t;
JF Cll&,Lt,o;oR,IX4,Gf,lOO~ GO TO iaO
IF 1lYA,Ll,O,OqaiY,,OTaSO) GO TO II&
A(~l·ly&,lJAtl)aS~~(NSYH)
Cllhl ifla•L
tu=IJC&tl
yA:(~•(AYO~AYA)JICAXB•AXA)
tyhAYHYU0 1 5
u:iul
tf (lxa,LE,&Xb) GO JQ lOS co ru aqo
·3£r PAAA~£1lNS FOR Y OfUECTJO~
( ou rl tfut.
Jf Ck~q.Gr,at•) ~~ TC 120
AYI\llH •
AU:Yl
UO•tl
~::A:.Ci!
C0'4 t I II Ill
JU:aA4tt.5
ra•h&x~u.s
I'U:A't'H,S
JYB=•nu.s
COtH l 11Ul
r g U ll.t , L Y • 0 :uR, IU • G I, 10 0) GO TO i )0
t• llra,Lt,o.u~,!YA,GJ,50) UO TU 110
6(~S-JyA,IX~t&JcSY"CN3Y"J
ru~•~~uE ·
1YA•Iu+l
YA~(~•IA)U~·~A))I(AYB•AYAJ
f JIUI.AtAX.hO,$ .......
'' c I'I••IY&I szs, ,,, a•o
IXUIIC" r.o ro o.!S
IIE.YURN
EM
' i H t:
' ~1
. ''t;
·~·' '
rJ ' ·\fJ Vt ·\ ..... ~ -0· 4 .. Cf""'tt ~·. .?-,:::_:: L:·~ . ~ • , , .. 0 ' sueAOUflN~ P~~OT tlX,lYtK•~Cf) CUf4~UNiGEt)"'l SP4CEC & Ol15) 1 H'f'1• Ui \ ,, 11.1.(700) f)I"'E"'IHUN S'f"('J CU~MO~ /LA~/ «LABlli),YLAU(t)tflfL£CilJtHUAilCAlt,VERTC•),JUHITO p&TA Sv~ll•lH tiHie!HQI . zoo 1FCKeGfe99) GO 1U 17e 1•0 WIJiff.(f,ti!OI)) FO'I'i11 1 iHI) lltJ I 35 II a I , It t=l•l w~lltlh•l~:j YlABCif),(ACitJJ,J•ItiOI) IF ~t&:tn,~) GO TO IQO OU ISU JJslt9 ,.,., IF U, •1E • 21'1 J GU YU 115 w!JIItf&,I~~J V~Rt($),VERtC•JtCACI,J)tJw&,aoa) r;tJ ro alB If (l1~l.i!G) GO lU 120 w~lfLC~tlh~) VEHT(t),VEAT(2~tCA(I,J)rJq&,lOl~ r.o 111 'Jo · "' IZO If (l,~l,JhJ GO fO I~S ~RIIlC~tlb5) YEHlCJ),VlRf('),(ACI,J)tJ•&,&Ol) Gil IIJ I JO ~qttfc~,~~5) ••ct,J),J•IriOl) r,tJ'H I ••uE U$ uo us leO CU11f l••uE c:n•H r•u•t. wqftEC~tl5~) Xl•B Wlflf~ !1t1 hi)) tiUHil 1q5 F(JIIf1AJ (161(, lOlA I) I51J F04Hlf (~ll,Jti-,IOIA&J l.S!J FU'Ift&T Vlll,ltiUflD,U 1~0 F•JIIot&f (/)1)11, llUJ I6S F~~~AJtS~, 2A~,SXtlVIAll 110 no t"o aca.so DO 175 Jet, 101 IJS l(J,JJ=3Y~(JJ J( 1tl J:;!JYHfltJ ··a 60 r.ut• I I Uul f)') l't'• Jcq' 10 I lOS •t~I•J\=~~~l~~ . "''~ i .,,, l• t , 10 h AO ltO ACSI•1\aSY~(ft) '" ~0 lq~ ICil,QioiO a(l,lJ:t$\'ttCV) Cfjffft ffiiE p[lijtftf [tfO •., .~?· ~,_ " ~'
N
(
\f'J
VJ
' -V\
~
c c c
00
c: c
lOS
1&0
U5
uo c c
c
C.
t c
..
"' c ,. .. us
uo c c c c
U!l
c c c
c c c
•
3 C A t. C
SU8~0UT1~E 3C•~t (AR-AYtl~~~N,NPts;&NCJ
DIHLN,1Uk AkPlVCNPtS), lNJCS)
04fA l~l /z,a,S,OtJ~/
JNC f~:th6SCI,.C)
,,.aJC:r,ufU'f( u
&HfU•&qDh'(l)
00 \00 H=l,~PJS,INCT
lf (A~&X,LT~A~qAY(N)) A"AX•AQ~AYCN'
IF 1A~J~.~t.AR~AY(~)) AHJNaA~NAY,Ui
tO~ I : ... ,it:
If (A~AX•A"lN) 120,IOS,I20
1f ''"lN» \;~,,~o,aao
t'1I!II:ro,o
&'4liC:2.0aiiHAlt
c~ ro \~o
,UUJ(!:O,O
'"''"'-=~.o•.tHltf
tO~JJPitJl
(OHPUTE UNITS/INCH
UtALOGa'OfRAT!) ....
IF (A,& T.O) N•&•O,t999
R&TE=~Aifi(IOt-•N)
t;lAAIE•a.oo
DD 110 l•a.s
J1 CL•JNf(J)) JJS,&l5,l~O eu .. r hul
3CALE INTERVAL tO
L£U THAN 10
FINO NtKi HIGHt~ JNT~RYAL
[ I' HfXT HIGHER INTERVAL ..
nA~Gt 13 $CAL£0 6ACK TO fULL•S!T
L"I'H(F)
~A~C(atl0AT(l)•J0 1 ••N
JF Clht.LT.O) GO TO t•S
Kdlilt~/R.NSC
If (AMtNQLf,O,) K»~•l
sff UP POSITIVE OIEPS
tHfC~ FOR HAll VALU£ IH RANCE
&1 (A .. all.Gt,(JtUJLfNJ~oftANvU GO TO lliO
•
c c c au
150
ISS
Jaf.JPT5~1,.Chl
AR~lYif)•K•ftAHCe I•I+INCI
AJJ~A rc u•no\NG~ uruR,.
L •I. · I
ff CL,tf,ll) GO 10 125
l:ll
Nr:Ntl
GU 10 125
ICr:AHAXiiUNGf
tl C ;. L I·
•.
TF (A~lXeGT.O,) K•K+l
JF ''"rN,LT,(~~AXL[NJ•RANG~) GD iO &lO
f:J'iCT.NPJ5tl
lAflA Y (f) lttUifAHGE
Jc I •I t1r l
&AAAV( I )hqAf,GE
A£ HIHN
!o~HI If. fCI, Jt;~) •
fDQ~AJ (//IOX~IN~NGE AND SCALE A~~ ZfRO OM PLOf AftlMPtl• ru. ruq'4
E:.!O
I
0 ' .• ·'·· "-' ,•
' .
t 1 o c·r
,u~q~~TIN£ tlUtr INI,~AKIJ,~CHTID 1 NN) .
C01""0'• 'It Jl\1 UJU1.JUO ot, U &.:r, lOJ ;tt, tfl5§J ,YYC$0) ,p~"iU!:' .• tGNUOO)
c
•• oANGECl~Ott)eflAGl200t2) ntHt~StU~ IACIO)t -~(10), SXKCIO,lD)t IMYCII)p~KC2•J
OAtl O~LTAeHTltNi lt~OO~,l,.l
JF C~I;~E.~J GO to ~05 no aoo l•t.s
Jltltl
Nl:t'tl+t
ttC~f~:Cl,•tti!JtffCJ))/1 1 yrt~f):O,e5JS-Ytii}tO•I•65aYYCJJ
ttJ:"fl•i
tftHIJ~(tTfiJtTT(J))/2,
YTINI)c(YYCI)tTT(J))/2• •
JJinhi
TfC~lJ:tftfJltl,•tTCJJ)/1,
yyfullcOaiO&,•VY(IJtO,&Sl~-YYCJJ
100 COif I l:wE
I OS C•l'" r H•uE
flU II S J •I, fll f
('U 110 U:~t~Nif sao ,.,,~,J)Bo.
A i fJl :n,
U3 snCJ)cO,
•1 J l: '•1 1 I lt I
0U 1.55 fCitrll
1)1) ll!» J•ltttH
F' J I :J Ln• UJ•U
,J3=~Ln•'CJ•»J2) .
JF (J,I~•NJ2J GU TU l~O
ratJJ•tUS,tJ~•"•tlCI)) r.u tu t.?S
IZO JICJ)c~I~{~Jl•HQTT(I)J
t $ CJ • r 'I • I) U ( J) •I ,
U5 SXl(J.)aSlHJJUJC(J)I'tYU~
nu·uu J•l•'*lf
nu 11• "''~"'' · 130 s~·~~•JJ•'•~c~,J)trt(K)•M~«IJ
US CUll 1 t IIIJI:.
Jli!Q au p:ar•a
l)lliUl(c\1 1
no l ~' u! ,.NH
J\U."•9 •
NJ 1 "s J :q , rn T v cJ,rll,KJ uu tu an
!{UII&~hi"'••A (J) •Ull (ftt J J
liS tOilltlltt!
~o~ciSel~tSXYf~PJIS•MC~rK)
6tL~Ad\(SO~·~lt~))
'IF tt>ltefifeUE'-HU) OE:LttAxanU.
ISO alf«l=~u~ ·
tF Clf;~EiMAllll) tO TO ISS
It COEa~•a,Gr,oELIA) GO VO 110
"' tU'flt1fU~ c
00 tl'O J•tt'F
170 axCJ•ij~•·~acJJ
Y I 0 C '
IF t~CKII0 1 N'.,IJ GO tO Z\0
WNIT£ ~~~l7Sl J2ll(NN),(AX(f,NN),I•i,7J
17! FOq~&T C'O llOAL COEfYICJENTS FO~ ju~CT~ONt,JI,/fftJel)
"'~HE fNI., UOJ
liG 'UR~&tr~tHO fl~£ OBS£RVfO COHPUJlO DIPPJ
AES!:Oe
DU 19~ Je&,ftl
~·•"'=0 il
t'IJ 1'10 J=~·'·" i!:Jla:HoA1CJ•U
f.' J)cf'LnAt C .••NJ2)
•' (J.t~.~Jl) co to aas
!tUo-t:311"t lAU) •COS fF JSaM•ff tl))
r:o 'll a·~o,
1&5 SOH=~U~+AA(J)•SIN(fJI•W•fl(l')
I .0 c 011 II uut
SUII:aSU•HH t U
CIH ;q;'l''•'tY ( l)
QE·•~tn•&tis(ntrf)
I9S ~HtiE (~b,l~O) ll(I),YYCI),SUM,Oifr·
200 ,U~HAT l~fll.~)
wRtlf t~b,?05) RES
20, ruu~~f C~~01QIAL~lOX~FileMt
DU 70l Jcq,i(,
JA=HU&lfJ)•.,
~~~ C J) :a &A ( J , NN J
1'\IJ :Oi! &;2.41
Td•l•&
102 .. ,u J) cu:H.J! •'" C I ,tm) .,.'.~~ T Allnli +AX( I•J,HN)ClCI'llctA•n.t
~o~uliE lb• b?)
69 FURtt& T f/, znx, t SUMt44RY 81 t:O'Ui1t)
wqttEt6r7o7J (1, HNCJJ,J•a,a•,
707 FORMA1(JOC1J,F6 1 2J)
UO COPIUNU~ c
llETURN
tHO
0
f APPENDIX F
,;
-_,.
dll l ::.s ,,, :J
(W:J,Uh) N,HJ I a~AO!t
1H11 J I U03 061
((f)!1YC'fr)4W1J)AXOIY~~\rJivSU 081
l••(l)h1!h:(~'ff)J1
J••ClJull~•«S•rrJ~l
!. *ld. ( r J dull r: l rra ),..r,r:l1
dr•'' =rr ='"' nu .~U 31 tlll1tl3 lhc.ll Sl u 8 '3
]IINIINUJ OU
l(l.,ld(G 8 (\f)S) J,~~O~ Oql
(tN'I•r'Cf)!1rS't» (O~l'~' JJIH~
(aldJ 1 AilNI1Y~ llV!£ AOY31St 1 XUI'II) (Vkh~l USI
• . lO~ItQ) ltl"h
CC0 1 Q•Z'UIIJ~) IW~bnJ O•l C::.N 1 1•tti(ttU!"CMlAYU1'11) lODl ·~I JJ Jttn
. ltCSNOJlVH)ll U~i ~
&IW1) :)U/1A Ot '-11H1UUA110' NOitttli!dUO 131i~tUJ t 1 .1(0l' kHI) Jt.,bO~ 0[1
,. in( l'q' 31 Jttlt
Oli 01 O!l CHl'l•~j·r.rtd ~-
, . ~ IJ,JINill o'U
(h)N11W/411))y•(ulJ]:Ch)~IU
S'O~(tii)ZZ•lU)J~;:(~J~~
U1l H:U,J lAW!OH
(h)h]1WI•S•CNJ~~Jt(~)l~(N)ll
~(lt)!1Y~·Cir»1,rCISUt:W~
(ZrJ~flf:U 't r Jt.nr= II'
l.~ •", ) .• ,,,.,:=z r
Oll O.t DO ( II "0 1• I t'J d · u • .,, lt•nr••• u·
Jrl'htt 1)~1 (IU
h1wU 1IA10~. 1"1•3
~~~;nn•rHnv~•nvu 111t.tll:l ,.,,;,
· d~~~~ 11ra
l'U • GJ:M~ .,,. nu
\) • u:: ( t) •• " 0 ..
o•U:.lrJn
hi)tiOas~llinvs n INf>tu
d~ 1 1: t 0 I I (IU
111NIIhUJ Oil (kJN11XICN)~JQ(N)Jl=CN)~1U
(IV)l: ~·d ll CC~)~MtCHI3AYM)Q((H)CAo(NisqwAJ•lNJI~J=(N)l
001 01 0' (0 1 ]1'(1'N)JNntuJ Jl
3~'l•N QOI. oa
.' {)
I z:t'A (IN.
o•l OA 00 lft'11'J3!) Jl
ll]OJ haJ~H3dSJO :•:•~ . 3
(., l0clt44 ,,,3
• ··,
-
l,l~h•MlA3Pt
OAHij 1 Jaj)llN 09l 0~
huar •••n•·uou .lfl
ti'll 1)Uh1Jfll
fsUd3dl Cf"J1eUH1dl) jJ
l llll f I "C't:Otfldl
(09 JlldUJ l1J)
(~•••l•l~~L"6'••op]91 •••s·•·l~•9'1)•A•s~s·o·x•••l•31Sl••s•••tllar•~~~r~~·al&tA~)IIaOJt•
((I)COl'(l~l)u03,'CCI)~~·ct~&1~St'fCIJlAVb 1 (fiJ4hlll 'I
CCI)~A'tllllJ'(CI)Co•A'CI,J~•~lJJ ))~l•w~rnol u •on2,NOl' c unv&' PHdw3t •u, n'c u ".lhB.J "lll£••l"''o
cu~z•~a~•~·c9'hi)S~~·(nolJA~ 'I
coo2JOMJJ'tnolll~04'Cl'9J~NnZ~t'l'01~~~~JHINOUkO~
• · ta•r•tzHtJrJlfd 'l
(l)dNUlN 1 (b 1 (1 1li9JO~~·\~'fl)d10n~•(()IY0dl'da~'ddf 'I
(9)101~t'J~l0dN 1 (10l)AVU'Cn'~'IOIJdJ 1 (b)J01dl /'01dlh0HH03 u 1 ur :u ,,r. • h • o' 1 l( :nd.u • c t1 s, •J·•~ll • co a) • )HO' 'o 1, • .~,•.u•tt • r
C 0 l J II 1')(109 1 ( 0 I i XlJ10l'lO I f J J I llll 1 l n I I •·IJ ldl 'UtI)! JiHnl 'I
C01)1f3G0l' (0! )Hl(1 (ll I 10001~0~(111 HtallU' COl )Cmlllll!t'Or.l"tlJOII I:IJi{~Qa..ttOl
1tnt~l'«lA)~1 At~1 1 )A)dl 1 1l~)~Hld~~ '2 C02)1JI1'fO~Jl1111'Cl~J~A~I'tOtJ11~'cqaJat~•••tn'd~'llf'~r~ '1
.l11G: 'Artll 'U-' .. N'i!lfdl' 111d'ttl'tw•li1tfitt 1 tiAIUI'd'l'l"''f••llSI"Ir.Q1'140l
(5'Ul)H~J)Yj 1 lS•OlJJ~rl~J l~lr"'~U~hDl
(lJ~lin'lb 1 0f\2)1JiiAJ'C•1~11dA11~~yi~OHh0l
(DOl) c1N1U 1 UC.! J tlh 111 1 100/ I 1 V!:Ct' ( (llll j "tU1Cil 1 &nul" I )oUI"i(l:l .'I.
( llOl) )I(IIIQUlt 1 ( lltll) 110lc1Ciil 6 4 0 0(' J tlfttoU 1 (~61 h1 J':IJ' t I'IOl) !l1rU 'i
h 1 U04'h0 JdAI 'h 1 Oni.' )l,u 1 1 C Uf\2) en. J I 1 ( fl(li!) Hll' (ul)j' HII)(,U 's·
CO Cll) ~OUR' C 0 Ol S .ilfll' (Oil~ t 1 10l' C Olll) tfl U I ' r lift~) r.lll I i ( CIOl' J £1J 1 1 •
((t!,llttlllY''(fl'ft~IJhllci.U .,
c IJS 1 ,.H dull' c nst 1v. uxn' to.; 1 '" 1 M•l.f.' t Oli 1 Jr. 1Jt:05< 'z (O~I)N!J10l'(O~lJ~t110l'(O~IlhldiU1'fb~lt~lht~I'(6SIJHISQl 'f
I OOl )NI'fl' ( 002) i1 I 0 1 ~ CIOl I Yt11'1' • 'Dbil J U I !U•Of 1 C (IIJl )t-Il ••Itt J1¥tltiiH(Jil!"l0J
cootlsqtA'foot)£~'fonrJl~,~·cau~)~1~'tour)~Jl•rur511ll '• coouz•cooc)1nA' c•HifUl•tnozmun• tnf.lrJSA'tiJ6fJtJ•tor.~lJJU 't
COO~)Sv 1 toO()!lY 1 (1Z'OOlHHct1-'lil'IIN!lt'CI2'0D?ll•n'"' 'l
(00l)l!J0 1 fOnc)uP~(OO~)YV 1 (0blfiHd1t 1 enol)~d1f 'J
f6Dt)Nl1J'COOlJhnt•cz:oorJl~nr~·cu•ba~lul~lu l~tR!~ou~oJ
(0AZil0JJ'([1 ~nl)JJ NQkkO)
Clll(•fal•~ltl 6•S•• '1 ji1J3 '1JilAfJI1 ''Oh1R 01bwiO 1 1u oolt
'
0 lNt 1 H3JJ Y~ll1 'Hll~$ 't n1t~OQ OJ Oltll~la 3R 0100Hi
NOI1f311dciY 1lOUH lHl NO aO~) Hl!OdhOJ JHJ ~HIOb~~lb ~~OJJClO~
.... ,
• • • 3
1 JWtf1. 1 39f~0HlNY
'A'IHJCJO V~~,,, 'AH~f 3H1 ~0 lNl~1~Y-lO ''o'~~)·vt•£&~),0 1 0N J)Yti1~03 NJO~O lOtH )HlM Ch011Y)J~tO~~ ,,~ut.tlOOI
5 H~OA H1~ 1 GUY0B flhiNN11d 1-h0l9lW ~10~Jn~·nrS£YN
Jil ONY OUYOB 10H&Nhl ~~:bnOS~H ~;~,~ )1fl~ •lu~OJ!lW) 3H£
JO IIIHStlO~NOd£ 3 .. 1 lllONU ]NOll tt~ "l30lll4 lH1 .dJ lhlk40'l3A30
.
1 A~·OliJ HW ~0 A!l1'0~ a~IVM 3h1 l1w1nwl8 nJ OldO~lA1a 1aon~ 1Y~IItHlH1~~ ~ £l 1wnoy
' :J
3
:J
~
l ,
l
:J
' ;)
3
) .... , ...
•
rJ
' ~
"' ( -
AOUAL
t:,; 0\JA\.iTY \,QOJII, CONUAI'IT HYDUvt.ICI .
c ~OMa~OplAH(NCYCH)
DO 7,0 ~titO•l~NQH
:cPLOI:aacP\ OHl
\,OlY•LriAYt ICI£L
00 ~70 ~CyCU•ltiPlRD
c .• Cu .. 105 If liS~lPti).EOal) GO TO 2&0
Ql) ZOO JcJ ,NP
&A(J)att,O
,ijfi c·J 1-=·=, ~
200 CU14Utilll .
CALL In~~ (1Q$,1DSJN,TDSEM'
c&LL SnLVII CJDSJ uo cu-.r II•L•J.
c . .. C,,.,Tf"P("ArURf
If (S~I(IP(9~,U 1 U GO TO lti
JF (tillvtl,tll 1 I) Gil TO Z!O
c•LL H[J~•r ca,r£~P) nu ~1.0 Ja&,t:P
,rJ:&JU'HJ) &4(J)cn,no1~8lo~3(JJ)ArtHO(JJ)•A\.PH&eJ» · . n•H J J ~t\. QQ.Uft l dS(JJ) • CfON£ (JJ)"",TNOCJJJ•UHPCJJhAiofiH,J))
UO CU"'ti 1111E
Clii.L rn"ot UEtiJ.t, aHPifh f!HP£lU
CALL lnLYif tltHP)
r.U IU ?10 uo ru"~1 ,,,,. ..
LL&:et/SPLP(J
tJ CLI..:LT .• 1.J Ll•Z
pi) litO L II;,LL
CALL ~tJD4f l&,J!HP)
OU ~1.11.1 .J~t$,NP
JJ~JU~JJ) . &AtJ)ap,O'J~81•A$CJJt•'I"O(JJ)
n»CJlsn~~01l~I•A$CJJJ•fO~tCJJ)
1110 cu••U .. ut .. . .
CAlL fn'flt 'ft[HP, Jt.HPJf',)EfiP~)C)
tU.L $taLVIJ H£f4PU
tr fl.rQ~LLJ en TO l~O
1)1) l~l! J•l ~'4J. .
lSO t(~P(J\•CilHP(J)tl,O•rE"PTCJ))/)aO
l60 r.u•HJtu,t. ·
170 (l)fl I Jl•rlt n•J itiO JJot,tlP
,JII'.Ill'l l.IJ)
1 • u. .,., l J) ·19. ~
uuJ,,J:aa.o1.••1
1fiJJ,,)a~1(~(l)-•l
tf(JJ,1)tOI(H(\)••I
r.mcC·JU•n.u .
!li n1•1tJ\~~~tu•Yitl~PCJ)~TGS(J))
UQ cMUNut:
gs;:: nPTIO"aL CO~STitOtNT'
DO 110 Ira, 4
If CI~Kl~(lt9),f0§1) CO tO ]70
Jf (Nby",EQ,I) GO TO 310
PO )00. J: ltftP
.JJ:tJIINtJ' Al(Jlat~YPEOK(JJtiJ•TYStfL(JJ,I))•~OLCJJ)•ALP~I(J)•T'CJgl)
]00 qd(JI=·t·Yotn~tJJ,&J•f~SEIL&JJJl))•YOL(JJJ•lLrHCJ)•tYPECJJ~l)-TPC~
I , U t Cl nC ( J l . . . . .. · , , •
r.~J .II) 1 j 0 . . .
110 nu 12u J=a.~P
.JJ:aJIJiitJ;
AA(J):tJY~FUK(JJ.&J+TYSETLCJJ,JP)-VOLCJJ)•TF~J.l)
lao ~u t J , =r. t oc c J l ·
:UO C0'411_,,,E
, C!tb FnJIM UVPE(I,I),tvP(! .. U,UtTYI'feJCU,&U
C4LL •nLYIT (fYPECirf)l
If (1YrEfQfiJ,LEe0,0) 00 tO 110
PO l 11U J:&,N!•
,JJ:aJIJIIf J I
340 CIUCCJ\~tYPfO~tJJ,l)•lf(J,\)•JYPf(JJ,I)•TY,flDCI)•YDLCJJ)
r.IJ fl) ,, 0
l5' If Cl.ru,~) GO TO 170
. 00 lb II J :q , tliP
3C.O CIIIC(J\::o,
]U r.llNIINIIE
c . . . C.,,. TOtAL NliHOGEN
tf t1~~1PtlJ.lQ,l) GO 10 190 nu l"u J:q,,,~
JJaJUtlfJ'c
UCJ):n,.
100 RII(Jl:: .. vnLCJJ)•OEN~CJJ)
.GA~L tnQ~ (IOfNeTOfHIN~TOTHEX)
C:ALL lioLV&I (fOJN) . '
)90 C:IJtlll ~ •• ~
c . •
Co•••
c
TUf lL Plf(l!iPtfUIIU:I
If ('GM1~(Jl~~O,I) GO TO •10 nu 140u J~ a ,,,P
.IJ :t,HJP!I J l
U(J)IIIft, '
R"(Jlc.VPLfJJ)•UtN~(JJ)
CAlL tr11tH (JIITI',fUH'&ff•IOTPI!X)
CAl.L ~fll.VIf CI01P). . r. Uti I I Uut.
C, ... ti)UL r,UI.lfUIIIi IJA(f[RIA
.If Cl5~(r(u),(O.a~ GO TO •bO
If (NUyU,tQ,&) co 10 Q}O
I'IU atlU J•:tet4P
'~ ' '
,j J a .lllfl I,!)
1 & ( J J "r Ol I Ill( ( J J ) '! 'I IlL tJ J I -A L PH l ( J ) • T f C J • l )
~~(Jl:.CPLfU~ClJJ•VOLCJJJ•ALPH(JS•CO~T(JJ)•T,(J,I)
t~zo cu .. rJ,ut.
..
._.
\
.w
"Vi
'~ (
;. c
'--::. '.
CO TO I'ISO
130 CONTINIJ~
I)(} llll(f J•l•"'" JJ•JU'ftJ)
&lfJ)crOLTD~lJJJ•VOLCJJ)•T,CJ,I~
IIIO ll!S(J):s,_,O
•5o co·H t ~~u~
CALL '"k~ fCOLT,COLTIHtCOLT!X)
tAL~ SnLVIY CCOLT)
160 tUN H!ltfl.
c . . C,,,, 'lCAL tUL(roq" BACTfRIA
II (l~wiPC5l,tQ,lJ CO TO ~10 fr C~OYNrEd,IJ GO TO 480 nu uro Jca, .. .-
JJ:JtJ~tJl &A(J):rOL'D~CJJ)ft~OL(JJ)•ALPHliJ)•i,CJ-l)
~~rJl~·CPLrP~CJJ)•VOL(JJJ•ALPH(J)tCOLf(JJJ•t,(J,IJ
170 tU'-Il"•t•l:.
r,rt J!) -; u IJ eeo CO'Ill:.tJ!:.
()U llfJ•l Jtq ,NJt
JJcJ•J••rJ)
a•IJicr~LrDKCJJ)•VOLCJJ)•TfCJ,l)
aqo ~~rJ•~~.o ·
500 CO" I l 1iul
tALL Fn~~ (tOLr,COL,IH•tGL'!X)
CALL ~oLVJT Ctotr)
sao r.n·H tu1•t
c . . .c •••• candO"~crovs sno
~60
t c .... :
Jf ffS~I~C~J,[O,I) GO 10 560
1F l~Ov~.tQ,t) GO TO SlO no •uu Jr 1, ••P
JJeJIJP-ttJl J~(J):pUOCO~(JJ)•V~LlJJJ~ALPHlCJl4irfJtZ'
f\11( J): ·'ICIOCDit CJJ) tVO\. C JJ) •1\.~'HCJlt~\OOC CJJ) fltp (J, i)
c o•l rt uuE
cu ro t;lJO tt••• I I ltuf.
f)IJ 'JIIIJ J:;,NP
. JJ: Jilll, JJ
&a(Jl:»UOCD~(JJJa~OL(JJJ•lF(J,Z)
1\li(Jl =n,o
r.u•• r U1ttf
C •1.1. f flo{t4 fUOUC, UODt IN, IIOUCU J
CALL ~nLVIT tUOOC)
w·••·•~••E
~ J JIIIJtif hilUS IUJO
tf fl3rl~Cr):tQ,I) GD YO •ao
•' c~ov~.tn,\) GO to seo
l)t'J 5fCI .l~:t,tiP
JJliJ\1'IfJ)
••CJ)L~~O~b-1JJ)•VOL(JJ)•4lPHaCJ)•Tr(J,.)
~W(J)=.~~U~U~(JJ)•VOtiJJ)•A,fH(J)•nOO~(JJ)~t,(J,&)
'" .r.u·H l'•ut.
• ·;~ ·'
A a.u A L·
oo to 6oo • soo CONTINuE M
no 51Jo J•t•"" JJ•Jl'~rJ)
AA(J):nOD~D~~JJ)•YOLfJJ)tT,CJ 1 1J
c:
590 tUHJ)s:n.o
600 cu~fl••u£
tALL fnq~ CBOON,OUDNJN,UOONfX)
tA~~ Sn~VIf CUOD~)
•10 ('UN I l~ttE .
C,~,; DISSO~V~O O~YGEN
. IF CISKJD(ft),tO~il GO TO ·A~
IF CNDv~.[g,l) GO TO .,_
l)fJ flltl J=t~f•P
JJ:.tJUNf,ll
•.
&AtJ)~vU~(JJ)•OROM{JJ)tlLP~lCJ)
· t.~•H H=vUL CJJ • • r-11ooc r JJ) •e.,ocutC CJJI •" CJ.lhf·. eOONCJJ) •ea.o .. DICCJJ•• ' lnQt~fJJJ•U&~GCJJ)J•1FCJtl)tOROACJJi•COSATCJJJ•4L'~CJJ•O~~~JJ)Jt
620 Cll'll I hit~ .. · · · ·
Gf) I') fo~CI uo tu'lf lht•E.
00 6iiO J:q ,~p
JJ:JU•IrJ)
UlJ):vUL CJJ)•OROIHJJ)
fill f ,JI :vUL C JJ) 'f •I!U. DC CJJ) tltOP.COK CJJ \ •Tf (. J 1 U t C •DOOiUJJ) •IODNDIC CJJJ•
ao.nF.IIf J 1) tOli.GCJJI) • ff' Ut IJtUROA CJJI tOU I CJJ)J uo co~. rttll.tt:
6!.iO tiJ'I llllltt.
CAlL fn~~ (U-~rUWYIN,OkY£1i
CAlL ~nLVJf tU~YJ
66 0 C •J'il1Nat~
610 C t)IJ J1 Ntt~
tf (M~~~~PLUY,IPCYC),tOaO) CALL OUr~Uf CLDAY)
Jf (~DVHtl~,O,JHO,IPOAYCI,PI.N!.LbaV) GU 10 fit
tYOAYCrrP)sLnAY .
e ... c •••• :tiiiHl .Pkllt tlt PLfJI DAJA
I~ (I~P,tO,~) ~U TO JlO
ntt I Ill I I :: l , II .
c
I~ l~Cu~r(IIJ,tO,OJ GO fP 711 ,::I .. LIJifP( II J
OIJ 700 K:q 1 11PP
nn ... ,., u~r·,;tt
t::~llltnllllt Lei<J
If" h.,rti,Ol I';IJ JO 710
It-l " • , " • ~ ~ r.o 10 u n
lillllt A" l•l"''• II) iCU'H\.• u r.u t II t• 'Ill
6GO P~nt»ltLeiPP,IIJ~CnNIL•It
69C c:•.J 11l Jt.ul
l'on r.u•tf l'h•l uo cu••tl:~t~t.
1 PI•: h•r • 1
7<!1) CIJ 11I frettt.
0
r· ~-. .. .
. ,-~----~-:~~.~ ·'·. j:i:, __ ::llt_:_c .. _.·~-c.~~-,--·· ·.
A gU A L
c~;a: 'JtiR~ TI~E "ISTQqy PLOT OAT~ •
11 (~P!Ul,GT,IOO) GO TO JSO
D4Y(~PLU'JaLOAY
!10 fiiU 1\•l•~
9r CIPIUTCM)sED 0 0) GO TU 7e0
n•IPI.OJCK)
CHJ no li 1111, f.IJP
Jt~JPLOT(fl'
tPC"PLni,BI~K)~tONCJ,I)
Un CIJifflNIJil
71.10 Cl)tll! tiUE
fSO CWIII NUl
1f CINnUAL,~1~0) "AITl (JNaUAL) C(~O~(J,K),~•&,I)),JPl•NJ)
7.0 CO"' I H~ut.
iPPaf."P•l
Jf (NPP,Gt:o,ANO,IPP;GfoO) CA~~ OUtPUT l•!)
NPIJltlhi(PLnt
'IF C~P~lNt,GT,~OO) HPQINt•IOO
IF l~Jp,Gf,O) CALL ~UIPUT tO)
END
,('3
f ...,..,
·'4
'
c c c
,,
C U R Y 2:
SUBROUTl .. t CURVE(Xt Y ~~PT ,NC¥,NI''-0T.,
·""'tNStu-. )f(NPT,NCY),Y(NPToHCY~ l'tH~IIt:
NPf:NUuorq V~ J~PUT PUINtS ON tAC» tYHY~
tJCV~'*Uv'tlR OF' (IJPVU UN E·"CH GRAPH:
N"LOhPRHfttO KUe
OIM£:NSt0~ llUU;iJrYC&UrlhNPTCU
, · . ·. ,ou,.c(q) 1 (hJ11'HI.IJ . · . • . ..
· C0"14U.,it.A!Ii•l A•H IU, YLA(t e&t, fl fl.£ ( ti!J tHO~UC Ut rY~RlC6hfUNift
co~~o~~~•xE/N~PtS
XtiU • •I,OUO
Xllltl • I,UEJO
YHI.C • •I,Ot::lO
Y"l,. = a.ot:Jo
n~ 150 K • I• ~CY
N • ~Pf(IC)
1)0 lSO J : It N
:sU UP J( AfiD Y SCALES
f'( X(J•Il) ,GT 1 WMIX ) ,HAX • X(J,~)
JF ( lt(.hl() ,t T, )IHJN ) JIHiJJ • X(J,IC)
fF'( Y(Jtk) 1 Gl 1 YH&~ ) YHAX e Y(J,~)
lf( Y(J,M) .LT, YHIN ) JHIN • Y(J,K)
''o co .. n•.u!; rJf~~Prs.r~.lJJ x"•~~a,o
1f(U~PJS,(Q 1 ~ll XM•xs2I,O
tW"Jt'h) • ('1itt
OIII'Jt f ll • X11U
faLL S~IU fUW1llt fO ,o, z, U
l)tl"t( 11 :. Y'4JN
Oli'Hti!\ a 'f11AI(
C~1L ~t&tECUOHY,S,~,~.lj
no lbO ~ ~ '' ucv
uz:•.Pt!IIC)
W(IHiu) a OUHII(lJ
••~·~~~~ • u~~•c~J
y(•ut,w3 • OW>tY'UJ
Yt~•lttcJ • UU~YCij
uo c~·· fl•a!lf.
C:·
C ;OitH IC t.•IJEU AND FACTOitS
c
li"'lita OU,.II ())
fiU. 1.11~ 0111111 (",
iL•tH l \aY"'t"
O'J Zbf1 lchJO
260 IL~fCl•llS,L&~ff)tO[LTM
C JSC:•t. IS .,..l 'lU"'1~Jt OF' SPACtS P!:R UNIT ALtiNG fH~ JC•AICIS '5 roll PMt'fiLU,
1~C&l•tvO.ICtLAH(Il)•ll~l~)
c c
J1C~~~tS,l0•21J XSCAL•S,O
..
c c c
c c c
Yttlt~• pUMYU)
•OEU 'tit 0011\' U J
yt.AtHft\t~YttJPI oo uo. r~~.s,s
. .
270 Y~I~(~.JJaYLA"(7•J)~D(Ll~
YSCAL•SO,/CYLAB(I)ef~IN)
caL~ ,~~nrfo,o.aoo,"PLOft
I( • '
oo •5o ... ,,,.ev
IFtHPTCL),£0 8 0) GO TO ~•t
C U.lt Y I
JNI IU\.IIf. P\.OT OUfLittE
•.
C I e JOIHIHC MO ~0 AND Mt Yf c
e 'Oil PAOF'h,U VHf: f)Ngr.m U 'I~E flltU OAU 'DUff
Jf(PIWPy,,~O,ll) ~HIH•leO
~iji~ieAL•t~CI,L)·X~Ik) .
vo=V$CaL•CV(.fLJ•YMJPI)
c c e
NPOI"t a ~&tHL)
OU qOu N ~ ~,NPUI~t
Xf & •ntALti~t~•LJ • XHIN)
Y1 : Y:'\CIVH(N,l) .. YHIN)
CILL Pt~l(CUt1n~··~YfJKt~PLOIJ •o • .,
yo • H
eo~ co••H•tuE. uo ~ c. I( • t
'50 CO"' J !1111~
CHL PPlOTU;Ig'ltrNPtoDH
Ill WHfl
Et.D
rJ
' w
'1\
'
. c'7~i~c: ~;~~~;-< ·.,
'., •• ~ 'cc• . . .
':: . ' ~· ,,
0
r 0 A H
,u~~OUil~E FOftM(tONtCIN,CE~) CO~KON~MI3C/NJ,NC,NP,NDYNtNBNOtMLt~iO~Lt,JPA~t,NHYOtiOlY,JD£Lf
u. t.~JP ,u,t,ICPLOT tl~IC liD C l U, A\.l C20l g IOYN(\SU 1 11tLEC2Dh tUI.tiOJ
. ',', •
•• . ~QP£~~(S2)tlPCYtrLOAYt~tYtM 1 f~DUAL
C0"'"40 .. JBACIC I I'll &1\E (20, ~,I uc 1(JJI (?.I\' '5) t0~~0Nf(.C/ ~ijOU~D,J~OUNOt~O)tQl~~tlO),OFLOOO(\O),.RCIO:,FJLL(l-0! cO~HU~/~IG/ ~t~aN(lo~,ft),~JU~tr!~OtZ),JU~t206),KtlH(S00)
•"· U.Ptt( lOU 1 ALPtt l ( 2110), .U lliiO) ;uR ( i!IIOf; 8~ Jll200)
•• JSIV(ClOO,~lltjl20~tll)rALPHa!2UG,ll)1 4C(lOOl~A9(l00)
., olF t \uoJ ,uOilUl,vsc.snu) ,ulhu~oo'. zznou ,vuL uoo)l zuou
e• CCl(~66ltCCUCJ~b1tOEP(20QJ,~avEl!QQ),h5()00)tVAUStlO~) COH~Q~/Utt&L/ JU~I~llO~),JU~G&U«lOO\tJUNAi200)tOIN(200)eOGlNlZOO~
~· 5P&ClCJ~O~) ~twfk510h co~caa~cluCS)ett~CtJ
c e.,,: -0~~ rt~kL COlFfJCil~f HAl~!~ AhD tU~SfAHI yEClU~
~~~8~0•1 .
I)') 9l ,)11 j 1 AlP
fiEt•JJ):o,o
PO q l oc: I , •tl.ll1
92 ALPH&(J,K)sA~AV((J,KJ
tFC~OY~,EU,l) GO 10 SSO ,,. ..
DO l~O J•l•NP u:an·• 1(1\tJ .. t.p;~D
L\.t~Jtr••••P
1f (t<~<,l.ltOl KK•l
tHH,d ,bl U•O
trCLL.nT,~~~ LL•NP
:•U
l)lJ 110 tU:KIC,U,
l=l•l
,JJaJIJhl'() ·
!tO A(T&(J,•BEIA(J)tCONCJJ)•4(Jfl)
al'•fJ\&~LTACJ)t~~CJ) 'LP~AfJ•~)aJLPH4(J,H)tAAtJ)
100 c.u••liNut.
t;O fl) 1.:0
I SO CU'Ii Jf..)lt.
o!l 11)0 J: I ,riP •LP~A(tt~)a&LPHA1J,"J'AA(J'
q[l&(J\=AlfA(J)t8~CJ)
hG t!J~II .. IIl
120 co•n r '•ut.
c .• c •••• p•nn~,
r)U 200 Jc&1 NP
JJ•JU'•CH
JlaJ(I .. fN(JJ)
Jl=N•·:.l"( IJ) ~tfaCJ\•PETA(J)tCI~CJl)-OI~(JJ)+ti~CJl)~QGIH(JJ)
1f tJH"~ (,JJl ,EO,.O) GO TO 200
·1(1\&JIJPo& (JJ) .
·on llu l•tt~
~-~41.4((~~,f) ' .
tt.,l"·f.'ii!U 'fl JU iU
P 0 ft H
8ETACJI•BtTACJ~tCCONCK)tCJ~&ItOtKK,)•OO~CK)aP.~tCRIKK,IJ zz~ co~t1Nu£ · ·
200 CONTIHll~ .
c • Cat•• POUNOAPY £XCMANGE ~F(NQYN,£P,l) OU YO ~00
no uoo t,ca,Nl'OUNO
J: JhO~•ID U.l
JJ:JU.,tJ; us:•lfL~liJD(L) • ( l I OtiXIUL)) •OE&rHU
ALPII& l.h lo)d\,PHA (J ,ttl ooH• AlPHl (J) ~ltACJ\:Rt.fA(J)tiA•~L~H(J)t~OUCJJ~iClK(~J~OfLOOOtLt•JRC~J
eoo cu·n a IitlE · • -
r.r~ l!l uU
100 CllN fl~ul DO q~o l ct,UBUUND
C w£ij:JdnU~OCLl
C CU~~=-Ailt•(Qt~d(L)•~FLUOOCLJ)/(2 ~MR(L).
c ctwu~l:~•cEXCt»•COFLrmoclJ·C~,o·•£tLJJ•G£B&cLil/tt.•~"'LIJ
C AlP~•1(Lt,w)aAlP~AlK£UtM)+CUNl
C 11£U,.tf0):11UACKEahtfW0
J:.JU0LJ•r0U.) . T &:~Jf.'LmJD C U • .I I ,ll.XIt 0.) )•0[.1!8 (l)
ALPHA(J,~)aALP~A(J,H)oll REIACJ\:e~tACJ)t([K(L)•UfLOODCLJ•M-CLI
4ZO co•lll Nul · •a" co•~ 11 ••uf REtUitfo4
(til}
{')
\
Vol v,
t
~ :V\
. ...,.()
c
I.HPU.Y
,UeAOUfiNe •fNPUf'\KK)
C011110,. M~AW(200) . . . .,. ..
~O~~UH)DIG/ ~CHAUtla0,8),NJUNCClOo;2)tJUNCttO),~LE~(300J
I, aLP~(l00)r1LPHlt200),AAC20~)iOB(200i;~[fAC~OO) 2; ~~•V£(200,liJ,&(200r21),ALP~aCl00•~1),AC()IO)r-SC200J
J,. nl1tlOO)r~()00lrVSI300) ,noutlO~Irlli)OOJ ,VULCZUO)rlCJOtt •i ctttJOO)ttC~()OOl,DEP(lOOJtA•VEI)OOJ,ASClOOf~~~DS,SOO)
CD"HO"!OUALI JUHI~(l~UJrJU»GINC20Q\rJUNA(100J,QfNt100),UC!~(l00)
1. tUJI~~~'~)rl91NlN(l~O)rl01PIN(I~O),C0LfiN(ISOt,tU~flNCI$0)
~; ~OOCI~IIS9),UUON~~(lSO,,UJYfNl~SO)rflHPIN(l~OJ
l, T ·tPl t••IISOr II h SAlJ I'd I SOJ . .. .
~; TD~C2~~),tUt~C200J 1 tnJ~t2U0)1 COLli~UO)rC~LF(l00),HODCt~00) s; noo~c~ou),oa~t~uot,t£~P(luo,,ttP£12UO,a),tYPfO~l~O~,u)
6 1 fiAt. G (lOll J 1 lJIJF.N ( lO II) t 1111(1~ (ll)(l) t lllJOC'Jit 12 (I 0) 1 IIIIDI,OI'd 20 0)
7 1 . ~til TO-t C lOO) t CUlf"O'-C 200 l, USl J r lOU) t l)lhNUOU) t IJlHPCiO,OJ
CO~H0h/lnO/fYP£tn(e),(YS£1L(lUOrq),Ufl~ll)
C:U~M0if 1 itt C iC/ I '• I a,. [ Cl I),!») ; I lC riJIH 211, ~I
~Q't140~ /ttHC /UJ 1 rrC, uP, UDl N ,,t)•JI), 10., I" 1 OEll tIP •lit, NHtO, lOA l' t J D(l f
\, »J~1 lkE,wPLUTriS~IPtlfl,ALlflO),tUYhC~l),IIJLtflO),IIfLC~Ot
l, ~~Pt~"(Sl)tlVtvC•LD~YthCftH 1 1~nUAL
ccmtll,.,t:, t ,. "d'·"'''o, J'ltJt•r•o' sen, ue.nu, t n,, un(loo c au~ 11ut 1 o t. rosu ca U
1, ttihf •II 0 It N IJ'U C to l t CUlt Lll r I u hCOLf liC (to J, OUUCU C lO) z; nOQ~ll(lU)e~~rtall~),IL14Pl1(1Uftltrtl11CIOrt)eSALIEX,IO)
(U~'f'OI&/PI Uti I P(.f\ I ( q) t C P (l II I' b' ~ 1 , nAY ( Ill I ) 1 lfrlll NIt Jl'l.\) t l C.)
11 · fpp, r,PI~ elfltr• t ~ l) r ~I)Ql.P C ll r l i, PH(.Jf. C ll t J, II), rltilfll1 (It)
2 1 PAQ.&(l\t),QJ
~O~"O~~"lil~~lUh(tJ~lO~i(~,~J•fOUf(lOO),f,~0(200) a, fVC2QUt.~~51~•.~J,wi~D~tlUO) . . •
OJ~E~Srl~ CUh(ZOO,lJrti~Cl50,IJ•C!•CIOtlJ
I) l1'4t.fiS fUN I)VO f( tO til, rUjAtt ClOO)
!Utli~AtEnct C(0NCI~lJr1DJC1l) t; rCE~IltiJ~IU~l~Cl~),fCtN(ItliriUSI~(lJ)
»fkt~,,~~ ~•-EcJ,IJJ,u1t"~fiOJrC~aNEC~•MJ
OAU hattl/lltHUS ,l~"ll r•lnftlfAetlt4l H ,qft ,IUffOTatllttl, P
1t 1m 1 1tHICJI,~uL C•J,•IIIl.U ,tlllfECA,lltfl COtUttl.IF ,~tttAHI
l, IIHOff -.t,••uoD 1 flttffi1H 1 c.t•U UUqaHD .. _,IIHOXYCrliHtti ,•H
), uH1!"P,qtttA•!1 11UUffr ,IIHUfiP ,II~!CUtiS,,.lt! 1 ,uttof'P ,ruttOHS
4:• AJtlt Z ,llltlJPi' ,uiiCU .. ,,, .. I J 1 1flltWP r411(QNStlllfl il I
CAH ti.JtUiiZOf/ sltQXtf~•!l=lq.~\Jl•Q.lUli7•K•S.~~~8l•l••o••O,~S5•f•(l,665f-•~,,86 •• ,.~···' JQ~(~b••·••
IIA 1t: ( ll j • J/lt~HOI),
IF C~K;tn,~j GO YO ~ZO
tJIE••llpi,O
i1H,.U1•.1.o
00 1(1(1 J• I ,.JOO
ItO uJtiiiC C Jl. l)a\1
nu 11 v J s I· , lOt
I u &I(IU"tt.ft ')110
fill llO I=St~t
t4~fJt1P C 1): (I
UO fl'\.ttl(I)2U
no IJ·J l•lrJ · uo ttinatCt)~:o
:fiu lui) tea,,
.... ·'"'"'"'• J•ll
••
c
co '160 llfltil
no ISO J•l•l
no ISO K•l•'
~qUFA(f,J,~Jao,o
l5o rnoF~CtiJ,~Jgo,o
llOPU'HtU•U.
1&0 NODfP1f•~)•O .
~~JO Cf~IJQJ flf~~,riT~
110 '"q"•' Clu•-~ · · ·
0
',t. I', ,1
' I ~ ' '', '
I H P U f
~E•o Cq,l~oJ hHY~,f~AVtiOELf•I'~'•~'CYC,NJ,,~Pf,lt!r"fi~!,INGUAL lliQIIAl. aU
leG 1(11HII f llbiSJ • PfMI~~ hr~L( ~
Al•O C-tiLEl HJrNCtN~NO
Al&Q Cu~IL[J (JUNCJ).CNC"ANSJ,I)tl•l•~t,J•t 1 NJt 1 CNJUH;(NtlJtHJ~N~C
INrlJtXIl~C~ItN•I•NC)
"'L111=ZthliN'lti
)Pf, •I
uueu
wi•I.UT ::.n
DO l"11 'Ja. ,tfJ
a.o w ••w• C.•, :ao.
DOZOIII•hilf
lOG CIN'I~~.IJ•o:
i>IJ 1ta J•I.~J
JUfiA(J\110
JUf.tlll ( ,IJC jl}l)
JUIUilNtJ)alSO
11 CJU~lJ)~l.~t~J GO tO Ill
..,P:hP61
210 C Or• f I Nlrl
no
iUJ llo J•l ,w~
OIJ 2ZO mq,uc
IF IJIJ•t(J),t:D,NJUHC(N, iJ) NJUHC(r~~,f)hJ
1f' (.IIJ••fJJ,U 1 fiJUt.t(N,l)) MJUHI:(fl,tJ••J
CI:JNfltluE .
f)JI l \0 fla 1, liC
UJIIr4CCtlt t ).= IAUSffl .. JOI4C (N 11 !J.
NJU"Cl~t~J•IAbS(NJUflt(~,lt'
CUtollliut .
r~· Chr ef•>.o) U:hiO
tr t~Jp.Gf.,J NJPa4
IF 1«P~,G1,l) NPP•l
~F tt~QUIL,~J~OJ ~(MI~C INOUIL
w f.H1 1' ~ ii'C•C
t,O•<t•lnAf
I)H r '' 1 tJi 1 un~lll •1600,
~l•D (\,IOn) I~O~L~~(I)~JDYN({),Iat 1 NHYDI
J,lf)YrU r n r•~c I,
'q(.ao te.tlllll) CIS~I"Citti•I,UJ •"
ut•u c~.~un) C~A~l
I~ 0 f 0'111 A I ( h aq )'
H~IJ'(t6J:J•LJ
If t~JP,fh.~J GO 10 ~~0
111-U lt;dtJIJ) ti'LUICIO~I\IIDl•ltJ,IJPt.oHIIC,.K•G,.)
250 tUMTINuE •
iF (NPPeto;o' GO TO 210
q~AO t~t\60) (NCONP(K)tK•t,OJ,(IPOAY(J)tlni,J,
DO ~60 1=1 ,,~,p
~~0 qtAO .5,100) lNOD~~CJti),Jwle~l»
2JO CO~li'IIJt
k~llt Cb·~~Ol fi1L[tllTL zeo roQ~tt CtHlrtOt,20AI,t TEIAA TFCHt l~C,t/,I&X,ZOA.,I LAfAY
lflHt (AltF,tl)
~~IJF. fb•l'Ol IDAY;I6ELf,IPCYCtNfiLftl~OUAL~NHYO
29Q rflll"tit l/1/,liUl,tSifiiiJLAUON DtGi,.S 0" D~'f ltl'ltllt20X,t
lTI~E 3tLPS O' t,(u,t ~OUftC~)I,I/,!C=tiP"INiD
2Ul f..V(QY I, lo;• VI HE STl.PU) t ,I/,2Uli, IHYURA\11.
ltt l~frHFACE U~~tt,tSJ,IUt/l,lOXti~UlLIYY IN1lRf~CE Uklfi 1 Y5ftl~j/
41t,?.Ot,.H•lt .. ~E.R IIF BDU"'OlA't tUr~DliiUd 't~lll) '
I}'J Uo &•t•••t.tYD
JF ClOtLY,Gl,ZbJ ~~PERH(()~NOPlNH(t)•l•IIDELT
Jf l~~Pf~~(J),Lt~O) NQPER~(J)•I
IF (IOy~(I),~U,O) GO IO JJO
kRiff fbrlOOl NQPlAH(lJtf
300 ro~,&J (iJ•tll,l 11~E S1~P$ fUN C~~UilJON ft&S,t 31fADY SIATi
l')
J;O IU J)O
319 waft£ tb,~201 ~CPfR~(Jitl
121) FUQJ4&f Ul•,U,I· iSH!. Slt.P3 FUR CONDIHON t,n,a DYNAMJCB)
330 t.ll'•lf '\lilt. .,q II~ (CtlUO}
Jqo ro~~&r (I/J,20J,IJHE fOLLOWING CONSTITUENTS AR~ BEING HDO£Lf01/)
D:l !5o ug,9
J~ liSKIPC~J,lO,O) riftJIE C6tlbOD (~AHf(J,K),J•ltl)
l51l Ctl\r t I IIIJE
ltto ~~~"'' fl5r,J••a
l=O
1)0 HO u 10• U
Is:. J t t
:;· (UI(!Pf1C),£Q,O) Hlllff Cflt:SOOJ CNAttt:CJ,K)11 Jni,3),(CNUtUJ 1 1),.J•l ,,,,
370 Cll"~ liNHE
ldo JUq~~• (251,JAq,~~·••a»
e . C,.,. l~lliAL ~U4Lif7 CO~OIJIONS
~U-1( lbr~hOJ TJl~ftflfL
Villi! ttt,J~O)
)90 fOGMif (1/,Jil~,tlNif!~L OUALI1Y CO~OifJONS'I•' JON tO JUN TDa
a rur ~ rot P T COL F cnL c euo H aoo o o
l ,~.~~ tO~St I t~N5J l CUN'T J CQ~ST"Ut/,ltX,)(~X,tHGIL'),Z(t
l•:QIIOQ,.L'), lC5X, 1 HGlL t ), U, 'C 'til( t UNI f51 )I)
l)tl UQ(I J,h:I,NJ
QlAU ~~~uooJ JI,Jl,(ALLCIJ,I$1,1))
eou ·~~~•t (?Js,aur~.oJ
JF (JJ;L~0 Q) ~q to IISO
JF tJJ.&Y.J2.~~1 Jl,G1 1 UJHA~J ~Uifl (b,IIO)
'1.1) lfJP•Ut PI•• f>C"u"' • lttE J'ULl.O~IttG •t(IO£ l..lhiTS AHf It' lPHOifl)
JF' (ALl (I'),Ll,~,O) AlLI8): .. :.t,L(b)•t;l1U.V(AlL(9),ALLClU
•~Iff (O•~~~l JI,J2,JALLCJ),J:I,I]\
9l~ ~~~,&I (lkoiJ,f~1 Q,lF~~~1 lF,.i,Jtq:l,F9.1,Uf9~2)
1'1~) Cil 0 J &,J ' ' J l
•
..
t
oo·•:so.J•a,t3
tllliJJ, t )ULI;CU
iilO (:Ol4f it.!tJl
4GO CONf1NrJ£ •so CONUNrJE
C,,,. nlSP£K~ION CO£rPJC.tNTS
WRII£ lbt4~0! .
-
••o ro~MAf C///,IO~,tOJSP£~$10~ ~~ffri~I!~YStf,SK•'CHA~ YO CH!~
I Cl Cll) •to ,on~ar t!9,aa,~r•~oe)
1)0 116!! "JIIItr4(
Q8ft
090
Af&U (~,UOI)) Jt,J~tCteC•
IF fJ&;~o,,) GO 10 ~90
~Rif~ ,btG?O) JI,Jl,Cl•C•
DO IIISII Ja:JteJl
CCQ(JhCl
CCIJ(J):aC:II
tONf INt,IE c .
Ce•e• ~E•~•un ~ou~n~~v
t
'
• Q~AU (~,1~~) NRUUNO,~JBOUHO(JJ,J•t:&i!
PO S & 0 l : l , tdiO!.!t!f)
nO 51JU K::J,tiP
'' (JUnu~o!L)~~~iJUNt~») gQ to 500
JUOV'UJ rl. hM
;;o 1•J '510
'500 WNffuuf.
5U C:IJt-~i Hh1l
qEIURN
co•n WuE
NDY>f;;ID7N(HCYCH)
!PCYCe::f.::r~
If (NIJvN,U~, 0 IPCVC~al
PElU (q,iJO) l:!L
RE'IJ cj,J8~) (~1[HPfr3•3•lti0)
J:o;iJ
(liJ !:!C J~l10:
S3o Jr:IH4h'li~(J!
tf u el. 1,8) W1411E ,.,lOO) rna.E,TUL
tH=•IabS(It:E)
tf (NJrMP(t~~LQtl) GO TO Sti c .
C•~•• HVOR~IJy~AHICS
tF (NI£~~(l0)~ 5~Gi~OOt~bti
Sqo la-rHtt•I'CIO)
;)0 ~'iii '(:I~ I
550 ~AC~SPaC~ UPILf
GO 10 ')IJO
5U I=NH.Mc::Oiii ou 'Jh l(=!d
510 A(iiO hfiU:)
StiO CUt.1tft~l•l
••
_~i~U !~f;LrJ nruR,CFLOUO,(DYOfCJI,DlP(JJoA~CJ),VOtiJ)JOJN(dJiO~fWf
l~i·Y~~!J!.~U~d~J:,J~i,uJ)rfACC~)fOgH~~A~CNJ~~AVlC~JjVI~HJ,yADSfH)I
f'l
' """ V)•
' ...........
" ~
IN•i,HC'
lU:••JtE no ca .. u,.,JE c c •• ,; TlOAL to~DIT!QUS
(
tF (NJf~~(2),EQ,L) ~0 iij ~SO
:UAO C!i•t.l~) CXR.CJ),JghNISOUNI)) tP•Gt'•1P•cr•a
t.UUf. (tt.61)0,) .. tYCH "
·~0 ,~q~ll C//~lOK~'£•CHANG£ (O~GlTION3 DURJNij hYOROLOCIC CYCL!t,J4,/l
I J•JII F'lCtt UHJ f'LO!JD lD.S TOT N TOT P T COL F CO
~\ C P(IO N RtJO • OXY TEHP CUN t . COtf 2 CON .J C:UN Ill t
)/,~K·'~•tiQ ~CFS HCFS ~,)tax;tHU/Lf)t2fl N/IOOHLt),)(t HO
•/L 1 fP~r,•e•,P-~•(I UNITS•)/!
lltJ .t» JO K i: i, a,IJUU••D
qE•u C~•61Dl (ClX(MtiJ•I•l•i') •ao ~Q~~•r cs~.aaf5,oJ
J:a N·Jv•:C.f ot I
J :,JU'I C .J)
JF CS•ttEX(~).tl,O,,) 3ALTE~fMJ~TOR~XCKJ
fF' CIU:tllt(te) ,l T ,'>,OJ UXYfX(IS)s•Ol(V[XfrC)•SATOXYCTfHP£)1(K), TOSEXCKJ)
~oqfft (6,6laJ JtXA(~),nEo8(~1,UFLOnD(KJr(C[X(K,I),I•I,I)) 620 ~~~~•1 .CJQ,fS,l~·~PlFtelrVP~e,o,re;z,F7,~,2E9,~,,7,2,,a,z,z•e,a,•r '"·', .uo eo·u r ••ut .·
••o ,oq,&l (1//,Jux,ta~ttO~ CU~U!TIONS DURING Hyoq•ULIC CYCLfi,JGr/t J
lO~ i~PL?d JOS iUT N 1nl P 1 CUL f COL C DOD
~ N tf'llJ fUY i~t:P .t;U~ST J CUN$1 2 COrJST ) C:UN:Jl qt/'IJC
l,•CFS •-3tSx,thGIL'Jt2C' ~OiiUOHLt)1 )(~~-·~~lb')•JJC,ot ·~~CI UN •1 u• ,,;
e.: .. f"FLO~ ~•IER U04L(fY .,0
uo
no
600
.. 0
?oo
flO
rr ~~IFHP(J);t•et) GQ TU 110
w~JfE to,6q0) ~CYCH n•J ut,u J:rJ,tfJ
,JU'HNJ.t),lll50
n'l c.7o .J:~a,:oo
d~ ~ill I(:; a, ••
t: r '" ,, , d i o • o
l•l . .
f'IU HIJ t.l •:1, SOO
PEAO (~,61~) JJ.nd•(ALL(~),K•:,I•J
FUU"lT (1 0• E~quq • q£TU~~ WAl~N I! ALLUW£0 AJ ZO ~OD!S HAXJHUHIJ
Fon~•t ''~•l5f~1 0)
IF CJJ:(O.ft) GO TO flO
tr C•L~(tu2.t(,o.ur AllC1GJ••LLCIJ
tF t•L~(~).LT,O.OJ ALL(6)••ALL(~)a~AfUXY(ALtr•J,ALf..(l))
hlfi IE IC••IJ•lOJ .JJ,,J'), (AI.!.(M),t(:l 1 13;
If CLL;tc.tJ J~~INCJJJ•l
1'0 IOU 1\al,\.
J•" IF lJU"I~tJJ),[U,~) ~U In JlO
CO'• t i .,,,[
Lat • I
Jat
••:··•"·'·' J, •J (•i"~f l•ml
-
..
c
·u ·~•,uoo, •z:P~ ~!!!I.e ~n•t•~·oo'» · DO 720 i'l•l•lll .. . , . ·. · ...
f'Dt I . • '', ' ..
•F-i!~tiY.J.u.o.u '•.fA .
720 CIN(J,w)~CtNfl,~)tALLC~)~Uli'
1JO CUNffNill: . ' . \.
1'1111) CU~Ot•tJE . ·.
IF'lJ,GT,IOOJ WRlit (6,750)
7St! FOqiO,r ( 'Ot~AttN:NC a· • tHr "d..IC.lftU" nf Itt !Hr'!.G~ i.ueltii(JtfS NU U!tt
I E. •t.Et.:nt.O • •' J ,, '~''"r(a);t~,a) G~ ru ItO
Wl1ftl; .ff.#.Jb01
'hO JUU11i•l C/~tOX,~AiiGr;tGAH.D t!UAJ..UYtl '· ,u .1·~~~ J=a,NJ
,e,i:Jt.trtt'H J)
IF tJ~:tn,IS~) GO TO J8U
IF Cqi~(JJ,LE,O) GIN(JI=l,o nu ,,~ ~=t,aij ·
110 CI~(JJ.~l•Cl~IJJ,~)/QtUCJ)
IF (:4.\i f'jN(J,JJ ,U,O. J :JAlfiNfJJ)'1'f!)iUfHJJ)
7eG If (~l~lJJ.lf 0 0 0 0) GO lU J•o
w4t1f JbrdOOJ J,aa~CJJ,cca~cJJ,~),NP~,aJ)
790 tlltllrllllt. ' .
1101) f1)1111 A I II q, F q 0 2 I". 0 tlf'~.l I l(IJ, Zt2''· Zl!i''· h.,.,,,
C.,,; G~OU~D hAJL~ 1~rtu-
c
810 tr (.,Ypii'C':iJ,EfJ,I) GO r\t 'Od ""I r~ tf.ltfi?IJJ
!i!ZC UJimAt C/,tuw,t~lfOUhl) tf~H.R (HF\.Oll &JU\t.UY•1J8 ,Wilt fO .JtJatt:
nu tt!O J = 1, u.J
8$0 JU~L·~fJ)=t•o
Oh MO JJr:l,lU
~L~U (~,uoqJ JI,J2,(All(f)tl~ltll)
iF ~.It :lfJ 1 1}J Gn YO 6 110
IF (ALi (f«U,U 1 0 1 tl) Al.t.(I .. J•AllCI)
IF (llt (tl),lT,O,O) Alltltlh. Alf.(ltJ•~UUJlYCALU•~··t.~HU
~»Ill fb,~Obl JJ,JZ,fALLCil•l~t,l)t
8QO rOPMlY.Cib,ll,f'•~•l~9,l,l'9 1 l~JF•al1lFteltA'~•2J
H CJJ,lO, 1\Jt ~Hiff ftt,H•.O)
850 f IJII~A I C 'u • (.llflllll " AH!Otf "''" Uf' l' Gf'OUNO NUUI JYPU ''" At.t.U"lD';/ i) .
1)1) ti~U 1:1,11.1
8bQ.ri~Clln•JJ,ll=~t~CI)
no uru l=JirJl
81n J~N~I~rlJ•~J•iZU
80n Ct.J'IIIIIIJ[ .
891J r.n .. t I•~•IE
C 0 ;~: P(lUif~ ~arr~
ooo" ct•r,•u•,,,,;tn,u GIJ r.~!o-aou
;lt I rt. f u, 'I l I))
'IIC' J'IJIHiAI illlrl(lll,•lflflflllf W~!fttf/,t lfiYHDIUilrA\, JUNCfiON ANI) fiUCfiOJw
I llf.fllt<t~lOi,lt DUt~tRG[ JU•,CJION .tuO COffCt:HfiUf,!OH JNCMt.MlNf&p)
iiiJ 111.\1 J:q. ffJ
'Jlft JIJI6A ( J; :1111 ou ~ ,,, J~' .. !I!
''" 4J tu "'= a , s
•••
• ! -ttttAICt(J•Klllil
tlt",ACTO~tJtK1•0e0 no 'qo Jct,lt .
q~lO ,,,,uQ).Jl•€~fEH?Cit~•LLCI~'J•lDJ) . •eo ,nq~At. us.scas,rs.ou
, J.F Ua;i.~,ll) GO TU 1000
~~_CJ.j~.~., Hhllt (6,~80) Ju•,aun=J .
.no 9'iO hl•5
J~ll~tiJtll~~rE"P(l) •so r•ClU~(J,Il•~LLCl)
~l·~ l'~Q.O) {ILLCI)•I•l,&a)
JF 4•Lrfi~J,Lt,G,O) ALL(14~•~LL«l~
9bD fOU~Af ttb•S,O) nu u o 1:; a •. ! ~a
•10 tl~(luotJ,I)~ALLttJ ~~•rt lbtQ~U' tiNIAKtCJtiJ.fACTORefrl)ti•I•')'JI~CALL(l)~J•I•l')
?~0 r~~~n1 l~CJS,f5.Z!,II••fiU.,,lfte2•ltf.lp2Ft.z,zrtil••'9•2)
'90 CIJIH I ~•tE
1000 (i,l'IJI14If~
J;.tlt,£ atPJGE tl
c
C, •,: S~'S.H'1 Cf 1EFf ICitNU'
lOIQ ff 1~1f~PC7)glO,Il GQ 10 illO
.. "If£ ftJt i l)ll)) tOlO fUqKat l//ltlOJ,tsWsTtM CO!fFlCI~NTSl,/1 JU~ TG JU~ UOD DECAY
lCOL1F otCJY 8£ki~JC SINK HAltS ALGAL OXY~EN -RfltqATJON 0
cPP .tU'I!I( CJECA't (l~P CUNU Sf.lillNGt ,11]Jt, ICAIUt Nlfh Tl'lJA~ HC
)AL H P 0 rHOTU »t3P Hln ~AX 2
Ul 9 I Z 1 ~,,,,,M,tl/GAV 1/DAY Hf
~~~1.1~4Y HG/"Z/DAY &:nAY l/UAY
b ttiOHt/l
PlAO (~~~~n) liYPfEOtl),;~t,)),(QTf~tl)rJtl 1 2)
iF (01(hfi)1 LE,Oo0l QlfN~lJ=I,O~
,, cru~;ttt~l.•-~.o.u ruuuH:ao_,o:s._
ttPEF.'lfl¥)l:IOaO
00 IO~n JJ•lt~J .
pt.JO Ill# llf)i)) Jl,Jz, (H,U l),lal,,
tF cJa;LQaOJ ~Q fe !090
~tAO f •• !~!U) {ALLll~~lc&JZ~)
l6l0 FO~HAI l1br~~O)
lf CJt:GJ.Jl,UA,Ji.~T,NJ~ax) ~Rtlt t~••la)
•.
.. q II E ,~, 'l)lfft) Jl I Jl' 'iLL (J), I =l' l'\ .... ~UO) ,ALLCOhALLU)' (Al.LC u,
lJ: ll•lO) auo root""' u~&, p,ub,z,ru.l,f6gz, 1n ·"''a,o~fT ,o,rr•·••'" "•'•·z,.sr~.;e
l • f 1 ,l' l. 5 ,l)
Ti:Jle
t~=t.
ALL(l);RtlfCTW•ALL(l))
JLlllJ~ktlL(fA•ALLtl))
ALltUJ;HAI£(J4•ALL(UJ)
&lLl~)aHIJf(lA•AlL(\J)
nultl';,l) I.:IJ,IfJ
l~$0 ALllf1s~AtfC1l~ALLCilJ
nt). l')otr, .,r.JI.Jl
f• (••tua•f(J, llttfl,IJ) ~:, JO lOttO
ll(lf\CU";J'lciiU Ill .
;~,
t, ~ \ ;. .
·,~
"·
nooND~tJ)•ALL(3)
l:OLIDIC CJ hAL.l. (II)
fWUfOKfJ)dLL(5J
()0 lOtiO l•ltil "
1~:·~·1 .
I N P U T
i06a !YPtDK(JtJ)aALLJK)
1C=~.-~3161•tS(JJ/VOLCJ)/8.10fa
't~~(J\=T~~JC•ALLl•)
t~hP(Jj~lA•fC•l~L(fJ
•iilALii ( ~'l :a,,~ rc. t •u f.u J od\,L UH
::lrtf!t(.h:U•fC•ILLCIU ·
IC~JC•tUOo, ..
ll:lll IIU 0 hI , If
II( I: I II •t·
1010 i'i:itrLfJ; J ,:a&LL(!\)•TC
u,JhaLLUU
IIHHJl::U,L (till
l 080 iCll'• I Plltl
•.
I 090 ICI)IIt IIIII( .
~u•l~ 1~•1100) (1YPEtO(I~tl•t,l),(qftNflt~f•l•l)
..
liOn WOQ4if (I05TUIC~IU~ETRIC tcUtVALt~cE U£TW[EN O~JIUNAt CO~STITVCHTI
1 11/.1 1 r,Or~:J't IIU 1 DECAY lD CU~U NO z,t,fll,l,/f CONST NIJ Z OECA.W tO
l Cfl'f'H 141l .S,I,fiS,lfl' CU~~'f NO .) OrCAY ro CUN" NO "•'•U.l,J/1 ~-"A
liE C~ErPltlt~l l(hPlAATUP( AOJU$1ijtH1 tUijSTANt (Ot'~l/r IUD
tn,Ft0.1r/1 ~LL UfH(RSI,t~~:J) . . .
alto c:ou11~ul
t • c •• e. ~llE~DLOGICAL iONDIJlt~'S nF c~JFijPC~)~Nl,tl"CALL ~lfDAt t~a;t£HP)
!If PHF.I1r(l)1 lO,I,AII0 1 NU:ttP(IS),fQ.,IJ GO TU UJO
IIF c•urltPU),flf:,u a;n 10 auo
I)U Ill n J:: I , 'IJ
liA(Jl=n.o atza n~tJ»~aoooo.
I U~ ~:nrH I NilE .
Ill) •• ~1\ J,i::' ,II!J
I!Uif .. ( .! ; ~~~.
flf'l)l~ i J i ::(I 1 .
IfF (fltu~H(\Id),E9 1 0) GO TO UQ.O
DUR-CJ\~,.~UfD,~9J~~~~OAfJ)~•l
n~R~GJi:POP~IJ)•AStJ)~l.Z!,/VOL(J)
~)llll.J ( J, ;AtiGil(' (RUit"' f J, ,,.OI'hi CJ,)
:'"''" c J) :&tl& 1111 (rJijOif tJ l ,,_ ~ J) ~
t~nllili.J) rol 't t 14 ~ ( Oftlltl C J) , lilt ( J) )
I~ ~0 r:Utt I i 141ft• • .
~qiJL t~•1l~O). (J,RUOH(J),»UijwCJ)1 oROACJ,,J•l~NJ)
Jl.50 ff"O~'"''' (to vt.;U"' At•D ijltiO itU)UCE.D I!~~~.RAUil~ CUEf',JCUHf
I U~~U ~y NOU(~, ./DIVI/tSCi~•lF·~~~))
rut~
nu t ar.o J::l ,•u
1F (~tHl~IJ,aJ,lO,OI LO fO ljbO
QJ.(IhHJ \ :UUI C I h(Jifnllf J!)
llftO ·C 1:1r f 11~111:.
tf (NifHfS(~) ... I:.,i) Ull HHO~t U,tE11P) auo r.o•n t·•u1.
lU, ~\1~'1
[NO
w vr
' ~
........
\,<J' '
SUBROUii~E·"EtOAT (JSK!P,TVJ e••••• . -C THIS lllt)Ull"£ US"U ARc· -~,Jtl At.ID lHC COS \.18NAitY FUNCJ10NSt
C ThtSt rO~tYJOkS &Rt S'£LLEQ ASI~ AND ACUS IH THIS COO!,
C••~•• .
c
c
c
c
coo
uo
coM~O~iHt~C/~J,»Oo~P,WDYU,~H"Or~LI~~D~Lt,JPAOEt~HVDtiD&Ytl~tLT
t; ~JP,IEE,~PLOT,t,K!P(t~J,JLL(,Ol,IOYNC52)•fltLEClO),TITLCZOJ
2 1 ~=PEq~C5l)~tP,YCtL04Y,hCYC~tfNOUAt
C0"'140..,.iat /tL I l (i, l t iV>NC b) t TU'Itt (EJ), CL0liD(2~; b) t Dill Ci!St b) t tHtf (2~1"
\1 .Potz5,6)~MJNOflSt6),UNA(l~1 ~Jt~l(l~t~)
CU~"ON;H£f/~4l0h(~J"lU~l(~,l),rU~~rzno),ffHOCl00)
a. F~lZ101•~~3CZ•,bl,~J~u•cluo)
OIHE~S!~~ &L~ri(8), bEIAl~J, &(Q), «(~) ,t~(ZOU)
OJil ~LP"Ib.nS,S,lO,l,b~,.z,oo,.,.44t~ll,29,••n,6)t•~~.,OI
~ar~ ~rJ&tn,sl~.~.71o~o,q~u,t,lb,,t,6~?,2,1Sl,2,76l•3•saa/
n•ra a;a •• ~.~.~~.t.•S~O,l~l
~·'• u;-o,77e·o~~r.-o,1;,.9,lS/
bA1A 'Jil.tql~9/e ~U~I~t3J)llJl/, nfOR/0,017-~/
qQ(Al•I000 1 •(((-·)•9ftJ••~•(Mt28Ji)i/CS~J 1 57a(Xt~7 1 2.)J)
tF (JS~IP) JOOeliOtl90
CO'~f I !ttl~
qlaO C~tlln) NVl~~~~~-ttEPSJAA,b8 1 0E~
FOQ"'' cas,a~rs,n) tF c~u:~l.o,oJ uu•I 1 5E-'
DO ZO~ L•I•~~~O~£
C ~E•~ UUHBEQS OF JUUCTJU~S D(LJHITING TME MEAT"£~ ZONE, THE LATITUDE
e ANI) lO'Hilh•U£, a•IU A1H~$PHF.RtC fUifOIDIT'I (2 FOq Ct.UR, UP TO !I fOR IHO
PtAO c~-llO) (JwZo~tCLtJ)rJ•l,Z),~LlTCL)fXLONl~),TUR8CL)
120 ruqM41 ClJt,auf~.uJ c
Jl::tl oo &ll~t Jca,zs c
C ~[10 CLOUD CO~[~ 'AJti10N(P~T), D~Y "Ut&«C),~lT BULD(C)rAlHOSPH£RIC PR
C (H~), A~v ~~~D SPl[O("/'tC) c
PEAO ,,,IICJ Jl,(ALt(l)rl•l•5)
Ct~OOC~l,tts&LLClJ
ODT(Jl.L)~•LtClJ
~~TtJl;L)2&LLCS)
APP(Jl;Ll:JLL(.)
~~~OCJ,,ll&'L((•)
IF (JZ;to,tJ GQ :o 1'0
1\llll:Jl•Jht
JF (N~:Lr.n) G~ TU t•O
OIJ UIJ NaJ 1 fl.ll
,JJ=J I •••
TA~JLUaf(~)/FLUAtt~«•l)
Tu=t.a~•• ·
ClfUII) t.rJ ~ t. J :Ct.'i.UI) C JlrL J •1 A4C'-IJUD(Jt 11'-i ~U
OijfGJJ.L1:n1tCJ~,LJ~fA40"T(JtrL)tf~
~hf(JJ~LJ2~ijJ(JltL~~fAtd0fCJlrL)•t~
aPq(JJ.LiaaPRCJltL)•Ja•APq(JitLJ•T~
.. . ..
c
M ! T D A t
lJt~I~DC~4PL)a~INOCJ2rLI•TA•MINDCJ1tLI•T8
I' (J~.~0,2S) 00 fQ ISO
UC JIIIJ2 .
150 tUNtlNIJE .
··~··· .
. .
c ••• : e
~"£HOct~•arawc•lON(LJilS.oi
DEllS•[Pit(S~~~O•XLU~~Ll)/1'•0
CO~PUtl OttilNATIO~~~U~UP~ 8U~Sllg AHO
tO~SfiNY$'U5£D IN RIOI.f&OM COHPVtAtiO~ c ~lCL•V:409l•CUJCn,OI721•Cl7l,O~DAy'l
YA•JANf~LAfCLJ•DJU~)~tA~tO(CL) •, cao.-••
~SRai2:0•ACOS(•1A)IP( Ct•••• .
~UNUP•tl.o·~'R•OELfS
sO~Stfcl2 1 0t~5~tOELT3
fl3S)NJU!CL)•31N(XLAT(LJ•OTUA)
T2:C09tDECL~•tUSCMLAf(L)•OfOR) c
e.~.~ c .• c: •••• c
HIDIATIO~ At OIY!N INT~ftVALI THNOUG"OUf A 0
C~HPUff LOHG"A•£ AI~OSPM~~. ~AOIAtiGM
a~sc~.,.,L)ao,o
UHt:r:Nu•l
IF (f[~~.LE,SUNUPeOA~flK[1 GE,,UHSETi 00 TO t70
cU>KCt.nuo ( •m, L,
Ml~PiarfiHfajl 1 0•0(~fS)/Il,O
31"'4:JttTl•CO~(HA)
uo:ttlln• s t•••
at=Oo118•u,o~q•Atoceotl,oiAB$CII~a•)
fA:JMP~ll)•AI/SJHA
Uf):1Uf'/tll~( fA)
~Ao2•~n•cr,o~.~~•(LD•~z•
NCzi!,Ut(CLO•I ,0)
tF CCLo,GT,O,u~,4~D,CL0,Lf•t;'S) G~ TO l~t
t1Ct:l
tr CCLo.~t.u.~S) Nt•c C•••••
t&fi &L8l"P:4f~CJ•t5f,J•A~lNCSINA,)••B(NC1
Cu•u
e
QNSth~;L):PAh•(l 1 •lLBEDU1
tr ~Q~~(~~tl,oLf,d,J GNSI~M,L8•V 1
lfO.(IJNl lltttt. teo ·eu~ r t ••ut
t•=ll. nu IIJO JJ:a,~q
f&(JJtL)•~.11l~E6•£X~(•ql5ftOI(~Bt(JJrL)•l39;0tJJ
iF (P~w.~Y,U,UIJ EACJ~,LJ•fA(JJtt)~A,~IJJtl)•(OifCJJtLJ•~If.II•L~J
ft
r>
' ~.
"' • ...... .....
..t':..
c
c
1•(6~t!~•+7,5~f·7•~&TCJJtL)~·
TA•TA•~!~OCJJ•L)
"0 tO~l ;Nut..
TA•U/i'IOt
JtcJIIIZf'Nt U.1 I)
Ja•Jitln~~ ¢l•U nu zou ,f•Jt ,J~
'200 tlt-,~l(JlSJA
lltru:m,
210 CfJ'' tl ,,.,a:
~0 l~U l~J.NwlONE"
tPAGhyPIG~•I
H E t 0 4 T
wRitE lbtl?U) TlTL!tTZTL
i~O FUq14f tiHI,IOi,ZUAI,t Tf1RA TP.CH, INC,t/,l&X,ZOA~,e LAfAY
lElJ~, (Allf,l/)
• ~~liE fboll~\ Lr(JNlONE(LtJ),J•&,aS,XLAT(L),XLO~(L)
ZJO FOB~lf (///t2UX,UQ~fAUL£ OF ~ETlO~nLOGIC UAtA fU~ HtATHtR lUN~ 1ll
ljlO~, JII'C1l~~.&a,]~ iO,I~/rT9~tiZ~LAIITUOl • tf5.1/,T99,Il~lON~l
l'~QE c ~·~•ll/•12b~ HnUq WIHO CLOUD DRY ~ULO
) •••• AI~OSP~tRlC SHU~T ,AVE LONG ~AVE vAPOR
q /IZR~ SPlfO COVEn tlH~EHllUH( 1["Pl
5qAfU~l pafSSURE 3nLA.H SOLAH PPtS9UHE
~1120~ (~/SEC) FllAC110~ CC~ tC)
7 (~HJ (KCAL/Hl/SfC) CKCA&I"l/SEC) CHOI I) ~
no zt~c, 1 =r:a, l"
wqtlE rb,llU) r,~a~DCitL),CLOUD(I 1 L),Dijf(lrL),WUTCI•L),APHCI•l)8QN
iSlliL):u~&(leL),fA(l,L)
240 CiJNJINUl
. Jt tOt~,Ll,,Of) wRlff (~1 ~5~)
25o ruq~At t•o•••• o~~ ~OlNt•J
JF (Ok~,GT,,Ol) ~HilE ~b,lhO)
l~O '~UHl1 C'O'~•• ~El OUL~I)
219 ron~~~ CllO,Flltl,FlOal,r&o.l,fJ3.trfl6~0,f!2e*rfi6 1 A,fJ~,O)
2&9 cu·u '""E ·
Ql;l'U'iN
290 C0111lt1UE
no Jto L•a,u~znuE
J&cJ-!n~£(Ldj
Jl•Jifliltl( (l,l)'
niJ Jill JaJt.Jl
f.V(J)CI)0 (1
ro•.tcJ\:o,o
, r "'H J; = (\. n
COHPUTt HEAT TRANSF£~ PARAHEIERS•••
If (f~~w,,LE,V.tJ 00 TO liO
no JOO &ct,l"
PF~o,lr•U•AP~(J,LJ
~U:l•CJJI~.Otl~O
JF ·c··~·lii',A) fiN•II
1f (U~!L1,t) NUs}
C•• LO~~~Avt -AC~ RA~I&JIO~
Rfllli'HJf I• lJ)) • f~fll ,O•U,57•Trt(J) )•CU•811•"'!NDU•LU
r=~1 Qb~q],qUl •(ALP~(~~)•[A(I,L)•PF•Oft1(,,L))
F'1J'•t (J\:o'ltt$( It I,) tii•IA(ltl)•,:Of"U-,I:.(J\
'T o4,J( J l :l,l(lt. " ( •H 11 ( 'ltl) tPf) +9, 00 ll471tFlH0(J)
~~~ALPut~u)•Utll(~~JtiWCJ)
c
H £ T 0 A f
tvf J) •(NINO(J rL) •tllUA)fi(UnU( I•L:i) •tvCJ)
300 CtJNH~UE · •
SlO CONUNIJE
no no J•a ,NJ
FON[(J\afU~[(J,/20 1
ffMOCJ\ctfWU(J)/21 1
tf Cf~rJ).LT;O,O) tV(J)•O•O llo rv~·,=rvrJ)Il•,
!Ji .
ftiO ..
.... ·,,
• •
c
c.
a u , P u t
SUSROUtiNE OUTPUT (~S~iPJ
COH~O~itAB/X~A~ttl)tYLABC~),TITL!CiZ),HOqJ~CI)),VtRT(6),lU~110
CO~"Q~tPLOI/ I'~OTt•J,CP(lOit6taJ,~AY(IOI)t~POINT,JPLOT(6)
l, · lPP 1 NPP-l~OAY(l),NOO~'C21,2irP,UFA(2S,),a),NCONP(•)
2, PRVFncza,,.~,
tU~~O~JHi5C/~J,~C,~P,~OY~t~U»~,HLJ~,otLToiPAGEtN~YOti9~Y~!D~Li 1; ~JP,~lfJ~PlQI,J3MJP(l6),ALl(lO),lDVNCS2):iliLiClOJ,fltL(20)
2, .,r.Pl~!-ft~l)tiPCYCrli)AYtNCYCittJNf!UAi.
tU~MOh,diGI~C~&~flOO,~)tFI;LilftdOO)
cb~~Uh/~U&L/ Jij~J~(znu~,JU~~IN(lUO,,JU~lf200)rOIN(2UO)tU~IN(Z00)
1, to~r·•r •~,,, ~~:n-.r••u s,,, t•HPJ~•••~oJ ,coL tlfi1150J ,cnu INCISO) z; ~POCI~Ci5QJ,H~~~~~JJ~OJrOtrt~Cl50)tf~«PJNll~UJ
), tTPU:HIC,O,a),5Al fi11{151J)
fl t f t>:H li)O J t If• HI ( ~l/.0 J, ftll~ l Zull), till. itZIIO) 1 COLI-( ZIJO J, IJOUC (2UO)
5 1 ~UCnfZ9U)~n•Y(100l,tEHP~l~O),TYP(C200,q),JVPEO~(IUO,IIJ
6 1 fiAt G.fl'JO) ,nuf.'-(lOU) tfJkiJk( lOo\ ,fli.ll)Cill\ (i!OOJ tltUOitO" UOO)
70 tUliO~Cl9UJrCULfP~I~OU),05AI(ZnvJ,"l"~(~OUJ,nlUPClOU)
co~,~~,J~•rt'•~•~
~IPE~SJUh •tl~l.JJrY(IOJ,l\rNPf(J),CO"(lOUrl)
QOU~ll ~Q(C13lij~ U~lt~
nl"l'I~JU\ IIJ#tfl'ft l)
n l"f. "S 1 ll'l t HI.~ a (? t lJ, HQq Ill ( llt ;!) ;vEH t I (I'J)
E~~JVlll~CE (t!»rCiri)~TDSCIJJ
Q[AI. IUt'((l,llJ
OAVA NAI1(/CIHJ113 ,ztcut rfiHTOU,QIIL N r•tl ,IIHlOU,IIHI. P
l, ql1 ,114ttJfA,tit!l. C0 1 1111Lif ,,urt.CA,IIIil. COriiHI.I' ,qUCARII
2, b~O~ ij,U~JD ,~HNITR,IIHO UQ,aHO ,aHOXYOrOHEN ,OH
3, ''"H .. P 1 utU.rur,uHU:tE ,ut•UPP ,aHCU•Is,uttt I 1 11ttOI'P ,II~COf'S
a, ohl l 1 1111UPP ,oHCVN3 1 11HJ J ,a110PP ,IIHCUNS,OHT • I
I) AU U•:l1 S
I /J•&H~31L rl•U~NO/IOOHLtl•RHHG(~. ,8HD£G c ,q•eHUhiTS I
OATA fJlll112•U~ ,q~Jt"£'~~ Ht3,~~(0RY,a~~H ,qHtONC
1, altF.NHt,IIHAflfi 1 UIItl Plf,IIMUFIL 0 ouE 1 Jl~CIII I
2, MdQiltJ7•u~ ,aH OaY,l2•0H ~•HNUDE,~•aH I
3, vlPfi/UhMG/Ltll~,~~~ •• "uM C•J••~ I
J1 (J5wiPJ '10 1 )bO,IOO
100 co•11 r huE
llO roq~A1 (lHiriOX,20A•,• lfT~A TFCH, INCe'lti11 1 20A•,t LA,AY snu. our,•n.. .
llO ruo~Al C~Otr'"UALJTY NtSULt5, OAYt,&Qr/1 JUN TOS TOT~
I iOT P J COL F COL C BOD N 800 UXY U SAT zn'-~ tu•:st a tt)NH z coun 1 c0usr .,,,,u,Jux,usuiL•t.zc• f-l!JI liOO~Lt~,-~~~,•Mt/L;J,fl,tC '•~C•x,rUNlfSI)/)
1' CII~IPCI~)•I) I10~17U,2hO no u•u . · ·
ou 160 J••·••J
ff C~CuAh(JriJ;EQ,O) GO TO 160
If ( '1Un ( 11 , ~I)) • II( • f)) GQ t U I • 0
~UIIE f6rll0l llt~lr111~
~qlfE tbti~OJ JS~(P
1110 li=U•t
'""I IE f&.r J '51J) J, (CI'}tt(J t J hI= !r &J tO!~U CJ), CCOII(J, I), I*~• 13)
15~ Fuq~~~ ''~·••,Q·~•q,1,zEq,l,2Ft,l,lP•,s,ort,zJ uo r.n·•trm.e
•t.fV"~
c. . C,t~• ALTtRNATJY! PRINTOUT
110 CO"'TlNU!.
kAIJ£ f~,J~OJ TJT~I,TITL
1\0 zso Jea,n
tF CI,MIPf1)1 tQ,I) GO TO Z50 .
'\ .,
~~~1~ t~tlftbi C~ANE(J~I),JD'tJ)tU~JTSCI),JS~IP
180 FijUHAf (/eSOWr3~1r 1 r '•AB,~ HOq 0AY 1 1 1)/j
r.~ '" (l~u.~au,lau,zso,zJu,lao,!lo;~,o,lao.as••zao,aae,lati, 1
190 Wfllll:. ICitli)Ul CJrCIJ;IfJ~IJ,J•I~NJJ
~0~ JO"~•r CloCIStfd,O)J
t
c
r.u 10 15P ~
210 w~tlt l~t2'.0) fJrCDNCJti),J•ItNJ'
ll~ ru~HAI (IU(I5tFB,l)J
r.n tn :»~o
C'30 ~RilE tflel•IO) CJtCU•afJtlloJ•I,NJJ
2110 rn~~&l CIO«IS~(O,lJJ
250 W..,tl..,nf
Al:.lU=t~
h 0 c lll•ll ''"!. J(~(l
on Jc;o l•l,U
If (15KIP(J),(O,I) GO TO l'O
Jt:ICtt
If C~UoCIC,l),fO,I) w»lfE (6rlf!J
270 FU"~Af Ct"l)
wqlft ro,~~Ul (N&"ECJtiJ,J•ltl)~UN~TSCI)~JSKI'
200 FIJQH'f (9U.,)AQ,t, t,~&,r ruq OAY t,l)~
li•J 10 tl.'"• }IO,J&or :no, llO, liOt;.ilo;su,Jit•tllt•Jif•llhJU~, ! 2~n wqlll f~tJOO) CJrCUN(Jti)~Jat,NJJ loa ruQ~Af •~crY,fQ~O)J
r.u 10 ,;o
)IO ~qlfE i~,JlV) IJ~CO~(Jrii•J•IrHJJ
)lO FORHIJ (5(1ftfQ,J)J
GO .fll '50'
llll .,.,I fE ,~, )IIIJ) (.!tCI1,.(Jr I; rJCD ,NJ)
l11o roqKAf t~crr,~t,2))
350 :!IJ\If llflit.
Pt, 'VN-.
lbG Cll~ll NUl.
C.,,. tl"f HJS1UQY PLftT$ c
Of' 370 Jc:t,J
Dti JJCI l•ltl0J
ll(I,J):u,o :no vn,J»:u,o
J t:~H~'ilttHJIOI'Itl
,,, ::I}
fill S'IO l=ltU
]llO HtiUJf( I )i:thltft ll(J' l)
r)ll l'IU l:l,b
)~D ilfLt lJ,:itfLEill,1)
,..,, 111)1/ J::q,b
'On vtQf(I\=Vl~ltCIJ
(Ill ctt.u 1:1 ,.,
.......
t
. 1r. CJ•t-.OT(I')•EGeO,.GQ 10 •••
. JP tlP~nHU . ..
TltLt(iOJ=N~~t(f•i-)
TI1Ltltl)a~A~l(l,lP)
ttTLCCttla~A~EtJ,!Pl
J.:Q . '· '
~0 d'O JJ•t,~POINTrll
.JiJ• t .
0') UlO r.:.wa,J
lCC.i,!ChO&y(JJ).
•U CU•IIINIIE
~-.~ &t.J••Hil• &
t..L•l
rtO ~~~u ll~::trH»
'tt;~ltt
LliLI.•l ~
Jf (NJp 1 G~elt) l,aNJP'l
trxO .
bll ~JQ Ht~•LL•L
tc:l<+l
J;:l) ' . nU q~o ~KJl,NPOlN!,Jl
J=J+I y(J,~)atPt"~'~M~J)
•zo r.U'JIIUIJl
·· ~PT (!(hJ ·
Ill) CO'J.tJ~IIl
C ~U •••Pts TO 0 so. X•UU INCRf!Hf.NU NtL\. IE PftiNTtO lN "LUI
UllPf~::l)
Cl!.L <ttlfVE (lltY,NPt,K,NT) .
wRIIE ~~-~~0~ JJPLOf(tlJ,ti•LL•t) ••o ,u~~·' (lM6,so•,•uoot Nu~&ths•,!s,.~ • o,,,,.~ • a,s~,,K • &J
LL:sLft
1.51J CU" II'IU~ ~
lfiO r.•JOJil .. IIE•.
QEhJP~
c ' c, I.: tU .. CEt:i~AT Ill'' PROFILU
c
, iJ.70 CU.VIlHUf
tJft::O .•
I)IJ U8Q ~Jt,,!.
DO .~')0 J• It lPP •ao xUtJ)::l
OiJ 4qQ I cIt l3
.IillO .-n:tll(f)~:o:tfiA,.I.tlfhiJ
1)0 ~ou 1zt 1 9 , · · · ·
500 TIYL£(t)c11JL11(1,2)
nu s1u l=l•b
5liJ Vf~lCI\:s~~qTtCl)
l'l) ')'fu 11: I, II
lf l"•Cfl'tf t1U ,F.u,,~ GO YO ''O
I•'·C'J',c• (Ill
1ITLFC1u~=~'u~tl•ll
T IJLl (I 1) :•:&••£ flr I)
tlfLlltl)•~•~tC)tJI
. . .
DO 560.l•&,NfiP
NNIINNtt
no sso "'''lPP t~PT(Jh~l
1F .( l,t().Z) r~O tfi 530
. DO S20 ~=l,ll
521 Y(~,J)pPRO~lCK,~,!1)
GO ltl '\~<I
'U 01) 511U K:a& ,21
540 y¢~,J)a~POf0(M,Jtltt
0 U T P U T
sso cu•• r1•1u1:. ·
C S£'( Wt~f:t JQ Zl 30 PRINUHG UF· JC•AitiJ JNCfttHlt4tl IN PPLOf atlU. ~~ IUP'
e
~~~~PIS:a;t-1 ~ALL Cu~Vl (~,y,~PTeiP,,NNl
~~11f fb,~hO) {NOOEPCJJI),J•I,Zi)
5110 FOq•H •. J Cll 'i;2ll5dt.7SXt 1'100£.1 )
~kll~ 1~•57U) (JPbAY(Jl,J•I•IPP) ~1o FUA"''' uo•,•PAY or te.t: nu•,&~••H • o,u,.-~a •· 16i1''" • u
58ti tU~IINul:. ,
590 a; I)\ I I Nl.ll:. >
P[hllhl
l
l
1
j
' • i . ~ f
' ~
l.
~.
·f
l
J
·~
~ ~
t
j
l ~
il t
'
'' i
j
j
.I
rl
' \;J
"' f .....
"' .....
,.. .... • ·.,
;t-
e c c
c c e
l60
:100
310
II' V N !
SUBROUTI~E •JNt(Xltlt,.Z,YltHSY~,~Cf)
CU~HU~~U1G/ lP~CE(1521'),A(5t,tOI)"
OIHf~3tGN 3Y~t3!
nATA SvH/lHO,IHI'l~21
A'! tel' t
·~fj~tl
UA~Y"l
UIJaYl
N:.l
JfC4~9t~XD•t~~J,Lf,AI~(AY&•AYA)) On TO ItO
lEl PARA~£YE~~ FOR X DIRECTION
tFiAx•:Gt,ax•a GO fd a•~
All&:lti:
u'!:Jt 1
Al'h'tl
ayft:yt
Cfl'~ I I t'IIJ~
t••u.cu,s
fJCII:I.(At 1 5
tyA:ITa+,5
1YIJ:IYq+,5
t•J'IIlt-llll ·
rrtttA:Lr.~,QR,IkA,CT,lOOJ GO TQ l&i
Jr(IYA;ll,O.OR,JYA,GT,50J CO JU 26~
•C5J•ly4,11At!)•SY"l~SYH) c•J•• r 1:.111£
(rUitA+i
YA3(~•fAYH•AY£))/(A~D•AX')
lt4.:ltUYU0;5 .,=···. irfl-4:L~.~~~) UO IU 250
t;Q Ttl oUO
5EI PADA .. E fU$ ,QA y OIAfCTION
co•n l'luE
JF(tr~:Ul,AYl) CO TU 295
.U'i•Y!
&YhYl
IICil:JII
uwatl.
c u•n r r.uE
J(hAJtH,S
r•~:~•ll•.s
fYA:Ata.•,,
J"t'i:.hp t. s
((J ... , l'•lll
tFCixa;LY,O,Q~,JJA,GT,IOO) GO fO '''
It CJr•.LY.O,OR,BYA,Gf,SOj '~TOll~
aCSl•IY1•JWAti):3Y~(~5Y~1
tlt'H J '411!:.
rra::IU•I
rlt(~•tAJ~•AWA))/(AYB•AYA) I.,. u,AI!Atlle!»
l!fa•u I
,.~ .. ''
1'CIYA~XY8) 3tf,JCQ,~OO'
:120 1XA • tXII
GO TO ,00 •oo ff£TU .. ,.
(~0
' I N E
.,
c
, ., 1. or
:iU5,.0\If INE PPl.OT UICI lY, lttNCT)
Dlt~l~:iJO,. S.'I"!(CJ)
CU .. H:l"~/ltl 01 $PAt£Cl52.49) "ACSit lOi)
CO~~n~)X&-~/~KDfS
CU~~O~Jl.&~/XlA9Cll),YLA0(6~tTITLtCjZ),HOR%ZCIJ),Y!RtC•),IU~lTO
04!4 Sy~/l•lH •&HitlH•/
irtK,(n,lOO) GU TO ZlO
JU'111hb a:ao
IF ('itt ,E1• •l) Gil Til 1~0 ,
w~lrEtJu~aru,lOl) CTlfLEti~J•IN•t,6),,f&Tl.£CINJ,IN•&o,azJ,NCr
700. (U':tl"•t'l
C !~E FOLLOwiNG 3tC1lO~ &THRUUUH CARO 225) PftiNf= A~L BUT THt X AMIO A~D LADlLO
no u; ll•l ,,
r•••l . wHilE tlU~tro,IOlJ YLABCfJ),(ACl•Jl,Ja&,IOl)
t~llJ,,U.b) GU 10 il~ .
DU 22u JJcl,q
l=l•l "IFtl.~r.l~J Gd 10 lll
~QIIE&I~~IlU,&Ob) ~(qJ(5)rVtR1(6),(ACl•J,,J••riOI)
r.U IU ?lll
ill tfCJ,hFtlq) Gil tO 222 ~
C ,,.,~r t•&vl~ ij~lf3 ,
c
h~ltl&tU~IIU 1 lO•J V~~l(l)JVfAJCl)~(AtlrJ),Jai,IOI)
r.a ru ~~~~
2Zl fJ(I~~r,l~) GU 10 ~ll
wqlff(tO'tTU,IOb) VlAl()),V[RTC•),fA;J~J),Jc&,IOI)
(:J JIJ ;>1.11
ill uq&lf:;u~JIOtlCO) (!CirJ)iJa!~!O!)
2211 CU'II lrutE
2ZS .CU'H l'ftJE
ll'1 N'~~lf••ut
C ~xPtS !S & fLAG Po• CONClNtqATIDN PNOFlLl PLUTa, OET JU Zl IN OUTPUT
C l' NlPI9 1> 21, DO ~UT PHI~t K•lXIS JijCAlHlNfS OR U~IT~
1•l~~~t3.l~.21) co ro Zlq,
C PAI~T 1"t A•AXIS UNIT~ fUR TIHL Hi3lORY PLOTS
100
lUI
101
~~lfE\tU~ITU,!Ol) XLAU
&ol
lOS
106
c29
~~II£ IIU~trn~~OS) HoqJz
ru»~&lfl~l,IOIAll
,uu~&f(lP£11.ltlj~JU)Al)
ruq~•ltF1o,a,an~ao,Jl
FUCIHllf1Hl,II?Atq&~f·PLQi ~o,t,J),/i
rOIHt6 f ti.IOl, 1144)
r:IJ»:1&', n. 2u, s•, a oaa u
Cll''f holjt
c
DE Tl.H'I
f~l~ Stl!JO~ ~uFP&U(3 PLUi OUTLIH!
2!n p~ l~u r~ •• ~Q
1)!1 2111) J•t.tOl
l~O A~),J),3Y~(1)
4l I, l hSV•(I})
no r.•l•,tl···••·
OiJ _,,,u J•l• l"l
l•O Ai~ltJ\•~1~1~)
oo z1o 1~t.aoa,ao
270 IC5l•li•!Y~(8J
DU l~Q Jaas,aa,at
A(ldhSYHU)
290 CONTI ~tJI:.
AEUIRN
!110
, p l. .0 '
•.
~
·~
...;0
--._ ... ··<11!
e c c
c e e
c c c
c c e
e c
t
c
t c
~VISTc0UTINf:.$CA'--~·''""MY,.-Xt.!'f,NPY!;INCJ
C0"'"'0"iX.IC[/lllfPU ...
OI~EN~tU~ &~qAy(a),l~f(~) .
DH'-• l'ttf n,w.,S~GtiOI
Jr:C U lae!(!NC)
l .. AilUIJIU y ( J)
J.J.tJN:hi'UY((l .
r~o 25.11 ... '·' ,:o r•,, t~ct
IF' ( & "' v ,L (, A:a11}[y (H)) Aft A X• •RRA)' (.N)
JF U'fh.J.tt,UifAYUf)) At12Nitlltltl'tCN)
C 011 f I tn;E. ·
JP( &Ha• ~ IHJH ) ZI5,2SSt27S
2,5 JYC AHt~ t i6S, •Od~ t60 2n a ttl.., • · o,o···
~~~~~ ~ l.C e.lNAK r.u TO ;.JS
26' a!'t&ll • a,o
~~~~ Q l,O • ~~~~
275 CONUNuE
&~i.LOGtllCAllEJ
Nl!l .
1F(A,LJ,O) N•A•O,t9tt
~~tE•~JTt/CI0 1 ••N)
t,aRAft:tl,OO
uo na :soo h h~
JFfL·l~fCI)) 32~,)~0,)~0
soo C:"~tJ•vur.
ioHrUr~ UNITS/INCH
GCAt~ INTERVAL tO
USS 1HAN 10
t IS H~-y HIO~[A JNTtHYA~
~ANGt IS SCALED OACK 10 ;uL~ S!t ' .
c c c
c c
320 l•HITCI)
OANG£trLQAYttJ~tO,••~
·. !Fti~C:Lt.O) ~0 ~0 J!O
ICll.lfil'fjMJNr.£
1F(l"INeLf 0 0,J KCK•I
~tl P' POSiliV£ StEPS
..
c
e c c
c c c
tr'(.VfAlt,G1' :cK•AXU.N)$IUNGd 00 TO 'J)O
t•~,T$~JNCT•I .
ARq~YttJ•~tHlNC~
l•hl'fCT
A110UY H •.• RANG£
Al.IUR,.
JlO L•l+l
lffLeLY,ll) GO YO 20t
tz2 ·
JIRNf l
!U GU 10 till
S!O tf:t&H&XiR&tfGf
..
Jf(~HAw,GI,O,J M•K+I ,
~· CA14IP.',lf • (MtAIIU.N)•RANCI:~ GO tO jJO
I•INCfe~PIS+I -
anq&Y(f)•~•AANG!
t:~r•tr~r:r
AlfRAYCt)e.IUNG!
Rl.TUIIN
GOO wUJlElt,tiUOJ
100 FIJif!'I&Tt II IOJI, •RANGE ANO SCAU A!tf. l!RO OM ",Of Atftf"Pfe t
11£ fUilt.
£Nh
N
\
\A
"'• (
......
·a~ • I '· .. ..... "
3UaAOUTl~C ~tTUP . · .
C0~~0~t0U6L! l3PA~CC600),0TNCZ00)1 riLLC7100J
tO~MON!HI3t/~J,~C,NP,~DY~t~U~~~HLI~,ofLT,JPAG!•H"YO,t~~YtlO~~T
., NJP,J[[,•PLUf,JSK!D(l~),.LLC?Q),IDYHC52~.11TL£C~O),fiTLC~OJ
1 , u~ot~~(S1),JP£Yttt~AYthCYC~,tNDUAL
CO~HO~/~IG/ ~(~ANC20o,e),hJU~CCJ~o:z),JU~C~OO)v~LEN()Q0)
•• aLP~(I00)1 ALP"It200)-AA(lU~);bBtiuO),UtTA(l0~)
l~lV~l?Un,l&J,A(lQn,all,ALP~A(?U~,li),AC(30U~tAS(200)
nlf ( lUO J, rl( JIUH, VS(JOU) , I)(IIJf .!OUJ, U C li'IU) , VOL UOO », lUOO)
~CIC1~Q),t(q()OU),DlP(lUO)t~AV£(lUO)tA!ClUO),VAaSClOOJ
.,
'' •• c . C,,g, IN!flltlll CQLFFICJ[~I HA1Ail 10 ZFHO
~aNIJtiDtl
no 1 &o J•l ,NP
t)U Uti !!.=lt,..LI11
160 lStvEtJt~)aO,O c
c • c ••••
IGO
c • c ••••
2QO
2i!O
uo
uo c c.~.~
«?60
Dfl IQUO J.oJ ,NP
J..t;~Ju·•rJJ
J'C~DYH,fO,l) GO tO tee
'LPt1CHc0,5
CIJ""E"':tllf fl)lt HIG!ot UlUUUit't IN'LOWS
TAav~LtJJ)/~(LT•OI~(JJ)
If r Ja,, r ,O,U) A\.Pt4(J)•VliLCJJ)/U,o•Df:LTiiOINCJoiU
&LP~I1J)~l.~·~LPH(J)
CO'H bul
a3AY((J,~)aQOUCJJ)
aDO AUvlCJIUk A~D D~FfU!IUN TU COEFFICilNT HATRIM
l'iO ~Sl• tU i, ij
NOl~=ll
PJlt'~(.tiiN ( JJ, K)
tFf~.~~.~) G1 TO ~50
HCJ.l:).uJw•ctN,.au r,Q Yo 2u
JOIIP&\,JUIIC lit, l)
tF (~(~).L!.0,6) NOlq•J
r.o t•• 120 ro·:; t •·ut.
.lll .. t': 'I '""'C l tl, lJ
JF CO(~J.Gl,o.a) HOI~•I
,,, •• f I ·•ut
JlJif IIJ.JI'lPP
"'>i :11'1• Jl't ...
Jft~Oln.tO.Il GO TQ ~]0
A~~lf(J,~)~A~AV£(JI"it01F(N)
A3Ail(f~~~l:A$AYf(J,«H)•A03(0(N~)•DIF(N)
I';J l~l l~O
A\&V!IJ,~)•i,AVrf$iHitAU$tG(~))tDJF(~i
1 Sl Vt: ( .1, "~) U$Avt: (J t 11t1i .. ~!f· (N)
Cl,l'll P111L
&DD VU!~~l frFrtTS l~O &rPLY ALPH AND ALPHl VACYDR3 'U" OYHA~It
JFC~~Y~,f~.l) tQ J~ lOOU
OIJ lt,•J l•lt'ILIH
~(J~I)$··~&Vf(J•IJ•AtPH(J~
a3&vt(JJI}~ASAVlfJ,J,•ll~~l(J)
•,
ACJ,H)aArJ,H)+VO~:JJ)ID[Lf
~3AY~CJ,I4JdaAYt.tJef'II•VOLCJJWDtLf
&000 CU~IINUl.
•ttUIIN.
~,.,
•.
•
;
I
J.t_ ', • ~ '
N
t
tiJ. v,
' .......
. '"'\J
..............
c
S 0 i: Y I f
SU'IROUTI_,I! 301.YITCCON)
CU~~ON/~15CI~J,~C,NlD,N'V~,H3N~,~I.I"•OELT•IPAOEvNHYO;JO~Yrlbti.T
11 NJr,J~[,~PLOY 1 15~iP(16)rALLC20),JOYN(52)rTIYLlC20),fi11.CZO,
,, ~~PE~H(~~),JPCYCtLDAYrNCYCH,,N,UIL
CO~MOH/UIG/ ~CH&NI~O~•~J,kJUNC(39D;z),JU~ClOOl,KL£N(l00)
,, aLP~cz~~,,atPHIC20oJ,••tzo~,;uuczuoJ,erf~(200)
11 15AV£(2UOrlJ),&(ZOo,zlltALP~I(l00r21),&CCl~U-rAOt2GO)
1 , nlf(]D0)1 ~C3~U),YS(l~O) ,QqUt~OO)rlZCJO~) ,Y~Lt20U)rlf)00)
•~ tCitlUO)eCC•Cl90JrOtP(lOO),AaVt(lOO)oU,ClOO)rV~~3()00)
OIMt~SIO~ t~~CIJ
C•••• roD~au., lLIHJNAIIU~
JHI"' • ''~r.n t I
J"AC • Jul~ t N~NO
~t.O:•lli'J•I
nO l"O let ,t.ElJ c
Cu ~0~'11LJlE CIIHFICI£NTS
f4:4LP~AflrJHJh)
c
Dn lQO J•JMJ~tJHAX
4LPHL(IrJ):ALPH4f(tJJIT-
Z00 CU'4l l .. !tE
ftElACI):PLfA(I)/TA
C~ttt SE. T•VP P.O"S FOR £t.IHINITION .
K tt l'• :a I t I
1(!1u • 1 • r.tl•~o
IF' (NP1t",lH.NEQ) KltAX•NEO
JK&•rHhOtl
OU l~U K:!t~l~r~HAX
Jl(:JIC•I
ttii~P~A(K 1 JK)) 210,260tZIO
210 COllllt•1.1t c C••
c
£LIMI~aTf vAqJADLl i rROH f~U-TION K
JE""!I 110tl
JJ'11''&.JK •I
JJYAI c JK t ~H~O
0~ 2~: JJ•JJ~IN,JJ~A~
J:J•I .. •LP"''•,JJ)saLPHa~k,JJJ•ALPHACI,JS•ALrHAfK•JK) c :J"f ,,.,,.t.
1EfAC~iz9ETA(~)•9LTACI)•ILP~A(K,JK'
c "''; • r r.ut c •J•: Tl ~ttE
C flllll" P. A C 1t S~llt5 Y IT II Jl 014
•t'll:\,1
"{fl(~fU)c~lfA(N(Q)/ILPHA(N£0,J"!N\
O•J uf-(1 U=lrfttn
1: •·l ') • • .. ll ..... =, .... ,
JFf\~.~T,N~~D) hNaNU~D .,,.,
J. 'IIJ'•'Jt I
('it, """ JJt3rtlti
JrJ•'
..
ASSIGN CONC~~~~AfiO~S er l~I!NNAL NOD! NUHI!"S
IH) 510 J•tJ~f:U
JJrtJUIIfJ)
C!l~CJJ\•SUACJ)
CIJI'o.l f I ff\Jl
uttUIIti
[NI) ..
•,
..
•
EXHIBIT E
2; . Water Use and Quality
Estimate the' probability and magnitude of supersaturated water passing
through W.atana and Devil Canyon reservoirs. Include specffic estimates for
water entering Watana reservoir, the likelihood of supersaturated conditions
p~rsisting-through the reservoirs to the intake structures, any differences
between saturation-values of water entering outlet facilities and the tur-
bine intakes, potential for air entrainment at both outlet faci1ities and
-tt.e turbine intakes, and a description of the processes affecting supersat ...
uration at the turbine outlet facilities •
. Response
At present, no information is avai 1 able on the 1eve 1 of gas saturation
l.evels in waters entering the upstream end of the proposed Watana Reservoir.
Therefore, no definitive statement about the probability and magnitude of
such an occurrence can ·be made. It is assumed, however., that no supersat-
uration problem will exist in Watana Reservoir because of 1) the low poten-
tial for any sources of saturation above the proposed Watana Reservoir due
to the low gradient of the river and lack of major turbulent areas, 2) the
long residence time of water passing through the reservoir, 3) wind-induced
mixing, and; 4) contributions of additional water from tributaries •
•
2-36 ... 1
Intake facilities at both dams wi11 be designed to prevent entrainment of
air hecause such entrainment can lower· the efficiency of the turbin~ and
caus·e structural problems., The outlet facilities wi11 have a subsurface
discharge that will not entrain air and therefore will not increase
saturation.
Cone valves will be provided in both dams to pass any discharges up to the 1
in 50 year flood. These structures are specifically designed to prevent
supersaturation. Any dischargP.s above the 1 in 50 flood will be passed over
the spillway at each dam. These spj llways wi 11 be designed to avoid or
minimize any supersaturation problems. The fin a 1 design of the spillways
will follow the testing of a physical model before final design of the pro-
ject is completed.
Water leaving Devi 1 Canyon could be supersaturated even if no super·satura-
tion were added by either dam.. This is because. supersaturation naturally
occurs due to turbulent mixing at the rap.i ds in Devil Canyon be low the Devi 1
Canyon damsite. This naturally occurring supersaturation would be generally (_,.) ··
lessened under the operation of either dam. The reason for this is that,
under natural conditions~ there is a positive correlation between increases
in flows and increases in supersaturation values (see attached Figure
4!-3-45 from ADF&G 1983). This is probably related to the increase in tur-
bulence and entrainment of ?..ir associated with increased flows. Under
operation, the incidence of these higher flows will be diminished as would
the corresponding supersaturation levels.
References
Alaska Dept. of Fish and Game. 1983.
II basic data report. Vol. 4.
studies, 1982.
Susitna hydro aquatic studies phase
Aquatic Habitat and instream flow
2-36-2
l
J
-~·
CJ'i w
Ul
ct
(!)
0 w > _J
0
Ul
fn -0
lL
0
z
0
t-
4 a:
:::>
f-
4 ·en
.... z
tlO
ItO
105
w 100 u a: w
0..
•• ~ • • • ttl J ' ·... • • • •
. ~~~+"~~··':t"'"!-~~:~~~ ... --:;t{-,~~~;y .. ~-l0'\~~.::~""'•!1~ ~
•..
• . '
Gold Creek Discharge = 32.3 :/ • . .
• • • . •. . ' . ...
• ..
. .
. .
• .
. . . ~ .
. .
·•
.· . ·
..
,.. ,. ......... .... . .........
rl Total gas saturaflon --and •...
Nitrogen saturation -·-· .......
Oxygen saturation
·• Hashmarks indicate areas of ropid.c
. .
.. ,. ... . . ~ . .. ... .
~ • . .
' . .... ...... ..... ,. ,. ·-...._ . """' . -·~ ..... -·---·~. ---....... --
Gold Creek Discharge= 14.8
•
,...._ ot --. '.
I ......_ ·~ t • ~ ...... . --. -
95~----~LL~~~~~--~~---r-----r----~~~~~~~~------~~~-~~--~··--·-,
..
0 I 2 4 ;5 s 1 .e 9 · 10 u 12 13 14 .3
MILES ABOVE MOUTH OF PORTAGE CREEK
Figure 41-3·;45. Concentration of 'dissolved gases in the Devil Canyon rapids complex.
' \ •
EXHIBIT E
2.. water Use and Quality·
COIIIIIf!llt 38 (p. E-2-117, ·.,2_ara. 2)
Describe the uncertainties as-sociated with data collected during this
period.
Ii_~spons~ · ·
~ Diffe·renc.es in the measured and simulated temperatures in the Eklutna Lake
··· study (Acres American 1983, R&M 1982) may have resulted from uncertainties
associated with the data collection and la.ke temperature measurements.
Breakdowns of the instruments at the Eklutna Lake station resulted in data
gaps in July and August. The missing data which occurred in periods of July
5-14, 16-21, 24-31, and August 1-11, 13-27, 1982, had to be estimated from
the nearby· stations (Figure 1) located at Palmer (Matanuska Valley Agricul-
tural Experiment · Station), Anchorage Internati on a 1 Airpor-t, and Chugach
State Park Eagle River Visitor Center (Paradise Haven Lodge). Estimation of
these missing data are the major sources of the data uncertainties •
..
The uncertainties associated with the estimation of the missing data are
descrfbed below:
The missing air temperatures at the Eklutna Lake station were estimated
·from the nearby .stations, Chugach State Park Eagle River Visitor Center
(11.4 miles southwest of lake, 630ft. aboya mean sea 1evel) and
Eklutna River Hydro Power Station (10.8 miles north-norhtwest of lake,
' ' ' ~ '
38 ft. above mean sea level).
2-38-1
2. Wind Speed and Direction:·
The missing wind spe;ed and direction at Eklutna Lake were estimated
from the station at Palmer.
3.. Vapor Pressure:
The vapor pressures were converted from the relative humidity data.
This was done by utilizing an empirical function of temperatur~ .to com-
pute saturation vapor pressure at th1~ average daily air temperature,
which in turn was multiplied by average daily relative humidity. The
missinig relative humidity data for the periods were estimated from wind
direct·ion at the Eklutna Lake station ..
4. Solar Radiation:
The missing data at the Eklutna Lake station for these periods were .
estimated from the Palmer and the Ancho.-.a!Je stations. tJ ·
5.. Cloud Cover and Long-Wave Radiation:
Due ten various problems with power and connections to the instruments
at the Eklutna Lake station, the cloud cover data obtained from the
Anchorage station were used to estimcte the long wave radiations.
6. Precip,itation:
Ourin~J the aforementioned· periods, the precipitation at the Eklutna
Lake station Wf.!re estimated from the Chugach State Park Eagle River
Visitor Center Station. From Octobe·r through December the rain gauge
experienced icing problems!.< therefore, the data from the. Eagle River
Visitor Center station were used.
2-38-2
'· •
•••
7..-Measured Temperature Profiles:
Err,-or .in measuring temperature profi'ies could oc:cur from instrument•s
calibration being disturbed during relocation or operator error in
reading the analog readout or instability i'n the temperature! digital
I • <l-'·
readouta In some cases during activ~ convec;tion, the _instability in
temperature ~ou ld occur longer duration.
References'
Acres ·American Incorporated, "Susitna Hydroelectric P1roject, Feasibility
" .
Study .. r S~pplement, Chapter 8~ Reservoir and Rive1'" Temperature Studies, 11
prepared for ·Alaska Power Authority, 1983. _
R::':M Consultants Incorporated, "Susitna Hydroelectric P1roject, Glacial Lake
Studies,_" prepared for Acres and Alaska Power Authority, 1982. .
..
2-38-3
•
•
\ t
·--·--.
. e WEA'l'BER STATION
Figure 1 Approximate Location of Weather Station
-·-... -.. ---·-· .......... ·-...
•
~·
EXHIBIT E
•. ": ·f
2. Water Use and Qua 1 ity
Cdnllent 44 (p. E-2-132, parJl. 2)
"•
Provide list of all discharges where cone valves will b,e us.ed and a list of
di.scharges. where cone valves wi 11 not be used for ~latana and for Devi 1
Canyon~
Response
The use of the fixed cone valves depends on four par·ameters: reservoir
inflow, reservoir water level, energy demand~ and downstream flow require-
ments, if those flow requirements are greater than the flow necessary to
satisfy the energy demand. Thus, there is not a one-to-one correspondent~
between the Watana or Oevi 1 Canyon discharge and the operation of the cone
valves. For· a given discharge, both use and non-use of the cone valves is
possible. For example 9 the cone valves are used when the reservoir is full
(i.e. at elevation 2,185 feet) and inflow is greater than the powerhouse
flow. ·However, with the same inflow, if the reservoir elevation is less
than the normal maximum operating level of 2,185 feet, the cone valves wi 11
likely not be operated. Flow above the powerhouse requirements will be used
to fill the resevoir. There may however, be times when the reservoir is not
fu 11 when the fixed cone va 1 ves wi 11 have to be operated to augment the
powerhouse flows to provide the required downstream flow •
.
Tables 1 through 4 (attached) provide. a list of Watana and Devil Canyon dis-
charges where cone valves will and will not be used for four-different
energy demands.
32-year period.
The tables are based on weekly energy simu 1 ati ons for a
The discharges presented are mean weekly discharges. The
number of weeks with or without cone va 1 ve operation represent the tot a 1
number of weeks out of the 1664 weeks in the simulation that the valves do
or do not operate for the given discharge i.nt~rval. The number of weeks
provides a relative indication of frequency of use.
2-44-1
As is evident from the enclosed tables, for weekly average discharges up to
16,000 cfs for Wilt ana and up to 14,000 .cfs for Devi 1 Canyon, there are timas
,, : . ,. '·.
when ·cone valves will and wi11 not be operating. At higher discharges the
cone valves will always operate.
It was necessary to preset1t this information as a set of four tables because
·;
there wfll be ·a diff~rent operating sce~ari o for each energy demand and the
operation of the cone valves will be different for each demand •
..
2:-44-2 u·
"r-• \
: .~-. , .
\, ..
. WJ\TANA .
DISCHARGE
(cfs)
·o .... 3-sao . . -!1 .. · .
3·t'800~· 8,000
8,000:-9,000
9,000-10,000
10,000-11,000
11,000--12 '000
12,000-13,000
13,000-14,000
' 14,000-15;000
15,000-16,000
16,000-17,000
17,000-18,000
18,000-19,000
l9,0Q0 ... 20,000
20,000-24,000
'24,000-28,000
28,000-32,000
TOTAL
tABLE 1
OPERATION OF .WATANA CONE VALVES
TOTAL E~ER~Y DEMAND 4,922.,000 MWH
NO.. OF WEEKS CORRESPONDING COMBINATIONS
OF CONE VALVE OF POWERHOUSE & CONE VA~VE
.. OPERAT.ION(l) DISCHARGE AT FLOWS 13,000 cfs
:POWERHOUSE · ··'CONE VALVE
(.cfs) (cfs)
0 c
0
3
40
35
2
6
3 1) 9,066 4,388
2) 9,781 3,672
3) 8,901 4,907
4 1) 8,887 6,009
2) 9,090 4,926
3) 9,245' 5~182
4) 9:P076 5,597
2 1) 8,713 6,652
2) 9,066 6,058
1 1) 8,887 7,546
1 1) 8,887 8,447
2 1) 9,245 9,615
?.) 9,424 8,955
1 1) 9,066 10,755
1 1) 8,887 12.,111
1 1) 93066 15,380
1 1) 8,710 21,526
103(2)
NOo OF WEEKS
WITHOUT CONE
VALVE OPERAT.ION(l)
0
)
)
) 1,386
)
)
102
36
37
1561
(1) The number of weeks is based on a total of 1664 weeks in the 32 year simu~ation ,,
period. I
{2) The fixed cone valves wi 11 operate 6.2 percent of the time.
2_..44-3
WATANA
DISCHARGE.
(cfs)
0-3,800
3,800-10,000
10,0QQ .... 11,000
11,000-12,000
12,000-13,000
13,000-14,000
14,000-15:-000
15,000-16,000
16 .. 000-17,000
17,000-18,000
18,000-19,000
19,000-20,000
2,0t;000-24,000
24,000-28,000
TOTAL
TABLE 2 _
OPERATION OF WATANA CONE VALVES
TOTAL ENERGY DEMAND 5,469,000 MWH
NO. OF WEEKS CORRESPONDING COMBINATIONS NO. OF WEEKS
OF CONE VALVE OF POWERHOUSE &CONE VALVE WITHOUT CONE
(l) . (1)
OPERATION DISCHARGE AT FLOWS 13 2 000 cfs VALVE OPERATION ·
POWERHOUSE CONE VALVE
(cfs (cfs)
0 0
0
9 llt.54
2
7 118
•" '"'~, 2 1) 9,879 3,210 32 lJ .::.., ' "c
2) 10,869 2,586
1 1) 10,273 4,155 26
1 1) 10,073 5,050 5
1 1) 9,875 7,460
2 1) 10,273 8,588
2) 10,471 7,908
1 1) 10,073 9,748
1 . 1) 9,875 11,123
2 1) 10,074 14,373
2) 9,685 17,943
29(2) 1635
(1) The number a·:: weeks_ is based on (\ tot a 1 of 1664 weeks in the 32 year simulation
period.
(2) The fixed cone valves will operate 1. 7 percent of the time.
2-44-4 u
TABLE 3
OPERATION OF DEVIL CANYON CONE VALVft)
TOTAL ENERGY DEMAND 5,853~000 MWH
"-DtVIL CANYON WAlANA
DEVIL·CANYON
QISCHARGE
. {cfsl
0-4 500 ' .. 4'1500-12,000
12,000-13,000
13,000-14,000
14,000-15,000
. 1J5,000-16,000
1 16,000-17,000
17,000-18,000
18,000-19,000
19,000-20,000
20,000-24,000
24,000-28,000
. . .8. 000-32 '000 l . . 2,000-36,000
.. • > 36 '000-40 '000
40,000-44,000
TOTAL
NO.. OF WEEKS NO. DF WEEKS
OF CONE VALYE WITHOUT CONE
OPERATIONTZ VALVE OPERATION
0
0
1
5
13
11
10
12
14
17
34
15
T
9(3)
6(4) 3 1(5).
0 .·
1,496
11
6
1513
NO. OF NO. OF
WATANA WEEKS WITH WEEKS WITHOUT
DISCHARGE CONE VALVE · CONE VALVE
(cfs) OPERATION\]) OPERATION
. 0-.29000 0
2~000-8,000 93
8,000-9,000 15
9, 000 .. ·10, 000 22
10,000-11,000 18
11,000-12,000 16
12,000-13,000 21
13,000-14,000 7
14,000-15,000 14
15,000-16,000 15
16,000-17,000 19
17,000-18,000 18
18,000-19~000 17
19,000-20,000 12
20~000-24,000 24
24,000-28,000 9
28,000-32,000 8
32,000-36,000 3
36,000-40,000 1
332
0
1331
1
1332
(1) The number of weeks is based on a total of 1664 weel~s in the 32 year simulation
period.
(2) With few exceptions, when the Devi 1 Canyon cone va.lves are operating~ the Devi 1
·canyon powerhouse discharge varies between 12,000 cfs and 13,000 cfs.
{3) 0Ul"1ng 5 of the 6 weeks of operation, the po\4Jerhouse flow is approximately 4000 cfs
(4) In each of the 3 weeks of operation, the Devil Canyon powerhouse flow is as follows:
0, 0, and 2400 cfs.
(5) Capacity nf the Devil Canyon cone valves is exceeded and spillway is opened to pass
5344 cfs. Powerhouse flow is 0 cfs.
(6) The Devil Canyon and Watana fixed cone valves will operate 9.1 and 20.0 percent of
the timelt respectively.
{7) Maximum Watana cone valve discharge is 24,000 cfs. Above Watana discharges of
24,000 cfs, flow in excess of 24,000 cfs will be used to generate power up to the energy
demand. This supercedes the priority use of the Devil Canyon powerhouse. ·
DEVIL CANYON
DISCHARGE
(cfs)
0-4,200
4,200~12,000
12,000-13,000
13,000-14,000
14,000-15,000
15~000-16,000
16,000-17,000
17,000-18,000
18,000-19,000
19,000-20,000
20,000-24,000 24,ooo-:zs ,ooo
.28, 000-32 ~ 000
32,000-36,000
36,000-40,000
40~000-44,000
TOTAL
TABLE 4·
OPERATION OF DEVIL CANYON ·CONE-V.l\LVES
TOTAL'ENERGY DEMAND 7,791,000 MWH
·.
DEVIL CANYON WATANA
NO. OF
NO. OF WEEKS NOt OF WEEKS .WATANA WEEKS WITH
OF CONE .VALVE . WITHOUT ·CONE DISCHARGE CONE VALVE
OPERATION(l)(Z)VALVE OPERATION (cfs) OPERATION(!) ---
0 0-8,000 19
1,524 8,000-9,000 16
0 99 9,000-10,000 26
1 3 10,000-11,000 23
6 0 ll,OOO-l2SIOOO 12
3 12,000-13,000 14
5 13,000-14,000 4
1 14,000-l5,000 6
5 15,000-16,000 8
3 16,000-17,000 5
8 17,000-18,000 3
3(3) 18,000-1.9,000 4
2(4} 19$000-20,000 4
1 20,000-24,000 5
0 2,"!.,000-28 ,000 3
0 28,000-32,000 2
38(S) 1626 154(6 }
" .
NO. OF
WEEKS WITHOUT
CONE.VALVE
OPERATION(!)
1428
73
0
9
c-~ .
t
1510
(1) The ·number of weeks is based on a total of 1664 \'leeks in the 32 year simulation period.
(2) The Devil Canyon powerhouse generallyoperates at 13s763 cfs whenever the conevalves
·are operating. Exceptions are noted below.
(3) Devil Canyon powerhouse flow is 11,401 cfs during one of the two weeks of conevalve
operation at this Devil Canyon flow range. ~
(4) Devil Canyora powerhouse flow is 8,069 cfs.
. .
(5) The Devil Canyon cone valves will operate 2.3 percent of the time.
(6) The Watana cone valves will operate 9.3 percent of the time.
2-44-6
, I
> ·-· ., :-~ '
'; ::.
"~·-
'" ·;:;:.
EXHIBIT E
-:. . .,.>
2. Water Use and Quality·,
Provide da,ta for each fraction of nitrogen and phosphorus used in the ca lcu-
lation of the N:P ratfo tn ;.sus·itna Ri.ver water.
Response.
The mass ratio for N:P of 28:1 listed in the FERC License Application on .
page E-2-133 was derived from data on concentrations of inorganic nitrogen
fract.ions and inorganic soluble ortho-phosphor·us found June 1980 and 1981 .
in Susitna River water samples (see attached _excerpts from R & M 1981·-·water
~ ' , ~ '2.-•
Quality Report, Tables· 3.1 and "4-~1).
'\\
; ,·,:
2-45-1 !'
' . . :~
r I
-
..
'
. ·• ' . . .
. .£
·!
J
•• 1
.j
.·]
'1
.J
]
l
:J
~]: ..
I
' t -. ~
r·---------........... ---·----=---=----~·-=·.
,,
·r
SUSiTNA ~)YDROELECTRIC f~ROJECT
\VATEiil QUA.LITY ··
ANI'!UA1L REPORT
1~98 1
'! t •• • • a ·~ •: ...• r .-~ •• .... =
' . '
; ~ . . .. •• .
r • •
· ~ROPERTY OF:
~~A·Jaska;: Power Authority
· 334. W. 5th Ave. ·
··~~Qhorage, Alaska 99501 .. ~· .. ,., ...... ·::; .• ;,;;· .. ·-·:,.·
DECEMBER 12a 1
I ".,.
I
PREP.AREO FOR:
I
R&M CONSULTANTS, INC. ~~~f~ ..
· .. J ...... __ ALASKA POWER AUTHORITY. __ w _ __,l :1 ,--......... -~
l 2:109 . t
' ·.~ ---:~·!:"';':"'S:~:i:r ..
~-~·5-2--
: 1
.1
. 1 NOTE: Dash indicates data not available.
Field . Parameters (1 )
Dissolved Oxygen
Percent S~turation
,~:-·OH7 pH Units . .
, 'onductivity ,.·r.u~hos/cm @ 25°C
TemperatL,Jre, °C
Free Carbon Oi~xide (2 ) ... < • ' ' :";:;;·. ,,
Al.k~Hnity.r as .. Caco3
S~ttleable Solidsr ml/1
Discharge c .. f.s.
(1)(3) Labor_atory Parameters
--1-·). , :· CCQ 41 I )10~:'.::!
_ -~mmEr!.ci;~~!~~.;~,
Organic Nitrog.en
Kjeldahl Nitrogen
-·.·.',.:..~~~·~"'# t ..... Ei&4Ji?€ ... ~.¥ ... ~•H-.. t!'+-~~_.
N lE£a~~~ls-E4~!'1-.ta:
-. ~!§:.~.~:~€[] .
Total· Nitrog_en .
.4 ·; . I .;;p;~M<.Ut C I$ 4 1,, ..• 4.44fi-!J
_ o~..?.:~,~!P!3~!~~·~;f
# Total Phosphorl;Js ir . ;~ i.~, ke~Unity, a.s C,aCo 3 i
1
Chemical Oxygen Demand
susi4/u
,, I
1Z.4
98
7.8
----
5.7
2 .. 0
47
0.1
24,800
:!:~!1
<O. 1
0.26
.. ;:"*li1i's~~
• ~ ' ?
tj,: ... ~ .. --~ .~., <o !'o•r::•
n ·r, a·· ···;ff
0.45
~~:iS!
0.05
-~--
28
3-3
8/8/80
---~ --.. -
7.9
144
9.3
1. 7
54
<0.1
17,300
----·--... -..
0.15
........
-----
0.03
0.03
13
p
Date Samoled ·
9/5/80
----
7.8
'171
5.3
3.6
81
<0.1
5,040
0.10
0.22
0.32
0.1.5
<0.01
0.47
0.05
0.09
..... ..,
~---..
0
9/17/80
9.7
84
7.6
124
s.s
4.5
63
<0.1.
14,200
<0 .. 05
0 .. 62.
0.62
0.09
<0.01
0.71
<0.05
0.10
-----.. .... _
10/17/80
1.3.,8
104
7.6
142.
-0,.1
5.5
as ..
«0.1
<S,OOO
0.26
0.28
0.54
<0.10
<C.01
0~54
<0.01
<0.01
66
6.
J
TABLE' 3.1 -CONTINUED
Laboratory Parameters (1 )(3 )
(continued)
Chlorlde
Conductivity, umhos/cm @ 25°C
True Color, Co,or Units
Hardness as CaCO (4 ) . . I 3
Sulfate
Total Dissolved Solids
Total Suspended Solids
Turbidity, NTU
Ul"'anium .
Radioactivity, Gross Alpha, pCi/1
Total O.rganic Carbon
Total J norganic Carbon
Organic Chemicals
Endrin
Lindane
Methoxychlor
Toxaphene
2, 4-0
2, 4, 5-TP Sifvex
JCAP Scan
Ag, Silver
AJ 1 Aluminum
As, Arsenic·
Au, Gold
S, Boron
susi4/u
6/19/80
3
150
----
51
4
70
242
94
------
_ .....
-----
------
___ _,
--.. -
<0.05
1.6
<0.05
<0.05 '
<0.05
' 3-4
Date Sampled
8/8/80 9/5/80 9/17/80
9
40
76
9.
90
310
97
<0.05
11.6±0.6
11
10
69
9
114
25
10
----.. _ ... _.
--------
<0.0001 -----
<0.001 -----
<0.05 ----
<0.001 ----
<0.05 ----
<0.005 ----
<0.05
<0.1
<0.1
<0.05
<0.05
<0.05
0.28
<0.1
<O.OS
<0.05
8
45
55
7
38
132
33
-------------.. __ _
----........
---------
--181-
<.0 .. 05
2.2
<a·.,·
<0.05
<O.b5
10/17/80
18
,, 190
10
90'"
13
. 115 (
~·
8.3
1.8
,, ------
21
-----
.........
-------
<0.05
0.18
<0'.1: ...
<o.asU
-
<:0. 05
-... ~-..... ~-~' ···-~···~-~-. "~ .,....., ........... ~ ... ..,~ ~.·:~"~ .:4-_j"'....,._., _..
. ~ ...... "
·_ ~ .~,
-. r -' )
· Labor-atory Parameters <1 )(3 )
(continued)
Ba, Barium
Bi, Bismuth
Ca 1 Calcium
CC 't Cadmi urn
Co,-Cobalt
Cr, Chromium
-"' Cu, Ccpper
.-
\, Fe, .Iron •._
Hg, Mercury
K, Potassium
Mg, Magnesium
Mn, Manganese
Mo, Molybdenum
Na, Sodium
Ni, Nickel
Pb, Lead
Pt, _ Platinum
Sb, Antimony
Se, Selenium
Si I Silicon
Sn, Tin
sr, Strontium
· . ./; Ti, Titanium i t ! j
'I
(
l • l 1 ; ~'-.. . '
'~ . 1. ; l
.l
'l
-H susi4/u
'-1 '
1
5
· TABLE 3.1 -CONTINUED
Date Sampled
6/19/80 8/8/80 9/5/80 9/17/80 10/17/80 -
<:0.1 0.11 <0.05 0.07 <o.os
<0.05 <0.05 <0.05 <0.05 <0.05
13 16 22 18 28
<0.01 <0.01 <0.01 <0.01 <0.01
<0.05 <0.05 <0.05 <0.05 <0.05
<0.05 <0.05 <0.05 <0.05 <0.05
<0.05 <0.05 <0.05 <0.05 <0.05
2.1 4.0 0.46 2.7 0.37
<0.05 <0.1 <0.1 <0.1 <0.1
<1.0 2.3 2.1 s.o <1.0
1.4 3.4 3.1 1.2 4.5
<0.05 0.10 <0.05 0.07 <0.05
<0.05 <0.05 <0.05 <0.05 <0.05
2.6 2.4 5.1 3.5 7.2
<0.05 <0.05 <0.05 <0.05· <0.05
<0.05 <0.05 <0.05 <0.05 <0.05
<0.05 <0.05 <0.05 <0.05 <0.05
<0.1 <0. 1 <0.05 <0.1 <0.1
<0.05 '<0.1 <0.1 <0. 1 <O. 1
4.8 5.3 3.6 6.9 4.1
<0.1 <0.1 <0.1 <0.1 <0.1
0.05 0.06 0.07 0.07 0.10
0.13 0.24 <o.o5 0.17 <0.05
~ -l.{S-5
3-5
Labor~tory Parameters <1 )(3 ) ·
(continued)
w, Tungsten
v, Vanadium
Zn.~ Zinc
Z.r, Zirconium
..
TABLE 3.1 -. CONTINUED
6/19/80 8/8/80
<1.0 <1.0
<0.05 <0.05
<0.05 <0.05
<0.05 <O.OS
(1) Table values are mg/1 unless noted otherwise.
Date Samoled
9/5/80 9/17/80
<1.0 ----
<0.05 <0.05
<0.05 <0"05
<0 .. 05 <0.05
(2) All values for free co 2 determined from nomograph on p. 297 of
Standard Method, 14th edition.
(3) Samples for all parameters except chemical oxygen demand, dissolved
and suspended solids, and turbidity were filtered.
( 4) liardnes.s calculated by R&M personnel.
!':JUSi4/U 3-6
,_ ... ;..
t.
·-t t 10/17/80 t:
<1.0
<0.05
<0.05
<0.05
..,. .
..._.. ;
;
~ '
I ' .
. .,.
I
• '
. ' I i
..
'-....l .. t
~··
' .. i
I I ~
l' __ , ~"''"""'''" l
I ____ ........ _ .... iliiill., ..• :· .. -·~ ... ··-""'
·=t
-jl . .3
·~··· .. , . • ' )i
. -'· ·.
-.]·' ... ~.
--
-j· .~ .;._ ~
~·] .. ~-~ •
NOTE: Dash indicates data not available
Field Parameters (1 )
Dissolved Oxygen
Percent Saturation
pH, pH Units
Conductivity, umhos/cm @ 25°=
Temperature, °C
Free Carbon Oioxide (2 )
Alkalinity 1 as Caco3
Settleable Solids 1 ml/1
Discharge c.f.s.
Laboratory Paramete~ (1 )(S)
Organic Nitrogen
Kl• Gld=h' ru •1 -rr~"'~gAn ._ .....,. .._. •• J I v -,_, WI
=~t:§!:.~.§}ii€§~J
Tool Phosphorus
AJ kafinity, as Caco3
Chemieal Oxygen Demand
susf9/j
1/13/81
10.7
84
7.2
242
0.1
20.0
99
<<0.1
1,800
<0.05
0.85
0.85
<0.1
<0.01
0.85
<0.01
0.07
------
12
4 - 5
10.4
83
6.6
100
6.5
<0.1
91810
0.13
0.34
0.47
<0.1
<0.01
0.47
<0.01
<0.05
-----.
8
Date
----11.6
-~-... 99
7 .. 8 7.7
120 124
11.9 7.9
3.2 2.2
79 41
¢0.1. <0.1
11,600 131700
. . . ._. .... ~ ,_,, . ;u.a;c:ew ... ·4•::a;:;a: -•-''". ·
: 0.12 . . <0.05
.... .,.. "'!'!""t znm"'!nb'&',...,..,._,.. ... ·· -~
__ ,.._
8 16
TABLE 4.1 .. CONTINUED
Laboratory Parameters (1 )(3 ) (Cant' d)
Chloride
Conductivity, umhos/cm @ 25°C
True Color, Color Units
Hardness 1 as caco3 (4 )
Sulfate
Total Dissolved Solids
Total Suspended Solids
Turbidity 1 NTU
Uranium
Radioactivity 1 Gr?ss Alpha, pCi/1
Total Organic Carbon
Total I norgan~c Carbon
Organic Chemicals
Endrin
Lindane
Methoxychlor
Toxapher;e
2, 4·0
2, 4, 5-TP Silvex
ICAP Scan
Ag, Silver
AI, Aluminum
As, Arsenic
Au, Gold
B, Boron
susi9/j
1/13/81
18
10
121
16
149
0.6
0 .. 35
<0.05
10.3±0.6
. 23
106
<0.0002
<0 •. 004
<0.1
<0.005
<0.1
<0.01
<0.05
<0.05
<0.10
<0.05
<0.05
4 - 6
5/20/81
4.5
15
40
4
100
93
25
-----
-~--
40
46
------.----.a--
<0.05
<0.05
<0.10
<0.05
<0.05
Date
6/18/81
5.0
5
49
8
170
340
66
----
-C)--
11
46
----.. _. .... _
..:.---
<0 .. 05
<0 .. 05
<0.10
<0.05
<0.05
6/30/81
5.0
20
59
7
91
130
29
-----
........
23
59
<0.0002
<0.004
<0.1
<0.005
<0.1
<0.01
.,.,:::::"',i.l
}
<0.05
<0.05
<0.10
<0.05
<0.05 ~,
-z,-4s-£r
.
. .: .. ~
l
l.
'./'"' ····-·,._ .. .. .., .. '
j·
j
·1
••• H'
'-'
j
1
. ~1
..-:! :]
:J
j
:1 ' i -~ -
. •• ~ "t
'·:) · .. r·
'~j . ·> .
·-
TABLE 4.1 -CONTINUED
Date _______ ..,_, __ , _ _..;;..;;..;;.;;;............,._,_ ______ _
1/13/81 5/20/81 6/18/81 6/30/81
Laboratory Parameters (1 )(3 ) (Cont1d)
Ba, Barium <0.05 <0.05 0.07 0.11
Bi, Bismuth <0.05 <0.05 <0.05 0.19
Ca, Calcium 36 13 16 19
Cd, Cadmium <0.01 <0.01 <0.01 <0.01
Co, Cobalt <0.05 <0.05 <0.05 <0.05 .
Cr, Chromium <0.05 <0.05 <0.05 <0.05
Cu, Copper <0.05 <0.05 <0.05 <0.05
\
Fe, Iron <0.05 0.08 0.05 0.07
Hg!' Mercury <0.10 <0. '10 <0.10 <0.10
K, Potassium 2 1.5 2.0 2.1
Mg, MaQnesium 7 .. 6 1. j 2.0 2.8
Mn, Manganese <0.05 <0.05 <0.05 <0.05
Mo, Molybdenum <0.05 <0.05 <o.os <0.05
Na, Sodium s.s 2.0 3.3 4.6
Ni I Nickel <0.05 <0.05 <0.05 <0.05
Pb 1 Lead <0.05 <0.05 <O. o:; <0.05
Pt, Platinum <:0.05 <0.05 <0.05 <0.05
Sb, Antimony <0.10 <0.10 <0.10 <0.10
C:c Selenium <0.10 <0.10 <0.10 <0.10
_, .... ,
Si I Silicon 5.0 1. 7 2.0 2.6
Sn, ·nn <0.10 <0.10 <0.10 <0.10
Sr, Strontium 0.13 <0.05 0.06 0.07
Ti, Titanium <0.05 <0.05 <0.05 <0.05
susi9/j 4 -7
7.,-1../S-'1
·. · .. ·.~· ·.;:,: ' .. ·, . ·. ~ .· ' '·. ';. •., .,
' • ... • 4'1 ' • " ~ ~ > \
.. ' " .. ¥ "
TABLE 4.1 -CONTINUED
Date
1/1!/81 5/20/81 6/18/81
Laboratory Parameters (1 )(3 ) (Cant' d)
W, Tungsten 0.4 <1.0 <1.0
v·, Vanadium <0.05 <0.05 <0.05
Zn, Zinc <0.05 <0.05 0.07
Zr, Zirconium <0.05 <0.05 <O.OE
(1) Table. values are mg/1 unless noted otherwise.
(2) All values for free C0 2 determined from nomograph on p. 297 of
Standard Method, 14th edition.
§£30/81
<1.0
<0.05
<0.05
<0.05
(3) Samples for all ~arameters except chemical oxygen demand, dissolved
and suspended solids, and turbidity were filtered.
(4) Hardness calculated by R&M personnel.
~ .-L/S-lO
susi9/j 4" -8 ,
u
i .
i • l.
.
EXHIBIT E
2. Water Use and Quality
Comment 4S (p. E-2-136, para. 4)
Provide data an water quality, including nutrients, dissolved oxygen, and
trace metal concentrations in Alaskan reservoirs of similar depths and in
similar climatological regimes during and after fi llingt>
Response
To our knowledge there are no Alaskan reservoirs of simi 1 ar depths and
similar climatological regimes fro~ which to derive the data requested.
2-46-1
~. . .
•
EXHIBIT E
REVIEW STAGE'3
2. Water Use and Quality
Provide a list of differences and similarities among Lake Eklutna, Watana,
and iOevil Canyon, including nhysiographic characteristtcs (e.g., depth,
area, aspect, shoreline development) known to affect responses of reservoirs
to meteorological changes and thermal characteristics.
Respons~.
Tabl~ l provides a list of differences and similarities among Lake Eklutna,
Watana, and Devil Canyono Watana will have a much larger drainage area and
a substantially greeter inflow than Eklutna., However~ the most notable
difference between Lake Eklutna and Watana will be the sile difference •
Watana will be longer, deeper, wider, and have a much greater surface area
and storage capacity. The shoreline length and shoreline development will
also be greater. Maximum drawdown at Watana wi 11 be two times the drawdown
at Eklutna. The length to width ratio at Watana will be approximately four
times that at Eklutna. Eklutna is approximately 5 miles from the glacier,
whereas Watana reservoir will be approximately 35 miles from its glacial
source. This has a significant impact an the inflow WC!.ter temperature dur-
ing summer.
The similarities between the two reservoirs are also noteworthy. The per-
cent of the drainage areas covered by glaciers are 5o9 and 5.2 percent for .
Watan.a and Eklutna respectively. Both reservoirs are glacially fed and :have
high a sediment input. Suspended sediment size distribvtions for both
reservoirs indicate that a large fraction of the inflo~ing suspended sedi-
ment is finer than 2 · · -r~ns. The ratios of live stot ·~-to total storage
and the mean residence times will also be similar.
2-47-1
<~ ~"'1 A,,comp~~(~__,,)n .of Eklutna and Devil cinyon reservoir yields similar findings. --''" '.
. llt;':f{<C;r.y~n will be four tfmes longer. It will also be much deeper and ..... .
. .
have more th~n twice the surface al'ea and storage capaci_ty. Discharge and
distance downstream from the glaciers are greater significantly for Devil
•,
Canyon. Mean residence time for Devi 1 CaQyon wi 11 be much less than for.
Eklutna. ';\
The percent of the drainage basins occupied by glaciers is virtual)y the
same for. b.oth Eklutna and Devil Canyon. Although sediment input will be
reduced because of the presence of Watana reservoir, Oevi 1 Canyon is expect-
ed to be turbid because of the fine suspended sediment particles passing
through Watana. Maximum drawdown at both Eklutrra and Devi 1 Canyon wi 11 be
similar.
2-47-2
'~'"" ..•.
It' : ' . . .
~ .
'·~·J·.' .,
" ..•. ·.
-......
TABLE 1
COMPARISON OF BASIN CHARACTERISTICS
BASIN CHARACTERISTICS
Drainage :Area (mi 2)
Glacier Areas (mi2)
% of Or ai n age Area
Glacially Fed
Annual Inflow (ac. ft.)
RESERVOIR/LAKE CHARACTERISTICS
; ~ ~:"'¥.
Length (miles)
Maximum Depth (feet)
Mean Depth (feet)
Maximum Br•eadth (miles)
Mean Breadth (miles)
Surf ace Area (acres)
Capacity, Total (ac. ft.)
Live
Shoreline Length (miles)
Shoreline Development
Normal Maximum Elevat·ion of
EKLUTNA
119
6.2
5 .. 2
Yes
234,300
7
200
121
1;\0
0.76
3,420
414,000
213,271
16
1.95
Water Surface (feet) 868
Maximum Drawdown (feet) 60
Live Storage/Total Storage 0.52
Total Storage/Surfac~ Area (feet} 121
Length/ Average Depth 305
Drawdown/Average Depth 0~50
Length/Average Width 9.2
Mean Water Residence Time (days) 646
Wat~r Quality Turbid
2-47-3
WATANA
5,180
290
5.9
Yes
5,750,000
46.3
735
250
5
1.28
37~800
9,470,000
3,920,000
183
6.7
2,185
120
0.41
250
978
0.48
36
603
Turbid
DEVIL
CANYON
5,810
290
5 .. 0
Yes
6!)610,000
28.4
565
140
1.5
0.4
7,800
1,090,000
351,000
76
6.1
1l'455
50
0.32
140
1,071
0.36
71
60
Turbid
Cj
-~ ... ._._
-..
EXHIBIT E
2. Water Use and Quality
CODJent 49 (Figc.·:_.E.2.63 and E.2.64)
'~ "' j
-~--'
_;; .. _ -,,;.·;.P
Provide ,clariftcatinn of the term 11 Watt;;;· depth 11 used in these figures (i.e .. ,
maximum depth, mean depth~ cr hydram fie. radius).
Respon~~
Th~ term ''water depth" used in these figures (attached in pp. 2-49-2 to
2-49=3) r"efers to maximum water depth in the. cross-sections. That is, the
·distance from the water surface to the thalweg •
..
2-49-1
v
G
i=
bJ
bJ
I&.
X
1-a.
bJ
0
a:: bJ
~
==
----
18.00 ...
• 24.1~ Ft;~T. ·
17.()0 0 22.88 FEI;:T
• 0 2t.9t"' FEET ...
1600 0 4
\'· .,
20.$13'.i:::ET
...
15.00 ... •
4
'14.00
IC • II A ,\
13.00
0
0
12.00 A.
A .a.
..
11..00 • ll.
10.00
9.00
8.00
A 0
7.00
6.00
5.00 0
4.00 ~------~------~~--------+---------~r--------t------~-~-------i---------r--------+--------i------~;---------~--~---4--~~~-~
3.00
2!.00
126 126 130
LEGEND:
'GOLD CREEK FLOW:
• 23,400 CFS
0 17,000CFS
A 13,400CFS
A . 9 1700CFS
132 134
NOTE:
WATER DEPTHS COMPUTED
BY U.S. ARMY CORPS OF
ENGINEERS HEC.II.COMPUTER
PROGRAM.
136 138 140
o~wz •2:13: RIVER MILE -IWCJO <w
ow.-4--> t3a:<::~!;i a_
u ... ::a::
(I)
MAINSTEM ·WATER. DEPTHS
DEVIL CANYON TO RM 126 -'
142 144 14& 148 150 as a
':lll: • 2
111 ~ 111 a:: z u "' ·U
bJ
C!J -::::!\ ~ > a:: bJ ~· ..
0 ·a
a.'· ·~·· .
.. .
'·,.;..··
~
"" ""
18.00
,~;
17.oo
16.00
15.00
14.0 0
13.D 0
IZ.Q 0
~ll DO
::r:
t:
"" D 10 .00
a:
"" ~ 3:
.
9.00
8.00
7.00
6.00
~.co
4.00
3. 00
2.00
.
t-'-
-
:
I
.
9,8
.~--:::.;':.
.
...
0 .
...
A
•
~ II -... I ::f. 0 ~ .
a..
A
A
"
100
LEGEND: .
GOLD CREEK FI.OW:
a a3,400 CFS
r"' 17,000 CFS
i:. 13 1 400 CFS
t;. 9 1700 CFS
II
0
A
A
.
II
0
...
• A
-.
0 .
0 . ··--A. ...
~ ~
•
....
...
A
:
102 104 106
NOTE: y
WAT.ER OEPTHSPCSOOM~~~~~N~ERS U s. ARMY COP.
H.EC·.U COMPUTER PROGRAM.
•.
1 -·
.
•
.
a__ .
i .
.A : .
I .
A • : • •
c
I c .: A
II • b." A 0
' •
A fJ 0
b. :. 0 ·-...
A b. e. .
108 110 112
1&.1 en
cl :z: u
RIVER MILE
MAl NSTEM WATER DEPTHS
RM 12 6 TO TALKEETNA
~
)
"
'. ~; ' . ---' il
0 . ..
-. ,::., .,
:
A ' .
. 0
.. -
tl • .
i•
.
0.. -
I ~
. 4 ...
•
,_,
A c
• i
~ • ...l . .. 0
b. .
0 ... t. ·.:
: A
b.'
II
II A •
'"
0
0
.... .. a -...
t:. A
.~,
Q --
. -
\
I ,·_;._
'· . 0
·~ 124 ... 12!0 122 . 116 UB . >
114
" • a: a:
;::I "• u
.. ;-.:;·
EXHIBIT E
.~r,~
'" 2. Water Use and Quality
' ~ \-
J C01111erit 50 (Figure E.2.65)
Prcvide a description of the ft19deling procedures used to __ generat~ the water
surface. elevations in this figure. Provide the appropriate referei1ce to
Triheyes work (Trihey ~98t: is ambiguous) and other ADF&G or R&M report$ con.,.
~ . ~
. taining data used in this 'analysis.
Resoonse
As stated in the response to Comment 4, ( Exhibit E, Chapter 2) the water
surface elevations (shown as solid lines in Figur·e E.2.65 Po 2-50-3) for
mainstem flows of 12,500 cfs and 22,500 cfs are based on water sur-face
measurements taken on August 2, 1982 and August 24, 1982. The water surface
elevations at ADF&G gages #129.2 ~JIA and WIB (station -4 + 50) for the
intermediate mainstem flows of 16,000 cfs and 10,000 cfs (shown as dashed
lines in Figure E.2.65) were obtained from the water surface elevation -
mainstem discharge relat·ionship shown on Figure E.2.66 in the Exhibit~ which
was based on observed data a Ti1e water surface elevation was assumed to be
the same at AOF&G gage #129 .. 2 WI as it was at the upstream riffle, since
·pools existed at flows of 12,500 and 22,500 cfs. Also, since Slough 9 is
not overtopped at·mainstam discharges up to 18,000 cfs, outflow f.rom the
s 1 ough is quite sma 11 and it has no appr•eci able effect on the water surf ace
profile downstream of the riffle at passage reach B. Slough f"tow was set at
3 cfs to rspresent a plausible worst case entrance condition during the
inmigration period for spawning chum salmon. The depth of flow through the
.· riffle at passage reach B for a flow of 3 cfs 'lias estimated from water
• depths recorded by ADF&G while surveying the bed profile of Slough 9 on
August 24, 1982. Slough flow was measut .. ed as 3.4 cfs on August 25; 1982.
2-50-l
' .
.
The reference to Trihey•s w'ork is given below:
2 . ~
Trihey, E ... Woody. 19826 \\Preliminary Assessment of Access by Spawning
Salmon to Side Slough Habit'at Above Talkeetna. Pr~pared :for Acres American
-· ~ -,'-., Inc. Buffalo, New York. 26 pp. , : :,, ,_, ,, -~
·~, ~
Additfona1 informat.1on is contained in the following references:
'·•:.
Alaska Department of Fish and Game (ADF&G), 1983. Susitna Hydro-Aquatic
Studies Phase II Basic Data Report .Volume 4. Aquatic Habitat and Instream
Flow Studies~ 1982.
R&M Consultants Inc. 1982. Susitna Hydroelectric Project 1982 Hydrographic
Surveys Report, Prepared for Acres American Inc.
2-50-2 .·
~, ..
' '
~~.. ' ¥'
-f;j
UJ u. -·z
0
~ :>
liJ
..J
t.-J
594
593
592
59;
590
589
~88
587
ADF 6 G
STAFF GAGES'
a.12-Cf. ~.wlt1
/2·'1 .. 2 {,.IJ/)
PASSAGE --+~--..~
REACH A
I I
-5t00
NOTES:
I. MOUtH OF SLOUGH AT STATION 0+00.
2. SELECT MAINSTEM DISCHARGES
MEASURED AT GOLD CREEK.
I
WSEL = 592.15
LMAINSTEM •22,500 :s
WSEL AUG 24, 1982 = 590.00
MAINSTEM = 12,500 CFS
$LOUGH : 3 CFS
I
0+00
(MOUTH)
DISTANCE (FEET)
I
5+00
BACKWATER PROFILES AT THE
MOUTH OF SLOUGH 9
I : ' I I • I I 1
10+00
..
EXHIB.!T., E
2. Water Use and Quality
C01111ent 51 (Table E.2.2, Table E.2.4)
'··
Prcwide tables of mon.thbfy average flow data at Gold Creek, Chulitna River,
Talkeetn~ River.,, and Susitna Station for water years 1950 through 1981.
~rovid~ corresponding monthly average · temperature data at these four
stati~ons 'for every month. during water yea~''S 1950 through 1981 for which thiS
is possible.
Response
Tables I through 4 of this response provide roonth ly average flow data at
Gold Creek~ Chulitna River, Talkeetna River, and Susitna Station for water .
years 1950 through 1981. The flow data is supplemented with filled tn data
' '
obtained from a correlatjon analysis where flow records do not exist. The
periods of estimated or filled-in data are noted in each table.
Available rnonthly average temperature data for water years 1950 through 1981
are presented in Tables 5 and 6 for Gold Creek and Susitna Station, t"espect-
ively. For the Chulitna River, there are no continuous records from which
monthl} av.erage temperature can be computed. For the Talkeetna River, the
only month'ly average temperature data available is for water ye&r 1954 and
is as fQllows: May 7.2°C, June 11.1°C, July 11.7°C, August 10 .. 6°Ci and
September 7.2°C.
2-51-1
TA&\-~ \
&oLt> CKE.E\!.. f10tJTHLT FLOW (cFs)
US&!> bAb' 1'5Z'fZOOO
W4'TEA
'fEAR OCT NOV ii£C JAN FEB HAR APR HAY JUN JUL AUG SEP
. '
' I
: /'/fl.) 6335. 2583. 1439. 1027. 798.-7?.6. 870. 11510, 19600. 22600o 19880. 8301'11 /'IJ-1 3048. 1300. 1100. 960. 820. . 740. 1617. 14090. 20']90. 22570. 19670s 21240 •. •'I S'l 5571. 2744. 1900. 1600o • 1000 •· aeo. 920. 5419. 32370. 26390., 20920. 14480. f'{)""J 8202, 3497. 1700. 1100. 820. 820. 1615. 19270. 27320. 20200. 20610. 15270. t'IS~ 5604. .2100. 1500. 1300. 1000. 780. 1235 • 17280. 'W"l50 20360. 26100. .12920. ~;,')4. • t'f s1· 5370. 2760. 2045. 1794. 1400. 1100. 1200. 9319. . 29060. 27560. 25750. 14290. tfft. 4951t 1900. !JOO, 980. 970. 940. 950. 17660. 33340. 31090. 24530. 1 a:JJo. 11r1 5806. 3050. 2142. 1700. 1500. 1200. 1200. 13750. 301&0. 23310. 20540. 19800 • . ,,sa 8212. 3954. . 3264. ' 1965 • 1307 •. 1148 ,, 1533. 12900. 25700. 22BBO, 22540. 75501} '·I 'Iff 4811. 2150. 1513. 1448. 1307. 980. 1250, 15990. 23320. 2500,) t 31180e 16920. /160 ..
6558. 2850 •. I 2200 t 1845. 1452. 1.~ 97. 1300. 15780. 15530, 22980. 23590, 20510. /'It, I 7794. 3000 •. 2694. 2452. 1754 •. 1810. 2650. 17360i 29450, 24570. 22100 e 13370. {'162.. 5916. 2?00 •. 2100, 1900. 1500. 1400. 17()0, 12590. 43270, . 25850. 23550. 15890. /'f'} 6?23. 2800. 2000o 1600. 1500. 1000e 830. 19030. 26000. 34400. 23670t 12320o '.ft'f44 6449 •• 2250. J.-494. 1048. 966. 713. 745. 4307. 50580. 22950, 16440. 9$71. 1'1'6r 6291. . 2799. 1211. 960 • 860, 900, 1360. 12990. 25720. 27040. 21120. 19350. ~ l'f'£:, 7205. 2098. 1631. 1400. 1300. 1300. 1775. 9645~ 32950. 19860. 21830. 11750. :tlf{s,t 4163. 1600. 1500. 1500, 14.90~ 1200o 1167. 15480. 29510. 26800. 32620. 16870. /9G6 4900. jDf. 3: !iU: ~ 1~. ·tm· 16110. lit aa~: liD!. a»:. IYG~"f -;,m;a. .• ' l IJIMI. '-•
1c -·
.. . • • -. ·,vro 3124. 1215. 966. 824. 76Bo 776. lOBO, 11380. 18630 •. 22660. 19980 •· ·f,; 91,21 • 1'111 950, 1082. 3745. 32930. 23950. ,'. 5288. 3407. 2290. 1442. 1036 •. 31910. /144 40. /'I "f).. 5847. 3093. 2510. 2239. 2028. 1823. 1710. 21890!) 34430. 22770. 19290. 12400. !111 48;:6. 2253. 1465. 1200. . 1200. 1000. 1027. 8235. 27800. 18250. 20290. 9074. tlfff 3733. 1523. 1034. 874. . 777. 724 • 992. 16180. 17870. 18800. 16220. 1'l'1C'O .. 44-.:J t I '17-S' 3739. 1.700. 1603. 1516. .:1471. 1400. 1593. 11:'31:'0 32310. 27720. 18090. 16310. tJ tJ •
N /77G 7739. 1993. 1081. 974. ' 950. 900. 1373. 12620. 24380. 16940t 19800, 6881.
~ 1"111 3874. 2650. 2403. 1829. . 1618. 1500; 1680, 12680. 37970 • 22870. 19240. 12640. /tf1'6 ',
2029. 7571. 3525. 2589. 1668. 1605. 1702. 11950, 19050, 21020 •. 16390, 8607. -tf1'1 4907o 2535. 1681. 1397. 1286 • 1200, 1450. 13870. 24690. 28880. 20460. 10770. • N lYOd 7311. 4192. 2416. 1748. 1466. 1400. 1670. !2060. 29080. 32660. 20960. 13280. 1'101~) 7725. 3-91t0 •. ~. J~. :1~. ·1+1-4. 1~. 1-d317. 1-~ •. ~.{). J.US.J.B • ·~. \).S"~'I I'll$' ;1..0/:J /Cf =j',S' I J'SY' ..tOiO If; :r.s-o /9"Jc.'0 :J :;··Mu -:J :r.~ro I 3 7"-'i'O (, Yv(;b < ...
r,· ~.). ( .
II AS ~~ t: v' I C: I f) I It l 61 1 I .• , ( ; l I \·. ·];'.( lfAt·1 f.l' c· ... r 1 , ( I ,, I l A I 1 ; ly, .·. , -.· I ..
N
t
Cl\ -• lN
j~li . ,
•
W/4tER
YEAR
..
I ABlE 2,
CHuLITNA 'R\\/~R MOtJTHL."/ F1-0W
llS&S C:sAb-i'% IS"Z~ZLloo
OCT NOV ltEC JAN HAR Af'R HAY JUN JUL AUO SEP
OCT
• j '
-r~\3L~ 3
T Al-\,E.EINA R\Vf:R MONI)-\1.,~
VS&S 8A&£ 152~2700
NOV (IEC JAU FElt HAl\ HAY JUN JUL AUG SEf~
gf "'f"A8L.t:~ · · ,, J !~· 1\ • ; ,, . . STA-raON:. \O~'ft-\LV (c~s) ~~ ~
S\J~ r·f'tJA ~L.OW '·•·-
,, {.-.~ \JS&S 6AE1S 15'2.c;'-f3~0
YEAR . oct NOV ttEC JAN FEll MAR APR HAY JUN JUL AUG SEP
/C#flJ 26969. 11367. . .6197 •· 6072. 525&. 5377. 5657. 66294. 101616. 124890. 106432 .. 39331.
llfJ'"( 18026. 6933. 5981. 7074il 7295o 6382. 7354. 59273. 82255. 123164. 100947. 73471.
rtr'-31053. 16364. 6989. 9274. 7036. 5953. 5«185, 45294, 132547. 137322,: 1161&6. 82076.
(f(J.'J -44952. 16289. 9746. 9069. 6775. 6350. 7993. 88040. 130561. 1.25949. 97610. 44160.
,, J-rl 20169. 11829 •.. 5272. ·. 7202. 4993. 4980. 6306. 58516. 108891, 116732. 128587. 66275. ,((a, .. 23896. 9168 •. 619'3. 7255. 5945. 5316. 6412. 58164. 169045. 148877. 120120. 53504.
rn'~ 19923. 10522. 7295. 6179. 6831. 6324 .• 7182. 82486. 161346. 168815. 131620. 104218.
l'IJ"'f 41822. 21549. 14146. 10600. 8356. 7353; 7705. 63204. 176219. 140318. 12481.3. 87825.
/tr~i3 52636, 19897. 10635. \ 7553. ·. 6387. 66"19. 8099. 70321'" 112897. 122280. 99609, 53053.
I~'J-if 30543. 9528. 4763. 7795. ·6564. 5666. 6468. 56601. 110602. 146217. 139334. 67904.
/fi&O 25754. 1.0165. 7005. 6716. 6310. 5651. 5830. 50062. 84134. 129403. 113972 •. 81565.
1%1 33782. 12914. . ·. 13769. 12669. . 10034. 9193.: '."·V903• 85457. 151715. 138969. 116697. 62504.
/%2 29029. 13043 • . . . 9977. 9050. '6193. 5951 .• 6635. 54554. 163049. 143441. 12t221. 74806.
lfb3 27716. 10755. . . 8865. 8671. 7854. . .... 6058. :·5565. .• 53903e 85648. l46420 • 106707. 70782.
l'lfA. 37846. 11702. . 5626. 6J51. 5762. 4910. 5531. 35536. 153126. 124B06t 92280. 46110.
ff{C,) .. 20747. 10458. 6127-:e 6952. 61968 6170. : 7120. 49485, 110075. 138407. .111846. 89944.
f'{{,' 365~3. 12313. 9159 ~· 8031. 7489. 7()91• : 8048. 52311. 125183. 117607. 119729. 63987. ..
,j,
ICf(; ':/-26396. 12963.· 8322·;· .. 8029. 7726. 6683t .~·. ,1281 G 58107. !J4B01o 136306. 137318. 89527.
J!{(,9 m&· ~· .1~,·· . ~!?~. 11532 • . m;!· .·~w.· ~· ~: 130514. ~· ~-.
l'il:ll 0 • ••• =t' i:IJJ. Jf; ~~ . . ~ . !~. :,
• . ·-·~ ' • • •• ~ .
1'110 22693. 6799. :. 5016. 6074. 5581. 573""' 5769. 53036. 9,612. 132985. 117728. 80595. .. .... · ...
l'l:rt 32817. 16607' ... 8633' 6509. 6254e 53BJ, . ···~.788. 29809. 122258. 139183. 133310. 69021 .• ..
t'ffJ. 32763. 14922. l 8791 •. 9380. 8458. 6646. 6895. 74062. 176024. 142787. 107597. 60220·
l'fr'J 26782. 14 853 •.. 8147; 7609. . 7'477. 6313 ... 7608. 64534. 122797o 123362. 107261, 4522i".
ttt14 20976. 10113 •. '6081.· 7402. 6747. . 6294. b96J, 61459. 6'7938 • 102184. 80252. 56124.
rt'f! 19520. 10400, 9419. 8597. 7804. 7048. 6867. 47540. 128800. 135700. 91360. 77740i
·tCf1(.,. J1550. 9933. . 6000. 6529. 5614. 5368. 7253. 7046C, 107000 • 115200. 99650. 48910.
1'11-1 30140. 18270. 13100, 10100. 8911· 6774. 6233. 56180. 165900. 143900. 125500. 8J810e
1714 38230. 12630. .-:· 7529. 6974. ·. 6771. 6590. 7033. 48670. 90930. 117600. 102100c-55500.
1'119. 36810 •.. 15000. . . 9306' 8823. ' 7946. 7032. 8693~ 81260. 119900. 142500. 128200. ~ • 1980 58640 t . 31590. . 14690 0 10120 • 9017· 9906. 120JO, 66580, 142900. 181400. 126400.
tf81 • 34 970.
. ;
16200 •. :8516. 7774. 7589. 6177. 10350, 83580, 108700. 152900. 15960t'·· 67170.
0) b~ ~ A·~ ·'"s-o,. toq ~·~ ~~ ~; u, J"\,
C~&~ ~ c. ·• ~ oJ~/974.
~~ . . . ...
lZ.} ~·rd t?t3J l:e.viJ/a~ h IJSG-J' ... . .
•..
0 .~ -
;-
'r
-·----· ---------,-----·--·-------------