Loading...
HomeMy WebLinkAboutSusitna Hydro Project Supplemental Responses Vol 1 1983::IYDHOELECT.!~IC ...... ;'~~--, -• V...Jl•_,.~• ~ .... .-" .,f ~ ~rro-• 11:'-It...... "' jj ~1 i:Di: itJ~i , ··' .... • , t:" . _ ·-;'!"',...~· · .. ,..r~-s· _ .. ,. i;•..,¢•-_....._.,.,_.,.,..t,~· ..J<vo.-v)JJ~ I • '·' ...... ~ .. ·'!"~ ... ... • ;.. 4 W \J ,t.aU.i V . Enclosut"e 1 Susitna Hydroelectric Project No. 7114 Schedule B, Supplemental· Information CONTENTS Exhibit E 1. 2. 3. 4. So 6 .. 7. 8. 9., 10. 11. Gene~al Description of the Locale • • • . • ,. • Water Use and Quality • • • .. • • • • .. • • • Fish, Wildlife, and Botanical Resources Aqua.trc Resources • • • .. • • • • .. • • .. • Tex-restrial Botanical Resources • • .. • • • Terrestrial Wildlife Resources • • • • • • .. Historic and Archaeological Resources .••••• Socioeconomics • • ~ o • • • • • • • • • • • • Geological and Soil Resources' ••••••.•• Recreational Resources • •. • • • • • • • • • • Aesthetic Resources • • • • • • • • • • • • .• • Land Use • • • • • • .• • • • • • • • • • • :. • Alternative Locations i ~.,D.esigns, and Energy Sources • • . ;: ·· • ·.•.. • . .• • . • • • -..~ • • • List of Literature • : ..• · • .,. • • • .. .o··. • • .1.. • ' . Transmission Facilities 12 .. 13. . Status of Facilities • • • • • • ' ~lectrical Environmental' Effects . ~ . . . . . • • • • • • • n Engineering 14. General • • 0 • • • • • • • • • • (' • • • • .. • 15. Exhibit F and Supporting Design Report • • • • 16. Exhibit G • • • • .• • .. • • • ~ .. • " • 0 • • • Need for Power 17. Exhibit B • • • • • • • • .. • • • • .. • • 0 • • 18. Exhibit D • • • • • • • • • • .. e . • .. • • • • • 19. Additiona1:supplemental Reports Required • • • 20. Financial Plan • • • • • • • • .. • • .. • • • • Volume No additional information required I II II II II II II II II II II II III III III III III III III '! • EXHIBIT E 2. Water Use and Qua~~~Y Provide copies of the original photographs, with dates, and an estimate of mainstem flow at Gold Creek when the aerial photograr>hs in FigfLires E.2.11 to E.2.20 were taken. Provide· similar sets of photographs at hig.h~ .medium, and low flows to document channel stability, wetted surface areas!, etc., in fut- ure Aquatic Studies. Resp~ Copies of the original photos in Figures E.2.11 through E .. 2.20 (Exhibit E; Volume 58) are contained in Supp lementa 1 Attachm~mt 2-1 as SA 2-1-1 through SA 2-1-16. The photos at a scale of 1 11 :4000' we!re taken c.n 24 August 1980 by North Pacific Aerial Survey and represent a mainstem flow at Gold Creek of 18,000 cfs. Photographs of this reach of the river for varying flows {low, middle~ and high) will be taken during August-Ot~tober 1983.. Copies of these aerial photographs will be provided to FEBC as they are made available • 2-1-l • . ·. . ) • • EXHIBIT E 2. Water Use and Quality Provide camp lete references tJ all cross -sect.i Jn data and staff gage data for locations indicated in these figures. Response References to Cross-Section Data: .Cross-sections LRX-1 to LRX-6:.~ including cross-sectional plots and a des- crti pti on of substrate and vegetation present, are contained in: R & M Consultants, Inc. 1981.. Susitna H droe:lectric Pr-oject Hydro ·ra'"'hic Surve_\fS Closeout Report prepared for Acres American Inc.. This document is included as part of our .response to your request for literature, Exhibit E, Chapter 11. Additional mainstem cross-sections: LRX nos.: 1, 1.1, 1.2, 2, 2.1, 2.2, 2.3, 3, 3.1, 3.2~ 3.3, 3 .. 4, I 11 4.1, 4.2, 4.3, 5, 9.1; 10.1, 10.2, 10.3, 18.1, 18 .. 2, 18.3, 19.1, 20.1! 20.2, 25.1, and 28.1 are contained in: R & M Consultants, Inc. 1982. _Susitna Hydroelectric Project Hydrographic Surveys Report prepared for Acres American Inc. This information is included in pp. 2-2-4 to 2-2-32. II Cross-sections for sloughs 22, 21, 20, 19, 16, 11, 10, 4th of July Cr-eek, Slough 9, SA, Lane Creek Slaugh, Slaugh 6A and Whiskers Slaugh are also con- tained in the above cited 1982 Hydrographic Surveys Report. They are con- tained in pp. 2-2-33 to 2-2-84 • 2-2-1 Cross-sect:ional data for Portage Creek, Jack Long Creek, Indian River~ Gold Creek, unnamed tributary at river mile (RM) 132.0, 4th of July Creek, Sherman Creek, unnamed tributary at RM 123.9, Deadhorse Creek, unnamed trib- utary at RM 121.0, Little Portage Creek, McKenzie Creek, Lane Creek, Gash Creek, unnamed tributa~~y at RM llO.L, and Whisker$ Creek: are contained in: R & M Consultants, Inc. 1982.: Susitna Hydroelectric Project Analysis. Pre- ·pared for Acres American-inc. This is included in pp·. 2-2-85 to 2-2-99 • . Additional cross-section survey data not illustrated in Figures E.2.1~~ to E.2.20 were :collected ·by the Alaska Department of Fish and Game· (ADF&G) at Sloughs SA, 9, 168, 19, and 21. This information is contained in: Alaska Department of Fish and Game. 1981. Susitna Hydroelectric Project, Final ·-Draft Report. Aquatic Habitat and !\';stream Flow ~hase I Final Draf~ Report. Page E-5-190 and Appendix EE. The FERC staff has a copy of this document .. In the Devil Canyon to Talkeetna reach, ADF&G collected cross-section data ·in the following sloughs: Whiskers Creek, Lane Creek, 11, 168, 20~ 22, SA, 9, and 21. This information is presented in: Alaska Department of Fish and () Ga'ne. 1983.. Susitna Hydro Aquatic Studies Phase II Basic Data Report·. Figures 4-A-31 to 4-A-39 and Tables 4-E-19 to 4-E-56. The FERC staff also has a copy of this document. References to_Staff G-.!ge Data Staff gages were installed and mon·itored in 1981 and 1982. Data for 1981 are presented in: Alaska Department of Fish and Ga.11e. 1981 .. Aquatic Habitat and Instream Flow Phase I Final Dr'aft Report. Staff gage ... locations are· shown on pp. E-5-174 to E-5-177, and are included in pp. 2-2-100 to ~-2-104. 2-2-2 -... ::<- c,' . " . I. (! ~ ' .. , 7 -} . • Data are listed on pp. ED-1 to ED-27. Crest gage data for 1981 in the main- stem Susitna River are listed in: R & M Consultants Inc. 1982. Sus1tna Hydroelectric Project Field Data Collection and Processing Volume 3, pp. E-7 to E-1.9. This is included in pp .. 2-2-105 to 2-2-117. Information on the staff gage sites installed and monitored in 1982. in the Devil Canyon to Talkeetna reach is contained in: Alaska Department of .Fish and Game. l983o Susitna Hydro Aquatic Studies Phase II· Basic Data Report~ Staff gages at tributaries between Dev·i 1 Canyon and Talkeetna are shown in Table 4-1-3-3, staff gage dctta from mainstem Susitna River sites . in Table 4-A-2, staff gage data for sloughs upstream of Talkeetna in Table 4-A-3, and staff gage data at the downstream end of Slaugh: 9 in· Table 4-II-4-2. 2-2-3 . ·,' -,·- ----~--·--------------------~--------------------------------------------------~--·-·----~ I c - SUSITNA HYDROGRAPHIC SURVEYS \ "' I I I I I I ,.~ I I f\,j I ' I I \_ ' I . c 0 ~ ~. ------~~~--~-,--~------~--~1 -----+------~TT-------r------~t > I J • I 1V Ia I Ia I I ' :j I I I I fftr!f'Nlt=D DY: ·-l'fU!fAN!D POR: j ~~ .. ----------------. . I N CROSS-SECTION Number 1.· A ro. [C.' '1,' i n•u OONSUi.TANTS. INO. HvnL~ I .N '----------II J ' ~=====-----------------------------------------------------------------~----~----------~- .~. e n i \.) SUSITNA HYDROGRP.~PHIC SURVEYS A I \ I ~ .... .. ~ I ' J! ~· I .!:; I ' I I I ( ll \ \ c ,I - ' c 0 :g > (l) m _,---, """ OON'SULT"NT:J. tNO. - I ' I i ! • I I ' I I I I I I I I I I ., ,., I I I I I ,'1 /: • , e 8 \ :( I I CROSS-SECTION Number 1.1 I f ' \ I \ I I I f ' I I ··-· , ....... ,.:·-···--·~--··------· _., -· ~., .. ~,.,.,,..., __ .., __________________ _,.,...;.._ _________ ~ __ ............ ___ ·I I :() I J!:j . ~' SUSITNA. HYDROGRAPHIC SURV~--___ _.__~f. I I ..... I \ {\ ' t! '' 'I '• ~ I I I I I at '.:'/'~ J -~~--~------+-------~~~---T------~~--~~~--~--4 c - ' I I \ l I I l •., ''".-• nte~DAAI!D FOn: , • ~m~er.~M~e=o~ .. ~~·~-------------------~----------------·------~-------------------------------.. __ _ ' A~~t~ I CAOSS-SECl"ION Nurnber 1.2 RaM OONSULTANTIJ. INO. I :N l. t..::=:==::.........-----------------------------.......,..._ ___ _ • N ' .·t' ' ' ..... _ .... ,..-~ .. 10 .~. _.{ '\ {.t \ ~· .;~ . -. • rl c I -~· • c 0 ~ . 0 m r N ' (\1,. • • SUSITNA HYDROGRAPHIC SURVEYS I I I k I ' I ;• I·, .. ;:1 I . I I . I I ' -· I I CROSS-SECTION Number 2 I ' ·!l_· :' '' '" ............. -· ~-_ . flAM OONtiU~TANT"• UIO" ·. _lt::('::::_~-~------· ---------· ................. ---~,-------~--------------,. ............. --__..~--·--.. _........ < •• ' •• , • .,.,,' • • I I l H' c .... I ·. SUSIT~JA HYDROGRAPHIC SU-RVEYS ' ' \ \ \ ' i I \ :. '-I \ : eVi \ 1 I \.I I I I i I I • ,. \ I ' \ f J: '; Pni!P.Afti!D 8Ya "'i!r'.MI!D fOft: I ~~..;....;.;..;-------..-.--------------------------·-·----=----", I. ~~~t~ l nowaw w<o owhoa.m a u • oowom=••=•u--wwwwwoowno uno ••••• ,; ,· a aowaaow•..,.. o nw • _. __ ....,_.,......-.. _ _. __ ,_ • ._..... .... -...,.,...,...n•· .. ,_,._.._ • ...,._J CROSS-SECTION Number 2.1 SUSITNA HYDROGRAPHIC SURVE'fS \ r.; I \ :· .~ I • \I I I e I • \ :.J ..... ) ' c I • • ...... I • ,J ' v f c 0 ~ ' li ' m I :s • T _rl.,.,... arw CROSS-SECTIOl'-l Number 2.2 . '~i~~~-~--~·-~~~---~-~==-=·· "-·=~~=·~~=~~~-=~-~=~~~~~~--~~~~-~--~~-~-~~·-~n=~~--~~-··~~~~~·~~-~~·-~~~-~~ • ,, •.••.• .;11,. ' • I I c:: - I SUSITNA HYDROGRAPHIC SURVE~'S f, • . L~~er.~M~e=o~aM~·------~--------~--------------------~~~~~~==~~=-~~~~~~=~~~!~~~· CROSS-SECT~ON Number 2.3 'c.. : .)" .. · ·~ _,•!'"'~~. / ·, 1" f ~ -~ ..... :~ ... ) ' J .,;j ut. I c - ~ t m . SUSrTNA HYDROGR-APHIC SURVEYS \ \ \ \ \ I \ I , I I I I I I I I I I , ... ....J ' CROSS-SECTION Number 3 ·-.~ . I ~-:::::.~·~:.._ . .-Jl!i "-: .o.#.'~,.,..:'%:&::.,: .,. _.,; -.! • .J..,a, "'&!."'.,;;, ·:.-1tu:·.~-~~~~-...:~1~,.Y•"i~~llftf=="'=-===-=-=--"""""==----=--.....,._.,..._....,......,_,.._==-=s:.__,..,..,..__,,,..,. ___ .,..,,....,.....,._.,~ • .......,.,., ... =:....,-.::.•~•..,.,,,.~ ..... I 7 SLJSITNA HYDROGRAPHIC SURVEYS c -• r- ' I \ \ \ ' ' I I I ' ' \ I -,17. 1\.. . --' I .. ,. - I ', / .. c 0 ~ ~------+---~--4---·+---~~-----+- i; : iil I I I ~ , ' I ' __ / I I -------~------~------ti--·----1~·-M "' CROSS-~SECT~ION f\iumber 3.1 ('~ r , ,. ~ ' .frf,l"'l1~ -~~:"'!l :~·~·l•l . Yt"'r.i!:Jl' t't'f.''1 PI'~ '· r\ .. ' .. 1 I I I • • •'""""!"".! t-.·· ... ;. '*? ?"'.:*·). . . . ' ' . . . . . ' . ' . r--------=~~-·-----·~·=~··-·=·~-~----·--~·-=-n~-·----~--~----------------~--~----------------...-...---------~~·-• r s ...., .f J c - c 0 ~ \ ... \~\ Q) m \ SUSITNA HYDROGAAP.HIC SURVEYS I ' r \ \ I \ \ \ ;+ -' ' .\. ~ '-... _ ____....., ~ 1 a ' ' I '. ' • I l ... I I il I M II I' I I'Ti" I I \ \ . / \! • ..i~· -?"··· . .:_.::" ..;.__ ·:::~~. .. --~· ...... --·~·-·-·----~·-·~·--·-------~----~-.----~~~--------~--~~~~~--~~~--~~~~··_P~~~~ --. -----"---·-·-. ---nus""·--•·& =••-·•IP'it;zm=••·=•-17'7 • ·· t · u "''b!.te· .• • • t •· e, + ·~· = • ··• • • ' - CROSS-SECTION Number 3.2 • •I t •. f'olti11 I 1. 1 SUSITNA HYDROGRAPHIC SURVEYS ' I I i I \ \ I \/ " • ,. \ c I ,, I ·-' \ ' I \ I \ I ' ( I \ I \1 C, ' 0 I ~ ' t Q) .1' iD ' ........ I I I ff'-lf'AMD POitl ------------ CROSS-SECTION Number 3.3 · ' ,:NL::::....----...._-~------------:------------------- i . ' -~ ·N t \ 0 l'f~' -. .. . ~ ' __. -<. .T ~~~f~ ! -·------~---·----~ J I ' 'I ., . ~.·~~~~.·~ '(. c - '\ /~~:~~ SUSITNA HYDROGRAPHIC SURVEY'S r--,' . 1 ' \ ' f.f ~ ' ~~· ~· ~~~~~~~~~~.w~~.w~~~~~.w~~~~ CROSS--SECTION Number 3.4 • •• • ·H·~·n· I I I'' · ·· · · "" rr· · ·· 0 I 1\.) ~p ' ' .. > f ~·--~~----·~~··-•-p-m-~--~--~~~~w~•~m~•-~=·---~m~u~~=-•---~-~-~·~~-·~w-•~~-··~~-~~+t~~-~~=--w~.~----·~u-~••~c•~~·-···~•• ,_, ~~~, ~ ,~> SUSITNA HYDROGRAPHIC SURVEYS I I I I ' ' ' .... u at c ' -' I i • c I 0 I =s ,r, J > ., m ,!\~~'"\! .,) -~Will· I I ' » I ' I \ ' \...J '''1''1 ! e • . , I I I I \· ' .. I I I I . ~ ' ' \ '\) I I I ,, ' F">, t'l\!,.tAI\et',' .~ ,; . WW:W .-W&ar."'.4 .... WMa_.,i _ _....,,._. ___ , -------tS_W4_L ____ ,.... _ _.., A....,UAW_,.=,_-....... "'"'a ilr.MSi ia_.,WJrmilO&....,iCW_.,., ........ Sll_iliFW.__,,.,....i G.,..i,U4JWJ---M ..,...,., Ji.._.lW ._,.1?. ~,· -.....c ....... c ....,...,. --·· ...,..,C,AJ.......-.r•..,................_..._......,-_._ --··~·---·-"'--··-- ; 't NM dotuaULTN¥ra. INO. CROSS-SECTION Number 4 . . . . ~b~f~ •.• ·. I~J . g *: l , ,.._..._..--~__...,_..._,. _ _., _____ ._~ ..... .,.,.._.,._.Wll_,.,::ar•._w._w_,. __ ,___~--,.,..w,_.,; ____ m""""=-------=.....,m.....,mr-..-.... ---_._.._....,.~~~·;,.... ,. .: ·-' .~ e \ . \ .· \ ' ~ ~. ~· . l:uU •• ~· -· ------ • I .. I ~·~ u SUSITNA HYDROGRAPHIC ~URVEYS :. n I :j )~ c - f d f·l·•. $'llitliJ1! __.. ... ~f t"!t -;,:.r-.~C:.=t.W.'t!r.tr~~~....... """""'* ::o:aw~ ~~~----------------~- I l .. ' \ I !' A!\ I \1 \' I ~ I I I I I ~ Jj 1.< 1'1. ,\ .• J: -·~ ~ .. ~,~- ••· t ..• .. ~: -'.· . : I ,_,, ,.::, ' . ' _.._ ______ ._..,.._~-------------'"" -· ..... ii4:1tsWc4: ... --.... IM,jiiiW•IiW PCW .. _MI'Y.,..,......~·WWT~~~.--, , SUSITNA HYDROGRAPHIC SURVEYS I I l r----~-- ~ I . I a \ i I ( I I I \ \ ' ""' CROSS-SECTION Number 4.2 i l. .. r .. ~ ~ fi-'""' . ~ ~· ~ l"~'i ~). I .) ;.I c - \ I \I\ . I \ v ,, . \ ,_<b· t ~ • SUSITNA HYDROGRAPHIC SURVEYS . :\1\ , ,~, I' v I \ I I ' /'' " : '\} . \ \ ,.1 ' . \ r ' ' ' ' . \ . -~-.. . ~·•--'. -' . '-.: '-' , 't" -· ',.·. ' ' I ,.,. ... oOHsua.T.Al'fl"i'.tNo. . CROSS-SECTION Number 4.3 " ,, ,. A~~t~ .... _, -'~~~ • .:-~--'. : ' .. ' .At~......_, • .,.......,.A .-:.-' _;: .. , _;,. l-.Jl &-.... •"•" ,J£..M :..0. •1£-A ...... 11, 1-..... ~..,.•"""•'"totl+'lf,.. .. oiS.,........,..I.W.:..M.Sti .... "'"-._,_ltJI,I,a.-._'3o~iU•~•·--~"Q ..... 1'11"\,o~~--"1.--~.;v;.r,-:"&~· .. ~ ....... ---~~, ........ #iM,f,..,a,.tioooO-\ ......... j,A..U, ... .I~t4Ma .... ~."'.C..•.....,._.. ... ,.~ .... "'",....,..., __ ., .. , ;·o~'l.tl"'$t.-;.-.a,._.U:_"'rlfj-· ....... ...,~li'~llf~.,n. --~......-_,""' A,.l• .~"!!' '" ,.r *'..,. ' _.. . . , . . . l I \ ~ . ' ' ' SUSITNA HYDROGRAPHIC SURVEYS •'v l ,....._, ' • I , I I : • ,. 4Ht ' c -~ ~ • • • of,. ,.. ~ ' . ~ . ~ t I ' I I ' • I ' ' \ \ \ \ ' CROSS-SECTION Number 5 • . 1 ~ • •!' ' • ~ • ~,.., _··. .... • : ..... • I r .. • •. ' t' ----------------.. ..::.-____ __...............,~_.,........:-' ·~·-____ ......__..,__....___ ____ ..;....,.__...~· .......... _ ............ t : ' .·.:;,· I . SUSITNA. HYDROGRAPHIC SURVEYS 1 ') a • r 1 ~ 1 a a t 1 a F. •! I ------~------~-----· ~-------+--·,----~ c: - -·-~ ~ / ' \ \ \ \ ' ~---+---4---~--.,_.._..,.._ ___ .__,c----e / ~ ,, ~ " k. ~)" CROSS-SECTION !'~umber 9.1 ' l ; ~, ',i\, . . I I -1 .,... ~ kM~ · W ~ WJ& ~· WJ ~-l~1 ~·~. ....: -- e: 0 ~ t'i m SUSITNA HYDROGRAPHIC SURVEYS ~:"i.itll' •· ' '' ~d·n I I ' I I ' I . ' \ \ \ .\ \ \ CROSS-SECTION Number 1 0.1 ( / I I ~" • ' ":'". ·.. •• • • • ·~ ;; "'.· • ':· • '!;.~. ,, < ~· ... --· .. ; .. ; ~ ,. ~ ' • :: "~ • _. & ' ,, I . •.. . . ..· ... · ;.r• ': -. ', ,: .... ' . ,," ' \'" .•. : .· i . ·-. " ., ~--~------~---------------------------------~~~----------------~~~~~---~~~- i i . . • 0.·;.~· l . ' to.> . (X) I SUSITNA HYDRCJELECTRlC PROJECT c .. _ c j~~---*------~--~--+-----~~-----*------~-----~ G) iiJ PR4!1'AN!O f'Ofti . ._._...._ ;.;;;,;;:;.....;;...;;.~ .... ~---.----------------~---....;.;.._----------~~····~-.-~ CROSS-SECTION Number 1 0.2 ~----~------~--~-----------------------------------------------·-------~-.• : (• I rJ 0 c - c .0 SUSITNA ·HYDROELECTRIC PROJ,ECT e ~ ~-----*-------P----~*---·~~~--~~~----~--~~~ (1) w CROSS-SECTION Number 1 0.3 -I ., / l.). I ! • •·.,,• . ..----...-------------------------.,..., .. ___ _....----------~-~-------___,....,......__,_ __ ___.._;..·, t· t~ w 0 :N .... <j)J ie c - c 0 I :g a; iii SUSITNA HYDROELECTRIC PROJECT ('--, : \ I \ I I I \ I I I I I \ ' l'fti!PM!!D ..-a Pft&!I'ARE~ f'OI'eS 14.!:=:.;:::~~.:.:=...-_,-----,_.,...._....,...._._.,., _ _..._ ..__, ---.-=-w_,,_,.,., ..,.;,..;;;._w.,.....uo-uc• -·= .,_lA ._.. _ __,n,..,...••·--.,....:a::.,..,.., ,wz...,..hH.......,, .. ,_. ,.,...., ..... ,..,...,.. •--• _..,. ____ ,.._._ __________ -·~ " .,. ____ • ..... t CROSS-SECTION Number 1 8.1 ' -~ ............ ..--...-------------------__,_..,----------~--------------- .f\.i v, . t.JI •• ·.;; .. . .. ~ y~ . '\ I It ' ' r I 1, SUSITN.A HYDROELECTRIC PROJECT I l \ I t I ...., I \ I 3! I \ I I l \ I 0 I I \ J c •""'._/ ·- ' ' c:: 0 ' :g ' > ' (.1 \ ill \ ' CROSS-SECTION Number 1 8.2 c 0 11' «<) ii1 :! ~ .•. : ... · A ===-Wi#l--~ Wi.acwa.===c 410i4011ii·U--•·==··-IIi #41 -=-· a•w ill P.l •t~-....~-.,_'!'·;.'a;i 4 .. ·M ::i!+'.; 1 i .. SUSITNA HYDROGRAPHIC SURVE'tS I I I , I L...-.-ii'<!ao• ~............,~_.,.,_.,.. _ _,~ w.w_..wa•s;; -•» ~~-=-•:r-:s ¥!l'r->=-==--=rm""'s""'w_.,..., • ....,=•........,,..,•....,•--=""'''w.,..,.,.mm:: . ..,.a:::""" .. '*""""' _...,.,.,....,. '"""'""'"""'''"""ewr.rscr.=m"""""""·,......,"'"""''"',.,. .. w,..m_.as-.w::z=-==""""'"""'"::a:s'"-'""'x::t::'li.L,...wmr.,...,srwon=a...-•w ....,,,_,..., •. ,,..,. .. """'m'*"•·'""*'-,...0' ·...........,,_......, ,...., .,.....,,,__,.,.,,,~,.............. ... -....-.-.. -:---_,.,.,.,.....--11 I I> ·f'•.tf' .. llf' -:.,.......~., ~ (........,,. • • . d&Hl : ..... ·: ... ·.1 .J c - ••.. .J l • ~JI l..:~ SUSITNA HYDROGRAPHIC· SURVEYS" I I • • ... \ I \ ' \ t ' \ ., I\ . \ ,---, r' . ' J \ u \ " • , I I \ J i \ ' "l : Q \. , _ __J I l ' I \ CROSS-SECTiON Niumber 1 9.1 \ .. Jl .&MI!$1• .· I. rlli~,,...,~ . . ··-=··-·-·-··-----·-~----~·~ .......... .;..,: ;.: .f.' .. ·. " " ; . '\ ':. ··.[·1£ ... : .:, ' '. ' ' ~ .. : . ·. ~,.' . . ' ' SUSlTNA HYDHOG RAPHlC SURVEYS r~"Tora 1 ~ 1 1 1 1 1 u e 1 \ 1 1 1 1 a 1 e· •• • h I -'~ ·' j l ' ·; j .()~ .. J q . ~---~-----ol..f.+.---of----+--..---i--••,.;;a.__ . ._--~1 I r~ r-"'!· r,.,._,.., ~ 1 , ~. ~-: ... ·~ ... · IIF.:/ ... :! '"t~:.""·. ·~ .... · ..... _1!8 ___ .. •, • ' l ... . I lt . n I 1.-.J Jl '' ... ' " '""' . I N ' c - SUSITNA HYDROGRAPHIC SURVEYS I I I 44 i• __ , - I ,..----... ~ ' .... " ' ' PIWP'AIUID I'Ofil , I p ===rz:=:-=c -re c·r=:=··-·=::::w·o·=i:= ..,. ,. ...... _.;.:..~. ~ ... t!' CROSS-SECTION t~umber 2,0e2 _. 4 .e. I .i • ·-t• I i ~t , .J,. r. t I ' o ~ '., ' J ..... • (I .._, ' f .-~·• ~ . . . .. •• • . 't··:·•;<" ' ·~·' ; I ,'' '; ·. '-, .. ___ .......,..,...,.._ ·-·t"j•nll· • eo• =e• .'M _t =ri 'I;"'"• ''1M W'''bet'l&la'' "' '" ,. ttt -etMt=M: t···-·n Wr Mf_W_""_t·-td it"-"-MWI. : , •••• t~ .. L.·=n"t~--··ient'l'!'!"'' tiJ• '?' ••" _._, 'C'! 'W ''Ill 'GilA~ ............. ....._._...._,.......,..~ .................. .....,.,... SUSITNA HYDROGRAPHIC SURVEYS ""' , .... 'v, I ' I I I ' ( l/1! I I , I ~ ' ' .E I ., .. ' I - I ' c \ -' I a c I I 0 ~ I " ., co I ,_, m \ \ \ -+ ~~~··~=··~~~~,~D~· ~~~~~~~~----~~~~Y·•~w-w~n~·-"·~·--··=-·-···-···-· .. ~'··~·---·---·~=~·=-··-·~ .. ~-·-=-·•--·-·n-,~·-··-···-rr-··-n~.,~---~·-·u-·~·-·-•w-·~··-··=a·~· ·~"~"~·-··---· ~··-··~--~~~------'-fW_._P~-~~rO~ CROSS-SECTION Number 2 5.1 N·· ' :t ,·. n&ta· O.OPULTAHnl~ .tHO. ~· ••• <,;·~~· •... ~:._:~ •• ·--:· t...-L<•'> .~. "' ... .-.---·----~· .. .a ........ '-•---'........_., .. ~..__,_.a.,z.....u..:..L~C....-:.: .. ,,., ....... , .. , ... ., ... ,. ' • ·'4 ! w . . •· . .. .. , ,, --\' ~.r . .. ' ' ~ SUSITNA HYDROGRAPHI-C SL~RVEYS ... • f I I ~ ( I e I ' . \ ~ ;' ·~····.·~ .. ··-"'.f_.!J',_· . -. r.(. . ~ . . <'_, I ,\ -. . . ,. ... ~ .... ~ - ... ~ ' ' \ ' ' . • ' ' \ ........... .... CROSS-SECTION Number 28.1· ~: .~T .... f':-1 .... •',!t .·,. ".~~. ·~' • ~·,, ,~•-1" • •. \ \ \ i ' 1.. L' }•. , --~.---··~·--. . . '~ . ' ' : ~---~ I A· ~··. .~ )· ,....__ _____ __.__._.__ ____________ __._,...._.....__ ..... ___________ ................................. ~ ........ __ .:-~:-~.: ;·~;;~·~-~ . . . ' '. I>.. N ' 'N I VJ .w , I Ra.M _;~~.s;~LTAtfrs. INO, ·~~"· ; . SUSITNA HYD'ROGRAPHIC SURVEYS J •• • •·t' '' •t cross s~ction SL2 2 1 44.8H4 Date of Survey: JULY 1 o. 1 982 ,. I I PR~PAAEP FOft: . . a. . 1 l I I I I N ' N I w .....[:_ U U L-11 . ' SUSITNA HYDROGRAPHIC SLJRVEYS TfTI I I c I ·- Pfti!PARI!O ttY: ~Ftef'Aftf!D f'OA: · -~~."~~~----------~------------------------------------------------~--~---; ' .. ___.........--- ~ 1 ( J f W. ..r:;, f '. • . ~-. . . ~ • . .,, k. \ ~ ·~ • SUSITNA HYDROG RAPH·;c SURVEYS. cross section SL2 2 1 44.452 Date of Survey: JULY 1 0, 1 982 -........ ·-?-· --...;.;....··· ---.--·~--..:1"";_1~~~:~~ ........... --~----~------"".-.....--........... ---.------__::..-··-·-·~ ... ~···-' • f1~ ~-~ , . . • ' • I t•'' ,, •• ' .. ' " .,, I PREPARED POR:. .. ..... ~ . .... . '(, ----------~~--------------------------~------~--~----------~--~------~~~ ,. -: SUSlTNA H.YDROG RAPH IC SURVEYS '· . l . . , .. ~-----~.~~------4-------~-----~~-----+~~~------~ PAEPAAEP fOR: · cross section SL2 2 1. 44.·2W1 . Date of Surv~y: JULY 1 0, 1 982 ~.;;(:;.....' ___________ ,.. ___ ~· . .• i J j. fd' ·, ' ·~,,···~ ' • ' . ......._---.,.~---•_.___... __ ~-~--~>!!'Jt.JI......, '-•••• r,..,._...__.,..._..,_.._ .... _.....~-_._,....,..,..,., _____ ,.. ___ .~•-'* CS:._tl'_. •• _______ ~~~~.., ..... ,...,..,. • ._.~..,...·-~·~-...i...,.,,..,;~.-· ,.~ ... /~~-· .... :·-•; !]: ' ' c 0 :t:i m > Q) w SUSITNA H··YDROG RAPH IC SURV.EYS . ' 1 1 1 a a 1 1 1 1 1 1 ' 1 1 1 1 1 ; G 1 1 1 1 1 1 1 1 1 • 1 1 • 1 1 • 1 1 1 1 1 1 1 'I 1 1 5 1 1 • • .. , a I~' • ~ w I' r • : · : .. ' .. •.• • •• t .. . '. . I .. ""'"• .I . . ... ~ '/·'' ~; I I I I , . ., I . -raePAAeD D.V: PRePAReD fO~: a-:..;;..__:..,.---.,....;.;._,..._..;.;.;.--------_..-----------------------------------·---~ ... -~---.w---- ' cross section SL21 i 1 42.0H9 Date of Survey: JULY 11,1982 .. ,_... .--~-.. ~ .... -...... --. -..-· __._..._.__....,.._~,.._.._--~--·-....--·--------~·-.. ....,._....,._---------·-· ........._____. ___ ......,., ___ __.. ... -......... -.---~-~~·,...;..--..-... l • • • . f ... ~· .... ~ Q~N%5~~!-"NT.S, . ~NO~ ) , , ... I(.. '.... ..~ ........ .,. .... ""'* ' SUSITNA HYDROGRAPHIC SURVEYS ..... .• ---------- I I cross section SL21 1 41.958 Date of Survey: JULY 1 1, 1 9 6 2 I ,.,..-. ( \ \ ,, ... , ' ''\'"·· ' . . ·- ~ . \.. ·' ' ; \ " ) ~: PREPARED FOft: · '. Jt0 l I jN j,w ' C'\ <·~ . 't • . . ..... Q) Q) u... c ·- • SUSITNA HYDROGRAPHIC. SURVEYS , ~ -I j-t·f-• cross section SL21 1 41.857 Date of Survey: JULY 1 t, 1 982 I /lf CO_,y-;; s:. ~ , tv;Tl/ TlJ7Ji.~~ '/( I ··~ N < j ± .. CJ i f PIU:!PARED DY: c ·- c 0 SUSITNA HYDROG R.APH IC SURVEYS · · ;: .• '"Til II ' I' II I I ~ .. •·· ··~ -·~· .. ··- PREPARED FOR: ~~ ' . .,.._., __ ............ "' ,'•,-. . . ,.,. • l . ..... E)) Q) u.. c ·- • •• ' . ' SUSlTNA HYDROGRAPHIC SURVEYS . . I I .PAt:rAfteD DV: .-~....,...._-------------------------------.:..----------P-:--Ae,_PA_R~_D_Po_A__.: !::""'.. . ' .............. __._......c-f ~:""~~-. A&M CONSULTANTS., INO. · ; <:;:..... ... (' cross section SL21 1 41.7A5 Date of Survey: JULY 1 1,1 9 8 2 -~~--~~----~--------------------------------------------------~-------------~ ' --... ~ ------~-----· ---·-------------~-·:---.,..-~.-. ......:..~:......;... .... ,.. ..,__ ,.,._~-~-,......_.~~~;· ... : .. ;",.yvt~ . •· ' If lh ·~- ~~,____,..:.~----·------------------.w.l~ilii!iililiiiiliiiiiiiiiaili .......... ~~=~~-~·-·~-'"'' ········ .......... ., .. ,,_ .. ,, .. , .... -."·····" ............. ___ --~-----··".-.. -Q) Ql U- c ·- c 0 :;:; co > Q) m - SUSITNA H.YDROGRAPHIC SURVEYS . ~ . . .... ... m as fa cross section SL21 1 41.3A4 Date of _Survey: JULY 1 2, 1 9 8 2 ~~· \ I~ . . . . I I l r I ~ l I r 1 I ' PftEPARE!D IFOA: "" . I • '· . If · AlitA ·coNSULTANTS. INC. • -. .1 SUSITNA HYDROGRAPHIC SURVEYS ___ J_~-- cross section SL21 1 41.0A3 Date of Survey: JULY 1 2(.:1 982 -~ _-,--, .. . -~<f!-~____,.....,... --:----·-----------·----------· ........ --·-·-·--· . • ••• .. .... -•'!" .... ~ ... ~···--.-.. ---.. ~--__ ._ •. ..., ~ ··-- ... I PfiEPAREO FOR: ·' r~·~· '• . • • • • • • • • • • 0 • • • • • • • •• • • • • ' • • • • • • • • • 0 • • • .. • • • ' • ., •• ~ • • • .. • , ~.~.~~~·-...:,;:i.r:...-t"~~~:;~::1.~·~t~~!$A;.~~.,.~.~~,.,~5;~::~~-A~;,..~.,;~.-~'t~~'.,-·~~.:~-~-~.,;:,·r::~;.,.. ~""~'S~r: .. ~~~~"'l;~~ ~~~-~~~~:~:·~~: .... · .. ,; ·;;~,.~~~~~~:~.~ •. ;,~.:":-,:~t,-:r:~f. . . . . . ' . . ,.,. ~ .., ~ ,.• ' . .. '!.' • . ,· SUSITNA H.YDROG RAPH IC SURV.EYS cross section SL21 1 40a8A2 Date of Survev: JULY 1 2, 1 9 8 2 ~ ··. ••••• =n •s• ........ ._._ .. a-. .. .-~~N •••• ,. , ' -, _. ,__._.;........,... __ ........,._. _____________ ~---·------...;__~~---__,;_.----:--'----...., ~·I' ,j SUSITNA HYDAOG RA,PH IC SURVE'v'S c ·- cross section SL21 1 40.6W1 . Date of Survey: JULY 1 2, 1 982 I ' I . I ·• I i I I I I i . I L~~~~~~~~--~~~.--·~------~~~~=-----------------·--------------~--------~----~ ,~ ~ I:;:; ., ft ' ·~ . ' _ _,,. ... ,...,._-J ........ _ ...... ~ .. ·~-;.'. ''''"'":. ·- . h.,, ~~~L~~L~ SUSITNA HYDROGRAPHIC SIJ'R\/E.YS. ,_:,, I . f cross sacti.on SL2 o 1 40.6H3 2 .. ~.··r.,o ... · CC Data of survey: JULY 2 7. 1 9 8 ~VnLU ~~--------------------·--------~~~--~ .;---_________ ,_ _________ ._._. \, \ .· "' • tfU ---------------...................... ~~~~~~~~~==~·= f 1 ': l . I I I ',: tJ . . ' ; .N ' ...t:. ·___J ····~ . ' -' ~" ...., Q) Q) lL c ·- SUSITNA HYDROGRAPHIC SURVEYS r' - '·:·,·\ .: .. ·· .. ·. rflf!PAAeD BY; flfte',..AftED FOR: . 1~~~~----------~----------,~-----.----------------~--------·-----------------~t cross section SL2 0 1 40.252 Date of Survey: JULY 27, 1 982 , ;.. ·\:1 _f!IO'.;:~~--.:--:·r--~~·-.·....-, •. -•. ~ .. -... -.. -__,....,...-----------------··--.. , ..... .. . N r \ .· N , • I f-.~ I I :~ rfti!I'AAI!D DY: ...... Q) Q) LL c ·- SUSITNA H'YDROG RAPH IC SURVEYS • t • cross section SL2 0 1 40.1W1 Date of Survey: JULY 2 4, 1 9 e 2 I: \ - __, ,;, I . . •,... •' I --~----------~-------~··----------------------------~------~----------~------~~~ ;:J'\ SUSITNA HYDROGRAPHIC SUAVEr'S ...... .. li Q) cU .. , ... u.. I c ·- c I I· 0 :;::. co > G) iii J -PREPAf~f!O DY: PREPARED fOfi: ... -.:..::.:.::.:..:...::.;.::::......::::...;;.;.._,..__.._ _______ "'---______ .........._ _________ ~-------·~~~~ cross section SL1 9 1 39.8W1 Date of Survey: JULY 2 4, 1 9 8 2 ;, . ,, .. ;I f I ' t I I ' I ...... Q) Q) l u.. I -c: .. , ·-',. c 0 +7i RJ > Q) w r~tePARED DV; .AioM OONSU~TANirS. INO. ~ I ' ' . ···•"'·~~ SUSil NA H.YDROGRAPHIC SURVE'fS • < • It II cross section SL1 6 1 38.3H4 Date of Survey: JUL'r~ 2 2, 1 9 8 2 ... ,. ··--·-·. \ : .. . ....... -· .. f.l ~ . . · . i I .. PREPARED fOfll~ ., 1 . ,. ~·· ' .. SUSITNA H'(D·ROGRAPHIC. SURVEYS ,. -· c I ·- -( ____ ___.. n-----_. .. ___ ,_-t-----+-----t-----t----1------t I PitEPAAl!D OY: PREPARED fOR: ·• • cross section Sl1 6 1 3 8.053 Ra.M: OONSULTANTS. INC • Date of Survey: JULY 2 4, 1 9 8 2 . ··it...· ...... ·.'.;..',.::......,. ....... ·.· ....... ··. -~-------.....___ ______________ . _____ .,.,_ __________ __._,_;...__;.~~ . il • ; ,, ~--------------·~---------~--------------------·--------------------------------~~__, ·' ; i l I N I \ .!N ' .\A I .. 'f'J -Q) CD u,.; c: ··- c 0 :;:l co > Q) iiJ SUSITNA HYDROGRAPHIC E.t'IJRVEYS ~ cross section SL1 6 1 3 7.952 Date of Survey: JULY 2 2, · 1 9 8 2 I PftEPAHeD .FOi=t: AG~t~ I··-----~·~-------·-----------__,1-o) .. _ -------------------~lmr---___. --~ ................ ___ ":.,. ... ~---· .... ~---~ ~·--·-... . ... !. ... ....... I l I ·1\J ' N ' 'V; ' \ w ..... Q) Q) lL c: ·- c 0 :p f.'Q > Q) m SUSITNA HYDROGR-APHIC SURVEYS ·--+· ·-·----~·-- . .. I J. f~~~~l, • • .l~.u It uJih.tl11.W ~~ • • lLu..J~~..ul.UJ.I l,~~h~~~...a...L~.&...&...I cross section SL1 6· 1 3 7.8W1 Date of Survey: JUL~l' .2 2, 1 9 B 2 I '; ; ·~ :. / I I I I I . 1 I N . ' V\ ,...t.. . . SUSITNA HYDROGRAPHIC ·sURVEYS cross section SL 1 1 1 3 6.5H4 Date of Survey: JLJLY 2 8= 1 9 8 2 l- . ( \ I T F .', I PREI?AFIED ~OfJ: • ft&:M 'CO~~U ... TANTS., :lNO. l ~ : >: ::: . . . . . . 0: .: . . I I!! = il , , ' ' .) SLJSITNA HYDROG RAPf-IIC S.UR·VEYS '. .. .. ... . . ... cross section SL 1 1 1 3 6.50.3 Date of Survey: JULY . 2 8, 1 9 8 2 -' ' ' ~1t~'1"t .. 4!~"r ~:;: .. s.~-,._~ ... ~';;"-~cy;'h" ,~ .. ,4 i!~h~.~:.;-.:~¥"-" ~ ' I >' • ' •' /. • .... 0 ,.·, •I , )I A~"' <' • t :'~ 1J ' ' ' ~. '' , ...... '·r: I PREPARED f'OA: . SUSIINA HYDROGRAPHIC SURVEYS cross section SL11 1 3,5.7S2 Date of Survey: JULY 2 8, 1 9 8 2 ' .,.; ' PftEPAReP FOR: ·--· ____ .,..........,. .......... -,_...,..-.-.-·-···-·-----~~----·----':. ~~ ' ------:-----·~.....--------··--··-···~-- ..... ttilil--_..........;......;;... • .,.--.. _,·-. • • ,,,, ______________ ..,. _____________ .. __ _. ........ ... / •• ....... Q) Q) u.. c ·- • . SUSITNA HYDROG RAPH:IC SURVEYS l • . • . . . .. .., ------------ • ., • j .• t '·-•• , cross section SL11 1·35.5W1 Date of Survey: JULY 2 8, 1 9 8 2 I PRePAReD FOrt: ' ' ~;' ' l''"' ' ' .;;;: . SUSITNA HYDROGRAPHIC SURVEYS ' . ! I I •• I . I ' cross section SL 1 1 1 3 5.151 Date of Survey: JULY 29, 1 982 ~ ~ • • f • l ' , .• ..: .•. · . ' ,f ·'"' ,. •o •• ~ ....., . I ' \ . \ PREPARED FOR: . cross section Sl1 0 1 3 4.151 Date of Survey: JULY 2 9. 1 9 8 2· . -~·------~~~~~-~------------~----------------~~----~----------~~~~ ~ ' -, . :. <~ SUSITNA HYDROGRAPHIC SURVEYS . . ' I • I PREPARED FOt:i: ,~ • ' J t H ,I tv l N .. ' 6" - ' ......,1.,, ·'·l!fl!lt"l' . •• SUStTNA HYDROGRAPHIC SURVEYS . . .. .... .. cross section 4TH OF JULY 1 31.1S1 Date of Survey: JULY 30, 1 982 . ' . · . . -' ; ' I l ; J . I ttJ t . 'N I . I '. ;~ I"' . ' ., I PREPARED FOA: . cross section SLOUGH 9 1 2 9.3H9 ; :. ·Aa.M OON:SU~eTa. INC. ~--------------~------------ Date of Surv~: AUGUST 1, 1 9 8 2 G•,,, ~ ."'G, •/IJu I' · . A~~t~ ·• f. ' . ~ ., .,,, . \ ----------....--------- ... ' ,· i .r ; I . .. Lw \, ~ ~ ,. . . SUSITNA HYDROGRAPI-IIC SURVEYS -Q) .. .. -.• CJ.) ' LL ... ,,. c ·- g g g ~ ~----~----~~----~----~------+------+----~ >. Q) m cross section SLOUGH 9 ·1 2 9.358 Date of Survey: AUGUST 1. 1 982 ' . ' I PAEPARED r:ott:, ~· •• I•" _.' !· . I SUSITNA. HYDROGRAPHIC SURVEYS· ..... I Q) i Q) i U-: c I ..... ; . cross section SLOUGH 9 1 2 9.4T7 Date of Survey: AUGUST 1, 1 9 8 2 A. r. D.···. c .... e ... ·.~ . . . . 1 .. ,8 .. M CON.SUL:...,·q ~---~----------~.~-------------------, ftvnLJ -~ -~,-. \, . '. ' < -~. • ••• •• '• "' '-l \ •• ·.< :·. 1" . '\ ' . •. , •i ~ ' . -: r --~~----------------------~--------------~~------~~----~~--------~----~~~~~~ ••. J -~ .u· lL c: ·- 0 , • ._...~ ... ~ ,g • • ..... SUSITNA HYDROGRAPHIC SURVEYS cross section SLOUGH 9 1 2 9.5T6 Date of Survey: AUGUST 1, 1 9 8 2 -~ "' -~ .. ,••' ................ --·-------------·------·-----------·--··--·--·~----.. -----·-·--·· .......... ~ ... ~ ........ ·~' ... . '· . . I f>ftEf'AFIEO fOfl:: ; .. j f l • ~ I l i I . . j . '.L. j ··~ ~. -- ----------------------------------,----------~----------------~--------~--~: . -Q) cu lL . SUSITNA HYDROGRAPHIC SURVEYS I, • . .. .. ... cross section SLOUGH 9 1 2 9.255 Date of Survey: AUGUST 1, 1 982 ~ I Pftef"AAED FOR: ------------------~--~-----~~----~ ' ' ' .• 'ltli•' - " ' ------------------------~----------------~------------~~--~--------~~~···~ •.tJ . ' .N ' ~~ . PAI!I"NU!D DV: ...... Q) Q) u.. c ··- , A&M CONSULTANTS. ONO. I . . . . .. ...., . cross section SLOUGH 9 1 2 9.054 Date of Survey: AUGUST t~ 982 I PREPARED fOR: ..... Q) Q) u .. '., ' .J .E J ,, . ' ~t • .-.l.u . SUSITNA HYDROGRAPHIC SURVEYS I • . • . .. . .. ...... cross section SLOUGH 9 1 2 8.853 Date of Survey: AUGUST 1, 1 982 ,...._....,...._ -.... ~ « I ·.~·· . ~. L.lc.-.4 r'*"~ .. ·-r "···-~ ............... -~--------~---···-----... ,-----------,.,_--·--·--~--...:·----·-·--..---------·-··-···~ ··-·--· ----! .... ; .. • 1 ' • · .. ~ 'i ; (t' ,.-.' • ' .-l --~--------~-------------------~--~----------~----------------------~~--~ SUSITNA HYDROGRAPHIC ·SURVEYS ' .. I • .. ... . .:-. . . ...... . .. . .. cross section SLOUGH g· 1 2 8.4W1 Date of Survey: AUGUST 2, 1 982 . tp 00 0 N N \ -:--] c -Q) G) LL IC ·- c () :p co > Q) UJ .. stJSITNA HYDROGRAPHIC SURVEYS .. '• • I ... . . . ;I . •. .. . • •I I .. .. , • I .. '. 1'. . cross section SLOUGH 8 1 26.659 Date of Survf ... i AUGUST .4. 1 982 ·)· .. ...__..... --_.. .. ...,: .- I I I J . . •• tp OJ N rt ' {\,J I -J •~' '' ! • -------• -..... ,.~•· o4'#. ..... Q) Ol u.. c ... ~ c 0 ·-..... co > Q) w '' t "' . . SUSITNA HYDROGRAPHIC SURVEYS ., .. . ·:, I . . I I . .. 1 ' • .. . I • I cross section SLOUGH 8 1 2 6.558 Date of survey: AUGUST 4, 1 9 8 2 •• lo "'""'" ...... ~-••• -.,. ___ ., •• ··-..... .. t t~ f I J f• •• u 1! ; . :'.-. 'c> PftEPAftED FOR; -Q) CD LL !f c (X) ·-~ c 0 :;::. ro > Q) -w . q SUSITNA HYDROGRAPHIC SURVEYS . I 'I . . . . ' . . , I· ,I I . . •• • I .. •I . ·~' I .. . I J ' •• ~ .. ~ ~ -~ cross se'ction SLOUGH 8 1 26.5S7 Date of Survey: AUGUST 4, 1 982 '-' I f"AEf'Af1EO fOR: -·-··--.. I i j I ·~ --·-·· ._J'-:7 '' • "'" I J .... Q) Q) lL tp o:J C'\ .5 -~ c 0 :t:l m > Q) w ·, . Ai.M OO~SU~:rANTS. DNO~ l •• ; SUSITNA HYDROGRAPHIC SUR.VEYS" · . I 'I . . . I • •t • , . . ' I . . •I I .. ' I I 4. I I ~ ... I ''cross section SLOUGH 8 1 2 5.956 . Date of Survey: AUGUST 4, 1 9 8 2 I ·~~--~~-~·-c ~----------·-..~~----------------------~------------~--~--~--~~ ~ ..... _ ···~ ...... ·:... ...... _ _......_ .. --,--.-....... ••••• • ••• • •• '*' ~· .. ·••l ; ......... .. ........ CD Q) LL . tp w c m ·- Pfll!f'Afii!D BY: · fi&M CONSU~TANTS. INO. SUSITNA HYDROGRAPHIC SURVEYS .:( • I 'I . . . . I • •• I· •• I .. . fa .. ' I ... ··I .... I : .• • I I •• .. ... .. ~ .. -•• --......... 4 • ,. ... .. . . ;. . ' ' .. ' . .... cross section SLOUGH 8 1 25.755 Date of Survey: AUGUST 4, 1 9 6 2 .'0) ~ ~ ~ . w•·-•··--·------·••• "'' .. •• -" ...._/ ·~ ~ . ... -. tg)l,'' . ,. '•' ' ~. ·~· ' r ,, N ' ' '\ \II"'' ·.~ .• \4,~ •. : ... ' ' - !-r.J ~ .-.J.' .V) --' . PAC!PAff!D .. av: .... Cl) Q) lL c ·- • ... . . ... SUSITNA HYDROGRAPHIC SURVEYS: c 0 ~ ~----~------~-----+------+-----~------+-----~ ~ Q) iiJ '• I ... . . .. :• . · . .. ' ... '~ ! I .. . I l .. , .. ·' cross section SLOUGH 8 1 2 6.1H4 Date of Survey: AUGUST 4, 1 982 ..• :·.~, .. , ' . i ,J ' , T ·. . . . ' . ' ' . : .. " • . I I . .. , I ... i'AI!PAhEI> PCIIOl . I l ~~~. f· ~· •,· . ' . ~ . • ·, . . . ·~ I .•.. ·. ··•·· .. ·. ,:. ...•.. · .. -··--..... --• --···-·--.. •••• "···~··· .. -----~------------·· ......... ""!#-~··,.; ~-"' fi"M CONSULTANTS. INO. I SUSITNA HYDROGRAPHIC SURVEYS, cross section SLOUGH 8 1 2 5.753 Date of Survey: AUGUST 4~, 1 9 8 2 I ' ' ;, '·t' : ':; f . ' -, ' ' . . ... ' '· . ' .. I PREPARED FOR: -.. ------------------------------·;f''·"'.t-----1~· ·.~ u.~ ·~ •• 1\I.M OON3ULTANTS. INO. •' J. SUSITNA HYDROGRAPHIC SURVEYS cross_ section SLOUGH 8 1 2 5.652 • I I Date of Survey: AUGUST 4, 1 9 8 2 . ....... _,, ... ,. --· -~--· ... ,~~ ... ~~~==~-::ilii:tt'i5W'iiiiiii«~}i iii1iiiii;;iiii· ii7573trt?iil&iiii. ----s iiiiiiiii;-iiiiiiiiiiiiiaeiiiiiiiim?iiiii'-iiiiWiiiii--'iiii-•.. lEiilillfi?illiilii~t-,B<AT·ar·mUiifiiiliiiii .... ~--~·-sr 'iiiil:i~·x·iiiiliii ... #Erilillillilt" Wilioililitttttt-··--,-i. .. .i ....... -· ....... ............___-~~--- ,, •, •',•• ' ' I . . ) v~ ., . ·• I PHEPARED f'Oft: . ' I I .·-.. ~·-,. tp '-0 0\ -en Q) u. c ·- c 0 ~ cu > Q) w . . . ltl'' !a .......... SUSITNA HYDROGRAPHIC SURVEYS· cross section SLOUGH 8 1 2 5.2W1 Date of Survr'l.: AUGUST 4, 1 9 8 2 1, ~ _..;....._;__ ______ _;,__ _ __.._ ________ ~-------... -------------------- f j • ' • t . . . i I I : I I . 1 I l ' ---------------··-·-··. ··;;....-.-·• ...... -·-·--·; ...... , .. SUSITNA HYDROGRAPHIC SURVEYS '/_: . ' ,· Jlilef'AAED _lilY; PftEPAREO fOR: ~~-~--~--~------~------------------~----~~----~~----~----~~------~-------, cross section LAN·E CA SLO.UGH 11 4.1H1 Date of Survey: AUGUST 1 6, 1 9 8 2 ' ,j SUSITNA HYDROGRAPHIC SURVEYS ~ t ,. 'i t: f . . . cross section LANE CR SLOUGH 11 3.7M1 Date of Survey: AUGUST 2 4, 1 9 8 2 ( \ .i --~ I I L I t 1 .• . I PftEf'AftED FOfi: · •. : ' ~} •, ~ ------~--~--~--~----~------·~-~·--~--~~-----~~----------------------------~--~--~ ...... Q) ~ c ·- c::: 0 ., SUSITNA HYDROG RAPHlC SURVEYS I ~ ~------~------~-------+--------~------+-------~------~ co > Q) m . I '• () t~,~~~;~.~~~~~~~~·~· ~~~~~~~~uu~~uu~~~~!·~'~·~·~•·~~o~O~~~ .. f .. ! .. , I .. , , cross section SLOUGH 6A 1 1 2.2W.1 1:. Date of Survey: SEPTEMBER 2, 1 982 a......-----------__,....,___.. _______ :----~----..;...---------........_---------------------....,..,.... .. . . • ,_ \ .. -t ·'• ' ... .-_ 11-••••• 'f •• ,... t ,•h •• ,,;·~-o.l···'~'l f'41t':lf.:: (i' .,.,_ ... , ..... _ ......... , .. "'Pf"J .......... ,..~~'".~'""""""'·~P.'IV'"~~~,,..,.t-,.'"1"l"'f'~'!'l'-"'rt~ft't't~tH11·---"'"~~ ... t,., ......... ,.~"""""'"""' .. ~\. ... _ .. .,.. .•. i~~-~lf ... , .... "" ........ ~ ........... .., •• , ... _._ ..... ' _.t .... -~-· "' .. __ ,~. ~ filii N ' # N ( oQ fV -Q) Q) LL. . . 5 c 0 I SUSITNA HYDROGRAPHIC SURVEYS ~ ~-----~------~------+-----~~-----+------~----~ co ~ m · t I .If P . cross section WHISKERS 1 01.6H4 Date of Survey: AUGUST 11, 1 982 ~------------------------------:::----->'4 . ~ l) I .. •• ,_ , ........... t .. ~:' ...... ~~.~ ~--~-· ... -~-·-··ul.•"'" •• ..... Q) Q) lL O:J ~ .. 0 0) c ·- N ' N ' cO w •• c . SUSITNA HYDROGRAPHIC SURVEYS cross section WHISKERS 1 Ot,4S3 Date of Survey: AUGUST 11, 1 982 • ~::, .V. _,. ' • ' ·;. :;. ~ ': -.. t I PREPARED FOH: . iJI'~ UJ lJ {'v ' N \ 0() .·~ C> ~ . ' SUSITNA HYDROGRAPHIC SURVEYS·. ~ Q) Q) U-j c: ·- '-:..o, · Pt'tiPARSP P"Ofti: cross section WHISKERS 1 01.2W1 i'·. r ~N ; ' .N ' . OQ' . "' •' • ' - -c---• o ............ n SUSITNA HYDROGRAPHlC '-SURVEYS . . . ~----~~----1~---~+------~-------r------~--~~ I ·---1 MOUTH cl= PORTAGE CREEK X-SEC •',,, ,,, '' -,.,.,,; . ~· ' •'' • I uM · N . ' ;N I ~·JM .. ',,/' ........ _. .... -...... -. ·~ ..... MOUTH JACKLONG CREEK X-SEC .. i ~ ........ ~~ .. -... .,_~· ......... ,.-.... --··--- ---1 ................ ~,.~-·-----'011·--· .. ..-.-.. -..-....... .. .... ····-----· ·----- • .. .. " ' . ·ol..-.;.!' .... 1... -,J .. ·~··~-.·~ I MOUTH INDIAN RIVER X-SEC I I J I . ~···~ ·~····~· . . , . ,. ,,..:.---... _.....-oolt .... 'lo ·-·--... _ ..................... _.t_.....,.. .. .---. .. -.........-........ .._...,._...,.,..... ............. __,......_. __ ............ -__ ....... __ ............,..~_.,.,..,...~ .................... .......,.._.._ ................ _ ..... ___________ ......_~ .......... _ ............. _.... ·' ~ J • SUSITNA HYDROGRAPHIC SURVEYS. MOUTH GOLD CREEK X-SEC ( ·- ,'' ' . ' '"' -• .,, <(c ~--~·~~-"-:--). . ·.··t j, SUSITNA HYDROG RA.PHlC SURVEYS I .'1 . . ... _.. ......... .,..._...-. ... . ...........--. ...... ~...-. ____. -.... ____.. TRIBUTARY AT RM:·132.d·X~SEC: . . R.&M OONBULTANTS, INO. -~ .._...;r. .................... .:..~ .. 4-,, -~~-t. .... ~ .. io( <ll!".t ........ ....._.._~-----------·-......... -_...,..; __________________ , ........ --.---· --------·· -----... --"""· •··-•-. . . . ' ,. I • , tt·•l·l ·• I ! I l I I • • ' f j .. .. u1 -~ wq~ li~ .)i~· '~\., ,A'*.---..... ,-:~~~ . .J/A -·-~··-·-' •t ';)"'" ·~ . ~~ W. ~., ~ · i~1i w. ·, Wi· L~'-~r >, •, ' ~I SUSITNA HYDROGRAPHIC SU.R'VEYS N ' N I r't"·· ......[) 0 4TH OF JULY CREEK MOUTH X-SEC < _ ..... N ' N f '4,) t ·r. ( MOUTH SHERMAN CREEK X-SEC Date of Survey: JULY 30,1 982 -rv \ N . ' . .;.,.J) N PREPARSP BY; I SUSITNA HYD·ROG RAPHJC ·SURVEYS ---. .--• ~ -... --• .,._-·----- -.. ----.... A. PREPARED FOR. l -A~~[J i 1 \ • ·f· . . ·---:.1 I TRIBUTAA'l AT AM 1 2 3.9 X--SEC t: J -r t '' --------------------~- I\ c= ••• • \ ' ! : SUSITNA HYDROG RAPH I.C SURVEYS g ~·----~~------4-------4---~~~------r-~~~r-----~ ro > Q) ill R&M OONSU ... TANT$~ JNO. DEAD HORSE CREEK. MOUTI-1 X-SEC . ,, '. ,,, ..... ••••• . ,l I ' . ~~~t~ ·. >' __ ----:-_____________________________ ..._...,. ________ ;.,...;.... ___________ ;..,-.· ',' I ~ I .&::>. 0 N • ·N ' ' ....0 ,-~::_ c ·- I c 0 ;a t'O i) -w SUSITNA HYDROGRAPHIC SURVEY'S TRIBUTARY AT AM 1 21a0 MOUTH ·x-.. SEC ..,, 't-••• f f f ·-II t .. ...... ~ ..... .,. .... -.. /il! ... ,111\ .... -;i•nrtl ''lfiA:J'. 1l Hli r •• ', ' I SUSITNA HYDROGRAPH.IC SURVEYS . . LITTlE-PORTAGE CREEl(. MOUTH X--SEC· • • ... ,.. It ·t·l ••• '. '· ,., .'), •' ' !. l\.l i. I" \ N ; i l . ....() .l 6' SUSITNA HYDROGRAPHIC SURVEYS MACKENiJE CREEK MOUTH X-SEC l • I 1 II II · l ' ~blr· l.!· .iL .•••. ':II . • . . ~ .• ~.:JL ~S" .....-:;::;.:::'~ SUSITNA HYDROGRAPHIC SURVEYS· I . . LANE CREEK MOUTH X-SEC . .. . . ., ,$.U OONSOLTANTtt. IN<l- , • "' > ~ .. ~'·b; ' 'c ~ ·... .~. ' . . . . ~ -------·--------------------~-------- \ ~· I U1 w ~'~ _..--. rtaePAMD~, .. SUSITNA HYDROGRAPHIC SURVE\lS .... _ _.... _____ ............ ~lRIBUTARY AT AM ~.~ 1 041 X-SEC MOUTH ~ ~~~t~ -. ... J ....... -... ____ ........._ ____ .....;,_ ___ .___.....___; __ __...._~ ' ~ ·N \ .....1) •--.£). [ " ·- c ·- . SUSITNA HYDROGRAPHIC s·uRVEYS ' . I , . . ' i l • f'f.· 't2SP,\;115D fQrtt . I .~.~~· ... ~e~=~=e~o~·~~·----------~-----------------------------------------------~----~·---•·!~l, .. WHISKERS CREEK X-SEC MOU1'"H WI" ·~======~==----------------------------------------------------------~----~~· .. ~ ~ ,, }; I '' 't fi·tj '' , ~-. ' r ,·1, "• .;_ ~· ... ·' , . I·' . . . t . .:~ . -. Table. E.5.5. Location of staff gages instal.led in the Susitna River drainage. Summer 1981. LOCATION Fish Creek Alexander Creek Site A Alexander Creek Site B Alexander Creek Site C Ahd~rson Creek . Kroto 51 ough Houth · Mid-Kroto Slough Mainstem Slough Deshka River Site A Deshka River Site 8 Deshka River Site C Lower Delta Island L itt1 e Wi.l1bw C.reek Rustic Wilderness Kashwitna River • STAFF ·GAGE·# YEOllA YE0218 YE021A YE031A YE041A YE041B YE042A YEOSlB YE051A YE052A YE061A YE061B YE061C YE061D YE071A YE0718 YE072A YE081A YE082A YE083A YE0818 YE0828 YE083A YE091A . . YE0918 \'E092A YE092B YElOlA YE1018 YElOIC · YElOID YE111A YEll IS YE112A YE121A YE122A YE123A YE124A YE131A YE132A YE133A. SUOllA SU0118 SU011C SU021A SU022A . E-5-174 . ' RIVER MILE 7.0 10.1 1.0.1 10.1 23.8 30.1 31.0 40.6 40.6 40.6 44.0 44.0" 45.0 45.0 50.5 50.5 50.5 58.1 61.0 GEOGRAPHIC CODE 15N07W27AAC 15N07W06DCA l6N07W32CCB 16N07W30ACD .17N07W29DDO 17N07W01DBC 18N06Wl6BBC 17N06W05CAB 19N06W35BDA 19N06W26BCB 19N06W14BCA 19N05Wl9ACB 19NOSW19ADC 19N05Wl7BCD 19N05W17BCB 29N05W27AAD •. 29NOSW23CBC 29N05W27BAC 21N05W25CBD 21N05Wl3AAA 2-2-1'00 --- ...,~ Table E.5.5 • I.ccation of staff gages installed in the Susitna River drainage. . --.. >' Summer 1981 S.rAFF .RIVER .. ·LCX!ATION GAGE # MILE GEX::GRAPHIC CODE Fish Creek '' YE;OlJA 7.0 15N07\V27AAC Alexander creek ·s.i te A YE021B 10 .. 1 lSNOTh'OGOCA ~21A Alexander Creek Site B YE03lA 10.1 l6N07W32CCB, Alexander Creek Site C YE04lA 10.1 l6N07W30ACD -mo41B YE042A Anderson Creek YEOSlB 23.8 17N07W29DDD Y.EDSlA Ym52A .Kroto Slough Mouth YEOGJA 30.1 17N07W01DBC YE061B YE061C Y.ED61D Mid-Kroto·Slough J!E071A 36.3 18N06Wl6BBC ~71B YFJJ7:A Mainst~ Slough Y.ECSlA 31.0 17N06W05CAB YE082A Ym83A .-~ l'EDSlB YEC82B Y2083A Desbk Ri . s. .... " ..... ,a. .. . ver .· .l. ... e n. 'm091A 40.6 19N06W35~ YE091B YE092A Y.E092B Deshka River Site B YElOlA 40.6 19N06W26BCB YElOlB Y.El.OlC YEJ.OlD Deshka River Site c YElllA 40.6 19N06Wl4BCA YElllB Y.Ell2A . ... -Lc:Mer Delta Island YE121A 44 .. 0 19NOSW19ACB --YE122A 44.0 l9N05Wl9AOC - ;. YE123A 45.0 19N05t'Jl7BCD YE124A 45~0 19N05Wl7BCB Little Willow Creek YE131A so.s 29NOSW27AAD YE132A 50.5 29N0$>123CBC YE133A 50.5 .29NOSW27BAC Rustic Wilderness SUOllA 58.1 21NOSW25CBD SUOllB SUOllC Kashwi tna River SU02lA 61.0 21N05Wl3AAA SU022A • E-5-174 0419A 10 Table f~S .. S (CoJ1tinued) -~ ; ·-·:·' -. STAFF RiVER LOCATION .. GAGE # MILE GEOGRAPHIC CODE Caswell Creek. ... SU031A 63.0 2IN04W06BDD SU0318 SU0-31C Slough West Bank SU041A 65 .. 6 22N05W27ADC SU041B SU041C Sheep Creek Slough SU051A 66 .1. -22N04W30BAB SU051B Goose Creek {Lower) 1 SU061A 72.0 23N04W31BBC SU0618 Goose Creek (Lower) 2 · SU071A 73.1 23N04W30BBB SU072A - SU073A SU072B SU0738 SU073C Mainstem West Bank SU081A .74 .. 4 23N05Wl3BCC SUOBIB SU081C Montana Creek SU091A 77.0 23N04W07ABA SU092A ·~--SU093A Rabideux Creek SUIOIA 83el 23N05W16DDA Mainstem 1 TAOllA 84.0 24N05W10DCC TA0118 Sunshine Creek TA021A 85.7 24N05Wl4AAB TA021B Birch Creek Slough Tfl~031A 88.4 25N05W25DCC TA0318 Birch Creek TA041A 89.2 25N05t·J25ABD TA0418 Cache Cr~ek Slough TA051A 95.5 26NOSW35ADC . TA0518 -... .. Whiskers Creek Slough TA071A 101..2 26N05W03AOB -TA071B TA072A . tvhi skers Creek TA081A 101.4 26NOSW03MC TA081B Sloagh 6A TA091A 112.3 . 28N05W13CAC TA091B TA092A lane Creek TA101A 113.6 28N05W12AD!: TA102A . TA103A ~ i TA103B .. . TA103C I '-I -~;:: TA104A .... ~ II • Mainstem 2 TA1l1A 114.4 28N04W06CAB . ~ .. TAlllB " .' ~ ~ ' !, ,, ' i • f t' .t E-5-175 2-2-rl02.. I~, ·-~-,, ·:;, ,;:;'./ '<\ '\\. ' ~ ,, \ ', \:~ble E~s.s. (Continued) \,_t . ._. . STAFF . LOCATION · · . GAGE # Mainstt!m·· Susltna -curry Susitna Side Channel GCOllA GCOllB GC021A GC02l8 Mainstem Susitna -Gravel Bar GC031A Slough SA Fourt!1 of July Creek Slough 10 S1ough 11 GC031S GC03IC · GC041A GC042A GC051A GC051B GC052A GC052B GC061A GC061B GC061C GC061D GC071A GC072A GC071B Mainstem Susitna -Inside Bend GC081A Indian River Slough 20 Mainstem Susitna -Island Portage Creek GC0818 GC081C GC091A GC091B GC091C GC091D GC092A GC092B GC092C GC092D GC101A , GC101B GC101C GC102A GC1028 GClllA GC112A GC1128 GC112C GC112D GC121A GC121B GC121C .GC121D GC121E GC122A GC122B GC122C GC123A E-5-176 RIVER MILE 120 .. 7 121.6 ' 123.8 125.3 131.1 "133.8 135.3 136.9 138.6 140.1 146.9 148.8 GEOGRAPHIC CODE 29N04WlOBCD 29N04Wl1BBB 3QN04W26DDD. 30N03W30BCO· 30N03W03DAC 3lN03W36AAC- 31N02WI9DDD 31N02W17CDA 31NG2W09CDA . 31N02W11BBC 32N10W27DBC 32N01W25COB ; -... . ... t i i f ·I I ~ Table E.S~S (Continued} ~· .. '1. ': . ' ·' . ... "-_, STAFF RIVER .. tOCATlON GAGE# MILE GEOGRAPHIC. CODE ' ~ .. Sunshin~ Base Camp F < Fishwheel EB 1 SBOllA ; 79.0 24N05W36BDC c: SB012A ., _ .. _, 580128 Fi'shwheel EB 2 SB021A 81.0 24N05W25BAO Fishwheel WB 2 SB031A 81.0 24N05W26BAP'-c ·-J':'i shwheel ~lB 3 . SB041A 81.0 24N05W23CCA Talkeetna 'sase Camp East B,cank Sonar TBOllA 101.0 27N05W26DDA Upper East Fishwheel TB021A 101.0 27N05\~26DDD Upper West Fishwheel TB031A 101.0 27N05W26DAC lower East Fishwheel TB041A 101.0 27NOSW35AAA lower .We~·,·_; Fishwheel TBOSlA 101.0 27N05W35AAB West Banf· Sonar TB061A 101.0 27N05W260DB Curry Base In Front of Camp CB011A 120.0 27N04Wl6DBA CB0118 CB011C CB011D Lower East Fishwheel C8021A 120.0 29N04W16DBD CB021B West Bank Fishwheel CB031A 120.0 29N04WlOBCC -- I '· t E-5-177 ~.,, J J. J ~l -~1 -_l -~· -1 ~J ~1 _] "1 ~. , • .. _ ·~-] ·-:-.. - . . ATTACHMENT E.2 STREAMFLOW (PARTIAL) s11/d7 . y-'·· ; ·. . -. - 4 -. . (/) 2 3 I~ .• . ~- 1·· I· !-l-4-·i4~1~H~i~~·~I·I+H·I~ .. • ,_ 1 .. 4 -~ -, .. I·· -'• 1 " 1- N \ N ' -.... - z• ·-o 9_ l-.i <!I > w 0 ...J w 5 , ·· · I i I 1-I·· I· II 1517 -:-~,-:1:-:.:T.:-t-:1-:f-1-I-I~·+H··H-H H H-I-I Hili 1 lril 151 - 151 5' ··1-1--~1-+1 ! 151 4 l·-',-_+-1_·1-1-1 -i-1-l'-1-l·> 1513 ··1- i I i I I· 151 I· :- 4 • !1 RJ t ~~-f~~~~~ 1::. ~:: I· 1-t· I! :r 151 0-· . I I • I· ' l . -. . I •I I ,. · I ' I· • I· I· ? I pOh ~.- -· -~ 1- ·--1-1-I· •• ~ ·I· 1-a 6""'" ---·-~-li-•··-1-1--f .. l -I·!· l.OGARITHMIC•2 X J C\'t:U.s Kt:Ut'fi::L 6 f.!OSER CO. •uuL IH U $4. v 46 7323 .. I : : •if I; I! ... •' .. 1.• 11-1-J-1-1-1- _,_ -1-1-1-,. 11-1--1·-11-;_,_ ~r.--·I-· ·. 1.·::1:.;. t=f: F 1: -. .-~ ''''··--='-:t·-=1--=:~J: .;;;a;;.1.;;;;1:.1.. ~: r• ll' ·· l·r:· j: 1.:-~,:..:t~: -1·,. ~~ :-~0 ~·-:, ... -;;1-·1-1··-.__.!.oo~ ... .U .• U..LI.I • -f. i-i-·+ !-I. 1=\:;:l=t:_ 1::: 11 ': ~:~\·1-1-1· I· ·-1-I 1',-... +t+HHHHIII ·:.:,_·i:.l:.::l~--~-1-1·· ~ -1-1--1··1-i·l··· 1-~1-.. f-· 1·1· 1·-1-~ 1-f-1·· 1·-i·-1··1· 1--J-.J-1-M-1-1-1 ~-II' . 1--1-·1-H· 1-i--1-1· 1·-I L 1·-f-·1·-1-t- 111--·1-~i--1-1-1-1-·1-1-+ v 1-· :-1--1·-i-1-1•-l-t-1-l· 1--1-1·----1--1-·1--l-1-1- 1--1--f--I-1,-1-+-1--J...-1.. , ...... ~ ...... , ~ 1··-1-1-1-~--~---1-1-·1-1- 1·-1-1·-·1·-I· I· 1- 1-1 ..... .. 1-I·· I· i . . ._) I . ' . • i .. • • ilJ..j:+-1-f.J+I-1-I·HHl Ulllllili-11· _4 • t rtllll . ~ ..3 _2 II till . ·~· I 0 I 1 J • 1 I ... 1--1-1;1-~-1·-1-1· 1-1-• • I • I-J-L.llLUJ..I.~.W.I.LW:j!WllllliiJ!f-LJiL..L.LJ.UUfJ.Wf.UUfl~Uf--L-' .. -!-I-J-L-L-1+.f-L.U-L.LU.&.J.tl..I..U.LU.UtJU.UWWf-JJL.L.Lf-~.WltJ.U!lUJJJ.-J-J--l-I.-J-L-I-I-..L..f-A...Ll..J...J...UJU-illllW.I.LIUJI.ilClJJ-U-I..4J.l.UJ.U.U.JUIJfU-UI·-1 '• ·l· '-•• 508·!-1-L-.&....L~I 1 1 I; I ·I 1 '•',1 I I ·:,I I, 1 I I I \ I I ......... w J .t1l. 2 3 4 5 6 7 8 9 1,000 · .. ·:.··: .. 2 .. _ .. ~.. .1 3 .u.u..' 4 5 .' ·((:· .} 8 9 101000 2 3 4 5 6 1 8 } 100\0~ \ . ~-; . . • . . .. . 7 a ... ... ' '. . ..... •' •t . . . . .. ... • ·• r ~-.. ~. C ·-.; F.S) ·· · .. : ... : ·' .··:: ~.-·:t ~·=··· ·; • . . :t... • 0 II (QWATANA)(0.969) ........ .• .. •'( ,.itl~llil : ... tl•l li :· . LOGARITHMIC•2 )(, CVCLES I<EUFfr.L 61 ESSER CO. &IADI IN US A ·. 1-t-1-1--+-+·1-t-1··1-i·l-1 :--1-t·-t-1- : ·-1-I--IH·-1-1- 1-1-t--1-t--HH- i-f-·--t-1-1-1-1-·H·+ !t! ! . i 11--1--1•.,-h-•F-f--1-! •• ~ .. I • . .. (?\ .. ··:·. ::·~·. ... ' . t • • ~ ' . • ·t· ·· . .' j • . . . ··.· ... . "46 7323 ·.· . . •. 1-1--:.:.. rl ~ ............. _ .... !- -1--1-·1-1-i ·-1·-1--1·-~-11~1- -i-lf···l·-1-·1-1 . ., · . . .. . . . I· l:t·t-1··1-H li 7 8 g. 1 ___ 4 ___ 3. ·--2 _9 .8 _7 .. 6 ,. H1H'Ifllll' • ,) -·1 _3 .• 2 f1 N \ . iOO {' \~ ') .. • 2 3 • 3 !i I 4 I ~ ~(': LOGAHITH MIC •' f. 3 t.: ,., Ll a "\9 .t;l KEUtfEL. til £:i!iLit 1'1), r.t•u 1tilhA. :; 1:.~. 1-h .:. 11~ i< I • •.-:: 1.: 1::. ·= ~~ [:.i I? r:: 1:~. i:-:; 1.::~ 1:':: i::. ·,; r= I-; t=: ·:: ~= ::.:· 1-· I··· I~ ::. :: 1:~ 1::. f-.· . 1-- 1:::. -· 1=-: 1-I :I-: I:·;· :: ~~· ~: ·:.I .. 1-.. 1:: 1.: -1- 1-· I· . f'" • I • '·· 1- 1 .. 1-· , .. ,. . . .. ~-<·· ,_ 1- ·-1-' .. -1- . ··I· -· 1-. -· , .. I·· -··I· .... 1-. ;:: r! ! ! H! 1;: l!!i illW It: I I ' . i! . , ; i l ;. I·· . I 1--· ·i-· 1- , . . -1--1-b. 1-I· I· II •• I,~ -1...: .• I. I I ' I I 5 6 .. o• 9 1000 ( I' '• .. ~ .... • 1 • • ••• ' v .. 2 I I . : ~I; ·~F f· I• - ,j . ., 4 . 5 I IIIII 11m1 l! j! r'! I! IIIII I ! ! 46 7323 6 I I.]''. 8 9 1 . ! I I··" I -1-1.:: 1::'. I : 1-1 ... l·1: I- I·· .. ,--1--1.,-,. I• i-1-1..;.., .. !-1-1·-t-+-f-t-1 .. I • 1 ... , 1·-·-·1-1·-.-f-·1- ·, J' 2 ·r. •," f'.l N • -0 "-.{) 'J 8 7 6 5 4. 3 . 2. -_j . (/) ~ -I Z!J 0 !il > wo _. ws 2 1 \ ·i W' .,_..., • v . _J . -. :-IT ;-... I iT r ....... ·~ . !-!-;·!' i·!· -·-· .... . .. • :--i-· • . I· ·I-:·• .• 1217·-~ I~ I 6 . .~ .. 1.:. · r-· 1215 ·i:-1-I·· 12J 4 1- 1213 --1-- 121?;--i .. . i i 12' I I •I· : I I l . I I ' I · 12,oL f ~~~tl : : !_ ~ J' •• • I.OGAUIHIJ.HI." •-' .•• t &..YCI.I:!;; ~·'\.1:,; I ltllll'fl LIt I, .... Jj (..1), ·l"•t IIIIISil I I I I !j 6 1 a. 9 1,ooo 2 ' ' • •• I ' II tl ·• t •, . .•. "., ' ~~ v I .3 •l 5 a < c.F. s.>* 46 7323 J I I I 7 B 9 10 1 000 I I 4 5 6. 1 a I 3 I ? f: , .. 6 . . * Q = ('lWATANA)(I.079) .... ·.: ., .... I ,46 7323 ·· .... ) "'-') .- "0 • I I II II () - 'I -• _. . (/) • ~ -z 0 .. -9 !ia > w 7 .. ~ 6. 5 I·· -1--.. .• !--,- •·-··-~-1-1-·1- 1-i---.. , -.. I· -. 859 .. 858-:~-,_ 85' .. ..;; 1-' ·1-_,-1,-f.·l-l-1-l-1-f·I·!I+I·II-IH 856-'.'·-~· ~~~J-J-1-1"+~~~-~-··· 855-+-.1-J- • I 854· 1·-I· I· I i ! · I• 4 . 853 i-J .. · I. ·J;--1-1-1;. H- I , ~ i. 1-1: 3 ·· 85; 1·1· : .,-!. -'· ' . - .2 851 i-·-.. , ................ I : . I • .. -1-!1-1- . •• 1·-I· ---I· LOGARITtiMIC•Z X 3 CYCLES I<EUtfEL Dl ESSER CO, UADliiiU'A. -I· I·· 1 ··-..I·-J .. -j .. I-·-1··1-1--J-1- '-· 1·-,.. ... I·· 1-· 1-1-·1-·1--t-1 •• v. 46 7323 -~-·-·1·-1·1· -· . ---··I- III·-I--I·· " 1-,--1· I· 111--f-f-1·-1-. =~ · ·. ~ : ;.;n ~~: ?r ~J: =:r : ~· .. : ... ~i IT 'J. ~ l~I!J!; l!i ·~:i ~~ !. ~ : .. 1 -:-• • !If l:t 'l; ~ -1-iH;..r+H-t,-l:i·H·1-I·HHH HHIIIHIIIIIIJ-ii+H·HH+I ~· .... ;, .. : ::~ 1! ~~I! a11.#HH-H ~~~~~=:-l-l·~l--1-l-1 ·-i-l-:·-l-tlt111fllrf1JiltiUiTttttHtf'Hiini!JI:rjflt-.;..rt=i11::'1~.f:t.T-J:i:t. ~ It 11 ... ..... .. , ........ ~r::-:-;;r:-1·::~~~~ ~= 1-~~ ltii~·" ~!I 1~::1::1:1·+::1:.1·· ! :_ I:: , I= 1:::1:: 1:: I-· . 1:. ~ 1 ... ' C::. ~·11 L n ~ I ·-~-·· 1·-1-1-1-- .: ,._ ·I-fl. ro "'~f. '• ·• !3[~. t·-1:. I{ I· -e(-J 9 -a1 ~~ f4 ;1 31 :ir:..-!lt -r.-r.:-~1 .. 1-t+I-Hi :: VI .. ·.. 1: I· . ...: ~:::. • .~'.I" r . ~-:-:1-;:-;.. .. _1-;·1-: -~ . I·· I::~ 1·:; ::. I -I . ·--1....-1-1·• I'· • ) _1 ·.;~. !-... r---~-' · u•-+-f-t·-HI-,·t-+++f-1-lrl+H ~ .... ,,'f' / r21 1::-1::: .• t:. :. -ITi!·'·,.r, __ ~.:. -~~~:·'i ~=-~: _, ... , ...... ~-~ .. -~t-1 •• + jj: I· I• 1 " • l~ ..... u, R'.;..' :~T) 1·.: ::: •. 1·-'I· •• 1--1-i--• . •• i m r'"-1.., AB•-· ·o :11 ·-----1-... I·-:... ·t IE ~· I( ,., ... -··· -1-+-·+4-·~ ++HI-H·IIHI -· • I·•· I· f .... I -· 111111 1---1-··-1-·-1·--·· 1-·-I-, ... ,. 1-• .•. -I· I- I-· -·1--.. t-J .• ~·•·· 1.. '" i-· _,_ -·-~~-11-1-1 1-1~--1-1-1-- 1-··-·i-,---·: ... . -1-I • ,. -· -· •• ---• i--1·-. -• .. . ___ 4 ltllllll ·---2 __ l _9 .8 _7 __ 6 I IIIII -4 1·-3 I-.. ,_ -,._, __ ,_ .. l .. -l--l--·-.. 1~11 ,_ ·!--·1·-·!-•.• -· -·-1 .. . I. ,8' l::rl).....l-1-L.L..L-L.-4.JU..1..1.J.L.U..:..f.U.L.u.LLL1f UJ.U.UI', . .Liu..Lf.L.I.LJ ti..U.'fu.I.I,IF ,,_ 1.-.,1-J,.._I -1-L-l...LJ!..f-L.LU'-l.Lic..U.f.LU.L.U..U..lf.l..lLUJ.lU~LLJ.l.Ll.LJ.l.W.JillllJII.W~-1-..l-1-l....l-L..LJ..-4-U-LJ...J..L.I..LLIJ.LlllllJ.JL.Lf.:.l.UJliU .1..l.I..JI.J.U.:UJllllj • ~ I 1'-N 1 I I I I I I I I I I I I I I 1 2 3 4 5 6 7 8 ~ 19,000 2 3 4 5 6 7 8 9 ... 100 000 2 3 4 5 6 7 3 9· 1 .. Q (C.F.S.) ' ,, I ' It I I " N ' N ' -- 8-- ] __ 6_ 5-. 4 __ 2---• -' • tJ) . . ~ - 7" --·:'::- --.:... r··--I-' I· 1-1-,.:.I· 1=-1'::· '-' ·• I • I· I • , • -1-I· j:: 1:: 1.;.1: 1 • •• :. 1·1·· F • • 1-1--HI++·+-H-H-+1-1-H+I ,._-,..:I·= i·· :.:: I: 1.: , • ~-t-·1-!•• ,. j_ 1 {3~ ---·.-~ ..... _-~-•·-+-ii· -1-'-1· -· '--I· 1·-- -.. -1-- -t---t--1· -· ·-I • ~-. - -I·· - .. • I· 2! ~' 840-J.-.f·+.,.,-1-++ 0 9 Ia:~~--__ -ro..,..;:;~· ·: 1-8-838 -- -i-~ 7. :83" ~ 6 836-r-H·- W 5. ! I· I·. I· . l8 r1-:=r-~~ 4 . 1834 -I-l- l I 1--,_ J. 831-,. I· h· I· I·: I· I·• . . -er~< 1·- 2 1. . I· .. • • ... I·· • I I ~ LOGARITHMIC •2 X 3 CYCLES '\~I:; KEUffEL a. t:$!;EI1 CO. f.IADl IN U 5 A. 7 8 9 1 1111--1--1-,.-··I· 1-· ·-·I-··.. I·· 1--i·-.. 1-·· 1--·1--··1-. ;:: ~=·I:· r:: 1--l= 1.:: 1:.: I· 1: I·· f:: 1-1-1-1--1-1= I= 1=1=1:: I= 1.: 1--1-·1-····1- 1-· -I-i· '··I- -· ·-·1-1--I·· --· • i·· -1·- --1-r·--1---·-1·-~--I .. 2 V, .... ·. 'l if (l'o 46 7323 3 4 56 7891 1 11111 ~~ 1--·1-1·--1-t-,--t- -1-11--1· ... ··--·-11·-1--1- -~-1-1·-··-11·· ·- 1-.. . :·: 1::-·1.:: ::: , .. '. 111111 i-· 1--I· · I IIIII :-_ 1.:: I~:~~: -~·I: - -1-1-·----·1-·i--· ·-i-( ... 1-,--···I· ·-1---.. ···i--·-... , ..... -• I·· ---···-1- ·--1-... 1--· '"' -I--,_... -· -f·· 1·-.. 1--1-,-· -·1----1--1--11-1- 2 3' I ttl Ill ~71+R=I-I-H·H IIIII Iii Ill I IIIII ___ 2 1---• _9 .8 _7 ._6 • _ . --·-1·.. I .. ·-.. _ -· 1-1- ) lo;~u·.•ILLLllllLJ..l..LlJLJJll.l~lllllWlJJ!lllilUUt.LWLJ.lllLl.Jl.lllJllllJWlJ.-'-·J.-l_.l-LLL...W+L.LLLU.UL4-J..IU.Wlllll:l.lJJ.IJUq..LJ..ll.lllll.lJ.lllLllJU~Wll.-·-J-..L-LJ....LJ...W...f-U..LU..Lll..l.JllJ.I..IlJWJUUUllUJ-U...L.LfJU.U.JiLLUJillllluUf· 1 0JI I 1 1 I 1 I I I I I 1 1 I I I I I 1 • 2 3 4 5 6 7 8 l I 000 2 3 4 5 6 7 8 9 10.000 2 :~ 4 5 6 7 8 9 1 0 ,. s. = s ) ., . . \ ll r • I• I II II ~ ~· 4 ~=~~-~~-~~·~~~~~~·r~·~t~-~~~~~11 8 --.. 1·--· 1- J 2 3 7 .. --· ,_ -.:1,;_1--1·4-J . - 6.--. 5 .. t I .. -: :.:.:._ :_ "'r:·---- - • I· • I· .. , I! I 2 3 4 li LOGAI~ITHMIC •2 X l CYCLES I<EUI'f EL Oo ESSER CO. IIAIJ( Ill lt 5 A. 5·6 7891 I I i-1-'·-1-1-, .. -1--· -1-1-1- 1- I IIIII 1- 1·- -1--· 1-• -1-... , __ , .. -· i--1··- ·::.:.; .::; ·:-: r::c: ::: -·:. ::: i-=-;, 1 .. ; ;.;-= -;:; ~ :: ; = ..:. -:: 1: ,....; ::. '-:~ ::. 1:: i-· , ... ·:: 1·-1-I:, ,.: I··· i::-:: 1:: 1·1-1·: 1.:: ,·:· 1--I= : 1:-:. i=-~ 1::. 1; 1:: 1·-j: 1::.-I= 1:-;, L= I· 1.~ ~::: ~ I~ t~ = I~ = I= I= -: r-i :.-I::· ;.::-1-~:: 1.;;: :-1;::: ,.7. 1'.:. 1:: .:: 1:: " 1.: -1-· = 1:: 1:-. I-,:. I= ,.:. .- 1·.:: r:: . .. I··· ':. :. ~-· -· ,-1-.. i-1·-,-·- ~-- -:; 1: I· I~ i· ,::: 1-1- 1--,_ -I·· -1----I-f-. --i-··-1-· -I- I.:. -· i--···ii·· I I I I 5 6 7 8 9 1000 • ,. I • It I' . ~ I 2 3 4 I i· f· I· I ·2' 3 4 Q (C. F. 5. l I ~ 46 7323 5 6 7 8 9 1 2 I IIIII I I I I I 5 6 7 8 9 1=~=1=-'-f.-':: t= ~=· i -~ -··-·'•-I--.-i-1-.. -· ,_,_ ·-1- --1-· 1 .. .::1=,.. 1.:: 1-, .. -.. 1-· I -1:: I· =1::. . -·-1-. -1-1·· . -1-1·-• !-• ..... 1-I·· ·• -1-!·· I· •• I···.-1-· I·· -·~~-+-~-~-~-l·...l-l- ·-1·----· :-1-... -·· 1- 1-,_ -· .. .. 1-,-.. .. !· .... I I 10 000 2 3' 4 ' 3 4 .. 5·6 7891 I I I ! I IIIII I IIIII I I 5 6 l 8 I --1 ---9 ---8· !---7 1·--6 ·--5 ___ 4 ___ 2 ___ l __ 9 .• 8 _7 __ 6 fi rd _2 N rJ ' -........... 2 3 4 3 - -. . -I • en . :E ,-'. 1- 3 2 15!}~-····-~ ,. I· I· !·. • •• "' - I-· •• -·•• I• • I-'< •· I·· • • . 1·1· ···1··1-1--. . LOGARITHMIC •2 X l CYcu:s Klf:Ut'fEL tlo ESSE.R CO, NAill Ill U.U. I I '! 1 •1! 5.6 7891 1--1-·i--I-.. 1---1-·r· ·-I·-· 111-·•-•-1· ! .. 1-1--·1- 2 .::.. 1-If .• :. •. : :.1:: t= p.: rt· ... f-:? :: 1.~ I~ -1.:::: I::.: t::: .:: ~-~~L-:1::.:::.,.~ I~ =I= t::: ,-:: . , .. -1 .. . 1-1--'. ·~ I"' , __ 1- i • ..;. 1·-· .•. 1--,--~-I· , ... 1--. I· 1-1·-i---·I·· :-1-·---1-1- :-1-· r--- 1 ;551·~uu~-l,~~~·~. ~~~~~ 2 3 ,•- I I I 4 5 6 7 8 ( I 000 2 1 ( . 2 ... ; tt .. w w v 46 7323 ', . '''''I' I ;. ll t t .. 3 4 5 6 1 8 9 1 2 :s· 4 5 .6 1 8 9 .1 j . 1 --( 1---9 i 8 ·-- ~;::: 1:::: r-:.: 1~: 1;1;; 1::: ~ I= ::: ::.17 17;: ,: ---7 !=? ·~ 1'::: I~ :. !~: : ::::-:::: 1::: ::: :: -. I~ --6 ,·.::: ::: 1:: ·:: :: , .. 1~-: ;:: 1:.: .. -· -r:. - ·--5 I= r= t= :: ::. I· .. = ~ 1::: :! .: - ---.. I IIIII ·~ rg !:~ = i ~ .;.. :.:. 1=--::= -F.: 1.:: :.: 1- = t= I=· = 1:::. -1-.•. -1 ... 1:: I~ 1: J 1-~- =· 1-+-I~ = I= ~ :: 1:::- -1-I· ___ 2 -•. I IIIII ~-··I-. -·1-j----r·--·--1-~· 1-· 1i:~~!l ---1 I! m r ~r-.. ~9"! l _9 i~ ·S 'i II _8 '! _7 6 f\ IIIII I~ _3 I IIIII -2 I I 2 3 I I 6 1 8 9 topoo 4 . 5 3 Q ,, .=".S.) L~~ I ·~;: lj \:1'1111·~ \ < J t •• L '-'--Jf,._ I·....._ ..... Ll&l:~ ... AIJ--... '-•' ., ~ 2 3 4 5'6 7391 2 3 4 56 7891 2 3 4.5 6 7891 . -.-rrn-rl J]11 1 t :illlnmhr~rn'nn' lrlh·r' lll:illll' !' -I '. I 111 1 : .. IIJI . 11 1 I:':~.'-:::.. . • 1 1 r· .L· II 1 [1) n' I I • ( • ___ I 'i~-i--r i"f'"fr .. ftJl ·f I lui !Jli I'' !{jiJ ijj 1,1H!'! 1 11 l!t!l-r ~ ~;t· ~. '~: : .. :. . . . .. . 1 '. . [ I i ~-.·: ·:~ · .. ~ ' r-·~-' . ., .. _n, Ill il_ . . '~==: I. --.. . . --l-... ~, I I ''I' i j!lj :' 11 1 Hi -r f'-. . • . • I . . ,r· ----.. --. . . . . j I I ' •I I I ; : . . . . . . II ·.-: :::. ~-.-. • : . I 7 --y·-• . 1 --- ! -'-:-r.--~-f.· .. _ J. . ! !· 1 , I I' ,, . ·r.. ~~·_sTAGE .o~scHAR,~~ ~R~ rlt1GJ ~v,~vE ·::.. -~· =· ~ _ ... ·. _ _ . 1 . ~til 1 .1 .. ___ 6 LL-~ .... ·. 1.11 11 l t. lUi J . 1 1 i' ~ sus1r~A f,UVE.!rAT . .cuR~vl: m,:,Jilll'l''' ~ ~, ~;: ~ ~ ; ·:: : . _ . . ~ 1 ·1 1 . . 1 ___ 5 ---1--l 1- 1 -t:t· r, , ., 1 ,j. ''' 1 "i'1 H ,,, ,,, ! ·--CRfST! =~:r!.\,~E, R~ r-Q'!JI ~~-.. : t · r~t f';;'~ .,.;-; t ;: ; :~~ -· -· 1· tr, 1~,--· ,1 ___ 4 ,,-;1-f ... ,.r __ f.!! .,.,,r r ,,,.,~,,ii~l' rr ~T II I "1:~~·-:-:~"t·~:-._:~1:-I.T .·: .· :· :· I =::.=::.:::. ::..:~7: ' ,r n,· .. I ~.~:-····I i I'. '" ,. ,, .... I II :. .. ,•: ... ;.; .. :.,.:.:: .. :.:.:· ... -... · ... i :.:... . ·-----·-::.!=-· :_ -~.... I II··. I h I I . I I ... I •. • l ~ II.' I I I i ,, :::,.:· · .. ·:: ;_ ~ : : :. : :: ·~: .. : . . ,, :, ~ : ,I ~-=. ~ :~ .~: ~ ~· ~ ~-. . . I I I ·. f ·. --·--r-··r· --. . . . n . r -. I . . .. . .. 1 -~--- . . .. . -r-. t ,. . ·1-1+-l+t+H -I , I :~ :.: .: -: : .-: ~ ~ ': : . : ... : . . . : : : . . :: = ~ :: ·~ ... .! : : .. : • • I : . . I ! ............ ·--. . . . . --···· ....... ·-.. .. : ! ,, . 'i' . I :II . I~ I i :.:r.: ::· . ·: :. :· :· ~: :. :· ' . . . ,,, . ! I -= :: :: _: .-. .: :~ -: -. . . . I ,, .II I -.i.~.-~-. -I· . I ,,:1:. .. ~li_:J...=. ... .. .... . t .. . ·---·-.. •• • · .•• 1' .. i1 ~~, .. ~---2 ·j-· . ·!l' ·] rl·,~lll ' ~.:.:. -.~ -:.-.·.:~:.~::.:: . ·:.. I ===·= ·::·-::: .. : .-.. II II . • i!. I ! I I I --. . .. . . ... -. . . . . . ·-· --·-.. -.. -. .. I II! ; I ~ ' f . I I I I" I i. I . . . .. . .. . . . . . . -· -· . . . . . I ' . . , . ' I' ! I'! ·'!II IIIII. ~,., I I I 11! ~-I: -....... : --.. ~ .. ' . I I I' . . . .:. :~ ~--.: :· .: -.... I I I : ll, . ,, ;_~ _:_.1_ .1... ]ll'ilill1 1lji: .l.i .1!· ',·=--=~· .. ··.·~~~~~~-··: .... ·:. t. : .. · =·=~~-~-~~~.-~ .. ·:. ·. . j'lj.l.l,l! !;~, IJ ___ I :· 1 ~~8 -· ' · r ., ·~1 r 1 -----·--~~ .. · -,, · ·· ---·· ... · · · 11, • <6"· • .9 ·· -26 ; ,. 1 flj lr '!llll'lj'l :ill !I 1 'Ill I i{l .:.t:. ·:· .. ~· ... · •. : r t li. ~1 ; •1. ·. .J 'Ill: .. ::::-:. · .... · .. 1 , I I · 1 '1-A •11 1i!'! I ;, 1: ~I 1: 8 ; o : --·~-~--=,,T · ,.li·iJil r,11fn 1· 1 .. u·l'l'~·-::.:-:~:::-:::f..::==-·=·· · T 1n~1 11 i,1 ,.·: ''T, i 1 ,·::-.... :.: .. ~-r-#~·-·:r-:z~aw"7J ...... :-r·t··il .. , ~~~·-, 525 -· ·-~------· 1 . 1 1 ,·1., 1 •• tl~· . .l., . 1 U 11 ~i -:.~..:._ ~ ·~ ·. -· . . 1. 1 1ji . 1. ~ l1 -· ·-----· · . ·1L1 ·~,·· r7, .. ·3h80 ... . 1 _7 ·~ 52 I . /., I l;ll!lj!l!: il I I ·I·,:-.~-~-·-:: .. ·.·! l 1: :'~ .. w. fl.'~=:=-:::·.'. : I I ,ll.' ;'•il!j' ! .6 I I i 1 ·, Prj ·I 1!1'· •• lq II IJ I 1 . .:1. · · · ·-I J jll · I J11!l --· .:j.i 1 J r' . II f 1li II' I''' 1 I ·, 523:-· 1"1 ..... li· rir :ftr'l 1 '1ill;··; l!il i~r~~!.,.I!L·:_\~::~::.:-~,--: .--.... ·'1 1 ·~ · . ~iii l·~·~ff 1· · ..... · tit 'Jr llr· ., :; l i ., -l.lj·' ,,, ,.,:i,,,ll!ll··:ldlt "l"·ll! l:i!:~"U~:::; .. ~:=~-=---.: .. : : I 1·i'l'l· ·II .: .: .,.,,!l:llll.:.:~~:l. I .. 6..:.19-81'· 11-''l'··,,,.,, ·1]'1' jll_) • I I J I I j I I! I ,p! ,;, .. ,,,1" I' t I 1t~l :.1· ~ . -;-: :: . ·. : . . ·. . . . I I '1 Hl'··i ·, I l ,I .. · . I • I . 'j I' I I I II t' i I I 'I 4 52121 t· . ·(,. 1 . -,. . .ill I r !ll'i il I II'I'T ,. 1-=-1:' .. :::·.It::~.'~ :' .... I . t ·n l' I~ tl,r T' ·r ~· ;.l ,.,i H1l' .l::. • ' 9i~ 21 ~0."1'1 ·t '·]it' l ilf ri:' . . 11'1 ljll -. l I I 11' ., llif,!!!li ,·. 11111 ,,il:.t: . .r=·:::·~:::~ .. ;:+ ~·. 11fllli 'li 1',··.· . llJ,!l:.·:: g.,s-:ao' r "It··, 'l 1 I li!l'l 1l I i l1ilili _3 'i 521 I II I I .. I I' I ,,,.,,. I • • . -• .. . . • I I '1 ·1 ,,, I . . I ' I I II I'' ' 'I , . • , t I f I II til :l jl tl:j; :, ... : . .. II' Ill' I' ~10 .. 4'80:.. . ' t ··I iii· . ' I .:, !-,r ·.II l:!lq llt'll'''"'·l'l:l·j!'ll! lj'll''ljj!.-:,:~·.---·-.·~~-~· ..... ~~· I, lil'i~l·:,.· 1·11·11·1111~':>::::.::<·-T· .. -· ·. 'il,li t;l·;.. l'l'l I f .,,. t .I !ill ti:lliJ 11 I I ,,:1: ....... . . ~ . :: . . . I JJ1jl !I''• ,,ti I l ·. :::: ·~ . . I' . ·I i, I I fi! j 1 ~ ~~o·T~--~-----· · · f 1"1 rWjl ··· · · ~~~~-~~:~ . __ :_ _-1( 11,v·· 1: .. Eor, !11 ~=~;:--:~~ ------.· · r t 1 · • , - 2 N i · .. :~I ~~9. ·. :. : ' ' . ' '. 1 ~ -!l ' ' ';---.. ' -, ll, ' ' - ' 1 1 '1, .. ~ -~.:~.:: > .. ' l: ' ,-ll. ~ ' ' .. ' I'_) 1 2 3 4 5 6 1 s 9 1 • ooo 2 3 4 5 6 7 a 9 Jo, ooo 2 3 t1 5 6 1 8 9 t Q ( C.F.S.) . --.lt.1.! ' ,. I. It II .. t' ~ ~ ~ ~· ~ I ~ ? ~ ? ~ ~ ~ ~ ?• ~ ? ~ ? ! ' ~ ~ 1 • ~ ~ ? ~ 9 l I ' •• --1 __~ __ LL L J o' t __ 1 JL . 1 . ''~t~~11l!WIH ~11-ll-' '.!.", • ,, .... -9 I I I j I IJ. Ill! ! !~11,11 '1 I lff !I I . : . . I ·--8 ·--. J . l-. r .! It d J·lil 11 11ill 1· I. . J ~ ~( ,; -~-,-~~~~~-~~~~H,. v~:w~~fc~1~fal1tt~vl11~~:; ~; :>: ' ;: . . . II :: ~: -H-->- 7 1-· , 1 I ~i 11 I ,p 1 1117 :· :; .0 · C E}ri 1 'TA~~r:lf1F ~01 ~-~ ! 1;", \~~9 ~ ~ ~< :: · . 1 ... -5 . . I I . : I . . ~ . .... -..... . -...... .. --7.:-r:-:··-.-"' ,, .... ..... . . ... . . . -· --.J {)" ~ t I j I I I I I I I I I I I I I ' I I I I I I I I I 3 4 5 6 7 8 9 t.ooo 2 ') 4 5 6 7 8 9 10.000 2 3 4 5 c~ t:J~7 8 9 1 ( •' / '• \C.£ f;' Q :J .)>..,'L''-.. I I ' I II .. M>II.i.IIL i· ' t •• ~-~ \..../ •', 2 3 4 5' 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4·. 5 6 7 8 91 I ' o I I \ I I 1 I I I I I I I I I I I I I I I I ~.--r-r-,T'"'T""T' II -rh-lTT"M1 rT'TT'1'! I :·lltllll ~~IT Till TiTTJfrr· '1·.,~ijg· .. T ·I I . . . I 'II"·H ~. . ·.:' r:l ::, ·.: .: : . :' . ; .. . !.! : '1111.' r·! 11 ---r-H--1-r-Tl-j--·I·· l!·lt~.: :1:: li!'ti:+rH.u !·i,·· :···-=-1~·-H~ -.. · ~. · 1 t·tr -. . , .... :.-:..~-:·--· -~ n1t · + 1 --·····1-~--!r-· -h ·t .,-{l'·j'l,tilij 1'. ll!i!l ~~~ . f·.~-~-::-~j;;;~---~ :·:-. l ,,lij! ·.:.·. I. :~;··~.-\~~~-:;·: · .. ·.· j' t··~·l! I I -· _..:.,·..... I· ·t· · ,1:1 ... · · I -· -~r:tijiH.Fi 1 ~l te 1' ~ · ~~ •• · .. :, .:1' , It . ::::-:. .. ._:· ·.. ' ... ' I • 'f • I I • • I I ·-..... J. • • • . l I . I 11 •• I . ' . • . ---.. " . .• . ' . . . ' I .. l I •-·1-.. , """ -t, ,,. ,,f'l1·l·" I l I+·' 1 l'_; 1 ' i! lrl• 't;jll'1 :j'-::-:-·~:---l-::; ·•• l', '' 1 ... -.~l ... : .•.. ·. 1~:·''h 1· ~ 11 II·:~J;.cR.E-~r ~· .. fleE ~E~o~of ~·.~ x~ 1 ~ --~~-:::.:-·::-~.:::;;:·.~; ... . 11 1. 1 ~ 1 ---·-----. -il·t·.!-·1'1 ',~1111-~·'1. di''I~J. ·. ·-~-·-=-~=~=:>.: . 'f~~jl· It I ~Ill~~·:.:=~._·:~:·:.::: . .-:. ·-r I." .. ,-~-~-h 'f . ·, Ill'+, . Jl,u,l·l ;~~~~~~=-~~~~~~:;-:-:L ·=· Ill., _ ... ; . u,'i·l ~~~~;~;,~;~~-~<~-~~-.·.:. .. .. ::. . . t I I I I . . -..... -.. .. -. . . .. . . ' . . li I' • • .• -· • • -.. .. • • " • . I . -~-,~ ·---,,-~ -i .-.. :· .. 'I r , ',~ ;l:l~ .. . I r P~~ ~-=: :~ ~~ :~: ~ ~ :: =· ~ ~-~ ~ ~ : -: =; . . • . . I~~~ r ·r: . .. l' 1 ~ ~ ·f ;~ ;; :: ~ :· ~ .· < .. -. : . I :I+.H -I+H+I-!1+1 I ...... --: • • I • • • • I . . I ,. 1--f----... -. . . . ' l . I I -I--·---- . .. .. . . . . . . .. : ' I I . I i ! . I I :--i::: :. -. : . : ~: .. : :: : .. : ::: : . =::: :_: _:: ~ ~: :. : . . I ,,, 3 60~-----.... 1 ... I" ' . 1 1,!'. f ~I ..:..-;:... • -: • • -• • . • • . I ·. . ---·:~ . .. . . . . . . . 1 : ijlt!l_ 1 ~ I . . . I I I . I • --.. --• . . . . • • • ---•• ·-• .. • .• . . . . ' I I I ~ .. . . ' ,,,1, I l . =r= :.: -= = :: ~--.:: . :. = ·.. . . . . ,= = .: : : .: .... · ... ·. . I II ' , L • ,. ·-1·--..... -- . .• • • • • - ---· --• • . I I I I I :. --.:· -~ lftll.l,· ,~,~~~·~I II ,-~=~-:>::::: ::--:.. :: ~=~~sj'~pl~,_m;~::~:::~~j~·m~~~!'.,t.~,r~·~ II 350 -1--• ---. . • .. 1 t' f ~ I . -. t I ·--~, ·t ~-.JI . I I 9. 1 ' ' 1 1 I 1 r 1 •• ·-i=-.:.: ·:· ·. -=: ::.: • · ·: · · · ' I' 1 : · I .. '.::! ... • s 19 · e1 1 11 i·'1 'i1 1 ' 349 :-... +!.-" I' -! !_,j 1 l I I ! :!1: . r . I ·r'r ;=-~~ ~~ .. ~ -~ . f-· : =-'. ~ : . : :: " . ., 1 .,t : 1(\ ·A_ ..... I ·r • ! -':: ,· . + . I l ~H u~ 11 II· . ·{ ; ! I I. ! I I 111! • I • ! ! . ! .. : .. · .. . . . ; . : It I I . : ~ ~I jT • . ·I 5 .. 22~8 I ' I I IJ ~~II ·:t. I I I :· ,_ 347i..:.l-l·--: ---i-fl ~ uj,!l~~t!;ltl~l~,.· , .fi t IH!:j,~ ~·=:=~;;~-:-< ·\ +t, :Wilkl·::· ·:· ,,. iol\~~:~;~~~~"=ijll~· ... ·1~~:·: .-'i ,. ~, i!fjl t~ft . . II 11. il. 346-r·-----. nr-u,~,i,n,, .. 1 t. t!lr===!-~=-~·.::.:::~ ... ~.~-=: :· .. ~-!~,_:;;··tH ,.:·: ·: 1. il11t"' .. ~~:: ... :.··+ .. --_:1·-+I+ IH It'+ __ 6 ' • I • I I I II I I'll I I . I Ill, .. : . . . :· : :: :.. :. : . . . ~ I -. ' I l!l . ~ .. : .... : . ,. . I I II .: II I I :1 I I I ' j I . ,.q . .. .. . .. . . • . .1'! I i· ' .. . . . I 1 :1 ' .· .!! ~~~~ ,-~·-.,,,.",,.,,,,jl:,~.',.,i,,,!,j~,~i~·t!t~--·' ...... ~=~: ........ : ._.,.IJ!l,p,.:,~,-n 1·1'1~~~)~~~"".: ___ :_;,t __ ~., ... [! ... ~.~~ ' J,! '''·· ~, f'"'!lll,~~,~ I I ,,, t I !I I' I "I l ,, :II I ·t ~ llt I ill .. I • . • :· • • I I ·. I :1 I I :. ·.: ' . . ~ . ' i I :· ~ I fl I : .· ~.4 ~1---"IT. tl· l'l''!'il'li 'Jill~. ''Wli· II I'(+>> :' . . I 'j IJ~ ;,, . . 11 ~ -s-7[ : ~t' _, ... ..~ nn I' . . 11 '" I • -, . \ . 'I .. , . . . . ' ' ., I' I' I I • I .... .. ·-. .. . 11 I ! I . . . . .... ,,l.l! 'jl 1 ' 1·=1::.~.-~-·:7::-·. _.:·.. : l·rll!i! '7 .... . I ~:=:-~ ::: .. ~:->·: ........ :. ·t. .. ,. I' ,:1! .. . , 2. ~·42 ·-t' . ·_ .... --.. ,' .. · rl' I tJ!I til,!l· _,i J ·, ,I .,i ~:{:~. ~-~ · .. ·:-: ~ ~.::... .. .. .. I l . : I :.:: :"::: :~ :~: .: :: ·." > :· -,. . . q.,. r,l'tl ,,,, .. .. . I . ,,1 ' I I i ,, i :: . ·:· -·: : :~ ~ .: -:: ~ . . . : . .:: :.. = :. : : : :. . : . I I ,,,, ' ; . . I' I I I I . ~-.-. : :.:. ~.--~ :. : . . . : . . I . r . --· ·---.•. - -·i . • . . I ~ :1· ·. -:. · J 1 ·: ·-· 11 11. , 1 1t ~~~ 1 ,:,t;~-~-~~,~:: : ·. 1 1 I~ , · ·~ ~~~Ef~-> :--:: · · 1 • ~r 1 ;. .• . .. .. : . llil,l I !!JI i I l l lifl .. ~ ~ -.. . .. ... .. . ' . ! ! ill· li ·---,_ . --" . . 1 ' - t • :_:._ -' tiL... . lllil-.. . " ... ....... . .. -.... -I.J..L.J.I.f-J..L.Ll.f..U..U • 1 1 I I I I I I • I I I I I I I I 1 1 I I I I I I I I 2 3 ·1 5 ·u 7 B 9 ltOOO 2 3 4 5 6 'l 8 9 10.000 2 3 4 5 6 7 8 9 1 -I -J 1 .,.,.,,11, ;-·· ,{ . "'·· • • EXHIBIT E 2 •. Water Use and Quality Coment. 3 .. <p: E-2-17, para.l) Provide stage-discharge· diagrams for a 11 gaging stations on both main stem and tributaries. Response The stage.;.di scharge diagrams for the continuous gaging stations. on the mainstem Susitna River and its tributaries are attached. These· stations i.nclude: Six Mai'nstem Stations . - :Dena 1i · .·Cantwe-ll (Vee Canyon) Watana ·Gold Creek Sunshine Susitna Station Ten Tributary Stations River Mile 290.7 223.0 182.1 136c.6 83.8 25.7 Maclaren River near Paxson 259.9 Portage Creek 148" 8 Indian River 138.5 :chulitna.River near Talkeetna 0 8.5 Talkeetna River ne.ar Talkeetna 'i$7 .2 Wi 11 ow cr~eek near Wi 11ow 48. 5 Deception Creek near Willow 48.5 Oeshka River near Willow 40"5 Skwentna River near Skwentna 27.5 Yentna Riv~r near Susitna Station 27.5 2-3-1 N I w \ N 1- \U uJ u.. / \ SUSITNA RIVER . ~• DENALI . . . t l'.JI·•·•· /.'t•·tritr t·r. .. •t ........ ' . ' -z 0 t- ;! 42 ~ 41 w 40 -~= ·-:•:: ':.r.· ~f-1-1-J· .. 1- 5--f·-·-1-1-1- 1-·1· t-1-•·+++ ,_,_ t-· f-· . -J-. 1-~-1-· H··· ~- 1-r-· -1-+·+·-1· ._ w 39 I= ~ ~ IJ.. 38 cr ::l 1-~- (I) 37 E..:: 1- r: ~r- 1435 ~·-:::. r= r-. i· 1434 1-f-1·· 1·-r • .... ,. 1·-1-.... 1-,_ f-· 1-+ ~ ~ r--'-I-+-L..,F-1.-'J-J.-1-+.J 1--1-+oi.,.:A ,_,_.,. ,-; ~ 1·-, .. .lri--+--t--11-~ J.· ~· 1-f--J..-1·· f-+· I· 14!3 _,_..t--&. ........ ~~··-~ 1000 2 PREPARED BY • I IIlli I 5 1111111~ I HHHIHIHI ltlllll 1- 1-J-~ ~--~- JIIIU-1--1-·11-1-~-I· 1111111-t.-..&.-1·~ 1-f· I I i 3 ' . ' II IIlii 111111 . I IIIII 6 7 8 ~ 10,000 01 S CHARGE Q (C.F.S.) -•-r··t· .. !_, .. 1- f- ·-~- - 1-1-I- f.: 1-f--1-~~:: .... 11-11--1--+--t-H- . ·-~·-1-1-- llllllllllli 111-.-1-JI-I · ...• f-· ~ ioo,ooo STAGE DISCHARGE RATING CURVE SUSITNA 'RIVER NF,AR 'NAT ANA Ill ••• IJ .. . 11m 11 ~ 1 ~ , ~If 1 1.H.Uiillllll 4 5 ~789i PUEPAREO fOR' Figure 2 .. 1.1 ~Ill.~. ··------------------~----------·----·- l. " 1 9 8 7 6 4 3 2 ~ ::> ~ IJ 1 I -- --- !- -- - -- -- Q ~~' -<. ·.!> \-u. w. ...!) t \fl N 9_ 8_ ]_ GL 5_. 4_ ,_. 3_ 2 - L ' Jll w (J .. ' \I\ r • 2 3 4 I I I 2 3 4 LOGARITHMIC •2 X 3 CYCLES KEUf'FEL 81 ESSER CO. MADE IN U.S.A. 5 6 7 8 9 1 rmn :~=- --~-( X I\ \ I• .. 1·- 1- 1- - 5 6 7 8 9 ()(./(• .· ... •• 2 3 4 'l~ I· 2 3 l 46 7323 5 6 7 8 9 1 2 3 4 5 6 1 8 9 1 ! I I I ~h1Jff . - II I IIIII flfllll ll: --~t 111111 1= '· ~I IIU t= --Hll I IIIII I IIIII --I IIIII -- -- I -- m~ -- I IIIII ,II IlL .UII' 111111111: 11111111: _9 _8 7 _6 _5 -· t:) -~~ p 11 ~~~~ ~ _4 = ~ ~i ~ ~: 'IJ b ~ .. ~ f.IIUI i- = ~ lr; !A ~~~. "~~ ~ 3 !- !~-~ ~! ~·! I"' ~\ ~* :r'l J~( f· I oH II ,,~ _2 'J! ill .~t I·\ I~ . ;. ~ 1-· ~-1-·-I·· 1-· . I··· " ! - 1111111 IIIDl _I I I .., I 5 6 7 8 9 1 ,, .. 2 3 4 5 6 8 9 N \ w t ---.J t • . . •f• I !,t .!• .• ! .. ::. r tt: •.. .... ~ ! ~ _.:t~r• . " .. ... & ••• . ~ . .. . •JtO' ..... · •. --, ..... :., t .• :! ' ~·. .. : 1, ' " ... ·'It~-:.;-· i ...... . ...... : .. . • t :·t • , • !~. :: . '.; ';._.:: :::• .. .. . .. . .. . . . .. .. .. . ... ... . ! ! I' •'' . ~ • t ... .• :~;: ::::-::: ·!::;:;:t:t:-r~ !·:· .~ • :::.::~: :":!:·.:~::;~:;:·· ···:-,~:: ... u • :. ;~.!·• .... :••,,._.z•.., ::~::t ::•, :·4::·.::.·:·1·:! ::·--;·~·· . · :· !. • ,. 'J. • • • ... • •• •• •• • • •• •t• • • • ........... ,_,.... ... • ,. I I ... I ••. I . ~ .... .. . . ' .. ' -~ ..... ' •· , ~ . , .. ,:_. ... :·; :~~!· j·:. ·; •. ~.l~ ... ~:, .;·: ·;;:•·: • .. •::,•,··:: ;,!!. .. ' .. _. ..... ··~ -~l·· ···-,. ····~· { .. t •••• ,, • , •.•• ·f·· , ... ! ... _. ·:"·~·· .... .; ...... _.. ..... , ..... -··~'· .·· ...... """ ...• ._..,, ._,. ...,. ' I _ · f I ~ •••• •t t t e l f ' • • I • o • . II <4 o • f f ~ -~ ' , o t • '.. • .... t ., .,. I j • • _,., , I • .. ., • _,, • ''. ' ...... ' # : • II '.t ••• _. f o I 1 • f • • '._ I a ff .· •. f• 'll -f •• ' 1 ~ ilo. ' & ·f -' ~ f-• • • I •~ • . f ., f 4 _.. • t t f f, t• ••t••J _. .,., • • • •, • '"•!·-·. ··:·;•ftt ~··-::1: :~·:··:-:::~~·_· .. ·~:-=:-::~:·:·: ,:-:· .\ !~:··t · · . ::···:: ~ ::.·.r: · ·; :~ ·~t~:·.,.· ::rJ./: ·.! ~·: ';. ".'·:~: .... ·r: t• r t·~• ••••~· ,,, ... ._ • •• •••• •• • -•••u 1>'4 • '-,-,l-.1 ••.J. •.f. ""' ' ~:·!·~ f •!: , •• , ... ,:•i•••:f-!' .. • .. _. •• ~ ....... ; • ·-.... ._ • a., • •• I :·.·,~ .t· ····.:1-.. ·i~t:.··.:;:•,H;!." ..... -·.~ .... :!'""!·11'.! ,t • • • • ~ 4 • >-... • I .I . • • i. ' ... ... l ·I· ~ ' . : : , .:i .. ·" .. !.· .. ::::·~ .• : ..• ,·~· ,· '"····-.·. • . • , .~ ,• ' .::• ~~ ... ~f· : •• ·: •• ~·:/t .. t •• ·~~ -:•·.· •••• • ~· .~J. •• , •• , ••••••• ' ••• t•f'•jo ....... ,.. ••••. -f ·--,_. t;. .. .. .... ..... . .. ,... ~ .. :!.•:t 4 -tt' 1'1 .,. ! .. : •• ~:.!'of:·:. f I •! ••,~ ,jo f ;,!' .. ,: ~···. •• • • t t ~ :: • ::! • H •: • •• t. ~~ ; : : i, I • • ~. , ; :. ! t: fl -, • t t _ft • •• • • ... • ' .... • • :- • •• • • ,, • t · •.. ::.::,:. ·.t · : • ... ~ .r ... ·• f. ~· ~! I ~··"'~!!"' :t : :•!••::: .. * ~ •• ·!·t ...... . . . ;· ... r~::~~ .: • :. ; . : ... !". • ·;: • • ·····--· ••• J ••• ' •••• ! . • ~.\";"; ., : ': ~· •• 't4 :. . . . .. ... ~ .. ' .... ~ ' ' . . ' ...... ' ',., "" . . . :. · . . ... .. !' I . ... . ;')0 • •• :i:-:i·:;~ .. ~ :!:1:•:·•:!:;; ,: 'i"' !H t•o ':'· ... :?;Z. 1-1 (' p • .:· ••. :!· ..... ":i: 1 ~:•·: :;:.; .. ·:i•. ej • .. i ' . :···,1·! ;i 2i :. 't •• ..... ~~·~·~ <::·!·: i .... .!· ~ .!~~: ·,· ~ : • :.~ .-j ~ ' . • • -r, ·• * .. • .. • • ~ •..• . ~ .,_ -...... , ··-,. \.. • . . .,\. .~=· .... • . ' .. . . ... •. . • ' . . . ...... :· • "'!-. ,.,,,.,., •. ,! . .:..\' ,... ., .•. ·.~:-=~·-·· :!· ··:~·.:-r:·~····· •·"! .. ···;: •. i'zo!: · ·1Q ·ta• : z \ · . ..·.· :::· :. ;:: . · ·: . :. , . . .. : -~.' ' !'\ •'i.••. :·· .!_, \" I ·• • • • •••··'"'. • • L ,, t "r' .,.,. • t ' • t• ' • •• •• •• • ~. ' •• Z ~-.. ···)··-· , . .. . . ... ~ ~..._, ... . ...... ............. .. .. 4 . ' I . .. ,,_ • f-.. "'I--....\.. ,_. -~-• :. • .. ............. ""'''"' ~f •• ·'······...... .. • ::·:~·· . lP . • . \:t=Jr'· .-·~ ·.·~· \. :.._ ... ;,-: ·~~ :: =-.: ~. ~ : ..... ! ~ :.: . .-.. . . . . . ,: . , I "'• •\ : ~,. •••t •" • .i•: ·--•i•' ••~ •' J •f-,. . '.,'• ~~ . • ;·.,. ·.::::: <~.;:; 'l ·; • ··:. : .. I : ::·: ::( ... ::.~.~~: :\ ~ ;:.;. ·~~~ .::.:·~:.f::.:~·;:=!:::.:~···;~:.::::i.=·-~ :~:· ,J .,, . ····t~,· .... ' .. • • ;..,..,.. .... '. \.. .. .... t ·~ •• • ...... f ...... '. • tt • . . . ., ..... . ' ,,.. - II • ,.,~ • • ... ' • • .. \ ...,..,. • • ; ... f -··· • .. .. ; •••• '· • • .... • •• ., • ~ ;""'' J.. ~,. •••1 t\••• • \'*~Itt tfttlt ·••• t;•• .t .. •• *ol•t t tft ~ 9.D 'I • • * i . . ... ., ' • ... ·~:-::•• -0 ~--·~-~I • I •\f 1-•l•l •t~i:t•l;.. ~··:--""0'"'•• •·~···f.~;·•·~~ •!!'·-:::;:-"•-:•!,.;"' !;u ~,.. ,. :·'::!: "\ .. ,,, . ' ...... ,·:;:. ·:·····" =: :, ..... ~ ..... -:. :i::··! :!·:;: ,. :.'\·::::·.~:..: .. ·: ,; :HU:~:-~:=-:;·~·:.::.-·f·:·;!:.:::·::.:-• *"':' ,•"!-r:.. ·~:··· •••• , •• ,. ~-~·· ! ::. !. · ........ 4·i: .••. ·'~!''!~!·.~~ ... ,~·~· ., ••••• ,~.. u!..f•:·:•! •; ···~-~ .;~:;·.:~::.:H: •••-• :·· .. :":••• ~~=·~·::::·: ... ;.: .. J. :. • t • •. , ; • ·1 ~ • . .\+ • : ': " '" ' . .. •• ! • _. .. t•: :, •! • ~ ~· • " ': ~ *: • <it ••• ••• t '~ f; t t' • • •. " • \ o o I I • t oo li 4 : :.. ·• :: + ..,..;. ~ ~:: ••• " "f "' !:: ...... :: ._ ... 1:1'~·. f· ·:~·,:-·:: .. !.-·--····~--::,·:·······~ .. ······:-::··:;. .. ............... . .... ... ... . :.· . I ' • . ......... ; , ... !. • r • " .. . • • . .• :·.,,!rr.:!.! <i::: .. ~· ·· . · :t· ~: ... z •• .-:·:· \~ -·= 1:·:· ·::. · ·· ... ... . . . . ::! · .. ~-····· .. :·'. i .... :i: .. · .. ;~·~ ~1··· .. ·"!:i ·!"'·t:::! . .. ... ~,..... .~-·~·.. '!" .. ~:··.~:-:··:.""•::••;·•: • •• ..... · .! ·:;.. = ! .. = H ;; • • I .. : , .. : :-: i .. , . : i .. .N_o: ....,. ·~ ! = ~.: :: .~ ~ . . ! ~: ... ••• •4 !: .·f •: • • .·.: •. ;,,· •: ,: ~ •. ,:, ·, • .: I ••• ,: ••• • ,.'. •· : "'• •. t "". . • .c:. ~ .. • ... • t ! .. .. .. . ' :~ .... . . :. . --. . . . . \....---·-__ .............. ·---·---·------·-. ... .. .... • ..... •• •• ••• r.,.·. "-~:.·-•.••• ·.·:.·r·· •• · ·.··.~···. . I. ~... . f , _. .... •. • • .. . ... • •. • . 1 .:. I •• ,;: ·~ .:~ :u I·;·. • I .. . . ... , ... · · • .. · •. :. :·: ·L:·:.·. • .:t· ;: : . • •• OrT ~~ 1 7 . : -~ .. :. ;.:·:::::;:·;·;: .. ~~::::;=.::::~ =·<i-·~!·:~:;.:!f~:·;~~f~;-:~:·~i ... ·=·~: ~4 .\ -•• :,~ :~:. : •••• -~ ~-.:.ii:..: .. :.!:!=:!i:;.:!;:._:_·;~:r,·u:;-~t:: .:~· .: .. : i: :.!:!~!.~;;!:·:.i•:::~i.. i .... · ~· .. , .. _. . ... · ... ~::.1 ... :··: ..f :·:· •• ;~~~ ..... :;. ... :· .. .. . . ... ,. ...... ""~· ........... ,-: ........... r· l ., .• i:. . ....... ·: ... . . ..... , .. .. • .... ~.., ........ ,, .••• t•·J.:t~. ': ...... ~··~· ......... , ... ,. ,. ··~····· :·:,·:.·:.· ..... ~ t~·,~~ .. ::.:: ...... . · ·:· .. :.·.··. ~·:· :~":~,:~·;;.::· .• ~ :::u· :.~ :1• ·~ · ... • :. : .. ~. : .• ::.: . ....~···· ~:. ... ............. . •..•.•• _. , .......... -..: •• · . ~ .-. 10 .. :. • • •• • ..... •••·••-:·~· .. .. r • . • • .. • · t • •• •• ·•··~ """ • • • •.-I•. • • ........ " • • • • • • , ·• .... •• • ~·~ • .... •• •It••••• •• 1 .. • • • • • .... • • • • • f • ~ fl fl •• I t•l• • t t ~ • • "4-" • 0 I • 11-• '" !I ' 0 1 .-• •. ~" • ·~I 4 ' ' "0 • f ' ''1 'f' , •' •l .~.. • l " I 4 •• -. • • a • l f" • 1 • ""' f••• ... t• ; • • '"-• •" • t • 0 t •••••. ·• •• • f • 0 • •-' I' • • .0 I •. • 1> 1 t. t • •• , o 1 • t t-J ' ~ f 't ill • !·! ·~: .. : ';; :_ ~ .... :. ·~;;t•!".·;: .. J··:~::;: .:···;::.:.:• .. ·~j:::···~:!·:: . .. ... . .... ··:·.:;;l._,~;:':~::::.:~·:._ :: .. t. :::;: ••• :: ~: · 11· t! ~.:; f~." t;.£!!~i1ftH:1r.:·J r ::1: ~~ ~ -~: ·1: 1!'r1·:· !!! ~:1:: !. d:: t J:; •f" ;. ; .. · : :. : .r! · •. · · :. ·.·: ·. · ·.: ··:·:.: ·:. ::.· .. :.,~:.·;;i! :·~.: ·:; .. ·: ::.~ 1~· ... ·:.:_::·:1~::.~.::.··:-:.:r_:· .. ~.= ·:.r; !.·: .: ;-:.:.5:. i ~.: --: t' ~I''!'" ···J, ... I .... ,.,, •. ,, ....... •·s··,•j•.•J•••&1 ... ,.. ' • I I 'I I • • • ., ., ,. • • .. •• • ~ ,,._. .... _. __ • •••:•-•! • • • •• •• •J •· • • ~ t • • .. , I .• ,_.., • ... ' • • ... •• •. ,.., ,. •• ••••••-•• • _. • • • .... •••t• • •• .• , ... • t" • • • I' • . r ..... , .............. , ••• , ••• , ......... , •• ~ ·•• '•·t·----··~· ....... ,. •.. , * • ·~.. • .... • ....................................... , ...... . I • • . .. • ". , .. ~~-~ •t! I' .•. ,., I.... .. . . .•. , ................... I. • ... ·. •. •, .·.• •. · ......... 4 :• .. ·.·••· •• · ........ ·• ••·· .... f'·' ·,···.,.· •• · •· ............... ·.· .·· ' -; • ·• • •· I • I . • ·, .•• •• .•• ••• ••. ••• .·.·.··, ..... •·•••· ·' ·• • •• • •. • • •. ••.• .l·. :: •• '"', •• • •I'• · .. • ·. ...... ......... I ! I I ' II l I ~ ~~:.1 •• ~ 6 ._, ••• 4. •'-· • Ottfl.tl!••i••••••j I• t•t••>f-................... t-•• t ,._,~•·•• !It. ... • t •••••• • "' •• •It'· •• I,.. ••t ,., If~ t•··~ tf I •• ~ • "t ...... . ( • • ! .. I 11 •• : , : ... : • : ! : : : ~!:. ;:·, ;! ::·,:" • ; ! : : • ! ~ ; •••• : r: ;:!!: ·:~:: .• ' :·: :· t : :·:! ., ~; •. : :. : : ;· : : ; . ~ :-: : • ·' . : ~ r·: .. :•::::: ~ ::·: : : _H : q.~ :. ~ .: •• ~ :; :; ! .' :: •.• : ' : : r; : ·: :: ~ . : l!: , ... • •. • • I t t •••' t i • .. ._ •••••"'"'"!' ••t••t•• • I !'I t t •• ···••••••••••••·••••~ •••"•r•t-•r•• ••~··•• '"j'''·!" .,,· • : ·: • ::! : ! ..• ..: .... ; .:· .... :·.:.~1 · .. "· .. :...:r: :~! •........ ~ .......... • •. · •. :: .. t. ·.: • • •• _. ·~-r··-·· .... t ......... ·~·.. ....... •• • •• • • • ...... _. ........... , ... ~ .. ,. ...... ~.·· .......... 1 ........ , ............ ,, ........................... , •• 11> ••• , ..... r··· ., .... ~· .. t ••••• _ ........ t •. , ....... z ................... t. ····.• . ,. ........... ·1··· _ ............ , .............. ·········~········ ·~' ........ tl .................. ~·-····r· . .., ............ , f.:~! :t: tt:;!,~J:: I ;.:t.;~!1.i'! :~!~:;:••·.~.: H:,:~ ~~~;:;:::!,J!:::f;.,,! ,:•;.:: !' .: : .. ;• •' 1:~'.t!;!;.;:;:::.:;;.;Ji: ,f .. :• !~' :.;•,•;·•.: .;-•:•u~ • ~ , ••••• ~ •••••• " •• ., ••• r ••tt••·•J·••• . • • · , •• ·•·•• ·•· · •••• ·•• • • • ••• .•• , •. : .... , . . · .._ • •. •• ••••··••••··•·, .. • • · • · f' •J•' • ••· •• ·~·•• I •. ... . ,f .... 1 ., .. :--............... 41 ................................. 1 ......................... ····~·~-1 ............ !-'1' ....................................................... o1; ........................................ 4 ..................... ,_ ........ . 1 .j,,._.,, •••••• ,, ....... , ••• , ... h ··• .... ,._, •••••• , ............ , •···•i'"''•J"'' ·· ~······~ ··· ·! ..... ••••••••••• • • ··t•••·~·······~·~·c··"'·i · ··~· · ., J 1, ., ....... .,., ..... , •••••••••• •. 1 ............... · · ····:·::.··i ··~·· t· •· • ..... t·: . , ~:.!--;·:~!:.·: :;:,:·::.·,!.!:1 1~.::::1 .:.::·~:,;·:.::·,:·:· ·.!.·:.:·· •. · -r ~.· • ·.:.!---'"!1::":.·.:.;: .... !;!:!~~!:. :.!!tt:· •.. ·:r ... :·!,t ••• · • !!4:!!".: :;i: ::~:. •• . . ~ ..................... i ............. h •• u •.•• ,, ····1· ... ·: ! ; ::. ... , ......... r• ••.. , ............. t .... -•• ....... 1., ............ , ................ 1a. ..... . t.. _. , ... i,. .... !···:·~· .. ·· •....... ,u. •t· -~·• ..... -,J ............. , .• ..... , ··~· ' ............. , ....... ,, •• :J .............. 4 ... .-ti ••• "~·· •• ,,., ..... ~, ... 1 •... , ....... •t:••J•········-·· •.·· , ..... , ....... , ......... ,., ., .. ........ , .... I~ ......... , •••••• , ............ ···~······~ ..... ••t'l'''t•:•· ., ........... ,.~ .................. ~ ............... ···~,.···. ••• ·.·.! J ••.• ~ .. ~ ..• ' ..... ;, ....... ,.,.,, ...•.•.•. , : .... ···~··~······· .j•t> •• •• • ... ~~·~-·······,·········· •• ~·· ............... ~ ·t • fl. ..... -:.•·11. -,1! •• f•' 11 • •ll:itt it;tjtltl tl• "' •ltf~:•J~ •••"'• 11 '1 ... ,~••l ;! t-.... , •••• •t•••;••·•"•Pt•• ••& •• ,.;tff ~·'t "•tHtJ•-tr· l• •• tt • ( ; .. .., ...................... ····.·······~····:·•·· .............. ····:t' ., ·: .. ,.t .. ,., ... --··•t··'· •• , .... ,·· ... ,r·.·.··.• .. ·. :-·~.,: ............... ,., .... ,, •..•.•. :t •• , •• ··•·-···,··+· .... ·'· .. . f ·~-.I~..... •t• .; .. t)t·· , .. •·· .•••••••• fjt'4J , ..... ~j--.... ,: •• , ··' ., •••••. •""'' i "I • !.····~· .. , .... ~., ..•.... .., ... , .. "' .. , ••i ~·········· .,,. ~t· •• ·f. J •I ,., ~·~t· '~· .•.. ,, .. ~-~~····t•'' ·•A· •• t ••••• , , ••••• ··'···.~I I I t••·,.~ ·.·1 ~-'!••HI ·:•••:•:f·· •• '': ~ .• , .... ,. ··'· ,_. P· • ,,. ,, "'": .•.. : ........... : ..... , .. •·!•• .. ,.,, ..... , .... 1 ... a •• ~ ,f . '"' ···•·•o·' t.a.,. .•. ~ ~.1 •.•. ,., ••• f ....... t "4. '"It ~ ' .... ••••• ••• t .... :. i~l .... ····~···' ..... ,. !t •• ~ ...... :. I ............... ~,· ·~· •. I· . ~:'''" .. , .•••.•..• ~.t t • •· . .,........ • ' ~ ·· .. • .. , I ,. ' 1 I t . .. ·~~ '.: ~ ... :. J!tt ••.•• l ... :!•··"'·······!···· ......... ,,~ .. ·r····· ., ... ,._.. .. .... ... . ...... ········ ....... ,... .. : ..... -~ ! ...... _.. ...... :. ......... ••·•••• ~::-., !•"'t•--.t ,!.: ..•.. : •• :+o .......... ' ••• l •• •!••• .......... , •• ; ••• , '! • ' ~·· • ._.,.. .. ,,.., • '' i 't .. ~., ... , .• :.; •.• ,. •• , .., : .. • : . . ·I . , . ~ •. ~ ,. .. ; :' . • 'I: • • : .. 1· • ; • t • :.. • :! . . : t • , • ' ,. ! : .. ' ..... I. . . . • • ~ . ... .. # • , • • • • • ... ' • .. • • • • • .., , : " • ~.I . • f •I• J •.• l ............ i ,,,t!••a·~~· .:. I·· ' ...... r··•l•f,:•;'·· ..... , ........... , ... ·'· .. . .. ·.: , .... ······f·l·,·tr ..... : ·~ ,· ... : ····· I'. .,. i . ... . .. ' J • • .. If I. ~ ' • f I ._ . • .. . . I t I 1'-t~•t• • • .. ,,~t •t'••·· t; •• s;. i'"1 ''t ·•' ·•· • f •·· •:a -t•• •• , •• '-... • • · ~ • ·' 'i"' • · · • •,· ~ ... : ........... ,,.!'·-·-··• · '., •. · ... ... ... ·~-··· ~ •·· I fd.. .. • J ~ ·~ :........ .. ~. :-!tt:• .... !&.:..:.:.;..~..LJ..!..L& • .-.-.• : .... ~-·"""-· .. --...! ... .!..!..&:.,._._ ........ ~ ... ·-.... -! ..... _J.., ···-. ,· ......... ,... ... .... __ ..... _....,..L, _ _..,,,, ......... ....__ .. __ ........ ·--···..-· .. ..,_ ... •·• __.! ....... .. ~tJ(;; 0()0 T fl .. w,plll ~~~ , ,.,,,"" l."'}(itlf) .,., ... ·. ... .. ,. ~.f I I '. ' .. .· '· . . .. .. '• ,•. .. :•; . ~·-:·' ... : . .·• . . - . . .. I . .. .. . .. ~· ~ . " ... '.i:; ! • . ,. . . . . .. . r• •••••• •• ,.. ...... _. '"~~­•• .. . .... . ...... '. .. , . ' .. • I ·. ... •. . . .. : ... · ... I'' . . .-. ~ . ": t : 'It~ ·~.. , . ;; ; ': ;.:. ·: • jo --··· .... tJ •• ,. lr• ·-· ................. ~ ... •'· . . '' ·-...... .. : ::··".. ~-.. ··"· ... . . . . ... .,,. .. • • ·• •• ~ • it· ., i . : .. ... ,. ... .. ... ' ,,~ ... ·~·· . .. ••• ~ ,lj • • ._ j. f ~ ; ,t • .... .., ............ ~ .... ', -• ' : Q 0 <> • ' • ' w ... V ;. • '0 -·: ."' • :• ': •, • " •. " • "• " • ·. I " ,. ' " • • , • . • • • • • • • • •" • ! '· ' • : • ~· J ':, ~ • .. . ,. . ·~w ~......,.. . . ·,. • . ~~·~ . ... w w "' .. . . • • ' ~ i: Ul'tiTED ST~TES DEPARTMENT Of THE INTERIOR 9-Z1t-G IREV. 11·6!11 :!;:!~g-p ii r:m rm'=t rEm ~u rn l!!li 1:!~ UIIIH s 1;: t!:! 11m 't ~i ·=-~~ ::;;: ~ t .. -. t:: :1 ~-.... ,., Itt:: ~~:: .ffi l:m~!~ tnt!t ..---~-~~~~ t.! li I~ r1 n.c \cu-e n R . neat-P u. ')( ~ o VI GEOLOGI~AL :SURVEY cwAi~,.·;_~~0~11 c 1 ~ 0j.;11 ~~ ... ·-"'ft"''AATING ~UE FOR.·· ............ -----••• ···-----.. ' ....... j ' ~ . -t I . ( =-::::;:.:; -=·- f· ,_ 1- ·-· :-_,_ 1-f- ' ~ ft t=-=t=l.::t:::t:::J:t:lt.:t~~-1 _ S..,u -l+•t++·-lt·ti+H _j U) :t: -··-·-1-1·- t-· t-· 1-1- 1-+-t-1--,_ 1-·-- 84n ·· -... -····· -· ·-....J r-.-: .. :,. ,. ... t-1--1--t -i;;.o ~ 1---'-I---··· ... ·--1--1--tt-1-~- '-f-···I· t--1-+··11-_,.,_ J-·1-·1--1 .. -.• 8 39g.J-~..J-JI-I-...L.& . ...I 100 PREPARED BY • ·, 111111 II~~ i DISCHARGE Q I t 6 7 8 t lOOO J i •• n IIIII I 111111 !- !llllutt ll!llll I IIIII' HiHtf .... !ll~mmmuuJIIIIIIIIII !lilt .... , 11 .. ,,. ...... 1111. .!! I llflll~ .. .. , ~--~·· .I I . '. 1u. I .. tl 1nnnn ~ ! a , • 4 (C.F.S.) ... I • Ill'. ., . l ~ f ~ PREPARED FOR' II IIIII 0 ~~; ~ ~~~~TANIS, IN~ l ~ I ·~tll'l '-..../ Figure 2.2.1 1111 ~====~::::::::::::::::==~~~----------------------------------------------------------·~--------------~-:~::.~~~~~-=-==·-=-=~~~~~-~., ' I : • • ' ' / • • • • • • ~ • • • _· j • ~ '• . • ·• ' • • • • . • • • • .. • • ... ~ : • • • ' e '-• • • •' -• • ~ • I • • • ~ ' • . ' . ' • • :: ' • '. -• ' • . . .......... . • . • . .... ~ . ~ --~~7¥~~ · _ . ,.,. . . ... , . ~-.. iftl': .! .li , ·---'-'" .. , • ''~-·~:rrr::..·~~;·,~.-:;:· . . • ··~ •,., · .. '1. •• ... : • ..",, ~.:. mrn :-=: ~-~~ ... .11111111' II Iliff--r-f: ~ . -~ illl II ·-· ':-: ~-= ~: -~ :IIIII IIi -::;: ·->~ '· §: '--=:':::: ~ ~· = ---~=-~= ":'" :;:: F ,..:.: ~_: I;· i=: f= 1=-~~ :: ,_ ~ 1-;;:::: r= !=-I:: ... i-I· -= ·-· ,_-. ,_ 1-= :· r: :::. ·-· ·-· == "" ~ ·---:-· 1---· ·----'. -1-· ·-. .. --- 6.5· -,_. --- ·-· ~ ~ mm: 1-f- 1-1-r7' ;...,_,_ f-1·-,_ 1-· i-,_ IL f-· 1-f-.•• 1-~ r-• i·-,-,. i--i-· .. ::J, -~ I/ ti ~- ... -'-· ,_ ·--.. !- ; 5.5 =· =· -,; ..,, ""' 111111 :5.4 ---: -· :.:-:.:: 111111 1-~ t:::' l:::. t~-: 1:: -'2 '"" fE 5 . .., != :·= ::: ::-:: t: 1.": - t-f:= :.::· "' [:: I; :.: 5.2 ~ ~ -·--1-· ~ (!) i---f::: I .• := ::. ,_ -5.1 ::: 1-· .• w -f--· :.: --· 1-· 5.0 :;:: ~: ~: ·= == r.:: 2: w ?.' (!) ~. = ::. ::-. ·-. ~ ::; ,;.:. ;.:: ~ 4.9 1::: t= F-,_ . ' IIIII II = (!) ~ r-·:~· t:::. 1:: r=: r-:. ··-!-·; ·--~-f-- 4.~ .. = :::: ·.: ·-·· = ·-' , __ ·:.I· ~II II lit -..I -· -· ::- f _, --: ... • .. 1111~1 4.7 ·-·· :._ -L .... . . ,_ 1-:; ~-,. I· I· 1·-I -;: ~--1--, f-, __ .... 1-· I· ,. , .. ~ ,_ 1-1-- .•. ·-1-·-1-I· I• .. ... _,_ ·-. f·-.. I ---, __ ,_ -.. r·· .. ! ,_ ·-1-·· ' . 4.6 ~-,- ~ I ~ ! I I i 7 a I I io 3 ~ ) 7 8 ;} 100 4 .; 4 i) ( ~ looo 4 5 9 I PREPARED BV• DISCHARGE 0 (C.f.S.). PflEPARED FOR: . O ~-! K'§ fN\ ~ . ' STAGE DISCHARGE RATING CURVE ~mtr~ l~R-.A-. ~ w I nau coNsuLT'. TS, me. ' I iNDIAN :_liVER \ . ,0) Figure 2.2 ·' ------·---· -' -.... ·---·-·---~~---- N. ., t ~· v ... t -- ' • u·mED Sli.H.S llf"'~hl\lfNT ,JF THE INTERIOR ... - § •; .. j, • GEOLOGICAl SURVEY CWATitl I'IUOUIOc;IC' D•~•I•O .. R Tl~·:j CUR\'E fOR. rc rn i. Pr~t st:o·.~ ·----.~. -.......... -·-· ' "":' \,J \ JJ ' - ~ ... u·.IHC su.ns ou·:·hif.'L"'t or ltt£ tNttHtOR GEOLOGICAL SURIIEY ,.,. .. u,. .,ucu .. cn ''"'l'o"' RATING Cllr;\11:· FOF !1 :n;.~ IRE~ tt.(;1t [1f.rn ll~n !g inm;~mm: rur ttmm;; !:!.:i! ~; ri ! ! ; ,IJH rtt I m~ IHH!liH m: IH! fHii!t::i ;~ i!: ; ; : r:.: ~-: ~· : .. ~ ..... ~~nnm 1~r ,.,.,.". ·It flig rmi lmi I ttl! F.~~:;-~- tt:::-t: H•~• d>t ftl •!: 1~1 r-t:r .HI E!O:fi !Hi m tii :-:: :-:::;· ·~~· ~;.;~ +r'-•· rr;;_ ~;;; ~~~~ ~;"+ :;:: .:::: ;;:: 1:~:1 t;;~t:~: l.~ :-:!~l;fj'""'''~ '!'!1' 1:~:: I rt~ -H-!~ ~~~ 1~!11 ..1. F-E 'ttl=i i!'H tr ani !i :!i !!!! 11" 1'1 ·~ I+ H r=r~r;-;:-:.i$ rt·r:!. t~r:;.H::! t·•·t . l ... ~!~t~--+ .,. ... ,.trr :m:m: !!:! :I:: :~ II" ·~ .. g~p::; ::= !!!:: • ~H~~ IE~~~~: It~' f···· ~~ h: ""t:::~ '-11:~~ -~:·1·: '" [~i it ... il!l ''1'' H: lri::: + DISCHARGE 114 CURIC r££: PER SECOtiD --~ ·----------- r: !i IH- -·-· -----~·--~--------------------------------- r-· •·•· · · · · • · • · · · • ~ · • • · Btn. llo. i ::::;; 1r !~ :mr~ :~: t··r·· Hii: iH ·~ 1*-· ~I ....... ~n. ·--1- : :: ~=;.~ ::1 :E~";~::.'-~r = ,.~!~~-o :E~i IT t~:; .... ~ . .~.9f· : :t~ ·~~=l::t•" I : ; : ! : : : :::! : i !tt ----~--------------~----~----------- •I . . . . l . . . . .• 10 ·oiSCHI\RGE 1'1 CIJRlr r(l I P[R Sl~C ',:_'1 N \ w ' - 'tl·£'7 .:. ~•,1 tlt l••n ttl Ill f I: (I) !li .• . •• llol, ....... ~·--f"T'"-~-···-•· .. ~rr·.~~~~. -.. 1 ~-~·-,..-eo-·-._.. .... ....., .... , . .,.,,r•··"·""• .... , ......... 1""-,, .. ! •. _., .... ,., ......... ,:.'·,., ... t ,, .... ,:r·t••' .. Ot.,.~ ..... ,.~H .. ! ... ;,.; ..••.•. n .••••.. h .. '*'v .. "!•t·t•······,. ...... . Kl .... ••••\t ,.la•l••••••"'••••ttHU•t•ij"""I'•J'a'••••••••tjt~•~H•h•h"l••••!•••·~t~H•~•••·.~Jt• •t~~<.,•••• •t • ~I I •oou•llo"l""l''''l''"~•••·•~ ""t•t 'I~· ' "'t 'l. ' I I I I ..................... , .... , •••••••••• ~:···· • t• I • t't ttdit•••tt,•• .,,,,, ...... +ltu• *""t•!''•• •u• "''l._ .. , .. u f •t •••• ,,,_ •••• • •' !•• .,.~. ••" . ~_. . . •••u••jhUI••u ••• •••• •••• ••••~,. ·-1 ~ . • '". J 't. ' I I . . . . I • • I • I ... t ~. t ••••• t ••• .......... • ...... '.... •• ~ ~ ~ t•t,.. ~--•·• t .:.._., •••• •••u•ut!Hju•••• •t•ll'l~' •t.Uh•tt ~un•tt• t tt • ••1• •• ,.,, • ' l • l • t ••i•••• -••t••••• tu.fohl •••• ti•t '"''' t'" • • ti L\ i 1 to l:: • • • "tt ••••th•! •lttlltu • lt•lt it i ~··;•••t •;t•'·•~• t i" ••l• • ••••1•••• ! t ' f ~ ' t I 1! t' 1 t 1 u '•:•• .. ::~:::::::: ~. ·~~ ••••h!'']''"'lu'~ f+' t •'•••1••••1•••• " .. • . ±x:--~.. II' .... ~ ........ ;, •••• h ..... ..,... ..... i+~ ...;. •• { .. ,., ..... ,'!"! HIT t•t-· tt•• u .. ·r· .. • ., .. -... ,! • .. jl" .. ' t• ,,,, I ,, •: .. •• • •• ••ltt••h •!•• .,., "-lf J I'• .... •Ht • "" F .• ~ i fltt'i:T'1r1 .. tti~: ::•~l::mnlll1:t:: ttit ',tu'ttt.tt:·1 ::~: :!1; g, ,w1li:··1ai: ~,·1·:1 1·r, t ill'! .1HH !l:'!ll',,l!,!i::H::: 1rhtf!::: ill!:::: jjl: II tr't 1·H :::: :r:: .. -= · ,._;,-! •• ••if••'-••••tHhlihtl"'' Jl ,h ~UiH u•e•u•tlt •t• utt"'" •!1 •t1 • •• tt••it ,Un•h••u• t'••"'•••tJiut tt t t '•~••••••, ..... -~ t i~· ····-··~· ...... , ....... .,, .••• ,.,. !H• i···l···· ......... t ., i!l .... ~·:•: .. "..!.t ............ tt··:.,, .... f''"''t••<~••···· ·-··tt•·· *'!''''' ....... ,.,:. T t. ·,::.J··=·t··~~-· . ....,..1 ••""'t-+••" •••••••• "'"I''' __..._ tt•• •••• .... ,,.,...... 1 'I I .,.. ... • • • r-: ,.• l 'I'' 'I-. ht• .... ,., .. • '• • +•• • tfttfUI'' ~ 'lal f ,._li •••• •h• '-·•1' ·•·•·•••••• .. ,,, .. , ...• ., .... 1"•·1••• ''" '"'""""'''" • t'' •h•"'':•·;. !,r,;l '!' •t~' '""'"'"'"'"" ··~··~ •'' '''f'"l'l'l!,,l.t{••••••ot•t"•• ~·-: .~:::::;::·:::!·::::;:~:: ::::.t~:: ,~.t::,·1·;· trt: :::: Hr:•1:!:t .;:: 1t~: :~:! tt:: .t ... tl!r'' t t :.:: !:~;1':':1::::::::: ::::•tt!: :·1a ~.:: l''!!th: ~· : tt:: :;!: :::: ~-, ,_..tt.. .. t•,..~•••••t •••• J,._.,~•••-.hh• .... t••tl •J ........ ••ththtt~t~ Ut 'J" !!!: :t.Li.r. ... it ,,,,f,,,, •••• t._; .......... , • ...,1!1 .... •!:•1:::: f,f,1-. •n• •••'f'''t ••••-•. , ........... • :;;:-;-t:::t::t:m.:::::::~::!:~:::: ~:··~:. n!!lli:!:: :•,::1:::.! r!-:' 'lt" : .. ~: .,,, 1• t • ~: • ~~~~t~:::•s l::::::ti!U::::::: !!!! ~;:: ::,1 !::: •::a:.:: 11,! ::u !::;1•:::: ,.. _ _ .. , • ......,., .. !'·•·••t••t•t•••.,. ••••••Utf'•,.t••" tt•i '''' •••• '1'' • u uh 't'tff t• 't':' ::U I' J •1 t'!' ' ltt••lt n•••r• • ... ,._ .. •t••••'t:!: !!t.tilllr .... l•uh;;.;L..:..:.!.' ~;..;.;.:. l•ll• .... • -~_t::-L:--r--;.!..t! ;::.:::.!:: :!llU!!::lli!!i;~~~:, .t:t H.!! :.;;::u;m;H-!::. :..!ll.:.! •'"!; .:w.~~ +:+:·1.:!t:·:~:1 HHr'r!Ht!:!Hffi: HH-~~!t: :::: if::t!:::i:::! ;::~ r:rrJIT!! -:: [·~~ ...... • •.. •t•tt ................ r .. , .. , .. ··• tt•• ., •• , .... ·p•• .. ·· :::· :::: u:: :::: : ~ i ·! t ._ •• l!·•l".:. ·t:' .... !:t: .. :•;· :::iU!J:::::: ::~ ........... , ... , :·,.. •··· :h:,:::: D :·E:r~ •. it!!.i:~::t~1!!l!H!HH:.:u:u.;:1r;r:t!H! nr1·1:H:!tHJ:::: t!ii tlH :~:: :::: t: :!,.!ti! .~::1·::;! ~::i·ji!H::::H:i:; ::t: ::H Hi: HHHH'j:::: Ji·:1: :Hi HHiiH: ~ • ..:.1·-:~p·:.rr=-1 :TIT£!1iii::::HiH~1iHifngl .. ~ r,: .,i,ff:1' :,:1;1 fii:t r,r,H~ii!,it't' it :::: ·,.f:: :!:: ~·1• : i ll i £! ~ li iii.~~:: HH '1·HH:!HfHHI t i :; fi ::: ,;:gilig il!Liig ,· :t.llrH ::::.:::: :: :.: .... :. ·tt:: ::::t.::::H:u::.:: t!i· .. ·•· t... ... . ......... -·~ ···t .1:: u·: ... :.:. ... rt ... :. .. ···~r··· :··· :··•::::.:::: :::~1npr.: .. h .... r·u":· .: .. :::-: :•::,:::: _ ll1L~1!1~', ~~~~~~!~~ !llll'~~~~ I!~ 11111~~~·!1u~1! ~:\L~! l1' ~\]l!uf: ~~ -~~t.H.\,1·1~1: \'I, I~ ~~~~11111~1 ~j1 ~ ~l1'!1·ft' ;~fijn!: 1tlij1!Jt~li 1~1~1 ~ ;:; t ... :t:UJ·~t:s: •• trt~ ·:... •t:• ! .. ,::u ~u t. :tt~ .: ~~ I : I 'tl'. : t ht! .IE 111 . ~t-: t ••• rn:t;:•:•t::: . ::. ·t: .:. , •• tujil·ur + r; rf ::•! :::: ,., ._ Ei~t ·tffirt:•1: :-tn!HHi. ::,nt:.:::: ~t!i" .t!' :ht Ph tH: ;!!: : t .. lt,i HH i!:l ·i:! i~: :i_if! · !! HH i1H PHti!!t,nn: !i!i .i !HJ.ilrtb:u!t:n tr 1 .. ::!: u;! -· • .. •-t·~. t... ~ .:.t ••. :!!!!!!!· :.:.::'"!:! • f ... ~ !·•t .t •• t.:!! t.!! , t ! ...... :! ... .. •. •. ~ 1 :-: r:·~.:b ~h·t:·~.::::~. :--~ ,.J~f.H·, .. :.~H.t , ... :.• ·p: :::: ·::: : r : 1-:: ::.:.:: :~:. :::: .: •• m :::: r t. ·!tl J' r t!!!: t::.w:: ~~ • -;~ •• .:.: ..::· · +~-~1·. • :•:. ·:1r: .... fi::-::-:!:· :-: :~ ti: ! ':jr:rt :·1, tt: ~ ~!:: 11 !: r::. :·:· •--· · · · ·· ;-:-:ntrnr::mH::mmm::r::i!filTI'~mr:q: :!!!jim r:: i::: i!H mi ! rq 11 n .p 1i :!:.!:u l::·:l:m!di:::l1!I:! !.!iJH!: •1.J.1! !:: Lfttrr-'t' m: :!;! .: tljt" ijli !P i!!i jmii. ::~:nu[m 1m H-i i !'I fi. t :, :: ii:· i:u m:m~r:::n:: q In !J!!l!ln ! 1 •:l Fit 11 il !!H m: •·. : : •.: :.:HI::: n :ll "'UijllliHmw•Hf•: I• uhd.h!~iill ii!f+i,:ci· :m m JU ! r: l n I • ~ ·' Hfi~':Uf• 'p:;:l:4:HTH 1"rH -+i!tn' H1n:!:i~ . . .. ·;: ~:~ c ~.1 H ~-H n tWH::;l !TI:::,(I'!W!m;!r I :·II i I iifi!Ftilili!! !H!Iim~m 1:!:1 gg !l!IHM·Li:_r HI· nt!l!li !I! I~( 1!ill!~iliHHii+ hI!!: l{illrni'!IUI~!II HH !!i! l:H g ~-··~ ..... ~ .......... ····t• •r;;u•·•··t. if• ' , .. ···~;;t~H-tt! '!.. ··-·-T rn ·i!H ·;:tr.t~rrr .. tr-~·:,;1111 mt Itt!! I'll 1'1' --r.r.::rJ:---;±.:::-h:r•1:m ::ihjrrl mri;;:: :i!:•1t!PIIlfi1!1 p :Tik!fln·P;! ·q !~-~:::: iill l"! i 1' ·Ill If 1rHmfflll!l !l;lHH::::!!iJ i! H!itll!jh. 11Ui· ttd 11!::~: ~ : t rr~==-:~ !r! .. :..::: ::.:t.t: u:u::::: t~l! ! .t .. ·m;.~ll:.:·I .:tt h !!~\ •!1 :i·S 0 t • .. •• . nn·" n!;fffii n .. :;~,:;:-" ;, nit tn IIi tii• ff•i• 1:*1 ••• ~ .... :~:-.a::r+.:tHiwm: m::ffii ffii!l:H '!ii!ll',tl: r: J;~J;:l;lh~ tl FR~~~:1 !!il i r t . l IIi! djii!lHffil'liimt,~~Hi~m illiJ~!1flu; '!Hi .:. m~ ~ :~-----t-· ... r; •••••••• t ................ ···U ..• t: '0 ...... rr r.; i.-r.!llt!L:;., it.. Hii ~ tffi ·u~ ~~~;-;n;ltttf••t"p·:lt ;·":i l t I''' t••• ..... "4'1 .... ..::'b~f.crtH:Hiti:!!l mmm llii!ii!l nrrr,m i i iili nn !.! f K . if. !lii tr;. :: ~! tlh! m tH: Hi!~; ~!om: ::!:It!!.':: lil: I • :fi :!;~ :;~; ~ %~J.:i:±f±t.±Hill±fltH~ H'illi!' ilt~~;,.i.Hi f't'tl I .,~~'11! ~~ t ·~ tir~~ . . . ITm ffllllii!Wil!~ ~~~ nu !HI !1!! !Wli I HHt,llh! !;!! : fE~i tthli lHimlii4~r~ t. tl·ll~i!l I H· '~l . --. . t h: Hf!tll ttll~~l!l'!t ~;.1 nnu ::H th: IIIII' ll.U ttrtt~'~ii : . n::tH 1UJ :r.:t~.H t ~ ~·!·I ul~ 1trf I I r·,"~l . ·. I tHfln IU :Hl.'j!: ;;itll !t u,, w tlj·l . ~. Ufllt~i t I • tfill~m In!~ 11lltilii1a"i~ !t m,lilllmi •t:i !!h H ~~!li! Ml . u it~~!!L ~;;l;~::t!;E !!'!: 'til~!!:ml. utl ~ ft ~ :pt ~ .. .• i! • ·r mr.:I-Z:t~ Tt t ~h F' b. I + ~~ •• r:t: t· . H •••. Hfmii"'"t; ... , ..... -· ~ •ri 1' nu !II rtt f! uTim>;t .. -~~~ ~Iffiffhlii·iil!r¥rij ttHtiJ!lliit~H iit!it' ,ii!l~· tt=tn'ijiHiiiF!=:;;;ffi.fJ i!f.ij:1,l .. H~ H •. ~; ~ :i\ ~mrlftllilim \ill !~ ii!J~ itffl ijj Jill!!~ WIT ~ ITtli .I ! ur N}; d'.fti ' ~ ~ .~:'.~\Ito~ ill! rl~: .i~ll~i:. ~! it;!!! ! 1l'!!~!~~~ i ~ ~?:1liiffi~w.+1~~~*nlHIH~',!WIIl!! ~~ ~~~~=ui·~~ !mP.l~!~~~.t 1~'!~H1lU!,!ll fl}fff~l ... 1 n ., i rJn~iiH11; HWRH Hit !W 1n!~~mw1!!1~tu umm~HI ; g =.I rHH ii~rpH!iHi~!Wllil! llilit~~~~~; ·i\u ~.: t! l!l't l!llli! I ·f . »ill !illlir!ffi!!J E{;f;~:r.rf\. • B. ·t lm·hU,i u.~lm fu~ .: fl:.i ,., ~"-'·-iT ;-r.-• 'ttl··l··' . ., ;'\,1 •••• n t:i', ... l. I ~· I .• • 1 1-t:r~: H !Ill ~m·· H m tiil n ml' I I II :! I! ~il"!f i:!iif·ii @IIi· :t:a": ~ ;.:. 'P.! ·,: !jji! l rl .,. I •• :;~y: : . HH-i! li.;;, I 'H . It lli~mmmn~tfli~ 1::! t·j:t(l:tnittt~ttii {ifillhUUtiflhffil~-t9P~ ~1 hi r..l l,ffili!·iHITtifl n I: b~-Effl: ·ti: . : 'ltln!: li.!:i iii fHf H!IHh: .. ;i!!~"dh~um!: .:: ~ .. ! :! r: ~ ~: ;r~~::~:::: :::::t:::t::::!::7:~~:~::mm .!:::w,: H .:E!!Hmn:!!!I·H-Hffift-t l l ~. ·ttttl?itii!!!IW\'-!!!U:!!! t~tttftfli!!HI!lH 11!!1!!11 ~t!J11t! HH !::P-.. tt· ........ ···L!__!_:,.;.; ..... ~ .... ::::t=:~;:!\.--:'\ .. ~~-~dt. :: l:al!n: H•:·::H ::··1::.:~ :.:...~.:..u ... l' . ::;..:: :· ... ~ ..• :,;.:::::.:~.:;;~·· ""-i~~! ''Illii· :-r;r·· ••..... i.__ .... · ,.. t, .............. n~.:r.:·, .... ····r5-··'(:. ..... I 'II"""' t•d•·t'l .. 1! ····r. t •·t I rTt I• 'I""" . ····:·" ·::·::1;:·:•:.1: tt::: .11!''··1 t t :: !!!! :::: · ..• . '8' . •. '•·•··I··~• ...... , .. 1 ......... ~ ~:n.~ ... ,., .. ~ .. ,..,., ,,.,, .... , ....... •. • • •. .. . ···; .. ··;·······,·•• ··.,: ·••·'l''l''l';'j" i • •lo· ... , ••• !! " ' • • .... • •••••••• •••:•• .. :· ·:•··:.: .~ tNn~· ·.·illi· ., .. , l!',U:· n~~:::: .. !: &::~! :_: ·r ~ ~ :· .. !,11. ,,...,:;..,_._a~....,... • • • •••• ~· ,, ,.... -•• t I" •• I ·~······· ••.• ,, ... ·~........... ~.N~~·t.. • ....... t•••· t •·t· ... . • • • .,..... ..... · .... ,..: • t• HTI' ..... I '"II • I' ••••. ,.. . -• J t r ... &. .......................... : .. t•••n•t' "--~ ..... ,. Ulo lt:'f"'' •t ••• .., •• u 't• ...... :·uu; ' ..... l:'L .... ;·.: ... ~.iJit .... ' •• r ....... 1 ....... ' ~ ~ : ·r -I·.f .t!L :l.!f•!!"tt ffi:r:t11: .:!f'i::rf:::l!t! if f ·uS f ... f,,:;: 1' ; .. ;J t•:: ;·::•: ~·•. 1 !• :!'!' :~:::;.-;:::::;.(l!Jf: UUU: 'JljU1j~J !ftt ::t: t:t: c ::~~ HtY+ffi·• . • ......... t:s:.lt ... t •...• "'~ -.:ltm~·· .tt• llf· •.. .t .• r'r· .& •• t. I· 1 . ..: ............... • "1'"1'' ·'·t:m1l!JI 'I .... •••. .~ '" .. · .. ~: -H~Htf:: ::;:.::H!fn:z:::::~~::: j!:IH·i t!:::r!H 1 ~ !H! :=!: :::H .+·~-1· · =t· .. ::t:: .. :n:!!H::::::::::~n: :.i.HjiUi u1·~:ffi • f· :,1·: :::::::: <! ,~ ·• I 1ft1f t!••·t•••• •r·•''l!'ll""ll:;; ;::. "'· .... .,Ill"'"'' II , ... ll"fll'· ... t. ·f ill''rJ· "''"Ill""!""'"' 't'-:;'t!l @.ill"t .. tl'l!•ll•!! I jl• "f"' :••· ,., " ·t .. • •• .:::::: :.::u: .• ::.:~ "~ ~:.;......., :::1·:a .. t::::: :t rr::.!t.U if:: ~:.i_ • ,~.·: l •• : ::.t::.:::::: :~.;·z,; •• ·.·:. 1:;n:.-: a:::.::.::.: '"" :; • • ••• ~~'! :":!'t"':":':t .::-:::-:: ·I\ 1'N .::t :•"' ·~n !:t! T... -~:-;· :-:;:: • • ~~ : • :'!: t =:tt!t: ........... , ••••• • •• m. • :::t ~ ... ·J f!~r.nttr.~t.~i Ht:r:m~;~i;;~~ t!~,1!,~ru=,;m!,':~·:,~mm! ~~.:~imml!~,~,,': H¥.,!~,::b,;:l::,i ~~~-Jt_wl~~! !,!,~1m! -·~+r .. \ ,1.. ·~~n~,:ll!!lrritl~l~!,·.l.;liji,; tt!!:,i~;;·H~'U;tf~:,; tm~~~~' ·~m~,!i!i:; ~ :.,:::tlt·~~~!\i't,· I· "'l:l•-·· .•. •• 11 •••••• ,., .... ~= I!\! 'II I tjl1 I ' !"I!' ....... I . i$.'1 ........... v lili ,,JI•H lUlU:' ~ l ·~:--:;_.r •-• . ._.. • • ..:.:: !J ... ~_!!H! ,!:;,.!!! ~:" ;:'\l •:.. • ,t :•1 !Ill ill J• 't•: U:• .. G'\.;... I • lo m• tt!•tuh tt " _,, • I ·~Hth. ~ E-m--. I •• rtt• "'Fi"··tw· .... ~-~i··· ·r•t•!•lln. . ., r "I I'll ::r-I !1:. fll'' il7lf r I "I , •. ,, ... ·:!t .. ·m I [lli•t• ' lh~or ... ltiNII ~i!! •r·mm···n :t-..1 ...tt.t !•t: ... : :•.:t':tt: ,.;: :::! .• t~rt: !,! : u· ·: • . ll! '"tt .: ,. . rc.! t~ l'-1' t • ::.tt!l!t'• ::;: -'-tt t U • t t:• t:!:: rr::l. :: :.:: t::~ .~.Q ....... 't. :.: :!.:~ :!~: t:.t:·:c t:!! · • L1:.~ ~ ~:tJ~'· Uf! 1:!' t·-!1. :·:: :1!. • M _ 1• t... . ... ·:: 1 .. :.;;;; J~ ... 1•• "~ • ill~iliJ l u :u· 1··~ :•·:.+d r H.! 1 i!ii: m: m~lll'~:1·h!Pmi [: ~'R.;Biit'' £!1· 1·,~.;fll::'1 1 :f 1t:1~ r'!!'r ilii ~I. : :. il' • il 'r'ffil : ::ll:mm! : n 1tit 'u'H 1"'illi!il:=!! lifo ! it:1• m::fmr .I:., •••••.• ~ ••• 1 ••••••• 1 1 I Ill+"· I ::imJ. 'I II !· ... . l n. . ;; 1••• ~ ,. t.ll •• • U. {ff .. "l':::l'"" ~ tul ffi' I •• • 1 .... 1 .. ~ • >•I ru •...•• l~r. 'l -.• l ..... :::~:rffiHHnr-·1 :.!::: "·1~1 : ts • "jl!j'l1:i: ·n: it: t ltt .:r; . ._,i-J ·!:fl"tli.· .• l:t; ~~~~.:::. tr! • •! :::1 • H •. • •:· :-r f tB' :iii m: ~ ·~l~i:ti. r~~ ~rH~!:1tP.ritfufur:i11'!i~',~ ~t~~1 ~r w,~, ·1ni1~~~ -~ 'IH1! ~tt"l:~,i .~,~~! · ~~1: 1-·,;hi~:-,-~~-!~~:;~i !I ~~ 1'j !t",1r:,l'1·1~ '·1: lit1, ~ ~!;i ~,1·~1 :1;~ ~ ... , .. H !H ·'=!''"!:.! !!'""tl ~--§1~ ltl·l 'l'l!fl I 1111 I• ~ .,II' 11·: .. 111! I l II ! ;.!a jl It !11 () ~·~'.. 1ltr ·H j;:. !:!! liF ll!i.ll:. ~~n~·· :;; l;;tll.ljill·: !IIIII' ::: . I 11 .1f=i 1111 t!" ·q: t 1 it! 11 ~il ~ 1! pu:, -1 "t• r.;:~tj Tft~l! !:::Ill.;: h !!:!j! ~~\; ,"jj ,:;; ~~·:: i : I ti i ,,,ll; J · 1i J i !,,; .. ,::, ·~ !' I ffiJit .n,jtj ~ f rlllfii ~~~ tf:fttt:~l.~ t ,lf~J;::;I!!t·ia::l:•.:!l·~·!:i!~ll~:;:r:~.:u: I'll ,,,,· f~~~~~~~ 11!11'!1!" I I '.!~"1'1'1' t ltftrl'!l!':. i:f.rT.t77.Hf~1~!fi:li :m :;i: :,:,;:m:; ~~~1~ ~;Htllill!!ilm: I ,,11·1·1., · 1~ 111•1! If ;1! ,U:,I:li l :11 t::1'f.i:· !lh!, •1 [I'! 1.: Fl: ·1 ··:tt:!! •,t! .i:l :;::'11.!! ,:;1:!:: .1~;~·~::!.::".:;!::!!11 f!: li I ~1: !a ·1· i, :.,l:;:~t!.! 1·., ·~~ .• !!,'! ! •• ',1!!! ~ t.!'tf! ,!.! .t., !.__l_j•~ ... l,t!It·· •··• ..... ,,,. ,,., JI'"·!S..~··!I"" 'l"l"'" lilt I• ·Itt"' t f t i~~ fll rl•··r , ........ ''" ........ II"" ( tt j' .... .. ....... • ;-:71 ... -...... ,.....Lf ........ '''I' .. ,... i -.;'.l""-• • • • ... , ••• , •• • It ' •• , . . I I 'II ........ . .. t ... • ••• ..,I ., "ll t t ··t· , ••. =-fr..: !" tt:rJttt::::t: ::;·I:J;,":::t:!:: t :ua:~:it!~: 1:::::.:: •:: t if 1 . tfjlt! .. · t • :·: t t~t:!::::: t•,tt :• ''Ill :.11', . •1 t! t :tn -!.t:: I ~::rn:FI!l!~r: :::! :::t!l:::j:!!! d!;;::{i:~t; :::::::: t!:: i tj , !: :.11 1:. . 1 i 1: ffi1 .1:! ::!lilt:::::: :: ::11 .t !11 I!.!::.! ! . tl!: w· •:-.. "l. ,.: . II .. I ~·1=:::--,~::1-:~:.:::: r:: ~-=!,;: !:S~i:r:::i :i!:.:::: I !. rr:: 'ii· j!,"j nl • a H t H . rrrm,.·,:, .. ,::::::!· .• t"Mfl ~· 'I''' :,·;,'1 .: t.:. :.:.:!. :t::::u: :::: 'j': ·11:a::u fl! ::fl~:.a1::z. :.:a:::: t: t:: :.1~ ••• ,: ~ 1:1 1: "' ~ 1 ::::• .:tin 1" •. 1. . ·--· • -· •[·~! .......... I t., ....... . . "t: !il ~ •••••• ,,.11'1'"" II' I I •.• ' •• I.. .... • . • I ' ..... , ........... t I .• ' .. , tl'j'll'l''"'f :-::-:-:'1:'::':.:-rH}-:t:t:: :t::: I; !:·::r:::: t!!:-1~~:~·:::•·:: : .. :,::;: .,.f tt:: •!:: ·:1' tt1"t['!"~ t ::. !! :::::::.:::-.::::: ·:--:.":t ~: :11: t I Itt::;: ·~· ••• I Ef.·· ......... : ·········t· ........ ,l. ~ .. !-.: ...... J .............. t '· ij" ... , :. I t-!. •t '1 t ,,., l"JI'f'l'''' .................. l ... 'II 'lll't• ::.: £.· ::. ,::-::•!•: :::uu::.u:.1:::: .::e1:~: ·:.:•:::~ :·:11::1:: :; •:: ·:: :::: . :-:~ ~ l•'• •. :.::.·::a; :::::::::1:::: •• : :11•: I 11: .:.: 'l[[Uf!lLJllillliiflltil~l~ll!!llilli;m[f~ill!ltl!lllililil HH HJ111ili lminiHtH .tfm:l -rr!illlilllllll!li!llill!~:~ilillli :~::uu: ~~::: ~ :t:: till~~ [•J t·• •• I. t n' I"'': •.. ""l""":"•···tl• I.' :li, to.~ ••. , .... ""l'li·IW' I ·~·. .. ... ,. I I ! • f I 'I tt I r•r•f:· ., .. r··, ... , .. 'I [II' 1~1 . '"' ""I'll"' l'l'I+Hf'"! ft{t~ •t·· . ::t.::~~.::r:!::.·::!::!·,::::l:::.!:i~! .. :~~;r.;i:!:t:r:.;l'l' ljn!it:ta• 1 l'l 'II l!i ttltn'!!:q, .. ·::::!!tt ,; • .-t·H::u.:!! 1: ttt;u;.:! ··'-~-~···· : •....... !'"· .~.u .•.. l ... , ... ;:t.~·~·"•t"ll'"''l''' I t "!'''' ... 1 I' 1 lli'J'nt·l-pl,.ll .. t .............. u•· .... t ... u.lu··tt 'l flttl·•·!" 4-!'::-.. ~;... .. r::-:~~!~: ~:::~::::·~~·:~~:~: t~~:,:~~ .. :'1 .. :!. ~·:l'li ·: • ' f~:: ~::: !::; •:: r! !t 1~:: t;'!.! .. :t::~!!:::.t :::: r.;: '}I! •:r!·tult:·, t~• t, •. :: t :: ..... _·•····--........ !·· .•... r ..... •I '''tl:'"~'"'··t·•·· + :!1· 'tl' ...... , ... , . , ·1!~'1 !' ... ,,.r ... u ........... l''" ·•t•lt·lt .. t .... ,,. t, II" t"l"t' ·l:.!:~::r-r:::-:::t1r:::.=.:.:~l;!:!EE::·!~ !l~1...: .. :~:::~::a,~!·,;!: l. ... ~ :.u: H!: :;~ J_;_l '.!.!...-i .... lli:::ll!t.HllH!lli:E!l.t!.::. ::.: :.i·:::l!! :::::t::: tt. :: .::. !L: f:····· ............. , .. t .................. ·};f:, .... t!i· .. , .. , .... u •... '·r·r~····~··" ... , .... ~~~· ..... , ............ , .............. ·r·· .. ~~~~~ .......... t··· ....... . •·· .. -·····r•···•• .. ·•••··•'-•• ·t•'··'-··!•••""••'!~t;'\ .• ''' ·••tf'"l'JI ' ···· •••• t•• • • • • I'JI'll •t••••·•••••• •••••••• .. , ••• •t•• ''1"'~ .... ., .... •:•· ••t ••·• .... . .. .. _,..., ........................ , ...•.• , ••. ·• ···~··~ ·•• •·•· 'I' 'I'~ ••·• •••• "' l I • • •. • • •• •••••t••r•••• .... " ... ' ····~· "' t4t• , ............ t ~· ·• :··· •••• ::.:.-:=+.!+.:-:: :itfi!!H:::::!:!:i::::n::::l:;:fJ~~i!ll ... ::t;:::l!':-ll::: 1 !a i·::: HH !!H ·~ .. : r ·ii~: u:i!iH:H1:ii:H:::::::::::!rt!l :::: rh!HH! Hii!'i!H t:!: t~:: :i:: ::::~ , ~--·1.:··············: •••••••••••••• , .... ,l •• !J\:1:)·~··1····~:. ... :. ,, , .................. J,!1··mmt··· .!., .................... h ...... l1 ..... ,.,r .. t. ·=·i ... : .: .. ,:·: :·:·::: ::·: ::::~ :gn:::~smm~d ;i~ iNH~mff!:;t:g: ;;4 J • T::: :~ gg ~-~1-L:-= ·p 1 :i ·::· H!-:Hf!li1:~mgi! :1:H~ri!+!s: ~:::··:.: ! = :: u: !ill ·m .. :·~ J1 LLtiii:!!i~~iiigi;=H:g:Ht:;~g::H;::~~H H~Haf~ idi1l~ii l I un fg: HH L~ E iLtitf iff! ~~:~;f:~::g~:g:::::g:~i:~if!i!illfHi~H! !if!l!iii :!:: iiii !Hijh!l ::::l::ji1:n::·:::~. ::::::::::~::::.:1:•·;:!:::: n:·•1:rn:::!j:!:: ir!: t::: !:j1:::· ::::~·::·1 p•: n::r:r!11i::::::d::::::.:·1·::!: ::::It::: I:::!:::· !:!1 :l:i :::::::: ·w.;.:.'' ·: i..ll4:.:.u:~:.:::un;.::.:.:::-:.:.:~ :.m H.i! m: w!..m= u !.m ih: m:Lw · • ':: =.t::mm~; •• mu:m::m.:ut ·:~~mmu i.llll!ll!U.:.uniu tm :Pl. l"•w.o• IIJittrnv..,l loy• co ) t)ffi,. Jo:"IJI'I"P~, • ---··-.. -·-+-. .. .. .. ~ ... -.l -. ,_t__ . NJ ' ' w ... .... ... .... ... ..J :.J - ~ ..:.. ... ·~ ~ '.) UNITED 5it..1ES f.lr'-4RHifNT OF THE lt.TERIOR GEOLOGICAL SURVEY IWAUft RUOUIIC:U f}l\11510 .. r.fAli'I,G CUR\iE FCR ig : ~ :I_ t.,_J ·----~ .:..:.=.~.=-:: ... -· ---~--~·---... -...::! / I I UNITED STATES OfP.RTMENT Of THE INTERIOR GEOLOGICAL SURVEY IWA1111 ftUOUIICU' DIVIIIO"I RATING C:JRVE FOR •••• 9·279·G I REV. t 1·671 N I ~f ~-~:: .. ~ t:~.t~ ~ .... ... == ... .., ... . "" 'I ~¥ w 1!.~ ... ~~ -~ I' . !--- ~I.!. ~: r"-=\_i· t:. l~ ·"-1'\ •'\ ;. .A:J IY ,, ::~. ,, I• .... liiN~ l:L ~~; !!:: :::;; 0 ·-· ~ ,.,..,., I:-:=::-;-:-:..;:~ ' • ) ····-··---------·-·····--·-------Btft. 10.!!3 I ! . ... ! ,,, :, .. ,., ' l I ! I I J ·-·t ! : -j ., ... w ... ... !; ... r§ "- ~ .; ._, N \ JJ ' --· ~ -, UNITED Slt.Tf.S Gf"•Rnt£NT OF ~HE INTERIOR GEOLOGICAl SURVEY cw•n" 11u~u•c•" '""''o"· RATING Cl.URV£ FOR •••• 9·279·G CREV I 1·671 = f i ! ~]-++ ' , . i• .,, •••• '~nl I! ·-fiA ~:·~-:= n;.~ . .O • F• 1:: :-:: --'=~ ~.::::: -~--- ~~ -~-···- ·~ ~:.::::.h-+-i ,.,. ... --' ~§. : ... ~;-!!::1 ~: ::±:::J: ; J:".! rA ~~ r;::~i=-...:~ f-0-.,.... ... r-!:t: t !' ~:.~: H-t± t:-I~~ ·--,,,~ t·•-i••·li ... ~ rt I~E l~f~ ~ ~ 11 iFH 1111 u ' OISCHI\RGE I'~ CIIRIC H• .>LCO',;:J .. ··-. . .. ·----'----~ > ~· -· .... .·. ' : ~ !-· : ·-: .... •••• ----·----· ··••···••··· -----· -· Stn. :lo.t.f.4 ••";;.."'''" I =:r: ~~=n~~n ~;;:::r.~:;;:~ ;~;;, I •' i t 1. I I J I ., _________________ -..:11 ___________________________________ _ l i .... ... ... ... .t- ..J ... ... ~ -§ -:: ~ ._, N ' .(jJ I - -,;; .!"':., .:. .r=.:= ~= =~· f-~·::: ~;_; :.E ;:;:: r:-;.:B:i I~; ti~l:E E:H ~± ~~ '~1 t I HE;~==~= t==:. ift J1 i I !I ~==: :...: II_ . ~ ! l!. ll IJ -·· -____,. R,. 'CL'RVE roR .•••• GEOLOGICAL SURVEY own•• "tsC'Iu"cH ro\ •·~"' . . .... ~~'''""~'~~~.:;;_ •·:::-!~ • • ·•·t=.·•r:~'' t= ::::::: :=t:: 1:;.::~::::;::;:::::: 1:::~ t=--= :-!"-· i~;..;;.;... •• , .......... ==~· ~~~ f~ ::::: - l:tr:~t-~: . ., 'k ; ~ ~~ -·· :'\.'\ I• ....! !; 1!·..!\'-.Y ~=-z:;:N; V\: 1!:: .::= ::: t: :::. : ~:::~ /"'" ·:::: ............ -~ --....... t~-:J:: .-::: ···~· ·-:-~ ·- .•t. ll·ll'li # DISCHARGE IN CUI!IC rEf.l PER SECO!lO '. ---------------------j .,.........,._ ,.., ....... -- == : l :: •• , ..... ::::::::. mg:::. ' ••••• ;:-: 1::::: t·• -:::: :::: ··-··· •t-·· , ___ -· :::::::::-: ~! ~., ;H IEH I:!;; ll! r~· ~!"!! '!! ~H ~~-·-: ... ~~~ :=.!: l!!i i;§ 1::--r: '~ I!E !!~ l:::~:~ t:~;.:i:.:~~ ;=: !:== 1:~;: t·~~- ;_;. ;;,;;l~ ,~slUt! :m :=1:-!E-; :::: , ..... ~; :~: • :-;-:.: 1:!.:£ :~~ :;:: ~t~:: :~m :::: I~!'!~ :!!~ , "'":.;;=== ========:o;:::::.-::i ~~m~Il 1m: [£! ::=t.:::: l I ! i ! I _t I I I I i I I ! ! • '· EXHIBIT E 2. Water Use and Qua 1 i ty COIIIE!nt·4 (p •. E-2-17 1 para. S)_ Provide data used to prepare Figure E.2.66 and a detailed discussion <includi~g input data) of this use of HEC-2. Response The data ·used to prepare the stage-discharge diagram on Figure E.2 .. 66 were obtained during 1982. This information is contained in Table 1 (taken from 11 Preliminary A!isessment of Access by Spawning Salmon to Side Slough Habitat above Talkeetna," Trihey, 1982, and from Table 411-4-2 of Alaska Department of Fish and Game. 1983. Su~itna Hydro Aquatic Studies Phase II Basic Data Re~ort, ~olume 4, Part II). The referenc£. made on p. E-2-17 to the use of the HEC-2 analysis for deter- mination .of the backwater profiles pr·esented in Figure E.2 .. 65 is incorrect. The water surface profiles for mainstem discharges of 12,500 cfs and 22,500 cfs were based on field observations taken on August 24, 1982, with a slough flow of approximately 3 cfs and on -August 2, 1982, with a slough flow of 20 cfs, respectively • 2-4-1 i) Date 8/24/82 8/25/82 8/26/82 8/27/82 8/28/82 8/29/82 9/02/82 9/03/82 9/04/82 TABLE 1 Comparison of water surface elevations (WSEL) at the entrance to Slough 9 and the average daily mainstem discharge at Go 1 d Creek, 1982. a WSEL (ft) 590.03 590.19 590.24 590.04 589.98 589.91 590.82 590.51 590.42 Gold ·Creek Discharge · (cfs) 12,500 13,400 13,600 12,900 12,400 12,200 16,000 14,600 14,400 Date 9/05/82 9/06/82 '9/07/82 9/16/82 9/17/82 9/18/82 9/19/82 9/20/82 9/29/82 WSEL (ft) 590.16 589.91 589.84 594.09 593.71 592.86 592.37 592.36 589.98 Gold Creek Discharge (cfs) 13!1600 12,200 11,700 32,500 32,000 26,800 24,100 24,000 12~400 aADF&G gages 129.2 W1A and W1B. The water surface profiles for mainstem flows of 16,000 and 18,000 cfs were determined by using Figure E.2.66 (attached) to obtain the water surface elevation at the gage location. Since pools existed upstream of the gage location at flows of 12,500 cfs and 22,500 cfs, it was assumed that pools also existed at 16,000 and 18,000 cfs. Hence, the water surfaces at the intermediate flows were drawn in as a horizontal surface upstream until they intersected with the water surface profile for a flow of 12,500 cfs at the upstream end of the pool. 2-4-2 . ·~ .lrD m a 11 m ~· .. ~·· ' R1 al B) E] E) [] if] r'J .... :.J 594.0 C'l) 593.0 :t:' ·CQI ::>. g "' &1.. 0 :1: ~ ;::) 0 :!. ~ 592.0 .... . ti z 2 ~ ·:; "' ..J LIJ LLI (.) ~ 591.0 a: ;:::) rn a: "' ~ :t 590.0 589.5 ~ 1- ' . ~ 1<- ~ ~ """ 1-. • I 1-I I / 10 I ·; ,. I . . . v I . L I I I I I . ! I I i I I . I -.. . I • ,, • 15 20 25. 30 35 MAINSTEM DISCHARGE AT GOLD CREEK (1000 CFS) OBSERVED WATER SURFACE ELEVATIONS AT MOUTH OF SLOUGH 9 FOR ASSOCIATED MAINSTEM DISCHARGES AT GOLD CREEK . . DATA SOURCE ; ADF & G 1982 '2,--.3 40 ' FIGURE £.2..6$ •, ___ . . '· • • ·--.. ... , EXHIBIT E · 2a Water Use and Quality Coaaent 5, (p. _ E-2-20, para. 1) Provide data on particle size distribution for suspended sediments collected over the annual range of discharges for the Susitna Rivera Response Susitna River discharges at Gold Creek are least turbid in winter (p. 2-5-2 attached) and most turbid during the months corresponding to maximum dis- charge (p. 2-5-3. attached, taken from Peratrovich, Nottingham and Drage, Inc .. , 1982). Winter turbidity is less than 20 NTU's, while turbir.Jity in . - May.,· Jun~, July, August, and September may exceed 1~000 NTU's. ·i·he size c~_s,:tr-f6uti on of suspended sediments during the periods of maximum riverine· turbidity have been analyzed as shown on p. 2-5-4 attached (taken from Peratrovich, Nottingham and Drage, Inc .. -> 1982). Susitna River suspended sediments are 15-20% (by weight) smaller than 2 microns (mean diameter), 25-35% smaller than 10 microns and 95-100% smaller than 500 microns. Tables from the Water Quality Annual Reports of 1980, 1981, and 1982 by R & M Consultants, Inc., (pp. 2-5-5 to 2-5-44 attached) contain data des- cribing the turbidity particle size distribution. Suspended sediment size distributions from four sampling locations on the Susitna River during different months and different years are shown an pp. 2-5-45 to 2-5-51 attached • 2-5-1 References Peratrovich,-~~~t~;ngham and Drage, Inc~ and Ian_ P.G. Hutchinson, 1982. . • It, : Susitna Reservoir Sedimentati·on and Water Clarity Study. Pr·epared for Acres American. Inc., Anchorage, A laska!t 35 pp. R & M Consultants, Inc. 1980. Sus·itna Hydroelectric Project Water Quality Report. Prepared for Acres American, Inc., Anchorage, Alaska. R & M Consultants, Inc. 1981. Susitna Hydroelectric Project Water Qualitx .· Report. Prepared for Acres American, Inc., Anchorage, Alaska. R & M Consultants., Inc. 1982. Susitna Hydroelectric Project Water Quality Report. Prepared for Acres American, Inc., Anchorage, Alaska. 2-5-lA . :;; u L '· u u· u u . u u u ( ~~~ • ·~ 1500 :;·1000 f-z - )- f--0 -CD 0: 500 :;) .... 0 . . . I . 0 16 27 D v G ' -',~2b -1- . ~ •le , c~ p • L.... ·-'- 13 15 21 18 0 4 ' 0 0 c T s ss 0 v G c T 3 13 s ss I I I I I I II I II I II I ILl I 111111111 till I ILIIJ SUMMER WINTER . I . ~~~ u ~,.. 4 ,. -· --0 I 3 0 0 0 6 1-- 0 v G c T s ss 1-- ICI d ~~I Ill I I I I II I I I BREAKUP 0-DENAtJ ·· V-VEE CANYON 9-GOLD CREEK c .. CHULITNA T-TALKEETNA S-SUNSHINE SS-SUSITNA STATION (\J I v, ' . . cJ NOTES: LA. CRITERION:SHALL NOT EXCEED 25 NTU ABOVE NATURAL CONDITIONS (ADEC 1979). 1. a.. ESTABLISHED TO PREVENT THE REDUCTION OF THE COMPENSATIOt.t POINT FOR PHOTOSYNTHETIC ACTIVITY. WHICH MAY HAVE ADVERSE EFFECTS ON AQUATIC ll FE. DATA SUMMARY' -TURBIDITY SQl,fRCE' USGS AND RB M e MAXIMUM -MEAN e MINIMUM NO. OF OBSERVATIONS LOCATION , . FIGURE E.2.81 "••--·~-·~ .... ~--t -,----· ~ ...----t--t--~~l---~ . -;-. .-. .... ::s;:21?--' ~ _.;:::;:::-.. -· ;._~­.;_! ~;?."'""":":-! I 1 ...#' . --~ ~ ' ' I ---~ ~ ' ' ' ' " ~. ' ' -~-' : I I . ' I I • ,-. ! . I 1 I ' ! -' t -I I .-~-:1 : l . I . . ' . I • . I I I I ~__.;.-.... : 1 ._ --r • : I ! h~~-~--:--:~·~·-r-:---':--'r-' I . ~l.. • I i -I I I \ I I 1--.-l I Rl I IT I t I ; __ __l____l_ t_. r-~ ' I I I l I !: I I I t 1 I I I I ! t IT! I I i I' I i I I I I I I i I I I I I ' I ! I I I I : I I l ! • I :\: I I I I I I : I I I ! i I ! : I I t I • I • I I ! I I I : I I i : I i i i I ! t I I, ! i I I . I ; i : !_'\.!,I I I I l I I i i I l I l I • I • . ! I t • ! I 1 I I I : ' I I 1 I i I I j I I I . ! i I I I l i I I I I I I : : I ' t I ~ I I J I l ·-~ I I I I I I . ! i I ! I i I i I ! ! I l t ! I I I ! I I Ll~ ~ i I I ! i I I I : I I I I I j'\ MAXIMUM : I I I I lt:il:!tl il' .lilt· ltl It I I~ 1,, .• ' II! if I tiillilll! II l!ll !!II 11!1 ·lll~ll.J,...~i.in;illlllil~·ltl !1.1 ll!llllll !ltl :==1 -['----·~ .r--.::=..!...: i : i I .'___ __ G ~ 7 __ 6 __ s __ : 4. __ == 3 __ p -= E . ._rz_ -X~ ~ ' .. ···--~A.VER"A-r.: ' .....-; 1-i I -~-. ,., ' ' I . r ' . .-·~--• ~ I .---I -----.----r S ;, I I I " t I :.....! .. ,........ ,..... : I i I I I I .. ~~-! • , "' I ( • • I ·~ l • I I l I I I ' _\_I • • f I f ~ I L; l I ::I I I t • • • • I I I : I • I I I • ... ' i I • t ' t • ' I ; ) , , • • ! 1 ! : 1 : 1 n I , 1 1 1 1 ' 1 : ; , 1 • , 1 • 1 1 1 I l I ( ' :! • :I I i ! I I I I I I :11 I I I I I I I I I ! I 1 I I: I I ; I :.: i ; I 1 I I I I 1\l I ; I I I I i I 1 I 1 I .. 1-• I I • t • • I ' : i : I ; l I I I I I I ,, I I I I I I I I I I I I I I I I i I I I I I \; ! I I I I I I I I \! I I I I I ! I I t ., .I I . . I = ~ : T7l t 1;: ... I I I, i I! i i i I I I I I I i I I I I I I ltf I I I I I I I I I I I I I I I I I I I I I I !\1 ! I I I I I I I ,. I i I I I I! I I I rT . . --. '-......... ·. -~ ~:; -~} . .· ..-,_ ~~~;-~~~~~~r+~~~~-r~~~~~~~~~~~~~~~~-~~+4~~~+U~+4~~~~~~ --1u0· . 9 a_ p--=r-. ~ 7 -·~ES=-_ .... _...;;:=-, -;·..) 6_, ; 5 -~ --·-r. -~ 3_ ~-E= -l:--:'{' -~· ~-,_._ :\------.:.\~ '-~MUUMUM-I 1 I I l , I I • 'T' t: ; . o 2-, .. ; : · I -:. ' • • • -I • I I I • • I.! ~·nos-LsL.e!.s-_;_s!_.H '·-o: ~~w~ -'~A; ··-u·_E~st:i::W ' · I • • ' . . ~ . : :J. • . . . , , . , . . Y = n LW ,_ ... · • • : · H-~ :_. . ; : ; : ~ . :-: ; I I i I I • I : : ; ; USED.IN :DEPOSITS :MODEL. : I • ~~ , • 1 i. : 1 • 1 • 1 1 , r ! , T T . • 1 . . ' . . 1 i -, 1 1 . , I . . 1 T r 1 I ! • • -l • I •. I i ' I ..! : .l _1 I I j_ I I J. I I I I _l ; j_ ! I • .l j_ _l I I I I I I I ! I I I I I I T I • I I .. i ; : IT I I !I! ! I I I i ! I I I I I I I I I ! ! I I I I I I i I I I I I I I I I I ' I i I I I I I I l I I i I ! I I I . i I ., I : I ! I I l I I I J I L ! I I I I ' I I i . I I I I I I -, I :-1 I _/_ : I I i I I I I i .I ! _ i l I ·1 -~ l ! 1 I I 1 T 1 I I I f T 1 T !11 Tit IIi it 1 11 1111 1 11-ri il 1 11 1 tll:_u_Lj 1 ! I 1 l I I :11 ! 1 I I I 1 ! 1 I ! I I I 1 I I I ! ! I 111 I ! I I I . I I I I I I I !x__L_Llj MAY JUN .JUL AUG SEP 1o1 · X -~USITNA RIVER AT G.CLC C:=iEEK . . ~l:CIMENT CONC2NT~ATICN=-SUMMER V J.\LUES li\ILV [1952-·.,SS.,]"~ . . . _;-"' ... -,.. _, --~ :u :f) -::~ aoes NOT aNcLuoe 19a1 usGs DATA· FIGURE 5.1 ffl:BATf1QY!ff1J!9TTI~G!'fAM & CRAQf;~ ~·~· I ~ ~. ·--·-· I l I I t· ' " I!C I . I. 11 ! i ~ ! -~ ~· i f if ~ ~ ~. ~­~~­~ . ~-r. lil;: i t 'S f I I' i· i I I ~ l t I I I I ' ' "E'iiffiNEEAING CONSUL f A.N TS -z,...::S'-3 I f' l . "" w N -(/} w ..... .0 -t-o: c( ll. z. < :c t- a: w ! ~ lit. •• 1 00 r ! 90 80 7: 80 60 40 30 :~·'1 20 l'b9~~~ ··1tW ~~i~ 10 :k~l iM~· .- rT IJ l .8o2 T . ·--- .• 1-1- 1-1 ..... • 1-· ---1-· 1---I- 1- 1--,_ I·· ~I.! 1-· -1·-1-1-· 1--· ... .: I·· ~~ ;; i-· --·~ , ~-I·· 1-... ,....1-1-" , ~~ ~~ 1-1-1-~ '·· ~ 1·-1-r' ·-~ ... . --~" Ill!~~ .... r.: ~ TI 1-~ 1-~ 1£ ,.l. 1.-- ~>(! 1·-1-~ I--" ;-fo'. 111111r ~ .-i'· 1-· 1- tJ tt I· 1-· 1 ... 1·- 1-... 1·-I• r- t" 1-1-· - 1·-1-1·-··I .. 1·-1-1--· - i I 1--1-· 1·-1-· I • .004 .008 .o 16 .031 .062 t-1 -.----------SIL y"--. PARTICLE SIZE' '"';,,1 ·- llill lilt i Jl I If I :1 w:nm: l'j" IIi I! I•'~ . ~ru~ ~'l) . .... ~ I IIIli ~ 111111 ~~·tH. PI ~~!;'. ~ 1-r 1·-fl'~ ~ ~-"'~ I~ i-;I" I" t•· ~I~' !- "" :1 't i-i·-1-· ~ ~ I \ .·-... _ I" I' v , . i-·· , r- 111111!-1--1-1-· 1-1-I· I· 1- 1-r- lUI II 1-1- 1--1-~J 1·-1-, .. ; .. . -)SSI:~.I.S p: ~W-~~u:~ :1:. tisBt X i:: j;l~.~ .~I~~~--o~Pja:h ·· ·· !· •• ~ J ---·-·-.•. ··-· 1·-1---·--·-1-· 1- ·-, ... r-1-· ·--·-, __ ,_, r .. -· -... ,_ r- ·-·--~ !--· .. - .126 0.26 0.50 1.0 .S.AND-· ------------t (') SUSHTNA RIVER AT GOLD .CREEK. ~ . AVERAGE MCNT~L V PARTICLE SIZE t;IISTRIBUTIDN . . .. ' . -t... ·it . .... . .. . '. . ,., •·• ~·•-·•o•N••·~---~~~n·~~~~~~M-~~··~-~~~,-~~~~~~~~~~~,~~~~~~~~~~~~"~~~~R~~~p-~~~~~~~~~­ '0 '•111 ., ... . ·' -· ); "" ·~, ....... • .. .. i .... 4 1 J ] t l ... 'l 'j -~ J j I] . : ~ i ) ~ ,__ _____ ;,;__......_.., _________ ~...._ _____ ,..._-:.:-%-._,_ SUSITNA HYDROElECTRIC PROJECT - ' PREPARED' .. BY: R&M CONSULT .At+TS. INC,. PROPERTY OF: i\laska Power Authority 334 W. 5th Ava. Anchorage, Alaska 99501 APRIL 1981~ PREPARED FOR: ----_ALASKA POWER AUTHORITY-~------..r J · ,. ~;;::-·2JZE, "Microns . <1 . .;s :~ :S-10 10-20 20-50 >so SAMPLE, NO. w TABLE 2 SUSPENDED SEDIMEN"f ANALYSIS -September 5, 1980 SUSITNA RIVER NEAR CANTWELL (VEE CANYON SITE) . .. ----------------""---COUNT/sq mm -% --------------- SAMPLE 4 " 3207-99.57 7 -0.22 4 -0.12 1 -0.03 2 -o.os DATE/TJME - SAMPLE 9. 2335-98.52 23-0.97 6-0.25 1-0.04 5-0.22 SAMPLE 14 1ns-s1.21 26 ... 1.42 12 -0.66 7 -0.38 6 -0.33 ._ • Milligrams/Liter STATION* INT. TIME SUSPENDED SOLJDS --1 s-s-ao 5:15 p.m. 0 + 15 49 sec 33 2 9-S-80 5:26 p.m. ,... 0 + 35 42 sec 36 "\ -3 s-s-ao 5:30 p.m. 0 + 55 42 sec 35 4 9-5-80 5:35 p .. m .. 0 + 75 42 sec 54 s s-s-ao 5:45 p.m. 0 + 95 40 sec 63 6 9-s-ao 5:50 p.m. 1 + 15 44 sec 36 7· s-s-ao 5:55 p.m. 1 + 35 44 sec 68 8 s-s-ao 6:00 p.m. 1 + 55 44 sec: 62 9 9-5-SO s:~s· p.m. 1 + 75 52 sec 74 10 ~ 9-s-ao 3:08 p.m. 1 + 95 52 sec 68 11 s-s-ao 6:10 p.m. 2 + 15 48 see . 73 12 9-5-80 6:13 p.m. 2. + 35 42 sec 72 13 9-5-80 6:15 p.m. 2 +55 48 sec 78 14 9-s-ao 6:20 p.m. 2 + 75 4S sec: 84 15 9-5-SO 6:25 p.m. 2 + 95 50 sec 67 16 s .. s-so 6:30 p.m. 3 + 15 48 sec 82 17 s-s-ao 6:35 p.m. . 53 .. 3 + 35 51 sec 18 9-s-ao 6:45 p.m. 3 +55 so sec 56 . •• • Right Bank (edge of water) is at Station 0+05 • . , ~ . l.eft Sank (edge of water) is at Station 3+85. StJsi4/d z .... S"__., .·, -8-.. ~-- .; : :~ "- .... ... , .. .. , t. ·~ ' . itr· " .~ J ] ] ~] 1 ·J ] l , J ..... - TABLE. 3_ "·~ . . ' . . .. · SUSPSNOED SEDtMENT ANALYSIS -'september 17, 1980 SUSI1.NA RIVER NEAR CANTWELL (VEE CANYON SITE) Particle Size Distribution, Microns SamRJe No. SAMPLE ·DESCRIPTION <s 5-lO 10-20 (!0-50 ->so 3: "-·, sta 0+70,· 9-17-80, 5:46 98.53 0.96 0.30 10~ 15 0.06 p.m. 8 Sta 1~70~, 9-17-80, 6:11 p.m. 98.83 0.44 0.23 (1.10 0.40 13 Sta 2+·10, ·9-17-80 6:19 p.m. 99.19 0 .. 30 0.10 0.07 0.34 . I . Milligrams/Liter SAMPLE NO. DATl:/TIME STATION* INT. TIME SUSPENDED SOLIDS 1 9-17-80 5:30 p.m. a + 30 30 sec 167 2 9-17-80 5:39 p.m. 0 +50 50 sec 170 3 9-17-80 5:46 p.m. 0 '+ 70 55 sec 174 4 9-17-80 5:48 p.m. 0 + 90 55 sec 185 ""'"---·~ 5 9-17-80 5:51 p.m. 1 + 10 55 sec 196 6 9-17-80. 6:06 p.m. 1 + 30 36 sec 425 . 1 9-17-80 6:09 p.m. 1 + 50 36 sec 325 8 9-17-80 6:11 p.m. 1 + 70 30 sec 331 9· 9-17-80 ·6:13 p.m. 1 + 90 30 sec 218 10 9-17":'80 i5:14 p.m. 2 + 10 30 sec 201 11 9-17-80 :S:16 p.m. 2 + 30 30 sec 513 12 ~ 9-17-80 :S:.18 p.m .. 2 +so 30 sec 169 13 9·17-80 &:19' p.m. 2 + 70 30 sec 436 14 . 9-17-80 6.:21 p.m. 2 + 90 35 sec 418 15. 9-17-80 6:23 p.m. 3 + 10 35 sec 591 16 9 ... 17-80 6;24 p.m .. 3 + 30 35 sec 322 17 9-17-80 6:26 p.m. 3 +50 40 sec 342 18 9-17-80 6:30 p.m. 3 + 70 45 sec 163 19 9-17-80 G:35 p.m. 3 + 85 60 sec 300 1'"' '• 't ' Right edge of water is at Station 0+00. \d ' ... ',.J Left edge of water· is at ·station 4+00. z..,-s-·t-':" l ··; •" "Of\ .. susi4/d -9-.. ~ • .... .-·: .. ·. misc.S/ti WATER QUALITY ANNUAL REPORT TABLE·4 SusPended Sediment Analysis·-October 18, 1980 Sus~tna River Near Ca1=1tweH (Vee Canyon. SJte:) ·.-.. ----.;..-.. -------.. --Particle Site Distribution-% ---------... --------- S.ize Microns Sample 3 < 5 17.() 5-10 12.7 10-20 5.4 20·50 4 .. 4 >so 0.5 100.0% Sample NC?.:_ Date/Time Station~ -1 10-18·80/12:30 p.m. 0+07 . 2 10-18-80/12:35 p.m. 0+36 3 10-18-80/12:40 p •. m. 0+70 4 10-18·80/12:43 p.m .. 1+05 5 10-18-80/12;49 p.m. 1+38 6 10•18-80/12:51 p.m. 1+74 7 10·18-B0/12:55 p.m. •2+07 8 10-18-80/12:59 p.m. 2+38 9 . - 10-18-B0/1:02 p.m. 2+73 10 10-18-80/1:06 p.m. 3+08 11 . .. 10-18·80/1:10 p.m. 3+39 I Right edge of water is at Station O+oo. Left edge o£ water is at.Station 3+78. ·10- Sample S Sample ~ 82.6 79 .. 5 8.1 15.5 4v5 3.2 4.2 1.2 0.6 0.6 100.0% 100.0% Int. Time Mi If i grams/Liter Suspended.Solids 120 sec. 6.0 90 sec • 6.,6 75 sec. 4.8 60 sec. 4 •. 2 60 sec. 4.6 SO sec. 6.3 72 sec. 4.4 72 sec. s.o 72 sec. 7.7 80 sec .. 7.4 80 sec. · 5 .. 8 ' -"~; : ~ ,, ' - r ' ,_ -J -- i:' ' -, ' ....... -., ! ; .. ~ ' ~ , i .. _., . i .J I =1 -, -. J " ~ 4 ,'; 1 _J .. ·: _.;._. Semele 10 . .., J 11 12 J -11' ~J ----~~-'' -y J 1 .., -! ~i 1 _ .. 9 .-s. T •• .. "" . . i No. misc.6/t2 /. ' -. WATER QUALITY ANNUAL REPORT -TABLE 5 Suspf.!nded Sediment Analysis -January 13, 1981 Susitha River-Near CantweiJ (Vee Canyon Site) Particle Size Distribution Sample No. 11 Size, Microns < 10 10 .. 20 20..,50 . 50-100 >100 Count/Sg. mm 1600 15 5 2 0 98.7 0.9 0.3 0.1 0. 100.0% ; ~ Oate!/Time Station Int. Time Milligrams/liter ___ / Suspended Solids 1-13-81/2:20 p.m. Left bank 40 sec. 0.1 , ... ,3-81/2:30 p.m. Center 40 sec. 1.0 1-13-81/2:35 p.m. Right bank 54 sec. 1. 7 • -11- : . . . :,..~~· .... ;;. ·~--..... -.---"!--!"'" ___ . -· mlsc.6/t3 . . . WATER. QUALITY ANNUAL REPORT TABLE 7 Suspended Sediment Ana!ysjs -October 16, l~BO . Susitna River at Gold Creek -------------------Particle Slze Distribution-% ""'---·---------""'·---- • ,. i ·"f j ] ] 1 -~ 1 •... ··., ..... ... S.tze · Microns Sample 2 < 5 77.4 5-10 13 .. 2 ., 10-20 5.6 20-50 3 .. 3 >so· 0.5 100.0% §:.atnf;?Je ·No. . Date/Time Station* , 10-16~80/4:22 p.m. 12+45 2 10-16-80/4:28 p.m. 12+76 3 10-16~80/4:34 p.m. 13+11 4 10-16-80/4:40 p.m. 13+46 5 10-16-S0/4:43 p.m. 13+81 6 10-16-80/4:48 p.m. 14+16 7 10-16•80/4:54 p.m. 14+51 8 10·16-80/5:01 p.m. 14+86 9 ': 10-16-80/5:05 p.m. 15+21 ;ll . . * Left edge of water i,s at Stat-ion 12+01 • Right edge of water is at Station 15+64. Sample 5 Sam..,le 8 -,·~ 78.1 74.1 11.6 13.4 7.4 6.4 2.3 .5.7 .o .. s 0.4 100.0% 100.0% Milligr~ms/Llter Int. Time suseended ~olids 120 sec. 8.4 90 sec. 9.0. 54 sec. 9.2 40 sec. 7.2 48 sec. 11.0 49 sec. 8.0 60 sec. 7.8 sa sec. 8,0 100 sec. 1.2 mise.6/t4 . WATER QUALITY ANNUAL REPORT ·' .'TABLE a· Suspended Sediment A~alysis -January 14, · 1981 Susitna River-at Gold Creek Particle Size Distribution • . Sample No. 4 _ \..)' §ample No. 4 5 6 : Size, Microns < 10 '10-20 . 20-50 S0-100 >100 Date/Time 1-14-81/3:00 p.m •. 1-14-81/3:15 p.m. 1 ·14-81 /3 :· 35 p.m. Count/Sg .. mm . . Station* left bank Center Right bank 96 9 11 3 1 lnt .. Time 55 sec. 70 sec. 120 ., sec. * There wel:'e a few s.pecimens of fibrous material appr~ximately. 1000 microns in length. .-16- % 80.0 i.S 9.? 2.5 0.8* 100.0% MHHgrams/Liter Suspended. Solids 0 •. 4 10.6 10.4 2-5-ll , •• '*' • . ,., ' .. ' ~. • •• ~ . } ' "'.:;:..;:;.....~ \~ .. ·. ' (f ·i.· . . ,.,~ '. ' .... -, 1 .. ...,. 1 I ~ : : , -, -l .~. ., 'I , ' ... r '1 ' .' J t SUSITNA HYDROELECTRIC PROJECT . . ~ ?REPAREO BV: WATER QUALITY ANNUAL R·EPORT 1981 ····~~· llho:o''"~' ·--------".!. .: :· ·. .. . ... . . ·. ~ROPERTY OF: : : ~~~:Iaska~= Power Authority i ~· 334. W. 5th Ava • • j • ;·~-~Qhorage, Alaska 99501 • r • DECEMBER 1081 R&M CONSULTANTS, INC. . PREPARED FOR: .___ ____ ALASKA POWER AUTHORITY ___ ~~-. -----~~'~ G.....,...; s-t G., i I .. --,; l l -1 ........ . . ·. .. : :.~' " "! ill ' ... ~· ., ;1 .. l i ... . ·" . :-4 •. l l ~ .. TABLE 3.3 R&M CONSULTANTS, INC. SUSPENDED SEDIMENT ANALYSIS SUS!TNA RIVER AT VEE CANYON Date: September 5, 1980 Water Temperature,: 5.3°C Instantaneous Discharge: 5,040 c.f.s . REW: 00+05 LEW: 03+85 Sample No. Time Station Sediment ( mg/!,.) 1 5:15 pm 00+15 33 2 00+35 36 3 00+55 35 4 00+75 54 5 00+95 63 ·s 01+15 36 "7 01+35 68 8 01+55 62 9 01+75 74 10 01+95 68 11 02+15 73 12 02+35 72 13 02+55 78 14 02+75 84 . 15 02+95 67. 16 03+15 82 17 03+35 53 18 6:45pm 03+55 56 . . " Average 61 Particle Distribution % by Size Size (Microns) Sample: 4 Sample: 9 Sample: 14 Average 5 99.57 98.52 97.21 98~43 5-10 0.22 0.97 1 .. 42 ~ 0.87 10-20 0.12 0.25 0.66 0.34 20-50 0.03 0.04 0 .. 38 0.15 so 0.06 0.22 0.33 0.20 . Suspended Sediment Discharge (Tons/Day): 827 ·. Slisi4/u 3 -1.1 ~....-s:- ·-··---'-·-~----- ··~.-· ~ - "'' ... : .• ~/"' { ~f( .. ' ;. ' -:; ' • . . • . TABLE 3.4· R&M CONSULTANTS, INC. SUSPENDED SEDIMENT ANALYSIS SUSFTNA RIVER AT VEE CANYON Date~ September 17, 1980 REW: 00+00 Water Temperature: 5.9°C LEW: 04+00 Instantaneous Discharge.: 14,200 c.f.s. Sample No. Time Station Sediment (mg/1.) 1 5:30pm 00+30 167 2 00+50 170 ·. '3 00+70 174 4 00+90 185 5 01+10 196 6 01+30 425 7 01+50 325 8 01+70 331 9 01+90 218 10 02+10 201 11 02+30 513 12 02+50 169 13 02+70 436 14 02+90 418 15 03+10 591 16 03+30 322 17 03+50 342 18 03+70 163 19 6:35 pm 03+35 300 Ave,··age 297 Particle Distribution Size % by Size (Microns} Sample: 3 Sample:· 8 §_ample: . 13 Average 5 98.53 98.83 99.19 98 •. 85 5-10 0.96 0.44 0.30 0.57 10 ... 20 0.30 0.23 0 .. 10' 0.21 20-50 0.15 0.10 0.07 0.11 50 0.06 0.40 0.34 0.27 Suspended Sediment Discharge (Tons/Day): 11,345 susi4/u : 1 -1 ; J ~1 1 1 TASLE 3.5 R&M CONSULTANTS, INC • . SUSPENDED, ·SEDJM.ENT ANALYSIS SUSITNA RIVER AT VEE CANYON Oate: October 18 '· 1980 Water Temperature: 0.0°C lnstant~neous Discharge: S,OOO c.f.s. <" • ----· t REW: 00+00 LEW: 03+78 Sample No. . Time Station Sediment (mg/1.) 1 2 3 4 5 6 7 8 9 10 11 Size (Microns) 5 5-10 10~20. 20-50 50 12:30 pm 00+07 1:15 pm Sample: 3 n.o 12.7 5 .. 4 4.4 0.5 00+36 00+70 01+05 01+38 01+74 02+07 02+38 02+73 03+08 03+39 Particle Distribution % by Size Sample: .6 82.6 8.1 4.5 4.2 0.6 Average Sample: g,, 79.5~ 15.5 3.2 1.2' 0.6 Suspended Sediment Discharge (Tons/Day): · 77 susi4/u 3 ... 13 6.0 6.6 4.8 4.2 4.6 6.3 4.4 5.0 7.7 7.4 5.8 5.7 Average 79.7 12.1 4.4 3.3 0.6 ___;.· •• • . .. .. - ' TABLE 3.6 . R&M CONSULTANTS, INC. SUSPENDED SEDIMENT ANALYSIS SUSlTNA RIVER AT GOLD CREEK Date: October :16, 1980 REW: 12+01 Water Temperature: 0.0°C LEW: 15+74 Instantaneous Discharge: 7,000 c.f.s. Sample No. Time· Station Sediment (mg/1.:.2 1 4:22pm 12+45 8.4 2 12+76 9.0 3 13+11 9.2 4' 13+46 7.2 , .. 5 13+81 . 11.0 . . _... 14+16 8.0 0 7 14+51 7.8 8 14+86 8.0 9 5:30pm 15+21 1.2 Average 7.8 Particle Distribution % by Size Size (Microns) Sampl~: 2 Sample: s Sample: 8 Average -5 n.4 18.1 74.1 76.5 5-10 13.2 11.f$ 13 .. 4 12.7 10 .. 20 5.6 7.4 6.4 5.5 20-50 3 .. 3 2.3 5.7 3.8 50 0.5 0.6 0.4 0.5 Suspended Sediment Discharge (Tons/Day): 147 ; ~ ' . ' susl4/u 3 .. 14 ·' . ..... , j ... , .J --1 --..J/1 1 ' .i .... ·1 " " l l '1 1 1 . ..... '\\ TABLE 4.5 R&M CONSULTANTS, INC. SUSPENDED SEDIMENT ANALYSIS SUSITNA RIVER AT VEE CANYON Date: January 13, 1981 Water Temperature: 0.1 °C Instantaneous Discharge: 5000 c. f. s .. Samefe No. Time Station Sediment (mg/1. 2 10 11 12 ' ' . 'Size (Mt-::rons) -· <tO 10-20. 25-50' . 50-100 >100 2:20 p.m. Left Bank 2~30 p.m. Center 2:35 p.m. Right Bank Particle Distribution % by Size Sample: 11 98.7 0.9· 0.3 0.1 0.0 Sample: Average Sample: Suspended Sediment Discharge (Tons/Day): 12 susi9/J 4 -2'1 - 0.1 1.0 1. 7 0.93 98.7 (). 9 0.3 0.1 0.0 ·~.-5-1-;f· ' ' "-.~.< •' · ......... . -~· ' • .. .. . L .... TABLE 4.6 -R&M CONSULTAN.TS, INC. SUSJ?ENDED S.EPiMENT ANA.t.YSIS . . SUSITNA RIVER AT VE.E CANYON Date:· ,· -May 20, 1981 . Wa~er Temperature: S.SI;)C Instantaneous Discharge: 9810 c.f.s.,. ~ample No:. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Size (Microns) <10 10.-..20 20-50 50-100 >100 Time Station 4:34. p.m. 00+50 00+75 01+00 01+25 01+50 01+75 02+00 02+25 02+50 02+75 03+00 03+25 03+50- 5:25 p.m. 03+75 Particle Distribution % by Size Sample: 4 Sample:-8 97.42 97.77 1. 74 1.69 0.72 0~46 0.10 0.08 0.02 OwOO. Suspended Sediment Discharge (Tons/Day): susi9/j 4 -22 REW.: 00+05 .LEW: 04+00 Sediment (ms/1. ~ 150 130 120 120 140 120 130 130 120 140 140 130 150 130 Average 132 Sample: 11 97 .78· c\ _1.54. '0 .. 47., 0:19.,, o.oa-· 3 483 I .. -· .. ,·, t ,•) Average 97.66 1.66 0~55 0 .. 12 0.10 , __ s· _-.,-_o.r<·· """"" . . _· . -~ Ql -'- ··' .. 1 i .J i .. 1 1 l l 1 l ; .,. 1 .. ·• TABLE 4~7 R&M ,CONSULTANTS, INC. · · SUSPENDED SEDIMENT· ANALYSIS ~ -. ' SUSJTNA RtV'ER AT VEE. CANYON ·Date: -June 18, 1981 Water Temperature: 11. 9°C I n~·cantaneous Discharge: 11 1 600 c. f. s· .. 1 2 3 4 5 6 7 8 9 10 11 . 12 13 14 .. . .. Size (Microns) ·Time 2:30 p.m. 3:15 p.mo . Station 00+50 00+75 01+00 01+25 01+50 01+75 02+00 02+25 02+50 02+75 03+00 03+25 03+50 03+75 Particle Distribution % by Size SamPle: 4 Sample: 8 REW: 04+25 LEW; ·tmTOO Sediment (mg/1.) 300 310 310 300 310 300 300 310 340 320 340 320 320 350 Average 316 Sample! 11 99.05 0.62 0.23 0·.08. ·-Average - r'l . l . ""'\ :. •·. . · .. <10 .10•20 20-SO 50-100 >100 97 .. 88. 1. 70 0.39 0.0~ 0.00 ·. 98.49 1.19 0 .. 25 OoOS 0.01 0.02 98.51 1.17 0.29 0.06 0.01 .. ~) ,•. Suspended Sediment Discharge (Tons/Day): . 9 1 860 susi9/j 4 -23 ~ .. .,s-tcr . ' . . . ' • . ~· \ ' ....... • TABLE 4.8 R&M CONSULTANTS, INC. SUSPENDED SEDIMENT ANAL YS!S SUS.I"'T"NA RIVER AT VE~ CANYON Date: . Jl.lne 30, ·1981 . W~ter Tempera~ure: 7. 9°C REW: 04+00 LEW: 00+00 ... ... ' ~ ._. ., Instantaneous Discharge: 13,700 c. f .s. ·§~mple No. 1 2 3 4 5 6 7 8 9 10 Size (Micronsl <10 10-20 20-50 50-10(} >100 Time Station S:OO p.m. 00+15 00+40 00+80 01+20 01+60 02+00 02+40 02+80 03+20 6:30 p.m. 03+60 Particle Distribution % by Size Sample: 3 Sample: a ;a 98.26 97.14 1.48 2.5~; 0.23 0 .. 2~' 0.01 o.oa· 0.02 0.01 §ediment (ms/1. ) Average Samp!e: 9 97*95 1.90 0.11 0.01 0.03 140 160 195 180 160 200 180 190 160 150 172 Aver~se 9'7. 78. 1 .. 98 0.19 0"03. 0 .. 02 . Suspended Sediment Discharge (Tons/~ay): 6,339 susi9/j 4 -24 l "' -i 1 .J i J "~- ~ .. ..... ' l -' _.. J 1 i l j 1 1 1 j ;·] ) < 1 J 1 ~ ... • ! j .. TABLE 4.9 'fi&M CONSULTANTS, INC. susr~~·eNDED SEDIMENT ANALYSIS SUSI'l"'NA RIVER AT VEE CANYON Date:· August 2, 1981 Water· Temperature: 8. ·1°C Instantaneous Discharge: 26,375 c .. f.s. R r:.w: 04+1.5 LEW: 00+00 Sample No. Time Station Sediment (mg/1. ) . 1 2 3 4 s 6 7 8 9 . 10 . ' . Size (Microns) <10 10~20 20-50 50-100 >100 -4:00 p.m. 00+15 00+40 00+80 01+20 01+60 02+00 02+40 02+80 03+20 4:45 p.m. 03+60 Particle Distribution % by Size Sample: 3 Sample: 6 91.82 93.22 6.02 4. Sff_ 1. 77 1.62 0.26 0.26 0.13 0.05 Average Sample: 9 94.90 4.04 0.93 0.01 0.06 Suspended Sediment Discharge (Tons/Day): " 59 1 526 susi9/j .4-25 600 710 905 850 840 S30 960 860 840 830 839 Averag!. 93.31 4.97 1.44 0.20 0.08 ~--·~ L. ~ - ••• . . ~ '\ . ••• ~ . .. ... . .. • '-. . f . TABLE 4.10 R&M-CONSU'L TANTS, INC. SUSPENDED SEDIMENT ANALYSIS SUSITNA RIVER AT VEE CANYON -Date: August 3, 1981 Water Temperature: 8.1 °C Instantaneous Discharge: 29,420 c.f.s. Sample No. 1 2 3 4 5 6 7 8 9 10 Size (Microns) ,<10 10-~0 20•50 .. 50-100 >10 Time Station 8:00 a.m. 00+15 00+40 00+80 01+20 01+60 02+00 02+40 02+80 03+20 8:45 a.m. 03+60 Particle Distribution % by Size Sample: 3 -Sample: 6 95.54 95.59 3.39 3.35 0.92 0.91 0.08 o.os 0.07 0.07 REW: 04+15 LEW: 00+00 Sediment (mg/1. ) 805 .... 860 705 705 770 790 750 760 725 680 Average 'df55 Samel~: ·g. Averag!, '94.54 95.22 3 .. 64 3.46 1.42 1.08 0.29 0.15 0.11 0~08 Suspended Sediment· Discharge (Tons/Day): 59,750 .. susi9/j -4 -26 . ·f"l . ·-::::-". .· • .. ....,_-.. 'c;....-.., -. c... c...... Z: . 1 • j 1 -. .; . 1 TABLE 4.11 -R&M ·coNSULTANTS, INC. SUSPENDEO SED1MENT ANALYSIS ~USJTNA RIVER AT VEE CANYON · Date:. August 3, 1981 Water Temperature: 9. 8°C Instantaneous Discharge: 28,000 c. f.s. REW: 04+15 LEW: 00+00 Sample No~ 1 2 3 4 5 6 7 8 9 -1·D Size (Microns) <10 10-20 . 20-50 50-1·00. :>100 Time Station 2:30 ·p .• m. 00+1.3 00+40 00+80 01+20 01+60 02+00 02+40 02+80 03+20 3:15 p.m. 03+60 ParticJe Distribution % by Size Samole: 3 Sample: 6 93.69 95 .. 55 5.02 3.60 1.03. 0.69 0 .. 21 0.13 0.05 0.03 Sediment (mg/J. ) 730 545 590 510 720 670 550 595 570 675 Average 616 Sample: 9 Averag_! 95.32 94.85 3 . .59 4 .. 07 0 •. 82 0.85 0.2!1 o. 18 0.06 0 .. 05 Suspended Sediment Discharge (Tons/Day); 46,400. $(JSi9/j 4 -27 2--5-Z$ -· .. ;/~~--r:~-t. "1 f ·~ -· .,I ' ' ' ~ ; •·_".\ . " . . ~' -- .. . - L ' • TABLE 4.12 . R&M CONSULTANTS, INC. SUSPEND.ED SEDIMENT ANALYSIS ' ' ,. : ~~ SbSJTNA RJVER AT VEe CANYON Date: September 15, 1981 Water T-emperature: S .. 9°C Instantaneous Discharge: 7790 c.f.s. REW: 04+10 LEW; 00+00 Sample N~ 1 2 3 4 5 6 7 8 9 Size (Micronsl <10 10-20 20-50 50-100 100-250 250-500 >500 Time Station ---.w. 12:45 p.m. 00+40 00+80 01+2!)· 01+60 02+00· 02+40 02+80 03«.-20 1:30 p.m. 03+60 Particle Distribution % by Si&e Sedi~,nt. !mg/k) ~ • > 54 so 44 43. 49 46 62 32 44 Average 47 Sample: 3 SamplE!.: 6 Sample: 9 ~verage 97.60 97.53 96.90. 97.34 1.65 2.03 2 .. 61 2.10 0.47 0 .. 28 0.26 0.34 0.06 0.04 0.04 o .. os 0.10 0.07 0.12 o.to. 0.12 0.00 0.07 0.08 0.00 0.00. . o.oo 0.00 ·.• Suspended Sediment Discharge (Tons/Day): 98!;1 susi9/j 4 ... 28 \ 1 : j ..;. .. .: TABl..E 4.·13 R&M CONSULTANTS, INC. SUSPE~DEO SEDIMENT ANALYSIS SUSITNA RIVER AT GOLD CREEK Date: January 14, 1981 \Vater Ternperature: 0.3°C ·Instantaneous Discharge: NA S~mple No. Time Station Sediment ( mg/i .. 1 4 5 6 Size (Microns) <10 10-20 20-50 50-100 >100 1500 1515 1535 Left Bank Center- Right Bank Particle Distribution % by Size Sample: 4 Sample: 80.0 7 .• 5 9.2 2.5 0.8 _. Average Sample: Suspended Sediment Discharge (Tons/Day): NA susi9/j 4 -29 ' 4.1 10.6 10.4 8.4 Averaaf! 80.0 7.5 9.2 2.5 0.8 ,,. ... ~·),., . ~ '-. 'J"--·-'"'· • -~ ~:::.--, r ... . ~ 1. •• TABLE 4 .. 14 R8.tM CONSU l.T ANTS I INC. SUSPENDED SEDIMENT ANALYSIS SUSITNA RIVER AT GOLD CREEK .Date: May 27 1 198' Water Temperature: 10.5°C Instantaneous Discharge: 14,400 c. f .s. REW: 04+34 LEW: 00+56 Sample No~ Time Station Sediment (mg/1.2 -- 1 2 3 4 5 6 7 8 9 10 11 12 Size ~Microns) <10 10-20 20-SO 50•100 >100 4:11 p.m. 00+90 01+18 01+46 01+74 02+02 02+30 02+58 -02+86 03+14 03+42 03+70 4:40 p.m. 03+98 Particle Distribution % by Size Sample: 4 Sample: 7 97.94 97.29 1.62 2'.23, 0.36 0 •. 46 o.os 0.02 0 .. 03 0.00 Suspende~ Sediment Discharge (Tons/Day): susi.9/j 4 -30 73. 71 64 69 71 75 69 68 64 5·1 53 49 Average 55 Sample: 10 Average ' 97.94 97.72 1 .. 62 1.82 . 0.36 0.36 0;;05 0 .. 04 o.og 0.02 2,520 -·--4' "· ' J • 1 f A j j ..f • J ~ 1 ' ..; .... J i J ..j i ' J l 1 1 ~ J .., i ..1 1 1 . . · ':. ~ 1-. ~ ... ... TABLE 4.15 R&M cqNSUL TANTS, INC. .... ~ . SUSPENDED SEDIMENT ANALYSIS SUS.ITNA RIVER AT GOLD CREEK 'Date: June 17, 1981 Water Temperature: 12.8°C Instantaneous Discharge: 17,700 c~f.s . REW: 04+13 LE\V: 00+00 · Sample No. Time Station Sediment (mg/1.) 1 2 3 4 5 s 7 8 . 9 10 11 12 .. -.. Size (Microns) < 10 10-20 20-50 50-100 )100 4:30 p.m. 00+50 00+78 01+06 01+34 01+62 01+90 02+18 02+46 02+74 03+02 03+30 5:-10 p.m • 03+58 Particle Distribution % by Size §_ample: 4 Sample: 8 98.24 98.32 1.64 1.25 0.06 0.30 0.06 O.jO 0 .. 00 0.03 Average Sample: 11 97.76 2.15' 0.06 0.03 0.00 Suspended Sediment Discha.rge (Tons/Day): 7/i90 susi9/j I 4 -31 160 180 150 150 180 160 150 150 140 150 130 110 151 Average 98 .. 11 , .sa 0.14 0.06 0.01 ·~-i ) ·........v .. :·· ~. ' .. . ~ "--• TABLE 4.16 . R&M CONSULTANTS, INC. SUSPENDED SEDIMENT ANALYSIS SUSITNA RIVER. AT GOLD CREEK Date: June 30, .1981 Water Temperatu_re: 7 .3°C Instantaneous Discharge: 24,550 c.f.s. REW: 04+14 LEW: 00+00 Sample No. Time Station Sediment (mg/1.) 1 8:00 a.m. 00+84 2 01+26 3 01+68 4' 02+10 5 02+52 6 02+94 7 03+36 8 03+78 9 10:00 a.m. 04+20 Average Particle Distribution % by Size Size (Microns) Sample: 2 Sample: 5 Sample: 8 ··--• <10 97.85 96.28 95.64 10-20 1.97 3.34 3.85 20-50 0.16 0.36 0.48 50-100 0.01 0.01 . 0.01 100-250 0.01 0.01 0.01 250.,.500 0 0 0.01 >sao 0 0 0 Suspended Sediment Discharge (Tons/Day): 12,060 o;· $.:;.< J 4 -32 230 190 190 210 180 160 150 160 150 180 Average 96.59 3.05 '0.33 0.01 0.0,1 0 0 ---~---------...----..--..... .....;........._,._~;__. __ ,.,.,., ........ . .• .it. ;·.1· ..... ' . r .. : .. 1 ....... ...ill:· ;: ., .. ':j . ~ :1 :1 •:1· . ..- . ~~-j :1 :1 . t 1 'j ' t ! 1 J J ! 1 ~ 1 .. I l TABLE 4.17 R&M CONSULTANTS, INC • SUSPENDED SEDIMENT ANALYSIS SUSITNA RIVER AT GOLD CREEK Date: July 1, 1981 Water Temperature: 8. 6°C !nstantaneous Discharge: 21,900 c.f.s REW: 03+90 LEW: 00+00 ~lmple .. No. 1 2 3 4 5 6 7 ·a 9 . 10 11 Size Q!J.icrons2 < 10 10-20 20-50 50 .. 100 >100 Time --··--Station ·- 1:00 a.m. 00+-~0 00+70 01+00 01+30 . 01+60 01+90 02+20 02+50 02+80 03+10 1:45 a.m. 03+40 Particle Distr·ibution % by Size Sample: 3 Sample: 6 97.04 97.73 2.:74 1.81 0.19 0 .. 33 0.02 0.04 0.01 0.09 Sediment (mg/L 2 100 100 100 110 100 110 105 110 94 99 74 Average 100 Sample: 9 Aver~ge 96.82 97.20 2.87 2.47 0.28 0.27 0.01 0.02 0.02 0.04 Suspended Sediment Discharge (Tons/Day): 5,900 susi9/j 4 .. 33 'Z-s-~q } . • .. - L ·~ • TASL.E 4.18 R&M CONSULTANTS, JNC. SUSPENDED ~£01.MENT ANALYSI-S SUSITNA RIVeR AT GOLD, CREEK Date: August Z, 1981 Water Temp.erature: 9 ~ac ·"~. Jnstantaneo;..rs ~ischarge: 51,000 c. f .s. REW: 04+20 LEW: 00+00 Sample No. Time Station Sediment . (mg/1 • ) 1 2 3 4 5 6 7 8 9 10 Size (Microns) < 10 10-20 20-50 50-100 100-250 ' 250-500 >500 12:00 noon 01+12 01+40 <n+Sa 01+96 02+24 02+80 03+08 03+36 03+92 1:00 p.m. 04+20 'Particle Distribution % by Size Sample: 2 Sample: 5 98.39 97.56 1.08 1.63 . 0.34 0.55 0.05 rl~04 0.12 0.15 0.01 0.05 0.01 0.02 Aver,age Sample:· 8 97.90 1.80 0.29 0.01 C:16 '0 .. 03. 0.01 ' Suspended Sediment Discharge (Tons/Day): 57,600 susi9/j 260 250 380 270 300 450 750 640 450 450 420 Average 97.95 1.44 0.39 0.03 0"14 0~03 0.01 :; . ' ..J -,. i 1 ':· t .. . .!i ; l .. "! ·' "' TABLE 4.19 R&M CONSULTANTS, INC. SUSPEND.ED SEDIMENT ANALYSIS SUSITNA RIVER AT GOLD ··cREEK Date: August 3, 1981 Water Temperature: 9.2°C Instantaneous Discharge: 46,000 c. f.s. REW: 04+20 · LEW: 00+00 Sample ,No·~ 1 2 3 4 5 6 1 8 9 -1\0. .. -.. Size (Microns) <10 10-20 20-50 50-100 100-250 250-500 >500 Time Station 12:40 p.m. 01+12 01+40 01+68 01+96 02+24 02+80 03+08 03+36 03+92 1:15 p.m. 04+20 Particle Distribution % by Size Sediment (mg/1.) 850 1200 900 850 770 875 780 720 560 600 Average 810 Sample: 2 Sample: 5 Sample: 8 Average 97.90 97.05 97.59 97.51 1.52 1.93 0.64 1.36 0.41 0.61 0.58 0.53 0.04 0.19 0.04 0.09 0.12 0.17 0.10 0.13 0.12' 0.04 0.04 0.03 0.00 0.01 0.01 0.01 Suspended Sediment Discharge (Tons/Day)! '100, 000 susi9/j 4·-35 ?--5-31 "-<· '. H. ..... ·,., \...., • •• > .. .. . 4 TABLE 4.20 R&M CONSULTANTS, INC. SUSPENDED SEDIMENT ANALYSIS SUSITNA RIVER AT GOLO .CReEK Date: September 14, 1981 Water Temperature.: 6o8°C Instantaneous Discharge: 12,600 c.f c$. REW: 03+78 LEW: 00+00 Samele. No. Time Station Sediment (mg/1.) 1 2 3 4 5 6 7 8 9 10 Size (Microns) <10 '10-20 20-50 50-100 100-250 250-500 >sao 1:00 p.m. 1:30 p.m. 00+84 01+12 01+40 01+48 . 01+96 02+24 02+52 02+8.0 03+08 03+36 . Particle Distribution % by Size Sample:. 2 Sample.:_ s 97.60 96.51 1.63 2.85 0.39 0.44 0.18 0.01 0.13 0.16 0.07 0.02 0 .. 00 0.01 45 75 94 112 84 47 67 42 72 47 Average 69 Sample: 8 Average 97 .. 16 97.09 2.18 .2.22 0.60 0.48 0.03 , o·. o1· '0.01 0.10· 0 .. 01 0 .. 03 0.01 0.01 Suspended Sediment Discharge (Tons/Day): 2,S40 ·· · susi9/j 4 -96 <' ' . -]lli._ ::~ .;~~. ; ~ -·· -.. .· .. ..... ..--... . · "~ .. , _ .. ~ ... . •.... ' ~. 'J . 1 j ' . 1 J 1: -t ~ . ~ 1 .. ..i ;-··) ... .. ~ J .. -: ... . 1 j ~ • - '1 .f ! .,. ., j _( 4 J ,. ... t ~ ' . t •~ l ! ,.,. i ? f 1 r16/t4 :' . : ATTACHMENT D PARTICLE SIZE AND CONCENTRATION ANALYSH~ OF LAKE AND RIVER SEDIMENTS FROM ALASKA. ' . ' " - t f"o i ... 1 • . ·• PARTICLE DATA LABORATORIES, LTD. 115 Hahn Street • Elmhurst, Illinois 60126 • (312) 832-5658 September 14, 1982 R & M Consultants Inc. 5024 Cordova Box 6087 Anchorage Alaska 99502 Attention: Mr. 3rett Jokela Subject: · Particle Size and Concentratio1n Analysis of Lake and River Sediments From Alaska PDL Project: I-6849 Gentlemen: Introduction Seventeen samples of lake and river water were received for a standard electronic particle size and concentration analysis via the Elzone computerized particle size analyzer. Four samples were subjected to a density gradient analysis to determine the relative density of distribution of the minerals present. A pe~rograpnic analysis was conducted on four samples via polarized light microscopy to determine the relative quantities of the various minerals present. All microsoope observations and density deter- minations were. conducted by Mr. M. Bayard. Results _--.,__... __ The results of the petrographic analysis are listed below in Table I. All samples are similar in mineral content except that the lake water has a .smaller aver.age partice size distribution than the river water. We would expect this because of sedimentation effects present in the lake water. Table I PetrograEhic Analysis of Susitna R1ver and Eklutna Lake Water Samples Mineral Augite Quartz Diatoms D-1 Percentile 5 to 10 15 15 7_-5-35 . ~- . ~··· i " ·' .-""'· < • PARTICLE DATA LABORATORIES, LTD. .. '"'l· ~ .. _4«_"_ SeDtembe:r 141 1982 ~-& M Consultants, PDL Project I-6849 . Inc. Table I .. .. . ..,.. Petrogra~abic Al1!l sis of Susitna River and Eklutna.. Lake Water Sam le.S Mineral -..... ' .. . Musoovite l~ixed Feldspars :r::ron Oxides Illmenite Percentile 15 to 20 25 to 30 10 -15 about 5 Calcite l -2 ·"--· Table 2 Density Distributions !ample . Susitna Rivet Depth Integrat~d .s &.,., ,. :.II(. A "', """~ ,., J I -t 8 :a. Composition Percentage < Eklutna :take 2 Jul 82, STA 8, 4SM Ek.~utna Lake 2 Jul 82, STA 8, SM . 60%. .15%. 25% SO% 10% 10% 70% 15% lS% Eklutna Lake 2 Jul 82,· STA 8, 15M 70% 25% 5% D-2 Density Range 2.7 -2.9 2.9 -3.2 2.6--2.7 2.80 -2.84 2.90 2.48 ... 2.55 2.85 -2.90 2.90 -3.05 2.6S -2.85 2.74-2.80 ,!;: ' ~2-. 74 . 2.a -3-.9 _I 1 .. l l i 1 ·1 1 PARTICLE D11TA LABORATORIES, LTD. -3- Septernber 14, 1982 R & M Consultants, Inc. PDL Project I-6849 Table 3 summarizes the concentration and size distribution data for each of the required samples. It should be noted that these-sample were dispersed in a 4% by weight ~odium pyrophosphate electrolyte and ultrasonically treated so as to eliminate an agglomeration that may have occurred between original sampling, transport and final analysis. Your data appears in two formats: l) Frequency Data 2) Volume or Mass Data The frequency data .is analagous to a microscope count in whicr: c:;everal hundred particles are sized and tabulated by their projected c..' .uneters .. Standard fine particle mathematics are then used to calculate the various statistical parameters. In an electronic analysis we typically count between 50 thousand and 100 thousand particles per sample. At your request, we have performed a concentration analysis for each sample. This additional analysis i!: included 'With each particle siz distribution run• Due to the limitations of the technology, the low-- est size measurable is a function of the largest size present in the sample (dynamic range). This limitation in one form or another is present in every type of electronic particle size analysis. The data is reported. on the basis of counts/liter of sample over some indicated ~7ange. This range must be considered when evaluating data. Since all d~ta is in permanent magnetic storage, it could be possible to nc.,rmalize data about some common reference point a:t a later date. Tha mass data is analagous to a sieve analysis in which the results are expressed as a weight percent greater than or equal to an in- dica·~ed sieve (micron size) • I Concluding Remarks Due to the vacation schedule of Mr. Bayard and the arrival of your samples, no photographic work co11ld be completed at this time. Upon his return on September 27, your pr?ject will ~e his primary ~oncern. If you have any questions regarding data or techniques involved in acquiring your results, please do not hesitate to conta~t us at Particle Data Laboratories. Respectfully submitted, ~.:Y~k Richard Karuhn Director RK/lk o-3 -- -·~ '~ . ...:.;;,:,.-~""' ~ f. '•. PARTICLE DATA LABORATORIES, LTD •. ... 4- September 14, 1982 R & M Consultants, Inc. PDL Project I-6849 Table 3 Concentration and Particle Size Summary .Sample. I.D. Counts/Liter Mass ·Median Count Median Siie Size l. Susitna River 8/r•/6'- Depth integrated 761814,800 16.67 2.89 2G Lake ·Inlet 50 Ft. Upstream 34,2~6,000 46.25 3.44 3. Lake Inlet Creek Mouth 129,360,000 . 4. 18 Jun 82,.STA ll, 20M 84,783,000 5. 17 Jun 82, STA 4, 24M 6. 18 Jun· ~2, STA 9, 14M 60,.946,000 51,786,000 7. 17 June 82, STA 4, 19M 104,788,000 8. Lake Inlet Surface 71,148,000 200 Ft. into Lake 9., 15 Jul 82, STA 9, 1M 129,180,000 10. 15 Jul 82, STA 11~ 1M 52,254,000 11. 15 Jul 82, STA 9, 14M l8B,495,000 . . . 12. '15 Jul 82, STA 11, 28M 19,034,000 13. 2 Jul 82, STA a·, SM 145,691,.000 14. 2 Jul 82J' STA 10, SM 229,.996,000 15. 2 Jul 82, STA 8, 15M l9ly1Sl,OOO 16. 2 Jul 82, STA 14, SM 126,603,000 17a 2 Jul 82, STA 8,45M 284,282,000 D-4. 25 .. 46 12.83 3~6·8 3.10 3.56 4.86 3.10 4.09 2.10 . 33.34 3 ... 56 3.10 3.32 3.32 3.95 2.89 1.93 1.53 1"'53 1.53 1.82 1.53 1.60 1.53 la59 1.76 1'076 1.68 1.76 l. 76 ... -- ' "' J ~· CONCENTRATION ANALYSIS BY COMPUTERIZED ELZONE 11ETHOD ~ 1 R & M CONSULTANTS!" INC. ... '4 .~ J SAMPLE I .. D. :SUSTINA RIVER DI::At=·TH INTEGRETED Rj"f· 232 BY USGS-S'o.-fO le-i t!ljrJ/82. COUNTS/LITER:768149000C0.96-23.84 i'1ICRONS RANGE> I T;~BUf_ATION : DATA ;t,;, SEF· : ID 6649 DATE Q • 1 SIZE-NORMALIZED COUNT DISTRIBUTION j TOTAL = 768149 l !:HNL SIZE COUNT I:HNL SIZE COUNT CHNL SIZE COUNT J 18 .95 93 !SO 2.89 23333 !32 8.76 1958 ., ~ 19 .99 47 51 2.99 24496 :33 9.07 1612 . -::t I 20 1.02 165 52 3 .. 10 21988 84 9.39 1246 21 1.06 3138 !53 3.21 21931 85 9.72 1113 .. 22 1.10 6105 54 3 •. 32 21779 86 10.06 J. 1092 } ""'-1.13 7069 55 3.44 19824 87 10.42 959 ..:;~ 24 1.17 6536 56 3.56 18018 as 10.79 891 25 1.22 6872 57 3.68 19199 89 11.17 728 .; 26. 1.26 6915 58 3.81 16353 90 11a56 834 t .. $ 27 1.30 7364 59 3.95 15741 91 11.97 499 "" ~ 1 28 1.35 7553 60 4.09 14761 92 12 .. 39 734 :: 29 1.40 8969 61 4.23 12780 9,.. 12.83 458 ;; ~ ~ 30 1.45 8780 62 4.38 11792 94 13.28 478 I 31 1.50 9592 63 4.54 10915 95 13.75 441 l 32 1.55 10462 64 4.70 9014 96 14.23 353 33 1.60 10649 65 . 4.86 10284 97 14.74 306 34 1.66 11539-66 5.03 8917 98 15.26 348 f 35 1.72 12945 67 5.21 8027 99 15.79 191 36 1.78 14664 ·68 5.39 . 7311 100 16.35 178 1 37 1.84 14944 69 5.58 7053 101 1.6. 93 186 38 1.91 14931 70 5.78 6538 102 17.52 138 39 1.97 17636 71 5.98 5269 103 18.14 137 4<> 2.04 18526 72 6.20 5101 104 18 .. 78 85 41 ., 1?' 18392 73 6.41 4017 105 19.44 93 ......... 42 2;1'9 19363 74 6.64 4086 106 20.13 93 43 2.27 21562 75 6.87 3738 107 20 .. 84 38 44 2.35 2.0977 76 7.12 3488 108 21.57 57 45 2.43 22920 77 7.37 3072 109 22.34 33 46 2.52 23553 t 78 7 .. 63 2778 110 23.12 29 f 47 2.60 25011 .79 7.90 2313 111 23.9'4 ~2 48 2.70 23971 80 8 .• 18 2096 I 49 2.79 23455 81 8.46 2089 . ! :J: j • l . i ' .. • i . . . .,. -z --s-Jcr i l t ~ D-5 -PARTICLE SIZE ANALYSIS BY ELZONE METHOD -PA~TICLE DATA LABORATQRIES,LDT; 1t5 HAHK STREET·-ELMHURST~IL. 66126-TELEPH6NE:C312)832-56S8 CLIENT: R S H CONSULT~NTS~ INC. 9 SEP 82 :DATE SAMPLE: SUSTINA RIVER DEAPTH INTEGATED 6849 : JOB NUMBER ~---pie..( 11/•'1/8 ~ VOLUME <MASS> DISTRIBUTION FROM DISPLAY AREA: 4 ===================~==~=== INI>ICES VOLUME MODE = 17.32 MEDIAN = 16.67 MICRONS AND LARGER GEOMETRIC VOLUME MEAN = 15m85 +/-15.72 < 99a21%) SKEWNESS = -.09 ARITHMETIC VOLUME MEAN = 19.56 +1-12.19 < 62.33~) SKEWNESS = .18 FOR ?LOTTING F'ROBAB I LITY ON LOG F'APER: PERCENTILE: 00.1?. OF VOLUME IS AT 64.15 MICRONS AND LARGER PERCENTILE: 01.0/. OF VOLUME IS AT 55.00 MICRONS AND LARGER • PERCENTILE: 06.07. OF VOLUME IS AT 42.00 MICRONS AND LARGER PERCENTILE: 22.0?. OF VOLUME IS AT 27.50 MICRONS AND LARGER ·~. F'ERCENT!LE: 50.0% OF VOLUiiE IS AT 16.67 MICRONS AND LARGER PERCENTILE: 78.07. OF VOLUME IS ATY"" 9.72 MICRONS AND LARGER PERCENTILE: 94.07. OF VOLUME IS AT 4.68 MICRONS AND ·LARGER PERCENTILE: 99.0% OF VOLUME IS AT 2.63 MICRONS AND LARGER PERCENTILE: 99.97. OF VOLUME IS AT/ 1.65 .MICRONS AND LARGER COUNT <FREQUENCY> DISTRIBUTION FROM DiaPLAY AREA: 5 ===========================~== . INDI~S COUNT MODE = 2.79 MEDIAN = 2.99 MICRONS AND LARGER . GEOMETRIC COUNT MEAN = 3.11 +I-2.69 ( 86.597.) SKEWNESS = .12 ARITHMETIC COUNT MEAN = 3.87 +I-3.30 ( 85. 06/~) s•(EWNESS -.33 - FOR PLOTTING F'ROBABILITY ON LOG i='1~F'El~: PERCENTILE: 00.17. OF CQUNT IS AT 31.59 MICRONS AND LARGER PERCENTILE: 01.07. OF COUNT IS AT 16.93 MICRONS AND LARGER • PERC.ENTILE: 06.0/. OF COUNT IS AT 9 .. 07 MICRONS AND LARGER ....... f•EJi•CENTILE: 22.01.: OF COUNT IS AT 4.86 MICRONS AND LARGER F'EKCENTILE: 50.07. OF COUNT IS AT 2.99 MICRONS AND LAI''GER f•Ef~CENTILE: 78.0% .OF COUNT IS AT 1.97 MICRONS AND LARGER f•ERCENTiLE: 94.0/. OF COUNT IS AT 1.30 MICRONS AND LARGER G., -:-S-4/0 PERCEN.t'ILE: 99.07. OF COUNT IS AT .86 MICRONS AND LARGER PERCENTILE: 99.9% OF COUNT IS AT .61 MICRONS AND LARGE·R D~6 ~.·.l, .~ ,,J CLII;NT: R l·M CONSULTANTS, .INC. •. 9 SEF' 8.2 :Di~TE SAMPLE: SUSTINA RIVER DEAF'TH I NTEGATED 6849 :· JO.B NUMBER F'ARTICLE SIZE VS. COUNT (+) AN.D %OF COUNT LA~:GER THAN SIZE (~) GRAPH -FROM : TO : · -S~~IP: ? = 1 f) 25 so 100 75 r If a !1 ~ a e If ~ e a If a 8 e D ! a e 8 D a • 8 8 8 D D e e 8 D ! 8 e 8 8 D 8 D e If 8 D e 8 e D ! a a D 8 8 8 ~ 8 e e • ~ e D e ! .26>+ :::'~~-' .3S>"f- )·+ '' ... 46>+ ·:. ... + . . .61> + ..... ... + • SO> + > + 1 ,06> + ~ .. + 1~40> + .•. + .. •' 1.84> > + :1 .. 2.43> > + 3 """l"' .• ·~ .. ,=· . + + .. :. .. 4.23> + + > + 5.58> + > + 7.37> + "'> ... + 9.72> + > .. . + " 12.83> + ~-=-+ 16.93> + ~:-+ 29.47>+ .... ~a ..;} ' J ... . ... 67.71)+ ' -. ; . J f i . I . .. 1\~ • a· • • • • ·• • o .• • • ·w "' • u • a • 11 '• ~ • • • • a ~ • • • • • • 11 • • lf • • • • • • • • • • • • .., a • 111 • 11. .., a ·•· • • • • • • 0 32768. 65536 98304 131072 -~,"' ~~5:.-t..fl· rl-7 -F'ARTICLE S1ZE-ANf'l-YSIS BY ELZONI!: i'1ETHOD -I:. ARTICLE DATA LA~ORATOii:IES. Ll>T .. = 115. HAHN Sl~E:ET -ELMHUJ;:ST 1 IL. 60126 -TEL.EPHONE: ( 31:2 > S32-!5~SS . CLIENT: R & M~'-CONSULTANTS!' INC. 9 SEF· 82 :DATE SAMPLE~ susri~A RlVaR .DEAPTH INTEGAT~D · 6•49 ~ dOB NUM,ER -. . ' . . s /i"J /9 a. . ~~"TOTAL IN TABULt~TION~ TOTAL COUNT ul~ VOl-UME IN ANAl-YSIS TABUlATION . DATA -ID 6849 DATE 9 SEF' SIZ-E-NORMALIZED COUNT DISTRIBUTION TOTAL = 2562671 'Cj CHNL SIZE COUNT CHNL SIZE COUNT CHNL SIZE COUNT 17 .26 2 44 1.72 83684 71 11.17 166.95 18 .28 2 45 1.84 95044 72 1la97 15209 19 .30 7 ·46 1 .. 97 104955 73 12.83 13726 20 .33 13 47 2.12 113761 74 13.75 12011 21 .35 20 48 2.27' 121048 75 14.74 10339 22 .37 36 49 2.43 12'6674 76 15.79 8r::!7 ~ w 0 23 .40 61 50 2.60 129700 77 16.93. 7061 24 .43 108 51 2.79 130000 78 18.14 5749 25 .46 189 s~ 2.99 12792·2 79 19~44 4613 ~ 26 .49 .310 53 3.21 123576 80 20 .. 84 3629 27 .53 494 54 3.44 116384 81 22 .. 34 2848 ,. 28 a 57 771 55 3.68 104605 8"' 23.94 219.8. . ..... 29 .61 1219 56 3 .. 95 93646 83 25.66 1700 " 30 . ~ 1894 57 4.23 83757 84 27.50 1297 .,·ow· 31 .70 2802 58 4.54 75163 85 29.47 970 32 .75 ·4057 59 4.86 67722" 86 31.59 740 33 .so 5752 60 5.21 61104 87 33.85 552 34 .. 86 8211. 61 5.58 55593 as 36.28 408 35 -. 92 11483 62 5.98 49383 89 38 .8.9 292 36 .99 15408 63 6.41 42748 90 41.68 207 37 1.06 20258 64 6.87 36863 91 44.67 148 .38 1.1$ 26118 65 7 .. 37 32648 92 47.88 100 39 1.22 33615 66 7.90 2.9119 93 51.31 66 40 -1.30 42359 67 8 .. 46 25859 94 55.00 38 ... 41 ·1. 40 51554 68 9a07 23078 95 58.94 18 42 1.50 61548 69 9.72 2.0520 96 63.17 a 43 1.60 72106 70 10.42 19528 97 67 .. 71 2 DISPLAY AREA: 4 ·. .. CLIENT:, R .. -~-M ·CONSULTANTS. INC. 9 SEP 82 :DATE . SAMF'LE:: SUSTii~A RIVER DEAPTH INTEGATED 6849 : JOB NUMBER F'ARTICLE SIZS" VS. VOLUME J+) AND ~ Ol= VOLUME. 'LARGER THAN :~rz·E <~> GRAF'H -FROM : TO : -S~{IF·: 7-2 0 25 50 ' 75 100 ! • • • • ~ • • • ~ • • • • • • ! • ~ u • • • • • • • • • • • • ! • • • • • • • • • • • • ~ • • 1 • • • 0 • • • ~ • • • • • • • ! .86>+ ::=-+ 1.08>+ :::--+ 1.36>+ 1. 72) + ~· .:=-+ 2.17> + .... ·"' 2.73> 3.44> > 4-!133> 5.46> > 6.87> 8.66:> 10.91> •.. •• <# 13.75> 17.32> ' + ... . ..,1 a·a~·. .. . ,.. 27 .. 50> 34.65> .... ... 43.65> 55.00> 69.29> + \. + + + ... + + + + + + + + + + + + + + + + + + ·. + + + >+ ·i ! • • • • .. • • • • • • • • .. • .! "' • • • • • ... • • • • • ., • • -! • • • • • .. • • • • • .. 0 • • ! • • .• • • • • • • • -~ ~ • • • ! -~" 0 2.09715E 6 4.19430E 6 6.29146E 6 8.38861E 6 D-9 • • -· . . PARTICLE SIZE ANALYSIS BY ELZONE METHOD -PARTICLE DATA LABORATORIES,LDT 115 HAHN STREET -ELMHURST,IL. 60126 -TELEPHONE:(312>832-56~8 CLIENT: R & M CONSULTANTS, INC. 9 SEP 82 :DATE SAMPLE: SUSTINA RIVER DEAPTH INTEGATED 6849 : JOB NUMBER . 8/17/P'-. ,.,TOTAL IN TABULATI!JN= TOTr~L COUNT OR VOLUME IN r~NAL YSIS TABULATION DATA ID 6849 DATE 9 SEP SIZE-NORMALIZED VOLUME DISTRIBbTION iOTAL ~37958937 CHNL SIZE VOLUME 12 13 14 15 16 v :t7 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 4., , .. 43 44 45 46 47 . 48 49 50 .93 0 # It I 0 1.00 1.04 1.08 1.13· 1.17 1.22 1.26 1.31 1.36 1.42 1.47 1.53 1.59 1.65 1 .. 72 1.79 1.86 1.93 2.00 2.08 2.17 2.,25 ... ~., 34 ..... 28 83 132 2710 8325 12435 13461 15742 18071 21502 26292 32378 37812 46650 54497 65754 84213 107601 122573 146675 186290 213372 246935 305980 342995 419729 492249 573849 2.43 2.53 2.63 2.73 2.84 2.95 3.06 3.18 3.31 3.44 3.57 3.71 3.86 ,4 .. 01 . 618739 682656 785169 836380 902038 1004350 1033747 1153894' 1238607 1305394 1386599 CHNL SIZE VOLUME 51 52 53 54 55 56 57 sa 59 60 .!, 1 62 63 64 65 66 67 68 69 70 71 72 73 74 75 . 76 77 78 79 80 81 82 83 84 85 86 87 sa 89 4.17 1461136 4.33·1520464 4.50 1615831 4 .. .68 1716951 4.86 1819602 5.05 1954195 5.25 2037958 5.46 2198857 5.67 2326588 5.89 2469201 6.12 2517390 6.36 2603621 6.61 2697760 6.87 2795345 7.14 2921287 7~42 3138735 .. )2 3262085 rS.02 3439966 8.33 3578517 8 .. 66 3773250 9.00 3985998 9 .. 35 4175116 9.72 4400951 10 ... 10 4720822 10.50 4994368 10.91 5259312 11.34 5592651 11.79 5915794 12.25 6386353 12 .. 73 6673118 13.23 7060864 13.75 7290997 14.29 7671742 14.85 7876144 15.43 7874619 16.04 7906464 16.67 7987280 17.32 8000000 18.00 7928014 D-10 CHNL SIZE VOLUME 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 1-;19 120 121 122 123 124 125 126 127 128 18. 7'1 7937483 19.44 7~47236 20.21 7853900 21.00 7727175 21.83 7575461 22.68 7281022 23.57 7090060 24.50 6872016 25.46 6659054 26.46 6419549 27.50 6266254 28.58 5990698 29.70 5842865 30 .. 87 5579647 32.08 5327950 33.34 5071671 34.65 4798201 36. 01 45438.90 37.42 4221621 38.89 3998038 40.41 3737836 42.00 3487012 43. 6'5 3262757 45.36 2854257 47.15 2620499 49.00 2346607 50.92 52 .. 92 55.00 57.16 59.40 61.73 o4.15 66.67 69.29 72.01 74.84 77.7_9 80.t~3 2132528 1741967 1511037 1180547 843250 532023 296192 164476 99567 21072 6287 12678 9292 --' SUSPENDED SEDIMENT SIZE DISTRIBUTIONS . . . FOR. THE SUSITNA RIVER AT: 1) MACLAREN RlVER NEAR PAXON 2) DENALI 3) CANTWELL (VEE CANYON) 4) GOLD CREEK -· -------·· -· "'!"·-- ·' "j,:.fs,tt-: .... "~3"~-_.:/. ..:tc .,~_~qo .. !i .... P-'3 :c_ J./o~-· s-1 67 __ ro 95 _../t;o ~~ ;A_ds.t __ ~ ?;."Jtl£_--~p ___ .....5.1& ---_S;9.l.c.?__ I "l; ,_ e,_ . '-?: ____ 3 ;-_ --·-'!J.P _k_7 __ ·-. ~'1 -~b. --!it:.:-' __ ...c -ft!/"f~, -~~30.. _ .?-:.1 ~. 2. n-1 'J '! [_O _ .• :-__ -. ... . _ . _ _ ·-_ "3d., _ -·~I ___ .....;J'lf_. __ 9.t:*f:...,. teo .· !"f·.,/!~. _ ~1 o$9 .. ;?:· 2-. !-_-;.&.j ~,_ ttov . 1 J' '2.S" 35"' '-/'l-s-2 t~-77 Cf I . 9¥ 1' t./ d:.r>-.---lrf-'1£.,. .:l z /CfO __ !.!?':" .. -----------... _._ --... --------·--~':' (,.~7 ----· :?( ___ 'j e ____ _/.C 7 hfbo _ . __ ?-J S:,JO _ f.~ _ 7 ~-"7 _ _ ~?"':! ·-. ~~ ... _ 7:_lf 3 "2 . '-/' _ .• ~3 ?~ J> 0 . .t:t~ , f4' l 0 ;J;.-.f:::o __ :..:1-.?.~.~Q__---~bS" --~r.{GO __ . ~-z.. L1'----~-~-3d' ... ~&/. .... ?~-----~j. _9_'1_ ____ q_tj __ _.jo .,1:/t.'r _ .. ~1 VO..._ . !_ ':4;. •. -~1:2 __ .3/2:-~_'?_ . -'-~. _ ,_-; ~ 3[:, .4~--.J?r-.. ~~· :. £!5"'. .. _ ~ i' {': r!:"l-lk.L-. -.::..·b~CJ. _____ r ' -~G_'3o_ ___ _l~_ooD _____ ~?..-. --JO .... WJ:::_ .. sS. .. __ 'j_y_ -·-... ?~ _______ ¥_'] ---qs--ft.~-/C: ~!;rh-.. 3_.$"~~-' _.....Jt.3..!!:f__ ~· b!l~ __ _}_? __ ::l...c.l __ )~·:L 4 ~ ~!:!_ ____ f:._k __ ___10 -cr ') CJ9 I'- ~(;..j.J,:;...,__~~7-P. ___ ~-~~ ~----';L'ro ... --1:7 .. 3-E£... _l.~ __ _!_'f__.J3 ____ 'i!/_· :...f?._L ___ . ~.f .. ____ fd' ______ ff __ ... 'rct · _ '!: . ·:-;"' . . . . . 7/. ·-· ·. .~ ?J>O . lf ... _;:~7 . ---~~'}~---=---s---· 1_3_ _ ~j_ ... _ 4~---·-£"L.-.. -~ 3 --·-·-'=tf' __ 'J'1 .. __ I'?!:_ !,Jif. s-~o _____ J _.:z(p.Q.___J_o1 t.foFJ 10 2..c.' 2:S: .!:/_g _____ ':/'1.. _ ~~---'?.-~ · ii! --~' ,.. I-~ .,f,dk"-.. -~0 . ___ /..5':-...... :Js-'! _ -~~-'2.v_ Lfi. ___ ~t/_ .. 3'-/ ':/.7... ___ 6:::3 .. &.~. ___ ]_'-/_ '8J~. ,7_ ____ {&:' =t~J~!L..-!f-L:1.D .. .3-'-'~----2.9.... 2._74 ___ - -.:= __ .=::. ...... --=----~-:;·:2... S8, ____ 73 ___ ,. ¥9 -~ ... /C ,f~olt:?~_21 t,"iQ ___ Is-____ ..s:_fD_.__~9w __ ;;..1 _ ~~ ___ 3., ____ -~f ..... .£'1. ... "-;. __ ?.~ ----~er ____ tj'-/ ____ ! .,fi.(bs: __ 2J. f1o ___ 1_3 __ ~--_ ?.!Ji) ___ -~-5:):,..~ _ »_ ___ 3.'-____ 1{( __ s':J ... _ t:,_7... __ 7 ~-... .8~ e;.tt 9."2 ___ 1 c i::A(~:s-____ ?.~=1--_3£. ---~-__ --~ .. ----'1~--~--=-.... _:-______ -:-:.-_. _-:-_____ .f:l5: ;:l-.-. ~·.~ . <!'f.) __ ...i.l!.. • ;/3}/,C. ,. .... -~~l~r:J ~-'-----5:~1. --4~~-~--I e>_~(' ____ ;.l ...... ..=/ ?-. .. __ f-1_'1_. . . S"':(. . ~-~-7/ ___ /_'(_ ____ (':_ 1'/~':1/"--~~'to ___ j_g· __ .__ .. !:11?_ --?J81g .. :-·---:: . -::--··-_ .~ _ _ ---·-·-· -s-~_ . '? ~ S'f' tf<f ... lQ er /;:;/"'' . ,.. .f.~':l '·-· _ ~.2 ... -. _ .kS'". . . ~!?---=-. :-::-::. . . . - -4 ~. ___ "f.?= 8'1 .. 1 a o_ . _/.q ::.l!k!G..'2~~~~-"J-() . ~ ·. ·-·-'rJ'L_ .. fj.3_'{_t!_. __ '-~---'?-~? l/-cJ -;f:.~lh7-.. 41 030_ --· 3.. .. --_1.77.. ~3?." --1?. 01 '2.~. '3 6 t}lf,}i.::L __ Q2-r?_ ... _P-:.S: ~ -·---1/i'-/.0 • !..t ~P.O. __ 7_ . !._0 .. 15""_ l '1._ -, f,~f7t/. 2:;...,~'!. _ t.~ _... .. . S?s-' _ ~2or1o rs--.. 2.. ~ .~t:t 38 -,f.2sf.,r_~ 2,1o0 .. (_?:-_..,. q "-"---.:=t-'l'Lo _I t . . 1 G, .A 3 .. .1.~ • ' ~ ~ .. ~ ---· -·-~ - !· .. ,.. ......... .;.. ---.. . --·--· .. "" .. __ £_Jj ···-.. bl __ S''f.. _;:¥>. q~ ___ fj' .tt s:. s-? . 7.;. q 5"' q er _ it.: .'.2:-4 3/ . .3:1. ~-~~-. -?f:>~~--lt;?J . L.f· .f1 b ""£)· ... .. • ~ t? ; . 'f "&.... .. 'f..Cj _,.:to _'{J.. ---:_ --·----=--. _ _::-__ .:...._ Cf_:i,.., _.._ ... J.C .. --.,.... '!""" ... .__ . ··-~ -· __ ,.---·--..•• :. ··-· -• ..... • ---· -----·--1-•• ... ·----·-· __ " ____ ., ...... -... ... _,._ -•. -. .................. ~ ....... ..... ... ~·---~~-_____ ...._~·----~----'"'~~!' -__ ,_ .. _ ·---------·· ·-·-... -___,_ ___ -'!. ___ tll _____ ., ·--... ll:-- ·--'!"· ··--,._- ··-··-----·--~ .. --. r 1. __ S'k.sf• Sec) • !;fl "jj,C.,,...-I!'"r ; i -·· ·-... ?r. r.:,r., 1fta14 . . i . -. -~ • j I \ --/=. . .f .. ,.,t..y . If""'\. ----.---... ~)'·· I - t .... .- i ~ .. -.. I '=' . t ~'-. I I" ... . • ~ ··-:::,.. .... ,~11:' ... "" .o.J,.-, . .,~z ...... -. 2 .. ,.. ,4!5t'.-.:-,.; __ ,....., J llr-./£_~-· {?70 __ j_Q __ ... _...;2.J~?-:.c.? ... '~:J~_o _::.E __ k8 __ 3~~-_. &/3.,.... _s'"o &.] ___ .. -;;s-_ .. t' _ Cf.:> ::: 7/~_~[;_'6_. _ _J..].f: v ___ !/ ____ . ...:J.r'i.iJ? __ _;t:,r;.:P_ .. 10 _!1 __ . I 8 _____ ?::f:, . _ :-s-_____ £E._ __ --~ ~ __ S.E ____ 9L__; ~/:_:/~a.~ ... ~t~rJ _ .?-? f'1'l-..-·ptJ 1r .. zl :..1 3'-'to p r:' ___ J? 9 '1. ; . .,/tUf9 _ S)bl.o ?-_! s-9').. t:~no l~. 1'1 :21 2..7 J~ ~r; _ ~I a?-c:t_3 _ _; · :/,.~J ~q __ ~f._ 'I c) :. __ _[_7__ ... ·'"" 0 '-[o~ _ ;.£'!:' ,_,-:_ __ 2.-~-___ 27 __ 1 ~ . _ .S:J_ -·--b 7 · __ ? '1 ____ ~ 3 ____ !0'= 1 'f/lf,[!"_! ____ I;'J70 3b -:.t~B ~,3~0-. ---~'-(-~ d'.l_. _q l?: I ;f":J,t}:_...__J./t-';ftO ___ ~S"" ____ :;:2..~. _JCr~~~. ~'l.-2-i _ ~-~ ... 1/8. ~r;> __ {:,g ___ -::?f ___ qj ______ _lor:?_ ___ _ 7/f:/btJ __ -~ ~b0:_ __ /0 _ _J.;J:_ ?0 __ ,::z~_'/oi? ___ /:::!_ __ ~2--; ____ .?_9 ______ ~-, __ .!:f..'J_. ____ p ~ .:_ ____ 79 ----!!11 ..... ____ -~-7 ____ _/ ;:J'l.:fc.p· __ ..J:,_?::$_0 ____ l_Cj . _ fr_f.?_?fJ_ -'-~!.oo_ ./_'] ___ .:a.o _ ·z..-r: __ .. 3':/.. _____ :/_':/ __ ·---~~-----?!. ___ ~1 ______ fqo __ _L ?/'5-lkJ. · !,o?Q ___ . J 2.____ , ~,.~~-3). ~o.o ---1-!_. __ _1 1 --'-~--__ ?:_c_/_ ____ ~_fj ____ 5_~-_ -~L_'-i ____ EJ.~-__ : I ~ . t/z:f=.!_..J..!;-3f?()_ _____ 3 __ ·-~ F:;g q_~t!.;q _ .1 C) ___ J. ~-_ -~ '/ ____ 1") ____ f_b _____ {;,3. __ . 8 ?_ . -~-:/ '--· 9? ~ .,__ ! j ~ ~/-:.._:}_~'1.. _!.1;1.0° 3 '-t-;,?f~--_4~ :~9.. ... .!L __ ~f. __ _lf__L{_k .. _5:{:, ___ ~1-_ ?L ___ '(3 ;oo~· 7/z.-J/,7.. -~~c?~ . .ff:_ _____ J ·pa'! __ ?4$"" ~ _ --~---'L ___ ?.._? ___ J'q . ~-____ G_4. ~ ."?~ g-, ~ 'l/1'~./f" --· :?-1 -;.jj'O . .:1. '-:/_ .. . ~5 S::. . 21 1~"--. '? -· 13 __ f i .. . :2 -~--• _2"f __ -~ ~ . _ _ 4b G, ~ ..,~ . ' 7}3/t~::, ~-;:)~---.:2.. ---_l;rl'l~--l.'f,~t>_ ___ J-1 J.'l __ ;.1 ____ J ~ "I---· r_.t-1_ .,~ _____ q I .. q Cf_, ___ .f~ r./t_r~L~ tf,3ot)· _:3 ______ ~~~o-~i.;tqo .. te..l _ I? .. _ ?:3 ___ 3/ ___ _:;3_ .. _ n... ___ -~-J' ____ ? 't ___ . 9 ~---~ t : 7 j,ofktd _ .'!1 ~'1"--·--· 8 ______ .. ~3E~·-· _:;,_r.,oo ___ -fQ ___ I::!_ __ -2-o ____ -:t.._?.:' ___ _33_ __ . -~~e.____ 7 '? .... ~~ . 7L ___ , . &J/zd~t1 ___ ¥iQ._ -3S::.._·~ _____ it?o __ ~()__ __ -__-=--=---.. -=-----:-____ .. __ .L~ _______ :zq __ .J{_ ···--_f"~ _ _!_ . ~~z.~ft:s--· '1;-lt./D _ 2£ _____ -~7;)_ ... ~3:?0 .... __ --· _-::-_ ~ .. , __ __ . _-"3"2.. . .. SJ'._ 9r.J '1 '7 I c. ?/?~[6.s__ -13u.> __ 1_5:__ ___ ~-!iOt!... --~~ '~~-. 12..:. J.~ 2.-t:-' 7..~. "3.., L/C:,-s-'"l-6~ 73 c . 7/r.:f,s---~~0 . lb. __ ·-.~'1':/D .2:?,l41" )'l.. IS 3./ !i> 4? 6-b ·-'gO '1',. /00 I ,~h/_~;s:_ ____ ~{>!fO ":J:;-_ .. _L3_'tD ·-?ti"f~---... '-... 3 .. '-/ q s-C::, __ C( '?-:-~--b~ _____ /, ·sA-if~, ~iJO 3/ 11 .070 Sjt_U'_ .2.. 3 ' Jc.f -;_~ 33 -,r.J q'>-9-1 tc. ? /:/~--9'80 ... J_ 7. .. 1 ~ 1'l1 . 3"'5'l'0. . _t_f) I'{ _ If:[ _· 7.-'-/. . '-~ _ 3 L} '12 ___ . -~-7? c tJ,.,du~ _: -~2..1(} .. !.'J-:. _ . . ~f7 I:~ 7D[; • L/ 8. l.l/ 2:-~. 2-., . '-(. 0 ·--_b 0 .•.. _ g Q. Cf.1.-_ J ~f~Jff:,z__ s-,?'{0 ':0 _ ··-~ lfi.O .• l~t_ov I 3 .~ .. _/{ 12.. .. 5' 1 ::Jtl. ________ qs:_ _ .. l_~_o ___ 1:. 7/if't _ ~uo G> l/!t:J 2~i€P_ ···-.1? _-:2._~ ... 3£?_ 3~ 'l'l -· .6/ ?~ _ 93 .. -tot;>---.f. t/:A.o./t::g ... ~:B'.'Ic:t .13 __ __ l./~3v ·-"=1 ~ _. _ J.C:, 2-2-. 3 0. . ..:if?.-~~ .... .b 6 7-, q_L.. I o ~ .. -. _ __I<. J,j,JGS.-.. -'lb3 __ qt-J . . . -~" 22-~_· .. ··--___ s,..~·-· .... b9 _ .:f 8' ___ /:;'~ .. £ ?/;;j/?!1:._-:--~0.Z:Q. .. _~--------'/"3.1? .. _3~700 __ .::J-_1 __ :2:-b .-!?_..!{t_ -~-'---·-··?0 .. ?.!,...} ••. q~----~--'19 ----.0:. ~~3_qJ-,"t~--'~l()_O ____ ~-_ ~/:,90 L~~~-.2:-.2 ___ 3_7_ .t..f8 s-8. J:~S'" .. 7} ··-~~ .. _f!/_'" -~~-t~:.· .. _ Y ,f~•/7 "1~~-.1''"-· _?:-:j ........ 'J..k?,. ____ !_~t~----1.~--I? ~3 .... 3l. ___ :f.2..: _____ ~~~----··'·72... .... :?..:?L: .• i'~ .. --3: E!lad:Js:._~f! u .._ _ ___;.b. 9 rts ~,~ __ .{1-. ___ , 7· _~!:I-. j 3 . _ _:ifp__ _, r.f__ __ 'B._";h_ ____ { f.L ....... _.:i J. ,i r .. *:f~-~{,s--~ 7[0 __ --~~ -_;-. 3! ', Jbt:? 1'1 __ ... ~b .. ? I f&' I !"!~':Jl?~-~~.t~-___ 22-______ ~.~~-. :~ l5~--r3 . !_) ~! ____ :·~ ___ '15 _____ --~;_I ___ .6_~ ____ l.? ___ 1g 1 ,,., c'> ~1 tt'o _, ft. ~":( -;., ~.~~ ~t. ,!'} .,·~ ..... ., c!_ -;! J:,,. .,~ :.:; "( ov ' I I, 1: ' s-7~ -;().., I ' J -.:;;-"1 --... !:;) I -, ... ' 7 'f/2j-,b _ ~i;.b~. . J.. 3 . 'f7 i£, '7 o(J I C. ~~ ;a~ :!6' '"li bV _ 7""3 tS 9t./ ,. 1 ~rz?L~' .1,:~2D 1>1 1!-s-"""'" -__ . _ _ -: __ .. _ ~s ___ ?.'-'.. ..,tt_ 7'cr b/r/77 _ ~ :3,~'" 2. b /;30 'J ?$.0 2-_ /, I .f!; I b 4-, '{q b/ ... ?t .. _ t(O -;/r-1??__ .F;S.~t?__ L)_ · ___ 1/SIO _;s_.~ov . 7. ,, . ~~ ?"3 :,(9. $'?_ b"3 7~ rf:J .. -· 2ht!-,, _ 1:; "?P~--__ L .. ··-'.r-'~"v . .?'15!!~~ _ .. 9 _ __,, .'2:~ .3~ __ ~?_ ~ s:-.. :sO. . __ 93 9'! ' !:t/2-t.f.,_., _ _!_;ICJ.f.!_ .. ~7 __ _/2-k/ .. __ 6}.-.;. ··---~ -___ ---·-·----=---~2-_____ 9?. _____ 73.__ -~-t}f_ t: Gf?tr/7!!f__~J02 __ _j~-_____ J..,_o __ JJ-13D_Q ·--· L'-/ __ 1~-~-~---:22 _ ___3_2:, ____ ~-~ .. G I _?2 __ f, f '1:..?1?3.. ___ ~qs_i} ·-.!. +. -. ''3."'/ l.b,o.q{J_ --'2 Q --:!-_,.. ____ 3~-----"! - -s:ti._ -· G.J -.. 72-__ 3.,?. . '18 !~ 'i 'ilQCj -c!ir'O:-;~ -JbS" ,,:;~ ---;-_~--!.;_ ·_-_-~ -----·-~-----·---;-----''~-_6::L.. --;~---· .... ··-~~---~ .. ~'"'f.L __ J,S"# .;_ ··--~ ..... ...f.E'2.. .. ____ __ __ _ . ·_ &f . ---~9 .. _.. , ::.f;;.'!Jso. _ -"ltoo .:a. 3 3(;7.-1.1, a.() rJ ,, 2. ~ 3o . :1' ... __ 4..'-' .. 5"1./ ~4 ;'{ 9tJ:... tt:. S'hlf/BJ_ ____ ;t?_,_r), __ _..2-_b ______ $';_?~ .. ~I ill,'?_ __ . 12. 1"/ _____ ?:£.._?-?_ "3.~-___ s-:"[ ___ k:;__ ?-, d-?';'1 _ ---~ b/:..-U 1 BJ. ~~;b · _?_ -·· J.j,.'?:: .. ~f:'o~ ~ ._ ~.., .. _'I'?. ___ .S:¥_ ... ,.., ____ ?? -· __ f:Jo _____ qfj ___ /c 1/2-1/SJ__ .11J'2-r)P_ • / .. ~ _ ••. !9:? _ 1~:-c~ ... --=------~----.~~---'1?-:: ___ n.._. _tg_ _____ -,~ · ... 'f?f_ q? __ (.c :l~.slti--J,J.Q~---Lk ___ ... __ J.s . .rL. ~~-7'P ____ ,, _ ~~. _ 2.;1_ ___ ;_:/_ ___ ~ 9 _____ s.f~·---_.ro ___ ?.'J __ . __ 1fl __ _J.J • .. , ... ""' ... ... ....... - _, ·~"' ---. -~ .. ~ .. • --..-... . -. ~-- ------__ .. ___ .. -... .... ---- • ... . _, ___ --'"" -_, __ ---···---·---....... -:. .... -.. ... ~ .... -·- ----y;.-.-. ·-~-.... "' -·-·- ' --.......... - ... ...... ---.... --··,- .... __ .......,. ... "'!, .. -... - -.. -.__._.._._ -.... ~-, .... -~ '' " . 'r' /. -----. --~~ --.. ~......_~~·--... _..._.,_,. .. ------.._.,..... -.---- ! I ~r 1 : ,. · · <rt -""" . i -. ., . .~r· "'.~ .. , t .. . l " 0 .... t • J ~' _!(.f\, ' ,. t t • o4• ~It) : ( r~-r/riJ~,J • I I j--Sw..s('· Se'rJ, f"c.ll J:.,·" ... ,.(er I I ---·---~ F ,('t' 1(tQtll. ' -·--..... • I J t . ;.e~zl't~ •• eo'!~""' ,l"eg,.,"" .~:~rf, .... NI .&!/~-, .cf.z,.-.12!',..- ://ft.,_ __ ~3,tlJ'! ____ f:':L. __ 21 ;_q!?_. _)6~.r:~! _·!3 ..... 23 .. 3_1. 3<:t. __ -{9 G3 ____ 7_1 'lo_ -J/J.<:k~_:_u,r_-:;_~---~f:J.~--.B_L"-. __ _;?,.5~.,-~ . .:::.1{ ~:l..·-·· "38. -·-·1g_ ~J' .. _ b.'t _?{:,~ 9/,.fb-:-: .:·~~~~~ . ?:-.'2. 2.1q .. -~'E~ '{_.to I? ~~ . ____ :_o .~:r _ ~~-_ i>.'! ·;z;A:. _ 1S,4:)V _ J. 7 .. 4os . '',f,;t) 10 . 11 1 !J ~ o -::.~ 3l:f _ s-'1 z-:. ·-qb - 9-, l ~;~ -~l II Cf7 >l ;(;-/~!:. .. -.:a~p.0!2 ____ ?. __ z,.,~~ _f_ll~l.;.J _ _!1. --~I_ ___ J.f:. ___ ~~ -.-3'£.__ s:.1. ___ ?.o ________ ';.l/ -· _'1~ ~-·j ?/-z_db3. ~~#ou _ . ~-1,3~Jt> ;~~c>cJ -· q ... 172... I? -;._.J _ .3'-f . !,;'*() bl .2f::.. q !'! /f::.:S~ 121.£?Q. ___ _?-?-_ .. " .i7Q _ ,.'J._(;1 b~O _2;0_ . ;..~-. 1.~ t.{ 3 !"!' ~ ( _. .2~ _ _. _i_f___ .. ~L-aok~ ___ 61.f.~tl-·-.3 'f ____ l{, .. ··-?.7 t.f7_C?· __ . _I~ ___ /!" __ .,.?-~--_ ~-"? _. _ }b,_ 4_'/-. ___ .. 5""¥.-. ___ 71/ "(;{ ':/ ___ ..!do,f::E ____ CJ./ . ~f:-,9.. __ L1rj.r)!?.rJ •• -::--·--~-_ . =-__ .. __ :$ ______ .s4> __ _ "'" -y(-;::;/qr../ 1~,~"0 ~~ 720 ~'l. .,," ,,_,_/_Cj_ __ ~-~-2.1.._ Lj~-----f~----~~ ?? ~ {q{~r.I_ ___ Sj.'-£.;_ --~2 :z._()o _. ~i':I..L .. -~-___ -:·---=----:: ___ -=--_ '{~ _ _ S'"j .,. 7~ :d.fkk.r 2.~~" ~-IJJ:c!'? ... _?..~3o"_ ___ _!_i_ __ ~'7--:?~ .3..~. ___ :f'J ______ ,t;p ___ /"3 _____ ~'2~--- --,J.r4itz.--~J~.~. __ .4_3:._ __ g9'~--2'ttfc£. _ !..:57. _ ~'?.-___ .ll_::r _____ s I_ ~.., ·--, ~--;2 r/dJ.te_ I..P..,fDO ___ -; 1. _ _:,eo ·-'~i~v__ '7. 1 ,_ 1., z2-. _ ~~ 3 'i' . ~'-7~ I ct/:ct..~!~-_fl,.?."~-. _;._f ___ .. _ t:r .. e'3 . --=----··· .... ·-· _. _ 1b 4_q 74 I &/.7f,,., 'i20a_ J _'t__ .. _ L/1'7 _ '',t?.tJP... s--1 _,3 __ '? _ __ '2.:~ _ .. "3 7 _ _ __ n_ -· __ e3 ___ __ q 8___ _ , ~J~o/o:; __ ~t_~r.i_ ----'-·-----~':f.Q._J:?11!!!._ ____ 1_3 ___ , :z.! _____ 3.'l.. __ 4 L __ s:_I ____ C._~ --·· 7_-, t:f_l __ ICJ_tJ ·-- -; .bJk:L.!.~---3-j_ ______ -~~~ __ . .z.!~~ ___ .Ll.._ __ L'i_. _ ~.X ___ ~2.-_."ff::, ______ f:,____ .:2 '-··-~--"' ?_ 't_'j --' t/-;:;/J,-,_ ;I,,Jfil) __ !~---]~8 __ 3_'/;t.oo ... 1';2-. : '" -23_. 30 -· ~-? '-li ft:,/:, sct 91 /:.. :1_[-:.J.':J_ .7/fSiJ _____ i~---__ t.f"L} ____ ~l:to. 12. ____ 1? .. ':-3 :.-a .... 33.. '3? J./'3 7" . b t?Jr.; _J5j6" tJ .!G. _ 3i.P. !{J1 3ov _ . . . 3S"' S2.. <6 3 7/2 .. '1_/~y_. ~ "J.IJil 10. 1/l"io. '"""0..-1 7 .. ·-.:J.. '-( $"l-J.{S )3 7 I . 7.'1 . q J t:t4J /c.. '?'! -I Cf ~--. (L s/t;Jbr ~b'1d_ 30 .72& t~ooO -33 &..) 8' I 97 / 'fi4f{bf-15jf"., __ . ~~= I,I'i>O _ ?~l{oo ~ "3. 3 I . "3{:, _ s-D b 2. 7) .. 83 .. :f!-: q'1 I /{:._rtft:t'(_....JtJ1 &rJ_0_ • .'Z-7_ 7/J. -;c>JI.foO IJ 1?. 2-$"_ 33 '/;, s-t:,. ______ ?_!_ ei>... .9'1 . . . $"'/.lj,fi;£ .. ~~ :(oO 2:-.S:. bf::l .. ~3ot~ r-.. . R -~-0 43 . 5'_9 .. _ .~9.-_ ... 3s-_ / ?/1?L7t?. to/too ~" b3"2.. 1?, bat? ... (3. . I? '3 ~ "S 1 6 3 .8~ --'?& S}.t.l/:zo ·-· J::1 !tJ.t2... __ ?-3 .S"q2.;. __ {~3r?.0 ...... 12-. 1¥ z ':l-. _ :2-Z _ . :s, s-.~0 68' ... a'_'? . '(P . I I tt/t1/~o ___ ."'{v'io ___ _"33. .. 2:'3&::, ~'/&to CJ IS'. '2.1 _:-__ q~ ~3 .· 7b __ t:?~~_,~ /~ ~ ...... ~ - ip4.l' l_J~:l.!'JL .. .I?---:--·-11 ?l?a _ b~ ,..,Q .z ~ .32 .. '}6, ____ '1_(:,_. _ ss> . . & ? .. ?.'7.. .. 9.1 _.. 'l~. _ L . th;/.?:.L ... 11'""-_./.'2--: .. -· '1:1=-.1131 f~_q_ . -~q -·'·-"~-1.3. 4":1 s-.':1.. 6' _ .. 8'2-.. 96~ 100 J' 8/Jo/7'2.!-'_I~!Jot'.._/..S ..•.... ¥&./<1._ ____ '1~;/_'!'?__. _Lt./ ___ Z'"l-.~!.-. -~' ·-f.lf ___ .• _f.S: ___ _21./. __ ..;J'f;;,_ __ . _ "Y~:=-~:~ ----·---------~.........,. __ ...._._ .. -----------· -.-·---.__. --......;;.-.. -· --~-----------..~---. ......._~. 2-5-50' ..... ·------. . _.. . -;-~ . -i . . . . r . --.. -· . ---. , , , -,-f·1;~~-" ·,• ' ?'a J,.· "l~~ ~· .{ . : : ,.., c.r I· l . s-~ • p . S'e.l • ru t »· • • , ,., 1 -" . ·I . -. . . . I ~ -,. . . . l I . -------4 _:-~=w. .... .E:J.~..., .... ' .. . . cQ .. t. : .;.·!(~. . . • -~.-...._ --... _F:.-~~. ilta.... -. • -· -.• -'--· • -.-_·/.:: .f. ... :&.Y :• lf.t;,_ ' I · • · t I !ni~ . j(c{r\ ~ ,c.,..-;~);,(.']_ ~'":'f~n. (t;f•f_itl.~'!l Le:z.,.,.., .• :o'!~""' . .-csl'ft...\ .e-Jf. .. ~. ou""-~ .qt-z,....,. A J-;t ....... ,'2sr..,- ~ ·.·._-. .. ---.. .. ~ 7 /rr:,f53 -___ 2/17CQ.._ ·--..!.E.: ----4+tq .. -9 ~3='0_ -'-'-. -:2."/ -... ?-::--.. ~':/. --"! I 7 7._ -_J' 5--~"" --. --/O:') --~f~k?.;--~ 1 ~"!0 --.-~--tL_!/L'=--·-11-:.i:; ~ _ 1$" · _2_! __ .-~.s: ___ ........ '-/"/. ___ -.._s:_._l, ·-···-!__/ ___ . ~q.'L.:.. __ :t~ __ ._I:(__;. ;:.!:.....• _ ~~!~h~:·_J,~k_f!v..._ _ -H _ . _Ll_f!~ . '7{7-'~ ·-7 ' 13 . ttf 27 JjS t"2--_.. ___ !'.,.__. -'1·'- -;j,!f)s~ _ ~~q~o .17 ~-~ 1 .£?'-"v 2 3 2-Z ;z 4tt s-q 7"/ . z-b qs-~.'1.1 7/71-21/s.r:.J~. 9.."?9_ . ...;..1 ... ___ .2.~:zo ~P-.1j ooD. ..~s---· .. ~t? --~f-__ .. ?.~ ___ fr ___ 7_:J.. __ f;, ·----~~ __ }r;o_· __...:... s-/el~~ .. ;,..1 t:y to" •.. :2.2.. . ;oo _ ~~~~Do _. r'} ..... 2 3 . 2:.~ .~ 9 "-' 'P "-, ;o .9.?:-____ t:J_'f · ~}tF/;c ____ l~$'-'9'"~ 3-k __ ~ ;o .. s, 110 _ 2 1 "2-b 1.!" 4 ~ ;~ G 'f_. . .E_3. -~;&::: ___ --'-'"'-~ ___ .. !. Ff:.!f.r,-__ --~4,.0~0 __ l:) ij_~S". .l.'1;1:P0 __ .•• ::. 2. 7 ~'l _ '3f __ ~4'__ . 5"1· __ .? 3_. fJ' ___ -~ 7_·_ . 1 . ~ l~s}_! ~---~~-lr~.TJ-____ :3_(. __ --~..3 ____ . .E.o L!__ ---=-_ --~ . ___ ;: ___ __:-_____ ::. . . __ q£ ______ q f ___ , rJ..g_ _..!.t~.E ___ , ;-/;:-_kc, ~~.l~O---. ~·. &,_'1.!:/_ __ s"' ooe)_-=-__ 1/ _____ ~s-. _ t!l ___ ;_L __ ... ~.i ... _ _6.4.-.. .. P? qq ! G./-JJ_7 .~3riq_f:?._ ...... 1..". --~:(3 _ .. ...!Jlf;~P" ... .!1.... __ Jf:, _.,. _ _!.2_ ____ '2-t./ ___ 30. ___ tj'j_ _,:z... ·-· g'} ···-. qg~ __ . . ~l• .. ·· ..• _.·',rt... __ · ___ -.-~3·()." .. ____ 7 ... -1,~10 . ,,~~!D .. ---~-':/ ___ '3_.~-"-Q_-~$ _____ fP."'------·"-~---_ cto ... _ .. &J.::J _ . .1~"--- ~--.·h.-~-~!"P.~ _Jj ___ ~J$g __ -Lr!r"/)~ ... J '---~r:_l-2;. __ ':1~----~P r 1-'3 .. ___ 'J! ·~., . '"" . , .~(~o.b.'?._ .;.gr-~D .• __ 2..P _____ l1 0d_O _ r"'.'lrS".f!..O. ~.9. .. 3'1 . ·--'-!.~ f' ... _ ?f? g¥ . q I . '1'? 1"0 t~~/$..:l_ __ ..!_'J;_7ofL~" --~;.ftO_"".S:~3"~-2-v -~-7..-.. ...JZ_.~J! . '~----_ i:L _ ___!f])__ 9"-. too ____ _ rh,J.s!J __ ?:-~'-o_o_ !li __ ~::.oe .... !?-~R.~"' _1-/ ..... 2o ·---~r _____ #:2.-:. ___ .. s-.9 ___ "Z .. ___ €'1f. ___ 'Jb __ .L""-·-__ . r/z~tls!:J-· _;3.rt~~iL ---'-'-~-------~!Jc)V __ .J.~f!P __ _t:$_~ !.2. .. -z·~-$:1 ___ "fs _/o:J_ __ -f'~ -·· _ q_~ --'-'? ... tL..-__ : q/C:_&_, __ ,~.?t!g __ .:?·7 _____ $.1:2:-____ Zfz,;~~~--2-"---.:..'8 --.3.i _ _.__. t./._'] ___ · -~{ ____ ?.j ___ C(__f_ --~f! ____ 'l d,tf/~')... _ . ~~"II>. ._f?,_2, ______ ~ '/.~0-..... ~i~~p ___ JL.. _/3 _ I h. _ . ~r_ .)_ '-/ f,o _ .. ?.? Cf -:J..~ • f!t' '!f. . . .• : 7/Gf,.,_ ___ 2..!j'd..'!. __ iL. ___ ~sz. _ -S2;~-3.C? __ :_ q:;. ·. _ Sb._ ~9. .,~ __ a'/.. ?1. .. '1' leo :. 7/IG(p ;_,_;'7fJI. /}? -. ~ 31{ lt!J, £,()0 . lq 1-.., 3'8 /"'2--~ ..f 7, 'g L Cf) . q ?' . . --·' ff/IIJ;,~~-t.4.;~or:. ~/. __ . ~e>.!. ..... ~'~ll _____ '"'-.'-' :J-'7 "3? so 5Ti _____ 6'1 -~-'2 .. 9-:;_. __ , ?/!.~/'"' 15jftJr) 2.~ s-t73 ~~"teo t? 2s-33 e~.; s-s &,f' ..,, 1r, et? 1 11/n/7.!/-... ~I!'V.. ... .3.b. ---__ Jt&'" Jf1.J."-"tJ __ 7o_ $J. .'18 _ t,C .. ?9.. YC. . .. _.Cf:l. .. _:t_-, /Ot::J_ ••• -~ {[til]s __ !~:1:9 ~ __ 2-?=-.. .. '--'·" . 5 "":,oq_ .t.J .. &:, • _. o; . f'j . 2. J .3 '{ ....... __ S':'l-. . . _? ~ _ CZ. ~. _ _ , b/.2:Prl.5; __ 35jSOV .. 3 .. ·-S.'l'l _ .. _£!:,000 S:. \ .. .LI .. J'8. ~:t----· 4?. __ --~-0 .. ___ .Jb ·-.. f;jJ ...... : 7/17/_?f' ... ?=1.1{00 : 8 . 1:130 .?'f., ?OQ. _/j ___ '-Z. 'S.~. S3 (:,' . . ... 7 -,__ ? S"" ...... 92-·-:; --_9'f!t· ___ _/ t r/:2.5[.1.5:. _l5;3~0 _ . .4:i._ _,.2:2 .~" .. -~-3~~ __ - _ -_. • -: ·---.... :=-..... --· 7 I .. :? I ..... _'1:$* lr:>() ,_; 4 "h:l ~-' s;.s:oo .. :2-"J . -:.~ {. 2-,3 </" --. ---·---·-1/3 --s:~ . ? ~ ··--9.3. •. r .. ~'" .. ,.f._··7i~-J:ir-~q __ J_L : ...... _;~r_ t~cocJ __ ~1 _ ll ... _ tS":-~.l ... -.3.'-f_. :./ i ·-. ~:2.. . ~ . ·--~9~ .. ,.. ~~ (:(q{7b:,_ .. -a.qJ7..f?_G__/~ .. 'lo I. ~1!'i.? --"'--·-_{, ··-· 9. I~.·. 1-, _ · .. 21./. _ 2..8. _ .!./.~ .... t/ ... ,. .S i{J/?t,. _ _Jt/1 f:Jo_f:L.P/---. -~~---~~Q.... __ :__ -.. ·---=---·--=--~--k.7... __ 2~ .. ___ }t_'i.~ _.J..~~ ·~--< tlr.:i./.J(;, __ Le7~p_q__.2-!f ____ !:l$..l/ . ~~Boq.__!_)._ ... -L./ ___ 4..1.._. __ ]j_ ___ t;) ______ s-... rt ......... ,~ ___ .. e./ ___ ,'!J'... ~~ 6-lJ -..,., _ _.-- . i <-{ ! _.. ,·,..J I "_i'!l. • • ..;".14.~1~' .. ., • .,. ! . ' · ..... ; i (\ ( t;J .. r/4~.,1 • • ,. <I! .. l I .;/:~/,-, -· ;: *'!~o __ ,.l/.2. __ .1:··.':)_ . _ 1,~7-_v :: J._:··/-;7 __ 1'1~?-tJ_O... ____ ::J ----t.I!Q. --':1 ':::: ~t? ~- . ~ . 7 -·· _q_ ..... -,:...,. ~'·-... --:/:;. ,_f_. ~.J-y I ! i· ---{ 1 • il!f"" ....... ~ .ce:t .... -.. Jzt,. ... .~SQ ... ~. ·~ !"~-.... I.: I I ql./ _____ 1?,.'/_ .g.7_··. 9'·--~ ~ _17 ______ 2_7 ____ '/"i _____ b'L_?~~--;:Q_ __ :ict .ll {J.;}/7 "7 .;-.~coo o, ~ Cf, '-: /.t" oao .2-. 4 ' 1 I ..... "!" • -• ·.1-~ .. -I ... "I 40 -':...--. .-·7 . 1_. i 'l 7/~?./77 ... 2-.11 ::oiJ. 2o ~.14 ;,-,1 ~ov '" t!t :;c( 1./4 -$'/ .. _70__ ~~ q~ .. 9'1 __ . ' r/to{:J? .. ~aa.:>_ 2/_ {,~b .2£:JOO_ 13 .. ! ~ _?-1 ___ .!&f _: --~~-__ Gf__ __ :z:f_ ..... ~~ _ '15'" __ _ ;/t7]-;;p ... t!f1 ~"cJ 21 ~qg _ ~b1 ~oo ~ : r r I ___ , 7 ~'1 ~ct ?e q c. i ;/i:f?..t_.,.lg:-q>J..~. ~-3-_ q:;e_ .. 4~.J!~~ __ If, I~ z.t; 'II !"*/_ '-7 _.:zi_ ttl ___ 'J? ____ _ 7/roltt. ~~ 7_00 ____ 1j ______ ~~~L __ t:{},.rti.~ _((:, __ ~I __ 2_7. ____ 3;./ -~'-1..0_ ... l./ '".?. ___ ;&:, ______ 7'2. ___ ~/-·----~. ~J;j_]~Q~!.~_'fp_D ___ 3 J . ~f?IO;_ _ .391 JoD .... ~---_ 1 ( . jk__ .. 2..3 ·-----3:J.. .. _':}3 ___ LS":---. :%~ .. ---'f3 I 7/~Ja..p_ .i'i1 .'f?~.-~----2'Z. __ .,?..=t1 .~~~ • .2-._1 --~.3 __ ~_?__;;-'f 'i__l _____ 'df!t ___ ~, po _5'_7.__tr. !"/v./2J .. _Ls-,~, ~~~-__ ;2_t:r ---· ''-'~-_?;_q'fp _ _g_ ___ Jo._ .L'/ __ ,q _ --~-~~----3_/_ .. -~ J -··-' _?. ·--9P. _ ' · ~~~3l3_l_.!..J~~D -:J-5 . ]2./ .!5~7~()~----'?:4 ___ .3_2_!/b_$".!) ._1?.1 ___ ?0 __ :?/ __ ·--~~-·----t:f(... ___ } 'C ;/~lLti .. .!::/'2.1 '::a:) ____ ( ______ r:;J~.--!f;~oo -·-r? _2~ __ 3,.L__ 3q . Lfi._ __ s;? __ . ~-? _ .9? _ '-f 7 :;fJ7lSL _,.._,,bop __ ro .. IS"~ '"3or) 7 to :..1 2.? __ "3_& '79 {;'f e-b 1o~ li:~ ------··--------------· ·----------------. -··----· -------------- ----=------·-- . ----·---· -·--.,_ -·-·-----------·-------+ --·------~ ---~--"-~ ----- -.. -~'""!'---------------......--~·-----.,.---------·" --·-------·-·----------· -----·-·--------.. _ ... ~-·· -----·~-·-¥-<Of----·--... -~-~-"'· . .. - -·----· . ·------....... :-~ ---......-... -~-. ?--5. ~-~ !:::· ____ ._ • ' (' ~ ... ;....._ -·~,1 --~ ----· -·--··-... ~----.. ·~ .. _, __ _ -~ ...... ;-·-· ........ ... •4<-••• -·~--·-------~-------.-.... -------·--~,~~~ 'j \~ ---..--~--··-· """!----------....... ... --..... ---. -~----~ -----------------~----~-~--~----- ... XHIBIT E 2. Water Use and Qua 1 ity C01111ent 6_. (J?,:., E-2-28, para. 4) ' -Provide data on the contr-ibution of organic matter to suspended sediment concentrations . at each sampling station in the Susitna River on a season a 1 basis. Response Suspended organic matter is technically measured as particulate organic car- bon (POC) in samples from aquatic environments. Total organic carbon (TOC) in aquatic environments is composed of both particulate (POC) and dissolved ( D.OC) fractions. The parti cu 1 ate (POC) fraction of (TOC) in -1 otic en vi ron- ments such as the Susitna River may be expected to vary from 10-15 percent of the TOC (Wetzel, 1975). Measurements of TOC in the Susitna River range from 1 to 10 mg/1 (U.S. Geological Survey data summary by R&M Consultants, Inc., 1982. Task 3-Hydrology, Water Quality Annual Report}, therefore POC estimat~s in the Susitna River potentially range from at least 0.1 to 1.5 mg/1. Two measurements of POC exist for the Susitna River at Gold Creek (see attached data summary from Susitna Hydro Aquatic Studies Phase II -Basic Data Report Volume 4, Appendix 4-0-6). There were on 23 June, 1981 (POG = . 0.9 ing/1) and 30 March, 1982 (POC = 0.1 mg/lL, No additional measurements of POC in the Susitna River main channel exist to our knowledge. Additional measurements of POC concentration exist for selected .s laughs. These data are also presented on the attached data summary from Susitna Hydro Aquatic . Studies Phase II -Basic Data Repm·t. 2~6-1 . .. '" References -· '"• (l) R&\1 Consultants, Inc. 1982(1 . Task 3 -Hydrology.. Water Quality Annual Report. Anchorage, Alaska. (2) Alaska· Department of Fish and Game, 1983. Susitna Hydr·o Aquatic Studies Phase II Basic Data Report. Volum~· ~:L' Aquatic Habitat and Instream Flow Studies, 1982, Appendix 4-D-6, Page 4-D-78. (3) Wetzel, R. G. 1975. Limnology_. W. B. Saunders, Co .. , Philadelphia. 743 pp. 2-6-2 ·, • ' J SUSITNA HYDRO AQUATIC STUDIES PHASE I I BAS I C DATA REPORT Volume 4. Instream and 1982. Aquatic Habitat Flow Studies, A pfe,l'l.ilicU ~-;r -by- ALASKA DEPARTMENT OF FISH AND CAME Susitna Hydro Aquatic Studies 2207 Spenard Road An~horage, Alaska 99503 1983 Z-t,-3 ,. .... ·.." 1. . . : .. ~~·.-: "' .. ~ ~ . : ~ · .. . ' J:. ' \::} ' ORAF! ADFG01/:t06 Appendix Table 4-D-6. Sunmary of provh.ional Wi)tcr quality data for sloughs BA. 9, 16B: 19, 21, and maJostem Susitna River at Gold· Creek, collfJcted by ADF&G and USGS in June, July, and s,eptember, 1981, aild in January and February, 1982 •. Parameter physfcal ~nd field Parametersb *Water Temperature oc Air Temperature Of' Streamflow (discharge) ch *Speci!ic CQnductance (field) umho /em June July September January March June July September January March June July September January March June July September January March Slough 8A 15~5 11.2 3.5 o.s o.s 21.0 16.0 8.0 6.4 551o0 2.8 140 117 135 193 142 Slough 9 14.2 10.9 5 .. 6 o.s 0.5 20.1 14.0 7.5 2.9 714.0 1.5 14!) 12'• 113 121 143 Slough 168 14.0 9.0 4.8 1.5 2.0 15.5 --- 0.7 503.0 0.3 71 72 64 59 . 59 Slough 19 s.s 9.8 1.8 2.0 1..0 3.0 --- 0.2 o~o <0.1 l't6 127 150 148 129 .. s•ough 21 10.7 11.3 2.'• 1.5 1.5 23.0 -11.0 3.7 142.0 0.43 226 130 205 221 196 aSloughs and matnstem Susitna River were sampled o~ 2 or 3 consecutive days in each month (except January) as. follows. Susitna River at 8A 9 16B 19 21 Gold Creek - June . 25 2'• 23 23 24 23 July 21 21 22 22 22 21 Septemb~r 30. 30 28 29 29 28 January 20 10 20 20 20· 20 March 31 30 30 30 30 30 bParameters f•iorked with an * are averages of transect pofnt measurements (see methods). -·· indic~te~ data not available. Susitna River· at Gold Creek 12. '• 10.5 0.4 o.o o.o ~,780.0 42,500.0 . ·a,s4o.o 1,520.0 .. -- 119 172 260 266 "'·~···· .. ,.f.j.p ... .._.~ •. . . '"'' ' ... • • ' .. DRAFT ADFG0t/t06 Appendix Table lt·D-6 (Continued). ---.. Susttna Rtver Slough Slough Slough Slough S1ough at Parameter Date 8A 9 168 19 21 Gold Creek - Nutrients -Cont 1d Phosphorus, total June o!os 0.01 0.01 0.01 c!0.01 0.12 mg/1 P July 0.27 o.lta 0.14 0.01 0 .• 38 0.02 September .( 0.01 <0.01 < 0.01 . (.0.01 <0.01 0.02 January £0.01 <0 .. 01 ~0 .. 01 0.02 0.01 0.01 March 0.01 0.01 0.01 0.01 0.01 0.01 -- Phosphorus, total June Oo2 <: 0.1 <0.1 <o.1 <0.1 0.4 mg/1 P04 July o.e 1.5 0.4 <0 .. 1 1.2 0 .. 1· September 0.1 January 0.1 <0.1 0.1 March <. Oo 1 <0.1 <0.1 <. 0.1 <.0.1 --- L • 0 Phosphorus, dfssolved June 0.03 0.01 0.01 0.01 ~0.01 0.02 ' mg/1 p July 0.01 -'0.01 <0.01 (.0.01 <.0.01. " 0 .• 01 'l September 0.()1 ~0.01 < 0.01 !(0.01 <0.0'1 0.01 00 January < 0.01 <0.01 <. o. 01 0.02 0.04 0.01 March < 0.01 ,0.01 < 0.01 <.0.01 -<.0.01 0.01 Carbon,. dissolved organic June 1 .. 9 2.1 1.4 1.3 2.0 2.8 ~ .• g/1 c July 13.0 9.0 3.3 6.2 6.0 18.0 September 1.5 1.7 1.9 2.2 1.1 January 1.4 1.3 0.5 0.7 0!5 March 1.4 0.7 0.7 1.4 1. 'j 1.6 1 . . I \Citrbon, total suspended org~ntcaJ June 0.2 0.2 o·.2 : 0.9l ...;.......mg/1 .... e----~ .......... ~ ... !. .. "" ........ '. ~ .... .»·J ~., ............... July 0.2 0.5 o.o 0.0 0.3 t•o .. ' September 0.1 0.1 0.1 0.1 0.1 ~--i January o.o o.o . o.o o.o o.o ---.. March o.o o.o o.o 0.1 0.1 0 1; .~·=l;J .N Trace Metals ' Arsenic, total June 1 1 1 2 2 G ~ ug/1 At July 2 5 4 1· 5 1 September 2 1 1 " 2 I. --- I Janul.!ry 2 2 1 2 2 ,Y\ March 1 1 2 1 2 2 I . .•. "'.~ .. · ·~ ', ' EXHIBIT E ·2. Water Use and Qua 1 ity .,.., •-~ -Colilent ·7 (p. £-2-28, para. 41" The discussion presented here suggests the existence of data (10/mg/L, 2o20 mg/L, 5690 mg/L) beyond that given in Table E.2.20. Provide these data. Response .9 The additional data for suspended. sediment concentrations referred to on p. E-2-28, para. 4, comes from data gathered and reported by the U.S. Geological Survey 1982 Water Quality Annual Report (December 1982) by R & M Consultants, Inc.; Tables 2.4 through 2.11. Pertinent sections. of this · • report are enc 1 osed • • .. '2-7:-1 s3/U1 Agency: Station: Elevation: Laboratory Parameters (1)(3) Ammonia Nitrogen organic Nitrogen Kje 1 dahl Nitro9en Nitrate Nitrogen N f Ni tr.i tO Nitrogen To.ta l Ni tro.gen "1J ' Ortho-Phosphate Total Phosphorus rJ· TABLE 2.ta WATER QUALITY DATA SUMMARY SUSITNA RIVER R&H CONSULTANTS, INC. 'Vrr'CANVON 1980 .. 1982 ,900 FT. .27/.26/.13 ~09/.09/.13 .63/.85/.34 .22/.08/.34 .79/.C,5/.47 .26/.17/.47 .19/.30/-.09/.30/- -/.01/--/.01/- • 92/. 85/. '17 .39/.17/.47 .05/.02/-.03/.02/- .ta9/.07/-.03/.02/- ( \ .16/.19/.13 6/2/1 9/ta/1 • 49/ .l&O/. 34 8/3/1 'J/3/1 .60/.52/.47 9/4/1 9/bJ/1 • , •• ,. 30/-5/1/0 10/4/1 -/~01/-0/l/0 9/ta/1 .61/.52/.lt7 9/3/1 9/3/1 .04/.02/-,, 2/2/0 9/4/1 .1lf/.05/-6/2/0 10/-ft/1 S3/t •... '. . 'f ',.. .... Agency: Station: Elevation: lab~ ra tory Pa rame ~&.£! ( 1 ) ( 3) (Continued) Alkalinity, as caco) Chemical Oxygen Oamand Chloride Conductivity, umhos/cm@ 25°C True Color~ Color Units ua rdness, as caco 3 (It) Sui fate Total Oissotved Solids _ _,.,.. ·~ .... ..., ~ tf.eUl..!HJ.e~Jl!!~!!.~.§a tJ da. .J1 Turbidity, NTU Uranium Rad!.oac.tivity, Gross Alpha, pCi/1 Total Organic Carbon Total Jnor9anic Carbon Organic. Chem5ca Is £ndrin. ti.ndane TABLE 2.4 ~ continued WATER QUALITY DATA SUMMARY SUSITNA RIVER R&M CONSULTANTS,. INC. VEE CANYON 1980 -1982 19()0 flf. Maximum 60/66,/- 39/13/8 11/18/4.5 150/190/- 175/30/15 76/122/40 9/18/4 170/157/100 1150/1lt/93 720/2.5/25 -1-1- -1-1- -1-1- -l-1- ·. Minimum 40/66/- 8/6/8 3/16/li.5 150/190/- 5/5/15 49/78/40 2/11/11 38/115/100 25/0.6/93 8.7/.35/25 -I-I- -I-I- -/2/- -/2/- -1-1- -1-1- Summer/Winter/Break-Up Mean '-'6166/- 20/10/8 6.7/17.5/4.5 150/190/- 70/15/15 58/103/40 6/14/4 98/141/10() 3·58/6.0/93 1.56/1.3/25 -l-1- 11.6 .± o. 6/ 10.3 ± ().6/- •/2/- -121- -1-1-.. , .. , .. Number or Detectable . Values 4/1/0 8/4/1 7/4/1 1/1/0 9/4/1 10/4/1 10/4/1 10/4/1 '10/lf/1 14/4/1 0/0/0 1/1/0 0/1/0 0/l/0 Q/0/0 0/0/0 .rota 1 ·Number of Obseryations lf/1/0 8/4/1 10/4/1 . . 'l/1/0 9/4/1 10/4/'J 10/4/1 10/4/1 )0/4/1 14/lf/1 5/2/0 1/1/0 0/1/0 0/1/0 3/1/0 3/l/0 . N f N lV N ' ·~ ' ·~ . s3/u3 Agency: stat ioo: Elevation: La bora tory Pa I'B'!leters ( 1) ( 3) (Continued) Methoxychlor Toxaphene 2, '4-D 2, 4, 5-JP s i 1 vex Elements (Dissolved) . Ag, s i lvor AI. Aluminum As, Arsenic Au, Gqld B, Bo:ron Ba, Barium I.H, Bismuth ca. Calcium Cd, Cadmium Co, Cobalt Cr, Chro~ium cu, Copper .fe, I ron .uglr, rcu ry .. '""'~· \ .. . TABLE 2.4 -continued WATER QUALITY DATA SUM~tARV SUS ITNA RIVER . R&M CONSULTANTS, INC. VEE CANYON 1980 -1982 1900 fT. Summer/Winter/Break-Up· Maximum Minimum Mean -1-1--1-1--I-I- -I-I-.. , .. , .. -1-1- -1-1--I-I-_,_, ... -I-I--I-I-_,_, .. -;.~_,_ -I-I--I-I- 2.2/.18/-1.6/. "'/(6/-l.li/. 18/- -I-I--I-I-_,_,.,. -1-1--I-I--1-/- -1-l--I-I--l-1• .12/-/-.07/-1-.10/-/- .19/-/• .19/-/-• 19/-/- 23/41/13 13/25/13 l!i/33/13 -l-1--1-1--I-I- -l-1--I-I--1-1- -1-1--1-1--1-l- -1-1-... ,_,_ -I-I- ''· 0/.37 I. 08 .05/~37/.08 1.1/. 37/.06 -I-/--l-1--1-1- .-'"{"· Number of Detectable Values 0/0/0 0/0/0 0/0/(J 0/0/0 0/0/0 3/1/0 0/0/0 0/0/0' 0/0/0 7/0/0 1/0/0 10/4/1 0/0/0 0/0/0 0/0/0 0/0/0 9/1/1 0/0/0 . ' Total Number or Observi' t ions 3/1/0 3/1/0. 3/1/0 . 3/1/0 10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 10/4/1 10/3/1 10/3/1 10/3/1 10/3/l 10/3/j 10/3/l i ~) ;..r y· .·)a "' r "' w rJ \ ~. ' .V\. Agency: Station: Elevation: Laboratory Paramelars (1) (3) (Continued) K, Potassium Mg, Magnesium r1n, Manganese · Mo 6 Molybdenum Na, Sodium N i, Nickel Pb, Lead Pt, PI a ti nw~ Sb, Antimony Sa, Selenium Si.6 Si I i cor; ·· Sn, Tin Sr, Stroot iwn r 1. Tl tan him wp· lungs ten v, Vanadium Zn, Zinc· tr •.. Zi rcooium TABLE 2.4 .., continued. WATER QUALI TV DATA 15UMt.fARY . SUS ITNA f\1 VE'R R&M CONSULTANTS, INC. VEE CANYON ~980 -1982 1900 FT. Summer/Wioter/Br~~k-Up Maximum Mfoamum Mean 5.0/9.0/1.6 1. 7/2.0/1.6 2.3/5.2/1.6 3.4/7.6/1.7 1.2/3.8/1.7 2.4/5.2/1.7 • 10/-/-.071-1-.09/-1- -1-1--1-1--1-1- 5.1/12.0/2.0 2.4/6.3/2.0 3.4/8.0/2.0 -1-1--1-1-.. , ... , .. -I-I--I-I-.. ,_,_ -1-1-. -I-I-_,.,..,_ -1-1--1-1--1-1- -I-I--I-I--1-1.- 6.9/5.0/1.7 2.0/3.7/1.7 3.5/4.,/1.7 -1-1--1-1--1,-1- .08/.13/-.05/.06/-.06/.10/- .24/-/;., ,13/-/oa • 18/-/- -/.•U--/.4/--/.4/-_, .. ,_ -I-I-_,_,_ .01/-1-.071-1-.01/-1-.. ,_,_ .., .... ,_ -I-I- Number of Detectable -'~"":W..ru!__ 9/3/l 10/li/1 2/0/0 0/0/0 1~/4/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 i0/4/1 0/0/0 9/3/0 3/f)/0 0/l/0 0/0/0 1/0/0 0/0/0 · ·Tots 1 Number or Observations 10/4/1 1Q/4/1 10/3/0 10/3/0 10/lf/1 10/3/1 10/3./1 10/3/1 10/3/1 10/3/1 10/4./1 10/3/1 10/l/1 l0/3/l 10/3/1· 10/3/1 10/3/1 10/3/J N , I N ~ (\j \ ~ \ ·" 63/U!) ( 1 ) (2) ( 3 ) (It) : 't Table values are mg/t unless noted otherwhe. ' All values for free C02 determined. from nomograph on P~ 297-of Standard M&thod, 14th edition. . Samples for all parameters except c~hemJcal oxygen demand# dfssolved and suspended. sol ids, and turbidity were f~ ltered. Hardness calculated by .R&M personne11, :~.,:_,_.· . . ,. . l -::.-.:... 1\J • 1\J l1l N ' ~ ' 'tJ ... sl/u26 Agency: Stat ion: Elevation: field Parameters (1) Di$solved Oxygen Percent Saturation pH, pH Ooltli Cb:t.ductivity, umhos/cm@ 25°C :r~mpo ra tu re, °C Free Carbon Dioxide (2) AlkaOini.ty, as Caco 3 Settteable Solids, ml/1 Laboratory Parameters ( 1 )( 3) Ammonia N c tr:ngen Organic Ni trogeo 'Kjeldaht Nlttogan Nitrate Nitrogen Ni tr•f te urtrogen Tot.a 1· tfi trogen Ortho-.Phospha te Total Phosphorus . ' TABLE 2.5 WATER Q~ALITY DATA SUMMARY . SUSITNA RIVER R&:M CONSULTANTS, INC. GOLO CREEK 1290 ~ l962 b/6.5 fl. . Summer/Win~er/Break-Up Maximum 12.8/11J.1/11.5 110/101/102 7.8/7.8/6.7 163/2119/106 12.8/0.8/10.5 8.6/20/- 64/74/- 0.6/-1- .21/.52/.08 .'lts/.81/.34 . 4.8/.99/.35 .B6/.:11t/- -1-1- 5 .6~/1. 3IJ/(L 35 .10/.02/- .fll/.02/.06 Minimum 8.6/13 .. 3/11.2 81/100/101 6.6/1.1/6.4 75/84/105 6.6/0.0/10.3 2.1/3.2/- 25/46/- 0.1/-/- .02/.32/.08 .05/.34/.27 .06/.66/.34 • Hi/. 12/- "'/-:/-: .~5/.66/.34 .01/.02/- .01/.01/.08 Mean 11.2/13.8/11. 4 101/101/102 7.3/7.4/6.5 128/179/~06 9"'6/0.2/10.4 4.4/10.7/- 44/65/- 0.4/•/- .09/.li2/.08 ·''9/.51J/.31 .87/.82/.35 .32/.21/• -1-1- 1.22/1.00/.35 .04/.02/- .12/.02/.08 Numbe.r or Detectable ---·~ruJaes 10/3/2 9/3/2 6/3/2 15/5/2 15/5/2 5/3/0 5/3/0 7/3/2 11/2/1 10/3/2 11/3/2 10/3/0 0/0/0 H/4/2 3/l/0 10/2/1 Tota I Number or Obseryat Ions 10/3/2 ·9/3/2 8/3/2 15/5/2 15/5/2 5/3/0 5/3/0 7/3/2 '1li/4/2 10/3/2 tiJ/5/2 16/5/2 14/fl/2 11/4/2 16/l/2 16/5/2 s3/u27 Agency: Station: Elevation: tabo ra tory Pa rama t~Ws ( 1 ) ( 3) (Continued) A l ka I J n i ty. as Ca CO 3 N Chemical oxygen Demand I N Chloride .en Conductivity. umhosjcm @ 25°C True. Co ! or~ Co I or Un i t s Ua rdness. as GaC03(11) SUlfate Total Dissolved Solids TS S -~a.l.....Su&pandod ... EEo.Udtil' Turbidity, NTU N ~ ~ ' . OQ Uranium RadioactivitY~ Gross Alpha. pCi/1 Total Organic Carbon Total loorgan~c Carbon Organic Chemicals Endrin Lindane TABLE 2.5 -continued WATER QUALIIY DATA SUMMARY SUStlNA RIVER R&H CONSULTANTS. INC. GOLD CREEK 1980 -1982 676.5 fT. :''. Summer/Ui nter/Break-Up Maximum 36/57/- 211/16/12 14/29/10 37/165/- 110/40/15 97/121/IU 14.8/17/6 103/188/90 1255/8/56 728/1.2/19 .. , .. ,_ 5.5/2.0/- 3.8/1.0/- 12/11/- f1i nl mum 28/57/- 1.3/2/fJ 4/9/6 . 37/165/- 5/10/10 31/67/IJl 1.0/9. 5/5 63/100/87 56/1/49 14/0.3/15 .. ,_,_ 2.6/2.0/- 1. 4/1.0/- 8.6/4/• -I-I- ~J-1- Mean 32/57/- 10.9/6.4/10 1. 3/19/8 37/165/- 50/20/10 50/87/43 6.7/13.6/5.5 66/135/89 268/6/53 199/0.8/17 -I-I- li.~/2.0/- 23/1.0/- 10. 5/ll/- -I-I- -I-I- Number or Detectable yatues 2/1/0 14/5/2 10/5/2 2/1/0 7/l/2 11/5/2 16/5/2 16/5/2 16/5/2 22/3/2 0/0/0 2/1/0 8/l/0 8/1/0 0/0/0 0/0/0 Total Number. or .. .Observations 2/1/0 16/5/2 12/5/2 2/1/0 7/3/2 ll/5/2 .. 16/5/2 1~/5/2 16!5/2 22/3/2: 4/2/0 2/1/0 8/1/0 8/1/0 3/1/0 3/1/0 S3/U28 Agency: Station: Elevation: lai:mra tory Pa ramete£.§ ( 1 ) ( 3) (Continued) 1\l Methoxychior I 1\J Toxaphene ....... 2, '•-D 2, 4, 5-TP Si I vex · Etements ( D i s sa I ved ) Ag, S.i I ver AI, Aluminum As, Arsenic Au, Gold 8, Boron oa, Barium 8 i, Bismuth \'1 Ca, Calcium ( . Cd, Cadmiwn ~· Co, Cobalt ' cr, Chromium -Q cu, Copper fe, J roo '~ :~ Ug, Nercury ~~~%i~ .. ~ .. • ..• ·.·. _.,.- TAatE 2.5 • continued WATER QUALITY DATA SUMMARY .SU~ I TNA RIVER R&M CONSULTANTS, fNC. . GOLD CREEK 1980 -1982 676.5 fT. SummerLHinterl8reak•Ui! Maximum Min!mum Mean .. , .. ,_ _,_,., ., .. ,_ -l-1--I-I--1-1- -I-I--1-1--I-I- -I-I--I-I--I-I- -:/-/--I-I--1-1- .70/.18/-.08/.18/-.39/.18/ .. -I-I--I-I--1-1- -1-1--1-1--I-I- -1-1--I-I--1-1- .11/.05/.07 .06/.05/.05 .09/.05/.06 .19/.07/ .. .19/.07/-.19/.07/- 33. 5/311.4/14 10/21/14 16.0/26.5/14 -/~/--l-l--I-I-.. ,_,.,. -1-1--1-1- -I-!--I-I--1-1- -1-1--I-I--1-1- 2.3/.35/.07 .07/.35/.07 .77/.35/.07 -1-1--I-I--I-I- ,t: Numb.er of Detectable .,...., ~a lues 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 2/1/0 0/0/0 .0/0/0 0/0/0 7/1/2 1/1/0 12/~/2 0/0/0 0/0/0 0/0/0 0/0/0 6/1/1 0/0/0 ... ~~:4 ·lit4 · .Tota I Number of .. Observations 3/1/0 3/1/0 3/1/0 3/1/0 7/3/2 6/3/2 7/3/2 7/3/2 7/3/2 7/l/2 7/3/2 12/5/2 7/3/2 7/3/2 7/3/2 7/3/2 7/3/2 113/2 ' N I N co (\.) \ ~· l .......... ·.C) .. S3/U29 Agency: Station: Elevation: Laboratory Parameters (1) (3) (Continued) K. Potassium Mg, Magnel)ium Mn, Manganese Mo, MGiybdenum Na, Sodium Ni, Nickel Pb, Lead Pt, Plat inurn Sb, Antimony s~. Selenium Si, s i I icon So, Tin sr, Strontium T J' Ti tan.ium w, Tungsten v, Vanadium Zn, Zlnc Zr, Z.i r.con i urn ~-~' ~ { . f ·~~!'?! ·~~·· •· . -·· TABLE 2.5 -continued WATER QUALITY DATA SUMMARY SUSITNA RIVER R&M CONSU~TANTS, INC. GOLD CREEK 1980 -1982 676.5 Summer/Winter/Break-Up Maximum Minimum Mean 2.0/2.7/1.9 0.9/1.2/1.8 1.6/2.1/1.9 3.1/10.0/2.0 1. 2/3.2/2.0 2.2/4.9/2.0 -I-I--I-I--1-1 .. -1-1--l-1-~I-I- 10.2/21.1/4.1 2.8/7.1J/3.9 5. 1/ H • 1/lt • 0 -I-!--1·-1--I-I- -1-1--1-!--I-/- -J-1--I-I--1-1- -I-I--I-I--/•/no -I-I--1-1--I-I- 5.9/5.0/2.5 2.6/3.9/2.1J 3.5/4.4/2.5 -I-I--I-I--I-I- .09/.19/.07 ~06/.10/.06 .07/.13/.07 .14/-/-.11/-/-.13/-/- -I-I-.,jl-1--I-I- -!-I-.... , ... ,_ -I-I- -1-1--I-I--I-I- -I-I--I-I--I-I- ( ~~ Number of Detectable vaiues 12/ij/2 12/5/2 0/0/0 0/0/0 12/5/2 0/0/0 0/0/0 0/0/0 0/0/.0 0/0/0 7/3/2 0/0/0 4/3/2 2/0/0 0/0/0 0/0/0 0/0/0 0/0/0 .. ·"' .- Total . Number or Observa.t ions 12/4/2 12/5/2 7/3/2. 7/3/2 12/5/2 7/3/2 7/3/2 7/3/2 7/3/2 7/3/2. 7/3/2 7/3/2 7/3/2 7/3/2 7/3/2 7/3/2 7/3/2 7/3/2 . '.• \•" (l) Tab~e, values are mg/1 unless noted otherwise. (~) .All ·Values forrree C02 determlned.rrom nomograph on p. 297 of Standard Method, 14th edition. (3) Samples for all parameters except chemfcal oxygen demand. ~Hssolved and suspended solids, and turbidity ~ere filtered. (tl) Hardness cat cu 111 ted by R&M pe rsonne t. • i ~.J. ..... '": .. ~ ~···.·: ......... . . '.. ' ·>l ·• i . ·····::.: .. ' . . N I -w 0 N ' ~ ' --..... ~ s3/U22 f i e I d Pa ra meters ·( 1 ) Dissolved Oxygen Agency: Station: £lavation: Percent Saturation pli, pH Units Conductivity, umhos/cm @ 25°C Tempera t.u ra, oc Free Carbon Dioxide A I ka I i n i ty, as caco 3 Settleable Solids, ml/1 laboratory Parameters ( 1) Ammonia Nitrogen Organic Nitrogen l<je I dahl Nitrogen tl it rate Nitrogen Nitrite nitrogen . To,ta I Nitrogen ortho-Phosphate Total Phosphorus (l~ TABLE 2.6 WATER QUALITY DATA SUMMARY SUSITNA RIVER U.S. GEOLOGICAL SURVEY NR. DENALI 1957 -1982 21&1&0 FT. SummerlHi nterLBreak-UI! Maximum Minimum Mean -1-1--I-I--1-1- -I-I--1-1--1-1- 7.9/7.6/7.2 7r2/7.1/7.2 7.6/7.1&/7.2 226/1&67/121& 121/351/121& 161/400/121& 10.5/0.0/6.5 0.0/0.0/1.5 5.5/0.0/4.0 5.2/25/5.8 1. 5/5.5/5.8 3.1/12.9/5.8 75/161/47 1&2/112/47 55/136/IH _,_, .. -I-I--I-I- -I-I--!-!--I-I- -I-I--!-I--I-I- -I-I--I-I--1-1- .09/.07/.05 0.0/0.0/.05 .03/.04/.05 -1-1--I-I--!-I- -1-1--I-I--I-I- -1-1--1-1--1-1- -1-1--1-1--1-1- \ Number· of Total Detectable Number ar Values ObservatIons 0/0/0 0/0/0 0/0/0 0/0/0 11/3/1 11/3/1 18/3/1 18/3/1 1&7/3/6 147/3/6 11/3/1 11/3/1 11/3/1 11/3/1 0/0/0 0/0/0 0/0/0 Q/0/0 0/0/0 0/0/0. 0/0/0 0/0/0 11/3/1 11/3/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 i ') I ··-*' s3/u23 Laboratory Parameters ( 1) (ContinuiJd) ., A II< a I i n i ty, as ca CO ., ... Chemical oxygen Demand Chloride Conduc,tivity, umhos/cm@ 25°C True Color, Color Units . tta r·dness, as CaC03 Sulfate Total Dissolved Solids IS'S >-(lg,~ ... t.l.,..~t.t~PWJdellLSoJ..i.dl N ' ~ ' Turbidity, NTU Uranium ·RadioactiVity~ _Gross Alpha, . pCi/1 Total Organic Carbon Total lnorganir: carbon Organ~c Chemicals '\ 'tnd~in Li.ndane fMaxjmym l -1-1- -1-1- 11/30/4.2 -/-/- 10/5/30 87/181/50 31/39/9.2 -I-/- (U§2.ijJ.al1190 .... ,., -l-1- -1-1- -1-1- -1-1- -1-l- -1-1- -1-1- TABLE 2.6 -continued WATER QUALITY DAlA SUMMARY SUS I TNA RIVER •ttj .. :.· ·-·~· ...... . . : ,' · .... ·, • Minimum Mean -1-1- -1-1- 1.5/19/4.2 -/-/- 0/0/30 52/135/50 13/36/9.2 -/-/- 85/5/102 -1-l- -1-1- -1-1- -1-1-_,_, .. .. , .. ,_ -1-1- -1-1- -1-1- 4.7/23.3/4.2 -/-1- 5/5/30 67/157/50 17/37/9.2 -/-/- 1163/7/542 .·-1-1-:-. -1-1- -1-1- -1-1 .. -1-1- .. , .. ,_ -1-1- Number of De~ectable Va'l ues 0/0/0 D/0/0 11/3/1 0/0!0 14/3/1 11/3/1 11/3/1 . 0/0/0 45/2/8 0/0/0 0/0/0 ti/0/0 0/0/0 0/0/0 0/0/0 0/0/0 . ·~ ' Tota 1 . Number o.f Observations 0/0/0 0/0/0 11/3/1 0/0/0 14/3/1 11/3/1 11/3/1 0/0/0 '•5/2/8 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 . N I w N N. l ~ ' """'' ,~~ A.gency: Station: Elevet ion: Laboratory Paramet-ers. ( 1) (Continued) MethoxycllJ or Toxaph«)ne 2, 11-D 2, 4 ... 5-TP Si I vex Elements (Oissolved) Ag, .Silver At,, Aluminum As, Arsenic Au,. GOld B, Boron Ba, Barium Bi, Bismuth ca, ~alcium Cd, Cadmium co, Coba.l t Cr, Chromium cu, copper fe.,. lron Ug, Mercury ~·re: '·•, ,. ·'~7-':·R TABLE 2.6 -cor,tinued WATER QUALITY DATA SUMMARY SUSITNA R(:VER U.S. GEOLOGICAL SURVEY NR. DENALI 1957 -1982 24ll0 fT. Summer/Winter/Break-Up Ma)(irnum Minimum Mean -1-1--I-I--I-I- -1-1--1-1--I-I- -1-1--I-I--1-1- -1-1--I-I--I-I- -I-I--I-I--I-I- -1-1--I-I--I-I- -1-1--1-1--1-1- -1-1--1-1--l-1- -1-1--I-I--l-1- -1--1-_, .. ,_ -1-l- -l-,,1--I-I--1-1- 29/51/17 17/lll/17 21/46/17 -I-I--I-I--I-I- -1-1-.. , .. ,_' -1-1- -I-I--I-I--1-1- -I-I--1-1-..;.,_,_ -1-1--1-1--l-1- -I-I--I-I-.. , .. ,_ { ' ·~-" Number·· Of Detectable . values·· '' 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 11/3/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 n:~·ta 1 NUrnb'({r Of Obsery'a t ions 0/0(0 0/0/0 0/0/0 0/0/,0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 11/l/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0. ,· ') ~ . .,i~fi. 1\.) I w w N ' ~ • .......... v, s3/u25 Agency: Station: Elevation: Labora to!"y: Parameters (1) (Continued) . K, Potassium Mg, Magnesium Mn., Manganese Mo., Molybdenum Na, Sodium N i, Nickel Pb, Lead Pt, PI' at inurn so, Antimony Se" Selenium s i .. Si I icon sn, Tin sr .. Stroot I urn T f, Titanium w, Tungsten v .. Vanadium Zn» Zinc Zr, Zirconium f.;k. ... ~ ·. lUiL .I TABLE 2.6 .. continued WATER QYALITY DATA SUMMARY SUS I TNA RIVER. U.S. GEOLOGICAL SURVEY NR• DENALI 1957 -~982 214110 FT. --------------~s=umme r/.Wi nter/Braak-Up Maximum Minimum . Mean 3.6/6.6/2.3 1. 3/6.3/2.3 2.6/6.5/2.3 6 .lt/16/1. 9 1 • 7/6. 8/l. 9 3.5/10.3/1.9 -I-I--1-1--1-1- -1-1--1-1--l-1- 10/23/3.6 2~1/15/3.6 4.3/Hh 7/3.6 -1-l--l-1-~t-1- -1-1--I-I .. •/0:/u .. , ... ,_ _,_,, -1"'1- -1-1--I-I--I-I-.. , ... ,_ -I-I--l-1- -I-I--I· I--I-I- -1-l--I-I--1-1- -1-1--1-1--I-I- -I-I--I-I--I-I- -1-1--I-I--I-I- -1-1-... , .. , ... -I-I- -1-l--/•/u .. , ... ,_ -/-I--I-I--I-I- l ~ Table va I ues are mg/1 un I ess noted otherwise. Nuf.1ber of Detectable Values 11/3/1 ll/3/1 0/0/0 0/0/0 11/3/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 .O/OiO 0/Q/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 Total .Number of Observations 11/3/1 11/3/1 0/0/0 0/0/0 11/3/1 '0/0/0 0/0/0 0/0jO 0/0/0 0/0/0 0/0/0 '· 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 . - IV I w ~ rJ ( ·~. ' ......... "" $3/tH8 Agency: stat!on: · E I eva t ion; field Parameters ( 1 ) Dissolved Oxygen Percent Saturation pH, pH Units Conductivity, umhos/cm 0 25°C Temperature, oc free Carbon Dioxide A.l ka.l in; ty, as CaCO 3 Settleable So I ids, ml/1 La bora tory Parameters ( 1) Ammonia Nitrogen Organic Nitrogen Kjetdahl Nitrogen NitritE'! Nitrogen Totat Nitrogen Ortho-Phosphate Total Phosphorus ' .· (t C .. ' TARLE 2.7 o· WATER QUALI TV DATA S'UMMARY SUSI.TNA RIVER c ' U.S. GEOLOGICAL SURVEY ' . VEE CANYON 1962 • 1982 1900 FT. summerL~InterLBreak-ua Number of ., Tota.l Detectable Number «.lf r:taximum Minimum ,M,ean ~alues. ObservatiO!l.§ ,..-;· .. ... , .. ,_ ... , .. ,_ -I-I-0/0/0 otoJ6<_,·· . ':1 -I-I--I-I-_,_, ... 0/0/0 0/0/0 r ~.1/-/7.6 7.2/•/7.6 7.7/-/7.6 9/0/1 9/0/,1 187/250/136 91/250/114 146/250/125 20/1/2• 20/1/2 13.0/0.1/7.0 1.0/-0.1/2.0 7.9/0.0/1&.3 49/4/ll '"' 1&9/4/4 I 6.8/-/2.2 0.7/ ... /2.2 2.6/ .. /2.2 9/0tr; 9/0/1 59/-/44 39/-/44 52/-/41& 9/0/1 9/0/l- .. , .. ,_ -l-1--1-1-0/0/0 0/0/0 . -1-1--I-I--1-1-0/0/0 '01,0/0 ·. -I-I--I-I--1-l-0/0/0 0/0/0 -I-I--l-1--1-1-0/0/0 0/0/0 . ,} .88/-/.16 .00/-/.16 .20/-/.16 9/0/1 9/0(i -1-1--I-I--I-I-0/0/0 0/0/0 -I-I--1-1-~I-I-0/0/0 0/0/0 -I-I--1-l--1-1-0/0/0 0/0/0 -1-1--I-I--I-I-G/0/0 0/0tO N I w U1 . --rss- N .1 ,.1 • • "·,:.....,. ~. S3/U19 Agency: Station: Elevation: laboratory Parameters ( 1) (Continued) A Ur,a I in i ty, as caco3 Chemical Oxygen Demand Chloride Conductivity, umhos/cm @ 25°C " True Color, Color Units lla rdness, as caco 3 Sui fate To.ta I Pissntved So I Ids ~...tlJJ.!l.I.IJ!!!f!!UoJJ.d.&.J~ Turbidity, tHO Uranium ·RadioactiVIty, Gross Alpha, pci/1 To'laf Organic carbon I Jcotne l.norganic carbon !/ /organic chemicals // ll ,_. Endrin I,. Lindane ' TABL£ 2.7 -continued WATER QUALITY DATA SUMMARY SUS llNA RIVER U.s. G[Q!OGICAL SURVEY VEE CANYON 1962 -·1982 1900 fT. . ~~t~'~ · •. · · •.~ · ,<. · ·Li ... ::~:. -~!-.... '~ . ··-. . Summer/Winter/Break-Up Maximum Minimum Mean -1-1--I-I--I-I- -1-1--1-1--l-1- 9.2/-/7.Ji 2.1/-/7.4 5.3/-/7.4 _, .. , .. -1-1--l-1- 40/-/30 5/-/30 10/-/30 76/-/54 ll2/-/54 63/-/54 18/-/12 7.5/-/12 14/-/12 -1-l--1-1--1-1- @g;lq/726 lf&/14/661 799/14/694 -1-1--1-1--1-l-.. , .. , .. -l-1--I-I- -1-1--:1-1--1-1- -1-1--I-I--1-1- -1-1-... , .. , ... -1-1- _,_, ... -I-I--I-I- -I-I--I-I--1-l- Number or Detectabl9 va IL!.ruL- 0/0/0 0/0/0 0/0/0. 8/0/1 9/0/1 9/0/1 0/0/0 36/1/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 '0/0/0 0/0/0 · Totar-- NUrnber of pbservations 0/0/0 0/0/0 9/0/1 " 0/0/0 8/0/1 9/0/1 9/0/1 0/0/0 36/1/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 N • w ~0'\ (') \ .~ l ' ·c.Q [·. :~~ s3/U20 Agency: Stat ion: Elevation: La bora tory Parameters ( 1) (continued) Methoxychlor Toxaphene 2, 4-0 2, It, 5-1'P Si I vex Elements (O!§.solvedl Ag, s i aver AI, Aluminum . As, Arsenic Au, Gold B, Boron Da, Barium B i, Bismuth Ca, Calcium Cd, Cadmium Co, Cobalt G!\, Chromium cu, Copper c:'e, Iron IJr· Mercury L . ·~, TABLE 2. ·r .. coot i nued WATER QUAUTY DATA ::JUMMARY SUS ITNA RIVER , U.s. GEOLOGICAL SURVEY VEE CANYON 1962 1982 1900 FT. Summer/Winter/Break-Up Maximum Minimum Mean -1-1-.. , .. ,_ .. , .. ,_ ~1-.1--1-1--I-I-.. , .. , .. -1-1--/-I- -1-1--!-1--1-1- -I-I--/-I--I-I- -1-1--1-1--1-l- -1-1--I-I--1-1- -1-1--I-I-.. , .. , .. _,_, ... -I-I--I-I- -1-1--/~/--1-1- -1-1--1-1--l-1- 27/-/17 llt/··/17 21/-/17 -I-I--1-1-~/-1- -I-I--I-I--I-I- -I-I--1-l-... , .. ,_ -I-I--I-I--I-I- -1-1--1-1--1-l'- -1-1-.. , .. , .. -1-1- ( Number of Oa tect.a b I e· vatues 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 9/0/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 Total Number or Observations 0/0/0 0/0/0 0/0/0' 0/0/0 0/0/0 0/0/0 0/0/0 u/O/O 0/0/0 0/0{0 0/0/0 9/0/1 0/0/0 0/fJ/0 G/0/0 fJ/0/C. 0/0/lJ 0/0/0 S3/Ut!1 . TABLE 2.7 -Continued WATER QUALITY .DATA SUMMARY SUSITNA RIVER Ayency: U~ S. GEOLOGI.CAL SURVEY Station: E I BV<lt i; ion: VEE CANYON 1.962 • 19t}2 1900 fT. . Summer/Winter/Break-Up Maximum Minimum Mean laboratory Parameters (1) ') (Continued) &< .. Potassium 7.3/-/2.8 1. lt/-/2. 8 3.5/-/2.8 11g, Magnesium l&' '•1-/i!. 4 l. 1/-/2 ... 2.7/-/2.4 Hn.., Manganese -l-1--I-I--1-1- · Mo, f"lo t ybdenum -I-/--I-I-... , .. ,_ Na. Sodium 6.3/-/la.S 2.1/-/ta.a a.a!-l••.a N i, Nickel -1-/--1-1--I-I- Pb, Lead -I-I--1-l ... _,_, .. Pt, Plat inurn -I-I--1-l--1-1- Sb, Antimony -1-1--I-I--1-:-1- Se, Selenium -1-1--1-1--I-I- Si-S.i I icon -1-1--l-1--I-I- sn, Tin -!-I--1-1-1-1- sr. Stroot ium -1-1--1-1--1:..1- T i • Titanium .., .. , ... -I-I--1-1- w, Tungsten -t-1--I-I--I-I- v. Vanadhun -I-I--1-1--I-I- Zn, Zinc -1-1--I-I--I-I- Zr, Zirconium -1-1-_,_, .. -1'-1- · :: '· 1. TabJe va J ues are mg/1 unless noted Otherwise. Number of Oa.tectab I e Values 9/0/1 9/,0/1 0/0/0 0/0/0 9/0/1 0/0/0 0/0/0 0/0/0 .0/0/0 0/0/0 Q/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 Tota 1 Numbat' of Obse rya t Ions 9/0/1 9/0/1 0/0/0 0/0/0 9/0/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0, 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 ~ .; \I ·'· N s3/Ullt Agency: Station: Elevation: ' field Parameters p) Dissolved Oxygen Percent SaturatAon PH. pH Units · a Conductivity. umhos/cm @ 25°C w ·co Temperature. °C {'J ' -t-1 l f') ~ ~.-·~·\' f rea ca rbon 0 3 md de A~kal inity •. as caco3 Settleabe·a '$alTos. ml/1 La bora torl' Parameters ( ll Ammonia Nitrogen Organic Nitrogen Kjeldaht Nitrogen Nitrat(}' Nitrogen Nitrfte Nitrogen Total Ni tragen Ortho-Phosphate Tc)ta I Phosphorus (~. , "d\o.l t~~~. . 'f.m· ~ . . ::=.-'-.... ~ -• .-,,~ -. ~ TABLE 2.8 ,, WATER QUA~ITY OATA SUMMARY . SUSITNA RIVER U.S. GEOLOGICAL SURVEY GOLD CREEK 1949 -1982 676.5 fT. Maximum Minimum 13.3/15.8/111.1 9.5/11.0/14.1 110/110/111 83/77/111 7.9/8.1/6.0 6.5/7.0/6.5 227/300/147 90/164/70 14.0/3.5/6.0 0.4/0.0/1.0 20/16/24 1.1/1.2/2.9 87/88/47 23/49/25 -I-I--l-1- , r·. .33/.08/.13 •. 01/.03/. 13 .39/.44/.07 .10/.16/.07 ... , .. ,_ -I-I-. .36/.32/.69 .02/.05/.05 ... , ... , ... -l·l- .60/.66/-.25/.44/- .03/.03/.04 • 00/ .·01/. Ota .23/.05/.09 .02/.01/.09 '•' > Number o.f To tar-Detectable Numbe'r or Valces · Observations Nean 11.9/13.9/14.1 9/5/1' 9/5/1 102/97/111 6/5/l 6/5/1 7.3/7.5/7.0 66/31/7 66/31/7 147/250/97 66/32/7 66/32/7 9.2/0.1/3.1 39/12/8 3'9/1~/8 5.8/6.2/10.8 57/26/6 57/26/6 51/72/33 62/30/7 62/30(7 -1.-1-0/0/Q· 0/0/0 .16/.06/.13 7/5/1 7/6/1' .27/.29/.07 7/5/1 7/5/1 -I-I-0/0/0 0/0/0 .12/.16/.24 55/25/7 55/25/7 -I-I-0/0/0 0/0/0 .50/.51/-5/6/0 5/6/0 • ()1/. 02/. 04 11/4/1 12/lJ/1 .13/.03/.09 7/6/1 7/6/1 "' tv I w \0 ·-:!s N ' .,J c "' """"'""" S3/Ul5 TABLE:~.8 '!." C()ntioued WATER QUALITY DATA SUMMARY SUSITNA RIVER \9~~oy: · '··u.s·. GEOLO~t.~Al .SURVEY} ·Station; :.·:-.l:if~·llv~~GOL().CRE 6<-4-9110· ....... 198~ ~~yac;ionr, ... ·:!. 676.1.6 fT ..... ~ ... ~ . . •'-•'· ~ -·····--.,. ~ ' ~aboratory Parameters ( 1) (Continued) A I ka I i n i ty, as CaCOJ Chemical oxygen Demand Chloride Conc:luctivi ty, umhos/cm @ 25°C True Color. Color Units lla rdness, as caco 3 Sui fate Total Dissolved So I ids ~ s~~~~e~d=d·. ~~.!..~ ~~ ~ .......................... Turbidity, NTU Orao itm~. -.Radioactivity. Cross Afpha • pCi/1 Tota I Organic Carbon To.~al ~norgan!c carbon Orgar~~c Chemicals Eodrin Lindane '., •" 45/85/27 -1-1- 15/35/7.6 1Jt2/289/115 115/10/50 107/120/56 31/38/11 140/171J/90 ~1 ~~~~~21 1~oT.7h/29 .331~1- 1.8/-/-. . 2.6/5.5/10.0 -1-J- -1-l- -1-1- Minimum 35/82/27 -l-1- 1.4/6.2/1.8 114/266/B!t 0/0/5 35/60/30 1.0/12/5.0 55/133/53 7/1/120 42/.10/29 .12/-/- 0.5/-/- 1.4/1.1/1~8 _,_,..., -1-1- ·-1-l- Mean 40/83/27 _,.,,_ 5.5/22/4.4 128/279/100 10/5/25 6lti98l39 16.1/21/7.6 93/154/66 740/12/621 126/.40/29 .25/-l- 1.3/-/- 2.0/2.6/5.9 -1-l- -1-1- -I-I- Nllmller or D!:!tectabte va·t ues 5/3/1 0/0/0 6&./28/7 5/6/2 55/22/6 62/28/7 61/28/6 li3/18/6 ' 5._6/10/13 ~ 5/21;1 3/0/0 3/0/0 2/3/2· 0/0/0 0/0/0 0/0/0 I ,, • _'_·r~ ... TP:ta I tlum!Jer of Observations. 5/3/1 0/0/0 62/28/7 5/6/2 55/22/6 62/28/7 62/28/7 Jtl/18/6 56/.·'·~l;lJ 5/2/1 3/0/0 3/0/0 2/3/2 0/0/0 0/0/0 0/0/0·, ~-- N I ~ ~q N ' "1-1 ' N r s3/u16 Agency: Sl;a t ion; Eaevatinn: L:lboratory Parameters ( 1) (Continued) Methoxychlor' Toxaphene 2. 4-0 2, 4, 5-TP Si I vex Etemeots {Dissolved) Ag, Silver AI, AlUminum As, Arsenic AU, Gold B, Boron Ba, Barium Bi, Bismuth Ca, Calcium Cd, cadmium. Co, Cobalt cr, Ch rflriR i tAm cu, Copper fe,. I ron tlg-1 Mercury (" ·-· '', > TABLE 2.6 -continued WATER qUALITY DATA SUMMARY SJj)S,JNA RIVER U. S. GEOLCG I CAL SURVEY' GOLD CREEK 1949 -1982 676~5 rr. Summer/Winter/Bre~k-Up Maximum Minimum Mean · -I-/--I-I--1-1- -l--1--I-I-.. , .. ,_ -I-I--I-I--1-1- -1-1--1·-1--1-1- .000/.001/-.000/.001/-.000/.001/- .. , .. ,_ -1-l--l-1- .002/.002/-· .001/.002/-• 001/ •. 002/- -I-I--1-1--1-l- -I-I--I-I-.. , .. , .. .031/.()60/-.000/.060/-o010/.060/• -I-I-.. , .. ,_ -I-I- 37/39/16 11/24/9.9 20/30/13 .001/-/-~001/-/-.001/-/- .000/.001/-.000/.001/-, .000/.001/- .010/-/-.000/-/-.005/-/- .005/.001/-.003/.001/-• OOIA/. 00 1/- -.14/.015/-.04/.015/-.10/.015/- .0002/-/-.0000/-/-.0001/-/- ~-• ~! . ,; ........ II'~,..* • f • ' '' Number of. Detectable Values 0/0/0 0/0/0' 0/0/0 0/0/0 2/1/0 0/0/0 3/1/0 0/0/0 0/0/ .. 3/l/0 0/0/0 62/26/7 2/0/0 1/1/0 2/0/0 3/1/0 6i1/0 2/0/0 Total Numbar of Observatfons. 0/0/0 0/0/0 0/0/0 0/0/0 ; ·' ~ 3/1/0 0/0/0 : 3/1/0 0/0/0 0/0/0 3/l/0 0/0/0 62/26/7 3/1/0 3/1//0 3/1;/0 3/J/(J 6/1/0 3/1/0 ·:·· ~~·-.-~· .. ·~.·~-= ,_4~~---~~··~ .. -=·~:~· w-~-~~~~~i;··~.·.~.:~-~:-.·.-.~-=~·-.··-~~-~~.: .. ~· s· :·~-~~ .. · . , ·, wo\M 41 . -. f,.it.lt . ·1 .. J1. ·• Ularc ~ •=i'. ·, '\i.l # -~. •""· ~-· . ·'' . ··: · .: · ~1. ft · ' '.; ~ ~·J :, , :; .-· IJ.) 'I . -*' • . . · · · •• · .~ · '" · • , n · f . ' ' . . . . . • • v ('1 (. ....! ' r-t· . ..,., s3/u17 ~~gency: Station: Elevation: laboratory Parameters (1) (Coot i nued) K. Potassium Mg.~ Magnes i urn Mn, Manganese Mo, Molybdenum Na, Sodium N.i, Nickel P.b, Lead Pt. PI at i num Sb, A•lt imony Se, Selenium $ i, s i I icon so, Tin Sr. Strontium T i ,. T i tan i urn w. Tuogstem V, V~nadilJm Zn, Zinc ~r~ Zirconium TABLE 2.8 ... continued WATER QUAUTV DATA SUt-iMARV SUSITNA RIVER ~o~o g~~~~G~~~~ ~u~~~~ 676.5 FT. Maximum IJ.IJ/5.0/1.7 7.8/8.3/2.8 .18/.003/- -/-/- 6,.5/17/3.8 .• 000/.001/- .001/.003/- -1-1- -l-1-. .001/-/- -/-/- -1-1- -1-1- ·-1-1- -1-1"' -1-1- .0liU-1- -1-l- Summ9 r /WInter /8 rei'l k-Up Mlnfmua Msao 1.0/1.2/1.2 1.2/3.6/0.3 .00/.003/- -l-/- 2.LI/5.2/2.8 • 000/.001/- .000/.003/- -1-1- -1-1- .000/-/- -/-/- -1-1- -1-1- -1-1- -1-1- -1-l- .006/-1- -1-l- 2.lj/2.l/~.4 3.2/5.4/1.7 .036/.003/- -l-/- Ll.l/11.3/3.1 .000/.001/ .. .000/.003/- .. , ... ,_ -1-1- .000/-l-.. ,.,_ -1-1- -1-1- -1-1- -1-l-._,_,_ .Ot0/""1- -1-1- Number of Detectable VaJ.Y,ss 52/22/5 62/26/7 7/1/0 0/0/0 52/22/5 2/1/0 3/1/0 0/0/0 0/0/0 3/0/0 0/0/0 0/0/0. 0/0iO 0/0/0 ·r!J/0/0 0/0/0 3/0/0 0/0/0 To tar--" Number of o!lservatlons 52/22/5 62/26/7 7/1/0 0/0/0 52/22/5 3/1/0 3/1/0 0/0/0 0/0/0 3/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 3/1/0 0/0/0 s3/U10 Agency: Station: Elevation: field Parameter§ ( 1) Dissolved oxygen Percent Saturation pti 6 pH Units Conductivity* umhos/cm 8 25°C Te.mperature, °C Free Carbon Dioxide Atka I inity. as caco;3 SettleabJe SoJids, ml/l Laboratory Parameter..§ {1) Ammonia tllitrogen ·Drganic tti trogen Kjeldahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen ToUI Ni.trogen Ortho-.Phosphate Totat Phosphorus TABLE. ~.9 WATER QUALITY DATA SUMMARY SUS41NA R IV.ER U.S. GEOlOGtCAL SURVEY SUNSHtNC 1971 -1982 270 ~·1'. ------------·~--------------~summer/Winter/Break-Up Maximum 13.3/13.8/- 107/914/- 7.7/7.3/~ 170/242/- 12.1)/0.0/9~2 3.9/-/- 43/71/- -1-1- .37/.06/- l. 10/.42/- -/-/- -1-1- -1-1- 2.30/.72/- .0~/.04/­ .33/:.01/- Minimum 10.6/13.0/- 99/90/- 7.1/6.2/- 61/225/- 3.8/0.0/9.2 2.1/-/- 25/63/- -l-1- .06/.03/- .19/.18/- -1-1- -1 .. 1- -1-/- .71/.42/- • Of)/~ Of!/- .05/.01/- Mean 12.0/13.4/ .. 103/'~2/- 7.4/6.9/ .. 115/232/- 8.6/0 .• 0/9.2 3.1/-/- 36/66/ .. -1-1- .19/.05/"" .63/.29/- -/-/- -1-1- -1-1- 1.17/.61/- • 02/.0ltJ- .15/.01/- Number of Detectable Values 5/3/0. 2./3/0 7/3/0 9/3/0 9/3/1 3/0/Q 6/2/0 0/0/0 6/3/0 6/3/0 0/0/0 0/0/0 0/0/0 5/4/0 3/1/0 6/2/0 .. Tota I Numlle r ·. t:i f Observations 5/3/0 2/3/0 7/3/0 9/3/0 9/3/1 3/0/0 6/2/0 0/0/0 6/ll/0 6/3/0 0/0/0 0/0/0 0/0/0 5/11/0 3/l/0 . 6/4/0 . ~. ~···h·. . . . t~~·1 liiiJll s3/U1.1 Agency: Station: E I eva t ion: Laboratory Parameters ( 1) (Continued) Alkalinity. as caco 3 Chemical Oxygen Oer11and Chl.oride C9nd~ctlvity, Umhos/cm@ 25°C True Color, Color Units Uardness. as CaC03 su.l fate Tdtat Dissolved Sol1ds fi.JttdJiu.spendad...So.IJ..dsL Turbidity, NTU Uranium . RadioactiVity, Gross Alpha, pCi/1 Total Organic Carbon Totai Inorganic Carbon Organic Chemicals Endrin Lindane TABLE 2.9 • c~qtlnued ·-,- WATER. QUALITY DATA SUMMARY SUS ITNA RIVER ' . U.S. GEOLOGICAL SURVEY SUNSifiNE 1971 • 1982 270 FT. . summer/Winter/Break-Up Maximum 148/141- -l-1- 7.3/21/- 129/233/- 100/0/- 72/96/- 13/18/- 101/141/- 3510/2/508 300/1.3/- -/-/- -I-I- 3.2/0.8/- -/-/- -l-l- -1-1- M i n I mum . Mean 28/63/.., -/-/- 2.2/16/- 82/222/- 8/0/- 33/87/-. 3/16/- 51&/130/- 288/1/508 160/.20/- -/-/- -I-I- 2.9/0.4/- -/-/- -1-1- -1-1- 41/70/- 3.7/18/- 115/229/- 44/0/- 50/91/- 10i17/- 70/134/- 1485/2/508 233/.67/-,, -l-1- -l-1- 3.0/0.6/- -1-1- -1-1- -1-1- Number or Detectable ,'values 6/3/0 0/0/0 ;9/4/0 6/3/0 3/1/0 9/4/0 9/4/0 8/4/0 ·5/2/1 6/l/0 0/.0/0 0/0/0 2/2/0 .fJ/0/0 0/0/0 0/0/0 ~· ' , Total Number or obse'rya t l ons ,, 6/3/0 0/0/0 9/4/0 6/3/0 ·, 3/1/0 9/4/0 9/4/0 6/4/0 5/2/i 6/3/0 0/0/0 0/0/0 2/2/0 0/0/0 0/0/0 0/0/0 ·s3/u12 Agency: Stat ion: Elevation: laboratorY Parameters ( 1) ' (Continued) Me thoxych I or N Toxaphene I ~ 2, 4-0 ~ 2, 4, 5-TP Si lvex Elements (Dissolved) .Ag, Silver AI, Aluminum As, Arsonic Au, Gold B, Boron Ba, Barium Bi, Bismuth . Ca, Calcium Cd, Cadmium. N Co, Cobalt ' cr, Chromium ..iJ cu. Copper ' Fe, 1 ron N . " UP Mercury (. .. , , \, ./ -rrr1' :· ~ TABLE 2.9 -continued WATER QUAL.ITV DATA SUMMARY SUSITNA RIVER U.S. GEOLOGICAL SURVEY SUNSHINE 1971 -1982 . 270 fT. Summar /Win te r/8 rea k-:-UP Maximum Minimum Mean -I-I--1-1--1-J- .. , ... ,_ -1-l--I-I- -1-1--I-I--I-I- -1-1--1-l--I-I- .000/.000/-.000/.000/-.000/.000/- -I-I--1-1--l-1- .003/.001/-.002/.001/-.002/.001/- -!-/--I-I--1-1- -I-I--.f-1--I-!- .07G/.040/-.000/.040/-.032/.040/- .. , .. ,.~ -1-l--l-1- 23/31/-11/28/-16/29/- .000/-/-.000/-/-• 000/-/- .000/-/-.000/-/-.000/-/- .020/.0'fO/-.000/.010/-.010/.010/· .005/.004/-.003/.004/-• OOit/.. 004/- • 250/. 01&0/-.060/.010/-.160/.025/- .0001/.0001/-.0000/.0001/-.0001/.0001/- Number of Detectable Values 0/0/0 0/0/0 0/0/0 0/0/0 2/1./0 0/0/0 3/1/0 0/ib/0 0/0/0 3/1/0 0/0/0 9/11/0 1/0/0 . 1/0/0 3/1/0 3/1/0 5/2/0 2/1/0 '' ) . ~ Total Number.J)f Ob se rvE.I"~'on s 0/0/0 0/0/0 . - 0/0/0 0/0/0 3/1/0 0/0/0 3/l/0 0/0/Q_ 0/0/0 3/1/0 0/0/0 9/4/0 3/1/0 3/1/0 3/1/0 3/1/0 5/2/0 3/1/0 ') ;} I ,-.. ··· .. ri'rr · · ,.,,. .. •,~·~·l...Y.",i'""~ ~·~ . ..': \ N I ·~ '"'"' N " ~ ( .N ''"1J S3/U13 Agency: ~;.at ion: ~:: 1 eva t eon: Laboratory Parameters ( 1) (Continued) K, Potassium Mg,. Magnesium Mn, Manganese Mo, Molybdenum Na, Sodium N i, :N icke 1 Pb, Lead Pt, Ptat-lnum Sb, Antimony Se, Selenium s i' $ i I icon sn, Tin sr, Strontium Ti, Titanium w, Tungsten v. vanadium ZH, Zinc Zr, Zi rconlum .. ~ .... . . -- ~ .. ' TABLE 2.9 -continued WATER QUALITY DATA SUMMARY SUS llNA R I VE(l US. GEOLOGICAL SURVEY SUNSHINE 1971 -1982 270 FT. Summer/Winter/Break-Up Maximum Minimum Mean 2.8/2.1/-1. l/1. 6/-1.5/1.9/- 3.5/~.5/-l.lf/4. 1/-'2.3/lf.l/- .020/.00lf/-.000/.000/-.009/.002/-_,_, .. -1-1--1-1- ... 4/'!1/-1.9/10/-2.8/11/- .002/.002/-.000/.002/-.001/.002/- .001/.008/ .. .000/.008/-.000/.008/-_,_,_, -1-1--1·1- -I-I--1-1--1·1- .000/ .. 000/-.000/.000/-.OQ0/.000/- -1-l-·1-1--1-l .. -I-I· -I-I--l-1- -1-1-.. , .. ,_ -I-I- -I-/--I·· I--I-I- -I-I-... , .. ,_ -I-I- -1-1--1-1--l-1- .020/.030/-.006/.030/-.012/.030/- -1-l--I-I--1-1- Number of Detectable Values 9/~/0 9/lf/0 5/2/0 0/0/0 9/4/0 3/l/0 3/1/0 0/0/0 0/0/0 2/1/0 ,0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 3/1/0 0/0/0 '~ •.··~ ~ I .· ·' ··bia:J. . b1' ·tJ· ~'·: ,J~.· . . . ,. .. , • I . ~'a.; _, . ·~~ ::· , :t .... ~··~ r. :.~ •••• ••• ••• ' ~ ., ' . ' _. . . . .. ~ Total Number of Observations 9/~/0 9/lf/0 5/2/0 0/0/0 9/4/0 3/1/0 3/1/0 0/0/0 0/0/0 3/1/0 . 0/0/fJ 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 3/1/0 C/0/0 ',,', s3/u6 Agency: C)tation: Elevation: laboratory· Parameters ( 1) Ammonia N!trogen Organic Nitrogen Kjetdahl Nitrog3n Nitrate Nitrogen Nitrite Nitrogen totat Nitrogen Ortho-Phosphate Total Phosphorus \ f'fio. ~ ... .,_ TABLE 2.10 WATER QUALITY DATA SUMMARY SUSITNA RIVER U.S. GEOLOGICAL SURVEY SUSITNA 1955 -1982 40 FT. .19/.09/.21 .00/.00/.01 1.5/.46/.70 .16/.00/.16 -1-1--1-1- .00/.19/-.00/.19/- ~J-1--1-1- 1. 70/.99/1.20 .26/.24/.67 .02/-/.02 .0.'?./-1 .02 1.10/.38/.29 .03/.00/.01 ( \ • Oltf. 04/.08 12/10/3 12/10/3 .60/.27/.43 12/9/2 12/9/2 _,_, ... 0/0/0 0/0/0 .00/.19/0 1/1/0 1/1/0 -1-1-0/0/0 .0/0/0 .72/.55/.92 2.2/17/4 22/17/4 .02/-/.02 l/0/1 1/2/1 .40/.05/.14 23/20/7 .23/20/7 1\.) I . . ~ ......, r) () ' .t ...J. f N'' oO 1·" ,.._ ,- s3/u7 Agency: Stat ion: Elevation: tabora tory_Pa rameters C 1) (Continued) A I ka I i ni ty, as c~co3 Chemical oxygen Demand Chloride Conductivity, umhos/cm @. 25°C True Color, Color· Units Hardness, as caco3 * SUlfate Total. Dissolved Solids LTOW«SU&panded .. SoJJd8H Turbidity, NTU Uranium ·Rad ioactivi typ G"ross A I pha .. pCi/1 Totar Organic Carbon To.ta I Jnorga"ic Carbon orgaofc ~hemicaJs End rio Lindane TABlE 2.10-cootlnued WAtER QUALITY OATA.SUMMARV SUSlHfA RIVER U.S. GEOLOGICAL SURV.EY SUSiTNA 1955 -.1982 l.O FT. summertWinter/Break-Up Maximum Ml~tmum Meaa .. 9/76/34 lt6/63/27 '-47/71/30 -I-I-... ,_,_ -1-l- 6.7/18/4.6 1.2/5. 7/3.1 2.7/13/3.7 133/222/10~ 114/208/94 122/217/99 10/0/-10/0/-10/0/- 66/96/48 44/73/36 54/85/39 20.7/20/10 1.0/15/3.7 13.2/17.3/6.7 114/139/71 56/109/51 13/123/65 2367/12/663 158/2/257 71J5/5/li61 790/3.0/160 21/1.0/25 233/1.5/69 -1-1--1-1--1-1- -I-I-_,_, ... • I _,_. ·- 11.0/4.0/9.1 2.7/0.4/3.8 4~4/1.6/6.0 -I-I-... , .. ,_ -1-1- -l-1-.. ,_,_ -1-1- .... ,_,_ -1-1--1-l- ,,-., ' Number or Detectable Values 3/4/2 0/0/0 24/2~/7 ft/4/2 2/2/0 25/21/7 25/21/7 24/20/7 21./19/5 18/13/5 0/0/0 0/0/0 "1/9/4 0/0/0 0/0/0 0/0/0 \ ·, \ .... Total Numbet' of Obse rva t i o!l§. •• >0 • 3/4/2 0/0/0 24/21/7 lf/l&/2 14/4/0 25/21/7 25/21/7 2lt/20/7 21/19/5 18/13/5 0/0/0 0/0/0 7/9/4 0/0/0 7/10/4 7/10/ft tt p . N I ~ CX) N ' ,J I lN () &3/U6 Agency: Stat ion: Elevation: Laboratory Parameters (1) (Continued) Methoxychlor ·TGxaphene 2, 4-0 2, 4, 5-TP Si svex Elements (Oissolvedl Ag, Si.lver AI, Aeuminum As, Arseni4".: AU, Gold 8, ao.~on Ba, Barium Bi., Bismuth · Ca, C&lcillm L<l ,, Cadmium Co, cobait Cr, Chromium C\J, Copper f'e, a rem . c Hgt He;rcury TABLE 2.10 -continued WATER QUALITY DATA SUMMARY SUS. t VNA Jll VER U.S. GEOLOGICAL SURVEY SUSITNA 1955 -1982 40 FT. Summer/Winter/Break-Up N.umber .of Detectable _ya fue!L_ Total Number or Observations -1-J- ·.l-1 .. _,_,.,. -I-I- .000/.000/- -/-/- .003/.003/.001 -1-1- -1-1- .200/.0i&0/.020 -/-/- 22/31/15 .001/ .. /- .0~7/.002/.001 .030/.010/.005 .007/.004/.006 .1160/.060/.190 .0002/.0000/- Minjmum_ -I-I- -I-I- -I-I-.. , ... ,_ .000/.000/-. -1-/- .001/.000/.001 -1-1- -1-1- .027/.040/.020 _ ,_, .. 111/23/11 .001/•/- .001/.002.001 .000/.000/.005 .003/.000/.004 .020/.060/.110 .0000/.0000/- .Mean· -1-1- -1-1-_,_,_ -1-1- .000/.000/-_,_, ... .002/.001/.001 .. , ... , .. _,_,_ .068/.0it0/.020 _,_, _ 17/27/13 .001/-/- .003/.002/.001 .010/.005/.005 .OOit/.002/.005 .096/.088/.152 .0001/.0000/- 0/0/0 0/0/0 0/0/0 0/0/0 lt/2/0 0/0/0 13/6/3 0/0/0 0/0/0 7/4/1 0/0/0 25/21/7 1/0/0 5/1/1 5/2/1 7/7/4 12/9/6 5/2/0 m:r·· -~ .. ~· ttm -~ I I ~· ' ~-·-, . \.1 l~l 1/101'• 7/9/lt 2/6/2 2/6/2 8/6/3 0/0/0 13/9/6 0/IJ/0 0/0'/0 8/6/3 0/0/0 25/21/7 13/9/6 13/9/6 13/9/5 13/9/6 13/9/6 13/9/6 ·IJ ,j Agency: Sta t}-?n: Eleva'tion: laboratory Parameters ( l) (Continu~d) ~ ., . TABlE ~.10 ... continued WATER -QUAL~ TV DA'fA SUMMARY ·susiTNA RIVER U.S. GEOlOGICAL SURVEY SUSITNA 1955 • 1932 40 FT. --------------------....;~::.:u~· 1nme r/W I nte r/erea!s-Up Maximum Minimum Mean ... c'-1 , . >' Num.ber of Detectatlle yatues ·rota c · Number or Observation! •t . iJ , 1,: "'.· ' TABLE 2.11 ~· ' ' ' TURBU'iiTY AND SUSPEND-ED 'SEDIMENT ANALYSIS OF Lf.·. .Jii. THE SUSlTNA, CHULITNA AND TALKEETNA-RIVERS ·r· " ~ I 3 .-..I Suspended Ssdiment [ ---Oate1 Turbidity2 Discharge4 ' Date Concentration . Location Sample-2 Analysed (NTU) (mg./1.) (CFS) f Susitna a~ Sunshine 6/3/82 6/11/82 164 847 71,000 Parks Highway Bridge 6/10/82 6/24/82 200 414 64,500 f (RM. 83.3) 6/17/82. S/24/82 136 322 50,800 t S/21/82 8/3/82 360 755 78,300 r ' 6/28/82 s/·""'0" 1056 668 75,700 10{04 7/6/82. 8/3/82 352 507 46,600 [ 7/12/82 8/3/82 912 867 59,800 7/19/82 8/18/82 552 576 60,800 7/26/82 8/18/82 696 1180 96,800 8/2/82 J/18/82 544 704 62 4GD ~E ·' ' 8/9/82 3/26/82 720 746 54,000 8/16/82 8/26/82 784 728 47,800 8/23/82 ·9/14/82 552 496 38,600 '~-">1 8/30/82 9/14/82 292 ' 439 39,800 ~---~ ~-,. 9/17/82 10/12/82 784 1290 86,500 )';- · Susitna Below Talkeetna 5/26/82* 5/29/82 98 t (RM 91) . 5/28/82* 6/2/82 256 43,600 5/29/82* 6/2/82 140 42,900 5/30/82* 6/2/82 65 38,400 & 5/31/82* 6/2/82 130 39,200 6/1/82* 6/2/82 130 47,000 \ ..... Susitna at LRX-4 5/26/82* 5/29/82 81 r "(RM 99) l!l Susitna near Chase 6/3/82 6/11/82 140 769 35,800 (R.R. Mile 232, RM 103) 6/8/82 6/24/82 130 547 44,400 I 6/15/82 6/24/82 94 170 24,200 ., 6/22/82 8/3182 74 426 31;000 6/30/82 8/1&/82 376 392 30,200 I 7/8/82 8/18/82 132 155 20,700 7/14/82 8/3/82 728 729 30,800 7/21/82 8/18/82 316 232 24,900 7/28/82 8/18/82 300 464 30,800 I 8/4/82 8/18/82 352 377 22,700 ' 8/10/82 8/26/82 364 282 20,000 8/10/82 8/26/82 304 275 17,700 I S/2~Va2 9/14/82 244 221 16,800 8/31/82 9/14/82 188 252 19,300 9/19/82 10/12/82 328 439 28,700 .·~~ ~ 2-50 ,-7~3~ 1 :1 : "" . e Location '•' · Susltoa ate Vee Canyon .(RM 223) ,. ' Chulitna: (Canyon~ (RM 18) / ' Cbulitna near Confluence (RM l' Talkeetna at U.S.G.S. ., Cable (RM 6) TABLE 2.11 (continued) Date1 Date Turbidity2 ' Sampled Analysed (NTU) e 6/4/82 .' 6/11/82 82 6/30/82 8/3/82 384 7/27/82 8/18/82 720 8/26/82 9/14/82 320 6/4/82 6/11/82 272 6/22/82 8/3/82 680 S/29/82 8/18/82 1424 7/7/82 8/3/82 976 7/13/82 8/18/82 1136 7/20/82 8/18/82 1392 1/27/82 8/18/82 664 8/3/82 8/18/82 704 8/11/82 '8/26/82 592 8/17/82 8/26/82 1296 8/24/82 9/14/82 . 632 9/1/82 9/14/82 ~ 9/18/82 10/12/82 5/26/82* 5/29/82 194 5/28/82* S/2/82 272 5/29/82* 6/2/82 308 5/30/82* '6/2/82 120 5/31/82* 6/2/82 360 6/i/82* 6/2/82 324 6/2/82 6/11/82 146 6/9/82 6/24/82 49 6/17/82 6/24/82 1 28 6/23/82 8/3/82 26 6/29/82 '•. 8/18/82 41 7/7/82 8/3/82 20 7/13/82 8/3/82 132 7/20/82 8/18/82 148 7/28/82 8/18/82 272 8/3/82 8/18/82 49 8/10/82 8/26/82 53 8/17/82 8/26/82 82 8/24/82 9/14/82 68 8/31/82 9/14/82 37 9/20/82 10/12/82 34 2-51 Suspended3 Sediment Concentration (mg./1.) 424 813 1600 1030 1200 1250 1010 960 753 1250 843 523 1550 1340 311 216 164 321 100 226 226 180 2.12 198 263 276 301 Discha·rge4 . (CFS) 11,500 19,500 29,000 20,700 22,700 23,100 31,900 23,300 21,300 21,900 18,200 17,300 29,200. 17,900 14,200 11,400 l2,400 10,700 6,750 8,880 8,400 14,200 8,980 6,980 6,230 5,920 9,120 14,800 TABLE 2.11 (Continued) Date Suspended3 Sediment Concentration Discharge4 ····Location Oate1 Sampled Analysed Turbidity~ (NTU) (mg./Ll . (CFS) . 2. 3. 4. 5/26/82* 5/28/82* 5/29/82* 5/30/82* 5/31/82* 6/1/82* ' ~ ~ 5/29/82 6/2/82 6/2/82 6/2/82 6/2/82 G/2/82 17 39 21 20 44 55 5,680 6,250 5,860 5,660-· 7,400 9,560 *Refers to samples collected by R&M Cons.ultants, all other samples were collected by U.S. G. S. ·R&M Consultants conducted all turbidity measurements. Suspended sediment concentrations are preliminary, unpublished data pi"ovided by the U.S. Geological Survey. Discharges for "Susitna at Sunshine" and "Susitna Below Talkeetna" are from the U.S. Geological Survey stream gage at the Parks Highway Bridge at Sunshine. Discharges for· "Susitna at LRX-4" and "Susitna near Chase" are from the U.S.G.S. stream gage at the Alaska Railroad Bridge at Gold Creek. Discharges for "Chulitna" and "Chulitna near Confluencen are from the U.S.G.S stream gage at the Parks Highway Bridge at Chulitna. Discharges for "Talkeetna at U.S.G.S. Cable" and. "Talkeetna at RR Bridge" are from the U.S.G.S. streamgage near Talkeetna. 2-52 ~~ .... ~ . ._ -. "/ '· .. ··.· . ' ' . -~ ~I ' ' ·~ ' .~ 1 -~ )11· !I! ~;; . :S:: . ill IE IE . ~ '- I[ r·· :., :-·~ - ~ ~ 1 1'l .~ . .Oil I[ sl1/aa · REFERENCES ' ~.._ <', American Public Health Association. 1981. Standard Methods for the Examination of Water and Wastewater, Fifteenth Edition. APHA, Washington, D. C. Environmental Protection Agency. 1979. Methods for Chemical Analysis ·of · Water and Wastes. Environmental Monitoring and Support Laboratory. Cincinnati., Ohio. EPA-600/4-79-020. McNeely, R.N ... , V.P. Neimanis and L. Dwyer. 1979. Source Book. A guide to water quality parameters. Directorate, Water Quality Branch. Ottawa, Canada. Water Quality Inland Waters ·Office of Water Data Coordination, Geological Survey. 1977. National Handbook of Recommended Methods for Water Data Acquisition. USDI, Reston, Virginia. R&M Consultants, Inc. 1980. Water Quality Annual Report -1980. Prepared for Acres American, Susitna Hydroelectric Feasibility Study. R&M Consultants, Inc. 1981. Water Quality Annual Report -1981. Prepared for Acres American, Susitna Hydroelectric Feasibility Study. Skougstad, M.W., M.J. Fishman, L.C. Friedman, D.E. Erdmann, and S.S. ·Duncan. 1979.. Techniques of Water Resources Investigations of the United States Geological Survey. Book 5, Ch. A 1, Methods for Determination of Inorganic Substances in Water and Fluvial Sediments. U.S. Governmental Printing Office, Washington, D.C. UNESCO -WHO Working Group in Quality of Water. 1978. Water Quality Surveys. A guide for the collection and interpretation of water quality data.· United Nations Education, Scientific and Cultural Orga- nization, World Health Organization. 2-53 --. EXHIB·IT E . 2. Water Use and Quality '''-' ·,,, ' . ·~ . ;··provide data on suspended .. sediment concentrations in slbughs on a seasonal •• _c.,';_ -"' --· ' . . ~ ' RespOilStt ·' ? r Data regarding ~uspended sed.imerit concentrations in sloughs are c~nta.ined in ·the Alaska Qepartrnen.t ·of Fish & Game Phase II Basic Data. Report~ Volume ·4, . . . . ' . . . Aquatic· Habitat and Instream Flow Studies, ~982~ The ·a:~.tached· pages con- tain selected segments of Appendix Table 4-D-6'1see highlighted data). 2-9-1 I ··' l I 1 .i J ' .· i .i ; -\1 --·'!~··~·--_____ ., .... ,. ,-.---· ..... ·.·.~. •"' ••• r .. ---...... -~..,...., ••••• • • ~ • ·-· : ' 1\. "!',~ .......... , .. f"~tr.... . ' --J& ~ -. ...... · ' ... " .. ,,~ ... ~ ~ .. ,. S . --....... • . . • 'J~"f,•-.. • r .. ...,, .,.-~...,. .. . -· J.-. ... " ,.. - . '"""",... ... D .. . -' -~-.!"' 1:11 oc·Jry a.; .. _........ • .. tiil ~ •• tent i.S£Jr.~t>~r -by- ALASKA DEPARTMENT OF FISH AND CAME Susitna Hydro Aquatic Stu~ies 2207 Spenard Ro~d Anchorage, Alaska 99503 1983 .. .......... ~-.. . . ... :"' ...... '• .J:. ' tj ' - tutArr 1\0FC.U 1/.t.OG . l.~~r.en_di~·~Ta .. ~-1-~-~ ...... ,~-... s.J. Surrmary of provisional water quality data f·pr sloughs 8i\, ~~ 16B, 19, 21, and mainstcm ~os1t:nil IHvt:r at' Cold ~-"'~ .. -__ , --~ ::.i. Creek, coHected by AOF&G and USGS in June~,. July, and September, 1981, and in January and Fchruary, H182,. =======~============================================~~=====-~ ~-~- Parameter Physical and Field Parorootersb *Water Temperature oc Air Temperature oc Streamflow (discharge) cfs *Speci~ic Conductance (field) umho /em June July September January March June July September January March June July September January March June July .September January Harch S~dUgh 8A 15.5 n.z 3.5 0.5 0.5 21.0 16.0 SeO 6.4 551.0 2.8 140 117 135 193 142 Slough 9 1'-.2 10e9 5.6 0.5 0.5 20.1 1~.0 7.5 2.9 714.0 1,5 145 124 113 121 143 Slough 168 14.0 9.0 '• .8 1.5 2.0 15.5 0.7 503.0 0.3 71 72 64 59 59 Slough 19 s.s 9.0 1.8 2.0 1.0 __ .. 3.0 --- 0.2 o.o <0.1 146 127 150 148 129 Slough 21 226 130 205 221 1Q6 aSloughs and mainstem Susitna River were sampled on 2 or 3 consecutive days in each month (except January) as follows. \.~.···-· .. ···-·····~--~·f: .... ~ .. :.. . .... ,..·.~·· ....... ~ .•. ~~G~~:: ~~~.e~.J. J ~-at !A~~~"-· 16B ,~, l! .. ll.~-.. ~,ld. c~,!~~ ..... ~.~~ .... ~ 1' June.·. ··~·~ .•. , ~$ -..J .... .' Zft .; • ~~ '"!f .~~ .••. ~'! t;ot·.1.• . ~'. ~~ •• • • • J~!.~u1i'·~f!·~:!.P:~··21··r.y. ·~· 21 · ··· · 22 ·.=.·;~.(. 22 ~~:.:.22::,t;""'~~ith:~.·J21jo1~i.u;..,,~J,~.,. ~, i..,~Se.pt~, ... ~{;{il~ ... 3Q:ifi:.'J":,,3Q..-.... ~23 .v.~;~29 tl1ot 29.~lf . .-ll~.t'1'1i<' .~~ .;..,,) . .Jl.JJ:..'Af ~-J' . - . . 20 20 . 20 20 20 20 . . . ' j . J~::~.:~~~~~~r~1~t!'.-·~-'3t~.e:-3o"·•··3o ~~':6·£\.ao :i!i-. 30:.':f~~.LiiA-t~·'30 t:~~-~llfJ ~ ......... ~.r .... t.:ts; ..... ;.:,·.,~., w.c.a·~ ... ~w.~ .... ~..-..,.uw-. . ..,,J~~ :...tt.t~ ........ "~..~~~..a.)-.-t:'ifd;;~J.t ~~ott •• bParameters marked with an * are averages of transect point measur~;ments (see methods) • .,. __ indicrttes data not available. :Susi toa RiveJ· at Gold Creek 119 .172 260 266 t Appendi" lable 4-D-6 (Cont~nued) .. Slough Slough Parameter ·~ 8A 9 fh}rsical and field Parameters -Contvd .. --- Alkalinity (lab) June 47 33 mgn CaC03 July. 41 39 Septembor 4'l 36 January 64 36 ~ 1 March 46 42 Turbidity June 0.9 Q.6 NTU July 130.0 130 .•. 0 September 1.1 0.6 ..c:. January 0~4 o.s • March 0.1 0.1 0 • '. ~ :L [s":![J"t~.· .. •~·~~-".!~~ .I •• j. ·~· (. ~ ' . t • 'j Sediments, discharge suspended June 0.02 0.02 tons/day July 327 .. 0 804.0 September 0.01 o.o January March --- 'So.l ids, residue at Hl0°C June 88 100 mg/1 July 70 75 September 82 69 January 111 73 March 92 93 ~ Solids, sum of constituents June 93 91 mg/1 July 61 68 I September 71 71 January 120 76 ~ March 86 Bl I ( ~ { ' -.. Slough Slough 168 19 -----.,..- 24 52 24 52 26 62 30 53 27 so 0.5 0.4 43.0 2.5 0.6 0.5 o.s 0.) .. 0.1 0.1 . . .. . .~. o.o o.o 145.0 o.o o.o o.o _,__ 51 94 41 81 42 95 38 iB 42 80 47 9rl 43 89 48 9ft __ .., 92 ... 43 65 '. ()RAfl A0f001/t06 . Susitna River Slough at 21 Cold Cre:ak 63 45 ·1•7 35 61 ljt~ 63 83 64 82 0.4 ,100.0' nso.o 170.0 \I o.s 5.5 0.5 Oo7 0.1 0.1 5 3~7 ·~ as& 680 .'. . . ~ 44:1 It () ! • 2* f . ··-~ ~ . 8J ""'-......... -......,. ..... OoO't· 1,570.0 136.0 78,000.0 o.o 1.,020.0 33.0 . 137 79· 78 74 119 101 114 152 l2lt 160 130 83 68 65 120 80 130 165 127 1.60 ,,, i' 1' ... r EXHIBIT .E 2. Water Use and Quality /C01a•ent ·10 Cpo E-2-29, para. 4) ClarifY, reference provided in Figure E.2.79 and explain procedure used to create this figure. ~spans~. Reference .The reference for Figure E.2.79 is R & M Consultants, Inc. 1982. Susitna Hydroelectric .... Project, Reservoir Sedimel"_';~ioQ.; prepared for Acres American Incorporated. Suspended sediment rating curves shown on Figure E~2.79 (attached) are based on the results of periodic suspended sediment sampling on the Susitna River at Denali, Cantwell, and Gold Creek and the Maclaren River near Paxsono Table 1 give the period of record, number of samples collected and range of observed suspended sediment discharge with corresponding water {water-sedi- ment mixture) discharge. The suspended sediment rating curve at each station was approximated by a power relationship of the following form: Qs = A(q)B 2-10-1 .,.. in which: q 5 = suspended sediment transport in tons per day based· on observed suspended sediment concentration and corresponding water dis- charge; q = water (water-sediment mixture). discharge, cfs; A = constant, an index of re 1 ati ve erod i b i 1 i ty in the watershed; ·' ' B = slope of the sediment ... discharge rating curve m• logarithmic paper. The above equation was fitted to the observed data at each site by the least square method. The resulting relationships are given in Table 2. 2-10-2 ,_.,.' . l ~ '{~j ~' . ~ ~ ·!~·} , I ,; TABLE l ,..-/" . J~ANGE·-~oVER WHICH SUSPENDED SEDrMENT O'lSCHARGE EQUATIONS ARE . VALlO AND PERIOD OF RECORD OF OBSERVATIONS station Susitna River near Denali Maclaren River· near Paxson susitna River neai' Cantwell · Susitna River at Gold Creek 1/ •. Period Number of of Record ~~les Jun. 1958 -51 Aug. 1980 Jun. 1958 -32 Jul. 1975 Jul. 1962 -37 Aug. 1972 286 Observed Range of Sediment and Water Discharge lL 21 Ql.}tfs q5-;tons/day Max Min Max Min - 13 ,700~/ 96~/ 1ss, ooa11 2211! ·16,00#' 6242/ 5, 32cPi 4??.1 26,00rJi5750101 196,00~1 528 101 s2,ooo!li1oo!Y 218, ooo 131 2y)..21 2/ q = streamflow -Qs = suspended Sediment Discharge 31 Uate of observation -:;1 August 11, 1977 ~~ October 1, 1964 6/ August 30, 1974 il August.· 22, 1961 8/ September 30, 1966 9/ August 16, .1967 y01 Ju1y 8, 19o3 IT/ September 28, 1967 rll Date not available. Til May 1, 1952 -July 26, 1957 2-10-3 - ~ ' '' TABLE 2 .. SUSPENDED SEDIMENT ·DISCHARGE EQUATIONS SUSITNA RIVER BASIN ... Station Susi tna River near Dertttli' Mac!..aren River. near Pax scm Susitna River near Cantwell ' \, Susitna River at Gold C'reek Number of Coefficient of Equation Samples n Determination (r2) q5 = 1.43 (lo-4) q2.122 51 0.891 q5 = 8.04 (lQ-6) q2.523 32 0.931 qs = 6.33 (l0-8) q2.784 37 Oo881 Qs = 2.39 (lQ-6) q2.354 286 0 .. 135 q = Streamflow, cfs 9s = Suspended sediment discharge, tons/day 2-10-4 I' . u i I ! ; ,; • ·o . ' . "-· 'l • •'" . . . . . " . . • . --!(. • . • • • ': . .:. ' .. -, . ~ .. • ., ·"l'~. be~ ~ -; • ' ' • · · · · · ·· · · · · · · · -~ · ·· ... ~ · ... · · · ~ -· ·· .~ · · · · .. ~ ~ o· · o · ,. .. 1· · . . . ----fi . • ' \ . ' \ "" . J ' -• • • • ' ~ ~ '· • ~ ~-· . '!' 0 "6t . . • 0 • . • • • • . ' • . ,. ., • ' ·V -• ._ • '-C ~ • ~ .. ~ •• ,,,. ' •;~"" I ·~\•' ;. • • •• "' ' • • '' t • • • ' ~" -. • ......,...... 11111111!1!111' ~· ,.,...., • • • -.... • • • bt> ~o· <;·~ j<S 40 ~ 3,0 Jd -U) I.L. 10 0 0 9 0 8 0 -7 -w 6 (!) 0:: <( 5 3: u ~ ~ U) -4 0 3 2 ~~ ~ -·" I I-' ~ ~ L ~ v k-" r- ..,. v ~ ~ ~ .J" ~ ~ ~ / ,./ v ~ ~ v L / ~· / ~ l . ! .. .. -./"" • = ~~· .~ ~ .~ ...... ~~. .,. ~-~ v SUSITNA RIVER AT · .,/ y ~"""' .. ,,,.. ~.,.... GOLD CREEK v/ ~ l _,...;P v~ . ,... ~~NARIVER ~'...-! . ~-""" v v NEAR CANTWELL (VEE CANYONl / ,._ ~ ,~ -~ -io-" ../ ~ ~-,.,. ~ ~ ~, . ""'MACLAREN RIVER v ~--,-' NEAR PAXSON ~·~---~ - . 1,000 2 3 4 5 6 7 8 9 10,000 2 3 4 5 6 1 8 9 100,000 N ' -... · ... t .. • ' :SOURCE• A$ M f9G2 ·\ SUSPENDED SEDIMENT DISCHARGE (TONS I DAY) SUSPENDED SEDIMENT RATING CUR\JES MIDD.LE AND· UPPER SUSITNA RIVER BAS!NS ./ ~ ~· ~ """ v ~~ v--v~ ~ .,,. ..,;;.• . I ~---~ . . .,.,.. .,; ~SUSITNA RIVER .·. . NfAR DENALI l I - . l ~ . ,. 2 3 4 5 6.7891 fiGURE E. 2. 79 I tl EXHIBIT E 2. Water Use and Quality Coc.ent ·11. (p. E~2-32i pa!"a. 2) provide data on bio1ogica11y available and total soluble phosphorus concen- trations in the Susitna River water for each water quality sampling station. Response Data referred to in this paragraph (Figure E. 2.87) are found in Water Quality Annual Reports 1980, 1981, and 1982 by R & M Consultants, Inc. pre- pared for Acres Arrerican, Inc. Pertinent excerpts from those reports are enclosed as pages 2-11-2 to 2-11-83 of this response. The data are presented in the tables of those reports: Water Quality Annual Report, 1980 -Tables 1, 6, 9, 10, 11, 12 Water Quality Annual Report, 1981 -Tables 4.1, 4.2, 4.3, 4.4; 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 Water Quality Annual Report, 1982 -Tables 2.2, 2.~, 2.6, 2.7, 2.8, 2.9, 2.10 Additi ana 1 measurements of soluble phosphorus are avai 1 able for selected riverine sloughs and the Gold Creek River Station in the Susitna Hydro -' j\quatic Studies -Phase II Basic Data Report, Volume 4. Aquatic Habitat and "·"" . lnstream Flow Studies, 1982, Appendix 4.0.6. These sections are also enclosed as pages 2-11-84 to 2-11-100 uf this response. 2-11-1 TABLE I \VATER QUALITY DATA -SUStTNA RIVER NEAR CANTWELL (VEE CANYON SITE) . Fleld Parameters (1 ) • Di.ssolved Oxygen P~reent Saturation pi·t > pH Units Conductivity 1 umhos/cm @ 25°C Temperature, °C Free Carbon Dioxide (2 ) Alkalinity 1 as Caco3 Settleable Solids, ml/1 . Labor-atorv Parameters Ammonia Nitrogen Organic Nitrogen Kjeldahl Nitrogen . ~itrate Nitrogen Nitrite Nitrogen Total Nitro en Total Phosphate Alkalinity (1)(3) Chemical Oxygen Demand Chloride Conductivity umhos/cm @ 25 °C True Color, Color Units Hardness, as CaCO (4 ) 3 Date 6/19/80· .. i2.4 98 7.8 5.7 2.0 47 0.1 0.26 < 0.1 0.26 0.19 <0 .. 01 0.05 - 28 3 • 150 - 51 Date 8/8/80 8_. 7• 82 7.9 144 9.3 1_.7 54 < 0.1 ~ .. -- ....... 0.15 .. ~-- 0.03 - 12.6 9 - 40 76 - 5 - • OA"rE SAMPLED Date 9/5/80 -~--.. .... -- 7.8 171 5.3 3.6 81 < 0.1' 0.10 0.22 0.32 0.15 <0.01 0.09 124 11 - 10 69 Date 9/17/80 9.7 84 7 .. S 124 5 .. 9 4.5 63 < 0.1 < 0.05 I 0.'62 0.62 0.09 <0 .. 01 0.10 - 156 8 - 45 55 Date 10/17/80 " .. 13.8 104 7 .. 6 142 -0.1 5.5 88 ~0.1 0.26 0.28 0.54 <0.10 <0.01 Date 1/13/81 10.7 84 7.2 242 0.1 22.0 187 ,. << \.1,. •' <O.OS 0.85 0.85 <0.1 <0.01 <0.01 0.07 66: 106 6 12 18 18 190 10 90 ' ' (continued) Sulfate Total Dissolved. Solids Total Suspen¢ed Solids: - ;::::; Tur·bidityl NTU; · Uranium • Radioa~tivlty, <.1r:oss Alpha, pCi/1 , Total . O!"ganic Carbon Total. Jnorgani~ ·Carbon -Org·ariic Chemicals ~ .d· • ~n rtn :;. . "\"' Lrntlane . . I . II L Met~loxychlor- .. ~ ' Toxaphene· ' 2, 4~0 ~~ . ~, 4., 5-TP SiJvex .CAP Scan Ag, ·snver AI, Aluminum As, Arsenic • Au, Gold S, Boron Ba, Sarit.un_ Bi, Blsmuth .... Ca 1 Calcium Cd, Cadmium Co, C·obalt Cr, ChrC)mium Cu, Copper Fe, Iron Hg, Mercury K, Potassium '' .Mg! \.Magnesium ~, Manganese Mo., Molybdei"tum susi4/e • • 6/~9/80 4 70 242 94 ----...... ,. ....... ---..... _ -------- ---- <O.OS 1.6 <o.os < 0.05 <o.os <0.1 <o.os 13 <0.01 <o.os •< 0. OS < 0~05 . 2 .. , < 0.05 ~( 1.0 . 1. 4 < 0.05 <o.os • • 8/8/80 9 90 310 97 <O.OS 11.6±0.6 .. -..... ----- < 0.0001 < 0.001 . < 0.05 < 0.001 <o.os < 0.005 <O.OS <0.1 <0.1 <o .. os < 0.05 0.11 < 0.05 16 < 0.01 < 0.05 < 0.05 < 0.05 4.0 < 0.1 2 .. 3 3.4 0.10 < 0.05 9/S/80 9 114 25 10 -~--- ca--• ---·------- !D--.- -... ~- ---.. <O.OS 0.28 <0.1 <o.os <o.os <o.os <o.os 22 . < 0 .. 01 <o .. os . < 0. 05 . < 0.05 0.46 < 0.1 2.1 3.1 < 0.05 < 0.05 9117/SO .10/~7/80 l/13/81 7 38 132 33 ---- ---- ~.-.-- --. .. ., .. __ Clio ---- _..__., .... __ <0.05 2.2 <O.l <o.os <OoOS 0.07 <o .. os 18 < 0.01 <o.os ~0.05 < 0.05 2.7 < 0.1 5.0 1.2 0.07 • <·o.os 13 ;115 8.3 '·1.8 ........ _._ __ ---- -21 -· .. ~-- ----~ .... _., ----- <0.05 0.18 <0.1 <0 .. 05 <0.05 ~0.05 <0.05 28 <0.01 <0.,05 <.0.05 <o.os 0.37 <0.1 <1to0 4 .. 5 <0.05 <0~05 16 149 0.6 0.35 <0.05 ' 10.3+0.6 106 . <0.0002 <0 .. 004 <0. '1 <0.005 <0.1 <0.01 <0.05 <0.05 <0.1 <0.05 <0.05 <tl~os '~0.05 36 <0.01 <0.05 • <0.05 <0 ... 05 <o.os <o., 2 '7./l <.Q.iO$ ,. f."!.o· • ·o·s· ' ~~· . . . .1 . ' "' "" (1)(3) (continued) ,. laboratory Parameters - 6/19/80 . 8/8/80 9/5/80 · Nat Sodium 2.6 2.4 5.1 Ni, Nickel < o .• o·s < 0.05 < 0.05 .., < 0.05 Pb, .lead < 0·.05 < 0.05 • Pt, Platinum < 0.05 < 0.05 < 0.05 Sb, Antimony <0.1 < 0.1 < 0.05 Se, Selenium <o.os <o,. 1 <0.1 Si, Silicon . 4.8 . 5.3 3.6 . ' Sn, Tin < 0.1 . < 0.1 < 0.1 Sr, Strontium <o.os 0.06 0.07 Ti,. Titanium '0.13 0.24 < 0.05 .w, Tungsten "" . < 1o0 < 1.0 < 1.0 v, Vanadium < 0.05 < 0.05 < 0.05 Zn1 ~inc < 0.05 < 0.05 < 0.05 Zr, Zirc;onium < 0.05 < 0.05 < 0.05 ( 1 ). Table values are mg/1 unless noted otherwise. (2) • 9/17/80 10/17/80 3.5 7~2 < o.o5· <0. OS . < 0.05 <0.05 < 0.10 <0.05 <0.1 <0.1 <0.1 <a~ .. , 6 .. 9 4.1 < 0.1 <0.1 0.07 0.10 0.17 <o.os ----<0.1 < 0.05 <0.05 < 0.05 <0.05 < 0.05 <0.05 All ·vaJues for free co2 determined from nomograph on _P. ·~··(l) . Method, 14th edition<> Samples for aU parameters except chemical oxygen demand, 297 of Standard suspended solids, and turbidity were filtered. Hardness calculated by R&M personnel . dissolved and (4) .. • susi4/e -7- .. / l/13/8.1 ,, 6.6 <0.05 <0.05 <0.05 <:0.1 <0.1 5.0 <0.1 0.13 <:0.05 0.4 <o.os f: • ~: ' <o. a~--_) <0.05 I : susi4/e6 TABLE 6 WATER QUAL.ITY DATA ... SUSJTNA RIVER AT GOLD CREEK F!eld Parameters (1) DATE SAMPLED l Dissolved Oxygen Percent Sati·\"'ation . { J' ' . pH, pH Units Conductivity, umho.s/cm @ 25°C Temperature, °C ... Free Carbon Dioxide (2 ) ~ .. . ·· AJ kalinity, as Caco 3 ··, · Settleable Solids, ml/1 Laboratory Parameters (1 )(3) Ammonia Nitrogen Organic Ni~rogen Kjeldahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Phosphate Alkalinity, as caco3 Chemical Oxygen Demand Chloride Conductivity, umhos/cm @ 25°C .JII True Co10r 1 Color Units .,. . . Hardness, as Caco 3 ... 12- Date 08/08/80 8.6 81 7.8 169 11.7 2.1 55 < 0.1 ...... ... ._ ... ----- 0.18 ----- < 0.02 - 13.8 14 - 45 62 Date 10/14/80 14.0 100 7.8 167 0.0 3.2 74 <<0.1 0.32 0.34 o.ss <0.10 <0.01 <0.01 57 8 16 165 10 74 Date 1/14/81 '13.3 101 7.1 249 0.3 23.0 144 . «O. 1 <O.OS 0.81 O.Sl 0.18 <0.01 <0.01 90 16 29 ------ 10 121 Field Parameters (=t )(3 ) (continued) SUlfate . _Total_ Oissotved Solids .. Total Suspended Solids . . Turbidity, NTU Uranium ·. Radioactivity 1 Gross Alpha, pCi/1 . . ·. 'Tatal Organic Carbon Total Inorganic Carbon .. Organic Chemicals Endrin Lindane Methoxychlor Toxaphene 2, 4-0 2, 4, 5-TP Silvex ·ICAP Scan Ag, Silver AI, Aluminum As 1 Arsenic Au·, Gold· a, Boron Sa, Barium Bi, Bismuth . Ca, Calcium Cd, Cadmium Co, Cobalt Cr, Chromium Cu, Copper Fe, Iron Hg, Mercury K, Potassium Mg, Magnesium Mn, Manganese I Gold Creek ·os/uS/80 12 74 175 . 58 <O.OS 2.6±0.4 ----__ _,_ < 0.0001 < 0.001 <o.os <0.001 <O.OS < 0.005 <O.OS 0.7 < 0.1 <o.os < 0.05 0.08 < 0.05 15 < 0.01 < 0.05 < 0.05 < 0.05 2.3 ~ 0.1 1.8 2.7 0.05 -13- (cont .. ) 10/J4/80 10 100 . 7.7 0.9 _em_._ .... -- ....... __ .. _ --------- ~----.... __ --------- <0 .. 05 0. '18 <0.1 <0.05 <0.05 <0.05 <0.05 23 <0.01 <:0. OS <:0.05 <0 .. 05 0.35 <0., <1 3.7 <o·.os . ~ .. 1/14/81 16 188 < 1 0.30 <0.05 39 .. 90 <O.OOC <0.00' <0 .. 1 <' ~I'\: .,., __ " __ , <0. I <0.01 <o.os <:0.05 <0.1 <0 .. 05 <0.05 <0.05 0.07 32 <0.01 <0.05 <0 .. 05 <O .. OS <0.05 <' ... \~J 2 ~· 10 <-O.a: 2...-11--4 • -. (cont.) \ Gold Creek .. · . . {1)(3) (continu~d) 08/08/80 10/14/80 Field Parameters · · ~.·• Mo, Mc1lybdenum <o.os <0.05 Na , Sodium 3.3 s.s Ni# Nickel <o.os <0.05 Pb, l.ead # < 0.05 <0 .. 05 ... Pt, , Platinum <O.OS <0. OS Sb~ Antimony <0.10 <0., Se, Selenium <0.1 <0.1 Si, Silicon 4.6 4.2 Sn, Tin <0.1 <:0.1 .. <o.os 0.11 Sr-1 Strontium . Ti1 Titanium 0.14 <0.05 ... w, Tungsten '• .. ' <1.0 <0.1 v, Vanadium <o .. os <0.05 ·r• Zn.f Zinc <:o.os <O.OS Zr1 Zirconium <O .. OS <0 .. 05 ·Table values are mg/1 unless noted otherwise. (1) (2) (3) . AU values 1~~,. free co2 determined from nomograph on. p. 297 of Standard Method, 14th edition. \, ', . Sa.mples for... a~1 parameters except chemical oxygen demand, dissolved and suspended solio~ 1 and turbidity were filtered. (4) Hardness calculated by R&M personn!Jll • • ••• susi4/e8 -14- " "·.:. .. ~~~~---··--"-·'·'·"-~-·~~ ...................... . 1/14/81 <0 .. 05 13 <0.05 <0.05 <: 0,.05 <0.1 <:.0 .. 1 5 .. 0 ~ <0.1 0.19 <0.05 <0.1 <0.05 <0.05 <o.os WATER QUALITY DATA SUMMARY SUSITNA RIVER Ag.en.c:y: u.S . Geological Survey • Station: Nr. Denali .Elevation: 2440 Ft. 1957-1978 ·Field Parameters (1 ) Dissolved Oxygen Percent Saturation pH, pH Units . • Conductivity, umhos/cm @ 25°C. Temperature, °C Free Carbon Dioxide . Alkalinity 1 as caco3 Settleable Solids 1 ml/1 Laboratory Parameters <1 ) Ammonia Nitrogen . Organic Nitrog~n Kjeldahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen TABLE 9 MAXlMUM 7.8/7.6 20SL467 10.5/- 68/161 .09/- MINIMUM MEAN Summer-/Winter 7.1/7.1 7.5/7.4 121/194 157/349 0.5/-5.5/- 1.5/4.~ 3.2/10.8 42/57 54/116 .00/-.05/- NUMBER OBSERVATIQNS .. 15/4 18/4 50/- ll/4 ~ ' t ~ .. ~u 11/4 >15/-_____________________ .._,,_, - ~· !ota;~;tr~g~ ;.~S~;P~;aieha~ Total Phosphate Chemical Oxygen Demand Chloride True Color, Platinum-Cobalt Unit Hardness, as caco3 susi4/i4 ___ , ______________________ , _____________ ~-------- l:i..0/30 .. 0 2. 0/3. a· 4.8/19.0 11/4 87/181' 5.0/84. 64/139 ll/4 -17-?... -It-8' .oratory Parameters ( 1 ) (continued) MAXIMUM • 23L39 . Total Dlssolved Solids ...!f0{270 Totar. Suspended Solids 5690/- . Turbidity# NTU Uranium Radioactivity, ·Gross Alpha, pCi/1 To tat Organic; Carbon ~ 1''otal ·rnol"ganfc Carbon. Organic Chemicals Endrin fiindarie · ethoxychlor Toxaphene 21 4-0 . 21 4, 5-TP Silvex -IC'AP Scar• Ag, Silver- AI, Aluminum .. As, Arsenic • . Au, Gold B, Boron Ba I Barium . Si, Bismuth Ca, Calcium 22L5l Cd, Cadmium Co, Cobalt • Cr, Chromium _cu, Copper . • susi4/i/ MINIMUM MEAN Summer/\Vi nter 9l31 15/36 . 72/109 91/204 85/-1350/• 17l23 21L4o -18-~ "'•'~- NUMBER OBSERVATIONS 11L4 li/4. • 32/- lll4 - .. , L ·b· t Pa~'"' .. amete .. s (1 ) a ora cry . Fe, Iron Hg, Mercury K, Potassium Mg, Magnesium Mn,· Mang.anese Mo, Molybdenum Na, S\':1di urn • Ni, Nickel Pb, lead Pt, Pfatinum Sb, Antimony Se, Selenium Sl, Silicon Sn, Tin Sr, Strontium Ti, Titanium W, Tungsten V, Vanadium Zn, Zinc: Zr, Zirconium • • MAXIMUM MINIMUM MEAN Summer-/Winter 4.0/.06 0/0 1.0/.03 - 3.0/6.6 1.'3/3.6 2.5/5.8 3.8/16 1..7/6.2 3 .l/9.3 o06/.0~ 0/.01 .008/.01 _10/23 2.1/3.8 4 .. 3/15 NUMBER OBSERVATIONS . ll/4 11/4 11/4 10/3" ll/4 -------------------------... --------------~~··---------------------------------- (1) Table values are mg/1 unless noted otherwise. susi4/i/ ' -19- WATER QUALiTY DATA SUMMARY· SUSITNA RIVER Agency: S:tation: Vee Canyon (Nr. Ca..nt"'!ell) 1962-1972 o. s. Geo~o~rical Survey Elevation: 1900 Ft. " 1eld Rarameters (l) issolved Oxy~~n . c' -' er-cent S~turation • > ~ H, pH Units ' ' ' ~ ond~ctivity, urohos/cm @ 2SC)C , emperature, °C I rE~arbon Dioxide .. · ~Jnity, as; CaCO..,._ '~. · ettleable SoHds 1 ml/1 abora!ory Parameters <1 ) Nitrogen T!!BLE 10 MAXIMUM MINIMUM MEAN Summer Values Only 8 ~ , + :" . 7 .. 2 7.7 250 91 ~50 13.0 1.0 7.7 6.8 .7 2.6 59 39 51 NUMBER OBSERVATIONS 10 38 10 10 ---------------------------' ,, rganic Nitrogen je!c;l~hl~ Nitrogen .... .. _._' . itrate Nitrogen ' --~o~.a~a~~------~o-~o~· --------~··:20~·-----------l~o~---- itrite Nitrogen otal Nitrogen ~§.~:!.~~~·~e~~;J·. otal Pt1osphat~ harni cal Oxygen Deman,f rue Cotor1 Platinum -" ,,: ' • arcj.ness, as, Ca<:o 3 •• susi4/i1 -20- .. !f Laboratory . Param.eters (1 ) (continusd) Sulfate II , Total Dissolved Solids T.otal Suspended Solids Turbidity, NTU Uranium Radioactivity 1 Gross Alpha, pCi/~ Total Organic Carbon · .. Total Inorganic Carbon qrganic Chemicals Endrin Lindane I Methoxychlor Toxaphene 2" 4-D 2, 4; 5-TP Silvex ICAP Scan Ag, Silver AI, Aluminum As, Arsenic Au, Gold B, Boron . Ba, Barium . Bi, Bismuth Ca, Calcium Cd, C.admium Co, Cobalt Cr, Chromium . Cu, Copper -susi4/i/ MAXIMUM 18 110 . 2790. MINIMUM ME·AN Summe.r Values Only 7.5 14 66 90 34 804 NUMBER OBSERVATIONS 10 10 38 ~----J--------------~-----------~------------ j .. ,.. --------------------------------~-27 14 21 10 2-11-l~ -21- Parameters (1) Fe, Iron Hg; Mercury K., Potassium Mg, Magnesium Mn 6 Manganese Mo, Molybdenum· Na, Sodium Ni, Nickel Pb, L.ead • Platinum Sb, Antimony Se, Selenium Si, Silicon Sn, 'Tin Sr, Strontium Ti, Titanium W, Tungsten V, Vanadium •,. Zn, Zinc Zr, Zirconium • . MAXIMUM 12.0 7.3 4.4 MINIMUM MEAN Summer Values Only .as 2.9 1.8 3 .. 4 1.1 2.7 NUMSER OBSERVATIONS 10 10 10 ----------------------------~----~--~------ 6.3 2.1 3.9 10 (1) Table values are mg/1 unless noted otherwise • .. •• . susi4/i/ -22-t.--lt-13 • WATER QUALITY DATA SUMMARY SUSITNA RIVER • AQ.ency: u.s. Geological Survey Station: Gold C:reek Elevation: 676.5 Ft. 1949-1978 Field Parameters (1 ) Dissolved Oxyg.en Percent Saturation p~~ pH Units ~ond~ctivity 1 umhos/cm @ 25°C T-emperature, °C Free· Carbon Dioxide Alkalinity, as Caco 3 . S.e~tteable Solids 1 ml/1 Laboratory. Parameters <1 ) TABLE ll MAXIMUM J? S.l.-t.-I 106/-/- 8.0/8.1/8.0 ·227£:300/121 ;)..3.5lO.SL8.0 20/16/24\ az,a~aLao MINIMUM MEAN ,, .. Summer/Winter-/Break-ue 11.!/-/-12.0/-/- 96/-/-102/-/- 6.6/7.0/6.5 7.4/7.4/7.1 90/164/82 162/248/65 1.0,0.0/1.0 8.6/0.5/3.4 1.1/1.2/5.6 5.6/6.3/8.0 30£:49/29 52/70l48 NUMBER OBSERVATIONS ·:31-1.:. 3 I I . t=l- 31/20/8 60/25/7 22/5/7 60/22/5 ~ " . \ \ 64/23/3 "''-'.-' Ammonia Nitrogen Organic Nitrogen Kjeldahi Nitrogen Nitrate Nitrogen Nitrit~ Nitrogen Total Nitrogen ,36/. 32/ •. 29 .1J2L.05L.OS .13/.14/.17 58l22/3 -o~a-~b~~P~.i~ ~-osst. '' • Total Phosphate Chemica·l Oxygen Demand Chloride True Color, Platinum-Cobalt Unit Hardne$S, as CaCO 3 susi4/i7 15/35/4.5 20/5/50 107/114/113 -,~1- 1.4/9/1.8 5.4/22/3.2 60/25/4 0/0/10 8/3.5/28 52/20/6 35/60/32 61/97/60 58/24/3 .. f ) 0' otal DissolVed Solids otat' Suspended· Soljds urbidity, NTU ., .. '. ranaum MAXIMUM 28/38/27 134/167/70 2630/76/1330 MINIMUM MEAN Summer/Winter/Break-ue 4/13/5.5 17/21/16 51/102/48 93/149/55 2:3/1/120 832/18/652 NUMBER OBSERVATIONS 63/22/2" 59/26/4 59/8/11. ~~~~v~;G~ssAl~a,pdA :'~ot~~~~-----~2~-'~1_-~1_-___ ~2~~~-~~----~~3~/-~~-~·-- otal Organic Carbon . . . otal inorganic Carbon rganic Chemicafs Endrln .dane Methoxychlor Toxaphene 2~ "4-D ~~ 4, S-TP Silvex · ICA'P Scan Ag, SUver AI 1 Aluminum As, Arsenic Au, Go'ld 81 Boron Ba, Barium' . -Si, Bismuth Ca, Calcium Cd, Cadmium Co, Cobalt Cr, Chromium • Copper susi4/i/ 1 .· .. ---------------_.-·--------.. -------------------------· .. :~ 37/11/-37/24/-19/30/-58/26/-~~----~~~~-----=~~~--~~~-- • •.,.'r- ----------------------------~-- -24co .. ..., Laboratory . Parameters (1.) F~, tfon HQ.l Mercury K, potassium Mg 1 . Magnesium Mn 1 Manganese Mo, Motybd~num Na, Sodium I'H, Nickel Pb, lead Pt1 Platinum Sb, Antimony Se, Selenium Si, Silicon Sn, Tin Sr, Strontium ii, Titanium W, Tungsten V 1 Vanadium Zn, Zinc Zr,. Zirconium ·MAXIMUM .46/.:03 .4.4/S.0/1.7 6.3/8 .. 3/7.4 .~8/.0 6.5/17.0/2.9 • MINIMUM MEAN NUMBER OBSERVATIONS Summer/Winter /Break -up 0/0/-.16/.01 27/21/0 1.0/1.2/1.3 2.4/2.3/1.6 49/19/3 1.4/3.6/.3 3.3/5.7/2.~ 55/27/4 0/0/-23/2/0 2.4/5.2/2.8 • 4.1/11.0/2.9 48/19/2 - _________________ _, ____ ---rt .,. 1 .. \, . .,......,.,, ------------------·····. -. ----- (1) Ta~le values are mg/1 unless noted otherwise. susi4/i9 ·J •• .. ,.!).... . -&;;:-u-• z,,....tl-_1 {, .· ~::::: ., ~ \~./ WATER QUALITY DATA SUMMARY SUSITNA RIVER Agency: , Station: Sunshine ·1971-1977 U.Se Geological Survey Elevation: 270 ft$ Diss-olved oxygen . Pel-eent Saturation·· ·pH, pH Units. Conductivity, umhos/cm @ 25°C . ·.Temper-ature, °C F!ti~;;~:$o;:~~: TABLE 12 MAXIMUM 12.8. 102 io6 ~ 170 12.0 . 3.9 43 MINIMUM . Summer/VIinter 12.0 97 99 7.1 7.4 100 132/242 4.0 8.0 2.1 3.2 25 37/il NUMBER OBSERVATJQNS 3 6/1 6 3/1 Settleable Solids, ml/1 ------------------------··-'' Labc:rratory Parameters (1 ) Ammonia Nitrogen Organic Nitrogen . Kjeldahl Nitrogen .... Nitrate Nitrogen ... Ntt.rite Nitrogen . Tqtal Nitrogen ':>rtho• Phosphate T~~aiJJl;~rj;J Chemical Oxygen Demand Chloride • . True Color~ Platinum-Cobalt Unit .. Hardness I as caco.3 , • . ,..,.. . -/.05 -/.18 ~----~-·------~· ·-------------·'~·~4~2--~-------------- .12 .oo .07 4 •:toGG.m. ~-. --~------------------------------------------ "7. 3 2.7 5.3121 72 37 . 54/91 ) '4-fl--l(r}"· · .. :~ "·-,:2 " susi4/i4 ~- -26-* "· Htt· Zl 'l?J NitS trfttrtrtr -rt .. Laboratoty,,f!!:ameters (1 ) (continued) -' .;:;::::..- MAXIMUM Sulfate -12 T<ltal Dissolved Solids SJ.. T;otal'-Suspended Solids 3510 Turbidity, NTU Urani'-'m Radioactivity, Gross Alpha, pCi/1_ Totai Organic: Carbon Total Inorganic C2lrbcn ~rganic Chemicals Endrin Lindane Methoxychlor Toxaphene " 2, 4-D • 2, 4, 5-TP Silvex I CAP Scan Ag, Silver AI, Aluminum As, Arsenic Au, Gold B, Boron Ba, Barium • Si, Bismuth Ca, Calcium 23 Cd I Cadmium Co, Cobalt Cr 1 Chromium Cu, ·-Copper susi4/i5 MINIMUM MEAN Summer/Winter ! . 5.7 9.6/17 102 77/137 288 1419 1:2 17/29 -27- ' .. .. NUMBER OBSERVATIONS 3/l 3/l 6 3/1 . "" :"'- ~/ z -11-18' Fe, Iron Hg, Mercury K, Potassium Mg, :Magnesium Mn, Manganese Mo, Molybdenum Na, Sodium Ni, Nickel Pb, Lead . \Iii' Platinum Tb, Antimony Se, Selenium Si, Silicon - Sn, Tin Sr, Stra,ntium Ti, Titanium W, Tungsten V, Vanadium ... Zn, Zinc · Zr, Zirconium • .MAXIMUM .18 ,,a 3.5 .02 4.4 MINIMUM MEAN Summer /Winter .06 .12/.01 1.1 1,7/2.1 1.6 2. 7/4.5 0 .01/0 1.9 3.0/11 NUMBER OBSERVAThONS 2/1 3i1 3/1 2/1 3/1 --~------~---------------------------------------- --~~-------------------·~ ~-------·---------------- .. 1"~able values are mg/l unless noted otherwise • • • susi4/i6 \ z.-11-1q -28- '0 TABLE 4.1 R&M CONSULTANTS, INC. 1981 WATER QUALi·1Y DATA -SUSITNA RIVER AT VEE CANYON NOTE: Oa;sh indicates data not available Date , 1/13/81 5/20/81 S/18/81 · 'o/30/81 ,, (1) Field Parameters· Dissolved Oxygen 10.7 10.4 ----11.6 Percent Satur~tion 84 83 __ ... _ 99 pHt pH Units 7.2 6.6 7.8 7.7 Conductivity, umhos/cm @ 25°C 242 100 120 124 Temperature, cc 0.1 6.5 11.9 7.9 Free Carbon Dioxide (2 ) 20.0 ----..-3.2 2.2 Alkalinity, as caco3 99 ----79 41 Settleable Solids, ml/1 <<0.1 ¢0.1 ¢0 .. 1 <0.1 Discharge c. f.s. . 1 1 800 9:810 11,600 13,700 Laboratorl! Parameters <1 )(3 ) Ammonia Nitrogen <0.05 0.13 0 .. 12 <0.05 Organic Nitrogen 0.85 0.34 0.63 0.39 KjeldahJ Nitrogen 0.85 0.47 0.75 0.39 Nitrate Nitrngen <0.1 <0 .. 10 <0.10 :~itrite. Nitrogen <0 .. 01 <0.01 <0.01 Total Phosphorus 0.07 <0.05 <0.05 0.49 Alkalinity, as Caco3 _., __ .. ._ ... -------·--- Chemical Oxygen Demand 12 8 8 16 susi9/j 4 -5 ·- TABLE 4.1 -CONTINUED 1/13/81 Laboratory Parameters (1 )(3 ) ( Cont1d) Chloride Conductivity, umhos/ em @ 25 oc 'true Color, Color Units Hardness 1 a$ caco 3 ( 4 ) Sulfate Total Dissolved Solids Total Suspended Solids Turbidity 1 NTU Uranium Radioactivity 1 Gross Alpha, pCi/1 ictal Organic Carbon Total InorganiC::' Carbon Organic Chemicals Endrin Lindane Methoxychlor Toxaphene 2, 4-D 2, 4, S-iP Silvax t JCAP Scan Ag, Silver AI, Alt.:nUnum As, Arsenic Au, Gold B, Boron susi9/] 18 ---- 10 121 16 149 0.6 0.35 <0.05 10.32:0 .. 6 23 106 <0.0002 <0.004 <O.a <0.005 <0., <0.01 <0.05 <0.05 <0.10 <O.OS <0.05 4 .. 6 Oate 5/20/81 6/18/81 .... - 4.5 .. --- 15 40 4 100 93 25 ----_ _. __ 40 46 ---- ---- -..--- -------- .... -- <:0. OS <0~05 <:0.10 <0.05 <0.05 s .. o __ Gil .. 5 49 8 170 340 66 --..a-____ ... 11 46 ---------. --·---------- <0.05 <0.05 <0.10 <0.05 <0.05 6/30/81 5.0 ....... 20 59 7 91 130 29 ---- 23 59 <0.0002 <0.004 <0 .. 1 <0.005 <0.1 <0.01 <0 .. 05 <0.05 <0. 10 <0.05 <0.05 '[ 'r. ., 1 t ' • • • 1 ' ... l '" ... i "rABL.E 4.1 -CONTINUED Date ·- 1/13/81 5/20/81 6/18/81 6/30/81 0-- Laboratory Parameters <1 )(S) (Cont1d) Sa, Barium <0.05 <0.05 0.07 . . 0.11 .. Bi, Bismuth <0 .. 05 <0.05 <0.05 0.1.9 ca, Calcium 36 13 16 19 Cd, Cadmium <0.01 <0.01 <0.01 <0.01 COO/ Cobalt <0.05 <0.05 <0 .. 05 <0.05 Cra, Chromium <0.05 <0.05 <0.05 <0.05 I .cu! Copper <0.05 <0.05 <0.05 <0.05 Fe, Iron <0.05 0.08 0.05 0 .. 07 Hg, Mercury <0.10 <0.10 <0.10 <0 .. 10 -· K, Potas~ium 2 1.6 2.0 2.1 Mg, Magnesium 7.6 1 .. 7 2.0 2.8 Mn, Manganese <0.05 <0.05 <0.05 <0.05 Mo, Molybdenum <0.05 <0.05 <o.os <:0.05 Na, Sodium 6.6 2.0 3 .. 3 4.6 Ni I Nickel <f).OS <0.05 <0.05 <0.05 Pb, Lead <0.05 <0.05 <0.05 <0.05 Pt1 Platinum <0.05 <0.05 <0.05 <0.05 Sb, Antimony <0.10 <0.10 <0.10 <0.10 .Se, Selenium <0.10 <0.10 <0.10 <0.10 Si, Silicon 5 .. 0 1. 7 2.0 2.6 sn, -· <0.10 <0.10 <0.10 <0.10 i 10 ° Sr, Strontiurrt 0.13 <0.05 0.06 0.07 Ti, Titanium <0.05 <0.05 <0 .. 05 <0.05 susi9/j 4 - 7 TABLE 4.1 • CONTINUED Date ·~f!trl, .. 1/13/81 5/20/81 6-./"£8/81 ~Laboratory Parameters (1)(3) (Cont'd) w, Tungsten 0.4 <1.0 <1.0 . v, Vanadium <0.05 <0.05 <0.05 Zn 1 t.inc <0.05 <0.05 0.07 Zr, Zirconium <0.05 <0.05 <0.05 (1) Table values are mg/1 unless noted otherwise. (2) All values for free co 2 determined from nomograph on p. 2.97 of Standard Method, 14th edition. 6/30/81 <1 oO <0.05 <0.05 <0.05 (3) Samples for all parameters except chemical oxygen demand, dissolved and suspended Eiolids, and turbidity were filtered • .. .. . C4) BardD.ess calculated.by R&M personnel. )'susi9/j 4 - 8 , J .J .l ] ~, Jl 1, \.I TABLE 4.2 ,. R&M CONSULTANTS, INC. 1981 WATER Q~ALITY DATA -SUSITNA RIVER AT VEE CANYON NOTE; Dash indicates data not available. Field Parameters (1 ) Dissolved Oxygen Percent Saturation pH, RH Units Conductivity, umhos/ em C9 25 °C ~c Temperature, Free Carbon Dioxide (2 ) Alkalinity, as Caco3 Sett!eable Solids, ml/1 Discharge c.f.s. Laboratory Parameters <1 )(3 ) Ammonia Nitrogen Organic Nitrogen KjeJdahl Nitrogen 8/2/81 11.8 104 7.1 108 8.3 ---- ---'- 1.0 26,375 0.27 0.52 0.79 8/3/81 12.6 107 7.0 106 7.5 __ _._ ---- 0.9 29,420 0.09 0.48 0.57 Date Sampled -.. .. 8/3/81 9/1~/81 12.3 107 7.2 103 9.1 __ ..... .... -- 0.7 28,700 0.11 0.63 0.74 12.6 110 7.7 162 5.9 3.5 62 <<0.1 7,790 <0.05 0.45 0.45 ~0/7/81 13.2 102 7.5 130 0.0 5.5 57 «0.1 <4,500 0.09 0.08 0.17 Nitrate Nitrogen 0.13 <0.10 <0.10 <0.10 <0.10 Nitrite Nitrogen <0.01 <0.01 <0.01 <0.0.. <0.01 Total Nitrogen 0 .. 92 0.57 0.74 0.45 0.17 ~~ ·~!..,.,,r~ .... ; ·'*'*"••••• ,, -,. !!!iOi !? ., , .•"flf':· .... Po..~4!t:'lrf!"'~ ~~·~· • · . · · Orthc~Phasr.haie'··~"';:.·~:-E~:r~~·~-:.~&*f-s:;;e¥i.tP"wt!*"!t:".l;;.~o· ,;:'f!-: .. ~.:;:~"r--'<·;·a·· · o~ .... : ··~~· ~.~:<· :·o:·\ ·a· r· · ·· ~·''"··:;.;;.--;;,.r.:.-·"':· ~-·, •. ..,:tto!!·~~o~J"P·~-""\ = ...... w•·-~ -· .. ~~r-' ••. ·-·.~ ~ ... :: •• ·~:':;.•7-'•i..""'-:·"-::.·•.'~:::: .• :·~• ;;~:::. ~:"'~o •·: • .· •.· .. • '~' .. " .. • ., . "'ir.,U" •. \.-:.1." •.• · • ~ . ., c;:, :::.~/ ,es;; """"*· .aw4:6..:·~E&~··-·=syw~;$V'b""'''~l~.i;.~;~';;H-L'""~~ti.o;.;~.:!'ii'n'.;:;o.;.·;;~·.:n; .. t·r.-,:..,· ,_......no...., .. ;.:.......... ,., ... .-..,.~-...~~, ,• ;.., . .;,,•;.,..,~.... '. Total Phosphorus <0.05 0.08 <0.05 <0.05 <0.'05 Alkalinity, as Caco 3 44 46 40 60 ---- susi9/j 4 - 9 ?_,-II• -z,q TABLE 4.2 -CONTINUED Date Sampled -----~------~~~~~-~---------------10/7/81 (1}(3) . LabC"lratory Parameters (continued) Che!fric:al Oxygen Demand Chloride Condu.:tivity, umhos/cm @ 25°C T.rue Color, Color Units Hardn.ess, as caca3 (4 ) fJ Sulfate Total Dissolved . Solids ' .•... · ' .... ~ TDtal Suspended Solids Turbidity, NTU Uranium Radioactivity s Gross Alpha, pCi/1 T.otal Organic Carbon TotaJ. 1 norganic. Carbora Organic Chemicals Endrin Lindane Methoxychlor "'roxaphene · 2, 4-D 2, 4, 5-TP .Silvex ICAP Sean ., Ag, Silver AJ, AI umlnum A:;,, Arsenic Au, Gold B, .Boron susi9/j 8/2/81 8/3/81 - 27 <1.0 ., .... 150 51 4 90 1150 108 <0 .. 05 ---- 15 54 ----- --------- ---------.--- <0~05 <0.05 <0.10 <0.05 <0.05 4-10 39 <1.0 .-.--- 150 51 2 105 870 120 <0.05 ---- 20 56 ----..... ... -------.... .,. ---- <0.05 <0.05 <0.10 <0.05 <0.05 8/3/81 9/15/81 20 <1 .0 175 51 2 91 745 112 <0.05 .... -- ·13 49 .... ca ---- .... -- ----__ .__ ---- <0.05 <0.05 <0.10 <0.05 <0.05 8 6 ....... 50 72 8. 120 40 8.7 . 8 16 ----- 301 78 11 143 14 2.5 <0.05 <0.05 5.0±2.5 ---- ------c.--- 60 ---- <0.0002 <0.004 <0 .. 1 <0.005 <0.1 <0.01 <OoOS <O.QS <O~ 10 <0.05 <0.05 1,_, .. _ . ., --~- ----------_ .. _ .. . . <0.05 <:0 .. 05 <0~\10 <0.05 . <0 •. 05 ,; , .. • TABLE 4.2 • CONTINUED • Date Sameled 8/2/81 8/3/81 8/3/81 9/15/81 10/7/81 Laborator:t Parameters <1 )(J) --· -· (continued) . ... .. Ba, Barium 0.12 0.10 0 .. 10 <0 .. 05 <0.05 Bi, ·Bismuth <0.05 <0 .. 05 <0.05 <0 .. 05 <0.05 . Ca, Calcium 17 17 17 23 25 Cd, Cadmiun <0.01 <0.01 <0.01 <0.01 <0.01 Co1 Cobalt <0.05 <0.05 <0.05 <0.05 <0.05 Cr, ·Chromium <0.05 <0 .. 05 <0.05 <0.05 <0.05 Cu, Co.pper <0 .. 05 <0.05 <0.05 <0.05 <0.05 Fe, Iron 0.13 0.10 0.08 <0.05 <0.05 Hg, Mercury <0.10 <0.10 <0.10 <0.10 <0 .. 10 K, Potassium 1.9 1.9 1. 7 2 9.0 Mg, Magnesium 2.1 2.0 2.1 3.4 3.8 Mn f Manganese <0 .. 05 <0.05 <0.05 <0.05 <0.05. Mo, Molybdenum <0.05 <0.05 . <0.05 <0.05 <0.05 -- Na, Sodium 2.7 2.5 2.6 5.1 6.3 Ni, Nickel <0.05 <0.05 <0.05 <0.05 <0.05 Pb, Lead <0.05 <0.05 <0.05 <0.05 <0.05 Pt, Platinum <0.05 <0.05 <0.05 <0.05 <0.05 Sb, Antimony <0.10 .<0.10 <0.10 <0.10 <0.10 . Se, Selenium <0.10 <O. 10 <0.10 <0.10 <0.10 . Si, Silicon 2.2 2.2 2.4 3.2 3.7 -Sn, Tin <0.10 <0.10 <0.10 <0.10 <0. 10 Sr, Strontium 0.06 <0.05 0.06 0.08 Oo06 Ti·, Titanium <0.05 <0~05 <0.05 <0.05 <:0.05 susi9/j 4 -11 TABLE 4.2 -CONTINUED Date Sampled 8/2/81 8/3/81 8/3/81 9/1S/81 L b t Par. ameters (1 ){3) a ora orv (continued) • <1 .. 0 W, Tungsten · <1.0 <1.0 <1 .. 0 <0.05 <0.05 Vanadium <0.05 <0.05 v, <0.05 Zn, Zinc <0.05 <0.05 <0.05 <0.05 zr, Zirconium <0.05 <0.05 <0 .. 05 (1) Table ·values are mg/l unless noted otherwise. (2) All-values for free co 2 determined from nomograph .on p. 297 of Standard Method, 14th editiona {3) Samples for all p~r'ameters except chemical oxygen demand, dissolved and suspended solids, and turbidity were filtered • .. " -(4) Hardness calculated by R&M personnel .. • susi9/J 4 -12 10/7/81 <1.0 <0.05 <0.05 <O.OS t r t •• .f' t t ,4 . L. , . . :~ ' .. . .. ' TABLE 4 .. 3 R&M CON-SULTANTS, INC. , 1981 WATER QUALITY DATA -SUSITNA RIVER AT GOLD CREEK I ,0 1 ·' ~· NOTE: Dash indicates data not available. Field Parameters (1 ) Dissolved Oxygen Percent Saturation pH, pH Units Conductivity, umhos/cm @ 25°C Temperature, oc Free Carbon Dioxide (2 ) Alkalinity, as caco3 Settleable Solids 1 • ml/1 Discharge c.f.s. Laborator~ Parameters (1)(3) 1/14/81 13.3 101 7.1 ·2,49 0.3 20.0 74. ¢0.1 ...... <0.05 0.81 0.81 Date 5/27/81 (A) 11.2 102 6.7 105 10~5 ....... - ---- ¢0.10 14,400 <0.05 0.34 0.34 5/27/81 (B) 11.5 101 6.4 106 10.3 ---- ---- <0 .. 10 14,400 0.08 0.27 0.35 . . .. 6/17/81 ---ell- ... .., .... 7.7 126 12.8 3.0 64 ~0.10 17,700 0.09 0.39 0.48 Ammonia Nitrogen Organic Nitrogen Kjeldahl Nitrogen Nitrate Nitrogen 0.18 <0.10 <0 .. 10 <0.10 Nitrite Nitrogen <0.01 <0 .. 01 <0.01 <0.01 ' '·~ ..... Total Nitrogf!n 0.99 0.34 0.35 0.48 -a•:.:.!'\ft;.po_::;;;h,"!' ,~~Ah~.?.i ... ;.-..?ff~t&V~~~C}'t~~.)!!,.£:.:'!ti'fo¥GS.W tW'<-41$8!-1<~-''*'i\...-;::t?"~~-'-''•"" ""'*'"11-.f'!"*''"~w.w"" ,. .... -.J'<l•.......,.."':':'~,...,.,.,. ~··~--·~~·...,'+',."' ... ~ n.ua• asp ate •:. . . . . ~ c•;''~"'' ··-···""!"~.<·;·~'-·····~lf'll.' ,......'1"~.··.·-l> :·"··<··a Q"' ··. . ~<· ·~··o-r. -. J!l"'a 01 ~. . '""''"';,...... ... ;,.. .~ · ... :~:: , ... _ ·.·.:_:;..;.}.: :·•;~ .~:;.:·: ~u .• u ..:".:: .~.~ ... ·~'·· _ e. ,._.. · .•• u.. ,· "' ., ·t;. •.. "' --a-• --·---• . -» -.. fllliii>.,CW6'"'s ct c·m • m•·>ll>fc..V&'r v-'iV'zW''Hffr'-<fiS·liw)l"'?-;;;::;&e~:~r1·"'.t»••••HZ-;;::.::.,J-,.."'"··· • --· _,., ·· . -·· -.~ ·':tt .• •· _ ...... .., .• , ·-· H ~ 1 Total Phosphorus <0.01 0.08 <0.05 <0.05 > AlkaHnity, as caco 3 -------------·~ .. ·. susi9/j 4 -13 > . TABLE 4.3 -CONTINUED Laboratory Parameters (1 )( 3 ) ( Cont'd) ,-... ~ . ·Ch4!mical Oxygen Demand Chl.oride ; ~ ' . Canductivityr umhos/cnt @ 25°C True Color 1 Color Units H . 'd . c ,...0 (4 ) ar ness, as a.... 3 Sulfate Total Di.ssolved Solids Total Suspended Solids Turbidity 1 NTU Uranium ~adioactivfty 1 Gross· Alpha, pCi/! . Total Organi~ Carbon Total Inorganic Carbon Organi~ Chemicals . -· .. Endrin Lindane Methoxychlor .Toxaphene 2, 4-D 2, 4, 5-TP Silvex IC.AP Scan I A91 Silver AI, Aluminum As 1 Arsenic Au, Gold B, Boron susl9/j 1/14/81 16 29 81--- 10 121 16 188 <1.0 0.30 <0.05 2.0±o.4 39 90 <0.0002 <0.004 <0.1 <0.005 <0.1 <0.01 <0.05 <0.05 <0.1 <0.05 <0.05 4 -14 5/27/81 (A) 8 10 ---ca 15 43 6 90 56 15 ----.... _., 15 41 ____ .. ----.... a.. .. ., ... ------ <0.05 <0.05 <0.10 <O.OS <!LOS Date 5/27/81 (B) 12 6 10 43 5 87 49 19 .. --- --tia- 25 44 ---- ---· ---- ·--·-o -------- <0.05 <O.OS <0.10 <O.OS <0.05 6/17/81 ~~ 12 5 ------ 5 52 5 98 120 31 -----...... 41 45 ------____ .. ---~ -----· .._ ..... ~----- <0.05 ' <0.10 <0.05 <0.05 TABLE 4 .. 3 -CONTINUED Date 1/14/81 5/27/81 5/27/81 6/17/81 (A) (B) "• Laboratory Parameter~ (1 )(3 ) (Cont1d) . .. . .. Ba, Barium 0 .. 05 0.07 o.os:~ 0.06 Bi, Bismuth 0.07 <0.05 <0.05 <0.05 Ca, Calcium 32 14 14 15 .... Cd, Cadmium <0.01 <0.01 <:0. 0\~ <0.01 . Co, Cobalt <0.05 <0.05 <0.05 <0.05 Cr1 Chromium <0.05 <0.05 <:0.05 <0.05 Cu, Copper <0.05 <0.05 <Oo05 <0.05 ~~-' Fe, Iron <0.05 0.07 <0.05 2.0 Hg, Mercury <O. 1 <0.10 <0.10 <0.10 K, Potassium 2.0 1.9 1.8 2.0 Mg, Magnesium 10 2.0 2.0 2.6 .. Mn, Manganese <0.05 <0.05 <0.05 <0.05 Mo, Molybdenum <0 .• 05 <0.05 <0.05 <0 .. 05 Na, Sodium 13 4.1 3.9 3.8 Ni, Nickel <0.05 <0.05 <0 .. 05 <0.05 Pb, Lead <0.05 <0.05 <0.05 <:0.05 . Pt, Platinum <:0.05 <0.05 <0.05 <0.05 Sb, ·Antimony <0.10 <0.10 <0.10 <0.10 Se, Selenium <0.10 <0.10 <:0.10 <0 .. 10 Si, Silicon 5.0 2.5 2.4 5.9 c Sn, Tin <0.10 <0.10 <0.10 <0.10 Sr, Strontium 0.19 0.07 0.06 0.06 Ti, Titanium <0.05 <0.05 <0.05 0.11 '~, ~~usi9/j s· 4 -15 cz._.. I 1-3o • . . ' TABLE 4.~ -CONTINUED Laboratory Parameters (1 )(3 ) ( Cont'd) Wr Tungsten Vr Vanadium Zn, Zinc Zr 1 !:Zirconium 1/14/81 <1.0 <0.05 <0.05 <0.05 5/27/81 (A) <1 .0 <0 .. 05 <0 .. 05 <0.05 (1) table values are mg/1 unless noted otherwise. Date 5/27/81 (B) <1 .0 <0.05 <0.05 <o:o5 (2) All.values.for free co 2 determined from nomograph on p. 297 of l3tandard Method, 14th edition. 6/17/81 <1.0 <0.05 <0.05 <0.05 (3) Samples for all parameters except chemical oxygen demand, dissolved and suspended solids, and turbidity were filtered. (4) Ha~dness calculated by R&M personnel. (A) Grab sampling method. (B) Depth -integrated sampling method • . ,' • « ~~ • "· '.' 'l~lt-31 SIJSi9/j 4 -16 r~ . ~~·. t.r ~ ji J ;J if ~ I TABLE 4.4 R.&M CONSULTANTS, INC. ~ • 1981 WATER QUALITY DATA -SUSITNA RIVER AT GOLD CREEK E: ' Oash indicates data not available. Date Sampled 6/30/81 7/1/81 8/2/81 8/3/81 ..... iss~!y_~d Oxygen 13.4 13.4 12.5 13.2 Saturation 114 116 113 115 · , pH Units 7.0 7.3 7.5 7.3 ctivity, umhos/cm @ 25°C gg, 109 75 91 emperature, °C 7o3 8.6 9.3 9.2 ree Carbon Dioxide (2 ) 8.6 3.3 ----__ .. ._ kaHnity, as CaCO 33 25 .., ___ ---- 3 ettteabfe Solids 1 ml/1 0.1 <0.1 <0.1 0.60 9/14/81 10/8/81 [2.8 14.1 107 101 7.4 7 .2r t . FS-.:.._ ·j 144 162 6 .. 8 0.8 4.8 9.0 45 46 «0.1 <<0.1 2,4,550 21,700 51,100 46,000 12,600 6,300 (1)(3) ia Nitrogen 0.07 0.08 <0.05 <0.05 <0.05 0.52 rganic Nitrogen 0.48 0.39 0.63 0.67 0.74 0.47 jeldahl Nitrogen 0.55 0.47 0 .. 63 0.67 0.74· 0.99 itrate Nittogen 0.22 Oo 17 0.32 0.18 <0.10 <0.10 itrite Nitrogen <0e01 <0.01 < 0 C"' . • I I o1:al Nitrogen 0.85 0.74 0.99 ~··-~';."':"'1-.... ,_.,....... •. t"'_~ .. ::.~""""':"''*"'¥'\'~"t "' .. <0.01~ 0.01 a. ' 0.07 <0.05 <0.05 <0."~ Al!kalinity, ~o~. as Caco3 ---------28 36 .. ~._,._ '0' ,._._ ... susi9/j 4 -17 Z--11-3'2- 1 '\ TABLE 4 .. 4 ... CONTINUED Date Sampled ------~----------~~~~-~~~--~----------- ·. .• . (1)(3\ Laboratory Parameters · ~. ·(continued) Ct-iemlcal Oxygan Demand Chloride Conductivity 1 umhtls/cm @ 25°C ' ~-. ·' . True Color, Color Units Hardriess 1 as c~co 3 (4). .lfate Total DissoJved Solids Total Suspended Solids Turbidity, NTU Uranium Radioactivity, Gross Alpha, pCi/1 Total Organic: ·Carbon T'otal Inorganic Carbon . Organi.e Chemicals. Endrin Lindane Methoxychlor Toxaphene ;' 2/ 4-0 . 2, 4 1 S•TP SiJvex JCAP Scan • Ag, Silver 1\ I A h , .... ;.-u 11'1'1. ,..,. t I """'• .,. •' •" • ._., n As, Arsenic ~ Au, Gold a, Soron . susi9/j 6/30/81 7/1/81 8/2/81 8/3/81 24 12 23 24 4 5 <1 <1 .. Cia-~ ---.-.., ___ .. ___ 30 20 90 110 40 47 31 43 s.s 5.2 1.5 2.4 68 79 f1 96 140 68 490 1255 29 18 64 86 .,;-·---~~--<0.05 <0.05 ----_ ....... -----.... _. ... 20 10 16 14 41 44 34 44 ........ -<0.0002 ..... ~-. e • ., .. _.,.. __ <0.004 _ ...... al!l--- ----<0.1 ------~-- .. -... -~ <0.005 -----.... .__ ----<0.1 ----... ..,.. __ __ .. _ <0.01 --------- <: 0. 05 <0.05 <0.05 <0.05 4!' 1\ 1\C: 'VeV.., <0.05 <0.05 0.08 <0.10 <0.10 <0.10 <0.10 <0.05 <0 .. 05 <0.05 <0 •. 05 <0.05 <0.05 <0 .. 05 <0 .. 05 4 -18 9/14/81 10/18/81' 18 2 f) 14 .... -.. ~·---- 50 -40 62 68 6.2 9 .. 5 99 118 57 7.7 14 1.2 <0.05 <0.05 5.5±2.5 --··- 33 . 34 61 ....... .a <~)..0002 .. -~- <U.004 ..... _ .. <10.1 ......... . "'~ <0.005 __ .. _ <:0.1 ---.aa <0.01 --....... 1'.• <0~05 ' <0.05. <n n~ ,..,. v~ <t.l..,OS. <0.10. <0. 10 <0.05 <0 .. 05 . <0.05 <0.05 f, ~ ·~--ll-33 t 1. -, . - r I !f . ~ l fT• ... n ~ n .. · \.' r. ..• '( ~ r ? .t• ~. l' t '-~ ... .. r ·1\. TABLE 4.4 -CONTINUED Date Sameled _,. "l 'I--'' 6/30/81 7/1/81 8/2/81 8/3/81 9/14/81 10/8/S'"t --.-·- /! : ~" [ Param~ters (1 )(3 ) . .. . Ba, Barium 0.09 0.10 0 .. 09 0.11 0.11 <0.05 Si, Bismuth <0.05 <0.05 <0.05 0.19 <0_.05 <0.05 .. Ca, Calcium 13 14 10 14 20 22 ,, Cd, Cadmium . <0.01 <0.01 <0.01 <0.01 <0.01 <0.01. ; . c• Co, Cobalt <0.05 <0.05 <0.05 <0.05 <0.05 <0 .. ()5 Cr, Chromium <0.05 <0.05 <OoOS <0.05 <0.05 <O.(Jf Cu, Copper <0.05 <0.05 <0.05 <0.05 <0.05 <O.o~·~~" Fe, Iron 0.07 0.07 0 .. 10 0.07 <0.05 <0.05 Hg, Mercury <0.01 <0.10 ~0.10 <0.10 <0.10 <0.10 K .. I Potassium 1.4 1.5 1.3 1.9 2.0 2o4 Mg, Magnesiurn 1.8 2.8 l':'L; 1.4 1.9 2.9 3 .. 2 .. Mn, Manganese <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 Mo, Molybdenum <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 Na, Sodium 3.8 4.3 2.8 3.4 6.2 7.4 . Ni, Nickel <0 .. 05 <0.05 <0.05 <0.05 <0.05 <0.05 Pb . I L.ead <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 Pt, Platjn~m <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 Sb, AntimO':'Y <0.10 <0.10 <0.10 <0.10 <0.10 <0, 10 Se, SeiEanium <0.10 <0.10 <0. 10 <0 .. 10 <0.10 <0.10 Si, Silicon 2.6 2.8 2.6 2.7 3.4 3.9 Sn, Tin <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 Sr, Strontium 0.06 <0.06 <0.05 0.06 0-0~ 0.10 Ti1 Ti~nium <OoOS <0.05 <0.05 <0.05 <0.05 . <0.0$~ • ,_ . ' ~ "" _, susi9/J 4 .. 19 2:'~11-31/ ( TABLE 4.4 -CONTINUED -Date Sampled G/30/81 7/1/81 -8/2/81 8/3/81 9/14/81 . . (1)(3) Laboratory Parameter!!, · ~ I'·' (contiou.ed) ~ , • .. \ W·,-;]:~ng$:ten ·' V 1 Vanadium Zn, Zinc Zr 1 Zireonium ' <1.0 <0.05 <0.05 <0.05 <1.0 <1.0 <CJ.OS <0.05 <·0.05 <0.05 <0.05 <0.05 '(1) Table values are mg/1 un.less noted other~ise • . <1.0 <1.0 .<0.05 < o.os~ <0.05 <0.05 <0.05 <0.05 (2) All values for free co 2 determined from nomograph en p. 297 of StaJ?-dard Method~ 14th edition. (3) Samples for all parameters except chemical oxygen demand, dissolved and suspended solids, and turbidity were filtered. (4) Hardness c:alcul~ted by R&M personnel. susi9/j 4 -20 ·[ 10/8/81 [ <1 .. 0 <0'.05 <0.05 <0.05 r - r L J! i r ' ~ :.: . ~~ ·, ,j;i., "--' .. l 0 :t• rl J) -· ~ield Parameters <1 ) , .. Dissolved Oxygen Percent Saturation pH, pH Units TABLE 5 .. 1 WATER QU"}LITY DATA SUMMARY SUSITNA RIVER Agency: U.s. Geo 1 ogi ca 1 Survey Station: .. ,. f-IR. DENALI -1957-1981 Efev~tion: 2440 FT. Summer /Winter .Maximum Minimum ---.,. 7.8/7.6 7.1/7.1 • Mean - 7.5/7.4 Conductivity, umhos/cm @ 2S°C 205/467 121/194 157/349 Temperature, °C Free Carbon Dioxide Alkalinity, as Caco3 Settleable Solids,. ml/1 labor§itory Par'atneters (1) Ammonia Nit~en Organic Nitrogen Kjeldahl Nitrogen Nitrate Njtrogen Nitrite Nltrogen Total Nitrogen 10.5/- 5 .. 8/25 68/161 - --.. .09/- - 0.5/-5.5/- 1.5/4.5 3.2/10/8 42/57 54/116 - - - .00/-.05/- .. . .. Number Obser- . vatiohs - 15/4 18/4 50/- 11/4 11/4 15/-- ~· ~ • 'I [, • A > • ~ , t, ~ , f , '· • , • • ". _ _..-'-~ .-.. ;, •• • ., •• ~ •. • ·• ~· .,.. • ,,_:'-"i,•C ,,~~~,'f~~ . . . -· . Total Phosphorus --- AlkaHnity, as· caco3 -... -- Chemical Oxygen Demand --- Chloride 11.0/30.0 2.0/3.8 4.8/19.0 11/4 5.2 • •• susi6/s8 (1) .Laboratory Parameters (continued) Conductivity, umhos/cm @ 25°C True Color" Color Units Hardness, as caco3 Sulfate Total Dissolved Solids Total Suspended Solids Turbidity, NTU Uranium Radioac:tivity, Gross Alpha, pCi/1 Total Organic Carbon Total Inorganic Carbon Organic Chemicals Endrin .Lindane MethoxychJor Toxaphene 2, 4-0 2, 4, S ... TP Silvex ICAP Scan ~ Ag, Silver AI, Aluminum As, Arsenic Au, Gold B, Boron Sa, Barium Bi, Bismuth .. Ca, Calcium Cd, Cadmium Co, 9obalt Cr, Chromium C':J.t Copper TABLE 5.1 CONTINUED Summer/Winter Maximum - 87/181 23/39 120/270 5690/- 350/- --- -- --- -- --- 29/51 - - Minimum 50/84 9/31 72/109 5/- 20/- - -- -- - ... - ---- ... - ... 17/23 ... - ... - Mean 64/139 15/36 91/204 1004/- 176/- - - - - --- - - 21/40 - •,'c '. __...,..-"" :-;::;:-__:_:=;:-;:::;:/" susi6/s9 TABLE 5~1 CONTINUED . Summer/Winter · Maximum Minimum La~or'ator~ Parameter! <1 ) (continued) :Fe, Iron 4.0/.06 .03/0 -... Hg, ·.Mercury K Potassium 3.0/6.6 1.3/3.6 I Mg, Magnesium 3.8/16 1.7/6.2 . .06/.02 0/0 Mn, Manganese Mo, Molybdenum Na, ·sodium lC/23 2.1/3.8 Ni, Nickel -.. -Pb,. Lead Pt, Platinum -... Sb, Antimony -- Se, Selenium - Si, Silicon -- sn, Tin - • Sr 1 . Strontium Ti, Titanium - w, Tur~gsten - v, Vanadit.im -.~. Zn 1 ·-Zinc - ' Zr, Zirconium -.. (1) Tabl~ values are mg/1 Wlless noted otherwise .. 5.4 . Mean 1.0/.02 2.5/5.8 3.1/9.3 .009/.01 - 4.3/15 --- - -- . .. Number Obser- vations 11/4 11/4 11/4 10/3 11/4 - - J . '· . • • susi6/s4 TABLE 5a2 WATER QUALITY DATA SUMMARY SUSITNA RIVER Agency: U.S. Geological Survey Station: VEt: CANYON 1962 -1981 Elevation: 1900 FT. ·~ ----------------~S~u~m~m~e~r_V~a~lu~e~s~O~n~I.Y _____________ , __ Field Parameters (1 ) Dissolved Oxygen Percent Saturation pH, pH Units Cond~'ctivity 1 umhos/cm @ 25°C Temperature, oc Free Carb!.:ln Dioxide AI kalinity, as caco3 Settleable Solids, ml/1 Laboratory Parameters <1 ) .... Ammonia Nitrogen Organic Nitrogen Kjeldahl. Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Nitrogen Ortho .. Phosphate •TcattrPhes,.JiNaFutAI x AI kalinity, as Caco3 Chemical Oxygen Demand Chloride Maximum Minimum -- 8.1 7.2 168 91 13.0 1.0 6.8 .7 59 39 -- 0.88 0.0 ------ -- 9.2 2.1 s.s Mean 7.7 150 7.7 2.6 51 -- .20 '· - ·- -- 5.5 Numl• Obse;· vatior :;.. lO 25 • . • 38· 10 10 ·--- 10 ... -- lQ i J ~ ~ i ' • l • . j l z .... ,,-3, susiS/sS Laboratory Parameters <1 ) (continued) Conductivity 1 umhos/cm @ 25°C True Col~r( Color Units Hardness, as .cac.o 3 Sulfate Total Dissolved Solids . Total Suspended Solids. Turbidity', NTU Uranium Radioactivity, Gross Alpha 1 pCi/1 Total Organic Carbon Total tnorga~JiC: Carbon Organic Cf1_~mical§"';' -.. ;, . -~ ~--=-~ ::;.::::::.:-.. Endrin Lindane Methoxychlor Toxaphene ;' ·.~·,' 4-0 _J \ ~·;, 4, S"TP Silvex ., ICAF Scan Ag, Silver AI, Aluminum As, Arsenic Au, Gold B, Boron Ba, Barium Bi1 Bismuth Ca, Calcium Cd 1 C~~mifJm co, Cobalt Cr, Chromium Cu, Copper TABLE 5.2 CONTINUED Summer Values Only Maximum - 40 76 18 110 2790 ----- --- -- ---- 27 --- 5.6 Minimum - 5 42 7.5 66 34 - --- - -- -- - 14 ---- .Mean - 14 62 14 90 773 -- - --- - - - -- 21 ---.. . • Number Obser• vations - 9 10 10 . 10 38 - ""' - - -- 10 - - ll t '--';:;~ sb$i6/sS ., TABLE 5.2 CONTINUED ' ,, ·Summer Values Onl;t ' Num( Obse· Maximum Minimum Mean vatic '\ \\· . Laborator}! Parameters ~1) (continued) Fe, Iron 12.0 .05 2.9. 10 Hg, Mercury K, Potassium 7.3. 1.4 3.4 lO· Mg,. Magnasium 4.4 . 1 .. 1 2.7 10 . Mn, Manganese • 23 0 .12 2 ·" Mo, Mo1ybdenum -- Na, Sodium 6.3 2.1 3.9 10 Ni 1 Nickel - Pb, Lead - Pt, Platinum --- _.. Sb, An~imony - Se, Selenium -"!' - Si 1 Silicon -·- Sn, Tin -- Sr, Strontium "' - Ti, Titanium -- w, Tungsten -- v, Vanadium -- Zn, Zinc -- "ZI'" I Zirconium --- .. (1) Table values are mg/1 unless noted otherwise. 5.7 · susi6/tl TABLE 5.3 WAT.·flR QUALiTY DATA SUMMARY SUSITNA RIVER Agency: R&r-1 CONSULTANTS, INC. Station: VEE CANYON 1980 -1981 Elevation: 1900 FT .. · ~OTE: Not Detectable is abbreviated i1D • Summer/Winter /8 rea k-Ue. . .. .. Maximum Minimum Mean . (1) . Field Parameters Dissolved Oxygen 12a6/13.8/1Q.4 8.7/10.7/10.4 11.5/12.6/10.4 Percent Saturation 110/104/83 82/84/83 99/97/83 pH, pH Units 7.9/7.6/6.6 7.0/7 .. 2/6.6 7 .. 6/7.4/6.6 Conductivity, umhos/cm @ 25°C 171/242/100 103/130/100 129/171/100 Number Obser- vations · 8/3/1 8/3/1 10/3/1 9/3/1 ~ 11.9/0.1/6.5 --..,:~;., ... / Temperaturt.!, °C 5.3/-0.1/6.5 7.7/0.0/6.5 10/3/l . Frt:~ C2r:bon Dioxide (~) 4.5/20 .. 0/-1.7/5.5/-3.0/10.3/-7/3/0 AI kalinity, as Caco3 81/187/-41/57/-61/111/-7/3/0 Settleable Solids, ml/1 l.O/ND/ND ND/ND/ND 0 .. 27/ND/ND 10/3/1 Laboratory Parameters (1 )(3 ) Ammonia Nitrogen 0.27/0.26/0.13 ND/ND/0.13 0.11/0.12/0.13 9/3/1 Organic Nitrogen 0.63/0.85/0 .. 34 tm/0.08/0.34 0.44/0.40/0.34 9/3/1 Kjeldahl Nitrogen 0 .. 79/0.85/0.47 0.26/0.17/0.47 0.60/0.52/0.47 9/3/1 Nitrate Nitrogen 0.19/ND/ND r~D/ND/NO 0.07 /NO/NO 10/3/1 Nitrite Nitrogen rm NO NO 9/3/1 Total Nitrogen 0.92/0.85/0.47 0.39/0. 1Jf.0.47 0.61/0.52/0.47 9/3/1 P. aae,qs.e .. *!'£'!!'!!::#....].X.S,04Af4C. #(.)$54$JS! .. .QlJt#:""!CJ .. AC!pc*·~.! ll!l 4 -..'! P.54if!!FC,.'·¥. .J e .. ~. e __.,.._,,........._..~ -OPtf~piRfp.ft'i!U: · ". ..,.::~~c::.~r;:~~?~ ai~9ta.oz?r•o~ .·~ .~. ND:'ND/NB ·. ·· . · ~··. a· 06/·o· n1/ .. N~o-'~·-···y··~,·.· 31. 1· · .! ~ ~ .. . . _.,_.........,._.._~,.....:~t.... . I· .. , .• . /o,. --" • • • U · . . j ·+¢• I..,...''? . s"'tt .. rist*e·>ridt?ear-rye-.r~;.:rtzrte¥;,;.;e:?:f&1'Wet'i ... · .. , rc ....... --·· I, t,mn ''fd r =·em Me··· ;; rrtts·r.-·ku dtzl'd r CI~~;;;.,;.,.M'10Wm~;'··k" .. , .. '*'"' ..-~, Total Phosphorus 0.49/0.07/ND ND/ND/ND 0.08/0 •. 02/ND 10/3/1 Alkalinity, as Caco 3 60/66/-40/66/-48/66/·· 4/1/0 Chemical Oxygen Demand 39/12/8 8/6/8 20/9/8 8/3/1 Chloride 11/18/4.5 f~D/16/4.5 4.7/17/4.5 10/3/1 \J~ s.a . z. ~lt: '(" · .. · '' susi6/t2. Laboratory Paramete'r.! (1 )(3 ) ·(continued) Conductivity, uJTA~os/cm @ 25°C True Color 1 Color Units Hardness 1 as caco3 (It) Sulfate Total Dissolved Solids Total Suspended Solids Turbidity, NTU Uranium TABLE 5.3 CONTINUED Summer/Winter/Break-Up ~------~~~~~;.;..:..;~~_,;;;;,lb.-____ ...;,;":. Maximum - 175/30/15 76/121/37 . 9/16/4 170/149/1 00 1150/14/93 120/2.5/25 NO Minimum Mean 5/10/15 51/78/37 2/11/4 38/115/100 25/0.6/93 8.7/0 .. 35/25 ND 72/70/15 58/96/37 l 6/13/4 98/136/100 398/7.6/93 . 68/1.6/25 Numt Obse vati~ -I 9/Stj 10/~· Radioactivity, Gross Alpha, Total Organic Carbon pCi/1 ND 11.6+0.6/10.3+0.6 -- 10/~. 10/~ 10/3 10/~ 5/2/ l/1/: 5/1/l 6/2/' Total Inorganic Carbon ~'""'ganic Chemicals tndrin Lindane Methoxychlor Toxaphene 2, 4-0 2, 4t 5-TP Silvex ICAP Scan '"Ag, Silver AI, Aluminum As, Arsenic Au, Gold 8, Boron Ba, Barium Bi, Bismuth Ca, Calcium • Cd, Cadmium Co, Cobalt Cr, Chromium Cu, Copper 23/23/40 60/106/46 NO NO NO NO ND NO NO 2.2/0.18/NO NO NO NO 0.12/NO/NO 0.19/NO/ND 23/36/13 NO NO NO NO 5.9 11/23/40 46/21/46 NO ND NO NO NO NO NO NO/ND/NO NO NO NO NO/NO/NO ND/ND/ND 13/25/13 NO NO NO NO l-6/23/-40 Scl/64/46" ND NO NO ND ND NO NO 0.41/0.06/NO ND ND NO 0.07/ND/ND 0 .. 02/ND/ND 18/30/13 ND ND · NO · •· Nil. 3/1/ 3/l/ 3/1/ 3/1/ 3/l/ 3/1/ 10/3- 10/3 10/3 10/3 10/3 l 10/3 ! l0/31 10/3 .; 1or~ l0/3 . 10/3: 10/3; (1) Table values are mg/1 unless noted otherwise. (2) All values for free co 2 determined from nomograph on p. 297 of Standard Method,. 14th edition • . (3) Samr)les for all parameters except chemical oxygen demand dissolved and suspended solids, and turbidity were filtered/' ' ,(4) Hardness ~alculated by R&M personnel. 5.10 n · ... • ' i>•-~··-., • • • .·., ' . Laboratory Parameters (1 ) .... Ammonia Nitrogen Organic Nitrogen Kjeldahl Nitrogen • TABLE 5.4 WATER QUALITY 'OATA SUMMARY SUSITNA RIVER Agency: Station: U.S. Geological Survey GOLD CREEK 1949 -1981 Elevation: 676.5 FT. .33/.08/- .39/.44/- -. .01/.03/- .10/.27/- • 13/.06/- .27/.36/- 4/3/- 4/3/-. Nitrate Nitrogen .36/.32/.29 .02/.05/.05 .13/.14/.17 60/22~ Nitrite Nitrogen .03/.01/-: .02/0/-.02/0l-2/3)..; ' Total Nitrogen .58/.66/-.25/.51/-. .47/.57/-. 4/3/· 119t .. _-.. •riA~-..-... •~.C .. :.¥'f-:.~fL-Yi~;;%-J52f./·,r;_~;!tff:f;4--..~o<;;.Jl~~---2!-.''H< _ t ... .:. 141,_a 1 ..... •~ :o+-• z .. ~".'~_,f'!""·fd'·. <"»r»< ~~·~ .. <~_. q!(«_. ,!Qila~~·~u--•e QOUA tH. ·_Ortbo-Phosphate ,.,.., .. .,;;;ii!~ww~~-~.0~1,..031-,..,r·-·-:,...,.QL..Ql/.:-L___.:,: · :. .... Ol/ ... 02[: "d ·;.,;·.·=' 9[2/1 + -. • .. ' ... -~ --i. •It. <I •• Tt;~tal Phosphorus • 04/. 03/-0/.03/-• 02/. 03/-5/2/1 ------:' ·-. '- .. .,. - AI kalinity, as Caco 3 Chemical Oxygen Oemand Chloride 15/35/4.5 1.4/9/1.8 ·•· sz/2s. 5.5/22/3 .. 2 S.ll susi6/s2 · TABLE 5"4 CONTINUED Summer/Winter/Break-Up Laboratory Parameters (1 ) (continued) Conductivity, umhos/cm @ 25°C True Color, Color Units Hardn~:s.st ascaco3 .. Sulfate Total Dissolved Solids Total "Susp·ended ~lids Turbidity 1 NTU Uranium Maximum. 20/5/50 107/114/113 '28/38/27. 134/167/70 2620/76/1330 - Radioactivity, Gross Alpha, pCi/1 50/-/- To~l Organic Carbon - Total Inorganic Carbon Organic Chem~cals Endrin lindane Methoxychlor Toxaphene 2, 4·0 2, 4, s~TP Silvex !CAP Scan Ag, Silver AI 1 Aluminum As, Arsenic Au., Gold B, Boren Ba, Barium Bi, Bismuth Ca, Calcium Cd, Cadmium Co, Cobalt Cr, Chromium Cu, Copper .... . - 0/-/- -- 01-1- - 37/11/- 0/-/- 0/-/- .0l/-/- .OOS/-1- • S.l2 Minimum 0/0/10 35/60/32 1/13/5.5 51/102/48 7/1/120 -- ----- 0/-1- 0/··/-- 371'24/- 0/-/- Ol-1- 01-1- .0041-1- ·Mean 8/3.5/28 61/97/60 17/21/16 . 93/149/55 805/18/652 - 20/-/- 5.5/5/1.8 ... 0/-/- - 0/-1-- 19/30/ .... 0/~/- 0/-/- .. 005/-/- .004/-/- .. Number Obser- vations - 52/20/6 60/24/3 65/22/2 61/26/4 63/8/11 3/l/1 1/1/1 --- 21-l-- 2/-/-- 60/26/- 2/-/- 21-1 ... 2/-/- .. j 2/-/-~" <+,•"' susi6/sS . TABLE 5.4 CONTI·NUED ______ ___;s;;..;u::;;.;.m;;.;.;m.;.;.;e::;;.;.r.:-/Wlnter /Break-Up Maximum Mjnimum Mean .J Parameters (1) Laboratory ... (continued) l' .46/ o03/-0/0/-.16/.01/-Fe, iron Hg, Mercury .002/-/-0/-1-, .0011-1- K Potas·sium 4.4/5 .. 0/1.7 1.0/1.2/1.3 2.4/2.3/1.6 . I -Mg, Magnesium 6.3/8.3/7..4 1 .. 4/3.6/.3 3 .. 2/5.7/2.5 Mn, .Maog~nese .. 18/.0/-0/0/-.010/0/- -· Mo, Molybdenum - Na, Sodium 6.5/17.0/2.9 2.4/5.2/2.8 4.1/ll.0/2o9 Ni, Nickel 0/-1-OI-l-Ol-1- Pb, . Lead ' ' OI-l-OI-l-01-1- Pt, Platinum ·-- . '. st); Antimony -~· --. '~ Se, Selenlum 01 ... 1-OI-l-0/-1- Si, Silicon . -- sn, T.in -- Sr, Strontium "" Ti, Titanium -- w, Tungsten --- v, Vanadium -·-- Zn, Zinc .011-1-.0061-1-.008/-/- Zr, Zire'dnium --- . (1} !able. values _are mg/1 unless noted otherwise. . • 5.13 --·--Numb Obser· vatic;t -:.i f' ·~t ' • . . 30/21/ 21-1-'r: ~ ... 51/18,~ 57/27/.' ' ' 26/2/Cf.. ·" - 48/19t~ , 2/ .. J-·~ 2/-1-·- -(' -( - .... ( - ' ~.-. f~, ·::-.. ~ ~ :"~-\~ susi6/t1 '' TABLE 5.5 -,: WATER QUALITY DATA SUMMARY SUSITNA RIVER Agency: R&M CONSULTANTS, INC. Station: GOLD CREEK 1980 -1981 Elevation: 676.5 FT. • NOTE: Not Detectable is abbreviated NO ,, <' ~ SummerL!Vinter/Break-Up Number -.. Obser- Maximum Minimum Mean vations Field Parameters (1 ) Dissolved Oxygen Percent Saturation pH, pH Units Conductivity, umhos/cm @ 25°C Temperature, °C Free Carbon Dioxide <2 > . Alkalin~ty, as Caco3 Settleable Solids, ml/1 Laboratory Parameters (l )(3 ) Ammonia Nitrogen Organic Nitrogen Kjeldahl Nitrogen 13.4/14.1/11.5 8.6/13.3/11.2 12.3/13.8/11 .. 4 116/101/102 81/100/101 108/101/102 7.8/7.8/6:7 7.0/7.1/6.4 7.4/7.4/6.5 169/249/106 75/162/105 116/193/106 12 .. 8/0.8/10.5 6.E3/0.0/1 0. 3 9.4/0.4/10.4 36/23/-2.1/3.2/0 17/13/- 64/144/-25/46/-44/88/- 0.6/NO/ND N:)fND/ND 0.1/NO/ND 0.09/0.52/0.08 ND/ND/ND .04/0.28/.04 0.74/0 .. 81/0.34 0.39/0.34/0.27 0.55/0.54/0.31 0.74/0.99/ND 0.47/0.66/NO 0.59/0.82/0.34 6/3/2 6/3/2 7/3/2 7/3/2 7/3/2 5/3/- 5/3/- 7/3/2 6/3/2 6/3/2 6/3/2 Nitrate Nitrogen 0.,32/0.18/ND NO/NO/NO 0.15/.06/NO 7/:~i'l. Nitrite Nitrogen NO/NO/NO NO/flO/NO NO/NO/tiD 6/3/2 i. ~. ' Total Nitrog_en ~ 0.95/0.99/0.35 0.48/0.65/0.34 0. 74/0.88/0.35 6/3/2 "':'"" . '.t "!"''~~·..-.::1:"'"".-:~ .. ::'f!!.ii?.!i.e;;i.0~·¢1*''5i!Ji.!L.-j..~i•·~ ....,.EPSfJaac.za ·' ~~'?? '·' '5~~ .... u.•!~~ ...... '~"··: ~.i.":"!".7'~-"'!:?'.7',...'~"" .. '?""-:"~.....,_,.~_.--~.-• Ortho-Phose_hatf.t >:~-'>"::::.~f~--.:.;~r;~~.!-~-~:·~· Q;J0/0.02/ND' .. ·. NO/flO/NO: ·. · :. 0.01'/0 .. 01/ND 7/3/2.' ·· ::: -· .. · ,. · r·s ·r" * --· ·r•re:baeey·-sttMa,;sztai.iit6si.J.¥w·t.a1iif'li'qnOWrloert'·dt cs&DYft'·';<d''f' tit ..• E!· «t h .. , ·a&· id+· · ......... ·--H • · · • = · •• •• ,..;..,... -J. Total Phosphorus 0.34/ND/0.08 ND/NO/fiD 0.08/ND/0.04 7/3/2 Alkalinity, a~ Caco3 ---_ Chemical Oxygen Demand 24/16/11.9 12/2/7.9 18/9/10 7/3/2 Chloride 14/29/10 ND/14/6 5/20/8 7/3/2 5.14 ,, . . i \..;.;;.;;i/ .• • . susi6/t2 · TABLE 5.5 CONTINUED Maximum . (1)(3) Laboratory Parameters · · . (continued) Conductivity/ umhos/cm @ 25°C True Color, Color Units . (4) 110/40/15 62i121/43 ·12/16/6 . 99/188/90 1255/7.7/56 86/1.2/19 Hardness, as CaC0·3 Sulfate Total Dissolved Solids Total Suspended Solids Turbidity, NTU Uranium Radioactivity 1 Gross Alpha 1 Total Organic Carbon Total Inorganic Carbon Organic Chemicals Endrin Lindane Methoxychlor Toxaphene 2,. 4-D 2, 4, 5-TP Silvex I.CAP Scan· ~g, Silver AI, Aluminum As, Arsenic Au, Gold. S, Boron. Ba, Bari~m Bi, Bismuth Ca, Calcium Cd, Cadthium Co,,· Cobalt Cr, Chromium Cu, Copper NO pCi/1 -/2.6/- 41/39/25 6J/90/44 .ND ND NO no ND ND ND 0. 70/0. 18/NO NO ND NO 0.11/0.05/0.07 0.19/0.07/NO 20/32/14 NO NO ND NO 5.15 Summer/Winter /8 rea k-Up Minimum - 5/10/10 31/68/43 1.5/9e5/5 63/100/87 57/ND/49 14/0.3/15 NO -/2.0/- 10/27/15 34/90/41 NO ND ND NO NO ND ND ND/ND/ND ND NO NO 0.06/ND/0.05 NO/ND/ND 10/22/14 NO ND ND ND Mean 50/20/13 48/88/43 5.4/11o8/6 82/135/89 329/5/53 43/0.S/17 ND -/2.3/- 20/33/20 45/90/43 ND ND NO ND ND ND ND 0.13/0.06/ND . ND ND ND 0.09/0.02/0.06 0.03/0.02/ND 14/26/14 ND NO. NO NO 7/3/~ 7 /3/;. 7!312 713/~; 1/3/"i. 7 /3/~. ' 3/1/t 3/1/c:: '• 3/1/t 713/'L 6/3/2; .. 7/312;: 1/312. 7/3/2 ... 7/3/2!, 7/3/2· 7/3/2 71 7/3/2 7/3/'2 7)3/2. susi$/t3 ..t TABLE 5.5. CONTINUED J..~-·:r:::, Summer/Winter/Break-UE Number Obser- Maximum Minimum 'Mean vations . •· ' . (1)(3) Laborator:t Param~ters (continued) Fe, Iron 2.3/0.35/0.07 ND/ND/0.05 0.67/0.12/,.06 7/3/2 Hg, Mercury ND ND Nt; 7/3/2 K, Potassium 2.0/2.4/1.9 1.3/2.0/1.8 1.7/2.2/'L9 7/2/2 Mg, Magnesium 2.9(10.0/-2.0 1.4/3.2/2;)0 2,3/5.6/2.0 7/3/2 . .. Mn f Manganese NO ND r~o 7/3/2 Mo, Molybdenum NO NO NO 7/3/2 Na, Sodium 6.:!13.0/4 .. 1 2.8/7.4/3.9 3e9/9.6/4.QO 7/3/2 Ni, Nickel ~D '" ND t4D 7/3/2 Pb·, Lead r~o NO NO 7L3/2 Pt, Platinum NO NO ND 7/.3/2 Sb, Antimony rto NO NO 7/3/2 Se, Selenium i~O NO NO 7/3/2 J ~ ... _.._ ... Si, Silicon 5.9/5.0/2.5 2.6/3.9/2.4 3.5/4.4/2.5 7/3/2 Sn, Tin NO NO r~o 7/3/2 Sr, Strontium 0 .. 09/0.19/0.07 N0/0.10/.06 0 .. 05/0.13/0.07 7/3/2 Ti, Titanium 0.14/NO/ND UO/NO/NO 0.04/f~D/NO · W, Tungsten NO NO NO V, Vanadium NO NO NO Zn, Zinc r~o NO ND Zr, Zirconium NO NO NO (1) Table values are mg/1 unless noted oth~rwise. (2) All value$ for free C0 2 determined from nomog1;aph on p. 297 of Standard Method, 14th edition • . (3) Samples for all parameters except chemical axygen demandt dissolved and suspended solids, and t"Ut;r:bidity were filtered. (4) Hardness calculated by R&M personnel. 5.16 7/3/2 7/3/2 7/3/2 7/3/2 7/3/2. Z-...;ff-SO • ,'.; 1' . susi6/s7 TABLE S.G j -l l :j WATER QUALITY DATA SU.MMARY SUSITNA RIVSR -j Age~,cy! Station: Elevation: U.S. Geological Survey SUNSHINE -1971-1977 270 FTs il, ~( -· ' Summer/Winter -t Num, ... i ObsE. • Maximum Minimum Mean vatia: Field Parameters (1 ) Dissolved Oxygen. Percent Saturation pH, Pr units Conductivity, umhos/cm @ 25°C Temperature, °C Free Carbon Dioxide AI kalinity, as caco3 Settleable Solids, ml/1 Laboratory Parameters (1 ) ... Ammonia Nitrogen Organic Nitrogen KjeJdahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen 12.8/13 - 7.6/7.2 170/242 12/0 3.9/0 ·43/71 .28/.05 .77/.42 - - 10.6/13 7.1/7.2 100/230 3.8/0 . 2.1/0 25/63 - .09/.0j .24/.18 . - 11.8/13 3/1 -/90 0/1 1.4/7.2. 3/1 130/236 5/2 8.1/0 5/1 3.1/0 3/0 37/tt7 3/2 -- .18/.·04 2/'i. .5/.3 2/~ --· -... .... - Tot" I Nitrogen . . 2. 3/.7 . ~>;..Z!..:...4__ . __ 1/. 25 2/~ ; ~ ~ .. '·' , f..+=q~.~~~J.14£!~·.1f_; .. Wif!.S¥.:'.?*··4•;nys -~--. ~· .. f•·•~ ·~ ~ ..... :; · ·-"'.7":..4 ?. , ..... ;; .. · Ortho!""Phosphate · ..... "·: .. " ··.:·. · .1'2/~12. . · 0[.:12 . . . . . ..• 06/12 3/·, ..... 'rtt Ptf i'S¥' '9 . S ·~ C r 'ff· "liijis)'kt ~,j'· ;j a·~·; "'it 'n3t •esb .. jp·t"p'y ~'" .. 7 w;sbr-....-•e>ze t#r-u·M t! II ... ~1¥!'1·.._. lio~ ............. ~ ..... We«6'1i '¢sa k. j Total Phosphorus • 14/:01 • 07/ fl 01 · • 07/.01 2/} AI kalinity, as Caco3 ... ~ .. (:h .. emical Oxygen Demand ... 41!1 ChJoride 7.3/21 2.2/17 . 4.2/19 s/; ,1:: . 5.17 ' susil5/s.8 Labo~ltoty Parameters (1 ) (can:trnu•~d) . • I Cclrlductivity 1 umhos/c:m @ 25°C Tr•t.le Color, Color Units Hi•rdness, _as caco3 S~;df~te T;C)~ial Dissolved Solids TcdlL Suspended Solids . : . . I ,..~.~,rbidity, NTU tir·ariium Ftadio'actlvity 1 Gross Alpha~,· pCi/1 ·rl;,tctl ·Oraanic Carbort . ',. ""' . ·rotal 'lncrg11nic Carbon ~o~rganil_c Chemicals Sndrin lindane Methoxychlor Toxaphene 2, 4-D 2, 4, 5-TP ~ilvex ICAP Scan Ag, Silver AI, Aluminunl As, Arsenic Au, Gold B, Boron Ba, Barium Bl, Bismuth Ca 1 Calcium Cd, Cadmium Co, Cobait Cr, Chromium Cu, Copper TABLE 5.6 CONTINUED Summer /Winter ~-' ------------~~~=-~-~~~----------------~ Number Obser-. vations Maximum. 100/0 72/91 13/18 -- 250/1.3' - ... .. - .. - - 0/0 - .003/.001 -- .07/.04 23/29 0/0 0/0 .01/.01 ,004/.004 S.lS Minimum 8/0 37/R9 3Fl1 - 200/1.3 ---- - --- 0/0 - .002/.001 -- 0/.04 - 12/29 0/0 0/0 0/.01 .002/.004- Mean 44/0 3/1 52/90 5/2 9/17 5/2 -~ .. 225/1.3 - - ... .. .002/.001 -- .04/.04 - 17/29 0/0 0/0 .005/.01 .003/.004 2/1 - - 2/1 - 2/1 - 2/1 5/2 2/1 2/1 2/1 2/1 \,~) $USi6/s9 ! / . . p t (1) Laboratory · arame ers ---·- (continued) Fe, Iron Hg 1 M~rcucry ·' ·' K, Potas.sium Mg, Magnesium Mn, Manganese Mo, Molybdenum Na, Sodium Ni, Nickel Pb, Lead Pt, Platinum Sb, Antimony Se, S~lenium Si, Silic;on Sn, Tin Sr 1 Strontium Ti, ·Titanium W, Tungstan V, Vanadi~m zn~,· Zinc Zr, Zireonium TABLE 5.6 CONTINUED Maximum • 18/.01 .001/ .. 001 2.8/2.1. 3.5/4.5 .02/.004 - 4.4/11 0/.002 0/.008 .., 0/0 - - .02/.03 - Summer/Winter Minimum Mean .06/.01 0/.001 1.1/.19 1.6/4.1 0/0 1.9/11 .001/.002 0/.008 - 0/0 -- - .006/.03 .. .12/.01 .001/.001 1 .. 6/2.0 2.5/4.3 .009/.002 - 2.8/ll .001/~002 0/.008 0/0 - .01/.03 - (1) Table values are mg/1 un.le~s noted otherwise. I' 5.19 'Z-li·SJ r ... £ Number Obser~ · vatiC!f,.. 2/lt 2/1 5/2 ir-. 5/2(j_ 4/2 . -o[ 5/2 2/1 .. 2/lli- . l 2/1 • : Jr --J. - - Jf ·.· .~t' l J !f:. ~ ~· ;-; ll susiS/s1 TABLE 5.7 WATER QUALITY OJ).TA SUMMARY SUSITNA R!VER Agency: U.S. Geulogical Survey Station: SUSITNA -1955-1981 Elevation: 40 FT. • ---~-----------~S~u~m~m~e~r/W~i~n~te~r~/:B~re~a~k~-~U~e ____________ __ · .. Maximum Minimum Mean Field . Parameters (1 ) - Dissolved Oxygen 13/13.9/12.7 10~1/9.9/10.6 11.5/11.5/12.1 . 100/97/100 90/67/95 99/79/98 Percent Saturation pH, pH Units 8.3/7.9/7.8 7/6.7/6.5 7.7/7.3/7.3 Conductivity, umhos/cm @ 25°C 168/225/120 90/179/85 120/205/94 -Temperature, °C 12.5/0oS/8.0 3.6/0/4.5 8.8/0/6.3 Free Carbon Dioxide -- Alkalinity, as Caco 3 57/75/39 39/58/30 44/69/34 Settleable Solids, ml/1 -"" Laboratory Parameters (1 ) Ammonia Nitrogen • 19/.09/.21 0.0/.01/.01 .. 04/.04/ .. 08 Organic NitTogen 1.5/.46/.70 .16/0 .. 0/.16 .50/ .. 27/ .. 43 Kjeldahl Nitrogen -- Nitrate Nitrogen -/.19/--/ .. 16/-... ;.18/- Nitrite Nitrogen. ... -- Number Obser-- vations 12/12/4 53/19/11 62/45/18 21/20/6(~ ' '· 109/S2/3:r - 52/30/6 - 15/7/3 12/9/2 - 0/2/0 Total Nitrogen 1.7/.99/1.2 .26/.24 .67 o72/.55/.87 22/17/5 -Orth0-~Phosphatft.· .. .-~:-::.:;;.;,· .. ~::~~-.~-~: .. :..;;.~f..;.l.O:f.··.:··= ... ;.;.:~~.: .. :.::, . .:.:.·. ~oa:·~~:·: >·.··:·~~ :· ·:. ·-/' ai· · . -~·~~O;:O~•l*+i';"?;M"''""""? ·'........ ..,._ · · ·, 't C'!'te .. _.,.. an+oW%~ ·e;;=~~ .. -~ ... 1}···"'""" .. -'''" ·.~ ~ ~-·~ · ~ ··.~.. :.. ~:--·.-· ' ·-· · ..... ~' .... .. .. ~!..~.::.:.~. ~._. ... ...:a-~~ -~ .... ~ . .:;:_i,:.,..,..,~.._J Total Phosphorus · · ·-- Alkalinity, as c:aco3 Chemical Oxygen Demand Chloride -- 6.7/18/4.6 5.20 --- 1. 2/5. 7 I 3. 1 2.8/12.9/3.6 23t2t/GU • susi6/s2 .. ~· -Laboratory Parameter~ (1 ) (continued) Conductivity, umhos/cm @ 25°C True Color, Color Units Hardness,_ as caco3 Sulfate ·· Total Dissolved Soiids Total Suspended Solids Turbidity, NTU Uranium Radioactivity, Gross Alpha, pCi/1 TABLE 5.7 CONTINUED Maximum 10/5/- 60/96/48 22/20/7.1 82/139/65 2980/12/683 790/3/160 - Summer Minimum 5/0/- 46/73/36 1/10/3.7 57/105/52 151/2/257 30/1/25 -.. 'Total Organic Carbon 11/9.3/9.1 2.3i.4/3.8 Total Inorganic Carbon Organic Chemicals Endrin Lindane Methoxychlor ~oxaphene 2, 4-0 2, 4, 5-TP Silvex ICAP Scan -.Ag, Silver ., AI, Aluminum As, Arsenic Au, Gold B, Boron Ba, Barium Bi, Bismuth Ca, Calcium Cd, Cadmium Co, Cobalt · Cr, Chromium Cu, Copper - -..... ----- . .003/0/-0/0/-- .003/ .. 003/.001 .001/0lcOOl' 2.0/1.0/1.0 22/31/15 .. 002/.002/ .. 002 .007/.003/- .030/.020/.020 .007/.004/.020 5.21 - .3/.4/.1 14/24/11 .001/.001/.002 .002/.002/- 0/0/ .dos · · .00~/0/.002 Mean 7.5/2.5/- 55/84/40 13/17/7 75/123/55 745/4.4/461 286/2/74 - 4.2/2.4/6.0 - --- .001/0/- - 4/4/: .. ; ' i 8/10,~ ~ -t ' r i -' -, ; -. 6/2/C .017/.013/:001 10/Sr --.... ' - .8/.6/.1 - 18/27/13 .015/.015/.002 .• 003/ .. 003/~ .014/.008/.013 • 003/. 002/-~ 008 Z-11-SS ,, '7/5/t.;: -r > 23/21~ -8/4/2.~ .. ~ 9/6/q .. 8/4/Z'· 10/9/·· susi6/s3 ··.. (1) r-ameters ·· Fe1 Iron Hg, Mercury K, Potassium Mg, Magnesium Mn,. M~nganese ·l'Jio, ··Molybdenum N~r· Sodium Ni, Nickel" Pb 1 Lead Pt,. Platinum Sb, .~ntimdny Se, Selenium Si, Silicon Sn, Tin Sr, Strontium Ti, Titanium W '· Tungsten V, Vanadium Zn, Zinc Zr, Zirc:cnium TABLE 5.7 CONTINUED Summer /Winter /Break-Up Maximum Minimum Mean .460/.160/.170 .010/.060/.110 .091/.091/.144 Number Obser- vations . 12/8/5 .0005/.0005/.0005 0/0/~0001 .. 0003/.0002/.0003 12/8/5 .0018/.0025/.0011 .001/.0014/.0008 .001/.002/.001 23/21/6 .003/.005/.003 .002/.004/.002 .003/.004/.002 25/20/5 . /020/.030/~070 .004/.010/.008 .009/.022/.010 .. 16/8/5 - 4.0/8~9/3 .. 2 2.0/6.2/2.4 2.7/7.6/2.9 23/21/6 • 004/.003/-0/.002/-.001/.003/-4/2/0 .009/.004/.011 .002/0/.002 .003/.002/.005 12/8/4 ---- - - .001/.001/.001 0/0/.001 .,0006/.0009/.001 11/8/5 -------.. -- .020/.020/.020 .003/.003/.020 .012/.012/ •. 020 0/7/4 -... (1) Table values ar.e mg/1 unless noted othe1."Wise. 5.22 :'~" t c • . \ ~ ~ i ~ ~ ... '! ~ .;. t · . . . . . .. . ' .· . .. . . .. ~· ' ........ .. . .. . ... :. ~ ._,. .. ,. '· . .. -. ... .. . • ........ -. .. . ... . '. '"y '· ·~ . .. .. ·' . . -· . ' .~. .. -. .. . · . · . .. . ·. ·. . . .. .. ....... . . . . -· ··, ........ .-,· .: . . .. ' -... ,, .• ., . ·. ~SUSITNA HYPRO~LECTRIC PROJECT=· .. . · ... . • !. ·' • I .. 1982 .. .. .. , "' ' .. ,_ . ~ . ~· .. . . -r-.- _, ... .... I ... .. : ~ . " I• .,., _. .. • "~ ~~ ... ~... ...... - ·:-.. .: ·-'4 '$-..... f" -.:.: .. ..__ / TABLE 2.~. -· ..': (;:' · · "· ·:';·.·cr· , -. . R&M CONSULTANTS, 'NC • . ~1982 .WATE.R QUALITY DATA -SUSITNA RIVER AT VEE CANYON (RM 223. 1) .; .... NOTE: .· Dash indicates data not available. · Field Parameters ( 1) Dissolved Oxygen 'r:! ,: .• 'Percent Saturation pH, pH Units · Date Sampled 2/4/82* 14.5 101 5.95 Conductivity, umhos/cm @ 25°C ~:·':\ Temperature, C)C · Free Carbon Dioxide (l) AlkaHni~, as, Caco 3 S~ttleabfe Solids,. mill t)ischarge c. f~·s., Laboratory Parameters (l) (3) Ammonia Nitrogen . Orsanic. Nitrogen Kj eJdahl Nitrogen ~.-'a Nitrate Nitr9gen Total Phosphorus AI k~'lirHty, .as, Caco3 Chemical Oxygen Demand · Chlorioe I· ConductivitY, umhos/cm @ 25°C~ True Color, Color. Units c) ; o.~ ,· ----- < 1 0.30 0.02 ----- 13 18.0 5@ pH 7.1@ 12.8°C 2-14 • W ., . ' sl7/h. . : . "(1)(3) Laboratory Parameter~ · · (continued) Hardness, as Caco3 (4 ) S:u:Ifate Total Dissolved Solids I iotal Suspended Solich; Tu.rbidity, NTU Uranium Radioactivity, Gross Alpha, •... pCill_ . ·· ·' Total Organic Carbon ... Total Inorganic Carbon Ca, Calcium Mg, Magnesium K1 Potassium _ Na, Sodiurn Fe, Iron Si, Silicon ., .) ....... Date Sampled '2/4/82* 122 18 157 - 1.3 0.55 _' __ _ 2 2 40.59 5.0 4.5 12.0 1.35 5.0 * Analysed by Northern Testing Laboratories, In<:., Fairbanks. , (l) Table values are mg/1 unless noted otherwise. (2) AU values for free co 2 determined from nomograph on p. 297 of Standard Method, .14th edition.. • · (3) Samples for· all parameters except chemical oxygen demand, dissolved and· suspended solids, ang .~urbidity were filtered . .. -4) Hardness calculated by R&M personnel. 2-15 ..... ·,-·z 11· ...... ~-.... ·. ~ ~-.. · .sl sl7/h. Nt Fi TABLE 2.3 R&M CONSULTANTS, INC. 1982 WATER QUALITY DATA-SUSITNA RIVER AT GOLD CREEK. (RM 136.7) NOTE: Dash indicates data .not available. Date Sampled 2/06/82* 7/10/82 7/16/82 7/23/82 8/05/82* 8/10/82* Field Parameters (l) Dissolved Oxygen Percent Saturation pH, pH Units Conduc(~vity, umhos/ ·.em@ 25°C Temperature, °C Free Carbon Dioxide (2 ) AI kali n ity, as Caco 3 Settleable Solids, ml/! Discharge c. f.s. 230 0.0 11.7 110 183 12.0 21,700 11.8 108 157 10.5 24,200 11.6 105 117 10.5 23,600 10.8 104 149 12.4 ---- 16,300 11.4 103 124 9.6 L Laboratory Parameter~ (1) (3 ) Ammonia Nitrogen Organic Nitrogen Kjeldahl .Nitrogen . . Nitrate· Nitrogen <0.01 ---- <1.00 0.34 0.15 0.50 0.65 0.28 0.21 0.51 0.72 <0.10 0.08 0.56 0.64 0.57 ----- 4.80 0.86 0.03 0.06 0.29 Nitrite Nitrogen <O.Oi <0.01 <0.01 <0.01 <0.01 Total Nitrogen 1 .34 0. 93 0. 82 1. 21 5~ 66 . 0..35 ,.6M:It zp· ·h··.·=ij:?·@~h··:!"WtC I £1 ...... 9£ a:...:""x .. t_.._{+;E ri'!;;¢:;:11!4~.-.;.,!.\ • I A<qi$.4: :=~·!: -.;; \ ,!! .. , •>. hi #. I ·"'!"'< '• • •., • ~NM • .. ;a I !'!'""~-~.,..-'l : .. · o:: osp a e~ •. ··~ .~~~;·:~ .. ~::::~._ ; .. .:.u:.,v4:::·,:~:.;,:; <0:,01:.;. ~ .. ,. <O .... Ot: · <O .... Ot . .;.--~· ·~, ·· · v:.Ot ,. . .... __ ~ .......... , ... 1 •> -*s 1 ft tc·...;; .. ,+ ·"M ·v -~-:·· ·· _,_ · '11<, ~ •':a:-;'f-1>· ..... ~ "" -~~·a· ;:. ..... _.;, ·. · J:,.... ___.~ .. ~ --.. --_, ~ ... • .. ·-, ~ ~ • ~· . · · 1 ~aa. _ -.......... ··-., -.... --·'rY ~tn*"i.J<··••n:rJ·.-t_., .• , .... s>e..,:-..lte. ------• ._4..,.,_....,.:,~~~~:, .. -:;-:~ ~ .,_ . . .. ,. ~ ... ~ .-... •; T<>tal Phosphorus 0.02 · 0.10 0.21 0.43 o.'of~--·-o:o·r Alkalinity, as Caco 3 ----43 Chemical Oxygen Demand 10.0 5.0 1.3 4.1 6~0 T .0 • Chloride 26.0 ·conductivity, umhos/cm @ 25°C---- -........ -....... u· ------ 12.0 ------True Color, Color Units 2-16 s11/h i .....-~ • ··)TABLE 2.3. (Continued) . · NOTE: Dash indicates data not available. Date Same led 2/06/82* 7/10/82 7/16/82 7/23/82 8/05/82* 8/10/82* Laboratory (1)(3) Parameters · · (continueuj Hardness, as CaC03 (4) 104 97 48 Sulfate 17.0 6.1 <1 .0 <1.0 14.7 14 .. 8 Total Dissolved Solids 166 85 100 72 89 103 Total. Suspended Solids 1 580 56 213 231 206 -,, Turbidity, NTU -------·---. Uranium ---4") -~ Radioactivity, Gross Alpha, pCi/1 ---... Total Organic Carbon 1.0 2.8 2.5 1.4 2.1 Total Inorganic Carbon 4 11 11 12 12 Ca, Calcium 34.4 ....... ----33.5 16.2 . Mg, Magnesium 4.4 3.1 1. 7 K, Potassium 2.7 1. 9 1.3 !\.( I"«Ci,. Sodium 21.1 4.3 10.0 .. . . .. * Samples that were ahalysed by Northern Testing Laboratories, Fairt:;,~r1ks. Other laborCJtory analyses were performed by Chemical and Geologicar Laboratories of Anchorage, Alaska. · ·- (l) Table values are mg/1 unless noted otherwise. (2) AI! values for free co2 determined from nomograph on p. 297 of Standa.rd Methods, 14th edition. • (3) Samples for all parameters except chemical oxygen demand, dissolved and suspended solids, and turbidity were filtered • • 4) Hardness calculated by R&M personnel. .. s17/h TABLE 2.3 (Continued) N• NOTE: Dash indicates data not avai.lable. F Field Parameters (1) :Dissolved Oxygen Percent Saturation pH, pH Unit$ Conductivity, umhos/ em @ 25°C Temperature, °C Free Carbon Dioxide (2 ) Alkalinity, as Caco3 Settleable Solids, mill Oischarge c.f.s. Laboratory Parameters (l) (3 ) · Ammonia Nitrogen Organic Nitrogen Kjeldaill-Nitr.ogen Nitra,te Nitrogen 8/10/82 15,,400 0.07 <0.05 0.07 <0.10 Date Sampled 8/26/82* 9/04/82* 9/15/82* 10/14/82* - 10.5 95 6.83 135 10.5 12,000 0.18 <0.1 <0. 10 11.6 'iOO 133 7.8 13,500 0.02 15.00 0.14 11.1 103 7.8 29,400 0.02 <0.01 <O. 10 84 0.0 7,300 --.-; .. <0.10 0.12 Nitrite Nitrogen <0.01 <0.01 <0.01 <0.01 --""- Total: Nitrogen . . -.,.....~, r 1:111 "'~~~~~...,.~·-""•.,.. .. ___ • ,.. ... ~'o·r:ffia;.pfic)s:" li~t··~ .. N:•_t}H'f.',;;.-:~.t~:§~.f?~F< ... 'o 01)~' ~! .. s:*!:r~??"''.t ·a'v.£ ·a·,--.· .... o. ...... f .n,,. o" ~ .,~ ~ w ..... ~ ... "' ... a·· .. &0. 1: ~ "" ... ~ a ;.~, -~ ~ ·' • .. ,p e-.,'H-r•','!'O< •. ~ •. -~:::.~~···~ •'' • ;~,,' '•• < . • • <•.J .... ,', ·. < . .----. '• • ' ·;. • · ··;; 'xi·s+'t -, · 'ei£"'eH'ii'~~,.-E¥GA't'itf .... ?i ti··P ·,,;;.· s:r·e--.-· · *" " .......... ,brei -·= .. -· ....... ·~-~~-.-..-·~·- Total Phosphorus <0.05 0.02 0.01 <0.01 0.01 Alkalinity, as Caco3 ----37 40 35 Chemical Oxygen Demand 1.3 <1 .0 <1.0 7. 5 Chloride ·---8.8 6.4 5~2 Conductivity, umhos/cm @ 25°C 37 37 ---- True Color, Color· Units ..... --. 2-18 6.0 9.0 ......... s.17/h f.rABLE 2.3 (Continued) '-' - NOTE: Dash indicates data not available. Laboratory Parameters(l) (4) Hardness, as CaC03 Sulfate T eta I Dissolved Sqlids Total Suspende:·d Solids Turbidity r NTU Uranium Radioactivity, Gross Alpha, pCilJ Total Organic Carbon Total Inorganic Carbon ,, Ca, Calcium Mg, Magnesi~m K, Potassium· Na, Sodium 8/10/82 -·-~· 6.0 100 181 ----- __ ...... 2.0 8.7 Date Sampled 8/26/82* 9/04/82* 9/15/82* 10/14/82* 37 11.5 95 219 1. s 11 12.9 1.2 1. 6 6.7 37 11.5 68 60 ---- 2.2 9.6 12 .. 4 1 .4 1.4 6.5 3.2 83 231 3.8 8.6 16., 2.4 0.9 6.0 67 15.8 104 7 21.0 3.4 •t.2 8.4 * Samples that were analysed by Northern Testing Laboratories, Inc., Fairbanks. Other laboratory analyses were performed by Chemical and Geological Laboratories of Alaska, Anchorage. (1) Table values are mg/1 unless noted otherwise. (2) All values for free co2 determined from nomograph on Pa 297 of Standard Methods, 14th edition. · (3) Sample$ for all p"arameters except chemical oxygen demand, dissolved and suspended solids, and turbidity were filtered • • 4) Hardness calculated by R&M personnel. 2-19 N I w 0 , s3/u22 Agency: Station: • E teva.t ion: field Parameters ( 1) Dissolved oxy9en "· Percent Saturation pit, pU Units ConductivitY, umhos/cm @ 25°C Temperature~ oc frae Carbon Dioxide A ll<a 1 i n i ty ~ as CaCO 3 Settleable Solids, ml/1 J.:aboratorY Parameters (l) Ammonia Nitrogen organic Nitrogen Kjeldahl tH trogen tU trate Nitrogen tH trite Nitrogen Total Nitrogen .. C;;.....:·........-- ... • \-lATER QUAL I TV 01\TA SUMMARY SUS HNA R I:X·.'ER U.S. GEOLOGICAL SURVEY NR. DENALI 1957 -1982 24lt0 fT. summa r:ltl i n tar lB rea k .. u~ Maximum t1ioimum Mean -1-1-_, ... ,_ ·1-1- -1-1--1-l-.. , ... ,_ 7.9/7.6/7.2 7.2/7.1/7.2 7.6/7 .l.j/7 .2 226/467/124 121/351/124 161/400/124 10.5/0.0/6.5 0.0/0.0/1.5 5.5/0.0/4.0 5.2/25/5.8 1.5/5.5/5.8 3 .. 1/12.9/5.8 75/161/47 42/112/47 55/136/!17 -1,-1--I-I--1-1- -I-I-_, .. ,~--I-I- -I-I--1-l--I-I- -I-I--I-I-.. , .. ,_ .09/.07/.05 0.0/0.0/.05 .03/.04/.05 _,_,_ -I-I--I-I- ... , .. ,_ -1-1--l-1- Number of ·tota • Oetect.able Number of 'J.alues observations .. 0/0/0 0/0/0 0/0/0 0/0/0 ll/3/1 11/3/1 18/3/1 16/3/1 47/3/6 1.!7/3/6 11/3/1 11/3/1 11/3/1 11/3/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 11/3/1 11/3/t 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 _...JU{!L~· 0/0/0 0/0/0 .~· .... ) ,, J";~' •,-···. " s3/u23 !! • Agency; Station; Elevation: Laboratory Parameters ( 1) (Continued) A 1 ka 1 i n e tY, as ca co 3 Chemical Oxygen Demand Chloride Conductivity, umhos/cm@ 25°C True Color, Color Units Hardness, as caco 3 Sulfate Total Dissolved Solids ·. >-Tota 1 suspend·ed Sol ids turbidity, NTU Uranium RadioactivEty, Gross Alpha, pCi/1 Total Or-ganic Carbon Total Inorganic carbon Organic Chemicals Endrin t.trldane TA~t.E 2.6 -continued ,WATER QUAliTY PATASUMMARV _SUSITHA RIVER U.S GEOLOGICAL SURVEY NR. O£HAtl '957 -19~ 2440 fl. Summer /W lnte r/Brea k·UP:~::---~_.,.----..~...;._-------,;..-----Number Of Total ---------·-~ Maximum -1-1- -1-1- 11/30/4.2 -1-1-. 10/5/30 67/181/50 31/39/9.2 __ ,_,_ (~~/1190 -1-l- -1-1- -1-1- -1-1- -I-I- ... ,.,_ -1-l- Minimum -1-l- -1-1- 1.5/19/4.2 -/~/- 0/0/30 52/135/50 13/36/9.2 ... , .. , _ 85/5/102 -I-I- -1-1- -1-1- ... , ... , .. -1-1-.. ,_,_ t:leao -1-IU' _,_,_ Lt.7/23.3/4.2 _,_,_ 5/5/3(J 67/157/50 17/37/9.2 -/-/- 1163/7/5112 -1-1- -1-1- -1-1· _,_, .. -1-1- -!-1- -1-1- Dnt.ectan a·e N.,ambe·r of _values Observations 0/0/0 . 0/0/0 11/311 0/0/0 14/3/1 11/3/1 11/3/1 0/0/0 45/2/6 0/0/0 0/D/0 0/0/0 0/()/0 0/0/0 0/0/0 0/0/0 0/0/0 .0/0/0 11/3/1 0/0/0 111/l/1 11./3/1 11/3/1 0/0/0 45/2/8 0/0/0 . 0/0/0 0/0/0 '0/0/0 0/0/0 0/0/0 0/0/0 1. N I ~ N \') ' ......... .......... ' ~ -~ s3/U2ta ., ' Agency; Station: Etevetion= baborat.orY ra rameters ( 1) (Continued) Methoxychlor Toxaphene 2, 4-D 2, 4, 5-TP Si I vex Elements (Dissolved} Ag, Si aver AI, Aluminum As, Arsenic Au, Gold 8, Boron Ba, Barium Bi 1 IUsmuth ca, Calcium Cd, Cadmcum Co, Coba!t Cr, Chromium cu, Copper .Fe, I ron f•~Mercury ~ ... ».J" ' " l'ABLE 2.6 -continued WATER QUAliTY DAtA S.UMMARY SUSITNA RIVER . . U.S. GEOLOGICAL SURVEY NR. DENALi 1957 -1932 24110 FT. summer/Winter/Break-Up - Ma><lmum Minimum Mean -I-I--1-1--l-1-- -1-1--1-l- _,_,_. -I-I--1-l--I-I- -I-I--I-I--I-I- -I-I--1-1--1-1- -"1-1--I-I--1-1- -1-1--I-I--l-1- -1-1--!-I-.. , .... , .. .. , ... :--I-I--I-I- -1-1--I-I--I-I- -I-I--!-I· -!-1- 29/5'1/17 17/4~/17 21/46/17 -J-1--I-I--I-I- -1-1--1-1--!-I- .. ,.,_ -I-I-... ,.,_ -1-1--I-I--1-1- -1-1--1-1--I-I- -1-1-. -1-1-,.......,., .... -!-1-( '· \ .. ...... .... .,. ... "". "' ·~'! . "' Number of Detectable· yalues 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 n/3/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 ................. ~· .. '""'·• !14, ~"'--~ "'" . Total th.unber or Observations 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 11/3/t 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 , .. ,..~~..,.,. ' H •/ ... i ~ I w. w N \ -..... """"""" .f ." ~· Agency: Station: Etevat i~n: La bora tory_ Parameters (1) (Continued) K., Potassium r-ty, Magnesium Hn, Manganese Mo, r-to. ybdenum Na, Sodium N i. Nickel Pb, Lead Pt, Platinum Sb, Ant ir,tony se, Selenium Si, Si I icon Sn, Tin Sr, Strontium T t • Titanium w, Tungsten v, vanadium Zn. ·zinc ZT 11 Z i. rcoi'llUm • TABLE 2.6 -continued WATER QUAllTY .DATA SUMMARY SUStTNA RIVER U.S. GEOLOGICAL SURVEY NR. DENALI 1957 -1982 2~la0 FT. Summer/Wintar/Break-Up . Maximum Minimum ~eao 3.6/6.6/2.3 1.3/6.3/2.3 2.6/6.5/2.3 6.4/16/1.9 L 7/6.8/1.9 3.5/10.3/1.9 _, .. ,_ -I-I-_ .. ,_, ... -1-1--!-I-., .. ,_ 10/~3/3.6 2.1/15/3.6 ... 3/~6.7/3.6 -1-1--I· I--I-I- -1-1-.. , ... ,_ .,.,;:,_ -1-:1--I-I--1-1- -l-1--I-I--I-I- _ ,_, .. -I-I- _,...,, _ -I-I--I-I- _,_, .. .. , .. , .. -1-1--I-I- -1-1--I-I--I-I- -!-I--J-1---1-1- -l-1--1-1--1-1-_,_, .. -I-I--r/·1- I -I-I-.. , .. ,_ -I-I· r -I-I-.. , .. ,_ -I-I- 1. Table values are mg/1 Unless noted otherwise. ;;; . ;; ttum~er or Det;ect.able ya.tues 11/3/1 11/3/1 0/0/0 0/0/0 11/3/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 •'• ·4 ' '.iet .~ Total Number or ' g!:tse rva t i ons /'1 11/3/1 .11/3/1 0/0/0 0/0/0 11/3/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 ' 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 ' :..·'' .. s3/u18 • Agency: Station: E lavation: • Field Parameters. ( l) Qissolved Oxygen PerGent Saturation N pH, pH Unit$ I ~w Conductivity. umhos;cm 0 25°C .a;:. Temperature. °C Free Carbon Dioxide A I ka I i n i ty, a s Ca CO 3 SettJeable Solids, ml/1 La bora torY Pa ;--a meters ( 1 ) Ammonia Nitrogen Organic tHtrogen Kje I dah I Nj trogen Ni trnte Nitrogen Nitrite Nit~oge!i Total Nitrogen TABLE 2.1 WATER QUAL I TV DATA SUMf1ARY SUSITNA FHVER U.S. GEOLOGICAL SURVEY VEE CANYON 1962 -1982 1900 fT. summer/Hinter/Break-Up f1axlmum Minimum Mean -1-1--I-I--J-1 ... -I-I--1-1-... ,_,_ 8. 1/-/7.6 7.2/-/7.6 7.7/-/7.6 187/250/136 91/250/114 146/250/125 13.0/0.1/7;0 1.0/-0.1/2.0 7 .9/0.0/1&.3 6.6/-/2.2 o. 7/' .. /2.2 2.6/-/2.2 59/-/44 39/ .. /44 52/r/44 -1-1-_,.,.,_ -I-I- ,.,_,_ -I-I-.,, .. ,_ -1-1--I-I-.. , ... , ... -1-1-.. , ... ,_ -I-I- .88/-/.16 .00/-/.16 .20/-/.16 -!-I--1-1-_,_, ... -1-1-. -1-1-_, .. , .. Number or Deto.ctahie yalues 0/0/0 0/0/0 9/0/1 20/1/2 119/l&/4 9/0/17 I 9/0/1 0/0/IJ .0/0/0 0/0/0 0/0/0 'J/0/1 0/0/0 0/0/0 ~~ \ To~a 1 .·.''""". Number of . Obseryations 0/0/0 ,,, 0/0/0 9/0/1 " 20/1/2 49/4/il 9/0/1 9/0/l 0/0/0 0/0/0 0/0/0 0/0/'0 9/0/1 0/0/0 0/0/0 ('\ " -......._.or.thG-Phosphat{~....-..~ ..... --···· .................... ·-1·1-···~· .... -....... -. .... ~ ........... -·1 .. 1.--1-bt OlO/O---·-·---........ oJ0/-0,;.. -.......... -' .... ,;. ·-··"'····· ... ·-·'-·~··--·"" .... '•·•" ... :. p ,, -· ~ ·-·~-·-·-·····-------·--· ( Tota~ Phosphorus -1-1-•/-/... -l·l-0/0/0 '0/0/0 "" ~' N I w U1 -r·c-r ... ..~ (\]. '\ ......... --f ·"'-·' . -.1) Agsncy: Stat ion: Elcvat ion: laboratory Parameters (1) (Continued) A I ka I i n i ty,. aa caco3 Chemical Oxygen Demand Chloride ConductivitY, umhos/cm @ 25°C True Color, co ior Units Uardness, as caco 3 Sui fate TtH .. a I Dissolved So I ids ' -;>rota I suspended Sol ids Turbidity, NTU Uranium Rad i oact ivi tY, Gross Atph&, pCi/1 Total Organic Carbon Total I no rgan i 'c Ca rbon Organic Chemicals Endrjn · Lindane TAPlE 2.1 -continued WATER QUAllTY DATA SUMMARY . SUSlTNA RIVER U.S. GEOLOGICAl SORV~Y VEE CANVOtj 1962 -1982 .1900 fT. . . summer/Wioter/Bte~~ ...... -.;:;U.c...Jt---. __ __,~-=--_;..~ ..... -....,..__..._.;,"'='-:"~::---- Numb~r Qf .. Tntal. Maximum oetect~bie Number of ya lues o.bservatl011i Minimum f4ea~ -I-I-... , .. ,_ -I-I-0/0/0 0/0/0 -l-1-.-1-1-.. ,.,_ 0/0/0 0/0/0 9.2/-/7.4 2.1/-/7.4 S.3/-/7.4 9/0/1 -1-1--1-1--1-1-0/0/0 0/0/0 40/-/30 5/-/30 10/ .. /30 8/0/1 8/0/1 76/-/54 42/-/54 63/-/S4 9/0/1 9/0/1 16/-/12 7.S/-/12 14/-/12. 9/0/1 9/0/.1 -1-1--1-1--I-I-0/0/0 0/0/0 ~14/726 34/14/661 799/14/694 36/1/2 36/1/2 -1-1--1-1-n'/•/• 0/0/0 0/0/0 -I-I--1-1--I-I-0/0/0 0/0/0 • -1-1--I-I--I-I-0/0/0 0/0/0 -1-1-_, ... ,_ -1-1-0/0/0 0/0/0 , -1-1-... ,.,_ -1-1-' 0/0/0 0/0/0 -1-1--1-l--I-I-0/0/0 0/0/0 _,_, .. ..,_,_ ... , ... ,_ 0/0/0 0/0/0 i. N I ~w (t\ rJ \ --....... ...... ' ·~ c,. s3/u20 ., • Agency: St(lt iorn £1evat ion: Laboratory Parameters ( 1) (Continued) Methoxychlor Toxaphene 2, 4-0 2, fl I 5-TP Si lvox. Elements (Dissolved) Ag, Si tver Al, Aluminum " As, Arsenic Au, Gold 8, Boron Ba, Ba.-:·i um Bi I Bismuth Ca, Calcium Cd, Cadmium Co; Cobalt cr, Chromium cu,. Copper fe, 1 ron (~' iercury ,..,. ., I TABLE ~.7 ~ continued WATER QUALITY DATA SU~MARY SUSITNA RIVER . . U.S. GEOLOGICAL SURVEY VEE CANYON 1962 -1982 1900 FT • ' ' ~. ::._ ' ·\ Summar /Win te r!;..t' l~·B:.:..r.=.ea:;::,;· ku.. ... ...:U~f!:-· __ _._,...,__,__.__,.~__,..----,_..,.....;...,.:.....,..,..- Nwnber or Ttltat .Oetectab Ia ttuml,ler ·.of yal~es ob~ryations Maximum Minimum Mean .b. -I-I-., .. ,_ -1-l-0/0/0 0/0/0 -I-I--1-1--1-1-0/0/0 0/0/0 -1-1--I-I--I-I-'0/0/0 0/0/0 -1-1--I-I--1-1-0/0/0 0/0/0 -I-I-~t-1--I-I-0/0/0 0/0/0 -I-I--I-I--!-1-(\/0/0 0/0/0 -1-1-.. I-I--1-1"" 0/0foO \ . . :0/0/0· -I-I--1-1--I-I-0/0;0 0/0/0 -1-1--I-I--I-I-0/0/0 0./0/0 -I-I--!-I--1-1-0/0/'0 0/0/0 -1-1--1-1-.. , .. ,_ 0/0/0 0/0/0 27/-/17 14/-/17 21/-/17 9/0/1 9/.Q}'i -1-l--1-1--!-I-0/0/0 Q/0/0' -I-I--1-1--I-I-0/0/0 0/0/0 -I-/--I-I--l-1-0/0/0 0/0/0 -1-1-.., ... ,_ -1-1-0/0/0 0/0/0 -I-I--1-1-_, ... ,_ 0/0/0 0/0/0 . -1-1--I-I-( -I-I-0/0/0 0/0/U \ \ .... ;;'"'" .~ 'u•t ~ .... , . ., ~..-w··i»~f ... ,,..,...~~ •''"'·~If ..... rr.t"f ·;; ,· C; ~ rJ \ -.......... ( "' ;l . --.,.. Agency: Station: Etevat ion: laboratory· Parameters (ll (coot i nue.d) K, Potassium Mg. r~agnes i um t"'n. Hanga~ese 1·10, r-to ly:udenum Na, Sodium N i • Nickel Pb, lead Pt, Platinum Sb, Antimony Se, Selenium Si, S i I icon Sn, Tin sr, Strontium T i, Titanium w. Tungsten v, Vanadium zn. Zinc zr. Zirconium • TABLE2.7 • Continued WATER ·Q'UAl.llY DATA SUMMARY .USIT«A RIVER . U.S. GEOl:!C~~i\L SURVEY VEE CANYON 1962 -1982 1900 FT. summer/~inter/Break~Up Ma>dmum Minlmum M~an 7.3/-/2.8 1.4/-/2.8 3.5/-/2.8 11.4/-/2 .. 4 1.1/-/2 .... 2.7/•/2.1.J -!-I--l-1-.., .. , ... -I-I--I-I--1-l"* 6.3/-/4.8 2.1/-/4.8 3.8/-/4.8 . -I-/--/-1--I-I- -1-1--I-I--I-I- -I-I--I-I--I-I- -1-1--I-I--I-I- -1-1--I-I--I-I- -l-1--I-I--I-I- -1-1--I-I--l-1- -I-I--I-I--1-l- -I-I--I-I--I-I- -1-l--1-1--l-1- -1-1--I-I--I-I- -1-1--/OM/--1-l-, r ·-I-I--1-l--1-1- .. 1. T.abfe values aro mg/1 unless noted otherwise. ' .;: " ·.' Numb\lr of Detectzbte .•vatues 9/0/1 9/0/1 0/0/0 ' 0/0/0 ; ; 9/0i1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 . Tota 1 Number of Obser:~atlons. "\'_--., ... ; 9/0/1 9/0/1 •' 0/0/0 0/0/0 9/0/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 '· 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 l • N . I w co -... ....... ,, ·'1J ~ &3/Ulf& ,, Agency: SLat ion: Elevation: ' Field Fararneter& (1) Dissolved. oxygen Percent. Sa t.U ra; t ion ptt. p•l units Conductivity, umhos/cm@ 25°C Temperature. °C free Carbon Dioxide Alkalinity, as caco3 Settleable Solids, ml/l La bora to ry Pa rame te rs ( l ) TABLE 2.8 WATER QUALITY DATA SUMMA.RV ' SUSI"rNA RIVER U.S. GEOLOGICAL SURVEY · GOLD CREEK 19119 -1982 616.5 fT. . . Summer/Winter/Break-Up Maximum 13.3/15.8/111.1 110/110/111 7.9/8.1/8.0 227/300/147 14.0/0.5/6.0 20/16/24 67/88/47 _,_, ... • 33/.08/.13 . .39/.44/.07 -1-1- .36/.32/.69 -1-1- .60/.66/- Minimum Mean 9.5/11.0/14.1 03/77/111 6.5/7.0/6.5 90/161.&/70 0.4/0.0/1.0 1.1/1.2/2.9 23/49/25 -I-I- ..01/.03/ .13 • 10/.18/.07 -I-I- • 02/.05/.05 -1-1- .25/.44/- 11.9/13.9/14.1 102/97/111 7.3/1.5/7.0 147/250/97 9.2/0.1/3.1 5.8/6.2/10.8 51/72/33 -I-I- .16/.06/.13 ,27/.29/.07 -1-1- .12/.16/.21& -I-I- .50/.51/- NUniller of Oot.ect;.~b:te. Vatues 9/5/1 6/5/1 66/31/7 66/32/7 39/12/0 57/26/6 62/30/7 0/0/0 7/5/1 7/5/1 0/0/0 55/25/7 0/0/0 5/6/0 Total Number of Observa~ions 9/5/1 6/5/1 66/31/7 66/32/7 39/12/6 57/2.6/6 62/30)7 0/0/0 7/6/1 1/511 0/0/0 55/25/1 . 0/0/0 5/6/0 Ammonia Nitrogen Organic Nitrogen t<jetdahl Nil;irogen Nitrate Nitrogen Nitrite Nitrogen Total Nitrogen ._,.otthw:.a.llos_pbate.)'.~;,·-w ...... b"""'·---·-·~·~03l.J!~L.J)fL.. ........ ~.,:.fU~I_:.f'Jl.J.~~~~~-.... ~.~~ .. ~...!.~Jl .. t~~ .. -~~ ... ~..: ............ ~ --~·---··.1-1/-4}4---,. ...... _, -.l2/&./.L ..... ~ Total Phosphorus • 23/.05/.09 • 02/.0l/. 09 • 13/.03/ .. 09 7/6/1 7/6/l '\ N I w \0 ~-r-1; ~ • v -.I N l ~ "'.:0.0.. ( ..,.J. . VJ ' "tl •' .. · Agency: ·station: Elevation: La bora tory Parameters ( 1) (Continued) A I ka I i n i ty, as CaC03 Chemical Oxygen Demand Chloride Conductivity. umhos/cm 0 25°C True Co loi·, Co I or tJn its Uardness, as Caco 3 Sulfate Total Dissolved So I ids ~Total Suspended Sol ids Turt'lioity, NTU Urao.iom ltodioactivity, Gross Alpha, pCi/1 Total orgardc carbon Total Inorganic Carbon Organic ChemicaCs (lldrin Lim.tnne ('I TABLE 2,8 • continued: WAtER QUAU1Y .DATA SUMMARY SUSITNA RIVER U.S, GEOLOGICAL SURVEY GOLD CREEK 1949 • 1982 676.5 fT. I · tt-3 Summer/Wiq~er/Break-Up Maximum MIn I mum f =t#a:.:.:n:.--_ 45/65/27 35/82/27 40/83/27 -1-l--I-I--I-I- 15/35/7.6 •• 13/6.2/1.8 5.5/22/4.4 . 142/289/115 114/266/84 128/279/100 1t5/10/50 0/0/5 10/5/25 107/120/56 35/60/30 6lt/98/39 31/38/11 1.0/12/5.0 16.1/21/7.6 140/174/90 55/133/53 93/154/66 ~ /2620")76/1330 7/~/12() 140/12/621 _, 180/.70/29 1&2/. 10/29 126/.40/29 .33/-/-.12/-/-.25/-/- 1.8/-/-0.5/-/-1,3/-/- 2.6/5.5/10.0 ..... .l.ll/1.1/1.8 . 2·.0/2.6/5.$)• I f -1-1--1-1-W>l-1"" -I-I--1-1-_, ... , .. -1-1-~ J_,_ I • -1-1- ~ = . Murnbe.r of Detectable _ ya l.~es .. 5/3/1 0/0/0 . 62/28/7 5/6/2 55/22/6 62/28/7 61/28/6 43/18/6 56/10/13 5/2/1 3/0/0 ~/0/0 2/3/2 0/0/0 0/0/0 0/0/0 .. Total Numb~r or Obse rva t'~ ons ')/3/1 0/0/0 . 62/28/7 5/6/2 55/22/6 6(:/28/1 62/26/1 43/18/6 56/11/13 5/2/1 3/0/0 • . 3/0/0 2/3/2 0/0/0 0/0/0 0/0/0 I. . - ~ ~ I .r:::. 0 rJ \ --... ( ...J. -t. s3/U~6 ., Agency: Station: Elevation: .. laboratory Parameters ( 1) (Continued) Methoxychlor Toxaphene 2, ft-D 2, 4 .. 5-TP Si a vex £!emeots {Dissolved} Ag, Si aver AI, Aluminum As, Aa"senic Au, Gold B .. Boron Ba, Ba.rium 63, f'ii smuth Ca, Calcium Cd, Cadmium. co, Cobalt Cr, Chromium cuf.: Copper fe,. iron •(' Mercury TABLE 2.8 ~ cont1nued WATER QUALITY DATA SUMMARY SUSITNA RIVER . . U.S. GEO~OG&CAL SURVEY GOLD GREEK 1949 -1982 676.5 FT. . summer/Winter/Break-Up Ma)timum MinimuM Mean -1-l--I-I--1-1- -I-I--I-I--I-I- -I-I--!-I--1-l-.., .. , .. _,_, .. -1-1- .000/.001/-.000/.001/-.000/.001/- -I-I--1-1--!-I- .002/.002/-.001/.002/· .001/.002/"' -1-l--I-I--1-!- -,'-1--t-1--I-I- .031/.060/-.000/.060/-.010/.060/-_,_,_ -I-I--1-1- 37/39/16 11/24/9.9 20/30/13 .001/-/-.001/·/-.001/-/- .000/.001/-.000/.001/-.000/.001/- .010/-/-.000/-/-~005/-/- .005/.001/-.003/.001/-• OOla/. 001/- .14/.015/-.04/.015/-.10/.015/- •. 0002/-/-.0000/-/t"~\ \ .0001/-/- ", .. ,;.1/;~l .. <\ \ ,; Number of Detectable Values 0/0/0 0/0/0 0/0/0 0/0/0 2/l/0 0/0/0 3/1/0 0/0/0 0/0/- 3/1/0 0/0/0 62/28/7 2/0/0 1/1/0 2/0/0 3/1/0 6/l/0 2/0/0 Total Numb~r of Observations 0/0/0 0/0/0 0/0/0 0/0/0 3/1/0 . 0/0/0 3/1/0 .0/0/0 0/0/0 3/1/0 _0/0/0 62/28/7 3/1/0 3/1//0 3/l/0 3/1/0 6/1/0 3/1/0 ';. • ', ) p " ~.:., .; ··l N e .&::!-,..... "' ' ~ ........... • "1J Agency: Stat ion: Elevation: LaboratorY Parameters ( 1) {Continued)· K* Potassium .t-tg. r-tagne s i um Mn, Manganese Mo,.. Molybdenum . tfa * Sodium Ni. Nickel Pb, Lead Pt,. Platinum Sb, Antimony Se, Seienium Si, S i I icon Sn, Tin Sr, Strontium Ti, Titanium w, Tung stem v. Vsnadium Zn, ZifiC Zr, Zirconium v,. ' ·, 4 - TABLE' 2.J1·'' .. contl.oued· W.~T.E!l QUALITY DATA 1.$\Jt'\MARY SUS fTHA .R t VER U.S. GEOLOGICAl-SURVEY GOLD CREEK 1~49 -1982 676.5 fT. summer/Winter/Break-Up . Maximum Minimum Mean ... 4/5.011.7 1.0/1.2/1.2 2.4/2.3/1.4 7.8/8.3/2.8 1.2/3.6/0.3 3.2/5.4/1.7 .18/.003/-.00/.003/-.036/.003/- _,_,_ .. , .. , .. -t-1- 6.5/17/3.8 4.1/11.3/3.1 2.4/5.2/2.8 .000/.001/-.000/.001/-.000/.001/- .001/.003/-.000/.003/-.000/.00l/- _,_,_ _,_,_ -l-1- -I-I- _,_,_ _, .. ,_ .001/-/-.oaot-1-.000/-/- -1-1- _,_,_ _,_,_ -I-I--I·/-.,., ... -"1-1--1-1- .. , .. ,_ -I-I-.. , ... , .. _,_,_ -I-I-_, .. , .. . .. , ... , .. . _,_,_ _, .. , ... _,_,_ r • 0111/-/-.. 006/-/-.010/-/- _,_, ... -I-I--I-I- I )' HumbQr or Oet.ectabte VaJues _ 52/22/5 62/28/7 7/1/0 '0/0/0 52/22/5 2/1/0 3/1/0 0/0/0 0/0/0 3/0/0 0/0/0 '· 0/0/0 0/0/0 0/0/0 0/0/0 .0/0/0 3/0/0 0/0/0 ·.' '· . Tots l Hutnber of Observatlcms -' '« . _( ' ..., 52/22/5 6,2/26/7 1/l/0 0/0/0 52/22/5 3/1/0, 3/lJO 0/0/0 0/0/0 3/1/0 0/0/0 oJo:,fJ Q iJ/0/0 0/0/0 0/0/0 0/0/0 3/1/0 0/0/0 s3/u10 l Agency: Station: E I ev.a tl on: ' field Parameters ( 1) Dissolved Oxygen Percent Saturation pH, pH Units . conductivity., umbos/em ft 25°C Temperature, °C free Carbon Dioxide AI ka I ini tY, as CaC0;3 Settleable Solids, ml/1 laboratorY Parameters ( 1) Ammonia Nitrogen Organic Nitrogen Kjeldahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen .• TAB.LE ·2.9 WATER QUALITY DATA SUMMARY . SUS ITNA RIVER . . U.S. GEOLOGICAL SURVEY SUNSUINE 1971 -1982 270 fT. summer/Wioter{Break•Up Maximum 13.3/13.8/- 107/94/- 7.7/7.!/"1* 170/242/- 12.0/0.0/9.2 3.9/·/- 43/71/- -1-l- .37/.06/- 1.10/.42/- -I-I- -1-1- -1-1- 2.30/.72/- 10.6/13.0/- 99/90/- 7.1/6.2/- 61/225/- 3.8/0.0/9.2 2.1/-/- 25/63/- -1-1- .08/.03/- .19/.18/- -I-I- -I-I- -I-I- .71/.142/- 12.0/ll.ta/- 103/92/- l.4/6.9/- 115/232/- 8.6/0.0/9.2 3.1/-/- 36/68/- -1-1- • 19/.05/- .63/.29/- -I-I- -I-I- -I-I- 1.17/.61/- ('} Totat Nitrogen ' tir.-OJitbodl:wiJUlllitJI.-· .. <. ... ....___ .. __ ,...... ......,_.....~ .. ··l-!.9~./..dl!ll: .................... ......_. ... ,J.R~(! g~t;:.... .... _. ···~ ····J· ~ .... ~.0~/. t ~14( : .. -......... .33/.01/-.05/.01/-.15/.01/- Total Phosphorus Number of Detectable Val uefi: 5/3/0 2/3/0 7/3/0 9/3/0 9/3/1 3/0/0 6/2/0 0/0/0 6/3/0 6/3/0 0/0/0 0/0/0 0/0/0 5/11/0 a111o .. 6/2/0 Tota.l tlumber of ~rvaticms 5/3/0'· 2/3/0 7/3/0 9/l/0 9/3/1 3/0/0 6/2/0 ()/0/0 6/4/0 6/3/0 0/0/0 0/0/0 0/0/0 5/IJ/0 . ............. 3/1/.0 6/1&/0 .- . • 1 N I ~ w -~ I -d. ·~ Agency: Stat ion: Elevation: Labo ra to r:v Pa rame te rs ( 1 ) (Continued) Alkalinity, as caco3 Chemical Oxygen Demand Chloride Condu~tivity, umhos/cm@ 25°C True Color, Color Units Hardness, as CaC03 SuJ fate Total Dissolved Solids Tota 1 Suspended Sol ids Turbidi. ty, NTU Uranium RadioactivitY. Gross Alpha, pCi/1 Total Organic Carbon Total Jnorganic Carbon Organic Chemica!s Endrin Lindane &.r, ·~I TAPLE 2 .. 9 -continued WAT~~ QUALITY DATA SUMMARY · · · . ·sustTNA RIVER .V;;S~GEOLOGICAl SURVEY SUNSHINE 1971 • 1982 270 FT. summer/\iioter/Break-Up Maximum lj8/74/• -I-I- 7.3/21/- 129/233/- 100/0/- 72/96/- 13/18/- 101/llll/- 3510/2/508 300/1.3/- -1-1- -l-1- 3.2/0.8/- -/-/- -1-1- -1-1- Minimum Mean _ 28/63/• -I-I- 2.2/16/- 82/222/- 8/0/- 33/87/- 3/16/• 54/130/- 288/1/508 160/.20/• -1-1- -I-I- 2.9/0.4/- -/-/- -1-1- -1-1- 441/70/• ....... 3 .• 7/18/- 115/229/- 44/0/- 50/91/- 10/17/- 70/1~lll/- 1485/2/508 233/.67/- -I-I-.. , .. , .. 3.0/0.6/-. -I-I- -1-1- -1-1- , ' ""'mber or Detectable -: •. :Ya 1 ues 6/3/0 0/0/0 9/4/0 6/3/0 3/1/0 9/tJ./0 9/fJ/0 &/4/0 5/2/1 6/3/0 0/010 0/U!O 2/2/0 0/0/0 0/0/0 0/0/0 Totaa .. ttumber of Obser\'ations • 6/3,/0 0/0/0 9/4/0 6/3/0 3/l/0 9/4/0 9/4/0 8/4/0 5/2/1 6/3/0 0/0/0 0/0/0 2/2/0 0/0/0 0/0/0 0/0i'O ' N I ~ ~ .. f ........ ........ ' ~ oq f f,: ·"!!'~ .;,:~ s3/u12 ., Agency: Station: Elevath:m: ' Laboratory Parameters (1) (Continued} Methoxychlor Toxaphene 2, 4 .. 0 2, 4, 5•TP Si lvex E~ement§ {Dissolved} Ag, Si aver AI, Aluminum As, Arsenic AU, Gold 0~ Doc-on aa, Barium Oi, Bismuth Ca, Calcium co .. Cadmium. Co, Cobalt cr .. ChromJum Cu, copper fa, l ron (' Mercury ' ~ ~ ~ ~1l'l ~, . . TABLE 2.9 -continued WATER ~UALITY DATA SUMMARY SOSITNARIVER U.S. GEOLOGICAL SURVEY SUNSHINE 1971 -1982 270 fT. . summer/Winter/Break-Up Maximum Minimum Mean -I-I--I-I--1-1- -1-l--I-I--I-I- -1-1--I-I--I-I- -1-1--1-1--J-1- .000/.000/-.000/.000/-.000/.000/- -1-1--I-I--I-/- .003/.001/-.002/.001/-.002/.001/- -I-I--I-I--I-I- -I-I-·.J-1--1-l- . o·101. 040/-.000/ .Ol&O/-.032/.0taO/- ... ,_,_ -I-I--I-I- 23/Sl/· 11/28/-16/29/- .000/-/-.000/-/-.000/-/- .000/-/-.000/-/-.000/•/- .020/,010/-.000/.010/-.010/.010/- .005/.004/-.003/.004/-• 0016/.0011/- .250/.0110/-.060/.010/-.180/.025/- .0001/.0001/-.0000/.0001/-,0001/.0001/- ~'"""" ~ :t"""I1 ~ ""'~ t.L·~ ~~ ~,..'f) ~ . Number·of Detectable Values __ 0 0/0/0 0/0/0 0/0/0 0/0/0 2/1/0 0/0/0 3/1/0 0/0/0 0/0/0 3/1/0 0/0/0 9/4/0 1/0/0 1/0/0 3/1/0 3/1/I'J 5/2/0 2/1/0 ~ . *fY.'l • Jotal Number of Observat lons 0/0/0 0/0/0 0/0/0 0/0/0 3/l/0 0/0/0 3/1/0 0/0/0 . 0/0/0 3/1/0 0/0/0 9/ft/0 3/1/0 3/1/0 3/l/0 3/1/0 5/2/0 3/1/0 if~ ~.!l -~~ ·~ I N I tf,:l. U1 .. rJ \ ,E:~ ' f ~. -~ • i: s3/u ' { Agency: Station:. Elevation: laboratory; parameters ( 1 J ~ Cont .i nued) K, Potassium Mg, Magnesium Mn, t-ta nga ne se Mo, Holybdenum Na, Sodium N i, Nickel Pb, Lead Pt, PI at i num Sb,. Antimony Se,. Selenium Si, S i I icon sn. Tin sr, Strontium Tl,. Titanium w ... Tungsten v,. Vanadium Zn,. Zinc :zr. Zirconium • j -- TABLE 2.9 -continued WATER QUALITY DATA SUMMARY SUSlTNA RIVER US. GEOLOGICAL SURVEY SUNSHINE 1971 -1982 270 FT. summer/Winter/Broak-Up Maximum M'nlmum · Haao 2.8/2.1/-1. 1/1.8/-1.5/1.9/- 3.5/lt.5/-l.lt/4.1/-2.3/lt.3/- .020/.00it/-.000/,.000/-.009/.002/- -1-1- _,_,_ -1-1- ... 4/11/-1.9/10/-2.8/11/- .002/.002/-.OOO/a002/-.001/.002/- .001/.008/-.000/.008/-.000/.008/- -1-1--1-1--1-1- -J-1--I-I--I-I- .000/.000/-.• 000/. 000/• .000/.000/- -1-l-_, .. ,_ -I-I- -1-1--I-I--I-I- -l-1--I-I--I-I- -1-l--I-I--I-I- •/•/&> -I-I--1-1-_,_, .. -1-1--1:.1-, ' .020/.030/-.006/.030/-.012/.030/- -I-I-_, .. , .. -I· I- NUI'I~tJ'e~ of Detectable · ·_yalt;.t.!UL- 9/lt/0 9/lt/0 5/2/0 0/0/0 9/"4/0 3/1/0 3/1/0 0/0/0 0/0/0 2/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 3/1/0 0/0/0 . '~; TOta I Number of pbse rya t !.ons 9/4/0 9/11/0 5/2/0 0/0/0 9/4/0 3/1/0 3/1/0 0/0/0 0/0/0 3/1/0 0/0/0 0/0/0 ' 0/0/0. 0/0/0 0/0/0 0/0/0 3/1/0 0/0/0 s3/U6 'I Agcncyz sa;at ion: Elovation: Field Paranteters (1) Dissolved Oxygen Percent Sa.tu~ation pH, pll Unit; ConductivHy, umhosjcm 0 25°C Temperature, °C free Carbon Dioxide A~ka 1 ini ty, as caco3 Settleable Solids, ml/1 J.-a bora torY ra rame te rs ( 1 ) Ammonia Nitrogen Organic Nitrogen Kjeldahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen TABLE 2. 10 . WATER QUALITY DATA SUMMARY ,• SUSITNA RIVER U. S .' GEOLOGICAL SURVEY SUSITMA 1955 -1962 40 FT .. summer/Winter/Break-Up Maximum Minimum Mean 12.3/13.5/12.4 10.5/10.6/11.4 11.5/11.6/12.1 100/911/99 90/74/97 97/80/96 8.3/7.9/7.6 7.0/6.8/6.5 7.7/7.3/7.2 160/225/116 90/182/85 122/205/93 12.5/0.5/1.0 2.0/0.0/3.4 8.4/0.04/5.8 8/17/19 0.6/1.6/1.1 2.5/7.8/6.5 57/75/39 36/60/30 44/69/34 -J-1- _,_,_ ._,_, .. .19/.09/.21 .00/.00/.01 .04/.04/.08 1.5/.46/.73 .16/.00/.16 .60/.27/.43 -l-1--I-I--I-I- .00/.19/-.00/.19/-.00/.19/0 -I-I--I-I--I-I- Number of Detectable yaaues 13/14/4 9/7/2 26/20/7 27/22/7 25/22/7 15/15/5 21/19/6 0/0/0 12/10/3 12/9/2 0/0/0 1/1/0 0/0/0 Tota I Number of Observations 13/llt/4 9/7/2 26/20/7 27/22/7 25/22/7 15/15/5 21/19/6 0/0/0 12/10/3 12/9/2 0/0/0 1/1/0 0/0/0 '' .. ·- N 1 ~ ..... rl t ........... "7 0(1· ........., ,. _ ~~ancy: Stat ion: Elevation: i.aboratory Pa ran1eters ( 1) (Continuea) A 1 ka ~' i n i ty, as caco 3 Chemical Oxygen Demand Chlor!~e Conduct.! vi ty, umhos/cm @ 25~C T;ue Color, Color Units Ita rdnes'i, as CaC03 Sulfate lotaA Dissolved so 1 Ids iota l suspended Sol ids TurbiditY, tHU Uranium Radioactivity, Gross A I pha, pC4/l TutaJ Orgao.lc Carbon Total .Inorganic Carbon Organic Chemicals Eodrin th:~ane • TAtll..~ 2,10 ;.. c;lritiouod WATER QUALITY PA!A SUMMAf\Y SUS l TNP, a J\IER U,S. GEOL6GICAL SURVEY SUSITNA 1955 -1982 110 FT. summer/\Jintor/Break-Ur; Ma><imu~ _ Mln1mum Mean 49/76/311 116/63/27 47/71/30 -I-I--I-I--1·1- 6.7/18/11.6 1.2/5.7/3.1 2.7/13/3.7 133/222/104 1111/208/911 122/217/9'9 10/0/-10/0/-10/0/- 66/96/46 411/73/36 54/85/39 20.7/20/10 l.0/15/3.7 13.2/17.3/6.7 114/llS./71 56/109/51 13/123/65 2367/1.2/683 158/21257 7f.!5/5/ll61 790/3.0/160 21/1.0/25 233/1.5/69 -l·l--I-I--1-l· _,_,_ -I-I--J-1- 11. 0/4. 0/9. , 2.7/0.4/3.8 4. 4/1.6/6 .Q' -1-1--l~l-.. ,., .. -I-I· -l-1--1-1- -1-1--1-l--I-I- ·Number or Uetectaba~ Values 3/11/2 0/0/0 24/~\/7 4/4/2 2/2/0 25/21/7 25/21/7 24/20/7 21/19/!> 18/13/5 0/0/0 0/0/0 7/9/4 0/0/0 0/0/0 0/0/0 ,-ff f ·Total Number of ~se~vations 3/4/2 . 0/0/0 24/?.1/7 4/4/2 4/lJ/0 25/21/7 25/21/7 211/20/7 .21/19/5 18/13/5 • 0/0/0 0/0/0 7/9/4 0/0/0. 7/10/4 7/10/11 tv ~. ~ (X) <'). ' ....... ........ I Gq. ~ f' . f s3/u8 ., Agency: Station: ' E I eva t ion: Laboratory Parameters ( 1) (Continued) 1-tethoxych tor ·Toxaphene 2, 4-0 2, 4. 5-TP Si lvex Elements (Dissolved} . Ag, Silver AI, Aluminum As. Arsenic Au, Gold a, Boron Ba,. Barium 8 i' Bismuth Cap Calcium Cd, Cadmium cit . II Cobalt cr, Chromium CU; Copper re, Iron ' .. "~ < a(_ Mercury ~ (.;-/ .,_.-..... TABLE 2.10-continued WATER QUALITY DATA SUMMARY . . SUSITNA ~IVER U.S. GEOLOGICAL SURVEY SUSITNA.1955 -1982 40 fT. Summer/Winter/Break•UP-__.----~~~~~--~--~~~--Number of IPt~l Detectable Number.or yaHie..§..,_ Observafioos Maximum Minimum Mean· -l-1--I-I-·I-I-0/0/0 7!10/4 -I-I-W)/-1--!-I-0/0/0 7/9/4 -l-1--I-I--1~1-0/0/0 2/6/2 -1-1--I-I--1-1-0/0/0 2/6/2 .000/.000/-.000/.000/-.000/.000/-4/2/0 8/6/3 -1-1-_, .. ,_ -1-1-0/0/0 0/0iO .003/.003/.001 .001/.000/.001 .002/.001/.001 13/8/3 13/9/6 -I-I--I-I- _,_,_ 0/0/0 0/0/0 -I-I--I-I--I-I-0/0/0 0/0/0 .200/~040/.020 .027/.040/.020 .068/.040/.020 7/4/1 6/6/3 -1-1-... , .. ,_ -I-I-0/0/0 0/0/0 22/31/15 14/23/11 17/27/13 25/21/7 25/21/7 .001/-/-.001/-/-.001/-/-1/0/0 1~/9/6 .007/.002/.001 .001/.002.001 .003/.002/.001 5/1/1 13/9/6 .030/.010/.005 .000/.000/.005 .010/.005/.005 5/2/l 13/9/5 • 007/ ~ OOJe/. 006 • 003/. ooo/. ooao .004/.002/.005 -u1t•• 13/9/6 .•a60/. 060/. 190 .020/.060/.110 .096/.066/.152 12/9/6 13/9/6 .0002/.0000/-.0000/.0~ 1-.0001/.0000/-5/2/0 13/9/6 ,,, ~· ~ ~-~~~ ) tJ I .s::. \0 f'J \ ~ ........ f ·~ w ·7.-"·,r~ ~: .\ s3/tt9 Agency: sta.tion: Elevathm: laboratory Parameters (1) (Continued) 1<, Potassium Mg, l-1ugnes i u~ r1n., Manganec;.e Mo .. Molybdenum Na., Sodium N i, Nickel l'b, lead Pt, Pf.a t i num Sb, Antimony se. Selenium ~i I SU icon so~ l'irl sr. Strontium Ti., Titanium w~ Tungsten v. VanadJum Zn,. ZiflC Zr., Zirconium ., ' I TABLE 2.10 ~ continued WATER QUALHY DATA SUMMARY . SUS I TNA' R: I VER U.S. GEOLOGICAL ·suRVEY SU~ITNA 1955 ~ 198Z 40 F'f. ' I, ' summer/WI oter/Break•UQ. ·. Maximum Minimum__ Mean 1.8/2.5/l.ll 1.0/1.4/0.8 1 ... /1.7/1.0 ' 3.7/4.9/2.6 2.0/3.7/1.6 2$5/4~ 3/1'.9 .020/.030/.011 .004/.017/.008 .008/.023/.010 -I-I--I-I- _,_, .. 4.0/9.0/3.2 1.8/4.9/2.4 2.7/7.7/2.9 .OOll/.003/.002 .000/.002/.002 .001/.002/.002 • 009/.0011/.011 .002/.000.003 • 004/.002/.006 -I-I--I-I--I-I- ·I-I--I-I--l-1- .001/.001./-.000/.000/-.0004/.0008/-_,_, .. -I-I--1-1- -I-I--1-1--1-1- -1-.1--1-1-.. ,.,_ -1-1--I-I-... , ... ,_ -I-I--1-1--1-1-• ' _, .. ,_ -1-1--1-1- .020/.003/.020 • OOit/. 003/.020 .008/.00:4/.020 -I-I--I-I--I-I- Numbf;'r of Dete~tabte _yatues 25/21/7 25/21/7. 7/8/2 0/0/0. 25/21/1. 5/2/1 8/6/4 0/0/0 0/0/0 7/6/0 0/0/0 0/0/0. 0/0/0 0/0/0 0/0/0 0/0/0 5/1/2 0/0/0 Total Number of ·.Obse rvirt; Ions 25/21/7 25/21/7 . 13/9/6 0/0/0 25/21/7 5/3/1 13/9/6 0/0/0 0/0/0 13/9/6 0/0/0 0/0/0 'II 0/0/0 . 0/0/0 0/0/0 0/0/0 13/9/6 0/0/0 c. i ' . . SUSITNA HYDRO AQUATIC STUDIES PHASE II BASIC DATA REPORT Volume 4. Instream Aquatic Habitat and Flow Studies, 1982. A pfe.l't.dicu ~ -T -by- ALASKA DEPARTMENT OF FISH AND CAME Susitna Hydro Aquatic Studies 2207 Spenard Road Anchorage, Ala$ka 99503 1983 I N t ........ ........... l : ·a() v,, • Appendix. Tab!e lt·D-6. • DRAFT ADFCOl/tOG Sunmary of provisional water quaH ty data for sloughs 8/\, 9, 168, 19, 21, anclmai n!itcm Susitna 'liver c:tt Goht' Creek, collected by ADF&G and USGS in June, Julyp and September, 1981, and in January and Ft!bruary, 1982. • 8 Sloughs and mainstem Susitna River wer~ sampled on 2 or 3'consecutive days in each month (except January) as follows. Susitna River at 8A 9 16B 19 21 Gold Creek -June 25 24 23 23 2ft 23 July 21 21 22 22 22 21 SeptGmber 30 30 28 29 29 28 January 20 20 20 20 20 20 .March 31 30 30 .30 30 30 bPcararr.eters marked.with an* are averages of transect point measurements (see methods). indic~tes dat;~ not available. - .l' Appendi>. Table lf .. 0-6 (Continued). Susitna River Slough Slough Slou~h Slough Slough at Parameter Date e:-. 9 16B 19 21 Gold Creek -- Physical ana Field Farameters .. Coot'd _,___. Specif!c Conductance (Jab) June 153 158 70 1lf6 226 l4i umho /em . July 118 124 71 129 131 114 September 132 113 64 130 205 170 Januar) 193 121 S9 148 221 260 March 1!t2 143 59 129 196 266 *Oislolved O~ygen June 10.8 10.6 10.8 9.4 10.7 10.8 mg/1 July 11.4 11.4 11.7 10.4 11.3 11.7 September 12.1 11.3 1i .s 9.5 10.3 _t:: January 7.0 11.7 6.6 7.7 9.0 15.8 • March 10.2 10.9 7.1 9.6 9.8 14cc2 0 'l *Dissolved Oxygen June 108 103 107 76 98 104 ...... (\) saturation July 104 105 102 90 105 104 September 94 93 88. 98 76 ---. January 49 82 47 57 65 1.10 March 72 77 59 70 72 99 *pH (field) June 6.9 6.8 6.4 6.5 7.0 7.4 July 7.7 September 7.6 7.4 7.1 7.3 1.1 6.5 January 6.5 6.6 6.0 6.0 6.7 7 .. 5 March 6.6 7.0 6.4 6.5 7.4 6.7 pH (lab) June 7.4. 7.5 7.2 7.2 7.6 7.5 July 7.6 7.7 7.3 7.0 7.7 7.7 September 7.4 6.7 6.6 7.2 7.0 7.2 January 7.2 7.3 6.9 7.1 7.6 7.6 March i.2 7.1 7.1 7.2 7.3 7.5 • Alkalinity (field) Junt> 39 24 50 62 8!"""• mg/1 Caco 3 July 41 39 24 52 47 35 September 43 34 26 62 62 N January 62 34 • ' 24 39 62 82. March it3 39 23 • 46 61 78 r -l ....... :_, f r~{ -, cq ·~ c / .... ~~ ·~ I, .. ' • • A!)pendix Table 4·0""6 (Continued). J • . -• Slough Slough Parameter Date 8A 9 _.,...,_ Ph,lsical and Field Parameters -Cont'd AU<~linity· (lab) ,,,une 47 33 mm!1 CaC03 July lt1 39 September 42 36 January 64 36 March 46 42 lurbidtty June 0.9 0.6 NTU July 130.0 130.0 SC!ptember 1.1 0.6 J::. January 0.4 o.s ' March 0.1 0.1 C) • ~ Sediments, suspended mg/1 June 1 2 July 220 417 September 1 1 January 1 2 March 1 3 Sediments, discharge s~spended June 0.02 0.02 tons/day July 327.0 804.0 September 0.01 o.o January """'"" ---Harch Solids, residue at 180°C June 88 100 mg/1 July 70 75 September 82 69 January 111 73 March 52 93 N Solids, sum of constituents June 93 91 I mg/1 July 61 68 ....... September 71 71 ~ January 120 76 • c:q March 8G 83 ~ .. 1:~--~.,.. r , . •. ' ,,,._,, . ·:~. l ... r·" lo.. ,,, -:<Y ~~.· .~~· ' _ ........ ~,.,., ~ ~ ...... --r--·~ ,........_. ~-....... "' ,..._,. ,._...,.. ~ ,.........., ' """---""-·--··-~'··~""' ...... "~--.. ~~ .................. ~""'t'.L;o<"y--i!}b~- Slough Slough 168 19 24 52 2lt 52 26 62 30 53 27 so 0,5 0.4 43.0' 2.S 0.6 o.s o.s 0.3 0.1 0.1 1 1 107 8 1 2 0 1 6 1 o.o o.o 145.0 o.o o.o o.o ---- 51 94 41 81 42 95 38. i8 42 80 47 90 43. 89 48 94 9l 43 65 ~· ' . SlOugh 21 63 If'/ 61 63 64 o.''* 150.0· ,o.s -o.s 0.1 5 356 4 0 6 ORAfT AOFC01/t06 Susitna River ~t Cold Creek. 45 35 44 B3 82 100.~0c 170.0. s.s 0.7 o.r 327 680 44 2 e O.Q4 1,570.0 136.0 78,000.0 . o.o 1,020.0 ---33 •. 0 137 79 76 74 119. 101 114 152 124 160 130 83 68 65,- 120 8Q 130 J6S 127 160 ~·.,. ' .... Appendix Table lt·D-6 (Continued). - ( Susftn~ Rh!~r Slough Slough Slough Slough Slough at 1/ Parame.ter Date 8A 9 168 19 2.1 Cold Crrrlek. · -",..__... .. .:. Physical and Field Parameters -Cont'd \\ . \\ ... ·..::, Solids 1 dissolved June 1.5 o.a 0.1 0.1 1.1 380.0 tons/day July 10't.O 145.0 55~7 O~O 29.9 8,490.0 September 0.62 o.~ ~0.1 . '0.1 0.1 t,~lQ.O January ' ·--'---.. March .. .,. ---65?.0 Solids, dissolved June 0.12 0.14 0.07 Oa 13 0.19 0.11 tons/acre-foot July 0.10 0.10 G.06 0.11 0.11 0.10 September 0.11 0.09 o.oG 0.13 0.16 0.14 January o.1s 0.10 o.os 0.11 .0.16 0 .. 21' -1= March 0.13 0.13 0.06 0.11 0.17 0.22 ' tl Suspended sediment (\) June 7C • . .... _.,._ ~ less than 0.062 mm sieve rliameter July 89 55 56 85 49 September ---81 January March --- " Major Con!tituents Hardness June 51 56 32 69 83 !i7 ntfJ/a CaC0 3 July 48 50 30 61 54 51 September 54 45 30 72 77 60 January 79 47 34 67 87 120 March 60 52 26 58 82 100 Hardness, non-carbonate June 10.0 17.0 8.0 19.0 21.0 12 mg/1 Caco3 July 7.0 11.0 6.0 9.0 7.0 16 September 11.0 11.0 4.0 10.0 15.0 16 January 17.0 13.0 10.0 14.0 25o0 33 t1arch 15.0 13 .. 0 3.0 12.0 21.0 19 Bicarbonate, incremental titration June .... !'~''*'- ~ mg/1. CaC03 July ---September 53 42 • . 32 75 75 11!1'•• \ January --tOot -·--....... • ---r March ........ ---.. ......_ .......... • Q(l oQ ( L '\, ~ ...... }j -~~ ,, '"'" J ·~-~~,""~~ _' ::n:•u:lc:-~ • Appendix fable 4-D-6 (Continued). .. • p . • Slough Slough Parameter Date 8A. 9 - Major Constituents -Cont'd Carbonate, incremer~tal titration June --- mg/1 eaco3 July-~-----September 0 0 January --·· -~,... Mllrch ~ .. ~ Calcium, dissolved June 1i'! 18 mg/1 ~ July 16 17 September 17 14 January 26 15 L March 19 17 t, ..J Magnesium, dissolved June 2.8 2.7 -.t' mg/1 Hg July 1.9 1.9 September 2.8 2.4 ~•~nuary 3.4 2.3 March 3.1 2.4 Sodium, dissolved June 6.8 8.2 mg/1 No July 3.0 3.0 September 6.1 5.6 January 11.0 5.7 t~arch 6.2 7.Z Sodium, (\) June 20 24 July 12 11 Septe~11ber 19 21 Janua.-y 23 20 March 18 23 • N June 0.4 o.s Sodium, adsorption ratio July 0.2 0.2 ' September 0.4 0.4 ......_, January o.s 0.4 ......... March 0.4 o.s ' ~- ·~ -· Slough Slough 168 ' ~1 19 - '---• L----...... 0 0 -~-· ..... --- 10 23 10 20 9 24 11 22 8 1.9 1.6 2~7 1.3 2 .• 6 1.6 3.0 1.G 3.0 1.5 2.6 .2.5 2.5 1.8 1.8 2.6 3.0 2.9 4.~ 2.1 2.2 14 7 11 6 15 8 15 12 14 7 0.2 o. 1 0.1 o. l 0.2 0.2. 0.2 0.2 o. 2 0.1 DRAtT .AOFG01/t06 ··-Susftna River Slough. at 21-. Gold Creek ...... ,.. ... _, ...... .. .... 0 ----...... :-~- ~~- 27 .19 18 16 25 1$ 29 39 27 33 3.9 2.2 2.1 1. 7 1.5 1.9 3.5 4.6 3.6 4.5 12.0 4.2 3.4 3.4 11.0 1 .. 4 12.0 15.0 1.1.0 17.0 23 14 12 13 23 21 23 22 22 26 0.6 0.3 0.2 0.2 0.5 0.4 0.6 o.g o.s 0.8 AppemHx Table ,,..o~.6 (Continued}, (} ·· Su5!tn~ River Slouuh Slough· Sl()ugh Slough Slough at Parameter Date SA 9 168 . ~9. ··.: 2t Cold Creek -...... " Nutrients • Cont 1 d Nitrogen, total June a.s a.'• lt. 1 10.0 4.2 2.'t mg/1 N0 3 July 3.4 3.5 3.3 9.3 2.9 2~3 September 7.4 7~3 2 .. 9 9.,0 4.9 .'/.a1 January s. 8 . 7.9 2.9 7.0 4.2 1.9 March 5.7 6.4 3.3 7.6 4.3 ·1.9 ···--- Nitrogen, dissolved June 1.8 1.6 1.0 2.0 1.0 o .. ~. mg/1 N July 0.7 2.2 0.7 o.6 · September 1.5 1. 7 0.6 L9 1.6 ().6 January 1.3 1.6 0 .. 6 1.2 0.9 0.4 March 1.2 1.2 0.6 1"5 o.a 0 .. 4 ..r:: ~ Ni t'f•ogen, total organic June 0.53 o .. e2 o.so 0.88 o;n 0 .. 34 l mg/1 N July O.ltO 0.54 0.31 0.45 0.44 0.10 September 0.41 0.17 0.44 0.18 0.28 " January 0 .. 18 0.50 ---0.18 \1\ March 0.21t 0.41 0.41 0.30 0,.21 Nitrogen, dissolved organic June Oo45 0.51 0.55 0.62 0.49 0~34 mg/1 N July 0.44 0.48 0.41 Oa43 0.21 September 0.36 0.44 0.10 0.49 0 .. 19 0.34 January 0.22 0.39 0 .. 15 . 0.14 0.20 0.15 Ha.rch 0.20 0.16 0.,22 ..... 0.19 Nitrogen, dissolved ai1111onta June 0.07 o.n C.10 0.10 0.09 0 .• 08 mg/1 N July 0.10 0.13 Oe13 Oo32 0.11t 0.24 September 0.15 O.llt 0.16 0.13 0.11 0.09 January 0.15 .0.08 0.09 o.oa o.oa 0.09 March 0.07 0.07 <.o.06 0.08 (0.06 0.07 -- Nitrogen, ~issolved ammonia June 0.09 0,14 0.13 0 .. 13 0.12 0.10 mg/1 tai4 July 0.13 0.17 0.17 0.41 0.18 0.31 September 0.19 0.18 0.21 0.17 0.14 o.12 Janua~-y . 0.19 0.10 0.12 0 •. 10 0.10 0.12 March 0.09 0.09 . o.os 0.10 0.08 0,09 -~ . . f; I ........ -.... 1 --~ ~ (-' "'.~-... I, ~ .......... ' ~ .... ··--'-. ~ .. _.. . • • < Appendht Table lt-D-6 (Continued). . . Slough Slough Paramet!!_ Date SA 9 - .Major Con:lti tuents -O.»nt' d June 1.5 1.4 Potassium,. dissolved Jul)' 1.6 1.6 . mg/1 K September 1.1 0.9 January 2.1 1.0 March 1.3 1.1 June 9.1 16.0 Qlloride. dissolved July 2.9 2.9 mg/1 Cl September 7.7 6.9 January 14.0 9.,6 March 10.0 13.0 ..J:. b June 11.0 9.0 Sulfate, dissolved July 1.0 11.0 .. '-1 mg/1 so,. September 6.0 s.o ~ January 11 ~o 5.0 March 8.0 6.0 June. o.o 0.1 Fluorfdej; dissolved .July o.o o.o mg/1 F September 0.1 0.1 January 0.1 0.1 March 0.1 0.1 Silica, dissolved June 9.7 11.0 mg/1 Si02 July 6.6 6.6 September o.o 10.0 January 10.0 11.0 Marcil 11.0 11.0 Nutrients rJ Nitrogen, total June 1.9 1 .. 9 t mg/1 N Ju1y 0.8 o.a September 1.7 1.7 ._, January 1.3 1.6 ......... f. March 1.3 1,4 ~ ~ 'l . Slough S1ough 168 19 0.9 1.0 0.9 1.,6 0.9 1.1 0.8 1 .,2: o.a 1. i 1.3 0.9 0.9 0.6 1.5 0.9 1.1 3.5 1.2 1.1 4.7 13.0 6.0 14.0 5.0 9 .. 0 s.o 11.0 o.o 13.0 0.1 0.1 0 .. 1 o.o 0.1 0.1 0.1 0.1 0.1 0.1 10.0 10.0 6.2 10.0 10.0 10.0 11.0 10.0 11.0 10.0 0.9 2.3 0.8 2.1 0.7 2.0 0.7 1.6 0.7 1.7 DRAFT ADFG01/t06 . . Susitna River Slou~h · at 21 Gold Creek 2.1 z •. o 1.9 1.6 2.1 1.$ 2.D 2.1 2.1 2.2 20.0 5.6 3.7 12.0 17.0 11.0 20.0 24.0 17.0 27 .. 0 . 14.0 17.0 3.1 1 .• 0 10.0 < s.o 12.0 t7.0 13.0 13.0 0.1 o.o o.o 0.1 0.1 . 0.1 0.1 0.1 0.1 0.1 11.0 < s.s 6.6 6.2 11.0 6.1 11.0 12.0 12.0 13 .• 0 Oe94 o.s o .• 2 o.s 1.1 0.6 1.0 . 0.4 1.0 0.4 N \ ~ ........_. f --a w ,, L • 0 I ;.., ..... ~ • Parameter Nutrients -~tont'd Phosphorus-t~tal Jtg/1 p Phosphorus, total mg/1 P04 :·PoosphOrui·,-dllsoiv~is · · . I ,... , .. . . Carbon, dissolved organic mg/i C Carbon, total suspended organics mg/1 c Trace fl,eta ls Arsenic, total ug/1 Ar. ,,., 'f•"< ' . Date - June July September January March June Jtrly September January March June July September January March June July September January March June July September January March Slot~gh 8A_ 0,.05 0 •. 27 ~0.01 .t: 0.01 0.01 0.2 0.8 ..... (. 0.1 1.9 13.0 1.5 1.4 1.4 0.2 0.1 o.o o.o 1 2 2 2 1 • Slough 9 0.01 0.48 <0.01 <0.01 0.01 <: 0.1 1.5 <O.l 2.1 9.0 1. 7 1.3 0.7 0.2 0.5 0.1 o.o o.o 1 5 1 2 1 ·~ f\-:·-· .... ,,.. .. Slough· Slough 168 19 0.01 0.01 ,0.14 0.01 <0.01 (.0.01 ~0.01 0.02 0!'01 0.01 (.0.1 <0 .. 1 Oolf <0.1 ....... 0.1 <0.1 <0.1 1.4 1.3 3.3 6.2 1.9 2.2 0,.5 0.7 0.7 1.4 ---0.2 o.o o.o 0.1 0.1 . o .. o 0.0 o.o 0.1 ._ 2 ' 4 1 1 2 1 2 2 1 .·· ORAFT ADFG01/tq6 Slough .21 ~0.01 0 .. 38 ~0.01 0.01 O.(U (0.1 1.2 <0.1 <0.1 2.0 6o0 1.1 0.5 1.~ 0.2 0 ... 3 G. 1 0.0 0.1 2 5 2 2 2 -' Susitna River at Go 1 d ··creek ().12 o.oz 0.02 0.01 0.01 0.4 0.1 0.1 0.1 .... , ... 2.8 18.0 1.6 0 .• 9 0.1 6. 1' --- 2 .. ,., ·;-., 6 ;:::;> Appendix Table 4-0•.6 (Contfnued). . ~I Susitna River Slough Slough Slough Slough Slough at 9arametor Date sA 9 168 19 21. Gold Creek ~------Trace Meta 1 s ,., Cont • d Arsenic, tott.'tl suspended June 0 0 0 1 1 5 ug/1 As July 0 3 '2 0 3 5 September 1 0 () 1 1 -~~ January 1' 1 0 1 1 ........ March "" .... 0 1 0 1 0 ~ Arsenic. dissolved June 2 1 1 1 1 1 ug/1 As July 2 2 2 1 2 2 September 1 1 1 1 1 ~--)w January 1 1 1 1 1 -&: March < 1 1 1 1 1 2 i C1 Barium, total recoverable June 0 0 0 0 100 200 I '-! ug/1 Ba July 200 200 100 100 300 300 September 100 200 100 100 100 -~~ '() January 100 100 <100 100 100 March < 100 < 100 <100 <.100 (.100 100 Barium, suspended recoverable June 0 0 0 0 100 200 ug/1 Ba July 200 200 .70 so 300 300 September 100 . 200 100 100 0 ...... January 0 0 ...... March ItO Barium, dissolved June 90 0 0 0 0 0 ug/1 Ba July ItO ItO 30 50 'tO 0 September o. 0 0 0 100 January 10(} ~100 (.100 .(.100 1CO ·--March 29 27 14 . 29 41 '60 Cadmium. total recoverable June 0 0 2 0 1 0 ug/1 Cd J~ly 0 0 0 1 0 s N September 0 0 0 0 1 January <1 ~1 <1 <1 ~1 --- I March <1 <1 <:1 . . "-t -'1 <.1 ,. """"-......... ' ...0 -t. ( . ·' .. "'-· '"- ' } ~ '·~..V" ... • • 7 DrtAFT AOFGOt/t06 AppemHx TaMe lt-D-6 (Continued). _._... • • " ! Susi tn~· Rivet . ' Slough SlOUfJh Slough Slough Slough ' ' at P~rarooter Oat:e BA 9 1GB 19 2~. Gold Creek· -' ' Trace Metah -Cont'd Cadmium, ~ospended recoverable .•lJue 0 2 0 0 ......... ug/1 Co July -------..... '1111!'•• 4 September 0 0 0 0 1 --~ January ---....... ----Harch -· CadmiumJ dissolved June 1 ' 0 0 0 5 <1 ug/1 Cd July ~1 (1 <1 (~ <1 1 September 0 0 1 0 0 --- January <1 1 1 1 < 1 March <.3 <3 ~3 <3 ~3 (3 J:.. Chromium, total recoverable June 0 10 0 0 .... 40 u b ug/1 Cr July 30 30 20 20 40 30 September 0 ~0 10 10 10 I January 10 < 1 10 L10 <10 March 10 < 1 10 10 .<:.10 10 ~ 0 Chromium, suspended recoverable June 0 10 0 0 0 ug/1 Cr July 20 20 10 10 30 40 September 0 10 . 10 10 10, 20 January / -~~ March Chromium, dfssolved June 10 0 0 0 0 0 ug/1 Cr July 10 10 10 10 10 10 September 0 0 0 0 0 January '10 1 C.:.10 <.10 .{10 March .( 10 <3 <....10 < 10 .c.10 <.10 N Cobalt, total recoverable June 2 0 0 0 2 a J... ug/1 Co. july 5 6 2 0 7 11 September 0 0 0 0 1 '-.. ~ -.... January 2 1 1 1 L. 1 .~ .... - March 1 1 2 " 1 L . 1 f ....(). V\. ~,·-'!,.-, .. '/ Appendix Table ~-D-6 (Continued). Sufti t.na Ri. ver Slough Slough Slough Sl.~ugh Slough at Parameter Oate 8A 9 168 19 21 Qo 1 d Crt:ek • ·- Trace Metals -Cont•d Cobalt, suspended recoverable June 0 0 0 1 -·- ug/1 Co July ---11 September 0 0 0 0 1 January 0 0 0 March ~--~--,---0 Cobalt, dissolved June '3 0 0 0 1 "-3 ug/1 Co July <3 ~3 (3. 4!'3 ~3 0 September ., 0 0 0 0 \.; -'= January· .2 2 1 ~1 2 March <.• ~1 ~1 "1 <.1 1 • • 0 • 0\} Copper, total recoverable June 3 2 ~ 2 2 31' ...... ug/1 Cu July 20 23 10 3 23 190 September 6 4 5 4 4 January 4 2 1 2 1 March 2 1 2 8 6 .2 '.t Copper, suspended recoverable June 1 1 1 0 0 . 27 ug/1 Cu July 12 20 4 0· 0 190 September 5 3 3 2 18 January 3 0 0 0 3 March 1 0 1 1 0 1 Copper, d•ssolved June 2 1 3 2 2 4 ug/1 Cu July 8 3 6 7 5 5 September 1 1 2 2 1 January 1 2 2 2 1 March 1 1 1 1 1 1 Iron, total recoverable June 20 40 so 40 60 15,000 N ug/1 Fe July '13,000 16,000 5,800 220 18,000 19,000 September 20 90 .280 260 100 ' January 20 140 20 10 10 ----March 10 30 It() 30 10 40 .. f -.... ( ~ ' . l. ·~ { { L '""-' ., 1.'\...lof..; . .::t$>, '} •. N • ·~ ......... f ·~ ~ Ap9endix Table lt·D-6 (Continued). Parameter Trace Metals .. Cont'd tron, suspend~d recoverable ug/1 Fe Iron, dissolved ug/1 Fe Lead, tQtal recoverable ug/1 Pb Lead, suspended recovErable ug/1 Pb Lead, dissolved ug/1 Pb Manganese, total recoverable ug/1 Mn ' • . . Date - Jurae July September January Harch June July September January March June July September January March June July September Janu~ry March June July September January March June July September January March 51Qugh 8A 10 13,000 10 0 () 10 't8 10 40 12 0 3 4 2 .(1 0 0 2 1 0 3 2 1 1 10 230 0 10 10 t. Slough 9 60 110 30 60 1~ 5 3 1 1 1 5 1 0 0 --- f) 2 3' 2 ·<.1 10 290 0 20 10 Slough 168 0 s.1oo 260 0 30 so 52 20 20 9 3 3 1 <'1 5 3 3 0 4 0 0 4 1 1 10 100 10 10 .(10 Slough . 19 0 1la0 250 0 20 60 79 10 30 15 3 3 2 1 6 3 2 0 0 () 1 3 1 <.1 0 20 10 10 10 .DRAt:'T AOf't01/t06 Slough 21 40 18,000 90 0 o. 20 97 10 ' 20 11 15 2 4 < 1 9 15 0 0 -~- 0 5 5 1 <1 0 3t.'O ~l zt~ <.10' Susftna River at Cold. Creek. 15,000 19;000 --- 30 90 120 15 18 47 --- 18 47 0 0 3 250 320 10 .N ' ............ ........ • ....() ~- -t= ' C) ' 112:11111 1 • Appendii.< Table ~-D-6 (Continued). Parameter Trace Hetals ... Cont'd Manganese• suspended recoverable ug/1 Mn Manganese, dissolved ug/1 Hn Mercury, total recoverable ug/1 Hg Mercury, suspended recoverable ug/1 Hg Mercury, dissolved ug/1 Hg Nickel, total recoverable ug/1 Nt June July September January t-iarch June July September January _March June July September January March June July September January March June July September January March June July September January March G! 1tat£&lld MLli £JSZit .i E Mr ! •• p 1 dliiil HIRI• V M!w ?'WPHW . Slough SA _......_ 0 220 0 0 6 10.0 a.o o.o 10.0 4.0 0.1 0.1 0.1 ~0.1 o. 1 0.1 o.o 0.1 o.o 0.1 o.o < 0.1 (0.1 3 14 1 i 1 Slough 9 10 280 0 10 :s o.o 10.0 o.o ~ 0.1 < 0.1 0.1 0.1 o.o ,0.1 0.1 0.1 0.1 o.o o.o o.o o.o <. 0.1 .(0.1 2 18 0 2 <1 ' ' Slough U)B ' 10 90 10 --- o.o 7.0 o.o ~ 10.0 3.0 o.~ 0.1 o.c <0.1 0.1 0.1 0.1 o.o o.o 0.1 o.o <0.1 <. o. 1 . 2 6 1 ~1 2 • ' Slough 19 0 10 0 0 6 o.o 9.0 10.0 <10.0 ~ •• o 0., 1 o.o o.o t.o.1 0.1 0.1 o.o o.o o.o o.o o.o < 0.1 < 0.1 1 2 3 <1 2 SlougJl 21 ·~ 0 290 0 10 ~u- 0 8 0 10 3 0.2 0.2 o.o 0.1 0.1 0.2 0.2 o.o o.o o.o o.o "-0.1 <1!0.1 6 18 4 <1 1 Susitna River at Cold Creek 250 310 ., .... ·--~ 7 4 10 3 0.4 0.3 _ .... _ 0.1 0 .. 4. 0.1 ..... 0"0 0.2 <0.1 ' 23 22 36 --- 2 ·~) I .. • Appell~ix Table 4-0 ... 6 (Continued). : _: : : A • Slough Date OA Parameter - Trace Metal! -Cont'd June 2 Nickel, $Uspended recoverable July 12 ug/1 Nl September 1 January ........ March 0 June 1 Nickel, dissolved July 2 ug/1 Nf 0 Sep.tember <1 January March 2 .J:. June 0 ' Selenium, total tj July 0 ug/1 Se 0 • September <.1 «> Jan~Jary 1 -.(:. March June 0 Selenium, total suspended July 0 ug/1 Se Sep.tember o· January March Jyne 0 Selenium, dissolved July 1 og/1 Se September 0 ( 1 January ( 1 March June 0 N Si Jver, total recDverable July 0 ug/1 A~ 0 ( September <:1 January <.1 ..._._ March ...........__ ' ·~ . ~ ~ y !'~-_, ' ~' ' ~ ~ ~ ~ ~ r"r1 ~'·'' ~ ~ : : ; Slough Slough Slough 9 168 19 2 1 0 18 6. 0 0 7 3 1 ...... ..... 1 1 0 1 1 0 0 3 0 0 0 1 .C1 .q <1 1 1 0 1 0 0 0 0 0 0 0 1 <1 <'1 <1 <1 <1 0 0 0 0 0 0 0 0 0 . ----~-__ .. 0 0 1 0 0 1 0 0 1 <1 (.1 L1 <1 <1 1 0 1 0 0 1 0 0 0 0 <1 .C:.1 " 1 <.1 <' 1 (1 M ·~f!1l ~· n • on AFT [\OFG!Jf/t06 • Susitna River Slough at 21 Co 1 d 'Creek · 1 23., 17 .29 4 . 29 ...... 0 1 5 0 1 .£1 0 7 .tt 1 1 1 "-1 0 0 0 1 1 <1 ~1 1 0 0 0 0 0 ' --- 0 0 0 0 1 41 1 . "1 0 0 0 0 0 < 1 (. 1 t.1 " •:r1 'r1 ·,r~·~ ... •" "'' ,. . '~ .... , ~ I • ., '' . . ... , ~ ! t I ' i i •" ' ..r:.. • '() I ~. V", (\) I ...._ " ""'- 1 ' C> q Appendix Table 4·0u6 (Continued). Parameter Tra~e ~fetals ... COnt•d Silver, suspended recoverable ug/'V Ag Silver, dissolved ug/1 As Zinc, total recoverable ug/1 Zn Zinc, suspended recoverable ug/1 Zn Zinc, dissolved ug/1 Zn .Q!!! June July September J!\nuary March June July September Jarluilry Ha,rch June July September January March June Jull' September January March June July September January March Slough 51()ugh 6A 9 0 0 0 0 0 0 ------ 0 0 0 0 0 0 ~1 <1 6!!1 ~1 2D 40 80 ,60 20 30 20 10 10 10 10 30 80 30 10 10 10 0 0 7 10 4 35 10 20 10 20 ..::12 <12 Slough 166 1 0 0 ---....... 0 0 0 <-1 1 10 20 30 20 40 0 10 0 10 10 10 30 10 (12 4 t ~ """~ Slough 19 0 1 0 -·- 0 0 0 . 1 <1 10 10 10 10 30 0 0 10 0 20 10 10 0 10 12 " ,._. c Susitna River Slough a1: 21 Cold Cteek ' - 0 0 '() 0 0 .... ...... ' 0 0 . 0 0 0 <1 --- .{1 1 10 60 60 120 20 tO --- 20 10 10 50 40 110 0 0 0 6 17 11• 20 5 10 ~ 12 ""12 '· · .. 6) EXHIBIT E · 2~ Water Use and Quality .,,,"' ,· - C~t.l2 (p. E-2~32 11 para. 5) ..-..:= ~.,_ . . . . . _Provide references ·for, O\_ , data on~ ammonium concentrations {means and ranges) in water at monitoring stations on the Susitna River. Response Data on anmonium concentrations in water at monitoring stations on the Susitna River is contained in the enclosed reports: l) R & M Consultants, Inc. 1982. Water Quality Annual Report. (See attached tables: 2;4, 2.5, 2.6, 2.7, 2.8, 2.9, and 2.10 on pp. 2-12-2 2-12-32). 2) Alaska Department of Fish and Game, 1982. Susitna Hydro Aquatic Studies .... Phase II Basic Data Report, Volume 4.. Aquatic Habitat and lnstreaf!l Flow Studies. Appendix 4~0.6. (See p. 2-12-39). 2-12-1 Agency: Station: Elevathm: , Field Pa rame te rs (1) Dissolved oxygen Percent Sa tu ration pU, pH Units tJ ~ Conductivity. umhos/cm 0 25°G ·"" 0 Tempera tu r•e, oc Free Carbon Dioxide (2) AI ka I ini ty, as CaC03 . Set t 1 eab t e So I ids, ml/1 laboratory Parameters (1)(3) Organic Nitrogen Kjetdahl N.i trogen <'l Ni-trate Nitrogen Nitrite Nitrogen ' ~ Total Nitrogen N Ortho-Phosphate .( .(J.J· Total Phosphorus J .. :r.~._; .. ,. f :!' • . TABLE 2.4 WATEii'l QUALI TV DATA S~MMARY SUSITNA RIVER R&H CONSULTANTS, INC. ·vrr-cANYON 1980 • 1982 1900 FT. summar/Whnar/Break-UP Maximum Minimum .J;iaan· 12.6/1 .... 5/10.4 9.7/10.7/10.4 11.9/13.1/10.4 110/1:04/83 84/84/83 101/98/83 7.9/7.6/6.6 7.0/6.0/6.6 7.6/7.1/6.6 . 171/333/100 103/130/100 129/212/100 11.9/0.1/6.5 5.3/-0.1/6.5 7.7/0.0/6.5 '•· 5/20 .'0/-1.7/5.5/-3.0/10.3/ ... 81/99/-41/57/-61/81/- 1.0/-/-0.1/-/-0.1/-1- .27/.26/.13 .09/.09/.13 .16/.19/.13 .63/.85/.34 .22/.08/.34 • 49/.40/. 31& .79/.85/.47 .26/.17/.47 .60/.52/.47 .19/.30/-.OC)/.30/• .14/.30/- -/.01/--/.01/--/.01/- .92/.f\5/.47 .39/.17/.41 .61/.52/.47 .05/.02/-.03/.02/-.04/.02/- .49/.07/-.03/.02/-.14/.05/.., Number .or oet~ctahte ....., ~a lues li'V1 7/4/1 10/4/1 9/4/1 10/4/1 7/3/0 7/3/0 4/0/0 6/2/1 8/3/1 9/4/1 5/1/0 0/1/0 9/3/1 2/2/0 6/2/0 Total Number or , .ObservatIons 7/1&/1 7/li/1 10/h/1 9/4/1 10/fl/1 7/3/0 7/3/0 10/3/1 9/4/1 9/3/1 9/11/1 10/lt/1 9/fl/1 9/3/1 9/4/1 10/4/1 ' . ,, . ' '" N I N }-1 s3./u2 Agency: Station: Elevation: laboratory Parameters (1) (3) (Continued) A l ka I i n i tY,. as caco3 Chemical oxygen Oemand Chloride Conductivity, umhos/cm @ 25°C True Col.or., Color Units ttardness., as caco ( ta) 3 Sui r.a te Total Dissolved So a ids I .-r-.s ! .J ~ Tota I suspended So J ids lurbidity,. NTU Uranium Rad ioact ivi ty,. Gross Alpha,. . pCi/1 N \ TOtal Organic carbon """ "' Total Jnorganic Carbon \ Org~oi.c Chemicals .J::.. Endrin .. J (~'JJna TABLE 2;4 -· continUed WATEIR QUAlr'fY DATA SUMMARY SUS ITNA R t VER R&M CONSULTANTS, INC. VEE CANYON 1980 -1982 1900 fT. Summar /WI nte r/8 rea k-Op Maximum Minimum Mean 60/66/-40/66/-Da8/66/- 39/13/8 8/6/8 20/10/8 11/18/4.5 3/16/1&.5 6. 7/17 •. 5/4.5 "' 150/190/-150/190/-150/190/- 175/30/15 5/5/15 70/15/15 76/122/40 1&9/76/40 58/103/40 9/18/4 2/11/4 6/14/4 170/157/100 38/115/100 98/1 '•1/1 00 1150/11&/93 25/0.6/93 358/6.0/"93 720/2.5/25 8.1/.35/25 156/1.3/25 -1-1--I-I--1-1- -I-I--I-I-11.6 ± 0.6/ 10.3 ± 0.6/- -/2/--/2/--/2/- -/2/--/2/--/2/- -I-I--1-l--1-l- -I-/--1-1-_,_, .. Number of Detectable ~ 4/1/0 8/4/1 "1/4/1 1/1/0 9/4/1 10/4/1 10/4/1 10/41/1 10/ll/l . 14/4/1 0/0/(J 1/1/0 0/1/0 0/1/0 0/0/0 0/0/0 Total Number of Observations 4/1/0 8/4/1 10/4/1 1/1/0 9/4/1 10/4/1 10/it/1 10/ll/1 10/4/1 14/4/1 .5/2/0 1/1/0 0/1/0 0/1/0 3/1/0 3/1/0 ,.,) _.J /. :•:·• N I N N N \ ......... N l v\ .I ~-*, .. ;_ J~gency: Stat ion: Elevation: Laboratorx Parameters ( 1) (.3) (Continued) Methoxychlor Toxaphene 2.,. lJ-0 2, 4, 5-TP Si lvex Elements (Dissolved) Ag, Si Jver AI, AI uminUln As, Arsenic Au, Gold B, Boron Ba, Barium B i, Bismuth C!J, Calcium Cd, cadmiurn Co, Cobalt C.r, Chromium cu, ~,Coppa r Fes J ron '';'' Ug, .Mercury ,. ·o TABLE 2.4 -continued WATER QUAL I TV OAT A SUMt-1ARV SUSITNA RIVER R&M CONSULTANTS, INC. VEE CANYON 1900 " 1982 1900 FT• summer/Winter/~reak-Up ' Maximum Minimum Mean -1-1--I-I--I-I- -I-I-_,_, .. -1-1- -1-1--1-1--1-1- -I-I--1-1 ... -l-1- -I-I--!-I- _,_, ... 2.2/.18/"" 1. 6/. 16/-1.4/.18/- -!-1--I-I-_, .. ,_ -1-1--lor./--l-1- -1-1--1-1--1-1- .12/-/-.01/-1-• 10/-/- .19/-l-.. 19/-/-. 19/-/- 23/41/13 13/25/13 18/33/13 -t-1--I-I--!-I- -I-I-_,_, .. -I-I- -1·1--I-I· -I-I- -1-1--1-1--1-1- 4.0/.37/;08 .05/.37/.08 1.1/.37/.0& •/n/• _,_, ... -1-1- ------·~ ~ ~ ~· iii Number of DetectabJe yaloes 0/0/0 o/o/o 0/0/0 0/0/0 0/0/0 3/1/0 0/0/0 0/0/0 0/0/0 7/0/0 1/0/0 10/4/1 0/0/0 0/0/0 0/0/0 0/0/0 9/1/1 0/0/0 ~., ·.,--, Ill) 4>..<,. ,il Total Number' or Observations 3'/1/0 3/1/0 3/'1/0 3/l/0 10/3/1 10/3/1 .10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 10/~/1 10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 r-1 ~ .. .. ·~ ··~· N , I N w (')' ( ........,. N l f ! '"' ·I ' ,:; ' ' ' ~'"\ ,: Agency: station: Elevation: laboratorY Parameters f 1) (3) (Continued) K, Potassium Mg. Magnesium Hn. Manganese I-to, Molybdenum Na, Sodium N i, Nick~ I Pb,. Lead Pt,. Platinum Sb. Antimony Se, Selenium Si, S iIi con sn, Tin sr, Strontium Ti, T i .tan i um w. Tungsten v. Vanadium z·n, Zinc Zr. Zi rconi urn (,, •, TABLE 2.4 -continued WATER QUALITY CATA SUMMARY . SUSITNA RIVER . R&M CONSULTANTS, INC. VEE CANYON 1980 -1982 1900 fT. . Summer/Winter/Break-Up Maximum 5. 0/9.0/1.6 1.7/2.0/1.6 2. 3/5.2/L6 3.4/7.6/1.7 1.2/3.8/1.7 2.4/5.2/1.7 • 10/-l-.011-1-.09/-1- -1-1--I-I--1-1- 5.1/12.0/2.0 2.4/6.3/2.0 3.4/8.0/2.0 -I-I--1-1--1-1- -I-I--I-I--1-1- -J-1--l-1-.. ,_,_ -1-1-. -I-I--1-1- -1-1--I-I-_,_,,.. 6. 9/5.0/1.. 7 2.0/3. 7/'1. 7 3.5/4.5/1.7 -I-I--1-1--I-I- .08/.13/-.05/.06/-.06/.10/- .21J/-/-.13/-/-.18/-/- -1·'•1--/.4/--/.IJ/- -1-1--1-1--I-I- .01/-1-.07/-/-.07/-/- -l-1--I-I--1-1- ! \ Number of Detectabie vatue.s 9/3/1 10/4/1 2/0/0 0/0/0 10/4/1 0/0/0 0/0/0 0/0/.0 0/0/0 0/0/0 10/4/1 0/0/0 9/3/0 ,3/0/0 0/1/0 0/0/0 1/0/0 0/0/0 Total Numbet' of n~seryations . 10/4/1 10/4/1 10/3/0 10/3/0 10/1./1 10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 10/4/1 10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 10/3/1 ' ·~· (l) Table values are mg/1 unless noted otherwise. I • . (2) All values for free C02 determined. from nomograph on , .P• 291 of Standard Method, 114th edIt ton. (3) (It J . _,..·:·~·~ Samples roc a II parameters except chemic~:~ l oxygen demand. dissolved and suspended $ol ids, and turbidItY were f i I tared. Hardness calculated by R~M personnel. ~. ,';. . ·.~ . . .... N I N l11 (\) ( -.. rJ ;{ ~ S3/U26 Agency: Stat ioq: Etevat ion: field Parameters (1) Dissolved Oxygen Percent Saturation pit, pit Units Condu~:;tivity# umhos/cm @ 25°C Temperature, oc free carbon Dioxide (2) AI ka I in i ty • as CaCO 3 Settleable Solids. ml/1 laboratory Parameters (1)(3) Organic Nitrogen kjel:dahl Nitrogen Nitrate Kitrogen . . Nitrite Nitrogen Total Nitrogen brLho-Ph~sphate Tota I Phosphorus TABLE 2.5 WATER QUALITY DATA SUMMARY SUSITNA RIVER R&M CONSULTANTS. lNC. IGorb CREEK 1930 • 1982 · £76.5 ··rr:- summerlt~l nteclftre~I<-Ug Maximum Minimum Mean 12.8/llt.l/11.5 8.6/13.3/11.2 11.2/13. 8/11 .Ia '110/101/102 81/100/101 101/101/102 1. f!/7. 8/6. 7 6.8/7.1/6.4 7.3/7.4/6.5 183/2119/106 75/84/105 126/179/106 12.8/0.6/10.5 6.6/0.0/10.3 9.8/0.2/10.4 8.6/20/-2. 1/3.2/-4.4/10.7/- 64/711/-25/46/-44/65/- 0.6/-/-0.1/-/-0.4/-/- .21/.52/.08 .02/.32/.08 .09/.42/.08 .74/.81/.34 .05/.34/.27 .49/.54/.31 4.8/.99/.35 .06/.66/.34 .87/.62/.35 • 86/. 311/-.14/.12/-.32/.21/- -I-I--1-1--1-1- 5.66/1. 31&/0. 35 • 35/.66/. 311 1.22/1.00/.35 .10/.02/-.01/.02/ ... • Oil/. 02/- .1&3/.02/.08 .01/.01/.08 .12/.02/.08 Number of Total Detect~ble Number of y_alues Observations 10/3/2• 10/3/2 9/3/2 9/3/2 8/3/2 8/3/2 15/512 15/5/2 15/5/2 15/5/2 5/3/0 5/3/0 5/3/0 5/3/0 7/3/2 7/3/2 11/2/1 14/4/2 10/3/2 10/3/2 11/3/2 14/5/2 10/3/0 16/5/2 0/0/0 14/lt/2 11/lt/2 11/11/Z 3/1/0 16/3/2 10/2/1 16/5/2 r : I : I Agency: stat ion: Elevation; La~m.rru;orY Parameter§: (1) (3) (Continued) A l ka. 1 in i ty _ as caco 3 N Chemical O><ygen Demand I N Chloride 0'\ ,,-~' ,, j \,·--"- 1,\ \\ \\rJ ~·~:, l ........... ·r-J· t -0 Conductivity, umhos/cm 0 25°C True Color, Color Units Uardness. as CaC03(4) Sui fate Total Dissolved Solids TotaD Suspended Solids Turbidity, NTU Uranium Rad!oactivity, Gross Alpha, pCi/1 Total Organic Carbon Tots I l.norgan ic Ca r:bon Organic Chemicals Endrln lindane TABLE .2.5 ... conth1ued WATER QUALITY DATA SUMMAtW SUSITNA RIVER '/ R&M CONSULTANTS, INO. GOLD CREEK 1980 -196a 676.5 FT. summer/Winter/Break-Up Maximum 36/57/- 2ft/16/12 14/29/10 31/165/- 110/40ll5 97/121/43 14.8/17/6 103/188/90 1255/8/56 728/1.2/19 -1-1- !).5/2.0/- 3.8/1.0/- 12/lt/-, .. , .. , ... -l-1- Minimum 28/57/- 1.3/2/8 4/9/6 . 37/165/- 5/10/10 31/67/lt3 1.0/9. 5/5 63/100/87 56/1/49 14/0.3/15 . .. , .. ,_ 2.6/2.0/- 1.4/1.0/- 6.6/4/- -1-1- -1-1- Mean 32/57/- 10.9/8.4/10 7.3/19/8 37/165/- 50/20/10 50/67/43 6.7/13.6/5.5 86/135/89 268/6/53 199/0.8/17 -1-l- 4.1/2.0/"" 23/1.0/- 10.5/lf/- -1-1- -1-1- Hlunl>e r or Oetectabae Values 2/1/0 14/5/2 10/5/2 2/l/0 7/3/2 11/5/2 16/5/2 16/5/2 16/5/2 22/3/2 0/0/0 2/1./0 8/1/0 8/l/0 0/0/0 ,0/0/0 ...... ·; . Total Number . o.r· obsetvat:ions 2/1/0 16/5/2 12/5/2 2/t/0 7/3/2 11/5/2 16/5/2 16/5/2 16/5/2 2~/3/2 lf/'l/0 2/1/0 8/1/0 8/1/0 3/1/0 3/1/0 M ··~- tv I -tv -J N ' .-.. rJ . . t c.:.:;. .. ;:... ... ~ • S3/Lt28 Agency: Stat ion: Elevation: Laboratory· Paratneters ( 1) ( 3) (Continued) Methoxychlor Toxaphene 2, •a-o 2:. t;, 5-TP Si I vex Elements {Dissolved} Ag, Silver A l, Aluminum As, Arsenic Au. Gold a. Boron Ba. Barium 8 i. Bismuth ca. Calcium Cd, Cadmium Co, coh~lt cr • Chromium cu • Copper f~.,,. I ron .( ·Nercnry TABLE 2.5 -continued WATER QUALil'Y DAlA SUMMARY SUSITNA RIVER R&M CONSULTANTS, INC• GOLD CREEK 1960 • 1962 676.5 fT. summer/Winter/Break-Up Maximum H'nimum M~ao -I-I--J-1- _,,..,_ -1-1--I-I--I-I-. -1-1--I-I-... ,_,_ -1-1--I-I--1-1- ~1-1--1-1--J-1- .70/.18/-.06/.18/-.39/.18/- -I-I--1-l- _,_,_ -1-1--1-1--I-I- -I-I--1-1--1-1- .11/.05/.07 .06/.05/.05 .09/.05/.06 .19/.07/-.19/.07/-.19/.07/- 33. 5/31&. 1&/111 10/21/lll 16.0/26.5/11& -1-:1--I-I--I-I- -1-1--I-I--I-I- -1-1--1-l-... , .. , .. -I-I--1-1--I-I- 2.3/.35/.07 .07/.35/.07 .77/.35/.07 ~.r"'~ft!'-, I -1-l--I-I-I -1-1- ~-~--· Number··.of Detectable Values 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 2/1/0 0/0/0 0/0/tl 0/0/0 7/l/2 1/1/0 12/5/2 0/0/0 0/0/0 0/0/0 0/0/0 6/l/1 0/0/0 Tot a 1 · Number or Observations 3/1/0 3/1/0 3/1/0 3/1/0 7/3/2 6/3/2 7/3/2 7/3/2 7/3/2 7/3/2 7/3/2 12/5/2 7/3/2 7/3/.2 7/3/2 1/3/2 7/3/2 '7/3/? ~ .,~ J Agency: Station: Elevation: LaboratorY Parameters (1) (3) (Continued) • TABLE 2.5 -continued WATER .QUALITY PATA SUMMARY SUSITNA RIVER R&M CONSULTANTS, INC. GOLD CREEK 1930 -1982 676.5 Maximum summer/Winter/Break~Up Minimum Mean N~ttnber of Detectable _Jfjt,lues ·-.,Tota 1· Ntember of Observatlons s3/u30 ('1) (2) (3) Table vah.tes are mg/1 unless noted otherwise. All values ror rroe C02 determined from nomograph on· p. 297 of Standard Method. 14th ~ditlon. Sa1np 1 e s ro f a J 1 pa ram ate rs e><capt chemIca I oxygen demand. dissolved and suspended solids, and turb.dity were filtered. ( lJ) Hardness ca I cuI a tad by R&:M pe rsonne I •. ... 0 '' .··-··· ' •.,. TABLE 2.6 WATER QUALITY OAlA SUt<tMARY SUS i TNA JUVER.-, ... Agsncy: Station.: Elevation: U.S. OEOLOGICAL SURVEY NR. DEtfAll 1957 -1982 2440 FT, summe r:dli nterLBreak ... UI! Numbe.r •. or . ·Tot~t Ml: ~ i Detectable Numbe.r or t~ax I mum ..,~ •• mum Mean y:ah.1e~ · ObSB£V3~ions .. . (.I· ' • Field Pa r.arne te rs ( 1 ) Dissolved oxygen -J-1- _,_, .. -1-i-0/0/0 0/0/0 .- Per~snt Saturation -1-i- _,;_,_ _, .. , .. 0/0/0 0/0/0 pll, pH Uni t.s 7.9/7.6/7.2 7.2/7.1/7.2 7.6/7 .. 4/7 •. 2 •11/3/1 t'l/3/1 N ConductivitY, umhostcm 8 25°C 226/1167/124 121/351/124 161/400/124 18/3/1 16/3/l l w 0.0/0.0/1.5 1~7:/3/6 lt7/3/6 0 Temperature, oc 10.5/0.0/6.5 5.5/0.0/4.0 Free carbon Dioxide 5.2/2.5/5.8 1.5/5.5/5.8 3.1/12.9/5.8 11/!/1 11/3/1 A I ka I i n i ty, as CaCO J 75/161/47 42/112/47 5'5/136/41 11/3/1 ·11/3/1 Settleable So I ids, ml/1 _,_,_ _ , .. ,_ _,_, _ 0/0/0 0/0/0 ~:-~bora torY Parameters ( 1) -I-I--1-l- _, .. , ... 0/0/0 0/0/0 -!·I- _,_,_ -I-I-0/0/0 0/0/0 l<je I dahl Nitrogen _ ,_,_ _,_, ... _, .. , _ 0/0/0 0/0/0 Ni u~ate Nitrogen .09/.07/.05 o.0/0.0/.05 .03/.04/.05 11/3/1 11/3/1 • Nitrite Nitrogen _,_,_ _, .. ,_ -1-1-0/0/0 0/0/0 Total Nit\ogen -J-1- _,;., .. _,_,_ 0/0/0 0/0/0 ort~~-rhosphate -l-1- _,_,_ _,_,_ 0/0/0 0/0/0 !/ lot;~ t Phospporus -J-1--I-I--1-1-0/0/.0 0/0/0 . !; I: i/ // •'· . ~ ··~ ·~ ~;··.,:;::.·~ s3/u23 Agency: Stat ion: E I. eva t ion: Laboratory Parameters (1) (Conte.nued) N A I ka I i n i tY, as caco 3 . I w ...... Chemical Oxygen Demand Chloride Conductivity, umhos/cm @ 25°C True Color, Color' units lla rdness, as caco 3 Sulfate Tota! Oissotved So I ids --rs ~ Tot.a l Suspended So I ids ' J Tu:·b i d i ty, NYU f· uranium Rad ioact 5 vi tY, Gross Alpha, t pCi/J ::. ('J Total Organic Carbon I Total anorganic carbon ........._. Or,gan~c Chemica Is rJ t (Qdri n ...... '€~ane ..t:.. ~' . ; TABLE 2,6 .. continued WATER QUALITY OAl'A SUMMARY SUS ITNA RIVER . U.S GEOLOGICAL SURVEY NR. DENALI 1957 -1282 2lilao n. - summer/Winter/Break-Up Maximum Minimum Mean ... , .. ,_ ... ,.,_ _,_,_ -1-1--I-I- _,_,_ 11/30/4.2 1.5/19/4.2 4.7/23.3/4.2 -!-I--I-I" _,.,,_ 10/5/30 0/0/30 5/5/30 67/181/50 52/135/50 67/157/50 31/39/9.2 13/36/9.2 17/37/9.2 -1-1--1-1--l-1- (569ot8/1190 85/5/102 1163/7/542 ... _,_,_ _,_,_ -I-I- -1-1--I-I-... , .. ,_ -I-I--I-I- _,_,_ -I-I- _ ,_,_ _, .. , _ _,_, .. -I-I--l-1- _, .. ,_ .. , .. , .. ... ,., .. _,_,_ -I-I-., .. ,_ (" Numbet pf Detectable va 1 Uf.\..§._ 0/0/0 0/0/0 11/3/1 0/0/0 14/3/1 11/3/1 11/3/1 0/0/0 45/2/8 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 Total Number o·r Observations 0/0/0 0/0/0 11/l/1 0/0/0 14/3/1 ll/3/1 11/3/1 0/0/0 tat)/2/8 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 ""~ 'I ); " ...., I ....., "' ! ; ' i . I . ~ !! ,, j ~ N ., ' . ......._ N I ....... '-~·. . ' '-'\ .,:' ,:-·, Agency: station: Elevation: !J!boratory Parameters ( 1) (Continued) Metho.xych t.or Toxaphene 2., 1&-0 2, II, 5-TP Si lvex Elements (Dissolved} Ag, Si tver Ai, Aluminum As, Arsenic AU; GoAd B, Boron Ba, Barium B i, Bismuth ca, Calcium Cd, Cadmium co, Cobalt Cr,, Chromium cu, Copper fg, I ton Ug, riJercury ·!'' ,( TABLE 2.6 • continued WATER QUALIT'I DATA SUMMARV SUSITNA RIVER U.S. GEOLOGiCAL SURVEY NR. DENALI 1957 -1982 ·24110. FT. ---------------~surom--!!tlHt nte r/Brea k-UG~ Maximum · Minimum Hesn -I-I--1-1--I-I- -1-1--I-I--1-1- -I-I--1-1--I-I- -I-t~ -I-I--I-I- ··1-1--I-I--I-I- -1-1--1-1--I-I- -l-1--I-I--I-I- .. , .. , .. -1-1--1~1- -1-1--I-I--I-I- -I-I--l-1--I-I- -1-l--1-1--I-I- 29/51/17 17/111/17 21/46/17 -I-I--1-1--t-1- -I-I--I-I-.. , .. , .. -I-I--I-I--1-1- -I-I--1-1--1-1- -I-I--I-I--1-1- -1-1--1-1--1-1- ___ ,,.,._,_ ... .,..._' '"''" ~,_,.,.,_, .. ,.... ....... -,.,"'-··· NllmbtH' Of Dete~tahte ;yatubs 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 11/3/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 Q/0/0 # ' .. ... ,___, .·.· l)>ta 1 Huwnber of {!bsorvations Q/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 . 0/0/0 0/0/0 0/0/0 0/0/0 11/3/1 0/0/0 0/0/0 ()/0/0 0/0/0 0/0/0 0/0/0 "n if' ..... ~, • ' .,.. .,,., ·-r-~~~. ··-·--:---.. -·-. ~: N I w w s3/u25 Agency: Station: Elevation: La bora tor~ Par-ameters ( 1 ) (Cant i.nued) K, Po·tassium l-1y" Magnesium Mn, Manganese Mo, Molybdenum Na, Sodium rH. Nickel Pb, Lead Pt, Plat inurn Sb, Antimony sa, Selenium s i' s i 1 icon So, Tin Sr·" S~rontium Ti, Titanium w. Tungsten v, vanadium zn, Zinc Zr, Zi rcor.i um TABL£.2.6-contlnued ~lATER QUALITY DATA ·suMMARY SUSJTNA RIVER U~S. GEOLOGICAL SURVEV NR. DENALI 1957 -1982 24110 FT. . SummetLWI nter-/Breok-Ue i Maximum Hinlmum Mean 3.6/6.6/2.3 1.3/6.3/2.3 2.6/6.5/2.3 6.4/16/1.9 1.7/6.8/1.9 3.5/10.3/1.9 -l-1--1-l--t-1- .-.J-1--1-1-... ,.,_ 10/23/3.6 2~1/15/3.6 ••• 3/18.7/3.6 -!-I--1-1-... ,.,_ -I-I--I-I--1.:1- -/-I--I-I--1-1- -!-I--I-I--I-I- -I-I--I-I--I-I- -I-I--I-I--1-1- -I-I--I-I-.. , ... ,.;. -1-1--I-I--I-I- -1-1-_, ... ,_ -I-I- -1-1--I-I--I-I- -!-I--1-1--1-1- -1-1--1-1--1-1- -I-I--I-I--I-I- 1 .. Ta)),i(M,afues are mg/1 untass noted otherwisa • ...,_~, '· . Numha.r of. Detectable v~ Utes 11/3/1 11/3/1 0/0/0 0/0/0 11/3/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0. 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 '· ... ·:: r.·, Tota •·· N~mber of Observation~ 11/.3/1 11/3/1 0/0/0 0/0/0 11/3/1 0/0/0 0/0/0 0/0IO 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 ' 0 ,,_:, <" l ........ tJ ' ........ _,1 .. • i ' ~--· ~ •'. ~{' s3/Ul. Agency: Stat ion: Elevation: Field Parameters (1) ·Dissolved oxygeil Percent saturation pH, pH Units conductivity, umhos/cm 0 25°C Temperature, °C free Carbon Dioxide Atka 1 in i tY. as caco 3 Settleable Solids. ml/1 Laboratory Parameters ( 1) organic N trogen Kjeldahl Nitrogen Nitrate NJtrogen Nitrite Nitrogen Total Nitrogen ortho-Phosphate Total Phosphorus -~·-•• < • TABLE 2.7 WATER QUALITY DATA SUMMARY SUSITHA R&VER U.S. GEOLOGICAL SURVEY VEE CANYON 1962 -1982 1900 FT. .. summer/Winter/Break-Up r-taximum -1-1- -1-1- 8.1/-/7.6 167/250/136 13.0/0.1/7.0 6.8/-/2.2 'J9/-/'44 -J-1- -I-I- -1-1- -1-1- .88/-/.16 -1-1- -!-I- -I-I- -I-I- ~· ~-..... ...--·~ ....... it~ Minimum Mean _,_,_ _,_, .. _, ... , ... -1-l- 7.2/-/7.6 1. "ll-11 .6 91/250/114 146/250/125 1.0/-0.1/2.0 7•9/0.0/4.3 0.7/-/2.2 2.6/-/2.2 39/-/4~ 52/-/44 -1-1--I-I- • _,_, ... -1-1-_,_, ... -l-1- -1-1- _,_, ... .00/-/.16 • 20/-/ •. 16 """"'' ... -1·1- -I-!--I-I- -I-I--!-1- -I-I--I-I- .. ~-..... ,_ __ ,.... r, .......... ,. t."·~:v.J ~ ... -1 .. -::':,.·.1\ IF 'I .Numberof Oetectable Vatues 0/0/0 .0/0/0 9/0/1 20/1/2 Total ... ~u1nbtH" or Observations 49/4/4 ("'-. 0/0/0 0/0/0 9/0/t 20/1/2 49/4/4 9/0/1 9/0/1 0/0/0 9/0f1/ ' I 9/0/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0)0 e!o!o 9/0/1 9/0/1 0/0/0 0/0/Q 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 .~, ......... -,...~ .. ~· ,.. .. "'""'! I ,.........,.. ·~ s3/u19 Agency: Stat ion: Elevation: Laboratos·y Parameters (1) (Cootioued) N A l ka l i n i tY. ~. as caco3 w U1 Chemical oxygen Demand Chloride Coodu~:;tJv i tY, umhGS/Cm @ 25°C True co tor, Co lor Units uardnflss., as CaCQ 3 sulfate Total Oisso&ved Sol ids -rss ->fotal suspended So I ids TurbiditY, NTU Uranium .Rad i o~ct ivi ty. Gross Alphs, pCi/1 N Total Organic carbon T.ota l Inorganic Carbon t Organic Che~'n i ca 1 s ......... . ' eN ~ End rio •· L{;~ne ~ .~·· -:1 TABLE 2.7-continUed WATER QUALITY DATA SUHMARV SOSITNA RIVER U.S. GEOLOGICAL SURVEY VEE CANYON 1962 -1962 1900 fT. summer/Winter/BrEak-Up Maximum Ml n I mum Mea'o -I-I--1-1--1-1- -I-I--1-1--1-1- 9.2/-/7.4 2. 1/-/"'1 .4 5.3/-/7.4 . . -I-I--l-1--I-I- 40/•/30 5/-/30 10/-/30 76/-/54 42/-/54 63/-/5-4 16/-/12 7.5/-/12 14/-/12 -I-I--I-I--I-I- @.914/726 34/14/661 799/14/694 -I-I--I-I--1-1- -I-I--1-1--1-l- -I-I--1-1--I-I- -I-I- _,_,_ -1-1-_,_,_ -I-I--1-l- -I-I--1-1--I-I- -1-l--I-I--I-I- .. ; Number of Oe.tectab le va t.uas 0/0/0 0/0/0 0/0/0 8/0/1 9/0/1 '9/0/1 0/0/0 36/1/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 Total--- Number of Observations (J/0/0 0/0/0' 9/0/1 0/0/0 8/0/1 9/0/1 9/0/1 0/0/0 36/J/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 '" ;r.~: fJ ,_ N I w 0'\ N \. ......... 1\l. t "" -~ Agency: Stat I on:: Elevation: La bora tor~/ Parameters ( 1) (Continued) Methoxychlor Toxaphene 2, lJ-D 2, •• p 5-TP Sllvex Element~ (Oissolvedl Ag, Silver A I , A lltm i num As, Arsenic Au, Gold B, Boron Ba, Barium B i ,_ Bismuth Ca, Calcium Cd, Cadmium Co, Cobalt cr_, Chromium cu, Copper Fe, Iron ng, Mercury • TABLE 2.7 • continued WATER QUAUTY DATA SUMMAf\V SUS I lNA R I VEil U~S. GEOLOGICAL SURVEY VEE CANYON 1962 -1982· 1960 FT. - summan·/Wi nter/BreakvUp 1-taxlmum -1-1-:: -1-1- -1-1- -1-1- -1-1- -1-1- -1-1- -1-1- -1-/-. -1-1- -1-1- 27/-/17 -1-1- -l-1- ~!-/­.. ,_,_ -1-1- -1-1- Minimum • -I-I- -I-I- -I-I- -1-1- -1-1- -1-1- -I-I- -1-1- -1-1- -/-/- 1~/-/17 .. , .. , .. . ~;-J­ -J-1- -1-1- -1-1- -1-1- . .. . - ·~-···"--· .,, .. ~ ... -_..,, __ ,.,,~ .. , ~~·,.-.-,_. ~· Mean _,_,.., -1-1- -1-l-- -1-1- .. , .. ,_ -1-1- -1-1- ... ,., ... -1-1- -1--1- -/-/- 21/-/17 -1-1- -1-1- -1-1- -1-1- -1-1- -1-1- ~. . .. ' Number. or Detec,table ValUes "c "'-,, 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 ', 0/0/0 0/0/0 0/0/0 0/0/0 9/0/1r 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 ',. ·, . , l'o.tal · '• ~umber-or Observations : ~~ ' 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 9/0/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 N . I w -.J N t s3/u21 Agency: Station: Elevation: Laboratoei Paranteter~ (1) (Continued) K~ Potassium Hg# Magnesium Mn, Manganese Ho, Molybdenum Na, Sod i Ulll tH, Nickel .Pb, Lead Pt, Platinum Sb, Antimuoy se, Selenis.un s i, Si I icon so. Till sr# stronth~m T i • Titan hun w, TLmgsteo· v. vanadium zn .. Zinc Zr, li rconium TABLE 2.7 • Contlnited WATER QUAlJTY DATA SUMMARY SUSITNA RIVER U.S. GEOLOGICAL SURVEY VEE CANYON 1962 -1982 1900 fT. summer/W6nter/Break~Up Maximum ·Minimum Mean 7. 3/-/2.8 l.ll/-/2. 8 3.5/•/2.8 tt.t&/-/2.4 1.1/-/2.4 2.7/•/2 ... -I-I--1-1--1·1- -1-1-... , .. ,_ -I-I- 6.3/-/4.3 2.1/-/4.8 3.8/-/4.8 -I-I--1-l--1-1-_,_, ... _, ... ,_ -I-I- -I-I--J-1-... , ... ,_ -1-1-_, ... ,_ -I-I- -1-1--1-1--1-1- -J-1--1-1-• -1-1- -I-I--1-l--I-I- -1-1--I-I-_,_, ... .. , ... ,_ _,_,_ _, .. , ... _, .. ,_ -I-I--I-I- -I-I--!-I-... , ... ,_ -I-I--J-1--I-I- -1-l-o.)/·1--I-I- 1 •. :.liib~,va lues a.ra mg/1 unless noted otherwl se, •' ', Numb~\t of -oetectab I.e va tues .. 9/0/1 9/0/1 9/0/0 0/0/0 9/0/1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/G/0 0/0/0 0/0/~ 0/0/0 0/0/0 0/0/0 Total· Number of Obse rya t i oos 9/0/1 9/0/1 0/0/0 0/Q/0 9/0/} 0/0/5) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 • 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 h) I w 0') N t """' N f rJ· Ag.ency: Stat ion: Etevatton: • .. field Parameters (1) Dissolved Oxygen Percent Saturati«'·tl pil, pH Units conduct. ivi t.y, umhos/cm @ 25°C Temperature, oc; Free Carbon Dioxide A I ka I i n i ty, as caco3 Settleable Solids, ml/1 La bora tory Parameters ( 1) organic Nitrogen Kjeldahl Nitrogen Nitrat• Nitrogen Nitrite Nitrogen Total Nitrogen ortho .. Ph()sphate Total Phosphorus TABLE 2.8 WATER QUALITY DATA SUMMARY . SUSITNA RIVER U.S, GEOLOGICAL SURVEY GOUl CREEK 1949 • 1982 676.5 FT. summerlHintarlBreak-Ue M~xlmum Minimum f:1ean 13.3/15.8/1la.1 9.J/11.0/14.1 11.9/13.9/14.1 110/110/111 83/77/111 102/97/111 7.9/8.1/8.0 6.5/7.0/6.5 7.3/7.5/7.0 227/300/11!7 90/164/70 147/250/97 14.0/0.5/6.0 o.ta/0.0/1.0 9.2/0.1/3.1 20/16/24 1.1/1.2/2. 9 5.6/6.2/10.8 87/88/47 23/49/25 51/72/33 -I-I--1-1-.:.t-1- .33/.08/.13 ·.01/.03/.13 • 16/.06/.1.3 .39/.44/.07 "10/.18/.07 .27/.29/.07 ... , .. ,_ -I-I--I-I- .36/.32/.69 .02/.05/.05 .12/.16/.24 -I-I--l-1--1-1- .60/.66/-.25/.la4/-.50/~51/- .03/.03/.04 .00/.01/.04 .01/.02/.0r3 .23/.05/.09 .02/.01/.09 .13/.03/.09 Numb~r or · rota 1 Detectable Number o·r ~a lues Obs!;!rVations >·~::. 9/5/1 9/5/1. 6/5/1 6/5/1 66/31/7 66/31/7 .. ' ' 66/32/7 66/32/7 39/12/8 39/12[8 57/26/6 57/26/6 62/30/7 62/30/7 0/0/0 0/0/0 7/5/1 7/6/1 7/5/1 7/5/1 0/0/0 0/0/0 55/25/7 55/25/7 0/0/0 0/0/0 5/6/0 5/6/0 11/4/1 12/16/'1 7/6/1 7/6/1 N ·I w U). .. ,-r-"(" • ,J -.J (" \ ....... j ('). J ( ......,, r sl/u15 Agancy: Station: £I eva t ion: laboratory Parameters (1) (Continued~ A I ka I i n i tY., as caco 3 Chemical oxygen Demand Chloride comtuct iv i tY. umhosjcm 0 25°C True Color. Color Units Uardness, as caco 3 Sui fate Total Dissolved So I ids ~Total suspended so 1 ids lurb id i ty. .NTU Uranium RadioactivitY. Gross Alpha, pCi/& Total Organic Carbon Total a norg~!l i c Carbon organic Chemicals End rio Lindane ~~·~ 'i TABLE 2.8 -continued WA1ER .QUAU TV DATA SUMMARY SUSITNA RIVER U.S. GEOLOOICAL SURVEY GOLD CREEK 1949 -1982 676.5 fT. · I 1J.-3 summer/WinterL&reak-Up Maximum Minimum Mean 45/65/27 35/82/27 lt0/63/27 -I-I--J-1- _, ... ,_ 15/35/7.6 1.4/6.2/1.8 5.5/22/4.4 . 142/289/115 114/266/84 128/279/100 45/10/50 0/0/5 10/5,125 107/120/56 35/60/30 6lf/98/39 31/38/11 1.0/12/5.0 16.1/21/7.6 11&0/1711/90 55/133/53 93/154/66 ..---.. /2620}76/1330 7/1/120 740/12/621 -....... -... · 180/.70/29 1&2/.10/29 126/. ta0/29 .l~l-1-. 12/-/-.25/-J- l.t:/"'1-0.5/-/-1.3/-/- 2.6/5.5/10.0" 1.1&/1.1/1.6 2.0/2.6/5.9 -1-1--l-1--I-I- -!-!--I-I--I-I- --1-l--I·· I--1-1- ,_,·· Number of Detectable _ya IUB,§_ 5/3/l 0/0/0 62/28/7 5/6/2 55/22/6 62/28/7 61/28/6 43/18/6 56/10/1~ 5/2./1 3/0/0 3/0/0 2/3/2 0/0/0 G/0/0 0/0/0 Tnt a.- Number or obser~yations 5/?./1 fJ/0/0 62/26/7 5/6/2 55/22/6 62/28/7 62/28/7 1&3/16/6 56/11/13 5/2/1 3/0/0 3/0/0 2/3/2 0/0/0 0/0/0 0/0/0 ~ ~ . 0 // ,/ ~ ,' • ....· .. ,. ' _. , '. . ·, . ' . . . ~ . • ' ' • • • q /' _{ s.3/U. Agency: Station: • Elevation: • TABLE 2.8 -conti~ued WATER QUALITY DATA SUMMARY $UStTNA RIVER U.S. GEOLOGICAL SURVEY GOLD CREEK 1949 • 1982 676.5 fT • \ • ----------------------------~s~um~m=e~r~/~W~IQ~~·re~a~k=·~U~P------=-~--~--------~------Number or Total Detectable Number or N I ~ 0 rJ ' ~ N \ tJ u LaboratorY. Parameters ( 1) (Continued) Methoxychlor Toxaphen9 2. 1;-D 2, II, 5-TP Sltvex Elements fOissolved) Ag, Silver AI, Aluminum As, Arsenic AU, Gold B, Boron Ba, Barium Bi., Bismuth ca, Calcium Cd, Cadmium. co, Cobalt Crc Chromium CU; Copper Fe., t ron fig, Mercury "·, (- Maximum -1-1- -I-I-_,_, ... -I-I- .000/.001/- -1-1- .002/.002/- -1-1-. -I-I- .031/.060/- ... , .. ,_ 37/39/16 .001/·/- .000/.001/ ... .010/-/- .00,5/.001/- .14/.015/- .0002/-/- Hlnlmum __ , --1-H::::e~au.n __ .Yatues Observations ·!-I-. _, .. ,_ 0/0/(J 0/0/0 .. , ... ,_ -1-l-'0/0/0 0/0/0 a:v"'•/--!-!• 0/0/0 ·0/0/0 -1-1--I-I-0/0/0 0/0/0 .000/.001/-.000/.001/-2/1/0 3/l/0 . -I-I--l-1-0/0/0 0/0/0 .001/.002/-.001/.002/-3/1/0 3/1/0 -1-1 ... _,_,,.. 0/0/0 .0/0/0 -I-I--I-I-0/0/-:0/0/0 .000/.060/-.t\10/.060/-3/1/0 3/1/0 -I-I-_, ... ;,.. 0/0/0 0/0/0 11/211/9.9 20/30/13 .. 62/28/7 6'l/28/7 .001/-/-.001/-/-2/0/0 3/1/0 .000/.001/-.006/.001/-1/1/0 3/1//0 .000/-/-.005/-/-2/0/0 3/l/0 .003/.001/-.0011/.001/-3/1/0 3/1/0 .04/.015/-.10/.015/-6/l/0 6/1/0 .0000/-/-.0001/-/-2/0/0 3/1/0 ,..._ ..... .._ _,..._~ ~ ~-....,. ~· -~ N l ~ ...... N t ...-. ' ',..J • rJ. 4:. :.~::'":: s3/ul7 Agency: St11 t. ion: Elevation: Laboratory Para~r~eters C 1) (coot i nued) 1<, Potassium 1-tg_. Magilesium Mn, Hanganese Mo. Molybdenum N~ .. Sodium N i • Nickel Pb .. Lead Pt, Plat imam Sb, Antimony Se, Selenium s i' Sit icon sn, lin sr, Strontium T i I Titanium w, TungsteJ ~ v .. Vanadium Zn, Zinc Zr, Zirconium (' . '"'" • TABLE 2.8 ... continued WATER QUA~&TY DATA SUMMARY SUSITNA RIVER U.S. GEOLOGICAL SURVEY GOLD CREEK 1949 • 1982 676.5 fT. Symmer/Wintet/Break•Up .Maximum Minimum Mean 4. 4/5. 0/l. 7 1.0/1.2/1.2 2.11/2~3/1.16 7.8/8.3/2.8 1. 2/3.6/0.3 3.2/5.4/l. 7 .18/.003/-.00/"'003/-.036/.003/- -I-I-... , ... ,_ -1-1- 6.5/17/3.6 2.4/5.2/2.6 J,.l/11.3/3.1 .000/.Q(U/-.000/.001/ ... .000/.001/-- .001/.003/-.000/.003/-.000/.003/- -1-1--I-I--1-1- -1-1--I-I--I-I- .001/-/-.000/-/-.000/-/- -I-·!--I-I--1-l- -I-I--!-I--I-I- ... , .. ,_ -1-l--1-1- -1-1--1-1--I-I- -1·/--l-1-_,_,., ... , ... , .. -1-1-' -1-1- .014/-/-.006/-/-.010/·/- -1-1--I-I-_, ... ,_ I ( ' \ f.Jumber of .Det~ctab'e .. ya 1 yes . _ 52/22/5 62/28/7 7/1/0 0/0/0 52/22/':1 2/1/0 3/1/0 0/0/0 0/0/0 3/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 3/0/0 0/0/0 rota l . NuinbQr of Q!!serv.a t; i.ofls 52/22/~ 62/26/.7 7/1/0 0/0/0 52/22/5 3/1/0 3/l/0 0/0t:.~ 0/0/0 3/1/0. 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 3/1/0 0/0/0 '''\\ ,, j'j ;.If i ' ~ • ' .rJ ' ........ N. ' N v, •• ' .,:j! ~ &:3/Ul. Agency: Station: Elev.Jttlon: t field Parameters (l) Dissolved Oxygen Percent Saturation pH, pit Units Conductivity, umhos/cm@ 25°C Temperature; °C Free Carbon Dioxide A 1 ka t in i ty, as caco ;3 Settleable Solids, ml/1 Laboratory Parameters (1) Organic Nitrogen Kjeldahl tfitroger. N u~ra te N.l t rogen Nitrfte Nitrogen Total Nitrogen Ortho ... Phosphate l'otal Phosphorus •••• . ' TABLE 2,9 WATER ·QUALITY DATA SUMMARY SUSITNA RIVER U.S. GEOLOGICAL SURVEY SUNSHINE 1971 • 1982 270 FT. Summer/Winter/Break-Up Maximum 13.3/13.8/- 107/91.J/- 7.7/7.3/'P' 170/242/- 12.0/0.0/9.2 3.9/-/- 43/71/- -1-1- .37/.06/- 1.10/.42/- -I-I- -1-1- -I-I- 2.30/.72/- .Oit/.04/- .33/.01/- Minimum ·Mean 10.6/13.0/-12.0/13.4/• 99/90/-103/92/- 7.1/6.2/-7.4/6.9/- 61/225/-115/232/- 3.8/0.0/9.2 8.6/0.0/9.2 2.1/-/-3.1/-l- 25/63/-36/68/- -1-1--1-1- .08/.03/-.19/.05/ .. .19/.18/-.63/ •. 2.9/- -1-1- _,_,_ -1-1--1-1- -I-I--I-I- .71/.42/-1.17/.61/- • 00/. Oft/-.o2i.o••l- .05/.01/-.15/.01/- Number of Detectable values_ 5/3/0 2/3/0 7/3/0 9/3/0 9/3/1 3/0/0 6/2/0 0/0/0 6/3/0 6/3/0 0/0/0 0/0/0 0/0/0 5/4/0 3/1/0 6/2/0' Tot~ I NUmber of Observations 5/3/0 2/3/0 7/3/0 9/3/0 9/3./1 3/0/0 6/2/0 0/0/0 6/I.J/0 6/3/0 0/0/0 0/0/0 0/0/0 5/lf/0 3/1/0 6/4/0 ./ ........ " ... 1\J ~ I ~ w rJ ' ~ rJ ' N- ·~ '· s3/il11 Agenc~: Stat ion: Etevat ion: laborator¥ Pa rametru:§ ( 1) (Conti m.aed) A I ka I i n i ty, as caco3 Chemical Oxygen Demand Chloride ComJuc t i vi tY ~ umhos;cm @ 25°C 1 rue Color, co lor >\Jrt i e:.s tlardness, a :1. CaCCJ3 Sui fate Total Dissolved So e ids Total suspended Sn I ids Turbidity, NTU Uranium Raaioactivity, Cross Alpha, pCi/1 Total Or~aoic carbon ··o~;a I anorganic carbon Orapnic Chemica~e l::ndrin Li(ldaf,.a .. C< ~~ TABLE 2~9 -coot5nued ' WATER QUAL'fTY DATA SUMMARY SUSHNA RIVER U.S. GEOLOG&CAL SURVEY SUNSHINE 1971 • 1982 . 270 FT. ·--------------....:S~y:1!:ml.l!lm~e..:...r/L,I.!Wi nte r/Break-Up ttax I mum Minimum Mean IA8/7&1/ ... 28/63/-J41/70/-_,..,,_ -I-I- 7.3/21/-2.2/16/-3.7/18/- 129/233/-82/222/-115/229/- 100/0/-8/0/-44/0/- 72/96/-33/87/-50/91/-. 13/18/-3/16/-10/17/- 101/141/-54/130/-70/134/ .. 3510/2/508 288/1/508 1485/2/508 300/1.3/-160/.2.0/-233/.67/- -I-I--I-I--!-I- -1-1--I-I--1-1-· 3.2/0.8/-2.9/0.4/-3.0/0.6/- -1-1--I-I-.. , .. ,_ _,_, ... .., ... ,_ -1-1- -1-1--I-I--1-1- 6~1\ >; -.1 -~~,, ·' Number of Detectable Values 6/3/0 fJ/0/0 9/J4/0 6/3/0 3/1/0 9/4/0 9/4/0 8/4/0 5/2/1 6/3/0 0/0/0 0/0/0 2/2/0 0/0/0 0/0/0 0/0./0 F.·· Total Number or· Observations :_1/3/0· """'~ II· ' -:-\.).\ 0/0/~ 9/4/0 6/3/0 3/1/0 9/4/0 9/4/0 8/1&/0 5/2/1 6/3/0 0/0/0 0/0/0 2/2/0 0/0/0 0/0/0 0./0/0 1\J I .s::a; tl:lo ~) t ..... N a, ,, 1_} N :11'· "t"_. ... ._..~~"'· ' I • &3/U12 AgencY": Station: • E I eva ~!I on.: La bora torY Paramo te rs ( 1 ) (Conti nw~d) Metiloxycblor Toxaphene 2, 4-0 2. 4, 5-TP Si I vex E~ements (Dissolved) Ag, Silver AI, Aluminum As, Arsenic Au, Go~d 6, Do ron Ba, Barium . Bi, Bismuth ca, Ca lci.um Cd, Cadmium. Co, cobalt Cr:,, Chromium· . cu, Copper Fe~ ~ron Hg, Mercury ,.., .. . • ,' . TABL~ 2.9 ~ continued WATER QtrAUTY DATA SUMMARY . SUSITNA RIVER U.S. GEOLOGICAL SURVEV SUNSHU~E 1971 "" 1982, 270 FT. • J \ ' ' Summa rlW i nte r/Br~=-=a~k~..,.-=Opt;._ __ ~-:--·....;.__,..----=--...-,..--Numbei .or Total· Oeteot~ble Numb~r.of ya t ues Observat..ions Maximum Minimum . Mean -l-1--l-1--I-I-0/0/0 0/0/0 -1-1-_,_, ... _,_,,,. 0/0/0 0/0/0 -I-!--I-I-_,, .. , ... 0/0/0 0/0/0 . . -I-I-_, ... , .... -1-1-0/0/0 0/0/0 .000/.000/-.000/.000/-.000/.000/-2/l/0 'l/1/0 -l-1--1-1--I-I-0/0/fJ 0/0/0 .003/.001/-.. 002/.001/• .002/.001/-3/1/0 3/1/0 -1-1--1-l--!-I-0/0/0 0/0/(L. -I-I--l.-1- _,.,,_ 0/0/0 0/0/0 .070/.0140/-.000/.040/-.032/.040/-3/l/0 3/1/0 ·1-1--1-1--I-I-0/0/0 0/0/0 23/31/-11/28/"" 16/29/-9/4/0 9/11/0 .000/-/-.Q00/-1-.000/-1-1/0/0 3/1JO .000/-l-. ooru-1-.000/-/-l/0/0 3/1/0 .020/.010/-.000/.010/ ... • 010/.010/-3/1/0 3/1/0 .005/.0011/-.003/.001!/-• 001&/.004/-3/1/0 3/l/0 .250/.0l&O/· .060/.010/-.160/.025/-5/2/0 5/2/0 .0001/.0001/-.0000/.0001/-.0001/.0001/-2/1/0 3/1/0 .• ' . '~ "'' ,'"1 N I -~ U1 S3/Ul3. Agency: Station: Elevation: laboratorv .. Parameters ( 1 ) (Continued) K, Potassium Mg, Magnesium Mn, Manganes~ I-to .. Molybdenum Na, Sodium N i, Nickel Pb.., Lead Pt, Platinum Sb, .Antimony Se, Selenium s i, S i I icon so, Tin Sr, Strontium Ti, Titanium w .. Tungsten v, VanaditUII zo, Zinc Zr, Zirconium TABLE 2.9 u continued WATER QUALITY DATA SUMMARY SUSITNA RIVER US. GEOlOGICAL SURVEY SUNSHINE 1971 -1982 270 FT. summg r/W 1 ote r/Drea·k-Up Maximum Minimum He go 2.8/2.1/" 1. 1/1.8/-1. 5/1. 9/• 3. 5/11. 5/·· 1.4/ll.1/-2.3/4.31'- • 020/. OOIV-.000/.000/-.009/.002/- -1-l--I-I--1-1-. 4.4/11/-1.9/10/-2.6/11/- .002/.002/-.000/.002/-.001/.002/- .001/.008/-.000/.008/-.000/.008/- -I-I--I-I--1-1- -I-I--1-1--I-I- .000/.000/-.000/.000/-.000/..000/-_,_,,.. _,_, ... -l-1- -1-1--I-I--1-1- -I-I-.. , .. ,_ -1-i- -1-1--I-I--I-I- -I-I--l-1--I-I-.. , .. ,_ -I-I--1-1- .020/.030/-.006/.030/-.012/.030/- -I-/--I-I--1-1- rata.-----\ Number of '•I '' Oe:tectab le Number o.f .· Vatue:~ pbseryat, i.ons 9/lj/0 9/lt/0 9/4/0 9'/11/0 5/2./0 5/2/0 0/0/0 0/0/0 9/4/0 9/4/0 3/1/0 3/1/0 3/1/0 3/1/0 0/0/0 0/0/0 0/0/0 0/0/0 2/1/0 ~i/1/0 0/fJ/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 3/l/0 3/1/0 0/0/~ 0/0/0 rJ· ( .~ ('J f {'I -P. ·f:.•.···· .. • s3/te6 · ·· ' Field Parameters (1) Agenc:~; Stat ion~ Elevation: Dissolved oxygen Percent Sa tu rat ion pH, pfl Units Conductivity, umhos/cm 0 25°C Temperature, °C Free Carbon Dioxide A I ka I in i tY, as Caco3 Settleable Solids, ml/1 LaboratorY Parameters ( 1) organic Nitrogen l(je I dah I Nitrogen Nitrate Nitrogen Nitrlte Nitrogen Total N'trogen or.tho-Phospha te Total Phosphorus • .TAULE 2.10 WATER QOAL I TV. DATA SUMMARY' SOSITNA RIVER U.S. GEOlOGICAL SURVEY SUS~TNA 1955 -1962 40 FT. . Haximuni 12.8/13.5/12.4 100/94/99 8.3/7.9/7.8 't60/225/116 12.5/0.5/7.0 8/17/19 57/75/39 _,_,_ .19/.09/.21 1.5/.46/.70 -I-I- .00/.19/-_,_, ... 1.70/.99/1.20 .02/-/ .. 02 1.10/.38/.29 summer/Winterl~leak·Up Minlmum Mean 10.5/10.6/11.4 90/74/97 7.0/6.8/6.5 90/182/85 2.0/0.0/3.4 0.6/1.8/lol 36/60/30 . -I-I- .00/.00/.01 .16/.0u/.16 -1-1- .00/.19/- -1-l- .26/.24/.67 .02/-/.02 .03/.00/.01 11;5/11.6/12.1 97/80/98 7.7/7.3/7.2 122/205/93 8.4/0.04/5.8 2.5/7.8/6.5 IJ4/69/34 -1-l- .04/.04/.08 .60/.27/.43 .. , .. , ... .00/.19/0 -I-I- .72/.5':J/.92 .02/-/.02 .40/.05/.14 Number of Detectable _jj_t Ides· rs/1••/~ 9/7/2 26/20/7 27/22/7 25/22/7 15/15/5 21/19/6 0/0/0 12/~·0/3 12/9/2 0/0/0 1/1/0 0/0/0 22/17/ll 1/0/1 23/20/7 _ .. ~~ .. \ •\ ' ¥ ......... ' ·.J . . . ! ' . ; Total. -,. Number ,of ObtJ~rvatlons · -~- 13/llf/4 '9/112. . 26/20/7 27/22/7 2'5/22/7 15/15/5 21/19/6 0/0/0. l?/10/3 12/9/2 0/0/0 l/1/0 0/0/0 22/17/4 1/2/l 23/20/7 ... -.... .. -,._·,. ~· ~' N I ~ ...... ('l '( ~ t'l. ' Vol (). ~ s3/u7 Agency: Stat ion: Elevation; ballorator:v Parameters ( 1) (Continued) A ll<a I i n it~~ as caco 3 Chemical Oxygen Demand Clllorida Conductivity, umhos/cm 0 25°C True Color, Color Units Uardnesse .a~ GaCOJ SUI fate Total Dissolved Solids Total suspended So' ids Turbidity, N!U Uraoi urn Radioactivity, Gross Alp~a, pCi/J Total Organic carbon Total Inorganic Carbon organic Chemicals t:ndri n lifi.riqne lg·, . """'" \ .. TABLE 2.10 -continued WATER QUALITY DATA SUMMARY SU~ITNA RIVER U.S. GEOLOGICAl SURVEY SUSITNA 1955 -.19~2 40 fT. symmer/Wioter/Qreak-Up Maximum Minimum Mean 49/76/311. 46/63i27 47/11/30 -I-I--1-1--1-1- 6.7/18/4.6 1.2/5.7/3.1 2. 7/13/3.7 133/222/104 114/208/9'• 122/217/99 10/0/-10/0/-10/0/- 66/96/48 44/73/36 54/85/39 20.7/20/10 1. 0/15/3.7 13.2/17.3/6.7 114/13~/71 56/109/51 73/123/65 2367/12/683 153/2/257 745/5/461 790/3.0/160 21/1.0/25 233/1 •. 5/69 -I-I--1-1--1-1- -I-I-_,_, ... -1-1- 11.0/4.0/9.1 2.7/0.4/3.8 4.4/1.6/6.0 -I-I--I-I--I-I- -I-I--1-1--1-l- -1-1-., ... ,_ if'Ob1 -1-1- ·, -....:..;;. .. Number of Detectable ya iuel_ 3/4/2 0/0/0 24/21/1 4/4/2 2/2/0 25/21/7 25/21/7 24/20/7 21/19/5 18/13/5 0/0/0 0/0/0 1 /91'• 0/0/0 0/0/0 0/0/0 T9tat Number of,· Observations 3/4/~ 0/0/0 24/21Ft .. 4/4/2 4/4/0 25/21/7 25/21/7 24/20/7' 21/19/~ 16/13/5 0/0/0 0/0/0 7/9/4 0/0/0 7/10/4 7/10/'1 ,· j ""'"\, \ '~.#-fi" ... ~l .Agency: Station: ElevatJorn Elements (Oib.::!:llved) Ag, Silver AI, Aluminum As, Arsenic Au, Gold B, Boron Ba, aa ri urn 8', Bismuth ca, Calcium rl Cd, t:.11dm i um Co, Cobalt \ cr, Chromium t """"" I N cu, Copper 1 • • i . ..,.. Fe., eron ; -Ug, Mercury ~ . ' :•1io 4~" t(, ~ ;.c "' ' ·' •• TABLE 2.10 -contlnued WATER QUALITY OATA SUMMARY SUS ITNA RIVER U.S. GEOLOGICAl SURVEY SUSITNA 1955 -1982 40 FT. .000/.000/-.000/.000/- -1-1--I-I- .. 003/.003/.001 .001/.000/.00i _,_, ... -I-I- -1-1-_,_, .. .200/.0140/.020 ,027/.0IJ0/.020 -1-1--I-I- 22/31/15 111/23/11 .001/-/-.001/-/• .OOi/.002/.001 .001/.002.001 .030/.010/.005 .000/.000/.005 .007/.00IJ/.006 .003/.000/.00IJ .460/.060/.190 .020/.060/.110 .0002/.0000/-.0000/.0000/• .. ~ ' . .000/.000/-IJ/2/0 .8/6/3 -1-l• 0/0/0 0/0/0 • 002/.001/.001 13/8/3 13/9/6 -1-1-; 0/0/0 •0/0/0' -I-I-0/0/0 0/0/0 .068/.040/.020 7/1&/1 8/6/3 .. , .. , .. 0/0/0 0/0/0 17/27/13 25/21/7 25/21/7 .001/-/-1/0/0 13/9/6 .003/.002/.001 5/1/1 13/9/6. .010/.005/.005 5/2/1 l3l9/'!J .004/.002/.005 7/7/11 13/9/6 .096/.088/.152 12/9/6 13/9/6 .0001/.0000/-5/?./0 13/9/6 f"o; ' ·-:-;\ ·~ • J . • : • .. ... ., ~ t I •J t ' I ~ :: .. :• . . ;, .I l J i t I . ; .. . . . .. ! • ' . . . . .. ·.'4 N .j .r;:.. \0 s3/u9 Agency: Station: Elevt1)t ion: La bora tory Parameters ( 1 j (Continued) K~> Potassium Mg~ Magnesium Mn, Manganese Mo, MOlybdenum ·Na, Sodium N i, Nickel Pb~ Lead Pt, Plat inurn Sb, Antimony Se, Selenium Si, S i 1 icon sn, Tin sr, Strontium T i, Titanium w, Tungsten v, vanadium zn .. Zinc Zr, Zirconium C., .- , TABLE 2.10 -COO'tioO~d WATER QUALITY DATA SUMMARY SUSITNA RIVER U.S. GEOLOGICAL SURVEY SUSITNA 1955 -t982 tao rr • summa r/W I ote r/B rea k•Up Maximum Minimum Mean 1.8/2.5/1.4 1.0/1.4/0.8 1.4/1.7/1.0 3.7/4.9/2.6 2.0/3.7/1.6 2. 5/4. 3/1 .• 9 .020/.030/.011 . .004/.017/.008 .008/.023/.010 -I-I--1-1-... , .. ,_ 4.0/9.0/3.2 1.8/4.9/2.4 2 .• 7/7.7/2.9 .OOta/.003/.002 .000/.002/.002 .001/.002/.002 .009/.004/.011 • 002/ ,, 000. 003 .004/.002/.006 .. ,_,_ -1-1·· .. , .. ,_ -1-1--t-1--I-I- .001/.001/-.000/.000/-.0004/.0008/- -I-I--I-/-... , .. , .. -I-I--1-1--1-l- -I-I--I-I--I-I- -1-1--1-1--I-I- -I-I--1-1--I-I- -1-1--1-1· -t-1- .020/.003/.020 • OOil/. 003/.020 .008/.003/.020 -I-I--I-I--I-I- Number of Detectable value'S: ' 25/21/7 25/21/7 1/6/2 0/0/0 25/21/7 .5/2/1 8/6/4 0/0/0 0/0/0 7/6/0 0/0/0 0/0/0 0/0/0 0/0/0 o/O/O 0/0/0 5/1/2 0/0/0 .~ ; . Tota 1. • Number of Obse rvatH>os 25/21/7 25/21/'7 13/916 0/0)0 25/21/7 5/3/1 13/9/6 0/0/0 0/0/0 1'3/9/6 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 13/9/6 0/0/0 .. ·~······~-··-·-.. .....,.._.,... ........... ~ .. ...,. '• It ••• "'. •-" ~ . .. . ~ ... E·'A._ •. ,.1 - . • •• • • -.... ~ J!. -f"O .. ,.... -·--~ '\· ''-~ Sus=t·-,?. J<¥;~ Y. .. ~fra Documerfr'~6·" b r SUSITNA HYDRO AQUATIC STUDIES PHASE II BASIC DATA REPORT Volume 4. Instream Aquatic Habitat and Flow Studies, 1982. A pfe,,.,JieU ~ -~ -by- ALASKA DEPARTMENT OF FISH AND CAME Susitna Hydro Aquatic Studies 2207 Spenard Road Anchorage, Alaska 99503 1983 - ... •If • N I -tJ t .~ ~ ORAFT · A0FG01/L06 Appendht Tabl~ 4-D-6. SuOlllary of provisional water quality data for slough:; BA, 9, 1GB, 19, 21, and mainstem Sulitt)il r(i~:'i~t at Cold Creek, collected by ADF&G and USGS in June, July., and Septembr,r, 1981 1 and in January and f'cbru;;u•y, 1982, " f:uamctet ~ysical and Field Parametersb *Water Temperature Qc Air Temperat'IJre oc Streamflow (discharge) cfs *Speci~ic. Cond.,.ctanee (field) umho /em June July September January March June July September January March June July Sept~mber January March June Ju1y September January March Slough __M_ 15 .. 5 11.2 3.5 0.5 o.s 21.0 1G.O 8.0 6.4 551.0 2.8 140 117 135 193 lll2 Slough 9 1tJ.2 10.9 5.6 o.s 0.5 20.1 14.0 7.5 --- 2 .. 9 714.0 1.5 145 124 113 121 143 Slough 168 14.0 9.0 4.8 1.5 2.0 15.5 ...... 0.7 503.0 0.3 . 71 72 64 59 59 Slough.·. .19 5.5 9.8 '1.,8 2.0 1.0 .. __ .3 •. 0 --- 0.2 o.o· <0.1 146 127 150 148 129 Slough 21. 10 .. 7 11.3 2 ·'• 1.5 1.5 23.0 ··-- -11.0 3.2 14Z .. O 0.43 226 130 .205 221 196 aSloughs ano ma~nstem Sus~tna River were sampled on 2 or 3 consecutive days in each month (e~cept January) as tollows~ Susitna River at 8A 9 l6B 19 21 Gold Creek -4---June 25 24 23 23 24 23 July 21 21 22 22 22 21 September 30 30 28 29 29 28 January 20 20 20 20 20 20 March 31 30 ~0 30 30 30 bParameters marked with an* are averages of transect point measurements (see methods). ---indicates data not available. Su;;itna Riv~r at Cold.Cree'k 12.4 10~5 0 .• 4 o .. o o.o __ ..,. -~-- 1,780.0 42,500.0 . 8~5ljQ.O 1,520.0 119 172 260 266 ' . ··-·, ! . ' • A d' T . 1 4 [J . • ·~ . · · ppen 1a~ abe --6 lCoot i nued). c., ~ \\ . r .• -·· .:~ Sus i. toa I.U vet Slough Slpuoh Slough Slpugh Slough· . 'at Parameter Date 8A 9 16B 19 2! Cold Creek -- Phxsical •nd Field P~rameters "' Cont'd Specif!c Conductance (lab) June 153 1S8 70 •1lf6 226 141 umho·/cm July 118 124 71 129 131 114 . September 132 113 64 130 205 170 Januar) 193 121 .59 148 '221 26G Haren 142 143 .59 t29 196 266 *Dissolved Oxygen June 10.8 10.6 10e6 9.4 10.7 10.8 mg/1 July 11 .. 4 11.4 11,.7 10.4 '1l.3 11.7 September 12.,1 11.3 11.5 ~.5 ~0 .. 3 ,; . ---- ..J;: January 7.0 11.7 6.6 7.7 9'.,0 15 .. 8 • March 10.2 10.9 7 ..• 3 9 .. 6 9~8 14.2 C) 'l *Dissolved Oxygen June 108 103 107 76 '9(11 10ft -(\) saturation July 104 105 102 90 10!~ . 104 September 9'4 93 88 98 76 -... - January .. ~ 82 41 57 65 110 March 72 77 .59 .70 72 99 *pH (field) June 6.9 6 .. 8 6.4 6.5 . 7 .o 7.4 July 7·. 7 5'}ptember 7.6 7.4 7.1 7.3 7.7 6.5 JanuaJ'Y 6.5 6.6 6.0 6.0 6.7 7.5 March 1;.6 7.0 6.4 6.5 7.4 6.7 pH (lab) June 7.4 7.5 7.2 7.2 7.6 7.5 July 7.6 7.7 7 .. 3 7.0 1.1 7.7 September 7.4 6.7 6.6 7.2 1 .. 0 7.2 January 7.2 7 .• 3 6.9 7.1 7.6 7.6 March 7~2 7.1 7.1 7.2 7.3 7.5 AlkaHn~ty (field) June 39 24 50 62 ,, --- mg/1 CaC0 3 July 41 39 24 52 47 35 September 43 34 26 62 62 ....... January 62 34 24 39 62 82 N March 43 39 23 46 61 78 . ' --... .rl ' ¥) v \ DRAfT ADFQ01/t06 Appendix Table 4•D-6 (Continued). . ~; ·;~\ Susitna River Slough SlotJgh Sjougtl Sloug~ Slough at Parameter Date 8A 9 16B 19 21 Gold Creek - Phlsica1 and field Parameten -Cont'd Alkalinity (lab) June 47 l3 24 52 63 4S mg/1 CaC03 July · _ 41 39 24 52 4.7 35 September 42 36 26 62 61 44 January 64 36 30 53 63 83 March 46 42 27 50 G4 82 Turb~dity June 0.9 0.6 o.s o.~ 0~4 100.0 NTU July 130.0 130.0 43.0 2 .• 5 150.0 170.0 St:lptember 1.1 0.6 0.6 0,5 0.5 s.s ..c. Januaty 0.4 o.s o.s 0.3 o.s o .. t • March 0.1 0.1 0.1 0.1 0.1 0.1 " • \1 Sediments, suspended mg/1 June 1 2 1 1 5 327 July 220 417 107 8 356 680 September 1 1 1 2 4 44 Januesry 1 2 0 1 (j 2 March 1 3 6 1 6' 8 Sediments, discharge st!spended June 0.02 0.02 o.o o.o 0.04 1,510.0 tons/day July 327.0 804.0 145.0 OoO 136.0 78,000.0 September 0.01 o.o o.o o.o o .. o 1 ,020;0 January ---March 33.0 Solids, residue at 160°C June 88 100 51 94 137 79 mg/1 July 70 75 41 81 78 74 September 82 69 42 95 119 101 January 111 73 38 iS 114 152 March 92 93 42 80 124. 160 . ('l ( Solids, sum of constituents June 93 91 47 90 130 83 ~ rng/1 July 61 68 43 89 66 65 f'1 Sept~mber 71 71 48 94 120 60 f January 120 76 92 130 165 March 86 83 43 65 127 160 -~ " . .-··"'"<;. .. ...,.._ ... t')' f ..,.) ·'t! I .../: • (J ' ,j ~"'-~"" • Appendix Table 4-0-6 (Continued). . Parameter ?h~sical and Ffeld Parameters -Cont'd Solid~. dis sa 1 ved. tons/day Solids, d • •olved tons/acr~-foot Suspended sediment (\) len than. 0.062 nm sf eve ~or Constituents Hardness mg/a eaco, J Hardnes~, m-carbonate mg/1 Catcl3 diameter Bicarbonate, incremental titration ntg/1 Caco 3 Date - June July September January March June· July September January March June Jaly September Januac·y March June July Septtm~ber Jaouil'ry March June July September ~January March June July September January March , . Slough 8A 1.5 104.0 0~62 ---..,;» .. 0.12 0.10 O.H o.Hi 0 .. 13 ---89 .... ..... 57 48 54 . 79 60 10w0 7.0 11.0 17.0 15.0 ...... 53 --- Slou9h 9 0.8 1't5 •. 0 C.3 0.1'• 0,10 0.09 0.10 0.13 55 --- 56 50 45 47 52 n.o 11..0 11.0 13.0 13.0 --- 42 , .... --- '. G Susftna Ri:ver SlougP• Slough Slough at ·- 166 19 21 Cold Cr.eek " ' 0.1 o.1 1. t. 380"0 55.7 o.o 29.9 a,4~o.o ., .e. 0.1 (0.1 0.1 2,3lO.o -·-~ --~ ~--... ---... .... .......... ~.--,557·.0 0.07 0 .. 13 0.'19 . '0.11 0.06 ()_.,11 -~-1t 0.1C 0,06 o. ~3 Q.,1G C.14 o.o5 0.11 . 0.16 0.21 0.06 \\l.o11 0.17 0 •. 22 ~-·-............ 70' 56 --·· 65 49 .. .... ...... . .... 81 ..... ;::.,~----· -.-~ ~-- 3.2 69 83 57 30 61 Sit 51 30 72 77. 60 34 67 87 120 26 so 82 100 a.o 19.0 21.0 f2 GoO 9.0 7.0 16 4.0 10.0 15.0 16 10"0 14.0 25.0 33 3.0 12 .• 0 21.0 19 ...... ---,.. ... .. .. --~ ---... .... ....... 32 75 75 ...... .. ... ., .... .,. ..... --·· --- (') ' ""' rJ f v ~'<,, Appendix Table 4•0·6 (Continue~\. DRAFT ADfC01/t06 ========::::;:=====================:====================='\===:·,~ \ \ . ' Parameter Major Constituents -Cont'd . Tb )i • Carbc~ate, incremental titration mg/1 Caco 3 Calcium, dissolved mg/1 Ca Magnesium~ dfa&olved mg/1 Hg Sodium, dissolved mg/1 Na Sodhtm~ (\) Sodium, adsorption ratio Date - June July September Jamiary March Slough Slough 8A 9 ··-- 0 0 till!'•• -~- Slough 168 ·--_.,._ 0 . -~- Slough 19 --- ~-- 0 Slough 21 0 Susitrl;;, River at; Gold C ·::.:.ak _.!~ . ..,..~~ ...... --------------~------------------------~------------------------------- June July September January March June July September Januaa·y t~arch 18 16 17 26 19 2.8 1.9 2.8 3.4 3.1 18 17 14 15 17 2.7 1o9 t.4 2.3 2.4 10 10 9 11 8 1.6 1.3 1.6 1.6 1.5 23 20 24 22 19 ?.1 2.6 3.0 3.0 2.6 27 18 25 29 27 3.·9 2.1 3 •. 5 3.5 3.6 19 16 15 39 33 2.2 1.7 1.9 '•· 6· 4.5 ---------------------~-------·-------- June July September January March June July September January March June July September January March ........... 6.8 3.0 6.1 11.0 6.2 20 12 19 23 18 0.4 0.2 O.lt o.s 0.4 8.2 3.0 5.6 5.7 7.2 24 11 21 20 23 o.s 0.2 0.4 0.4 o.s 2.5 1. 8 2.6 2.9 2.1 14 11 15 15 1lt 0.2 0.1 0.2 0.2 0.2 2.5 1.8 3.0 4.3 .21)2 7 6 8 12 7 0.1 0.1 o. 2. o. 2 0.1 12.0 3.4 11.0 1.2.0 11.0 23 12 23 23 2Z 0.6 0.2 0.5 0.6 0.5 4.2 3.4 7.lf 15.0 n.o 14 13 21 22 26 0.3 0.2 0.4 0.6 0,8 ., .Appc,ndhc Table 4-0-6 (Contfm.H~~). ,. Su~itna River Slough Slough Sl~ug~ 51~qgh Slough at Parameter ~ 8A g :168 i9 21 t1o1d Creek <J - Wut~ients -Cont 1 d Nitrogen, total ~une 8.5 3.·4 ~.1 ' 10 .. 0 . IJ.2 2.4 mg/1 N03 July 3.~ 3.5 3.l 9.l '' ~~9 %!';). September 7.4 7.3 2.9 9'~0' ' ... "9 '2~7 January !;..8. 7.9 .2 .. 9 7.0 I 4.2 1~9 March 5.7 6.4 3.3 7.6 '4:.3 h9 - Nitrogen, dissolved June 1.8 1.6 1.0 2.0 1.0 o.s mg/1 N July __ .,. 0.7 ---" 2.2 0.7 0.6 September 1.5 1.7 (i\.6 1.9 1.0 0.6 ,January 1.3 1.6 0.6 '1.2 0.9 0.4 March 1.2 1.2 0.6 1.5 0.8 o.~t ..t: ~ Nitroge~-total organic Jum~ 0.53 0.82 o.so 0.88 0.37 O.llt ......., mg/1 N July 0.40 O.S4 0.31 0.45 0.44 0.10 ' September 0.41 0.17 0.44 0.18 0 .. 28 ~ January ---0.18 0.50 ' -~· 0.18 \r\ March 0.24 0.41 0.43 0.30 0.21 Nitrogen, di~solved or9anic .. tune 0.45 0.51 0.55 0.62 o.:e-9 0.34 mg/1 N July 0.44 0.48 o.li1 0 .. 43 ().21 September 0.36 . 0.44 0,10 0.49 0.19 0.34 I January 0.22 0.39 0.15 0.14 0.20 ' 0.15 i Maret> 0.20 G ... t6 0.22 0.19 ! .... ~,.,. June o.c? 0.11 0.10 0. 'iO 0.09 0 .. 08 July 0.10 ~ .. 13 0.13 0.32 C.11t 0.24 September 0.15 0"1~ !).16 0.1'3 0.11 0 .. 09 Janu·.,~y 0.15 0.08 0·,.09 0.08 o.o8 0.09 Haren 0.07 C.07 to~o6 o.oo (0.06 0.07 June 0.09 0.14 0.1'3 0.13 0.12 0,.10 Ju~y 0.13 0.17 0.17 0.41 0.18 0.31 September 0.19 0 .. 18 0.21 0.17 o .. 1~ 0.12 N January 0.19 0.10 0.12 0.10 0.10 o. 12 f March 0.09 0.,09 o.oa 0.,10 0.08 0.09 ~ N I ,,.,. ""'/' .. ...,., roJ t ..... ..c. b -..J ~ . Appendi.x Tabla ,. ... 0-6 (Continued). -~ . Parameter Major Constituents -Cont'd • Potassium, dissolved mg/1 K Chloride, mg/1 c~ dissolved Sulfate, dissolved mg/1 so4 fluoride, dissolved mg/1 F Si 1 ica, dissolved ,mg/1 Si02 t~utri ents - Nitrogen, total mg/1 N ----.,......;.w ~--.k!r Slough Slough Date 8A 9 - June 1.5 1 .,It July. 1.6 1,.6 Septe~er 1.1 0.9 January 2.1 1.0 March 1.3 1.1 June 9.1 16.0 July 2.9 2.9 Septemb'r 1.1 6.9 January· 14.0 9~6 March 10.0 13.0 June n.o 9.0 July 1.0 11.(1} September 6.0 s.o January 11.0 5.'0 March 8.0 6,.0 June o.o 0.1 July o.o o.o September 0.1 0.1 January 0.1 0.1 Maret• 0.1 0.1 June 9.7 11.0 July 6.6 6.6 September o.o . 10.0 January 10.0 11.0 iiarctl 11.0 11.0 June 1.9 1.9 July 0.8 0.8 September 1.7 1.7 January 1.3 1.6 March 1.3 1.4 DRAFT ADFG01/t06 Slough .. ·. Su$ltf\it ri':iver $lough Slough at 168. ,, 19 21 Cold Creak -~ .. ~............,.." -,. __ - 0 .. 9 1.0 2.1 2.0 o .• s::::_--·;_ L.6 1.9~' 1,.6 0.9 1.1 2.1 1.S 0.8 1..2' 2.0 7~1 0 .. 8 1.1 2.1 .· 2.2 " . ' ') o3 9,9 20.0 5•6 0.9 0.6 3.7 12.0 1.5 0.,9 11e0 11..0 1.1 ·~·~s 20o0 24.0' 1.2 1 .. 1 17.0 27 .. 0 ,..._.... 4.7 13.0 14 .. 0 17 .o 6.0 1~ .. o 3.,1 t .. o 5.0 9.t~ 10.0 <s·.o s.o 11. n-· 12~'() 11.0 o.o 13.0 13.0 1:! .• 0 0.1 0,1 0.1 o.o 0.1 (}.O o.o 0;,1 0 .. 1 0.1 0.1 o.r 0.1 0.1· f). 1 0.1 0 .. 1 0.1 0.1 0.1 10.0 10.0 11.0 s.s 6.2 10.0 ~.6 6,2 10.0 10.0 lLO 6.1 11.0 10.0 n.o 12~0 11.0 10.0 12.0 13,.0 ·-· ·~c~ 0.9 2.3 0~94 o~~ 0.8 2.1 0.2 o.s 0.7 2,0 1.1 0.6 0.7 1. 6 1.0 0.4 0.7 1 '7 . , 1.0 0.4 • Appen~fx. Table 4-D-6 (Continued). -·· '• .Susf~na ~lver Slough Slough .Slough . Slough Slough at ""': ~ ' Cold Creek Parameter bate BA 9 168 19 21 \\' --··- Nutrients·-Cont•d . Nitrogen 1 tot~ 1 anvnonia June 0.08 0.10 0-.09 0.07 0.10 o.1~t Mg/1 N Jt~lY 0.15 0.18 0.15 0.26 o.n 0.,33 ,) S~ptember 0.15 '0.16 ·-0~19 o •. zo 0.17 J~nuary ~.07· .(0.07 O.t12 ·0.09 <0.07 o .. oo March o .. 12 0.08 <0.06 0.08 .0 •. 06 0 .. 06 1'.' Nttrogen, ammonia + dissolved Ofg~ntcs June 0.52 0.62 0.65 0.72 'o.ss O)•a mg/1 N July 0,54 0.61 0.73 0.57 0.45 S.:~!:~ber 0.51 0.58 0.26 ·0.62 0.,30 0.43 January 0.37 '0.47 0.24 0~22 0,.28 0 .. 24 ..r.. Ji,;,rch 0.27 '0~23 0.-24 0.30 0.22 o.26 I ~ Nitro~en 1 ammonia + total suspended ,June 0.09 0.30 o.oo 0.23 o.oo '0.06 ' ...J' orrJani c:s .fuly 0.01 0,.11 -~ ... .o .. oo o.oo o .. oo "'-J mg/1 N S~ptember 0.07 o.oo 0.07 0.01 0.08 0.02 January 0.05 O.o21 0.06 0.37 0.03 0.02 March 0.09 0.26 0.14 0.21 0.14 0.01 Nitrogen, ammonia + total ~rganfcs June 0.61 0.92 0.59 0.95 0.47 0.4"8 mg/1 N July Oo55 . 0.72 0.46 0.71 0.57 0.43 SeptH~ber 0.58 0.56 0.33 0.63 0.38 0~45 January 0.42 0.68 0.30 0.59 0.31 0.26 March 0.36 0.49 0.38 0.51 0.36 0.27 Nitrogen, total nitrate and nitrate . .June 1.3 1.0 0.33 1.3 o.s 0.1 mg/1 N July 0.2 0.1 0.3 1.4 0.1 0.1 S"ptember 1.1 '1. 1 0.3 1.4 ()~7 0 .• 2 January 0.9 1.1 0.4 1.0 0.6 a.2 March 0.9 1.0 0.4 1.2 0.6 0.2 Nl~rog~n, dissolved nitrate and nftrtte June 1.3 1.0 0.4 1.3 O.lf 0.1 mg/1 N July 0.1 0.3 1.5 o.1 .0.1 September 1.0 1.1 0.3 1.3 0.7 0.2 January 0.9 1.1 0.4 1.0 0.6 0.2 rJ•· .March 0.9 1.0 0.4 1.2 0.6 0'.2 t "' N •• . J~ ~ .~<., r>, ·DRAfT CJ AOFG01/t06 App,z,ndtx Tabl& lt•D-6 (Contim.IGd) .. ;, ,. . 5U6itna River Slough Slough Slough, Slough Slough a.t. Parameter ·~ 8A 9 168,., 19' 21 Gold Creek Nutrients,-C~nt•d Phosphorusp total June OoOS 0.01 0.01 0.01 /..0.01 0.12 mg/1 P July . 0.27 0.48 0., 14 o.01 0.~8 o.oz September -< 0.01 .(0.01 <0.01 .(.0.01 <O,.Ol 0.02 January "0.01 <O.Ot .c:0.01 o.o2 0,.01 0.01 March 0.01. 0.01 0.01 0.01 o.o1: 0~:01 Phosphorus, total June 0.2 <: o •.• .(0.1 < O~ 1 .(0.1 0.4 mg/1 P0 4 July 0.8 1.S 0.4 "0.1 1.2 0.1 September -IIIII!'-_ .... --~ 0.1 January -------0.1 <0.1 0.1· March <. 0.1 <Oo 1 <0.1 <.0.1 <0.1' ..t. • 0 Phtlsphorus, dissolved June 0.03 0.01 0.01 0.01 .(.0.01 0.02 ' mg/1 p July 0.01 .eo.o1 < 0.01 "o.o1 (.0 •. 01' < 0.01' ........ September 0.01 <:"0.01 < 0.01 <n.o1 .(. 0.01 o.ot, . CX\ January < 0.01 <0.01 <0.01 0.02 0.04 O • .Ol March <= 0.01 c:.o.o~ <. 0.01 <.O.Ol -<.0.01 0.01 Carbcm, dissolved organic Jur*e 1.9 2.1 1.4 1. 3 2.Q 2.8 mg/1 C July 13~0 9.0 3.3 6.2 6.0 18.0 September 1.5 1.7 1.9 2~2 1 •. 1 ---January 1.4 1. 3 o.s 0.7 o.s --- March 1.4 0.7 0.7 1~4 1 .. 1 1.6 Carbon, total suspended organics June 0.1 ---0.2 0.2 0.9 mg/1 c July 0.2 0.5 o.o o.o 0.3 September 0.1 0.1 0.1 O.l o. 1 -·~-Januarv o.o o .. o o.o o.o o.o --- Harth • o.o o.o o.o 0.1 c.·1 0.1 '\') Trace Metals f Arsenic, total June 1 1 1 2 2 6 """" ug/1 At July 2 s 4 1 5 7 ·fJ' Sep\:ember 2 1 1 2 2 l January 2. 2 1 2 2 March · 1 1 2 i 2 2 ..t;., r (:_ "-4'~. ·~. iJ '. j' ~.-A.:· ........ ~ ~........, _,......., H'f""' ... ~ tf ~ · •u•A f-.. .A . "'' ,.... . •A.,, 10""'---· ... ,_ .... ' ..... . . -' .. ·-.,. .. ...,,_, '""'"" ,.,.-~·~·· .. ''"''-"'"·'""·"'~ .. " "~' ,_ Appendix Table 4'*0·6 (ContinJJed). ·• ' Susltn~ Rivar Slough Slough Slough Slough Slough .oltt ' Parameter Date· 8A 9 1GB 19 21 Gold creek -___ ___...., . Trace !ietals -Cont•d -' -1 ' Arsenic, t'?ltal syspended June· 0 0 0 1 1 .5 ug/1 As July 0 3 :2 . 0 ' ~~ 5 September 1 0 0 1 1 I ., ...... January 1 ·1 0 1. 1 • ---1 (f ·March ----0 1 0 " Arseni~. dissolvEd June 2 1 1 1 1 1 ug/i As July 2 2 2 1 2 2 September 1 1 1 . 1 1 _., .... , January 1 1 1 1 1 _,_,__ .I= March ( 1 1 1 1 1 ·~ I 0 Barium, tota 1 recoverable June 0 0 0 0 100 200 ' U!'j/1 Ba July 200 200 100 100 300 300 " September 100 200 100 100 100 __ .. "l January 100 100 <100 100 100 ---· March < 100 <.100 <100 <.100 <.100 100 . ~ Barium, suspended recoverable June 0 0 0 0 100 200 ug/1 Ba July 200 200 .70 50 300 300 September 100 . 200 100 100 0 ---January 0 0 __ ,, March ...... ---......... .. 0 Barium, dissolved J9ne 90 0 0 0 0 0 . ug/1 Ba July ftC ItO 30 50 itO 0 September 0 0 0 0 100 ----January 100 (10ll <.100 <.100 100 Hllrch 29 27 14 29 41 60 . Cadmiun1 1 total recoverable .Iurie 0 0 2 0 1 0 ug/1 Cd July 0 0 o: 1 0 5 September 0 0 0 0 1 Jimuary ~i .(1 <w <1 <1 --- N M~r.ch <1 <1 <1 "'1 <1 <.'1 t--... '*-'~:... N ' ' ·r . ~-,-; -c, t,J Appendix Tabl~ ll•D-6 (Contir~ued). Parameter Slough Slough Date SA 9 - Trace He til 1s -Cont'd Cadmium, suspended recoverable June ~ .. -0 uglt Co Ju1y __ ,_ September 0 0 January --· Harch ....... Cadmium, dissolve~ June 1 () ug/1 Cd . July ~1 <1 September 0 0 January <1 1 Harch <3 (3 ..t-Chromium, total c-ecoverable June .0 10 l ug/1 Cr July 30 30 0 Se~tember 0 10 I January 10 <. 1 ~ March 10 <1 0 Chromium, suspended recoverable June 0 10 ug/1 Cr July 20 20 September 0 10 January March Chromium, dissolved Ji:ine 10 0 ug/1 Cr · July 10 10 September 0 0 January '10 1 March .( 10 <3 rJ· Cobalt, total recoverable June 2 0 ug/1 Co. july 5 6 ' September 0 0 January 2 1 """" March 1 1 N: ' ~. ~ (f' .. ~ ...,., ::·.·~~.c -r iJ ..... \· Slo.,.gh 168 Slough 19 .2 .-0 0 0 ---..-- 0 0 <1 .(1 1 0 1 1 -'3 <~ 0 0 20 20 10 10 10 £.10 10 10 0 0 iO 10 10 10 0 0 10 10 0 0 C:.10 <10 <...10 < 10 0 0 2 Q 0 0 1 1 2 2 Slough 2l' 0 ·--- 1 --- 5 <1 0 <1 <..3 0 40 10 <10 C..10 0 30 10 0 10 0 ~10 ~10 2 7 1 L 1 1 DRAFT ADFG01/t:06 Susitna Ri v.er at Gold Creek z.· Q--~ .... .., -'1 1 ·---_ ...... <3 40 30 10 40 20 ·-- Q. 10 :•.---·-- (,10 6 l1 ·--Ill!,- 1 .. . ....,~~r-, W • Appendix Table 4·0-6· (Continued), Slough Sh>ugh Paramt:scer Date SA 9 - Trace t-ietals -Cont'd Cobalt$ suspended recover~ble Jt.~ne 0 ug/1 Co .)~1y !IIIII-----Septemtl:er 0 0 January 0 0 March · ~-- Cobalt, di~solved June c.) 0 ug/1 Co July <3 .C3 September 0 .o -I= January·· 2 2 • M;Jrch <1 ..::1 0 • ~ Copper, total recoverable June 3 2 ........ ug/1 Cu July 20 23 Septt~mber 6 4 January lt 2 J-tarch 2 1 Copper, suspended recoverable June 1 1 ug/1 Cu July 12 20 September 5 3 January 3 0 March 1 0 Copper, dissolved June 2 1 ug/1 Cu July 8 3 September 1 1 January 1 2 March 1 1 Iron, total recoverable June 20 40 ug/1 Fe July 13,000 16,000 September 20 go N. January 20 140 March 10 30 l -rJ' ' ...t V\· ' \ Sldugh Sl.ough 168 19 0 0 ·-~-...... 0 0 0 -~-..... ~-- 0 0 <3" ~3 0 0 1 "1 (.1 c1 lt. 2 10 3 s 4 1 2 2 .a 1 0 4 0 3 2 0 0 1 7 3 2 6 7 2 2 2 2 1 1 50 40 5,800 220 280 260 20 10' 40 30 Slough 21 '1 ..... 1 ~--...... 1 c: 3. 0 2. <..1. 2 23 .. 1 6 0 0 1S 3 0 2 s 1 1 1 60 18,000 100 10 10 Su.&Jtna River at Gold. Cr6ck. ---· 11 ~-~ ....... ' 0 ., .£. 3 .o --· 1 31 190 ..... 2 1.7 190 -·~ ,..,..., ~ 4. ., ..... .,. 1 ·• 15,000 1~,000 ~-.. ..... ItO ,., '·' :::_,-:.· .. DRAfl ADFG01/t06 Appendix Table 4-D-6 (Continued)a ~ Susi.toa :River Parameter Slough Slough ·· Slough Slough Slough at·· Oate BA 9 168 19 21 Gold Creek - Jr~ce HetaJs -Cont'd Iron, suspended recoverable June 10 0 0 0 ~0 15,000 ug/1 Fe .July 13,000 16,000 5,700 140 18,000 19,000 September 10 60 260 250 90 January 0 60 0 0 0 --- March 0 20 30 20 0 30 - Iron, dissolved June 10 60 50 60 20 90 ug/1 Fe July 48 110 52 79 97 120 September 10 30 20 10 10 ~~~ January 40 60 20 30 20 March 12 14 9 15 11 15 .&.. ' Cj Leadfi total recoverable June 0 5 3 3 15 18 I l1 ug/1 Pb July 3 3 3 ·3 2 47 September 4 1 1 2 4 January 2 1 <'] 1 .: 1 March "' 1 5 6 9 3 lead, suspended recoverable June 0 5 3 3 15 18 ug/1 Pb July 0 1 3 2 0 47 September 2 0 0 0 0 January 1 0 0 March 4 ... , .. 0 lead, dissolved June 0 0 0 0 0 0 ug/1 Pb July 3 2 0 1 5 0 September 2 3 4 3 5 January 1 2 1 1 1 March 1 <.1 1 (.1 <1 3 ty Manganese, total recoverable June 10 10 10 0 0 250 ( ug/1 Mn July 230 290 10.0 20 300 320 September 0 0 10 10 0 --- ........ January 10 20 10 10 20 March 10 10 ~10 10 <.10 10 rJ I ~ ~ c· . Appendix Table 4·J)·6 (Continued). ' ' Susf.tlla, .River Slough Slough 51qugh Slough Slough ~t Parameter . ~~ate 8A 9 169 ·~19 21 . .Qold Creek .-~""·.~ ......... ~----- Trace Metals .. Cont'd Hangane~e~ suspended. recoverable June ,0 10 10 .,··o 0 250. ug/1 Mn July 220 280 :90 .10 2,90 3lQ· September 0 0 '10 t 0 0 _ _.,.1111!' January 0 10 ·O 10 ..... Hatch .6 5 ·---'6 ---7 ' ~ ' ''h ..... '.~--.~ h" . ..• [,' Hang"nese, .di sso.l ved June 10.0 o.o 'o.o ·o.o 0 :ft ug/1 Nn July 8.0 10.0 7~0 9.0 8 10 September o .. o o.o .. o.o 10.0 ·o -(.: J6nuary 10.0 .(Do 1 ~10.0 <10.0 to March lt.O .( 0.1 3.0 4.0 3 ;) -:;.7· I 0 ~ Mercury, total recoverable June 0.1 0.1 0.1 0.1 0.2 0.4 ug/1 t-fg July 0.1 0.1 0.1 o.o 0.2 0.3 September 0.1 o.o 0.0 o.o o.o January L-0.1 ,0.1 <0.1 ~ 0.1 0.1 ---March 0.1 0.1 ·0.1 0 .. 1 0.1 0.1 Mercury, suspe~ded recoverable June 0.1 0.1 0.1 0.1 0.2 0~4 ug/1 Hg July o.o 0.1 0.1 o.o 0.2 0.1 September 0.1 o.o o.o . o.o . o.o January ------March Hercury, dissolved June o.o o.o o.o o.o o.o o.o ug/1 Hg July 0.1 o.o 0.1 o.o o.o 0.2 September o.o o.o o.o o.o o.o January (0.1 <. 0.1 <0 .. 1 (. 0.1 ~0.1 ---March (0.1 ~0.1 <0.1 . < 0.1 .c0.1 (0. t f Hickel, total recoverable June 3 2 2 1. 6 2~ ug/1 Ni July 14 18 6 2 18 22 ., September 1 0 7 3 4 l ,' 36 ' January 1 2 ~1 <1 <1 ,, ,, ---('.) March 1 <1 2 2 1 2 ( """' tV t ~ ~ Appendix Tab 1 e 4-D-6 (Cor. ti nu~d) • II' -- Su;s ttna Ri 'llfl:r Slough Slough Slough SloUgh Slough at Parameter Date 8A. 9 ~.68 19 21 Gold Creek --· Trace Metals -Cont'd Silver, suspended recoverable June 0 0 1 0 0 '. 0 ug/1 Ag July 0 0 0 1 fl 0 "· September 0 0 0 0 0 ....... January ------....... March ---.. --... ~ --- SilverJ dissolved June 0 0 0 0 0 0 ug/l As July 0 0 0 0 0 0 Septeillb~r 0 0 0 0 0 ....r:.. January ~1 (1 .C:.1 • 1 <1 --- March .!1 .(.1 1 <1 <:1 1 • 0 I Zinc,. total recoverable June 20 ItO 10 10 10 60 ~ ug/1 Zn July 80 60 20 10 60 120 September 20 30 30 10 70 January · 20 10 20 10 tO --- March 10 10 40 30 20 10 Zinc, suspended recoverable June 10 30 . 0 0 10 50 ug/1 Zn July 80 30 10 0 40 110 Septembtr 10 10 0 10 0 January 10 0 10 0 0 ...... l<tarch 0 20 Unc, dissolved June 7 10 10 10 0 6 ug/1 Zn July 4 35 10 10 17 14 September 10 20 30 0 20 5 January 10 20 10 10 10 March <:12 <12 (.12 12 .(. 12 L12 ' all .) f ·~ ·--.a • EXHIBIT E REVIEW STAGE 3 • ... 2. Water Use and Quality ·'coaaent 13 (p. E-2-40r-. para. 3) Provide water le"els as a function of absel'·vation time for each well. Pro- vi de data associ a ted wi t'h core dri 11 i ngs and piezometer insta 11 at·i ons. Pro- vi de bathymetry from sa,mp led s l.oughs. Response Water level data for sloughs SA and 9 are presented as a function of observ- ation time in Tables 1 and 2. The average daily discharge at Gold Creek for the date of each obseArvati on is also presented. The location of the obser- vati~n well is illustrated in pp. 2-13-62 to 2-13-63 • Wellhole logs for the shallow wells identified in Tables 1 and 2 are illu- strated in pp. 2-13-6 to 2-13-19. Four deeper wells were drilled in Slough 9 during November 1982. Information associated with the core drillings of these wells is presented in pp. 2-13-20 to 2-13-23. Generally the well logs indicate well-graded sandy gravel overlain by 0 to 10 feet of silt and sand. The gravel contains well roundad cobbles and boulders 1/2 to 6 inches in diameter and does not contain silt .. • Details of the piezometer installatiCi~l for the deeper wells are illustrated in p. 2-13-24. Bathymetry in the form of cross sections and thalweg profiles for-sloughs SA and 9 are presented in pp. 2-13-25 to 2-13-61. Locations of cross sections are presented in pp. 2-13-62 to 2-13-63 • 2-13-l N. I ..... w I N Date 1982 April 26 ~1ay 15 May 27 June 24 June 29 July 18 August 3 August 5 August 6 August 9 . A.ugust 2:1 September 3 September 5 September 10 September 20 October 5 October 13 s ,= silted d = dry • 8-1 8-3 579.47 575.42 581.16 577.87 581.42 577.54 581.26 576.38 580.99 575.69 580.41 576.18 577.41 575.54 581.41 578.45 d 576.57 d 574.74 TABLE 1 GROUNDWATER ELEVATIONS AT.SLOUGH SA . . (In feet above mean se~leve1) Wel'l No. 8-4 8-5 8-6 8-7 574e39 574.76 d 572.79 576.31 573.94 574.91 573.22 573.43 575.06 574.99 573.11 573.32 575.00 574.94 572.98 573.23 574.89 574.83 572.8;} 573.13 574.87 574.77 572.97 573.12 575.10 574.97 573.17 573.32 574.54 574.56 572.90 572.96 575.32 575.30 573.44 573.58 574.90 574.77 573.03 573.15 574.06 d 572.78 572.78 I} ~'-f '· ·,· USGS Provisional Discharge. -at 8-8 8-9 Gold Creek (cfsJ · ~~ .,_ .. "' ., 568.24 568.42 2,300 15~000 569.91 568.62 23~000 569.36 568 .. 56 26,000 569.03 566.55 29,000 568.61 568.40 25~,400 ~9,800 17,400 16,300 569.09 568.43 11 ono . ' 12,900 569 .. 66 568.52 14,600 13,600 569.12 568.31 14,400 570.33 568.91 24,000 569.fi4 568.37 9,800 568.16 8,040 Sourca-R&M Consultants, Inc. Susitna Hydrolectric Project Slough Hydrology Interim Report. Prepared for Acres American . Incorporated. I \ < N I ...... w I w I • Date 1982 April 26 .May 15 May 27 June 24 June 29 July 18 August 3 August 5 August 6 August 9 August 27 September 3 September 5 , September 10 September 20 October 5 October· 13 s = si 1t~d d =dry 0 ·. J 8-10 8-11 566.15 565.64 565.30 565.49 565.15 565.79 565.34 565.54 565.51 565.56 565.83 565.76 566.28 565.75 566.00 566.70 565.70 566.12 . ~" . : .: . ' • . . ' . • c"::._., ~ • • ·~;~ • •• # ' ••• ' •.':~. ••• .. • ' .. . . ' ·,_ ' . ~ ... . ~ . . ·. • TABLE 1 (Cont'd) GROUNDWATER ELEVATIONS AT SLOUGH SA (In feet above mean sealevel) Well No. S.G. 8-12 8-lA 8-1A 8-2A 566.33 s s s 564.38 57·2.63 572.32 572.23 572.19 572.33 572.35 571,85 571.86 571 .. 83 571$79 571 .• 75 571.73 564.29 571.81 d 571.61 d d d 571.24 d 571.41 570.99 d 571.16 d d 564.44 573.24 573.33 573.25 d 570.39 d d d d d USGS Provts iC>na 1· Oi scharge at .•. a ... aA 8-4A Gold · ,Creek (Cf~) ... ·' ';_' 2',300 15',000 ·23·;ooo '\,, '26 000 . ' ·. 29,000 . '25',400 19,-800 17,400 571.87 ·16.800 571.81 17,000 571.05 571.26 12,900 571.87 572.32 ··14,600 571.74 572.28 13,600 571.36 572.24 14,400 573.42 573.?2 24.,000 511.::22 £:"7~ "9 .. ,.,.u g· aoo ' 570.48 572.58 8,040 Date 1982 April 26 May 11 May 15 May 27 June 23 N .. • July 1 ~July 20 I ~ August 25 September 6 September 9 September 20 October 7 October 15 s = silted d = dry • .. I 9-1 ~9-1A 607.71 607:58 608.5(}. 607.94 607.32 605.99 606.16 605.50 606.08 605.27 608.01 607.07 605.88 605.21 605.81 604.85 TABLE 2 . GROUNDWATER ELEVATIONS AT SLOUGH 9 (In feet above mean sea 1eve 1) Well No. 9-3 9-4 9-5 9-6 603.06 '603.62 603.33. d 605.42 604o46 604.51 604.15 606.62 604.47 604.76 604.34 606.66 604.77 604.40 604.91 606.22 604.67 604-.11 604.48 605.67 604.03 603.81 604.08 604.69 d 603.34 d 605.70 604.16 603.61 d 605.49 d 603.60 d 607.65 605.23 604.74 604.62 605.29 603.97 603.52 d 604.91 d 603.39 d ',_,~_,,., · •.. _.,.J . \~·, ·USGS Provis{ona 1 · • • 1 ' • Di scha~ge -·:at·/·~ 9-7 .9.-9 . ·.. . . ·. '. )'',1 . ' . ,· Gold Creeki tcfsl . · ,, d 603 .• 01·· .2,300'' 602.68 10.500 '• 15,000; 602.45 23,000:.. 603.02 21,000· 602 .• 78 604.08 25,:000 ,' 602.30 22,900 601.05 602.56 13,400 601.32 .604.37 12,200 601.1~ . 604.22 13,400 ' 602.78 605.07 24,000 d 603.26 8,640 . d 602.91 7,1'10 . N I ' ..... w I U1 ,., Date ·-1982 April 26 May 11 May 15 May 21 June 23 July 1 July 20 August 25 September 6 September 9 September 20 . ·October 7 October 15 fl •1( d .·. s #":Sl ~e d = dry .. • 9-10 9-11 600.32 600.06 601.20 601.21 604.00 5 601.16 s 601.69 s 601.38 600.99 .601.07 600.34 600.28 600.50 600.46 600.43 600.35 601~~37 601.49 d d d d TABLE ,2 (Cont'q) GROUNDWATER ELEVATIONS AT SLOUGH 9 (ln feet abpve mean sealevel) Well No. 9-12 9-13 598.53 d 694.09 599.94 s 600.64 s 600.40 s 'i99.55 s d d d d d 594.29 d d d d 9-14 9-15 " 594.14 d 594.57 593.90 s s s s s s s s 593.66 592.74 593.74 592.83 594.77 593.76 d 593.66 d .• , ':;. ~ ~ ·. i ,,· :~ j USGS Provi•sional D·ischarge · at. . . . ' Gold Creek, (cfs: 2,30(1 10.,500: 15,000:,' 23,000, 27,000 25,000 " 22,900, 13,40(1 12 '200~>\:' '(_I 13,400 24,000' . 8,640 7,110 I . :-!" {:.,--'"'·\. .l"' 1 ' \r- • ' 4 ,_, ""-.: .. sr '1.. " .. . ' . . -~------.: I ~---r~--------------------------~ ___ , ___________ ........ _ ......... OWN. A G. ..... CKO. -~ .a.t.T£. .!1•.1':. Sc.:A,i-$ , .. ... , 1 . - 3, . . .:-•• , -&- ' T.O. - -.. • Y· -=="' - . M'j',.2 : y .. u .. ~~ .4~. 0 c Jl' r . . .: • f \N e.L &. Gll~t>O S Q ~A..-.v e c..· .~ ... . . . -. ----, :J..S . . .. ~ ;:-::-. ·.::-"' -.. . . .. ..... ~ .... . --. Jrc. r•, .SA•D '-'/ Olf c n,.,:z. ,_. -· ---.. [/F.f(' ·: FZ•~ ,,s:, '1" z-fr: .... 5··~ I C6a ...... ; ... +. .J ..._...-..... -,, _...,.' ,, ·• .. . .. . .. " ~·:.:, ,.J,. ,~ ... . . , . .. . ----. 7 ve~· ~ tr r llot ~a ~:r c.,. ~:. .. ._ ... ~-.., ...... ;.n th.+ ,_ ---. S:r: c..? T .s ~¥0 -I 0 ~ t! ~ ... l:. t..l . /0' ;.~ . . . -.. ·-·-· . -. . . ~ 0 . . . . . I . .. I . . · . _, - · . DWG f.!O. · ... • . l 1 j ' ;i ·,l t' %' \ li 1 .... ·. l' ti n t' :! I· ~~ ·_:: . .. .. , ..... "'" . ·:... . .:= ....... - Jo' . ...,..,. -!:... +--t---• ~- -- " .., ... : ;;.. ...... • .,._,....,M•"' •. . ---··-- .: !' o' z I I, T:·tJ • , ]/ . ' ~. -· S,..,.ot· G~.-.--~c. ·1#1>'/,..~'N'f .L AR.• E ~·f. Ia ·~) C.•~ OLGl • ·' -ll' ..... 0 , •. ~ ~ . ..:_.._.. ... --.-... ,• '! .• - • . I 1i ,. -; li ... -~---.. t._.'i lt -~-.-· . ; . . ·~~ -~. 11 "'"'( '·. :. "f-·· l-~1. :I!;. :.rr~ v: r.s" __ :;.tfi~~ ....... +------- S~ c;Pt ~res.,.Jit.L , ..... J ... t c.l.t.l ...... 1---- 1~.-c-~ -~ '' • .J ·•-•let ""' •p s ~-0-~?Z-J-~--------~------------·-- --. -: -!"' ~ r .... .._i..-~i.--~--101------~~~--- •. o' J.S / , S T • .O. • • I -1-' -t..f .. f.l "'" "!; """")··.·. .t ; •. 0 f .• .. . ~ . . . . -... F:: ~~~~ S.Sc.T ~I OiC<"-AW~:..C..$ ,lioo I.S' -· -=----.. ·-... . " . . G-R,.vli.C. .. ""'.q,. \ \ 3r .. J..J. 'r-..-J (IJ' ceJ-1.1.-.r ' c; . -. . . , . • . . I • . -. -- - •••••••• , .· . C< ' ··~-il''f;;:?:;"·: '):;.~' , :t-/a I:.J ,.il,.~~ . ..,._ ... - ,~c;.·.;:"-1 --~ ~~< ----.. - ... () , --I, - ---~ .......... . . -· • ~:r..T ...... ... .t t -- ·. - VE~'t f'.Xtli& J'ft•l s + \.h ... ~ ... .. -.. - .... ·- - .S~LT, (C'-IIt'f - --- ----- L-~--------~--- -~) s' ·. :· It i: , . ... ... .· ........ ·. .. i t. .. ; .. ·~ $.$;, •q-tt • ., ·'-1~ 1:'-iih -.·r.ilo.,. -- w-4·" ---• -- .. • -............... _.,_. --.. ·-----·--------- awN. Rt:.~ ~L •• C~l'l '!I ··~ . .. OAT!. 'f·3Z. ~CAL£. ~~ : , .... , 0 o.r' • • 9-lf; . ..,._,~ -r~· . -.- -..,..._ . · -· ---~n. --- . 4 • o" l , ., Y.! T.O. .. fJ:··J:·. " . . . ~ . ~J'""-....... 1 ______ ,_~~~--- . '·· · . i"'"i---..... __ .. _,.~ ......... PWO~HO. tJriJ i"' owr; uo . l i 'I '. .... " ; .• ,_Jl. .. . "1-1 "'._,'a ' ~·· . -. . . l,. •• : .. t-:-.:. £tt."!" .• ~=l-'T . .. .. -. . .. .. -. -" j ;. - men - -· --~---·----· 2 ... -1 . ~ ... ;: .. --'": :if '1-:' a -'4-1'1"' g'L, - It • • . t ... .. . ~. ,, . ~''~ .. '"'!" ....... -, . ... .• --- :.~ . ;. .. -._.,_, --- ~--~~------------------~-----------, Cf T.D., ··-... -....... • .. .. ... ; . .. .. . 0' .. ·; .· .·· i ~, . . ·' • t g.s' ;.o. ,. ' II : r I I I I I 11 I 'I ....... ~ .. ' ', ' I .. ~ ' "' ' :··.: : "'' " -•• ~ : '#. ': -~- r· I -t:.. .. ..:~ "'II,. f ~~ l~ ... .. " l l ~~ • 0 . a' jf I ·- .. ~ • . . ;t .. # u.i. -· -............. ---"1' CAAvtlc. ~ -2•1 ~ --- --3 •. $, - w.a. •---~-----------------------.. ~'. ":.- .. ~--,-------------·--..e·--=11:1· .Q. ·:" S: r..T --· --- ..... . ~ ..... ,.,.,~ w~ ~~---+----------·----------m----------- l i· I .. : .. l. I • 1 •.. i ~ . . ~ :; .. · I -s -- • -----.. ...-.. --- ~a. Yj_~--~------------­-:;- .. 0 2.l , ~, • ,• -... ~·-~: .. ' ,. ... ~~~. ~----~~----- . -. -- ···-·. • ~ . ~ ~ *?:-1 ·. f£-1r~11. -- t I • u \.., \\ -• ow" -C~<a--• 0 • CKfl ... ~~~ ......... , .. _ . OA~ "tJ'k-,. --· S~l. " . \ t ... .a .. 0·' -- • .• •. • il 2-1.. "'"" 8 , ••. J "'L - ~-· ---2" --z.s , -. ~ . -: .1--+------------/,., $" 'T.D ., ' - ·' ... '#.'t?.;·.t' • ., ;'\LJ:.. tt'o. ~2..· .t: .. : .. : _._ .. _._... ·------- -. _.,..., --~·------ ;: .. '.\; ... .... • , CJ.S" T.D. .. . i --- o+---it------------ ~-+----·-----'-·--------- ' .. ~ ·:. ... ·.,;,. .. • . .~ , 0 , ~.s ·, S.o T.D~ ?...-13-IS: ·-·# .. ' ........ ... --· \N 5 &.&. Ho-. ~ Lc-G.i :~ .... 7 .. , ..... ~ ...... .,;. '"':: ..... •).~~--· s~ tZ 'rN·,.·· Gtt;,.~, ···i...~;:;·;,: l'tftlr ... 1 ,, .. · ......... ~ ''. ,i\ .. "'-~~ ~-·.::.,· t .. ...,, . ~. J.S' ; - -- '~·f.' , '-w.Oo "":' , ' ' S%'":':. '+: .. ~· ..... ...... -- GRAVEl. . .,;.. ~· . . . .. . ~·-~\:. ~-~::~~-~ ~ ~ ~~ ..... ~ . . ~ '·' -· • ,. "' T.O. ~.4 -~~r.?'-'r ·'7". !·~;:. ~ :.-.~~ ... ~ • , II ;· .J:JZ· c., ·'f-JS'·S''?.. I -- -- '0 • ... _ .. J:J ... --- -____ .,__ .... ----·- '2.S , ._ .... i.S,. :{ +--r- w.D. ---- '~~~.=::~-:· ... ·-:1~:·,.: .... .:..-. .. ·:. ... it~~:~~ -~ ... ~!',...; ... .. ... • ~·~'!e. ..... -.~~~ .--:~ --~-"" .. . . " . . -·~~-------------·. 2-13 -1(,4/) ,'. M ll•l.-~~ -- -·· --• • --2.S , -,~ 3 • ., --w.o. -;--:"' , L--1------....... ----'i.S' :r;o. -. : :. ~. . ,; .• "' "• .... .. ... -.. ----~---- ' . . ··:'-i:; :· ;-~ . ;,. •.·•· : -~ :. • .. · •'\ .. ~ J. • .... ~-- • &.f• I i :t ·a. -·· -·--.._ .... _ .. -·· .... ~ ... · .. . ...... -.... ~.-· ...... d• .~ .) :: ., ,. . ,, 0 . J ~ --,, I . .s -- , 'I.S 1.0. • '<!~'• I k I (~···. ... :J:,: .. :::~.=~~-~ ........ ~-....... _.2 __ _1~~~ ... -:::.~~Q~~-~~:-.. --rc~ • • cr • > • ·. 6 i·"1 ~ .. .. . , w.o. . .. .. ... -·· -.... 0 ; ---I ., , .... -- .. .... ---·-;---,·--~ .. • ~ .. l~----------~~----------~1 "'f--lt-91.. Ill I 0 ~ --r---...... ·/.0 - ··---~-~----------. · .. , '.~-T.~ . If' ••• . WS c. c. Hac. C L o &.t , • .. :.=~.:. ~. ----· -.--"~·· ..... ~-..-.. .. ·... . .. . -. ~·-r ... ~ .......... ~·· . ...,_ .. \n ·~ "'!-~ Suez-;~-:-~ ... ~--,..,.,. ...• ,.., • ., .' .. .. t -·~-•; .· .. . 1118· ·. ·-~~"!; ..• ' PftOtlHClMZ;JI., ' . ~QWG.HQ .. . , . - • : DWM. RB ex" ''<\::.. .. OAT£. "''• I '1 S;ALE.f .. •1, .. o' .. ! . .. -R&M. CONSULTANTS, INC. ......... _ ........ ...., .. ........ ..,..,.,... -~·--------------- w.c. • • -- . """""'-----·-- ~----i------------r..-----..-..-,-------------- • -·. ................. : ~: ... .,._ ... ~ .. :'* ;. ..$." .., .... ,II!! ... G~~e .. .:.. WAr~• · lT ... ·y. ... . . . \i • ~~ )/ I * I ·-' I . f I I . ' ~ I .. . ~ I t· J r I . . l ;: ·I· .J . .,.. 1&1 .. ci' z 2 .a: 2 --- I· -. . . . SU&.I.ECT: _-.,'!' \' . .• . . -.. . ;, ~~ • . .. . ... ... "'• • • o~." .• t:J.: . , ~ ~ • I • •· ...._· .ti n.= ·. :-v . .... ~ .•. ,o·::.:. -~ ·.f.....] • /'\: .... ~ .... o ...... ·~ --__ .. ,0.(1 ~ Ill •..... <i .~a~-·~ .d.·~-. • -.• IJI;;. • : ·. o: (1 ~ ... . . . ·, :. . (/ ... "" •• • '--.1 ·o·· .... ·. . •.. ·u • .• ~ ·o ·~ .· .•. ,.....,~· .. ~ ' , -.----~CII'-~ ··~:· .. -:. •. Q .· .... • . • '<I •• : t"""'\ : •· ~ . ·.. . ·o· ... .. . ..... o . . . : ei ¥ -~~·~. D ..,._ _ __,.. "JtJ~-~~ 4111'"· l'llt' "''. £ .. -...... .... ------·- ~c· ~ d'*"" fl#flt1~ I OF_· ~<D D.ATE '4#: .· j DATE· = .. ,/f/HIIr . ~..:."'N~--~-,.:.~ ·4'-.,-,cu .., ., .4,,.,,-, • , , ~ . .... -........... "" ..... e'~,~ ~~· .,_,~ J.S. -,fir. ~~ s~ ,r ~ ;t:",-t! -f,_., ,co"'-'' £..,~ .. ~.., /i ~~ ', _;., ~ ~····~ .. ,.. .. ~~~-~ .. -.... ,...., ,;~.-~ ...r .. DATE ~----:-· .. --~ ...... -. #...., ~, t.Stf'ff,~~ "'*'f:JI dti*4•C"*'S W#'¥ 3'11_, --~ . . ·• :) • • • I ~ .... • ... t:J .. . : (J. • : . . : :t:J ... . . . . . • ·t:J ~ . '·· .. 0 . •() .. ~ . ,, .... 6. ="· : .. :; . -"' ........ --..: .If J,tJ • _.. IIF ~ ,1#1~4~"1" ~?~ ~ tliii?<~C. *"tr•"'ff ' ........ ,,. - . . , JJ. ..\ • .J.J -4~ . .zs·· t:~ . · .. : • -~ ... , _,·' ·.; l,_j!loji<~· 1'.' • --.... ·-· > Ul a: ... -~· ~'1*1'1:. ,,.i~JP'' ,.,.~ --··' ·.•- -·:-.. -.... -......... ··~. -. ' ·-··~--,..--· • -~·-·~ .-... ........ ,.. --·. ,...~-~~~ .~· ... ; .. . ~· ..... -----~...-... '\ .. , ..... ~ . .._ ... . ... . -· ., ... . -· _ ..... ___ .,. .•. ~-. _ .. ,:..:.. ./·: ·~-, : ..,.1'r• • .. ;:-._ ,. ··-· ~~···· "' l ... ,.· .. ..- .. .... ~ -·· ' . • ·-=---*~ .. t_. .. . ······- · ... - . . .. ~ _.,. -· ··----··*~--.......... - .,. -· ~ .. '"'·--. ..... 7.-~1 3--"2....2. ~~;;:[f ~- ... ~ ... ,., ~----•4"·.....;_,_~ _,. .................. . "" .... ~ ....• ..... -··--·~· ........ .... ~~·. ~ ! ! ~-~ ..... ~· ... • . · -> w a: ... . ~"';' - ~;.;.., . ·,:;,:.~:;. . "' ~~~f!<l':'(~ ------.. ~ ... , ~ ~··t:L ,.,... t:.~rr41-4.s~ ~.v.J4', s~~~,~Y . -~~~ ,_.,IW,..,.& _,. SA!My. ·· ·-·':-.::'.a.-;- ' . -:'• . •: I ~ • . . . : b~···-- ..... "Ill ; ~ .. . . · .. . ·;....: ..r ·....., ="~ .. : ... · .•. ~s:~· ----.. •· .•. ' ~"A_ D • -., 4.1• •• ~~.o: :on.· 111'4tle.CJ ~ &~tillS' ~~,~ r,"""-' ,_,.,x,>-. 1'£#fl:l' t:J e .. ,s,,_,_ 4"'~'-r. ,.t:/1#, ~,.., 71'-f~ :,:~ - ""'---..&·· '1'·' II•T td" ~ ~.. • If-:'! ... • ·, "":"! . .. . . ., ~--~" .. -. . · • 6-s ") '• .. -."- .. t •. -· . ~ ... "~ ~~~·:' .· .. ;:::...·· ., . ~ • .... t . ~:~--_ .. ~: ···~~;:.:-:~~--:~ ··:.;,..:·r-...-:-~:-(--:~ ....... ~·; -Calcula~tons ~ ·:~" ... U. '·,· -~ •. ,t ,~) . ;.. ~ -i~ .. "£ _. .... __ .. :: .. "' .. ,. -""= :::~ .:.:.-~~·-.... "'!!!!· ~·1'.:1 ..,.,&..0.. f•tl -· ·-·;---~ . ..,. ~ ' ~~ .. ,~,;~-.:--:'~ ... t.;.:· •::· :.!' ... ~~':": :· .. ·._!.;--... . .... .. C#,..~_,-. .- ~.-·;..:"-·. :-. ··~ .. . -. ··.· .· .· JO~ ,.UMBER . ......,""P.~!1.-.'1tP-.1.;.:.· -='•'-•· --. ·, -~\:-' . . Fi~ NUMBEft ;: :•' .:-. ,. ......., _______ _ SHEET _.:,;-l ':• OF_o:;.S~ DATE "9~ .. .. . .. .. ... -.. ......... . ............ • . I -.U~'I .t : fE.::7~~~::~: ... ·~~~;.:; I . ~ . ... ·~-;;· . ·: .J£:.·2-;;~~ .J· ~~.a~ ---~ • "'~. • .. -;.f • ,-;:"~ -: ... ............. . -~ ·. ·-· . .'-.. , . . ~. -~ ...... -:-- :.._~ ,. t'INr .· .... ~ ........ ,.. • .. .:~~-,.!4 ..... :. ·~ ... . ~-· ... ~~-... ';..•. ~-" •: .. . ... ,'! .. -.. • ... ., . . .. .. ~ ... '. -... .. -·1 -··-... ·--·· .... _ I 1 l t t '• 1 ., .. . : .. .. t· . t· . . I • t ! f . . !, : ' I. ; ;. I i II l : I·· ... ! . I ·I . ; . i J •• \' ~'It:.... -.. '~ • • c~' • POINT Cross 1 2 3 4 5· "6 7 ,a "9 10:: 11 '·1~ ·-13 1~·:, 1.5 .,·.MIN ·.MAX . ' ..- . $USI1NA HYDROGRAPHIC SURVEYS c:roils section SLOUGH s 126 •. 6S9 'X' _____ _. __ __ '", Q . $ection datal o.ooo 1.D. 000 ·16.000 34~000 53.000 66.000 79.000 93.000 toa.ooo .112.000 .119.090 ta&.QOO 133.000 138.000 142.000 o.ooo 142.000 . . . -. . ... .. - Dat·e of Surve!J: AUGUST 4~ 1982 'Y' _ _. _______ _ : ·I . l. 519.1.50 577 •. 530 577.130 57?',530 575.'730 575.530 571~h130 577.230 57'1.730 576. 'i3D 575.430 574.730 575.130 !:$77 .130 579.840 574.'130 5?9.840 B-79 DESCRIPTION ALCAP 126.6S9 ~B TOP BANK GROUND GROUND ALCAP 126.659 RB . ' I SUSITNA H.YDROGRAPHIC SURVEYS 't .. . . . · . . • • -.·. G) 'f tf . 0) 0 c ·-... • . c 0 :;:::; co ~ m N · Pfti!PARI!o av: • .: i f'REPAReo fOR: I t--------------........ -----------------------,___,__._..__ _ ___..._ ... -=·: w I • .. . .. • I o I I I • t I 1 .. .. .. cross section SLOUGH 8 1 2 6.659 Date of Survey: AUGUST 4. 1 982 .t l, .. I I I • PQINT C~oss l 2 3 4 5 6 1 s 9 10 .11 12 13 ·-· 'X' ---.------- sec1ion 'da-ta:-· ... ,. ,- 0.000 9~000 15.000 37.000 45.000 54.000 65.000 73.000• 83.000 93. ono . . toa.ooo 116.000 123.000 WateF surfa~e dat~t 1 37 I 000' a ?3.ooo MIN MAX .· .. . .. . . . .. ·-. ~ - ..... - SUSITNA HYDROGRAPHIC SURVEYS c~~ss sectibn SLOUGH B 126.558 Date of Surve,: AUGUST 4} 1982 . :- ! • • 'Y' --------- :· ·t . . • 578.1.40 578.130 577.530 574~770 5'74.130 573.930 5'74.230 574.630 5'76.230 5.7·6.430 578.030 578.430 578.850 5'74.'7'70 574.630 5'73.930 578.850 B-81 DESCRIPTION __________ ...._ __ _ ALCAP 126~5SB LB. TOP. BANK BOTTOM TOP BANK TOP BANK ALCAP 126.558 RB LEOW WS REOW WS '•\ J r /,' l , j i /f SUSITNA HYDROGRAPHIC SURVEYS c ·- c 0 = ~----~------~----~------~----~----~~------~ ~ CD w '• I . . . . • . • •• I .. ·~ . I I cross section SLOUGI; R 1 2 6.558 Date of S• (~~.,'.Jy: AUGUST 4. 1 9 8 2 . , I ·~ ·-~·,..- U··.··· PfiEPAftED fOR: ~·· . ~ ··~"'="'" ' ~-._·:.-~ ~ ~, 1, • • ..~-,.' "'" .... , POlNT ···. Cro~s sect1on i 2 3 A 5 Q :7' ,,.,. '8: 9 10 11 12 '1. 3 14 ti~it·~·~ j/ \ Q,~ 000 ·· s oon ',' ' . 1:3' 00 0 :{7·. 000 '26. 600 ;;6.'ooo 45.000 56,000 7'3. ooo· 82.000 lOO. 000 125.000 135·. ono 143. OOtl Wa'ter" surface data: j l ·~ ·:\ 1 7 a 0 0 0 2 56.000 ••• ' ....... < •. .. MIN MAX 'n • It .. • o.ooo 143.000 ...... SUS!TNA HYDROGRAPHIC SURVEYS cross section SLOUGH 8 12b.SS7 Da~e of Surve~: AUGUST 4~ 1982 'Y' .DESCRIPTION ___ .,.. ____ C5...__ ------·------------- 580.790 577 .. 1 00 576.COO 572,560 572.000 5'71.900 ALCAP· 126.5S7 LB •• . : i . . • l . . ' 571.80'0 572.560 5?3.900 575.100 575.400 ,, 575.300 5'75.900 575.'730 572,560 572.560 571.800 580.790 B-83 BOTT.OM TOP BANK GROUND LEOW WS REOW WS 2-J3~2'f' • ' .\ . . . . ~ . . t -CD 4) LL - lf c 00 ·-~ \ SUSITNA HYDROGRAPHIC SURVEYS •• • l . . ' . :, J .. .... I .. ~ ~ ~ -~ •• ' ~ •• 1 .. I ~ftEPAAED fOR: t I I I I CJ 1 ·. I ..• , .. , •• Cro~s 1 2 -.!). 4 5 6 7 a 9' 10 11 12 13 . . ~ {; 14 15 16 11 •••• iS 1.9 Water • • t • l -~ lr- '2 ;' :.·/ ·.·\. \' 4 \. -.~~' ~- MIN MAX ' s~'t:ion •• {,'""' # s-urface " . . . _ ...... ·-. · SUSIJNA HYDROGRAPHIC SURVEYS cr·QSS sec't i o.n SLOUGH 8 125. 956 Date of Su.r vey: AUGUST 4 ~ 1982 DESCRIPTION - 'Y' ______ ._. __ .... ___ _ data: o.nno 511.400 ALCAP . 125 • 996 LB 11,000 570.580 BREAK 20. o:oo 569.280 26.000 567.900 29 i.oo o 56?.780 BOTTOM '31. 000 568.140 33.000 569.280 TOP BANK 42. oon. 567.980 50.000 569.380 ol.O.OO 569i680 .BREAK .t-7.000 568.640 82~000 568.480 BOTTOM ·98.000 568.380 111.000 568.380 BOTTOM 124.000 568.700 128.000 569.680 TOP BANK 147.000 570.180 GROUND 163.000 5?0.280 .'176. OllO 571.560 ALCAP 125.9S6 RB data: 26 .tlOO 567.900 LEOW ws 31,000 568.140 REOW ws SPLIT &7o000 5681!640 LEOW ws 124.000 568.700 REOW ws . r ·\' ; ~~ : o.ooo = S67o?80 ' 176.000 .. 571.560 . . --· . % --· • -. B-85 <.I ·r.··.-_ J.. \E [ [ [ [ I -Q) Q) u. tp 0) 0\ c ·- c 0 ~ ro ~ -lU -N PftEPAAI!D av: . ( ...._ VJ • w , (\J Aa.M CO~~., JLTANTS. INC. . . U. I ! .,-I . ~ ~ lJ ~. Ll . L.J ·, . . . . ~-.... --------:------------.... •H•,;...~ ...... --.----........,.:-~--.... f "' , . SUSITNA HYDROGRAPHIC SURVEYS . . . . . • 'I, . . . . l • •• I r • I .. . I • •• I . I . . ; . . : I . . . ... .. .... B . ... • ·· · · cross section SLOUGli 8 1 2 5.956 .. I I (, . Date of Sur(~'/: AUGUST 4, 1 982 . - ' : ~ • I I ' . .. POIN7 Cro$5 t 2 3 4 5 6 7 a ·9 10 ~ 11 Water 1 2 . ;.,:"""" ·MIN ., f J MA.X ~ •' \. . . . ~-·:c. ~\ __ • -sec-tion .. < 'surface -'-'" -·- . B\JSITNA HYDROGRAPt\IC SURVEYS 7 ~~~ss section SLOUGH S 125.7S5 'X' .... -..---~-~-- data: o.ooo 5,000 ·t4. 000 15.000 24~000 34.000 43. ono 5b I 000 73.000 90.000 1 00~000 da't~.: .ts.oco 56.000 .0. 000 100.000 D·~~,.1:'e of Sur'Je!on AUGUST 4~ 1982 'Y' DESCRIPTION ., ... _________ _ -..--------~---- : . ' . . • l 568.370 567.950 566.650 565.640 564.450 564·. 050 564 .• 350 566 .• 040 579.350 567.150 567.560 566.040 566.040 564.050 579.350 ALCAP 125.795 !.B BREAK ., TOP BANK BOTTOM BOTTOM GROUND· AI-CAP 125.7SS 'LB LEOW ws REOW ws , ·[ ·E [ [ [ ( • . . . . · . . .. -. ..-... -• .. '( B-87 ;;'~1 . 2-13~33·t f -Q) if c ·- .. . A&.M CONSULTANTS, INO. _,,.._,.L~ ." I 1 I .. .• . I : l ·~ ~···~ l •• u SUSITNA HYDROGRAPHIC SURVEYS •• 'I . . ' . •I I· .. .., • • 0 ' .. • • • • I .. I ~. ,I; '··I .. ;, f .. ·' • I cross section SLOUGH 8 1 2 5.755 Date of Surve~ AUGUST 4, 1 982 R t~ 1 : t I ----~~----------~------------~·~~----------------------~--~ .. •• l. ,. POINT Cross ~ection t·; •• 2 3 4 ···6 ·1. 8 9. 10 \1 ~·:MIN MAX ·- - ~----------- dat.u; 29 .ooo 41.000 s1. o·oo 75.000 119 .• 000 172. OtlO '215. 00·0 '264' 000 .296 i 01)0 ?324~000 •334. 000 29.000 334.000 . . .... ·-·· • . ·- - SUS~TNA HYDROGRAPHIC SURVEYS cro$~., section SLOUGH B 126 .1H4 Date of' .Surve~¥· AUGUST 4~ 1992 'Y' --..... --~---- ,57~.320 S74. 020 573.1'20' 57'3.520 5'73 •. 320 5?3.420 ~7" .,.,.0 w ' ' '"' •. &;, c;;. 574.720 574.820 575.720 577'.120 57'3 .120 5'77.120 'i .y ; ·I ; . -. - . -~-------------·.-.---· ALCAP 12b • t H4 l-B GROUHD GROUND TOE ALCAP 12&.1H4 RB . .. ·v·.~ .. . . :. -1 I [ [ n [~ [ -', [ ·B-89 ~.,1 2.-13-'3$;; J . . • i :tv ' Pfti!PMII!D aV: ..._ w '.'(~ ~: ~ • c ·- • . I ·~ . .. • . t ~.·j .... SUSITNA HYDROGRAPHIC SURVEYS • . . . • • • :, !· .. . ' • . I ' '· . .. : I • • . . ··I I .. . I I 1' I . .. .. ... cross section SLOUGH 8 1 26.1H4 Date of Sur('"""/: AUGUST 4, 1 9 B 2 i .. l '· Pftf!f'Afti!D fOR: r I l I . .. • ' I . ! I I I r . POINT ·· Crtt~s $e~-t;on '1 2. 3, 4 5 6 7 ·"'.a 9 10 ,, 11 12 13 14 ~a'ter s.urT'aC:e ·'' 1 ' 2 (. ·' \ . ._ ~ ·-MIN '{-c>~ MAX .. :• 'l 1. '"" . • 1 . ' . . 'X' ·' ~~--~-~~CD ' ,, da.ta_; Q .ooo 3: OOQ 12, otUi 18.QOO .af,OOO· 3'1. 000 44.000 524000 60.000 68.000 SUSITNA Hl'DROGJ~APHlC SURVEYS eroS$ sac'tion SlOUGH 8. 125.753 Date of surve,~ AUGUST 4, 1982 .... , __ ._--~-- DESCRIPTION: _____ _,_ ... _____ _ ALCAP 125.7S3 LB TOP·· BANK BOTTOM . ., :. 73~ ooo' 570 I OJlO 549.830 567.530 5&'7 .130 5bo.530 565.360 563.130 561.930 561..630 562.330 563.130 ~b5.35t! 510.030 570.900 tcOTTOM 7&,000 ' ao .. ooo ', '83 .ooo da't.a 1 -'31.000 1(;1~ 000 0 I 000 83.000 ( . 565.360 565.350 5&1.630 5'70.900 B-91 TOP BANK ALCAP 125.7S3 RB LEOW WS REOW \a!:S • ,i < c [. . ' ·r 1 . - [ [ I I i l j :) -~ • ... • ..,> .... ---• -·--·--·····--... -·~. '" .. ------------------·· .... , .. , .. c ·- c 0 ' SUSITNA HYDROGRAPHIC SURVEYS i ~----~------~--~~------~---~-r------r-----~ w I . PREPARED fOR: ~·, ~ ' ·" ~ - ..., -·· (··-; " '-., "" :.--~.·· .. ~ ~ . ;, ' . POINT ~,...,._: ... - Cr~$S· ~ection t'' ~· '"" 3 4 5 6 7 a 9 10 '[1 12 13 - 14 11:r. w l6 17 18 19 20 21_ "22 23 24 .25 . 26 27 'Water 1 2 4 5 1 8 MIN MAX surf'aca .-•• .. .. -,., ~ SUS!TNA HYDROGRAPH:T.B cross section SLOUGH 8 Date 'X' --~---~~--- ' data: 0,00(\ 2. 000 5.000 '.Q,, 000 1'0 I 00 0 18.000 27 ~·ooo 38.000 52 .• OOQ 59.000 75.000 86. 0 00 100.000 103.000 1 06,0·00 117.000 132.000 145.000 158~000 163.000 169.000 .. 170.000 180.000• 192.000 201. Q.QO 204.000 208.000 data: 10.000 52.000 106.000 158.000 170~000 201.000 o.ooo 208.000 --~- of Sur .;e~: AUGUST 'YI ... _.,_, ______ ... 571.470 571 n 160 569.260 564.660 563.750 5&2.760 562.760 563 I 060 563.780 566.860 567.960 567.660 566.560 566,360 564.560 56'3. 6&0 564.260 564.760 565.330 566~ tao 565.860 564.130 563.460 563 I 5<'~0 564.220 5&6.440 56'7.250 563.750 563.780 ~65 .·41 0 565.430 5&4 I '130 564.220 562.760 571.470 B-93 -~· SURVEYS .I '125.652 4~ 1982 f DESCRIPTION ________ ... _______ .[ • ALCAP 125.682 LB .I TOP BANK BOTTOM 'f BOTTOM r ISLAND E BREAK . TOP BANK BOTTOM [ TOP [ DREAK BOTTOM f TOP BANK 1 . ALCAP 125.bS2 RB LEOW ws REDW we: .:;:) SPLIT LEOW ws REOW ws • ' SPLIT LEOW ws REOW ws :I • I • j I ·.~ , I --,'~ f • ·.:J:. p '!!··.· .. 1:8·.··. ~ r:, .· • -~,, . . . . ·'·~ ~· . ~- ' • • . ' I • SUSITNA ·H·YDROGRAPHI.C SURVEYS f'fU!PAFU!D POA: cross sect.kln SLOUGH 8 1 2 5.652 ,, ( . ·Date of ~ .'-:<;vey: AUGUST 4, 1 9 & 2 .-·-· •-~. ~ ' il '. c. "'~•" POINT Cross.· $ec.ti·.on '1 .2 3 4 5 6 8 '1 10 11 't2 13 . 14 15 '16 1'7 _ .. X I --------~-.... -- '. deita: o.ooo 6.000 12.000 14.:000 2'3.000 35.000 48o000 64.'QOO ao.ooo 9'7.000 114.000 . 133 I 000 151.000 165.000 1'73.000 188.000 193.000 W~t~r sur~ace data: .,r 1 12.000 a 173.ooo MIN HAX .-- o.ooo 193.000 e -·- SUSITNA HYDROGRAPHIC SURVEYS cross section SLOUGH B 125.2W1 Date of Survey! AUGUST 4l 1982 'Y' _____ -.: __ _ s6a ,5to. 567.540 562.810 560 .140 55Si440 558.340 558.34.0 558.740 559.440 560.240 560.140 660.540 560.140 561.440 562.880 56:1,. 590 566.010 562.810 562.889 558.340 568.510 B-95 DF.;SCRIPTION -----~ .... ---·-------- ALCAP 125.2W1 LB TOP BANK BOTTOM BOTTOM·. BOTTOM TOP BANK ALCAP 125.2W1 RB LEOW WS REOW WS , (i 2 l • . .. ,.,. : · .. , .. 1 ... . ~-~ ' ·~ :.· ~~ . )-~ ' ' .. . ··-,... --··· .... :..... ""' --~ . . . SUSITNA HYDROGRAPHIC SURVEYS . ------ ' . PA2PAfti!D POR: • ~ \;) cross section SLOUGH 8 1 2 5.2W1 ~···..._._"_"M+-'c_o_N ~'_.,r,_"_N_T_"-:...·-•_N_o_ ..... • ________ o_a_t_e of._s_ur_v~_j_A_u_G_. __ u_s_r_4_, _1,_9_a_2...__._ __________ ~~f~ . ·"'',; . . .. I L '. i ' I • I ' i ' . I I I I . l ~·· { POINT ---~--- .,D Crns$ section 1 ~·· t;;. 3 4 5 6 7 a 9 10 11 1~ 13 14 15 1.6 17 •• ~. ·-·~ · .. M!N .MAX.· .... 'I - . SUSITNA HXDROGRAPHIC SURVEYS cros.s sect:ion ·LANE CR SLOUGH 114. 1H1 ~-------- data: o.ooo 10.000 14.0()0• 17.000. 22.000 33.000. 53.000 75!000 89.000 118.000 136.000 160.000 180.000 189.000 20.5 i 000 215.000 222.ouo o.ooo 222.000 Date of Surv~y: AUGUST 16 1 1982 --------- ·~' r;-. 491,810 473. 6'20 473.220 472.920 4?3.920 474.420 474.520 414.82fJ 475.120 475,420 475.420 . 475.820 47c.120 475.720 475.720 475.120 476.230 472.920 481.810 B-97 .. - DESCRIPTION .-~-------~--... --- ALCAP 114 I 1H1 LB TOP BANK BREAK GROUND GROUND BREAK TOE REBAR 114.1Hl.RB ·I ·; . ' POINT 'XI --~~r~------------- Cross section data: 1 o.ooo 2 6.000 3 -20. 0 0 0 4 21 •. 0~0 5 26.000 6 34 I 000 7 46. 000 a 61.000 9 78.000 10 92.000 11 105.000 12 117.000 13 140.000 14 142.000 15 171.000 16 197.000 17 215.000 19 232.000 19 252.000 20 271,000 21 • 289.000 22 308.000 23 331.000 24 354.000 25 380,000 26 401.000 27 421.000 28 435.000 29 453.()00 30 464.000 . 31 .... A1s·.·o·oo 32 _:--= 48 1 t 0 0 0 33 489.000 34 49'7.00(! 35 498,000 36 508.000 Water surf' ace data~ 1 34.000 2 117.000 4 142.000 5 489,000 MIN o.ooo MAX 509.000 I SLOU~f-l · 9 SUSITNA HYDROGRAPHIC SURVEYS cruss section SLOUGH 9 129.3H9 Date of Sur~eyr AUGUST 1~ 1982 'YI DESCRIPTION ----~------... ----- 606.770 ALCAP 129.3H9 605.430 TOE 605.630 TOE 606.130 TOP 606. 130 GROUND 605' 130 604.830 BOTTOM 604.830 604.'730 604.330 604.030 BOTTOM 605.090 605.430 605.020 604.330 BOTTOM 604.330 604.330 604.230 604.330 BOTTOM 604.430 604,330 604.330 604.230 BOTTOM 604.130 603.930 603.530 ~ 602.530 BOTTOM . I 602.730 602.830 603.830 LB ..---"' ( ~··,,. -.._._.... -;. .. .. ---. . . ... -..... -. --·-. -C) .":"" ., • . _:co~ BtrTTOH. . . . --·· .. . ·-·-.. . -. . . . \.600 .730 _ .. · ·---·-· -·· 603.?60 605.230 . 607 .630" -···· -· ... TOP BANK 608.180 ALCA~ 129.3H9 RB 605.130 LEOW ws 605.09~ REOW WS SPLIT 605_. 02.0 LEOW ws 603.760 REOW ws 600 a73Q ~ 0 608.180 B-60 ·, i • N ' -v.J ' .J:. V\ .. Cl) .f c ·- c 0 ·-~ ~ CD -w ~ SUSITNA HYDROGRAPHIC SURVEYS • I cross section SLOUGH 9 1 2 9.3H9 Date of Survey: AUGUST 1, 1 9 8 2 PREPARED FOR: . ' ··-· ; . POINT ·------.. ·------~--- Cl'CSS section data: ., :·o~ooo 1 ~ a.ooo ... -19.000 ' ,j,)_ 4 22.000 5 32.000 ·6 43.000 7 57.000 8 69.000 9 84.000 10 93. oo·o 11 96.080 12 99.00.0 "13 124.000 14 131.000 15 147.000 16 160,000 17 ' 17'3.000 18' 188.000 19. 204.000 20 222.000 at 234.000 22 251.000 _.,'3 ,c;. 259.000 24 266.000 25 2'71.000 26. 278.000 . Water suf'f"ace data~ 1 22.000 2 93.000 -· . . -... . . . . .-. . . . 4 131.000 5 259.000 MIN 0.000 MAX 278.000 ~ SUSITNA 1-fl'DROGRAPHIC SURVEYS erose section SLOUGH 9 129.3SB Date of Sur~e~: AUGUST 1~.1982 'Y' DESCRIPTION -------------~---..~------ 608~280 . ALCAP 129.3sa 606.540 664.240 TOE 602.940 602.340 BOTTOM 602.340 602.240 T.iOTTOM 602.140 602.540 602s710 603.240 TOP BAR 602.840 TOE 603.240 603.190 602.340, BOTTOM 602.340 602.440 602.346 602.340 BOTTOM 602.140 601.940 602.440 602.950 603,940 606.440 TOP 606.330 ALCAP 129.3S8 • r , 602.940. LEOW ws LB ~ -~:\ J RB 602!99Q. REOW -~~ --...... -"·-·-. -. . -.. ~ -. . . . SP1..IT ·. · · . . -·· . -... · . -. . .. 603.190 LEOW ws 602.950 REOW ws 601.940 608.280 - -----------------~-~~------· ·.· ··-·· .. tv ' -VJ ' ' • c 0 I m • . SUSITNA HYDROGRAPHIC SURVEYS I • '• .... . .... ··.-:· ---~ cross section SLOUGH 9 1 2 9.358 Date of Survey: AUGUST 1. 1 9 8 2 . PREPAReD POA: ~---~~~,-----------------------------------------------------------~--~~~--~ ·_, : .. ·-·~' -. ·-<)-' SUSITNA HYDROGRAPHIC SURVEYS cross ~~ction SLOUGH 9 129,4T7 -Date of Survey: AUGUST 1 .. 1982 . . ·cross ·t a 3 4 5 6 1 a '· .:<) .1 0 ·11 12 13 .14 1:5 ~- sectiQn 'X' .__c-.._, __ ... __ ' datat Q.aoo 3 .. 000 6 .• 0 l1 0 13. 000 21.000 2~.000 36i000 43.000 51..000 sa. oao 65.000 68.000 .11. 000 72.000 74.000 Wate.r surface data: 1 6.000 ·a . . ; . 6s 5 o o o MIN·,; ·;ttAX. .. a.ooo 74,000 "' . I . 'Y' . 605·~430 604,000 601.870 601.030 600.530 600.330 600.430 600.530 600.930 601.030 601.840 603.230 603.136 605.130 605.660 601.870 601.840 600.330 605.660 . . -.. -~~ ~ . . .. . ... .. B-64 DESCRIPTION · -=------------~·_W.O __ _ ALCAP \29.4T? LB BOTTOM BOTTOM . ' BOTTOM BREAK TOE ALCAP 129.4T7 RB LEOW WS REOW WS .kl).· ... '·· . . ' ' . NM CONSULTANT$. INC. SUSITNA HYDROGRAPHIC SURVEYS cross section SLOUGH 9 1 2 9.4T7 Date of Survey: AUGUST 1, 1 9 8 2 PAEP'Aflf£0 FOR: '\! :: . ~ . . <POINT :cross section t ~. 2 3 '4 5 0 7 a 9 10 11 1"' l§iio 13 '14 15 16 17 18 19 20 21 22 23 '24 2.5 26 27 as 29 30 .. ~ '31 .. 32 33 34 35 Jo 37 38 39 -40 41 42. 43 44 45 . ' t' SUSITNA HYDROGRAPHIC SURVEYS cr~ss section SLOUGH 9 129.5T6 Date of·Survey: AUGUST 1 1 1982 'Y' DESCRIPTION 'X .. ----------------~---------------~tllli--- data: 0. 000 . 610.390 ALCAP 129.5To.LB 10.000 607.7&0 GROUND 14 ~000 607.360 'TOE 11:.. o o·o &09.360 TOP 22.000 609.160 BREAK 29.000 607.360 TOP 31..000 ao5.6bO TOE 40.000 603. 66\{) 44.000 604. 7oul 53.000 606.960 TOP BANK ·~ nao 607.060 GROUND o ... ;, ... &B. 000 606.660 TOP 73.000 603.870 76.000 603.660 BOTTOM 79.000 603.600 89.000 603.960 TOE 93.000 605.760 TOP BANK 102.000 oO?.ooo BREAK 106.000 607.260 112.000 604.960 LOW 121.000 605.060 TOE 123.000 o06a460 TOP 132.000 606.660 GROUND 141.000 606 .1&0 BREAK 145.000 &05.260 LOW 149.000 605.860 BREAK 156.000 " 605.260 GROUND r I 165.000 604.860 LOW 606.160 r.·.···; ~t .. f . ·"·:· . ~-Clr ......... ' 172.000 605.760. TOE --.. --..... ~--.. ·-·-.. 177.000 .tac;·.·,ioo .: --........ .606.560 . . . -... .. ... . . .... .-• -. . . ... . . . . . 194.000 606.260 198.000 605.4&0 201,000 602.920 212.000 602.2&0. BOTTOM ~a11.000 602.910 222.000 603.860 224.000 605.360 230.000 606.660 TOP BANK 235.000 604.860 241.000 606.660 2.54.000 &oo.&oo GROUND 270.000 606.360 280.000 605.960 284.000 607.410 ALCAP t29.5T6 RB u J..latf!r surface data: 603.870 LEOW ws l 1 73.00.0 ~I 2 79.000 &03.800 REOW WS 4 201.000 SPLIT 2-13·50 602.920 LEOW ws =: ?1"7 nnn t..n':" 01fl :> =nt.t hi~ P-b·6 ~« _o....:::.:.__ __ ~~··:L • .: •• .~4 --::··---.. , .• ..,., ~'~.-~~· .'--:' ' r ' ' ' • ' • ~------------------------···~· --------------------------------------------~----~ w ' V\ . · ·fla.M CONSULTANTS, INC. SUSITNA HYDR.OGRAPHIC SURVEYS cross section SLOUGH 9 1 2 9.5T6 Date of Survey: AUGUST 1, 1 982 ' ........,......... ~"'" •·-.Iii'• • •-••••----• ... ·-·--....-----alt~r·.•·r.v.-..•·••--------~-----·-----·--···-·---·----... ----·-----~··-....... · J -•• ~ .......... ,. ·~-, ¥'; ; +' ~. : . . f'l1~f'AftED FOR: ·. -,· . ' . . . ' I l I . I i l. . . . . ~ . ., ~ ' : . . • -- . . "'.,,....-.s,..., ••· -. , .... • ' ,'. ~-~_;•.--.:··.·.-.:-/, ~ ·~.. •· ~-:--·,.._ !(-~~ .• j~ .. _.~~·,. .• ... ,. .. ~·# :l~~·~·\-!f.~.-~~· ·1'-;l~.~ •• ..--·~-~-~·h"•~---~.,....,( *"•·~·-·::.~.:'t::·;~-~ .,__...,~~:-' ·-~ ..__..;;.~~'1;-::~-;::.::.,;;;.;;.;::;;~;.;.-;,.;:-]:::;.;.;;;;;;;~tf;I;.;;,.,..Vl'.,'•" :.r5-·•·,t"""'.., If::_!!~·~ '""":~'il .. •{• ·• •.1·~· ."' ;:,~•; : l f i J J • . i . ' .. , -'"""'' ·-· .. ·'~It;'" • .,.., .~ ·"" "~ _, . ..._ ...• __:/,. _.,-• ... ""'''"''V"'~...S·.iir···, .-,ac .......... - Cross section data: 1 ·"\' o~·ooo 2 13.000 .... 2'1'.000 ~ 4 49.000 ·5 51.000 6 5.9. 000 "'7 69 000 . . ·a ~/~ 79.000 • . . ~ . 89.GCO 9 :;..::, '1.~ 99' 000 11 109.000 .12 119.000 13 129.000 14 •' 1411. oo-o 15 154.000 16 167.000 17 178.000 ,,18, 189.000 19 205.000 20 214.000 21 220.000 Water surface data: 1 st.noo 2 205.000 MIN ., o.ooo MAX 220,000 . -•,_-"1 . . -. -. . • SUSITNA HYDROGRAPHIC SURVEYS. '1 cro~s-$ection SLOUGH 9 129.2SS Date of Survey: AUGUST 1, 1982 'Y' DESCRIPTION --~----------------------- 605.080 ALCAP 129.2SS 605.090 TOP BANK 603.390 BREAK 602.890 TOP 601.41.0 600.090 BOTTOM 600.590 600 c 190 599 .790' BOTTOM 5?9·. 590 599.790 599.890 600.090 BOTTOM 601.390 601.490 BAR 601.490 601 .190 600.690 BOTTOM 601,490 604.490 606.010 ALCAP 129.2S5 601.410 LEOW ws 601.490 REOW ws • ; 599.590 606.010 . . --... --. --. . -.~ .. ~~ .. . ··---. . . .. --. - • '· B-68 C""· . l . --~ LB -::·-r" ' ~ . ·, . } ~-,,.~J1 RB ·-----Oi ·-. ...... ' ... ----- f'' { ' ' • f ' c ·- :; fi&M CONSULTANTS. INO. . SUSITNA HYDROGRAPHIC SURVEYS •• .. .. ... cross section SLOUGH 9 1 2 90255 Date of Survey: AUGUST 1. 1 9 8 2 ~ -------:.--..... ~· • ... .. ....... • .... ,..It, ......... --··-..-··· ...... ' \) > s ~~ , ~· ·,...·~J;~'A .. ;..'C.... ;~Htt;t:.~XO.n"""'tJre:t~\\ ·-·-,-..... ~ ....................... -.. •i•••..,..,"•·'...-,-'"' ..... --·-•" -*"--· ''• ··--..... 4.,·-·-.t~~ .. ,~ PitEf'AhED FOR: --~--- Cross .1 2 -.3 4 5 6 7 ~ 9 Water 1 2 ·MIN MAX section surT'ace •, ' ' .~. -, SUSITNA HYDROGRAPHIC SURVEYS c~oss sec~ion SLOUGH 9 129.054 0· . Date o¥ Surve9t AUGUS~ 1~1982 \_:._} ' . "X' ---------- da·ta: o.ooo 4.000 5.000 c;.ooo 11. 00 0 . 1.3.\100 16.000 19.000 21.000 data: 5.000 16.000 o.ooo 21.000 . . .----. . . . ... ; .. -.y' ------------ " ; ---.. ... .. . . 600~190 595.740 595.010 594~540 594.540 59'4,640 594.980 597.240 597.870 595i010 594.980 594.540 600.180 . . -.... B-70 • DESCRIPTION ---~-------... _, __ _ T.BM SPIKE IN TREE BOTTOM BOTTOM TOP BANK ALCAP 129.054 RB LEOW ws REOW ws ........ -.. --.. --·-. -. . ~-~.. ~ . .. : ~--.. :{ ,.-'·\ '• ·~ . ' .. ..... CD d.: T c .._J ·-1-' c 0 ·--+4 E ill Pfti!PAfti!D IIV: .. 't SUSITNA HYDROGRAPHIC SURVEYS ... ... • -· cross section SLOUGH 9 1 2 9.054 Date of Survey: AUGUST 1~~ 982 . . ......... -··--............. ----··· .... ....,........_.... ..... ~ ......... .,,. ,, ' ·-··-' ·~"'"'''91"~-4 ..... ~I l ,, '• •" ' .... Ll'""'olil&t.IU8I-h<l,~-""""'·'-· ------· \ PREPARED fOR: . " :!, POINT ---~- ,;,cross -sec titan I '; . , __ .1 2 '3 4 5 6 1 a 9· "· ·~ 10 1.1 12 '13 '1·<\ l5 16, Water sur-ra•:e 1 2 MIN MAX ·----~-... -- datal o.ooo 7.000 10~000 ts~oao 2b'. 000 37.000 49.000 59.000 72,000 as.ooo 100.·000 113.000 135.000 161.000 169.000 170.000 data: 15.000 135.000 o.ooo 170.000 SU.SITNA HYDROGRr~PHIC SURVEYS cross s~ction SLOUGH 9 128.SS3 Date of Survey: AUGUST 1~ 1982 'Y' DESCRIPTION --..,~-----------------~--~-..- 600. '1.0 0 ALCAP 12.8.853 599.130 TOP BANK 595.630 593.960 592.460 BOTTOM 592.360 592.5~0 592oo60 592.660 BOTTOM 592.860 593.160 593.360 BOTTOM 593.960 594.230 598.730 TOP BANK 598.940 ALCAP 128.853 593.969 1-EOW ws 593.960 REOW ws - 5 1~2.360 600 .1 00 \. .I LB RB 0 , . .. . -.. --, .. · -: --. .. ~. --·.~~."' ... ':"' .. · .... ~ .---. __ ...... ·-. . . • -~ ........... .. ·- / B-72 r • c ·- c 0 ·-.... g! CD iii MM CONSt.e..TANTS, tNO. ,-.-..-... .., f . SUSITNA HYDROGRAPHIC SURVEYS I • • . . I '•• I . .... ----------....._. ______ .....__. __ cross section SLOUGH 9 1 2 8.853 Data of Survey: AUGUST 1. 1 982 • PRI!PAFIED POA: ~-----------------------------------------------------------------------------------~--------~--------- -------·--------------:-:. -=-:-::-.. -:--. ~. -------·--------=----=---:--:-:----------------------···---. ------- CI'OS$ section 1 .2 '3 4 5 0 '7 :8 9 1.0 11 12 13 14 15 16 t7 18 19 20 21 22 23 ~4 '""· 25 Wa-ter surf' ace t .. 2 ·MIN"'. . . . MAX • w-., ,.; SUSI~NA HYDROGRAPHIC SURV~YS ~~.oss see-r ion S~OUGH 9 128. ·4w1 -D~te of Surve~: AUGUST 2~ 1982 'Y' DESCRIPTION - -----..-.aa-csat- _ ... _...,..r_... _______ _ ~-----~-- data: OeOOO 599.080 3.000 594.830 4.000 594 .t '30 7.000 592. 130 18.000 589.980 29.000 589.180 40.000 588.480 49.000 588.280 57.000 588.480 69.000 588.980 79.000 589.25,0 95.000 589.660 105.1100 589.?90 118.000 589.980 132.000 590.080 145. o·oo 590.180 '156,000 589.?80 161.000 589.780 178.000 589.980 190·. 000 591.180 1.989000 592.240 208.000 593.830 226.000 595.830 229.000 59?.230 2'31.000 597.480 data: '7.000 • 592.130 , I 198.000 592.240 : ~t=~·o·o o ·.: . . • w: --:~ •• . 5BB.2SO 231.000 599. 080 .. ..-... , ............. ·---~-_............. B-74 ALCAP 128.4W1 TOP BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP BANK ALCAP 12tL 4W1 LEOW ws REOW ws . --,... --.... . . ~ • -- . . ' -..... -. -·--·¥ ,._ .......... LB CL . ~ ' R.'3 --·--·-. . : ":., ...... ~-. tr'll'l '. ~ • N ' - -::-·~~~· .... ·~·~""""-"···--~----· ·----------.. ...__......_--~--.., ..... ,. ____ ;·-.... -.. , .... ·-···•-t• .-.. -•. -........ ______ ..,. _____ ....... ----"'~ ... ' • " c ·- • SUSITNA HYDROGRAPHIC SURVEYS •• . ',, .. . ... ~· .... cross section SLOUGH 9 1 2 8.4W1 Date of Survey: AUGUST 211 1 982 PREPARED FOR: -I -.; "-"""' . • 6' 0 ,; ... -ia'I'O .. . - .. ••• .• THALWEG PROF,LE SLOUGH BA ( ' 'JJ '·, <?-,; SUl4FACE SU~SmATE TYPES D IILfiiAII) r::J lliVILI.~Itil • COIILIIIOULII&e ---r:f.t-u?t:~.~, .. ·c:l· IIUSIVNA AIYIII IIIAC:tw IIIIAIIIIIif•llll(...at ·~·.~.-~----~~~----,~,r~----~-----r----~~.=----r----~----~----~-,·~~---,-----,r----~~oo---;J-T®-.----.,,,-~----N,Ir~----n,l~~----~o~l~oo----e-olroo----,-~Too----,-,T~-~---i-JT,-~----KJ,-•oo----11,~~ STREAMBED ITATIOH~V>111U Figl.lre 41-3-36. Streambed profile for Slough SA. /~'\ ( :z l; ; ~~..,~ • _i, ... t •• · .. > 110 lOIS -i ::: ....... z 0 0 00 5 > Ill _. Ill .Ill -!) a: .. .. ,-)~ ~ ' ." .......... w \ ()' -~ ~ .. t Figure 41-3-37. SlbUOIJ I ll!IJAMIED 0 PROFIL! STUDY ~llf:A ·;.;,.. A ITIIIEAMI£0 STATIOtj _,....,.~I<, r. STREAMBED ITATIOH C fill) Streambed profile for Slough 9. THAt..:'JlJ,£G, PROFIL~ .SLOUGH 9 SURFACe! $U6STRA1L~ TYPES c::::::a liLY I IANO ~.!~i-J 4iRAYit. I !IIIUIII.I" ~ COIII.I I IOULDlft CIUSIYhA .IIIVU ffiAf:~ tlv.lf·~lllft, ~l til•!) ., . 0 < :: I I • .... I (J) FIG.· 1. 3 SLOUGH' 8 A ~. f. 'j \ / LEGEND: • " Q • ® - OBSERVATION WELLS STAFF GAGES DISCHARGE MEASUREMENT SITE CONTINUOUS STAGE RECORDERS CONTROLLING BERMS STREAMBED. CAO~~ ... 'Se.C.TiotJ S "'~"" ~ ................. ........_ ......... _..___.. .............. --.... --------.......... _.._... ....... -------------~----------------·--------·-----... ........-.Gt· ...... -···-... --.. _.. .... I en N ' ...... w ' G'"' ,(J-) ~·b!!.\ • "' .. LEGEND: • OBSERVATION WELLS Y STAFF GAGES Q DISCHARGE MEASUREMENT SITES • CONTINUOUS STAGE RECORDERS ~ CONTROLLING BERMS <!.> CLIMATE STATION --STREAMBED c~os.s -5 c. cr1tYvr PREPARED BY • FIG.-1.2 R.&M CONSULTANTS, INC. • .... -... SLOUGHS. g· &' 98 ... ·.··--.. ·':··~ . .. . .. . ••: . ... . ·.~·: .... ~ --·::~· t"" ' ' ' "'"" -,, ... PREPARED FOR• EXHIBIT E . 2. water use. and QualitY CQIIIIeflt .15 {p~ E-2-4l) ·.Describe or reference the technique that has been developed for measuring upwelling ;·n sloughs. Pr~vide the. date and mainstem flow at the time groundwatP.r flow was estimat~d. Response •, The techrrique for •. ~asuring upwelling water flows is contained in the attached references in pp. 2-15-2 to 2-15-14. Lee, D. R. 1977. A . Device for Measuring Seepage Flux in Lakes and Estuaries. Limnology and Oceanography, Volume 22, p. 140 .. ,.;;;.;;...;..;;...;;.;.o·..;..:;,...:- Lee:, 0. R. and J. A. Cherry 1978. A Field Exercise on Groundwater Flow Using Seepage Meters and Mini-piezometers. Journal of Geological Education, Volume 27, p. 6. The date and mainstem flow of the Slough 9 groundwater flow measurements are as follows: Date Slough 9 Slough 9 Mainstem Flow .Groundwater Total at Flow Discharge_ Gold Creek (cfs) (cf.s) (cfs) 08/25/82 1.00 1.64 13,400 09/09/82 0.74 2.06 13,400 2-15-1 } ,.-. ( A device for n1easuring seepage flux in lakes and estuaries1 Abstract--Seepage flux can be me~ured and samples of groundwater flowing into lakes and estuaties coU~cted by enclosing an area of bottom with a cylinder vented to a plastic bag. The method has the adv~ntage of not requiring measurements of · permeabil- ity of bottom sediments. Seepage velocities £rom -O.l-2.58 ,urns-" were. measured in Min- nesota and \Visco~in lakes and in Nova Sf:o- tia and North Catalina estuaries. Where. seepage. inflow was rapid ( 0.4-0.8 }&Ill s·'). water collected with the seepage meter \\r.JS chemically simila.r to water from wells on ~e same flow path, and the distri- bution and cltemistry of the seep:~.ge con- curred with .a theoretical flaw net. The rate and direction of seepage flux were correlated with water surface elevation during a tidal cycle. .. Tltis paper describes a simple, ine:-.-pen- sive instrument that . has been used sue- 1.\Vark W:IS sponsored in part by a grant from , the Pelican River \V~tcrshed, Detroit L:tkcs, Mina nesat~ to J. K. Necl, Dcp:~.rtmcnt of Bioltlg)•, Uni- versity of North Dakota, Crand Forks. cessfully to make direct measurements of seepage flux in lakes and estuades (Table 1). The technique hns the advantage of nQt requhing measurements of the perme- ability. of sediments. The method yields a sample of water suitable for chemical analysis, and the equipment involved is relatively inexpensive. Evaluation and management of lakes and estuaries often require specific in- formation on water and chemical budgets. All of the inflow-outflow components must be .measured or estimated, and almost in- variably the greatest uncertainty involves the groundwater· component. Rarely are direct measurements attempted, presum- ably because the investigators believe tl1at this would require excessive invest- rnen~s of time and equipment. There is a severe lack of methodology for site-specific study of nutlient input to lakes via ground- water (Uttonna:·k et al. 197 4), and ground- Table 1. Seepage measurements ttsing sccpag~ meter a.t va.rious loc:~.tinns • Y.aatioll 'Lake S:zllie, HN (46.46'~.9s•s4't:> Lake Huv!1, M.~ (4 7•33 'N,,95 •oa 'w> l.;.Jke Mend.;,ta, Ht (43.07'N, 88•25 'W) Minas !:ssin. t."S (44.$5'N,64.08') !o;ue Sound, NC (l4.42't;,76.45 1 W) Duke tbdne ub,NC (J4•4l'N,76.49'W) . Seepage ~o. velocity (Ua ~-'> ~ellsurcmt:nts o.o1-2 • .sa 494 1.0 3 O.J2-0.4S, 2 o.s-i.4 6 0.32 1 -0.1-0.8 44 Bottoa tlaten:· type depth (•) l4::lnd, 0.2-2.0 cr:a"V4tl sc-av.tl 1.0 s:and 0.7 arand 0 1.5-2.0 silt s:sncl 0.9 sanct.. 0.1-1.5 Co£Mients. ~asureeunts ~de around entire periphery of the lolk.::, 1970-72 s~~th ~horc, S Aug 1975 Mendota P:lrk on north :;hare, 10 c\ug 1975 m~asurcm~ncs made 4ur- ing fallinG tide on upper third of bdach0 25 Jun 1975 measurements made dur- in& falllns tid~ ~bout 0 .l lll belav ~IL\l• 16 }lay 1975 measuremunts. m3de dur- in; fal1ln~ :ln~ ris• in& t~dc 0.1 m below M!.V; ~ tt.:~.y ai4, lS- 16 .by 1'115 ----------------------------------------------------------------- LlM~OLOGY AND OCEAr\'OCRAPIIY 140 JANUAR\" 1977. V. 22(1) .· \::._:;,_) .. ..... .. -· -· .. ,_ ______ , ____ ....___~-~----··- Z-15-Z ' •• Notes 141 water surface --------- Fig. 1. F'ull-section view .of seepage cylinder showing proper placement in sediment. a--4-liter. 0.01'1-mm-membrane, pl&.St.:¥ Daggies Alligator b:tg (open end beat-sealed}; b-rubber-band wrap; ~.64-cm•ID. G em long. polyethylene tube; d ~.79-cm-lD. 4.5 em Jong, amber-latex tube; •e -r\o. 5'1.! one-hole ntbber stopper with poly- ~·· /Iene tube; . f:--15:. X 57-em-diameter epoxy• coated cylinder (end-section of n steel drum). \Vater flow .systenlS around lakes (Born et al. 1974). and estuaries are poorly docu- nlented. . The ~tsunl approach for obtaining esti- mntes of groundwater-surface water . inter- action is to install observation wells on land near the shore or in tlle water bnsin: The wells are· tl1en used to obtain measure- ments of the rlistrihution c,f the hydraulic bea(l ;mel estimntcs of panncability. This ··is generally tlnsntisftlctory bec-ause it is sci- do.~ feasible ·to cstitml.te ·permeability by less · .th~m nn orcler of magnitude and be- cause surface-groundwater interaction is. often CQJltrtllled at or very near the sedi- numt-w•\ter .interface. I. thank J. X. Nee!. for guidance in the initial plmscs of tl1is work. J. K. Neel, Q. L. Gehle, J. A. Cherry, a~1d L. S. Cln>·ton pro- vided comments •. 'Vork ~;pa~e and equip- ment were provided by the staff of the Lake Sallie Fisheries Station, !\linncsota Depa~·tmcnt of Conserv~1tion, and .bv t11e Dep~rtment of Geology, Virginia Poi}:tech- nic Institute and State University. Part of this W(Jrk appeared in my M.S. thesis ( Uni- versity of North Dakota). Groundwater seeping into standing sur- face waters ean he collected bv covcrinCT :tn nrea of la~ebecl with a. bottot~less cylin~ dcr ventecl to a deflated plastic bag (Fig. 1). The cylinder is turned slowly ( ~1 em s·1 ), opcn~~md down, into. the sediment until its top is about 2 Cl:l above the sedi- ment surface. The vent h~le is ~levated slightly so that any gas from ti~~ sediment may freely escape. The cylinder is ~arked and left for several aays to allow benthb organisms to escape (although preliminary measurements can be started immediately). Then a stopper with tube is. inserted into the cylinder hole .. To collect a sample, a deflated plastic bag is connected to the tube ,and left for a specified time or until it contains 0.5-3 liters. Where surface water seeps into the sediment, the plastic bag is filled with a known amount of water before ,it is con- nected to the tube. l\facroscopic seepage velocity is determined as 1.075 v o=--t--, where V is liters of water entering ( + value) or leaving (-value) tbe bag, t is hours of elapsed time, and v is seepage velocity ( + is upward, -is downward) expressed as micrometers per second. The factor 1.075 converts units nf vohm1e, time, and area covered by the cylinder ( 0.255 m~) to equivalent units of velocity · ( p.m s-1 ) or seepage flux (ml rn·2 . s-1 ). The macroscopic seepage velocity sl10uld not be confused with the averrtge interstitial ve- locity, which · is equal to 100 times the seepnge velocity divided by the percent porosity of tl1e sediment. ~1ost problems in measuring seep~ge are due to improper placement of the. cylin- der. If the cylinder is not positioned with its hole near the highest point, gas from the sediment accumulates and reduces seepage. lvieasurements are also reduced if the cylinder Hcl presses against the ·lake- bed. lf the cylinder is pushed too rapidly into the sediment, blowouts can eause er- ratic results. ln m·eas where seditnent ac- cumulates, the vent hole slmuld be ex- tended with a short length of pipe. Plugging from ulgal growth may necessi- tate periodic examination nnd clei\lling of the vent tuhe. About 5 ml of w~ttcr · un- av<Jicbhly enter the plastic bng during .. -... ..--~··· .. 2-J~--3 t. It ;!.. ..... .. .. c ( \ 14!! Notes con,leCtion. _ A light\veight, ste_el fet:<.'t!- picket, notched to hook the lower edge .'Jf the cylh~der, helps in removal of the cylin- der. It is easier to find the ·cylinders if the tops are painted white. lv!ateriv.l for con- structing each .~eepage meter costs $4 to $9-(in !976} jf two cylinders are cu~ from ·one 55-gallon {208 'liter) drum. The method will probably find its. great- est application where surface waters lie in hin-h to moderately permeable material. without modifications, it is not designed for use in the turbulent water o£ the surf zone or· in rapidly flawing rivers. ln fine, low permeability sediments, groundwater velocity may be too low to measure with this technique, or flow may be restricted to distinct springs or leaks. The principle of the method described here was first used to measure water losses from irrigation canals (Israelsen and Reeve 1944).: Other methods (Bower and Rice 1968; 'iVamick 1951; Zuber 1970) have also been suggested to measure flo'~ into or away from su·rface waters, but all in- volve substantial cost and none is appro- priate for sample co1lection. Laboratory-scale tests were designed to see if the seepage meter gave an accurate rneasur~ of groundwater flo\v over· the ve- locity range encountered in tl1e field. A rectangular test tank 1.3 m deep and 1.26 X ~.66 m in area held a bed of sand ( 0.5- 0.125-mm-diameter grnnules, 4% silt and . clay) 0.76 m deep. A permeable plate supported the sand 10 em above the bot- tom of the tank. Upward or downward seepage through the sandbed was con- trolled with a vmiable-heacl tank con- nected to the water beneath the perrnenble plate. An overflow pipe kept' 0.40 m of water over the sandbcd. The seepage flux· through the sand was contro1led by the difference in the piezometric head mea .. sured by two tubes~ one open to the water beneath the permeable plate and one open to the water above the sand. tvfeasure- ments of seepage fi~tx were made at sev: ·· cral hydraulic gradients · ranging from -0.071 to 0.097. Rcpmducibility of velocity measure- ment." was evaluated at Lake S~tllic, ~1in­ nesota. Two seepage meters were placed 0.15 m apart. Simultaneous measurements were made during 3 consecutive days nnd at longer intervals over 2 months. The wa- ter surface elevations were rp,corded for Lake Sallie and nearby ~1uskrat Lake, 50 m away and 166. m higher. A site near the Duke lvlarine Lab (Beau- fort, North Carolina) was selected for ad- ditional tests because there was a record· ing tide. gauge operated by the National Oceanic and Atmospheric Administration. About 20 m southwest of the tide gauge, three seepage meters were placed 0.65 m apart on a line perpendicular to shore in water about 0.4 m deep at mean low tide. The sediment was composed of sand and pieces of shells. Seepage flux was mea- sured during 53-i9-min intervals over a complete tidal cycle. \Vhen the tide was above mean sea level, measurements were started with 1 liter of water in the bag to permit detection of seepage into the sedi- ment. For evaluation of the seepage meter as a groundwater collection device,. a site was selected in an area of fairly uniform groundwater discharge at Lake Sallie. \Vells were installed to intercept water be- fore it reached the lake, ~md seepage meters were placed in the lake adjacent . to these wells to collect entering seepage (Fig. 2). Wells, driven 1.72 to 2.1lm into tl1e water table, were sampled 8 times dur- ing 108 days. Only small mnounts of wa- ter (0.6 liter) and soil (20 to 30 g) were removed at each sampling. v\~ter samples were either frozen and analyzed several weeks later or stored at 0° to 5°C and analvzed within 48 h. Atn-~ monia, nitrite, and nitrate nitrogen, and soluble orthoplmspha.te were determined according to Stanclarcl methods (Am. Pub- He Health Assoc. 1965, 1971). Specific conducti\'ity wm; measured at 20°C with a conducti~·ity btidgc. Chtodde was deter- mined with a specific-ion <"loctmde. S:tm- plcs were analyzed for tot&ll phosphate by a persulfate procedure (Dominick 1971). Filtration through tn<!dium-gmde filter .• • ... '\ Notes 143 shore lc:tke 10 B K I n n wells 8 rrH~ te rs I ;eepage 11 " N I n n n 9 c 1 nn n 12 n --------------------.IIIJ--------..... __ Clio-____ __ ·" • ' I , . -----------·------------..:. .... _______ ----· ·. -------- 10m .f. .,. I I f , ' . I I I , . . I I I , I I ;> I I -------·-------------------.... .,." , , . . ------~---------/ , -----------.;;-----~--------' ,,llf' . ,' ._,_Q_____ .,-., · g roun.dwaf · _______ ..; ___ .. , ... "' ------~------,~------~-ar llowt· .,_tr ~ ---------.. ~nes ,...-. ---------------------------------------...... ____ ... . Fig~ 2;. Po~ition of w~lis and seepage meters where seepage-meter technique was evalu:1ted for collection of groupdwater for chemical analysis. Flow Jines i!-low seep:1ge distrib~tion pattern. . -· • paper (Sargent 501 or equivalent) pre- ceded analyses for orthophosphate, nitrite, and nitrate. Regression coefficients for the relation of vel"'~ity and hydraulic gradient in the ex- perll~':\ental tank ranged from 0.998 to 0.994. Resulb. for a representative seepage meter are sh0\\:1 in Fig. 3. Slopes for the regres- sion lines for seepage at iJiffcrent loca- tions in the t:ost tank differed slightly ( 16 to 22 fer upward seepage and 9.1 to 20 for downward seepage) probnbly due to. het- ~rogeneity in the test tank. However for any particular location in the tank, tile slopes of tl1e regressi011 lines were signifi- cantly higher (at p = 0.05) for upward . than for downward seepage. A 2-3-mtn layer of fine clay particles accumulated at . the surface of the sediment, and these par- tides may have cot1trolled permeability by impeding downward seepage more than up- ward seepage. Results of the C:<periments on simulta- neous . measurement of seepage velocity showed that veloc£ty for the t\vo seepage meters always differed by about 0.1 p.m ., s-1 and ranged from 0.596-0.854 p.m s-1 over the 2-month period (Fig. 4). Varia- non in seepage velocity over time was not significantly correlated ·with changes in L"le relative elevation of nearby Musl.."Tat Lake and Lake Sallie (Fig. 4). Changes in atmosphelic pressure may have caused variations in velocity by cbanging the per- meability of the sediment (Christiansen 1944; Peck 1960). Small variations in ve- locity 'vere reproduce~ with closely placed seepage meters. 11easuremen.ts of ve1ocity and wnter surface elevation during a tidal cycle at Beaufort, North Carolina, are presented in Fig. 5. Seepage velocity, measured \vith three seepage meters, was significantly cor- related with water surfnce elevation ( R = 0.853, n= 32). Seepage into the sediment (groundwater recharge) was detected in only 2 of 32 meas\trement.c;. The close agreem~nt of the three seepage meters over the tidal cycle showed that the technique gave reproducible results .. _(( ( . . C~ .. . ( . •. .. 144 Notes 1.5 .:::-1.0 .. £ upward seepage ../J :a. -• ,.. • ... u 0.5 0 ... Ul > w c < o.o D. .!ill Ul "' 0.1 HYDRAULIC GRADIENT ·Fig. 3. Relation of hydraulic gradient and ve- locity mc<ssured with seepage mete~ in experi- mental tank. For upward seepage: \'elocity :: ( 19.07::!: 0.32) gradient+ (0.0220 :: 0.0012), R = 0.996, n = 29. For downward seepage: ve- locity = -( 11.68 :: 0.94) gradient - ( 0.0028 ::!: 0.0110). R = 0.984, n = 1. Along aJ\ 800-m segment of Lake Sallie shoreline, ·· . seepage measurements were made 5-160 ·m from shore. Near the mid· poitit of this section of shoreline, a site. wns selected for evaluation of the seepage meter as a groundw~tter collection device. At this site there was about 10 m of clean sand and gravel below the water table; the sand and gravel wns underlain by a thlc~ relatively impermeable, clay layer (USGS well records. M.S. r..-tcBride per- sonal comm\tnication). A flow net (Fig. 6) was drawn assum-: ing isotropic-homogeneous conditions, rela- tively low permeability of the underlying c:1a}' compared to the sand and gravel, and predominantly hodzontnl flow in the sand and gravel around the lake. The flow net showed that seepage velocity decreased exponentially with distance from shore and -... g_o.s ·"'-C))oo <""' ~uo.1 u.rO ~\.~~ . . .,. .... .; ·....... ____ ..,. __ _, 1-•c.•• ', ........... -w > 0.6 '1/( •• il t----~-r------r---1 fJ-.-a. -- 0 10 20 TIME (days) 60 Fjg. 4. Seepage. veloci~y measurc;:nents from two seepage meters set 0.15 m apart, and rel:1tive ete .. ·atioas of lakes Sallie and Muskrat. that shallow groundwater was discharged nearshore1 deeper groundwater farther from shore. Seepage measurements along the shore~ line showed that nearshore discharge was rapid ( 0.3-0.8 p.m s-1 ) and th~t velocity did decline approximately exponentially ~1.2 • ... we o:a. <;:o.a ..... ~~~­wU "'g0.4 Ill > , . ' ' .. ,. 111 ... I ..... , ll ..... , ,..... I a, • . • ~ , •, I ., '• " , , • • ..,...OD· :-..... -~• ~ ~---+--4---·~--·~--~--~-i ~· w " o.a u > <~ ~ a • ;:, e . "'-0..4 •• c:c% • ...., 0 • •• .--. < ,_ .,.. .... ·····. .. . . . . . .. • • .. . .. . . .. . ...... 3: ~ OfJ· w ~--.--·~~--~--~-~--~--~~ ~ 0600 I • ' . 1000 1400 i800 TIME (h) Fig. 5. Seepage velocity l\nd wnter surface elevation during tidal cycle at Beaufurt, North Carolina, 16 May 1975. Symbols (.A, •, IS) de· note different seepage nietcrs. \\'atcr surince de. ... v~tion d:ttn w~s obtnin~d from NO:\A tide gauge loc:1tcd at study site. ~ •. . ' • t. - Notes 145 LAKE SURF ACE I I I I I FLOW LlNE EQUIPOTENT! AL LINE IMPERMEABLE BOUNDARY Fig. G. Theoretical £low net showing distribution of groundwate.r disch3rge into Lake. Sallie. , with dist;lnce from shore (Fig. 7). Sub- stantial seepage influx occurred 60-80 m from shore, ·whereas the flow net showed high rates :of flow to only about 15 m from shore. ·Seepage distribution would . be skewed lakeward in this 'vay if the hori- zontal to Yertica.l permeability ratio were about 1~: 1~ (Ccdcrgren·l96S), n common feature· of glacinl outwash t~rrrun (\Veeks 1969}. ivlcBride nnd Pfmu1kuch ( 1975.) bave also <liscussed the c1istribution of · ·groun(\w,tter flow into l;tkes. .r::'\ .. 1.0 E 0.1 ~ ,. = u 0 , ..... ... > 0.01 • Yll0.311 (969)X ..... 0.754: ,..o.os • . .. • 10 120 160 FROM SHOU (m) ~!g. 1. .Relation o£ seepage \'elocity ::md dis.; tance fro.m shore nlung, un 800-m shoreline seg- ment nt Lake Sallie. ... ,.._ . . - I Seepage influx at the site adjacent to the wel!s ranged from-0.4.-0.8 p.n1 s-1 .. \Va- ter collected from the seepage meters ini- tially contained high and varying concen· trations of orthopl1osphate ( 0.21-1.15 mg 1iter1 ) which eventually stabilized in the range 0.02-0.30 mg 1iter1, the ·average concentration being 0.15 (Fig. 8). Ammonia concentrations in the wnter collected from the seepage meters \Vere also high initia!ly~ but there was a steady decline over a 2- month period. AmmOllia levels dropped below 0.25 mg liter1 after 900 liters of groundwater passed through tl1e seepage meters. An exception, seepage meter E, con11istently yielded water containing over 1.2 ---i .. .! 0.1 ... ... c = • ... 0 f o.c 0 :z: -• 0 • .. .. • • •• • •• Ia • • • ·"' ' • • .... " ...... , ....... .. " I • r • ICV ....... • • • • 2000 6000 10JAl HOW lH.OUGti ftU SUPIICl Jo\UIIt hileu1 Fig. 8. Phosphnte concentration. nrtd total groundwnt-:~· discharged thro~agh fuur scepnge meters O\'er 4-month period. · . . 2-1~-7 c ... C. 146 Notes Table 2. Chemical features of well water~ lake water, and velocity and chemical fentures of seep· age at a Lake SalUe experimental site. 1971. . Yell no. 8 10 11 12 l.akt Seepa&• .ete: JS JS a ! E t X . It N I Summar:y of ei&ht samples coll:ecter! secaimont:l1ly 23 Oct 27 Nov 30 Dec Liters Orr.ho• Total 1'0~ PO-. 0.,30 G.49 (:0.17) (!1.64) 0.45 2.96 (!0.25) (:1.40) o.u 4.05 (!0.12) (!2.65) 0.40 2.84 (:0.13) (!1.91) O.lS 2.79 (:0.10) (:1.56) 0.20 0.07 0.09 0.40 0.14 0.28 through Velocity meter* (usa s-1 ) 23 Oct 1,510 0.623 O.lS 27 Nov 1 9 930 0.276 0.16 30 Dec 2,380 0.543 0.14 27 NOv 1.460 0.764 0.17 30 Dec.• 1.940 0.487 0.08 26 Hay 4.oso+ 1.03 o.Jo 27 ~v 1.240 0.492 0.11 30 Dec 1.780 0.743 0.21 27 Nov· 1.210 0.747 0.11 30 Dec 1.830 0.650 0.02 0.54 0.20 0.32 0.22 0.32 0.30 0.20 0.32 0.28 0.28 l.J.S (!1.03) 0.46 (!0.29) 0.68 (:0.2.4) 3.42 (!0.64) 0.36 (!0.19) 0.02 0.03 0.16 0.13 o.os o.oo 2.09 3.4 2.48 0.17 o.2o 0.11 0.16 Sp. cond. r.o,-N (umbos cm-1 ) Chloride 12.4 (:6.4) 24.3 (:11.1) 11.0 (!1.6) 31.8 (!5.1) 8.78 (!1.8) 0.026 Q.004 3.92 10.0 12.3 8.8 13.2 14 16.0 0.003 0.003 0.002 0.004 782 (:208) • 493 (!41) 1160 (!103) 423 (!42) 3G3 384 4~0 459 490 530 480 30.1 (!:39.2) 56.6 (!50.3) 8.73 (!1.86) 65.0 (:17 .6) 9.56 (!2.3) 21.1 26.0 6.9S 10.3 6.37 s.s. *This column shovs the volume of VAter vhich flowed through th~ seep3ge meter before the sample vas collected. The avcra{te flgy during the pE"cc:edins; months was used to calculate this nwnber. ~This number. !or a sample collected in 1972. vas calculated using the autumn flow race. 2.0 mg liter1 NH3-N even after 4,000 liters of groundwater and 9 months had pnssed. However!t the phosphate concentrhtion in seepage meter E was not higher than that of the other meters at this site (Table' 2). \Yells 9 and 11 (F~g. 2), located lakeward of a septic tank, l1ad the highest specific conductivity and the highest concentration of orthophosphate, nitrate nitrogen, and . cbloride (Table 2). Average ortbophos- phate concentration of water from the other wells ( 8, 10, a.1d 12) was in the same range as the orthophosphate concentration of water from the seepage meters .. Some evidence indicated that n ~'1igh ni· trate· zone capped the water table. The seepnge inflow 7 m fron1 shore ( B and E, Fig. 2) contained from 8.8-16 mg liter1 N03 -N, but in groundwater discharged 12 m and 17 m from shore; nitrnte concentra· tions were <0.005 mg liter1 N. Average nitrate concentrations in the shallow wells near the lakesl1ore :canged from 8.78-31.8 mg 1itcr1 N (Table 2). ~fonthly samples from a well 57 m from tile edge of the lake contained 1.57-0.34 mg lite1-1 N03-N at the surface of tl1e water table, but when the well was driven 0.5 m deeper, nitrate levels fell to <0.012. It is not uncommon to find high nitrate concentrations. in shal- low gro1.mdwater near the water table (Behnke 1975). ·2-1s- 0 '0 -~·-·-... Notes 147 Lake water contaL~cd less p!1osphnte, less inorganic nitrogen: !ow'.!r conducth·ity, and higher chloride L~an L-'r' ··epage wa- ter (Table .2). Seepage wate1 contained about the same amount or orthophosphate and about the same !:onductivity as the we1l water not affected by the septic tank. . The ineX'Densive seepage meter was used on moderhtely permeable sediment of lakes aud ev:(uaries to mensure seepage veloci- ties r.mging from -0.1-2.58 p.m s-1• \Vhere seerage is upward,-the seepage meter yif',lds a .sample of water which can be used for chemical analysis. For the velocity range encountered in the field, a linear relation was observed between measured seepage velocity and an experimentally controlled hydraulic gradi- ~nt. Changes in the rate and direction of seepage flux during a tidal cycle were cor.;. rekted with changes in the water s1.1rface elevation of an estuary. Closely placed seepage meters gave reproducible results. ·Velocity and chemistry Q£ seepage in- flow to Lake Salli~ thus Cl'\ncurred with results predicted by tl1e theoretical flow net: sha11ow groundwater discharged near- . shor~ contained lligh concentrntions of ni- tr!.4te, whereas: deeper groundwater, dis- c;.:arged farther from sllore, contained very little nitrate; nearshore seepage was rapid nnd declined with distance from shore. \Vhere groundwater (lischarge was rela- ~ivelr: rapid (0.4-0.8' p.m s-1 ), water col- lected wlth the seepage meter became chemically. consistent after about 4 months and was cl1emically similar to water from wells located along tlu~ same flow path. Davi(l Robert [,ce Department of Earth Sciences University of \Vaterloo \Vatcrloo, Ontario N2L 3Cl References 1\J.tERtC.,N PunLIC liEAt:rn AssOCJATIO~. 1985, · 1971. Standard methods for the exilmination of wn.t:er and wastewater. 12th and 13th ed. BEtL'lXE, J. 1975. A summary r.>£ the biochem- .!stry o£ nit1ogen compounds in ground water. J. Hydrol. 21: 155-167 •. BoR:'r, S. M., S. A. S:.uTH, AND D •• ~>,... STEPHENSON. 1974. · The hydrogeologic regime of glacial- tenain lakes, with management and planning applications. \Visconsin Dep.. ~at. Resour. Inland Lake Demonstration Projt:ct Rep. 73 p. BowER, H., A."'lD R. C. fua. 1968. Revbw of methods for measuring and predicting seep- age, p. 115-120. In Proc. Seep:1ge Symp. (2nd), Phoenhc. U.S. Dep. Agr. ARS 41-147. CE;omcm::N, H. R. 1968. Seepage drninage and flow nets~ \Viley. CKRIS"l''A!':SE:-:, J. E. 1944. Effect of entrapped air upon the perme:1bility o£ soils. Soil Sci.. sa: 35ih1G5. Do!\m~rc~ D. D. 1971. Methods for chemical anal}·sis of waters and wastes. EPA. Cincin- nati. 0 !sR.o\ELS~. 0. \V., AND It C. RE.E:v&. 1944. Canal lining ~periments .in the delta a~ea, Utah. Utah Agr. Exp. Sta. Tech. Bull. 313. 52 p. McBnmE, :M. S., AND H. 0. PEA~~KuCH. ~975. The distribution o£ seep:1ge within lakebeds. J. Res. U.S. Geol. Surv. 3: 505-512. PEe~ A. J. 1960. The water table as nffected by atmospheric pressure. J. Ceophys. Res. 65: 2383-2388. Unoa..'JAR::::, P. D., J. D. C~tAPJN. AND K. M. CaEEN. 197 4. Estimating nutrient lo:1dings of lakes from non-point sources. EPA 660/ 3Ji4-020. U.S. Gov. Printing Office. 'VAn:\'lC~ C. C. 1951. Methods of m~asuring seepage loss in irrigation ean:1ls. . Univ. Idaho, Eng. Exp. Sta. Bull. 8: 1-42. \VEE~s. E. P. 1969. Determining the ratio of horizontal to vertical permeability by aquifer · test analysis. \Vater Rcsour. Res. 5: 196- 214. Zusm, A. 1970. Method for detenninin~ leak- age velocities through the bottom of reser- voirs, p. 761-771. In Isotope hydrology, 1970. IAEA. Submitted: 11 January 1973 Accepted: 5 ·August 1976 2-15-.~ (· ( '· ( Introduction A Field Exercise on Ground-vvater Flow Using Seepage rv1eters and Mini-piezometers* D:Jvid R. Lee Department of earth Sciences and Department of Biology University of Waterloo Waterloo. Ontario N2L 3G1 Abstract .;ohn A. Cherry Department of Earth Sciences University of Waterloo Waterloo, Ontario N2L 3G 1 Basic principles a: physical hydrogeQJogy and the na.tu~·~ of the hydrologic i~teracti~ns between groundwater and surface water can be .convtncmg!y demon.st.rated ~~ the field using· two inexpensive and easily-constructed davtces known as the mtmature ptezo_meter· and the seepage meter. These instruments have been successfully used dunng. a hydrogeology field course at the University of Waterloo and have been adopted as a routtne teaching aid. Seepage meters and miniature piezometers are inserted in the s_ediment of shallow areas in lakes. estuaries. or streams. In a matter of a few hours, tl:le devtces can be installed. monitofed, and removed. lnfcrmation on the direction and rate of groundwater .flow can be obtajned. Hydraulic conductivity can be measured using s~v~ral types of tests. Samples of the groundwater can be collected and. with field measurements of parameters such as specific conductancP.. dissolved oxygen, pH, and chloride, comparisons between groundwater and surface water quality can be made. Student investigations can include the idetttification of groundwater inflow or outflow areas in lakes, streams, or estuaries, measurement of the spatiai and temporal viarations in seepage flux through bot,om sediments. and identification of zones of subsurface po:lutant migration intQ surface waters. A day of equipment preparation and a preliminary site visit are prerequisites to the student field activities. Materia is for a seepage meter and a miniature piezometer can be acquired for less than 25 dollars. Key Words: education, hydrogeology. groundwater, limnology, hydrology, water quality, contaminant, seepage. field exercise, lake, stream, estuary. This paper describes the use of two simple inexpensive devices that enable students to measure the flow of groundwater and to demonstrate for themselves some of the basic principles of hydrogeology. A half-day field trip t~ a shallow. body of surfqce water, preferab!y with a sandy bottom, makes it possible for students to acq·uire data that can serve as an impressive indication ")f the dynamic nature of groundwater flow· in a natural setting. The methods are rapid and direct and pro..,ide informa- tion that cannot otherwise be obtained even if expensive drilling equipment is available. The exercise involves the use of seepage meters to measure groundwat~r flow rates and the use of manually~installed miniature piezometers to measure hydraulic head (groundwater potential) and hydraulic conductivity. These methods have been used durir.g field experiments in a groundwater hydroloqy course at the University of Waterloo and as a means of investigating groundwater- flow conditions in Jake-and streambeds. The devices are also being used in current rese·arch projects, including thesis studies by undergraduate and graduate students. Q is the flux of groundwater (volume/unit time). A is the area through which flow occurs.· dh/dl is the hydraulic gradient {the change in hydraulic head over a distance ator.1g the line of flow (unitless)) and K is the hydraulic conductivity of the material (usually expressed as cm/s}. Hydraulic head is a measure of the energy per unit weight ol the grpundwater. Textbooks on hydrogeology such as Todd {1959), Davis and De Weist (1956) and Domenico (1972) present more detailed discussions of the Darcy equation and its significance in groundwater studies. Figure 1 shows schematic illustrations of groundwater flow near lakes. in lake bottoms, and in stream bottoms. The flow systems are represented by isopotential Hnt::s (contour lines of hydraulic head) and arrows showing the direction of groundwater flow. In lake bottoms and streambeds groundwater flow is upward, downward, or horizontal bu_t is rarely non-existent. The direction and rate of flow is dependant on the physiography. texture. and stratigraphy of the subsurface materials. Locally, the flow in streambeds and lake bottoms can vary dramatical- ly, thus providing a variety of observational conditions within a single study area. The two devices described below provide information ( ) The basic elements of groundwater flow are related through the Darcy equation. dh Q= A - K •. dl ·This work was s"Jonsored in part by a research agreement with Environment Canada. on the flow net and on the flux and velocity of water moving along the flow lines at and near the interface. The seepage meter and the minipiezometer also provide a means of sampling the water tnat is either leaving or entering the groundwater zone beneath the take or stream. This cat"i often serve to demonstrate the influenc::e~-h-~"~ CY 6 JOURNAL OF GEOLOGICAL EDUCATION. 1978. v. 27 .... ... • . •' Fig. 1. -Idealized sections showirtg groundwater flow near bodies of surface water. A. topographic highs are recharge zones and the topographic lows (often occupied by lakes or streams) are discharge zones: B. pattern of groundwater discharge into a lake or estuary: c. longitudinal section of a streambed indicating flow into the sec.•ment where the streaa. > ed is concave. (A modified from Winter. 1976: B modified from Lee,1977; C modified from Vaux. 1968) of groundwate." on surface-water quality. In some cases it is possible to demonstrate that pollutants are fed to lakes or streams by groundweter seepage. Miniature Piezometers Piezometers are used to measure the hydraulic head in geologic materials that are saturated under positive pressure. They consist of pipes with slotted tips or well points on the end. Piezometers are normally installed in boreholes drilled b}' power auger, wash-boring, rotary driU or cable-tool equipment. Piezometers installed at depths between several meters and many tens est m~te1s below ground surface have been used routinely by hydrogeolqgists and soil engineers for several decades. The miniature piezometer (mini-piezometer) is a similar device bJ,Jt is smaller in size and is installed manually. D ~~~ f~~~i~ ~i~~ 11 ~t~1~1tfi. ~1$.lli!il -··::•• "'····-·r::.~······ -~ .. ·•·~ ...... ~ :l·.~··•·····:···'··· .. 1.-. ..... •.·····~····:·'·~·····-1 • ~~ i1.ii1 lljii~Ilil.,!f.~~ ;:; .. :.o:.::-: :::::;::::·::·::$$:: ::.~Y.~i~~:::~· :· :-:::i:·:.~·~:::.~:·i:: ::-:-:.tJ:.:~~~\~~;.;7::;~::~:~:: ~~ till ttl iliiHiit!i ~--"L1.t: ••• ,. ··~··~._:,r. ·····r~·.: .,.,, ~~ .. :.····•············· ·······~·-:.·-··:· ......... ~ ... -.... •. ~:::-... ~:::t;:t.···· ·::i:i .. ~:;.-'.:::;;.:;.:; ~ :;::::·:::.;.;-:=::::·:·: ~-:;::-:;:,::··~!~·:::.-.-:.::::::::::;. .... ;.::.. • .......... ~ •• ,. ·;!'··:-:,;..;....... "'i': •: .................. :. ·.·-·······-~-~--·.·.·.···· ····:-... li~I~:!Jlllltl Fig. 2. -General features anci method of installation of a mini- piezometer. A. casing driven into the sediment; B. plastic tube with screened· tip inserted in the casi<~g: C. plastic tube is a piezometer and indicates differential head (h) with respect to the surface water: 0, plastic bag attached to the piezometer collects sediment-porewater. (See text for details) Figure 2 shows the general features and method of installation of the mini-piezometer. The piezometer ·consists of a 0.31 em 10 translucent polyethylene tube (approximately $0.12/m) with a perforated tip wrapped with 0.2 mm nylon mesh netting or fiberglass cloth. The netting protects the tip from influx of sediment. The piezometer is installed using a 1.7 em IDsteel pipe that is driven into the bed by hQ,mmer or vibrator. The casing pipe is loosely fitted with 1.4 em (%Inch) lag bolts at each end. When the steel pips is driven to the desired depth ~he plastic tube is inserted and held in place as the pipe is pulled out. The bottom lay bolt remains in the sediment near the piezometer tip. Raised above the water level. the translucent tube shows the head differential with respect to the surface water. ·Small differences in hydraulic head relative to the surface water are measured using a manometer that overcomes the difficulties of observing head differences • that are slightlY. above or below the level of the surface water. The principle of the apparatus is indicated in figure 3A which shows how the difference in head between the piezometer and the surface water may be elevated and measured accurately. The equipment needed to measure this differential head in mini-piezometers is shown in figure 38. The meter stick is attached to a rod and installed vertically next to the piezometer. The apparatus is prepared for use by blowing water out .of the tygon tube, using a rubber suction bulb. The bulb is squeezed and released slowly allowing water to rise to a stat!(: level. The JOURNAL OF GEOLOGICAL EDUCATION, 1978. v. 27 7 \ ( ( ' A ·--h ·~--· I Hill '..., .. "/: .. ~J •::.·.·:········ .. ···=:~~~~·~ ~ * ~ ltillili~ W.!iB .. : .... ~-::.-:.·· ··~·~-.. ~· ..... -... ~··: ......... . S lftl'!t ID elaat l)laeuc ,.,., .. "_- "'ater iliCil• • \ . )~ .......... •• ru I pl•leP.tet er Fig. 3. -The manometer used to measure differential heads in minipiezometers. A. principle of operation: B, ~he field ap- paratus. levels in the two tubes are comparee to be sure no bubbles of air are causing different heads in the two tubes. One end of the tube is then attached to the piezometer tube and ~he other is left in the overlying water. When the water levels in the two tubes reach static leve!s, the differential head. 6h, is read on the meter stick. The vertical iwdraulic gradient is 6h/6j, where 61 is the depth of the piezometer screen below the sediment-water interface. To measure the hydraulic conductivity of the sediment adjacent to the piezometer tip. two types of tests can be conducted, a falling head test and a constant head test. For the falling head test the piezometer tube is extended vertically above the surface-water level and then filled with water to· a condition ~f overflow. The overflow condition is discontinued at a time that is recorded as. t initial. The rate at which the water level in the tube declines is then recorded. This can be facilitated by taking stop-watch readings of times at which the wc:ter level passes marked intervals on the tube. tf the hydraulic conductivity is very high. the rate of water-level fall will be very rapid. Increased accuracy can be obtained if the fall distance is lengthened by extending the tube a couple meters above the surface-water level or by feeding water to the piezometer from a larger diameter reservoir .with marked intervals. A constant head test can be performed by placing a known volume of water in a plastic bag att~ched to the submerged tube. The hydraulic head in the submerged bag is the level of the stream or lake level. The change in volume of water in the bag over a recorded time interval is measured. Example results and calcula- tion procedures are sumrnarized in Table 1. The derivations of the equations used in this analysis were first presented by Hvorslev (1951) and have been summarized by Lambe and Whitman {1969). The cons- tant head and falling head formulas are based on significantly different assumptions. Comparison of hydraulic conductivities determined by these two methods can be an interesting en.deavor. Where the hydraulic gradient is downward, groundwater from the pier.omet.er can be collected using 8 JOURNAL OF GEOLOGICAL EDUCATION, 1978. v. 27 -·--__ .__ .. ......_ .. _.. __ .~~ · water surf11c• Fig. 4 -Full section view of seepage mett!r showing proper placement in the sediment. A. 4 liter. 0.011 mm membrane plastic Baggies Alligator bag (open end wa:;} heat sealed); B. rubber-band wrap; C. 0.64 em inside diame:C!r, 6 em tong. polyethylene tube: D. 0.79 em inside diameter. 4.5 em tong. amber-latex tube: F. 15 em x 57 em diameter epc.:<y·COq.ted cylinder (end-section of a steel drum): G. 0.64 em iii3ide diameter, polyethylene tube long enough to reach above the surface ware:. E, No. 5~ one-hole rubber stopper with polyethylene tube. a suction b•Jlb or hand-operated vacuurn pump con- nected to a bottle. Where the gradient is upward samples can be obtained by simply letting water discharge from. the piezometer tube. Where the gradient is weak or the\ material poorly conductive. the screened area of the piezometer tip must be increased and suction must be applied to obtain water samples. 11eepagc Meters Seepage flux between the groundwater and the overlying surface water can be measured directly by covering an area of sediment with an open-bottomed container and then measuring the time and change of water volume in a bag connected to the con~alner (Lee . 1977). Two of these devices, known as seepage meters (Fig. 4}, can be made by cutting 15-cm-long. end- sections from a 0.20B m3 (55 gallon) metal drum. Seepage meters can detect flux as 1ow as 0.001 cml/m2 s (about 0.1 mm/day) if the bag is left connected for a day or longer. tn water over 20 em deep, a single tube through the top of the seepage meter serves both as a vent for any gas released from the sediment and as a connection for the measuring bag. In shallow water an additional outlet ~ube on the side of the seepage meter permits the bag to be submerged as it must be to maintain the same piezometric head in the seepage meter and in the surface water. I In use. the seepage meter is pushed slowly into the sPdimcnt and tilted slightly so that the vent will function properly (Fig. 4). Unless the sediment surface is soft or irregular. it ls often unneqessary to push the seepage meter more than 8 em into the sediment to obtain an ad:quate seal. The stoppe.r with tube is then twisted into\.:.~ cylinder hole. Where flow 1s upward, i~ is unnecessary to . . ....... · ·v . · 'Tab~e 1. Sample field data and calculations . ; " . . . Pie;ometer opservalion$ . , · PiezQrneter number; P1 Depth of screen below s~diment: r'·lm Tlme 1630 Ah,mm 35 '33 Gradient Ahlj ,035 . .033 .036 Elapsed ·Volume tlme, mln change. cm 3 -- 36. 1650 .1739 1705-1723. 18 . +12 · Hydrat.~lic .conductlvity calculation= Assuming a case G screen (Hvorstev 1951). Co..,~t~.~t ~.,..~ tcsi --------- o where 0 =diameter, intake. sample (em) L = length; iri'ake, sample (ern) .;. ? H ~= constant piezometric head (em) q::. flow ofv;ater (cm3/s) t =time {s) m = transformation ratio. (K rlK v• )-5 assumed to eq·ual 1• In= 2.3 log1 0 • Therefore. K ra= (12 cm3/10BO s} LN ((10 cm/.31 em)+ (1+(10 cm/.31 cm)2)·SJ 2"' (10 Ci,~l)(~.S em} = 2.1 x 10"" cm/s Seepage meter observations Seepage meter number: SM 1 Depth of water: 0.2m · · . Sediment type: ~and and organic matter Volume Elapal<l Hydreullc Tlme changt. c:mi Ume, min 163D-1G4! +126 18 S.~piQt flux. ,.am/a •.<450 +.496 +;<465 COf'!dudiYity, em/a 1.3 X 10"3 1650-1736 +355 ~6 1739-1752 • 94 13 Seepage flux calculation: (volume change, cm3) 0,0643 Q,pm/s = (elapsed time, min) = {126) 0.0643 18 = 0.450 JJ,m/s Hydraulic conductivity calculation: From the Darcy equation K = v/S. where v = Darcy velocity S = hydr~ulic gradient, bh/bt, K = hydraulic conductivity 1.5 X 1C'~ 1.2 X 10"~ Therefore K = 0·450 J.lm/s 0.035 = 1.3 x 10"3 cm/s • The effect of t~is assumption is small (e.g. if~= 10, K "= 2..7 x 10"4 cm/s; af m-: 1000, K "= 3.9 x 10·4 c;m/s. .. .. • ~ ' • • •• f " .... · 'I ~" 1: add a known volumf! of water to the m~asuring ba!;! • before cc;mnecting it to the sc.epage me.ter. The Darcy velocity. v, (volume per unit area per unit time) is calcul;ated lrom the. relati.on 0.064JV .... t = v. where Vis the volume of water (cml) entering or leaving the bag, and t is the elapsed time (min). The 03rcy velocity is e~pressed as micrometers per second {1 pm/s = 8.64 em/day). The factor 0.0643 converts units ol time. volume. and area .co•Jered by a seepage meter (0.255 m2) to equivalent units of velocity (pmls) or seepage nux (cm3fm2 s}. The average linear interstitial velocity is equal to the Darcy velocity divided by the porosity of the sediment. For most sandy sediments. porosities .are in the range of 0.3 to 0.4 (expressed as a fraction). Student Activities Students from the Universit)( of Waterloo used these techniques to investigate tl:le migration of tritium- contaminated groundwater to a small lake 3nd stream in an experimental watershed at the Chalk River Nuclear Laboratories in eastern Ontario. To minimize the number of pieces of equipment required, this. exercise was combined with stream-flow metering so the students could rotate from one activity to the other. Each student installed a piezometer and a seepage meter and measured piezometric head during seepage- measurement intervals ranging from 10 to 45 minutes. Because of the difficult':( , .. , removing deeper casings by hand. most students ef,..., .!d to emplace their piezometer 0.6 to 1 m into the secih~.~~;~. Each student conducted a constant head test to.determin~ the hydraulic conductivi- ty ot material near the piezometer screen. and then removed the seepage meter so that subsequent students could install the equipmenfthemselves. The study sites met the following selection ~riteria: wave height less than 0.3 m; ~Current speed less than 0.2 m/s: Firm sand with very little gravel and cobble; and Water depth 0.1 to 0.6 m. Pr.eliminary measurements were made to be sure the students could install the equipment and find seepage rates high enough to complete the exercise en 2 to 3 hours. Because seepage rates are generally highe.st near the shore. as illustrated in figure 1 B. and because shoreline areas were accessible by wading. students worked within 10m of the shoreline. Data collected by one student and some sample calculations are shown in Table 1. Piezometric head and seepage rate generally decreased with distance from the lakeshore but seepage rates were quite variable ir~ ~he streambed. Current effects probably accounted for the variability of replical.a seepage measurements in the stream. Streambed heterogeneity probably caused variability between points. No zones of downward .seepage were found in either the lake or the stream. · Direct measurements of seepage fiux, made ~Jy the students. showed that groundwater flowed into thl: lake along the northern shore. A pore-water constituent (in this case tritiated water) indicated that this seepage water is contaminated by tritium. contained in waste waters pumped into disposal pits located about 800 m north of the lakeshore. The use of seepage meters and mini- piezometers thus enabled the students with&n a very short. time to draw conclusions with regard to the occurrence and source of contaminants entering the lake. Analysis of water from mini-piezometer.s in the nearby streambed JOURNAL OF GEOLOGICAL EDUCATION,l97B. v. 27 9 --' .. -· ( ( . ·~ ·.'.~ .~:· :. ' ~ ;fi ' . ' -~ ":; \ snowedrtotritiu~ eontam~hation despite Utepresen~a of -F ~~onsiaerabfe tritium in the :~tte.atn itself. _ The dynamic-nature ~f1\the·.groundwater regime was demonstrated jn ~vlisillfY i~'rtpressive manner by filling of · th~ measuring bag att.nct!ect to-the Seepage meter. All but 2 of 14 piezometers h..ltlcti~ned pro perry as indicated by raising and towedng lht~ ;piiezqrneter tube and watc_hing -the. water level tan or (ls;a1ito a -static le.vel and by the -constant-head respons\~~ctesJs. Failure to obtain respon- sive piezometers was dtiliHOi}ifting of tne piezometer tube whtre: pulling the casihl9· ::out of ·the sediment and consequent loss of the nylor.i-mesh screen. We, anticipate that a sir.ni.ta~· approach could be used by others to teach general pdn(tiptes othydrogeology. This exercis.e. could be in~ludl:td ~-s a part of an introductory t:QurSa 111 hydrogeolog~· •. It could ~lso be used in hydrology. limnology, get)mo\Pphology or sedimentology courses; ·n c:ould serve as a. springboard for student · ptojecm . de~igned to dete·rmil'e the importance of the groundwater compQnent to1 the\ water budget of a lake or pond. to identify contamrnant migration from ground· water to st,~!face waters. tel study th~ effects of se~page . flux .pn sediment chemis~flf, t)r ~Q study the role of grpundwater in .fluvial erosion 4tncJ deposition. Because these topics have tinly recently begun to receive research atteotion, this work offers an opportunity and a freshness which is attractive to student~i. Planning. the Field Exercise • • Sandy shores of gravel-quarry ponds. lakes. reservoirs, and estuarias are ideal sites fo&· tl'lese exercises, but the importance of making preliminltry meas~rements to identifY suitable sites cannot . -be -overemphasized. Seepage rates must be high entlugh so that volume c:hanges o~ at least 50 cm3 can occur in the measuring bag in t-2 hours. The sediment shQ~IId not contain rocks which will bend piezometer drive-Cil~lings~ Strong wave action and cu.rrents · interfere.' with accurate measurements af· seepage, although. piezometers would probably not be affected adversely. Mud bottoms may not h3V;l SUfficient flOW to permit flUX measurement in 1-2 hours. In estuari.es, whe.re tidal fluctuations induce -seepag~ flux through sediment. it may be helpful to consult tide tables before planning a field exercise. At low tide, the highest rates of upward .seepage and ths strongest upward gradients occur (lee 1977), and it is easier to install seepage meters at this time. Estimates of net seepage flux will require measurement through an entire tidal cycle. In streams where surface-water velocity is low and especially in sandy areas, these methods cari be used successfully. In other stream environments, however. it may be difficult to find suitable demonstration sites. Downward seepage in streams may be induced where permeability or depth of grave·l increases in the direction of streamflow or where the longitudinal bed profile is concave (Vaux 1958). These factors, heterogeneity and current, make data from streambeds more difficult to interpret th~n comparable data from quieter waters. References Cited Davis. S.N. and DeWiest, R,J.M •• 1966. Hydrogeology: John Wiley and So~s. Inc., New York, 463 p. Domenico, P.A .• 1972. Concepts and Models in Groundwater Hydtology: McG;aw-Hill, New York, 405 p. Hvorslev. M.J •• 1951, Time Lag and Soil Permeability in Ground· water Observations: U.S. Army Waterways: Expt Station, Vicksburg. Mississippi, Bulletin 36. Lambe, T.W. and Whitman: R.V., 1969, Soil Mechanics: John \Vtley and Sons, Inc., New York. 553 p. Lee, O.R., 1977. A device for measuring seepage flux in lakes and estuaries: Limnol. Ocet~:nogr., v. 22. p. 140·147. Todd, OJ< •• 1959, Ground W.:Uer Hydrology: John Wiley and '" Sons, New York, 336 p. · \ Vaux. W.G •• 1968, lntragrave~ flow in interchanga of water in a .... _ .. / streaMbed: U.S: Fis.'rl Wildlife Service Fisheiy Bulletin v. 66, p. 479-469. Winter, T.C.. 1976, Numerical simulation analysis of the interaction of lakes and ground water: United Statfts Geological Survey Professional Paper 1001. - EXHIBIT E Water use and Quality ,.· ' CUIIJII!.!!t: ~6. (p. £&10~-42, para. 4) Provide the. following information for tributaries at their confluence with the susitna· River: bathymetry, morpho logy, and stage discharge re 1 ati on- ships. Response No stage-discharge relationships are available for the tribJ,~taries which wi 11 be inundated by the Watana and Devi 1 Canyon reservoirs. Discharge data were measured on. selected tributaries within the proposed impoundment study ar·ea in 1982. These data are contained in Table 1. ~~ean annual discharge for each of the streams flowing into the reservoirs can be estimated using the.following equation development by Freethey, G. W. and D ... R. Scully. 1980. Qa = 0.0119 A0.99 E0.22 p0.93 where Qa = mean annual discharge (cfs) A = drainage area (square miles) E =mean basin elevat1on (feet above mean sea level) P = mean annual precipitation (inches) Information on the bathymetry and morpho1agy of Fog Creek, Tsusena Creek, • Deadman Creek, Watana Creek, Kosin a Creek, Jay Creek, Go9sa Creek and the Osnetna River at the confluence with the Scsitna River is contained in Fig~res 1 through 8., A legend is provided for reference. 2-16-1 ,, /I 7 .. _::_·. . ~; i . ~Cheecllakb Creek (River t~f.1e 152.4) large boulders are present at the ··mouth. Depths ,~re uniform and relatively shallow· at 3 to 4 feet. c At the confluence of Devil Creek with the Susitna River, the substrate con- sists of large boulders, cobble and rubble~· The depth appears. ·to drop off quickly but this has not been confirmed by measurement.. There is a 1 arge ·,>·clear pool at the mouth which is estimated to be 6 to 7 feet deep and which drops off toward the main river. References ' >- Freet hey., G.W. and D.R. Scully. 1980. Water Resources of the Cook Inlet , ·, B,asin, Alaska. ·. USGS Hydrological Investigations Atlas HA-620. 2-16-2 , .• ·• ~ . ~ \ .. M VOLUME 5 -ADF&G -SU HYDRO ·UPPER SUSITNA RIVER IMPOUNDMENT REPORT, 1982 TABLE 1 Discharge data on selected tributaries within the proposed · · impoundment study area~ 1982 · a Discharge Tributary Date (1982) (cfs) Fog Creek 8/15 269 9/12 307 Tsusena Creek 8/16 330 9/12 363 D~adman Creak 8/21 228 Watana Creek 8/15 229 9/19 557 Jay Creek 8/12 61 9/19 154 Goose Creek 8/19 79 9/10 150 -----------------------------:·· .a A 11 discharges were taken near the mouth of the respective stream with the exception of Deadman Creek where it was taken approximately tht~ee mi 1 es upstr.eam from the mouth. 2-16-3 r.J 0 l I J!t'<' 1,,/ I silt I ~ sand· t: ]./. '.·1 II_ , If gravel -It, ..,;; :I ' J/' · ·! ;m., ·rubble j-5 I . ,, ·. cobble S'-JO l l rock outcrop cliff .. l,J.f,J,/,J,:, cut bank ""'"' < ""'' undercut bank ~log ~~ debris pile ~beaver dam ----~·~~ flow direction . ® eddy \ LEGEND FOR FIGURES • ·\01a a o" mixing zone spawning redd ·• • • • • · , spawning area .. p» ... ··"'•·····-···"' grass ..... ~ .. ~ .. _,trees shrubs aquatic vegetation overhanging vegetation () SU HYDRO site marker ~ Hydrolab sample site USGS sample· site ® staff gage site <D thermograph ( intragravel) GD thermoqraph (surface) ·· ·····"···-·· site boundary --.... N ' '"""""""' ..... ' .. .~~ Planimetric map of Fog Creek --r~ 8 ....... ___ . -- qoo• r. -• • ~-1 .;tc .:~l' ~ fo'f.t~P ~~ ~ I Site 01 (R.M. 173.9, G.C. 31N04El60BB). .. ..j tt' c· 70 (\"\, - (_'-, ·~ ~~', •• ! 500' N • - Planimetric map of T susena Creek -Site Ol (R.M. 32N04E36ADB). ·.r.,r• .. ··~ •••• --··- ·--1 t-L--_.·--------------------------------------------600' == • .. Planimet~ic map of Deadman Creek -Site 01 (R.M. 183.4·, G.C. 32t,05E26CBD) .• N ( -. . Roc.k CIUf' TtSII I _...--• l. . ............. ............ . 350'~---ED 194.o --11(,;;...----S U S I TN A RIVER--- Tr••• \ Tree• Bruah ~1ainstem Susitna River habitat evaluation site at W~tana Creek, RM 194.1, GC S32N06E25CCA. I " • :J' . -0 i , . ... . li .. " . t:r·"· .. -.. ............ ··' . ... : .· ... · --------• - f"'hJ11ZIIfeJ /l1>~f1A./.fll(ti>~ AMII A~ fo lt.r:.JG f...,.~ ,,; /!:wei-teA.ciPS. s;,;,,.1M ~rf /<:oSII\JOt • /lfll11. W11-f,,;.J p4.1J~A -J .. 'TI··· .. . . · ... , - : Planimetric map of Kosina Creek -Site 01 (R.M. 202.4,. G. C. 31N08El5BAB}. • N I ...... ~ I . ....... 0 • .Sc.t I;.J'~ te~ ~ea.e~es. Some. e Jpe~; iltlf be·IV~ec tJ ··I'J• ~~ SAowtJ A C<Uh11lf1Jtlr::.. ;',J ll.iJ two C'AA~.,Jrl.r ... fk ,kr.,M ti. fn~~..t.·ft.J I I 1-t 1·..5"4 deeJ~t?lt %e. tA. reA : h e·1 ~~e~ if, AN tk d ,~,.;' t ~'~ .. ~ ~'" ~~ r" ·I lt /c•Wt. ,.. ['A ,1 t-:rJ I / , {tit No 11-e b If; r..-, ,.... I? fill/A .r p Piw t'~r) ~If f&~• t:ki"J c:/.:;e1 ,/A bei1~H d /tC}~.J' elrclr;, t ,rk, c A /tMtJf! I s (-.trt c--V~t ~e fs 11 ~ ;eA d··" I I cAAw,Jt ( • .------------------·609'------------------.J Planimetric map of Jay Creek -Site 01 (R.M. 203.9a G.C. 31N08El3BCC). ------· Uli!.ll •. t ••••• ............. ~----------------------------------~~--------60~------------~~---------------------------------t tv I ....... ,'" x-. Planimetric map of Goose Creek (Upper) -Site 01 (R.M. 224.9, G.C. 30Nll£32DBC). ---·-- --- - ..... $228.9 ~\ .,....._. ,...--------. _, ._... ........... ----~_.;..,....._._ __ J-:in: I t:t" ~l~oS6 J"/.,1-J,J 0 sl. P.t !till• de}'tJ-.s ' tnl'~1 ,11 lk (Aillly Planimetric map of Oshetna River Site 01 (R.M. 226.9. G.C. 30Nl1E34CCD). •• ' ."'. i . . ,· •··. ~ ,, "; '. ~ ·-.. EXHIBIT ·E 2. Water U'se and Quality COIBeflt 17 .lp. E-2-46, para. 2)~ Provide. the basis for extrapolating. HEC-2 water surface profiles outside the raj1ge .of calibration flows (9,700 to 52,000 cfs at Gold Creek} listed in the R&M ·11 Hydraulic and lee Studies'~ report. Provide references to any addi- tional calibration data sets for the HEC-2 model. Provide methodology and supporting data used to derive the estimated HEC-2 accuracy of ±1 foot. Response EXTRAPlOGLATION OF HEC-2 HATER SURFACE PROFILES The HEC-2 analysis presented in the R&M 11 Hydraulic and Ice Studies" report was carried out for Gold Greek flows ranging from 9,700 cfs to 52,000 cfs. For Cross·-·section LRX-32 at River Mile 129.67 (Figure E.2.10), where a potential navigation restriction was identified, the HEC-2 analysis was used to estimate the water surface elevation for a Gold Creek flow of 6!1000 cfs~ the minimum su11111er flow proposed. Since LRX-32 was similar in cross-sec-, tiona 1 shape at flows of 9,700 and 6,000 cfs, the rate curve for LRX-32 was extrapolated to provide the water surface elevation for a flow of 6,000 cfs. Pursuant to· this, an HEC-2 verification run at a Gold Creek discharge of . 3,000 cfs demonstrated that the water surface elevation for a flow of 6,000 cfs was ,as valid extrapolation. (See Reference to Additional HEC-2 Calibra,- tion Data Sets -below). Figure 1 depicts the HEC-2 computed depth for Cross-section LRX-32 at a flow of 3,000 cfs. The rating curve computed for the flows from 9, 700 cfs to 52,000 cfs has been extended to include added data points. Interpolation 2-17-1 between 3,000 cfs and 9,700 cfs, at a discharge of 6,000 cfs, indicates a depth (2 .. 45 'feet) which. is consistent with the estimated depth in Figure E.2.10 of Exhibit E in the License Application. REFERENCE TO ADDITIONAL HEC-2 CALIBRATION DATA SSJ2, . An HEC-2 verification run at a Gold Creek flow of 3,000 cfs was performed in 1981. The resu 1ts, including a comparison of computed and observed water ··levels for various cross-sections, are presented in Appendix A, attached. All co~uted elevations are within ±leO feet of the observed elevations. Methodology to Derive Estimated HEC-2 Accuracy Manning's n values used in the calibration of the HEC-2 analysi~ are pre- sented in Table 1 (attached) for four discharge conditions. A flow of 9,700 cfs was used as the base flow for Manning • s n values. For flows other than 9,700 cfs, an adjustment for n values was made as follows: ~)- 0 3,000 = (1 .. 20) n9,700 0 13;000 = (0.95) n9,700 "17,000 = (0.90) n9,700 "23,400 = (0.~0) n9,700 "34,500 = ( 0.81) n9, 700 05.2,000 = (0.81) n9,700 / · ~ discussion of the rational used to adjust the ', -,ent is contained in R&M Consultants Inc. 1982. ject Hydraulic and Ice Studies. 2-17-2 Manning roughness coeffici- Susitna Hydroelectric Pro- ·:~"'\' \~/ .•.. -'_' ,-: .· r • ' ••• ,_ · .. ···-"-· '" _,..t 1 ·, . \.:.... ' ._. -: •• •• ,.. f I' ·"' • ~ " "'.--> ' · cA.-cori\:;ari-son _of the· .computed w.ater surface· elevations using_ the respective · ·.· Mannifig·•s • n 'Ia 1 ues . ~d observed waiter suM ace. e lev ati ons for main stern ~-ta.ti~rts<~here stage.d.ata was-_ ~vai lab le 1:$ presented in Table 2. _ . ':~ -~ . BaSed :o'ri-~~tre·':table of observe·d. and .calculated. water surface elevations, all comphtecl: __ values except 9~~:-w~r:e ·withtn .±1 _ foot of the · observed values. -. ' ' < . ' ·---:· The. one_ value that differe~ by fOOre than one foot differed by +1. 2 foot and w~s at li~X-2S at .a flow·· ·a.·f 9;700 cfs.. Considering the possibility of a --::; . ,_ small ·error in any \stage observations it was estimated thaf the accuracy is ±1 foot:. - ,;. 2-17-3 .n -- ~-- ~0- . u: 6. :i~ 0 _.4 LL. lL. 0 3- :J: 1- Q.. ,_ 111111 11111111 111111~ rtlllll ll 1111111~1~1-l-H+H+H+H IIIII IH+IHIHIIIIIIIm~ lUll IUI!l I IIIII 1- 1;.;. ~· ~ 2-+~~~~~·14+~·~H~~I 11 1111111 1lllllll-&-l-l-i-I-I-I-I-1-H-I 111111 mm~~~~~~~~~~~~~U~~~~WWJWI~~IlU~J ~ \o,ooo 3 DISCHARGE, cfs STAGE-DISCHARGE RATING CUR'1 ~ SUSITNA RIVER AT LRX-32 (NEAR SHERMAN) ) ~ QO,OOO iUIIII11 1111111 l~\111\t . 1111111 IIIII I Ill : llllliiii::IWU!I 111111 IUIUI I IIIII I IIIII ; 5 ~ ,·~.~ PREPARED FOR• ,_ APPENDIX A 0" 6087 e ANCHORAGE . .t.LASI<A 99502 !l P'"' 90.7•279·0483 •'TL.X Q!i0·~52El0 .R&M·'':ONSUL.TANTS. lN::;. -~02 4 C:~!iQ.Qy.A ·• ~ ,.. . . ... . .. .. , ,.:: "• :·· . JENGINE!5A~, '"· GI1CILCGI!'ITS IP'-A.NNEZ.S S&J"AVE,VOIItS.. 1 ~-~.-- Septemf:)er 11, 1981 R&M No~ 052306 ' • Project Manager Susitna Hydroelectr-ic Project :.:--->-·-- Acres American Incorporated Liberty Bank ~.uilding Main@ Court Buffalo, New York 14202 Attention: 'Mr. George Cotroneo Re: Run of HEC;2 on Lower River at 3,000 cfs, Subl:ask 3.06 Dear George: As we discussed on the phone this week, I am sending you the results of an HEC-2 run on the Devil Canyon -Talkeetna reach of the Susitna wit1l a river flow of 3,000 cfs. The computed water surface elevations (W.S.E.'s) agree within 1 .. 0 feet at all cross-sections where observations are availab_le. The low flow did present some problems in the computations, however. Initially, the channel n values were all increased by 1 O% from the values used with Q = 9, 700 cfs. For comparison, another run was made with a 20% increase i .. n n value. Both runs produced critical flow · at a number of cross-se:ctions, but better agreement between computed and observed W.S.E .. •s was obtained with the higher n•s. This rapid increase in n value at the very low flows is to be expected .as the depth of flow more closely approaches the size of the bed material in the channel . 2~17-$ ' .. .. t. -· ;t' September. 11 , t981 .. ' Mr. Geo.rge Cotroneo · Page 2 · ., The table .below gives the observed ·and· compUted W. s. E. • s and the dif· ferences between them for the crest gage cross-sections. The observations were made on N~yember 11, 1980, when the flow .at Gold Creek was approx- ii'nateJy 3,000 cfs. This was a full month after frazil ice first appeared in the river, so it is possible there are ice effects at sorne of these locations. ;~Comparison of Water Surface Elevations at 3, 000 cfs. (ft, msl) LRX fgmputed. Observed Difference -- 3 340.2 ft. 340.2 ft. 0. 0 ft. 4 346.4 ft. 9 374.3 .ft. 375.1 ft. ..o. 8 ft. 24 519.1 ft. 519.1 ft. 0. 0 ft. 28 552.2 ft .. 35 615.0 ft. 614.7 ft. +0.3 ft. 45 681.1 ft. 681.4 ft. -o .3 ft. 62 831.2 ft. 831.9 ft. -0.7 ft . . ry:. .. _,. . ~, Some additional' attached sheets give specific comments pertaining to (~ __ ). cross-~ections where problems were noted in the H EC-2 output. }f. you have any questions or comments, feel free to give me a call. V~ry truly yours, . . . ' R&M CONSUL TAN~$, INC. ,,·~-.-~~---· ' .. •) . ·. ' . Jeffrey ·H. Senior Engineer "'JHC/jcr \ P,.E. 1 . ,jo' t, • \ ~I "f • .o, ' • I " • • • f, J' ' ,. • It ,., ;• . ; • \ ••• ... . ' ( 'l: I •• , . ,, t' I > . ~ . t:t.,.-. I:'.'~; • ; ._.._, t • , ~~ .. '_f. . .. ''. . ~ . : ,.., .... . . ;. . ' . ' r· .... ···-.. -·--.. --... ----~--~·---.... ., .. ;., .. ·-... _ ........ _ ·~~-;. • . • • • • • Rl/09/0le • ••••••••••••••••••••••••••••••••••••••••••••••••• ~EC2 JELEASE O~TED NOV 76 UPDATED APRI 1960 £PAOR C~qR -~~~02t03t04 ~ODJFJC4TIO~ -SO~S1,52t53t54 ******~***~****~*******ft******~•****************** LC~£P. SUSITNA RIVEP-- SUM~~RY PRINTOUT SECrJO G CUSEL VCH l\EPTH .. 3.000 _,3000•.00 ___ 3,0e20' ... le31' 7.60 ltoOOO 30GOeOil 3lt6 a36,.... 6ell / ·0 2e3fl s.ooo 3000oiHI 357.37 • f?• OOQ .. _ 3000•JUt ___ . ;J60 e62" __ -·· • 7.000 ~ooo.oo 36lfe'll' 2.0~1) ~0(10.(1!:1 369.99"' • 9 • 00 D •. _,_3C Ofl ~ QO 3711. ?6,.... • to.ooo 3000.~0 388a91,.... lteQOO 30D~eC:l lfi.17.67' • 12 • 9 o o ·-··-~o~p. (I Q _____ . ~ 19.4 E? ,.,. ___ _ • 13.000 3000.09 111.000 3000.00 • • ....... *-*·-· 17.000 ~OOOePO 457.57/ • ·------------·-~ .....,...._.. " ..... iU lc52 leR7 . le99 le6.9 2.~5 le81 2.47 2e37 If .17 3e52 .... 5o 01 5e89 7.66 2· 71 6.67 7.80 3.76 3.68 ltel7 6.02 1e60 . ' PAG£ .......... ··• ._ ... . ·-·-~--·-·-......-...,...-~-~--~ ~ .. ··k•• ·--~ ···--·--·-·-----~ . •n • _. ____ .,. __ K•CHSL ENCST o.co 2el6 leRS lt8 !.00 . _,J~1.6?.!t91t 4!1t •29 ltO;!_~_r_'!1_ ... ~,.8l!!~.!t ........ _~--·--·· -·-·--==.J' . . lta.oo 490.7~t ~t38·25 3173.02 5771.27 1r 1t 8. oo 19 1s. &3 ----e16.2-o __ ... 6 o~t9 .6tt -·-1253 ·M~ -----· ·--····-~· • 1.·-~J .79 1506.7/t '. 573.36 1128.18 le02 60.~0 3595.67 .51 2.60 lelf5 • • .... 29 ... _._ .. !1 ~ ·-~~ 1•60 IJISeCO ~-·-··--.. ·--------.. ---·~·---r-r----.,.-......-·----·---.. -· .. --..... _. ·---···· .·,, . ~ ''.. . I .. • .l• I -. . . . w i 14!/r-9/01. 21.000 . ., 23.000 27.000 28.C'l0 29.006 35.000 """ <:~ 36eQOO .D--37.non 36.000 39.000 . • ... .... ~ ... l"' 1~ , ... '--"' ..... , •• ,. a 3.UOO .co # . 3000.0.0 C"SEl " lf92~·38::;; 506.56" 5Q8~r79-­ l Jooo~·oo-·~··· 5.ta. iH ,.· ·· 300.0.00 3.000.00 3ooo •. ou 540._25 ... .. . .... _ ............. .. 3(1COe0-0 552e2.lt- 3000.·£1(1 3CH.:o.op 3000.0t 3000~00 3000.00. 3000.CO .. 3DCOeOO 3000.00 301.10.(10 51:\3 .os / 610.79 ..- 615.00 r 625.08"' VCH DEPTH 3e~R 5o66 le72 2 •80 2.57 4el9 2e2fl 3e86 lel8 lte80 5.12 le71 l.lfl) "2 e8lt 1a91 2oH1 5.oe:. le13 le63 9.5C -1.88 7.11 2.'t0 5.09 2·09 6e28 lelt7 2.34 2.75 . 3.50 2.1a 3UOO.OO r··-·~. 653al0 2elt7 ~t.ooQ. 3ooo.og 6 58. S5 r 3 .1 0 2e27 3.78 -.. N I --- 3&.00 36 .• 00 308.19 38.42 •. ':18 1:561.8-'t 'l1a1.11 -. i -;~-' -~ · 36 .or·-···1 095.~s----st.;r;'lu---1663.;l' -· · "~o1 ~96 ....... ~-· .. ·--··---·--· ······-~] ~· ,.2. oc 1313.96 . 526.01 2538.70 306/t. 71 .. .,..__ .... 1'----~ _....... . . ··-... -... ·~ .oo U37.7l · 31.0.64 • 2. "o ·-··-·-62s ~·2s ~·3oil·;91-"1'772·;si·-··· 21 o2lll2o • .. ---·-· ···· ··--------] 42oCO 1487.91 531.64 3522.65 40~4.28 ,..,. ---·-----• ,.-a•-•--0.. •.. # ,_..,..,.. __ ,...,. .. ,__.,. 670.95 385a-'~ 1192.0/t 2527.28 45.60 t5ti'o;a6-3e6·;s6-·3··7it. 76 ~··-3861.32 · · ·---·--·--· .. ·--·----~.---] ..• it7t!~~---~~~.!!~~ ---~ lt282ol~ . 46~0·21 _ ....... _.,_ 1503.93 600.55 2886.69 ---···--·-·-·--] . ' ,W. "' , ........ -..... ' .... 42le99 '27Q•38 · 150~e7C • ..--· -·------, . .... J·~:~: 2625.49 6 1455.82 742.50 1854.27 2887.61 • • ~-..... --................ _ .. _.,.., ....... -----·----------·· _,,.... ,_.,, __ ·• __ .... -. ......... f ___ ... _.,. _ _.. ........ -._ ... ···---·-·· ........ _ .• --.............. -....... -----------.,.~ ...... _____ ..,. _____ ... __ ,., __ .., J I I ·~ i""' . --------'ll( _______ ..,..,--r-~-.,. ,---~~-_______ ,_._ -~-. . . 0. . .. . . ", .. ., . . ---:-~---;---·-...---·-----.. _.-------, ... -.....----.....--·--· -· .. ··--- •· f •1 • • • • • • • • ... ,. ' Pl/09 S(CNO ,. ... ooo 4Ee009 48e0Dfl so.ooo SlealO 52. !)0 0 . 53.000 ~s.ooo ~91\DeOO 30UOoOfJ 3ooo.oo 3000o0£1 3000oGO 3u0lle00 3D!Hla00 c;.;sr.t 678.79 .. 6BleC8- 690.40 ... 700.53- 7~5·11-- 713.55- ...... --. 3000e00 720e't8- 30(10 •. (;0 VCii 2.30 6.85 3 e2ll 2e6fl . . __..._ .... . .... -·---.. . ·····--·· -... . . Sf..ooa 3ooo.oo 749.90" 2.1P. 57.?01) 3!t00e0(! 751.79"" lo99 3!1l!OeD9 761.71 ..... .. -·"' ·-~ ... --~--... ~ ... 3 0 0 0 • [! l) 78 2 • 8 6 ... 2 ·" 1' 6CoDOO 61 .!10 0 3000.00 828.62,.. 2o5f.l 3000.90 836.15..-• .c:;:;r · is.o;ii ___ 3orio;oo-·ue39.u ·~----.. .u _ f6oOOD 3000o00 81\2.26/ 7.07 • 67.000 3ooo.no 845.64 2e09 -,. ~ ·-·~--··6t.:ooo--3ooo. no ___ att 1.1a ..;::·--··-t.66 . .,,. ·~ ..... ___ ... _.. -.. ,, ... -····· Ot:f' TH 7.5A -. 75 5e27 .49 s .. to 2.57 1. C3 -·52 3.21 6.35 5.12 5.94 2.55 5.50 6.29 4.81 2.57 2.27. 9.12 1e7A ltlo75 -1.73 3o0l l9e1J !:h06 3.79 17.28 ,..-. I ltft .oo 60.()(1 6& .. 00 66.00 &6.00 66.00 ~-_...,.,._...--··~·~~·-_...._......,. .. __ ...... •·"'!*'-~*f'"l'••• ..... . . .. : ..... t .... . -... --...... _,,..~-· AREA TOPIIl D SSTA 859e0l-·-··-32i;35~·~065~S8 1304 •• 1 ·~·· 306e6~ •. 1229sf2 437.72 26le33 1761.67 •' 931' -~~·~·-· 385e3~-", 1731tel.2 1533.55 1002.66 1337.0~. 113J.te0 PAGt CtUlST 3392,9~ 153E: .. 5_R.:./ 2023e00 1601.70 1&2lte60 100le55 294e59 12Ulte91 1q99e50 • -•• • •• ·-... ~ .. --!' ---····--··' • .of! .,.,.p..-... 1163.28 210.92 1003.16 121'te0A 1433.50 373.tt6 100le29· 1380e74 .. .. ·.~-·. ...........J, ' . ·:·, .•··· ~8 ;.·?l• . •. ._,_~ ... -~ .• /I, ··•'::w. l ·-..:----· ... .., _,._J ,. • ,. ----·-------------·-··----·#• .. '"'_'_ --···~· .. -.. -..... --· ____ .. , ..... -.. ... ·---·-.... ·-~.~. -----._.,;.-------........ -........ --... ~· ~--·------------.. ~~ :·· -~ "' -.. ... • ·N .· .. ' . ...._ ~ .J ' .. --,, • .. ~ .......... ~ ..... ~ ... ,, .. ,. ...... ~~._,.. f.·~~·--·. K_..,,_ .. --.-...... A~-""'"' ... _ .. ~, ... ,.... • ,.. .. -.• ~ ........... )ll~~~,.._... ..... ~~t.M;•Il • '• .._.· ~·A·~ .Jioolo-----~" ' ~ l» _.,,.., "'!"'...;,~< 81/09/01. . PAG( lf9 -:::; ~ f~, : ' .. .. .. ~ .. "',......,~ . .,... . SU~~ARY Of ERRORS ............... -t-•·,.-~~·· ... ··-·~,-------- /. rJ! UTI CP<J SECfJO: If .llOO PR'l~='llf:::: l CR 11 IC H C(Plt:l l'SSUtAEO _., ._ ~·~··-·-~--... ~P"'t·~ ~ ...... ·.~ ~·. CAVTJOt.: ~tctns: lt.QtJ.Q ~ROFJLt:= 1 PPOiMbLE MINUWtl SI"E.Clf!C U.LRb\' C~UT JCIN .. SECtJ(l: •..• ~.!t! ~QCt.., •• P~Qf=ll.E~ 1 20 TFJ ALS A lTEMP!t:U TO BALAt~CE "'SEL c,./111 U0 TTJJ 0C·t~ SSEECcN,.o 0 = __ , ·1tr.;9·.·~llo2 Pp.~R~~fF,lJtl;:_ • 1 1 • CRITICAL OEPfU ASSUMED . . .. -· __ .. ~-• .• '-"-~-~.···-·.·-~·--.. --... ~-·--· ·---··· .. ~·~"~----l . ' •• c c "' ., . u &;. MltH:MUtt SPECIFIC ENCRGY .. -··-•• ,. ·----· ... -""'-..·~-__.. ..... __ ,. ....... _..,. ~f ...... ,, ...... ~~-.-.-·""'-......,._ CAUTION SECNO;:: 24.500 PROFll(:. l C:~UTJO~.-SCCNO~-.... 24!50Q._ PROfiLE= 1 CAlJTJCU SECNO: 2'ie5CO P.ROf-lLE.: 1 CAUTJM! 'SECNG= CJ!IJTJO~ SECfH>= CAUTJCN SECIJO: C'~UTJnN SECNO= CJIUTJCIJ SECi-'l: tA UTlC~J SECf;O: CAUTiON SECUO:: . . . ~$ .. .. ... --4' CAUTJOU SECNO: Ct.UTICifJ .SECtJO:: CJ!UTJCf\' SE:C~O= 32 .rtHJ 32.~GO 3~ oil £It !I •· ". . . 3f$000 3£..1')00 36.; flO o I ltlf .• IJ& 0 65.0(10 65.~0l' 65eOC~ PROFILE= 1 FROfiLE;:-l PROriL(: 1 ..... PR\lF Ill::= 1 PRGFILt:= 1 PhCfllE= 1 PROFILE::: 1 . Pff OflLE:: l PROFILE= 1 PROFILE: 1 ~...,. ·-·--· .. -· -··-· .... -...... -..... ---.---·-""-"""" "'"!'" ... CR 1 TJ CAL OE.PlH ASSUMt:·.O PROBAel[ ~~~J~UH SPECIFIC f~ERGY Zl.O .TRIALS ATTE".~TED TO. BALANCE \iS[L--·--:- CRJllCAl nEPT" ASSUMED PRObABLE MINlfUK SPECifiC (~L~G' -~----··-·~ ·-· .. ·-··· ····· ... -... ·;··-=---l_·.· .• J . . I ' ''' , .. ,.,., ... '""'"' 20 T~IALS ATTEfi.PlED TO BALANCE l.iSEL •· CRITICAL DEPTH ASSUME.D ..... --··---..__---..,...-----:-----------···~---·---·-'---------]· . PROBABLE •'INIMIJM SPECIFIC U~lRbV •. 20 TRIALS ATTEMPTED TO BALAtiC( ~SEL ............... ,.._ ~ ............ -...... ..---·-·-.. -"'"''"' .......... '. "'"" ... - 20 TRIALS ATTE~PT£0 TO BALANCl ~S[L ..., ...... ,_ --·---.,.........._..·--- CRITICAL DEPTH A~SU~ED P~QBABLE MINIMUf SPECIFIC ENERGY 20 TRIALS ATTE11PlEO TO .BALAl\CE WSEL .. ----··--·---. ~ .-... ~-· .. _ .... ··--"-"* -~-~-·---] ------~-· .. --.......... :. , __ ,...,_-.. ~·· ... . ·-·"' ~ ... .., -•• ·-.. ·-----------·---..... --~ _ .......... ,.,_ ·-~··-··-.·-·l • ......... ..... ...... -~ .. ·---• .,._->A4 __ .. ._._ .... . .... •• --·-·-·-----------·---. ,, --·-·-··--·-... -. ·-. ·--~-----l •• . ' .•.. _t . .... , .. ~ • • ..... ,.,. '* ···~ ' ·-.............. --.. .f ···-------·----··----.... • • ~ .-- ..... ------~-~·-· -----·--~------.. .. :. --·-·-·------~~=] ·•·· . . . .... ·-·· .. ··-· -··-·-.. --·----------··--. --··--·-----------___ ,__ __ ,_1 •· ,. •• , .. ·····--·---...... _,.._.., __ ......... ----..... ·-.. • ·-.. !" ... _ ' ••• ~' ..... ~·-.. ~ .,_ .... ----~~· ____ ,. ___ .. __ .. ____ .... '"' .. ·---·. -····· ·-· -~-· , ... 'r).. j . }\,._..~, ............ __ .· ~ ;__'},"'''' .::; . LRX ,, .. 19 24 .. 5 32 misc. 9/a1 comments. on 3, OOO•cfs ~ H EC-2 Run Comments Critical flow @ both n values. Critical depth does .. not seem reasonable, based on channel slope (not -· . especially steep), or geometry. Likely explanation is that. assumed W .~s .. E,. @ 3 is not correct. Trial w.s.E.. @ 3 is an observed elevation, but no -u~ observation at 4 to a:ia for check. Tried vario~s · starting W .. s. E.'s @ 3, from 0 .. 5 feet lower to 1.8 feet higher --all produced critical depth at 4. That appears to be what happens. True W.S~ E @ 4 may be ·a little higher than that ,shown. Critical flow @ both n vatues.. Depth is quite shallow, and average depth is fairly close to maximum depth ( 1.1 1 , compared to 1 . 61 ). However, critical depth does .!!!:!! seem reason- able -perhaps it is 11 caused 11 in the model by the great. distance from 18 to 19 (18,000 feet), making the transition not too well-defined. The true W.S.E. @ 19 is probably 0.5 to 1.0 feet higher than the computed one given. Critica.l flow @ both n values. Fairly steep bottom slope to deep hole @ 24. Critical depth seems reasonable, based on field observations of a ".-. 11 r-iffle 11 in the bend u/s of Curry at low flows. Critical flow @ both n values.. Flow is fairly wide and quite shallow (average depth is 1.25' and maximum depth is 1. 5 1 ). Reach length from 31 to 2~r1-11 \ ' ; " 46 51 65 " .. misc.9/a2 • • c$2 ·l$ rather·. l()ng/ .· so . transition is probably. not too welt..,defined~ · Critical depth does not realty seem reasonable -true le.vel is perhaps 0.5 - 1 ,.0 f~et·higher than comput~d. Critical flow· at both n values. River goes from shallow depth @ 36 to deep ·hole @ 35. Bottom slope · is. .,'{~i rty ·steep 1 and existen~e of critical depth at low flow appears reasonable. Computation of W .. S.E. took 23 trials. Resulting answer looks reasonable compared to other flow levels. Citical flow with 10%· increase in n, but not with 20% increase (W.S.E. = 0.1 1 higher). Avoidance of critical seems more reasonable. There is quite an expansion in flow area from 46 to 45, due to re.latively great depth @ 45. Thus, depth close to critical is probably justified. Flow is not as close to critical depth when n is increased by 20% as when increased by only 10%. Thus, the former (20% increase) seems more reasonable. Critical flow with both n values. Bed is high at river bend, causing steep bed gradient to 64. · High ;bed also causes low flow area. Critical depth at low flow se~rns reasonable. ,. . ' :vt ~~ .,1 ... - " .... ~' X-Section. · . ·-· 3 ,4 5- 6 .. 7 .. 8' . 9 lU '11 ~ 12 I ·--·· 13 "4 " .. 15 16 17 1'8 19 20 21 22 .23 24 25 26 .27 28 -·-· ·., 29 ~ . TABLE 1 MANNING's n VALU5S USED FOR CALIBRATION · · · OF SUSJfNA ., RIVE~ H EC-2 MOD.EL ~ .. 0=9-700 efs · Q-17 ,000 cfs Q=34r5QQ cfs .036 ~0324 .. .040 .040 .036 .0324 .040 . 036 .. .0324 .040 .036 .0324 .040 .036 .0324 .. 050 .045 .0405 .055. .0495 .0446 . 055 .0495 . .0446 . 055 . .0495 .0446 .055 .0495 .0446 .055 .0495 .0446 .055 .0495-.0446 .045 .0405 .0365 .040 .036 .0324 .040 .036 .0324 .040 .036 .0324 .040 .036 .0324 .040 .036 .0324 .040 .036 .0324 .030 .027 .0243 .030 .027 .0243 .030 .027 .0243 .030 .027 .0243 .035 .0315 .0284 .035 .0315 .0284 .035 . 0315 . 0284 .035 .0315 .0284 Q=52, 000. cfs· .0324 .0324 .0324 .0324 .0324 .0405 .0446 .0446 .0446 .0446 .0446 .0446 .0365 .0324 .0324 .0324 .0324 .0324 .0324 .0243 .0243 '!0243 .0243 .0284 .0284 .0284 ~ . .. .0284 .. 30 31 i32 33 34' 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 MA~~{~lJNG's. nc_\(ALUES USED FOR CALIBRATION OF SUSITNA RIVER HEC-2 MODEL (continued) Q=9700 cfs Q -17, 000 cfs Q=34,500 cfs ~038 .0342 .0308 .038 .0342 .0308 .038 .. 0342 .0308 . 0361 .0325 . ,0292 .0361 .0325 .0292 .0361 .0325 .0292 .0361 .0325 .0292 . 0361 .0325 . .0292 .0361 .0325 .0292 . 0361 .0325 .0292 .038 .0342 .0308 .038 .0342 .0308 .038 .0342 .0308 .040 .036 .0324 .040 .036 .0324 .040 .036 .0324 .045 .0405 .0365 .040 .036 .0405 .040 .036 .0405 .040 .036 .0405 .045 .0405 .0365 .050 .045 .0405 .050 .045 .0405 .050 .045 .0405 .055 .0495 .0446 .055 .0495 .0446 Q=52, 000 cfs .0308 .0308 .0308' .0292 .0292 .0292 .0192 .0292 .0292 '· . -. .0292 . .0308 .0308 .0308 .0324 .0324 .0324 .0365 .0405 .0405 .0405 .0365 .0405 .0405 .0405 .0446 .0446 -"' ..... . V:_~,i . ~ . Q' '1 . JO"'"'"'· . . . . {~ . ......, susi4/x3 · · .. ·MA,NNING's n -VALUES USED FOR CALIBRATION OF S.USITNA RIVER HEC-2 MODEL (continued) X-Section Q:;:9700 cfs Q-17 ,000 cfs 0=34,500 cfs Q=52, 000 . cfs - J 56 .055 .0495 .0446 .0446 ,, '·• 57 / .050 .045 .0405 .0405 58 .050.·: .045 .0405 .0405 59 .050 .045 .0405 .0405 60 .055 .0495 .0446 .0446 61 .055 .0495 .0446 .0446 62 .055 .0495 .0446 .,()446 ·63 .055 .0495 .0446 .0446 64 .055 .0495 .0446 .0446 65 .055· .0495 .0446 .0446 66 .055 .0495 ·.0446 .0446 67 .055 .0495 .0446 .0446 68 .055 .0495 .0446 .0446 NOTES.: . - 1. · Discharges stated are for Susitna River at Gold Creek. 2. Tabulated numbers are main-channel n values. The highest calibration .flow used (52,000 cfs) is approximately bank-full, which avoided precise definition of overbank n values. A general val tie of n = .080 was a~sign~d to all the overbanks to cover the occasional flooded areas above the bank levels. For higher flows (i.e. 100-year flood and PMF), in the 1983 analyses, overbank n valu&s were· assigned as described in Table 4.10 in "Hydrawlic and Ice Studies,. (R&M Consultants, March 1982) . " ,, ,.· ., .... ·F Z -:~f· .. ·.,. ·J£.:,. A, '··' : • '.·· 1' •• : . ' ' 1") TABLE 2 OBSERVED A,ND CALCULATED WATER SURFACE ELEVATION {l) DISCHARGE (cfs):. ... •:,.· '•"'· LRX4 Observed <;:omputed. ( Corn-Obs) Difference· .. .. LRX9 Observed Computed ' (Com-Obs)Difference LRX24 Observed Computed (Com-Obs)Difference LRX28 Observed Computed (Com-Obs)Difference . ."/,' LRX35 Ob~~rved Computed (Com-Obs)Differenc~ 0419A .. · 9,700 348.1 348.6 +0.5 378.4 378.1 -0.3 521.3 521.7 +0.4 553.8 555.0 I +1.2 617.3 617.7 +0.4 13,400 349.5 350.0 +0.5 379.0 379·4 +0.4 522.0 522.6 +0.6 555.3 555.7 +0.4 617.9 618.7 +0.8 27 1.7, 000 350 .. 5 350.8 +0.3 379.8 380.3 . cJ-0.5 522.9 523.2 +0.3 556.0 556.2 +0.2 619.0 619 .. 4 +0.4 D3,400 352.0 352.2 +0.2 381.6 381.8 +0.2 523.8* 524.3 +0.5 ,557.0 557.0 0 620.0 620.3 +0.3 34,500 52,000 ~~__.....,._ 352.9 354.6 353.1 355.1 +0.2 +0.5 383.1 385.4* 383.4 386.2 +0.3 +0.8 f ·• 0 < y '-.....,.,..-"' 525.4 527.5 525.4 527.2 0 -0.3 558.2 559.8 558.1 560.1 -0.1 +0.3 621.3 623.3 621.6 623.3 +0.3 0 • ~ ~ ~ •' l -' . • ·,.~~ ..• -: 1\t • ,· .._, .. '. TABLE 2 contfn:p.ed . ~BSERVED AND CALCULATED WATER SURFACE ELEVATION (l) .DISCHARGE (cfs); 9,70.0 13;400 17,000 23,400 34,500 LRX45 Observed .684. 1 685.2. 685.9 687.0 688.4 Computed 684.0 685.1 685.8 687.0 688.1 (Com-Obs)Difference .. Q.1 -0 .. 1 -0.1 0 -0 .. 3 LRX62 Observed· 835.4 835.9 837.5 838.3* 840.7* Comp11ted 835.1 836.4 837.5 838.:0 840.8 {Com-Obs)Difference ... o.3 +0.5 0 -0.3 +O.l· LRX6S ()bserved 851.4* 852.2* 852.9 854.1 856.0* Computed 850.6 851.8 852.8 854.0 sss.a (Com-Cbs) Difference -o.s -0.4 -0.1 -0.1 -0.2 (1) Adapted from .. Hydraulic and Ice Studies" -Table 4.18 *OBS water surface elevation determined from rating curves • 0419A 28 52t000 690.0 689.9 -o.1 843-9* 844.2 +0.3 859.0* 858.7 -0.3 . "_,;. ·····.' -~ •• ':' •• j . -~'- *'·· '- • ;, . l l ·._.,. \. ,J', ''...' .. EXHIBIT E : ·2"-water Use and Quality '' ~t 18 (p. • -E~2-S7 1 fig.; E.2.23) --. Provide a compl_ete, dastripti on of-the curve-fitting technique used to gener- ate this frequency analysis. Response The curve presented on ·Figure E.2.23 was fitted by visual judgement. A Log Normal and a Log-Pearson Ty~e I I I di stri buti on fitted to the data are shown in Figure 18.1. Based on thes:e two curves, the 1969 low rlow of 5596 cfs at Gold-Creek has a recurrence interval of about 2500 years for the Log Norma.t curve and 125 years for the Log Pearson Type III curve fit~ rathet than the 1000 years stated on page E-2-57 of Exhibit E in the License Application!t The adjusted 1969. flow of 7200 cfs at Gold Creek used in the analysis in the License Application has a recurrence interval of about. 30 years and 20 years based on the Log Norma 1 and the Log-Pearson Type l I I an a lysis, respective 1y • • 2-18-1 1 . I .. .. " ~ ·N ·~ •• ao 40 20 -(/) u.. 0 0 0 0 --WIO (!) 9 0: 4 8 J: 0 ~, 7 6 5 4 2 l.OJ ~ : . . . . ' • • • • • . \ .-. . ' ' . ' ,, 0 • • • ••• Ill !'"a.. -~ .. ---~ • . ............... ~ ~ ~ •wYI969 1.25 2 5 10 20 RECURRENCE INTERVAL (YEARS) LOW-FLOW FREQUENCY ANAl:fSlS 0 F MEAN ANNUAL FLOW AT GOL~(tf}:REEK ... . 50 100 '··~···:.·l.lt ' ·. . ··. · .. · .•. !.· .. ··'~~·~ .. ·.:.·. ·. ;' ' ' • • < . . . ··'. ' ' .. ' . . ~.. . . •' ,, . .. '~. ·o ' ' .,, I ·:~ l . ' :-...... ~ 500 l,OOO 10,000 . I ' . .(t.l .. 3 ... H---H-1-r-1-'-- - -.• -I-l-l-·l-l-·1-l-........ 1-l·-l-l·-1-l--1-1--1-1-l-1--I--1-. t---+-I--..~-~HH~-++++I--~-~-~-~~~J-HH-rrJ~-H~rrrrJ-- -;--- . -~-:rl-----. !... .~ ; EXHIBIT E z. Water use and Quality Cccnnent 19 (p. E-2-~8! iab1e E..;.2-34) ' ~ ,·, : • < -' ' • ~ • ' ~ ~' • ' Provide a· table of pr:oposed minimum. flows which resolves the apparent con- tradiction between this table (Table E-2-34) and Exhibit B (Table B.54), especiallY fot the months of lowest post-project flows (Octob~r-May). ~esponse Table E-2-34 is the correct table. This table replaces Table B.54 in Exhibit B .• In· T.able E-2 ... 34 the Gold Creek flows for the October-Apri 1 period have been . ' increased to 5,000 cfs... Monthly flows in the Susitna River during this per- iod with Case C operation will normally average 8,000 to 11,000 cfs at the Gold Creek gaging station. A minimum f1ow of 5,000 cfs is the maximum fJow that could be guaranteed in the event of a reoccurence of a drOU!Jht as severe as that which occurred in Water Year 1969 • . :;: If this severe a drought were to occur, with Case C operation, approximately 4,000 cfs could be taken ·out of storage over the winter on a continuous oasis. This .coupled with a natural flow of 1,000 cfs, would provide a total flow of 5,000 cfs. 2-19-1 , ' ..• .. '! " .:~ ·-·(',' .; r\· - .TABLE E.2.34: MONTHLY FLOW.REQUIREMENTS AT GOLD CREEK ' ,:i\; ... -f' Case ( cfs ) MDNTH A Al A2 c C1 C2 D OCT 5000 5000 5000 5000 sooo 5000 5000 ,, __ ...... 5000 ·--·. NOV 5000 5000 5000 5000 5000 5000 -. DEC 5000 5000 5000 5000 5000 5000 5000 JAN 5000 5000 5000 5000 5000 5000 5000 FEB 5000 5000 5000 5000 5000 5000 5000 MAR 5000 5000 5000 5000 5000 5000 5000 APR 5000 5000 5000 5000 5000 5000 5000 MAY 4000 5000 5000 6000 6000 6000 6000 JUN 4000 500~-. 5000 6000 6000 6000 6000 JUL1 4000 5100 5320 6480 6530 6920 7260 AUG 6000 8000 10000 12000 14000 16000 19000 SEP 1 5000 -6500 7670 9300 10450 11620 13170 Notes: OerlvaTton of transitional flows. 1 DATE CASE ( cfs ) JOL sEP A Al A2 c ct c2 0 25 21 4000 5000 5000 6000 ~000 6000 6000 26 20 4000 5000 5000 6000 7000 7000 7500 19 19 4000 5000 5000 7000 8000 8500 9000 18 18 4000 5000 6000 8000 9000 10000 10500 17 17 4000 5000 . 7000 9000 10000 11500 12000 16 t6 4000 6000 8000 10000 11000 13000 14000 15 15 5000 7{)00' 9000 11000 12500 14500 ~6000 . ' EXHIBIT.! <":: 2. w atir use and Qua 1 i ty Co ' I ent 21 (p. E-2-67! para. 3)~ Provide estimates of the magnitude of increase in suspended sediments -in watana, Oevi 1 Canyon, and the Susi tna River associ a ted with vegetation re- moval in the impoundment zones. , R1~sponse . Quantitative estimates of ·the magnitude of increases in suspended sediments in the proposed reservoir sites associated with vegetation removal are difficult if not infeasible to produce at prese~t. The best estimates avai·lable indicate that a very small amount of increased suspended sediments would ·,esult from the removal of only the above ground biomass of traes lar- ger than 4 inches in diameter. No plans are envisioned for removal of tree root syster11s, brush or smaller vegetation which falls w·ithin the impoundment zone. The increased suspended sediments associated with tree r1~moval are expected to be negligible when compared to the annual suspended sediment discharge for the Susitna Piver at Go1d Creek (e.g., 8.5 x 1016 metric tons per . year}. Increased suspended sediment discharge due to tree removal is expected to be within the range of natr.&.ral variation for Susitna River suspended sediment discharges. Exact plans for the removal of trees from the impoundment zone have not been defined. Factors to be considered in estimating increases in suspended sediments must consider the harvesting methedology which likely will not be firmly delineated until approximately 1988. 2-21-1 ' . ·.' 2 .. '\ Water' Use and Qfi-0'1 i ty . EXHIBIT E ~.!'It 22 (p. E-2,..&7, para. 3; p. J-2-143t provide quantitati've estimates of-increases in suspend?rl sediment concentra- tions, in winter and in sunmer and the downstream extent of such increases during construction of Watana and Devi 1 Canyon JJams. Response A preliminary estimate has· been computed of the suspended sediments added to the river from gravel mining sites during construction of Watana and Devi 1 canyon ·oams. It is, estimated that 52,000 metric tonsl1 of suspendab le particles (i.e., those less than 10 microns mean diameter) will be liberated to the river during the May to September working season in each of the six years during which gravel mining is scheduled to occur. The ~stimate~ amount. is less than 1 percent of the 1952 suspended sediment discharge of the Susitna River at Gold Creek during May to September, and represents a 4 percent increase (page E-2-69, para. 2) in suspended sediment load over the ~;unrner 1982 loading. Sufficient data does not exist tc c~'lcu­ late meaningful .suspended sediment discharge statistics for summer, winter or annua1 peri c,ds. Details described in E-2-69, para. 2, 3, and 4 and E-2-70, para. 1, 2, and 3 explain how addlitions of suspended sediment will be minimized in winter and during the primary processing of stockpiled borrow material. Disposal of primary processing wash waters containing suspended particles is also discussed. 2-22-1 Yrhe fi<'..ire 52,000 metric tons. per annual work season was derived - from: ~0 million m3 x 0.01 {1% estimated loss _of mined material back to river from oragline Operations) = 5.0 X 105m3 lost to river. o 5.0 x 105m3 lost to river x 0~35 (Maximum Estimate of Potentially suspend able Sediment.s pet Uni-t) = 1 .. 75 x 105m3 Potenti a'lly Suspend- . · ab·le '"Sediments o 1.75 x 105m3 SS x 3900 lbs. per m3 = 6.9 x 108 lbs. Potentially Suspendable Sediments o 3.4 x IOi ton Potentially Suspendable Sediments or o 3.1 x· 105 metric tons Potentially Suspended Sediments during six years of grave1 mining. o Conservative Overestimate of approximately 52,000 metric tons of Potentially Suspenable Sediments per summer work season. 2-22-2 EXHIBIT E 2. Water Use and Quality Provide. envi.ronmental cr.iter~a, used for selection and elimination of borrow '·.:,. " site~. Response Generic criteria used for selection and elimination of borrow sites included: ;) l). Q~antity. and quality of,available borrow materials; 2) Processing required (washing of fines); 3) Hauling distance, stockpiling site availability, site preparation and rehabilitatipn requirements;. 4) Location with respect to riparian vegetation~ wet 1 ands or important wildlife habitat; .5) Abser-ce of archaeological sites. Specific criteria and gravel harvesting methods wi 11 follow resource agency guidelines as outlined in Supplemental Attachment No. 2-23: References U. S .. Fish and Wildlife Service. 1980. Gravel Removal Guid~lines Manual for Arctic and Subarctic Floodplains, FWS/OBS-80/09.169 pp. 2-23·· .. 1 1 ~1 :j EXHIBIT E -2~ Water Use and ·Quality Provide data -on the quantity and particle size distribution of materials lost through entrainment and erosion from borrow sites at other construction sites in Alaska (e.g., Lake Eklutna Hydro Project). Response Data are presently not. avai 1 able to speci fica lly answer this request. No studies relati.ng to th'i$ question are known to exist for Alaska. However~ a P'!blication related to this topic is contained in Supplemental Attachment Nill. 2-24 (SA2-24). U. S. Fish and Wildlife Service. 1980. FWS/OBS-80/08. Gravel Removal Studies in Arctic and j_ubarctic Floodplains in Alaska, 403 pp • • 2-24-1 .. EXHlSIT E 2 . . Prov-ide description pf methods fo~ preventing entrainment of backfi 11 mater- ; a ls. in river water and erosion of such materia 1 s into the river. Respons_! .Generalized de$cr~!).tions of methods for preventing entrainment and erosion of backfi_]J materials into the river are discussed on pp. E-2-67 through ._· E-2·7G of the L icens.e· Application. More specific guide:lines for mining gravel in subarctic floodplains ar~ con- tained· tn Supplemental Attachment No. 2-23 (SA2-23): U. s. Fish and Wild- lif~ Service. 1980·. FWS/OBS-80/09" Gravel Removal Guidelines Manual for _Arctic and .Subarctic Floodplains, 169 pp. ,, 2-25-1 , j .• ! '\JW EXHIBIT E 2~ Water Use and Quality COIIIII!Rt 26 (p. · E-2-75il parae 4) _pas? Provide coefficient values used in regression analysis and how they were detetmi n'ed .. Response A regional analysis of low .. flow conditions ·;n streams of the Cook Inlet Basin was performed by the U.S. Geological Survey in 1980 (Freethey and Scully, 1980, to provide a series of equations for use by Water Resources Planners to estimate flow characteristics for streams in the basin which do not have long term flow records. This information is contained in Supple- mental Attachment 2-26 which also describes the derivation of the equations mentioned on p o E-2-75. The equations are pres.~nted as footnotes to Table E.2.32 attached as pp. 2-26-3. Values of the coefficients were determined by regression of flow data against basin characteristics from 25 gaging stations in the Cook Inlet Basin. Values for the coefficients for (30) day ., minimum flows with recurr·.ence intervals of 2,10, and 20 years are: Recurrence Interval Coefficient ? ... yrs • lO yrs. 20 yrs • a • 132 .0839 .0656 b • 98 .98 .99 cl/ .20 .16 .15 ~ .31 .38 .43 l/This coefficient 11 d 11 should not be confused with the subscript "d 11 shown in t.'le term Md,rt in the USGS regression equation. The subscript "dn in the term Md,rt denotes number of days and is not a coefficient. The footnote No. 1 for Table E.2.32 therefore should be revised as follows: 2-26-1 (J .' ::)" YMi~i~~m;.f.lows_ esti~ated from the: following USGS reg~ession equation · , '" · ,-;, J~' (rfeetney and Scu 11y 1980). ... ,_; .where: M -minimum flow (cfs) D = . number .of days · rt = recurrence interval (yrs) A = drainage area (mi 2) LP = area of 1 akes and ponds C percent) J = mean minimum January air temper~ture ( °F) a, b; c, .d = coefficients 2-26-2 ... ..... ('ell' . . ' \ ;. . ., . ' . ,. Road A :5o-bey Minimum F~ow (efs>1 Peak Flows (ctsl2 . , . Mlle Ar~e OrefneQe Basin. Location CmJ ) R$currence lntervef <vrs) Recurrence Interval Cyrs) 2 10 20 2 10 25 50 . ------- •· bana 11 HI ohwg~ to~~ Watane C~ti\1) . ~ornen1 lily Creek 3 3.7 o.a 0.6 0.5 25 54 78 96 Seett I e ·. C!'"f:Jek .6 \1.1 2 .. 4 1.8 '· 5 74 147 205 248 .. Seattle Creek t.s 0.3 0.2 Tl'"fbuta.ry 8 0 .. 2 10 24 35 44 Se~.ttle Cree'k · 2.7 o.a 0.5 0.4 13 29 42 51 Tr Jbut~ry 9 ' Brushkene C:reek 12 22.0 5.5 . 3.i; 3.4 115 217 299 354 Brushk~na Creek Sltp:-:·:.· 14 21.0 4.9 3.5 3.1 121 228 315 374 Upper Deadmen 20 12.1 3.0 2.1 1.9 64 127 177 211 Creek Dae~dman Creak Trlbutery 28 54.5 13.2 9.3 8.2 276 488 661 767 Watana to Devt I . Can~on SegmenT Tsusene Creek 2.5 126.6 26 19 17 780 1309 1744 2000 .Devil Creek 22 31.0 6.7 4.8 4.2 199 369 506 597 Devil Canyon to I Gold Creek Ret I rose -segment' 3 Gold Creek 0.,2 2s.o 5.4 3.9 3.4 162 304 418 497 NOTES: 1 Mini.mum flows estimated from the following USGS regression equa-tion CFrgethey and Scully 1.98Q). where: M d rt A lP J a,b,e a minimum flow (cfs) a number of deys· • recurrence tntervel (yrs) a drainage eree (m!") • area of lakes ~nd ponds (percenT) a mean minimum Januery air temperature (•F> • coefficients 2 Peak flows estimated from the following USGS regression equet1on <Freethey ~md Scul Jy 1980>. b Q • aA (LP + 1) c pd ·t where: Q • annual peak dlscharge (cfs) t • recurrence Interval (yrs) A = drainage area (ml~) lP • areas of lakes emd .ponds (percent) P = mean annua I precl p ttatlon (l n) apb,c,d • coefficients 3 Rat I road mJ le location., ..... Z.. -U-3 [ [ [ [ r r [ [ [· [ 'It [ ', ~';:i· -~ _,, ~·-": EXHIBIT E 2. Water Use and Quality E•2-77 • para. 1). Provide details of regression ana.l.ysis "used for Deadman Creek including ::perivat)on of coeffici.ents and input data. Response The r.egression equation used to determine the 1:20-year, 30-day low flow for Deadman Creek is the same regression equation presented in Table E.2.32 attached as page 2727-2. Also note the correction in footnote No. 1 on the attached sheet. Values of the coefficients are: a = 0.0656 b = 0.99 c = 0.15 d = 0.43 The derivation of the coefficients is discussed in the Freethey and Scully (1980) Supplemental Attachment 2-26. The input data are: Drainage area A= 172 square miles. Area of lakes and ponds = 1.6 percent. Mean minimum January air temperature = -4°F. 2-27-1 .... " ... Ro~d A 3o-Day Minimum Flow Ccts>1 Peak Flows (cfs>2 Mtle Ar2a Cvrs> Recurr"!nee Interval <vrs) Oratnaae Basin ·Location Cmi ) Recurrence interval 2 tO 20 2 tO 25 50 -----~ oena at · ~1 gS"g~gro ,oj Watana a men LI ty Creek 3 3,.7 o.a 0.6 o.s 25 54 78 96 . 1.5 74 147 205 > 248 SQat1' l e Creek G 11.1 2.4 1.8 Seatti~ Creek 0.2 0.2 10 24 35 44 Jrfbutary 8 1.5 0.,3 . t ·, Sea+1".1 e CreeK o.a. 0.4 13 29 42 . 51 Tr::6ut~ry 9 2.7 0.5 . BrushkancCreek 12 22~0 5.5 3.8 3.4 115 217 299 354 BrushkanaCraek 3.1 121 228 315 374 Site 14 ~1.0 4.9 3.5 Up per Deadman. . 20. 12.,1 3.0 2.1 1.9 64 127 177 211 Creek ·. · 'Deadman Creek Tributary 28 54.5 13.2 9.3 8.2 276 488 661 767 . Watana to Dev ll Can~on Segment Ts usena Creek 2.5 126.6 26 19 17 780 1309 1744 2000 DovJ I Creek 22 31.0 6.7 4.8 4.2 199 :169 506 597 Dev U Canyon to Gold Creek Rallroac Seamen1" 3 Gold Creek 0.2 25.0 5.4 3.9 3.4 162 304 418 497 NOTES: 1 Minimum flows estimated from the following USGS regression equation CFreethey and Scully ... 1980). MJ. t a aAb CLP + l)c (J + lO)d b .,,r where: M • minimum flow Ccfs) ·J> ,C = ·number of days rt = recurrence tnterv2l Cyrs) A • ~ratnaga area Cml ) LP s aree of lakes and ponds (percent) J a tnean minimum January air temperature c•F> a,b,c;,d = coefficients ot~J(,>NA~... vs~.s ~t.&~eS!:IJO~ ~QUA1"/0JJ 2 Peak flows estimated from the following USGS regression equation (Freethey and Scully 1980). . where: Q = annual peak discharge (cfs) t • recurrence lnterv~l Cyrs> A = drainage area <ml ) LP = areas of lakes and ponds (percent> P = mean annual precipitation (fn) a,b,c,d • coefficients ' Rat I road mile location. ... (i: . r''l .~ c· . c r ·~ ~ [ r r: < ... '} t_Y - r r t r ( ·~. I ··A\ I 11\MP ' EXHIB.IT E i:. ~. ' 2. Wa:ter Use, and Quality . .-... coniaeni' 31 Cp. E-2-91, para. 2; p, E-2-170) . P.tovide quantitative estimates .of increases in suspended sediments resulting. from skin slid.es, biomodal flow type slides, and shallow rotational slide in ''" • "" H the. wata.na and Devi 1 Canyon impoundment zone. Document locations where each type. of slide is lik~y to occur in each of the impoundment zones. I. • • Response o• A 11 wor.st case•~ scenario involving slumping of all the known potential shallow slides· of ski.n types, bimodal flow types, shallow rotational types and assorted frozen, partially frozen, and non-frozen block slides (i .. e. the latter were assumed to be up to 20 meters deep) was calculated to poten- tially yield a maximum of 2.0 x 108m3 of unconsolidated materials to the river/resevoir. The assumption was made that particles of 10 microns or les$ mean diameter (i.e. those which constitute silt, clay and colloidal par·ticles taking longer than 30 minutes to settle one vertical foot) con- stitute 11 SUspendab le sediments. 11 A conservative estimate was used· that assumed 35 ·percent. (by dry weight) of the unconsolidated soil materials was 10 microns or less mean diameter. Thus, potentia 1 s 1 ides of both shallow and block types were estimated to potentially contribute approximately 1.3 x lOBmetric tons of suspendable sediments to the river/ reservoir. Most of the s 1i des should occur aftev-impoundment of the Watana and Devi 1 Caijyon reservoirs. Therefore, the two reservoirs could be expected to trap at least 75 percent (see reference in Exhibit E in the License Application, P. E-2-138, para.· 3, and E-2-170, para. 3 and 4) of any 2-31-1 .;;'-;-_; ·-. particles added' to them. App'raximat.ely 33 million metric tons of suspended ~;'\ ~ , particulates (at a maximum) may pass through the dams to the downstream environment as a result of potential slides of unconsolidated soil mate-r- .. -ials. The actual ·amount will likely be much less than the maximum amount. · Any downstreaill movement of suspended sediments due to soils erosion and sloJ)e irtstabillty will ·take place over an extended period of time (probably during· the T'irst five years· of reservoir operation), and should therefore constitute only' a portion of the annual suspended sediment discharge of the Susitna River at Gold Creek. Further details of the locations of unstable soi 1 slopes within the reser- voirs ~re presented in the attached maps (E-6-21 ~hrough E-6-45) ~· 2-31-2 (1 LOCATION MAP "'} . : li t• LEGE~ . ii. · ____, , ' . Oil~ fAt; MAX!ut.n,l .. -.· ---~£.1\ ~TING &;~V£~ . ··.--,..-f;i..f~t" · 'buct llf FE:~ · .. · .·· "llOO-C~. ~.~SL· :' -"' ... !j .. . .· \l 0 . . ! . . . 1 ' I FIGURE E.&.zg · ESERVOIR VlL CANYON·R. . DE . INDEX MAP .. ... -- c...-... ~ .............. . ,.... •••• oetr ~ ....... ... loCit ..... ., •· ... ··~f;. . .... \ ....... ~·-··· -: ... ~~.-.. --... ~ ....... \.' .. . .. ... ""'· .•. .. ••·a -. ........ ___ _ .. DEVIL CANYON SLOPE STABILITY Mf'P : 1 !} ' LEG~NQ •· .)·,:~~~1 i'. CJ ·~!I~ ~·-'·~·-~···"""·~<'•· TYP£S. OF St.()~f •. tN<::TAPIII<t;ry'"'' 1 1! IJ lll III 'JCtlt') ........... 0 llf~HIJiiG :t.t.OWS:. SLI~ 'ivNFffO~t;~J SliDING I i:fiiM~IICiST. , ttNCiT£$ AAEJ"< EICT~tlr: l'A!!il41h' S!¢HtNG wt:TllR:n 'l1'"t \lttni·ISI:!PE FCiT~Nfi4L $;.10~ • . BEACHING l.NO FI.O\Vt''pp$$181.!! 1'1 DEirnu•~-dll'!el NO~M~l. MAliiM\JM QPf,FIATIN\'li.'EII£1. . flivt;rt Ult[$ · · ·, I IlEFER '11) FtGIJRES E.&. I~. A.NO E 6 tO.:t'OR o£'i-Ati.EO D!SCRIPJION OF TYP£ Of SLoPE triSf~BI!,l,T"(r,IODEL$ ' 2 NO ClELtiCTlOif Cl' l'OIMAFIIO$T ARE>\ AIJQII£' El::tyA'{IQH· l!l!Q9F£Q' . . . . . ~ AREAS OF PQT~I. PtRM~ IIASEO' PRtNCiPJii.LY · ON AIR PHOTO INTERPIIETA'riON AN" WIU. REQUIRE FOTIIRE VERIFICATiOO '•>. • •. , " • • '· SCALE c. .. .; ............. , ...... . .... ... t~:-, • ...,. -.... ~ DEVIL CANYON SLOPE STABILITY MAP D ARE~ Of l"QTE:NT!AL PERMAFR0$1' scALtY c:=~;os~;;;;;;;;;;2iiiooa F£tt I ~ ...................... . ·~·· .... 40C:' ,.... ...... «' .. ~ . DEVIL CANYON SL<?PE STABILITY MAP ll!ittiP 0 ~~~tis oi-~IIRRtNr' ~·. ~s.-.u-r;· · TYPES OF SL(JP£ INS'T4Bt!J;th . 0 1 8EAeHI('IG · ,:; lt FLowS :m SLIDING IUNFRO:EH) · lll SLIDING J f'£~~F'i!OS'U . . . . Ill DENOTES JliiEA fl<tEHr liPiD TY~ (lf' JN$T~ .J ltlrJ PRIMAR'I' ll~ActliOO ~~~en.IN Vlltli $1)~ I'OTMIAL $1.,1~ -'. .. . ·, J •II BtAt;!fiNG AWD. 'f'WW$ ~$18!..E; .IN Ot:FiNto Mt. --HORMAi. MAliiMUM OP£RATI~ U~Ytl. ·· · .· ·: RIV£11 NILES \\ ' . i' I. REFER TO FIGURES £6.19 A,.O E.fl:2o .FOR OETAIL£0 DESCRIPTION OF TYP£ Of .SLOP£ 1N~A~lY MOD£LS 2 NO llEUNEATJON 0'' PERNAFIIOST AREA I<BOV£ EU.VATI!lff [,-' 2300 FEET . . .• :'1 AREAS 01' POTENnAL PERMAFROST IU.SED· PRINCIPAt:l;Y . ON AIR PHOTC ·INT£APil£TATIOf4. ANO WI!-L REOUI~ fi.ITUR£ 'IERII",CATION ""n, o •ooo 2000 rttr SCALE :· •. . DEVIl. CANYON SLOPE · STA("j,'LITY MAP I' }-f *''""'- I_, t_; ··~-.::~ 1. l'IEF.:R 10. I'IGURES l:.f$.19, AND t.&;'ZO f'OR 'Of.TAiliD DESCRII>TION OI''JYP£ ~ S~ INST~k!N liPD£t,;s. -1 ' ., ·: :· ' .•• "":--~·: ... ··) . ' -,_- 2 NO llEUNEATIOIHI' PERr.lr.(ROST AREA Aaf,Y£ £L~ATIOtf 2!:10 FEET . . . ... . . ' . ,., )c~'·.~ . . 3 AREAS OF POTDro~l. PEIIWII"Rosr BA::l£0 PniNi:IJ'ALt.Y ON AIR PliOTO INTERPRETATION AA!Il WIU. ~M: · · fUTURE V£RIFICA1'1DN c. .. ~ ............ ,.,. •••. ! -~- -+-• &t•• •• _, •OGC 'Ceo._. ..... _ f(JIIf .... n .:tt I;·~~ I' "; .. ' DEVIL CANYON SLOPE ST/'·BILITY ... ~~p . . j .~~ ' ~ \> . .--· ' . '~: • '.' ._· '-I .'' ·,)'·i>;'!~· c:J . Al'ltA$ or tui!J~Nl' ~· ~i\rU;~«T•r>:: . •. . . -1-•. o·. : -,.' _:, ··< : · ... \·:-· :"· TYPES OF St..OPE .II\I~TA~li.:J~":'(,. ·. .. . .; . · J: !,!£ACHING ll; fL(W!$ <• • ;;, . llr SUOING;JUHf'IIOZ!:Jf) . :r ll!: Sl.IOING.(f'!Rto!I~SJ') Ill = t!£NOT£$ ,li\EA .EIC'ftNT ANb T•\'l't1;. Of' IHsTUI&.riY J.IJ:IrJ · •· MiMARY tat-cHJ.~'»iS'''AI!U'f'r WIT~ 'Sf)~t POJ£NT~L. SI.IQ~ . · · · .. r•n BEA~ir~G 4NO i'I.O'I4'S fii)SSIJSLf: J;',i;.Pfflf!~Ef) ~~A ' -..:__ NO!lMAi. MAXIMUM ~flATU«~ ttvtl~ RIVER .. ~llES . (;-·. NOTES ,...._,...- I~ REFER ,.0 FIGURES E.il.19 AND' E.S.Z(l FOR :DriAli.t:D . DESCRIPTION Ol' TYPE; OF SLOPe INSTAB~IlY Mcfuf:LS. 2. ~ lliLINEA1.j()N W i'tfildAfRO$T ARa AilQY.E £.:t:)IAT~ · . 2300· F£ET L • •• ·' •• i.' 3 AF!EAS OF I'OTEt{tlAI. P£RIAAI"P.Q::ll11ASW PRINCIPALLY OH AIR PHOTO INTERFR£.TATIQN ANl' WILL ~It£ · ..., FUTURE VERIFICA.TIOH . o~~=·osoo;;· ;;;;;;· . ;;2;;;000 flET scALE 1: ..,.. tf ..... ,.. ..... " '!."' -1-·-· .... u !•tt• -.:.h :· .. ~:~.~~ --... ~--:.-- • ; --, J •. a : ·-__ _...__,; ""' -..... ... -.. . ... .. ... -·-·-. .· -----.. .. ·. -·· ... t .... ..:~._-................. ..., . -· .. , -lJJii/iatl.:.- -- .... ·.; .... ..~' ..... ,, . ..... ~ . .. .· . .. ............. ·" · .. . · , .. i' • . •.-·q l \ . _! __ _ I .. ') ,. D AllEl Of-'·Pot~TJAi. l>~fiMAFROi;l' 1. RI:FER TO FIGURES £.6,1!J AND E.&.~O I'OR·DETAltEO·· DESCRIPTION Of 1YPE C)F SLOPE JNSTA;-;II.ITY _t.IODELS 2 NO IJ€LrnEAfiON• ~ fE.RMAttiO$r A~Ell A!fP\'t EL£\/Atiotf 2300 f£t.'T . - 3 ~~~: ~!o~'W~~~~~~~o~~:~~~LY · ., f!JTURE \'~fiiF.ICAt!Oit ,-, . . ',; SCALE 'II -~--:. ....... ., .............. , "" ••• tOOO , ................ IC(. ,..,, • .-c::c• I DEVIL CANYON SlOPE STABILITY MAP .• NOTES I. REFER .10 FaGI.Ii!ES £U$ AND £6;2(1 .FOit ~TAft.(j)· . DESC$11P'ilON OF TV('( OF ;J'.OPt INSTA!ill,I'N.~oOEt$ . ~ HO ~Tjl)H ~· PERMAFROst JIR~ AllOY( ELEVATidt¥ · 2300 .f'£ET . '' · . ' •· . · 3 AREAS 01" POTEtniAL PEAMA~ ~D ffill\IC:INI..L'/ CW AIR PHOTO INTERPRETATION Af~D WIU. fll'<.li.IIR£. f'UTUIIE Vt:.~FICATJON •• . ' • · . "' · '·'.\ . ·~ ' 1', 5 ___Ql'l·j-i ~ J "-:: 1~----~--------------~----------------------~~------------~----~~,~~ .. ~~--~--------~~~~~~--~~~ ~ ,~ --""!- I -~-· . ! DEVIL CANYON SLOPE STABILITY MAP .. 0 1000 SCALE C::::::, iZ tooo FEtr ., . ., 0 <;.l. fiGU~E E.G. 45 /. ~IGURE E.6,!f: WATANA RESERVOIR INDEX MAP ·------:--'-----~---- .. •l.r,.~0 / AREA ot POTENTIAl PER . . ' .• hiAf~lt[ ~ ...... .._. ......... J~ft•lt •• .ooc , ............. « SCAt.£ O WATANA SLOPE STABILITY MAP .· (.) •.1. .. -m 6, ............. .. ;. .. .. .:. .. ~ .................. . ..... •••• :,c( :. ........... « WA1ANA ..... ,. , .... ~ i'*'' .ttj It .. ~" .. ·~ .. : SLOPE STABILITY MAP ... ;) ' 1 ll'. lit ~ lXI .tC~J I•lt ·~ {\ .........,, ........ c D AREA WPOTENTIAL P~MAI'I'I<lrt NOTES L !!Ef'ER r0 FIGUAES U;19 ~lfD £.1,20 FOW DET.\il;tb , -- .. DESCRIPTION Of TYP.t ot' $1.0H: INSTA811.1TY JiiOOElt'( · ' I -. .• .' ' -'D .... '· '· 2. NQ DELINEATION ()f'· PtRM.MROST AREA ABOvt· . . . ~3~ ,Ett;·" ' . 3. .AREAS 01'" POTENTJAl P£11MAfi!O$T BAst;p PIIINCIPAU,Y ON. AIR. [liOTO INTE!IPRaTATfotUND cWII.L fiEOO\I!E . fUTOR VERIFICATION . . . . · ',\ r;; ()'; '\l' ·~ • t.l '·t'Q :.. .... "'., ........ ,,. .... . ...... "'~ ~-~ ..... 11! II'Y, WATANA SLOPE STABILITY ----··--: I. . , ~ . }; '. .. ... i :u • 'llt Ill :mx»· .IEAC!I~ f!:QWS $!.11i1Na (OIW'ii!IU:If) SuC!!Ni!:'ti'EIIIo!AFIIOST'j . . . . . , , DtHoTQ-iARU £XJ£t~T ~ TYH'.:o_f' tN$'1'Af{{:t,tr :f'AIMAII'I' ai.\ci.Hil ~!f$tAIILITY,. WITH·~ . ·~- f101tNTI,\I.; SUOING ' .. ' . . ' 1'•lt, IIE~ANO'fi.OWS JoOS~Ikt.~.bEflt,jf;~ ...:_ • ..._ NOI!MAI,: MAXIMUiol Ofl£tllllHC l.tl!l!t. , -•-·....;. ~II'.AI. loiiNIMUM Qt>EIIATIHG J;~Vj;L, ~IVER Mll.ES tm:§ 1. JlEFER TO flGOli£S .U.I9 AND at&.20 'Folil bETAIL£0 · llESCIIIPTI()N Cll' TYPt ~ . SLOJ:'E INSTABIJ.ITY ~O!?Q.S 2. NO OEt.INEATION OF I'ERJ,1AFRO$T AflEA lB~' Elt'l-'TIO!f 2300 FEET. . • '• . 3. AREAS OF POTElmAL PERMAFROST BASEo .PIUNCI~l.l.Y 'ON AIR PHOTO .INTi!fiPRETATiON AND Wlti. .R£QUiflf; .. FUTURE VERIFIC4TION . ·---. :..,' ,< i .----- ~'. .. . ·:\~/.· ~ I ' ~!Jilt, ;.r ,;·· r h ,. ' ··--.:~ . .. . .. . . '• -..... -. .: .... ~ -~~· ·~ r-.. ' ' .!' . ·' . . '.i '\)....::·. .. ~ ~, ·-· ,, -··· .. ..... •. -- rr-m •, ,,-- ! .!4't .................. _. ) ... 111 :t• ····-... • ... " . · .. -... r~: .~ ... _ -<I.: "'... -·~: . . ~· ~ :-'•. 'c ,....... ..: '!..~ •• ~ 4 ... ::.~;-~:·?~:·~,··.; • . ... ..._.."' -. .. -., .... .., .. ~ .~·---- I . .. ... · · .. .... ,._ .. '-.....__ -~.... .... .. . --- "--~- •. {) ;- 1 . ' ~· ······ .. ·.· . . . ' : <:::.:::: c ,, ~' ' (3 Alit' As·« tUIIR(flf $1.QP(. iii$'1'AIIIUlv~ : . • TYPES oF SI.OPE . tH$TAf:ltUTY• % •tAi:IIIHC X f'i.OW) l!l: SLIQI~. C UHrltOtt") . ·::c lt $LII)ING (~ .. f'ftt)St» . . I'll .OEHOT£$ /<!ItA di.Etfr #10' ;tYi'( OJ' '"S'IAI,Ii.ITY lJlltl ·. PfiiMARY BEt.CtliN(I tiiSTABii.IT'f :Wl'l'tl ~' . FOTEIO'l~ ~ .. · · '· ' · . , OCA~~ AND f'I;OWS ~L£ Iff b(FfHED liRE.· HOAM.AL MAXIMUM: OPi'MtiHG Lt~L .. ·-~-.NOli MAl.,. MINIMUM OP.EAATI!o!G LEVEL !'. htY£11 ~ES . JI!OTES L REFER 1'0 FtGUilE$ £.1.19 ,lNQ E.I:20'f'Ofl o£'i'AIL£0 DESCIIIPTIOO OF T\'1'£ OF SLOI'£. INSTAilt!.ITr YOOii:LS Z. NO O£LtNEATION 'OF PERMAFI10$T .Afi£A ABO~ £1.EvAJ10i.l · 2300 .FEE'( 3. AREAS OF POTENTIAL PEIIMAFliOST lAsED PRINCtl"'lf.LY ON AIR PHOTO 'INTERPRE.TI\TIOI~ AHD WU. IIEQUlft£ · ·. · FUTURE VERifiCATION . . . - .. 0 . ,~ .. .. :'1; •'"""' . , .•. ~ --"!- .... .,, ....... .-. , ..... , ....... ,., tOtO" c.-...-...... roe .. .. ' . . .. . .. .. ., . I-IIJEO ... WATANA SLOPE STABILITY MAP .. .. t,) ! ..... ., [L::J · • .,ur ~ ~em . TYPE~•Of SLQPE:.~,.·~!~JSIL,IT'f'~. .% tbl:"ING ;. . ., . •.o·•··•··""..-. ...,- X f"LOW,$, . . • ~ ., WOl!IG (Uf411!0%E") l!t $UOII«> tnllt.IA~orn .. · . · 1%/ •·· Dtf!O'r£$ ~· ~'t£•n' 4NI) -t.~f'~ ~ %'flll;) P~~W&!IV 'I(~H!It~ !HSUIILtJY f'QlEHTJA. ·~·-. . . :r .. :u: . .8£Aelll\'fll AN:!.~$ l'O$$iito(· ··~ LE.~ll~Q'"~~~lJ::: --;o:.;;J HOIIMAI. MAXlMIJM OPt!'lli'I'IH<l-litV£l. •. . . . ... _.-NORMAL MINIMUM Olt~tAT~ a.J;vn. . : i. . !'11\'I;R MILES, . . .. , NOTE$ I. REFER TO fiGURES L$.19 AND .E.6;2Q l'Qit I'£1~L£0 QESCRIP110N .OF TI'PE CIF $LOPE !NSTAeilllY ~ r_ NO l'laiNEATIOtf OF PERMAFROST ~liE.\ ~~~V£''.(i.£\.:mcti .. 23o0 faT . .. . .. . '• ~ AREAS OF I'OtEHTIAL PERMAFROST IIASEQ. f'RitiCl!'llLt.V ON AIR ~0 INTERPRET'An(lfl AI-ID WILt. ·REO!Jift£ fUTURE 1/ERIFtCAnON . . . l I . { • _j_ .... ,, ...... .,..... ........ . ..... ... . ,.. .................. .. :. WATANA SLOPE STABILil.Y tJ ~ ~ .. :11(~ ~ :.~ ~£~t.:~:ri:t~rcs:r•• X :~:· lit 'X lXI X lilt) at;lC:HJHe FLOWS, SI,.!O!Nt; fuHf'RQtt:IU S'-IDING l P'EM!AFRO$l'.l , . . .. O£t;!)T£S ~ ElCTDff IUIO TY*'f J)j< ·l]II~TAJI~-'·· .Pfllt.fARY' lEACHING ~l'~IIIUTY WITH $OM( . ' .; . POTEIITIAI. ·.$1.101HCl . " X•X llf:ACIJ$ AND ft.(lW$ POS~·£'1 W!HtO AReA ..._...._ NORMAL MAl<IMUM OP(IJAT~ U:~ ··--NOIIMAL J,!lt!tMUM !lP£Rill'lffG U:~ . IUI{Elt MILEs NOTES L .REFER TO .I'IGUR£S E.CI.I9 ANP £.i.to i'Oil'.ociAILEO liESCRlPTION Of! TYPE OF !iL'OP! t~TAIIIL.IT't .1olo0£t.S. 2. HO DEI.,INEA'f~ OF PER.'-'~ A1!£l ABo~ .l:L(\IA'I'!OH ~301) F££f 3. AREAS OF I>OTEttT'Jii. f'£RMAFII.O$T I,U.S£0. I'RihCIPA!..U ON AIR PHOTO .(llfEI!PREYATION AND WILL nEOIJIAE FUTURE VEIIiflCA'fiON. . · ~ ;. . . .... ., .................. . "' ....... !(:. c.-..... -CJC .. -·--.,. I ·-,- -I-I .. • ., . ~ .... .... , .... ·1-~1- _l_ SLOPE .. X lt' llt Jlt'. 1%( X (.)ltJ !lf;~(;IU~ fLOW$ ;, SLibl~· tbNI'IIOZEtJ) c: SUOI .. G ti'E:.!tf.lllf!IO$TJ · . . bEHO:fES 111<£4 EXT~ .,.{1 "':VPJ; ~ JHSTA!,IILITY~ PlllMAR't (IEAI:IflHG. lnSTAt!iii.1'1'Y Wll!t SOM£. I'OTEN'I'IA\,. ~~ .... ,. . ,. . .. ·. . X·X bEIIC~.A~Il,OW$ PoS$181.£ IN 01;:1'!~0 ~ . ---HQIIMAL' MA'IIIM~ Of>tRAliHG Ll:VEL . .,.. ___ NOftMAL MINIMUM Ol't;RATJN(l Lt't'£1.. lC IIIV~R. MILt$. ···:<> . . \i NOTES ___,........ I. RE:fER TO FIMES E.G.J9. AND £;.1$;20 !'Oft ~~~TAI,Ltb; •.. OESCRIPTIGN OF Tl'P:£ Of SI,OP£ INSTABILITY JoCQQELS"' ?' NO D~LINEATIOtt OF ,p£flMAF'ROST" AR£A, 'A~Ovt Et.tv4-htff .·0 ~~o FEET . . .. ,; !\.. AREAS Of POTEN'r!AL PERMAf'IIOST JJA$£1) PRINCIF'AU.Y· ~·1 AIR.PIIOTO INTERPIIETATI.ON AND WILt. llEOOIRE FUTURE YERII'ICATION SCALE ! ·~ ~:. _, ..._,.,..,.. t-, I ... ., •••• ,.;. ...... t ...... 0: WATANA SLOPE STABILITY MAP ....... I .. . .... I(N) ... .. (,1·, ~/Q (J f .:d AR£AS ·OF MMI(f $1.~; Ji~~~~~IJ~f TYPES. Qf' SLOPE l"iSTABIUTY ~ % .X ll.t llr lXI XClltf NOTE!i L IlEFER t:O I'IGUilf;S (:G;tt AND, t.&;zo f(.•~ l>ETAil.En DESCRIFnON ~F TYPJ! .Of' Sl-1)1>.£. l~.lA81L:I'I'J' ~Oilg~ 2. . NO DELINEATION QF PERMAFROsT AREA. ABO~'£' t:U:VAn!:IN . Z300 F£0: . 3. A~EAS OF POTEiil'IA!:.. PERr.W'f!llST 1!.\sEI) PIIINCI~I,;l.Y ON AIR PHOTO INTERPRE.TAT!ON AND WILL R£(lUIII£ . FUTURE VERIFICAlllJN 0 SCAI.t iooo . 2000 fE£1' ,. ~·:· ., . ··~ I) I ... fl ............. , ... _ ••• ..... •'"•tOOCt ~ ....,. _ _.__ •. ··-·- .. 1 • i . -·-. l _ . ....., <: x: • .let!M: ;; ~ flOWS: · · .· lit '' SUO.~ tUfWI!O:~L ·. lr SUD!NG. t~fft0$1') l'f.l . 'D£:fiO'IU .... ~ ~ .. l: 4lli:J PfiiUlMt lit~ .. ~Ailt.lT'I': iliiT>iL!U....r. fii)T[NT.IAI;. ~ . . . ' X•lt I!I[ACMNG ~~~~ 1'0$~l:.t If( . . --noftMAI. 'M.~Illlu..l .OPERATING u:va. · ·-·--NOftlilAL JollNit.IIJU Of'£RAT$·.1.EVEl. IIIV£1'1. Mt.Eil . . ('r, ~ ' 1\.¥( ' L Atff:A 10 F~S. £.oUt ANP E.G',1fi0. fpft ~AI Uri DESCRIPl'IO!i OF'. TYPE OF SlOPE: ti4STI\IIII.ITY N®ELS 2. two DELINEATION Of' PERMAF!l()S'f Afi~A · AllO'Jt: .i£l.£V411QH. 2300 Fttr ,, 3. AREA$ OF PoTEHnAI..PERMAFROST·eASEri l'fiiNCimL'r ON AIR PHOTO lllfEfll'RETA110N AND wU: f!EOIME FUTURE YEfiiFI~TtON • . :o 0 1000. · tOOO FEtT SCALE --;- SLOPE WATANA STABILITY MAP D . NT1AL P£1!MAFIIOSf AREA OF POTE , , . SCAU: , '·*"'*· .......................... , ~ l•, tiOCt c..--........ - --,- ! WATANA .. ·• SlOPE STABILrfY MAP -' " ~-· .... • . -,' . l ~ Cl ~('~)~II£• .$!:• ·"'"··'""""'""' l'YP($ oF $f.l)~ JNSTABlLtfY't• •· ·% • lit . lir . IU .X (lltl 8E~.Cil!NG . Q;;/ . FI.GW$ :j ··'J • SUOJ;io r VNFRot«ff, . . $LIDING tf't:ftMA~OSfJ .. _ . O(NOTES ~ EXWIJ ·AHO "n'r.t fttrMAll\' II£•CHIH$ ltis~eil.lJY cW!itt f'OTE'UIIot. st.IDIHQ . . . ,. . . l•X ~ACH4'.'t: ~tiD Mws -~$*!;£ IN. tiEF-1) . .-... .... ..,. WI'!MAI.. MAXNIII4 \'JPEI'(AtiHG f.tYEL, . -·-•-HORMAt MINIWM OPi:RAT~ L~V~ ' lC RIVEfl. MII.Etf L REFER 'TO FIGtlfiES £.IUS A•lo ~,6;20 tOR tlE'I~iLEO · DE$CRIPilON Of TYPE Of SLOP£. iNSTABI'..;IlV ;t.t~ 2. NO D~NEATIOif OF l'E!!,_,~ROST AilE~ ABOVE E1,.1N.t.1r!Ofl1 2~00FW . '·' :1 AREASl'OF POl'EtmAI. PERM.VIiQSf WED l'R ... CIPAI.I.Y. ON A!R PHOTO INlt:i!PRt:TATION 4NO W!ti. REOU!~E:" .·i . FUTURE; VER!FlCAi'ION . . ·. ,· .o~~·ooos.;;;-.iL~oo.o FEEt SCAL£ l? 1 ... _ . ~-. ' . ""\.•) I(N) ,, !"'·· '"~:-~~~ ................. i ~-...... f611 ,.(; ' e' T .. -. '0 iJ . -. ' ' -~ ··~- .)· '-< -~ .. ,) + + + _j_ I ,, l -,- 1 .. \ ' I CI2J ... I (}'[} ...., .. I WATANA SLOPE STABILITY MAP -' KOTES --. · I. llEF£~ TO FIGUR~· E,G.l!l 4rio ~1$.20 f"Oif ;~TAII.tb , .. DEStllii'TION Of' . TYP~ q'-SI,.QP£ IN$T~8l!.rn' . 'liOoEt;s- 2. NO 0Ei.IPIEAYJ9N 01', ~RM~'!'' AREA .11.80~ -., ...... A • ...,, • . 2300 FEET - a AREAS Ol' POTEmtAL nAM.f.t!.ilosraAStD mwct&t.v ON AIR PHOTo llt!ERPR£TA'I'IoH At{? W.IU. ft£0011'1£ fUTURE _VE"IFII;ATICH . , ----- SCALE· l \)-.~ ') --. .c... ............. t•rt·•~ ....... It~ ~ .......... Jl-II • ,. : M . SLOPE I (}[) __ .... JI . ' . ~ C] l'!tlis o,:,c~llttU· . TYPES OF SLOP£ JNSTA!JilJ'O'~ \ .>~. %. .. ••til$ . . ' ,• ' . . ' -~· ·~ :t:.!; lp'!f'j&Sz~NI .. l'l_ SLI!JiHG (r~~FROstJ, · _ v: ... 1'1.1 0£MOT£SpiiE:Io;;:!l<TOtt ....,,fm' I Clltt Pll. IMAR\'f~,tt(Ae.,_ ~HG_. IH$lAIII!.ilY . . ·.·. · f0l£Nl1l . $1.101i~· · . . ,. . · .. x.,# llf:AC~ ,.,.nows toosslltt,l:'w od.iNttitJ!I --t!OIIt.IAI., l..,~X~ OI'E.A.\T.~ J.£~ -·-·-JIOfll.tAl MIHIMIJM ~'(JNIJ.tl,tvEi.. X !liVER Mil.£$ . -·-:. . D --' • ,.-: ,, .. , •. • <-, {~~---··' . • AR~A oF POTPrtiAL PEl'IM~Fil(JfiT NOTES'.. ..:.:-" <~-' t REFEII 70't!GUR£$ ,E.&.u( ~D t~G.2~ F'OR•bi;;t~!Lk~·; lltsclllPTi~ 01:-· 'r,I'PE OF :SI.O!'::. UtsYABILITY l!~ 2. NO DELINEATION .o:" l'tR!oi~l _ ARE'A {/.HOVE 2ll00 I'E£t' . . . . ' .,· . ' .· . o lOOO . 2000 'FEET . fiGURE ~· • EXHIBIT E 2.. Water Use and Quality C0011ent 32 (p. E-2-92, para •. l) ·Pr.ovide anaylsis of the effects of filling and operation of Watana on sus- pended sediment concentrations and suspended particle sizes passing down- stream through Wat.ana Reservoir. Response. Analysis of the effects of filling and operations of Watana on suspended sediments {concentrations and particle sizes) passing downstream are provid- ed in the attached reports • 2-32-1 \\ . - SUSITNK.RESERVOIR SEDTMENTATION AND ~ATER CLARITY STUDY Prepared for: Acres American, Inc. Suite 305 1577 11 C" Street Anchorage, Alaska Prepared by: Perat~ovich, Nottingham & Drage, Ina. 1506 West 36th Avenue, Suite 101 Anchorage, Alaska 99503 and · Ian P .G. Hutchison, Ph~D. Steffen Robertson & Kirsten 1510 w. Mississippi Avenue, Suite 210 Lakewood, Colorado 80226 ~ovember, 1982 . '\ .. • ·- -, • . . .. .· • . t . i· ~ . . . \ . . ' ~ .:. .. .. · ·.• .. • • .. . if • . ..... -...:-..-· _ ....... -.... -~ ...... · .. •••• '!; ... ' .. SUSITNA RESERVOIR SEDIMENTATION .& WATER CLARITY STUDY TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES 1. PURPOSE AND SCOPE 1 .1 BACKGROUND 2. 1.2 STUDY OF OBJECTIVES 1.3 SCOPE OF WORK 1.4 STUDY APPROACH SUMMARY 2.1 PAST STUDIES .. 2 •. 2 SUMMARY OF CONCLUSIONS 2.3 RECOMMENDATIONS 3.. REVIEW OF AVAILABLE LITERATURE 4. SEDIMENTATION PROCESSES 4.1 GENERAL 4.2 SEDIMENT SETTLING CHARACTERISTICS 4.2.1 SETTLING VELOCITIES FOR S!.')HERICAL L 1T!GLES 4.2 .. 2 EFFEcr OF PARTICLE SliAPE ON SETTLING VELOCITY 4.2.3 EFFECT OF SEDI1£NT CONCENTRATION ON SETTLEMENT VELOCITY 4.2.4 EFFE~ OF FLOCCULATION ON SETTLING RATES 4.3 QUISCENT SETTLING IN THE RESERVOIR BASIN 4 ~4 RESERlrOIR l•D:XING PROCESSES 4.4. 1 THE ANNUAL CYCLE lJ.4.2 PARTICLE MIXING IN THE EPILIMNION 4.4.3 VERTICLE MIXING IN THE HYPOLIMNION • 4.4.4 OUTFLOW AND INFLOW DYNAMICS • . 4. 5 REINTRA!NMENT OF SEDIMENT' 4.6 TURBIDITY VERSUS SEDIMENT CONCENTRATION . - as -· . SliP II • PAGE iv .v 1 . 1 1 1 2 5 5 5 1 8 10 10 11 11 12 .,3 14 15 18 18 20 20 22 23 23 ,; ·~ u • TABLE OF C()NTENTS ( cor1tinued) s. WATANA RESERVOIR SYSTEM . 5 .. 1· CLIMATE 5.2 HYDROLOGY . 5.3 SEDIMENT REGIME ... 5.4 RESERVOIR 6. ANALYSIS OF SEDIME:NT BEHAVIOR 6.1 QUIESCENT SETTL!LNG 6 .2 INDUCED MIXING 6.2.1 WIND INDUCED MIXING 6.2.2 WIND AND THERHAL MIXING 6o3 SEDIMENT REINTRAINMENT 1. PROJECTED RESERVOIR TURBIDITY 7.1 ?ROJECTEil SEDIMENT CONCENTRATION 7. 2 .PROJECTED TURBIDITY LEVELS . . . . t" CES REFER";N . APPENDIX A. BIBLIOGRAPHY OF ADDITIONAL INFORMATION SOURCES - It ' -iii-. PAGE -·- 25 25 25 25 .26 27 27 29 29 30 31 34 34 34 35 Following Text (}- Table No. 4.1 5.1 6.1 6.2 6.3 6 .. 4 6.6 . - LIST OF TABLES ~allowing P?ge Comparison of Basin Characteristics .. Partiole Settling Rates Watana Reservoir Characteristics Results of "DEPOSITS" Model Runs Results of Quiescent Settling Analy~s for the Watana Reservoir Duration of Wave Mixing to 25-Foot Depths Duration of' Wave Mixing to 50-Foot Depths Water Velocities Induced by'Convective Penetration and Wind Shear for June-August Hypolimnion Mixing Scale, Jun~-A~gust • 9 11 26 27 28 30 30 32 32 • 7 \~ ~ . ~ -iv-"2 --1 '2,..• ·~ ~ • ~ 1" • ~J : .. ( '>. ' ~· : .. • • , ". -41 . . ~ ,.... .-.... • ' . . . .. • LIST OF FIGURES Fi,gure No. 1.1 Plan View Showing Watana Reservoir and Sampling Stations Used .. 4:1 Depth ·or Particle Settling over Time · 4.2 Comparison of Theoretical Values o,f K for Ellipsoids and Observed Values for Ellipsoids and Several Other Shapes 4.3 Effect of Concentration on Fall Velocity or Uniform Quartz Spheres Sediment-Removal Function fo~ Settling Basins "' 4.5 Revised Turbidity Versus Suspended Sediment Concentration 5."1 Susitna River at Gold Creek -Sediment Concentrations (Summer Values Only) 5.2 Susitna River at Gold Creek -Average Month:y Particle Size Distributi.on 6.1 6.2 Particle Size Distributions Predicted by DEPOSITS Model Predicted Reservoir Thermal Profile Relationship Between Mixing Depth an Percentage of Reservoir Area Affected by Mixing -. . ... f 'l' ' . . . i~ . .. . . . ... 1 • PURPOSE . AND SCOPE 1.1 Background This report summarizes the results of the Phase 2 investigations· aimed at determini.pg turbidity levels in the proposed Watana reservoir. The Phase 1 studies· were completed by R&M Consultants, Inc., (Janua~y 1982). These earlier studies devel:oped trap efficiencies for. tl"~e Watana .and Devil Canyon reservoirs. Total sediment accummulation for each of the " reservoirs was also estimated.. An indication of what downstream river turbidity levels were likely to be was also provided. These studies included a brief description of the delta formation in the reservoir, the likely behavior of glacial flour within the reservoir, and a general .. . discussion on the temperature regime. The Phase 2 studies which are described here. were initiated in order to analyze in more detail additional data obtained on other lake systems thr-oughout the world and to attempt to predict, on a more quantitative basis, likely turbidity levels in the Watana reservoir. A plan view of the proposed Watana reservoir and the sediment and climatic data stations on the Susitna River used in Ph~se 2 studies are shown on Figure 1.1 • 1.2 Study Objectives The objective of the study is to estimate the range of sediment concentrations and turbidity levels in the Watana reservoir for the various months of the year. It should be stressed that the objective is not to provide a detailed quantitative estimate, but rather to perform an . exploratory type investigation to determine order of magnitude estimates. 1 • 3 §cope of Work • · The scope of work was outlined in a letter t~ Acres American, Inc. 1 ~), ·J (Acres) dated April 19, 1982. A brief summary. of the proposed program ...,. follows. . \ -1- SAMPLING STATIONS GOLD CREEK· . .. WATANA. ...... +-PARAMETER STREAMFLOW . SEDIMENT DISCHARGE WATER TEMPERATUt1E· . STREAMFLOW CLIMATE ·. WATER TEMPERATURE STREAMFLOW SEDIMENT DISCHARGE . . Peratrovlch 4. Nottingham. Inc. f:nglnccrlnQ Consultants \ ' FIGURE ~U ••• (\ &· . • " • • . . I .,. • '• ' o " \ •~\ '' ' '" ~ ~ ' '• ~~ • t' • ;~ • I ' • y l-.' ~ '• ' .' "' ' ~tl ' .. (a) Obtain and review all additional data including: o climatic data o reservoir data o S3diment data o literature survey (b) .. Verify the sediment concentration · versus turbidity relationship. " (c) Conduqt quiescent settling analyses for the reservoir. (d) ·~ ) .(.e , Quantify tha wind and thermal mixing characteristics of the reservQire Estimate ranges of sediment and turbidity values for the · reservoir for each month of the year. Limited input to these studies was derived from•the ·thermal lake modeling conducted by Acres American, Inc. (1982), on the Watana reservoir, and baseline tut·bidity and sediment concentration data from Eklutna Lakt- qollected by R&M (1982). 1.4 Study Approach w Under quiescent conditions, sedim,ent with particle size greater than about. 2 um that flows into the Watana 'reser,roir would practically all settle out. Howev:er, the reservoir water is ·continually subjected to internal mixing induced by meterolagic conditions. such as wind and temperature, as well as turbulence induced by inflowing and outflowing water. Because of this mixing, many of the smaller particles would not settle, but would remain in suspension and contribute to increased t~rbidi ty levels in the reservoir.. In add.ition, turbulence in the water ,also reintrains, sediment • that has settled out on the bottom of ,the shallot-t portions or the reservoir perimeter, again contributing to increased turbidity levels. . . -2- ,r-., . ! i -. t 4 ~ -.-~-l .. Th~ basic approach to the study involved. a semi ... quantitive ev.aluation of' t.he P. rocess descrJ."bed a~bove d · t d or eo-v al dJ." stl.· n t t k . · .. · . , an . oonsJ.s ·e 'i~. er · .. · c as s. These include: (a) Literature and Data Review Literature and data relating to other glacial l::ikes Ul."lder similar cond~t;ons have been reviewed. Any useful information. '- which could. be extrapolated to Watana has been. abstracted and . summarized. Thi's information. is then. used to support some of. the conclusions drawn from the simplified.sediment analyses. (b) Descriotion of the Lake Sedimentation Process • A detailed description of the likely sedimentation process has been developed. It is based on current knowledge of the Watana reservoir and documented descriptions of other similar lakes and reservoirs. This description aided in the· determination of sediment types and turbulent mixing .. ~,alyses. (c) Description of the Watana Reservoir All relevant data for the Watana reservoir has been assembled and summarized. These data include a· description of the monthly inflows-and sediment concentrations, sediment grain size distributions, reservoir storage volumes and releases, and monthly wind and temperature data. (d) Analysis of Sediment Behavior . - The amount of sediment that would settle out under quiescent conditions has been calculated for various sediment inputs, reservQir elevations, and wi~hdrawal rates.. Following this, quantitative ass,essments have been made or ·wind and tempe~ature induced mixir.·.g current::$ in the reservoir. Use has -3-. .. I s;;_.,._..,.t:_ ... ::t;:. u:_ ..., c '• • . . -~ ..... _. ..... _ ... __ .......... ~ ............ ~ • ·~ . ".' ........ c ... been made of the thermal · modeling conducted by Acres ( 1982). Approximate turbidity-sediment concentration·. relationships, previously developed by R&M (January 1982), have been updated using additional Susitna River data, ahd also used· in the analysis, {e) Prediction of Reservoir TurbiditY, . - .. Based on the assumption that reservoir mixing velocities of the same order of magnitude · as the particle settling velocities would disrupt the settling process, typical ranges of sediment concentrations in the Wat.ana Reservoir, nr~ar the outlet, have been estimated. These sediment concentrations are converted to turbidity using the approprl:ate turbidity sediment concentration relationships • .. .. ·-c ... 3,~'l~ < • '·;., ·•. rc , • .,.,~ , •• • .. • 2. SUMMA·RY .. 2 .. l. Past Studies·· The Phase 1 studies conducted by R&M (January 1982) on the lvatana reservoir: indicated the following: Typicr.tl sediment gradations of Susitna River water in the Watana reservoir area are 15 to 20 percent finer by weight than·2 microns, 25 to 35 percent 1lo ·fineJ~ than. 1 0 microns , and 95 to 100 percent finer than 500 microns ( 0. 5 mm).; The sediment. trap efficiency of the Watana reservoir was estimated to 'be between 70 and 95 percent with particles less than 2 microns pc>ssibly passing through the reservoir. Under l¥orse case sedimei4tation conditions of 100· percent trap efficiency, an estimated 472,500 acre.ft. of sediment would be deposited in the reservoir over a tOO-year period. Turbldity in tbe downstream .river WOQld decrease significantly during the· summe.r months due to the large amount of sediment trapped by the reservoir. It is likely that the turbidity _pt water released in the winter months when a stable ice cover exists would be near natural condit~·.ons, as suspended sediment in the near-surface water would settle out once the reservoir ice cover reduces surface disturbance and essentially quiescent conditions oacure 2o2 §umma\ry and Conclusions Due to the complexity or glacial f'lour sediment behavior in lal"'ge water bodies, tl'le general -shortage of quantitative data, and little direct experience with large glacial feed reservoirs., the conclusions drawn at this time should be oonsidered · quali ta ti ve. However, the following conclusions are considered defensible and pr'ovide order of magnitude • quantitative values that should allow project personnel to reevaluate the effects of reservoir water clarity on other physical and biological aspects of the Susitna project. • 1. There will be some level of turbidity in the reservoir at all times • . -. -5-. ' 2. It is likely t;hat sediment particles less than. 3 to 4 microns will remain in suspension. This constitutes up to 20% or the summer sediment · inpu,t" Maximv..m turbidity levels at the · out.let a~e on the /1 -.. ! ' I . . . order of 50 /NTU' s, wh.:Lch c<>.rresponds to a sediment concentration of 200 ~o 4oa 'mg/1. Minirnum turbidity levels Will be in the order of 10 NTU's. This corresponds to a sediment concentration of 30 to 70 mg/1 • .. 3. Order o.f magnitude turbidity levels at the reservoir outlet during ~ . e!ach month appear to be primarily dependent on the travel time it . . takes sediment slugs, delivered to. the reservoi.r during previous st.tm.mers, to reach the reservoir outlet. Longitudinal· mixing, .Primarily induced by wind turbulence, will tend ~·? mask the near surface sediment slugs. Quantification of longitudinal mixing has not been directly addressed within the scope of this task. R~.,. tiind mixing is significant · in retaining sediment less than about 12 microns in suspension for the upper 50-foot water layer. ,. 5. Reintrainment of sediment from the shallow depths along the ~eservoir periphery during severe storms will result in shcrt-term high turbidity levels. This will be particularly evident durin~ the summer refilling process when water levels will rise, resubmerging. sediment deposited along the shoreline during the winter. 6. In spite of some limitations, th.e data gathered from outside sources s~pports the.conclusion that Watana reservoir turbidity levels will be in the range of 10-50 NTU's. 7. Preliminary results from the Eklutna Lake· study show summer turbidity levels in the near surface layers to be in the range of 20-40 NTU's. ·This generally agrees with the range of turbidity values predicted fer the Watana reservoir • . -.. s-.. ' • 2.3 Recommendations Should more reliable an1 accurate estimates of turbidity l~vels be ~~ required, ruther work is warranted to firm up predictions of se~iment concentration and turbidity in the 1-latana reservoir. Some of the major weaknesses in the current data base and analytical appr"oaoh i~alude the -lack of knowledge of the .electrochemical behavior of the sediment, the role of phytoplankton and· its effect on turbidity, and the simpJ-"~tic . ' . . .'~:...;,.--- nat·ure of the ~nalysis of f(he sedimentation process. To overcome these deficiencies, the folfowing study program is recommended: (a) Conduct more detailed laboratory settling tests on river sediment samples. (b) Develop more reliable relationLlips between turbidities and sediment concentration incorporating· the effects of ' phytoplankton g~owths should this be regarded important, and incorporating results f~om USGS summer field program to measure sediment discharge. • (c) Apply a two-6imensional model to analyze the lou6itudinal distribution of sediments deposition in the reservoir. The model should incorporate the values of mixing velocities derived from the Acres (1982) thermal modeling using a diffusion type analogy. It is important to incorporate a relatively long sequence (several years:) of representative - . inflow and sediment concentration data in' these stuciles. This will facilitate a more accurate determination of turbidity ranges likely to occur in the reservoir .. • ., . .. -7- 3ec REVIEW OF AVAILABLE LITERATURE Under Phase I.· of the current reservoir sedimentation study, investigations have been ongoing to retrieve any unpublished data or reports from those references included in the Reservoir Sedimentation Report (January, 1982) and to search out any additional information from sources worldwide •. ·. . .... Appendix B includes a bibliography of all additional reports of data obtained f'rom the literature·search. It has been separated into two parts; the first containing references from New Zealand Lake studies, the second listing additional general references on reservoir sedimenta'tion or the behavior of fine particles in a water bodyo Efforts have been made not to duplicate those p~blications referenced in the earlier reservoir sedimentation study {R&M, January, 1982). Compilation of information from these sources has been an on-going process. Contacts in New Zealand have provided the most relevant information for Susit11a. Table 3 ~ 1 summc1rizes the available basin and reservoir/lake characte:t•istics for major study sites .. Lakes Tel<apo, Pukaki and Ohau lie in adjacent mount~ain valleys at slightly different altitudes. Each basin is a long, narrow glacial trough exposed. to strong winds, primarily from the northwest, };)lowing down the valleys. Ther•mal strati~ication is weakly developed and deep, and all lakes have a low chemical content of the water (specific conductance at 25°C of 5.0~7.0 umhos/cm). ·-. In general, the lakes are clearest in autumn as precipitation in the upper basins falls as snow and inflow to the lakes is reduced. Turbidity increases in the late spring as the snow melt period begins and flow increases. Inflow to the lakes then carries a heayy silt load. The mean SECCHI disc readings for one year wer~:~: Lake Ohau -9 .• 36m (30.7 ft.), Lake Tekapo -4.99m ( 16 • 37 ft. ) , apd Lake Pukaki -0. 57m ( 1 • 87 ft. ) • The maximum readings were 21.i4m (71-31 tt.), 7.0m (23.0 ft.), and 1.0m (3.28 ft.) respectively • • . The literature reports that the differences in turbidity indicated by the U SECCHI disc readings are related to silt content, rather than to algal production arrecting light penetration. . . -.. . ' -8- ...... • ' I · ~he ~va:r~~t~ons in extinotion-depth appear to be 'due in part · to the percent of "-' ~ ' each drainage ,basin· covered by glaciers. However, . at this time, limitations on the data preclude making direot comparisons between the behavior of fine sediments in the proposed Watana res~rvoir ~and exi.ating ~ew Zealand lakes. Additiona~ suppcfrting data on climatic charaQteristics, ioe regime., incoming sediment size distribution, and · seasonal tur.bidi ty or extinction depth for · each lake are ne.eded to complete .. the analys5.s • .. · . ' '"' ~ ...... ~ •. 1 •••• ---~ ... -· I . A;. ,• # , • . , BASIN CHARACTERISTICS Drainage Area (mi2) Glacier Area (mi 2 ) ' of Drainage Area Annual Inflow (ac .. ft.) RESERVOIR/LAKE CHARACTERISTICS - Length (miles) Maximum Depth (feet) Mean Depth {feet) Maximum Width (miles) Mean Width (miles) Surface Area (acres) Elevation of Water Surface (feet) . . Capacity, Total (ac. ft.) A.verage Live Average Maximum Drawdown (feet) Live Storage/Total Storage Total Storage/Surface Area Length/Average Depth Drawd<>t~n/Depth Length/Average Width Mean Water Residence Time TABLE 3.1 COMPARISOt~ OF BASIN CHARACTERtSTICS WATANA 5,180 29(J 5.9. 5,750,263 48 680 360 5 1.5 37,800 2,185 9,500,000 8,330,000 4,210,000 ~ 3,040,000 140 0.44 251 704 0.21 32 635 EKLUTNA 119 6.2 5.2 234,300 1 200 - 0.7 OQ6 3,ll20 871 414,000 - 213,271 - 60 Oo52 121 0.30 11.7 646 PUKAKI 545 73 13.4. 1 ,557,41&2 14 230 - 5.0 24,460 1,624 3,780,400 - -- - 155 480 2.8 418 NEW ZEALAND TEKAPO ·s6,.. . . :-. 16.6 J. 2~9 989,990 15·5 395 226 - -21,500 2,322 4,866~180 - -- 226 362 - 4.,2 847 OHAU !&63 a.o 1.7, 917,·548 10.5 !423 243 3.2 13,3140 1,696 3,260,340 -· - 244 "22,8 .. 3.3, 612 ., 4 • SEDIMENTATION PROCESS • .......... -· 4.1 General ~ Sediment inflow to . the Watana reservoir is derived mainly from the glaciers ... located in the upper portion~ of the drainage basin. The sediment size generally varies from less ~han 2 microns (0.002 mm) to 1 mm. As the river flows into the :reservoir, the coarse fraction of sedii:nent will settle out in. the upper reaches and form a delta deposit. The finer particles will continue to flow into the reservoir whsr-~ some will. settle. Some of the fine particles will not settle, others will be , reintrained. and ultimately will be discharged from the reservoir through the powerhouse or over the spillway. Under quiescent conditions, as the water f~ows through the reservoir, shear stress will be genera ted ar_ound the sides and along the bot tom and density strata boundaries. These will generate some turbulence within the reservoir which will keep some of the smaller particles in suspension • ... Under actual conditions, a large reservoir such as Watana does not experience these quiescent conditions. Continuous mix;ing processes are generated by climatic influences on the lake's st.1rface and by inflowig and outflowing currents. These processes create a substantial amount of additional turbulence within the reservoir which would tend to keep the smaller fraction or the sediment in suspension •. Under actual conditions, a large :reservoir such as Watana does not experience ~hese quiescent conditions. Continuous mixing processes are generated by climatic influences on the lake's surface and by inflowing and o'Qtflowing currents. These processes create a substantial amount of additional turbulence within the reservoir which would tend to keep the smaller fraction of the sediment in suspension. The tollowing sections describe the above-mentioned processes in more detail. Much. of the information has been obtained from the work dcrn.e by Imberger and Patterson {1981).. -... -10- . ' . i .. ' ,, \.- .. 4.2 Sediment Settling Characteristic!! . 4.2.1 Settling Velocities for Snherical Particles Th~ '\~ehavior and rate of a particle settling in a fluid is not only ~ ~ -. s:epent'ient on the fluid .. flow, but also on· the characteristics of' the L r s~di~ent particles. Fluid flow governs whether the sediment particle will be entrained, transported, or eventually deposited. In time and space, the eventual d~position of very fine particles is also ~ . dep~ndent on the physical characteristics of the sediment. Size of the sediment particle is the most ·important property. However, the specific weight and shape .of the particle along with the electrochemical characteristics of the fluid medium and concentration of sediment in the fluid}' directly affect the sediment fall ve~;ocity. The classicaf relatiom~hip that define.$ the physics of' a sphere falling within e. quiescent fluid medium is Stokes Law. 2 gd a .. t w =-(-' ) 18 ~ w = settling velocity g = ace. of gravity d = particle diameter p = kinematic viscosity 6~ = sp. wt. of sediment t = ~P· wt. of llquid The above equation assumes the drag coefficient on the particles is constant and is therefore only valid for particle Reyno'lds numbers of less than 0.1. Table 4.1 lists the settling velocities calcl.llated for particle sizes • ,, ranging fro~ .0 .s ·micron to 1 mm. Values for the .1 IilDl .. to 1 mm range (1.00. to 1000 microns) were obtained from curves roz: spherical particles given by W .N. Graf' ( 19'71 ) .. All th~ above val'ues have been . ' -11- ~: -··~ ' ' ) . , .. . , i ,.......,, !'·'' ... . ' . fi .. • -. . ,• I . • • ,, • ,, TABLE 4.t PARTICLE SEtTLING RAT~S Particle Diameter Settling Velocity of Spherical Particles Particle Reynolds No. (R). J!?•G = 2.5 1 T = lJ0°Fl of SQhe~ical Particles mm microns fps 1 3.1 X 10-1 61 0.5 1.5 X 10-1 14 0.2 4 .. 9 X 10-2 2 o. 1 100 1.6 X 10-2 0.3 , 50 4.4 X 10-3 < .1 20 6.9 X 10-4 li 10 1.7 X 10-4 " 5 4.3 X 10-5 II 2 6.9 X 10-6 II 1 1.7 X 10-6 II .5 14.3 X 10-7 II Note: (1)' Values for R > .1 based on curves in ReterenoQ '(7) by W~H. Graf (1971). (2) Values f'or R <. .1 based on Stokes equation (3) Settling velocities ofJ.laoial sediment particles are based on 1/1.15 x velocity of sph'erical particles" ., .. ) •• I> Assumed Settling Velocity of Glacial Pa~ticl~s ·. fps 2.7 X 10""'1 1•3 X 10-1 4.3 x io-2 ' lolJ X 10-2 3.8 X 10-3 6.0 X 10-11 1.5 X 10-11 3•7 X 10-5 . 6e0 X 10-6 .1.5 X 10-6 3•7 X 10-7 . ... .. ~ \ (.; . \,. . ( .calculated for a temperature of 40°F and assumed. particle specific gravity of 2 .,5. ( 1 ) Figure 4.1 shows the depth of settling with time in the upper active layer for 2, 5, and 10 micron size particles using the settling velocities listed in Table 4.1. The above analytic te·chnique is for an ideal situation th3t would reveal the maximum settling velocities that could be expected. As .. previously discussed, even under quiescent conditions, the rate of settlement would be less due to the influence of other physical properties on the particle fall velocity. Effect of Particle Shape on Settling Velocitt Sediment grains are rarely spherical in shape and vaJ'Y from a rod-shaped particle to a disc-shaped particle. Glacial sediments tend towards a platy-type shape, but. the shape is dependent on the parent mineral and process of decomposition. .t. PreliminarY results from shape analysis of Susitna River ~ediments show that .fiiler sediments tend tO'dards a platy-type shape due to the relatively high percentage of mica and feldspar. A study conducted by McNown, et al, (1951), determined the settling velocities for various machine-shaped particles and related the .resistance factor 1 K' to the shape factor 1 SF' , as shown on Figure 4.2. These tests were run for Reynolds numbers less than 0.1, which are representative of particles less than sand size. The curves represent theoretical results for ellipsoids {McNown & Malaika, 1950), The numbers beside each da~a point give the shape factor {b/c), and the shapes used are indicated in the Figure. ----------------------------1Recent petrographi.c lab data indicates that Susitna River Sediment may have higher mean specific gravity • ... -. ' -12- '• .: : ~ .• ,· ' • ',. ·, • • ~ • • '. ' :· ... D ; • • • •. • . h • ..,_:·. -' ~ • • • •. ; • •· . • ' ·, • • ~'-.o>;,""':._•~·-~.;5~·~~ ~ • •;"'1("'"~"1~ .... ;~""*·1~#'i~l.'"'l•-'--~;!>-~~~ .. ~:::-..., .. ~~,.,.,..,.,.,..,."'~ ·:v~'-'"-'''""'"""'-""'""''" ... ~~· -~--~ · ~ •·• .-• '• • • •I • .• • . • ':· . . ~· f .. • .. . , ....... Iii w u. -" z -1: w 0 .. ~ 0 l: ~ 0.. w • Q . , .. .~ .. .. •\ 1 . ·~· . \ • I. -, . I ' ' . ' L I l t . I ' 1 I I I I I • ' . • ., ' • . r ·. ·t ~ ' , • . . ·.: t! ! a :·1. f i~·,···~···l._il·! r. ll i'i" •I·: I ;l i". ·;--~··,---,····:· ·~· ·i ·.;. ·l~lt ~·rr ,-·: ri·; It itt .I i ; 1 :: ,. , .. ·,, • : ·:·.:· :··:·~·,'. ·:·~ i, ·, I J • ., . ! II I ·,1 I I . I I . . I -1 I I I I : I I I i I i I I I I I I ~ ' • l • J i I 1 : ' J ; I . . ', , I '· .,. i l t.·. ·I ,f . -lt·_ ~I t ~ : ·' : . ·j ', ' I I ·~ , , J ' I ; . . r . ! I ; : ~· i ' : . ; ~ : : ' . t ; I ~ . . i l i I '· J . " I ., . li li : i ! f I ! I ! I d ll : : I : ; ~ : . ' :; . ; ~ ij i :_· : i .; : I r! 't : l . . .I ! I . . . I·l· I I . , I. . I I ., ·, i· t' ' , ,· ! ,' I. I . : I ~~ . . . .,. ~ ; : i . ~ ! ; . ~ • • • I I . . . . I I I ,. . ' t • • ' ' ' I I • • ' f • : I I ' ; : 1 ; 'll I . ! I . • • • ~ . • I i J i ! . I ! I I J· l I ! . " . ' • . t I t : i i i ! ! i ! : : l I i· -:. !· ·! I l ~. . . J I . : . ' . . ... . I ... J. .• I" j.. . . '. ' i'. •. I ... , •• , •• • f • • 1 . ., . :' .. , I ; ! :, ! ,' l I I J I I . . I . I . ,. I 'I' I . . L l I I' I I· ! ! I I ,' . I I ! . I : . ', . I ', ! • ! . f : • : : : I; i . iil:ll :. ·I .. I I 1·'!1 .. 1'.''' .... ,, ... ,1. ll•ll'i Ill II' . ;. ··t I J·ll ·;:. I ... ,l; :, •. ,.,j,j,; 'i:j: :1,,1 II II·· •.I•. ·I I '1': I 1'! !: l·,iit.~; .··t~·:i :1 1 i • !' • t1 I I ! . ,. ( j I I I ,,.,, I l ! . 2,.. I . I 1,: .', 11 II' . ~ I ', I : I ! !. i ,. ·,~ ·, : ! : ~ :. : .: ; ; ! ' . ·.: : I : i_. ·•· : I ' I I • ., I I I ~ I I I I I • • t t . I 1 I ; I : .j ! ·I ; I I I t I •. I I l. • ( • I I • • I I I I • : . I I • ' • .• I .•• ' • I 'I I l_ I.. ,· • ~. .I !.· • ,! ~~.·I. ·r' t ~.. I . l ! I t l . . , ! . . : !.l. , ., ; , I , , : : : : . ; ,. l , ; ; . : • )' . • ·~ . ~ : ~ • i . . I I . ( . . . . l.l ' , ' ' . ! I ' I ' . I ' • ' ' r : ., I ·j· ' • • • • ' • • • i.·. ·,·i.~· ·!. , ·_r, ~ •.. · ., •. :.: ·,,~ ... :',·. -~, :1 ·~·. ·~·1,·: .. ,1 ... , .. ,,". ~,. .. : .. ,~~,--t~J: ; : . :··l:i ri .I ·I",, .. :,·::,· ·;·t i : f I '·~ ; ;· .. ; ; • ;. :. 7 •• ' ;·: t"·,· :' .. t I I I . : I . . . ~ : . I J I I i I . I I . :" . I : I I i I • ~ II ! I . j l . ! . . : :ilj ''l' . I lj' I Jljt ,.. .• .., ,., , •• 1 .... I Jl•· !Jl:· :: !!i' ·'I'' 1 ,•,.,i 1i ::, i1,1 i ,_, ·•,:i,i:' i!'·.: _. , ; 1 . • • I t I I I i 1 , 1 1 ; , I I • 1·11 1 ; 1 ! I ! 1 • 1 : ! : 1 : • ' • r , 1 1. , I • f.;) i I I • ~ I' I I I I ! I I ''II II I I : ' .I : . I I I' j ·' I I I I f. • I i ! I I i . : . I • • f • . • ' . ~-II I' 'l; ·,: ·I' . i'l' 1: ', i. ! I I I I . i l. I I• I I ! l I I Ill t . I • l I ! l I ! I ; I : I : I : ; ~ . I i .. I l • • I . . . • I . I I I I I I . I I I I I I • I • . . l' I I I I I I I I J I I I I I ' I I • • . • • • I . 1 .. ·l!,··'~!·._l,,··J! ... i,::l:! t,··-.~l·l~·--,·:~.-~i _i;_.··,':, ~ ~~-·~ !,t·i· .i, .. ,-.ll -~,~-:--~.I,J. :J·r,·J·-~1'11···!~·~: .. l,·Jt'I'TI: . i.; ~·i·-~ :,·. _J ~ .• ·~·!;; .: : ;~: . . i . .,.. . . . I I .. t' I I I I ' { ; I . . ! . I ! . ! I . ! I . . I· ., ! ! ! ! . . . I I II 'II I I, I I I I ', I ',. ! I I i I I ' I' : • I • . . : J 1 · 1 : i , :1 ··II l;l • I 1 'II ., ·~~ ·1~ ~.1· . • · 1 ' 1 1 , r . 1 ; 1 ; : ~ 1 : ; , i . • I ·I • t.l f . I I I I I I I I I ' I I J I I I. 'I I I • I I ! . I I • I I ! l . : . Q 100 • j I ·i I ;;ll: .. , 'I :: ,'1 II· II I i II'. 11;·11 !J_·,t l:.!~~!·~;~l·~:: .. ; . : ; ',· ,' =, i i ',• :: f I t. ·J ! I I I I .. ,. I I ,, II I t : ! . I I • . ! •. I . t t· • . I . • • I • I ; • 2001~~------~~~~~~~----~--~--~~~~._~--~----~~----~--~~~~ 0 50 100 1 0 200 TIME (DAYSt 250 DEPTH OF PARTI'CLE SETTLING· 300 350 ' . OVER TIME. UNDER QUIE.SCENT CONDITIONS . . ' . Engineering Corasullanls 400 ..fiGU.AE-4.1 .. 1.8 1.7 1.6 l.S :.: !.4 .: 0 u .:!' • ... c: .: ... = 1.3 = 1.2 1.1 . 1.0 \ \ ~a;o ~ \ r\ 7.7 \\ \ \ 'l\13.~ IS.O \ \' \ \ \ 2.0 ~\ 4.0i\4.1 \ . ,~\1.0 \ 2.0 1.8 a \'[\ ' 1\ 1.~ ~\ \ ... -~ ~\ 2.0_ K2.0 1.0 •.o ' ~\ \ . f-· . r:r.-II .. -~ ~--,-... /.tV I ..,., ~ ~~ lv " Spheroid 0 Prism ·-6 Double pyramid o'Cylinder , • Oo~;bk2 co~ . . \:·' ~·9.0 \8.1 1\ ~7.9 ' 08.0 4.0 \ . K ~ ... 7.1 -~ 6.1 v ~ _.,.. \ 4.0 J !J~.l 4.0 i\ [~4 4.0 3.7 !I i\\ ~ ~9'" v 2.0 / L8 4 \ ~ ~0 -~3.: ~ 1.0 1.9 lo ~ ~ 2.0 ~ v 1.0 ~ v """" - 0.9 0.125 0.25 0.5 1 2 Shape factor, ~ . ., .. . ·1 I I . / I I j 1/ 1/ I !~, J, II Vl ~:o:~f/ 1.0~ ~0 ;/:~ ) . I /.o A// ~A2.J v j 1// v - a 16 COMPARISON OF THEORETICAL VALUES OF K FOR ELLIPSOIDS AND . OBSERVED VALUES FOR ELLIPSOIDS AND SEVERAL OTHER SHAPES FOR REYNOLDS NUMBERS LESS THAN 0 .. 1 (McNOWN,et ala, 1951) VANONI, V.A. ~1975) SEDIMEf.!TATlON ENGINEeRING ( i ~ -. ' ..... " PERATROVICH,.N9.IJ:!tt~HAM-& b"""R~Ge: ·i~c. .!··FIGURE 4·.,2 ENGIHEfRI:'G COUSULTANT$ . . • . . . . .. . •' ~;.....':) "l. ... 1,.. . ' ..... .. ' ' , ~ There is little difference between the· theoretical values for perfect ellipsoids and . the observed values for ellipsoids and other shaped particles. The values of 'K' based on the two .ratios, a/fbC and b/o a~e with1n 10 percent of . the theoretical value for ellipsoids, thus ·indicating that the axisJ ratios represent the principal hydrodynamic . features ~f the particle shape. These curves can then be used to estimate.!O:ettling velocities of nonuniform shaped particles occurring in nature. The value for 'K' is equal to the ratio of the fall i velocity of a sphere with the same volume and weight as the particle ,, to t{:le fall velocity of the particle~ For example, comparing a 20- micron sphere with an ellipsoid particle that has the same specific· gravity, volume, and a shape factor of b/ o = 4 would produce a resistanoe factor of 1 .15 for the ellipsoid. This means that an ~llipsoid with the ratio of dimensions presented above would have a fall velocity of 15 percent les.s than an equivalent spheroid. In the partiole size range being investig~ted here, there are few particles that approach a spherical sbape5 As yet, no information is available on the aotual particle shapeso. Fbr purposes of this study, therefore, it has been assumed that a resistance factor of 1.15 applies. Table 4o 1 lists the oorrespondi·ng settling velocities for these assumed glacial sediment particles. Effect of Sediment Concentration on Settlement Velocity The previous disoussion addressed a single particle settling in a clear infinite fluid. Influence of other particles falling within the water column could retard or accelerate the settling rate of a single particle. I'f' the particle was one of an isolated group of similar particles; the aettling rate of the partiole group and hence, ~he single particle would tend to increase. This situation approaohes . .. . that of flooculation. However, in the natural sy&tem that is continuously being supplie~ by sediment, it is likely that a variable speotra of sediruent sizes would be found .in the water cplumn. When· this ocours, the interference between neighboring partioles wil1 tend, to reduce their fall velocity, whioh Ls often referred to as hindered settling. . ' -13- ..... MeN own and Lin ( 1952) studied theoretically and experimentally this r··,~ ~\ .- phenomena·, generating a ~elationship between the ratio of clear water . . settling velocity (W 0 ) and the particle velocity ln. a ·,fluid with a ' '.' ,. . given sediment concentration (W 0 ). The cu .. ·ves shown in Figure 4.2 are for·' an approximate theory based on the Oseen modification of Stoke·• s theory for the motion of a sphere in a viscous liquid at a low velocity. The curves apply fo1• Reynolds numbers less ?:.han 2, ~ihich is representative of most of the par~ticle size range. being considered for this. projeot. In refex:enc:b:~g Figure 4.3, the influence of sediment concentration on the fall velocity can be significant when the sediment concentration is around 0.1 percent or 100.0 mg/1. Susitna. River suspended sediment C'oncentrations measured at Gold Creek generally fall between 500 mg/1 and 2000 mg/1 when the discharge is greater than 20,000 cfs. Concentrations within the reservoir, however, are expected to be significantly lower. As an example, if· the inflow to the res·ervoir has a sediment concentration of 1000 ppm, it would be expected that the settling rate would be retarded by about 10 percent. The-'rsclid lines on Figure 4$3 are representative for different particle , Reynolds number. For particle sizes of 50 microns or less, the Reynolds number. is less than 0.1, therefore, the upper curve should be used for the· Susitna Project. As the sediment concentrations within the lake generally will be significantly lower than 1000 mg/1, the impact on settling veloc.ities will therefoi,e be much less than 10 percent. For purposes of these studies, therefore, the effect of sediment concentration on settling velocity has been neglectede Effects of Flocculation on Settling Rates If the mineralogy of the particles and the water chemistry are • compatible, electrochemical forces will tend to hold. particles together once they come in contact. Contact of particles and the potential subsequent formation of an aggiomeration, or floo_, can be . - -14-. . r.' -. . 't'i';o;< :;: / .f i o.e. 0 0.1 0.5 1 2 3 4 . PERCENTAbE CONCENTRATION BY DRY WEIGHT, C, (FOR QUARTZ SAND) . • 6 a 9 EFFECT OF CONCENTRATION ON FALL VELOCITY OF. UNIFORM QUARYZ' SPHERES. (McNOWN. AND LIN, 19~2) VANONI, V.A: (1975). SEDIMENTATION ENG!NEEAlNG .. 1 . -. , ... ( ( \ ! . i 1. i ; L· I • . ' I l { . .. . ( 7 ~ ... rr-.. _ ·&t·· ··~: , -. ~ ... -. . ,. . ~ ·. ~ . . ~ ... ~ . . . . . . . '· .. · ;_.:·.·n·~- c;-t:~ 'I To date, no studies have oeen done on the flocculating characteristics of the sediment in thE! Susitna River. However, metal shadowej:l micrographs of sediment samples from the Susitna Riv~r near Chase shLJ a significant amount of agglomel'ation. Petrbgraphic analysis revealed that these wel'e composed of denser materials (pyrite, iron oxides, t~enite) agglomerated onto .lighter minerals (quartz, feldspar). More thorough investigation of the processes of agglomeration and flocculation would be needed to assess the impact of these processes on sediment behavior, particularly settling rates. For purposes of these studies, the effect of flocculation or agglomeration have therefore been neglected. 11.3 Quiesc~t Settling in the Reservoir Basi!! The approach used for esti~ting qUiescent settling involved application of a reservoir sedimentation computer model. The model, DEPOSlTS, has been developed by A • t~ard ( 1979) tor the design of sedimentation ponds • n describes the sediment transport and deposition process in a reservoir . as a function of the basin geometry, inflow h;•drograph, the inflow I sediment graph, the sediment characteristics, the outlet structure\ •• / . 1 .... the hydraulic behavior of floW within the basin. The model detel;'mines -15- . ' . • • basin trap efficiency, loss in storage due to sediment accummulation and ~ffluent suspended sediment concentrations. The. model has been verified with data from. several different ponds and reservoirs located throughout the nation, but not with a basin that has significant glacial flow and sediment contributi.on .. . In the model, flow wi th~n the basin is idealized by plug flow .concepts. :Plug flow assumes no mixing between plugs and routes the flow on a first · .. in, first out basis with each plug .representing an equal time .increment. Settling of the sediment particles is described by Stoke's Law of Settlingo The reservoir bed is considered a perfect absorber of' sediment and resuspension or saltation of the particle~ is disregar~ed. The model accounts for the variation in sediment concentration with depth by subdividing each plug into four layers. Selective withdrawal, at the basin outlet,~· from these layers is provided for in the model. The basic inputs to the model include: 1) 2) 3) 4) 5) 6) 1) 8) Inflow hydrography Viscosity of the flow Stage-area curve f'or the basin Stage-discharge curve for the basin Stage-discharge distribution curve Degree of dead stor~ge or short-circulating Sediment inflow graph or load Parti~le size distribu·tion and specific. gravity of th& suspended sediment For purposes ot" these studies, the model has been modified to accept · . specified discharge values rather than a stage discharge curve. Because it ignores dispersive mixing within the reser•1oir, the . model will tend to underestimate the minimum discharge concentrations and overestimate the maximum outflow concentrations.. This must be taken into . account'when interpreting the results of the model runs • . .. ~ ·(__. •, a· A second approach has be~h used t~., check on -the results of the model ~ri1 runs. !'t is described by H .T. Rouse ( i 948) and is based on work done by · Camp (1943). This approach is briefl)t' outlined below. The l·latana reservoir is a relatively long (48 n'liles) ·and narrow ( 1 1/2 miles basin) • For purposes ot" sedimenit deposition calculations, it can · therefore by treated as a channel. l-later flows into the upstream end, passes through the channel-shaped llasin, and flows out at ·the· downstream end. Storage changes take· place whi,~h result in differences in the inflow anct outflow rates. f<..s the sediment particles pass through the reservoir, they· gradually settle out. The v~lloci ty or · flow through the basin ·gener.-ates shear stress along the boundaries, and hence, turbulence within the reservoir. This turbulence tends to reduce the rate of settling, particularly of the small particles. Camp (1943) evaluated the turbulent transport function for two-dimensional flow. He assumed the water velocity is the same at every point in the channel and that the mixing coefficient is also the same at all points. The functional relationship he developed is as follows: (qs)e (qs)i in which --w , t/p Vy (qs)e = quantity of sedimen1;~ of given particle size in effluent (q~)i ::; quantity o.t sediment of given particle size in influent w = fall velocity of the given particle size t/p = shear velocity y = basin depth n =Manning's roughness coeffi<!ient . L = basin length v : mean velocity of.' flow in basin • -17- .. • • • -· I ·, 1 • r ~¥ t • l ( .. .... . i . . . l . ( • .J lJ ... ' -. I ·• I .. l I This:·· function has been evaluated analytically and . v experimentally. It is shown on Figure.J.i.ll. 4 D 4 Reser'voj.r Mixing Process ~ • ' ~ ~ ' ,> As outl:!.ned bY Imberger and Patterson in Fisher et al ( 1979}, the mixi~ processes occurring in the Watana reset'voir are · me.terol..,,...~ .. - conditions and the inflowing and oUtflowing water. These processes ' ~ .. tend to generate turbulent eddies within the reservoir Which conti "-""'"''~--)ill stir the sediment in the water. The basic processes are .discusse below. The Annual Cycle The annual thermal regime of the reservoir is currently being studi by Acres ( 1982). Based O!l prelii!Jinary results from these studies, ~ well as earlier thermal modeling also conduct.ed by Acres (1982), t: reservoir r s thermal regime appears to be rela t~L vely stable as compar to more moderate cli~ate reservoirs and lakes. During the winter D'.onths (November through April), most of the wat in the reservoir would be at' 4°C (l!Oelp!). In the upper layer temperatures would drop to o°C (320p!). During the spring and sumr wa.Mil.ng period (May through July), surface temperatures WO' gradually increase to approximately 9 to 1Q°C (48-S0°F). reservoir would be reasonably well stratified with a thermocl: located up to 50 meters (165 feet) below the surface. W~ temperatures below depths of approximately 100 meters (328 feet) we remain at 4°C. During the cooling periods (August through Octobe the surface water would cool down. Overturning would take place the upper 100 meters as the surface temperatures reach 4°C. Dur this period, the upstream 10-mile reach of the reservoil;' which depths less than. 100 meters would probablY be subjected to comp: overturning • -18-~~-"l-~---11 .. ,, :::I { "' ~, .~" ... \ ''"·~~·~ .. ~ .. ~;)~ 1 _ (gs)e ,_~.-­ (qs)l . : . I 0.2 --~---·: l I l t l I --~,,.,...,.., --'--""--"""-+---"'-----'----"i.o..-.1....:....;-. ------_.;._~~-f. 0.10 Wy1/6 Vn"V9 1.0 10.0 SEDIMENT-REMOVAL FUNCTION FOR SETTLING B~SINS ' . . ROUSE, H~ (ed.), 1950, ENGINEERING HYDRAULICS "' .. • • • •• will tend to flow into . the near surface l~yers of the re~ervoir which are the same temperature. During the spring warming period, from May to June, the r-iver water, would .. war111 .at a quicker rate than the reservoir surface, and, therefore, continue to flow into the· upper layers of the reservoir. During the July to September period, river water would start to cool more rapidly than the reservoir water. FlC\w into the reservoir would gradually tend to enter a~ lower layers; and towards ·.sep .. temb:~!'. the flow ~ould be ente(-ing the reservoir in tne vicinity of the t;:termocline. As the lake water cools, the river . inflow would gradually move back to the surface layers. Based on the above discussion, it is evident that the sediment entering the reservoir will flow in near the surface most of the · year. The ex7eption is during the late summer and fall months \ihen it would tend to flow into deeper layers near the thermocline. During this period:, the qverturning that occurs in t~e upper layers of the reservoir would provide some mixing of the sediment particles in these layers and somewhat reduce the amount of sediment that settles out • R&M (1982) is currently conducting studies on :Eklutna Lake, located approximately 100 air miles to the south of Watana, in support of ongoing model effor-t$. These studi.es indicate that Eklutna Lake is subject to complete overturning during the fall period. In addition, suffici~nt mixing forces over the length of the lake surface result in little variation. in surface turbidity levels, regardless of the distance from inflowing streams. Maxim\lLit turbidity is not always recorded at the surface. Turbidity plumes below the surface have been traced in the lake. The observed behavior at Eklutna Lake and predicted behavior of the Watana reservoir still need to be confirmed. The two are not necessarily consistent in all respects. Data for a full annual cycle at Eklutna Lake will be needed to strengthen assumptions and conclusions about the similarity in behavior of the two systems • -19- • r 1 l -l ' i:! ·' \- Particle Mixing in the Eoilimnion The · major mi~ing foroes · active in the upper layer.s of the reservoir'· F-lsher·et al,· 1979, include: o penetrative convection o. wina induced mixing o mixing induced by inflowing or o~tflowing water These are discussed in more detail be1Qw. ·(a) ~Penetrative Conv·ection (b) Th~ epilimnion would be subjected to diurnal temperature fluctuations due to daytime heating· and nighttime cooling. The depth of penetration or the short wave radiation depends on the water clarity, but in the absence of wind there is always an identifiable temperature rise and stratificati9n layers during the sunlight hours* As night falls and radiative heat losses begin to dominate the thermal exchange at the surface, the surface layer cools and convective motions mix the upper layers. Often these convscti ve motions proceed until they reach the mature. thermocline whera tl-:.~y bef;in to erode the stable temperature structure. ,;:• Mixing Due to Weak Winds A -wind blowing over a lake ex:~rts a stress on the water surface that causes waves to form~ break, and transfer momentum to th~ water. The wav·e motion, especially when waves are breaking, produces turbul:ence j.n the upper l,t.tyer. This turbulence then interacts with the mean shear in t,he upper few .meters to produce further turbulent kinetic energy. Ofte'l • this. interaction windward drift. cells and they produces a secondary motion a~"well as a mean Such secondary motions are ca.lleq Langmuir are distinguishable to an observer by the -20-. .. •• • .. • characteristic slick pattern associated with the. regions of convergence. The net turbulent kinetic energy produced in these upper few meters is then exported t;o the lower parts of the epilimnion during turbulent diffusion or QY the advective motion associated with the Langmuir circulation. In addition to this stirring of the surface water layers, the· wind will also cause the. water to accelerate so that. after a ShOrt time the whole epilimnion will have a mean motion with a .. velocity. The sbear associated with this mean motion may then further contribute to the production of turbulent mixiag. (c) Reservoir Behavior Onder Severe. Wind Conditions So far, the discussion of wind mixing in the epilimnion has . not taken into account the motion of the water in the reservoir. The wind stress will initiate motion and move the .. water in the epilimnion in the dir~.."':ction of the wind. If the water surface is ·;-o remain nearly horizontal, as it does, then the water in the hypolimnion mus.t counter this flow and move . . in the reverse rlirection. A shear will develop across the thermocline which will increase with ti,me until the thermocline has tilted sufficiently to set up a hydrostatic pressure gradient which just balances the surface stress. At this stage the motion changes from a whole basin circulation to two closed gyres, one each in the epilimnion and the hypolimnion, and the shear at the interface will decrease to a very small value. All the work done by the wind is then either dissipated internally or used to de.epen the epilimnion. T~e set up time is proportional to the seiching period of the thermocline which may be as much as two or three days, giving the wind stress ample opportunity to develop an appreciable shear across the thermocline• Vertical Mixir.!:Lin the Hy~.olimnion Obse~vations in large lakes. using measured dist~ibution of natural or · a~tificial traces indicate that veJ.•tical diffusive mixing in the hypolimnion ranges from molecular diffusion to values up to 10-4 to 10-5 in m2 /sec ( 10-6 to 10-7 ft. 2 /sec.) (Fisher et al 1979, and HambJ.in; 1982). In addition to this, sometimes relatively rigorous mixing occurs. The only apparent explanation for this is that although overall there is not sufficient kinetic ene~gy to cause mixing, there are portions of the lake at any particular time where the ene~gy density has been increased by some type of concentrating mechanisms, allowing a local breakdown in the mixing of the structure. The mixing is thus patchy and intermittent and quickly collapses u11der the action of' buoyancy. Upon collapse, the mixed patches elongate and interleave with themselves and their surroundings, leading to steplike vertical density structureso 4.4.4 Outflow and Inflow Dynam.i.cs Local mixing is generated in the zone where the inflow and outflow occurs. Depending on the magnitude of the discharge, the outflow may draw water from ·several layers within the reservoir. The velocity field induced by the withdrawal will generate additional turbulent mixing. However, for a reset"voiz• as large and as long as Wa tana, this mixing influence is expected to be limited to a small local·area near the power intakes. A river entering a reservoir nearly always will be at a different temperature, and thus density, ·than the surface water in the r"eservoir. Upon entering the reservoir, it will thus push the stagnant lake water ahead of itself only until buoyancy forces, due to the density differences, have b~ome sufficient t~ ar~est the inflow. At that point~ the inflowing water will either f'low over the • surface of the lake if it is warmer, or plunge and flow submerged if it is colder. There are thr''ee distinct mixing regimes associated with the inflow. •>\ -22-'Z,~·,l~· j' • • • \.,.. I ~ i • 2ool t.=~~~--~r-~--r-~~-r~--~~~----~~-r--~~~~~~~~~~ ~ -~=t· --~· __ ,_, -~~"-·-'~ ..... -"'·'•· -'-'----,~--· -~ _, "'t,-···-·-.... ·-p • -·-•• .___;,_ --~ ·-~ ·~· I~ •-· ·-:~ _.!: -r-~---r-·-----:----...:--:-1-J •• :..1---· -·• ·•·· -~-~ ..:; .• _, -... ·-. ~ ~l-.. : : -~ ~ --7:--~1 ·-;..I~~-.;.::~_::;:. . ~ i·~1 ~----: ~-:--t:-tr !··· ............ ·-~~ n-.. . ; • ·--~r-:~ .... --=~-~·-! •::~·--=~··':-• '• • -~-~·;~~ ··-•-:fr ··-·~-~·~ .. --.... ~ ·- • ;: . I •· ··-~ .• ••• :. • • • •..• , ~··: •• • 0 v,-- • · • I • • · ·• -.. •; :~f-:-,: ~. • '• --:-;-r, ·~II', ·•i-:" , 1 ~-·• • • 1 r -:~ :~··-'• -• '¥ .. ~ ' • ~ 't t • • t :... : • ..;...... • ... -.! ~.:..._ ----~ .... ,_ ;-, • -~:--:-;_ ""7" • ,'! . : ... -:-~ -c:_... ~~ •-:---:-·~ •• -4, • • t '. 't f .. ,-~ • ;~--;--~ ' • -• 1·1 .. • 1 t ·r .. t• • t • •-. ... i .. • •t , , .• , e A -:--~~-:·,,:-.:._;.;.: ... ...l.:..--..:....--~--~~-··· ~ .... ' '4!i. t~ --~!i :~·· f•t•~ ... :,:: :.:J't:···;· . I ~ i ;,t :lt! ".: ll:i!!.,••: ~~·· . I -.. t'i-•. • • .· . ,.•:' '• .·· -:-::-•:~-!:'""" ,~ ·, 7 .. ,l,·-1,7'.1t•l I··A: ','!•,!_!""". ~~ .• ·.·07--. -.. ·:,A.·-.•. • 100 . . , . ' l 'l t f 't '. '. ~: .. ~ • \ ' 1 i I;,~ ~: l! : i! I • . I t ~ 9. o .-:~:..:..:..-..:i:;.:.-·--~-: ----z· =:r:-w;···r-:t-'--=· -· -· · · :..= · -~--------....~--,. -~---·-..... :=~:.r: !..L-=-=~--·1· · .... · =--·:· -~-,-.-~-::-:::~=:: ..• ·-· .. '~ ·::.:=: ··:: :=-~. •===r-\!f:~==---;;:·:_ .:. .: . ==· ·== ;:::i=~~~~::= :::::t._ 80 ~-.---_·-.::;_.::; z __ -===-==-.=::-:-==r~~r--·-=t: .!..::.=•-·-· --7."::~.--:----:::-_ .• .:;-.--=,~--~-?1--...;_;..;.--:..t.: .. -:;t:.==r=::· :.:.:!1/0: :-==~~1:::.;)e:.:~..:: • • 1 -r====:,._--::=J;:._ .-;;.r=:J:"_ -=·~ --. __ '== --:::r.: .:.:: ==-:::,;.r.::. ·~=~ ·:-.:.:r.:-::..;;::-~ -=--.:.=.._ ·--·-·--··-1---r-~----§E' .•.. ··-----====r:· ==-=t:· --·-$-. --~:-··--.· . ---~~--" -~--70 ---____ oo:;...: ·:..=·-- -.......... ...;. . ~L:......::c.'-:.-= ·:=~ --__ _. __ --........... ·• --t . . -t· -· --. :! --=~=.;;;·::::} . . ---• ~--·- 60 · . ..:....:. .. = i.:.::.:-..=.::::...-=.:=:t.. ----~ .... ---::::l----•. ,. _ ... '"1""1:..:!!. ---... ~. ---· . ~·t:.r·· ····t---·-~-.. ,::::t=.:.. . -· ----- . -··· --· ·-· ~r-......-.. -...... I .:.---~ -::_ -'5?:~ ·-;t:._ .. ·-·--:-_ __;:__ ----.:.t:··--·-... ·I~ -:-t ·~:~ :;::._.--i--:---..-. ~~::::t..-· ··r--i· 50 -+---- . .__,. . . :,.... --:-. . . . . . . ·:-r-:-;-:-.•. ..,.-;---------·+-·--.:. ... _,.. ~-... ·~· -i /., ... .. ::..;:: .. ..:· -.,_ .. :...::. -·---=-== =:-·-·r ...... --r---~ --=. ·=::::r --= --=:~-----.--= --~· -. ·-:-t:==.:;= ---: ·-: :~--=-=---==... .. -· ·-:: =..:::= =.:.:::: --~~----'~ _==.;;fa'•· :;:.'l-,.::: -==-=-=:::f' :.~ ::=:,:==:=: --=:-~;-...:.--u.·:=--:::..;.=..:-=1~r=· ::;:::.;. ----~---• ·-· --:A: ~-=:::.:/.";t·-• ==· ·-.: ~ ··----·-:-::-... --.... ::-· ... =:-:r.=::=.;;::_ ----~ =-::..-::-.::: :---~ :..::::.~;.. -_____ g·::-==~ . .3.:.--:: :·~ =::E:= =~ ---=~ ••• ••• •• I •• ••--·-r-· ·-· ----.. ._.__ . ..,.. •• •• • ·-• -----· -••• •• /•• ·-_:-•••t-oo• -----••t:: != ·:::-· . l::.~ . =---.. ~-!/ -1--------• ·--1---_,___ -----~ . t--- ·~- 30_ -... • t ~ i ' I • t • I I ;. •! i--- I -+- :2 ?O ... -,., , .... _, .1 . . , . z .,_, . J l I •' l . . ' I ' -=-:-; 1 l!' __l_i: t l . . ' . : ~ ! i ' i , I ; 1 , . : • . ! ! • ! ,, ; > ·i--Q i i I 1 i I . I ' ; ll I : ' I I l ; I ! l ' i -a:a £C 10. __ 2 9---==--·-.-·t-·-8_ . --::t ·- 7 F--===-t:=:-- 6-. ·--· 5_ = -· ---- !··· •";t lfi :! : .. ,• • ••• ··:1 •l•w I : ~ • . , .. ;: ... , I ....... '-.. h :·· . ; ; : I a, : I I .,. ............. ____,.~ _,...... ....... ~ --~·-~..,. '! I ! I I I ! ; .. . I I I i I I I I : . I . I ; ! I I 1 I I I ! I ! I ! ··:-M+ . . . : .. :· .. .. -=; =-=:::::r=.r-=-p:o: c== ~~ =---==. ·=-·-=:;.r::-~...; ~- . ' ~: t:.==:E -----:'t..""=: ·. ···-· 1~·-f-... .. TUE=iSICITV vs SUSPENCEC SEDIMENT • CONCENTRATION l 1 1 I ] -1 -- First, there · is mixing associated with the plunge line. Second, in the: ease or the: unde:rf'lowing situation, the: bottom roughne:ss of'te:n ('""\ \~ leads to mixir1g, called entrainment, at the interfa-ce between th.e reservoir water and the inflow~ Third, whenever the density of the inflowing 'mter equals . that opposite in the reservoir, then the ··inf'lowi_.ng water ·~ill leave the bottom. and intrude horizontal1.y into the reservoir· These intrusions may also occur ~ong tlle surface if the density of the inflowing water is less than that of the surface water. . 4*5 Reintrainment· of' Sediment .. Along the shoresline or the rsservoir, the convective and wind mixing effects will reach the bottom sediment. Some or these sediments will be resuspended and ~eintrained in the water. The maximum particle size and, hence, the amount of .sediment that will be rei?tr.ained will depend on the strength of the mixing currents. During high wind periods, this reintra:tament can contribute substantially to turbidity in the reservoir ·" 8-lcng the $hotte. 4.6 Turb!Q?-tY 'ITersus Sediment Concentra.tiog.. Biological activity in the lake is dependent on light penetration, which in turn, is a function of." the concentration of st.tspended matter. A relatiC)nship is therefore required to convert predicted lake sediment concentrations to turbidity& R&M (1982) developed a regression equation relating to turbidity in NTU's to sediment concent~ation in mg/1. The data was derived from measurements Subsequent to these studies, at the Gold Creek and Vee stations. additional. data have become available at the Susitna River station near Chase. A new regressj on equation has been developed -<::ombining all the available data and is shown in Figure 4.5 .. Much of the subsequent analysis ·in this report is based on this turbidity-sediment concentration relationship because of litc'i tations on\".;;~-> -23- .,- ' ··-··. . . •• ~:.! a . . . other available data. It is important t~ incorporate all .·additional. Qata 'from the_ USGS 1982 field sampling prog~am as it becomes available~.· 'Weekly measu~~ment of' turbidity and sediment concentration in the ~ti,Sitna River near Ch~s~ will provide data to verify the relationship presented here .. · 'fhese results, -can then . be . modified to account for the variation in .. l)ehavior in lakes and rivers\1 -24.- 1 ·~ zm II&&. A . ·--~ 1 1 1 j ] J ] ] ] 1 ] • ] J ] 1 1 -1 5. WATAN'A.RESERVO!R ·SYSTEM ·See 1 Climate. · Wind-induced mixing is one of the. principal mixing processes occurring in the vlatana r~servoira Wlnds blowing over the reservoir surface produce turbulence in the upper layer.s and can initiate water motion in the direction of the wind. To carry out detailed wind analysis, data from three weather stations in the Susitna. Basin were reviewed. Data on wind magnitude· and direction ~rom the Watana weather station were selected for use in analysis. This station most near>1,y represents conditions at the reservoir and also has the most complete 1 ""rd .. 5.2 Hydrology Case C intermediate flow and power conditions, presented in Volume 4, Appendix A, of the .Susitna Feasibility Report, has been used to provide baseline hydrology information for determining monthly reservoir operating conditions. 5·3 Sediment itt=gi!!!d Data from several sources has been compiled to define the sediment regime in the Susitna River near the proposed dam site. Historical data from the USGS on sediment concentration and particle size distribution has been· summarized on a monthly basis for input into the DEPOSITS model using data collected at the Gold Creek. Station. Figures 5.1 and 5.2 present average monthly sediment concentration with maximum and minimum values::. and average monthly particle size distributi<=!n· The crosses on both figures indicate values used in the DEPOSITS model • • -25- .- i .. • • 1-----.....-------·-;...... ---+--=-..:=· --· -.;._--r-·-----; -, __ _ _ .. _._ _ _,._ ·---=- -3 --+-·- --. ~--·-. ..· -~ ~--. . --·--·· . --= . ~-. -----,~-..... f~. 1 1 t -:I: ,,-: --... --,-, L-..!....__.,..:.. .. J t . ( ! I ' -I : ~~ l I ·-· ·-+---~ I · ---'t-r-r-r'-;-· r:-+~ .. ·~·+~~+-1-+_.:._-:--H-,..--:-i-++:..· -;;.....!.-i~..!-,-~~-=i=• :::::;::+~~:;:::::;:::4:::;:~::t· !·=1t:::::::::j ,,,~, --+~__;·~· ....J---.. ~--;lo"":':-:-. """!'-t~l--r--:1-:--t-H'-+' ~~-T-~~-T--;.-;.+~~..;.....!-1-' ~ i t I .-, ., ~-·;; 11 •I ,~,, .,; • f • 1 : • 1-:-:-~rt-~~+--f~~-H'-+1 ~4-++'~+'-4-1.1 . ...jiW.,I ~W...L..L..:::. . I i X I ! l I ! I t--+----:-4-...._ __ !...,._i-~..;.....;:..-J--'--+-' ...J.:++ ! I l I i I I ~~y--o:.+~,-.: •. ....;,;;....r-:-...l.., _;1~-+--i-. -!J-"'1':-T-f-+1-+i-T--: ,,~....:,;......;..., ....;...+-, --+-~,.-~--1'---L.J r-:q~~+·~· t' ~· t~tq~tt:W=-'b:1 ~'j1tj:jji:Tt±±il:1~~~-~ '\£~;~~~~~~~.;..~;~~,-~-,~i ...;.i-,-+-+l-T-!-1 ""'=-"+; MA'"X 1 MUM 1 i • 1 ! l.. . . i i I i ! i I I I . ~!" . -._ I I I I I I I I -~-+-~,__;_...:.,-1 1 noo 1 1 1 1 1 , i 1 1 !.' TTl 1 -!-......,:--+-H--+-i-+-T-~-+-J--i.-....!...-'W...-4--!-!....~-1 . 9 F --= --=:3.:.._ ·: ----:=· --= l ~ ... ~ ~~, . ; i j l ·~'1.; I I ! I ! I I ! l I I I l I I --g-_:------.-:-=::::...._ ~ ~--== . i§§d. ;;"; 8 --L -==-t=-:::::C:: =: ..... ---··---·-· ---t: ~-·--~ I 7__ ; __ 6 __ 5__ I • . ~. ·-. .. :::=r:-: r= -:_:___ --±::::;::= =t ::i 4 __ ' " ~ - 3 __ z 0 ·. s_ 7_ 6_ 5_ 4_ 3_ 10 1---• .. f-- ' -·· .·= I ' • I • I ' . --- H--t-. ' ' f i 1\ \• \ i l l I . ... .. I 1 I ., . '~<.AVER~G t I I I _, 1 I o .,., I I f • ,,, • I • • : r.:,_ ... ROSSES:-SHO.WiVAl;UEs..:...: ~~~·~·-~ ~-~......!....: ~·-1-~-:H-; +-~~-+: -:1-++-H~...;:-+-HH-+-r-+-+-H+H++-++-~-+-,H---M_&J SED: itJ-:P EPO S I'! S :.M 0 DEL;-· +: -~---",'-"+-', .:...: ~ I I I I I I 1 ' • • • ' L ,_ I I : I I I I I I ' I ! ; I I I I . I I I I I I ; ; i • I I I I ~I I I ! I ~ . . SUSITNA RIVER AT GOLD CREEK . . . ·-tlt;eciMENT CCNC2NTRATICN=-S~N1IVIER VALUES CNL V £ '1952--~ sa '1 :lf.-, _ FIGURE 5.1 & ORAG;t~' ::IN::C::·:::;::;:===: ,J DOES NO"f INCLUDE 19~1 USGS DATA ... PE,BATf3~H~9l!!.tiGHAM ENCilNEER1NG CONSULTANTS z-:/z--t.f{ rJ t \,J N ' 'J. I, I . 1nrrnn=--'1::-~I= F "':-:-· .. ·• · " -· · · · · · rr • II .. 11 =-.... ~·~-... , .. f-' •• ·•• ~ -• .. • ·r · · rt ru ru 'i llJf.!.E.!JlE r' ·:· '' · · ·;·· I ---. -~ ~--·_1-'-·. . . I ~Ill !l!J ~~ , . ~ -r·· 1'1· II . -~ ·-r---I-- - . • : : .. ---... . ·--... . I ' . I --.. -·-"'f-.. ,' '•' ' . ! ;.! ~ V: ~I-!, i I~ I ,~ fljo =--=~= -~ =,~-: ~ :. '-rrr~t~*'fi~~oo~ . ' i ~ , i ,:. ;t i /: r I I V/.111 I-ii' ,. f+J '-:-ft II { ~r; -· · 1 · :: -------.. -----. . : : ~= = = ~ :. : :; ~; :)< ,~ 1J·' ~l, w,· · ·· 1 ", i u 1-1'. ,, !, i ~-~~-~-~~~·~~~~~~~~~-~-+~+-+-~~H-~·~-H~~--~~~Mffi#··~·~-~·~------~~---,-,1~ II _,lill· I~ 1---·:----~· ·---~ ---.... ---HH-t-.-J-H- -1--• 1---!---1-1-f-·H-• • -• • · -1-1--t-11-1---- ~ - -r--I-·-. . -. . . . 1111111--t-·1-l---•• --• .. . . . . .. .. .. . .. --· 1-+-+ .. t-t-1· r-· -----.. ,.. ·l ~x,,=l-;!:~~:~~-_::~~-. : : lil''i !'. ~ri' I 111 ~ 60~~~H~~~~~~H~I~11 ~11 ~~-~~~~-~H·--~~-~··~· ·fl··~t~~~~,~ .. ~ .. fl~ tn ~;---~-~-.... · .. l ~~h ~ t·· ~ dJ:~dL ... . . ,, -60 I • !.. I' . I l! l .... I _I - . . I 11 j -'--I--p I~ • - . • . I ·, f· . 1 . . . ' i l I I II i' I ~-·· _, ___ ·_·~ _i· l 1 <~ .. ' ~=.,.t~-~---~ ... ·~XI·,. ::.. =~=~==~~=~==~~=-:·".. ~ ,,,, .,.1 ' !illi ... ~-.... ..:-... ~ -.... ~-"-·-· .. ·. .. -l-1---r----.. ---.. 'lill . 1 :!!il ~· 40 ---~ . H 1 ~-II ~-'.::;.?~c·r: .. :. :. :. . .. . . :._ =':-::: -::-:: ~ :: . . ... , j 'I IIi : ~~~~~~-~~~~~~~~! ~-30:. I ~~I: ~-·"~r-·t~~ '=-~ : ~-=~=~~~ ::_. : . il ll,:~~~·l .. r~t,iJ I!,·!;~ ~ .:1 Itt. ~ 1~. II· 1 [~!1 _,_.;.• '" _:· . ·· · 1 ·~~:-:-~-:-·---·· · · · ·-· · p: t;,d!l!, ! i) 1 1 il! U: 2 ·,lu~ ;1.11 I ~ 1 j •· · --·-r---~--< · · · lX:::!r-CRossEs~.sHoVu:u ".Vi:' _us~m •,! 1 1!11 ~-0 tuG~~,~~ fi~~ r .. t1t ·--~-.. ·t----. . -... :::.Jt..l·~.b.EPdsar.s: M1 9D~,~.i ·I,·! ·l . ! I II !I~,'! ... · . . . f?Nttll! ~ ' ~}\. .. Ill p ~~ . .. .. ,1~ I I 'I I xAt · .. · .. ff 1-1 1_1:~:.. =-------r-~-~: .. ·.·.. .. '-:::=,·-==:~~=~-:.: · '. 1 ,I!· i l 1 ltlli ;10tf•-l! ~ I~ I : 'tt.j. . ~j ~ II i . . ' ~~~~; ~; ~; ~: ::::. . . I . . . o.J..U.LI,.I.ULIW.U.UU....."--'-: :~l~ ~ : : :: . : ' i I Ill iiJ II! :t! ,: lriiiU .8a2 . . .004 .ooi .016 .031 .062 o126 0.26 0.50 1.0 . 1-... _____ ___.SILT.. __ ,.,. __ -r'-·-·-----S.AND-· ________ _,__. 'PARTI-CLE sizE·· (~m) . s·USITNA RIVER AT GOLD .CREEl< ~ . AVfRAGE MCNTI-2L V PARTICLE . ~IZE t;m.~IRIBUIION .. Fr. _)lE ·5 •2 . tJ ·. ~u~tJ.AI~2~~~ ... NPTTJ!iGHAM & o ==E·=IN=C·== \.~-/ . ' @FNGINEEfUNQ CONSULT Atns . -:: ' . - •. ' j During the summ~r ·.of 1982, an extensive sediment · sampling program was .. . . carried out by the R&M Consultants, Inc. , . and the USGS, to .improve understanding of the existing sediment regime. ·Samples collected on a weekly . basis through. the summer months · included turbidity, sediment -concentration., and bedload. Analysis of the turbidity samples is complet.e~ however, sediment concentration and bedload sample analyses have not been completed at. this time. When these results become available, they should be incorporated into the statistical analysis of turbidity versus sediment concentration to add streng.th to the correlation. For this report, existing turbidity versus concentration values for the Susitna. River at Cantwell (Vee), at Gold Creek, .and near Chase have all been combined to revise the regression line presented in the earlier report. Figure 4.4 shows the new regression line used to convert . predicted sediment concentration in the reservoir to turbidity .. . ; 5.4 Reservoir Information on daily inflow to .reservoir and projected powerhouse flows used in determining monthly water retention time, flow~thr?ugh velocities, ~ .. and live storage for the reservoir have been taken from the Susitna ..:. Feasibility Report, Volume 4, Appendix A. Table 5.1 shows the. resulting monthly values of the· above mentioned parameters used in this report for modelling and analysis • -26- .~ . Ill $ •'"'-YI•,,.. ·~r·• .. • • •• MONTH OCTOBER tJOVEMBER DECEMBER JANUARJ FEBRUARY MARCH APRIL HttY JUNE JULY AUGUST SEPTEiiBER AVERAGE . \ 1..' AVO. ~513.1 2052.1& 11101&.8 1157 .] 978.9 698.3 1112'"6 10397.& 22912.9 20178.0 18lt31•1& 10670.1( 79112 (cf:s) c INFJ,.OW(ofs) MAX. MIN. 61&58.0 21&03.1 3525.0 1020.9 2256.5 709.3 1179·9 619 .. 2 1560.14 602.1 1560.11 569.1 1965.0 609.2 15973-·1 2857.2 ll28il1 •. 9 13233·" 28767.4 1118113.5 311135.0. 7171.9 17205.5 11260.0 428111.9 569.1 (cfa) (ofs) POWERHOUSE FLOW (ofs) 7370.5 8123.6 11135.1& 9535.0 9150.] 6865.!& 6176.9 5767.5 6099·7 5i183.7 9329.3 10158 .. 7 7963 (of:s) I • AVERAGE FLOW (ofs) 59111.8 5388.0 6270.1 531&6.1 50611.6 3881.9 36611.7 8082.5 1~506~3 13130.9 13880.3 10lt111.5 77111.5 (ofs) .. • . TABLE 5.1 WATANA RESERVOIR CHARActERISTICS WATER SURFACE A'l END STORAGE OF MONTH (tt.) (ao.rt.) AVO. MAX. MIN. L~VE TOTAL 2177 2185.6 2122.5 3.98 X 106 ~»..27 X 10 6 2166 2173.~ 2112.6 3.67 X 106 6.97 X 10 6 2150 . 2155.9 2091·3 3.22 X 106 8 •. 51 X 106 2133 . 21]8.2 2081.2 2.75 X 106 8.0!& X 10° 2119 2122.0 . 2068.5 2.35 X 10 6 7 .• 6!1 X 106 2107 2110.0 205!1.5 2.01 x· 10 6 7.30 X 106 2097 2100.0 2011~).3 1.73 X 106 7.02 X 10 6 2106 2119.1 2045.2 1.99 X 10 6 7.28 X 106 2139 21611.7 i:075.9 2.91 X 10 6 8.21 X 106 2166 2190.0 2109.0 . 3.67 X 106 8.97 X 106 2181 2190.0 2130.3 11 .. 10 x· 106 9.39 X 106 2182 2190·.2. 2126.8 11.13 X 106 9~lt1 X 106 -· I 2150 2190 201&5.2 3.011 X 10 6 8.33 X 106 (ft.) (ft.) (ft.) (ac.ft.) (ac.ft.) ' • VELOCITJ (fps) LIVE TOTAL .009 .oott .009' .ooll .011 .ooJ& .011 .• 0011 .012 .oolt .011 .003 .012. .003 0.023 0 .. 006 0~028 0.010 0.02\ 0,01)9 0.020 0 .. 009 0:012_ .. 0.007 0.015 o.oo6 (fp:t) (fps) >~ ·. flETENl'lON Tlf·IE (yrs} LIVE TOTAL ·93 2.15 • 911 2 .. 30 ' ·11 1.07 0.71 2.08 0.64 2 •. 08 0.71 2.60 0.65 2.611 0.34 1.211· Oo26 0.78 0.39 0.911 0.111 Oe93 0.55 .1:25 0.60 1.711 (yr:s.)(yra.) PESf;RVOIR LEUGTJI AT EtiD OF MOfjTf! ~9.3 mil~s IIB.tt . • lt7.2 '46.9 miles 116.6 mflss Q6.14 lt6.;; 116oq 'mUe:t JJ'f.o mile:! UB.II naUes 119.7 miles .!2.: 6 toiles IJ7. 7 rDiles . 1 ,, ·" ·hlrt • • . . , ' , 6., ANALYSIS OF SEDIMENT BEHAVIOR 6.1.;Quiescent Settling '" a. DEPOSITS Model In order to allow for an initital start-up period, the model was run for a period of four average years. The resultant ste:ady state ;discharge sediment concentrations are summarized in Table 6.1. The discharge values range from_ approximately 0 to 60 mg/1 for the upp~r portion of a dead • storage area of 900,000 acre-ft., and range f'rom 0 to 100 mg/1 for the upper portion of' a dead storage area or 5,290,000 acre-ft. · An additional run was done assuming all the volume below elevation 2,050 feet to be dead storage., In this run, the discharge was assumed to occur uniformly over the full depth of the active storage zone, i.e. above 2,050 feet,. The results are similar to those using a dead storage value of 5, 290,000 acre-feet. As mentioned in Section 4. 3, the program neglects dispersive mixing.. . The range of values stated using all the different dead storage areas is therefore probably over estimated. The amount of dead storage selected represents a range from a minimum value of approximately 10 percent of the total storage to maximum level equal to the annual average difference between total and live storage as reported in Table 5.1 • The trap efficiency predicted by tht::se model runs ranges from 94 to 96 percent r depending on the dead storage area. The inflow and predicted outflow sediment gradation curves are shown in Figure 6.;~ It can be seen that only particles with diameters of 2 microns or less travel through the reservoir tlnder quiescent conditions. As the model does not take into account horizontal mixing, and because it is diffiaul t to predict the actual amount of de~.d storage, it is not possible to estimate the time variation of sediment concentrations at, the discharge point. -27- _____.._ ...... ____________________ illlllilllllli&'llllil _______ .,;..__ ___ _ -~ 1 1 .• ... . DEAD STORAGE SIMULATION VOL\JME CASE ACRE,;FT. Quiescent 900,000 5,290,000 Volume below 2050* I· Minimum 900,000 Mixing 5,290,000 • Volum~ below 2050* Maximum · 900,000 Mixing 5,290,000 Volume below 2050* TABLE 6~-1 ,, RESUL'rS OF "DEPOSITau k\JDEL BUNS SEDIMENT CONCENTRATION (tng/1) INFLOW SUMMER PEAK AVERAGE MAXIMUM 1197 773 61 1197 773 95 i197 773 94 1197 773 211 1197 773 213 1191 773 224 1197 773 D 316 1197 773 316 - 1197 773 31i5 Note: * Assume uniform withdrawal over depths at d1scharge end ot reservoir. limited tQ! upper 25% of depth at discharge end of reservoir~ / \ I) OUTFLOW ' ' . :TRAP AYER~GE MINil.fUM EFFICIENCY -(%) . 30 56 54 84 121 134 124 179. 206 0 2 5 2 2 12 '3 2 -18 -~~ 96. 9JJ 94 .. 93 81 a~·- 90 Bl . 78 All other runs assume withdrawal i,=:$ I ~ ,' • • . . • • . w _.~~11 ~ .J 7C y 0 ~~ lw. li -t-,_ -·~ ~ a: H- Q. UUI-~1~~~:: z ,_ -:-~ ~. ct X 50 ~~i~( t-~((t·IJ~ -J-1---.. ; 1¥:~ . :c ""' Ol~~++~q~##~+ffiffiH00~8ff~~~~~HIOO~;I~;~~~~~~N~~~~~~~~~~ml~~~#t I IIIII 1·--f-·..f--f-1-f-t-H-1-t-t-i·t-I·H·tH · IIIII I IIIII 1---1-1·-1-1-f.-1-1- CJ 40 -f·+ ·UJ 3: . 1--,_ 1-~--~--~,.;' , .... 111111 . "' I' v ~ ·~~ ·.~ ·lit II IIIII-- IIIII ""·--·l-f.~-1·· i-, -·s.-+-~f-1--1-.' •: ···t--1-1··-1-,_ -·-4--1--1-" ' •. 1-J.-·1-1-·~1- 1---·-,_ ·-·- 111111·•·-1-f··-1--J-•. 1---1- 11111·-11--1-.. 1·--·-•. 111111·..-f--11-1-~l-1-1-1-· • . J . ·t: II li [ji 1 j m i il. o~l·~~~~-~~~~~~1~~~~~~~~~~~~~~~~~~~~u~~~UJI~~ill~~~~~~~~~~~~~~~~~ ~' l... --·------·---~-1oMICRONS ~-~-------~-~.--..... ~0 ._ .. -~~~ .. ,..;f.....,i~ ........ ----·2--·MM--·4 __ .,e __ ~a -~ ,_ PARTICLE SIZE . __ ....._ f w .. -N PARTICLE SI2E DISTRUBUTICNS PREDICTED BY ·DEPOSITS MODEL ' FIGURE 8.1 ·------------------'------·--.. --···- b. Camo Curves Tbe relationship shown in Figure 4 .. 4 was also used to calculate the amount of sediment that would ·settle out in the t-la tana reservoir. The monthly -sediment size gradation curves sho\rm in Figures 5.2 and the corresponding settling velocities contained in Table 4.1 were used. The integration of the total amount of sediment which settles out was carried out using particle sizes of 0.5, Oe1 mm, SO, 10, 5, and 1 microno Monthly reservoir velocities were calculated by the following equation: QL v =----=* Vol Where; V = average longitudinal velocity through the reservoir (ft./s) Q = average monthly outflow (ft. rs·) K ;: length of reservoir ( f'l:. ) Vol = av~rage monthly reservoir volume (ft.3) Reservoir volumes were obtained from Table 5. 1 , and an average reservoir length of 48 miles was used. Reservoir depths were calculated by subtracting the average monthly reservoir stage from the minimum active zone elevation of 1, 950 feet, which is approximately 50 :feet below the power intake elevation. The results of these analyses for the svtmmer months are summarized in Table 6,2. They demonstrate that a large proportion of the. sediment would settle out and that only particles of diameter of less than 3 to 4 microns would leavs the reservqir. These results agree reasonably well with the DEPOSITS computer model results. The following sections describe how these results should be • modified to give a more realistic indication of sediment concentration qy incorporating the turbu.lent mixing in the reservoit.,. -28- • . . ... ' . t' •• ·i " -.. ' ' -..... ; • Mo11th May June • July August September ••• TABLE 6.2 RESULTS OF QUIESCENT SETTLING ANALYSES FOR THE WATANA RESERVOIR Percentage of Sediment Inflow Running Through -the Reservoir -~ 4 10 21 16 17 Approximate Maximum Size of Sediment Particle Running_ Through The Reservoir (microns) 3 4 3 4 3 -. 6.2 In<::> .jd Mixing Two approaches were adopted in quantitatively evaluating .. the mixing ir1duoed by wind, thermal input, and the inflow and outflow. The first . approach involved evaluating the effect of wind wave action only. For each month of' the year, the total period in which wave heights exceed critical values was evaluated. The critical wave heights were those which induce an orbital current of 2 x 10-4 ft./s at depths of 25 and 50 feet respectively. . The sec~nd approach involved using the results of the Acres (1982) thermal modeling of Watana Reservoir. The· program was modified to print out the shear velocities associated with wind and thermal mixing in the epilimnion and with mixing induced by :tnflow and outflow in the hypolimnion. The two approaches are discussed in more detail below. 6.2.1 Wind-Induced ~ixing The main objective of this analysis was to determine the impact of oscillating wind-induced currents on small suspended particles. A particle settling velocity of 2 x 10-4 ft./s was arbitrarily selected for this study. It corresponds to a particle size of approximately 12 microns (see Table 4.1). .. Equations for calculating oscillating wave velocities at depth for a given wave height and period have been developed by the U • .s.. Army Coastal Engineering Research Center (1977). These equations wei~e orbital velocities of 2 x 10-4 ft./s at depths or 25 and 50 feet respectively .. Effective wind fetches were calculated for the reservoir for each 22 1/2 degree directional component. Using this information in conjuncticn with the .equations developed by the U .. S. Army Coastal Engineering Research Centei" (1981) for determining fetch limited wave height and periods, and the critical wt=t.J'e heights • calculated previously, the corresponding critical wave speeds were calculated. These winds speeds were calc!Jlated for each directional component f'or each month during 1·981, and for critical veloo_iti~s -29- .· . u~· il d • occurring· at 25-and 50-foot depths respectively. Using these •· wind · speeds and ·the results of the monthly l<lind speed direction duration analyse$., the •percentage of · time the critical Wind speed. ia exceeding in each.month was calculated. For these analyses a water depth or 600 feet was used. The results of th~ analyses for the open water period are summarizsd in Tables 6.3 and 6.4. The percentage durations .reflect :the integrated duration of winds from all directions during that month. As. can be seen, significant mixing to a depth of 25 feet occurs betueen: 35 and ·55 percent of the t.ime during the summer months excel}~ during the montb of August, when the prevailing winds were from the north.. A significant reduction in mixing occurs at the 50-foot level. The wave orbital velocities above the indica ted depth~ inct•ease ov~r the value of 2 x 10-4 as one gets closer to the water surfac~. This means that in the.shallower layers, particles with settling velocities much larger than 12 microns will be held in suspension by the wave action. The results of those analyses indicate that~ under cert·ain conditions, . particles as large as 12 microns could pass through the reservoir. It is important to remember that these analyses are based on 1981 recorded data and do not necessarily reflect average . ruon·chly conditions. Wind and Thermal Mixing The, dynamic reservoir simulation model, DYRESM, is a one-dimensional {vertical) numerical model for the prediction of temperature and salinity in lakes and reservoirs. It is a comprehensive model, and attempts to model all the mixing mechanisms within the reservoir., The model ~s provided Y{ith 6 hourly averat'l;.ed input C;iat.a, .including air: and inflowing water temperature, long and short wave ra.diat:I.on,, ··and -30- I _1 ' -...,; .. "lii i i ! I I I I I I Month May.~· ~June ;: July ·,August Septembe~ .October .November Month May June July . kugust ·september October N·ove~ber TABLE 6s3 ~ > •• " DUR~:!ION. OF W.A.VE: MIXING TO 25-FOOT DtP!'i-~S · ~ of Month During Which Wiad ''Naves Generate Orbital Velocity Ext:eeding 2 x 1o-4 ft/s .•. ~ •..t. .. ~ ...doa;, 40 41 35 8 30 35 55 TABLE 6.4 DURATION OF WAVE MIXING TO 50-FOOT DEPTHS ' . % of Month During Which Wind Waves Generate Orbital Velocity Exceeding 2 x 10-4 ft/s 4 2 1 0 t 0 12 . ' .. ..., 3' ..., <" ~ :J "': ... ~ ,, ~-=-1' ~· o· ... • • I .I -l i "'I l 1 I : ... -~, .. ...,.....,.. ___ -.. -.... ··---' ~· q-~.-. • ...;.,._,.., ~·~-~--- ~~~_._. .. ._ ........................................ BM .. .__..__..__. ____ __ . . . -1 • evaporation. c·: Withdrawal rates and changes in reservoir storage are also specified·. · The mo9e1 then simulates the vertical mixi:ng due to the meterologic forcing functicns and turbulence introduced by the inflowing and outflowing water. It· is vertically layered and calculates the temperature and salinity for each layer at the end of each computational period. A detailed description or the model is given by Imberger and Patterson ( 1 981 ) • Acres ( 1982) applied the model to the Watana Reservoir for the May to October 1981 period. The temperature profiles predicted by the model are s.!1own in Figure 6 .2. Modifications have been made to the model in order to calculate and print. out the shear velocities induced by the mixing process. In the \ epilimn:i.6n, the root mean square shear velocity of the velocities, induced by conv.ective penetration and by wind shear, and the associated depth of mixing are calculated. This shear velocity is assumed to be constant with depth over the caloulated depth of mixinge .· Mixing in the hypolimnion is controlled by molecular diffusion and the buoyancy frequency between the various reservoir layers, wind shear transferred £rom the epilimnion, and the inflowing and outflowing currents. The latter terms generally are several orders of magnitude greater than molecular diffusion. The program prints out these velocities for each of the reservoir layers for each calculation time period. When interpreting the results, it should be remembered that the model is one-dimensional, and that all the mixing parameters are averaged within each layer ~ver the entire width and length of the reservoir. 6.3 Sediment Reintrainment As outlined in Section 4.5~ reintrainment of particles around the .edges of the reservoir will occur., particularly during windy periods. Figure 6.3 illustrates the relationship between the. mixing depth and th:e percentage of the reservoir area in which water depths are less than the mixing depth. Tb,.is curve gives some !.ndica tion of how much of the lake surface would be subject tc reintrainment. The .25-foot mixing depth calculated in ... , l - . - .. % WATER TEMPERATURE ° C 1· 2 3 . 4 5 6 7 250 ..--..;....;a..~--t--L---+--..J....;.---l----L-~--..L_-4----L--J. X1 • I i J . ! ' ! i I ' f j I I I I . I . : ' 81273 812.43 :· I I I . ~811212 ; I 200 -X2----------------------------~------~-+~~~8u1_: ________ _ _, ' X3 i I I I .~. 1. X4 ·:c ' 1 I !· I i 150-r----------------~~~~----~--------~--------~-------­i ·- ; -', . I I ! • I . i i I ! i l t 1 I : iCO -1----~-\..-------'----....!----~~---~---- P5701.53 DC 30 SEP 82 • SUSITNA HEP RESERVOIR TEMPERATURE MODEL WATANA FROM ACRES AMERICAN, INC •. (._,-3 ( .. ;-st.( FIGURE.G~2 . . '{. . .. .... ~ , I .. .;, ···~ ...... .,., ,.:~ ........ •• .· ? • • • • • •. • ~ o& • • • • • • .. : • .. .:. • .. • •• • • -;-' • ·~ ·~.. t~ ... •• • :~ • "~ • • •• • • • NOTE: CURVE VALID FOR. RESEi=iVOIR. WATER LEVELS BETWEEN. 2050 _AND 2200 FEET_ .. .... ~,.-. .; .:" .. 51 -·a:· -0 401. > a: ·~o . w.w 30 1-a:o. u..w 01.1. ~- wu. 20• < I -~< i .. !-W· %0: 10 u.a<t ... (.) a: w a.. 40 60 a.o 100 120 140 160 "i80 200 MIXING DEPTH .O=T) ·.. . _F=;E!..ATJCNSHii= E3ET\ME5N MIXaNG CEc=TH ANC . . f=ea:iCSNT AGa CF L~'U55i5:HVC;i=J At:;EA AFr:ac:..rEC ... ' -~ ' . BY 1\~IXING • • • .. . . .. . ' .. ~ ~ ,, ' \ ~ ,, ,I ' -:· .. ::,., -,_. ·.·. - . Section 6.2 indicates that approximately B percent of' the reservoir ,r·\ ···~-I. • .·,-.. < < - surface area would be subjected to reintrainment of particles of sizes 12 microns and les$, between 35 and 55 percent, of the time du;roing the summer months (to be confirmed by r*eferenoe to thermal rJJodel output) • Based on the above, it can be concluded that reintrainment would occur, . but that it would not present a major problem except during severe storm events when the wave mixing depth exceeds 25 feet. The results of the preliminary runs conducted on Watana using DYRESM model ~ summarized in, .Tables 6.5 and. 6.6 indicate that under maximum. wind conditions, the shear velo(:lity in the epilimnion and hypolimnion are generally below 3 x 10-3 and 1.5 x 10-4 ft./s respectively. During calm per-iods, these can drop to just above 3 x 10-4 and 3 x 10'""5 respectively. The epilimnion values bracket the order of magnitude numbers calculated usirtg the wave equations as described in Section 6.2.1. It should be noted that DYRESM Model runs to date have only been conducted for the open water period. No data is available on the mixing that occurs during the ice cover months.. It is, however, not expected to be very dissimilar to the values quoted above for the hypolimnion during calm periods. The DEPOSITS Model was upda'i..ed to allow for the reduction in the ~-< calculated settling velocities due to shear vel.Jcities. The effective settling velocity was assumed equal to the qu''"escent settling velocity minus the shear 'Jelocity. The upper quarter d~pth of the water plugs in the model were subjected to the epilimnion shear velocity an the lower three quarters to the hypolimnion velocity. As before, the inflow was assumed to be ~Tell mixed over the full reservoir depth and all discharge . was taken from the top one-quarter depth. The results of these model runs are show on Table 6 o 1 • They indicate that discharge sedimE'Jnt concentrations could range from below 50 mg/l during quiescent conditions to over 300 mg/1 during windy periods. <··32- • '·--.c<' .: • Month June July Augu~~ ·" ' Month June July August TABLE 6.5 ' ' ' ' ' ':itOOT MEAN SQUARE SHEAR VELOCITY OF VELOCll':;;"C.ES Il>IDUCED BY CONVECTIVE PENETRATION •' "-::,_ c-• • • ' • • ••• ' • -· • AND WIND SHEAR Average (fps) 1.6 X 10""'3 1.4 x ,o-3 1.9 X 10-3 TABLE 6.6 Maximum 2.6 X 10-3 3.0 X 10-3 3.7 X 10-3 HYPOLIMNION MIXING SCALE Average (fps) 1.0 X 10-4 6o3 x 10-S -4 1.1 X 10 Maximum 2.3 X 10-ij 1.1 X 10-4 2.0 X 10-4 ',<: Minimum 4.1 X 10-4 .5.0 X 10-4 ·3.3 X 10-3 Min,imUJD. 5 .. 8 X 10•5 s.3 x 1o-s 5 ' -5 •3 X 10 ... ,. r~.· .AS:: 7 mentioneq· earlier, considerable care must be taken when interpreting. ~·~-·-·~ these results, as longi~udinal <1ispel."sion in tP.e reservoi;r is not taken· into account. near the dam. reaches.· , .. Also, these . value_s ~re .·.only representative of· condition~:{ · Higher abnc~ntrations could occur towards the upstream, t \\~. : " •;-;,::.' :·:·,, . " I~ , ,.,"'. r V. --~t -33- ..... ·,_. 7" PROJE.Cl'ED RESERVOIR 1'URBIDITY All the anaytical work described above is based on limited data and very idealistic models. In determining reservoir mixing velocities, the reservoir has been treated. as a one-dimensional body of water. Tnis is a severe limitation when one considers that tbe body of water is 48 miles long and averages 1 1/2 miles wide. In this section, an attempt is made to project ex!>ected reservoir turbidities under post-project conditions. Because of the analytical limitations outlined above, these. projections. must be regarded as tentativ!! order of mag~itude estimates only. The values reported apply to conditions averaged over the reservoir, and no. attempt is made to distinguish between conditions at the upstream· and downstream ends respectively. The first step in evaluating reservoir turbidity involves projecting likely sediment concentrations in the lake by adjusting the values predicted by the q~iescent settling calculations for wind-and thermal-induced mixing. The second step involves converting these concentrations to turbidity using the curves presented in Section 4.6. 7.1 Projected Sediment Concentrations .. It is assumed that sediment particles within the reservoir will tend to remain in suspension provided ·the mixing velocities are equal to or greater than the particle settling velocitieso This approach tends to overestimate the sediment concentration in the reservoir, as some settling will still occur even when the mixing velocity equals the particle settling velocity. 7.2 Projected Turbidity Levels Using the suspended sediment concentration ve:sus turbidity relationships • given in Figure 4.4, the projected lake turbidities would b.e in the~ ra.,nge of: 10-50 NTU's• -34- .. -.... :. 1: '{; • l .. . List of' References for Sections 1 , 2, 4, 6 and 7 (1) < . R&M Consultants, Inc., "Sub task 3. 01 -Closeout Report -Reservoir Sedimentation," January 1982. (2) Acres American, Inc. -New Report -Results of Temperature Modeling. (3) R&M Consultants, Inc. -New Report -Results of Eklutna Data Collection Program. (4) Fisher, H.B. P et als "Mixing in Inland and Coastal Waters," Academic Press, 1979. (S) Imberger, J., and J .c. Patterson, "A Dynamic Reservoir Simulation Model -Dyresm: 5," Transport Models for Inland and Coastal Waters, Academic Press, Inc. , 1981 • (6) Simons, D.B., and F. Senturk, "Sediment Transport Technology," Water Reservoir Publications, Fort Collins, Colorado, 1977. (7) Graf, t;.N.; "Hydraulics of Sediment Transport," McGraw-Hill Book Company, 1971. (8) (9f (10) (11) '(12) McNown,· et al. (1951) McNown & Malaika, (1950) McNown a..Yld Lin, ( 1952) Camp, T .R., 11 The Effects of Turbulence on Retarding Settling," . ' Proceedings Second Hydraulics Conference, University of Iowa, Studies. in Engineering, Bulletin 27~ 1943. Rouse, N .T., "Engineering Hydraulics," John Wiles and Son~, !noe, 1949o -35- ' •} • • (13) Acres American, Ino. -New Report on Thermal Modeling of Watana, 1982. ( 14) Acres American, Inc. t ususitna Hydroelectric Project -Feasibility Repo:rt'l Volume 4 -Appendix A, .Hydrological ·stud~es, n Alaska Power Authority, 1982. ( 15) R&f-1 Consultants, Inc., -New Report on _Data Collected From the Eklutna Lake, 1982. ( 16) Hartman, C. w. , and P.R. Johnson, "Environmental Atlas of Alaska, " University of Alaska, April 1978. (17) (18) (19) Hamblin, P. • Persona·! Communication, Canada lake for inland Water, Burlington to Ontario, September 1982. ,U.S. Army Coastal Engineering Research Center "Shore Protection Manual -Volume 1," Department of the Army Corps of Engineers, 1977• U.s. Army Coastal Enginee~ing Research Center "Coastal Engineerig Technical Note -Revised Method for Wave Forecasting in Deep Water," CETN-1-7 3/1981 • . (20) · Ward, Al, Maan, T., Tapp, J., "The DEPOSITS Sedimentation Pond Design Manual, u Institute for Mixing and Mineral Research, Kentucky Center for Enel"'gy Research Laboratory, University of Kentucky, Lexington,· Kentucky, 1979· -36--· .. ~ ... :,_..~. ~·--' :r·: -~~c 'I 1~ ~ (II•"'"' • • •• ~· '' • I ;;:. j (· rm lt »., I ! ' ) ·; L .. ..; . APPENDIX A BIBLIOGRAPHY OF ADDITIONAL INFORMATION SOURCES • . , ' • ' \ • ~ ' .. ft • • PART I NEW.ZEALANP LAKE STUDIES Brodie, J .l~·., and J. Irwin, 1970, "Morphology and S~dirnentation .in 1-Takatipu, New Zealand,,n New Zealapd Journal of Marine and Freshwater Reseet.rch, 4 (4): 479-96. Study 7-lf the morphology of the lake floor has shown a srstem of current 17 chan·11els developed by movement of underflows related to flood discharges of, inflowing rivers, o~ turbidity currents generated by slumping of previoc:~ly deposited slope sediments. For Lake vlakatipu, . the surf~ce waters are reported to be Qlear at all times due the continuous sinking of turbid inflowing water. Irwin,, J., 1968, "Observations of Temperatures in Some Rotor·ua District Lakes," New Zealand Journal of Marina and Freshwater Research, 2(4): 591~ 605.- Irwint-J, 1971, :nExploratory Limnological Studies of · Lake Man~pouri, South Island, New Zealand," New Zealand. Journal of Marine and Freshwater Resea~·ch, 5 { 1 ) : 161~-77. Lake Manapouri C·:~velops thermal stratification by mid-sUilllller and continues into late tall~ Near isothermal conditione exist in late winter. Water ·i;emperatu:res below 200m is between 7.8° and 8.0°C throughout the year •. Su:."'face temperature varies between 16.25°C in summer (January-March) and ::: 8.0°C in winter (August· -Se};!tember). Tritium values suggest mixing has taken p:!.1ce to at least 400m~ Irwin, J, 1972, "Sediments of Lake Pukak:L 1 South .Island, New ~ealand," _New. Zealarr1 :"urnal of Marine and Freshwater Res~arch, 6( 4): 482-91 • ............... _,"'~ . "'"·~;. !::~.... ~gh i most or the lake, excluding the delta slope, 80-90$ ·J of l:)_otto:n ·sediments are ·les~ , than 8 microns. At great depths there. i,s .litt+e variation in spring and summer core samples. ,., '~··· .·~ ....,..,"".t ".-J .··.,. .. -~ ~ .. · ·. ·, .. ''-·· .,,; '-· ' ~ -~ . . . ; ' . . ~lo information is given in the repo~t on_ incoming suspended sediment size distribution or alilnatio conditions for the lake. However, the lake is reported to be t~~bid throughout the year with average depth of disc ·disappearances c/f 0.5 metel"So Irwin,. J •, 1974, "t-later Clarity Records F:rom Tt-Jenty-Tvlo New Zealand Lakes," New .Zealand Journal of Marine and Freshwater Research, 8(1): 223-7. Four lake types were studied: 1) associated with glacial activity 2) associated with volcanic activity -3) ·formed by vrin<~ 4). formed by landslide Water cla':'ity values are greatest in lakes of glacial origin, as these are generally the largest and deepest. However, values are affected by glacial silt. Smaller and shallower lakes formed by wind aJ.'ld volcanic activity have lower water clarity values. Irwin, J., 1978, "Bottom Sediments of Lake Tekapo Compared With Adjacent Lakes Pukaki and Ohau, South Island, New Zealand," New Zealand Journal of' Marine and . Fre;3hwater Research, 12(3): 245-250. Ai"ter travelling 1.3 km into the lake, 25 % of bottom sediments are less than 4 micPons in size. However, water clarity values are low for this deep, glaci~lly fed lake. Average depth of disappearance of the secchi disc was lL,9m ir1 May 1971 and 1.6m in April 1974. Irwin, J., 1978, "Seasonal Water Temperatures of Lakes 'Rotoiti and Rotoroa: South Island, New Zealand," New Zealand Oceanographic, Institute Records, 4(2): 9-15. Irwin, J., and R.A. Heath, 1972,. "Winter Temperature Structure in Lake Atiamuri and Ohakur:J., New Zealand," New Zealand Journal of Marine and Freshwater lfesearch, 6(4): 492-496 • .:...::...;;.;;;;.;--.......--. ( \ ~ ~;, ' . . .. • •• Irwin, J ~ , and V. Hilary Jolly; 1970, . ''Seasonal anl' Areal Temperature Variation in Lake Wakatipu {Note),, n New Zealand Journal of Marine and Freshwater Research, 4(2): 210•6 lrw.in, J. J. .and R.A. Pick~ill, in press, "Water Temperature and Turbidity in Glaoial~'fed Lake. Tekapo," .New Zealand. Journal ·of. Marine and Fr'•eshwater Research Surveys or lake temperature. anci turbidity suggest a seasonal cycle of lake-rive~ interactions. Waters are clearest in early spring. Inflowing water either interflows or underflows down-slope to the .deepest basin .. Coriolis force deflects inflowing water to the east. Lake water ·stratifies as summer progresses. Significant diurnal fluctuation~ result from .water travelling through wide braided delta channel. Turbid water, at 5 times the lake concent~'"ation, enters the lake as interflow. Winter is associated with near isothermal lake water at 8°C but the lake remains' turbid. Cold inflowing water (2-3°C) underflows to deepest basin .. Jolly, V.H., 1975, "Thermal conditions," New Zealand Lakes, V.H. J:olly and J.M.A. Brown, eds., Auakland University Press/Oxford University Press, p. 90- l05. Important thermal regime characteristics for the New Zealand lakes investigated show: 1) The coldest temperatures occur from the end of June to mid-August and full circulation for stratified lakes when hotomictic would be at least three months. 2) Warmest temperatures are found from mid-December to mid-March, but usually in January or February • 3) Thermoclines, partiaularily in large deep lakes, form late in . . the warming period because of strong winds and develop very deep epilimnia. (/ ·./ t . 4) . ·Many relatively deep lakes·do not permanently·stratify~· because of" the turbulent waves !.3reated by winds blowing' over long fetcheso . 5) The annual temperature range is not as great. a.s that observed in most lakes in similar latitudes due ·to mild oceanic climate. Jowett, !.G., and D.M. Hicks, 1981 1 11 Surface Suspended and Bedload Sediment - Clutba River System," Journal of Hydrology, 20(2)': 121-130. Pickrill, R .A., 1980, "Beach and Nearshore Morphology and Sedimentation in Fiordland, New Zealand: A Comparison Between Fiords and Glacial Eakes, 17 New Zealand. Journal of Geology and Geoohysics, 23: 469-480. Piokrill, R.A., and J. Irwin, in press, "Sedimentation in Deep Glacier-Fed Lake, Lake Tekapo, N'ew Zealand," Sedimentologr Ma.jor controlling processes of sedimentation in Lake Tekapo: 1) Single dominant inflov :-:~. head of lake has resulted in delta progradation. 2) Unde~flows appear to be predominant inflow mechanism during spring freshets and floods. 3) Small changes in bed morphology can produce large changes in sedimentation rates over short distances. Morphology controls the direction and distance travelled by underflows. 4) Across lake varia ton in sedim<::ntation rates are controlled by . Cor'iolis force deflecting inflowing water. 5) Seasonal cycle of sed. input .. controls temporal variations in sedimentation rate and texture. ... • ·-· 6) Lake level fluctuations redistribute coarse sediment downslope. 7) Rotational slumping redeposits delta sediments down lake. Pickrill, R.A., J. Irwin, and B.S. Shakespeare, 1981, "Circulation and Sedimentati·on in a Tidal-Influenced Fjord Lake: Lake McKerrow, New Zealand," Estuarine, Coastal and Shelf Science, 12: 23-3.7. Stout, V .M., 1978-, "Effects of Different Silt Loads and "Of Hydro-Electric Developments on Four Large Lakes," Verh International Verein Limnol, 20: 1182- 1185. Brief review of key basin and lake characteris~. ~s for Lakes Tekapo, Pukaki, Ohau, and Benmore including physical features, mean· and maximum SECCHI dine readings, and kinds of phytoplankton present. Stou.t, V .M., 1981, "Some Year to Year Fluctuations in a Natural and in an Artificial Lake, South Island, New Zealand," Verh !nternational Verein LimnoJ., 21: 699-702. Both chlor~phyll a content <~d zoo~lankton populations have retained similar seasonal patterns. However, turbidity of the water in both lakes during spring and summer months has shown significant changes from year to year due to climatic variations. Thompson, S.M., 1978~ "Clutha Power Development -Silt.ation of Hydro-Electric Lakes 1 August, 1976," .§!1vironmental Imoact ReJZort on Design and Construction :Prooosals, New Zealand Ministry of Works and Development. ~~~--~. ~ Report describes siltation problems in the Clutha River, processes causing the problems and possible remedie~\. Appendix 2 describes the method used to .determine the grain "~size distribution in the total load of the river from the distribution of sedilllent grain sizes on the lake bed. " . . ,. . .. l l .j . I -..... ~7--l .. a~-qa. .... r.. .. -.Ma. .. • -,..._-2 •. .tJ ·~---- PART II GENERAL INFORMATION Baxter, R.M., and P. Glaude, 1980, "Environmental Effects of Dams and Impoundments in Canada: Experience and Prospects," Can. Bull. Fish Aguat •. , Sci. , 205: 34 p. Brylinsky, M., and K .. H. Mann, 1973, "An Analysis of Factors Governing Productivity in Lakes. and Reservoirs," Limnology and Oceanograohy, 18(1); 1• 14. Data collected from 43 lakes and 12 reservoirs from the tropics to the arctic showed .that variables related to solar energy input have a greater influence on production than those related to nutrient concentration. Morphological factors have little influence on productivity per unit area. Csanady, G. T.,. 1978, "Water Circulation and Dispersal Mechanisms, tv Abraham Lerman, ed., 1_akes: Chemistry, __ Geology and Physics, Springer-Verlag Press, New York, Pages 21-64 Conceptual model developed to describe lake hydrodynamics including special . cases for long and narrow basins with discr;ssions on such things as effect of bottom friction and coriolis force,. coastal jets, and spontaneous thermocline movements near shore. Elder, Rex A., and Walter 0. Wunderlich, 1972, "Inflow Density Currents in TVA ' Reservoirs," Paper 7, Intern?..tional Symposium on Stratified Flov1s~ Novosibirsk. Irwin, J., 1975, "Morphology and Classification," V .H. ,Jolly and J.M.A~ Brown, eds .. , " New Zealand Lakes, Auckland University Press/Oxford University Press, Pages 25~56. Kellerha;Ls, R., M. Church, and L.B. Davies, 1979, J'Morphclogioal Effect$ of U Interbasin Ri.v~~ DiversiQns," Can. Jour~ Civ!' Eng., 6: 18-31w ' ,• I ;::.J I . ' -6 - •• . Kellerhals, R., and. D. Gill·, 1973, "Observed and Potential Downstream Effects of Large Stor.age Project:s in Northern Canada," Proceedings of 11th . -International CQ!lgress on Large Dams; Mad~id, 1973, Pages 731-75·3. Kinnunen, Kari A.I., 1981, "Problems Connected with Modeling Artificial Lakes in Finland," Unpublishgd Report, National Board of \vaters, Finland. Kinnunen, Kari A.!., B. Nyholm, and J .s .. Niemi, 1981, ••Ecological Model of a Subarctic Lake," Verb. Internat. Verein. Limnolt., 21: 102-108. o Variation of EPAECO model calibrated for tempel"'ature with ice cover and eff"ect of wind mixing on Finland Lake Paijanne. o Max. surface temp. in early August ( -18°C). C.l Thermocline at 10-20m below surface-average max. depth at 30m in mid-september • 0 Becomes isothermal by early-mid November. mid-May. Stays ~sothermal until o Effect of wind especially important in early summer when stratif. peric1 starts. Without wind consideration simulated temperature stratification is too steep. Kinnunen, Kari A.I., J.S. Niemi, T. Frisk, To P~yla-Harakka, 1981, 11 Water Quality Mo'deling at the National Board of Waters, Finland," Unpublished Report, National Board of Waters, Helsinki, Finland. o Evolution of th.e F!NNECO model from '!;.he EPAECO model. o New model inoludes: mixing effect of wind precipitation ~f phosphorous ... new temp. correction ice formation r,outine denitrification process ~; : ~~3~~~lr:tf ,, <.::<~·~ -~· ' 0 . In·~e~tigation of some ri7er water ·qualitr models~ . -' . \. . Kjeldsen~' J) .• , 1981, "Sediment Transport~ Studies in Norwegian Glani.al Streams, 1980," Report 4-81, Norwegian Water Resources and Ele~tricity Board, Oslo, Norway. Kjeldson, 0 .. , and G. 0strem, 1977, "Sedimen·t Transport Studies in Norwegian Glacial Stream~, 1975," Report 3-77, Norwegieul Water Resources and :Ele~tricity . ., Board, Oslo, Norway. Ieuenen, .Ph .. H., 1968, "Settling Convection and Grain-Size Analysis.," Journal of Sed ... Petrolog~~ 38: 817-831. Lambert,. A., and K.J.. Hsu, 1979, "Non-Annual Cycles of Varve-Like Sedimentation in Walenese, Switzerland," Sedimentology;, 26: 453-461. 0 multiple layers deposited in lake bed represent continuous-fed turbidity currents generated by hyperpycnal inflow during river-flood stages. o Currents wi:Oh bottom velocities up to 50 em/sec·. were detected during summertime even when the lake is thermally stratified. a· Lambert, A., and S.M. Luthi, 1977, "Lake Circulation Induced by Density Currents: An Experimental Approach," Sedimentologi, 24: 735-741. Saltwater was continuously fed into a tank of freshwater to model turbidity underflows caused by flood-stage discharge. In most cases the height of lake water dragged along by 'the underflow is . about equal to the underflow thickness. Maximum return velocity occurs in the lower (denser) parts of a lake basin. / . Lee, Dong-Yong, W. Lick, and s·.w. Kang, 1981:, "The Entrainment and Deposition . of Fine-Grained Sediments in Lake Erie," J. of Great Lakes Research, 7(3) 224- . 233 •. 0 0 0 0 Provides quantitative data on the entrainment rates. Variations depend on shear stress, water conterJt and t·ype of sedimen:t (size and · mineralogy) • Vertical vat1iation in thin surficial layer active in deposition -entrainment produce different entrainment rates. effec~·or benthic organism not considered .. Main cause of entrainment is oscillating wave action. Report does not include settling, flocculation, and mechanical degradation in calculations of sediment tran~{:lort in a lal-te. Lerman, A., Devendra Lal, and Michael F. Dacey, 1974, "Stoke's Settling and • Chemical Reac~ivity of Suspended Particles in Natural Waters," R. Gibbs, ed., Susuended .So:lids in Water, Plenum. Press, New York, Pages 17-44. • Organization for Economic Cooperation and .Developments· 1979, Joint Activity on Multi-Purpose Hydraulic Projects: The Planning of the Vuotos Reservoir, National Board of Waters, Finland. 0strem, G., T. Ziegler, S.R •. Ekmkan, H.C. Olsen, J. Andersson, and B .. Lun.den, 1971, Studies of Sediment Tra.nsport at Norwegian Glac:ter Streams, Stockholm Univ.ersity, Department of Physical Geography, Report 12, 133 PPo Ragotzkie, R.A.~ 1974, "Ver-tical Motions Along the North Shore of Lake Superior," Proceedings from the 17th Conference on Great Lakes Researchj Pages 456-461. Slow net upward motion bas been documented in Lal<:e Superior. Vertical motion extending f.rom as deep as 190 meters to near surface levels with . ver.tical yelocities up to 30 meters per day have been observed during the period of thermal stratification. i) ' • . I i t f l .! -l .I l l 1 l i j Ritchie,· J.C., Frank· Schiebe, and. J. Roger McHenry, 1976' "Estimating · Suspended Sediment Loads f~oat Measurements of' Reflected Solar Radiation, tt H.L. Gotterman, ed., Proceedings of the 1st Symposium on Interaction between Sediments and Freshwater, Ams~erdam, 1976. Data from temperate region lake has shown that a quantitative relationship exists between surface suspended sediments and reflected solar t•adiation .. . Most. significant in the wave lengths between 700-800 mm. Concent~ation of surface suspended sedimer·~ can be used to estimate total suspended sediment noncentration in a vertical water column. Scott, Kevin, M., 1982, nErosion and Sedimentation in the Kenai River, Alaska," Geological Survey Prof. Paper 123.2_, 34 pp. o Sediment concentration generally lower primarily due to storage in lakes. 0 Give sediment concentration for Kenai River at Soldotna and Kenai River at Cooper Landing. -No turbidity me~~urements reported. -No turbidity-sediment concentration correlation presented. Shuter, N ., K~ Stortz, G. Oman, M. Sydor, 1978, "Turbidity Dispersion in Lake Supet•ior Through Use of Landsat Data," Journal of Great Lakes _Research, 4(3-4): 359~360. . ... Sly, PeG., 1978, "Sedimentary Processes in Lakes," Abraham Lerman, ed .. , Lake_s: Chemistry, teology ·and Physics, Springer-Verlag Press, New York, Page.s 65- 89. 0 Review and discussion of various factors influencing sedimentary processes in lakes including, but not limited to, lake morphology, characteristics of inflowing sediment, and climatic settling .. • . • ~ '!, .... """ ·-· .= • " ~ ' ' • S;.: . ' > : .. • • • •• ._ ~"' ~ ,. ' ; ...... • ~ " • ~ ( ' .. • • ~ l . -:.. . _., •• •. .. .. ~ Stortz, K., R.. Clapper, and M. Sydor, 1976, "Turbidity Sources in Lak.€{~ Superior}:" Journal of Great Lakes Research, .2(.2).: 393-401. 0 0 Strong correlation foun,e:i between . average turbidity and. average suspended load of red clay in turbidity plumes. Major source of turbidity due to shoreline erosion by wind driven waves during ice free season. o For maximum sediment concentration observed in plume = 20 mg/1 T(NTU). 18.5 based on correlation S : 1.3 X T -4.0 o Sediment resuspension in winter with partial ice cover = 106 metric tons o Duri·ng severe storms: range = 5 x 105 metric tons of eroded material/storm. ·Suggest 50% of lake turbidity comes from these storms. Sturm, Me, 1979, "Origin and Composition of Elastic Varves,'~ Ch. Schluchter, ed., Moraines and i.7 arves-Origin, Ger,:;,esis and Cl~ssification, A.Ac-Balkema, Rotterdam, Pages 281-28~. · Sturm, M., _ , i'lDepositional and Erosional Sedimentary Features in a Turbi.dity Current Controlled Basin (Lake Brienz) ,n IXth International Congress en Sedimentology, 5(2): 385-390. sturm, M., and A" Matter, 1972, "The Electro-Osmotic Guillotine, A New Device for Core Cutting," Journal of Sedimentary Petrology, 42(4): 987-989 • "'; ' . Sundborg~ 19· ·eo , . . ' ''Symposium Theme No • · .J:V: . . Reservoir' Sedimenta.t~6nj'u Proceedings . of· the I-nternational Symposiqm on River Sedimentation, Beijing, China, March 24-29, 1980, :pages 1325-1333· Sundborg, Ake, 1981, "Environmental Problems of Re~ervoir Development with ·· Special Regard to · Conditions· in Sweden," Proceedings ·of the ·International Symposium of Reservoir Ecology and Management, Quebecj June 1981, Pages 63- 72. Thomas,. R.L., 1968~ A Note on the Relationship of Grain Size, Clay Content, Quartz and Organic Carbon in Some Lake Erie and Lake Ontario Sediments Wunderlich, Walter 0., , "The Dynamics of Density-Stratified Reservoirs>, --- Gordon E. Hall, ed., Reservoir Fisheries and Limnology, Special Publication No. 8, Pages 219-231. • . ·11' Data from Tennessee Valley Authority field investigations are used to illustrate dynamic reservoir processes and their influence on wate~ qu_ality. Water movement into, within, and out of, the reservoir in the pre~~'-rn1:le of density stratification are described . • \::C ·~·;-.~c~.'.· .. .; .... : . ~~~. z·--· ·1-1 . . ·· : ~ ..... . .. .. . i •· . ... ------.:r~ '"~ .. 41 • . r .. . . . . • ( . ! • ! t . t ' ; I .. . r .. l~ r ~- . ! f 4 ... . ~ " •'&A ·-::(!. , Pi a •• i ALASKA POWER AUTHORITY SUSJTNA HYDROELECTR!C PROJECT TASK 3 -HYDROLOGY RESERVOIR SEDiMENTATION JANUARY 1982 Prepared for: ACRES AMERICAN INCORPORATED 1000 Liberty Bank. Building Main at Court Buffalo, New York· 14202 Telephone (716) 853-7525 Prepared by: R&M CONSULTANTS, INC. 5024 Cordova Street Anchorage,. Alaska 99502 Telephone: (907) 279-0483 ~-3-z..--.~' ~ ~-..../ "' • < ·--, u <' 1 t l • • '· ."' ; ' . 1 .• . ALASKA POWER AUTHORJTY S~SITNA HYDROELECTRIC PROJECT .TASK 3 -HYDROLOGY .. RESERVOIR SEDIMENTATIO~I TABLE OF CONTENTS -.... ~ _.;---.;.,..;;;., LIST OF TABLES LIST OF FIGURES 1 -PURPOSE AND SCOPE OF STUDY 2-SUMMARY OF RESERVOIR SEDIMENTATION 3 -TRAP EFFICIENCY 3.1 -Factors Influencing Trap Efficiency 3.2 -Trap Efficiency Estimates 3.3 -Trap Efficiency during Reservoir Filling 4-RESERVOIR SEDIMENTATION 4.1 -Sediment Load 4.2 -Unit Weight of Deposited Sediment 4.3 -Volume of Sediment Deposits 5 -SEDIM~NTATJON PROCESSES AND SEDIMENT DiSTRIBUTION 5.1 • Delta Deposits 5.2 -Glacial Lake-Floor Distribution 5.3 -Glacial Lake Temperatures S -RESERVOIR AND DOWNSTREAM TURBIDITY 6.1 -Pre-Project Turbidity 6.2 .. Factors Affecting Turbidity 6.3 -Post-Project Turbidity 7 • PRO ... JECTED RESERVOIR SEDIMENTATION 8 -REFERENCES ATTACr·iMENT A -SETTLING COLUMN STUDIES AT'TACHMENT B -ANNOTATED BIBLIOGRAPHY - i - ~ PAGE ii Hi 1-1 2-1 3-1 3-1 3 ... 2 3-3 4-1 . 4~1 4-2 4-2 S-1 5-1 5-2 5-3 6-1 6-2 6-3 7-1 8-1 ~'-zc. ... ?~ ., ., !" ,, " i \, - f • I ' i t I 1 ~ ~' - .. . _LJST OF TABLES Number 3 .. 1 Title Estimated Trap Efficiencies during . Reservoir Filling .. ii - 3.4 l\, v· .,.· ~ -z;:',.) ~ ~-.;·-z -ro · , l . l ( I .•. ' ' ' . L!ST OF FIGURES 3.1 3.2 4.1 ... -· ' •""• 4.2· 5.2 5 •. 3 ·s.4 5.5 5 .. 6 Title ... Trap Efficiency· Curves I\', ·Turbidity. at Inflow' and Outflow Streams . f~r Kamloops Lake, British Columbla · . Suspended-Sediment R~ting C1Jrves, S«:Jsitna River · .. · · Suspended..-Sediment Siz~ Analysis, Susitna River · · Delta Formation at Lake Mead and Lake Li.~'ooet ·· '· Temperature and Turbidity I so lines, Kamfoops Lake Schematic of Sedimentation Processes; ·· . Kamloops Lake Water Temperature Profiles, Bradley Lake, Alaska, and Kluane Lake, Yukon Territory Temperature ProfHes, Malaspina Lake, Alaska, and du.ring Strong Underflow, Lillouet Lake, B.C. Tempenrature Profiles, Garibal~i Lake, 8. C .. 6.1 Turbidity vs. Suspended Sediment Concentration, Susttna River 6.2 Average Annual Turbidity Pattern, Susitna River 6.3 Turbidity vs,. Time, Sett!ing Column Study ' ~ .. - page g .. s .3-5 4-3 5-5 5-6 5-7 5-8 5-9 6-4 6-6 6-6 A.1 Suspended Sediment Concentration vs Time 1 A•2 Settling Column Sample (28,000 cfs) A.2 Suspended Sedirraent Concentration vs Time A .. 3 Settling Col\; Sample (17 ,200 cfs) -iii - ~ ·~ !L ''!> .. t f ! i t • f \ ~· j t l ' t .• 1 -PURPOSE AND SCOPE OF STUDY The purpose of this report is to present the results of analyses of _ .sedimentation within the proposed Watana and Devil Canyon Reservoirs.. Analyses of the sedimentation were complicated due to the large percentage of very fine suspended sediment contributed by glaciers in the Susitna River headwaters, possibly making results from the usual analytical techniques'to be in error. The approach to analyzing the reservoir trap. efficiency was to first analyze the trap efficiency of the reservoirs based on the capacity-inflow ratio. A literature search was then conducted to determine the trap efficiency of natural glacial lakes and to gather information on their sedimentation processes. Settling column ·.studies of suspended s~diment samples from the Susitna River were then conducted to eather empirical data. The information from these three information sources was then assimilated to project the reservoir sedimentation processes .. The annual sediment load entering the reservoirs was estimated using the flow duration sediment rating curve method . for the nearest gaging stations and an estimated sediment yield for the area draining directly into the reservoirs. The unit weight and volume of the deposited sediments were estimated using standard techniques. Modelling of sediment . deposition within tk 1e reservoirs was considered but was not deemed appropriate or necessary at this time.. The settJing properties of the very fine 11 gfacial flour" are such that it remains in suspension for long periods of time, affecting . the reliability of the model. In addition, the estimated volume of sediment deposited in Watana Reservoir is less than 5% of the total volume of the reservoir. A large proportion of the sediment will be deposited in the dead storage portions of the reservoir due to the slow settling characteristics of the very fin.e suspended sediments. Turbidity .could not be assessed on a quantitative basis. However, pre-project conditions were assessed, and a qualitative analysis conducted of probable turbidity patterns in the reservoirs and downstream river. susi10/x ' 1•'1 \ (\_ \ . • 2 ~ SUMMARY OF RESERVO'~ SEDIMENTATION T.rap efficiency estimates based on detention -storage time indicata that . 95~100 :Percent of sediment entering · Watana ,Reservoir would ,settle,. even shortly after filling of the reservoir starts.. However, . data from Kamloops Lake, British Columbia, a 3 million a·cre-ft. glacial Jake confined in a narrow valley, indicates th~ .. , up to one-third of the incoming sediment passas thr9ugh it. Median g~a~n size at the lower end of Kamloops Lake is about 2 microns. For the Susitna River near Cantwell, about 15 percent of the suspende.d sediment is finer than 2 microns. Preliminary estimates indicate that between 70-95 percent of incoming sediment wc~Jid be trapped in the reservoir, with particles ·smaller than 2 microns possibly passing through the reservoir. As Watanzl Reservoir is Jonger; deeper 1 and has ·a longer retention time than Kamloops La'ke,. it is possible that even smaller particle sizes may settle in. the reservoir. Under the worst case sedimentation condition of 100% trap efficiency·, an ·estimated 472,500· ac-ft. of sediment would . be deposited in Watana Reservoir in 100 years. DevJI Canyon Reservoir would have a slightly lower trap efficiency than ·watana ·due to its smaller volume. However, most sediment will be: deposited in Watana 1 the upstream reservoir. · Assuming that both reservoirs have a· 70% trap efficiency 1 an estimated 109,000 ac .. ft. of sediment wouJd be deposited in Devil Canyfln Reservoir in 100. years. Three lnterdependent but distinci: .sedimentation processes occur in glacial la~es. ·These processes. consist of: (a) deJta progradation into the lake; (b) sediment density surges down the steep upper slope, depositing material on the lake floor which had previously been on the delta slope; and (c) river plume dispersion, which spreads the fine-grained material throughout the lake. The sediment-laden streamflow will initially spread through the lake E!ither as surface flow, interflow 1 or underflow 1 depending on the r·eJative densities of the Jake water and the stream water. Turbidity downstream of the reservoir will decrease sharply during the sumrner imonths due to the sediment trapping characteristics of the reservoirs. Jt is likely that the turbidity of water released in .· the · winter months will be near natural conditiuns, as suspended . sediment in .near-surface waters should rapidly settle once the . reservoir ice cover forms and essenti~lly quiescent c.onditions occu~. ~' . susi10/c 2-1 ; ... ;• ;, ~ ' 3 -TRAP EFFICJ ENCY On;y a portion of the sedim.:!nt brought into a reservoir is normally trapped and retained, with the balance being transported through and carried out of the reservoir by outflow water. The ability of a reservoir to trap sediment is known as its trap efficiency, and is expressed as the percent of sedim~nt yield (incoming sediment) which is retained in the reservoir. 3.1 -Factors J nfluencir.g Trap Efficiency The trap efficiency o1~ a reservoir depends on the sediment char- acteristics and the rat\~ of flow through the reserv~ir. As stream- flow enters a rese.rvoi~, the cross-sectional area is increased, resulting in a decrease in velocity with. a consequent decrease in sediment-transport capacity. The coarse-grained particles are dropped immediately near the head of the back w.a~er, with the finer grains remaining in suspension until they ar~ deposited farther into· the reservoir or carried out of the reserW'ir in the outflow water. The percent of total sediment trapped in the reservoir depends on the fall velocity .of particles and the rate at which the particles are transported through the reservoir. The fall velocity of particles in water depends on a number of variables, inclydlnr; t-he size and shape of the particle, its chemical composition and the vi$COsity of the water. · Electrochemical pro- cesses play an important role in determining' the fall velocity of fine particles less than 10 microns in diameter, such as clays or glacial flour. In some arl,as, clays and colloids may aggregate into clusters which have settling properties similar to larger particles, and conversely, highly dispersed particles may stay in suspension for iong periods of time and transported out of the reservoir. Although no mineraloqic: analyses of suspended sediment from the susitna River are available, there are mineralogic analyses of suspended sediment from a number of surrounding glacial rivers. Clay minerals (montmorillonite) were absent from all samples except from the Knik -Matanuska Rivers, where Jess than 2 percent clay minerals were deter:.ted (Everts, 1979; Tice, et. al, 1972). The ·rate of flow of water through a reservoir determines the detention -storage time. The ratio of reservoir detention - storage time is influenced by the inflow voi 1Jme with respect to reservoir storage capacity and the outflo"Y rate. Watana Reservoir has a storage volume of 9,650,000 acre-feet, and Devil Canyon Reservoir a volume of 1, 092,000 acre-feet. ·Average annual inflow at watana and Devil Canyon Reservoirs is 5,880, 000 acre-feet and s 630 000 acre-feet, respectively. Watana Reservoir will release a~pra'ximately the average annual inflow each year, so that the average annual inflow to Devil Canyon should not differ susi10/d 3-1 l.---- •• • ~ignificantJy from pre-project conditions. The ratio of capacity to •nfJow for tha two reservoirs is 1.64 for Watana and 0.16 for Devil Canyon, ... -- The size and IC"Jcation of reservoJr outlets also influences ·the trap e!ficie~cy, . with ·bottom · outlets more effective in removing .· the htghar sedrment concentrations· near the bottom. Either mufti--level ou~lets or single outlets at . ~·depth of about 200 feet will be used. Netther type of outlet ls neci"r the reservoir bottom. Consequently 1 the effects of the location of the rese·rvo!r outlets will not be further considered in this study. 3 .. 2 -Trap Efficiency Estimates Although several factors influence trap efficiency, the detention - storage time appears · to be the controJiing factor in many reservoirs. Brune (1953) developed the generalized trap efficiency envelope curves shown in Figure 3. 1, which relate trap efficiency tO the ·storage capacity -inflow ratio. Using the Brune curve, thEa following ,.ange of trap efficiencies were estimated. ·Reservoir Caeacit~/ I nffow Maximum Minimum Median Watana 1.64 100 95 97 Devil Canyon 0.16 96 84 92 The Brune curve was developed on dutenticn storage time. However, the variation due to differing reservoir shape, operation, and sediment characteristics has not been determined ( Gottsc:hal k, 1964). Using the Brune curve, it would appear ·that about 97 percent of the sediment entering Watana Reservoir' would be trapped 0 Devil Canyon Reservoir would trap about 92 percent of the ·sediment passing Watana Reservoir and any suspended sediment picked up in the intervening river reach. Consequently, it would. appear ·that very little of the suspended sediment load entering · wa~ana Reservoir would eventually leave Devil. Canyon Reservoir. However, some concern has been expressed that the very fine glacial flour would remain in suspension and pass through the reservoir ·system. This may not be detrimental in the summer,· but if it remained in suspension throughout the winter months, winter releases would be turbid instead of clear, as is the natural co.n- dition. ·Consequently, a literature review of sedimentation (Att. B) in glacial Jakes was conducted to esti~ate the trap efficiency of glacial lakes. Settling column studies of water samples from the Susitna River were also conducted to determine the sediment deposition rate under quiescent conditions (Att. A) .. susi1J/d 3-2 Estimates of sediment' trap efficiency at two lakes immediately below glacier-s were on the order of 70-75% (Ziegler 1 1973; ostrem~ · 1975). ot· more relevance is trva e.stimate of trap e.fficiency for· .. Kamloops · Lake. by Pharo and Car·mack (1979). KamJoops Lake is somewhat simila.r )n morphometry 'to Devil Canyon Reservoir. It is 15 miles Jong . by l .. 6 miles wide, and has a volume of .about 3 million acre-feet. Mean annuai flow of the Thompson River entering the fake is about 25,000 cfs.. This results in a capacity -inflow ratio of about 0.15, very similar to that of Devil Canyon.· Observations. of turbidity at the lake inlet and outlet (Figure 3.2) led Pharo· and Carmack to estimate that nearly one-third of the incoming sediment ie carried through the Jake and not deposited, resultin·g in a trap efficiency of about 67%. · · Use of the Brune curve on Kamloops Lake res• ... !!ts. In trap efficiencies ranging from 84 to 96 percent. Thls would ses to indicate that the sedimentation proce~ses occurring in this deep glacial lake resuJt in a lower sedimentation rate than in those reservoirs analyzed by Brune .. For estimating the volume of sediment deposited in the reservoirs, trap efficiency estimates were in the range of 70 ..... 100 percent. A trap efficienc:y of 70 percent is considered the minimum efficiency, and allows an e,stimate for the maximum amount of sediment passing through Watana Reservoir and entering Devil Canyon Reservoh". The trap efficiency of 100 percent allows an estimate of the. maximum amount of sediment deposited in Watana Resevoir. All bedload is assumed to be deposited. 3.3 -Trap Efficiency during R~~ervoir Filling. The trap efficiency of a reservoir is sometimes reduced during its fiHing period due to the reduced storage capacity. An anaJysis was conducted to estimate the effects at Watana Reservoir. It wa.s assumed that reservoir filling would begin in May. The increase in reservoir storage was estimated using average monthly flows for the :Susitna River at Watana. The Brune curve was used to estimate the trap effic:iencies during the fiJHng period. The results are tabulated in Table 3.1. The high fJow in May and June fills the reservoir to such a level that trap efficiency rapidly reaches the 95% level. The r·eservoir would. be about 30 miles long within 2 months , after filling commences,. Consequently, it would appear that sediment. deposition during the filling period wouJd be similar to that during full pool .. susi10/d . 3-3 \ ~· u • TABLE 3~1' ESTIMATED T-RAP. EFFICIENCIES DURING RESERVOIR FJLLJNG · )··. :: end of Month (1st Year -__ -~-. May :June 1-15 July 16-31 July ,. August 1-15 September 16-30 September susi10/d ·Flow at. YJatana--( cfs 2 -: 10-,406. 221293 20,344 26,344 • j-8~012 10,61.4 10,614 3-4 Required Fldw Trap -Efficiency at-G·old Creek , (:Brune Curve) s,opo 7,000 . 7,000 '12,000 12,000 12,000 7,000 83 94 95 ·95 96 96 96 i . .. ' . : . . t l. ; PREPARED BY 1 100 90 .'eo. ~-~--o- ~60 Q, Q .::so c .. . 540 "CJ .. fJ) 30 20 .. · l .~ I I I l-I I I 't I l I I i I I I I I I I I I I I I I • I I I !nvetooe c~:rves for 1 I normal ::onaed f!!S!!fVOif' I I I I 0 Normal I)Cf!Ced rese;vo·is t---r-~~-~~--~~·~-;--+-+--+--io-~..; Cl Normal s:oncec res~rv01rs ...r111\ Slu•c:•nq or _vent;ng ocerortons tn effect · I 0 O!!SIIfinq e:s.ns · , 11 Sem••C!Y. t!~!rvo•" O.OOS 001 002003COS007QI 02 0.3 C.S 0.7 I 2 3 5 1 iO Co"actty•ln~low ratio, acre•ft capo::ly/ccre•ft annual inflow (_Brune, 1953) , . sor------------------------------------------------ • 40 _......_ :INFLOW TUr:IBIDITY ~-·:OUTFLOW TURSIDIYY . JAN I ns I ... ,. 1 .&I•R•L 1 ... , • 1975 (Pharo and Car.mach, l979) . . 3.1 -TRAP EFF'lCJENCY CURVES 3.2-INFLOW a OUTFLOW TURBIDITY LEVEt..S ·:~ KAMLOOPS LAKE , B.C. . FlGVRES .3.1 ,3.2 · • 4 -RESERVOIR SEDIMENTATIO~· 4.1·-Sediment .. Load Suspended sediment. -discharge relationships were established for gaging site~ on the Susitna River. The rating curves for stations near the proposed reservoirs are illustrated on .. Figure 4.1. Using t.,e flow-duration -sediment-rating curve method, the average annual. suspended sediment load was estimated for the following four stations. _ .. _,. _G..-.;;;a .. g:.;.;i n;..;.giiiiif,· ·_s;;.t.;;,;a;;.;t;;;.io;;.n:.:.... ___ _ Su~ ... na River at Denali MaeLaren River near Paxson Susitna River near Cantwell Susitna River at Gold Creek . ~ Average Annual Suspended ·sediment Load (tons/year) 2,965u000 543,000 6,898,000 7,731,000 The suspended sediment load entering Watana Reservoir from the· Susitna River is assumed to be that at the gaging site for" the Susitns ·River near Cantwell, or 6,898,000 tons/year. No bedload data is available for this site. However, the channel is well-armored, and little bedload movement. appears possible. Bedload at Susitna River at Gold Creek is estimated to be 1.6 percent of suspended sediment load at. 37,200 cfs. Bedload movement in the Tanana River, a braided glacial river north of the Susitna River, is about 1 percent of the suspended sediment load at Fairbanks (Emmett, et.al, 1978). Consequently, bedload ente¥"'ing Watana Reservoir was conservatively .estimated as 3 percent of suspended sediment load, or 207, 000 tons/year • .. The sediment contributed by the tributaries directly to 'the reservoirs was estimated from the unit sediment runoff per square mile between the gaging sites near Cantwell and at Gold Creek. The difference in annual suspended sediment loads at the two sites was, divided by the difference in d~inage areas, resulting in a unit sediment load of 412.4 tons/mi. . Bedloac:l is again assumed to be 3 percent of suspended sediment load.. The resulting tributar.y .sediment load is 429,000 t~ns/year of suspended sediment and 13 1 000 tons/year of bedload at Watana Reservoi.r and 260,000 tons/year suspended sediment and. 8, 000 tons/year bedload at Devil Canyon. The total annual sediment. load enter·ing Watana Reservoir is estimated· as 7,547,000 tons/year. The estimated trap efficiency of 70 percent for suspended s~diment results in an estimated 5,349, 000 tons of sediment being deposited per year ... with the full 7,5471 000 tons/year deposited at 100% trap efficiency • s~si10/e 4-1 The . total annual sediment foad entaring Devil Canyon Reservoir . conststs of the sedimsnt bypassing Watana at 70% trap efficiency, 2,198, 000 tons/year, plus the tributary sediment load of 268~:900 ~ons/year,. for a total of 2 1 466,000 tons/year. Using ·trap efficaenc•es. of 70-JOO per.cent for suspended sediment results in 1,729,.000 · -2 1 198,,000 tons/year being trapped in Devil Canyon Reservoir. · 4. 2 .., .Unit Weight of Deposited Sediment Estimates of the volume of sediment deposited in the reservoirs require the unit weight of thi! deposited sediment. Published values of 3 the unit weight of depc,sited ,sediment vary from 18 to 125 lb/ft. , depending on the sedirnent size, depth of deposit, degree of submergence ·or exposur·e of the deposit, ~nd length of time the material has been deposited. The initial . density for each of seven sediment sizes was estimated using the Trask method. The 50-year and 100-year unit weights were estimated us!ng the Lane and KoeJzer method (1958) as modified by Miller (iS63). The sediment size anaiysis developed by the Corps of Engineer$ (1975) for the Susitna River at Cantwell (Figure 4.2) was utilized to estimate .the percentage of each size range of suspended sediment entering Watana Reservoir. The resulting average unit weights for suspended sediment cjter ?O years and 100 years were. estimated at 71.6 and 1Z" 3 lb/ft. , respectively 1 assuming the sediment was always submerged or nearly su~merged. The unit weight for bedload was assumed to be 97 lb/ft . 4.3 -Volume of Sediment Deposits Using the sediment loads and unit weight previously developed, the following sedimentation volumes were estimated. Watana 100% trap eff. 70% trap eff. 50-Year · 240 1 000 ac-ft. 170 1 000 ac-ft. 100-Year 472,500 ac-ft. 334 1 000 ac-ft. Devil ·Canyon w/Watana at 70% Trap Efficiency . 100% trap eff. 70% trap eff. 79 1 000 ac-ft • 55,000 ac-ft. 1551000 ac·ft. 1 09, OOQ, ac:• .ft. •, Devil Canyon w/Watana at 100% Trap Efficiency 1 oo% trap eff. 70% trap eff .. susi10/e 8,600 ac-ft. 6,100 ac-ft. 4-2 16,800 ac-ft .. 6,000 ac-ft. .. 'Ul \>; J ,• J~,. ~ }~ II .,./ .. { I • -., .... u - w (!) 0:: <( :r 0 (f) .0 PREPARED •• . ~ ;6_. 5_ 4- ,. . . . . • I,OOQ,_,_...L-L..t.....I-L.L.L.I..f-Lu..&..L.a.:..J..Lif-LU.I.IL.U.II~..L.Ll..f.J.J.I.l.f.lLU.jf-Ullf-WlflLUt-J.-L-IU-L..I-LJ'-'-f-J ............ .LU.J.J.fJ.UUULI~L.J..i-Lu.&.p~I.UfWLlflWJi--I-.1-1-"--'-11.-L-L.L.f..LIL..:-J,,:.LU.JIL.:.L&.L 1,000 2 3 4 5 6 7 8 9 10,000 2 3 4 100,000 SUSPENDED SED.IMENT DISCHARGE (TONS I DI'Y) SUSPENDED SEDIMENT RATING CURVES· UPPER SUSITNA RIVER BASIN 2 4 r. 6 1 PREPARED f . rJ ' vl (') I . ...() (\ ~ .. I 11.1 ... L!+. ~ j. i 1. ' •. J,.... I·· l .. .. ·.· .. ··. 'I' ..... . ....... , ...... : .f.'! ... 1 ... 1 .. . . ' . -~. .. .. I.... .... . ... :... .... .. 11.1 1 •:. f.•••; • • •· .. ., . ... .• .. • ..... ~ ..... ·~ I' ••• .. < I' ••••• : •••• ~··-~ t .. ,,, f • .... . -:..·.·· .. .u ......... 1··· ····t·· ·~· ·· .. · . . . .. .. ... ... .... ,.. ... . ....... ~:.:: ···I·· . . . .. . -·-. -. .. . . -·· ... .. . .. . . . . . . . ... w·. . . . . . ...... . . . . .. ... . ! . .. IU., 1--. -.· -i-......... ·--·-.· -r· ··· · -~·· ·-._, -·-..... ~ ·. ~!""--,--!... ·-·· ··-... ·~ •.. .. _ ............... ,. ·• ..... 0.. . ........... j ,.... • -···· • • • I P .. ) . . ............... ~ . . . . . .. . -~~-· . .. ·::.::.:::_• :·:-:.: :::: .:· t I ; ·" · • · •· • .... : · t ..... • • ·,. t • •• · " • -l " • 11 :!:~~~ ·i~~~ ... _~U~~-_ENoi~--~;,·t·tEliT S ·, ~E Ar~~L YS.I ~"!. . ·.~:·.::·:;-. ~ <: ll;:!! <:(:~ .. ::i .. l/( =i.-·-... ~ .... •· -..... .. •. • ~ -----I ~ •• -· ......... ..,..... . . , . • ...:·.J ..•. ..•• ,. : . :d~u tlE. gGEtm §TAn on ... :: .:· .: . :.:: · :::: ::· .: .. Y. ·.,~ . e1 .... _... •..•. SUS I HIA At GOLD CREEK • --··· -r-·--:-:-:-:-::--!-::f:{ -t~~J:) ............ -:!:·::~t E.:-~! ------SUSITtlA Near CAtH~~Ell j__j :·: :1 ; .. /!·· ~~~~ . . liJ to :::: :::: --SUSITtiA r~ear OEfiALI ---,. ~ ~··v~1 --------~ · ·: :: 1.:.,_: . ----MACLAREN Hear PAXSOU :--:-· ~-t-•. ~:: ..:..-:-:. :. --~· . : • :i·· :;:: ~-...... . • ·-••••• -• •• ., • -t ...... -, • ,....,._ --·~ I . I I U) 10 : : • . . • . • -• ...L r-L. --· ·--- : : . . : .. ! : • : I . . • . ·-• - - _ .. -,_ Q . ..... • • - . • • . . : • . . :I . . I-' I': : ... ~ . 'L . ' W •••••• ·•• : I '''''I' 0 :••1:• •!, _,/ , .0 ..,... • • • "' ..... Jll I • .. "". . ~ . . . ~ .--.t{ 11 .••• • . • •. ~----·I .• •. •. "' ~ !---·---·-r·- 0 -.::.:·:·:· :::· .. '1 I I :. . .: :: : .. :·:.t·· :I' : k"'-,_.~...a... ! ~ ., . •• ...... • • • • ··I • . • . . • . • • . .... • I.Jl' • .. ...... ~ • I : 0 •• • • • • • • t • _...:.:... • • • • • ..... • I 41. ~-~.,.::r,..,. ~ • ,____;__co=·. -. 1-· _ -1-- 10 .. • ... • . . • • • • . I I • •. • • ... • • • y . ! --~ ... I . I . . 3; ·:.: :·: :.~. :. I. . i . .. .. : :::. :. e"J.-~:..-~~'=' ; I I r. • Z GO .... '• • :: .. , . : i . · . : · !_::,_~· · -~ ;.,., ·• 1 • ·-t--t--t--t-+-. . . . . L . . . : !~~"""~· ... ~ 40 : ···-·:: • __j__,._;_. . :. ~-~~---:.:_--:.. . :: ~ i --..:...., __ . t-; : : . . : J~ : : I ~,.; • .... fo"-i . : ' -.· .• • ~-·. I·· . . ' . ; . I ; . . . . . . . . . . . . I i . ~.-~ ~-,.. . . . . . i . I .I •· , .. • 41\ • .. --1·1"'"": ~:· ,_..-·• • ...... -• ·• .. ~ I 0:: 301-:-::-.. -. :-+-.-.. -·:-:-:-1 . -t--.--·-·::;;::o: ~-t:;.;;_;::;-I • • I • ' I . -ri-T--:---" W ·~.:· .... ~! :,...,:....~-&--'1-"':"'!l i ... : .. :·,. i ....... ·····• ·•· :., .. I • z ······-·-· . . ~-. I • ·•· • •• • • ,. • • • • I : -zo ---·. -. ..:-J•r:.-.... ~ • • • • - ---- ..... f-i, :...=U. L~. f.~_...~:"" ~ . . i. ! .'1'. _,..;..;..J __ :_: .:. .• '-!.:, ... ~ t.~ ... .::. -.· . .. ..:_:.L J.J, .• :~ .· ..... ·L ..... ·L .. : .. :.. . ... .... ' _..: t ~· .. . ___ .. .... .. . ... -- - -~i-. ----- - -.... " ... --· ,,.-· ___ ..... ,._ ...... ---·-· ·--~ .. z -ru ~ . ~ : · ·I : ' : 1 L~ ~. = = : . · ·: : L, :: . i , i · . .. · . : ~ I : : ~ . ~ · : i::. ! r 1 : : . . W IO -l-1-~ -·-~---·-!--·, ~ . :: ; : : ; .. : : ::.. . . .. . . . ,, . . : . : :: .. , . : I : .. : : : : : : : :::I::: ,. : . , ~ • ~· :· ·-· •• . • • • • • • • • • ' t I • • • • • • I . , I .. ............... •· ... t !''"' \.,. · ·· I . I --·· - --· ·---·-----~ 1·-- --~-.. ._ -, ·-, ·--· •· ..... -----_, ... -.!-.-l .... -· --... --· · t .. t~ .,,.,,. .'1· ,.,' • ·,• .. :: .. · ... • •. • .. •• • • ---:--.• ~-= · · · .. · .. · · 1· · ... · · · · · ·· · .. · I .. · .. I : 1 ·f n · :·;ii · :· ..... ..... : ..... +.. .. ··i -·· ~ · · · ... · = · · · • 1 · · · .. · · . I' 2 :}::::.·. l:::.·' ~::: :::: :::. ::· .: :· :;!: ::. :: : ·!·J:: . . .. . .. 1. , ,, ·.:. ::· : . , INTERIM REPORT . , ,, 1 :~p::;: ~::: :::: :::: :; 2. ~~ ~ ·::· :. : " . : ·:::·: ; : :: ::; : :::: .' _1:-,. • '::-'; ,:_ _ SOUTHCE NTRAL RAIL BELT l '·' ~D.· !~~~ ~:~: i~~: + :f ~-~ ~~:: .. '· --~ ~~;~:~·:. ~ : ~: ;:·.~~ ~:~: + ~ ~:,:f-.:: :~ ::~ ·: coi~::~~E ~~~I~~:s ill.· o.u. . -~-• "i . i I : ' . .. . .. . . .. .. . . ' . . . ·-.. f.. ~ . I .. • .. • • .. • • .. ... • • .. .. • • II ···1;-· ill Hii1ii: · 'j · ·•· ... -1-r;·· :··· ............ r·:···· 1 1 i \ 't. t 'l L, I. 1 b.OOI I .01 .I i.o PARTICLE SIZE IN MILLIMETERS SUSPENDED SEDIMENT SIZE ANALYSIS SUSITNA RIVE' PREPARED . FIGURE £• .. ~,, ---~------------------------------------~-.... __ . ' •' ' • • t ...... ' . • 5 -SEDIMENTATION PROCESSES AND SEDIMENT DJSTRIBUTION ·.-~,--.......o--..;..;...o. Sediment distribution within a lake or reservoir ls· dependent on several factorsr including sediment characteristics, inflow-outflow relations, reservoir shape 1 and reservoir operation. When a .. stream enters a reservoir, its velocity drops sharply due to the large increase in cross-.sectional area, with a ·subsequent decrease· in the stream's sediment-transport capacity. As the velocity decreases 1 the coarser particles are depositeo in!tialiy, forming a delta at the river•s mouth. Much of the fine··grained suspended sediment is carried past the delta to be deposited in the deeper , parts of the lake. 5.1 -Delta Deposits As a stream enters a standing water body the channt!f form and process are altered in the backwater conditions. Bed aggradation and reduced flow velocities extend upstream some distance from the lake. Although most of the fine-grained suspended sediment passes through the backwater zone, much of the bed load is de- posited, thus lowering the bed slope and raising the water surface and stream bed elevations. As the delta builds 1 ·the front forms a shar:p slope break over which the remaining bedload is dumped . As sedimentation continues, the river channel changes to accomodate the changed profile so that sediment continues to be carri~d to the delta front before being deposited. Examples from Lak!;. Mead on the Colorado River (Lara and Sanders, 1970) and glacial take LiJJooet, British Columbia (Church and Gilbert, 1975) illustrate · the resulting morphology (Figure 5.1). A second process, noted by Pharo and Carmacks (1979) in Kamloops Lake, sr;tish Columbia, is that of episodic density surges which redeposit material initially dumped on the delta slope. Sediment density surges differ from the third process 1 that of river plume dispersion (as overflow, interflow 1 or underflow) 1 in that density surges are episodic and relatively short-lived compared to the relatively continnous nature of river plume dispersion; sediment density surges involve the redeposition of material already deposited on the delta slope, rather than the uninterrupted extension of river-borne. sediment into the lake; and sediment concentrations within sediment density surges dominate the fluid density and drive the downslope flow. There will be considerable variation in th~ summer water revels at Watana Reservoir, resulting in a complex delta formation at the head of the reservoir, with the bed elevation· trying to re-.estabJish equilibrium. susi10/f 5-1 . .. 5.2 ""' GfaciaJ Lake-Floor Sedimentation It, has been. noted by several authors (Embleton" and King, 1975; Bryan, 1974) that glacial lake-floor deJ:.osits beyonci the area of delta growth are predominantly fine, becoming increasingly so as the central or deepest parts of the lake are approached. The very fine material is the glacial rock flour which discolors the wat~r of gJacial streams and lakes,. and which often requires long p~rrods and quiet water conditions to settle (E.M. Kindle, 1930). ·· Deep lakes offer the best opportunities for the trapping and de- position of the finest material. 1 n shallow gfacial lakes, the exis- tence of more powerful currents prevents the settJing of fine materia§, and often cause it to be washed towards and through the lake outlet,. resulting in its loss from the lake.. · Glacial lake floor deposits are· often laminated, caused by sudden changes of grain size from finest mud to slightly coarser silt between successive thin layers, and often accompanied by a color change , between layers. These laminated deposits are known as rhythmites, with an individual pair of one fine and one slightly coarser layer known as a couplet. The thin dark layer of a couplet consists of very fine and partly colloidal material, repre- senting a period of slow deposition under very quiet water con- ditions, such as when a lake was frozen over in winter with little or no meltwater entering. TheJ light-colored coarser layer indicates a more rapid period of sediment deposition under more disturbed t:onditions, such as when meltwater is entering the lake and lake currents are spreading silt over the whole lake floor. Some couplets form on an annual basis, and are known as varves. De :ieer (1912) indicated that the fine lamina of a couplet was the r~:.sult of deposition in winter when the lake was frozen and melt- water limited.. The abrupt break at the top of the fine lamina represents the spring thaw when new coarser silt enters the lake •. Confirmation of this theory has come from pollen studies of rhyth- mites, and from studies of. modern glacial lake-floor deposits, such as that made by w ... A. Johnston (1922) on Lake Louise, Alberta. NonannuaJ rhythmites may also form from sudden fluctuations in discharge, such as from the bursting of an ice-dammed lake upstream, unseasonaJ warm or cold spells, or periodic storms. The deposition of the coarser laminae is attributed to t~rbid underflows and interflows of denser sediment-laden water from gJaciaJ meltwater streams.~ The . phenome~a of . un~erflow_ a'!d interflQW have , been noted an numerous stud1es of sedJmentat&on tn glacial lakes (Emerson, 1898; Kuenen, 1951; M~t~ews, 1956; Gilbert 1973; Bryan, 1974 a, b; Theakstone, 1976; ZJegler, 1973; Qstrear:,, 1975; Gu~t~vson, 19~5; Ph_aro and Carmack, 1979). The frequency duratJon, and 1 ntens1ty of the underflows and interflows 1 have been attributed to str:eam te':1pe~atu~e a!"ld sediment load, temperature and susl?ended s~d1ment d1str1butJon rn the lake, and take bathymetry, especJally near the stream mouth .. susi10/f S-2 I -· . . . i . • L. \ The uninterrupted down lake transport of the silt and clay -sized· material was noted as being due to the interflow process in Kamloops l,..ake (Pharo and Carmack, 1979). During summer the· lake surface waters warm more rapidly than those of the ·incc!'ning · river. The-river water first moves to the plunge line, where it sinks .,and flow~. down along the slope of the delta as a turbulent gravity c.~rrent. The plume entrains lake water as it sinks, causing convergencr.' at the lake surface and resulting in a color change at the plunge line. When the plume reaches a depth where its density ls approximately equal . to that· of the lake water, the . river plume with its large suspended load leaves the bottom slope· and spreads· horizontally along lines of equal density (tempera- ture), as ill_ustrated in Figure 5.2. The interflow is indicated by the tongue of· turbid water extending from the face of the river delta at a depth of about 20 m. The flow parallels isothermal . surfaces, and is modified by the Coriolis force so that the river :.pfume is directed towards the right hand shoreline in the direction of flow. The preferential movement to the right ... hand side was evidenced by both higher turbidity readings and coars~r sediments along the right-hand shore of the lake. A schematic of the three interdependent but distinct proces_ses controlling sediment trans- p.ort and deposition within Kamloops Lake is shown in Figure 5.3 .. As previously noted, glacial Jake-floor sediments become increasingly fine as the central or deepest parts of the lake are reached. Grain size distribution in Karnloops Lake varied from 0.5 mm near the lake inlet to 0. 002 mm (2 microns) near the lake outlet. Accumt..~lation rates decreased with distance from the delta, with rates of 8. 00 em/year adjacent to the delta det:reasing to 0. 35 em/year near the lake outlet. Not all sediment was deposited in Kamloops Lal~e. Measurement of inflow and outflow turbidity levels indicated that nearly one third of the 'incoming sediment was not deposited, with the percentage varying with time. A.s illustrated in Figure 3.2, turbidity at the· lake outlet increased following periods of very high turbidity levels at the inlet. 5.3 -Glacial La.i<e Temperature_! Deep glacial lakes commonly show temperature stratification (Mathews, 1956; Gilbert, 1973; Pharo and Carmack, 1979, Gustavson., 1975), although stratification is often relatively weak. Bradley Lake, Alaska, (Figure 5.4) demonstrated a weak thermocline in late July, 1980, but was virtually isothermal by late September, and demonstrated a reverse thermocline during winter . months (Corps of Engineers, unpublished data). Temperature data for Kluane Lake (Bryan, 1974b) are also illustrated in Figure 5.4. Selected thermal profiles f:-om Malaspina Lake, Alaska, are illust- rated in Figure 5.5 (Gustavson, 1975), as are bathythermograms showin the destruction and reforming of the thermocline in LiUooet Lake (Gilbert, 1973) during periods of strong underflow. · Garibaldi Lake, British Columbia, also demonstrates ,a thermocline : in the summer months, as seen on Figure s,.s (Mathews, 19.56). , • ·~~~. ~ • [., < ,_ ·' susi10/f .S-3 . "' ,i • 0 ., .. • > 0 .&:1 Ori~inal Col~m~do .River profile ·o PREPARED c: ;g -a > • . ~ Oistanca Ouni . . Profiles of (A). Color:~do River at Lake Mead (after .Lara and Sanders. 1970, p. 155) and (B) Lillooet River at Lillooet Lake, showin~ that the greatest accumulation on an established delta occurs at r.he delta front and on the foreset beds. Lake Me:1.d datD. reproduced .by courtesy of the. Cnited. Slates Bureau of .Reclamation. (Church. and Gilbert, 1975) DELTA FORMATION . LAKE MEAD AND Ll LLOO.ET LAKE -· , .. j l .I ' ... . . . • .•.. ' ' ' -e - . . ' __ ...... ~~ ...... • ._ ____ .... ______ ., ___ 4.5--.. -.. -.,--... ,._... . . . .. .• . . .. ~ ... ; 120 . TEMPERATURE (°C) ......... ... ...... , ... ·;.:·; 29 JULY. 1974 . . . . 11 ~" ·-~ .._..,.~=:·... . ... ·;~~ .. ~··.:.. ··~ .. ···.-; .. ;....;~ ··~ .• •· .. :.:,'Of••· .. ~: ··. -~--·: ··:!• ···.;;;·;·-:··· . .. .. :-~; ·: 140~~o~--------~s----------~,~o~--~-~---~~~--------~------~---~2S~ 19 . ............ ..... .. . ...... , ~ ,· . TURBIDITY ( J.T.U.) 29 JULY, 1974 17 DISTANCE {km) STATION 14 12 9 • (Plan and Carmachs, 1~79) 6 ~-3 4._--··9S TEMPERATURE 6 TURBIDITY JSOLJNttS KAMLOOPS LAKE :~ I . . . . ... INFLOW NOTE: SLACK ARROWS DENOTE SEDIMENTATION: ~ LIGHT ARROWS C:!:NOTE F\..UID MOTION : => .. Schc:m:nic illustr::uion of sediment tr:msport :~.nd deposition mc:-.:h:misms assod:ued with ·:1 river ent~rins a. lake assumed to be temperature str:nified. Th~.cquilibrium dl!pth is that at which ~he inftowiny river wnter has the sa,.,e density as the lake wnter. and at which the river water tlows down t!1e lake. · (Pharo and carmachs, 1979) SCHEMATIC OF SEDJMENTATION PROCESSES KAMLOORS LAKE -!I~ ._":' ·. • l ~ "-"'-,. 4 ~-~H--=~· •..•. _. ... (.a44f# -E - -~ 1- 0.. L&J Q -e - :::::: t- 0.. L&J Q W~TER TEMPERATURE, °C 0 2 4 6 \ T ·· f ,-\ -~~ 71? /Rn / . . .20 ~--'~'~·~--~~--~~--~~----~-----+~--~'r/----~----~~~_, \ \ i I I • ' \ ' . . J • . ' . I ! .I • ' \ .' .. I l\ I I' • i I ' ; •I I . 1. I : I I I ! I : I I • I : t • • ,. • ' I o I I . I I I • I : i I· • I 1\ 7 1473078(·\ i ' l : 1 • :y ; I I o I I I I I ' l : \: : i I I 1 , .\r i 1 I • . ; \ I I t I • . fC":l"H~_,S "l~ . Nr..INF~RS· .'-r I I o I •. ! I • • I WATER TEMPERATURE, °C 0 2 4 6 8 lO I . I l ' . . l •I l : I . 1: . l i --~ • 1 I ·I 7J J ; ' I ; 2 !lB -·-' • . 1-.• I I •"~ 20~----~--~~--~~~--~--~~.~~~~~--~i-----~-----~~--_, 40 60 'T ' • · I I ~~~-4----1----;---:-t---t,-. · I I l ' .. / : , . r • 1 II l j I /l j · I /: ··~·~~~~~~~~--~~------~----~ . i If. I I 0 -• • : ' ) I. / I .. \ r· n vm ·~n 11-4&' , 1 ;;;17 ~ .,, : . : I ! ! I I • I I . ' ~~ ·~--~-+~~--+-----~~;u97.~,n,-____ -+------+---'~'--+---~·--· +------1 +-' I I . I 1 > . 1 ' r: ,... ("f ••• PREPARED BV 1 .0 2:r 4.0 MALASPINA LAKE i -en 201 SELECTED THERMAL a: £1..1 .PROFILES ~ l l.&J I . i~~z{ "' p.5 ~-• 1 rli,~::~ 401 40 .. z :: l-· a. t:", • 2.0 ~&. LaJ 0 Q l v a: 201 LaJ t-. r <t 401 == WATER TEMPERATURE IN •c • • .~\':tl~l" h"ml'fi':ltll':_C: thr!Jin~hnut ~f:\l,,ct•ina T.:d:r •l•..-1'a':l•t'~ with ,frTill ~\lr·lmnnll'rri.· ·•·m• .. t • • f f':-'· ,nl,·:;uty m~trlmtcnt $l:tta."'n 1 hJ:. Jl "here llwrm:1l J•r .. ulo· \\ .... wr .. r·h~t 'I ''" t•rnltl•. :tl -~n•w •n•· .. r .. nla"tnll11:d by d.1tc: t i/~1) on \\'hiclt thC?· wae ft'<;unlt'\1. l'rutilrs ma• .... ua-.1 in l'1;u 2 -e - {Gustavson, 1975) August 19 71 Bathythennograms sh~Jwing the dcstntc:tittn and refomin~t of the thc:nnal struc:t:.1re of Lillooct Lnke a~soci att'd with t.wo periods of s•trong interflow and underfl.o~. Numbers refer to d~tes of the observations in July und August 1971. • {Gilbert 1 19731 !;::_,:· {_~ . ' \,_# PRI!PA~·sn·· ·" ~<: . . . . • ..... _ ..... -e - :c: f-a.. IJJ Q • ~ i ' l I l ' . I I I 'If! • 1 •• 1 t • i I I _, I ' :; I .I I I I I I_ I I t 1 ' ; I I I ' ' ! ... ; . i ... . . , : I l i ' . . . ; I . ~ I ' • I ! I • J •. : . I ! ! : I • I I I . ! I I I • I I i i I I I ' i . I . I ! i 1 I j . I ! I t I .. I I l I I I ' I. • • ! I I I . I I • • • • I I • ' i • · .... , ... -...... ,.,. ... i ' : . . ' i I :"""' t-. ....,, ~~ ! I .. I • ' : ! I I 0 I :a 1 : . I ' I I I I I I I I I ' • • ' . l • . I I I . : . I 'I .; l : I I I ! I ' : ' • ! I ' ' : I ' 0 I I I I I I ; I '· ; I .. .. I t I • I ' I I • . I I I I ! . ' I 1 i i. o I ' . ' ~ ! ! ' . I . . . ; ' ' I . I l I ·! ' I . 1 I • • . I • I • i I I 250~--~--~----~--~--~----~--~--~----~--~----~~ R & M cor.:SUL.T ANTS. .. WATER TEMPERATURE PROFIL-ES GARIBALDI LAKE, BRITISH COLUMBIA ·i·FlGURE· for: I I l ... f 1.· • r . l I 6 -RESERVOIR AND DOWNSTREAM TURBIDITY .. The . reservoirs will have a significant impact o~ the turbidity of the Susi~na River between Devil Canyon and the Susitna-Chulitna confluence, with the river being considerably ress turbid in the summer and possibly more turbid in the winter. A rigid quantitative analysis Js not. possible with the available data. H~wever, a qualitative analysis. discussing the interrelated factors will shed some l.ight on the probable post ... project turbidity in the reservoir and downstream of Devil Canyon. · 6.1 -.E,re-ProJect Turbidit)_( . . -·: . . . Turbidity data for the Susitna 'River were reviewed for the Gold Creek and Vee Canyon sites.. The U.S. Geological Survey gathered turbidity data during 1974, 1975 and 1976, with turbidity visually measured in Jackson Turbidity Units (JTU). R&M Consultants measured turbidity using photoelectric detectors during 1980 and 1981 at both the Gold Creek and Vee Canyon sites1 with the data presented in nephelometric turbidity units (NTU). The units are approximately equivalent, but due to the subjective nature of visual observations, nephelometric means are generally considered more accurate, esp~cially in the lower ranges of turbidity (less than 40 NTU•s). C~ The nephelometric turbidity data was '!ogorithmically plotted against verti(!afly integrated samples of suspended sediment concentration for the Gold Creek and Vee ,Canyori sites. The plots, regression equations and correlation coefficients for both sites ar~ shown on Figure 6.1 o Best f~ts for the data were obtained by the general equation .T = a [ss] , where T · is turbidity, ss is suspended sediment concentration in mg/1, and a and b are coefficients. Sediment concentration and turbidity have a very high correlation. Available USGS data were also analyzed to obtain relationships for discharge and suspended sediment concentration for the above two ga~ing sites. The following relationships were derived for turbidity, suspended sediment concentration, and discharge. Susitna River near Cantwell T = 0.3SS8(ss) ·8;0J6 n = 9, r 2 ~ o. sa ss = 0.0000553 Q • , n = 37, r = 0. 703 Susitna River at Gold Creek T = 0.2496(ss) ·;5~~1 n = 6, r 2 = 2· 95 · ss = 0.000673 Q • , n = 332, r = 0.585 The poor . correlation coefficients between . suspended · sedirn~nt concentration and discharge are tc be expected on glacial rivers 1 where gtacjers contribute irregular amounts of sediment •. susi10/s 1 6-1 u ' • -. ' } Even t .. hough the determif'1e coefficients are rather poor, the regresston equations are still useful in determining the seasonal variation _ ·in · turbidity. The . turbidity-suspended sediment concentration equations and the suspended sediment concentration -discharge euqations were used together with the · mean daily flow summary hydrographs for the two sites to estimate the monthly pattern of turbidity. The summary hydrographs used are found in the Corps of Engineers Interim Feasibility Report (1975).. The resulting estimated average annual turbidity patterns - are shown on Figure 6.2. The actual turbidity patterns show much greater variation in a single year due to the larger variations in suspended sediment concentration. S.2 ... Factors Eftacting Turbidity Reservoir sedimentation processes described in Section 5.2 are the main processes affecting reservoir turbidity. The sediment-laden river will enter the reservoir as either overflow, interflow, or underflow, depending on its density relative to that of the reservoir waters. Once it reaches its equilibrium density level, the inflowing river plume spreads horizontally along lines of equal density. The flow parallels isothermal surfaces, and is modified by_ the Coriolis force so that, the river plume is directed towards the right hand shoreline in the direction of flow • The turbidity at the reservoir outlet is al~o dependent on the residence time of inflowing waters in the reservoirs. Watana Reservoir has mean annual bulk residence time (volume/mean annual streamflow) of 600 days, with Devil Canyon having a mean annual bulk residence time of 60 days. However, the bulk residence time varies with flow, with thf1 bulk residence time decreasing to about 110 days for the mean annual flood entering Watana. The residence times for summer flows are affected by the relative reservoir level. As the reservoirs will be filling during the early high flow periods, the residence time would be somewhat increased above 110 days for the breakup flood .. The long residence times indicate that an ice cover would form before much of the la.te summer flow passes through the reservoirs. Settling column studies (Attachment A) indicated that suspended sediment rapidly settled out under quiescent conditions, with turbidity also rapidly decreasing (Figure 6.3). Once an ice cover forms, essentia)ly quiescent conditions will exist in the . reservoirs, with wind action no longer disturbing the surface, and inflow dropping to minimal levels. Consequently, relatively rapid sedimentation should commence once an ice cover. forms, with surface waters rapidly clearing beneath the ice. The turbidity of inflowing waters is also quite low during this period 1 thus contributing .little additional sediment. susi10/s 6-2 . t •• r, i L 1 t 1 ~ . . .. _,, . 'P, ' -______ _. .............................................. ____________________ ~--~,~··~··:_' -~___j 6.3 -Post .. Project TurbiditY: A discussion· of the timing of certain events occurring within· the reservoirs and Upper Susitna River will serve to help de·scribe the changes in the turbidity pattern. Breakup normally occurs in tate April or early May on the Susitna River. Suspended sediment concentrations and turbidity sharply increase in May, and remain high into September, as the glaciers are contributing significant amounts of sediment nurir.g tt,efr melt period. However 1 the ice cover on the reservoirs will remain longer than ice now remains on the river, as the lake ice will not be flushed out of the s~"stem by breakup but will instead melt in place. Consequently 1 relatively quiescent conditions will occur through most of the lake untn the ice cover has significantly decreased, whic.h will probably not occur until late May or· early June. Even though turbid water wiil enter the reservoir in early May 1 an increase in turbidity in outlet waters should not occu~ until early to mid-June. During the summer months, tur~idity will increase as suspended sediment concentrations increase at the reservoir inlet. Pulses of sediment may pass through the reservoir when very large sedimertt co11centrations enter the reservoir, such as during a large flood, but they will be sharply darnpered. The pattern will probably be similar to that shown· at Kanloops Lake on Figure 3.2, except that the decrease should be even larger in the Susitna River system due to relatively larger size of the reservoirs (longer residence time) .. Downstream turbidity can not be accurately quantitied, but tentative estimates indicate that is possible that it will not exceed maximum values of 35-45 NTU during peak flows, and will normally be in the 10-20 NTU range during !1ummer months, based on cursory estimates from flow suspended. sediment concentrations 1 trap efficiency, and reservoir outflow. Reservoir turbidity will decrease in the downstream direction as the larger sediment sizes settle out«> rn September and October, inftowing turbidity levels to the reservoir are significantly less than summer values, as the glaciers contribute less meltwater and sediment. Ice cover on the reservoirs will normally start to form about the third week in October. Once the ice cover forms! essentially quiescent conditions occur, and turbidity in the upper levels of the reservoir shou;d rapidly decrease. ~ ~ ><~ ·..__ .... ":- v. '2 -3 2 -toz.., .. susi10/s · S-3 : -~· -· • • -· .. -:,:) t-z - )-... 0 -al a: :,:) 1- ~O('j. E ; ! ! I ! . I i : . ! ~ : ! ! ! ; :=+: . "~ . . ; I I ' . / . . I . ' I -~ .r i .. . I • . t • I• -~ ; '! ~· ~ ... I I I i I I • • .:>U~I l N ~~ n; IYt:.:n ~I iLl ' I i I ·I . I . . ·a : : i I I 'I . ·-_ .. .:.. I ~ 1!\, y ., i I ! < I . : I I I. I; :• !t'• ;,;11!1 I !I•' 1 I I I I I i II 'TUUl::Lr ~~1::""1\.. 1 !",):'" y: . I 100 I I. _! . , , : I··. li';. I : i : ; ! ::; il d t::i:I!IH I!H: I I I I ; I II I i j l! II I!! '!·I! .T7 · V.!~:· .. t gn -~ ~~ ro sn :;: SQ .40 _i ~n 20 ... I . ·' . .· . ; . .,..~ • . :I • : I , . ' I I I '/ . I! .-••. l . . •I • .. I . ·lh · •• 1 I 1 J· ::. . .-;-,, .. ; • l I .4..W. :;I '11, I I ' . . i -~-,, ·. ,•:• -~ ~ 1 I I ' I I· . !!'!l I!•• . I • tl '-"" i" i! I h•l Ill! J J . i ! I I I! I II II • l!j I I :!!t l I ...• I ! .. .. . i . . r•., • ; 1: ,.-:.: l:iH ii•i: lin. i i I i I I i Ill i i li ii :tl:i;i ' ! ,: .. ,, '• • i ! t i II I 1 I 'd !i;: t : ! ~ l , .. I iii w ITII 111!1 fli! liill i I I I I I I I I il iTiTT lillll;;g ':I I 1n ~ ' ' 1 '' 'I! Jl '1 •! !••'' • .. l I Oil::"• 'I i!II!H• ::11 llll: I 1 I I ! I I I'll Ill til"h:· I ~--e ~.. ~ 7 6 5 4 ~ ? ,. '"" ""'"' ·c . . Qt: .... 7 ' "I • . . . y ......... . . . ! ; --;- 1. •:: . 10 T -= n ;z.r;;;t:;;R ft.: .::l . , .. , I . ., '!! f"'l• ': ·l't a.c: ·IC ~\ • ;-;-1:. I •: --... . .., . . ' ··I · 'I' ! ! I I . ..... !t ,.;. ., I I ! I..! I I If i Ill .!" r-= J !:H5 t • I I I • .. • I . 2 I• : I • ; ! ... •: f!.i :: I , 1 ,,.,~ :::· : o· :Qc '.:I' 1: .: ' • ; ! • :....--. r::;i '; fl:~ !, .. ! l I i I I f . ; , .. 1:. . .. -. l:i. lt : l il: 1:::1 .. !! ·,. l'•i I I i :I II iii ill I i: n t;:,; . I t • ' • • 4 5 6 7 s 9 100 I • I I 2 SUSPENDED SEDIMENT CONCENTRATION ( mg I I) .. . 4 ; . . ; . I~ . • !' l• .,1 1.:.·1· ... i l j I ' 1 " ll,, 11 ... !•::1 = I .J I• ··-!1• , .. i 5 . . I·· I• ,· : ·: .. . •' II•L 1: .:. •i!• ., .. H•il I ! J i i I I I 6 7 a 9 PREPARED BY' . l, -~ -z_ -/O 3 PRePARED. FOR: TU R B I 0 IT Y V S. SUSPENDED SEDIMENT CONCEN'TRATJON I"' A . .. ... ~. '~ ::» ... z - >- t- 0 -t'D a:: ::» ... .. -....... . ·----·------1··-. -.. ... ·-. . i·... .. -•. ~ .... • -·--. t 'j ----I ; . ,. . . l i t ,.._ -I' ' • ~..,..,_ ... "' ~ ----t , --e:~~+-----~~--·-·-·--·--~---_-____ ,~~----------------~--------------------·------------------ -.... 10 --.... "' ·' ' i . t •• ~ 1 --, ._ .... ..._,: i ._) -· --.. ,. . . i· . i -• . • ~ . -----r-1'"'-. ~.--'1 . -.--,-·-----... --------....;. ___ _ .... ·-· .. . .. , .... --··;-... --, ...... : .. --i ---·~ ··-1. : ~~:;_-··--=:·::·~; ~ :~_:··J_· . ~~~-1-=--:-~~~~~·:.~:~.:-~~~;SV.Sl"J:N~.:RtV~~ AT GpLD __ c~E.E~. ;so. 1. _ ·::.~; : : ... :::.. .... '" .. -·±· ---. 1---:. -I -;---; ..• \ . ·-.i -.. ·-· L --; ... -l-·--· . . . L --... -••-·• :f.--·-. •i·--·-··~-·· .'-··-•-/'-i•-••··-· 1---· ,., .. ---·I • .... .,: -·-·•1""'' i . . -·-. .. . . I j . . -·-I .. . -· \ • . • -·: ·-· • : --I - . . . . ... - : ··------···--·-·· --;-·----~---··-;·--··M ·-, t .. -f---.:_J-· --· r --... ·j ·--·· 1 -~-1·---·: I:: ....... --.:=--~~-=--=--=-~:-~·:. : .. J-: ... -: .. :j:. :·=-·j'1·-~c-1: -·· : i ·. ::~: 1. :..·~-~--~ -~-··.;: ----·t :.:-_ ··· · r:~ ~=· ~~--!~=-.-_:t=:.-.:::-l:~-=:~"":.r:-..:-.. :..-f~:-·:..:.= :l· ::::-:: lr · .: ·-t-=-=~=::~.=--:·+-~: ::-: J .· ··-.. · .. ·. : ' ! I '' ~ 'li , . .!. :--.~... ---~-: ~---±:--:}---~ --.: .. --.. 1['·---:-tx=----;· .l--·~---·---j---·--i -. -=·-_ -_ --: l·-·-. . · ·. I ----:J--,--:-. l---:-1·;-----· .... ,--------· ·: -·-· . ----· .. ! . ·--· i j--·--.J-·~-:-r·-j"""'-~-.. /+·-. l'"'t"l-·-:--+·----+-·--·------·l ';.. -·-·-· +--------.;-.;:.-:....·:-. ~·-~·r-------!-'""'--_ .. __ 1+-...:'-:-' ---~·~· ~· --i~~~·--..:,:·-~·-+· ~ii.·-~------1--~-·-------·--~ I ~ 1:1 • ' ~ f r---:-.. . .._;-.-:-~'---+1 ~---~---4-.;-;_L~ Y.--=-:-·-~··'-~-...J..-__ 1_ ..J_ ·---~ -·····--~ ___ ·-• _ 1 • -., ;--r--: ·-· , ·T 1 .. • ~--!.. ---·· -~--'---· :----;-::~ · -\t-·; · .. -/ ~t::=..SUSITNA 'ElVER -4"-· -.. ~--·-' ~..:._-.--=------. ·-.··; _;_ ---1=---, . f ~~-: -~--: ·~r::-:~: j .. -B· ~EAR"'-tANIVJEIT--.J~-..:= it ..... • •• I • • • . ,, I • • '\· 1/ __!____:_~ I 1 · . • • . :_ . • ~· : I e • : , • : ' • • ~ • , • • • 1 • ,---:--=-; • ' • : • • ; ' : -. • : • I ! ' I • -=., -::,. • \ ': • t-• .__ . • ,-, &....:.. • • ---l -: I . .. ' · --· : : · . _ ---.. --,--1 .• ·' '.• · .. I !· '.~ i: · .· ·• ~ i •. l • t • • • ·'I : : ~ :j . ·--Q1A'-\.-. I T . ------· --I : ,. : ' i • . ' a;. . •. • • • • • I ~ . I . l • ; I ' : -;;-;-:--• : ; • . : ' • ; . _. ~t \-=1· . .J ' . I ! ; • • • ' -·. ,--;---t---.--:---·--~·-~-1·1.----· ,-·--·-~, --_....:_---1--r · --, ·ir--~-t---1---,-,---···--r------- ...,_ I • $' __ __J I • 1 + \ . \ . . I :----- . : :~...:..-=:__t~:----: ; --;--. =-=-r·=------\ J... . ---·=i=----·~_1.., -'---••-• :----1. ~ --· I -.• ...:_,_ -i---· ____ ,+J-\-----+--:--··-~ . . . I : • I • . -i -:-:-' I . \I \ . 1----· ........ ~ . -I~ : ; ~~ . --:-1-:-:-:±--1-:-'~--:-.-1-·-±--·'-·\,~ . j.:._:_-. ; . . . : '...lt L: ; : : ; -; . I ---::}: ___ :---,. . :_ -~-~=---~ ~.-,.-•-----=--'...;..._--I -----1-----~ ·-. -----f----.,· ---I : -· ' I , . I I \ . ~ t. "".., · : I l • i . I I . t· ·\-· i ; · .-···---I -H '----r------; ------------· : I . • I I I . I I ·-• . I ! -~ ----j• • --:::1--~----· ·-· -------·-----; . ---1-----.,~ .. ,:-: --:1 . -. -t-__:_~~~__!....-+---·-, ~ :--I, J. !-• -j.f------t -I . -\--·--\----r--------~ . -.------.-I ,, I ' I \. '-~ ·---'-----1+--------.o I =1.._ • .-:.--• 1 ...l_' ----,f-~~~-~--.. ~..1 L.---i-... ·----~-----· -·-Ji; • r-• ---1·-·--I I ----~-j·,,-----·--• -----.-------r ---.·-·--·------1-~ -~--·· .'--- . i ···----·--.....:··---·-J -------i----___ ..J. .. ___ .,. -·--· ·-----· • A. ____ ..,.......,.-• _.._._ --. ,_,....:._,. __!,.,_!, ___ ~ • .....!~ i. --~:~· .. --~-~ .L . .!..-'·-l·-..!.-...:_-\_..!..~--l ... ~-----L-1. ,•_ ':-.-! .. !..J_ .' ... !::)-:-'. -~.1 . , Fe J . • I • , , = -·--s·--JAH--Er·i MA -APR-:· MAY-'i-·iJUN--·t-JUt .... AUG-;-SEP·-: .. oc:r·-:· NOV'"i ·oe:-c-:1 L--------.. ·--r---·I .. --"---~ ---~----~-------r·--·--· . ..,·. ----1·----• • J , ! ' " I --~~ . • t _j ~-----i--·--:-·-·-···: ... -.. --i-·---,--j··---i---·--i---·--r-...:__ ,--~---·--.-·---! TlME OF YEAR * curves are estimates based on the mean daily flow smnmary hydrog.raphs and £rom regression equations relating discharge~ suspended sediment concentration, and turbidity. Turbidity in a single year displays greater daily variation. INC. . . AVERAGE SUSITNA ,..;_r:; ANNUAL TURBIDITY .PATTERN ~~ffi: RIVER FlGURE 6 .. 2 . . . ..... •• ' • -!---~·-.... . • .. -·--..-.............. _ ·-···,._·t !_ .... ·--t----· . . ....... r-----.. ___ ....,. __ _ • I --···-·t····- ... . .. --,.._.--~}----..... ·• ·-~··J-~~­ ·;------.. { .. ---------. ., ·-~---·~-...... ·---~-·-.. i ..... ·---· •• J ""··-·---~ ··-- -t ·- . ! I .. ---• •• -~· • I t • ··----· , . ·--. --· ---.. . ---.. j -· . ·::.~-·-t ·-. -.. -. ·-i·--···· ;--· ----·-. -·~----[-·--. .. --r-------·-·, --;---J-···--... -------~-­ ... ---.·---·~--. -r---.--.-·• ... --__ _.._~---.. ·' . . -· ---·-·. --,---. -· ..--...-~ -----1 .... ·-.... --·--·---. . --~ --' ..... ,..._,--+-·-·-... -,....._ ... __ ~---···------· -·- ! __ , __ ..,;.._ ____ ,_,_____ ·-·-.. L_ ·-• -•.. - ---;:---·--.l--: ! ,., __ --_ _. ____ --~-.. ! . --~ ... ___ ....;._..., ..... __ _ ~----------~--~------------------------·-----------~----------------------1~------------=---~~--~~--------.. --------·~--·~--­ ---~----;--~-~-••-I -:-----------------·--~··-----------------~~t---~·--------~---~ ~.---~----·--·~------~-----·-----~~--1-----~·--~-------·---~-----,f--·,,------------r---~--·-··---~ -'·---------~---1...--·--.... -·-----·--·· •·co.-----. .., --..---• 1111: .. -...... ~·-;·------.-----l---...----·----· -i···------.. /·-.... #'" -----: -;-·-----~~-~--~----------.. -:_........... __ _..,;,4··-..... ----· . , ...... ........__ .. ~ ------....... .-. . . -... ·-' ----··-·-' ·--.. ~ . -·-· . ·-. -!· ./--. -----·-:-·---,.. -.... ------------.A! ... ·'""'·----·------1---. ··----. -----··· .. .. ,~ ........... -1· ··---···--.. -____ :_ ~ ...... ·-·-· ·-. ., . ---------------·-~-.-··_-_-___ --______________ ~~~·~-~·~~--~-~---_-_-··--.-·-~------·--.. -----~·----------~~--- -·---_ .... o -----,.., ----- .----•• II.) -··-___. _____ ... ·- -· ------·-· ---··--·-----··--·--·-·-----·~~----· --~---~-------~ ~-----·---·~---~---!~~-----~~---------·~~~-; . . _____ .............. . ___ Q. ·-·-:~~· --~·-·-----.;..-------·-:---,-. ' _·· ...... -. -~~=:. ------.......-J..--• --...... -·•.;; I .. _ _. ---...... •· ( nJ..N) · J-..tiOlS~nJ. ··· --":"·· ·· -~ . • . ·r .. ---. ·• ----· -~· -.. --·------··-· • -· ·--· .... * •• -··--.. ··-----:o--·-----"-(~,·: ·--··-·--····-----:----1----··-· .. ~. ·-··-. ~ --.... ·--.. -.... ~ .. _ ..... ! • • . f --··-··· . ---·-· -1.--··· ____ _. __ .... ···---~~ ....... .. ·.- Q w a: ct Q,. w a: Q,. -Cl) a: ::,\ 0 :r.: - L\.1 :! .... >-= Q r.u cr.: ~' w a: a.. -~· - (/) > >-.... 0 - a: LLJ > -a::: <t z 1--(/) ~ (J') >- 0 ::l 1- (/) z ~ ;:::) ..J 0 u :: .. C) z .,. -...J 1- 1-w c.n . en ..... ~ ::< ·!j ~ en z 0 p -. ... .. = '. .. .. . . ( - • < «' 7 • fJROJECTED RESERVOIR SEDIMENfATION ¥< iLWS4A . . Trap efficiency estimat~s using the Brune curve indicate S,t)•lOO percent· of the incomin'g sediment:. will be trapped in· the rt=servoirsl even shortly after reservoir fiiling 1 bt.it sedime.ntation studies at glacial lakes indicate that fine glacial sedime~t rpay pass: through the lake. Delta. formation at the head of the reservoir -wilr be constantly adjusting to the changing water level. Sediment passes through ·the channels on the delta to be deposited over. the lip of ·the delta.. Depending on the relative densities of the lake water-and the river, the sediment-laden water. win either enter the: !ake as ovaf"flow 1 interflow, or underflow (turbidity current). It ts probable that the turbid summer flows of the Susitna River will in_itially dive below the $Urface, seeking ari equilibrium density layer. T'he settling process wHI thery cqmmence somewhere below the surface. E~timates of the· total amoL!nt of deposition of fine fJ:aclal sediment in the reservoi;:-os are somewhat uncertain., Glacial lakes immediately below glaciers have trap efficiencies of 70-75%. Kamloops Lake, B.C., retains abo,ut 66% of the incoming sediment., Sediment concentration at the cutlet of Kamloops Lake increased during periods of high sediment inflow, which would correspond· to high stream flows. Kamloops Lake is a natural lake, so retention time of high flows decreases to about 20 days during the spring freshet. However, Watana Reservoir has significant active storage capacity. During the May -July period the reservoir will normally be filling, so that outflow will be much less than inflow. 'The increased residence time due to refilling of the reservoir would tend to allow more of the sediment to settle. Once the reservoir is fuJI, the.re may . be periods of increased turbidity downstream following, periods of very high streamflow, s!milar to that evrdeoced at Kamloops Lake on Figure 3.2.. The .median grain size at the lower end of Kamloops Lake wa.s 0. 002 mm; and clppeared to be· uniformly distributed across the lower end of the. lake. The suspended sediment size ~nalysis for stations on the upper Susitna River (Corps of Engineers, 1975), shown on Figur$ 4.2, indicates that about 15 percent of the suspended sediment entering Watana Reservoir (Susitna River near Cantwell gaging station) is smaller than 2 microns (. 002 mm). The trap efficiency ·of Watana Reservoir is estimated be between 70 -97 percent, with only the material finer than 2 microns possibly passing through the reservoir. . . The' minimum assumed trap efficiency for De~il Canyon ~eservoir is· 10 percent, based on data from other lakes. However 1 it is possibie that the trap afficiency may be much lower 1 as only fine material with very sfov. settling rates would pass through \Vataria· Reservoir. · susi10/h 7-1 .~~--------------~-----------·------------ .. u .• ~··.· !!. i I, • Bas4~d on th~ reslJI~ of the settling column studies~ (Att. A) m'uch of the su$pended sediment still in suspension when ~n ice covE;~ forms would · settte,. as quiescent· conditions would -·soon b-e · . prevalent~· · · susi10/h J ! • L. ' . I L .. 8 -REFERENCES Brune, G.M. 1953. Trap efficiency of reservoirs. Trans. Am. Geophys. Union, June. U oS. Dept. Agr. Misc. Publ. 970; p. 884. Bryan, M. L. 1974a.. Sedimentation in Kluane Lake. Pages 151-154 in V. C. Bushnell and M.G. Marcus 1 eds. Ice Fieid Ranges Research Project Sci.entific Results, VoL 4. American Geographical Society, New York NY 1 and Arctic Institute of North American, Montreal 1 Canada. Bryan, M. L. 1974b. Subfacustrine morphology and deposition, Kiuane Lake, Yukon Territory. Pages 171.-1·87 in V. C. Bushnell and M. B. Marcus, eds. I cefield Ranges Research Project Scientificr Results, VoL 4. American Geographical Society 1 New York, NY 1 and Arctic Institute of North American 1 Montreal, Canada. Church 1 M., and R. Gilbert. 1975. Preglacial fluvial and lacustrine environments. Pages 22-100 in A. V. Jopling and B.C. McDonald 1 eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists. Tulsa, OK. Special Publication 23. Embleton, C., and C.A.M. King. 1975. Glaciai geomorphology. pp. 532-558. John Wilny and Sons, New York, NY. Emerson, B ,. K ~ 1898. Geology of Massachusetts. U.S. Geological Old Hampshire County, Survey Monograph 29, 790 pp .. Emmett, W .. W., Burrows, R. L., and B. Parks. tr:;;f1sport ·in the v,c:inity of Fairbanks;· Geological Survey, Open-File Report Alaska., 1978. Sediment Alask~, 1977. U.S. 78-290 1 Anchorage, Everts, C. H. 1976.. Sediment discharge of glacier-fed rivers in - Alaska. Pages 907-923 in Rivers 176. Vol. 2. Symposium on Inland Waterways for Navigations, Flood Contr~l and Water Diversions. 3rd Annual Symposium, Coiorado State University, Fort Collins, CO. Waterways, Harbors and Coastal Engineering Div., American Society of Civil Engineers, New York, NY. (;~er, G. De. 1912. A geochronology of the last 12r000 years ... cr. 11th lnternation Geological Congress, Stochholm, 1910, 1, . p. 241-258. susi10/i 8-1 *f:D" l""lilllli ........ [, :~ ~ • Gilbert, R. 1973. Processes of underflow and sediment t~ansport in a British Columbia mountain lake. Pages 493-507 in Fluvial Prpc7sses · and Sedimentation,; · Proceedings of the · 9th Hy.~rology ·· Sympasuim 1 . University of .A·Jberta/ · · Ec.tmenton. Canada, May a-9. .Subcommittee on Hydrology I Associate Committee on Geodesy and Geophysics, National Research Q;ounc:if of Canada.. · · ·. Gottschalk, L.C. 1964. Reservoir sedimentation, in Chow, V.T. (edot). Hand.book of Applied Hydrology. McGraw-Hill, New York .. Gustavson; T .c. 1975. Sedimentation. and physical limnology in progiacial Malaspina Lake, southeastern Alaska. Pages 249-263 in A. V. Jo·pfing and B .. C. McDonald, eds. Gla:eiofluviaf and ·glacioJacustrine sedimentation.· Society· of Economic Paleontologists ar1d Mineralogists, Tulsa, OK. Special Publication 23. Johnston, W.A. 1922. Sedimentation in Lake· Louise, Alberta, American Journal of Science 204, pp. 376-386. Kindle, E.M. ·1930. Sedimentation in a glacial Jake, Journal of Geology 38, p. 81--87. " K(Jenen, P.H. 1951. Mechanics of varve formation and ·the action of turbidity curr-e~ts I Geol. for Stockh. Forh. 6, 149-162. Lare, E .. W. 1 Koelzer, V .A. and J.M. Lara., 1958. Density and compaction rates of deposited sediments. Proceedings .ASCE, Journai of Hydr-aulics Division, Paper 1603, April. Lava, J.M. and J.l. Sanders. 1970. The 1963-64 Lal<e Mead Survey, U .. s. Department of I nter;or, Bureau of Reclamation Report REC-OCE-70·21, 172p. Mathews, W.H. 1956. Physical limnology and sedimentation in a glacial lake. Bulletin of the Geological Society of Americ~~, 67:537-552. Miller, C. R. 1963. Determination of the unit weight of sediment for use in sediment volume computation, U.s. Bureau of Reclamation Memorandum, February 1 i. Ostrem, G. 1975. Sediment transport in glacial meltwater streoms. Pages 101·122 in A.V. Jopling and ~.C. McDonald, eds. Glaciofluvial and giaciolacustrine sedimentatson.. Society of Economic Paleonta~ogists and Mineralogists, Tulsa, OK. Special Publication 23. 8-2 . l ~ I 1 ... ! • \ . : L f "! . i .. ~. ",, ~ Pharo, c. H .. , and :e. D .. ···Carmack. t979~ · Sedimentation . prodesses in a)shor:t residence-time. intermontane lake, Kamloops .. )·L.a~:c, Srlti~h Columbia. Sedimentology. .2S :523-541~ Theakstone, W.H. 1976. Glacial lake s;adimentation, .Austerdalsisen, Norway. Sedimentology, 23(5): 671-688 . ' -,' • . )1. Ti-c;e, A.Roj', L~W. Gatto,~ and D .. M. Anderson. 1972. ·The mineralogy of suspended sediment in some Al.;tskan glacialc streams and lakes. Cold Regions Research and Engineering L.abo.ratory Corps of Engineers, U·.S. Army, Hanover'i NH· .. Research Report 305. 10 pp. · . . T·rask, . P.. (undated). Compaction of ·sediments. Bull, . Am. Asso~.. Petrol. Geo_logists, 15, 271~276 •. U.s. Army, Corps of Engineers, Alaska District. 1975. Southcentr~ ~ailbelt Area, AJaska Upper Susitna River Baskl, Interim Fea~ )iHty Report: Appendix 1, Part 1, Hydroelectric Power and Related Purposes. Ziegler, T. 1973. Material TransportundersokeJser i horske bra-elver 1971: Rept.. No. 41/73, Hydrologisk avdeling, Norges, vassdrags -og elecktrlsitetsvesen, 91 p. · (Ehglish st..tmmary). susi10/i 8-3 <.".:. ' '.~.--~ : .. ATTACHMENT A . . SETTLING COLUMN STUDIES ,. f • • §.ETTLJ NG COLUMN STUDIES Settling column studies were conducted to· obtain data on the settling rates of suspended sediment and on time based turbidity levels of Susitna River water after it enters standing water. Procedure Two 55 gallon water samples were obtained from the Susitna River near Watana damsite. These samples were taken in an area of turbulent flow using a pump whose inlet depth was varied to allow depth integrated sampHng.. The samples were retrieved at the following flow rates and water temperatures .. Sample #1 Sample #2 July 29, 1981 at 3:00 p.m. Sept. 3, 1981 at 5:00 p.m. 28,000 c.f.s. 17,200 c.f.s. The samples were placed in the settling columns, thoroughly mixed and initial (time zero) samples taken from ports which were located at 0.5, 2.5, 4 .. 5, 6.5 and 8.5 feet from the bottom of the column. The. depth of water in the columns varied during testing as water was removed for testing. In column 1 the average depth of water was 9.2 feet and in column 2 the average depth was 8.9 feet. Samples were taken at 0, 0.5, 1, 31 6, 12, 24, 48 and 72 hour intervals and analyzed for turbidity (N .. T. U.) and total suspended solid!a (T.S.S. in mg./liter). Air and water temperatures at these times were also recorded. Results . Results of the settling column studies are illustrated for suspended solids in Figures A.1 and A.2. In 72 hours, total suspended sediment concentration decreased by 93% in the 28,000 cfs sample and by 98% in the 17,200 cfs sample. Little density stratification was noted in the 28,000 cfs samp;e during the settling period, but was more noticeable in the 1-6 hour period for the 17,200 cfs sample. Turbidity revels showe~ a similar decr:ase. The composite aver_:age for each time period as shown on Ftgure 6.3. Ther-e was lrttle v;ariation in ·:;;Jrbidity with depth·. ~ ~\s wot;JJd b7 e:<p:c~ed from ~he suspended sediment results, turbtdttV decreasea srgntf1cantly l wtth r·eductions of 85 percent for the 28,000 cfs sample. and 94 percent ·for the 17,200 cfs sample~ susi10/g A-1 r / ' • -t- IL -w u <( lL o= :J U) ~ _. w m X I- D.. ·~ ' I; SUSPENDED SEDIMENT CONCENTRATION (mg/1) .. SAMPLE COLLECTED ON 29 JULY 1981, I MILE ABOVE WATANA DAM SITE PREPARED BY• WAtER T~MPE'RATURE (7/29/81) =501tf ll&M CONSULTANTS, INC~ SUSPENDE·o SEDIMENT CONCENTRATION VS ~IME 8 DEPTH SETTLING COLUMN STUDY ?A oon .. c.,;~ .. ~ J\ M PI F i ' • ' , • 4 ·o !. • . I f'l GUR E A.-:-J . ·' . ... • •t• r-~------------------------~------------------------------------------------~----~----------~ -...,: lL - w u c:t lL. 0: :::> (I) ~ 0 _. w li1 (V ::1: t- 0.. \ w· \IJ 0 rJ \, --....... -t:. SUSPENDED SEDIMENT CONCENTRATION (mg/1) . ' : i ~ : I =, ., I I ' 'I ' . l I i I -rrr I ,· r i I I I : i i : i I ; ., .. i l ' ~ .· ' ., : ! : : I ,c : I . . I i fO i fli( "ri : F )q I I i It !Hq ! I i I pdl~ ' . ; ! 3~0 • : 4~ ; ' ,. I !,· \~· 0 l 7~1 ! 11 2il·l !I~ . II a 1 l 1 1 3 I I I J l I I ,,~ 1 ; I I , I · I · . · 1' · · J .. • T ; · · ,) , .•. 1 1 !\! \ I , • • 1 · • · 1 o P. 1 o ...4--1. r. M E4 , HouR I : ; ! ~ ~ 1 , , 1 ' !\ i 1 , ! 1 ··r : 1 : ! : . J : : . ·, 1 , . ~-;: ··r· . , \, , I I ~~ ~-~+-.. -:-. ~--r---'1\ -I ll.J .. -· -:-: . : ~-~· f-=· ; ''('I' .. ; .J ·I ,~ . , . ·:· .. . ,, o! -• -... 1 a' . J ' l . ., I . . 1 • 1 , · 1 1 . ~ 1 • , > : .. 12. ~- • I I .. ~.:_·.1 ... -:.1. ! : 1-: . . l:ll! ~ . ,., I 1' .... : : . . 111. . '\. II i ; ! Ll : " Li I ; i : 1 1 I I I ~ II I ; I ! • ,. i.t !. , .. '1 I ·r.-. I . -'"I . . r-·---+'-c:~-:--,:. :. . ---. .-.. ~ ... Rr Ttr· ··t·~~· .. ,. ··,1 ·-~··: i-;··,1 :·; .. , . ·: ·-· I_, ... -· i -~ -: ... .l I ·, I, ··1. : I -• •• • . .1 I i I I i I ·'I I \ I i I I : : I I I • I I • • I I • I I I t • ~ • • • I ! l I I ! I . I i . :-i .,, t ; ! . -] . -:· . -. J . I l ; . : I I i I ! I . I . ,. I : . J·; : I : i I I . . . II -~ . -·-- . .. . . ' : \l ,, I I : ' : ' ! I ' ' ' ' : : : . I II : ·l .. r~:~~:,!-"· tit-·,.-L~---·++--~-_:·. ~~~--~":··=~~: .. · .. · b~-~--~~---<-~~~~---~;--~,-H·-·r!·L,~·:-r I· , .. ·:·' .... ;~·:-:· I . . ' . . . .. . . . !\ I ' . : I ! • I I I . . . . . I I I • I ' ; I . I • ; I . i ! : ·I··: 1 r . ll . . .. l . . . . .. ·. i , II . : I I ;:· i I I I 'I : . ~ I ! i j . ! L . ~ . . . :. . :· ~. ~ ~· . J. • . 1." i ; I : : l : . ~ i ~ : I I • I • ..... _._,_j. -t 1-1 .: ... ·-L--. - -i.-• ·---!-1-•. ·-··i-·1·\ 1--1--1-~--1--L-:-. ,.... -:..-f-f..J --l . ..:. ... .:...: -'-I-.'. . ....... ; . .. . . . .. ! • .: I .. . ! ,' ~i ·II i .JI II I I i . I I I I I t' I : II I I • I ! J! : I I~ I I I ,. . I . i i I I I : I ' : : I i ! I I j t ~ • • 1,· . . -1 I . I . I I ..J'~ •. ·_·_I .. ..~-11 J. r · : , i . J . ·I . I 1·1 I I : : I I ' i ' '·" ----------+--~---~i-• ..~.. -----------+: .J t-'--~-~ .. ,T ~-.. L·. . ·' • . -1:. n 1 t! ~~1-l+fr ~ fJ .. ~,-·. >: ~~~: ~ .. "--·--r--· -i~-· -rf-~.---fJ.· -~ :~r ~ ~ ·H ·I ! 1-l.ll (! : ; : I ; . : I . : : ! , I. ; 1 l ' SAMPLE COLLECTED ON 3 SE.Pt .1981, I MILE ABOVE WATANA DAM S~TE ·WATER TEMPERATURE (9/3/8!) : 46" f PREPARED FOR• . SUSPENDED SEDIMENT CONCENTRATION VS TlME a DEPTH SETTL~NG COLUMN STUDY 17,200 CFS SAMPLE _. • t .1.11 lt FIGURE . - • l ........ . I : . .., r . • -ATTACHMENTS ANNOTATED BIBLIOGRAPHY OF SEDIMENTATION PROCESSES IN GI,..ACIAL LAKES AND RIVERS ... . ' I t t - \ L. u r -~ . . INTRODUCTION A . literature searc:h was conducted to obtain information on glacial fake trap effici~ncy of suspended sedill"'~nts, with emphasis on materials smaller than 50 microns. Relevant information will provide a basis for predicting the fa·i:e cf suspend€:d sediments entering the reservoirs of the proposed Susitna Hydroelectric Pr~ect. · The bibliography contains annotations for 36 references with rei~Y-ant information and a listing of 31 additional references with no specific information. There· is information on depositional processes when preglacial rivers enter standing water bodies (Church and Gilbert 1975; Carmack, Gray, Phar-o, and Daley 1979; Embleton and King 1975; Gilbert 1973, 1975; Gilbert and Shaw 1981; Hamlin and Carmack 1978; Pharo and Carmack 1979; Smith 1978; Sturm and Matter 1978), with details on particle size dis- tribution for two ancient Jake environments (Ashley 1975; Shaw 1975). However, research reveals that rr:;~onstructing modern depositional environments from analyses of ancient environments may be misleading, as distance from source and shore and depth of lake are not as significant as density, wind-induced currents, and stratification (Bryan 1974a, b).. Furthermore, misinterpretation of depositionaJ events can lead to overestimation of the time involved 1n deposition (Shaw, Gilbert, and Archer 1978). A method is presented for determining sedimentation rates by radioactive fallout (Ashley 1979). One study on a modern lake shows that suspended sediment concentrations affect density stratification ( Gustavsor1 1975b). Two studies (Ostrem 1975; Theakstone 1976) address lake trap efficiency and distance of deposition from the source. The literature search included a review of University of Alaska theses and publications of the University of Al.aska 1s Institute 1Jf Water Resources and Geophysical Institute;-the U.S. Geological Survey1 and the U.S. Army Corps of Engineers• Cold Regions Research and Engineering Laboratory (CRREL). A computer search was conducted on the CRREL Bibliography a11d on Selected Water Resources Abstracts. susi8/h B-1 ' ' - • . • .... -f.~RT I -_RELEVANT INFORMATION 1. .Arnb.<~rg, L., H .J. Walker, and J. Peippo. 1967. load in the Colville· River, .Alaska, 1962.' suspend$d Geografiska .Annaler. 49.A (2~4):131-144. · Oiscl.lssion of suspended sediment data collected during. one year (1962) for hydrologic-morphologic: study of the Colville RiVer delta. Three aspects of. suspended toad considered were~ quantity transported ln water; size of particles in · suspension; and total quantitY transported in a given period of time: .As unit volume increases, median grain size and total load carried increases. Grain size analyses for samples · representative of selected locations, depthS, and times are presented. The amount and size of suspended material increased with deptb at one location. · 2. AshleY, G.M. 1975. Rhythmic sedimentatiOn in glacial Lake Hitchcc:n::l<, Massachusetts-Connecticut. pages 304-320 in A. V. Joplin9 and 6. c. McDonald, eds. Glacio:fouvial ancl glacio- lacustrine sedimentation. society of economic PaleontOlogists . and Mineralogists, Tulsa, QK. special publication 23·. Discussion of seasonal silt and clay deposition (varves) in an ancient environment. suspended sediment concentration affects water densitY far more than temperature in glacial lakes. The settling velocity of a 60 silt grain in 4°C water . undisturbed by cilrrents is O.OS em/second. Therefore, such a· grai"11 would settle SO m in · 1 • 1S days. However, silt was found in all winter clay layers, and could indicate that lake currents were present, preventing settling, or sediment was jntrodueed year-round. Mean grain size of silt layers de- pendS on location in the lake whereas g!"ain size distribution of claY layers is uniform. Grain size; analyses are presented, but there is no specific. informatiOn on the distance traveled across the lake prior to deposition. 3. AshleY, G.M. 1979. SedimentologY of a tidal lake, Pitt Lake, British Columbia, Canada. Pages 327-34S in Ch. Schluchter, ed. Moraines and varves. Proceedings of an \NQUA symposium· of Genesis and LithologY of Quat.,.rnarY Deposits, ' . zurich, septerr.ber 10-20, 1978. A.A. satkema, Rotterdam. Sedimentation rates were determined bY 137 cs dating techniques. Grain size analyses were det~rmined for 190 sampleS and mean grain size distribution wass mapped. Annual sedim¢nt accumulation equalled 150± 20 x 10 tons, of which so% was coarser than so. z-:>~,,-117 r • : : 1. f t~ . ...,_ . _,...,...... ....... --· ., ..... 4. Ashley, G.M., and .L. E. Moritz.. 1979. Determin?l~ of lacustrine sedimentation rates by radioactive fallout ( · Cs), Pitt Lake, British Columbia. Canadian JournaJ of Earth Sciences. 16(4) :965-970. D!scussian of techniques for determining modern lacus.trine sedimentation rates. 5. · Borland, W .M.. 1961 .. streams in Alaska. 66(10):3347-3350. Sediment transport of Journal of Geophysical glacier-fed Research .. Developed ~mpirfcal formula for sediment yield rates for glacial drainage basins based on glacier area, total drainage area, and length of watercourse. No differentiation by particle size. Used five years of U.S. Geological Survey suspended sediment data f "~m Denali and Gold Creek stations to test formulc.o S.. Bryan, M. L. 1974a. Sedimentation in Kluane Lake. Pages 151-154 in V.C. Bushnell and M.G .. Marcus, eds. Ice Field Ranges Research Project Scientific Results, Vol 4. American Geegraphical Society 1 New York, NY, ·and Arctic Institute of North America, Mon:treal, Canada. Study of bathymetry, thermal structure, and sediment dt$tribution in Kluane Lake, 1968. A weak thermocline developed in July and August, which \vas occasionally destroyed by storm .. induced mixing. The lake is ice--covered for eight months, and receives sediment from the Slims River for four months. Statistical pai""amete.rs of grain size analyses are presented. . Sedimentation is affected by density, by wind• induced Jake currents, and by stratification as well as by bathymetry, distance from shor-e and input, point and sediment compositi'on. Highly turbid, cold glacial waters may be sufficiently dense to flow across the lake bottom regardless of thermal stratification. When the Slims River warms, it flows over the lake. 7. Bryan, M. L. 1974b. Sublact..tstrine morphology and depdsition, Kluane Lake, Yukon Terr-itory. Pages 171 ·187 in v.c. BushneH and M.S .. Marcus, eds. Jcefield Ranges Research Project Scientific Results, Vol 4. American Geographical Society, New York, NY, and. Arctic Institute of North American, Montreal·, Canada. Discussion of processes aff.ecting sedimentation in lakes from glacial streams. Bathymetric mapping of Klu~ne Lake in 1968 and 1970 revealed growth of the Slims River delta .. Cartographic and statistical analyses of bottom sediments a,•e presented. Finest sediments farthest from the Slims River susi8/h B-3 2 ..... 37-!ffl' -~ - .. "!!· ic, ,~~ ............................. ·.-·····--------~--~--~ .. ~ " > • • ~ "•, , ~ "" ~ ~ .,. ' " . .. . . . . ' ' . )' • were not in the deepest portion of the Jake. Distance from ~ource! d.epth of lake, and distance from shore are not signif- .lcar:t 10 controlling deposition. Reconstructing depositional enva.ronments based on sediment size analysis may be mis- lead•ng. 8. Carmack, E.C., C .. S .. Jo Gray, C.H. Phar~, and R.J. Daley. 1~979~ Importance. of lakeriver interaction on tha physical hmnology of the Kamioops Lake/Thompson River system Limnology and Oceangraphy ~ 24( 4): 634-644. Discussion of physical effects of large river entering a deep, intermontane lake. No information of particle size analysis., 9. Church, M., and R. Gilbert.. 1~l75. Preglacial fluvial .and lacustrine environments. Pages 22-1.00 in A. V. Jopling and B.C. Mc0ona£d, eds. Glaciofluvial and glaciolacustrine sedi- mentation. Society of Economic Paleontologists . and · Mineralogists. Tulsa, OK. Special Publication 23~ Discussion of deposition when proglacfal rivers enter standing water bodies. Significant events are: aggradation on the bed due to deposition of bed load extends upstream from the lake, along with reduced flow velocities; development of a high angle delta, with transport of sediment to the delta lip; movement of coarse material over the lip and down into the lake in turbidity flows (bottom flow); movement of river water down the delta front to Jake water of equal. den:Jity (inter- flow); movement of river water onto the surface of the lake if density is less than the lake (surface flow) i deposition of fine-grained material and formation of varves, of which the silt (summer) portion is deposited by turbidity currents 1 and the clay (winter) portion by the turbidity current after stagnation, and then by slow, continuous settling fro~ suspension. Tur•bidity underflow is not a continuous event in the melt season.. Varve formation cannot be directly correlated to mean annual discharge, because a single large flood can create a turbidity flew. Turbidity flows reswlting in more rapid deposition depend on discharge, river· and fake water temperature, thsrmal structure of the lake, quantity of sediment suspended ir:t the t.ake from previous events, and river and Ia ke dissolved sedlment concentraticns. No specific information on particle size is presented. 10. Embleton, C..1 and C.A.M. King. 1975. ~lacia! geomor- phology. John WHey and Sons, New York, NY. ~P· 532-558. . •~· Review of general crinciples affecting sediment deposition in lacustrine environmer~ts with examples.. Lake floor deposits become increasingly . fine toward center or deepest parts of susiS/h B-4 ;:· ~ .;. . ' • I ' :;. J . l .. t ' ;rj . I ·~ . ' . -:~~=~ _/, requiring quiet water and long settling periods. Turbidity currents formed by cold, silt-laden stream water are important ln distributing sediment across the Jake floor. Rhythmites (laminated deposits) develop In cold freshwater lakes receiving intermittent str-eamflow, and in some cases form on an annual basis {varves). They can also forrn from sudden fluctuations in discharge (bursting of an ice--dammed Jake upstream) 1 unseasonaJ warm or cold -speBs, or p~riodic storms. 11. Everts, C. H. 1976. Sediment discharge by glacier-fed rivers in Alaska. Pages 907-923 in Rivers '76. Vol. 2._-Symposium ·on I nfand Waterways for Navigation.~ Flood Control and Water _'Diversions. 3rd Annual Symposium 1 Co'lorado -State University 1 Fort Collins, CO. Waterways, Harbors and Coastal Engineering Div .. , American Society of Civil Engineers,. New York, NY. Investigation of glacial sediments discharged into the coastal zone (Knik, Matanuska). Size distribution, composition, and settUng characteristics of glacial sediment are important characteristics in determining where the sediment will be transported and deposited when it reaches the marine en- vironment. · Based on particle size distribution analyses 1 it appears that fine-grained particles pass completely through the riv~r system. Ice margin lakes fringing glaciers are depositories for coarse sediments. Clay minerals were absent, which is significant because clay particles form aggregates with other fine-grained particles and settle more rapidly. This ab. :>ence may be common in other glacial areas because of negligible chemical weathering in the source areas. 12. Fahnestock, R.K. 1963. Morphology and hydrology of a glacial stream: White River, Mount . Rainier, Washington. U.S. Geological Survey. Professional Paper 422A. 70 pp. 1nvest·igation of formation of a valley train by a preglacial stream. Particle size analyses of deposited material showed silts and clays were washed out of stream deposits. Analysis of suspended load indicated that silt and clay stay in suspen- sion and are carried out of the study area into Puget Sound. 13. Fahnestock, R. K. 1969. Morphology of the Slims River. Pages 161-172 in V. C. Bushnell and R. H. Ragle, eds. Ice Field Ranges Reseaf•ch Project Scientific Resul'ts, Vot. 1. American Geographical Society, New Yor}~, NY 1 and Arct!c Institute of North America, Montreal, Canada. Investigation of the Siims River, a proglacial stream flowing 14 miles from Kasfawulsh Glacier to Kluane Lake. The river is modifying a valley train deposited when the glacier was up susiS/h 8-5. =~--HW~_. .. _._. .. ~r.••····~ ..... , ........... K~'~+• .. a-·m••••~~·--•n .. .m .. .--.~.±------a~·------~----·'-----·# r· ,-·'illilil'tln· ----I -• u • against a terminal mol"'aine. It is regrading, ie, adjusting to a. decrease iry io~d at the source by cutting in the upper reaches and d~positing in the lower reaches. The Slims River is also affected _by downstream changes · in the base level, which is controlled by the exten~ion of the delta into Kluane Lake and the variation in lake level. As the volume growth rate of the. delta .. is not known, the sediment transport rate ~nnot ·be estimated. Suspended. sediment is predominantly SJit and cfay. No data on particle size distribution. 14, ~addis, B. 1974. Suspended-sediment transport reiation- ships for four Alaskan glacier streams. M.S. Thesis. Unlvers~ty of Alaska, Fairbanks, AK. 102 pp. _Investigation of suspended sediment transport relationships in glacl~l streams at Gulkana, Maclaren, Eklutna, and Wolverine glaciers~ Data on mean particle size Is presented for four glacial streams for one season at sites near the t~rminus. Sediment availability depends on amount of sediment, distance travelled downstream, and mechanical nature of sedlment lentra:inment (no spec~fic informatiC!n on entrainment) e 15. Gilbert, R. 1973. Processes of undarfiow and sediment 16. transport in a British Columbia mountain lake.. Pages 493-507 in Fluvial Processes and Sedimentation. Proceedings of the 9th Hydrology Sympas·uim, University of Alberta, Edmanton. Canada, May 8-9. Subcommittee on Hydrology, Associate Committee on Geodesy and Geophysics, National Research Council of Canada. Description of processes invoh;•ed in formation of varved sediment deposits in preglacial lakes, primarily underflow and interflow. Underflow increases with increase of water and suspended sediment infiow. Cores obtajned to determine thickness and comparision of varves. No information on part!cle size distribution. Gilbert, R. 1975. Sedimentation Columbia.. Canadian · Journa~ 12(10):1697-1711. - in Lillooet Lake, British of Earth Sciences. Liflooet Lake rece~ves sediment from. a 3,580 sq km drainage bqsin, of which 7% is glacier-covered. I nterflow and under .. flow distribute sediment through the fake in summer when the Jake is stratified. Factors affecting distribution are: density characteristics of the lake and inflowing water,. as determined . by temperature· and suspended sediment concentrations; currents induced by wind and inflow; thermal structure of the fake water, which determines the nature of circul.ation patterns and allows interflow along· the thermoclln.e; diurnal and seasonal fluctuations in inf1owing waters and se~:Ument; susiS/h B-G · JrT:: . :: ·-: .. :t • .·.·I ' .1 ·. l ,,, . ' .. l . t • L: ·• ; L and the large annual volume of inflow (4.5 times· greater than · the lake volume on the average). 1 nter-•fJcnAi; carries sediment at the base of the epHimnion ·ta ·:the dls't~l end of the fake in one to. two days. No specific informatio~'1 on particle· size. 17. Gilbert,· R. 1 and J. Shaw.. 198! ~ Sedimentation in preglacial Sunwapta Lake, Alberta. Canadian Journal of Earth Sciences. 18(1) i 81 u-93. Examination of hydrologic arid limnotrigic conditions of Sunwapta lake, · ,9 small, preglacial lake in the Canadian Rockjes. Sediment input · was measured and sedimentation rates were calculated.. ·sediments of small, shallow Ia kes with large and highly variable inflows are expected to demonstrate ·latera! and vertical variability, whereas those in large pro- glacial lakes are more predictable due to modification by large1 stable water masses. 18. Gustavson, T. C. 1975a. Bathymetry and sediment d.istribu- tion in proglac!al Malaspina Lake, Alaska. Journal of Sedimentary Petrology. 45:450-461. See next abstract 19. Gustavson, T .C. 197Sb. Sedimentation and physicar limnology in preglacial Malaspina Lake, southeastern Alask~. Pages 249-253 in A.V. Jopfing and B.C. McDonald, eds. Glaci- ofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK .. Special Publication 23. Underflow, interflow, and overflow water entered Malaspina Lake, and the type of flow is dependent on the relative suspended sediment content of the lake water and the In- flowing meJt water. The 18-km long lake is density stratified (increasing suspended sediment concentration with depth) but not thermally stratified. No specific information on particle size or trap efficiency is presented. 20. Guymon, G. L. 1974. Regional sediment yield analysis of . 21. Alaska streams. Journal of the Hydraulics Dlv. of.: the American Society of Cjvil Engineers. 1 00( HY1): 41-51. Analyzed Borland1s (1961) formula. Considered particle size, but used an average particle size iri the formula. However, concluded that partic~e size affects application of the formula. Hamblin, P.F., and E.C. Carmack. 1978. Rivar-induc:ed currents in a fjord lake. Journal of Geophysical Research. 83(C2) :885-889. I , v susi8/h 8-7 2-3 2-1"2.~ ··rna· .. . ' . " . ' ... ~ . . ' . ' • ... t i •• 22. Discussion of dynamics of strong flowing river entering a long~ narrow lake (Kamloops , Lake, B.C •. ). · River-induced currents . influen·ce circulation patterns in a fjord lake.. No specific 'information on sedimentation rates or particle size analysis. · Hobbie, J.E. 1973. Arctic limnology: a review. Pages 127-168 ln M.S. Britton, ed. Alaskan arctic tundra. Arctic Institute of North America. Technical Paper 25. . . Review of properties of . Jake in northern tundra regions .. Thermal· .cycle of deep arctic Jakes is highly variabie, and stratification i$' uncommon, ·occurring only in warm, calm weather after fake waters rise to 4°C. Deep lakes maintain circulation even when ice covered. Deeper lakes are re• latively turbid as a result of glacial flour from streams drain- ing active glaciers. Lake Peters is fed by glacial streams and drains via a 1-km long 1 15-m deep channel into Lake Schrader in the ·Brooks Range. Both are 50-60 m deep. Lake Peters acts as a settling basin. When dense glacial wate:r enters · Lake Peters in June, it sinks to the bottom, and the lake. fills upward with turbid water. 23. Mathews, W.H. 1956. Physical limnology and sedimentation in a glacial ·Jake. Bulletin of the Geological Society of 24. America. 67:537-552. Garibaldi Lake, British Columbia, receives sediment from two glacial streams with relatively low sediment content. Particle size and composition of bottom deposit analyses revealed sJow transport to site of deposition and slow rate of dep1:;,sition for ·· clays. No informatic~ eii amount of sediment passing through system. Ostrem, G. 1975. Sediment transport in glaciaJ meltwater streams. Pages 101-122 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentatior,. Society of Economic Paleontologists and Mineralogists, T'ulsa, OK. Special Publication 23. Recognized problems of utilizing glacial waters for hydro- electric projects, specifically in reservoirs and turbines. Grain size analyses of cores of varved sediments showed that summer layers consisted of coarser material than winter layers . (based on 20 micron grain size variation). X-ray diffraction analyses showed that summer deposits contain~d more. quartz (rapid sedimentation), and winter deposits.f more mic:a (slower sedimentation). For one 1,800-m long preglacial' lake over 29 years, about 70 percent of the total suspended sediment input was deposited. susiS/h B-8 2 -3'2. -1a 1· "· ~. "',... ' ' ._, '. .. j i .. ~ ~ ... -. ' ..... t 1 ·t t Discu~sion · of dynamics of strong flowing river entering a long, narrow lake (Kam:oops Lake, B.C.). River-ind.u.ced currents influence circulation patterns in a fJord lake. No specific information on sedimentation rates or particle size analysis .. 22. Hobbie, J.E.. 1973. Arctic limnology: a review. Pages 127-168 in M. E. Britton, ed. Alaskan arctic: tundra. Arctic Institute of North America. TechnicaJ Paper 25. '.!"· Review of properties of fake in northern tundra regions. Thermal cycJe of deep arctic lakes is highly variable, and stratification is uncommon, occurring only in warm, calm weather ,.Bfter lake waters rise to 4°C. Deep Jakes maintain circulation even when ice covered. Deeper lakes are re- latively turbid as a result of glacial flour from streams dr~in­ ing active glaciers. Lake Peters is fed by glacial streams and drains via a 1-km long, 15-m deep channel into Lake Schrader in the Brooks Range,. Both are 50-60 m dt:~p. Lake Peters acts as a settling basin. When dense glacial water enters· Lake Peters in June, it sinks to the bottom, and the fake. ·fills upward with turbid water. 23. Mathews, W.H. 1956. Physical. limnology and sedimentation in a glacial !ake. Bulletin of the Geological Society of America. 67:537-552. Garibaldi Lake, British Columbia, receives sediment from two glacial streams. with relatively low sediment content. Particle size and compositiqn of bottom deposit analyses revealed slow transport to site of deposition and slow rate of deposition for clays. No information on amount o·r sediment passing through system. 24. Ostrem, G. 1975. Sediment transport in glacial meltwater streams. Pages 101-122 in A.Vc Jopling and B.C .. McDonald, eds.. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. SpeciaJ Publication 23 .. Recognized problems of utilizing glacf.aJ waters for hydro- electric: projects, specifically in reservo~rs and turbines. Grain size analyses of cores of varved sediments showed that summer layers consisted of coarser material than winter layers (based on 20 micron grain size variation). X-ray diffraction analyses showed that summe~ deposits ~ontain~d m~re quartz. (rapid sedimentation), and wrnter depos1ts, more: mrca (s{ower sedimentation). For one 1 ,800-m long proglacJai lake over 29 years 1 about 70 percent of the total suspended sediment input was deposited. susiS/h B-8 --... __ • \ . .. t t \ . f .... ., . f.".iiiillll ·· .. ·;:;-..,. ···~ l I l . f '· 25. Ostrem, G., T. Ziegler, and S.-R. Ekman. 1.970. A study of sediment transport · in Norwegian glacial river$, 1969. Institute of Water. Resources, Dept"' ··of Hydrology, O::;lo,. Norway. Report 6/70. Report for Norwegian Water 26 .. · Resources and Electricity Soard. Translated from Norwegian by H. Carstens. 1973. Institute of Water. Resout.·ces/ Unlversi:ty of Alaska, Fairbanks, AK. · Report 35. 1. voi~ Investigations were conducted 9n water discharge and sedi- ment . volume measurements in glacial riv~rs above and ·at the outlet of glacial lakes · to calculate the sedimentation of fine material on the bottom of the lakes. Volum.e of ·material available for transport is probably largest at the beginning of the season. No data on particle size. · · Pharor C. H., and E. D. Carmack. 1979. Sedimentation processes in a short residence-time intermontane .Jake, · Kamloops , Lake, British Columbia. Sedimentology .. 26:523-541. Sediment transport and deposition in the lake is controlled by three-interdependent processes: delta progradation at the lake-river confluence; sediment density surges originating along the delta face, which result .in turbidi:te sequences lakeward from the base of the delta; and dispersal by the interflowing river · plume, which, due to Corio lis effect$1 results in a higher sedimentation rate and greater fraction of coarser material along the right-hand of the Jake. in the·,. direction of flow. Suspended sediment concentrat~ons are high above the thermocline where higher turbulence, main- tained by wind mixing and river inter interflow; reduces settling velocities. Particles settle rapidly on~e they enter the hypolimnion. · 27. Ritchie, J.C., J.R. McHenry, and A.C. GiH. 1973., Dating recent reservoir sediments. Limnology and Oeeanogt\aphyo 18:254-283. Discussion of radioactive 137 Cs dating. Method could be used to date sediment in reserviors that have not been surveyed. 28. Shaw, J. 1975. Sedimentary successions in Pleistocene ice-marginal lakes. Pages 281-302 in A. V. Jopling .and B.C. McDonald, eds.. Glaciofluvial and glaciolacustrine sedimenta- tion. Society of Economic Paleontologists and Mineralogists, TuJsa, OK .. Special Publication 23 ... IJiseussion of sedimentation in proximal portlon of. a .glacial take based on interpretation on the ancient environment. Mean grain size va!ues were determined for section~" of ,ea~h facies from o to 80. No information on tr;ansport of. fine· ' "' , •. materials. susi8/h B-9 ,;. .. ;;t• .. 29. Sha~_, .. J. 19n~ Sedimentation irt an alpine fake during de~·­ glacJatson, -Okanagan Valley·, Sritlsh Columbia, Canada. Geografiska Annaler·. 59(A):221-240. An~ient lake sediments were examined to develop a model of alpane lake. sedimentation based on changing depositional processes with time and distance from the ice margin. 30. Shaw, J., R. Gilbert, and J.J.J. Arct.'aer. 1978. · Preglacial lacustrine sedimentation during winter. Arctic and Alpine Research. 1 0( 4): 689-699. Discussion of deposition of coarse-grained sediments during winter in Lillooet Laka.· iviisinterpretation can lead ·to. over· estimation of time seqences of deposition. · 31. Slatt, R .M. 1970. Sedimentological and geochemical aspects of sediment and water from ten Alaskan valley glaciers. Ph. 0. Thesis. University. of Alaska, Fairbanks, AK. 125 pp. Studied five groups of glaciers with different bedrock lith- ologies; · Worthington and Matanuska; Castner and Fels; Guf.l<ana and College; . Rend~ and Reed; and Carroll and Norris. Particle size analyses and mineralogy of superglacial and suspended stream sediments are presented. The environment of transport has a much grea:t:er effect on grain size than the nature of the starting material. 32. Slatt, R.M. 197·1. Texture of ice-cored deposits from ten Alaskan valley glaciers. Journal of Sedimentary Petrology. 41 (3) :'828-834. . . Revised and condensed portions of Ph. Do thesis (see above). 33.. Smith, N.D. 19i8. Sedimentation processes and patterns in a glacier-fed lake with low sediment input. Canadian Journal of Earth Sciences. 15(5):714·756. Snow melt and glacial melt waters carrying relatively low suspended sediment concentra· tions enter Hector Lake in the eastern Rocky Mountains, Alberta. When stratified, wate·r and fine sediments enter the lake · as interflow· and overflow. Grain size analyses were conducted on 42 cores. Deposition varies left to. right as weJJ as · distally due to katabatic winds generating downlake currents in the epilimnion that are deflected SOlJthward (rfshtward) by the Coriofis force. 34. sturm M., and A. Matter. 1978. Turbidites~ and varves in Lake Brienz (Switzerland): deposit~ on of clastic detritus. by densjty currents .. Pages 147-1~8 1n Ao Ma~ter and. M. E. Tucker, eds. N!_od_ern and ancJ~.nt. lake se~?oments. lnte_r- national Assoc•atJon of Sedm1entofog1sts. SpecJal Publication 2. susiS/h B-10 \ ~~a~ . .. • 35 .. ' ' Discussion of sediment transport .a\':"d deposition. by overflow'~ interflow, and un~erflow in a long, narrow 1 . deep basin witf":l .rivers· entering at each .~nd. Fine-grah~ed sediments supplied by overflows and lnterflows settfe continuo'-!sf)i during summer · tf:lermaf .. stratification. Most of .th~ fine-g·t'~!~l~d particles remain in suspension at the thermocline becau!?e>th~ vertica'l density gradient is more dependent on temperature than' on an · increase HT density due to· suspended particles. Ou'ring faH turnover, · the remaining sediment trapped at the thermocilne .settles. ·· Theakstone, w ~H. 1975. Glacial lake . sedimeu'ltation I Aur---terdalsisen, Norway. Sedimentology. 23(5): 671-688. · A lake· completel·y filled with glacial sedim·ents, over which bra!ded stream deposits formed. A new preglacial lake then formed. Discussion of bedding and composition ·of ancient lake sediments. Initially, deposition was very slow in ·deep (80 m) water. In another lake 300 m from a -glacier, about 75 percent of the sediment transported in suspension is retained in the basin, but the amount retained in one day is highly variable. The daily summer values excseded the minimum by 200 times (data not presented) . 36. Tice, A.R., L.W. Gatto, and D.M. Anderson. 1972. The mineralogy of suspended sediment in some Alaskan glacial streams and lakes. Cold Reg.ions Research and Engineering Laboratory Corps of Engineers, U.S. Army, Hanover, NH. Research Report 305. 10 pp. · fnvest!gation of the role of chemical weathering of bedrock in cold regions ·determined that no chemical changes occurred in · fine suspended material. Suspended sediment samples were obtained for X -ray diffraction analyses-: from galcial outwash streams and lakes in seven areas (Chackachamna 1 Palmer- Matanuska, Moose Pass-Portage 1 Valdez, Juneau, Mt. McKinley · Natlonal Park, and Black Rapids). su!s'i8/h B•11 2..-;~...-t~t- ,. ... '~. (·.:- PA~T U-NO SPECIFIC INFORMATION 1. Agterberg. F.P., and I. Banerjee. 1969. Stocha.stic: model for the. deposition of varves in-glacial Lake Barfow-Oj.ibway 1 Ontario, Canada. Canadian Journal of Earth Sciences • . 6:62$-652 . 2. Sanerjeev 1., and B. C.. McDonaJd. 1975. Nature of esker sedimentation. Pages 132-154 in A*V. Jopling and B.C. McDonald, eds. Glaciof!uvia! and glaciolacustrine sedimenta- tion. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23. 3. Boothroyd, J.C. and G.M Ashley. 1975. Processes, bar morphology, and sedimentary structures on braided outwash fans, northeastern .. Gulf of Alaska. Pages 193-222 in A. V. Jopling and B.c.. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economie Paleontologists and Mineralogists, Tulsa, OK. SpeciaJ Publication 23 .. 4. Bradl~y, W. H. 1965. Vertical density currents. Science. 150(3702):1423-1428. 5. Clague, J .J. 1975. Sedimentology and paleohydrology of late Wisconsinan outwash, Rocky Mountain. trench, southeas-tern British Columbia. Pages 223-237 in A. V. Jopling and B. C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimen· tation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23. 6. Everts, C.H. a11d H.e. Moore. 1975. Shoaling rates and related data from Knik Arm near Anchorage, Alaska. CoastaJ Engineering Research Center 1 Corps of Engineers, U.S. Army, Fort Belvoir·, VA. Technical Paper 76-1. 84 pp. 7. Gilbert, R. 1971. Observations on ice-dammed Summit Lake, British Columbia, Canada. Journal of Glaciology. 8. 9. 10(60):351-356. Gustavason, T.C., G.M. Ashley, and J.C. Boothroyd. 1975. Depositional seqt.Jences in glaciolacustrine deltas. Pelges 264-280 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimer:atation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. SpeciaJ '"ublication 23. Guymon, G.l.. 1974. Sediment relations of selected Alaskan glacier-fed streams. Institute of Water Resources, University of Alaska, Fairbanks, AK. Report s1·. 17 pp. susiS/h B-12 Z-3G-t2.·j' •' , . . 10.;-=HC?bbie, .· J. E.; r ed. 1980. · Limnology · of , tu~dra . .ponds:· Barrow, . Alaska. . _Dowden,. Hutchinson ancf::·-~_,R·~$$.," · l.nc., .. · Stroudsburg_, P.A. U$/IBP Synthesjs Serie$ 13. 514. PP~ 11. Howarth, P.J,, and R.J. Price. 1969.. The proglaclaJ J~kes of Breidamerdurjokull and Fjallsjokull, Iceland. Geographical Journal. 135:573-581. . . 12. JopUngt A. V •. 1975. Early studies on stratified drift. Pages .,4-2l in A. V" JQpfing and B.C. McDonald, eds:. Glaciofluvial and glaciolacustrine sedimentation. Society ·of . Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23. 13. Kin~le, ·E!M. 1930. Sedimentation in a glacial lake. Jo\.lrnal .. of Geology. -38(1 )!81-87. ,,, 14. Lawson, D.E .. 1977. Sedimentation in the termlnus .region of the Matanuska Glacier, Alaska. Ph. 0. Thesis. University of Illinois, Urbana-Champaign, IL. 287 pp. 15. Long, W. E. 1972. Glacial processes and their relationship to streamflow; Flute Glacier, Alaska. Institute of Water . Resources·, University of Alaska, Fairbanks, AK. Report 18. 1 vel. 16. · Ludlam, S •. O. . 1957. Sedimentation in · Cayuga Lake 8 New York. Limnology and Oceanography. 12(4): 618-632. 17. McOonaid, B.C., and w.w. Shilts. 1975. Interpretation of faults in glaciofluvial sediments. Pages 123-131 . in .A. V. Jopling and. B i c. McDonald I eds e Glaciofluvial and glacio- lacustrine sedimentation. · Society of Economic Paleontologists . and Mineralogists, Tulsa, OK. Special Pt:;Jblication 23. 18. Moores, EoA •. 1952. Configuration of the surface velocit)' profile of Gulkana Glacier, central Alaska Range, Alaska. M.S. Thesis •. University of Alaska, Fairbanks, AK. 47pp. 19. 2Q. Moravek, J. R. 1973. Some further observations on the be- havior of an ice-dammed self-draining Jake, Glacier Bay, Aiaska 1 USA. Journal of Glaciology. 12(66):505-507. , R_eger, R,~O. 1954. Recent glacial history of Gulkana and College Glaciers, central Alaska Range, Alaska. M.S .. Thesis. University of AJaska1 Fairbanks, AK. 75· pp~· ':' 2.1. Rtrst, B. R. 1975. ·Fabric and structure :in glaciofluvial sraveJs. Pages 238-248 in A. v.. Jopltng and 8 "c. McDonald I edsl" Glaciofluvial .and glaciolacustrine sedimentation,; So~iety of · Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23. susiS/h 8·13 ,; ' . ' .. : 22. Rust"-B. R. , ancL R.. Rornan·eHii. 1975. Late quaternary subaqueou$ outwash ·deposits near Ottawa, Canada. Pages. 177·192 In A·~ v. Jopling . and El.C. .MeOonaJd, ·ads. Giaciof!uviaJ and glaciolacustrine sedimentation.· Society of · .-~Econornic· Paleontologists and -Mineralogists, TuJsa; OK. Special Publication 23. 23. Ryder, J.M., and M. Church. 1972.. Paraglacial sedir.nenta• tlon: consideration of fluvial processes conditioned by gfacia.;.,· · tion.. BuHetion of the Geological Society of America. 83: 3059"!"3072 •. 24., Saunderson, H. C. 1975. Sedimentology of the Brampton esker and its associated deposits: an empirical test of · theory. Pages 155•175 in A.V. Jopling and B. C. McDonald~ eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23. 25. Setlmann, P. V. 1962. Flow and ablation of Gulkana GJacier 1 central Alask~ Range, Alaska. MaSo Thesis University of Alaska, Fairbanks, AK. 36 pp. 26. Shira, D. L. 1978. Hydroelectric powerpiant ·siting in gfaciaJ areas of Alaska. Pages 59-76 in Applied Techniques for Cold Environments 1 Vol. 1. Proceedings of the Cold Regions Specialty Conference, Anchorage, AK, May 17-19. American So:iety of Civil Engineers, New York, NY. 27~ Slatt1 R.Mo, and C.M. Hoskin. 1968. Water and sediment in the No,.ris ·Glacier outwash area·, upper Taku Inlet, south- eastern Alaska... Journal of Sedimentary Petrology. 38(2):434-456. zs.. Stone, K.H. 1963. Alaskan· ice-dammed lakeso As$ociation of American Geographers: Annals. 52:332-349. 29. 30. 31. St. Onge, O .. A. 1980. Glacial Lake C:,ppermine, north-central District of MacKenzie, Northwest Territories. canadian Journal of Earth Sciences. 17(9):13·10-1315 .. Williams, P .. F. 1 and B. R. Rust. 1972. The sedimentology of a braided river. Pages 183-210 in V. C. Bushnell and R. H. Ragle, eds. rcefi"eld Ranges Research Project Scientific Results, Vol. 3. Araerican Geographic Society, New York, NY, and Arctic Institute of North America, Montr.eai, Canada. vould., · e.P., and -r. Osterkamp •. 1978. Cold regions con- siderations · relative to development of the Susitna · hydro- electric project. Pages 887 ... 895 in · Applied Techniques f:.)r~ susi8/h B-14 :.. u ... . t • ·j . t f l \. Cold Environments, Vol 2. Proceedings of the Cold Regi'ons Specialty Conference, Anchorage, AK, May 17-19. Amerfcan Society of Civil Engineers, New York, NY. · ' susi8/h B-15 -· •·' . . EXHIBIT E 2. Water Use and Quality C01111ent 33 (p. E-2-!Je, para. 2) Provide quantitative estimates of nutrient adsorption on suspended sediments (e.g., glacial flour) that will be transp.orted into Watana Reservoirs. Pro~ vi de data on levels of exchangeable phosphorus in soils in the Watana and Devi 1 Canyon impoundment zones. ~espons_J! Quantitattve ·estimates of ~utrient adsorption on suspended sediments (e.g., ·glacial flour) that will be transported into Watana Reservoir are not avail- able at the present time. Data on levels of exchangeable phosphorus in ~vi ls il'l the Watana and Devi 1 Canyon impoundment ·zones do not presently exist. Additionally, to our knowledge at the present time, approved and standardiz- ed methods do not exist for quantitatively estimating exchangeable phosphor- us in soil samples. In fact, the definition of the term 11 exchangeable phosphorus 11 is not standardized in state-of-the-art limnological 1 i terature. The present level of knowledge about the Susitna River drainage basin and · the limnolog~ of the two propos.ed reservoirs ind·icates that the project reservoirs will maintain a low productivity {oligotrophic) trophic status due to phosphorus limitation (Peratrovich, Nottingham and Drage, Inc. and Hutchison, 1982; Peterson and Nichols, 1982; Rast and Lee, 1978; Stuart, 1983; Vollenweider and Kerekes, 1980). 2-33-1 . .. Data about nutrients attached to turbidity particles whi~h are potentially ei<changeable with juxtapositioned microbial biomass are difficult, time con- suming, and expensive to acquire. We hope that the FERC staff wil1 agree with our position and withdraw or temper this request •. References __ _, ___ ......._ .... Peratrovicr,, Nottingham and Drage, Inc. and Ian P.G. Hutchinson, 1982. Su[L~~~a Reservoir Sedimentation and Water Clarity'_ Study~ Ptepared for Acr~s American Inc., Anchorage, Alaska, 35 pp. Peterson, L.A. and G. Nichols, 1982. ]mpoun~nent of the Susitna River. for Acres Arrerican Inc., Buffalo, Water Quality Effects Resulting from Prepared with· R & M Consultants, Inc. New York, 18 pp. Rast, W .. and G.F. Lee, 1978. Sunmary analysis of the North American (U.S. portion) OECD entrophication project: nutrient loading -lake r&sponse re 1 ati onshi ps and trophic state indices.. EPA-600/3-78-008. 455 pp. ' Stuart~·; T.J .. , 1Sa3 ... The effects of freshet turbidity on selected .aspects of the biogeochemistry and the tr.ophic status of Flathead Lake, Montana, U.S.A .. , P':h"D. dissertation, North Texas State University, Denton, Texas, 229 pp .. Vollenweider, R .. A. and J. Kerekes, 1980. The loading concept as a basis for controlling eutrophication philosophy and preliminary results of the OECD Progranme on eutrophication.~ Prog. Wat. Tech., Vol. 12, Norway, pp. 5-18. IAWPR/Pergamon Press Ltd. 2-33-2 • ' ~ ·~ . (:2 EXHIBIT £ . . ..... -~ .. 2. ,water Use and Qual1ty · Provide real and simulated salinity data which show the accuracy of thE Corps of Engineers salinity model for predicting saiinity in Cook Inlet at differ- ent locations {e.g., Ncde 27) under different flow conditions.. Also~ pro- vide parameter values used in these simulations and document the source of the values used. Response Real and simulated salinity data for Node 27 near the Susitna River mouth are pro'{ided in pp. 2-35-2 to 2-35-35. Also provided is a user 1 s guide (pp. 2-35-36 to 2-35-171) for the computer modeling effort conducted by the Corps of Engineers on the estuary hydro• dynamics and water quality of Cook Inlet. The us~r·s guide documents-para- meter values and their source for use ·in the Cook Inlet water quality model· ing effort. An example prcb lem data set and simulation results are present- ed on pp. 2-35-92 to 2-35-131 • 2-35-1 j ,c . .. . " ' ,· .- Volume3 WATER QUALilY, ~<NIK ARM .. UPPER COOK INLET ~ 10 20 . 30 nautical miles ___ ..J.. __ .._....;....JI ! FJGURE 2 .. 5 Surface Salinity Distribution. in. Cook Inlet 2-15 -• ·~~· NTERVAl.. o.5 s•A.. \.~Cr.JR WTERVAL. . t.\.2 s~ CON'I'Ot.R IHTtR\AL. OJ S%. Ref. Kinney, Gr~ & Bum:~n, 1970. •· . "" i ... f • J j i j· I ' • i ~' l ... i .. • ' '; :" ; t t 1 ., 1 :!. i 1 I l , __ ,_ a. a. ,: ~ z -... < (4 • - OSSERV~D SALINITY REOUCSD FROM ISOHAL.INE MAP REFRESENTING . SEPTEMBER ~5-29. 1972 CONOiilONS · . CCMPUTEO SALINiTY ENO OF SE?T. t972 o.~----~~ ...... ~~--~--._.~~---:::;::.--~ t25 "1CQ 75 50 25 MILES FROM POlNTWORONZOF LEGEND OBSSRVED SALINITY REDUCED FROM • ISOHALINE A' •P REPRESENTING AUGUST Zl ~. 1912 CONDIT10NS -COMPIJi'EO SALINITY 5NO OF AUG. 1972 o~~--~~~~--~·----~~~--~~~--~~-"'--~-~~ 125 11lD 75 50 2S 0 2!j I ' I ~ 5 '.II~ •z <-YZ 0 ~ao MtLES FROM POINT \YORONZOF iS = z < ,_ ... 1111: <Q Wlloo LEGEND OBSERVED SAL.lNITY R50UCEO FROM • ISOHALINE MAP REPR:SENTlNG JAAY 21-28.1968 CONDITIONS COMP\JTCO SALINITY ._ __ .....,e __ No OF MAY,1972 • • • • 2S Q MIUS rROM POINTWORONZOF ... _, FJGURE 7.4 Comput~d and Observed Salinity between Anchor Point and Knik Arm 7-16 I :. .. . RESOURCE MANAGEMENT ASSOCIATES ~asea•r.n • o. .... '®'"eill • 0\DO'hco~II(!IIS · 11 October 1982 ~1r. Wayne ~1. Dyok Acres American Inc. ·suite 305· · · 1577 C Street Anchorage. Alaska 99501 Dear ~tr. Dyok: 'HARZA~EBASC ., Susitna Joint Venture Document N'umber. · Please Return To · DOCUME£~T CONTROL As au:thori zed by your 1 etter to Dr. Robert C!lr 1 son~ da tecl-Septem.ber Z3a 1982. I· have performed a numerical modeling study to .determine the effects of altered Susitna River flO\'JS on the salinity of Cook Inlet • . r~e following describes the results of this study. ·sac.kgroond .. / The construction and operation of the pt .. oposed · Sus i tna Ri"ve.r Hydroelectric Project will alter the amount of freshwat~r which enters Cook Inlet from the .Big Susitna· River. With this project!i infla;-Js dur'i.ng the : high runoff summer months wi 11 be reduced and increased during the low runoff winter months. To assess the effects of this change in freshwater inflow on the salinity distr·ibution within Cook Inlet, a numerical model previously applied to Cook In1et during a Corps of Engineers sponsored study was used (1,.2). . ' Model Application The numerical model used in this application represents the e' -:.:A ~ry as a series on nodes (discrete volume elements} and interconnecting channels~· In the aggregate this node-channel representation provides a 2-dimensiona1 {i.e., 2-dimensional in the horizontal plane and uniform vertically) description of the estuary including flow rates and velocities and water quality parameter concentrations over time and space. The model representation of Cook Inlet shown in. Figure 1 was developed in· the beforementioneti study. This model representation is adequate for this study. therefore no modification or further calibration was performed. To provide a more detailed description of the model concepts and its ~pplication to Cook Inlet, excerpts from the report to the Corps of Engineers (l) have been included as Exhibit A. Typical hydraulic conditions were used for the study. f1onthly average inflows from the various streams tributary to Cook Inlet were provided by Dr., Robert Carlson. These tributary flows, including the • Suite200 Lafayette, Califomiii ~~9 ~re and post Susitna Hydroelectric Project flews along with the model lnflow locations are shown in Table 1 • . Study~ .. Res u1 ts · To ass.es.s the effects nf the proposed project on the sa 1 i ni ty of Cook Inlet, the following hydrodynamic and dynamic water quality simulations were performed. ··ca.ses 3 and 4 had very similar Susitna River flo\"1 and therefore the effects· on Cook Inlet salinity were quite similar. . . post project salinities are shown in Figures 2 salinities at selected noda1 locations are 1 hope that this bt~i ef summary of our modeling approach and results meets the requirements ~of your project. It· has been a pleasure providing this service to Acres American and I hope we are ab1e to assist you in future studiesp · S1ncere1y, :C~vv~ Donald J. 5mit{r)1,1.. DJS/th cc: Dr. Robert Carlsen Enclosures / ' (/ 'l ·.: _r .. ,, REFERENCE'S 1. Tetra Teth Inc .. I "Wati;!T Qua 1 ity Study, ,,'1<ni~'' Arm ana Upper Cook lnlet, &~la7ka,n repor~ to the Corps yf .. ErY,~ineers!) s·eptember, 1J77. 2. Smi"th, D. J.~ "User•s Guide for the Estua_r-y Hyd'rodynamic and. Water Quality Models~~~ Tetra· Tech· report to. the C()rps of Engineers, Septemqer·. 1977 .. . .. • • ; ~iJ ~~--""lt"- ·.~lb~· .. J . ,...., ··,'. ..... l.l.J =:. :;:) t!'S:· ~ Ll.. - 1- UJ ..;.J :r.: -~ 0 0 (..) 1.1. 0 z 0 ~ .... c::: r-- .• ');;.cl.i ' t.s 0:: 0.. UJ c:: ~ 0:: 0 ;:! L&J --..J L&J z z < ::c: u I LLJ Q 0 z r TABLE 1 ' .. . ~ TYP I. CAL ft ~VER INFLOWS Ccflt TO CDOK INLET . +.BIVI;B LOCATIDtt.:, _Qll_ .J:KrL ...DG... _:..WL ..fiL _t1A8.,_ ..Af!L .J:UJL ·..llU.tL . ;,ua.._ ...&HL _ge_ + t;QDE· 27 •• CASE I ':iOO:S5 l26:SB BillS • 7906 7037 63:20 6979 60463 123690 131932 110841 6:1963 ++ NODE 27 • • cr...sE 3· 3:2392 &9191 17()33 16109 14705 1350{; 13319 57611 1073fU U70!l4 ·aa:a341 626~9 . ++ t«k>E 27 •• CASE 4 32!84 19772 17&:20 Ua973" . 15922 14415 13640 ,5930 105702 116333 iQI73:i 63254 NODE u 6242 2768 1787 1616 1D30 1200 1218 . ::za.;a 72~6 1195:1 1389$ 112010 NODE 10 4441 2266 1267 794 631 :Ill 573 737 1519 4;93 74:14. 7079 NODE 7. 394 309 185 160 173 20:! :u9 7a3 40~ 280 ;i86 387 NODE 8 · 4:»90 2243 na1 U40 . 939 829 eao .1938 10669 ;1:1353 aa4t.l UIZ79 NODE 24 9Z:29 .44:19 3073 2317 1909. 1682 1667 3939 aat.sa 454;18 .. ,,.7 .:12922 NODE :tO. 7695 34D7 ;1068 .646 1399 .. 12iZ~ 1707 7493 :128070 474:14 3B6:t4 :Z09a:J NODE .1~5 761 iZBS 193 '"" 119 121 l:t:S :161 2363 4049 3915 ~960. NOD~ :SS !083 400 ao9 · 91 4Q .. , 100 1029 34B:S 2721 2130 IS,_ NODE 116 3700 2082 nu .1130 904 869 880 3427 '73:14 63~· 4200 iZBNt + .. PnE PROJECT wUBITNA RIVER FLOWS . ++ •• PO!T PJIOJI!CT IUSITNA ftiWN Pl.DWI •• ,.II._ • • II ... '! ..... --_____ ... . . .... _. ~ •"! ---·-_.........,.. . • NOOE.NO. 12 • CASE 1 •• 0 CASE 4 •• +· . . 270 o~~~~~~~T~a~:~~~~~~~~~~~~~~~~~~~~II~J-1~1~1~1~1~1~1~11~1-I~I~I~I~I~I~I~II~I~·a~a~a~~~~TI~I~I~I~IIMIMI~I~I~ITITITiriMr"J 300 . 330 360 390 420 450 480 . 510 540 570 ~tOO &30 JULIAN DATE FIGURE 2 TE~1PORAL VARIATION IN SALINITY ~IITHIN COOK INLET NEAR EAST FORLANb UNDER PRE AHD POST SUSITUA HYDROELECTRIC PROJECT CONDITIONS · ( ·.\ · . i ' .. -1. 0 (J) • 3 G'") ' r 1'\) 0 § -· Ul § .. -0 § U1 §• 270 •, 300 330 6160 •.' ·' . 390 . . ' NODE ·.NO e . 26· .. 420 450 JULIAN DATE CA.SE 1 o• ::o_. CASE 4 •• + 1 . I ,. -•· -,. • ._ I : •• ._ -••~.• •••~I•• __ ,.. • ~ -·•·-·-··-- FIGURE 3 ... ' ,. . TE~tPORAL VARIAiiON IN SAlJ.tUTY WITHIN CENTRAL COOK 'lNLET SOUTH OF . THE. 5USITNA .RIVER UNDER PR£·· AND ·POST,-. . . . . · SUSITfjA HYDROELEC.(RIC PAOJECt CONDITIONS .. ~ .. ••• . . . -1 0 (J) • :::3: c-) ' r ~ .§ . -tn § ' -~ 0 § U1 § . . '. ·CASE t ... · 0 CASE. 4.e •. + . . -- .. O-hl"""'-i__,..--..--r-Y""!.........-r-r_,...r....,l"""-a 'l'-' ~l,...,'r-1''""'11"' ...... , ...... 1.,...' ..... , '~'-'1~ l~'"'"~l._l_,..•_,.•....pi ..... r ..... , ..-I ,_, l~'"'"~lr""''la-•-1...,....* , ....... , ...... , .,...,, lr-r•-r•-;r-•...-• "~"""'1*,....,1 l~'""~l!"'v· 1-re ..... , ...-I,_, ar-IJr-ra-re..,...l n 1 1 • 1 5!70 aoo 3SO 360 390 420 450 400 510 540 570 600 6aD JULif\N DATE FIGURE 4 TEt1PORAL VARIATION IN SAliNITY WITHIN COOK INLET NEAR THE SUSITNA RIV.ER UNDER PRE AND POST . SUSITNA HYDROELECTRIC PROJECT CONDITIONS • ••• I ' .. ' . ' . CASE l .•. <> t,a) CASE 4 .. ~ + 0 §- rn . . § 1\) 0 r ·, ( -; § 0 rn -• U1 3 § G) ' r -0 § tJl § 270 300 330 3£0 390 · i ·, 1 1 a 1 1 1 1 1 • 1 1 1 1 1 a 1 1 a · a· a a r 1 a 1 1 1 • "1 420 450 400 510 540 570 (,()() LSO JULIAN DATE __ ... ~ -·-............... --..... -.-.. -... . ·-·--·-.. -· ..... . . FIGURE 5 . TEMPORAL VARIATION IN SALINITY '~lTHIN KNIK AfUt NEAR ANCHORAGE UNDER PRE AND. POST· , . SUSITNA HYDROELECTRIC ~RQJECT CONDITIONS ',.-'' ·..-·:; . ' • w 0 ~1 §- I') 0 §· ~ -1 0 U) -• ut ::3: § en ' r 300 330 ' '' NODE'. NO. 50 . . .. CASE t ... <> .. CASE 4.~. + . . . -, I I I I I I I I l I I I I • I II I I I I I I I ·, I' i l i ,.. I I I I I q ·I I I L I (C I. I I. I I ~ ' I l I I 360 390. 420 450 490 510 ·540. 570 £00 . ft30 ' . JULIAN DATE. · .-.... ..,. -~. ·~ '--·• ... !oo··--·----.. FIGURE 6 'TEMPORAL VARIATION IN SALINITY NEAR THE UPPER END OF . KNIK ARM UNDER PRE AND POST SUS:ITtiA HYDROElECTRIC PROJEC.T CONOlTION'S · ·~ \ .. ' . .. ·. •• NODE .NO. 55. . . ·. CASE ;1 .• ¢ · ·· CASE 4· •• + ' I ' 330 360 rri 1 1-1 a 1. i 1 1 1 1 1 a 1 1. 1 1 1 1 1 1 1 1 1 1 1 e 1 1 ·a 1 1 1 1 .' 1 1 1 a 1 1 1 1 1 r 1 t ' 1 1 390 . 420 450 -480 . 510 540 570 600 ,30 . . .JULIAN DATE FIGURE 7 TE~1PORAL VARIATION lN SALINITY WITHIN TURNAGAIN ARM U~DER PRE AND POST SUSITHA ~ HYDRbELECTRIC PROJECT CONDITIONS '. EXHIBIT A .. .. ' 7.2 . Estua!%-~~~~1 Application to Water Quaiity itt ~'lc Arm :n~ ·--~-~l Upper Cook Inlet -Jr ... 7.2.1 Model Description .... Th~ numerical model used iu this study was o~·i.ginally developed for the California. State Yater Resources Control Boa:":'d {Evenson and Smith, . . 1974) and later modified for 208 planning studies on Long !sland~ ·New York (Johanson, et: al. ,: 1977).. Further model modifications were made during this proj~ct and instruction on the TQodel use can be found .i.n the user's guide (Smith, 1977) prepared unde~ this contract. .. The model. r_epreses:ts the estuarine system as a variable grid network of . " . uodes" and "channels." Nodes are discrete voluma ...tnits of waterbody, .. . charai:t:erized· by surfac~ area, depth, side slope and vol~..ime. The nodes ~ . are interconnected by.channels, each having associated length, width, cross-sectional area, hydraulic radius, side scope and f-;-ictio·n factor. t.later is constrained to flow from one node to another thro.ugh these 1-S .. ;,;.;,' JIB •• •. ·- .. ~ . ' " ... defined channels, advecting and· diffusing wa.tar q~.ality const:f.tuents bet:r.Jeen nodes. . 'I?te .following are underlying assumptions of the estua1;y model: o -The estuarine system is ~ell. mixed ver'tica.lly! o The law of conservation of mass .is obeyed for water quality constituents. o Che~cal reaction rates may be estimated using first order kinetics characterized by reaction.;...specific . t"at~. coefficients. ·. ~The overall estuary model is composed of two separate components: a. . . - hydrodynamic moc!el. (HYDRO)· and a ti.dally averaged· ·dynamic/steady-state quality-model (AQUAL). These numerical models are used in sequenc.e so . . - that the results of the hydrodynamic. t:llC!del become input: to the qUality . models. The.·advantage ~f dividing the overall model into mod~ar . units is that the inrlividual model..s can be calibrated sep~rately. Consider-able savings of computer tim~ is realized by storing results . . . of the hydrodynamic. model on di.sk files to be used repeatedly in the ealibration of the quality mod_el and during water quality evctluations. HYDRO calcult£t~s. the .hydrodynamics of the estuary us;ing tidal time- . stage data at·the estuary_ boundary, hydrologic conditions, and estuary geometry data such as depth, surfac.e area, tidal flat slope·and bottom· . . -~ roughness. HYDRO prepares a permanent file which portrays the ~o- dimenslonal hydrodrrtamic characteristics of the estuary, including tidally averaged values of flow, velacit:r;· volume, depth,. surfac:~ area a~d parameters indicative of the d~spe~sive characteristics of tidal mixing. 7-6 • . i I ' ..-;· .. -•..... :· . ' ' ''·->-.. '" \j. AQUAL, is.,: a tid;rlly avera_ged qUality model which ·c:ati be' operi·t~a· itt. either a. steady-state or dynatn:ie {time dependent) -:;mode. ·to· slttiu.l:at~ advective ... 'tffus:t.ve.eransport as well .ae physic:alt chemical. and . . . biological reaction$ of the, p~r~e.t:ers be:LJig· mo.del~d.. Net adiective flows and disl)er$ion c:oefficien.ts :to simulate ;the effects of tidal · I l l . I mixing· proVide .the physical mass .transpol:'t. The resu.lts ·are repre-. sentat:1:v~ o; t;he t:wo-d.i:mens.;.ona~-d.i'Stri.bution· ·of ·daily av~rage .~uality ., conditions in the ·~t¥X'Y•. ·._,. . .. l'he dynamic mecie.· is used ~~n the estu~ry .quality does not approach . . ·• ' ;st~ady-st~te w:lthil!.. the _P!!1'iPd o.f time ~he bQtmdary c:~ditioUs "&,~i~ · -~ constant. If: ·signific~nt c.hanges il1 tributary inflow ~5!cur before · steady-state is approached, the dynamic operation ·giv~s mor.e repre~ ~ ' • --~ ' ' '~ ' ' • "!- seu~ative res_ults. In t:lie dynamic :mode, the model uses ~#ftr~les of . . th~ ticial. c:y<;les·as the basic time step and yields ave~age daily re- , " j sUlts. . . I I . . '!he AQUAL code provides t~~ option to include· up to.four user-specified. constituents in .addition to· the f~llowiug parameters which may be se-· • leeted for: silnula.t:ton. .. 1.. Sa~inity .. 2. Total Nitrogen · 3. Total Phosphorus . 4.:-Total Coliform Bacteria · S. E'ecal Coliform Bacteria 6. Carbonaceous BOD .. 7. Nit,;'ogenous BOD 8. Dissolved' Oxygen. 9. Temperature .. 7~7 .... ·-.... . ( A ~F!!::. de;ail.ed, d.~sc:ription of the model and i t:s use can bf.l-found, in . " .. t~e· :Dlod~ _ do~umeri'tation. "l : ."-. Hodel Adaptati_Qn ,}md Calibration .- __ -~ nod~~!lllile~ networ~ sc:helJie-has been designed ·to represent the ent::f.r~ . Cook !1?-le~ study area. This netwox:it, shown ii:l-Figure 7.1~ extendS-f:rOJa · Anchor Point on the south to the upper· reaches of Xnik Arm and _Turnaga~ _; Ani. This network s~heme ~ploys a. ~oarse representation in-the-sou~-..... • . em po;tiati of ~ook Inlet .wh~ra th~ impaet of developm~t ·in the Anch~~-l age area :l$ small. In Up.per Cook Ililet axid ~-ik Arm, where imPact of. ./ • • • ':"!'" waste disch_arge from the Aucho:z:oage _a:r.ea is greatest, ·-·~ more detailed J , ·representation has been ut:Uizede .. l'he. node and channel data were 1 geneJ:ated from. Nat:ie~nal Oc:e.anic:. and At!DOsphe-:a:-ic Administration -(NOAA) f . ' . navigatiou charts numbers 16664, G&GS 8854, and 16660. The node and channel data are presented in Appendix III. . I l Calibration of a tida:l hydrodynamic model entails a series of simu- lations during which boundary conditions are held .constant and the frictional resistance is adjusted. Rhen the tidal stage, current v~ locityj and· the high and low water time lai are adequately repres~nted _throughout the estuary~ the ·hydrodynamic model can be considered cali~ . bra.t:ed. !'or model calibration,average ~97~.tri.b~t:ary inflow_ra.tes w~re.used. An average tide was selected from tte daily predictions at Seldo~a -.. j and a~justed to Por1: Graham, the NOAA. ti_de sta~ion nearest_· the s-ou1;h-1 erly boundary of the study ~rea.· .This: tide has approximately t~e same . diurnal tide range aS that r!!port~d :!.n the 1973 NOAA 'tide Tabies. The . 1 results. of the comparison are smmnari.:z:ed in Table 7 .3~ Good agreement: f ' betw-een the calculated values and tide'table predictions of tidal stage and phase was observed at most locations •. • 7-8 .... --... , . .. I I • . . Ill • I · FIGURE 7.1 NOdt·Channe! Nttwork Scheme of Cook Inlet Siudy Area . . . . ... .... - . . Network Node Location Number Port Graham 1 w . ·cape Ninilchik 5 . . Kenai River Entr4n~e 11 Nikiski '12 . . East Foreland 12. Fire Island 100 Sunrise, 'rurnagain Arm 58 . Anchorage 124 North Foreland ·· 21 I ~orlft River Terminal 8 . 'l'uxeclni Channel 4• ,.. --"•·-· .. ~ . " . . . . · Talile 7.3 CALCULATED AND PREDICTED HIGH AND LOW WATER:· TIME LAG AND DIURNAL TIDE RANGE . . . 'Time Lag(hra) • 'High \late:t Low Water Predicted Calculated Predicted Calculo,ted· 0 . 0 0 0' . • 1 .8 .8 . 1.1 . 1.9 2.0 2~2 2.7 2.4 2.7 2.l l.J 2.6 2.7-2.9 . 3·.3 • 4.5 4.1 4.8 I 4.9 . 5.4 5.6 6r-:7 .1' ... o.o . /. n -;;. 4.4 5.5 s.s .... ~ . 3.8 3.3 . 4.0 4·.1 . .. . 1.7· 1.7 . 2 0 • • 2.1 . .1 .a .a .. 1.1 . . • ·Diurnal Tidal Range(f.t) ' • J?red:tcted . Calculated c .16,.5 16.6 19.1 18.1 . .20.7 • 19.2 ~0.7 20.0 21.0 20.0 27.5 28.9 31.3 30.4 29.0 31.8 21.0 24 .. 3 18.1 . 19.5 16.6 . 18.3 ~··----· .. ··------·-~-.____;.___ --------·---·-- I . , \ \ ,-fA. -~· ' Comparisons between ce~mputed current velocities and those based on :_,NOAAc: t1dal· curr~tJ.t':predictions were made. Figure 7. 2 shows .the cal- c:ul~ted and P.:redic.ted tidal stage and tidal current: near .Anchorage . ~ ' ;: .. ~ . . . . . . " . . ~ ~. " ~ .. · " ' . . ,:. . . .. . ... off Pt., Woronzof. The tidal current predic.tiotts .we;e obtained by. ·· · . ." · .. • 10 .0 • "'- . applying corrections to the d!!ily predictions· at. t:he Yrangell Narr~. ·.: . Bot~ ehe computed tidal stage and current velocity ~o~are well ~th predict·ed values. . .. .. .. . :. ... . ........ I. :~­ ~. Surface current velo~:ity 4ata (Britch, 1976) measurei:i off Pt:; WrJronzof. !~::. .· . . . .. . ,. · .. : ........ ~ were compared with c~rrent v~loc~ties calc1.1lated fo~ ~·· si:m.ilar period~~ ·A . . Figure 7 .l shows . the results of the current velocity c:ompariscn1 along · 11 ; . . with the corresponding tidal stage~ The ~i~al stage compar~son w~s. -~ ~ed only to obtain the p1:·oper c\tP:'ent phase. . The model calc1llated .. .. . ..... ·. .. · current ve~ocities slightly· ·lower than those observed. Roweve:c, it wuld ... be expected ·that vertical integrated currents·would be less than those· measured at the surface due to lower velocities near the bottom. . • I -:-r ·Based on the good agreement betWeen calc;ulated and repol:'ted tidal stage, l . . . . . I "ti;~~. 'Pb~se lag and current velocity, the hydrodynamic ":mci5~1 ca.u be . .f I consi~ered cali.bzoated. ' Calibration of the vater quality model is accomplished by first setting . . . boundary coudit:f.ons to observed va~ues and then adjusting dispersion co- . . efficient.s so. that the measured concentrations of a conservative wate~ . quali t~ parameter ~r~ ma~ched . ad:equate~y. Salinity is particularly . . suited to this procedure, since theconcentratio~sin the·tributary in~ flows are n·ear zero with the sole sou.rce of salitd~ being the ti4al boundary. .J t • • • . l I I '-' ~ . I ·, • Changes iil salinity take place ra~her slowly ~n such a large e~tua~;~~ ! . . t .. . . . . • I . consequently, a dynamic wate~ .quality simulation is r.eqti:lred · f~r d:S~: • . I persion coefficient calibratl.on.. A steady-state approach "'.Jould resu.lt ~ in unrealistically high dispe"rsion coefficients for high flow eoadi~iiO~. ·~ a:ud low dispersion coefficients for low :fl~w condit~ons: . '' ... ·: -~=;~_; .;~i. : ... "':1·~ . . ..... . • ' ~· ~ <' .H +# •'9' cl --l _,., • .ft... .• • • ,.,.:,... • • .. • \ t> '* .. . .. ~ • ... ... •. , • 1',. .. .... • ........ ~""t!"t.·· ·-· .. -.:_. !~ ~ .., ...... "~ :'!·.,: r-+., ·-~·.. . :.. , .. 7 .CJ. • ... t ... ..,,_,. • "' •,. • .-f' .. •• ,. ....... ~ •• t:,_ ~ .... ·l-" ~"'t' _......, <t • ,-~. ".. ·:.,..·~,. ~;.~-~·~·~.,:'~~:..,:.,.:.::of. _ ... ~·· •; -~ .. . .. .. ....... . . .. . . -,, .. ' . . ; ... II! ••<', • A .. oi!'lo --~· .r ~~:-.o:~-·!·-~:-·---..---:.•":_ ~:f$, .. --.r~~~-,.,.~ : I :· ~· ~· ~ · .,.._:.., •t ~ ...... • ·~ • "' ' l ._ ... • t .. • •·"""-·• •• t. ~ ,. !I'M~·~-~ .fl \~ ~•-I"""·· ~.: ·· .,,...:.• • ., -. • • a<· 'l•' ~,.; ·•••~ • ~~ .• -~ ... ~·~":-:7:...,.!,:..; ~-z.~·~1 ·•~'W.J ~.i~~! ~::-:~;;·:,,;.'.; ··~~:·t~·~;; ~~· •. ·:~~. :~·~··~f.~) :~~. · ·, . ...... -·-· .... • ... '"':., .• • . • •• -.. ........ •"':.o .. ., ..... _ ~ ~... .. •. _; .., .. -.....:....,!~:~.·· .. :t..·-: •• ", ;.,"" .. . ·-. , • '. ; l -~:;:;·~ t'!-. , •. ·:t .. i. -~. .• ' •• ·~·· .. \:~ .... , .• -· " ' ·" ... ~ ... ~·· ...... ,. .. -~'--· ~ .i£-. t "! '"JI!.-i ~~. ··l"!l." '! ..... · i*-~. . • " .. ·• ... ". :.·f~!. •;·~--.~·f""""'~·"'1~',..;,~_.. ... ~ ... ,.. ~ .. ;,.; ... J!'!l.~· ~'" . (.:'~ . • ·•;.".. •• • ;,.-.. ..-.:a· ............ ~~ ··~:-·,.,~·:... -~,. ... , .. Jt:;.: ..._rit/ •"' ···~-:· ' •• ) .. ~ . ·-· • • '. ' . . ·~ ~'li;;liil'·· .· LEGEND -·· e PREDICTED TfOAL STAGE ;1. .... : -COMPUTED TlDALSTAGE ... .. as;;---------::!------=---...;..;..--+-.;.._---:!=~·---o 3 6 ·9 . . .· HOUR --0 -s~. 0 0 • ..J • u. -LEGEND • OBSERVED CURRENT VELOt;lTlES -~uMPUTEO CURRENT VELOCITY -.e ·a:l CD •• w -.10 I . I , 0 3 a 9 12 'HOUR FIGURE 1.2 Computed and Predicted 'Tidal St;Jge and Tidal Current off Pt. Womnzof ,.. ...... • i I f t • I r r j ·- I 'l i ' t ' ! i I I • l l I l .. l _, .. \ . \ .. .. ; ' . ! ' . . • FIGURE 7.3 ~urre.nt Velochv Comp1red with Tidal Stage . . .. .... ·~· ·--... ~ '* ... .. • ;• ... ---·' ... ~ LEOENO TIDAL STAGE * (ESTIMATE fROM T&OE TA,LE O~TAI : ___. CALCULAYEO TIME &HOURSt .. . CURRENT VElOCITY •. . 8 (E5TIMA TED fROM TIDAL CURAENT DATAl --CALCULATED •.. :Ia . ·a ~ - ii •• !!! -·-··-·4···-· ..... ________ ....... \ ' .. nov data ('0 .. ~. Geolog~~al Survey, 1913) for wat~r year 1972 (October, 1911? 'through Septe!:"'ber, 1972) tJere examined~ and the a~erage flows I during four"periods C?iuc:ulated for all major tributaries eo Cook Inlet.; . . T"!-ble 7 ~ 4 is a S'nnm;.ufy of the stream ~lows. used for calibration.. The . . . November, 1971 through Ap~il, 1972, ··period is representative of low runoff. conditions and the mid-J~e, 1972 "through September, 1972, "ia . . "' . . . representative ox high runoff condit:.ions c; The other ~ periods serve as transitions between the major ~lotit conditions. Surface salinity data for Cook Inlet: is available for the peric~~ May 21-28, 1968, August 22-23.~ 19_72, and September 25.:.29s 1972. To calibrate the dispersion coefficients~ ~~e model was run dynamically . .. for the entire 1~72 water year. A compc:rison between the calculated , . and observed salinity between Anchor Point and the end of Knik Arm are ·presented .. in Figure 7. 4. 'Ihe calculated. salinity at the eod of Au~st . . . . . ! I ! . ' and Septembe.r. 1972, c:ompare.s well with the-observed salinities at those times.--The salinit~es observed during the May 21-28, 1968, period were· . . . . compared w±th the computed end of May, 1972, salinities. The observed and computed salinities for the end of May agree reaso11ably well, consider- ing the dissimilar hydrologfe The above comparison indicates that the dispersiott coefficients are adeq118.tely calibrated. The dispe.rsion coefficients ranged from 2000 ' to 6000 sq ft/sec along the axis of the inlet and Knik Ar.m an~ 200 to . : 600 sq ft/sec perpendicular to that axis. These values are of the same magnitude as thosa ~eported hy other investig~tors (Murphy·et al., 1J72)~ . ··-----·· .... ·-···-___ _...,._...._. __ . ,• . . ·. ' . . .. ' . . . .. ·~(' .. . . -~- . .. ; • • I • .. . . .• . !; : ·' 1 . ,_ . 1 ... "L • . . • . . ·- ; • ,., .. ·.·1· , t., . Table 7.4 · FLOW RATES .OF MAJOR TRIBUTARIES ··TO COOK I~ET' . . . ·• . . .. . . . . . . Stream oct 1971 •' Knik and Matanuska Rivers '7,170 Peters & CottDnwood Creeks 120 . Eagle. River . 191 . Ship Creelt . . 126 Little Susitna.River 200 . Susitna River 18,600 . Kena:L River 4,800 . • '*·--~--· . . . . ' Average. ·Flow Rate ·:(c.fs) . Nov.l971-May 1972- April 1972 Mid-June 1972 . 1,420 . . 7;590 . . . 30 120· . 51 210 : . 25' 114 . 60 .. 250 5,800 " 58,300 • lo310 ~ 2,590 . . ..: ..... .• , ... ·.·.····~.· .. ~- ~ ----~ .... :~ . . Mid-Jun~ 1972-. Sept·l972 ·.·. ; '· 31,200 280 . . 1,445 ' ' . . 270 . . 1,800 ' 77.500 . .. 11.600 - ... A. G. r: -z :i < "' ... A. • .. > ... -z -.. < w OSSCRVEO SALINITY AECUC~D FROM • ISOHALIME MAP RE2RESENT1NG. SS'TEMIJt.R 2$-29, 191'2 CONDITIONS. _ COMPUTED SAUNITY . ~NO OF SEPT. 1 5a72 s 0 125~----~~----~----~~----~----~~----~ 20 tO ... 30 I i I 0 MILES FROM POINT\'!t'OAONZOF. U:GEND OBSCRVED SAliNITY REDUCeD FROM • tSOHALJNE. MAP REPRESCNTJNG AUGUST ZZ-23~ t9n CONOIT10NS _ COMPUTeD SALlH!TY END OF ~UG. 1972 Ylt.S FROM POIHTWOAONZOF I I I LEGEND OBSERVED SALINITY REDUCl!:D FROM • JSOHAUNE MAP RePRESENTING MAY %1-2S. 1988 CONDITIONS . . COMP\.ITSD SAUNiTY ._..._ __ e;.:_NO OF MAY. 1972 • • • • 5 MJLE.S FROM POINTWORONZOF .. FIGURE 7.4 Computed and Obs.erved Salinity between _Anchor Point and Knik Arm.· 7-16 • i . } _;_.}......., .~ .• EXHIBIT B ,. ) ' f '·· .'. ' . . . --.·rn•"--·1 • ~ '<' ' ~ ' • '1. • • ,.. ... --,. >-• • ' < ... • ' 't • -~· '. ~ : ~ ' ~ ... • • ~ ,::;~ ~ ;. ~ ~ • """ j 1 4 7 8 9 10 u 12 13 14 15 16 17 18 19 20 21 TABLE 8-1 CQ'I.PVTED s.<t.l..INIT1 CONCENTRATION-Cl'tO/L) AT saECTED LOCATIONS WITHIN ci:xJK I~ OCTOBER APRIL CASEttJ CASCtt~ 29276 29278 .30281 30200 29033 29062 029609 29S03 27369 27409 29~99 29172 26976 27027 29035 28906 2~80~ 2S876 28:500 29332 26'10& 26762 ;;IS892 2B7S7 24663 247:51 27943 27741 261S:Z 26244 28665 28519 2:5018 2S097 :una 27934 NOVEMBER M~Y CASE~·t ~ASEet~ 29624 29:589 298:51 29831 28377 29371 29411 29:b9 2778:5 27784 29128 29031 27315 2733:5 29028 26910 26294 26319 28:508 283:50 270:10 2707:5 2S927 28799 2:5247 2:52Bla 2802:5 27824 26610 26641 28702 28:5:59 2:5:5St.t 2:5619 281:58 27971 23:5:55 :236:58 . 24294 24328 27444 27201 27:525 27284 . 22948 23058 . 27179 26904 22673 :%2783 27060-z ... ·.< 26?67 20786 20922 26212 2:5822 19717 2:5751 21082 26347 19023 2:541-1 18667 2:5271 19740 2:57:59 1:5:500 237?3 io:z:fB 24119 11''107 24:526 13961 22~4 198:57 25.90 21211 2:5966 . 19177 24921 . 1881:) 24749 19879 2:5301 1:5668 230:51 16402 23440 17269 :z:r:il0:5 14027 22149 1.4-;94 :Z2.313 23778 23817 271~ 26929 23:5:55 2:1:584 2699:5 26723 219!:.5 21939 260~ 2:571? 2104'1 .2:5324 2:2183 261:51 20403 ::lS029 20149 24o73 21063 2:5348 17407 22,4:5 18043 230::!3 187lr.? 23~:51 16021 21209 163:50 21090 ~!10:50 249~9 ~204. 2:5823 20413 2463:2 20141 2~280 21066 249e2 17365 220EI5 !8009 2::!:591 18767 2:3224 1:5943 ::!0738 16.C4<4 206:59 CASEitJ .CASEit:l 299~6 29763 29031 29104 28693 ' . 296:52 28804 :zseo2 • 28172 2B1:Ja :za4a3 28460 27727 27705 ::!S~Sl 28~16 26934 26806 27907 27923 27496 27468 ::iS47l 2839::! 2:5'906 2:5S~ 27328 27217 27104 27098 27960 2797::! ::!~OS 26178 27~51 27161 25068 2:5037 26~87 26473. 24o3o :24~&4 ~:5993 2:5BSS 2+442 24377 2:5568 2:1:504 23019 22919 24::!88 24226 :!2279 ~44 23253 24308 217'11 22717 ::!1501 21881 22291 229:53 19114 188.10 19668 19369 20:314 20431 17911 16930 1ikl1:5 1lt446 221341 22974· 23153 24275 21:565 ;;::!70:5 . 21:328 219:19 221~0 022985 1BS46 1:9976 19421 19:549 20099 ~054b 17'68 17076 17e39 Ua774 .JANUARY vY' .. Y CASEttJ CASEtt3 29971 29900 2S291i 29393 28971 28906 27997 28041 28:514 29443 27491 :27::539 28116 290:5it 27696 27705 :!7335 27261 26625 26664 27903 .27847 27505 . 27507 27:572 27:512 2k557 26:564 . 2&785 26700 2:1:523 2~:578 25798 25684 024:570 24663 2540::! 25277 23608 23904 . ::!5239 25093 23056 23:234 23995 ~3792 ::!1290 21~23 23347 19448 24199 21300 ~'21:i48 19218 22663 19037 233:56 19394 20:158 14438 iU046 1:5033 21617 16283 19499 1227:5 197:54 U904 23089 197~ 239?9 21~56 22579 19~35 22363 18439. 2:!101 19744 201:22 14910 20639 15314 212:12 16112 18959 12777 !9198' 1::!4-43 ·FEBRUARY ___,;:lV9VST CAS£•i GASEn 30100 30023 29135 282U 29219 29137 ::!7399. il7477 l'tARCH SEPTEMBEJ! CASEttl CaSE!? :30209 ~0127 28:58:5 i2S642 29437 29339 27362 274-48 29819 287::!4 ~9086 28971 ::!6673 26775 . 26:577 26605 2946S 29379 28777 29665 26746 26826 26321 26430 27793 27669 2S17:5 ~8030 2~348 2,477 24918 2~065 &!8291 2S191 26-484 2&~63 270&8 26934 241~ 24314 27990 27894 2:5464 2:5~~~ :.27300 27169 24164 2430:5 2M24 26262 22790 22979 26085 2:1997 21847 22077 2:5942 25730 2128,\ 21 ~38 :. ... .., 24849 24:56:5 19139 19472 24276 17439 -2~::!6 19333 2383S l69S1 23li73 16000 ::Z4:i!S~ 17377 :Z1S07 12325 :22:139 1:301:5 22145 1<4198 20856 10295 21090 1016:3 23930 17819 2-t749 196:14 23472 17340 ~941 1.7764 21::!~ 12787 :u11t 1l47$ ~267 1-4634 • 201£!4 1076(1 ::!0398 10634 28612 .28499 ::!6028 26141>. 27545 27372 23628 2:3804 ;t:.~• 293:17 28~f 2:1284 :Z:S4':o.....;..~ 2?'750 27:193 23931 2409A) 026979 26770 ~30:1. 2:!:510 26680 26442 21s32 :a754 26~:53 26291 21154 -· 21389 -·. :z~: u ~:1245 18'i92 19284 2:174411 19310 024696 169S4 24So48 16402 2~90 17649 22a9o 12967 237t2l 14669 :::!2039 110Q9 22245 11147 24668 17979 2~408 19~9 2407.5 16740 ~6:53 14025 2:l1S& ':::!' 11~4 2144. 11~31 • • TABLE s ... 1 (continued) C:~.FUTED SAL.INITY CONCENTRATION (l'iQ/L.) AT sa.ECTED LOCATIONS WITHIN COCK INL..ET NODE • OC"n::IBEJi DECErlBER JUNE -26 31 35 43 44 47 48 49 ~0 API:UL 1451)6 'l4644 ~3378 22~30 12819 22419 12572 ~337 .13000 21~4 .12717· 21343 US03 1~991 21824 20914 10~76 · 11lB1 21294 2041£1 10927 11127 21349 20456 10~14 20814 .. 10731 19971 10710 20056 10489 .. 10684 2122!i 20333 . CASEU, 'ASE•3 ' :16763 1lt642 21134 2073~ 15003 20785 1~942 19607 14.948 20261 14795. 19181 t4ou . , 139o9 20160 19608 13116. tr-29 20078 ' -459 13178 13177· 1987:5 •9277 1~433 12497 20153 19474 12:530 . !2580 200:51-19387 12'127 12923 19427 18841 CASE,!! CASE•3 18594 18203 16379. 1670'7 16990 16384 16960 143&9 16666 16551 ' 16507 14819 16079 1:576::! 15:504 1 :5639 . 1:5236 • 1499::! 1:5447 1:5432 15331 1:5069 14711 .141~2 14512 161~9 146SO 1:5611 14347 1:5976 !4<464 154S2 '1:5160 14896 1:U46 131CJs· 7466-7641 . 10:27:5 10341 12830 12697 72:i1 . 7182 l9:5~4 18791 17328 16714 . · · i·U 7. ~270 9045 9126 11714 1162::! 4760 4721 'a696 17950 15769 15186 :5593 18300 . 4076 1703~ 2!:5:5 14338 . 854 11285 213 8098 19 5098 103::38 20966 10231 2047:5 .. 1016~ 204U .10069 20109 .10241 ·19:521 ·4JB2 16367 Z!Oil 13764 8,.. 10800 :217 1702 19 4780 10548. 20100. 10450 19660 10387 19601 102&1 19326 10429 18'196 8532 150:50 . 8612 14489 1122:5 4114 11149 . 4081 7100 711'7 9883 9836 12282 11815 1958 1943 4856 4899 7499 74:57 7477 7202 4~ 430 2961 2965 ' 5297 :5230 3282 3174 51 :51 148:5 1468 33:52 ~275 9i24 899 3 3 :554· :529 1878 17S9 e' s3 o .o 12:550 12:186 1~735 l45~ 19776 19133 144.97 14421 ·12000 12092 1~036 13916 :zooaa 19379 16361 16096 11900 12000 '13932 138:24 20123 19403 16:52S 16235 11637 19902 .U28B 19948 11751 1'1178 11422 19109 1:1:579 16426 12963 174:17 13504 16082 12948 169~. .JANUARY ..M.Y ~se•s ~g,a :i!OOS8 19:523 11337 11134:5 1~672 18146 11749. • 1220.0 18630 17969 10168 10748 17EI5:5 17326 10842 112:52 17103 16638 1056:5 10869 17199 1.Q714 9723 . 10042 16425 11406 16~67 106S8 16033 1160:5 1i!a153 10913 17066 16578 7886 8170. 15000 146:51 2::53:5 2ol6 13979 13694 1237 1276 1:3:522 1012 13247 10(;4. 1224:5 12018 3~9 34D 9796 961:5 '44 45 7373 7:1!09 3 3 :5067 4933 o ·o 3188 303:5 0 . 0 16666 16230 9320 95~9 :5969 1:5623 11805· 11930 15873 15:538 11966 12076 15:505 123:28 14796 ~~ 1:5:!0'P 12375 14578 1369::! FEBRUARY AVCUST. CASEttl. SASE.•..3 21382 2C&86 984::! 10~82 20131 9598 20083 8578 194:50 ~0045 19268 90:58 ' 19::39~ 187CI2 87:5~ .9~71 187:a9 . 18085. S36S 9730 18818 18156 7852 82.12 18113 8787 18246 8337 17531 9103 17645 8659 1870::! 18040 6642 69~3 168" 16309 2469 :2609 1:5902 15422 1332 . 1398. 1~476 1099 15018 1153 14260 13857 405 426 11796 11464 64 67 fi235 8948 5 . 5 6706 6456 0 0 ~479 4250 0 0 18341 .177:22 7474 '7188 · 17692 171:53 9014 '9291 17606 17~'?.!. 909~ 936~ 17253 9413 16~4· 10:174 16761 ~644 16130 10723 MARCH.. SEpTEMB£8;.. .~.A~EU CASE•3 :!2~99 21703 11302 11~7 iU394 20593 10073 10458 2134~ ·20409 9534 992, 20737 .. 1~~.09 91-44 951.11 201.38 19352 S~l~ SS6b 20~15 . 194.13 8302 Bc~O 19~85 8402 19851 8735 20107 .19304 76102 7931i 194~1 17734 4103 4:290 17:552 16916 2786 2919 17154 2408 16000 ts-442 1262 132:5 13:552 13090 339 358 10906 1.0498 . 51 54 a~os 7&:5:5 4 ~ :5722 5412 0 0 19787 19021 7930 8157 19203 18~06 8333 8~48 19127 iS437 8322 963:5 .18799 8~11 SS13.4 .89&9 ~s1•:a 8701. 17$49 fi2;Ja liO 100 101 102 103 106 107 108 109 110 111 115 117 t27 TABLE B-:1 {continued) COMPUTED SALINITY CONCENTRATION (1'10/Ll AT sa..EtTrED LOCATIONS WITHIN COOK INLET OCTOBER APRIL £ASE•I CASEtt:t 10692 10834 1.S8ao 1 a2:zo 11275 11362 18293 1769"' 1~039 1:2057 17643 -i.;'l12 ~ 13014 1294'7' 16965 16:506 117~1 11936 21817 20893 l2212 12:ii'6 22124 21l:SS 11854 12029 21928 20974 11672 ·n959 21794 20860 11792 11973 21877 i.20937 U4S9 11675 2172~ i.20797 11:572 117:59 21750 i.20825 . 1127~ 114\67 21625 20704 10999 u1cn 21479 20:169 1134~ 11538 21644 207:!6 10959 11153 2146:5 20555 104\98 10691 21234 20341 11120 11311 21537 20~2, 10825 . 11015 21396 2049i 10.$84 10676 21232 20339' 9~94 9774 20767 19902 ·889 1 r;o77 20396 19554 8233 9415 20034 . 19214 NOVE1'1BER -. "'?-·":JY""--......, ...... -~W.. CASE•3 11132 11269 19609 1SB84 11143 11269 19291 19593 11267 11372 18874 1S216 11:574 11643 18360 17756 !3991 1:1941 20036 19492 14:537 14430 19787 19311 14177 14097 19780 19272 13921 13875 20024 1947:5 14081 1-4017 199:22 19394 13805 13758 19831 19285 ·13853 13807 19948 19399 13617 13582 19771 19213 13366 13344 1963S 19068 13662 !3026 19855 19297 13342 1:3321 1959.1 19022 12946 12939 19392 18810 131\72 134-45 197:24 191~· 1:1244 19396 13~ 18934 12948 12939 19344 12766 12.168 1218~ 19842" 1824;, 11'51 18.4:32 10968 17966 11587 178:23 11019 173:12 DEC£11BER ,J!.JMi CASElli CASEtt:J 12441 1247:2 181~7 17605 1::2067-' 12126 1 657!1 17971 1173~ 11916 1887, 18~ U~l:l 11609 19951 1i:3294 16072 15744 1'248 15413 16592 16386 14789 1:1110 16267 15894 14754 1-4996 16014 1:5690 15200 153~ 16171 15921 15003 15203 1:1928 1:1601 14726 1.14891 15962 15638 14964 1:1114 1576:1 i5453 14:141 14\600 1:15-42 1:1249 1417& 1426:3 1.5797 1~90 14617 1-4740 1:1523 15231 14051 141:35 15179 J.4912 1.:3042 1:3093 15634 1:1335 14196 14297 Hl440 1:1149 13609 1:3694 15193 14914 12912 12965 14503 14276 11151 11161 1:3961 986.~ 134\47 8630 13767 • 994:3 13:282 9,93 .MHU~Y ,JULY _ CdSt;ttl CAUE•~ 14104 13960 1:109, 14982 13,31 1:3445 16113 15792 12941 12914 17103 16.672 . 12404 124:28 17917 17:391 179'0 '17306 10599 11026 18:307 17691 10395 10913 18025 17438 10207 10673 17802 17260 10~00 10919. 179-41 17375 10365 10908 17733 17187 999:2 10389 17759 .17216 107.94 10603 17594 17061 9710 10089 17401 16985 9298 9637 17617 17096 9721 " 10101 17395 16871 9172 9:515 17083 16:593 7787 8072 17477 169:17 921:2 9~64 17312 16801 9766 9096 17097 16595 7674 79~5 16489 16040 5777 :198~ 16009 4542 1,169 363.9 FEBRUARY AUGUST ·cAsE•s casc;n 1~912 15479 11849 US97 1:1171. 14906 12999' 12950 14493 1-4~93 142:10 .14091 13904 13686 15488 15213 1939:1 18683 9:19;1 9013 19900 1902:3 6596 9055 19S:il 18799 6399 6S2~ :t<73'4 16643 8:509 S92S 194713 18745 94~7 SSS4 19295 19579 816~ 9:572 . 19317 18605 9299 9708 1917~ 18469 7961 6354 1~oo=., 1S313 . 7652 8026 . l'fARCM SEPTEMi!f! _ CASt;tt CASEO::I 17428 16918 9790\ ~ 16792 16.3:51 10633 10751' ·16098 1~732 11626 11674 15:369 X'<l99 12740 12700 207:33 19890 9050 9424 21092 20192 9318 ~70:5 20969 19990 9036 1741~ ,to 20696 -198~~ 9971 9!344-• . 20906 19944 9021 9398 :!0640 1979:2 97'2 9121 2066:2 .19919 SS37 9207 20:5:30 19693 8:564 9926 20374 19:549 8305 6660 19192 18490 • 20:549 19714 7961 83S2 9:587 8948 18989 19301 20360 19537 75713 7949 82:59 9611 1S720 18053 20119 19315 6:589 6908 7599 7923 19069 18376 . 20437 19610 760:5 '1977 9:330 8682 18924 1S239 7317 ,.674· 19722 180:55 6517 6834 19187 175:19 5092 :5:329 17757 4\128 17:345 ~10 17160 4328 16717 3470 20296 19477 910:3 8447 201:21 1931/a '7563 1'SS6 19637' 1'6867 64:S2 6733 1Sti:'~, 4.914 NODE • 4 7 8 9 ~ .10 u 12 14 16 17 18 21 .• •.. <· ' ' 22 TABLE B-2 .CfJMPJJT~D SALINITY CCNCENTFJATICN (KQ/~) AT sa.ECTED LOCATIONS WITHIN COOK lN.Er CCTDUEJt APRIL £aSE! J 'ASEtU~ ~9;!76 . 292S2 30291 30194 290:33 29069 296(19 29493 27369 ~7416 29299 29160. 26976 2703:5 2903:5 28993 2~906 2:5996 :i!9:soo 2e:u 5 267D6 26770 29992 28744 24663 24763 27943 27721 26182 262:53 2966~ 28:504 2:5018 2:5109 29129 2791:5 23:5:55 23671 27444 27176 22948 23072 27179 2b876 22673 22797 27066 26136 20196 201!}39 26212 2:5781 19717 19874 25751 25244 21092 21227 26347 2:5927 19023 19194 2:5411 24871 1S667 19932 25272 24697 19740 19996 2:57:59 2:52:5:5 1:5500 1.5687 23773 22991 U239 16421 24119 2i.174 17107 1729? 24:526 23944 1.o&04S .-~070 H143 1431:5 2:3167 222:34 NovatBER MAY CASE•t CASE!,! 29624 29:586 299:51 29939 29377 29:372 29411 29339 27795 27796 29129 29029 2731!5 :27339 29028 29904 26294 26324 29:508 29:339 270:50 27090 !28927 29791 2:5247 25293 2902:5 27909 26610 26646 29702 29:549 2:5:586 2S624 291:59 27958 24284 24336 27:52:5 2~k6 23778 23824 271173 26912 2:3:5:5:5 . 2:35fJO 2699:5 .26708 2191:5 2194:5 ~6062 2:5699 2104Cf 210:5:5 2:5::324 24946 22183 2:2210 26151 2~807 20403 20418 25029 24616 20149 20144 24673 24270 21063 21071 2~348 2~970 17407 17366 22:545 22096 19043 19011 23023 22~90 . 19797 18770 2::36!51 23218 16021 2120'9 162:50 1&:;!39 21090 21'.)091 DECEr'IBER ,JUNS. CASE•J CASE•.! 29826 297:59 29031 29114 296,3 2965~ 29904 2SB06 29172 28128 29483 2946:3 27727 27705 28~91 29!516 26834 26907 . 27907 27923 CASE•l, CASE•4 29971 29894 29298 26369 29971 29902 27997 29046 29514 29437 27491 27:546 29116 2B051t 27696 27711 2733:5 272:56 26625 26673 274&6 27469 • 21qo3 27943 29471 29:391 2750:5 27512 2:5906 2:59133 27329 27217 27104 27099 27960 27971 26209 26179 27251 27163 25068 25037 26597 ~6475 246:30 24584 2:5993 25994 24442 2437:5 25~~8 25515 23019 22916 242BS 24243 22:'79 22129 ~944 23002 23:!:53 231 ~ 24308 24293 21711 21:5:59 22717 22730 21:501 21319 21881 21994 2:!29.1 2:::;43 (229:53 23013 19114 18931 16810 19026 19669 19407 19369 19:599 20314 200BB 20431 20599 17911 ~1C.S30 17:S4S 1713:5 1921:5 17818 164~ .16840 • 26432 25799 27~72 27S09 26:5:57 26:570 267&:5 2o69S 2:5:523 ~SSS9 2:5789 2:5678 24570 246SQ 2:5402 2:5269 23668 23924 25239 2:50tl2 23056 232'..57 2399:5 2:3778 . 21290 215:53 2~347 23069 . 19449 l9B26 24199 2398:5 21:30~ 21.SBS 22948 22:S:S¥ 19218 19571 2266~ 22340 . 190:37 19479 ~:3356 23082 19394 19781 ::!0559 20096 14438 14955 21046 20606 15033 15561 21617 21224 16293 16754 19915 12923 197S4 191!51 11904 12490 FEBRUARY AUCUST :30100 30012 291:15 29~17 29219 29127 2739'9 27496 28819 29:"'13 26673 26795 28468 29:371 26746 2683n 27783 27658 25348 2~491 28291-29193 26494 . 26:573 27068 269~ 241:54 24:331 27990 :27896 25464 2S:562 . 27300 271:57 241,6.4 2df320 26424 ,'26247 ~7SO 23000 2608:5 2:5880 218~7 · 221C'IO 2:594:2 25710 21281 ~1~62 024849 24:536 191::38 19:503 r;ARC:H fiE,TEI19ER CASE~1 CASEU 30209 3011'7 295~~ 28640 29437 2q328 27::3&:2 274:51 ·29~96 2S95S 26:577 26689 26777 29654 26:321 264:37 2917:5 • 28015 24918 25074 29612 29486 26029 26149 27545 27354 23628 239So 29357 28220 2:5284 2541:5 277:50 27561t :23931 24101 26\'79 26748 2230:5 22:S23 26680 264U· 21:532 21767 26:5:53 26262. 211$4 &!.1402 2:5591 2:5206 18992 19:300 ~4276 23993 25082 24621 174:39 178:54 1766. 17993 . 250:26 ~472i 2:5746 25370 193:33 1969:5 19310 19603 2:38::39 2:3434 24696 2.4::!07 169:5! 17378 1695~ 17302 23673 2~232 24:549 24021 16000 164:57 16402 167:53 2429:5 2390:5 2:5090 246~2 17377 17799 17 649 17979 21807 21191 22890 221:52 1232:5 t2S2B · . 1286'7 132:58 22239 21~53 23273 ~SG1 13015 1:3:519 13652· 140:36. 2274:5 22215 237.23 ~:3093 14198 14673 l14669 1:5040 20107 10901 21090 20317 10163 1067:5 22039 11008 21168 11406 22:24~ ·~13:56 U14'i! 11~40 ~· .. . . 3 .. ·'·' ') -3 <!""". _. . ~3· .. · ... . _,.. .. · ~. . .... c "( ,,· 24 26 31 37 44 47 4a 54 TABLE B-2 (continued) . . . ... _,~ ~, ~. · ·-~;.t -· ; ~ · ·J .\ .;; ~ /\. ~:~~~!' ... ~~---~ / . .> :J; ~· · .. ,f... :;;. ,:::!.1· ::~Af~;~l..2J~i.-~,titt~:~~: ~1.:...~ ;~·;; !) ., OCTOBER APRil. . , CASEitJ CASEI!4 14506 141,6~ 23J7S 224~4 12819 13021 22419 21461 t::z5n t274o 22337 212:5, 11803 1201:2 21824 20827 10976 11202 21294 20325 10927 11147 21349 20369 10514 10.,2 20814 19884 .1049:5 10730 20912 t99o9 10469 10703 21225 20245 7466 76,5 19584 18708 6117 6281 18696 . 17971 3593 S745 18300 17496 4076 4190 17035 162~5 ~155 2213 1433&1 1.3705 854. S74 11285 10751 213 ;!17 8090 . 7665 19 J9 5098 4753 10339 10!169 20966 ~0012 10231 10471 20475 19574 1oto5 1040B 20411 19:5lt!t 1ooo9 to3o2 2010'f 19243 10241 t04sa 19521 18719 CASF..!l CA5e.,4. 16763 16636 21134 20761 1:5003 14946 20785 ~026t!t 14942 147a7 19607 19220 1.ilOU 13970 20160 19~\19 13116 13135 20078 19440 13178 131Bi 19875 19263 124:33 12=!07 20153 . 19437 12530 20051 12927 19427 125E9 19355 1~27 18929 10275 ~03:50 1~328 10675 9045 qlt35 15769 !.5143 9532 6621 1:5050 14447 .7100 7185 12282 11780 4a5t!t -44903 71'" 7189 2961 2966 3292 3177 ~~~5 924 554 85 i2550 ,19776 1200Q 200fJS l1'i'OO 201:23 11637 19902 U28B 19948 1<466 902 527 S4 12S94 19106 12i05 19:332 12013 19:.153 11766 19123 11~0 19045 DECEt1BEit ,!liNE 19~fil·~ l'3lSO 16379 16770 16990 16648 16384 16604 16966 16~90 14389 1<4996 16079 157 ... 7 1:5504 1!5668 15236 14982 1~447 1!5465 1:5331 14711 1:5055 14780 14512 14340 16149 15994 14650 14455 15611 15505 15160 14861 1314t!t 13227 12830 12691 7~31 7194 LL'714 11621 1~760 47.:!9 11225 !1146 4114 4099 9883 '9835 19~9 1947 7499 74:56 432 431 5297 5232 51 :31. 1978 0 14735 14497 14036 16:.161 13932 16:)25 1~:579 16426 1296~ 17437 3270 3 17EI3 0 14\517 14447 13913 16103 13821 16~40 13~04 16080 1~5-4 16954 .JANUARY .JULY CASE!l CASE;tt4 200Eict 19475 11337 U867 18672 19104 11749 12246 19630 17912 . 10168 10796 17855 17283 10842 11294 . 17103 16602 10565 10906 17199 166"t6 9723 10078 16425. 16004 11406 U637 16567 i6123 10689 1094t!t 17066 165~0 7886 8202 1:5000 1~626 2535 :262t!t. 13979 13664 1237 1281 13522 1:3229 1012 1048 12245 12004 329 341 9796 9603 -44 46 7:373 7i97 3 3 5067 0 3198 0 16666 9320 !.5969 11805 15873 11966 1550:5 12326 14796 1:3779 4921 0 :3021 0 16198 9590 15600 1195S 15516 12104 "191 1239&1 1•\567 13709 FEBRUARY AUCVST 21::362 20604 9845 l0319 20131 19374 9:598 ~0085 20083. 19171 8579 9100 19399 196~5 8755 9209 . 18729 18017 8368 Ef765 19818 16095 79!52 8245 19113 17474 8'187 '!136 . 18246 17~95 8337 8692 1B705. 17969 6642 6992 16844-16257 2489 2620 1:590:! 1 :5379 1332 !404 15476 14977 1099 1159 14~60 13923 405 42S 11796 11436 64 68 6706 0 4479 0 18341 7474 1769~ 9014 17606 . 9090 17253 • 9413 16344 1057~ 6431 0 4223 0 17658 7919 11102 9322 17027 9:192 161717 9671. 160 •• 1074. ,..ARCH SEPT£MBE£! CASEI!l CA5Et4. :!2499 :!1611 1130~ 11674 21394 20~1 10073 10472 21341 20301 9534 9931 207:17 19614 9144 9530 20136 19:!6~ 8:51:5 9884 20215 193:!2 8302 S66t!t ,.s· 19565 1877{ 8402 87570L.-- 19704 18~70 B22B 8~83 20107 A9~1~ 7612 7953 18421 176~9 4103 4300 175:52 16847 2796 292~, 171:54 16473 240B 2520 16000 1:5363 1262 1329 13:55~ 130:U 339 3SS 10906 104~6 51 54 8205 4 5722 0 19767 • ?830 19~03 8333 19127 93:22 lB79't S4U 1Bl:;l4 99&'t 76tt? " :5379 0 18934 S17• ~e4c'f aa7t l8:3o2 a•sv, l&07i e?:z~ t741Ul CJ24r10- NODE 4l 100 101 102 103 •• 104 1C$ 106 107 lOB 109 110 111 11$ 116 U7 127 • TABLE B-2 (continued) COMPUTED SALINITY CONCENTRATION U1Q/L) AT SELECTED LOCATIONS WITHIN COOK INLET 0CTD3ER API:Ut. t:ASE•t CASEU 10692 108:19 18BSO 1~l151 11275 11388 19293 176~ 1:l039 12083 17.643 17059 130:\4 12972 16965 16462 11751 11957 21917 20905 12~12 12398 22124 21067 119:54 12050 21928 2098:5 11672 11890 21764 20772 11792 11'994 21977 20849 11489 ~1696 2172:5 20708 11572 11790 21750 20736 11276. 114&'7 21625 2061:5 .10999 11212 21479 20480 11348 11$$8 21644 20638 109~9 11172 21465 20467 .10498 10710 21234 20253 11120 11332 21~37 20536 10825 11034 21::!96 20403 10484 10695 21232 20251 . 9:594 li'791 20767 19916 8891 9093 20396 1946·9 NOVEMBER -MAY CASEU CASEt14 11132 11290 i9609 1881h 11143 11291 192?t 18:525 11267 1139:5 19874 18150 11574 11667 16360 17694 . 1~991 13941 20036 . 19497 14:537 14425 19787 193311 1417':' 14094 19780 192&9 t39:u 13876 20024 19478 14091 14016 1 t3'922 194~ 13805 13759 19931 192S9 13853 13908 t994e 19402 13617 13:583 19771 19212 13366 13346 19638 19002 13662 1362'7 1-9855 19296 13342 1:3323 19591 . 1901o 12946 12943 19392 18799 1:1472 13446 19724 191:56 13244 13225 19396 18828 12948 12943 19344 187:5:5 . 12169 12191 19842 18224 11:551 11:594 18432 17795 DECEMBER ,JUNe 12441 1241n 19157 1757:J 12067 12141 .1857~ 17929 11731 11833 1887:5 !8179 11:512 1.6.28 189:51 .. 1823:5 16072 15725 1~249 1546:5 1~592 Ua162 14789 1:5171 16267 15973 14754 150:55 16014 1:S6Y1 15200 1540:5 16171 1:5801 15003 .1 :5258 15928 15582 14729 14931 15962 . ~~~619 14964 1:.\1.64 15765 1:5~136 . 14541 14706 15:542 15232 • 1~!76 1430:5 15797 15468 14617 147137 1:5523 15215 14051 14177 1 517Ci' 14897 13042 13129. 1S634 1:5318 i4196 14341 15440 15133 13609 13735 15183 1489, 12912 13001 14503 14264 u1:s1 "usa 13961 13757 9Sb2 98t.4 .JANUARY .JULY CASEMJ CAS!&tt" 141 04 T 1 :1955 15095 14894 13531 13446 16113 1':578~ 1:2941 12920 17103 1664'1 12404 12438 17917 17355 17950 17262 10:199 11069 18307 17639 10395 10960 18025 17389 10207 10717 17902 17216 10:500 10961 17941 17329 ~0365 108:51 17733 17142 9992 10430 17759 17172 10194 10644 17594 .17018 9710 lQ12' 17401 16944 9298 9675 17617 17044 9721 . 10~41 1739:5 16930 9172 95:52 17083 165:54 7787 8103 17471 16916 9212 9601 17312 16760 9766 9131 17087 16556 "7674 7995 16489 16005. 'J777 6006 16009 1556~ . 4542 4716 FEBRUARY AUl;UST 13812 1:54:53 11848 U914 15171 '1481)9 12999 129~0 14483 "1~283 14250 1-4093 13804 13683 15488 15205 19395 18604 8:5902 9051 19800 18933 9:596 9096 18713 8864 19564 8963 19478. 18662 8457 8923 19295 184'" 8165 8609 19317 18:5~:) 8299 87-46 1'9174 7961 18391 8390 19003 18238 76:52 S060 19192 1~12 7961 838'7 1B?S9 1822'- 7578 7981 18720 17992 6589 6939 19069 18300 760:1 8010 SS924 1S164 7317 7707 1 S72~ l7'1B3 6517 6863 18167 17Al93 5082 5352 17757 17099 -4129 434.7 ~ARCH 5EPTE1'15Ef! 17~29 16968 979-4 10003 ,16792 16310 10633 10776 16098 1,701 11626 U689 1~388 1~077 12740 12709 20733 19793 90!Hl 9438 :21092 2QOB7 931S 971S 20969 19869 .,036 91.27 20696 8971 20806 1994:) 9021 9410 20640 19695 87'J2 9134 2066::! 19722 8837 9221. 205:30 19596. 8564 8941 2037-4 1~4:5-4 930:5 9675 20~49 19618 B~S7 Si162 :.!0360 19443 8259 ~- :itO 119 19:!2:1 7598 7938 :20437 19:515 8330 B697 20296 1938:1 8103 8462 20121 1922-4 7563 7901 19637 18780 6452 6747 192~0 18~24 ~6~1 5913 • ' .. -.. USER'S GUIDE FOR THE . .. ESTUARY HYORODYNAt·UC AND WATER QUALITY MODELS ·Prepared for the Depar.tment of the Army Alaska· District Corps of Engineers Anchorage, Alaska Prepared by . Oonald.J .. Smith Tetra Tech Contract TC-827 DACWSS-76-C-0044 September, 1977 Tetra Tech, Inc. 3700 Mt. Diablo Boulevard Lafayette, Ca 1 ifornia 94549 (415) 283-3771 2._ .... l~~~ ,) ' . " ,.-. ) •.. >" •••• II. • TABLE OF CONTENTS INTRODUCTION. • ~ ~ • • • • • • o • • e • • • • • • • ,, . .. . . . BACKGROUND • • ,.. • • .. .. . .. .. • . • .. • .• PURPOSE .AND. OS COPE. • . • • • •-~-.. ,. ·• ·• • • . . .. ,. •'' . f·10DEt DESCRIPTION. • _ • . . . . . . ~ . . . ~ . . Conceptual Formu)ation •• ~-~ ~ ...... . Program Qpgrational Sequence. • • • • • • • General ModeliD9 Approach a ••••• . •-. System Layout·_ .... . . ... . ~ .. .. . . HYDRODYNAMIC MODULE • . • • • • • • • • • .. . . . .. . INPUT REQUIRENENTS • • • • • • • • • • . . . -. . PROGRAM ROUTINES • o • • • • • • • • e • • • • • INTERPRETATION OF RESULTS ••• .. . . • • • • • • • • • • • • • • • • INPUT REQUIREMENTS • • • • • • • • • • • • • • • PROGRAt-1 ROUTINES • .. • • • .. • • • .. • -INTERPRETATION OF RESULTS ..••••• • • • • • . . . . ~ APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E APPENDIX F i •• Page . _,' _,,. 3 3 3 4 7 . 7. 9 9 20 22 29 29 48 50 CC• . . .,\ .. . I" .~ ., '. ,. .. ,:.'_,; ;.,., ,....,) ,/--.)" r~"/ "~ ..... -..-~--""". !~· Figure I-2 Figure It~~ ' LIST OF FIGURES .. . . ~ . . . Tidally Averaged EstuaryModel Flpw Chart" .. .. .. • •· , .• ·. • • • • • • • • • • Estuary Hydrodynamic Nodel Subroutines • • • • . ; . . · • ;; . .... . . . .. . .. • • • • • Page 2 6 21 49 i\· . il . l . ..... ·~·-···:&' > ', -~ . ~ . . . t -··· "• ...... ~·.,' .. . ... ' J~---... : 'f.:··-~ . LIST OF TABLES Page Table Il-1 HYDRO -Estuary Hydrodynamic Model Data Requi rem~nts. • .. • • .• • • .. .. . • .. •. 10 • • •. i, • 30 • •••• • • . ' • iii I. INTRODUCTION . BACKGROUND The Fede.ral Water Poll uti on Control Act Atnendments (PL 92-500) of 1972 establishes specificr~quirements directed to the control of point sources of pollution. The Department of the Army, Alaska· District, Corps of Engineers v1a s given the res pons i bi 1 i ty to determine the effects of various level::; of treatment and levels of wastevJater affluent discharges, ~s defined in PL 92-500, on the water quality· of Jpper Cook Inlet including Knik Arm. Tetra Tech, Inc. was contracted to prepare the Knik Arm and Upper Cook Inlet water quality report. Included in th~ study was the selecti.nn and use of appropriate mathematical models to aid in the evaluation of the effects of wastewater effluent discharges. The models selected and documented herein are: • A two-dimensional horizontal, complete mixed vertical, dynamic hydrodynamic model interfaced with • A two-dimen~ional horizontal, complete mixed vertical tidally averaged dynamic/steady-state water qual i·ty model. This manual provides basic instructions for the set-up and use • of the general estuary hydrodynamics and quality models. An example problem data set and simulation results are presented in Appendix A through D. The example utilizes the node-channel ·representation {see Figure I-1) used for the water quality evaluation portion of this project. A listing of the computer program codes for the hydro- dynamic and wCiter quality models are presented in Appendix E and F. • 1 FIGURE 1-1 NonE AND CHANNEL LAvour FOR UPPER CooK INLET iNCLUDING KNIK AND TURNAGAIN ARMS . . Detailed descrJptions of the theoretical .. ba~kgrourtd !lnd rna the·-.. matical formulations .essential in the estuary model development are· presented -in the Documentatfon ~eport*. PURPOSE AND SCOPE This manual· is intended to provide the user with information which is fundamental in the set up and use of the estuary hydrodynamic . and quality models. It includes general instructions regarding: 1 Geometric representations of the prototype system; • Data requirements and .input· format speci ficatio.ns; • Pr·ogram subroutines and computation a 1 sequence; -• General modeling procedure; and • Interpretation of model results. .. t400EL DESCRIPTION Conceptual Formulation ~" . The numerical model represents the estuarine system as a variable grid r.,:t\·JOrk of "nodes" and "channels... Nodes are discrete vo 1· ume • units of waterbody, character1?ed by ·Surface area., depth, side slope and volume. The nodes are interconnected by channels, each having· associated length, width, cross sectional area, hydraulic radius, side slope and friction factor. Water is c0nstrained to flo\•/ from rine node to another through these defined channels, advecting and diffusing water quality constituents betv1een nodes .. . *Johanson, P.J., D.J. Smith, F.M. Haydock, and M.W. Lorenzen, "Documentation Report for the .~r.tuary \~at~r Quality Models ... A Report to Nassau-Suffolk Reg1onal Plann1ng Board, Long Island, New Y.ork, May, 1977. 3 • • . . •••• The fol'IO\-Ii'ng are underlying assumptions· bf' the estua~y ,ffiodel. ,, · 11he ·1estuarine system is \·Jell mixed vertica11y. • The law of' conservation of mass is ·obeyed for water · ·quality constituents.~ • ·chem1ca1 reaction rates may be estin:ated using first order·· kinetics characterized by reaction-specific rate . -c.oeffi cients. Progr-am_Qperationa 1 Seguence · The overat1 t\·m-dimensiona 1 estuary model is composed of two separate components, a hydrodynamic model (HYDRO) and a tidally averaged ,qua 1 ity model {AQUAL) • The numertcal models are used i~ sequence so that the results of the hydrodynamic modei become input for the \•later quality model. The chief advantage of dividing the overall model fnto segments is that HYDRO. can be calibrated separately and then used repeatedly i rt the 'ca 1 i brat ion and a pp 1 i cation of A QUAL. HYDRO calculates ·the hydrodynamics of the estuary using detailed information about geometric configurations, hydrologic conditions and predicted tidal time-stage relationships •. The equations of motion and continuity are applied to determine the physical transport " mechanisms of \t/ater flows and velocities in channels» and volume changes in nodes. The resulting data are averaged over the complete tidal cycle and written on dfsk files to be used as "input to AQUAL. 4 .• AQUAL combines formulations _for. biological and ch.emical reactions with advectiva and diffusive properties in a mass balance equation to ca1culate'tidal1y averaged water quality at.any location ... and time. Required inputs include system geometry and tidally averaged hydrodynamics fr.om HYDRO, boundary conditions~ dispersion t ' ' ' ' ' coefficients, point and non-point source, qual itylt reaction rate coefficients, and met~orological conditions. The dispersion coeffi- cients ar'e, used to estimate net dispersion in the prototype since tidall~.induced advection is not directly modeled. AQUAL .may be operated in either a steady'"!'state or dynamic mode. The final results . . . '' in the steady-state mode are representative of daily average condi- tions which would prevail if all inputs remained constant over time. The dynamic mode·is useful for simulating. long-term change~ in water :quality which result when system conditions .or v1aste inputs change . ~ ·• significantly over time. In this mode the mode1 uses tidal cycles as the basic time step and yields average daily results. Figure I-2 summarizes the program opera tiona 1 sequence. for the t ida 11 y averaged quality model. The quality model can be used to simulate any combinatio.n of the fo110\t~ing thirteen parameters and have the capability to include up to four additional user specified constituents. Optional con~tit­ uents may include any dissolved or particulate constituent with first order decay, .settling and transfer between con$tituents through decay. G:;'1init;:) 2. Total·Nitrogen 3. Total Phosphorus 4. Total Co1 iform Bacteria 5 •. Fecal Coliform Bacteria 6. Carbonaceous BOD 7. Nitrogenous BOD 8. Oisso1ved Oxygen 9. Temperature 10.-13. Optional Constituents 5 • ... -.•. • HYDRODYNAMICS MODULE • T IDALL·Y AVERAGED ESTUARY MJDEL .. , - HYDRODYNAMICS DATA JNPUl'S . . I T.tDAL STAGE I PH'!SJCA.'. i.NI'J GEOMETRIC :DATA AVERAGE HY!iROLOG! C Mi!l iol;. TER )]· CUALITY INPUT tATA I !NFL.OW QUALITY 'I i\:.TE COEFFICiENTS I CLit'.AiOLOGICiS.L DATA OVER A TYPlCAL. TIDAL CYCLE .· T~.1JAL HYQtlCIDYUA!'UCS OVER ~ THE TYPICAL' TIDAL CY:JLE t STil.GE t C:UFIRENTS • 'TtDAL HYDRODYNA:.".H:s 5EUlG AV~P!!.G£D QVER THE ililAk CYCLE I t . AV~RAGE STA~~ S AVERAGE CU~*ENT$ JAPE INTERFACE I L, I DISFERSlCN COEFFlClENTS I TltAL EXCHANGE RATIO • AVERAGE WI.TER QUALITY OUTPUT AT VAR~OUS NO!IES At.~ t.ltlKS FIGURE I-2 TIDALL~ AvERAGED EsTUARY MopEL FLOW CHART 6 ' ~-. . ':-" . ' General Modeling Approach The first phase of.the modeling procedure is to "calibraten the model using synoptic survey data from a suitable study period. Boundciry conditions (tides, flows, vJ~ste discharges, etc.) \vhich . charac.:teri ze the study period are input to the model and the results are compared to in situ data.. Calibration involves adjusting ~ystem coefficients or modifying the net'tJOrk until reasonable agreement bet\·u:en model and pr·ototype is achieved. Once the model has been calibrated, a second. study period may be selected for model ~'verification". f~odel inputs are chan.ged ·in accordance. with results of tr. is study period whi 1 e sys tern coeffi- .cients and network geom~try are maintained. If agreement between calculated and observed concentrations is good, the model can be cons:idered verified-. If agreement is poor, the reasons for the disc;repancy must be determined and satisfactorily resolved.. Any adjustments made to the model at this point must also be sho\tJn to improve the .calibration results. The third phase of the modeling procedure is to evaluate model sensit"ivity to modifications in sy~tem coeffici.ents, and,unit r·esponse to changes in individual loading sources. This is accomplished by examining the effect of varying <;>ne parameter \-lhile holding all others constant. The sensitivity analysis allo\·Js estimation of the range of resu)ts possible and the relative importance of each system coefficient. The unit response analysis shows the relative importance of various waste sources and bo~ndary conditions on water quality. ~ystem Layout . _ The nonuniform grid system used in the numerical models enables ·"the user to specify gr·eater detail in areas where the ·impact of po11utants is the greatest. Efficient util{zation of comput~r 7 ,. resources \'Jeighs heavily on jud~Ci()US preparation of the node and channel system.. ~.mong the most important considerations are co~puta­ tional time step i.ncrement, system geometry and location of \oJa$te sources. The computational (hydrodyrlamit) time step increment is gov~t·ned by toe stability criteria of the channel according to the foi1c\·;ing relationship: \'lhere: ~t - L = 9 = R = L -bt< v'OR 9 maximum hydrodynamic time step channel length gravitational constant hydt·aul ic rad~us (approximately equal to the· average channel depth) Since the same time step is used for the entire system, a single short deep channel can necessitate the use of a much smaller tirne step than would otherwiss be required. Channel lengths should be selected to minimize this constraint as much as possible without < • interfering \·lith natural system geometry. ln order to obtain the gr·eatest possible cor·respondence bet\·;een model and prototype hydrodynamics it is important to attempt to, align model channels with natural channels as much as possible. ln . .. . . ·'"' addition, areas \·lith \'lidely varying characteristics {e.g. depth~ roughness) should not be combined in one node. Smaller nodes and shorter channels ~re warranted in regions which are known to have \-Jater quality prcblems or where major gradients in \'later quality . • parameters exist. 8 (1) II. HYDROOYNAHIC ·t10DULt . . INPUT REQU IREf·1ENTS The following inputs are required for the computation of estuary hydrodynamics:· • Physical and geometric character·is~ics of the node- channel representation of the estuary; • Tidal time-stage relationships at seaward boundaries; • r·1eteorological and climatological data, including evaporation, wind speed and direction, and precipitation; • Point inflo\'JS and outflows; • Non-point inflows; and • Control specifications for computational options and output formats. Table II-1 outlines the card groups and format specifications required to set up the hydrodynamic model card deck. These card descriptions together with the illustrative example data presented in Appendix A and the simulation results presented in Appendix B sh9uld enable the user to set up, run, and inte1pret the results of the estuary hydrodynamics_ model. 9 - '. Card Cal""d Number. Column Table Il-1 HY.DRO Estuary Hydrodynamic Model Data Requirements Format Variable Descriotion Card Group l -Title·Cards .These heaaings w.i.ll be printed on s3ch page o:f the input. dat:a summary. la 1-80 20A4 TITLE ~1a in heading lb. 1-80 20A4 TITL Subheading Card Group 2 -Input/Output Control Card • Two or three tidal cycles are normally required to reach s-teady- state hydrodynamics. Results of the final tidal cycle for .each hydrologic condition are averaged and stored through NSTEJl.D for later ~se as inJ?Ut to liQUALo Examples of the plotting options are presented · in ~ppendix B. A rent=mbering routine is included in the HYDRO code which arranges the channel-node system to minimize storage and computational require- ments. Internal renumbering should begin with a node located at some extreme of the network such as a tidal boundar!f or lengthwise end o£ the system. . 'za 1-5 1115 6-10 11-15 16-20 NSESON NHPRT ·NQPRT NTSL 10 Sets of hydrologic condition.s (48 maximum) Number of nodes specified for printout (1-30 allowed) Number of channels specifi~d· for printout (1-30 allowed) Number of nodes specified for plots of mean tidal range and time of high water (max. 48) · Table II-1 -Cont. Card Card Number · . Co 1 umn Format Variable .Description · ...... ;··, ' " Card Group 2 -Input/Output Control Card Cont .. 2a .. ,b t:~ • Card 21-25 26-30 31-35 36-40 41-45 '1-5 1615 6-10. • • • Group ~ 1-5 1615 6-10 • • " NSTAGE NTFLOW NDYNAM NSTEAD NN MDAY(l) MDAY(2) . • • • t4DAY (NSESON) JPRT(l) JPRT(2) • • jpRT(NHPRT) Number of pages of· tidal stage plots {3 plots per page) Number of pages of channel velocity and flO\-! plots (3 plots per page) Not used ·HYDRO/ AQUAL interface unit number Node number to begin internal renumbering Number of tidal cycles for each hydrologic condition (~J ···. Nodes specified for stage printout {NHPRT nodes required) Repaat card type 3 as necessary to conform to lindts set: on card 11 t ·-·~-·~--~-ss.~,n~ -. " < .,, " ~ • " • • -.? ............. ... ' ~ .... "'~· '/ • ,;.,,_ Card .· Card Number . Column Format Ca'td Group 4 . 4 leaS 1615 6-10 • • • -Table tl-1 .. Cont. Variable CPRT(l) CPRT(2) • • CPRT(NQPRT) .. , Description · Channels specified for velocity and flow printout {NQPRT channels required) Repeat card type 4 as necessary to conform to limd~s set on card.2. Card Group 5 5 1-5 315 NJPLOT(NSTAGE,l) Node specified ~ . TOr 6-10 NJPLOT{NSTAGE,2) stage p1 ots 11-15 NJPLOT(NSTAGE,3) Nodes specified here must: have been included in JPRT array (card 3). NSTAGE (card 2) cards are required. Omit: Cqrd 5 i:f N$TAGE = 0. Card Gr·oup 6 6 1-5 6-10 11-15 315 NCPLOT(NTFLOW,l) Channel specified for NCPLOT(NTFL0\·1,2) velocity plots NCPLOT(NTFLOW,3) Channels specified here must have been included in C?RT array (card 4). t:TFLOTv (card 2) cards are required .. Omit card 6 if NTFLOT.,., = 0. 12 .. ~ e~· • ':\ -!; ·"~ ,_ J'F _-:._'·~-e.:¥,· Table Il-l -Cont .. Card Card Number ·co ltimn ";· Forma.t 'Variable ', -'"'. ··card· Group 7 7 l-5 6-10 • • 1615 JTR(l) JTR(2) • .. • JTR(NTSL) Oescri ption· Nodes specified f6~ profile plot of mean tidal range and time of high water (NTSL nodes required) .Repeat card 7 as required to conform to the limits set on card 2. Omit card 7 if NTSL = 0. Card Group 8 Hydrodynamic time step increment t.;hich is based on channel stability criteria can be determdned bg using Equation 1 or by previewing invariant channel data output generated by the model .izl a preliminary run usinf! a large hydrodynamic time step. 8 1-10 11-20 21'-30 31-40 4Fl 0'. 0 DELT · DELTQ PERIOD 13 Hydrodynamic time step increment, sec. Printed output interval, sec. Length of tidal cycle, hours Anticipated maximum diurnal range in stage within the estuary ( ft) • . \~ Table ll-1 ·-Cont. ·card , Number Card Column Format ., Card_Group_9-Node Cieometr.x Vari:able _Description ·~ 1\'oJe .numbers gr·eater tba:n 200 are not: allowed.. Averat;e nodal . a·ept:h· at mean sea level can be estimated £rotn nautical c:h:rt:s keeping in mind t:ba t · the charts · show mean 1 ow tr!a ter. Nodes with sizeable tide flat areas require ·an estimate of change in surface area per foot of change in depth. ·The x:a...y coordinate location of nodes -relative to som= origin is ·measuz:ed in arbitrary units. <,·· 16-25 26-30 31-35 36-40 41-45 46-50 • • • 76-80 IS 2Fl0.0 3FS.O 815 J AREA· SLOPE DEP X1 Y1 NTEMP(l) NTEfv1P(2) • • • NTEMP(8) Node number Water surface area at mean sea levels sq. ft. Change in surface area vlith increase in water surface elevation, sq. ft/ft. Water depth at mean sea level, ft • X-coordinate, any unit Y-coordinate, a.ny unit Channels entering node Repeat card 9 for eacb node in the system termina t:ing Wi tb a blank card. A maximum of 200 cards (including t1Je blank card) j$ allowed. 14 '_) - -Table Il-l ~ Cont. carcJ ca·rd Number c Column Format Vari.ab1 e Description Card Group 10 .-Channe 1 Geometry. Channel numbers g-r:ate.r than .300 are not al1o;. ... ·ed. Cha~nel 1 engtb, av~ra.g~ widt.h, and t:he change i.n width per :foot o:f chang~ in dept~ in tide flat areas (side slope) can be estimated :!:rom nautical cbart:s. The hydraulic radius :i,s essentially equal t:o the channel depth .except in ti.de flat. areas. v.·here it is approximately. eq.ual to t .. ~e avsrage, cross-sectional area at mean se~ level di.·vided by t:..~1:e sl;;:ace t-.d,d.t(l at mean sea level.. Channel roug:f:u"less, as rep:resentea bg 1-iannings coefficient, is a function of channel conf.ig~:at:.ion, botto:.7 ro~g.l'l.TJess and o.'Qst:ructions. Coefficients range from • 02 for sm~oth straight ch.annels to 0.08 :for r.ough, irregular, obstructed cha:Jnels. 10 1-5 6-15 16-25 26-35 IS 4F10.0 N ALEN WIDTH RAD Channel number Channel length, ft. Channel width at mean sea l eve1, ft. Hydraulic radius at mean sea 1 evel, ft. - 36-45 COEF NTEMP (l) NTEf4P (2) SLOPE Mannings roughness coefficient 46-50 51-55 56-65 2IS ·Fl 0. 0 Nodes at each end of channel Change in width with increase in water surface elevation, ft/ft. Repeat card l 0 for each channel in the system termi;)a ting t-.Ti th a blank card •. A maximum of 300 cards (including tb,e b1ank card) is alJ<:n·ted. Card Group· 11 This subheading replaces the title read f:rom card lb and t''ill be a .. ~.;th tn· e follm·ling set of hyd:rolog· ic. conditions. printe . ,.. ... 11 1-80 20A4 . TITL Subheading 15 ~· • ..... • : "-, ' l "• . ,;., · .. Card Number. Card Column ·, • Format Table 11-1 ~· Cont • Variabl~-Description Card G.~oup 12-Hydrologic Input Control Switch ' . Set NTEMP( ) = l to skip the following .inputs; new data will -b~ read if NTEf1P ( ) = 0: Hydrological conditions are assumed zero until otherwise specified. Inputs are retained until repla~ed witb new values. 12 ' 'l-5 6·-lO 11-15 16-20 21-25 26-30 615 NTEMP(l) NTEMP(2) Nla~1P{3) NYEMP(4) NlEMP(S) NTEf~P{6) Card Group 13 -Tidally Influenced Nodes Read new tide data Read new evaporation data Read ne\'J wind velocity and direction· Read new point inflows and outfl O\tJS Read new groundwater inflow data Read nevo~ storm -v1a ter i nfl 0\-1 data • 13 1-5 15 . NJEX Number of nodes with specified stage relationships Omit: card 13 i:f NTEl·!P(l) (card 12} = l .. --------------~--------------------------------------~---------. Card Group 14 -Tide Data 14a l-5 4F5.0 6-10 ·n-15 16-20 JEX(NJEX) NI t4AXIT NCHTID 16 Node number \aJi th s pee i fi ed stage relationships Number of points defining stage relationship {must equal 6 or 25) Maximum number of iterations ·for tide fit (50) Print control, tid~l curve fit results wi11 be printed if equal. to 1 ' . . t .• t , z.· .· ~ .. ~ .. ·.. ' . .a:........ ~ .. · -~ S.,.::>~ . . . · ... ··.... . . : ;.a -. · .,Table Il-l=-Cont. Card _Card -Numb~r .. Column -F-ormat .£ard Group.14 Tide Data l4·b 1-5 ·16F.5 .0 6-10 11-15 16-20 • • • Var.iab1 e Cont. TT(l) YY(l) TT{2) YY(2) • • • TT(NI) YY{NI) Description. Time {TT=hrs) and stage: (YY=ft) defining tide wave (NI pairs of data are reauired) . . Repeat card 14b as required to define NI time-stage relationships .. NJEX sets of card group 14 are required to define tides at all boundary nodes~ Omit card group 14 if NTEMP(l) (card 12) = 1 • . card Group 15-Evaporation 1-5 . 2IS 6-10 11-20 FlO.O Jl J2 EVAPA First node of an ~vaporation zone Last node of an evaporation zone Evaporation rate, inches/ month Repeat card 1.5 as necessary terxflina t:ing with a b1 ank card. A, · maximum o:E 20 e'\taporation zones are allowed ~'hich overrides the l;tlank card requirement. omit. card _gr'-.-.~ 1.5 i.f N'l'El.JP(2) (card 12) ::: --·-------------------------------------------------------- 17 .· _/ •' . ~- .• -.... ,, " (' -s Cont. Cafd Card Number Column: Format Variable OeSocri oti on · . . -~ -. - .Card Gr~up 16-Wind Velocity and Oirectitin. 16a.: l£b' l-5 6-10 1-5 , 6-lO • • • 2l5- "l6F5.0 Jl J2 WlND(,l) \~DIR(, 1) • • • WIND( ,25) .6-1 0 {Fourth Card) HOI R (, 25.) Last channel of a wind zone Wind speed (mph) and direction b1owing from (degrees clock- . wise from"Y-axis) at hour on~ One set of val~es for each hour Four l6b car.ds required f~r ·each wind zone. Repeat: ca~C. c-rou:::> ~' -16 as necessary t.erminat:ing k 7it:b a blank card. l~C: blank card is requix-ed if S wind zones (the maximum allowed} are defined. Omit card group 16 if N'l'E1-!P(3) {card 12) = 1. ----------------------~-------------------------------------------~------- Card Group 17 -Point Inf1o\·Js/Outf1o\·IS 17 1-5 6-15 16-25 IS 2Fl0.0 • N QQIN QQOU Node number Inflow to node, cfs Outflow from node, cfs . Repeat as necessary terminating ~~tn a blank card. A maximu~ of NJ cards are allowed 1-1bere IJJ = nurrJ)er of nodes in tbe net;.work • . omit card group 17 if NTEMP(4} (card 12) = 1. 18 '\ t ' 2-3~-~:i.'': ••• ' 1 ;r~·~::_.:~ ~ ~,,'f,:;~~ · Table I I-l ~ Cont. Card Number _Card Column Format Variable Card Group 18.-Ground\·Jater Inflovls 18 215 Jl 6··10 J2 11-15 FS.O GBOUND . ' Description First ·node for ~h-ich grouna- water inflow rate applies Last node for which ground- water inflow rate applies Groundwater inflow rates cfs Re]ieat: .~s necessary terminating with a blank card. A maximum of J;';9 groundwa-ter .inf~ows are allowed. Omit card group 18 if NTEMP(5) (c~rd 12) = 1. ----------------------------------------~·--~----·------------~---- Ca~d:Group 19 -Storm Water Inflows 19a 1-5 15 N Node number 6-10 l2FS.O TN(l) 11-15 TN(2) Average hourly storm inflows (cfs) for first 12 hours of • • tidal cycle • • 66-70 TN(12j 19b 1-5 13FS.O TN(l3) 6-1.0· TN( 14) Average hourly storm inflows • • (cfs) for last 13 hours of .. .. tidal cycle • • 61-65 TN{25) ' Repeat= card group 19 as necessary terminating kyitb a blank card. A .maJ:irnum of 39 pairs are alJ.ot .. ,ed. omit card group 19 if NTEI·!l' ( 6) = 1. ~ ----~-------------------------------w o ·at card groups 11-19 for each hydrc1ogic condition. There ... ape. · must be NSESON sets as specified on card 2. 19 . 0 . •• --. I PROGRAM ROUTINES ' . i Figure !'I-1 surrmarizes the general structure of th~-hy.drooyn~mic rnode1~' ·Complete descriptions of model structure and solution techniques . . a:re included in the documentation report and wi11 not be duplicated ~-herein. The following brief synopsis is intended to s~rve only as a guide to aid in the interpretatioh of model outputs. The main program HYDRO coor·dinates the hydrodynamic cal ~u1ations·; first reading title ·'lnd control information for printing and plotting, and then calling GEOMET. This subroutine reads channel and junction configurations, includfng interconnectivity of nodes and channels, and computes invariant node and channel .data before returning control to HYDRO. HYDRO then calls NUt1BER which ren!lmbers the nodes internally so as to produce a more efficient matrix configuration for tidally averaged quality computations. The original numbering system is retai.ned for output purposes. Control returns to HYDRO which prints the invariant geometric data and stores duplicates on disk files for later use in th~ quality model AQUAL. The model then cycles through the following steps as often as ~ required to compute steady-state hydrodynamics for each hydrologic condition. HYDRO calls TIDCF to fit the tide specifications with a polynomial which describes the time-stage relationship at a seaward boundary. Comparisons of observed and computed values are computed and printed. TIDCF is called repeatedly until the time-stage relation- ships are defined for each sea\·Jard boundary. Control is returned to HYDRO \·Jhich then reads the t .. emaining hydrodynamic inputs. At this point the major daily time step and quality time step loops are initiated and subroutine DYNFLO is called. 20 TlDCF NUMBER GEOr1ET HYDRO 'I •. -. OUTPUT CURVE SCALE PINE PPLOT FIGURE II-1 EsTUARY HYDRODYNAHIC t·10DEL SUBROUTINES 1Th • -' 21 r; ··= ~ l OYNFtO sc>:l ves the eouations of motion:~ and continuity to determine '• • . '. • • , ' -" 'j, ; ,,.' 'I ,• i, • ' • " . .-~ ' ,fundamental~ ~ydrodyn~mic propertias includ;i pg ve1ocit.ias·, · dischar~es~ · ·water volume-s, depths, surface areas and. channel .eros~. ~ec:tional ar~as .. . DYNFLO ~is called tepeatedly to·; compute hydrodynamic pr·operties for ... each simulation day of the .hydrologic period • ... Control then rewrn~ to HYDRO which avera.ges the -resu1 ts of ~~e final day of simulationover a complete tidal cycle and stored for later use in AQUAL. Finally,. the subroutine OUTPUT is call~d \·lhich · prints the r~sults and controls the sequencing of the remaining sub-. ; . ' .. routines \·Jhich.produce the user specified plots.,, lNTERPRETATIOi·l OF RESULTS· If errors occur in the node and channel inputs, one or more of the following messages will be printed: t JUNCTION NUHBER IS LARGER THAN PROGRAH DH·iENSlOr~S. Junction numbers must not be greater than 200. 1 CHANNEL NUf;1BER IS LARGER THAN PROGRAf·i Dli·~ENSIONS. -- Channel numbers must not be greater than 300. • CHANNEL CARD COMPATIBiliTY CHECK~ CHANNEL AND JUNCTION • Channel-junction interconnectivity is erroneous. • JUNCTION CARD COHPATIBlLITY CHECK, JUNCTION -----AND ~ CHANNEL--· Junction-channel interconnectivity is erroneous . . 22 '\ \, Assuming ·a H~DRO/AQUAL interface unit~·rtumber,_ v1as assigned, the . first printed output -(see Appendix Table B-l) shows the.+ node" ranumb~ring scherne which is used internally in the steadj-state/dynamic tida11,y_ averaged 'quality model. The maximum' diagonal matrix width and the half band widths are also sh.O\vn. The dimension limits in AQUAL will be exceeded,if either of the half band widths are greater tha~ ten (10). In ·this case the followi-ng error message is printed: THE. HALF B.~ND ~JIDTH OF FOR EQUATION NUMBER , NODE s EXCEEDS THE DIMENSION L H·UTS IN PROGRAt~ A QUAL. PROGRA11 EXECUTION . WILl-TERr·HNATE LATER. . If this message is printed. one of th~ following modifications is required. a Select a different node which is located at some extremity ·of the network to begin renumbering (i.e., a tidal boundary or 1 e:ngthwi se end of the sys tern). • Restructure the grid system eliminating excess nodes which extend laterally from the length\'lise axis of the systeme • Increase the DINENSION limits in program AQUAL. When any of these errors occurs the model run 'Will continue until invariant junction and channel data have been printed at \'lhich time the simulation will terminate. The next output (see Appendix Table B-2} summarizes the comptJ'tq~ tiona 1 and output c-entro l options specified on Card Groups. l·S, 23 < ' Iff· r•-'-~.;-' ~ .• ,&::\·· .... ··• ,, • .d~-..... Invariant. node and· channel d~ta_ follo\·Js· the c:ontrol summaries. An. example of this output is. presented; in Appehd.ix Table B~3--and B-4. ln addition to printing i-nput .data, s.ome computed data are included.- ·,,The column ·lab~1ed 0 t1AX·· THlE, SEcu on. the channel data .printout "iS usef~l for. checking the maximum allowable computational time step. ' The hydrodynamic ,tim~ steJl fncrement specified in columns L·.S of Card 8 must not exceed the small est value appe:a.-rtng in this co.l umn .• ·· ... The user may wish to modify the network layout slightly by lengthening channels or decrease the depth (along with an appropriate increase in width) \•Jhich' will increase .the allowable time step. The column labeled MIN ELEV, Ft on the channe1 data printout. is the ~1ater surface elevation at \-lhich the channel \tJidth becomes ' . negative. The column labeled t·HN ELEV, FT on the node data printout is the· water surface elevation at \ihich either the nodal volume or surface area will become negative • The model checks to see if the anticipated lo\tJ water level is exceeded by either of these minimum elevations. If potentia1 problems exist, they will be noted by the following warnings incorporated in the list of junction and channel data. • NOTE· ... ~ * INDICATES ~~EGATIVE WIDTH -IS POSSIBLE w·ITH ANTICIPATED TIDAL STAGEe 1 NOTE --* INDICATES THAT DEPTH OF CHANNEL ENTERING JUNCTION IS LARGER THAN JUNCTION DEPTH. The latter message is to aid the user in modifying channel geometry data in the event that a negative node volume or surface area is encountered later in the hydrodynamic simulation. 24 :::..,.-: .. • . **·-.. INDICATES NEGATIVE VOLlJME OR-SURFAC~:AREA IS POSS.IBLE WITH ANTICIPATED 'TIDAL STAGE:.· It should be stressed that these are only warnings arid may not cause further pro.bl ems si nee the actua 1 noda 1 stage· often does--·Hot reach the anticipated low water level. If any of these anticipated problems materialize later i'n the simulation, error messages \·Jill be printed and the model run terminated at that time. The remaining outputs wi!l be r~peated for et)ch set of hydro- dynamic conditions. Appendix·; Table· B-5 sho\·IS an exampl a of the o,·~put which is generated when the TIDCF subroutine successfully fits a polynomial with the input time-stage tide data*. The model will" iterate until reasonable agreement is achieved bet\·:een observed and computed values. The model computes and prints the individual and total differences bet\·1een derived and observed time-stage r·el ati onshi ps. These results should be checked for individual differences exceeding 5% of the maximum tide range which suggest possible errors in tide data inputs. One or more of the follo\·ling variables may be the cause: ~ Erroneous time-stage pairs defining the tide wave. • Insufficient iterations for the tide fit. (50 i~ usually enough) .. • Irregular spacing of tidal extremes. The next page of output {see Appendix Table B-6) summarizes the evaporation, wind, inflo\'IS, and withdra\'lal data entered for the given hydrodynamic condition. *The user may suppress this o.utput (see Card 14a) .. 25 .. . ,, '· ··-····· .··· • . . •• ..... f·1odel outputs .to. this poi~t may be previewed most cos.t-effec- tively by setting the hydrodynamic ti<e step increment to well in • .. > • • • ' • •• •• •• e-xcess of a reasonable time step increment. The run·wil1 not go to completion, however, the output which is gen.erated can be reviewed for input errors.. The correct time step can be selected based on derived chann_el data ;Output •. Selecting too large a time step will result in an unstable solution, terminates the runstream and cause the follm\'ing error message to be printed: HYDRODYNAMIC SOLUTION \~AS UNSTABLE AT HOUR __ __,__ IN CHANNEL , FLOW= CFS, DEPTH= FEET, VELOCITY = FT/SEC As noted earlier, termination of the runstream will occur if negative nodai surface areas or volumes are encountered causing the following error messages to be printed: e NEGATIVE SURFACE AREA ENCOUNTERED AT HOUR --- AT NODE , HEAD = FEET, AREA = ---SQ FT. a NEGATIVE VOLU~1E ENCOUNTERED AT HOUR AT NODE --· HEAD= FEET, VOLUME= CU FT. If this occurs one or both of the following adju~tments in junction/ channel configurations are required: • Increase depth of node. • Decrease area slope (change in surface area with respect to depth) in the junction. This adjustment may not be applicable when tide flats are being modeled. · 26 \' • ·· · ,• necrease ·depth in· channels· which drain the junction'. The channels \'lhich are sufficiently 'deep· to cau~e::~--"'~-: the difficulty will have to be nqted in-the invariant channel datapriritout~ Once all errors are corrected -the computations-wii) go to completion. __ Appendix Tables B-7, 8-8, B-9, and Appendix Figures B-1 through B-4 show examples of the model outputs. ·The folfowing is a check list for testing the hydrodynamic model results before proceeding to the quality codes: • Check for steady-state hydrodynamics by comparing h~ads at hour 25 with those at hour 50 for a given node. A simil~r check of flows and velocities·for a given channel should also be made. Differences of more than 11 indicate that the model should be run for a longer period of time. • Predicted time-stage relationships should be reas9nable within th.e system. • Check channel flows in tide flat areas to see whether times of no (or very little) flow are actually predicted. , The values of average head should be approximately the same everywhere except where there is a large net flow or in tide flat areas w~ere average heads will be greater since the flow out of these areas is stopped when a minimum depth is reached. 1 The average ve1ocity should be near zero except where there are net inflows-or rapid changes in velocity such as in a narrow channel draining a large area. 27 '"'•""""'"·"' ~ .... :,~'t.:::Ti~dt:~ '"-~~~;;~-·.~-:-..... 1 .... .;,, ·_;.. • Water ba1 ance at each junction should be zero except ·at tidal exchange nodes where it is. equal to the net gain or loss at the boundaries. • A flow diagram showing direction and magnitude. of the average flows is useful in detecti·ng circular .flow patterns. V/hi1e minor eddies are acceptable, unexplainable major circular flows should be corrected by adjusting the roughness coefficients in the channels. Modifications in roughness coefficients or node-channel configura- tions may be required in orde·· to produce acceptable model-prototype ., J" . ~ conformance. Qnce tHe above requirements are met to the·satisfaction of·the user5 the model is considered calibrated and water quality computations can proceed. . 28 ;: J INPUT REQUIRENENTS The following inputs are required for the computation of tidally averaged water quality: . • Steady-state hydrodynamics as computed by HYDRO; • Tidal exchange ratio and water quality at seawat"d boundaries; • • • Dispersion coefficients; • Reaction rate coefficients (benthic oxygen demand, coliform decay~ photosynthesis oxygenation, etc.); t Meteorological data~ including cloud cove~, dry and wet bulb air temperature, wind speed, and atmospheric pressure; and 1 Control specifications for computational options and output formats. Table 11!-1 outlines the card groups and format specifications required to set up the card deck for the AQUAL quality model. These card descriptions together with the illustrative example data presented in Appendix C and the formulation resu1::$ presented in Appendix .. o should enable the user to set up, run, and ·interpret the results 'Of the tidally averaged water quality model. 29 ) • • ...... , •. \ . . . • . 1 Q ·• I •• . ' .. .. D~' l Card Card Number Column • Table Jl!-1 - A QUAL. Data Requirements ·Tidal. Aver--age Estuary .Quality Model Variable Description Card Group 1 ~ Title Cards These headings will be printed on each page of the input data . ' ., . summary. la l-80 20A4 TITLE r:1ai n heading lb 1-80 20A4 TITL Subheading r------------------~--------~----------------------~~- ,. Card GrouE 2 ... Input/OUtJ:!!:!t Control Card 2 1-5 ·6-10 11-15 16-20 21-25 26-30 31-35 36-40 1015 • NHYD !DAY IDELT IALT IPCYC NJP NPP IEE Sets of boundary conditions First Julian day of simulation Computational time step increment, hours Print format option switch, (IALT = 0 for standard, IALT = 1 for alternate) Printout interval, days Number of junctions for time. hi s tr, r:Y p 1 o ts ( 6 max. ) Number of concen.tra ti on . profile plots (2 max.) Number of iterations for computing dispersion coefficients. {De fault value = 10, five is usually sufficient) l 30 '2"' "h:t> ··IJ' ~ . -~ j . t - "'"" .. .....ill. . -.. '~ '" ·- ·-~ Card Card Number . Column Fonnat Table II!-1 ~Cont. Variab1 e Desdription Caret Group· 2 - I rypu t/Ou.tput Control Card -Cant~ 2 4-.5-50 NFILE IN QUAL HYDRO/AQUAL interface\ unit number Not used Card Group 3 -Steactx:.State/Dynamic Mode S\vitch Thg code allo;..-s the user to selec·t either steady-state or dynamic solutions for each . set o£ boundary condi'tions. · Set IDYN (. .1 = 1 for steady-state solution, IDYN ( ) = 0 for steady-state • 3 1-5 16!5 6-10 . • • • NOPERH(l) IDYN(l) • • Number.of days for fi'rst boundary condi ti<;>n Solution type selector NQPERH(NHYO) NHYD pairs required IDYN(NHYD) Repeat as necessary to conform to limdts set on card 2. --~----, .. ------------------------------ Cara Group 4 -Parameter Selection set ISKIP ( ) = 0 to simulate any o:f the following 13 consti t;uents. If IS KIP ( ) -= 1 the constituent w. ~.11 be omitted. 4 1-5 6-10 . ~ 15 ! -.. . ; 20 21-25" 1315 ISKIP(l) ISKIP(2) ISK1P(3) ISKIP(4) ISKIP(5) 31 Total nitrogen, mg/1 as N Total phosphorus, mg/1 as P Total coliforms, MPN/100 ml Fecal coliforms, MPN/100 ml : z~?Js,-~.-12 . -........ · -' ·,. ' ' .• ;, . -~: " .. a.· ' ' '"" . ·a t:t ,, Card ··card Number Column Table I I l-1 .. Cont • Format Variable Description Catd Group 4 -Parameter Selection -· Cont. 4 26-30 31-35 36.:..40 41-45 4~-50 51-55 56-60 61-65 ISKIP(6) ISKIP(7). ISKIP(S) ISKIP(9) I~KlP(10) !SKIP( 11) ISKIP(l2) ISKIP(13) -Ultimate carbonaceous BOD, mg/1 Nitrogenous BOO, mg/1 Dissolved oxygen, mg/1 Temperature, °C Optional constituent #1 Optional constituent #2 Optional constituent #.3. Optional constituent #4 Card Group 5 -Optional Constituent Name !l'be names will be printed on tl'le first page of output for optional const:.i tuent identification. 5 1-16 16A4 CNAME{l) l Optional constituent #1 CNAME(4) CNAME(S) j·optional constituent #2 CNAHE(S) 17-32 CNAME(9) l Optional constituent #3 CNPJ·1E ( 12) 33-48 CNA~1E(l3) ~ Optional constituent ti4 CNAfi1E ( 1 6) 49.-64 32 . Table III-1 -Cont. Card Card Number "Column Format · Variable Description Card Group 6 ~ Time Histor_y Plot Control O~e to f:ou~ constituents mag be selected for time history plots. Constituents are numbered from 1 to 13 in ~be order shown on card 4. 6 1-5 lOIS IPLOT{l) 6-10 IPLOT(2) 11-15 IPLOT(3) 16-20 IPLOT(4) 21-25 JPLOT(1) 26-30 JPLOT(2) • • • • • • JPLOT(NJP) Omit c:ard 6 if NJP (card 2) = 0. Card Group 7 -Profi 1 e P1 ot Centro 1 Constituents for time history plots (constituent number) Junctions for time history plots (NJP junctions required) One to four const:ituents mag be specified for concentration profiles. Constituents are numbered fr.om 1 to 13 in the order shown on card 4. 7a 1-5 715 6-10 11-15 16-20 21 .... 25 26-30 31-35 NCONP{l) NCONP(2) NCONP(3) NCONP(4) IPDAY(l) IPDAY(2) IPPAY(3) 33 Constituents for concen- tration profiles · (constituent number) Julian day of profile plot ~'-.. _il' ' :...,t ,, Table III-1 -Cont. Card Card · Number .Column Fo.rmat Variable . ,.; -·.·--._". . '-'.) Card Group 7 -Profile Plot Control -Cont* 7b 1-5 6-10 • •.. ' • 2h-25 (Second Card) 1615 NOOEP(l,NPP) NODEP ( 2 ,NPP) • • NODEP{2l,NPP) Description Junction for concentra- tion profile {21 required) NPP {card 2) sets of card group 7b are required. Omit: card group 7 if NPP :: 0. Card~Group 8 -Initial Conditions A negative oxygen concentration signifies the f~act~P!l ot ' sat:ura tion. · . 8 1-5 215 6-10 11-15 13F5.0 16-20 21-25·. 26-30 31-35 36-40 41-45 Jl J2 ALL (l) ALL(2) ALL(3) ALL(4) ALL(S) ALL(6) ALL(7) 34' . First junction for which data app1 i es Last junction for which data applies fota 1 nitro·gen, mg/1 as N Tota1 phosphorus, mg/1 as P Total co1if.orms, HPN/100 ml Fee a 1 co 1 if arms, ~1PN/1 00 ml Ultimate ca"tbonaceous BOD, mg/1 Nitrogenous BOD, mg/1 ' ,-_ .. / Table III-1 ~ Cont. .._ ------~~--~~--------~----------~----~------r~~ . Card Number Card Column Format Variable Card Group 8 -Initial Conditions ~ Cont. Description 8 46-50 ALL(8) Dissolved oxygen, mg/1 51-55 ALL(9) iemperature, ::c 0 56-60 ALL(lO) Opti ana 1 constituent 61-65 ALL(ll) Optiona 1 constituent 66-70 ALL {12) Optional constituent 71-75 ALL(l3) Opti ta 1 constituent R t: . . . th b 7 -L. • . , • .,. • • -• 7 epea as necessary terr.unat:J.ng w~ a _a-'Ui. care.. · luJ ~r.:.l ~.J.a_ condition cards are allot~ed, t.,here NJ -nur.'.ber of junctions in t:be network .. Card Group 9 -Dispersion Parameters .;;1 =2 ~3 =4 Dispersion coefficients provide a means for simula'ting estuarine mixing~ Generally these coefricients are adjusted as required for calibra t:ion' .based on a conservative constituent and then do not change thereafter. The tidally induced dispersion parameter (Cl) includes the e:ffect of flow induced and tidal mixing. Open embagments and es'tuaries which are st~on~ly influenced bg tidal effects will gene:ally require a larger Cl than more protected regionse The values for this coe£ficie~t genera.ll g range £rom 5 to 2 5 • • 9 1-5 215 Jl First channel for which data applies 6-10 J2 Last channel for which data applies 11-15 2F5.0 Cl Dispersion parameter 35 ,.-:--.1 J • Table III-1 -Cont. Card , Card Number ·Column Format Variable Description Card Group 9 -Oispers ion Coefficient -Cont. 9 16-20 ••• Repeat card 9 as .required to define all dispersion z:o.Qe$ terminating with a blank card. NC cards are allowed, t>.'here NC = number of c .. 7anne ... ~.:;; in thenet:work. Card Group 10 -Tidal Boundary Nodes 10 l-5 NBOUND 6-10 JBOUND(l) • • • • • • JBOUND(NBOUND) Card Group 11 -Title Card Number of tidal boundary nodes (10 max) Tidal boundary node numbers This subheading .replaces tile tit:le read from card lb. It will be printed_with the output: for the following set: of boundary conditions • 11 . l-80 20A4 TITL Subheading Card Group 12 -Read/Write Control Switches " Set NTEJ.!P ( ) = 0 to reacl nG:i data; skip if N'l'EJ.!P ( ) · :::: l. Hydro- dynamic: conditions are n.ormally read iz-1 order :from the HYDRO/AQUAL :Lnt:erface tape; however the file mag be repositioned if t:he user i-.'ishes a camput:ation sequence different from t:hat of the hydrodynamic sirnul.at:i.on. ·posit:ive values of NPE.\!P(lO) will advance th~ file and negative values will rewind it a specified number of records. 36 Table III-1 -Cont. Card . Card Number Column Format Variable Descriotion ~" Card Group 12 -Read/Write Control Switches -Cont. 12 l-5 1 0!5 NTEMP.(l) Read ne\'1 hydrodynamic conditions 6-10 NTEf,1P(2) Read new tidal exchange ratios and quality 11-15 NTEf4P( 3) Read new inflow quality 16-20 NTEMP(4) Print aggregated inflow quality if NTEMP(4) = 0 .. 21-25 NTEMP(5) Read new non-point source quality 26-30 NTEMP(6) Read new return water qual i ty increments 31-35 NTENP(7) Read t f.... . . new sys em ,:~r.:;~e r1c1ern:s 36-40 NTEMP(B) Read Qew meteoro.logical data 41-45 NTE~1P(9) Print weather data if NTEMP(9) = 0 46-50 NTE~·1P ( 1 0) Position of HYDRO/AQUAL hydrodynamic file Card Group 13-Tidal Exchange Rati9s and Qualitt The tidal exchang~ ra:tio :refers to the fraction of ebbing estua:r9 water t.;hich J.s lost .from the system at t~e boundary node a.na does not: t values can range.-frvm 0. -l ~ re urn. " 13a 1-5 . " SX card id~'antifi cation 37 ~:.-. . • .-· :·/~ · __ ....... _-_-}' ' -.' • ' \t_;'; -. • . , . • • A --~~------------~---------------·~--~------~--------------------. Card Card __ . --~---~umbe·r ·-Column -Format Variable ·· · Description · ,z Card Group 13 ..;. Tidal Exchange Ratios -and .Quajj ty ... Cont. l3a lOF5 .. 0 XR(l) .a • Tidal exchange"' rq tio at each tidal input node • . . • • XR(NBOUND) If salinitg is not modeled as constituent 1 then it must be entered as CEX(l;l4) for dispersion coefficient calc1.1lations. A .neg-ative value :for -diss .. "'ilved oxygen signifie~ a fraction of sa'turat:ion. 13b 1-5 ·'5X 6-10 14F5.0 ll-15 16-20 21-25 26-30 31.,.35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 CEX(l ~ l) CEX(1,2) CEX{l ,3) CEX(l,4) CEX(1 ,5) CEX(1,6) CEX(1, 7) CEX(l ,8) CEX(l ,9) CEX(l, 10) CEX(l,ll) CEX(1, 12} CEX(l, 13) 38 Card identification Total nitrogen, mg/1 as N Total phosphorus, mg/1 as P Total col iforms, ~1PN/1 00 ml Fecal col iforms;t MPN/100 mr U1 tima te carbonaceous sqo, mg/1 Nitrogeno~s BOD, mg/1 Dissolved oxyge·n, mg/1 Temperature, °C Opti ona 1 consti tuen·t #1 Optional constituent #2 Optional constitu~ht-#3 Optional constituent #4 • . • Table III~l ~ Cont. Car.d . Card. Number Column Format Variable Description Card Group 13-Tidal Exchange Ratios and Quality Cont. 13b 71-75 CEX(l, 14) _Repeat as necessary to de=ine conditions at NBOuND cards are required. Omit card group 1~ if NTE:~(2) = 1 (card 12). Card.Group 14 -Inflow Quality 'I'he m::Jdel Y-.,il.L aggregate the water quality into a given node :.;hen multiple point source inflows occur. A negative ::o::cs::::aticn s:.gnifies a mass emission ra-te in pounds per day or equi~l'a.!e~t excapt ::o: oxygen where it .signifies a frac-tion CJf saturation. No r:o:e t:.:::an SOO inflows are allowed which can be distributed into a ·maxim~~ o= ~QO junct~ons. l4 1-5 IS 6-10 14F5.0 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51--55 56-60 JJ QQ ALL(l) ALL(2) ALL(3} ALL(4) ALL(5) ALL(6} ALL(7) ALL(8) ALL(9) ALL (10) 39 Junction number Inf1 0\·1, cfs Total nitrogen, mg/1 as N Totj~ phosphorus, mg/1 as P Total col ifor·ms, NPN/1 00 ml Fecal coliforms, HPN/100 ml Ultimate carbonaceous BOD, mg/1 Nitrogenous BOD, mg/1 Dissolved oxygen, mg/1 TemperattJre, °C Optional constituent #l A.~ .. ·.· ~ ····.~ . . ""'! () j ' ,) 1 •. ;. . : -~ < '- ' • . . •< ' . • Table III~l -Cont~ Card , ca·rd-· Number .~ Co 1 umn Format Variable f_!rd Group 14 -Inflow Quality -Cont. li4 61-65 ALL(11 ). 66-70 ALL(12) 71-75 All (13) 76-80 ALL ( 14.) Description Optional constituenf ~2 Optional constituent ~3 Optional cqnstituent ~4 Repeat as necessary terr.~n=~ing with a blank card. The blar~< card is not. allowed when 500 inflo,.;s are specified • . Omit· c~rd 14 if NTEl.JP ( 3) = 1 ·(card .12) • Card Group 15 -Non-Point Source These constituent concen~atio~s represent aggregated qual!t~ of all non-point sources entering a given node or successi~e group of nodes at the flow rate speci::ied in HYDRO. A negative dissol ited oxggen concentration signifies a fraction or saturation. 15 1-5 16I5 Jl 6-10 J2 First junction fer which quality applies Last junction for which quality applies Total nitrogen, mg/1 as N Total phosphorus, mg/1 as P Total coliforms, f.iPN/100 ml Feca 1 col iforms, f4PN/l 00 m1 Ultimate carbonaceous BOD, mg/1 Card ~ Card Number ... ·Column Format Tab·l e I I I -1 -Cont. Variable Card Group 15 -Non-Point Source 15 41-45 ALL(7) 46-50 ALL(S) 51-55 ALL(9) 56-60 ALL(lO) 61-65 ALL(ll) 66-70 ALL(l2). 71-75 ALL{ 13) 76-80 ALL(14) Descript·i(}:l . Nitrogenous BOD, mg/1 Dissolved oxyg~n~ mg/1 Temperature, :JC Discharge influence #1 Discharge influence #2 Discharge i~fluencs #3 Discharge influence #4 Repeat; as nec~ssary te-r:r..ina ting with a blank card. A maxir::um of 29 non-poinr. '"ate:-types are a11ow·ed. Omi't card 15 i.f NTEJ.JP(5) = 1 (card 12). Card Group 16 -Return Water Return water t;o any node may origina't.e from as r..any as five other nodes. The model aggregates tbe i~itia1 concentration given the fraction from each nQae. Incremental chqnges specified on card lob are then added to determine the retl.!rn water concentration. 16a 1-5 6-10 11-16 • • • 46-50 51-55 15 !5 F5.0 FS.O Jl NTEMP(l) ALL(l) • • • NTEHP(S) . ALL(S) 41 Discharge junction Junctions from \'lhi ch dis- charge is withdrawn (NTEMPJ and fraction of \·Ji thdra\'la 1 which is discharged to junction Jl(ALL) '."': • •••• . . r~ . Card Ci!rd. '-Number Column. Card Group 16- 16b 1-5 6-10 11-15 16-20 21-25 26-30 31-~5 36-40 41-45 46-50 51-55 56-60 61-65 .. Table 111-1 -C6nt • Format · -Variable Return Water -Cent~ -l4F5.0 ALL (1) . - ALL(2) ALL(3) ALL(4) ALL(5) ALL(6) ALL(7) ALL(B) ALL(9) ALL{lO) ALL (11) ALL (12) ALL(13) Description I I Incremsnta 1 total n·i"trogen Incremental total phosphorus Incremental total coliforms Incremental fecal coliforms . Incremental carbonaceous BOD . ·-, Increm~ntal nitrogenous BOD Incremental dissolved oxygen Incrementa 1 temperature, · °C Incremental optional constituent.#l Incremental optional constituent #2 Incr,,ental optional con~ .tuent #3 Incremental optional constituent #4 Repeat card group 16 as necessary terminating with a blank card. T.~e blank card is not required if 20 sets of card group 16 are entered. Omit card group lo if NTE1.JP(6) (card ll} = l. ----~----------------------------------------~--- 42 Table III~l -Con.t~ -. . -,:. Card ., Card Number'· Co 1 umn Format Variable Description_ ------~~--------------~~--------~- • Card Group 17 -Quality Coefficients The follo;.,ing coefficients representing :first order declHJ kinetics vary:a:s a_function o:f temperature, oxygen concentration, salinity, light intensi.tg, wind speed and many other physical and chemical influencesa: Optional. constituent may .include any dissolved or pazticulate constituent with first order decay, settling and transfer bett-leen constituents (i.e.; a1TZ110nia decay to nitrate). Rate coefficients of constituents which may be o:f interest have been included. Typical values {iie' 20°C) are as follow~: Chemical, Physical and Biological_ Coefficient Stoichiometric equivalence between optional constituent decay Rate coefficient .tempe&ature adjustment constant Carbonaceous BOD decay rate, day-l -7 Nitrogenous BOD decay rate, day - Coliform die-off rate, day -1 2 Total nitrogen benthic sink rate, mg/m /day Total phosphorus benthic sink rate, mg;m2!aay Alga~ pho~osynthetic oxygen production, mg/m /day Algae oxygen consumption due to respiration, mg!m2Jdag · , Btu'ithic oxygen demand :rate, mg/m2 /day -1 Reaeration rate, days Armronia decag, day -l 43 Range of Values .0-1.0 1.02-1.08 .1-.3 .05-.15 .5-8 .. 0 0-500 0-200 0-15,000 0-7,500 o-s,ooo .l-10. .05-.2 I Table III-1 -'Cont. Card Card Number · Co 1 umn Variable Format Card-Group 17 Quality Coefficients-Cont. Chemical, Physical and Biological.Coe:fficient -l Nitrite decay, day .. -1 Volatile suspended solids decay,f aag Suspended solids settling, meters/day 17a 17b 1-5 6-10 11-15' 16-20 21-25 1-5 6 ... JQ 11-15 16-20 21-25 26-30 SFS.O 215 4F5.0 TYPEEQ(l) TYPEEQ(2) TYPEEQ{3) QTEN(l) QTEN(2) Jl J2 ALL(2) ALL(3) ALL(4) ALL{5) 44 Oescripti.ott Range of Values c.2-l • .002-.05 0-2 Fraction of an optional co.· 1tituent produced \·Jith the decay at one unit of the preceding optional constituent {stoichiometric equivalence). Rate coefficient temperature adjustment constant for carbonaceous BOD decay (de fa ul t = 1 . 05) Rate coefficient temperature adjustment constant for the remaining rate coefficients (default= 1.03) Junction limits for which coefficients apply Carbonaceovs BOD decay rate, day- Nitrogenous BOD decay rate, day-1 Total coliform die-off rate, day-1 Fecal colif1brm die~off rate, day- Card Card Number ~ Co i nmn Format Table Ill-1 -Cont .. Variable· Card Gr-·oup 17-Quality Coefficie~ts:-Cont. 17c 1-5 l5F5.0 ALL(6) ALL(7) 11-15 ALL(8) 16-20 ALL(9) 21-25 ALL(l 0) 26-30 ALL(11) .31-35 ALL(12) 36-40 ALL(13} 41-45 ALL(14) 46-50 ALL(15) 51 .,,ss ALL(16) s·s-so ALL(17) 61-65 ALL(18) 66-70 ALL(19) 71-75 ALL(20) Description Total nitrogen ~enthic sink rate,.mg/m /day T'otal phosphoru2 benthic sink rate, mg/m /day Algal photosynth2''i.c oxygen production, mg/m /day Algae oxygen consumption 2 due to respiration, mg/m /day Benthic ox2gen dema{)d rate, mg/rn /day Minimum reaeration rate, day-1 Maximum reaeration rate, di.iy-1 Optional constituents a1'1 through #4 decay, day- Optional constituents #1 through #4 settling rate, meters/day one card l7a is required. Repeat sets of cards l7b and l7c as required terminating with a blank card. No blank card is required if NJ sets of card 17b and l7c are entered. omit card 9roup 17 i£ !VTEl.JP(7) = l (card 12). 45 \'} • • Tab1e III~l -Cont. Card · Card ,-NUJllber Column--Format ·Variable- ·~Card Gro-t.ip TS ~ Meteoh:)logical Ccindi ti ons· 18a 1-5 !5 6-10 DAY 11-15 EPS "' T6-20 AA 21-25 BB .26~30 DE~J Oescrlpti'on·, . . . . Number o·f weather zones (5 max.) Julian date East west longitude switch (-1 fOr u.s.A.) Evaporation coefficient Evaporation coeffic!§nt (Defau1 t = 1. 5 ;< 10 ) ~let bulb/dew point; S\·Jitch, dew = 1 for wet bulb temperature a b . Hourly meteo:r·ological c:ondi tions for. each weather zone are .. computed by interpolation of the info.rmation supplied on card lBc. 18b l8c 1-5 6-10 11-15 16-20 21-25 1-5 6-10 11-15 215 3F5.0 15 5F5.0 JWZONE(l) JWZONE(2) XLAT XLON TURB J2 CLOUD DBT 46 Junction limits of \t~ea ther zone Latitude, degrees Longitude, degrees Atmospheric turbidity (2 for clear up to 5 for smo·g) Hour of observation Cloud cov~r, fraction Dry bulb temperature, <>c -. 2·. ?.-· ··tr .... · .<lr.·~.··~.·· .... jl' J . -t .. .;>~. ~:OJ \ Table I!I-1 -Cont .. ••• < ,., ' .-=-. -~~----._:..~·-------------~.;.;... ...... ...;... __ .;.....; __ .....,.. __ _..; .............. __ _ "': ·Card··· ~·Carel · _,N_. u_in_b __ ')e_r_· _c~o_l....:u;_m..:.;n_· _ _;,Fi.:o.:.r::ma:.t:....._..:.v.:a r:..1.:.:· a::.b:.,:l.:e_, __ . ____ _.:o.:e.:..:s tr i pt ion i ' CardGroup"\,18-Meteoro1ogisa1 Cond:ition~-Cent~ l8c 16-20 21-25 26-30 ·' WBT ~JIND APR Wet bulb or dew point temperature Wind speed, meters/sec Atmospheric pressure, mb A set of betw~~n. 2 ai:Jd 25 cards (type lBc) are requ.i.r=a :for aacb weather. zo.ne. · EacJ:/~£et must begin· wit:h . v·alues for bouz + and enai:2g · .· wi.;th valu~s fo~ ht:'ur 25. Repeat: set:s of ca~ds l8b and lEe as ::eq".Ji:reC. to de;!ine all weatil~r :zones c;. ... !-lZOlvE sets). Rep(:atcardgroupsll-18 as necessar·y to define all boundary conditions. There must be NHYD sets as specified on card 2. :.'::: • .•,· .. ··· " X .· .. } ,t·•) •-?.·' . PROGRAM ROUTINES F~gure II.I-1 ··summarizes the general structure of the tidally averaged quality model .. ·The following brief description is intended ' . to serve only as a guide to aid in the interpretation;of mo9e1 outputs. The reader is again referred to the documentation report for a more thorough .... trea.tment of mode 1 deve 1 opment, ttJeoreti ca 1 consi dera ti ens~ and solut·,on techniques. ·' Thr~ main· program AQUAL calls INPUT to read system geometry, hydrodynamics, input/output controls, boundary conditions~ dispersion and system· coefficients and inflow quality. INPUT calls t•1ETDAT to read meteoroiogical condition~, cbmpute derived conditions, and write results. Control then returns to AQUAL which..directs SETUP, FORM and SOL·VIT to compute salinity for dispersion coeffic:ien~ computations. AQUAL then computes oxygen saturation based on salinity and tempera .. ture. SETUP is then called to set up the final coefficient matrix wh)ch is used in SOLVIT to compute the concentration of the water quality consti·tuents in all nodes. The constituent concentrations are determined in the following order: • • Temperature·· • Optional coefficients (us.er specified) • Total nitrogen • ·Total phosphorus • Total coliform _ • Fecal coliform • Carbonaceous BOD • Nitrogenous BOD e Dissolved oxygen 48 FORM .. SOLVIT . FIGURE I I I-1 METDA.Y SETUP INPUT OUTPUT CURVE SCALE PIN~ PPLOT TIDALLy AvERAGED QuALITY r10DEL. SUBROUTINES 49 . (J \~ AqUAL: then ta·1ls OUTPUT,· \tlhich cQntr.ol ~· the remaining ,_subroutines in printing and plott·i ng the. results~~ The proce$S repea.i;.s. fo:r~" each: set of· bounda·,.y cohd i tiops •. ' ' . ~-. I-NTERPRETATION OF RESULT$ Provided input formats are correct and progre.m dimensi-ons ha·ve not been exceeded the model .will print out invariant data inc1uding .·" 7 " computational c~ntrol specifications, initial conditions~ and. dis- persion parameters as shovm in Appendix Table D-1 and .0-2. .The model will check the junction limits assigned to the initial conditions and · print-the following message if errors .are found: * ERROR * THE FOLL.OHING NODE LINITS ARE IN ERROR: : ·' ···r;· . . , ,' y• .The remaining outputs will be repeated for each set of boundary conditions. Appendix Table D-3 shows an example of the ciutput which summarizes exchange conditions, obser·ved and aggregatedt inflow •. . qua 1 i ty, non--point inflow qua 1 i ty, return water quality, ·system coefficients, derived flot·l and wind induced reaeration coefficients., and coefficients used by nodes. If dimension limits have been exceeded the runstream will terminate and one of the following messages will be printed: o WARNING ** THE HAXH·1UM OF 1·00 INFLO\~ LOCATIONS HAS BEEN EXG-EEDED.** • * ERROR * A MAXIMUt4 OF 29 GROUNDWATER TYPES ARE .L\LLOt~ED" • * ERROR * RETURN \~ATER IS ALLOHED AT 20 NODE'S t·1AXIMUH. tThe user may suppress this aggregated inflow quality printout. 50 ..... ~., '·'·. Appendix>.Table D-4 shows an >example of the printout of cibset'\led and derived meteorological data*. Wiilll'*•m&U45i~i5n'§fiei~fbrt 1fti'Dbi.hiMU57Rb&J1MtiP•ti1Uit~MI~Bl!~~J,ll#a· . lift~ettft¢t{.1ft!1 diSI Since calculation of dispersion coefficients is an iterative process, the last two values of the coefficients are ~ inted for comparisoni If there is a sig~ifi­ cant difference bet\'Jeen the values, dispersion parameter C4 may need to be-reduced or the number of iterations -for computing dispersion coeffi- Appendix Table D-7 shO\'JS the alternate output ·format. Examples of the plotting options are sho\·Jn in Appendix Figures D-1 and D-2. Calibration of the tida~lly averaged quality model is accomplished in two phaseso The first is to simulate a conservative substance such .. as saiinity to establish the mixing characteristics of the est"ary. The dispersion coefficients can not generally be specified a priori. The procedure is to start with values \aJhich have proven effective before and proceed, on a trial and error basis, to adjust the coefficients untii model results compare reasonably well with field data. The model is then considered calibrated for advective and dispersive transport. The second phase of the moder calibration· is to adjust reaction rate coefficients (benthic oxygen demand, photo- synthesis oxygenation, coliform decay, etc.) until in situ data are reasonably reproduced. · -----------------*The user may supptess this output. 51 • APPENDIX A. 1• lb 2a 21; 3 4 5 7 .. I Table A-1 HydrQdynamic Model Input Card· Specification 5 10,' .. 15. 20 30 35 4Q 4S-SO u;,.pEQ COOIC lJiLETt KJi%1{ Ul.l AND TURNaGAIN Art04 $1ttPL£ ;JlRI"jSl£tt l . 6 • 211 l 1 0 . l2 l J 1 12 2b a• 56 117 1& :12 !l 1Z7 lAO 15.7 I · l17 aq 't2 · s ~., tao 1 3 . 5 . 7 tO 1i t2 1 II t 7 20 t 15 't U 121 1~5 J27 128 Gl 46 G7 "6 s~o l&On 25 ~c 01 · q99,+7" ~0,+6 t5o ~te ~10 ol oa ~2 ~so.~' oo,+~ 130 ~oo 5~7 nt ol ~3 !50~+7 o~,+b 1~~ cs~ 525 ~2 ~3 OG · Q00,47 2D,+tt 150 b2U Stt4 041 06 ~s &90.+7 oo~·~ 110 ~65 57~ ns c& -~• son.•7 t!~•• 100 &~5 636 o7 ~· 07 7~t,•7 ~n,+tt too b~2 ~t• oB o• 01 370~•7 3~1 •&· 080 &SZ &bl t~ ll ori "ll20,+7 21-•• ~ oso t~s~ ·1ot s 1 · u iO 690,•7 i2v+~ 060 702 &55 '2 ll 11 ab0 1 +7 0~1 +& lQO 7tA 693 tl tG \2 · 2G0,•7 001 +6 13~ 711 129 JS 16 tl t20.-•7 o_t,+e:. 010 7!5 7D4 t7 21 ta o~r,+7 ~o.•• 100 72; 75~ t8 20 16 tq0,+7 oz.·~ os3 759 lS& ;a 25 ts ~o~.~7 z~.·~ 110 7o4 7§& 19 · lo n , 135,+'1 • uo, .. ~ oas Tt~b 110 ~3 25 JG . t'~"'••' tl',+t> 10 730 7tn ~4 26 19 . tGC 1 +7 07 1 •&. OQ7 7~~ 770 ·21 · lO ~o t~1.•7 oo •• ~ o~s 772 7!5 21 l~ 21 ! b8 1 +7 · 01 i +b 0!5 7bf!. 799 2V ll 22 t16,t7 OQ,+6 055 GOo 7S! 32 35 2l 17&,+1 00u+6 080 7~b 609 33 35 2G 1b5,+1 Z5,+b 0~0 76& a32 3A l~ 25' ·· o&R.•? Ul c•b 070 822 799 17 "0 2& · Jl0,+1. OO,+b OoO 817 SZO 38 40 · 27 . 09S, -."7 uo,+~ 022 ~15 e.ut 39 at ~~. · ·o&7,•7 oo,·~ o•s 839 · soe D~ 47 . 3S 070,•7 Ol,+~ 050 SS~ 799 G7 51 32 Ob1 1 •l 3 1 •6 ~~ 6b1 814 ~8 Sl 35 ~92,+7 20~•' o~o Sbu 7~! ~l 75 lb osa,+t oo.•b Ol& 87Q ab2 s; 75 37 2t 1 97 15 1 •6 1 d69 SZ' SS 56 G3 03q,+7 0~1 +6 OlS 9nt SbS &S bb • GG 023 1 +7 03 1 +~ OC?S 901 878 &b b9 GS n2S,•7 Ol,+b 025 91l &70 &7 b& Qb 05l,t7 15,+6 015 915 !64 68 b9 01 · 02~1 t7 18 1 +6 ~12 929 &d7 70 71 48 01Z,t7 22t+o ~ & ~36 696 71 72 49 ooS.•7 uYe•& 2 9Sa 899 72 73 SO 002~•7 10 3 +~ 1 959 ~~1 1~ sz o3b,+7 2B,+~ a as~ ato so 7b Si to2,~7 lO,•b 030 887 118 77 7~ 55 60 04 OS 07 tJS 10 u iS ltl 17 22 21 27 2Q '2~ 29 32 31 Sil 37 3~ ]If 42 lH QJ; tOO 5l St.& .,., 7o . 1·23 67 70 79 ao ce so 18 23 28 33 li 101 103 55 78 127 65 70 75 80 1 106 1U 100 , '. ,. ·Table A-1 -(Cont.} ,, i ·Hydrodynamic Model ·Input Card Specification ~ •• ·"""'1: ..... ~ -r 54 oc9i'+1 23,~EJ OiO !"S 800 ;. u !9: _· ,1 ss . OSfi ,.+ 7 :;o, .. c.-QZO. ~00 l~7 8.0 !1 '. !i . 56 062,+7 30-o+b 020 925 '1&" ~e &l 57 3!,+7 zo. •e. ·-15 <faJ 171 153 8G se as.•7 11l,+~ 12 ~-~'J;,.: 17:1 F." ss s.;-32,•7 15,·•• 12 ~.,:1 771 as ao '· oo 1!,•7 HI, •o. 10 9!'9 75q Ab 100 seo_, •t! 0 1 +6 ao 8£13 azo 101 io.:s 10/J ;·~· d 106 " 101 saQ·~ o, .. , 75 -. 839 8ZCJ 102 1041 105 107 tOe 31iG 11 •o tS,+o . > 10 6l5 !39 04 -as 1C8 103 2c9,~o t,+o ~-!"""-65.5 !29 too 100 111 ... u tOG 2ll,.,.f) 0,4-fl ~0 850 !35 11'17 10" uo 112 Hl 105 rso, ~~:~ 10,+~ so !G7 81.13 1(18 110 11" tOo t"i;·•b 0,+1:1 /:SO ts~O 83& 1t1 112 us 107 tOl',+o o, •• 30 657 8412 ' 1 t3 11& 117 108 oo~•o ~,•o 6 ass 81.17 ' 11" no ,i 1 e 9 100 tb{l,+o .o. <>b 70 h7 &l7 us 1111 120 121 110 f7~.•o 5,+6 30 861 !~S 117 !U ti!Z 111 84,+t:i O,+b 15 !70 83Q 126 11' 123 125 112 Cb,+b 2,S+o 15 51.3 !31 1?.7 1Z'S t.2A 1Z8 H:S Sti ,+e. • 0 1 +tl ~s &7l.l 835 129 123 12" !29 111 sc.•e. 1o+O 30 879 .83o 1Z8 12~ 131 us. t24a+b 0,-+b 'SS 875 suo 121 130 l.:SZ 133 su. Siil1•+et 4:~+& uo 873 Sub 12Z t:SO 13" llS 117 I!! ,-+o o,+~ "s 851 8l.l0 111 1 2»2 t.lo 138 139 118 5b,+b o~•o 60 8!1 8~3 133 . 13" 13~ 137 140 141 • 119 bO,•e. i,+o 35 8151 Suo 1 :ss 1l7 1"2 teo 30,+~ C 1 otb lO a so euo no 143 JCS 121 cao,•~ C)e+o 90 8So ~4l 139 1l.l0 1"3 1'!1! 1-"o 1"7 11l8 122 l?.·~ ,•o so sao 8u6 11:11 !l.IZ lt.lll 1l.l9 150 123 l.3,+o t,+b 30 sc;o Sal us 146 151 SC!CI IU1 1 ~0 Oa+b 55 8CJl.l a.. a ta7 1St ~52 1541 125 33,·~ o,+o 70 aqt .. 8l.lb ta8 1U9 152 153 155 12~ 37.+b 1a+o cao 869 a~o~a 15U 1S3 15b 127 ~b,•o .0 1 +& ~s eQs $51 1~" 155 150 157 128 tlo.+o 1,+b so 6~7 esa 157 OS 01 090000 800()0 130 .o~e Ot oa 000~ 02 Ci!OOOO 80000 130 .ot~z 01 Ol 0000 03 089000 osoooo zoo 0. 0'22 02 03 0000 OG tOOOOO 070000 121» • 022 . oe Ql.l . 0000 OS. oa~ooo osauoo llO ·a02a · 03 as ODOO 06 Ob4000 Qt!SiJOO uo eOci. 04 OS 0000 07 nq21laO 070000 130 ;~2e Oil oo 0100 oa 077000 09cuoo lO~ .D~e OS 07 oooo 10 09 O~.b~OO o7nudlo oso ,o~2 ... oo 07 0000 u 07SOOO O'lO'OOO oe~ e02S OEa Ot! 0300 11 Obo~OO 0&&0000 070 t025 0! 09 OlOO 12 Ob1000 110000 090 t022 01 10 0000 l:S ObSUOO oqsuoo 01!)9 ,oj)c 10 11 0000 u 0.\7.000 . a~Siloo 05\t e022 09 u 0000 JS 0$~00.0 01.10000 ObO e022 00 12 O:SQO a G&Oui)O 0~51)00 100 eC2~ 11 12 0000 . tr OlUh)00 oc3I)OO 070 ,o;.S u tl ouoo l S8 .~usuoo . 02lOI)~ 100 a022 H· 14 oooo J9 OCili)OO 030000 1 '30 t022 1t! 15 0000 20 OliO?O Ol~UOO OC\J• •022 SlJ 15 OOOQ - • Table A-1 .. (Cont.) Hydrodynamic Model Input Card Specification 21 ozsooo 0412000 0!0 e0~2 ll 14 0000 /' -"'~-,'; zz ouooo Ol5t1_00 080 e:025' u h O!lOO ' Zl ouuoo' o.aaoao 1-GO .o;s2 111 17 ouoo 241 n5~ooo O.lf>OOO 130 ,ozs 15 u osoo 2S nllUOO O~biJ.OO 070 ,. o,z u 17 ocoo cf) OllUOO GSl\100 0'10 .,Q;tS H u ouco 27 nSOQ.OO ~.llllOO osu iOcS 16 1'i 0100 .2! ou•Of}O 0.\1.1)00 spo .ozz 17 20 ocoo 29 1!158000 0~1 !000 100 ... ozz 1! 21 ocso 30 OllOOO ,oi5?uoo '010 'a022 lCS ~0 0000 . 31 Ocii!OOO ossooo soo eD22 20 21 0000 32 0&1111.100 021000 oa~ .o?5 1q 22 020(1 ll t\SSOOU O~lOOO · oqo eOci 20 23 0~00 lo ('r>~OOO Ol~OO~ 0'70 a02S 21 zv 0100 " 3$ Ol1000 oaSyOO 0&0 a02Z 22 Zl ouoo ,, l~ olqooo .052000 lO~ .o~z 23 24 ovoo 17 n.32D.OO ClOvOO CtbO .c~; cc 25 0"50 38 Ol800U "J7UOO us eOc2 Zl 2t» 0000 Jq OCibOOO ozsvoo 030 .o~s zu. . 27 0'100 410 035000 OlvOOO 0!0 ,o?.2 25 cb 0000 "t OlSOilO tl3oll000 0'70 a0?2 ztt 27 OQOO ' G2 o3looo OccliOO 065 e022 25 2c 0000 lllj nooo . 1!000 7 ,oc'S 27 102 12CO ~1 ozqooo. OJI~vou lHIO .o~z ~!. 31 00\10 10 G! 32000 1t.OCO so ,0?2 l2 100 0 ,/~. 51 025000 02!0~0 oc:s ,022 31 li 01100 ,( -:· . 5' I}C!&OOO OlGO~!' 0"0 .o?S ll 35 0500 (). ,. 5G oz?ono l.\22000 OAO .o?Z l! lo OOCiO ss 02ZOOC} C!Z2000 os.o vOt'S l2 31 0000 Set 030000 01221)0.0 OOft oC25 17 52 .1000 &S 1~5ou· 1~1)0\} 50 .~20 "l 125 30 b& oailOOO Q!SOQO OcS ·&0?.5 -"l IU& 0100 &'I Ct22000 01'1000 020 ,ocss ,.3 CIS 0100 &~ 023000 01cUOO 20 •. ocs CIS Cle 0100 69 t\25000 012vOD 20 .025 :0(1 4tb :100 'to 02'3000 OU:OOO 8 .o~s ~& IJ7 osoo I '71 tlcJIIOO 605000 l eu25 w7 Ccl :~oo 72 OcOOOO OOGOOO 1 ,or.s •a n 100i1 73 01800~ 002000 0,5 ,('1~5 'JQ so 1000 7S Oc&IOOO 022000 V30 .~~5 35 lei 0000 76 ouuoo 030000 010 ,025 lit C:'"' 0000 ..,c:;. 77 1)3:5000 Oli')UOO 030 ,0(15 35 53 01.100 78 012000 OtQ\)00 035 ~ccs 3b S! 0~0\1 79 02~00U 01SOOO 68 oC2S S2 5'1 1000 80 Ol20DO 015\)00 041() ,o?5 53 ss 01C9 !t Ctc~OOU 025;)00 010 •. o?S 541 55 0500 82 QlSOOO 015000 35 a02S ss Sc 0.200 83 ftl{iliOO 012000 25 .o2c Sft 57 lOO 841 02b000 0.10000 20 .o~2 57 sa 400 &5 02'7000 020000 15 .c?c ~! s; 500 8b 03\000 tJOOO 15 .o~2 sq 60 350 eq 2'£1000 2'50~0 15 e025 53 511 0 0 ·roo &10000 12000 TS ,020 2o 25 0 sos 41000 12POO '7S .o2o Zb 10~ 0 S02 lllDOO 1!000 75• .ceo 26 101 0 SOl 1800, 1~000 60 t020 28 1CO 0 1041 17300 21000 GO .020 100 J01 0 • Table A-1 .u (Cant"') Hydrodyn~mic Model Input Car~ Specification •.> • ,.,.. 105 11~00 30000 u .~20 :ot 102 0 .lOb ~3000 14060 ~0 ,020 100 103 0 107 20500 15000 60 a020 101 104 0 108 21000 100(10 1 .o2s 102 105 10~ ·~) to~ . UlOO 15-JOO ~0 ,c;tO 103 10" 0 110 1UOOO 1701)0 1" .ozs 104 lOS 0 .~. 111 13&00 9000 as· eC?O 103 10~ 0 112 IU10C 7000 75 ,020 104 lOb 0 123 15200 !Cino 25 ,022 lOll 107 0 tU 14000 '7000 7 t01.S 105 101:5 500 us HSilO !20~0 75 .o?.o too 10q :so Uo ~400 1101)0 1" . e025 107 108 0 117 uaoo .. $~00 30 .022 107 110 0 118 13SOO bOOO ! .o~s 101! 120 300 11'1 lllOQ 5~00 15 ,o?.S lO~ 111 0 1~0 11500 11800 oS eO?O 109 11l 0 121 tSZOU uoo so e020 10~ 115 0 122 15200 12700 :ss .o?2 110 Ub !SO 123 · esoo ssoo 15 .oi!2 111 ·13 0 120 bUOO SdOO 15 ,ozs 112 Ul 0 125 7700 71)00 10 .ozs 111 112 0 J2b 1l Ot'O 'YOOO. 15 .or.s 37 111 0 1~7 15000 uooo s ,ozs 37 112 zsc 128 11000 ·3700 tS .o?.S 112 114 70 10 120 q1oo ilaoo 40 .o~z 113 114 0 130 10300 .;1500 ~5 e020 115 110 0 • 1li 8200 3600 :ss wO?O 114 117 25 132 lObO~ usoc $5 .020 115 117 0 Jll 12000 11600 oO ,020 115 11! 0 1lll 1&1500. a coo GO .o?o 1lb 118 0 l:SS 1.ta200 bSOO lS ,oz2 116 119 so 13i> suoo 10000 60 ,o,o 117 118 . 0 137 !000 10000 ~0 e02tl na 110 0 13! '!000 auoo 31i ,022 117 120 0 t 39 81J.OO lOGO 7$ ,o?O 117 121 0 tliO 1300 uooo 75 ,oao 118 tU 0 1&11 ~200 3000 as .o~o 118 122 0 tli2 7l00 3&00 lS .o~z 11CJ 122 60 1"3 10COO a coo bO ,()?0 120 121 0 1~4:1 1 OCHiO &000 &0 .ozo 121 122 0 1'~S &800 UlOO le) .ozz 120 123 20 J"b 7000 noo uo i.O?Z 121 til 0 1~7 12000 2.300 75 e02Q 121 12J& 0 tf.l& i0100 2700 !0 e020 121 125. 0 149 900.0 2500 75 .ozo saz 125 0 iSO b600 l::tQO ao .ozz t22 12tt ;o tSt t~oc-o aooc 35 .o~i:! 123 . 12Q 2~ 1SZ aono 10000 60 e020 12ct 125 0 153 8000 10000 60 e020 tas 12b 0 tSa lCOOO 3~00 so aO?.o 12a J27 0 155 10100 l'SOO 80 .ozo 125 127 0 JSo qqoo lCIOO so a020 ' 126 127 20 157 11800 !1)00 75 .oao 12'1 128 lO ~ 11 { ~lYE; YE l:t 1"'72 A'i.ERAGE TRU\JTARY XNFlOW.S 12 0 0 0 0 0 0 13 •• ' .... Table A-1 -(Canto) Hydrodynamic· Model Input Card·Specifitation 14a I ' so I l4b { •2,• •6,S 3,41 Ta.q· 9,~ ••• u., 7,• zz:1 -~.s 2a,a 7 1 A 15 ' 1l0 l. 16a ! 1~0 { 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 16b 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H O~fJ0 1 27 :uooo, ~s 170, 17 01 tli'J, so 108&0, 60 l000 1 101 600, 117 ~'15: ua uo, ,~i { I ilO D 19 () • APPENDIX B ,; •. Table 3-1 Node Renumbering Scheme CROSS REfERENCE·• • JNTEA~AL MOOf NUMBER V3~'!XffRNAL NOOf NUHB!R CU3!D JN QUALITY fhOGRAH AQUAL~~ I I 2 2 1J ' 4 A ., 5 6 e. 7 1 8 0 ' Jo n· ' 1l u u· 12 u u ,. .~ 15 15 !fl u u· 17 18 se u " lO· . lO 21 2l 22 zz 23 23 '24 211 ~5 .2S 2~ 2f. 27 27 26 28 29 100 lO · Ul1 31 102 32 lt 33 )2 )1.1 l03 )5 '104 )6 lOS 37 3S )8 3b 39 l7 1.10 to• 1.11 107 02 108 fJ :s 53 IHI 51! q; Ill 06 lli! 47 109 q~ ItO .," 55 50 . Sq 51 til 52 Sit,! s:s 115 ';50 116 55 56 56 U7 '57 ll5 58 119 59 51 ~c uo bl ill 62 l22 e::s 56 btl 12,3 1)5 1211 f.tfl 125 b1 l2b bel 59 6'1 127 • 10 •o 71 ua u Q) 1:s CUI 71 liS 75 CUt 76 17 '77 ue 78 "' 79 so T~E nlbEST TOTAL BAND "lOTH ]~ . u' THE HIGH 8~0£ RAXI"UH HICT~ lS ., ' ANO 1HE LON SlOE HAMIMU" WI01H u 1 .. .. Table s.:...2 Computati ooa 1 and Output Centro 1 Opt·, ens .. UPPER COO~ t~LETi KNlK 'R" AND TURNAG,IN AR" S'MPL,£ PROBL£"' NUK'BEA OF HYDR4UI.lC ec;·-.Dl TICkS NU"SER Of TtDAL CYeLES PE~ CO~DITIO~ NUHBER OF HYDRAULIC TlHE StEPS PER ~~CI.E NUMBER OF QUALITY TIME STEPS PER CYCLE NU"BtA"DF TIDAL $TAG£ PLOTS NU"BER OF TIDAL VELOCIT1 PLOTS QY~AKlC HYDRAULl£ OUTPUT UNIT $TEI.OY ST~lt HYD~AULICS OUTPUT UNIT Tl~&L PERlODo HOURS . RESULTS PRINTED lT THE FOLLOHING b JUNCTIONS 1 12 2b 49 5Ct 117 sa 72 as u1 ·. uo 157 ~0.0. 25 1 I 0 12. 25, TIDAL STAGE FO~ JUNCtiONS l 117 a9 T1DAL FLOW FOR CHANNELS 72 127 Sao . . . :;({ -~~.~~~ ., . ' ' __ '_ .. •. " . . ~~ (' ~ c .. ;:., . -y,. f '" '::: . ) T~ble a ... J .'I Invariant Channel Data .r: ·'' UPPER COOt< 1N(E1t t<NIK ARM AtfO 'TUftNAOAIN iRH SAHPL£ PRD8L£H ,, INVARIANT tHANNEL DAT~ CKA'fN£L LENGTH, FT WlD'fH, ,, HYIJ RAO, FT Kll't EL€Y, FT HANNINCS H !NO JUNCJIONS SID! .StOPE HAJC Tifft:, 8!C. i '10000~ 80()00o i30,0 uo,o 8 C',22 l i o, Uq'S, c voooo~ eoooo. 130,0 uo,n ,Q~Z • J o • 329'~~ • ' 690001\ eooou, ~uo,o 200,0 ~o .. -2 l o. US'I,. . u 100000, 700ll0v 14!0,0 uo,o ,02~ 2 " "· I~&Y, 5 eoooo. (iAO'JOo 1 )11, 0 !30, 0 e02(! 3 !J ' o. nsa, 6 6U000e &sooo. 120,(' 12G,O • 11 022 Q s , o~ 953, 7 9lOOG, 7oooo, 130,0 taS,l ,022 ... f» _)o, ~,~.,. 8 77000, 9;t()OC 0 tos,o tos.o o0Z2 s 1 ' 0. l~t&a, q 66000, 700110, so,o so,o ,ozz ~ 7 ' u • I .l?U 1 lO 7sooo, unuoo, &'5,0 . i .n, 3 ,ozs b 8 300, lcPJO, u 6~000, dll00\1, 10,0 133, l ,025 e 9 Jou, llfd, J2 670~0. ttnuou, CIO,O 90,0 1 0lZ 1 10 ·o • lUt., u b50ll0, 91:0000, '10,0 '10,0 ,oa lo tl o, tuu, Ill 37000. ~';UOO, so,o so.o ,022 ~ u o. "'· 15 58000, Cl(1000, 60,0 91,2 ,o~z 9 u. lOO, Ud, lf> MOOO, ssuou, aoo.o 100,0 ,9c?2 il . IZ o, 965, J7 aaoo<J, i?}UOO, 10s0 70~0 ,tJlS u \.) o, uu. 18 hSooo. 21000, aoo, o IOOoO ~oz2 u lll •. o. 12~>~, lfJ 113~00 0 3noou. 130,0 1?0,0 ,022 12 IS o, bl4l, zo JIOOn, .)J\000, uo,o dO,O .o~z Ill ·~ "· 1(15i Zl zsooo, IIZOOOo uo,o 60.0 u022 ll ,, o, '411.!1. zz ~auoo, 2c;oou. 60,0 80,0 .o2s u ,I b o, us, ll 'lt.IO(IU~ ~1000, lUO,O uo.o ,0~2 .,. t7 o, .. ) .. l.CJ S!!Ono. lbOfJO, Ill' eO ?Z,O .;Oc?.!i 15 &8 500, 8)S 0 Z.S ll~OO, Cl6000, 7(1,0 70e0 ,ozz h !7 o, , ll, Zb JIOOO" ~)(100, uo,o uo,o ,025 l1 16 o, 70S, C7 snuoo. ll0~''• 50,0 !;'1 1 6 ,oz!i 16 19 &oo, .1)5). 28 Ll!\(100: ]J01}0 1 10040 IUO,O ,ozz l1 20 o, Jr~, 2!1 Sf\000, 2nooo, too,o Ill, I ,oz?. IU ll ',5,0. 'He )0 nono. !.ooO(J, 10,0 10, n ,022 19 lO o, .• bl "· 31 20UOO, 55000. too,o 106. () ,Oc!2 ~0 21 o, &ISU, JZ ~UQf'IO, i1001J, 140,0 IHI 1 il •. 0?.5 "' ll .i()V 0 1001' ~1 SSU!IO" }1091>, '10,0 90 1 0 ,ozz 20 u g, CJllle )Q ttf\000, looou, 1o,o ttl., 0 ,0.:!5 i!l at~ aoo, Ubl, 35 J71)(1(J, Uc;tJOO, bO,O bO,O ~Oi!~ i!ie ll . o. '72--~ •. lb )91)(10. !t?OOU, too,o 100,0 ,oi:!i! 2J 211 o. u-r, l1 l?.ooo •. .sooou, tiO,O bl,Q ,025 Zl iS !.0, b lOG 36 lf\OtHJ, )7000~ li5,1) u~,o ,022 1?1 2fJ . u. bi)lf . I N )1 11,1)00, 2t;OCI0 1 10.0 35,1 ,OC!!i i!q 21 f;)Qe llil"· f «10 lSOOO • 30001), 60,0 81), 0 • Oi!l 25 . ~(J ~. bll ' . IIA JSuC'o; ]t.IU00 1 70~0 70,0 -022 Zb ·u o, b'iU, ~ Ill 3101)0" 'li!UOO, 6';,0 bS,Q ,Ol.Z 2~ Q 28 u., ~'»J11 \1 ·iHI )llOOO, lniJO.O, 7,0 l I • Z .. o~s ·27 10~ lioo, un, " \,. 41 21000. 1?000, 140,0 ~o.·o ,OZ( 29 ll o, &f.IO, • 118 nooo; lfJ'OUO • 50.0 ~o,o ,oa2 li! IOU o, ~, .... ()' NOtE • .. 41 IHOIC.TES ~tCAYIVE wtUT~ u POSSIHlt WITH AHJII:IPATED TlOAl ~ Tf&Gf -..... Table B-3 (Corat.) (.\ --~· ' invariant Channel . Data UP~ER (00~ INLET• IA11PLl ,ROBLEH KNIK ARtl AND TURNAGAIH ARH ' i . . ' INVARIANT CHANNEL DATA CHAftNfr.. LENGtt4, fT tflnttt, Fj ttYO RADt ,., H!N ELEY, ,, HANNJNGS ~ ENP JUNCT H.!N.S OlOE SLOPE HA)C flHt, llC 51 i500.Q~ 2Auoo. ..... o 45,0 ,1)22 31 32 o, $06, Sl uooo. 211000, 1.10,o Sb,G ,Oi5 3& 35 !»oo. ~9le· 511 uooo. c2ooc, uo,o 110 0 0 ,02i! Jl lb o, ol'-• ss l200CI 1 ~~ooo, lO,O &0,0 ,025 lZ :n o, 10~. 5b 10000 1 2?,ocu, 4»,0 7,2 ,025 37 52 tooo. son, f>) usoo •. 11000, so.o 53,3 ,020 1.13 128 '"• 26J, bb ioooo. ar;ooo. 25,& 27,6 1 0l5 43 IJ4 100 1 S25 1 IJ7 220t)(J" hOOD, 20,0 21,7 ,025 4l ll~ IOU·, b. J, b8 2300~. azooo. ao,o 22al ,025 us Ub soo, tlllh. b9 25001>. 12000, iO.o 22,1 ,025 114 4t> aoo, ~9J O' 70 23000,. l bOOO, e,o U,l ,o~s "~ 111 ttoo, 16~. 7l uooo. 8001)., l.O "·' ,025 111 lUI aooo, ,. 7U, 72 lnoou: oooo, t.o .. ~ ,025 116 U9 tooo. 1~fl. 73 tllooo, ?,000, , ,s ,6 ,025 U9 su l 000 •.. 701, 75 2UOOO, 2Z000 1 lO,O 30,0 ,0&!5 JS 3b o. !198, 7b 1~000~ Joooo. 10,0 to.o .02) lb Sl u, ~79 •. 11 llooo. Jnooo, :so,o "'·5 ,029 l~ Sl ij()l), tl2Z, 16 31000. 1 qt)(h), lS,O 35,0 ,OC!S 3b Sl o. 7)7, H.• zaooo. 151)00, b6,0 15,0 ,ozs St! SLI aooo. ~2be &/) )2006. tc;ouo, .uo.o 47,6 .ozs 53 ss 100a Jaa, '· &I ~aooo. lsuoo, u~o Jl, 3 ,025 Sq ss soo., ~0 1 .• 62 JIOIJO~ 15000, 35,0 ~'i.7 ,025 ~5 Sb l.OO I 131, 61 30000, 1?.000•' ~s.o uo,o ,022 Sb 57 JO!Ja 18~t, &4 ze,ooo, toonu, 20,0 2s.o ll022 •57 58 400, 7214. 85 i1000, JI)OOO, JS,O 20 0 0 ,oza 56 59' s.oo, 60~, 8h 31000 1 hODO, 15,0 11el ,022 59 60 lSO, · 92J, 89 2uono, 21i000 1 15,0 as.o ,025 SJ 5" o. 7l~o 100 uoooo, 1?000 1 75,0 75,0 ,020 2b 2a "· 72J, 101 cuaoo, ilOOO, 75,0 75,0 ,020 2b lliO o. Jcrt, IOl 111000 1 IA000 1 75.0 75,0 ,020 i!b SO! o. 7~1. l 0 l aeooo. li:JOOO, 60.0 bO,O ,020 28 100 u. lS'i, lOU IHOO, 27000, 410,0 tH>o 0 ,020 lOU lOl o. 194, 105 I hiJO, Jnooo, 13,0 u.o ,020 l 0 l. 102 o, ~uu, lOb l)OOO. IIIOOU, 60,0 bO,O ,020 100 tol o. 1.15lt 107 205001\ 15000, e.o,o b0 1 0 1 0i!C lOl toli o. 410'1, J08 21000, . 11)000, 1,0 12,1 ,o2S lOi! tO !a uo. 711!. JOCJ 11300, lliOOOa 1>0,0 t!O,O ,.020 lOl lOU o, UJ, uo JUOOO, 17000, au,o 111,0 0 025 104 lO~ o. &.~21, 111 uoou~ " 9000, 65,0 05,0 oil20 lOl lOb o. 211. N Ill JUIOO, 7000~ 15,0 75,0 0 020 10~ lOb o. l5Se lil i5loo: 1\000, 25,0 lS,O ,022 aoq S07 o, lq9, ( ua 111000, ?()llO, 7,0 sq,o • oas 10~ lOU 500, &&7~ • ll5 11500. 12000, 75,0 63.8 ,020 lOb 109 lOo ~I)I.J, w 116 ~1100, 11000, au,o 111,0 e025 107 108 o, 2iHi 8 "' ll7 11 flO~. 1)~09, !o,o 10,0 ,Oll 107 110 o, iU~, ' HOlE • • • JNDJC4TES NEGATIVE WIDTH ..... U POSSIIJLE HITH ANTICIPATED TIDAL UAGf Q . , ~ • • .·~ '~ .. •;(,1 ·t .. G c 'i (~ <~) ,· ··~ ,. ,. Table 8,~4 Invariant Node Data ,, VPPtA COO~ INL£f, IUUK ARM AND TURNAGAIN AHH &AMPLE PROBU.tt P' ' '· INVARIANT JUNC~lDN DATA JUNCtiON AREA, H:S' SLOP£, HSflf'T DEPIHo FT HIN £Lf;,V, fT X•CU::IO Y•CORO C:HANN[LS fNTfRING ~UHtfiON l .,.~it-o'. .. ·o &So,o uo, 0 blo,o U10,0 I z o'' 0 0 0 0 0 2 8500~ 'o llO,IJ llO,O boo.o 5Z7;0 l l* 4 0 0 0 0 Q l ~SfJO, 'o IQO,O uo,o t.~Ha,o 525,0 z l• 5 0 0 ·o . 0 0 q qooo, zo'o tSO,O 190,2 "~q,o , SIH&,O 14 t. 7 0 0 0 0 0 ' 6900, 'o 1lO, 0 uo,o bt~S.o 571.1,0 5 b 0 0 0 0 ~ 0 ~ f. sooo. aa'o son~ o no. a bUS,O 63b 1 0 7• 9 10• 0 0 0 0 0 7 7bOO, 'o ano,o lOO,O b82,0 bl9~0 8A 9 u 0 0 0 0 0 ' 0 3700, :so,o uo,o 121,1 ~sa,o t»tH ~o lo• .... 0 0 0 0 0 0 9 UlOO.,-2&,o so,o ~8 0 b 116~,0 701,0 ll• ll.l U• 0 0 0 0 0 10 b900e &l.o ~~.o 6b,b 70l,O 6':JS,O llll: U• 0 0 u 0 0 0 u llbOO, z,o 100,0 102,3 1U~O b9J,O IJ '" h 0 0 0 0 0 u zuoo. \1 A .So, 0 l JO I 0 7ll, 0 ?l'I,O IS 16 l1 &6 19 0 0 0 .. 1l 1200, I, o .10 .o 72,2 735,0 71.1'!,0 l7 21• 2~11 0 u 0 0 0 ll.l Q1o, ,o 100,0 aoo,.o 7Zil,O 7~u.o It! co ll l]ll 0 0 0 0 IS 2000~ zs,o uo,o uo,o Joq,o 7$6,0 SCI• 20 2q 0 IJ 0 0' 0 lb uoo •. 2-::.0 Sl, 0 ss.z l!i9. 0 1~b,O ~2· lS• 21 0 0 0 0 0 17 ll50, ,o DS,O 6510 7i.lb,O 710,0 2l• l5 lb 26• 0 0 0 0 u tcno. 16,0 71),0 109,11 731),0 7tH ,O 2~ i!b 29• 0 0 0 0 0 19 !400, 7,0 1.17. 0 ·st~.u 78b,O 170,0 27• :so• .ll 0 0 ' 0 " 0 ~0 t b I 0 .• ,o 9S,o YS,O nz.o lb'i,O 21J• )0 Jl• :u 0 0 0 0 21 lb&O, I , ll 65,0 tH, 3 7hi?,O 1YQ,O zqt-Jl• ]q 0 0 0 0 0 22 llbO, lj(\Q . ss.o bt.b 60b,O 1M, fJ ll lS P• 0 0 0 0 0 21 'no. ,o aso.o uo,o 7Qb 0 0 6U'1,0 H• 15 lo• 38• 0 0 0 0 21.1 I bSO.a 25,0 ttO,O bb 0 0 1t\1it0 UJZ,o ltu lb• l~ 0 0 0 0 ~ 25 880, 1, o 70 6 0 ll.l Hlc?,o 7~CJ 1 0 37 CIUIII til 0 0 0 t) 0 Zb uoo, ,o 60 0 0 uo,o Bl/1 0 tl20,0 lt\11 ijl) l.ll lOt 102 100 0 0 l1 950, 40,0 22,0 2l,7 IHS11) II" l , 0 ]Cit "'" Uq 0 0 0 0 0 l6 uo. ,o b'i,O b5,0 bl9,0 l'06,0 Ill 1.17 &00• &o 1 0 0 0 0 l! 700, l,O ~u.o .~7.0 bSI.I,U 7(;9,0 1!7 51 Sl 0 Q 0 0 0 3l 670; 3\.0 4), 0 lltlel 8bl,U B&II,U U611 51 ,. SIJ ss 0 . 0 v 0 )S qzo. 2u,o l0 1 0 29 ·'' 661.1,0 708,0 5111 75• 77• 0 0 0 0-0 J& sao, ,o .Sb,O lt-.8 0 Uh,O 802,0 scu 7S 1b 78 0 0 0 0 J7U zso. ts,o 9,0 16,7 669.0 l\lQ. 0 ss Sb Uti Ul 0 0 0 0 "] 3'10. u,o JS,O us,e 90&,0 6t.S,O f.') !II bb u 0 0 0 0 0 CUI 210. l.u 25,0 :u.s ~oa.o 616,0 bb b? u 0 0 0 0 0 /4S lS'J, l~O zs.o 30,7 qulo «110,1) b1 fll:i 0 0 0 0 0 0 rJ (fb ~do. J!,,o !5,0 221(1 '115 8 0 (\Hij. 0 bU a9 70 0 u 0 0 0 «&7•• 26fl, aa.~J !Z,O II~ • II 929.~ 0 IHii',;) 7CJ 1l 0 (I 0 0 0 0 ' ueu 110,. 22~0 b,O 5,9 il18,0 8'1h,O 7l 12 0 0 0 0 0 0 UQaa 50. us,o 2,0 l • l YSO,O U9'9 10 'll.lf 7l 0 0 u 0 0 0 \.,J 50 lO, ao,o 1,0 ,2~0 9~9,0 901,0 71 0 0 0 0 0 0 0 u, 52•• )60, l6 •. 0 8,0 t2,Q uaz,u blQvO So 1b 7911 0 0 0 ~ 0 \ ~} lOlO..., IU,O JO I!) lb,b U87,0 7dU,O 77• 78 &u• ~9 0 0 0 0 -5'1 1.190 0 ll 0 10,0 !btl UQ~~o 6UOiO 79 81 89 0 0 0 0 0 () 55~• 5~0. 1o!o ~o.G 19.1 'lllt;,ti 1u1.o 8(1• &l &2• 0 0 0 0 0 ~ NOH • • • JhOICaTES THAT DEPiH OF CH~N~EL £NTlRlNG JU~Ci)QN is LA~G~A THAN JUHCflON DtPTH • -· Jff~1CAT£C if EGA U ._,E VOl. UHf. GR AREA U _PQS$ UiLE WI.NT~CIP.llEO TJ[!AL UAGL ~' ,e/ ~-,.~ ~-.:-. _... -~<' '' •.. p (~' Table B-4 (Cont.} Invariant Node Data UPPER (OOK INLtTr tUUk ARH AND TUA~AGAIN·ARH ;~ ~ ' J. :·~ . :. <'' SAHPLt: PROBLEM. ' . ' 'INVARIANT JUNCiiON DATA JUNCTION AREAr MSP' SlOPE, HSF/Ff OEPTHr FT HIN ELEV, FT X•CORD 't•CORD tHANNtLS ENT~RING JU~CfiON 5& 620, . :so ·o zo,o Z0~7 <IZS,O 701.1,,0 (l2• e~" 0 0 0 0 0 i 51Ut 300. zo'o as,o 19 0 0 CJlJ], 0 tn,o &;s-. 60. 0 ~ 0 0 t o. 58 2,0~ 1 o "o 12,0 20,1 QS7,0 771.0 eu• &S 0 e 0 0 0 0 59 )~0. as"o ll,O 21,3 Yh,O na.o ft5 6& ~ I) 0 " 0 0 691tt U'O, 10 "o 10,0 lft 1 0 t;l89,0 75~,0 86 0 0 0 0 0 0 0 \ 100 '~o: ,o 60,0 60,0 8UJ 1 0 620,0 SOl IOl lOI.I u Ut~ 0 0 0 101 ;u, ,o 75,0 75,0 8l9~U ftli},O 102 lOCI aos 107 0 G 0 0 102 :suo, ts,o lO,f) 111,9 ts3~,u "J9' 0 ,,, lOS lOtS 0 0 0 0 0 JOl .22'19 ,t,.o 60,0 . 71,. 6S3e0 Oc!q,o lOb lOCJ HI• 0 0 0 11 0 JOl.l 231, ,o 50,0 so,o aso,o 6 Jc;. 0 107• l0 1h 110 H2* IU 0 0 0 10Su JSCJ. u,o IOeO ar;,,· HQ7 1 0 OIIJ,O uu llO l .... (I 0 0 0 0 toe, lfl9. ,o eo,o 80,0 860,~ 8Jb,"' Ill• au IU• 0 0 0 0 0 107 106, ,u 30,0 30.,0 857,0 ttuz,o IU H1» H7 0 0 0 b 0 I Cl8u lJOo 6\0 &,o ~~.o , ess.o 8tH,O "" ll6 au 0 0 0 0 0 109 ii-v, 0 70,0 ''0 .o 8&7,0 8J7 .o II SCI 1&9 120 Ui 0 0 .0 0 tao 178, s'u lO,tl J5 1 b &63,0 814S,O 111 1&8 ·~~· ~ 0 0 0 0 IIi eu, 'o 15,0 15,() tt7o,o tno,o lZb llq l2l ll5 0 0 0 0 lieU lib, z's lS,O 18,4 t17l,O e.H.o 121 ·~'i 121& IZ3 0 0 0 " \ Ill sa, ' 0 us,o QS,O o1u,o a.ss,o l20• Ill llti &29 0 0 0 0 HCI 52~ a "o lo.o sz,o lt79 8 U 6 Jb, 0 126 ·~~~ Ill 0 0 0 0 0 ' .. 115 uu~ 0 ss,o ~c;,o 675,0 eqo,o t21 lJO au Ul* 0 0 0 0 II b .ltl9~ "!o tto,o 37,2 en,u 8&16,0 lZt• Uo ;JIU 135• 0 0 0 0· 117 til;. ,o qs,o qS,O 8flt,O 6110,0 Ill I 12.* ll&a U& 13'1• 0 0 t 11& 5b, ,o tJO,O bO,O 86},0 81.11,0 Ill I ll.l &let l.U 140• •••• 0 0 119 60, I ,o JS,O 60,0 ttf}l. 0 6qb,O us U7 111~ .• 0 0 0 0 0 120 30. ,o 30 0 0 .)0. 0 t!Ob,O 840,0 1l6 l" l• lUSt\ 0 0 0 0 0 l2l oo. ,o 90~0 qo,o BO&,O 811},0 139 hO lU:J &qu a a e. 1•17 ll& 0 122 u. i.l • 50,0 50,0 68&,0 8~6.0 Ddl* l«~Za auu &qcu ISO* 0 0 0 "l IZl :u •. a,o Jo,o 33,0 690,0 ftql,O Hl!i ltibA lSl• 0 0 0 0 0 !~ci ou., ,o 5';,0 ss,o 6qtJ,O 8U'4 1 0 .,,., l'Sl ·~C!· lSU Q ~ 0 0 125 H. ,o 70,0 70,.0 691e0 6~bu0 auu• ti.ICJ(I! &5i! lSJ lS5• 0 0 0 lit» l7a t,o .!10,0 31,0 869,0 ·&1.18,0 ~50& t ~ J• t5b• 0 0 ,-... 0 0 .,-127 9(), 0 'l'i,O 95,0 895,0 6!1 •• 0 I SCI 155 ISb I Sf C1 0 0 0 c') Uf) S3&, '~0 so,o --flfl,l 891,U e:e.o ~57• ~5 .0 0 0 0 0 0 ff01! • CHANNEL ENTERING JUNtTJtiN IS LAAG£R THAN JUNCTION DEPTH ; \ -. JNDJCIT!S THAt DEPtH UF •• INO~CATES NEGAT!VE VOLUME OR ARt.A IS PO$Sl8LE WITH ANTitiPATEO JIOAL SUGt. '""" v, • £'JUARY STATISTJt~ (AT HSL) ""' TOTAl VOLU~E, CU FT ~lll7·•tu a ' Tor•L ~uqrat! AR£A, SU Ff ,ll22+lir! ~~. HUN OFPTH, FT ,CJ951it0l Tab]e B-5 ·· • Tidal Tim~-Stage Data UPPER CDGk INLET, KNIK 4R~ AND TUqHlGAIN ARH MATER YE4R &972 AVERAGE TR1BUT4~Y JNfLOHS ,, tiDAL tOEFFICIENJS FOR JUNCTION .. l •ellOJ .,eon 1, Sal8 •• uu a797a . .... 0495 •,0606 TJME OfJSERVEO CO~otPUTEO 011f •2,9000 •b,5001) •6,11705 1 0lCJ5 3 1 liOOO 7,qOOO 7,:S79lJ. .. ,0202 9,fl000 .. 9,0000 •9,0190 •,OlCJO !6,0000 7,&000 ~.SCJ9b .,ouo~ 2l 1 100() •b,SOOO •6,0705 ,0295 2&,uuoo 7,1.100~ 7o :UCJ8 .,0202 •1,125.0 .. u,ubl7 •a,suo •,0Sii4 .zsoo ,asoo 1 Ulllta .,1)15'1 li6<5Q 5 ,lb lb s,a.s•ta 0 07'15 u,9S~G 'I,CJ~h ll,'hJIIO •1 09lU b,SOOO .. ,aooo • ,11 i!S ,0&!75 8,0500 •t-,5974 •6,519) 1 07iJI &1,2000 •b,Sb&l •b I fi.J'H'; .,o715 U,at~oo "". 7000 ·~MtiO ,Ol«<O lU,LI()OO 5 ,lb6t s.uzl ,05Ui! 11, 52SQ 5,5l11J 5,4829 •1 G5lQ a q. osrto ,S500 ,5239 •,02bl ,, (0,5150 •'I 1 UliUt •4ol119 ,01)25 2l,HSO •l.l,iJbl7 •u,522t •,0!:.61£ 25,2500 .~soo ,Cill&5 .,015~ z~!la2so s.J~lt. s,uJet. ,01115 :" l!'> ,~ I' TOTAL ,899) SUHHA.AY 8V HOU~ l le02 a s.~s 1 1;lo " 6.93 5 "~ 76 6 1.24 7 •a,ao 6 •btl7 9 .. 8,59 10 .. 8,09 lJ •7,19 IZ . •l:,91 ll ~14 '" 3,97 lS 6,65 ao 7,60 l7 6,65 l8 . 4, u 19 ,70 20 •2,7~ 21 •5,32 2~ ·•.us 21 .s.es 24 •1,61 25 •c41A 2l:! 1.o2 J' • • { • 0 -· ~; .:.·"~' () Table B-6 Sununary of Boundary Conditions UPP£~ COO~ IHLETt KNlk &RH ~NO TURNAG~I~ ARM HATER YE&R J97i AVtqAGt TRI8UTARV lHFLOWS JUNCTION TO JUNCTION [VAPORATIOM R&TEt 1NCHES/J40NTH l UG 3,00 HOU~LY Nl~D VELOtJTY (HPH) AND DlREtTJUN ~DEGREES CLOCKWISE FRO~ NORTHJ CHANNEL TO tH&NNEL I uo lNFLOW AND OUTFLOW DATA u 27 CIS q& 50 bO 108 U1 12U !HFLCJtf, CFS at~oo:oo 3301)0 ;oo u1o:oo azo.oo aorseo;u~ .Jooo,oo t~oo.oo 75~00 uo.oo JUNCTION TO JVUCtJON 1 un JUffCTION i e, ll I() 2l .o (), ,o 0 •· ,o o, ,o o. ,o o, NlfHDRAWL,., CFS. ,oo ,oo ,oo ,oo .oo ,oo ,I)Q ,OC) ,oo 2 1 12 17' ll GROU~O rfi TE~ I Nfi.Utof, CP'S ,oo .o o; ,o o, ,o o. ,c c. ,o o, STORM HATEP SNFLOHt HOUR ANO fLOK, CFS 3 e u sa 2J ,o o, ,9 o, ,o o. ,o o. ,o o, . 0 ,',·t .. 4 ,o '• ' ,o . o, 9 ,o o. 10 eO o, II .o o. u ,o Oo •• ,o Oo 20 ,o o, lll ,o o, 25 "o c, ·•. . . ' /t /· •.- I I Table B-7 I ·- Computed ;ime-Stage at Selected Nodes UPPtR COOK tNL£T, KNIK ARf1 AND TURNaGAIN ARM IIllER YEAR ''fU AYERAGt lAl&UtA~Y IN,LOW& JU~tlliJN ~ JUNCTION u JUNctiOrl lt. JUNCTJON .,, JUNCTION s• JUNCUON lU HOUR HUOCPEtt) ttUUCf£U). H!AD,fEEU HEA(J(fU.T) HtAOlfU:T) . HL'AtHf U.U s.oo 1:o~ •7.28 -io:a~ l0,18 .z.ez •9,110 l,OO s,es •l,Zl vlla20 9,66 •1.111 •12,tl7 1.oo 7 ~0 l c ll .&,19 9 6 06 •ll.l2 •Jl,99 u,oo t.'«il s,.u .,aq 6oJ5 •il,llt •IJ,ol 5oOl) ., ~'I& . 8,01 5,61 1,11 •2,!»l l.~· &,llO 1,2£1 tir98 10,15 7,1S 5, l6 lO, ~I 7,00 •2,110 7,10 t2,b8 1.~1 ll,25 au, I) s.vo .. b,l7 II,UO sl,9b 9 1 Ub 15.05 114,79 9,00 ·cl,S9 ,79 s.us 12,1b IS,ot l2,ZO 10,00 . ·6,U9 •2 1 Mi l,!ll ll,bU ll .oq 7,(19 ' ll,OO •7.19 •b,IU .l.ttq tZ,do 7 !112 a.u \Z ,oo ·l~~n •9,H -b,b~ ll,7Q l,llb -~.~2 t l. 00 au •SO,)J •10,86 II), U •Z,ll .. 9.,38 u.oo l'97 •7 0 bl .,J,bl 'l 0 ltl •b,i~ •ll,J«» \ u~oo b~b5 .. ,,9, •12,1'1 ~~.oz •11.1'1 •15 1 ol h,OO 1~b0 a,ttb ·". J9 b.Jl "'"·'" •10,711 u~oo b,bS b,~9l 2,ua l,bO •7alt> .. ,99 JU.O~ c.,tl 9,2] &,t.tJl 7,12 • &! ' 7,0l \9~00 ,10 9,~1& JZ,l2 b,bl ti,ll U,9l 20,00 .z,n 1,~1\ tl. b5 7,b6 11,81.1 as.~o 2\,00 .. s.12 14,!7 11o&5 10,60 lb,ll8 l5 .u zz.oo •b,I.IS .~ . 1,1b D.so !Q,SS 11 .• 1.19 z.s.oo • s,as . . •2,35 2,76 ~"~ 2;! IO,b1 S,9S 2U,(IC ·l~b7 -~·"" .z.t«~ tJ,(IIJ b 8 1&l .12 • . 25~00 •,t.tl4 •7.51 .. b,bb U,112 l_, 7 0 •S,Ob 2b,on 3,02 •7.26 •l0a09 ao,87 •2,65 w9,.i6 27,00 5 6S •3.l2 ·11.16 9,911 •1,1.& •ll,~&IJ C!8,00 7"30 J. 34 .. b,16 fl,ll •11,11 •ll,9b " 29.00 b"9l s.:u •.lt.t 6,41 • •10.98 •11 1 CJ0 lo.oo ll,1b 6,07 5,63 7,17 .,&!.~?. ~.6\ 31.00 1,2lf 6,96 to.lc; 7,20 S,lb 10,112 ll,OO ·2~00 7,73 J2.btl 7,ll \1,25 '"·'l ll,OO -~ .. l7 l.!,tl() n.'~s 9,~0 15,1)5 '"·'9 ]c,·, Ol) .6,5'1 ,19 &,qs ll,\9 ~~.o() l2.l9 35.00 .. e11 U9 •2,66 s.so ll. bb ll , o.9 1,0~ :Sb. a o "'1. 19 •b,IU .. 1,69 lC!,tH 1.&' lei' n.oo .. }. q l •9 ···~ .b.b2 \1,15 2,Ub .. q.~z ' 36,00 • ll& •lO, ll ' .,o,u7 10.71 -~.22 .q •. u 39,00 1 'n •7,1Jl .,;s,bl 9,ti2 .. tt,7l .. \l, .!7 \ ~ ' liO~OO • b.,CJb "''·"' •• 2.17 1'.1,1)2 •11.19 ·i~,o$ ' rJ ua.oo l,bO 2,67 -:.!:,lR s.ll •l4,fb ·eo,1u "' uz.oo &,bS b,9] 2,'ti! '1,b6 •7,lb .. ,99 ) l ~1 11 00 4,12 9,Zl 6' tJ9 l'ol2 •• n l 1 0f i w IJlt,OO ,70 9,54 t2.32 ti,IJl a.u 12.91 ·l us.oo .. 2.11 7,S6 t3 1 uS 7,89 u • .;~~ 15,5b . f "' Ub,OO --~~32 U,l1 ,,,us lO,OO h,q6 t ~.a~ J.; ::\ ~:\ "7.00 .b,a5 ,61 r,7b ll.~o lc.t.~8 11.~9 ~ ; ' aa,oo .. s,as •l,l5 Z.,1b 14,22 10,6) ' S,95 ~ j s tt9,00 .. l.,bT •5,«t4 .. 2,19 1l,09 "·· q~ -,,. ~u \1 cal.Sl ... b."" l1 0 9l 1.70_, ,, lllf),06. so.oo ··"" :) oq. • • !) (),·· jtl •:0 ., ,, ' ·~ ·::-:: \. ' ,, ., . ·n I ....... ' [/ -,, ..... ~ .-~' .. , ~· ' 'Table a·-s ·~ ' ., Computed Flow and Velocity • Selected Channels lr. ' UPPER COOK iNLEt, KNll( -'RM AI·U) TURNAGAIN ARt-\ MAtU YEAR 1972' lYEPAGE T'lll\UTARY INFLOW& C"'ANtiEl: u CHANNEL 72 CHANNEL 8) CttANNEL Ut CHANNEL &ae CHANNEL "' HOU" Fl'lW \'El, F'lOW VEl., tLU .. VEL, tLOW VE\., flOH vu.. n.o .. Y£.L 1 (CF.S) (FPS) CCFS) (FPS) (CFS) (f'PS) CCF5) (f'PS) CCt ~) (FPSJ (tFS) (FPU 1 :o~ m5Sl61J7~· .z.ss •l9U06, •Ct,l2 •lUlbOOb, .. ;,oo o, ,oo ·11Jl3bb, •2,8l •leUJb!7 8 •J,q~ 2 ... oo U03:?2i?S, 1,87 •l570Sb, -~.ot .,.ll3!b2S, .o,oo o, ,oo •SOtHH9, •l,Ol •lZ)bbbS 1 •l,ilb J.oo HO~S7tl\ S,b1 "'t 3Ul21 1 •lGcJl •88l86i!, •tJ,Qtl o, ,oo •b7'176, •,25 •2CJ~H'lft, •,111 q.oo 1&710525., b,CJQ •l 09';()7,. •1,6] •U'ICIJl~, .. zen •672, .. ,189. 9bTIAl, 3 ·'· f le;,~$1HIII, ~.es 3 •· 00 l6l2!>8 H. b,Lt9 .. Q2'52·l, ... ,7,. IOLtllbli, . '1,02 •69893, •a.u lb28Sb,h 5,1& Llf)0$'ilb, , • 38~ e,.,oo l U6271AO. u,b1 ·791Jbl3, •1,69 lCJ21l26l, 5o5S •17811113, •Z,52 1517019·~ q,u.s ilt5·18YI, b 1 0S 7,01) Lt2Ql)08~ leb'l l';bll9a 2,10 250'1075, 5,76 •2Ulut, ·z .a" llll~UZ, '·'" 297.,ouo, ". 12' e.oo •SSb~f\Ol~ •2,3l OZ7l60, :s.su 252?.007, 5,00 •9J1'H • •,87 L17'»2U, '· ).! 'll.S8lla (,.2,) ~.on•llC21b52. •5,5" l.lllfli? .. ; t l.lll 13l~l2,, c,'SS bll10' ,15 • :S9.JQOU a ..... ,~ •17S14292, •l·,,~o lO.OO•tS~893tl. ... &,96 7Sl''111 1 .;09 •l3b?. JSo • •2wqs 7l5SlQ l,:H •llb)!h5, .. ;;.,, • UIJo TIJ 1, •5',51' li.00•151210t.l1. .. e,,qe, .. z:;us.so, •2.o" •21U2!Jbl 1 .. 5,11 l8'.t96 • ~.sa •it!7tdl!Oe •tl 1 lb • 3t. l U,2ijfa, -.S,IU ll., O(l•l2b71<17S, oot,1 0U •2lQ7U9 1 •Z,lll • i t\Ob JiJO, .. s.u 51~.i3 • ,99 oll)~6t,&11 1 •l 1 7U •Zl8U9 ttl a _.«,'lG llaOIJ •6b2Zbll9 0 .,, • (IJ • II'H'l'J7, ... z.ao •lUb9J9?.1 •S,Ob o, ,oo ·8lbc!b~, ... , l, l 0 ... zo32Ulb, a)1 8U au •. oo -aorqze.:, •• Jtl •l!J~lOU, -~.oo •ltl\31191, .ll,9! .. ,oo ebt)lji)•HJ e •2,ll~ •lliSi!2tJ&, ol 1 Cl~ ... 15,1)0; 110211J('b, a,'ll •121ICJ79 e •1 0 90 ,.qJIHt51!1 .,,75 o. ,oo •)UQ'III j• •l,C16 •IJII)Sttfl 1 •l' ~,., lb •. oo l72\&Gt'8, ?,311 .-tQ6'1c.tft, "''• 03 "'n'HbU~, .. u,a~ o, ,01) SOUIJ He i! 1 Ql Hit~9CJ, l, l\ 11.00 lf\li}P.)97. f,'ii! .. qzso,, ••• 76 lllf:Ol8, 2 .u .•Z9l.17, •Z~, ou l071lZl• !J,oz 309d5Yb 1 e. .to. 18.~0 '513 J ?197, 6~?8 ·70192, ·l~b8 I l'lli!O&, ti,8Q ,:;~z~oqull .. ~.ql l76b!JU, S,u'.i t.IQu'lOU7c hSto u.oo Qb')O'lbts. '3,7'1 •'i4':lll, .... u l 23571199, b,IU •2Z'l'I.Sl, ctl.~IJ JUtJ•I1!52 s . 11,2J c.~uzH.ts, S;bq ·zo.oo 1121ooa: ,u.s 2QS1,2?, lll2 l80Uli]U 1 5,A6 •191066. •1,78 'lbiJIJOJ, 2 1 bfl 2CI51.1 IVl a Ji JJ 21,00 .. Bbf.tiJIIl'\ •3,bl 57tt?.'l5. 3,.91 ZIIC!Ubi>S, t.o,S~ ·l«ibb~. •,Zb 2J.U30 1 ebJ 8c!SJI 1 ,0' 2Z,OO•tuzuS•J07, •b,ll u7166S 1 2,8fJ souuq, ,ql 7tH I '5 0 ,'18 •7UCIOSU 1 •Z,oS •lbb'159U 1 •J,U ~3.00•!SSl7b6l, .. &,8& ....-t!1~7UI, •1.115 •I'JlA&'lf, .o,za 70338, I,SI •lUibJS• •l,'ll •lQOlSbS, •!a. 'i$ 211,00"'1 ]«H;797ij• •fJ 1 lHI •2Ht:Sil. •2:1" •ZIJfi"lOb, • ;,u ll20'1, 1,57 •12Zl7147, ..,t,ltb C:.l :J'f!JCJ lO 1 •S,tJ( . 2S,O~•l011lSSl1. •S,Ob •2;\SJ&B9 0 •il!,ZO •l731653 .• •5.114 J6c-1, ,ttl ·917')0(4. •l,U& •i!St1b~.,u, ., .. ~2 ~CJ.~Q •SSO!lt5l 0 .~,Sl .. , 9ll7ti'J. •2,13 .;.l1H)9Z119 1 .o,9tl o, ,oo .tuzazt • •2,81! •.18117510, •le~O 27.011 UOtS;U, I,Rb ootS'l9Ul 1 •2,02 o\ ti!M~u. • 1.1,78 01! ,oo •SU'IltJS, ··2,0} •tasuua • •l,Cifi ze.t~o uous~qu, S,bb •lll~S'I, ., t 9l -n llt\2'~, •QeU& o, ,00 •b9~QO, •,25 •;!QC1~1tJ 1 · •,118 29 0 00 lbb9ll61b: 6,1JJ •&1127!, •• ,61.1 .. ,q JQ(!I). •2,&7 .. b9l, •,SO 9t;JQ8i, ),db 2bt1"*bi!5, .... u lu.oo 1.bH )uas~ 6,09 .. q ,Sqlb, •1.75 too:Jttll, a,oz ub98~!;1 •&,61 lbitd'fll, s,n ct&OU8l0 1 · .1, .u :u.on ll'77bli2CJ. 9,b7 •BII6~, •1.10 l<JI!UIIOIIc 5,55 •l76tl99. •c,Si! l!JlUJ)U, l.l,cas aq lllitd7, .ti 8 0D 32~oo · unauet, 1,b9 157r.7'3, 2,10 250861)2~ 5,1b •2l.i!i!IJO, •2,&b IU2llU, l,lil 297\J6~ I , ... u 33.00 •'JS71lSl, •2,ll QZlS51f 1 l,Sl i! 52 l«hH.t , s,oo •IJllHO, •.111 U71Jl'itl 1 l, t~ 9lUlO, i ;!J 3U~I)I)•1JOc!2H!, .;,sa Q91251'1, 1,21 l}lB2tt2, 2,5S 6.l2b2. .t'j •39l?Ltb, •l.l s .. ,7';~1121, 0~.~0 3S, OO•l5~8!1.?3~, ""·'ltl i'I,?C;;IH)1 ,a(, •l"Sb3US9, .• z,qs J'lSl~, iu l7 •ll6H5Y 0 •l.~i'l •l70til\10, •5,~j1 3.,,(1'»,tSI21tall9, .. ,,'lb •2';51llJ, •2,011 •i!t0~3UCI 1 •5,ll 1U87Cf. a.sa -az·r&lsu, ·"·'" •lb!tJI (8, •5.61 37.0il•l.!t17&,?3Q, •b,Otl ""2'-~1511, •2. 'q •lf\Ubl0b 1 ... .., ·' y 571il, !9.9 •I 0~1\M;}, • ), 7U •276l0.,2 1 •II,CfO 3~.00 .. t\b2LOlQ, •lJ,,I6 •lfWJll 1 •2.10 •lUb'U51, •S,Ota o, .oo ·6tb.i28, •l,lo •2u Ht.S6.1 ·J.8fl l9. oo •IJIJ I qa 1-. •,le •IS~S~l!. -~.OQ .. litO i? IJ(J • .. u,91 o, ,00 •fJ!IhOIJi? 1 •2,&1~ •lliS2!.idt1• •~tYl uo.oo ll02hllb, 4,97 "'IC!9t62 1 .' •1,91 •9:S6bfll), .u,lS o, ,OG u lu 'i'lb l, •l,Ub •au~8S7, ·••n .('l os•,OI). UZlMl2~ 7,.)11 •Jll6f)l)'l. •1,6]. •f,97!!~.S. .li.Zb c, ,l!O 5'l.IU5uo, 2,1), ltlltt92, z. Jl f· a i! "' 0 fl ,, t 8 a l !\ 'S ll \ ~ 'l. ?i!· .. ?i?~zq, ... 'lb Ol7iiOO, 2~tl .. j!q t:H ~ "z.ou ~,uno? a, !. , D.l 36Q»SJ2e ~.,~ CI),OO l'>lll0U11~ tJ,2tt ·1tJ?911, "'l .-~" u>~~• Jl&8 Ci 1 'HI •l2'li0t.JS• .. 2,111 l7b"t!Jil. S,CIS ~'lllb(JIIb 0 7 0 ~et w ""'~0(1 'H>SOU~. l,H .;5q';7'1, •i, Ul iO~:'J llZ, b,lO •22'1Qbl, •2.~9 I U611iji -'• ll e:i! 1 uo,?1CI~l. 'l,o! ....... o~. ·~o JlZS1SfJ, ,qJ 2957tlll 1 3,12 2'\QIJ';)1), 5,6tJ •1976B, "1,,16 ITbllUti, Z.,bb Zu~.S!.ib6• .s.u I Cl '•. 0 b • "bu. ?.1 q • . ~.,.. !»111~'10, s. ?l ZfllU':J'.il, u,ss •l9rd2Q •,lb l.S?. l t>~ • • b·J 8c'ld'1, tll'l &17,0(1•\•a?u~·.-·;a; •b.ll fl77'f'1U 1 2.,ua suansat. ~'H llH C?t.J, ,'lA .o?Uiil"''a, •t! e 0,~ •.ltph ~.., ~0 0 .... u .......... ut;.0(\·1~>'J l 'f19Q" ,.b,Rh •.! I ~~~I q, •l.u5 ... , Qj~lt!i '· -it~~· 7U Hit, I,~ l .. I ?. 1 I '' 7u , •l,1c • J<i:O~b)b, . .,.~~~ Q uq.r;u•tl"A7'l!l~P, •b,IIU ••H ~'.111 • .. c,&u ·~1'1'11\ It J, -~.zz ]J~OT, a,~., -itr!llf';)tt, •l.lc.Ob .. J J'h;qo~, b,fll •· """' S1),t,o .. , o7r,~ l'ici • •".i,IJb •23., 1'11, ·~~lO •11 lT!JtH, ··S.itt lbbb, ,tn .Q, ,.1Ji'Sb. . .. ), \\tt •l:,tlo~d&11 .·"'· !tl Table B-9 Surrrnary of Miscellaneous Computed Hydrotiynam·fc Data ~PP!R COOK tNL[t, K~IK AAH ANQ TURNAGAJN AMH ' NAtER Y'AR \972 &VEAAGE tAI~UtAAY INfLO~S l tO 10 ll TO 20 ll TO .30 ll tO &10 Q l TO 50 5 I 10 bO U TO 70 7l TO ISO IH TO qo CJl 10 100 SOl 10 llO au to tzo Ul TO 130 l •• ':u .lQl' .7&14 1,1161 ,ooo .ooo ~000 .ooo ,ooo .~oo '·' u l,7UO l,lbC& AVtRAG£ YELOCITifD FOR A l l TO 10 ll TO lO 2& 10 30 l1 to qo tq TO 50 51 TO bO bl TO 70 11 ro oo 81 TO 90 91 to too 101 10 110 111 TO 1l0 121 TO JlO ua to '"o 111: 10 l50 lSI TO it.O •,luC! •.2a& .,ou9 ,101 •,Oll ,01b ,ooo •l.a«Jl •• aol ,OOA to.Z2l ,on •1 i?Ul •• J11 •,1)9 •,0?.2 2 .,tlbb ,t;b7 ,Qbb a,u?" ,noo l,U1 ,1)00 ,noo ,l)QO ,ooo '·""'~ l,lZ& l,lb6 tiDAl. CYClE ~ .,,09 .. ,220 ,,., o 1 Zl9 .,,as ~1)00 ·• ,oon ... ,sn oo,IJJQ ,ooo •oliO ,oZ'~ .. ,.q7 •,i'QS •• aoo ,n112 l .,ut»S ,b7Z ,9l5 ,uou lai!BO I 1 O«HI ,QOO ,ooo ,ooo ,ono 1,110 t,2U a,ne~ l .,u'Stt ... 22'1 •,fJI\7 •,20l ,000 .,]111 ,ooo •,!AS •,bbO .oou ... uzl .... lO& .,oos •,29ti .. ,o,2 ,o:n AVEQAGE fLOWS FOR A tJOAL CYCLE l II 21 31 oa 51 61 71 a a 91 lOl Ul •u• TO I 0 TO lO TO lO TO 410 10 50 TO bO 10 70 TO DO TO 90 to aoo TO 110 TO 120 JO 130 I •2511100• IJ'i16, •191065, )9lt19A 1 ·5836b, •lObOI, o, •10119&, 60 l1 0. o. •liiU~~. Jl7?Dl 1 aa•uo, 1. • 211)(111), •50Zil, l020P6 1 ·l02lfl6, •lACitS, o. o. •10612, ·1'1'1, o. ,lOlbOZ 1 ClU'il')8 1 •69b69e ] ;,.45'H89 1 •50iib9, 79ftJ7, .ft,)Mb 1 o, ;.uou'~, o, •I Ollb7, ·ft70, o, 167098, •5l~C15t •7l&t.l5, 4 .oos .uo ,92b ,ouo l,Jb5 2,Hft ,ooo ,ooo ,ooo ,ooo 1. 'b7 1,27'1 a,lub (I •,O'IS a,Obll •• t15 •,l2B .,zqca •• 's; ,000 .ooo a 1 b'tlj ,ooo • a l2 •,216 .,z,.q 0 0JO .. ,ot J •: ua 1.1 207UU, ·29ti!21, •ll50i!ll~ 9U.,9?, •101l9q, 125QOit, u~ o, •9lU 1 o~ •Jqo&7, •)1}96!». •542Zb• 5 •,ooz 1 b7,U le0:\0 le~RS l, I ,2 2,19& ,ooo ,0(10 .ono .ooo 1.32" 1, ]tl l,ll\5 5 •,Jfl9 ... ,,,& • 010 ,oo9 .ooo <>,3n2 .230 .,.,, •o Q lt.l .ooo •1 0'ib • 0 'l' •,2f\7 ... OlS •,Olil •ai!nb s ,.zu<nn. 29~3b~. 130291&. •C!70lble n, •ll922n 1 aa~u1, .. qooaa; .• . •9ll?, n. S2b7t, Zl2225e ··1· b , Olt.l ,71.18 1,027 1,5~3 2,UJ} 2,t~95 ,ooo ,ooo ,ooo ,ooo l,lttta l,ll"f l,l8fa b •,027 •,)1)7 .1~2 ,oo& ,ooo •,Ob'J ... ]79 •• uso ..,,09« .ollo 8 0Sb ,OOl "'• l~U •;011 ,Oll •,llb b .. zzha''• •ll792b, lblb~. •l7bOCd 1 o, l115U9 1 •2781, •9llla •97U 1 u, &8U7b7 1 t0b7b, •loi! 18 :Sl, 1 .us .Jott a.ozq 1,757 61 t'b·IJ 3,06) ,ooo ,\)00 ~<IOU al.i.:'O I ,Ztd l,J'IIJ l 1 U06 7 •,01.1] •,139 ... ous "'e l03 •,!»6l 1 UCIO •• ~us .,j50 ,000 ,ooo •,ltd • ,177 •,JOO •,02d .. ,u99 •,Ul 7 Qa]9U0 1 b2jS, Jli)U~ • bb056, •lS0875, n, •UIH' )1 •5014~,< . () ~ o, 1J8b7, .. eJtq~t. •ll'l}72. e ,le7 ,bbZ a,aou ,ouo 9,StaS J, S.H ,ooo ,ooo ,ooo ,(100 t~~u 1 l. ;a~] 11 Ult.l IS •a22b •,215 .. ; 1 a o •• zu1 ,cu:s .ouo •slbS •• ;!~6 ,ooo ,OGO .. ,178 •,1&8 ., Ji!l •• l bi! • o Ill .ooo 6 •kllU89, •llibll, ltJlbt&O, •l0blb 1 llS7 8 o, ··7997, ,l.j~97, o. o. .sqsbt~, •lHOl, -:u~oq. ' ,C~Ol ,79Z .ooo 0oou 10,051 l,Htt .ooo .oou ,ooo 1 00!1 h.204 lelSl ,ooo 9 •1 0811 •albCt .,z&l •.tl) .ou\J .ooo -.~n o,oo/ • • li\S .oou ,oq& •• '" u ••lbV .. ,,27 ••• u .oou 9 4lc!bOS 1 •'~"lle •2 1HH\qU • •Di7l9e o, 0~ ·280), ~lb5, bJhOe Oe ll1tlbll• •b'i,U 1 U'IIU g jO ,2SZ • 71}9. eOOO 11 0110 .ao.on J,H5 .ooo .ooo .ouo t. uu l,lOl lelbl ,ooo lO •,2ll •• oal '079 ,O!J~ ,OQO ,ooo .,,,~s~ •• s~o ,ouo ··llb •• o~z .~93 .1 li'S •1 0ll e 1 2~2 ,coo lO QIJ9ij. •315'1Uo 21lt~Sl, IOttl91 1 o, o, •lODSS, •b6Y02 1 v. 5Q700, 1Setl7, l~btill, ll19160, ., ~ \ ""' <t.l; • -.. ...... - ...... ~ . -· ( . ) Table ·~o:..9 ... Conto ·. Summary of Mis-sellaneous Computed Hydrodynamic Data 1 :Sl 10 IGO aa~ TO tso iS' TO 1&0 l TO '0 11 to z, Z I TO lO 3l fO IIC Ill TO 50 51 TO f10 61 TO 70 71 To &o &1 To "'> 91 To too I 01 TO 11 G 111 TO llO Iii TO Uo ..,J5a7, •IICJ, JOlt, 1 l9C17119 ••• .o, •2, o, o. o, o, o, oil •lo •O, .. o, •l£•7el, .,zO&lO, OiCJO, 19, •J, ... .s. uZe Oo u, o. o, o. o. 2, '· •Oe .. J;zqt, •2bOtJ5, 3309?, 3 29, •Z, .a, o, •I' •3, Oo o, o, Oa •1, .. a, o, au: .z. ... :s • o. .. o. CJ, o, 0, o. o. ••• ... o.· .... o. 5 13, •3o •2, •C!, o, 5, o, o. o, o, 2 • .. o. .o, AYE~AGE hOOA~ YOLUHE (CU FT~ I II 21 31 ,, 51 61 n &! 91 101 Ill 121 TO TO TO TO lO TO TO TO to TO to TO to to 20 30 ao 50 60 70 80 liO 109 llO 120 130 I ·'""7•13 ,0618"'12 ,t«Uil+~2 ,lbt~+tl ,oooo ,oooo ,OO!tO .oooo .oooo ,(1000 ,l7n•u ,JUI)btSO ,l6!t~+ao • l · ,II Oll+ l3 .. l130t ll .&~07+ll .Z~92+U .onoo ;4CJll+lO ~o~uo ,0(100 .OOO(I ;rJtiOO ~ t.15 t lJt.IO ,87btJt09 ,hUtU 3 .1189-t ll ,8&11U•ll 1 lt121U·12 ,ouoo ,I cta1t ll ,)Zilb+!l ,(IUUO ,OOfJO ,oooo , ouo•J ,11105+8'1 ,21.195•10 111091tl0 tl ,&350+1 3 ,9765+11 1 10lU.1l ,oooo 1 63J1HJ0 ,10S&tU ,oooo ~0000 ,oouo ,OOGO • u ~2+ tl ,lblCJ•to .~lJfJl-)10 5 ,8970+12 ,22i6+l2 ,62ss•at oC!OAI+ll o6'1b2+J0 , uss.at ~001)0 .oooo ,001)0 o00f'f.l c2nStlO e69Rl•l0 • 2J-:;b•10 POS~~IVE AND NEG-TJVE S lti~CJU752, 5 t b'l15iH!7: ,LO~S FOR E~C~ C~iNNEL SCI9~bt51 1 2 U268qftio lfl2tJQb~, b 89U570 8 IMJ17982~ lllb251l, ;qsJuzq, ~· 21'4USI ;. ll !!t517bt:'6; H 3233?75. 2! zazuos; 25 2Uh5flfw 29 :Jo~67q, 3l bq8i!ltii, 31 28S52ns, "I 11 SCJCJ~, us 0~ ll'l 0. 53 11))Q';)7. S7 o, ~ 1 0. f.l5 ltCfU(Ii'l, ~" )cal\auz, 2U2lqJI, 10 51l5~12lo &55bess~. lq ~33132; 322Soao, 18 ~~73q21, U7b29n• 22 ]~U~tJlJ, Jlb2QJ, ~& •ns~oad, 560S7l~e 30 1175?~o 691873~, JU lS~Jllq, 2767JU7 1 3t 6}b6~lJ, 2lt.4l.SI, ~~~ ~l!831:•.SJ• o. !;ft u. n;; SO 0, l~Jij]~~. 5q lbS67nl. o, ')t) o, "· '·l o. 11"2RSh 1 6~ ~O~~AI 1 l~o~~,. 10 zq2~~q, 122«11~3. !Jbt!JS.Su, :sooouo;. a u~·na'l, l 0 jf177. :sq21Jt~ll, 6l 1HIIJ?, ~~7.20Q6, o. o, tSHl77, o, n. ~o Ubi\• )Qjq l'. uno, ~0279, iDSOOeU, •l2~Zt, 132<15, •IIUC1 11 o332B7 1 7l1, o, 1, .. 3. "';1;; .. z. J, #j. o. o, o, o, •0, •0, o, 7 8o •2. o, 5, 41., le Os o, o, o, ··o, •0., ::oO, "· •l, •i!. o, "· 1 t o. o, o, o. 2, •0, QDo, 6 .soo5+1Z • 7525t11 ,9723+11 eZ180+Il ,C17S2tU ~tstq+u ,oooo .oooo ,uooo ,oouo 1 1 7U9+12 'l 1$7+12 ,2JUb+ll ,llbZ•lo 1 5bU9•&0 ,7606+10 ,oooo ,oooo ,oooo aOOOU 8 ,Z'l7hU 0 llf17+ 12 ,aAIJ29tli ~oooo ,,lnt+IO eflllfttlO ,oooo 1 (#000 ,oooo ,vooo • ~ i!! O·r.l l a6lo9+io 9 UtS7+IO • :U7b+&O ,1'100+&~ t9~S~+IO I J L~9+ I 0 "lii.Sb•l 0 1 70~St&o Z2l9.Z'59 D Y5&1)8b; SCltl•'ltH, Q97Mb~, 61)ZIHI08, 5qb1~SJ, ZU~i:0'1 11, I!>.?.S~29, IS&09CJdc ~Ult.Ob, o, 20tlh~ll. 2 .\'l,bb~ 0 193111, (1, o, Cia! l'l ,., • lbl~Yii, 2b78btl8, '11 JJ«~u!;, 500bCJU4-~ Ub0.SI07 1 A93l6i!0 1 ~D!l 1liH, .iU,.,Sl S, 11l2P H 1 l tJ) ll!!l! 61 6BH2S, o, z a•Htl.lf'. ~c;ul~fJ, lttt•,$1), 0, n. "Ja.'IIJ7e lJIIII~ j 8 32fllt U860 1 o, J97lZe o'.S!.ll, o, ' •l, •lo "· .o, 1, l II o, 0~ o, o, •Ot •O, o, .. .,. o, fie l, h o. o. o. -~. oi •Oo Oo 9 ,2az1+a2. ,671hU ,ooou ,noou ,lqqu•co ,snutv 9 000U 10 .S5410+U 8 J5Uhll ,oooo ,oooo ~ O·OOU .oooo 1.oooo a a tlfh' l ,2ll~tl0 ,oooo 1 r!lbO+Ot 1 l9UUtlQ 0 0000 ,oooo ,oouo ,c.~7uun ~~8.!1+10 119tJI)Qt09· ,IIOOG ,· .. U USS79 1 1St~S'lUSJ 1 lb'lOSUif, IHilUaz. t)C!7 3~4. 7bSt\Ubl, bfd )~09 1 lf''lOlt'c!e l8b6S07, C!lb~fHJ, bOSU, c!c'!IJ9.U, "· 17Ull, o, u, lc-078&, IOU)Gl, tonaaas, lbill$3,, lb'l5~3l'l, Ill J~O~$~ ,s,~uz:rbe.,, 7J8Jt!6Q. 6\:«1119&0. 2o!JllH, iOIIII~b9 1 lllllol, lbl1i0 1 lll0f17, o, AShol, o, o, zurn, uu~•. • Table B-9 -(Cont.) : Summary of Miscellaneous Computed Hydrodynamic Data Tl neas; 2e1e~. 7" Uo o. 75 3lb8Y, 'i!l7'114, h l65Z2S 11 :UlS!ait, n U50lll, UOO'Ilb, 78 972'19"· 9279u2, 79 lo55""" )O(IliU~ ~(J ll'16ll6. Ut~~lcv:.$ 8i :HIH'H~ 250027, ez H'll9l0~ ilCiQ!709. 81 ?t.IH02, 1~~511, 8CI Sl80SS, 5l6'Ct' ,, ss lb'll1'i. 3&92bt,. e& lt1071b, Ul75U 1 87 o, o, ~~ 6 o, " 0. ' 69 lZOc.i29, ae.sa&'l, 90 o, o, 9& v. o~ 92 o. o·,. 91 0'\ n, qca o. o, 95 d, o, 941 o, 0 ' I 91 o. llo cut o. o. q~ o. o, JOO l4U5'191 1 ·~h29l, &Ql IIJOZllO, l82b78t. lOZ t!59'll98, i!U9SS'Ib 1 JOJ 1552659, ll65Sbl 3 1014 4180lUbe Sl'llt:-l, lOS \95958~ lllllBf\a lOb il'~ a Ol9, USc.2ll. 107 JCJ30bSb 1 if, lll79'. aoa l5l114, n 6Jt:, lOCI l511t.I02. l0bf~JR 11 ~·0 12l7 1U. 107160, Ill 13(1119]9, 11b76~8. Ul ~9'lu51J~· oou~ca,, Ill l9llqo\ Ut121JS5Q ua Uf\CIOU1 873&5, us 2ll8~lb 1 i8BblOl, ll «, Hlll, ~TOub, Sl1 26&91.16, lq6(\'IIJ 1 118 2'\7l(is ·51~25, ll«< UI£11J, llUbl.lbt llO 6ll99211. 411179, 121 l2'1C12SCI. lll2J25~ 1?2 l92b3So 262)0UCI 121 6bUCI;!1 141077, 1214 11971, J2cd 99, 125 1\71\9, b2'i27, ·~f» llUb'5b 1 i!lbCits6, 121 &iltJf\7, UbU59 1 aza !70bb, uo!»~~~. 129 )J!tl9b, 1102U9 1 130 ]QU9t9 1 212919, Ill loCJ007, :SI2'i~IJ, all IJ09Q5J, .CI2112 H, Ill &171)ti7S 1 SU7l&, I)(J 16202'1, 151lb1J 8 135 210Ult1, 207Cil7 1 Slb 206tiGS, 1'11015 8 1)7 109i'O, 63t9J, ':.~ l2C1165 1 157b72, 139 371129, 3704b6, lUO 1Hil.ll95 1 14U«fbl2, '"' 16!\bt\U. l'l87t':1. 1«2 '46b5.'1. lb91.16l, I'll 62,S 1 31.12o0 1 · I 'Ill 57197, b~l22 8 a cas l0ll14l. llOltllt~ ICib IZ3Cib4, · 1127&;5, 147 uso 15, 2bi6JO, au a J7711t~5 1 lhbU 1 11.19 )Ciftbh5, llJf\05 11 150 ~d57l7. 2bts6tiiJ. 151 21.2Yb&l 1 i999ll, 15~ lb10S, us as, 153 711109. U05U 11 15~ SOCI7t.!l 1 4'92590. 155 GT7JI7 1 S91l5U9 1 A .. 6 2S6t52&a 1 · 26bh&. !S1 127 )54~~ 125UbiJ0 1 i·~UUHUH ttE AI) I HUIHUH HEAO ANO TIDAL RANliE 1 .9,0~ 1,b0 ,,:~2 6! •lf,2Q a,oe 17,32 l ·'1,27 6.1'1 u, ~ l " ·9,66 6e5Q 16,21 5 .. Q,57 6,5'1 1s:aa 0 •lO,Il c,. 01 19,20 7 •9,b5 A~CJO 16, 5U 6 •10,1'1 9,~0 l«i,SU 'I •!0,111 CJ,Uq l9,b2 iO •9,!19 9,0] 16,72 ll .. 9,'1b 9,21' 19,21 li! • iO, lS 9,bl 20,02 ·~·11,08 l0 1 'l7 21, Sc; . ·~ -ti,Oti lO,Ciq ~s.aa 15 ·10. 96 l O,l6 21,Jfl lb •tt,H ll,U i!c•~" 17 •11,7'5 ll,l7 az.ql 11\ •11.&7 ll,Ub 1!2. 7l '" .. sa,f»s l1,9b 2u,SO ~0 •12,51) u ,94 21i,tJ] i!l •IZ,LIU 11,'10 2U.JIJ 22 •ll. so u,oa 2b 1 58 2l •tl,:SS 12,CJ1 2b,ll i!U •11,25 1.!,67 iH)1 lZ 25 •U,9l u.c.s 27;51\ Zb •U,~6 ll.b7 27,55 27 •ll,OU lla bb, ,~7 1 SO 28 .. au,H l'l,2ii 28; 5.6 2CJ ,oo ,oo ,oo 30 ,00 .oo ,00 31 aol'i 1 2!) 1S,l2 2«i.~l 12 •liA,lO lS,U 29 1 •H H .oo ,oo ,00 )Q ,oo ,oo ,GO lS •lUiti2 ~~ .. 10 30,l2 lb "'l"ab7 l s 1 Jb JO ,ul 37 •ll,b~ l5,57 21 8)9 liJ ,oo ,oo Jou 39 ~oo ,oo ,uo uo .oo ,(II) .oo Ill oOO ,oo ,oo 112 ,oo ,oo ,oo 411 •lb 1 U9 lb,6b H,J~ ~q •lb,Ol J7,08 niu lJ5 •1),86 11,11 10,99 46 .. ,],6~ 17,.!11 l0~9b 41 •r.1b &1,26:! l7,t17 liB t&,b9 h,2Q ll,SS uq b.bG lG,35 7~7tJ ~0 b,12 1'4 1 S7 7,8~ Sl ,oo ,ou ,oo 52 •ll,tl l5,YCI 27" b 5) ·•"·71 lb,09 . l0.66 511 •l!,D lb,26 27 .l~ ss ... '1,79 1@ ,19 :u ,l6 ~b ... p~.e~ · lb,~2 3\ ,17 57 •U .. 95 u.uz lo.":u 5, •U,Oll u,,,b9 C!9,7l '59 oell 1 Uh 17.75 2'1,21 bO •l2 8 b8 lb,c:a9 l,,lb. 61 ,oo • 1 0Q ,00 bZ aao ,oo 1 00 bl ,oo ,oo ,00 b'l ,oo ,oo ,01) 65 ,oo ,oo ,oo 66 ,oo ,oo ,oo b1 ,oo ,oo ,oo b·~ ,oo 100 ,(II) 69 .oo ,oo .oo 70 ,ou ,oo ,oo 71 ,oo ,oo ,uo 12 ,oo ,CIO ,oo 7J ,oo .oo .on 7'1 ,oo ,oo 1 00 75 ,oo ,ou ,oo HI ,oo ,oo ,oo 17 • oo ,oo ,00 16 ,oo ,oo .oo 79 ,oo 1 f)Q . ,oo 60 .oo ,oo . ,oo &I .oo ,oo ,or. 82 ~00 ,oo • 00. vl ,oo ,ou .oo 6Q ,oo ,oo ,oOO as ,oo ,oo "00 66 ,oo ,oo ,oo 87 ,oo ,06 .oo .a a ,oo .oo ,no 69 .oo ,00 ,01'1 91) ,00 ~oo ,oo 'll ,(10 ,oo Goo 92 ,ou ,uo 1 .00 91 ,00 ,oo \00 qa ,oo ,oo ,oo 95 .oo .oo ,oo Qb ,oo ,00 ,oo " "'· <" \'. '17 ,00 ,oo .oo 98 ,oo ,oo 8 00 99 ,oo ,Oil ,oo 100 •1U 1 lltf u.~o l8,98 ' SOl •JI4,Uf} lC1 0 Uj 26,Cfl 102 • ". 09 1 q II s 1 zs. t•() lOJ •tu .ao 1~,6.\ zq,bq lOlJ •1'1,76 li~.6l l9 1 U 105 •12,78 141,91 21.bll lOb -a~.qQ rs, lls 30,03 107 -15.31 lS,IH lO~q9 11.18 •&2,1\9 as, as 28,01 w 109 •l'>,l7 15,29 lO,~lr 1\0 •l5 0 S2 JS,LIO 30,92 111 •ll,l:l2 as.s2 27 1 JCI 112 -as.sa 15,!:15 31 .... '-'\ lll •IS ~ l~ as.so lo.tn ll q -as,«~tt tS,b2 .)1,06, us •l!i,4S 15,51 31.02 f.lb •15eSo ss.~e :u • a., ' U 7 •lS,t~ll l5.7b la.~o 118 •tS,bU as.n ll .• q5 .119 .tl)~f.IQ as. 11 ll,«<b 120 •15,78 IS,87 ll.o~ -• 12' •15.7& l$,66 ll,bb lli! •15,7"1 lS,9(J 31,69. ll:J -ss.~s 15,95 31,80· 12U •15 1 9lo! U, Cilr 31,99 :.-. ....... US •IS,.e9l u.os )1.98 u• ·l5.9l lC~e06 n.u , 127 ~»If~. U 16 0 29 ·'32,149 ii'-8 .. , •• Jl .. &bal>O :S2 9! . .f" . .;: .·: ,. '. l ·~ . '•' ,•.:; ··~· ' • c Table B-9 -(Cont.) S'u!Jlmary of Miscellaneous Computed Hydrodynamic Data Tl~.t Or HIHIHUM AND tux:uuH H~tiO, HnUP l 'l,fJO u,oo 2 ao,n U,l, 3 l0,19 lbe11U t! 10,75 &6,&& 5 lO. 15 lb,Ol b u.ol u,u 1 ... 33 n.~s e ,,,1, H,.b1 9 12,11?. lll,QO IU ts,qz l7,6tt u 12' ,,, 18,00 t2 i2. ':l \IS, 6~ u ll,Z6 l8,9Q ill t l,2lt u,qq 15 u.u i8,Q~ lb ~ l,Qf i~,,. u 13,!!7 l q 0 tq IO u.l'l lq, i1 ,., Uo15 ''•"2 20 i ',j, 7~ ''·'~ 21 u. 72 ! q. )l 22 I,.' t1 l'l,7!i 2.) 1 u .ll ''~81 211 su,u l9,tl6 25 '"· 3l 1'1,69 2b lii,:U 19,1JCJ 27 I u, 11 l'l,Bb (8 lll,t~J,, ~l),t),! 2'1 ,oo ,<'0 30 ,oo .oo 31 as,vb 2U 0 3b l~ ·~·I)' ZO,lb 3), ,00 vOO 3U ,oo ,oo 3!» 15,20 ao,ur lb n,n 2fli,SO 37 lfi,OO i!O,UCI 36 ,oo ,oo lY ,00 oOO CIO ,ou ,•Jo I.IJ ,00 ,oo ll2 ,ou ,oo Ul ss, :n 20,5j Ut.t IS,t.'l Zt.I,Sb 115 lb,Oil i!O,S8 db 16, 3l 20,61 ll7 l1 ,b7 zo,CJl ae IG,UQ l~. 39 CIV 19,\ll 22,75 50 !ll 1 'H 22,70 5l ,oo ,oo !Sl Itt, Jq 20 l'h 51 lS,.hU 20,Sb Set lb,Ui! ao.se 55 &5,69 zo,n Sb lfl,ll 2l,l&l 57 lf.t,ll1 21,56 56 .,,,b 22,06 S'l 11 ,,., 22,19 60 .H,8l ll,SO bl ,00 ,oo b2 ,oo ,oo bl ,oo oOD bCI ,ov uiJU 6;) ,ou ,oo t:u ,oo ,oo 67 ,01) ,oo &a ,oo .oo b9 eOO ,oo 70 ,oo ,l)i) 7l ,oo .no 1Z ,ou ,oo 11 < ,oo ,oo 1V. ,ou ,oo 7S ,oo aOU 7b ,ou ell U 71 ,oo ,oo 16 ,oo ,oo 79 ,0(.1 ,00 80 ,no ,oo 81 ,00 ,DO ~i! 1 0iJ "00 tlj ,oo ,oo Oq ,oo ,.oo ISS ,00 ,oo 66 ,oo ,oo 87 ,oo .oo 6tt ,oo .oo &9 ,oo ,oo 'iO ,ou ,oo 91 ,oo tOO qz ,ou .ou ill ,00 ,oo qq ,oo ,oo '15 ,01) ,oo qc, ,ov ,oo 97 ,t\0 ,oo CJtt ,OU, ,oo qq ,oo ,ou 100 111 1 5b zo·, 1 a 101 Jrt,S:S 20,111 102 Z,61 20,19 101 liJobll 20' 1'1 l 0~' l1J 1 bU 20,19 lOS l'.;,.i12 20,1? lOb 1U,b9 lD,C!a to7 au,qz zn,n lOCi 15. 7S 20,lb IOQ I tl, 7 5 20,26 120 lS,CU zo.:s? Jll 15,7Z 20ell liZ &S,tu lC~lb 1!3 l11 0 Ai i!ll ,ll ll•! ae,qz 20,Jb a 1 ~ as,oo 20,l1J lib u.ol 20,&12 117 l'i,Ob .zo •. "l aaa IS,Od 20,112 U"~ as,ou 20 1 ff2 12U as, u Z0,41l 121 15,11 20~lll lZZ 15,1' 20,IIZ 12l 15,11 to, uz 1211 lS,ld4 20 1 IHI 125 &5",1 q zo.~q lib 15,1Q 20,Q&I au l5ol9 zo,ua uo as,zs 20,!!0 TOTAL EVAPOPA~lO~ RAJ!, as ,1 uaiHOS AVEOAGE SU~FACE AP~Ar so Ft ,li:U+l2 AVERAGE YCl..IJtif. t cu FT 0 'il;J'h:a AVf.AAGE· Dt?ttt, rt ,n1e•oz r' 'l ~ (ll-···""'I· I ......... ....... •l.,l :.:~~~ rJ ' "" v, ( -.. ....... •o,ooo t I I 1 I I l I I 0 I 0 0 lz,ooo:. ooo o I 00 00 I 0000 0 r oooo o 1 tlOOO 0 I 000 0 1 goo o t oqo o J ooo 0 I OOo o ia,ooo ~ oooo o r ooo o t 0000 0 TlOAL I 00 0 J 00 0 RANGE J 0 0 I 000 0 tr• f£tT 1 . ooooooooooo 0 I 00000 0 J' . OOOOOOOGO 0 ,,,000 • 0 I 0 I u J ·Q J 0 I o i 0 I 0 I 0 I 0 a.o~o • ooo t l t .. J I J J I . ,000 ~·•••••-••{••••••P~•I•••••"~·~l•••••••••I•••••~•·~I•••••••••I•••~•••••J•••••••••l••••••••~J•••••••••l 60o.o ~4o.o 6&0,0 72~~0 760,o eoo,~ aqo,o eeoco 92o.o ,.0.0 &ooo,o )( ·• COOROJNUt:S FIGURE B-1 '/ ' \) ..... 0, ;::..) A 211,000 I I l I I 1. I I t t 22 0 000 ... i I t I '• . I I I l t ~o.ooo • I I TlH! !. I Hf I I HOURS J l l ,a,ouu • 1 1 I r I I I I r 1&,000 • I I I I I l J ~ I 'y' ... ,, . ... •. 0 0 0 0 0 ooo 0 0 .-:'•- t lq,ooo !·~~·~·-··1~--·~·-~•1•••••-·••t•~·••••••l~·~--~•-•f•••••••••l•••••••e•i•••••••••l••••~·v••J•~•·~·•••i &oo.a 6ao;o 6ao,o 120,0 76o,o . eoo~o e~o,o eeo,o 92o,o ,,o,o · aooo.o X • COOkDIN~hS FIGURE B-2 TI.ME OF 'HIGH WATER VERSUS X-COORDINATE·· . . • 21 1 000 I I J I . ·i "'"''' ), . ,· ,~ ,:, d '· ,' t l . I i ae..ooo - i ·u Ill I ll li 2 II & j Z . I i& 2 l t2Z l l 2 l 122 1 I l2 2 I i! 2 ! 12 2 & U Z I I 2 2 I l 2 I £ a 1 2 2 1 .I 2t 2 I lt 2 1 21 c I 21 122 I 2 i 2 I 2 1 2 l ~~ 2~ ! 21 t zz t 2 1 zz 1 2 s :u t i! 1 z 1 ·i: a J 22 1 2 t i2 1 l I 22 I 2 l 22 1 2 A e.ooo • zzt 2 a 22 a 2 a 22 z t ~zzt z a r 00 222 I 0022 l l 06 2Z2 I 0022 2 t I 0 0 l & 0 0 12a ~ 0 0 I I 0 0 U I STAG[ I 0 01 l o l I 0 ot I 0 Ol I I 0 I l 0 I 1 0 1 l 0 I 1. JN l 0 10 I 0 10 1 0 I I 0 IO I 10 to a o ~o a, o to 1 o ao i P£f1' I ! o I 0 u l o ln I 0 U l I l 0 I 0 lO l 0 1 G l 0 l o l 1 to a o to to au to &o t 1000 • l 0 I 0 l 0 1 Q 1 0 I G 1 0 l t I 0 l 0 1 Q lO I 0 l 0 I o U I 1 0 I 0 1 0 Ia I 0 tO . I . 0 I I I 0 IO 1 o 1 I 0 10 S 0 I i I 0 1 t 0 01 t 0 I I 0 I I t 0 1 l 0 et I 0 1 I 0 Ol I I 0 l I 0 01 l 0 1 t 0 0 I I I o 0 1 I 0 ·o 1 1 0 1 1 o 0 I 1 0 OJ l 0 l 1 0 0 l l 0 r a o oa 1 at ooa t •e.ooo • · a o .o 1 t s t o o 1 a , I l ·ooo l I I I 00 l 1 II I I I & l l I Ill I l it I I ttl I I &l l l ftl I I li t I I I 1 t I I l 1 Ia 1 a -!1 " ::; r . n . a , •16,00~ l•••••••~•r•~•·•~•.lf••n••q•••l•••••n•••I•~•••••••I••••·~•••I••••••~~•J•••~·~•••I•••••~•w•Jo•••~••••l .o e.o ~6,o 2q,o 3Z.o ~o.o ua,o 56,0 6~ao 12,0 a~~o 'fiHE JN HOURS PLOT LEGENO JUNCTION 1 • 0 JUNCTJON 111 • 1 JUNCTION qy ~ l FIGURE B-3 STAGE VERSUS TIME AT SELECTED NODE~ •• ,_,, ·. . '~] c; . ,, (') ' -\,J v, ,, ......... ....,.,. ~ \) ·' ~ ~ ~~.ooo l I I t l t I I 1 1 FTISEC IJ.GOO "' I I I I I I 2 2 t 2 222 2 22 I 22 2 2 22 2 2 r 22 2 2 22 2 ... .. • 000 .. 2. 2 z 2 0 2 2 ~ 0. k 2 2 0 2 2 GO 2 20 I 200 I 2 .zoo 2 .2 0 2 2000 i! 2 o I i 2 0 l 2 0 2 20 0 2 2 0 I 2 2 0 2 2 0 2 2 v 2 02 0 I ~ 2 o l 02 0 2 02 0 2 02 0 J 2 02 0 t ~ 02 Oil 2 02 0 I .2 02 011 I 2 0 2 Oll 2 0 ~ I l 2 OZ Oll 2 02 ~~ I t Z o 210 I ~ o 2 l ·I 2 02 lO i 2 o 21 I J ~ 0 21 0 l l 0 210 ' 2 0 2 0 1 2 0 20 ,ooo •1112 o 2 0 11121 o 20 IA2 0 2 o 1112 0 ~ o I 21 0 ll 0 21 0 li!O 21 0 2 0 2 1 0 2 0 I 2 I 0 U 0 2 I 0 12 0 21 0 U 0 2 I o i2 0 t l I 0 li 0 2 I 01 2 0 2 1 ~ l 2 0 2 I 0 12 0 I 2 lOOI 2 0 2 lOO I 2 0 2 lOOt 2 0 2 100 l ~0 1oo2oo1 1 2 oooozooa 1 2 oo~o2oo 1 1 2 oooo2oo a 1 2 oo I 2 II 2 2 Ill 2 0 2 ll 2 ~ II 2 0 12 2 2 I 2 2 2 2 2 ! ~ 2 2 2 2 c 2 I 22 2 2 2;: 2 2 ~~.ooo • 22 22 22 2l I I I J I J I I ... I •8,000 f-~~••••••J•••••~•~•J•••~~--·~J••~•••••0 I•••••~••~I•••••••••J•••••~••5 I••••~•••~J~•~·~·~·~J~~·"••~•bJ .o e.o lfl,o · zu,o 32,0 ao,o Qtt,o 5e.,o 61f,0 1 u,o 6t~1 0 Tlt.tE lN tfOURS PLOT i~GENO CH~N~(L 72 • 0 CHANNEL 127 • I CHANN[L aao • l FIGURE B..:4 CHANNEL VELOCITY VERSUS TIME IN SELECTED CHANNEL APPENDIX C • •• .. .· Table C-1 Tidally Averaged Quality Model Input Card Specifications la UPPER COOl( lN1.£Tr KN~K ~RH ~NO TURNAGAIN A~H lb SAMPL:, PR!')!LEM 2 1 13~ 2q 0 ! 0 1 3 t2 3 d. l 4 0 0 0 1 t) 0 0 0 0 0 1 1 5 NH3•t.Jr JofG/1.. PR1Mfll03·~· f'IG/1. P~lH 7a 1 0 0 0 135 7b { s ' 10 11 t2 1G 17 20 21 26 101 107 115 117 1Z1 12'7 'IQ Cl6 CIS U9 so 8 { 1 1lO .1 0 1 16 10 3001) 9 { 17 tf:IO s#a 10 1 1 • 11 A VERidiE RUNOFF cONDITIONS • .STE.iDY STATE 12 0 0 0 0 1 1 0 0 0 0 13a t 13b ~~ 10 ,25 ,01 0 0 0 It~ 10 .zs ,01 0 0 0 •1 10 .zs ,01 0 0 0 •1 1U ,zs ,01 0 0 0 "'1 10 14 ,25 ,01 c 0 0 •1 10 ..... , .z~ ,01 0 0 0. •1 10 .zs ,01 0 0 0 •1 10 .zs ,01 0 0 0 •1 10 30 335000 120 ctO 2 lS 20 .s 2'5 510000 30 75 b 15 17 ,s '·' 17a 1 0 0 t,OB t,ou 17b 1 S lO ,2 ,1 l 0 17e 0 0 0 0 0 0 10 ,1 17 18a 1 t~S •1 0 0 0 18b 1 \;)O bl 150 2 18c { 1 .75 e 2 l !000 25 ,75 8 2 l 1000 G. -l>;"ll' .t· • APPENDIX D •~, .. ' • '· ,. ' • .. Table D-1 Computation and Output Control Options SlP4UL.ATlON BEGitlS ON DAY 135 TIP4E STEPS·OF ~" HOU~CS) PRINtOUT EVERY 1 TIHr STEPC$) HYDRAULIC INTERFACE UNIT lZ ou•L.tTY !NTERFACr UNtT 0 NUMHER OF' SOUNOA~Y COUOl.T IONS 1 1 TlD4E STEPS FOR CO~DITlON 1 STEADY THE FOLLO~TNG CONSTITUENTS ARE BEING ~OOEL.ED ·T. AL N TOTAL. P TOTAl. COL.!F CARA.~lr.: ~Otl NITPO SOD OXYGE~ TEHP~RaTUR£. OPP CONST 1 NMleN, MG/L ~RIM OPP CONST 2 NOJwN, ~GIL PRlH STATE . . Table D-2 Initia1 Conditions and Dispersion Parameters UPPER COOK INLET, KNIK ARH A~D TURNAGAIN ARM SUtPLE PROHLEti ttn t tAe. QUALITY CONDtliONS JUN 10 JUN TOT N TOT P T CUL r COL. HG~L NO/lUGHL. N~/lOOML· HG'/L J !30 ,oo DlSPERSlON COE,fltJENTS CHAN TO CHAN Cl 1 lb 10~ &7 160 s. .oo C.4 3000, ssoo. ,oo ~00 c son .N 1:\00 0 0 TE,..P f1G/L MG/L HG/L c ;oo ,oo ,oo 10o0 . • • CONST ! CONST a CUNST :s CONST . UklTS UNIT& UNIT$ UNIT .. aOO ,oo ,,o ·~ 1,} \. ·-, r •• tv ' w \J\ ( ....... N ·~ • Table 0-3 Sulllllary of Boundary Conditions and System Coefficients UPPE~ COO~ JNLET, KNIK A~H AND TURNAGAIN ARH AVERAGE RUNOFF CONDitiONS • STEADY STATE riliiio£ to•DITIOHS DU•INO HYOAUlOr.IC CYCL£ JUh EXCH EBB FlOOD lOT N TOT P T COL F COl C BOD AATIO HCF&· 1\fCF S · MG/L HG/~ N/IOOHL N/IOOHL "GIL I ,ao l&~ou lO • "lt'll .oo ,oo .,oo ,on ,oo tNFLOk CONDITIONS DURING ~VDRAULIC CYCLE l JiJ"« iNf'LOW ros TUT N '"' p T COL f CrJL C ROD ~ BOP crs tfG/1.. t"G/L ~GIL ~0/IOO"L ~0/iOOHL 'Hr;/l HG/L aWl CltJOO,OO o. :zs ,01 ,oo ,oo ·oo ,oo \ 13000 t 00 fil :2s ,01 ,co ,oo ,ot' 0 00 us u7(1 0 00 o. .25 ,01 ,oo .oo ,oo ,ou Cl& 12o.oo o. ,iS ,01 ,oo ,oo ,oo ,oo so 108&\1,00 o, ,25 ,ot ,oo .oo ,oo .ou 60 IO'Hi,CIO o. ,25 ,01 ,oo ,00 \00 ,oo 10& bO(I,OO o. • i!5. ,oa ,oo ,oo ,00 ,oo Jlll .~ lfi,OO Oe ~·zs ·"' r;OO ,oo ·oo ,0\) ll7 ts~.oo n, 30,00 3tfl0 1 3!H05 .oo 120~00 90,00 115 I!I,SO ~\ ,. i!S, oo .. •;.oo 1 lOtOS ,GO 3o.oo 75,00 AGGq£GAYEO OUALITV u a~oo,oo o. :ls ,oa ,oo oOO ·oo ,ou 27 l3oo·o,oo o. ,2'; ,01 ,oo ,oo 'on ,oo us q7(1,0t) o. ··l.U7 ol1 ,.3Jt0l ~oo 'q9 2,Q7 tJ& azu i 00 o, ~1!5 .t'l ,oo ,oo 'oo ,ou 50 aoatuJ, oo o, .25. ,f) I ,oo ,uo 'QO ,ott bO IOIH.ttOO 0'. :zs ,oa .oo ,fJO 'oo ,oo 108 bOO,OO o, ,25 ,(11 tOO ,(.II) 'oo ,Ot9 117 7s,oo o. tJ2.00 6,~0 p 7ilt0S ,uo lan'oo Ut~, oo 12Q aao,vo o, ,iS ,Ot ,tJ\) ,oo 'oo ,;, ':\., • SYSTEH CVEFFtC1~NfS JUN TO JU., 800 0£CAV COUF' Ot.CAV UENlHJC SiNK HATES ALGAL O)(YGEN CARl\ Nllq fOUL H.C~L N p 0 PHoro RESP II bAY 1/D,IY Hf/142/0AY nr.t»UD'Y 1 130 :rlo ,II) I :oo wOf) Oc o. o. n. !), STDICHtOM~TRlt EOUJVALE~CE RlfWEEN nPTIOhAL tO~SJJ1UlNtS t0'3T HO & ntC&V TO CONST NO '• leOO tl~ST ~~ 2 9£C&Y TO t~~~T NO 1. .~u tJhSl '•U l f)l.CAY TO tQ':ST Nn 11, atO I N BUD O)(Y tEMP CUN I CU'f 2 COPf S CON 4 HG/f. tiG/\, c UNITS UNitS UNIU Ut-I ITS. .oo '·' ao,o ,oo ioo ,oe .oo OXY TEHP COP4ST I CONSJ ~ cu~n J CONST • HG/L t UNI T8 UHITS UNIU \i"':lU • ._i H,l 10,0 ,uo ,oo ,oo ,oo ll,l 10,0 ,oo ,oo ,oo .ou ... ] 10,0 .• fl~ ,oo ,oo ,oo it,l to,o ,oo ,oo oOO ,00 11,1 to.o ,oo ,ou ,oo . ,oo as. :s IU,O ,oo 0 00 . ,oo Doo U,l tu,u ,oo ,oo ,oo .• 00 ll,l 10,0 ,oo ,oo ,ott ,oo l,O ts.o 2u,~Jo ,r;o o.OO ,oo 6,9 I!J,O 11, UCI ,5\l ,OQ ,oo ll '3 10,0 ,oo ,oo . ,oo . ,00 11,3 10,0 ,Cl) ,oo ,oo ,oo ll ''J IO,S .~6 ,Ol ,oo. ,oo II ,l 10. tt ,oo ,oo ,oo .oo u. J 10,0 ,(JI) ~oo ,oo ,oo II ,l IU,O ,uo • 09 '. oOO .. oo u ,l 10,0 ,oo ,oo ,oo o.OO u,i ll,(' a.t, .n ~.ol ,oo ,oo II, l IU,O ,uo ,oo ,oo e9! RE"'t.RATION OPP tOtfST CIE·tAY OPP tUN5T $Eit~lH~ MIN HAM a l. ] • ' I. :s • &/OA't! &/DAY H/Dl\' ,o 10,0 ,ao ,co ,oo ,oo ,oo ,oo ,oo ,QO Summary of Boundary Conditions a~d System Coefficients ALt.. OTHERI t,ocao f\.01'1 A NO h 1 hO \N~UClD REA!R4110~ CnEFF!CJtNT Af.JO COEfP; USfO DV NIJDt:.s, 8/0AY a ,0\5 ~l>l7 ,ol7 ~ ~uao ,oa~ .c~a 3 1 9 i 0 , Ul9 ,.019 " ,ou • 03~ ,fJ)f) , ,022 ,OSCI ,OSQ 7 026 ,055 ,O'iS 8 ,j ens ,UbS ,bbS 9 iObCI ,105 .sns u 1 029 ,OSU ,05U ~~ ~Vll 8 UCI2 ,OUi u .o~7 .uu ,(117 u 1 0ZJ ;.0514 1 vSII l& • (Ill ,191 ,aoa 17 ,oz2 ,c~a ,Ob4 l8 ,Oj)JI o.OTce 'Ulf! 19 ,au~ ,liO • tl 0 21 ,0~&1 ,ObU ,O~CI 22 ,o~o ebQb ,Of~{> &U .o?5. ,ou 1 Ubtl 211 ,Oll eO&l ,o&a 2b • 0 1.&1 .Ob& ,0&8 27 ,obZ e1&~ ·' IJ9 28 ,oc;q ,01.\J ,oft! Z9 ,ooo ,ooo .uou 11 ,070 ~sos ,aos -ll ,U79 ,121 ,lll 3l ,ono .oou ,!lOU lq ,ooo 0 000 ,uoo ,, ,110 ,lllb 1 lCib l1 "l.ISIJ ,360 ,w;e 38 .ono ,oou ,ooo lfl ,ooo ,OilU ,U()O Ul .01)0 .ooo ,o(lo uz ,ono ,onu ,ooo Ill ,aal •'''-' ,iO) "~ ,IH t'J'lCJ ,tQu l.lb e2A5 ,2Q2 ,2q2 U7 ,~2b 0 U~9 cS2b lid ,Su9 ,'ltlb g9bb IJ9 ,lUll l,Ufl9 a,HCJ9 5& ,ooo ,ono ,ooo 52 au~ ,Ulb ·"Jb Sl tlf»O ,l&9 i lb9 Sill .au ,uoo ,llllt) Sb dUO ,2b5 ,2&S ~1 :zob ,JbB • .Sh6 56 e27l ,'lUI) ,IIllO SY .,zaJ ,147b ,147b bl ,ooo ,ooo ,ooo ba \ooo ,ooo ,ooo b~ ,ooo ,uoo ,oou ~u oOO" ,ooo ,ooo b& ,ooo .ono ,ooo &7 ,ooo ,ooo ,000 b6 ,ono .ooo .ooo b9 ,~;;oo ,uou ,ooo 1l ,ono ,ono ,ooo 72 ,ooo .~oo ,ooo 71 ,ooo ,ooo ,000 1Q ofJOO ,uou ,oou 7ft ,ooo ,ObO 1 000 77 ,~oo ,OPO ,oco 76 .ono ,ono .ooo 79 .ooo 1 llll0 eiiO(! 81 ,ooo ,ooo ,ooo ez ,ooo ,uoo ,ooo 8j .ooo 1 00ij ,ooo 6'1 .ooo ,OI)O .ooo &b ,ooo ,ooo .ooo 61 .ooo .ooo ,000 86 ,ono ,ooo ,ooo 89 ,oou ,uoo ,uoo 91 .ooo ,ooo .~oo q2 ~ooo ,oou ,oou 9j ,01)0 .ooo ,coo qq ,ooo ,UCIO 1 01l0 96 ~:000 ,000 .ooo 97 ,ooo ~000 ,uoo 96 .ono .ooc. ,<IOU qq .oov ,ooo .ooo 101 ,os7 .o1~ ,o7z aoz .JaJ ,ll2 ~)f)] IOl 1 fJ1U 1 U87 ,091 lOQ ,Ottl .ao:r ,101 lOb ,0,5 ,vb7 ,o&r so1 ~tsl ,11s ,l1S 108 • ]ql , 127 ,311$ lOCI ,Obl ,017 .un liJ ,lol ,ll1 1 327 112 ,1a9 ,Zl9 1 lU9 11.) ,tn7 ,l u .sao liU ,12'1 _tSc, ,15b lib ,066 ,tl5 ,21s 111 ~,ou9 .tae .au uo 1 0Jl ,089 1 \189 U9 ,oul ,lJ8 ,138 12& 0 021 ,ObO ,060 lll ,olq ,107 ,101 liH e06l ~1U7 .1~7 nzq ,ol& ,0"11 ,097 llb aOll .aus .tas ~z7 .@uo .os7 .os7 126 .os-a .,103 ,101 '} s ,Oil~ 10 ,o2a IS ,021 . ~Q ,1)20 2~ 1 U26 311 ,ooo JS ,061 Q(l ,oou "5 ,J9t, 50 1 JOO 5~ ,150 bO .~qq b~ ,1.100 70 ,ooo 1~ 1 \lOU 60 ,uou 8S ,ouu Q(J .uoo 9~ iooo lOU .~51 10~ • .ssq 110 0 097 llS · 1 0b~ l20 1 lJ 3f! &25 ,o2c ,.OIIl ,OI.Il • 0611 ,QU .~.,s .o~) .• osr J\051 .on • 0'17 ,ooo ,oou 1 2U .zu . ,,.oou ,ooo • 1 qb el9o lo7'~7 a,'"' ·e2.~~ ,l41~ .~ttb oSbb 1 00() ,ooo ,ooo ,uou .• o 00 ,ooo ,ooo ,oou ,ooo ,ooo ,oou ,ooc ,ooo ,ooo ,ou ,uu 1 l7l ,JSij ,l4l9 ,&119 ,097 ,09.7 ,l7S ,&75 ,on ,on '~~ ~ < ••• ;.1. . .., ; ',~. (') ' .. ,., ""' ':' ....... t'l ·tr~ ... Table D-4 Meteorological Conditions UPPtR COOK JNLET, XNIK A~" A~~ TU~NAGAlN ARH AVERAGt RUNOFF CO~OJTIONS .. STEAUY 3UTE '" TABLE OF HETEOROLOGiC DATA FOR h[ATHER ZONE lt Jut.z·nou I TO ISO 140liR WINO CLOUD CRY BOLU ··~· ATHOSPH[HIC SHorn 'fAYE ~PEED crwr.R Yt:~P(HATU~E TEHP~RATURt:. PRE:ISUHE SOLAR UiiSEC) FiUCTIUN (C) (C) (HO) (~CAL/t12/UCJ I :s.s :75 7,0 '· 0 aooo, ,oooo 2 ],5 '75 '•" l,O SOUl), ,oooo •. ~ 3,5 ,75 7,G I, 0 10~0', .oooo a 3.S '\1S 7,0 l, 0 1001) .oooo 5 ),S ,75 7,tl 1,0 liJOn, Qoonr b 3.5 '7'i 7,0 1,0 r~Joo. ,0100 1 l.S '7; 7,0 l. 0 anoo, , O~fJ.S 6. 3,5 '75 'f,'} e. o 1000, , O•tS~ 9 :s.s fl75 7,0 t,o 1000, ,Ottlltf 10 3,'5 :15 1,0 a. u .aouo. ,01120 il 3,5 :15 7.0 l, v !000, .• o•l!tb 12 3.5 '75 1,0 1,0 Ilion, ,JOLIJ u '3,5 ~1S 7,0 a. o lOOO, ,!07l '" 3,5 .. rs 7,0 I,U lOOO, ,lOUj 15 3,S ._75 '1,0 1,0 fOOC\ 1 ,llYSb h 3,S \75 7,0 l,ll lfJQI), • t 0620 17 l.~ ~~~ 7,0 a.o JUUO, 1 0 0blf8 to 3.5 7,0 l,u 1 o u·o, ,oq~s " "' 3.5 ,75 7,0 •• 0 11'100, ,Olb.S 20 3,5' ,rs 7,0 1 • I) 100(', ,,IJlOO ~.1 3,5 • 7'i 7,n a.o 1000, ,0001 ~l l.'l :n 7,0 l,O &000. ,OIJIJO Zl 3,5 :15 7,(1 a .. o lllCIO, ,ouou 211 3,5 ~75 7,0 a." IPOO, ,ouoo OEh POttiT -. ' LATITUD~ il ~•.o l.ONGITUDE • a~o.o tONC WAVE VAPOR 30LAH PRt.SSUN~ (fCCAL/HZ/$!;CJ CtttU ,Obl19 '· ,Ob(IIJ 7, ,O&tiY 7, .. ,Ob~Y J, ,Ocl!'l 7', 1 0biiY 1, • Ob tf'l .,, ,(l()tl~ '· 11 0bll'l ' 7. 1 0t.U'I 7. ,Ot-1,1'1 1, tObll'f 7, 0 (1t.U9 '7. ,ObCICI 1, ,OuU'l .,, 'I 0bCJ9 1. 1 U614'l 1, 1 1lt11JY 1, ,Ut~liY 1, 1 0hU'I 7, ,OhCIY 1~ 0 0t.l.t"' 7, ,f)b"ll 1, 1 ObtJ9 f, Table D-5 Dispersion Coefficients and Steady-State Salinity CHAtmtL Ol~PERSIO~ tOEFf1CIENt3, 80 FT 15t& u.An i"'o I TE.RAT HlNS) , l ·ouo. &II'U. i 8934, &9j9, 3 J3j6, 13110 1 " 10!5, 7014. ~ ose•. 15'15, • , ... ,. ~SI.I, 1 soon, ~'HI \1 8 772 •• 7727, 9 I tJ JO o 11\J'f, 10 111'l· .,,.i, II sn~. ~?U, u bfl':l'i., bOt.'i, il 1l1U, 731111, IIJ IJq'i, q~ •• ~~ ~!>otl• ~0&10. lb uoo~. 110lU, t7 l?t! '· :S2.!9, !U SC!llt., !»a~s. &9 b':J1fl~ c,So!1, 20 7021 7111. ll 215, l~'.J. cl 2~c!&, lHo, ~J ~928, !1'1llo lU uzq, ~~~lb, 2S I 0.1; 1 lot, 2f.t 'S0'1, ~ ..... 27 i8U2, l611l, 24 U7ta7 1 07 lb, 2~ U$90 1 "J'IS' JO Ill. an. )l St~CJ, 550, li! l'lllo l'iJi!, 3.S ""u • 110 J9. )II l72b, 27 J6, lS tJIIu, &'lt., 3C. h2, 6bl, l7 li?Uql 22!»5, Ja )981.1, )1)9':, l9 9'11, ill.!7, llO ~~~.~. IS9 1 Cal ~u. llbt' Ill 27USQ 2711, tJJ o, o, 41.1 277, lu~. os o, o, lib o, "· "1 26~1o i1S!.t7, 116 3429, )UJu, UY Oe o, !»O 0, o. ~· zu~. 2111\r. 52 o, o, Sl lblh, &blB, !HI llt~7. lfl!J71 s~ 2 j •• zn, Sb ?H, l2'5s 57 o, o, 511 o. o, 59 o. o, bO Oa o, o, o, b~ o, o, bJ o, o. 6q o, o, ea; 21115 ij zu,o, I U'i, 1201), b'l JIO.i!, azuo, bQ 611, ll~J. fl'l Ill!~ a nc, 7tJ till, an, "1. SH. S&U, u 31fl, )Jh, 7l ~,. 90, 1U o, o, 75 69,. (j9. ,·I) Cl22. UlU 1 17 I Ob l, 10&11, 78 IJUI\ I llllfJ, 79 lltJ7, Clbtl, 60 2091, lOU, &!. lll, 1211 0 &l 19l :s. ICJlO, 8J U97, 1707. 8Q &4SC!'~ l.lae>J, 8!, illh atul, u 1101, ~H. ft? o, Oa au o, o, l\9 "·'"· Cl Jb 0 ""' o~ (1. 91 0, o. 92 Cl, o, '1j 01 o, ~q o, o, QS Ci, o, 9t. 9, o. 07 o, o, 96 0, o, QQ o, o, 10() 2ll Jl • l6ll, lOl l'iH, lS j/J, 102 Ho~. ])01\, llll • 611. 1671, 1014 4101\, Cll1ll 1 l05 JOO, lll, lOb 2lb '· i!icatt, 101 Ztd't, ~t.42, 108 191, 20l, i09 ilu1, 2~1.111 IHI ll!l, H5, Ill llll, lZI7, l t l C!!\7fl, 2R7ll, Ill l5b1Je 15bS 1 I!U J&4, l2b, ll ~ J9!>b, l9oc?, lib lllJ, IQ&II ll? ann, IOlO, lU 17i'. lh, ll9 bSII, hb(\, t ! 2{1 lliU 1 Hn, Ill :J1ZI, J7111 0 i22 1170, "'l· li!l btU, ftlib, Hu ~77. 511'1, &25 18U 1 l90, Utt 7~7. ?417, U7 10i?, zou, 1«!8 292, 311~. 129 21 :u. 21~"· llO flU, f>95, Ill lll,, l'·ll e. all l:\1:11, j!I.IQ'l, llJ 2tt .>t, 2(\bl, lllf ll )7. &1~7. ·all) ~!l e 9~s. I 36 Sll t S)CJ, lH IZ'i, ll8, llb I O~l, lOll), an JOjl)~ iO~S~ 1110 <i6!J8, H~b, Jlll lllJ, ll!>~. l ill 1192, suo. l (I j btJ, Ja, I Ul; U7 1 z jtJ. }liS 1111, ht. ac.c. 'Hill 1 aoo~. 1"7 2&50, 2&75., 1CIIl 3361, )tiUII, 1119 JlUl, lJil, 150 lUi, i.& 1 J. 151 II qqa azzs. 152 I'll I l '12. J5) 152 0 l!l~. l!J~ ......... , )CJ49, u.s ~0.!5 1 "esl, ,IU 1i ~ 1 a56 l17l, 2l9b., "' JA17 1 390], Qlli;amremri&mir«r:r• I lO~bO . ~ 30,16 ] 2Y 1 69 I ~9,711 ~ 2V.Z) , 29,Jil 7 2ftlb] lj 26,'U 9 27108 10 l7 ,11 • I 2f. 171 *l ih,lb 11 z;,Js '" 25.12 l'j 2~.02 ,. 21,1 0 91) 17 zu,uo lB ;2U,01 S9 ll, 7A ~0 2l,l9 Zl 2J.tfj l2 21 ~~~ 2l 21,62 l" 21.~&1 l.!i li,Ul lb lO,S& liJ~P lft 20,&10 211 .• 0 l JO ,IJ\ Jl ·q·q' ll ,ut Jq ,01 l'i 19. 8& 36 a•.eo 37 t<~,S8 l'i ,01 39 ,01 CIO I u I tq , 0 I Ill ,n1 4] U,Y9 IllS ll,Cil CIS 10,117 ,, 1,Jit 41 1,10 4, ,75 (IQ ''9 ~0 ,uP ~· ,01 . 5Z IY 1 7Z H n.n 5&1 &9,14 ss 19,bl !16 u.u Sf U,Jb Sft n ,zo s~ l!J,SS bO li!,UZ •• ,00 u ,ou b) ,(In bioi ,oo b~ ·"' (" ,, • 0 ~ h1 ,01 b8 ,01 f,Q ,Ol 10 I(.;' ,. .oo 72 ,oo ll ,uo 'Ill ,ou 7~ .ut \ 76 ,01 71 ,(11 '" ,ll I 7Q ,ill 60 i IJ' w &I , 0 I 82 ,01 b) I (Jl 61t ,0& bS ·"' 66 .oa 51 ,oo {,I) ,oo f\9 ,01 1HI .oo v, 91 ,oo ~.2 ,00 u ,00 qq ,oo 9~ ,(10 ,,. ,on • ~1 .oo 91\ ,oo 99 ,oo 100 20,J0 c at 20 1 )11 102 l'l,ll 10) ~O,Ib ~Oil .~.911 lOS I 9.1 l ....... ICfo 19, 9() 107 lG 1 (15 lOll u.u 109 J'l, 77 110 lb,l\1¥ N lll &<~.s~ llZ !'7 1 Ub ID 19,b7 1111 19,i'lb U5 a b. •us " lilt u. 7'1 117 ll'i. s " IU n.~-5. 119 ar.u li!O JJ,(I'i (. • llQ U,.I.Jil tli! u.,o '1.) u • .n .. ·~~~ 16•. 70 t..:S h,ea ,. Ao-,os t~a I '!J..c!B . ,, U& lo.ro ur ()' ... I •.· \ UPPtR COOl( 1'4Lf:T, l(fli~.AnM A~O IURNAGliH l~H AVlAAGt RU~O'' CONOtiiONS • STEADY SlATE .-:..::. ~BDW Ju,., -tOT N TOT Ill T COL F cm0,~~ :Wo on OSAT Tf.MP CCJNU I cor.sr z cu .. sr J CONSJ II .. GIL "GIL 'iOIIOOHL NOIIOOiil. Hli/L HGIL tiGIL HG/t. c U~VIU ~ .. , .. UHIU ur-.a'' l l05fllb, ,Ol ·oo ~7(1·10 ,oo 0 0(1 ,oo 'l,l 9o3 10,0 ,oo ,oo ,Oi:i eOO ' l 30159~ ,01 ,IJn \ ll•ll9 ,OCJ ,ou ,uo Cl,l '1,3 10,0 .~o ,ou ,oo ,oo ] 29('ft~. ,Ol ,oo ,11•96 ,oo ·"" .oo 9,l '1,3 I 0 e l ,oo ,ou ,\JO ,oo a 2'~71t., ,02 ,oo 'b !·01 ,oo ,oo 0 00 9,J 9,3 l 0 •• ,flO tOO ,oo ,OIJ s ~qz JS.e ,Ol ,oo ,'-~~·08 eOO ,oo el'O "'·" t~,a 10,1 .oo .oo ,oo ,110 • l9JIIl~ ,I).~ ,00 ,tte.o& ,oo .oo ,uo 9,1.1 IJ,j 10,1 ,oo ,oo ,oo ,ou 7 l!~U. ,OJ ,oo ,&i!•OF ,oo ,ob ,(10 9,li 9,11 IU,! ,oo .u ,uo ,oo • , C!fiCIIJ~o ,cq ,on ,111·06 .,oo ,oe ,oo ll,Ci 9,11 to,l ,oo ,oa ,110" ,oo q l7(111b, ,OS ,oo ,17'!'05 .oc ,oo ,oo 9,5 Cl,'5 lv,l ,oo ,01 ,uo ,oo 10 l11il, ,04 ,~o ,"? .. 06 ,oo ,oo 100 ~.s ·q,a IO,l ,uo ,01 ,oo ,oo ·u zun. ,os ,oo ,Ja.n~ ,oo ,ou ,CIO Y,S lf,5 I 0 ,a . 00 ,oa ,oo ,oo . . ·~ Ha,a, ,Ob .oo u.oq ,oo ,oo ,II() 19,01 q ,5 . 10.1 ,uo ,Cl ,110 .oo u 2'\Htt, ,01 ,fJn '23-0ll ,O<I ,oo ,00 9,6 ~,6 ao.a ,uo 1 01 ,oo ,oo ' 114 as au. ,CIIJ ,oo ,e~S•OII ,oo ,oo ,DO 9,b 9,6 JO,I ,uo eOl ,oo ,0() u l5t'211, ,08 ,oo ,tJIJ•OI.I ,oo ,oo ,uo 9,b 9,6 10,1 ,oo e Oi!, ,\10 ,OQ ICJ l119Sl, ,Oel ,oo 1\79•0/f ,oo ,oo ,uu 9,6 11,6 to •• ,oo ,oz ,oo ,OIJ 11 2114ftJ, ,08 ,os ,i!l•Ol ,oo ,oo • ';0 ll,7 9o'7 10,1 ,0!1 1 0l ,oo ,oo u lCI(Ii>J.o n ,oa ,lO•Ol ,oo ,oo ,oo 9,7 9,7 I0 1 l ,uO, 1 0l ,uo, ,oo . ' 19 2n~o. ... Q 1>1 ,ai-ol ,oo ,oo ,oo 9,& 9.~. ao,a ,up ,OC! ,uo • 011, 20 2l20l, ,10 ,u ,12·02 ,oo ,oo ,oo 9,7 9,1: 10,1 ,oo 1 0.:! e\JO ,ou 21 H25l, • t 0 .os . '11-0l 5 0(/ ,OtJ ,flO 9,1 .,,., Jo,a ,oo ,Ol ,oo ,oo ll ZJ~~z. 112 ,Iii u} .. nc'! ,oo ,ou ,(;0 '1,6 9,8· I 0 ,I ,uo 1 0l ·-,oo ,ov ll lh?l. ·' z ·o 1 '89 .. 0~ oOO ,CIO ,(10 9,& q,g JO,l ,uo .u~ 1 (10 ,oo ' ' '1''•01 lt& lll)ud, 112 ,ol ,oo ,oo ,Ill ~.q q,q Slid ,vo ,o~ ,oo ,oo 2S liOH: .u ,oa : 11•0 J ,oo ,oo ,01 9,~ 9,CJ IOol ,oo ,OJ ~uo ,oo (~~.,,oj, ,tl ,01 ~)7 .. 01 ,oo ,01 • fJ •. Cl,9 q,q 10.' .oo ,OJ ,oo ,ou .itiilt 0 17 ,C!I ,.za.oo ,oo ,o~ ,Ol lOtll ao.z 10 I. ,uo ,Ol ,oo ,ou za lOJ'Ifl. ,Ia ,UI ,SI•OI ,OCI ,01 ,01 9,~ 9,9 10, I ,00 ,OJ ,uo ,1)0 ll l'liiQ), .u ,ot ~ac·no ,oo .ol ,uz "·' 9;9 U,l ,uo .OJ ,oo 1 0\l ll a~»~s,c,, • I e. ((II , a t. •I'J 1 ,Of) ,OJ .u Clc9 IO,CI a o. a • "I, •".i .vo ,0(1 15 I'Hic;7, ,16 ,01 ,lbtRiJ ,no ,02 1 02 909 ,0,0 10,1 r.OO ,O'i .oo. ,oo )b 191;J't, • 16 ,ol ~ J ti)O ,0(1 r,02 ,02! 9,9 u.o 10.0 ,tJI • (I~ ,uo eOO 3'1 IQ!J7U, ,16 ,Ill ':St:t Oi ,oo ,OS ,ou au,o ao.n 10 •• .ot !Ol ,uo ,oo &I) l&tutS, . u ,ot :au.na ,oo ,r.s ,Oil lOsl ao,l IG,I ,OJ ,ou .• 00 . ,oo ·~ sa an, .u ,os ,Joeoo ~oo ,(1] ,I) II ao.s 1(1, '5 & 0, I ,us ,011 ,oo ,oo Q$ lO'ilbe ,2q ,n2 o!Otl)l ,oo ,Ott ,01) su.s 10,6 HI, J ,ot .,Ol ,of) o {;O . •• 1'1l'lb, .~u ,01 'lltOO ,oo ,02 iol 10,8 10,11 ao.a · , u a ~.Ol ,oo ,oo U1 :Ut9 1 ,lS ,oa :lft•OI ,O(I .~. ,ol 11.0 11, o 10, I .oil ,lll ,u:. ,01) Cl't &t2. ,('5 ..oa ,n .. na 1 (10 ,no ,1)0 U.l H ,i? ao~• •. oo ,u ,oo -oo "" 101, ,l'.S .u .,~ .. n11 ,00 ,01) ,oo ll,l u,z ttl, I ,oo ,0!1 ,110 ·"" so l, ,2S ,ul ~f:!o .. o; ,oo ,oo ,oo II, J 11 1) 10,0 ,oo ,oo ,oo ,oo ('1 H S97t'i, ·"' ,ca ,Db-tOO ,Oil ,01 ,ol l!l,O ao.o tO, I 1 01 .o~~ ,oo ,oo S.ll J971J. .u ,ol ,11•00 ,.oo ,oa ,ol ao.o 10,0 10,1 ,(II) ,011 ,c.o ,oo ' '" 1 117 )fl, lu, ,oa ,llhOO ,o..-,(ll .1.12 su.u so. 0 ao.a ,oo 1 0CI ,oo ,co 5'5 l9b08, .h ,oa ,66·01 ,ou ,01 ,crt 10,0 , o .• 0. 10 1 I ,.oo • Qlj a CICI ,oo c.,a , .. 191JS, .u ,01 ,n.n& ,oo ,01 ,01 10,0 ao,o lllel ,oo ,oq 0 •)0 ,oo ..,, '7 l"lU, ·" ,oa ,za.u ,ou ,oo ,oa I 0, l I o 1l ·~·· ,oo ,vll ,oo .oo 58 l'llc.t7 \ .te ,oa ,.,~.n] ,oo ,ou ,CIO 10,1 10,1 10~1 ~uo ,OJ ,oo eO\l ~ '" n~ ... , • .u _,01 ,ao-ol ,ou .oo ,oo lt19l 1.0 .z I o ,1 , !Hl ,OJ 0 ~'0 ,oo -.. 60 UOIJ&, ,20 ,01 .ll•OII ,oo ,oo .uo ao,s to.s u.' ,oo •"l gOO ,O<J N "1l •• ~' ~ ~ Table 0-6 -(Cont.) ~ :":, '~3 ~ .. 't Standard -Printout Format for Computed Water:Qua11ty •! '" ,. UPP[Q tOOK I,.Lr;t., KNIK l~H AND TURfUC.IN un· TE ntA ·ncH,. lt.C, AV~RAG£ RUNOH' CUND.I OO~S • STUOY UAU: LAfA'I'UTf., CALiil', -· RUA~ITV RE$11Ltar DAY u. JUH TO~ TOT .,. TOT P T COl.. F COl.. ' eou N BOO OX\' 0 UT '~"" CUNST I C.tllt_3 J l CU~If J C:ONJ14 01G/L H~IL Hr. II.. ~0/lftO~L ~0/I~OHL HO/l. HGIL· "GIL H~lt. i'. ~ c .lltdJ r s U,.IU .urdU u .. u. 100 loloJ, ,lU :o1 :u•no ,oo tOI ,Ol 9,9 '9,41 to.~ ,IJO ,u ,oo ,oo lOl lOH1 9 ,l&a ,o' , l 'hOO ,oo '-,01 ·"' 9,9 "·" J·o .1 .• oo ,OJ .oo ' . ,oo tn l'Ull, ·" :\ ,,. ~ 1J till) ,oo ,OJ .ul u.o to. 0 .J u, I ;Ill ,0) ,oo . ,oo 101 "20151.1, • i 5 .Ol ,~att~ou ,oo ,Ol ,oz 9,9 '9,4 to,a ,oo ,OJ ·• (10 .: • 00 to a s 99 )7 t ·' s ,ot ,tUtOO ,00 ;02 ,ol q,q li~'l I 0 ,I ,oa .u oOO .• 00 los )Qll$, .u ,oa ,lt'tOI ,nu ,01) eOQ Ill 0 I) 10 .o IIJ. l ~UI ,o .. _,oo ,0(1 lOb 'qq~l', • llj .oa ,lhOI ·"" ,Ol ,Ol 9.9 (I 0 "i to •• ,01 .u ,oo ·' .oo lilt lq0~1. ·'' ._01 ,2'hO& .oo ~o~ ,liS ao.: . I o, 0 to.~ ,ul ,Oil ,Cto ,0(1 lU il!bi2, ,18 .ot ,~ltiJ! ,oo · ,Ob .ob ' IOeCI u~o ao.a ,ua .• 01.1 .t flO .n &o!J 19773, all» ,u ,~2·~1 •(IU ,ol ,os 9,9 ·ao.o lb. I o 0 I ,C.l ,oo .• 00 liO JIJ"d't)· .u .,oa I.ICUftl ,GO ,01 ,04 to.o ao,o 10,1 ,tJl .o .. oOO ·9 oo Ill ·Q~Q\', .h ,ot ~llltOI ~no ,QS ,Oli . Q,CJ ao,o I U, l ,til ,OJ ,oo ,oo lll IQIIt-2, .17 ,ot 'I) ItO I ~OCt 1 0b ,OS IU,U hlo 0 lU, I • 0' ,OJ 8 00 .~o Ill J9o(l~1 ah ,ot , .s~~o 1 ~OQ .o .. ,ua 'I,Y ao.o ll.l.& ~Ul ,o, ,oo . ,oo ua ·q~b}, .u ,.ul ,l:st(l~ ,ou ,o~ ,oa I u ,·D lO, 0 10, a .• oz ,oc. ,uo ,oo .liS lliflul, ,18 ,oa ,l!ltl>l ,00 ,Ill) ,u7 au.,o ·ao.o ao_a ,0£! .l)q ,flO ,ou II b l1'1JA9 1 .u ,at ,bl•OI ,ou ,oe .u ttl.o u.o lit, I . ,OC! ,01£ 1 (10 ,GO 117 Ill lilt-, ,21 ._ol ,.so.oz ,on el7 a I t1 au.u IIJ,A 10~1 .ol 1 01f ,oo ,OQ ll8 &JtJS7, .zo ,oa ,lhOl ~00 .•• 0 ,OQ u.o ., .. 10.1 0 Ill ,oc.t ,oo ,oo 11" )7tJ7c-, ,ilo .IH ,t~'hOI ,oc ,ctt • (; J iO." '"·' .,, ,I 5 02 ,oca ,oo ,OCI 120 th~o, ,r.i ~~~· ,l~to~ ,oo ,tl ,ll ao,o ID, I IO,l ,ui! .oca ,uo ,oo ) 21 l7bn(l, ,i!o .oa ,Dtl'l ,t\0 .It ,to .1 o.o liJ .• I l 0 .a ,02 .ou ·90 ,oo uz J1ZQl, .zo 'Ill ,t!f'I+Ol ,oo ,09 ,ur; ..... lO .1 10,1 ,Ill ,ou ,1)0 eGO 12 J 17!1'1. .ll ,ot , lOtllZ ,ou ,ao aUQ \0,1 to~t H.l,l ,02 1 UCI ~u ,oo li!ll tblq&J, .za .ol ,htnl ,O(J ,09 ,ua .1 u~ 1 JO,l to,l ,Ill ,oca ,oo ,oo 12~ 1~6('0, • 21 ,oa ,l?tl'll ,oc ,oq CiiiB lOti lOtl I o-I .u~ ,01.1 .oo ,oo alo lHC11, ,i!l .,01 ,~"•n& ~00 ,IJII ~ua au. a ao.l 10,1 ,til ,Oil ,oo ,oo !27 '"~~1. ,21 ,oi ,Uhll& .1)0 ,01 ,oi IUd •n.a '"·' ,Ol • u" ,oo ,oo U8 ISle~>, .zz ,ua .lhOl ,oo ,oc, ,o7 ao,z to.l ICI,l ·"' ,Oi.! oliO eOO • •," -, . \ " i ~ \ W_ "' ,, ~ ....... ' N> -Q i I It zs li ,, Sl u 7J 01 'H 101 Ill Ul l " ll J& "' 51 "' 71 &t 91 101 Ul 121 ,-,., ~ • ·_..!'. ~. ) 't'"" .. T '-:J ' ·.' ~ Table IJ .. 7 '· ') Alternative Printout Format for Computed Water Quality·- (This pr·intout \1as not generated by the samr~1e problem) Y!Afl OVH•tUC Slt1ULAT10N Oil $4\,JHl fY A~O StP' iNrLU£fiC! . UPPER COOK J~L(f, KNJ~ ~pH AND TURNAGAIN ARH JUNE • S[Pf RUNG,, COND&TtO~S • DYHAf.liC -30558~ ~ 3010ll. 3 i!117:tl. • 2'9662, ' • .1511013, u 2"!.0 :J. u 23l6ffe ... 229bll, IS u Jll9!46, ll nuo, ~3 &7or;~. 2" lbl7o. 2S 26 SII96Q\ 32 IU99, 31 o. , .. o. ]5 3fl o, az o. os 55!ila a a 3297, us Ufp o, 5l iCI3JZ~ 5} l47tlt sa I flU II, ss St. o, 62 o. bl o. 6Q o, 65 6b o, 7l o. 13 o, 1Q o, 75 7b G-l\2 o. 8] o. 011 o. OS 8(1 o', 92 o. Q' o, 9Q o. 95 9b 15011: IOl I 3953 1 103 ICI8t;Cl, JOQ lb)IUI, 105 i06 t3Ul" II! uuH, Ill 13873. UQ IZ711, 115 !lb uass. Ul tHe, U1 tJJss. Uta tooao 125 12ft 2'J26S, ., zea ,,; e il7Ul, ~Hql, 17 ........ 21')7~ u 2&2)9, 15317. .MM!' !!~· Ua&ft 0 IIIII 'lS. ]f'. o, ll '10. 47 llt1t UI:S 16, U2ICI 1 sr 1)1)05, 58 ! ~ ;:~ 1, o. fJ1 o. 68 o. o, 17 o. 76 ., .. ! .., o, G1 o, 88 i)l o, 97 OG 98 o, lti1HIS 1 107. 12711), 108 uno. lz2qz, 117 IUU, liB IOIJJO, een, U7 7U8, 128 MIU 1 OPP CUNST l 1 UNITS fDA DAY lbO a0t1 2 .oG , "to Q ,u s .u tJ • as 7 .zo IS ,u .:u IZ • )8 1l 'a) ... ,tiS 15 ,~~ 16 ,Cib 17 eii«J Itt ,5! ,55 2Z o6fl 23 ' 2CI ,56 25 a?o 26 .u 21 .s1 2& . ,n .• u ,97 :sa •• (1~ 3:\ ~00 )Q ,oo 35 a,oa ]6 a,oz 37 .... ]6 ,oo ,oo Cli ,oo CIJ 10 Alt ,112 115 ,35 QC, gl5 U7 • 0 :s CIG ,oo .oo 52 1,06 JS1 I ~02 511 a.u 55 a;oi 5b ,96 57 ,&6 ,, .n .oo u ,oo f:.l 'oo ,., ,oo fJIJ .oo 66 ,oo b1 ,oo bB .oo .oo 7~ ,60 7) 'oo 71.1 ,oo 75. ,on 1fl .oo 17 ,oo 70 vOO ,oo u ,oo 81 "oo 8Q ,oo 85 .oo 86 ,oo 87 ,oo 8tJ ,oo •'>0 9l ,oo 'lJ 'oo 'Ill ,oo '15 ,QI) '16 ~oo 97 ,oo IJU .oo .&1 !Ol •"" ,,, ''~I l :;.11 ,.,s lOS a,oct lOb •"" 107 ... , t:»e a •" a.ao IU a.a~ ill a'o7 U4 '. :u 115 lelS llb a.z~ ill 1,69 au '· )2 •• )0 122 a.za tls a~.n u• 8. t7 U5 •• 15 126 a,u 127 ~e02 1211 ,u • n,u, a• !'iOlt ~' Oe l'» o. n '. 59 uu~ "" o, ,, o, .~ o, ,, Oo 109 l!Ub&&~ ... Uftrf, ' ,:u at ,u 29 ,oo 3'1 ,oo ., ;00 ,., ~56 6q ,00 n .oo 89 •. 91.1• C)9 .oo tot a.u ••• a. u ,, ',, u u 3(; •o so 60 ?0 80 ~0 uo 110 uo u u JO flO ~0 60 to eo 9{1 f.\;} 0 HO UP ~~uo, ann, o, . o, ~. ClfUO~ o, o, o. nan, UJSIIa 101112. ,u ,u .u ,oo ,oo • 30 aOO .o~ eOO .u I • #fJ I,U· D ..... w 0 PLOY 140 1 & I I (I 109~UO I 0000 1 oooo I 000000 1 iOGO I 000000 Z,IO+OI • ij00 I 000 1 0~ I '• 0000 ! oooooo r oo~o 1 00000000 I . ooooo~ I 00000 OR C r oo a,,o•o• • oo l 0 t 0 I 0 I 0 I o I 0 r o J 0 J 0 f,oo•ol • o I 0 o,oo I 0 I 0 I 0 I 0 ' 0 I C J 0 1 ' . '' ·. 000 l•••••••••l••••v••~•l•••••••••l•••••·~~el•••••~~-·l•••••••P•f••••"••••J•••••••••J•••••••••l••OOQOOOOO ' 7 lO !& l~ I~ \f 20 ~~ 2~ lOt 107 tlS lt7 !ZI 127 ~~ Ub ~8 19 ~0 NOOE DAY 0, THE YC~A llb • 0 ·,}· (; .. \\' .. , •..... : ,. .-' . "' ' bJ• vt ( .......... w· - ~-,-~.~, ,. ··-' .· ~·. c \ YtAR OYHAHlt IJKULlYION oi llL~NIT1 AHO It~ iH,LUENCE tiHr HUTORV TDI r·.OT HO• I :,eo•o• 1 l O~lOOOOOOOOO J 00000000 000490 I ooooooo 000 I 0000000 0000 J 000000 000 t ooooo ·ooo I 000000 000 B OOGOot Iii I I 0000 10000000 . U I U l 00 z,ao~o• .. sa u a I U U 2C!222 l Ull 2222i U I Ill 222 2\ 1 u a uu 211 1 Ul 22Z-2. U i I I I i!U ! I 1 IU i!U 22 l I il 22 2 I t a a 222 2 a 2aOOtOI • II U Z I 1 1 a z2 2 a I U 22 2 U HC/L,ecPH I ali 2 Z & I II • 22 2 l I 61 22 2 I~ I I ·• 2 2 I I a Z 2 II ·~ u 2 '' or. c I ; 2 U l,6o•o• • U . 2 U I 222 . : ll 1 zaz z u 1122 2 I 2 i ~ 1 2 ' 2 I 2 l 2 a,zo•o• • a I 2 I 22 I · 2 J 22 I · 222 I . 222 • I 222 1 2 1 • . . o,oo•oJ l••••••••·l·········I·····•···•Q······-·I·•·······I·····~~··I·········l·•••·····l·~····-··1•···~·~·•i ~~ ao.o eo,o azo,o lbOsO zoo,o zao,o 2ao,o l2o,o l•o.o ooo.o 04'1 FIGURE D-2 HOD[ NUHB!AS 12 t ~ 26 o t •*' • 2 CoMPUTED CoNCENTRATION VERSUS TI~E AT SELECTED NoDES (THIS PRINTOUT WAS NOT GENERATED BY THE SAMPLE PROBLEM) {\ .-. APPENDIX E •. {: ' ,·· ,;_ (') ' w "' ' ~ w w e ... : C WYO~J )3 A ~AT~tMAfiCA~ NOO!L DEVE(DP£0 tO SIMULATE C TH£ HT~qOOYHAMICS or AN (3TUA~Ye e. OEVELOP~[Uf ~p TH£ MODEL ~-~ ODNE UN~~~ Th! 'PONSORS~I~ . or T~£ ClLIF~~~IA 0£Plqi~E"f OF ~AT£R AE~OURCESr CALI~ORNJA !TlJE uAfEq AtSO~Ae£3 CO~fQUL 80AA~ ANO THE NASSAU•SUFFOLK -~GiO~JL PLANNJ~G 8UlROr ~E" YU~K 1 AODJflO~lL HijOIFltliiU~S h(~E H40E U~OER CONTMAtT NO, oat~~s.r~.c~ooa~. ~lPaq~~~Nf OF tH! AR~Y~ ALAS~A OJSIRICT, A~C~~q~~~' ALA~~A, c c. c c c c c c c C QUE~fln~S a~G6RUl~G TH~ CO~PUIEN CODE ~R l~l HUOEL AP~LICATION t $HfJIJl.i) tJf. l>l~t.CJED YO OUUAtU J, Sttlt"• TElfiA tt.CH, INt,t C . 3700 HT, oran~q 9LVO,, L&F~YEifl, CALIF,, •a5a9 (ql~·28Ja)JfSJ c;:.: CO~HON /TID/ NJlX,JE·(~~ltAX(7,80j;~,JT(5U)1 YY(~O),~EHl0D,JGH(200) c 1. ~&NG£Cl~0,2),1LAGt~on,l) · CU,.HIJJf i(;E O'il JIJfl ( .!0.0), NC.il ~~ (j! p 0, It), NJIJNt! JOe) 1 2) t .,0 I flU 00 l I, •SI~(Oltib)r~~tk(lnO)rU~Y(lOn),UtN(lOO)tAC3bO)tAC~CJ9U) 2. &b(JqO)rfV&P(iAOat&~(I~DltA3t2PO)tAS~C2UO)IAt(l~nJ,U(JOV) l. r•H.( l!.O) tO[fJ ftl(i!!liH ,,., l!i'(l) vt.rrH 3G.J} 'R (3110 J 'v' ,liiU, ')( UOOJ ~; vOL(Za~),Y~~nu\,QI)Jn),ACAVtJJOU,~ASlVl(iiiO),AS~(lOU) S, AA~~CJO~),OlPAVl(ln0),0(Pf~~f2R~l,,AI~~(J00JthAY~tlU0) ~~ ~Nfl9Ult~TtZ~0)1 QAY((JOU),~,,JnO),QP(JbO),P&~l(JOO),R0~(200J 7, A Sf '9U) 1 P!Jr.( JUO )t !if LO"' ( 2t11J), vAt\S UIJO) 1 VAVU JOQ) t Qr•C lOU) 8, ~ULAVl1!DUlJfULHilOU)t1SfJQQ\,VSQ(lOO)~~~~JUO),~~tiU0) tO~HON;~IStl ~J,~C,LiLT,~LL1~,~~~l~P,h0SftP,t,rl,D£LI2,10AY ]; n~thtiDr~HP~~~.IJU,~f~MP16)rQtH~(Ift),~fLOuDCI0) t0~~0~1 IO/ uP~t,~~~~~h~~~I,4~V~f~lf~Lti~))J~"I(JO),LV~tC)U) 1, piJTH(')'), Jtt)1 PQ1Y(~Hh \0) ,PIUntSOt ,.,,, .. UUitCSO) ,~,lf'LUf (~, :J) 2. 'lt::t,(}f(5,.S)1 TITI.fC.i'OJrTITLCll))tLTII'bJIR(II!\),PfT5t ~J~£~,,n~ ~di'1(S,2i,-l~~(5,2~),~orij(5,l~),UVUI(l00J•I~tl5) Oi"l~StUM ~biY(q~) nr~t~&t~' ~'•qc9J 'Jbl~St!~ Ev&VOC2')),q&INn(1~)1 EVAP~(20elS)rk~V·~(l~,21rSUM[VC~OOJ pf~f,JIS HI'• [V&PI1 ( lflrlS J, teE YAP UOt l) • SU'iE V C ~OU) tUH.GtP CP!ff rttAL i.''' f~YIVAttNC!t~~CilrO~DT(I)J OATA $t~~O/lH It SfAql/1~•1 (.u•• TiTLE HtFII'IIUiltl•• PlAD 15•iGOJ IIJL~e111L Joo ,o~~·t c;~aq, UO '0~>4AJ Uhlri!UCI;lOII, 'Jt:TR~ TECtt HtC, t ,/lllt~OAUriOX, ILAfAYUTE• CA JLlfU~~1A'1 1rtK 90x,tTIDAL HIO~DDY~&HICS PROGAAHI/) ·C C•••• G(~ERAt CO~f~UL fOA 3lHULAJIU* -NO ,RlNf ~fA~ (~~~l~J ~S~nO~'~"PPfe~UP~T,~t~L•NS1AUt,~ffLDMtNOY~I~,N3TEAOtN ,, f.t[)Y,. ... c:O RlliJ t~rll•H (HDAY(J),IJittln&tlH) ••lP:.•m.,•.•., IJ JIJ A 'J;, ft 'fJ It~ IU~MAI ll•!~) c: RtAO ,,,120) tJPRtfl),l•ltN~'R1) IIUD (St.f20) (CPAICUtl•lrN~Mf) tF (NSTAn!,GT,OJ RtAO ($,130J CCNJ,LDf(I,H,,H•I•3J•I•l•H9lAOEJ IF l~T,~Uw.GT,O) READ I~,ISOJ CCNC~LOICJ,N)1 N•I•'J•l•ltNffLUW) UO FOIJHM Ul5» .. JtiH2hrO . tF l~l~~.GT 1 0) HEAD CSti20J (JIH(J\,J•I,N18LJ q~-0 l~,tunJ QCLYfDE~JO;PERIOOtD~IN DMINIIOJIJNO, • SIO ,oQHA I f hf: 'J; 01 NU~Il~c)~OOt•Pt~fUD/O(LIOtflol ~H&ft~~J~OQ 1 •P2UIUOiD£LitO;I NIIPlAih:I~H~' f.P, , .. us I EP .. PAfc~.-f'fJIQ .. c • . C,, •• q[AD A~D P~OCESS SVSI£H GtOHEfftV DATA IIEICihn CALL GFO .. ET fNl~8J) IF (Nl•IJ,j1,0t GO iO ISO c . • . Cu•• C.AlL ~f'NI•,.IJEIUfiG llf)UTJHE II" ST!AOy IUTl OUALUY fA'E II lt't.Cir&U JF (U5TlAG,Gf 1 0) tALL NUMU[~ C~N) c ISO CONJ I NilE If (N~:l0 1 99?) UEalt•l wAIJE tb•llOl fiJLE,rttL wHilE ,~,.s&ot ~sEso~.c"nAYCI,,I•I,~sEso~t. -· t~li11E fEJ., 170 ~ t11:1SJ£P ,NilSHPt N:J UGt;NtFLQW, NZOrNS6~PUI09 t&O Fd~~Af f'O~U~dlR OF HVOR&ULlC CU~OftiUNSt,t,O,ISI,t~~V~~tft Or flO& ll CV(Lf.S P(R CIIIIDIIJt)'•'•TSO,hi~I.,U51Jtlftl5)) 176 FOif14AT c·~tfHIIJHI\lR IU ttYIJIUII\.It IJttr Silt'S I'E• C'rtL!Iti'S~eUit'OtiUit . IPER OF OU~LlfY JIHE Sl£1'~ Pl~ CYCtrL,t5U,J~/,1 ~kU~~t.R U, TCUAL til i!r.£ PLUU · i, f!»IJ ,1 'il, t ONIJHttf.R Of 'fJO&I. VEt.OC (tV I'Ll' IS l 1r11\0rl'i/,lllO.YNAHlt 11Y0"AUl.l\. OUIPUI Uffll ltf"lltiS>'tfOI dTlAOY ~Ur£ tiYDIUVLICS lJIHPUf Uh1H t,t5UfJ51ti011UQ'-l't.HIUO, ttOU '"''~ '~".~ !J .• ul) ~RUE t6t11\U) Nllf'kf fJPHiU),Ie&,l\juPRH u 180 Flllll-!&1 C' Nt5ULU flRittllo· AI fttl! Fnt.llJotiNGC,U,t JUNCUUUSI/IICIU a, Hd.h) \ t~NJIE (bti~O\ NUPHfr(CPNTCIJtl•l•"OPRl) Ull FIJA'tAJ Ut·,511,1 AttlJ fUN THe:. FOLtOtolt,C.IJ"),t CH&NNlU'IIfiOJiti•UU '-Nlff (flti!llOJ 2~0 FOPrAI (IUFUltO~I~G PL~TS AR£ ~AD[I//1 OU ,au I:~ D J tiSfAGE . ~HI1( fh,liUl 1NJPLUT(1,~),hD&iJ) l\0 'OH"AI tiSICt 1 TIDAl SI.AGf fi•A JUNCtlh:fi)I,J!St 220 CIJ"-fll"4U(. hO iUq 3:t,NifLUW wqtfE rb,ZJOl C~Cf'LOI(I,~),N•••)) Bll ,. ..... ~At cas"• • ... , ... 'Lnw FnN tH''~••na •,usJ 2CIIt f.IJIH I IIIII: C, 1 ,: ~>tit liE JN'/AIH£ttf t;~tJHt"IHV OA I A lSO fll'lllll l"tOC,1 111~AitiAIIJ Cfi&NNfl OAUt/f',t Ct4atmU, Lf. .. DJH1 ,, I Hllll••• f I IIYO ll~o, t f Hill lLEY• t'~ HANNINU N tt40 JU,.CUU ~fl'i $J_Rf -.Lnflt UAN II ttl, St f. 1 I J • ... ~ •• ti .. i• oo 100 J•&~~e ' ~ tf tNJ•I .. C(J,UotoeOl GO tO )00 tf (,'4QI)UI,uU.tt£.0) GU tO l6t wqllt (t;.; Uul 1UL~t·f.lt1., t>:ft,llt '"··~~Q) ht H•l ht $lAIH l \•~UifO, tCaRl,l\ t• t•t~&J),L~,O,OJ GO TU atO tuau,•J · ~~ j70 l~,,fO~OO 1Uaf'f•ool - tAad(J\•~tJl•I8•Ct(J)t(8(J)•V~•ACKtJ)J)IleO ff lt~.~f,0 1 0l GQ lU iiO ITO cc•• I I '•\•t. 210 Jt=~CJ'/~C~lJJ T.C a.\ -.1••11 fC , I IS) . If tH~C tlt•ICJ ,r,J, 0 1 0l 1 AND 1 JC,lt eOMIH) I"'R(IJ •3Uftl ItO CUt~ t ,.,,,t_ . IS(J)~tC . . . kP(IE fb,JIOJ JtallN(llttltt(J),ij(Jir~(JJ,tC,CHH(J)t(HJijN~(J,")'~•l a;lJ,lC~1JJ,YTCJ) · tF (HIJI)(Il,IISh(ll,O) WR!,U (f.tllt' )0~ tfiiH lt111£ lU fOU~AT ( I1 1 A \ 1-Fl )1 0,F au,o,r Ill,! ,p !41 1 lt.,Ualt 19t I8,FUe0fH4o0) Jf (MOn(I&,~$)•U£,0) ~Rltl l•tJlU) S!O rua~At c•o~O~f • • ~ lh~J~arE4 ht,AtiVE MIOTH I~ POS.IBL~ ~ltH ANt lJCtPttrD·fJU4L ~fAGEt~ JJO FOV~At (~O~•lJNVAqfA~J JU~CIIO~ 04JA'/18 J0NCTI0" AR[A, ~3, aL lOPE, ~aF/rf ~EPI"• ft HIN tL[Vt ft KoCUAO Y•&OR~ a 'wl~~fLS f~J£qi~G JUHCTlUUI/) ur:o JI)•IJ t r r :IJ. C\U J9tt J•.l;t,_, IF (~C~4~(J,J),f0,0) GO 10 l9D JF C~Jn(IJ 1 t~),Nf 1 0) ;Q tO JIO Wij(J! fb~llU)-flfLftTllL "'"fi( f~,JSUJ l•o ·II•& It• flJ= IUt\IIJL CJI fla •[ •a!HJJ tecrif.PJri(JJ 'Uiif9,cSUIIO Jf (AS~CJJ,Lt,o.o) Ga TO 370 ·!h:t~·" ,, AO )S~ J%l#l~OOO . • r~il~•o.l . . JAttOLtJJ~fU•CA,CJ)t(ASIJJ~ra•AS~(JjtJ/~,0 If (f4:Lt,O,O) '0 TO )60 lSO co·· r 'tmt J•O 7t•ASCJ)/4~~~J~ JC••~&~1flC,t6J ~ . I' (ld,(fd•fC)1 Gf~0 1 01oA~O,JC,LfeOMIN) SfA~Ct)•IY.RI l70 C:O"ftiuut: '>U Jftll ""I, 0 'f•t,(HllfC J," j c c -._ ... SURCIC\•,UAO tJI (fC.Lf,,.SIN)) SUA(t&)•SUA& soo tu~UNI.•E · . .. . . . . . lftU 1£ t~, uo; .J, 5H'It9, •I JAR C9 J, A'ftJ),£111 CJJ, OE,.YH(J), f.C, JC C,U, YfJI I,(»CHAM(J,~J,,TAR(K),~·it~) u: eHUnUa·,U5),.U 11 0) IIIAJU U,•UJ J'o tll~>~U~uE . . . . .. . . . . .· .. •oo FUq~~~ Cl~~la&,-6PfiO,Ot,tl,irOPfJSt11'j'•I•IIJ,t~'·l~ttlfi,ltf(ll .I ,AU) If (*1 1JrJ(IJ,,~J,NI:,C) "RUE ilt,lllO) . . . . . . . . .. •10 F'UiftU.f C tot,~UJt: • .o •. •'~or·c·,;.t£$ f"tfi\T OEPIH 01 CHAtlt.l(L £NUIUt.C JU'IC lllll'l 1"1 UUtGflf fHA-1 JUtiCTIU~ IJVT•i•I;11CIIu INDICAIU ~UAlJV( VOL 21114£ OIC .UI(A U PnU.ULt WIT" ANfiCI .. 11.U tiOAL U•Gt.t) tA•IO/f~ . w~Jft I~•UlO) TPtfE,fA · . . . . . . UO fUifotll. (/1/lllti U1Ulllt U41UflCS (Af HSL3:•/$1¢',~C. .. iOUL VOt.li•U.,,: C Ju tl tt.IJ 0 0,/'iii,Zllti IOfAI. liiJA,ACt Arit.:d, SU H1Ul,I,/Silt26H ;,.- l(A~ o~P~~. rr ,taJ.~) Jf 1Nl~.Lt.o) GU 10 4JO P(tf(ttD HlO . · · ~Qllf (h~OI ~J,ut,((NC~A~CJ~i),1~1;Mt,JtltNJ),((NJ~NC(H,JJ,l•lt2), ll (N C~ )., Na ~ 1 NC) "JI) t.Uffll·'lll»t: !I-CNlnolt •0) GQ TO, &aU Ql~I~U •ln . . ~kllE (HJUJ NJ,Nt,&IQ wRff£ t~l~J fJUN(J),CNCHA~CJtl,•l•itl)tJ•l,NJ),(NJU~C(Ntl)tHJUHCCH 1,2)~L(N(~),~If,~C~ •110 CU'•I I Nut; c . Cttt• HtD'tAUt AC C0 .. 0111UNS &.OUP no ttln as~a,~~Eso~ ~(l~ 1~•100) Tlil nt•o c~,•~•, •lt"P ~UIJ£ J~•liU~ f1fL£,JITL IF I NJ P'P I U .En,l) Gr) fO 160 c c.:,:, JN~Uf Tt~Al COUOITIONS UfAO C'tllO) NJt~ w~l.•l:tua~~/PrA:oo c JHl &~SII ttc.l.~J!:ll ~[~~ 1~(~~0) Jf•(h),~l~~A-It,NCHTJO PLAO (~,tu~) tl1lll•fY1J)~I•I,NI) CA'L tJOC~ (NJ#HAX&J~~'"tlO,~) ~&5o w~ 11 ,. .. f. w~ilt ~~~t\bl JIJL(•JllL *bO If C~lfMP(l):lQ,I) GO TO 510 c"".. l v' , ...... 11 (j~ Pnl 1 /(jl,alo,S•ftbQ00 1 ) \/AI It ttt,Qlll) 479 ,UiftUlt'IIJH~CfiON TO JUNCfiD"' EVVOAAUOH RAU:, INCHfS/MO,.JlH/~ C IJO '"~~41 C*OWJU~LY ~VAPO~ATJO~ A~O 'A!NF~LL R4tEt/,t JUNC~IU~ '0 JUH · C ICifU~ I L~iPO~'liON, C~CijE~I~O~l~ I R~I~'AL~ri~(HtS/~UURt) oo cteu J•a,NJ ,~ . • ~'-; ,_r , '·' '. •• I ........ ,v \1\ e f.-::' • 800 tyiPtJ\•0 • no SIO fat.~l H Y D It 0 •• -•t•o ,,.to~J J'•JZ•!VA~~ t' CJa.L~,O) GO TQ 5~0 . • ~£&0 (~,~~OJ C£Yl'0CJ),"AI~UtJ),J•1•1S) w~JI((~tU9~) JltJlttYA~l ••o ,qq~•trJ9,ttr,rro,~J C ~qftt ,,,aqo) JltJ2•£~APOtR41NO t ItO FO~~•T tt~,J12,/tSt,l~'S~tJJ t~!. \':I ~('V&Pf f1 IJIJl \Ot VA:' C1, il•JZ TA.9[ V'ohF 00 !l'l!) JaJ,C!S 500 fVIP~(IrJJ»JA . C 500 t~tAFif(toJitf.'IAPU,(J)•F•AAifltl(J)It3210t 510 CIJ''ri•mt 520 CU"'TI .. tJ~ 53~ IF (~IFHr(lJ.£0,1) GO 10 •00 c c,;.; wi~D V~L~CfJY AND OI~E(1iON lolfiTE ibr!tUU) SIC Ft)DHll c•o~duqLT HIND V~LOClTY C"~Ht AND OtRtCTIOH (~EG~t!S CLOCKN 11 s£ '""" rmrttJt) ''• I CttAtt.,Et tU CH~'IN£L' I) ruJ tJ7u 1= lfttJ q£t0 (~t11R) JltJ2 ,, tJt:lo~~J G~ tu s~o ~~JhD(f,t):Jt • ~"l'•Dt t•ZJ:tJl ~l-Q (~,§§~) CWINDCitJ)rWOtHCI~J),J•t,2S) 5SO fQq~ll (lbF~.OJ J lU'I:J ~~Iff t6~560J J&,Jl,fJa~tNOCI,JJ,HnlftC~,JJrJ~I•~S) 560 ,uq~•r Clij,Jta,sct•,,~.a,,,~oJI•C••••sci'•'•·••'&,OJJJ 570 co·•rt·•uL '"' crJt• r 1'-•tt. n· l"t,-ttrta),tf1Ttt•Ptslt'f.1Etl11'(6) ei.T •}) rtRIJa C6r5tOJ StO F0q1'1 (//,, J~FLO~ &~0 nUffLU" DAT4 1 J 600 tF t~trH~(~J.LO,tJ G~ TO 6tt· c . e •••• JIIFl,O,.. AtrO Outf''LO"' 1'10 tllO J~!,NJ flJti(J ):(I, 0 iJ•JUC IJ:o.o 6l 0 CIJIIT lt•t•L w~ttE tb•~ZOJ , 620 nt:t••At ( •OJtlNCUOH · INflUH, trs plj b~(l J=t.~J . . . plAO (c;,~>!l)) U40f»1NtOC!OU •Jo r~~~•• tt~.t~~Q.tJ • · tr C~.tt,aJ ~q TO 660 ~kill ru~~~~) ~,nqr~.uqo~ ••o ru''"•' u~,ra ... z,, to,u 'it •I( '' hlliJ IPI !)fj•J' •• , : IH~Uit fl:!JO flt•H l••ttl. t.l)t ru••r t••ttt. HYDftO 67& i' C~T!H'C'J,tO.Jt Cd TO f•o e . c;; •• c~ou~o HJtEh JNFL~w . DU 61)0 Jzt,"fJ 6110 QGIN(J\•O . ~~lit f&•b.OJ ··~ FQqMtJ f'OJU,..CliON TO JUNCTION 1)0 ll!J fc:&,NJ AlAO (~,7un) Jt,J2•GNOUNO 1~0 '0U~It (ZI~,rS,O) ~f lJj:Lr.nJ GO TO 719 ~RitE (btll'l Jt,J~~G~OU~O 1j0 rORHlf (JQ,Ill,F!~jl) PO llit JJzJJ,J1. 1iO n~t~lJJ)aGqU~ND Ull ro,_r I Nut. f,.o tF (tlfFf1~1 (6).f.D,iJ GO fO toO c c.:,: !fO~H ~AT~" !NflO~ 1\Q 7'io J~a,z~ 750 ~SI~(ut,J):O, on hll .J=t ,NJ 'hO ~Qifi(J\Ul u~l r~ t6,.Uol fJQ tuq~tl C'bJu~CTJON 1 ,TZ1~•3tORK ~AT!~ nu fiiN Jcq,cao At•o c~,76Q) ~.cr"c•,~•·•••a» Uo I'URii• f US, UF'l 0 0) IF (N,r•J,ul GO 1fJ fiJO D[AD r~,,qn) cr~Cil•l•lJ,ZS! 790. Fl)IIHAI lll'S•OJ fAliiO I'IIJ tlllfl I: &.1 l5 ,srtttJ;a, a:lttc n ftOO t•=rl•t11IJ1 QSJ~tJ,~6)oJA/25 1 w~IJE fb,8IU) ~,,&,OSIH(J,Ilfl•l•2•1 810 FU~H41 Ci9•1fll(le,,.olll) NiUN(N\aJ n.o cw• r 1••uE e :So r.IJ't II ffUI:. euo .cwn Hmt If (Nttlt,(f~OJ G~ 1~ 8t& NIHil! fbill'iO) e~o ru~~a• ,,,,,aocao~ tfoP ·. IPIJf:VI!liiS tfiHOifl ,,, UUOH ,JI')ii . 860 ruNtltiiJ[ t:I),O on ll =llfl 111., u w:~.l1\l/(,~0~1 &PEAIUO) Lllroll;ft nn hJU Jca,~il no utu JcJ ,JB rlfhtf 1 :.nen,o PIII•Jil,J)ancO ·. .. N ' w lll ' - ·- lli PAfYCI;Jla~,O flO uv .Jaa,NJ SU 14 EYtJhO, JG .. CJhO U4VE C.U•O ,O "tJillJh(J.O nvn 1 tJ \.~o. c, yl)l., A'll; ( J. :.0. 0 OEPAYftJ):t)1 0 UULCJ\&1)1 tU,.Gf C .It I) a •l Oot .... l,f l.Jtl)~\000 ·o~J· .. ~., l~l,l leo TLAG(J;I}l~,O M tl'ht H& &.ttl: vsrnJ:n,o AS 0•) 111'1 1 0 VAI\:JCil,:IJ• &Cil,'(((t.~Jso,O JISfH 'IJ:U 1 U V:SQ(N).O,O fUVl(t,~~CI,O nut.t•,)=O, IUVHHia:O o•'Cffl=n fl'tfh) =~ &tO VAVt.C .. pOp O•l 990 t••l tfiJU J•.ll• ,.,, JG,.~Jhfl Qflll'lOtNhO 1 0 qUUH '•):aC\ • 0 too tiJ•• 1 l•ml:. · c .. C~•-• n&ILY tlMl STlP lOOP IUAY&:Mnavcrn 00 fO~o Jla&,IOAY I fJ• I I c • . C1111 ~UA~IIV fJMt ~TEP LOO~ Otl IO~B lfl:r&,,.DSTf.,P Jlf): ,,, If (IO:LY ,JOHl GO lO tiiO !IP.If J Clip If' IIU q)Q J~I,NJ o£PfHliJJieO• VUL U tJ t.:aft 1 ASf•(,t hO. 0 tao r:u~ 1 ,., .. ( I)U 9l4' l•l,~fV JI•Off:VAJI( I I I) Jl=••h .,, ", l) IW fJ20 J•JI,Jl •• tlO 5U"LV(JJ&SU"EYCJ)tEYA,R(IriG)•AS(J' 0.0 'UO Hat,NC nu(r.J•I'I, AB('I)ao, •:so vor,.••o.o c c;:,: ~~~D 'nACt too fiiU 9SO Ncl,NC tS~ 'lfi~O(JI)IIOaO QU 970 I• l • UON IF C~J~O(J,JQ~,L£1 0 1 0) GO TO tfO Jl~~ .. lu\)(1, q,. · Jlc.,. .. hiDCitl) 1'10 \lbU .. :llJl,J~ IF J'tJttUCU•rU,UaO) GO Till UO ~IL;;NJU•IC ,.,, I, •ut:::.Juuc c-.,.l, KOU(NI-IJ .. X(ttl) vo:rw••)•YCIIL) IF (AP~(KO)tA~SCYO),LE.~,oj GO TO •~O FWihOI~)c.wa~~ta,a,»••a-cuswwoJRca:&a)/57.•A7AN2Cxo,Yo)J•a sr•• •6o eo~Jr~uE · · • 910 Ct1NIINttl e C fVAPO»&fJUij OU f~IIU Jrq ortt!V .ll : flf. VA I• ( f 1 l ) .l.!=•~t lld'C I, l) flU 'J,U J:Jt,Jl c tOO rv,PCJ\=fvAPRti~IU) c: CALL OyNfLtJ Jt uo:L l ,IUH) GO TO USO Fd'LIJA T( .. HPENII) C:J IJ'lQ J:t,t'fJ OEPAVltJ)~~~P4Vl~J)+0£P1HD(J) OtPIMUtJ):Ol~fHb(J)/F VI.ILatlJ\:V(ILU(J)/f. &SII(J)zo\SUCJ)/F 990 [{Jfl flllflf DIJ & QUn t4al, lit mt (t~ ).:nil ( tl' n· 6CAV( (•t):.tr.4.VlCHhA0CN) A!IC"il:AIJW)IF 1000 Vd(N):VU(NiiF niJ I OJn J: I ,tiJ If lUCu•NU, I) ,t.O,U) GO tO IUO tA::IJ,U nu 111 an 11.:', n· - 'if Ct.ltuAII(,J,It)olO,O) GO 10 IOZO ••:tl(lllH t ,1, IC) &010 TA=t~tAUS(U(N)) lOlO SfLuw(J~co,~•r•~DELTO/VOL~J) ao 10 cu••t H•ul If (Nln.Ll,l)) GU JO l05U ou &n4n J•I,NJ H:s•uuur 1, jO•O O(I)CU~Ih(K 1 JU) k~ltf tNlO) Ju,(DtP1HU(Ji,VULCJ),4~8(J),QINCJt,aCJ~,aGINCJ),QUUlJ) &,Ja&,NJJ,CQU(Na,AQ(N.,VQ(N)•~•&,NCl · • n ('). \. ~ .,v, t ' w .~· lUO t01>4flt.att lOU CO!IIfll'it!E c . , l!FI,.OA.t. (Nif5 rEP I 1)0 10111 J•J,PIJ ar l"t~AN(J,IJ,[Q,O) GO TO IOJO VOLAVESJ)cVQtAVE(J)/, HlVEfJJa~AV[tJJ/r &3lVl(J):~5CJI•ASK(J~~HAV[(J) DlP~VltJJt~lPAV~(i)/F uu co•HI"•JE HyOIIO hi'J 1 Ol!n •:..:.a , ''~ til t••Ju••trtt, I l .Ln,O) GO. ft) Uet V~f~J~yJQ{q)•VAVt(~J-•2/f AS(~l•PSQ(»J•q&VE(~)••ll' VS C"U ::;1111 II 'U ('HI ChI, 01) AS(,.]:~~~l(q3(~J/(F•J,0)) ~4Vlf»\~AAV((~J/' Q&Vl(~\:Q&Yt(hl/F y&bSl'.•i=VI~J(tll/f VA~l(~\JVAV[(HJ/f ~Avtt~\:BA9lfhl/F 4CA1E(~)c&CAYlC~J/F UIO CO'Jli~!uE nu ao~o ~.a,uJEx 0~ LIJfiP; ti J :1~f lO!ll)( N) If' . ~ l~to ol~utn\~o•q~'"~'' / IF Chl~•~lO.t~,V) GU tO 1160 I ~ tii.Cflt an. tt[af.-11.fl0'f CUE,ICIEtn:. ( j .. ........... I)IJ IUn,J:a,NJ , '· J ; su~v~·~·· . ' sutt.te•o,o IUJ &\on '~=' •" Jt;l~.t·ta~lJttC, ar c~.at,o' GO to aaao Jl=~JU~tC~r1) 1 J Z• .,JU•tt I'"..?) lq£AC:=I\AY(.iN}~f tN(~). . . , . .. . • . . ~C~A~:p(~1•fM(J!J+~tJ2Jb/2•tiHAYlCJl)tHAYEC~ZJ)I2, l'IU~AC:r~V••At t AH[ 1!.~ •UCtfAN • vc•u.uc.r ~•tHhnJ lttCti*N) • •• •' !\U'f ~II: ~lJMYH. Vtt'i~N. APE AC 1100 Ct~!U l'•d u u tn•.n nuet. . . . ~1111 t J hSUtiVIfQ llt '95/!UttA~ U U c•t•H Uiut. · Jf (UJ~,l~~01 C~ TO tt•t tJO 11.31\ hi ;fiJ l(dt'HU t i) d(IJc.'r~ClttnSiNCKtl6) iiJO Vl(J)a~LiutiJ fVAPfl\at~i I'll ll~tl Jai,~J tf (~CMAN(J,&J,lO~QJ ;o TO 1150 K atHIIr• f J l $UMlf(J~~SUHt~CJII,~JAl~"g5T£P) I •. c c (VAPCtJe~VAP(I)tSUM~yCJJ ovnT«J,aotkCJJ•OGJ~CJ)•osauc~,z•J•oUUCJ»~suttevcJJ OU 1111 n !!: II: I, 1\ IF J~Cu&N(J,~),tOeOJ GO JU ISSD ~·~c~•~cJ,~J · Fat,o IF ('IJUtiC(~, i) ,£ri,JJ f••l oO IIQO nvotCJi:DVDf(JJtF•OAVtCHJ &ISO CU~fllftll ,,..._. / l' • ·.·i;r·. . ~: l ~ . ; . ' Hhllf 1~3~) QERO,UFI.UUOt(OVOTCJ),~[PAYt(J),A5.V£(J),YO~AYtCJI•OCJJ I, v r ( J I ;tllliJCJ) 1 IJIIR c JJ, J•l, NJJ, C ACAvf: lN) tOAVE CNJ, lt1 poe) ,ttAV£(N), u ,.,, 2,V~USi")•H•l,NCJ lhO CCJNTINIIt. IF CN~~.Gt,O) HAllE CN2U' CHDRCJ),otPAVt(J),J•ItNJ) CAli. OUfPUJ tLfJJtt,mUAGE:,NIF'I.Otl) 1170 CONJI,.Ut. IF 'N~~.GJ,U) E~D flL~ N~O If CNJ~.r.T,O) E~D 'ILE ~JO STOP END '-:.- ...... ) . ... .. ) • f ..... I f ~ ....... -· .. 'II c c c c c t c c u " y ~ &UB~OUtl~t CUAVt ,.,Y,NPftNC~tNPLoj) bl~l,..,tO~ ~C~Pt,NCV),Y(NPt,hCV) N~tR~ ijPT•~u~ae~ OF IN'Uf POlN1S U~ lACH CURVE NCI•~U~Ur~ U' cunY£$ ON ~ACH GqAPH: ~PlOT~•~I~TEQ KtY, J' tHP~U1t • •lw N~ PAGt ~JtCt UA TJTLt 13 PRJNtf0 1 aCUifVlo OUU. t•Ul H4VE VUJ&tll.£ OIIU>'UTIONSt \;:iMJGE NEXT tARO c e c hl"£~SiUN ~ClOStll• YtiOl,l), N~t(~), OUHXI4)r OU~Y(Q) CO~H~~ Ill~/ XLABCl&I,YLlU(.l,TlfLtC1l),HUAIZ(lJl,Y£"lC•ltiONIJQ 100 1~5 c c c .ttUh\•l'£)0 ¥-tl'at.uf lll 'IHlJ(:a.\•OE JO YHI~=a .. ot]O 1)0 Uti 1\at,NCt fl~•aPJ (If) -DU 100 JcJ,N tF (X(J,~),Gf,XK.X) ~ttl~aX(J,K) If (I(JrK),Lf,.~tH) ~HlN3X(J,K) tF lYC.Jtk).G1 1 YttU) Y~AhYCJtK) IF (YlJ•~I,Ll 1 YHIH) YHI~eY(J,K) tO•IH"'ttE 1'\UIU (I i=)ttJtl 011" II ( i l U ttU r•LL ~rAlE (PUMI,~O.Og2,a) OU'" (I i :a'otlta I)U,.Y(l):'r'1l~ c•LL $r.•~t lQU~v.s,o,z,a, D!J &n) t(:r&,NCV Ut:'ll' fC If I ll(~tl.~JaOij~t()) ll(lltl,l()ll(llltll((ll) 't INti t II J a()IIHY C)) Y C-It/, If J I OUH Y (I) CU"~fiNUI: ltft (IIC0il11lC ( J) f\tL u =oUMat r" » .l!LAIH )i :alP1IN nu i 1 o 1•1 i.t o 1&0 ~L4UCJ•II••Lld(J)t0~Lfl c ~'CAL•IUO.I(x~A8CII)•JHI~) ft(i U, X &NO Y $CALli C iDA" Y LAS~LO AND fACTORS c 'fH.fN&Otl'fJ ( )J lift. fhi)U,.t(q) YLliHoi•Yfflff DO II S J• J, 5 liS YLAH{~.J)aYLA0(7•!JtD(Lff v:ICAL•'lO.I c YI.Ad c I )•Y14Jif) c • • c c c c: c c c c uo us uo c c c NCO•!Oo CALl PPLOJ (o,o,~co,~'~Of) DC• I l)O l30 \.IC lt tJCV tF (NPJ(L1,E~,OJ GO TO 125 ~O:rM~C4L•(¥(1,L)•~~!~) YO~YSCaL•CYCitL)•YHJN) NPIJINfaNPJCL) 00 ll~ N=l~NPUI~T Xl:ASCAL•Cit(N,L}•~"IN) VJ•t~CAL•(Y~N,L)•Y~IN) CALL PtNE txo,yo,xr,yr,~,NPLOt) :t.J:H YO=tl CUIHINuE ICZ:Ktl CU'411NUE NC•99 CALL PPLOT Cf,O,HC,NPLOTt RETURN £NO CUNVE JHIJIALI!i.,LOV OUJLI~l JOINING XO YO ANO XT Yf OUTPUT fiHA~ rLOf . ' rJ. ' "" v, • ' \f) ...0 • b ' .. , .. u 5URR~VtlN( OY~'LO . . : . . tOMKO~ /TI~/ »J~X,J£V(tO\•a•tftlO);~,tfC50),~VC,O)rPEPIODoJG~C~OO) ,, a•~Grczu~,,,,,~•oc~o~.~• . c e e COH~DN1GtO~/ J0~(~001,HCH&~ClO.,ftj;~JU~tClOOtZJt~OINt2tU) ,, nSJ•c•~t2b),qGt~ClOOJ,~UUllOn),U!N(200),A(300),4CK(lOU! ,, a8(JOU~,tVAP(l~O)rl~(l~U),ASflOOJrAS~(2UO)tAT(lUOJ,8Cl00) , 1 rM'f(lOO),DtP fH( lOU 1 t•f(lOOJ t\,.F'"'ClOO) 1 A C lUO J r Y( 10\l)' ll (ZOO) ,, V~Li1UO),Y(ZOOlt~(]UnJ,ACJVlflOUJ,ASA~fClUO)tiSP(lOOJ , PAV[f JOIIl ,l)£li&Vt:(l00)t0li'I11!Jfli)UJ ,r:,.I•IOC JOOJ tHAV((i!UOJ •t ~NC~RO),~f(lOO)rQAV[(JijO),narJOOJ,nP(JOU),hAVtiJOO),PUq(iOOJ •• p!f!~UltAS~(I~O)•SFtO~ClOOJ,vAP3()00)1 VAVl(JOUitO~(JOO) 11 ~U\IV((l~ui,~~Le(lOO)tYSfJOOi,VSl(JOO),Vl(lOO~,vR(lUO) co~"o~,113t/ HJ,~c,uELf•QlLld,~~stFPoN1SflP,r,rz,o£Ltl,aoAY 11 0 .. 1•1, l'h'l•tPtrt!Jell 11r·ttlt.t1Pfll),OlrtlfC 10) tU.LIIIIO{ ltiJ tU'1HOH/lt:t/ ,.,., .. r, KPR r. hQilllt,rmJ'Rt, a r;UL tl u J, JPii t c Jo 1, (.PfH ( lo J ,, P~1~f~o,loJ,PAr~cso,Ju),P~1~fSO,l~),HUUWI~OJ,NJ~Ltii~S:JI 1 , :NCPLUif~,JJtTiflE(lO),tlt~tzo),Lfi~L,JYh(~BJ,NlSL r•H£CEJJ tPffi P(l\. lFPI l;:iA l!ilt'P /fJF i)l u f111f ''·" l)l:aOELT/31900, TtU 1/ J~aUO 1 00 l70 l~at,NHPt~O YZ•ftDrt..TZ taUOlt.l t•••• VEL~ttrlt3 AT TtOlLf/2 Ce•o• 'L~~s AI ftOELtle c fiG lOS N~i,ffC If U<JU"IC:C~, U ,LEeOZ GO TO lOS e . Cueuau tttrCII FUll DRY CR;U,O,, na CHAN"'~l. $!'11:: l ('I J /It ( N) 1f (O~f,GJ.O,Sl GO TO lOO vlf,.l='Z•o ,, .. ,.{1.0 r.tJ lJ tO'S .. • 100 cu·u '"••E tiL='IJU•JC (N, I) i¥$ e iHf:~JUtiC ftftl) • OELVl~v,hJ•CI,•AfC~)IACN~)tDELfZ•CCYCHJ•ai/NNt)~S!elfJ•J•CH(HHJ•HC a~u l /Lr"'UH vl=v c~o; tliH v~ 1Ew~:brLfl•&~(N)/H~J••I 1 ))lllJ3 . ~ElVl•~,~•CIIe11EHPt2,~AOSCV2))•S~~~CCitllEMP+ABSC2,tY2)J-•Z••••YI ... l)J OfLYia.3JGn(DlLVI•Vl) VT(~J:vC~JtU(LVItOE~YltOtLTi•f~JNO(N)/RNT Q c .. , • v, c 111 ~ • • un CO'III~IIl Ct••• ~E~OS 41 ftOELT/2 00 1)!1 J•l,hJ ISO us lCD us 130, 13$ c C&tu ~ ... . c ... . c c rr CNC~AhfJtli.LE,~J GO TO ISS IF IJCw.JJ4tOe9J GO YO liS N:.JGW(,t) 'UJ:III f;t uJ,CJ)aAXOr,.,. 1)0 uu Jcz,• 111=1•1 . ~fCJJ•~l(J)tA•CJ,N)aSINCYA~t8)t£XCI+)IN)tCOJCIAtfl) r.U fU 1 JS c ll'l 1 lftut.: v= .,,. .. , J , ~U~~=UnUfJ)•QJN(J)•OCJHCJJ•O!lNCL 1 tl0)tEVA'f~)aASCJ) DO l~S ~c\,6 . IF C~tH&N(J,KJ;L£,0) GO TO 130 III::NC~I"(J,~) , IF lJ,~t.~JU~CCN,IJt OU 10 120 SIJ,.r)::SJJ~D tl3 ( fl) r.u '" sas SU'i:J: SIJI41).tJ( ,., CIJIIf! 'IIJl ~f(J)::H(J)•PELf2•JUij0/AS(J, CU,.,11~r.ft: CHA~~re AHEAS Af f•O£Ltll VELOCITIES AJ f tOtLt rLQ~S Af ••O!LT/2 • PrJ I" 5 Pi •=t , t1t IF c•~Juuc ,.,, u ;u,u Gn 10 a•s NLI:NJU~IC rN, 1) .,tl:i~JtltiC (N, l) onu=!l ;s• c •H ,,.,,.. , •tfCMJ •tn Ckt.J •H CNLI J TA:U(~)tAC~(NJ•OtL~ AFC~~~~~~JoU,~•CAC~j•TA)•DtLH IUIT:AirNJ/TA C•••••••• t~r:C" Fuq DRY (RgLit9eS rT) CH&k~!L· IF (U~r,Gt,0,50J GQ TU 1~0 v c ,, J =v ·o ' I)(Njli.V 1 ) • •• . r.o Hl l liS hO CONI lh•JE r>Et. Vl=?, •Yf ~N) •t ltd CN) /AT crd) +OEd•C C.YTCH)UI/ftNU•S2 1 I Ut)A lttfCH IHJ•~f(~LI)/LENfN) us c C•••• Vl=VlN\+OELV~ . . TEHP=UrLTtA~(N)/qNJ••Itlll13)J DtLvl:q,~•JCielfEt1Pti,•ARS~Yi))•S0~1CCI,IT(H,t2 1 e&ISCYI)~e•J•Ie•Yl lui!H ~tLYl:.SJGNCQlLVItVll V(~)sV(N,tO~LYI'O~lYl+D[LT~FWIND(N'I"Nf ~(tl):~.~•(n(NJtY(~)•AT(~lJ C:l)NflNUE ~EAOS al Y+D[Ll CJEHPORARILY SJUR[D no PS Jc:a,rfJ If (H(HAN(J,1)1 LE 1 0) CO TO 17~ I~ lJG~CJJ,EO.OJ GO T~ l5S IH H~) ••• .. 1; • ~ ,.. • .. -.... .. .. -.. i) .., ..... ~ ~. • ... o/ - uo su 170 1n c C•••• c ..... c lt'C.C(J) ~ •0qot · . 'l•u(t,N~ • <. : ~il l·~·· ·. ~ ...... , D Y N , L 0 H~(JJ•~~(J)•AXf~~~)•3l~CTA•IO)+AX(~tloN)•CO~CT4•fD) G!l l ') .t 75 · . ' · CU,.TI'•IIt AS&J:As(J)~45~(J)•CHT(J)QHCJ)J L3N~l~tJ) . 'U"''J::UilU ( J) •Q IN (J ) .. f~ClN(J) •OSINU., j JQ) +t.VAP(J 3 •ASCJ) I)IJ 11)~ J<a&,& • Jf (hC~&~tJIK),L[0 0) GU YO 110 N:a•ICH&.a J, I() t• (J,~!.~JU~C(N,l)) GO 1U 169 !'U"4::::Su"'thlHN) Gl; fl) ,,~ sut•;)a!\u .. '2-n c J4 J cu·· r ·at,,,£ HhCJ1=~cJ»•UELT"sv~atASAJ c 0'111 ~lit. ~~~AA~I IC R&OIU5 Af T•OELt CH•••'•EI iff( AS A' hUEL' nil IISO t.:J,NC J' (•tJt•••C(ti,IJ:LE~'H GO TO IU fJi,.:!tJUttC ('I' J l ..,H:itJIJ•tC '~I 2, CIEl ot=u :~ • (flU( N11) •H (NHJ tttf.I(NI,J •H(NL \) ~»P•f~"thJ tOll.~ JAI~(hitAC~(HJ•O(LH A(~J~AIA)t0 1 ~A(U,N)tfA)A0fLH fl ~ '')=\'a c•)"' r r·•·•t. Cll~PIIJt J.(-4 MIIFACf. AREAS, \'I.')LUH~, O£ftTH SHiff ~EADS AI ltl TO H ARQA~ rFrro,ro.antYt TlHEaTJHte~r l'U cNU .Js I, NJ fF cuc~•~(J,I),tQ,O) GO TO ZOO O[LHr: .. -.(JJ-•<(J~ htPfH(tlr:Of~JH(J)~HELH ISAJ•A~(J)tA~~(J)•O(LH v~L(JJ2V~L(J)tO~~•(ASAJtAS(J~)•g!L~ UIJJ.aS&J . TFCVULrJt,,f,V.OJ GO 10 1~1 JSVtJP:fSliiJ'•I . ~41~!Chti4~J r",J,H(J)tYOLCJt IOl 1Ud~•trt~~t~•llvC YOL~Ht t~tOU~ft~~D AT HOURt•'7ti•' AT NOO£' 81 fll,t, uuo a•,n.a,t fUT, VI)LUHf ll'•f'~a2ft CU FJI) U~ CO"H &rn,~ rrusc.u,r,r,o.u G~ m t!JS .,uflr.r,.,t,n) w.J,IIlJh.IHJJ 1,0 r~nutlti~~ILA~lvl SOPf&Lf A~Cl tUcnU~lERCU AT HOUAI,f7 1 ~ ., I At "llntt,J(I•I; ttLAll al,fl'1 11 t HU, AREA .;,l~~J,~,e SQ ffl) u••waasu•~··· • zoo e c c tii'(UinPeCY~::;~' O~.fO 202 eo~UHuE '"' II(J,itHat(J! JFCJO.~E.J~At) GO fO 200 JffH(Jl,L;akA~Gf(J~t)) GU TO iOZ U~GE (;t, .1) ••HJJ JL4G(J:& )aJ JH[ GU fiJ ?00 , JI(H(J\,~J.AA~G£(J,~,) GO tD lO' qM•GE f.t, 2) ali( J I U,AG(J;,Z)afJHE CU'If h01t. oo z a o "''IJ, m: tf ft•Jti..,C('t, I) ,LE,O) llO Jl) l&o JF (~U~(V(NJI,L[,l0 1 0) GO YU liO IS I UP: 1$ ru.-tl •. ~~Iff ~~~~~~) IH,N•Q(N),~(~),Y(N) Zo~ ruu~a 1 t •o•tYOII•JI)Y••A .. JC :\CJLUf 111~ · "43 UNSfUILl! Af tf(IUPtt "''•' ·~ I~ (~AU~tl 1 t1~''' fLU~ a!,~9cp,t Cfs, OE,fH ;e '' l ~ao c c C. ~ c t c H f ffi:J, VHfJCJfJ at,,.J 8 i1~f fl '$ft1J II 1 lf(ISin~.GT,~OS CO rn ~bl · cur• r 1 ••ut IF Cll~,fO,lOAV~I)•A~D*(iH,£0e~~~tnOJ) GO YO lSS ff :IO.Lf.IDAY) CU JO 170 8UH fUR LAIEH AV(RAGING OU liS J._j,U.I/ 0£PIHU!J\:OL~IHU(J)+D£PJH(J) ll(lld(;J) CYOI.IICJ) !~JIL (Jl AS~(~)::A~U(J)t49(JI, VO~AU(tJ):V~LAVl(J)tVUL(J) · H~Yt. ('J~::':f4\l~ <J) tttln CIJN I h111t. l)fJ ~ lU N: l 1HC 31111 t I U~'~:J ltl t:AW CttANN[L If ((U(H)),Gl,0,4) GO JU Z~t Q U ( II »::oN ( •• ~ "!I) ( tH r.U rn ;»l'i llO a~C~»•~PC"l+Ot~J lZ' r,IJNII.NuE c ~AVEl~}tOAV~(h)tQ(~J VAlli: (lj\&VAV( W\tVf'IJ "3~1,tc~~~~~~tU(N)•4l v,q,~,:~l~r~t•Vl~J··~ JUVt \t,t::t.&Vl Cll) tUC,.) OIOf tl h Otl f tf1 t IJ( '' J All( lj) :-a II f IU ; A ('IJ It"' 1: ftt \ :·1• H t Itt I tl\ ~II) VAII~(Ni~Vaij~f~lt4ijS(V(N) • • .. • rJ \ ~ Ve t ..... -t. ~' J ~l@ V8(N)a~8C~ltY(N) c C SU~ TIDAL f6B Ah~ FLOUO c OU 250 J•l,fiJEX J•JEIC(JJ , oo no ua,e tJ:a,.tt.tANU ,IC) IF ~~.rUaOI GO TO 24S ,. •• i . JF (f1JUNC('1 1 2)1 [Q,I) h•l~ ,IF (F'IIO(~).U,G,J CO TO zn nFLttrJlltJ h!lFLUIJD (J J UUS(O CHU r.o w ;cro 2)5 ~£ijb(J\~OEQb(JJtASSCDCH)} 2cO CU'*II~II'-: lG5 CUIIrifllt~ l$0 CO~flNIJE t C &lORE OUPUT 0Af4 roR aUBS!GUENt PRINTOUT e If CIH:NEcKPATt GO fO Z70 1C pq f :1\p!f T ~ PU'R l 155 lll~£=tliMEtS c ta~h lU c stOHE UEAD~ TO 8£ PRiNTED I'IU l611 I:: I, tlttPIIJ MJPRI:,JPPJ' I, PRTH(LTIME,J)•H(MJP~f) CUNTINut. C•••• ~TO~l FLOHS l~D VELOCJTI£1 TO Bl '"l~l£0 I'U l,') I~I,~UISRJ r-tt PIH =t Pll" J) PAfQtLTI"E•JJ:ag(HCPHJ) P~TY(L\1~(1 J)ay(~CPRT) 2U CIJ'H I 'filE l70 fUN Yf '•Ill: ff CUJnPoEP •. OJ REIURN 28l ~~lf£C~·l8J) 28) 'fJ1114A 1' f t 0Ct.tUIP1El D.EPTtt AND 'tEI.OC lfyJ I) k~I.El~,J~~) ~J,R(f),~Cit•I•I,HC) · Uo .rhqotUt~(l6,Zfle,U) .. II!HfEftt•l~'iJ 205 ,bR"Aff'ON~O(L DEPtH$/) h"lf((~~~Ob) Cf,H(l),I•&,HJ) lOb fU~Hllt!OCI•,f?,l)) :ttllP [NO c c -.t .. AN•)OO .,JlJ'U:~(IO N•ll•~JU~tlq•HtHAN••l•l• oo '0 J •I I fl u ftJGCJho~o C••u J\Jt.,flp~ OAU c uo lOS NJ~:O DU 100 I•I,HJUN H(ljli:O: .l'u 10~ J=t,e ••C'H'~( f ,J)&O (0'1l JI,IIE 00 llO J•!,~JUN · R~1~ C~tiOS) J,AP£A,SLOPE,O£P,X&,ya,CN1£HP(K)rK•I,8) rou~•t (JS,2FIO,o,JF5~0,61~) · IF CJ,tl,O) GO tO 12S lF CJ,tt,"JU~J GO TO &IS ~AJif (f>di\J) J rQ~HAI (10 ••• lRROA e~• au JUHCIIO~ NUH8!H1 1 J6,1 I$ LAAGEft THAN 7R liS llO us c , .... c &or.~AH ~~~E~SIONSf) sJnP ttJ'Illllll[ 1f (J,r.i,HJ) NJ•J tS(J):akU i :SoC l J.J:a!U.UPC; OlPl .. III&OfP 1tfJ)Zlt1 Y(JJUI DO l.lu "'1,0 ~C~&~(j,K)•NTEHPC~) cot. fl~tuf cu•, II Not f. NC•O 00 tlO Jot,"CHAH nu uo J•a.z NJUrtCl~tJa.O • . ·. .. ,. uo us l40 us 150 155 c Cuu c hO us 170 us uo 105 190 c c,. ... c CD~IINUt . OU 150 l•lrHC"AN ~ Al~OCS;llS) ~,4L(M,Nt~T",qAO,C0£,4tHT£H,CM),M•l,l)tiL0'l fOPHATt&5,UfiO,O,lJ,4FlOa0) tF (U,(t:o) GO tO ISS I~ C~elEoMC~AN) GO lD I*S .,;Uft fb;IIIO) N rOQHAf c•u ••* lqHOH ••• ~HANHfL ~UHO(M,,I,,t II LAN,CR thAN '"OG lRA~ OI~~NSJ0N51) .,WfiP Ctfll f l'lul. JF lrl,r.l,tfC) NC•N t;litHNhCOf.,:- ll'll"h'l t•• O(N):!"fiJiti P(N):•hD A I( (If l=r.OE f' y(NJ:sii.U A(IC (tf):SI.OPf MJU~C(~,I)cHINO(~l["P(l),NtE~P(2)) ~JII'Il. '.,, 1) SHAAO (NJ[HPC I) ,Hrt.HP(:t), r.n•n J••ttt. CDHPAitUILtfY CHfCK 00 l1 0 t..:q , NC no Uo J •=a ,z tF INJut.C(~,U 1 \.E 0 0) GO TO IU JOUJIJNtlf•1 t) 00 lbU 1\:1,8 If (N,rD,,C~AN(J,KiJ GO TO 170 CO'IT IMJI: Nt. X l I =•1~ Jll Ttl wRIIE fb,lbS) NiJ FO~K~I (toC~ANNlL CARD COHPAIIBILiiY C~ECK, CHANNEL• liJJ,I .ND ~UN ar. fl ~H I I IJ) CON I l•111f. 00 lqG Jcl,•IJ no an~ 1\=t,e IF (~tuA~(J,~),L[,G) GO TU &90 NsNCIIA.N(J,I<) no I H 1: It i! JF (J,[~,NJ~UC(~,I)) GO TO A~S co•~ 11'1111:: Nt. lC l f :u1t. )( I lt I WU11( tbtlftO) J,N fO~Hl~ (1 ~JUNCtlON 'ARO COHPAfl~l~tfY C~£CK, JUHC110~ 'eiJ,I ANO' lHo\tltlf.l., t,Jl) CO~IIt111E CONlf"Ul OlRIVEn C~A~~EL D•TA. t~U &95 u:a,uc H CNJuriC(N,I),L£,0) CiO ~0 US .K(N)~llr17i9•AMCN)••212.200l9~ A(N)•IlthJ•II(H) •• ·OCOH~T 4TfN)11l(N) t9S CONUttUf c . C•••• DERIVfO JU~CTION DATA c . 1)0 205 J•i,l'fJ If C~C"A~(J,IJ,EO,t) 00 TO 20S VUl(J):-SCJ)•UEPTH(J~ 1F '(lll.P·ltf(J) 0 GT ,O,) GO 'fD 20S VUL(J):O• lF (AStJJ.lt0 0,0t GO tO 20S affthu: VIJL Ut1l.: 1.1, o•J lO<i te~:t ,a t~~:U[;t4ht(,f 1 H~ IF (tf,t,E,OI GO tO ZOO ~~~~~APl~·~c~J•LEN(N) ~ULO~t:YL ·~+R(h)eL~NC~t•ACM) 200 CIJN J I •ml DLPI~(J)~ . ~f/A~EA !Jill (JJ:Dl p·; , l)fU(J) 205 C u•U I it lit. G:sustrr ll,U fP:U nil U5 fl:t I ,NC I' (NJuNC('4,1),Efi,OJ CO TO US O~:SU~ttA(~)+O~IN)cU Tt•lf.•lri11/0G Vffh):.~Tf ~25 CIJ•fll ; ..... r,. ff(NrxaT.~T,G) WPJT£(b,2~7t l!? FOq~llf'OPRIJGHAt1 E•lCUTION "ILL V!iHJNAYE ~ATER ~UE TO CHANN!L·• ~ ,n(lr l"'rli.,PAUH!LifYIJ RlHIAti c rJ ' w v, ( ..... .s:.. ~ lOS llO 115 uo 125 uo 135 e e c ItO hS' • '· " u " a 2 n ~U8~0UTI~E.NUH8tRtNH) . . COH~D~/GEOH/ JUN(l001f~CHA~(tft0t~)0NJU~CC300t2~,SPACE(Ill56) •• t~DO~C200,~),J~OLDC10Utl)tJI~(i~O),NSTARTCl~),F1L~C600) CO~M0~;~!3C/ "J,NCtDEL1tDEL10,NhST£Pt~~3tt~eTif2•DtLYZtiDAY ,, O~INtiCtN~P~AQ,IIU,Nft~P(O)rO~DUClO),~fLOUD(IO) JSTOPII) t:SUotHao tsUHLao .,,,.;r • .,~ ,IIJ"H l )a-.S i &R Jill ran uo L•l.~ .,:~t~~u(h$T&~,L) 1F (~.l~.O) CO 10 l3S JfJPV~:•IJ!J'C (Nt l) IF '~St4A,EO,JOPP) GO lD IQS co fi.J •• 0 JOPPIN,JU.IC ( tl, Z) Jtii)Lll (I, 1) •JnPP J:.It I n:• t~u ..;11:11 " Nh:hC~&~(JqPP,~K) IF l~N:Lf.~J GO TQ 125 JJ~P~;,A~StNJU~C(NNtl)) IF CJJnPP,fl,JQPP) GO TU 115 NJU~C(~~tl)=•IA05(NJU~C(HH,2)) GO HJ tt!O NJU~CiH~tl)a~JA05(NJUNC(HN1!)J t 0'' II'IIJf:. c o•, t 1 .,.,t:. -..JU••CC•lt i )•ooJAP:IWJU'IC(N, I)) ~JU~C(H,l)s•JAPS(NJU~C,N,2)) crJ'' t 1 t.ul:. CONJI ~111E ICII HAIN LU~f' DO 190 IUJN•J,NJ Hill no &75 la!,lOO J•JtiOLo(f,l) JP CJ,Lt,O) GU tO 100 K&ih I JU'I(I< hJ 1)0 170 L•I•IS ~~~"'CHAa,(J1l.) IF (U,It,OJ GO TC 170 J~D~~taUS(~JUNC(N,i)) !I lJ.r~.J~PP) GO fO lijO JQPif::'IJti'·C (N1 J J fF (JJp?,LF.,O) GO TO 165 cc If) ,.,., J:JPII :a:utJt.( ( Nt l) 1F (JIIPf',lf:.O) t.J. TO 165 Ji11fL0 ,.,, 2 )t: JfiPP ....... () t;) : •.. ~. (·i uo .us hO 165 lJO ars lao us t t e 190 ItS DO ISS Mt&"t,e NN•t~CHAN(JOPP,KK) If (~H:Lt.o) GO fO 160 JJOPP•JABBC~JUNC(NNiiJ, IF (JJnPP,(~:JoPPJ GO TO l'O NJIJ~C ,,.~,.!) hJ4US(NJUNC (NN,U» r.O to tSS NJUNC(~N·•••·JADS(NJUNCCN~#I)) CllN f l fflll cu•n 1 uuf. CUN r 1'111!:. NJijNC(~,3)~~J49~(NJUNC(N•liJ .,.JIJtiC hit l) .... AU:UNJUt•C CN, 2i) CUIJJ I ~liE co•' r 1 ''"!:. CON f I r111f. 00 I~S JJ:l,ZOO J"ijLO(t,I)~JHULO~I•l) Jti'li.O.(I ,l)cO .Jf (Join\.."li,Uet:010) GU 10 &95 £110 OF HA Itt LOOP cum Wit£ C:UN J I t111E NP::tt "IHHC~ti!04) " u " e e " loa FU"HAftllCAOSS R£f[AfNC,.~ • :NrtnuAL NObE HUHOt~ Y$i IXflft~A~ HOPI aE ijuwurR (U3EO I~ OUlLltY PROGAAH AQUALJI/, 1\U .!110 N::I,NC OU lUll l(l'cl1.! !OO 'IJIH•C (N, I'~ I~ I AU (NJUijt(ft,KK)) ~Rill (btlO~) (J,JUN(J),J•ltNP) 205 f'UihtHtlO(Il,JSU . Dtl ~I 0 I( a l , NP J::,IU'II(I( J 210 .fPI(Jhlt nu v. ~«~1 ,,.P J=.~v· , I)Q c!i,'l) 1t .:1& N:I~C•HlN(J1H) If l».t£.~l G~ 10 2~5 ,IQPI1 tHI,JUI•C (ft' I ) ff CJ,•tt.,Jtlf'P) GO IU ZIS jiJPft::~~.IU'•C (N, .!) 2 i 5 (Uti J1 fill[ 2l0 2l5 uo '11(1(11( h,,.) IIJ IN(JOPP) C ()'I J Jll~tE. tfltlllttut: CU'II I ••ut: no ~su J;q ,t4P 1'1111=.1 fl46a:aJ ou .! 1111 K: I Ill If Uttnl!tc C J,K) oLE, 0) GO TO oUO l .. l•t•MJIIO.( liJIIOOC(J,tC), IH,'4) ~~~-2~AMO(I«OUOC(J,~),IHAM) ,.$. ._, ··'·. '• ·~;: H u " e r " ~10 CO.,Tit4UE JDJF!:IJi.t~ll•IHIN JOIFl•IHAIC•J tOif.?:t,r•tHIN 'tf CISu~H.Lf,JDI'I) 13UttH•IGIPI JF Cl'"~l.~T.IDlF2J 1~0HL•tOIF2 ~=~lWUfl~lflr!Dlfl) tft~,L£,,01 GU tO 250 .,N11'199 . wHITECAt~-5) ~,J,JON(J) ~~' PU~HlJfiOf~t HAlF 84~0 WJOtH ort,lo•' 'OR tOUATION HUriD["'•I' ,, '• ~ODE•,t~,t tXC£t0' THt DIH~NSION Ll"llS IN ,ROGRAH AOUlLO ,,1•. P~UGMAH E•ECUT{OH HILL f£RH1HATE LATlRI) . 2SO tUifllt1UE ' 1 S'l!l V 1111 SUttHt I SUHl ~qJJt f~tiSSJ lSUHT,tSUH~,ISUHL 255 FOR~trr•6T~l NlbE3T tOTAL OANO ~lOTH IS 1 tS,t , THE HIG~ SIDE HlXI" tUM •lOTH IS'IS,t , ANO 1HE LO~ $10~ HAXlttUH HIOtM II'ISt/1/) ' e hO CONrlflllt= IJOaH4XOtiSUttHrlSUHL) !tf.JUAH EttD • ~ • ... ~ < .. •• • • • : • ' ~ •' r ;, • -. : ...... ~ ~. c too $U~~0Utl~E OUIPUT (~PUlNT,~51lGttNtfLUW) tU~HU~ /110/ HJ[.,J[~llO)o&a~1,lOj,~,fTC~O),YYi50)tPERIOD,JGW(ZUO) •• n&hGtl200tZ)~1lAG(~OOtZ! tU~hOHiG£0~1 JOhtZOO\,NtwA~l200,G),NJU~C(lOO,ZJtNOI~(lO~t 11 nSl~C~\tlbl,QGIHC20~),00UC20~),Ul~(~OO)~AClOQJ,ACKCJOOJ ·~ a~()~01tEVlP(lOO),~~fJOUitASf20Q),AS~(2d9JtAfClUOJ,n(JOO) t"'q )\)II) ,J)FP IIi I lOU), II C &!Oil) •I.. PI ( JOII) t II (}?0), VC )00) e lC UOO) e• •• •• VIP. ( 2U Cl I 1 'fC I! 0 0 l , 11 C )0 Cl) , A C A \1[ f JOUSt AS A Ill ( 1.0 0) o A SlH Znu J PAWt(lO~),O~PlVt(lOU)tDtPI~~tlOU),f~I~O{JUft),HAvf(IUO) ~~Clt10lt~llcnO),QAVL(J~U),Q6(JO~),OPlJiju),U&Vl(JOU),U~"Il00) :; 11 !' ( )II G l 1 fl :tD ( i-111'1), Sf \.1114 I ell II, 1 y an:. C lOU), VA Vl C J 1)0 J, fltt CJOU) ,, yU~AVEC2~0~tVULhflOO),S,AL[(~J9J,~(Cinl,JJ,~~(I~J,)),hPIC~) CD'4Htir.1 ~JSCI ••.s,ut,oFL t ,nli.I•J,Pin:'iHP,i'fii:,JtP,r, •~•tii.L fi!, &PAY ., . JlHI't 1 IDt'iHPLP•~, IIU,t•lt ~"l'fi'),IJ&:illH 10) ;U.LIIliiJl lUI (UH .. i{J~ fiG/ f&PH ·~ .. Pit I. ltfll1 U I' tHflt•U I I r.•IL(IU 1 '~··Ill ( JIJ,, t>':H' )tU 11 plllH(~OJ 50 I ,Ptth(!;O, \II) ,PIIffJf~Q, )UJ tltiJIIM ('Jfl) pfiJI'LUf('i, J) ,, •ati'VlH"l ,)) t f IILht\ltL I I ttl ,J)tf(C16) ,NISL C0Htt1Jif /l &'II liU6 Cll )t YLAO Ur) t II TLf! l~) t IIUN ll (ll), VUO C b) t IUfiiJQ tNt£GlA f.PNI AEAL lfN Ol~l~SJO~ VEQ11lhtl),VffiTlf~t2),tfO~IZICJJt2) n&U tf(liUUlb•Qr.i ,Aa!lfiHf,IUI lN ,~t3ttUURtllll!l ,]aQtl . , fiOlHI ,llllj{ '" tiiHr.UlJR~CI&!OIU&,lJiiTES ,}•QII VtGJltJIIHIJllUtU!\CH~tiiH I•Q"fl ,utt rr/,lflllilC lilt • u' QltGf, •"'' I, •Htt ..... P'lt IIH&-.' I VlRil/~tt IJO,~naL ,aH AANtii~G~ '"~IN fthhElJ ~AU ,, OAU •• -~ llt•~~l ,~II ltQHN ,,H hOtQHURS I nO lOS l•leNHPAJ,b loo'flil(~tlO) TIJL I 10 FO~"'' (IHitlOlu,ao~,erETH$ tECH &NCo 1 ,/&x,~oaq,aox,•LAfAY£TTt, lCALJfQq~JA'tltiH 9Q.,IIIOAL •rO»GDVijAHit$ PNOGUA~I) . . · ~~11£ C&tlOO) J~~lfi),Jpqil&tl)tJP~ft&•a),JPRf(ltl)rJPRfCI~q),JPAt HitS) ,oa~Ar C'O'lJA,tJu~CTJONII5t• JU~CTJON'JS,t JUNCTJON'I~,I I JU~CII~~·&s,• JUNCrlUNfJS,a JVHCfi~N'JS,/t ~ H1UP HlAV(I(lf) H(J0(f£l1) HEAU(tlET) J ~t•Dtfftf~ "t-~lfE~T) HEAUCft~J»el) ,.,.o OU lOS L:a,L-.~fHE ·• TaJtO(I hHUH(ftPHf) . t40U=4(L\J~I/)t~ll0 1 ~qJJ( f~tiiUl ~UU~(L),PRJH(Ltl)rPRf~(LIIfl),,RJHCLtltiJIPHTH(L•ltJ tS.~~J~fl,Jt~)tPRIHfLti+SJ fOQMlf {IJW,tot2,fl~0 l,~FJ&e2) PA(Nf 'LPh3 4NO VtLUCITJ£3 nO 1lU JcJ,NOPAf,b ..,,.II£Cr.•IOJ IJTL. wAif( l&tll~) CPAf(l)tCPAJCitiJ•CPqJ(Itl),CPATCJtJ),~PRICI•~n,c,~l J(l•~J IOqnAI ~'u'l)c,t(HAhN(LIJ~,t C~~NN[LIJS,t CHANNt.L t 15,' I (HAN~fl'l~,, CHANNtLII~,t CHAUN£Lfl5,/l 2q ILU~ ~(L 1 fLO~ YtL, ILOH VtL, Jl, HUw Yt.L, fLO" Vf& ,1 /l~K,I(CfS) ('PS) ~jFP'J &tfJ) '''JJ (Cf~t (rPJ) &Cf3) tfPS) Sl CII'S\ I) ~ou t&.Ot4 Yt. (tf3) CCF3 • ·~0 us c uo I.SS 1110 145 c ISO ISS uo c 165 lJO us c 190 ltO zas c c 0 u ' , u 1' oo azo L•a,LTI~! ~~liE t~•l25' ~UUAlL),P~TO(L•J),PRJY(L~l)t'RYOCL•Iti),,RJVfL~J•I•~ &P~IOCL;Itll,PUIVCL•ltZ),PijfU(L,ItJ ,P~T~C~II•tJ,,ftfOtL,I~OJ,PftfYf~ 2,1•4J,PRfUCL,It5),PUfVCL~It5J . . . ro~~AI CllX,F6,l,fl0;,,,,,2,,10a0 1 #7 1 l,fl0 1 0•flci~Flt 1 0,F7 1 1 1 fJt•f a,FJ,z,,ao.o;fi,Z) tH~If(lt.tiUJ TITL on uu 1•1, 1 o 1Cill" ' •• ~Hill fb•IJ~) ClCULC3),J•t,IO) ro~~Af r•u•v(HAG£ "fAD$ foq 4 IIO&L CYCLli//JII,It,tiiiJ rau a'11\ &t:e,ru,ao Lc: It 'I WUIIL ~~~~q~) J,L,(HAVECJJ,JaJ,L) Foij"'' c••·• to •as,aoFaa,JJ Cli'H 1'1111:: wijJt£ fbti50J CICULCI)~J•I,ll) roqnAI (1 0AV£HAC( Vll0Cl1l£S fOR • YlOAL CYtL!'/II&X 1 1t,tl&l) Otl I b 0 J 11: I 1 NC s I 0 L=-i ,q ~~II£ ro,&S~J I,L-CYAVE(J),J•I•Ll ro4"~' ''~·· ro •as,,oFa&,lJ CUNf INuE ~~II[ t••thSJ fiCOLCIJ•I•l,lG) FUIIttlf (1 0AV£aU.Gt. fLOf.S FU~ A TIOal.· CYCLl'lllU,Jt,tUU ou a 1 5 l•l , ~c, ao l=l•9 ~~liE 1&,810) loltCUA~~(J),J~I,L) I"IJq•IH(!u,t to fUtiOf&I,OJ r.nt• VI ral'lt. w~IIE fb,aqo) C~COLCJ),J•I,~O) ruuH&f c•ow~JLn OALANtt Al l4Cij Ju~CTION CCfSJ'II&IXtlt,,l&lJ 1)0 lOU 1•1 ,N.J,I 0 ll: i t9 W~IIE (b,JQS) 1 1 L,(HN(J),Jal,L) FO~Hlf (JQ,I JO ltfl,tOf&l,O) crJ'' r '·"l'l w~llf f~IZQ5) CICOLCI)•l•l,tO) rO~hAI (I04YE~AGE NUOAL VULUH£ (CU 'J)I,/II&~tift.lll) no ZIS Jat,NJ,lU L'c 1• 'l w~ITf (btliO) t,L,(VULAVt(S),J•l•L' rnnHar '''•' ro o,I"•IOEll,~) CUUIINUE JA:zllf.L T/( .SbOIJ, •PrHIUD) l)tl Uti II•I,NC OP(t.I):QP(t.t)•U QN(N)cnNHil• U wHilE fb,Z~~) ((H4,0''~A),ON(NA)),~A•l•HC) JO~"AT I'OPUSII&V~ AND N[GAilVI fLOW~ fOR tACH CHA~H(Liti 1 (4(Jlf .~ ; ' w v, ' ~ 4:... ~ • !UT&L fY'P~~AtiOU ~Att TA:O, jf~(A\.:U 8 00 lU Jet 1 HJ T&~JhvOUVUJ) )10 &f~llL:AIOf&t•ASAY~CJ) 'jlJs f&/ A flit AL .. 0 U T P·U f w~lf!Chtil2) EVAP(I)tAlU1A~,t-rt6 . 312 FUP~Ifllll?~ TOTAL fY-PO~lTlO~ ~A1F• Cr3 c: . • c •••• •• IZ~H AVlqAGE SUA,4Ct &REA, ~~ ¥1 ,, ll~~ AV(UA~f vnLUM£~ CU rt •• ll~~ Avtq&Gl DEPt~, f( tiDAL ~l~GE PLOt JF(JTRfll,EUiOt GO YO •10 OU o ll I :q , b 412 VlQf(li=v~qJlC&,lJ DU u~~ J:q ell •2o vuq ll u J = .. ,,:tl u u, a 1 F)U qlU .,::l,HI~L .r•JJil (u) YC(~,l):SPlt~'J) JtCCI'ft hClf(J) Ill J~PIU h~ J=l . CAI.L C•!RV. UCtYC,ffPT,JrU l')lj II Jc! I : ., fJ 13~ vtnf&li=vE~iltleZ) Dtl Cl)lt Hct,fiUl. J::,JIIf(H) •J• YC(~•Ii•1LAG(J,I~ 1=1 CAll C!I~~[(IICtYC,N1tf11rU •u tt1''' !'mt .. cvcl l'lt1 l SO U S.•tCY talll (I h'I·~UI.,l OU l}G J:t,~PUJ~f rtCJ• 1\:Ho•uHJI 2l0 Ytfl•l\••.o c C•••• 11~•~ sJacc PLOT 0•1 dl l•hU , •Nr:lf 61'f[lf •'NtH •NElli lilt.£, .,.,u~ •or.•S ',) / .. •:2 ~ORtZCtS•HO~IZICI•I) 00 ~~b 1•1,6 • ~'~ vFqrcaS•~tR!'cr.z• ~0 2SS ~ei,NStAGE (iO l"5 "':sl,) no ll'i t• a, lo . IF C~latnrf"•"J•ED,J~NfCLl) CO 10 Zli US CIJ~U•wt 210 DO ~es ~a&,~PUaNT rcc~.~\sruY~f"•LJ 215 CO'!l h•J( '· ~ALL C~~-l c•c,yc,~PT,NCV,~J W~ff( !~•l~OJ (NJPLOT(~,N),N•t•)~ 250 F()U•••·• Cl&>='dlfll,iHiii'I.IJT lt.GE.NO JUetCf&ON,lt,tH II .... " -IU~Cf!0Nt1 ,a,n~ c a.:o~ JUNC1ION,i4elli a IJ us cu~u auul c C•••• YJOAL ~LO~ PLUI Of) l 'I~ t :a I • fJ ill V[~lC&jsV[Qfl(l,l) ~U l~O ~=lehfFLC~ 1)0 lJO N:q ,J M lbtJ L~l ,SI) JF C~CPL~ICK,ij)efG,CPRY(LJt GO ID !65 ZtsO ti}rt I lt111L lt.' (UJ lPIJ H:t,ttPUINY tCC"•"~=PRIYC~•L) 2 70 c 0'11 I r.~ue:. CALL ClltfVE (XCrY!je .. Pf,HCV;K) WUIJ£ l&rl7S) {NCP~Uf(K,Ni,N•&,J~ 275 rUf.l'111 UH0,30J(,1.&HPLOT l.tGENU c:w~NNtL.II,Iilt~ II o~ltH CH4~NEL,.l ellpU'-f • lrl'lfl tHANNEL.ai,QH • ~) • ' lOO CUll I Jrm~ AlJUif'f ruo j'' c P i N E SUQ~Ouyt~! ~tNt CMitYlrXz,ya,HSYH,NCT» co~~~~IGfO~/ SPAC~(lOllSj,A(SitlO&\tr&~~CJOO) OI.,.EN~,;Ui-1 3Y~CS- OA1& SV" /lHOtiHl,IHZ/ &11&11ll' unalll AYU'f'l .vn::u .. J4:a I If (a»s(A~R•AXA)1 Lf,ABSCAYB•AYA)~ GO l~ liS t SEI PA~A~(1ERS fOR X OIH£C1JnN c uo us laO c c c II$ ICO us uo IF (A•~,Gt,~XA) CO 10 100 UA&JCi! UIJ=lll IYA:'t'l Ult:'ll CU'' I I1r.11t: JU:~HA•oS txll:&llfH,S 1\'.UArat,S 1\'ft=l'tu,s Ct.J•H f.I~J•t; JF Cll&,Lt,o;oR,IX4,Gf,lOO~ GO TO iaO IF 1lYA,Ll,O,OqaiY,,OTaSO) GO TO II& A(~l·ly&,lJAtl)aS~~(NSYH) Cllhl ifla•L tu=IJC&tl yA:(~•(AYO~AYA)JICAXB•AXA) tyhAYHYU0 1 5 u:iul tf (lxa,LE,&Xb) GO JQ lOS co ru aqo ·3£r PAAA~£1lNS FOR Y OfUECTJO~ ( ou rl tfut. Jf Ck~q.Gr,at•) ~~ TC 120 AYI\llH • AU:Yl UO•tl ~::A:.Ci! C0'4 t I II Ill JU:aA4tt.5 ra•h&x~u.s I'U:A't'H,S JYB=•nu.s COtH l 11Ul r g U ll.t , L Y • 0 :uR, IU • G I, 10 0) GO TO i )0 t• llra,Lt,o.u~,!YA,GJ,50) UO TU 110 6(~S-JyA,IX~t&JcSY"CN3Y"J ru~•~~uE · 1YA•Iu+l YA~(~•IA)U~·~A))I(AYB•AYAJ f JIUI.AtAX.hO,$ ....... '' c I'I••IY&I szs, ,,, a•o IXUIIC" r.o ro o.!S IIE.YURN EM ' i H t: ' ~1 . ''t; ·~·' ' rJ ' ·\fJ Vt ·\ ..... ~ -0· 4 .. Cf""'tt ~·. .?-,:::_:: L:·~ . ~ • , , .. 0 ' sueAOUflN~ P~~OT tlX,lYtK•~Cf) CUf4~UNiGEt)"'l SP4CEC & Ol15) 1 H'f'1• Ui \ ,, 11.1.(700) f)I"'E"'IHUN S'f"('J CU~MO~ /LA~/ «LABlli),YLAU(t)tflfL£CilJtHUAilCAlt,VERTC•),JUHITO p&TA Sv~ll•lH tiHie!HQI . zoo 1FCKeGfe99) GO 1U 17e 1•0 WIJiff.(f,ti!OI)) FO'I'i11 1 iHI) lltJ I 35 II a I , It t=l•l w~lltlh•l~:j YlABCif),(ACitJJ,J•ItiOI) IF ~t&:tn,~) GO TO IQO OU ISU JJslt9 ,.,., IF U, •1E • 21'1 J GU YU 115 w!JIItf&,I~~J V~Rt($),VERtC•JtCACI,J)tJw&,aoa) r;tJ ro alB If (l1~l.i!G) GO lU 120 w~lfLC~tlh~) VEHT(t),VEAT(2~tCA(I,J)rJq&,lOl~ r.o 111 'Jo · "' IZO If (l,~l,JhJ GO fO I~S ~RIIlC~tlb5) YEHlCJ),VlRf('),(ACI,J)tJ•&,&Ol) Gil IIJ I JO ~qttfc~,~~5) ••ct,J),J•IriOl) r,tJ'H I ••uE U$ uo us leO CU11f l••uE c:n•H r•u•t. wqftEC~tl5~) Xl•B Wlflf~ !1t1 hi)) tiUHil 1q5 F(JIIf1AJ (161(, lOlA I) I51J F04Hlf (~ll,Jti-,IOIA&J l.S!J FU'Ift&T Vlll,ltiUflD,U 1~0 F•JIIot&f (/)1)11, llUJ I6S F~~~AJtS~, 2A~,SXtlVIAll 110 no t"o aca.so DO 175 Jet, 101 IJS l(J,JJ=3Y~(JJ J( 1tl J:;!JYHfltJ ··a 60 r.ut• I I Uul f)') l't'• Jcq' 10 I lOS •t~I•J\=~~~l~~ . "''~ i .,,, l• t , 10 h AO ltO ACSI•1\aSY~(ft) '" ~0 lq~ ICil,QioiO a(l,lJ:t$\'ttCV) Cfjffft ffiiE p[lijtftf [tfO •., .~?· ~­,_ " ~' N ( \f'J VJ ' -V\ ~ c c c 00 c: c lOS 1&0 U5 uo c c c C. t c .. "' c ,. .. us uo c c c c U!l c c c c c c • 3 C A t. C SU8~0UT1~E 3C•~t (AR-AYtl~~~N,NPts;&NCJ DIHLN,1Uk AkPlVCNPtS), lNJCS) 04fA l~l /z,a,S,OtJ~/ JNC f~:th6SCI,.C) ,,.aJC:r,ufU'f( u &HfU•&qDh'(l) 00 \00 H=l,~PJS,INCT lf (A~&X,LT~A~qAY(N)) A"AX•AQ~AYCN' IF 1A~J~.~t.AR~AY(~)) AHJNaA~NAY,Ui tO~ I : ... ,it: If (A~AX•A"lN) 120,IOS,I20 1f ''"lN» \;~,,~o,aao t'1I!II:ro,o &'4liC:2.0aiiHAlt c~ ro \~o ,UUJ(!:O,O '"''"'-=~.o•.tHltf tO~JJPitJl (OHPUTE UNITS/INCH UtALOGa'OfRAT!) .... IF (A,& T.O) N•&•O,t999 R&TE=~Aifi(IOt-•N) t;lAAIE•a.oo DD 110 l•a.s J1 CL•JNf(J)) JJS,&l5,l~O eu .. r hul 3CALE INTERVAL tO L£U THAN 10 FINO NtKi HIGHt~ JNT~RYAL [ I' HfXT HIGHER INTERVAL .. nA~Gt 13 $CAL£0 6ACK TO fULL•S!T L"I'H(F) ~A~C(atl0AT(l)•J0 1 ••N JF Clht.LT.O) GO TO t•S Kdlilt~/R.NSC If (AMtNQLf,O,) K»~•l sff UP POSITIVE OIEPS tHfC~ FOR HAll VALU£ IH RANCE &1 (A .. all.Gt,(JtUJLfNJ~oftANvU GO TO lliO • c c c au 150 ISS Jaf.JPT5~1,.Chl AR~lYif)•K•ftAHCe I•I+INCI AJJ~A rc u•no\NG~ uruR,. L •I. · I ff CL,tf,ll) GO 10 125 l:ll Nr:Ntl GU 10 125 ICr:AHAXiiUNGf tl C ;. L I· •. TF (A~lXeGT.O,) K•K+l JF ''"rN,LT,(~~AXL[NJ•RANG~) GD iO &lO f:J'iCT.NPJ5tl lAflA Y (f) lttUifAHGE Jc I •I t1r l &AAAV( I )hqAf,GE A£ HIHN !o~HI If. fCI, Jt;~) • fDQ~AJ (//IOX~IN~NGE AND SCALE A~~ ZfRO OM PLOf AftlMPtl• ru. ruq'4 E:.!O I 0 ' .• ·'·· "-' ,• ' . t 1 o c·r ,u~q~~TIN£ tlUtr INI,~AKIJ,~CHTID 1 NN) . C01""0'• 'It Jl\1 UJU1.JUO ot, U &.:r, lOJ ;tt, tfl5§J ,YYC$0) ,p~"iU!:' .• tGNUOO) c •• oANGECl~Ott)eflAGl200t2) ntHt~StU~ IACIO)t -~(10), SXKCIO,lD)t IMYCII)p~KC2•J OAtl O~LTAeHTltNi lt~OO~,l,.l JF C~I;~E.~J GO to ~05 no aoo l•t.s Jltltl Nl:t'tl+t ttC~f~:Cl,•tti!JtffCJ))/1 1 yrt~f):O,e5JS-Ytii}tO•I•65aYYCJJ ttJ:"fl•i tftHIJ~(tTfiJtTT(J))/2, YTINI)c(YYCI)tTT(J))/2• • JJinhi TfC~lJ:tftfJltl,•tTCJJ)/1, yyfullcOaiO&,•VY(IJtO,&Sl~-YYCJJ 100 COif I l:wE I OS C•l'" r H•uE flU II S J •I, fll f ('U 110 U:~t~Nif sao ,.,,~,J)Bo. A i fJl :n, U3 snCJ)cO, •1 J l: '•1 1 I lt I 0U 1.55 fCitrll 1)1) ll!» J•ltttH F' J I :J Ln• UJ•U ,J3=~Ln•'CJ•»J2) . JF (J,I~•NJ2J GU TU l~O ratJJ•tUS,tJ~•"•tlCI)) r.u tu t.?S IZO JICJ)c~I~{~Jl•HQTT(I)J t $ CJ • r 'I • I) U ( J) •I , U5 SXl(J.)aSlHJJUJC(J)I'tYU~ nu·uu J•l•'*lf nu 11• "''~"'' · 130 s~·~~•JJ•'•~c~,J)trt(K)•M~«IJ US CUll 1 t IIIJI:. Jli!Q au p:ar•a l)lliUl(c\1 1 no l ~' u! ,.NH J\U."•9 • NJ 1 "s J :q , rn T v cJ,rll,KJ uu tu an !{UII&~hi"'••A (J) •Ull (ftt J J liS tOilltlltt! ~o~ciSel~tSXYf~PJIS•MC~rK) 6tL~Ad\(SO~·~lt~)) 'IF tt>ltefifeUE'-HU) OE:LttAxanU. ISO alf«l=~u~ · tF Clf;~EiMAllll) tO TO ISS It COEa~•a,Gr,oELIA) GO VO 110 "' tU'flt1fU~ c 00 tl'O J•tt'F 170 axCJ•ij~•·~acJJ Y I 0 C ' IF t~CKII0 1 N'.,IJ GO tO Z\0 WNIT£ ~~~l7Sl J2ll(NN),(AX(f,NN),I•i,7J 17! FOq~&T C'O llOAL COEfYICJENTS FO~ ju~CT~ONt,JI,/fftJel) "'~HE fNI., UOJ liG 'UR~&tr~tHO fl~£ OBS£RVfO COHPUJlO DIPPJ AES!:Oe DU 19~ Je&,ftl ~·•"'=0 il t'IJ 1'10 J=~·'·" i!:Jla:HoA1CJ•U f.' J)cf'LnAt C .••NJ2) •' (J.t~.~Jl) co to aas !tUo-t:311"t lAU) •COS fF JSaM•ff tl)) r:o 'll a·~o, 1&5 SOH=~U~+AA(J)•SIN(fJI•W•fl(l') I .0 c 011 II uut SUII:aSU•HH t U CIH ;q;'l''•'tY ( l) QE·•~tn•&tis(ntrf) I9S ~HtiE (~b,l~O) ll(I),YYCI),SUM,Oifr· 200 ,U~HAT l~fll.~) wRtlf t~b,?05) RES 20, ruu~~f C~~01QIAL~lOX~FileMt DU 70l Jcq,i(, JA=HU&lfJ)•., ~~~ C J) :a &A ( J , NN J 1'\IJ :Oi! &;2.41 Td•l•& 102 .. ,u J) cu:H.J! •'" C I ,tm) .,.'.~~ T Allnli +AX( I•J,HN)ClCI'llctA•n.t ~o~uliE lb• b?) 69 FURtt& T f/, znx, t SUMt44RY 81 t:O'Ui1t) wqttEt6r7o7J (1, HNCJJ,J•a,a•, 707 FORMA1(JOC1J,F6 1 2J) UO COPIUNU~ c llETURN tHO 0 f APPENDIX F ,; -_,. dll l ::.s ,,, :J (W:J,Uh) N,HJ I a~AO!t 1H11 J I U03 061 ((f)!1YC'fr)4W1J)AXOIY~~\rJivSU 081 l••(l)h1!h:(~'ff)J1 J••ClJull~•«S•rrJ~l !. *ld. ( r J dull r: l rra ),..r,r:l1 dr•'' =rr ='"' nu .~U 31 tlll1tl3 lhc.ll Sl u 8 '3 ]IINIINUJ OU l(l.,ld(G 8 (\f)S) J,~~O~ Oql (tN'I•r'Cf)!1rS't» (O~l'~' JJIH~ (aldJ 1 AilNI1Y~ llV!£ AOY31St 1 XUI'II) (Vkh~l USI • . lO~ItQ) ltl"h CC0 1 Q•Z'UIIJ~) IW~bnJ O•l C::.N 1 1•tti(ttU!"CMlAYU1'11) lODl ·~I JJ Jttn . ltCSNOJlVH)ll U~i ~ &IW1) :)U/1A Ot '-11H1UUA110' NOitttli!dUO 131i~tUJ t 1 .1(0l' kHI) Jt.,bO~ 0[1 ,. in( l'q' 31 Jttlt Oli 01 O!l CHl'l•~j·r.rtd ~- , . ~ IJ,JINill o'U (h)N11W/411))y•(ulJ]:Ch)~IU S'O~(tii)ZZ•lU)J~;:(~J~~ U1l H:U,J lAW!OH (h)h]1WI•S•CNJ~~Jt(~)l~(N)ll ~(lt)!1Y~·Cir»1,rCISUt:W~ (ZrJ~flf:U 't r Jt.nr= II' l.~ •", ) .• ,,,.,:=z r Oll O.t DO ( II "0 1• I t'J d · u • .,, lt•nr••• u· Jrl'htt 1)~1 (IU h1wU 1IA10~. 1"1•3 ~~~;nn•rHnv~•nvu 111t.tll:l ,.,,;, · d~~~~ 11ra l'U • GJ:M~ .,,. nu \) • u:: ( t) •• " 0 .. o•U:.lrJn hi)tiOas~llinvs n INf>tu d~ 1 1: t 0 I I (IU 111NIIhUJ Oil (kJN11XICN)~JQ(N)Jl=CN)~1U (IV)l: ~·d ll CC~)~MtCHI3AYM)Q((H)CAo(NisqwAJ•lNJI~J=(N)l 001 01 0' (0 1 ]1'(1'N)JNntuJ Jl 3~'l•N QOI. oa .' {) I z:t'A (IN. o•l OA 00 lft'11'J3!) Jl ll]OJ haJ~H3dSJO :•:•~ . 3 (., l0clt44 ,,,3 • ··, - l,l~h•MlA3Pt OAHij 1 Jaj)llN 09l 0~ huar •••n•·uou .lfl ti'll 1)Uh1Jfll fsUd3dl Cf"J1eUH1dl) jJ l llll f I "C't:Otfldl (09 JlldUJ l1J) (~•••l•l~~L"6'••op]91 •••s·•·l~•9'1)•A•s~s·o·x•••l•31Sl••s•••tllar•~~~r~~·al&tA~)IIaOJt• ((I)COl'(l~l)u03,'CCI)~~·ct~&1~St'fCIJlAVb 1 (fiJ4hlll 'I CCI)~A'tllllJ'(CI)Co•A'CI,J~•~lJJ ))~l•w~rnol u •on2,NOl' c unv&' PHdw3t •u, n'c u ".lhB.J "lll£••l"''o cu~z•~a~•~·c9'hi)S~~·(nolJA~ 'I coo2JOMJJ'tnolll~04'Cl'9J~NnZ~t'l'01~~~~JHINOUkO~ • · ta•r•tzHtJrJlfd 'l (l)dNUlN 1 (b 1 (1 1li9JO~~·\~'fl)d10n~•(()IY0dl'da~'ddf 'I (9)101~t'J~l0dN 1 (10l)AVU'Cn'~'IOIJdJ 1 (b)J01dl /'01dlh0HH03 u 1 ur :u ,,r. • h • o' 1 l( :nd.u • c t1 s, •J·•~ll • co a) • )HO' 'o 1, • .~,•.u•tt • r C 0 l J II 1')(109 1 ( 0 I i XlJ10l'lO I f J J I llll 1 l n I I •·IJ ldl 'UtI)! JiHnl 'I C01)1f3G0l' (0! )Hl(1 (ll I 10001~0~(111 HtallU' COl )Cmlllll!t'Or.l"tlJOII I:IJi{~Qa..ttOl 1tnt~l'«lA)~1 At~1 1 )A)dl 1 1l~)~Hld~~ '2 C02)1JI1'fO~Jl1111'Cl~J~A~I'tOtJ11~'cqaJat~•••tn'd~'llf'~r~ '1 .l11G: 'Artll 'U-' .. N'i!lfdl' 111d'ttl'tw•li1tfitt 1 tiAIUI'd'l'l"''f••llSI"Ir.Q1'140l (5'Ul)H~J)Yj 1 lS•OlJJ~rl~J l~lr"'~U~hDl (lJ~lin'lb 1 0f\2)1JiiAJ'C•1~11dA11~~yi~OHh0l (DOl) c1N1U 1 UC.! J tlh 111 1 100/ I 1 V!:Ct' ( (llll j "tU1Cil 1 &nul" I )oUI"i(l:l .'I. ( llOl) )I(IIIQUlt 1 ( lltll) 110lc1Ciil 6 4 0 0(' J tlfttoU 1 (~61 h1 J':IJ' t I'IOl) !l1rU 'i h 1 U04'h0 JdAI 'h 1 Oni.' )l,u 1 1 C Uf\2) en. J I 1 ( fl(li!) Hll' (ul)j' HII)(,U 's· CO Cll) ~OUR' C 0 Ol S .ilfll' (Oil~ t 1 10l' C Olll) tfl U I ' r lift~) r.lll I i ( CIOl' J £1J 1 1 • ((t!,llttlllY''(fl'ft~IJhllci.U ., c IJS 1 ,.H dull' c nst 1v. uxn' to.; 1 '" 1 M•l.f.' t Oli 1 Jr. 1Jt:05< 'z (O~I)N!J10l'(O~lJ~t110l'(O~IlhldiU1'fb~lt~lht~I'(6SIJHISQl 'f I OOl )NI'fl' ( 002) i1 I 0 1 ~ CIOl I Yt11'1' • 'Dbil J U I !U•Of 1 C (IIJl )t-Il ••Itt J1¥tltiiH(Jil!"l0J cootlsqtA'foot)£~'fonrJl~,~·cau~)~1~'tour)~Jl•rur511ll '• coouz•cooc)1nA' c•HifUl•tnozmun• tnf.lrJSA'tiJ6fJtJ•tor.~lJJU 't COO~)Sv 1 toO()!lY 1 (1Z'OOlHHct1-'lil'IIN!lt'CI2'0D?ll•n'"' 'l (00l)l!J0 1 fOnc)uP~(OO~)YV 1 (0blfiHd1t 1 enol)~d1f 'J f6Dt)Nl1J'COOlJhnt•cz:oorJl~nr~·cu•ba~lul~lu l~tR!~ou~oJ (0AZil0JJ'([1 ~nl)JJ NQkkO) Clll(•fal•~ltl 6•S•• '1 ji1J3 '1JilAfJI1 ''Oh1R 01bwiO 1 1u oolt ' 0 lNt 1 H3JJ Y~ll1 'Hll~$ 't n1t~OQ OJ Oltll~la 3R 0100Hi NOI1f311dciY 1lOUH lHl NO aO~) Hl!OdhOJ JHJ ~HIOb~~lb ~~OJJClO~ .... , • • • 3 1 JWtf1. 1 39f~0HlNY 'A'IHJCJO V~~,,, 'AH~f 3H1 ~0 lNl~1~Y-lO ''o'~~)·vt•£&~),0 1 0N J)Yti1~03 NJO~O lOtH )HlM Ch011Y)J~tO~~ ,,~ut.tlOOI 5 H~OA H1~ 1 GUY0B flhiNN11d 1-h0l9lW ~10~Jn~·nrS£YN Jil ONY OUYOB 10H&Nhl ~~:bnOS~H ~;~,~ )1fl~ •lu~OJ!lW) 3H£ JO IIIHStlO~NOd£ 3 .. 1 lllONU ]NOll tt~ "l30lll4 lH1 .dJ lhlk40'l3A30 . 1 A~·OliJ HW ~0 A!l1'0~ a~IVM 3h1 l1w1nwl8 nJ OldO~lA1a 1aon~ 1Y~IItHlH1~~ ~ £l 1wnoy ' :J 3 :J ~ l , l :J ' ;) 3 ) .... , ... • rJ ' ~ "' ( - AOUAL t:,; 0\JA\.iTY \,QOJII, CONUAI'IT HYDUvt.ICI . c ~OMa~OplAH(NCYCH) DO 7,0 ~titO•l~NQH :cPLOI:aacP\ OHl \,OlY•LriAYt ICI£L 00 ~70 ~CyCU•ltiPlRD c .• Cu .. 105 If liS~lPti).EOal) GO TO 2&0 Ql) ZOO JcJ ,NP &A(J)att,O ,ijfi c·J 1-=·=, ~ 200 CU14Utilll . CALL In~~ (1Q$,1DSJN,TDSEM' c&LL SnLVII CJDSJ uo cu-.r II•L•J. c . .. C,,.,Tf"P("ArURf If (S~I(IP(9~,U 1 U GO TO lti JF (tillvtl,tll 1 I) Gil TO Z!O c•LL H[J~•r ca,r£~P) nu ~1.0 Ja&,t:P ,rJ:&JU'HJ) &4(J)cn,no1~8lo~3(JJ)ArtHO(JJ)•A\.PH&eJ» · . n•H J J ~t\. QQ.Uft l dS(JJ) • CfON£ (JJ)"",TNOCJJJ•UHPCJJhAiofiH,J)) UO CU"'ti 1111E Clii.L rn"ot UEtiJ.t, aHPifh f!HP£lU CALL lnLYif tltHP) r.U IU ?10 uo ru"~1 ,,,,. .. LL&:et/SPLP(J tJ CLI..:LT .• 1.J Ll•Z pi) litO L II;,LL CALL ~tJD4f l&,J!HP) OU ~1.11.1 .J~t$,NP JJ~JU~JJ) . &AtJ)ap,O'J~81•A$CJJt•'I"O(JJ) n»CJlsn~~01l~I•A$CJJJ•fO~tCJJ) 1110 cu••U .. ut .. . . CAlL fn'flt 'ft[HP, Jt.HPJf',)EfiP~)C) tU.L $taLVIJ H£f4PU tr fl.rQ~LLJ en TO l~O 1)1) l~l! J•l ~'4J. . lSO t(~P(J\•CilHP(J)tl,O•rE"PTCJ))/)aO l60 r.u•HJtu,t. · 170 (l)fl I Jl•rlt n•J itiO JJot,tlP ,JII'.Ill'l l.IJ) 1 • u. .,., l J) ·19. ~ uuJ,,J:aa.o1.••1 1fiJJ,,)a~1(~(l)-•l tf(JJ,1)tOI(H(\)••I r.mcC·JU•n.u . !li n1•1tJ\~~~tu•Yitl~PCJ)~TGS(J)) UQ cMUNut: gs;:: nPTIO"aL CO~STitOtNT' DO 110 Ira, 4 If CI~Kl~(lt9),f0§1) CO tO ]70 Jf (Nby",EQ,I) GO TO 310 PO )00. J: ltftP .JJ:tJIINtJ' Al(Jlat~YPEOK(JJtiJ•TYStfL(JJ,I))•~OLCJJ)•ALP~I(J)•T'CJgl) ]00 qd(JI=·t·Yotn~tJJ,&J•f~SEIL&JJJl))•YOL(JJJ•lLrHCJ)•tYPECJJ~l)-TPC~ I , U t Cl nC ( J l . . . . .. · , , • r.~J .II) 1 j 0 . . . 110 nu 12u J=a.~P .JJ:aJIJiitJ; AA(J):tJY~FUK(JJ.&J+TYSETLCJJ,JP)-VOLCJJ)•TF~J.l) lao ~u t J , =r. t oc c J l · :UO C0'411_,,,E , C!tb FnJIM UVPE(I,I),tvP(! .. U,UtTYI'feJCU,&U C4LL •nLYIT (fYPECirf)l If (1YrEfQfiJ,LEe0,0) 00 tO 110 PO l 11U J:&,N!• ,JJ:aJIJIIf J I 340 CIUCCJ\~tYPfO~tJJ,l)•lf(J,\)•JYPf(JJ,I)•TY,flDCI)•YDLCJJ) r.IJ fl) ,, 0 l5' If Cl.ru,~) GO TO 170 . 00 lb II J :q , tliP 3C.O CIIIC(J\::o, ]U r.llNIINIIE c . . . C.,,. TOtAL NliHOGEN tf t1~~1PtlJ.lQ,l) GO 10 190 nu l"u J:q,,,~ JJaJUtlfJ'c UCJ):n,. 100 RII(Jl:: .. vnLCJJ)•OEN~CJJ) .GA~L tnQ~ (IOfNeTOfHIN~TOTHEX) C:ALL lioLV&I (fOJN) . ' )90 C:IJtlll ~ •• ~ c . • Co••• c TUf lL Plf(l!iPtfUIIU:I If ('GM1~(Jl~~O,I) GO TO •10 nu 140u J~ a ,,,P .IJ :t,HJP!I J l U(J)IIIft, ' R"(Jlc.VPLfJJ)•UtN~(JJ) CAlL tr11tH (JIITI',fUH'&ff•IOTPI!X) CAl.L ~fll.VIf CI01P). . r. Uti I I Uut. C, ... ti)UL r,UI.lfUIIIi IJA(f[RIA .If Cl5~(r(u),(O.a~ GO TO •bO If (NUyU,tQ,&) co 10 Q}O I'IU atlU J•:tet4P '~ ' ' ,j J a .lllfl I,!) 1 & ( J J "r Ol I Ill( ( J J ) '! 'I IlL tJ J I -A L PH l ( J ) • T f C J • l ) ~~(Jl:.CPLfU~ClJJ•VOLCJJJ•ALPH(JS•CO~T(JJ)•T,(J,I) t~zo cu .. rJ,ut. .. ._. \ .w "Vi '~ ( ;. c '--::. '. CO TO I'ISO 130 CONTINIJ~ I)(} llll(f J•l•"'" JJ•JU'ftJ) &lfJ)crOLTD~lJJJ•VOLCJJ)•T,CJ,I~ IIIO ll!S(J):s,_,O •5o co·H t ~~u~ CALL '"k~ fCOLT,COLTIHtCOLT!X) tAL~ SnLVIY CCOLT) 160 tUN H!ltfl. c . . C,,,, 'lCAL tUL(roq" BACTfRIA II (l~wiPC5l,tQ,lJ CO TO ~10 fr C~OYNrEd,IJ GO TO 480 nu uro Jca, .. .- JJ:JtJ~tJl &A(J):rOL'D~CJJ)ft~OL(JJ)•ALPHliJ)•i,CJ-l) ~~rJl~·CPLrP~CJJ)•VOL(JJJ•ALPH(J)tCOLf(JJJ•t,(J,IJ 170 tU'-Il"•t•l:. r,rt J!) -; u IJ eeo CO'Ill:.tJ!:. ()U llfJ•l Jtq ,NJt JJcJ•J••rJ) a•IJicr~LrDKCJJ)•VOLCJJ)•TfCJ,l) aqo ~~rJ•~~.o · 500 CO" I l 1iul tALL Fn~~ (tOLr,COL,IH•tGL'!X) CALL ~oLVJT Ctotr) sao r.n·H tu1•t c . . .c •••• candO"~crovs sno ~60 t c .... : Jf ffS~I~C~J,[O,I) GO 10 560 1F l~Ov~.tQ,t) GO TO SlO no •uu Jr 1, ••P JJeJIJP-ttJl J~(J):pUOCO~(JJ)•V~LlJJJ~ALPHlCJl4irfJtZ' f\11( J): ·'ICIOCDit CJJ) tVO\. C JJ) •1\.~'HCJlt~\OOC CJJ) fltp (J, i) c o•l rt uuE cu ro t;lJO tt••• I I ltuf. f)IJ 'JIIIJ J:;,NP . JJ: Jilll, JJ &a(Jl:»UOCD~(JJJa~OL(JJJ•lF(J,Z) 1\li(Jl =n,o r.u•• r U1ttf C •1.1. f flo{t4 fUOUC, UODt IN, IIOUCU J CALL ~nLVIT tUOOC) w·••·•~••E ~ J JIIIJtif hilUS IUJO tf fl3rl~Cr):tQ,I) GD YO •ao •' c~ov~.tn,\) GO to seo l)t'J 5fCI .l~:t,tiP JJliJ\1'IfJ) ••CJ)L~~O~b-1JJ)•VOL(JJ)•4lPHaCJ)•Tr(J,.) ~W(J)=.~~U~U~(JJ)•VOtiJJ)•A,fH(J)•nOO~(JJ)~t,(J,&) '" .r.u·H l'•ut. • ·;~ ·' A a.u A L· oo to 6oo • soo CONTINuE M no 51Jo J•t•"" JJ•Jl'~rJ) AA(J):nOD~D~~JJ)•YOLfJJ)tT,CJ 1 1J c: 590 tUHJ)s:n.o 600 cu~fl••u£ tALL fnq~ CBOON,OUDNJN,UOONfX) tA~~ Sn~VIf CUOD~) •10 ('UN I l~ttE . C,~,; DISSO~V~O O~YGEN . IF CISKJD(ft),tO~il GO TO ·A~ IF CNDv~.[g,l) GO TO .,_ l)fJ flltl J=t~f•P JJ:.tJUNf,ll •. &AtJ)~vU~(JJ)•OROM{JJ)tlLP~lCJ) · t.~•H H=vUL CJJ • • r-11ooc r JJ) •e.,ocutC CJJI •" CJ.lhf·. eOONCJJ) •ea.o .. DICCJJ•• ' lnQt~fJJJ•U&~GCJJ)J•1FCJtl)tOROACJJi•COSATCJJJ•4L'~CJJ•O~~~JJ)Jt 620 Cll'll I hit~ .. · · · · Gf) I') fo~CI uo tu'lf lht•E. 00 6iiO J:q ,~p JJ:JU•IrJ) UlJ):vUL CJJ)•OROIHJJ) fill f ,JI :vUL C JJ) 'f •I!U. DC CJJ) tltOP.COK CJJ \ •Tf (. J 1 U t C •DOOiUJJ) •IODNDIC CJJJ• ao.nF.IIf J 1) tOli.GCJJI) • ff' Ut IJtUROA CJJI tOU I CJJ)J uo co~. rttll.tt: 6!.iO tiJ'I llllltt. CAlL fn~~ (U-~rUWYIN,OkY£1i CAlL ~nLVJf tU~YJ 66 0 C •J'il1Nat~ 610 C t)IJ J1 Ntt~ tf (M~~~~PLUY,IPCYC),tOaO) CALL OUr~Uf CLDAY) Jf (~DVHtl~,O,JHO,IPOAYCI,PI.N!.LbaV) GU 10 fit tYOAYCrrP)sLnAY . e ... c •••• :tiiiHl .Pkllt tlt PLfJI DAJA I~ (I~P,tO,~) ~U TO JlO ntt I Ill I I :: l , II . c I~ l~Cu~r(IIJ,tO,OJ GO fP 711 ,::I .. LIJifP( II J OIJ 700 K:q 1 11PP nn ... ,., u~r·,;tt t::~llltnllllt Lei<J If" h.,rti,Ol I';IJ JO 710 It-l " • , " • ~ ~ r.o 10 u n lillllt A" l•l"''• II) iCU'H\.• u r.u t II t• 'Ill 6GO P~nt»ltLeiPP,IIJ~CnNIL•It 69C c:•.J 11l Jt.ul l'on r.u•tf l'h•l uo cu••tl:~t~t. 1 PI•: h•r • 1 7<!1) CIJ 11I frettt. 0 r· ~-. .. . . ,-~----~-:~~.~ ·'·. j:i:, __ ::llt_:_c .. _.·~-c.~~-,--·· ·. A gU A L c~;a: 'JtiR~ TI~E "ISTQqy PLOT OAT~ • 11 (~P!Ul,GT,IOO) GO TO JSO D4Y(~PLU'JaLOAY !10 fiiU 1\•l•~ 9r CIPIUTCM)sED 0 0) GO TU 7e0 n•IPI.OJCK) CHJ no li 1111, f.IJP Jt~JPLOT(fl' tPC"PLni,BI~K)~tONCJ,I) Un CIJifflNIJil 71.10 Cl)tll! tiUE fSO CWIII NUl 1f CINnUAL,~1~0) "AITl (JNaUAL) C(~O~(J,K),~•&,I)),JPl•NJ) 7.0 CO"' I H~ut. iPPaf."P•l Jf (NPP,Gt:o,ANO,IPP;GfoO) CA~~ OUtPUT l•!) NPIJltlhi(PLnt 'IF C~P~lNt,GT,~OO) HPQINt•IOO IF l~Jp,Gf,O) CALL ~UIPUT tO) END ,('3 f ...,.., ·'4 ' c c c ,, C U R Y 2: SUBROUTl .. t CURVE(Xt Y ~~PT ,NC¥,NI''-0T., ·""'tNStu-. )f(NPT,NCY),Y(NPToHCY~ l'tH~IIt: NPf:NUuorq V~ J~PUT PUINtS ON tAC» tYHY~ tJCV~'*Uv'tlR OF' (IJPVU UN E·"CH GRAPH: N"LOhPRHfttO KUe OIM£:NSt0~ llUU;iJrYC&UrlhNPTCU , · . ·. ,ou,.c(q) 1 (hJ11'HI.IJ . · . • . .. · C0"14U.,it.A!Ii•l A•H IU, YLA(t e&t, fl fl.£ ( ti!J tHO~UC Ut rY~RlC6hfUNift co~~o~~~•xE/N~PtS XtiU • •I,OUO Xllltl • I,UEJO YHI.C • •I,Ot::lO Y"l,. = a.ot:Jo n~ 150 K • I• ~CY N • ~Pf(IC) 1)0 lSO J : It N :sU UP J( AfiD Y SCALES f'( X(J•Il) ,GT 1 WMIX ) ,HAX • X(J,~) JF ( lt(.hl() ,t T, )IHJN ) JIHiJJ • X(J,IC) fF'( Y(Jtk) 1 Gl 1 YH&~ ) YHAX e Y(J,~) lf( Y(J,M) .LT, YHIN ) JHIN • Y(J,K) ''o co .. n•.u!; rJf~~Prs.r~.lJJ x"•~~a,o 1f(U~PJS,(Q 1 ~ll XM•xs2I,O tW"Jt'h) • ('1itt OIII'Jt f ll • X11U faLL S~IU fUW1llt fO ,o, z, U l)tl"t( 11 :. Y'4JN Oli'Hti!\ a 'f11AI( C~1L ~t&tECUOHY,S,~,~.lj no lbO ~ ~ '' ucv uz:•.Pt!IIC) W(IHiu) a OUHII(lJ ••~·~~~~ • u~~•c~J y(•ut,w3 • OW>tY'UJ Yt~•lttcJ • UU~YCij uo c~·· fl•a!lf. C:· C ;OitH IC t.•IJEU AND FACTOitS c li"'lita OU,.II ()) fiU. 1.11~ 0111111 (", iL•tH l \aY"'t" O'J Zbf1 lchJO 260 IL~fCl•llS,L&~ff)tO[LTM C JSC:•t. IS .,..l 'lU"'1~Jt OF' SPACtS P!:R UNIT ALtiNG fH~ JC•AICIS '5 roll PMt'fiLU, 1~C&l•tvO.ICtLAH(Il)•ll~l~) c c J1C~~~tS,l0•21J XSCAL•S,O .. c c c c c c Yttlt~• pUMYU) •OEU 'tit 0011\' U J yt.AtHft\t~YttJPI oo uo. r~~.s,s . . 270 Y~I~(~.JJaYLA"(7•J)~D(Ll~ YSCAL•SO,/CYLAB(I)ef~IN) caL~ ,~~nrfo,o.aoo,"PLOft I( • ' oo •5o ... ,,,.ev IFtHPTCL),£0 8 0) GO TO ~•t C U.lt Y I JNI IU\.IIf. P\.OT OUfLittE •. C I e JOIHIHC MO ~0 AND Mt Yf c e 'Oil PAOF'h,U VHf: f)Ngr.m U 'I~E flltU OAU 'DUff Jf(PIWPy,,~O,ll) ~HIH•leO ~iji~ieAL•t~CI,L)·X~Ik) . vo=V$CaL•CV(.fLJ•YMJPI) c c e NPOI"t a ~&tHL) OU qOu N ~ ~,NPUI~t Xf & •ntALti~t~•LJ • XHIN) Y1 : Y:'\CIVH(N,l) .. YHIN) CILL Pt~l(CUt1n~··~YfJKt~PLOIJ •o • ., yo • H eo~ co••H•tuE. uo ~ c. I( • t '50 CO"' J !1111~ CHL PPlOTU;Ig'ltrNPtoDH Ill WHfl Et.D rJ ' w '1\ ' . c'7~i~c: ~;~~~;-< ·., '., •• ~ 'cc• . . . ':: . ' ~· ,, 0 r 0 A H ,u~~OUil~E FOftM(tONtCIN,CE~) CO~KON~MI3C/NJ,NC,NP,NDYNtNBNOtMLt~iO~Lt,JPA~t,NHYOtiOlY,JD£Lf u. t.~JP ,u,t,ICPLOT tl~IC liD C l U, A\.l C20l g IOYN(\SU 1 11tLEC2Dh tUI.tiOJ . ',', • •• . ~QP£~~(S2)tlPCYtrLOAYt~tYtM 1 f~DUAL C0"'"40 .. JBACIC I I'll &1\E (20, ~,I uc 1(JJI (?.I\' '5) t0~~0Nf(.C/ ~ijOU~D,J~OUNOt~O)tQl~~tlO),OFLOOO(\O),.RCIO:,FJLL(l-0! cO~HU~/~IG/ ~t~aN(lo~,ft),~JU~tr!~OtZ),JU~t206),KtlH(S00) •"· U.Ptt( lOU 1 ALPtt l ( 2110), .U lliiO) ;uR ( i!IIOf; 8~ Jll200) •• JSIV(ClOO,~lltjl20~tll)rALPHa!2UG,ll)1 4C(lOOl~A9(l00) ., olF t \uoJ ,uOilUl,vsc.snu) ,ulhu~oo'. zznou ,vuL uoo)l zuou e• CCl(~66ltCCUCJ~b1tOEP(20QJ,~avEl!QQ),h5()00)tVAUStlO~) COH~Q~/Utt&L/ JU~I~llO~),JU~G&U«lOO\tJUNAi200)tOIN(200)eOGlNlZOO~ ~· 5P&ClCJ~O~) ~twfk510h co~caa~cluCS)ett~CtJ c e.,,: -0~~ rt~kL COlFfJCil~f HAl~!~ AhD tU~SfAHI yEClU~ ~~~8~0•1 . I)') 9l ,)11 j 1 AlP fiEt•JJ):o,o PO q l oc: I , •tl.ll1 92 ALPH&(J,K)sA~AV((J,KJ tFC~OY~,EU,l) GO 10 SSO ,,. .. DO l~O J•l•NP u:an·• 1(1\tJ .. t.p;~D L\.t~Jtr••••P 1f (t<~<,l.ltOl KK•l tHH,d ,bl U•O trCLL.nT,~~~ LL•NP :•U l)lJ 110 tU:KIC,U, l=l•l ,JJaJIJhl'() · !tO A(T&(J,•BEIA(J)tCONCJJ)•4(Jfl) al'•fJ\&~LTACJ)t~~CJ) 'LP~AfJ•~)aJLPH4(J,H)tAAtJ) 100 c.u••liNut. t;O fl) 1.:0 I SO CU'Ii Jf..)lt. o!l 11)0 J: I ,riP •LP~A(tt~)a&LPHA1J,"J'AA(J' q[l&(J\=AlfA(J)t8~CJ) hG t!J~II .. IIl 120 co•n r '•ut. c .• c •••• p•nn~, r)U 200 Jc&1 NP JJ•JU'•CH JlaJ(I .. fN(JJ) Jl=N•·:.l"( IJ) ~tfaCJ\•PETA(J)tCI~CJl)-OI~(JJ)+ti~CJl)~QGIH(JJ) 1f tJH"~ (,JJl ,EO,.O) GO TO 200 ·1(1\&JIJPo& (JJ) . ·on llu l•tt~ ~-~41.4((~~,f) ' . tt.,l"·f.'ii!U 'fl JU iU P 0 ft H 8ETACJI•BtTACJ~tCCONCK)tCJ~&ItOtKK,)•OO~CK)aP.~tCRIKK,IJ zz~ co~t1Nu£ · · 200 CONTIHll~ . c • Cat•• POUNOAPY £XCMANGE ~F(NQYN,£P,l) OU YO ~00 no uoo t,ca,Nl'OUNO J: JhO~•ID U.l JJ:JU.,tJ; us:•lfL~liJD(L) • ( l I OtiXIUL)) •OE&rHU ALPII& l.h lo)d\,PHA (J ,ttl ooH• AlPHl (J) ~ltACJ\:Rt.fA(J)tiA•~L~H(J)t~OUCJJ~iClK(~J~OfLOOOtLt•JRC~J eoo cu·n a IitlE · • - r.r~ l!l uU 100 CllN fl~ul DO q~o l ct,UBUUND C w£ij:JdnU~OCLl C CU~~=-Ailt•(Qt~d(L)•~FLUOOCLJ)/(2 ~MR(L). c ctwu~l:~•cEXCt»•COFLrmoclJ·C~,o·•£tLJJ•G£B&cLil/tt.•~"'LIJ C AlP~•1(Lt,w)aAlP~AlK£UtM)+CUNl C 11£U,.tf0):11UACKEahtfW0 J:.JU0LJ•r0U.) . T &:~Jf.'LmJD C U • .I I ,ll.XIt 0.) )•0[.1!8 (l) ALPHA(J,~)aALP~A(J,H)oll REIACJ\:e~tACJ)t([K(L)•UfLOODCLJ•M-CLI 4ZO co•lll Nul · •a" co•~ 11 ••uf REtUitfo4 (til} {') \ Vol v, t ~ :V\ . ...,.() c I.HPU.Y ,UeAOUfiNe •fNPUf'\KK) C011110,. M~AW(200) . . . .,. .. ~O~~UH)DIG/ ~CHAUtla0,8),NJUNCClOo;2)tJUNCttO),~LE~(300J I, aLP~(l00)r1LPHlt200),AAC20~)iOB(200i;~[fAC~OO) 2; ~~•V£(200,liJ,&(200r21),ALP~aCl00•~1),AC()IO)r-SC200J J,. nl1tlOO)r~()00lrVSI300) ,noutlO~Irlli)OOJ ,VULCZUO)rlCJOtt •i ctttJOO)ttC~()OOl,DEP(lOOJtA•VEI)OOJ,ASClOOf~~~DS,SOO) CD"HO"!OUALI JUHI~(l~UJrJU»GINC20Q\rJUNA(100J,QfNt100),UC!~(l00) 1. tUJI~~~'~)rl91NlN(l~O)rl01PIN(I~O),C0LfiN(ISOt,tU~flNCI$0) ~; ~OOCI~IIS9),UUON~~(lSO,,UJYfNl~SO)rflHPIN(l~OJ l, T ·tPl t••IISOr II h SAlJ I'd I SOJ . .. . ~; TD~C2~~),tUt~C200J 1 tnJ~t2U0)1 COLli~UO)rC~LF(l00),HODCt~00) s; noo~c~ou),oa~t~uot,t£~P(luo,,ttP£12UO,a),tYPfO~l~O~,u) 6 1 fiAt. G (lOll J 1 lJIJF.N ( lO II) t 1111(1~ (ll)(l) t lllJOC'Jit 12 (I 0) 1 IIIIDI,OI'd 20 0) 7 1 . ~til TO-t C lOO) t CUlf"O'-C 200 l, USl J r lOU) t l)lhNUOU) t IJlHPCiO,OJ CO~H0h/lnO/fYP£tn(e),(YS£1L(lUOrq),Ufl~ll) C:U~M0if 1 itt C iC/ I '• I a,. [ Cl I),!») ; I lC riJIH 211, ~I ~Q't140~ /ttHC /UJ 1 rrC, uP, UDl N ,,t)•JI), 10., I" 1 OEll tIP •lit, NHtO, lOA l' t J D(l f \, »J~1 lkE,wPLUTriS~IPtlfl,ALlflO),tUYhC~l),IIJLtflO),IIfLC~Ot l, ~~Pt~"(Sl)tlVtvC•LD~YthCftH 1 1~nUAL ccmtll,.,t:, t ,. "d'·"'''o, J'ltJt•r•o' sen, ue.nu, t n,, un(loo c au~ 11ut 1 o t. rosu ca U 1, ttihf •II 0 It N IJ'U C to l t CUlt Lll r I u hCOLf liC (to J, OUUCU C lO) z; nOQ~ll(lU)e~~rtall~),IL14Pl1(1Uftltrtl11CIOrt)eSALIEX,IO) (U~'f'OI&/PI Uti I P(.f\ I ( q) t C P (l II I' b' ~ 1 , nAY ( Ill I ) 1 lfrlll NIt Jl'l.\) t l C.) 11 · fpp, r,PI~ elfltr• t ~ l) r ~I)Ql.P C ll r l i, PH(.Jf. C ll t J, II), rltilfll1 (It) 2 1 PAQ.&(l\t),QJ ~O~"O~~"lil~~lUh(tJ~lO~i(~,~J•fOUf(lOO),f,~0(200) a, fVC2QUt.~~51~•.~J,wi~D~tlUO) . . • OJ~E~Srl~ CUh(ZOO,lJrti~Cl50,IJ•C!•CIOtlJ I) l1'4t.fiS fUN I)VO f( tO til, rUjAtt ClOO) !Utli~AtEnct C(0NCI~lJr1DJC1l) t; rCE~IltiJ~IU~l~Cl~),fCtN(ItliriUSI~(lJ) »fkt~,,~~ ~•-EcJ,IJJ,u1t"~fiOJrC~aNEC~•MJ OAU hattl/lltHUS ,l~"ll r•lnftlfAetlt4l H ,qft ,IUffOTatllttl, P 1t 1m 1 1tHICJI,~uL C•J,•IIIl.U ,tlllfECA,lltfl COtUttl.IF ,~tttAHI l, IIHOff -.t,••uoD 1 flttffi1H 1 c.t•U UUqaHD .. _,IIHOXYCrliHtti ,•H ), uH1!"P,qtttA•!1 11UUffr ,IIHUfiP ,II~!CUtiS,,.lt! 1 ,uttof'P ,ruttOHS 4:• AJtlt Z ,llltlJPi' ,uiiCU .. ,,, .. I J 1 1flltWP r411(QNStlllfl il I CAH ti.JtUiiZOf/ sltQXtf~•!l=lq.~\Jl•Q.lUli7•K•S.~~~8l•l••o••O,~S5•f•(l,665f-•~,,86 •• ,.~···' JQ~(~b••·•• IIA 1t: ( ll j • J/lt~HOI), IF C~K;tn,~j GO YO ~ZO tJIE••llpi,O i1H,.U1•.1.o 00 1(1(1 J• I ,.JOO ItO uJtiiiC C Jl. l)a\1 nu 11 v J s I· , lOt I u &I(IU"tt.ft ')110 fill llO I=St~t t4~fJt1P C 1): (I UO fl'\.ttl(I)2U no IJ·J l•lrJ · uo ttinatCt)~:o :fiu lui) tea,, .... ·'"'"'"'• J•ll •• c co '160 llfltil no ISO J•l•l no ISO K•l•' ~qUFA(f,J,~Jao,o l5o rnoF~CtiJ,~Jgo,o llOPU'HtU•U. 1&0 NODfP1f•~)•O . ~~JO Cf~IJQJ flf~~,riT~ 110 '"q"•' Clu•-~ · · · 0 ',t. I', ,1 ' I ~ ' '', ' I H P U f ~E•o Cq,l~oJ hHY~,f~AVtiOELf•I'~'•~'CYC,NJ,,~Pf,lt!r"fi~!,INGUAL lliQIIAl. aU leG 1(11HII f llbiSJ • PfMI~~ hr~L( ~ Al•O C-tiLEl HJrNCtN~NO Al&Q Cu~IL[J (JUNCJ).CNC"ANSJ,I)tl•l•~t,J•t 1 NJt 1 CNJUH;(NtlJtHJ~N~C INrlJtXIl~C~ItN•I•NC) "'L111=ZthliN'lti )Pf, •I uueu wi•I.UT ::.n DO l"11 'Ja. ,tfJ a.o w ••w• C.•, :ao. DOZOIII•hilf lOG CIN'I~~.IJ•o: i>IJ 1ta J•I.~J JUfiA(J\110 JUf.tlll ( ,IJC jl}l) JUIUilNtJ)alSO 11 CJU~lJ)~l.~t~J GO tO Ill ..,P:hP61 210 C Or• f I Nlrl no iUJ llo J•l ,w~ OIJ 2ZO mq,uc IF IJIJ•t(J),t:D,NJUHC(N, iJ) NJUHC(r~~,f)hJ 1f' (.IIJ••fJJ,U 1 fiJUt.t(N,l)) MJUHI:(fl,tJ••J CI:JNfltluE . f)JI l \0 fla 1, liC UJIIr4CCtlt t ).= IAUSffl .. JOI4C (N 11 !J. NJU"Cl~t~J•IAbS(NJUflt(~,lt' CUtollliut . r~· Chr ef•>.o) U:hiO tr t~Jp.Gf.,J NJPa4 IF 1«P~,G1,l) NPP•l ~F tt~QUIL,~J~OJ ~(MI~C INOUIL w f.H1 1' ~ ii'C•C t,O•<t•lnAf I)H r '' 1 tJi 1 un~lll •1600, ~l•D (\,IOn) I~O~L~~(I)~JDYN({),Iat 1 NHYDI J,lf)YrU r n r•~c I, 'q(.ao te.tlllll) CIS~I"Citti•I,UJ •" ut•u c~.~un) C~A~l I~ 0 f 0'111 A I ( h aq )' H~IJ'(t6J:J•LJ If t~JP,fh.~J GO 10 ~~0 111-U lt;dtJIJ) ti'LUICIO~I\IIDl•ltJ,IJPt.oHIIC,.K•G,.) 250 tUMTINuE • iF (NPPeto;o' GO TO 210 q~AO t~t\60) (NCONP(K)tK•t,OJ,(IPOAY(J)tlni,J, DO ~60 1=1 ,,~,p ~~0 qtAO .5,100) lNOD~~CJti),Jwle~l» 2JO CO~li'IIJt k~llt Cb·~~Ol fi1L[tllTL zeo roQ~tt CtHlrtOt,20AI,t TEIAA TFCHt l~C,t/,I&X,ZOA.,I LAfAY lflHt (AltF,tl) ~~IJF. fb•l'Ol IDAY;I6ELf,IPCYCtNfiLftl~OUAL~NHYO 29Q rflll"tit l/1/,liUl,tSifiiiJLAUON DtGi,.S 0" D~'f ltl'ltllt20X,t lTI~E 3tLPS O' t,(u,t ~OUftC~)I,I/,!C=tiP"INiD 2Ul f..V(QY I, lo;• VI HE STl.PU) t ,I/,2Uli, IHYURA\11. ltt l~frHFACE U~~tt,tSJ,IUt/l,lOXti~UlLIYY IN1lRf~CE Uklfi 1 Y5ftl~j/ 41t,?.Ot,.H•lt .. ~E.R IIF BDU"'OlA't tUr~DliiUd 't~lll) ' I}'J Uo &•t•••t.tYD JF ClOtLY,Gl,ZbJ ~~PERH(()~NOPlNH(t)•l•IIDELT Jf l~~Pf~~(J),Lt~O) NQPER~(J)•I IF (IOy~(I),~U,O) GO IO JJO kRiff fbrlOOl NQPlAH(lJtf 300 ro~,&J (iJ•tll,l 11~E S1~P$ fUN C~~UilJON ft&S,t 31fADY SIATi l') J;O IU J)O 319 waft£ tb,~201 ~CPfR~(Jitl 121) FUQJ4&f Ul•,U,I· iSH!. Slt.P3 FUR CONDIHON t,n,a DYNAMJCB) 330 t.ll'•lf '\lilt. .,q II~ (CtlUO} Jqo ro~~&r (I/J,20J,IJHE fOLLOWING CONSTITUENTS AR~ BEING HDO£Lf01/) D:l !5o ug,9 J~ liSKIPC~J,lO,O) riftJIE C6tlbOD (~AHf(J,K),J•ltl) l51l Ctl\r t I IIIJE ltto ~~~"'' fl5r,J••a l=O 1)0 HO u 10• U Is:. J t t :;· (UI(!Pf1C),£Q,O) Hlllff Cflt:SOOJ CNAttt:CJ,K)11 Jni,3),(CNUtUJ 1 1),.J•l ,,,, 370 Cll"~ liNHE ldo JUq~~• (251,JAq,~~·••a» e . C,.,. l~lliAL ~U4Lif7 CO~OIJIONS ~U-1( lbr~hOJ TJl~ftflfL Villi! ttt,J~O) )90 fOGMif (1/,Jil~,tlNif!~L OUALI1Y CO~OifJONS'I•' JON tO JUN TDa a rur ~ rot P T COL F cnL c euo H aoo o o l ,~.~~ tO~St I t~N5J l CUN'T J CQ~ST"Ut/,ltX,)(~X,tHGIL'),Z(t l•:QIIOQ,.L'), lC5X, 1 HGlL t ), U, 'C 'til( t UNI f51 )I) l)tl UQ(I J,h:I,NJ QlAU ~~~uooJ JI,Jl,(ALLCIJ,I$1,1)) eou ·~~~•t (?Js,aur~.oJ JF (JJ;L~0 Q) ~q to IISO JF tJJ.&Y.J2.~~1 Jl,G1 1 UJHA~J ~Uifl (b,IIO) '1.1) lfJP•Ut PI•• f>C"u"' • lttE J'ULl.O~IttG •t(IO£ l..lhiTS AHf It' lPHOifl) JF' (ALl (I'),Ll,~,O) AlLI8): .. :.t,L(b)•t;l1U.V(AlL(9),ALLClU •~Iff (O•~~~l JI,J2,JALLCJ),J:I,I]\ 9l~ ~~~,&I (lkoiJ,f~1 Q,lF~~~1 lF,.i,Jtq:l,F9.1,Uf9~2) 1'1~) Cil 0 J &,J ' ' J l • .. t oo·•:so.J•a,t3 tllliJJ, t )ULI;CU iilO (:Ol4f it.!tJl 4GO CONf1NrJ£ •so CONUNrJE C,,,. nlSP£K~ION CO£rPJC.tNTS WRII£ lbt4~0! . - ••o ro~MAf C///,IO~,tOJSP£~$10~ ~~ffri~I!~YStf,SK•'CHA~ YO CH!~ I Cl Cll) •to ,on~ar t!9,aa,~r•~oe) 1)0 116!! "JIIItr4( Q8ft 090 Af&U (~,UOI)) Jt,J~tCteC• IF fJ&;~o,,) GO 10 ~90 ~Rif~ ,btG?O) JI,Jl,Cl•C• DO IIISII Ja:JteJl CCQ(JhCl CCIJ(J):aC:II tONf INt,IE c . Ce•e• ~E•~•un ~ou~n~~v t ' • Q~AU (~,1~~) NRUUNO,~JBOUHO(JJ,J•t:&i! PO S & 0 l : l , tdiO!.!t!f) nO 51JU K::J,tiP '' (JUnu~o!L)~~~iJUNt~») gQ to 500 JUOV'UJ rl. hM ;;o 1•J '510 '500 WNffuuf. 5U C:IJt-~i Hh1l qEIURN co•n WuE NDY>f;;ID7N(HCYCH) !PCYCe::f.::r~ If (NIJvN,U~, 0 IPCVC~al PElU (q,iJO) l:!L RE'IJ cj,J8~) (~1[HPfr3•3•lti0) J:o;iJ (liJ !:!C J~l10: S3o Jr:IH4h'li~(J! tf u el. 1,8) W1411E ,.,lOO) rna.E,TUL tH=•IabS(It:E) tf (NJrMP(t~~LQtl) GO TO Sti c . C•~•• HVOR~IJy~AHICS tF (NI£~~(l0)~ 5~Gi~OOt~bti Sqo la-rHtt•I'CIO) ;)0 ~'iii '(:I~ I 550 ~AC~SPaC~ UPILf GO 10 ')IJO 5U I=NH.Mc::Oiii ou 'Jh l(=!d 510 A(iiO hfiU:) StiO CUt.1tft~l•l •• _~i~U !~f;LrJ nruR,CFLOUO,(DYOfCJI,DlP(JJoA~CJ),VOtiJ)JOJN(dJiO~fWf l~i·Y~~!J!.~U~d~J:,J~i,uJ)rfACC~)fOgH~~A~CNJ~~AVlC~JjVI~HJ,yADSfH)I f'l ' """ V)• ' ........... " ~ IN•i,HC' lU:••JtE no ca .. u,.,JE c c •• ,; TlOAL to~DIT!QUS ( tF (NJf~~(2),EQ,L) ~0 iij ~SO :UAO C!i•t.l~) CXR.CJ),JghNISOUNI)) tP•Gt'•1P•cr•a t.UUf. (tt.61)0,) .. tYCH " ·~0 ,~q~ll C//~lOK~'£•CHANG£ (O~GlTION3 DURJNij hYOROLOCIC CYCL!t,J4,/l I J•JII F'lCtt UHJ f'LO!JD lD.S TOT N TOT P T COL F CO ~\ C P(IO N RtJO • OXY TEHP CUN t . COtf 2 CON .J C:UN Ill t )/,~K·'~•tiQ ~CFS HCFS ~,)tax;tHU/Lf)t2fl N/IOOHLt),)(t HO •/L 1 fP~r,•e•,P-~•(I UNITS•)/! lltJ .t» JO K i: i, a,IJUU••D qE•u C~•61Dl (ClX(MtiJ•I•l•i') •ao ~Q~~•r cs~.aaf5,oJ J:a N·Jv•:C.f ot I J :,JU'I C .J) JF CS•ttEX(~).tl,O,,) 3ALTE~fMJ~TOR~XCKJ fF' CIU:tllt(te) ,l T ,'>,OJ UXYfX(IS)s•Ol(V[XfrC)•SATOXYCTfHP£)1(K), TOSEXCKJ) ~oqfft (6,6laJ JtXA(~),nEo8(~1,UFLOnD(KJr(C[X(K,I),I•I,I)) 620 ~~~~•1 .CJQ,fS,l~·~PlFtelrVP~e,o,re;z,F7,~,2E9,~,,7,2,,a,z,z•e,a,•r '"·', .uo eo·u r ••ut .· ••o ,oq,&l (1//,Jux,ta~ttO~ CU~U!TIONS DURING Hyoq•ULIC CYCLfi,JGr/t J lO~ i~PL?d JOS iUT N 1nl P 1 CUL f COL C DOD ~ N tf'llJ fUY i~t:P .t;U~ST J CUN$1 2 COrJST ) C:UN:Jl qt/'IJC l,•CFS •-3tSx,thGIL'Jt2C' ~OiiUOHLt)1 )(~~-·~~lb')•JJC,ot ·~~CI UN •1 u• ,,; e.: .. f"FLO~ ~•IER U04L(fY .,0 uo no 600 .. 0 ?oo flO rr ~~IFHP(J);t•et) GQ TU 110 w~JfE to,6q0) ~CYCH n•J ut,u J:rJ,tfJ ,JU'HNJ.t),lll50 n'l c.7o .J:~a,:oo d~ ~ill I(:; a, •• t: r '" ,, , d i o • o l•l . . f'IU HIJ t.l •:1, SOO PEAO (~,61~) JJ.nd•(ALL(~),K•:,I•J FUU"lT (1 0• E~quq • q£TU~~ WAl~N I! ALLUW£0 AJ ZO ~OD!S HAXJHUHIJ Fon~•t ''~•l5f~1 0) IF CJJ:(O.ft) GO TO flO tr C•L~(tu2.t(,o.ur AllC1GJ••LLCIJ tF t•L~(~).LT,O.OJ ALL(6)••ALL(~)a~AfUXY(ALtr•J,ALf..(l)) hlfi IE IC••IJ•lOJ .JJ,,J'), (AI.!.(M),t(:l 1 13; If CLL;tc.tJ J~~INCJJJ•l 1'0 IOU 1\al,\. J•" IF lJU"I~tJJ),[U,~) ~U In JlO CO'• t i .,,,[ Lat • I Jat ••:··•"·'·' J, •J (•i"~f l•ml - .. c ·u ·~•,uoo, •z:P~ ~!!!I.e ~n•t•~·oo'» · DO 720 i'l•l•lll .. . , . ·. · ... f'Dt I . • '', ' .. •F-i!~tiY.J.u.o.u '•.fA . 720 CIN(J,w)~CtNfl,~)tALLC~)~Uli' 1JO CUNffNill: . ' . \. 1'1111) CU~Ot•tJE . ·. IF'lJ,GT,IOOJ WRlit (6,750) 7St! FOqiO,r ( 'Ot~AttN:NC a· • tHr "d..IC.lftU" nf Itt !Hr'!.G~ i.ueltii(JtfS NU U!tt I E. •t.Et.:nt.O • •' J ,, '~''"r(a);t~,a) G~ ru ItO Wl1ftl; .ff.#.Jb01 'hO JUU11i•l C/~tOX,~AiiGr;tGAH.D t!UAJ..UYtl '· ,u .1·~~~ J=a,NJ ,e,i:Jt.trtt'H J) IF tJ~:tn,IS~) GO TO J8U IF Cqi~(JJ,LE,O) GIN(JI=l,o nu ,,~ ~=t,aij · 110 CI~(JJ.~l•Cl~IJJ,~)/QtUCJ) IF (:4.\i f'jN(J,JJ ,U,O. J :JAlfiNfJJ)'1'f!)iUfHJJ) 7eG If (~l~lJJ.lf 0 0 0 0) GO lU J•o w4t1f JbrdOOJ J,aa~CJJ,cca~cJJ,~),NP~,aJ) 790 tlltllrllllt. ' . 1101) f1)1111 A I II q, F q 0 2 I". 0 tlf'~.l I l(IJ, Zt2''· Zl!i''· h.,.,,, C.,,; G~OU~D hAJL~ 1~rtu- c 810 tr (.,Ypii'C':iJ,EfJ,I) GO r\t 'Od ""I r~ tf.ltfi?IJJ !i!ZC UJimAt C/,tuw,t~lfOUhl) tf~H.R (HF\.Oll &JU\t.UY•1J8 ,Wilt fO .JtJatt: nu tt!O J = 1, u.J 8$0 JU~L·~fJ)=t•o Oh MO JJr:l,lU ~L~U (~,uoqJ JI,J2,(All(f)tl~ltll) iF ~.It :lfJ 1 1}J Gn YO 6 110 IF (ALi (f«U,U 1 0 1 tl) Al.t.(I .. J•AllCI) IF (llt (tl),lT,O,O) Alltltlh. Alf.(ltJ•~UUJlYCALU•~··t.~HU ~»Ill fb,~Obl JJ,JZ,fALLCil•l~t,l)t 8QO rOPMlY.Cib,ll,f'•~•l~9,l,l'9 1 l~JF•al1lFteltA'~•2J H CJJ,lO, 1\Jt ~Hiff ftt,H•.O) 850 f IJII~A I C 'u • (.llflllll " AH!Otf "''" Uf' l' Gf'OUNO NUUI JYPU ''" At.t.U"lD';/ i) . 1)1) ti~U 1:1,11.1 8bQ.ri~Clln•JJ,ll=~t~CI) no uru l=JirJl 81n J~N~I~rlJ•~J•iZU 80n Ct.J'IIIIIIJ[ . 891J r.n .. t I•~•IE C 0 ;~: P(lUif~ ~arr~ ooo" ct•r,•u•,,,,;tn,u GIJ r.~!o-aou ;lt I rt. f u, 'I l I)) 'IIC' J'IJIHiAI illlrl(lll,•lflflflllf W~!fttf/,t lfiYHDIUilrA\, JUNCfiON ANI) fiUCfiOJw I llf.fllt<t~lOi,lt DUt~tRG[ JU•,CJION .tuO COffCt:HfiUf,!OH JNCMt.MlNf&p) iiiJ 111.\1 J:q. ffJ 'Jlft JIJI6A ( J; :1111 ou ~ ,,, J~' .. !I! ''" 4J tu "'= a , s ••• • ! -ttttAICt(J•Klllil tlt",ACTO~tJtK1•0e0 no 'qo Jct,lt . q~lO ,,,,uQ).Jl•€~fEH?Cit~•LLCI~'J•lDJ) . •eo ,nq~At. us.scas,rs.ou , J.F Ua;i.~,ll) GO TU 1000 ~~_CJ.j~.~., Hhllt (6,~80) Ju•,aun=J . .no 9'iO hl•5 J~ll~tiJtll~~rE"P(l) •so r•ClU~(J,Il•~LLCl) ~l·~ l'~Q.O) {ILLCI)•I•l,&a) JF 4•Lrfi~J,Lt,G,O) ALL(14~•~LL«l~ 9bD fOU~Af ttb•S,O) nu u o 1:; a •. ! ~a •10 tl~(luotJ,I)~ALLttJ ~~•rt lbtQ~U' tiNIAKtCJtiJ.fACTORefrl)ti•I•')'JI~CALL(l)~J•I•l') ?~0 r~~~n1 l~CJS,f5.Z!,II••fiU.,,lfte2•ltf.lp2Ft.z,zrtil••'9•2) '90 CIJIH I ~•tE 1000 (i,l'IJI14If~ J;.tlt,£ atPJGE tl c C, •,: S~'S.H'1 Cf 1EFf ICitNU' lOIQ ff 1~1f~PC7)glO,Il GQ 10 illO .. "If£ ftJt i l)ll)) tOlO fUqKat l//ltlOJ,tsWsTtM CO!fFlCI~NTSl,/1 JU~ TG JU~ UOD DECAY lCOL1F otCJY 8£ki~JC SINK HAltS ALGAL OXY~EN -RfltqATJON 0 cPP .tU'I!I( CJECA't (l~P CUNU Sf.lillNGt ,11]Jt, ICAIUt Nlfh Tl'lJA~ HC )AL H P 0 rHOTU »t3P Hln ~AX 2 Ul 9 I Z 1 ~,,,,,M,tl/GAV 1/DAY Hf ~~~1.1~4Y HG/"Z/DAY &:nAY l/UAY b ttiOHt/l PlAO (~~~~n) liYPfEOtl),;~t,)),(QTf~tl)rJtl 1 2) iF (01(hfi)1 LE,Oo0l QlfN~lJ=I,O~ ,, cru~;ttt~l.•-~.o.u ruuuH:ao_,o:s._ ttPEF.'lfl¥)l:IOaO 00 IO~n JJ•lt~J . pt.JO Ill# llf)i)) Jl,Jz, (H,U l),lal,, tF cJa;LQaOJ ~Q fe !090 ~tAO f •• !~!U) {ALLll~~lc&JZ~) l6l0 FO~HAI l1br~~O) lf CJt:GJ.Jl,UA,Ji.~T,NJ~ax) ~Rtlt t~••la) •. .. q II E ,~, 'l)lfft) Jl I Jl' 'iLL (J), I =l' l'\ .... ~UO) ,ALLCOhALLU)' (Al.LC u, lJ: ll•lO) auo root""' u~&, p,ub,z,ru.l,f6gz, 1n ·"''a,o~fT ,o,rr•·••'" "•'•·z,.sr~.;e l • f 1 ,l' l. 5 ,l) Ti:Jle t~=t. ALL(l);RtlfCTW•ALL(l)) JLlllJ~ktlL(fA•ALLtl)) ALltUJ;HAI£(J4•ALL(UJ) &lLl~)aHIJf(lA•AlL(\J) nultl';,l) I.:IJ,IfJ l~$0 ALllf1s~AtfC1l~ALLCilJ nt). l')otr, .,r.JI.Jl f• (••tua•f(J, llttfl,IJ) ~:, JO lOttO ll(lf\CU";J'lciiU Ill . ;~, t, ~ \ ;. . ·,~ "· nooND~tJ)•ALL(3) l:OLIDIC CJ hAL.l. (II) fWUfOKfJ)dLL(5J ()0 lOtiO l•ltil " 1~:·~·1 . I N P U T i06a !YPtDK(JtJ)aALLJK) 1C=~.-~3161•tS(JJ/VOLCJ)/8.10fa 't~~(J\=T~~JC•ALLl•) t~hP(Jj~lA•fC•l~L(fJ •iilALii ( ~'l :a,,~ rc. t •u f.u J od\,L UH ::lrtf!t(.h:U•fC•ILLCIU · IC~JC•tUOo, .. ll:lll IIU 0 hI , If II( I: I II •t· 1010 i'i:itrLfJ; J ,:a&LL(!\)•TC u,JhaLLUU IIHHJl::U,L (till l 080 iCll'• I Plltl •. I 090 ICI)IIt IIIII( . ~u•l~ 1~•1100) (1YPEtO(I~tl•t,l),(qftNflt~f•l•l) .. liOn WOQ4if (I05TUIC~IU~ETRIC tcUtVALt~cE U£TW[EN O~JIUNAt CO~STITVCHTI 1 11/.1 1 r,Or~:J't IIU 1 DECAY lD CU~U NO z,t,fll,l,/f CONST NIJ Z OECA.W tO l Cfl'f'H 141l .S,I,fiS,lfl' CU~~'f NO .) OrCAY ro CUN" NO "•'•U.l,J/1 ~-"A liE C~ErPltlt~l l(hPlAATUP( AOJU$1ijtH1 tUijSTANt (Ot'~l/r IUD tn,Ft0.1r/1 ~LL UfH(RSI,t~~:J) . . . alto c:ou11~ul t • c •• e. ~llE~DLOGICAL iONDIJlt~'S nF c~JFijPC~)~Nl,tl"CALL ~lfDAt t~a;t£HP) !If PHF.I1r(l)1 lO,I,AII0 1 NU:ttP(IS),fQ.,IJ GO TU UJO IIF c•urltPU),flf:,u a;n 10 auo I)U Ill n J:: I , 'IJ liA(Jl=n.o atza n~tJ»~aoooo. I U~ ~:nrH I NilE . Ill) •• ~1\ J,i::' ,II!J I!Uif .. ( .! ; ~~~. flf'l)l~ i J i ::(I 1 . IfF (fltu~H(\Id),E9 1 0) GO TO UQ.O DUR-CJ\~,.~UfD,~9J~~~~OAfJ)~•l n~R~GJi:POP~IJ)•AStJ)~l.Z!,/VOL(J) ~)llll.J ( J, ;AtiGil(' (RUit"' f J, ,,.OI'hi CJ,) :'"''" c J) :&tl& 1111 (rJijOif tJ l ,,_ ~ J) ~ t~nllili.J) rol 't t 14 ~ ( Oftlltl C J) , lilt ( J) ) I~ ~0 r:Utt I i 141ft• • . ~qiJL t~•1l~O). (J,RUOH(J),»UijwCJ)1 oROACJ,,J•l~NJ) Jl.50 ff"O~'"''' (to vt.;U"' At•D ijltiO itU)UCE.D I!~~~.RAUil~ CUEf',JCUHf I U~~U ~y NOU(~, ./DIVI/tSCi~•lF·~~~)) rut~ nu t ar.o J::l ,•u 1F (~tHl~IJ,aJ,lO,OI LO fO ljbO QJ.(IhHJ \ :UUI C I h(Jifnllf J!) llftO ·C 1:1r f 11~111:. tf (NifHfS(~) ... I:.,i) Ull HHO~t U,tE11P) auo r.o•n t·•u1. lU, ~\1~'1 [NO w vr ' ~ ........ \,<J' ' SUBROUii~E·"EtOAT (JSK!P,TVJ e••••• . -C THIS lllt)Ull"£ US"U ARc· -~,Jtl At.ID lHC COS \.18NAitY FUNCJ10NSt C ThtSt rO~tYJOkS &Rt S'£LLEQ ASI~ AND ACUS IH THIS COO!, C••~•• . c c c c coo uo coM~O~iHt~C/~J,»Oo~P,WDYU,~H"Or~LI~~D~Lt,JPAOEt~HVDtiD&Ytl~tLT t; ~JP,IEE,~PLOT,t,K!P(t~J,JLL(,Ol,IOYNC52)•fltLEClO),TITLCZOJ 2 1 ~=PEq~C5l)~tP,YCtL04Y,hCYC~tfNOUAt C0"'140..,.iat /tL I l (i, l t iV>NC b) t TU'Itt (EJ), CL0liD(2~; b) t Dill Ci!St b) t tHtf (2~1" \1 .Potz5,6)~MJNOflSt6),UNA(l~1 ~Jt~l(l~t~) CU~"ON;H£f/~4l0h(~J"lU~l(~,l),rU~~rzno),ffHOCl00) a. F~lZ101•~~3CZ•,bl,~J~u•cluo) OIHE~S!~~ &L~ri(8), bEIAl~J, &(Q), «(~) ,t~(ZOU) OJil ~LP"Ib.nS,S,lO,l,b~,.z,oo,.,.44t~ll,29,••n,6)t•~~.,OI ~ar~ ~rJ&tn,sl~.~.71o~o,q~u,t,lb,,t,6~?,2,1Sl,2,76l•3•saa/ n•ra a;a •• ~.~.~~.t.•S~O,l~l ~·'• u;-o,77e·o~~r.-o,1;,.9,lS/ bA1A 'Jil.tql~9/e ~U~I~t3J)llJl/, nfOR/0,017-~/ qQ(Al•I000 1 •(((-·)•9ftJ••~•(Mt28Ji)i/CS~J 1 57a(Xt~7 1 2.)J) tF (JS~IP) JOOeliOtl90 CO'~f I !ttl~ qlaO C~tlln) NVl~~~~~-ttEPSJAA,b8 1 0E~ FOQ"'' cas,a~rs,n) tF c~u:~l.o,oJ uu•I 1 5E-' DO ZO~ L•I•~~~O~£ C ~E•~ UUHBEQS OF JUUCTJU~S D(LJHITING TME MEAT"£~ ZONE, THE LATITUDE e ANI) lO'Hilh•U£, a•IU A1H~$PHF.RtC fUifOIDIT'I (2 FOq Ct.UR, UP TO !I fOR IHO PtAO c~-llO) (JwZo~tCLtJ)rJ•l,Z),~LlTCL)fXLONl~),TUR8CL) 120 ruqM41 ClJt,auf~.uJ c Jl::tl oo &ll~t Jca,zs c C ~[10 CLOUD CO~[~ 'AJti10N(P~T), D~Y "Ut&«C),~lT BULD(C)rAlHOSPH£RIC PR C (H~), A~v ~~~D SPl[O("/'tC) c PEAO ,,,IICJ Jl,(ALt(l)rl•l•5) Ct~OOC~l,tts&LLClJ ODT(Jl.L)~•LtClJ ~~TtJl;L)2&LLCS) APP(Jl;Ll:JLL(.) ~~~OCJ,,ll&'L((•) IF (JZ;to,tJ GQ :o 1'0 1\llll:Jl•Jht JF (N~:Lr.n) G~ TU t•O OIJ UIJ NaJ 1 fl.ll ,JJ=J I ••• TA~JLUaf(~)/FLUAtt~«•l) Tu=t.a~•• · ClfUII) t.rJ ~ t. J :Ct.'i.UI) C JlrL J •1 A4C'-IJUD(Jt 11'-i ~U OijfGJJ.L1:n1tCJ~,LJ~fA40"T(JtrL)tf~ ~hf(JJ~LJ2~ijJ(JltL~~fAtd0fCJlrL)•t~ aPq(JJ.LiaaPRCJltL)•Ja•APq(JitLJ•T~ .. . .. c M ! T D A t lJt~I~DC~4PL)a~INOCJ2rLI•TA•MINDCJ1tLI•T8 I' (J~.~0,2S) 00 fQ ISO UC JIIIJ2 . 150 tUNtlNIJE . ··~··· . . . c ••• : e ~"£HOct~•arawc•lON(LJilS.oi DEllS•[Pit(S~~~O•XLU~~Ll)/1'•0 CO~PUtl OttilNATIO~~~U~UP~ 8U~Sllg AHO tO~SfiNY$'U5£D IN RIOI.f&OM COHPVtAtiO~ c ~lCL•V:409l•CUJCn,OI721•Cl7l,O~DAy'l YA•JANf~LAfCLJ•DJU~)~tA~tO(CL) •, cao.-•• ~SRai2:0•ACOS(•1A)IP( Ct•••• . ~UNUP•tl.o·~'R•OELfS sO~Stfcl2 1 0t~5~tOELT3 fl3S)NJU!CL)•31N(XLAT(LJ•OTUA) T2:C09tDECL~•tUSCMLAf(L)•OfOR) c e.~.~ c .• c: •••• c HIDIATIO~ At OIY!N INT~ftVALI THNOUG"OUf A 0 C~HPUff LOHG"A•£ AI~OSPM~~. ~AOIAtiGM a~sc~.,.,L)ao,o UHt:r:Nu•l IF (f[~~.LE,SUNUPeOA~flK[1 GE,,UHSETi 00 TO t70 cU>KCt.nuo ( •m, L, Ml~PiarfiHfajl 1 0•0(~fS)/Il,O 31"'4:JttTl•CO~(HA) uo:ttlln• s t••• at=Oo118•u,o~q•Atoceotl,oiAB$CII~a•) fA:JMP~ll)•AI/SJHA Uf):1Uf'/tll~( fA) ~Ao2•~n•cr,o~.~~•(LD•~z• NCzi!,Ut(CLO•I ,0) tF CCLo,GT,O,u~,4~D,CL0,Lf•t;'S) G~ TO l~t t1Ct:l tr CCLo.~t.u.~S) Nt•c C••••• t&fi &L8l"P:4f~CJ•t5f,J•A~lNCSINA,)••B(NC1 Cu•u e QNSth~;L):PAh•(l 1 •lLBEDU1 tr ~Q~~(~~tl,oLf,d,J GNSI~M,L8•V 1 lfO.(IJNl lltttt. teo ·eu~ r t ••ut t•=ll. nu IIJO JJ:a,~q f&(JJtL)•~.11l~E6•£X~(•ql5ftOI(~Bt(JJrL)•l39;0tJJ iF (P~w.~Y,U,UIJ EACJ~,LJ•fA(JJtt)~A,~IJJtl)•(OifCJJtLJ•~If.II•L~J ft r> ' ~. "' • ...... ..... ..t':.. c c 1•(6~t!~•+7,5~f·7•~&TCJJtL)~· TA•TA•~!~OCJJ•L) "0 tO~l ;Nut.. TA•U/i'IOt JtcJIIIZf'Nt U.1 I) Ja•Jitln~~ ¢l•U nu zou ,f•Jt ,J~ '200 tlt-,~l(JlSJA lltru:m, 210 CfJ'' tl ,,.,a: ~0 l~U l~J.NwlONE" tPAGhyPIG~•I H E t 0 4 T wRitE lbtl?U) TlTL!tTZTL i~O FUq14f tiHI,IOi,ZUAI,t Tf1RA TP.CH, INC,t/,l&X,ZOA~,e LAfAY lElJ~, (Allf,l/) • ~~liE fboll~\ Lr(JNlONE(LtJ),J•&,aS,XLAT(L),XLO~(L) ZJO FOB~lf (///t2UX,UQ~fAUL£ OF ~ETlO~nLOGIC UAtA fU~ HtATHtR lUN~ 1ll ljlO~, JII'C1l~~.&a,]~ iO,I~/rT9~tiZ~LAIITUOl • tf5.1/,T99,Il~lON~l l'~QE c ~·~•ll/•12b~ HnUq WIHO CLOUD DRY ~ULO ) •••• AI~OSP~tRlC SHU~T ,AVE LONG ~AVE vAPOR q /IZR~ SPlfO COVEn tlH~EHllUH( 1["Pl 5qAfU~l pafSSURE 3nLA.H SOLAH PPtS9UHE ~1120~ (~/SEC) FllAC110~ CC~ tC) 7 (~HJ (KCAL/Hl/SfC) CKCA&I"l/SEC) CHOI I) ~ no zt~c, 1 =r:a, l" wqtlE rb,llU) r,~a~DCitL),CLOUD(I 1 L),Dijf(lrL),WUTCI•L),APHCI•l)8QN iSlliL):u~&(leL),fA(l,L) 240 CiJNJINUl . Jt tOt~,Ll,,Of) wRlff (~1 ~5~) 25o ruq~At t•o•••• o~~ ~OlNt•J JF (Ok~,GT,,Ol) ~HilE ~b,lhO) l~O '~UHl1 C'O'~•• ~El OUL~I) 219 ron~~~ CllO,Flltl,FlOal,r&o.l,fJ3.trfl6~0,f!2e*rfi6 1 A,fJ~,O) 2&9 cu·u '""E · Ql;l'U'iN 290 C0111lt1UE no Jto L•a,u~znuE J&cJ-!n~£(Ldj Jl•Jifliltl( (l,l)' niJ Jill JaJt.Jl f.V(J)CI)0 (1 ro•.tcJ\:o,o , r "'H J; = (\. n COHPUTt HEAT TRANSF£~ PARAHEIERS••• If (f~~w,,LE,V.tJ 00 TO liO no JOO &ct,l" PF~o,lr•U•AP~(J,LJ ~U:l•CJJI~.Otl~O JF ·c··~·lii',A) fiN•II 1f (U~!L1,t) NUs} C•• LO~~~Avt -AC~ RA~I&JIO~ Rfllli'HJf I• lJ)) • f~fll ,O•U,57•Trt(J) )•CU•811•"'!NDU•LU r=~1 Qb~q],qUl •(ALP~(~~)•[A(I,L)•PF•Oft1(,,L)) F'1J'•t (J\:o'ltt$( It I,) tii•IA(ltl)•,:Of"U-,I:.(J\ 'T o4,J( J l :l,l(lt. " ( •H 11 ( 'ltl) tPf) +9, 00 ll471tFlH0(J) ~~~ALPut~u)•Utll(~~JtiWCJ) c H £ T 0 A f tvf J) •(NINO(J rL) •tllUA)fi(UnU( I•L:i) •tvCJ) 300 CtJNH~UE · • SlO CONUNIJE no no J•a ,NJ FON[(J\afU~[(J,/20 1 ffMOCJ\ctfWU(J)/21 1 tf Cf~rJ).LT;O,O) tV(J)•O•O llo rv~·,=rvrJ)Il•, !Ji . ftiO .. .... ·,, • • c c. a u , P u t SUSROUtiNE OUTPUT (~S~iPJ COH~O~itAB/X~A~ttl)tYLABC~),TITL!CiZ),HOqJ~CI)),VtRT(6),lU~110 CO~"Q~tPLOI/ I'~OTt•J,CP(lOit6taJ,~AY(IOI)t~POINT,JPLOT(6) l, · lPP 1 NPP-l~OAY(l),NOO~'C21,2irP,UFA(2S,),a),NCONP(•) 2, PRVFncza,,.~, tU~~O~JHi5C/~J,~C,~P,~OY~t~U»~,HLJ~,otLToiPAGEtN~YOti9~Y~!D~Li 1; ~JP,~lfJ~PlQI,J3MJP(l6),ALl(lO),lDVNCS2):iliLiClOJ,fltL(20) 2, .,r.Pl~!-ft~l)tiPCYCrli)AYtNCYCittJNf!UAi. tU~MOh,diGI~C~&~flOO,~)tFI;LilftdOO) cb~~Uh/~U&L/ Jij~J~(znu~,JU~~IN(lUO,,JU~lf200)rOIN(2UO)tU~IN(Z00) 1, to~r·•r •~,,, ~~:n-.r••u s,,, t•HPJ~•••~oJ ,coL tlfi1150J ,cnu INCISO) z; ~POCI~Ci5QJ,H~~~~~JJ~OJrOtrt~Cl50)tf~«PJNll~UJ ), tTPU:HIC,O,a),5Al fi11{151J) fl t f t>:H li)O J t If• HI ( ~l/.0 J, ftll~ l Zull), till. itZIIO) 1 COLI-( ZIJO J, IJOUC (2UO) 5 1 ~UCnfZ9U)~n•Y(100l,tEHP~l~O),TYP(C200,q),JVPEO~(IUO,IIJ 6 1 fiAt G.fl'JO) ,nuf.'-(lOU) tfJkiJk( lOo\ ,fli.ll)Cill\ (i!OOJ tltUOitO" UOO) 70 tUliO~Cl9UJrCULfP~I~OU),05AI(ZnvJ,"l"~(~OUJ,nlUPClOU) co~,~~,J~•rt'•~•~ ~IPE~SJUh •tl~l.JJrY(IOJ,l\rNPf(J),CO"(lOUrl) QOU~ll ~Q(C13lij~ U~lt~ nl"l'I~JU\ IIJ#tfl'ft l) n l"f. "S 1 ll'l t HI.~ a (? t lJ, HQq Ill ( llt ;!) ;vEH t I (I'J) E~~JVlll~CE (t!»rCiri)~TDSCIJJ Q[AI. IUt'((l,llJ OAVA NAI1(/CIHJ113 ,ztcut rfiHTOU,QIIL N r•tl ,IIHlOU,IIHI. P l, ql1 ,114ttJfA,tit!l. C0 1 1111Lif ,,urt.CA,IIIil. COriiHI.I' ,qUCARII 2, b~O~ ij,U~JD ,~HNITR,IIHO UQ,aHO ,aHOXYOrOHEN ,OH 3, ''"H .. P 1 utU.rur,uHU:tE ,ut•UPP ,aHCU•Is,uttt I 1 11ttOI'P ,II~COf'S a, ohl l 1 1111UPP ,oHCVN3 1 11HJ J ,a110PP ,IIHCUNS,OHT • I I) AU U•:l1 S I /J•&H~31L rl•U~NO/IOOHLtl•RHHG(~. ,8HD£G c ,q•eHUhiTS I OATA fJlll112•U~ ,q~Jt"£'~~ Ht3,~~(0RY,a~~H ,qHtONC 1, altF.NHt,IIHAflfi 1 UIItl Plf,IIMUFIL 0 ouE 1 Jl~CIII I 2, MdQiltJ7•u~ ,aH OaY,l2•0H ~•HNUDE,~•aH I 3, vlPfi/UhMG/Ltll~,~~~ •• "uM C•J••~ I J1 (J5wiPJ '10 1 )bO,IOO 100 co•11 r huE llO roq~A1 (lHiriOX,20A•,• lfT~A TFCH, INCe'lti11 1 20A•,t LA,AY snu. our,•n.. . llO ruo~Al C~Otr'"UALJTY NtSULt5, OAYt,&Qr/1 JUN TOS TOT~ I iOT P J COL F COL C BOD N 800 UXY U SAT zn'-~ tu•:st a tt)NH z coun 1 c0usr .,,,,u,Jux,usuiL•t.zc• f-l!JI liOO~Lt~,-~~~,•Mt/L;J,fl,tC '•~C•x,rUNlfSI)/) 1' CII~IPCI~)•I) I10~17U,2hO no u•u . · · ou 160 J••·••J ff C~CuAh(JriJ;EQ,O) GO TO 160 If ( '1Un ( 11 , ~I)) • II( • f)) GQ t U I • 0 ~UIIE f6rll0l llt~lr111~ ~qlfE tbti~OJ JS~(P 1110 li=U•t '""I IE f&.r J '51J) J, (CI'}tt(J t J hI= !r &J tO!~U CJ), CCOII(J, I), I*~• 13) 15~ Fuq~~~ ''~·••,Q·~•q,1,zEq,l,2Ft,l,lP•,s,ort,zJ uo r.n·•trm.e •t.fV"~ c. . C,t~• ALTtRNATJY! PRINTOUT 110 CO"'TlNU!. kAIJ£ f~,J~OJ TJT~I,TITL 1\0 zso Jea,n tF CI,MIPf1)1 tQ,I) GO TO Z50 . '\ ., ~~~1~ t~tlftbi C~ANE(J~I),JD'tJ)tU~JTSCI),JS~IP 180 FijUHAf (/eSOWr3~1r 1 r '•AB,~ HOq 0AY 1 1 1)/j r.~ '" (l~u.~au,lau,zso,zJu,lao,!lo;~,o,lao.as••zao,aae,lati, 1 190 Wfllll:. ICitli)Ul CJrCIJ;IfJ~IJ,J•I~NJJ ~0~ JO"~•r CloCIStfd,O)J t c r.u 10 15P ~ 210 w~tlt l~t2'.0) fJrCDNCJti),J•ItNJ' ll~ ru~HAI (IU(I5tFB,l)J r.n tn :»~o C'30 ~RilE tflel•IO) CJtCU•afJtlloJ•I,NJJ 2110 rn~~&l CIO«IS~(O,lJJ 250 W..,tl..,nf Al:.lU=t~ h 0 c lll•ll ''"!. J(~(l on Jc;o l•l,U If (15KIP(J),(O,I) GO TO l'O Jt:ICtt If C~UoCIC,l),fO,I) w»lfE (6rlf!J 270 FU"~Af Ct"l) wqlft ro,~~Ul (N&"ECJtiJ,J•ltl)~UN~TSCI)~JSKI' 200 FIJQH'f (9U.,)AQ,t, t,~&,r ruq OAY t,l)~ li•J 10 tl.'"• }IO,J&or :no, llO, liOt;.ilo;su,Jit•tllt•Jif•llhJU~, ! 2~n wqlll f~tJOO) CJrCUN(Jti)~Jat,NJJ loa ruQ~Af •~crY,fQ~O)J r.u 10 ,;o )IO ~qlfE i~,JlV) IJ~CO~(Jrii•J•IrHJJ )lO FORHIJ (5(1ftfQ,J)J GO .fll '50' llll .,.,I fE ,~, )IIIJ) (.!tCI1,.(Jr I; rJCD ,NJ) l11o roqKAf t~crr,~t,2)) 350 :!IJ\If llflit. Pt, 'VN-. lbG Cll~ll NUl. C.,,. tl"f HJS1UQY PLftT$ c Of' 370 Jc:t,J Dti JJCI l•ltl0J ll(I,J):u,o :no vn,J»:u,o J t:~H~'ilttHJIOI'Itl ,,, ::I} fill S'IO l=ltU ]llO HtiUJf( I )i:thltft ll(J' l) r)ll l'IU l:l,b )~D ilfLt lJ,:itfLEill,1) ,..,, 111)1/ J::q,b 'On vtQf(I\=Vl~ltCIJ (Ill ctt.u 1:1 ,., ....... t . 1r. CJ•t-.OT(I')•EGeO,.GQ 10 ••• . JP tlP~nHU . .. TltLt(iOJ=N~~t(f•i-) TI1Ltltl)a~A~l(l,lP) ttTLCCttla~A~EtJ,!Pl J.:Q . '· ' ~0 d'O JJ•t,~POINTrll .JiJ• t . 0') UlO r.:.wa,J lCC.i,!ChO&y(JJ). •U CU•IIINIIE ~-.~ &t.J••Hil• & t..L•l rtO ~~~u ll~::trH» 'tt;~ltt LliLI.•l ~ Jf (NJp 1 G~elt) l,aNJP'l trxO . bll ~JQ Ht~•LL•L tc:l<+l J;:l) ' . nU q~o ~KJl,NPOlN!,Jl J=J+I y(J,~)atPt"~'~M~J) •zo r.U'JIIUIJl ·· ~PT (!(hJ · Ill) CO'J.tJ~IIl C ~U •••Pts TO 0 so. X•UU INCRf!Hf.NU NtL\. IE PftiNTtO lN "LUI UllPf~::l) Cl!.L <ttlfVE (lltY,NPt,K,NT) . wRIIE ~~-~~0~ JJPLOf(tlJ,ti•LL•t) ••o ,u~~·' (lM6,so•,•uoot Nu~&ths•,!s,.~ • o,,,,.~ • a,s~,,K • &J LL:sLft 1.51J CU" II'IU~ ~ lfiO r.•JOJil .. IIE•. QEhJP~ c ' c, I.: tU .. CEt:i~AT Ill'' PROFILU c , iJ.70 CU.VIlHUf tJft::O .• I)IJ U8Q ~Jt,,!. DO .~')0 J• It lPP •ao xUtJ)::l OiJ 4qQ I cIt l3 .IillO .-n:tll(f)~:o:tfiA,.I.tlfhiJ 1)0 ~ou 1zt 1 9 , · · · · 500 TIYL£(t)c11JL11(1,2) nu s1u l=l•b 5liJ Vf~lCI\:s~~qTtCl) l'l) ')'fu 11: I, II lf l"•Cfl'tf t1U ,F.u,,~ GO YO ''O I•'·C'J',c• (Ill 1ITLFC1u~=~'u~tl•ll T IJLl (I 1) :•:&••£ flr I) tlfLlltl)•~•~tC)tJI . . . DO 560.l•&,NfiP NNIINNtt no sso "'''lPP t~PT(Jh~l 1F .( l,t().Z) r~O tfi 530 . DO S20 ~=l,ll 521 Y(~,J)pPRO~lCK,~,!1) GO ltl '\~<I 'U 01) 511U K:a& ,21 540 y¢~,J)a~POf0(M,Jtltt 0 U T P U T sso cu•• r1•1u1:. · C S£'( Wt~f:t JQ Zl 30 PRINUHG UF· JC•AitiJ JNCfttHlt4tl IN PPLOf atlU. ~~ IUP' e ~~~~PIS:a;t-1 ~ALL Cu~Vl (~,y,~PTeiP,,NNl ~~11f fb,~hO) {NOOEPCJJI),J•I,Zi) 5110 FOq•H •. J Cll 'i;2ll5dt.7SXt 1'100£.1 ) ~kll~ 1~•57U) (JPbAY(Jl,J•I•IPP) ~1o FUA"''' uo•,•PAY or te.t: nu•,&~••H • o,u,.-~a •· 16i1''" • u 58ti tU~IINul:. , 590 a; I)\ I I Nl.ll:. > P[hllhl l l 1 j ' • i . ~ f ' ~ l. ~. ·f l J ·~ ~ ~ t j l ~ il t ' '' i j j .I rl ' \;J "' f ..... "' ..... ,.. .... • ·., ;t- e c c c c e l60 :100 310 II' V N ! SUBROUTI~E •JNt(Xltlt,.Z,YltHSY~,~Cf) CU~HU~~U1G/ lP~CE(1521'),A(5t,tOI)" OIHf~3tGN 3Y~t3! nATA SvH/lHO,IHI'l~21 A'! tel' t ·~fj~tl UA~Y"l UIJaYl N:.l JfC4~9t~XD•t~~J,Lf,AI~(AY&•AYA)) On TO ItO lEl PARA~£YE~~ FOR X DIRECTION tFiAx•:Gt,ax•a GO fd a•~ All&:lti: u'!:Jt 1 Al'h'tl ayft:yt Cfl'~ I I t'IIJ~ t••u.cu,s fJCII:I.(At 1 5 tyA:ITa+,5 1YIJ:IYq+,5 t•J'IIlt-llll · rrtttA:Lr.~,QR,IkA,CT,lOOJ GO TQ l&i Jr(IYA;ll,O.OR,JYA,GT,50J CO JU 26~ •C5J•ly4,11At!)•SY"l~SYH) c•J•• r 1:.111£ (rUitA+i YA3(~•fAYH•AY£))/(A~D•AX') lt4.:ltUYU0;5 .,=···. irfl-4:L~.~~~) UO IU 250 t;Q Ttl oUO 5EI PADA .. E fU$ ,QA y OIAfCTION co•n l'luE JF(tr~:Ul,AYl) CO TU 295 .U'i•Y! &YhYl IICil:JII uwatl. c u•n r r.uE J(hAJtH,S r•~:~•ll•.s fYA:Ata.•,, J"t'i:.hp t. s ((J ... , l'•lll tFCixa;LY,O,Q~,JJA,GT,IOO) GO fO ''' It CJr•.LY.O,OR,BYA,Gf,SOj '~TOll~ aCSl•IY1•JWAti):3Y~(~5Y~1 tlt'H J '411!:. rra::IU•I rlt(~•tAJ~•AWA))/(AYB•AYA) I.,. u,AI!Atlle!» l!fa•u I ,.~ .. '' 1'CIYA~XY8) 3tf,JCQ,~OO' :120 1XA • tXII GO TO ,00 •oo ff£TU .. ,. (~0 ' I N E ., c , ., 1. or :iU5,.0\If INE PPl.OT UICI lY, lttNCT) Dlt~l~:iJO,. S.'I"!(CJ) CU .. H:l"~/ltl 01 $PAt£Cl52.49) "ACSit lOi) CO~~n~)X&-~/~KDfS CU~~O~Jl.&~/XlA9Cll),YLA0(6~tTITLtCjZ),HOR%ZCIJ),Y!RtC•),IU~lTO 04!4 Sy~/l•lH •&HitlH•/ irtK,(n,lOO) GU TO ZlO JU'111hb a:ao IF ('itt ,E1• •l) Gil Til 1~0 , w~lrEtJu~aru,lOl) CTlfLEti~J•IN•t,6),,f&Tl.£CINJ,IN•&o,azJ,NCr 700. (U':tl"•t'l C !~E FOLLOwiNG 3tC1lO~ &THRUUUH CARO 225) PftiNf= A~L BUT THt X AMIO A~D LADlLO no u; ll•l ,, r•••l . wHilE tlU~tro,IOlJ YLABCfJ),(ACl•Jl,Ja&,IOl) t~llJ,,U.b) GU 10 il~ . DU 22u JJcl,q l=l•l "IFtl.~r.l~J Gd 10 lll ~QIIE&I~~IlU,&Ob) ~(qJ(5)rVtR1(6),(ACl•J,,J••riOI) r.U IU ?lll ill tfCJ,hFtlq) Gil tO 222 ~ C ,,.,~r t•&vl~ ij~lf3 , c h~ltl&tU~IIU 1 lO•J V~~l(l)JVfAJCl)~(AtlrJ),Jai,IOI) r.a ru ~~~~ 2Zl fJ(I~~r,l~) GU 10 ~ll wqlff(tO'tTU,IOb) VlAl()),V[RTC•),fA;J~J),Jc&,IOI) (:J JIJ ;>1.11 ill uq&lf:;u~JIOtlCO) (!CirJ)iJa!~!O!) 2211 CU'II lrutE 2ZS .CU'H l'ftJE ll'1 N'~~lf••ut C ~xPtS !S & fLAG Po• CONClNtqATIDN PNOFlLl PLUTa, OET JU Zl IN OUTPUT C l' NlPI9 1> 21, DO ~UT PHI~t K•lXIS JijCAlHlNfS OR U~IT~ 1•l~~~t3.l~.21) co ro Zlq, C PAI~T 1"t A•AXIS UNIT~ fUR TIHL Hi3lORY PLOTS 100 lUI 101 ~~lfE\tU~ITU,!Ol) XLAU &ol lOS 106 c29 ~~II£ IIU~trn~~OS) HoqJz ru»~&lfl~l,IOIAll ,uu~&f(lP£11.ltlj~JU)Al) ruq~•ltF1o,a,an~ao,Jl FUCIHllf1Hl,II?Atq&~f·PLQi ~o,t,J),/i rOIHt6 f ti.IOl, 1144) r:IJ»:1&', n. 2u, s•, a oaa u Cll''f holjt c DE Tl.H'I f~l~ Stl!JO~ ~uFP&U(3 PLUi OUTLIH! 2!n p~ l~u r~ •• ~Q 1)!1 2111) J•t.tOl l~O A~),J),3Y~(1) 4l I, l hSV•(I}) no r.•l•,tl···••· OiJ _,,,u J•l• l"l l•O Ai~ltJ\•~1~1~) oo z1o 1~t.aoa,ao 270 IC5l•li•!Y~(8J DU l~Q Jaas,aa,at A(ldhSYHU) 290 CONTI ~tJI:. AEUIRN !110 , p l. .0 ' •. ~ ·~ ...;0 --._ ... ··<11! e c c c e e c c c c c e e c t c t c ~VISTc0UTINf:.$CA'--~·''""MY,.-Xt.!'f,NPY!;INCJ C0"'"'0"iX.IC[/lllfPU ... OI~EN~tU~ &~qAy(a),l~f(~) . DH'-• l'ttf n,w.,S~GtiOI Jr:C U lae!(!NC) l .. AilUIJIU y ( J) J.J.tJN:hi'UY((l . r~o 25.11 ... '·' ,:o r•,, t~ct IF' ( & "' v ,L (, A:a11}[y (H)) Aft A X• •RRA)' (.N) JF U'fh.J.tt,UifAYUf)) At12Nitlltltl'tCN) C 011 f I tn;E. · JP( &Ha• ~ IHJH ) ZI5,2SSt27S 2,5 JYC AHt~ t i6S, •Od~ t60 2n a ttl.., • · o,o··· ~~~~~ ~ l.C e.lNAK r.u TO ;.JS 26' a!'t&ll • a,o ~~~~ Q l,O • ~~~~ 275 CONUNuE &~i.LOGtllCAllEJ Nl!l . 1F(A,LJ,O) N•A•O,t9tt ~~tE•~JTt/CI0 1 ••N) t,aRAft:tl,OO uo na :soo h h~ JFfL·l~fCI)) 32~,)~0,)~0 soo C:"~tJ•vur. ioHrUr~ UNITS/INCH GCAt~ INTERVAL tO USS 1HAN 10 t IS H~-y HIO~[A JNTtHYA~ ~ANGt IS SCALED OACK 10 ;uL~ S!t ' . c c c c c 320 l•HITCI) OANG£trLQAYttJ~tO,••~ ·. !Fti~C:Lt.O) ~0 ~0 J!O ICll.lfil'fjMJNr.£ 1F(l"INeLf 0 0,J KCK•I ~tl P' POSiliV£ StEPS .. c e c c c c c tr'(.VfAlt,G1' :cK•AXU.N)$IUNGd 00 TO 'J)O t•~,T$~JNCT•I . ARq~YttJ•~tHlNC~ l•hl'fCT A110UY H •.• RANG£ Al.IUR,. JlO L•l+l lffLeLY,ll) GO YO 20t tz2 · JIRNf l !U GU 10 till S!O tf:t&H&XiR&tfGf .. Jf(~HAw,GI,O,J M•K+I , ~· CA14IP.',lf • (MtAIIU.N)•RANCI:~ GO tO jJO I•INCfe~PIS+I - anq&Y(f)•~•AANG! t:~r•tr~r:r AlfRAYCt)e.IUNG! Rl.TUIIN GOO wUJlElt,tiUOJ 100 FIJif!'I&Tt II IOJI, •RANGE ANO SCAU A!tf. l!RO OM ",Of Atftf"Pfe t 11£ fUilt. £Nh N \ \A "'• ( ...... ·a~ • I '· .. ..... " 3UaAOUTl~C ~tTUP . · . C0~~0~t0U6L! l3PA~CC600),0TNCZ00)1 riLLC7100J tO~MON!HI3t/~J,~C,NP,~DY~t~U~~~HLI~,ofLT,JPAG!•H"YO,t~~YtlO~~T ., NJP,J[[,•PLUf,JSK!D(l~),.LLC?Q),IDYHC52~.11TL£C~O),fiTLC~OJ 1 , u~ot~~(S1),JP£Yttt~AYthCYC~,tNDUAL CO~HO~/~IG/ ~(~ANC20o,e),hJU~CCJ~o:z),JU~C~OO)v~LEN()Q0) •• aLP~(I00)1 ALP"It200)-AA(lU~);bBtiuO),UtTA(l0~) l~lV~l?Un,l&J,A(lQn,all,ALP~A(?U~,li),AC(30U~tAS(200) nlf ( lUO J, rl( JIUH, VS(JOU) , I)(IIJf .!OUJ, U C li'IU) , VOL UOO », lUOO) ~CIC1~Q),t(q()OU),DlP(lUO)t~AV£(lUO)tA!ClUO),VAaSClOOJ ., '' •• c . C,,g, IN!flltlll CQLFFICJ[~I HA1Ail 10 ZFHO ~aNIJtiDtl no 1 &o J•l ,NP t)U Uti !!.=lt,..LI11 160 lStvEtJt~)aO,O c c • c •••• IGO c • c •••• 2QO 2i!O uo uo c c.~.~ «?60 Dfl IQUO J.oJ ,NP J..t;~Ju·•rJJ J'C~DYH,fO,l) GO tO tee 'LPt1CHc0,5 CIJ""E"':tllf fl)lt HIG!ot UlUUUit't IN'LOWS TAav~LtJJ)/~(LT•OI~(JJ) If r Ja,, r ,O,U) A\.Pt4(J)•VliLCJJ)/U,o•Df:LTiiOINCJoiU &LP~I1J)~l.~·~LPH(J) CO'H bul a3AY((J,~)aQOUCJJ) aDO AUvlCJIUk A~D D~FfU!IUN TU COEFFICilNT HATRIM l'iO ~Sl• tU i, ij NOl~=ll PJlt'~(.tiiN ( JJ, K) tFf~.~~.~) G1 TO ~50 HCJ.l:).uJw•ctN,.au r,Q Yo 2u JOIIP&\,JUIIC lit, l) tF (~(~).L!.0,6) NOlq•J r.o t•• 120 ro·:; t •·ut. .lll .. t': 'I '""'C l tl, lJ JF CO(~J.Gl,o.a) HOI~•I ,,, •• f I ·•ut JlJif IIJ.JI'lPP "'>i :11'1• Jl't ... Jft~Oln.tO.Il GO TQ ~]0 A~~lf(J,~)~A~AV£(JI"it01F(N) A3Ail(f~~~l:A$AYf(J,«H)•A03(0(N~)•DIF(N) I';J l~l l~O A\&V!IJ,~)•i,AVrf$iHitAU$tG(~))tDJF(~i 1 Sl Vt: ( .1, "~) U$Avt: (J t 11t1i .. ~!f· (N) Cl,l'll P111L &DD VU!~~l frFrtTS l~O &rPLY ALPH AND ALPHl VACYDR3 'U" OYHA~It JFC~~Y~,f~.l) tQ J~ lOOU OIJ lt,•J l•lt'ILIH ~(J~I)$··~&Vf(J•IJ•AtPH(J~ a3&vt(JJI}~ASAVlfJ,J,•ll~~l(J) •, ACJ,H)aArJ,H)+VO~:JJ)ID[Lf ~3AY~CJ,I4JdaAYt.tJef'II•VOLCJJWDtLf &000 CU~IINUl. •ttUIIN. ~,., •. • ; I J.t_ ', • ~ ' N t tiJ. v, ' ....... . '"'\J .............. c S 0 i: Y I f SU'IROUTI_,I! 301.YITCCON) CU~~ON/~15CI~J,~C,NlD,N'V~,H3N~,~I.I"•OELT•IPAOEvNHYO;JO~Yrlbti.T 11 NJr,J~[,~PLOY 1 15~iP(16)rALLC20),JOYN(52)rTIYLlC20),fi11.CZO, ,, ~~PE~H(~~),JPCYCtLDAYrNCYCH,,N,UIL CO~MOH/UIG/ ~CH&NI~O~•~J,kJUNC(39D;z),JU~ClOOl,KL£N(l00) ,, aLP~cz~~,,atPHIC20oJ,••tzo~,;uuczuoJ,erf~(200) 11 15AV£(2UOrlJ),&(ZOo,zlltALP~I(l00r21),&CCl~U-rAOt2GO) 1 , nlf(]D0)1 ~C3~U),YS(l~O) ,QqUt~OO)rlZCJO~) ,Y~Lt20U)rlf)00) •~ tCitlUO)eCC•Cl90JrOtP(lOO),AaVt(lOO)oU,ClOO)rV~~3()00) OIMt~SIO~ t~~CIJ C•••• roD~au., lLIHJNAIIU~ JHI"' • ''~r.n t I J"AC • Jul~ t N~NO ~t.O:•lli'J•I nO l"O let ,t.ElJ c Cu ~0~'11LJlE CIIHFICI£NTS f4:4LP~AflrJHJh) c Dn lQO J•JMJ~tJHAX 4LPHL(IrJ):ALPH4f(tJJIT- Z00 CU'4l l .. !tE ftElACI):PLfA(I)/TA C~ttt SE. T•VP P.O"S FOR £t.IHINITION . K tt l'• :a I t I 1(!1u • 1 • r.tl•~o IF' (NP1t",lH.NEQ) KltAX•NEO JK&•rHhOtl OU l~U K:!t~l~r~HAX Jl(:JIC•I ttii~P~A(K 1 JK)) 210,260tZIO 210 COllllt•1.1t c C•• c £LIMI~aTf vAqJADLl i rROH f~U-TION K JE""!I 110tl JJ'11''&.JK •I JJYAI c JK t ~H~O 0~ 2~: JJ•JJ~IN,JJ~A~ J:J•I .. •LP"''•,JJ)saLPHa~k,JJJ•ALPHACI,JS•ALrHAfK•JK) c :J"f ,,.,,.t. 1EfAC~iz9ETA(~)•9LTACI)•ILP~A(K,JK' c "''; • r r.ut c •J•: Tl ~ttE C flllll" P. A C 1t S~llt5 Y IT II Jl 014 •t'll:\,1 "{fl(~fU)c~lfA(N(Q)/ILPHA(N£0,J"!N\ O•J uf-(1 U=lrfttn 1: •·l ') • • .. ll ..... =, .... , JFf\~.~T,N~~D) hNaNU~D .,,., J. 'IIJ'•'Jt I ('it, """ JJt3rtlti JrJ•' .. ASSIGN CONC~~~~AfiO~S er l~I!NNAL NOD! NUHI!"S IH) 510 J•tJ~f:U JJrtJUIIfJ) C!l~CJJ\•SUACJ) CIJI'o.l f I ff\Jl uttUIIti [NI) .. •, .. • EXHIBIT E 2; . Water Use and Quality Estimate the' probability and magnitude of supersaturated water passing through W.atana and Devil Canyon reservoirs. Include specffic estimates for water entering Watana reservoir, the likelihood of supersaturated conditions p~rsisting-through the reservoirs to the intake structures, any differences between saturation-values of water entering outlet facilities and the tur- bine intakes, potential for air entrainment at both outlet faci1ities and -tt.e turbine intakes, and a description of the processes affecting supersat ... uration at the turbine outlet facilities • . Response At present, no information is avai 1 able on the 1eve 1 of gas saturation l.evels in waters entering the upstream end of the proposed Watana Reservoir. Therefore, no definitive statement about the probability and magnitude of such an occurrence can ·be made. It is assumed, however., that no supersat- uration problem will exist in Watana Reservoir because of 1) the low poten- tial for any sources of saturation above the proposed Watana Reservoir due to the low gradient of the river and lack of major turbulent areas, 2) the long residence time of water passing through the reservoir, 3) wind-induced mixing, and; 4) contributions of additional water from tributaries • • 2-36 ... 1 Intake facilities at both dams wi11 be designed to prevent entrainment of air hecause such entrainment can lower· the efficiency of the turbin~ and caus·e structural problems., The outlet facilities wi11 have a subsurface discharge that will not entrain air and therefore will not increase saturation. Cone valves will be provided in both dams to pass any discharges up to the 1 in 50 year flood. These structures are specifically designed to prevent supersaturation. Any dischargP.s above the 1 in 50 flood will be passed over the spillway at each dam. These spj llways wi 11 be designed to avoid or minimize any supersaturation problems. The fin a 1 design of the spillways will follow the testing of a physical model before final design of the pro- ject is completed. Water leaving Devi 1 Canyon could be supersaturated even if no super·satura- tion were added by either dam.. This is because. supersaturation naturally occurs due to turbulent mixing at the rap.i ds in Devil Canyon be low the Devi 1 Canyon damsite. This naturally occurring supersaturation would be generally (_,.) ·· lessened under the operation of either dam. The reason for this is that, under natural conditions~ there is a positive correlation between increases in flows and increases in supersaturation values (see attached Figure 4!-3-45 from ADF&G 1983). This is probably related to the increase in tur- bulence and entrainment of ?..ir associated with increased flows. Under operation, the incidence of these higher flows will be diminished as would the corresponding supersaturation levels. References Alaska Dept. of Fish and Game. 1983. II basic data report. Vol. 4. studies, 1982. Susitna hydro aquatic studies phase Aquatic Habitat and instream flow 2-36-2 l J -~· CJ'i w Ul ct (!) 0 w > _J 0 Ul fn -0 lL 0 z 0 t- 4 a: :::> f- 4 ·en .... z tlO ItO 105 w 100 u a: w 0.. •• ~ • • • ttl J ' ·... • • • • . ~~~+"~~··':t"'"!-~~:~~~ ... --:;t{-,~~~;y .. ~-l0'\~~.::~""'•!1~ ~ •.. • . ' Gold Creek Discharge = 32.3 :/ • . . • • • . •. . ' . ... • .. . . . . • . . . . ~ . . . ·• .· . · .. ,.. ,. ......... .... . ......... rl Total gas saturaflon --and •... Nitrogen saturation -·-· ....... Oxygen saturation ·• Hashmarks indicate areas of ropid.c . . .. ,. ... . . ~ . .. ... . ~ • . . ' . .... ...... ..... ,. ,. ·-...._ . """' . -·~ ..... -·---·~. ---....... -- Gold Creek Discharge= 14.8 • ,...._ ot --. '. I ......_ ·~ t • ~ ...... . --. - 95~----~LL~~~~~--~~---r-----r----~~~~~~~~------~~~-~~--~··--·-, .. 0 I 2 4 ;5 s 1 .e 9 · 10 u 12 13 14 .3 MILES ABOVE MOUTH OF PORTAGE CREEK Figure 41-3·;45. Concentration of 'dissolved gases in the Devil Canyon rapids complex. ' \ • EXHIBIT E 2.. water Use and Quality· COIIIIIf!llt 38 (p. E-2-117, ·.,2_ara. 2) Describe the uncertainties as-sociated with data collected during this period. Ii_~spons~ · · ~ Diffe·renc.es in the measured and simulated temperatures in the Eklutna Lake ··· study (Acres American 1983, R&M 1982) may have resulted from uncertainties associated with the data collection and la.ke temperature measurements. Breakdowns of the instruments at the Eklutna Lake station resulted in data gaps in July and August. The missing data which occurred in periods of July 5-14, 16-21, 24-31, and August 1-11, 13-27, 1982, had to be estimated from the nearby· stations (Figure 1) located at Palmer (Matanuska Valley Agricul- tural Experiment · Station), Anchorage Internati on a 1 Airpor-t, and Chugach State Park Eagle River Visitor Center (Paradise Haven Lodge). Estimation of these missing data are the major sources of the data uncertainties • .. The uncertainties associated with the estimation of the missing data are descrfbed below: The missing air temperatures at the Eklutna Lake station were estimated ·from the nearby .stations, Chugach State Park Eagle River Visitor Center (11.4 miles southwest of lake, 630ft. aboya mean sea 1evel) and Eklutna River Hydro Power Station (10.8 miles north-norhtwest of lake, ' ' ' ~ ' 38 ft. above mean sea level). 2-38-1 2. Wind Speed and Direction:· The missing wind spe;ed and direction at Eklutna Lake were estimated from the station at Palmer. 3.. Vapor Pressure: The vapor pressures were converted from the relative humidity data. This was done by utilizing an empirical function of temperatur~ .to com- pute saturation vapor pressure at th1~ average daily air temperature, which in turn was multiplied by average daily relative humidity. The missinig relative humidity data for the periods were estimated from wind direct·ion at the Eklutna Lake station .. 4. Solar Radiation: The missing data at the Eklutna Lake station for these periods were . estimated from the Palmer and the Ancho.-.a!Je stations. tJ · 5.. Cloud Cover and Long-Wave Radiation: Due ten various problems with power and connections to the instruments at the Eklutna Lake station, the cloud cover data obtained from the Anchorage station were used to estimcte the long wave radiations. 6. Precip,itation: Ourin~J the aforementioned· periods, the precipitation at the Eklutna Lake station Wf.!re estimated from the Chugach State Park Eagle River Visitor Center Station. From Octobe·r through December the rain gauge experienced icing problems!.< therefore, the data from the. Eagle River Visitor Center station were used. 2-38-2 '· • ••• 7..-Measured Temperature Profiles: Err,-or .in measuring temperature profi'ies could oc:cur from instrument•s calibration being disturbed during relocation or operator error in reading the analog readout or instability i'n the temperature! digital I • <l-'· readouta In some cases during activ~ convec;tion, the _instability in temperature ~ou ld occur longer duration. References' Acres ·American Incorporated, "Susitna Hydroelectric P1roject, Feasibility " . Study .. r S~pplement, Chapter 8~ Reservoir and Rive1'" Temperature Studies, 11 prepared for ·Alaska Power Authority, 1983. _ R::':M Consultants Incorporated, "Susitna Hydroelectric P1roject, Glacial Lake Studies,_" prepared for Acres and Alaska Power Authority, 1982. . .. 2-38-3 • • \ t ·--·--. . e WEA'l'BER STATION Figure 1 Approximate Location of Weather Station -·-... -.. ---·-· .......... ·-... • ~· EXHIBIT E •. ": ·f 2. Water Use and Qua 1 ity Cdnllent 44 (p. E-2-132, parJl. 2) "• Provide list of all discharges where cone valves will b,e us.ed and a list of di.scharges. where cone valves wi 11 not be used for ~latana and for Devi 1 Canyon~ Response The use of the fixed cone valves depends on four par·ameters: reservoir inflow, reservoir water level, energy demand~ and downstream flow require- ments, if those flow requirements are greater than the flow necessary to satisfy the energy demand. Thus, there is not a one-to-one correspondent~ between the Watana or Oevi 1 Canyon discharge and the operation of the cone valves. For· a given discharge, both use and non-use of the cone valves is possible. For example 9 the cone valves are used when the reservoir is full (i.e. at elevation 2,185 feet) and inflow is greater than the powerhouse flow. ·However, with the same inflow, if the reservoir elevation is less than the normal maximum operating level of 2,185 feet, the cone valves wi 11 likely not be operated. Flow above the powerhouse requirements will be used to fill the resevoir. There may however, be times when the reservoir is not fu 11 when the fixed cone va 1 ves wi 11 have to be operated to augment the powerhouse flows to provide the required downstream flow • . Tables 1 through 4 (attached) provide. a list of Watana and Devil Canyon dis- charges where cone valves will and will not be used for four-different energy demands. 32-year period. The tables are based on weekly energy simu 1 ati ons for a The discharges presented are mean weekly discharges. The number of weeks with or without cone va 1 ve operation represent the tot a 1 number of weeks out of the 1664 weeks in the simulation that the valves do or do not operate for the given discharge i.nt~rval. The number of weeks provides a relative indication of frequency of use. 2-44-1 As is evident from the enclosed tables, for weekly average discharges up to 16,000 cfs for Wilt ana and up to 14,000 .cfs for Devi 1 Canyon, there are timas ,, : . ,. '·. when ·cone valves will and wi11 not be operating. At higher discharges the cone valves will always operate. It was necessary to preset1t this information as a set of four tables because ·; there wfll be ·a diff~rent operating sce~ari o for each energy demand and the operation of the cone valves will be different for each demand • .. 2:-44-2 u· "r-• \ : .~-. , . \, .. . WJ\TANA . DISCHARGE (cfs) ·o .... 3-sao . . -!1 .. · . 3·t'800~· 8,000 8,000:-9,000 9,000-10,000 10,000-11,000 11,000--12 '000 12,000-13,000 13,000-14,000 ' 14,000-15;000 15,000-16,000 16,000-17,000 17,000-18,000 18,000-19,000 l9,0Q0 ... 20,000 20,000-24,000 '24,000-28,000 28,000-32,000 TOTAL tABLE 1 OPERATION OF .WATANA CONE VALVES TOTAL E~ER~Y DEMAND 4,922.,000 MWH NO.. OF WEEKS CORRESPONDING COMBINATIONS OF CONE VALVE OF POWERHOUSE & CONE VA~VE .. OPERAT.ION(l) DISCHARGE AT FLOWS 13,000 cfs :POWERHOUSE · ··'CONE VALVE (.cfs) (cfs) 0 c 0 3 40 35 2 6 3 1) 9,066 4,388 2) 9,781 3,672 3) 8,901 4,907 4 1) 8,887 6,009 2) 9,090 4,926 3) 9,245' 5~182 4) 9:P076 5,597 2 1) 8,713 6,652 2) 9,066 6,058 1 1) 8,887 7,546 1 1) 8,887 8,447 2 1) 9,245 9,615 ?.) 9,424 8,955 1 1) 9,066 10,755 1 1) 8,887 12.,111 1 1) 93066 15,380 1 1) 8,710 21,526 103(2) NOo OF WEEKS WITHOUT CONE VALVE OPERAT.ION(l) 0 ) ) ) 1,386 ) ) 102 36 37 1561 (1) The number of weeks is based on a total of 1664 weeks in the 32 year simu~ation ,, period. I {2) The fixed cone valves wi 11 operate 6.2 percent of the time. 2_..44-3 WATANA DISCHARGE. (cfs) 0-3,800 3,800-10,000 10,0QQ .... 11,000 11,000-12,000 12,000-13,000 13,000-14,000 14,000-15:-000 15,000-16,000 16 .. 000-17,000 17,000-18,000 18,000-19,000 19,000-20,000 2,0t;000-24,000 24,000-28,000 TOTAL TABLE 2 _ OPERATION OF WATANA CONE VALVES TOTAL ENERGY DEMAND 5,469,000 MWH NO. OF WEEKS CORRESPONDING COMBINATIONS NO. OF WEEKS OF CONE VALVE OF POWERHOUSE &CONE VALVE WITHOUT CONE (l) . (1) OPERATION DISCHARGE AT FLOWS 13 2 000 cfs VALVE OPERATION · POWERHOUSE CONE VALVE (cfs (cfs) 0 0 0 9 llt.54 2 7 118 •" '"'~, 2 1) 9,879 3,210 32 lJ .::.., ' "c 2) 10,869 2,586 1 1) 10,273 4,155 26 1 1) 10,073 5,050 5 1 1) 9,875 7,460 2 1) 10,273 8,588 2) 10,471 7,908 1 1) 10,073 9,748 1 . 1) 9,875 11,123 2 1) 10,074 14,373 2) 9,685 17,943 29(2) 1635 (1) The number a·:: weeks_ is based on (\ tot a 1 of 1664 weeks in the 32 year simulation period. (2) The fixed cone valves will operate 1. 7 percent of the time. 2-44-4 u TABLE 3 OPERATION OF DEVIL CANYON CONE VALVft) TOTAL ENERGY DEMAND 5,853~000 MWH "-DtVIL CANYON WAlANA DEVIL·CANYON QISCHARGE . {cfsl 0-4 500 ' .. 4'1500-12,000 12,000-13,000 13,000-14,000 14,000-15,000 . 1J5,000-16,000 1 16,000-17,000 17,000-18,000 18,000-19,000 19,000-20,000 20,000-24,000 24,000-28,000 . . .8. 000-32 '000 l . . 2,000-36,000 .. • > 36 '000-40 '000 40,000-44,000 TOTAL NO.. OF WEEKS NO. DF WEEKS OF CONE VALYE WITHOUT CONE OPERATIONTZ VALVE OPERATION 0 0 1 5 13 11 10 12 14 17 34 15 T 9(3) 6(4) 3 1(5). 0 .· 1,496 11 6 1513 NO. OF NO. OF WATANA WEEKS WITH WEEKS WITHOUT DISCHARGE CONE VALVE · CONE VALVE (cfs) OPERATION\]) OPERATION . 0-.29000 0 2~000-8,000 93 8,000-9,000 15 9, 000 .. ·10, 000 22 10,000-11,000 18 11,000-12,000 16 12,000-13,000 21 13,000-14,000 7 14,000-15,000 14 15,000-16,000 15 16,000-17,000 19 17,000-18,000 18 18,000-19~000 17 19,000-20,000 12 20~000-24,000 24 24,000-28,000 9 28,000-32,000 8 32,000-36,000 3 36,000-40,000 1 332 0 1331 1 1332 (1) The number of weeks is based on a total of 1664 weel~s in the 32 year simulation period. (2) With few exceptions, when the Devi 1 Canyon cone va.lves are operating~ the Devi 1 ·canyon powerhouse discharge varies between 12,000 cfs and 13,000 cfs. {3) 0Ul"1ng 5 of the 6 weeks of operation, the po\4Jerhouse flow is approximately 4000 cfs (4) In each of the 3 weeks of operation, the Devil Canyon powerhouse flow is as follows: 0, 0, and 2400 cfs. (5) Capacity nf the Devil Canyon cone valves is exceeded and spillway is opened to pass 5344 cfs. Powerhouse flow is 0 cfs. (6) The Devil Canyon and Watana fixed cone valves will operate 9.1 and 20.0 percent of the timelt respectively. {7) Maximum Watana cone valve discharge is 24,000 cfs. Above Watana discharges of 24,000 cfs, flow in excess of 24,000 cfs will be used to generate power up to the energy demand. This supercedes the priority use of the Devil Canyon powerhouse. · DEVIL CANYON DISCHARGE (cfs) 0-4,200 4,200~12,000 12,000-13,000 13,000-14,000 14,000-15,000 15~000-16,000 16,000-17,000 17,000-18,000 18,000-19,000 19,000-20,000 20,000-24,000 24,ooo-:zs ,ooo .28, 000-32 ~ 000 32,000-36,000 36,000-40,000 40~000-44,000 TOTAL TABLE 4· OPERATION OF DEVIL CANYON ·CONE-V.l\LVES TOTAL'ENERGY DEMAND 7,791,000 MWH ·. DEVIL CANYON WATANA NO. OF NO. OF WEEKS NOt OF WEEKS .WATANA WEEKS WITH OF CONE .VALVE . WITHOUT ·CONE DISCHARGE CONE VALVE OPERATION(l)(Z)VALVE OPERATION (cfs) OPERATION(!) --- 0 0-8,000 19 1,524 8,000-9,000 16 0 99 9,000-10,000 26 1 3 10,000-11,000 23 6 0 ll,OOO-l2SIOOO 12 3 12,000-13,000 14 5 13,000-14,000 4 1 14,000-l5,000 6 5 15,000-16,000 8 3 16,000-17,000 5 8 17,000-18,000 3 3(3) 18,000-1.9,000 4 2(4} 19$000-20,000 4 1 20,000-24,000 5 0 2,"!.,000-28 ,000 3 0 28,000-32,000 2 38(S) 1626 154(6 } " . NO. OF WEEKS WITHOUT CONE.VALVE OPERATION(!) 1428 73 0 9 c-~ . t 1510 (1) The ·number of weeks is based on a total of 1664 \'leeks in the 32 year simulation period. (2) The Devil Canyon powerhouse generallyoperates at 13s763 cfs whenever the conevalves ·are operating. Exceptions are noted below. (3) Devil Canyon powerhouse flow is 11,401 cfs during one of the two weeks of conevalve operation at this Devil Canyon flow range. ~ (4) Devil Canyora powerhouse flow is 8,069 cfs. . . (5) The Devil Canyon cone valves will operate 2.3 percent of the time. (6) The Watana cone valves will operate 9.3 percent of the time. 2-44-6 , I > ·-· ., :-~ ' '; ::. "~·- '" ·;:;:. EXHIBIT E -:. . .,.> 2. Water Use and Quality·, Provide da,ta for each fraction of nitrogen and phosphorus used in the ca lcu- lation of the N:P ratfo tn ;.sus·itna Ri.ver water. Response. The mass ratio for N:P of 28:1 listed in the FERC License Application on . page E-2-133 was derived from data on concentrations of inorganic nitrogen fract.ions and inorganic soluble ortho-phosphor·us found June 1980 and 1981 . in Susitna River water samples (see attached _excerpts from R & M 1981·-·water ~ ' , ~ '2.-• Quality Report, Tables· 3.1 and "4-~1). '\\ ; ,·,: 2-45-1 !' ' . . :~ r I - .. ' . ·• ' . . . . .£ ·! J •• 1 .j .·] '1 .J ] l :J ~]: .. I ' t -. ~ r·---------........... ---·----=---=----~·-=·. ,, ·r SUSiTNA ~)YDROELECTRIC f~ROJECT \VATEiil QUA.LITY ·· ANI'!UA1L REPORT 1~98 1 '! t •• • • a ·~ •: ...• r .-~ •• .... = ' . ' ; ~ . . .. •• . r • • · ~ROPERTY OF: ~~A·Jaska;: Power Authority · 334. W. 5th Ave. · ··~~Qhorage, Alaska 99501 .. ~· .. ,., ...... ·::; .• ;,;;· .. ·-·:,.· DECEMBER 12a 1 I ".,. I PREP.AREO FOR: I R&M CONSULTANTS, INC. ~~~f~ .. · .. J ...... __ ALASKA POWER AUTHORITY. __ w _ __,l :1 ,--......... -~ l 2:109 . t ' ·.~ ---:~·!:"';':"'S:~:i:r .. ~-~·5-2-- : 1 .1 . 1 NOTE: Dash indicates data not available. Field . Parameters (1 ) Dissolved Oxygen Percent S~turation ,~:-·OH7 pH Units . . , 'onductivity ,.·r.u~hos/cm @ 25°C TemperatL,Jre, °C Free Carbon Oi~xide (2 ) ... < • ' ' :";:;;·. ,, Al.k~Hnity.r as .. Caco3 S~ttleable Solidsr ml/1 Discharge c .. f.s. (1)(3) Labor_atory Parameters --1-·). , :· CCQ 41 I )10~:'.::! _ -~mmEr!.ci;~~!~~.;~, Organic Nitrog.en Kjeldahl Nitrogen -·.·.',.:..~~~·~"'# t ..... Ei&4Ji?€ ... ~.¥ ... ~•H-.. t!'+-~~_. N lE£a~~~ls-E4~!'1-.ta: -. ~!§:.~.~:~€[] . Total· Nitrog_en . .4 ·; . I .;;p;~M<.Ut C I$ 4 1,, ..• 4.44fi-!J _ o~..?.:~,~!P!3~!~~·~;f # Total Phosphorl;Js ir . ;~ i.~, ke~Unity, a.s C,aCo 3 i 1 Chemical Oxygen Demand susi4/u ,, I 1Z.4 98 7.8 ---- 5.7 2 .. 0 47 0.1 24,800 :!:~!1 <O. 1 0.26 .. ;:"*li1i's~~ • ~ ' ? tj,: ... ~ .. --~ .~., <o !'o•r::• n ·r, a·· ···;ff 0.45 ~~:iS! 0.05 -~-- 28 3-3 8/8/80 ---~ --.. - 7.9 144 9.3 1. 7 54 <0.1 17,300 ----·--... -.. 0.15 ........ ----- 0.03 0.03 13 p Date Samoled · 9/5/80 ---- 7.8 '171 5.3 3.6 81 <0.1 5,040 0.10 0.22 0.32 0.1.5 <0.01 0.47 0.05 0.09 ..... .., ~---.. 0 9/17/80 9.7 84 7.6 124 s.s 4.5 63 <0.1. 14,200 <0 .. 05 0 .. 62. 0.62 0.09 <0.01 0.71 <0.05 0.10 -----.. .... _ 10/17/80 1.3.,8 104 7.6 142. -0,.1 5.5 as .. «0.1 <S,OOO 0.26 0.28 0.54 <0.10 <C.01 0~54 <0.01 <0.01 66 6. J TABLE' 3.1 -CONTINUED Laboratory Parameters (1 )(3 ) (continued) Chlorlde Conductivity, umhos/cm @ 25°C True Color, Co,or Units Hardness as CaCO (4 ) . . I 3 Sulfate Total Dissolved Solids Total Suspended Solids Turbidity, NTU Ul"'anium . Radioactivity, Gross Alpha, pCi/1 Total O.rganic Carbon Total J norganic Carbon Organic Chemicals Endrin Lindane Methoxychlor Toxaphene 2, 4-0 2, 4, 5-TP Sifvex JCAP Scan Ag, Silver AJ 1 Aluminum As, Arsenic· Au, Gold S, Boron susi4/u 6/19/80 3 150 ---- 51 4 70 242 94 ------ _ ..... ----- ------ ___ _, --.. - <0.05 1.6 <0.05 <0.05 ' <0.05 ' 3-4 Date Sampled 8/8/80 9/5/80 9/17/80 9 40 76 9. 90 310 97 <0.05 11.6±0.6 11 10 69 9 114 25 10 ----.. _ ... _. -------- <0.0001 ----- <0.001 ----- <0.05 ---- <0.001 ---- <0.05 ---- <0.005 ---- <0.05 <0.1 <0.1 <0.05 <0.05 <0.05 0.28 <0.1 <O.OS <0.05 8 45 55 7 38 132 33 -------------.. __ _ ----........ --------- --181- <.0 .. 05 2.2 <a·.,· <0.05 <O.b5 10/17/80 18 ,, 190 10 90'" 13 . 115 ( ~· 8.3 1.8 ,, ------ 21 ----- ......... ------- <0.05 0.18 <0'.1: ... <o.asU - <:0. 05 -... ~-..... ~-~' ···-~···~-~-. "~ .,....., ........... ~ ... ..,~ ~.·:~"~ .:4-_j"'....,._., _.. . ~ ...... " ·_ ~ .~, -. r -' ) · Labor-atory Parameters <1 )(3 ) (continued) Ba, Barium Bi, Bismuth Ca 1 Calcium CC 't Cadmi urn Co,-Cobalt Cr, Chromium -"' Cu, Ccpper .- \, Fe, .Iron •._ Hg, Mercury K, Potassium Mg, Magnesium Mn, Manganese Mo, Molybdenum Na, Sodium Ni, Nickel Pb, Lead Pt, _ Platinum Sb, Antimony Se, Selenium Si I Silicon Sn, Tin sr, Strontium · . ./; Ti, Titanium i t ! j 'I ( l • l 1 ; ~'-.. . ' '~ . 1. ; l .l 'l -H susi4/u '-1 ' 1 5 · TABLE 3.1 -CONTINUED Date Sampled 6/19/80 8/8/80 9/5/80 9/17/80 10/17/80 - <:0.1 0.11 <0.05 0.07 <o.os <0.05 <0.05 <0.05 <0.05 <0.05 13 16 22 18 28 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 2.1 4.0 0.46 2.7 0.37 <0.05 <0.1 <0.1 <0.1 <0.1 <1.0 2.3 2.1 s.o <1.0 1.4 3.4 3.1 1.2 4.5 <0.05 0.10 <0.05 0.07 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 2.6 2.4 5.1 3.5 7.2 <0.05 <0.05 <0.05 <0.05· <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.1 <0. 1 <0.05 <0.1 <0.1 <0.05 '<0.1 <0.1 <0. 1 <O. 1 4.8 5.3 3.6 6.9 4.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.05 0.06 0.07 0.07 0.10 0.13 0.24 <o.o5 0.17 <0.05 ~ -l.{S-5 3-5 Labor~tory Parameters <1 )(3 ) · (continued) w, Tungsten v, Vanadium Zn.~ Zinc Z.r, Zirconium .. TABLE 3.1 -. CONTINUED 6/19/80 8/8/80 <1.0 <1.0 <0.05 <0.05 <0.05 <0.05 <0.05 <O.OS (1) Table values are mg/1 unless noted otherwise. Date Samoled 9/5/80 9/17/80 <1.0 ---- <0.05 <0.05 <0.05 <0"05 <0 .. 05 <0.05 (2) All values for free co 2 determined from nomograph on p. 297 of Standard Method, 14th edition. (3) Samples for all parameters except chemical oxygen demand, dissolved and suspended solids, and turbidity were filtered. ( 4) liardnes.s calculated by R&M personnel. !':JUSi4/U 3-6 ,_ ... ;.. t. ·-t t 10/17/80 t: <1.0 <0.05 <0.05 <0.05 ..,. . ..._.. ; ; ~ ' I ' . . .,. I • ' . ' I i .. '-....l .. t ~·· ' .. i I I ~ l' __ , ~"''"""'''" l I ____ ........ _ .... iliiill., ..• :· .. -·~ ... ··-""' ·=t -jl . .3 ·~··· .. , . • ' )i . -'· ·. -.]·' ... ~. -- -j· .~ .;._ ~ ~·] .. ~-~ • NOTE: Dash indicates data not available Field Parameters (1 ) Dissolved Oxygen Percent Saturation pH, pH Units Conductivity, umhos/cm @ 25°= Temperature, °C Free Carbon Oioxide (2 ) Alkalinity 1 as Caco3 Settleable Solids 1 ml/1 Discharge c.f.s. Laboratory Paramete~ (1 )(S) Organic Nitrogen Kl• Gld=h' ru •1 -rr~"'~gAn ._ .....,. .._. •• J I v -,_, WI =~t:§!:.~.§}ii€§~J Tool Phosphorus AJ kafinity, as Caco3 Chemieal Oxygen Demand susf9/j 1/13/81 10.7 84 7.2 242 0.1 20.0 99 <<0.1 1,800 <0.05 0.85 0.85 <0.1 <0.01 0.85 <0.01 0.07 ------ 12 4 - 5 10.4 83 6.6 100 6.5 <0.1 91810 0.13 0.34 0.47 <0.1 <0.01 0.47 <0.01 <0.05 -----. 8 Date ----11.6 -~-... 99 7 .. 8 7.7 120 124 11.9 7.9 3.2 2.2 79 41 ¢0.1. <0.1 11,600 131700 . . . ._. .... ~ ,_,, . ;u.a;c:ew ... ·4•::a;:;a: -•-''". · : 0.12 . . <0.05 .... .,.. "'!'!""t znm"'!nb'&',...,..,._,.. ... ·· -~ __ ,.._ 8 16 TABLE 4.1 .. CONTINUED Laboratory Parameters (1 )(3 ) (Cant' d) Chloride Conductivity, umhos/cm @ 25°C True Color, Color Units Hardness 1 as caco3 (4 ) Sulfate Total Dissolved Solids Total Suspended Solids Turbidity 1 NTU Uranium Radioactivity 1 Gr?ss Alpha, pCi/1 Total Organic Carbon Total I norgan~c Carbon Organic Chemicals Endrin Lindane Methoxychlor Toxapher;e 2, 4·0 2, 4, 5-TP Silvex ICAP Scan Ag, Silver AI, Aluminum As, Arsenic Au, Gold B, Boron susi9/j 1/13/81 18 10 121 16 149 0.6 0 .. 35 <0.05 10.3±0.6 . 23 106 <0.0002 <0 •. 004 <0.1 <0.005 <0.1 <0.01 <0.05 <0.05 <0.10 <0.05 <0.05 4 - 6 5/20/81 4.5 15 40 4 100 93 25 ----- -~-- 40 46 ------.----.a-- <0.05 <0.05 <0.10 <0.05 <0.05 Date 6/18/81 5.0 5 49 8 170 340 66 ---- -C)-- 11 46 ----.. _. .... _ ..:.--- <0 .. 05 <0 .. 05 <0.10 <0.05 <0.05 6/30/81 5.0 20 59 7 91 130 29 ----- ........ 23 59 <0.0002 <0.004 <0.1 <0.005 <0.1 <0.01 .,.,:::::"',i.l } <0.05 <0.05 <0.10 <0.05 <0.05 ~, -z,-4s-£r . . .: .. ~ l l. './'"' ····-·,._ .. .. .., .. ' j· j ·1 ••• H' '-' j 1 . ~1 ..-:! :] :J j :1 ' i -~ - . •• ~ "t '·:) · .. r· '~j . ·> . ·- TABLE 4.1 -CONTINUED Date _______ ..,_, __ , _ _..;;..;;..;;.;;;............,._,_ ______ _ 1/13/81 5/20/81 6/18/81 6/30/81 Laboratory Parameters (1 )(3 ) (Cont1d) Ba, Barium <0.05 <0.05 0.07 0.11 Bi, Bismuth <0.05 <0.05 <0.05 0.19 Ca, Calcium 36 13 16 19 Cd, Cadmium <0.01 <0.01 <0.01 <0.01 Co, Cobalt <0.05 <0.05 <0.05 <0.05 . Cr, Chromium <0.05 <0.05 <0.05 <0.05 Cu, Copper <0.05 <0.05 <0.05 <0.05 \ Fe, Iron <0.05 0.08 0.05 0.07 Hg!' Mercury <0.10 <0. '10 <0.10 <0.10 K, Potassium 2 1.5 2.0 2.1 Mg, MaQnesium 7 .. 6 1. j 2.0 2.8 Mn, Manganese <0.05 <0.05 <0.05 <0.05 Mo, Molybdenum <0.05 <0.05 <o.os <0.05 Na, Sodium s.s 2.0 3.3 4.6 Ni I Nickel <0.05 <0.05 <0.05 <0.05 Pb 1 Lead <0.05 <0.05 <O. o:; <0.05 Pt, Platinum <:0.05 <0.05 <0.05 <0.05 Sb, Antimony <0.10 <0.10 <0.10 <0.10 C:c Selenium <0.10 <0.10 <0.10 <0.10 _, .... , Si I Silicon 5.0 1. 7 2.0 2.6 Sn, ·nn <0.10 <0.10 <0.10 <0.10 Sr, Strontium 0.13 <0.05 0.06 0.07 Ti, Titanium <0.05 <0.05 <0.05 <0.05 susi9/j 4 -7 7.,-1../S-'1 ·. · .. ·.~· ·.;:,: ' .. ·, . ·. ~ .· ' '·. ';. •., ., ' • ... • 4'1 ' • " ~ ~ > \ .. ' " .. ¥ " TABLE 4.1 -CONTINUED Date 1/1!/81 5/20/81 6/18/81 Laboratory Parameters (1 )(3 ) (Cant' d) W, Tungsten 0.4 <1.0 <1.0 v·, Vanadium <0.05 <0.05 <0.05 Zn, Zinc <0.05 <0.05 0.07 Zr, Zirconium <0.05 <0.05 <O.OE (1) Table. values are mg/1 unless noted otherwise. (2) All values for free C0 2 determined from nomograph on p. 297 of Standard Method, 14th edition. §£30/81 <1.0 <0.05 <0.05 <0.05 (3) Samples for all ~arameters except chemical oxygen demand, dissolved and suspended solids, and turbidity were filtered. (4) Hardness calculated by R&M personnel. ~ .-L/S-lO susi9/j 4" -8 , u i . i • l. . EXHIBIT E 2. Water Use and Quality Comment 4S (p. E-2-136, para. 4) Provide data an water quality, including nutrients, dissolved oxygen, and trace metal concentrations in Alaskan reservoirs of similar depths and in similar climatological regimes during and after fi llingt> Response To our knowledge there are no Alaskan reservoirs of simi 1 ar depths and similar climatological regimes fro~ which to derive the data requested. 2-46-1 ~. . . • EXHIBIT E REVIEW STAGE'3 2. Water Use and Quality Provide a list of differences and similarities among Lake Eklutna, Watana, and iOevil Canyon, including nhysiographic characteristtcs (e.g., depth, area, aspect, shoreline development) known to affect responses of reservoirs to meteorological changes and thermal characteristics. Respons~. Tabl~ l provides a list of differences and similarities among Lake Eklutna, Watana, and Devil Canyono Watana will have a much larger drainage area and a substantially greeter inflow than Eklutna., However~ the most notable difference between Lake Eklutna and Watana will be the sile difference • Watana will be longer, deeper, wider, and have a much greater surface area and storage capacity. The shoreline length and shoreline development will also be greater. Maximum drawdown at Watana wi 11 be two times the drawdown at Eklutna. The length to width ratio at Watana will be approximately four times that at Eklutna. Eklutna is approximately 5 miles from the glacier, whereas Watana reservoir will be approximately 35 miles from its glacial source. This has a significant impact an the inflow WC!.ter temperature dur- ing summer. The similarities between the two reservoirs are also noteworthy. The per- cent of the drainage areas covered by glaciers are 5o9 and 5.2 percent for . Watan.a and Eklutna respectively. Both reservoirs are glacially fed and :have high a sediment input. Suspended sediment size distribvtions for both reservoirs indicate that a large fraction of the inflo~ing suspended sedi- ment is finer than 2 · · -r~ns. The ratios of live stot ·~-to total storage and the mean residence times will also be similar. 2-47-1 <~ ~"'1 A,,comp~~(~__,,)n .of Eklutna and Devil cinyon reservoir yields similar findings. --''" '. . llt;':f{<C;r.y~n will be four tfmes longer. It will also be much deeper and ..... . . . have more th~n twice the surface al'ea and storage capaci_ty. Discharge and distance downstream from the glaciers are greater significantly for Devil •, Canyon. Mean residence time for Devi 1 CaQyon wi 11 be much less than for. Eklutna. ';\ The percent of the drainage basins occupied by glaciers is virtual)y the same for. b.oth Eklutna and Devil Canyon. Although sediment input will be reduced because of the presence of Watana reservoir, Oevi 1 Canyon is expect- ed to be turbid because of the fine suspended sediment particles passing through Watana. Maximum drawdown at both Eklutrra and Devi 1 Canyon wi 11 be similar. 2-47-2 '~'"" ..•. It' : ' . . . ~ . '·~·J·.' ., " ..•. ·. -...... TABLE 1 COMPARISON OF BASIN CHARACTERISTICS BASIN CHARACTERISTICS Drainage :Area (mi 2) Glacier Areas (mi2) % of Or ai n age Area Glacially Fed Annual Inflow (ac. ft.) RESERVOIR/LAKE CHARACTERISTICS ; ~ ~:"'¥. Length (miles) Maximum Depth (feet) Mean Depth (feet) Maximum Br•eadth (miles) Mean Breadth (miles) Surf ace Area (acres) Capacity, Total (ac. ft.) Live Shoreline Length (miles) Shoreline Development Normal Maximum Elevat·ion of EKLUTNA 119 6.2 5 .. 2 Yes 234,300 7 200 121 1;\0 0.76 3,420 414,000 213,271 16 1.95 Water Surface (feet) 868 Maximum Drawdown (feet) 60 Live Storage/Total Storage 0.52 Total Storage/Surfac~ Area (feet} 121 Length/ Average Depth 305 Drawdown/Average Depth 0~50 Length/Average Width 9.2 Mean Water Residence Time (days) 646 Wat~r Quality Turbid 2-47-3 WATANA 5,180 290 5.9 Yes 5,750,000 46.3 735 250 5 1.28 37~800 9,470,000 3,920,000 183 6.7 2,185 120 0.41 250 978 0.48 36 603 Turbid DEVIL CANYON 5,810 290 5 .. 0 Yes 6!)610,000 28.4 565 140 1.5 0.4 7,800 1,090,000 351,000 76 6.1 1l'455 50 0.32 140 1,071 0.36 71 60 Turbid Cj -~ ... ._._ -.. EXHIBIT E 2. Water Use and Quality CODJent 49 (Figc.·:_.E.2.63 and E.2.64) '~ "' j -~--' _;; .. _ -,,;.·;.P Provide ,clariftcatinn of the term 11 Watt;;;· depth 11 used in these figures (i.e .. , maximum depth, mean depth~ cr hydram fie. radius). Respon~~ Th~ term ''water depth" used in these figures (attached in pp. 2-49-2 to 2-49=3) r"efers to maximum water depth in the. cross-sections. That is, the ·distance from the water surface to the thalweg • .. 2-49-1 v G i= bJ bJ I&. X 1-a. bJ 0 a:: bJ ~ == ---- 18.00 ... • 24.1~ Ft;~T. · 17.()0 0 22.88 FEI;:T • 0 2t.9t"' FEET ... 1600 0 4 \'· ., 20.$13'.i:::ET ... 15.00 ... • 4 '14.00 IC • II A ,\ 13.00 0 0 12.00 A. A .a. .. 11..00 • ll. 10.00 9.00 8.00 A 0 7.00 6.00 5.00 0 4.00 ~------~------~~--------+---------~r--------t------~-~-------i---------r--------+--------i------~;---------~--~---4--~~~-~ 3.00 2!.00 126 126 130 LEGEND: 'GOLD CREEK FLOW: • 23,400 CFS 0 17,000CFS A 13,400CFS A . 9 1700CFS 132 134 NOTE: WATER DEPTHS COMPUTED BY U.S. ARMY CORPS OF ENGINEERS HEC.II.COMPUTER PROGRAM. 136 138 140 o~wz •2:13: RIVER MILE -IWCJO <w ow.-4--> t3a:<::~!;i a_ u ... ::a:: (I) MAINSTEM ·WATER. DEPTHS DEVIL CANYON TO RM 126 -' 142 144 14& 148 150 as a ':lll: • 2 111 ~ 111 a:: z u "' ·U bJ C!J -::::!\ ~ > a:: bJ ~· .. 0 ·a a.'· ·~·· . .. . '·,.;..·· ~ "" "" 18.00 ,~; 17.oo 16.00 15.00 14.0 0 13.D 0 IZ.Q 0 ~ll DO ::r: t: "" D 10 .00 a: "" ~ 3: . 9.00 8.00 7.00 6.00 ~.co 4.00 3. 00 2.00 . t-'- - : I . 9,8 .~--:::.;':. . ... 0 . ... A • ~ II -... I ::f. 0 ~ . a.. A A " 100 LEGEND: . GOLD CREEK FI.OW: a a3,400 CFS r"' 17,000 CFS i:. 13 1 400 CFS t;. 9 1700 CFS II 0 A A . II 0 ... • A -. 0 . 0 . ··--A. ... ~ ~ • .... ... A : 102 104 106 NOTE: y WAT.ER OEPTHSPCSOOM~~~~~N~ERS U s. ARMY COP. H.EC·.U COMPUTER PROGRAM. •. 1 -· . • . a__ . i . .A : . I . A • : • • c I c .: A II • b." A 0 ' • A fJ 0 b. :. 0 ·-... A b. e. . 108 110 112 1&.1 en cl :z: u RIVER MILE MAl NSTEM WATER DEPTHS RM 12 6 TO TALKEETNA ~ ) " '. ~; ' . ---' il 0 . .. -. ,::., ., : A ' . . 0 .. - tl • . i• . 0.. - I ~ . 4 ... • ,_, A c • i ~ • ...l . .. 0 b. . 0 ... t. ·.: : A b.' II II A • '" 0 0 .... .. a -... t:. A .~, Q -- . - \ I ,·_;._ '· . 0 ·~ 124 ... 12!0 122 . 116 UB . > 114 " • a: a: ;::I "• u .. ;-.:;· EXHIBIT E .~r,~ '" 2. Water Use and Quality ' ~ \- J C01111erit 50 (Figure E.2.65) Prcvide a description of the ft19deling procedures used to __ generat~ the water surface. elevations in this figure. Provide the appropriate referei1ce to Triheyes work (Trihey ~98t: is ambiguous) and other ADF&G or R&M report$ con.,. ~ . ~ . taining data used in this 'analysis. Resoonse As stated in the response to Comment 4, ( Exhibit E, Chapter 2) the water surface elevations (shown as solid lines in Figur·e E.2.65 Po 2-50-3) for mainstem flows of 12,500 cfs and 22,500 cfs are based on water sur-face measurements taken on August 2, 1982 and August 24, 1982. The water surface elevations at ADF&G gages #129.2 ~JIA and WIB (station -4 + 50) for the intermediate mainstem flows of 16,000 cfs and 10,000 cfs (shown as dashed lines in Figure E.2.65) were obtained from the water surface elevation - mainstem discharge relat·ionship shown on Figure E.2.66 in the Exhibit~ which was based on observed data a Ti1e water surface elevation was assumed to be the same at AOF&G gage #129 .. 2 WI as it was at the upstream riffle, since ·pools existed at flows of 12,500 and 22,500 cfs. Also, since Slough 9 is not overtopped at·mainstam discharges up to 18,000 cfs, outflow f.rom the s 1 ough is quite sma 11 and it has no appr•eci able effect on the water surf ace profile downstream of the riffle at passage reach B. Slough f"tow was set at 3 cfs to rspresent a plausible worst case entrance condition during the inmigration period for spawning chum salmon. The depth of flow through the .· riffle at passage reach B for a flow of 3 cfs 'lias estimated from water • depths recorded by ADF&G while surveying the bed profile of Slough 9 on August 24, 1982. Slough flow was measut .. ed as 3.4 cfs on August 25; 1982. 2-50-l ' . . The reference to Trihey•s w'ork is given below: 2 . ~ Trihey, E ... Woody. 19826 \\Preliminary Assessment of Access by Spawning Salmon to Side Slough Habit'at Above Talkeetna. Pr~pared :for Acres American -· ~ -,'-., Inc. Buffalo, New York. 26 pp. , : :,, ,_, ,, -~ ·~, ~ Additfona1 informat.1on is contained in the following references: '·•:. Alaska Department of Fish and Game (ADF&G), 1983. Susitna Hydro-Aquatic Studies Phase II Basic Data Report .Volume 4. Aquatic Habitat and Instream Flow Studies~ 1982. R&M Consultants Inc. 1982. Susitna Hydroelectric Project 1982 Hydrographic Surveys Report, Prepared for Acres American Inc. 2-50-2 .· ~, .. ' ' ~~.. ' ¥' -f;j UJ u. -·z 0 ~ :> liJ ..J t.-J 594 593 592 59; 590 589 ~88 587 ADF 6 G STAFF GAGES' a.12-Cf. ~.wlt1 /2·'1 .. 2 {,.IJ/) PASSAGE --+~--..~ REACH A I I -5t00 NOTES: I. MOUtH OF SLOUGH AT STATION 0+00. 2. SELECT MAINSTEM DISCHARGES MEASURED AT GOLD CREEK. I WSEL = 592.15 LMAINSTEM •22,500 :s WSEL AUG 24, 1982 = 590.00 MAINSTEM = 12,500 CFS $LOUGH : 3 CFS I 0+00 (MOUTH) DISTANCE (FEET) I 5+00 BACKWATER PROFILES AT THE MOUTH OF SLOUGH 9 I : ' I I • I I 1 10+00 .. EXHIB.!T., E 2. Water Use and Quality C01111ent 51 (Table E.2.2, Table E.2.4) '·· Prcwide tables of mon.thbfy average flow data at Gold Creek, Chulitna River, Talkeetn~ River.,, and Susitna Station for water years 1950 through 1981. ~rovid~ corresponding monthly average · temperature data at these four stati~ons 'for every month. during water yea~''S 1950 through 1981 for which thiS is possible. Response Tables I through 4 of this response provide roonth ly average flow data at Gold Creek~ Chulitna River, Talkeetna River, and Susitna Station for water . years 1950 through 1981. The flow data is supplemented with filled tn data ' ' obtained from a correlatjon analysis where flow records do not exist. The periods of estimated or filled-in data are noted in each table. Available rnonthly average temperature data for water years 1950 through 1981 are presented in Tables 5 and 6 for Gold Creek and Susitna Station, t"espect- ively. For the Chulitna River, there are no continuous records from which monthl} av.erage temperature can be computed. For the Talkeetna River, the only month'ly average temperature data available is for water ye&r 1954 and is as fQllows: May 7.2°C, June 11.1°C, July 11.7°C, August 10 .. 6°Ci and September 7.2°C. 2-51-1 TA&\-~ \ &oLt> CKE.E\!.. f10tJTHLT FLOW (cFs) US&!> bAb' 1'5Z'fZOOO W4'TEA 'fEAR OCT NOV ii£C JAN FEB HAR APR HAY JUN JUL AUG SEP . ' ' I : /'/fl.) 6335. 2583. 1439. 1027. 798.-7?.6. 870. 11510, 19600. 22600o 19880. 8301'11 /'IJ-1 3048. 1300. 1100. 960. 820. . 740. 1617. 14090. 20']90. 22570. 19670s 21240 •. •'I S'l 5571. 2744. 1900. 1600o • 1000 •· aeo. 920. 5419. 32370. 26390., 20920. 14480. f'{)""J 8202, 3497. 1700. 1100. 820. 820. 1615. 19270. 27320. 20200. 20610. 15270. t'IS~ 5604. .2100. 1500. 1300. 1000. 780. 1235 • 17280. 'W"l50 20360. 26100. .12920. ~;,')4. • t'f s1· 5370. 2760. 2045. 1794. 1400. 1100. 1200. 9319. . 29060. 27560. 25750. 14290. tfft. 4951t 1900. !JOO, 980. 970. 940. 950. 17660. 33340. 31090. 24530. 1 a:JJo. 11r1 5806. 3050. 2142. 1700. 1500. 1200. 1200. 13750. 301&0. 23310. 20540. 19800 • . ,,sa 8212. 3954. . 3264. ' 1965 • 1307 •. 1148 ,, 1533. 12900. 25700. 22BBO, 22540. 75501} '·I 'Iff 4811. 2150. 1513. 1448. 1307. 980. 1250, 15990. 23320. 2500,) t 31180e 16920. /160 .. 6558. 2850 •. I 2200 t 1845. 1452. 1.~ 97. 1300. 15780. 15530, 22980. 23590, 20510. /'It, I 7794. 3000 •. 2694. 2452. 1754 •. 1810. 2650. 17360i 29450, 24570. 22100 e 13370. {'162.. 5916. 2?00 •. 2100, 1900. 1500. 1400. 17()0, 12590. 43270, . 25850. 23550. 15890. /'f'} 6?23. 2800. 2000o 1600. 1500. 1000e 830. 19030. 26000. 34400. 23670t 12320o '.ft'f44 6449 •• 2250. J.-494. 1048. 966. 713. 745. 4307. 50580. 22950, 16440. 9$71. 1'1'6r 6291. . 2799. 1211. 960 • 860, 900, 1360. 12990. 25720. 27040. 21120. 19350. ~ l'f'£:, 7205. 2098. 1631. 1400. 1300. 1300. 1775. 9645~ 32950. 19860. 21830. 11750. :tlf{s,t 4163. 1600. 1500. 1500, 14.90~ 1200o 1167. 15480. 29510. 26800. 32620. 16870. /9G6 4900. jDf. 3: !iU: ~ 1~. ·tm· 16110. lit aa~: liD!. a»:. IYG~"f -;,m;a. .• ' l IJIMI. '-• 1c -· .. . • • -. ·,vro 3124. 1215. 966. 824. 76Bo 776. lOBO, 11380. 18630 •. 22660. 19980 •· ·f,; 91,21 • 1'111 950, 1082. 3745. 32930. 23950. ,'. 5288. 3407. 2290. 1442. 1036 •. 31910. /144 40. /'I "f).. 5847. 3093. 2510. 2239. 2028. 1823. 1710. 21890!) 34430. 22770. 19290. 12400. !111 48;:6. 2253. 1465. 1200. . 1200. 1000. 1027. 8235. 27800. 18250. 20290. 9074. tlfff 3733. 1523. 1034. 874. . 777. 724 • 992. 16180. 17870. 18800. 16220. 1'l'1C'O .. 44-.:J t I '17-S' 3739. 1.700. 1603. 1516. .:1471. 1400. 1593. 11:'31:'0 32310. 27720. 18090. 16310. tJ tJ • N /77G 7739. 1993. 1081. 974. ' 950. 900. 1373. 12620. 24380. 16940t 19800, 6881. ~ 1"111 3874. 2650. 2403. 1829. . 1618. 1500; 1680, 12680. 37970 • 22870. 19240. 12640. /tf1'6 ', 2029. 7571. 3525. 2589. 1668. 1605. 1702. 11950, 19050, 21020 •. 16390, 8607. -tf1'1 4907o 2535. 1681. 1397. 1286 • 1200, 1450. 13870. 24690. 28880. 20460. 10770. • N lYOd 7311. 4192. 2416. 1748. 1466. 1400. 1670. !2060. 29080. 32660. 20960. 13280. 1'101~) 7725. 3-91t0 •. ~. J~. :1~. ·1+1-4. 1~. 1-d317. 1-~ •. ~.{). J.US.J.B • ·~. \).S"~'I I'll$' ;1..0/:J /Cf =j',S' I J'SY' ..tOiO If; :r.s-o /9"Jc.'0 :J :;··Mu -:J :r.~ro I 3 7"-'i'O (, Yv(;b < ... r,· ~.). ( . II AS ~~ t: v' I C: I f) I It l 61 1 I .• , ( ; l I \·. ·];'.( lfAt·1 f.l' c· ... r 1 , ( I ,, I l A I 1 ; ly, .·. , -.· I .. N t Cl\ -• lN j~li . , • W/4tER YEAR .. I ABlE 2, CHuLITNA 'R\\/~R MOtJTHL."/ F1-0W llS&S C:sAb-i'% IS"Z~ZLloo OCT NOV ltEC JAN HAR Af'R HAY JUN JUL AUO SEP OCT • j ' -r~\3L~ 3 T Al-\,E.EINA R\Vf:R MONI)-\1.,~ VS&S 8A&£ 152~2700 NOV (IEC JAU FElt HAl\ HAY JUN JUL AUG SEf~ gf "'f"A8L.t:~ · · ,, J !~· 1\ • ; ,, . . STA-raON:. \O~'ft-\LV (c~s) ~~ ~ S\J~ r·f'tJA ~L.OW '·•·- ,, {.-.~ \JS&S 6AE1S 15'2.c;'-f3~0 YEAR . oct NOV ttEC JAN FEll MAR APR HAY JUN JUL AUG SEP /C#flJ 26969. 11367. . .6197 •· 6072. 525&. 5377. 5657. 66294. 101616. 124890. 106432 .. 39331. llfJ'"( 18026. 6933. 5981. 7074il 7295o 6382. 7354. 59273. 82255. 123164. 100947. 73471. rtr'-31053. 16364. 6989. 9274. 7036. 5953. 5«185, 45294, 132547. 137322,: 1161&6. 82076. (f(J.'J -44952. 16289. 9746. 9069. 6775. 6350. 7993. 88040. 130561. 1.25949. 97610. 44160. ,, J-rl 20169. 11829 •.. 5272. ·. 7202. 4993. 4980. 6306. 58516. 108891, 116732. 128587. 66275. ,((a, .. 23896. 9168 •. 619'3. 7255. 5945. 5316. 6412. 58164. 169045. 148877. 120120. 53504. rn'~ 19923. 10522. 7295. 6179. 6831. 6324 .• 7182. 82486. 161346. 168815. 131620. 104218. l'IJ"'f 41822. 21549. 14146. 10600. 8356. 7353; 7705. 63204. 176219. 140318. 12481.3. 87825. /tr~i3 52636, 19897. 10635. \ 7553. ·. 6387. 66"19. 8099. 70321'" 112897. 122280. 99609, 53053. I~'J-if 30543. 9528. 4763. 7795. ·6564. 5666. 6468. 56601. 110602. 146217. 139334. 67904. /fi&O 25754. 1.0165. 7005. 6716. 6310. 5651. 5830. 50062. 84134. 129403. 113972 •. 81565. 1%1 33782. 12914. . ·. 13769. 12669. . 10034. 9193.: '."·V903• 85457. 151715. 138969. 116697. 62504. /%2 29029. 13043 • . . . 9977. 9050. '6193. 5951 .• 6635. 54554. 163049. 143441. 12t221. 74806. lfb3 27716. 10755. . . 8865. 8671. 7854. . .... 6058. :·5565. .• 53903e 85648. l46420 • 106707. 70782. l'lfA. 37846. 11702. . 5626. 6J51. 5762. 4910. 5531. 35536. 153126. 124B06t 92280. 46110. ff{C,) .. 20747. 10458. 6127-:e 6952. 61968 6170. : 7120. 49485, 110075. 138407. .111846. 89944. f'{{,' 365~3. 12313. 9159 ~· 8031. 7489. 7()91• : 8048. 52311. 125183. 117607. 119729. 63987. .. ,j, ICf(; ':/-26396. 12963.· 8322·;· .. 8029. 7726. 6683t .~·. ,1281 G 58107. !J4B01o 136306. 137318. 89527. J!{(,9 m&· ~· .1~,·· . ~!?~. 11532 • . m;!· .·~w.· ~· ~: 130514. ~· ~-. l'il:ll 0 • ••• =t' i:IJJ. Jf; ~~ . . ~ . !~. :, • . ·-·~ ' • • •• ~ . 1'110 22693. 6799. :. 5016. 6074. 5581. 573""' 5769. 53036. 9,612. 132985. 117728. 80595. .. .... · ... l'l:rt 32817. 16607' ... 8633' 6509. 6254e 53BJ, . ···~.788. 29809. 122258. 139183. 133310. 69021 .• .. t'ffJ. 32763. 14922. l 8791 •. 9380. 8458. 6646. 6895. 74062. 176024. 142787. 107597. 60220· l'fr'J 26782. 14 853 •.. 8147; 7609. . 7'477. 6313 ... 7608. 64534. 122797o 123362. 107261, 4522i". ttt14 20976. 10113 •. '6081.· 7402. 6747. . 6294. b96J, 61459. 6'7938 • 102184. 80252. 56124. rt'f! 19520. 10400, 9419. 8597. 7804. 7048. 6867. 47540. 128800. 135700. 91360. 77740i ·tCf1(.,. J1550. 9933. . 6000. 6529. 5614. 5368. 7253. 7046C, 107000 • 115200. 99650. 48910. 1'11-1 30140. 18270. 13100, 10100. 8911· 6774. 6233. 56180. 165900. 143900. 125500. 8J810e 1714 38230. 12630. .-:· 7529. 6974. ·. 6771. 6590. 7033. 48670. 90930. 117600. 102100c-55500. 1'119. 36810 •.. 15000. . . 9306' 8823. ' 7946. 7032. 8693~ 81260. 119900. 142500. 128200. ~ • 1980 58640 t . 31590. . 14690 0 10120 • 9017· 9906. 120JO, 66580, 142900. 181400. 126400. tf81 • 34 970. . ; 16200 •. :8516. 7774. 7589. 6177. 10350, 83580, 108700. 152900. 15960t'·· 67170. 0) b~ ~ A·~ ·'"s-o,. toq ~·~ ~~ ~; u, J"\, C~&~ ~ c. ·• ~ oJ~/974. ~~ . . . ... lZ.} ~·rd t?t3J l:e.viJ/a~ h IJSG-J' ... . . •.. 0 .~ - ;- 'r -·----· ---------,-----·--·-------------