Loading...
HomeMy WebLinkAboutAPA1289I I I I I I I I I I I I I I I I I I l• ' ~~ ... " . ~ .. ·' AliR SUSITNA HYDROELECTRIC PROJECT GENERATION PLANNING STUDIES CLOSE OUT REPORT APRIL 1982 Acres American Incorporated Suite 329 The Clark Building 5565 Sterrett Place Columbia7 Maryland 21044 Telephone (301) 992-5300 I I I I I I I I I 0 I I. I I I. I I I I I ~":l: .... o:.J: TABLE OF CONTENTS Section 1 -INTRODUCTION . . . . . . . . . . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . ~ -. . . . . . 1.1 -Objective and Purpose .................................. . 1. 2 -The Report ........ ., .............. , ......... .,., .............. . 1.,3 -Methodology Summary •.......... ~ ..............•......... 2 -SUMMARY -GE OGP MODEL (adapted from ........................ . General Electric literature) 3 -DETAILED GENERATION PLANNING INPUT ........ H ••••••••••••••••• Page 1-1 1-1 1-1 1-1 2-1 3-1 3.1-Load Forecasts ........ R ••••••••••••••••••••• ; •••• ~..... 3-1 3.2 -Existing Generation, Retirements, and Additions ........ 3-1 3.3 -Alternatives Data ............................. ~ .... 0 0 0 0 3-1 3.4 -Susitna Data ...................................... o... . .3-2 3.5 -Other Parameters ..•.. o •• o •••.•.•• -........................... 3-2 4 -RESULTS OF GENERATION PLANNING STUDIES o.... . . . . . . . . . . . . . . . . . . 4-1 4.1 -Methodology ........ e.................................... 4-1 4.2-Base Systems (1982 -1992) .................•........... 4-3 4. 3 -Non -Sus i tna P 1 an -Merii um Load Forecast .. '" • . . .. . . . . . . . . . 4-3 4.4-Susitna Plan-Medium Lead Forecast .........•.......... 4-3 4.5-Comparison of Base Pl.tns ............................... 4-4 4.6-Single Variable Sensitivity Analysis .. ;................. 4-4 4.7-Multivariate Sensitivity Analysis...................... 4-11 5-GENERATION PLANNING OGP MODEL OUTPUT SUMMARIES ............... 5~1 LIST OF TABLES No. Title 3.1 Alaska Railbelt Medium Load Forecast 3.2 Alaska Railbelt High load Forecast 3.3 Alaska Railbelt Low Load Forecast 3.4 Existing Railbelt Generating Units -1980 3.5 Existing and Planned Railbelt Hydro Generation 3.6 Schedule of Planned Utility Add·1tions (1980-1988) 3.7 Summary of Thermal Generating Resource Plant Parameters 3.8 Fuel Costs and Escalation 3.9 Chakachamna Hydroelectric Project 3.10 Susitna Hydroelectric Project (renerat ion Planning Data 3.11 OGP System Data. 3.12 OGP Economic Data 4.1 Generation Planning Base Plans 4.2 Sensitivity Analysis -Load Forecast 4.3 Sensitivity Analysis ~ Economic Interest/Discount Rate 4.4 Sensitivity Analysis -Capital.Costs 4.5 Sensitivity ~~nalysis-Delay of Project 4.6 Sensitivity Analysis -Real Escalation 4.7 Sensitivity Analysis -Coal Prices 4.8 Sensitivity Analysis -Other Hydro Projects 4.9 ~1ultivariate Sensitivity Analysis-Alternative Capital Costs 4.10 Multivariate Sensitivity Analysis -Fuel Costs and Escalation 4.11 Multivariate Sensitivity Analysis -Susitna Capital Costs 4.12 Multivariate Sensitivity Analysis -Non-Susitna Tree 4.13 Multivariate Sensitivity Analysis -Susitna Tree 4.14 Multivariate Sensitivity Analysis-Calculation of Net Benefits 4.15 Multivariate Sensitivity Analysis -Susitna Capital Cost Senstivity Analysis 5.1 Summary of Generation Planning OGP Runs I I I I I I I I I I I I I I I I I I I LIST OF FIGURES No. Title 1.1 Generation Planning Methodology 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 Long-Term tost Concept Net Benefits Non-Susitna Plan Annual Cost Sus i tna Plan Annual Cost Base Generation Plans Yearly Cost Base Generation Plans Percent Reserve Base Generation Plans Net Benefits Interest Rate Sensitivity Non-Susitna Probability Tree Susitna Probability Tree Non-Susitna Long-Term Cost Susitna Long-Term Cost Long-Term Cost Comparison Net Benefit Comparison Fuel Cost Escalation Sensitivity Susitna Capital Cost Sensitivity Normalized Plots I I I I I I ...... •' I I I 1 -_INTRODUCTION . I I I I I I I I I I I I I I I I I I" I I I I· I I I I I I 1- 1 -INTRODUCTION 1.1 -Objective and Purpose The objective of the generation planning studies 'lias to plan the ~xpansion and operation of the Railbelt electrical generation system with and \'lithout the Susitna Hydroelectric Project; The purpose of these studies was to provide basic data for an economic analysis of the project, provide data for staging and sizing of the project and supply information to project financial studies. 1.2 -The Report Four sections follow this introduction. Section 2 is a summary program description of the General Electric Optimized Generation Planning (OGP) Program. It was written and published by GE in 1979 and is reproduced in total without editing with the permission or General Electric Utility Systems Engineering DepartmentQ Section 3 include~-; all of the data that was used in setting up and operating the Rai'belt system planning model. Section 4 is a collection of the results and interpretation of the generation planning studies. ·It includes the basis for the economic analysis of the study presented in the feasibility report. Section 5 is a collection of output from the OGP program for many of the scenarios. The output presented ·is selected pages from the output summary and is only a small percentage of the data produced by the program, although it does represent the most pertinent information. A summar·y version of the information in this report is in the feasibility study report. This report is intended as a reference document for individuals interested in more detail. 1.3 -Methodology Summary The primary tool used in the generation planning studies is a computer program made by General Electric titled Optimized Generation Planning.. The model was set up for the Railbelt early in the feasibility study and ili!Sed extensively in the development selection phase of project studies. The model was updated frow the. earlier phase using more detailed data on the Susitna project and information from the Battelle Power Alternatives Study. · Three major divisions of input data are needed for the model load data., existing generation system and alternatives data. An outline of the methodology is shown in Figure 1.1. 1-l The load data used was from projections made by Battelle in December 1981. These vary somewhat 'from the final forecasts made by Battelle at a later date. A range of three forecasts from reasonable low to high range were considered. Data on future alternatives and existing generation was also adapted from Battelle's study. This data consisted of available alternatives, capital cost estimates, fuel costs, operation and maintenance costs and operating characteristics. The alternatives selected by Battelle for use in the Sus·itna generation planning update are: Coal-fired steam electric at Nenana and Beluga (200 MW). Gas-fired combined cycle plants at Anchorage or Fairbanks· (200 MW). Gas-fired combustion turbines at Anchorage or Fairbanks {70 MW). Chackachamna hydro project (330 MW). Generation planning was done with economic parameters, consistent with APA's planning criteria. Under these criteria, the effect of general i nfl at ion is removed from study and on 1 y • rea 1' costs of capita 1 and escalation are considered for the base cases. At zero inflation, a three percent cost of capital and discount rate was used. Incremental escalation M was considered for fuel costs, construction costs and operation and maintenance costs. These elements are expected to ·increase in price faster than the rate of general inflation. The generation model was used in the following studies: (a) Establish Pre-Susitna Base System A common pre-Susitna 1982-1993 system was estab 1 i shed for each load forecast as activities during this period would be the same with or without Susitna. The period was not considered in the economic analysis. The system was considered to include the initial phase of the planned Anchorage/Fairbanks intertie and allow for full economic exchange of power between utilites. In effect, all !Jtilities and their resources were mode 1 ed as operating as a power pool. No generating resources were needed as additiDn to the system during this time period. These plans are described in Section 4.2. {b) Generation Plans Without Susitna A without Susitna base generation plan was established using the medium load forecast and expected or mid-range values for all other variables. The plan covers the time period from 1993-2010. The optimization features of the OGP program were used to add capacity to the system as it became necessary. The need for additional capacity was determined by reliability criteria. 0 1-2 I I I I I I I I I I I I I I I I I I I The following assumptions were used in the generation planning: No ., imit in natural gas use. Economic parameters as specified by APA (0 percent escalation; 3 percent interest). Costs of transm·ission for initial Beluga and Nenana plants were included. · Alternatives available under Battelle's plans were considered available to the system and staged as necessary. Fuel escalation as specified by Battelle. Similar model plans were made for the high and low forecasts and described in Section 4.6. (c) Generation Plans with Susitna A number of model runs were made to focus upon a 11 With Susitrta11 plan under the medium, high and low load forecasts, so described in Section 4.4. Three key assumptions used in the analysis were: Economic parameters. The Susitna plan is Watana/Devil Canyon (in that order). Susitna data {energy and cost) used in this task was identical to that provided to Battelle in December 1981~ (d) Sensitivity Analysis Many of the inputs to the generation planning model can be termed as variables, such that they are results of policy decisions or projections. Initially, these variab_les \'Jere studied singularly using the model to test results on different values, as appropriate. The methodology for single variable sens·itivity analysis (see Section 4.6) was as follows: Identify areas of uncertainty. For each topic, identify the range of variability. Test sensitivity. Discuss the variability. 1-3 •. c '· ' . "·~" ""'~·-~ · ... ~ .. ~·"' I I I I I I I I I I I I I I II • -I I 1- '·I (e) The following list of variable inputs was considered in the sensitivity analysis: - 1 oad forecasts -economic interest/discount rate -capital costs -period of analYsis -construction period -real escalation capital costs, O&M and fuel costs -O&M costs -system reliability -coal base price -other hydro projects Multivariate Sensitivity Analysis After the individual variables were tested, the most critical were chosen for a multivariate analysis. The purpose of this analysis was to review combir ~ions of variables occuring together and compare long term costs of \: scenario with and without the Susitna project. This analysis is presented in Section 4.7. To perform the analysis, a probability tree with and without the project· was constructed. Each tree consisted of branches corresponding to a high, medium or low value of a variable. Probabilities were ass·igned to each value and calculated for each scenario. For each scenario, the yeneration planning model was used to determine long term costs. Finally, comparisons among corresponding with and without scenarios were made to establish project economic feasibility under the full reasonable range of variability. • a 1-4 ------~------------ I LOW LCAD MODEL {Update) I 1982-1992 SYSTEM I 1993-2010 I WITHOUT ECONOMIC * WITH SUSITNA PLAN SUSITNA EXISTING GENERATION SYSTEM 1982 (UPDATE) MEDIUM LOAD MODEL (Update) 1982-1992 SYSTEM I 1993-2010 I - G j HIGH LOAD MODEL {Update) I 1982-199g SYSTEM. I 1993-2010 I WITHOUT ECONOMIC* WITH WITHOUT . ECONOMIC* WITH SUSiTNA PLAN SUSITNA SUSITNA PLAN SUSITNA SINGLE VARIABLE ,____SENSITIVITY---t ANALYSIS MULTIVARIATE I I '---------_._.-SENSITIVITY ___ ......_ ______ _._ • USING: 0°/" GENERAL INFLATION 3 °/o COST OF MONEY · ANALYSIS GENERATION PLANNING . METHODOLOGY FlGU~E 1.1 I I I I I I I I I I I I I I I I I I I 2 -SUMMARY -GE OGP MODEL 0 I r.~~) . ._··'V>.<?J.~ ELECTRIC UTIUTY SYSTEMS ENGINEERING DEPARTMENT I I I I I I I I I I I I I 0PTil-1IZED GENERATION PLANNING PROGRAM PROGRAM DESCRIPTION · (REPRINTED WITH PERMISSION FROM GE) GENERAL ELEClRIC Cor .. ~PANY 1 RIVER ROAD SCHENECT ~::>Y. N.Y 12345 t1ARCH 1979 I I I I I I I I I I I I I I I I I I I Table of Contents OPTIMIZED GENERATION PLANNING (OGP) PROGRAM • . ... . • • Reliability Evaluation •••••••••••••• Production Simulation • • • • • • • • • • • • • • Purchases and Sales .. • • • • • • • ; • • • • Conventional Hydro Scheduling • • • • • • • • Thermal Unit Maintenance • • • • • • • • • • Energy Storage Scheduling • • • • • • • • • • Thermal Unit Corrunit~llent • • • • · • • • • • • • Thermal Unit Dispatch .. • • • • .. ~ ••• o • Fuel and Energy Limi i:ations • • • • • • • • • Investment Costing • • • .. .. • • • • • • • • • • • OGP Optimization Procedure~ • • • • • • • • • • • • Sample Output Results •••• o ••• ~ ••••• FINANCIAL SIMULATION PROGRAM (FSP) • • • 0 • • • • • • Introduction • • • • • • • • • • ~ o 9 o • • • • • Model Structure e • • • • • • • .. • • • • • • • • Capital Expend:~ tures • ... • • • • o • • • • • Generation Projects • • • • • • • • • • Transmission, Distribution and Miscellaneous Plant • • • • • • • • Investment Credits • • • • ••••••• Plant Retirement • • • • • • • • • • • • • • Depreciation .. • • • • • • • • .. • • o • • • Revenue • • • • • • • • • • • .. • • • • • • ·• Expenses • • • • • • • • • • • • • .. • • .. • Financial Planning • • • • • • • • • • • • • Cash Management and Accounting • • • • • • • Income Taxes • • • • • • • • • • • • • • • • Rate Regulation • • • • • .. • • .. • • • • • • Sample Output Results .. • • • • • • • • • • • • • Pag~ 1 1 5 5 6 6 6 7 9 9 10 10 12 18 18 18 18 21 21 21 21 21 22 22 22 23 23 23 24 .. I I I I I I I I I I I I I I I I I I I OPTIMIZED GENERATION PLANNING (OGP) PROGRP~ The OGP progra.Ttl was developed over ten years ago to combine the three main elements of generatfon expansion planning (system reliability, operating and invesbnent costs) and automate generation addition decision analys.is. The first calculation in selecting the generating capacity to install in a future year is the reliability evaluation using either percen-c installed reserves or loss- of-load probability (LOLP).. This answers the questions of "how much" capacity to add and 11 when •e it should be in- stalled. A production costing simulation is also done to determine the operating costs for the generating ;system with the given unit additions. Finally, an invesbnent cost analysis of the capital costs of the " unit additions is performed. The operating and investment costs help to answer +-.he question of ''what kind11 of generation to add to the system. The next three sections review the elements of these c9mputations. Reliability Evaluation Historically, electric utility system pl~nners measured generation system reliability with a. percent reserves index. This planning design criterion compared the total installed generating capacity to the annual peak load demand. H.ow- ever, 'this approach proved to be a relatively insensitive indicator of system reliability, particularly when comparing alternative units whose size and forced outage rate varied. Since its introduction in 1946, the measure that has gradually gained widest acceptance in the industry is the "loss-of-load probability. •• The LOLP method is a probabi- listic detennination of the expected number of days per year on which the demand exceeds the available capacity. It factors into the re1iabili ty calculation the forced and planned outage rates of the units on the system as well as their sizes. · Computing LOLP requires an identification of all outagii events possible (in a system with n units, this means 2 events) and then a determination of the probability of each outage event.. However, since LOLP is concerned with system capacity outages and not so much with particular unit out- ages, the probability of a given total amount of capacity on outage is calculated.. This information can be presented as a "cumulative capacity outage table 11 as shown in Figure· 1. -1- •• I I I I I I I I I I I I I I I I I I I CUMULATIVE PROBABILITY OF MW OR MORE ON OUTAGE 1.0 0.1 0.01 0.001 TOTAL INSTALLED CAPACITY 0.0001 ' ' ") O.O~OQIL------------------------~------rl. MW CAPACITY OR MORE ON OUTAGE Figure lo Cumulative Capacity-Outage Table t CAPACITY_ MODES] OUT'AGE OR GREATER 0 MW 10 20 30 40 50 • CUMULATIVE . . PROBABILITY MW LOOOO 0. 6342 0.3719 0.2463 0. 1986. 4--, ' ' 't LOLP ·I I I J I t = L PROBABILITIES INSTALLED CAPACITY HOURLY LOADS HOURS Figure 2. LOLP Calculation Procedure -2- " ONE YEAR \~ ' 0 I· I I I I I I I I I I I I I I I I I I Utilizing a highly efficient recursive computer technique 6 these capacity outage tables are calculated directly from a list of unit ratings and forced outage rates. The LOLP for a particular hour is calculated based on the demand and installed capacity for that hour. The re- serves are given by capacity minus demand. on this basis, a Cieficiency in available capacity (i.e., loss of load) occurs if the capacity on forced outage exceeds the reserves. The probability of this happening is ·read directly from the cumulative outage table and is the LOLP for a single hour as shown in Figure 2. In addition to calculating the percent installed re- serves, OGP can also calculate a daily LOLP (days/year) and an hourly value (hours/year). The daily LOLP is determined by swnming the probabilities of not meet~ng the peak demand for each ¥-"eekday in -the year. The hourly LOLP is calculated by summing the probabilities of not meeting the load for all the hours in the year. These two values are not related by a factor of 24 because a deficiency for the peak hour of the day does not necessarily imply a deficiency for the entire day. The discussion above proc·eeded on the assumption that the hourly demand was specified deterministically. The in- clusion of load forecasting uncertainty can also be impor- tant and has be~n integrated into the OGP computational procedur~. At each demand point in Llie unce.rtainty distri- bution, the LOLP is calculated. The equivalent ·is then determined by weighting the· LOLP result at each demand point by the probability distribution value. Utilizing this technique, generation · planners can design the generation system to a specified level of relia- bility. As the demand grows through time, generation addi- tions are automatically timed by OGP such that the LOLP does not exceed the design criterion. Figure 3 plots LOLP versus the annual peak load for a specific generation system. As the graph indicates, lDLP varies exponentially with load changes. The design cri- terion in this case is 0.1 days/year. .For the 1985 pe.ak load indicated ·on the graph, the generation system is at a level of reliability better than 0.1 days/year. Therefore, no additional capacity is required. ln 1.986, the ahnual peak has increased to a point where. the generation system cannot maintain the desired 0.1 days/ year LOLP. In anticipation of this, a unit· addition would -3- •• I I I I I 'I I .I I I I I I I I I I I ao.o ORIGINAL. SYSTEM 1.0 I QJQ 0.01 1985 1986 ; WITH 1986 UNIT ADO IT ION DESIGN _____ ,_ CRITERION 0.001·'-·-· --------------- ANNUAL PEAK LOAD -MW Figure 3. LOLP vs. Annual Peak Load -4- I I I I I I I I I I I I I I I I I be scheduled for 1986. What happens to the LOLP versus peak load curve? With the new unit addition installed, the curve shi.rts to the right as in Figure 3. In 1986, the LOLP has de- creased from l. 0 days/year to about. 0. OS days/year because of the unit addition~ This is below the desired 0.1 days/ year criterion established by the utility system planner and hence the unit addition process is completed in tha~year. Production Simulation Once a system with sufficient ~Jjenerating,_ ~(ipaci ty has been determined by the reliability evaluation~ · the fuel and related operating and maintenance (O&M) costs of the system must be calculated. OGP does this by an hourly simulation of system <bperation. The program commits and dispatches generation based on economics· so as to minimize costs. _However, the user bas b'1e option of biasing or overriding the normal economic operation of the .. system. This can be accomplished in two way~;. The user may specify weighting factors for various environmentally related quantities such that the program will operate those units to minimize their impact. The user may also limit, on a monthly basis, the number of hours that units may run or the amounts of different fuels that may be consumed. • The production simulation in OGP is performed in six steps: load modification based on recognition of contrac- tual purchases and sales; conventional hydro scheduling and its· associated load modification; monthly thermal unit maintenance scheduling based on planned outage rates; pumped storage hydro or other energy storage scheduling; thermal unit conunitment for the remaining loads based on economics and/or . environmental factors, spinning reserve rules, and unit cycling capabilities; and unit dispatch based on incre- mental· production costs and environmental emissions. The production simulation is for a single utility system or pool. Unrestrained power transfer capability is assumed between areas or companies internal t~..., the pool represented .. Purchases and Sales The OGP production cost load model is an hour-by-hour model of a typical weekday· and weekend day for ·each month, arranged in monotonically decreasing order. These hourly loads are modified to reflect the firm purchases and sales between the area being studied and entities outside that -5- I I I I I I I I I I I I I I I I I I ·I area. Each contract has associated with it a demand charge ($/kW/yr) and an energy charge ($/MWh). Conventional Hydro Scheduling Hydro energy generally bas ·a very . small . incremental variable cost and, therefore, in OGP it is used as much as possible so as to minimize· system operating costs. There are two types of conventional hydro. First, run of river hydro is typically an installation which has a low head and minimal storage. These units tend to be base loaded since~ the river and dam characteristics dictate that the.unit must be running roost of the time. The second form of convention- al hydro is pondage hydro, -characterized by a significant. volume of storage. · ~ondage pydro units are usually sche- duled during peak load time periods because it is during these periods that the system's incremental fuel cost is at its highest. Thus, the pondage hydro is scheduled to shave pe:tks. !n scheduling conventional hydro, attention must be given to the fact that hydro capability is affected by seasonal conditions.. This is handled in OGP by specifying· data on a monthly basis. Thermal Unit Maintenance On a utility system, the planned maintenance of indi- vidual units is usually performed on a monthly basis. Puring these periods, the units are unavailable for energy production. Maintenance scheduling is normally done so as to minimize the effect on both system reliability and system operating costs. A common· strategy for scheduling main- tenance, and the method used in OGP, is the levelized re- serves approach. Basically, the monthly peak loads are examined throughout the year and incremental amounts o£ generating capacity maintenance s·cheduled to try and level ..... ize the peak load plus capacity on maintenance throughout the year • . Increased maintenance levels which might be required during the first few years of a unit's operation are modeled using an immaturity multiplier. OGP also allows the user to annually input a predetermined maintenance schedule for units for which this information is available. Energy Storage Scheduling Although very often applied to studies of pumped stor- age hydro, OGP may also be used to study other types. of energy storage on electric utility systems such as bat- teries, thermal storage, and compressed air storage. -6- I- I I I I I I I I I I I I I I I I I I Recognizing losses in the cycle, generating and charg- ing energy is scheduled to maximize the savings in system prcduction costs on a weekly basis. Energy storage units are assumed to be fully charged at the beginning of the week. Incremental ~amounts of generation . are balanced by enough charging to fully recharge the·unit by the start of · the next ~week. Because of the nonlinearity in system oper- ating costs, the energy storage units can operate so as to decrease costs despite a cycle efficiency less than 100%. Thermal Unit Commitment After modifications for contracts, hydro, unit main- tenance, and energy. storage, the remaining loads must be served by the thermal units on the system. In OGP, the units can be committed to minimize either the operating costs, as is usually done, or some combination of user specified environmental factors and operating costs. The operating costs are calculated from +l!e fuel and vari~h1e O&M costs and input-output curve for each unit. Fixed O&M costs do not effect the order in which units t~:re committed, but are included i:rt the total production cost. · Figure 4 illustrates the type of input-output represen- tation used by OGP to model the thermal characteristics of generating units. This model specifies the fuel input in Btu per hour as a function of the electric power output in megawatts. H~wever, performance economics are dictated not only by the heat input but also the price ($/MBtu) of the fqel used by the generating unit. Therefore, the cost characteristic relating fuel cost per hour to power output is simply the product of the beat input characteristic and the fuel pric~.., In addition to the fuel input versus power output specification, the maximum and minimum output are specified as operating limits. The environmental quantities that OGP can factor into the operation of the system along with the operating costs are: heat rejection into the atmosphere, heat rejection into the cooling medium, so emissions, NO emissions" CO emissions, particulate ernis~ions, and wat~r consumption. Figure 5 shows that these characteristics are modeled much like the unit heat rate. The unit conunitment logic determines how many units will be on-line each hour and also attempts to provide an adequate level of operating reliability while minimizing the system operating costs and/or envirorunental emissions. The operating. reliability requirement is met by committing .sufficient generation· to meet the loa·d plus a user specified -7- ------.. ------------- I co I i 1 FUEL INPUT FUEl. INPUT · . (~~) <!r> I I i ! ' ..,.,. 'MAXIMUM MINIMUM . . 1 i , INCREMENTAL INCREMENTAL FUEL INPUT FUEL INPUT (~) (~) MW CUT PUT Figure 4. Generating Unit Input-Output Representation i EMISSIONS (lba) Dr f I I l I I l I MINIMUM 'MM(i~UM l A I INCREMENTAL EMiSSIONS (~) j " MW Me:tUT Figure 5. Generating Unit Emissions Output Representation r.· I ;I ~ :· I I I I I I I. I I I I I I I· •• I· spinning .reserve margin.. Units are committed in order of their full load energy costs or emissions, starting with the least expensive. · This comrni tment is then reviewed to determine if the thermal cycling capability of any units is being violated. If so, this-preliminary commit.mentwill be modified to keep such units on line as ma~r be dictated by their cycling restrictions. Thermal Unit Dispatch ·If a unit is committed, the unit's minimum loading. level reguires that its ou·tput be at that level or higher .. Y.'hen the final comrni tment has been establishe.d6 each unit will be_ loaded to at least it 1 s minimum. Typically the. sum of the minimums does not ~~qual the load. Additional load will be se;rved by t.he uni·t:s' incremental loading sections. The dispatching function i.n the OGP production simulati'.>D loads the incremental sections of the units conunitted in a manner which serves the demand at minimum system fuel cost or emissions. This dispatch technique is the equal incre- mental cost approach. Figures 4 and 5 also show the incremental fuel cost and environmental emissions models used in dispatching the incremental loading sections to serve the load. OGP can model the forced outages of units either deter- ministically, by extending the planned maintenance period, or stochastically. In the~stochastic dispatch, the program recognizes. that. units will be out of service in each zone of constant commitment for a period of time proportional to the forced outage rate. The load previously served by these units will be transferred to higher cost units. This usu,al- ly requires the commitment of additional generating units. If additional units are not available, emergency tie energy will be supplied at a cost input by the user. Fuel and Energy Limitations OGP.has the option of performing the production simula- tion subject to additional constraints. The amount of energy to be generated each mont.."l by each unit or the quan- ti ties of the different fuels consumed in a month may be limited. If any limits are l;'eached, other, less economic units will be conuni tted and dispatched as needed. -9-: I I I I I I I I ·I I I I I I I •• I I ., .I lnve·stment Costing The investment cost analysis in OGP calculates the annual· carrying charges for each generating unit added tc the system. This is computed based on a $/kW installed cost, a kW nameplate rating, and an annual levelized fi~ed charge rate. · ,_ OGP Optimization Procedure . Figure 6 outlines the procedure used by OGP to deter-~ mine an optimum generation ~xpansionplan. For the year under study, a ·reliability evaluation is~ performed. This determines the need for additional generat- ing capacity. If the capacity is sufficient, the program calculates the annual production and investment costs, prints these values, and pro~eeds to the next year. If. additional capacity is needed, the program wili add units from a list of available additions until the relia..- bility index is rriet. This list can contain up to six ther- mal types and three types of energy storage units. These units can be added both by themselves and· in combinations wii;h other types of generation. · For e·ach combination of units added to the system, OGP does a production simulation and investment cost calculation for the year under study. The program uses the information gained from the cost calculations to logically step through the different combinations of units to add, eliminating froa consideration combinations that ~ould proc;luce higher~ annual costs than previously found. This process continues ur,.til. the expansion giving the lowest annual costs is found. The- selected units are added to the system, and the program proceeds to the next year of the study. . In cases where operating cost inflation and/or time variation in unit outagn~ rates are present, the OGP optimi-- zation logic utilizes .:t "look-ahead" feature. The look- ahead f'eature develops levelized f'uel and _O&M costs and mature outage rates for use in the economic evaluation. As part of the output information available, the user obtains documentation of the relative costs of all the alternatives exa.mined. After the generating unit selection, the reli• ability and costing calculations are repeated for the chosen alternative so that the expansion report available for the user contains the correct annual values. -10- I I I I I I. I I I EVALUATE lOAD I G.i:NERATlON ] I STUDY ~ '] FORECAST ~~-~~-~·~..-.-Y~S~T-:"Eo-::-.M~~-----· ·._ ___ o_A ...... T_A ____ ._·...,.~ EXISTING UNITS & HOURLY BASED AlLO\\'ABLE PEAKS & ENERGIES TECHNOLOGIES FUTURE ECONOMICS & OPERATING GUIDELINES : -"-4--. . --" .. .,-z= ti •. ; . , .....:__ ... _ ...... ::::::::t:::t:;::;c:;:a::z::; ........ D_ · OPTIMIZED GENERATiON PLANNING (OGP) --:r:,.,.......... .. -... :. =i=·· ::. -=-r-;; . =: ~-;;-: 1 =· .. ~· ' EVAlUATE RELIABILITY ... ALL CHOICES I WITH "LOOK-AHEAD" t I I SELECT UNIT SIZES & TYPES I CALCULATE OPERATING & INVESTMENT COSTS ] STUDY ALL YEARS I I I· I I I I I I ·I USING ,.LOOK-AHEAD .. : < ' ,, • CHOOSE LOWEST COST ADDITIONS ~ & CALCULATE CURRENT YEAR'S COSTS • ~· .. ~ .. RESULTANT OPTIMUM EXPANSION PATTE&iN & DOCUMENTATION OF NEAR..QPTIMUfw1 PLANS ----·. OUTPUT ;a .. 1. I c I FINANC1AL ANALYSIS Of EXPANSION PLAN r----OUTPUT Figure 6. Optimized Generation Planning (OGP) Program -11- I I 'I I I I I I I I I I I I 'I I I 'I ·I, Sarnole.Output Results ·-.' ,_ - ' The ubottom line" result from the OGP program is the annual summary of additions. Figures 7 and 8 present the annual capacity additions by type (nuclear, coal,· gas tur- bine, etc.). For example, in year 1995, the · OGP prograa added in this sample run one 1300 MW nuclear uni't and two 300 MW ,blocks of gas turbines as well as 500 MW of purriped storage hydro. The generating units indicated with an asterisk ( *) are those units which have been previously committed for service. For example, in 1984, a 1200 MW . nuclear unit and a 500 lriW battery storage unit are committed for service. At the bottom of the additions · report, a summary is provided. The first. row is the sum of megawatt additions and retirements (MW ADD and MW RET) during the period.. The second row is the capacity in service in 1998 (end of the study).. The third row is the MW additions that were added automatically (AUTO) by the OGP program (total additions less committed additions). Other summaries are also provided by the program. Figure 9 presents the load, capacity, reserve, LOLP and cost summary.. Figure 10 presents a more detailed cost summary both on a yearly basis and also on a cumulative present worth basis. OGP also makes available more, detailed yearly and even monthly results. One of these results is illustrated in Figure 11. This is the annual production cost summary and illustrates the annual history ·of each generating unit's maintenance period, hours on line, capacity factor, fuel cost, etc. At the bottom of. the page, the energy output, capacity factor, and fuel cost results are summarized }?y generating plant type (nuclear, coal, gas turbine, etc.). Other summaries are also available . including annual fuel· consumption by fuel type {nuclear, coal, oil #2, oil #6, natural gas~ etc.), and annual environmental summaries (water consumption, so2 " and .Nox ernmissions, etc.). While these summaries are examples of OGP program output, a complete printout would include a formatted list• ing of the input parameters and other useful displays of information ... -12- I' I I I I I I I I I I I I I I I I I I I .. GENE':.~Al EI,ECTR I C:: _COMPANY ~,GP:-~ GENE:. RAT 1 ON .PLANrH N~ r-ROURAM ·SUMMARY OUTPUT •••••••~••~~z=~~-~~••~•~~~~~••,••~•,•••:•••x•••• O~P-$ £l.EC.TRJ C $YST;::M . USERS MANIJ,.t_ .t;:}tA11PLE JOP NUMBER . 249395 03/14/79 GENERATION SYSTEH NUet.. F-COAL O.T. TYPE 1 2 3 O?TMZ J N.:~ 1 989 19&7 1979 PCT TiUM 2S 2S 0 1978 N~ 5005 .4781 702 STAG C-COAL F-CJL TYPES .. ~ 6 7""10 1984 1984 1987 ••• 2S 2, 25 600 300 4792 934 Sut1= 171141 •~==~~••~·=~~~~z:•xa~~••r•~~•a•~:za:z~•*~•·~~Z&Z1a~•••:••••==~a•=~~aat• 1'0TAL C.APAB. YR YEARLY MW A 0 D ~ T I a N S + TlES 71 22St 2X a 50 1 8367 80 1200• 2X 1 50 1 SS44 _s~'------~~~~--~7~o~o~·--2=x~~'~5~o~----~~------------------------~2~o~e~o~4~------------- 52 1200* 400• 22289 83 1 200a 1X 150 23514 84 1200• sooa 25214 as soo 25534 86 sooa 87 a a e9 90 91 92 93 94 95 96 97 98 2Xl300 2)(1300 2X 300 1X 300 1X 300 3X 300 1X 300 1X1300 2X 300 2X1300 2X 300 lX\300 lX 300 2.>'1300 2X 300 2X 41:)0 3X 400 3X 400 1X 400 500 600 1300 500 100 300 300 500 100 300 100 26554 27509 28778 30378 31863 34~48 3ea48 37902 39410 41647 4~527 46777 4S761 az~az=••~•s••••~••~••••=~•=•~••••••••=••••~~•:~r•~··~•••~•••••••r:ll:zswa~a Zll:!tl£lt:11'1'S"t:lts:•KltSSS~ZZS:VtliiS"tZ!Ir2Slil%llSll"::.'lll:*lol:llr3i:ltlrlltltSSSI::r:::~~tll:ll''llZS:R2Z:::zzsaa MW ADD M"J RET a:sssas 1998 PCT TOT 7400 0 tJESZSt 1240S 25.S 11375 -1455 Sll·.ll::ll::ltlf 14701 30.2 62!52 12.8 4000 0 4SOO 9.4 0 0 300 0.6 0 -1373 •••••• 3419 7.0 34425 -2828 aaaa ***•••••••• 7034 Sl.Jtti: 48711 14.4 SL-r1~100 PCT za:ast8~sxsaszs:t•z••~•••rsa%::•••••••••••••••s•*••••~=•,.•~•••~~~~aazaaa AUTO 2600 10400 5550 3600 0 0 5100 SJ.Jt1: 272t50 PCT TOT 9.S 38.2 20.4 13.2 0. 0. 18.7 SlJM:100 ·PCT • '='Ot-1M1 TTED MW Figure 7. Annual Capacity ~dditions· by Type -13- I I I I I • I I I I I I I I I I I I I .I GENERAL ELECfRt C COt1PANY OGP•5 GEf''ERAT10N ?I..AN!il~G PROOP..J:..M-SUMMARY OUTPUT saY~·•~aa:saa:~:••••~~·••gr~=•••~•••••~••••~~••• . . " . . . ·---------.....------ OGP-~ ELEC~RJC SYSTEM US£PS MANtJtaL EXAf-'i?LE .. Je$ NIJt1~ER 2"939$ 03/14/79 GENERAT I f.N SYST.EH THERMAL HYDRO PSH TYPE 1-6" 1 a OPTMZING ••• 1984 PCT TRJH 0 1978 MW 16190 310 624 BATHES COMPAfl! S) 10 1984 1984 0 0 0 0 SUMs 17114 ax•~•~i~ar~s~a~a~a:xxzxssa:sx:asxa*•••••s:aaaaaaz~x••~~•••aaaa~ss:aazaa TOTAL CAPAB. LOAD LOL.P YR y E A RLV MW A D D I T J 6 N s +TJES MW D/Y SJI ···=·· aaazat &xaa::s sss:ssa •&lil:ll •• •::nr••• ltliUl'llriC as••••• 79 525 18367 1~091 0.41~3 80 1500 19S44 14SG6 0.3813 81 1050 2080.4 15684 0.4021 82 1600 222&9 l£\546 0.3362 83 1350 23514 17456 0.45S1 84 1200 SOO• 25214 1a,ns o. 24541 55 !SX 100 2558~ 191129 0.4728 as 5X 100 sooa 2G5a4 20498 C:.4290 87 600 6)\ 100 27509 '21625 0.~926 88 13X 100 28778 2281., O • .l:S:30 89 1100 5X 100 30378 24059 0.3~91 90 1500 1X 100 31963 25393 0.3380 91 2600 34348 25790 0.4140 92 2500 36848 28263 0.3910 93 900 3X 100 37902 29818 0.478~ 94 1500 3X 100 39410 314~3 0.46£13 9S 1900 5X 100 41647 33188 0.<498 96 3200 tX 100 44627 35013 0.4217 97 2000 3X 100 46777 3C939 f). 4S51 98 3200 1X 100 • 49761 38970 0.4303 ~•••*•zz::z~szz:••=••~~•••~==~z::xx~xt%tza~xxxw•:=s•~•~~*zzzxsz~=•••~•• ···········==·=·······~····=·~·~······~············~·~··~·==~·==~···=·· MW ADD 28325 MW RET -2828 •••••• sxzzsas 1998 41677 • PCT TCSl 85.6 AUTCJ 22150 PCT TOT 81.3 • CO~'iMl TTEC MW 0 0 z:a:•aac 310 0.6 Figure 8. 5i00 0 ltllflt:ll:llll: 5724 11.8 S100 18.7 500 0 z::raan 500 1 .0 0 o. 500 SUM11: 3442S 0 SJ~~~ -2828 •••••• ······*=···· !SOO SUM= 48711 1. D sur-,= 100 PCT 0 SUM• 272~0 O. SUM= 100 PCT Annual Capacity Additions by Tl'Pe -14- .. I I I 'I I I I I I I I I I I I GENERAL ELEC1RtC COMPANY OGP·5 GENE~AT 1 ON PL.At-:Nl'.fG ?f\OGRAt1·SUt1t1ARY OUTPUT •••••~•·~~•a~~·,·,~~-~;•••~v•,••=••••••••=•n~••• OGP""5 ELECTRIC SYSTEM USZRS l'1ANUAL EXAM?LE JOB NU!1SER 2493()5 03/14/79 YEAR li!ZlkW 1979 1980 1981 1S82 1983 1984 19a5 1S86 1987 1S88 19S9 1990 1991 .1992 1993 1994 1995 1S96 1997 199& tOTAL CAPABILITY CINCLUOlN\3 TtESl YEAR TlM£ OF PCT. LOAD END PEAK RSS. 14B66 1SGS4 16:546 17456 1841 (; 1S429 20498 2162S 22814 240Sg 25393 ?6790 26263 29818 31458 33188 35013 36939 3e970 Zlk«E:a 113422 19384 20544 22'329 23~54 25254 25524 26524 27549 26S18 30416 31303 343SS . 36S88 37:l42 39450 -41S87 44567 46817 <98{)1 :..-.::t•• 'j 83.67 ·19844 20804 22289 23514 25214 esss4 ·25584 27609 28778 30378 31S63 3~~.48 36648 37S02 3S?410 41647 4.d627 45771 49761 •••• 30.~ 33.5 :_\2.6 34 .. 7 34.'7 36.S 31.7 29.7 27.7 26.1 25.2 25.2) 28.2 30.4 27.1 2~.3 25.5 27.5 26.6 27.7 LOSS OF LOAD PROBABILITY D/'i . H/Y 0.381 0.402 0.33Q 0.455 0.245 0.473 0.429 0.493 0.483 0.339 0.338 0.414 0.391 0.478 0.470 0.450 0.422 0.45~ 0.430 0.53 0.48 o. :n o. 4112 o.~a 0.31 0.59 0.52 0.58 0.56 0.38 0.37 0.47 0.45 O.S4 0.52 0.49 0.46 0.50 0 .. 47 COST tN MIU.hJH S YEARlY CUM.. PW COST TO'f.AL Zlit'•~··· 1207.8 1547.0 1.827 .. 0 2236.2 2G-;2.S 3146 .. 7 33~8.3 3754.7 4184., 4731. ~ S:l64.5 6059.1 7233.1 8~91.6 930&.6 104~1.8 120~3 .4 137r.o. 1 15577.5 17r9~.6 WW::'J(:tJl. 1nsa.o 2376.5 3749oS 5277.0 6924.2 8700.<4 10444.2 12l95.8 13970.3 15794.4 1 767-~ •. 6 1!351.3.0 21713.2 2~922.9 26151.3 2f!-..~27. 7 30$06.5 .3328'11.4 3!'S2a.4 ~8455.7 Figure 9. Summary of Load, Capacity, Reserve, ·LOLP, and Cost -15-.I l~· ..... ........___..... ~~. ' . .Y . ·-· ·-·-·~ .,,:.· ....... ···-'···-·'····.<-.· ... -··· ..•.•... ; ,,,_ ... , ..... ·"·-·-·-·•'--'"-·.-····· -··· -~ -----------'l!=NI!ftAI, lrLECTrll C,, COMPANy. QOP•lS GEN£RrlTJON PLANNING PRt'JORAM 'OP·~ ELECTRIC SYSTEM JS~RS MANU~L EXAMPLE POOl. TOTAL YEARLY COSTS (MJL.LION S) PEAK ENERGY LOAO • a••••••••• !l*• .. ••••t***·it•~•• a••• • •••••••·• •a• ft!AR <MWl fG~!Hl FACTOR INVEST. FUEL O+M Ul11 il ....... S«*~".,•••• e•••••• ........ s••*m•• •a••••• f979 14li'591 • 74061 .4 60:00 24.5 .997. 0 1Ss.2 J900 148GG, 7s::Ms, 9 60,00 24G.l 1085.0 176,2 1901 l!'3GS4. 02432:.~ 60,00 304,4 '1228. 3 192.7 1~£!?-1~6. ('!.ft966.L 0 so,oo 633&.8 1 333'-G 215,0 '~l'\.3 1 7" ~\(·. 9174!}. 0 GO,OO 896.0 '451 • 2 239.2 1904 104\6, 97061,3 60,00 1235.2 1ti03,0 2G7~5 I !HH~ 1911~!9. 10~1?.0,2 so.=-oo . 1272,0 17t\9,1 200, G. 1900 20-1981 107735 2 4 oo.oo 1352 1 7. 2012.7 P-9719 l9:.l7 21625. 11 ~002. 2 60.00 1427,G 2345.2 313.9 1900 22014. 120241 • G 60,00 1509.8 27~4.4 333$4 1909 2·10C9, 12C.SOO,G GO,OO 1077. 1 3214.2 31;2.a L~9o· P5~2_;l. ,~~t/166.2 G0 1 0Q 182':7.9 3750 1 4 __ 397,2 -· .... -1991 ~(;7!)0, t4'101JOG.,2 GO,OO 2,1:)5. 3 4 ?.?.!>. 4 443.2.. 1992 2cl?G3. l4CS!l6,2 oo.oo OOSG,O-471 \. 3 490,3 J99n 2!\0lO. \5&722.0 GO,OO 31-15.2 t)l190.7 530, G. 109411 3.}!1~.)6. 1 Gfi341 1 3 so,oo 3352.2 G:l81 1 1 ts75, 2 I .. ' . • 33 \flO. 174434 ~ 9 60.00 4028.5. 7173.2. 639.2 I 3tl013• 1611t\33014 GO,OO 40(10.0 7990.0 708,9 .... 36~39, 1 ~M 1 GO, 0 so.oo ~u42.G 8$\20.6 763.1 Cl'\ 3B9?0, 204828,& GO.OO ti303.ts 1000l5.tS .860.3 I .. CUMULATIVE PRF.SENT WORTH CMlL.LlON S) s••••••a•••~••••••••~••••••,*••••••••••••••• _...._.:.V..:::E[\ ... R INVEST. . FUEL O+M NUC t NV TOTAL •••• ····~·· ···~··· ....... ···~··· ....... . 1979 22.3 . 906,4 142.0 27.3 1096.0 1900 22~.7 \803,1 287,6 G0,1 2376.~ = 190\ 4~9.5 27~5.9 432.4 91.0 3749t6 1902 932:4 3G3G,8 57973 128.~ 5277,0 1903 1486,7 4537,9 727.9 1G9,7 69~4.2 1904 2166.0 ' 5420.4 878.9 215.2 8700.4 ---.:1...;90t'l 2639. t G~23. 1 1 022. 8 • 239. 2 1 0444. 2 19~0 3470.2 7262.0 1161.8 301.9 12195~8 1907 4075,G 8~~G,O 1294,9 343,2• \3970,3 1900 4GG9.3 9318,JS \423,~ 363.2 1&794.4 ---:tgoq ~2~7,.. 1 104145, 1 1sso.·o 421.9 17674. s fgijo tHi39,5 tlG42,0 1677.2. ~59:3 19618,0 1991 Gt\44,9 ·12t\G7.1 1005.0 495.6 21713.2 1~92 7349.0 \4107.7 1934.7 530.7 2~922.9 __ ,..1.9!1:\~-:·f\~1Q2 1,n 1.~?::a·~1::---:2=-:0-G\ .7 . 564 8 2G1t51 ~ . Cgh;, 8632.3 1001 o. 9 21 oa. 9 597.7 201'127. 7 19P5 no~g. ~ . -18230, o 231·a. 3 G33. a 30ooo. c:s 1 ll9G 1 Ot\04. G 1 9GG7,1 .2440, 8 G(Hl• 8 33261.4 f NUC J NV TOTAL • •••••• •••••••• 30,0 1207.8 39,6 1!547. 0 42.2 1627.6 5~~,7 2:!36.2 66t4 265279 00,6 3l4G,7 83,8 3!196,3 91 1 4 3754.7 97.4 .41 84. l 103.7 4731,:) 11 o. 4 ~3G4,5 117,6 6099. 1 125.3 7233. 1 1.33.4 6~01 '0 l.tl2.1 9306.0• 151,3 10459,0 182.5 1?.02!).4 194i4 , ~700, 1 231.2 · H~n7'1rU 246,3 11093,6 -------PAGE 78 24939S 0311Jtl79 YEARLY COSTS (S/MWH.) • ••• •• ta IJ'l • • ast • •• 11 • • •••Iii••• • •ta.s • aa*:ftltt;• • • c JNV .. FUE~ 0+11 N. 1 • Ttt'!t:AL ••• ll •• ···g·"' ....... • ••••• JIJt:.lt;;lt''ll. :a 0.3 13.~ 2. 1 0,4 tl\6. 3 3. 1 13,8 .2.2 o.~ n;g.? 4.4 14,9 2.3 0.5 ~.2 7\-3 1_~..£...3 2-~,..5 O,G ~:s. 7 9s8 1!5,6 2.6 0,7 :2879- 12.7 .. 16. 1 2.0 0,6 :J2,4 . 12.5 17&2 2 •. 7 o,e 03.0 t2.G 18.7 2.8 o.a ~:it·. 9 12.6 20,6 2,8 0.9 ~G. a 12.8 22.9 2.0 0,9 ~9.3 13.3 25.4 2,9 0,9 4l:2. 4 13.7 '20. 1 3.0 Ot..,9 41~ 7 -....,.... . - 17,3 ao.o 3. 1 o.9 ~1 ~ 4 .2o. a· 31 • G 3,3 0.9 ~t;.3 20.1 35,0 3,4 0.9 ~~~4 2013 30~_G 3~5 o.s ~!3.3 ' . 1-;'0 ··~s. 9 23. 1 <41 I 1 3.7 2.0.4 4:l,3 3.8 1 • 1 '7.7-4 .. G ?.9. 1 • .tt~.9 4.0 1. 2 l!ro. 2 32, 1 48,,0 4 .. 2 1,2 6'0~.4 .. ----~19~n~7~·--~1~1~~~2~7~,3~~2~1~1~2~S~1~7~~2~S~G~9•rg~--~7~~HG~·~6~~3~&~~~~8~,~4~----------~--------------------------------------------~-------1VD8 l2400,9 22G13,0 269&.e 743.2 :J04'~8.7 Figure lOo._ rietailed sUmmary of Costs --------------------~---------------------~------------------~- -~-~~-~-.-. ~ -~~~. -.-..,..,-~--~,.,.---~-~~~......,__,.__,._,...__,...,......_...,...,.,.,__..,...__,...,....,....,........,_.....,......, ...... ..._ 2~~~~ Ol/~!'i'?l I:"'!')HU\1'\ ~ ~------------~~--~~~------------~-----------=~~~------~--------------------~------------~------------ 1tRiU 1CFI'V J"~ S"IN~UitJ ltESEJ'tV£ ~'~~$. 1'1W ~2.00. HW l -~-,-,-.,-s-1~A~.-,-e~~-h~k-"pc--~~.-~u~~-~~EL AA11N~Alh1~GA~a Rlh-E~~~~~ft~a~v-~~~R~s-.-~c~x~PTA~e•naY-F~o~a~-~c~P~E~R~.~.-~r~u~tr~~r~e~~~e~£~b~,,~u,_T~~~~~~~.,~u~~~ ID !OEHT. TYr'L ~NPt ttW ,_TMH~ ~~'THS'" OUti"IJT CtN ~ACTOR C03T KAIHT. IJNT. OtJlM! CUTAG~ PllliCC ~lA.! f'IWH LUC ceSTa COST$ tu.tt MTE •1r-:a1U I I Si 6-u~ -~~~ CS 4 1!-Ct.~OIIl 01 ~S ~E-~ON 02 ~~ ~R:N~l£11l 02 ::s ::rs I ;! ···c. 18 ~T,AT£ 15 PA"ISO" r..~;;.$r;.R E::I:SON EDISON f":S.SEIIt :z t 2 :!1 J.JO.G c :X:ndt. 131 .o 0 !li:W. 7~0.0 1 621.0 0 FES. 100.0 7SO.O 0 22~.0 Q 0 :SSiJ.D 0 Owl • ~~0.0 0 S£1-T~ 117.0 0 .JAN. \!lO,O 0 .1UH£ 2 t,7CZ3£. ::Svil. ~ 810P::l&. 7638. 2 •c=:e:J:J~. ~727. 2 3.e6676~. 7•73. ,. ::s. su-T. c. . l510~25. 363:J.e.sa~ SE,.T. g~~l5:1. 2~3 .. 14. 243~=01. FEa~ -4~710. s;-....:•21. 1~ ~·:~c~ oa I .~~s-;l~wA~~~~N~£~~E;P~I;~~b~h--~----~---~~~_;~~~------_;~-=~~~~~~-;~~r-~~~--~~r---~-?r.~~~~~~~--~~~il '70 G.\$ TU~lN£ EDlseN ~ C. 70 G.II.S TUR.I!UNE EDISON. 3 a. 70 GAS TURBIN£ ~DISON 3 D . I I I I CON\1. HYDMJ P'U11PED HYDJtC SATTEIU~S ......... TOTAL. '• . • a 707~ ao. Q.OOl 388. t t 2":l767Z. 2208000. •11<UIIil81. -~fHiZ7. 310200. ·nJEL COST IFit:..lSI'hiJ 7;..c::rzt. .e.&O.SI7. c.Oi:J::t. 2CS87. ·•••21. !le?Silse. ' . 23C2S. tt2A3767Z. 23U51il7~. • • • •MAN:J4\.. t':.l.lNTE~NCE f".ATTER~• PTRN J F " A ft ~ ~ A a 0 '1100000000 • • N 0 0 0 1 0 ~eTt WHEN USED. PA~-E~~S O~ER~JDE THE C::~DL:T£t:. f" C ft. •A 1 1N:JCAT'£S c.. I • D 0 g 0 0 I . . . 20Cl. t••· o. 111o 231Sii7<1i. 305521. 87313. 22gea. " ... THER1'4Al. IRO ... SXMl I S/H•n 1•~cea. , .. ~, 9«373. 3Z.IS7 520:1. . ... ,. ~:l07. .9Si13l. 30~~21. 23.22 Figure 11. Annual Production Cost Surr~ary -17- -. . C~OBS o.oca 4.,7» I I I I I I I I I I I I I I I I I I I 3 -DETAILED GENERATION PLANNING INPUT e. I I I I 'I I I I I I I I I I I I I I I 3 -DETAILED GENERATION PLANNING INPUT ~ This section presents the input made to the OGP program as used for the Rai1belt model. The input is presented primarily in tabular form for reference use. 3.1 -Load Forecasts To represent load forecasts; a number of individual parameters are necessary: (1) {2) (3) {4) Peak demand (MW) per year Peak energy (GWh) per year ·' Month to annual ratios per year Week-day -24 hour load shapes {5) Week-end -24 hour load shapes (6 )' Monthly load duration curves. Items (1) and (2) were supplied by the Battelle Railbelt Alternatives Study in December 1981. These figures include an 8 percent increase to account for transmission and distribution losses.. Note that the forecasts presented in Tables 3.1, 3.2, and 3.3, and used in Susitna analysis are different than the final Battelle figures due to the· varying project deadlines. Items (3) thru (6) were developed by Woodward-Clyde Consultants and are contained in their final report dated April 1981. 3.2 -Existing Generation, Retirements and Additions Data to represent the existing and future generat·ion system includes: (1) Existing thermal generation by type and size-Table 3.4 {2) Existing and pl~nned hydro generation -Table 3.5 {3) Schedule of planned utility additions (1980-1988}-Table 3~6 3.3 -Alternatives Data The Battelle Railbelt Alternatives studies identified essentialiy three types of units for consideration as alternative forms of electric energy generation in their base case: 3-1 I I I I I I I I I I I I I I I I I I I (1) t.OO MW coal-fired steam (2) 200 MW natural-gas combined cycle (3) 70 MW natural-gas gas turbines. A fourth type of unit, 10 MW oil-fired diesels was also"considered. Alternative generation parameters are listed in Table 3.7. Data on fuel price and escalation for the base case runs is presented in Table 3.8., Information on the Chakachamna Hydroelectric project alternative is presented in Table 3.9. 3.4 -Susitna Data Data used to represent the Susitna hydroelectric project in the OGP model is presented in Table 3.10. This data is identical to that used by Battelle in their studies, but may be slightly different from the final feasibility study data due to continued refinement of technical detail. Table 3.10 summarizes monthly average and firm energy for the Watana and Devil Canyon projects as well as other pertinent Susitna data. 3.5 -Other Parameters The OGP mode 1 requires many other system and economic parameters to e,xecute generation planning. The following tables summarize some of the key variables. Tabie 3.11 lists some of the system parameters for production cost calculations. Table 3.12 summarizes key economic variables. 3-2 ... --,--~,, .. I ( I TABLE 3.1: ALASKA RAILBELT MEDIUM LOAD FORECAST!/ ---fi ........ '" I :":'· (MW) (MWH) Year Pool Peak Total Energ.x_ Load Factor I 1981 574 2,893,000 57.54 1982 601 3,027"000 57.50 1983 626 3,162,000 57.66 I 1984 652 3,296,000 57.55 1985 678 3,431,000 57.77 1986 721 3,636,000 57.57 I 1987 764-3,841,000 57.39 1988 806 4,046,000 57.15 1989 849 4,251,000 57.16 I 1990 892 4,456,000 57.03 1991 910 4,549,000 57.07 1992 928 4,642,000 56.95 1993 947 4,736,000 57.09 I 1994 965 4,829,000 57.12 1995 983 4,922,000 57.16 1996 1,003 5,031,000 57.10 I 1997 1,023 5,141,000 57.37 . 1998 1~044 5,250,000 57.41 1999 1,064 5,360,000 57.51 2000 1,084 5,469,000 57 .• 44 I 2001 1,121 5,661,000 57.65 2002 1,158 5,853,000 57.70 2003 1,196 6,044,000 57.69 I 2004 1,233 6,236,000 57.58 2005 1,270 6,428,000 57.78 2006 1,323 6,701,000 57.82 I 2007 1,377 6,973,000 57.81 2008 1,430 7,246,000 57.69 2009 1,484 7,518,000 57.83 2010 1,537 I 7,791,000 57.86 I 1/ Provided by Battelle, Railbelt Alternatives Study, December 1981. I I I I I .. ---. ":1 I I I I I I I I ,I I I I I I I ,. I I !ABLE 3.2: ALASKA RAILBELT HIGH LOAD FORECAsrl/ -........ (MW) (MWH) Year Pool Peak Total Energy Load Factor· 1981 598 3,053,000 58.28 1982 647 ~,347,000 '19.05 . 1983 696 3,642,000 59 .. 73 1984 745 3,936,000 60.15 1985 794 4,231,000 60.83 1986 855 4,525,000 60.42 1987 916 4,820,000 60.07 1988 976 5,114,000 59.65 1989 1,037 5,409,000 59.54 1990 1,098 5,703,000 59.29 1991 1,128 5, 85.5, 000, 59.25 1992 1,158 6,007,000 59.06 1993 1,188 6,160,000 59.19 1994 1,218 6,312,000 59.16 1995 1,248 6,464,000 59.13 1996 1,286 6,663,000 58.98 1997 1,324 6,861,000 59.16 1998 1,363 7,060,000 59.13 1999 1,401 7,258,000 59,.14 2000 1,439 7,457~000 58.99 2001 1,505 7,795,000 59.13 2002 1,571 8,133,000 59.10 2003 1,637 8,472,000 59.08 2004 . 1, 703 . 8,810,000 58.80 2005 1,769 9,148,000 59.03 2006 1,848 9,605,000 59.33 2007 1,927 10,063,000 59.61 2008 2,007 10,520,000 59.67 2009 2,086 10,978~000 60.08. 2010 2,165 11,435,000 60.29 11 Provided by Battelle, Railbelt Alternatives Study, December 1981. II I I I I I I I I I I I I I I •• I I I TABLE 3.3: ALASKA RAlLBELT LOW LOAD FORECAST!/ (MW) (MWH) Year Pool Peak Total Energy Load Factor 1981 568 2,853,000 57.34 1982 586 2,948,000 57'.43 1983 605 3,044,000 57.44 1984 623 3,139,000 57.36 1985 642 3,234,000 57.50 1986 674 3,387,000 57.37 1987 706 3,540,000 57.24 1988 738 3,693,000 56.97 1989 770 3,846,000 57.02 1990 802 3,999,000 56.92 1991 811 4,047,000 56.97 1992 821 4,0~5,000 56.78 1993 830 4,144,000 57.00 1994 840 4,192,000 56.97 1995 849 4,240,000 57.01 1996 . 863 4,320,000 56.99 1997 878 4,400,000 57.21 1998 892 4,481,000 57.35 1999 907 4,561,000 57.40 2000 921 4,641,000 57.37 2001 950 4,784,000 57.49 2002 979 4,928,000 57.46 2003 1,008 5)071,000 57.43 2004 1,037 , 5,215,000 57.25 2005 1,066 5,358,000 57.38 2006 1,102 5,547,000 57.46 2007 1,138 5,736,000 57.54 2008 1,173 5,925,000 57.50 2009 1,209 6,114,000 57.73 2010 1,245 6,303,000 57.79: 11 Provided by Battelle, Railbelt Alternatives Study, December 1981. ------------------- TABLE 3.4: EXISTING RAILBELT GENERATING UNITS -1980 Installed!/ Rail belt Station Unit Unit Install at ion Heat Rate Capacity Fuel Retirement Utility Name No. Type Year (Btu/kWH) .I.:, 'f. (MW) Type Year Anchorage AMLPD 1 GT 1962 14,000 16.3 NG 1992 Munici pa1 AMLPD 2 GT 1964 14,000 16.3 NG 1994 Light & Power AMLPD 3 GT 1968 14,000 18.0 NG 1998 Department AMLPD 4 GT 19.72 12,000 32.0 NG 2002 (AMLPD) G.M. Sullivan 5,6,7 cc 1979 8)000 139.0 NG 2011 Chugach Beluga 1 GT 1968 15,000 16.1 NG 1998 Electric Beluga 2 GT 1968 15,000 16.1 NG 1998 Associ at i"on Beluga 3 GT 1973 10,000 53.0 NG 2003 (CEA) Beluga 5 GT 1975 15,000 58.0 NG 2005 Beluga 6 GT 1976 15,000 68.0 NG 2012 Beluga 7 GT 1977 15,000 68.0 NG 2012 Beluga 1 GT 1963 23,440 8.6 NG 1993 Beluga 2 GT 1972 23,440 18.9 NG 2002 Beluga 3 GT 1978 23,440 26.4 NG 2008 Intern at i onil1 2/ Station 1 GT 1964 40,000-14 .. 0 NG 1994 2 GT 1965 40,000 14.0 NG 1995 3 GT 1970 40,000 18o0 NG 2000 Cooper Lake 1 HY 1961 16.0 2011 Golden Valley Healy 1 ST 1967 11,808 25.0 Coal 2002 Electric 2 lC 1967 14,000 2.8 Oi 1 1997 Association North Pole 1 GT 1976 13,500 65.0 Oil 1996 (GVEA) 2 GT 1977 13,500 65.0 Oi 1 1997 Zehander 1 GT 1971 14,500 18.4 Oil 1991 2 GT 1972 14,900 17.4 Oi 1 1992 3 GT 1975 14,900 3.5 Oil 1995 4 GT 1975 14,900 3.5 Oil 1995 5 GT 1965 14,000 3.5 Oil 1995 6 IC 1965 14,000 3.5 Oil 1995 7 lC 1965 14,000 3.5· Oil 1995 8 IC 1965 1.4,000 3.5 Oil 1995 9 IC i§&s 1a~sss ~:5 8\1 l~~§ 10 IC --.. ------- -- -----; -"' TABLE 3.4: EXISTING RAILBELT GENERATING UNITS {CONT'D) - c Installed!/ Rail belt Station Unit Unit Install at ion Heat Rate Capacity Fuel Retirement. Uti 1 ity Name No. Type Year (Btu/kWH) (MW) Type Year Fairbanks Chen a 1 ST 1954 14,000 5.0 Coal 1989 Municipal -2 ST 1952 14,000 2.5 Coal 1987 Utility 3 ST 1952 14,000 1.5 Coal 1987 System (FMUS) 4 GT 1963 16,500 7.0 Oil 1993 5 ST 1970 14,500 21.0 Coal 2005 6 GT 1976 12,490 23.1 Oil 2006 FMUS 1 IC 1967 11,000 2.8 Oil 1997 2 IC 1968 11,000 2.8 Oil 1998 3 IC 1968 11,000 2.8 Oil 1998 Homer Homer Electric Kenai 1 IC 1979 15,000 0.9 Oil 2009 Association Pt. Graham 1 IC 1971 15,000 0.2 Oil 2001 (HEA) Seldovia 1 IC 1952 15,000 0.3 Oil 1982 2 IC 1964 15,000 0.6. Oil 1994 3 IC 1970 15,000 0.6 Oil 2000 University University 1 ST 1980 12,000 1.5 Coal 2015 of Alaska University "" ST 1980 12,000 1.5 Coal 2015 c. (U of A) University 3 ST 1980 12,000 10.0 Coal 2015 University 1 IC 1980 10,500 2.8 Oil 2011 University 2 IC 1980 10,500 2.8 Oil 2011 Copper Valley CVEA 1-3 IC 1963 10,500 1.2 Oil 1993 Electric CVEA 4-5 IC 1966 10,500 2.4 Oi 1 1996 Association CVEA 6-7 IC 1976 10,500 5.2 Oil 2006 (CVEA) CVEA 1-3 IC 1967 10,500 1.8 Oil 1997 CVEA 4 IJ; 1972 10,500 1.9 Oi 1 2002 CVEA 5 IC 1975 10,500 1.0 Oil 2005 CVEA 6 IC 1975 10,500 2.6 Oi 1 2005 CVEA 7 GT 1976 14,000 3.5 Oi 1 2006 - - - - - --- - - ---- - - --: - - TABLE 3.4: EXISTING RAILBELT GENERATING UNITS Railbelf Station Utility Name 1"1atanuska Talkeetna Elect. Assoc. (MEA) Seward SES Electric System (SES) Alaska Ek1utna Power Admi ni strati on (APAd) TOTAL NOTES: (l GT = Gas turbine CC = ComQined cycle HY = Conventiona1 hydro IC = Internal Combustion ST = Steam turbine. NG = Natural gas NA =Not available 1/ Captibility at 0°F. Unit Unit No. Type· 1 IC 1 IC 2 IC 3 IC I{! (CONT'D) Install ect.!./ I nst a 11 at ion Heat Rate Capacity Fuel Retirement Year (Btu/kWH) (MW) Type Year 1967 15,000 0.9 Oil 1997 1965 15,000 1.5 Oil 1995 1965 15,000 1.5 Oil 1995 1965 15,000 .2. 5 Oil 1995 1955 --30.0 2011 984.0 MW 2/ This value judged to be unrealistic for long range planning and therefore was adjusted to 15,000 for generation planning studies. -· - - - -·-- - - - - - - - - - - - - TABLE 3.5: EXISTING AND PLANNED RAILBELT HYOttO GENERATION Average Energ~ (GWh) Firm Energx {GWh) Cooper Solomon Bradley Grant!/ total Eklutna Lake Gulch Lake Lake 155 Cooper Solomon Bradley Month (30 MW) (16 MW) (12 MW) (90 MW) (7 MW) MW Eklutna Lake Gulch Lake r~ta1 JAN 13.8 3.8 4.9 31.0 2.75 56 13.0 3.7 4.3 34.7 56 FEB 12.3 3.4 4.3 27.7 2.75 51 11.9 3.4 3.9 31.9 Sl MAR 12.5 3.4 4.6 28.2 2. 75 . 52 9.1 2.6 3~0 24.4 39 APR 10.3 2.8 3.5 23.4 2.75 43 9.9 2.8 3.3 26.5 43 MAY 11.7 3.2 4.3 26.4 2.75 48 11.4 3.3 3.8 30.3 49 JUNE 11.8 3.3 4 .. 3 26.6 2.75 49 8.0 2.3 2.6 21.4 34 JULY 13.4 3.6 4 .. 9 30.2 2.75 55 8.3 2.4 2.7 22.2 36 AUG 14.1 3.8 4.9 31.7 2. 75 57 8.5 2.5 2.8 22.6 36 SEP 12.6 3.4 4.6 28.4 2.75 52 8.7 2.5 2.9 23.2 37 OCT 13.6 3.7 4 .. 9 30.6 2.75 55 9.4 2.7 3.1 25.0 40 NOV 13.7 3.8 4.9 30.6 2.75 0 56 8.1 2.3 2.7 21.6 35 DEC 14.1 3.8 4.9 31.7 2.75 57 11.7 3.4 3.9 31.-2 50 TOTAL 154 GWh 42 GWh 55 GWh 347 GWh 33 GWh 631 GWh 118 GWh 34 GWh 39 GWh 315 GWh 506 GWh !/ Information on firm enel"QY from Grant Lake was not avail abl,e. I I I I I I I I I I I I IG I I I I I I TABLE 3.6: SCHEDULE OF PLANNED UTILITY ADDITIONS (1980-1988) Capacity Average Utility Unit Type MW Year Energy CVEA Solomon Hydro 12 1981 55 GWh Gulch CEA Bernice GT 26.4 1982 Lake #4 1/ CEI\ Beluga cc 42-1982 #6, #7' #8 AMLPD Unit #8 GT 90 1982 COE Bradley Lake Hydro 90 1988 347 GWh APA Grant Lake Hydro 7 1988 33 GWh 1/ New Unit #8 wi 11 encompass Units #6 and #7 each rated. at 68 MW. Total -new station capacity will be 178 MW. 0 ,, I I I I I I I I ·I I I I I I I I I I I· TABLE 3.7: SUMMARY OF THERMAL GENERATING RESOURCE PLANT PARAMETERS ~ ~-....,;......--;..;..;..,;;..,.;.;...;....;.;.,...;_;;_ Parameter Heat Rate (Btu/kWh) Earliest Availability Fuel Type O&M Costs Fixed O&M ($/yr/kW) Variable O&M {$/MWh) Outages Planned Outages (%} Forced Outages (%) Construction Period (yrs) Retirement Policy (yrs) Start-up Time {yrs) 1/ Unit Capital Cost ($/kW)- Railbelt: Beluga: Nenana: 2/ Unit Capital Cost ($/kW)- Railbelt: Beluga: Nenana: Coal Fired Steam 200 MW 10,000 1989 Coal 16.83 0~6 8 5.7 6 30 6 2,051 2,107 2,242 2,309 Combined Cycle 200 MW 8,000 1980 Natural Gas 7.25 1.69 7 8 2 30 4 1,075 1,107 Gas Turbine 70 MW 12,200 1984 Natural Gas 2.70 4.84 3.2 8 1 30 4 627 636 Diesel 10 MW 11,500 1980 Oil 0.55 5.38 1 5 l 30 1 856 869 1./ As estimated by Battelle/Ebasco without interest during construction {AFDC). 2/ Including AFDC at 0 percent escalation and 3 percent interest, assuming an s-shaped expenditure curve during construction period. ·------~------------------~------------------11 . . . ,.. . . . .... . . . . I I ·I I I I I I I I I I I I I I I .I TABLE 3 .. 8: FUEL COSTS AND ESCALATION.!./ Coal Q' Year Healy at Healy Healy at Nenana Beluga Natural Gas Oil . ... 1993 $1.94/MMBtu $2.25/MMBtu $1.90/MMBtu $3.03/MMBtu $8.08/MMBtu 1995 2.04 2o35 2.00 3.27 8.41 2000 2.32 2.64 2.27 4.80 9~28 2005 2.46 2.79 2.41 5.30 10.25 2010 2.61 2.95 2.56 5.85 11.32 1/ Base prices and escalation patterns derived frQm Battelle and Acres -meetings and research. 0 I I I I I I I I I I I I I I' I I I I I TABLE 3.9: CHAKACHAMNA HYDROELECTRIC PROJECT!/ Installed capacity Earliest on-line date 330 MW 1990 Total Capital Cost including AFDC and Transmission $/kW $1~450 million {1982 $} $4,394/kW Energy (GWh) Month Jan Feb . Mar Apr May June July Aug Sept Oct Nov Dec Average 139.9 GWh 120.7 GWh 118~7 GWh 103.1 GWh 97.4 GWh 95.3 GWh 147.9 GWh 156.8 GWh 103.1 GWh 121.7 GWh 135.5 GWh 152.1 GWh 1,491.6 GWh 1/ From Bechtel; Chakachamna Alternative "B" 1981. Firm 140 GWh 121 GWh 119 G\~h 103 GWh 97 GWh 91 GWh 93 GWh 97 GWh 103 GWh 122 GWh 136 GWh 152 GWh 1,374 GWh I I I I I I I I I I I I I I I I I I I ,TABLE 3.10: SUSITNA HYDROELECTRIC PROJECT GENERATION PLANNING DATA ~ Earliest on-line date: Unit size: Maximum no. of units: Maximum capacity: Minimum capacity: Monthly energy production: Month Firm Oct Nov -Dec Jan Feb Mar Apr May June July Aug Sept Total Site Access Cost: Transmission Costs: Subtotal AFDC Total Costs TOTAL PROJECT: Capacity Cost with AFDC O&M Watana only Total Susitna 234 GWh 270 322 283 228 235 199 180 170 182 170 158 2,631 GWh WATANA -,,...., 1993 170 MW 6 1, 020 MW' 75 MW Average 281 GWh 348 445 383 318 276 (\) 203 180 175 258 344 248 3,459 GWh $3,175 million (82$} 472 $3,647 44? $4,094 million DEVIL CANYON 2000 150 f4W 4 600 MW 75 MW Firm Average 203 GWh 230 GWh 232 295 276 373 257 332 224 281 235 256 261 248 262 285 322 303 205 263 151 253 135 215 2,763 GWh 3,334 GWh $1,358 million (82$) 112 $1,470 161 $19631 million 1,280 Mw.!/ $5,117 millionY $5,784 million $14.7/kW $12.1/kW 1/ The generation planning tasks used an installed capacity of 680 MW at Watana. The extra 340 MW would be included for spinning reserve and O&M flexibility. 2/ This cost was quoted in December 1981 as the cost of a 1280 MW project. However, the final feasibility total project cost was $5,127 million for a. 1620 MW installation. I I I I I I I I I I I I I I I I I I I TABLE 3.11: OGP SYSTEM DATA Item Period of analysis: External Contracts: Optimization logic: Spinning reserve: Loss of Load Probability (LOLP): Hydro reliability (firm energy): Random forced outages: Unit committment: Immature operation: !_nput 1993 -.2010 None apply due to isolation of system Select minimum production cost expansion from .available units and sizes 150 MW 0.1 day/ year Input separate from average energy Apply in production cost logic Coal and combined cycle: if needed minimum run time 4 hours; maximum 24 hours. All others: if needed m1n1mum run time 4 hours; maximum run time 12 hours New units experience less efficient operation during start-up period I I ~I I I I I I I I I I I I I I I I I TABLE 3.12: OGP ECONOMIC DATA Item Year costs are quoted: Present worth to year: Interest/discount rate :1./ Escalation rate Economic Input 1982 1982 3% 0% Annual fixed carrying charges:.!! Cost of Money Amort i z a.t ion Insurance Total Capital and 0&~ Real Cost Es..;,:\ 1 at ion :..£1 20-Yr life 30-Yr life 3.00 3.72 0.25 6.97 1982 -1987 ~.9% 1988 -2010 -2.0% 3.00 2.10 0.25 5.35 1/ Varies under sensitivity analysis of interest rates. 50-Yr life --· 3.00 0.89 0.10 3.99 2/ Assumed capital and O&M real cost escalation is greater than that used in Battelle study. Use of lower values would tend to favor projects with high capital cost (e.g.,. Susitna). Sensitivity of this rate was accomplished under Section 4.6 (f). \ l ., ~ - I , I I I I I I I 4 -RESULTS OF GENERATION PLANNING STUDIES I I I I I I I I I I I I I I I I I I I I I I I I I I I I -I 4 -RESULTS OF GENE~R.~TI_QN PLANNING STUDIES 4.1 -Methodology Given the data discussed in the previous section, an analysis of alternatives for electrical energy generation in the Railbelt comparing the production costs of electricity with and without the Susitna project was done. The primary tool for the analysis was the generation planning model (OGP) which simulates production costs over a period of time. The primary method of comparing with and without Susitna alternative scenarios is total system costs. The planning model provides output from the OGP program of the total production costs of these aiternative models on a year by year basis. These total costs for therperiod of modeling include all costs of fuel and operation and maintenance of all generating units included as part of the system. In addition, the production cost includes the annualized investment costs of any production plants added during the period of study. Factors 'lklich contribute to the ultimate consumer cost of power which are not included in this model are: all investment cost to plants in service prior to 1993, costs of the transmission and distribution facilities already in service and administrative cost of utilities for providing electric service to the public. These costs are corrmon to all .scenarios and have been omitted from the study, as having no impact on generation plant decisions. Thus, the production costs modeled are only a portion of ultimate consumer costs and in effect are only a portion, albeit major, of total costs. The sum of the annual costs is an effective relative indicator of the measure of cost of following one plan compared to another. In order to compare costs, a 11 annua 1 c"osts fr-om 1993-2010 production simulation have been converted to a present worth {PW) of 1982. These present worths for all scenarios considered are shown in tabular form in two anounts. The first 'is the 1982 PW of the 18 years of model study frorn 1993-2010. The second value is an estimated PW of long-term system costs. The first PW value represents the theoretical amount of cash (not including those items noted) needed in 1982 to meet electrical production costs in the Railbelt for the period 1993-2010, given scenario assumptions. The second cumulative PW value is the long:-term (2011-2051) PW estimate of production costs under the medium scenario. In rQnsidering the value of the addition of a hydropower plant, which has a useful life of approximately 50 years, the study period is inadequately short. A plant \vhich is added in 1993 or 2002 would accrue PW benefits or penalties for only 17 or 9 years, respectively in the PW measure. 4-1 :1 I I I I I I I I I I I :I I I I I I , I It is also true that modeling the system for an additional 50 years, assuming loads and generation alternatives, is well beyond the realm of any prudent projections. For this reason, the final study year (2010) production costs were assumed to reoccur for an additivnal 41 years (in the medium-load forecast), and added to the 18 year PW, to estimate a relative measure of long-term cost differences between alternative methods of power generation.. In economic notation, this can be expressed as (P/A,3%,41yr) (P/F,3%,18yr), to al-.. rive at a long-term cost factor. The production costs for the time period 1982 to 1993 are the same for all non-Susitna and Susitna cases. For each generation system scenario, the period 1993 to 2010 is simulated by the OGP program which calculates the cumulative PW cost in 1982 dollars of operating the generation system during that 18-year period. The annual cost in year 2010 is mathematically extended so that the numb.er of years between the addition of the last Susitna development and end of the simulation period is 50 years. This number of years varies due to the fact that the second stage of the Susitna project, the Devil Canyon development, is added to the system earlier or later depending on the load forecast. For the high "load forecast, the period of analysis extends from 2011 to 2046 (36 years) since Devil Canyon is added to the Railbelt system in 1997. The low load forecast extends the period of analysis from 2011 to 2053 (43 years) b~cause Devil Canyon power comes on line in 2004. Figure 4.1 illustrates the long-term cost concept. It should be noted that the present worth of the long-term cost is not by any means an absolute number but is a relative measure of alternative scenario production costs. Nonetheless, it is a valid measurement of comparing different plants of action because the costs not included in the analysis are common to all scenarios. For each generation plan, a present worth of the long-term cost has been calculated. A second method cost comparison is by comparing net benefits. The net benefit can be estimated by comparing similar with and without Susitna scenarios, and by examining the difference in PW long-term cost totals. For example, in a Susitna plan with PW long-term costs of $6!t000 mi 11 ion as compared to a simi 1 ar non-Susitna scenario with $7,000 mi 11 ion PW long-term costs, the present worth ·value of the production cost saving over the long term would be one billion dollars. Since all non-conmon costs of the alternative plans are included in the production cost simulation process, the one billion is a net benefit to the less expensive alternative. Fi~ure 4.2 illustates the net benefit concept. The 1982 to 1992 production costs are conmon to both plans and therefore not included in the present worth of long-term costs. {Note that they lie below the horizontal axis). The 1993 to 2010 cumulative production costs are present worthed to 1982 dollars. The 2011 to 2051 economic extension of 2010 production costs (medium load forecast) represents the full project life operation of Susitna project. 4-2 ·-. I I I I I I I I I• I I I I I I I I I I The difference (non-Susitna plan minus Susitna plan) is the net benefit. This is the second method used to interpret the results of the generation planning study. 4. 2 -~ase Systems (1982 -1992) The production costs for the time period 1982 to 1993 are the same for both the non-Susitna and Susitna cases. These base plans were as follows: Low and Medium Load Forecast ~ no capacity other than the scheduled corrmi tted units necessary to meet demand. High Load Forecast -·200 MW combined cycle added in 1987 200 MW combined cycle in 1990 70 MW gas turbine in 1992 4.3 -·Non-Susitna Plan-Medium Load Forecast The without Susitna plan "A" includes three~200 M~J coal-fired plants added in Beluga in 1993, 1994 and 2007. A 200 MW unit at Nenana is added in 1996 to provide Fairbanks with some reliability. In addition 9-70 MW gas fired gas turbines are added during the 1997-2009 period. Figure 4.3 summarizes the non-Susitna plan annual cost distribution. The non-Susitna plan has a 1982 PW cost of $3,213 g 106 for the 1993-2010 modeled period. The 2010 annual cost is $491 x 10 and the computed long-te·rm cost is $8,238 x 106. [3213 x 106 + (491 x 106)(10.2336)], where 10.2336 is the long-tenn cost factor described in Section 4.1. 4.4 -Susitna Plan -Medium Load Forecast The Susitna plan includes 680 MW of capacity at Watana available to the system in 1993. Although the project can come on line in stages during that year, for modeling purposes it was assumed to be av ai 1 able for the whole year. This is true of all new units added to the system. The second stage of Susitna, the Devil Canyon project, is scheduled to come on-line in 2002. The project was tested for addition at earlier and later dates :with 2002 found to result in the lowest long-term cost. Devil Canyon includes 600 r~W of installed capacity. Additionally, three-70 MW gas turbines are added in the late years for winter peak capacity. Note that during final feasibility study work, a 1020 MW Watana Scheme was determined to be optimal for spinning ,~eserve and O&M considerations. The reliability of having six-170 MW units available was considered as the most desirable plan. Although the generation planning studies does not include the extra 340 MW of capacity per se, the cost modeled in OGP reflects a 1020 MW \~at ana scheme. · Figure 4.4 summarizes the Susitna plan annual costs. 4-3 I I I I I I I I I I I I I I I I I -· I Durln~ the l993-201g study period the 1982 PW of costs fov-the with 6Susitna plan 1s $3;119 x 10 . The 2010 annual production cost is $385 x 10 . The present worth of this 1evel ized cost for a period extending to the end of the _life of the Devil Canyon project (2051) is $3,943 x 106. The resultant is a long-term cost of $7,062 x 106. 4.5 -Comparison of Base Plans The base case comparison of the with and without Susitna plans is based on production cost simulation for 1993-2010, using all mid-range forecasts. This includes the medium load forecast, projected fuel costs and estimated capital costs and real escalation factors on those costs. General escalation was set at zero percent with an interest and discount rate of 3 percent used. The economic comparison of these plans is shown in Table 4.1. As can be seen, the net benefit in pursuing the Susitna plan is $1,176 million. Figures 4.5 through 4.7 surrmarize the gener·ation plans for the base cases, in three manners: comparing yearly costs, percent reserve and long-term net benefits. Two points should be noted in the comparison of these p1ans. First, the loss of load probability (LOLP) in the non-Susitna plan in 2010 is calculated at 0.099. This means that the system is on the verge of add1ng an additional plant, and would do so in 2011. These costs are hov·-:ver not included, in the analysis which is cut off at 4010. On the other hand, the Susitna plan has a loss of load probability of 0 .. 025!:-and may not require additional capacity for several years. A second consideration is that some of the Susitna power is still not used by 2010. This total is about 177 GWh which is not absorbed by the projected demand in the sunmet' months. No benefit is attributed to this energy in the analysis. 4.6 -Single Variable Sens)tivity Ary~lysis Rather than rely on a single comparison cf cases to arrive at a net benefit the project, a sensitivity analysis has been done to identify the impact of key data on the r·esults. The method used to test sensitivity of key data -has been to identify critical assumptions which are input to the analysis. After that, a range of values for the input data has been estimated, \\tlere appropr·iate.. Each parameter· has been reviewed for impact on the Susitna decision and where applicable, the system mndel has been tested over the identified range to determine the impact on 'long term costs of data variance. The following list of va.ri tble inputs has been reviewed: ~~~ (c) (d) (e) (f) Load Forecast . Economic Interest/Discount Rate Capital Costs -Alternatives and Susitna Period of Analysis Construction Period Real Escalation -Capita 1 Costs~ O&M and Fue 1 Costs 4-4 I I I I I I I I I I I I I I I I I I ----_--~-~ (g) O&M Costs (h) System Reliability (i) Coal Bas~ Price (j} Other Hydro Projects (a) Load FDrecast ' Throughout the Susitna feasibility study, planning has proceeded on the project for the mcst part based on a medium load forecast. It has all along been realized that this forecast has been made based on the idea that the forecast is a center point of a range of uncertainty, rather than the actual expected occurence. For this reason, · forecasters have bracketed the range with high and low forecasts .. ~ As part of the sensitivity analysis, the project has been analyzed with both of these forecasts in place. The forecasts used for the analysis are the medium, high and low forecasts by Battelle as presented in Tables 3.1, 3.2, and 3a3. Since the load forecast is the major-consideration as to \'Al~n and what size capacity is added to the system~ the nature of the systems vary gr-eatly between forecasts. (if Low Forecast In general, adopting a lower forecast allows for smaller amounts of capacity at later period of time. In th~ non-Susitna plan~ only 600 MW of coal units are added, 2 units in Beluga and one at Nenana. The units are added in 1995, 1997 and 2007. Additionally, 8 GT units (or 560 MW) is added periodically after 1996. The pattern of capacity additions is close to that of the medium forecast or base case, with several years of lag~ The optimal time for the addition of the Susitna units is also changed from the medium fore~ast. As shown on Table 4~2, the selected staging for the project is 680 MW" at Watana in 1995.) with the 600 MW Devil Canyon coming on line in 2004. The staging of Oevi 1 Canyon in 2007 was also tested, with a slightly higher resulting long-term cost. Watana as a single project was also tested, with long-tenn costs higher than with the addition of De vi 1 Canyon. It can be noted that the staging of the second project is not as critical as in the other forecasts. However, th::·~re is a system need for additional capac·ity in 2004 which De vi 1 Canyon satisfies. If the project is added in that year, there is a significant amount of energy (1000 GWh) wh~ch cannot he used by the system for many years. Table 4.2 s~ow~ the long ~erm cost of th~ no;l-Su~it~a syst.em at $6,878 x 10 w1th the Sus1tna system at $6,650 m1ll1on. 1hus the net benefit to the Susitna pro.ject is $228 million. 4-5 I I I I I I I I I .I I I I I I I I I I l· (ii) High Forecast Under this forecast, capacity is needed long before the 1993-19'"'~ time frame of medium and low forecasts. From the analysis of the ten year period prior to 1993, it was found that nearly 500 MW of other capacity is needed. This need was met by the addition of 200 MW gas-fired combined cycle units in 1987 and 1990 and a 70 MW gas turbine unit in 1992. The combined cycle units were one of the only choices for system addition since the coal units are not available until 1989 due to development lead time. Note that the addition of these three units is common to both the with and without Susitna plans. Therefore, the capital costs of these pre-1993 plants have not been included in the long-term cost. In the non-Susitna p1an, 1000 MW of coal units are added, four 200 MW units at Be 1 uga and one at Nenana in 1996. In addition, eleven 70 MW GT units. are added. The long-term cost of the non-Susitna plan is $10,859 x 106 as calculated in Table 4 .. 2. The staging of the Susitna project is condensed under the high forecast. While Watana is still added in 1993, the Devil Canyon addition is moved up five years to 1997. In addition, five 70 MW GT units are added in each of the years 2006-2010. The 1ong- term6cost of the Susitna plan under the high fore~ast is $9,247 ~ 10.. • The plan has a net benefit of $1,612 x 10 (see 1 able 4. 2). {b) Economic Interest Discount Rate As discussed in earlier portions of this section the base case runs have been made with the interest rate set at 3 percent, assuming an underlying inflation rate equal to zero. This rate has been selected, consistent with APA guidelines, as the real return required on investments, with no inflationary expectations. Although the required return on investments will be a state policy dec1sion, it is realized that the rate could vary to a higher or lower range~ It has been considered reasonab 1 e that the requi t"ed real rate of return could vary from 2 percent to 5 percent. Thus, the project has been evaluated by the economic analysis method at each \t~hole interest rate in this range. The results of the variance are surnnarized in Tab1e 4.3. Note that the generation plans were kept constant to the base plans to test the sensitivity of this parameter. At 62 percent, the net benefits attributable to Susitna are $2,617 x 10 • . At. the othe\~ eng of the. 't"ailge ?r 5 percent, the Sus~tna net benef1t 1s {$513 x 10 ) ., It 1s read1ly seen that the Sus1tna decision is very sensitive to this parameter. 4-6 \ . ·I I I I I I I I I I I I I , I I I I I I The net benefit of $109 . x 106 at an interest rate of 4 percent is very close to the breakeven point. From Figure 4~8, a ~raph of net benefit versus interest rate is estimated that the breakeven interest rate, or internal rate of return on the project is 4.1 percent. (c) Capit~l_Costs Capital costs which have been estimated for the study have a considerable impact on the long-term costs of either the with or without Susitna scenario. Capital cost analysis has been approached in two ways. First, with variance on the alternative cost and second with variance on the Susitna costs. The capital costs for the alternatives to Susitna have been estimated by Ebasco, as part of the Battelle Railbelt Alternatives Study. There is some concern that the estimates, based on a less detailed study, are at a level'of confidence less than the Susitna estimate. Thus~ alternatives were checked against the Susitna base plan using a high risk cost of 120 percent of the estimate and a low site cost of 90 percent of the estimate. Using the medium forecast Susitna plan_, these sensitivities were tested. The second testing was of the Susitna capital costs. In this case, the Susitna plan was tested with a low capital ~?st equal to the estimate less an assumed 20 per~ent contingency-. For a high estimate, the contingency was doubled. Table 4.4 shows the results of varying the capital costso Note that the with and without plans remained the same regardless of this variance in alternatives capital costs. In the alternatives variance case, the net benefits vary by about 100 percent from the low to the high case. The Susitna plan maintains positive net benefits in either case. The long-term costs are more sensitive to the variation in Susitna costs. If the contingency is left off the Susitna cost estimate$< the net benefits of the project are over $2 billion. However, if the contingency value is doubled, the benefits drop to $264 x 106. 1/ In the final version of the project estimate, contingency allowance was reduced to 17.5 percent as some uncertainties were removed. The range of capital costs tested is sufficiently broad to include the final · estimate without cooti ngency and the final estimate with double contingency. 4-7 I I I I I I I I I _I I I I I I I I I :-1 't I . (d) Period of Analysis The planning period for modeling purposes extends to 2010, considered to be the outer limit for load forecasting and economic cost projections. However~ the Susitna project is entered into the system in the 1993-2004 timeframe (Watana/Devil Canyon separate stages) .. Therefore, the method for analyzing the project has taken into account extension of the system costs to a period equal to .50 years past the last added project stage. This extension of the period of analysis is discussed in more detail in earlier parts of this· section., The impact of this methodology can be determined by reviewing the base _case (Table 4.1). The shortest period for analysis to be chosen would be at the end of 2010. This however, would account for only 8 years of operation of Devil Canyon, a very short period for reviewing capital intensive projects. The net benefits to the Susitna project are $93 x 10 6 , Just about the breakeven point. This can be ~ompared to the future~period of-analysis net benefits of $1,176 x 10 . If an interim point were selected, say 30 years of operation of Devil Canyon, the net benefits of the Susitna project would be $718 x.106. This corresponds to a long-term gost of $6,431 x 106 for the non-Susitna plan and $5,713 x 10 for the Susitna plan. The net benefits in this case are 60 percent of those calculated in the base case. (e) Construction Period Variability in the construction period has the impact of increasing interest during construction charges. Using 0 percent and 3 percent parameters, the interest during construction is small and does not change much with a one-or two-year change in construction per~ioo. Should a project be delayed several years, alternative forms of generation may be required in place of the planned unit; however~ this would not impact the generation p'lanning analysis as units are expected to come on-line as scheduled with lead times of ten or more years. ·The construction schedule for Susitna has been analyzed in detail in the study risk assessment. Delaying the Susitna project stages by one and two years was tested. Table 4.5 sunmarizes these delays. Essentially, the Susitna plans remain constant, with three 70 MW·gas turbines added. However, two are needed in 1993 when the project is delayed whereas the base plan installs them in the 2007 to 2010 period ... Due to the fact that the investment cost of the gas turbines is so small, the effect on net benefit is negligible. 4-8 I I I I "I I I I I I I I I I I I I I I (f} Real Escalation Under the economic analysis assumptions general inflation is removed as an underlying conditjon. However, projections have been made which predict real escalation to occur in two study factors.. These are in capital and operation and maintenance costs and fuel costs. (i) Capit~l Costs Along with the capital cost estimates from the Battelle Rail belt alternatives study, Ebasco projected esca1 ation on capital costs of the plants. This concept of escalation was adopted into the base case, although higher (yielding more conservative Susitna net benefits) values than those provided by Battelle were used. In order to test the sensitivity of this assumption, tests were made with zero escalation on capital costs and double the rate or about 4 percent. Of these two cases, the lower end appears to be much more 1 ike 1 y si nee, unlike finite fuel resouwces, construction and labor are not diminishing resources. Results of-this analysis are shown in Table 4.6. The variance · in these escalation factors changes the net benefits in a manner similar to the actual variance capital costs, that is, by excluding real escalation on capital costs and O&M the net benefits rise by one-third. By daub 1 i ng the rate of _ escalation!) the benefits fall by -one-third~ In th.e high case, it should be noted that the non-Susitna plan changes from four coal units to two, with the capacity difference made up in GT and combined cycle capacity. An additional sensitivity case was run using the Battelle figures. However, the escalation rates varied from 2 percent to 0 percent, to a negative value dur1 :19 the period 1983 to 1992.. Battelle studies adopted a value of 1.4 percent per year-which tends to overestimate the Ebasco numbers in early years and underestimates 1 ater years. The base case assumption was 1.9 percent for the period 1983 1989, 1.1, 1.6 and 2 percent from 1990, 1991, and 1992 on. {ii) Operation and Maintenance Costs Escalation of operation and maintenance costs was adopted from Ebasco estimates of 1.6, 1.6, 1.7, 1.8, 1.8, 2.0 for the years 83, 84, 85, 86, 87 and 88 on. Sensitivity was run using 0 percent and double escal.ation rates as seen in Table 4 •. 6. (iii) Fuel Costs As non-renewable resources, the prices of -coal, gas, and oil are expected to increase in price at a rate greater than general commodities. These prices and escalation factors are I I I I ·I I I I I I I I I I I I I I I discussed in theearlier portion of t11is chapter. Model runs were-made with high and low levels of fuel escalation. The low limit was established as zero percent real escalation. The upper 1 imit was set at 52 percent for coal, 4 percent for oil and 5 percent for gas until 2000 and thereafter at 2.2, 2.0 and 2.0 percent, respectively. The base case fuel cost inflation patterns are 2. 6, 2 9 and 2 .. 5 percent unti 1 2000 and 1. 2, 2 and 2 per·cent, respectively until 20l0e · Under the low limit (see Table 4.6)~ the Susitna project has a negative net benefit of $1,078 x 10 , conversely, under the high fuel escalation scenario, net benefits rise to $2,979 x 10 . Clearly, fuel escalation estimates are a very key assumption with regard to the project economic analysis • • (g) Operational and Maintenance Costs The O&M costs attributable to the units in service are an important part of the production cost model. However, in this case, these costs consistently are only 8 to-12 percent of the total production costs in any given yea('. Therefore, if the O&M estimates varied in a similar manner to capital costs(+ 20 percent}, only a 1 to 2 perc~nt difference i.n long-term costs would result. For this~·reason, the sensitivity of O&M estimates were not tested further. (h) System Reliability A generating system loss of load probability of one day in ten years has been used in system modeling. Variance of this factor would cause the system to add more or less capacity, thus potentially changing the strategy of alternatives.. However, since this is a selected criteria ratner than an assumption or projection, there is no real basts for variance. (i) Coal Base Price As shown in earlier parts-of this chapter, there is evidence that the base price (opportunity value) for coal could be as high as $2 •. 08/ MMBtu, as compared to $1.43/MMBtu. This starting price was tested in the without Susitna case with the results presented in Table 4.7~ Since the with Susitna case does not include development in the Beluga or Nenana fields, the comparative with Susitna run is the base case. (j) Other Hydro Projects As discussed earlier, the 330 MW Chackachamna project has not been included in the base non-Susitna plan. It has been included as a test case hot~ever, with installation of the project into the non-Susitna system. Net benefits of the Susitna project as compared to the with Chackachamna system are $837 x 106 as seen in Table 4.8. 4-10 - ~ "_:_. ""·-~~. --~-~.--""" :: .. ·-~-_. .. .....::.,..· ... --.~ .. --. ...... ; .. ·~--·~-_ .... ~-~-·~·..,.;.-~1,-.. ,;~.r-...... ,.,_,~ -· ~--~~-..,.--__,..,......,.~.,.,-------, ------c - ·- I I 'I I I I I I I I I I ~ I I I I I 1-II All plans, both Susitna and non-Susitna include the 90 MW Bradley Lake hydro project proposed on-line in 1988. However, the cost of the Bradley Lake project is not included in the long-term cost calculations since it is coOTilon to both plans. To test the sensitivity of the Susitna development to this assumption, Bradley Lake was replaced with two 70 MW gas turbines--one in 1988 and one in 1991. The generation plans are presented in Table 4._8. Two comparisons are made. The Susitna plan without Bradl.~y Lake {F2) compared to the non-Susitna base plan (A) has a net b:anefit of $949 million. Compared to the non-Susitna without Bradley Lake plan (F 1 ), it has $1,454 million in be-nefits. Both of these comparisons - do not assess the economic impact of constructing Bradley Lake,_ merely the differences in production costs during 1993 -2010 given with and without Bradley Lake energy. 4.7 -Multivariate Sensitivity Analysis As described in the previous sections the Susitna project was assessed using an economic analysis of generation system production costs. In order to carry out this analysis, numerous projections and forecasts of future conditions were made. These forecasts of uncertain conditions include ftiture electrical demand, costs~ and escalation. In order to address these uncertain conditions, a sensitivity analysis on key factors was done, as described in the previous section. This analysis focused on the variance of each of a number of forecasted conditions -and determined the impact of this variance on the economic feasibility of the project. Each factor-was var-ied singularly with all other variables held constant to clearly determine its importance. The purpos·e of this multivariate analysis was to iielect the most critical and sensitive variables of the economic analysis at1d test the econom'ic feasibility of the Susitna project in each possible combination of the selected variables. While a number of variables were identified and tested in the single variable sensitivity analysis for the Susitna economic feasibility study, the variables \\tlich were chosen for the multivariate sensitivity analysis represent these key variables. The methodology for the multivariate analysis was served by constructing a probability tree of future conditions for the Alaska Railbelt electrical system, witn and without the Susitna projector Each branching of the tree represents three values for a given variable which were assigned a high, medium and low value as well as a corresponding high, medium and low probability of occurrence. The three values represent the expected range and mid~point for a giv~m variable. In some cases, the mid-point represents the most 1i.ke1y value which would be expected to occur. End limbs of the probability tree represent scenarios of mixed variable conditions and a probability of occurrence of the scenario. 4-11 ·I I I I I I I I I I I .I I I I .... I I I A computer production cost model (OGP) was then used ·to determine the present worth of the long-term cost of the electric generation system for each scenario. Using the probabilities assigned to each variable, the preserrl: worth of the long-term costs for each with and· without Susitna scenario in terms of cumulative probabi 1 i ty of occurring were determined and plotted. Net benefits of the project have a1 so been ca1cu1 ated and analyzed-in a probabilistic manner. {a) ~ Variables and Probabilities Of the list of sensitivity check analyzed in the previous section~ several of the inputs are considered to be policy or methodology decisions and are not in_cluded in this anal_ysis. These include the interest and discount rate, the period of analysis and system reliability criteria. The single variable sensitivity analysis demonstrated that others such as the construction period, the coal base price and the operation and maintenance costs had little or no impact on the comparison 9f with and without Susitna system costs .. Although sensitivity results based on var+ving the real escalation of capital costs and operation and maintenance costs indicated a measurab 1 e influence~ of that vari ab 1 e on long-term costs, it was not included in the probabalistic analysis .. The range of capital cost escalation rates tested in the sensitivity analysis was from zero to 4 percent per year ( 1982 -2010). The mid-range was approximately 2 percent. ·It is believed that this range accurately covers the minimum and maximum percentage rate one might antici.pate for construction cost escalation in addition to the general inflatinn rate .. The four variables used in the Susitna multivariate sensitivity ana1ysis are discussed below. (i) Load Forecasts As in the single variable sensitivity analysis, load forecasts remain one of the most important variables. Selection of type and timing of alternative units is extremely dependent on the selected forecast. The variability is attributed to the varying forecasts of governJl1ent expenditure, activity in the public sector, and population and industrial growth. ln terms of the mu 1 t i variate sens i ti vi ty ana 1 ys is, the load forecast variation represents the fir·st level of uncertainty in the probability tree. The forecasts used were the same as. those used in the previous generation planning analyses~ generated by the Battelle Ra)lbelt Alternatives Study group in December 1981 with the use of their Railbelt Electric Demand 4 .. 12 ,, ~· ' • """''~~» . ..,,_·". _...._.·,,, ~· •-••·<••• .. ,,..,-_ ·-'·•·'-# ·~·•'> """'"""'"'•-.,,,., ...,.,..~, _ _, • .:.._ .... _.,. ___ ~:..., ..• ~•, N""-• u.' • ,t,~., ~.: •-•~., ... .._:., •,..,_,~_. •""'"'',..>»'~· •·">~"'"""'',!'•,'.~.,,,,. "'""'""''"'"·•"•"''""~"\...,.....'1'-<~~-'-"4'•-'l<i•>J:,,_...,,. • ~.:... ..... -.. .,....~~f'l_,,,_.,.,.... ~<;.-~"-""''" ,-(;).,,..,_,;."'"~~.'<"!'li,,...•~~<•."•f'~>o;.~y!~Jt,~,.,-.< '""' ~~." ·~,-·~--; ·I I I I I I "I I I I I I "' I I I I I I :: I (RED} model. The ·range of variabi 1 ity in the load is presented in Tables 3·.1, 3.2 and 3.3. Note that these forecasts differ slightly from the fina'l forecasts produced in January 1982 by Battelle. The probability of the low, medium or h·igh forecast occurring was estimated as a symnetrical pattern of 0.2;. 0.6, and 0.2, respectively. These estimates of probabi 1 ity were based upon the estimate by Battelle that the probability of exceedance of Ureir forecasts was approximately 90 percent for the low forecast and 10 percent for the high forecast~ The generation plans used in the probabilistic analysis are identified as follows; Low Load Forecast: Non-Susitna -first 200 MW capacity added in 1995 Sus i-tna -Watana 680 MW in 1995 Devi·l Canyon 600 MW ·in 2004 Medium Load Forecast ID A Non-Susitna -first 200 .MW capacity added in 1993 C Susitna -Watana 680 MW in 1993 -Devil Canyon 600 MW in 2002 HJ.gh Load Forecast 1982 -1992 perioJ: (common to both cases) . 200.MW combined cycle added in 1987 200 MW combined cycle in 1990 70 MW gas turbine in 1992 ID Non-Susitna -f1rst 200 MW capacity added in 1993 Susitna -Watana 680 MW in 1993 -Devil Canyon 600 MW in 1997 '· ( i i) A 1 tern at i ve2__Capi tal Cost A considerable amount of variability can be introduced· into the analysis due to the estimate of capital cost for alternative forms of generation for the Railbelt varying by plus or minus 20 percent from the medium value. These variations have been identified for the Susitna development as Nell as for coal, gas 4-13 I I I I I I I I I· I I I I -I I I I I I I AI "' -~" . ·-" . -~-. '-"' ,. ·~ .~-,. turbine.and na~ura1 gas combined cyc;l~ plants. This parameter was var1ed dur1ng the econom1c sens1t1v1ty analysis and was· observed to have an imp~ct. on long-term results. Therefore, the variation of estimated capita1 cost was carried forward to the multivariate an-alysis. Consistent wi":h the single variate economic anal y.si s, the base capital cost estimate plus 20 percent was used as the high value and base capital cost estimate minus 10 percent was used as the low value. These figures were selected based on a review of the Railbelt Alternatives Study Coal Cost Estimate report prepared by Battelle. The discussion contained in the report indicated that there was a greater likelihood of cost increase than decrease. The base (medium), .high and low capital costs for the coal, gas turbine and gas-fired combined cycle plants are shown 1n Table 4.9. These capital costs include allowance for funds during construction (fl,FDC) based on an S•sh.aped expenditure curve and the medium economic parameter used throughout the 'study. In addition, the first unit sited in the Beluga district and the single unit at Nenana district carr·y the appropriate costs of transmission system interconnection. The probability for the occurrence of the high, medium and low capital costs was estimated as a 0.20, 0.60, 0.20. This \~as selected as a balanced distribution. (iii) Fuel Cost and Escalation Considerable efforts have bet.~ concentrated on defining fuel prices and escalation rates of the various Railbelt fuels by ~ both Acres for the feasibi {V~.y study, and Battelle for their Railbelt Alternatives Study. This discussion of ranges of the three fuel types (coal, natural gas and oil) focus on tfite incremental rate of escalation to be appliP~ to the base t:uel :osts. The incremental value is that above general inflation as measured by the Consumers Price Index. The low, medium and high cases are all tied to the fuel e~;cal at ion rate occurring in the world market price for oil, presently 2 percent per year. -Coal As outlined in the feasibility report, coal reserves available to the Railbelt include Healy mined coal and a potential Beluga coal mining industry. Furthermore, Healy coal could be transported to N.enana for use as fuel for a potential 200 MW coal-plant located at Nenana. due to air 4-14 • ., .0 " ' • •• ~ •• , •••• > ~ -··-~-~~·-.... ,.;,._,.; ·"'-~·d·-"'"'~-~-· ·-·· I I I I· I I I I I I I I I I I I I I I quality restrictions at Healy. Three starting coal prices based on point of use were developed for input into the multivariate sensitivity analysis.. For each of these starting coal .Prices, three escalation rate scenarios were developed~ a low; a medium or most likely case and a high case. Probabilities of occurrence of 0~25, 0"50 and 0.25 respectively were assigned to the three escalated rates. These probabilities are discussed in detail in Section 18 of the Susitna Feasibility Study Report. Table 4.10 summarizes these prices with the appropriate escalation rate applied. -Natura1 Gas Cook I:oJet natural gas is presently sold to Anchorage utilit"es at existing contract rates. It is generally agreed that toe price is artificially low and will increase significantly as these contracts are renegotiated. Thus! a world market opportunity value was selected as the base 5tarting price for modeling purposes. Based on the Battelle ~~dium price forecast 9 a 1982 opportunity value of $3~00/MMBtu was selected. This value when coupled with Acres medium fuel escalation rates yields values equal to Battelle•s during the 1993-2010 study period. In the low case!) the price was assumed constant at $3.00/MMBtu through- out the study period {i.e., no escalation). The medium case escalation rate was 2.5 percent {1982-2000) and 2 percent (2001-2010). The high case escalation rate was set at 5 percent (1982~2000) and 2 percent (2001-2010). Table 4.10 surtlllarizes these patterns. ... Distillate Oil Table 4.10 summarizes the low, medium and high oil price increase patterns used in this analysis assuming a 1982 ll"o\te of $6 .. 50/MMBtu. This value was based on Battelle estiaates~ {iv) Susitna Capital Cost Variation of the Susitna project capital cost has been ~a1yzed in the feasibility study under Task 9 and 11. In general~ the concept in Task 9 has been tc produce an "upper limit 11 estimates of capital cost with a relatively high level of confidence that the ultimate project cost will be less than the "upp~r limit" estimated capital cost (discounting future inflation). The risk analysis completed as part of Task 11 has shown that this 11 upper 1 imit 11 estimated capital cost has a 17 percent chance of being equaled or exceeded given the low probability but high impact risks which could occur during construction (i.e., major seismic event or flood) .. 4-15 ,; ,, .If ·.._,.~,A_ ...... _..._. I I I I I I I I •• Single variable sensitivity analysis provided for a •;ariance from 83 percent to 117 percent of the project estimated cost. Thes_e parameters were also used in the multivariate analysis and are surrmarized in Table 4,.11. Assignment of probabilities for the three levels of estimate was based upon the feasibility study risk assessment. The approach to the 11 Upper 1 imit" value for the Sus i tna capi.ta l ·cost was simp 1 y an attempt to bound the base estimate with a high level of confidence that the overall project cost will be less than this estimate. Therefore, the assignment of probabilities of occurrence are somewhat different than for non-Susitna alternatives. Based on the Risk Analysis a probability of 0.60 was assigned to the low case and values of 0.25 and 0 .. 15 were assi __ gned to the medium and high value ranges. These values reflect the expectation that ultimate costs on the project will be less than the current estimate (in 1982 dollars). (b) Probability Tree "' Given the three selected 41 key" variables for the 1on-Susitna an.alysis (four for Susitna), a probability tre~ was plotted based on the high, medium and low value for each of the variables. The compounding effect for the non-Susitna tree is 3 variables by 3 r§nges (high, medium and low) which is mathematically equivalent to 3 or 27 possible combinations. This probability tree is shown in Figure 4.9. The numbering system selected for this analysis ranges from TOl to T27 where TOl refers to the thermal (non-Susitna) c.ase, high load forecast, high alte•·native capital cost and high fuel cost escalation. At the other end of the spectrum, 127 refers to the thermal case, low load forecast, low alternative capital cost and. low fuel cost escalation scenario. The Susitna pr-obability tree (see Figure 4.10} has a possible mathemati~al equivalent of 4 variables by 3 ranges (high, medium and low) or 3 = 81 branches. However, when reviewing the Susitna base plans developed in the economic feasibility analysis, the medil.lii plan calls for the addition of only three 70 MW gas turbines in the last 3 years of study. A check on the impact uf varying the cost of these units indicated an impact on long-term costs of less than 0.5 percent. Thus, it was assumed that in the medium "branches" there is no var·iability in thermal alternatives cost. In the low forecast. there is no need for thermal, alternative generation in the 1993 -2010 period where the with Susitna scenario ~s being considered. Accordingly, the alternatives capital cost variable is removed from that branch. As a result, both the medium and lo•:J torec~st portions of the probability tree are reduced by a 4-16 ~-- 1 I I :I I I I I- I I I I I I I I I ,··1 factor of 3. These adjustments reduce the number of ultimate scenarios from .-81 to 45 without affecting the accuracy of the multivariate analysis, A similar numbering system was adopted for the Susitna anelysis ranging from SOl to S45 where SOl to S27 refer to high load forecast scenarios, S28 to S36 refer to medium load forecast scenarios and S37 to 545 represent low load forecast scenarios. (c) Results (i) Probability Tree: Non-Susitna The parameters for the 27 scenarios. defined by the ·probahility t~·ee in Figure 4.9 were entered into the generation planni:ng model to determine the 1982 present worth (PW) of the 1993..,.2010 cost and the 2010 year annual cost .. The 1982 PW of the long-term costs (LTC) was then determined as descrfbed in Section 4.1. These results are presented in Table 4.12 and Figure 4.9. The LTC varied by nearly 350 percent from the lowest cost scenario, $4.41 billion to the highest cost scenario of $15~0 billion. The low cost relates to the case of 1 ow load forecast, low capital costs for thermG:i units and zero real escalation in fuel costs. Conversely!) the high .case includes the high forecast for each of these v ari ab 1 es. The 1 arg,e spread from low to high LTC seems most dependent on the fuel cost escalation rate used. The wide range in fuel costs during the study period and the large quantities of fuel used in the non-Susitna cases led to the wide. spread in LTG. Also shown on Tabie 4.12 is the calculation of cumulative lTC. This val4e is the sumnation of the probabilistic increments of LTC for each scenario. The increment c.f LTC is the. prodoct of a scenario's LTC and its probability. The cumulative LTC represents an expected va 1 ue based on the costs and probabilities as presented. For the non-Susitna case, the expected value LTC is $8.48 billion. Visual representation of the data from Table 4.12 is shown on Figure 4.11. This graph is. a histogram of long-term cost versus cumulative probability. Since. each of the data paints represents a percentage of time as compared to a point in time, it is more accurately represented as a histogram rather than a single line. 4-17 - . ' :) -,. -1 I I I I I I I I I I -• I I I ·I I I I. '· (ii) Probability Tree: Susitna The 45 scenarios in the with Susitna case shown in Figure 4.10 were also run by using the simu1ation model to obtain the system production Gost·s. The results are shown in Table 4.13 and Figure 4.10 .. The overall variability of 1ong term costs in the Susitna case is much less than the non-Susitna case. The range from lowest to highest is $5.54 billion to $11.59 b i 11 ion, a range ()f about 200 percent as compared to 35.0 percent for the non-Susitna alternatives~ The expected value of long term· costs calculated by the method described in Section 4.1 is $7.03 billion.· A histogram of long-term costs versus cumulative probability is presented in Figure 4.12. (iii) Comparison of Present Worth of Long-term Costs ' Figure 4.13 presents the two histograms of long-tenn costs for the with and without Susitna cases plotted on ·the same :axis. From these plots it is seen that the non-Susitna plan costs could be expected to be significantly less than the Susitna plan costs about 6 percent of the time, approximately equal to the Susitna costs 16 percent of the time, and significantly greater 78 percent of the time. · A comparison of the expected value of long-term costs of the with and )'/ithout cases yields an ·expected value net benefit of $1.45 billion. This value represents the difference between the non-Susitna LTC of $8.48 billion and the Susita LTC of $7 .. 03 billion. (iv) Net Benefits A second method of comoari ng the with and without Susi tna probability trees is by making a direct comparison of siE~i'lar scenarios and calculating the net benefit of each comparison. This method was also u~sed in the single variable sensitivity· analysis, and ts discussed in more detail in Section 4 .. 1~ Table 4.14 lists the 81 comparisons of similar scenarios between the 27 non-Susitna case and 45 Susitna case scenar·ios. As was done for the individual tree cases, the net benefits were ranked from low to high and plotted against cumulative ·probability. This graph (Figure 4.14) has been represented as a single line due to the number of points on the curve. It however, like Figures 4:.11 and 4.12, would be most accurately portrayed as a histogram. The net benefits vary from a negative of $2.92 billion with an associated probability of 0.0015 to a high of $4.80 billion with an associated probability of 0,.018. The single comparison with the hi:ghest probabi 1 ity of occurrence of .108 has a net benefit of $2-.09 billion. " 4-18. The plot of net benefits has its cQ.~t cross-over between the with and without Susitna c.ases at anout 23 percent, consistent with the previous comparison, It also is consistent that the expected value net benefit calculated by this method is $1.45 billion. Sensitivity of Probabilities on Results In assigning the probabilities of occurrence for each S'3t of variables, a number of subjective assumptions were mades with the exception ..of the Susitna capital cost probabilities which were supported by a probabi 1 i stic risk assessment of construction cost. The probabilities for load forecast of 0.2, 0.6 and 0.2 for the low, medium, and high cases, respectively, reflect the analysis by Battelle and the probability of exceedance of approximately 90 percent for the high. Alternative capital costs, as estimated by Ebasco for Battelle reflect a 0 .. 20, 0.60 and 0 .. 20 distribution, again within the 90 perc~nt low exceedance and 10 percent probability of e.x~eedance for the high case. The single most sensitive variable in the study is the rate of real fuel escalation adopted .. This conclusion is supported in the single variable analysis as well. The distribution of probabilities was 0.25, 0.50 and 0.25 for low {zero percent) medium and high fuel cost escalation scenarios. There may be some merit to an analysis varying the probabilities of these fuel es.calation rates implying that high fuel costs may produce greater revenues for the State, thus increasing economic activity and electric demand. Con\;ersely, high fuel costs to consumers and industry may also tend to drive down demand, whi 1 e low fue.l costs may spur more demand for energy. Rather than specu1ate on the probabilities of fuel price compounded with demand, consider Figure 4.15 which plots cumulative probability versus normalized long-term costs for high, medium, and low fuel escalation scenarios for the with and withot..1: Susitna trees. Figure 4.15 illustrates the Susitna and non-Susitna fuel cost escalation impacts assuming a 0.25$ 0.50, and 0.25 ·distribution .. The left most points represent generally the low 1oad forecast impacts while the right side reflects high load forecast r·esults. The high fuel cost curves show that over the entire range of load forecast the Susitna plan remains significantly better than the non-Susitna plan. Under low fuel cost escalation parameters the Susitna plan is more expensive .. However, over ~. wide range of load forecast low fue 1 cost escalation has relatively no impact •. 4.-19 ··I I I I 'I I I :1 I I I I ·I I I I I .·1 :J - ~· .... ;:t;.~t ·~~~ , ..... ,.. • ,.; ... -· -,·· .... ,_ ,. ·,·, VariabilitY of the Susitna capital cost probabilities has also· been rev1ewed by two methods. Plotted on Figure 4.16 is the normali~ed probability curves for variance in Susitna capital cost. The ~ssumed distribution as defined by risk analysis V.'Ork was 0.60, 0.25, 0.15 for low, medium, and high capital costs. Comparing the high and low curves to:the non-Susitna curve illustrates that the Susitna capital cost is· more. sensitive in the lower load forecast than in the higher electricity demand scenario. In order to further test this assumption the Susitna long-term cost and entire net benefit analysis was recomputed using the .20, .50, .20 probability distribution for Susitna capital costs. Table 4.15 summarizes this calculation. Using this probability distribution, the expected value of long-term costs is $7,433 million; approximately 5 to 6 percent higher than the assumed distribution. Net benefits decrea$e in expected value from $1,176 million to $1305 million, a decrease of about 30 percent. It can be concluded from this check that while the amount of benefits is sensitive to the probabilities assign~d, the economic feasibility results remain the same ... (vi) Conclusions -Given the potential alte~natjve futures generated by the four variables analyzed, the Susitna alternative will be the least cost plan 80 percent of the time. -The expected value of long-term costs in the Susitna case is $7,03 billion as compared to $8.48 billion in the non-Susitna case. -The expected value of net benefits to the Susitna project are $1.45 billion, compared to $1.18 billion in the base case economic analysis. -The most sensitive variable in the study is the rate of real fuel escalation adopted. 4-20 -'--·-- - - - - - - - - - - - - --· Plan IO Non-Susitna A Susitna - c TABLE 4.1: GENERATION PLANNING BASE PLANS Components 600 MW coal-Beluga 200 MW coal-Nenana 630 MW GT 680 MW Watama 600 MW Oev ·i 1 Canyon 210 MW GT 1982 Prese$txW~~~h of System Costs 1 Cum. Costs 2010-Estimated Long-Term Cost Net 1993-2010 Annual 2011-2051 1993-2051 Benefit 3,213 491 5,025 8,238 3,119 385 ·3,943 7,062 1,176 1./ 2010 annua.l cost is projected 41 years at 3% and present worthed 28 years to 1982 at 3% to arrive at the 2011-2051 estimated present worth. -- -·\-- - - - - - - - - - - --~ - - Plan ID TABLE, 4.2: SENSITIVITY ANALYSIS-LOAD FORECAST Components Cum. Costs 1993-2010 1982 Present Wor~h of System Costs $ X 10 2010 Annual Estimated Long-Term Cost-Net 2011-2051 1993-2053 Benefit 1/ Long tenn present worth is computed for the period 1993 to 2053 for the low forecast since the full -Susitna project is delayed until 2004. y Long Term present worth is computed for the period 1993-2046 for the high forecast since the full Susi-tna project is ~dvanced to 1997 o · --------.. ---------;-- TABLE 4.3: SENSITIVITY ANALYSIS -ECONOMIC INTEREST/DISCOUNT RATE Plan ID Non-Susitna Q1 Susitna Q2 Non-Susitna A Susitna c Non-Susitna sl Susitna s2 Non-Susitna pl Susitna P2 Interest/ Discount Rate 2% 2% 3% 3% ,. 4% 4% 5% 5% !/ 2010 annual cost is projected 41 years 1982 Present Worth of System Costs . $ X 106 1 Cum. Costs Annual-Estimated Long-Term Cost Net 1993-2010 2010 2011-2051 1993-2051 Benefit 3,701 465 7'1766 11,167 3,156 323 5,394 8,550 2,617 3,213 491 5,025 8~238 _3, 119 385 3,943 7,-062 1,176 2'1891 517 3,444 6'1235 3'1080 457 3,046 6,126 109 2'1468 550 2,478 4,946 3'1032 539 2,426 5,459 (513} at the appropriate interest/discount rate and then present worthed to 1982 to arrive at the 2011-2051 estimated present worth. . 'I ' • ·C 1 ., ,. .. ~-•~~r---·~~~~ -----------------~-- Plan Alternative Capital Costs +20% Non-Susitna Susitna Alternative Capital Costs -10% Non-Susitna Susitna Susitna Capital Cost Less Contingency Non-Susitna Susitna Susitna Capital Cost Plus Double Contingency Non-Susitna Susitna ID TABLE 4.4: SENSITIVITY ANALYSIS -CAPITAL COSTS Cum. Costs 1993-2010 3,460 3,119 ° 3,084 3,119 3,213 2,710 3,213 .. 3,529 1982 Present Wor~h of System Costs $ X 10 Annua~ 2010 528 385 472 385 491 336 491 434 Estimated Long-Term Cost Net 2011-2051 1993-2051 Benefit 5,398 3,943 4,831 3,943 5,025 3,441 5,025 4,445 8,858 7,062 7,915 7,062 8,238 6,151 8,238 7,974 1,976 853- 2,087 264 * An adjustment calculation was made regarding the !: caoital costs of the 3 GT units added in 2007-2010 -since the di.fference was less than $10 x lObG In the long term cost, the effect was not included. " --------------·---:-- Plan IO Non-Susitna A Susitna c Susitna TABLE 4.5: SENSITIVITY ANALYSIS -DELAY OF PROJECT Components 600 MW Coal ... Beluga 200 t4W Co a 1 -Nenana 630 MW GT 680 MW Watana (1993} 600 MW Devil Canyon (2002) 210 MW GT 680 MW Watana (1995} 600 MW Devil Canyon (2004) 210 MW GT Cum. Costs 1993-2010 3,213 3,119 3,099 1982 Present Worth 6of System Costs $X 10 Annual Estimated Long-Term Cost 2010 20ll-20xxY 1993-20xx " 5,025 8,238 (A) 491 5,087 8,299 ~B~ 5,147 8,360 c 385 3,943 7,062 394 4,131 7,230 ,, ' ..........___.. N.e;it Be~fit --.... ..... ''"~~ 1, ll!S (A)2l 1,130 (C) 1./ Delay of the Susitna project extends analysis period from 2051 (A) to 2052 (.8} and ~053 (C), respectively. 2/ Non-Susitna long-term cost comparison. --.... --------------:-- TABLE 4.6: SENSITIVITY ANALYSIS -REAL ESCALATION Plan Zero Escalation Capital Non -Sus i tn a Susitna -? ~" 1.4% Escalation Capital Non-:Susitna Susitna ID Cost 01 02 Cost x1 x2 and O&M Cum. Costs 1993-2010 2,838 2,525 3,142 2,988 Ooub1e Escalation Capital Cost and O&M Non-Susitna R1 3,650 Susitna R2· 3,881 Zero Esca·1ation Fuel Costs Non-Susitna vl 2,233 Susitna Vf 3,002 High Escalation Fuel Costs Non-Susitna wl 4,063 Susitna w2 3,267 1982 Present Worth of System Costs $ X 106 Annual 2010 422 299 477 366 602 503 335 365 643 403 Estimated Long ... Term Cost Net 2011-2051 1993-2051 Benefit 4,319 7,157 3,060 5,585 1,572 4,881 8,023 3,745 6,733 1,290 6,161 9,811 5,148 9,029 782 3,427 5 .. ,560 3,736 6,738 {1,078) 6,574 10,367 4,121 7,388 2,979 - - - - - - - - - - - - - - ---- - ---, e TABLE 4.7: -SE~SITIVfTY ANALYSIS -COAL PRICEs!/ Plan ID Non-Susitna Tl Non-Susitna T2 Non-Susitna TJ Susitna c Components 200 MW Coal 200 MW Coal 630 MW GT 800 MW CC 700 MW GT -Beluga -Nenana 600 MW Coal -Beluga 200 MW Co a 1 -Nenana 630 MW ,GT 680 MW Watana" 600 MW Devil Canyon 210 MW GT 1/ Coal price@ $2.08/MMBtu (1982). 2/ Non-Susitna plan comparison. 1982 Present Worth 6of·System Costs $ X 10 Cum. Costs Annual Est·imated Long-Term Cost 1993-2010 2010 2011-2051 1993-2051 3,375 522 5,346 8,721 3,062 512 5,336 8,298 3,514 589 5,516 9,030 3,119 385 3,943 7,062 Net B f'"~ ene:1'!~ - 11 659 {Tl)f/ 1,236 (T2) 1,968 (T3) - ----·----·-- --- ---- TABLE 4 •. 8: SENSITIVITY ANALYSIS -OTHER HYDRO PROJECTS . Plan Non-Susitna with Chakachamna Susitna Non-Susitna with Bradley Lake - Non-Susitna without Bradley Lake Susitna without Bradley Lake 10 B Components 330 MW Chakachamna 400 MW Coal-Beluga 200 MW Coal-Nenana 400 MW GT C · 680 MW Watana ~ 600 MW Devil Canyon 180 MW GT A 90 MW Bradley Lake 600 MW Coal-Beluga 200 MW Coal-Nenana 630 MW GT Fl 800 MW Coal-Beluga 200 MW Coal .. ·Nenana 560 MW GT 140 MW GT (88, 91) F2 680 MW Watana 600 MW Devil Canyon 70 MW GT 140 MW GT (~8, 91} 1982 Present Worth of System Costs $ X 10 6 Cum. Costs 2010 Estimated Long-Term Cost Net 1993-2010 Annual 2011-2051 1993~2051 Benefit 3,038 475 4,861 7,899 3,119 385 3,943 7,062 837 1/ (88) 3,213 491 5,025 8,238- 1/ 3,.368 525 5,375 8,743- 1/ 3,234 396 4,055 7,289-1,454 (Fl) 949 {A) 1/ Note that these long-term costs cia not include the capital cost of Bradley Lake. - 'I I I I I I I I 'I I I I I I I I I I I I Type/Size MW Coal/200 MW @ Beluga Coal/200 MW @ Nenana Gas Turbine/ 70 MW Combined Cycle/ 200 MW Probability of Occurreqce . TABLE 4.9: MULTIVARIATE SENSITIVITY ANALYSIS ALTERNATIVE CAPITAL COSTs!/ Low $/k.;.; 2~018 2,073 572 996 0.20 Medium $/kW?:/ 2,242 2,303 636 1,107 0.60 High $/kW y 2~690 2.764 763 1,328 0.20 1/ reveloped by Ebasco for the Railbelt Alternatives Study being completed by Battelle 2/ Inc·{ udes AFOC. I i I ·TABLE 4.10: MULTIVARIATE SENSITIVITY. ANALYSIS I FUEL COSTS AND ESCALATION tJ Probabi l_ity 0.25 0.50 0.25 I of Occurrence HEALY COAL @ HEALY I Year Low Medium ~is~ 1993 $!.46 11.94 $ 1995 1.46 2.04 2.75 2000 1.46 2.32 3.51 ·I 2005 1.46 2.46 3.91 2010 1.46 2.61 4.36 I HEALY COAL @ NENANA i: Year Low Medium High I 1993 11.""75 $2.25 $2.84 1995 1.75 2.35 3.10 2000 1.75 2.64 3.87 2005 1.75 2.79 4.25 I 2010 1.75 2.95 4.67 BELUGA COAL I Year Low Medium High 1993 Uo43 $1 .. 90 $2.45' 1995 1.43 2.00 2.69 I 2000 1.43 2.27 3.43 2005 1.43 2.41 3.82 2010 1.43 2.56 4.26 I NATURAL GAS. Year Low Medium Hi h I 1993 ~00 $3.03 $~ 1995 3.00 3.27 5.65 2000 3.00 4.80 7.22 I 2005 3.00 5.30 7.97 2010 3.00 5.85 8.80 I OIL Year Low Medium ~ I993. ~50 l8~08 $1 ·I 1995 6.50 8.41 10.83 2000 6.50 9.28 13.17 2005 ~ 6.50 10.25 19.54 I 2010 6.50 11.32 16.05 I 1/ Base prices and escalation gatterns derived from Battelle and -Acres meetings and researc • · · I '~~ ... ~ r; I I I I ·I I I I I I I I I ·I I I I I ·.I iABLE 4.11: MULTIVARIATE SENSITIVITY ANALYSIS SUSlTNA CAP I TAL COSTS ]j ~ Millions January 1982 $ Low Medium Watana Capital Cost $3,039 $3,647 AFDC 373 447 Devil Canyon 2/ Capital Cost $1,225 $1,470 AFDC 134 161 Total Cost $4,771 $5,725 Probability of Occurrence 0.60 0.25 High . $4,255 521 $1,714 188 $6,679 0 .. 15 l/ Based on the Susitna Project estimate of $5,117 million without AFDC. 21 This differs from the final feasibility study report by $10 million. Note: Low capital cost is computed as medium divided by 1 •. 20 and is equal to a zero percent contingency. High capital cost is computed as the low times 1.4 and represents a double (40 percent) contingency. ~ I I I I I I I I I I I I I I I I I I I TABLE 4.12: MULTIVARIATE SENSITIVITY ANALYSIS LONG-TERM COSTS AND PROBABILITY NON-SUSITNA TREE (1982$~ $ X 10 Rank (Low 1/ Long-term -High} IO-Cost 1 T27 4412 2 T24 4590 3 T21 4856 4 T18 5489 5 Tl5 5661 6 T12 5991 7 T26 6101 8 T23 6878 9 T09 7184 10 T06 7313 11 T20 7460 12 T03 7624 13 T17 7915 14 T14 8238 15 T25 8492 16. T22 8746" 17 T11 8858 18 Tl9 9253 19 T16 10321 20 T08 10503 21 T13 10637 22 T05 10859 23 TlO 11272 24 T02 11569 25 T07 13742 26 T04 14194 27 T01 15058 1/ Relates to Figure 4.1 ~/ LTC -long-term costs Cumula- tive Proba-Proba- bility bility .01 .01 .03 .04 .01 .05 .03 .08 .09 .17 .03 .20 .02 .22 .06 .28 .01 .29 .03 .32 .02 .34 .01 .35 .06 .41 .18 .59 .01 .60 .03 .63 .06 c69 .01 .70 .03 • 73 .02 .75 .09 .84 .06 .90 .03 • 93 .02 ~95 .01 .96 .03 .99 .01 1.00 1.00 2/ Incre-- mental LTC 44.12 137.70 48.56 164.67 509.49 179.73 122.02 412.68 71.84 219.39 149.20 76.24 474.90 1482.84 84.92 262.38 531.48 92.53 309.63 210.06 957.33 651.54 338.16 231.38 137.42 425 .. 82 150.58 Cumula- tive LTC 44 189 ~30 395 905 1084 1206 1619 1691 1910. 2059 2136 2611 4093 4178 4441 4972 5065 5374 5584 6541 7193 7531 7763 7900 8326 8476 I I ·TABLE 4.13: MULTIVARIATE SENSITIVITY ANALYSIS! LONG-TERM COSTS AND PROBABILITY SUSITNA TREE I !1982$~ Cumula ... 2/ X 10 t1ve lncre--Cumula- I Rank (Low 1/ Long-term Proba-Proba-mental tive -High) ID-Cost bilit,x bility LTC LTC 1 S45 5543 .03 .0300 166.29 166 I 2 S42 5757 . 06 .0900 345.42 . 512 3 S36 5827 .09 .1800 524.43 1036 4 539 6097 .03 .2100 182.91 1219 5 S33 6151 .18 .3900 1107.18 2327 I 6 544 6437 .0125 .4025 80.46 2407 7 530 6477 .09 .4925 582.93 2990 8 541 6650 .025 .5175 166.25 3156 .I 9 535 6738 .0375 .5555 252.67 3408 10 S38 69~1 .0125 .5675 87.38 3496 11 532 7062 .075 .6425 529 .. 65 4026 I 12 S27 7087 .006 .6485 42.52 4068 13 518 7108 .018 .6665 127.94 4196 14 S09 7151 .006 .6725 42.91 4239 15 S43 7331 .0075 .6800 54.98 4294 I 16 S29 7388 .. 0375 .,7175 . 277.05 4571 17 S40 7543 .015 .7325 113.15 4684 18 S34 7650 .0225 .7550 172.12 4856 I 19 S37 7884 .0075 .7625 59.13 4915 20 S31 7974 .045 .8075 358.83 5274 21 S26 7986 .0025 .8100 19.96 5294 22 S17 8008 .0075 .8175 60.06 5354 I 23 SOB 8050 .0025 .8200 20.12 5374 24 S24 8326 .012 .8320 99.91 5474 25 515 8347 .. 036 .8680 300.49 5775 I 26 S28 8371 .0225 .. 8905 188.35 5963 27 S06 8390 .012 .9025 100.68 -6064 28 525 8886 .0015 .9040 13.33 6077 I 29 S16 8908 .0045 .9085 40.09 6117 30 S07 8951 :oo15 .9100 13.43 6131 31 S23 9225 .005 .9150 46.12 6177 32 ? 514 9247 .015 .9300 138.70 6315 I 33 sos 9290 .005 .9350 46.45 6362 34 S21 9614 .006 .9410 . 57 .. 68 6420 35 512 9758 .018 .9590 175.64 6595 I 36 S03 9784 .006 .9650 58.70 6654 37 S22 10126 .. 003 .9680 30.38 6684 -38 Sl3 10147 .009 .9770 91.32 6776 I 39 504 10190 .003 .9800 30.57 6806 40 S20 10514 .0025 .9825 26 .. 29 6833 > 41 Sl1 . 10658 .0075 .9900 . 79.94 6912 42 S02 10683 .0025 .9925 26.70 6939 I 43 Sl9 11414 .0015 .9940 17.12 6956 44 510 11558 .0045 .9985 52.01 7008 45 SOl 11584 .0015 1 .. 0000 17.38 7026 I r.ooo # 1/ Relates to Figure 4.2 2/ Long-Term Costs I -"· "l. .. -·"'·<''.: -~· .. <,,_-. - I ~· TABLE 4.14: MULTIVARIATE SENSITIVITY ANALYSIS CALCULATION.OF NET BENEFITS I I Net Comparison T-ID S-10 p T-LTC S-LTC Benefit 1 TOl SOl .0015 15058 11584 3474 I 2 T01 S02 .0025 15058 10683 4375 3 TOl 503 .006 15058 9784 5274 11569 I 4 T02 S04 .003 10190 1379 I .s T02 S05 .005 . 11569 9290 2279 6 T02 .. 506 .. 012 11569 8390 3179 7 T03 S07 .0015 7624 8951 (1327) 8 T03 SOB .0025 7624 8051 (427) I 9 T03 . S09 .006 7624 . 7151 473 10 T04 510 .0045 14194 11558 2636 11 T04 511 .0075 14194 10658. 3536 I 12 T04 512 .018 14194 9758 4436 13 T05 Sl3 .009 10859 10147 712 14 T05 Sl4 . 015 10859 9247 1612 I 15 T05 Sl5 .036 10859 8347 2512 16 T06 516 .0045 7313 8908 (1595~ 17 T06 517 .. 0075 7313 8008 (695 18 T06 518 .018 7313 7108 205 I 19 T07 S19 .0015 13742 11414 2328 20 T07 520 .0025 13742 10514 3228 21 T07 S21 .006 13742 9614 4128 I 22 TOB S22 .003 10503 10126 311 23 T08 S23 .005 105C3 9225 1278 24 T08 S24 .012 10503 8326 2117 25 T09 S25 .0015 7184 8886 (1702) I 26 T09 526 ~·0025 7184 7986 (802) n 27 T09 S27 (1 .006 7184 7087 97 28 TlO S28 .0045 11272 8371 2901 I 29 T13 528 .0135 10637 8371 2266 30 T16 S28 .0045 10321 8371 1950 31 T10 529 .0075 11272 7388 3884 I 32 T13 S29 .0225 10637 7388 3249 33 T16 S29 .0075 10321 7388 2933 34 T10 S30 .018 11272 6477 4795 35 T13 S30 .054 10637 6477 4160 I 36 T16 S30 .018 10321 6477 3844 37 T11 531 .. 009 8858 7974 884 38 T14 · S31 .027 8238 7974 264 I 39 T17 531 . .009 7915 7974 (59) 40 T11 S32 .015 8858 7062 1796 41 Tl4 S32 G045 8238 7062 1176 I 42 T17 S32 .015 7915 7062 853 I I. "" ...... -, I I TABLE 4.14: MULTIVARIATE SENSITIVITY ANALYSIS I CALCULATION 0£ NET BENEfiTS, (CON.tJ!l c I Net Comparison T-ID S-ID p T-LTC S-LTC Benefit 43 T11 533 .. 036 8858 6151 2707 I 44 T14 S33 .108 8238 6151 2087 45 T17 533 .036 7915 6151 1764 46 Tl2 534 .0045 5991 7650 (1659) I 47 Tl5 534 .0135 5661 7650 (1989) 48 Tl8 534 .0045; 5489 7650 (216ll 49 T12 S35 .0075 . 5991 6738 {747 50 Tl5 535. .0225 5661 6738 (1077) I 51 Tl8 S35 .0075 5489 6738 (1249) 52 T12 S36 .018 5991 5827 164 53 Tl5 S36 .054 5661 5827 (166) I 54 Tl8 S36 .018 5489 5827 (338) 55 T19 S37 .0015 9253 7884 1369 . 56 T22 $37 • 0045 8746 7884 862 I 57 T25 S37 .0015 8492 7884 608 58 T19 S38 .0025 9253 6991 2262 59 T22 S38 .0075 8746 6991 1755 60 T25 S38 .0025 8492 6991 1501 I 61 Tl9 S39 .006 9253 6097 3156 62 T22 539 .018 8746 6097 2649 63 T25 ·S39 .006 8492 6097 2395 I 64 T20 S40-.003 7460 7543 (83~ 65 T23 540 .009 6878 7543 (665 66 T26 S40 .003 6101 7543 (1442) 67 T20 S4l .005 7460 6650 810 I 68 T23 S41 .015 6878 6650 228 69 T26 S41 ~ .. 005 6101 6650 (549) 70 T20 S42 .012 7460 5757 1703 I 71 T23 542 .036 6878 5757 1121 72 T26 542 .012 6101 5757 344 73 T21 S43 .0015 4856 7331 (2415) I 74 T24 543 .0045 4590 7331 (2741} 75 T27 543 .0015 4412 7331 (2919) 76 T21 S44 .0025 4856 6437 (15Bll 77 T24 S44 .0075 4590 6437 (1847 .-. 78 T27 S44 .0025 4412 6437 (2025l 79 T21 S45 .006 4856 5543 (687 80 T24 S45 .018 4590 5543 (953) I 81 T27 S45 .006 4412 5543 (1131) I I I ~.-~ " -·· •.t· ,-"" :.~ ' .•. . . ·-. -~'"-' .... , ~-,.. ' .... ' ,. '"" ~ ·---~ • "k -~~-'· I I TABLE 4 .. 15: MULTIVARIATE SENSITIVITY ANALYSIS "l;'':.ot.--. I SUSITNA CAPITAL COST SENST!ViTY ANALYSIS ~1982$~ Cumula-2/ X 10 tive Incre--Cumula-I Rank {Low 1/ Long-term Proba-Proba-mental tive ; High) ID Cost bilitl bil it~ LTC LTC I 1 545 5543 .010 ~010 55.43 55 2 542 5757 ~020 .030 115.14 170 3 S36 5827 .030 .060 174.81 345 4 S39 6097 .010 .070 60.97 406 I 5 S33 6151 .060 .130 369.06 775 6 S44 6437 .030 .160 193.11 968 ·1 7 530 6477 .030 .. 190 194.31 1162 .. I 8 541 6650 .060 .250 399.00 1561 9 S35 6738 .090 .340 606.4.2 2168 10 S38 6991 .030 .370 209.73 2377 I 11 532 7062 .180 .550 1271.16 3649 12 S27 7087 .002 .552 14.17 3663 13 .S18 7108 .006 .558 42.65 3705 14 S09 7151 .002 .. 560 14.30 3720 I 15 543 7331-. .010 .570 73.31 3793 16 S29 7388 .090 .660 664.92 4458 17 S40 7543 .. 020 .680 150.86 4609 I 18 S34 7650 .030 .710 229.50 48~8 19 S37 7884 .010 .720 78.84 4917 ,; 20 S31 7974 .060 .. 780 478.44 5396 21 S26 7986 .006 .786 47.92 5444 I 22 S17 8008 .018 .804 144.14 5588 23 SOB 8050 e006 .810 48.3 5636 24 S24 8326 .004 .814 33.30 5669 I 25 Sl5 8347 .012 .. 826 100.16 5769 26 528 8371 .030 .856 251.13 6021 27 506 8390 ~004 .860 33e56 6054 I• 28 S25 8886 .002 .862 17.77 6072 29 Sl6 8908 .006 ~868 53.45 6125 30 507 8951 ·----002 .870 17.90 6143 ... • 31 S23 9225' .012 ' .882 110.70 6254 I 32 S14 9247 .036 .918 332.89 6587 33 S05 9290 .012 .930 111.48 6698 34 521 9614 .002 .932 19 .. 23 6718 I 35 S12 9758 .006 .938 58o55 6776 36 503 9784 .002 .940 19.57 6796 37 S22 10126 .004 .944 40.50 ·6836 I 38 513 10147 "012 .956 121.76 6958 39 S04 10190 .. 004 .960 40.76 6999 40 · S20 10514 .006 .966 63.08 7062 41 S11 10658 .018 .984 191.84 7254 I 42 S02 10683 .006 .990 64.10 7318 43 519 11414 .002 .992 22.83 7341 44 510 11558 .006 .. 998 69.35 7410 I 45 SOl 11584 .002 .1.0000 23.17 7433 1/ Re 1 ates to Figure 4. 2 _ ~I Long-Term Costs -I -~ ·~ ····--· ~~. --------.. -r-· YEAR ·NON SUSITNA 2010 . 2046 I I I i ~~~~~----~------~~----------------------------~--~~ SUSITNA HIGH LOAD FORECAST SUStTNA MEDIUM LOAD FORECAST 50 YEARS OF SUSITNA I I I I I I I l I t I i ~,..,..,...,..,...,~.,-J.-------+--___:.-------------_...---;1 I I 50 YEARS ~~----~~--------~----O~F~S~U~S~IT~N~A--~~--------------~ ~~~~UL------------~------------------------------~ 50 YEARS OF SUSITNA I I I I I \... --~~-----y~------A~----------~------~y-------~----------~ y I .I COMMON TO MODELLED BY EXTENDED BY ECONOMIC ALL PLANS OGP ANALYSIS METHOD LONG TERM PW --CUMULATIVE CUMULATIVE 1982 PW - :iN 1882 t 1982 PW + YEARS 1993·2010 YEARS 2011 TO 2046 -el-53 CH,M,Ll FMilM 4.1 fill -LONG-TERM COST CONCEPT I I I I I I I I I I I I I I I I I I I PRESENT WORTH OF .LONG-TERM COSTSI982I NET BENEFITS 1993-2010 PRODUCTION COSTS COMMON 1982-1992 NON-SUSITNA SUSITNA PLAN PLAN NET BENEFITS(+) xx-THE YEAR VARIES DUE TO DIFFERENT STAGE OF SUSITNA PROJECT WITH RESPECT TO LOAD FORECAST. FIGURE. 4. 2 IIIII I I I I I I I I I .I I I I I I I I I I OTHERS:· (01 L/ HYDRO) . 5004------------------------------------------I -(/) z 0 -_, ..J - 1- U) 0 0 ..J <( :) 400..,.._ __ Z200~---­ Z 4Ct 100 1993 CC 0 8 M NG 0 8M 2000 YEAR 200S CC NG FUEL COST I cc o aM I NGGT FU,L COSTS ·~~,....._ G; 0 e. T NATURA\.. G.AS GTI INVEST" ENI 1---COSTS '///..,..._COAL . 20t0 INVESTMENT COSTS NON-.SUSITNA PLAN MEDIUM LOAD FORECAST .. EHUUII ·4.al11l. 500~~~-----------------------------------~~----------~ - 325.0 ~~0;---------~--------~~~-;~~~~~~~-----~ ~~~~ ~ 0 _J -t :::> z z <t 200 -f--~:w:.:;:;~ 1993 2000 2002 2005 2010 Y·EAR SUSITNA PLAN MEDIUM LQtO.D FORECAST I I I I I I I I I I I I I I I I I 'I I ----~-~--~~=-c-----.,..... --------------------------------------~------------~----~ .. ~~>-------- -...J _. - 450 400 :E 300 .... ~ 0 >~ • .J 250 D: <[ 11.1 )- 200 a eo 1990 MEDIUM LOAD FORECAST NON SUSITNA PLAN 1995 2000 YEAR 200S 2010 ~v.EARLY ANNUAL COSTS -•··•••• •.• [ii] ,, I I I I I I I I I I I 1,~ I I I -I I :1 z -C!) a: c :. IAJ -> ~·. 0) Ill ac ~ 90 80 70 60 eo 40 30 20 MEOtUM LOAD FORECAST SUSITNA PLAN ,- 10~--~--~~--------~~~ .. ~~~ 1990 1995 ' 2005 2010 YEAR PERCENT RESERVE YSo TI~.~.J.AHIE ... Jiil -0 I I I I I I I I I I I I I I I I I I ., I 9~~------~·----------~ 70001--------~-------NoN-SUSITNA PLAN ==~= .... ~-t----:~ ,""' , ~ ~, liJ 1- 0 ,_;. 0~~~------+-------~~~--~~-----+------~~----~ -~ 0 ~ Q.. 11.1 3000 > -~ . ...J :;) ECONOMIC EXTENSION . ' '2: 2000 1-------------+--~---+-------+-------4------+--------1 :E :::) ·;u 1000~----~+---------~------~-------4------~~----·~ 0 - 1990 2000 2010 20!0 2040 YEAR MEDIUM LOAD· FORECAST----L-ONG TERM COSTS )" ------·-.~~·---·~:•-w--•- , •••• 4.7. I I I • I I I ------------------- .. 3000~------~----~~------~------~~------~--~--- \ -8 0 2000 ~ - (f) 1- I u. w z w 1000 £I) t-BREAK EVE UJ POINT z I t 0 2°/o 3°/o 5°/o I ~AL INTE:RE:ST RATE ........ ._ -1000 -2000~------~------~------~--------~------~------~ INTEREST RATE SENSITIVITY U~E. 4.8 ------------------- LOAD ALTERNATIVE FUEL COST RESULT LONG-TERMt --COST FORECAST CAPITAL COST ESCALATION 10 PROBABILITY PRESENT \WORTH MICJM IOI 01 ll!SO!JI: HitMI Ole -~ ... I02 Q2 IJ569• T03 .DI 11624?- T04 03 14194 HIIN 10 MEDtUM. J05 .OS I()!S' T06 03 7lt':! I07 04 037'42 LDW JM toe 02 1050S: 09 01 7t84-::""""'·'" HltiM Jl IJQ 03 1121!-' IlL..._ 06 13'51~ IJ2 03 ... ~ ~911-~--- 10 ME'Dt\JIIil I13 09 t0&31' ~=:-r P.2 J8 8~JI· ,.. :u; -~ ·:· "-~ ,LI.,;: tif .03 1032t tJ)W Jl i aa-•-::: : HUIIt 011 ~~ Ot =~-oz : 01 21 I22 OS 1745' .. ...... ... co· 123 £11 --liM· n~ -QI ~l ..... I25 Dt ... LDIIf JM .... _ IK D! liCit u. 127 Dt ... -' I• tOO NON· SUSITNA PROBABILITY TREE FIGURE 4.9 ·:--·-· --- - - - - l LOAD FORECAST ........_ - LOW -- - RESULT 10 -SOl S02 S03 $~ -· lSi SOl m SJO Sl.L 512 Sl3 ~, .. ···-t.z.J-w: SIS Sl6 Sl7 Sl8 519. S20 S21 s~~ 523 S.2!t 525 52' S2 52.8 S29 uo 5.31 &32 533 SM HI S37 m H) H~ S..4! II ----------- ffiOBABILI!r ®!! ®~ 0060 ao~ ~ QtZQ 001~ ~ 0040~ .00~ Q)aG ,0090 QI!IO ,Q~tll 0,24~ o~m~ QlJQ DOl~ .QQ.Z~ QOf.iQ ~~ 0050 Ql20 001, =-· .02a .Q~:Z:. D9C.D ,04~ Q~ .1100 .oz~ ~ 00" ~ OllO D~ ·Q5ao .007! • I·•.oooo SUSITNA PROBABILITY TREE ----LONG-TEAt* CST PRESENT W0.!RnJ . Ill~ JC.'IML su• Q90 L~ 8"' 10!10 71~1 : .. ~~ 10658 9'P.II 10141 9Z41 U4l 89(lt tQ;)t ,.,~ f ..... Jt~·· IQ!) .. ~~ ---Nlc;w !2ZI ~ ·~ MM ,. zt4M -1371 1311 6477 1'9)t 11011 &Itt 1UI) 57311 . 5127 = ,.. C!llt gt . .. ~s S&50 ~., '"' mi FIGURE 4.10 -------------------- --2 • .... - II 10 I • l.F • I Ht I I ~" r -I ,r ~ I r- .. ~ . .10 .10 .40 JO .to .ro CUMULATJVE PfltOeAfMLITY SUSITNA MULTIVARIATE SENSITIVITY ANALYSIS LONG-TERM COSTS VS CUMULATIVE PROBABILITY NON .-SUSITNA PLAN F J .10 .• o 00 I. FIGURE 4.11 IiJ ------------------- tl -.,..... , .. ,:" I; ·~ -., .... 41) 0 u 2 • 0: "" ... " z 0 _, • I ' . ,._... I) . .o I • I I .-r- _J -, r . . .10 .10 ~·0 . ~ID .ue .'0 CUMUL.AT1VE ,_.ABILITY SUSITNA MULTIVARIATE SENSITIVITY ANALYSIS LONG-TERM COSTS VS CUMULATIVE PROBABILITY SUSITNA PLAN J ? -r .IIU JIG ~~ . • FIGURE 4.121il c/· .-.. _..:, .._ ···-· :~.~.... . .. •.-e..:.m;,..._~n-t·~""":,;rezt=?:fu~ .. ~ • ., •. ,"~· .. "'~··rb#it:If - - -- • [:F I " -- --- -- -- ) ~ l I I -NON• SU! 11'-.A fii.AN • r1 I"""N"' ,. ----. _1 -- rl ~ __,.,-~ l _j 1' ~ ~~---...... A I'LANj ""' r---SUIITl < . •• •• . I . CUMULATtV£ f'ROIAIILITY SUSITNA MULTIVARIATE SENSITIVITY ANALYSIS LONG-TERM COSTS VS CUMULATiVE · PROBABILITY . . . - _j J ' • - - -- ~ ~ - 11 j r ~ J . ~ FIGURE 4.S - - - - - - - - - - - - - - - -·--·-- l .0 t • >-..... -7 ...J -en ~. CD 0 a: 0..· "' >. - I 5 4 .I ·-· -· --~ -· ~--·-·-- =·-t±L __ . I ---t ··-··--·~ I· I I I r I 1 ' -,...-- . [ t ---· -·-- ..,...,.. .. --. ·-- .. ,_ .. _ • .. - ~-.... ------~ ..... - I < • -W4------·· ... ·-~ • • . _,_,...__,... ... __ J ___ l ---:---. ' I - ~ -~ ~·-I / ,.... -l -. --. ._ __ ... ;. ! I -. I . i ..... I I .. . ·--. .. --l ' I l ' ' i ! i t t--· • ·-' ' , ....... ....., ; ' I ; -1 J : -·· -.... -·' ' ' I ' . l ' l I . • --. -· ·t-·--·;-· __ .....,.__, I ! I I ' . L-·-----~ . ' ' .I -----·-v -~---6----··-·· -1-·-·· .. ./_ • ' .I --·--· ·------~ ~ ( 4100) C1G00) t 2500) (1100) (ICO) 0 100 NE~ BENEFIT $•10 (1912 $ ) SUSITNA MULTIVARIATE SENSITIVITY ANALYSIS CUMULATIVE PROBABILITY VS NET BENEF.ITS I 1100 "... ..... Iil ------------------- -cnQ ,. * -~ en 1-en 0 (..) ~ a:: LtJ f- (.1) z 0 ...J ·----------------------~~--------------~~~ INCREASING LOAD FORECAST • NON-SUSITNA HIGH FUEL COST ESCALATION SUSITNA LOW FUEL COST ESCALATION 0.1 0.2 0.3 SUSITNA HIGH FUEL COST ESCALATION NON-SUSlTNA LOW FUEL COST ESCALATION 0.4 0.5 0.6 CUMULATIVE PROBABILITY 0.7 SUSITNA FUEL COST SENSITIVITY NORMALIZED PLOTS 0.8 0.9 1.0 FIGURE 4.15 {i] -----------·---. 15 " 14 l-:t .... I - INCREASING LOAD FORECAST ... ~· _1 12 i .I I ,.. • ,.._. -II I mo ' i _ _,..r-_ _r---~ i -'* ! -10 .... -CJ) ,..._.. 1- Cl) r 0 9 -(.) r----_.. ~ NON-SUSITNA PLAN .J .. ~ Ill' a: ~------I UJ 8 ;/-~-SUSITNA HIGH CAPITAL COST 1- ~ ,-1 r-z 7 ' ... g r--' I SUSITNA LOW C_APlTAL COST I • 6 ...... • ~--I-.- 5 I r-• f*--r . 4 . '1111: .. ' I 0.1 0.2 0.3 0.4 0.5 0.6 o:r 0.8 0.9 1.0 ' CUMULATIVE PROBABILITY SUS I TNA CAPITAL COST SENSITIVITY [ij] : NORMALIZED PLOTS . FIGURE 4 .. 16 ' ,, ·. ;. .. I I I I (I I I I , I I I I I I I I I I "-"1 5 -GENERATION PLANNlNG OGP MODEL OUTPUT SUMMARIES I 'I I I I I I I I I I I I I I I I I I TABLE 5.1: SU~1MARY OF GENERATION PLANNING OGP RUNS -DIRECTORY Run Plan OGP ID *A · Non-Susitna L9J9 *B Non-Susitna L9El and Chakachamna, *C Susitna Wat~na/DC L9K3 D Sus itna DC/Watana LG16 E Chakachamna/DC LG17 Fl Non-Susitna L331 without Bradley Lake *F2 Susitna L9F3 without Bradley Lake *Gl Alternative's L3Nl Cap. cost + 20% G2 Susitna "C" L9K3 COMMENTS Non-Susitna Base Plan with 330 MW Chakachamna in 1993 Watana 680 MW 1993 Watana 680 2002 Devil Canyon 600 1993 Watana 680 2002 Chakachamna 1993 330 MW Devil Canyon 1997 Non-Susitna Susitna Non-Susitna $ X 106 (82$) Long-Term Cost 8,238 7,899 7,062 7,221 8,069 8,743 7,289 8,858 with manual adjustment of three gas turbine costs -10% 7,076 *Hl Alternative's Cap. cost -10% L303 Non-Susitna 7,915 H2 Susitna 11 C11 L9K3 7,056 with manual adjustment of three gas turbine costs -10% *Jl High Load Forecast L4Wl *J2 High Load Forecast LC15 *Kl Low Load Forecast Ll95 *K2 Low Load Forecast L9K7 "*01 O&M and Cost Escalation = 0% L4Z5 *02 O&M and Cost . L4Z7 Escalation = 0% * OGP summaries included. Non-Susitna 10,859 Susitna: Watana 1993 Devil 9,247. Canyon 1997 Non-Susitna 6,878 Susitna: Watana 1995 Devil 6!'650 Canyon 2004 Non-Susitna "A" 7,157 Susitna "C 11 5,585 I I I I ,. I I I ,I I I I I I I I I I I TABLE 5.1: SUMMARY OF GENERAtiON PLANNING OGP RUNS ... DIRECTOR! (Cont'd) Run Plan OGP ID COMMENTS *Pl *P2 Interest Rate = 5% t9J7 Interest Rate = 5% L9J5 *Ql Interest Rate = 2% LD23 *Q2 Interest Rate = 2% LD27 *Rl O&M and Cost Escalation : 4% *R2 O&M and Cost Escalation = 4% LD31 LD33 Sl Interest Rate = 4% L431 S2 Interest Rate = 4% L439 *Tl High Co a 1 Cost ($2.08) *T2 High Coal Cost ($2.08) L3S3 L7Z5 *T3 High Coal Cost L7Z9 ($2.08) *Ul Susitna Less LOX3 Contingency *U2 Susitna Plus L4L9 Double Contingency *Vl Zero Fuel Escalation *V2 Zero Fue 1 Escalation *Wl High Fuel Escalation *W2 High Fuel Escalation LI23 L3Y3 LI15 L4Ml *Xl Capita 1 Cost LCJ7 Esca.lation = 1.4% *X2 Capital Cost LCJ9 Escalation = 1.4%· * OGP summaries included. Susitna 11 C: Non-Susitria i'A 11 Susitna 11 C: Non-Susitna "A" Susi tna "C" Non-Susitna "A" Susitna "C 11 Non-Susitna (Optimized) Susitna "C" Non Sus itna 11 A'' 0% Contingency (S33) 40% Contingency (S31) Non-Susitna {Tl5) Susitna (S35) Non-Susitna (Tl3) Susitna {S29) Non-Susitna Susitna $ x 1o6 (82$) Long ... Term Cost 7,157 5,449 11~167 8,550 9,811 .. 9,029 6,235 6,126 9,721 9,030 6,151 7,974 10,367 6,838 7,388 8,023 ·'· 6,733 0 . . 'I" I I I I I I I I I I I I I I I I ~·---1 I ~l:..a .. l..J~L ELECTRIC COMF't1NY . OGP-5 ii'EHER~1TION F·LANNING PROGRAM-SUJiliARY ~OUTPUT ttll*~*M*t***~*lW'****************************** flLf.lSI\A ti:A lLBELT RUN A ~:EF:O% -3% JOB NUMBER 2ML9J9 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 . 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 **********************************************~************************ YR ** 93 94 95 96 97 98 99 0 1 2 Y E A R L Y M W A D D I T I 0 N S *****~* ******* ******* ******* ******* ******* ***** 200* lX 200 1X lX lX 70 70 70 TOTAL CAPAB. + TIES ****** **** ·1373 1542 1495 1624 1620 1635 1635 1591 1661 16'08 3 lX 70 1625 4 lX 70 1695 5 2X 70 -1747 6 lX 70, 1794 7 lX 200 1994 8 1968 9 1X 70 · 2037 10 2037 **************************************************************~******** * *** * ***** *** * * **~: ** * * * * **** **** * * * ***.* ***** ******** **************** * ** MW A!tD 0 800 630 0 0 0 0 SUH= 1430 HW RET 0 -46 -335 -141 -61 . 0 0 SUH= -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 813 746 0 .6 317 155 SUM= 2037 PCT TOT O. 39.9 36~6 o. 0.3 15.6 7.6 SUM=lOO PCT *********************************************************************** AUTO 0 400 630 0 0 0 0 SUM= 1030 PCT T(JT O. 38.8 61.2 O. o. · o. o,. SUM=lOO PCT * COMMI TTEI• M.W I I I I I I I I I I I I 'I I I I ·I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING-PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBELT RUN A ZERO?. .... 3% JOB NUMBER 2ML9J9 **************************************** YEAR **** 1993 1994 1995 1996 1997 1.998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 YR ** 93 94 95 96 97 98 99 0 1 2 3 J4 5 6 7 8 9 10 LOAil ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1 "')-:-•3 4~ 1270 1323 1377 1430 1484 1537 POOL F'EAK <MW> ****** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 TOTAL CAPABILITY <INCLUDING TIES> YEAR TIME OF ENII PEAK ***** ***** 1373 1373 1542 . 1495 1624 1620 1635 1635 1591 1661 1608 1625 1695 1747 1794 1994 1969 2037 2037 TOTAL ENERGY <GWH> ******* 4736 4829 4922 5031 5141 5250 5360 5469 5661 5853 6044 6236 6428 6701 6973 7246 7518 7791 1542 1·495 1624 1620 1635 1635 1591 1661 1608 1625 1695 1747 1794 1994 1968 2037 2037 LOAD FACTOR ****** 57.09 57.12 57.16 57.10 57.37 57.40 57.51 57.44 57.65 57.70 57.69 57.58 57.78 57.82 57~81 57.69 57.83 57.86 F'CT • RES. LOSS OF LOAit PROBABILITY D/Y H/Y COST IN YEARLY COST MILLION $ CUH. PW TOTAL **** 45.0 ****** ****** o.o63 o. ******* 176.1 ******* 127.2 59.8 52.0 61.9 58.4 56.6 53.6 46.8 48.2 38.9 35.9 37.5 37.6 35.6 44.8 37.6 37.3 32.5 TOTAL COSTS 01IL.t> ****** 176 200 207 261. 271 282 289 295 308 316 332 348 372 395 430 448 471 491 0.027 o. 0.077 o • 0.059 o. 0.084 ·0. 0.092 o. 0.055 o. 0.059 o. 0.038 o .. 0.062 o. 0.087 o. 0.057 o. 0.049 o. 0.052 o. 0.023 o. 0.066 o. 0.051 o. 0.099 o. 200.2 206.9 26.0. 9 271.1 282 .• 4 288.5 295.0 307.8 316.4 332.5 348.1 372.4 395.4 429.9 448.2 471.1 491.0 267.6. 408.5 581.0 755.0 930.9 1105.5 1278.6 1454.3 1629.4 1808.2 1989.8 2178.5 2373.0 2578.3 2786.1 2998.2 3212.8 YEARLY $/MWH ********************************** INV, FUEL OfM M.I. TOTAL ***** ***** ***** ***** ****** 9.31 23.36 4.51 o. 37.18 15.31 21.39 4.75 o. 41-.45 15,02 22.22· 4e79 O. 42.03 22.69 23.88 5.28 o. 51.86 22.82 24.59 5.32 o. 52.73 22.96 25.45 ·5.38 o. 53.79 22.4s 25.97 5.38 o~ 53.83 22.04 26.60 5.29 o. 53.93 21.89 27.14 5.34 o. 54.37 21.17 27.61 5.27 o. 54.05 21.09 29.60 5.32 o. 55.01 21.02 29.40 21.54 30.89 21.22 32.20 25.93 29.77 24.95 30.93 24.58 32.03 23.72 33.20 5.40 5.50 s.ss 5.'96 5.97 6.05 6.11 0 •· o. o. o. o. o. o. 55.82 57.93 59.00 61.65 61.85 62.66 63.03 I I .I I I I I I I I I I I I I I I I I G GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALAS 1\ A R A I L BEL, T RUN B ZERO/. -3/.: JOB NUMBER 2ML9E1 :f ** * * ** * * * * * * * * * * ** * * * * * * * * * * * * * * * * * *{* * *. GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 .SUM= 1190 ********************************************************************~:* TOTAL CAPAB+ YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 330* 1503 94 1472 95 1424 96 1354 97 200* 1480 98 , lX 70 1.495 99 1495 0 200* 1651 1 1651 2 lX 70 1668 3 1X 70 1685 4 1685 5 2X 70 1737 6 1714 7 lX ""0 ~ . 1784 8 1X 200 1958 9 1957 10 lX 70 2027 *********************************************************************** *********************************************************************** MW ADD 0 600 490 0 0 0 330 SUM= 1420 HW RET 0 -46 -335 -141 -61 0 0 SUM= -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 613 606 0 6 317 485 SUM= 2027 PCT TOT o. 30.2 29•9 o. 0.3 15.6 23.9 SUH~lOO PCT *********************************************************************** AUTO 0 200 490 0 0 0 0 SUM= 690 PCT TOT o. 29.0 71.0 o. · o. {). O. SUM=100 PCT * COMMITTED MW II I I I I I I I I I I I I I I :I I I I w 1,:! r· .... .:..· ..-; i::. I': i:. T\ t'1 i 1 u I'! r L ,; N N l h b :-h b t3 f( ,:., i"'l -s tJ N N A F\ y u u 1 F u T il***t********************'*~******************* riLASKA RAILI!ELT RUN B ZERO% -3/~ JOB NUMBER 2ML9E1 ********************~******************* YE.:iF! **** 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004' 2005 2006 2007 2008 2009 2010 LOAD ***** 947 965 983 1004 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 POOL PEAK <MW> TOTAL CAPABILITY <INCLUDING TIES) YEAR TIME OF EN!! PEAK **:'** *****. 1503 1472 1424 1354 1480 1495 1495 1651 1651 1668 1685 1685 1737 1714 1784 1958 1957 2027 TOTAL ·ENERGY <GWH> 1503 1472 1424 1354 1480 1495 1495 1651 1651 1668 1685 1685 1737 1•714 1784 1958 1957 2027 LOAD FACTOR YR ** 93 ****** 947 ******* 4736 ****** 57.09 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 4829 4922 5031 5141 5250 5360 5469 5661 5853 6044 6236 ~42.8 6701 6973 'F'F'7246 7518 7791 57.13 57.16 57.10 57.37 57.41 57.51 57.43 57.65 57.70 57.69 57.58 57t78 57.82 57<~81 57.69 57.83 57.87 F'CT. RES. **** 58.7 52.5 44.9 35.0 44.7 43.2 40.5 52.3 47.3 44.1 40.9 36.7 36.8 29:6 29.6 36.9 31.9 31.9 TOTAL COSTS <MIL.$) ****** 166 172 179 210 240 '1C'l .:.....J 259 301 309 323 333 344 367 380 404 435 452 475 LOSS OF LOAD f.'._R 0 B A B I L I T Y It/Y H/ Y COST IN YEARLY COST MILLION $ CUM. PW TOTAL ****** ****** ******* 166.1 *******! 120t0 o.ooo o. ' .0. 000 0. o.oo2 o. 0.019 o. 0.025 o. 0.031 o. 0.046 o. 0.026 o. 0.045 o. 0.067 o. Ot041 O. 0.069 o. 0.056 o. 0.071 o. 0.061 o. 0.038 o. o.oaa o. 0.075 o. 172.2 179.4 210.0 240.2 251.1 258.9 300.8 308.7 322.5 . 333.5 344.2 367.4 380.0 403.8 435.3 451.7 475.0 YEARLY $/M~JH •240.8 363.0 501.9 656.0 812.4 969.0 1145\7 '1321 .. 7 1500.3 1679.6 1859"• 2 2045.4 2232.3 2425.1 2627.0 2830.3 3038.0 ********************************** INV. ***** 14.89 14.61 14.33 14.02 23.01 23.14 22.66 30.18 29.15 28.79 28.46 27.59 27.91 26.77 26.28 30.72 29.61 29~09 FUEL ***** 16.01 16·. 84 17.83 23.38 19.16 20.06 20.95 19.68 .20.25 21.15 21.57 22.45 24.00 24.75 26.33 23.70 2.4 t 79 26.11 O+M ***** ~.18 4.22 4.29 4.33 4.55 4 •. 62 4.68 5.14 5.13 5 t 16 5.13 5.16 5.25 5.-18 5t30 5.66 5.68 s.77 N.I. ***'** o. o. o. o. o. o • o. o. o. o. o. o. o. o. o. o. o. .Ot TOTAL ****** 35.08 35.67 36.45 41.73 46.72 47. 8.2 48.29 55.00 54.53 55.10 55.17 55.20 57.15 56.70 57.91 60.08 60.08 60.97 . I I I I I I I I I I I I I I I I I I I utNERAL ELECTRlC COM~~NY UGP-5 GENEh~TrON PLANNlNG PROGRAM-SUMMARY OUTPUT +~~*~~***1~**'***~+**'*******$j*a***********t*** tr L ft S i\ ,~. H ti 1 L B E L ·1 RUN C Z !:!" !:• 0 ·~· - 3 ., ._n ,.. 1. JUB NUMBER 2ML9K3 * ;f' * * ~: * * * * * * *' * * ~· * * !+•' * * :f, * * * * * * * ;t· ~· * * * ~ :t· * * * * * GENERATION SYS1EM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPE 1 2 3 4 5 6 OPTMZING 0 1993 1993 0 0 1993 PCT TRIM 0 0 0 0 0 0 TYPES 7-10 *** 1992 MW 0 59 452 141 67 317 155 SUM= 1190 *********************************************************************** YR "' •J.• ·l~ ,., 93 ~I.! r\ L•• 7 ._1 96 Q7 .-4 98 99 0 1 2 ~~ 4 5 TOTAL CAPAB. Y E A R L Y M W A D D I T I 0 N S + TIES ******* ******* ******* ******* ******* ******* ***** ****** **** 680* 1853 1822 1774 1704 1630 1575 1575 1531 1531 601'lf 2079 2026 1% "0"7 ... --1939 6 1l 1917 7 1X 70 1987 8 1X 70 l* 2032 9 2031 10 1X 70 1* 2102 *********************************************************************** ***********~*********************************************************** MW ADD 0 0 210 0 0 0 1285 SUM= 1495 MW RET 0 -46 -335 -141 -61 0 . 0 SUM= -583 ****** ****** *****~ ****** ****** ****** ****** **** *********** ~ 2010 0 13 326 0 6 317 1440 SUM= 2102 F' C T 'T 0 T 0 • 0 • 6 15 • 5 0 • 0 • 3 15 • 1 6 8 • 5 SUM= 1 0 0 F' C T ********************************'************************************** t-t U T 0 0 0 21 0 0 0 0 0 SUM= 21 0 PCT TOT 0. O. 100.0 o. O. O. O. SUM=lOO PCT -.. -.. -----::-----~-.:--:----:-- I I I I I I I I I I I I I I I I I I GENERAL ELECTRIC COMPANY oGP-5 GENERATION F·LANNlNG F'.ROGR'AM-SUMMARY OUTF•UT ************************************************ Al-ASKA RAILBELT RUN C ZER01. -3X JOB NUMBER 2ML9K3 **************************************** YEAR **** 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 LOAD ***** 947 F'OOL PEAK <MW> 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 TOTAL CAPABILITY <INCLUitiNG TIES> YEAR TIME OF END F'EAK ***** ***** 1853 1853 1822 1822 1774 1774 1704 1704 1630 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 TOTAL ENERGY <GWH) 1575 1575 1531 1531 2079 'J0?6 .... -. ?O'J7 ..... --~ 1939 1917 1987 2032 2031 2102 LOA II FACTOR F'CT. RES. **** 95~7 8a.a 80.5 69.9 59.4 so.s 48.0 41.2 36.6 79.5 69.4 64.4 52.7 44.9 44.3 42.1 36.9 3.6.8 TOTAL COSTS <MIL.$) YR ** 93 ****** 947 ******* 4736 ****** 57.09 ****** 247 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 -1430 1484 153.7 4829 4922 5031 5141 5250 o36o 5469' 5661 6352 6455 6599 6698 6880 7079 7310 7551 7827 57.12 57.16 57.10 57.37 57.41 57.51 57.44 57.65 62.61 61.61 60.92 60.21 59.36 58.69 58.20 58.08 58.14 253 256 268 273 278 284 293 302 325 344 326 343 331 358 358 379 385 LOSS OF LOAit PROBABILITY It/Y H/Y COST IN YEARLY COST MILLION $ CUM. PW TOTAL ****** ****** ******* 246.5 ******* 178.1 o.ooo o. ·o.ooo o. o.ooo o. o.ooo o. o.ooo o. 0.001 o. 0.002 o. 0.015 o. 0.032 o. o.ooo o. 0.001 o. 0.001 o. 0.017 o. 0.068 o. 0.025 o. 0.029 o. 0.050 o. 0. 025 ~tot 252.8 255.9 268.4 272.5 277.9 283.7 292.6 302.2 325.0 344.3 326.0 343.2 331.4 357.9 358.4 379.1 385~3 YEAF':LY $/MWH 355.4 529.7 707.1 on? 1 ul:)...,.t 1055.2 1226.9 1398.7 •1571.1 1751.0 1936.1 2106o2 2280.1 2443.2 2614.1 2780.3 2950.9 3119.4 ********************************** INV. ***** 42.05 41.24 40.46 39.59 38.74 37.94 37.16 36.42 35.18 46.28 45.54 44.55 43.89 42.73 42.07 41.27 39.96 39.07 FUEL ***** 5.29 6.37 6.77 9.05 9.57 10.29 11.02 12.31 13.41 o. 2.83 o. 2'.49 0.70 3.62 2.95 5.39 5.33 O+H ***** 4.71 4.74 4.75 4.72 4.70 4.71 4.75 4.76 4.80 4.88 4.97 4.86 4.86 4.74 4.86 4.81 4.86 4.84 N.I. ***** o. 0 •. o. o. o. o. o. o. o. o. o. o. o. ·o. o. o. o. o. TOTAL ****** 52.06 52.35 51.98 53.36 53.01 52.94 52.93 53.49 53.39 51.17 53.34 49.41 51.24 48.17 50.55 49.03 so:21 49.2~ ·I I I I ;.~ I I I I I I I I I I I I I I I \) I OGP-5 GENERATION PLANNING PROGRAH-SUMM~RY OUTPUT *******t**************************************** ALASKA RAILBEL T RUN F2 ZERO% -3/. JOB NUMBER 2ML9F3 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 592 141 67 317 65 SUM= 1240 *********************************************************************** YR ** 93 94 95 96 97 98 99 0 1 ., -3 4 5 6 7 8 c 7 TOTAL CAPAB. Y E A R L Y H W A D D I T I 0 N S + TIES ******* ******* ******* ******* ******* ******* ***** ****** **** 1X 70 680* 1903 601* 1* 1* 1* 1872 1824 1754 1680 1625 1625 1581 1581 2129 2076 2077 1989 1967 1967 1942 2011 10 1* 2012 *********************************************************************** ****************************~****************************************** MW ADD 0 0 70 0 0 0 1285 SUM= 1355 MW RET 0 -46 -335 -141 -61 0 0 SUM~ -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 13 326 0 6 317 1350 SUM= 2012 PCT TOT O. 0.6 16.2 O. 0.3 15.8 . 67.1 SUM=lOO PCT *********************************************************************** AUTO 0 0 70 0 0 0 0 SUM= 70 PCT TOT O. O. 100.0 o~ O. O. O. SUM=100 PCT * COMMI TTEit MW I I I 11 I I I I I I I I I I I I I I I I - SENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ***********'************************************ ALAS~:A RAILBELT RUN FZ ZERO% -3% ' JOB NUMBER 2ML9F3 **************************************** ~ F'OOL TOTAL TOTAL YEARLY $/MWH PE~K ENERGY LOA It COSTS *********************************t YR (HW> \GWH> FACTOR <MIL.$) INV. FUEL O+H N.Io TOTAL ** ****** ******* ****** ****** ***** ***** ***** ***** ****** 93 947 4736 57.09 255 42.QS 7.13 4.59 o. 53.77 94 965 4829 57.12 258 41.24 7.63 4.60 o. 53.47 95 983 4922 57.16 2.62 40.46 8.21 4·62 o. 53*30 96. 1003 5031 57~10 278 39.59 1lo03 4.60 o. 55~22 97 1023 ·5141 57.37 283 38.74 11.73 4.62 o. 55.09 98 1044 5250 57. 4.1 289 37.94 12~55 4~63 o~ S5.11 99 1064 5360 57.51 296 37.16 13.44 4.69 o. 55.29 0 1084 5469 57~44 305 36.42 1~· t 69 4.71 o, 55.82 1 1121 5661 57.65 7.~6 w.&· 35.18 15~96 4.76 o. 55.90 ? -1158 6147 60.60 347 47.82' 3.66 s.ot .o. 56.49 3 1196 6298 . 60.11 348 46.68 3HS4 4.95 o. 55.27 4 1233 6526 60.25 349 45.05 3.59 4~se 0 (1 53.51 5 1270 6677 60.01 350 44.03 3.67 4.76 o. 52.46 b 1323 6994 60.35 355 42.03 4.02 4.64 o. 50.69 7 1377 7210 59.77 363 40.77 4.94 4t64 o. 50.35 8 1430 7495 59.66 371 39.23 5.67 4.58 o. 49.47 9 1484 7710 59.31 386 38.65 6.77 4.65 o. 50.07 10 1537 7999 59.41 396 37.25 7.64 4.64 .0. 49.5-4 TOTAL CAPABILITY <INCLUDING TIES> LOSS or-LOAir COST IN KILLION $ YEAR TIME OF P~T-PRODABILlTY YEARLY . CU~o PW --.... YEAR LOA It END PEAK RES. II/Y H/Y COST !OTAL **** ***** ***** ***** **** ****** ****** ******* ******* 1993 947 1903 1903 100.9 o.o~o o, 254.7 124.0 1994 965 1872 1872 94.0 o.ooo o. 258.2 365.1 1995 983 1824 1824 85.6 o.ooo o. 262.3 543.7 1S'96 :1003 1754 1754 74.8 o,ooo o. 277.8 727.4 1997 1023 1680 1680 64.3 o.ooo o. ~83.2 909.2 1998 1044 1625 162.5 55.6 o.ooo o. 289.3 1089.5 1999 1064 1625 1625 52.7 o.ooo o. 296.3 .1268~7 2000 1084 1581 ft::9" ~".I. 45.9 0.001 o. 305.3 1448.1 2001 1121 1581 1581 41.0 O.Q04 o. 316.5 1628.5 2002 1158 ') 1 ,,9 .. ~ 2129 83.9 o.ooo o. '":.&........ 3 ...... ,../ . . 1820.8 2003 1196 2076 2076 73.6 o.ooo o. 348.1 2.007.9 2004 1233 2077 2077 6a.s o.ooo o. 349.2 ~1 90 ? '~ .,........ ..,..., 2005 1270 1989 1989 5£..6 O.QO:! o. 350.3 2367.6 2006 1323 1967 1967 4847 o.oo4 o. 354.6 2542.0 2007 1377 1967 ~ 9J-... aT 42.9 0.013 o. 363•0 2715.4 2008 1430 1942 1942 35.8 o.oss o .. 370.8 2887.4 2009 1484 2011 2011 35.5 0.039 o. 386.0 3061.1 2010 153( 2012 "01? .... -30.9 o.o-,&3 o. 396·2 3234.3 I. , .. I ••• I I I I -I I I I' . I I I I I I I I •• GENERAL ELECTRIC .COMPANY OGP-5 GENER~TION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBELT RUN Gl ZERDX -3X JOB NUMBE~ 2HL3N1 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COHCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTHZING 0 1993 1993 0 0 1993 *** PCT TRIH 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 *********************************************************************** TOTAL CAPAB. YR Y E A R L Y H W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* *~S**** ***** ****** **** 93 200* 1373 94 200* 1542 95 1495 96 200* 1624 97 70* 1620 98 70* 1635 99 1635 0 1591 1 70* 1661 2 1608 3 70* 1625 4 70* 1695 5 140* 1747 6 70* 1794 7 ' 200* 1994 8 1968 9 70* 2037 10 2037 *********************************************************************** **************************************·********************************* HW ADD 0 800 630 0 0 0 0 SUH= 1430 HW RET 0 -46 -335 -141 -61 0 0 SUH= -593 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 813 746 0 6 317 155 SUM= 2037 PCT TOT o. 39.9 36.6 O. 0.3 15.6 7.6 SUH~100 PCT .**************************************************a******************** > ,, c ............. _._......., ____ ........__ ___ . .._,;, /,....._. -----~~."!;...::__,_<.~J._~·"--' 0 ·-·· .I .I I I I I I I I -I I I I •• I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAH-SUHHARY OUTPUT ************************************************·· .. ALASKA RA-, ".BELT RUN Gl ZERO:¥. -34 JOB NUMBER 2ML3N1 **************************************** . YEAR **** 1993 .1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 LOAD ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 TOTAL CAPAB-ILI-T.Y <INCLUDING TIES) YEAR TIME OF · END PEAK ***** ***** 1373 1373 1542 1542 1495 1495 1624 1624 1620 1620 1635 1635 1635 1635 1591 1591 1661 1661 1608 1608 1625 1625 1695 169.5 1747 1747 1794 1794 1994 1994 1968 1968 2037 2037 2037 2037 PCT. RES. **** 45.0 59.8 52.0 61.9 59.4 56.6 53.6 46.8 48.2 38.9 35.9 37.5 37.6 •35.6 44.8 37.6 37.3 32.5 POOL TOTAL TOTAL LOSS OF LOAD PROBABILITY D/Y ****** 0.063 0.027 0.077 0.059 0.084 0.092 o.oss 0.059 0.038 Ot062 0.087 0,057 0.049 0.052 0.023 0.066 o.o5t 0.099 H/Y ****** o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. COST IN YEARLY COST ******* 184t6 214.6 221.3 283.4 294.2 3()6_.1 312.3 319.7 332.2 340.8 357.6 373.9 399.6 423.4 465.6 483.9 507.6 527.5 YEARLY S/HWH MILLION • CUH. PW TOTAL ******* 133.3 283.9 434.6 621 .• 9 810.8 1001.5 1190.4 1377.6 1567.1 1755.7 1947.9 2143.1 2345.6 2553 •. 8 2776.2 3000.6 3229.1 3459.6 f•EAK ENERGY LOAD COSTS ********************************** YR <MW> <GWH> FACTOR <MIL.s> INV. FUEL O+H ·N.I. TOTAL ** ****** ******* ****** ****** '***** ***** ***** ***** ****** 93 947 4736 57.09 185 11.17 23.36 4.44' o •. 38 ... 97 94 965 4829 57.12 215 18.37 21.39 4t68 o. 44.45 95 983 4922 57.16 221 18.02 22.22 .4.72 o. 44.97 96 1003 5031 57o10 283 27.23 23.88 5.21 o. S6.32 97 1023 5141 57937 294 27.38 24.59 5.25 o. 57.22 98 1044 5250 57.40 306. 27.55 25.45 5.31 o. 58.31 99 1064 5360 57.51 312 26.98 25.97 5.31 o. 58.26 0 1084 5469 57.44 319 26.44 26.60 .5.22 o. 58.27 1 1121 5661 57.65 332 26.~6 27.14 5.27 o. 58.67 2 1158 5853 57.70 341 25.40 27.a1 5.21 o. 58.22 3 1196 6044 57.69 358 25.30· 28.60 3.2it o. 59.16 4 1233 6236 57.58 374 25.22 29.40· 5.34 .o. 59 •. 9.6 5 1270 6428 57.78 400 25.84 30.89 5.43 o. 62.17 6 1323· 6701 57.82 423 25.46 32.20 5.52 o. 63.18 ... 1377 6973 57.81 466 31.11 29.77 ~5.90 o. 66,.77 ? 8 1430 7246 57.69 484 29.94 30.93 5.91 o. 66.78 9 1484 7518 57.83 50S 29.49 32.03 6.00 o. 67&51 10 1537 7791 57.86 528, 28.46 33~20 6.0:6 o. 67.71 ••• I I I I I I- I I I I I I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBELT RUN Hl ZERO/. -37. JOB NUMBER 2ML303 *********~****************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 7-10 DPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 -O 0 1992 MW 0 59 . 452 141 67 317 155 SUM= 1190 *********************************************************************** TOTAL CAPAB~ YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 200* 1373 94 200* 1542 95 1495 96 200* 1624 97 70* 1620 98 70* 1635 99. 1635 0 1591 1 70* 1661 2 1608 3 70* 1625 4 70* 1695 5 140* 1747 6 70* 1794 7 200* 1994 8 1968 9 70* 2037 10 2037 *********************************************************************** *********************************************************************** MW ADD 0 BOO 630 0 0 0 0 SUM= 1430 MW RET 0 -46 -335 -1~1 -61 0 0 SUM= -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 · 813 746 0 6 31'7 155 SUM= ·2037 PGT TGT O. 39.9 36.6 0. 0.3 15.6 7.6 SUK=lOO PCT ***************************'******************************************* AUTO 0 0 0 0 0 0 0 SUM= 0 F'CT TOT 0. o. o. o. O. O., ., O. SUM= 0 PCT * COMMITTED MW ... ,;. -~ " "' '"''--~'-. _,,,._·.,.,.,~~,...·~·""-•••.·~"';;, -·~" •• ~. Jl '·'_.w~~ ~·••' I I I I I I I I I •• I I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT *****************************'******************* ALASKA RAILBEL T RUN Hl ZEROX -3/.: JOB NUMBER 2ML303 **************************************** YEAR **** 1993 1994 1995 - 1996 1997 .. 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 . 2010 YR ** 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 LOA II ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 POOL F'EAK (MW> ****** 947 965 983 1003 1023 1044 •1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 TOTAL CAPABILITY <INCLUDING TIES) YEAR TIME OF ENit PEAl\ ***** ***** 1~73 1373 1542 1495 1624 1620 1635 1635 1591 1661 1608 1625 1695 1747 1794 1994 1968 2037 2037 TOTAL ENERGY <GWH> ******* 4736 4829 4922 5031 5141 5250 5360 5469 5661 5853 6044 6236 6428 6701 6973 7246 7518 7791 1542 1495 1624 1620 1635 ·1635 1591 1661 1608 1.625 1695 1747 1794 1994 1968 2037 2037 LOAD FACTOR ****** 57.09 57.12 .57 .16 57.10 57.37 57.40 ·57. 51 57.44 57t65 57.70 57.69 57.58 57.78 57.82 57.81 57.69 57~83 57-.86 F'CT. RESt **** 45.0 59.8 52.0 61.9 58.4 56.6 53.6 46.8 49.2 38.9 35.9 37.5 37.6 35.6 44.8 37.6 37~3 32.5 LOSS OF LOAit PROBABILITY Ii/Y H/Y ****** ****** 0.063 o, 0.027 o. 0.077 o. o~os9 o. 0.084 o. 0.092 o. 0.055 o. 0.059 o. 0.038 o. 0.062 o, 0.087 o. 0.057 o. 0.049 Oe- 0.052 o. .0.023 o. 0.066 o. 0.051 o. 0.099 o. COST IN YEARLY COST ******* 171.3 1'?2.5 199.2 249.1 259.0 270.0 276.1 282.5 295.0 303.6 319.3 334.6 358.1 380o7 411.4 429.6 452.1 472.1 MILLION $ CUM. PW iOTAL *****%* 123.8 258.8 394.4 559.1 725.3 893.6 1060.6 1226.6 1394,8 1562.9 1734.6 1909.2 2090.6 2277.9 2474.4 2673*6 2877+2 3083.5 TOTAL COSTS (MILo$) YEARLY $/HWH ******************~*************** INV. FUEL O+M N.I~ TOTAL ****** 171 192 199 249 259 270 276 283 2.95 304 319 335 358 381 411 430 452 472 ***** ***** ***** ***** ****** 8.38 23.36 4,44 -Oi 36.18 13.78 21.39 4.68 .o. 39~86 13.52 22.22 4.72 o. 40.47 20o42 23.88 5t21 Ot 49.52 20.s4 24.59 5.25 o~ so.3s 20.66 25.45 5.31 o. 51.42 20.23 25.97 5.31 o. 51.52 19.83 26.60 5.22 o. 51.66 19.70 27.14 5.27 o. 52.11 19.05 27.61 5.21 o. 51.67 18.99 28.60 ·s.26 0. S2,S4 18.91 29.40 5.34 o. 53.66 . 19.38 30.89 5.43 o. 55.71 19.09 32i20 5.52 o. 3b.82 23.33 29~77 5.90 o. 59.00 22.45 30.93 5.91 o. 59.29 22.12 32.03 6.oo o. 60.14. 21.34 33.20 6.06 o. 60.59 t :I I .I I I I I I I I I I I I I ··'I I :I GENERAL ELECTRIC COMPANY -OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBELT RUN Jl ZERO/. -37. JOB NUMBER 2ML4W1 ~ **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 522 141 67 717 155 SUM= 1660 *********************************************************************** YR ** 93 94 95 96 ~'97 98 99 0 1 2 3 4 6 TOTAL CAPAB. Y E A R L Y M W A D D I T I 0 N S = + TIES ******* ******* ******* ******* ******* ******* ***** ****** **** 200* lX 200 1X 200 ?X ..... lX 1X 1X lX 1X 70 70 70 70 70 70 1643 1812 1765 l,894 1960 1975 2045 2tr01 2071 2088 2235 2305 2417 lX 70 2464 • 7 2X 70 2604 8 lX 200 2778 9 2777 10 lX 70 2847 *********************************************************************** *********************************************************************** MW ADD 0 1000 770 0 0 0 0 SUM= 1770 MW RET 0 -46 -335 -141 -61 0 0 SUM= -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 1013 956 0 6 717 155 SUH= 2847 PCT TOT Oo 35.6 33.6 O. 0.2 25.2 5.4 SUM=lOO PCT *******************************************************************~*** AUTO 0 600 770 0 0 0 0 SUM= 1370 PCT TOT o. 43.8 56.2 o. o. o. o. SUM=iOO PCT * COMMITTED M~J I I I I I I .I I I I I I I I I I I I I. GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGR~H-SUMMARY OUTPUT ************************************************ ALASKA RAILBELT RUN Jl ZER01. -37. JOB NUMBER 2Ml4W1 **************************************** YEAR **** 1993 1994 1995 1996 1997 1Q98 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 200~ 2010 LOA It ***** 1188 1218 1248 1286 1424 1363 1401 1439 1505 1571 1637 1703 1769 1848 1927 2007 .2086 2165 TOTAL CAF'ABILITY <INCLUDING TIES> YEAR TIME OF END PEAK ***** ***** 1643 1643 1812 1812 1765 1765 1894 1894 1960 1960 1975 2045 2001 2071 2088 2235 2305 2417 2464 2604 2778 2777 2847 1975 2045 2001 2071 2088 2235 2305 2417 2464 2604. 2778 2777 2847 F'CT. RES. ****' 38.3 48.8 41.4 47.2 48.1 44.9 45.9 39.1 37.6 32.9 36.5 '35v4 36.6 33.3 35.1 38.4 3'3.1 31.5 POOL TOTAL TOTAL LOSS OF LOAII PROBABILITY It/Y H/Y COST IN YEARLY COST ****** ****** ******* 177.0 0.076 o. 0.026 o. 0.076 o. 0.069 o. 0.048 o. 0.068 o. 0.046 o. 0.062 o. o.o6o o. 0.059 o. 0.057 o. 0.056 o. 0.072 o. 0.097 Ot Oo055 Ot 0.040 o. 0.055 o. o.o63 o~ YEARLY 219.6 230.6 304.1. 324.4 341.8 360.2 373.7 39.9. 4 42.1. 4 455.1 481.7 522.3 554.8 594.3 636.1 662.7 700.3 $./MWH MILLION $ CUM. PW TOTAL ******* 127.8 281.8 438.9 639.9 848~1 1061t:L 1279.1 1498.6 1726.4 1959.7 2204.3 .2455. 7 2720.4 2993 .. 3 3277~1 3572.1 3870.4· 4176.5 f'EAK ENERGY LOA[I COSTS ********************************** YR <MW> <GWH> FACTOR <MIL.$) INV. FUEL O+H N.I~ TOTAL ** ****** ******* ****** ****** ***** ***** ***** ***** ****** 93 1188 6160 59.19 177 o. 24.61 4.12 o~ 28.73 94 1218 6312 59.16 220 7.13 23.39 4.27 o. 34.79 95 1248 6464 59.13 231 6.96. 24.39 4.32 o. 35.67 96 1286 6663 58.98 304 12~79 28.27 4.57 o. 45.63 97 1324 6861 59.16 324 13.34 29.29 4.66 o. 47. 2.9 98 1363 7060 59.13 342 13.41 30.29 4.~71 o. 48.42 99 1401 7258 59 t 14 360 13.50 31.33 4.ao o. 49.63 0 1439 7457 5B.99 374 13.14 32~21 4.77 o. 50.12 1 1505 7795 59.13 399 13.01 33.37 4.86 o. 51.24 'J -1571 8133 59.10 421 . 12.89 34.06 4.86 o. 51.82 3 1637 8472 59.08 455 16.58 32.06 5.07 o. 53.72 4 1703 8810 58.89 482 16.36 33.17 5.15 o. ''54 .-68 5 1769 9148 59<t03 522 19.81 31.89 5.40 o. 57.10 6 1848 9605 59.33 555 19.26 33.06 5.44 o. 57.76 7 1927 10063 59.61 594 19.14 34.38 5.54 o. 59.06 8 2007 1 052.() 59.67 636 22.05 32.66 5.75 o. 60.46 9 2086 10978 60.0.8 663 21.13 33.50 5.74 0-t 60.'37 10 2165 11435 6.0.29 700 20.64 34.78 5.82 o. 61"24. I .I I I I I I I I 'I I I I I I I I I I GENERAL ELECTRIC~COMPANY ~ . . . ... . OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ~***************'*********f**~****************** RtilLBF-L T RUN J2 '7 c R n. ... .... -. .. , .... .J;;. _.,.. ,.') ,. JOE NUMBER 2MLCI5 . ·.:. "<: ;.· •J: ·J· \l' ~·· ".1.· ·~ \1, ·J.· "'-'It: .J• "' "-' "-: -L• , ••• \1• ·J.· ••• '<./; !l,• .,. * "' \1.• .., • .,. '-1.! \J.• ,_. "-' ·.b "<l . ..&· -.!.· • ·,\ .. '~, ~· ,, ..,.-·tt· , ... ~ tt· Ji '* .,-:t~ ,. 4 .,. ,r q. ~~'-t'J\ lf'.·1" ... .f ·1\ If· If ;; .. .,.. ,. . ., .. ~·If\ If.,.., ~'f, I'J•lf .11 1{. •r GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES 1YPE 1 ? 3 4 5 6 7-10 · GPTMZING 0 19~3 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 . 1 9 ~ ~ MW 0 59 5?. ~ 1 -4 1 6 7 7 1 7 · <1 55 SUr1= . 1 6 6 0 ******************~*********~*************************************f**** TOTAL GAPAB. YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ***~*** l****** ******* t****** ****~** ***** ****** **** 93 680* 2323 96 c-. . . 98 0 1 ··~ "- C:· 1X 70 1X 7C• 1x 7f't ' , .. 239.2 2244 217A 6001.\ ~700 l* 2602 1* 2~03 2550 :1.* 2498 2498 2410 2527 ? 1X 70 2640 10 1X 70 2710 *********************************************************************** ~********************************************************************** N~J ADI! (1 0 350 0 0 . 0 1283 SUM= 1633 HW HET 0 -46 -335 -141 -61 . 0 0 SUH:; -583 St**** *****~ *****~ ****** ****** ****** ****** **** ******f**** 2010 0 13 536 0 6 717 1438 SUM= 2710 PCT TOT O~ 0.5 19.8 O. 0.2 26.5 53.1 SUM=lOO PCT ~*******************************************1************************** DUTO 0 0 350 0 0 0 0 SUH= 350 PCT TOT 04 O. 100.0 o. O. o. o~ SUM=lOO PCT -~ COi1MITTE1t Nl·J I I I I I I I ··I I I I 1- I I I GENERAL ELECTRIC COMPANY OGP-~ GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ .. RUN J2 '""EF·o·.--3 ... L \ ~D /u JOB NUMBER ~MLCI5 *t»~******t*****~~*****f***************W 'i E~rR *·*·:t:t 1993 1994 1995 1996 1997 ·I.QQ8 ·'-" , .. 2000 2001 2002 2003 2004 2005 2006 2007. 2008 200? "'"1'" ._"\._' \..' L0~1!1 }f: :;: * * ;.f 1188 1218 .1248 1286 1 -·-~e.:. 1 4 (', •J .&. ...... 1439 1505 1571 1637 1703 1769 1848 2007 2086 21.65 TOTr~tL CAPABILITY (INCLUD1NG TIES) YEAR TIME OF EN.D *~:***' 2323 2244 2174 2700 2645 264:.; I''\ i. I'\ -. .:. ...... \..' .:J 255·:· :2498 2498 2410 2457 25:!7 2571 264-0 2710 F ::: r.1K ~:)f:**~; 2323 2292 2244 2174 2700 2645 264~ 2602 260:! 2550 2498 ~410 2457 F'CT. RES; *q• \!. >.!• If· If· t:"• 95.5 88.2 79.8 69.0 104.0 94-.C· 88iB BC•. 8 -.... ,. ,.._ I..!· • '-.l 46.7 36.3 26t6 25 t 2· LOSS OF LOAD F'F:OBAB I L I TY D/Y H/Y *****~~ *****~; o.ooo o. o.ooo o. o.ooo o. o.ooo o. o.ooo o. o.ooo o. o.ooo o. o.ooo o.ooo 0-.000 0.001 0.003 0.03.2 0.042 0.037 0.054 0.053 0.052 o. 04-- o. o. o. o. 0~ o. o. o. 0. COST !N YEARLY COST ******* 284.7 292.2 299.8 327.4 342.7 344.2 346.8 3 c· "') -~ J..:..t; 351.9 3/'1 • 9 '377.4 41·1~5 441.5 469.1 498.6 530.~ 563.8 YEF1RL Y $/MWH H!LLION $ CUM. PW TOTAL ***'**** 205.7 410.6 614.7 831.2 1051.2 1265~7· 1 "" ... ,!:) t"; . . ~ ..... 1682.7 1883. ~. 2.709.3 2926..5 3150.5 3381 t ::· 3620~5 3B6c .• 9 POOL PEAl< O·HD TO TilL ENERGY <GttJH.) TOT,~L COSTS (MIL.$) *~********~*'*************'******t *l 93 94 95 9c 97 ?S 97 0 1 I; . , .. 0 C• • 10 )!.•\!·'IJ.:•-.1•\l•-.:. ~-., ... .,,.,... ~ , 1188 1218 1~48 1286 1324 1401 1437' 1505 :1.571 1637 1703 1769 1848 1927 2007 2086 2165 * :+:* *)f~ * :+: 6160 •• , # .....,.. 0·~0~ 6976 7153 7329 7510 7812 8133 8472 8810 9148 9605 10063 10520 10978 11435 59.19 59.16 59.13 58.99 60.15 59.91 59.72 57~4:.:! 59.25 59.10 59 t •)8 58.89 59.03 59.33 59.61 59.67 60.08 60.29 ...!.• •J• '11• '" ••• ..:.· "!"• J; If• -r:~ ""' ,, :265 ''i~""i ........ 327 343 344 347 352 ...,..,, -·, ~,f / 397 414 442 469 499 530 564 INV. FUEL D+M N.I. TOTAL **'t:+'if )f:~ ~ **: **~=** ****:.i' **:!:***: "2 1 .::-;:-,;;~ • J ,J 30t81 29. 8'' 40.86 39~85 32.89 37. ''5 36.49 3 t=" r, L- ,J '• -v'.J 33.64 31.16 30.07 29.08 28~19 27.37 26.64 10.08 10.88 14.62 ... '""'9 .:lc-.j 3.43 3~-61 4.2t ... 9" ~. i 6.04 9.64 11 • 3:; 12.98 14.62 16.30 17.96 4. 6.6 4.66 4.68 4.63 4.88 4 .. 83 4.82 4.74 4.65 .. 1. 64 4.55 4.57 4.51 4.53 4.56 4. 57~ 4.64 ,1.71 o. o. o~ (· < (t • (), r. " ' 0' Ot o. Ot o. 46.21 46.30 .. I' """"' .... •to.~.t 49t14 49.13 -18.11 \ ~ "'"'t",.~ Lt ~-• ~-..:. "t 6 + 7 Co 45 ~ 0~5 45.73 44.54 ,15. 06 45.31 45.9? 46:. 6~ I I I I I I I I I I I •• I I I I I I I -----,~ GEN~RAL ELECTRIC COMPANY . OGP•S GENERATION PLANNING PROQRA~~SUMMARY OUTPUT ********************************~*************** ALASKA RA ILBEL T RUN Kl ZERO% -3% JOB NUMBER 2HL195 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTHZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 HW 0 59 45~ 141 67 317 155 SUM= 1190 ********************************************·*************************** TOTAL CAPAB. YR Y E A R L Y H W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 1173 94 l 1142 95 200*' 1295 96 lX 70 1294 97 lX 70 1290 98 200{ 1435 99 14~5 0 1X 70 1461 1 1461 2 1X 70 1.479 3 1X 70 1495 4 -1495 5 lX 70 1477 6 1X 70 1524 7 lX 200 1724 8 1698 9 1697 10 !X 70 1767 *********************************************************************** ******************************************************~~**************** MW ADD 0 600 560 0 0 0 0 SUM= 1160 HW RET 0 -46 -335 -141 -61 0 0 SUM= -5B3 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 613 676 0 6 . 317 155 SUH= 1767 PCT TOT o. 34.7 38.3 o. 0.3 17.9 B.B Sll. .. =100 PCT *********************************************************************** AUTO 0 200 560 0 0 &-0 SUM= 760 "PCT TOT o. 26.3 73.7 o. o. 0. · o. SUH=lOO PCT * COMMITTED HW II I I I I I I I I I I I I I I I I I I YR ** 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 a 9 10. ~· ' ·. GENERAL ELECTRIC COMPANY OGP~S GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBELT RUN Kl ZERO% -37. JOB NUMBER 2HL195 *****************~********************** TOTAL CAPABILITY <INCLU!IING TIES> YEAR TIME OF F'CT. RES. LOSS OF LOAD PROBABILITY COST IN MILLION • YEAR **** 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006' 2007 2008 2009 2010 LOAD ***** 830 840. 849 863 878 892 907 921 950 979 1008 1037 1066 1102 1138 1173 1209 1245 END F"EAK ***** ***** 1173 1173 1142 1142 1295 1295 1294 1294 1290 1290 1435 f43~ 1435 1435 l461 1461 1461 1461 1478 1478 1495 1495 1495 1495 1477 1477 1524 1524 1724 1724 1698 1698 1697 1697 1767 1767 **** 41.3 36.0 52.5 49.9 47.0 60.8 58.2 58.6 53c-8 51.0 48.3 44.2 38.6 38.3 51.5 44.7 40.4 '1~1.9 DIY H/Y ****** ****** 0.034 o. o.o8o o. 0.045 o. 0.060 o. 0.086 o,. 0.053 o. o.o6a o~ 0.055 o. 0.035 o. 0.046 o. 0.057 o. 0.036 o. 0.077 o. 0.066 o. 0.022 o. 0.056 o. 0.086 o. 0.057 o. YEARLY COST ******* 127.6 135.2 166.1 195.1 2os.·a 237.4 244.4 257.1 261.9 275.2 290.0 297-t3 3~6.7 334.1 358{,7 371.9 386~0 404.3 I'_ u· ·u ht_, "" n • r .-\;' TOTAL ******* 92.2 187.0 300.1 429.1 561.2 709·.1 857.0 1008.0 1157.4 1309.8 1465.6 1620.8 1781.3 1945 .• 6 2117.0 2289.4 2463.2 2639.9 POOL PEAK <MW> TOTAL ENERGY <GWH> LOAD FACTOR TOTAL COSTS <MIL.$) YEARLY $/HWH ********************************** INV. ***** o. ****~* 830 840 849 86~~ 878 892 907 921 950 979 1008 11>37 1066 1102 1138 1173 1209 1245 ******* 4144 4192 4240 4320 4400 4481 4561 464! 4784 4928 5071 5215 5358 5547 5736 5925 6114 6303 ****** 57.00 56.97 57~01 56.99 57.21 57.35 57.41 57.37 57.49 57.46 57.43 57.25 57.38 57.46 57.54 57.50 57.73 57.79 ****** 128 135 166 195 206 237 244. 257 262 275 290 297 317 334· 359 372 386 404 o. 10.82 11.33 11.84 20.97 20.60 20.97 20.34 20.45 20.57 20.00 20.16 20.15 26.21 25.37 24.59 24.50 FUEL ***** 26.27 27.68 23.72 29.11 30.11 26.84 27.73 29.11 29 •. 15 30.07 31.21 31.63 33.50 34.54 30.38 31.43 32.52 33.52 OfH N.I. ***** ***** 4.51 o .. 4.58 o. 4•63 o. 4.72 o. 4.81 o. 5.17. o. 5.24 o. 5.31 o. 5.26 o,. 5.33 o. 5.41 o. 5.38 o. ~.46 o. 5•·55 o. 5.94 o. 5.96 o. 6.02 o. 6.13 o. TOTAL. ****** 30.78 32.25 39.18 45.17 46.76 52.~99 53.59 55.39 54.75 55.85 57.19 57.00 59.11 60.24 62.54 62~77 63.14 64.14 --- "I I" I I I I I I .I I I I I I I I I I I [,_, .. , " . GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT *************t**~******************************* GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 "7-10 DPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 ****l**************f*************************************************** . . . TOTAL C.APAB. YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 1173 94 1142 95 680* 1774 96 1704 97. 1630 98 1575 99 1575 0 1531 1 1* 1532 2 1419 3 1426 4 600* 2026 5 1938 6 1915 7 1* 1916 8 1890 9 18S9 10 . 1* .£"990 *******************~*************************************************** *********************************************************************** MW ADD 0 0 0 .o · 0 0 1283 SUM= 1283 MW RET 0 -46 -335 -141 -61 0 0 SUM= -503 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 . 13 116 · 0 6 317 1438 SUM= 1890 PCT TOT o. 0.7 6.2 0. 0.3 16~8 76.1 SUM=100 PCT *********************************************************************** AUTO 0 0 0 0 0 0 0 SUM= 0 F' C T T 0 T 0 • 0 • 0 • 0 • ~ ·o • 0 • 0 • SUM= 0 PC T * COMMITTE!t MW I I -I I I I I I I I •• I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAlLBEL T RUN K2 Z.ERO/. -3/. JOB NUMBER 2ML9K7 ********************~******************* YEAR **** 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 LOAD ***** 830 840 849 863 878 892 907 921 950 979 1008 1037 1066 1102 1138 1173 1209 1245 fOOL PEAK <MW) TOTAL CAPABILITY <INCLUDING TIES) YEAR TIME OF PCT. RES. END F'EAK ***~:* ***** 1173 1173 1142 1774 1704 1630 1575 1575 1531 1532 1479 1426 2026 1938 ° 1915 1916 1890 1889 1890 1142 1774 170~ 163v 1575 1575 1531 1532 1479 1426 2026 1938 1915 1916 1890 1889 1890 TOTAL ENERGY <GWH> LOAD FACT:JR ****-41.3 36.0 109.0 97.4 85.7 76.5 73.6 66.2 61.3 51.1 41.5 95.4 81.8 73.8 68.4 61.1 56.2 51.8 TOTAL COSTS <MIL.$) YR ** 93 *~ *~"** 830 ******* 4144 ****** 57.00 ****** 128 94 95 96 97 98 99 0 1 2 6 7 8 9 10 84(J 849 863 878 892 907 . 921 950 979 1008 10?7 1066 1102 11.38 1173 12or 1245 4192 4239 4320 4400 4481 4561 4641 4784 4928 5071 5213 535& 5547 5737 5925 6114 6303 56+97 57.00 56.99 57.21 57.35 57.41 57.37 57.49 57.46 57.43 \ 57.23 ~7.38 57.46 '57. 55 57.50 57.73 57.79 136 ,,. ... 1 " 259 262 264 267 276 277 283 289 357 365 378 346 372 388 359 LOSS OF LOAif PROBABILITY I•IY H/Y ****** ****** Oo034 O. o~oao o. o.ooo o. o.ooo o. o.ooo {). o.ooo o. o.ooo o. o.ooo o. o.vol o. 0.010 o. o.o7s o~ o.ooo o. o.ooo o. o.oos o. o.oo6 o. o.os4 o. 0.035 o. 0.062 o. COST IN YEARLY COST ******* 127.9 135.5 250.7 258.9 261.8 263.7 266,..5 276.0 277.3 282.9 288.6 357.3 364.6 378.0 346.4 371.8 388.4 359.5 MILLION $ CUM~ PW TOTAL ******* 92.4 187.5 358.1 529.3 697.3 .861. 6 1022.9 1185.0 1343.1 1499.8 1654.9 1841.4 2026.1 2212.1 2377\.5 2549;, 2724,S 2881 •. 9 YEARLY $/MWH ********************************** INV. FUEL O+H N.I. TOTAL ***** ***** ***** ***** ****** o. 26.27 4.59 o. 30.86 o. 27.68 4.66 o. 3·2.33 48.88 4.91 5.33 o. 59.12 47.97 6.67 5.30 o. 59.93 47.o9 7.12 s.2a o. 59.49 46.24 7.34 5.26 0, 58.84· 45.43 7.72 5.28 o. 58.44 44.65 9.56 5.26 o. 59.46 43.31 9.45 5.21 o. 57.97 42.05 10.18 5.18 o. 57~40 40.86 10.90 5.14 o. 56.90 58.67 3.60 6.28 o. 68.54 57.08 4.82 6.15 o. 68~05 55.14 6.87 6.14 o. 68.15 53.31 1.25 5.82 o. 60.37 51.62 5.24 5.89 o. 62.75 50o02 7.57 5t93 O. 63.52 48~53 2.83 5.67 o. 57.03 I I I I I I I I I I I I I I I I I . 01 'I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM~SUHMARY OUTPUT .·• ************************************************ ALASKA RAILBEL T RUN 01 ZEROr. -3% JOB NUMBER 2HL4Z5 **************************************** GENERATION SYSTEM NUKE COAL NGASST OIL GT DIESEL COHCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 · 0 0 0 0 ·o 1992 MW 0 59 452 141 67 317 155 SUM= 1190 *********************************************************************** TOTAL CAPAB. YR Y E. A R L Y M W . A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 200* 1373 9~ 1X 200 1542 95 1495 96 200* 1624 97 1X 70 1620 98 1X 70 1635 99 1635 0 1591 1 1X .70 1661 2 1608 3 !X 70 1.625 4 1X 70 1695 5 1X 200 1807 6 1X 70 1854 7 lX 70 19.24 8 o 1X 70 1968 9 1X 200 2167 10 2167 ***********.************************************************************ *********************************************************************** HW AitD 0 1000 560 0 0 0 0 SUM= 1560 MW RET 0 -46 -335 -141 -61 0 0 SUM= -583 ****** ****** .****** ****** ****** ****** ****** **** *********** 2010 0 1013 676 0 6 317 155 SUH= 2167 PCT TOT O. 46.7 31.2 o. 0.3 14.6 7.2 SUM=l.OO .PCT *********************************************************************** AUTO 0 600 . 560 0 0 0 0 SUH= 1160 PCT TOT O. 51.7 48.3 o. O. O. 0. SUH=100 PCT I I I I I I I I I I I I I I I ·I •I I ,I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAH-SUHHARY OUTPUT ******~***************************************** ALASKA RAILBELT RUN 01 ZEROX -3X JOB NUMBER '2'tiL4ZS **************************************•* TOTAl CAPABILITY <INCLUDING TIES) LOSS OF LOAD F'ROSAE<lLITY COST IN MILLION $ YEARLY CUM. PW YEAR **** 19~~ LOAD YEAR END TIME OF . t=:EAI< PCT, I~ES • IllY H/Y COST TOTAL \(994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 POOL ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 13?? 1430 1484 1537 ***** 1373 1542 1495 1624 1620 1635 1635 1591 1661 1608 1625 1695 1807 1854 1924 1968 2167 2167 TOTAL ***** 1373 1542 1495 1624 1620 1635 1635 1591 1661 1608 1625 1695 1807 1854 1924 '1968 2167 2167 **** 45.0 59.8 52.0 61.9 58.4 56.6 53.6 46.8 48.2 38.9 35.9 37.5 42.3 40.2 39.7 3?.6 46.0 41.0 TOr TAL ****** ****** ******* 164.3 0.063 o. 0.027 o. 0.077 o. 0.059 o. o.os4 o. Oo092 Ot 0.055 Oo 0.059 o. 0.038 o. 0.062 o. 0.087 o. 0.057 Oo 0.062 o. o.064 o. 0.057 o. o~066 o. o.o26 o. o.os1 o .. YEARLY $/MWH 181.9 188.3 231.9 240.7 250.5 256.1 261.2 273.1 ·281.1 295.2 308.6 331.6 348~2 365.0 384.7 406~3 422.4· ******* 118.7 246.3 374·.5 527.8 682 .• 3 838.4 993.4 1146.8 1302.6 1458.2 1616.9 1777.9 1946.0. 2117.3 2291.6 2470.0 2652>r9 2837.5 f•EAK -ENERGY LOA II COSTS ********************************** YR <MW> <GWH> FACTOR <MIL.$) INV. FUEL O+M N.I. TOTAL ** *****'* ******* ****** ****** ***** ***** ***** ***** ****** 93 947 4736 57.09 164 7.64 23.36 3.69 o. 34.69 94 965 4829 57.12 182 12.46 21.39 3.82 o. 37.67 '"95 983 49"" ....... 57.16 188 12.22 22.25 3.78 o. 38.26 96 1003 5031 57.10 ?3? .,j<i,; ... 18.14 23.88 4.07 o. 46.09 97 1023 5141 57.37 241 18.21 24.59 4.01 o. 46.82 98 1044 5250 57.40 251 1.8t29 25.45 3.98 o. 47.72 99 1064 5360 57.51 256 17.91 25.97 3.90 o. 47.78 0 1084 5469 57.44 261 17.56 26.45 3.75 o. 47.77 1 1121 5661 57.65 273 17.38 27.14 3.72 o. 48.24 2 1158 5853 57.70 281 16.81 27.61 3.60 o. 48.02 3 1196 6044 57.69 295 16.68 28.60 3.56 o. 48.84 4 •1233 6236 57.58 309 16.54 29.40 3.55 o. 49.49 5 1270 6428 57.78 332 19.78 2S.04 3.77 o. 51.59 6 1323 6701 57.82 348 19.33 28.93 3.70 o. 51.97 7 1377 6.973 57.81 365 18.92 29.77 3.66 o. 52.35 8 1430 7246 57.69 385 18.54 . 30.93 3.62 o. 53.09 9 1484 7518 57.83 406 21-.. 06 29.16 3.82 o. 54.04 10 1537 7791 57.86 422 20.32 30.15 . 3.75 o. 54.22 I 'I I I I I I I I I I I I I I I I ·---------- I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ***********%************************************ AlASKA RAILBELT RUN 02 ZERO!Y. -3~ JOB NUMBER 2ML4Z7 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COHCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTHZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 HW 0 59 452 141 67 317 155 SUM= 1190 *********************************************************************** TOTAL CAPAB. YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ~***** **** 93 680* 1853 ~4 1822 95 1774 96 1704 97 1630 98 1575 99 1575 0 1531 1 1531 2 601* 2079 3 2026 4 1* 2027 5 1939 6 1* 1917 7 lX 70 1987 S l X 70 1 * 2032 9 2031 10 lX 70 1* 2102 *********************************************************************~~* ********************************************************************>';;** MW ADD 0 0 210 0 0 0 1285 SUM= 14\95 MW RET 0 -46 -335 -141 -61 0 0 SUM= -5l13 *lt**** ****** ****** ****** -****** ****** ******-**** *********** .. . .:. I I I I I I I I. I I I I •• I I. I I I GENERAL ELECTRIC COMPANY OGF'-5 GENERATION PLANNING PROGRAM-SUMMARY OUTFjUT ************************************************ ALASKA RAILBEL T RUN 02 ZERO% -3% JOR NUMBER 2HL4Z7 *******~******************************** TOTAL CAPABILITY <INCLUDING TIES) YEAR TIME OF ,:-tR ¥* '7'3 94 ?>5 '-}6 97 98 99 00 01 ·)2 ()3 )4 ·)5 )6 )7 )8 ()9 1.0 LOA It ***** 947 965 983 1003 ' 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 F'OOL f'EAK l"R . _<MW> ** ****** 93 947 94 965 C)15 983 96 1003 97 1023 98 1044 99 1064 0 1084 1 1121 2 1158 3 1196 4 1233 5 1270 6 1323 7 1377 8 1430 . 9 1484 l.O 1537 ENit F'EAt< ***** ***** 1853 1853 1822 1822 1774 1774 1704 1704 1630 1630 1575 1575 1575 1575 1531 1531 1531 1531 2079 2079 2026 2027 1939 1917 1987 2032 2031 2102 TOTAL ENERGY <GWH> ******* 4736 4829 4922 5031 51'41 5250 5360 5469 5661 6352 6455 6599 6698 6880 7079 7310 7551 7827 ~026 2027 1939 1917 1987 2032 2031 2102 LOA!) FACTOR ****** 57.09 57.12 57.16 57.10 57.37 57.41 57.51 57.44 57.65 62.61 61.61 60.92 60.21 59.36 58.69 C'8 "'O \.J • ..!. ' 58.08 58.14 F'CT, RES. **** ~5.7 ss.s so •. s 69.9 59.4 so.a . 48.0 41.2 36.6 79.5 69.4 64.4 52.7 44.9 44.3 42.1 36.9 36.8 TOTAL COSTS (MIL,$) ****** 207 213 215 227 231 236 241 249 258 249 268 249 266 254 277 276 295 299 LOSS OF LOAit PROBABILITY DIY H/Y ****** ****** o.ooo o. o.ooo o. o.ooo o. o.ooo o. o.ooo o. 0.001 o. 0.002 o. 0.015 o. 0.032 o. o.ooo o. 0.001 o. 0.001 O. 0.017' o. o.o6a o. o.o2s o. o.o29 of o.oso o. 0.025 o. COST IN YEARLY COST ******* 206.7 212.5 215.1 227.2 230.8 235.7 240.9 248.7 258.2 249.3 267.9 249.2 263.8 253.6 277.5 275.8 295.5 299.1 MILLION $ CUM. PW TOTAL ******* 149.3 298~4 444.8 595.0 743.2 890.0 1.035.8 1181.9 1329.1 1467.2 1611.2 1741.2 1875.9 2000.6 2133.2 2·261.0 2394,1 2524.8 YEARLY S/HWH ********************************** INV. ***** 34.49 33.83 33.19 32.47 31.78 31.12 30.48 29.87 28.86 35.96 35.39 34.62 34.10 33.20 32.60 31 .• 90 Jo.ee 30.10 FUEL ***** 5.29 6.37 6.76 .9.05 9.57 10.29 11.02 12.22 . 13.41 o. 2.83 o. 2.49 0.70 3.62 2.95 5.39 5"33 O+H ***** 3.86 3.81 3.74 3.64 3.54 3.48 3.44 3.38 3.34 3 •. 29 3.29 3.15 3.09 2.95 2.97 2.88 2~B6 2.79 N.I. ***** o. o. o. o. o. o~ o. o. o. o. o. o• o. o. o. o. o. o. TOTAL ****** 43.65 44.01 '43. 70 45.16 Jt4.89 44.89 44.94 45~47 45.61 39.26 41.50 37.77 39.68 '36.86 39.19 37.73 39.13 38.21 :1 ·I I I I I •• I I I I I I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNINGj PROGRAM-SUMMARY OUTPUT ttl**************************'************'***** ALASKA RAILBEL T RUN Pl ZERO/. -5i. JOB NUMBER 2ML9J7 01/20/82 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 *********************************************************************** " TOTAL YR ** 93 94 95 96 97 98 99 0 1 2 Y E A R L Y M W A D D I T I 0 N S ******* ******* ******* ******* ******* ******* ***** 200* 200* CAPAB. + TIES ****-** **** 1373 1 ~4., .... "- 1495 1624 1620 1635 1635 1591 1661 1608 3 70* 1625 4 70* 1695 5 140* 1747 6 70* 1794 7 200* 1994 8 1968 9 70* 2037 10 2037 *********************************************************************** *********************************************************************** MW ADD 0 800 630 0 0 0 0 SUM= 1430 MW RET 0 -46 -3~5 -141 -61 0 0 SUM= -583 ****** ****** *****~ ****** ****** ****** ****** **** *********** 2010 0 813 746 0 6 317 155 SUM= 2037 PCT TOT O. 39.9 36.6 O. 0.3 15.6 7.6 SUM=lOO PCT *********************************************************************** AUTO 0 0 0 0 0 0 0 SUM= 6 PCT TOT 0 I 0. 0. 0. 0. 0. 0. SUM= 0 PCT f COMMI TTEI• MW ·.:I I I I I. I I I I I I I I I I I I I I UENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT *~~*'***~**'************************************ flLASKA RAIL BELT '7 E R 0 7. -t:' ., -•-.\.J./a JOB NUMBER 2ML9J7 RUN Pl **************************************** TOTAL CAPABILITY <I NCLUIJING TIES) YEAR TIME OF LOSS OF LOAD· PROBABILITY COST IN KILLION $ YEARLY CUH. PW YEAR **** 1993 LOA II ENit PEAK PCT~ RES. It/Y H/Y COST TOTI~L ***** 947 ***** ***** 1373 1373 **** 45 .• 0 ****** ****** 0.06.3 o. ******* ******* 190t2 111.2 1994 1995 1996 1997 1998 .1999 2000 2001 2002 2003 2004 2005 2006 2007 2009 2009 2010 YR ** 93 POOL PEAK <MW> 94 95 96 97 98 99 0 l 2 3 4 5 6 7 8 9 10 ****** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 15.37 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 1542 1.542 1495 1495 1624 1624 1620 1620 1635 1635 1635 1635 1591 1591 1661 1661 1608 1608 1-625 1625 1695 1695 1747 1747 1794 1794 1994 1994 1968 1968 2037 2037 2037 2037 59.8 52.0 61.9 58.4 56.6 53.6 46.8 48.2 38.9 35.9 37.5 37~6 35.6 44.8 37.6 37.3 32.5 o~o27 o. 224.4 236.2 0.077 o. 231.1 358.8 0.059 o. 298.3 509.4 0.084 o. 309.4 658.2 0.092 o. 321.6 805.5 o~oss o. 327.7 948.5 0.059 o. ~334~1 1087.4 0.038 o. ~~47.9 1225.0 0.062 o. 356.5 1359.4 0.087 o. 373.6 1493.5 0.057 o. 390.2. 1626.9 0.049 o. 416.5 1762.5 ().052 o. 44·0.6 1899~1 0.023 o. 488.1 2043.2 0.066 o. 5016.4 .2185.7 0.051 o. 530.4 2327.7 0.099 o. 55().4 2468.1 TOTAL ENERGY <GWH> LOA II FACTOR TOTAL COSTS <MIL.$) YEARLY $/MWH ********************************** INV • FUEL O+M N • I •· TOTAL ******* 4736 4829 4922 5031 5141 5250 5360 5469 5661 5853 6044 6236 6428 6701 6973 7246 75!8 7791 ****** 57.09 57.12 57.16 57.10 57.37 57.40 57.51 57.44 57.65 57.70 57.69 57.58 5/.79 57.82 57.81 57.69 57.83 57.86 ****** 190 224 2J1 298c 309 322 328 334 348 356 374 390 416 441 488 506 530 550 ***** ***** ***** ***** ****** 12.30 23.36 4.51 o. 40.16 20.33 21~39 4.75 o. 46.47 19.95 22t22 4.79 o. 46.96 30.13 23.88 5.28 o. 59.29 30.27 24.59 5.32 o. 60.19 30.42 25.45 5.38 o. 61.25 29.79 25.~7 5.38 o. 61.14 29.20 26.60 5.29 o. 61.10 28.98 27.14 5.34 Ot 61.45 28.03 27.61 5.27 o. 60.91 27.89 28.60 5.32 Oo 61.81 27.77 29.40. 5.40' o. 62~57 28.40 30.89 s.so o. 64.79 27.96 32.20 5.58 o. 65.75 34.28 29.77 5.96 o. 70.00 32.98 30.93 . 5.97 o. 69.88 32.47 32.03 6.05 o. 70.55 31.33 33.20 6.11 o. 70.64 r-~· ~--~-------~~~------------------------------- 1 I I I I I I I I I ·I I I I I I ~I ~· I :ENE~AL ELECTRIC COMPANY OGP-~ GENE~~710N PLANNING PROGRAM-SUMMARY OUTPUT '**'****1**~*f**'******************************* ALASKA RI'~IL~EL T RUN P2 7 t_-c-. 0 •J --~· .. , ~~n h . ~h JOB NUMBER 2ML9J5 ****************'*********************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COHCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM:; 1190 -· *********************************************************************** YR ** 93 94 95 96 97 98 99 0 1 3 4 TOTAL CAF'AB. Y E A R L Y M W A D D I T I 0 N S + TIES ******* ******* ******* ******* ******* ******* ***** ****** **** 680* 1.853 601* 1822 1774 1704 16-30 1575 1575 1531 1531 2079 -. 1'\,C"'t. ·" /Lv~•O 1* 2021 s 1n9 6 1* 1917 7 1X 70 1987 8 lX 70 1* 2032 9 2~1 10 lX 70 ·1* 2102 *************************************~********************************* *********************************************************************** MW ADD 0 0 210 0 0 0 1285 SUM= 1495 MW RET 0 -46 -335 -141 -61 0 0 SUM~ -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 13 326 0 6 317 1440 SUM= 2102 PCT TOT Oe 0.6 15.5 o. 0~3 15.1 68.5 SUH=lOO PCT *********************************************************************** AUTO 0 0 210 0 0 0 0 SUM= 210 PCT TOT O. O. 100.0 O. o. O. O. SUM=lOO PCT * COMMITTED MW :1. I I I I I I I I I I I I I •• I :I I I bENE~AL ELECTRIC COHPANY OGP-~ GENERATION PLANNING PROGRA~-SUMMARY OUTPUT ************************************************ ALASKA RAILBEL.T RUN P2 ZEROX -5% JOB NUMBER 2ML9J5 **************************************** YEAR ****-1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 YR ** 93 94 95 96 97 9B 99 0 1 2 3 4 5 6 7 8 9 10 LOAD ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158- 1196 1233 1270 1323. 1377 1430 1484 1537 POOL PEAK <MW> TOTAL CAPABIL-ITY <INCLUitlNG TIES> YEAR TIME OF ENI• PEAK ***** ***** 1853 1822 1774 1704 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 TOTAL ENERGY <GWH> 1853 1822 1774 1704 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 LOAD FACTOR ****** 947 ******* 4736 ****** 57.09 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 4829 4922 5031 5141 5250 5360 5469 5661 6352 6455 6599 6698 6880 . 7019 7310 7551 7827 " 57.12 57.16 57.10 57.37 57.41 57.51 57.44 57.65 62.61 61.61 60.92 60.21 59.36 58.69 58.20 58.08 58.14 PCT. RES1 **** 95.7 88.8 80.5 69.9 59.4 50.8 48.0 41.2 36.6 79.5 69.4 64.4 52.7 44.9 44.3 42.1 36.9 36.8 LOSS OF LOAD PROBABILITY D/Y H/Y ****** ****** o.ooo o. o.ooo o. o.ooo o. o.ooo o. o.ooo o. 0.001 o. 0.002 o. 0.015 o. 0.032 o. o.ooo o. 0.001 o. o.oo1 o~ o.ol.7 o. 0.068 09 0.025 o. 0.029 o. o.oso o. 0.025 o. COST IN YEARLY COST ******* 349.7 355.9 359.0 371.6 375.7 381.0 386.8 395.7 405.3 475.2 494.5 476.2 493.4 481.6 509.1 510.8 531.5 538.8 TOTAL YEARLY S/MWH MILLION $ CUM. PW TOTAL ******* 204.4 402.6 593.0 780.7 961.4 1136.() 1304.7 1469.1 1629.6 1808~7 1.986.2 2149.0 2.309.6 2459.0 2609.3 2752.9 2895.3 3032.7 COSTS ********************************** <MIL.$) INV. FUEL O+M N.I. TOTAL ****** ***** ***** ***** ***** ****** 350 63.a3 5.29 4.71 o~ 73.s3 356 62.60 6.37 4.74 o. 73.71 359 61.42 6.77 4.75 o. 72.94 372 60.09 9.05 4.72 o. 73.86 376 58.80 9.57 4.70 o. 73.07 381 57.58 10.29 4.71 o. 72.58 387 56.40 11.02 4.75 o. 72.17 396 55.27 12.31 4.76 o. 72.35 405 53.40 13.41 4.80 o. 71.60 475 69.94 o. 4.88 o. 74.82 495 68.81 2.83 4.97 o. 76.61 476 67.32 o. 4.86 o. 72.17 493 66.31 2.49 4.86 o. 73.66 482 64.56 0.70 4.74 o. 70.01 S09 63.44 3.62 4.86 O. 71.92 511 62.12 2.95 4.81 o. 69.87 531 .. 60.14 5.39 4.86 o. 70.39 . 539 58.67 5t33 4.84 o. 68.84 : I I I I I I I I I I I· I I I I I I HI r~:... ;.1 E !:::• .l'l L ::! r:·c· T t:i'1'C r '1 ~lf· • _).,j v ...... ._"' r~f'" '-' .... t:.-• ._~_. .... ua·-1. Hr,.. • UGP-5 GEMERAT!ON PLANNING PROGRAM-SUMMARY OUTPUT '***t******************************************* ALASI<1!). HA!LBEl T -<t E .. r· 0 •u . ...., '" ~ r~ /. -.:.. t.~ JOB NUMBER 2MLD23. RUN Ql oJ.• il.• \1.· >It \!• -.!• \1• 11• 'L• oJ:• ".1.• ..t . ..V ..V \l• q. '41.• ..!.• oJ. ·~ \1< \1.• \l• * ...t· il.• 'J: ~· * •ll * * * * \1· •.1." * * '-!· \1.· .lfr.lf• Ff II\.,, If~ -'i•,. ,., .. ~ "r ·T~ ~· 4T• .Jf\ .. ;, If 1)\ .,. ,.l, IJ) #I' trf\ ·.If· If· •T' If., \. f4\ .. i. ;iT .... ~ ,;)-~ GENERATION SYSTEM NUKE COAL NGASGT OIL GT" DIESEL COMCYC TYPES lYPE 1 2 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 *********f************************************************************* TOTAL CAF'AB. YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 200f 1373 94 95 96 97 98 99 0 1 2 3 4 5 6 7 200W 70* 70* 140* 70* 1542 1495 1624 1620 1635 1635 1591 166.1 160:8 1625 1695 1747 1794 1994 8 1968 9 70* 2037 10 203? *********************************************************************** ***************f***************************t**********************~$*** MW ADD 0 800 630 0 0 0 0 SUM= 1430 MW RET 0 -46 -335 -141 -61 0 0 SUM~ -5S3 ****** ****** ****~* ****** ****** ****** ****** **** *********** 2010 0 813 746 0 6 317 155 SUM~ 2037 PCT TOT O. 39.9 36.6 o. 0.3 15.6 7.6 SUM=100 PCT *******************************************************************~*** AUTO 0 0 0 0 0 0 0 SUM= 0 PCT TOT O. O. O, O. Ot o~ o •. SUM: 0 PCT * COMMITTED M~J " I l:i t:'l..t E c:_, ! L E t ;::-C T t::• l r ·~ :-M ~""• ... ~. , • ;.;>-1'. f\[) ._._ ,,,.,...., ,_:J,,iHI·{'f I ~G~-5 GENER~TlON PL~HNING ~ROG~~M-EUMMARY QUTP~T ff*'*****'*1*****************4***************'** t:.• !· ll B' •.:·, ·~ r\ ll . 1:, .... , I • :Z E h D :~ -· 2 ·:; J~B NUMFEH 2MLD23 RUN Ql t )l'. *' * '*' ~ ~ '* ~\ ;f ~· * ~·~.;f.~:**'~.*'**** :t· * * *' *· :t * * * * :t. :t: :t· * >r.· * I 1993 1 1994 1995 1996 197'7 1 1998 . 1999 2000 I 2001 .20()2 2003 20011 1 2005 2006 2007 12008 2009 ? t1•l () ..... W' It "tt I I YF~ ~:w I o-z . ._. 94 9 :-; 96 I t>••• I / 98 99 I 0 1 ,... .::. I 3 4 5 6 . I 1 8 9 I 10 I LOf-1It ;t·*·J.· * ~ ........ 947 965 C>8:"J: ; . '-' 1003 1023 1044 1064 l.084 1121 1158 1196 1 ....... ,. ..... ..::.~~ 1270 13"' .... -~ 1377 1430 1484 1537 POOL F'EAI\ 'MW ., I\-t I ****** ·~47 965 983 1003 10""'1: ---· 1044 1064 1084 1121 1158. 1196 1233 1270 1323 1377 1430 1484 1537 TOTf-1L C?1FABILITY ·~ lNCLUDING i'IIIS) YE1~R Til1E OF F'CT~ END PEAK RES. ***** ***** **** 1373 1373 45.0 1~42 1542 59.8 1495 1495 C''") 0 .._l.t:,. .. 1624 1624 61 f 9 1620 1620 58.4 1635 1.635 56.6 1635 1635 53.6 1591 1591 46.8 .1661 1661 48.2 1608 1608 38.9 1625 1625 35.9 1695 16Cl5 37.5 1747 1747 37.6 '1794 1794 35.6 1994 1994 44.8 1968 1968 ........ 6 ~ / t 2037 :!037 37.3 2037 ~~037 32.5 TOTAL TOTAL E~!EF\:GY L0~1D COSTS tGlrJH) FACTOR <MIL.$) ~:~ **.*** $***** ****** 4736 57.09 170 4829 \'::" ... 1,.., ._} / t ..:.. 190 4922 57+ 16 196 5031 57(10 245 5141 57.37 254 5250 57.40 265 5360 C.j"7 51 \.oi. I + 272 5469 57.44 278 5661 57.65 '100 ..:.. , 5853 57.70 299 6044 57.69 315 6236 c;; 58 .... . . 330 6428 r::----.8 ,_1/t/ 353 6701 57.82 .... 76 ~ . 6973 57.81 405 72·16 r::""'] 69 >:J, •. 423 7518 57.83 445 7791 57.86 465 LOSS OF LO~~~ COST IN MILLION $ PROBABILITY YEARLY CUM~ PW ·DIY H/Y COST TOTAL ****** ****** ******* ******* 0.063 o. 169.9 136.6 0.027 o. 189.7 286.2 0.077 o. 196.4 438.0 0.059 o. 244.7 623.4 0.084 o. 254.5 812.5 0.092 o. 265.4 1005 .. 8 0.055 o. 271.5 1199.7 0.059 o. 277.9 1394.3 0.038 o. 290.3 1593.6 0.062 Ot 298.9 1794.8 .0.087 o.-314.6 2002..4 0.057 o • 329.8 2215.7 0.049 o. 353.1 2439~6 0.052 o. 375.7 2673-.2 0.023 o. 404.6 2919~B 0.066 o. 422.8 3172_., s 0.051 o. 445.3 3433.4 0.099 0 • 465.2 3700.6 YEARLY $/MWH ********************************** INV. FUEL O+M N.I. TOTAL ***** ***** ***** ***** ****** 8.01 23.36 4.51 o. 35~87 13.13 21.39 4.75 o. 39~28 12.89 22.22 4.79 o. 39.90 19.47 23.88 5.28 o. 48.63 19.59 24.59 5.32 Ot 49.50 19.72 25.45 5.38 o. S0 .• 55 19.31 25.97 5.38 o. 50.66 18.93 26.60 5.29 o. so~s2 18.81 27.14 5. 34 o. 5.1.29 18.19 27.61 5.27 o. 5.1)07 18.13 28.60 5.32 o, 52.05 18.08 29.40 5.40 o. 52.89 18.54 30.89 5.50 o. 54.94 18.28 32.20 5.58 o. so-..06 22.30 29.77 5.96 o. 58.02 21.46 30.93 5.97 o. 58.36 21.14 32.03 6.05 o. 59.23 20-.40 33.20 6.11 o. 59.71 -'' ~ .~., """ -~·"' .... "'""'" ..... , .. ,_,. , ... : .. , ........... ,,.,.,-~..,_,.,,.~ ... -:.-~;:::-.. ";._...,"''" ... ~~: ....... ,,.,,..,,. ._,,,,,..:.,.. "-v,-..~.;l;,..~ .... '!"4."">·! • .+.·<> ......... ;..., I I I I I JGP-5 GENERATION PL~NHINE PROGRAM-SUMMARY OUTPUT 1"*********************ll************!*********** RUN Q2 JOB NUMBER 2MLD27 *t~tW*f********************************* GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYFE 1 2 3 ·4 5 6 7-10 DPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 19 9:; 11 W 0 59 4 52 14 1 6 7 31 7 15 5 SUM=. 1190 I *******************************f*************************************** . TOTAL CAF'AB. I YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 680% 1853 I 95 96 1822 1774 1704 1630 1575 Q7 < I I 98 9Cj' 0 .1575 1531 1531 601* 2079 I I I 1 2 /1. l 5 -l 8 1X lX 70 70 2026. 1* 2027 1939 19.17' 1987 1* 2032 Q 2031 10 1X 70 1* 2102 lt******W******~*******~*********************************************** I *************************************************************~***t**~** MW ADD 0 0 210 0 0 0 1285 SUM= 1495 MW RET 0 -46 -335 -141 -61 0 0 SUM~ -583 I *·*~** ***~~* ****** ****~* ~***** **t*** ****** **** *******~*** 2010 0 13 326 0 6 317 1440 SUM= 2102 PCT TOT 0< 0~6 15.5 O. 0.3 15,1 68.5 SUM~100 PCT **********¥***********.********~*************************************** I AUTO 0 0 210 0 0 0 0 SUM~ 210 PCT TOT O~ O. 100.0 o. Oi o. o. SUM=lOO PCT I I I I· ·-i: C 0 M M I T T E I! H :.:1 I I I I I I 1. I I I~ I_ I I I I I I I I . l . " I=' t" • • ,.. . 1:'' L .... t:.. • ,.. j• n. f.i. F' .. } I ~ ~ ~I'!-• • : i ~ ::. ;_..!. f •• .!.. ~ -~~ ~' 1 J··t ,~. I :.: 2 F -·s G: E ~\ £ F: r~, T .1 t' N F' L ~~. ! N I N G F R JJ G R ~1 N ". S IJ M ti t~ f. .. \' 0 U T F' U '1 ~**tl*¥***l**~***~*11~**********~**************t RUN Q2 IQ~ ~UlMP~O ~Mt It~~ ""'"· .r:. I. t ......... \ ...... 1,'-' ._, ~~*~·w~~~~~.w~~~*~**~~*~~~~**'~~~*~~~~•w~~~ "( · · t ;; .. 't~ If.. ,. ? •1' ·"£\ o1f ·"7· II .,,_ · •'Tt ,, .. · t IJ IJ· 1 .IJ if 4~ ~1', •t' ~,. •• • t· 'f IT If• IT• ·T·t "• ,, •T YEAF: **** j 993 1994 :l995 1996 1997 1998 1999 2000 2C•01 '') 0 v"" ~ J:.. ~ 200 41t 2005 .... ''(' 6 ,.·:.v ·' 2007 ')f'l08 ..... , ') Q\ ('I Q .... -" 2010 ** t:~7 7 .. , 94 95 96 97 98 99 0 1 ... ..::. 3 4 5 6 7 .. 10 LOA !I ***** 9·17 965 983 1003 1023 1044 1064 1084 11'21 1158 1.196 1 '.)7 ~ ~...;..-....... 1 '1,0 ..:....l 1323 1377 1430 1484 1537 POOL PE?;K <MW> **~~***' 947 965 983 1044 1064 1084 1121 1158 1196 1233 1270 1323 :1377 1430 1484 1537 TOTAL CAPABILITY (INCLUDING TIES) 'f£r:\r~ TINE OF EN [I F·E AI\ :~**** ***** 1853 1822 1774 1704 1630 1575 1575 1531 1531 2·079 ?0?6 .... ..... 2027 1939 1917 1987 2032 2031 .?10? ... ..., TOT tiL ENERGY <GWH) **:+·**** 4736 4829 4 c;·?'1 ........ 5031 5141 5250 5360 5469 5661 6352 6455 6599 6t.9.8 6880 7079 -"'rlo l~ 7551 7827 1853 1822 1774 1704 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 -2031 2102 LOA!! FACTOR ****** 57.09 57.12 57.16 ~7 10 "" . . 57.41 r.:;? c;l .... • t ..... 57.65 t.2 + 61 60~92 60.21 59.36 58.69 58.20 58.08 58.14 F'CTv F~ES + **** 95.7 88~8 80.5 '0 Q 0, + ' 59.4 50)8 48.0 41~2 36.6 79.5 69.4 64.4 s::',... 7 ....... .::. . 44.9 44.3 TOTAL COSTS <MIL.$) ****:i<* 205 212 215 227 231 237 4'i4"') ~ &.. 251 261 2·54 284 265 282 271 297 297 317 323 LOSS OF LOArt ·PROBABILITY It/Y H/Y ****** ****** o.ooo o~ o.ooo o. o.ooo o. o.ooo o. o.ooo o. 0.001 o. 0.002 o. 0.015 o. 0.032 o. 0.000 Oo 0.001 o. 0.001 o. 0.017 o • 0.068 o. 0.025 o. 0.029 o~ 0.050 o. 0.025 o. COST IN YEARLY COST ******* 205.3 211.5 214.6 227.2 231.3 236.7 242.4 251.3 261.0 264~2 283.5 265.3 282.4 270.6 296.6 296.7 317.4 323.1 MILLION $ CUH. f'W TOTAL *-****** 165.1 331.9 497.8 670.0 841.8 1014.2 1187~4 1363.3 1542.4 1 "7""0 ..., .:. .. - 1907.3 2078(-9 225S.O 2426.3 2607.1 2784.3 2970~3 3155.9 YEARLY $/MWH ****************************~***** I NV. FUEL _QtM N • I. TOTAL ***** ***** ***** ***** ****** 33.34 5.29 4.71 o. 43.35 32.70 6.37 4.74 o. 43.81 32.08 6,77 4o75 O. 43.60 31t39 9.05 4.72 o. 45i16 30.71 9.57 4.70 o. 44~99 30.08 10.29 4.71 o. 45.08 29.46 11.02 4.75 0( 45.23 28.87 12.31 4.76 o. 45.95 27.89 13.41 4c80 Oc 46.10 36.72 o. 4.88 o. 41.60 36.13 2,83 4.97 Ot 43.92 35.34 o. 4.86 o. 40.20 34.82 2c49 4.86 O. 42.16 33.90 0.70 4.74 Ot 39.34 33.42 3.62 4c86 Ot 41.90 32.83 2,95 4.81 o. 40.58 31.78 5+39 4.86 O, 42c03 31.11 5.33 4.84 O. 41.28 I I I I I I I I I I I I I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBEL T RUN Rl ZEROi! -3i. JOB NUMBER 2MLD31 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 . 2 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 , 59 452 141 67 317 155 SUM= 1190 *ft~********************~********************************************** . TOTAL CAPAB. YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 200* 1'373 94 lX 70 1412 95 1X 70 1435 96 200*' 1564 97 lX 70 1560 98 lX 70 1575 99 1575 0 1531 1 1X 70 1601 2 1548 3 2X 70 1635 4 1635 5 lX 200 1747 6 lX 70 1794 7 1X 70 1864 8 lX 70 1908 9 lX 70 :1977 10 lX 70 2047 *****************************************•***************************** *********************************************************************** MW ADD 0 400 840 0 0 200 0 SUM= 1440 MW RET 0 -46 -335 -141 -61 0 0 SUM= -583 ****** ******' ****** ****** ****** ****** ****** **** *********** 2010 0 413 956 0 6 517 155 SUM= 2047 PCT TOT o. 20.2 46.7 0. 0.3 25.3 7.o SUM=100 PCT *********************************************************************** AUTO 0 0 840 0 0 200 0 SUM= 1040 F'CT TOT 0. ·o. 80.8 0. O. 19.2 O. SUM=lOO PCT * COMMITTED MW I I I I I I I I I I I I I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBEL T RUN Rl ZEROY. -3% JOB NUMBER 2MLD31 J! **************************************** YEAR **** 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 YR ** 93 94 95 96 97. 98 99 0 1 2 3 4 5 6 7 8 9 10 . LOArt ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 . 1323 1377 1430 1484 1537 POOL PEAK <MW> ****** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 153.7 TOTAL CAPABILITY < INCLUitiNG TIES) YEAR TIME OF ENII PEAK ***** ***** 1373 1373 1412 1412 1435 1435 1564 1564 1560 1~60 1575 1575 1531 1601 1548 1635 1635 1747 1794 1864 1908 1977 2047 TOTAL ENERGY <GWH> ******* 4736 4829 4922 5031 5141 5250 5360 5469 5661 5853 6044 6236 6428 6701 6973 7246 7518 7791 1575 1575 15.31 1601 1548 1635 1635 1747 1794 1864 1908 1977 2047 LOAD FACTOR ****** 57.09 57.12 57.16 57.10 57.37 57.40 57.51 57.44 57.65 57.70 57.69 57.58 57.78 57.82 57.81 57.69 57.83 57.96 F'CT. RES. LOSS OF LOAit F'ROBAB ILITY It/Y H/Y COST IN YEARLY COST MILLION $ CUM. PW TOTAL ****. 45.0 ****** ****** ******* 190.2 ******* 137.4 46.3 45.9 55.9 .. 52.5 so.a 48.0 41.2 42.8 33.7 36.7 32.6 37.6 35.6 35.4 33.4 33.2 3Z.2 TOTAL COSTS <MIL.$) ****** 190 202 215 281 294 309 315 328 348 359 388 405 440 468 500 533 565 ,, 602 0.063 0& 0.047 o. 0.044 o. 0.038 o. 0.057 o. 0.065 o. o.o37 o~ 0.094 o. 0.060 o. 0.099 o. 0.052 o. 0.091 o. 0.079 o. 0.083 o. 0.069 . o. 0.082 o. o.oso o. 0.043 o. 201.9 214.7 280.6 294.4 308.8 315.0 328.1 348.5 359.1 388.1 405.4 439.6 468.4 500.1 532.6 565.4 602.1 279.0 425.2 610.7 799,7 992.1 1182.7 1375.4 1574.2 1773.0 1981.7 .2193.2 2416.0 :2646.4 2885.2 3132.2 3386.7 3649.9 YEARLY $/MWH ********************************** INV. FUEL O+M N.I. TOTAL ***** ***** ***** ***S* ****** 11.31 23.36 5t48 o. 40.15 11t86 24.24 5o72 O, 41.81 12.41 25.23 5.99 o. 43.63 22.43 26.99 6.34 o. 55.77 22.76 27.94 6.58 o. 57.27 23.10 28.89 6.82 o. 58.81 22.63 29.23 6.92 o. 58.78 22.18 30.68 7.12 o. 59.98 22.28 31.84 7.44 o. 61.56 21.55 32.32 7.49 o. 61.36 22.59 33.77 7.86 o. 64.22 21.90 34.96 8.15 o. 65.02 25.61 34.48 8.29 o. 68.38 25.45 35.84 8.61 o. 69.89 25.33 37.39 9.00 o. 71.72 25.25 38.87 9.39 o. 73.51 25.22 40.20 9.78 o. 75.20 25.22 41.80 10e26 Ot 77.28 :I I ;I I I I I I I I I I I I I I I I I GENERAL ELECTRIC COMP~NY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ~1LASKA RAlLBEL T RUN R2 ZEROi= -3% JOB NUMBER 2MLD33 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COHCYC TYPES TYF'E. 1 2 3 . 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 -0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 *********************************************************************** TOTAL CAPAB, YR Y E A R L Y M W A D D I T I 0 N S t TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 680* 1853 94 1B22 95 1774 96 1704 97 1630 98 1575 99 1575 0 1531 1 1531 2 601* 2079 3 ~·o~6 ...... ..:.. 4 1% 2027 5 1939 6 1* 1917 7 1X 70 l:987 8 1X 70 1* 2032 9 2031 10 1X 70 1* 2102 *********************************************************************** *********************************************************************** MW ADD 0 0 210 0 0 0 1285 SUM= 1495 MW RET 0 -4o -335 -141 -61 0 0 SUM= -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 13 326 0 6 317 1440 SUM= 2102 PCT TOT o. 0.6 15.5 O. 0.3 15tl 68.5 SUM=100 PCT *******~*************************************************************** AUTO 0 0 210 0 0 0 0 SUM= 210 PCT TOT O. o. 100.0 o. o. 0. 0. SUM=100 PCT * COMMITTEII MW I I I I I I I I I I I I I I I I I I I ALASKA RAILBEL T RUN R2 ZEROX -3% JOB NUMBER 2MLD33 ***************'f*********************** YEAR **** 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 LOA II ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 TOTAL CAPABILITY <INCLUitiNG TIES) YEAR TIME OF ENit PEAK ***** ***** 1853 1853 1822 1774 1704 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 20.31 2102 1822 1774 1704 . 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 PCT. RES. **** 95.7 sa. a eo~5 69.9 59.4 so.a 48.0 41.2 36.6 79.5 69.4 64.4 52.7 ·44 t 9 44.3 42.1 36.9 36.8 YR ** 93 F'OOL PEAK · <MW) TOTAL ENERGY <GWH) LOAD FACTOR TOTAL COSTS <MIL.$) 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 ****** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1464 1537 ******* 4736 4829 4922 5031 5141 5250 536-0 5469 5661 6352 6455 6599 6698 6880 7079 7310 7551 7827 ****** 57.09 57.12 57.16 57.10 57.37 57o41 57.51 57.44 57.65 62.61 61.61 60.92 60.21 59.36 58.69 58.20 58.08 58.14 ****** 294 301 306 318 324 329 336 315 357 423 444 427 445 434 465 469 492 503 LOSS OF LOAit f•RQBAB IL I TY DIY H/Y ****** ****** o.ooo o. o.ooo o. o.ooo o. o.ooo o. o.ooo o. 0.001 o. 0.002 o. 0.015 o. o;o32 o. o.ooo o. 0.001 .o. 0.001 o. 0.017 o. o-.o6a o. 0.025 o. 0.029 o. o.oso o. 0.025 o. COST IN YEt.RLY COST ******* 294~2 301.1 306.0 318.1 324.5 329.2 335.9 345.2 356.6 423.3 444.0 426.6 444.9 434.1 464.9 469.3 492.2 503. 2. YEARLY $/M~JH MILLION $ CUM. f•W TOTAL ******* 212.5 423.7 632.1 842.4 1050.7 1255.9 1459.1 1661.9 1865.2 2099.6 2338.2 2560.8 2786.3 2999.-8 3221.9 3439.5 3661.1 3881.0 ********************************** !NV. FUEL O+M N.I. TOTAL ***** ***** ***** ***** ****** 51~09 5.29 5.73 o. 62.11 so.11 6.37 s.aa o. 62.35 49.16 7&03 5.99 o. 62.18 48.09 ~.05 6.09 o. 63.24 47.06 8.84 6.21 o. 63.12 46.09 10.29 6.34 o~ 62~71 45.14 11.02 6.52 o. 62.68 44.24 12.22 6.65 o. 63.12 42.74 13.41 6.84 o. 62.99 59.69 o. 6~95 o. 66.64 58.73 2.83 7.22 o. 68.78 57.46 o. 7.19 o. 64.64 56.6~ 2.49 7.34 o. 66.42 55.11 0.70 7.29 o. 63.10 54.42 3.62 7.63 o. 65.67 53.57 2.95 7.69 o. 64.21 51.86 5.39 7.93 o. 65.18 50.90 5.33 8.05 o. 64•2S I • I .,;1 I I I I I I I I I I I I I I •• I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBEL T RUN Tl ZERO% -3i. JOB NUMBER 2ML3S3 **************************************** GENERATION SYSTEM . NUKE COAL NGASGT OIL GT DIESEL COHCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZINB 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 *********************************************************************** TOTAL CAPAB. YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 200* 1373 94 1X 200 1542 95 1495 96 200* 1624. 97 lX 70 1620 98 1X 70 1635 99 1635 0 1591 1 1X 70 1661 2 1608 3 2X 70 1695 4 1695 5 2X 70 1747 6 1X 70 1794 7 1X 70 1664 8 lX 200 2038 9 2037 10 2037 *******************~*************************************************** *********************************************************************** MW ADD 0 400 630 0 0 400 0 SUM= 1430 MW RET 0 -46 -335 -141 -61 0 0 SUM: -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 413 746 0 6 · 717 155 SUH= 2037 PCT TOT O. 20~3 36.6 o. 0.3 35.2 7.6 SUH=100 PCT *********************************************************************** AUTO 0 0 630 0 0 400 0 SUM= 1030 PCT TOT O. o. 61.2 6. O. 38.8 o. SUH=100 PCT 0 * COMMI TTEit MW .'1 I I I I I I I I I I I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBEL T RUN Tl ZERO/. -3~ JOB NUMBER 2ML3S3 01/25/82 **************************************** YEAR **** 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 YR ** 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 LOA II ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 F'OOL PEAK <MW> TOTAL CAPABILITY <INCLUitiNG TIES) YEAR TIME OF END PEAK ***** ***** 1373 1373 1542 1542 1495 1495 1624 1624 1620 1620 1635 1635 1635 1635 1591 1661 1608 1695 1695 1747 1794 1864 2038 2037 2037 1591 1661 1608 1695 1695 1747 . 1794 1864 2038 2037 2037 PCT. RES. **** '45.0 59.8 52.0 61.9 58.4 56.6 53.6 46.8 48.2 38.9 41.7 37.5 37.6 35.6 35.4 42.5 37.3 32.5 TOTAL ENERGY <GWH> LOAD FACTOR TOTAL COSTS <MIL.$) ****** 947 ******* 4736 ****** 57.09 ****** 187 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 4829 4922 5031 5141 5250 5360 5469 5661 5853 6044 6236 6428 6701 6973 7246 7518 7791 57.12 57.16 57.10 57.37 57.40 57.51 57.44 57.65 57.70 57.69 57.58 57.78 57.82 57 .·s1 57.69 57.83 57.96 202 209 268 279 292 300 311 325 334 356 369 398 422 448 478 500 522 LOSS OF LOAD F'ROBAB I LITY D/Y H/Y ****** ****** o.o63 Oe. 0.020 0-. 0.056 o. 0.044 o. 0.063 o. 0.051 o. 0.031 o. 0.073 o. 0.047 o. 0 .,077 0. 0.041 o. 0.069 o. 0.060 o. 0. 06·3 0. 0.053 o. 0.025 o. 0.047 . 0. 0.091 o. COST IN Yl::ARL Y COST ******* 187.4 ~'202. 0 209.4 268.0 279.4 2W1.6 3010.4 310 .. 7 3 ':)1-4 II-,') • . 33-'). 2 355.8 369.2 397\.9 421.7 448.4 477.8 499. tS 522. it\ MILLION $ CUM. F'W TOTAL ******* 135.4 277,1 419.7 596.9 776.2 957.9 1139.7 1322.1 1507.7 1692.8 1BB4.0 2076.7 2278.3 2485.8 2699.9 2921.5 3146.4 3374.7 YEARLY $/MWH ********************************** INV. FUEL O+M N.I. TOTAL ***** ***** ***** ***** ****** 9.31 25.76 4.50 o. 39.58 12.18 25.10 4.55 o. 41.84 11.95 26.00 4.60 o. 42.55 19.69 28o58 5.00 O. 53.27 19.BS 29.41 5.05 O. 54.34 20.08 30.35 5.11 o. 55.54 19.67 31.26 5.11 o. 56.04 19.27 32.43 5.09 o. 56.80 19.22 33.10 5.17 o. 57;49 18.59 33.41 5~09 o. 57.09 19.18. 34.49 5.20 o. 58.87 18.59 35.36 5.25 o. 59.20 19.18 37.34 5.38 o. 61.90 18.96 38.51 5.47 o. 62.94 18.77 39.94 5.61 o. 64.31 20.74 39.51 5.69 o. 65.94 19.99 40.71 5.75 o. 66.45 19.29 41.93 5.83 o ... 67.05 _I I I I I I I I I I I I I I I I I GENERAL ELECTRIC COMPANY oc;F'-5 GENERATION PLANNING F'ROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBELT RUN T2 ZER07. -3% JOB h1HBER 2ML7Z5 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 Z 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 *********************************************************************** TOTAL CAF'AB. YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 lX 200 1373 94 1X 200 1542 95 1495 96 1X 70 1494 97 1X 70 1490 98 1X 70 1505 99 1505 o 1X 70 1531 1 1X 70 1601 2 1X 70 1618 3 o 1X 70 1635 4 lX 200 1835 5 lX 70 1817 6 1X 70 1864 7 1864 8 1X 200 2038 9 2037 10 1X 70 2107 *********************************************************************** *********************************************************************** MW ADD 0 Q 700 0 0 800 0 SUM= 1500 MW RET 0 -46 -335 -141 -61 0 0 SUM= -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 13 816 0 6 1117 155 SUM= 2107 PCT TOT O. 0.6· 38.7 o. 0.3 53.0 7.4 SUM=lOO PCT *****************************************************~***************** AUTO 0 0 700 0 0 800 0 SUM= 1 ~iOO PCT TOT O. O. 46.7 . O. o. 53.3 O. SUM=100 PCT I I I I I I' I •I I I I I I I I I I I I ~-·i.:.Hf ... ~t.t .. lL J::j. t.:.t; I f-\.ll; LUi.,lPANY oc;;p .... ~:i GENEJ;~A T 1 ON F'LANN l:NG PROGl;:AM-SUMMAF~Y OUTPUT ************************************************ ALASI\f.1 HAIL.lH~LT RUN T2 Z r:· r:• (}. •; -·~ .. , .1;;,1\. /tt ..... / .. JOB NUMBER 2ML7Z5 **************************************** YEAR **** 1993 1994 1.995 1996 1997 1998 1999 2000 2001 2002 2003 '">"0. ~v q 2005 2006 2007 2008 2009 2010 YR ** 93 94 "95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 TOTAL CAPABILITY (INCLUDING TIES) YEAR TIME OF LOAD ***** 947 965 983 1003 1023 1044 1064 1084 1121 1.158 1196 12:~3 1270 1323 1377 1430 1484 1537 F·DOL PEAK <MW> ****** 947 965 983 l.003 1023 1044 1064 1084 1121 1158 1196 1234 1270 1323 1377 1430 14.84 1537 END PEAl\ ***** ***** 1373 1373 1.542 1495 1494 1490 1505 1505 :l531 1601 :1.61.8 1635 1835 181.7 1864 1864 2038 2037 21.07 TOTAL 1542 1495 1494 1490 1505 1505 1 ~::::s 1 1601. 1618 1635 1835 18l.7 1864 1Sl>4 20~~8 2037 2107 ENEF\GY LOAD ( GWH) . FACTOR ******* ****** 4736 57*09 4829 57.12 4922. 57.16 5031 !:i7 + 10 5l.41 57.37 5250 57.40 53b0 57+ 5l. 5469 57.44 5661 5853 6044 6236 6428 6701 6973 7246 7518 7791 57.65 ~;7 + 70 57.69 c·7 ~a ;;:..} + .;,;:} 57.78 57.82 57.81 57. 6'9 57.83 57.86 F'CT. I~E::S. **** 45.0 59.8 r.::~ 0 ,....._. 48.9 45.7 44.1 41.4 41.2 42.8 39.7 36.7 48.8 43.1 40.9 35.4 4 ~ e::· .: .. + ... ) 37.3 37.1 LOSS OF LOAI:• PROBABILITY Il/Y H/Y ****** ****** 0.045 o. 0-,014 o. 0.041 o. 0.060 o. 0.063 o. 0.052 o. 0.071 o. 0.064 o. 0.041 o. 0.057 o. 0.081 0+ o.o21 o. 0.046 o. 0.049 o. 0.100 o. o~o36 o. 0.066 o. 0.055 o. COST IN YEARLY COST ******* 151.5 167.1 _175.0 220.5 232.9 245.6 256.2 273.0 291.9 310.9 333.2 354.7 378.6 405.0 429.7 458.7 481.9 511.6 MILLION $ CUM. F'W TOTAL ******* 109.5 226.7 345.8 491.6 641.1 794.1 949.2 1109.5 .1276.0 1448.1 1627.2 1812.3 2004.2 2203.4· 2408.7 2621.4 2838.3 3061.9 TOTAL COSTS <MIL.$) YEARLY $/MWH ********************************** INV. FUEL O+M N.I+ TOTAL ****** ***** ***** ***** ***** ****** 1 r.:J·"> ... .:... 3.05 24.61 4.33 o. 31+99 6.04 24.16 4~41 o. 34.61 167 j,75 221 233 246 ")1:6 .:..'-I 273 ") 9."> .:.. ,:.. 311 333 355 379 405 430 459 482 512 5,93 25.17 4.45 o. 35.55 6.41 32.91 4.51 o. 43.83 6.88 33.84 4.58 o. 45.30 7 + 35 34. 78 4. 64 -o o·. 46. 78 7.20 35.88 4.72 o. 47.80 7.67 37.43 4.83 o. 49.92 38 60 4.95 0 51.56 8.01 • • 8.34 39.73 5.05 o. 53.13 . 0 . 5. 16 0 55. 12 8~66 41.3 • 11.27 40.38 5.21 o. 56.87. ~1 4~ 10 ~ .• 29 o. 58.90 11+\,.;l . ..!... ..., .4 5.40 o. 60.45 11.60 43.4 11.15 44.97 5.50 o. 61.62 13.41 44.34 5.55 o. 63.31 12-.93 13.00 45.55 46.92 5.62 o. 64.10 5.75 o. 65.67 I I I I I I I 1- I I I I I I I I I I I ... ..,.. ... ,,.,~" . ~ .... ' .... ~ .... '• ·~ GENERAL ELECTRIC COMPANY DGP-6 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ . .. ALASKA RAILBEL T RUN T3 ZERO% -37. JOB NUMBER 2ML7Z9 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZING · 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452' 141 67 317 155 SUM= 1190 *********************************************************************** YR ** 93 94 Y E A R L Y M W A D D I T I 0 N S ******* ******* ******* ******* *****~* ******* ***** 200* 200* TOTAL CAPAB. + TIES ****** **** 1373 1542 95 1495 96 200* 1624 97 70* 1620 98 70* 1635 99 1635 0 1591 1 70* 1661 2 1608 3 70* 1625 4 70* 1695 5 140* 1747 6 70* 1794 7 200* 1994 8 1968 9 70* 2037 10 2037 *********************************************************************** *********************************************************************** MW ADD 0 800 630 0 0 0 0 SUM= 1430 MW RET 0 -46 -335 -141 -61 0 0 SUM= -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 813 746 0 6 · 317 155 SUM= 2037 PCT TOT o. 39.9 36+6 o. 0.~ 15.6 7.6 SUM=lOO PCT *********************************************************************** ' . ' ', •-~:::-'..J:'<~•''"-"'"''r~"''-•-'-')'0_·~, .... 'I I I •• I I I I I I I I I I I I ·I I I GI:!:NERAL ELECTRIC COMPANY OGP-5 GENERATION PLA~NING PROGRAM-SUMMARY OUTPUT ************************************************ . . ALASKA F~AILBEL.T RUN T3 ZERO% -3% JOB NUMBER 2ML7Z9 **************************************** YEAR **** 1993 1994 1995 1996 19-97 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 YR ** 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 a 9 :J. 0 LOAD ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 :J.l 96 1233 1270 1323 1377 1430 1484 1537 POOL F'EAK <MW> ****** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 143C 1484 1537 TOTAL CAPAB!L.ITY <INGLUDING TIES> YEAR TIME OF ENll PEAK ***** ***** 1373 1373 1542 1495 1624 1620 1635 1635 1591 1661 1608 1625 1695 1747 1794 1994 1968 2037 2037 TOTAL ENERGY <GWH) ******* 4736 4829 4922 5031 5141 5250 5360 5469 5661 58!:i3 6044 6236 6428 6701 697~ 7246 7518 7791 1542 1.495 1624 1620 1635 1635 1 C'9'' <;J .•• '1661 1608 1625 1695 1747 1794 1994 1968 203? 2037 LOA It FAGTOR ****** 57.09 57.12 ~j7 + 16 57.10 57.37 57.40 57.5l. 57.44 57.65 57.70 57.69 57.58 57.78 ·a::-7. 8" \:} + ~ 57.81 57.69 57.83 57.86 PCT. RES. **** 45.0 •59.8 52.0 61.9 58.~4 56.6 53.6 46.8 48.2 38.9 35.9 37.5 37.6 35.6 44.8 37.6 37.3 32.5 TOTAL COSTS <MIL.$) ****** 187 230 283 294 306 3:1,5 324 338 346 363 379 406 429 475 494 518 ·s39 LOSS OF LOAD F'ROBAI( I L I 1'Y II/Y H/Y ****** ****** 0.063 o. 0.027 o •. o·.o77 o. 0.059 o. 0.084 o. 0.092 o. 0.055 o. 0.059 o. 0.038 o. o.o62 o. 0.087 o. 0.057 o. o.o49 o. 0.052 o. Ot023 0. 0.066 o. 0.051 o. 0.099 o. COST lN YEARLY COST ******* 187.4 222.9 230.2 282.9 293.9 305.9 314.6 324.2 337.8 345.9 362.6 379.0 406.4 429.0 475.0 494.2 518.2 539.0 MILLION $ CUM. PW TOTAL ******* 135+4 291.a 448.5 635+5 824o2 1014.8 1205.2 1395.6 1588.3 1779.8 1974.7 2172~5 2378.4 2589.4 2816.3 3045.4 3278.7 3514.3 YEARLY $/MWH ********************************** INV. FUEL O+M N.I~ TOTAL ***** ***** ***** ***** ****** 9.31 25.76 4.50 o. 39.58 15.31 26.11 4.74 o. 46.17 15.02 26.96 4.79 o~ 46.77 22.69 28.26 5.28 o. 56.23 22.82 29.04 5.32 o. 57.17 22.96 29.95 5.37 o. 58.28 22.49 30.83 5.37 o. 58.69 22.04 31.94 5.30 o. 59.28 21.89 32.42 5.35 o. 59.67 21.17 32.65 5.27 o. 59.09 21.09 33.58 5.32 o. 59.99 21.02 34.35 5.40 Oi 60.77 21.54 36.17 5.52 o. 63.23 21.22 37.21 5.59 o. 64.02 25.93 36.24 5.96 o. 68.12 24.95 37.29 5.96 o. 68.20 ·z4.se 38.30 6.os o. 68.92 23.72 39.36 6.11 o. 69.19 _·:::._-, ' I I I I I I I I I I I I I I I I I II r-~- l. -· ~ GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ****************.******************************* ALASKA RAILBEL T RUN Ul ZERO% -3i! JOB NUMBER 2MLOX3 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 ·· 3 4 5 6 7-10 OPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 * * ** * ** * * * * *** ** ** * ** * ** * * * * * *** ** * * *** * *·** * * * * * **** *** ** *** *** * * * * * * *' *. TOTAL CAPABt YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 680* 1853 94 1822 95 1774 96 1704 97 1630 98 1575 99 1575 0 lS31 1 1531 ., .... 601* 2079 :i 2026 4 1* "'0"7 ·--5 1939 6 1% 1917 7 .~X 70 1987 8 1X 70 1* 2032 Q 2031 10 lX 70 1f 2102 *********************************************************************** *********************************************************************** MW ADD 0 0 210 0 0 0 1285 SUM= 1495 J MW RET 0 -46 -335 -141 -61 0 .0 SUM= -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 13 326 0 6 317 1440 SUM= 2102 PCT TOT O. 0.6 15.5 0. 0.3 15.1 68.5 SUM=lOO PCT *********************************************************************** AUTO 0 0 210 0 0 0 0 SUM= 210 PCT TOT o. o. 100.0 o. o. o. O. SUM=l~O PCT * COMMI TTEit MW '-:.. .-~-.. ~.·..., ..• ~---. ' . ~ ~ ,,., ..• ~-~~~--• ·•··"-""'·~·· , _ __,,_.,,_ •.. ,~ ,_ . ._""'·' .. ·• ,,,,, . .,,. ~--,_ ~ •. ,._.,_,, ,;, •. "'-"'~.>!•'·'-·· "'#'~ "'· _,, ..... _.,l~~-~~·-ret~~~vj - f "I I= .•. GENERAL ELECTRIC COMPANY I . . OGP~5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ***********************'************************ I ALASKA RAILBELT ZEROX -3X JOB NUMBER 2MLOX3 RUN Ul I **************************************** I :=-YEAR- **** 1 1993 1994 1995 I 1996 . 1997 1998 I 1999 2000 2001 I I I I 2002 2003 2004 2005 2006 2007 2008 2009 2010 YR LOAil ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 -1233 1270 1323 1-377 1430 1484 1537 f'OOL PEAK <MW> TOTAL CAfiABILITY <INCLUDING TIES) YEAR TIME OF ENI• PEAK ***** ***** 1853 1822 1774 1704 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 TOTAL ENERGY <GWH> 1853 1822 1774 1704 1630 1575 1575 -1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 LOA It FACTOR I ** 93 ****** 947 ******* 4736 *****:* 57.09 94 I 95 . 96 97 98 1 99 0 I I "I I 1 2 3 4 5 6 7 s 9 10 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1~33 1270 1323 1377 1430 1484 1537 4829 4922 5031 5141 5250 ;360 5469 5661 6352 6455 6599 6698 6880 7079 7310 7551 7827 57.12 57.16 57.10 . 57.37 57.41 57.51 57.44 57.65 6.2. 61 . 61.61 60.-92 60.21 59.36 58.69 58.20 58.08 58.14 PCT. RES. **** 95.7 88.8 80.5 69.9 C"9'4 t;.l-~ 50.8 48.0 41.2 36.6 79t5 69.4 64.4 52.7 44.9 44~3 42.1 36.9 36.8 TOTAL COSTS <MIL.$) ****** 213 220 223 235 239 245 251 259 ·269 276 295 277 294 282 309 309 330 336 LOSS OF LOAD. PROBABILIJiY It/Y H/Y ****** ****** o.ooo o. OtOOO o. o.ooo o. o.ooo o. o.ooo o. 0.001 O. 0.002 o. O.OlS O. 0.032 o. o.ooo o. o~oot o. o.oo1 o. 0.017 o. 0.068 o. 0.025 o. 0,029 Oc o.oso o. . 0. 025 0. COST IN YEAF:LY COST ******* 213.4 219.6 222.7 235.3 239.4 244.7 250,5 259.4 269.0 276.0 295.3 277.0 294.2 282.4 308.9 309.4 330.1 336.3 MILLION $ CUM. f'l.J TOTAL ******* 154.1 308.2 459t8 615.4 769.0 921o5 1073 •. 1 1225 t 4- 1378.9 '1531. 7 1690-.4 1835.0 1984.1 2123.0 2270.6 2414.0 2562.7 270'9 ... 7 YEARLY $/MWH ********************************** INV. ***** 36.05 34.37 33.72 32a99 32.29 3lo62 30.97 30.35 29.32 38.57 37.95 37.13 3.6.58 35.61 35.15 34.57 33.47 32.81 FUEL ***** 5.29 6.37 6.77 9.05 9.57 10.29 11.02 12.31 13.41 o. 2.83 o. 2.49 0.70 3.62 2.95 5.39 5.33. O+l1 ***** 4.71 4.74 4.75 4.72 4.70 4~71 4.75 4.76 4d30 4.88 4.97 4.86 4.86 4.74 4.86 4 t 8.1 4.86 4.84 NJI. ***** o. o. o. o. 0* o. o.- o-. ot' o. o. o. o. o. o. o. o. o-. TOTAL ****** 45 .• 05 45.48 45.-24 46.76 46 .. 56 46.62 4·6.74 47-.43 47.52 43.45 45.75 41 .• 99 43~92 .41.05 43.63 42.33 43.72 42.97 :1 I -I I- I I -I I I I I I I I I I I I •• GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBEL T RUN U2 ZERO/. -3/. JOB NUMBER 2ML4L9 **************************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COHCYC TYPE 1 2 3 4 5 6 OPTMZING . 0 1993 1993 0 0 1993 PCT TRIM 0 0 0 0 0 0 TYPES 7-10 *** 1992 Ht~ 0 59. 452 141 67 317 155 SUH= 1190 *********************************************************************** YR ** 93 94 95 96 97 98 99 0 1 2 TOTAL CAPAB. Y E A R L Y M W A D -D I T I 0 N S + TIES ******* ******* ******* ******* ******* ******* ***** ****** **** 680* 1853 l822 1--774 1704 1630 1575 1515 1531 1531 2079 3 2026 4 1* 2027 5 1939 6 1* 1917 7 1X 70 l9S7 B lX 70 1* 2032 9 2031 10 lX 70 1* 2102 **********************-************************************************* *********************************************************************** MW Aicit 0 0 210 0 0 0 12~.S~" __ SUH= 1495 MW RET 0 -46 -335 -141 -61 0 0 SUM= •583 ****** ****** ****** ****** ****** ****** ****** **** *********** -2010 0 13 32.6 0 6 317 1440 SUM= 2102 PCT TOT o. 0.6 15.5 o. 0.3 15.1-68.5 SUH=lOO. PCT -*********************************************************************** AUTO 0 0 210 0 0 0 0. SUM= 210 PCT TOT o. o. 100.0 o. O. o, o, SUM=100 PCT . * COMMI TTEit ~1W . . . . ~·-~,~.w:.:_..i,;. ... ,~.~""'-·~·,."'j,__._.._ :~4 I I I -· I -I I I I I I I I I I -. I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT *******************************•**************** ALASKA RAILBEL T RUN U2 ZERO" -3i. JOB NUMBER 2ML4L9 **************************************** · YEAF~ **** 1993 1994 1995 1 ·~116 19'97 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 YR ** 93 94 95 96 -97 98 99 0 1 2 3 4 5 6 7 8 9· 10 LOA It *:**** 947 Cf6S 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 POOL- PEAK cnw> *****.* 947 965 983 1003 1023 1044.- 1064 1084 1121 1158 1196 1233 ·t270 1323 1377 1430 1484 1537 TOTAL CAPABILITY <INCLUitiNG TIES) YEAR TIME OF ENrt PEAK ***** ***** 1853 ·1822 1774 1704 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 ?03" ,....., .... 2031 2102 TOTAL ENERGY (GWH) ******* 4736 48?9 4922 5031 5141 5250 5360 5469 5661 6352 6455 6599. 6698 68,80 7079 7310 7551 7827 1853 1822 1774 1704 1630 01575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 LOA II F~lCTQR ****** 57.09 57.12 57.16 57~10 57.37 57.41 57.51 57.44 57.65 62.61 61.61 60.92 60 .21. 59.36 58.69 58.20 ss.os 58.14 PCT. RES. **** 95.7 88,.8 so.s 69.9 59.4. 50.8 48.0 41.2 36.6 /9.5 69.4 64.4 52.7 44.9 44.3 42.1 36.9 36o8 TOTAL COSTS <NIL.$) ****** 280 286 289 302 306 311 317 326 335 374 393 375 392 380 407 407 428 434 LOSS OF LOAit PROBABiliTY Ir/Y H/Y ****** ****** o.ooo o. o.ooo· o. o.ooo o. o.ooo o. o.ooo o. 0.001 o. 0.002 Oe 0.015 Oo 0.032 o. o.ooo o. o.oot o. o.oot o. 0.017 o. 0.068 o. 0.025 o. 0.029 o. o.oso o. 0.025 o. COST' IN YEARLY COST ******* 279.8 286.0 289.1 301.6 305.8 3.1.1.1 316.9 325.8 335.4 374.0 393.3 375.0 392.2 380.4 406.9 407.4 428.1 434.3 MILLION $ CUM. Plsr TOTAL i****** 202~1 402.7 599.6 799,0 995. 2. 1189.1 1380.9 1572.2 1763.5 1970.6 2182.0 2377.7 2576.4 2763.6 2957.9 31-46.8 3339.6 3529.4 YEARLY $/Mt•JH ********************************** INV • FUEL O+M N. l • TOTAL. ***** ***** ***** ***** ****** 49.07 5.29 4.71 o. 59.07 48.12 6.37 4 •. 74 o. 59.23 47,21 6.77 4.75 o. 58.73 46.19 9i05 4.72 o. 59.96 45.20 9.57 4.70 o. 59.47 44.26 10.29 4.71 o. 59~26 43.35 11.02 4.75 o. 59.13 42.49 12.31 4.76 o. 59.57 41.05 13.41 4.80 o. 59.25 54.oo o. 4.sa o. ss.aa 53.13 2.83 4.97 o. 60~93 51.98 o. 4.86 o. 56.84 51.20 2.49 4.86 o. 58.55 49tS5 0.70 4,74 0. 55.30 48.99 3+62 4.B6 O. 57.47 47.98 2.95 4.B1 o. 55.73 46.45 5.3~ 4.86 o. 56.70 45.33 5.33 4.84 o. ~5.49 j,' ''""~'; z, ·-·'' .;~'·"'"" , .• .,..,,, .• ~"-"'"'' ·~;;: •. _,._ ~-• ·.,.._,..,.,.,~.-i •.• _..-,,, _ _....,,,.,,.-<-> _.,,_.._,,,, ,•-" •~-... ~.~.YO.·~--"-·,.,., •~:_;"'•-• · > -.-..-.).~.,,:.r.· -~.:;· ·•:.:......·.~-'~'""·•·•••·*'•«-'·"' ··~-. "·'•'~ + :!<""" I I I I I I I I I I I I I I I I I -I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ********************************~*************** f.lLASKA R1i I LBELT ·RUN Vl ZEROi! -3/. JOB NUMBER 2MLI23 *****t********************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COHCYC TYPES TYPE = 1 2 3 4~ 5 6 7-10 OP1MZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1 9 9 2 ri W 0 59 4 52 141 6 7 31 7 1 55 S Uti= 11 9 0 **tf*~~*****~t**$***a'*t**~*~***~:************~***~*~********f~***~***** 93 94 95 1"\ I 70 9i' 98 0 . l. ,.., .. -3 4 5 6 7 8 ~ • TOTAL CAPAB. Y E A R L Y M W A D D I T I 0 N S + TIES ******* ******* ******* ******* ******* ******* ***** ****** **** 1X lX 1" l\ 1X 1X 1>: lX 1X lX -·o /- .., "' l ....,. 70 _,.. ~' \..~ ~--l\J 70 70 ..... I\} ..... ; ... .. .. lX 200 1373 1 .. '">0'' A ~, V 1X 20<:0 1412 1435 1688 1705 .17:05 1817 1864 1864 1978 1977 10 1X 70 2047 ***~******************************************************************* *********************************************************************** MW hDD 0 0 840 0 0 600 0 SUM= 1440 MW RET 0 -46 -335 -141 -61 0 0 SUM= -583 ****** *****~ ****** ****** $***** ****** ****'* **** *********** 2010 0 13 956 0 6 917 155 SUM= 2047. PC T T 0 T 0 • 0 • 6 4 6 • :=-0 ~ 0 • 3 4 4 • 8 7 • 6 SUM= 1 0 0 PC T ********************************************~************************** t~UTO " 0 0 liA 0 0 0 600 0 SU1·1::: 1440 PCT TOT 0. 0. . 5S • 3 0 • 0 • · 41.7 0 • SUM~l 00 F'CT )f:-CONMI TTEII NH I ·.1 I I I I I I I I I I I I I I .I .; . GENERAt ELECTRIC COMPANY OGP-5 GENERAT!ON 1 PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ f-1LASKA RAILBEL T ZEROi; -3% JOB NUMBER 2MLI23 RUN '1.~. ki**********~**********$**************** YE?sR *~:** 1993 1 ~·01: ... ·-'I "'9C:r::" J. ,.J 1996 1997 19'?8 1999 2000 2001 ,. .... ~ --· ,.. .. ~\l\,;•.:._ 2003 2004 2005 r')·-·o' ........ 0 2007 2008 2009 2010 YR =*t 93 94 95 96 97 98 99 0 1 3 4 5 6 7 8 9 10 LOA !I ***** 947 965 983 1·~03 1023 1044 1064 108.-1 1121 1158 1196 1233 1270 1 .... ,... ... ~.::.~ 1377 1430 1484 1537 POOL F'Ef.d\ <MW> ..!.· ... 'II.-..!.·~· . .,.~ 4'1• "'I 4J If• "J ·~ 947 965 983 .1003 1023 1 0-'i 4 1064 1C•B4 1121 1158 1196 1233 1270 1323 1377 1430 1494 1 . .:;37 ·'-'· ~ TOTAL Ct!1F'ABILITY <INCLUDING TIES) YEAR TINE OF ENII PEAK ****~t ***** 1373 1373 1412 1412 1134 1430 1445 1445 1471 1541 1705 .. 7 ~ ..... s::-J. ~. ... '-1 1817 1864 1864 1978 1977 2047 TOT~ll ENERGY <GWH) i ~'**'*** 4736 4829 4 Q?? ..... _ 5.031 5141 5250 5360 5469 5661 6044 6236 6428 6701 6973 7216 751S 7791 ; 1435 1434 1430 1445 1.445 1471 1541 . ~so 1-:; . ·~ 1705 1705 1817 1864 1864 1978 1977 2047 LOA II FACT OF~ *:i'**** 57.09 'C'"-J 1'"' .;; . . ..::. 57.16 57.10 57.37 57c-40 57.51 57.44 57.65 57o7Ct 57.69 57.58 57.78 C!' •'J n'"' ~' ( • c.: 57.81 57..69 r:·-s-;;J/ + ~ .!:": ..... 8 . ...!/. ~ F'CT. RES. **** 45.0 46.3 45.9 42 t ~· 39.8 38.4 35.8 351)7 37.5 45.8 42.6 38~3 43.1 40.9 35 • .4 38.3 33.2 33.2 TOTAL COSTS <MIL.$) ***:4'**: 148 154 161 169 17t. 184 188 1"99 211 224 237 245 26.3 319 335 LOSS OF LOAit PROBABILITY Il/Y H/Y ****** ***=*** 0.045 o. 0.033 o. o .• o32 o. 0.049 o. 0.053 o. 0.062 o. 0.086 o. 0.078 o. 0.049 o. 0.028 o. 0.040 0( 0.073 o. 0.061 o. 0. 0'49 0 • 0.100 o. 0.047 o. 0.073 o. 0.061 o. COST IN YEARLY COST *****:~*- 147.6 154.2 161.0 169.8 175.6 183.5 18.8 •. 2 199.2 210.9 .,., A • 0 ......... ·• 2.36.6 244.5 263.4 277+3 288.5 308.0 318.7 334.9 MILL.!ON $ CUH. PW TOTAL *~:***** 106.7 214.8 324.4 436.0 548.7 663.1 ........ , C) .//'Ot7 893.9 1014c-2 1138.2 1:!65.4 1393.0 1526.5 1662.? 1900.6 1943.4 2086.9 2233.3 -YEARLY $/rfWH ********************************** !NV. FUEL OfM N.I. TOTAL ***** ***** '**** ***** ****** 3.05 23.79 4t33 Oc 31.17 3.60 23.88 4.44 o. 31.93 4.15 24.00 4.56 o. 32.71 4t67 24~20 4.67 o. 33.55 5.18 -24.24 4~74 Ot 34~16 5~69 24.42 4.85 o. 34~95 5.57 24.58 4.96 o. 35.10 6.07 25.21 5.14 o. 36)42 6.46 25.48 5.31 o. 37,26 9.20 23.95 5.13 o. 39.27 9.50 24.41 5.24 Oe 39.15 9.20 24.67 5.34 o. 39.2l 11i78 23.89 s~31 Ot 40.98 11.86 24.12 5.40 o, 11.38 11.40 24.48 12.05 24,7t1' 11+61 25~01 11". 72· 25 t 33 5,50 51-68 5t77 5 .. \~4- Oc o. o. o. 41.37 12. ~50. 4 ?~-:c ..._,...,'-fl~ 1·2;i·9S~ I I :I I I I I I I I I I I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA-RAILBELT RUN V2 ZERO/. -37. JOB NUMBER 2ML3U3 *******************************~******** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES TYPE 1 2 3 4 5 6 7-10 DPTMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 -452 141 67 317 155 SUM= 1190 *********************************************************************** TOTAL CAPAB. YR YEARLY M w-ADD IT I 0 N S +TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 680* 1853 94 1B22 95 1774 96 1704 9? 1630 98 1575 99 1575 0 1'531 1 1531 2 601* 2079 3 2026 4 1* 2027 5 1939 6 1* 1917 7 lX 70 19.87 8 1 X 7 0 · 1 * 2032 9 2931 10 lX 70 1* 2102 ****************************************************************·******* *********************************************************************** MW ADD 0 .. 0 210 0 0 0 1285 SUM= 1495 MW RET 0 -46 -335 -141 -61 0 0 SUM~ -583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 13 326 0 6 317 1440 SUK= 2102 PCT TOT o. 0.6 15.5 0. 0.3 15.1 68o5 SUM=100 PCT **************'******************************************************** .~ AUTO 0 0 210 0 0 0 0 SUM= 210 PCT TOT o. o. ' 100.0 o. (). o. O. SUM=100 PCT * · COMMI TTEit MtaJ I :1, I I I I I I I I I ·I I •• I I I I tf._, •• G~NERAL ~LECTRIC COMPANY OGP-5 GENERATION PLANNING PROGR~M-SUMMARY OUTPUT ************************************************ . . . . ALASKA RAILBELT RUN V2 ZERO/. -3/. JOB NUMBER 2ML3U3 ****-******************************~***** TOTAL CAPABILITY (!NCLUI•ING TIES> LOSS OF LOAD COST IN MILLION $ YEAR TIME OF YEAR LOAD END PEAK **** ***** ***** ***** 1993 947 1853 1853 1994 965 1822 1822 1995 983 1774 1774 1996 1003 1704 1704 1997 1023 1630 1630 1998· 1044 1575 15:75 1999 1064 1575 1575 2000 1084 1531 1531 2001 1121 1531 1531 2002 1158 2079 2079 2003 1196 2026 2026 2004 1233 2027 2027 2005 1270 1939 1939 2006 1323 1917 1917 2007 1377 1987 1987 2008 1430 2032 2032 2009 1484 2031 2031 2010 1537 2102 2102 POOL TOTAL F'EAK ENERGY LOA It YF: <MW> <GWH> FACTOR ** ****** ******* ****** 93 947 4736 57.09 94 965 4829 57.12 95 983 4922 57•16 96 1003 5031 57.10 97 1023 5141 57.37 98 1044 5250 57941 99 1064 5360 57.51 0 1084 5469 57.44 1 1121 5661 57.65 2 1158 6352 62.61 3 1196 6455 61.61 4 1233 6599 60.92 0 s 1270· 6698 60.21 6 1323. 6'880 59 .. 36 7 1377 707.9 58.69 s 1430 731()·:: 58.20 9 1484 7551 ·ss.os 10 1537 7827 58.14 PCT. RES, **** 95.7 as.s so is 69.9 59.4 so.s ·48.0 41.2 36.6 79.5 69.4 .64.4 52.7 449 9 44.3 42.1 36.9 36.8 TOTAL COSTS <MIL,$) ****** 2.45 250 252 254 257 259 263 267 273 325 337 326 336 ~29 346 3"48 360 365 PROBABILITY YEARLY CUM. PW D/Y H/Y COST TOTAL ****** ****** ******* ******* o.ooo o. 245~2 177.1 o.ooo -o. 250.0 352.5 o.ooo o. 252.4 524 .• 3 o.ooo o. 254.4 692.5 o.ooo o. 256.5 857.2 0.001 o. 259.4 1018.8 0.002 o. 262.5 1177.7 0.015 o. 267.0 1331.5 0.032 o. 272.9 1490'.1 o.ooo o. 3.2.5.0 1670.1 0.001 o. 336.9 1851.1 0.001 o. 326.0 2021.3 o.o11 o. 336.0 2191.5 0.068 o. 329.3 2353.5 0.025 o~ 346.2 2518.9 0.029 o. 348.4 2680.4 o.oso o. 359.8 . 2842-.4 0 .. 025 o. , 365.1 3001.9 YEARLY $/HWH ********************************** INV, FUEL ***** ***** 42.05 5.02 41.24 5.81 40.46 6.07 39.59 6.26 38.74 6.46 37 •. 9,4, .. 6.77 37.16 7.07 36.42 7.64 35.18 8.23 46.28 o. 45.54 1.67 44·.55 o. 4.3. 89 1.41 42.73 \ 0.39 42.07 ,1 .• 97 41.2:7 1.58 J9t96 2.83 39.07 2.74 OfM ***** 4.69 4.72 4.74 4.72 4.70" 4.71 4.75 . 4.76 4.80 4.88 4.97 4.86 4.86 4.7-4 4.86 4.81 4.86 4.·84 . . N.I. ~**** o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. oif o. o. TO.TAL ****** 51.77 5!.78 51.27 50.57 49.90 49.42 48.98 49.82 48.21 51.17 52.18 49.41 50.16 47.86 48.90 47.66 . 47 .65~ 46.64 :.;;:~-::;.~~~:::'-~ -...... ·~.: ~.: .. ,.,. ,, , .. Gi~ ,; ; , ·..;::.. .... ,~_,. __ !.~~,, ... ,.,,_,..._,·_.,.~~-..,.~-~--~;.. .. ,.,. • ..,·~·-... ~_._.._,.,_,.--~,.,. ... ~""'''~:: .. _. ........ ~_....._ '.......:... •.. -.:··--'-~-~...:"··-~·,·-· .. -~ ... -· .... ___ ..___,~--.h.>-~--_:_,~~ ~· :--,~---~-~~· .. -.. . r~-~~~~~~~~~. 'I . . . ''- I I I I I I I I I I I "I I I I I I I. G£NERAL ELECTRIC COMPANY OGP-5 GENERnTION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ RUN Wl JGB NUMBER 2MLI15 f*'t*******i**************************** GE~ERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES -vp·-1 ~ 3 4 ~ L II'£: .:. ;.r. ~ Q 7-10 Q~TMZING 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 M~ 0 59 452 141 67 317 155 SUM= 1190 ~~-~~~~~~~~~~~~~·~*~*~-·~W~~.·*~~·~·~*·~.~·~-···*·~~·~~~·~~~~~··~~·. ·····~·-~¢·*·~ "'1" ~· ~ r1· tTo.. 'fl II'~ -If'. ¥1~ -'~ ~ 41• _.T• ll' ~1• II\ 'l-~ ~ .IJ''i · .,-~ 'l• If It• 1\ .:.tl• If. 'I"· If-:''' 41 .. T ')• 10 fl• ·!]-. ~ .. •i Jf'-~ #J"'o. i'f"o II" /i .. 7. 'a" .. Jf. ~ ~"f· ..... 'f• ~. ~ ~ ~ ~ .ef.' Jft. "'~\ ·l'f' If'.. ~J'... ~ ~ ~--._1\ ~ ~ ~-l!\ 'f~ Yr: ** 93 94 ,.. •• .. Y E A R L Y M W A D D I T I 0 N S ******* ******* ******* ******* **~**** ******* ***** 200* 1x :~oo 1 X .., :\ , .. I ._,fV V lX 1X 1X '7" •• "' 1X 70 TOTAL C.APAB. + T!ES ****** **** 1373 1624 1.~2\} '1..:..3·r., .,......,.. -.: 163~ 15'9!. 1661 16.(}8 1 "'*"":::' -... ...... _,_ 6 1X 70 1S54 7 lX 70 1924 8 1X 70 1~68 9 1X 70 2037 1~ 2037 ****E****************************************************************** ****t****~************f*********************************************'** MW ADD 0 800 630 0 0 0 0 SUM= 1430 MW RET 0 -46 -335 -141 -61 0 0 SUH= ~583 ****** ****** ****** ****** ****** ****** ****** **** *********** 2010 0 813 746 0 6 317 155 SUM= 2037 PCT TOT O. 39,9 36.6 o. 0.3 15.6 7,6 SUM~lOO PCT *f*t*f**********************************************t****************** AUTO . 0 400 630 0 0 0 0 SUM= .1030 PCT TOT O. 38.8 .61.2 o. o. o. O. SUM: .. lOO F'GT I I I I I I I I I I I I I 1-- I I ~· I I I "-"'·' .. ,.-.,.,..,· ... .,. GENERAL ELECTRIC COMPANY OGP-5 GENERATIDN PLANNING PROGRAM~SUMMARY OUTPUT ************************************************ ALASI\A F:AILEEL T RUN Wl ZEROi~ -3/. JOB NUMBER 2MLI15 ~*****************~********************* YEAR ~c;:* *- 1993 1994 1995 199e 1997 1998 1999 2000 2001 2002 2003 2004 2005 '2006 '1:"0~ .:.V 1 2002 2009 2010 YF: ** 93 94 95 '96 97 98 9~9 0 1 2 3 4 5 6 -t 8 9 10 LOA!l ***** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1270 1 _,,...., ~.:.~ 1 .., .., ..... ~ J / 1430 1484 153_7 ~·ooL PEAt\ <MW> ****** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 13/7 1430 1484 1537 TOTAL CAPABILITY (INCLU!IING TIES) YEAF: Tit·iE OF ENII PEAK ***:>!-::+: ***** 1373 1.542 1495 1624 1620 1635 16'35 1 ~91. 1661 1608 1625 1695 1807 1854 1'124 1968 2.037 2C•37 TOTAL ENEI':GY <GWH> *****·:r.t 4736 1 77-WI~ 1542 1495 1624 1620 1635 1635 1591 1661 1608 1625 1695 1807 1854 1924 1968 2037 ~0 ... 7 ·-~ LOf-rii FACTOR ****** 57.09 57.12 57.16 57.10 57.37 57.40 57.51 57.44 57·.65 571170 57.69 C:'7 1::1"'1 ..... r t ·wO 57.78 57.82 57ctB1 1829 4922 5031 5141 5250 5360 5469 5661 SS53 6044 6236 6428 6701 6973 7246 7518 7791 . 5_1:.>69 ~ 57 .S3 57 ·• 86 F'CT. RES. ****: 4 ~:;. 0 59') 8 52.0 58.4 56.6 53t,6 46.:8 48.2 38.9 35.9 37. ~i 40.2 39.7 37.6 37.3 32o:i TOTAL COSTS <MIL.$) ****:i'* 238 251 263 '305 322 340 354 367 386 401 424 447 ,487 515 544 577 611- 642 LOSS Of LOA!t F·F!OBf'IB ILI TY ti/Y H/Y ~=*****: ***·*'~·* 0.063 o. 0.027 Ct .. 0.077 Ot 0.039 o. 0.084 o. 0.092 o. 0.055 o. 0.059 o. o.o3B o~ 0,062 0( 0.087 o, 0.057 o. 0.062 o. 0.06'4 o. o.os7 o. o.o66 o. 0.051 o. 0.099 o. COST IN YEARLY COST **'*~: **t 237.8 250.6 263io4 305.4 321.9 340 f-4 353.8 366 ~·s 386.4 400.5 423.9 .ft.ci6 ~ 6 486.7 514.9 543.6 576.9 610.8 64.2.4 ~-c.~~~~ ..... · .•. ~·~".·· •.. · '~· ' -. . •• ' -I• • ~ . . -. 11ILLION $ CUrt • Pt~ TOTAL *~:~:*:~** 171.B 3-17.5 .~ ..... 0 ~..;!0+7 7::!8.8 935t4 .1147.5 1361.6 1 ·~--(\ ;;Jlit\.• 1-9-.. --'-j. ~ l '~. 2019.2 2247~1 :2tlBOv1 2726.7 2980.0 3239 ~ 6 3507.1 --a~ ·; ~.1 ......... 6.8.26 6S.43 70.l4j~ 71.61 75.71 77. 96.. 79.62 81.24 j ;'l l i I I I I I I I I I I I I I I· I I I I I I GENERAl ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAILBELT RUN W2 ZERO?. -3/. JOB NUMBER 2ML4M1 ***********'**************************** GENERATION SYSTEM NUKE COAL NGASGT OIL GT DIESEL COHCYC TYPES TYPE 1 2 3 4 5 6 7-10 OPTMZING · 0 1993 1993 0 0 1993 *** PCT TRIM 0 0 0 0 0 0 1992 MW 0 59 452 141 67 317 155 SUM= 1190 ****************.****************************************************** TOTAL CAPAB. YR Y E A R L Y M W A D D I T I 0 N S + TIES ** ******* ******* ******* ******* ******* ******* ***** ****** **** 93 680* 1853 94 1822 95 96 97 98 99 0 1 2 3 4 5 601* 1* 17'74 1704 1630 1575 1575 1531 1::>31 20.79 2:026 2027 1939 6 1* 1917 7 !X 70 1987 8 1X 70 1* 2032 9 2031 10 lX 70 1* 2102 *********************************************************************** *********************************************************************** HW ADD 0 0 210 0 0 0 1285 SUK= 1495 MW RET 0 -46 -335 -141 -61 0 0 SUM= -583 ****** ****** ****** . ****** ****** ****** ****** **** *********** 2010 0 13 326 0 6 317 1440 SUM= 2102 PCT TOT o. 0.6 15.5 o. 0.3 15~1 68.5 SUH=100 PCT *********************************************************************** AUTO 0 0 210 0 . 0 · . 0 0 SUM= 210 f'CT TOT 0 • 0. l 00 • 0 0 • 0. 0 • 0 + SUM=lOO f'CT * COMMlTTED JiW I I /I "I I II I I I I I I I I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM~SUMMARY OUTPUT ************************************************ ALASKA RAILBEl. T RUN W2 ZEROX -37. JOB NUMBER 2ML4M1 **************************************** YEAR **** 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 YR ** 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8. 9 10 LOAit *:**** 947 965 983 1003 1023 1044 1064 1084 11.21 1158 1196 1233 1270 1323 1377 1430 1484 1537 f'OOL PEAK <MW) ****** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 ·1484 1537 TOTAL CAPABILITY <INCLUIIING TIES> YEAR TIME OF ENit PEAK ***** ***** 1853 1822 i774 1704 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 TOTAL ENERGY < GI~H > ******* 4736 4829 4922 5031 .5141 5250 5360 5469 5661 6352 6455 6599 6698 6880 7079 7310 . 7551 7827 1853 1822 1774 1704 1630 1575 1575 "1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 LOA I! FACTOR ****** 57.09 57 t 12 57.16 57.10 57.37 57.41 57.51 57.44 57.65 62.61 61.61 60.92 60.21 59.36 58.69 58.20 58.08 58.14 PCT. RES. **** 95.7 ss.s 80.5 69.9 '59. 4 so .a· 48.0 41.2 36.6 79.5 69.4 64.4 52.7 44.9 44.3 42.1 36.9 36.8 TOTAL COSTS <MIL.$) ****** 260 270 276 282 289 297 307 320 334 325 352 326 35.0 333 368 367 396 403 LOSS OF LOAI• PROBABILITY II/Y H/Y ****** ****** o.ooo o. o.ooo o. o.ooo o. 0.000 Ot o.ooo o. o.oo1 o. 0.002 o. 0.015 o. 0.032 o. 0.000 Oc- 0.001 o. o.oo1 <5. 0.017 o. 0.068 o. 0.025 o. 0.029 o. o.oso o. 0.025 o. COST IN YEARLY COST ******* ~60.0 269.8 .275.9 282.0 288.8 297.5 307.0 319.9 333.9 325.0 352.1 326.0 350.0 333.4 368.4 367.3 396.0 402.7 MILLION $ CUM. F'W TOTAL ******* 187.8 377.0 564.9 751.3 936.7 1122.0 1307.8 1495.7 1686.1 1866.0 2055.3 2225.4 2402.8 2566.8 2742.7 2913.0 3091.3 326'7. 3 YEARLY $/MWH ******************************~*** INV. FUEL O+M N.I. TOTAL ***** ***** ***** ***** ****** 42 ~OS 8 • 15 4. 69 0 • 54.89 41.24 9.90 4.72 o. 55.87 40.46 10.85 4o74 O. 56.05 39.59 11.75 4.71 o. '56.05 38.74 12.73 4.70 o. 56.17 37.94 14.01 4.71 o. 56.66 37.16 15.36 4.75 0& 57.27 36.42 17.32 4.76 o. 5&.49 35.18 19.oo 4.ao o. sa.9a 46.28 o. 4.88 o. 51.17 45.54 4.03 4.97 o. 54.54 44,55 o. 4.86 o. 49.41 43.89 3.51 4.86 o. 52.26 42.7'3 0.99 4.74 o. 48.46 42.07 5.11 4.86 o. 52.04 41 • 27 4 • 17 4 • Bl 0 < 50. 25 39.96 7.63 4.86 o. 52,44 39.07 7.54 4.8~ o. 51.44 I~ I GENERAL ELECTRIC CDMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ ALASKA RAlLBELT ZER01. -3/.: JOB NUMBER 2MLCJ7 RUN Xl I ****************************************- GENERAtiON SYSTEM THERMAL HYDRO PSH ES-2 ES-3 ·I TYPE 1-6 7 8 9 10 OPTMZING *** 0 0 0 PCT TRIM 0 0 0 I 1992 MW 1035 155 0 0 0 SUM= 1190 *********************************************************************** TOTAL I CAPAB. LOAD LDLP ·-YR YEARLY M W ADD I T I 0 N S +TIES MW D/Y ** ****** ****** ****** ****** ****** ****** ***** ******* 93 200 1373 947 0.0635 I 94 200 1542 965 0.0274 95 1495 983 0.0772 96 200 1624 1oo3 o.ossa I 97 70 1620 1023 0.0838 98 70 1635 1044 0.0920 99 ~ 1635 1064 Ot0554 0 1591 1084 0.0591 1 70 1661 1121 0.0379 2 1608 1159 0.0624 3 70 1625 1196 0.0868 4 70 1695 1233 0.0567 5 140 1747 1270 °0.0488 6 200 1924 1323 0.0267 7 1924 -1377 0.0569 8 70 1968 1430 0.0656 9 70 2037 1484 0.0510 I I I 10 2037 1537 0.0994 I *********************************************************************** *********************************************************************** MW ADD 1430 0 0 0 0 SUM= 1430 I HW RET -583 0 0 0 0 SUM= -583 ****** ****** ****** ****** ****** ****** ************ I I I ·I· I 2010 1882 155 0 0 0 SUM= 2037 PCT TOT 92.4 7.6 0. 0. o. SUM= 100 PCT *********************************************************************** AUTO 1030 0 0 0 SUM= 1030 PCT TOT 100.0 0. 0. O. SUM= 100 PCT * COMMI TTE!t Ml~,l --------------------~~~~----~~--------.................. .. GE~ERAL ELECTRIC COMPANY I I OGP-5 GENERATION PLANNING PWDGl~H-SUMMARY OUTPUT ************************************************ 1 ~~As~A RA~LEEL r RUN Xl . LEROY. -3% JOB NUMI~EH 2MLCJ7 I'******************************~·••••••• TOTAL CAPABILITY I YEAR < INCLU!tiNG TIES> LOSS OF LQA[I COST IN YEAR TIME OF F'CT • PROBABILITY YEARLY LOAD EN.Ir PEAK RES. II/Y H/Y COST **** ***** ***** ***** **** ****** ****** ******* 11993 947 1373 1373 45.0 0.063 o. 174.1 1994 965 1542 154;2 59.8 0.027 o. 196.7 1995 983 1495 1495 52.0 0.077 o. 203.5 11996 1003 1624 1624 61.9 0.059 o. 255.0 1997 1023 1620 1620 58t4 0.084 o. 265.0 1998 1044 1635 1635 56.6 0.092 o. 276.0 1999 1064 1635 1635 53.6 0.055 o. 282.2 .12000 1084 1591 1591 46.8 0.059 o. 288.6 ?001 1121 1661 1661 48.2 0.038 o. 301.1 2002 1158 1608 1608 38.9 0.062 o. 309.7 12003 1196 1625 1625 35.9 0.087 o. 325.5 2004 1233 1695 1695 37.5 0•057 o. 340.8 2Q05 1270 1747 1747 37.6 0.049 o. 364.2 I 2006 1323 1.924 1924 45.4 0.027 o. 397.3 . 2007 1377 1924 1924 39.7 0.057 o. 412.6 2008 1430 1968 1968 37.6 0 • Oc.S6 o. 434.6 2009 1484 2037 2037 37.3 0.051 o. 457.0 1 2010 153.7 2037 2037 32.5 0+099 o. 476.9 POOL TOTAL TOTAL YEARLY $/MWH MILLION $ CUM. F'W TOTAL ******* 125.8 263.8 402.3 570.9 741.0 913~0 1083.7 1253.3 14.25.0 1596~5 1771.5 . 1949.3 2133 .. 9 2329.3 252&.3 2727~8 2933--.6 3142~() I PEAK ENERGY LOAil COSTS ********************************** YR <MW> <GWH> I I •• I I I I ** 93 94 95 96 97 98 99 0 l 2 3 4 5 6 7 .8 9 10 ****** ******* 947 4736 965 4829 983 4922 1003 5031 102.3 5141 1044 5250 1064. 536@ 1084 5469 1121 5661 1158 5853 1196 6044 1233 6236 1270 6428 1323 6701 1377 6973 14.30 7246 1484 7518 1537 7791 •· FACTOR <MIL.$) ****** ******. 57.09 174 57.12 197 57.16 203 57.10 255 57.37 265 57.40 276 57.51 282 57.44 289 57.65 301 57.70 310 57.69 326 57.58 341 57.78 . 364 57.82 397 57.81 413 57.69 435 57.83 457 57.86 477 ,·-:> : ' ''"· • -~···· -~ --· """~ '"' .,., •••• ' ............. ~. '.,. .>,-~ "" INV. FUEL OtM N.I. TOTAL ***** ***** ***** ***** ****** 8.90 23.36 4.51 o. 36.76 14.60 21.39 4.75 o. 40.74 14.32 22.22 4.79 o. 41.34 21.52 23.88 5.28 o. so .• 68 21.63 24.59 5.32 o. 51.54 21.75 25.45 ' 5.38 o. 52.58 21.30 25.97 5.38 o. 5.2 .. 65 20.88 26.60 5.29 o. 52.78 20.72 27.14 5.34 o. 53,.19 20.04 27.61 5.27 o. 52.92 19.93 28.60 5.32 o. 53.86 19.84 29.40 5.40 o. 54.64 20.27 30.89 5.50 o. 56.66 24.44 28.93 5.92 o. 59.29 23~48 29.77 5.91 o. 59.17 23.07 30.93 5.97 o. 59.97 22.70 32.03 6.05 o. 60.78 21.90 33.20 6.11 o. 61.21 '~] I I I I I I I I I I I I I I I I I I I GENERAL ELECTRIC COHP~NY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ RUN X2 1~UM.BER 2MLCJ9 ************************************ .:~ATI ON SYSTEM NUKE COAL NGASGT OIL GT DIESEL COMCYC TYPES 1 2 3 4 5 6 7-10 .ZING 0 1993 1993. 0 0 1993 . *** TRIM 0 0 0 0 0 0 ! MW. 0 59 452 141 67 317 155 SUM= 1190 •******************************************************************* TOTAL CAPAB. Y E A R L Y M W A D D I T I 0 N S + TIES ******* ******* ******* ******* ******* ******* ***** ****** **** lX 70 1X 70 680* 1953 1822 1774 1704 1630 1575 1575 1531 1531 601* 2079 262.6 1* 2027 !939 1# 1917. 1987 1* 2i032 2031 1X 70 ·1 * 2102 t******************************************************************* '******************************************************************* ADD 0 0 210 0 0 0 1285 SUM= 1495 RET 0 -46 -335 -141 -61 0 0 SUM= -583 •*** ****** ****** ****** ****** ****** ****** **** **•******** . 0 0 13 3 2 6 0 6 . 31 7 14 4 0 SUM= 21 0 2 : TOT O. 0.6 15.5 O. 0.3 15.1 68.5 SUH=100 PCT !'******************************************************************* iO . 0 0 210 0 0 0 0 SUM= 210 TOT O. O. 100.0 O. o. o. o. SUH=lOO PCT : OMMI TTED M~J I I I I I I I I I I I I I I I I I I I GENERAL ELECTRIC COMPANY OGP-5 GENERATION PLANNING PROGRAM-SUMMARY OUTPUT ************************************************ tiLASI\A RAlLBEL T RUN X2 ZEROi. -3i!. JOB NUMBER 2MLCJ9 **************************************** YEAR **** 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 YR ** 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 LOAD ***** 947 965 983 1003 1023' 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 . 1430 1484 1537 POOL PEAK <MW> ****** 947 965 983 1003 1023 1044 1064 1084 1121 1158 1196 1233 1270 1323 1377 1430 1484 1537 TOT ~1L CAPABILITY <I NCLUiti NG TIES) YEAR TIME OF ENit PEAl\ ***** ***** 1853 1822 1774 1704 1630 1575 1575 1531 1531 2079 2026 2027 1939 1917 1987 2032 2031 2102 TOTAL ENERGY (GWH) ******* 4736 4829 4922 5031 5141 5250 5360 5469 5661 6352 6455 6599 6698 6880 7079 7310 7551 7827 1853 1822 1774 1704 1630 1575 1575 1531 1531 2079 ~026 2027 1939 1917 1987 2032 2031 2102 LOA It PACT OR ****** 57.09 57.12 57.16 57.10 57.37 57.41 57.51 57.44 57.65 62.61 61.61 60.92 60.21 59.36 58.69 58.20 ss.oa 58.14 PCT. RES. **** 95.7 88.8 so.s 69.9 59.4 50.8 48.0 41t2 36,6 79.5 69~4 64.4 52.7 44.9 44.3 42.1 36.9 36.8 TOTAL COSTS <MIL.$) ****** 0 238 244 247 260 264 269 275 284 293 307 327 308 326 314 340 340 360 366 LOSS OF LOAit PROBABILITY D/Y H/Y ****** ****** o.ooo o. o.ooo o. o.ooo o. o.ooo o. o.ooo o. 0.001 o. 0.002 o. 0.015 o. 0.032 o. o.ooo o. 0.001 o. 0.001 o. 0.017 o. 0.068 o. 0.025 o. 0.029 o. o.050 o. 0.025 o. COST IN YEARLY COST ******* 237.7 244.0 247.1 259.6 263.7 269.1 274.9 283.7 293.4 307.3 326.6 308.3 325.5 313.7 339.7 339.8 360.5 366.1 YEARLY $/MWH MILLION $ CUM. F'W · TOTAL ******* 171.7 342.9 511.1 682.8 852.0 1019.7 1186.1 1352.7 1520.0 1690.2 1865.8 2026.7 2191.6 2345.9 2508.2 :2665.7 2826.0 2988.0 ********************************** INV. FUEL O+M N.I. TOTAL ***** ***** ***** ***** ****** 40.19 5.29 4.71 o. 50.20 39.42 6.37 4.74 o. 50.53 3Bt67 6.77 4.75 o.. ·so.19 37t84 9.05 4.72 o. 51.61 37.03 9.57 4.70 o. 51.30 36.26 10.29 4.71 o~ 51.26 35.51 11.02 4.75 o. 51.29 34.81 12.31 4.76 o. 51.88 33~63 13.41 4.80 o. 51.83 43.50 o. 4.88 o. 48.38 42.80 2.83 4.97 o. 50.60 41.87 o. 4.86 o~ 46,73 41.25 2.49 4.86 o. 48.59 40.16 0.70 4.74 o. 45.60 39.50 3.62 4.86 o. 47.99 38.72 2~95 4.81 o. 46.48 37.49 5.39 4.86 o. 47.74 36.61 5.33 4.84 o. 46.78