Loading...
HomeMy WebLinkAboutAPA1346., ..... 'I· · .. , ' .•... , ~ ~ - . . . ' .. ~. . t~ I . ~~--::-- ::, I ' ' I I ••• -· •• PLANNING MEMORINJ'Jt.M st.ts~~ e •. 02 . . IJRELXMIN;Al17 TlU\NSRSS:tQN \_ &YST!M ~YS:ts . ·. :-~-:;:':~-/_ ... _~~-:--~~ . ., I I I I •• I I I I I I (; PREFACE This Planning· Memo;-andum. is an i~terim report to describe the prelinti.nar)t ana~yses carl:'ied out m1der Subtaak e •. o2, ••Electric System s.-~adi~~". In view of the 1.mcertainty of a num:ber of system paranxet.ers 1 some sweeping assumptions had to be made to be able . to carry out this prelilni.nary anal.y$iS .. One important item which is still undecided at. the time of this writing is the interconnection /configuration of the Sus.itna transmission with the utillties in t.t'le Anchorage area. The tecfJilical ana.~yses, including transmission line enerqizil'lg, load flew and transi~nt stability studies, were performed assuming two major swi tchinq and transformer stations in ----~·- Anchorage, witbout·knowledge of their, locations, as shown in.the system diagrams in Figures 3.1 and 3.,2. Due to later information, it was proposed to ba$e the economic comparison of the various trattsmission - ·· a~~~aticv~,on a single switching station at the western terminal. of a ' 230-kv cable crossing of Knik'=-'A.m. · The costs of the cable crossing-.~ being common to all alternatives, were excluded from the comparison. The final common cQnfiguration will. have to be determined, as will a ntmber of other paramp.ters, before the technical: and economic analyses can be. completed. The capital and operating costs of all components of the SUSitna transmission .system will then ha'Ve to be included· i.n the economic comparison of alte.rnati.ves • It is expected that the co:nc.l.usi:ons drawn from this study will not be significant~y affected by th~ .:r:e.au1ti.itg changes in system parameters. _T.Al;LE OF COWl:ENTS 2 ...... SIJMMABX· ----------~---·---·-----·----""'--'""·-·~---~---------- 3 -DESCRIPTION AND RESULTS OF STUPXES ---------.... ------------ 3.1 3.2 3.3 --Planning C~iteria .---~-------------~~---------.. ~----~~-~ ..... -:Existing Systeiii. Data ___ ...;_.,. ______ ,.. ______ ._ ... ___________ _ ;, ' ---. -Syst~ .:.toad Jrorecast ----...,.,;:~ .... ------........ _;;;..,. • .,; ... ___ .., ____ _ ;I . .. : 3e 3e 1 -I:o-adi/Levels _...'-,.,..~-------~------•:-. ........ .__ ..... _•••••..-•--•----•--- :·~ . 3 -~ 3. 2 Load{! Distri:bution----.. ,~-------o.t>i---...;------·---~------- 3. 3.3 -I..Oad POwer: Factors --~~---------·-~"'""'""--;.-... ----------,, , 3. 4 .... System cOnfiguration --At~ 1U ternati ve$ . ---"11~-~-------- 3. 4.1· Susitna,. Ci:lnfi.guration :...~ .. "':"--------.u.-oi(o-•-e!i!~-----------· 3:•46)2 SW'itcbing at Wil.l.ow ----· .. -----·-------;.. .... ______ .;. __ _ 3 •. 4•3 .. Switching at~ Healy -----------~~-~-~---... -------~-~~--------- 3.4.4 -·Anchorage Configuration--------:-·--·----~-----------3 .• 4 .• 5 • Fairbanks Configuration ----... _ ... ___ '"" _______________ _ 3.-'S --Al.ternating Current Altel:natives Analyzed ------------ 3.5.1 -Sus.itna to Anchorage Transmission Alternati:ves ----- 3-.5.2 -Susitna to Fairbanks Transmission Alternatives ---- 3.5p3 Total. System Alte;-natives --~---.... --""'--:..----·----·- :~'6 -.... Electric ·system Studies -----------·o:---------------!'io-- 3-.0$1, --.Pc)wer 'f:r,ansfeJ; --~--------~-------~----------_,.-..... _,--~.:. .. _...,_ 3.6.2 -Conductor Sizes ----.... ------------------------------ .3 a 6.3 l:J.n_e :Exle~~--~;lnq -------~-ae---.-.-~.o-------------~--------Cd'le--~ 3.6.·4 -.Load Flow stl.).dies ---------------------~~,;..: .... _..,.._ ___ _ 3e6.5·-... Trans;ent Stability ______ ,.. ___ .,.. _________ _. _________ _ 3a7·-Economic -Studies --·----------------------.... ----•---- 3 .• 7.1 3.7.2 3.8 ... .. Cost .Esti-m.ates ._ ___ __. .. ,.._ .. __ ~-~-:t-~~--------fiiD-------~----- WJ ~"tfe•Cyc:le ·coSts ---.... .u-•--tll!--~------1111!~--·--~ca••----- ~ ~cinsm.is.Sion ---'11!11-lillllkll!t-•--·---..--..----------~-----............... .. -~ -'· 3.8.1 -·General ~--~-~---~-~-~-~~----~~-------~-~--~~-----~ 3.8.-2 -Canparati'Q'e Transmission System,s ____ .;.. ... o:..----------- 3 • S. 3. -Comparat'i ve:-··costs ._ ... __ .,....., .. ...,_._ ..... _________ ;-·-------- APPENDIX' A -~:;MISSION PLANNING CRn'SlUA APPENDIX B ... EXIS1'ING TRANSMISSION stSTEM DATA 'APP~D.IX · C -· ECONCJf.tl:C CONDUcrt'OR SIZ:~s APPENDIX D-COS'rESTIMAr:rES Al?PENDIXC E-RVDC.TRANE!(~SSION 2- 3 -1 .3 -1 3 ... .2 3 -2 3 --2 3 --3 3 -3' 3 -4 3 ---4 3 -5 3 ..... 5: 3 -5 3 -7 3 --7 ,J -8 3 ·-9 3 ... , 9 3 . .... 10 3 -10 3 11 3 --12 3 -12 3 -14 3 -15 3 -16 3'•-'17 3 -17 3 -17 ·-- 3 ..... 18 3: -· 19 '4 -1 5 -1 ::: ,, ···: ... ' I I I I NUmber '3 ... 1 3.2 3•3 3.4 3.7 3.9-- 3.10 3.11 3.12 3.13 3.16 Title Ra.ilbelt Region Peak and Energy Demand Forecasts Used for Generation Planning Studies Staging of the Susitna Develo~ent Maximum Power to .be ':tranSmitted to All.Chor-age and Fairbanks for Each stage of the sus.itna Pevel:opment Line Losses Under Maximum Power T.r'ansntission Transmission Line Energizi:nq -Transmission nternati.ve 1 \ Transmission Line Energizing·"" Transmission Alternative 2 Transmission Line Energizing -Transmission_ Al:tex:native 5 Ratings o.f Reactive Compensation Required T.ransmissicn and Substation Unit costs ~"!!:.';;>:-!::.~= -.; I4,£e Cycle Costs -·'l':ransmission Alternative 1 Life Cycle Costs -'~' fJ.'ransmission' lUternative 2 T.aife Cycle Costs -Transmission Al.:ternative 3 Life cycJ.-g·~sts -Transmission Alternative 4 Life Cycle Costs .... TranSitti.ssion Al.ternative 5 summary of Life CJ~le Costs ~u:nnnary of Comparative COsts -ac .Versus de Transmission I I I I I I ·I .· ' 1··. ·I ;: """' ~ I I I I I ··1.· ... ·· ' .' I I ... ~.· .• ···1, ..... . . LI:ST OF FIGURES Number 3 .• 2 3.3 3.6 3.8 3.9 Title Tx:ansmission System Configuration -Alternative 1 Transmission. .System Configuration -Alternative 2 Peak Demand Flow -Alternative ~-85 Percent Load at Anchorage Peak Demand Flow -Alternative 1 -25 Percent load at Fairbanks Peak Demand Flow -Alte1.:native 2 -85 Per cent Load at Anchorage Pealt Demand Flow -Alternativoe 2 -25 Percent Load at - Fairbanks T.ran·sient Stabi.li.ty Snng curves -Altex-native 1 -85 Percent Load at Anchorage T.ransient Stability swing curves -Alt~n~tiv'e Load at 'Fairbanks. , ..... -' Transient Stability Swing Curves -Alternat.,:ve 2 -85 Pax-cent. Load at Anchorage Transient Stabil.ity Swing Curves ... Alternative 2 -25 Percant Load at Fairbank~ I I I I I~ I I I "' ~ I I I I I I I I I I I 1 -IN?l'RODUCTJ:ON The Plan of Study (POS) for the Susitna, hydroeleotri.c P.,'\:."Ojec.t, which is currently l;leing undertaken for the Alas~a Power Authority {.APA) by Acres Au,erican lncorporated includes studies of the required transmission system under Task S• Su.btask 8.0.2 of Task 8 is entitled., :E:lectric System St:ud,i.es. The· objective of this subtask, a\s define~~ in the February 1980 PQS is as follows. "To ensure that the electrical aspects of the project design are integrated wit.lt. the existing P.atilbelt ar;~~ power s~{stems and to design an electrieal po\~er system Which is reliable and economic." The transmission system for the susitna project, as currentl.y envisaged~ will ulti~ately invo1ve lines £rom the Watana and Devil canyon sites to both Fairbanks. and Anchorage. The sys.tem is to be de~igl.'led in such a way that the proposed intertie between Anchorage and Fairbank~t., which is ~esently under study for APA by Commonwealth Associates, ~~1 event~lly become part of the Susitna transmission system. Work on Subtask 8.02 commenced in June 1990 and is scheduled tc.' be complete by March 1982. The purpose of this P1anning Memarand~ is to present the results. of the preliminary analysis completed under; Subtask 8a02 through June 15, 1981. 1 - 1 :-'~ I I I I I I -· I ·I I I I I I I I . · __ . I I"' . - ~ 2 -SUMMARY The studies are best summarized by outlining the scope of the work to be performed. c a The scope of work incl. udes -develop·transmission system planning criteria . -assemble all data .d~scribing exis.ting Railbelt power systems -study the present and projected load distribution to Anchorage and Fairbanks ""' determine delivery points .for Susitna power into local util:tt:y systEml.s _, -determine line .load:lngs for the Susitna transmissiC4 system -propose alternative preliminary system configurations prepare. preliminary cost estimates for alternative system configurations -o -perform preliminary screening of various alternatives .. recol'l'llUend transmission system configuration, voltage and conductor .sizeso Based on the results obtained from the above activities a transntission alternative is recommended which best satisfies the techri.ical. planning criteria at am economical cost.. The recommended option., called Alternative 2 in this study, has the fo~lowing major characteristics. 2-1 :1· <!', .. :· •' I ·I I I I I ' ' . . '·1'"' I ,I' -. I I I I I ' I . I Tra.nsmission l'Ane ·Dfavil Canyon -Willow Wil~ow ""' Anchorage Devil can)tc>n --Fair-banks . . ,· . . . L . . . I.·: . .' l .. ' • • Length (mi) 2.7 90 so 189 Numbet.· Cirouts 2. 3 3 2 2 - 2 'I • • ' ' -. 7.' •• -. • I. . . • . . • i • : -• I . • . ~~. . . of Cc;m.ductor Y9lta~e Size {kV) (kcmil) 3.45 ? ... X 954 345 2 X 954 -345 2 X 954 3415 2 X 795 ~· I ,1· I I I I I I I I ,. I • 3 ~ DESCRIPTION AND RESULTS OF STUDI:SS 3.1 -Planning Criteria ., c The planning criteria were. developed to ensure the design of a reliable· and economic electri:cal power system, wi.th components which are rated to allow a smooth transition through early p:roj ect $tages to the ultimatel.y fully developed potential. System, pl.anning criteria were suhtt1itted to APA in August 1980 and subsequently accepted without comment. As a result of the. better understanding of the SUsitn·a transmission system, gained from the preliminary analyses carx:-ied out to date, revised criteria were proposed as outlined in Appendix A· In the revision, some of the criteria were modified to all.ow for larger variations :in perfox;mance parameter~ during :early stages of proj ect developnent. Strict application of optintumf lon9"""term-criteria would require the_ installation of equipment with ratings larger than necessary and at excessive cost,. In the interest of economy and -l.ong-term system per.formance, these criteria were temporarUy relaxed during early development stages of .the project. While. allowing for satisfactory operation during early system de.velopment, final system parameters must be based on the ul·timate _ Sus.i tna potential. The criteria are based on the desirability to main:tain rated power fl..ow to Anchorage and Fairbanks during the outage of any single line or transformer element. The essential features of the criteria are -total ;power output of Susitna to be del.ivered to one or two stations at 0 Anchorage and one at F{Lirb.anks jl -''breaker-and-a-hal£1i s\~itch,ing station arrangements. 3 ,... 1 .. .I I I I I . I I I I ,,1··. . ' ' I I I I dynCllD.ic overvoltages during line ·energizing not to exceed specified limi:ts· -system voltages to be within established limits during normal operation power delivered to the loads to be maintained and system voltages to be kept within established limits for .system operation under emergency conditions -transient stability during a 3-phase line fault cleared by breaker action with no reclosing -where performance lintits are exceeded, the most cost effective corrective measures are to be takeno 3. 2 -Existinq System Data T.he data on the existing power systems in the. Railbelt area were· assembled by R. W. Retherford Associates. These data have be.en compil,ed. in a drai!t report by Commonwealth Associates Inc., dated November 198() .. ',' and entitled _"Anchorage-Fairbanks Transmission Intertie -Transmission System Data". This report is included, with minor 1:ev.isions, as J\ppendix l3. -Other. system data were obtained in the form of single-line diagrams from the various utilities. 3.3 -System Load Forecast 3.3.1 -Load Levels Energy and peak demand fo.recasts were prepared for the Alaska Railbelt region by the Ins.titute for Social and. Economic Research, University of Alaska (ISJ!;R} .~· These were modified to account for 3 -2 I I I I I I I I. I I I I I I I I ----------~-~ :I I self-supplied industrial and military generation as well as expected results of load management an:d conservation ~fforts. The resulting low, ntedi:um ana high forecasts of peak and energy demand, as shown in Tabl.e. 3~ 1, were used. in the generation p~anning ana~yses of Subtask 6.36. ;• 3o3e2 -Load Distribution At present, t.lJ.e total Railbelt system load is shared approximate1y 80 percent by Anchorage and 20 percent by Fairb~nks. While the. projections of various load forecasts vary somewhat around these figures, the predicted changes are small. To account for the ·- uncertainty in future developmen;t ~ the transmission system was -~ designed to ·allow for this load shcu::ing: to vary from a maximum of 85 percent of Susitna generating capacity at Anchorage to a maxim'UlU of 25 percent at Fairbanks. 3·. 3 • 3 -Load Power Factors Loads. were represented in the electric system: studies at the highest subtransmission l~vel at each load center transformer station, genera:Lly 1.38 -kv. Subtransmissi.on at 138 kV from the. point of delivery o:f Susi tna power was considered to be the responsibility of individual utilities. As such it was not included in the system -sintulatio:-.'1.. Load power factors were assumed to be corrected to O.o 95. Conditions of low voltages were corrected with the help of additional static var generation at the EHV/138•kV transformer station. During detaiJ. design stages, it may prove advantageous to carry ou.t most of this power factor correction at lower vo~tages in the distribution network. This method is expected to be more cost effective in equipment costs and resul·t; in . operational.~ advantages as well. 3 -3 I I I I I I I I I I I I I I I 3.4. -System CoJ.lfiguration. - AC Alternatives Alternative co,nfigttrations for the proposed transmission system were deve1oped afber re·(Tiewing the existing system configurations at both Anchorage ancl Faubanks as well as the possibilities and developnent plans ~n the~ Susi.. tna, Anchorage, Fairbanks, Willow and Heal.y areas. 3.4.1 -§]Sitna C~nfiguration Prf'~liminary development plans indicate that the first project to be constructed would be Watana with an initial installed capacity of 400 Mvl to be increased -,to approximately 800 M.W in the second developnent stage. The next project, and the ·last to be considered in "chis stud,y, is Devil Canyon with an installed capacity of 40(} Mvl to 6.00 MW. Devil canyon and Gold Creek were considered as the ·sites for a major switching station to collect all of the Susitna. generat1ctn for transmission to Anchorage and Fairbanks. Switching at Gold Creek would involve the . construction and operating co.st of onta additi.onal station.· It would require a larger number of circ.:tlit breaker::; but would reduce the number of transmission circui.t.s in the cany~'.l• Uncertainty about detail line ro~~ing and, access, requirements make a switching station at Gold Creek l.ess desirable. A cost comparison between the two alternative configurations pro·tied that a switching ~tation at Devil Canyon is more econanical than. at Gold ___ qre~:k· In the light of all these factors, it is ~considerecL advantageous to base present studies on a switching._ station located at Devil Canyon with transmission directly from ~ere to ~cbor:ag:eL and Fairbanks. 3 4 I I I I I I I I ••••• I I I I 3. 4. 2 -Swi tchinc;r at Willo.w 'Transmission from Susit:na· to Anchorage is facilitated by tl:te introduction of an intermediate switching station. This has the effect of .reducing line energizing QVervoltages and. reducing tile impact of line outages on system stability. Willow is a suitable location for this intermediate sw-itching station. and in -addition it would make it possible to supply l¢.cal 1.oad when this is justif.ied by developnent in the area. This local load is expected to be. l.e:s.s than 10 percent of the total Railbelt a:rea system ~oad, but the availability of an EHV line tap would defin~tel~ facilitate future powe:r supply. 3.4.3 -Switching ~t Healy A switching station at Healy was consider$d early in the analysis~ but was found not to be necessary to satisfy the planning criteria~ The predicted load at Healy is small enough to be supplied by th~ local generation and the exis.ting 138-kv transmission from Fa~bar.Jcs. 3.4.4 -Anchorage Configuration In its 1975 report on the Upper Susitna River Hydroelectric Studies, the United States Department of the Interi~ Corps of . ~..g:ine~s favored a transmission route terminating at Point MacKenzie. ";> The 1979 .Economic 1=-easib.i.lity Study Report for the Anohox;~ge­ Fairbanks Intertie by International Engineering Compan~ Inc. ( IECo ) recommends one circuit from Susi tna termina t1.;.nq at Point MacKenzie and another passing· through Palmer and Eklutna substations to Anchorage alox:tg the eastern siaa of Knik Arm. ~-.:· ' ·.·• . '· .. I I I I I I ·I I I I I I I .At the begi<'nning of the studies, it was assumed that Susitna power would he deliv,ered to Anchorage through tw ntajor transformel: stations. Initially, it was thouqht that orie of these ttdght be near Palmer and the other "elsewhel.~e" with.out detailed knowledge of its location. Analysis of system configuration, distribution of loads and developnent in the Anchorage area :reveals that a transformer s.tation near Palmer would be of little-benefit,;) Most of. the major loads. are concentrated in and around the urban Anchorage area at the mouth of Knik Arm.. In order to red.uce the length of subtranSID.ission feeders, the transformer stations should be located as close to Anchorage as possible. The routing of transmission in-co Anchorage' may be .. ~liosen from thx'ee· possible alternatives .. (a) Submarine cable crossing from Point MacKenzie to Point Woronzof. This would require transmi.ssion thiough a very heavily developed area o It would a1so expose the cables to damage by ship's anchors, as has i)een experienced with' existing cables, thus resu1 ting in ques·tionable tran.smissiQll x-eliability. (.b) Overland route north of Knik Arm via Palmer. This is likel.? (c) ,~,, most economical in terms of capital cost in spite of the long· distance involved • However, approval for this route is. unlikely .since overhead transmission through this ·de,! eloped area is considered environmentally unacceptable. A longer overland route around the developed area is considered unacdeptable because of the mountainous terrain • . Submarine cable crossing or Knik Arm, in the area of ·Lake Lorraine and ·Six Mile Creek, approximately paral.lel to the new 230-kVcable under construction for ChUgach Electric ------· . ------------" ': -.:.':1. 3 - 6 I I I I I I '" I I I I I Association (CEA). This opt:i,.on, ~eluding sotne 3 to 4 miles· of submarine cabl2, requ.ires a high capital cost. ~e.ing upstre~'nl from the shipping lanes to the por.t of Anchorage it would result in a reliable tranSl'llission link, and one that would not have to cross environmentally sensitive conservation areas. The load flow and stability studies were carried out assuming t'W:O major switching and. transformer stat:i,.ons, wi.thout knowledge of -··------~---~----~-·--·----.---·-·-·----·---~--.--------;-------::--";:,~.:--.-~ ' -.--~-o;-·-----· their locations, as shown in the system diagrams in Figures 3.1 and 3e2. Later information from th:e field indicated that Sus.itna power would likely be. delivered to a single 345/230-kV station at the western terminal of the cable crossing outlined in option (c) above. The, cost of the cable crossing (a.t 230 kV) 1i~Ould be comm.on to all transmission alternatives under this option. This cost ~m.s thus excl.uded from the economic analysis comparing the five alternatives in this planning m~orandum:. !!'he final analysis wUJ. benefit from more definitive knowledge regarding the most likely transmission routing and locations of Anchorage transformer ;;) stations. The costs of .cable c:J:ossings and ter.mina1 stations for the EHV system will then be included in the final economic comparisons between the various transmission alternatives. 3 .. 4.5 -Fairbanks Configuration Susi tna. power for the Fair banks aJ:,ea is recommended to be delivered to a single EHV/138-kV transformer station located at Ester. 34!5 '!"! ~..l.ter.nating Current Alternatives Analyzed • Because of the geographic location of the various centers, transmissio~ from Susitna to Anchorage and Fairbanks will result in a. radial syst~ conf.iguration. Thi.s fact allows significant freedom in the choice of 3 7 •• I I I I I transmission voltages, conductors, and other parameters for the two line sections wi.tlt only limited dependence between them. In the en.d, the advantages of standardization for the entire system will have to be compared to the benefits of optimizing each section on its own merits. T.ransmission a1 ternatives were deve.loped, for each of the two system areas including voltage l.evels, number of circuits :t;equired1 and other. parameters, to satisfy the necessary transmission requirement$ of each area. Having established the peak power to be delivered and the distances over which it is to be transmitted, transmi.ssion voltages and number of circuits required were determined. To maintain. a consistency with standard ANSI voltages used in other p,arts of the USA, the following voltages were considered for SUsitna transmission. Watana to Devil canyon or Gold Creek and on to Anchorage -Devil Canyon or Gold Creek to :E'airbanks 500 kV or 345 kV 345 kV or 230 kV 3.5.1 -Susitna to Anchorage Transmission Al ternati.ves Transmission at either of two different voltage levels could (i reasop.ably provide the necesr.;ary power transfer capability over t:he. distance of approximately 140 miles between Devil canyon and Anchorage. These are 345 }{V and 500 kV. The ·required transfer capabil.ity is 85 percent of the Ultimate generating capacity of 1sr400 MW (1,190 MW). At 500 kV, two circuits would provide more than adequate capability. At 345 kV either three cil:cuits uncompensated, or two circuits With seri.es c0mpensation are l:'equired to provide the necessary reliability .for the single contingency outage criterion. At lower voltages, an excessive 3 - 8 I I :1 I I I I I I I I I I I I I I I I number of parallel circUits woulcl be rE!quired while above 500 kV two circuits are still need~d to provide service in the event of a · line outage~ 3e5.2 -SUsitna to Fairbanks Transmission Alternatives Using the same reasoning as for the choice of transmission, alternatives to Anchorage, two cj,rcuits of e:i.ther 230 kV or 345 kV 'were chosen for the section from Devil Canyon to Fairbanks., The 230-kV alternative requires series compensation to satisfy the planning criteria in ease of a line outage. 3.5.3 ~ Total System Alternatives The above-mentioned transmission sectiofl alternatives were combined into five realistic total s_ystam altet'nativesa Three of the five . alternatives have different voltages for the two sections. The principal parameters of the five transmission system alternatives to be analyzed in detail are as follows. Alternative 1 2 3 4 5 Susitna to Anchorage Number of Circuits 2 3 2 3 2 *Denotes series compensation. Voltage (kV) 345* 345 345* 345 .sao 3 - 9 Susitna to Fairbanks Number of Circuits 2 2 2 2 2 Voltas:!: (kV) 345 345 .230* 230~ 230* ,. ·- .:1 I ,I I I I I I I I I -·1 I I I .'"';., Single-line diagrcuns explaining: the details of the two most promising system config~ations, ~~t-ernatives 1 and 2., are shown in Figures. 3~ 1 and 3. 2. 3.6 -Electric System Studies Early in. the system studies, it was realized that 345 kV was the one voltage whi.ch showed greatest promise for transmission from Susit:n.a to both An.chorage and Fairbanks. A 500-kV system has higher transmission capahilities but at significantl.y higher costs. Transmission at 230 kV is insUfficient for the section from Susitna to Anchorage, and all dual voltage systems have increased complications and decreased reliability at little or no economic advantage. For these reasons, 500-kV and 230-kV system. alternatives were only analyzed-sufficiently to determine their equi.~ent ratings so that cc..1st estimates could be prepared. 3 o 6 .. 1 -Power Transfer After stud.ying various reports and obtaining preliminary information on the staging of Susitna from SUbtask 6.36, Generation Planning, the electric system studies were able to proceed in December 1980. Table 3.2 shows the preliminary staging schedule for the Susitna develo];lii.ent. The. maximum power to be transmitte.d . to Anchorage and Fairbanks for each stage of development, based on the 85 percent and 25 percent limits is given in Table 3 •. 3.~ , The load power fao.tor .is assumed to be 0.95 and the power factdr rating of the Susitna generators is assumed to be 0.90. Following determination of the system power transfer requirements for each stage of St!.sitna development; alternative systeJn configu.r:ati.ons were developed taking into account the following 3-10. 0 •• I I . I I I' I :I I I I I I I ·- 1 ,I I -initial SUSitna development a~ the Watana site .... a major std. tching station at Devil Canyon. or near Gol.d Creek .. -possible intermediate switching at Willow and Healy. Preliminary line lengths for the s.ystem conf iguratiorts under study were obtained from Subtask 8. 03, Transmission Line Route. Selection. 3.6.2 -Canductor Sizes - Based on the transmission and. power transfer requirements at the various stages of Su.sitna development, economic conductor si~es are determined. The methodology used to obtain the economic conductor size and the results obtained are outlined in Appendix C, Econom:ic Conductor Sizes~ Also included in Appendix C are the capital~zed costs of transmission line losses. The costs of these losses are taken into account in comparing the overall costs of al.ternative transmission schemes. When determining appropriate conductor size, the economic conductor is checked for radio interference ( RI) and co.:r;ona ~rformance. If RI and. corona performance are witi-Iin acceptable limits, then t..l:te economic conductor size is used. However, where the RI and corona performance are found to be limiting, the condttcto.r selection is based on these requirements. Total 1ine losses for the proposed conductor size for each of the different line voltages being considered are given in Table 3,4. These losses are for the· alternatives where a IP.ajor switching station is located at Devil Canyona The losses given are the total line losses for transmission from Devil Canyon to Anchorage and from Devil canyon to Fairbanks. The line fr.om Devil Canyon to Anchorage is 155 miles long. The losses were calculated for the 3 -11 I I ···-_ . . I I I I I I I .I I ;I I ····_ I .. maximum expected power transfer to Anchorag~ an.d to Ja'airbanks for· each of the stages of the Susitna development as given in ~able 3.3. ~ 3.6.3 -Line Energizi~ Transmission line energizing studies were carried out to determine the need for and ratings of reactive shunt compensation at the receiv-ing ends of transmission line sections at the various voltages. This compensation is required to limit overvol tages during line energizing to acceptable levels,. Shunt reactors are required at Willow and Anchorage for the 500-kV transmission alternative and at Fairbanks for 345-kV transmission. ~ese reactors are switched with EHV breakers directly to the respective transmission lines in order to be connected prior to energizing of the line sections. The breakers are :required to disconnect ~e reactors at times-of heavy line fiows, and especially during line outage -e.onditionso This arrangement reduces the need for capacitive var generation to compensate for the reactors. The -results of the line energizing analysis. are shown in Tables 3. 5 to 3. 7. Included in the tables are values which fall outside the proposed planning critera and m1.1st be corrected. with shunt reactors as indicatede 3.6.4 -Load F1ow Studies Load flow studies confirmed satisfactory system performance und~ both normal and emergency condi tiqns for all. transmission alternatives. Emergency conditions tested include outages of any single 345-kV transmission eircuit fo~ ~~e 345-kV alternatives as we'll as the critical outages of a 500-kV circuit betr,.""een Devil canyon and Willow and a 230-kV circuit between Devil canyon and Fairbanks for the 500-kV and 230-kV alternatives. 3 -12 I I I I :I, I I I I I I I Voltages on the 138-kV and 230-kV load buses range from 0.99 to 1.02 per unit for normal operation and from 0.93 to 1.02 per unit under emergency outage conditions. Vol ta(]e ranges on the EHV systems were Oe95--to 1.04 and 0.90 to 1.04 for no:rmal and emergency conditions, respectively. Load conditions __ were assumed to be at peak demand with SU.si.tna generation fully utilized and-Onlyl!linintal other generation available on the system. This situation is expected to result in the most critical operating conditions. fJ:-,:...tal locui is 1,600 MW at a power factor of 0.95. Systell\ load di.stribution was simulated at a maximum of 85 percent of the total lflad for Anchorage and a maximum of 25 percent for Fairbanks. Generation assumed for the above 1oad conditions includes SUsitna -capability fully utilized {Watana 800 M.W, Dev.Ll canyon 600 MW} plus 300 MW of coal-fired generation at Beluga. and 100 MW of gas turbines at each of Anchora9e and Fairbanks. All of the tJ.'lermal units are assumed to be running .. at approximately half load .in order to provide 250 MW of -spinning rese~ve. Load flow diagrams showing normal system operation at peak demand for 85/15 percent and 75/25 percent lo~d sharing for transmission Alternative.s 1 and 2 are included as Figures 3.3 to .3.6. !Jlle load flow diagrams show a s.ystem configuratio~ containing ·two terminal. stations in lmchorage with a subtransmission voltage of 138 kV. Transmissi9n fromJ3eluga is represented as a. 345-kV infeed. In the final analysis the transmission between Willow and Anchorage wi~l include approximately four miles of submarine cable for the Knik Arm crossing, but this is not represented in the initial studies. Switching of the 345-kV shunt reactors at Fairbanks is not shown in the diagrams , but these will be discolll'lected for _peak demand and 1ine outage coi idi tions as required. While these changes have significant effects on transmission system equipment costs, they do not significantly affect system operation. For this reason, they were included i.n the latest cost estimates but riot in the electric 3 -13 I I system studies to a~oid repeated updating of system parameters. System ~formance was found to be critical for line outages betwgen Devil canyon and Wi11ow and between Devil Canyon and Fairbanks• Consequently,· it was these line qutage£J which de.termi.ned the ratings of static var s.o:urces and series compensation. The required ratings of compensation equipment for the five transmission alternatives are listed in Table 3.8. 3•6c5 -~ransient Stability Detailed transient stability studies were carried out only for the . 345-kV transmission Alternatives 1 and. 2. Before the studies bad advanced to the stage of stability analys2sr alternatives containing SOO .... kV or 230-kV transJ.Uission had been recognized to be noncompeti.ti.ve with the rem.a.ining 345-kV alternatives, on either economic or technical grounds. A 500-kV transmission to Anchorage would have sufficient surplus capability to ~nsure stable operation. On the other hand, should 230-kV transmission to Fairbanks ever have to be reconsidered., transient stabilitywould still need to be confirmed. As outlined'-'in--'the planning criteria., the design faul.t for transient stability analysis is a 3-phase fault. In the preliminary studies, the faul.t was cleared in 4. 8 cycles at both ends of the faulted line section, rather than in 4 .• 8 and 6 cycles at the near and remote ends, respec.tively, as stipulated in the planning criteria. A test run for the most critical system condition confirmed.that.the additional delay does not significantly affect system performance. Transient stability vms analyzed for a 3-phase fault on the 345-kV line from Dev i1 Canyon to Willow (with as perc5ent of the system 3 -14 I I a· -· ••• I ·I I I I I I I I I I I. I I . I load at Anchorage) and similarly on the line from Devil Canyon to Fairbanks (with 2,5 percent of system load at Fairbanks). To simulate worst conditions, the faUlt was assumed to be near Devil Canyon in both cases. The fault was cleared in 4118 cycles without reclosw:,-e. System transient behavi.or was observed for a period of 1 second after the fault. Exciter and governor response in the transient interval was ignored. The dynamic voltage regulating capabili~es of ~he static var sources at ~~chorage and Fairbanks were ignored as well. For the· fi!lal analysis a .revised comput~ model (with representation of dynamically v.ariable stat.ic var sources) will be available .• .The attached swing curves, Figures 3. 7 to 3.10, .show the rotor angles of all generators relative to the rotor angles at Watana .• Al.1 generators recover from the first and second swings for both transmission alternatives. 'l'he actions of exciters and governors should ensure that these swings are damped out and return the system to a new equilibrium after each d'isturbance. System transient behavior seems to be. quite sensitive to the generation on-line at both Anchorage and Fairbanks at the time ,of a fault. Detailed analysis. at the design stages will have to determine the minimum spinning reserve required at both Anchorage and Fairbanks to ensure system stability in the event of a major fault. The transient stud4-es are considered. adequate to confirm the stability of the system configuration and the primary equipment parameters needed to ensure satisfactory operation. 3.7-Economic Studies Economic studies were carried out to determine the capital and operating 11 costs and to compare the total life cycle costs of the various transmission alternatives. The economic studies exclude the costs of the Knik Arm: crossing and terminal stations in Anchorage. These were considered common to all alterr1ati ves (for a 230-kV crossing) • They will have to be in0'11ldedl·in the final analysis • 3 -15 I I •• I I I .I I I I I I ~· I I 3. 7 11 1 -Cost Estimates The transm.tssion cost. estimates inc~ude all costs for transmissi.on lines anii substations. All estimates include the costs of land acquisition and cl.earing" Included. in the substation cost estimates are site preparation and all equipment costs for circuit breakers, transformers, shunt reactors, static var sources and transmission line series capacitors. Cost estimates of major ___ _ equipment include the costs-of all ancillaries such as disconnect -~· switches, potential transformers~ current transformers, controls, instrtnnentation, etc. At the generating stations all EHV circuit breakers are inc~uded, but generator transformers and low-voltage breakers are excluded. These are included in the powerhouse estimates. Similarly at the load centers all EHV breakers are included as well as the necessary cix'cuit entries at the subtransmission voltage (230 kV or -·rJa kV] for each transformer bank.. The remainder of the low~ voltage station is common to al.l alternatives and therefore excluded from the comparison. At ~·· -- Anchorage, transformation to 230 kV is assumed on the west side of Knik Arm impl.ying cable crossings at .230 kV. The cable crossings and other 230-kV equipment are considered. common to all ac transmission alternatives for Susitna and their costs have been excluded from this comparison. They must be included for comparison of schemes with different Knik Arm crossing configurations such as HVDC transmission from Susitna. The unit costs and assumptions in the cost estimates are shown in Table 3. 9.- All details on which the cost estimates are .based are given i!). detail in Appendix D. 3 -16 'I I I I I I I ; .•.. . . I I I .. I I I I 3.7.2-Life-cvcle Costs ,.Life-cyc~e co-sts £or---ea-ch transmissi-on alternative were calcul.ated by discounting all cost components over a SO-year lifetime from 1993 to 2043 to a common present worth datum of 1981. The calcul.ations and results of total present-worth costs are shown in Tables 3.10 to 3.14. Included in the life-cycle costs are capitcU (including engineering, contingencies, land acquisition and . clearing and bond commissi-on) c Also in.cl uQ.ed are the capitalized annual costs of operation and maintenance, insurance,. inter.im replacement, contribution in lieu of taxes, and transmission losses. A summary of ~esent-worth life-cycl~ system costs for all five transmission alternatives is shown in Table 3.15. 3.8 -HVDC Transmission In order to determine the. relative economics of HVDC as compared to the preferred ac transmission alternative an economic screening was carried out. The details of this analysis are given in Appendix E, and the results and significant features are summarized ha.re. 3.8.1 -General- A HVDC transmission system linking Susitna generation with the Anchorage and Fairbanks load areas woul.d need to be either one 3-terminal system or two 2-terminal systems. Another alternative would be a combined scheme using ac transmission from Susitna to one load center and de transmission to the other. In order to ensure that no possible economic colllbination is overlooked, transmission to Anchorage and Fairbanks are considered separately. 3 -17 I I I I I I I I I 3~8.2 -Comparative Transmission Systems The ac and HVDC transmission systems whose costs are comp;~red are essentially comparable in terms of :-;ecurity of supply. Each alternative is planned to maintain rated transfer capability with the sinqle contingency outage of any element in the transmission system. a {a) Ac Transmission The ac transmission syst~ ·which is considered as the base case utilizes 345 kV _with 3; circuits ultimately to Anchorage and 2 circuits to Fairbanks. Transmission to the load centers originates at a switching station at Devil Canyon with Watana generation brought in at 345 kV. Transmission to Fairbanks is direct to a 345-kV/138-kV terminal station at the load center. Transmission to Anchorage involves aY' lntermediate swi tchi.'lg station at Willow and proceeds tc~ a .345-kV/230-kV station on the west side on Xni.k Arma At this point transmission ~ continues via a 230-kV submarine cable* to the east side of Kni.k· Arm and into a termina1 station from which l.ocal distribution circuits would radiate. *Transformati.on to 230 kV and use of 230-kV submarine cable is not necessarily the optimum arrangement, but it is considered adequate for the ac versus HVOC economic screening. ~"~· .·. -·~· .. 3 _, 18 I I I .I 'I I I I I I I :1 I I I I I (b) B.VDC Transmission The HVDC converter terminals are assumed to be located at Devil Canyon with local ac transmission at 230 kV between Watana and Devil Canyon. Transmis~ion to Fairba~ks is via a single bipo!~ HVDC line operat.ing at ±_250 kV, with an inverter terminal an.d 138-kV circui.t entries at the load end.* .. . Transmission to Anchorage is also at .±,250 kV but would require 2 bipolar HVDC eircu:i..ts to meet the security constraints. ~--'These circUits would proceed directly to Anchorage, utilizing HVDC submarine cables across Knik Arm and into an inverter station on the east side of Knik Arm. The inverter output is via 230-kV circuit entries which would supply local distribution identical to the ac alternative.. The cost of a separate 230-kv ac supply from Point McKenzie to Willow is allowed for 6 ;;;-o that both ac and de a1 ternati ves would be functionally equivalent. 3.8.3 -£omparative Costs •The details. of equipment ratings and unit costs are given in Appendix E i the results are summarized in Table 3.16o Individual costs are given for line and termil:niL facilities in order to illustrate the basic relationships ·between ac and HVDC transmission costs 6 All_ capital costs are for the ul:titm1_~e installation with no discounting of staged componertts. The *During the single contingency ou.tage of one pole of the line or terptinal facilities, earth return. would be utilized to maintain rated ,POwer flow to FC!~;Y;J:lanks • · 3 -19 C•' ~· o~ _K: •.... ~. -~"'-.·~ •• !·-_ .•. 4 •..,. .._ .. --t£..~. J~· I I ,. ••••• I :1' 1 :1 :1 I I I I I ... I capitalizatioit_of annual charges s.uch as operating costs' and the cost of l.osses .is at 3 percent discount rate over the 50-yr life of facilities. As the comparative costs.show there is·no obvious cost advan'fage favor in<] HVDC over ac transmission either to Anchorag~ or to . Fairbanks. This iz particularly true in the case of Anchorage where HVDC is over 20 percent more costly than ac transmission. The margin favori.ng ac is only 8 peX'cent in the case; 'f tra.Yismission to Fairbanks, and although this mi~tht be . ·aduced by further study, it is unlikely the savings would be sufficient to justify the operating complexity of combined ao .and HVDC systems. on the basis .of this economic screening it is conc~uded that ac is an appropriate choice for transmission from s'usitna to the load centers at Anchorage.and Fairbanks .. 3 -20 ---- TABLE 3.1: P'-~ILBELT REGION PEAK AND ENERGY DEMAND FORECASTS ~USED FOR GENERATION PLANNING STUDIES LOAD CASE Low Plus Load ~ Management and Conservation 1 Low Medium 3 High. . 4 · (LES--GLAdjusted) (LES-GL)2 (MES-GM) (HES-GH) Load Load Load Year MW GWh Factor M'"w GWh Factor MW GWh Factor MW GWh - 1980 510 2790 62.5 510 2790 62.4 510 2790 62.4 510 2790 1985 560 3090 62 .• 8 580 3160 62.4 650 3570 62.6 695 3860 1990 620 3430 63.,2 640 3505 62.4 735 4030 62 .. 6 920 5090 1995 685 3810 63.5 795 4350 62.3 945 5170 62.5 1295 7120 2000 755 4240 63.8 950 5210 62.3 1175 6430 62.4 1670 9170 2005 835 4690 64.1 1045 5700 62.2 1380 7530 62 .. 3 2285 12540 2010 920 5200 64.4 1140 6220 62.2 1635 8940 62.4" 2900 15930 Notes: 1 LES-GL; Low economic growth/low goverQment expenditure with 1oad·management and conservation. 2 .. LES-GL.: 3 MES-GM: 4 HES-GH: I Low econoll!ic gr9~1th/low government expenditure. Medium economic growth/moderate government expenditure. High economic growth/high government expenditure. Load FactQJt- 62.4 63.4, 63 .. 1 62.8 62.6 62.6. 62.7 I I Year 1993 1996 2000 TABLE 3.2: STAGING OF THE SUSITNA DEVELOPMENT Susi tna Capacity -MW Watana Increments 400 400 Total 400 800 Devil Canyon Increments Total Susitna Total •. _. 2000 (optional) 400 200 400 600 400 800 1,200 1,400 I I I I I I Total Susitna Capacity (MW) 400 800 l.;t2-00 1.,400 TABLE 3. 3;, MAXIMUM POWER TO BE 'rru.utSMITTEO TO ~..NCHORAGE AND FAIRBANKS FOR EACH STAGE OF SUSITNA DEVELOPMENT Maximum Power Transmission To Ar.,chorage To Fairbanks {tvlW) (~i) 340 680 1,020 1,190 100 200 300 350 Note: For sy.stem planning purposes a maximum of 85 percent of 5usitna generation is assumed to be transmitted to Anchorage and a maximum -· · "'vf 25 percent to Fairbanks. :1 I I ···-·'··· . ' I I I I ,I I I I TABLE J il 4 :· LIN'"E LOSSES UNDER MAXIMUM POWER TRANSMISSION Devi1·can1:on· to Anchora2e (155 mi) Susitna Power. 500 kV 345 kV 345 kV CaEacit:z Transmitted 2 Circuits 2 Circuits 3 Circuits (MW) (MW) {MW) {MW) (MW) 400 340 1.5 3.2 2 •. 9 800 680 6.2 12.8 11 .. 2 1,200 1,.020 13.8 28.8 25 .. 5 1,400 1,190 18.8 39.2 35.3 Devil can2:on to Fairbanks (189 ~) Susitna Power 345 kV 230 kV Ca;E!acit!( Transmitted 2 Circuits 2 Circuits (M'"w) (t.fi-1} {MW) (MW) 400. 100 0.5 1.5 800 200 2.0 6.1 1,200 300 4.6 13:7 1,400 350 6.3 18 .. 6 .. -_' __ _ - -- - TABLE 3.5: TRANS~ISSION LINE ENERGIZING Transmission Alternative 1 Line "' Senc:Un~ End Reactors No. of No. and Short (receiving Circuits Size of Watana Circuit Initial Final Voltage L.ine Line Section Len2th end) at 345 kV Conductors Genera tio•!. Level Volta2e Volta51e Rise Plow (mi} (!WAR} (kcmil) (MW) (MVA) (per unit) (per unit) (per unit) (MVAR) Devil. canyon -189 0 2 2 X 795 200 541 0 .• 900 1..1892 ~.2892 229 Fairbanks Devil C~yon -189 15 2 2 X 795 200 541 0.900 1.025. 0.125 as Fairbanks Devil Canyon -.189 75 2 2x 795 400 1006 0.9SU 1.025 o.o"'ls 85 Fairbanks Devil Canyon -189 75 .~. 2 X 795 800 1768 1.000 1.048 0.048 89 lli I:' air banks Devil ~anyon -90 0 2 2 X 12721 200 541 0.900 1. .. 017 0.117 eo Willow3 Devil Canyon -.90 0 2 2 X 1272 1 400 1006 0.950 1.021 0.071 80 Wil.low3 De.vil Canyqn ·-90 0 2 2 X. 12721 800 1768 1..000 1.046 0.046 84 Wi1low3 Willow -651 0 2 2 X 1272 1 200 436 0.950 1.073 0.123 64 Anchoragel • Willow -651 0 2. 2 X ~272 1 400 696 0.950 lo024 0.074 58 Anchor agel Willow -651 0 2 2 X 12721 800 992 0.950 l.OOQ 0.050 55 Aiichor:agel Notes: 1~he di.stattce froll Willow to Anchorage and conductor .size from Susitna to Anchorage wil.l be revised for the· final analysis .. 2 $hunt rel\,,t,t\)J:'S are requlred •t Fairbanks to satisfy volt:agfl rise criteria. 3 . . .· . . ·. . -ttesults fc1r the line sections Devil canyon -Willow -Anchorage are also valirl for 'l.'ranlllUiasion Altern.:at.ive l. Re~g End Vol.:t~_ {per limit) 1.2&l;~ l .. O_i.$! 1 .. 02.,~ l.QSl, 1 .. 0:3S 1.()~ l.Q&l l.OSl l .. Q~l 1.®9 ------ ·DBLE 3.6: TRANSMISSION L'INE ENERGIZING ' ~--~ .. ----·-" ~ransaission Alternative 2 Line Sending:.End Reactors No. of No. and Short ~ving (receiving Circuits size of ~atana Circuit !niti.al Final Voltage Line En.a t.ine Section Length end} at 345 k.V Conductors · Generation Level Vol.ta9:e Vol.ta:1e Rise Flow V().\.~ge (rnU (MVAlt) . (kcmil) (MW) (MVA) (per unit) (per unit) (per unit) (MVAR) ~\mit) Devil Canyon -189 0 2 2 X 795 200 541 0.900 1.1892 o.2a92 229 ~ l .... ~ ,_ ' --.. .,. Fairbanks Devil canyon -189 75 .2 2 X 795 200 541. 0.900 1..025 0.125 85 l. ... ~$ Fairban"ks " Devil Canyon -189 75 2 2 X 795 400 1006 0.950 1.025 0.075 as ::t"'~'S Fairbanks Devil Canyon -189 '15 2 2 X 795 BOO 1768 1..000 1.048 0.048 89 ~,~l. Fairbanks Devil Canyon -90 0 3 2 X 954 200 541. 0.900 1. .. 013 0.113 76 1;,.,;~0 W!llow3 Devil-canyon -90 0 3 2 X 954 400. 1006 0.950 1.018 0.068 77 l ... ~ Willow3 Devil Canyon -· 90 0 3 2 X 954 800 17.68 1.000 1.044 0.044 81. ~ ... ~~ Will owl Willow-651 0 3 2 X 954 200 433 0.950 1.069 0.119 61 l .. ~na Anchor agel Willow -651 0 3 2 X 954 400 688 0.950 1 .. 022 0 • .072 56 t._.())l. Anchoraqel Willow -651 .0 3 2 X 954 aoo 976 .0.950 0.999 c .. o4~ 53 1, ... oon Anchoragel Notes: 1The distance from Willow to Anchorage wil.l ·be revised for the final analysis. 2shunt rt1actors. are required at Fairbanks to gati'sfy -voltage rise criteria .. 3aesults for the. line sections Devil Canyon -Willow -A."1chorage are also valid for Transnussion Alte:rnative 4. ----- TABLE 3. 7: TRANSMISSION LINE ENERGIZING Transmission Alternatlve 5 -Line Sendin2: End Reactors No. of No. and Short Re.~'«ing (recei vil'lg Circuits Size of Watana Cir~uit Initial Final Voltage. Line ~ Line Section Length end) at 500 kv Conductors Generation Le\\iel Volta2e Vol. taste Rise Flow Vol<~~ {mi) (MVAR) .. (kcmil) (MW) (MVA)-(per unit) (per unit} (par unit) (MVAR) (~,liZ' tunit) Devil canyon -· 90 0 2 3 X 795 200 564 0.900 1.1842 0 .. 2842 234 l .. ~Q$-2 Willow Devil Canyon -so 75 . 2 3 .X 795 200 564 0.900 1.035 0.135 97 l~Q~7J Willow Devil canyon -90 75 2 3 X 795 400 1091 0 .. 950 1.021 0.077 96 1~~ Willow Devi! ~~yon 9Q 75 2 3 X 795 800 Willow 2044 1.000 1...046 0.046 99 1.~ Willow -501 0 ~ 3. X 795 200 506 0~950 1.1372 0.1872 119 1 .. 1o~ ... Anchorage Willow -so1 50 2 3 X 795 200 506 o.sso 1.027 o.on 44 l .. Q~ Anchorage Willow -so 1 so 2 3 X 79S 400 892 1.000 1.049 0.049 46 1.0., Anchorase tiillow -so 1 50 2 3 X 79S 800 Ancho:t;"age 1443 1.000 1.030 Q.030 44 1~.0~- Uotes: 1 . . . . -. The distance from Willow to Anchorage will be revised for the final analysis. 2 . . . . Shunt reactors art! required. at Willow and Anchorage to aat:i.sty voltage rise criteria. 3 . . Shunt eo~apensation is. not required for 230-kV lines Devil Canyon to Fairbanks, Alternatives 3, 4 and 5. --'----··- TABLE 3.8: RATINGS OF REACTIVE COMPENSATION REQUIRED Fairbanks Anchorag:e Willow Transmission Static VAR Shunt s~ries Static VAR Shunt Series Static VAR Shunt Series· Alternative Source Reactor Capacitor Source Reactor Capacitor Source Reactor <Capacitor (MVAR) {l.WAR) (MVAR) (MVAR) (MVAR) (MVAR) (MVAR) (MVAR) ~MVAR) 1 100 2 X 75 400 430 773 2 100 2 X 75 400 . - 3 200 430. 400 -430 -773 4 200 430 40.0 .... - 5 200 430 200 2 X 50 2 X 75 - .• --... - ' ·. -.·.;;···· ~1:-', I I I I I I' ··a: I I ~ABLE 3, 9: TRANBMISS!ON AND StTBSTAT.ION UNIT CCtSTS ~ransnrl.ssion Line Costs -Voltage (kV) Conductor \K"clliil1 ·-·- 230 "1, X 954 230 1 X 1272 230 -1 X 1351 345 345 345 500 2 X. 795 2 X 954 2 X· -.l-3&J.c-.. ·-·"·'·,-- 3 X 795 Bas.e Cost $/Circuit Mile 120,000 136,000 140,000 190,000 207,000 -= ---~,25-1 ,-eeo 326,000 Land Acquisition and Clearing Voltage (kV) 230 345 345 500 No .• of Circuits 2 2 3 2 $/Mile 70,000 75,000 96 fooo _ 80,300 ,_, Final Cost1 $/Circuit Mile 162,000 1841000 l$9,000 256,000 279,000 339,000 440$000 '} ...•. · .-~- I I I I •• I I I I I .I I I ·I.· . .. I Table 3.9 Transmission and Substation Unit Costs - 2 Substations -------·------- Vo1tage {kV} 138 230 345 500 Station Base Cost2 Circuit Brea.lcer Position ($ .Million) ($ r.Iillion} 1.000 1.500 2.000 2.500 0.400 0.700 1.000 1 .. 600 Autotransformers {including 15 kV ter1:_iary} Voltage {kV) 230/1.38 345/138 500/1.38 345/230 500/230 Generator Transformers Voltage (kV} 345 500 75 MVA ($ Million) 0.500 0.700 $/kVA 4.20 5.00 150 MVA ($ Million) 0.800 0.,900 1.200 0.900 1·.200 250 MVA ($ Million) 1.100 1.300 1.600 1.300 1.600 I I •• I I I I I I I I .lr. I I I 'I Transtnis .. sion and Substation Unit Costs - 3 Shunt Reactors vo~tage (kV) - 345 500 50 MVARS ($/kVAR). 24.60 Series Compensation (all volta,ges) $14.00/kVAR Statio VAR Squrces (tertiary . voltage) $30.00/kVU - Notes: c 75 WlARS ($/kVAR) 1.11 17.20 1 Final transmission line ·costs (Sheet 1) include 20 percent contingencyR plus 5 percent -engineering, 5 percent construction management, and 2. 5 percent owner's _cost. 2• . -Substation base cost (Sheet .2) includes land acquisitions, site preparation, foundations 1 etc. ,;.,... --· . ii .. -· ! ------ TABLE 3 .. 10: LIFE CYCLE COSTS Transmission Alternative 1 Susitna to Anchorage - 2 x 345 kV 1 2 x 1351 kcmil, 50 percent series compensation. Susitna to Fairbanks - 2 x 345· kV, 2 x 795 kcmil, no series compens~tion. 1993 Costs 2000 Costs Current $ x 106 1981 P .. W. current $.x 106 1981 P.W .. Line Capital Line Capital Cost 1.5 percent Bond Commission Total Line Cost Land Acquisition Capitalized Anr:,ual Charges Capitalized Lir~e Losses ,'->· Station Capital Station Capital Cost 1.5 percent Bond Conunission Total Station Cost Capitalized Annual Charges 19Sl .Present Worths Total Lile Cycle cost 220.12 3.30 223.42 26.70 181.5(:) 75.66 123.88 1.86 125.74 135.46 156.70 18 .. 73 12.7. 34 53.07 88.19 95.01 539.04 44.74 0.67 45.41 45 .. 60 26 .• 01 51~91 Tot a~ ·1981 ~ ... w~ 156 .. 7Q, 18 .. 7~ 127.3~ 53 .. 01! 114 .. 09 12l.Ol 590.9$ -------- TABLE 3.11: LIFE CYCLE COSTS Transmission Alternative 2 Susitna to Anchorage -3 x 345 kV, 2 x 954 kcmil, no series compensation .. susitna to Fairbanks - 2 x 345 kV, 2 X 795 kcmil, no series compensation. 1993 Costs 2000 costs --·-- Total.. Current $ x 10(5 · 1981 P.W. Current $ x 106 1981 P.W. 1981. P-.W. Line Capital Line Capital Costs 1.5 percent Bond commission Total Line Cost Land Acquisition Capitalized Annual Charges Capitalized Line Losses Station Capi.tal Station Capital Cost 1.5 percent Bond pommission Total Station Cost Capi taliz_ed Annual Charges 1981 Present vlorths Total Life Cycle Cost 192.25 2.88 195.13 29.64 160.76 77.70 123 .. 88 1 .. 86 125.74 135.46 136.86 20 .. 79' --.. --~-~---~ -·-----:.' 112.75 54 .. 50 " 88.19 95.01 509 .. 10 39~12 0.59 39.71 30.49 31.47 0 .. 47 31 .. 94 32.07 22.65 17.39 18 .. 21 18.29 76.54 '·i 159 .. 51. 20 .. 19t 130 .. :14 54.,$Q 106 .. 40- 113.3() 584.64 ;-. .. ..... IIJ• :------------ TABLE 3.12 ~ LIFE CYCLE COSTS Transmission Alternative 3 .· \ . ---~--------------------~----~~----~~----~----~--~~~----------~~~--~-------- Susitna to Anchorage -2 x 345 kV, 2 x 1351 kcmil 1 50 percent series compensation. Susitna to Fail::-banks - 2 x 230 kV, 1, x 1272 kcmil, 50 p~rcent series compensation. 1993 Costs 2000 Costs Current $ · ;( 106 .. 1981 P. w. current $ x 106 . 1981 P .w. Line Capital Line Capital Cost 1 .. 5 percent B()nd Co1Ilmission Total Line Co:;t Land Acquif;ition Capitalized Annual Charges Capitalized Line Losses Station capital Sta~ion Capital Cost 1.5 percent Bond Commission Total Station Cost Capitalized Annual Charges 1981 Present Worths Total Life Cycle Cost 188.18 2.H2 191 .. 00 25.76 153.,17 91."97 135.95 2 .. 04 137.99 148.66 133. 96· 18.07 107.43 64.51 .. 96.78 104,.27 525.02 i 54.48 . 0 .. 82 55,.30 55.53. 31.54 31.67 63 .. 21 Total 1981-P .. ,'W/.., 133 .• 96. 18.,.0# 107.43; 64.51 128.32 135.94 (I - I j -~- ' -----------· '- TABLE 3.13: LIFE CYCLE COSTS Transmission Alternative 4 Susitna to Anchorage -3 x 345 kV, 2 x 954 kcmil, j/lO series compensation. Susitna to Fairbanks -?. x 230 kV, 1. x 1272 kcmi1,, 50 percent series compensation. 2000 Costs 1993 Costs Current $ x 106 1981 P.W. current $ x 106 1981 P.W. Line Capital Linfa Capital Cost 1,.5 percent Bond Commissi,on Tot:al ·Line Cost Land Acquisition Capitalized Annual Charges Capitalized Line Losses Station Cavital Station Capital Cost 1.5 per.cent .Bond Commission Total $,tation Cost Capi,tal.izt:ld Annual Charges 1981 Present Worths Total Life Cycle Cost 166.16 2.49 168..65 28.70 136.08. 93.85 135.9~ .2 .. 04 137.99 148 .. 66 118 .. 29 20.13 or.:-44 ~..,:::> •. 65.82 96.78 104.27. 500.73 39 .. 1.2 0.59 39 .. 71 30.49 41.21 . 0.62 41.83 42.00 22 .. 65 17~39 23 .. 86 23 ... 95 87.85 Total 1981 P .. W..,. 140 .. 94 20.ll 112.83 65.82: 120.64 128 .. 2a - - - - ----- - - - -·- TABJ:.E 3 .14 : LIFE CYCLE COSTS Transmission Alternative 5 Susitna to Anchorage 2 x 500 kV, 3 x 795 kcmil, no series compensation. Susitna to Fairbanks - 2 x 230 kV,. 1 x 1272 kcmil, 50 percent series compensation. 1993 Costs 2000 Costs CUrrent $ x 106 1981 P.,W. ----··-_ _;...,.~ Current $ x 106 1981 J?.W. Line Capital Line Cap! tal Cos.t 1.5 percent Bond Commission Total Line Cost Land Acquisition Capitalized Annual Charges Capitali~ed Line Losses Station Capital Station Capital Cost 1.5 percent Bond Commission -Total Station Cost Capitalized Annual Charges 1981 Present Worths Total Life Cycle Cost 223.72 3.36 227.08 26.59 180,95 61.05 185.06 2.,78 187.84 202 .. 36 159.27 18.65 126.91 42.82 131.75 . 141.93 621.33 39 .. 73 0.60 40.33 40.49 23.00 23 .. 09 46.09 To tall 1981. li!>~W. 159.~1/ 18.6-.$ 126.~]1 42 .. &~ 154.?5 165.0l' - - - - - -·----- - --- Transmission Alternative. Transmission Lines Capital Land· Acquisition capitalized Annual Charges -·capitalized Line Losses _ · To·tal Transn1ission Line Cost TABLE 3 .. 15: SUMMARY OF LIFE CYCLE COSTS 1981 $ X 106 1 2 3 4 156.70 159.51 133.96 140.94 18.73 20 .. 79 18 .. 07 20.13 127.34 130.14 107 .43' 112.83 .53.07 54.50 6.4.51 65.B2 355.84 364.94 323.97 339 .. 72 ----~ ·~!~ '• 5 159.27 18.65 126.91 42.82 347 .. 65 i . l ----.. ----·-- TABLE 3.16: SUMMARY OF . COMPARATIVE COSTS AC VERSUS DC -TRANSMISSION Comparative Costs -$ Million Transmission to Anchorage Transmission to Fairbanlks Cost CoinponeJl1:.S Line·Cost 1 ~line capital 1 line capi~a~i~ed O&M 3 land acqul.s~t:t.on (R.O.W.) Station Costs 1 station cap~tal. ___ 2 station cap:Ltal:t.zed u&M 4 Capitalized Cost o~ Losses Total costs AC DC 198.18 165.72 13 .. 44 99 .. 38 108.67 83.87 669.26 125.40 104.86 8.40 239.59 262.00 74.94 815 .. 19 1 Line and station'-capi.tal costs are developed in Appendix E • AC DC 96.77 80.92 14.18. 35.32 39.62 13.72 279.53 3}".._90 :n~:Gl q\.,.56 1~"10 l'l$.,..46 Jt(-) .. ~3 3.03 .. 3.6 . 2Cc:tp:it_a1ized O&M charges include O&M, insurance,. interim replacement and contributions in lieu of taxes. ~hese -.. annual charges total 3.25 percent of transmission capital and 4 .. 25 percent of station capital, and they a~ capitalized. over 50 years at 3 percent. 3Land acquisition (R.O.W.) costs are estimated at $96,000/mile and $75,000/mile for 345 kV, 3 cct and 2 cct tran$mlssion respectively, and $60,000/mile and $40,000/mile for ±250 kV de 2-circuit and single circuit, . respectively. 4 . Losses are va:lued at _3.5¢/kW·h,_ e1:nd they are capitaliz~d over the 50-year line life. at 3 percent .. I I ANCHORAGE ll -·------ 200 ~WAR- . ANCHORAGE T ®··. I 3X250MVA 3X250MYA ··· ··~_-....... •_;. _· __ 150/i$00 MVt _···_· · cu.·. . . . .----- • . BELUGA I 50 MILES I 15 MILES --+----......--.. ·~---1 -~, J 3 3X75 3 MVA 90MlLES 1 • 27 MILES I I I I I ~ 189 MILES GOOMW · 75 t MVAFi~ 75 MVAfil DEVIL CANYON _...._....,..--..... 3£)1) WATANA TRANSMlSS!ON . SYSTEM CONFlGURAriON ALTERNATIVE l- ' 1:._ 50/IOOMW 100 MVAR . I I . • 1 LEGEND GENERAl lOIIi ~LOAD ED STAT1C VAR SOURCE @ BUS NUMBER· REAL POWER FLOW { MW ) REACTIVE POWER FLOW {MVAR) -II-:.:·· SERIES COMPENSATION TRANSFORMER . WITH TERTIARY SHUNT REACTOR L03 BUS VOLTAGE MAGNITUDE (PER UNIT) jt5.5 BUS VOLTAGE PHASE ANGLE (DEGr.EES) TRANSMISSION LINES ---345l<V ----l3"a KV OR LOWER NOTE : EQU1PMENT RATINGS INIJTCATED ARE FOR ULTIMATE INSTALLATION (YEAR ZOOO} FIGUREE 3.1 BELUGA ANCHORAGE IT • 0 50 MILES .. 3 . Hl---t--~"'--..... """'(3 3x250 . MVA 200MVAR 15 MILES ANCHORAGE I _SO MILES )..-..+-..;......+-----< 3X25Q ·-MVA 200 MVAR -•oo· .... , --~ ;~~':_:;-.:::>". • 50/JOOMW 27 MILES- 189 MILES 15 MVAR • i. ' ) ,;c . . Jr ----··""· ---------..,r-e-t 4Kl50 +-......_~"'-------'+--<: · MVA. , .. 100 MVAR ~) GOOMW 75 MVAR DEVIL CANYON -.--,......-.--@) WATANA !Rj.\NSMISSION· SYSTEM CONFIGURATiON AL1"ERNt%rtVE 2 •. " LEG.END GtNERAilQN LOAD STATIC VAR SOURCE @ . BUS NUMBER '-il- . _L_---_~----~ ... 1.03 ~-¥· REAl. POWER FLOW { MW) . REACTIVE POWER FLOW (MVAR) SERIES COMPENSATION IRANSFORMER WliH TERTIARY SHUNT REACTOR --. -;:-_--, -------- BUS VOLTAGE MAGNITUDE (PER UNIT} " <\t5.5. BUS VOlTAGE PHASE ANGLE (DEGREE$) TRANSMISSION LINES ---·-345 KV . 13'8 J<V OR l.OWER ~OTE.' E.QUIPM~NT R;i!.ilNGS INDICA TEO ARE FOR , . ULTIMATE INSiAL.LAT!ON (YEAR 2000) I . ·:1 I I I I' I I '' > .. -. ANCHORAGE II ($::> ' . !.00 1-0.1 sao ..... ;--- 225 .. t- 200 MVAR ANCHORAGE I 1.0110.0 f?O/JOO MW ~..=::: 200MVAR • 1.03Jl0.4 0.9915.9 ---.... t"'"· ·:...~""1""--< __ BELUGA 61 150 150•0111!--- t3G,. ·I ·, WILLOW ll 41 45 (03 ....... '-----+!- 1.031 18-.6 0.98!4.6 _...::., --.. -. --~---;:co--,-,----~------ 7; !;03!30.2 .... ' --190 l 76 -+----l.-..1!7 8 1.01113.5 t 19t2 .. 125 . DEVIL CANYON 1.03127.3 GOOMW WATANA PEAK DEMAND FLOW-ALTERNATIVE l 85% LOAD AT ANCHORAGE /! • {I ,._. -- .·FAIRBANKS 1.02 l!L3 \ r f ! l ! 50/lOOMW IOOMVAR . LEGEND e -------4 ··.er GENERATION LOAD STATIC VAR SOURCE · ® BUS NUMaER .. \ -II-- REAL POWER FLOW ( MW}. REACTIV.E POWER FLOW (MVAR) · SERIES COMPENSATION TRANSFORMER WITH TERTIARY SHUNT REACTOR. 1.03 BUS VOLTAGE MAGNITUDE (PER UNIT) ' po.5 BUS VOLTAGE PHASE ANGLE (DEGREES) TRANSMISSION LINES 345 KV 13"3 KV OR LOWER ,-.-.-=-o_-. ., • ' FIGURE 3.31•1 I I I I , I. a·· I .I I I I I I .. ,~ ---~· . -_.::.,:':;---~---- ' 60();--- 2.00 4: t. >-+:-:--:-::.-:::+------'-~-<· 3x250 ~48 MVA 200MVAR 1.00!4.2. • ANCHORAGE I 50/100 MW ]llo 38 . I ll> 77 soo . .--- 2oo.r 1 33x250 }-.f-1~.,.:-::::57:1------< MVA tso ..... ,.._,..._ 114 -.c . I 200MVAR 0.99L4.0 ··., . 1.01 19.6 .: ---· ··• ·~ n. "·· ~--'-'f" .. •. BELUGA ·WILLOW 102.4.----- 72. ...... ,__--11-· ' • . . ---FAIRBANKS 1.00 i2.! .. so-.. t 74 •400 -+ .. !50 -~-- 57 ... I ~. j. ..-------------....,.-t· 4xl50 -+--:-"4is:r::;t=:j:\:~ tiNA .J t ......... IOOMVAR 74 I T t T 1.04115.8 ....,.jL.:.--...:..-t-t:----+.;;84.;...-....:...a.---"T"'---( . 797 ~- ·t 35 I . DEVIL CANYON . . ' 65 t soo SOOMW -~42""""ro .... t....__·, ~ WATANA 1.03{ 27.3 80 800 ·-='~ PEAK DEMAND FLOW-. ALTERN~1.lVE t 25°/o LOAD At F4lRBANKS. E9 GENERATION ~LOAD EO STAT1C VAR SOURCE @ . BUS NUMBER REAL POWE~ FLOW ( MW) • REACTIVE POWER fLOW {MVAR) -11--... SERIES COMPENSATION TRANSFORMER WITH TERTJARY SHUNT REACTOR L03 BUS VOLTAGE MAGNITUDE (PER UNIT) BUS VOLTAGE PHASE ANGLE (DEGREE;$.} TRANSMISSION LlNES ---M5l<V ---13"9 KV OR LOWER ' .I.· I ·I I I I ·I I .. J ... I L·.,.-\~1 . ;; .. - .-!). ANCHORAGE II 1.00 (~0.9. -,----·--·----. 680 ... '"'""'"· - 2la5 .... 1 3x250 r-t-l-l!O_l_4_,5t----~. ' .. rMVA----~ · 200 MVAR 1.03 l~o.s 73t f l,03l9.6 . . . i 150 l.00[5.1.,.. .. ·---. .... t"!"· · ....... -.. "'!"J.,·r---""' BELUGA 59. 150 150 ..... """. -- . 134.,. . 1 . -~·-· 0.'~8l.1d_ . t 122 0 15 1 ANCHORAGE. I t .'~2- 25 t 50/IOOMW at,. I· . ·.;. .. EiSOr ... -.~-,--1 .. 225""" I 1:oo 1.1z.o . -~ --------· '---· 76 1204 • :-~ ----,--.,· 190 t 76 .FAIRBANKS ' 1.02 1!4.8 ?; ·- ' ' . ' 5 ~.: , E9 50/IOOMW 4~-:"' I . · . ,, . ,-. -· ~ . ' . ' J, ~ 0 •tel · j I ·· ...--------------r-1. 4•150 J---··11 ,j7:7:;f .. ==i=J \1 . ·. r .. ·· .. ··. f.···.·. · MVA · .,) . ~ _·l.Oltl7.1 75[ IOOMVAR 3x250. >-~-r~· ..,~114:+-----< MVA 1.•.·.· t T I . 123 1.0312.2; t ' ~~--.L.--+---11-----...... --"T---<. t .... · ... · .. · . 796 ..._ r• 200 MVAR '@. 0.?!'D.o . 801 . . .· . .. '···- . ·_;.,. ... ·t·· •·.. l.oa 130.9 -orr.--~---- . ,_ - ao I 75 600 600MW WATANA .--.r . ·':- PEAK DEMANDFLOW~ AlTERNATiVE Z · 85°/o LOAD. AT ANCHORAGE,, · 1--- ; • .•.. · ·' UtGt;::NO . t- i i.OAO · STATIC. VA.R SOU~CF ® . 1:!\JS NUM!:lF.~ .. I -il- . . . ( -l L03 jl5,~ REAl. POWER FLOW I MW } REAC:TlVE ~'OWER FLOW {MVAR) SERlES COM?ENSATIO!Il T-RANSFORMER WITH TE:RT.IAR~ . ~\-. SHUNT ~EI\CTOR BUS VOLTAGE MAGNITUDE: {PER UNIT) ... · BUS VOLTAGE PHASE ANGLE (DEGREES) TRI\NSMISS!ON LINES ---345 li:V 13'8 KV OR LOWf:R ' {} - ·····1· .•. .· ·' •' ·I··. I ·I I I I· ,. <.· ANCHORAGE li 600, .... f-.·-........ ·;J 3x250 ·}-J--~J----'-~~ MVA 1.00 14.1 ---.... t-·······.""· ........... "l"t"'i·· ..... -"'"""{"'--=~ 53' ISO BELUGA .. 150 ....... --'-- l30 ... WILLOW 0.9813;6 ANCHORAGE I . 1.01 !0.0 50/100 MW soo ... -.t-L'-~ 200-c ·I ' ,, ' ---~ . . .-~, FAIRBANKS ; . . !.0,1 (5.4 • . 50 .. 59 ... 0.t--l- ··::: .. ~400 i ·-.. I 1.•.1.30 . :f:('r t ..... -----~--------,..... .... 4x!50 i ',. MVA · ·68• l .JQOMVAR. t.•. Y.··• · + ~ 0:99J9.6 73h . l 3x250 ,_·+t--.-... -ss+---.---...'""""-< MVA 200MVAR 0;9814.1 t.02 'I.Q.Q.. ., 3f 10t40 l 35tG . -J-!.+--1-:.· ~---+.:.:1S.;:;........,i·;.....Ji.--..,...---< 'DEVIL CANYON . 1,051 19.0 ·t. '. 1 ....._.,.... 3[ r :· _ _; . ' <-? ' . .,,-·.---,-~-- SOOMW . t . ' . ;"I " • '"'.'j .· f PEAKDEMAND FLOW...., ALTERNATJVE 2 · .. . 25o/; LOAD AT fAiRBANKS. . . . . ' GtNERATJOr~ . . ;-:. . ' ' ! I U.>AD STATIC VAR SOURCE:: ·. @§) bUS NUMBER '.'. -<,;; REAL POWER FLOW { MW } -. . ' tl REACTIVE POWER FLOW {MVAR} SERtE!;: ·';'JMPENSAT!Otll TflJ).NSfORMER WlTH TERTiAR'r --rt-· L-jl.· .. ·· ... ) ' ., .. . .,,, . SHUt-.T REACTOR 1.03 BUS VOLTAGE MAGNITUDE· ( PtR UNIT) ' l 155 SUS VOLTAGE PtlASE ANGLE {OEGREltS)·· TRANSMISSION· !,.lNE:S .. L'\c'B KV OR l.OWER . . -;-;-;:.,':-·;=c~--,.c---_-•c;c=----=.-·~""--''"-'·"' .. ' •/ •, - ' .. • ... •• . r .,.._ .. .. ·; '" . ·I.' ~I I I I I .rt -en IJJ IJJ == 10~--------~~----~--------~~--------------------- 0::: . tB -eot-----""--+--......._.._: :--~-.-~---' 0 ~ (/). . ~ I z -30 ~---~----+----64-!-----..:.f.~...;.._-~---+~-----t--,__ __ ~ <t a: g ~ ~·~~~~--+--+--~~~--------~~~----~~----~~ 0::: ~ \ a:: \ LLJ ·~ -50~--~,--~~--_,~~-+---------4--~~~--~~~~~ -\ / 1 -70•-~~----~------------~------~--------~--------~ 0 0.2 Oo.4 0.6 0.8 1.0 TIME (SECONDS) . NOTE -01 STURBANCE IS 3 .. PHASE FAULT AT DEVIL CANYON CLEARED JN 0.08 SECONDS BY3·PHASE TRIPPINGOFOEYiL CANYON-WILLOW LlNE WtTHOUT RECL.OSURE -ROTOR ANGULAR DISPLACEMENT PLOTTED IS THAT OF AL.L GENERATORS RELATIVE TO WATANA TRANSIENT STA __ ~:LITY s_ .. w_ JN. G CURVE. S.-ALTERNATIVE I ~D~ .. 85 Yo LOAO--AT ANCHORAGE FfGURE 3 .. 7 HUO!Il I •• I I I I I .I- I I .I I -iOr---~----~--------~--------~----------~--------~ ,..._...__ ...... ---.. ., ---- • . ) • \ • • I • I ~0~--------~-----T--~----~--~------~~~----,_~ • I • • . .:_./ ._/ -70~------~~--------~~------~----------~~----~ 0 0.2 0.4 0.6 0.8 TIME (SECONDS} NOTE -DISTURSANCE 15 3·PHASE FAULT AT DEVIL CANYON CLEARED lN 0.08 SECONDS SY 3-PHASE TRlPPINGOF DEVIL CANYON-FAIRBANKS LINE WIThOUT RECLOSURE -ROTOR ANGULAR DISPLACEMENT PLOTTED IS THAT OF ALL GENERATORS RELA"flVE TO WATANA 1.0 TRANSI!;NT S"f ABIUTY SWING CURVES-ALTERNATIVE l t IOD_ ~.I 25°/o LOAD ATFAIRBANKS -FlGURE s.a 808£11 I I I •• I ,I I I I I I I I I I I -(J) ; / ... ~ (.!)• ~ -20~--~----~------~-+--,~--~~----------~~-1'~--~ UJ _J ~ -30~~------~--~~--~~~-~~~~--------~~--~~ <! et: f2 0 ~ -~~--~~--~·~~---++r--------_,--~~~~~----~~ a: ~ <t n: LU ~ -50~~~~~~-----~~-r--------~~~~----r---~+-~ (!) ' \ J -70..____~_.....______.___~-0 o.4 o.s o.s -t.o TIME (SECONDS} NOTE ,. -DIStURBANCE IS 3· PHASE FAULT AT DEVIL CANYON CLEARED IN C.OS SECONDS BY 3-PHASE TRIPPING OF DEVIL CANYON-WlLLOW LINE WITHOUT REClOSURE -ROTOR ANGULAR DISPLACEMENT PLOTTED IS THAT OF ALL GENERATORS RELATIVE TO WATANA ·; . . TRANSIENi STABILITY SWING CURVES-ALiERNAFJ .. 1 . 6 JV.u·· .RE.E2"--g~~Pll[Q1. 85o/o LOAD AT ANCHORAGE · w. HUDlO I cl I I I I .- I I I I ,. I. I I I I I P-------------~-~c ~------~------------~--~----~-------·-------~- - 1 ' I 10~--------~----~----~---~----~----~----~-------~ .. _....-., .... ~ ... __ .......,_ -··~--- -10~----~--~--------~--------~----~----r-----~--~- -ro~--------~--~~~------------------------------~ o o.z. 0.4 o.s o.e t.o TIME (SECONDS} NOTE -DISTURBANCE IS 3·PHASE FAULT AT DEVIL CANYON CLEARED IN 0.08 SECONDS BY 3-PHASE TRIPPING OF OEVll CANYON -FAIR SANKS LINE WITHOUT RECLOSURE -.ROTOR ANGULAR DISPLACEMENT PLOTTED JS THAT OF ALL GENERATORS RELATIVE TO WATANA TRANSIENT STABI~IT_Y s_. WING CURVES-ALTERNATIVE-2 .. janamj _ . 25 Yo LOAD AT FAIRBANKS FIGURE 3.10 1108[1} · 4 -CONCLUSIONS Al~ fJ.ve transmission al1t:.ernatives which were developed and tested would be capable of transmitting Susitna power to .Anchorage and Fairbanks with acceptab~e levels of reliability. Al.l, excep·;:, Alternative 5, h&ve v~y similar present worth life cycle costs. "' . Tl'lere-are., ho~ver,. other differences between these alternatives which have not been quantified in the above analyses. T'n;ese differences, as outlined below, result in making some of the alternatives more desirable than others._ 500-kV transmission to. AnchorCl,ge has a higher ultimate capability than any other uternative, but at a. significantly higher cost. . Furthermore, this added capability is not required with presently £oreseen installation at susitna. This alternative also implies a dual voltage system with_ less possibility of standardization and reduced. reliability because of the additional transformation required at Dev.il: Ca!J.yoli. 230~kv transmission to Fairbanks would need. to be combined with ·a higher voltage tran$Iltission to Anchorage. with-the resultant disadvantag;es of a dual voltage systemo Furthermore, it includes series compensation with additional complexity in protection and operation. fts reduced transfer capability offers no economic advantage-. -Of the 345-kV alternatives, the three-circuit configt'lt'.ation to Anchorage has the greatest reliability and simplici~y by not requ±ring s.eries compensation. l:t also has -~ higher ultimate transfer capabil~ity ' and a higher capability with single contingency outage·, thus allowing for greater flexibility of capacity _.planhl.iig-~for susitna. l:t al.so has partial transfe.r capability in the case of the double contingency outage of parallel c.irctdt elem~nts. 4 - 1 I I I I I I I I I 1. -On the other hand, the three-circuit configuration results in a slight1y greater visual impact than the two-circuit alternative .. Considering the overall balance of economy, reliability, tl:'ansfer capability anq opera~ional complexity, the three-ci~cUit configUration of Alternative 2 is seen to offer the bes.t combination of ·advantages. It i:s recognized that; in view of the uncertainties regarding some of the system parameters, seve:r;:-al sweeping assumptions had to be made to be able to carry:.out this preliminary analysis. The most obvious of these uncerts±nties involves the interconnection configuration between the Susitna transmission and the high-voltage transmission system in the Anchorage area. Installed capt,icities and generating unit sizes, as well as other technical characte~isti:cs of the Suaitna project, are likely to be revised as well. However, it is expected that the conclusions drawn from both the technical and economic analyses will not be significantly affected by the resulting changes in system parameters. 4 - 2 I ·:I I I I I I ••• ' ' I I I I I I 5 -RECOMMENDATIONS The folloWing recommenqations result from the preceding analysis. (a) Recommended transmission alternative -Watana to Devil Canyon -2 circuits at 345 kV with 2x954 kcmil conductors -Devil Canyon to Anchorage -3 circuits at 345 kV with 2x954 kcmil conductors -De·vil Canyon to Fairbanks - 2 circuits at 345 kV With 2x795 kcmil conductors All without series compensation. {b) Before ~oceeding W-ith the final feasib~lity analysis, it is recommended to await revisions and more definitive decisio~s and values for the following parameters. (i) Ultimate installed capacity at Susitna • (ii) (iii) (iv) Generating unit s~zes at Susitna. Number and location of points of delivery for Susitna power to the-Anchorage area. Details of generation planning, resUlting in thermal development at Beluga or elsewhere. s -1 I I •• I I I I I I ••• . : ' I ... I I -I I· ... _:_ ' ·-; ; · ..... , . . . . . ' . . . ' ·.: : . . . ·.· .... : -. . :-~ .. ,. -• I )\ .i ,. (co) At a future date, it is recommended to analyze the possible advantag.e o£ sta:ndardization by constructing all of the Susitn~ ~ansmission to Fairbanks with 2n954 kcmil conductors(j The first eucuit is expected tc be built with this conductor between Willow· and. Healy as part of the 1\nchoraqe-Fairbanks transmission int·erti.e. '•. 5-2 - I I -· I I ' I I I I APPENDIX A TRANSMISSION PLANNING CRITERIA I -I :I I 'I I I APPEtiDIX .A TRANSMISSION PLANNING. CRJ:TERIA. In general., transmission facilities are planned so that the single conti.ngency outage o£ any ~ine or trans£ormer element will not x-esult :in restrictions in the rated power transfer, although voltages may be temporarily outside of nt>rntal limits. t;rhe proposed guidelines concerning power transfer .capability, stability, system _performance limits, and thermal overloads are detailed below., (a} Transmission System Transfer CaJ?ability The transmi:Ssion system will be designed to be capable of transmi.tting the maximum generat:ing capability of the Susitna Hydroelectric Project with the single contingency outage of an¥ l.~ne or transformer element. The shau:ing of load between the Anchorage and Fairbank.s areas is approximcttely 80 and 20 perpent respectively. To account for the uncertainty :Ln future deve.lopment, the , transmission system shall allow for this load sharing to vary from: a maximum of 85 _percent at Anchorage to a ma~iln~"f?~ 25 pet;"cent at Fairbanks. (b) Stability The transmission system will. be checked for transient stability at critical stages of developnra:nt. The system is to be designed fol:;' high speed r~closing follottring single-pha~e faults that ~e cl.ecu:-ed. by single-pole switching. In the case of multiphase faults, delayed reclosing ~s assumed. A ... 1 I •• I •• I ·t· . . I I -- 1- I I ,, The design fault for transient stability analysis will be a 3-phase fault clearea in 80 ms (4o8 cycles)" by the local breaker and 100 In$ ( 6c 0 cycles.) by the remote breaker, with no reclosing. (Note: At later stages of Q.es ign it may be uaef ul to check dynamic stability for· unsuccessful reclosure of an SLG fault cleand eventually by 3-phase trip and lock-out following initial. single-pole trip. For the present, a 3-phase design fault is .considered to be equivalent in terms of severity.) (c) ~Istem Energizi~~ Line energizing initially and as part of routine .switching operations will generate s01Ue d}"llamic overvoltages. . System design shoUld be arranged to keep these overvo~tages within the following limits .. Line open-end voltages at the remote end should not exceed 1.10 per unit Ofi line energizing. Following line energizing, switching of transformer.s and var control. devi<.~es at the receiving end shoUld bring the vol.tage dawn to 1.05 per unit or lower. Initia~ voltages at the energizing end should not be reduced below o. 90 per unit. -Final voltages' at the energizing end should not exceed 1. 05 per unite The step change in voltage at the energizing end of the line should not exceed the following values ,' A-2 •• I I I. 'I ·I I I I I I I I I 'I I ;I ,, ... c .•. " (d) (i) 15 percent with only one generating unit operating at watana (to repre$ent a temporary condition during the early stage of commissioning $1_f: :t;.ne Susitna project} (ii) _ 10 percent with two units operating at Watana (to represent a slightly longer-term condition early in the developnent of susitna) (iii) 5 percemt with 800 MW of generating capacity operating at SUsitna. Load Flow System load fJ.ows will l:)e checked at critical stages o·f develop11ent to ensure that the system configuration and component ratings are adequate for normal and emergency operating conditions. ).1b.e load levels· to be checked-will include peak load and minimum load (assumed 50 percent of peak) to ensure that system flows and voltages are within the limits specified belo1>1. -Normal system flows must be within all. normal thermal. limits for transformers and lines, and shoul.d give bu:s.voltages on the EHV system within +5 percent, -10 percent, and at subtransmission buses within +5 percent, -5 percent .• -Emergency sy~1tem flows with the loss of one system e-lement Iml$t be within emergency thermal limits for lines and transformers (20 percent 0/IJ). aus-vol'tages on the ES.V system should be within +5 percent, -10 percent, and at subtransmission buses within +5 percent1 -10 p~rc.ent. A'-3 I I ;1- .1-- -· . . ,._ •.. I I (I I I I !.I I I I I I- I • • • •.t • • • (e) {f) Corrective Measures ,. Where limiting performance criteria are exceeded., system design modifications will be applied that are considered to be most cost effective~ Where conditione of low voltage are encountered, for .example, power factor improvement would be tried. Where voltage variations ex_ceed th.e range of normal corrective transform&" tap change, .supplementary var generation and control would be applied-. Where circuit and transformer thermal limits are about to be exceeded, additional elements would be scheduled. Power Delivery Points For study .p~-poses, it will be assumed that when susitna gene1;ation is full.y developed (i.e. to appro}(ilnately 1,500 MW~c the total. output will be ·delivered to terminal stations as follows. -Fairbanks -one station at Gold }{ill with transformation from EHV to 138 kv. -Anchorage one or two stations with transformation froni EHV to 230 kV or 138 kV. The provision of intermediate switching stations along the route. may prove to he economic and essential for stability and operating flexibility. Utilization o:f these switching stations for the supply of local load will be examined, but security of supply to Anchorag-e and Fairbanks will be given priority considerat;ion. ;: ,. I -· ;I ;I I I "' ;"c • ,__.:"''. 'I I ·I· ; ' . :1 I 1._ I I I 1~~ I I .. APPENDIX B EXISTI1'1G TRANSMISSION SYSTEM 0-A!I.'A ·- 1 I I I I .I I .I I -· I I I·· I , • ~ .. .I . ~ ... .. ~ 1 • TABLE OF CONTENTS Page· LIST OF TABLES -------·-----------------------------------------B -i LIST OF FIGURES --------------·-----....... -............ ..,. _____ . ____________ ...,...,...,. B -.iv B1 -ANCHORAGE MUNICIPAL LIGH'l' AND PCMER -----------------------B -1 B2. -CHUG..2\CH ELECTRIC ASSOCIATION, INC" ------------------------B -7 B3 -FAIRBANKS 14UNICIPAL UTILITY SYSTPM -------------------------B -14 B4 -GOLDEN ~.LLEY ELSCTRIC ASSOCIATION, ntc. --------~-,...-------B .... 19 BS -UNIVERSITY OF ALASI<A, FAIREANI<S •-----------..:. ... _____________ B -28 B6 .;,.. MILITARY INSTALLATIONS, FAIRBANKS AREA ----.--------------B -30 B7 --MATANUSKA ELEC'l'RIC ASSOCIATION AND ALASl\A l?CMER AlliiiNISTRA.TJ:ON--------... -----------:...------------------------B -32 l ' 0 0 I • 'I I -· ~· ; -:::.-~'.:> I I ~· I I 'I I I I I ~· I I I LJ:ST OF TABLES Number B1.2 B1..3 B1.4 B1.5 B1.6 B2.1 B2 •. 2 B2.5 B3.1 B3.3 Title Anchorage Muni.cipal Light and Power EXistin<; Generating Capacity Anchorage. Munici!:-~~.1 Light and Power Generator Dat_a_ Anc~orage Municipal Light and Power Transmission Line Data Existin~ and. Planned Facilities Anchorage Municipal. Light and Power Transformer Data Anchorage Municipal Light and Power Distribution Substation Data Existing and Planned Facilities Anchorage Municipal Light and Power Historical. System Peak Demands . Chugach Electric Association, Inc. Existing and Planne.d Generating Capacity Chugach Electri.c Association, Inc. Generator t>ata Chugach Electric Association, Inc. Transmission Line Data Existing and Planned Facilities Chugach Electric Association, Inc. Transformer Data Existing and Planned Facilities Chugach ~lectric Association, Inc. Distribution Substation Data. Existing System Fairbanks Mtinicipal Utility System Existing Generating Capacity Fairbanks Municipal Utility System Generator Data Fairbanks Municipa~ Utility System Transmission Line Data EXisting_and Planned Facilities B--i • '• ... -• ". " • ". •• • • • • .. • • • ~ • 4 ,.."J••• ·. I I ··- 1 I I I· ., I I I I I I I I : •. .. Idst of Tables -2 Number B3.5 B4.1 B4-.;2. B4.3 J34.4 B4.5 B4.6 B4.7 B4.8 B5.1 B5.2 1'36.1 Title FaiJ:banks Htu~\icipal Utility System 'l'ransforme?: rata Existing an.·:! Planned Facilities Fairba.."lks Municipal Utility System Historical Load Data Golden Valley Electric Association, Inc. Existing Generating Capacity Golden Val.ley Electric Association, Inc~ Generator Data Golden Val.ley Electric Association, Inc. Transmissi.on Line Data Existing System Golden Valley Electric Association, Inc. Transmission ·Line Data Planned Facilities Golden Val.ley Electric Association, Inc. Transformer Data Existing System Golden Valley Electric Association, Inc. Transformer Data Planned Facilities Golden Vall.ey Electric Association, Inc. Distribution Substation Data Existing System Golden Valley Electric Association;·· Inc. Distribution Substation Data. Planned FaciJities University of Alaska., Fairbanks Generating Capacity and Data University of Alaska, Fairbanks Transformer.Data Military Installations, Fairbanks Area Generating Capacity and Data B-ii . . . .. ' ... . . . . ~ . . . . . . ~ . I. ~st . o,L~ab:Les ,. 3 -;---·;':..-c:-,:.:"':;;:~___::...::.: :;.~ ·-----·--~~:-;;_:-. '--::_ .. ~--·~-..:.: •.. -,--"~" ~-------·--·-•• I I _-I I I I ~· I I B6.2 B7.1 B7.2 B.7~3 Title_ Military Installati.ons, Fux-banks Area Transformer Data Mata.nuska Electric Association and Alaska. Powez: Administration Existing Generating Capacity Matanuska Electric Association and Alaska Power Administration Generator i:!~4-Transformer -Silt-a Matanu.ska Electric Association and Alaska Power Administration Transmission Line Data Existi.ng System Matanuska Electric Association and -Alaska Power Administration Distribution Substation Data Exi$ting System I I I I I I ••• I I I I L:IST OF F.IGURES Number B.l Bc;2 B.3 Title 1\..ncP,oraqe-Fairbanks Railbel t Area Map Anchorage Area, One-Line Diagram -1984 System Fairbanks Area 1 One-Li.ne Diagram -1984 System B-iv I "I I I I I I I I •• I I I :I I I I I TABLE. 81. 1: }WjJ-PRAGf MUNICIPAL LIGiT AND R:>WER EXISTING-GENERATING CAPACITY Unit - Statton l -Un.i't 1 Statton 1 -Unit 2 Stat ron 1 -Unlt 3 Statlon l -Un ii' 4 StaTion 1 -01 STation 1 ... 05 Statton 2 -Unit 5 Statlori 2 -Unit 6 Station 2 -Unit 7 Total avai I ab fe capacity· -ll?eak rating a-t 0°F. Year of I nsta lla'ti on Abbrev fat ions: GT -G!!s Turb i ne ST -Steam Turbine GT sr GT GT DfeseJ Diesel : } B --·1 Capac I' tY.* (MW) a 10.25 16(l-25 19.50 37.50 t.to l. 10 138.~ 230.60 Remarks Naturai gas Natural gas Natural gas Natu~al gas Stack start units Sf ack start units. Natural gas, combined cycJe, base load I I TABLE. 61.2: ANCHORAGE. MUN!CIPAL Lla-tT AND POWER GENERATOR DATA I I I .I I •• I I I UniT - Sta1'1on l -Unit 1 Siatlon 1 -Unit 2 sntlon 1 -UniT 3 S:tatlon 1 -Unit 4 Station l -01 Station 1 -05 Statton 2 -Un tt 5 Siatlon ·z -UniT 6 S-tation 2 -Untt 7 Power Voltage Ra-ting Factor (kV) (MVA} t3.8 15.6 .as 13.8 15.6 .as 13.8 19.2 .85 13.8 31.765 •. 85 t. 1 ·• i\ ·~'"' 1~ 1 1.0 13.8 39.2 13.8 38.8 13.2 110e 5 ·:· I I I * lmpedance in per unit on 100 wm base. **tnertta constant in per-uniT on 100 MVA base. Generator ltneedance* xd X'd xnd Xz -- 11.54 2.44 i.60 1.60 11.54 2.44 1.60 1.60 14.43 2.43 1.60 1.61 5.68 •. 12. .41 .41 104.55 29.09 20.00 21.82.' 104.55 29.09 20.00 21.82 5.22 .70 .41 4.12 .57 .28 2.25 .34 .24 B-2 Inertia X 0 Constant** 1.64 1.64 1.94 • 14 z.~t\9 3.88 1.63 8.40 I I .I I I· ••• ·I :I I I ·:· I I I •• I TABLE Bl.3: ANCHORAGE MUNICIPAL LIGHT AND POWER TRANSMISSION LINE DATA EX J STING AND PLANNED FACILITIES Pos Seq l mfl!danc:;e* Transmission Cfr<;ult -VolTage From Bus -To Bus Lengt-h \:ond.uctor (ml} R X Susceptance** .. Jro Sta-tion 1 -Station 2.115 kV <vta Ft. Riehanison...£lflleildorf -AFB>t Stat fon 1 ... Station 2 Statlon 2 ~ APA Tap 115 kV Stat ion 2 -APA Tap .6 Station. 1 .... Ancmrage (APAt 115 kV (Approximate i n-sarv ice date 1982) tt Station l -Station 6 1.7 Station 6 -Stat ion 11 Tap 1 .8 Stai"lon 11 Tap -Stai"ion 16 .8 Statton 16 .... Sta"tlon 15 3.1 Stat loo l5 -Anchorage (APA> .1 Totaf 7.5 Stat ion 11 -Sta-tion 1 t Tap 3.0 S-tation I -Station 2 CAPA) 1 lS -k¥ (Approximate i ~service date 1982)tt Stat ton 1 ... S-tat ion 14 Stat ion 14 -Stat ion 17 Tap Sta'tfon 17 Tap -Station 2 Total Statlon t -Statton 2 . . . .. ttt Stat ion 17 Tap ""' Stat 1on 17 Station 11 -Ancl:nraga (APA) Total 1.6 ~9 3o0 -5.5 1.0 .. a -1.8 ?B1 ACSR (26/7) .. 01134 .. 03087 o00456 397 ACSR (26n> .00124 .00338 .00050 397 ACSR <26/7) .00356 .00973 .. 00144 397 ACSR (26/7) \J00377 .01030 .00152 · 39 7 ACSR (2.6/7} .. 00156 .00427 .,00063 397 ACSR (26/7) .00634 .01733 ... 00256 397 ACSR (26/7) .00025 .00068-.. 00010 ?B1 ACSR (26/7) .00613 .01680 .00248 397 ACSR (26/7) .00336 &00918 .00135 397 ACSR (26/7) o00187 .. 00512 .00076 397 ACSR (26/7) .00630 .01712 .00253 397 ACSR (26/7> .00210 .00574 .. 00085 397 ACSR (26/7> •. 00165 .00450 .00066 * Posttlve sequence impedance in per unit on 100 MYA base. ** Total 11 ne charging susceptance tn per unit on 100 MVA base. ***Zero sequenca tm~dance ln per uniT on 100 MVA base .• t Normally no power ·exchange to military system. tt Rebuttd and CQnverslon of existirg 34·5-kV cf.rcuit' to 115 kV .. tt+station 17 is scbaduled for installation fn 1985. Sntlon 17 -Statton 17 Tap wt II be operated nonnally open. B - 3 Zero Seq I mpedanca*** Ro Xo I I :.1 I .-~1 I I I I I ·I" 'I I I Substation-Transformer TwO: WTndi ngTransformers Station l -1 Statton 1 - 2 S.'ta'tlon 1 -GSU St~'tlon 1 -GSU 2 St~'tion 1 -GSU 3 Stai"lon 1 -GSU4 Sta-tton 1 -GSU Diesel Statton 2 -GSU 5 S:tation 2 -GSU 6 StaTion 2 -GSU 7 TABLE 81.4: At-CHORAGE MUNICIPAL UGHT AND POWER TRANSFORMER DATA Voltage Ratlns Tap SetTing Tap Range . .. ' <kvr·---(MVA> 115/34.5 28/37/46 l15/34.5 28/37/46 13.8/34e5 12 13.8/34.5 12 13.8/34.5 12 13.8/34o.5 21/25/28 2.4/33 3.75 13.6/115 30/40/50 1.3~ 8/115 30/40/50 13.2/115 44/.?9/74 *~ransformer reactance in per uglt on tOO MVA base. B-4 Reactance* .2893 .2893 •. 5833 .5833 .5000 .2810 2 .. 0373 ---.2£33 .2267 .1528 I -- -1 I I I I I- I I Subs-tation Central buslne~s district* 12 kV substations** Total TABLE 81.5; A!'CrPRAGE t·1UNIC1PAL LiGHT AND POWER 'D!STRfSUTIOO SUBSTATJOO DATA EX l STING AND PLANNED FAC I Ll Tl ES Volta.S! (k.V) 34~5/4.2 l t5/12.5 - -Load*** (percent> 31 69 100 * The centra I bust ness d i si"r i ct J s supp I i ed fran gener'Clt i ng Station 34.5-kV bus via a number of 34.5/4.2-kV -substations. ** Sta'tions 6, 11, 14, 15, 1.5 and 17 are 115/12, 5-KV substations. Substatton 17 ls scheduled for instatfatJo·a in 1985. The 12-kV load ls equally divided among the 12-kV sub$tations. ***The percentage oi I oad supp I t ed at 34., 5 and 12. 5 kV 1 s expected to r~nain constant. B-5 "··· I I .I- I I I I I I I I I I I ;I :I I 1974/19TJ 1975/1976 1976/1977 1977/1978 1978/1979 1979/1980 TABLE BT.6; ANJiiORAGE '1UNICIPAL liGHT AND POWER HISTORICAL SYSTEM PEAK .DE~OS ..::0 Peak Demand (MW) 82.8 89.,5 93a4 101.5 109.0 111.5 B-6 .. I I I I I I I I I I I I I ,, •. I TABLE _82.1.: .. ~H~ACH ELECTRIC .ASSCCIATION, t~ .. EXIST!NG AN& PLANNED GENERATI.NG CAPAClTY Year of Unlt Installation Oaeacit~ Beluga -Unit 1 Beluga-UniT 2 Beluga -UniT 3 Beluga -Uni"t 4 Beluga -Unit' 5 Beluga -Unit 6 . Be I uga ... Unit 7 Be I uga -Un r t 8 Bernlce Lake-Uni+ 1 Bernice Lake -Un ii" 2 Bernice Lake -Un.i 't 3 Cooper lake -Unl"t 1 COoper Lake-Unit 2 · tnterna'tional -Unit 1 InternaTional -UniT 2. lnterna"tionai -Unit 3 Knl k Arm -TGS Kni k Arm -TG6 Knlk Arm -TG7 Knt k Ann -TGS Total available capacity 1982 Abbrev i at ions: GT -Gas Turb f ne ST -Steam Turbine GT GT GT GT GT GT GT ST GT GT GT Hydro Hydro GT GT GT ST ST ST ST J5 .... 7 CMW) 16.5 16.5 54 .. 6 9 .. 3 6.5.5 67.8 } 68.0 62.0 8~85 18.95 29.60 7.5 7.5 14.0 14.0 18.58 3 .. 0 3.0 3.0 s.o 493.18 Base load Base loa<l Base load Je't e~(ne Base toGd Combln.eq eycle- base loat Base load ••• I I ·I •• •• I I I . I ·I 'I TABLE 82.2: CHUGACH ELECTRIC ASSOO IATION~ 1-tc. Uitit Be.tuga -Uni-t 1 Beluga -UniT 2 Beluga ,_ Unit' 3 Sal uga -Unit 4 Beluga -Uni.i" 5 Be[uga -Unit 6 Beluga -UniT 7 Beluga -UniT 8 Bernice Lake-UniT l Bernice Lake -UniT 2 Bernice Lake ... UniT 3 ' Cooper lake -~niT 1 Cooper Lake -Un i 1" 2 International -Unit 1 Interna-tional -Unit 2 InTernational -UniT 3 Knlk Ann-TG5 Kntk Arm -TG6 Knlk Arm -TG7 Knik Arm -TG8 •• VolTage CkV} 13.8 13.8 13.8 13.8 13.5 13.8 13.8 13.8 24.9 13.8 13.8 39.8' 39.8 13.8 13.8 13.8 4.2 4 •. 2 4.2 0 4 •. 2 Rating <MVA) 18.824 18.824 57.0 10.0 68.889 as.o 85.0 68.889 9.375 20.65 29 .. 60 8.33 8.33 n. 647 17.647 19.200 3, 1'5 3. 75 3.75 6.25 *. lmpedance tn per uniT on tOO MVA base. GENEP.ATOR DATA Power Factor .90 .90 .95 .90 .95 .so .so .90 .95 .90 t.oo .90 .90 .so .so .95 .. so .so .so .ao Generator lmoedance* Xd X'd X"~ Xz - 1.59 .58 1.59 .58 2.87 .28 .18 2.87 e28 • 19 2.54 .33 .21 2.54 .33 s21 2.44 .23 .16 16.00 3.73 2.13 8.96 _.,82 .53 6.31 .65 .43 3. t 1 2.16 3. 11 2.16 10.65 1.02 • 71 10.65 1.02 • 71 S•74 1. 74 1.24 6.00 6.00 6.00 3.40 ** 1 nert fa consnmt" i n per uniT on too MVA base. B-8 tnertla Constant** .34 t .. a6 2.l9 I I I ·_ .• I I I I TABLE 82.3: CHUGAQi ELECTRIC ASSC.ClATlON, HC. Tran$mlssfon Circuit -VolTage From Bus -To Bus Beluga --Pt MacKenzie 230 k.V Beluga·-Pt MacKenzie Ckt 1t B~~uga -Pt MacKenzie Ckt 2t Beluga -Pt MacKenzie Ckt 3tt Length (mi) ..E!J:!'ad<enzie -University 230 kvttt Pt MacKenzie -West Termi.nal Submarine cable East-Tennt nal -Untvers iTy Totals International -University 138 kV I nternaTlonal -Un ivef'$ i-t-y l nternat f ona I -. Pt Woronzot 13~ I nterna1t ional -Pt Woronzof Ckt I I nterna'tfona I -Pt Woronzof Ckt 2 Pt MacKenzie -Teeland 138 kV Pt MacKenzie -Teeland Pt MacKen:z I e -Pt Woronzof 138 kV - Cables 1 to 4 Cable 5 Cable 6 Cables 7 to 10 Bernice Lake -Soldotna (HEA> 115 kV Bernlce Lake -Soldotna TRANSMISSION Lf.NE DATA EXISTING AND PLANNED FACILITIES · Conductor 795 ACSR 795 ACSR 79? ACSR 954 and 795 ACSR 1,000 Kanll-Cu 954 and 795 ACSR 795 ACSR B-9 Pos Seq lm~dance* R X Susceptance** BC .0094 .0627 •. 1216 .0094 .0627 .. 1216 .0094 .,06Z7 .12i6 • .0016 .otoa o0220 .ooto .0056 .0004 .0037 .0266 .0536 .0063 .0430 .0760 .0048 .0189 .0054 .0038 .015i .0538 .0038 .0151 .0538 ., .0176 .1066 .0264 .0030 o0041 .0562 .0035 .0045 .1034 .. 0035 .0045 .1034 .0086 .0034 .2800 .0310 .1390 .0156 Zero Seq impedance*** Ro Xo I I I I I I I I Table 82.3: Chugach Electric Association, lnc. Transmission Line Data Exisi"tng and Planned Faci l fJl ..... es;;;,.-..... ':"..-2 __ _ Transmission Circuit'-Voltage Fran Bus -To Bus' Soldotna -Quartz Creek 115 kV So I dotna -Quartz Creek Quartz Creek -U n i ver_!i;~ ty 115 kV Quartz Creek -Daves Creek Daves Creek • Hope Hope -Por-tage Portage-Girdwood Gi.rdwood -Indian Indian-University Length Conductor (mi) Bernlce Lake -Soldotna <HEAl 69 kV Bernice Lake -Kenai Kena~ -Soldotna <HEA> Cooper Lake -Quartz Creek 69 kV Cooper Lake -Quartz Creek Hom9r {HEAl -Soldotna CHEAl 69 kV Homer CHEAl -Kasi I of (HEAl Kasilof CHEAl -SoldoTna (HEA) Soldotna CHEAl -Quartz Creek 69 kV Soldotna CHEA) -Quartz Creek * Posit'ive sequence l_mpedance i'n per unit on 100 MVA base. Pos SSq f rneedance* Susceptance** BC R X • 0684 0 • .3070 •) 0371 .0184 .0215 .0250 .0140 .0136 .0210 .2300 .. 0133 .0218 .6350 .0827 .Q108 .0964 .0125 .1124 ~0146 .0627 .0082 .0610 .0079 .0941 .0122 .3250 .• 0051 .1040 .0016 .0863 .0015 .8980 .0129 ** Total It ne charging-susceptance in per un 11" on 100 MVA base. ***Zero sequence impedance In per uniT on 100 ~fVA base. t Existing 138-k.V clrcutts are being relnsulated to permit operation aT 230 kV .. approximate -in-service date-1981. tt A thfrd 230-kV circuit bet ng addeh approximate i n-servfce date-1981. tttApproxlmate in-service date ... 1982. Abbreviation; HEA -Haner Electr.ic Assoeratlon B -10 Zero Seq Impedance*** Ro Xo " I I I I I I I I TABLE 82 •. 4: CHUGACH ELECTRIC ASSOO JATIO~., It-e. TRANSFORMER DATA: EXISTING AND PLANNED FACILITIES ___ ...;;;;..;.;.,o;;.;..;.;;.;,;;....;..:;.;-....;..;;;;;..;.;.;,;~....,.;..;..;;;;.;..;;;..;..;~----.• Substation -Transformer Voltage Ratln9 (kV) (MVA) .Be I uga-1 ** 230/138 180.1240/300 Befuga-2** 230/138 180/240/.300 Pi" MaeKenzie-1** 230/138 180/240/300 ?t ~1acKenzi e-2** 230/138 180/240/300 Uni ver~sfty** 230/138 180/240/300 Tea lard 138/115 45/oons Untversity-1 138/115/34. 5 45/60/75 University-2 138/115/34.5 45/60175 lnternational-1 138/34.5 12.5 lnternational-2 138/.54.5 125 Bernice Lake t 15/69 33.6/44.8/56 Soldotna (HEA) 115/69 32.6 Quartz Cteek 1-lS/69 12/15 Beluga-GSU t 13.8/138 16 Se1uga~U 2 13.8/138 16 Be. I uga-GSU .3 13.8\/138 48.8/65/8 t. 3 Bel uga ... GSU 4 13.8/138 12/16 Beluga-GSU 5 13.6/138 45/6ons Beluga-GSU 6 13.8/138 48.8/65/81.3 Se.l uga-GSU 7 13.8/138 45/64/80 Beluga-GSU 8 13.8/138 Bernt ce La ke-GSU 1 24.9/69 5 Bern i ca La ke-GSU 2 1.3.8/69 23 Bernice Lake•GSU 3 13.8/69 20.4/27..,2/34 Cooper Laka-GSIJ 39.8/69 20 lnternationai-GSU t 13.8/34.5 12/16 I nterna'tt•-,na 1-GSU 2 i 3.8/34.5 11.25/15 1 nternat1onal-GSU 3 13.8;34.5 12/16/20 Knik Arm-l 4.2/34.5 5 f<nik Arm-2 4.2/34.5 5 Knlk Arm-GSU 8 4.2/34.5 6 •. 25 ·'*'Transformer 'lmpadance ln per unt·t on 100 MVA base •. **ApproxImate f ,..service date 1981 to 1982. Abbreviations: HEA -Homer El e\:trlc Association B -11 l meedC!Ince* Tae settfM Jae Range R X o0020 .0222 .0020 .0222 .0020 .0222 .0020 .0222 .0020 .0222 (V1805 (ZH=-j.0245., ZL =j.2045. Zr=j. 1712) <Z.tt'j.0276~ Zt_ =-J.0036~ Zr=j.l194) .0073 .0880 .0073 .0880 .2972 .1333 .3420 .. 0450 .6780 .0440 .6640 .ouo .1600 .0450 .6780 .Ol40 .2040 ._"Ol4Q .1650 •. 009 1.3600 .043 .5170 .3889 •. 0310 .4600 .5000 .5510 .5000 1.2200 t. 2200 .9600 I I I I I I I I I ·.··.1' . f ',,•' I I • : • • • ••• • • <> : • • • ·: •• : .: ~ < -:-';.. _ ... · ... - . . _: . ' . . ' . . ' . : ' .. Substat-ion Anchorage Area Supp.l led vfa tnternationai Substation aT 34.5 kV Arctic Blueberry Campbell Jewel Lake Klatt Sand Lake_ Spa nard Tudor Tur-nagain Wood I and Park International Subtotal Suppl i ed via Un iverslty Substation at-34.5 kV Bon trace DeBarr Fa I rv lew Huffman Mt Vtew 0 'Malley Unlverslty Subtotal TABLE 82.5~ CHLGACH ELECTRIC ASS~ IATlON$ It-e. 0 ISTRIBUTlON St.BSiATHJN DATA EXI-STING SYSTEM Transformer Vof'taae (kV) 341) 5/12.5 34.5/12.5 34. S/12. 5 34*5/12.5 34.5/12 .. 5 34.5/12.5 34.5/12.5 34.5/12.5 34.5/12.5 34.5/12..5 34.5/12.5 34.5/12.5 34. 5/i2.S 34.5/12.5 34.5/1A5 34.5/12.5 Rating (MVA> 14.0 14.0 14.0 tT.2 14.0 14.0 io.o 14.0 5.0 21.0* 131.2 14.0 25.2'* 3.8 17.8* 12.0* i4.0 86 •. 8 Percent of Total 46 30 Suppl ted via Beluga Substation · Tyonek Tyonek Timber Beluga Subtotal 24.9/12.5 24.9/12.5 3.8 8.4 12.2 B -12 4 0 I :1 I I I I I :1 I :1 I I . I I Substation Kenai Peninsula Daves Creek Girdwood Homer ibpe Indian Kasilof Kenai Portage Soldotna Kenai PenInsula Subtotal TOTALS Tabla B2.S: Chugach Electric Association, Inc. D f str I but I on Substation D~ta Existing System-2 Transformer Percent Voltage Ratfna of Total (kV) CMVA> 115/24.9 14.0 115/24.9 11.2 69/24.9/12.5 3o8 115/24.9 3.8 115/24.9 ·2.3 69/24.9 3.8 69/33 1.5 115/12.5 2.8 69/24.9 7.5 56.7 20 - 286.9 tOO *T~iaJ MVA capacity of two transformers • B -13 I I I I I I' I I .~- 1 I 'I I Unft - Chena 1 Chena 2 Chana 3 Dfesel Dt Diesel D2 Diesel 03 Gas Turbine 4 Chana 5 Chana 6 TABLE B.3el: .FAIRBANKS MUNICIPAL UT JLJTY SYSTEM EXISTING GENERATJNG CAPACITY Year of Installation 1954 1952 1952 1967 1968 1968 1963 1970 c 1976 ST ST ST Diesel Dtesef Diesel Gr ST GT Nameplate Capacftt_ ( f.t.i) 5,.00 2.00 1.50 2.75 2.75 2. 75 5;.25 20.00 23.10 Total Avaf fable C!pacity 65. 10 .. B ... 14 Coal Coal Coal Oi I Coa I -Base I oad and di str Jet haathg Oi f I I I Unit Chena 1 Chena 2 Chena 3 Diesel 1 Diesel 2 Diesel 3 Gas turbine 4 Chana 5 Chena 6 TABLE 83.2: FAIRBANKS .\1UNICIPAL UTILITY SYSTEM GENERATOR DATA Voltage CkV} 4.2 4.2 4.2 12.5 12..5 12.5 12.5 12.5 12.5 Rat' I ng CMVA) 6.25 2.40 1.80 3.44 3 •. 44 3.44 6.25 25.10 29.00 Power Factor .85 .as o85 .so .so .so .so .as .as Generator Impedance* - 23.,36 2.50 i.47 55 .. 00 7.aa 4.13 75.00 12.33. 6.39 6.63 4.,54 6.63 4.54 s. 6.3 4.54 6.24 3.68 1.08 .66 .73 * Impedance in per uni-t on 100 MVA base. **I nertta constant In per uniT on 100 MVA base~ B -15 lnert-ta Constant'** I I :··1 I I I I I I I I tABLE 83.3: FAIRBANKS MUNICIPAL UTILITY SYSTEM TRANSMISSION Lt NE DATA TranSlllfssion Circui-t-Voltage Frcrn Bus -To Bus Chana -Zehnder CGVEA) 69 kV t nterconnectlont EXISTING AND PLANNED FACILITIES Length CmO Conductor Pos Seq I rnpedance* R X S uscep"tance** BC Chena -Zehnder .a 336 ACSR (26/7) .0047 .0120 .0002 Chen a -SouTh FaIrbanks 69 kV <Approximate In-service dafe 19aztt Chana -South Fairbanks 3.0 336 ACSR (26/7 l • 0175 • 9451 • 0006 * Positive sequence Impedance t n per un ii" on 100 MVA base. ** Total trne charging susceptance In per uni-t on 100 MVA base. ***Zero sequence Impedance fn per unit on 100 MVA base •.. -,.-Metered~ at Zehnder. tt Esi"Tmated da1·e. B-16 - Zero Seq I mpedc:ince*** Ro Xo .0095 • 0472 .0355 .1no. I I I I 'I I I I I~ I I .I I I I •• I I •• TABLE 83.4: FAIRBANKS MJClPAt. UTJLJTY SYSTEM TRANSFORMER DATA EXl STING AND PLANNED FAC I LIT 1 ES Substatlon -Transformer Volta92 Rating* (kV) CMVA) Two Winding Transformer Chena-• 69/12.47 12/16/20 I C!lena - 2 (1982)*** 69/12.47 12/16/20 South Fairbanks <1982>*** 69/12.47 12/16/20 * ConTinuous ful f load rating at 65"C rise. ** Transfonner reactance fn per unlf' on 100 MVA base • ***Approximate i n""'serv ice date. Abbreviatfon: LTC -Load Tap Changing B -17 Tae Setting LTC L'TC LTC Tae Rance Reactance** .6250 .6250 .6250 lc I I I I I I I I I I I I I I I I I --·-· TABLE 83.5: FAIRBANKS MUNiCIPAL liT ILITY SYSTEM HISTORICAL LOAD DATA Historical Peak Demands <MW)* . . Substation _!ol tage CkV} 1975 1976 1977 1978 --- Chena 12.47 and 4.16 27"2 *Historical load power factor-• 95 **f980 maximum demand through June 1980. 25~0 27.6 B -18 1979 25.3 1980** ~ 25.2. "I I I I I I I I I I I I I I I 'TABLE 84.1: GOLDEN VALLEY ELECTRIC ASSOOIATION, H'4C. EXISTING GENERATING CAPAC·JTY Healy -51 Healy -01 NQrth Pole -GTl North Po I e -Gr2 Zehnder -Grl Zehnder -GT2 Zehrrler -GT3 Z-ehnder -GT 4 · Zehnder-0 Zehnder -0 Zehnder -4 units Year of t nstal Jation 1967 1976 1977. 1971 1972 1975 1975 Total Av.al (able Capacity * Capacity ;:-t" t:s1"fmated power factor -,.eo. **Carib i ned capacity of 4 units. Abbreviations: ST-S-team Turbine GT -Gas Turb f ne ST DLasal GT GT GT GT GT Diesel Diesel Diesel. B --19 Capacit'L_ (MWl 25.00 2. 75 60.50 60.50 18.40 18.40 2.80* 2.80* 2;28* 2.28* 10.64** 206.35 Remarks Coal base Joat uni-t Peaklng unit Peaki ~ uni-ts ' . ..i. '•-.. . : • . -. . ~ .~ &~ -."' : ' ... ' ... , ...... -• • 1 . I I I I I I TABLE 84.2: GOLDEN VALLEY ELECTRIC ASSOOlATION, INC. GENERATOR DATA UniT Voltage ( kV) Power Factor Generator I m,eede1l,.ce* Healy -S 1 13.8 Healy -Dl 2.4 North Pole -GT1 13.8 North Po 1 e -GT2 13 .. 8 Zehnder -GT 1 13.8 Zehnder -GT2 13.'8 Zehnder -GT3 4.2 Zehbde r -GT4 4.2 Zehnder -0 4.2 Zehrder-D 4.2 Zehnder -4 Units 4.2 Rai"Jng CMVA) 29.4 3.5 71.9 71.9 20.7 20.7 3.5 3.5 2.9 2.9 3.3 ~as ~80 .90 .90 .85 .85 .ao .so .so .so .so * lmpedance fn psr unit on tOO MVA base. **Inertia constant tn per unit on 100 MVA base. 6.086 • 731 5.10 23.190 8.700 5.220 2.866 "285 .185 2.932 .284 .185 8 .. 959 ·•823 .533 8.959 .823 .S33 32.86 4.29 2~86 32.86 4.29 2.$6 63.86 16.84 11.23 63.86 16.84 11.23 24.02 9.00 5.40 B -2o ,510 5.507 .177 • 172 .484 .484 3. 71 3.71 8.42 8.42 5. 70 .170 1.449 • t07 .104 .315 .315 1. 14 1. 14 4 •. 21 4.21 1.50 Inertia ConsTant** .sa 5.62 $.62 1.86 1.86 I I I I I I ~. 'I I I I I I I TABLE 64.3; GOLDEN VALLEY ELECTRIC ASSOCIATION, JtC,. Transm i S$icn Circuit ..;; Vo!,tage TRANSMISSION LINE DATA EXISTING SYSTEM Pos Seq· Impedance* ;l.ero ~q Susceptanc~** J_mpedance*** From Bus -To ars Length Conductor R · X .EC i=t0 X0 Healy-Gold HlU 138 kV Gold Hi II -Nenana Nenana -Hea!y Total (mil 47.0 56.2 103.2 North Pol,e -For-t Wainwright' 138 k.V Fort Wainwright -North Pole 12.3 North Pole -Hishway Park 69 kV Highway Park-North Pole 2.3 Zehnder -Fort Wainwright 69 kV fort Wainwright -Ham i I ton Acres 2. 9 Zehnder-:~Fox 69 kV fox -Steese. 5. 7 Steese -Zehnder 2.4 Total 8.1 Zehnder -Gold Hill Double Ci rcult- 69 kV CZ mutual = .0060 + j.0431 peo mile) Gold Hill -Musk Ox Tap .8 r.bsk Ox Ta.p -U of Ak 3.5 University of AK -University Ave· .3 University Av.e -Zehnder . 2.6 Totaf · Musk Ox -Musk Ox Tap Got d Hi l f ... Chena Pf..iil1l Tap Chena Pump Tap -Airport Tap Alrpert 'TaiJ "" Zehnder Total . 7.2 2.! 1.5 3.6 - 556 ACSR (2Gn> 556 ACSR (26fl) 195 ACSR (26/7) .0415 • 1963 .0496 .2349 ..0075 .0489 - .0475 .0569 .0130 4/0 ACSR (6/1) .0269 .0478 .. 0008 336 ACSR (26!7) .• 0330 .0826 ... 0016 336 ACSR (26/7) .0141 .0352 .0007 336 ACSR (26/7) 336 ACSR (26n> 336 ACSR (26/7) 336 ACSR (26/7) 336 ACSR f2.6nl 3~5 ACSR C26/7) 336 ACS.{i .. C2o/7) 3)6 ACSR {26/7) B """ 21 .. 0046 .0203 .0018 .01.53 .0309 .0121 .0091 .0208 •. QU<J . .-0002. .0510 .0010 • 0044 =.0001 .0384 ,0008 .0798 .0303 .0227 .0522 .0015 .. 0006 .0004 .0010 .1120 • 134 t .0259 .6311 .1552 .1650 .0195 .1331 .0442 .1743 .0669 .3381 .0285 ~1442 .0092 • 0412 .0036 .OJctO .0628 .0245· .0184 .0422 .0466 .2080 .0179 .1566 • '1237 .0926 •. 2128 I I I ••• ··'- I I I I ·~ I I I I I Table B4. 3: Go. I den Val I ey Electric Assoeratlon, Inc. Transrrifssion. Une Data Existing Sys'tem -_2 Transmission Cireuft -Vol'tage Fran Bus -To Bus Length. (mil Conductor Pos Seq l!!t..aadance* R X Susceptance** EC Zero Seq Impedance*** Ro Xa - Chana Pump -Cnena Pump Tap .4 336 ACSR. (26fl) .002'. .006.1 .0001 ! nterna'tfonal Ai.rporf -Airport 1.5 336 ACSR (26/7} .ooaa .-0226 .0004 tap For't Wa l nwr i·ghi" ..: H i'ghway Park 69 kV Fori' Waf nwr ight -Fori" W ~n .5 4/0 ACSR (6/l) .0047 "'0083 .0001 Fort W Gen -Badger Tap 6o7 4/0 ACSR <ollJ .0622 .tl03 .0018 Badger .Tap -Broclanan Tap 2.3 4/0 ACSR (6/l) .02JJ :•.9378 .0006 Badger Tap -Highway Park 3.0 4/0 ACSR (6/1.) .0280 ,.0497 .ooo8 ~· Total 12.5 Badger Road ,. Badger Tap 1. 0 4/0 ACSR (6/l J :. :;.:..-·." .0093 .0164 .0003 Stockman -Broc[qnan Tap 336 ACSR (26/7) .0368 .0.948 .0012 Fori' Wajnwrlgh"t-Pager Road 69. kV For"t Wainwright-.;;._ S Fairbanks S Fairbanks -Peger Road Total 1.2 3.2 - 4.4 Highway Park -Jarvis Creek 69 kV Highway Park -Newby Road 4. o Cfuture> Newby RQad (future)--Etelson AFB 9.,4 S:i el son AFB -Johnson Road 9.5 Johnson Road ... Carney (future) 6. 5 Carney .(future) -Ja~vis '~tt 52.6 - Total 82.0 336 ACSR (26/7) .0070 336 ACSR (26/7) .0185 4/0 ACSR (6/t l .0374 4/0 ACSR (6/1) .• 0874 4/0 ACSR (6/1) .ossa 336 ACSR (26/7) .0380 556 ACSR (26/7) .. 1856 * Posit Iva sequence Impedance in per un 11" on 100 MVA base. ** To-tal It ne charging. suSc&ptance. fn per unit on-.100 MV~ base. ***Zero sequence impada·nce in per un tt on 100 MYA base. f ESTimated data. -:t-t-ca-rney < ft.ittre)-Jarvls Creek rs constructed to 138-kV standards • . tttca rney ( future)-Jar\. is Creek fs converted to T 3'8-k V ope taT ion. .OlSl .0476 .0563 .1551 .1575 .0978 .8624 .0003 .. 0009 .0011 .0025 .0026 .0018 .• 0136 .0178 ~" .0077 IIi 1()21 .0350 .0451 .Qt52 .0145 .Qt42 .0374 .. 0614 .1436 .1459 .0770 .sot a .Q23.4 .osss .-03o3 ·4024 .uao .. 1815 .0708 .1864 .2420 .5658 .5749 .3834 2.8579 I I' •• I I •• I I I I ~• •••• . . I • • • , ', •• 1' f. • . - / / / i TABLE 84.4: GOLDEN VALLEY ELECTRIC ASSOC1AT10N; HC. Transm.ission CircuiT ... Voltage TRANSMISSHi,,~ LINE DATA PLANNED FACILlTIESt Pos Seq l~eeaanca* From Sus -To Bus length Conduct-or R X (mi) Peger Road -Interna-tional Alrport" 69 kV {~~pproxirna"te 1 neservice date-1981) , InternaTional Airport-Pgger 3 Road North Pole-Gold Hi II 138 k.V .,mperoximate i'n-service date -1984) Go.l:d Hi It -North Pole-OH 21 ..UG .J.. Total 22 North Pole-Jarvis Creek 138 kV <Approximate ln-servrce date-1984) . - · North Po J e -Garney Carney -Jarvis. cKttt Total Ben-t! y -Fort Wainwright 138 kV 72.6 , <Approximate in-service date -1992) Sentry -Fort Wainwright 16c.2 senti)t-Gold Hi I l 1:38 kV (ApproxHr.ate i n-servfce date -l992l Bently .,. Gold HilI 9 • .5 336 ACSR (26fl) . - 556 ACSR (26fl l .0192 .0902 556 ACSR C26n) • 017.5 !t 0820 556 ACSR {26fi) .0464 .2156 795 ACSR (26/7) 795 ACSR (26fl l * PosiTive sequence impedance fn per unl"t on 100-MVA base. ** To'ta! I Ina chargJ ng sysceptance ln per unfT on 100-MVA base. ~**Zero sequence impedance in per uniT on 100-MVA base. t Estimated data • tt Carney ( futura)-Jarvls Creek is constructed. to l3&-kV standards. tttaarney ( future)-Jarvis Creek is converted to 138-kV operation. B-23 Zero Seq Susceptance** 1 mpedance*** 8C R0 X0 .0326 .0206 .054.2 • 1254 • 7145 ·. '· I? I •• .. I ,, •• I I I ·'.1·" .. ·· ' -~ I I TAB~ 84.5: GOLDEN VALLEY E;lECTRIC ASSOO!AtlON, ftC. · TRANSFOIV-1ER DATA· EXl ST J NG SYSTeM, Substation-Transformer VoltaS! .8.'!!1.!19.* rae Settt.'!S, CkVJ <MVA) Autotransformers . Fort Wain"--'right-FWSt380T1 138/69 60/80/100 138 ·ooo Gold Hl ~ l-t~l380Tl 138/6~ 18/24/30 i34 550 Go.ld Hi I J-GHS0090T2 69/34 .. 5. 1. 725 69 000 Two Winding Transformers ...: ;:~.~~· ·-·. ~ Hea I y-HLP1380T l 138/13.2 18/i4/30 134 550 Healy HLS138drt 138/24.94 10/12.5 138 000 Healy 24~912.4 5 24 900 North Aola-NPS1380Tt 138/13.2 45/60fl5 138 ooo North Po I e-NPS' J80T3 138/13 .. 2 4SJoons 1.38 000 North Poie-NFSQ690T2 69/13.2 36/48/60 69 000 Zehnder-T4 \GSU-GTl) 69/13.8 12/16/20 69 000 Zehoder-T3 (GSU-GT2l 69/13.8 t~/16/20 69 000 Zehnder-T6 69/4.16 7.5/9~4 69 000 Zehnder-T5 69/4.16 7.5/9.4 69 000 * Cont 1 nuous fu I I . load :rat i ng a~ 65 OC rise. **Transformer rE)actanee in per uni-t on 100-MVA .b~s~. ~~ap range:. 144 900, 141 450, 138 000., 134 59'0, 131 100. t Tap range: 12 450~ 70 12;, 69 ooo, 67 275., 55 sso. tt Adjus-ted 1'o base of 13.8 kV frc::m nainepl ate base of 13.2 kVo Tae RaP$ *** *** t *** *** *** *** t Reactance** .080() .2194 ~ .. 1933 .3802tt c·..a.~J:~-=~.o;.~.·· 1.0940 .l484tt • l4841t .2o941"t .5760 .6780 .9470 .9810 •• I I I _·,· I I I I I I . ' I I TAB(..E 84.6: GOLDEN VALLEY ELEC1RlC ASSOO IATIONp HC. Substation-Transformer Vol'tase (kY) Autotransformers Carney-l984t 138/69 Bentley-1992t 138/69 * Estimated data .. TRANSFORMER DATA PLANNED FACILITIES* . Rat1 ng** Tae SeTting CMVA) 30/40/50 138 {)00 138 000 ** Coni"tnuous ful t load rating at 65°C .rlsao· ***Transfonner reactclnce.,_cJn per unit ort 100-MVA base. · t Approxlmate in-seNica date. , tt Tap range: 144 900, 141. 450,. 1:'S8 ,ooo, 134 550, 131 too. B -2.5 (•. Tae Ran!!! tt tt Reactance*** .1500 11 ~:· I I I I I I :I I 'I I I I I I I I I I -., .... . . . .s ..~..: .,~.. .. • XABLE 84.7: OOLOEN VALLEY ELECTRIC ASSOCIATION, lte. DrSTRIBUTION SlBSTATHl4 PATA EXJ ST 1 NG SYSTEM TnJnsfo~r!!-_ Noncoincldent Substaitlon Peak Demand Readinss <~> Substation Voltage Rat ins** 1975 1976 1977' . ]9.7~ -~--~-· _ l97~_,_~----f98QX CkV) {MVA> Bagger 69/12.47 13~44 2.98 5.65 Brop!man 69/24.94 7.oo NIS N!S . Chana Pump o9/t2.47 22.40 NIS NIS Energy Company 13.8 *** NIS N.IS Fox ------69/34.5 8.40 2.57 3.11 Gold Hirt++ 34.5 t ,.67 .81 HOOl i I ton Acres 69/12.47 22.40 NIS NIS Healy 24 •. 94 tt na 1.15 Highway Park 69/12.47 14.00 6.45 7.33 I ntarnatlonaf 69/12.47 n.2o 12 •. 65 13.02 Airport •'! ,, Jarvis Cr!ii!ak+++-69x138/24. 94 22.40 NIS NJS Johnson Road 69/24.94 8.40 4.64 6 .. 43 Mu.sk ox 69/12.47 14.00 NJS NlS Nenana 138/24.94 3~12 Z21 2.00 Peger 69/12.47 13.44 . 6. fil Oe91 South Fairbanks 69/12 •. 47 u.zo n.o1 6.53 Steese 69/12.47 8.40 7.43 -7.67 Unfversfi'y Ave 69/12.47 7.azttt 8.76 9.1.6 Zehnder 69/12.47 11 •. 20 11.35 11.36 77 •. 45 81.13 Q -·-----* l.oad tap changing 'transformer unless otherwlse noted .• ** t-1aximum naneplate continuous full load rattng at 65-°C :rtse. ***Supplied fr.an North Po.le 13.8-kV bus. t Suppl led fran Gold Hi II 34.5-kV bus. tt Supp( fed from Healy 24e94-kV bus. tttMax imum rating of iwo transfonners l n para I I $! • *" x 1980 maximum demand through July 1980 xx 3 months data. xxx-5 months data. + 4 months data. .. 5.52 3.-84 4.80 NlS t.:soxx lo62 NtS 3. tzxxx -4.94 2.3s+ 2.05 2.23 2.06 2.61 2.72 .84 • 91 o.82 NIS 4.80 4.26 1.56 na 4.20 9 •. 22 6.71 . 5•40 10.68 9. 19 5.69 NIS NIS 6.48 8e~64 7.02 2.48 4.39 4.90 3.31 2.05 1.;34 1.80 5.28 4.60 5.28 7.30 --6.16 6.91 7.49 6. 19 4.90 7.39 5.69 4.25 13.18 1.2.53 7.63 88.55 83.16 --79.70 +t· Includes a demand of approximately 300 1<W at Murphy Dome supplied by Eielson AFB. +++tncfudes a denan9 of approximate.ly 2.600 kW at Fort Greal.y suppf i~ fran Fort Wainwright. Abbrevlatlons: "na ... rb data available. NlS ~Not in service. 4.74 1.76 l-.72 2 •. 10 3..85 • .sz 3o.36 :s.as 5.66 5.42 6,.24 2.57 2.84 ~'e94 5.16, -~51 .:4_. 72. 4.25 6.98 -75.80 :Z'' I I I I I ., I I I I I I I I =• I Substatfon Newby Road * :Est t mated data. TABLE 84.8: OOLDEN VALLEY ELECTRIC Assm IATlOO$ ff.C. D tSTR IBUTlOO St.BSTATI·Ct.f DATA PLANNED FACILITiES* . Transformer** Voltage . Ra'ti f!a*** fkV> CMVIO 69/12.47 t2 CApproxfmate l n-servrce date-t984J ** load tap changIng Transfor~m~r un I ess othe~ise noted. ***Maximum nameplate continuous full load rating at 6.500 rise. l3-27 cl 0 I I I I I I I .. :-:1' I Generatr no Untt UnJvers ity of AI aska-Sl University of Af aska-S2 Vnlverstty of AI asks=S3 c. · University of Af aska-O 1 Un iversf1)i ot AI as ka-D2 Total Ava i I ab I e Capac lt"y TASLE 85. 1_: UN IVERS lTY CF ALASK/\ 6 FAIRBANKS GENERATl.NG CAPACtTY AND DATA Year of Instal fation ~ ST -------~-ST SY Diesel Dtesat Capacity- (MW> 1.50. ~oo~--•=·cc:~· -:-• 1~. f(4()(} 2.75 2.75 18.50 Unit -Voltage {k\') Rating CMVA) Power _Generator Impedance* Factor xd X'd X"d Xz ..._._. ~ University .of Alaska.-S t 4.2 1.875 .eo 61.33 s.oo 5.33 6 .. 93 University of AJaska-SZ 4.2 1.875 .so 61.33 a.oa 5.,33 6.93 University of AI aska~,s3 4.2 12.50 .so 13 .. 80 1.,77 i.02 1 •. 02 University of Afasr~-Dl 4.2 3.438 _ .ao 23.27 8.73 .5.24 5.53 Un tversi ty of .Ai aska-D2 4.2. 3.438 .so 23.27 a. 73 5.24 5.53 --.--------;--~ 0 I I I I * lnipedance in per unit on 100-MVA base. **fner-tfa ccnstant in per unit on lOO.-MVA base. '· :::'·c I. I Abbrev fat.fon; Si -Steam Turb t ne - B-.2S X 0 - 2.13 z. t3 0.34 '1.4!i 1.45 Remarks Coal Coal Coal , Inertia Cons'tant** 1:,· ·-, I •• I I' I I I 'I ,I I ••• • " . ' I I I· .-.' TAaL£ 85.2: . UNI VERSlTY Cf' ALASKA~ FAIRBANKS TRANSFORt.'ER DATA SubsTa.tlon-Transformer- Two W l nd t ng Tra.nsf.ormsr Un i~er~lty of Alas~-t Voltage CkVl 69/4.16 Ecrtine* O.tVA) 7.5 * Cont'in Jus full load rai"ing at·ss-c dse • **Tronsfonner-reactar.ce .in per unJT on 100-MVA base. Abbrev l atlon:. LTC .. Load tap changing Tap Setting Iay Range LTC Reactance.** .893,3 •• I I ·- 1 I I •• I •• •• I I 'i;~. ~ I I •• I I > ;;::;,' TABLE 66., 1; Ml LITARY. INSTALLATIONS~ ~AeRBANKS J\.REA GENERATING CAPACirr AND DAiA Generat'lng Unlt' EJ ef son Ar6-=S 1, 52 EJ el son AFB-53, 54 Fort Greely..O 1, 02, 03 Fori" Greet y-o4, 05 fort Walnwrlght-Sl, S2, S3, 54 To'tal AvaHable Capacity ··unit Voltage -CkV) Eiel.son AFB-51, sz 7.2 Ei el son AFf3-S3,. S4 7o2 F9r't Greef y-o 1, 02, 03 4.2 fort Greely..U4, 05 4.2 Fort Wa i nwr lght-12.4 Sl, 52, 53, 54 Tyee ST ST Diesel Diesel ST Rating CMVA) 3.124 6.250 1.250 ' 1.563 6.25 * impedance ill per unit on. 100-MVA base •. Power ·Factor .a 1.0 .a .a .s. Untt Capae:lty · \MW) 2 • .50 6.25 1.00 1.25 s.o Total Caeacity (MW) 5.0 t2. 5 3.0 z.s 20.0 - 43.0 Gener~tor Impedance* 39.3t5 5.44 2.86 2.88 18.41.) 2.40 .. 1.60 -2.08 64.00 24.00 ·14. 40 15.20 51.1.8 19.20 11.52 12.16 18.·40. 2.40 1 •. 60 2•08 **I nertla· coo~tant tn par unit on 100 MVA base. Abbreviation: ST -Steam TuPbltte ··-~ :s -30 ., ' • lnertta . X0 . Constan't** 0.96 0.64 4.00 3.20 0.64 .. I•·· I· 01 I •• I :1. I ~·· ·.·;· I I I ') TABU: :86•2: Mlt.tTARY INSTALLATIONS, FAIRBANKS AREA TRANSFORfER OATA S ubstaT ton -Transformer Two WInding Transformers Eiel son AFB ForT Greely Fort' Wainwright .Y,pltage (kV) 69/1.2 24.9/2.4 69/12.~4 RaTil'ig* tMVA). 5.6 ,~:5 a.4 *Continuous full load raTing at 65t rise. **Transfonner reactance ls per untt on 100-MVA .base~ Abbreviation: LTC ... Load tap eha.ng ing Jae S~fting LTC' LTC B ... 31 Reactance** lo518 2.372 0.983 :::: • ••••• . - ,· 'I I ·I I I .: •. I I I I I I I I I I I I UniT - Ekl ut'na -1 (APA) Ek I utna -2 {.APA) ',; . TABLE 87. 1: MATANUSKA E:LECTRlC ASSOCIATION ANO ALASKA POdER AI:MJNlSTRATlON- Year of· I nstaf I ati on EXISTING GENERATING CAPACITY- Hydro Hydro ,capacity CMW> 15 15 -- Total Ava.i I able Capaci-ty .30 B-32 ... Remarks I I .: •.. . •• :I I I ~;I I I I I- I I TABLE B7• 2: MATANUSKA ELECTRIC AS SOC IATl ON AND ALASKA POWER ACMt NISTAATICN GENERATOR AND TRANSFORMER DATA Power Generator I meedance* Unf't Voltage Ra-ting Fa.ctor xd X'd X"d --CkV) <MVA) Ekiutna -1 {1\PA) 6.9 16.667 .9 6.12 1.65 1. 16 Ekl ui'na -·z <APA> 6.9 16.6.67 .9 6. 12 1.65 1. 16 Tap Transfoi:'mer Voltage Rating Settlng, (kV) CMVA) Eklutna-·t (APA) 115/6.9 Ekl utna -2 (APA) 115/6.9 ... ? * Impedance in per uni.t on 100-t·WA base. **lnertla constant In per unit' on 100-t·\VA base. lnert'ia x2 Xo Constant'~* 1.41 • 78 1.41 .78 0 Tap Ran9,!. Reac'tance* I I •• I I •• I I I I I I I I I I TABLE B7.3: MATANUSKA ELECTRIC ASSCCIATlON AM) ALASKA PCMER ADMIN !STRATI ON TRANSMISSION UNE DATA EXJSTJNG SYSTEM Pos Seq Impedance* Transmission Circui 't-Voltage FrQn Bus -To· B.r.s Length Conductor R X (mi) Anchorage {APA) -Ekl U'tna (AP'-l ns J<vt . Anchorage CPPAJ -Briggs Tap (MEA) Briggs Tap (MEA) -Pippel CMEA) Pi ppel (MEA) -Parks <MEA> Parks CMEA> -Reed CM:A) Reed (MEA) -Ekl utna CAPA) Total Br fggs <MEA} ·-Briggs Tap CMEA) Eklutna (APA) -Shaw {fJEA) 115 ~t Ekl utna CAPA> -Do!.\' Tap (MEA> Dow Tap CMEA) -Lucas CMEAJ Lucas ( tJ£A > -LaZe I I e Tap C MEA) LaZe I I e Tap-01EA) -Shaw <MEA) Total Dow (MEA} -Dow Tap (MEA) laZe II e -LaZe I fe Tap Shaw CM:Al -Teeland CCEA> 115 kV Shaw CMEA> • Herning C!-1EA > Herni ng (MEA> -Teela:rd CGEA) Total 8.8 5.0 6$4 6.0 7.2 - 33.4 6.3 8.6 5.1 4.3 4.3 - 22.3 1. 2 3.9 4.8 7.8 - 12.6 Douglas CM:A~}: o""'! Tee I and CCEA) 115 kV Doug I as (MEA) -And erso111 Tap (MEA) 19.0 Anderson Tap CMEA) -Tet!lani CCEA) .. 6.5 - Total 25.5 397 ACSR (26/7) .0156 .0528 397 ACSR (26/7) .0089 .0300 397 ACSR (26fl) .0113 .0384 39~/ ACSR (26/7) .0107 .0360 397 ACSR (26/7) .ot5a .0433 397 ACSR (26/7) .0112 ".0375 397 ACSR <26/7) .0106 .0502 397 ACSR (26/7) .0090 .0311 397 ACSR & MC .0076 .0255 397 ACSR (26/7) .0076 .0229 4/0 ACSR .0032 .0066 397 ACSR (26/7) .0066 .0215 397 ACSR (26/7} .0085 .0259 397 ACSR (26/7) .0139 .0422 555 ACSR (26/7} .0241 • Jill 4/0 ACSR (6/0) -.0219 .0423 B-34 Susca?tance** ac .0061 .. 0035 .0045 .0042 .0050 .0045 e~0060 .0036 .0030 ,t0033 .. oooa · .0030 .0037 .0060 -· - .Of39 .0048 Zero Seq Impedance*** Ro · Xo - ·.0347 .2023 .Qt97 ,. 1150 .0253 .1471 .0237 .1380 • 0284 .1656 .0246 • 1440 .0339 .1977 .0203 .1171 • {}168 • 0977 .0167 .1026 .0054 .0242 .Ol6t .• 0933 .0190 .. 1161 .0309 .1891 .0653 .4339 .0365 .1574 • • • ' 0 •• " • ~ .-..... -•• t -. ; •• -: '"· ;,·, • ~ • • • : • • .. • t.., !•: . . ·. I I I I I I I Tab J e B7e.3: Matanuska Electric Associ at ion and Alaska Power Adminis'tratlon Transnlssion Line Data Transmission Clrcui t -Vol tag<a · Fran ats -To Bus Length Cmf) 'E xl st f ng System .... 2 Conductor Pos Seq Impedance* R X · Su~ceptance** 8C Anderson (MEA) -Anderson Tap (MEA) 3. 5 4/0 ACSR (6/0 l • Oll8 • 0228. • 0026 • * Posit!ve sequence Impedance in per unit on 100-MVA base. ** Total I tne chargt ng su5cep-tance in per unit on 100-MVA base. ***Zero sequence Impedance tn per unit on 100-MVA base. t Ekl utna-Anchorage and Ekl utna-Lucas 115-kV circuits owned by APA. Abbreviations: APA .. Alaska Power Admlnfstratlon MEA -t-~tanusl<a cl ec:tric Association CEA -Chugach Electric Associatton, Inc. B-35 Zero Seq . l mpedance*** Ro Xo .• 0194 .0870 .. • • • f\t • • ~ ' . • • I • . ~· "' ' • . -• . : • • "• ; • -.' • ~ r • ,. .. ..... ·, : j ., I I I •• I I I I I I TABLE B7.4: MATANUSKA ELECTRIC ASSOCIATION AJ.D.. 9 ALASKA PG'IER ADMINISTRATION DISTRlBUf ION SUBSTATION DATA EXISTING SYSTEWC T ransfonner• Noncofnci dent Substat'lon Peak Demand Read l ngs Substation Anderson Campttt Douglas Dow Herni rg LaZe I J e Lucas Parks Pippel Reed Settlers Bay Shaw Sit"e Bay Vol-tage CkV} 115/l2o 47 115/24 l t 5/12.47 115/12.47 115/12'.97 115/12.47 115/12.47 115/12.47 115/12.47 34. S/12.47 115/12.A7 34.5/12.47 Rating** 1975 -CMVA) 12/16/20 2. 74 1.37 12/16/20 NIS 5 l. 98 22126/30*** 4.99 12/16120 NIS tst 7.82 10 5.81 2ott 8c06 5 na 2.5 NIS 12/16/20 NJS 1.5 4.17 36.94 * Load tap changing .. transformer un J ass otherwise noted. 1976 - 3.9a· 1. 12 NIS 1.94 6 • .34 NIS 9.31 3 • .79 10.44 1 •. 97 NIS NIS 4.22 43.11 ** Maxtmi.Jn nanepJate continuous full load ra-ting at 55°C rise. ***Two transformers in para I I ef, one 10 MVA and one 12/16/20 MVA. t Two transformers ln para11 el; one 5 MVA and one 10 MVA. tt Two transfo.nners in para II el, each 10 MVA. tttsuppl ied at EkJ utna. x All distribution facJI itles are tEA. Abbrev I at ions: na ... t-b data ava il c=b I e. NIS -Not ih service. B-36 1977 1978 1979 -- 6. 19 3.94 4.;6 2.07 .98 .63 MIS 2.69 3,.07 2.45 3o24 2.99 1 t.04 i2.96 13.32 NIS NlS 3.26 12.72 14.98 11 •. 38 ·4.42 4 •. 32. 4 .. 22 9.22 10.51 9.50 . 2.59 2.98 2.98 .65 .76 .so NIS 4,.13 3.84 4.65 3.48 1.78 56.00 64.97 62.03 (f.MJ 1980 - na na na na na na na na na na na na na - na I I 1·. ·_ -- I I I I I I I I, -I .. I G E D c B fD·• ALASKAN RAILROAD LEGE' NO ---o-HIGHWAY -H-H-t++-RAILROAD (TO DELTA JUNCTION) 138 KV. ALASKA RANGE -. -• ...._ PRr: -~.~f!O SUSITNA UN£ EA, . "~. J TRANSMISSIOI'fUNE' SUB~ STATtON - \ 1 \ \ MT. McKINLEY \---. ·.· 'NATlONAL PARK \ \ \ \ \ \ \ \ WATJ.\NA ALASi<AN-RAILROAD ~ " TALKEETi,A MOUNTAlNS • UNDER. ~· \.-~--- CONSTRUCTiON -. --. { TO BELUGA _PO_W __ -__ ER PLANT 1 -~-__ -__ . · __ --._ .. 230 KV '•. · ----~- . r-;;l- FtGHRE -Ett 1m1· ---- ------=------------::.-------=--------:.--d---------1 -~· i!llr~ . I . . I -. . I -I ----~;,-----~---r-~---------;uOH6RAG£uuHicwAL------, -nn,_, "' UGHT ' POWER ... 11 a a . nttv , .. i trl. u . UA. I su. l I Sl£. •• Sll. I n-.n __ J •rcc;s UATANUSKA ELECTRIC ASSOCIATION PSI'ftl. rws ...-- l. ... ------!1!..!!__!?!:..!!._-f _........_.._ ~t£ J "· 1Dllll2i:f' L... ---------------------~---~-r----... ·-------. i I~IM I I CUUGACU ElECTRIC ASSOClATIOfl I -------------j - ANCHORAGE A'REA ONE-LINE. OIAGRAM·--'-'1984-SYSTEM fiGURE BJ~ . . -. . . . • I • --.--- • . . ~ . . . . . - --·-- - -<--·-.. - - - ~-~~-~--~--~------~----~~--~--~-~~-------~--~-~~-~-~------~~-~----~-----~--~--~-~~~~~------~----~~- l'iOI llll 1111\0Sill (//ALUlA I Allli'Ctlf _._.,....:..._ Ill GOlDEN VALLEY ElECTRIC ASSOCIATION Ulll\'£1SIIl A 'I[.- fAIRBANKS--1 UUNICIPAL l"' UTiliTY "' ----, SYSTEU I ·CII(Jtl I ~~:~ ___ ___j S. JAIIiW«S -----·· ... -----------------------............... _____ ~....., ........ , ~1-----1 I lilY I I I I I • I . . .. I -.. 11 ... . ~-crux a ~--------------~~--~-------:::~------------~~------------J FAIRBANKS AREA ONE-LINE DIAGRAM...:I984 SYSTEM . . fiGURE I I I I I ,, I I APPENDIX C ECON01IC CONDUCTOR SIZES I : . I I I I I ~---·· .. I I I TABLE OF CONTENTS Page C1 .... INTRODUCTION .... -_.. ________________ _..._,...,..._-____________ ~_,_._. .... ~ ........ _ .. _ _._. C . =--1 C2 -.LINE CAPITAL COST . __________ qa ......... :-. __ .._ ____________ ~}l .. .__._______________ c. .. 1 ·c3-CAPJ:TALIZED.COST OF LOSS----------""' ______ .., __________ ... _..,.. ____ 'C.-2 LIST OF TABLES Number C3.1 C3.2 Title Transmission Line to Anchorage Develo];inent' of Capitalized Cost of I.oss Tran$fttission Line to Fairbanks oevelopnent of Capitalized Cost of I.oss Summary of ~onomic Factors and Proposed Conductor Sizes LIST OF-FIGURES Number C3.1 Title Transmission -To.tal. Cost per Mile as a Function o£ Conductor Area I I I I I I I APPENDIX C ECONOMIC CONDUCTOR SIZES C1 INTRODUCTION In EHV. transmission, l.in.e conductors and conductor bundles musit:. be sized to minimize corona, RI and audible noise effects. An addition·al factor that needs to be quantified is the economic incentive to increase the · conductor s.ection still further to achieve savings in the future cost of line loss. This appendix deals with the economic aspects of conductor sizing, and since both line costs and line losses are proportional to line length, the analysis is carried out on the basis of costs pez circuit-mile. C2 -LINE CAPITAL COST fJ!ransmission costs are genera:Lly a function of the transmission voltage and :conductor size, modified :by local considerations such as meteorological factors, access, transport costs and local labor costs .. At a partic'U4-ar voltage, the variation in line cost as a function of conductor area is normally oi' the form. c -1 I I I I I I I I I- I I On the basis of line cost estimates for AiasK.a: "values'~ of *'X1 " 1 "~" and •a• have been determined.J. These are approximate 1 hut they describe the relationship between line cost and conductor si~e sufficiently well to be USed ~~· a guide in determining the economic size of line conduQtor. The equations are shown below. 230 kV: $/mile=' 110 000 + 16 (kcmi1)1.18 345 kV; $/mile~ 160 000 + 1.6 (kcmil.)1.18 500 kV: $/mile. ·Cf 285 000 + 16 (kcmil)1.18 C3 -CAPITALIZED COST OF LOSS Line loss varies directly as the square of the line loading and inversely as the conductor c:ross•sectional. area$ Since the line loading varies in a daily pattern and also throughout the life of the facility~ thes..a variations must be taken into account. Transmission line loading over the llfe of the facility can only. be estimated at this time. According to generation planning studies, each time a block of 400 MW of generation is commissioned (in years -1993, 1996 and 2000}, this capability is fully absorbed by the system. It i.s further assumed that all of the average energy capability at Susi tna " would be utilized at each development stage, resulting i.n load factors (LF) and loss load factors (LLF) as indicate.d in the table below. In this table no generation additions are included after year 2000 as the ~~ contribution to loss energy from any additional peaking capacity is assumed to be negligible. c-2 • ,_ •• I :1 I I I I I ;._.-. ·_ I ' Line Loadin2:s (MW} Susitna To To Period Ca12acit:t Ener91: LF' LLF* !Ulchoras:~ Fairbanks-(MW) (GW•h) 1993 to 1996 400 2 990 o •. as 0.786 320 80 1996 to 2000 800. 3 252 0.46 0.336 640 160 -- 2000 to 2043 1 200 6 227. 0.59 0.469 960 240 0 Expressing .line loading and line1 resistance in per unit on surge impedance loading (SIL} and sur(a-e impedan·ce (Zc) base leads to the following expressions • · Line resist·ance 1oo· 1 = · · x -per unit per mile kc:mil Zc I£ line ~oading = s .Per unit on SIL. base Then line loss per mile S 2 100 1 -. •t = x --x -per u::t...'t. kcwd.~ Zc - and since SIL Line loss per mile S 2 . 100 1 kV2 {,..31-.1 ) = X .k· .....,...;, ·-l X ·-.X -1::.rt UU. e -zczc ~ Annual loss energy/mile 2 100 kV2 . .. lL S X k .1 X -2 X 8. 76 X LLF cm1 Zc (GW•h/mile) And if the cost of loss energy = c $/kW•h = c $ million/GW•h Then annual coat of loss 2 100 kV2 . . . = S X·kcmil X 2 X 8.76 X LLF XC Zc ( $ milllon/Jnile) LF 2 + LF *Loss load factor (LLF) is estimated as LLF = ---- --~---,c .. -.. 2 c-3 ,, -· :I I I I •• ·: I: I I I A typica~ value of C for .Susitna is $0.035/kW•h. This energy cost is an average figure derived in the OGP-5 planning studies based G on zero inflation and 3 perc.ent net cost of money. • • .Aunllal. cost of loss • 3!1.66 s2 k~::. ..r.F ($ Jliil1ion/JIIlle) kcmil zc. In Tables C3.1 and C3~ 2. the· capftalized cost of loss per mile is derived for transmission to Anchorage rmd Fairbanks, respectively, as a function of conductor size and for the line voltages that are being considered .. The capitalized coot of loss is derived in three components, representing the three stages of develop:nent of the project. In all cases two circuits are assumed from the outset. for secln"ity .reasons. In t".:he case where three eir5=ui,ts a,..e used for the ultimate line loading, it. is assumed that the third circuit is added at t.l].e final (1,200 MW) stage of develo~ent. In '!'able C3. 3 the line capital cos·t and capi.tali~~d cost of loss (as # developed in Tables C3.1 and C3.2) are shown. as a function of conductor area for ~each voltage and transmission alternative. The indicated optimum conductor areas are also given .in the table and these were derived as follows. -rf line capital cost lC and capitalized cost of ~oss = k~l $ million/mile K Total. cost per Dli.l.e = x 1 + K2 (kcmilJa + k~l $ million/mil.e c .... 4 t ,. :·· I I I I I .. , Differentiating with respect to kcmil and equating to zero for minimum total cost per mile. K d coat . (k--.tl) a•1 _ ......... 3--._ -·-.::= a •tc \.OAL&. -d kcai:i. 2 . 2 (kcmil) X 3 = .... : ·-~ (kemi~)2 X (kaa.il)a+1 = ... ~ a.· 2 and ket'Ail -0 In two eases, namsly 500-kV transmission to Anchorage and 345 kV to Fairbanks, line losses are relatively low and lead to indicated econcmic conduct~l.:" areas that are below the acceptable limit from an ru: and Corona _point of view. The proposed conductor sizes which are sbowil at the bottom of Table 3 have been adjusted, where necessary, to provide acceptable Corona and RI performance. The relationship between line capital cost and total ~ost (including capitalized cost of loss) is shown graphia~lly as a function of conductor ar.ea in Figure C3. 1. The cases illustrated ar.e for 345 kV to Jmchorage and 23 0 kV t6 Fairban1ts, the two cases where cost of loss was a fat.-:tor i:n · the proposed conductor arrangement. . . . . . . . ' .· .; . . . . ' .. ·~ . .. ... . : . .. -------- 'rlUlLE Cl.lz 'l'RAliSMXSSIOH L'INE '1'0. AHCUORAGR DEVEE.Oft.£.'fr OF CAPI'ttlLIZED COST OP LOSS Loading per 2 Circuit Annual. 'l'Obil No.,. of on SIL cost of Period Load Circuits Basel E:!. Loss . (MW) {iii) (S-pu) ($M•kcmi1) cct•mile 1993-1996 320 2 160 l 0.386 0.786 5.195 1996-2000 640 2 32.0 0.771 0.336 8.861 2000 -2(1.43 960 2 480 1.157 0.469 :n.BS4 1993 -1995 320 2 160 ~.396 0.786 5.195 1996. -2000 640 2 320 ~I 0.711. 0.336 8.861 2000 .. 2043 960 3 320 0.1'11. 0.469 12.368 1993 -1996 320 2 160 -o.r1a 0.786 2.474 1996-2000 640 2 320 :> ;!( 0.356 0._336 4.230 0 0 2000 ... 2043 960 2 480 &0 0.533 0.469 13.236 1stL base valua• are 415 MW (345 kV) .and 900 MW (500 lV} • 21mnual cost of less "' l0.66 s2•kV2 ~ J.JE/zc2 based on losoeu valued at S0.035/kW·h·. 3n a duration of loa~ period ~.=offset from present worth datum. 5 . 1~ 1 ~ 1 Present worth .factor • I 1 -. · · x --.-, annual discount ,;at'C (1} • 3 percent, i'-(Hi)'!_ (l+i)lll 3 4: n II "(y";f {yr) . 3. 0 4 3 43 7 T-otal Ate :!#-kV 3 0 4" 3 43 7 'l'O.tal. 3t 345 kV 3 0 4 3 43 7 'l'ot.al at 500 kV -·-· Preaent5 capitilllzed ~rth Cost of Factor Loss (Sll.!·k~il.) cct•DU.le. 2.8286 14 •. 695 3.4017 30.1~2 19.4995 543.139 (2 clltcuits) • 587.976 2.8286 14.6.95 3,4017 30.142 19.4995 241.179 (3 circuits) • 286.016 2.8286 6.998 l.4017 14.369 19.4995 258,095 (2 circuits) • 219.482 . . . . . . . . . . . . . ~ : ·, -:·· . ' . . . . .. .' . . : : . . . . .· . .. -. . .' . ---.. - TABLE C3.2i TRANSMISSION LINE TO, FAIRBANKS DEVELOPMENT OP CAPI'l'ALXZBD COst OF LOSS .LOading per Annua12 Circuit 'lotal No. of on SIL cost of ~ Load circuits Basel LLF Lo!ls -1iiWf -(~tW) (S-pu) ($M•kcmi1) cct·mile 1993 -1996 80 2 40 ;\ 0.292 0.786 o .. 729:i 1996 -2000 160 2 eo O.SB4 0.336 1.2466 lOOO-2043 240 2 120 0.876 0.469 3.9151 . 1993 -1996 80 2 40 ~I 0.100 o. 796 0,3240 J,996 -2000 160 2 80 o.2oo 0.336 o.ss39 2000 -2(1.43 240 2 120 (.,,300 0.469 1,1397 1siL base value!S are 13.7 MW {230 k'\f} nnd ,.SQ:O .t.ftf (34~ kVl. . 2 . 2 2 2 . Annual cost of loss • 30.66 S •k.V • U2/'Zc basr.d on. losses valued at $0 .. 035/kW•h. 3 . n =duration of load peri~. 4m-offset fr~present vorth datUM. 5 Present WOJ:"tli factor • ~ ·_fi -1 ::1 x 1 Q an••~l ;_.lacount xate (1) • "' percent,. L tl+tl ~ (l+i)&' .; Pt:osent.5 Capit:aliaod 3 .4 WO!:th Cost of n Factor LOSS --(yr) (yr) ($M•kcmil) ~ct•mile 3 0 2.8286 2.0620 4 3 3.4017 4.2¢~ 43 7 19 •. 4995 76~3425 Total ~t 230 .kV (2 circuits) -Ill 82.64.51 3 0 2.8286 . 0.9165 4 3 3.4017 1.8842 43 7 19.4995 33.9233 Total at 345 kV (2 cil:cuit:a) ... l6.124Q - TABI:E C3. 3: SUMMARY OF ECONOMIC !"ACTORS AND PROPOSED CONDUCTOR SIZES Capital cost of line ($M/mile) caeitalized cost of loss* ($M/mile} oetimum conductor area** (MCM} f!:_pZOSed conductors Transmiss~on to Anchorage 500 kV .~~4-S~kV._. ______________ ~--------- 2" Circuits 3 Circuits 2 Circuits 279.482 kcmil 1,946 3x795*** 0.16 + 166 kcmill.lS 10 286.106 kclidl 1,967 2K954 0.16 + ~· kcmill.lB 10° 597.976 kcmll 2,737 2x1,351 *Capitalized cost of loss expressions are derived in tables 1 and 2. . 1 ·uaptimum conductor area == {~apitalized cost of lossj ~.18 kcmil per phase. \l.6xl.,lS · Transmission to Fairbanks 345 kV o.1n + 166 kcmJ.·11.18 10 36.,-7240 kcmil. 767 2x795'** 230 kV . l.& 1 18 0.11 + ::t lkaa:il • ·. l.!J) 82.6451 kcrnil 1,113 lxl.272 ***The economic conductor areas for 500 kV to Anchorage and 345 kV to Fai~banks are smaller than the minimum needed for ai and Corona performance. Hence, RI considerations will dictate conductor size. - - --· - - - - - - ---------·- -(I) z 0 -...J ...J -~ J: ~ - lU -~ -l ::2 1--:::> 0 0:: 0 0:: w 0.. !- (/) 0 0 OAr. . I . I . SUSITNA TO FAlRBANKS AT 230 KV . t TOTAL COST lNCLUOlNG CAPITALIZED 0.3 COST OF LOSS (TWO GlRCUtTS) I 0.2 I -UNE CAPITAL COST (/;f 0~--------~--------~------~ 500 1000 1500 2000 TOTAL CONDUCTOR AREA (kcmil) PER PHASE -CJ) z: Q _J -' -·~ 0.71 0.6 I I SUSITNA TO ANCHORAGE AT 345 l<V --r- TOT.AL COST tNCLUOJNG CAPJTAUZEO COST OF LOSS (TWO CIRCUITS) ~ 0.5 w ...J --:E t- ::> 0 0: ·-(.) 0:: w a.. t- (/) 8 0.4 0.3 TOTAL COST INCLUDING CAPITALIZED COST dF LOSS (THREE ClRCtJlT.S) LINE CAPITAL COST 0.2 L-------~"--'--------~-------------~..----_....i 1500 2000 2500 3000 TOTAL CONDUCTOR AREA (kcmil) PER PHASE TRANSMISSION-TOTAL COSTS PER MILE AS A FUNCTION OF CONDUCTOR AREA I.J•Ii ].·· .. ' FIGURE C3.1 II I I :1 I · .. I APPENDIX D COST ESTIMATES " I I I I I LIST OF TABLES -----·-" Number D.1 0.2 D.3 0.4 D.S Title Transmi~$iOn and Substation Unit Costs Transmission Line Capital Costs Substation Capital Costs Transmission and Substation Annual Charges Tra.ns:tission Line Land Acquisition Costs Capitalized Transmission Ldne Losses I 'I I I I I I I I I I I I. . ' I ;I . ' APPENDIX D COST ESTIMATES T.he economic analysis for the Susitna transmission system was Ciarried .out using cost estimates based on 1981 unit costs, without escalation, for all equipment and services. The unit costs for all transmission and substation equipment. are given in Table o. 1. The principal para- meters of the five transmission alternatives analyzed in detail are as - follows. Susitna to Anchorage Susitna to Fairbanks { 140 Miles) ( 189 Miles) Number of Number of Alternative Circui.ts Voltag:e Conductors Circuits ·'7."'~"1 ............ ""'-~ ~~CL::;!~ Conductors (k\T) (kcmil) (kV) (kcmil) 1 2 345* 2 X 1 351 2 345 2 X 79oS 2 3 345 2 X. 954 2 345 2 X 795 3 .2 345* 2 X 1 351 2. 230* 1 :2C_j_ 272 4 3 345 2 X 954 2 230* 1 X 1 272 5 2 500 3 X 795 2 2302 1 X 1 272 The t:cansmission line capital cost estimates for the fi;re transmission alternatives are shown .in Table o. 2. The 1993 line costs include ah adjustment for the use of a larger conductor than required by the intertie, 9 years.before the construction of the Susitna transmission system. '!his adjustment accounts foz: inter tie construction with con~ ductors ultiinatel.y required for Susitna transmission.. The adjustment consists of the. difference in line costs mul.tiplied by the length of ' the line section in question and the. factor to account f~r t"he *Denotes series compensation• ;.·_ .. ,·· ,, • < ·4 ' I ,, I I :'1 . • < I I il I accummulated interest for the incremental conducto,r cost. It is calculated as· follows. Adjustment= 1ength•[(1.00+i)n .... 1.00J•(ca-Ci) -length • [( 1. 03) S -1. 00 ]• ( cs-Ci) -length • o .. 304,8 • ( Cs-Ci) where i = discount rate (3.0 percent) n = time period ( 9 years) Cs -cost of Susi tna conductor in $f:1/mile Ci = cost of conductor required for intertie in $M/mile. The substation -capital cost estimates are shown in Table 0.3 and include a base cost plus costs Zor major components at each station. The base cost includes land acquisition, site preparation, found~tions,. etc. Cost estimates of major equipment, such as circuit breakers, transformers, etc, include the costs of all ·ancillaries StLOh as disconnect switches 1 potential and current transformers, controls~ instrumentation, etc. At the generating stations all EHV circuit breakers are included, but generator transformers and low-voltage breakers are excluded. These are i..'l').cl uded in the powerhouse estimates,. Similarly at the load centers all EHV breakers are incl.uded as well. as the necessary circuit entries at the subtransmission "t_rol tage { 23 0 kV or 13S kV) for each trans forllter bank. The remainder' of the lower voltage station is common to all alternatives end therefore excluded from. the. economic canparison. At &··u;horage, trans formation to 23 0 kV is assumed on the west side of Knik Arm implying cable crossings at 230 kV. The cable crossings and other 230-k\1' equipment are considered cOIUlX)n to all ac transmission alternatives for Susitna and their costs have been excluded frem thi~ est±~tae 1'hey mu.st be included for ccmpa.rison of schemes 'With different Knik Ar1li crossing configurations such as HVDC transmission from: Susitna .. I) •••• ·' . I -·· " •.. .. 'I 1: I I I I I I I I I I . . . , • . . G. 4. ~ I • •'" • "t •• }I_ '· 'rhe calculations of annual ~~harges for transmission lines and substatlons are shown in Table D.4. Annual charges ;include the. following companents. :rtem. Operating and maintenance Insurance .. interim. replacement contribution in lieu of taxes TOTALS Percent of Transmission Capital Per Year 0.10 0.15 2.00 3.25 Percent of Substation Capital Per Year 2.00 0.10 0.15 2.00 4.25 At a discount rate of 3. 0 percent and for a 50-yr peric.ld of anaLysis < from 1993 to ~043 the capitalized annual charges are. calculated as follo~ .. For equipment commissioned in 1993 Transm.is~ion .lines: 3.25 'Percent 0.03 !11.03)50-1.00] c: { 1. 03 ) 50 J Substations: -83.62 percent of 1993 transmission line capital cost 4. 25 ,£ercent -n 1 • 03) so -hQ..til.· o.o3 [ [1.03)50 ~ J -109.35 percent of 1993 substation capital cos·t D.-3 'I I I ::1 I I I I :I I ·I· '=·· ' .·I For equipment commissioned in 2000 Transmission lin~s: 3 .o 25 Percent 0.03 f]1.03)43 -1. ool [ ( 1. 03)43 J = 77.94 percent of 2000 transmission line ·capital cost Substattons: ~ ~-25 percent _0. 03 11_1.03)43-1.oQ1 [ ( 1. 03)43 J = 101.92 percent of 201)0 substation capital cost Costs of land acquisition and clearing for transmission lines are . calculated in !!'able D. 5. :tt is assumed that all right-of-way requirements wi.ll be acquired in 1993 ~ This includes the" land a«:quisition costs for aJ.l additional circuits to 'be constructed in the year 20(/0. Costs 1bf ce4pi talized transmj_ssion line losses are calculated in Table D. 6. Unit costs per mile for capitalized transmission losses have been derived from the costs a£ leas developed in Appendix C, "Economic Conductor Sizes". In the case of the line section from watana to Devil canyon the. unit costs have been adjusted to take into ac~ount the loading that will apply during the various stages of proje~t development. D•4 • • ' • • • • C> ~ • ' ., • • ·._. • ..,. ~ ' • .. • • t~-· :-. .. 1o • • ~ ~-,. :: --., . ~ ., '.· _. . : < . --.:: . ·. . -~ . . . ' ' ·, ... . ',; . . ·. __ . ~ . . . . . : • • •. ·[ . . . .• • .tzr ..• ~. . ~ . . . ' -., .. . . . . . . "I I I I I. 'I I I I . -I.·- I I TABLE 0.1: TRANSMISSION AND SUBSTATION UNIT COSTS Transm~ssJon Llne Costs .Voli'aa,e Conductor Base Cost (kV} {kcmfl) ($/circuit mile) 230 l X. 954 l20,000 230 l X 272 136,000 230 i X l 351 140,000 345 2x 195 190,000 34$ 2x 954 207,000 345 2x l 351 251,000 500 3. X 795 326,000 land Acquisition and Clearing Vo1-tase <kV> 345 345 500 Substa'tions Voltage (kV) 1~8 230 345 500 Number of Clrcuii"s 2 2 3 2 Station Base Cost** ( $ M.il lion) 1.000 t .:soo 2.500 Fina I Cost* C$/cfrc"'it mile-) 162,000 184,000 189,000 Q 256,000 219,000. 339,000 440,000 $/Mt te 75,000 96,000 80,000 Circult Breaker PosltJon ($ Mi 1 f fonl 0.400 0.700 1.000 1.600 I I I I I : •. ,-.·. ' ' :1 I I Tabh1 D. 1 Transmission and Substation Unit Costs-2 Autotransf~rmers_ ( tnc I udl ng 15-kV tart iart!. ,Yoltage (kV) 2.30/138 345/138 500/138 3451230 500/.230 Voltage S/kVA CkVl 345 4.20 500 s.oo Shunt Reactors --- V]~Jta~.~ {kV) 345 500 75 MIA ( $ Mit f ion) 0.500 0.700 50 MVAAS ($/kVAR> 24.60 Series Compensation (all voltages) $14oOO/kVAR Static VAR Sources (tertiary voltage> $30.00/kVAR 150 MIA C$ Mf Ilion) o. 800' 0$900 ·t. 200 0.900 1.200 75 WAR,§_ ($/kiJ!1R) 1. 11 17.20 250 WA -· C $ Mf I J ion) 1.100 1.300 1.600 1.~00 t. 6CJv *Final transmission line costs (page 1 of table) tnclude 20 percent contingency, plus · 5 percent engineerf ng, 5 percent" constr.uctlon management and 2. 5 percent ownerJs cost. **Substation base cost (page 1 of table) includes land acqulsitfon_, site preparation, foundationst etc. - ---- - - - - - - - -... ---- TABLE D.o2: TRANSMISSION LINE CAPITAL COSTS Transmission Alternative .,. '·--1 "2 3 4 5 Year 19.93Transmlsslon Circuit Circuit CircuiT Cir'wit Ciradit line Costs Unit Cost .Miles .SM Mfles $M Miles .SM Mites !!! MiJes. SN UM/mn Watana to Oev! i Canyon (27 mi) ,. Voltage CoQductor .345 kV 2 X 954 kcmi I 0.207 54 11.18 54 11.18 --345 kV 2x 1,351 kcmil 0.251 54. 13.55 54 13.55 500 kV 3 X 795 kcmi I 0.326 54 11.60 ~vll Canyon to Anc.horage ( 140 mi) 345 kV 2)7. 954 kcmi I 0.207 "280 57.96 ,_ 28C 57' ... 96 345 kV 2 X 1,351 kcmll 0.251 260 70.28. 280 70.28 500 kV··-3 X 795 kcmlt 0.326 --280 9lo28 .Oevi I Canyon to Fairbanks ( 189 mi) 230-k.V 1 X 1,272 kcmll 0.136 293 39~95 .378 51.41 378 Sl.4t 230 kV 1 X 1,351 kcmil 0.140 85 11.90 345 kV 2 X_ 795 kcmi I 0.190 293 55.67 293. 55.67 345 kV 2x 954 kcmll 0.207 85 17.60 345 kV 2 X 1,351 kcmt a 0.251 85 21.34 Sub-total 1993 llne costs 160.84 142o41 i35.(k 120.55 160.29 Contingency (20 percent) 32.,1"/ 28.48 . 27., 14 24.11 32.00 Subtota• 193.01 170.89 162.82 144.66 .. 192.35 Engineerlng and Management 24.13 21.36 20.35 18.08 24.04 (12.5 percent)* TOTAL 1993 Transmission Llne Costs 217.13 192.25 J..83 .. 17 162.74 216 .. 39 Adjustment For Advanced lntertle Construction With. Larger Conductor** .SM/mi $M $M/mi $M $M/ml .$M SM/mi SM .SM/ml ~ - Willow to Gold creek (80 mJ) (0.251-0.20'1) 1.07 (0.207-0.207) 0 (0.251-G.120) 3,19 (0.207-Q.120) 2,12 ( 0.326-o. t 20) 5.02 Gold Creek to Healy (85 mi) (0.251-0.207) 1.14 (0.,207-0e207) 0 <0.1.40..0. 120) 0.52 (0.136-0.120) 0.41 (0.136·0.120) ,0.41 Subtotal· tntertle adjustmenT 2.21 0 3.7t 2.53 5.43 Contlngency, englneering, ~tc 0.77 0 1.30 0.89 l.90 Totar adjustment 2.98 0 5.01 3.42 7.33 -TOTAl Adjusted 1993 Transmission Line Costs 220.12 192.25 tea. uf 166.16 223.72 -- Table D.2: TransmJsslo.n Line Capital Costs.-2 Transmission Alternative 1 ~2~·--~-------etrettit Circuit-Year .2000 Transmission · Lfne Costs. .:;:-, ----- 1 Unit Cost Miles $M Mi l~e:s $M ($Wmi) Dev i I Caft100 to Anchorage C 140 m t ). Vol~£Jil Conducfur 345 kV 2 x 954 kcmi I 0;207 Contfngency (20 percenT} Sub'total Engineerfng ard Management {12 •. 5 percent>* TOTAL 2000.Tr.:ansmJsston Ur.a . Cap J tat Costs * Engineering and Management rnciudes .... Eng i neert ng · ?• 0 percent -Construction Manayement 5. 0 percent 140 -Owner's Cost _£!5 percent ~ 26.98 5.80 34.78 4.35 39.12 -- 3 Circuit Miles -Total 12.5 percent **lntertJe cdjusiment accoun·rs for ·construction wl_th a larger .conductor than required by the fntertle 9 years_ beforE! construction of Susttna transmlssion system. $M - 4 Clr:cufi" tUfas 140 11:!. 2S.S6 5.ao 34.78 4.35 39.12 5 Clr~umt Mtles., 1M. ---- TABLE 0.3: ~\UBSTATION CAPITAL COSTS Transmi~,si-nn Alternative 1 2 3 4 5 --Year 1993 Substation Costs Unit Cos-T· · Quant_ity $M Quantlt:t .lli 2uanfif:t $M Quantrt~ $M Quanf;ilitw $M CSM> Anchorage Base cost -345 kV 2.00 1 2.00 1 2.00 •• 2.00 1 2.:00 -500 kV 2.50 1 2.50 Circuit breakers -230 kV 0.70 6 4 .. 20 6 4.20 6 4.20 6. 4.2() 6 4.20" ... 345 kV t.oo 9 9.00 9 9.00 9 9.00 9 9.00 -500 kV lt.6.0 l t 17.60 Transformers -345/230 kV,. 250 MVA 1.30 4 5.20 4 5.20 4 5.20 4 5.20 -500/230 .kV ~ 250 MVA 1 .. 60 4 6#-40. Shunt reactors-500 kV. 50 MVIIR 1.23 2. 2.46 Static VAR sources (MVAR) 0.03 400 12.00 400 12.00 400 12.00 400 ~2.00 200 6.00 Subtotal 32.40 32.40 32.40 32 .. 40 39.16 Contingency < 20 percent) 6.46 6 .. 48 6.48 6.48 7.83 Subtotal 38 •. 88 38.88 38.86 38.88 46.99 Engineering and management 02 .. 5 percent>* 4.86 4 .. 86 4.86 4o86 !i~87 TOTAL 1993 Anchor~ Station Cost 43.74 4~•ill. 43 .. 74 43.74 52.87 Wtf low ~t·'" Base cost-345 kV 2.00 1 2 .. 00 1 2.0'0 ·~~~~:i~-:-:z;fO(l --·-· ··r"-" 2.00 .... 500 kV 2.50 ___ ... _-... ~=~-·=~":;..;.~-~~=-"'"';;.;..~.;:_:-.:.:_:_.· -:---~ .. -~~:~t.50 Circuit breakers-138 kV 0.40 3 1.20 3. 1.20 3 1.20 3 1.20 3 1.20 -345 kV 1.00 9 9.00 9 9.00 9 9.00 9 9.00 -500 kV 1.60 11 17.60 Trans fanners -345/138 kV• 75 MVA 0~50 2 loOO 2 t.oo 2 1.00 2 1..00 -500/138 kV, 75 MVA 0.10 2 1.40 Shunt reactors-500 kV, 75 MVAR 1.29 2 2 •. 58 ' --,, •,,. Subtotal 13.20 13.20 13.20 13.20 25.28 ···---.-·- ':-\--;~·::::- -' ·--·--·-·-- --· ~ble 0.3: Substation Cap ita I Costs -l. ~ TransmissIon A lternatt ve. ·< ~ -1 2 3 4 5 Year 1993 Su~tlon.Costs Unit Cost QuantiTl SM Quantity .!! Quantlt;t $M :ouantft~ 1M. Quarrtit)' SM ($M) Con"tl ngency OW percent) ,,... .. -.~·-...... -" 2.64 2.64 2.64 2.64 :5.06 ~-- Subtotal 15.84 15.84 15.84 15.84. 30.34 Engl neer i ng antt managament ( 12. 5 percent)* 1.98 1.98 1.98 1.98 3.19 TOTAL 1993 WIt tow StaTion Cost 17.82 17.82 17.82 17.82 34.13 Devil Canvon Basa. cost -230 k V 1 .. 50 1 . 1.50 1 1.50 l 1.sa -345 kV 2~00 1 2.00 1 2.00 1 z...·oo 1 2.00 -500 kV 2.50 t 2.50 Circuit breakers-230 kV 0.70 8 5.60 8 5.60 8 5.60 -345 kV 1.00 12 12.00 12 12.00 15 15.()0 15 15.00 -500 kV 1.60 15 24"100 Transformers -345/230 kV. 150.MVA 0.90 3 2.70 3 2•70 -500/230 kV. 150 MVA 1.20 3 3.60 Generator ··•"ansformer 1 ncr:ernE:mta l. cost-. 220 MVA 0.176** 3 0.53 Subtotal 14.00 14.00 26 .. 80 26.80 37.73 Contingency (20 percent} 2.80 2.80 5.36 5.36 1.55 Subtotal 16.80 16.80 32.16 32.16 45.28 Engineer J ng and management < t2.5 percent)* 2.10 2.10 4.02 4.02 5.66 TOTAL 1993 Devil Canyon StaTion Cbst I 18 ... 90 18.90 36.18 364018 50.94 Watana Base cost :... 345 kV 2 .. 00 1 2,.00 . 1 2.00 l 2.00 1 2~oo -500kV 2.50 1 2.50 Circuft brea~ers-345 kV. 1.00 9 9.00 9 9.o00. 9 9.00 9 9 •. 00 -500 kV 1'.60 9 14.,_40 Generator transfo.rmer Incremental cost, 22.0 MVA (}.176** 4 0.70 Subtotal t l$00 lhOO . n.oo ll.OO 17 .. 60 ... q • • . • • , • ' •" • . • .. • '* .• . ... "" Tal:ile 0.3: SubstaTion Capital Costs .. 3 Tr~nsmission Alternative l 2 3 _4 5 Year 1993 Substat-ion COsts Unit Cost Quan'tit~ 1M. Q!;!antJtl SM Quantity $M QUant it}! $M Quant"i!tttf ... ;$M t$t.U Contingency (20 percent> 2,.20 2.20 2.20 2.20 3.52 -Subtotal· 13.20 13.20 13.20 13.20 21.1-2 Engineering and management ( 12.5 percen-t)* 1 .. 65 1.65 . 1.65 ... 1:.65 If""":" ... - 2.64 "TOTAL 1993 Watana Station Cost 14.85 14.85 14.85 i~·$,135 23.76 fairbanks Base cosf ;. . ZSO. ltV 1.50: :1 h50 1 1.50 l 1.~0 -345 kV 2.00 1 2.00 1 2.00 ~ Clrcult breakers.-138 kV 0.40 4.5 1.80 4.5 1.80 4.5 1.80 4.5 1.80 4.~ 1.80 -230 kV 0.70· 8 5.60 6 5.60 8 5.60 -345 kV l.OO 10 10'.00 10 10.00 Transformers ... 230/138 k'l, 15G MVA o.ao 3 2 •. 40 3 2.40 ·~ 2.40 ~ -345/138 kV, 150 MVA .. 0.90 .3 2.70 3 2.70 Shunt reactors -34~ k.V, 75 MVAA 0.83 2 1.66 2 1.66 Static V-M sources {MVNU 0.03 tOO 3 •. 00 100 3.00 200 6.00 200 6.00 200 6.00 Subtotal 21.16 21 .. 16 17.30 17.30 17.30 _Contingency (20 percent) 4 .. 23 4.23 3.46 3.46 3.46 Subtotal 25.39 25.39 20.76 20 .. 76 20.76;, Eng I neetlng and management t 12.5 percen-t>* -3~ 17 3 .. 17 2.60 2.60 2.60 .. TOTAl 1993 Fa 1rban.ks Stat.lon Cost 28.57 ~8.57 23.36 23.36 . 23.36 TOTAL 199> Substation Capital Cost 123.88 123.88 '135.95 135.9.5 185.06 ~' .. ;: --,'i --'-'-------.. --------'.: : "' . ' ----------'_"::: -------- Table 0.3: SubstaTion Cae ita I Costs -5_ , ··----·· ., Transmission AlternatTve l 2 3 4 } : Year 2000 Substation Costs Unlt" Cost Quantity $M 2uanti!Y. "SM .Q!!ani"lty: SM. :quantity $M, .,2!!antty $M ---- {$M) Devil Canyon Cl.rcult breakers-230 kV 0.70 1 04/70 1 o.7o t {).70 _. 34.5 kV 1.00 3 3.a00 5 5.0{} 3 3•00 5 5.,00 -500 kV "1.60 3 -1.00 ' Transformers -345/230 kV. 150 MVA 0.90 1 -0.90 l o.so -500/230 k v, 150 MVA 1.20 l 1"20: - subtotal 3.00 5.00 . 4.60 6.60 '6.70 Cont l ngency {20 pei -...~otl 0.60 1.00 0.92 -1.32 1.34. Subtotal 3.60 6.00 5.52 7.92 S.04 Engineering and managema11t 02.5 percent")* 0.45 0.15 0.,69 0.99 t.Ol 4 ... 05 6.75 6.21 6.91 9.05 -.....- TOT At:. 2000 Devil Canyon station Costs -:-::-:-- fairbanks "' Circuit breakers-t38 kV 0.40 1.5 0.60 1 .. 5 0 .. 60 }.5 o.oo 1.-5 0.60 1.~ Oo.60 -230 kV 0.70 1 0.70 l 0.70 1 0.70 -345 kV 1 .. 00 1 t .. OO 1 1.00 1 o.ao 1 0.80 1 -o .. ao Transformers -230/l38 I(V, 150 MVA 0.8() -345/138 kV, 150 MVJ\ 0.90 1 0.90 l 0.90 430 6.02 A~ 6 .. 02 "' 430 6.02 __,.._.._.... ··~· Series compensation (t-1VAR> o.ot4 ---- Subtotal 2.50 2~~ 8.12 8.12 '8,.12 Contingency (20 percent) 0.50 0 ... 50 .1 .. 62 1.62 1.62 - Subt()tal 3.00 3.00 9~74 9" 74 '9. 74 Eng t nearing and management (12. 5 percent>* -().,38 0.38 1.22 1.22 1.22 3 .. 38 3.38 10.96 10.96 '10.96 TOTAL. 2000 Fairbanks station O:>sts 44.74 31.·47 54.48 41.21 39.13 TOTAL 2000 Substation Capi-tal ,Costs *Engineering and management includes ... cenglneering 5 .. 0 percent · · , -construction man,~gement 5. 0 percent -owner-s cosT ... 2.5 percent . . . _ .. .. Total ~percent **C'A>st of generator transfomners for 345-kV transmlsslon ls-lncll.lded · ln powerhouse· cost "'sthnates. Al terll(ltlve 5 requl res adjustment for i.ncrerrt'ental cost of 500-kV transforrners. ----------·-. ~ --~---· - TABL~£t.ii: TRANSMISSION AND SUBSTATlON A~UAL C!fARGES Transmission Alternative 1 .z·· 3 4 5 Percent of capt"tall·zed .-. Capitalized Capital. l zed Capl ta I i zed ~pi-tali zed Capital Capital Annual' Capital Annual Gaprtal Annual Capital Annual Caplta.li ~· Cost* Cos-t Charges CosT Charges Cost Charges Cost Ctta~s:s CosT ~t:t.arges {$M) UMl CSMl ($M) ($t.0 ($M) ,($M} ($M) _($M) UN')· a. l993 Cap lta t 1 zed Annual Una 83.62 217.13 181.56 192.25 160.76 183.17 153..17 162.74 136.08 -210..39 lS0.95 ~ Charges 2000 Cap I t~l i'.zed Annuai U~Ye 11.'94 39.12 30.49 -39.12 30•49 - Charges 1993 Capital h:ad Annual ~ta-t ion 109.35 123 ... 88 135.46 123.88 135.46 135.95 148• 66-135.95 1.48.66 185 •. ()6, 2.02.36"_ Cllarges 2000 Capltallz:ed Annual Statton tot. 92 44.74 45 .. 60 31.47 32.07 54.48 55.53 4l.~! 42.00 :$9.7$ 40.49 Charges *Capital U.ed aJtnual charg$ per<:entages are devol oped tn. the text on page D-3. -----·--------- TABLEDo5:. lRI\NSMiSSION UNE LAND ACQUlSrrtON COSTS Transmission Aiterna1:"ive · t 2 3 'Transmission ll ne Uni.t Cost Len 9th .$M length ~ Length $M {$M/~t) "-(miles) (mi fes) (miles) -""' Nmiber of Voltage Clr.cults 189 13.2~ 230 kV 2 0.070 -345 kV 2 D.075 356 26r10 216 1.6 ... 20 167 12.53 345 kV 3 0,.096 140 13.44 - -~ ----.,;;--~ ----.,.......-:~-·-"':::""' --··---··-·- 500 k.V 2 o.oso 1993 Land Acqulsltlon Cosi"s 26.70 29.64 /;5.76 ~- = 4 1..eng!h $M -·.-: (miles) 189 13.23 27 2.03 140 13.44 28.70 5 Length (mHasl 189 --- 167 - $P4 13.23 :- 13.36 26 .. 59' : . \. ~ . ~ . . . . .I I --------- TABLE 0.,6: CAPitAUZEO TRANSMISSION LINE LOSSES Transmlssion Alternative l .... 2 3 4 5 Capitall~ed _Una losse~ Unit Cost Miles. SM M£1es $M Mfles 1M. Miles $M Miles $M . ·" {iMimn Wt:rt~u~ to Oav n Canyon C27 mll Z X 345 k.V,. 2 x. 1 ,35t kcmif 0 .. 2517 27 6.80 27 6.80. 2 ~345 kV, 2x 954 kanil 0.3565 27 9.62 -27 9.62 2 X 500 k.V• 3 x 795 kcmll 0.1358 27 3.67 Devll Canyon ~to Anchorage 040 mD 2 X 345 kV, 2 X 1.351 kcmll 0.4352 -·140 ., 60.93 140 60.93 3 X 345 kV, 2x 954 kcml t 0.4262* 140 59.67 --140 59.67 2 X 500 kV, 3 X 795 .kcmH 0.2344 140 32.82: Devil Canyon-to fa:ir6a~~s 089 mil t x ~Q kV, \ X 1 1 212 kd\.\i.l <tr06497 293 19.04 376 "24.56 378 24.56 1 X 230 kV,. l X 1,351 kani·~ 0,.06117 85 5.20 .., 1 X 345 kV, 2 X 195 kcm.il 0.02310 293 6.77 293 6.77 - 1 X 345 kV. 2 X 954 kctnll 0.01925 85 1.64 - l X 345 kV;. 2 X 1,351 kcmtt 0.01359 85 1.16 -- TOTAL 1993 Capttalt zed Ltne losses 75.66 77a70 . 91.97 93.85 61 .. 05 *lnctudes tosses on two circults fran 1993.-t99.9 and three circuits frQIIl 2000 -2042 rnclustve. I I . I I I I I I •• I ~···,. '· ~ I APPENDIX E Hvtc TRANSoiiSSION ,, I I ~· . I I I I "I TABLE OF CONTENTS Page ~1 -GENERAL -~-------~-~~~--~--~~~~--~--~~-~~~~--~-------~-~~--~~-E-1 E2 -·ECONOMIC SCREENING· ~-~---------~~~~-·---~-~~~---~~~~~---~~~~ E~2- E2 .• 1 ---Bas·i.e: Schem.es ----~--------.... ---.... ---.. -------CD .... _....,. ..... _., ___ ...... E .. 2 E2o 2 -Comparative Costs ---------.-·------------------------E-4 E2.3 -Resul.ts -----------~---------------~----------------E•7 LIST OF TABLES Number E2.2 E2.3 E2.4 Title A.c Transmission to .Anchorage Development of Capital Costs HVDC Transmission to Anchorage. Development of Capital Costs Ac Tra..'lsmission to Fairbanks Development of Capital Costs HVDC Transmdssion to Fairbanks Dev·eJ.opment of Capital Costs Summary of Comparative Cbsts Ac Versus De Transmission LIST OF FIGURES Number E2.1 E2.2 Titl.e Comparison of HVDC Versus Ac Transmission to Anchorage Comparison of HVDC Versus Ac Transmission to Fairbanks I -I- I I APPENDIX E HVDC TRANSMISSION E1 -GENERAL Traditionally, HVDC has found economic app.lication. for long-distance overhead l.ine {point-to-point) transmission or where ~-;i.gnificant lengths of submarine cable were involved. In either ca:ee, the savings resulting from the avoc·line or cable ~s compared to the ccst of ac lines or caoles need to be sufficient to offset the additional. cost of de tetmina.t facilities. other characteristics of HVDC transmission that have been significant in its application are -its asynchronous nature and hence the elimination of a transient or dynamic stability problem -its ucontroll.ability" may be an advantage to limit steady-state circalating power flow in system interconnections, or to introduce damping to limit or control system dynamic oscil.lations -its ability to limit short-ci.rcuit contribt'\tions.:~ In the case of Susi tna transmission, ayoc is not an obv.ious contender Q No technical difficulties are anticipated in an ac transmission scheme. and the transmission distances ( 140 miles to Anchorage and 189 miles to Fairbanks) are well within the normal economic liltits of ac transmis- sion. ldso, the transmission involves three terminals leading to some complication of the de control and adding to the cost of some of the primary ci:rcu.it elements as well.. However, in the Anchorage area some submarine cable :O'ii.tcuits may be involved in delivering Susitna power E - 1 I ,,· I I I ••••• . . I I • to the load center. Hence,. ;i.t is appro.priate to carry .put a screening anal.ysis to detexmine whether or not the de alternati·Q-e merits further study. E2 -.ECONOMIC SCREENING E2.1 -Basic Schemes Sinca a number of variations are possible in the HVDC basic arrange- ment, and also in combinations of ac and HVDC transl'l\iaaion, each transmission link (from ~usitna to ~ohorage and Susitna to Fairbanks) will he examined separatel-y. In "Uhis base comparison, separate point-to-point de schemes are implied. In order to take into account possible savings associated with HVDC cable circuits in the Anchorage area, the transmission costs to Anchorage include sul::marine cable circuits as needed to bring the power to the metropolitan load center. All transmission from Susitna to Anchorage and Fairbanks is assumed to start at a Devil Canyon switching station and terminate at an appro- pr.i.ate voltage in each load center. Ac transmission circuits and switching facilities between Devil Canyon and Watana are assumed to be common to both ac and de alternatives# and their costs are excluded fran the analysis. Dynamic vat' generating equipment is needed at the load centers for both ac and de alternatives. The necessary var capability for ac transmis- sion was determined in load flow studies of critical line outage condi.:- tions. In th'~ case of th~ de alterna,tive some vars will be generated by the ac filters. The balance~ as needed to .meet the total var demand of the load and the inverters thems.elves, is estin:lated. and charged to the de alternative. All of the required va.r gener.ation is assumed to E-2 I -· '• ·I I I •. 1·. be located on transformer tertiary .windings. Necessa~y switching is inc-J. uded in the unit var cost. The .alter.native HVDC transmission systems are planned to· be capable of handling full rated power under conditions of single contin~ 1cy outages. In the de terminals, this rnea.n.s that one val.ve group module could be out of service and the remaining valve groups should be able to handle the rated load. Similarly, on the transmission line, one pole may be out of servrice and the remaining pole(s) should be capab1e of handling the load w1ithout interruption. For the transmission t.0 Anchorage (rated 1,190 MW) a ±250-kV bipolar scheme is envisaged, with four valve groups per terminal. Under normal. conditions one bipolar transmission line to Anchorage would be adequate • , However, the loss of one line pole would result in a temporary power reductioil, aw £u]l.,power cculd,-,f>e res.umed only after te~al S'Witchi.ng4 and an earth return current would flow throughout the total duration of the pole ·outage. For this reasoh·, and to provide a system more comparable to the ac al:ternati ve in case of a tower fail.ure, twa bipolar transmission lines are provided for transmission to Anchorage. In the case of ac transm.ission to Anchorage, an intermediate switching station and transfoxmation to 138 kV is pro'lided at WilJ.ow. This is an integral part of the ac al.terrtative. For the de;; alternativa, an eqld- valent power supply to Willow is provided by adding two 230-kV ac circuits from Point Mackenzie to Willow.. The cost of thes·e circuits plus a 230-kV bus and transformation to 138 kV at Willow is .included as part of the cost of de transmission to Anchorage, so that both scheme>cs would be functionally equivalent. The. t.ransrnis.sion to FairbCL&"lks is rated 350 MW and at this load level it is di.ffieult to justify more than a single bipalar transmission line. Los$ of one pol.e wou1d restilt in an earth :return current and1 if a power interruption is to be avoided., the terminal equipment on each E -3 ., I I :1 I ,. :, -I pole .must be ca,Pable of handling the full 350 MW. This results in tOO· percent reserve capacity,· but it is still more economic than the building of a second bipolar transmission line • . The ac and de comparative systems are shown in single line diagrams in Figure 22.1 for transmission to Anchorage and in Figure E2.2 for trans- m.issd.on _ -Go Fairbanks. E2.2 -Comparative Costs . -.. capital costs associated with the varj,ous ~o an'd de transmission alternatives .are deve1oped in a series of tables as follows •. Tables - E2.1 E2.2 E2.3 E2.4 Transmission Alternative ac to Anchort.\ge de to Anchora~re ac to Fairbanki.; de to Fairbanks The costs developed in these tables are all for the ultimate installa- tion as the effect cf staging is expected to be similar for both ac and de alternatives. In all ac transmission alternatives, the unit costs for station equip- ment and. transmission lines are those used in Section 3.7 of this planning memorandU1ll. The costs used for ac cable circuits are based on quot.ed estimates for 23 O-kv· cables. Where station buses are existing or would be common_ to both ac and de al.ternati ves 1 no base c.ost is charged. Al~ HVPC te:rminal equipment ·is estimated at $44/kW per terminal, based on manufacturers* recent estimates. . . E-4 I I ·I· .• ., I I I I :I• . . · . I I 'I'he necest,;a.ry ac awitchyard circuit ent~:les are estimated additional to the base HVDC te:rlninal cos.ts. Var .generation over aftd -above thG.t provided-by the H"IDC filter circui ta is. estimated, based on the var demand of the converters and the load, and the cost is .al.lowed for in the receiving terminals •. ~.At the HVDC sending. end, no additional charge is ma~ to ensure that generating equipment can tolerate the var demand and harmonic currents of the converters. Some added costs would be incurred, but these are expect.ed to have onl.y a secondary effect on the cost comparison. HVDC transmission line costs are estimated as foJ .. lo"AS for +250 ... kV bipolar transmission lines. Conductor Area Der Pole (kcmil) 2 X 1,780 2 X 1 1 272 . . - Estimated Cost 12er Mile ($) 250,.-000 200,000 In the case of the HVDC cable circuits, these are estimated at 2 0 times the cost of equivalent overhead line, or $5 million per mile. This is consistent with the estimate used for ac cable c~rouits and it i:s considered.to be. sufficiently c~ose for this type of cost comparison. Comparative costs for ac and de transndss.ion alternatives are summarized in Tab1e E2.5. Here the line and station capital costs developed in Tables E2. 1 to E2o.4 are combined with cost of right ... of-way and capitalized annual operating costs to give capitalized total costs th~t may then be compared. Included in the annual operating costs are a number of misce~laneous charges Which cont~ibute to totals for transmission and s~t.ions as follows •. E-5 'I I ~· :.: I I I ••• . r- I I I Oper~tinq_~n.g. ~i11tenanca Insurance Interim replacement Contribution in lieu of taxes Total annual operating Aru'lual Operating Charges {Percent of £_apital Cost} . Transmissior1 Substation 1.00 0.10 0.15 2.00 .3. 2_5 2o00 0.10 0.15 2.00 The annual~ operating charges shown in Table E2. 5 have been capitalized -at ~ 3 percent interest rate over the 50-yr life of the transmission system. lJ!he same annual charge rate$. have been used fo.r both ac and de transmission on the a.ssumption that differences in operating costs due to differences in canpletity will be adequately reflect,ed in the .. diffex-ences in capital investment for a¢ and de plant. capict.al.ized costs of losses for ac transmission lines were developed as part of the exercise to determine econoMic conductor sizes. Loss energy was valued at 3.5 cent/kW•h,. based on the results of the generation planning exercise for the period under study. The capita- lized total cost of loss for ac· transmission was derived by adding transformer losses at o. S percent pet: terminal to the line losses. In the case of HVDC transmission,. total terminal losses .were calculated at 1.25 percent and added to line losses to derive the capitalized cost of losses shown for the de alternatives. LaLli acquisition costs are-estimated for the line right-of-way only .• . , Land requirements at terminal J.ocati.ons are assumed to be similar for both ac and de alternatives • E-6 .·,·· .. I I •• I ;I I I I 1. I I I I I ••• :·· E2. 3 -Result-!! • Com,Parati ve costs of a<: and de transmission alternatives as shown in Table E2.5 confinn that ac is. an appropriate choice for transmission from Susi tna to load centers at .Anchorage and Fairbanks. The concl u- sion i.s based on separate assessments of transmission costs to each of ~ the t"\110 load centers, and this implies the use of two 2-terminal de transmission systems. Some de economies might. be achieved with an alterna~a 3-terminal de arrangement, but any savings are unlikely to overcome the indicated 15 per~~t margin favoring .ac transntission. The economic conclusions are consistent with the res.Ults of other studies for the load levels and transmission distances involved, and they are considered adequate to support the selection of ac transmission over HVDC for the Susitna project. E. ..., 7 ---------------- TABLE E2 .1: AC TRANSMISSION TO ANCHORAGE DEVELOPMENT OF CAPITAL COSTS Location . Details .Devil Canyon breakers 345 kV Cost Components Unit Quantity Cost ($M) 1.00 Overhead Transmission 3 cct, 345 ·kv, 2x954 kcmil conductor -140 IDi route 420 0.279 Willow Terminal West Terminal Cables · Anchorage Terminal Terminal Sub't.otal base breakers breakers transformers base ·breakers breakers transformers VAR generation 345 kV 345 kV 138 kV 75 MVA 345 kV 345 kV 230 kV 250 ~ 400 MVAR 4 cct, 230 kV, 3.7 mi breakers .. 230 kV Indirect costs (at 32 .. 5 percent) Total Costs .. 1 14 5 3 1 14 15 6. 4 6 2.00 1.00 0.40 0.50 2.00 1.00 0.70 1.30 0.03 20.25 0.70 Station Cost Component Total ($M) ($M) 5 •. 00 2~.00 14.00 2.00 1.50 2.00 14.00 10.50 7 .. 80 12.00 4.20 s.oo 19.50 46.30 4.20 75.00 24.38 99-.38 Line Costs (.$M) 117.18 81.00 198.18 Total. Costs ($Ml! - -.... _ -- -- -- - - 297.5'6 • • • ·-·~. •. -;-<·'! . . • ••• . • . ~ . . • • 1 : " . • . ' • . • • ' •• ' ' I ·: . . .. -: . . . . . -. . .. . :. . . .· . ··. . . ' . . . . .. . . -. . .. ' . . . : : :·· . . . fl TABLE E2. 2: HVDC TRANSMISSION TO ANCHORAGE DEVELOPMENT OF CAPITAL COSTS .Location Devil canyon HVDC Transmission overhead Details breakers 230 kV Hvnc· 1, ·saG. 1 MW 2 bipolar circuits ±250 kV 2x1,780 kcmil conductor Cost Components Unit Quantity Cost , ($M) 0.70 0.044 140 mi route 280 0.250 Cable Anchorage AC Supply to. Willow Po·int Mckenzie Transmission Willow Terminal Subtotal . 2 bipolar circuits 3 .. 7 mi route HVDC 1,586. 7 MW breakers 230 kV VAR generation 670 MVAR breakers 2.30 kV 230 kV, 2 circuits 1,272 kcmil conductor 50 mi route base 230 kV breakers 230 kV .breakers 138 k\1 transformers 75 MVA Indirect Costs (at 32.5 percent) . Total Costs 2 6 3 100 1 8 5 3 JB.50 0.044 0 •. 7 0.03 0.70 0.184 1.,50 0.70 0.40 o .. so Station Costs Component Total ($M) ($M} 4.20 69.81 69.81 4.20 21,10 2.10 1.50 5,60 2 .. 00 1.50 74.01 94.11 12.70 180.82 58.77 Line Costs (.$M) - 70.00 37.00 18.40 239,50 125.40 Total ~sts ($M) - - - - --·- 364.99 -------------'-----~ . TABLE E2. 3! AC TRANSMISSION TO FAIRBANKS DEVELOPMENT OF CAPITAL _COSTS Details Devil Canyon bra akers 345 kV 2 cct, 345 kV, 2x795·kcmil overhead Transmission conductor, 189 mi .route base 345 kV breakers 345 kV Fairbanks Terminal breakers 138 kV tJ;ansformers 250 .MVA reactors 75 MVAR VAR generation 100 MVAR Terminal Subtotal. Indirect Costs (at 32.5 percent) Total Costs Cost Components Unit ·Quanti t,y cost ($M) 3 1.00 378 0.256 1 2.00 11 1.00 6 0.40 4 0.90 2 0.83 0.03 Station costs Component Total ($M) ($M) 3.00 2.000 11.00 2.40 3.60 1.66 3.00 3.00 23.66 26.66 8.66 35.32 Line Costs ($M} 96.77 96.77 Total C:asts ($M) .... 1.32.09 .. I - -· ·-- --·--~ - - - - TABLE E2 • 4 ~ HVDC TRANSMISSION TO FAIRBANKS DEVELOPMENT OF CAPITAL COSTS Location . Devil Canyon HVDC Transmission Details breakers HVDC 230 kV 700 MW 1 bipolar circuit ±250 kV, 2xl,272 kcmil conductor Fairbanks Terminal HV])C breakers 700 MW 138 kV VAR generation 245 MVAR Te~~inal Subtotal Indirect Costs (at 32.5 percent) Cost Components Unit Quantity Cost 6 189 6 ($M) Oe700 0.044 0,200 0.044 .. 0.400 0.030 Station Costs component Total ($M) ($M} 4.20 30.80 30.80 2.40 7.35 35.00 40.55 75.55 24.55 Line Costs {$M) 37.80 Total Costs· 100.10 37.80 Tota11. Cos.ts ($M}.i - ·- -- - ----------------- 0 " TABLE -E2.5: SUMMARY OF COMPARATIVE COSTS AC VERSUS DC TRANSMISSION eomparative Costs - $ Million Transmission to Anchorage -----------------------=-Transmission to Fairbanks Cost-Components AC DC AC DC Line Costs 1 line capital 1 line capi~a~i7ed O&M 3 land acqu1s1t1on {R.O.W.) Station Costs _ 1 stat~on cap~tal_ 2 stat~on cap1talized O&M Capitalized Cost of Losses 4 Tota.l Costs 198.18 165.72 13.44 99.38 108.67 83.87 669.26 - 125.40 -96.77 37""~n 104 .. 86 80.92 3l.~b1. 8.40 14.18 i:~S6 239.59 35.32 100 lo ··'. ~ 262 .. 00 38.62 109,4.6 74.94 13.12 16.,1()3 815.19 279.53 303,16 ~Lin: an~ station capital_ costs are de:rel.oped in :able~ E2 .1 to E2. 4. . . _ Cap.1tetlJ.zed -O&M charges 1nclude O&M, 1nsurance, 1nterun replacement and contr1but1ons in lieu of taxe;s. Th~se annual charges total 3.25 percent of transmission capital and 4.25 percent of station capital1 and they at"G 3 capitaliz7d .o:rer 5~ years at 3 percent~. _ _ _ _ . __ _ .. _ Land acqu1s1.t~on (R.~O .. W.) costs are est~m~tedat $96,000/m1le and $75,000/mJ..le for 345 kV, 3 cct and 2 'cct trans- misS:iOll respectively, and $60,000/mi1e and $40,000/mile for ±250 kV de 2-circuit and single circuit, 4 respectively. Losses are valued at 3.5¢/kW·h, and they are capital.i~ed. over the 50-year line life at 3 percent. "!. .. · .· ... · ·.· . ·-·~· .. ·· · .. · ..... ·· · .. ···.·. . ' ;~ '·. '. "·~-. . . ~~ . ) ·_ · .. -. : . ~ . . < ., . :_ . -~ . ' ·. . . . . '· .,-. ... . . .. -.:_,c~~~-==~· ==~·,, -~z~t\ v. --~ .. ·:--c-: . -~--~=· 230 KV ~ t<NtK -·--==--"""'= -·~~,~-·-·:.-~.C~'--"'-·. r-...:2 -~ --·-~----------- ,.ANCHORAGE 345 KV AC ALTERNATIVE · - 4X397 MW 230 i<V ,. I ·-:1 ·I G X250 MVA · WEST TERMINAL -WU .. LOW 230 KV POINT MACKENZIE WILLOW ~~~~~~----~~~~~~----~~~------------------/ KNlK {BIPOLAR 2. X 1780 KCMIL · 2.-CtRClUTS ) 670 MVAR··· ·· ARM ANCHORAGE- ±250 KV HVDC ALTERNATIVE >~~ . 'DEVIL CANYON 230KV I DEVIL CANYON . .-,_, -: . " . •. .~;;;.:.~-: :. •-,: . :;::-_: ·-~::...-:-:::.::::;-; ·--~--. ~ ;;-...o.=..-.-. ..• . I, I .1· I I ••• •• . ' DEVIL CANYON . 345 t<V .AC ALTERNATIVE 230 KV DEVIL CANYON . ± 250 KV HVDC. ALTERNATIVE 0 ' ( 3 tJ -.2 X -195 KCMIL 2 ... ClRCUITS ) . ,; .. ·75 MVAR . 75 MVAR ( BIPOLAR 2 X 1272. KCMIL. · ONE ClRCU IT ') . , .. . CQM:PAR.ISON OF'· HVOC VERSUS >AC T . ' FAI~BANKS ; . r· . t . t -. ' '138 KV ~ . ~- t3·8 ):kV . I,·-. . . .. . " -·~ --~t . '$.' JJr;: ~t~~ ~- : .•