Loading...
HomeMy WebLinkAboutAPA1244~-------------------·----~--------------~ ' 0 SUSITNA HYDROELECTRIC PROJECT APPENDIX 8.9 RIVER MORPHOLOGY JANUARY 1982 PREPARED FOP.• I I I I i j J I f J L----_ALASKA POWF.~R AUI~HORrr~y--·~-=-~-=-.J ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT -- APPENDIX 8.9 RIVER MORPHOLOGY ~JANUARY 1982 Prepared for: ACRES AMERICAN INCORPORATED 1000 Liberty Bank Building Main at Court Buffalo 1 New York 14202 Telephone (716) 853-7525 Prepared by: S. Bredthauer & B. Drage R&M CONSULTANTS, INC. P .0. Box 6087 5024 Cordova Street Anchorage 1 Alaska 99503 Telephone (907) 279-0483 ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT TASK 3 -HYDROLOGY SUBTASK 3.07 & 3~ 10 -CLOSEOUT REPORT RIVER MORPHOLOGY STUDIES TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES 1 -INTRODUCTION 1·.1 -Background and Purpose of Study 1 • 2 ... Downstream Effects 1.3 -Report Contents 2 -SUMMARY 2.1 -Basin Overview 2.2 -Projected Post Project Morphological Changes on the Downstream River 3 -FLOW REGIME 3.1 -Flow Duration Analysis (Pre:-Project Conditions) 3.2 -Post-Project Flows 3. 3 -Contribution by Tributaries 3.4 ·.. Flow Variability Index 4 -SEDIMENT REGIME 4.1 -Suspended Sediment 4. 2 -Bedload 4.3 ... Reservoir Trap Efficiency 4.4 -Bed Material Movement 4.5 -Contribution of Sediment Downstream - i - s iii vii 1-1 1-1 1-1 1 ... 3 2-1 2-1 2.-3 3-1 3-1 3-2 3_;4 4-1 4-1 4-1 4-2 4-3 4-5 0 5 ... REGIME ANALYSIS 5.1 ... River Response Rele!tionships 5 .. 2 -Rjver Pattern and Channel Characteristics of Natural System 5. 3 Regime Analysis of Susitna River Reaches 6 -SIDE CHANNELS AND SLOUGHS 6~ 1 -Present and Projected Flow Regime 6.2 -Expected Changes 7 -ICE PROCESSES 7.1 -Pre-Project Ice Conditions 7.2 -Post-Project Ice Conditions BIBLIOGRAPHY APPENDIX A -RATING TABLES APPENDiX B -FLOW VARIABILITY RAT10S APPENDIX C -WATER SURFACE ELEVATIONS -jj ... Page 4 5-1 5-1 S-2 5-4 G-1 "' 6-1 6-1 7-1 7-1 7-3 Figure No~ 2.1 2.2 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 LISl' OF FIGURES Susitna River basin Susitna River cross-section locations Flow duration curves .. Susitna River at Denali, Cantwel.!, Gold Creek Flow dur·ation curves -MacLaren River Flow duration curves -Chulitna and Talkeetna Rivers Flow duration curve -Susitna River at Susitna Station Pre-and post-project flow duration curves, Susjtna River at Gold Creek Pre-and post ... project flow duration curves, Susitna River at Sunshine Pre-and post-project flow duration curves 1 Susitna River at Susitna Station Annual flow duration curves at Susitna ... Chulitna- Tall<eetna confluence Pre-and post-project discharge-stage frequency curves, Susitna River at Gold Creek Pre-and post-project discharge-stage frequency curves 1 Susitna River at Sunshine Pre-and post-project discharge-stage frequency curves 1 Susitna River at Delta I stands Pre-and post-project discharge-stage frequency curves, Susitna River at Susitna Station Design. dimensionless regional frequency curve annual instantaneous flood peaks -iii - Page 2.-7 2-8 3-26 3-27 3-28 3-29 3-30 .3-31 3-32 3-33 3-34 3-35 3-35 3-38 LIST OF FIGURES -(Co .. ttinU«;~d) Figure No. 4.1 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12. 4~13 5.1 5.2 Title Suspended sediment rating curves -Susitna River at Denali and MacLaren River near Paxson Suspended sediment l"'ating curve-Susitna River near Cantwell (Vee Canyon) Suspended sediment t"ating curve-Susitna River at Gold Creek ·· . Suspended sediment ratir.g curves, Chulitna and Talkeetna Rivers Suspended sediment rating curve, Susltna River at Susitna Station Annual suspended sediment load duratR;n curves Estimated bedload rating curve, Susitna River at Denali Bed material movement curves, LRX-54, -57, -62, -68 Bed material movement curves, LRX -43, -45, -49, -so, -s1 Bed material movement curves, LRX -36, -38, -39, -40 Bed material movement curves 1 L.RX -28, -2H, -31/ -35 Bed material movement curves, LHX -16, -18, -20, -24 Bed material movement curves, LRX -4, ... 7, -9, -12 Single-channel river pattern Split channel river pattern .. iv - Page 4-19 4-20 4-21 4-22 4-23 4-24 4-25. 4-26·. 4-27 4-29 4-.30 4-31 5-22 5-23 LIST OF FIGURES -(Continued) Figure No. 5.3 5.4 5.5 5.7 5.8 5.9 5.10 5.11 5 .. 12 5 .. ,3 5 .. 14 5.15 5.16 5.17 5.18 5.19 5.20 5~21 Title· Braided channef river pattern Multi -channel river pattern River profiles, Susitna River and tributaries above Sunshine River profiles, Susitna River and tributaries below Sunshine Susitna River reach RM 149 to RM 144 Cross-section, RM 148.7 Susitna River reach RM 144 to RM 139 Cross-section, RM 141 . 5 Susitna River reach RM 139 to RM 129.5 Cross-section, RM 134.7 Susitna River reach RM 129.5 to RM 119 Cross-section, RM 121.6 Susitna River reach RM 119 to RM 104 Cross-section, RM 108.4 Susitna River reach RM 104 to RM 95 Cross-section, RM 101.5 1951-1980 aerial photo comparison, Susitna- Chulitna-Talkeetna confluence Susitna River reach RM 95 to RM 61 susitna River reach RM 61 to RM 42 - v - 5-24 5-25 5-26 5-27 5-28 5-29 5-30 5 .. 3, 5-32 5-33 5-34 5-35 5-36 5-37 5-38 5-39 5-40 5 .... 41 5-42 LIST OF FIGURES ... (Continued) Figure No. 5.22 5.23 5.24 6.1 Title Synthesized crass-section, Delta I stands 1951-1980 aerial photo comparison, Susitna-Deshka confluence 1951-1980 aerial photo comparison, Susitna-Yentna confluence Susitna River overflow channels -vi - Page 5-43 5-44 5-45 6-6 Table No. 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3 15 LIST OF TABLES Title Period of record, Susitna streamgaglng stations Susitna River at Gold Creek, pre-project monthly flows Susitna River at Sunshine, pre-project monthly flows Susitna River at Susitna Station, pre-project monthly fJows ' . Susitna River at Gold ·creek1 •· post-project monthly flows (Case A) Susitna River at Sunshine, post-project monthly flows (Case A) Susitna River at Susitna Station, post-project monthly flows (Case A) Sus~tna River at Gold Creek, post-project monthly flows (Case D) Susitna River at Sunshine, post-project monthly flows (Case D) Susitna River at Susitna Station, post-project monthly flows (Case D) Relative contribution of flows at Susitna-Chulitna- TaJ keetna confluence (pre-project) Relative contribution of flows at Susitna-Chulitna- Tal keetna confluence (post-project, Case A) 0 Relative contribution of flows at Susitna-Chulitna- Tatkeetna confluence (post-project, Case D) 0 Pre-and post-project discharge and stage frequency analysis Lower Susitna River basin characteristics for mean annaul flood calculations -vii - P._age 3-6 3-7 3-8 3-9 3-10 3-11 3-12' 3-13 3-14 3-15 3-16 3-17 3-18 3-19 3-20 LIST OF TABLE -(<;ontinued) Table No. 3.16 3.17 3.18 .3 .. 19 3.20 3.21 4.1 4.2 4.3 4.4 4.5 4.6 5.1 6.1 6.2 6.3 7.1 7.2 Title Monthly average ratios, (1-day high and low flow)/ (monthly flow) Monthly average ratios, (3 .. day high and low flow)/ (monthly flow) Monthly average rati.os, (7-day high and low flow)/ (monthly flow) Monthly average ratios 1 (15-day high and 14-day low flow)/(monthly f_low) Ratios of annual 1-, 3-, 7-1 14-, 30-1 60-and 90-day l,aw flows to annuaf low monthly ffows Average monthly spill below Devil Canyon Dam Suspended sediment rating equations Bedload transport data, 1981 Bed material size distribution anaiysis Average velocities at selected cross-sections Susitna River profile data summary Sediment sources downstream of Devil Canyon Susitna River reach definitions Location of blocked and partially-blocked side-channels Water surface elevations in multiple channels at low flow (below 10,000 cfs) Water surface elevations in multiple channels at 22,200 cfs Locations of ice accumulations during freezeup -1980 lee jam locations during breakup 1 May, 1981 -viii - Pag~ 3-21 3-22 3-23 3-24 3-25 3-26 4-6 4-7 4-8 4 ... 9 4-10 4-13 5-21 6-3 6-4 6-5 7-4' 7-5 -- •• ~,, ... > ---· ·-··~-_,_ 1 -INTRODUCTION 1.1 Background and Purpose Construction of dams at Watana and Devil Canyon will effect the river morphology downstream of Devil Canyon, with possible effects on fisheries, vegetation, and wildlife. The possible effects of dams on river morphology are described below. The pUrpose of this report is to describe the existing flow, sediment and river regimes from Devil Canyon to the mouth of the Susitna River, and to assess potential morphological changes in the river. 1.2 Downstream Effects of Dams The construction of dams on a river system modifies both the natural flow regime and the natural sediment transport regime, thus impacting the river processes downstream of the dams .. Be1Fore discussing the· impacts on the river morphology of the Su:sitna River downstream of Devil Canyon 1 a summary of impacts downstream of similar projects is worthwhile. Kellerhals and Gill (1973), Petts (1977), Taylor (1978) and Baxter and Glaude (1980} have summarized channel response to flow re,gulation. Operation of reservoirs significantly alters the flow regime. There is often an increase in the diurnai variation of flow due to the variation in the amount of water passing the turbines in order to follow the load demand. Annual peak discharges are re:duced not only due to storage which aHows no overflow over the spillway, but also due to the surcharge storage provided by the rise. in water level above the spillway crest. Routing through a re~servoir with no availabie storage may reduce some flood peaks by over 50% (Moore 1 1969) 1 depending on the characteristics of the spillway, reservoir 1 and flood hydrograph. The magnitude of the mean annual flood of the Colorado River below Hoover Dam has been reduced by 60% (Dolan, Howard, and Gallenson, 1974).. The t•:>tal volume of flow may be reduced due to the increase in time during which seepage and evaporation losses may occur. Base flow tends to be increased due to seepage and to minimum releases to the channel below the dam. Heservoirs with a large storage capacity may trap and store over 95% of the sediment load transported by the river (Leopold, Wolman' and Miller, 1964) I with the actual percentage depending primarily on the storage capacity-inflow ratio (Brune, 1953), although reservoir shape, reservoir operation, and sediment characteristics have some influence (Gottschalk, 1964). The effect of dams on the sediment load must not be considered in isolation but in relation to changes in river sediment transport capacity, to river regime, to channel morphometry 1 and with .r5/a 1 - 1 regard to major tributaries. At tributaries which transport large quantities of sediment into :1 regulated mainstream with reduced flows and consequently less ability to flush away sediments, the effects include aggradation, an increase in bed s!ope of the tdbutary, and trenching of the deposit to form a channel that is in quasi-equllibr"ium with the ftow regimt: (King, 1961; Kellerhafs, Church and Davies, 1977). The increased gradient results in increased velocities, bank instability, possible major changes in the geomorphic character of the tributary stream, and increased local scour (Simons and Senturk, 1976). All of the bedload enter!ng a reservoir is deposited in the reservoir. This reduction in sediment supply is usually greater than that in sediment-carrying capacity 1 resulting jn erosion downstream of the dam exc;:ept where an armor layer or an outcrop of bedrock occurs (Petts, 1977). Degradation will occur where the regulated flow has sufficient tractive force to initiate sediment movement in the channel (Gottschalk, 1964). Once the channel bed has been stabilized, either by armoring or by the exposure of bedrock, then the banks, which usually consist of finer material than the bed, begin to fail and the channel will widen. Where armoring or bedrock occur across the width of the channel, a simple adjustment will occur where streamflow is accommodated in the existing channel. The sediment load plays an important role in the process of meander migration across alluvial plains by forming point bars from bed load deposition on the inside bank. These point bars are then aggraded to floodplain levels due to the deposition of suspended sediment in the emerging vegetation. The reduction in sediment load may disrupt this process, with at least local ecological changes. Widening of channels at meander bends and. lateral instability may also be expected (Kellerhals and Gill, 1973). Maximum degradation normally occurs in the tailwater of the dam, but may extend downstream. Rates of degradation up to 15 em per year have been observed both in the United States (Leopold, Wolman, and Miller1 1964) and Europe (Shulits, 1934). Channel adjustment to bed degradation and the associated reduction in slope was observed for nearly 250 km below Elephant Bu~e Dam (Stabler, 1925). When an armored condition occurs where the river is unable to recharge itself to capacity, the river may pick up additional material downstream, as was observed on the Colorado River below Hoover Dam (Stanley, 1S31). The channel properties of gravel-bed rivers such as the main stem of the Peace River in Alberta appear to be controlled by floods with a recurrence interval of 1. 5 to 2 years (Bray, 1972) ~ Regulation reduces these flows 1 effectively reducing the size of the gravel-bed river without immediately changing the channel, but certain channel properties will adjust to the channel regime over a rS/a 1 - 2 longer period of time. On the Peace River, the entrenched layer of the channel 1 the proximity of bedrock, and the resistant bed material preclude significant changes in width and depth relationships or in the slope (except near tributary junctions), but deep scour holes at bends will fill to som~ degree 1 and gravel bars exposed above the new high water mdrk will have emerging vegetation (Kellerhals and Gill, 1973). Vegetation encroachment on the higher elevations of the gravel bars downstream of a dam can be expected due to the reduced summer streamflows and the lower flood peaks, and in time could encroach on present high water channels (Tutt, 1979; KeiJeri)als, Church and Davies, 1977). The effect of the additional vegetation would be to increase the channel roughness 1 thus decreasing, the channel water conveyance~ The channel size and capacity could gradually decrease d~e to vegetation encroachment, deposition of suspended load in the newly . vegetated areas, accumulation of material from the valley walls and deposition of sediment brought in by the tributaries. During periods of high flow 1 higher river stages could be expected. The W. A. C. Bennett Dam on the Peace River had a dramatic unplanned impact on the Peace-Athabasca Delta (Baxter and Glaude, 1980). The delta is a series of marshes interspersed with lakes and ponds of various sizes. Before the dam was built, the delta was maintained in this state due to almost annual flooding 1 which prevented vegetation typical of drier ground from being able to establish itself. The hydrological situation itself was complex. The Peace River, passing to the north of the delta, contributed little to the actual flooding, but its flood waters blocked the exit of the Athabasca River 1 which entered from the south and caused the actual flooding. After cor:.struction of Bennett Dam_. the delta starte·d drying up, with dry· ground vegetation establishing itself. The effect of the dam was initially obscured due to lower than normal precipitation for some years previously, but it was eventually concluded that the dam was at least a contributing factor, as flood levels on the Peace River were lowered 1 resulting in the Peace River no longer blocking the exit of the Athabasca River. 1. 3 Report Contents A relatively significant amount of data are available for the reach of river between Devil Canyon and Talkeetna. Over 30 years of streamflow and suspended sediment data are availabfe for the Susitna River at Gold Creek. Aerial photography was flown in 1980 1 and blueline copies made at a scale of 1 11 = 500 1 • Cross-sections were surveyed at 66 sites from Devil Canyon to the Chulitna confluence. Bed material data were gathered at a number of cross-sections~ Using crest gage data gathered in this reach, the HEC-2 wa:ter surface profile model was calibrated, and water rS/a 1 - 3 surface elevations estimated using results from the model. Ice conditions were observed during the 1980-81 winter and 1981 freeze ... up. The available data base is considerably smalle·r below Talkeetna. Streamflow, suspended sediment and water quafity data have been gathered at the. Susitna Station gaging site since 1975.. Streamflow suspended sediment and bedload data were collected at Sunshine (Parks Highway Bridge) in 1981. Aerial photography is available at a scale of 1 u = 500'. Cross-sections are available only at U.S. Geological Survey gaging sites and at miscellaneous sites or sloughs along the river. Ice conditions were observed during the 1980-81 and 1981-82 winters. This report compiles, pre'sents and interprets all available information pertinent to . assessing changes in the river morphology. The existing river patterns and controlling features are described from Devil Canyon to Cook l nlet. A qualitative assessment is also made to predict the response of the river to post-pr9ject conditions. rS/a .. -... --1 - 4 2-SUMMARY - 2.1 -Basin Overview The Susitna River drainage basin is located in the Cook Jnlet subregion of the southcentral ·region of Alaska. The drainage basin covers 19,600 squar·e miles. It is bordered on the west and north by the Aiaska Range, on the east by the Talkeetna Mountains and the Copper River lowland, and on the south by Cook Inlet. · Climate The upper drainage basin is in the continental climatic zone 1 and the lc..wer drainage basin is in the transitional climatic zone. Due to the maritime infll.{ence and the lower. elevations, temperatures are more moderate and precipitation is Jess in the lower basin than . that in the upper basin. In the higher regions, freeze-up starts in early October 1 and most rivers are ice-free in fate April or early May. Topograph)!: Tributaries in the western and northern portions of the drainage basin rise in the glaciers of the Alaska Range 1 which is dominated by Mount McKinley (20,320 feet) and Mount Foraker. Other peaks average 7,000 to 9,000 feet in altitude. Those in the eastern portion rise in the Copper River lowland and in the ·Talkeetna Mountains. The highest peak is 8,850 feet, with elevations averaging 6,000 to 7,000 feet and decreasing northward and westward. To the northwest, the mountains form a broad, roiling glacially scoured upland dissected by deep glaciated valleys. Between these ranges and the Cook Inlet is the Susitna lowlands 1; a broad basin increasing in elevation from sea level to 500 feet, with local relief of 50 to 250 feet. Geology The Susitna River basin derived its present geologic features during Quaternary glaciations. The underlying bedrock consists of granitic batholiths intruded into Paleozoic and Mesozojc volcanic and sedimentary rocks on the south side of the Alaska Range and in the Talkeetna Mountains. Copper, gold, silver, and other minerals are associated with the intrusions. The unconsolidated deposits of the lowJands, which contain thaw lakes and marshes and are poorly drained, overlay Tertiar·y coal-bearing rocks resting on Mesozoic rocks 30,000 feet thick. Unconsolidated deposits are extensive and largely derived from glaciers. Glacial moraines and gravels fill glacial-carved U-shaped valleys in the upland ar.eas. Glaciolacustrine deposits are present r31/b 2 - 1 in the lowlands. During the periods of glaciation·, convergence of g1ac1~1 flow blocked drainage, and preglacial lakes formed. The deposits are laminated, rhythmically bedded sand, silt, and clay. Fluvial deposits are present in the major river valleys 1 and consist of gravels and sands. The drainage basin lies in the discontinuous permafrost ZOI:'Je. Jn th.e mountainous areas, discontinuous permafrost is generally present. In the lowlands and upland areas below 3 1 000 feet, there are isolated masses of permafrost in areas of predominately · fine-grained deposits. Permafrost does not exist in coarse-grained deposits or in deposits adjacent to the main stem river or large water bodies. Soils Gravelly till and outwash in th~ lowlands and on upland slopes are overlain by shallow to moderately deer:> silty soils. Windblown silt covers upland areas. Steeper upper slopes have shallow,· gravelly and. loamy deposits with many bedrock exposures. On the south fJank of the Alaska Range and south-facing slopes of the Talkeetna Mountains, soils are wel!-drainedJ dark, and gravelly to loamy" Poorly drained, gravelly and stony loams with permafrost are present on northfacing slopes of foothills, moraines, and vaHey bottoms. Water erosion is moderate on low slopes and severe on steep slopes. Vegetation Vegetation above tree line in steep, rocky soils is predominately alpine tundra. Well-drained upland soils support white spruce and grasses, whereas poorly drained valley bottom soils support muskeg. Tideflats are dominated by sedge meadows where drainage is poor, and are bordered by moist tundra grading into spruce-hardwood forests in well-drained loamy soHs. Water Resources The Susitna River drainage basin is the sixth largest system in Alaska. The Susitna River is 320 miles long, and major tributaries include the Yentna, Chulitna, and Talkeetna Rivers. Extensive glaciers in the headwaters ·contribute substantial suspended sediment loads during summer months. Streamflow is characterized by high flows between May and September and low flows from October to April. High summer discharges are caused by snowmelt1 rainfall, and glacial melt. Tributaries are generally turbulent in the upper reaches and slower flowing in the lower reaches. On the western side of the basin is the Yentna River 1 with its tributaries the Skwentna River (entering"' on the southwest) and the Kahiltna River (entering on the northwest). The Yentna River r31/b 2-2 rises in the glaciers of the Alaska Range and flows 95 miles southeasterly 1 entering the Susitna River 28 miles from its mouth. The Chulitna River rises in the gtaciers on the south slope of ·Mount McKinley and flows 90 miles south 1 entering the Susitna River near Talkeetna. The Talkeetna River rises in the Talkeetna Mountains 1 flows west, and also enters the Susitna River near Talkeetna, 97 miles from its mouth. The Susitna River and its major downstream tributaries are shown in Fjgure 2.1. Cross-section locations on the river between the Parks Highway and the proposed Watana Dam are illustrated in Figure 2. 2. 2.2 Projected Post Project Morphological Changes on the Downstream River · The following summarizes potential changes in the current river morphology that could · be expected from flow and sediment regulation. The Susitna River main channel between Devil Canyon and the Chulitna River confluence will tend to become more defined with a na·rrower channel. The main channel rh~~~ pattern wil! strive for a tighter, better defined meander patterra ·.vi thin the existing banks. A trend of channel width reduction by encroachment of vegetation and sediment deposition can be expected. This will tend to gradually increase flow depths at specific discharges above the immediate post-project condition. Downstream of the Susitna-Chu1itna confluence the frequency of occurrence of dramatic changes in river morphology will decrease under post-project conditions, resulting in a more stabilized floodplain, decreased number of subchannels and increased vegetative cover. However, it must be recognized that an extreme flood generated by either the Chulitna River 1 Talkeetna River or· both in combination with other tributaries could mask this process and delay observable changes far several years. The project morphological changes for specific river reaches are summarized below: RM 149 to RM 144 0 0 r31/b The channel is stable and little change in form is expected. Portage Creek fan will progress out into the Susitna until equilibrium with the regulated Susitna stage is established. Perching of the stream mouth is not . expected. 2 -3 RM 144 to RM 139 0 0 0 0 0 Erosion of valley walls and terraces will decrease dramatically due to the armour layer. Reworking of alluvial deposits in the main chann~l will continue but at a reduced rate. Main channel form will pr·ogress slowly to a more uniform sinuous pattern. Subc:-~~nnels may become inactive .. Tributary at RM 144 could become perched. It may not be able to regrade its coarse bed sediments to meet the regulated Susitna water level. RM 139 to RM 129.5 0 0 0 0 0 . 0 Indian River will continue to extend its alluvial deposits into the Susitna. Indian River should easily grade its bed to meet the regulated Susitna Stage. Gold Creek gradient is p!"'esently very steep as it enters the Susitna. The cobble and bouider bed will resist regrading the bed to meet the regulated Susltna stage. Fourth of July Creek gradient is currently relatively flat and should easily adjust to the regulated Susitna stage. Erosion of valley walls 1 terrace deposits and alluvial banks will reduce dramatically due to the armour layer. Reworking of active gravel bed materials will continue at a reduced rate. Main channel form will slowly progress to a more uniform sinuous pattern. Several of the sloughs and subchannels could be blocked off from the Susitna main channel at the regulated stage. Where these channels rejoin the Susitna 1 gradual siltation and vegetation encroachme!')t will occur. RM 129.5 to RM 119 0 0 Erosion of valley walls 1 terraces and .alluvial deposits will reduce dramatically~ At RM 128 and 125.5, reworking of gravel bed material will continue, but at a reduced rate. Main channel form will become more uniform. 2 -4 0 0 Cobble berms at the side channels and sloughs '"~~Hl control and perhaps block main channel flow from entering them. The river should continue its preferred and stable route along the west valley waiL RM 119 to RM 104 0 No consequential changes in the channel morphology are expected. RM 104 to RM 95 0 0 0 Chulitna River will continue to expand and extend its alluvial dep~osits. Decreasing the summer flow magnitude in the Susitna River. will allow the Chulitna to extend alluvial deposits to the ea·st and south. This could induce erosion of the east ban kline towards the rail road .. Increased deposition at the confluence will cause backwater uLi the Susitna River. Lateral instability will continue after the project. The Talkeetna River will maintain the ability to create its channel into the Susitna system. No consequential interactions can be foreseen at this time. RM 95 to RM 61 0 0 r31/b Under post-project conditions, the bankfull flood (mean annual flood under pre-pr~Jject conditions) could be expected to have ·a recurrence interval of once every five to ten years. This will tend to decrease the frequency of occurrence of both bed material movement and consequently of changes in braided channel shape, form and network. Over a long period, a trend towcH"ds relative stabilization of the floodplain features should occur. The main channel and major subchannefs could progress to a more uniform meandering pattern. The active gravel floodplain may develop a vegetative cover and the minor subchannels become relatively inactive. It must be recognized that an extreme flood generated by either the Chulitna River, Talkeetna River, or both, could mask this process and delay observable changes for several years. 2 - 5 RM 61 to RM 42 0 0 The Delta Island reach is a very complex and unstable channel network. There exists a very broad floodplain filled with varying channel types. Project induced changes in flow and sediment regime reahzed at this reach will be diluted by contribution from tributaries and by the Susitna satisfying its sediment load by reworking the wide floodplain alluvial deposits. Basic changes in the overall channel network are not expected. Local changes could occur in the main channel lateral position but basic channel geometry should remain relatively similar. To quantity post project morphology changes with respect to the natural system would be extremely d]fficult, if not impossible. RM 42 to RM 0 0 r31/b Effects of the project on river morphology through this reach of river would be extremely difficult ·or impossible to quantify. The dilution effect of major and minor tributaries as well as the balancing of changes by the Susitna River system should mask any measurable changes that could occur as a result of the project for several decades. 2 - 6 PREPARED . BY I R&M CONSULTANTS, INC. DEVILS CANYON • GOLD CREEK SUNSHINE STATtON LOCATION MAP LOWER SUSITNA RIVER SUSITNA:RIVER BASIN RIV~R PREPARED FOR: 2-7 FIGURE 2.1 ., N I 00 1--·----- 1 1/2 0 MILES 9 2 3 PI.ATE ..2_ t--Pr_.e~p_ar_ed_b..;;.Y: .... : _____________ ,.,_, ____________ _... _______________________ Pr_ep~ar=e=d=£::o:=r • FIGURE 2.2 RIVER CRC.,SS-SECTION LOCATIONS A~~f~ ~==========~---~---------------------·------------------------~~== R&M CONSULTANTS. INC. ., Prepared by: ' •. - ./ R&M CCNSUL,.ANTS, INC::. -- 1 1/2 0 ---·--liSR MILES r--=; 1 1 2 3 ared for: FIGURE2.2 CONTINUED - N I 1-' 0 -- R&M CONSULTANTS. INC. -·-·--- 1 I 2 - . . . I 3 FIGURE. 2.2 CONT5NUEO ..-.- .' r: ------- ---- " .... --.--~~-·r•·---------· ... • .... ; I ~\ . ( PlATE 7 to6 MiLES 4= 9 1 2 I ! I Prepared by: FIGURE 2.2 CONTINUED 3 -FLOW REGIME The flow regime defines the amount of tim'~ that certain flows, together with the corresponding hydraulic characteristics, can be expected. The information is useful in analysis of the sediment regime and the river morphology, as most of the sediment transport occurs at high flows. lt is also important in evaluating the impact of flow regulation on fisheries. 3.1 Flow Duration Analysis A flow duration curve shows the propor-tion of time that discharge equals or exceeds various values. Pre-project monthly and annual flow duration curves based on average daily flows· were developed for the four 111ainste1J1 Susitna River gaging stations (Denali, Vee Canyon, Gold Creek and Susitna Station) and three major tributaries (MacLaren, Chulitna, and ·TaJ keetna Rivers), and are shown on Figures 3.1 through 3.4. The p~riod of record used for each flow duration curve is shown in Table 3.1. The curves do not necessa~ily indicate that flows are greater than a given value for .a certain number of days for every year, Le. that 30,000 cfs is exceeded five percent of every year at the Susitna River at Gold Creek. In the above example, the flow duration curve indicates only that five percent of all days during the period of record had discharges above 30,000 cfs. The annual flow duration curve does not indicate how the sequence of flows occur -annual hyd_rographs should be examined to determine sequences of high or fow flows. The shape of the monthly and annual flow duration curves are similar for each of the stations. The flow duration curves are indicative of flow from glacial rivers. Streamflow is low in the winter months, with little variation in flow and no unusual peaks. Flow begins to increase slightly in April as breakup approaches. Peak flows in May are an order of m&gnitude greater than in April. Flow in May also shows the greatest variation for any month, as low flows may continue into May before the high snowmelt/breakup flows occur. June has the highest peaks and the highest median flow. The months of June through July have relatively flat flow duration curves, indicating that significant portions of flow are within a relatively narr·ow flow range. More variability of flow is evident in September and October as cooler weather becomes more prevalent .. 3. 2 Post Project Flow;5 Daily post-project flows for the Susitna River below Devil Canyon are not available. However, the change in flow durations can be estimated based on monthly fiow duration curves. Due to the lack r31/c 3 - 1 of records at Sunshine and the short period of record at Susitna Station, 30 years of pre-project monthly flows were synthesized using records from the Susitna River at Gold Creek, Talkeetna Rjver, and Chulitna River gaging stations~ The post-project project flow duration curves are based on the 30-year monthly operation of the Watana and Devil Canyon Reservoirs for Case A (optimal power operations) and Case D (minimal impact on salmon spawning areas in side channels and sloughs above Talk,~etna). Tables 3.2 through 3.10 present the 30-year record of hi~itorical and synthesized monthly flows for pre-and post-project conditions at Susitng River at Gold Creek, Sunshine and Susitna Station. Annual and monthly flow duration curves for pre-and post-project conditions for these stations are shown in Figures 3. 5 through 3. 7. Also presented on these figures are the correspondinrJ water surface elevations, based on USGS rating curves. For the ice cover period between_ November and early May, the water surface elevations shown on the graphs. will not be valid. The only reason for their inclusion is that the difference in water levels under pre- and post-project conditions is likely to be of the same order as under open water conditions. The relativa contribution of average monthly flows at the confluence of the Susitna, Chulitna and Talkeetna Rivers is shown in Tables 3.11 through 3.13 for pre-and post-project conditions. The annual flow duration curves for the three rivers, including both post-project flow options for Susitna, are illustrated together an Figure 3. S. The pre-and post-project annual flood frequency curves for the Susitna River at Gold Creek, Sunshine1 Delta Islands, and Susitna Station are presented in Figures 3. ~' through 3.12. Table 3.14 presents pre-and post-project flood discharges and stages for the four sites. Rating tables and rating curves for the above three sites. are presented in Appendix A. 3.3 Contribution by Tributaries As part of Subtask 3 .. 05 -Flood Studies, a regional equation was developed to determine mean annual flood flows based on basin characteristics. A forward stepping multiple linear regression computer program was utilized. Twelve watershed parameters were considered, including: drainage area 1 m:1in channel slope, stream length 1 mean basin elevation, area of lakes and ponds, area of forests, area of glaciers, mean annual precipitation, precipitation intensity, mean annual snowfall, and mean minimum January temperature. The most influential parameters in predicting the mean annual instantaneous peak flow are drainage area, stream length, area of glaciers, mean annual precipitation, and mean annual snowfalL 1'"'31/c 3 - 2 I I I r The resulting equation was selected as being the most representative for determining the mean annual instantaneous peak flow: Where: Q = 7.06 (D.A.) + 46 .. 36 (L) + 697.14 (G)+ D.A. L G MAP~ MAS 200.15 (MAP) -49.55 (MAS) -2594 Drainage Area (mi 2 ) Stream Length (mi) Percent of Dr·ainage Area Covered by Glaciers(%) Mean Annual Precipitation (in) Mean Annual Snowfall (in) Table 3.15 lists a summary of · basin characteristics at various locations along the lower Susitna River that were used in this study to determine fl.ood flows. It Is interesting to note the ·variance that exists within the Susltna basin. For example, the two major western tributaries, the Chulitna and Yentna Rivers, have the highest percentage of glacial area. Susitna River at Gold Creek has the lowest percentage of forested area. Table 3.15 is a good reference for general comparison of basin characteristics. The mean annual· instantaneous peak was used in conjunction with Figure 3.13, the design dimensionless l"egional frequency curve .for the Susitna River basin. Thte annllal instantaneous peak for selected return periods was determined by multiplying the appropriate dimensionless curve value by the mean annual instantaneous peak determined from the above equation. This procedure, was used to determine pre-project flood frequencies at ungaged ·sites along the Susitna River. Additional discussion of the regional flood frequency analysis can be found in the Regional Flood Peak and Volume Frequency Analysis: Closeout Report (R&M, 1981b). 3.4 Flow Variability Index Long-term average monthly pre-and post-project streamflows may be used to initially· assess the project effects on fishery and wildlife habitat. However, Trihey (1981) notes that average monthly flows do not reflect the seasonal and annual flow extremes which may have significant impacts on habitat. High streamflows may scour eggs from streambed gravers. Low streamflows during salmon spawning periods may concentrate spawners into confined areas. Only monthly flows are available below Devil Canyon for post-pt .. oject conditions.. Consequently, an analysis is required to assess the value of monthiy streamflow va[ues as indicators of flow extremes. . ,, r31/c 3 - 3 The 1-day, 3-day, 7-day and 15-day high and low flow values were determined for each May through October (open-water period) for the periods of record at Susitna River at Gold Creek, Chulitna River near Talkeetna, Tal.keetna River near Talkeetna, and Susitna River at Susitna Station. The ratios of the values to the corresponding average monthly flow were then determined in order to provide an indication of how well monthly streamflow values represent the extremes in habitat conditions (Trihey, 1981). The average 1-, 3-, 7-and 15-day ratios and standard deviations for each stations are presented in Tables 3.16 through 3.19. The ratios for each of the months of May through October for the periods of record are presented in Attachment B. The ratio of annual 1-, 3-, 7-, 14-, 30-, 60-and 90-day low flows to the annual low monthly flow were also computed for the above four stations, together with data from the Susitna River near Cantwell. The ratios are summarized in Table 3.20, and the station values for the periods of record are presented in Appendix B. The annual low daily flows. are closely approximated by monthly flows. The low monthly flows occur in mid-winter, when the rivers are ice-covered. Flow statistics indicate that the ratios of 1-, 3-, 7-and 15-day high and low flows vary both with time and with basin characteristics. On all rivers analyzed, May showed the most variability, as it is usually the month when high breakup flows begin to occur. This large variability in May is also evident on the flow duration curves. The ratios for May also had the greatest standard deviation for high flows, indicating significant changes from year to year. June and July generally exhibited less variability than the late summer months, primarily because flows are usually dominated by snow and glacier melt. In the Susitna Regional Flood Analysis (R&M, 1981), it was demonstrated that June had the greatest frequency of annual floods (55%). Floods in June are dominated by rain and snowmelt storms, resulting in high volume floods with relatively slow changes in daily discharge. Flow variability increases in the August through October period. Heavy rainstorms often occur in August, with 28% of the annual floods occurring in that month. The increase in the ratio of high daily flow to monthly flow for September and October is partially due to rainstorm floods and partially due to the decrease in flows due to cooler weather later in each month as winter approaches. The monthly ratios for high and low flows may be used as indicators of the monthly high and low flow values for the unregulated portions of the river, i.e., that portion of flow on the Susitna River contributed below Devil Canyon. The 2-dam reservoir system will have almost complete regulation of flows up to floods with about a SO-year recurrence interval. Table 3.21 indicates the average monthly spill from Devil Canyon. r31/c 3 - 4 ' ..... ~I ... ~I - The spills are completely regulated, i.e., reservoir outfets are controlled so that average monthly flows are nearly constant for those months. The 'i-day 1 3-day, 7-day, and 15-day hlgh flow ratios may be used as indices of the increase in flow contributed below Devil Canyon 1 so that maximum flows expected between Devil Canyon and the Su.sitn?~·Chulitna-Talkeetna confiuence may be estimated. Overall, tht: ,;Jaily /monthly flow ratio for the Susitna River at Gold Creek will be decreased .·significantly under post-project conditions. Once the Susitna-Chulitna confluence is reached, there will be also be some decrease in the dairy/monthly flow ratios due to the str""age effects of the reservoirs, but it will not be as significant as that above the confJuence. r31/c -3 "'"· 5 TABLE 3.1 STREAMGAGING STATIONS " - PERIOD OF RECORD Susitna River near Denali -US.G.S. Station 15291000 Mean Daily Discharge Records: May 1957 -September, 1966 July 1968 Q Present MaClaren River near Paxson -U.S.G.S. Station 15291200 Mean Daily Dischar·ge Record: June 1958 -Present Susitna River near Cantwell -U.S.G.S. 0:-:ation 15291500 ~ean Daily Discharge Records: May 1961 -September 1972 May 1980 -Present Susitna River near Gold Creek -U.S.G.S. Station 15292000 Mean Daily Discharge Records: August 1949 -Present Chulitna River near Talkeetna -U.S.G.S. Station 15292400 Mean Daily Discharge Record: February 1958 -September 1972 May 1980 -Present Talkeetna River near Talkeetna-U.S,G-S. Station 15292700 Mean Daily Discharge Record: October 1974 -Present r31/c 3 - 6 GOLD CREEK UPDATED PRE-PROJECT FLOWS OCT NOV DEC JAN FEB HAR Ar'R HAY JUN JUL~ AUG SEP YR AVG 6335. 2593 .. 1439. 1027. ,788. 726. 1370, 11510. 19600. 22600. 19880. 8.301. 7972. 38•18. 1300 • . 1100. 960. 820. 740. 1617. 14090. 20790. 22570. 19670. 21240. 9062. •· • 5'571. 2741\. 1900, 1600. 1000. sao. 920. 5419. 32370 • 26390. 20920. 14480. 9516 .. 8:::!02. 3497. 1700. 1_100. 820. 820. 1615. 19270. 27320. 202.00. 20610. 15270. 10035. 5604<1 2100. 1500. 1300. 1000. 780. 1235. 17280. 25250. 20360. 26100. 12920. 9619. 5370. 2760 .. \ 2045. 17!)4. 1400. 1100. 1200. 9319. 29.860. 27560. 25750. 14290. 10204. •1951. 1900. 1300. 980. 970. Z940a 950. 17660. 33340. 31090. 24530. 18330. 11412. ' 5806. 3050. 2142. 1700. 1500. 1200. 1200. 13750. 30160. 23310 •. 20540. 19800. 10347. 8:::!1:::!. 3954, 3264. 1965. 1307. 1148. 1533. -12900. 25700. 22880. 22540. 7550. 9413. 4811. 2150. 151J~ 1448. 1307. 980. 1250. ' 15990. 23320. 25000, 31180, 16920. 10499~ 6558. 2SSO. 2200. 1845. 1452. 119~ 1300. 15780. 155'30. 22980. 23590. 20510. 9649. /794· 3000. 2694. 2452. 175·1. 1810. 2650. 17360. 29450. •24570. 2!21 00. 1'3370. 10750. 5916. 2700. 2100. 1900. 1500. 1400, 1700. 12590. 43270. :25850. 23550. 15890. !1531. 6723. 2800. 2000. 1600. 1500. 1000. 830. 19030. 26000. 34400. 23670. 12320. 10989. 64.1)9. 2250. 1494. 1048. 966. 713. 745. 4307. 50580. 22950. 16440· 9571. 9793. 6291. 2799. 1211. 960. 860. 900. 1360. 12990. 25720. 27840. 211:::!0. 19350. 10117, w 7205. 2098, 1631. 1400. 1300, 1300. 1775. 9645. 32950. 19860. 21830. 11750. 9395. I 4163. 1600. 1500. 1500 •. 1400. 1200 •· 1167. 15480. 29510. 26800. 32620~ 16870. 11151. --...! 4900. 2353. 2055. 1981. 1900. 1900. 1910. 16180. :n55o •. 26420. 17170. 8816. 9761. 3822. 1630. 882. 724. 723, '816. 1510c 11050. 15500. 16100. 8879. 5093. 5561, 3124. 1215. 866. 824. 768. 776. 1080. 11380. 18630. 22660. 19980. 9121. 7535. 5288. 3•\07. 2290. 1442o 1036. 950. 1082. 3745. 3 . .2930. 23950. 31910. 144 110. 10206. 58•l7 • 3093. 2510. 2239. 2028. 1823. 1710. 21890. 34430. 22770. 19290. 12400. 10836. 48~6. 2253. 1465. 1200. 1200. 1000. 1027+ 8235. 27800~ 18250. 20290. 9074. 8052. 373;3. 1523. 1034. 874. 777. 724. 992. 16180. 17870. 18800. 16220. 12250. 7581. 3739. 1700. 1603. 1516. 1471. 1400. 1593. L .. ;;so. 323io. 27720. 18090. 16310. 102.34. 7739. 1993, 1081, 974. 950. 900. 1373. 12620. 24380. 18940. 19~00. 6881. 8136. 3874. 2650. 2403. 1829. 1618. 1500. 1680. 12680. 37970. 22870• 19240, 12640. 10080. i'571. 3525. 2589. 2029. 1668. 16·0S, 1702~ 11950. 19050. 21020. 16390. 8607. 8142. 4~,07. 2535. 1681. 1397. 1286. 1200. 1450~ 13870. 24690. 28880. 20460. 10770:o 9427. 56:59. 2467. 1773. 1454 •. 1236. 1114~ 1368. 13317.~ 27928. 23853. 21479. 13171. " ,, . TABLE 3.2 susitna River at Gold Creek Pre-Proj~ct Monthly F.lows ~ w I (X) .· SUNSHINI:: STATION Uf'ItATEit PRE-PROJECT FLOWS OCT NOV DEC 14003, 5639. 3611. 12226. 4712. 3804. 13714· 5702. 3782. 173:94. 7199, '4080. 13227. 5092. 3977. 12188. 6340. 4313 .• 11011. 4367. 3161. 152~2. 7029. 4907. 18399. 9032. 6139. 11578. 5331. 3592. 15131. 6415. 482:3. 16996· o109. 5;;o4. 14579. 66~7. 4820. 13956. 6052. 4690. 1853::),. 5907, 3533. 15•173. 7472. 4536. 18208. S321. 3965. 115:H, 429~. 3856. 10701,,. 5413. 4563. 8!>73. 4048. 2650. ~416. 3978. 2848. i.2264. 7 •167. 4930. 14313. 6745. 4922. 13588. 6018. 4030. 11284. 4699. 3524· 12302. A93B. 3777. 1~565. 4238. 2734. 10620. seas. 5285. 17399~ 7130. 5313. 11223. 5648. 4308. 13690. 5829, 4199. JAN FEB MAR APR HAY JUN 2748. 2276. 2033. 23:.11. 22418. 45613. 2930, 2435 .• 2144 .• ·3563. 42196. 58872. 3470. 2511. 22S2. 2357. 11258. 6873B. 2818. 2343. 2317. 4292. 50302. 6.4075. 3667. 2889. 2423~ 3204. 32595. 54805. 3927. 3189. 2577. 2658. 21758. 69686. 2612. 2286. 2>209. 2244. 33157. 73941. 4006, 3471. 2844. 2907. 34140. 19153, 4067. 2996. 2643. 3399. 27759. 60752. 3387. 3059. 2280. 28l'J5. 29460. 6428.6. 4059. 3201. 2675. 2928. 34802. 39311 ., 4739. 3478. 3480. 5109. 32438. 60886. 4222:. 3342. 2975. 3581, 24520. 8/537. 4074. 3621. 2399. 2025. 35245. 56«S29. 2797. 2447. 2013. 2381. 86'15. 111073. 3373. 2962. 2818. 3435, 2:4597. 3404. 3009. 2875. 3598. 16479· 3698. 3294. 2:793. 2639. 32912. A1B1. 3986. 389S, 4359, 36961. 2218. 2082. 2077. 3458. 21509, 2600. 2448. 2382. 3150. 25687. 3325. 2514. 2351. 2640. 10652. 4257. 3801. 3335 .. 321(), 36180. 3312. 2984. 2646. 2821. 18215. 2882. 25.19. 2220. 2916. 31486. 3546. 2990. 2810. 3160. 29380. 2507· 2355. 2281. 3294. 22675· 4231 ~ 3640. 3171 .• 3537. 27292. 4213t 3227. 3002. 3542. 22707. 3674. 3206. 2963. 3704. 33876. 3498. 2952. 2631. 31?7. 27717. TABLE 3.3 Susitna River at Sunshine Pre-Project Monthly Flows 58488. 69569. 66162~ 76770. 40404. 47602. 76203. 668~:fo. 59933. 43713· 72836. 56366. 87773. 48044. 59849. 64198. JUL AUG SEF' YR AVG 59179. 54849. 27734. 20201. 69474; ~8356. 51069. 25982. 64937. 53363. 32057. 22014p 54231. 49954. 33737. 211395. 53386. 57701. 28376. 21779. 70894. 77692, 35385. 2G884. 80569. 69034 lt 44495. 27424· 62302, 53243. 481~1. .:!6448. 59850. 56902. 20098. 22670. 67521. 71948. 36915. 25188. 5822:4. 55315. 43086. 22478 .. 6~640. 606!6. 36071. 24922. 67756. 61181. 38711. 2665'7. 78219. 52938. 29182. 24086. 58836. 46374. 23267. 23819. 650•'2. 56375. 53703 .. 24856. 55243. 62007. 30156. 22820. 77125. 82747. 37379. 2/371. 69735. 46730. 20885. 24016. 45267., 24656. 14268. 14219. 60771. 54926. 27191. 20250. 64787. 74519. 32402 •. 24505. 62292. 51254. 34156. 24277. 51711. 51085. 25238. 20132. 51::!67. 43222. 29114. 19071. 75692. 51678. 35567. 24890. 55506. 52155. 18502. 1.9865. 62194. 55157. 32719. 25126. 5793.0. 42118. ::!2742. 19781. 71774· 48897. 26790 • 2.2993. • 63178. 55900. 32304. SUSITNA STATION OCT NOV 26869. 11367 t 18026. 6933. 31053. 16364. •1·1952. 16289t 2Ql69. 11829. 23896. 9168. 19923. 10522. 41822. 215•18. 52636. 19887. 305•13. 9528. 25754. 10165. 3379~. 12'914. I 290~9. 13043. II 27i~16. 10755. f 37846. 11702 .. ~ 287.'l7 t 10·,S8 • 36553. 12313. 26396 .. 12963, 37725. 15873. tn94o. 6606. 22683. 6799. 32817. 16607. 32763. 14922. 26782. 14853. 20976. 10113. 19520. 1v4oo. 31550. 9933. 30140. 18270. 38230. 12630. 36810. 15000. 30055. 12659. UPDATED PRE PROJECT FLOWS· DEC 6197. 5981. 6989 •. 9746. 5272. 6183. 7295. 14146. 10635. 4763. 7005. 13768. 8977. 8865. 5626. 6127. 9159. 8322 .• 15081. 42/9. 5016. 8633. 8791. 8147. 6081. 9419· 6000. 13100. 7529. 9306. 8215. JAN FE!t MAR APR MAY JUN JUL 6072. 5256. 5377. 5657. 66294. 101616, 124890. 7074. 7295. 6382. 7354. 59273. 92255. 123164. 8274· 7036. 585~. 5985. 45294. 132547 .. 137322. 8069. 6775. 6350. 7993. 88840. 130561, 125949, 7202. 4993. 4980. 6306. 58516. 108881. 116732. 7255. 5945. 5316. 6412. 58164. 169045. 148877. 6179. 6831. 63,24. 7182. 82486. 161346. 168815. 10600; 8356. 7353. 7705. 63204. 176219. 140318. 7553. 6387. 6679. 8099. 70321. 112897. 122280, 7795. 6564. 5666. 6469. 56601. 110602. 146217~ 6716. 6310. 5651. 58'30. 50062. 84134. 129403. 12669. 10034. 9193. 9803. 85457. 151715. 138969. 9050. 6183. 5951, 6635. 54554. 163049, 143441. 8671. 7854. 6058. 5565. 53903. 85648. 14642(). 6351. 5762. 4910. 5531. 35536. 153126. 124806. 6952. 6196. 6170. 7120. 49485. 110075. 138407. 8031. 7489, 7091. 8048. 52311. 125183 .• 117607. 8029. 7726. 668.3. 72!31. 58107 •.. 134881. 136306. 11604. 1153.:,!. 8772. 8763. 941,l3o 137867. 130514. 5033. 5137. 5172. 6452. 44317. !:13226. 102121. 6074. 5581. 5734. 5769. 53046. 94612. 132985. 6509. 6254. 5883. 5788. 29809. 12225S. 139183. 9390. 8458. 6646. 6895. 74062. ;176024. 142787~ 7609. 7477. 63t3. 7688. 64534. 122797. 123362. 7402. 6747. 6294~ 6963. 61458. 67838. 102184. 8597. 7804. 7048. 6867. 47540. 128800. 135700; 6529. 5614. 5368. 7253. 70460. 107000. 115200. 10100~ 8911. 6774. 6233. 56180. 165900. 143900. 6974. 6771. 659-0. 7Q33. 48670. 90930. ·117600. 8823. 7946. 7032. 8683. 81.260. 1199()0. 142500. 7906. 70~7. 6320. 6979. 60463. 123698. 131932. TABLE 3 .. 4 Susitna River at Susitna Station Pre-Project Monthly Flows ~UG SEF• YR f.1VG 106432. 39331. 42113. 100947. 73471. 41513. 116186, 82076. 49582. 97610. 44168. 48942. 128587. 66:~75. 44978. 120120. 53504. 51149. 131620. 10~t~18. 59395. 124813,. 87825. 586:::i9. 99609. 53053. 47503. 138334. 67904. 492 119. 113972. 81565. 43881. ' 116697. 62504. 54792. 121221. 74806. 5299fi. 106707. 70782. 44912. 92280. 46110. 44132. 111846. 89944. 47627. 118729. 63887. 47200. 13;'319. 89527. 5'2795. 86875. 42385. S~\094 • 62368. 34085. 31228. tl772a. 80585. 4•l:717. 133310. 69021. 48006. 107597. 60220. 54045. 107261. 45227. 451;71. 80252. 56124· 3603'6. 91360. 77740. 45900. 996~0. 48910. 42789. 125500. 83810. 5573\). 102100. 55500. 41713. 128200. 74340. 53317. 110841. 65963". 60! Jl ' OCT 7731,. 691.7, 74/\4, 10094. 7·196. 700f .. 6A4J, 769A, t0\04. 697~. I 0 451 .• 96UA. It 7100. 1 8616. BJ.Ql. w 70A2, I 9097. 1-' 6876. 0 7!'iR9. 6793. 717::!. 7lH. 690(), 66;l0. 701>0. .!1916. 96Jl. 7JH, 92:U • 71 .. 1. 778R, CREE"K f'OS.T-F'ROJEtT FI.OIJS tr.ASE A) DF.r.,2jtUR1 NOV [1EC 9073. 1;!669. 7 fl?:'). 9.,1-t. 10635· 13130, 11100. t ~~9:10. 9991. t2729. 10074. 13;'74. 9791. 1;!529· 10i1l~ 13371. 119 .. ~. 14487. 7AR6, l0~!:!9o 1('1741. 1:1430. lOR91, 1:\ 'i ~-'. 10591. 1:13:'9. 1069lo 1;12;!9. 1()141. 12723. 9011:!. 1:1440. Y9fl9o l'2Hnt. 7599. 1173:'1. tO'.H, 13?04. 7664. 93~4. 8004. 9:119• 7780. R.9S7t 775fJ. 11A79 • 9997• 1:!694. 79~2. 9300. 771~ • 930-1• 9AR4a t2310t B175i 97t7• 11411>. 13019. 79Sia 9:1-\S'• 9452. u '130; JAN FE!' ttAR APR HAY ,JUH JUL AliO IOR\4, 8 1~1,1& 7877. 1931. l0434t • 0176. a:na, :"i17J • 8340.; . 6~14. 6604· 6355. 100H• 9:t6:h i'n:So. 6111' 1l:iA6o 917:\. ao:u. 7A:i.-\o • IH13A, iJ7~2. ~2t1. tw:a.· 10RB&, fl9'11:!. 7971. R191io 1 1!109 i 1 :!91 !h 7cH2.t 94:\~t. 11087. 9173. .7932. BOJt, l:H61a 12966o aono. 96~U. 1150 I, 9~7:\. 6251. ·79'i'Ro 10179. i:?J09e Rfl:iRo 14554. 10766. 914,\ I R091.t i.f972. 1 :!~tl7' . lJ~!Hia 15641• J6005. 11497. 967J~ ff:J:i:.!o 1~'93 •• Ut:Sl, • !1909. 9472• 1024J. 11759. '/4£10. 8299· flll•h io:ua; 10704. 7S?9'2t Y!W7. 112J4o 94RO, tu.u. IH O:i • l~f 4 ~11. 12M:'S • 9-1tH, HM2, 11A3:!, 96~!h •u4a. 11A7 .. lOJH't Y2:W• UJ!'19e t\411. tn.IY• 99~11. h9111. v~;u• h~!91'. l:l741. l0711lo 1'20:l1o 11607. 9A1l• t1~52o 9281·. flRJ!Z. l.SJ:SJ. s .. 6:/:lt. 1 AH' • UJf17, 4jA7:1, Rl52a 179:1. iJ!HOi 1240n. l!i77:So AUlJ• 10fJJ5. 9139, 7BH• 7R1R. . . R:l7J' . I Mi:?4 • •47R7t 9402. 107~7. 90;1J, 0051; 7Hli 9600• 1160~. YYOila SbHA8c lltll6. 947~i. tH:'i'lt UJS6, HlU'/, 1 H:S .. • AJ70e '141?,. JJ::'nt.. 9573.· RJS.\ • · 80:>6. Jo~o4. :1 iiHMo 12937, 1 71<\0• 117~9. iOO'l:Ji 90!H, RJ19ti l09?.9t i2Y'.!1t t~•tHH), u:t~!'~· f0510a RR96t 7967• R091. 9JI2t ff:"i 47 I 60~13. ~·6~Q R4:!0, 6fJOt. 6968' 5R7:St 6737· !t:ss~. 9506t ~034. R'l'l'J, 7128. 7462. B40Jo R91At 1283,., aoa6. 6132. 1~0 • .,6. li)~HH 1 R9H• R2Ylt tJ4n. 1405Vt 14:iQll' iOA~ih 109fl6t 937:?. Al!H t 7A51a ll:l26• U 0/.IA * MiA7t ti:)fH • 7aH: 979Al 7876. 7R!t9• . 10869. i00-\6t • 1':ii.O i 56B:la ff227• 6St!i. 7!573. Al7Ja U:zs.t. i2710t i469(h CJt;t4, i0760t 9U:tt aosta BO:"iOi Ji ']58 t 11-496•' 61i:l41 !'1;!71• 8191. ouo. AMi t I A260a 11696 I i:tn•n 11911· 9AJ4. UR15. 9R41t t17!16. f1'll1:1. t129:Ji fJHA!h ' 75U. ':i'/1'1• Bi26, h9At fJJ:Slt UOlOt 9076i 9B7Cc llO~la • U1t • 10!'7 ... 8943. • 8137. 7990t loda. hCJ6i. 101.<~0. Y;i:S:f • TABLE 3.5 Susitna River at Gold Creek Post-Project Monthly Flows (Case A) SF.P YR t'tVR -'1906. 072ot. ~~~'"· Rl51o l>6Y;!, 9516. 8148. H>OJ:t, 610Y. 1609. R1:iY, JCll:S!'i. HU?. UH2i 12709. 10347. 499:J. 9796. Y909o 10106. l1!?5lt. 9~49· 64116; 10159. 12t77. i l:'i72. tu:u. l099(), Sl:'i6, lOCI~(). 123:19• 9A99t 5J!):S. V:'il!B. J<\90:'1. 107\2, 5032. iot~A. <\9:171 7772. :i!:i1. ,,.,.:;. !i:?70. 80Aia !litH• lO.lll3o -\YJ:.'. JSJO, li413t HUI'Io ~299, 9297. :'iCI70i 8962· 5061. 9:113. 5071• 9057. :S02"• A~9R• nu. sumnUHE STAo OCT NOIJ 15404. 12129. 15-145• l1 '2tl7. 15606; iJ:i9J. 19~fi(l, l:i090t l5lt9. 129BJ, 138:?4. l3Mi4, 12903. 1:!25A. 17144. H920. 20291. lt.923. 13719. JOOA7, 170:?1. HJO.!-. 18Rlh1, . t~ooo. w 1631.3. 14:5""· I 15A 49, 139.43, }-J ::!OH7o SJ79Ao 1-' 16:-64. l37J:l. 20100. 1:121?,. ·142641 10294t 1339:). 1330"1. l1!iA4, 1 oon =•. 13H4o 10767. t~t~o. 11840, 15J~b. ll41fh 1539~. 13,7:121 144\lt. 11098. l5479o 11013. l7457t 121~9. 13940o 11-413. 19059 I 150Z1• 134571 110641 l:SBJV1 12914. F'OST f'RO,Jf:r;T fi.OU!l lCASF. A) llf:'C •'2J d 9Ai OEC HR-4U (~ltll. l:SOl~. 15~UI). 15206. 15542. 1439\i. 161Jl-. 17::162. 12:1oa. J6053o 1/II:JJ • 16049. 1.:5919. H76:!• i:S76:S. t!'i19!i. t 4091. 157921. 11072 .• 11501. ll627t 14291. l52S9t 11790· 114 78 I l39.U a 12:S99o 1 t\ !i .. :\I 11976. '14331it ,JAN FEl' HAR APR lit\V .mH .IIIL AIH1 !25J!S. 10449. 91A-4. 9J77t 2i3~2' J611J9. 4.f917t 40742, 10J10. U21.9s aooa. ll:tot. ~IH2?. • 47H4o ~1554. ""191. U:Z!'I6. 1 OAR ... 94JJ. 9:19J. HA77, ~Ol10a 411:1Ro 4() .. 70; 12AO~, 105l!h \146!1. 1QA7'2i ~'2041. ~9670. 4lloi'J• ltl7V7. 1:1454. 11062· 9~75. toooo. ~R 476 '· -\2421. .UoRAo 41!129· 137141 1136;'. 972A. 94:'16. 22/.19. :s l9J!h 5~ U:l. 66496. 17;199. 104:$9. 9:1A1t 9266. 7.77fl4t ~3A56• 65120· • 6MH19, 1379:1. 11644. .999()1 97(11), :tt:;H, A09A:Zt -4746~. 4:!946• lJilAl. lHc\9• 97941 99A0o 2:S377. 4:i7~6. H9M!e 4~iA19, 1:t1JJI t r~;n. Y431o '174\l. 1.AR9fJo t$3061· til Y2:\'l :i:i.T1t) • 13846. 11J7·h 91J2/.o 9:l9!h :?'1:1J4. l:t040o 4:1110:\o iHUJA, 14:1?.1.. l1 ~!iO • lOII:tl I 116'10. 4!AJ7:i. -tran. o1V7fHh ~I)!H7o 140091 11 :a:s. 101271 JOlfllo 207A2a 60MH.,, 5A:i29. 54(19:1. 1JB6lo 11794. 9:l:H• f19RB. :n:\41~· .,.Jo:w~ ~9:S94. ";'9Bt. 12~84. 10A20e 91tH· 9Sl41 1:271 H 11'011; :i06?l• JR416o I JlAOo 111J5t 9969. 10016. 2l.207t H.no. · 411l0t -i611Jt 1J1901 1J ·~ 81, I 100?.71 10179. 16961. 50/:ilo -'\,1153. -11~891 13484. 1141\7. 99-H. 9:'i2Ro :.•79:J&. 4~\'iJR, &326~. 6?367. 139ARI 12159. Uo49. 10140. 31710i I'\BH7t • 57ll:'ia :17989. 1200.4. 10155. 92:!a. lOQJ9, 1'1771, JJ4:H 1 • J:S:!~o. '.~U9.U • 10196. B4fJle f:l574 I 7li'-45. 21044. 4052-1. Jl76t7. -109AOo 10105. 8606. RR6J. 9961. l~A2!St · :56112. I\B92J• u;;.ul 14044. 119'14· 1 O.•HI6 a ?7Y1. :!71R2• H411:il 540:-llh 4~592· 130911. 1 H:She 9797. "96-\5, 1R506o o\J\99 .. : o\004A t Jt\l76e 9R!i1.i lO:S4o, Y:l71..o 978:4. ?.cH75• .151HJY 1. 400?.7· 326fl4t 102571 ROJ~, A903t 97-10i 2521Ht :SJ2Jit. 6'1M2o. 427l:t. 12293. 1052R• 9432. 997t. 2i!lt3t ~J~A2t -\J:!001 J7A21\t 1059J., 10182. 1 03l2 .• 10111• 2A:a9Ai c\J:S:l2. ~1141• ;}:)7!'i1~ JJ9V9o u 400. l015J. H) i ?.3 • l90:S2· :11R:i'l, 444211• JtM:s. 10403• 99lfh iou .. , 1028 ... · 29U9:?i .oi4029• :S~98l'St 39M ft. . 1:!619. 10659.' ~~53• ,9000('> ·24lJ.tB• o\H3Ua 49:-t~fh "'4l974' TABLE 3.6 Susitna River at Sunshine Post-Project Monthly Flows (Case A) SEP YR AVO 74339, ~09:'14. 4Z:fU • 2:'1072, :l-1269 •. ~201~. ,6AlSo ;!~39~. 2~!'ih:\t :?1R4R~ :192:'1 ... 2~Rt:'St 407fl:lt 274?.-4. .\1110. :<!&440· 17~43. ~Jo:o;J. 29904• 2-ltHH; a:m:t~. :.024YOo ~91A7o . ~4932· ~t499R• :Z664Bo :1499:1· 240Rho HHI!"i2t . 240-47. -1 l-.4\ V2, 246~9. ~J7A l• 1.299~., 3:'iH-1t 27132. 111011 ·:!4Jffla HlJ:!1 161\RO. 23~21. 20J60o ~3232. ;!2Jff0o 2739(). :!3110Jo !tlOY6t '0610. 2?.'277t 19!H>R. ~n:s~:s. 2JV:S31 161\911 :!0690. 23940i ~4:1191 i9ZOA• 20696. ~10411. 2211..;. :.1MIH• SIISITHA STATION PORT PRO.IF.CT flOiriB CCASE' A) llf::r.. 2;1, 1981 OCT NOV m:c .IAN FEB HAR AFR HAY .IIIH .I Ill (IIIG Sr.F' YR AVO 28270. 17fl:S7. 17427. 1:5059, 'tJ4:l9t 12:'i2FJ. 1:•7lHo · 6:-»:•ta. 92H1;.t, 1106~8. Y2:i:'!i, :\~9:\c\. .,:1RA!"i, :!114!5. IJSOfl, 1429:5. 144!'$4,. 1JOR9• ll2.,6o &7097. !'i:'il99o 709~'7. JOA~-t-t~ 073f1Ae A47-19, 40AO:l• . 32946. 242~!1. 18219. JBOc'lo, ,15209~ 1J004. 1:19:.•1. -11i7ll. u:w~s-. 1:001-l:ia J O.i:?9 .1 • 742£10. .,9~1-);?. ~&844. 24ll!O, 20916. 17\15~. 14941. lJ~iOl, J.1:'i1:1. t1 Lll'/, U6Hi6, I Lf.lY i , I!~ 'l!i:J • J/04A, 4fl'14?. 22061, 19720, H.!Hllo 169R9, t :u 66. l;l13:?, tJto:t. :iU97. 9~497. l04•U2. n:? u~;. SY'I.-\4, 4!'i011h 25:iJ2. ~h4R2e · 17-U 2. 1704.2, 1~010. 12H7, t:S2l0• :;9o:.•<t. • !H.:?S'-4 • t:t0\75. 1·01192-t. ·tJ:n:' • :'it079. 21Bt!ia 1RHJ, 18~~ ... S!'i96:io 1:5004, 13-476. 1-420-4. '7711J. 14121.1, 1 !'S :u J\1\. 1 :uov!"i. 1\l():";O:'S, ~9:Jl':S. 43714. 29139. 2:SJ7~ .. :?0:107. l.-\5~9. H:'i05, 14-H'fh ltOI\0~. 15A04Ro J;!54tJQ,. !H!Hc'lt RUilt4, !5A~:i9o ~4!'i2R. :nnu. 2lU:-illo 17;147. 14:'il'l0t lJOJI), 1 41\fJOo 679:tv. 'i lYt)l , J 07:1'1.~. ll6J'U,. :SIH9R. ~7fiR~'>• 3:!70~. 1~01\4, 13479._ t7.:uu. . 147,\7. l~tl17. ll:I~\ •. !'S1039, 99:177. t:Hl61R. t.:nn,.,. /.OOV;I, 4ROM,. %7647. lf!O:'ilto lll:1:15. 16!'iO.lo 14411Jt lf1AO~. 12497. Hl}Y4, 7186~S, II 47tl:O!o 'ilt 19 .h n:ttJ. 4 .HHJ J • J:5~74. 20BO~. 24997. 224~6. 10:?06. 16JH, ilt.llf ... 79l9.,. tJ6(Hl6t 1:?~t11. t<~Af•~'H• !\!'. ~(l(h ~<4HC1 t • JOB13, 20934. 20206, 1flfi:S7. 143:\6, 13103. 1:1:'16. :'i079h. s:tt-ta:.t, 13:!.'H4· lHt:lJ. '7IU9J, ~:>r,·nh. 29609, 1A6H, 20094. JA45A. 16027. n:uo. 1 :l!"i:Hf • 46lt13. 7!!0:$<\, 1 :?779~h 977flt). A6:l9J, · 4-491:.!. 397ja, 19593. 1685!5. 161JR, 1J9:J5t 12061. 12<\H. ;tvAo2. Ui07Uo 1 L•6~J, 9432:!~ •tl 119:'.. HJAO• w :!9539\ 16721. 17:156. i67J9, 1<4:tl.9. tJ:t:u~ i:J70l. 16011~. ~:59!')7, tj,t()U5. 101594. U:.:'9JJ, -17400. l 3R44!'i. 20204; 20~119. 17tJ17. 1:16(1;:?, 142-tl. 14629. 5~7~:4. 106.16/o \Dl\111. 10•1.t11. ~$7497.~ 47:173. }-1 29109. 1a962. lB:iS7, 178 1~ •. J5Ei99, 1JRJ41 14170. 5:l!;lt. 117:157. ~~·:2·1-13. l2!9.lllo H756~, :'1;!5:'16. (\.) 4{)41o\. 23764. 26;11 0 I 2l:l9i I 1970:5. Hi92J, I!)JH I RllAY:l. 1!.9~4-\. 1~7H~4. 1fJO.H, :U!c\01. ~.04h0. 1 9'i11o 12640. 12701, 141119. UJUh l:?J2J 0 130:13. -1:1579. 76:?7:1. ·9:?074. :'illh:SJ. :t~919. ~34.\9. 261'31. J350Ao 1:3669, 1:1670. 11614, 1!924. 10:)64. 4AJ9;$, A?5.t4. U9BJJ, lOMR2, 7Md~. 4482/,, 341,73. :?o9ao. 1~330; 1J:?fJ9, 123~6. 12J9!lo IJ1Cl9o 349A2, to:a6~. 1 n;u v •. t oro :1:1. :i'tA5lo i!lRHlt 33R16o 195tJ7. ltU 60 • l9U7, li .. Bl I 1:t197, U~i'O. A:i664 I 1 :mAsJ, ,lJ1~2S~ 9Hl':l5 ,· :;,454. :'ll~•72o :!B~fl6, 2:!!597. 19J7A .• 1739:'i. 156<49. !J46-4 I ·14:'i12. 640!.1:'1, i 0606:i. 111M'9• \'~·~,!l:?. •\\OIJ:·,. 4~~~~49. 24:\03. lt.:'ll.2, 14347. 14372. 1476fl. 13446. lJAJO, 5t.t47, 40()1., .. C/t)9•H, A'l/14. "19'.!1'17. :1617 4. ::!2697. l647:S. 17120. 15308. 12R4fJ, tJnt i 1JH7. 43444. 109:.'00. J 2~.'670. fl~:i94. i'Onn, 114 9/.J. 33442. 17A24t 17229 I 16:11~. 1J707t' s2:uy. 1 :sv;w. 6909R. 94116. lO~h94, nstn. 47()99, 4Jh\:io 33460. ~379:5, 20414. 164~2. Z'i4:iJ. IJ92:'ie l~RtJ, :'i:'ilflfl, 1416:\9. lJ:?R47. 1160'f4 .-77()31, !'i19~a. J9R90, ::!0521. 187~9. H760t 149H, l:i741o 1:16\1 .• 4:'i0l:i.· ft074~i. 104tHM .• 91187. !il9t.4. 4'26:!R. l90He• 20416. l6974t 15552. 136:>9. HlR;t, 1~263. 7io466, l(t4()RO. 176711. UUYU. 6H:i'f<1, ~~-4RAt .. 3:?203, 19643. IBJ7S, 11027~ !414:it lJl4J. 13~~~. 57S6~. 1078l.a. 1 U12YY, YfJVJ!io 60!)0~ • . .. TABLE 3.7 Susitna River at susitna Station Post-Project Monthly Flows (Case A) w I ..... w ~ GOlD CREEK POST-PROJECT nous lt:Asl:: bJ DEC.2lrl9R1 OCT HllV DEC , 7B:SJ, 7870. 90!'Slt .sos:s. • na:s, 770lt "5827. 1>522. 7309, 0:!02. 6097. 91!'11. 7630. 7876. 9120. 5701. !.975. 9:-!93. 7094. 7669. 906?. 78'13. 6149. 9210. B1z:t. 0377. '1121, 7:.snn. 707h. 92H, 7cSJ7. HOOJ •• 9292. 7990. 9031~ 9458, 7524. 700B, 91!l'. 740A, 7654. 903V, 1501. 7929. 9077, 7]71. 7801. 8916t 92291 1899, 9209. 3664. 6299. 8123. 7126. 77.96. 9146. 6932, 77H. 8969, :So\94. 6963. 9:539. 61!55, 66fHI. 7565, 6087. 6783. 7629. 6347· 7.219. ,82!2t 634<\1 70B0t ao;u. :5934, 6521t 7390. 6324. 6!536. 7327. 6394. 7252. BHJ: 6291. 6781, 7:S49t 5874. 6~12. 7274t 6901. 7360. 859:1, . JAN fEB HAR AfR HAY JUN JUL AtiO aoato. • 6789, d907t :m~ 1, ROlla 7497. 12967 • lfJfU9o 66100. 5:tftoi ~221. :S71:io no:z • 675lu 1~744 •. 10900, • 7~0:5 I la7A7a 6fl76o :'i729o 6J4Ro 11 02lt. IJ~'.7tlo JY03Jo RlQ6, 6009, ,\fi~-4, ~R:!l)e 9J~~i j()l93. 1214\6,. tvnot. BlOJ, 6BS1t ·.690?. !5929. l07:i" • 1017Ye l;.t9::\..6e lY'llltlo ~2,f:H• 69Atle • 69:'iJ.· :ifl17. 7751. 9J98o t:to in • ~.,614. BOA~t 6fJAOo 7017. ' :saao. 9884, 10:516. 2lf32t • 2.t!l:so. IH91• 69J:i. 6l'BBt :sa :sa. B71Cit \127:2. 129:S0t ·20~4:\s 021l4. .6RJ:i • 6fi-10t 51H9, B()Jlt 7941• l:?tll\7 •. 2::.!2:11. 8~70. 7022 •. 7!)~4. c\OOH, 11024. 9o\10, J:tJ60. ~·l;·~~- B290i A922t 6942. 5A17e 7F1:tll. Mi:l~ • 1:099lt Hr'2fi4$ 04fH't 1(:11.6'. 11~a. 112:u; At106l io9a,n 1937~. :nn c)l). 0142~ ~R54,· 4.929. :5826. ~ ;175. i'\5()7• 25A~o, ?:f5:'10o 81'2'2. .,_,j..,. AA!!; 56.,;,, HA-4&e Ylt'IJ • 4!:1/tl~. ~.,b71t tiYJ..r;e· 806::.. 61122. 6890~ :S762. :.an:s; htP:'it 214VJ, UHOa 796!\. 6724. 68:1lt :S745t 717:1. 8099. ·t:tn4 ~ 20fJ2:l; 8210 •• 69!ile 705lt i\04?• 11\YH il4lYe 1 :t07 ... lY.H:Ia 8J20t 7ou. 7093. :'5972. R1 Ofh 921-\a 11\JH, J:/620. R:!J6, 69661 70:'i:li 59U, QH6i 102041& 20"226t 17171 .. fHlJS't AaH. 6937• !592 ... . ~939t 590~• 12199. BR19, BA:H, 7JHo 7:'i2-4t 6304. . u,JA, 8979• iJ26B, 191Hl7 • 916J. 7793. 7990. 6A24e .?on. 105:'1Ht 127!'illt 19:t!H, 6:'i06. 70:i0t 775;1, II:SJ~. 11H4t t·174Ye 14HlOJ, 1R.lY/u 7()45· !571!. ,5:'i~7· 4460, 5299, 61.17. 1~4:;1 Ht !H:orn, 6879: 5:'i67J :SH1e 4J7Bt A9:lni '.-·1~~2~. !2740a 16~20. 6914• 1445 •. 111~4. 6H~. 9~!6H J'l'):ifiO I 13282. 111090. 6460. 7004a 7120. 6079, 89611 A909, 12437. 18~62. 6BRl•. 5560i !S402. 49H~t· 91 (.ifi lUcWl 1:!819, l fi62.Y • . 6-URl 62.an;. )0201 5R<Hh :S8to • A112o 12691, 16:t9(l. ?JBU ~RB1t 6646. 5754t c\{l:i~. 411J, 1A9H, :104&0 •• 717'1· b&~. AA:s1; :iBJOt tl01t. '1~:S:s. i~99Ai 19'124. TABLE 3.8 Susitna River at Gold. Creek Post-Project Monthly Flows (Case D) . Sf. I' YR AVO .SJOlo fl'19 R, U:'i:H, 9507. 1 :L:'HI2 o 9044. l~:!70o t Ul)::\!'$, 124:lJ. 9 fl'll•. ,.,';!90, Y'l-47, IIIJJO, 11H2e 1 VIHIOt 1(13471 7:S:SO, VHJ, J/1920. 11H69. 14197. 9649. u:.1o. 107:SO, l~R\'0, u~:u. U.l?.O. 10'190. Y~71a V793o u:nw. J(IJ17. 11 :l!'iO I 9740 •. UR70 I 1MJ07 •. • HAle\. 91"1· 5CI9:t. 7!'i.J It 91:U I 9JSO. U894. '1-tao. 115:!:1. 95:!41 9tli'4. 8049. 11970• fl7.61t ~~~2451 9287. 6flRl., R~26, 11914. 9'039. l\6(17 •• 798:5. 1 ()77() •• 89!'58. t2J71· SUHSHINf STAo ocr NOV. 15~4'1. !09?6. 14 4:13. 10!'#'7. 1391\9, 94f!O, 17l94. 11199. 15~53. 100l>R, ~~~';,. lO!'i!'i!io l31:i4t 10155, 17;!09. 1~!1:!8o ta~to. 134!5:5. J 41 !'i5. I!O:i7. u~to. fJ 569. t 7192. 11140. I! l6\R7o 11765. J 41.41. 20906. I a u.n. 11485, JcS959t J 2474. w l 9~3:!o 111:!2. f 1-J 130~:!. A994o ll:::. 1~932o lQD56o ll70J. 10162. 11706. 9726. 13JJJ. 1074Ro 14S!'i3r J 0435 .• !5109, 10984. 1309~. J02:'i6, 14J9'7. 97:19. 14150. B7BJ, J.3140o 10490, 16109. lOJAlio 12190. 9625. 149~~. 107·4.1· ·.· POST F'RO ,Jf.C T Fl OIJS <CASF. bJ [I£ r.. !Z;ft us J . J:IEC 1f 2~!5. J0-407, 9191. t 15.11. 11597. 115&1. ~09:10, 1191lJ. 1260:7. !1;!93. ll'?IS, 12:!cSRo una~. U729t u J 16·. j 2241. 1154:1. l0479a 11654. I 0737i 115~1• l020:So J 1)041 ~ 10777. J 052:t. 9564. 99ROo 11025. 10:!7:s. 990Jt 11022. .IAN FEF HAR Af'R HAY .IIIN "'Jlil ., AIJG 9A07, 8:!77. B2Ho 7262'. 18924. 'JJ:Ho. 49!')46. !537f)B. aseo, 6975. 6625. 71uH• J5ROI1o 44RJff, 5964fl. 57596. 9075. R29R, 8278. 7U6, 1:Z1R7, -4i'J96t 5fR:?5, :i1·'11~. • 90.!4. 83.12' RJ"it. 9497. -403117. "691Uo 46797, 4Y1-t:'i. 10-470. A740. R :'i-4 !"i • 7R9R, U066, 39734• 4:'198:?. :if:\69& j 0117. 8717. U4:JQ, 7335. ?.0190. -19224. s~t-t:u. 7nAHtt 9694. 0196. G2A6, 7174. 25381. :sun. 71411. 6903-tt 10497. R 9tM, 9f1J~.· 756:1. ;!YltHh ~ll~'Mio :Sl 94'l• U~94Aa IOJAdo 95241 FIJJ:Sa 7 61l!'i. 22A90e "'~99a 499:17. :S661d. ji):,?U?o 117,... 8:1:"1~. 76!'1:1' :!44\14, ~W:Jl~. :i:'illfl.t • ' c\301~~. J0504o 9671. a-t:w. 7445. :.u~nt'fo, J(l~40o -482J5, :S!009t 1071-\o 8750, RO lfJ, fi69~. 2:lrlfi4o 4:l.U9o :sa .... :.. cSo6H. 10~64a RM6e R:iOA,; 7707. 1UJO:$a ~ff7 J4 •. . 677~)6, U tAl~ 1059~. 90J:Ja a:.' to. 60d.'ilo 2~o6lo 403()6, A9i01t :S~'i':l9. 98t4. RJ03• BiRO. n9a. lO::'~J1 n&7R• 57:179. 46374. J 0371h AR:?6o fJ7:Sl. 7020, iEJ7BOo ~J6&1t 50:'i96o :S60fl0t J O~H 4 • Afolll)a H6:!/.o 7970. l45lfh 4IIO;J(Io 4fi4:)1. :f~52~. 105lfio 8943• a~n~~. 7444. 2:$540. .451M6t ·6467 J. 0:.>7-17' JO~J~. 90S~, 90!i:1. BJ70, 2.9257. !S~..f22· AJ:; 41 • <467:11. 953J. fU73, AJ9R, 7872• 1739Ar J0809o -itJ66. 2465A. 1()410. 902~. 9130t riJH • :?1R-45, J7951t 51379• :S40J3t 11041 .. 9271 i 9J91l RJR2t 1Jn6. :iJAJA• SJ!l95, 6196lt 95cHo flR~.l, 9:!/i:i. IH>J5 • ;!5764t 4-1175· :i:!~i~!!i. !'iO.ll!O, 9157, 749!5& . 719Jo 6254. 15279• JH9101 4:'oAR9, ..9367. 0997, 7 ,,09. 6937. 6J02. 221.42. .:13.16'/i 4!i:lU • 4:1·.~2~. B9Ht' 9964. 90141 0039. 2.:129l ~ 50906. 61254. 5167Ao 799J. 8409i A501, uooo. 19222· .. (IA9'51 4900J. e.ocU 7 • 9::'85. 75A2a 7073. 411\1! :?4n•o• 60972. :S2~0Jr :\4!'146t fJ&:!2. i'B-47. fl417. 7MJa, t.S567' 35106. -49601. 4t!UR • 965Bl 9801. BA'i• nooa. 26661. .-J.JJ2t. 39BORo <4RR97o 98:!4. Mut. AJltllo 7MU. :·:!2·bl. ~5110:1. MJi!1. iHJ-15o TABLE 3.9 Susitna River at Sunshine Post-Project Monthly Flows; (Case D) • SF.P YR AVO 27734. 2J22R, -42Jt.o. 2!H21, JOl!'i9e 21542. ,lJ7J7' ~4.19~. :nnu1. 2:'036. :I~JR:5. ?.:lf>:!1. H49:So 2)'4~4. ~IH21t ?.i.HR, :;0099 • 2:Z.670o :fll'n!'i. <!:H RR. :run:r, :!~ 4 S' fl. :16071,' :-•9:?2. :tMH • :!66:17. 29 J R2:• '4 ()fl.~. :.!:J4'67o 2JRt9, :iJ70:t. 24R56o !lO Hi& • :!:11 A 4, 37379. 270'11. :?Oflfl!i • 240l6. J42Afl. 16?.40. 27191• 2Hlc\4, 29£l:S6t 2377~. J:ti!79. 229115. 2~;-:Hf • 21H29, ~!110l4. J97!'i(). 31:SO::?o :;•J9<1l. JB:SO:;t, ;!():1!'i4 •. J1S9Jt 240A5. ?.U-42, !9/):!Jo 267S'Oo :?2524. :st::S041 SUIHWA Ur.T ~fl:lR7. 201JJ. ll;-109. 4·19~:'. 2~1S'~. 2'\:\07· 2::!0.-\Ao 4~Hl:\9, s:m-t7. JJt~o. 26R:l:l. 33970. :S06:S7t :!94()1, 39904. w 30~~\.1. I 37577' J--1 U1 :!7097. 3?9:St. UO:itl • :!50!'i3o JJAA4, J:SOO.Io :!BJ(l:lt :!J:Z07, :!.tt.d. J01l5t J:!h60. 369.40, 37777. 31316. . nEG, ZJtl9Al 8!1•TIOH PI!H f'RO.IF'CT Fl.OioiR (CARt f)) NOV ll~C .IAH FF.D HAR AF'R HAY .nm Jill. .. AUG liEF' . 161154. lJIH t. t:u:n a 1J ~57. ll:'i:'iR• . '0.4()8. ~~~~flOO, aC!:u:h u:;~:s7 •. 10!iJ71., :J9JJJ. i24lO, 1;!5R4~ 12724. llSJ5, i (lR~J. : • ; }2. !$7.fJfl:i. 492:11. U:l:lJA, J0017i'. 6 .. 71\:.!o 20H'l. 1 ~.\90. 1.307'/t t:!a:!:s. 11049. h.l'f'4. ~~.~~~=~· 1l120S, 124?.\0, ll42~9;. IJ(}17B. :'01109. J 7197. 1:1075· 1.~764. 1238~· ·u19.o, 7R92:\, j !3-t34. ua:st:s. 96R01a <\416ft, 171105. 1:!1H2. 1<400~. lOA H. 1 u (12. ,lt()O\\t !'51997. 9JAHl. i09:l2R, 122275. 6:1796. 1JJRJ, 13431. J:tNi'i, i HJJ, 11 H9~ J!OA9o 51\59~. 14lJ5R:f • t:f44J4. J19Q44. :;:~:;o.-. l6310t 150H o • · IJ261. U741. 1?.401. 1~.u2. 747Hh JJU5Blo l:19Mi1. l J l ~:'0 • 'Hl4:t 1 H. 21!641. ~11.2~~. J 70'i'1' 13791· il tH, t<~JIJJ, • 58 lfl-4. 1 !1:i3:U l 1~~9959. J 'H:Jllt. • a7n;!~. 24JJOe l7(ll(ij. 1Jfl72 •• lJ91:St 1~371. 1 :•JH!'S; MH:S~. 9~1H, 112:l67 •• 9Y:\23, ~J05lt 15:!5<\t i~46<\o H6t7. t2279. 11740, Jl:2.;t~. !516J:i. 9~&?2. !34571. l2947Bt 67904. f!lJIB, Hciv7 •. 13161. I J 71Hlt .JlJU, 10347. 4ZHOo 7:]UJ, U9H.ot, 109666. 772:S2t t794:S. ::.!(1532. HJ704, Hi:\06, 14!)31. 1JJB4o 16903. lJJ;o~a. t33774. llh~97. 62:"104· Hll:Sl, 1:'i9B9. tsn~. U5J7. 114AO, 1071.1, 4BJJ9, i:t42864 t<\JH 1. t~U2J, • 1JiR06 • t5Ao'1. 15904. 15l'?J. AJ'lt.il. ltRf19, lOJfiR, 4;'719. 693'l~S. t:HB02, ! OcHOA, 7078?.· 1'72Rth 13:?09. i JJ6fJ. !161R, ! '017. lOS .. ft. J71H• 11473.1. 123349. 9!.!:?H<lt HUOt !54/,0, 1:SAJ2, 13957. l20AO. l'J11QJ, ll !lOS, -43/thR. ?32:iio; 1~1J96l. lll!.1:U • B9H4 • 1Bll4a 16iJ7· J~RH. fJ t 40. 12912. 12:l;;'Oo 50J~(l. t<l:tc\5~ l UOEJ21. J16?H, 63987. 1761o:!. 1494S, '"""9· l;1:t7:1. 125//.t 1<10li6. :i07:15t 1 H:;a:;, 1~3l!!ii!o tJ1:111l. '»9:1~7· 21316. 22172. l1R:i9o 1A59Rl t :svn • 12774. ij{I4J9. u~:;u, t24J:?Ot OAR76t 4'2Jf15, 12720. 12:snA~ !~3--Ha t 1 ?..~n. J 1.~93. 10066. 40:!01., . 1J~3 t t '9R2~0, 1\;t,lloR, .3409:it l25H, 1J~R9t tJna ... 12l:S7t t:1.4BO, 1099:1. 19194. 9496(. 12J!S9lt I UaJ!1• .llO:'ili:it 19RRfla tJ9oa. H:ZJO, s:sou. l:4'92l· tts:so. J:SORJ, 99f}ff~. in99t. 1207:5 .... 66-tl:it lllfd.;!. .1.1910. 1Jio41t !:S4JJO, l ~~!i'/ ~. 117!!0. &;i.\46, t5.1JU • 1328 ~I), •1 U&/0:1, · 59:44:1• 19819. J<4R94, 15670· 1~0110; 15221. l!'i::!O~. H476. 12246. 2:!fl7!;!, 1Afl40o 15896. 12499; 19977. 14901. 17572. .t5037o l3451t ll'i'BBe tOA60t HUt. 6(59Bo !Ol674o U7540t lO~~·U• lJ-407. J1!'137. HQU, 10.149' :s;-:! 1-i. 57-t•H, •. 96&44. 8025.2. 1J99!'it 1J778e IJ:?52 I H746o -4 l4 51 • 106870·, i!.l!U:?• 913AO• J~Ot~. lUMJ. 1.1598. 11759. 66807, ?15~9.' lOB69'7, 9R1Ue 151:S4t l~R!\~lt 1«167&. 'i'46J." S~9~!tl. 1390V'i'• 1:JJ91)9. 124tJU9t UJBJ, UJ91. 12005. 1117~. 42530. 7799'}, 109171. 10:!100t 14R07o 13541. ' lUAO, . 12987. ,14045. .toua:•· UO!'i34 • 128:!01), . 1423~ •. 1~5i;.,\, 120!'57. 11441. 55~i7. 105105. .,:l073t lOfj:lfMa TABLE 3.10 Susitna River at Susitna Station Post-Project Monthly Flows (Case D) 45,~7. 3~RHt 7367,. 48910. 91.994. 5~500. 74J4G, 6:iUJa YR A\10 4:1140. 409!$A, 49109. 4A942. 4:\:!Jfl, 50A9\o :'i'l39,. z::~ 5116:-i?t u:so:;. 49:?49· 4Jilf11, :f4792. S19'i'5o H9l2· 441J2t 471>27. .. ,~ .. :;. :1'2-tfllh 5009!h :U19R• 46Jl1t U~RO • 5'-7.H • 4:-il~R. Jb116. 449~J. 43179, !S 4l.i 9 ..• H551H !i;!S-4A• October November December January February March April May June JuJy August September Annual TABLE 3.11 RELATIVE CONTRIBUTION OF FLOWS AT SUSITNA-CHULITNA-TALKEETNA CONFLUENCE (PRE-PROJECT) Flow Contribution by Percent Flow b Chulitna 1 Talkeetna 1 Susitna 1 Total Flow D/S Talkeetna Chulitna Talkeetna 4859 2537 5639 13035 37% 20% . . 1994 1187 2467 . 5648 35% 21% 1457 838 1773 4068 36% 21% 1276 671 1454 3401 37% 20% 1095 565 1236 2896 38% 19% 976 492 1114 2582· 38% 19% 1158 557 1368 3083 38% 18% 8511 4176 13317 26004 33% 16% 22540 11910 27928 62378 36% 19% 26330 10390 23853 60573 44% 17% 22190 9749 21479 53418 42% 18% 11740 5853 13171 30764 38% 19% 8748 4086 9567 22401 39% 18% 1 Discharge data from U.S.G.S. records. I- I I I I 43%1 44%1 43% 43%1 43% 43%1 43%1 I I I -1 I I I I I I I •• I I I I -1 ~·· I I 'I I TABLE 3.12 RELATIVE CONTRIBUTiON Of FLOWS AT SUS1TNA-CHULITNA-TALKEETNA CONFLUENCE (POST-PROJECT, CASE A) Flow Contribution by Percent Flow by Chulitna 1 Talkeetna 1 Susitna2 Total Flow D/S Talkeetna Chulitna Talkeetna October 4859 2537 T788 15184 ~2~ ..., 0 17% November 1994 1187 9452 12.633 16% 9% December 1457 838 11930 .14225 10% 6% January 1276 671 10574 12521 10% 5% February 1095 565 8943 10603 10% 5~ 0 March 976 492 8137 9605 10% 5% April 1158 557 7990 9705 12% 6% May 8511 4176 10418 23105 .37% 18% June 22540 11910 12061 46511 48% 26% July 26330 10390 10220 46940. 56% 22% August 22190 9749 9553 41492 53% 24% September 11740 5853 7711 25304 46% 239: Qc Annual 8748 4086 9573 22407 39% 1 Discharge data from U.S.G.S. records. 2 Based on 30 years of simulated power operation~. r31/c 3 -17 Susitna 51% 75% 84% 85% 85% 85% 82% 45% 26% 22% 23% 31% 43% f. • • • ~ • • • ~ • .. .: ·: • • ' I "'-. . : . TABLE 3.13 RELATIVE CONTRIBUTION OF FLOWS AT SUSITNA-CHULITNA-TALKEETNA CONFLUENCE (POST-PROJECT, CASE D) Flow Contribution by Percent Flow b Chulitna 1 Talkeetna 1 Susitna2 Total Flow D/S Talkeetna Chulitna Talkeetna October 4859 2537 6901 14297 34% 18% November 1994 1187 7380 10561 199: • 0 11% December 1457 838 8595 10890 13% 8% January 1276 671 7779 9726 13% 7% February 1095 565 6765 8425 13% 7% March 976 492 6851 8319 12% 6% April 1158 557 5830 7545 15% 8'?. ;0 May 8511 4176 8071 20758 41% 20% June 22540 11910 9335 43785 52% 27% July 26330 10390 14996 51716 51% 20% August 22190 9749 19924 51863 43% 19% September 11740 5853 12371 29964 39% 20% 0 Annual 8748 4086 9567 22401 39% 18% 1 Discharge data from U.S.G.S. records. 2 Based on 30 years of simulated power operations. r31/c 3 -18 ···1~ -· --·-. \ '"~.,-•· -: ·.~. "Q ••• ,, I I -- 1 I 48% I 70% I 79% so% 1 80% 82% I 77% I 39% 21% 1 29% 38% •. 41% I 43% 1 I -. I . I I ,. --' '.· . . 1'·1 II II "· I I I I •• I I I I I I· I I I I '·: .r~: ·;;, ·. _, ... --· .-· . ~ .. -. Recurrence Interval 2 5 10 25 Recurrence Interval 2 5 10 25 Recurrence Interval 2 5 10 25 Recu-rrence Interval :-~- 2 5 10 25 Recurrence Interval 2 5 10 25 TAllLE 3.14 ESTIMATES OF PRE A:W POST PROJECT DISCHA'f;(GE AND STAGE llREQUENCY ANALYSIS Devils Canyon Dam~ite Preproj ect Postproj ect Q (cfs) 47,000 61,000 71,000 84,000 Revised Q (cfs) 11,000 12,000 13,000 28,000 Susitna River at Gold Creek Preproject Postproject Q Stage Q Stage (cfs) (ft) (cfs) (ft) 49,500 13.4 13,500 8.7 66,000 14.9 17,000 9 .. 6 78,000 15.8 20,000 10.1 94,000 16.7 38,000 12.3 Susitna River at Sunshine Station PreE_roject Postproject Q Stagt; Q Stage (cfs) (ft) (cfs) (ft) .,..."':•(<,..._.._ 95,000 12.5 59,000 9.3 124,00() 1!~.8 75~000 10.8 144,000 16.3 85,000 11.7 174,000 18.4 118,000 14.3 Susitna River at Sunshine Station :Pre;Eroject PostEroject Q Stage Q Stage -~cf:s} _ (ft) (cfs) (ft) 105y000 94.6 69,000 92.7 138,000 ·95.6 89,000 94.0 159,000 96.3 101,000 95.0 193,000 97.3 137,000 96.0 Susitna River at Sunshine Stat;Lon Pre;Eroject Post;Eroject Q Stage Q Stage _jcfs) (ft) (cfs) (ft) 157,000 16.7 121,000 14.8 206,000. 19.3 157,000 16.7 239,000 20.9 181,000 18.0 289,000 23.0 233,000 20.5 3-19 . -- Change In Stage (feet) -4.7 -S .. Ei -5.7 -4.4 Change In Sta.ae (feet) -3.2 -4.0 -4.6 -4.1 Change In Stage (feet) -1.9 -1.6 -1.3 -1.3 .I Change In Stage (feet) -1.9 -2.6 -2.9 -2.5 r30/F1 TABLE 3.15 LOWER SUSITNA RIVER BASIN CHARACTERISTICS FOR MEAN ANNUAL FLOOD CALCULATIONS Drainage Area Glacial Area Forested Area Lake Area Mean Annual Mean Annual Mean Minimum Stream Precipitation Snowfall January Temp. Length D.~. G F LP M.A.P. M.A.S. J L (mi. ) (%) (%) (%) (in.) (in.) (Of •} (mi.) Susitna River at 19,400 12 23 2 43 167 -4 301 Susitna Station Local Area: Susitna Station 640 1 60 5 30 70 0 to Delta Islands x-section Skwentna River nr. 2,250 16 34 5 43 140 -5 98 Skwentna Yentna River nr. 3,930 20 12 4 50 150 -5 Susitna Station Delta Islands x-section 12,580 9 23 41 182 -3 281 Local Area: Delta Islands 1,080 60 x-section to Sunshine 5 ?O 70 0 Susitna River at 11,500 10 19 42 193 -4 224 Sunshine (.,.> Local Area: Sunshine 764 0 90 2 30 50 0 I to Talkeetna N 0 Chulitna River 2,570 27 22 1 55 250 -5 87 Talkeetna Talkeetna River nr. 2,006 7 25 0 . 70 150 -2 90 Talkeetna ' Susitna River at Gold 6,160 5 7 29 200 -4 189 Creek Local Area: Gold Creek 350 0 0 20 0 to Devils Canyon Devils Canyon 5,810 5 7 29 200 -4. .~ I 1 • t ~ ~ 1, ?l 'r: c~ ] <C<~ J I J i~ l ~ ~ ~ I 1i ] , ) J 1 i r30/g1 Susitna River at Gold Creek Chulitna River near Talkeetna w I N Talkeetna River I-' near Talkeetna Susitna River at Susitna Station Susitna River at Gold Greek Chulitna River near Talkeetna Talkeetna River near Talkeetna Susltna River at Susitna Station j ~ ! j j i .J 1 j lJ TABLE 3.16 MONTHLY AVERAGE RATIOS ) -J (1-DAY HIGH AND 1~DAY LOW FLOW)/(MONTHL Y FLOW) 1 ~Day High Flow Ratios Month!~ Average ~Standard Deviation) May June July Aug. 2.45 (1.33) 1.49 (0.27) 1.36 (0.18) 1.57 (0.33) 2.05 (0.38) 1.52 (0.29) 1.36 (0.22) 1.56 (0.28) 2.51 (0.76) 1.69 (0.27) 1.64 (0.49) 1.89 (0.62) 1.89 (0.44) 1.25 (0.05) 1.21 (0.07) 1.27 (0.06) 1-Day Low Flow Ratios Monthl~ Average (Standard Deviation) Ma~ June Jul)!: Aug. 0.26 (0.14) 0.68 (0.13) 0.78 (0.08) 0.65 (0 .13) 0.31 (0.15) 0.63 (0.14) 0.78 (0.07) 0.66 (0 .10) 0.24 (0.08) 0.61 (0.11) 0.72 (0.07) 0.59 (0.08) 0.25 (0.10) 0.74 (0.09) 0.82 (0.05) 0.64 (0.05) ) 1 j J Sept. Oct. 1.61 (0.32) 1.66 (0.39) 1.72 (0.39) 1.81 (0.38) 1. 91 (0. 51) 1.64 (0.26) 1. 58 (0. 18) 1.69 (0.27) Sept. Oct. 0.66 (0.11) 0.59 (0.13) 0.62 (0.13) 0.58 (0.10) 0.63 (0.12) 0.62 (0.11) 0. 70 (0. 12) 0.60 (0.11) • • ' , • _" .. "' • : ~ ~ • ' ' • , • ' ' ' • • •• 4 • 1 ", • ' • ~ • ' 9 ,_ • • • ' • • : : • • : , 0 • ,.._ •, ' ....._ • ' • • ' 0 • .• , -, r30/g2 TABLE 3.17 MONTHLY AVERAGE RATIOS (3-DAY HIGH AND 3-DAY LOW FLOW)/(MONTHLY FLOW) w I N N ') May Susitna ·River 2.24 (0.96) at Gold Creek Chulitna River 1.91 (0.31) near Talkeetna Talkeetna River 2.33 (0.60) near Talkeetna Susitna River at 1.89 (0.39) Susitna Station May Susitna River 0 .. 28 {0 .. 14) at Gold Greek Chulitna River 0.33 (0.13) near Talkeetna Talkeetna River ',·· 0.24 (0.09) near Talkeetna Susitna River at 0.30 (0. 16) Susitna Station --- 3-Day High Flow Ratios Monthly Average (Standard Deviation) June July Aug. 1.42 (0.23) 1.29 (0.16) 1.49 (0.30) 1.40 (0.19) 1.28 (0.15) 1.47 (0.26) 1.51 (0.22) 1.44 (0.30) 1.69 (0.45) 1.20 (0.05) 1.16 (0.05) 1.23 (0.07) 3-Day Low Flow Ratios Monthly Average (Standard Deviation.2 July 0.71 (0.13) 0.80 (0.08) 0.67 (0.12) 0.66 (0.13) 0.80 (0.06) 0.68 (0 .. 09) 0.65 (0 .. 11) 0.75 (0.07) 0 .. 61 (0.09) 0.78 (0.08) 0.85 (0.05) 0 .. 68 (0.05) Sept. Oct. 1.52 (0.27) 1 ... ss (0.31) 1.60 (0.29) 1: .. ss co.2s) 1.69 (0.37) 1 ... 53 (0.19) 1.45 (0.15) 1 .. 5'2. (0.23) Sept. Oct. 0.68 (0.11) 0.61 (0.12) 0 .. 64 (0.13) 0.59 (O.lO) 0.64 (0 .. 12) 0~54 (0. '11) 0. 71 (0.12) 0 .. 63 (0 .. 11) ------· ~--~~~-----------------------·--------------------------------------------------------~--~.--~~ .-· ' ! t J!j h 1 J J ) ' i r30/g3 Susitna River at Gold Creek Chulitna River near Talkeetna Talkeetna River w near Talkeetna I N w Susitna River at Susitna Station Susitna River at Gold Greek Chulitna River near Talkeetna Talkeetna River near Talkeetna Susitna River at Susitna Station ~ i j : ·~ j j i J TABLE 3.18 MONTHLY AVERAGE RATIOS ) J ~ J (7-DAY HIGH AND 7-DAY LOW FLOW)/(MONTHLY FLOW) 7-Day High Flow Ratios Monthly Average (Standard Deviation) May June July Aug. 1.87 (0.46) 1.28 (0.15) 1.17 (0.10) 1.33 (0.20) 1.75 (0.23) 1. 29 (0. 14) 1.19 (0. 08) 1.34 (0.17) 2.00 (0.39) 1. 32 (0. 15) 1.25(0.15) 1.43 (0. 27) 1.62 (0.33) 1.14 (0.07) 1. 09 (0. 04) 1.17 (0. 06) 7-Day Low Flow Ratios Monthly Average (Standard Deviation) May June July Aug. 0. 34 (0.15) 0.77 (0. 11) 0.86 (0.07) 0.74 (0.11) 0.38 (0.12) 0.73 (0.12) 0.82 (0.05) 0.73 (0.09) 0.30 (0.12) 0. 72 (0. 10) 0.81 (0.07) 0.68 (0.09) 0.42 (0.26) 0.84 (0.07) 0.90 (0.05) 0.76 (0.04) J l i l l J j Sept. Oct. 1.37 (0.18) 1.43 (0.23) 1.41 (0.17) 1.54 (0.20) 1.45 (0.22) 1. 38 (0. 14) 1.31 (0.12) 1. 34 (0. 16) Sept. Oct. 0. 72 (0.10) 0.65 (0.11) 0.69 (0.12) 0.61 (0.10) 0.69 (o. 11) 0. 68 (0. 11) 0. 76 (0.11) 0.68 (0.13) r30/g4 Susitna River at Gold Creek Chulitna River near Talkeetna Talkeetna River w near Talkeetna I N .p. Susitna River at Susitna Station Susitna River at Gold Greek Chulitna River near Talkeetna Talkeetna River near Talkeetna Susitna River at Susitna Station .... J i I J I TABLE 3.19 MONTHLY AVERAGE RATIOS (15-DAY HIGH AND 14-DAY LOW FLOW)/(MONTHLY FLOW) 15-Day High Flow Ratios Monthly Average (Standard Deviation) May June July Aug. 1.51 (0.20) 1.13 (0.07) 1. 08 (0 .04) 1.16 (0.10) 1.48 (0.14) 1 .15 ( 0. 09) 1.11 (0.04) 1.17 (0.09) 1.53 (0.16) 1.15 (0.07) 1 . 11 (0.06) 1.19 (0.12) 1.38 (0.22) 1.06 (0.04) 1.05 (0. 03) 1.12 (0. 04) 14-Day Low Flow Ratios Monthly Average (Standard Deviation) May June July Aug. 0.48 (0.21) 0. 77 (0. 11) 0.92 (0.05) 0.83 (0.09) 0.50 (0.16) 0.84 (0.10) 0.89 (0.05) 0.83 (0.08) 0.45 (0.15) 0.85 (0.06) 0.90 (0.06) 0.81 (0.10) 0.61 (0.24) 0.92 (0.04) 0.95 (0.04) 0.87 (0.04) ' ' 1 ' -~ ' ~ ·~ ~ '!\ I Sept. Oct. 1.19 ( 0. 08) 1. 26 (0. 10) 1. 22 (0 .10) 1. 32 (0.11) 1. 22 (0. 10) 1.23 (0.08) 1.17 (0.07) 1. 23 ( 0.11) Sept. Oct. 0.82 (0. 10) 0. 73 ( 0.11) 0. 78 (0.10) 0.68 (0. 10) 0.79 (0.11) 0.76 (0.09) 0.86 (0. 10) 0. 78 (0.14) 1\ ] ' ~- ,-..-.,., TABLE 3.20 r- """ AVERAGE RATIOS OF ANNUAL DAILY LOW FLOWS TO ANNUAL MONTHLY LOW FLOWS ~ '"" (~ 1-Day 3-Day 7-Day 14-D~ 30-Day 60-Day 90-Day """ Susitna River near Cantwell 0.98 0.98 0.98 0.98 0.99 1.02 1.06 Susitna River at Gold Creek 0.97 0.97 0.97 0.98 0.99 1. 02 1. 08 ,_, Chulitna River near Talkeetna 0.96 0.96 0.96 0. ~}6 0.99 1. 03 1.10 ... """ Talkeetna River near Talkeetna 0.96 0.96 0.96 0.96 0.98 1. 02 1.07 -~ ,,_ Susitna River at Susitna Station 0.92 0.92 0.92 0.92 0.99 1.10 1.06 ·- !~ r31/c 3 -25 Oct Nov Dec !1&0 o.o o.o o.o o.o o.o (),O o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o J6·1 .2 o.o o.o o.·o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o w o.o .o. () o.o I o.o o.o o.o N o.o o.o o.o ()I o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ·o.o o.o o.o o.o o.o 0;0 o.o o.o o.o o.o o.o o.-o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o J J J Jan Feb Mar Apr May Jun o.o o.o o.o o.o o.o o.o 1),0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0 ,C) o.o o.o o.o o.o o,o o.o (). () o.o .o.o o.o o.o 010 o.o o.o o.o o.o o.o o.o o.o o.o o.o O;O o.o o.o o.o o.o -o.o o.o .o.-o o.o o.o o.o o.o o.o (t,O OoO o.o o.o o.o o.o o.o-o.-o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o (I ,O o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 010 o.o o.o 0•0 o.o o.o ().0 o.o o.o o.o o.o o.o o.o o.o (), 0 o.o. o.o o.o (),() ' o.o o.o o.o o.o o.o o.o _, o.o o.o o.o 1),0 o.o o.o o.o 0·0 o.o o.o o.o o.o Ch 0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ·o. o o.o o.o o.o o.o o.o o.o ·o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o •. b o.o o.o o.o o.o b.o thO o.o o.o o.o TABLE 3.21 Average Monthly Spill Below Devil Canyon Dam J I I ~ ' -~ -,o;, ~ '11 ~- Jul Aug Se~ o.o o.~ (),. o.o o.o o.o o.o o.o (),() (),IJ o.o C) • () o.o o.o o.o (.1,() o.o o.o 0·0 J~t.6 o.o o.o o.o o.o o.o o.o (),0 o.o. o.o 0 ,.() o.o o.o 0 .!) o.o o.o o.o o.o D90 ,5 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o tl49. 0 o.o o.o o.o (). () o.o o.o 0. () o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o . 0. 0 o.o o·.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 3138.9 o.o ·~ ' 1 ~ l ' ' ! J " IL Q u • c ,. , ~ • 0 :z: ... " ::» . • c .. • " w .... ~ ~ w 0 ~ 2 . 0 ,. z 5 ~ c :I Ill . j ~ I i : .. . ·E ,. .. c :> c ·a . COl I ~~ I ~D ~ ! & # ' !I ' -ii -~ 1~:1 Ill Jlll'fH:IIICI I~:) Ill JIIIIYM:IIICI r .. ·t I ~ 5 1 -~ :• .. "I i h ! •• a =~ c h ~· •I •I "' ! I & I # i --111:1 JU JtiiYioi:IIICI IJII::I IIII I J .. l'fM:)IIO !' i I) 'I I) i ]. ! :·:,1 !· 3 0 ~ .. ~ .. I: :.i::· l • ~c u ... ; . .:I b I ·! I' •• =Z c ;:I ·z I ~c ~c ':: J !. : • • ;:.:: i I:, ! ! ~ & "'I Ill '!!; # # , .·.'I ' ' '· IJ:I ... IIIIWM:IIIO I .Ill ) HI ltiUM:ISIO l,j:) IU Jll'f'M:II ICI -- .... .... ! g § !! ,. 5 ~I I : ~· c j ,. ~I :I ... !I I ;:I •• I ,, j u • u • .. ~ a a ! ~ & I # # I • • 1 _11::1 Ml Jlll'f'M:IIIO • 01 J, I -I ! ! • g ! • s ~I 0 ,. . ·z I j • II c .z :I =:I ~~ z ,, c ~ II , • ! ! ' & # # 2 2 1 113 Ill Jti.M)IFCI lo1 3 Ill IIIIYM:I IItr II:) Ill JtiiiYM:IIIO 1&. l Q u • <( v--___,j•L.JtiM-L.-.. -· -- -- --------- ----- IL Ill Q u • c r , ~ .... • c • • 0 :;, ~ 0 % • ... ~ z :;, 0( :;) c " ... c .. z u .. .. c z • u ~ w c 1M .. a a ~ w z -.. 0 "' aii ; 2 .. c~ ~ 0 e .. ,. . .. ~= ~= z ·tr;,·t. ~ ... :;, • ! I c z a "' I' I a= I "' • .. ~ ~ ~J c :il lj ; i: ~ . ... ' l u ~ : :· c :> a a rl a· D . • .. "' I!! ~ .. i I"' • L ,lu .. ' ! I! iD [W .• : 1-I i a! a I~ a 2ot ... -:I!: li .. Q ....... ~ N ... 2 ..... ., • ~ N -. •o•• .. • • • .9 ...... "' • -e sJ:~ 1111 ,, • ., .. , .. a 11::1 1111 JIIIWM::IIIC I .. ~t i a! ~ I ~ i I !I -L ~· I ... h I •• ~~ XI • •• •I ! ' .. .. i -•g•• ..... ~ -.. 2 ......... -. 141::1 Ill Jtlll'fM:IIIQ .... , ... 1, ..... , •• 0 _, Ill ., ~ ~ 0 ! ! ~~ 0 0 ~j ~ I a~~ ~ ... ! u i• ~c I .:II !:II i c ~· ;I j::ll Jl I " I • ¥c x C • • ! ! ! • a .. a a ID ! t. .. 1 .. ::1 ... )IIIIYM::IIIQ 1<11:1 1111 Jltl'fM:IIIO 1•::1 ... JIIWN::IIIO -- I il I I! I 'I il ; i I I, ;; ... I ]:.! I ... ., ,, ! ii ii ;:.I i' j' ~ ~ g .. I: I' '' ·I·, .. •I "'I " ~ ,. ! ~I .. i ~ I 0 ~~ ~· I c J> ~· :II !I • I .... -' • I ~~ ~= I j • ~ .. ¥ • • • a ! ! ! a a a .. .. .. • • Ill:) IIIII Jlll'fN:)tiQ ... , Ill J•IWM::IIIO -- • ii i g g • ! a: > I ~I i. i· "I -c I. I i .I ~~ I; ! ~ I ·= ! ! ! a a a .. .. .. g g -e ,., Ill , ••• 1113110 111::1 Ill Jfi'IM:)IIO ... l Q u ID c v-----4•L.J--L....-.. _ .. ,. --- - --- - - ------ - - - - ... SJI:I Iiiii lfiiiiYM:IIIO .. -SJI:INilfiiiWH:JIIO I) C> - C> •g••l'-. It> .. ... Clll • II'IQ ..... 0 ... ... N SJI'J Nl ]!IIIYM:IIIO - ... -- ---- i ·. Ill )o c I ~ .,. & -• II: •. I I c ~ • ~ # ~ 8 0 . :r I u II: = .c ~ ~ ~ # I )o II: c :I z c , - t - c I >I :I lfl UIIIIYH:IStQ . .... . . . . ... • IJI:I IIIII J!IIIWH:IIIO c - - "g ...... . - u II: • • D "' u D i fi ~ ~;II: 0. a~ • h •• =~-!a ~· •• il! ~ 2# .. u -- • c ... , ~ .... • c • ~~ 0 ::'1 ~ :z: tit; ... .. z ::'1 ~= ~ • z u ... c e-' .. c z 1-e • .. 11:1-~ 1M ~ a a ell: ~ ~ z-10: 0 2 . c ~ ll:z 0 .. II: ,.. )o • ,. .. z _, ~ ... ::'1 11:-c ell: Ill . J a ee .. ~~ 2 ~ . ... ~ c " a a ~:! . eZ: I I ... .,.u .. [I s I I ~-~ -, I ·t I ~ ~ -L I I I .,I ~ - .J c :I z z c CD ! - " ID j ID c v __ ........ L....Ioi .. ~-L-.. _ ... --- --- IL .. a u li = : a L. • c ~ I ; ! ~ •• , , .. ,, ... 1<1)1 10 I a : ,. " . ~ .. • :I ~ I ~ c . , ! ~ ~ ... l a u -- ---- ------ • • • ~ • 0 .. I u 0 ~ a• ~· :l e u •• =~-h ~· •• ! ~ ~ I a ~ .. ~. !:I ·• ":I ~c • ! ~ ~ i ~ a . ~. !z I ::I ,, i ! ' ~ II - ---- • • • I • a • 0 _, .E L 'I -~ I ·t ~ ._ I I •I -I I ., I I -I I I "'! - - • . ..... __ .. ~' -- - J.~ll)N Utlt "ll'l tl v1:!!!!!:2 •• ,.. •., N -..... 0 0 • " N ~··....... • ... .. "2""' ......... IJ:I Nl :Jtlaltiii:IIIO .. ~ ""2 ............... ... •2"" ... • "' • ... "' "'e"" ... • "' • I ' - - 1 II t f ! l :n Ill l51nH:)IICI J.NOIJM 11111 ses ·n 1!:!'!!~:2 ..... ·v•""' • "' • ... ... "'e"" ... •'"' • IJ::INI lUitiH:)$10 .LIIIIJM l!IY!I '11151'1 .. !'!!"':2 .... ...... 0 0 • " N .. -- -- -. -. .. .. - a J.MIIJM U'fl 'II I 'll ~1!!!tt:2., ..... "'Q"" ........ •v ...... • "' • ... .. "'g"" .. • "' • J I J IJ)NI IIIU'IUSIO .LNI IJM JUI 'SI 'I 'ft !!1:e!:t:2 •• ,. ....... "'2 ...... "' .. ... .. .!il...... .... . ... .. ...2 .... • ..... IJ:)IIIl!lllltiM:)IICI UtiiJM Jl'fl '11'1 '1'1 1!:!"'~=2· ........... J.MIIJM Jlltl!l I I 1 '1'1 '[!!:'!!!!:2., .......... .. .. 2........ . ... ... •g""'" • "' • "'e"" .. •"' • SJ::I111JIIf11H:)IIO J.loi!UJM 11'11 '111 '1'1 !!1'!!~:2., .... ..... 0 0 • " N •v"",. • • • -v•• ... • ., • 5J::INI]ti111YII:II"IO t a ---- u .. .. .. u -- ID .L14IIJM JUt 11 '1 '1'1 I!S:!!~= .......... Ill ""g"""'."' • ... Q ....... . IJ:)JII]IIII'fii:JIIO I l .. Iii .......... '"' N ......... J.MeiJM n·n ·•·•·•·n l!t~~=2·..... .. f ' ' ,.. t-• 0 % s ; .J 4( .. u ~ • • .I • • ( > • :J • u z :J D z u ~ ( z • ~ : D D 1-~ :; z-( 2 :: ( ~ • ~ )o • • .I :J > ~ :ED i : ~ J c ~ a a ~ :E ~ i :J • ' ,--r I ~t - I) -· 5!' 0 l') I l') .. ...... . .. . • ~--..... .. ..2 ........ . . . !I :l S.t:l.lle.'fM:IIIO r. ID < V•JM _ _.. ......... H .. ""---.. _., ----- - I I I G I I F I I £ I -I I D I I c I I B I I I <A ·~ I • I I ! 10 9 ~ "lEtlflfl] I---=:+:: 1. :·_J::I1 o:f~r:=:t=2:~__:l--. ci c ~:-·t_:.::t:: ~ ~ -~0-: _--_ - : E:-.:.T"~'-:.1 c-ct ~: ± -.- ·- . ~~:=:=.eeL= -t==~:-{~4.:= E+, ~·tP' . j .. : .. :~ .Jc .. ,.'+::.:..;....:.:_f-::.:.:.;c:_+=;,-~-:-~-±---;:;;-~;--' %OFTIIIEOISCHAfi6EEOU.t.LLEOOFIEXCEE[)I[0 ·~~-~ "!f s .JANUA.IIIV t=- -t-- 10: ,:J:=~~~ 5~.· ~~-•~•: 10: ~ ~_---.--- ~~ •!~ I ·~-.J=:c =-~ ,.' .:g=:;==~~":C.j=:~::. --j --- %OF TI.E OISCHAfltl[ EQUALLED Ofl EXCEE0£0 .JUN. ~: 10: . ' r~ --=j PPE~MtPf " 1 ~ e r·~! ,.' :~ : ... :. ~f-·= --~: .. :o:ffc-.... !10 eo 10 10 %OF Till[ DIIC"AIUIE [QUJ.LLEO OR nc££[)1[0 NDV.M .. III 10 II " " " 10 ' . ~ ' 0 " " " " " 13';: ,. I!~ , .. '~ . ~ '0 t 8 7 ' 10:-t------ ---+------=-+ :~ '~I., .. ·-·~ ,... . --·--·-: -·-··-z ~ --·--~ :~ ... : -=-=--=--==~-~-. -~ -~-~---~~-~--~-·--_ ,'+'--~-'-~-+--,.---+-~-T---.-~__j OfoOFTIIHOISCH.lRGE EOUALLEOORnCEED£0 .... IIIIUARV ·:~-1-~t=== ' ·--..;. :t: ----l -L -1 I-- ·- ·----·-- ~ ,-___ _j_ __ -1 -.:_:--1-::- I x-a ~~~: i-~'_ I ---------r=:_-. . + ------=r-- _L_ I -! ---- 103 ~---=-=-l "' %OFTI11[01SCHAIIGE EOUit.LLEOOIIfXCEf()[D .IULV 10: ~---__.__._____-. -==+::- =--== --1-..... i· =-t= -+~ " " < 1~:]~ ,-~:~{c t-~~~~1 'i!i~;ll'~"~::~!=]:~~:~~~~::~ ' ·+--;-- r· . ~ 't-· ..... """ j i ; ~:J: •.c; _ -· ... , --'~~.:_L _c!_ 'i cq~~':::T""j=c=~~~ ,J~ ~c-l ·~ -· - . --t~----- "'+---'--~--r--;--;-~-.;--c-~-- ~ 150 10 ao %,0FfllllfDISCt1ARGE EOUALLEDOREXCEfOED a•c•M••IIII 8 7 3-31 t t 6 0: !5 --------: " " " _ _,..)!; " ":E -·- '+= ·,. ·~ ': = ·. ~ --~,· . i:iJj ,'-+---~~-~-,--~---,-~-____j ~ 150 10 ao "fcOFTIIIIEDISCtiARGE EOUALLEOOREXCEE()[Q MARCH 10:1~-===: -----~------------ -------· -~--------------' :+-----··- -·-------·-------------~---' ·~, .. --+--· :, 19 I -F , , ,~, ,.;;;1 --==b-b ~!! "it·· T~: j l :A -i~--~-=_!-- ---,----------~---L_ '"f.~ 1 ,.'+-------+--.,.--c---;-c--~__j "' %OF TilliE OISCtiARGE EOUALLEO OR EXCEEDED AUIIU•T 10:~~------------1 ;+-----t t:.---=- i--------;_-:-----I f--- 1----+-----r ~-~~~. 8~~~~· !. ccr--c~~.:::r-=--. : -1· I c\..1. ----~"! 10: C. _ ·----_ __ .... -------.........:. ~ --· : --:--: _:c::.±::=_:..:'::c::f=._-:__+-.:~ + . 3 -~---.~- _1_·._-_}. 10 3 ~ --· I ·c "' %OF TilliE DISCHARGE EOUALLEOOREXCEE()[O ANNUAL 6 !5 ~ "' s •O: ":r~~ : -+¥=_]1]3 J ' ' ~0 30 40 ~ 60 10 80 %OFTIIIIEOISCHo\RGE EOUALLEDOREXCEEOEO A~IIIIL "J -I ~_:_ -~-~ ;-----~-~ r . 19 ' 10 ' !+-- '··-· +~· I .-lJ ·. ·" . ' : -, 17 --: _-. ·-. . . ---~, .-__ ---I -I' -H-::r-..::...:.1 ~ .... , .·· :z -13~ -12~ ' ll:r ~i£~ .· :;c: ' jc_c : c --; -----t=-~ r-:J-~ -! ,--·- j ~:c~l · i ' ~--~.-.-~-; -f=-:c: " I t "' "' "' %OFTIIII£015Ct1ARGE EOUALLEOOROCEf()[O ··~T·M-·1111 ~ I ---PRE-PROJECT FLOW ---CASE A (OPTIMAL POWER FLOW) ---CASED (MINIMAL FISHERIES IMPACT) Z CURVES GENERATED FROM 30 YEARS RECORD OF HISTORICAL, SYNTHESIZED AND SIMULATED AVERAGE MONTHLY FLOWS fiE VII~ "' 3 1=-1-1- ~ 2 0: o;~·····: ,-·==t '~ ~ ,·--~-. ! ~ T¥~===-·_ ·--~ _:.T-~ : : : ----+---+- 10 3 ! w w 4D ~ ~ ~ ao o/oOFTIIIIEDISCHAIIGE EQUALLEOORfXCE£()[0 MAY "~1§·~-± ·~ 9 ·O:~~.~~CC·CC~=-~~~~~~ ,.'-+-~-+-~--i-..,-...;--~-.---r-.,---' % 0~ TilliE DISCHARGE EOUIILLED 011 [XCEEOED acTa••~~~ FIGURE 3.8 ~ " " " " " G F E +- D c B [i] ~~~TSN~A" r:c:.~~~ c ~.~:~~o~J:c~ A MONTHLY AND ANNUAL .. LDW DUIItATIDN CUAv•• .U.ITNA lltiV.IIt AT .U.ITNA .TATIDN t 2 1-r~ ~--~-· 1-1 ~---·~---~· I I I I t I I I I I I I I I I I • I I G F E - D c B ,. l I ! 10 II ~ ,• ---;~.----,~ ~ f¥4f··=t= .___un --==1 ·j'-jllt~w~;:· 1- I~ ~: ~ :~ 10: . ' "' ro %Of TI .. E OISCMoUUit. EOU4LLEO OA HCE£[1[0 ..IANUAIIIY -~---:-::L::=: =+--t==1 =~== ~ ~-·· --· ·J· l~ --~_;-= j l :~ --- :---1- ___ =r-= 1o3 -+-=:. ro %Of TIME OISCMAitiiE EQUALLED OA EXCEEDED •o' ·~ !~ .I UN. -± I 1-----c--====f~ - ~ ::.L:..- -=---t-== ~-~ ~f-~ -~--j --=- " " " " 10: ~~r-c:~~ t=f\~ ·-""! _c_•tc •o't§:::::-' ' -. ~;·:"=:::--:~--:-"fcc. ,r+,+r~ :1_ - .. ~~~0!_-7-; •o'~ -:.::t.:::==c: ::r-- " g oo , . ' . -.:; :--:. -;----.-6 ~ j::_='f:~-- '--+~ :='=---.=:; ~·~- '-"+cf·c_c --,='-P'- %Of TIM£ DISCMAJIU EQUALLED 0A EXCEEDlD NaV•M-·11111 10 g t ----.-.......__._;.--...,,. 8 7 • I 10:-J--~----- "'+-~---'-~--'---_;.-~-,---=--~--' 'o/oOfTIM[OISCHi&RGE EOUALLEOORnCEEOEO .... -=-UAJIY -=-~-;~ _-=-! ---~ ": =-~ ; =~ ! --+~-=~~--\} ir~~~~·~·~· ~~~~~~~~~'~-~ f ~--= :_~ -- 1---~ . .... : ~ -' ' h '! ~4-~-c=c-F ~--~ " W=£ + • _'~J tl ~ T J:=: --]-:---:=-.-_-~- -- -·~---i _-i L-=-. ~-:--r - 103 I "t,OFTIIolfDISCt-IARGE EQUALLEOOREXCEEDlO .JULY l_ ~---r. · -~ r-Ta --- ~ -~=~t-,~-==-L=~d ~ •oi~--EP:itJJ:o --7 ~ 6 ~ ,: ~?~Et~r~-~ . ' !>+:S.. 103 t·~:~~- 8 3-32 ,-~='}~ •1.· !10 ro 10 110 "t,OFTIIIEDISCMAitGE EQUii,LLEOOitEXCEEOED a•c•M••R s -~i ;;:;: 7 ~ t ,,' j ' -.- ' - ' ' - ' 6 !5 ';~=--= •• ~;-~=----•. uc:~~~-~~ ~-u~·~g} 0:+---~---:---:--: '~ ~ ,'+----~-~-~~-~-,--~~ 0 10 20 30 40 !10 M 70 80 9Q 100 %0fTIIIEDISCMAitGE EQUALL[00"EXCEEDE0 MAIIIIICH ·; i---= ~~ --===---c_ • ·~~ -·-~ '+-----,-----!-----~--~-=!-·-=---=---­ ;---- --ct~~~-= i ~ --I:-==~ \1 ~__:_ ---,.._-:-:__= -' ~ 6 ~ -. . ,)==----, -,-ci ; . -=-~ ! :: l J --'- ~ . ~-:+---l-__ -l" ____ ~ __ -, ,,t .-:-_ ~- ~ 10 zo w 40 !10 ro ro ~ ~ ~ %Of TillE OISCMAitGE EQUAU.EOOitEXCfEOEO AUDU.T "l!~~==-~~-?ttj ,----r-----;------~-- •' ....... i ... ·~; :51+=···-c_Ti -. ' '§ '--= ~~ ,~=-: 3·C ---y::;;ey~ ,0 ,,'+-~~-~-~-;----;.-~-..;_~-~- "' %OFTIIoiEDISCMAitGE EQUolLLEOOR[XCEEDED ANNUAL 6 !5 ~ "' ~ ' 1= . =-E ',-; ~'" t --_ ~ :~ =' ~ . ro ~ ~ ~ w ro ~ ~ %DFT•OIEDISCH,tt.RGE EOUALLEOORDCEEOED A~IIIIL ... . . --·~ l~n ~~CT-C : -----------, -i - -__ ! ______ -.---- ' . 10:+----·-Cc:_cT =>o -r----=- ;---- •o'-t--~-~~-~-,--~~-r-~-,---' t •o ~ M ro 'f0 0fTIII[OISCHARGEEOUALLEDOREXCEfOEO ··~T·M-·1111 liQll.S.;_ I ---PRE-PROJECT FLOW ---CASE A (OPTIMAL POWER FLOW) --·-CASE 0 (MINIMAL FISHERIES IMPACT} 2 CURVES GENERATED FROM 30 YEARS RECORD OF SYNTHESIZED AND SIMULATED AVERAGE MO"'THLY FLOWS IU:\IISIONI. 4 3 J=-J-1- ~ 2 '!l ';1------=======-:~-~-~ =_ ~=1\1 '" ----..,__ ~ ·~ . -' r~ ~ ~ :l -: --':Str-=1-' 0 ' 10 ' ' lO W 40 ~ M ro ~ %OFTIIIEOISCMAitGE EQUALLEDO"EXCHCEO MAY ,, . ~ "~---.-~~ -.---~~, ---.... ·.---.--~ ' ---~~--------~- 8 -' --~.---- ~ . . I--- !> ·------------·----·------~ . -·--~ - 4 ----~-~-~ ~---- ------~---- ·:Ef~·.·~··· - -i ;-=----=-·-~ --, -, ~~ r- "' "t,OFTIII(OISCMAitGE [QUii,LLEDO"nCEE0£0 acTa••,. FIGURE 3.7 [i] ~~~,~~A"~~:~~ c ~.~:~~~~:c: MDNTHL.Y AND ANNUAL. "L.DW DURATION CUIIIV •• .U.ITNA IIIIV.III AT •uN.HIN. t 2 1-1~~ 1-·-~--· 1·-I ~--· r-r--· I G F E .... D c B A -• • • • • • • . • • '. • Q• , " • .: : . . . .. . -. -. . . ~-. .. . . ... . . r·, . . :, I 1\~ . ,, I I. I I I I •• I I I 1:· I I I I I .I 10!5 9 8 7 6 5 4 3 2 104 9 8 7 6 5 4 cri tJ.; 3 (..) z 2 w (,!) 0:: <! r:r XI (..) 9 (/) 8 0 7 6 5 4 ' ! . -· ('-J '"- 0 PREPARED BY t . :-.... " ' ; i l i . t . . • I • l • I . ' ··~I• I I . . . I • 1 • . ,. J 4 .k ' I :;:: = • :::.-·~. r:.:... ... ;: ... ;:., .... ,_ .. ·~~~ ~ - :: ''-"' .-1· l I k'Jo,-1!-)( ; " .,.. ;.;,--;-.,.. . , . I . ........ ,, i -.-. I -.... ' '.'\. l ' i i SliSJJfl\ a .Pn~ T-Pt-; .I;.;; r i --~ )..l\.1! TTT TTl T-l y ->L ,;.:. ·.;. ,: : ·~ r I -.... ; r i I "'C -N .. ~:["\.-1 I I I -ITT T /' -~11\\:>r:l. A/! i_ I j « I i_ -~ -,;: X --;:-;. l -.-• . ' l ' --' ' " _.._ 1 ' "'" ILl,.""' I ;oo... ......... ' . I 1'-i I ~ ~ ' I I 'II.. -. 'T'""+oo., ~ I I T I i i i I I 1 I ........... ,_,.._ I I ' T I T ' t r i 1 l i ; I .. ;, f"' ~ l ; --;- t • -. • l ' . _I . , I , j ; ; T ,T l ' I ' ,-. ~ . ~ ~ ; . ; I j -.-'j • I I i ' I i ' I t I I I I I . 10 20 30 40 50 60 70 80 90 iOO 0/o OF TIME DISCHARGE· EQUALLED OR EXCEEDED PREPARED FOR: ANNUAL FLOW DURATION CURVES AT . R&M CONSULTANTS, INC. SUSITNA-CHULITNA-TALKEETNA CONFLUENCE FIG. 3.8 _ 3-33 "----.. --·-.:.· •. l 1 -·- - 3 __ - .. 2 __ r-1-- - u) LL: - (.) I (/) 10~ 17 w g_ (!) 8_ 16 a:: .:> -<t 7_ :I: 15 ~ (.) -+-~ (/) 6_ -14 0 1-5_ --w ::!: .. -13 w ::::> -~ LL ~ 4_ I -X 12 w <t .(!) ::!: 3_ <t --1-.. II (/) .. -.. ---· ·- ·'--- 2- -10 -- ~g - ' ' 4 8 ' IQ'--'--L_ ---'-· --.. --.. --~-·-.. ---------·-· ... ---"---'=---... ----· --· ... 2 5 10 25 50 100 PREPARED BY• RETURN PERIOD YEARS ' PREPARED FOR: - i::)~ SUS ITNA RIVER AT GOLD CREEK I AP.nr~ I if,·B··· .. · .• -...... _,, .. -:.·:.->' PRE AND POST PROJECT RIM CONSULTANTS, INC. ' ---. ------------__ ....._ __ ...... --------- ~~~~--~~--~~~--~~~~-···· --------------~ l~~' ~ -"'"~ ----. [ .. 1 ,. .• I I I I I I I ·a I' I ..... I I I I I I I I .. 106 ' 3XI05 ' : I 2 XI05 I , u) lJ.: 0 I (/) w (.!) 0: <t 105 ::I: (.) - (/) -0 :E ::l ;.;E I== -X <( :; ~4 XI04 . . l . 4r 2Xl01 r r . ! I ~: lO ' . . ~' PREPARED BY• 't::l k~ ' .. :·· ~;-· M. '-r-":.: (S _.... . ~ R&M CONSULTANTS, INC. ~-. 0. ~ . "' . ·~ '.· m -- " . ' . ·n 11. . . ' ' . •• I ' . i ~!! 'H I li .H . ·H !.;o ~ ~ . t l "" .I ..... ~ I v i l . ' _l. '. . . '" '· '' . . ,, . '··· . . . """; ,._.;'I ~ ~ ' i; • 1·4 t ~ t " ' R ~ ; -ql l HJ• lH I !>t ;:H !U j .. -~ i t If 2 5 10 25 50 too "' RETURN PERIOD -YEARS . SUSITNA RIVER AT SUNSHINE PRE AND POST PROJECT . DISCHARGE ·-STAGE FREQUENCY CURVES 3-35 .. _ .. --.. " ... "'",.. ,. . .. , ·~··· ~" " . .,, .... «•· • .. ' ,.,_,...., - . . ' l I ' .'20 * . ! l 19 . • ~ ~18 t ; ._ f 1 f-i7 w l ~ 16 w . i LL.. ~15 I i t-14 H ._ 13 :I: (.!) 12 -w ll ::r.: w ,.._ tO (.!) . <! ~ ~ 9 (!) =;:;:;::::: '. •·; . . l\ .... . •· . ' • \_J. r: i ' t' -~ ·t .t i) ~ q f. II f ' f ~ n I l . J I t I I. PREPARED FO R: FlG. 3.10 All ~ .... •' . , .... ,,, ~ .. ~ ... ,~.. ... .. . ,., ..... I' I I I I I ,,. I •• •• I •• I I I I •• I I ' - 106 . T (f) lL: (j • en w (.!) 0: <! Lt I I 05 (..) ... ¥• .. ,, en -a ~ :::> ~ - X <:( ~ . • ' I : r I I I I f I c)' f l J . ' . PREPARED BYt t::i -~ ~· ~.,-,_._~ : R&M CONSULTANTS. !NC. . ,. -' ==m . . - ,, [!-,I .. ~ !.' ~ ~ 1-" .L ....... '/ 1-' v 1-' !.-'~ ' ' . . '1. - ., l 2 5 10 25 50 !00 RETURN PERIOD -YEARS ~ -. SUStTNA RIVER AT DELTA ISLANDS PRE ·AND POST PROJECT DISCHARGE-STAGE FREQUENCY CURVE 3-36 . ..;"" -· ~~ .. 7. -:.:. '----4 . ' , ...::.. 1 _:. ._98 ' I • ~97 .~ t .. -T 96 1-95 f- w w 94 LL. I w 93 (.!) <( f- 92 (/) Ill - . ,. ' .. . .:1 . • . ~ J. l l I I PREPARED FOR: HIR . Ft G. 3.1 J . . .._, ·~' > ,.., ... _.,": .. "' "::"'> ... ,.~··-••o-.. -..1"-;<Jc, .. , .• '• ~ .,. •. ~-....!! ,.,, __ , "" ,,, "'' I I I ... -• I •• I i I I I ••• I: ••• I I -~~~~--------~------------------~------~------~ -:::=--· . U) 1.1..! u (/) w (!) a:: <t :r u en 0 I I 05 ll \ ~ ~ r-. r I 4J 10 PR.EPAREO BY r <. ~ . It F ~ a; ~ ~ - . • ' t ~ I I l .ii' I"' ! i-> ' I .., lJ Ti-f:iR D.l ~"' ~ - - !=E=EE t:l=!: E:;i;;:E: S::i=:t:E - ,,. ~ < .. . . ' . ' • I 2. 5 10 25 50 100 ·RETURN PERIOD-YEARS . , __ ,... .. . . I < I . ' I II I I II '!I ' ' ~ j I f I .T-= __.!. :;~ ! . : • ~ I : 1 l . l . 1-2 -I ..... , ..... , r-1 -l "-I 0 ...,.: u... 9 I 8 1-:::t: 7 (!) 6 w ::J: 5 w 4 (!) <{ -I 3 (!) . ..i . • ..l . ' • j l I 1 . l J I I I l I f t . l t ~ t } . • I I .. l PREPARED FOR:f I... SUSlTNA RlVER AT SUSlTNA STATION M' ~R PRE AND POST PROJECT .· ·. . a R'-M CONSULTANTS, INC.-------OI'SeH-ARGE -STAGE FREQUENCY CURVE· -:z. I~ L.:.,. _ _;_--=====------~--....._._ ___ 3_-3_7 ____ ...;._;,_,_.; __________ ~~~F-I-G.~..J· .. _' __ ~~--~ ..---~-------------,------------------~----__ , ___ _ ------;- w I w co w > 0:: ~ t) Prepared by= . c:J ~ ~VJ -~~- _JI. i\..1- R&M CONSULTANTS, INC •. DESIGN DIMENSIONLESS .REGIONAL FREQUENCY CURVE ~ ANNUAL INSTANTANEOUS FLOOD PEAKS .. I 1 Prepared for: FIGURE 3.13 A~l[~ I I .I c . 1\ I I I I I I •- •• I I I I I I I ' \ l 4 -SEDIMENT REGIME 4.1 -Suseended Sedime~f The concentration of suspended sed in~ 'nt in glacial meltwater streams in Alaska is 10-20 times the concentration in nearby non-glacial streams (Guymon, 1974). Most of the suspended sediment is transferred during the summer months. The Susltna River transfers over 98 percent of its annual sediment road during the months of May through October (Corps of Engineers, 1975). in general, there is no simple relationship between sediment transport and water discharge in glacial meltwater streams (~strem, 197S). Suspended sediment concentration varies with time as well as with discharge over periods of one year (seasonal) 1 one to twenty days (flood sequence) 1 anq one day (diurnal). A hystteresis effect has been observed by various authors (0strem, 1975; Everts, 1976) when the ratio of suspended concentration to water· discharge was plotted by month or through a flood. Visual inspection of sediment discharge records for the Susitna River at Gold Creek indicate _a simHar phenomena, with large variations in sediment concentrations with only minor increases in streamflow. Despite the problems in reliably establishing a sediment discharge streamflow relationship, some estimate of annual suspended sediment discharge is necessary for engineering and environmental studies. Consequently,-power curve equations were fit to available data for seven stations within the Susitna River basin~ The equations for each station are given in Table 4.1r togetht~r with the coefficient of determination. The curves for each station are plotted on Figures 4.1 through 4.5. On the mainste·m Susitna, the ·sediwent concentration drops. for a given flow when moving downstream, due to th-e· larger particles settling ct!t and the larger volume of water downstream. The annual suspended sediment duration curves for all seven stations are plotted on Figure 4 .. 6. These were estimated . using the annual flow duration curves and the suspended sediment r·atlng curve for each station. Despite the fact that sediment concentrations decrease while moving downstream, the total sediment discharge is increasing due to the increas·ed flow volume. 4.2 -Bedload Bedload data from the Susitna River was nonexistent until summer of 1981. Three bedload samples have been coll~cted by the U.S .. Geological Survey and R&M Consultants at Susitna River at Gold Creek, Chulitna River near Talkeetna River, Talkeetna River near Talkeetna, and Susitna River at Sunshine. Bedload transport rates for the three dates are shown in Table 4.2. Estirrate5 of bed material size distribution were made at numerous cross-sections r29/a 4 - 1 I between 'Talkeetna and Devil Canyon, using· the grid sampling technique {Kellerhals and Bray, 1971). The bed material size distribution at these sites is tabulated in Table 4.3. The U. 5. Geological Survey estimated total sediment load for ten samples taken at the Denali gage using the modified Einstein procedure. A bedload rating curve based on the USGS estimates was established in the Corps of Engineers 1975 report and is shown is Figure 4. 7. Using flow-duration curves, the Corps report estimated the annual bedload at Denali to be 1,588,000 tons per year. However, Neill (1981) has commented that bedload computations for gravel rivers are not very reliable, with different procedures producing estimates varying by orders of magnitude. From the limited bedload data collected in 1981, it can be inferred that the Susitna River has relatively little bedload below Devil Canyon until the confluence with the Chulitna River is reached. Most of the bedload is contributed by the glaciers in the Alaska Range, althouLgh some is contributed by downstream tributaries and bank erosion. All bedload entering the reservoirs will be trapped. In addition, post-project flows will be less than that measured on August 26, 1981, when only 380 tons/day of bedload transport were measured. Most of the river between DeviJ Canyon and the Chulitna confluence is well-armored. Under post-project conditions, bedload contribution from the Susitna River above the Chulitna confluence may be considered negligible cx~ept for extrems flood events. The Chulitna River is the major contributor of bedload at the confluence near Talkeetna, as shown on Table 4.2, and will thus have the major influence on sedimentation and river morphology at and downstream of the confluence. 4 .. 3 -Reservoir Trap Efficiency The volumes of Watana and Devil Canyon reservoirs are so large that is has been assumed in past studies that 100-percent entrapme 1t would occur. This is believed to be a valid assumption for the larger sediment sizes, but it is possible that the very fine suspended sediment may remain in suspension and pass through the reservoirs. A literature search of sedimentation processes ~n "' glacial lakes indicated trap efficiencies on the order of 65 to 75%. (Zieler: J973; @strem, 1975). Kamloops Lake, a 3-million ac-ft giacial lake in 5ritish Columqia, trapped an estimated 67% of the incoming sediment, with median sediment size about 2 microns near the lake· outle"t (Pharo and Carmack, 1979). The suspended sediment size distribution analysis at Vee Canyon indicates that 85% of the incoming sediment is larger than 2 microns. Kamloops Lake has an annual bulk residence time of about .60 days. Watana Reservoir has an annual bulk residence time of about 660 days. r29/a 4-2 0 I '~ I Jl I I I. J. I I • •• I I I I .I I I I I I I' I) I I I I 1: I I I I I I I I The long bulk residence time in Watana Reservoir indicates that an ice cover will probably form on the reservoir before the sediment- laden river water can pass through the reservoir. Once on ice covE•r forms, essentially quiescent conditions should occur in the reservoir. A settling column study of a water sample from the Susitna River indicated that suspended sediment concentrations would ·decrease by about 9.5% in 3 days under quiescent conditions. This would tend to int;;icate that clarity of water in the upper portion of the reservoir should improve fairly rapidly once an ice cover forms. It is likely that trap efficiencies greater than 70% will occur, based on suspended size distribution, annual bulk residence time, and the suspended sediment settling characteristics under quiescent conditions. For planning purposes, trap efficiencies of 70% and 100% were assumed as the :imits for trap efficiency. All bedload will be~ trapped by the reservoirs.. The trapping of the bedload wi II have the most significant Impact on the downstream river morphology. Reservoir sedimentation is discussed more completely in Appendix 8.8: Reservoir Sedimentation (R&M, 1981). 4.4 -Bed Material Movement The stability of a particle resting on the bed or channel bank is a function of stream velocity 1 depth of flow 1 the angle of inclined surface on which it rests and its geometric and sedimentation characteristics (Stevens and Simons, 1971). However, the interaction of the above factors is quite complex 1 and obtaining data for all parameters is often impractical under natural conditions. In order to determine at what flow rates the various reaches of the Susitna River above Talkeetna would be stable, an engineel"ing approach for the design of stable alluvial channels was used. Two major variables affecting channel design are velocity and ~hear stress. Determining the shear stress is quite difficult. Consequently, velocity is often used as the most important factor in designing stable alluvial channels. Various techniques have been developed which estimate the maximum channel velocity so that no scouring occurs for values of velocity equal to Oi'< less than the maximum velocity. However, the maximum permissible velocities varies with the sediment carrying characteristics of the channel. Fortier and Scobey (1.926) recognized this problem 1 and introduced an increase in their listed values of maximum permissible velocities when water was transporting co!Joidaf silt. Various engineering formulas for maximum permissible velocity were presented by Simons and Senturk (1976). The formula selected for analysis was· that derived by Neill (1967). N·eill 1s formula uses r29/a 4 ~ 3 - data readily available for the Susitna River, and gives results in the same range as Fortier and Scobey•s. The formula as presented by Neill is: where: u = ~ = es - g -- 0 = d = u2 ( _do\-0.20 2.5 ] maximum permissible velocity, ft/sec density of water, Jb/ft3 density of sediment, lb/ft3 (assumed to be 165 lb/ft3 ) gravitational constant1 32 ft/sec2 bed material diameter 1 ft average depth 1 ft The above stability criterion was developed for use on uniform bed material or on the median (o50 ) size in mixedo bed material with moderate size dispersion. Nein (1968) later indicated that the bed mat~rial mlxtu:e re:mained fairly stsble until the o 50 size became mob ale, at whtch ttme general movement of the bea would occur .. The stability criteria was designed to use vertically-averaged local velocities (mean column velocities), thus identifying bed stability on only a short segment of the river cross-sectional width .. However, only average velocity across each cross-section is available.. The results from the equation would thus indicate when bed movement across the entire cross-section is imminent. Bedload normally does not move uniformly across. the width of a :river 1 but is concentrated in a relatively narrow band. Therefore, the results of this analysis are not strictly accurate, but do provide an adequate indicator of bed movement occur~nce. In order to estimate the o 50 size of bed material which would be at the point of movement at" a particular cross-section for a given flow rate, the above formula was re-arranged so that bed mater•ial diameter was the unknown value. The average velocity and average depth were obtained from runs of the H EC -2 model for different flow rates. The formula in its re-arranged version is: ~29/a u2.5 D= 464.43 d 0 •25 4 -4 I I I '1·. I I I I .-i .I .,, - . ' I· I •• I I I I I· I I I I 1: I I I I I I I I I I'· I I I I II -. Using the above formuJa and hydraulic:; parameters obtained from runs of HEC-2, estimates were made of the median material size at the point of movement at flow rates of 9 1 700i 17,000i 34,500; and 52,000 cfs. The median bed material size at the pofnt ·of movement is described on Figures 4*8 through 4.13 1 working downstream from Devil Canyon to Talkeetna. Included on the plots are the bed material size distribution in the reach descrjbed on the figures.. To assist in classifying the size range of sediment which is being moved, a sediment grade scale is included on the bed movement figures, The bed material movement curves are for given cross-sections in each river reach. Table 4. 5 correlates the cross-sections with river miles. Table 4. 4 gives average velocities at selected cross-sections at the same flow rates. By . comparing the bed material movement curves to the bed material size distribution 1 predictions can be made of the effect of reducing the streamflow, Le. reducing the mean annual flood from 52,000 cfs to 11,000 cfs. Once the median bed material size is moved, general movement of the bed would oc~ur. In general, bed material size ranges from coarse gravel to ~obble throughout most of the river. Some movement of the mediar~ !•,.ad material size (from the grid samples) could occur above 35,000 cfs throughout much of the river 1 although these samples were primarily taken along the upper shore. It is believed that an armor layer consisting of cobbles and boulders exists throughout most of the river~ At 13,000 cfs, it appears that little bed material. movement wHJ occur ln the main channel except in the region of river miles 124.5, 131.5 and 133 and near the confluence with the Chulitna River, where bed material size is in the coarse gravel range, somewhat smaller than in most of the rest of the river. 4.5 -Contribution of Sediment Downstream Contributions of sediment downstream of DevH Canyon are primarily from talus slopes, mass wasting, erosion of river banks, and sediment contributed by tributary streams. The locations and types of sediment sources between Devil Canyon and Talkeetna are summarized in Table 4. 6. · r29/a 4 .. 5 0 TABLE 4.1 SUSPENDED SEDIMENT DISCHARGE EQUATIONS SUSITNA RIVER BASIN ... Station Susitna River near Denali MacLaren River near Paxson Susitna River near Cantwell Susitna River at Gold Creek Chulitna River near Talkeetna Talkeetna River near Talkeetna Equation q = 1 43 (10-4) q2.122 s . q = 8.04 (10-6) q2.523 s q = 6.33 (10-8) q2.784 s qs = 2.39 (10-6) q2~354 q = 2.63 (10-5) q2~151 s ·. Susitna River at Susitna Station q = 3 09 (10-6 ) q 2 ·146 s . q = Streamflow, cfs q = Suspended sediment discharge, tons/day s r29/a 4-6 Number of Samples 51 32 37 286 20 63 22 •••• . . I I I . Coefficient of ' Determination ( r 2 ) 0.891 0.931 0.881 0 .. 735 0.948 0.832 0.885 " I •• J. .I I I I I ' I I I J I I ·-~ ·~ ·""" - TABLE 4o2 1981 BEDLOAD TRANSPORT DATA SUSITNA RIVER BASIN Water Total Bedload Discharge Transport Rate Station Date (cfs) (tons/day) Susitna R o at Gold Creek 7/22/81 37,200 2,180 Chulitna R 0 1 7/22/81 31,900 3,450 Talkeetna R o 7/21/81 16,800 1,940 Susitna Ro at Sunshine 7/22/81 89,000 3,520 Susitna R. at Gold Creek 8/26/81 25,900 380 Chulitna R. 8/25/81 22,500 5,000 Talkeetna R. 8/25/81 9,900 800 Susitna Ro at Sunshine 8/26/81 61,900 4,520 Susitna R .. at Gold Creek 9/28/81 8,540 1 Chulitna FL 9/29/81 6,000 3,820 Talkeetna R. 9/29/81 2,910 30 Susitna R .. at Sunshine 9/30/81 19,100 400 1 Bedload data gathered approximately 4 miles below Chulitna River gaging site on 7/22/Slo Data gathered at Chulitna gaging site on other dates. r32/b 4 -7 I .,;:~ ..... I TABLE 4.3 -· SUSITNA: LOVvER RIVER CROSS SECTIONS I BED: MATERIAL DISTRlBUTION ANALYSIS LRX Number o16 (mm.) o 50 (mm.) o84 (mm.) I 4 13 25 46 .I 5 12 21 39 6 20 47 112 I 8 19 45 112 9 14 32 -u·\ n::. 10 58 94 152 J. 11 18 43 100 14 20 36 66 16 8 26 92 18 12 36 110 I 19 47 80 132 20 16 38 92 21 26 49 95 ••• 22 8 21 58 23 22' 48 108 26 25 54 113 ··-27 19 43 100' 28 13 31 68 29 32 59 110 30 33 64 122 ,, 31 '28 49 84 32 19 43 100 40 20 46 110 ·I "42 15 38 94 43 19 44 94 44 14 35 88 46 29 53 100 I 48 21 56 155 49 26 53 112 50 18 53 160 I 51 44 88 170 53 86 125 188 54 18 43 105 I 55 178 220 265 56 29 73 183 57 20 47 110 58 62 112 200 I 59 26 66 170 I --:._·,~ ·r29/a 4 ... 8 I ' ' I I I I I I. I I I 1 .. I I I I I I I I I ? TABLE 4.4 AVERAGE VELOCITIES AT SELECTED CROSS-SECTIONS Cross Average Velocities (ft/sec) Given Flow Rates at Gold Creek Section RM 9,700 17,000 ~4,500 52,000 LRX-4 99.6 5.27 4.32 4.78 4.47 LRX-7 101.5 3.15 3.86 5.31 6.09 LRX-11 106.7 2.53 3.60 5.64 6.89 LRX-20 117.2 3.15 4.13 5.13 4.86 LRX-24 120.7 3.80 5.34 8.25 10.34 LRX-25 121.6 4.71 6.94 7.99* 10.12 LRX-29 126.1 3. 71 5.04 7.66* 9.50 LRX-~35 130.9 3.52 5.04 8.12 10.44 LRX-40 134.3 4.12 5.43 7.67 9.29 LRX-41 134.7 ---· -. --~ .., .... 7.63 5.95* 5.71 :> • I I LRX-44 136.4 5.54 6.'36 7 .13* 7.99 LRX-45 136.7 4.28 5.86 9.13 11.53 LRX-50 138.5 3.17 4.37 6.87 8.63 LRX-53 140 .. 2 3.83 5.01 7.62* 9 .. 56 LRX-54 140.8 4.53 5.72~ 6~93* 7.63 LRX-55 141 .. 5 3.55 . 4~66 6 .. 63* 7.77 LRX-61 148.7 4.25 5.67 8.64 10.45 LRX-68 150.2 3.24 4.54 7 .. 21 8.89 .. * Sloughs and/or side channels are blocked off below 20,000 cfs by gravel berms at upstream end. '• r29/a 4-9 ~ TABLE 4.5 SUSITNA RIVER PROFILE DATA SUMMARY CROSS RIVER THALWEG SECTION MILE ELEVATION LRX-3 98.59 332.6 4 99.58 344.4 5 10\1.36 352.6 6 100.96 357.1 7 101.52 359.4 8 102.38 364.1 9 103.22 366.6 10 104.75 386.2 11 106.68 401.0 12 108.41 414.4 13 110.36 426.5 14 110.89 437.2 15 111.83 446.1 16 112'"34 449.7 17 112.69 453.4 18 113.02 452.9 . 19 116.44 481.7 20 117.19 483.3 21 119.15 500.9 22 119.32 503.4 23 120.26 515.5 24 120.66 507.6 25 121.63 526.2 26 122.57 532.1 27 123.31 533.8 28 124~41 549.8 '·' r29/a 4 -10 ; I I ·- 1 t I .I I I I I· I ··- • I I I J. I I 1: ; I - I I ·-· I I -· It I I,' I I I I I I r29/a CROSS SECTION LRX-29 30 31 32 .33 34 35 36 37 38 39 40 41 42 0 43 44 45 46 47 48 49 50 51 52 53 54 55 TABLE 4.5 (cont.) RIVER THALWEG MILE ELEVAT,ON 126 ... 11 563.3 . 127.50 578.4 128.66 586.8 129.67 597.2 130.12 607.0 130.47 608.9 130.87 605.5 131.19 614~0 131.80 618.8 132.90 634.7 133.33 641.5 134.28 650.0 134.72 655.3 135.36 663.9 135.72 657.6 136 .. 40 674.6 136.68 673.5 136.96 681.4 137.15 681.9 137.41 685.3 138.23 694.2 138.48 693.5 138.89 701.9 139.44 707.2 140.15 717.2 140.83. 726.3' 141 .. 49 735 . .(~ 4-11 r29/a CROSS SECTION LRX-56 57 58 .. 59 60 61 62 63 64 65 66 67 68 TABLE 4.5 (cont.) RIVER THALWEG MILE ELEVATION 142.13 7tq.4 142.34 745.5 143.18 756.9 144.83 775.8 147.56 808.5 148.73 819.5 148.94 822.3 149.15 827.2 . 149.35 825.4 149.46 836.1 149.51 837.2 149.81 840.6 . 150~ 19 829.6 4 -12 I I I I I I I I· I •• I'· I ·I I I I .~ I \!. I I J I I I I I I I I I I I 1: I I I I I TABLE 4.6 SEDIMENT SOURCES DOWNSTREAM OF DEVIL CANYON Location Vicinity of RM 149.5 l·sland at RM 149.3 Downstream of Island Mouth of Portage Creek Vicinity of RM 148 Island at RM 147 Oo\vnstream of Island at RM 147 r29/a Sediment Source and Type Talus slopes delivering material at each steep narrow . r·avine. Valley walls controlled by bedrock outcrops. Cobble and gr·avel material on micjchannel .bar at river expansion. Island surface . paved with cobb!es and bo·ulders, intermixed with sand and gravel. Bedrock controls both river banks~ Bedrock controls both banks, but some talus slopes delivering material. Creek is delivering coarse gravels 1 cobbles, and a few boulders, davetoping an alluvial fan into the river. Fan is truncated where Susitna River flow becomes significant. Significant bedload delivered at high flows. . . Local change in river gradient has caused formation of a mid-channel bar in the river exp2nsion .. I stand is well vegetated above normal high water, with its banks paved with cobbtes. Some sand deposition exists in the backwater zone on the downstream end of the island. AIJuvial deposition exists on the right bank where the main channel is abutted against left bank. 4 -13 Location RM 145.3 Tributary on left bank at RM 144.8 RM 143 Near RM 142 Upstream of RM 141.5 RM 141 to RM 139 RM 138.9 r29/a Sedi.ment Sourc;~ and Tyee Some erosion along the main channel exists 1 along with mass sJurnping. A mid ... channel gravef bar exists where the river has eroded laterally; widened 1 reduced its veJocity and depo:..ited bedload at high flows. The bar may continue to grow, forcing the channel into the right bank. · 30-foot wide stream is very stable with vegetation leading down to a predominantly boulder/cobble bed. It does not deliver significant sediment to the river. Moderate erosion and scalloping of the right bank.. Several mid-channel bars exist, but appear to be unstable, with young brush growing on them. River is trying to erode into the island on left bank downstream of LRX-56. Gravel is being deposited in the center channel and trying to create a spHt channel configuration .. Acitve erosion of the island on the left bank of the main channel. The river is undercutting the bank, causing slumping ·into the river 1 with the sediment being only temporarily held by coarser material and vegetative roots. A mid-channel gravel bar is building. The river is meandering across the vaHey, eroding valley wall material and depositing it on mid-channel bars .. Glacial/fluvial deposit of gravel and cobbles on the right bank appears erodible at high flows. Topsoil over the gravel alluvial deposits would er.ode, at high flows 1 although lt is stabili~ed with vegetation .. 4 -14 I '1·. ' . . I I. I· I I I I I I· I I I I I I •• I I -1 i. I I I I I .I I I; I 1- I I I I I I Location Sediment Source ·and Type Mouth of !ndian ~River Indian River is a steep stream capable of contributing considerable · bedload during high flows, although there is no glacial input.. Material near its mouth is coarse gravel and cobbles, as smaller material is carried away by the Susitna River. The cobble material helps stablii?.e the right bank of the Susitna. Ari alluvial fan has been built out into the Susitna River, forcing it into the south val!ey wall. RM 138.3 Moderate to active erosion along the left valley wall for approximately 1, 000 feet, leaving a cobble pav~d bank .. RM 137.2 Moderate to active erosion on the right bank on an outside bend, extending for about 1,000 feet.. Erosion occurs at high flows; at normal flow 1 cobble material armors the bank, resisting erosion. Mouth of Gold Creek Gold Creek bed is paved with boulders. Downstream of Gold Creek bridge Moderate to active erosion of topsoil and gravelly material along the right bank. , Primarily, though, the river is reasonably stable, with shallow sloughs and gently sloping gravel bar·s along the left bank. At high flows, there will be some scour and deposition in the high water channeJs. Between RM 135~4 and RM 134 The valley wall is being eroded by the left bank high water channel, contributing a moderate amount of sediment during high flows. r29/a 4 ... 15 Location RM 134.3 RM 132.5 Mouth of Fourth of July Creek Sherman RM 130 RM 128 RM 124 RM 123.5 Curry. r32/b Sediment Source and Type Active erosion and undercutting of the past alluvial deposit on the right bank to just downstream of LRX-40. There is also moderate erosion of the steep high bank on the left bank, with vegetative mat overhanging the bank. Erosion extends for about 1, 000 feet along the left bank. Erosion of sand and gravel on a mid-channel bar is causing short-term local transport of bed materials. Little sediment build-up at the creek mouth indicates that the creek does not carry much sediment. The creek slope is relatively gentle as it enters into the Susitna River. The channel is constricted by alluvial deposits on both banks, with the bank lines well armored with cobbles and boulders, resisting erosion. A few areas of instability are located along the intermediate gravel bar. The river broadens into a braided pattern, with the main channel meandering from the west to the east edge, causing unstable intermediate gravel bars. Moderate erosion and slumping of fine material for about 800 feet along the left bank. Active erosion a tong the right bank. Although the left bank is an alluvial deposit, it appears quite stable. 4 -16 I I I I •• I I I I I I I I I .I I I I I G Location Curry to RM 116.4 RM 116.4 to RM 103.2 RM 103.2 to RM 102.4 RM 102.4 to RM 101.5 Mouth of Whiskers Creek r29/a Sediment Source and Type A typical split-channel condition exists in this reach, with no unusual erosion or breaks in the river grad.ie:nt.. The river is very stable due to coarse bed material armoring the bed and due to well established vegetation above the normal high water mark. The river remains stable, flowing in a well-paved bed with well-established vegetation on the banks. Several large remnant boulders are in the channel, probably deposited from glacial processes. Erosion in this reach can occur only at high water levels, as a cobble paved bankline lies beneath two to three feet of soil. The left bank at LRX-8 is eroding at the outside of the meander 1 but only at high flows. Deposition is occurring upstream and downstream of LRX .. 8 along the ri{1ht bank. The western floodplain elevation lowers at RM 102, becoming more erodible. The channel splits and start to meander in the braided/split channel pattern. The shifting channels .appear to be caused by a sudden decrease in gradient, deposition of bed material, and erodible banks. The banks at LRX -7 are moderately .erodible at high flow .. Bed material is cobble with a thin layer of fine sediments. The creek joins tr;; west sub-channel on the outside of a meander, helping to keep Susitna sediments away from the mouth., The right bank mate.rials in the ·west sub-channel have five to six feet of fine material overlaying easily erodible gravel. 4 -17 I • J Location Downstream of Whiskers Creek RM 101.0 RM 100.5 RM 100 RM 99.6 r29/a Sediment Source and Type Fine material overlaying gravels would erode at high water Jevels. A mid-channel bar covered with young vegetation appears to be well established, helping · to keep the major sub-channel to the east. The main channel JOtns the west sub-channel. A scallop in the right bank indicates turbulence during extreme flows. Numerous gravel bars appear with the river becoming wider and shallower. Several examples of cross-channel flow reflect the instability of the bed through the Jower reach. The floodplain elevation Jowers, with bank material appearing easily erodible at moderate to high flows. Bank erosion in this reach is ctccelerated by undercutting of trees which fall into the river, creating sweeper~;, turbulence and niching of the bank. The west side of the channel is in a very unstable condition. Easily moved bed material creates numerous gravel bars which catch debris, forcing the river to create new channels which are constantly moving back and forth. Along east bank, erosion will probably occur only at high flows. An ice jam occurred here in 1981, and is believed to occur virtually E!Very year. Vegetation along the banks is primarily controlled by ice action. 4 .... 18 I I I I I I I ••• I I I· I I I I ••• I I I- I -- &IJ (!) a: <( x· (.) .. fl) -0 Prepared by: ---.. ___ . ___ _ SUSPENDED SEDIMENT RATING CURVES SlJSITNA ,RlVER NEAR DENALI AND : MACLAREN RIVER. NEAR PAXSON FIGURE 4.1 - .... -.. ----~. .... -- I 1,000 I 2 I 3 I I I I I I I I I I I I l I I I 4 5 6 7 8 9 10,000 2 3 4 5 6 . 7 8 9 100,000 f 2 I 3 I 7 SUSPENDED SEDIMENT DISCHARGE (TONS I DAY) SUSPENDED SEDIMENT RATING CURVE SUSlTNA .RIVER NEAR CANTWELL (VEE. CANYON) ________ .. _ . --------- I .. ! ~ h I I I 1,000 R&M CONSULTANTS • .lNC. I I 2 3 I I I I ~ I I • · • I l I I I l I I I 4 5 s 7 a 9 1 o,aao-. . 2 3 4 5 6 7 s 9 1oo,ooo SUSPENDED SEOIMEN.T DISCHAR~E (TO.NS /DAY) SUSPENDED SEO·I~1ENT RATING CURVES SUSITNA RIVER AT· GOLD CREEK I I • I I I 2 3 4 5 6 7 Pr ared for: ·. FIGURE 4.3 ----------.. --.. .. .. ---- l ~ . ' . !i_ ---~-I-!-· I- ! Tf t jq ,, J . i ; . ' . I : : .. ; . .: ; ... • li . I ' . ~ I ~ f . ~ r• 7~··'" ~· l·t 1rll . ~-:=• ,_:;. ~=-t--.: 1.:.1:· + ,, !I f; .~; • t~~ ~f:~ ~~ ~-r ~.. fiii: .. . . ..:. 1-1_-J..--· . ~~ li. , ..... ,.;... .F 1··-'':. I :.1:: r• ~~~ 1-r-.: i-'-r. ~ ,, ']'( :. . t!i' 4 __ ~ ;;-" ; ... ,_ .. ~~ .. ; r~ . H, .. . I .;... ,_ J... ~~-~!"' ~ 11 1 1-:;_. '':";-· .• ·.: .; ~-r-=-H ·~ .. : ~ -;;;_-[:! ·. ':-:.. ... I· ,_ ~..: 1: r.:-;. . ~--~ .. ~fl ~ f-H-+· 1..:.. f-f-I ·j=l-j:.:. j::., .. r- !• :-/li'· . ~ w'. . I= l! ~-r:. . ..:.. 1_:: ~:· t'..: I· j_::. .. . ~ i:;:.J;.. ~ 1-:, 1·:. 1:.1·· t:-k: 3 ___ 1':.: 1:.:: t::: I·· j... ~-, .. 1:.:· 1--;.. I• ii ... ,,~ li * 1-· : .. . I lli 1-.... 1-I·· l-I ~-1:: ~ ~ t·: 1:: I· I[:,J !I [jli!l!!· t-I· '::: ~:: f-· i·· t= 1-1-I •. 1:: 1-: ... 1-· r.-1--I· 1·-~ 1:_ 1-1-1: r-·-·-·to- -I-li _.._ I~ :--1--I· ~-. I~ ;• -I· ... , .. . . 2 __ '" 1-1-· 1-· I·· 1· I! -1-li~:: l~itn 'W" . ·-1·-1-· 1-,_ I~ , __ 1-1-1-1-I· 1-~ I~ -~ :~ 1-: ,_ ~ . I. ~-1· ~ 1·-, ... . I·• , :~; ii IP r,· !·-I· I· ~ ~---~--I~ ' . 3~!,' 5 i•p . !-· 1--r-~ ... r-. 1--~-,. i-f--1--· H~ '' ,, .. !~· 1-i--f-1~ 1·-t-u ·~ I-!· .. !• [~!·' I·~ ·~ .. 1-· f-· 1-l;:.~ .,.:.-1--'l--, ...... t ]l~'li ..,.:;;.. --1-I~· ,_ t; p ~ [;;i.--I· > --~-1- f-·-' f' 1-~ -,_I· 1-.oi-i-, .. . t <', IO,QQ.Q I; ..... -· !"'-' ''!!(' 9 ... f-: f.. ,. j; if F.:: I·; t;. [:! h: b3' ~-;;r. t·:r; I~.:: 0 li~lt:r ll [; i"• ' f:.~ I • I ! I i l!ll ~ [~ !':':: 1:::: •· j;;. I· 1-t~-s_ r::. F-J-F,;; , .. 1;, -+=-I:. ~ I\ I ~I Cl~l E~ ~~Jli\ If ~ 1-;:: r.= -·-r:: -. I• i· I _7_ ~~-~:-I~ . -~ ,_ 1··,~ , .. t::,. I· I i J~- N ~· ~j 1\-! i\ I • !['\ Hr r-tt I~ I;;; ~~ F r-;; II .. ·cf ·::: r ~ . 1: 1'·1·1· ~m: N . .: 1: 1.:: ~:· I• 1- ~ . 6_. I. I· I:: 1::: 1::: 1·: I• I· .: '..;. I· . I· h; . u:: . I:. : .. ,.. ~ 11 1-·-1-,_ !-,., I· I· ,·: I· I: wr:;:!: i :-. !· I· ~"""" I· .. I· 1-i- 5_ ,_ r.:· :.-,: : ,_ t:~ ll I:: r= ~ 1-!·. '· r~ f-I:: I: · l!l· ; ~~ ~ r? ~~I lil :-: [~, .. ,. Ill w~~-~~!~~: 1.:: :...,.. I· ~""'~ ··'· .. , ~ ..... f· !'-' if ~-1-i • 1--F-· r:.. :;:i',})~ i_ 4-~ !--" .. _:. !.:: ~ .: I; ·.,_ ij ~~: I ;; I~ I:~ ~ ~ ...... I· 1::: ,;· !-::_ 1: . ·-~ f:.-. il\rf:: .:.. .;, ~~= --.. jl r::-• 1-.. -r: It It ;. . -r:.. . :: t: 1;;:-1· 1---,.:: f= ;:: 1·-= I·; 1:~ I:. 1:: -~ : 1-·: I· ., ... II I~. 1::. I: .~. • 3 .... 1-· f ~ f·, ~-. ,,.;,.: ~~~ ~-~-r:: ~· I· I· r.:: I= .. -i ~ ~~; . . . LP. ..,__ 0 '= t::· t~.:. f:. f.:'. f.~ I· I~ I· , __ ~:: 1::. i: 1: l: ~-t· 1-= t--: !· I·· 1-1111 tff'(; ! ; :: '"• -I= t.:. r-: 1::. f-• I:: !:.:· 1·: 1: 1=-t-::: f.: !i ~~,=;~ 1 .. 1::. 1: I ; l!ti: !; 1.:· t:~ I= 1:.: 1·-. t..: 1::-r--':: 1--·: I • -+ 1L1 I= I· 1-I! t= (!) ·--t-~ I· ... 1-· 1.: 1- J..-1· 1-1-· . 0: 2-. , ..... I--1-· I·· I· ~ 1-1--I-I· f! It . IJI· <( .. 1·-1-:-1-1-1-!- :I: ,_ I·· I-1-1--,...._ I·· ~-!-!-.. ,_ 1--I~ • )i U\::' j (.) .. 1--f-I • i. r· 1-I-1-1- !i[!tL . 1-1--.. 1-I·• f· I· 1-1--1-!· I· (/) ~--f-i l f• [j' ·~ ; -,_ 1-1-1--i-1---1-1· a 1-t--I~ f.-1-i-I· -I~· 1-· 1·-I· ,_ i-1-I·· ' i. . II !f.: .. h· J t ·-1--. ~· l-,, , .. II !~~~~ -t,o6o I 1 I I ' I I I I I I ' I I I I I I I • I I . 1,000 2 3 4 5 6 7 8 9 10,000 2 . 3 4 5 6 7 8 9 100,000 2 3 4 5 6 7 -n --...1 by· . SUSPENDED SEDIMENT DISCHARGE {TONS./ DAY) . n. __ : .'1 ~~or· i L-.~u ... J::'J.. ·: i . - I . -' ~ i. " ~~J ~) ~ ~ l . t .~ SUSPENDE.D SEDIMENT RATING CURVES : ll ~-._ c.s .i. ' R&M CONSULTANTS, INC. CHULITNA AND TALKEETNA RIVERS 10 FlGURE 4 .. 4. ' ' _;_ ... ~.::.. . . .. .·.· . . ',. l-- ~---....... ~--------~...--· --- ~~2 Mi SUSPENDED SEDIMENT RATING CURVE SUSITNA. RIVER AT SUSITNA STATION . R&M CCNSU.\..TANTS. INC:• 01 ' .... ---- ./ FIGURE 4 .. 5 All~ 'I I' I I I I I I I I I I I' I I I I I I a __ _ '--- 0 ...... •. (/J z w (!) a: <( ---.0 en -0 f-z 6 __ _ 4 __ _ 3 __ _ lLJ 2-- :E 0 w (/) 0 UJ 0 z lLJ a.. (/) ::::> (/) PERCENT OF TIME SEDIMENT DISCHARGE EXCEEDED .. R&M CONSULTAI\ITS. INC •.. ANNUAL SUSPENDED SEDIMENT OU RAT I ON CURVES ·c:::=======-------..:4:.:-2:..4 ~~,__ ____ FIGURE 4.6 ~~~(~ ----.. -.. --.. .. " ----- .f.-..l T 11-ITERIM REPORt SOUTHCENTRAL RAlLBELT AREA, ALASKA ALASKA DISTRICT - ~~r---~·-··~·~-~~--··~·~r-·t-t-Fi~r---~~~L-t-L1--~·~··r··~·~· .. t"~·~·---~-·~~-·-·~~~~+-~4-*-~~---L--{-~~J_+-~~~~~.~~---C-O~R-PS~J~3~~;EE~r~9~~~~E~~-R~$~---t l Z 3 4 $ li T I 9 I 2 3 4 ~ 6 1 8 9 I 2 3 4 5 6 7 8 9 1 1 3 4 6 1 a 9 1 2 l 4 , ~ l 1 s. s l tO •.••• _ _., .••. , .... -100 1000 10,000 100,000 PREPARED ~y I SEDIMENT OISCHA~GE,,_ !tL.JOJ:~S/DAY --------~----~-PREPARED FOR~ ··---~ .. _.,__ . .,.._, __ .,,., __ ..,_ EST I MATED BEDLOAD SUSITNA RIVER AT RATING DENALI CURVE --- VERY FINE GRAVEL: - --------~~~ ____________ _, _______________ -===:==!llle!!!!!!!!!!l!!l!l!ll~ --~-----.. ---- . BED MATER1AL MOVEMENT CURVES LRX -54, -~7,·-62,-68 .. --- LARGE COBBLES -- I lj I FOR• 4.8 110. ~-~~~~~---~--~-~~-----~-----------------------------....,--------~-------111!1'1------·-------••. -------- 50 .,J::::. I N "" 40 I I tl) -(J 8 Q ... 30 ~ q -t&. --· - - - - - - - - - - - - - - --· - 50 lO 0 PREPARED BY t BED MATERIAL MOVEMENT CURVES LRX -36,-38,-39,-40 ~ I I fOR: --· - - - - - - - - - - - - - - - - - 50 t.lt -u 8 Q .. 30 ~ u. 20 lO 0 PREPARED BY • BED MATERIAL MOVEMENT CURVES LRX-28 -29-31 -35 . . ' ' . , ... ··' .. I I j l • -· - -.. - - --· ·-- - - - - - - - 0 PREPARED BY • 20 40 60 80 100 120 MAXIMUM BE:D MATERIAL DIAMETER MOVED, MM BED MATERIAL MOVEMENT CURVES LRX-l6 ,-18 ,-20,-24 140 160 teo PREPARED FOR• I -•. --- - --- - - - - - - - - - -.. LARGE COBBLES I I I ,I I I I I I I I I I I I ,I I J. •• I 5 -QUALITATIVE ANALYSIS 5.1 -Response Relationships Hydropower development in the upper Susitna Basin wifl change the sediment and flow regimes downstream of the project until the effects ar.e either diluted by tributaries or until related dominant geomorphic processes override the project induced changes. Flow of water and sediment are the independent variables which determine river channel morphology, and for which the project will establish a new regime for. The remaining channel dimensions, shapes, patterns and hydraulic parameters will be forced to respond and perhaps eventually establish a new balance. Morphologic parameters that are depe:1dent. on and would respond to altered water dischat·ge and sediment load include: d -mean depth, determined by dividing the area by top width w -surface width of channel w d -channel shape, width-depth ratio S -Slope1 river gradient D -bed material sizer o50 ML .. meander wave length ¥ -Sinuosity When considering a specific river reach there is a defined pattern that the river has developed or is striving to achieve. A pattern change could occur if the independent inflow variables of sedim€nt load and water discharge were changed. However, certain constraints are imposed ontc the system which could predominate and locally override both the independent and dependent variables. The potential constraints consist primarily of remnants from past ge9Jogic processes such as valley walls, bedrock outcrops, and g1acial/fluvial processes. Based on research results of Lacey (1929-30), Blench (1937), Lane (1955), Leopold and Maddock (1953), Santos-Cayudo and Simons (1972) and Schumm (1971), the following general statements concerning a river's response to altered water discharge and sediment load can be made. (1) Depth is directly proportional to the cube root of discharge and inversely related to the bed-material discharge . r30/a 5 -1 (2) Channel width is directly proportional to the square root of discharge. (3) Channel width is directly related to sediment load~. (4) Channel shape (width-depth ratio) is directly related to .sediment load. · (5) Meander wavelength is directly related to discharge and to sediment load. ., (6) Gradient is inversely related to discharge and directly related to sediment load and grain size. (7) Sinuosity is related to slope and inversely related to sediment load. These qualitative relationships are used as guidelines in determining potential changes to river morphology as a result of flow and sediment regulation. The base premise of these relationships is that the river has a full opportunity to form channel(s) within its own sediments. Limitations on the Susitna Rivers freedom of movement are discussed in the following sections. 5. 2 -River Pattern and Channel Characteri·.stics Control Some 15,000 to 20,000 years ago, the Susitna River valley betweeen Devil Canyon ·and TC=ll keetna was the route of glacial ice flows. Recession of the glaciers formed some of the surficial features present within the valley. Several of these remnant forms and depositions impos3 controls on the river behavior and act as an independent variable along with flow and sediment. Presence of several terraces in the valley bottom indicate that as . the ice receded 1 a larger quantity of water and sediment was available and the older river bed was at a higher elevation. The process of degradation through the periglacial deposits has been by a preferential sorting mechanism, in that the river has moved the small and medium sized particles down the system and either formed temporary alluvial deposits within the floodplain or flushed the n1aterial to and beyond Talkeetna. This process of downcutting and reworking of the glacial sediments has developed an armor layer of cobble sized material around the main channel perimeter. · r30/a 5 - 2 I I I I I I I •• I •• I·· I I I I I I 'I I I -· I I I' I I I I I ·-· I I I I I I The presence of the armor layer around and along the river channel is not verified by subsurface excavations. However, numerous observations were made during the hydrographic surveys conducted in the fall of 1980, when the watel"' level was low and water dear. Exceptions assuredly do exist, but the armor layer is a definite control feature of the system that limits or retards channel movement. Bedrock controls the river through Devil Canyon and intermittently downstream to Curry.-Although no direct evidence exists that the channel bed is on bedrock, it is believed to influence the river gradient in some locations upstream of Gold CreeK. The more obvious influence of bedrock on river behavior is along the valley walls where the channel flows impinge on it. At several locations, the bedrock limits movement on one side, thereby magnifying the influence of processes that may occur along the opposite valley wall. This situation exists at the confluence of several tributaries. These steep gradient streams have delivered a significant quantity of sediments to the Susitna mainstem and have formed conical shaped alluvial deposits. Due to the steep gradient of these str·eams, a portion of the material delivered by the tributaries is larger than that which the Susitna normally carries. Therefore, the progressive encroachment has. narrowed and deepened the channel against the bedrock valley wall. These constrictions establish hydraulic control points that influence the flow of water, lee and sediment. Several small tributaries have pronounced alluvial fans which h~v£t formed on the valley bottoms. These depositional features ar~e considered periglacial because of the established vegetation and the incised channel. During deglaciation, abunda~ce of glacial de;:bris and meltwaters-provided large quantities of sed1Ment to the valley. Subsequent stabilization of the basin resulted in a $'"erltJction of sediment, aUowing the streams to develop a channel through tl:-)e alluvial fan. Presently these fans ar~ relativeiy stable and are not expected to grow significantly. Dur-ing torrential· events, · reworking of the deposits and episodic delivery of sediments can be expected~ Patterns Four t'!ver pattErns ara evident on the Susitna River: single chann':·:.~, split channel, braided, and multi -channel. Characteristics of aach ar·e shown in Figures 5.1 through 5.4. These t~haructeristic patterns are used in Section 5.3 when describing the various river reaches. In general, the Susitna River ha.s either a single channel or spiit channel configuration r!4b~··,ve the confluence with the Chulitna. Near the Chulitna t:onfiuenc~, the SHsitna assumes a braided pattern for the remaind-~:"' cf its length. In the reach from RM 61 to 42, a combined /~~ttern is evident, with a braided pattern on the western ·r30/a 5 - 3 I tl L~---~-·:'~~·· \ ~~""'-'--"·j--'. G:::_·'c ~~~-· ,' ""'"""'>-.. ,., •• •'. "" floodplain and a multi-channel pattern on the eastern floodplain .. The pattern of braided rivers contrasts sharply with the pattern of other common river types. An explanation for thls phenomenon has been offered by several investigators (Fahnestock, 1963; Leopold, et al., 1964; Leopold and Wolman, 1957; Mackin, 1948; Henderson, 1966; Church, 1972) ~ Although each expfain~d reasonably the cause of braiding with respect to the lndivid12al study 1 the resulting conclus~ons nften conflicted with others. The cause of braiding has been variously attr~buted by different authors to ~bundant sediment . load, iarge and sudci.en discharge variations, e~·odible banks, and high gradiepts. lt appears that braiding resuSts from all of these char-acteristics ~rather than being dependent on only one. l\1ollard (1973) developed a , scheme to define the influencing factors on alluvial river patterns. This · scheme expresses braiding as a result of high rates of bedload transport, low channel stability, high sediment supply,-high gradients and low upstream flow regulation. 5.3 Regime Analysis of Susitna River Reaches Project released flows will vary considerably from the natural flow regime. Generally the Susitna River at Gold Creek exceeds its mean annual flow of 9,650 cfs during the months of May through· September and drops to 1,000 to 3,000 cfs during the winter months. At Gold Creek the mean annual flood {recurrence interval of about 2 years) is 49,500 cfsf and for river reaches considered to be in regime corresponds to bankfL~II flow. Bankfull flow is regarded as the dominant discharge that shapes the river channel to accomodate it. For the purposes of qualitatively assessing the response of the river to regulated flow and sediment conditions., bankfull flow is often used as the baseline. Post project flows and sediment loads wi!! be reduced significiantly below this baseline and therefore wi II effect the dependent variables. For example, a stable single-channel reach of the Susitna upstream of the Chulitna confluence has a bankfull width of about 600 feet. Assuming a dominant discharge equal to the mean annual flood, 49 1 500 cfs 1 and appiying a generalized form of Lacey's regime width equation: 1 W = CQ'2 yields a value for C of 2. 70, very close to Lacey1s original value of 2.67. Reversing the procedure for' a post-project dominant discharge of 13,000 cfs yields a regimf~ width of 310 feet. This relationship indicates that the project wiH result eventually in a substantial narrowing of the chpnnel 1 nt.Jt only by abandonment of side channels in multi-channel reaches 1 but also in w!dth reduction in the main channel. Due to reduction in suspended and bed sediment loads, this process will be vet .. y slow, covering many decades or longer. . r30/a 5 - 4 ·I I I 1--:~· I I ·I I I I I· I I •• ; < I I I •· .... . I I I '·- 1 I I I I I I I ·~ I l Downstream of the Susitna and Chulitna River confluence a braided river pattern prevails. Dominant discharge in a briaded system is that which produces a stage that overtops the intermediate active gravel bars. When this occurs the bed materiai is set in-motion, and changes in channel network configuration and shape normally result. Regul.:iting Susitna flow wUI reduce the frequency of the threshold from a mean annual flood to a flood that would be expected to occur with a recurrence interval of 5 to 10 years or greater (Table 3 .. 14). Under post-project conditions, , the f:requency of occurrence of dramatic changes in river morphology wiH decrease, resulting in a more stabilized floodplain, decreased number of subchannels and increased vegetative cover. A summary of river patterns by reach is presented on Table 5 .. 1. Each reach was defined by distinguishable breaks in bed slope and observable changes in river pattern. A general decrease in slope is associated with the downstream progression of the river with the exception of the reach from RM 149 to RM 144. The gentle slope through this reach indicates that bedrock may control the bed gradient. The river profiles ·for the Susitna River and its major tributaries are shown in Figure 5.5 and 5.6. r30/a I RM 149 to RM 144 Pattern Through this reach, the Sl:J-sitna flow~ in a predominately singJe channel confined by valley walls (Figures 5. 7 and 5. 8). At locations where the valley bottom widens, deposition of gravel/cobbjes · has formed mid-channel or sjde-chann~l bars. Occasionally a vegetated island or fragmentary floodplain has formed to a top elevation above normal flood levels, and vegetation has become established. Control Features Frequent occurrence of bedrock outcrops along the valley wall indicates that the river slope may be controlled by bedrock. This hypothesis is further supported because the average slope from the downstream end of De vi I Canyon to RM 144 is less than the next downstream reach, and there appears to be no correiation between the bankfull stage and mean annual flood. Presence of cobbles and boulders in the bed material (Figure 5. 7) aids in stabilization of the channel geometry. Processes ___., . Portage Creek JOins the Susitna at RM 148.9 and has formed a gravel and cobble fan at the confluence& This steep-gradient 1 non-glacial stream delivers significant coarse grained sediment to the Susitna. The Portage Creek fan geometry is depend ~nt on Susitna stages and transport capabilities. §.ummary of Potential Post-Project Morphological Changes 0 0 r30/a The channel is stable, and little change in form is expected. Portage Creek fan will progress out into the Susitna until equilibrium with the regulated Susitna stage is estabHshed. Perching of the stream mouth is not expected. 5 - 6 I I I I I I a· •• I •• I I. I. I I -I I ~1 iJ I I I I I I I I I I I •• I I I I I I I RM 144 to RM 139 Pattern A broadening of ~he valley bottom has allowed the river through this reach to develop . a split channel form with intermittent weH-veg(:tated islands (Figures 5.9 and. 5.10) A correlation exists between bankfull discharge and mean-ar1nual flood. Control Features Where the main channel impinges on valley walls or terraces, a cobble armour layer (Figure 5. 9) has developed with a top elevation at roughly bankfull flood stage. At RM 1441 a periglacial alluvial fan of coarse sediments confines the river to a single channel. Processes Reworking of alluvial deposits is frequently evident through this reach.. Erosion of islands is evident where a channel impinges against the alluvial deposits. Frequent mid-channel bars,. composed of gravel, are mobile during moderate floods. These active bed sediments reform along with subchannel pattern changes. Summary of Potential Post-Project Morphological Changes 0 0 0 0 0 r30/a Erosion of valley walls and terraces wHl decrease dramatically due to the armour layer . Reworking of alluvial deposits in the main channel will continue but at a reduced rate. Main channel form will progress slowly to a more uniform sinuous pattern. Subchannels may become inactive. Tributary at RM 144 could become perched. It may not be able to regrade its coarse bed sediments to meet the regulated Susitna water level. 5 - 7 RM 139 to RM 129.5 Pattern This river reach is characteristized by a well defined spiit channel configuration. Vegetated islands separate the main channel from the side chann-els. Side channels occur frequently in the alluvial floodplain (Figure 5.12) and are deHvered Susitna water only at fi~JWS above 15,000 to 20,000 cfs. Often, valley bottom springs flow into sloughs. There is a good correlation· between bankfull stage and the mean annual flood. Controls Where the main channel impinges valley walls or terraces r a cobble armour layer (Figure 5.11) has developed with a top elevation at roughly bankfull flood stage.. The main channel bed has been frequently observed to be well armoured. Primary tributaries include Indian River 1 Gold Creek and Fourth ·Jr July Creek. Each have built an alluvial fan into the valley bottom, constricting the Susitna to a single channel. Each constriction has establishes a hydraulic control point that regulates water surf?.ce profiles at varying discharges and . associated hydraulic parameters. The railroad bridge location takes advantage of the Goid Creek fan constr·iction and further stablizes this constriction. One mile downstream of the bridge, the main channel impinges the bedrock valley wall and orients the river southward. Ice j~ms h~ve been reported to commonly occur at this location, and backwater behind the jams causes water to spill into the east floodplain 1 contributing to the formation of the subchannels .. Processes . Indian River joins the Susitna at RM 138.5 and has formed a gravel fan at the confluence. This steep-gradient1 non-glacial stream delivers significant coarse grained sediment to the Susitna .. The fan extends several hundred feet upstream and downstream of the present mouth. The stream gradient is dependent on the Susitna stage and does not have difficulty in adjusting to a variable Susitna stage. The Gold Creek bed is composed of cobbles and boulders. The mouth is presently very steep. Because the confiL•ence is at the outside of a Susitna meander 1 Gold Creek bedload sediments are readily transported l;?y the Susitna. This creek has difficulty adjusting to a variable Susitna stage. r30/a ·-, j 5 - 8 I I I I_ I I I I I I I· I I I I I ,I I· I •. I I I I I I •• I I I I I I ~ I I I I I I Fourth of July Creek has a relative gentle gradient as it fiows into a Susitna subchannel. It is a non-glacial stream with a cobble bed. Comparison of 1951 and 1980 air photos indicates a few changes in bank lines and island planform, but generally the channel delineation is stable. Although visible evidence indicates that a majority of the main channel ls welt armoured with cobbles, ther·e are s:everal active gravel bars through this reach. A partial sou ret. of this sediment is from erosion of alluvial deposits. Currently 1 active erosion is occurring on the west bank between RM 134 and RM 135. At RM 132.5, several active gravet bars exhibit a braided river pattern. It has been observed that during moderate flows, these mid-channel gravel bars erode and reform . These processes indicate a long duration 1 small volume, but relative continuous movement of gravel bed material. A common feature associated with the beds of side channels and sloughs at the bifuration point Is a cobble berm. These berms act as control weirs 1 limiting delivery of main channel surface water to flows greater than 15,000 to 20 1 000 cfs. Summary of Potential Post-Project Morphological Changes 0 0 0 0 0 r-30/a indian River will continue to extend its alluvial deposits into the Susitna. Indian River should easily grade its bed to meet the regulated Susitna Stage. Gold Creek gradient is presently very steep as it enters the Susitna. The cobble and boulder bed will resist regrading the bed to meet the regulated Susitna stage .. Fourth of July Creek gradient is currently relatively flat and should easily adjust to the regulated Susitna stage. Erosion of valley walls, terrace deposits and alluvial banks will reduce dramatically due to the armour layer. · Reworking of active gravel bed materials will continue. at a reduced rate. Main channel form wiH slowly progress to a more uniform sinuous pattern. Several of the sloughs and subchannels could be blocked off from the Susitna main channel at the regulated stage. Where these channels rejoin the Susitna, gradual siltation and vegetation encroachment wHl occur. 5 - 9 RM 129.5 to RM 119 Pattern River patterns through th;s reach are similar to those discussed in the previous reach. Th~ most prominent characteristic between Sherman and Curry is that the main channel prefers to flow ~gainst the west valley wall and the east floodplain has several sidechannels and sloughs (Figure 5.14). The alluvial fan at Curry (Figure 5.13) constricts the Susitna to a single channel and ter·minates the above described pattern. A fair correlation exists between bankfull stage and mean annual flcod through this reach. Comparison of 1950 and 1980 airphotos reveals occasional local changes in ban klines and island planf'orm. Controls The west valley wail is generally nonerodible and occasionally has exposed bedrock outcrops. The resistant boundary on one side of the main channel has generally for·ced a uniform channe! configuration With a well armoured perimeter. The west valley wall is relatively straight and uniform except at RM 128 and 125. 5. At these locations bedrock outcrops protrude out and deflect the main channel to the east side of the floodplain. Processes At RM 128 and RM 125.5, where the main channel crosses over to the east floodplain, a tendency to braid is exhibited. The river has an opportunity to increase its br•eadth, to d~crease its depth and to deposit a portion of its bedload. The broadened channel flows against the resistive east bank, regains its shape and resumes its preferred western route. ·Jn comparing 1980 aerial photos with 1950 photos, it can be seen that .similar processes have been ongoing through this era. Some erosion of the east channel alluvial deposits has occurred but no dramatic changes are evident. There is moderate erosion of fine mater"ial along the left bank near RM 124 (Figure 5.13). Cobble berms at the bifurcation of subchannels and sloughs are prev~lent through this reach. A possible explanation for this phenomena may be as follows. Even when a river pattern appears straight, such as when the main channel flows against the west valley wall 1 streamlines will meander within the channel. This process develops secondary currents that flow in a helicoidal direction.. The total sediment load is dh·ected away from the hard surface toward the opposite bank. Depending upon flow, local hydraulics, and other controls, the sediment may either be re-entrained -oro deposited along the bank. As the flow increases and spills into the side channels, the coarser sediments are delivered to the sidechannels. When the coarse sediment r30/a 5 -10 I I I I I I I I I I ·I I I I I I I I I I I I -• I I I I I I I I > I I I I I encounters a shallow channel with lower velocities, it witi drop out and deposit. As flow recedes t the flow over the berm may channeJize, developing a minor incised channel on the downstream side of tr.e berm, and eroding a niche into it. This niche provides a temporary waterway at moderate-flows. The minor tributaries along this river reach afl appear to have fairly stable, but. steep, basins. Contribution_ of sediment to the river will be episodic during extreme precipitation events.. Of prime importance is that the tributaries and springs will deliver fresh water to the east subchannels and sloughs. ;Summary of Potential Post-Project Morphological Changes 0 0 0 0 r30/a Erosion of valley· walls 1 terraces and alluvial deposits will reduce dramatically. At RM 128 and RM 125.5, reworking of gravel material will continue, but at a reduced rate. channel form will become more uniform. bed Main Cobble berms at the side channels and sloughs will con'tro'l and perhaps block main channel flow from entev-i ng them . The river should continue its preferred and stable route along the west valley wall. 5 -11 ,• RM 119 to "RM 104 Pattern 0 Through this reach the river is a very stable, predominantJ)I incised single channel pattern (Figure 5.16) with a few islands. Control The channel banks are well armored with cobbles and boulders (Figure 5.15), and visual inspection indicate~ that the bed is also. Several large boulders occur intermittently along the main-channel, and are believed to have been transported down the valley during glacial ice movement. They provide local obstruction to flow and navigation, but do not have a significant -impact on channel morphology. Processes The bankfull flow and the mean annual flood !:riteria do not appear to apply to this-reach. Flow at 53,000 cfs is lower than i:h~ vegetated island and bani< elevations. 'It appears that ·this reach is capable of transporting all sediment delivered to it. In addition, this broad low-relief valley delivers little or no sediment to the system. In effect, it appear$ that this reach acts as a .conduit carrying the total·-sediment load through it. Erosional and depositional processes are almost indetectable. Comparison of 1951 and 1980 aerial -. photographs reveals no significant changes in channel morphology. Gravel bars above the 18 1 000 cfs flow level appear to have the same form, with only one exception at RM 114. There have been some changes in the alluvial gravel deposits, minor erosion of the islands 1 and some stabilization of the floodplain adjacent to the east bank. These proc.c:~.sses are represent~tive of the system. Summary of Post Project Morphological Changes 0 r30/a ( } No consequential changes in the channei morphology are expected. 5 -12 ~·- I I I I I I I I I 'I I I I I I I I I I I I I I I I I ·~ I 1: •• I I. I I I I I r .• 1~-, . •. I~ .. RM 104 to RM 9S Pattern At the confluence of Susitna, Chulitna and Talkeetna Rivers, there is a dramatic change in the Susitna pattern from a .split channeJ to a braided pattern (Figures 5.17 and 5.18). Emergence from mountainous confined upstream basins into the lowland unconfined basin has introduced the ability of the river systems to develop laterally. Ample bedload transport and a gradient decrease also assist in establishing conditions to support the braidad pattern. . The Chulitna River has a similar mean annual flow as the Susitna I yet its drainage basin is about 40 percent smaller. Its glacial tributaries are much closer to the confluence than the Susitna, and a majorlty of the Chulitna River1 s length is confined by rock valley warls. As it emerges from the incised canyon 20 miles upstream of the confluence, the river transforms into a braided pattern with moderate vegetative growth \on the intermediate gravel bars. At about a midpoint between the canyon and confluence, the Chulitna exhibits a highly braided pattern .with no vegetation on intermediate gravel bars and . evident recent lateral instability. This pattern continues beyond the confluence and the impression is given that the Susitna is tributary to the dominant ChuUtna River. The split channel Talkeetna River is tributary to the dominant braided pattern. Control Terraces generaJiy bound the broad floodplain but provide little control over channel morphology. General floodplain instability results from the three.~ river _system striving,. to balance out the combined flow and sediment regime. Processes Referencing Figure 5.19 it can be seen that considerable movement of channel boundaries has occured in the three rivers between 1951 and 1980. The background is 1980 aerial photography and the dark lines delineate 1951 channel boundaries as defined by vegetation limits. In the Susitna River, there has been some lateral movement of the vegetation lines, with both erosion and stabilization of alluvial deposits with vegeta'tion. The river has maintained the basic braided river pattern. Since 1951 1 there has bee.~3 a progressive movement of the Chulitna River main channel from the south edge of the ftoodptain towards the north. As a result, a remark~t-;t~ amount of vegetated floodplAin on the north bank has eroded. Continued movement to 5 ... 13 .. i !' the north is limited because the iateral migration is progressing up the valley slope. During a mid-summer flood in 1981 1 the Chulitna main channel relqcated from the north side of the floodplain to near· the central floodplain. Cause of this change is unknown bt:Jt could be related to the limited northward movement, debris accumulation or some anomalie that occurred during the flood event. The broad fan-shaped active floodplain gives the impression that the Chulitna is currently aggrading. This concept is further ~videnced by inundation of the established vegetation aJong the north floodplain that is killing the spruce trees,. Although not supported by field data, it appears that a rise in the gravel floodplain bed has occurred recently. Glacier instability far upstream could be the source of flow and sediment regime changes that are influencing apparent instability near its mouth. Continued measurements of bedload transport rate, elevations and stage/discharge relationships will be required to determine with confidence the stability of the Chulitna. The TaJ keetna_ River has had several channel changes upstream of the railroad, but the bridge and bank revetment have stabilized the river as it enters the Susitna River.. ·rn 1979, the bankfine around the village 01f Talkeetna was stabilized with rock riprap9 Preliminary bedload measurements indicate that the Chulitna is the main source of bed-material transport and provides roughly 4000 tons pet day. Through the 90-day sun1mer flow period this would produce 360,000 tons per year or a volume of 240 1 000 c.y .. per year. Assu.ming that 50% of this were no longer transportable by the reduced fl'ood regime downstream of the Susitna and was, deposited over a h:!ngth of 10 miles on an active floodplain width of 3000 feet, an_ ag~rradation rate of about ~ inch per year would resultt Thist.J woutld raise the average bed Jevel 1-foot every 25 years. The above simpiistic analysis. indicates that continued monitoring of the sediment balance at the confluence is advisable. Summary of Potential Post Project Morphological Changes (a) Chulitna River will continue to expand and extend its alluvial deposits. Decreasing the summer flow magnitude in the Susitna River will allow the Chulitna to extend aHuviat deposits to the east and south. This could induce erosion of the east bankline towards the railroad. (b) Increased deposition at the confluence will cause backwater up the Susitna River. Lateral instability will continue after the project. (c) The Talkeetna River wiH maintain the ability to create its chan net -into the Susitna system.. No consequential interacti<'>ns can be foreseen at this time .. r30/a 5 -14 I I I I I I I •• I --+"A----·-· •• I'· I I I I I I I I I I •• I I I I I I I I I I I I I I I I RM 95 to 61 Pattern Downstream of the three-river confluenr;e 1 the Susitna continues its braided patternr with multfple channels interlaced through a sparsely vegetated floodplain. The channel network consists of the main channel, usually one or two subchannels ar1d a number of minor channels (Figure 5.20). The. main channei is" easy to identify when viewing the river at low flows, as its surface water width is greater than that of other channels. Observations of cross-sections of the river fi.Qodplain indicates that the main channel thalweg is 5 to 10 feet deeper than in other channels. The main channel meanders irregularly through the wide gravel floodplain and intermittently flows against the vegetated floodplain. it has the ability to easily migrate laterally within the active gravel floodplain, as the main channel is simply reworking the gt'aveJ that the system previously deposited (Figure 5.20). When the main ·channel flows against vegetated bank Jines, erosion is retarded due to the vegetation and/or bank mater~ a Is that are more resistant to erosion. Flow in the main channel should persist throughout the entire year. Subchannels are usually positioned near or· against the vegetated floodplain and are generally on the opposite side of the floodplain from the ma'ln channel. These channels normally bifurcate (split) from the main channel when it crosses over to the opposite side of the floodplain and then terminate when the main channel meanders back across the floodplain and intercepts them. These channels have smaller geometric dimensions than the main channel, and their thalweg is generally about 5 feet higher. Their flow regime is dependent on the main channel · stage. and on local behavior at the point of b!furcation. Flow· may or may not pers!st throughout the year. Minor channels are considered to be those relatively shallow, wide channels that flow over the gravel floodplains· and complete the interlaced braided pattern. These channels are very unstable and generally short.:.: lived. Control The main channel is intermittently controlled laterally where it flows against terraces. Since the active floodplain is very wide, the presence of terraces has little significance except for determining the general orientation of the river system. An exception is where the terraces constrict the river to a single channel at the Parks Highway bridge. Subchannels are directly dependent on main channel flow and sediment regime, and generally react to the same •. Minor channeis react to both of the larger channels behavior .. r30/a 5 -15 Processes For braided rivers that have the ability to form channel networks within the river sediments, bankfull floods ar_e· considered to be the dominant discharge. Floods of greater magnitude do not significantly increase the river•s stage because-·of a. sudden increase in flow width. Flows above bankfull stage move gravel from bars into the channels and change the channels' shape and network. Dramatic. changes in channel position and form occur whenever the river attains bankfull stage. At this stage, the active gravel floodplain is subject to movement, with considerable local scouring and fiiHng.-The main channel can change Its lateral location ·dramatically, intercepting the other channels at different locations and ther.efore forcing them to readjust. Generally, it can be said that the geometric dimensions of the main channel will remain uniform., The minor channels react to other predominant processes such as main channel and major subchannel movements 1 debris accumulations and local sediment movement. When the flow recedes 1 the channels . merely reflect the most recent governing processes. Through this reach of river, debris accumulations participate heavily in forming the gravel ~loodplain and channel network. Debris accumulations along the periphery of active gravel floodplain bars are common~ Evidence indicates that the debris controls several flf the minor channels and influences the meandering patterr, of major subchannels . and the main channel~ Debris accumulatio',1S can grow, move, dissipate or emerge during floods greater than bankfull stage, and it is impossible to predict debris locations ar.d local river response to this process . . Summary of Potential Post-?_rcject Morphol.?_£;ical Chan,a~ 0 0 r30/a Under post-project conditions 1 the bankfull flood (mean annual flood under pr·e-project conditions) could be expected to have a recur•rence interval of once every five to ten y~~ars. This will tend to decrease the frequency of occurrence of both bed material movement and of changes in braided channel shape 1 form and network. Over a long period, a trend towards relative stabiliz.ati.on of the floodplain features should occur. The main channel and major subchannels could progress to a more uniform meandering pattern. The active gravel floodplain may develop a vegetative cover and the minor subchannels become relatively inactive. It must be recognized that an extreme flood generated by either the Chulitna River 1 Talkeetna River, or both, could mask this process and delay observable changes for several years. 5 ?" 16 . \.J I I I I I I I I I ~· I I I I I I ;I I I I I I I I I I I 1: 1: I I I I I I I I ' •. RM 61 to RM 42 Pattel'"n DowL.stream of the Kashwitna River confluence, the Susitna River branches out into multiple channels separated by islands with established vegetation (Figures. 5.21 and 5.22). This reach of the river has been named Delta Islands because it resembles the distributary channel network common with large. river deltas. The multiple channels are for·ced together by terraces just upstream of the Desh ka River. Through this reach 1 the very broad floodplain and channel network can be divided into three categor'ies: 1 . Western braided channels 2. Eastern split channels 3. Intermediate meandering channels The western braided channel network is considered to be the main portion of this very complex river system. Although not substantiated by river surveys, it appears to constitute the· largest flow area and lowest thalweg elevation. The primary morphologic parameter that has maintained the western side as the prime conveyor of water (and probably sediment) is the fact that the western braided channels is the shortest distance between the point of bifurcation to the confluence of the Delta Island channels. Therefore it has the steepest gradient and highest potential energy for conveyance of water and sediment. Controls Terraces bound the very broad floodplain and only provide general orientation of the channel network. The floodplain appears to be filled with river deposited alluvial sediments which the river can readily massage. Vegetation retards channel changes, but should not be considered to control channel positions. Processes The basic processes described for the Sunshine Statjon reach -would be applicable for the western braided channels. The active gravel floodpl.aln is subject to major changes during bankfull floods. A main channel prevails that has an irregular meandering pattern 1 the largest channeJ geometric dimensions, and conveys water throughout the year. · ----- The distributary channels branching off the western chsnnels collect ~!eng the east valley wall and form the ea~tern split channels.. A split channel system differs from a braided system in r30/a 5 -17 that there is more relative stability and the channels are generally deeper with respect to width. A better defined and more uniform meandering pattern reduces the channel gradient, which aids in maintaining channel stability. Distrlbution of water and sediment from the west to east is dependent on the flow and sediment regime of the Susitna River as well as Jocal behavior at each of the channel bifurcation points. Quantity of sediment and ·flow delivered eastward is expected to be highly varlab!e from year to year. Several intermediate channels meander through the vegetated islands. These channels are expected to be deep with respect to width, and have a relative gentle nradient because of the pronounced meandering patterns... Th(., channels react to the regime behavior of the western and eastern channels. Upon comparing the 1951 aerial photos with 1980 aerial photos, dramatic changes were revealed in the Delta Islands between the Little Willow Creek and Willow Creek confluence (RM 48 to RM 52). The western braided channels eroded away a considerable amount of the islands and opened up a major flow connection between the west and east.. This major change could instigate long·term changes in the lower Delta island channel network form for several. years. In viewing this area during late summer, 1981, it appeared to be very unstabJej again the governing control appears to be the steeper gradient in the western braided channels! Summary of Potential Post-Project Morphological Changes () 0 The Delta Island reach is a very complex and unstable channel network. There exists a very broad floodplain filled w1th varying channel typ~s. Project-inducec4 ~hanges in flow and sediment regime realized at this. reach ' be diluted by contribution from tributarie"¢) and by the Sus .• a satisfying its sediment tad by reworking the wide floodplain alluvial deposits. ·' .~ic changes in the overall channel network are ...._ . .., ... ·expe· · · ·· I ;~.r.,. ·-. ...-. "'~¥ • Local changes could occur in the main channel lateral position but bas~c channel geometry should remain relatively similar .. To quantify post project morphology changes with respect to the natural system would be extremely difficult, if not impossible. r30/a 5 -18 I I I I I I I I I I I I I I I I I :I I I I I I; ·~ I I I I I I I I ,I I I I ., I ~ -- RM 42 to RM 0 Pattern Downstream of the Delta Islands, the Susitna River gradient decreases as it approaches the ocean. The river's basic pattern tends toward a split channel configuration as it adjusts to the lower energy slope. There ~e short reaches where a tendency to braid emerges in the river pattern. Downstream of RM 20, the river branches out into delta drstributary channels .. Control Terraces constrict the floodplain near the Deshka R~ver confluence and at Susitna Station. Further downstream the terraces have little or no influence on the river. The Ventna River joins the Susitna at RM 28 and is a major contributor of flow anti sediment. Tides in the Cook 1 nlet rise above 30 feet and there1-=ore will control the water surface profile and to some degree the sedimer~t regime of the lower river. River elevation of 30 feet exists at about RM 20 and corresponds to where the Susitna begins to branch out into its delta channels. Processes The vegetated floodplain con·sists of alluvial deposits with surface features revealing .old meander scrolls and filled-in channels. The well established vegetation helps to retard erosional processes and channel migrations, but these processes are definately on-going .. Jn comparing 1951 and 1980 aerial photographs for the river reach at Deshka River conf,uence ( RM 40 to RM 42) 1 there can be seen significant channel movements, bank erosion and d~position 1 with ban kline movement of sevei"ai hundr~d feet (Figure 5.2.3). Several highwater c;hannels and/or sloughs branch off the mr.1n channel into the wide floodplain. These channsls appear to be very stable exeept for the occasion where the main channel migrates latercHiy and intercepts one of the stems. Delivery cf water· a1nd sediment to these subsystems is directly dependent on the main channel flow regime and associated stage. The Yentna River contributes about 40 percent of the mean annual ·flow to the Su$itna River as measured at Susitna station.. At the confluence, considerable changes in bank lines have occurred since 1951 as a result of each of these systems adjusting to each other (Figure 5.24).. Because of the variable flow and sediment delivered by each of these systems during events, on an annual _basis or even long-term, instability of channel morphology at the confluence is expected to continue .. r30/a 5 -19 At RM 19, Alexander Slough branches off the main channel network. lt also marks the beginning of the Susitna River distribution through the delta into Cook Inlet.. Alexander Slough outlet has drawn attontion recently because it is the prime navigation corridor downstr·eam to Alex-ander Creek. Comparing ael''ial photos, there are no noticeable significant changes in the slough outlet configuration, gravel bars or banklines" The slough flow is directly related to the Susitna main channel flow and stage. Because Alexander Slough is a major di~tributary that feeds straight and direct to tidal waters, it is believed that an outlet will naturally be maintained during normal summer flow regimes. Summary of Potential Post-Project Morphologic~l Changes 0 Effects of the project on river morphology through this reaci1 of river would be extremely difficult or impossible to quantify. The abov~ qualitative discussion has simply brought out some of the natural processes and obser'lable changes that have occurred over the last 30 years. The dilution effect of major-and minor tributari?S as well as the balancing of changes by the Susitna River system should mask any me.asurabk ch~ng:s that could occur as a result of the project for several decades. t 30/a 5 -20 _,..., I I I I I I I 1- I •• I •• I I I I I I I I I I I I I I I I I I I I I I I I River Mile RM 149 to 144 RM 144 to ·t39 RM 139 to 129.5 RM 129.5 to 119 RM 119 to 104 RM 104 to 95 RM 95 to 61 RM 61 to 42 RM 42 to 0 r30/a T~BLE 5.1 SU.SITNA RIVER REACH DEFINJTJONS Average Slope 0.00195 0.00260 0.00210 0.00173. 0.00153 0.00147 0.00105 0.00073 0.00030 Predominant Channel Pattern Single channel confined by valley walls. Frequent bedrock control points. Split channel confined by valley wa!i and terraces. Split channel confined occasionally by terraces and vafley walls. Main channels, side channels sloughs occupy valley bottom. Split channel with occasional tendency to braid. Main channel frequently flows against west valley wall. Subchannals and sloughs occupy ea!:!t floodplain. Single channel frequently incised and occasional islands. Transition from split channel to braided. Occasional Jy bounded by terraces. Braided through the confluence with Chulitna and Talkeetna Rivers. Braided . with occasional confin~ment by terraces. Combined patterns: western floodplain braided, eastern floodplain split channel. Split channel witt: occasional tendency to uraid. Deltaic distributary channels begin forming at about RM 20. 5 -21 RJVER MILE 103.2 Single Channel 0 0 0 Stable Non-erodible bartks; controlled by valley walls, bedrock or armor layer consisting of gravel/cobbles. Channel may be either straight or meandering i in straight channels, thalweg often meanders across channel. • 0 Occasional fragmentary alluvial deposits in floodplain. , I PREPARED BY t PREPARED FOR1 S.INGLE-cHANNEL RIVER PATTERN FIG~ S.t I lc ., I I I .I I I I •• I I I I I I I I RIVER MILE 124.4 Split Channel 0 0 0 Main channel behaves similar to singJe channel at low flow. Side channels provide flood relief at high flows (greater than 20,000 cfs), I stands well established with vegetation. Gravel/cobble bed material. 0 Mean annual flood ~orrelates with bankfull flow. Channels are moderately stable. PREPARED BY • PREPARED FOR1 SPLIT..,CHANNEL RIVER PATTERN R&M CONSULTANTS, INC. FIG. 5.2 i ' ! I I I I I I I ••• I, I I I I I I I I I I CHULITNA RIVER NEAR CONFLUENCE WITH SUSITNA RIVER Braided · Channei 0 0 0 PREPAR.ED SY I Floodplain is very wide and shallow even at flood flow. Multiple and interiacing channels in unvegetated gravel floodplain. Move large quantities of bed material during flows greater than bankfull. Results from combination of high rates of bedload transportv !ow channel stability, high sediment supply r high gradient:s and low upstream flow t'eguJation. PREPARED FOR 1 BRAIDED~CHANNEL RIVER PATTERN R&M CONSULTANTS, INC. FIG. 5.3 I I I I I I I •• I I I I I I I I I -- 1 I DELTA ISLANDS Multi-Channel (Delta J stands) 0 Very broad floodplain with little lateral control. Multiple channels consist of a mix of braided, split channel and single channels within floodplain. 0 Relatively unstable, subject to major local changes during single flood events .. 0 Large amount of fine suspended sediment helps stabilize banks; dense vegetation effective in trapping sediment. 0 Bed material consists of gravel/sand with pockets of silt. l l I i I .! PREPARED BY • PREPARED _FOR!' MULTI-CHANNEL RIVER PATTERN . ' . . .. • ~ •• t , ~ • ' ...... •• I I I I I ·- 1 I I I I. I I I I I: I I I -....1 w > w ....1 <( w ClJ z <!: 1'300 11 100 w 80 ~ w > .o CD <( r-70 w w u. -z 0 t-60 <t > w ..J w 5 400 300 NOTES: t TALKEETNA a CHULITNA R \VER PROFILES- BASED ON U.S.G.S. CONTOUR MAPS. 2. SUSITNA RIVER PROF'lL.E-BA~lEO ON tHALWEG ELEVATtON. I I I I I I I I I I I 80 90 100 TALt<EETNA l~lVER I / I I I I I I CHULIT~A RIVER I I / I I I I I I I I I l..OW£R END DEVIl. CANYON PORTAGE CREEK I / GOLD CREEK I / CURRY U.S. G.S. C H UL lT NA GAGE SITE SHERMAN HO 120 1'30 140 150 ISO PREPARED BY : RIVER M1LES PREPARED RIVER PROFILE, SUSlTNA RIVER AND TR 1 BUT ARIES ABOVE SUNSHINE -26 --·-,, ..... -·---------- r.::':::;=::;;-r::-r·----"-·-----------------------------.;_--------------------, ., m ::0::0 fY1 --r << 0 fl'liTl :e· ::o:O (/) ]>"'0 c: z:O z 0 c.,. (J) -:c -lr--z ::om 1'11 _._. tom c:c -icn 01 )>-I ::0 -4. N -....a -Z fT'Il> en , -(i') c: :tJ 1'1'1 (J1 . m .. _,.·,.;- :n m ~· :n m 0 CD ~ .. 500 400 300 200 100 0 .,o :D m ., )I :n m t:J ., 0 ~ ~= -.J w > w _J <t 1.1.1 en z <t w ~ LLJ > 0 Ill <{ .... w w tJ... -z 0 ... <t > LLJ -' w SUSITNA-YENTNA R. CONFLUENCE lO 20 30 40 50 60 70 RIVER MILES PARKS tHGHWAY BRI OGE (SUNSHINE) SKWENTNA. R. CONF~UENCE 80 90 100 1\0 120 '"""' --.. ;._ ~ ". ~-~ - Looking Upstream at Portage Creek, River Mile 148.8 - Talus Slide PBEPARED BY: PREPARED FOF SUSITNA RIVER REACH RM 149 TO RM 144 R&M CONSULTANTS, INC. FIG. 5.7 ~ ---------·---------- z 0 -1-01 <( I N > \.0 w .... w PREPARED BY • R&M CONSULTANTS~ INC. ----.. : ~() SUSITNA HYDROELECTRIC PROJECT CROSS-SECTION Number 61 ~ro ~ J------<-t--------\\.o..J----~-----~-......._.----i·-----1-----.J .. .. -~ I I : --() .,_'Of". ~ too 1- 1- : I 8t;bROCK 1 .S El>R.OC.I< -~ l 1- 1- P..-0 ~fb~ ""'1 1 I ~ ,J l ,.-- ~-------~---------~-· ------~--------~ : ,, 1-... 1- 1- p.. 1- ~ ~() ~-~ p.. .. -- \ .~~ -\ / '\ ~/ ' ~, -\ .... --...-.. ~ ~------~---t-~-~~-+------~------~·~----------------+-------·----- CROSS-SECTION RM 148.7 . STATION; cP tt: ~••1111111 A l II \ PR.EPARED FOR: BIR .. . . . . ~ ' .., . . . ~ . . . . . . . . : . . . . . . . ~' . ·. . . . . . . . . . . . .• . -. . . . -. ; . . .. : -r-" -·· . : . . . -~ tl - PFIEPARED BY • R&M CONSULTANTS, INC. Split Channel, River Mile 141.5 Gravel/Cobble Bed Material·, River Mile 140.1 PREPARED FOR SUSITNA RIVER ~ REACH RM 144 TO RM 139 FIGo S. 9 • --------~-----------~--------------------------------------------------------------------~------------------------------------ 01 I w 1-A z 0 --1- <C > w ..! w PREPARED BY • 1- f- 1'- 1- 1- ~ 10 ~ ---..... -...... "-~ .:~\ ... , CROSS-SECTION Number 55 1---r.~PNSmoi'J'.· Sol~ -roS.QN&:;. t . ·~--t'7~flN.S"/770# t .:s ~Na Tl:) coSBL ~s/.8ouc b£.es I - SRNbj ig~RV£L . ~ I spNI>, c:ksu:s I ~~ (j.i? ;1 rEL ---* ---· -~~-------;·-----++----r~---~~---------~----~-----, . I +-·c~ B.t..E.S ~· t;Rn.'El. G.UTH SAAib r .4TCHE.s ' ~0 '}; ' • l •-• -•--•-_ _l __._ ST/J~TION CROSS-SECTION RM 141-.5 -... ~co88LES oo ~o ~~~ ••••t ,..~-lliL_l___.l_l_ O: LoCIJ"riC/1 OF GRI..b-PilaTO b 1 ,_ : t7Srn-' !:>,;0 a-2ZO """"" b. B'l : Z &>S --. PREPARED FOR: FIGURE 5.10 IIR .. _::_ I I I I I I I I I I I I I I I I I •• I •• Gold ~reek Railroad Bridge, River Mile 136 .. 7 _......, ________ ~ __ ,,_ _____ ····- Gravei/Cpbble Bed MatE~rial and Sr:u·l.d Bar 1 River Mile 137.4 P~lEPARED BY t R,&M CONSULTANTS, INC. SUSITNA RIVER REACH RM 1;39 TO RM 129a5 I PREPARED FOR1 FIG~ 5.11 --------------- (J"1 ) w w P:.!EPARED BY • z 0 ..._. 1- ~ w ... w ... '* R&M CONSULTANTS, tNC. " SUSIT~,J;\ HYDROEL.ECTRIC PROJECT CROSS-SECTION Number 41 ~STATION CROSS-SECTION RM 134.7 ~ FIGURE 5.12 - PREPARED ~OR: - Curry, River Mile 120.7 - - - Sloughing Banks, River Mile 124 ;. __ PFIEPARED BY ' PREPARED FOR SUSITNA RIVER [ii REACH RM 129.5 TO RM 119 . . . MID ~-----·----~==::.: .. :_:.::::::::::~:==::::::,:.::.:.:.:.:,~==~34l·:=:=:=::::::::::::~:Gi::•:5::.1::3:::::::: R:&M CONSULTANTS, INC. ~~------------------ (.J1 I w (.J1 z 0 -~ > w ..1 w .. --i- f-0 SUSITNA HYDROELECTRIC PROJECT CROSS-SECTION Number 2 5 I f oo <lf:--10£ OF [U.UFif dot..l.bGRS NNb co884£S ~ t'-' oo V.J 0 ,. l'\1 I t I t I oo 0 ~};_~ ._-t __ I_ I • t I I nf;J . ..... I I I I I I I • 0 cfj ~~ I I I t I I it PREPARED BY I R&M CONSULTANTS. INC~ · STATION CROSS-SECTION RM 12156 • r . i PREPARED FOR: . ,_ . i -_,..... - - -- t'". River Mile 104 -. - Gravel/Cobble/Boulder Bed Material, River Mile 112.7 PREPARED BY I PREPARED FOI R&M CONSULTANTS, INC. SUSITNA RIVER [i REACH RM 119 TO RM 104 . MIR FIG. 5.15 ------~------------ PilEPARED BY I z 0 -1- <( > w .. w SUSIT.NA · HYDROELECTRiC PROJECT CROSS-SECTION Number 1 2 ~§l () ~· I & t '"' t ~ t I STATION CROSS-SECTION RM,108.4 FIGURE 5.16 PREPARED FOR; . I I ·I I I I I I I I I a~- • !I I •• I I I ** -a;us .. J.S . ---GZ..JL,... Susitna-Chulitna Confluence, Looking Downstream \ Grave.I/Small Cobble Bed Material, River Mile 101.5 PREPARED .BY t PREPARED FOR: · SU.SITNA RIVER R&M CON$ULTANTSJ INC. ·ReAcH RM 1o4 To.J~M -9s . lang .. FIG~ 5~1i~ liD - - --; -"-- - - - -·-•:~• - - --" -- SUSITNA HYDROELECTRIC PROJECT · CROSS-SECTION Number 7. r..tltllsrrto,.t: t:e4(4~nY. ~ C~i!J. t.hrH SO 111 t;lfAI/iC.t. f AF£W SHAl.4. 8-:JUI.b£~- (\() •b. 7/tAJIISrrlcd: -sn#b' "'"o • c.osetes f. ~~AV£L- • .,_.-UPST.t'l£111-t r.,'/0 ~*' V.1tq£TR ~eN OA/ 'S(I.'INb • Mllreb W#;.~o f ~HHRTI/RE Co"7'roNWOa.6 i • ou.. 8 ,9.1V ;e: i I I ~~.U.US~£.es' ·C:~Jte PREPARED BY • z 0 -1- ~ w ... w RAM CONSULTANTS, INC .. ~. I v \it \ ' ' I .4 ·••-., ., • • •··•••·"'~---.. ·I ~r r-··--··-1\ I ~' I • r-• ---.-.-. ---· --·---- '" 1 ' I i 1• l { \: l ·--} ·l::l_ .. _________ , -·--·--··· ~1--· ;. .. v STATION CROSS-SECTION RM, ·101.5 :FIGURE 5.18 - PREPARED FOR; ----o----.--------;-----. --------------· . i PREPARED R&M CONSULTANTS, 1NC~ LEGEND __ ---·:. Indicate a locQUon of •treambanks and lalanda In 106.1. . . Baatt'. pho .. o· waa tak.on In 1eao. FOR• 1951•1980 AERIA'-· PHOTO COMPARISON. Figure -5. 19 ~~~. · SUSITNA-CHULITNA-T ALKEETNA-CONFLUENCE~ . - I '' River Mile 79.5 -' Brush Pile-up on Gravel Bar PREPARED BY I PREPARED FOR: R&M CONSULTANTS, INC. SUSITNA RIVER liil REACH RM 95 TO RM 61 ~~~~[@ FIG. 5.20 ftU [d I I I I I ~I I I I I I I I I a· I I I I PREPARED BY t R&M CONSULTANTS,, INC .. Delta Islands Erosion of Sand and Gravel Bar . . SUSITNA RIVER REACH RM 61 TO RM 42 PREPARED FOR: FIG~ 5.2 ·1 ' KID' • -• : -• •• • ... • • • • •• : • • ' • ' • /. • • • , ~ .-• • f • ~ • " ·..... • '. • • ' • • • • ., ·~ ~ •• il ' • ~~ • • •• ' .,9 • .. • ' ---,,. ... - t ~ I i ~ . ~s 1 : Cl!); I ) 'I BS II . II l ~~ j I ·- ----.. - ~ ~· Q) "' ~ ~ ~ ~ s ~ ~ ~ ~ I l JOt-ex:> -'-~-· -·-·· ~ Ia& ~ ~ ~ ... . ~ ~ ~ ~ ~ ~ IU ~ t li• ,, ~ r-----"1 20tOO t j t t :. ' l NOTE:· ~ . . 'I qj i:t . i 1 •• . -. t i • I L '. ... . ; 1 • • . . . I . I . ; l. . : . : f ~ • ; ~ I ' ' ' i I ' . I i l : i I il I l I • I : I ! i . . . ··l ... r· L • ' ~ . . I 'I • . I I' • ' I i i I I' ! I' f.! •.i} !f I .t ... l • 4D+OO StJroo • ELEVATioN.$ BAS/:0 aN AS$/.JHED Dlt'f1!M .. St!WKFULL Et.Et/Artt:nJ IS qS.OFT. • cRo~ SECT!CN ~~1:' QN ReCOAI/JAIS!J.A~ ~IE~....~:;> .SUFn/&y' ANO R~C:../ME! 1?=/...ATION,dHIPS, ALL ELE.~JON~ ANO STAT"IONS APPFf01fiMArtr' •Jl.INDICATES TCP U:'E LEVEL. ONMA1?.t91 1981 ~R'asS :5£C.TION LCGAT'EO 8000' CIQW/'.JSf"'l:/t:EA/VI OF' W.tLLOW eRiiriZK&C>NFit:le:J./GE. - 7/?tOO -----· - - 80TOO I I t . I t . 1' I;' : . ·I. . :'. . . I ' . t . : . . 1 : r I i. l .. l . • I ~ ~ . l • .. . ! . : ··' "' i i l . ! t f: : _f ·, ~: • 1 : . .... :..• I' I i. I . ' I l . • • ' • I j .. • Tl q: ';:IW I 1 • • I ~ t i . ; I • ' 100+-00 --.. -· I ! . I ~ ,~ .) . .J . i r I :1. l ' ' I, J . -. ... ! .... . .. ,. I I . i : ' ~ I I 'i , I' i ' t • , • I ' • ' I ! ' ~ 1'2.0f"OD 13(:JTOO t40t00. · SUSITNA RIVER .. SYNTHESIZED· CROSS BECT!DN CEL.TA ISLANDS ~·. Rt;;.M CONSUI.TANTS iN UATU:;}-1 1081 ......................... ~~--~ ~1.;·-·- -~--~~------------- LEGEND --= L~~etlon of vegetated rlv•:tranka and Jatanda m 1951 ----= Location of sandbars In 1Q61 1951~1980· AERIAL· PHOTO COMPARISON' SUSITNA-DE,SHKA· CONFLUENCE Bi!a& Dhoto taken fn 18SO Figure, 5.23' IBD l)· . . • . • . ' . • . • " .. 1. - - - -·-- - -.. -.... - - - - - - - PREPARED BY I .R&M CONSULTANTS, INC .. LEGEND --= Location of v egetatad rlverbanka and Iaiande tn 1951 ----= Location of sandbars In 1861 Sa sa photo taken On 1 aao 1951-1980' AERIAL· P.HOTO· COMPARISON SUSITNA-YENTNA· ·CONFLUENC.E: ... , Figure· 5~24' .. PREPAReD FOR• 6 -SIDE CHANNELS AND SLOUGHS 6.1 -Present· and Proje~ted Flow Regime Many of the side channels and sloughs between Devil Canyon and Talkeetna are overflow channels 1 with water fiowing into the channels only above certain flows (Figure 6.1). Several of th~ sidechannels are important as either main stem spawning grounds or as access to spawning grounds. · Often, the sloughs have gravel berms on the upstream end, effectively restricting open channel flow from the Susitna River through the side channel's until the berm is overtopped. The critical flow rate for overtopping of the berm occurs between 15 1 000 and 20,000 cfs. The location of the upstream end of the side channels and. sloughs which are either blocked or partially blocked are tabulated in Table 6. 1. For modelling in the HEC-2 water surface profile model; it was assumed that flow into the side channels and sloughs was restricted below 20 1 000 cfs. Despite the fact that flow into the upstream end of the channels was often blocked, water was still found in the side channels and sloughs due to seepage through the riverbed gravels, backwater effects at the lower end of the. the channel, and/or the occurrence of springs· and small streams entering the channel. The water in the blocked side channels is usually relatively clear, especially when compared to the silt-laden water flowing in the main chsnnel .. Water surface elevations were modelled from Devil Canyon to Talkeetna, using the Corps of Engineers• HEC-2 modeL-Water~ surface elevations determined from the model studies are shown for seiected cross .. sections in Appendix C. A complete compilation at all cross-sections is included in the closeout report for 3.06, - Hydraulic Studies. The model assumes an uniform water surface elevation across any cross-section. However, thi.s uniform water surface elevation does not occur naturally, as demonstrated in Tables 6.2 and 6.3 by the differing water surface elevations of different channels on a cross-section. The disparity in water surface elevations is due to the differing hydraulic characteristics of the channel-s, to backwater effects, and to the inflow of springs. Consequently, the results of the H EC-2 model should be viewed as being somewhat uncertain In the side channels, especially at flows less than 20,000 cfs. The most valuable data on water surface elevations in the side channels would be actual observations at varying stages. Even then 1 it is probable that the relationship of the side channel stage to flow at Gold Creek w~H vary depending on whether data are gathered on a rising or falling limb of the hydrograph. r31/g 6 - 1 6. 2 -Expected Changes · Two oost-project flow options were discussed in Section 3. Case A, the optimal power operation~ has average monthly flows at Gold Creek varying between 5,000 -· 16,000 cfs (Table 3.5). These flows wHl not overtop the gravel berms at the upstream end t'f many side channels. Consequently 1 these berms should stabilize and b€-come essentially permanent features of the system. Howev~r, it_ is not expected thaf.; most of the sloughs will dewater 1 as water will continue to seep through the river gravels, and there win continue to be cnflow from springs and small streams. In channei.s where water seeps through the gravels, the water should be clear instead of silty, especially since much of the suspended sediment will be trapped in the reservoirs. The flows for Case D were constrained so as to have minimal impact .on the side channels. Consequently, average monthly flows in the summer are such that the upstream gravel berms will normally be overtopped, allowing water .to flow into the side channels and having minimal impact on existing fisheries habitat. r31/g 6 - 2 I 1 I I ) l I TABLE 6.1 LOCATION OF BLOCKED AND PARTIALLY BLOCKED SIDE CHANNELS Blocked Side Channels RM 100.8 RM 101.5 RM 109.0 RM 109.3 RM 114.0 RM 118.2 RM 120.0 RM 121.5. · RM 122.5 RM 125.1 RM 127.0 RM 127.1 RM 129.3 RM 130.8 RM 132.1 RM 133.8 RM 133.9 RM 134.7 RM 134.9 RM 135.1 RM 135.3 RM 136.4 .RM 138.2 r31/g RM 139.3 RM 140.5 RM 141.4 RM 141.5 RM 141.7 RM 141.8 RM 142.2 RM 142.3 RM 143.6 RM 144.7 RM 145.9 .Partially Blocked Side Chann~!! 6 - 3 RM 99.8 RM 100.6 RM 115.8 RM 121.6 RM 121.8 RM 123.0 RM 125.9 RM 126.1 RM 126.9 RM 129.7 RM 129.8 RM 131.6 RM 131.8 RM 132.6 RM 136.5 RM 141.0 Station Number LRX-4 LRX-7 LRX-16 LRX-29 LRX-31 LRX-36 LRX-39 LRX-42 LRX-43 LRX-44 LRX-47 LRX-48 LRX-52 LRX-53 LRX-54 LRX-55 TABLE 6.2 ,. ~I ,I HEC-2 SUMMARY .. SUPPLEMENTAL INFORMATION Variation in Water Surface Elevation Between Channels I I I Date of Flow Survey (cfs) 10/4/80 9800 10/6/80 9380 10/10/80 9695 11/6/80 4950 11/18/80 2400 10/30/80 5525 10/28/80 5400 10/20/80 7230 10/17/80 7350 10/17/80 7350 10/20/80 7230 10/15/80 7440 10/14/80 7290 10/24/80 6420 10/24/80 6420 10/24/80 6420 10/23/80 6270 Water Surface Elevation (ft.) Main Channel Side Channel{s) Comments 350.4 364.6 455.2 568.4 594.1 619~0 645.6 668.7 670.9 679.9 688.5 691.7 713.8 722o2 731.8 .• 742.6 348.2, 350.9 365.7 455.5 ? 592.6, 593.7 618.5 644.7, 642.9 666.8 (slough) 667.8 673.7 680.8 689.7 (ponded) 716.3 724.0 733.5 739.9 Frazil ice accum.; · I 101 wide shore ice .. Shore ice[ ice floes .• Variation of 0.41 in water surface across main channel Frazil ice Ponded water in side channel Sm. side channel w /flowing water •• I I. I ·I I HEC-2 assumes a uniform water surface elevation across the entire X-sectlon. However, this is not the case in the field, due to the complexity of the river system. The variation in the water surface elevation is illustrated in the above table, which shows eievation differences of up to 2. 8 feet (LRX-43) in the natural system. Therefore, some care should be taken in assuming an absolute water ·I surface elevation in the sloughs for a given flow. 0 r31/g 6 - 4 I I I I Station Number LRX-3 LRX-4 LRX-7 LRX-9 LRX-16 LRX-19 · LRX-24 LRX.-28 LRX-29 LRX-31 LRX-35 LRX-36 LRX-39 LRX-40'· LRX-42 LRX-43 LRX-44 LRX-45 LRX-47 LRX-48 LRX-51 LRX-53 LRX-55 LRX-59 LRX-62 LRX-68 TABLE 6.3 HEC-2 SUMMARY ... SUPPLEMENTAL INFORMATION Variation in Water Surface Elevation Between Channels Date of Flow Water Surface Elevation (ft.) Survey (cfs) Main Channel Side Channel(s) 8/31/81 22300 343.7(L) 8/31/81 22300 351.4(M) 351.5(L), 352.6(R) 8/31/81 22300 367. 6(L) 368.0(R) 8/31/81 22300 381.0(M) 8/31/81 22300 457.4(L) 457. 6( R) 1 455. 9(ctr. SL) 457 .3{RSL) 8/31/81 22300 489.7(M) 8/31/81 22300 523. 8(M) 8/31/81 22300 557. 7(M) 556.4(L), 557.2(R) 8/31/81 22300 572.4(R) 574.0(LSL) 8/31/81 22300 598.2(R) 594. 8(ctr. SL) 1 593.0(LSL) 8/31/81 22300 619~6(M) 9/1/81 21100 622.4(L) 621.6(R) 9/1/81 21100 648.5(R) 647 .O(L), 646.1(LSL) 9/1/81 21100 657 .4(M) 9/1/81 21100 672.2(R) 669.5(LSL) 9/1/81 21100 673.5(R) 673 .S(ctr SL) 1 .674 .. 8(LSL) 9/1/81 21100 683.8(R) 681.8(ctr SL) 682.8(L.SL) 9/1/81 21100 686.4(M) 9/1/81 21100 693. 7(M) 691.1(LSL 9/1/81 21100 695.3(R) 692. 7(LSL) 9/1/81 21100 709. 6(M) 9/1/81 21100 725.4(R) 725.1 (LSL) 9/1/81 21100 743.6@LB 743.1 (LSL) v 744.9@RB 9/1/81 21100 788.3(M) 9/1/81 21100 838.3(M) 9/1/81 21100 853.8(M) r31/g 6 - 5 ·.~ Comments L -left channel M ... middle channel R -right channel SL -slough ponded water in left slough Flowing water in left slough PREPARED B"(i R&M CONSUl.TANTS, INC •. - Overflow Channel, River MHe 142.2 Bed Material, River Mile '141.5 SUSITNA RIVER OVERFLOW CHANNELS FIG~ 6. t PREPARED FOR' 7 -ICE PROCESSES 7 4< 1 -Pre-Project lee Condition~ The river ice conditions observed thr.ough the wlnter of 1980-81 on the Susitna R~ver are summarized in the report titled usubtask 3.03 -FTeld Data Collection ... Ice Observationsn prepared for Acres American Inc. The following section is a synopsis of that report. For more detailed information on conditions during freezeup and breakup, readers are referred to the Ice Observation report. The description and data in that report will provide input needed for modeling of the ice cover development for pre-and post-project conditions. Very limited records are available for the Susitna River basin relating to river ice regime, especially during the freezeup process. Personnel from the Alaska Railroad indicated that over the past twenty years there has been no serious flooding or ice jamming relate.d to ice cover development on the Susitna. As a result, they have kept no records of dates ior first occurrence of frazil ice in the river or dates for ice cover formatton at key locations. However, the U.S. Geological Survey has freezeup dates for selected sites on the Susitna River. At Gold Creek, October 15·28 is the range of dates noted for first occurrence of frazil ice. It should be noted that this r-anga of dates indicates only first occurrence of frazil ice at the g&ging station and may not truly reflect the ice regime within a particular \""iver reach. During. the winter of 1980-81, frazil ice was first observed on October 11 in the Susitna River below Devil Canyon. From then until early December, when the ice cover began forming 1 the concentration and strength of ice floes varied depending on variations in climatic conditions in the basin .. At several locations along the river between Talkeetna and Portage Creek,. frazil slush tended to accumulate. These location~ were related primarily to bedrock outcrops along the banks or to con- strictions in the channel, (both natural and those due to growth of shore ice). Table 7.1 lists the key river sections where heavy· frazil ice accumulations were observed during freezeup in 1980 .. Many of these same locations were the site of ice jams during breakup the following spring. Though frazil slush accumulated to 100% coverage in places, the slush blanket did not ~::onsolidate and form ice bridges. The ice cover on the river from the Susitna-Chulitna confluence upstream appeared to form entirely by a process ot jux.taposition4 Depending on conditions at the leading edge of the ice cover, floes were either carried underneath the ice cover or added to the upstream r29/c 7 - 1 end. When velocity of flow was too high or the ratio of ice cover thickness to water· depth too low, floes were dragged un.'Cier the ice sheet, thus thickening the ice cover until equilibrium was reached and upstream progression could occur. Formation of the ice cover was initiated in the Susitna just above the confluence with the Chulitna River. No severe changes in water levet were observed during the formation· process. On the average 1 . water level rose 2 to 4 feet during ice cover formation. Howeve~, as the leading edge of the ice cover progressed upstream through certain reaches, levels rose enough to. cause water to begin spilfing into side channels which were previously dry-or had formed an ice cover prior to freezeup in the main channel. Listed below are locations of the primary side channels carrying overflow due to rising water Jevels as the ice cover developed from the confluence to Gold Creek. 0 0 0 0 0 0 0 . West channel between RM 112 & 113 East side channels between R&M ·!13.8 & 114.8 Far west channel below Curry between RM 119.2 & 120.4 Far east channel between RM 121.1 & 122.3 Slough on the east side of the floodplain between RM 122.4 & 123.0 East channels near Skull Creek confluence between RM 124.4 & 125.9 East channel between RM 132.5 & 133.4 Complete ice cover development from the Susitna-Chulitna con- fluence to Devil Canyon took approximately two weeks during 1980. By the end of February, the average river ice thickness at Gold Creek was 2.9 feet, very close to the historical average for that site. Overall, there were no observable changes in river channel con- figuration due to ice cover formation. Water levels were low enough that less resistant alluvial· banks and vegatation on the banks and mid-channel islands were not adversely affected by movemen~ of ice floes in the channel or development of the ice cover. For the most part1 flow was confined within the armored portion of the river bed. However, in the spring, ice jams and general breakup of the ice cover had a more noticeable effect on river banks and vegetation. Location of ice jams observed during the May of 1981 are listed in r29/c 7 -2 Table 7. 2. Comparison of this table with Table 7.1 wil I verify that ice jams occurred in many of the same locations where accumulation of frazi1 ice was observed durin~ freezeup. As described in Table 7. 2, the most significant changes in banks and vegetation occurred from the Susitna·ChuJitna confluence upstream to RM 101.5. Several new ice scars in the vicinity of Whiskers Creek confluence and new bank erosion were observed after the ice released. 7.2 -Post-Project lee Conditions lea growth simulation studies conducted by Acres American, !nc., are summarized in the report titled 11 Subtask 3. 06 -Hydraulic and Ice Studies 11 • The ice simulation studies, using reservoir water temperatures f:-om other studies, river hydraulic conditions determined from the HEC-2 Water Surface Profile studies and varying clirrlatic conditions, have determined that once both dams are built, water temperatures downstream of Devil Canyon will not drop to 32°F . until approximately 15 kilometers above the Susitna-Chulitna confluence. Even though the water temperature drops to 32°F, ice cover formation will be insignificant above Talkeetna unqer post-project conditions. Under pre""project conditions, the Susitna River contributes 70-80% of the frazH ice, appearing at the Chulitna-Susitna confluence, with most of the frazil ice being formed in the Devil Canyon reach. This frazil Tee generation will be essentially eliminated once Devil Canyon Dam is constructed, greatly diminishing the ice delivered to the lower Susitna River. This is likely to delay ice cover formation on the lower river 1 although this effect can not be quantified at this time. · Under post-project conditions, ice prrJcesses should not play any significant role in the shaping of the river morphology above Talkeetna. Little or no ice cover should form in the main stem above the Chulitna-Susitna conf.luence. No ice jamming should occur in this reach, since little ice cover will form in it. The ice run from the up;:>er river will be trapped in the reservoirs. Little data are available for ice conditions below Talkeetna .. Post-project winter water levels will be 1 to 2 feet higher than pre-project levels, due to winter power releases 6,000 to 8,000 cfs .. greater than pre-project levels. However 1 the lower river has such a broad floodplain that, should staging or ice jams occur, there ~are several flow relief channels. Consequently r ice processes have some influence on channel processes in that they may redirect the main flow, but do not affect the overall pattern of the river. r29/c 7 - 3 TABLE 7.1 LOCATION OF ICE ACCUMULATIONS DURING FREEZEUP -1980 Location RM 1 OS . 3 - 1 05. 6 between LRX 10 & 11 RM 110.3-110.4 near LRX-13 RM 111.5 -near LRX-14 RM 121 -just above Curry RM 122.6 RM 123.3-123.7 near LRX-27 rock. RM 126.0-126.5 -near LRX-29 RM 128.5 -near LRX-31 RM 131 -just above Sherman RM 135.7 -near LRX-43 r29/c Description Return to single channel from spHt channel with turbulent flow. Local change in gradient. Multiple channels join to form single channel at Curry. Rock wall on right bank. Shore ice growth from the left bank constricting the channel. Channel constricting, right bank bed- rock. Channel constricting., right bank bed- Channel constriction to single channel, prominent bedrock outcrop on the right bank at RM 126.5. . Prominent bedrock point on right bank, wide shore ic'e on left bank constricting the channel. · Split. channels join to form single channel at Sherman. · Channel constricted by shore ice _growth. Prominent rock point on the right bank. 7 - 4 TABLE 7.2 ICE JAM LOCATIONS DURING BREAKUP MAY I 1981 Location Description Susitna-Chulitna to LRX-7 (RM 101.5) RM 112.6 to 113.4 RM 115.1 to 115.5 0 RM 119 .. 1 to 119.9 RM 120.8 to 121.0 RM 126.0 to 127.0 r29/c Largest ice jam observed during breakup. Water and ice observed well up into vegetation on both sides of the floodplain. New ice scars on trees on mid-channel islands net LRX-7 after release of ice jam. Increased bank scour above LRX-3 and in the vicinity of LRX-8 along the left bank. Key of the jam near LRX-17 extending upstream through single channel to Lane Creek confluence, Heavy overflow into below LRX-17. No new ice scars or signs of bank scour apparent af'ter relaase of the jam. Ice jam initiated by rock point on the right bank. Heavy overflow through channel between the islands at RM 115.3 .. Ice jams of var·ying magnitude occur nearly every year through this reach. Overflow in all side channels to the west of the main channel. No signs of bank scour or e·ffects on vegatation after release of the jam. Small ice jam formed above Curry \Vhere mulitple channels join. Channel c-onfined by bedrock wall on the right bank and Deadhorse Creek floodplain deposits on the left bank. Ice jam through the constricted reach at LRX-29. Bedrock outcrops along right bank hindered ice movement. Overflow in far east channel beginning at RM 126.7. 7 -5 Location RM 129.6 to 130~5 RM 135.7 to 136.1 RM 139.0 to 139.8 RM 142.1 to 143.1 r29/c Descript!,...;.o.;...n ____ ~ __ Ice Jam caused by local breaks fn gradients near LRX-32. Bedrock walls and outcrops in the channel bed may have influenced formation of the jam. Little. change in water level upstream 1 due to overflow relief in east channel below Sherman. Jam initiated by rock outcrop on the right bank at LRX-43.. Overflow in side channel at LRX-44. Jam in the main channel above prominent rock point on the left bank. Overflow through the east channel. Ice jam initiated at channel constriction. 7 - 6 BlBLJOGRAPHY 1. Alaska, Uni_versity, Arctic Environmental 1nformation and Data Center. 1974. Alaska regional profiles; southcentral region. Alaska Office of the Governor Juneau, AK. 253 pp. 2.. Baxter, R.M. and Glaude, P. 1980. Environmental Effects of Dams of Impoundments in Canada, Experience and Prospects. Department of Fisheries and Oceans, Bulletin 205, Ottawa. 3. Blench 1 T. 1969. Mobile-Bed Fluviology. University of Alberta Press, Edmonton, Alberta. 4. Bray, D.l. 1972. Generalized Regime-Type Analysis of . .-~!berta Rivers. Ph. D., Thesis, presented to the University of Alberta, Edmonton, Canada, 232 p. 5. Brune, G.M. 1953. Trap Efficiency of Reservoirs.. Trans~ Am. Geophys. Union, June. U.S. Dept. Agr. Misc. Publ. 970, p. 884 .. 6. Church, M.A. 1972. Baffin Island sandurs. A study of arctic fluvial processes. Geological Survey Canada Bulletin 216, Information Canada, Ottawa, 208 p. 7. Dolan, R.1 Howard, A. and Gallenson 1 A. 1974. Man's Impact on the Colorado River in the Grand Canyon, American Scientist 1 62( 4), pp. 392-401 . 8. Everts, C.H. 1976. Sediment discharge by glacier-fed rivers'i in Alaska. Pages 907-923 in Rivers '76. VoL 2, Symposium of Inland Waterways for Navigation, Flood Control and Water t:~versions. 3rd Ahnual Symposium, Colorado State University, Fort Collins, Colorado. Waterways, Harbors and Coastal Engineering Div., American Society of Civi.l Engineers 1 New York, NY. 9. Fahnestock, R.K. 1963. Morphology and hydrology of a glacial stream, U.S. Geol. Surv. Prof. Paper 422-A. 10. Fortier, S. and Scobey, F.C. 1926~ Permissible canal velocities, Trans. ASCE. Vol. 89, pp. 940-956. 11. Freethey, G. W. and Scully, D, R. 1980. the Cool< Inlet Basin, Alaska, U.S. HA-620, 4 sheets. Water Resources of Geol. Surv. , Atlas 12. Gottschalk, L.C. 1964. Reservoir Sedimentation, in Chow, V.T. (Ed.) Handbook of Applied Hydrology. McGraw-HHI, New York. r29/d - 1 - 13. Guymon, G. L. 1974. Regional sediment yield analysis of Alaskan streams 1 ASCE Proc., VoL 100, n .. HY1, p. 41-51. 14. Henderson, F.M. 1966. Open channel flow, MacMillan, New York, 522 p. 15. Kellerhals, R. and Bray, D. I. for coarse fluvial sediments, August. 1971. Sampling procedures J. Hydraulics Div., ASCE, 16. Kellerhals 1 R., Church, M., and Davies, L.B. 1977. Morphological Effects of lnterbasin River Diversions, in Third National" Hydroelectrical Conference, Quebec 1 30 ... 31, May 1977, Canadian Society for Civil Engineering, pp. 833-851. 17. KeHerhals, R. and Gill, D. 1973o Observed and Potential Downstream Effects of Large Storage Projects in Norhtern Canada. Proceedings 1 11th International Congress on Large Dams Mad rid 1 pp. 731-754. · 18. King, N.J. 1961. An ExampJe of Channel Aggradation Induced by Flood Control,. U.S. Geological . Survey Prof. Papers 4248 1 15, pp. 29-32. 19. Lacey 1 G. 1929-30. Stable Channels in Alfuvium.t Proceedings, Institute of Civil Engineers, England. 20. Lane, E. W. 1955. The importance of fluvial morphology in hydraulic engineering: Am. Soc. Civil Eng. Proc., v. 81, No. 745, 17 pp .. 21. Leopold, L.B. and Maddock, Thomas Jr. 1953. The hydraulic geometry of stream channels and some physiographic implications: U .5. Geol. Surv. Prof. Paper 242, 57 pp. 22.. Leopold, L.B. and Wolman, M.G. 1957. River channel patterns: braided, meandering and straight, U.S. Geol. Surv. Prof. Paper 282-B. 23. Leopold, L.B., Wolman M~G. and Miller, J .. P. 1964. Fluvial processes in geomorphology. W. H. Freeman and Company, San Francisco, 522 pp. 24. Mackin, J.H. 1948. Concept of the graded river. Geological Society America Bulietin. VoL 59, No. 5, pp. 463-511. 25. Mallard, J.D. 1973. Airphoto interpretation of fluvial features. In Fluvial processes and sedimentation, Proc., o Hydrology Symposium held at Univ. A!berta, Edmonton. Thorn Press Limited 1 Ottawa, Canada, 38 p. r29/d - 2 .. 26. ·27. Moore, C . M. 1969. Flow, In Moore1 C.M. Watershed Changes on Austin, PP~ 101-117. Effects of Small Structures on Peak and Morgan, C ~ W. ( Eds ~ ) , Effects of Streamflow 1 University Texas Press, Neill, C. R.. 1968. A re-Examination of Beginning of Hydro. Res. Movement for Coarse Granular Bed Materials- Stn., Wallingtord1 England, Internal Repor~ ... 28. Neill, C.R. 1981. Letter Review of Susitna River Morphology Studies 1 December 16. 29. Neill, C. R. 1967. Mean velocity criterion for scour of coarse uniform bed material, IAHR_, 12th Congress, Fort CoJlins, Colorado. 30. 0strem, G. 1975. Sediment transport in glacial meftwater streams. Pages 101-122 in A. V. Jopling and B.C. McDonald, eds... Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologist~ and Mineralogists, Tulsa 1 Oklahoma, Special Publication· ::..!_j. 31. Petts, G. E. 1977. Channel Response to Flow ReguJation: the Case of tb.e Rivet\ Derwent, Derbyshire, in Gregory, K.J, (Ed.), River Channel Changes 1 John Wiley & Sons, New York, pp. 145-164. 32 .. Pharo, C.H~ and Carmack, E.D. 1979. Sedimentation Processes in a Short Residence-Time Intermontane Lake!' Kamloops Lake, British Columbia. Sedimentology .. 26:523-541. 33. R&M Consultants, Inc. 1981a. Susitna Hydroelectric Project, Subtask 3. 03 -Field Data Collection -Jce Observations, prepared for Acres American ln~orporated and Alaska Power Authority, August. 34. R&M Consultants, Inc. 1981b. Susitna Hydroelectric Project, Appendix B. 4, Regional Flood Studies, prepared for Acres American Incorporated and Alaska Power Authority, December. 35. R&M Consultants, Inc. 1982. Susitna Hydroelectric Project1 AppendiX 8.8, Reservoir Sedimentation prepared for Acres American Incorporated and Alaska Power Authority, January. 36. Santos Cayudo, J., and Simons, D. B. 1972. River response, Chap. 1 in H.W. Shen, ed., Environmental impacts on rivers, Water Resources Publ., Fort Collins, Colorado. r29/d - 3 - 37.. Schumm, p .. A. 1971. Fluvial. geomor\pitoiogy -the historic-a! perspective, fn Chap. 4, VoL lf rLW .. Shen, ed., River mechanics, Water .Resources Pub I. 1 For·t Collins 1 Colorado .. 38. Shulits, s. 1934. Experience with Bed Degradation below Dams on European Rivers, Engineering News Rec .. 1 June, pp. 838-839. 39. Simons, O.B. and Senturk, F. 1977. Sediment transport technology 1 Water Resources Publications, Fort Collins 1 Colorado, p. 465 .. 40. Stabler, H. 1925. Does Desilting Affect Cutting Power of Stream? Engineering News Record, December 95, 24 1 p. 960. 41. Stanley, J. W. 1951. Retrogression of the Lower Colorado River after 1935. Discussion: T. Blencki E.W. Lane; J.W. Stanley, Transactions, American · Scclety of Civil Engineers, Vol. 116, Paper No. 2453. ... 42. Stevens, M.A. and Simons, D .. B. 1971. Stability analysk: for coarse granular material on slopes, Chap. A in H .W .. Shen, ed., River Hydraulics, Vol. 1, Fort Collins, Colorado . 43. Taylor, K.V. 1978. Erosion Downstream of Dams., .. 1n Environmental Effects of Large Dams, Report by the Committee on Environmental Effects of the United States Committee on Large Dams, American Society of Civil Engineers, New York, New York, pp .. 165-186. 44. Trihey, E. W. 1981. Utilization of Time Series Streamflow Data in the Determination of Project Effects on Physical Habitat for Spawning and· Incubating Pink Salmon.. Presented at the Western Division of the American Fisheries Society Symposium, Acquisition and Utilization of Aquatic Habitat 1 nventory I nformatioi1, October 28-30 1 Portland, Oregon •. 45. Tutt, D.B. 1979. Kootenay River Diversion Project River Regime and Morphology Studies, in Fourth N~tional Hydroelectrical Conference, River Basin Management, Vancouver, B.C., May 7-8, 1979 1 Canadian Soci~ty forCivil Engineering, pp. 530-554. 46. U.S. Army Corps of Engineers, Alaska District . 1975. Hydroelectric power development, upper· Susitna River basint southcentral railbelt area, Alaska. Draft environmental impact statement. Anchorage, A K. 998 pp. 47. Woodward-Clyde Consultants. 1980. Interim report on seismic studies for Susitna hydroelectric project. Subtasks 4.01 through 4.08. Acres American Jnc., Buffalo, NY. Report for Alaska Power Authority. 1 Vol. r29/d - 4 ... 48.. Ziegler 1 T. 1973o Material Transportundersokelser i norske bre-elver 1971 ~ Rept. No. 41/73, Hydrologisk avdeling, Norges, vassdrags -og elecktrisitetsvesen, 91 p. (English summary). r29/d - 5 - r29/g1 APPENDIX A SUSITNA RIVER STAGE-DISCHARGE RATING CURVES AND TABLES ----------. ----.. - - ----- -.. -------. .. J 0 ' - .L. 5_.;.. 40 !'I - 30. n~';. f• • :i ±LU· .· ~Q JJ.Jtlll 1 ,;. <I '·:--1 'J ~ if ~ g_. A ,---· 7 ,;:r--..,: 6_ II 1.\. -~ 1- :I: m (!) 4 -liJ :I: ' '-'-r w 3-(!) <t I ~!) ;...._~ ~ 2 • . i<' ~ 4 i CorJi~ :--; I I I X 103 3 X l04 ~ I ~--~~--J -~.-~t) l X ~:1"-2 :) ~ 5 6 7 8 9 j+ 5 i " 8 ~ .;; 4 ~' PREPARED -BY"r 0 I S·CHARGE JC.F.S.) -. •ARED FOR; ~· •l--2]~~; %~ ~·.-~ ~~-_-~ -· ~ -L ;:tb ;:.-: -RATING CURVE FOR SUSITNA RIVER AT GOLD CREEK" mm R~M CONSULTANTS. I.NC. . ·-,' .· . ' FIGc~ ,. -: -· REDRAWN FROM U.S.G-~S. DiSCHARGE TABLE No.10 . -. :: .. - ;~~h Diacharge :a,& l ;r ru .10 -······--\ / (··. .20 -~!,_.;_ __ /{ )' .·~ ---------- ~~:-40 -----· .60 .70 .lE!.::....w Differ· cnce Cft --- -·------ .... ___ _ -----·· r------ r------- Gage Discharge height DitTer· cnce -··-----57~5'0 .~0 ----------· -~~ .60 ---~-Qf:??.. .. .E..QQ • 70 ---:~: ···l---- .80 ••• I.Q.Q •• .r.. ···-·--· .90 ---~9.9.9. . ..S.Q.Q .. INTERIOR aJ -sll DE"'ME~~~f -. -----$tq. No. L.$ §:Z.g:Q_ Q Q GP.Ol.OGlCAL SURVEY (WAlEil RESOURC:~S DIVISlON) G.age D' h height m: arge Differ· Fttl • C/1 Cft 7.00 ,_ __ zgg_Q ~oo __ ..;;,c __ ;._ .10 !· •• zs. __ gg [ ·-:--· ---- .20 ___ zaQQ -----.---- .30 :----8LQQ . ..3..QQ 8400 . ,40 r---·--------<!2:5'0 .W.· ••• .:. ,,0 ••• 87.S.Q f .60 ,_ ... ::ZL9..9. -------- ---------. .70 ••• 25..~ ~L"'J"') • ...::t.~Y-- ;80 i----9.ft92 400 ---------.90 ,_.10.6-.ef . ---..... s .oo r.:Lakr29. .2o .Lt..4.£t?.. , ---· ---- .~0 _ILEQQ. ..... -- • .co 1Z..g._<;?9_ r------~- ,,0 !..:?.:.t?..r:JP.i,_4r;_Q. .60 ,_l:?..f!:?..Q .SaQ .1o ,_L~.G..t2e ~.J ..... .so _lfltJf?.r2. t ", ~------flO .90 r-.L4li..9..t?.. t;oo --~---- Table No. L Q Dischar~>e l D.· iifcr· G~:~ge o· h miTer· Gage Disch~.rge Differ· . G~ge Discbzr•e Oiffer- o cnce height &sc arge ence height ~nee hcaght · .. cnce ' Cft Cft Fttl Cft Cft h Fttt Cft Cft Fm Cfi C[i L5.QQQ -~£!9. //.oo .G..ZClP.Q ,..aaa l,iJ.D!l ~£.~ .f.LQQ t5.oo ,.WEf:E2 ...1..2'29 ~to .!..$.5QQ. -··t··· .to _gz?._gg_ .to ,...d.!fiLO ... Q .to G..9Ef?Q ~------r--.------~ ...... .2o .1/i?..Q.QQ .~o 2.,fj.f~~ .2o _1./e.?J22 .20 :Z/2.~ .~o ..L.~!?..f?e ---·--.3o :Z2.4..C:XZ ------.~o :-4. 7.-2?-£ -----.~ 7L.9..~Q ----. Ao .. L7QQQ ~5;.~ Ao 9J?.?.QQ. ~~~ =~~ . .4o r.#._BgCQ -.~ ~-gQQ ~~0@ .so .t..ZS:.Qf?.. _6_QQ ,,o ~.l .. QO{?_ ··--·--.so 49.?..90 ·'~ :Z4.S.C?R .L:£@ .60 .I.!JL~Q .60 .3..l .. ~-.60 r-S:Q..~QQ. .6o 'r2.1PJ29.!.2. r----·-·-··-----....... --· ----~~ .70 .t.E/.7Q..Q .70 .E,~_tf!f!?~ .70 r--:5''7-9.£ .70 ~-7..~~ .so ./.2.EJ;).2 ··-··-.so 3.3d..QQ-----.so _f?Z_~ ··1·--.so ::I.9..~ --- ~--·---.. .~....... ~------.-.,.. ..... • 90 .1.29..c;Q. ------· .90 a..4i?.~ .f?O.t2. .90 ~fi.~:Z.C?fi .liP.!?~ .90 8.Q!iff: -~----- /().00 _ZQf?...qQ __ __ tz. .oo ..2.5QQ?.. _:J_r;g 14 .oo ,...£$..Qr:!2 .L~J?..r2 '"' .oo az.~ __ _ .to _gL/..9!?.. .to 3..5..9.Qf?. .to 5..??:3..C?f2. .to a~_!2QQ --~ ·-· -------~--·· ----....--. .20 .Z.LZQQ .2o 3..~_8_QQ .2o S..ZG..QQ ·.20 B.$.QCO ---· .. --~ -------------~ .3o .2.Z3f?Q .3o :2.ZZQQ .3o r..S.:l?..9..P.Q .3o ,_8.~§:e2 ···--·------fill!•------................. .40 2..~.9-QQ _~_.,,I'Y"')__ .~ .:fl..~_€f22. .4o G..a.?-c::Q ~~ ----··------·-,40 f2_8_Q.Qf --- .)0 .?..55.!22. "7oo .,o . 3..9.5..C!Q .so ~-~L~ee .60 .?.4.:?:.QQ --t..:::+---.60 l-i<l4.eP----. ·-.60 ~-~g~-~ ---:--.60 -----______ .. _ .10 2:.4.9.00.. •• _,_ .10 .4..LE.e.e. .... -~--.10 L~A.Loe -_-_--_-__ -_ .10 ~------~--.. --- ... ···-4 ·-------I ......... __ _ .80 g_€.€9.9-. .so ___ ggt?..f:_ .so rR..f?.4 0.2 .80 1------ •• 9o _gkS.9.f ;.c?2 .90 .4-§..t.t?.t?.. ~~ f!;;_ .90 r.<eJ:Z0.2t~ .90 r.----------~~~~=~ .50 89..S:~ This table is. applicable for open-channel conditions. It is based on /.4: discharge measurements made duri~g __ /._2~.2 .. ::L2.Z:g ____ _ --~---···········--·····-··-······--··· .. -·-····-~---------··--·---and is·------------··---weU defined betv.•een •• ~9..?.J2 .... cfs and .(!2.S,Q9Q ••. cfs. Camp. by A.f!f. D date ~:3.:..?? ?.?:.:: ... c-?..~~~_s~ .. l'Y.f.~ .. C..c:?.,P..CP..f!.J!r;_.;:t:C__fr-e.a::t.-f-~.6~fi-.L~(;O.rc:t:. ••• <:fq.cf..'q;!. .•. p.~cL!2.e:..L2~.Z.::LEzg.__.._. ~--"l;:l.:..:. .... oc-9.t.:ac.t: .. l.:;: __ /.(!?_:::;!:.. _____________________ : ________ ··~----.. --···-······----···-··-·--·---------------··-----·--·---:··------ • Ckd. by ........... _date."' •••• ., ...... . U.S, GO\fUNM(IIJ PIINflii.G Otrl<t . lU1 Of-UI•UI - ... - ... . • ~.\ .. .J"q•\ •.•.• ', .. ~· .-•. . 9-210 (Rev,l-67} UNITED STATES DEPARTMEN'r OF THE ~NTERIOR GEOLOGICAL SUJVEY (WATER RESOURC!!S DIVISJON} l<ttti~t~ ttti1/e ~,. -----------------------------------------------------------~------~-~--~----------------------------------------------------------------------· Table Ne • .Q 1.. Begin ------....~----Ylt. MO. Hill. jrfJm ·------------------------to -------------------------------J frorrt -------------------------to-------------------------------, . frmn -----------------------·-to _____________________ ,....... ____________ _ Gage D' h height tsc arge Fttl Cft :9'1100 .20 "'S&./.k --~-- .3o t.?:.Z.!~a ~ "":'~{) ~Do .40 _-,! __ ,_~---- .~0 l3J.J-2t.:cP.. .60 iJ 33. .. :JP-Q 1/7 d ·--.10 ""'-\lr./.wa .10 -----------·· .20 ------------ .40 ~---.. ------.. -- .so .60 !------------ Differ· ence Cfs I ! ____ ,. __ _ ----~~·-- --------.. --------· --------· --------· Gage height Fttt .oo .10 .20 .3() .40 .50 .60 .70 .so .90 .00 .10 .20 .~0 .4o Discharge Cft -------~--..... Differ· ence . Cft Gage o· h hright asc arge Fttl Cft .oo 1------------ .10 !------------ .20 !------------ Differ- enc~ Cfs --------- ---~----- -~~----~~ .3o ~--~---------_____ ... __ JI .40 f------------ --------- .60 f------------ --------- .70 1------------ .so !------------ --------- .90 f------------ ,10 1-••••••••-•w --------- .20 f------------ .30 f------------ --~------ .40 1--------------------· .~0 1------------ .60 f--------------------· Gage height Fttt .00 .10 .2() .30 .40 .50 .CiO .70 .80 .90 .00 .10 .20 .~0 .40 .60 Discharge Cfs Differ- ence Cfs _. ______ _ ---··--- ------------1 r-------- -·---··-----'t Ga8e . heigh~ Dtscharg~ Fttt Cft .00 -----..1..----- .10 ------------ .20 .40 Q_ .... _____ .,. __ _ .60 ________ ,... __ _ .10 .80 .90 ........ ---~~--- .00 .10 .20 .30 .~o ------------ .60 Differ- ence Cfs ------"""- -------- -------- f-------- Gage height Fttt Discharge Cji .oo ~----~------·- .10 !------------ .20 1------------ .30 f-*·-------- .40 !------------ .~o !------------ .60 1----------- .70 1------------ .80 !------------ .90 ~---------- .oo f------------ .10 1------------ .20 ·f------------ .30 ~------------- ,40 1------------ .so r------------ .60 !--~--------- Dttf"er- ertce Cfi ------- -------- --------- --------- --------- --------- ---"'----- Gage 0 . _:......._ height ts.....u.a.;ge Fttl <t.fr; .20 r--~""-----:-- .30 ___ ., __ Ao r--... ------ ~----.~--.... .90 .10 r---~------- .~0 Ao .50 .CiO r.. .... ..., .... _____ _ Ditfer· ence Cfs --------; I --------~ .70 f--------------------· ,;o ----.-r·--•-"1!'• .70 1------------· .70 1-----~------l .10 .70 .70 f-·-----------------------.so .80 -------·-·--.so .so .so .so .so r-----·----- .90 ------------.90 .90 f-·------------~----- .90 .90 -·-----------.90 ---~----------·--·--~ This table is applicable for open-channel conditions. It is based on ----discharge measurements made during---------------------------------- --.. --."·-------·-------------------------------------------------------and is---------------------well defined betv.·een ···-----------cfs and ----------·-----· cfs. Camp. by----~·-date·--·--·--- -----~--"~-------------~-~------~----------~------~--------------------~--------------------------------------·--------------------------------------~--------·-----4·-· -------------·------------------Ckd. by ............. _.date---------· -JIUtiU-~!OQf'-'7oP-- -.. ---.. -------au ---- ---' ~ ' : . s __ ~. 4-- 30- 20 ,.,.. v . ' -""" IO I Q A -o-: 7_ 1.1.. ~ 1-s ::r i (.!) ~' I -!JJ i :z: 4 w c;.t <( 3 (!) 2 • I ' f . 9 l X 103 3 I B ~ I X I 0 4 : 5 . 5 7 :l X 105 . :t 5 f: 7 a 4 5 6 7 .: j ... -·--·=> ? -· PREPARED BY• 0 I SC HARGE (CF.S.) PREPARED FOR• l>l~J ~~~~.~ RIVER AT SUNSHINE B~fl ~ I-~7:,.' _· RATING CURVE FOR SUSITNA . R&M CONSUlTANTS, INC. A .. 2 . ' . FIG~ I nr-,...n/1\ •U I""MI"''~ I I f" I"> .,... -""Tf'.j'•t..fl\_~f">C". ·T_I\.01 r-.. ·,...r . Ll· .. . •• ------·------· ---- 9-ltO (Rev. 2-67) Gage Disch;uge height Fnt C[s • 00 .,.., _________ _ .20 • 30 .40 ~----------- .~o ----------- .60 ..... ~-------- .70 ... __________ _ Differ· ence Cft --------- ... --·---~ .80 ~-----------­ --------· • 90 1------------- .oo ··--------- • 10 1------------- .20 1------------ .~0 ----------- .40 1-------.. ----· .~o ____ ., _____ _ • 60 -----------· .80 ----------- -~-----· .9\} -----~~----- Gage h~ight Discharge Fttt Cfs 3 .oo ••. 1k.4:~1 • .to (_9:_.f_Q_Q /(' . .2o ---~~-~-a- Differ· c:nce Cfi .30 l/.~.1-"'--:J. I. ; t.t •• :L. .4o .L.7..t.::.?.. .60 .70 ·.;...·. ·-c,.c, -•-tt------- _ .. I lc...~ <.~ .so ' ..... ~------- ----:--··i ----\.--- 1 -·------ UNITED STATES DEPARTMENT OF THE INT~RIOR GEOLOGICAL SURVEY (WATE~ RESOURCES DlVISION) Gage height Discharge Fttt Cfi Differ· ence Cfi . , , -----~!: • --------- 30 .... (1 t 00 j • 1-.::z .. ..::.. ........ .,. __ J:z:::,OOT ---··---- --------~ # .I "" .1o ~-~~a..c~ . ...:. ... :i.;._ '2. 00 .80 .:... ·-v.i"------ --------- Gage height Fttt Discharge Cfs .. .;o .;_.,:_,!.~:~? . "(.., 'j ·""' .40 t ..... .;:, ___ _ Differ· encc Cft .,. ______ _ Gage D' h height ISC atge f·ut Cft "9 ") . oo ~;&:z.Q?.: • .. ,(""'/. 1),-, r'l .'to :v. • .... ~-'"-- .60 • / !{..(.. ~-..t-~------ .so Differ· ence Cfi ... _____ ,.it -----·-,.. ___ ,. ___ .., ;.....91 c:lO·.::> .90 ~--·--!:·-----:Js zo" . .90 ---"--------.90 ~-1 .. 1~_y__ lit. i \ --------- ~ l ...,,c.) • 70 Fo:--_:c; ___ ... _ .50 ::~) ·:to· ---..t-------- 6() ""'! ()r.c . . G'-J----~---.,.-,., 0 ·J .1o .! ........ e .... ·--.----- ' I r; . ~~; I o.oo t-... ~_.v;_,._ .. _ • 'l' J. .-.. .10 .P.. ... _ .... _..:=::. 20 1/,.,,-:.:., 7..'C•O . ~~~·------- -------- Gage height Discharge Fttt Cft 1/.oo .ZZ.CU?P-• ., I:J ") ,.· v .20 '-"'..:r.o..h..:" --- at :.)o/· .90 ... V-.. :~ • .J.; __ v., ? .::. ~ rtr." I c.. .oo 1-"-Cl..J..r~.~il .10 'rf;1 .. .J..?..r:._ This table is applicable for open-channel conditions. It is based on r-discharge measurements made during __ /..f_rJL~-~-.---------.----------- "··---.. ·-----------------. ----------------------7. ----~-----------------and is ---.t::t.JLC:..S.If-----weH defined between L9.;_C..t.1k ___ cfs and __ l:,:--!..~-J;'..:.... ••. <:f'f.. /' ··. /. (i . ............. Q..:=: .• Lzg .. ~ __ \.....!$...:..Ql ____________________________________________ ~---,----------------~--..,-----.... ·o--------"'-------------------------------------· --··---.. ··---... _,. ..... _ ... ..,,.. .... ,.,.,.,. _____ ~ _____ ,. ____ ..., __ ... ___________ ..,.. _____ .,._lot_ .. ___ , ___ ""'~"'""~----·""'--··-... ----------..... -·--'!01! ___ ., __ .. St 1.1 /C' ,., ... ,... a. 110. _ ~ .k.o. . ..;,.:. ,.,;;;:. ,:;:_ ~a. Table No. :'/ Differ- ence C/s ... ~------- ··-·----- --------- --------- --------· --------· -- Gage: height Fttt ff$ .... .j), ... ,--.5o IL .. :,-t ..... !..;!.::.. .so ~ Differ• J ence Cft ----""---- . -.. ~ ... ·~ ------·-- ---------... ~-------- ------------------- 5 __ 30_ IQ_ 9_ a_ -7_ ...,: u.. -6_ r- :X: 5_ (!) -UJ :r: 4_ w (!) <t 3_ (!) l X 103 PREPARED . BYi . I 2 ll-i-H11mtt1 ttf . . . . t 1 lt!l 4 I I 5 6 7 8 9 t X 10 2. 3 0 l S C H A R G f5. .. ( C. F. S.) I 3 ~ATING CURVE FOR SUSITNA RIVER AT SUSlT.NA STATION . · .. B~ll FIG .. AM3 _ __,._..,,.,· -~ REDRAWN FROM U,S.G.S. DISCHARGE. -TABLE N9 •. 02. I 1 I 9-JIO (~ev.l-67) . JUNii~~}STAic::t beP"'"';:lENI urJTH~ ~~~.\Rit.,,.-:J GEOLOGICAL SURVEY (WATER RESOURCES DIVISION) :l ~-} .• .. ). -) Sta. No. L ~ g 2 £. ...l. .2' e T Table N.o. !2 Z Rating table for __ ${t'.s_~/aa...RLV.ec...rl'LS(,!.si/.aa.. .. S-k.b"..a-.. -----------------------------------------------------------Begin - - -____ _ YR. MO. D, HR. from .. Qt;;..tc 4 .l9.Z8 ..• to -------------------------------~ .from ________________________ to---·-------------------------,. from-----------------------to---------------------------------·-- Gage Diachorgc Differ- heighr encc F~tt Cfi Cfi .00 ·---------- .10 ...................... .20 ................ ____ .30 ......................... .40 ···----.. -- .50 ---------- .60 ------ .70 ................. ---..: --·.·--- . 80 ilk,.4CJ2 .a.QQ .90 z:z_gQq 7-00 .10 .lO .)0 .40 .! ... Z.QQ .8..QQ _,o tz._,.Q.OO -~U:?.9. "'-~;2QQ ··t-· .:t£L.· ----...... .4~_7QQ G~ge Discharge heoghr · F~tt Cfi Differ· ence Cfi Gage Discharge heighl Fttr Cfi Differ· ence Cfi Gage heighr Fm Gage h heighr Disc arge Differ· Discharge ence Cfi Cfi F~tl Cfi Differ· ence Cfi Gage heighr Fttt a.oo .3.b._,. --·-.9.QQ_ /o.oo ~,..7.! -LLQQ 12 .oo at_,.ZOQ !..3..9!2 ;Q .oo /Lf?l.tl..O.. ~.0.12 l/,.oo .10 7,.4.((). .10 .7,J.L .. !.L?!P. .to 2,.~9.2 !.3..Qr1 .1o l.t.!-rZtXl-.1o .2o 3B7 _EiQQ .30 3.9.:?..Q2 .40 1lf4J.QQ_ .20.Q .50 !IJ,_Q_QQ. /{2_Q.Q .60 4ZJ.X:O. 1 .70 4~_Q[._.>Q_ .80 4.4,0.QQ .90 #.S,OJ2<.'?. q.oo tf.Gl;OO.Q. .10 4.4-lXlQ ···r·· .20 .l3,202 /./.QQ .20 .,.B.02 1.4t!r2 .20 .JO ~(J.CK& !2..t?J2 .30 B~Z.... .30 .40 .I;"ZQQ Ao ..to t!.£?.,..5!2£ · .4o .50 ti-..~4.... .50 .50 .lf3.,..{QQ_ .60 .60 .70 .70 .8o gz,zm . .10 .60 tL9..,.1e2 .70 .i?L,.3.QQ .80 .20 4.8/).QQ /.f2QQ .20 .20 9 i3,Jl!2Q. .3o 9.9,.S:O.Q .10 28,.9. -- .. 2o -:::Z.9.,..6Q;; ~t_,..3.QQ .3o 4..t;raa LtaQ .3o .40 54/.00 .60 .70 .80 7.8_,.bQ2 .90 ?:~_0-QQ !J.Q_Q .9o Z9}~QQ l.J.QO .70 .:3.871QQ .ao • .3.~_ea J.ZQQ .9o .4/,.St!?. tB..c;Q Discharge Cfi 1.4....~3.Q .!I.S,.i£2C. This table is applicable for open-channel conditions. It is based on 10 discharge measurements made during .!.9..22::].8 ____________ _ ····--------···-------·····-------··---------------·-------------·--and is ___ f'a..t:t:f-----well defined between .£8r002cfs and .2£.?0r~cfs. ----.......... --........ -----... -... -.... -........ -----.. -............................. ---...... --..... -----..... ------·-· ... --------.......... -~------............ ----....................... ---.. -....... ---.. ---· --..................... _ .......... ---................ 4 Differ-Gage Discharge Dilfer- encc heighr cncc Cfi Fttt Cfi Cfi .!Be; /£3.00 .10 .20 .30 .40 .10 ----------- .20 ----------- .30 ----------- .40 ----------- .50 ----------- .60 • 70 ----------- .80 ----------- .90 ----------- Comp. by~.(-date ~.-:llr.:.79 Ckd. by _________ date--~----·- ·-------------------... ·-----------·----·~------.. --... ·---------·----... --------·--------------------··----.---· .. --.. -----------.... --........................ -........................ _ ......... . U.l. GOVIINIIIIIT PIINTUIG OniCII IIU OI-J41-Jtl 9-2!0 (Rev. 2-67) UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY (WATER RESOURCES DIVISION) Rnting table for _f..f~i!.._!_~_l}_ __ !f_(_t::_!!_!j_ __ d!:.. .. £J!.f..([_~!_-~~ 1':4 !:!..~_"Y_ _______________ ......................................... . Sta. No. j_ £2-CJ. il-3 !7 q Table No. C> 2- Begin Yll. 1.10, D. HR. from Qf~:_!./1 _ _( l2Jl_ to ________________ " ______________ , .from.------------------_ to __ ---------___________ -------, . from_------------------------to _____ -------------------------------- Gage Discharg~ height l'fll Cft Differ· ence Cft J9 .00 7.f?.4t9..0.. l 1.(10 ;z. OJ )a:; -·-·- .lo ··-·-------)._211 " zo5SC'O ------- .20 -----------!!!:~E. 207~ -~0 ·----·--·---~!~. .40 1:.C:..?..f..'?f! ll~e. ,)0 .60 ~ .70 lIZ. "ZcC ---------.?lP~~ "2.1 1/)'(10 -----------2.1 (10 Yf&:?.. . ?.l.~ .ao 'Z:_t!.tE!?. -~1£'! . . 90 J.'/:!Jt£/2 .l1DO ) o .00 fJJ.7P.E ;1~~~ 7., ~'"1'(/i .10 kk-.b.-: • .:-~ }J.~~ 2283oo ;20 ---------·· J.1"o 01\ 2 "f ~(.CO ··-····· '"" ····-······ l} DO .40 '?}_~_1._'(Q _f.}q_~ .,o u~-~~-?- .60 .70 .80 .90 1------------ Gage Discharge height flfl Cft .00 .ao .20 .30 .40 .)0 .60 .70 .80 .90 .00 .10 .20 .30 .40 .)0 .60 .70 .80 .90 Differ· ence Cft 1------- ------- Gage Discharge height F111 Cft .00 f-·---------- .10 .20 .30 1------------ .40 .• )0 .60 .70 .80 .90 .00 .10 .20 --------- .30 --------- .40 .)0 .60 .70 .80 --------- .90 1-··--------- Differ· ence Cfs 1------- Gage h~ight fill .00 .10 .20 .30 .40 .)0 .60 .10 .80 .90 .00 .10 Discharge Cft .20 --------- .30 .40 .)0 .60 .70 .80 ~ .90 Differ· ence Cft ------- ------- ------- Gage . height Ducharge 1'111 Cfs .00 .10 .20 .10 .40 .60 .70 .80 .90 .00 .10 ----------~- .20 .30 .40 Dilfc:r· ~nee Cft 1-·-·---- ------- -------- .60 r-------------------- .70 .80 .90 Gage height Discharge Ptll Cft ,00 .10 1------------ .20 .30 .40 .)0 .60 .70 .80 .90 f..----------- .00 .10 .20 .30 .40 .)0 .60 ---------- .70 --------- .80 .90 1----------- This table is applicable for open-channel conditions. It is based on ____ discharge measurements made during -------------------····------- -----··-·-------····················-··---------------------··-·--·-and is •• ·-······---------well defined between __________ cfs and --~-~-----·····rfs. Differ· ~nee Cft -----·-·· Gage height I'll I .oo .10 .20 .30 .40 .)0 Discharge Cft .60 ~---------- .70 .80 .90 .00 .10 1------------· .20 .30 .40 .)0 .60 .70 .80 .90 1------------ Cft Comp. b.;J.!Jc'L date .ff..'!f_JP.) Ckd. by········-date---------· ... 1. liOVIIM1111M1' PIUITUI~ OffiCI1 1117 OP-141 .. 711 .. t _c__j l . APPENDIX B FLOW VARIABILITY RATIOS ,- r29/g2 -i -· -----· -------· -· -i susl8/b1 Comparison of Peak Flows to Average Monthly-Flow Susitna River at Gold Creek No. 15292000 May Mean Monthly .. 1 Dax Peak Flow 3-Da~ Peak Flow 7 ... Da~ Pe_ak Ffow 15-D~ Peak Flow Year Flow -QM Q1 91/QM .. Q3 Q3/QM Q7 Q7/QM Q15 Q15/QM (cfs) 1950 11510 21900 1 .. 90 20200 1.75 16700 1.45 16200 . 1.41 1951 14090 24700 1.75 23900 1.70 22500 1.60 17800 1.26 1952 5419 28000 5~ 17 26700 4 .. 93 17000 3.14 9570 1 .. 77 1953 19270 31000 1.61 30100 1.56 26400 1.37 22400 1 .• 16 1954 17280 23000 1.33 23000 1.33 22800 1.32 21600 1.25 1955 9319 1.95DO 2.Jl9 18300 1.96 17900 10"92 14500 1.56 1956 17660 39400 2 .. 23 36200 2.05 32400 1.83 26200 1 .. 48 1957 13750 31000 2.25 30500 2.22 28800 2.09 21800 1.59 1958 12900 25000 1.94 23700 1.84 21700 1.68 18500 1 .. 43 1959 1-5990 39600 2.48 37200 2.33 30700 1.92 27300 1 .. 7l 1960 15780 40000 2.53 35800 2 .. 27 27900 1.77 23700 1 .. 50 1961 17360 29400 1.69 26100 1 .. 50 22300 1.28 21700 1.25: 1962 12590 36000 2.86 29600 2 .. 35 23000 1.83 20300 1 .. 61 1963 19030 45000 2.36 42900 2.25 37100 1.95 33900 1.78 19o4 4307 37100 8.61 26400 6.13 14200 3.30 7740 1-80 1965 12900 37900 2.94 37300 2.89 30400 2 •. 36 21200 1.6fl 1966 9645 23300 2.42 22600 2.34 20400 .2.12 15300 1.5fJ 1967 15480 31200 2.02 30200 1.95 29700 1.92 24600 1 .. 59 1968 16177 39700 2.45 37000 2.29 33800 2.09 29100 1.80 1969 11045 26500 2.40 24400 2.21 20500 1.86 16200 1.47 1970 11380 21600 1.90 19500 1.71 18100 1.59 16300 1 .. 43 1971 3745 9500 2.54 8830 2.36 7640 2.04 5680 1.52 1972 21890 55500 2.54 43600 1.99 37000 1.69 29800 1.36 1973 8235 17000 2~06 16400 1.99 15400 1.87 13500 1 .. 64 1974 16180 33600 2.08 33200 2 .. 05 32400 2.00' 26400 11163 1975 15350 31000 2.02 30400 1,.98 28300 1.84 24100 1 .. 5'7 1976 126ZO 17000 ., 1 .. 35 16000 1.5:.5 15100 1.20 14000 1.11 1977 12680 33100 2.61 30400 2.40 24500 1.93 21500 1 ~ 7(~ 1978 11950 20500 1 .. 72 19400 1 .. 62 17700 1.~ 14900 1.2S 1979 13870 34400 2.48 33900 2.44 29400 2.12 22700 1.6~ 1980 12060 21000 1.74 20800 1 .. 72 17900 1 "48 15100 1.25 # rif VaL 31 Average 13270 2.45 2.24 1.87 1.51 Standard 4240 1 .. 33 0.95 0 .. 46 0.20 Oev .. ':: susi8/b2 Year 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1 {~-:;,7 \'{<"' .. ""- 1978 10]Q . . ;~o;-•.1 1980 # of Val. Average Standard Oev .. Mean Monthly Flow -QM (cfs) 19600 20790 32370 27320 .25250 29860 33340 30160 25700 23320 15530 29450 43270 26000 50580 25720 3.2953 29513 31550 15503 "18630 32930 34430 27800 17870 32310 24380 37970 19050 24690 29080 31 27970 7740 Comparison of Peal< Flows to Average Monthly Flow Susitna River at Gold Creek No. 15292000 ~une 1 Day Peak Flow 7 .... Day Peak Flow . 34000 35800 43300 37700 30100 38000 51500 40600 28000 29300 1870C 54000 79900 26000 85900 39900 58400 38800 39500 21900 30800 66300 70700 s2aoo ~;;··soo ~u . 44000 33300 52600 24300 32500 43200 -- 1 ~73 1.72 1.34 1.38 1 .. 19 1.27 1 .. 54 1 .. 35 1.09 1.26 1 .. .20 1.83 1 .. 85 1.00 1.70 1.55 1. 77 1.31 1~:25 1.41 1.65 2 .. 01 2.05 1.90 1.67 1.36 1.37 1.39 1.28 1.32 1.49 1.49 0.27 !t -- 32100 32100 42300 37200 29500 37300 49900~ 39900 28000 27900 17100 52000 75200 26000 81900 37200 56600 37400 38900 20900 30100 59000 65600 45300 27000 42200 32100 52200 23800 31200 40300 --' ' 1.64 1.54 1.31 1.36 " 1 .. 17 1.25 1.50 1.32 1.09 'j ~20 1.10 1.77 1. 74 1.00 1 .. 62 1.45 1. 72 1.27 1.23 1 .. 35 1.62 ·1.79 1.91 1.63 1 ·s1· .. ''• . •. ~ 1 .. 31 1.32 ., • 37 1 .. 25 1.26 1.39 1 .. 42 0.23 Q7 Q7/QM 27000 29800 39500 35500 28500 36000 46800 3B400 .28000 26000 16900 42700 64700 26000 75000 33000 49200 34800 38100 18700 26100 48300 53500 40900 22700 37100 29800 48300 23100 29400 34700 -- 1.38 1.43 1.22 1.30 1.13 1.20 1.40 1.27. 1.09 1.11 1.09 1.45 1 .. 50 1.00 1.48 1.28 1.49 1.18 1.21 1.21 1.40 "1.47 1.55 1.47 1.27 1.15 1.22 1.27 1.21 1.19 1.19 1.28 0.15 ..-- 15-Day Peak Flow Q15 Q15/QM 22400 25200 31000 31000 25800 34600 40300 35400 28000 24300 16000 36800 53200 26000 63500 £7200 39800 31500 36500 17500 20400 38200 39800 34600 19700 32600 28600 41500 20601) 26400 31300 - 1.14 1.21 1.14 1 .. 13 1~02 1.16 1.21 1.17 1 .. 09 1 .. 04 1.03 1.25 1.23 1.00 , .26 1 .. 0~ 1.21 1.07. 1.17 1.13 1.10 1 .. 16 1.16 1.24 1.10 1.01 1.17 1.09 1.08 1.07 1.08 1"13 0.'07 -'- ·I j I j I ~~~~-----------------~--~------------~------~~· ----------~----------------------------------~ --susl8/b3 --.. --· --···. .. -----.. Year 1950 . 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965, 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 # of Val. Average Standard Oev. Mean Monthly Flow -QM (cfs) 22600 22570 26390 20200 20360 27560 31090 23310 22880 25000 22980 24570 25850 34400 22950 27840 19864 26800 26922 16103 22660 23950 22770 18250 '18800 27720 18940 22870 21020 28880 32660 31 24150 4240 Compat~ison of Peak Flows to Average Monthly Flow Susitna River at Gold Creek No. 15292000 July 1 Day Peak Flow 3-Day Peak Flow . 7-Day Peak Flow 32500 25000 41700. 26200 28700 39000 32000 34500 32400 32000 37500 30300 32700 49000. 33200 37700 31800 50000 32000 20900 29100 38300 27200 22900 26300 33900 22800 30000 24100 39300 49700 1.44 1.11 1.58 1.30 1 .. 41 1.42 1 .. 03 1.48 1.42 1.28 ' 1.63 ·1.23 1.26 . 1.42 1.45 1.35 1.60 .1.87 1.21 1.30 1.28 1.60 1.19 1.25 1.40 1.22 1.11 1 .. 31 1.15 1.36 1.52 1.36 0.18 Q3 Q3/QM 29600 24800 40400 24300 26600 38300 32000 31300 32100 30700 36100 27100 28600 46300 29100 34900 29800 46300 31600 20200 27700 35800 26400 22400 25000 32500 21600 29700 23300 34800 45100. 1.31 1.10 1.53 1 .. 20 1.31 1.39 1.03 1.34 1. 40 1.23 1.57 1.10 1.11 1.35 1.27 1.25 1.50 1.73 1.20., 1.25 1.22 1.49 1.16 1.23 1.33 1 .. 17 1.14 ~ 1.30 ··1.11 1 .. 20 1 .. 38 1.29 0 .. 16 26300 24600 33900 22800 24500 34200 32000 26300 25900 29500 32900 26100 27700 42900 27100 32000 25100 38900 29400 19100 25000 31800 25500 22200 21900 30700 19700 27900 22500 32600 36800 1.16 1.09 1.28 1.13 1.20 1.24 1.03 1.13 1.13 1.18 1.43 1.06. 1.07 1.25 1018 1.15 1.26 1.45 1.11 1.19 1.10 1.33 1.12 1.22 1 .. 16 1.11 1.04 1.22 1.07 1.13 1.13 1.17 0.10 --- 15-Da:y Peak Flow_ Q15 Q15/QM 24500 23800 29100 21000 21800 30900 32000 24900 23800 26500 26100 25500 26600 39200 25800 30500 21800 32500 28400 17700 230QO 26500 25500 20300 20300 29200 19300 25100 21600 31700 33700 1.08 1.05 1.10 1.04 1.07 1.12 1.03 1.07 1.04 1.06 1.14 1.04 1 .. 03 1.14 1.12 1.10 1.10 1.21 1 .. 07 1 .. 10 1.02 1.11 1.12 1.11 1.08 1.05 ,, 1 .. 0.2 1.10 1.03 1.10 1.03 1.08 0.04 ~ <Ill,): ' • tl • ' • .. • • • • •• ~. ' • • •" .... •• • & •· susi8/b4 Comparison of Peak Flows to Average Monthly Ffow Susitna River at Gold Creek No. 15292000 August Mean Monthly 1 Da~ Peak Flow 3··DaY: Peak Flow 7..:.oa~ Peak FJow 15-Da]t· Peak Flow Year Flow -QM Q1 o,loM Q3 Q3/QM Q7 Q7/QM Q15 o,510M (efs) 1949 24250 35000 1.44 34000 1.40 31900 1.32 30900 1.27 1950 19880 27600 1.39 26200 1 .. 32 24800 1.25 23600 1 .. 19 1951 19670 30600 1.56 26900 1.37 24200 1.23 21100 '1.07 1952 20920 41900 2-00 37400 1.79 30100 1.44 26800 1 .. 28 1953 20610 28100 1.36 26600 1.29 25400 1.23 22100 1,.07 1954 26100 41000 1.59 40300 1.54 33300 1.28 28300 1 .. 08 1955 25750 5690(\ 2.21 54000 2.10 43100 1.67 .. 29900 1.16 1956 24530 31000 1.26 31000 1.26 30900 1.26 28600 1 .. 17 1957 20540 2660() 1.30 24900 1.21 21400 1·.04 20900 1.02 1958 2~540 47800 2.12 • 45900 2.04 38300 1.70 30200 1.34 1959 31180 59700 1 .. 91 56700 1.82 49100 1.57 41700 1-34 1960 23590 33300 1.41 30500 1.29 27700 1.17 25600 1.09 1961 •22100 26000 ¢1.18 . 2600J 1.18 26000 1.18 26000 1.18 1962 23550 30600 1.,30 2871)0 1.22 25500 1.08 24100 1 .. 02 1963 23670 35000 1.48 31!700 1.38 30300 1.28 25400 1.07 1964 16440 21600 1.31 21500 1.31 20200 1.23 18100 1.10 1965 21120 33600 1.59 33000 1~56 30600 1.45 26000 1 .. 23 1966 21825 33500 1.53 31400 1.44 26900 1.23 .23200 1 .. 06 1967 32622 76000 2.33 69300 2.12 55400 1.70 42200 1.29 1968 17167 21800 1.27 21600 1.26 20500 1.19 19900 1.16 1969· 8879 16800 1.89 15800 1. 78 14300 1.61 1210f} 1.36 1970 19980 31600 1.58 29500 1.48 26100 1. 31 22900 1.15 I 1971 31910 77100 2.40 72700 2.28 57900 1 .. 81 41900 1.31 . 1972 19290 26400 1.37 24900 1.29 22200 1.15 21000 1.09 1973 20290 30500 1.50 29900 1.47 27800 1.37. 21300 1.05 1974 16220 22300 1.37 21300 1.31 18900 1.17 17600 1.09 1975 18090 24800 1 .. 37 23400 1.29 21600 1.19 19900 1.10 1976 1980\1 32000 1.62 30000 1.52 28600 1 .. 44 24900 1.26 1977 19241J 26200 1.36 24600 1.28 23400 1.22 21500 1,.12 1978 163~fJ 20900 1·.28 20800 1.27 20500 1.25 19500 1 .. 19 1979 20460 28400 1.39 27600. 1 .. 35 25800 1.26 24000 1.17 1980 20960 31100 1.48 27700 1.32 24500 1.17 24100 1 .. 15 #of Val. 32 Average 21550 1.57 1 .. 49 1 .. 33 1 .. 16 Standard 4725 0.33 0.30 0.20 0.10 .v .. _ ---------'------' ' . {.~ .. .. ----··-·----susi8/b7 -.. --- Mean Monthly Year Flow-.QM (cfs) 1958 10460 1959 7413 1960 13890 1961 10100 1962 7743 1963 11060 1964 2355 1965 7452 1966 3971 1957 12400 1968 10940 1969 6001 1970 9643 1971 4468 1972 9765 #of VaL 15 Average 8510 Standard 3270 D~v. Comparison of .Peak Flows to Average Monthly Flow Chulitna River near Talkeetna No. 15292400 May 1 Da~ Peak Flow 3-Dai: Peak Flow Q3/"~M ;~j 7-Da~ Peak Flow Q1/QM Q, Q1/QM Og Q7 16000 1.53 16000 1.53 16000 1.53 13000 1.75 13000 1.75 12700 1 .. 11 35700 2.57 33300 2,40 29600 2 .. 13 16000 1.58 15000 1,.50 13100 1~30 16500 2.13 16000 2.07 14900 1.92 28500 2.58 26600 2.41 22600 2.04 4000 1.70 4000 1.70 4000 1.70 12000 1.61 12000 1 .. 61 '12000 f .61 911(} 2~29 . 6700 1.68 6020 1.52 22000 1 .. 77 21000 1 .. 6;;} 20700 1.67 25400 2.32 23900 2 .. 18. 22200 2.03 12300 2.05 11700 1.95 ~0100 1.68 19000 1.97 17700 1 .. 83 16100 1.67 11000 2.46 10300 2.31 8860 1.98 23800 2.44 20000 2.05 16700· 1. 71 2.ff'S 1.~1 1.75 0.:18 0.31 0.23 I ~- 15-Da~ Peak Flow Q15 Q15/QM 14200 1.-36 11300 1.52 21500 1 .. 55 12700 1.26 12200 1.58 19600 1. 77 3330 1.41 1200.0 1.61 5740 1.45· 18100 1 .. 46 18400 1.63 8160 1.36 13900 1.44 6710 1.50 12800 1 .. 31 1.48 0.14 susi8/b8 Mean Monthly Year Flow -QM (cfs) 1958 23170 1959 23660 1960 17~90 1961 20490 1962 20620 1963 17750 1964 40330 1965 20070 1966 21740 1967 25520 1968 29000 1969 18560 1970 19670 1971 22180 1972 17900 '1980 22490 #ofVal. 16 Average 22530 Standard 5650 Dev. Comparison of Peak Flows to Average Monthly Flow Chulitna River near Talkeetna No. 15292400 June 1 Da~ Peak Flow 3-Da~ Peak Flow 7-Da~ Peak Flow Q77QM Q1 Q1/QM Q3 Q3/QM Q7 29000 1.25 28300 1.22 27300 1.18 33400 1.41 33100 1.40 32300 1.37 22000 1.27 21700 1.25 21200 1.22 .29200 1.43 27600 1.35 25900 1.26 38000 1.84 34100 1.65 29700 1.35 27700 1.56 24300 1.37 23000 1.30 45000 1.12 45000 1.12 45000 1.12 30000 1.49 28000 1.40 24900 1.24 29000 1. 33 27700 1.27 26100 1.20 56000 2.19 40800 1.60 34300 1.34 38800 1. 34 37900 1.31 35900 1.24 28100 1. 51 26300 1.42 24800 1. 34 33000 1.68 29700 1. 51 25400 1.29 44500 2.01 41600 1.88 38300 1. 73 28000 1.56 25800 1.44 23300 1.30 30200 1.34 27400 ·1.22 25000 1.11 1.52 1.40 1.29 0.29 0.19 0.14 I .. J 15-Da~ Peak Flow Q15 0 15/QM 23900 1.03 29500 1.25 19100 1.10 24900 1.22 25300 1.23 18900 1.06 43000 1.07 21900 1.09 24100 1.11 30200 1.18 33600 1.16 24500 1.32 21600 1.10 28400 1.28 20300 1.13 23700 1.05 1.15 0.09 .J --) . ---=1 susi8/b9 Mean Monthly ~ Flow -QM (cfs) 1958 25010 1959 25650 1960 23650 1961 27420 1962 27720 1963 28950 1964 24930 1965 23230 1966 23750 1967 35570 1968 30140 1969 20820 1970 26100 1971 27280 1972 25770 1980 34950 # of Val. 16 Average 26930 Standard 3980 Oev. .. -... ; . -l Comparison of Peak Flows to Average Monthly Flow Chulitna River near Talkeetna No. 15292400 July 1 Da~ Peak Flow 3-Day Peak Flow 7-0a~ Peak Flow o 1 o 17oM Q3 Q3/QM Q7 Q7(QM 31700 1. 27 30700 1.22 27700 1.11 36400 1. 42 31500 1.22 30200 1.18 33400 1.41 31500 1. 33 29300 1.29 38900 1. 42 36500 1.33 32800 1.20 36800 1.35 32900 1. 21 31000 1.14 34000 1.17 34000 1.17 34000 1.17 27000 1.08 27000 1.08 27000 1.08 27400 1.18 27100 1.17 26400 1.14 30500 1.28 29900 1.26 28700 1. 21 71200 2.00 61400 1. 73 47300 1.33 35400 1.17 35000 1.16 33600 1.11 26000 1.25 24700 1.19 24000 1.15 34800 1.33 33200 1.27 30200 1.16 42600 1.56 40100 1.47 35900 1.32 34100 1.32 33600 1.30 33100 1.28 55800 1.60 47900 1.37 40800 1.17 1.36 1.28 1.19 0.22 0.15 0.08 15-Da~ Peak Flow Q15 015/QM 26100 1. 04 29100 1.13 25700 1. 09 30200 1.10 29600 1.09 34000 1.17 26000 1.04 24800 1.07 27100 1.14 40900 1.15 31700 1.05 23800 1.14 28200 1.08 31800 1.17 29700 1.15 38500 1.10 1.11 0.04 susi8/b10 Mean Monthly ~ Flow -QM (cfs) 1958 20760 1959 22100 1960 19320 1961 24580 1962 21980 1963 18390 1964 20250 1965 22550 1966 27720 1967 33670 1968 20710 1969 11300 1970 24660 1971 23810 1972 20970 1980 20780 # of Val. 16 Average 22100 Standard 4690 Dev. Comparison of Peak Flows to Average Monthly Flow Chulitna River near Talkeetna No. 15292400 August 1 Day Peak Flow 3-0a~ Peak Flow Q3/QM 7~Da~ Peak Flow Q7 Q7/QM Q1 Q1/QM Q3 33800 1.63 31900 1.54 29100 1.40 34000 1.54 29100 1.32 28000 1.27 25000 1.29 25000 1.29 25000 1.29 40000 1.63 37700 1. 53 33600 1.37 36700 1.67 32700 1.49 26600 1.21 20000 1.09 20000 1.09 20000 1.09 28000 1.38 25800 1. 27 23100 1.14 34400 1.53 34000 1.51 31700 1.41 37600 1.36 36700 1.33 34800 1.26 73000 2.17 71000 2.11 56300 1.67 29800 1.44 29000 1.40 26800 1.29 22500 1.99 21400 1.89 18800 1.66 35600 1.44 33700 1.37 31500 1.40 45000 -1.89 40900 1.72 36100 1.52 27200 1.30 25800 1.23 24400 1.16 32500 1.56 28100 1.35 26500 1.28 1.56 1.47 1.34 0.28 0.26 0.17 _) ... I 15-Da}! Peak Flow Q15 Q15/QM 25900 1.25 25300 1.14 25000 1.29 27600 1.12 23200 1.06 19700 1.07 21300 1.05 27700 1.23 29300 1.06 42200 1.25 24600 1.19 15100 1.34 27600 1.12 29400 1.23 22700 1.08 25200 1.21 1.17 0.09 ~ · . cl • -] •.. . ) ! susi8/b11 Mean Monthly Year flow -QM (cfs) 1958 8000 1959 9957 1960 12420 1961 16030 1962 13490 1963 11330 1964 9235 1965 22260 1966 12200 1967 12510 1968 7375 1969 6704 1970 11330 1971 11080 1972 12120 1980 3240 # of Val. 16 Average 11520 Standard 3770 Dev. Comparison of Peak Flows to Average Monthly Flow Chulitna River near Talkeetna No. 15292400 September 1 Oa~ Peak Flaw 3-Day: Peak Flow 7-Day: Peak Flow Q1 0/QM Q3 Q3/QM Q7 Q7/QM 9200 1.15 9200 1.15 9200 1.15 20200 2.03 18600 1.87 15700 1.58 23000 1.85 21000 1.69 18000 1.45 30700 1. 92 28200 1. 76 23200 1. 45 35500 2.63 30500 2.26 24400 1.81 14000 1.24 14000 1.24 14000 1.24 15000 1.62 14000 1.52 13000 1. 42 41100 1. 85 34800 1.56 30800 1.38 18000 1.48 17000 1.39 14600 1.19 21700 1.73 20600 1.65 17500 1.40 10500 1.42 10300 1.40 9810 1.33 9680 1.44 9390 1.40 8760 1. 31 19300 1.70 19000 1.68 17900 1.58 16900 ' 1.53 16600 1.50 16000 1.44 29100 2.40 25300 2.09 19300 1.59 12900 1.57 12000 1.46 10400 1. 26 1.72 1.60 1.41 0.39 0.29 0.17 15-Day Peak Flow Q15 Q15/QM 9200 1.15 12400 1. 25 15600 1.26 19300 1.20 18000 1.33 12700 1.12 11000 1.19 23900 1.07 13700 1.12 16100 1.28 9330 1.27 7980 1.19 15400 1.36 14500 1. 31 16400 1. 35 8830 1.07 1.22 0.10 susi8/b12 Mean Monthly Year Flow -QM (cfs) 1958 4195 1959 4723 1960 5135 1961 5777 1962 3506 1963 8062 1964 5642 1965 6071 1966 4682 1967 3483 1968 2898 1969 4578 1970 3826 1971 5439 # of Val. 14 Average 4858 Standard 1324 Dev. ) 3 Comparison of Peak Flows to Average Monthly Flow Chulitna River near Talkeetna No. 15292400 October 1 Da~ Peak Flow 3·Da}:: Peak· Flow 7-Da}:: Peak Flow Q1 Q1/QM Q3 Q3/QM Q7 Q7/QM 6200 1. 48 6000 1.43 5600 1.33 7800 1.65 7400 1.57 -7070 1.50 10900 2.12 9750 1. 90 8800 1. 71 12500 2.16 11600 2.01 10100 1. 75 7820 2.23 7190 1.82 6380 1.82 12000 1.49 12000 1.49 12000 1.49 15300 2.71 12700 2.25 10000 1. 77 9400 1.55 9400 1.55 9400 1.55 8500 1.81 8170 1.74 8000 1. 71 5800 1.67 5600 1. 50 5180 1.49 4400 1.52 4150 1. 43 3820 1.32 7700 1.68 6960 1.31 6010 1.25 5000 1. 31 4930 1.29 4770 1.25 11000 2.02 10300 1.89 8830 1.62 1.81 1.66 1.54 0.38 0.28 0.20 ' I 15-0a~ Peak Flow Q15 Q15/QM 5030 1.20 6030 1.28 7140 1.39 7750 1.34 5050 1.44 10300 1.28 7580 1.34 9400 1.55 6630 1.42 4520 1.30 3480 1.20 5740 1.25 4450 1.16 7050 1.30 1.32 0.11 j ~-'"_,, I : j ,J ---~usi8/b13 Mean Monthly Year Flow -QM (cfs) 1955 3474 1966 2410 1967 4112 1968 8840 1969 3869 1970 3950 1971 2145 1972 3516 1973 3860 1974 5678 1975 4084 1976 3439 1971 4244 1978 2950 1979 7790 1980 4820 # of Val. 16 Average 4324 Standard 1782 Dev. ---.;-.. . i . ' --- Comparison of Peak Flows to Average Monthly Flow Talkeetna Riv~r near Talkeetna No. 15292700 May " " 1 Dal: Peak Flow 3-Da~ Peak Flow 7-0a)! Peak Flow o, Q1/QM Q3 Q3/QM Q7 Q7/QM - 14300 4.12 12100 3.48 9060 2.61 5890 2.44 5750 2.39 5020 2.08 750J 1.82 7430 1.81 7360 1.79 19000 2.15 17500 1.98 16600 1.88 13500 3.49 11100 1.87 8430 2.18 7900 2.00 7520 1.90 6690 1.69 4980 2.32 4940 2.30 4420 2.06 12600 3.58 10400 2.96 8520 2.42 6920 1.79 6770 1.75 6640 1.72 15000 2.64 14400 2.54 13000 2.29 12200 2.99 11900 2.91 10100 2.47 0 5000 1.45 4500 1.31 4110 1.20 12800 3.02. 12500 2.95 9530 2.25 4750 1 .. 61 4670 1.58 4340 1.47 20700 2.66 20200 2.59 16700 2.14 10000 2.07 9670 2. o·1 8170 1.70 2.51 2.33 2.00 0.76 0 .. 60 0.39 15-Da~ Peak Flow Q15 Q15/QM. 5890 1.70 3700 1 .. 54 6140 1 ~49 14600 1 .. 65 6000 1.55 5630 1.43 3360 1.57 5790 1.65 5840 1.51 9340 1.64 7210 1.77 3880 1.1:8 7090 1.6V 3870 1.31 11800 1.51 6650 1.38 -1.53 0.16 susi8/b14 Year 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 # tlf Val. Average Standard Dev. Mean Monthly Flow -QM (cfs) 17080 11090 12970 9286 14100 5207 7979 19040 12700 12210 . 8030 13180 . 10580 18280 7429 12010 11380 17 11910 3800 Comparison of Peak Flows to Average Monthly Flow Talkeetna River near Talkeetna No. 15292700 June 1 Day Peak Flow_ ,_ 3-Day Peak Flow 7-0ay Peak Flow Q1 ·o1/QM 27000 16700 24000 15400 22000 7120 17900 33700 27500 25000 14100 18600 17200 27100 12900 20500 15000 1.58 1<t51 1.85 1.66 1.56 1.37 2.24 1.77 2.17 2.05 1.76 1.41 1.63 1.48 1.74 1.71 1.32 1.69 0.27 Q3 Q3/QM 25000 15200 23400 13400 20500 6800 16500 30200 22400 21200 11200 15900 16200 24700 9900 19200 14700 1.46 1.37 1~80 1.44 1.45 1.31 2.07 1.59 1. 76 1u74 1.39 1.21 1.53 1.35 1.33 1.60 1.29 1.51 0.22 23000 13600 21200 11500 18200 6060 11700 26500 17000 19200 9420 14300 15000 23500 8920 17000 12900 1.35 1 .. 23 1 .. 63 1.24 1.29 1.16 1.47 1.39 1 .. 34 1 .. 57 1.17 1.08 1.42 1.29 1.20 1 .42 1 ... 13 1.32 0.15 15-Da}~ Peak Flow Q15 Q15/QM _ _,.,.. ___ _ 20400 12300 16400 11100 16300 '5880 9060 22900 14200 15600 8670 14100 12900 20900 7870 14000 11800 1.19 1 .. 11 1.26 1.20 1 .. 16 ., 1.13 1.14 1,.20 1.12 1.28 1 .. 08 1.07 1.2? 1.14 1.06 1.17 1.04 1.15 0.07 ----, •.• -,,.. -----;---i--,. ' . , ' ;., susi8/b16 Mean Monthly Year Flow -QM (cfs} 1964 8396 1965 11150 1966 10730 1967 14160 1968 7546 1969 3787 1970 8752 1971 16770 1972 9576 1973 9927 1974 7704 1975 8487 1976 8088 1977 8005 1978 7001 1979 8274 1980 7220 # of Val. 17 Average 9151 Standard 2922 Dev. -~-~ 0 •• Comparison of Peak Flows to Average Monthly Flow Talkeetna River near Talkeetna No. 15292700 August 1 Da~ Peak Flow 3-Da:t Peak Flow 7-Da:t Peak Flow Q1 o11oM Q3 Q3/QM Q7 Q7/QM 11900 1. 42 11100 1.32 11000 1.31 21400 1. 92 20900 1.87 17900 1.61 19800 1.85 19100 1. 78 15100 1. 41 34700 2.45 27600 1.95 23600 1.67 9900 1.31 9200 1.22 8290 1.10 7900 2.09 7450 1. 97 6810 1.80 12700 1.45 11600 1.33 11100 1.27 63000 3.76 50400 3.01 35800 2.13 14000 1.46 13700 1. 43 12900 1.35 24000 2.42 21300 2.15 16400 1.65 18800 2.44 14300 1.86 9330 1.21 12900 1.52 12100 1. 43 10200 1.20 11700 1.45 10500 1. 30 10200 1. 26 11300 1. 41 9990 1.25 9390 1.17 10500 1.50 10200 1.46 9440 1.35 15800 1.91 15000 1. 81 12600 1.52 12700 1.76 11100 1.54 9630 1.33 1.89 1.69 1. 43 ° 0.62 0.45 0.27 . .~ 15-Da:t Peak Flow Q15 01s/OM 9650 1.15 14600 1. 31 12400 1.16 18500 1. 31 8020 1.06 5400 1.43 9790 1.12 24300 1.45 10600 1.11 11600 1.17 7760 1.01 9770 1.15 9420 1.16 8550 1.07 8740 1.25 10200 1.23 8500 1.18 1.19 0.12 --------------· susi8/b17 Comparison of Peak Flows to Average Monthly Flow Talkeetna River near Talkeetna No.. 15292700 September Mean Monthly 1 Day Peak F!O\V 3-Da~ Peak Flow ~ 7-Da~. Peak Flow Year Flow -QM (cfs) Q1 Q1/QM Q3 Q3/QM Q7 Q7/QM 1964 3815 5100 1.34 5000 1.31 4690 1.23 1965 10610 23400 2.21 19000 1.79 16600 1.56 1966 5370 8900 1.66 7400 1.38 6410 1.19 1967 6971 13300 1.91 13100 1.88 12100 1. 74 1968 4120 6640 1.61 6380 1.55 5730 1.39 1969 2070• 3220 1.56 2970 1.43 2660 1 .. 29 1970 5993 14700 2.45 12600 2.10 9910 1.65 1971 5990 12000 2.00 11000 1.84 9640· 1.f51 1972 8709' 19800 2.27 16200 1 .. 86 13300 1.53 1973 3861 . 7500 1. 94 6830 1.77 5860 1.52 1974 4763 9200 1.93 8540 1.79 7120 1.49 1975 7960 14900 1.87 13600 1 .. 71 10700 1.34 1976 3205 4010 1.25 3790 1.18 3410 1.06 1977 5826 8450 1.45 8030 1.38 7260 1.25 1978 3513 6400 1.82 5450 1 .. 55 4770 1.36 1979 4039 6760 1.67 6080 1.51 5860 1.45 1980 5400 18600 3 .. 44 14900 2.76 10400 1. 93 # of Va_l. 17 Average 5428 1.91 1.69 1.45 Standard 2192 0.51 0.37 0.22 Dev. ---- 15-Da~f Peak Flow Q15 Q15/QM 4180 1.10 13200 1.24 6050 1.13 9630 1.38 5290 1.28 2400 1.16 7310 1 .. 22 7830 1 .. 31 11400 1.3.1 4830 1.,25 5390 1.13 9970 1 ~2~ 3280 1.0? 6840 1.17 4350 1.24 4560 . 1.13 7440 1.38 1.22 0.10 susi8/b18 J Comparison of Peak Ffows to Average Monthly Flow Talkeetna River near Talkeetna No. 15292700 October Mean Monthly 1 Da~ Peak Fiow g ... oa~ Peak Flow 7-Day Peak Flow 15·Da~ Peak Flow Year Flow -QM Q1 0 1 /QM Q3 Q3/QM Q7 Q7/QM Q15 Q15/QM (cfs) 1964 3115 4820 1.55 4610 1.48 4180 1.34 3840 1.23 196'.) 4438 10200 2.30 9050 2 .. 04 7610 1. 71 S080 1.37 196S 2388 4170 1. 75 3970 1.66 3610 1.51 3200 1.34 ·iS67 2029 2940 1.45 2860 1. 41 2560 1.31 2440 1.20 1968 1637 2280 1.39 2200 1.34 2080 1.27 1920 1. '17 1969 1450 2100 1.45 2070 1.43 1910 1.32 1730 1.19 *1970 2817 5200 1.85 4570 1.62 3870 1.37 3430 1.22 1971 2632 3600 1.37 3530 1.34 3170 1.20 3090 1.17 1972 3630 6120 1.69 5510 1.52 4750 1.31 4090 1.13 1973 1807 3000 1.66 2760 1.53 2560 1.42 2240 1.24 1974 1987 3260 1.64 3110 1.57 2810 1.41 2480 1.25 1975 2884 5100 1~77 4830 1.67 4480 1.55 3950 1.37 1976 ' 1857 2400 1.29 2270 1.22 2200 1.18 2040 1.10 1977 3268 5400 1.65 5020 1.54 4520 1.38 4080 1 .. 25 1978 1660 2380 1.43 2310 1.39 2090 1.26 1830 1.18 1$79 3371) 6700 1.99 5870 1. 74 5120 1.52 4270 1.27 # of Vat. 16 Averag~ 2559 1.64 1.53 1.38 1.23 Standard 854 0.26 0.19 0.14 0.08 I) Dev. -----------------. --. , . . ; - -susi8/b19 ,..1_3· Mean Monthly Flow -Q Year (cfs). M 1975 47540 1976 70460 1977 56180 1978 48670 1979 81260 1980 66580 #of VaL. 6 Average 61780 Standard 13295 Dev. -------- Comparison of Peak Flows to Average Monthly Flow Susitna River. at Sus,itna Station No. 15294350 May - 1 bay: Peak Flow 3-0a~ Pea~c Flow 7-Day Peak Flow Q7/QM Q1 Q 1/QM Q3 Q3/QM Q7 121000 2~55 114000 2.40 103000 2.17 115000 1 r..63 113000 1.60 101000 1.43 128000 2.28 121000 2.15 105000 1.87 66000 1.36 65300 1.34 62800 1.29 136000 1.67 134000 1 .. 65 121000 1.49 124000 1.86 116000 1.74 99200 1.49 " 1.89 1.81 1.62 0.44 ' 0.39 0.33 .... • .. • \. •. • <I • .. - - 15-0ay Peak Flow Q15 Q15/QM 81000 1.70 83100 1.18 91000 1.62 58800 1.21 105000 1.29 85100 1.28 1.38 0.22 susi8/b20 Mean Monthly Year Flow .... QM (cfs) 1975 128800 1976 107000 1977 165900 1978 90930 1979 119900 1980 142900 #of Val. 6 Average 125900 Standard 26510 Oev. 0 Comparisbn of Peak Flows to Average Monthly Flow Susitna River· at Susitna Station No. 15294350 June 1 Day Peclk Flow ___1:. gay Peak Flow 7-Day Peak · Flow Q1 Q1/QM G:3 Q3/QM Q7 Q7/QM 161000 1.25 152000 1.18 141000 ·1.09 131000 1.22 13000 1. 21 128000 1.20 195000 1.18 191000 1.15 186000 1.12 118000 1.30 114000 1.25 113000 1.24 158000 1.32 150000 1 .. 25 133000 1.11 173000 1.21 . 164000 1.15 152000 1.06 1.25 1.20 1.14 0.05 . 0 .. 05 0.07 15-Day Peak Flow Q15 Ql5/QM 137000 1.06 116000 1.08 175000 1.05 ·103000 1 .. 13 122000 1.02 149000 1 .. 04 1.06 0 .. 04 ~------------------ I ' . --· --- - - -·-- - - - ----: - -susi8/b21 Mean Monthly Year Flow -QM (cfs) 1975 135700 1976 115200 1977 143900 1978 117600 1979 142500 1980 181400 # of Val. 6 Average 139380 Standard 23950 Dev. Comparison of Peak Flows to Average Monthly Flow Susitna River at Susitna Station No. 15294350 July 1 Da~ Peak Flow 3-Da}::: Peak Flow 7-Da~ Peak flow Q1/QM o, Q3 Q3/QM Q7 Q7/QM 171000 1 .. 26 159000 1.17 155000 1.14 '146000 1.27 139000 1.21 126000 1.09 166000 1.15 161000 1.12 152000 1 .. 06 130000 1.11 126000 1.07 120000 . 1.02 175000 1.23 169000 1.19 155000 1.09 226000 1.25 215000 1.19 203000 1.12 1.21 1.16 1.09 0.07 0.05 0.04 15-Da,l! Peak Flow Q15 01s/QM 148000 1.09 123000 1.07 1.46000 1.01 119000 1.01 153000 1 .. 07 189000 1.04 1 .. 05 0.03 ~ I susi8/b22 Mean Monthly Flow -Q Year (cfs) M 1975 91360 1976 99650 1977 125500 1978 102100 1979 128200 1980 126400 #of Val .. 6 Average 112200 Standard 16300 Dev • . F ---·: ~ ' -)r< Comparison of ...,,. ·;. Flows to Average Monthly Flow Susitna River at Susitna ·Station Noo 15294350 August 1 Da~ Peak FJow 3-Da~ Peak_ Flow 7-Da}! Peak ·F!ow Q 1 Q1/QM Q3 Q3/QM Q7 Q7/QM 113000 1.24 109000 1 .. 19 105000 1.15 138000 1.38 134000 1.34 125000 1 .• 25 151000 1,.20 144000 1.15 141000 1.12 130000 1.27 130000 1.27 126000 1.23 160000 1.25 157000 1.22 146000 1.14 163000 1.29 153000 1.21 142000 1.12 1.27 '1.23 1.17 0.06 0.07 0.06 ------ 15-Dav. Peak Flow Q15 Q15/QM 99800 1 .. 09 115000 1.15 135000 1.08 120000 1.17 141000 1'" 10 141000 1 ~ 12 1.12 0.04 --.--- --· --•.•..• , •. (--•. - - - - -·-- -susi8/b23 Mean Month!y Year Flow-QM (cfs) 1975 77740 1976 48910 1977 83810 1978 55500 1979 74340 1980 91200 # of Val. 6 Average 71910 Standard 1£?440 Dev. Comparison of Peak Flows to Average Monthly Flow Susitna River· at S.usitna Station No. 15294350 September 1 Da~ Peak Flow 3-Da}!: Peak Flow 7-Day Peak Flow Q1 Q1/QM Q3 Q/Q 3 M Q 7 Q7/QM 122000 1.57 110000 1.41 100000 1.28 93800 1.92 •84100 1. 72 69700 1.43 119000 1.42 109000 1.,30 99600 1.19 83400 1.50 77900 1.40 72100 1 .. 30 118000 1.59 113000 1.52 108000 1,.45 '' 135000 1 ~48. ' 122000 1.34 108000 1.18 1.58 1.45 1.31 0.18 ' 0 .. 15 0.12 . . 15-Day Peak Ffow Q15 Q15/Q~ 93800 1.21 .5€400 1.15 92000 1 .. 10 69200 1.25 !l\0900' 1 .. 22 98600 1.08 1.17 0.07 susi8/b24 Mean Monthly Year Flow -QM (cfs) 1974 19520 1975 31550 1976 30140 1977 38230 1978 36810 1979 58640 # OtVal. 6 Average 35815 Standard 12990 Dev. J . Comparison of Peak Flows to .H.verage Monthly Flow Susitna River at Susitna Station No. 15294350 October 1 Da~ Peak Flow 3-0a~ Peak Flow 7-Da~ Peak Flow Q1 o11oM Q3 Q3/QM Q7 Q7/QM 35000 1. 79 30000 1.54 26300 1.35 61000 1.93 54600 1.73 45400 1.44 43000 1.43 36000 1.19 33000 1.09 77400 2.02 68400 1. 79 56700 1.48 50000 1.36 48000 1.30 45400 1.23 93300 1.59 90600 1.55 86000 1.47 1.69 1.52 1.34 0.27 0.23 0.16 . J ..·~·J 15-Da~ Peak Flow Q15 Q15/QM 25200 1.29 39400 1.25 31000 1.03 51000 1.33 43500 1.18 74800 1.28 1. 23 0.11 --·---: -t-·• ~ - - - -:--.... - -susi8/b25 Year 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 . 1972 1,973 1974 1'975 -1976 1977 1978 1979 1980 # of Val. Average standard Dev. Mean Monthly Flow -QM (cfs) 14090 5419 14270 19280 9319 17660 13750 12900 15990 15780 17360 12590 19030 4307 12900 9645 -15480 16177 11045 11380 3745 21890 8235 16180 15350 12620 12680 11950 13870 12060 31 13270 4240 Comparison of Low Flows to Average Monthly Flow Susitna River at Gold Creek 1 Day Peak · Flow 5200 0.37 1100 0.20 10700 0.56 8800 0.51 4500 0.48 1500 0.08 4300 0.31 3420 0.27 3400 0.21 7600 0.48 9000 0.52 4500 0.36 3400 0.18. 900 0.21 2200 0.17" 3400 0.35 1700 0.11 2200 0.14 3200 0.29 1800 0.16 1400 0.37 2500-0.11 1400 0~17 2200 0.14 2500 '0.16 3800 0.30 1900 0.15 2500 0.21 2500 0.18 3700 0.31 0.26 0.14 No. 15292000 May 3-Day Peak Flow 6070 0.43 1200 0.22 . 12000 0.62 8800 0.51 4500 0.48 1970 0.11 4300 0.31 3880 0.30 3400 0.21 7600 0.48 9000 0.52 4500 0.36 3400 0.18 900 0.21 2200 0.17 3400 0.35 1800 0.12 2230 0.14 3400 0.31 1900 0.17 1470 0.39 3030 0.14 1400 0.17 2470 0.15 2770 0.18 4600 0.36 1930 0.15 3300 0.28 2700 0.19 4100 0.34 o.za 0 .. 14 7 -Day Peak Flow Q7 Q7/QM 8600 0961 1390 0.26 13200 0.69 8800 0.51 4500 0.48 4930 0.28 4300 0.31 4840 0.38 3400 o. 21 7600 0.48 9000 0.52 4500 0.36 3400 0.18 900 0.21 .2870 0.22 3400 0.35 2140 0.14 2340 0.14 3890 0.35 2240 0.20 1570 0~42 5930 0.27 1600 0 .. 19 3260 0.20 3540 0.23 7190 0. 57 . 2100 0.17 5610 0.47 3260 0.24 5260 0.44 0.34 0.15 14-Day Peak Flow Q14 Q14/QM- 12200 0.87 1460 0.27 16100 0.84 12300 0.71 4500 0.48 8820 0450 5760 0.42 7130 0.55 4540 0.28 7600 0.48 12700 0.73 4500 0.36 3400 0.18 1040 0.27 4690 0.36! 3990 0 .. 41~ 5010 0.32 3160 0.20 5730 0.52 5330 0.47 1820 0.49 14000 0.64 2540 0.31 5880 0.36 6170 0 .. 40 11100 0.88 3440 0.21 10300 0.86 4840 0.35 8520 0.71 0.48 0.21 susi8/b26 Comparison of L.ow Flows to Average Monthly Flow -; Susitna River at Gold Creek No. 15292000 f •• ~"' VUIJIC;; Mean Monthly 1 Day Low Flow 3-Da~ ~;ow Flow 7-Da~ Low Flow 14-0a)f Low Flow .. _ Year Flow ~QM o, Q1/QM Q3 Q3/QM Q7 Q7/QM Q14 Q14/QM (cfs) -1950 19600 15000 0.77 15000 0.77 16300 0.83 16700 0.85 1951 20790 10600 0.51 11200 0.54 13500 0.65 16000 0 .. 77 1952 32370 21500 0~66 22700 0 .. 70 24700 0.76 27700, 0.86 1953 27320 18900 0.69 19300 0.71 21100 0.77 23700 0.87 1954 25250 21100 0~84 21600 0.86 22500 0.89 23900 0.95 1955 29860 16300 0.55 16800 0.56 18200" 0.61 24700 0.83 1956 33340 20100 0.60 21000 0 .. 63 24800 0.74 30100 0.90 1957 30160 18500 0.61 18900 0.63 20100 0.67 24700 0.82 1958 25700 19000 0.74 21000 0~82 21600 0.84 23100 0.90 1959 23320 18000 0.77 18400 o. 79· 19400 0.83 21200 0 .. 91 1960 15530 13400 0.86 13600 0.88 14400 0.93 14600 0.94 1961 294~0 1.5000 0.51 15600 0.53 17900 0.61 23400 0.79 1962 43270 27500 0 .. 64 28700 0.66 30300 0.70 38900 0.90 1963 26000 26000 1.00 26000 1.00 26000~ 1.00 26000 1.00 1964 50580 28400 0.56 30300 0.60 31000 0.61 37100 0.7~ 1965 25120 16600 0.65 18700 0.73 20500 0.80 22000 0.8{) 1966 32953 20400 0.62 22300 0.68 24300 0.74 26600 0.8~ 1967 29513 22900 0.78 25000 0.85 26600 0.90 28700 0.97 1968 31550 23000 0.73 24300 0.77 25700 0.81 29800 0.94 .. ~1'969 15503 11200 0.72 11200 0.72 11900 0.77 13500 0.87 1970 18630 14800 0.79 15000 0.81 15300 0.82 15900 0.85 1971 32930 10000 0 .. 30 10000 0.30 15700 0.48 32000 0.97 1972 34430 20400 . 0.59 20800 0.60 23300 0.68 31900 0 .. 93 1973 27800 15800 0.57 16200 0.58 17800 0.64 22600 0 .. 81 1974 17870 13600 0.76 14300 0.80 14700 0 .. 82 15900 0.89 1975 32310 22000 0.68 23700 0.73 27300 0.84 29800 0.92 1976 24380 17200 0.71 19000 0.78 19700 0.81 20700 0485 tt.={_ 1977 37970 30900 0.81 31600 0.83 33800 0.89 35900 0.95 1978 19050 12900 0.68 13400 0.70 13800 0.72 17300 0.91 1979 24690 17900 0.72. 18400 0.75 19300 0.78 21400 0.87 1980 29080 17800 0.61 19300 0.66 24600 0~85 28300 0 .. 97 #of Val. 31 Average 27970 0 .. 68 0.71 0 .. 77 0.88 $!9ndard 7740 0.13 0.13 0.11 0.06 -.jj,ev~~,---•• ---.. ., --·-------' . ----·--·-·--·----~--... ---· susi8/b27 Year 1950 1951 1952 1953 1.954 1955 1956 1957 1958 1959 1960. 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 '1979 1980 # of Val. Average Standard Oev. Mean Monthly Flow -QM (cfs} · 22600 22570 26:J90 20200 20360 27560 31090 23310 22880 25000 22980 .24570 25850 34400 22950 27840 19864 26800 26922 16103 22660 23950 22770 18250 18800 27720 18940 22870 21020 28880 32660 31 24150 4240 Comparison of Low Flows to Average Monthly Flow Susitna River at Gold Creek No. 15292000 July 3-Day Low Flow 1 Da)! Low Flow _ Q1 Q1/QM 7-:Day Low Flow 18000 18200 17200 17200 190UO 20200 26600 18900 19000 19900 14900 23000 20900 23600 14800 20700 16200 19400 21400 11800 16500 14500 17400 14200 14900 23400 15100 18000 19400 21800 24800 0.80 0.81 0.65 0.85 0.93 0.73 0.86 0.81 0.83 0.80 0.65 0 .. 94. 0.81 0.69 0.64 0.74 0.82 0.72 0.79 0.73 0.73 0.61 0 .. 76 0.78 0.79 0.84 0.80 0 .. 79 0.92 0.75 0.76 0.78 0 .. 08 --- 18700 0.83 19000 0.84 17900 0.68 17500 0.87 19000 0.93 20500 0.74 28200 0.91 19600 0.84 20300 0.89 21000 0.84 15100 0.66 23000 0.94. 21700 0.84 23900 . 0.69 15400 0.67 21200 0.76 16400 0.83 20100 0.75 23200 0.86 12500 0.78 17200 0.76 15800 0.66 17700 0.78 14500 0.79 15100 0.80 24100 0.87 -16100 0"85 18000 0.79 19800 0.94 21900 . 0.76 25300 0.77 0.80 0.08 20000 20100 19500 18100 19000 21500 29100 21200 21300 21500 16700 23000 22900 29100 16900 22100 16900 21000 24000 13900 18600 18700 18200 14900 16900 25500 17900 1.9300 20200 25300 27500 0.88 0.92 0.74 0.90 0.93 0.78 0.94 0,..91 0.93 0.86 0.73 0.94 0.89 0 .. 85 0.74 0.79 0.85 0.78 0.89 0.86 0.82 0.78 0.80 0.82 0.,90 0.92 0.95 0 .. 84 0 .. 96 0.89 0.84 0.86 0 .. 07 14-Day l.ow Flow Q14 Q14/QM 20600 0.91 22200 0.98 22200 O~S4 19000 0.94 19000 0.93 23700 0.86 30400 0.98 22100 0.95 21600 0.94 23500 0.94 18200 0.79 23500 0.96 24800 0 .. 96 31400 0.91 19600 0.85 24700 0.89 17500 0.89 21200 0.79 24300 0.90 15600 0.97 21300 0.94 20700 0.86 19500 0.86 15800 0.87 18800 1.00 26300 0.95 18500 0.98 21600 0.94 20300 0.97 26200 0.91 . 30700 0.94 0.92 0.65 susi8/b28 Comparison of Low Flows to Average Monthly Flow Susitna River at Gold Creek No. 15292000 August Mean Monthly 1 Day Low Flow 3-Day Low Flow Year FIC~f;~M Q1 Q1/QM Q3 Q3/QM 1949 24250 15200 0.63 16100 0.66 1950 19880 11000 0.55 11300 0.57 1951 19670 15600 0.79 16300 0.83 1952 20920 13500 0.65 ~3800 0.66 1953 20610 16400 0.80 16600 0.81 1954 26100 24000 0.92 24000 0.92 1955 25750 13600 0. 53 14400 0. 56 1956 24530 18000 0. 73 18000 0. 73 1957 20540 16700 0.81 16900 0.82 1958 22540 11000 0.49 11300 0.50 1959 31180 16700 0.54 17100 0 .. 55 1960 23590 19000 0.81 19300 0.82 1961 22100 13800 0.62 . 14200 0.64 1962 23550 23000 0.98 23000 0.98 1963 23670 16500 0.70 17700 0.75 1964 16440 12000 0. 73 12300 0. 75 1965 21120 10000 0.47 10100 0.48 1966 21825 16400 0.75 16900 0.77 1967 32622 18900 0.58 19300 0.59 1968 17167 12600 0. 73 12900 0. 75 1969 8~79 5280 0. 59 5400 0. 61 1970 19980 12700 0.64 12900 0.65 1971 31910 16700 0.52 17500 0.55 1972 19290 12900 0.67 13200 0.68 1973 20290 11100 0.55 11200 0.55 1974 16220 8100 0 .. 50 3550 0.53 1975 18090 1180C· 0.65 12700 0.70 1976 19800 9340 0.47 10100 0.51 1977 19240 ·JOOOO 0 .. 52 11100 0.58 1978 16390 10400 0.63 10500 0.64 1979 20460 14000 0.68 14500 0~71 1980 20960 13900 0. 66 14500 0. 69 #of Val. 31 Average 21550 0.65 0.67 Standard 4125 0.13 0.12 ,.,V._ - -·-- . --, - - - ·: ~ . .] . ·~ . . ..... : . . . . . ' . . . ·. "'" . 7-Day Low Flow 17100 0.71 14200 0.71 17400 0.88 14500 0.69 16900 0.82 24000 0.92 17200 0.67 18000 0-73 18300 0.89 12300 0.55 18400 0.59 20700 0.88 17300 0.78 23000 0.98 20300 0.86 13700 0.83 12300 0.58 18800 0.86 21600 0.66 14000 0.82 5620 0.£3 . 14500 0. 73 20200 0.63 14700 0.76 13100 0.65 10500 0.65 14600 0.81 11900 0.60 13700 0.71 10900 0.67 15700 0.77 15000 0.72 0 .. 74 0.11 ---- 14-Dai~l Low Flow Q14 Q14/QM 17700 0.73 15900 0.80 17900 0.91 14900 0.71 17700 0.86 24000 0.92 20800 0.81 199QQ Oe81 19000 0.93 14700 0.65 20800 0.67 21700 0.92 18700 0 .. 85 23000 0.98 21900 0.93 15000 0.91 17500 0.83 20100 0.92 27400 0.84 14400 0.84 5810 0.65 17200 0.86 22400 0.70 17900 0.93 17600 0.87 13300 0.82 15900 0.88 14300 0.72 16700 0.87 13100 0.80 16700 0.82 17~00 0.84 0.83 0 .. 09 --- -_______________________ ,_ _____ ~-=-----~-~------- ---------~--------­susi8/b29 Year 1949 1950 1951 1952 1953 1954 1955 1956 1957 'k958 1959 1960 1961 1962 1.963 1964 1965 1966 1967 1968 .1969 1970 . 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 #of Val. Average Standard Dev ... Mean Monthly Flow -QM (cfs) '15650 8301 21240 14480 15270 12920 14290 18330 19800 7550 16920 20510 13370 15890 12320 9511 19350 11753 16867 8815 5093 9121 14440 12400 9074 12250 16310 6881 12640 8607 10770 13280 32 13250 4190 • • "•.. • ~·. ~ ., : l. " ' .. -~ , • ' j, ' Comparison of Low Flows to Avera~e Monthly Flow Susitna River at Gold Creek 1 Day Low Flow Q1 Q1/QM 9160 0.59 6000 0.72 11700 0.55 9500 0.66 8880 0.58 7400 0.57 8600 0.60 14000 0.76 14200 0.72 6600 0.87 9650 0.57 13900 0.68 11500 0.86 10700 0.67 9340 0.76 7440 0.78 9280 0.48 8160 0.69 8440 0.50 5400 0.61 3710 Oo73 SOOD 0.55 8160 0.57 5500 0.44 5500 0.61 8310 0,68 10900 0 .. 67 5620 0.82 9520 0.75 4900 .0.57 8220 0.76 8890 0.67 0 .. 66 0.11 No. 15292000 September -~3:-Dax Low Flow Q3 Q3/QM 9400 0.60 6100 0.73 12900 0.61 9830 0.68 9430 0.62 7560 0.59 8960 0.63 14000 0 .. 76 15000. 0.76 6600 0.87 10200 0.60 14100 0.69 11600 0.87 11300 0.71 9430 0.77 7600 0.80 9380 0.48 8560 0.73 8830 0.52 5430 0.62 3760 0.74 5170 0.57 8260 0.57 5670 0.46 5670 0.62 8470 0.69 11100 0.68 5800 0.84 9750 0.7~~ 5100 0.59 8510 0.79 8980 0.68 0 .. 68 0.11 7-Day Low Flow _ Q7 Q7/QM 10500 0.67 6240 0.75 15700 0.74 10300 0.71 10600 0.69 8210 0.64 9610 0.67 14000 0.76 18000 0.91 6600 0.87 10400 0. 61 15100 0.74 12100 0. 91 11900 0.75 9570 0.78 7860 0.83 13900 0.72 8830 Os75 9320 0.55 5460 0.62 3920 0.77 5290 0.58 9250 0.64 5790 0.47 6030 0.66 ·goso o. 74 11600 0.71 5930 0.86 10200 0.81 5530 0.64 8720 0.81 9160 0.69 0.72 0.10 14-Dav Low Flow Q14 Q14/QM 11600 0.74 6600 0.80 17700 0.83 11600 0.80 12300 0.81 10300 0.80 10600 0.74 17100 0.93 19400 0.98 6600 0.87 10700 0.63 17000 Q.83 13200 0.99 12100 0.76 10100 0.82 8490 0.8~ 18300 0.95 10300 0.88 10700 0.63 6150 0.70 4260 0.84 7070 0.78 10100 0.70 8710 0.70 6720 0.74 9320 0.76 15400 0.94 6220 0.90 12200 0.97 6460 0.75 9330 0.87 10300 0.78 0.82 0.10 susi8/b30 Comparison of low Flows to Average Monthly Flow Susitna River at Gold Creek No. 15292400 October Mean Monthly 1 Da~ Low Flow -3-Day· Low Ftow 7-Day low Flow 14-0av low Flow Year Flow -QM o, Q1/QM Q3 Q3/QM Q7 Q7/QM Q14 . Q14/QM (cfs) 1949 6334 3300 0.52 3400 0.54 3640 0.57 3830 0 {::.0 $G"' 1950 3848 1500 0 .. 39 1570 0~41 1810 0.47 2600 0.68 1951 5571 2900 0.52 3000 0,.54 3170 0.57 3610 0.65 1952 8202 5100 0.62 5170 0.63 5260 0.64 5490 0.67 1953 5604 2400 0.43 2540 0.45 3200 0.57 3780 0.67 1954 5370 4600 0.86 4600 0 .. 86 4600 0.86 4600 0.86 1955 4951 2800 0.57 3000 0.61 3350 0.68 3730 0.75 1956 5806 4500 0.78 4500 0.78 4500 0.78 4500 0.78 1957 8212 5400 0.66 5800 0.71 6230 0.76 7140 0.87 1958 4811 3500 0 .. 73 3500 0.73 3500 0.73 3890 0 .. 81 1959 6558 3700 0.56 3770 0 .. 57 4030 0.61 4520 0.69 1960 7794 3800 0.49 397(} 0.51 4230 0.54 4920 0.6.3 1961 5916 4600 0.78 4600 0.78 4600 0.78 4600 0.78 1962 6723 4800 0. Tl 4900 0.73 5200 0.77 5460 0 .. 81 1963 6449 3100 0.48 3270 0.51 3800 0.59 4690 0 .. 7B 1964 6291 3000 0.48 3490 0.55 3910 0.62 4400 0.70 1965 7205 2800 0.39 2930 0.41 3090 0.43 3240 0.45 1966 4162 1800 0 .. 43 1900 0.46 2100 0.50 2470 0.59 1967 4900 2900 0.59 3000 0.61 . 3140 0.64 3510 0 .. 72 1968 3822 2600 0.68 2670 0.70 2820 0.74 2940 0.77 1969. 3124 1700 0.54 1700 0.54 1810 0.58 2360 0 .. /6 1970 5288 4000 0.76 4000 0.76 4000 0.76 4210 0 .. 80 1971 5847 3600 0.62 3730 0.64 3970 0.68 4470 0 .. 76 1972 4826 3200 0.66 3400 0.70 3830 0.79 4610 0.96 1973 3733 2000 0.54 2000 0.54 2140 0.57 2440 0.65 1974 3739 1700 0.45 1700 0.45 1800 0.48 2050 0.55 1975 7739 3600 0.47 3800 0.49 4200 0.54 5420 0.70 1976 3874 3000 0.77 3000 0.77 3090 0 .. 80 3400 0.88 1977 7571 4600 0. 61 4670 0.62 5160 0.68 6040 0.80 1978 4906 2870 0.58 3190 0.65 3560 0.73 4100 0.84 1979 7311 5050 0.69 5090 0.70 5200 0 .. 71 5510 0.75 if of Val. 31 Average 5690 0.59 0.61 0.65 0.73 Standard 1450 0.13 0.12 0.11 0.11 .v .• .. .. ---------- --,. --• • • • • .. '~~ • • ... • • ,· : t- , I . . :'. . . .. .. . ' . .... . . . • .: • • • ~ ' !'. • • • • • • • • • ' • : • • • • • I- I ---susi8/b31 - - ----... .., - -.. -•• - - -- I Comparison of Low Flows to Average Monthly Flow Chulitna River n~ar Ta1keetna No. 15292400 May Mean Monthly 1 Day Low ~Flow 3~Da~ Low Flow -7-Day Low Flow .. _ _14-Da~ Low· F'ow _ Year Flow -QM Q1 o 1toM Q3 Q3/QM Q7 Q7/QM . Q14 Q14/QM (cfs) ... -1958 10460 3000 0.29 3370 0.32 4250 0 .. 41 6560 0.63 1959 7413 3400 0.46 . 3400 0.46 3400 0.46 3400 0.46 1960 13890 2300 0.17 2870 0.21 3770 0.27 5940 0.43 1961 10100 2100 0.21 2630 0.26 4360 0.4S 7040 0 .. 70 1962 7743 3200 0.41 3200 0.41 3200 0.41 3200 0,41 1963 11060 2100 0.19 2100 0.19 2100 0.19 2100 0.19 1S64 2355 1400 0.59 1400 0.59-1400 0 .. 59 1430 0 .. 6.1 1965 7452 2600 0.35 .. 2600 0.35 2600 0.35 2600 0.35 1966 3971 2100 0.53 2100 0.53 2100 0.53 2100 0.53 1967 12400 1700 0.14 1970 0.16 2670 0.22 5530 0.45 1968 109.40 2000 0.18 . 2130 0.19 2440 0.22 3470 0.32 1969 6001 2600 0.43 2770 0.46 3030 0.50 3840 0.64 1970 9643 2400 0.25 2600 0.27 3090 0.32 5130 0,53 1971 4468 1200 0.27 1300 0.29 1540 0.34 2170 0.49 1972 9765 1700 0~17 2170 0.22 4070 0.42 7820 0.80 #of Val. 15 Average 8511 0.31 0.33 0.38 0.50 Standard 3270 0.15 0.13 0.12 ·0.16 Dev. susi8/b32 Comparison of Low Flows to Average Monthly Flow Chulitna River near· Talkeetna No .. 15292400 June Mean Monthly 1 Dai: Low Fiow 3 ... Da~ low Flow 7 -Day low Flow 14-Daw Low Flow Year F!ow -QM Q1 Q1/QM Q3 Q3/QM Q7 Q7/QM Q14 Q147QM (cfs) 1958 23170 18000 0.78 18000 0.78 18600 0 .. 80 20900 0.90 1959 23660 11000 0.46 13700 0.58 16400 0.69 17700 0.75 1960 17390 13000 0.75 13700 0. 791 14500 0.83 15500 0.89 1961 20490 10800 0.53 10800 0~53 11700 0.57 15500 0.76 1962 20620 12500 0 .. 61 12700 0.62 13200 0.64 16100 0.78 1963 17750 12200 0.69 12400 0.70 13700 0.77 13900 0 .. 78 1964 40330 37000 0.92 37000 0.92 37000 0.92 37600 0.93 1965 20070 12000 0.60 \ 14000 0 .. 70 16300 0.81 17200 0.86 1966 21740 9200 0.42 10900 0.50 17600 0.81 21200 0.98 1967 25520 16000 0.63 17700 0.69 18600 0.73 20700 0.81 1968 29d00 20600 0.71 . 21200 0.73 22200 0.77 26500 0.91 1969 18560 8580 0.46 8990 0.48 9650 0 .. 52 12000 0.65 1970 19670 14000 0.71 14300 0.73 15100 0.77 19100 0.97 1971 22180 10000 0.45 10000 0.45 11900 0.54 15600 0.70 1972 17900 11200 . 0.63 11700 0.65 12500 0.70 15400 0.86 1980 22490 15000 0.6{ 15800 0.70 19700 0.88 21700 0.96 # of Val. 16 Average 22530 0.63 0.66 0.73 0.84 Standard 5650 0.14 0.13 0.12 0.10 Dev. ' --~--------~--~~---. . -----------· -.. -.. ------.. -.. .. .. --susi8/b33 Comparison of Low Flows to Average Monthly Flow Chulitna River near Talkeetna No. 15292400 July Mean Monthly 1 Da~ Low Flow .. 3-Da~ Low Flow 7-Da~ Low Flow 14-Day Low Flow Year Flow -QM Q1 Q1/QM Q3 Q3/QM Q7 Q7/QM Q14 Q14/QM (cfs) 1958 25010 19000 0.76 20200 0.81 21000 ~ 0.84 22900 0.92 1959 25650 20300 0.79 20800 0.81 21600 0.84 22100 0.86 1960 23650 17000 0.72 17300 0.73 19000 0.80 20600 0.87 1961 27420 22100 0.81 22300 0.81 23400 0.85 23900 0.87 1962 27220 25000 0.92 25000 0.92 25000 0.92 25000 0.92 1963 28950 23000 0.79 23000 0.79 23000 0.79 25400 0.88 1964 24430 21000 0.86 21000 0,.86 21000 0.86 23500 0.96 1965 23230 19800 0.85 19900 0.86 20000 0.86 22800 0.98 1966 23750 17200 0.72 17400 0.73 17600 0.74 20000 0.84 1967 35570 27600 0.78 28000 0.79 29100 0.82 30300 0 .. 85 1968 30140 23600 0.78 24900 0.83 26600 0.88 28800 0 .. 96 1969 20820 14400 0.69 15500 0.74 16200 0.78 17600 0.85 1970 26100 21000 0.80 21300 0.32 22000 0.84 23800 0.91 1971 27280 17000 0.62 18000 0.66 19000 0.70 21900 0.8~ 1972 25770 19600 0.76 20200 0.78 21400 0.83 22300 0.87 1980 34948 26600 0.76 27200 0.78 28500 0 .. 82 31300 0.90 #of Val .. 16 Average 26930 0.78 0.80 0.82 0.89 Standard 3980 0.07 0.06 0.05 0.05 susi8/b34 Year 1958 1959 1960 196~1 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1980 # of Val. Average Standard .• -- Mean Monthly Flow -Q (cfs) M 20760 22100 19320 24580 21980 18390 20250 22550 27720 33670 20710 11300 24660 23810 20970 20784 16 22100 4690 . -- Comparison of Low Flows to Average Monthly Ffow Chulitna River near Talkeetna No. 15292400 August 1 Da>:: low Flow 3-Day Low Flow .. 7-Day low Flow 14-Day Low Flow o, 01/QM Q3 Q3/QM Q7 Q7/QM Q14 Q14/QM 12000 0.58 12500 0.60 13600 0.66 15500 0.75 16000 0.72 16400 0.74 17400 0.79 18900 0.86 14000 0.72 14000 0.72 14000 0.72 14000 0.72 16100 0.66 16800 0.68. 18500 0.75 22000 0.90 15800 0.72 16200 0.74 17000. 0.77 . 18200 0.83 16000 0.87 16000 0.87 16000 0.87 16900 0.92 15000 0.74 15000 0.74 17100 0.84 19400 0.96 11000 0.49 11300 0.50 12500 0.55 17300 0.77 20000 0.72 20700 0.75 23600 0.85 25100 0.91 20200 0.60 20500 0.61 22100 0.66 28700 0.85 11200 0.54 12600 0.61 14000 0.70 16800 0.81 7500 0.66 7500 0.66 7570 0.67 7650 0.68 17700 0.72 17900 0.73 18800 0.76 21900 0.89 14000 0.59 14700 0.62 16400 0.69 18200 0.7f) 12600 0.60 13200 0.63 14600 0.70 19000 o.sn 12300 0.59 12800 0.62 13500 0.65 16300 0 .. 78 0.66 0.68 0.73 0.83 0.10 0.09 0.09 0~08 ----. -----.... --- -. . . . . . . . -~ .... -. . . . . _, ......... ------susi8/b35 ___ ... _ .. __ Comparison of Low Flows to Average Monthly Flow Chulitna River ne.ar Talkeetna No. 15292400 September Mean Monthly 1 Day Low Flow . 3-Day Low Flow 7-Day Low Flow 14-Day !iJow Flow --- Year Flow -QM o, Q1/QM Q3 Q3/QM Q7 Q7/QM Q14 Q14/QM (cfs) 1958 8000 6800 0.85 6800 0.85 6800 0.85 6800 0.85 1959 9957 6800 0.68 7000 0.70 7210 0.72 7460 0.75 1960 12420 7400 0.60 7470 0 •. 60 7780 0.63 10700 0.86 1961 16030 9680 0.60 9990 0.62 11300 0 .. 70 12900 0.80 1962 13490 8130 0.60 8170 0.61 8440 0.63 8990 0.67 1963 11330 10000 0.88 10000 0.88 10000 0.88 10000 0.88 1964 9235 6220 0.67 6850 0.74 7120 0.77 7380 0.80 .1965 22260 10700 0.48 . 10700 0.48 17600 0.79 19900 0.89 1966 12200 . 8480 0 .. 70 8660 0.71 9000 0.74 10500 0.86 1967 12510 6000 0 .. 48 6400 0.51 7300 0.58 8760 0.70 1968 7375 4150 0.56 4260 0.58 4570 0.62 5360 0.73 1969 6704 4320 0.64 4410 0.66 4800 0.72 5350 0.80 1970 11330 5000 0 .. 44 5000 0.44 5290 0.47 7040 0.62 1971 11080 6000 0.54 6170 0.50 6470 0.58 7540 0.68 1972 12120 6000 0.50 6090 0.50 6330 0.52 7470 0.62 1980 8240 6080 0.74 6270 0.76 6540 0.79 7690 0 .. 93 ' # of Val. 16 Average 11520 ·0.62 Q.64 0.69 0.78 Standard 3770 0.13 0.13 0.12 0.10 Dev. . . susi8/b36 Comparison of Low Flows to Average Monthly Flow Chulitna River near Talkeetna No. 15292400 October Mean Monthly 1 Da~ Low Flow 3-Da~ Low Flow 7-Da~ Low Flow 14-Da~ Low Flow Year Flow -QM Q1 Ql/QM Q3 Q3/QM Q7 Q7/QM 0 14 Q14/QM (cfs) 1958 4197 2910 0.69 2940 0.70 3060 0.73 3290 0.78 1959 4723 3000 0.64 3070 0.65 3230 0.68 3500 0.74 1960 5135 2500 0.49 2600 0.51 2760 0.54 3130 0.62 1961 5777 3100 0.54 3270 0.57 ,3400 0.59 3850 0.67 1962 3506 1700 0.48 1800 0.51 1870 0.53 1940 0.55 1963 8062 4800 0.60 4800 0.60 4800 0.60 5590 0.69 1964 5642 3300 0.58 3330 0.59 3410 0.60 3690 0.65 1965 6071 2950 0.49 2950 0.49 2950 0.49 2950 0.49 1966 4682 2000 0.43 2000 0.43 2170 0.46 2630 0.56 1967 3483 1900 0.55 1930 0.55 2040 0.59 2390 0.69 1968 2898 1900 0.66 2000 0.69 2190 0.76 2330 0.80 1969 4578 3000 0.66 3000 0.66 3030 0.66 3170 0.75 1970 3826 3000 0.78 3000 0.78 3030 0.79 3170 0.83 1971 5439 2900 0.53 3000 0.55 3170 0.58 3700 0.68 # of Val. 14 Average 4858 0.58 0.59 0. 61 0.68 Standard 1324 0.10 0.10 0.10 0.10 Dev. J .I J . .J ·' -· --.. -... -.. - - ----.... - - -susi8/b37 Mean Monthly Year Flow -QM (cfs) . 1965 3474 1966 2410 1967 4112 1968 8840 1969 3869 1970 395{) 1971 2145 1972 . 3516 1973 3860 1974 5678 '1975 4084 1976 3439 1977 4244 1978 2950 1979 7790 1980 4820 # of Val. 16 Average 4324 Standard 1732 Dev. . .. iliiiiliiiliiflii.ii'~··-·· ···lliioii"'' ~~iiilioi"'"h• ...... .o••.o.,.~-~·r-•~·'''"''-'·:..t:::'.__.._'L_··o,,, .. _.,..,., . Comparison of Low Flows to Average Monthly Flows Talkeetna River near Talkeetna No. 15292700 May 1 Day Low Flow . 3-Day Low Flow 7-Da~ Low Flow 14-Day Lo\.Y Flow Q1 Q1/QM Q3 Q3/QM Q7 Q7/QM. Q14 Q14/QM 960 0.28 960 0.28 960 0.28 1100 0.32 540 Oac22 577 0.24 687 0.29 1060 0.44 . 550 0.13 617 0.15 900 0.22 1860 0.45 1650 0.19 1750 0.20 2050 0.23 3000 0.34 1000 0.26 1100 0 .. 28 1300 0.34 1750 0.45 800 0.20 850 0.22 1010 0.26 2030 0.51 650 0.30 683 0.32 743 0.35 932 0.43 BOO 0.23 . 850 0.24 971 0~28 12!JO 0.37 850 0.22 900 0.,23 1010 0.26 1500 0.39 900 0.16 1000 0.18 1240 0.22 2010 0.35 600 0.15 633 0.15 693 0.17 936 0.23 1300 0.38 1500 0.44 2200 0.64 3030 0.88 660 0 .. 16 673. 0.16 739 0.17 1340 0.31 700 0.24 723 0.25 813 0.28 1810 0.6 1800 0.23 2070 0.27 2760 0.35 3790 0.49 2100 0.44 2200 0.46 2410 0.50 2900 0.60 0.24 0.25 0.30 0.45 0.08 0.09 0.12 0.15 -----·--· ------~-- susi8/b38 Comparison of Low Flows to Average Monthly Flows Talkeetna River near Talkeetna No. 15292700 June Mean Monthly 1 Da~ Low Flow .. 3-Da~ low Flow 7-Day: Low Flow ' 14-Da~ Low Flow Flow ·QM Q1 o,;oM Q3 Q3/QM Q7 Q7/QM Q14 Q14/QM Year (cfs) - 1964 17080 11000 0.64 . 11300 0.66 12300 0.72 13500 0.79 1965 11090 7120 0.64 7460 0.67 8700 0.78 9560 0.86 1966 12970 6420 0.49 7990 . 0.62 9130 0.70 9940 0.77 1967 9286 6200 0.67 6370 0.69 6660 0.72 7400 0.80 1968 14100 9500 0.67 9830 0.70 10600 0.75 12600 0.89 1969 5207 3440 0.66 3540 0.68 3730 0.72 4400 0.85 1970 7979 4700 0.59 5040 0.63 5700 0.71 6830 0.86 1971 19040 4750 0.25 4880 0.26 8450 0.44 16300 0.86 1972 12700 8560 0.67 8730 0.69 9030 0.71 10900 0.86 1973 12210 6260 0.51 6720 0.55 7630 0.62 9260 0.76 1974 8030 5200 0.65 5810 0.72 6470 0.81 7330 0.91 1975 13180 8810 0.67 9500 0.72 10500 0.80 11700 o.8g 1976 10580 6040 0.57 7480 0.71 7640 0.72 8820 0.83 1977 18280 13300 0.73 13900 0.76 14200 0.78 15700 0.86 1978 7429 4540 0.61 4800 0.65 5660 0.76 7080 0.95 1979 12010 7090 0.59 7390 0.62 7710 0.64 9300 0.77 1980 11380 8000 0.70 8330 0.73 10400 0.91 10900 0.96 # of Val. 17 Average 11910 0.61 0.65 0.72 0.85 Standard 3800 0.11 0.11 0.10 0.06 Dev. ------------- ------susi8/b39 Comparison of Low Flows to Average Monthly Flows Talkeetna River near Talkeetna No. 15292700 July Mean Monthly 1 Da~ Low Flow 3-Da~ Low Flow 7-Da~ Low Flow 14-Day l.ow Flow Year Flow -QM Q1 Q1/QM Q3 Q3/QM Q7 Q7/QM Q14 Q14/QM (cfs) 1964 9820 7810 0.80 8190 0.83 8420 0.86 9310 0 .. 95 1965 12180 8400 0.69 8490 0.70 9050 0.74 10600 0 .. 87 1966 10100 5870 0.58 6220 0.62. 6510 0.64 8640 0.86 1967 12600 8600 0.68 8800 0~70 8980 0.71 9370 0.74 1968 11230 9000 0.80 9000 0.80 9410 0.84 9770 0.87 1969 7080 5300 0.75 5680 0.80 6050 0.85 6840 0.97 1970 10320 7300 0.71 7690 0.75 8150 0.79 9110 0.88 1971 11760 7000 0.60 ' 7670 0.65 8710 0.74 9750 0.83 1972 12030 9800 0.81 9880 0.82 10400 0.86 11300 0.94 1973 7676 5800 0.76 5870 0.76 6140 0 .. 80 6700 0 .. 87 1974 7755 6440 0.83 . 6560 ·o .. as 6960 0.90 7220 0 .. 93 1975 12070 8690 0.72 8940 0.74 9560 0.79 10600 0.88 1976 9026 6310 0.70 6620 0.73 7380 0.82 8440 0 .. 94 1977 9344 7310 0.78 7350 0.79 7630 0.82 8580 0 .. 92 1978 10790 8110 0.75 8610 0.80 10200 0.95 10200 0.95 1979 14440 9180 0.64 9550 0.66 11900 0.82 12300 0.85 1980 13900 10000 0.72 10100 0.73 10800 0.78 13000 0.97 #ofVal. 17 Average 10710 0.72 0.75 0.81 0.90 Standard 2120 0.07 0.07 0.07 0.06 Dev. .. .] . . . : . .. -. . ·:. . ... . . . .: : .... · .. ·. .. . . ...... •. . . . '. . .: susi8/b40 Comparison of Low Flows to Average Monthly Flows T'11 keetna Rive·r near Talkeetna No. 15292700 August Mean Monthly 1 Day Low Flow 3-Da~ Low Ffow 7-Day Low Flow 14-Da~ Low Flow Year FJow -QM . Q1 Q1/QM Q3 Q3/QM Q7 07/Qw, Q14 Q14/QM (cfs) 1984 8396 5300. 0.63 5430 0.65 6140 0.73 7100 0.85 1965 11150 5300 0.48 5570 0.50 6560 0.59 9280 0.83 1966 10730 7520 0.70 7650 0.71 8070 0.75 9010 0.84 1967 14160 8550 0.60 8720 0.62 9750 0.69 13000 0.92 1968 7546 5720 0.76 5960 0.79 6530 0.87 7110 0.94 1969 3787 2100 0.55 2110 0.56 217() 0.57 2230 0.59 1970 8752 6000 0.69 6220 0.71 6870 0.78 7800 0 .. 89 1971 16770 7500 0.45 7670 0 .. 46 8430 0.50 9570 0.57 1972 9576 6400 0.67 6500 0.68 6970 0.73 8380 0 .. 88 1973 9927 5220 0.53 5330 0.54 5910 0.60 7680 0.77 1974 7704 3680 -0.48 ' 3940 Oa51 4760 0.62 6200 0.80 1975 8487 . 4920 0.58 5130 0.60 5980 0.70 7020 0.83 1976 8088. 4190 0.52 4370 0.54 5170 0.64 6480 0.80 1977 8005 4780 0.60 4840 0.60 5560 0.69 7360 0.92 1978 7001 3890 0 .. 56 4100 0.59 4390 0.63 5160 0.74 1979 8274 4580 0.55' 5180 0.~63 6140 0.74 6530 0.79 1980 7220 4320 0.60 4530 0.63 4780 0.66 5960 0.83 # of Val. 17 Average 9151 0.59 0.61 0.68 0~81 Standard 2922 0.08 0 .. 09 0.09 0.10 Dey~- -·-. . ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~·~~-M~ ~~-~~··•-·~~~••··~-·-"·'-~::,. --~~-~-·-~a •. ~y······~•~w~.~ - - - -.. - -··--.• - -'--.. --..... I J : J -) --J ~ ] ] } l l J _]-. susi8/b41 I Comparison of Low Flows to Average Monthly Flows Talkeetna River near Talkeetna I No. 15292700 September Mean Monthly 1 Da~ Low Flow 3-Da~ Low Flow 7-Da~ Low Flow 14-Da~ Low Flow Flow -QAJI Q1 0/QM Q3 Q3/QM Q7 Q7/QM Q14 Q14/QM Year (cfs) ' 1964 3815 3080 0.81 3160 0.83 3230 0.85 3410 0.89 1965 10670 5100 0.48 5130 0.48 6560 0.62 8170 0.77 1966 5370 3500 0.65 3600 0.67 3980 0.74 4600 0.86 1967 6971 3140 0.45 3280 0.47 3540 0. 51 4200 0.60 1968 4120 2500 0.61 2530 0.61 2610 0.63 2890 0.70 1969 2070 1700 0.82 1700 0.82 1700 0.82 1730 0.84 1970 5993 3530 0.59' 3600 0.60 3680 0.61 4750 0.79 1971 5990 3400 0.57 3470 0.58 3770 0.63 4090 0.68 1972 8709 4600 0.53 4700 0.54 5110 0.59 6210 0.71 1973 3861 2420 0.63 ·2480 0.64 2610 0.68 2860 0.74 1974 4763 . 2860 0.60 2930 0.62 3280 0.69 3570 0.75 1975 7960 4720 0.59 4830 0.61 5700 0.72 7740 0.97 1976 3205 2600 0.81 2700 0.84 2910 0. 91 3100 0.97 1977 5826 3820 0.66 4030 0.69 4200 0.72 4960 0.85 1978 3513 2200 0.63 2300 0.65 2500 0.71 2760 0.78 1979 4039 3220 0.80 3230 0.80 3280 0.81 3400 0.84 1980 5400 2700 0.50 2730 0.51 2900 0.54 3470 0.64 # of Val. 17 Average 5428 0.63 0.64 0.69 0.79 Standard 2192 0.12 0.12 0.11 0.11 Dev. susi8/b42 Comparison of Low Flows· to Average Monthly Flows Talkeetna River near Taikeetna No. 15292700 October Mean Monthly 1 Day Low Flow 3-Da~ Low Flow 7-Da~ Low Flow 14_-Day Low Flow Year Flow -QM Q1 Q1/QM Q3 93/QM Q7 Q7/QM Q14 Q14/QM ~cfs) 1964 31.15 1910 0.61 2030 0 .. 65 2170 0.70 2340 0 ... 75 1965 4438 2150 0.48 2220 0.50 2410 0.54 2770 0,62 1966 2388 1100 0 .. 46 1170 0.49 1270 0.53 1510 0.63 1967 2029 1500 0.74 1500 0.74 1540 0.76 1610 0.79 1968 1637 1200 0.73 1200 0.73 1240 0.76 1340 0.82 1969 1450. 1100 0.76 1100 0.76. 1100 0.76 1150 o. 77 1970 2817 2000 0.71 2000 0.71 2000 0.71 2170 0.77 1971 2632 1800 0.68 1830 0.69 1910 0.73 2130° 0.81 1972 3630 2000 0.55 2130 0.59 2400 0.66 3020 0.83 1973 1807 1200 0.66 1200 0.66 1260 0.67 1360 0.75 1974 1967 1200 0.61 1200 0.61 1390 0.71 1450 0.74 1975 2884 1200 0.42 1230 0.43 1330 0.46 1710 0.59 1976 1857 1400 0.75 1470 rt ""7n 1530 0.82 1SSO 0.90 v. I ::I 1977 3268 1600 0.49 1700 0.52 1900 0.58 2360 0 .. 7Z r 1978 1660 1120. 0.67 1280 0 .. 77 1380 0.83 1450 0.81 1979 3370 2200 0.65 2250 0.67 2300 0.68 2430 0.72 # of Val. 16 Average 2559 0.62 {).64 0.68 0.76 Standard 854 0.11 . 0.11 0.11 0.09 Dev. ll ------------------- It-~ ! ---susi8/b43 Mean Monthly Year Flow -QM (cfs) 1975 47540 1976 70460 1977 t;S180 1978 48670 1979 81260 1980 66580 # of Val. 6 Average 61780 Standard 13295 Dev. ---------- Comparison of Low Flows to Average Monthly Flows Susitna River· at Susitna Station No. 15294350 May -- 1 Day Low Flow 3-Day Low flow 7-Day Low Flow -Q1 0 1/QM Q3 Qg/QM Q7 Q7/QM - 9000 0.19 9330 0.20 10100 0.21 "30000 0 .. 43 41300 0 .. 59 62700 0.89 7500 0.13 8000 0 .. 14 9500 0.17 11000 0.23 12300 0.25 17600 0.36 18000 0.22 21000 0.26 32600 0 .. 40 20000 0 .. 30 22700 0.34 31300 0.47 0.25 0.30 0.42 0.10 0.16 0.26 J --- 14-Day :Lo\v Flo~ Q14 Q14/QM 14100 0.30 63000 0.89 19000 0.34 36700 0.75 55000 0.68 46600 0.70 0 .. 61 0 .. 24 susi8/b44 Mean Monthly Year Flow -QM (cfs) 1975 128800 1976 107000 1977 165900 1978 90930 1979 119900 1980 142900 #of Val. 6 Average 125900 Standard 26510 Oev. - Comparison of Low Flows to Average Monthly Flows Susitna River ·at Susitna Station No. 15294350 June. 1 Day Low Flow 3-Day Low Flow 7-Day Low FIQ!_v.._.. -Q1 Q1/QM Q 3 Q3/QM Q .. 7 Q7/QM 102000 0.79 106000 0.82 110000 0.85 61800 0.58 69300 0.65 84500 0.79 130000 0.78 143000 O.BS t55000 0.93 62800 0.69 65700 0.72 66300 0.73 99000 0 .. 83 101000 0.84 10300() 0.86 110000 0.77 . 113000 0 ,..19 , " 126000 0.88 0.74 0 .. 78 0.84 0.:09 0.08 0.07 -.. -- - ---. 14-Dav LOW F~ow -· --·:-~!.~~:.v.JQ ,_ Q14 '"{14 M _.,:;~~ ·118000 0.92 97900 0~91' 158000 0.95 76900 0 .. 85 111000 0.93 138000 0.97 0.92 0.04 --- ~---~-------~~~~------------·~------~-------~---.~~.·---··~----------------------------~~--------~ --· -·--.. -£USi8/b45 --.... · -· .. --- Comparison of Low flows to Average Monthly Flows Susitna River at Susitn.a Station No. ~15294350 July - Mean Monthly 1 Da~ low Flo~ 3-Da~ Low Flow 7-Da~ Low FJow Ffow -QM Q1 Q1/QM Q3/QM Year (cfs) Q3 Q7 Q7/QM 1975 135700 108000 0.80 113000 0.83 114000 0.84 1976 115200 93400 0.81 95400 0.83 100000 0.87 1977 143900 124000 0 .. 86 127000 0.88 134000 0.93 1978 117600 106000 0.90 109000 0 .. 93 115000 0.98 1979 142500 110000 0.77 111000 0.78 129000 0 .. 91 1980 181400 145000 0.80 148000 0.82 160000 0.88 # of-Val. s Average 139380 0.82 0.85 0.90 Stanclard 23950 0.05 0.05 0.05 Dev. ---- 14-DaY: Low Flow Q1~· Q14/QM 121000 0.89 107000 0.93 141000 0.98 117000 0.99 133000 0.93 176000 0.97 0.95 0 .. 04 J \ susi8/b46 Year 1975 1976 1977 1978 1979 1980 # of Val. Average Standard Oev . Mean Monthly Flow -QM (cfs) 91360 99650 125500 102100 128200 126400 6 112200 16300 Comparison of Low Flows to Average Monthly Flows Susitna River at Susitna Station No. 15294350 August 1 Day Low Flow 3-Day Low Flow 7-Day Low. Flow 57600 0.63 63600 0.70 71200 0.78 56800 0.57 61700 0.62 71900 0.72 76200 0.61 80900 0.64 96600 . 0.77 65400 0.65 68400 0.67 72500 0.71 78900 0.62 88800 0.69 99900 0. 78 92000 0.73 95300. 0.75 103000 0.81 0 0.64 0.68 0.76 0 .. 05 0.05 0.04 14-Day Low Flow 80000 0.88 82800 0.83 116000 0.92 83600 0.82 " :116000 0.90 111000 0.88 0.87 0.04 ... -----.. ~ ... ------- __ .. _____________ _ susi8/b47 Mean Monthly Flow -Q Year (cfs) M 1975 77740 1976 48910 1977 83810 1978 55500 1979 74340 1980 91200 #of Val. 6 Average· 71910 Standard 16440 Dev. Comparison of Low Flows to Average Monthly Flows Susitna River· at S.usitna Station No. 15294350 September 1 Day L 'tJW Flow 3-Day Low Flow 7-Day Low Flow 14-Day Low Flow 47800 0.61 48000 0.62 37000 0.76 37300 0 .. 76 59200 0.71 64000 0.76 29000 0.52 30000 0.54 51800 0 .. 70 52200 0.70 80000 0.88 80700 0.88 0.70 • 0.71 o:.12 0.12 57700 38600 69400 32100 53100 81100 ----- 0.74 73700 0 .. 79 39200 0.83 81200 0.58 40100 0.71 56900 0.89 83700 0.76 0.11 0.95 0.80 0 .. 97 0 '72 .... O.,il 0.92 0.86 0 .. 10 I I ,, I "I l: ----------------------------- susi8/b48 Comparison of Low Flow and Average Monthly Flows Susitna River at Susitna Station No. 15294350 October Mean Monthly 1 Da~ Low Flow 3-Da~ Low Flow 7-Da:l Low Flow 14-Da~ Low Flow Year Flow -QM Q1 Q1/QM Q3 Q3/QM Q7 Q7/QM Q14 Q14/QM II . (cfs) 1974 19520 11000 0.56 11300 0.58 12100 0.62 13600 0.70 1975 31550 16000 0.51 17300 0.55 18900 0.60 22700 0.72 1976 30140 23000 0.76 24000 0.80 26400 0.88 29300 0.97 1977 38230 19000 0.50 19700 0.52 21300 0.56 24800 0.65 1978 36810 26000 o. 71 26700 0.73 30000 0.81 35100 0.95 1979 58640 33800 0.58 34200 0.58 36100 0.62 . 41400 0.71 # of Val. 6 Average 35815 0.60 0.63 0.68 0.78 Standard 12990 0.11 0.11 0.13 0.14 Dev. J "~ .. --- --" - - - - - -.., - --- -••. susi8/f1 Comparison of Annual Low Daily Flows to Annual Low Monthly Flow Susitna River near Cantwell Station Number 15291500 1-Da)!: Low Fiow 3-Day Low Flow 7-Day ~w "Flow 14-Day Low Flow 30-Day low Flow SO-Day Low Flow 90-Day Low f!~ Year Q1 Q1/Qm Q3 Q3/Qm Q1 Q7/Qm Q14 Q1iQm Q30 Q307Qm Q60 ___ , Q6o 1Qm Q9o 09ol~rn ------ 1962 940 1.00 940 1.00 940 1.00 940 1.00 940 1.00 972 1.03 1050 1.1'~ 1963 720 1.00 720 1 .• 00 720 . 1.00 720 1.00 740 1.00 740 1.03 777 1.Q~ 1964 400 0.93 400 0.93 400 0.93 400 0.93 419 0.98 445 '1,04 488 1 .. 1l4t 1965 680 1.00 680 1.00 sao 1.00 680 1.00 681 1.00 694 1.02 718 1.QS 1966 650 1.00 650 1.00 650 1.00 650 1.00 650 1.00 651 1.00 667 LOS 1967 500 0.97 500 0~97 500 0.97 500 0.97• 510 0.99 536 1.04 571 1. ·n 1968 1200 1.00 1200 1..00 1200 1.00 1200 1.00 1200 1.00 1200 1.00 1200 1.C.C 1969 480 0.99 480 tt.99 480 0.99 480 0.99 484 1.00 492 1.01 511 1.0$ 1970 420 0.99 420 0.99 420. 0.99 420 0.99 420 0.99 428 1.00 442 1 .. ~ ~971 460 0.98 460 0.98 460 0.98 460 0.98 465 0.99 474 1.01 500 1.00 1972 850 0.97 850 0.97 850 0.97 850 0.97 850 0.97 873 1.00 892 1.<W Average 0.98 0.98 0.98. 0.98 0.99 1.02 1~00 Standard 0.02 0.02 0.02 0.02 0.01 0.02 .0Jl4 Dev. ,, susi8/f2 Comparison of Annual low Daily Flows to Annual Low Monthly Flow Susitna River at Gold Creek Station Number 1529200 1-Da't Low Flow 3-Da't Low Flow 7-Da't low Flow 14-Da't Low Flow 30-Da't low Flow 60-Da't low Flow 90-Da't Low Flow Year 01· 0/0m 03 0/0m 07 0/0m 014 0 1/0m 030 03o10m 05o 06o/Om 09o 090/Qm 1950 600 0.76 600 0.76 614 0.78 648 0.82 674 0.93 716 0.99 797 1.10 1951 740 1.00 740 1.00 740 1.00 740 1.00 740 1.00 772 1.04 823 1 . 11 1952 880 1.00 880 1.00 880 1.00 880 1.00 880 1.00 899 1.02 932 1.06 1953 820 1.00 820 1.00 . 820 1.00 820 1.00 820 1.00 822 1.00 888 1.08 1954 780 1.00 780 1.00 780 1.00 780 1.00 780 1.00 854 1.09 956 1.23 1955 1100 1.00 1100 1.00 .1100 1.00 1100 1.00 1100 1.00 1150 1.05 1230 1.12 1956 940 1.00 940 1.00 940 1.00 940 1.00 940 1.00 945 1. 01 953 1.01 1957 1200 1.00 1200 1.00 1200 1.00 1200 1.00 1200 1.00 1200 1.00 1300 1.08 1958 1100 0.96 1100 0.96 1100 0.96 1100 0.96 1140 0.99 1200 1.05 1280 1.11 1959 980 1.00 980 1.00 980 1.00 980 1.00 980 1.00 1040 1.06 1160 1.18 1960 1100 0.92 1100 0.92 1100 0.92 1100 0.92 1100 0.92 1220 1.02 1310 1.09 1961 1500 0.83 1500 0.83 1500 0.83 1500 0.83 1610 0.92 1800 1.03 2010 1.15 1962 1400 1.00 1400 1.00 1400 1.00 1400 1.00 1400 1.00 1450 1.04 1540 1.10 1963 830 1.00 830 1.00 830 1.00 830 1.00 830 1.00 915 1.10 1110 1.34 1964 660 0.93 660 0.93 660 0.93 660 0.93 683 0.96 728 1.02 794 1.11 1965 860 1.00 860 1.00 860 1.00 860 1.00 863 1.00 882 1.03 908 1.06 1966 1300 1.00 1300 1.00 1300 1.00 1300 1.00 1300 1.00 1300 1.00 1330 1.02 1967 1100 0.94 1100 0.94 1100 0.94 1100 0.94 1130 0.97 1180 1.01 1250 1.07 1968 1800 0.94 1800 0.94 1800 0.94 1830 0.96 1870 0.98 1880 0.99 1890 0.99 1969 700 0.97 700 0.97 700 0.97 700 0.97 700 0.97 723 1.00 750 1.04 1970 750 0.98 750 0.98 750 0.98 750 0.98 750 0.98 773 1. 01 790 1.03 1971 950 1.00 950 1.00 950 1.00 950 1.00 950 1.00 970 1.02 1020 1.07 1972 1600 0.94 1600 0.94 1600 0.94 1640 0.96 1680 0.98 1760 1.03 1850 1.08 1973 1000 1.00 1000 1.00 1000 1.00 1000 1.00 1000 1.00 1010 1.01 1070 1.07 197·1 700 0.97 700 0.97 700 0.97 700 0.97 707 0.97 730 1.01 762 1.05 1975 "1400 1.00 1400 1.00 1400 1.00 1400 1:00 1400 1.00 1410 1.01 1440 1.03 1976 900 1.00 900 1.00 900 1.00 900 1.00 900 1.00 916 1.02 928 1.03 1977 1500 1.00 1500 1.00 1500 1.00 1500 1.00 1500 1.00 1550 1.03 1590 1.06 1978 1600 1.00 1600 1.00 1600 1.00 1600 1.00 1600 1.00 1620 1.01 1650 1.03 1979 1200 1.00 1200 1.00 1200 1.00 1200 1.00 1200 1.00 1230 1.03 1260 1.05 1980 1400 1.00 1400 1.00 1400 1.00 1400 1.00 1400 1.00 1400 1.00 1450 1.04 Average 0.97 0.97 0,97 0.98 0.99 1.02 1.08 Standard 0.05 0.05. 0.05 0.05 0.02 ·o.o3 0.07 Dev . !'·-·--·· . J .J ... J .J J .,.J .J c ... J .I .I ... J ·" ------------------- susi8/f3 Comparison of Annual Low Daily Flows to Annual Low Monthly Flow Chulitna River near lalkeetna Station Number 15292400 J -Oa~ Low Flow 3-Day: Low Flow 7 .. Qay: Low Flow 14-Da}!_ Low Flow 30-Day: Low F!ow GO-Day: Low Flow 90-Day: tt..~· .f!~ Year Q Q1/Qm Q3 Q3/Qm Q7 Q7/Qm Q14 01iQm Q30 Q3o10m 05o Oso/Qm 0 9o ~$0/Qm 1 , -- 1959 690 0.93 690 0.93 690 0.93 690 0.93 732 0.99 808 'L09 888 ~ .. 20 1960 880 0.94 880 0.94 880 0.94 880 . 0~94 889 0.95 941 1.01 1010 t;()S 1961 950 0.88 -350 0.88 950 0.88 950 0.88 1030 0.95 1100 1.02 1210 '. 12 1962 930 1.00 930 1.00 930 1.00 930 1.00 930 1.00 949 1.02 1020 1.1() 1963 650 0.93 650 0.93 650 0.93 650 0.93 690 0.99 771 1.10 947 l .. 35 . 1964 770 1.00 77Q 1.00 770 1.00 770 1.00 770 1.00 794 1.03 842 l-.09 1965 1300 1.00 1300 1.00 1300 1.00 1300 1.0CJ '1300 1.00 1350 1.04 1370 '\,05 1966 1100 1.00 1100 1.00 1100 1.00 1100 1.00 1100 1.00 1100 1 .. 00 11;\0 1 .. 03 1967 900 0.93 900 0.93 • 900 0.93 900 0.93 928 0.95 999 1.03 1090 1.12· 1968 1100 0.96 1100 0.96 1100 0.96 1100 0.96 1140 0.99 1170 1.02 1180 l .. OS 1969 800 0.97 800 0.97 800 0.97 800 0.97 823 1.00 857 1.04 885 1~07 1970 '1100 1.00 1100 1.00 1100 1.00 110} 1.00 1100 1.00 1120 1.02 1150 t .. OS 1971. 900 0.96 900 0.96 900 0.96 B14 0.$8 933 1.00 942 1.01 953. 1;02 1972 850 0.95 850 0.95 850 0.95 850 0.95 868 0.97 908 L02 954 1 .. 07 AVerage , 0.96 0.96 0.96 0.96 0.99 1.03 1 .. 10 Standard 0.04 0.04 0.04 0.04 0.02 0.03 \},09 Dev, 1_/ sus!8/f4 Comparison of Annual Low Daily Flows to ~nnual Low Monthly Flow Talkeetna F{ivet~ near Talkeetna Station Number 15292700 1-Da~ Low Flow . 11 ~:f>l!Y Low FiQ.W 7-Da~ low., Flow 14-Da~ Low Flow 30-Day Low Flow 60-Da~ Low .Flow 90-Day Low fli~w Year o, Q1/Qm Q3 Q:/Om Q7 Q7/Qm Q14 o,iQm :Q30 %o 10m Q60 Q6o/Qm 09o 09Q7~·m ----- 1965 540 1.00 540 1.00 540 1. ~iO 540 1.00 540 1.00 559 1.04 580 1-([? 1966 390 ~0.99 390 0.99 390 0.99 390 0.99 393 0.99 405 1.C3 446 1~t3s 1967 420 ·o.98 420 0.98 420 0.98 420 0.98 425 1.00 448 1.05 481 1.t3; 1968 740 1.00 740 1.00 740 1.00 740 1.00 741 1.00 754 1.01 774 1 .,a:4{ 1969 380 1.00 380 1,00 380 1.00 380 1w00 380 1.00 384 1.01 398 1~0.$. 1970 440 1.00 440 1.00 440 1.00 440 1.00 440 1.00 444 1.0i 456 1.Q'rt 1971 400 1.00 400 1.00 400 1.00 400 1.00 400 1.00 420 1.04 448 1.1111 1972 400 0.77 400 0.77 400 0.77 411 0.79 434 0.84 481 1.00 539 1.11~ 1973 500 0.87 500 0.87 500 0.87 514 0.89 533 0.92 566 0.99 59~ 1~~ 1974 450 0.93 450 0.93 450 0.93 450 0.93 458 0.95 485 1.01 516 l .. Qif 1975 500 0.98 500 0.98 500 0.98 50\J 0.98 500 0.98 512 1.01 538 1..00 1976 460 0.98 460 o.qa 460 0.98 460 0.98 463 0.99 471 1.00 479 1.~ 1077 500 0.99 500 o.g9 500 0.99 500 0.99 505 1.00 516 1.02 534 1~00 1Q78 460 0.95 460 0.95 461 0.95 466 0.96 473 0.98 497 1.02 531 1.69 1979 540 0.94 540 0.94 540 0.94 541 0.94 548 0.95 576 1.00 611 l.EJS 19SO 700 1.00 700 1.00 700 1.00 700 1.00 700 1.00 713 1.02 742 1.00 Average 0.96 0.96 0.96 0.96 0.98 1.02 1.017 Standard 0.06 0.06 0.06 0.06 0.04 0.02 O.Ol O&V. - - - -·--- - ------ -.. ----,-- ~--.. -------------..... - susi8/f5 Comparison of Annual Low Daily Flows to Ann~al Low Monthly Flow Susitna River at Susitna Station Station Number 15294350 1-Day Low Flow 3-Day Low Flow 7-Day .Low Flow 14-Day Low Flow 30-Day Low Flow 60-Day Low Fiow 90-Day Low Ft~w $ -...,. Year o, 0 1/Qm Q3 Q3/Qm Q7 Q7/Qm Q14 Q14/Qm Q30 Q30/Qm Q60 Oeo 10m 09o OoolQ~ () 1975 6500 0~95 6500 0.95 6500 0.95 6500 0.95 6720 0.98 6920 1.01 7230 1.05 1976 5200 0.97 5200 0.97 5200 ' 0.97 5200 0.97 5310 0.99 5370 1.00 5580 1.04 1977 6000 0.96 6000 0.96 6000 0.96 .6000 0.96 6180 0.99 6490 1.04 7220 1.1& 1978 6400 0.91 6400 0.91 6400 0.91 6430 0.91 6520 0.99 6590 1.00 6680 1.01 1979 ° 6500 0.75 6500 0.75 -6500 0.75. 6640 0.76 6830 0.97 7100 1.01 7500 1.01 1980 8600 0.97 8630 0.97 8700 0.98 8800 0.99 8870 1.00 8960 1,01 9210 1~·U3 AVerage 0.92 0.92 \ 0.92 0.92 0.99 1.10 1.0& Standard 0.09 0.09 0.09 0.08 0.01 0.01 O.GS APPENDIX C WATER SURFACE ELEVATIONS r29/g3 -------.. ---------- PREPARED BY • SUSITNA HYDROELECTRIC PROJECT CROSS-SECTION Number 7 TkH '1:~' T'Jorl '"..:.:.~ ~·.;~~~,· 7"o ..;ofJ, f,II'I'H .S r ~ .. ;-11'tJ'IIN.'L i ,, ,{¥:£;.,.1 ~IIAL.' ~ ··t~-, _ _:.,. z 0 -1- <C > w _. w (.,.0 '1--~ ;,.. • t.IILIIJ. •. 4,-lJP.:;T~£RN T'-'P 0/"' V.':t";li!.Tr;. ION ON ~:li.J)pJ~, : J"il)(.::,b Jv''<-'C:H :f' /f'll'ln ''<".• t ('_.) J7·(,.•tL'-'• '\c;-.l, . STATION R&M CONSULTANTS, INC. CROSS.;.SECTION RM 1()1.5 I PREPARED FOR~ FIGURE C.t .. --.. BY ---.. -J.~. ---.. - - - SUSITNA HYDROELECTRIC PROJECT . CROSS-SECTION Number 1 1 ~-----------·--------~~---------T----------~,----------~--------------------- PREPARED BY ' '· ·CROSS-SECTION RM 106.7 STATION -· . ._...,. PREPARED FOR; FIGURE C.2 810 ---------------- PREPARED ~..., • z 0 -i- <C > w ..J w R&M CONSULTANTS. INC. SUSITNA H'fDROELECTRIC PROJECT CROSS-SECTION Number 2 5 1- ~ ..• ;r · ·.r-.. ---t--'*"1 •• :,;..),::. r.-.... ~ .... -! ··~:, ..... .::!:' ; • ~--~"');' ~~"",• •' ;)C,~~ , .. -... /"']~.~~,;, .. 1-I - ' .· .~·""•"" ~·.~,., ... ~ • }.CJTV.f? ~ (!~;r.~O\ W:::.o.".:; --' : -·~ c .,_, ,.., ..,..a --~ , .... ~·:1· ., __ ,.. ~ () . . . .. . ... - ~~':)T"r:·-·-•:>:• "r:J eJOl.S':..!'::- CROSS-SECTION R~VI i~ ~.6 STATION -.~ ·"" -+--(<:JE 0~ St.tJ,::'t:;_ :,.; ¢ t.l;:.l.: l ~· ,qNi:; .... -;· r • r-...... ..._ ... PREPARED FOR 1 -·----.. ----------.. -- PREPARED BY I z 0 -1- <C > w ..J w R&M CONSULTANTS, IN.C. SUSIT~JA HYDROELECTRIC PROJECT . . CROSS-SECTION Number 2 9 Nt<.,~H WR7 !.'';{' <'l/1'1•••·'·~-L c~e!:u .. ~ &L b fir' t..ot...:J pcu.vr 0 :: LOC.J)IJ0/11 o,:: q;ub 1' .. 1107 "> .b1 ~ :: 3Zmn ... rA· tJNSt7 no ""': N•':•c:.~-: r~Nt:'J n~:~v7::; rr. vee;. (c 1A>c..v)--+ ()' ""~ ~~II I IIIII ~':Jo ~a ":\'=>o ~o ~o ~ 1 I .l I_ I. o _1 . ..1_ , ~ I I I I I I I ,l I I I I I I I ~ ~ I i . t .I _I. _i.. • ~: _1 _ __1 _l_ l I I I CROSS-SECTION RM ·126.1 STA-TION FIGURE C.4 PR~PAREO FOR~ --- PREPARED BY' z 0 -1- c( > w _. w ------------- 0 SUSITNA HYDROELECTRIC PROJECT CROSS-SECTION Number 3 6 1 ~~---~-7};'/J;I/srr'lo.-.·: :, ;:)14 / t·r..; ro ""' ·1.· -:;.::-•:o.t:r:.::: ~~ ~-LY?/Sl-F: S'). ·~ -.e-T~fJN:SI?'""fC)N ·r~ SRNI:> { .SP,c:J~. E. YoVNt; ~/.!.£,.', <')S l~t--TA'"R.-!$1?70N 'i 6 COSI:}L..t::;: { :! 'l~Rsl:; <;RnvtS:t. ~ ~0 ~, ~~ \ -------+-----------~-----4--~~~·==·£~~~~~~~/S~I~-~~~~~AI~~~n~S~~N~b-r:~£~~---------1 ........_---+---\·- \ \A • TRPNS 1 .,. oN: t;.oB\, TO ~OIL ~·vet; --+~1 \ . rJl () ~ ....... . . ~ tJ~ '> • 0 I t • I t I CROSS-SECTiON RM .131.2. STATION *--T~If,M.<.." .'ntJN~S EUVb TO n wb. S ,..?#!:;, ,I I I I II , ~t:Jl A.0(jo. ().~0o . ~II I I II II-~. ll 1 I Ill ~ttatl I II -·- PREPARED FOR: FIGURE C.S --------·----.. ---- . PREPARED BY • R&M CONSULTANTS~ &NC. z 0 -.... <( > w _. w SUSITNA HYDROELECTRIC PROJECT CROSS-SECTION Number 44 ~ i- :- i-,_ i-"'() ~ E>\ i-0 . i-I I < I I t t I t rJl 0 ~ I • ~ I t I I I () oo t'j; I I I • t I I I CROSS-SECTION '.RM 136.4· STATION - ' PREPARED FOR~ IIR· ~----~-~---- ----------~-------- z 0 -1- <( > w -1 w PREPARED BY a SUSITNA HYDROELECTRIC PROJECT '" J"P.f..'.l.:;rncN.-V£ ;, !'" 70 c :.· e ~u E : f !'" conR:;~ c:J~f.r.' "Ct:-? i'" ~ -·... () 1: - * .. .. -.. ~'t-o ~ !- r- ~ r- I-- ~ ,o P\' ~ ~ ~ ~ foi' r-. ~ 0 ~-0 - CROSS-SECTION Number 49 STATION PREPARED FOR~ r.;~~~;-~~------------------~~--~~~·-------~----------~--~====~ CROSS-SECTION R&M CONSULTANTS, SNC. RM 138o2 FIGURE C.7 ----------~------------.............................................. ,, ................................ ~ ------------------- PREPARED BY I z 0 -1- c:( > w ..... w .. i- ~ i- ~ t- SUSITNA HYDROELt:CTRIC PROJECT CROSS-SECTION Number 54 SFJNb-~ ._~~~._o ________ 4-__ ~_0_H_H_'·_£_·_4-+··n_v_c_L_a_n_A_·-------+~+--r------~~-++-------r----------+----~r--~-~~~_ . .[\YJ f ;.{•f):.:.:!·~ t 5i1Nb I'll:<£/) W •TH -1 ~~~ --rot r c.: li (:/ J. c·· ·---.... • ~ ri?~NSI7JON: roPSOII. l I I-ro .; .'1 ,../1.J -·-·---• ~;::-------~ • • I P\~t-V -· ------..... -~-.. l --.. .... i G =.5200f'JJ . .. .. 1-----t-------+----t---· !2::1700Q §?.::: c)'7p0 ~ a ~"\;?~ ......... ~~~· .... ~~~0 ...... '>~~0 ...••. ')~~0 ...... '>~~() .. ' ... .,~~() ...... ' '' ~•·••·' • • · ·"··~··-·~~·-·--•-.-. •>'~ •--' --• •• • • I. •· .-..J.--o ... , .. ~ ·-•·· _,, ... l .-"""'' ·~ ,. . ., ••• --·-,, •· ._:._.,, '" CROSS-SECTION RM. 140.8 STATION FIGURE C.8 PRSPARED FOR~ r---------------------------------------------------------------------------------9----~----~----------------====------------~ ------------------- I 0 I z 0 -1- <C > w -I w PREPARED BY • t- - SU8~TNA HYDROELECTRIC PROJECT CROSS-SECTION Nurnber 55 I ~ ~0 I . 4-~coi\bLC.:; f t-1 II b c"'tll L ..• ' 1\::: -~----~----+-+---------~-----H----;-·+-~--+---·~---------+~--------, I· 1- 1-.I t-~ . "" I t- 1-c • TA.' .. ?I'.'S ,., .r .-t- o vt=t;- I r l I I ~ ~() I P\' -F.--·-----~----~~-------+-----++---~~-~--+---·--·--------~~1 t-e-----+---t--+-----t----i-i----,-J-·-+-+--+--------... ~.c.:l.ES.~pc:;O. t-• ,...,.,.__.,.~oo .. .--.•·,-+---+--t--~-+--~-----~-L..G:: .1l(So Q !-' Q;..].3.t:too ·------·+· ____ , ........ ·-~ J ... ~QP..D ~· Gt= l34oo :---_1 ~:::.CZ__?.ao I"'" ~--------...._ ' r-, ... ~ ~~ \ ~ ' I ') ; , [\ \ I \..._ ~--------~-----------r----------~---------+-~----~~~--------~-------------1 t j ..• ______ ., \._..lot" 0o . '->o 'J '\ ~tilt lilt~ •••••• II < ·.-~-·· -..~~-··-·-·~ ---~·~-~>'-..... o,-... -..... -., .•. ,.-•• ..1.---~·-'•H ••••··--- CROSS-SECTION RM 141-.5 STATION PREPARED FOR= FIGURE C.9