HomeMy WebLinkAboutAPA1380..
'' ~.. . ... ~ ;·-~-·· ', '
......_ ____ ,_,.,_ ______ ... -----~-----~------------~-·----·--~
Please Return To
1360 -------...-..--------------------·--l ---·--·-......
:JI
~ . DOCUMENT CONT~OL __ _ ';·-: l (
r 1 ! . '
SUSITNA H\'DROEL.E.CTRiC PROJECT
{
'4
' ~ '
~ .<p
r
L;
[ ·-~
,I .. ';
l 1 .-_
[;
u
0
[~.·r
I
.:!# .
0
i
I
! I
I I
l l
I I
1 l ~
' I I
t .
I 1
I j
. -1 1
I I
I ' l
I
. . . .. ._._
. ,.
... .. . _..... "" .... ~ . ~ .
I
j
• I LIB
Ptepar~ by;
llltli·:
.1 .. , .· . .. •.
:1 1
I
f . i ., ,'· ' .. ·. . .. ' .·' . . . '
. . .. . . . .
. . . . . .
•. t'· .. . . . . . ··~ ~ AtAS~A.:.p:ovJ~R AUTHORITY ..
LIBRARY COPY
PLEASE, DO HOT REf10VE FROt1 OFFICE!!
. '
INFORMATION PACKAGE
IJCTOBER 6-8, 1981
PFlOPERTY OF:
. Al(il$~a ·Power Authority
· · .~ W. 5th Ave, .
An.e~~r~g~, Alaska ~5P1
--~--~~~~--.~. ~-------
! I
l J I i I
I
I
I
l
f
I
l
' l
~ ··. -· ¥"""·-. ···.A t··A· ·s.-·. ·K··· A· f"'r'\'w· · ···E·R· Au··TH·o· ·RI.TY· --..-·----F~~l·<· ... ~ n.... . I •. . i""''..) . . . . . . . • . . . ___ __,_____.
• I 4
. r,: . : 2·· g· .o·· . . ~ ,
:: ''I~ •• ' -{ j• ' ..
~.~.:.-... # .......... ---~-,"""""" '.
. J
i '
l
. ~
i
+ i ! . '
!
l
!
' {
i·
l.
' ; r
l
'·
'
' :
1
'··
, I
I
(
!
I !
~
I
I
I
I L.
lt
I l
• ..,,..o;
I • I ........
I
I
.... -...:
I
[
-[
-~:'.' r
l
INTRODUCTION
SUSITNA HYDROELECTRIC PROJECT
EXTERNAL REVIEW PANEL
REPORT NO. 3
October 8, 1981
The third meeting of the External Review Panel for the Susitna Hydro-
electric Proj~ct was convened on October 6-8, 1981 at the Acres American
office in Buffalo. In addition to Panel Members, representatives of the
Alaska Power Authority and Acres American were present. Various members
of the Acres American staff presented discussions regarding progress in
geotechnical areass seismicity, hydraulics, hydrology, and design. The
discussions were well prepared and presented in such a manner as to give
a maximum amount of information in a reasonable time.
Prior to the meeting Panel Members received a document entitled 11 Susitna
Hydroelectric Project, External Review Board, Meeting #3, Information
Package, October 6-8, 1981 11
• During the meeting other printed information
was presented to the Panel as required.
The Panel appreciates the efforts of the Acres American Staff in planning
and preparing for this very informative and successful meeting.
SEISMICITY AND SEISMIC GEOLOGY
Excellent progress has been made during the summer months in resolving
most of the uncertainties regarding the possible presence of active
faults in the vicinity of the dam sites, in developing an adequate model
of the seismic geology of the region, and in assessing the maximum levels
of earthquake shaking which could result from events occurring along
the major seismic sources. These studies have led to the following
preliminary conclusions:
WATANA DAM SITE
Four major lineaments were originally identified as being possible faults
in the vicinity of the dam:
(1) The Talkeetna Thrust Fault
(2) The Fins Feature
(3) The Susitna Feature
(4) The Watana River Feature
Field geologic studies during the past several months have developed
evidence indicating that:
( 1 )
(2)
(3)
and ( 4)
The Talkeetna Thrust Fault is not an active fault.
The Watana River Feature is not a fault.
The Susitna Feature is not a fault.
The Fins Feature may well be a fault but it is relatively
short in length and, since there are apparently no other active
faults in the area, it is very unlikely that it could be active.
In any case its length would preclude the possibility of it
being the source of a significant earthquake.
In consequence, there are apparently no active faults crossing the site
and the major sources of earthquake shaking at the site may be attributed
to earthquakes occurring on tl1e Benioff Zone underlying the site at depth,
the Denali fault, the Castle Mountain Fault, and smaller local earthquakes
occurring with no apparent surface expression in the crust of the Talkeetna
terrain. Considerations of fault distances and possible earthquake mag-
nitudes leads to the coQclusion that the approximate maximum levels of
shaking will be due to the following sources:
..
\~:~
3
Source
Benioff Zone
Benioff Zone
Dena 1 i Fault
Local Event
Closest Distance
::::: 63 km
Magnitude (Ms)
~ 8~
Peak Ace. (Mean)
~ 0.35g
~ 48 km ~ 7~ !:! 0.32g
~ 70 km ~ 8+ !:! 0.22g
* * *
Seismic geology considerations have led Woodward-Clyde consultants to
suggest that the maximum local earthqu3ke which needs to be considered
is a Magnitude 5~ to 6 event occurring at a distance of about 10 km from
the site. Such an event would produce a peak acceleration (mean value)
of about 0.35g and would therefore not be a controlling event. However,
the Panel believes that in view of the past seismic history and other con-
siderations it would probably be prudent to ccn~ider the possibility of
a somewhat larger event at a slightly shorter distance. In which case
the local earthquake would be responsible for the maximum accelerations
likely to develop at the dam site. This does not mean however, that it
will necessarily control the design.
For the Benioff Zone event, which seems to be controlling at this stage,
the motions recommended by Woodward-Clyde Consultants for preliminary
design evaluations appear to be entirely appropriate.
DEVIL CANYON SITE
At the end of 1980, nine lineaments were identified in the vicinity of
the Devil Canyon site which could possibly be active faults. Field
geologic studies during the past 6 months have led to the conclusion
that only 3 of these features are faults, that the three features recog-
nized as faults are inactive, and that in any case they are so short in
length that they could not generate earthquakes which would be controlling
events with regard to earthquake motions at the dam site. Thus since there
are no active faults in the vicinity of the dam site, the design earthquake
motions will be determined b~ similar considerations to those applicable
for the Watana site. The Panel agrees with those conclusions.
* Information to be provided in Final WCC Report
4
Consideration of the most significant seismic sources of ground shaking
leads to the fo 11 owing:
Source Closest Distance Magnitude (Ms) Peak Ace. (Mean)
Benioff Zone !:: 90 km ~ Bl2 !:: 0.3g
Benioff Zone ~ 58 km ~ '7!.,:
I 2 ~ 0. 3g
Denali Fault !:: 64 km ~ 8+ ~ 0.24g
Local Event * * *
As for the Watana site, there is a need to establish very soon the signi-
ficant characteristics of the local earthquake (in the crust of the
Talkeetna Terrain) in order to finalize the seismic criteria to be used
for project design.
In the light of the information presented at this meeting and on the basis
of past experience, the Panel believes that through the use of appropriate
design and construction procedures, dams with ample margins of seismic
safety can be constructed at both sites. The Panel believes, however,
that the question of seismic effects due to local crusted earthquakes
should be resolved in the next few weeks so that more definitive design
studies can be completed.
ROCK ENGINEERING CONSIDERATIONS
As a result of discussions during this meeting as well as observations
made in the field by Panel member Merritt during the period of 23-25
September, we have the following comments regarding present designs.
WATANA
Every effort should be made to t'educe the height of the cut slope at the
inlet to the diversion tunnel. The structures can probably be moved
closer to the river and perhaps shifted slightly in a downstream direction.
The surface excavation at the outlets of the tailrace tunnels and spillway
structures is likewise very extensive. Further detailed examination is
warranted to minimize possible slope stability problems.
* To be provided in final WCC Report
.Jc • " : 5
-If :'-;~:
~,...,-:
Recent borings in the proposed underground powerhouse site encountered a
zone of soft hydrothermally altered diorite. This is not acceptable
material to have in a major underground excavation. Some shifting of these
openings is required. Considering all borings made in the right abutment,
the general quality of the diorite is quite high and we .foresee that
acceptable rock can be found for the proposed structures.
DEVIL CANYON
The graywacke and argillite at this site appear to be of acceptable quality
for the proposed underground structures. No major shear zones have been
recognized in these areas. The underground openings have been oriented
with respect to the major known joint systems and bedding planes. The
present layout is acceptable and it is recognized that some slight shift
could result based upon the results of future exploration.
The axis of the proposed surface spillway on the right abutment will nearly
parallel the strike of the bedding of the rock. The required cuts will
daylight the bedding which dips at about 50 deg_rees into the excavation.
Potential major rock stability problems could result which might not be
solved by simple rock bolting measures. This design likewise requires
t
your review.
BURIED CHANNEL
The results of all geophysical surveys completed to date have defined a
major channel beneath the plateau on the tight abutment at the Watana Site.
The channel is approximately 15,000 fi wide when measured with respect to
that portion of the bedro~k channel below the proposed reservoir pool level.
The deepest portion of the channel li~s about 450 ft below pool level;
however, perhaps as much as 60-70% of the channel lies 100ft or less
below maximum pool level._, ·. · ,.
The borings completed during the Corps of Engineers study indicated that
the channel is filled with glacial till,, outwash; and. perhaps lacustrine
deposits. The boring_.logs show that boulders {'s-ome as large as 12ft) can
be expected in these heterogeneous deposits, either as individual units
or as thick layers. Contour maps ~ade of th~ bedrock surface suggest a
6
wide entrance channel or channnels upstream of the damsite and a relatively
narrow exit into Tsusena Creek downstream of the damsite.
The buried channel on the north slope of the reservoir at Watana Dam is
much greater in extent than was anticipated a year ago and represents one
of the greatest uncertainties associated with the Watana Dam project.
Major problems posed by the presence and extent of this channel are
(1) The magnitude of possible seepage losses through the channel.
(2) The possibility of piping within the channel resulting from
seepage from the reservoir towards Tsusena Creek.
(3) The possibility of seismic instability in the soils comprising
the buried channel under s:rong earthquake shaking.
It appears that proqlems (1) and (2) above could be eliminated by construc-
tion of a cut-off wall and grout curtain through the soils filling the channel.
However, the provision of such a cut-off would not solve any problems of
seismic instability on the upstream side of the wall.
Since very little information is available concerning the nature of the
soils forming the channel fill it is not possible to assess the magnitude
of the seismic instability problem, if indeed it exists at all, or the
need for an extensive cut-off wall, currently projected to be about 15,000
feet long and varying from a few feet to 450 feet in depth. However, it
is clear that both the possibility of seismic instability and the cost
of a cut-off would be dramatically reduced if the reservoir level ·were
about 100 feet lower than currently planned. Such a lowering could reduce
the length of the cut-off to about 4,000 feet, facilitate its construction
and by lowering the water table in the soils, increase their seismic sta-
bility. In view of these advantages, together with the fact that economic
advantages associated with the top 50 to 80 feet of Watana Dam do not
appear to be very great, the Panel believes that careful consideration
should be given to the potential benefits of reducing the height of Watana
Dam by 50 to 100 feet. Such a reduced height might also facilitate layout
problems for the dam.
The Panel cannot be sure that a reduction in dam height would be advanta-
geous but believes that a careful study of the question is warranted in
the next several months.
...
. .
~ \< ..
'-· "'..:l ··~~· ~
7
WATANA DAM EMBANKMENT
The Panel believes that the preliminary design section selected for Watana
Dam is satisfactory and will produce a stable and economical structure.
It is suggested however, that consideration be given to the following items:
"(1) If the shells are constructed of densely compacted gravel
and/or
or rockfill and the core of a much more compressible sandy-
silky-clay, there is a danger of deleterious stress redistribu-
tion due to differential settlements. Thus consideration should
be given to minimizing this possibility by:
(a) inclining the core slightly upstream, providing
this can be done without jeopardizing stability.
(b) locating a relatively incompressible core material
which is adequately impervious. Such a material appears
to be available as a GC material in one of the -borrow
areas.
(2) Deformations of the upstream shell of the dam due to strong
earthquake shaking can be minimized either by densifying the
shell material to such extent that high pore pressures cannot
develop or by using highly pervious rock-fill which will
dissipate any pore pressures resulting from earthquake shaking
almost as rapidly as they develop. Consideration should be given
to using gravel-fill and rock-fill in the upstream shell in such
a way as to optimize their use from a seismic design point of view.
(3) There is apparently ice in the rock joints in the abutments at
Watana dam site and this will have to be thawed before grouting.
It would be desirable to determine whether construction costs
have allowed for this.
(4) It appears that there may well be permafrost in the foundation
soils for the saddle-dam. When this melts it could leave the
soils in a very loose condition which may be adequate for static
stability but inadequate for seismic stability. It would be
desirable to explore this possibility further and examine the
need for exacavation of frozen foundations soils prior to saddle-
dam or dike construction.
DEVIL CANYON DAM
Sufficient study has been completed to adequately support the present arch
• J:.* 4lr .. ..
8
dam design for feasibility purposes. However, the linear feature through
the pond areas where the wing dam will be located should be further explored
in the near futureo Similar considerations to those discussed for the
Watana Site should be given to the foundation soils under the Devil Canyon
wing damo
WATANA DAM DIVERSION TUNNELS
Two diversion tunnels are proposed for diverting up to a 1 in 50-year
flood during construction of Watana Dam. One tunnel would be located at a
low level so that it would flow full at all times. The second tunnel,
located at a higher level, would have free flow. After diversion the lower
tunnel would be plugged. Two plugs would be constructed in the upper
tunnel with gated outlets through them to permit release of low flows until
Devil Canyon is completed and serve to lower the reservoir in case of an
emergency. The Panel concurs in the general concept of the diversion
tunnels and modification of the high level tunnel for use as a low-flow
and emergency release outlet, subject to refinements discussed by Acres.
WATANA DAM SPILLWAY
Spillway f1ows at Watana Dam would be handled by three separate flow release
structures. Discharges corresponding up to a 1 in 100-year flood, would
be released through a low-level tunnel controlled by three or more Hewell-
Bunger or similar valves located at the dowr.stream end of the tunnel.
Discharges corresponding to floods in excess of 1 in 100-years and up to 1
in 10,000-years would flow through an open chute spillway with a flip
bucket. Discharges in excess of the 1 in 10,000-year flood up to the PMF
would pass through a bypass channel controlled by a fuse 'plug.
The Panel concurs in the proposed concept of handling spillway flows.
Release of floods up to 1 in 100-years by low level valves would maintain
the nitrogen supersaturation level to an acceptable limit. The Panel
suggests that fixed cone valves, as installed by the Corps of Engineers at
New Melones Dam be used, since its greater rigidity makes it more suitable
for high-head operation. The smaller spillway/chute flows reduce erosion
in the downstream river channel. Hydraulic model tests wi11 be required
9
•'
to determine the extent of material that should be pre-excavated in the
plunge pool area. In view of the infrequency and short duration of spillway
operation and the relatively high quality of rock in the steep river banks,
the Panel is of the opinion that excessive erosion would not occur due to
service spillway operation. With respect to the emergency spillway bypass
channel, the Panel is concerned over the 45-ft height of the fuse plug.
This high plug would need to be designed as a small earth dam to retain the
power pool at maximum levels and also be capable of failure as a fuse plug
when it is overtopped. It is suggested that the entrance to the bypass
channel be widened, thereby requiring a smaller height of fuse plug. This
would also reduce the amount of reservoir lowering in the event of fuse plug
failure.
DEVIL CANYON DIVERSION TUNNEL
One diversion tunnel is proposed for Devil Canyon Dam to divert flows up to
a 1 in 50-year flood during dam construction. The tunnel would be plugged
after it is no longer needed for diversion. The Panel suggests that this
tunnel could be used for spillway flow releases in an alternative spillway
design discussed hereinafter.
DEVIL CANYON SPILLWAYS
As for Watana Dam, spillway flows at Devil Canyon would be handled by three
separate flow release structures. Flows up to the 1 in 100-year flood
would be released by four or five outlets through the base of the concrete
arch dam controlled by Hewell-Bunger or other type high pressure valves.
Discharges in excess of 1 in 100-years and up to 1 in 10,000-years would
flow through an open chute spillway with a high level flip bucket. Dis-
charges in excess of the 1 in lO,OQQ.year flood up to the PMF would pass
through a bypass channel c9ntrolled by a fuse plug.
The Panel concurs in the concept of handling the spillway flows subject to
one question discussed below. Release of small flows through valves at
the base of the dam will prevent excessive nitrogen supersaturation in
the downstream river channel, as well as reduce discharges and flow fre-
quency and duration in the chute/flip bucket spillway, thereby reducing
plunge pool erosion. Based on a ground and air inspection of the river
channel at the Devil Canyon Site by Panel member Douma and Acres repre-
...
~ 10
·~-.. ·~·
sentatives on September 17, 1981, the Panel is of the opinion that the very
high quality rock in the canyon walls should not experience excessive
erosion due to spillway operation. In this case, pre-excavation of streamed
material and weathered rock is probably not required. The Panel is con-
cerned, however, over the deep sidehill rock cut required for construction
of the spillway chute. It suggests that consideration be given to an alternate
plan of providing spillway tunnels, as required, instead of the chute spillway.
In this alternate plan, the diversion tunnel and probably only one addi-~
tional tunnel would be required. With respect to the emergency bypass channel
spillway, the Panel is concerned over the 57-foot high fuse p1ug for the
reasons stated for the Watana fuse plug. Consideration should be given to
increasing the length and reducing the height of this fuse plug as described
for Watana.
DEVIL CANYON POWERHOUSE TAILRACE
The Panel concurs in extending the tailrace for the Devil Canyon powerhouse
about 1 l/4 mile to take advantage of the additional approximately 30 feet
of head.
CLOSING REMARKS
The Panel requests that the topics raised in this report be thoroughly
discussed in the next External Review Board Meeting tentatively scheduled
for the week of January 11,1982 in Anchorage.
The Panel greatly appreciates the many courtesies extended to it by the
staff of the Alaska Power Authority and the staff of Acres American, Inc.
Merlin D. Copen Andrew H. Merritt
Jacob H. Douma H. Bolton Seed
TABLE OF CONTENTS
-PROJECT STATUS REPORT, SEPTEMBER 1981
-SUPPORT MATERIAL TO TASK 3 -HYDROLOGY
-SUPPORT MATERIAL TO TASK 4 -SEISMIC STUDIES
-SUPPORT MATERIAL TO TASK 5 -GEOTECHNICAL STUDIES
-SUPPORT MATERIAL TO TASK 6 -DESIGN DEVELOPMENT
·WATANA LAYOUT STUDIES
aWATANA DAM DESIGN
·oEVIL CANYON LAYOUT STUDIES
·o~J!L CANYON ARCH DAM DESIGN
-MEETING AGENDA
I
.
I
' !
1t
I
I'
r~
.! ll
r1
f1 ~ .
i .
!}
1
:]
~ .
~
f]
L1
:·I
·~ ~.L
~·~
\ .ty
r;
[~
[]ij
q~ l• ~~
f ·~ u
~ . '
~
PROJECT STATUS REPORT, SEPT. 1981
-·.
I
"' ' ·a
.I
~~
-fl.·. . »
' ,, 'lj . ;
;-.. II
'illl
-~~·
i ~ . ' .
r--".1. ' . i ! .. ,,
r·J· ! ' i .. ..._
,ifll ·g
,__
,...· m1 •• ......
:I
I
\.! .. """"' !I
ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
PROJECT STATUS REPORT, OCTOBER 1981
The third meeting of the Powe.r Authority • s. External Review B~ard for trye
Susitna Project will take place at the off1ces of Acres Amer1can Inc. 1n
Buffalo October 6, 7 and 8, 1981. The objective of this meeting is to
review the status of field work and engineering studies in hydrology,
seismic and geotechnical aspects and in the development of layouts and
'designs for the main structures at the Watana and Devil Canyon sites.
This Project Status Report is intended to summarize the current status
of all project activities, on a Task by Task basis .
Task 1 -Power Studies
This activity is complete., and the results were incorporated in the
Project Development Selection Report issued in June 1981. Current
studies of power alternatives by Battelle for the State of Alaska
include an update of the load forecast for the Railbelt region. The
results of these studies will be incorporated into the Acres feasibility
assessment later this year. No major changes in the size or scale of
the Susitna Project are anticipated at this time •
Task 2 -Surveys and Site Facilities
Operation of the Watana camp has continued in support of field activities.
Surveys of dam and reservoir areas for each site have been completed and
recent activity has been concentrated on completion of surveys of
aiternative access and transmission corridors. Work is currently being
completed to provide a basis for selection of an access route before ·
the end of the year.
Task 3 -Hydrology
Collection of stream gauge, snow course, climatological, bedload and
water quality data at the stations set up for this purpose throughout
the project area, has continued in support of the feasibility study and
licensing requirements.
Engineering activities in support of project flood, energy yield, river
morphology, ice and hydraulic design studies have continued to the point
where the design requirements for hydraulic structures can be established .
Task 4 -Seismic Studies
The 1981 field program of geologic mapping and trenching has been
completed. Evaluation of data is continuing and preliminary findings
indic~te no major concerns relative to project feasibility. The results
of th1s work are discussed elsewhere in this document.
'
-~
~-~
.. -·-
. 1
~··1.· -:. l
;·I
r·~ , I
1
~ ~
1
nl • I ..
~~g·. . ' • !
1 1 .
I
t. •.
r'l' ; I
. ''
L. , .... 1 i ;
• I I
!
\--*
rll ~
rJ .. l l w
rt l··
L.
r.l
L.
~u
! ..
'--
Jfl ,·_m.
;I .. .
'"--
••
Task 5 -Geotechnical Investigations
The 1981 program of geologic mapping, seismic refraction surveys,
drilling and testing at the Devil Canyon and Watana sites is continuing .
Preliminary results of this work are presented elsewhere in this
document. Sufficient data has been obtained to support with reasonable
confidence the design requirements for major structures at each site such
that the locations and scale of such structures can be establi~hed for
feasibility study purposes.
The final detailed report on the 1980 field exploration activities is
currently being distributed$
Task 6 -Design Development
The Project Development Selection Report issued in June 1981 recommended
that the feasibility study be continued to refine and optimize the
Susitna Project on the basis of the following components:
Watana: 880 feet high earth-and rockfill dam
400 MW 1993
400 MW 1996
Devil Canyon: 675 feet high thin arch dam
400 MvJ 2000
Under Task 6, engineering studies have continued at each site on the basis
of the additional survey, hydrologic, geotechnical, seismic and environ-
mental data which is becoming available. The studies havP included ~t
each site:
establishment of design assumptions and/or criteria
-consideration of alternative types of dam
-optimization of reservoir levels and dam centerline
-selection of power plant installed capacity
-preliminary spillway design concepts
consideration of alternative spillway types
-development of optimum diversi.·on schemes
-development of reservoir release facili.ties
.. consideration of alternative project layouts
preliminary desi·gn of aams
The currently favored general arrangements at each site are illustrated
in the attached Plates 8~1 and 8'!4 (Watana} and 9'!1 (.Devtl Canyon}.
Results of these studies to date are summarized elsewhere i.n th.is
document.
Task 7 -Environmental
Wildlife, fisheries and all other environmental studies to establish
current c~ryditions in the project area are continuing at full pace.
Water qua 1 1ty studies parti.cularly as they relate to sedi.ment tran.s-
portat1on, th~ ~otential for nitrogen supersaturati.on and f:ish.eri,es
are also rece1v1ng considerable attention. These studies will form
-, •.. . ..
' '
,-.•... · . '
; ,J!
-1' .
' . . . .
~ .. g ' .
j
rD
ril t, .. ~
~"""'".a· ~ ~ .
:
! ..
i .
:11
~~~
.. L ....
rfJ•· ' ' i:-
J .
\. .:
r~u
L_
dl
L
9
[!I
r.JI [ltl
i....::
r~l L .
the basis of assessments of the environmental impact of the project and
the ultimate development of appropriate mitigation measures for the
license application •
The socioeconomic impacts resulting from construction and operation
of the project and its associated recreational potential are also being
assessed.
Task 8 -Transmission
A report on transmission corridor selection is currently being
distributed. Two 345 kv transmission lines from the Watana site
will initially be installed with a third line to be added when
Devil Canyon is constructed. The three lines will ultimately be
used to transmit power to the Anchorage area and two lines to the
Fairbanks area. Route selection studies within the proposed
corridor are continuing on the basis of ongoing environmental
and access studies. Studies are also continuing to optimize and
advance the design of these lines and to examine the future
development of the total transmission system for the Railbelt
region with the Susitna Project incorporated.
Task 9 -Construction Cost Estimates and Schedules
Data gathering to provide labor, equipment and materials costs as
a basis for cost estimates has been initiated. An "upper limit"
magnitude cost estimate for the project was developed under Task 6
for purposes of ensuring the economic feasibility of the selected
project. The currently preferred project layouts are being used
as the basis of refined preliminary cost estimates which will be
completed by November 30. These estimates will be further refined
in parallel with continuing development of designs up to issue of
the feasibility report which is scheduled for March 15, 1982.
Task 10 -Licensing
Activities under this Task have continued in terms of coordination
with the various federal and state agencies involved and an assess-
ment of the recent proposed changes in licensing requirements and
fonnat.
Task 11 -Marketing and Financing
Activities in this area have been limited pending clarification of
recent State legislation concerning financing of the project. ·
Task 12 -Public Participation
Involvement of the public in the development of project concepts has
been and continues to be actively encouraged through public meetings,
workshops, the issue of newsletters and an action list program.
1-..... , !~' ·, ... ~. :-· "I ..... -· . , . ~,_,_,... .~ ... 'I --• .. ..
rl
ll
•
t! I ~
·l i[ ,,
:l
•
•
"-·i :~. 7' ... , ... ~ ... -.--.. ... ~, -110 liil ' liiJ
,. "'i
liiilli t-,.,~--1..;~~ . •• lrfi~
WATANA·
VALVE 1Yf'£ SPillWAY AllERHMI\IE
r.£NEJW. ARRANGEMENT
•
,-~, r-~· ;-~····'] ... ~ ..,_,'7'-.~t _,_ -., .... _, .. ··"I .-.... ,~-1 ·-·, . ...... ---~ --1 ' '. ' '1
! ... t ..
l -l'lfd
I ---' ---' llfjJ . -. .. ~
·-'
.,
D
c
•
too•: 1 mz-""
'
..... , ! . .
~-. L;
r·.l ! .,
If Cl u
1:
.·~
~· . .------..
/ I ,.,,
Cl u
•
~~ ~ a~ ~~~~ ~~~4!.1
..o....i...l..lb..I...J..J
.... _______ . --·
+
• . .. ·-
. ,·-·
'1
\'~.
r .. :-lr
: ~ . . -
11
l-· •:. ,_,
r,. ,
' ' ' ~ . ~ . ... "
·I i: i .
;I . ·-
1 I
~-"". ·-· ; ~
l ~ -'"
'
-DEADLINES -
-FINAL DEVELOPMENT SELECTION REPORT-SEP.1 81
-REVIEW OF WCC FIELD WORK-SEP.'81
-REVIEW OF ACRES/R&M FIELD WORK-SEP.'81
-APA EXTERNAL PANEL REVIEW-OCT.'81
-PRELIMINARY DEVIL CANYON ESTIMATE-OCT.'81
-PRELIMINARY WATANA ESTIMATE-NOV.'81
-FINAL GEOTECH. REPORT-FEB.'82
-FIRST DRAFT FEASIBILITY REPORT-FEB.'82
-FINAL DRAFT FEASIBILITY REPORT -MAR. 15, '82
-FERC LICENSE DOCUMENTS -MAY '82
f
~·
...
-qr_, "1 -. . . r . .. ; 1
-Sll·
······~ r ·-·~. ..... r --~·~ --
10 8 • II 7 ' Cl I II
ACTIVITIES PRIOR TO LIC£NSE APPLICATION
TASK tfO. DESCRIPTION 1900 1991
JIFIMIAIMIJIJ A I S I 0 I N I 0 J IF MIAIMIJIJIAISIOINIDIJIF
._.,u l .. .,. -1 l -•• -I!I!U
i
lfl&l --
' .. • i :t
ACTIVITIES PRIOR TO A*RO ~ C:OHSTRUCTIOtl t.a:NSII'«J
19P2 19115 1984 1185
MIAIMIJIJ A I I o I H 0 I ~,Ill I AIMIJ·I JIAI't i 01111'11 JIFIII I 11/llt.l I JIAfl I 0/111111 JtP/111 A/Mil I ""' I 0/11111
1-1--·--·--
2.16 I HYOOOGRAPtte SURVElS I 1 ·1 -~--~ll;rntil-f'iifi!i~illf"fmf=l-rt=r-=-~ I I I I I-t-I I 1-J-1-1 I I 1-1-1 I I
E 300 lfYDROLOGY I I I I j-t-+-1-1-t-·1!!~ * ~ !!!-'-~~ .. !f!!-\;-.;;;~-* .. ~ -~-* -·~ I! 301 'REVIEW OF AM.A8t.E MATERIAl. Ill til Ill 111 Ill Ill Ill Ill Ill 111 111 111 111 I ,-f-f--f-1--f-I F-=f ~-· F-=J
3.02 fiELD MDI NlEII OPERATION mn 111 111 111 111 0.1 iii Iii iii in 11~1 111 11il=:::l
l-io3 fiELD DATACOI..LECnlHilO·OZ U II II!!!!!!!!!! !II niii'iiifiii ,~1!!~• I Ill Ill
1--
3.04 . WATER RESOURCES· STUDIES Ill IU Ill Ill Ill Ill Ill ~~~ !!! !!! !~l~~! II 1m U IU:!!!
-3.05 ROOO STWIES Ull Ill !J_ Ill Ill Ill Ill Ill !!! !!! !~IIIII I I +-I I I I I I I I I -1 I I I H I I 1=1==1 I 1-
0
3.06 H'ltlRAI.UC AHO IC£ STIIliES !·-Ill 1111 181!111 I Ill I!!
3.0T SEOIMENJYRDNI)RIV£Rt.nRDrn'l _ _ --~
-·-·1 I I
·1-
·-f--1 I I I 1--·I I I I I I I c
I I 1---t-1 I I I I 1-++-1-1-1--1-J-1-f I I I I I 1-f-1 I I I • 1-l-1-t-f--h--t I I 1--1--1-
I 1-1 I I 1-1-1-1-1-1 I I 1-1-t-f I I l-l-l--l-l-1-l-l-l-~-l-l--l-l-1-1-l--1-~-l I I I
I I I I I I l-l-l-l-l--l--l-l--l-l-l--l-1-1-l-1-1-l I I 1--1-1 I I I 1-1-1--1--1 I I I I I I
1-
IIIIUIIII WORK COMPI.ETED TO SEP. 10 1111
-W \\'01111 REMAINING : FIIOU SEP. I, ltll
-W -COitflltUED WORK : FOU.OWihO LICENSE
API'LICATION
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I j I I ·I I I I I I I t I
<A A
l
' I
........... .,.. to
' J
·o t "
SUSITNA HYDROELECTRIC PROJECT
PLAN OF STUDY MASTER SCHEDULE
7 t • • t
flOURl I OF .lil .. s t a
-I t -! !iii~
DO
TASK NO
.-. . I . " ,
filiiJ lili1
I •
DESCRIPTION
-
' •
H "1 -' --• f .., -... I .. -·: I
' II!ILl .. l
IIID
1
I .. -
_I 7 f • I ., L 4 I • l a I
ACTMTIES PfUOR -TO llCENSE APPliCATION I ACTIVfTIES PRIOR TO A..,.-,O OF CoHsTA\JCT!Oft tUNSifO
..
•
1 ,.,
··-·-·--·'--···I···---1----
DESIGN OE\'£UlPI«I __ .. ____ ---. -!T ________ -~ __ --·· __ • _ .• •• • -~-----·------H ________ ·-· ~!!!~!!!~~-:!!!.!!•• ....... ·~-iill.a -r·····-·-·-.!!!Ia ~ ~!!.!:!!!i:!!Uir.» ;:,lllOI[S --·-· -, ·~ -· :o!!! !!! !!! !!! !!! !!. ·-·----.• f---·· ·----. ···--·-·-· ~· ---·· . ·----·-.•. - -----·-·--i---[---... -----
l02 IM:STI3AT£ lUNr£1. AIJEIINAm'!!.. ro _ . _ m !!f 1!! !!! !!! !!! _ _ ---..... ---f.-·--. . . , • ---· !--f.--• -f---1--t--l!---t---t---t--·-t---t--t--t ~ E-I.WEAIJERHATESUSITNAilEia. ·f-" ·-I-·-·· .. !!!! m U! ~~~ ,.!. ~!fi .• ~-· ·-· -· ·-· ---1-----_ ........... -.... --·---· . ---·----· ----· ·-------·t---f--·1--+-+-+--+--t
?-:---OE\'I.CNMlHAf!:liMME\N.I.Ill!lH -· __ ·--~ .... -•• • -~U!!.r!!! ~!.~ --·-·--r,--·· ·-·· -!--•• -· --1---1---·----· ·-_j~-. SEUCT DfWT TOFifAI. ftEPORi -~ 1--_ .._ __ ·--· . •. _ ·-·· -·,I!! 1!!. ~! . --· ·-. --· _. .... -1----· ... ·-~ ----1----1--__ ---1---· ·--------1--+--+--1 --1 ti.OG STAGED llE\'WlPNEHT AlJER*lMS __ ·-!!! !!! m ~!! !!.!! 1!!. ~!!I .!!! !!! .!.. --••. ••. -· -· .. 1-·-1------ --~-----·-----
607 ,f'RELIM.WIITANADAMALTERNATIVES 1--· -· --··--· --· --·-,_ .. !!! !.!! !!! !!! L !!! !!! 1::-:.-----· ••••. -· ----·------1-------1--· -i---1---i
soa I'JlELMOE\'I.CANYQfOOt __ --t--· -·----!.~.!.!!~!!! L ... __ !!:-=-ILIL -· •••...• -·---t---!-!-_ -·-0·--o _ -----· ---l---r-1---&o, ESTAIIUSHWATAHAI:'E:OONCIIITEAIA
1
_ ..___ --r--or-______ !!! !!! !!! L. _!! ±.. 11 _ '-... • , _____ ~ -1-.. ____________________ _
..!!!L .!!~~!!ESilH mtmM ----1-----·· m !!! !!! L -· .m !! ---· .. ~-· ·--· ·-r-- --------·· ----··---l ~---J I I I
F .~!_HPII~~~~~~ 0 --1--.!! !!! Ill ~ !! ---1---f---· -!---1---· ------1--------P' _!!L PRELN. llESIGH 0£1Jl. tAH'ItlN DNA _ _ _ _ r ·----1---_ 1--r;!!. _ !-_ !--1--i-----r--1-----__ --
ti.IS DAM SELECTm Ra'OftT . _ Ill-. ~--1-. I 614-SPIUMI' Of:SIGN tmlDIIA --1--1--Ill Ill Ill ltD lltillll I! -1-1--t--+--f-1--1---+--1---1----+---t---i--~ '• WltTIINA SPUMI' AUEIWATIVES II Ill uii Ill !I !-'-----1--r---t----F=~---!!-::;;F--f-·1-·1--!--1-·-----~·-1------1-r------,-
llEVI..CAN'IOtf SPUWIII'N.J£RNATMS --1--1-------11! -!-· ·-------I--I--t---1-0
• --------1--1--f~ • e.er • ~l'iotw.SGii1i'I"WiiiSPi.t';';:.'l'f __ ·-•-!" t-e-_______ --1-·------1-1--1-
&.111 PREtN.IlESlGHOE\'I.~SPLUW' ,~ -lin
&.Ill Sl'l.l.\IW SELECJ1llf flEPORT·OIWT __ !-_ _ _ _ f-. _ ·-· __
!E =~~'£$ I-~---~---~----: ~=: _= -:~!~ -·-t-H-t-t-t-t-H-t-(--t===1 t: t----·~---_-_t·--l==---1--1· l-r-1.
OPTNZ£WATANAPOWERDEYaOP. I Iii Ill 1111 J=l=l=l=l~-=I=I=I=l=l= =1--____ -,_--f--.--=r-=1
OPTfMZE llEVL CANYOH POWER IE\flD 1--____ !;;=::.-~a~ _ f-j
I ~!!.-I <PTIMZE OAAil ltE~ -A-mn.M. Of:SlGH WIITM
f'RELMDESaJN!nl. tNIIOIA7Nf.R llE'ol
:IWERa::~
iliNAGE'iD
_ ;!!__ ,~VLCANYOH 1_ -------
~-PROJECT FEASOUTY REPORT -~~ t---f-·--1---. R
Q32 Tt£R1W.. GENERA'OON PUN I !!! !!! ~~~~~~~ --· -1---1--f.-1·-1--·--
&33 _HYDRO GENEii\TiiNR£PORT I Ill 1!1 Dill II 1::--1---f----1-----· I D
o --~L EHIIJiOOt,l€1-lT ASSESSMENT I!!! Ill 1111 Ill Ill~ _ f-__ -1-l-______ --__ --·1--· ,_ --·
f-· 635 _LOIIDMANAGEAIQtnfStRVE ! !!! l!!!!r!!!~ !!!fb, _____ 1--· -·1---
t-m--GENEAATIJH PI.AH NW)SISANU!ERJIT ' t--_!till --1--1--!!! !!.! _ ---1---·--1-1-1-1---1-· --- . 1--------------· --
637 '-"MTE G£1£1WJCW F'lAH llll Ill -·, . ---·-. . . --. --• . -1---------r-1-t-· -· ----· -·
638 LIASONI'Ofi'ERIII.J'EJfWMS __ r!! 1!!. !!! !II !Ill Ul II t--___ -1--·--__ ·-· __ ------· __ ·-·-·-·
~-= =-----!lilii~.!!~ -!!!!.~ .. ~ -1~-~~ iii!:!t!-.-~-,-:r:~-,·-~
, __ -f--!-1---1----1-----1-----l-~ o STLDES
sntil'cxx:Rli'W'E~ sm:: 1111 r•ll4tii4111Ciiiilffiiliiltfiii~llt•"i!iill(ii
~'"""'·=·-t;::t-H-t-H-1=1=1=1--m=l=r=l=t=l=l 1 1.
_1-Q!L[RECAEATIOH f>lANNif«) Ill ill 111 iii !fi tiiiliili in Ill~
TR4NS liNE ROUlE SELECTIOH I Ill Ul Ill Ill Ill IU
·1--1-l--l--l-l--l--t-1-1-l-l-1··-1--··1-l I I I
~·-
aoo
a I B.OI
1102
8.03
8:04 -aos
8.06
807
flSfl ECOIDGY Ill m ~~~ Ill Ill 7ii iii'ffi Tei iii~~ HI ~irgi
WI.Dtlf£ ECOlOGY I Ui iii iir ffi Ill Ill Ill Ill iii Hi Ill Iii iii ni
f'I.AHT ECOWGY Ill Ill Ill Ill II Ill 1111 Ill UljiUstnn UI~~IJ:.!!
ACCESS ROAD EtMIOioiENT AHAUS8 _ ~~~ 110 Ill aii'lii[iill
'M FERC EXHIIT
isa::£CT NTW.
t
LOM n0111 Am rue.
, FIW. ROUTE SELECTION 1981
Tt'NIAI t&&nf't'.lt4AI:'DntnU"'Ir.TnA~n
~·•~mdl!!!t! ulfua _ •
•-•-t-H-J-1-1---1-t-l--1 I -J---.1-j I I 1--1
.. 1:-l=tti-:H-1--H~-~f!!~.,.~--r-~liiii!iif-:-r-~-~--·-~--••
il.iiliiil 1-· -+-1-1-1-1-l-1--1-1-··l I I 1--111111111111 WORK COMI'LETEO TO SEP a, tlti
1-1-l-1--1 I I 1----t--1~
t.=l J--t:-t-i-t-1-+-1-t-t--t-1--1 I t---1 ~OIIK REIIAININO: fiiON UP!. '·· ., ..
SUSITNA HYDROELECTRIC PROJECT
PLAN OF STUDY MASTER SCHEDULE
10 I
J • t •
.
I 7 t •
FIGURE I OF I l BIR
I II t 4 -, • t • I '
r--· ....... 1 f .~-'-~ r···-7 F' -~~-~ r<~-'t :----~-~ r-'"~i ~. liiir liil . • liii:W I l5i . EIJ 1
..
i .. I l .. .. • • • 'l -.. -; -. ' 1 .. • j ----
10 I • I • 1_~ __ 7 ' • I " ' .. I ~. _____ L___ __ ~------t
AG 1 lVI 1 IU PRIOil TO liCENSE APPliCATION AGIIYlllt.::l PRIOil TO AIIIMD Of' CON3~ t.ICEHSIIfG
TASI( NO DESCRIPTION 19eo I 19e1 I 19pz I 19e:t 1 ..... 1 ~t85
, F u A u " " A s o " o " F u A u " 'i A s-o--., o .i-i ii A ...-i " " s 1 o if -o 'Jiin. aiM.'J -JNi onuo lliiM inw li.Aii citii~D mN. t.ttin wi o.w111
o[....!~!L ,COHST.COSTESJml£SA1.o9lmt.ES f-· -I-l-l-_______ -f--·-. -1-·· ·-__ -·--I!!!.! I!~!.!!!!!! !!!I!!!. !!!!!11'!.._•_1!!!!!! !!!.! ~-~---· .!""'1 •• ... -··-~.!!!!!il ca -~·~U ~Mil.!. C~SCtBU.E MI!._ _ _ _ _ '---· _ -1--__ --· ~ ~ _ ... 1-· __ r--__ 1-__ ·--_ .. _ -1--____ f---__ i--1--
•. ~.9~ .. f!l!;~~~~STIMATE _ f---· . . ..... __ ·-1----__ -··-~!!!!'~ .. -· •• ·-··· -· -·---·-t--l·-t-t-+-t--t--1--t--1--1·--f·--f·-----·t--t--1--l _!.9~ . ffl~~COSTESfllllfEUPOllE --1------·---·-·--!--· ---1--.. · ---·---- . -· ---.... ---••• ·---· -· ·•· ·--·-··' ·----· -· 1
•. J.~ ~Qe..LN<.!fi!CO".IST.SCHEDUlE --··---c---'-1--'---·--··· _ .... ---· ·--------·--1--·----:--·-·-----------'--
•• !.05 PERf'IIR!!~f!:!AHAl"'SSS _ •-f--·---··-----·-··~·-· ·-1--... 1----1---·-·--!-----.L.__
--.... ·------.. . • -·-!----·--~ -·-·------··-·-.... ·~ --· -·----·--. ~ . -!~00 "~~---------....., =· ••.• -- --· -1------- ---,, ----· . . ......, ·--· ·-· ----!!! I!!! !!!..! I!!!!.!!!~.!! '.Ill -... •.! ~!!! !!!!.~ __ !!! .. !!!!.! ~-----•• -•• ---10.01 MW:I' ~i'IEW FERC REGlt.ATICH II ~II ~~~ • ~~=z iJiiiiiif:REGtUTOfiY M:QUIAEMEHT - - -'--i--f----· ~ 1--I--I------1---~t--l--ll--1--1---1---t---i .. ---·-----~ --·---·---·----1-·-·-----· -,. • ~~EOTEX':r PREP. in Ill Ill Ill iii Ill iii iii iii iii' iii ---·-·-f'· -~ • ------·---· -·---I---ll--ll-~t--t---1
------'"'' -----c.:= - ----...::;::.; . • --P' t: ffiE~.~!A1.oD ,--· ·'-----·· -----~-----1---!·-
PREPARE PHDT ft • _ ~· __ .!!!!!!---t--l--t-l--l--t-l--l--t-il--l---·l---l--+·--l---l---l---l---l---t---t--·t---1
·-----~~AilE EXtliOIT T _ ..
--IQ 10 EXT£~ f£VIEW -·--------t--·'--·--~ ----
-jQ'jj • I'RllfT LICENSE APPI..ICmOfl 1-:----• liiii ----------
-m~: ~~~~~-uw:T .!!!!: ---. ·1--~~g=l l=t=1
~;.~0-· ~E~AM>mt.NCE 1--f---'-----------f--=-~!!!_!!:ii•alll!,~liii"iiiii~!~-----· ----------~=-jliiiil---
.j I.Ol PROJECT OVERVIEW IIi iii Ill Ill Ill Ill 118 Ill Ill II Ill Ill Ill Ill • ·"' ~= :.= -.-F' == -----:=1 -.!!!.~==t ii:§~ : ~ljii!W.. REPOOTS 1-___ til 111 111 111 ni 111 iu iii ni. 11 •. •!f'ml !Iii in I--1 _ --· __ = __,----= _ =f:_l J
E ... H-~5. ~~~ l'lANNTIIol.R9CAtWJSIS tU!IU!.!im, !II Ill 1111 II Ill II I )i11 U IIIII I 11 _ • I t:
11.04 9USJTlM IIASE: IUH EJCl£NSI)If NIJ REV. H-,.05 SOOJTHA flfW«:E RISIC AHAUSIS
I r.oo··· R£SiiiimH a:.' 'WI Ei1Df'IT IIOtO ISSlt:
!j.Of·-IDE!f!!! IMTES lfTEI!ES;::;::;:T==-1
II. OS REVEM.£ ASS!JIW«E l'flOCEDIJ£S
~j~oi -[~ APA BONO utllERWRITERS
.Th~!!.-~~---·----_E:Qg. ~~MEET. "'1!2,Wl"•
12.05 caox:T FtJiJI.C ~ _,_
D ti04 • PREP. PUeliSH OISTRIO MATERIALS
-12.!!i_ ~ lWiWf ACTK»> UST
1 ..
lm.l(•l.l.• ~~.~~~Ill
I I l~t•JfiJt'--r-t ~ •-., iii iii iiii t--;-!t iii ifiiilii fii !!!fiii iifi --.,.--i .. • -0
~Q!!..: ADWISTIWIOff t=-.: ;~!~!!t!!!f!!i!f!!~l~-~:-!!·· ·~-~~f!!~·!!·-*'--~!:-:tlll.ll !I ~ ~ iii}~ !!. I!!!.!!! ... !II llli'j liiiii. ~ . •111 ~ -~ -·iiiiiii '"iii!--~ 15.01 PROJECT f'ROCEDlfE MoVIUAJ. Ill II IU Ill 811 IIIFIII Ill --~~s.i)z" }iiANcJAL CCW'IROl. PfiOCEilJRES I IIi ic II II Ill Ill Ill:-!~ !!! .1!! !!.. _ -F= F'-_ 1---.. -:------"
15.03 PROJECT MASTER SCI£DUL.E II II Ill Ill Ill Ill Ill Ill Ill Ill I -i-'-_ I-~S.04 ·~~~s~·~e~ 11111111111111111111 ~~t~mm!!!~~!~~~==~·~~~~~~!~!~~~i~~~-~~~~~~~~fj~~~-~~~-~l~~~J~~~~~~~~~~ 1:105 tllST.~SYSTEM·DE.VAN>I.I'tW£ II II Ill Ill Ill Ill II II Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill
:_!!06. ~!fWl'IGSCHEl>-I£Y.Cli'EJl II II !!!1iii Ill 1111 Ul Ill Ill 81111!11 II Ill Ill 11i !!!:!!!' Ill -. 1--f---f---1---f---1·--f--J--11--ll---1
~~-· ~ ACCXUITM f'CUCIES I II Ill I·-_ 1---· --
C .. .!!~!... ~liON CONTR<l. II Ill _ -· __ --· 1---1---1---f---I·--1--J--1--11---1 C
..J!.m_ . SUO ctlffTIUCT AIMISTRATKIH I II 1111 II 11~1 Ill II II Ill Ill Ill Ill Ill Ill Ill tiD Ill Ill _ _ --
l-.. .. -. 1---+--t--1--f--1--1
~------1-f---!-·i·
-~---_-_: 1--. -----~-----
1=~::~ -.---' . 1----=~=~--~---f--1--· !--1--1---
1-I I I I I · V
-~---·· ·-·· 1-i---·1--·--1-!-!--,_ 1--1--LE(If:NO I•
-----·· 1--- --11111111111 WORII COMPLETED TO S£1'!. I, IBIII ___ ,. _ .. _ -
-· --·-I-I--WOIIIC Rf:M"IIfiNG : FROM SEI". I, IHI
---... · -·· ·· · ,_ · ----·--I------COitTIIIUiED WOKIC: FOU.O\IIINO UCINSE 1-
-·· .... • --1--f--,_--1---AfrUCATIOM
f--···-·--·--· --
·--· --·--1-1-1-1-1--1 I I 1-t-+-t-1-1-J---1-1 I I I-I-I·-I-+-J.-.J-t-l-l·-l-l-1-f--1-l-f-1 I I I t
PLAN OF STUDY MASTER SCHEDULE
' I , ......... IIIR
to .t • t • 7 t • • t .. • t • I •
II
fl
~
r1
fl
fJ
:I
!l
~~ ·-
ll
. ~ n
tll
lJ
ljl l ' i
I 1 ~~
t ·' i--
-----~ ... ~~------?--_ ... ......_..,__~"'"-... "''''-'""'·'-' ... }"""~~ ..... ~ ,..,....,., _...._ _ _.._..........,.... --.· -"'""" ·-· ''¥' --.
SUPPORT MATERIAL TO TASK 3
HYDROLOGY
I
I
I
I
I
I·
I
I
·-
' :1,
I
I
I
I
I
I
I .;
Water Resources of the Susitna River Basin
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II
Water Resources of the Susitna River Basin
Streamflow data has been recorded by the USGS for a number of years at a total
of 12 gaging stations on the Susitna River and its tributaries. The length of
these records varies from 30 years at Gold Creek to about five years at the
Susitna station. There are no historical records of streamflow at any of the
proposed dam sites. For current study purposes, available streamflow records
have been extended to cover the full 30 year period using a multisite
correlation technique to fill the gaps in flow data at each of the stations.
Fiow sequences at the dam sites have subsequently been generated for the same
30 year period by extrapolation on the basis of drainage basin areas.
A gaging station was estab 1 i shed at the vlatana dam site in June 1980 and
continuous river stage data is being collected. It is proposed to develop a
rating curve at the station with streamflow measurements taken during the
1980 and 1981 seasons. River flows will be calculated and used to check
the extrapolated streamflow data at the Watana site.
Seasonal variation of flows is extreme and ranges from very low values in
winter (October to April) to high summer values (May to September). For the
Susitna River at Gold Creek, the average winter and summer flows are 2100
and 20,250 cfs respectively, i.e., a 1 to 10 ratio. On average, approximately
88 percent of the streamflow recorded at Gold Creek station occurs during the
summer months. At higher elevations in the basin, the distri.bution of flows
is concentrated even more in the summer months. For the Maclaren River near
Paxson (El 4520 ft) the average winter and summer flows are 144 and 2100 cfs
respectively, i.e., a 1 to 15 ratio.
The Susitna River above the confluence with the Chulitna River contributes
only approximately 20 percent of the mean annual flow measured near Cook
Inlet (at Susitna station). Attached figure shows how the mean annual flow
of the Susitna increases towards the mouth of the river at Cook Inlet. Flow
duration curves for the Watana and Devil Canyon dam sites for natural and
post-project conditions are attached along with natural streamflow in the
river at Gold Creek gaging station.
I
I
I
I
I
I
1-
I
I
•• .
.
I
I ·-·
I L: ,.
I ·-
I
I
I
,I
CHULITNA RIVER
YENTNA RIVER
39 °/o
SUSITNA RIVER
DEVIL WATANA
CANYON SITE SITE
20°/0 GOLD CREEK
::::~
:•:•:
r:;
COOK INLET
TALKEETNA RIVER
·o;~~ .•;-;--::J=·:
PARKS HIGHWAY BRIDGE
GAGING STATION
SUSITNA GAGING STATION
AVERAGE ANNUAL FLOW DISTRIBUTION
WlTHIN THE SUSITNA RIVER BASIN
liiiii --riiWJ '' ' -r• r ... ' .. ~·-:-~--·-·--"-·--
l.
50.000
LEGEND
-0 40,000t-I I I I WETTEST YEAR • 1962 z
0 u I I I rtl/111~ AVERAGE YEAR w
(/)
0:: w a.. I I I 1::::::::::::::::::::::::::::1 DRIEST YEAR -1969 ::::::::::::::::::::::::::::
.__ 30,000 w w
lL
() -m
::::>
() -3: 20,000
0
_J
lL
~
<{
w
0:::
1-
(f)
10,000
0
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
MONTHLY AVERAGE FLOWS IN
THE SUSITNA RIVER AT GOLD CREEK
FIGURE 7.3
(i)
I
I
I
I
I
I
I
I
•
I
'-•
I
'-·'
I
\ ..
I ._
I L •.
I
I
I
••
I.
I
-· ..,
.. _: .
. ~ .. -'-•
·~ :
·-·-'
-·
. ,_-,_
·.C
..
..
... .
f; :. .
MEAN MONTHLY INFLOW
AT WATANA
PRE/POST PROJECT
;::· r: ,..... :-. ~. -...
I
I
I
I
I
I
:}
I r'
I
I •. ·
I
\....
II
I
I
I ...... , ..
I
I
I
.. . ---.
to.i'. !
• ..
-~ ~. .
.'0 I
" ·• .. '-. ...;; c ~: ·i
-; i
~ .! -· .1
.. -. ;I
\ -' .
L:' ::.. . \
(·. . < ;;~ . . . . .
.. i -
c.-.
~..:-._ ....
c "" .... ,,
\,
i:..--... -~,---., L-··t..&---~ 1-~' .., .. . r-~ ...
~ .. _ '-·
..
.I -
-,_ ..
MEAN MONTHLY INFLOW
AT DEVIL DANYON
PRE-PROJECT
1-'·
~ .. · c: ,-:· .. ~ ... ~ ;""' . . ..... r· '"l .... r : r ... ""-· (" ~
.. -"'-· _. - - ' M 1-..
,,.. ... . ~
I
I
••
I .
I
I
I
I ..
I I .
•• l
I i •,...,_·.
I ..
' .
.......
:1· i. •
.......
I
'-·
I ........:.
il:
~-
1
I
-. ·--. .
'.-
:)
.
('":-
. I
.. . ·• .. "--· (--· ~· c: ~
....--~-.1 ~\
I
'-' -. . --\
. ... -· '-.. -~
...... -'·. ·.:
.
-.
• ·-1
I
\
I
i
' ' \
~--·.· -... -.
r . ;: ~ - -,... .. r r~ ~ . ' r .. ·-·-. \. ..... ' . · ..
MEAN MONTHLY OUTFLOW
AT WATANA
POST PROJECT
I
I
I
I
I
I
I
I·
I ...
I ,.
' .. ·
•• !....
I
'· I
I
I
I
I
I
• ..
:~ l
--. . _: ~
.. ~ :
:\ .. · .. .. _. .
' ... ~ : ~
""" -.-.. -\..• ' ,.-.... ,_ .
~ ,..., : '!
.:.: : -·•
-' _,., ~
.-
c:
'"': .
....
. -.
\
-.. "'\ ,. "•
<.J -..; .J
\
\
\
~=.-.• -.. r ~=~:.-· .......
= --·" - -... - .
MEAN MONTHLY INFLOW
AT DEVIL CANYON
POST PROJECT
r· . -• . ,.. . ~ (. r
: / --~ ~ .. .:. i • ·-~
I·
' .. ., ...
I ,_
I
L
I
L~
I
\ ..
'
.
~
I
'I . . ~
'1:.
\--·
I
I
I
·-.
..... ,.•
' ~~ ' .
I
..
. \ ..
·~ : . '
-~J. : .
i
~'
~~ ...
~~ r-..:-\ ---·..;.-\ --· -\ -
... ·-........ •.:
t .
~ ~~-
-· ....
4'.; -
·-
.-,.
-~
\
r · ~ f:. ..,.. ~ -• ~ · r= .. ~---. ·-.._ ... ··-
MEAN MONTHLY OUTFLOW
AT DEVIL CANYON
POST PROJECT
-"\
\
·:---~---:--~---,--------~--~--~---:--~
-"'.. '"'1. ... .. -
::. c; r ;. ... ·-
I
•• '
1-
i
I·
~ ;
I
I
I
I
I_
.... ·
I
t.~ ...
a~ . •,.
Regtonal Flood Frequency Analysis
I-
I
I
I
I·
I
' I
I·
'·'
I t
I • <,,
' I
I
I
I
I
I
I
Regional Flood Frequency Analysis
The objective of this study is to provide design flood peak information for the
design of the project and for assessing pre-and post-project flood conditions
in the Susitna River reaches located downstream and upstream from the proposed
Watana and Devi 1 Canyon dam sites. ~Ji thin this context, two types of floods
were studies: the largest annual floods and the largest annual floods during
ice conditions (October-May). Procedures were developed to estimate the
annual instantaneous peak and the October-May instantaneous peak for selected
frequencies of occurrence on ungaged rivers within the upper Susitna River
basin. Procedures were also developed to estimate the error associated with
estimates made by the above mentioned procedures. Typical hydrographs were
developed indicating flood shape, peak, and volume for selected frequencies
of occurrence. flood volume-duration frequency curves were also developed
for the May-July period on the Susitna River at Gold Creek. Selected results
are presented in the attached figures.
• M .. -{-f-:-riM" .. . lllffll··-···-·:··· ..... -..
..
susiS/nl
TABLE 3.8
PHYSIOGRAPHIC AND CLIMATIC PARAMETERS 1
Mean
Main Mean Area of Mean Minimum Drainage Channel Stream Basin lakes & Area or Area or Mean Annual Precipitation Annual J~=1uary Stall on Area Slope Length Elevation Ponds Forests Glaciers Precipitation Intensity Snowfall Temperature Name location ~-'"'·> <rt./ml.) (mi.) (ft.) (%) (%)-{\) (Ln.) __ {ln.J ... (in.) (ll»f)
Susitna R. at Gold Creek 6,160 10.2 189.0 3420.0 1.0 7.0 5.0 29.0 2.0 200.0 -4.0
Caribou Cr. nr. Sutton 289 13.6 30.0 4190.0 0.0 10.0 0.0 28.0 1.5 80.0 2.0
Matanuska R. at Palmer 2,070 79.7 77.0 4000.0 0.0 14.0 12.0 35.0 1.5 80.0 4.0
Susftna R. nr. Denali 950 56.6 51.0 4510.0 1.0 1.0 25.0 60.0 2.0 400.0 -6.0
Maclaren R. nr. Paxson 280 133.0 23.0 4520.0 1.0 0.0 19.0 55.0 1.5 400.0 -6.0 I
Susitna R. nr. Cantwell 4,140 10.0 107.0 3560.0 2.0 5.0 7.0 32.0 1.5 200.0 -4.0 ..
Chulitna R. nr. Talkeetna 2,570 23.0 87.0 3760.0 1.0 22.0 27.0 55.0 1.6 250.0 -5.0
Talkeetna R. nr. Talkeetna 2,006 35.0 90.3 3630.0 0.0 25.0 7.0 70.0 2.5 150.0 -2.0
Montana Cr. nr. Montana 164 -'114.0 25.0 1930.0 3.0 54.0 0.0 40.0 2.2 90.0 0.0
Skwentna R. nr. Skwentna 2,250 ,30.6 98.0 2810.0 5.0 34.0 16.0 43.0 2.0 140.0 -5.0
Tonslna R. at Tonsina 420 71.0 46.0 3600.0 4.0 27.0 11.0 25.0 2.0 ' 180.0 -2.0
Copper R .. nr. Chitina 20,600 14.4 178.0 3620.0 ... 3.0 22.0 17.0 37.0 2.0 120.0 -4.0
1 Values in this table are from the report entitled "Flood Characteristics of Alaska Streams 11 by lanake (1979).
I
I
·I·
!I ,. ,.
l '
II
ll
l
i ,,
·I
II . '.
i
:I
.. i ......
I
0
0
·! ·-._ i---l. ··-· l -~-~·--1----t···---t---~--~L -'1
1·-}···l-· i --~---j1 ·-; .. 1--·1--··t ~-···-··· ~
I I ±:: I ~----·-__ :..._j_"_ -· ·--~ ---,.... ·-. ····1--,-· .. --· ··---~::-------... ------·--I t t .. : 1 ~ 1 I • I 1 • .. _....,:...__. .. -,J.... --... ~-;-----:--------------~-+---·I -u·-r~-_._.-_.:_ .. _..1._··~: -·-··-·-• --~--·· r•,.. ___ .,.
t ~ ~ • --
• -·-·:.::::.\.:· ·-.--...i-----• _,__ ··-I--~·---t· ...;...--: •· .. i··-, ·--, ·-. 1·-... -::=:...-: ~ ~::::::--;=.:::;;:-=~""t7::~·~::==::-::-:-:-=:±=-z-==.:=.=-=·-:::7::r.:··!::= c~:r~:t"==·t-:~:r. :-~=:·1 :::!::: · !::?=~:-:~: · -..=: r ::s.=; . . , .\ , , _ ~ i .
1
i , I ; i 1 1 i · ~ )~"{ · -~--+--+-·--,-t----t-I -·-r--!-··-t--· ·-;,--~--r ·-··--~·---:-----; 8
~i !. ~I:. I : I· : \ i ; ' I i ~f. l=i' ; l l I l I . . 10
• • • j ----1-• _j , . ·'--. -• ·-----+----· . -.. --· ·r-...:.: ~ . r -. 1• - --,·:-:~ , ~ . . I , ! 1 . , 1 1 1 ~ : _ o ~t-.. ,· ._ ..L--r-:--;-: "1-• ~ -·t--.--·t-·,-----·-:-·t_:::..-· ·--:--··r--·t---: 0
-~-= _:-:.s::J : ~·----1\---+-----+·-. -~--·r--~~--:--+·-!--.;.--+--~· .. : "" --------!.----}-=::x::K;.--•~-: ~~ -+--~·-t---J···-'· . ~---~ .. -i .... ;. ·--~L·-·-t--'-· ···r---~-..:, • ' -r ---·-. ---, .. ' .. l· ·--· .. ·-·-·r-·--· ....... -----o =-. ..::.· ... -.. --.. -::.=.~:: --:-:-:~-= --· ___ ... ---· ·---· . . --· ... . . ·----...• --· t-- --·· . Q
· \I . :V:t' . J • • ±• I • I , .... ' -~·--• -;-----i·•• "'!·-• ',---+·••,·-~· i --i••· :--·1---i-•-•
..,_ L-.. • ' · · -t-----1-· ·· •·--· ·-·-i·-·r-·-t--r-----t·---r--·--: ---==-=--~.:.:::.-.: . .-::.; . .::.::.._=!---+----r----l ;.-~ _...,__, ~-..---t-~·-·----t--·-: 0 ~ I 1 .,,.-·-----~~ ---____ ...., ·-··-----•. I'"' •t• 1• ~~-~44o ••••••I •• -----~·---···---,.~·=L~L:~~! ~--, .. ~:; ;· . Jl ~ '~; ! I . ~LLJ.:.i_. I _j __ i. I ~LI_;_ !_'~ I l I()
--1-: . i· L" ' I l I ~. . . ! \· l I I : I ! i IT I -r. I : i ' .!.--" ---:-~---·r-·-t··-· .. --~----~-----------! --,:--;--r-:--i -·: : ! : · :"\ • , \· : 1 1 1 : ~ 1 ' 1 i . 1 · ?3 :-~· ~ ~~ ,. I I • I \ _j I '-.:±·-+ I I I i I ' ' ~ . ; . l-. ~· -1---~ --~ ~ ·-·-t-~----r---1 . : - i ; ! ,._.:,__.___ : j?3 1 ~ : • .__I·-· __ ._ __ !,_.Lt-·L-~ . -i ! -
-:-;--; -t-' . : I· i ( '\. .. \ . . ---t-·-1---1--1 -!-L_,; .. ----~ -------r-j • '\.I . \.......!. : I • ' ' I ' I • 1----!---~ -~~---: ~ ~-,--_! .. -.------···-··-"""!-··--,.---·--..__--
. · __.. .......----• · ·\-· ·-t-• --i--····· ---~·-±~-· i--r---t-·-Q ::...:,..---=....:.=.-::--·:----~-=1 .+----~-.......a.-r---·-~--_:_...__ . .......;..__, __ --------f
• '-;--•-L-·----'---!-4---·----~--r"• 1··-·-·--•·-·!-·t·-·--•---·-1 ----t---1 ~~-===-=-.-~::--:-:.; . : -J ---~~--t-_,_ •.. -:.---~·-· .,_. -· ~ ------.. ~ : ------------._i ~~--.. · __ ..._ :.:~:.-~r-.. t::-_1· -:r.:::."":'~· . .::.::==:::-.•.. ~-::::::-.:.:-"-·:..:.! . -· ...... ~·--... -, -,...._~-~:::::;:::---=-x..: --+--· ------,-... ·-····--------~---.. ----. -·:· ---:'_~·~::-· ·:.-:=.J="-:-----...---...---. ::r=::-. ---~ .. ------·~ ·----r... . ·-· . -· en
. u• , \ \ \ l I i 1 ! I .J . .
-1 i tri·!-~!" ~ : \ ' '==F-f:= I p:,=..:::..I-..:.-.::...-.:t I -·.
t 1 ; .; I =:~_:;;: .ii . i I -+ I ~-' \ t :J..--~ I • ~--·___..;-: --1 I I• ..:...+---·!-··-:r--·Cll. . \ I· I --~-1-4--t -~-_, ___ _
.. ' I -+--t. t·31 ' !I : -r ~-' \ ~+--:f~~· ri---L-1-~-: I ~-! j . • . . ,..., • -t-t···r--t-...._T_ ·-. i-:·§; .. :..=t·~~ --'-' ~--l-:t -1 . --t-t--t--·--1-t.-~1--• !. •• ,_ .:... ... Q-e~ ---t-~-"·-. ~---• ~--
-. <:t;~ _!'· ·._..; . -.. I ' ··-t· ·F, ~-~ !·-·-·~--: . . • . . i--=--r..-.-,· ~._,.. = . . ' --..1 __ r-----~-:E
· n • -~*""-i-~· . . • 1 · + I • L---
-,;c' -4:_ -~ Pr-!=f· ~::_ -~--i----!---===.;~__::::: N
• ~. ~~ J ·K=:~~=t i l-:t:~· !:·~-+F=+.=·:·----:-==
-1 :;:) -=-·-J\:~-r--·-r-. . .. ·-;.__t ,;,.--!----~ ..=.=4 -~ -~: .. ~ ~ ~~ i ¥F "-~J§§:!f:f-:1~1S.:: ~
~ :.i!= ~tB=i$i ~ , ~ *i\ ~~~1-:t~.:'~ ---;:"·~~!E ::; ; ;; F=i=t ~~ UJ ~~ ' ~, : • r· • L(')
r: ~~~=-·._.-+-= ~ ;.:-. ... ;·--"l:-::+1=)~ -~;:E x:.:-1=---=~t:::c-~ ~ :=:j=:~-2-...-~f==! I~ -. ;:J.,: ·-I 1=---_---..,. __
·=-4--,_....!4-j'!p . : ~ ~ ::J ~ T t:::.:\ -l-.-• -
-·----2J.;t; ~-f.-:.r-G>-~ a::; . ·:-~.,----;--..;;/" +-------~ ··-~~s:-~st" ... ~ ~"--t-t 2 -rr-·. t·--+·-~::r= --. t·---r-o:-~--. +-..., z:::rl '1'" :--~ -. J-. lr:±::·-. . -. :::
--+-~--.(0 . I ~:Z~...;_ i ±. J z ·t$--r-;,_..;-±I -l--.._..::....::--~-l----a· 1 & rr ~u>-:r··:zj-$..J.li.-~..Z:-~I :": \ . i ~ ,. ---~,·--f.-;--= .. -:1-"r-J....O.. t----i-t
·---oe .• s;tQ.~J. -· <:11-j f[·:n~4-;--! : . LiJ tl -----. IT ·r -=--·f· r:.... . l -r·:--: I -. < ·~t··_-1,:.. ....... ·-"IiJI 1lJ --:--~-:: i -I ~ ~~-· i·-f--:·T,--.·:±:: -r---,. '\. . J ,-..--:-; g
=E~~w 5i-.q~--t.:7~t~~_l-w~ ~· 1 0 o_~!l_ ·-~---1 :1+-ij·-·. ·. ~ !~-~ g . 1 r..,; !,.;;. 0:: <:[·. a. c:r I • • o.. Ll-. ·-• 1 . . • r . . ·-~-q1-,;-~---:·-w-O~·~·~-~ I:. ::E:z--..J-···:· ·-~J-· T.--:. ···--77::-'----;-·~: ~ 1!-~. 0 : ~ I· ·I :'I :. : i ; . ~8 8 I ' I • \ I• -~.·. • ' • I i :"'!
···-····-~ .. ---=--J··· -····-·1-·-·i---··-·· ... ---··· ' ----~·-" .. 1 . , .... t··· t-\'"'·-~-w~·-• ··'""T··--· ···:-.... ___ ,__•----r-...-· ·-··--···-.. ---r==r==---:~· -n ... ·-· -· ·--~-·o.:~--, · ... __,. --, .. -t=·! ··-r··--· ----· 1-·-t----r --·--.. t--· ... --' · -~ -·---•· * t·-··t--1·-· ~---·-1 ·-·~-·-i-·----·-r ·-r-·--1------··--:=n-j··--------·-t-o::::i!'· !---!-·---~ -~----·
·~-•-o :.:1 .. ••• ---•·-••t ·-t-:::~ ._, -----·--··-• -~~f= ~· .. , .. ••-±" -~ Qf-' I • ·~-• I .... -·-----_, __ ,_ .. ----...... ~--r-·---· --·-·--------...... ···-. ·---.. t3 ·--·-· .. -.& .• --···1·-'---~--~---·----·-·---t-·----------· . -----· -·--! .. ...J • i·--· -...... ______ _: -t-t--+:--·----r-t--1 . ·---~-----· ·-· ···· -----· ~--t ··a.. ""·--+-··I · ·-r----: g
• c~ t T-:: ~.!.~= t .. :C-1 ~J. : : ·-' ' ; . :-~· ·t·-•••·t7't·--i-l-::•~:t·~t·-~ j-• • i ' ; ~
0 ,.; 0
C\1
0 0') CX) ,... U)
_; 0 0 0 0
en o·
rt')
0
C\1
d
-.
(/)
a:
>--0
0
a:
Lz.J
0..
z
a::
~
1-
Lz.J
0::
DIMENSIONLESS CURVE ALASKA POWER AUTHORITY
FIGURE 3.3
DESIGN DIMENSIONLESS
REGIONAL FREQUENCY CURVE
... ' '' .... "' ' -·------
SUSITNA. HYDROELECTRIC PRClJECT
FLOOD STUDIES
ANNUAL INSTANTANEOUS
FLOOD PEAKS
I
I
I
I
I
I
I
I
I
'.
I
' I
I ...
I
I
I
I
, I
l
-!~?Pl._.,..,__ -·-: • ~ _· -j--i . -; --~ Gi __: -=f ----::r.:-. ~ .. _:.....p-.-1 0
. • JC%--""1-. -·;r--: ::::±= -. -:r -o-re ·--:---:~:.-f-. .J--r-==t----r, ..--:±--:a::: @.::£!! __ · tf ~ .. ~ · · r . I . -~--r--• · -i· 1 ,---------:VJ-.-.H!:-l_,.;;i-·"':-o -y-t-1 .. _n -·-f-·F !\ :::r:::J ___ • , . --t-~~·:5?.-:r-~ ..z• ... '-··r~-·. . . · -4-~ __ __ 1 \. ::.."ClF·';;;;:.~ . ·.: " . I 1
• ·-.C::-.:C..-..0 .• <:). Loy I --.J.. t > ~L.l: ·-. -I L I ~ . ~ · w· -.,_<I .... · 1 1 -· --\---·-·:..-. • -.-,--. an =L-~.t]_j__[.:_s_3~~1· ·I .· :~·. ' . i ~~ I 'l=ft: !H+~·-~-§ . I I '"' g
lz Q -· .• <t <., .... ~-7 ~ Q; u: ~r------"'" 1· -o-..J z ~ -1
I <t I I z Cl1 LLI L:..:... . . I : I i . ::: z . . '\ . . I 10 - . +· I
---~LLI-~ ~-w .. <t j 1r,. --~ . • • . -o 0 . ·-· ·.-·---.. --,-:-·-:-1----.::~ ~-i-~:::~~-~~;}::~t.:.:~ ~~. ~::'_'_ ;-' ·:.11 . .:. ~· :~#J.~~-~~::. :c·.:~~.:t: --':-~:!
:_: "'?-t=:_a.:...:o:'~.:P.:.-i-:.:.Jt .. __ f--t·-·-·I--· -1----=i ... ---·· · ,. --t-··-1·-o-~-! · ::-:-t. --·1 ~· . I f'· ...,. t--~--·-y------• • t-"" ]·-• ... ---. ~--.. ..,._ -~ r• "'"C:·tL.-• -~ -----J
..;:: =i...:~:.:..=~·"·:f::~.::::L=..:.::t:.:..--= ·=:::::::·:::. __ -~::::~· .. ~ . .: f:\"::._t.:I..:l::.:.;::.\' .::..e 0. ~ ·:-· t_-_---.... ,--1=:.._--·--·-· -·-1_::-:t-·-----------·· -----· r---i--t-~··· · --o ·c ..... · -:::::L-=--:: .... -·i-r-t ;-• ---~· -· ·-,-I·--·-·-·---• · -· .... --"J'" ~! , ..• j ·-~-· ·1"·-·--.....J ••
--t-t ·I· :~t·j: ~t.-±::-i~· . .. . . -7": !. .-.t-1·--t--~· : ;t---i--t~tti·--F:-1-i : ; ~
qoo. q o q o o omco,..._ c.o an ~ lf'l N
-cJ)
a:
>--
0
0
a:
LIJ
a..
O')tti,.._ wIt)~ rei rJ -ode o o o o o ~--~~----~--~--~~----~-----J DIMENSJONLES S CURVE
FI~URE 3.4
DESIGN DIMENSIONLESS
REGIONAL FREQUENCY CURVE
ALASKA POWER AUTHORITY
SUStTNA HYDROELECTRIC PROJECT
FLOOD STUDIES
OCTOBER-MAY INSTANTANEOUS
FLOOD PEAKS
~~ j•
I •
'
" J
)1
I
J
II
J
ll
I
II
II
II
11
Ll
~~
Jl
CJ)
0
0
0
..J u.
...J
<(
::::)
z z <
u..
0
-----~----.-----,-----~-===J:::::J:::::::::::~====~~====~-----·~'-----~ ·--~~--=.....l...---!!----1~----r----1--·+·---+-----.!-.~---+ --------"! I
I .
' , I
• I
. : I • .
I
. I
I .
. I
-·· -,-·· -----+---....L-----+----~--1
I =--.....:f--..---4----;:----t--.-~: ss:%.1 =--~i· ---t
T. ----__ -\..-----4---~--~~~--. ~:-t-;....__. ·:-:::·:-::::-:::::: ---l---J----:..-.-------1 !.2..__-f-_..;...+--+~:----Jr:--~ ::-:·:·:·:·:-:-:·
.......... . .. . .. .. .
-----~--+--~+----r----~.~:::~:::·~;~~~:~::~·+·---+-;-------~-~t ·---~====~==----~~--~--r------f.:.f::-:f.-~~=-=·~:·:§.:.r-:==:t~::::r I ·---:==:f,:---t-_.:..-:--+----+--=--t· ~--~· -~-~-.tj. r-----r--·--' . ------t---+-~+-__;...+---t··t····::::···~···::::····t.t·.· ----: ~----I----··:·:·:·····:·:·:·
:·~:·:·:·:·:·:· . 26·% i .. ____ l,__t=' -------1----~--r--~r-·~-r-:......... I ·---1-------·--==~·--4---+-:----t·---t..·:.~ .. ~ .. ·.~·.·t.•.t•.·r---:~---:.~~ ___ ,_ -----. --------.!----4----+---t---.;.;.; ... ;.;.::;.: -:::·:.::;::.~:::.::: --·-t -·----r-------. ·-_·~::j·~:-=-=-~~~l=~~~=~·====~=====i;~~~~~·:-.~~~·;!·!*·:_·=--==-=··ji.:~-=·f·=·~f:·:§:~:·:::::j·~==~·==~==:~::~ 2. 0 ~ 1 I •,•,•;•:•:•.•:•:•: ,•.·.;.;.;.;:_:-::_,• - -l---f------;--· ·---
=1 -----~-· ~.~-:-:-::--::-. . ·.·.·.·.·,·.·.·.·· l --·~----• ---il i~~~~:~:~i~~ -===· ~~~~~:~s~~ :::--: --. O"" ·.·.·.·.·.·.·.·.·. --·--·.--........ . I ·"'---1 ---l,---~---t----+-1 ..-t:). :-.~-·-·.·.·-~7· ·.·.·.·.·.·.·.·.·. . •
I ' .·.·.·.·.· .. ·.· .·.·.·.·.·.·.·.·.· 6 cu .·:.-:~.:·::.:·~· -· ---i·· . -.. . .___ __ ............. --.... _ __....,. -eft)-•••••••• •• ••••••• : ·----~ __ ; ·---·-:~::;.:;:::::;:;: ::~;:~::;;::~~ . ·.· ... ·::-:::.:.:.:.:::::--. % ....... ---~ . • ! .--............... ·.· .. ·.·.·.· ... •.•. . . . . .• . . . 3 ·-· . ------·--· ---~ --___ ;__ ---··:¥:·:--:.;.:..;.. :.:-:-:-:-:.:·.-:--:~·:-::·:::-·· ::::.:-:::-::·7·~· ' ----. -. . . . . . . . . . . . ·.·.·.·.··::: .·.·.·. . . . . . . ......... · ..... _._ .. l . . .... . ·-· .. -~---l· +----. + --:::-:~::-:::::::\: :::::::::=:::::::• ·::::::.:::;::::: ::::::.::::::-::::-: •:•:•:•:-:•:•:•:•:~ 1 ~. 0 I" •
F M A M J ·: s 0 N D
MONTHS OF YEAR
.--
SUSITNA RIVER AT GOLD CREEK
PERIOD OF RECORD-1950-1980
De.;
FIGURE 5.1
ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
FLCCC STUCiES
PERCENT OF AN~~UAL
MAXIMUM FJ_QQDS
~&M CONSULTANTS, INC. MARCH 1981
......... .,. ~~neo..o••••• .-.. ..... ._ •w•we•o.•
I
I
I
I
I
I
I
I
I
I
l.
I
!
I
I ,
I ;,
'I j ·~
'I j ,,
• I i ..
' . ~ . .. . . . , .. .. ' ' ~ f • • • •
I'
t • I I . i. J
I • .. ''I i l '
.
•;" I
.
' ' I .
I I
I I ,.
'' I
I I' J . .
'• • I I. t
·'
I .
' I
I t 1 I t -' : 1 t I ' t · 1 ' f 1 • t_J ' ~ .,.... . .
~ .1 J ~ t i J 1
f 1 I i ~ t !
IJ! I I I
I I • l I
I u I I I
l1 I t I
II i I I
I I I
~ I _1
!I I I
90
so_
61
70
60
... '
'j_l I I I • I
ltol 1n r
l I! I II[
IU ltlf
II II I
_1_1 i II I
I• 1 II II
I 1 I.
IIi I i
I ~ I 1tt, i; I 1 • I
I • I I !II I ! I l I I
I t I I
I I I I l I
! 1 II I I I I
IU I I l
J j I
1 I I
! I i
i I I i
IU Ill
1 ! I J.l I I • i
i 'I i I IJ I I I •
I II _l i I i i I •
I II I j_i I I I I
_l I I _l I I
l II lllj II I
I II II ; l I I I
I I i I I I I I
I I I l I I
-.=-_--.... -
'' • l • f I . . .
I . •
I'":
If t f I• • • '1 • f
' 'I I I i 1' I f f '11 t • i •
, I i j , 1 i. • I : ! I Ill • l I
1 i I Ji tj_ f f I i ; I t :! It l i ;
' I i 11 I I I I I I I I I I_! i ' I i
I I I lj I I f I ! A:N NUAl I I
i I I I I I II I I .k'1" MIO.Y .:..: nt 1L_I•fl ;
I I I I I I LJ..1"' 1./_ I Ill I I i l
i I ! I r...~ llj).-~ v AUG~Ii'ij; CT.i I
I I .....,..H11 ~rn II !A' I II Lll I I t
,_
. -===r::::ssrs --~. -__. .. (/)
Ll.: (.) 50
+
z 30
LtJ
(.!)
a:
'. . ,, .
!_!_
' ' ..
' '
. . -
f. t I
I 't • t •
I '
;, .. . '
I
. ' . .
I • t t ,. ' .
. ' .. . . . .
• _j_ . . . 4 It It t I t
1
t
% 1-'~'_j_+-+-++~;..o· "-...+ I • • f t _j I • 1 ; I • • I • I 1 ~
,, .
•• t--~(.) 20Ht~f"t •ttl ,,~ ... t •• , I• ' I I ,. ~ t I I :t•· ••
f...+:+'+',_' t-1!-";-;-• + t : :; : I : · • .J..+-1 +-4-' ~~~~,1-4-f++I-H-:j--'~~.t!-1 +-+-i-,t-t, til li":o-1~!..ttl .+...j.-!_i!--Jj..--;..' -+'+'1 !'+I++-' -;.·--1
c I I I! I j_l! I • I J • II: I I • :ttl I t I I I I • ! 1 I I I I ' I I 1 1 -~ j l ~. ; 1 till • •
1-+J...H+-+-:-' i-' IH-!-_l-+1 +-Hr+l~l I l I J ..: I I I ,-I I I i I I I I I I i-J;....-.;1--j..,-+,+-, 1:-TJ-i--i'l~-! I I I Ill I i I i T l I i -~-1-+--~:..:-r-....;.--i
I I I I I I I ' I I I I I I I !Ill I I l t1 I I I I I I I I ll •
....
IU I I I I I I I I' I .I I J I IJ I I j I. I I I I I !II I I I
U I I 1! i I II I I I ! 1 1 II I I Ill I II J I ill I I I WW~11~1 l+1 ~1 +1 H+1 ~~~~1 H1 ++iH1HM~1~1 H++rr, rri,-t-.t,IT,t,h, mrtt+r~lt~trjttja:lnl!tl!t~,:i~ rH :I II I I I II I II 1 1 I II 1 I I I ! II! I I I :!I I I I I 0 LiJ I I I I I I I I
2 5 10 20 50 100 200 500
EXCEEDENCE INTERVAL-YEARS
SUSITNA RIVER AT GOLD CREEK
PERIOD OF RECORD ·1950-1980
ANNUAL SKEW IS 0.6830
MAY .. JULY SKEW IS 1.130
AUG-OCT SKEW IS 1.134
FIGURE 5.4
~~nl~ I ALASKA POWER AUTHORITY 0;~ 111_·,~---~~-:-:.-:--:--:::-:-::--;:-:-;.-:-::-::-:--n SUSITNA. .HVOROELECTRIC PROJECT
FL.COC STUCIES
SEASONAL DISCHARGE
FREQUENCY CURVES
I
t
I
I
ll
I
I
~ ' ·.
----
90
80
; ...
~-
70:-:-
60
I'
I I •
... ' :. I. '.I.
• I ~ : i ••
! • i I!
.. --
=.:=:.=-:--
ry. •
I •
I
I
• I
" I i 1 I / I 1
!I II: 1•,11 I I: i I ~"-4-++M--t-~'-ttTt: I
I I • I ,. ' I I l I I I II v I :: I I
·--
·t-t-. 0
---r. ---:-==--::.;::::::..J~ I ·-e-1 · ·-==.r.
Cl) 50 =--t
UJ-~;._
·~----::::::::a
:EO)
:::;) 2 40 ...J ox >I()
ot-
o "'-3C o--...J
L&..
t ~ • • . . ',;" ..
; ..
• '0
./ ,.
y.
~ ••
.•.. -~--1
' :• t
/ / 1 " •' y I 1 I I 20~~--·~. ~.---~,~.~;~.-~~·~·~:~/~~.~~~v~.~o~o;+'~ .. ~·~~~~~~-~-T'-ti--Htttl~~:.~~~~+-~·;~1,~·~~·-T·~
~:r:=:::::p.:::;:. ::· :(::;·:I· =l=DI 1~/f.!.-' ...:.·~·1?~'/· :;..· ..:._: +·~I.:..· +'~·,-t-V7-71 -+'-:-t-t--:-: -H'it'ttttt:tt:t::t' :!:t:t 'I I . I ! I
I I 0.
~ • I • ; .. ' / • :/; I l• ., . I • I I I I I I I I i I '
I -4.....:.--l+.;,.:.,._;..t-+~h~-t-....;,_~:-;-:h-f-' ~ I I I l IIi I 1 I t•··=r:=J:•:P:! =++: i_• Ljl f7~1 .!.' :..j· ~0 _,7G_:/· h:~:~·;...o t-. .:;0 ~ ';:r~Y"7. ~:-· 7-' +1 _:·+~:f-,:-tttttf.~t! rtt1 -t-t!t "j, II ; 1 1
I
1-I ! I I • • l i ; ./.' • • I ~..r~· ..;.: .:..I ·~l-1---:l....;lr-++-:----!---l ~~~ ~-1-4--;..-+--+-~++!-i-+~---~
l l I : : ! : • : I : li : : 1/, ! ; ~ : I :/ . I; ; I : ; I I • i I I I I I I I Ill I j J.
I • I I i I. • j i I ! I:.,Z Ill j v. I ! :: llllll l I I I I I !4-;.:-4-4-:' '...:..'-:-'-r-:-1-rl-t-..!.._r+-Wl i I I
. _:..· ~i~I_:'J_......l,!_JtV.~,~~...;.~+~·t~'../l"~':t-:-i ..:...: .;.'-4·~' !--' :H+! ·~i~'++l-+i-ll--7-1 -t-:: -71-tr:T.' i~~~"7~Ti!--T--tf...:__l ll!! i ll I II L··_l:l_~~i~'Jill!l1Li:Ulil;L;4J'Illtil~ol~?f.~,Li ~~~~~~~·~~~i:~l~l;~~~~~~~~~ ll~l-r~:~I~4~Ji~, l~·~~~~~~~~~~~rt~~~~ .. 10
2 5 I 0 20 50 100 200 500 I
-i ~ J
EXCEEDENCE INTERVAL-YEARS
FIGURE 5.6
i
I
\
SUSlTNA RIVER AT GOLD CREEK
PERIOD OF RECORD-21 yrs.
j
~~~------------~------·
LEGEND
------95 °/o CONFIDENCE ·LIM ITS
VOLUME FREQUENCY CURVE
ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
FLOCO STUCIES
FLOOD VOLUME FREQUENCY CURVE
AUG-OCT
,a
II ,,
II
II
'·.
I~
tl'
II
~~ ,
I ll.
' j
~
'
'
' .
.
' # ' .
'
. .
.
~,
'
l
-~==--~· ----~----~~-----:r---::t~::--~··r------·--~~----~1~---------t·----~-----~----~--~r---~:r----~~--~,----~-----~-----~-----------
{ I l 1 • I ~ 2oo tll:::::~i .. ::::~:::::;, ===-~-:::]:t:::~~2B~~:::t: ===~-=====~~1:=====t====~~=-=-::_j~ c:::::~====·~----~r----l~:::j~:::2-'~t:~~ I i
t t:::::E::::::~:::::l~====~==~::j:i:~:::3E::::~,~~r~ ===---,~~~-·-===~~:--~~~~~=====:·====~ j i/ ~ I '
' 1 II U. 1
. i 1 ! •
I 0
,_ 0 tl :::::r:'· ==+=----:~t-'..:....,;_-1~----11==:=Jt::= I ~\ I I t' I 1 I \ -I I
1 I ! 1 .~--iii--'"\-T--· !----i'-----i----1r----j c:::::~~====~----~· -----r~-1:t:::::t:: ! \ I t::::::,~====~----~~---1~~t'J::::::t:::::t·. =~,~~ ----t==~==~==~===F~-:~· ===t===±==~==~===4===--l ---1 l ' I ' i
l I I '\ : I 1 I '
o t:::::~~~==·==:~====-~,' ~~~~-tf-~~.~~~l~/-t:"~,::t:::::r~~:-2 __ ~-~~~,r-~~--~~~~--~ 0 I , ·I \ I Ol ~o , \ = , "'
(/)
u..
(..')
c;. I / ; ·., 1 i ,' '
. I ' V · ' . 1
1
• ~; l ' /.---1 ' I I :j I i I r"-·· / t::::J:::::~~==F==+!t'+-~~ti'==:L~:::j):::::t:::::L::::~-~~~--. ., J t1 ' I i
t==~·~~~~~.==~·:t/C:~I~·==~---~~/C::il::t:'j:::t'~\:::t:::::t'::::: I w aot:::::t·::==:t~L~:r,~::::JF~:·/~'~'F=~/~:t~-~c::±t:'~,:::t:::::tl~:::::t::::=f::··--~
o '--: · / . "" : :./ ./ \ I '~"!'::~==--~;..:.·~ '-----+-----r-·· ---·-c: -"' / I /:_ ; I .-'-. i ._:'-'~--t-----r!,---:;_...........,__ ~ =-----~~~~-4----~~~---~~---~t.,r---~=-~-~~,,-----r-------~ / ' ~ I I / • I ~ !L
u r:::==~~--~-~~--~·t-~~i~'r--~#~;:::t:::::r~~-4--.---~,~---~k,----_,~---~ 1-i 1./ , i ., ~ : I ! • · L :-; • -' . ' . ..!-----4--'_:''--jo....-...::-:.:·=..--~·~'~-:--t-----7:' ;---::j 0 b--.....;_+-I~--:~· -":;._--r-1-' ---j~;rJ-f"--_:_-~-:-•-o -.,...... I, -....
40 r--.. ! ""' I ,.... I I ... ~---_ _;,_ ___ -! r-:::~~--=~~~~~;=~~·-~~~~;~~~.-r-::---t==~;:t::,:::t:::::r:l::=:j ' ·--~~~~-·--~T--;--r-··~·~'-~~---~----·-r~--r~--r'------~---.-~--r-='~··-~-~--~L=~~~--}~-----t--·-~:--~--~~~--~=··-~~---~---~-----r-----;-----._; • i ,,.._ ! I r-:::::~~~==~~===F:~~-~~~-~r-~.--r~~==t:::::t:::::t::::::~---~~------
o cr--:..:,·:···::::::4-[1: ::::,::::::;_:.·:.:.:.:.f, =: :~:=sE===·==E::=· =:=.~t~· ~===-:_ +-~ ----~ -_-_-:_ +~ -_ -_ -_ ._._ ~-· +_l· ~ .• ::.:::.:J::.:.:.=..:_·~·.:!_·:..:::..:.::jl5 -15 -10 -5 PEAK · 5 10
TIME-DAYS
SUSITNA RIVER AT GOLD CREEK
't;0,500,10000 yr.FLOOD VOLUMES
Lt:.Gt:ND
Flood Volume
ft 3
Peak Discharge
{cfs}
-----100 yr 122..~ X :o 9 104,550
FIGURE 5.9
ALASKA POWER AUTHORITY
SUSITNA HVOROElECiRIC PROJECT
F!..OOO STUC!ES
FLOOD HYDROGRAPHS .
MAY-JULY --500yr 178.2X 109 151,870
I --~~~ooy 5!0.0X!~--I-sa_,o_o_o __ ~~-=-~-;_~_c_.?_-_~-~-~-ft~-~-~-~----T-~-~-!~_~_~~;-M_A_n_c_H_1_9_s_,~.-
5-14
H
,,
I
I
I
I
I
1·.
.
I
I ..
I .. ~
1·~ ..
. -·
I ..:. .. ·-
~••
I
I .
.. I
.
I
I l ! 0 ~-~~~---4.----~-----+-----r~.--r~,.--~!----~-----T---~----oot?_Q~====~i::::::~::;:;.~,===~=+=====J~=~~~~~~--t·~~~i_-_-_-_-_~~-----_-_-_47---~-----+~---~--~~~~---_-_-_-1~
X
1-·t-----4--+--~-+-..,._; ~~---+=\-l-!--i-1 ---.---~--1---, ----1 ----~~:-----4-~-~~~i'~·~--:~-----~f: __ ~IT,--T-ii ______ -rt-----; .. t~-----+-~--·~ ! ___ ~
f I J_ \-t--,'r---·--+----·-~---1-I m ' \ - -' ~ ~--~!~---4----~,-----+------r--rt~~\r-~,~----~.-----~----+-------~----~
(..) I t· \I ~---+----i! __ . __
I ---~~--~--~~-·-----T-----r-~~r.-~ .\: -. . I . r-i : ~( 1 \: 1 :
w an : : ; . '/ 'r'~\ --+---_-~:-------+~-------!-:-----1-;
~ : • l -r+~+:s=--~ t 2-· --=i-r ___ ·L~
cr. . I I I I \ . I • _\.. -I I -~~~·-~-:X: -------:~----+---... +-1, ---+--:/ ,, , \--\-~-~~· : -!1 : =-~ '.Qt= ' . ~~~~ • •: • ,r ~ ./ ~--:~,\~ . -_-: >. + __ j-+·---r---~
Cl ~· I= i_ / : /}. '\-~· ~.. -t
-----~ 1 • .,, I . j I J ~ I "\... ~ -,...... ; / ~~-'-~ . :r::z-::Q--..; ~ . I -L, ------
, __ -----,-t----t::::--=-----+:j=~•--. -j+::;=:--.. ?~L' ~~----=-.-_J__:_~l-:----~
I I : ..-1 ,.. l 1-r--,......, !
I ,.._ -_.,.,-· -t' --
. I L i ---~--~ .
---I ~ ·------~-.. ----,. -I J r------. ·-~-----------~.-..------t
I ; ---l--· . I . I-------t-----T----+----! 0 I
+ I I. ~~--; .. . I __ I . -·•
I I : ! l .
-1s -to -s PEAK 5 10 15 .
TIME-DAYS
SUSITNA RIVER AT GOLD CREEK
LEGEND
-----100 yr
Flood Volume
ft 3
g· 53.s x ro
--SOOyr 78.8 X 109
---IO,OOOyr 140.0X JQ9
"eok Discharge
( cfs) _...;....._..-,;....;..... __
90,140
119, 43(.)
185,000
FIGURE 5.10
'[~nnw I ALASKA PoweR AUTHORITY
I nburo I i-s us IT f.l A H 'I 0 R 0 ELEcTRIc ;> R 0 J E c T
....._ __
i=i-OCO STUC!ES
FLOOD HYDROGRAPHS
AUG-OCT
I
I
I
'
I
I .
!
.1
~ .
I
'! .•
I .;·.
~· .. ,
I " -\ -
I .
;,
·I· : ' .
\ --
' t:
·.(:~:
I .__ ..
I \..:.
I ,_
. I· . '· ..
~ ........
·, 1·'. ! ·~ . '
... ,
I ~ '
·. l
Probable Maximum Flood Studies
I
f
I
J,
I
I ,,
I
I,
r·
I
' . ..
t
I·
I,
,,..H,.
I --
1
\.",.
1.~ ~·
T ._, ...
I
I
Probable ~1aximum Flood Studies
The original scope of Acres work as described in the Plan of Study of
February 1980, comprised a review of the PMF estimates made by the Corps of
Engineers in their 1975 study. The assessment determined the sensitivity of
the PMF estimates to changes in critical meteorological and basin parameters.
The magnitude of these changes were considerably significant and the
estimates could not be used in the design of facilities without more detailed
study.
The meteorological data used in the COE estimates were developed by the
National Weather Service (NWS) in a preliminary study which gave a general
range of criteria within which it was believed values from a more comprehensive
study would fall. In their conclusions to the study, the N~JS noted ... 11 Time
hasn 1 t allowed checks, evaluation, and comparison of the several types of
data summarized here 11
• The NWS naturally recommended further study. This is
borne out by the increases to the PMF peak found in the sensitivity analysis.
It was decided that a re-evaluation of the PMF is necessary to define flood discharge
capacities of project facilities which presented an extension of the scope of
Acres studies. The approach to the re-evaluation of the PMF is described below.
The approach entailed re-assessing precipitation maximums, temperature
gradients and temperature maximums based on a thorough study of the
meteorological characteristics of the Susitna River Basin. Applicable storm
maximization techniques were used to develop a probable maximum storm for
both spring and summer seasons.
Paralleling the climatological study, a further calibration of the SSARR
model was undertaken to develop a reasonable watershed model based on
procedures that follow generally accepted mathematical modeling techniques.
The calibration started with assuming that the basin's meteorological and
hydrological parameters used in the COE estimates of the PMF are the most
representative. These parameters were adjusted as analysis progressed.
When the set of watershed parameters that gave the most reliable estimation
of spring and summer floods were determined, a verification study was conducted
using this data set. Several floods that were independent of the floods used
in the calibration study were used in the verification process which detennined
the accuracy that can be reasonably expected from the SSARR model.
Estimates of the probable maximum flood at critical locations along the Susitna
River for both spring and summer were determined using climatological data
developed and the most reliable set of basin parameters. Synthesized PMF
inflow hydrograph at Watana is attached.
---..... -..
. --
~ . . "' . ·-------_, __ ., ___ -~-... --------
' -I
I:.
-----·-·-----·------~-------
. . ~ .. . -... ... ~ -~ . ·=~~ ... --."'""""""-""-~~ .. ----:---:----~~----.. ~------,-·----~""'""'-,_,., .. -.. --..... --~-··-"'--.,.~ ...
. ... . .. ... .. -. . _'" __ .,. ~---.--... _ _,_. ---·-,-~_ ... _____ ,.,_. ... ____ .,.. ___ ....
-7
--... ~ ..... , .. _,..
. ,,.. .." _.., ,__ "' .. ------.... :-;' :-----·.: -
., ·---+..-. ,..,_,-..
-' ... . .
~ • + ~"" -· • ~ ..... ~ "' :! ·• .. ' . ; :! ~-~ .. . . .. ..
·--.-.. -,.~-...... -~·-· ---..---_., .. -···--··
I'
~(..t~:.2..!
~--""""' .. _, __ .,.., -···· ···-~· -~ ,..~ .. -............ ,.. ..... ~-·-----~ .. -..
.. -
1~--r.; .E?.;:.: .. ~?~.:~~~~~~=-:~::~
-·--. . .. .. : ~~;;..:..:~~~;_~:;..,-----...
,. ... ,~. . ... -~--·· _.,. "'--
r'fi i t .. ::
'
-u·-,_ ·~ ; '1
" '
'
, ,--('·r ' . "
·... ~ ,' : ..., i .
..; ' ·.
~ . . [·.
' '-
L.
r . ['
l
f ~"'
'"
;~-. * .
~ ,r ... ~
:
" \ . "
', ~>.
i'tt:.''
tK·:" . .. .
•
,_
··t;····,. t .
c'
......... _
' ...
Project Flood Flows
< • ,, J'r;.·_· . '·
. J'~l
-r:·
.. ~.-\ . -~ . ·.· .. '!)"' !11,
'
rr:·.' . . .
: ;
..,..
r r""'
; . ,..~
} ·. . .... ~
\·
{'{~-1 '.
I
i "'·
'
rf
' ~-
·-
SUSITNA HYDROELECTRIC PROJECT
PROJECT FLOOD FLOltlS
From the r\~gional frequency analysis and the PMF study, a set of project flood
flows were determined for design of discharge facilities. These are presented
in the attached tables. Assumed reservoir levels at the start of flood
routing and facilities available to discharge design floods are listed.
:fJsnNA HYDBbELEtrRic PROJEct
~rOJECI ELO\iS.
r ·r <' ~ ~ +, TABLE 1-RIVER FLOWS CFT 3;s)
> .'~
• ;{!FLOW RETURN PERIOD
. . . YEARS
, :",~4N ANNUAL
· .. -( 1 IN 50
~ 1 IN 100
[. 1 IN 10.~000 CDESIGN)
· Pr·1F
i
vJATANA
ANNUAL SUMMER
PEAK PEAK
36_, 000
.84.POOO
92.~000 70.~000
156.~000
326.,000
DEVIL CANYON*
ANNUAL SUMMER
PEAK PEAK
41.~0001/
53.,000
54,000
140.,000
320.,000
. ! t~ .~ ... -. ---------------------
1 ~ ~-~
. --·{·
' I .·
i '
! \
: \ f \~ITH ~JATANA DEVELOPMENT UPSTREA~1 •
. ; ;,[. NATURAL FLOW.
···r· i . ... r
..... :tf
~ ir "'' '
. :·,.A
r ![' • 1 '
. ' '
'
····.[· ~ '
.,. • ·-r ..
[ [*11 i . ' ~.ll
~:[··· .. ~
. • ' -!1'i . .
> ·[·~
' ~ ;
• 1-,
. ' [ 1-.. . t .
' ~ "-. ..........
.......
I. • >, .
I
TABLE 2 -ROUTED FLOWS FOR DISCHARGE FACILITIES <FT 3/S)
RETURN PERIOD YRS.
1:50
1:100 ANNUAL
1: 100 SUr·1MER
1:10.,000
PMF
WATANA
E8.,0CO
45.,000
L!S., 000
120.,000
270.,000
DEVIL CANYON
53.,200
50.,000
50.,000
140.,000
320.,000
FIGURES TENTATIVE BASED ON SPECIFIC GATE SIZES AND OPERATION 6
OPTIMIZATION STUDIES UNDERWAY.
~ .[·
> • ".,.:
~-r
\[
'
c~[
; .
r·~r
~-·[
.
~-
~·[
:~{
J ·-
r·,[" I .
I ~
• ;:: . ~'
!l
I .
l-'
:l
. '
[.
. . .
' •,
. . I·~
......
' I.,,
:I
Spillway Design Criteria
r-SPILLWAY DESIGN CRITERIA
:[ .
~ [·
[
:· [
j
;-·[
:-[
·[
.[
!
r.l""' l
r ·r
r[
rl
I. .......
!"[
L ...
I[
.[
~
,(
I
A$ Watana Develooment
1. Spillway facility comprises:
(a) Service Spillway -tunnel outlet
with H.B. valves
(b) Auxiliary Spillway -chute with
flip bucket
(c) Emergency Spillway -fuse plug
and rock channel
2. Spillway -Avai'lability of Facilities
Flood Return Period
3.
(a) 1:100 yr (spring/summer)
(b) 1:10,000 yr
(c) P~1F
Starting Reservoir Levels for
Flood Routing
1:100 yr spring flood 2172 ft
1:100 yr summer flood 2215 ft
1:10,000 yr design flood 2215 ft
P~1F 2215 ft
Discharge Capacity
-up to 1:100 yr flood
-1:100 to 1:10,000 yr
flood (project design flood)
-1:10,000 yr to PMF
Facilities Available
-service spillway and
75% powerhouse flow
-service spillway and
auxiliary spillway-powerhouse
not available
-service, auxiliary and
emergency spillways -
powerhouse not available
-simulated maximum level at
beginning of June
-normal maximum operating
level
-normal maximum operating
level
-normal maximum operating
level
' ~-.
:··
~-·
· Ll
'.···
B. Devil Canyon Development
1. Spillway facility comprises:
(a) Service Spillway -tunnel outlet
with H.B. valves
(b) Auxiliary Spillway -chute with
stilling basin
{c) Emergency Spillway -fuse plug
and rock channel
~-· 1 . 2. Spillway -Availability of Facilities
:·I
:·I
I
!-I
·I
i-1
'
·I
f :...
,I
i
I -
··I ~ •,
I
' !
l-~
I [I
• 1
1 ... -
,I
l
'
I
-~
Flood Return Period
(a) 1;100 yr (spring/summer)
(b) 1:10,000 yr
(c) Pr·1F
3. Starting Reservoir Leve1~
For Routing.
All Floods
pischarge Capacity
-up to 1:100 yr flood
-1:100 to 1:10,000 yr
flood (project design flood)
-1:10,000 yr to PMF
Facilities Available
-service spillway and
75% powerhouse flow
-service and auxiliary
spillways -powerhouse
not available
-service, auxiliary and
emergency spillways -
powerhouse not available
1455 ft (normal maximum
operating level)
'1
' '
. '
' lt •
1~ d .
'~· }L .
u:
' '
n·
ib
1~
SUPPORT MATERIAL TO TASK 4
SEISMIC STUDIES
I
~ tU
I -
I
i [~
, n,
~~
~w
~-
w
! W· l ~
'
rn
1M
TASK 4 -SEISMIC STUDIES
1 -Introduction
Seismic studies are being performed by Woodward-Clyde Consultants (WCC) under
a subcontract to Acres. The studies were broken down in two stages: 1980
Activities and 1981 Activities. The results of 1980 Activities were presented
in the 11 lnterim Report on Seismic Studies for Susitna Hydroelectric Project,
December 1980 11 by wee and are summarized here for ready reference. 1981
activities are partially complete and preliminary conclusions drawn to date
are included here along with the total Scope of Activities and the current
status. Preliminary conclusions are considered to represent reasonably
conservative seismic design parameters for the project studies and are not
expected to change significantly as a result of ongoing studies.
2 -Summary of 1980 Activities
As a result of activities completed in 1980, it was concluded that the
Talkeetna Terrain, in which the project is located, has the following
boundaries: The Denali fault to the north and northeast; the Totschunda fault
to the east; the Castle Mountain fault to the south; a broad zone of
deformation and volcanoes to the west; and the Benioff zone at depth.
The Talkeetna Terrain was judged to be acting as a coherent tectonic unit
within the present stress regime with major strain releases occurring along
the boundary fault systems. \~ithin the Terrain, strain release appears to
be randomly occurring at depth within the crust. This strain release is
possibly the result of crustal adjustments resulting from perturbation impos1ed
by the Benioff zone and by stress (associated with plate motion) imposed along
the Terrain margin through the Terrain.
Within the site region, 13 faults and lineaments were identified as requiring
additional investigation to better define their potential effect on Project
design considerations. These 13 faults and lineaments (designated
sigfiificant features) were selected on the basis of their seismic source
potential and potential for surface rupture through either site. Four of
these features are in the vicinity of the Wrtana site (see Figure 4.1) and
nine are in the vicinity of the Devil Canyon site (see Figures 4.2 and 4.3).
Preliminary estimates of ground motions at the sites were made for the
Denali and Castle Mountain faults and the Benioff zone. Of these sources,
the Benioff zone was expected to govern the levels of peak horizontal
ground acceleration, response spectra, and duration of strong shaking& The
ground-motion estimates were preliminary in nature and did not constitute
criteria for design of project facilities.
Further details of specific findings of the 1980 studies are presented in
Section 6 of this summary. On the basis of these f·indinas, a detailed scope
of investigations for 1981 was developed and is currently in progress.
n. lt
3 -Scope of 1981 Studies
The scope of 1981 activities was developed on the basis of the original Scope
of Work included in the POS and results of 1980 Activities. A list of 18
objectives was formulated by wee which formed the basis of discussions with
Acres, Acres External Review Panel and APA Review Panel (Figure 4.6). The
final Scope of Activities as agreed upon, is summarized as follows:
~ (a) Subtask 4.08 -Preliminary Dam Stability
Provide assistance in evaluation of dam stability during earthquake
conditions.
(b) Subtask 4.09 -Seismology
Evaluate location and source(s) of moderate to large historical earthquakes
within Talkeetna Terrain and north of Talkeetna Terrain to better define
their source and impact on floating earthquake within the study areas.
Evaluate available seismology :lata to determine stress regime within
Talkeetna Terrain) refine MCE on Benioff zone and prepare long term
seismologic network recommendations and operation manual.
(c) Subtask 4.10-RIS
Evaluate RIS using results of 1980 and 1981 studies and its effect on
the project.
(d) Subtask 4.11 -Seismic Geology
Evaluate 13 significant features identified during 1980 Activities
(see Figures 4.1, 4.2 and 4.3) by performing remote sensing, Quarternary
·Geology, field mapping techniques, and determine if a feature is
"Fault 11 and if it is a fault, with recent displacements, determine
MCE along potential seismic sources.
(e) Subtask 4.12-Report
Prepare final report to document these studies.
(f) Subtask 4.13-Ground Motions
Refine attenuation relationship, determine earthquake design parameters
for Watana and Devil Canyon sites, and perform seismic exposure analysis.
(g) Subtask 4.14-Dam Stability
Provide assistance in evaluation of dam stability during earthquake.
(h) Subtask 4.15-Transmission Line Seismicity
Evaluate ground motions along the transmission line, assess ground
stability conditions along the transmission and access road corridors.
r
r
··r l
,,.
-r· . .
r·
. f"
.. r ..
~ .-
:[,
I ,
.... _ ..
I
4 -Status of 1981 Activities
A schedule of the activities is shown on Figure 4.7. All activities are
proceeding on schedule. Field geology studies were completed with the review
of field data on September 2 and 3,· 1981 at the site.
Completed activities are as follows:
-Aerial reconnaissance was performed for all 13 features_,
-Field mapping was conducted at 300 locations.
-Thirteen ground magnetic surveys were conducted across the Talkeetna thrust
fault, Susitna feature, and feature KDS-3 near the Devil Canyon site.
-One seismic refraction survey was conducted across the Talkeetna thrust
fault.
-Low sun angle photography was flown (at a scale of 1 :24,000) and interpreted.
-Existing color photography at a -scale of 1:24,000 was interpreted.
-Approximately 2,500 ft of core in five borings which crossed the Watana
River feature (KD3-7), the possible fault (KD-5-43) on the left abutment
at Devil Canyon and the possible fault (DC-1) in Devil Canyon was reviewed .
-Three trenches (total length 450ft), which were excavated within the zone
of the Talkeetna thrust fault and the Susitna feature, were logged. The
approximate location ·of these trenches is shown on Figure 4.8 •
-Data for mines in the vicinity of the Talkeetna thrust fault (KC4-l), and
features KDS-2 and KDS-3 in the vicinity of the Devil Canyon Dam site,
\t~ere reviewed.
-Quaternary geology air photo and field mapping was conducted at more
than 60 locations.
-Eleven samples were submitted for c14 dating.
-Two samples were submitted for K-Ar datingo
-Field review sessions were conducted with Bela Csejtey, George Plafker and
Norm Ten Brink.
-.Review of field activities and results was perfonned by wee Internal Review
Group on September 2 and 3, 1981 in the fieldo
5 -Preliminary Conclusions of 1981 Studies
The preliminary results presented below are subject to revision as analyses
of the field studies and other data are conducted.
m
m
m
-m
'lli
m
III
m
·~ Uj
m . .
Ill .
.
(a) There are three features of importance for seismic design of the Susitna
Hydroelectric Project. These features are the Castle Mountain fault,
Denali fault, and the Benioff zone.
(b) Of the thirteen features selected for study in 1981, the following table
sunmarizes the conclusions:.
Feature Feature
Name No. ~;._-
WATANA SITE
Talkeetna
thrust fault KC4-1
Susitna feature KD3-3
Watana River
Feature KD3-7
Fins feature KD4-27
DEVIL CANYON SITE
KCS-5
KDS-2
KDS-3
KDS-9
KDS-12
KDS-42
KDS-43
KDS-44
KDS-45
The Feature The Feature is
is a Fault an Active Fault
Yes No
No No
No No
Yes No
Yes No
Yes No
No No
No No
No No
No No
Possible No
No · No
No (see item d) No
(c) A feature at Devil Canyon, designated as feature number DC-1, is being
evaluated to determine if it is a fault. There are insufficient data
available at the present time to evaluate whether or not the feature
is a fault.
(d) . Feature KDS-43 on the left abutment of the Devil Canyon site may be the
result of an old fault or slope instability based on geophysical and
borehole data. The feature does not exhibit geomorphic features
typically associated with an active fault.
(e) The maximum credible earthquakes for the Denail and Castle Mountain
faults were not re-evaluated as they will not govern the design. A
maximum credible earthquake for the Benioff zone is estimated to be
magnitude 7.5 (M 5 ) occurring 60 km from the Devil Canyon site and 50 km
from the Watana site and a magnitude 8 plus (Ms) event occurring 90 km
from the Devil Canyon site and 70 km from the Watana site.
r
·r
r
-r
--r
r
~-r~-
··r
. [~
[~
·['7
·"'
:·[
[
'
.~ [
[
I[ ' '
[ "
'
(f)
(g)
(h)
Preliminary response spectra curves for the Watana site are represented
in Figure 4.4 and for the Devil Canyon site in Figure 4.5.
A floating earthquake of magnitude 6 to 6o5 (Ms) may have to be
considered at 10 km from either site in seismic exposure analysis. Its
impact on local faults or design response spectra is being studied.
Both deterministic and probablistic approaches will be used in seismic .. . exposure ana1ys1s.
6 -Spectf.i£ Findings of 1980 Studies
Denali and Castle ~1ountain Fault Systems
The only fa.ult system within the site region (within 62 miles or 100 km of
either Pr·oject site) which is known to have had displacement in Quaternary
time (thf~ la.st two million years) is the Denali fault. This fault is
appr"ximate1y 40 miles (64 km) north of the sites at its closest approach.
The Ca.stle 'Yiountain faultsystem is innnediately south of the site region.
This falJilt system has had displacement in Quaternary time •
Susitna Fec1ture
ReconnzLi ssance 1 eve 1 aeri a 1 and ground checking has produced no evidence of
a fault in bedrock and no evidence of deformation in overlying surficial
units for this feature.
Review of aerial gravity and magnetics data shows no evidence of a major
tectonic dislocation. Earthquakes correlated with the southern portion of
the feature by Gedney and Shapiro (1975) occurred at depths greater than
43 miles (70 km). These focal depths suggest that the earthquakes occurred
on the Benioff zone well below the crust and well below the extent of the
SusitncL feature, if the lattel" is a fault. The feature may be the result
of glaciatiJn of stream drainages whose alignment reflects structural
control such as joints or perhaps foldingG
Talkeetna Thurst
The Talkeetna thrust fault is a northeast-southwest trending fault which may
dip either to the northwest or the southeast. The fault may be connected
with the Broxson Gulch thrust fault to the northeast which would result in a
167 mile {270 km) long fault that passes approximately 3.5 miles (5.4 km)
upstream of the proposed Watana site. No evidence of displacement younger
than Tertiary in age (approximately two to several tens of millions of
years old) has been reported for either the Talkeetna or Broxson Gulch
thrust faults. However, anomalous relationships in deposits of Tertiary
. age on the north side of the Susitna river were observed during this
investigation and may_be related to faulting.
r
·-r
·r
-r
rr
~ [-
···[~
~ r·~
. r·
··r
. ['
-t'
: -[_
: [,
·t
'
[
.[
. [
..
l
Observed Seismic Events
Seismicity within the Talkeetna Terrain can be clearly delineated as crustal
events occurring at depths to approximately 5 to 12 miles (8 to 20 km) and
as Benioff zone events which occur at greater depths. The depth of the
Benioff zone increases from approximately 25 mi1es (40 km) in the southeastern
part of the site region to more than 50 miles (80 km) in the northwestern
part of the microearthquake study area and more than 78 miles (125 krn) in the
northwestern site region.
The largest reported historical earthquake within the site region is the
magnitude (Ms) 6-1/4 event of 1929 which occurred approximately 25 and 31
miles (40 and 50 km) south of the Devil Canyon and Watana sites, respectively.
Four earthquakes graater than magnitude (Ms) 5 have occurred during the
period 1904 through August 1980. · .
Earthquakes as large as magnitude (Ms) 5 to 5-1/2 may possibly occur in the
site region without direct association with surface fault rupture. Such
events would probably be constrained to rupture planes deeper than 6 miles
(10 krn) •
The largest crustal event recorded within the microearthquake study area
during 3 months of monitoring was magnitude (t4L) 2.8. It occurred 6.8 miles
(11 km) northeast of the Watana site at a deptn of 9.3 miles (15 km) on 2 July
1980.
Two clusters of microearthquake activity were observed within the micro-
earthquake network during the three-month monitoring period. These two
clusters occurred in the same general vicinity east of the southern portion
of the Talkeetna Thrust faulto These clusters of seismicity occurred at
depths of 6 to 12 miles (10 to 20 km). One of the clusters gives a
composite focal plane mechanism of N230E, dipping 50°NW, consistent with
local geologic trends. The sens~ of movement is reverse (toward the
southeast) with a dextral component of slip.
The clusters of microearthquake activity described above appear to be
related to a small subsurface rupture plane that does not extend to the
surface. These clusters do not appear to be related to the Talkeetna
thrust fault.
Seismicity in the vicinity of the site, including the clusters described
above, appears to reflect relatively small-scale crustal adjustments at
depth in the crust. These adjustments may be related to stresses imposed
by the Benioff zone and/or by plate motion.
No association of microearthquake activity with candidate significant or
significant features is appar·ent on the basis of information obtained to
date •
[
~-r.
~f[
.. ,.
; tL
·frr·l· tt
Reservoir Induced Seismicity
The two reservoirs are considered as one reservoir hydrologically. This
combined Watana-Devil Canyon reservoir would be among the deepest and largest
in the world. It is concluded that the likelihood of a reservoir-induced
earthquake of any size within the hydrologic regime of the proposed-reservoir
is high (0.9 on a scale of 0 to 1); this is primarily because water depth
has a major apparent theoretical and empirical correlation with the occurrence
of reservoir-induced seismicity.
Maximum Credible Earthquake Assessme~
Preliminary maximum credible earthquakes (Pr·1CEs) have been estimated for
crustal faults with recent displacement in and adjacent to the site region
and for the Benioff zone. The PMCE for the Denali fault is estimated to be
a magnitude (Ms) 8.5 event occurring 40 miles (64 km) from the Devil Canyon
site and 43 miles (70 km) from the Watana site. The PMCE for the Castle
Mountain fault is estimated to be a magnitude (M 5 ) 7.4 event occurring 65
miles (105 km) from the Devil Canyon site and 71 miles (115 km) from the
Watana site. The PMCE for the Benioff zone is estimated to be a magnitude
(Ms) 8.5 event occurring 31 miles (50 krn) beneath the Watana site and 37
miles (60 km) beneath the Devil Canyon site.
I .
l
I
l
.
\
-·-.:·-t~
~;:._:...
.t• .... --
-1J 6 •
I ... ' • _!J'
., . .., __..,..._.~
.·
/ ,
--/v / _..... ,.-"
-/ '
,_. ___ _
._....:..---·
... _
-·
_..
-----:--... ---
C'l & ..
. ----. <-----· ::-.__-. ' --· ...... .... ·--
LEGEND
-------Indeterminate • A ieature
--·--·-Indeterminate • B feature
....... Indeterminate • BL feature
!;QTES
Explanation of significant feature classification system
m Sect~ on 8 2.
2 Exptanat•on of all:Jha·numeric symbols is presented
m Appendix A
...........
WATANA SITE SIGNIFICANT FEATURE MAP
flG~P.E 4.1
- - -Indeterminate -A feature
-• -• -lndetarminate · B feature
.. • • • • • • • • • • • Indeterminate -BL feature
-"""""=~~ NOTES
1. Explanati~n of significant feature classification
system is presented in Section 8·2.
2. Explanation of alpha-numeric symbols is
presented in Appendix A.
0 6 10 Miles ~~~~~~~~~~E3~---,----~:]I
0 6 10 16 K!fomelers
--Indeterminate • A feature
-• -Indeterminate • B feature
• • • • • • ! • lndmrminate • B feature
NOTES L
1. Explanation of significant feature classification
system is presented in Section S.2.
2. Explanation of alpha-numeiic symbols is
presented in Appendix A.
DEVIL CANYON SITE
SIGNIFICANT FEATURE MAP
0~~~3=~1~~~~~2 Mil~
0 1 2 3 Kilometers
FIGURE 4.3
, ~ z ~. :·:·-·~~ ~·-:;::~ ........ __.....-:--... ~--c~,..-...... ., .......... --~";!·~------··--,.~~·, -:
<.:·,.·,,, _,
1
~ ~~ ~~' ~~1 ~--"§'~ =·~-~;,-~ •
--
_.
'" .i
'-_:!!!!'
'I. 1 [ . .
.....
...... _1_
-"-.
---': ·-.,,:.,"'lo.c ---~ ,-,: I:-'.::0.~
c.::;· ' -;.;
-----~ -
... ~
;-...J ~
..•
.. ~-.;;: --, .
' '
-_ . I
I
.
~ . .
'
:
!..--~ ..::.
~ " 9.
-J •--
'1--~ a
•--
-
. ' --
_:·
-
.. ; . ;;;
l. = --.-.,;;;.. . ~ i =: ~ : :
I .
.
~--.:. :-:<:.--
. --§
~
it
iS. ._. !I
; _g ~ ~
--~ ~ c•--""
= -.-·
:
.
...
-~
. -. . \)-
::::::; ::;-<:: ·-
~ ·--·-·-
-~
'
~·
i :
-·--
.• ;;.-::='
-'L
.
:..::=:
1
I
J
I
'
I
(
I
I
(· •·.
I ........ ;
[
'
[
•
..•
·-.. . .. . . ~'.., ..
Memorarnium .
.. .
lo
;~
I . ....
?ilc
.C.l<ilCA
H+i-ll
.
~ 30 April 1981
~ BUIXIC'S POR T.Ht: lS Ozs.n:c"riV!:S 1~ KCH~ Pl-W-1.;2
S\.ll;)t.aa'k
_.-N ... c .... _• __ i_._ . C~d•=tive 1')-e•c:r.tpt.iOft
· .. l. -4.11
% --·· . • -.. ---4 el.l
l .\
4.
. ~ Signif'ican~ 1':.-turoa Dt . W&'--M }
Si;nifi=Ant F=aturca -~ .,
. Povil · c.anyon ~
Sanio~f ~ ~
-ralkeetn& TerrAin E.arthq:alr;a : }
itt:Yiw . .
, .. -z .. ~ .. ~ .. + ··--:.
s
6 .
·<G.09
·4.09 .·
· ·l904 " 1912 !:ut.hciuak• Revi.w
·'rliU..-ot:la Nr~ain ·stroas
Jle.g~ ..... ,· ...
.-·4.11.:
'~.10·
;
. . . ~ ~ .
,
·-,. ... ··
. . .
..
:
. .
. ....... "
.. .... ... .. I ..
..
1~. ,:.
• j I
·-·.:.. . ··~ .. •-r~-· · 4.13
4.08,
4.14 ..
'·15 4.U·
,.1'3
4 .. 09',
4.12
4.0~,
4.l.l. -
·· ·we~ fc~ ~tivo Paul~& ~n
· 'r~U~;at.I'Wl ~.e:rAin
JUS Rerfinc::wmt
I>enal.i · Kee il~f~eD~~A~
·i 9EU seiaRi~. Het~rl::-
.. •. Ground· Koticma · ~t ·.W:t.Ana
Qrog.."')d ~ions at.· · ·
tM.vil C:ilnyon
~·StJI.bil.tt.y
~au1:. Lift~·~ ~0&4 $~1U)i11~y
DcAioff ~ h~~anuaticn
.Ravia ion
Ravise ~po*ur• An&lyaia
N-e~vo:r"~ KD.."lal. -
De.t.A ~lyt1$ Md :1\Upcn..
~~;at.a for ~ni•uat;icn,
~.,_: Plam.~in;
Pi:to4 P~·
. . . . ... .. -'"'
.. . .
-..
}
...
l.. cn,'ac:t.ivo Rea• aftCS D4ta:riptionw llt"a t...\to•c i.n Rt:fte::ab:ium
~-1'2 and· le1:.ter ~4-G-0.
2.. Ehll)t:.ask lie~. ar• tho.a in .a.e::ca n=w:ric:o.n 'lnc. ~greu::;.,u~t.
No. PSi0~.1·0.4l el'M lott.cr ~55.
l. lhu~90ta Ztr• azpreaa64 1c $J:lol.
4 • · lncl.u6cs 0~"-ernary 9e-a1ogy, field =ap;p!.ng, trenching, ·~: ... : r•~o<t.• r.cna.ln9, li:d.t·•uS Qeo~l'•i=•• end :aview a.n4
t.rovol.. It. cJ:Ol'l~•* c.al11;)rat1on •t.'-141~ on ~e Caatl.• ~Uin t&U1.t. Whicb ~vcr l:>.en a•let...-1.
S. · 1ncl. U6o4 in w69et. for Obj ..:'ti v•a l ar~ 2 •
6. lncl~ed 1n ~49•~ for O~jectivaa ll ~ 1~.
..
·.
•.
..
.. . .
•.
.·
-• • •I ·-·~ ~ . .
. . '
-• ; t
.. ~ ... ... .
• -: X •
...... ... . ...
... -.. _ ..
.. :
7 •. Thi• t.c:ri:k1. (l•••·t:lte f!:ec! fee of $6~,0<.t0) corraapoJ:;oc!•
vi t.'h t.hll~ in 1at.ter · ~4-SS, :n. ia $23 , ooo l.••• 'Lhan
·. . . • •. tl.e ~u:rca:nt. (;57~,000) in 1ett.oro W""-hh4•SO. "fht: :t2l,ooo FIGURE 4.6 ·L · . . . ·· has bo•n aat. .aaic!• u,· 6cfray, iD ~r'~, tho ~'t.s i6cn-
·. . ., t.ifiec in l•t.t.er '\or~"'-"&·
••••• :~.~ ... ~>..:,.•,. Ill' .~:~· .. ,!.,• •• ''-"~i~:.·,· •' ·:r:.:• •...... ~~.~ ........ ,. ........ : •......... ,.;;., .. ,., .................... : .. ,.. "1''• ..... ,.,lo~ ... ~,. ....... .-.,./ ..... ,.,, ..... ,.,h ....... ).·· .. /, ... ~ ..... ,. ................ ,; . ..;.· . ~. __ ;.,~ .. -:-••.-_,.,.,.,_,,, '''"''••• • ,.,,.,, •••••• .. • •••• • "•'""'•• • ••• •• ,,~..,., ... •'•~•••••-••'•'••&Oo ..... u.~ .,,.., • • '• • • :~·· • • , .. !,•, u-• '•\ :,., .~. :'
n
.(]
~.OS PRE Ut.~lt,ARY Dt-.1: STASILITY
t;.O!? SEIS:.mLOGY
HJS1orical Ear1hqvakes
N1nwork r.'.anual
Benioff t.~aximum Ea:-:.'lquake
4.10 FH:SERVOIR l!WUCED SEISI.',ICITY
~.11 SEIS~.".IC GEOLOG'I'
Remote Sensing
Ouatl:!rnary Gt>ology
r.·ap;:>ing
Trcnchmg
Field Review
4.12 • REPORT
Analy!.is and Drah Report
WCC Review
~ 13 GROUI-.lD MOTIOt~S
~.14 0.!\fl. STABILITY
4.15 TRANSMISSION LINE SEISMICITY
ACRES REVIEW AND UJPUT
ACRES SPECIALIST CONSULTANTS MEETING
APA EXTERNAL REVIEW BOARD MEETING
V!oodward·Ciyde Consultants@
1981 AND 1982 SUSITNA TASK 4 SCHEDULE FOR SUBTASKS 4.08 THROUGH 4.15
.... ..,. Jl ----------~----------1982 ---.....:....-"'--
:. tt .1 ... ,. ... ! I t• •• '"1
C~1n1.r1
~ 11. 1.:. ... ::.
... ~. \ 1 ... t t !"' r[t'rt.·r.rr J.:c~1.,.~, ~•rrk ...
J. t! .
------·"··--~---·---·-
... -.-.... .... ____ ,.__, __ -·-·----·--·--· .,, ___ ........,.._ ... -'""""---·-·--. .... -·. -. r:::=:=-::-.:::=.::::::::__-=:-..:::::::-...:::!_
'" ____ , ___ . ---·---· .. ··~--c.:.=::·-=.:::::~ . c.:_~:_: ____ _:_ --.
·-~ _ .. __ ,.. ____ -·----
CJ
-----"'~---· --·----·-
!_,.-_,_,_ __ _ DD 0 0 0 0 IJ
----~--~ ... -.. ~""------.. --
--------... --.. ----------·:"'----··.,---~--.-. --:. ___ ,. _____ , __ : -
-. _______ ....,.. _____ . -.:....--... ----...... --...... -.... --
--~~~:--~--=---~·-n ~or::··;;~~--.~_.:....:.:,__:_:.:_--::_·_~-__ ··----·. -·-· ---· -·· .... . .. _ . -·· .
.... _ .. -.... --·----·~--'"' .· .. -. -·-=···-· ---_:.." ~---... -.... :""---·-------: -----... -----~~---.. ·-·-:--~--.. ~---... ~--""--'·'"'---,_ -----~----.:. .... -____ --:-----·----~~-·=-·-:-=:~:.:.~ -· '": --_:__:::_ ... _-..:__
... --~--~ .. ·~--.. --:-~---· -----*'·:-----..!.....:
~ : .. ~ ----.. --:: ~~ .. ---~. __ ;-_:::_:~---:-· • i • • -... ~ --~--·-~--~----~ ~--:-~:~-~ :--i ::.~~:~~ ----:;-:-.r·~--...:.~.7"":''...__ __
~":·-:---: .. '7-.. -<-=t:~: .. -2-:-·-: •7:_: j_~ __ _:._~ ----!..::--.-: ..
f--~-=::_~-~~~--~: .~~-:-:~:f~t~-c.====~-~--~-~-: ::~~ --_: -: · .. ' ---·' -
!---:--~ --____ .._ .. --.... -----~-·--~----. __ ,..,_ .,. ___ ... --. __ .._. . .-.!. ;. -·*":' :------------· --·-·' --·---------··'"-' --~
-~-F.:" .. ·."= LohoOO-• > -·-·-«•-.-.... ..._ ----.... --·· _ .... ,... ... _,. .. ~o<-<-_,... ... --· __ ,. ________ --•• -... • • -··' ~
.. -""' _., ""':'-·..----'-:"" ---~·--:--· --:-'·-.. ----·-·--1
·-·-~~ .. _ .. -------·--:------· ------~-~ . ..:.. --'---'""~
1-.... . ' ........ _ ... __ .. ....,,_.. ____ ,.. .... _ ------*'"'" -·"-'-~---=---·_.. .. -.~-.--.....
-·'" .... -i REVIEW ON-
-·· ·-· -2 AND !3 SEPTt.MBE:R --""':"' --·-·-'"-·--~---;--__ ,_"~·------:-.:.._ __ __;...-J -........ ---·-... -~ ... ·-------·--... ---·-
:--=-~~=:--= . ··=--~ ::-_:~---·-_-·-:-::-.: =-~==---:..::.. ·-=-.._---. -~·---'---------·--:-----· :----:-. --·:------~-·-..:........:~ r . . ~. _ _: __ _:. ___ ~--~----..:. __ . __ · -~::"" -::.-.-~: .... "-.·--: . ~.,-·-:-:_:_:.:.....-~;·-~·---.;,.~_-,=-r:-.:; ?i"'£:.;:-=~---~ .; ....... :-:-~--....... -... ---.-.-.:.-----·---·--
1 -----=--~---·,_.,: --...... --·----,.; ___ _.:. --,..;..__ ·,._.,_:_ --.. -__ ._:_:_ ~.-!..---_ _:__· __ -------·----·-_...,__! ___ ~ .. _: ---=~1 .. ·:;;:;; "NJ -...:·------~'--~-----_____ ..,.. __ -f . -' · · · · .: · : · · · : · · ' : "MEETING ON -=-----; ·--
1 • • • . . • ----·--,--·-.·---. • . ---~---Cf·1 DECEMBER·--=----:--_.;.+----------~-----..... _._ .. _-.----------· __ ....; ..... ., ______ ·------· ~--.. --·-----~-........ ,:_..._ .---·---"""'---~ .. ---------·----·--__, ....... -.-___ -.....;, ... ----.. ~-----:-----·-
--------------·-~·---..... -----··--·---.--·--·---·-·--··-·--····-··-· -···-,. --·---·----···---:. r-=="1--==-:. _______ _..;_ .. -----------------·
I t \. J.tJ.• .a f·, .... '
o o DO <25'b T1me Commitrnem by Key lndi·..ic .. H:!s
C:: .... :::J 25% to 50% Time Commitments by Key lnd·vidJah
-···~ ..... -... -.. -~--·-· --·----------· _..,..,_
-__ , .. _, __ ..... __._ ..
!. t: I! : .. :~ !. H t!. :-:~
ur1t•·rrP
!-U-I!; !'t "!.
.... [,\ t "'l4 l rru "'*! •
·---.. --·-·. L--~-:,._
~ tL t~ Z!"· :0!.
J4..._ L J fi.'f I tPP.\lAI'.Y
FIGURE 4.7
... _ .. •!"-:-... ~
.. :-:..
f:' --
lJ·
0
-~ ..
··. 0
10
I []
[0
j
18
l
.-.
-.·
I!'""'. C' -... --... J ........... ~-. ·~
..... -.
·.
·.
-.·
·.
I' " I • • • \ -·· ·-·~:
. --....
·.
--·.· ·.
·:·~; ...
>·
:.~. s··
..,. . ..
'
· ..
-.... ,
~ . -
.:
.·
;H
.... ..
.. . -·
. . ,
., ... , f
1"/•
, ! ""\ r.~tt-*'"\ ..
l..n.o .... / ~' .. , •••
..
. .
. ~ : · .
.. :::~' ~,·: . . .
. . \.:
' -. ., ..
'#--..... ..; ~:~.:.:. ~·~~ ... ~ y.-
: !
, r ....
. . .......
.. It ·•
..
.,· .... -<#
·.-~ .... -.. .•
'
..
,.
.. ,.._, ...
., .,
1
7' • · .. ... ""-·.
. -/'• ·--, ... ::. ... ,
SOU'.:OAR"' FAULTS
Faults Wlth recent displacement
SIG~.;IFICANT FEATURES
------lndt:terminate A feature
---• --·-Indeterminate B feature
NOTES
1 .
2.
Explanation of significant feature classification
system is presented in Sectton 8·2 •
Explanation of alpha-numeric svmbols is
presented in Appendrx A.
~
-N-
~
BOU!~DARY FAULT AND SIGNIFICANT
FEATURE MAP FOR THE SITE REGim~
(., 10 20 30 ~0
......----
0 10 20 30 40 50 t(itometer~
FIGURE 4.£
•·
fP H
rr
'if .. . ' tl
!
I,
• >
SUPPORT MATERIAL TO TASK 5
GEOTECHNICAL STUDIES
;1
')
I'~ ·····L .;
: -• L
·C
f"'"' ·--L
·,C
c
c
1)
2)
3)
4)
5)
6)
7)
8)
9)
SUSITNA HYDROELECTRIC PROJECT
OCT 6-8 MEETING l1~FO PACKAGES
GEOTECHNICAL DATA I ~~DEX
WATANA DAMSITE GEOLOGY f1APS & SECTIOi~S
DEVIL CA,~YOi~ GEOLOGY MAPS & SECTIONS
WATA1~A DAMSITE EXPLORATIONS
DEVIL CAi~YON DAMSITE EXPLORATIOt~S
WATAI~A MATERIALS
DEVIL CANYOi~ f1ATERIALS
WATANA RELICT CHA.~~~EL
WATA1~A DAMSITE -FOUt~DATI01~S, EXCAVATI01~ &
ROCK ~1ECHAI"~ICS CRITERIA At~D DATA
DEVIL CAt~YOI~ DAMSITE -FOUi~DATIOaiS, EXCAVATI01~ &
ROCK f\1ECHANICS CRITERIA A1~D DATA
1) WATANA DAMSITE GEOLOGY
.,..,
L~
c
'PI ,--·L.J
--r~
t . ...;l
-C
t 10 ,, ____
I'
G
l
I
F
W-5
t
E
--
0
I
\
I
I
I
I
I
I ~ .1>,
~ ~
~
I
i
!
6 ---:......-·----~-----~ ··----=::.4-·
s.::... E C :.)1. 4 '~' _ ___..___....,;.;:
,_ .... ..,.:...--·--· ~, .. -,..
'· ,l-..... .i:,.)L. .. ---..
.. ".~. _..,1, ....
-·~--··---'"'-
2,
Co>.1'AC'T
t.""' .t CI!055 SECT 101<
i
\'
..,......,= ...... ---------------............ ,;. ALASKA i>OWER AUTHOiHtl _...,_,
S.US,'fl\ik toi"O'•Ott.U;UHt -·_,ttoi:IC't
GE:Ol.OGit MAP
WATANA
•• •
I
r
1
f,
t
I
. I
I.
I
l
l
[
I'
L
[
, ' 1-
r
l
'I. ' '
!f
G
E
I
i
1
!.
0
C'
B
10
s
. --.
0
•-., -----
..
-· ---
~ 1> J~,..~ :;'~'J.'TIOh'
..
'*J•K ,..,oo
G
I
F
I
&'~
2;,01;
[ ZIOC
I z»::
t9X
~ ... ... ..
"' u«. ? ;;
~
'70C
,.;oo
·~
14Y..,
130(
El
-~~--------------------------
--,---~-.~---~,..-,..---.--,--;-;-~~~~
. ____ !_ _____ ... ______ .L_ ..
!!!.&-:,.[ t-1:0C :-"J: t:tt•
~~
;
WA.TAI1A
Gt:OLOGIC SECtiON ~i,~'t
SHEET I OF?. r _ _...,..,.... _____ • ---------
l_~--... -...t!-'"'---·"'---·--· --~ ! ,. ~··----·"'" . J . ,._._....,.~,_,,,...,_ .... "' ... _., ~--~···___.,._,·-·-----'-! ! .... "ttl'1Di'i~~ ~'
... .,);~,.~:... ·-~ ...... ..--... _ .... ~ .. , .. ---·~ ... --""" t;:::;;:;~ ---~~:::~.·~:--::.~.::_:_ ... ::2:::'--=.:....:..~----?:.~d6~~~~.5:.'t;....:.:-=''w.;::..·----..... ;....-~:.;..,.,.;;:;,\;l
·.'
J
~·.
G
F
E
-
c
t::
It ..
B
10
%100
~
2!>0e
24!>0
~3X'
l:!X
z:~o-
r.x
•9::>C .., ... ...
% oe:>c E :;;
> ~ ...
170C
1600
·~
"':X
B
; ..
,. ... '"" , .... ,,
"'•' .... ,....... ! ,. :• r ~ : : ·--: ,-r '-. . ... : ... ~-:. ~ ... ·--,:. ...... -..... ..... ' ..... .
_, I ,. ~ , I ,. '"' • .......... ~ ...........
7 _ _;t _____ 4 ____ 1 __ ..... _!_ .. _ + 2
2700
2f,OO
2:>00
-,1'_-
?•OC
2300
t'.2':X' \;-t 2'•~
f.""\o."'?
£
I
I
I I
I
•,, I _ ... 1 ~9¢0
\
II 11100 \
I
1'100
•I.C>O
1~00
1400
·=
1200
1100
1000
t
t G
l
l
l
l
I
I -I
0
B
r
1A
i '
~ :t
t::
J " {
t
;
J
i
!
l ,, -
10 8 7
1£,0()
260C
:!>IX'
~ 24~ .. "
I
~=
St.!-~.~;.: '-:Joj! ,_ s.•·• r I
·~oo
1000
r-----,-.
L ---Y· .. ~----·
~-.• ....-,_.a,"'T"'l.------·----..--
......... :--.... --.. -·~
J,-... ..:l.-
-·...,"--r..,; ___ .,..._ . ......_,_ ~--'""-"
,..,
.. ..
_..:_~ _____ 4 _____ 1 __ II, 'I
.I
~ '
-.:.."'----8 _____ , __ ! ___ __..;., __ 9 10
I 'I
G
2700 ,, I
t:'
; t· ,,
f
2700 l
Zi.OC ~
2!>0C ~
H· """" _, F
u z;,.x ~
£20C --...
i
tl 210C, ....
2100
t
u 200C
1!>00
I I -190: ....
~
5 l!X
1800
~
! I :> ... .:
rr:x
1700
0
I GOO ;. I >roc
1!>00
I :.DC ; I
+&'le
1-400
'
I
·t
I
. I
~~oc
1 120C
lOCi<: j
IOOC
9\X J
L
;lOt:
!200
UOCI
1000
~oc
e
I
I
II ~r~-~-
··---.~~-;
·¢...,_·
,-,.
Iff \n
~
ij[
lt
~l
r· J[
iii
:n
f .1(
I ill
I
\ ll(
~ -
2) DEVIL CANYON DAMSITE GEOLOGY
}
f ' ~
l }:
~
.I
t
! ,;
:<
! ~~ , . ..
l
f • ' ,.
I
~ :! ~t ~
l
'l ~~
" :i d
1
J
I
i
I
I
f I
~
I
~
~
' ~
~
~
G
F
0
i
i
8 7
10 g
B
~ 2
0
~
0
0
~~
..,. "'
...1>---
;----.,.--·-.. ~-~-,..,_ t:==;~ . --·_:_::-...:.=.~· --·----·--··-__;__j
·--..,.._,:; "'!~"J..--.... .., ·~ .. ..-·--· --......
S~tARS' ~U'£0 WHEI!t l~"l:'I!'C:
t>I~E
j
·;
~
i
rl
!: ,, ,•
;. ,, ..
:<~
~ '' f
~,·t
f' ~.
t' ' 11 :[i
t. .~i;
A
fr tl
f .I
ll
r1
[t
~
!I
u
fl
~
"
H
R
I
\:,_ .--
G
F
E
-
0
c.l
B
<'A
~ ..
It
b
1:
• J
lO 9 8 7
/!1 ,' LJ'I ~) 0
h
...
6
..
.. -.. '":.:~r ; ....
••« -~·"-·--.
2.
DEVIL Ct.l4YCN
JOINT ?~TS
I
1
.~
~
{
l
~ ~·t
?,
I)
t
'
./
,. I
I
{I
L.
fll
;·
I....
fl I . w
rn
I
G
F
E
0
cl
I .
B
10
=~ I
t~OC
••o<.:
eoo
700
i
!OC J
ecncw-11~ · w
-----
7 e
--------·--·-: ;;;;.:=---·
S"~t!!
-~ Pt.-.ltf
lCNt
-_,..., __ .. _ .. __ .... _ ....
+ -~3 ____ .!_t ___ 22:._,_ __ _!,... __ __:__ ......... , i
'J
I~
~ ••• •• • " : \< •••• ' '" ...... ' .. ~.,:· .. ~· ~ : • •• • • •• ~
i 10
i
G
l
'i
iiiOO J !Tot
i F \
' I&OC
., l .
,!
• 1:.00
' >&«.
' ' ·= E
I ...
; l:OC I
= l
!0
!
,J i --t: U'X\
IOOC
I 0 90C
I
I ...
c
I
I
I B
~ -' I
l
I
t ' I ~t t
~'
¥• .,
i'' i
;,
9 e 7
'
--~----/--~=-=:-=-=---
/
-~--9---"" /
-/ -----_..
...... ...... ------
SZ.~ iJqA"t'Ol G11AV'EL
0'1 r..J.t\lo.L. ilU.
----------------
~--~.
.. ·.·J
3
·~
1200
1100
1000
!100
1100
70Q
roo
i, ~;
' ~----r---·-... --_ ... ,
;_~.----
1 ! ' r :~; ~---·-·---... ~-71.-_ .. _ ... ___ '
_ . ...t ~·'"-'"'··--"' -
I
I
I
I
I
I ~
I
I
!I
I
I
I
I
;I
~I
fl ~ <
''I
1;1
rt
,-----------------------------------·-------------~=============~=========-----.=--=----------.----_-_-·_-_-_-_-_-_-_-_-_-.--.. -~--~. -".-=.:·:_-_::.-_-..... ~'":"__.-.-~--~------~-.. -_-~.· '··---·----
N
N ....
"' ~
N
(T)
~
~
(.? z ;;
0
f
!
l
\
\ ...
I
"" J ,~E.
---:..~~
.
I
I
t; I,
I
I
.. _ ..... -.
,~,.
~\. E--r
' . \ . -_...-
\
:::: .. \ ~ ' \
\
\
'
\
\
'·
\
....
\
' ·~
\
\
.·
,.-ri'il-._ -.... '\.-""\ -. ·,.
\ . ..
"-
...
'· ... .~"" S. --:~., r ...
--
....__ . ._
. ... .. ~ .....
"--'-----..,._
-----··-_,.;.------' \ A ! ... ;.....~-.) ,,:: ...._
,.-
~. r?.~-.·
\ \\
' \
,.... -~-·~-.:.\.._.-;. _,;·p,~~;.v ... :.,:.--.::..·
~----,... --:..
~-
~-
~· 3j WATANA DAMSITE EXPLORATIONS
~
I
n-
; ......
~.i IJ-,
'
c
n '·
.t I ~
i .tt
* ti l ' ....
I
If
~
·f&L
Jl
i
I
J.
I
J.
f!.
~
~ -.
n
0
1
rr
!
n
' i >
n
u
n
l
~ • ' .. •
' ~-
~~:ATANP.
STRUCTURE: 910 ' HIGH ROCKFILL DA~
INVESTIGATIONS:
VSBP. 1~50-1953 RECONNAISSANCE
COE 1£75 RECONNAISSANCE
COE 1978
22500 LF SEISf1I C
28 BOREHOLES
30-EOO I DEEP
18 AUGER HOLES
27 TEST PITS
L!7EE5 LF SE I S~1 I C
10 PIEZOMETERS
13 TEr~P. PROBES .
SIGNIFICANT FEAT~RES:
ACRES 1980 ACRES 1981
3 HOLES
37E-752'DEEP
21 AUGER
24800 LF
4 HOLES *
! 300-955'*
18 AUGER
21 PITS *
38200 LF
1 PIEZO 4 PIEZOS*
1 THERMISTER 2 THERMISTERS*
VALLEY 300' AT BASE) fOOD' AT RirJ 3Q-6C 0 SLOPES
10-40' OVERBURDEN
S-40' ~EATHERED ROCK
ALLUVIL!r1 -SANDS AND GRAVELS) sor~E TALUS) POSSIBLY PARTLY FROZEN
P.ELI CT CHANNEL L:PSTREAf1 OF DAr·L GLACIAL AND ALLUVIAL r:.~TERIALS
UP TO 45~' IN DEPTH.
r'!AJOR SHEAR zoNES <"THE FINS" J /lFINGERBUSTER 1
.. ) BORDER DAr~srTE.
LOCALIZED NARROv! ZONES OF SHEARING AND INTENSE THER~1AL P:LTERATION.
3 MAJOR JOINT SETS <PROMINENT N30-EC 0 W)
DAf'~SITE IN PLUTC~L BOUNDED BY VOLCANICS AND SEDI~iENTS3
*NOTE: IN PROGRESSJ NU~BER MAY INCREASE.
9/16/81
~~
[
.. r
!
r-l
I
[
f
r '
_:.
I
[.-
.
'
{
11 1
~
~ w
. . [l t ,_
lij
\....
u
\ .. ~ .. ~
. IJ .
.
~-·
ft
14
'........
' Q
.._
U_-
(l .
'
~1ATERIALS SOURCES:
CONCRETE AGGREGATE & FILTER r·1ATERIALS AVA! U\BLE 2-L~ r~11 LES
D0\'!NSTREAr*1 OF SITE.
ROCKFILL ,l\VAILAELE FROr1 EXCAVATIONS AND It-~MEDIATELY A]JACENT
TO LEFT END OF DAM CREST.
GRAVEL SHELL MATERI1\L AVAILABLE IN RIVER Y.!ITHIN E-8 f-11 LES
UPSTREAf·! AND DO~!NSTR:Ar! -STILL BEING EVALUATED FOR SUITABILITY.
IMPERVIOUS/SEMIPERVIOUS MATERIAL FOR CORE AVAIL~BLE 1-3 r-~ILES
UPSTREAr~ oF AXIS.
AREAS TO ADDRESS IN DESIGN:
MAJOR SHEAR ZONES LIMIT UPSTREAM AND DOWNSTREPJ~ LAYOUT FLEXIEILITY.
LEFT ABUTt-1ENT SHEAR ZONE AND P.L TERED ZONE Lift: IT STRUCTURES., vl ILL
REQUIRE ADDITION/l.L GROUTING .L\ND DRAINAGE PROVISION.
DEEP ALLUVIUf:~ IN CHt\NNELJ OF UNKNOvJN DYNAr-'IIC <SEISt~IC RESPONSE)
PROPERTIES t-1ANDATES REf:iOVAL UNTIL PROVEN SUITABLE ft.S FOUNDATION.
LOCAL SHEAR ZONE INFLUENCE UNDERGROUND STRUCTURE ORIENTATION.
DEEP RELICT CHANNEL ALLUVIUri REQUIRES INVESTIGATION FOR ~~lATER
TIGHTNESS AND SENSITIVITY TO HYDROSTATIC HEAD FRO~~ RESERVOIR.
SPORADIC PERr1AFROST \'fiLL REQUIRE CONSIDERATION IN CONSTRUCTION.
UNDERGROUND STRUCTURES:
ROC[ Q~ALITY GOOD BELOW 250' IN DEPTH} PERMEABILITIES LO~ •
STRUCTURES REQUIRE ORIENTATION TO AVOID LOCAL JOINTING}. SHEARS.
f~
~~
~
'
~
i r:.~ . . • :..~~
i
i
H
:i
. I
II
!i
11 'I !I
1\ II
II
' IJ
II il •I !,
ll ll l:
>i !! q ,,
"' .~i q ll
f! . ,!
·!l lt ,fi
" H 't r,
(;!
\l . !:
I
~ ' • j
"" t
M' u
t ~ ,.
fJt
!_ ..
n .
'-··
ll .. .
-··
n .
L
I
~~
l
I '
~ .. -,.
I
.
~1ATERIALS SOURCES:
CONCRETE P:GGREGATE & FILTER r·1ATERIALS AVA! LABLE 2-L~ r~ii LES
DO\l!NSTREAr·1 OF SITE ,
ROCKFILL AVAILABLE FROt1 EXCAVATIONS Jl.ND It~MEDifl.TELY A]JACENT
TO LEFT END OF DAM CREST.
GRAVEL SHELL t1ATERIAL AVAILABLE IN RIVER lt!ITHIN t.-8 f-1ILES
UPSTREAf·1 AND DOv!NSTREAf!-STILL BEING EVALUATED FOR SUITABILITY.
IMPERVIOUS/SEMIPERVIOUS MATERIAL FOR CORE AVAIL~BLE 1-3 r-~ILES
UPSTREA~ OF AXIS .
AREAS TO ADDRESS IN DESIGN:
MAJOR SHEAR ZONES LIMIT UPSTREAM AND DOWNSTREPJ~ LAYOUT FLEXIEILITY.
LEFT ABUTr·1ENT SHEAR ZONE AND ALTERED ZONE LH~I T STRUCTURES.. v·!I LL
REQUIRE ADDITIONAL GROUTING AND DRAINAGE PROVISION.
DEEP ALLUVIUr-~ IN CHANNEL) OF UNKNOvJN DYNAtiiC <SEISr~I C RESPONSE)
PROPERTIES f·1ANDATES REr'iOVAL UNTIL PROVEN SUITABLE ~.S FOUNDATION.
LOCAL SHEAR ZONE INFLUENCE UNDERGROUND STRUCTURE ORIENTATION.
DEEP RELICT CHANNEL ALLUVIUri REQUIRES INVESTIGATION FOR \:.lATER-
TIGHTNESS AND SENSITIVITY TO HYDROSTATIC HEAD FRO~~ RESERVOIR.
SPORADIC PERr1AFROST \1ILL REQUIRE CONSIDERATION IN CONSTRUCTION.
UNDERGROUND STRUCTURES:
ROCK 0t'ALI1Y GOOD BELO~J 250' IN DEPTH) PEP-.r~EABILITIES LO~l~.
STRUCTURES REQUIRE ORIENTATION TO AVOID LOC~L JOINTING). SHEARS.
i---------~--------------~------------~
CD • ~
Q
NOTE:
APrr •
I) SECTION SHOWN ON FlGURE -
2l TOPOORAPHIC c:nNTOURS AR£
APPROXIMATE
L
Previous Work
,.. --f 1981 Work
1981 SEISMIC LINES SCHEMATIC \l•am\
WATANA EXPLORATION HUBW
,
, ...
'·~·
.-) .. '.
NOTE:
I) SECTION SHOWN ON FIGURE -
2) TOPOGRAPHiC CON"lOURS ARE
APPROXIMATE
L
Previous \~ork
,... --t 1981 Work
1981 SEISMic LINES scHEMATic Ianum\ WATANA EXPLORATION ROD~
,
I. WATANA SITE
. 1980 GEOTECHNICAL INVESTIGATlON I. 0 PREVIOUS WORK
e 1980 PROGRAM -DIAf~OND CORE HOLES I ~---SEisr~Hc LINEs
IVIATANA SITE
I
I (
r
1981 GEOTECHNICAL INVESTIGATION
PREVIOUS WORK
1980 PROGRAM
1981 PROGRA~1
BOREHOLES
-DIAMOND CORE HOLES
I
I
;--I 1980
1-_ • ., 1981
~. ~l
1000
~
•
1.."
1000
eoo
1100
1000 s· ..
I
I
1100
tooo-t
,tiM:!
'
0
!
--~~ :kP '!£} 'fFse!J
Bll-1
BH-3
NORTtl ABUTMENT
...., .. , ...... ...... ......
BH-t
~rrou !tOd tJ/11
PREVIOUS
1981
n t"'l r tn-t
·~ .\;l ·p 'fti ·rn. ' .. ('tr'"'• ~ ;
·~· !74' . " i~ :·. •. ··r, ··;~;.:; • ,. • ..... ·. ..t-2. L~ .. ~. § •
liH-21
1t<1nt1M rd DI'S
SECTION A·A
LOOKING U/S N 15• W ·
AT APPROXIMATE DAM CENTERLINE
. .:...~ ~· ' ,..;:__j"' . ~~··. ~-=-:t ~· ~""'-"' ~ ·;:.·~· · . ~ ..... -r~..,-". -... t·,_. __ ltt • ..._ 'I "" } .,., > ~ ~
\ . . .
Btt·B • 011..:~4 .
(PROJECTED~a.AOAL tU
DH:~ H · uwm oorm
...
Q.A\' OOUOl
'<llll.UIIOIOIItn:
Btf-8
ton1MO Jed Ull
SOUnt ABUTMENT
~n • ~H'-•~• .
"'' ~ ~ . .,.
NOTE: BOREHOLE LOCATIONS .
AND PROJECTIONS ARE
·.
AT APPROX'If-1ATE DO~/NSTREAf1 COFFERDAr1
SUBJECT TO SLIGHT
CHANGE WHEN SURVEY
DAT~1 _j s RE.C.E--1-VfD.
fii\IOI'I
IVOI
"I VOl 'I
IJ)O[
DH~ Dtt-1
.._ Ott-! "' .... ~ ::0 g-.. ...... u ...... :...::.: i..~n:
CMOAfR ANODIII lltlll:
SECTKJ1N a~e
LOOKING fl.J/S N 4~ W
lte M e 100 4Cie
~ t 1
KAlil • nn
GEOLOGIC CRCJSS-SECTION WATANA
BH-1
100011 Irs" Ull
Btl-12
(ii]
' "•
p
lL"
r
b ' .
~
~-
ir ~"
c
[
"•
v
~"
'll
11
I
4) DEVIL CANYON DAMSITE EXPLORATIONS
n > : .
L
.
r~
r • . r
r~
t ·r.
\ r.
t
Pf ~ .
t.
c ' ·"'. i
r:
L
["" .
,.,.
t .. , ...
i
c \: ....
fi ' ~·
~
ll'"" .
' ' ~
DEVIL CANYON
STRUCTURE: E35' HIGH CONCRETE GRAVITY-ARCH DAt·1
INVESTIGATIONS:
USBR 1957-1958; COE 1978
22 BOREHOLES 20-150' DEEP
19 TRENCHES AND TEST PITS
1300 LF SEISMIC LINES
LAB TESTS:
PETROGRAPHIC) ROCK ELASTIC
PROPE~TIESJSTRENGTHS
SIGNIFICANT FEATURES:
ACRES-1980
3 HOLES., 501-750'
2 Al'GER HOLES
GRADATIONS
ACRES-1981
4 HOLES.,150-EOO'
E AUGER HOLES
E TEST PITS
lEOO LF SEISMIC
GRADATIONS *
AGGREGATE TESTS *
150-900 FOOT CANYON WIDTH CEASE TO RIM)., 45-80° SLOPES
75± FEET OF ALLUVIUr1 UNDER SADDLE DA~1 AXIS
VIRTUALLY ZERO ALLUVIUM ON GORGE WALLS
SHEAR ZONES AND FAULTS IN BOTH ABUTr1ENTS
LARGE OPEN JOINTS AND DETACHED BLOCKS ON LEFT ABUT~~ENT
3 JOINT SETS <PRO~INENT N25W)
BEDDING DIPS SOUTH., 50-70°
35-SC FEET OF WEATHERED ROCK
MATERIALS SOURCES:
CONCRETE AGGREGATE AND FILTER MATERIALS READILY AVAILABLE WITHIN
1000' UPSTREAM OF AXIS
ROCKFILL AVAILABLE FRO~ EXCAVATIONS CBEING EVALUATED FOR SUITABILITY)
OP. QUP~RRY SITES v!ITHIN 2 ~1ILES OF AXIS., ON SOUTH SIDE.
9/1E/81 *NnTF.: IN PROGRESS
,.
t:
r·.
r ·-
I . .. ..,...,. r.
~l __ ,, .
....
[
:ii,
. -t~·
[
::t.
,-i'
' ...
•' .. , .. (
_ . .,
. ~~
[~7.
·~· ·~
r~
l,.-
fJ .
' 1
.
.....
c
~-.
';
.
~ . .
·~
POTENTIAL FREEZE-THA~·/ RESISTANCE PR_OBLE~~ IN ROCK AND/OR AGGREGATE -
TESTING PROGRAt·1 \•!l LL EVALUATE ~!,A.GN I TUDE OF PROBLEf-L
!~PERVIOUS FOR SADDLE DA~ -NO READILY AVAILABLE SOURCE IDENTIFIED:
~!ILL REQUIRE PROCESSED ROCK OR LONGER HAUL FROr: GLL!.CIAL TILL SOURCE.
AREAS TO ADDRESS IN DESIGN:
LEFT ABUT~~ENT:
SOl'THERLY DIPPING BEDS OVERHPJ~G.~ r!ILL REQ~IRE EXCESS EXCAVP~TION
f\.ND EXTENSIVE DENTAL TREATr~~ENT.
SIGNIFICANT ROCK SUPPORT r·~AY BE REQUIRED LOCALLY.
THRUST DLOCK WILL REQUIRE DEEP ANCHORING.
RIGHT ABUTf;1ENT:
BEDDING DIPS TOV.!Jl.RDS RIVER, \'!ILL REQUIRE LOCAL SUPPORT
SADDLE DJl!~:
EAST-WEST TRENDING SHEAR ZONE AND BURIED CHANNELD
BEDROCK UP TO 90 FEET BELO\•! LAKE LEVEL.
SPOP.PD I C TO POSSIBLE J.:EEP PERf1P.FROST,
UNDERGROUND STRUCTURES:
ROCK I~:1PROVES \~ITH DEPTH.~ To UNIFORr·1 r,oon QUALITY BEL'Jv! 1so FEET.
PERr1EAE I LI TIES LOv! AT DEPTH.
£/lE/81
,? • •
BOREHOLES BH
TEsT PITS SL
AUGER AH
DEVIL CANYON SITE
PREVIOUS GEOTECHNICAL INVESTIGATIONS
••
AH-G4
t ' • f. . .
.. ,,-tW,
'"' !:.,_
li
[
l~
l
PREVIOUS
• BOREHOLES • TEST PITS
t--f SEISMIC LINES
9/16/81
DEVIL CANYON SITE !N
1981 GEOTECHNICAL INVESTIGATIONS
1981
0 BOREHOLES
~ TEST PITS
,_.--f SEISMIC LINES
~ ·~ i -;
:~ ~.... < ·1
!~ ...........
tr-J . -·~ ,... .i
1!100
1400
IJOO
1100
ti 1100
Qll ...
ll
2! 1000 S! ~ d woo
100
'JOO
eoo
SOO-·•
... ~ I(. . ;J r-r;·-1 •l .-d
t""~) rr-""""'"1!: f''r"~ r-r''"'~ r·~r--'rt • t J '• \,,. ~ .~ .o: j t -~. , .i1 r .it , -• -·~
...,
NORTH .-oUT~NT
BH-2
f'ROJECfi:D 100" Oil
PREVIOUS WORK
BH-5b .
BH-1
.Onoa. no• uta
LOOKING U/S N 11• E
i r-·1 .. ··r·····~ .. ·;·---1 .. --'·,~;! .. "-·~·-·-a:·-···-~...,. ·-~...,..:.,.;.;.;,.a ~
t " ..... JJ t . { .,, _'j j . :J ) 'f-:-' ·--. ' .., • ~ ~'~) •
DH-11 PROJECTm)
Bll-3
SOUllf ABUTMENT
BH-5a
100 .o t roo 100
~ -·"L-Mil
ltAll .. rut
fiUUl9fCU: l IUIIUU Of' fi[CUMAT10t 0 ttiO
l tOflPS OF llfOINU:JP:I, ltJI
l SUII~ "eo WvtSl~JIOel
BH-7
eonou :no· 011
.,;~',• OVtfiiUIIOOt or
,.,..SI.Y NfiJ IDUI.bliiS
A"CIU.fft. • PtrtU.nt
NOTE: SECTION AND HOLE
LOCATIONS BEING REVISED
SLIGHTLY DUE TO NEW DATA
FROM SURVEY CONTROL NET,
D
'! 1981 GEOLOGIC CROSS-SEtTION OEVILCANYON
•
<1/1 I=' /R1
r-"
! ___..tS!l\:Co_,...,..
t(r~ I' .I .~ ... ~ '
l.~ t; ~ ·~
:]
IJOO
1100
t 1100 .., ...
c
z 1000
I ,00
""'·-,.,.,..u~ iiot
,~
1 ~ ~ • ·! rr-i . ,-i rr--:
...,
100 NORTII AbUTfdEHT
700
coo
SOO-··
D
'!
0./1 f=' /R1
BH·2
f'nDJtCYr. 100' Dfl
PREVIOUS WORK
1981
r ~p·~
l! H
; •. l,. '!.:;'
r-~ ~ .
i.' '1¢ ~
Btt-1
rT"~
I \ , Jl
BH-5b .
ao'noM no• UIS
LOOKING U/S N 11• E
r··~ :--·r··l
I .f ,..._if] 1· t.\ ,._
BH-5a
....... r,.->0¥.,,,.~
I."' .. ·.t: .... JJ
Bll-3
···r-· .... , ..... ~· . ' '
.ji ... 1' •J.,.. ......
Dtl-1 I PAOJECJID)
SOUnt ABUTMENT
IC10 10 • 100 100
~ "!t:-::J auu 111 ran
MTlR9fCUs l IUII[&U Clf' ft[C:UioUII'IOH 0 1110
I toRPS Of (HGINU:ftt • .,.,,
II $UII!.4Vi lt!IO llfVUT ~ f lOIII
... ·~,..,.,
,.,. -.. ,._""''1 -·-~ ~
t ' ~ ~t '.,.-·. • '" .. -21
f~
L-~
,
.,~• OV(IIIIUI'iOOI or ,~Sl.'~ Mit IM.IItils
t.IOlltRATtl'Y fftACl\JI'lfD ·
BH-7
Oft·4
tonou uo• 011
NOTE: SECTION AND HOLE
LOCATIONS BEING REVISED
SLIGHTLY DUE TO NEW DATA
FROM SURVEY CONTROL NET,
GEOLOGIC CROSS-SEtTION DEVILCANYON
ii]
5) WATANA DAMSITE MATERIALS
v..
0, c
0
v.. c
0
3
WATANA-
POTENTIAL BORROW AREAS
jJoJJ
l'ii
' #
'\\
D.7I}PROPOSED NEW A __
\..2.)FOR INVEST!GATIO
NOTE: PPEPS B.~C.,F HC\VE
PEEN DROPPED FRa~ USE,
0 .5 I
! ;
SCALE IN MILES
. i . l [1.
l •.. _· i ......
f . ·_ ·fl I . --iL
j ~
I ,,
l !_II ~ ' .
. ; \
! .
1 ~
' I .l •!!
I
;
•• ' ~ t ·~·'<· •
'
I
foe~ ..
:·· ,"'
·I " \__.
I
I.
I
I.
I
I
AREA
A (QUARRY)
B (QUARRY)
C <GRAVELS)
D <CORE tiTL)
COE
ACRES
E <FILTER &AGG)
COE
ACRES
\1ATANA· BORR0\~1" AREA· EXPLORATIONS
(ALL INVESTIGATORS TOTAL)
TEST SEISMIC AUGER
PITS LINES HOLES
APPRO X
AREJl. .
EST.
VOL.
NOT NECESSARY -LARGE AREA 700+ ACRES lCO+ MCY
OF EXPOSED OUTCROPS. (1.13Mcv/FT
OF DEPTH)
COE SITE -SEISMIC LINES SHOWED EXCESSIVE DEPTH
OF OVERBURDEN -ABANDONED AS POSSIBLE AREA.
1 3 0 1000-1500 200-400 MCY
COE FILTER & AGGREGATE SOURCE -13 f~ILE HAUL
NOT CONSIDERED AT THIS Tir~iE -AHEA E r~iORE USEFUL.
14 6 24-630 20+ MCY
2(GRAB) 6 14 650+ 73+· MCY
(lMCY/FT)
6 5 0 550± NOT CALC
21 3 9 fOO± 28.5 MCY
(.95MCY/FT)
F <FILTER&AGG) E 0 0 130 NOT KNOWN
COE AREA.~ 10 r1 I LE HAUL., UNKNO\·JN DEPTH AND AREA.
NOT CONSIDERED FOR USE AT THIS TIME.
H CCORE MTL)ACRES 2(GRAB) 0
RIVER ALLUVIUM IN PROGRESS 12
<SHELL GRAVELS)
9/16/81
9 350-1000 14-40 MCY
(20-SO'DEEP)
0 210 UPSTREAM 19+ MCY
.. ·, ' '
" . ' .. ~ ~
1770 DOWNSTREAM145+McY
(AVG 50')
fl.
I-
I«
I ':".·'~
'
' :I· . tt, ..
I··
~ ~ " ..
.,
1 ..
'
I t~ .. .,
•• •.-
' ·a
•. '···· . 'l ' "" ~ .... . , I
I .
~IATANA DAM
EMBANKMENT QUANTITIES
<x1o 6 CY)
<DEPENDENT ON FINAL LAYOUT REFINEMENTS)
TYPE OF. MATERIAL REQUIRED EST. AVAIL. SOURCE
IMPERVIOUS 10~15 50-75+ AREA D
AREA H
FINE FILTERS
COARSE FILTERS
ROCKFILL
GRAVEL FILL
CONCRETE AGG.
ROUGH TOTAL
9/16/81
s~6
1-2
-
55-60
15-40
12.5
16
40+
AREA E
AREA E
RIVER ALLUVI ur,1
100+ QUARRY A
47-104 WITHIN 6 MILES OF
AXiSJ IN RIVER.
164+. WITHIN 11 MILES .
<1 r·1CY 10+ AREA E < SAJ\iE
AS FILTER
SOURCE)
71-83 r1CY 2-5 Tir~ES REQUIREMENTS}
BASED ON PRELIMINARY
TAKEOFFS •
fl
fl_ 11
' 1: .. . . i
' 1. ;~
~ ;
,,
' : '.,
•• ~ ~ .. ·~
17
~~--
•• , ..
I
. I . •.· ' : ;
' ~ ... ~.
I
I
I
'I··
I
WATANA DAMSITE -AREA D
GENERAL MATERIAL PROPERTIES
< CORE MATERIAL SOURCE)
FROM THE DATA TO DATE < MOST OF THE 1981 SA~PLES ARE BEING
TESTED AT THIS TIME) IT APPEARS THAT THE MOISTURE WILL BE THE
MOST CRITICAL FACTOR IN USING THIS MATERIAL. THE TESTS INDICATE
A DIFFERENCE IN PROPERTIES BETWEEN THE SHALLOW OUTWASH ~1ATERIJl.L.,
\~JHICH IS LESS FINE GRAINED AND ~!ETTER., AND THE f~ATERIAL BELO~I
ABOUT 20-30 FEET IN DEPTH.THE MOISTURE CONTENT ALSO APPEARS TO
BE RELATED TO EITHER FROZEN MATERIAL OR OVERCONSOLIDATED r.1ATERIAL.,
OR BOTH. FURTHER DATA IS NEEDED ro coNFIRr~ IF THESE ARE TRENDS.
0-20 1 20-75'
MOISTURE CONTENTS -'"' •._I ,.. 7-25% 6-12%
LIQUID LIMITS-EXTREME 14-56 13-23
NORMAL 14-23 13-17
PLASTIC LIMIT -EXTREME 11-22 13-15 SIGNIFICANT NORMAL 11-22 13-15 NUMBER OF :
PLASTICITY INDEX-EXTREME 0-33 2-7 SAMPLES THAT
DID NOT SHOW NORMAL 2-6 2-4 ANY PLASTICITY.
GRADATION CURVES SHOWING TYPICAL AND A FULL ENVELOPE OF SAMPLES
TO DATE <COE AND ACRES) FOLLOW. DATA OBTAINED BY THE COE IS
PRESENTED BELOW ON CORE PROPERTIES FOR DESIGN -ACRES TESTING IS
IN PROGRESS.
--
•< I ".' ~ ''' ' ) ~' . ~
~
&'• :
;f
RJ
~ l, .
....a
0'11
I ...... ,
~ _,
==:
)>tu):»
C::O:;j m:::o-m:::oz
::0~,
i§,~ r:::o::;:
rn~V1
t-t s 0 nl
-11
Ul
:I:
~
2
~ n~u~~
' '• " II J ~·-1-~ k ';
a
0
0 c::::, J
<>--.. ·. /~~-" :~>, ... · ~ .. :.<·~ __ ·_. ·.-~ ·. ::,.,.·.:
,.~
i ~,·-~
J
~
1
.,,. •• 0
$fJS!TN~ RIVEif
..
ICI~I '
. ~·-2 ::t
• lOG: 1000' 1100' liioo'
I --:-~~ J
~
• .
~ ~ ~·~~ ~' .--~~~~. 1~ r......-a _.-.. .-. ···~ ,pr~ j~ ~,~. '•-!.
'·
-~. ~ ---~ ···~ ~ ·-:-1·· -;-E· ·Tl· T'J
u.S. Stnnslor4 Sltvt Opening I In klchn . U.S. Slonllor4 Steu Humlhn flrdtOIIItl ..
) z ' l'l • '5/4 1/Z 5/!1 5 4 G e .10 '" '' zo 50 4o ~o &o 10 100 140 zoo zrq_ 0 0 100 1\ I ~~ ~ ~~ I I I I I f I I I I I !1 .
..
~ ' ' ~r-:-. 1'--r..... 90 ........ ~ .... " ....... 10 . \_ ['.... 1 r--~ ~ :: ~ ~ \ I' 1'-.
() ' A ..... ' ~ ~~ 80 20 ....... '){ ;-.. ... 1-~ ~ ""'· '~"-J D 2 5 -~ -
A i(-0 -~ 1_....... '-...... ....... ~ ~ '~ ~ /L I D 2 B . -70 -30 .c -,...~
:".. "~.. ~~ ' ~ f £ .,.
.c ~ ..
O• ..
;; " ~""' R ~ ~ I ~· ·ID l· 5 ~
3: 60 ~ 40 ...
/ ~ ~I'-~ ~' ~ .Q .,.. ~· 0 -· .Q .. --.. ... "'r-. ' ~ "' ~ .. u 50 ... c 50 -........ "-' -~~ 0 ·-r-.. -· 2-9 0 IL. ~ I' ~ A u
r
-L ~ ~~"S: ~~ -c '-l'\ .,
40 60 c
u II .. AfJ .. -It) / I ~" I'~ ~ ' ~ u ., ~ ~ ...
II 4. / ~ I' ' ~ ~ ~ 4.
30 L !'-. 70 ,..,.,. ' ~ ~ ~ AU-• 3 -i' ~
••
-..;; ~ ~ ~ 20 ~ 60 ~~ ~ ~ l
"" ~ ...,~
10 --~ 90 ~ ~~ ~~ I" ~ -S:. ~ :-,;;;;
0 eoo --100
50 10 5 I 0.!1 0.1 0.05 0.01 O.OO!i 0001
• Groin Siu In Millimeters
I Co~[i~ GB1V~b fl~l I Co~ni I M!d~ij~:~u t : Fing I ~:ILT or CLAY I '"·
SAMPLE NO. ~8~Vf:t OAY Ll PI CLASSIFICATION 8 OESC~liPTION D[~SI'f'f . TYPICAl GR8P/\llON~ -APPAKt.N 1 VAKlA 11 uri \'lllt1 utt' 1" Ali-Dl-5 SM
AII-Dl-6 SM I IMIIED TO MOISTUBE CON}fNT -AND ATTERBE~G LIMITS.
All-01-7 SM GRAJJAllQNS FQbbCn\! ~AIRL¥ NA,RRO~! GRADAJION. --All-02-3 SM
All-02-4 SM
All-02-5 SM --l\11-02-8 SM .
Ml-02-9 SM DRAWN BY DL
R$M BORROW AREA 0 APPROVED BY -CONSULTANTS, INC. . DATE DEC. 1980 ·-SUW~RV OF GRAIN SIZE DISTRIBUTIONS -PROJECT NO. 052504 ---
I
t •••
b
8
t..J
I. ,. Ol
. 0•
I
I
i
I
l ! l . , I I .
l
1
l
1
~
• D • •
,,_. . . . " • U.t. &iAI~lO tm'l OfD.f.IJtl iJ ~IOte1
I y 0
10
JG
lO I
40 fi
so g
0
,1) ~
10 f
00
-·---.J~Q
1 o~--•--•-·•--
! . , . . : , • I • • . .
ENVELOPE :QF. ~~4D~TIONS .. ~!ATA~A AREA D .• SOLID ZONE I~. ~pE SN1PLES, OUTER LINES ARE
. EXTREME RANGt OF A~RES I ~VESTI GA TI ONS.. MAJOR IJY OF SAMPLES .FOLLOW SOLID .BAND.
. . I . I I •
. : t fl . ~ . .
I • I . . . . :
---·---0 /1 f.-/ Q.1. .
. .
I l.
,. . I'
' .
i I I ! !
:· t
I • I :
I I
• : .. , f
.... -·-· .. # .... ·~-
~ llllf -rll!ll ~-~-·~ rfle ............ ··-.~ ....... ··ia...---•···liM··iiJiil ... --~~ • ~~~-".-. ""-~ l .,~_,, .,.,"',... '· . . ~ --·: -· . . . : ·;; . . .•· ; ~ . • 1 .•
BORROW AREA D
ATTERBERG LIMITS FOR MATERIAL 0-10 FEET
• • Natural Water Contents #200 SIEVE
10.---
DO :l __
• .. -~,. ~·." I I I I I I I / .,
·@)
I I I I I I I
40
~ I I I • •
·Z -
I .-~~ ~50.
I .. I I I I ..., I I • I= en @ . j .. A. I I A •TESll PIT 20 . I I • AUGER HOLES • --10
7
4r-~-
"
0 10 NP 20 30 40· eo 80 70· 80 tO 100
LIQUID ·LIMiT ..
AH = Auger Hole Results -·-TP = Test Pits
NP = Non Plastic Samples .
9/lE/81 . . .
j
;!
r
I
I
I
' l
I
I
1
• . .• = I
:: .. ·--
.. ~~----. . . . i .. {~ ~----:*-' , .,. · ~ ........... ._ .. ~--.. iallf .... r..-,. ~ .. ,~ .-., ~-~ ; • : I • I
.
..
BORROW AREA D
ATTERBERG LIMITS FOR MATERIAL 10-20 FEET
eo fill ...... ~
Natural Water Contents #200 SIEVE
eo • .-~
@)
s 4o I -I I -I I I I I :7' · I I I
-~ ao I I · I I I I Y I , I I ~ u
J=
~ @
zo 1 -1 1 t · 1 r 1 1 1 1 1 1
IC
7
4,_ __
0
9/16/81
•
10 NP 20
.
• .
!0 40 eo 60 70 80 90 100 .
LIQUID LIMIT
•
:I ,
I'" ·I~ . ·l~
lilt'! ,.. ~--;tllll r: ....... ,~...~ rfll!l ~ :~ .. ,; .. --~ .......... : •. , ......... : .....• ·'·· .. ~ •.. tliiJ t~ . ' 1 ~ t
..
..
. .
BORROW AREA 0
ATTERBERG LIMITS FOR MATERIAL >20 FEET
Natural Water Contents #200 SIEVE.
60 ... ..-
(
• ~
.~ •• ; .. J,
eo ... --~·
D O(J {.._ •• '" ._._u '-'I'll.-I I • "®
40 I I I I I I I
·~
z -• I I I I I I _,-I fi 30
!= I . w I . ~ I @ I
I I . f I I
. 20
•
10
7~&:.---u .. .._ __ _
0 , . lO NP . 2() !0 40 00 80 10
LIQU80 LIMIT
9/16/81
I . .
I I 'f
•
. 80 10 100
..
I
I
I
I
I
I
I
1-
.
I-
I
'
I .. _'
1-,
\....
.: I . ; ; ..
. . .
\...,., .. .. I
; '\._
' !~~-
''
' ' ·-
PRELIMINARY DESIGN VALUES
vlATANA -AREA "D'' SAr~PLES
OPTIMUM MOISTURE CONTENT <95% STD PROCTOR)
OPT IMUr·1 DENSITY
SPECIFIC GRAVITY <BULK SSD)
PEru1EABILITY <MrN~s 1 rNcH) AT 126.E PcF
6 % (LJ'' MOLD)
7.5%(6 11 MOLD)
129-133 PCF
2.671
1.0 X 10-5 CM/SEC
TRIAXIAL TEST DATA: UNSATURATED_,Ut~CONSOL, U1~DRAII~ED
ANGLE OF INTERNAL FRICTIONc PHI 35 .. 5° .} 0.14 TSF -. ... . . .. .....
AND COHESION .. CO.NTR.OLLED .STRAIN (OPTIMUM WATER-::-4%)
• • • . • . • ••••• 41 • --
. TEST PROCEDURE aS HOW I NG RANGE OF
TEST VALUES FOR VARIOUS MOISTURE
ABOVE., AT., AND BELOW OPTIMUM.
..
: BACK PRESSURE f·1.ETHOD
(CONSOLIDATED., UNDRAINED TEST)
"
33.5° .1 Oa66 TSF
(OPTIMUM WATER)
1.75°., 0.44 TSF
(OPTIMUM + 4%)
o· . 12.3 .1 lp07 TSF
(OPTIMUM WATER)
12.8° .} 0.52 TSF
(OPTIMUM MINUS 4%)
CONSOLIDATION -PERCENT AT 1 TSF 0.85%
2.38
4.82
0.7E% 2.12%
;,;: . ~ •:, .
A
10 TSF
32 TSF
-
4:~~
(oPT-4%)(oPT.wc)
L! .49
6.86
(oPT+L~%)
I ,r
\ I .
11 ..
' -' ...
II
II
II.
, II
i'
I . __ , • • ...
•
·RaM Ccnsulb1t D:..
ysoRATQRY COMPACTION C0NJRQ.. REECfiT
· . .: . -
,. . . . . · ~ " . . ~-. .. .. "
. -.·. ..
~. . . ~ "\ . '!. ~ ... . · .• :·
-tOHcne.,u;w::;mKl.._....::ii~ ..... --~~ ..................... ~-~-----------..,;,._....-~
-·-· • • .;. : ·.1" =~-· .. - .
Aft:tlitect orEr9ftl~ k:ras -.ricaa d' • ••• .: ··
. . -. . -. .. . . .. ... . . .
·.
A. o..:ription ofScU: tlell·~ 'fill•-GRAVEI.t.Y SII.ft ·SAHt> W
Jl
Mclt.-ial Marit B . . . . . . . . . =ICCticll SK · .
. .
5cun:a d Mcferiol Deadlaa!:l ereiek Sa.!pl• .0. w-ao-300 (A rea D) ·
. . -.. .
. .
.· .AASHO
OassifcatiCift
. •.
~Water Ccl•rt §-it •t. Natural ery· O..if1-----PCF SpeeificGrO!lity_---t
l.iq.id L.inlit lieD V±scoas ~1. Plastic Umit~-· . ___ •!.Plasticity tndu Hem Plastic·
. . C. Tel R.utts:Malimum Dry Oensity-....::~l:::.:~S:c.;.l:..li!O;;...-·----PCF Optimu~-~ter Cont~t-~~
n v
s1.m~ AD&lysia · 0
Si:e
100
95
93
89
87
a6
80 8
76 ...
58 E 26.9~
9-.2a:
3.~
%."3cn
Q/1 F;/R1
~
> ~
! 125 ~--~+-~-+---i--+-_.;..!
> !
1
H
0
L
E
0
f
r
: ' ' .. . • ' ' . ' . ' ' • • • . A . . I .. ... -_r=~---{~--~-~::~.._·@!~re_ .. ~~---~···tft'l-~·~,~-··-:··-·f!!8_···----·~.-r n ....... ~ .... ._
.. ~. · . " •AH-E9 8'
@ · : t1 tP-B0-18
e AH-·EB 3. 75' . ~ ,.. . .
teoo·-· -~-------______./
-,,_--------A\ --
-f~-
~
\\I'> T'
\' ~ _,:0
,..~---·/
.
SUlf
~. ,:;;r jd
• tc01 1000' • .oos liOtf
WATANA BORROW AREA E .··
PREVIOUS EXPLORATIONS
21 TEST PITS FROM 1981 NOT SHOWN
0 I TP-80-17
·-' ,
. '
•' i
;
~ ·-""'" " MliG -.
aiMC &tll. lllll'lUS 10\lJ • flUe II
~»~•rr ta.
J-Ll:l! -f Seismic line
. ··nll-·7 Auger Hole
o rP--tJ Test Pit
90
20
50 10
SAMPl.E NO. ll PI
Engineering 6Geologlcol Consultants
ANCHORAOI£ FAIRBANKS ALASKA JUNEAU
9/lE/81
· Fin SilT or CLAY
CLASSIFICATION 8 DESCRIPTION
COMPOSITE GRADATION CURVES FOR BORROW ·AREA E
SUSITNA HYDROELECTRIC PROJECT
0
10
"'
l
r.
[;
U.S. Standard Sin• Opentnvo II' lnchu PJ.S. Slondaut Sine Humbert Htdromehr
100 3 2 I Ill I !/4 Ill 3/8 3 4 8 8 HI 14 I& 20 30 40 eo 6010 too 1-10 200 no
't 1\11 ' II 1 11 I 1 I ...._,_ I! 1 I I t l I'
t--
90 ' "' I'<! ,...
1\ "' -
~
eo ~ -r-:-m
~ ·"' 70 .. .c
01 ·;
3: 60
»
..0
~ "' 1: '1 p E l21 r-l SHAllOH
'\!) -(0-8 FEET)
\
~
"'"' .... .,
50 .5
lL
t'-. .-.
~ I'-.. c .,
40 " ~ DEEP SAMPLES
IJ
"' .,
D..
30 I
20
10
r
GO 10
LL PI
Engineering a Geological Consultants
ANCHORAOE rrAIABANKS A LASKA JUNEAU
0/1 ~ /Q1
GM
""-.~-, •
I' ~ .... [' .
....... .......
!".....
~
I ~5 ~~
Grain Sire In Millimeters
SAND
Medium
..
t!T I? E ~1 t--2
0.0!5 0.01 O.OO!S
SILT or CLAY
CLASSIFICATION 6 DESCRIPTION
GRADATION CURVES FOR BORROW AREA E
SUSITNA HYDROELECTRIC PROJECT
TYPICAL GRADATION
0
10
20
.
30
-10
50
60
70
80
90
100
0.001
... .c
Ql ·;
~
»
..0
.... ., ., .... a
l1
.... c
IJ u
"' .,
D..
-,.,.. ... ---~ .. ----.--... ------· ------
Jj -~ A l.,i.{.j,_.,, !,1. -~ •••
·:--------~~-~----------
·-....
·----. ---·----
50' ABOVE
I' , -------.. 1425W.S. ~~~~~~~-~~~~~-~~--~~~~ __ /._' ~'\1~----...:;..1,---:::--_ lOQO-2760 ' =-- --~ 7400 -----=-· 1400....--.:::. - - ---------
'-- - - - -14370
1300
1200
INfERRED f•1ATERIALS
1000-2760 FPS
7400 FPS
14370 FPS
SECTION LOOKING WEST IN BORRO\>.' AREA E CUT AT TSUSENA CREEK ON SEISMIC LINE SW-10
J"=200' HORIZONTAL & VERTICAL
SANDS, GRAVELS AS PER TEST PIT RESULTS POSSIBLE SATURATED GRAVELS
(APPROXIHATE WATER TABLE) TAKEN TO BE TILL UNTIL PROVEN OTHERWISE.
BEDROCI: {DIORITE AND/OR LAVA FLOWS)
WATANA -RIVER ALLUVIUM
------_,)-
;/
.i '.. '-----
, .........
AREA E
7400
14370
--------
1600
1500
1400
1300 r
1200
~
:I
. ·I
:I.
.I
;I
I.
·I,
1•
lt ' ' f ~ ;
l
ll
11 !
.I
.I
WATANA DAMSITE
UPSTREAM RIVER ALLUVIUM
QUANTITY -DISTANCE CHART
MAXIMur1 HAUL D I.STANCE
TO AXIS <MILES).
3
2
1
INFgE.REJr1Y
SB SM I C LINES
P ESERVES
LOW CONFIDENCE
5 10 15 20 25
RESERVES -r1CY IN RIVER AND FLOODPLAINS
RIVER ALLUVIU~~ CONSISTING OF GRAVEL & SANDS
NOTE: FOR A SKETCH OF THE AREA UNDER CONSIDERATimL SEE
~~~.fAT ANA RIVER ALLUV IUW' 11xl7 FIGURE . ENTIRE A REA
INVESTIGATED IS IN THE SKETCH.
I .
I
I
1:
I
I
I
I
I
I
I
I
I
I·
I
I
I
I
1f
1-
l
"
'· i 1500
. ...
/
....
8000 ----~""
SL81-2
7000 -
.,.,_ -----. -----' 5000 ' .--~----, .;,.
• I
'TERRACE·
. ·j.
l '1
WATANA -RIVER ALLUVIUM
--/
/
__ .., .. ---
..
,.
/:\
I
....
INFERRED MATERIALS
5000 FPS
7000
8000
RIVER ALLUVIUM, SANDY GRAVEL AS OBSERVED
IN GRAVEL BARS.
SATURATED, COMPACTED GRAVELS OR TILL
GRAVEL OR TILL. BOTH ZONES TAKEN AS TILL
UNTIL PROVEN OTHERWISE.
.' ..
.; . .'
i·
'
I
I HATANA DP~SITE
MCY DOWNSTREAM RIVER ALLUVIUM QUANTITIES BI!RJ£. ' -1 ~·
I 140
I I -. _ .. ,,
I I I -.
l' 120-
I I ..... ~ -~~ ,.
1001 -· };::~< ,,
''
I 80
I
I I 1-' .
I
!'\
60
. '
I
!I 40
l ~
I
II
20 -1 I ' ·I l
J ll '-,··
. 1 .
I I l *I 0 l
.i I 2 4 E 8 10 12
i .
l
I
r~XIMUM HAUL DISTANCE TO DAM AXIS
; NOTE: FOR A SKETCH OF AREA APPEARANCE., SEE 11 V!ATANA RIVER ALLUVIUM"
I BORROW AREA E PLATE.ALLUVIUM BORROW AREA STARTS AT ISLAND
SHOWN AND CONTINUES APPROXH1ATELY 8 t1ILES DOWNSTREArt
1l 9/16/81
,.... ._;_~-~~~r;-"""J!jr-~~-vr~-z''''",.~~-; ~-'~~~-~v--· .... ~ ·rr -:;:~~-"~~-~<;~~-\,-~t'~~J!Y":-~, ~-•. n -~~! ..
-~ ·~ ~' tva' ll1iiil1 ... ' ~ .. --n&l&l -. ····-··---81-8
-0--~
I .......,.,.. ____ L '
.J
15000 10000
S55E-
81-9 r•soo
L ~~
3000 ICE SURFACE 3500 .,... --- -----.._a--a-----------a---e---------a------------o--
8600
1200
-7 ...G ..... -~ ~ ~-,, ·~~~ ', ~/
.......... 0-----e--... : // 14000 --............ ..,...,.,., ...__ _______ --o-,,
1300
1eooo
VELOCITIES IN FEET PER SECOND~ SECTIONS LOOKING UPSTREAM
TYPICAL SEISrHC LINES -Dm:NSTREAM ALLUVIUt-1
9/16/81 ..riff",•"'
·(:' .......
-,
.t -,·•;
_,.,. ~
~ ,··. ~-~ lf'tllll. .• ~ ~·.....,.
,. ~ ;!Jill .,. .. •NJa ..• 'filii --
81-7 1450
l~Q---l~ __ j_ j r 1 i' i ___ Gl_Q __ j
a_ . (ll---~ . ~'"", :__......,.,.-"" -...-a-___ __. '·a ..... _ 1300
::t
plh
·.
9/16/81
··:.-
D
'!ll--19000 ltiOOil
1160
Uorlronlal Scala: 1 Inch • 300 feel
Vertical Scale: 1 Inch • 160 feel
1000
81-6 1500
COMPRESSIONAL WAVE VELOCiliES IN .FT/SEC 1450 .
Anunnd 6000
I
-1-"' /
Anumed 16000 l-1400
Uorltonlal Scale: 1 Inch • 100 leet
Vertical Scale: I Inch • 50 11!91 . 1350
SECTIONS LQOKING UPSTREAM
TYPICAL SEISfHC LINE -DO~!NSTREAr·1 ALLUV1Uf·1
'.
,,
'"
i!· I(
=:Y:f'rfrl
·'
";-... ,-
. :;
_ _J;•-" "'
,y
F;·\
~t,..f
•.:.;:!. __._ '::.. -.-~
..
--
0
!!'
;:;
Cf·
..• ;;..;,---:..:..~..:..: ___ . -·-~-··--·~·--······ .. -·· w.-•·•~' '-"-;.,..j-, .. 1--,_:.~•~"'•'-< >~<"c-.--.-."0>•" ..... "-·,.-.,-.;
,,
~ ~ ~ . . .r..t.o.ilt ~ I~ .--~ If-.· ~-,\(--~-·~ .. ~-.... ~ li'illliiJ 1illil .. ~ --: ~---·~ (-·~~:
. . Hrtttllltllr ·U.S. Slaftllu• Slue OpenlnQI lA Inch II U.S. Slen•ar• t•n• H~mhn
:S " t I ttl 'I • !1-4 rn '{a :s 4 t I 14 " 0 0 .. 1!0 1101 roo ••o zoo no_
100 ~ ~ I II ·I I' I I I I I I . . --
10 " ~ ~ f ! ... ·' t'... ""~"-• .. l 1--· .
~ r'll r-.. ~ .
10 ""· .. -...: .... ~ . -. ,.[J;~ ~ k--w· .. ~: s 70 -... --l--. ..
I . -~ ~ ~ li '
00 ;~ ;,; ' ~ ~ .!' ~ i . ~ 2~ 6 ~ 10 . -II...
' ~ Pre}iminary limit of Gradation }; ......_ ~ '!'oo!J~ • -~ ;..... ~0 .
~ ........... k7'... IL .. .. N ~ . ~--
ti u 40 .. -I~ ~ ~ ~· a. ' ~~ •
30 . ' . .... ~ -f-
.. ~ . -·· ·""''ii -I'( ,,
ao . -. -.. ~ ~---~-~ . .II...
' ~ 1-. """' ~ 10 _.... . . '""'t-. .
o,oo .. .
· _so .. : 10 ·~ I ot 0.1 0.05 0.01 0.005 .. ' Groin Sin in Mllllmelon I . . ·gfi,~E!. . I ~gor~g· I -SAND '
.I lo SILT or CLAY : . CUg[u _ ~-Fin! Mg~ly!Ji I. Fino
SAMPLE NO. · Ll PI
W-80·256-10.9 21.7 9.2 .
W-B0-257 ---.--
_17. 11 12.3 2.5 ------
-......,....._,._
--
R ¢ ~1 CONSULTANTS, INC.
L < ',.~
. .
'""·· ..
-:·:·
_,,
~·:,'"'
1\
., __
··---
BORROW AREA II
BUMMI\J\Y OF GRAIN SIZE DISTRIBUTION
r-. ~
-
0 '
10 ..
20
30 -.c
00 i ·; ·. I ~
ItO ,..
.a .. . .,
:! ~0 0
0 u
c 60 • _u ... .. a.
70
eo
~ 90 -~~
100
0.001
I
DRAWN B'r' DL
APPROVEDB'r'
DATE DEC. 198
(!-
""·~-
r;_-;
,-•; ~I
I I '0 4:lo . . '
~ .......... • .. t-
. .
~. . ..
~ • ·(4. ... ..
I
I
r ,. R 8 M Consultant Inc.
' t
I~
f
' ' I ...
LABORATORY COMPACTION CONTROL REPORT
Job Nome and locohon Susitna , .. Slksnc l.Jam ~u-r 1
Architect or Engin-~ Acres :~erican 't.."le:.
ContraCtor · ' : ·. .. • -----~_,.~,;,. __ __;_ ____ ..:......:. __ .....;__J
A. Description of Soil: POOrlv Graded .. Till'~· srLTj" GRAVEL ·aw SA'NT)wtTRJ>.cr ern 1
Material Mark . C --------------~ ·GC-se
.
Source of Material .Borrow Area· .:e · Samole No. W-BD-256
.. Natural Water cOnte..nt 10 .• 9 · 0 /., Natural Ory:·Dens~y _ _..;_._:. __
Liquid Urnit 21.. 7 %Plastic Umit · • % Plost.icfty lndex_._:._..._'----1
a Test Procedure Used.. T-Jao Method "D" .;. M
C. Tes: Results:Maximum ~Density 1.39·. 0 PCF ·optimum Water Content ~ . -~
I \ ·I I I • '"' .I Sieve Analysis I I' I \ .t I I
~ I I .. I
' ~ize \ Passinq
I .. ~ I I
I I i I ' I •I· I . -r • I
I I I I \ I I I I I . . . ' t:: 100
95
88
84
81
78
71
64
53
140
I
1
I
I
I
I
1
I . I
I I I
I \I
·I \
I \ .. I I
J j ' I I
j I \ I I I
i
l
I
I
! U.
t
,
. 2"
8"
4
40
00
.02mm
-
10
~. .005
.002
l
I
J~
I
' 11'
I a
\tl
:;
0
1.1..
38.2 ~
24.3 ~
13.6 v
!1. 6 f5 c.
ui
CD
...J
I
>-1-u; z w c
>-cr. c
J' "---i) ll ~ 9/16/81
'0
I I
I
I
I
I I
l I I 155
I I
I
I I
I 1../
I IT
I I
I 1
I I
130 : I
I I
I I
I I
I I
I I
I j
I I
1 I
I I
I :
T -:1 '\. -I l. 'I I
IT I '\! I I I I T7 '"' ~tC~_· I T T ,-, I 1\. 'n I T v ..... I
·,
A I \. ; I I
71 I '\I I I I
I I I I 1\: f'S: I I
I I 1\, ""' I I
I I I ~ Yr; I I c: I I I QJ I I I . I I I I ~ I I I
I c: \i I I I 0
I ~ I r..J 1\ I T I
I I I s.. l\ I
I I I QJ ' I I I ~
I I "' I I I
I : I :0:: I I I
I I ... l \ I I
! I I ttl I \ I -1 s..
I I I .S· : \I
I I "' . I ' I
I I J z 1\ I
I . . \ I
I ! 1 I I \ I
1 I I • I L
I I I I
I I I I \ I
5 10 15
WATER CONTENT ~ PERCENT OF CRY WEI\OHT
,~:
!f
.;:,
I I I
IJ,
,,
' ~.
, I t
!.';
·)
,~t ..•
I
\
.!'.'a -l,
' ' .
l ,
I l .,
\' ~·
' ' i~ l
·,1 I 'it-
' ~,.
~
·~ ,, .I .,
., .il
V,!
{1. ,,
1
. ., . . ..
AREA
G -ALLUVIAL FAN
USBR
COE
ACRES
QUARRY
CORE MATERIAL
FOR SADDLE DAM
DEVIL CANYON DAMSITE BORROW AREAS
EXPLORATIONS
TEST
PITS
13
RES AMP LED
2 TRENCHES
0
SEISMIC
LINES
0
2
0
0
EXPOSED BEDROCK
AUGER
HOLES
0
0
4
0
ACRES 4 0 4
APPROX EST
AREAS VOL
38 ACRES NOT CALC
38 6 MCY
38 TESTED *
34 ADDL INFERRZD
BEING MAPPED BY
GEOLOGISTS AT
THIS TIME I
BEING EXPLORED
AT THIS TIME.
* NOTE: SEE VOLUME -ELEVATION TABLE AND GRAPH FOLLOWING,
,... ,., r ,,....,
' •. ~->'
··~;: .. .)
n
. I
< ,i',
"~' .
,i'
·i
. '~: '.
.o
I
' .
t
I
I
' {I
' ' p
I \;.
' I
""
t·
~ p
' ,,
"-!
I •
Jl ~
{'
' '
DEVIL CANYON DAM SITE
CONCRETE AGGREGATE AND FILTER MATERIALS
<x 106 ~1CY)
DIVERSION POOL ELEV. QUANTITY S~1PLED
920 FEET 2.8
935 2.0
950 1.4
980 0.5
1000 0.0
QUANTITY INFERRED
(INCLUDES SAMPLED)
5.o·
4.0
2.9
1.5
0.5
TOTAL CONCRETE AND FILTER REQUIREMENTS ESTIMATED FOR SITE:
9/16/81
CONCRETE
FILTERS
1.9LJ MCY
0.08 MCY
2, 02 r1CY
,:
.<;:
\J
~· \. 4-... -..._, !.r-
.. --~ -~
{~,i ';:
. \·
" r;;
.;::-s
-~·.,.·
,,.,
l0 L< 0-, ••
·c~ '·
c
;' ,{\'
·~-. .., '
.,
··.-
1\:
' ' .
il.
' {I
' I 1;:
·~
:t l 11
I t
·1
~~ ~-
~
11
·!I
{t
?
' -
DEVIL CANYON -DAMSITE
AGGREGATE QUANTITIES
QUANTITY -ELEVATION CHART
DIVERSION HEADWATER
ELEVATION <FEET) NOTE: ELEVATION OF DIVERSION
100
980
9EO
ooo--· -(
920
. . . POOL MAY BE SET PARTLY
BY ECONOMICS OF BORROW
EXPLOITATION COSTS,
<EXISTING) 1 2 3 4 5 6
RESERVES -MCY OF CONCRETE AGGREGATE AND EARTH DAr1
FILTER ~1ATERIAL
TOTAL REQUIR81ENTS -ESTIMATED CONCRETE 1.94 MCY
FILTERS 0.08 MCY
2.02 MCY
SOURCES: SAMPLED RESERVES ARE IN CHEECHAKO CREEK ALLUVIAL FAN
INFERRED RESERVES ARE IN ADJACENT TERRACES) FAN DEPOSITS.
9/16/81
·''•
··· ... ,
,,;
,.,-~ • ,I,.
.,
i
I
I m
o:f
l •
'~ il . ···l :·~~~ il
i: ;:~t c'l·
' ' ~ '
j
ftl
~~ '{
~11 (
;B i
l·
·~~
'
~.D
:J
'i l!
•n
ill
jt i , I
l ;
i
!
l J t l i .
l
~-
..
~~ ·-~ ------" " . I} / -~ .,. ...... ~,-__ ..p._,_-
, _____ --_...._.--I'· ~ ·-'
' -11. ~ ' §"' ·-·-
ARGI · 1:. -
A
® ~IORITE __.--· -------_,.--~ ~
. , -·--.
.-':""_ ... , ;t• i
~ ~
.;
-
.f 1
·~
......... -----·"'
··--· --~ ,-
~ -· ~f ·""· L*T£ QUARRY SITE
'}.~~-\~\)c.;
·• T\.'V.l~~\)\J\"-..
/.1. ./.), A. -------r ,.. __, ~1-:--:o~\t\Lfc~I ~-_-. --. -;. " ... ---. q ~ .....__r {; ____ ... -~· ~~ ' ' ..
..-.--....... _ -
a~ '~I·' -""
.'" _,.,.· ..... ~ .~( " .. --... ··---
•/ *. --
Ct·i.-/f\ rJ, ""'---~ .. r \
l . ~ ~ ·~
. ~~ ~ \' \ l '.. ~,-if :-:: .. ~ '\.,. \ \ \, tr\A~N\D~M "'lfi t/11 .· : \: \ . ~ _,.,.--; .' ;· . l '\.
_,.,.---~ / 7 / ' ! \
/ /-/ /!;): :I ~ ,\\ \\ .
I )L-~~~ .: \ -/ . ' . -~-' / ..__. .. I Jl/,.• '··'--'
, ., ll, TERRACE • , J(' . . ~ ' • A.---.___ ~~--.
· 1\ · "=:----_ • ·, ________ Jic'r· 1~~~~ ~-------.., ____ 1---·· ---' ~~·--... ~
'I . . -~ ~-. --. ..._____ IJ:.•
' • ' __. ~ ~ ' 1' --··.. .. ~ '-...._ ''-...__ '-.. __ __...~ . J1 · . '\ \ // _/__...~LLUVIAL FAN . -..._ -~~· Ji\. . -
·. ---A ...-c--'~~ '· / • ' 4
'---'-.... -~~~~. ~ 'b-:---. "11.--......,._----~-.. "'--/ . / 1/f ~ ~. (! ·: .
1
_. 11\ A 'r-... .. 1ft \1,l-A A ./· ARE
1
A G • _ 11;, '11 ~r rw , ·" A \ '<' :--.. .,f' 'If" ~ -lij ---,J{ 1• ALLUVIAL FAN FH, '\'1 '!-------~ : ~ ~· \,~ /A ~ It y-~ . . , :~-~ . . ' 11, ' i J, l IN ' ' :. 2., .-I _#_..-----"t\"' . ' . -~ > \.;...----.
i.. . ~---------------pr~-. \ '-.. , · ' AREAS
J. · " CA"YO'i BhRO' t(\ . ,....--->-FLOW ------------· DEVIL ·' '
TERRACE
J l
I
I
I
ll
I
I
g·
m
ft
ft
0
~
D
II
I
I
I
~j L' I
WATANA DAMSITE
RELICT CHANNEL CUTOFF SCHEME
DETAILS OF GENERAL SLURRY v!ALL & GROUT CURTAIN CUTOFF PROPOSED
IF FURTHER INVESTIGATIONS C IN DESIGN STAGE) SHml THE NEED.
TOTAL LENGTH OF CUTOFF 14275 lF ALL NUMBERS
SUBJECT TO
SLURRY TRENCH LENGTH 14275 LF REFINEMENT
PENDING FINAL
GROUT CURTAIN LENGTH EOOO LF INTERPRETATION
OF MAPPING IN
SADDLE DAM LENGTH 2300 LF PROGRESS) AND
. . .
(MAX 23'J AVERAGE 20' HIGH) RECEIPT OF 1981
SEISMIC LINE
SHORE RIPRAP PROTECTION 2800 LF REPORT.
RELICT CHANNEL SPECIFICS <ASSU~~NG 2215 NORr·'IAL OPERATING POOL
2235' r~:.'\}\ suRCHARGE ELEVATION.)
q11 li/Rl
MAXI~UM OBSERVED DEF1n 454 FEET FROM SURFACE
450 FEET FROM POOL ELEV.
DEPTH UNDER SADDLE DAr1
SHORTEST PATH FROH POOL
TO OUTLET <TSUSENA CREEK)
ESTIMATED FLO\~ DISTANCE
ESTIMATED ~!IDTH <POOL ELEV) HEAD LOSS -MAX OPER POOL
-MAX FLOOD POOL
0-245' POSSIBLE
145 AVERAGE BASED ON
INTERPOLATION.
6200 LF
7700 LF AT DEEPEST POINT
14275 LF
590 FEET
610 FEET
0)'
,,.
f\
t~
.
·~ ,---r,-1,
.··,-;>"
l•
,,.
I
I
I
I
I ;::;;
I
I
I
I
~
DATA POINTS
• DRIU. HOLE
6 SEISMIC UNE STATION
-DEPTH TO BEDROCK CONTOUR APPROXIMta'E
-BURIED CHANNEL THALWEG
e@ MAJOR BEDROCK OUTCROPS
~" INFERRED LOCATION OF
'~··· SHEAR ZONE
Cl5Z::l:? l' ·-KNOWN LOCATION OF
SHEAR ZONE
-.PROBABLE
._ RELICT CHANNEL
ENTRANCES
WATANA ---SPECIAL FEATURES
..... ..-·--
@
tJ
••••;;MM!a;az. ::a . ; ; !fiPN&ttt JJJ¥, :CIUli dB L JWI$ •• • ,, •iliii'W '""l'T!i'< . -' '' .? IJIIPI'4'"""~ . ~L~·· t-"$!=. '
-,, ..
•:
'\!
I 'I
'Jt~
··,'· ..
..
i:l-·
,,
(iiJ
fj . ~ < < ~ <
II
I
I
I
I
·I
I
~
~
II
n
tl
il
II
ll
II
II
II
r-N69°W
tl81-t
2000
2215 -__ '\7.1::.--__ _
MAX OPER PDCL 2215 FT
WATANA -RELICT CHANNEL PROFILE
SADDLE DAM
~ \ ~< ! DR~l9 I SW.:.3 D~l-A I SL 0-2
~--
S69°E ~ N45°W
Sli-1
1625'
1470:: DR-18 ---
1500 BEDROCK
DR-20
SUSITNA RIVER
1000 SECTION A - A
"THE FINS" to TSUSENA CREEK EXISTING EDGE OF RIVER TO TSUSENA CREEK= 9300'
OPERATING POOL = 6200' DIRECT LINE, SHO~iEST DISTANCE ON UPSTREAM
FLANK OF DAtJ, SITE PLUTON
!--+ N32°W S32°E <I>'"
f SL 8·1-3 t
2215-
2000
1500
1000~-
MAX OPER POOL 2215 FT
-~ 1\~..0± / - -
:
SUSITNA RIVER
EXISTING EDGE OF RIVER TO TSUSENA CREEK = 12,000'
OPERATING POOL TO TSUSENA CREEK = 7, 700'
N75°W
f I I
SL81-16 SW-3 DM-A
---('450;' I
---- -v t
CUTOFF LOCAT~ .
DR-22
SECTION B - B
SECTl ON ON APPROXlf1ATE THALWEG, LOCATION ABOUT
4000' UPSTREAt~ OF UPSTREAt•l COFFERDA!•l
1"=1 000'
LOOKING DOV:NSTREA!~
. RELICT CHA~NEL PROFILES
TSUSENA CREEK
S75°E +
I ~
I
SL80-2 SL80-l
-----
BEDROCK
N45°W
-------
TSUSENA CRE:EK
<c"
n
if
u-
(.-
l; i
tn
ln
II) .,.1 r.
I
1:1
n
a
l;l
n
! ~1
~
! ll
j
-1 I
l ~ I 1 •· ' . i
f i .
-
RESERVOIR _,_"--
WATER
----------·------------
SOUTH /
..-~DAM SITE HANNEL ---· _LOOKING ,--c---=:::: _ =-~ / WATANA RELICT C ~--. .....--~ .. /
__.-L-----~ ~ .... , ~f;;eoRciK ~TODAY .-· 1 /HA
RESERVOIR _ SADDLE DAM
==------1 -... rr-;· ; ~.· ~ --~ 4'~ 'ff.~/
-4;( f.~ -----1i ,.1 '· / '--.........~'I' l '/ ,·-
~ •I
.' r \
-"· .. ,, "-;'' . ,.
'~·· / -
-·-~ ..
~ ..... -----~---------
~ ~~-
-1 ,.
. J .•.•.. ..,. j·. [ l,// ~ ~
I .; I r .... , .... ~
--" " -,~ ',' j '.~
I·
I·
I·
I
I
I·
l
I
!I I
}J
I
\I
I
I
tl
I
I
I
-
8) WATA~~ DAMSITE
FOUNDATIONS, EXCAVATION & ROCK MECHANCIS
GENERAL FEASIBILITY LEVEL DESIGN CRITERIA
. ~--:r 1,;
<.~·
()
~~
\)
I
I·_
I·
J
I
I
I
I
I
1J
I
I
' J
·I
I
I
D.
EXCAVATION
SUSITNA HYDROELECTRIC PROJECT
WATANA DAM
MAIN DAM
OVERBURDEN -AVERAGE 20 FEET DEPTH OVER ALL FOUNDATION AREA.
\~EATHERED ROCK UNDER CORE AND FILTERS -40' DEPTH.
WEATHERED ROCK UNDER SHELLS -10' DEPTH.
MAXIMUM SLOPES -1H:2V BELOW 1800' ELEVATION
1H:1V ABOVE 1800' ELEVATION
CONSOLIDATION GROUTING
10' X 10' GRID OF HOLES 30' DEEP OVER AREA OF CORE AND FILTERS.
I 9/16/81
·.•
•:_,
l ..
c· 1 f·· 1·. ·~ I ·
(~)
1.·.· ·(;
I
~---
1·
I·
I
I
'
' I·
I
'
SUSITNA HYDROELECTRIC PROJECT
WATANA DAr·1
CURTAIN. GROUTING
DOUBLE ROW CURTAIN-VERTICAL •.
350' MAXIMUM DEPTH <AT MAXIMUM HEAD).
50' MINIMUM DEPTH IN ABUTMENTS.
HOLE SPACING PRIMARY 40' I
SECONDARY
TERTIARY
QUATERNARY
SPLIT SPACING TO GIVE
FINAL SPACING 5',
GALLERIES FULL LENGTH OF DAMJ APPRCXIMATE SIZE 10' X 10'.
DRAINAGE
50' DEEPER THAN GROUT CURTAIN.
HOLE SPACING 10' I
DRILLED FROM GROUT GALLERIES.
' FULL LENGTH OF DArt EXTENDING 600' INTO LEFT ABUTr·1ENT,
a
l
I
I
1l
lf
' ~
CONNECTING TO INTAKE AND SPILLWAY STRUCTURES RIGHT ABUTMENT.
HOLES INCLINED DOHNSTREM1 15° FRm1 VERTICAL
9/1E/81
... ~,
~··
,.jt
'Z
,,
"'
,-,.
~\·
f,l
'
./
<j-
"';"
. ~ •'
f.l
i
( W ti.3J..!.~ NMOC( AJNI)I001)
• " 'tl311iJ :J
3"!1Cor111V~Q. qNit 91f/.ll!o}li)
...... -· ·-
/' rl v
!.Jl31.J 3 ~HI tJ 1Hrt:l 11\1l.JJ10 ~ D
W~Q (INbJ-L~M
f:JN.!UOS'
~ \
I vtv o"& \
' l.Y91i.,. \
; 70.£-tiW~
.... ... ..._
I
I
I
I
I WATANA ROD SU 1 1~1.;P.,
I
I
Borehole OH-1 OH-t. OH-5 DH-6 OH-7 DH-8 DH-9 OH-10 OH-11 OH-12 OH-21 DH-23 DH-24 OH-28 BH-2 BH-6 BK-8
IJepth
Ground Surface El. 14!19 1462 1462 1716 1716 1910 1913 2033 2034 1951 1480 1952 2061 1971 1835 1605 1976
Average
Top Of Rock El. 1415 1384 1402 1713 1708 1894 1909 2020 2018 1942 1407 1947 2054 1958 1826 1598 1964
Borehole Dip 59% 45% 45% 60% 45%
\ertical
I
II
·i
I
l ,I
Deoth ROD
0'-50' Drilled (ft) 51.4 45.2 47.9 48.9 49.1 54.5 67.0 48.6 70.3 51.6 59.7 70.5 50.9 29.5 61.2 58.5 59.2 924.0
ROD length ( ft) 14.25 29.9 22.1 24.3' 23.6 32.3 39.6 10.2 49.6 30.8 50. 9' 31. B 35.5 10.6 33.!1' 29.3' 25.7 494.3
ROD% 28% 66% 46% 50% t18% 59% 59% 21% 71% 60% 85% 45% 70% 36% 55% 50~ 43% 52%
50'-150' II 27.6 69.2 97.2 64.6 79.3 139.5 100.5 144.1 99.9 110.0 41.7 82.1 62.4 119.8 118.4 116.2 1472.5
12.55 57.3 49.2 38.9 52.8 86.4 68.5 111.6 53.3 93.5 20.5 57.4 6.3 28.1 75.5 86.8 898.95
45% 83% 51% 60% 67% 62% 68% 77% 53% 85% 49% 70% 10% 2't"' 64% 7!1% 61% ....
150'-2!>0' II 72.1 3i1.8 65.0 105.1 121.7 124.t. 115.8 114.5 753.il
31.8 31.1 55.3 80.5 101.4 67.2 99.1' 94.4' 560.9
44~· 89% 85% 77% 83% 54% 86% 82% 7il%
I 250'-350' II
33.9 118.3 85.6 115.3 114.6 i167.7
28.8 96.8 64.5' 93.6' 91.1 374.9
85% 82% 75% 81% 79% 80%
I 350'-450' II
109.5 114.4 11i1.3 338.2
91.0 93.6 95.8 280.5
83% 82% 84% 83%
115.2 117. B z:n.o -450'-550' II 81.3' 95.3 176.65
~1"' 1M~o 1~g~8
550'-650' II
4~8
74.7 89.3 164.0
79% 88% 83%
I
I
Hole II 79.0 45.2 117.1 146.1 113.7 133.8 278.6 183.9 279,4 290.5 519.2 112.2 133.0 91.9 391.0 732.4 738.6 4485.6
Average 26.8 29.9 79.4 73.6 62.5 85.1 157.8 109.8 216. 5' 193.4 433.7 52.3 92.9 '16,9 193.4 547. 3' 578.6 2950.2
34% 66% 68% SO% 55% 64% 57% 60% 78% 67% 84% 47% 70~ 18% 49% 75% 78% 67%
I
. I
I
~
I "*..,._..~,_ ~ ''· ~~;lllllf)e.~
.~ .
~,4.
~-
9} DEVIL CANYON DAMSITE
FOUNDATIONS, EXCAVATION & ROCK MECHANICS
GENERAL FEASIBILITY LEVEL DESIGN CRITERIA
' ~
'!
.;·: .• ··"'
'-
,,
':'
~~:
•"!:
,,
..
EXCAVATION
SUS.ITNA HYDROELECTRIC PROJECT
DEVIL CANYON DAM
MAIN DAM
OVERBURDEN -RIVER BED 80' MA>C 20' MIN.
-CANYON WALLS 15-20' MAX., 1-2' MIN.
-ABOVE EL 1300' 5'-35' AVERAGE 20'
WEATHERED ROCK -VARIES FROM 10' DEPTH TO 80' OR MORE ~iHERE
JOINTING IS OPEN
ADDITIONAL EXCAVATION HILL BE .REQUIRED TO SHAPE CANYON WALLS
CONSOLIDATION GROUTING
10' X 10' GRID OF HOLES 30' TO 70' DEEP OVER FOUNDATION AREA
ClOC' UPSTREM1 AND DOWNSTREAM) AND UNDER THRUST BLOCKS.
9/16/81
!I+.¥;; -r'"'*l _..'l""", l¢l,F ,. .. """'"'".!I I¥ .C I 4 441 i1 •Nt!Q Q 4W, ~P4,<W. A4 0 '. §I # ;....-
,,
li
·;-
<:;f''~
o·
\,J.
,,
~·I'_'
. ·~f ·/
j
I
I
I
I
I
I
I
I
-,I
I
I
I
I
l -~--
1
I I
11 'J
"' I~
I
SUSITNA HYDROELECTRIC PROJECT
DEVIL CANYON DAM
CURTAIN GROUTING
MAIN DAM
<CONT'D)
DOUBLE ROW CURTAIN VERTICAL
300' MAXIMUM DEPTH <AT MAXIMUM HEAD)
50' MINIMUM DEPTH IN ABUTMENTS
HOLE SPACING PRIMARY 40'
SECONDARY
"TERTIARY ·
QUATERNARY
SPLIT SPACING TO GIVE
FINAL SPACING 5'
GALLERIES FULL LENGTH OF DN~J APPROXI~~TE SIZE 10' x 10' EXTENDING
UNDER THRUST BLOCKS.
DRAINAGE
50' DEEPER THAN GROUT CURTAIN
HOLE SPACING 10'
DRILLED FROM GROUT GALLERIES
HOLES INCLINED DOWNSTREAM 15°
ADDITIONAL DRAINAGE HOLES DRILLED FROM SURFACE MAY BE REQUIRED
FOR SLOPE STABILITY OF CANYON WALLS BOTH UPSTREAr~ AND Dm~INSTREAr1
OF DAM
L~ I 9/16/81
""'', . , ,c it 14 ¥ -g f " PU I r 1@1( q • )1111 j f ,,: ;p ; 4f"W ::t,. '!;#¥ 4¥ 44 J4 + ; """" ¥
\1'
<, '·
(·
0'
I, II
<-
,'
I
I SUSITNA HYDROELECTRIC PROJECT
. "'· DEVIL CANYON DA~
I -/ll'll> >r,
I SURFACE STRUCTURES
Iff
I
lliTAKE _Arm_ SPILLWAY
EXCAVATION -OVERBURDEN ~. lf.' ' 'i'
-20 1 APPROXIMATELY
I -WEATHERED ROCK -20 1 APPROXIMATELY
I CONSOLIDATED GROUTING -10 1 x 10 1 GRID OF HOLES 30 1 DEEP t,, it..-, . l
I CURTAIN GROUTING -CONTINUATION OF DAM CURTAIN FROM GALLERY
<SPILLWAY ONLY) UNDER STRUCTURE
-so I ~1IH Ir1UM DEPTH
I -SPLIT SPACING AS MAIN DAM I ' ..... 1 ·; ~c
I DRAINAGE -FROM GALLERIES IN BASE OF SPILLWAY
<SPILLWAY ONLY) STRUCTURE
I
I
TUNNEL PORTALS <TUNNEL SPAN = D)
r
COVER TO TOP SOUND ROCK 1.5D t ~
I SPACING CENTER TO CENTER 2 I 5 D I ~I HERE TUNNEL Is STRUCTURALLy ;
REINFORCED SPACING MAY BE REDUCED TO 2~0 D
I ALL TUNNEL LININGS CONTACT GROUTED
I DRAINAGE PROVIDED IN LININGS OF DIVERSION TUNNELS
L
I
I L . ~
-t' (\ ./ .:
fl It .. 0
·, ~ .. ' ,. '.
D
I ·~ I 9/16/81 • ":·.·~~i:.· ~. ·. ..
•.... ~
L_ ..
I
I ;
......
I
I:
I
I
I
I
I
I ..
I
I
I
I
I
I
i .-
[1
I
SUSITNA HYDROELECTRIC PROJECT
DEVIL CANYON DAM
UNDERGROUND STRUCTURES -GROUTING
PENSTOCKS -RADIAL CURTAIN GROUTING MAY BE REQUIRED IN PLANE OF
DAM GROUT CURTAIN
DRAINAGE -GALLERY IN AREA BETHEEf~ TRANSFOR~1ER GALLERY J PENSTOCKS
AND POWERHOUSE
9/16/81
'b ...
;,'.1
'i ..
·;._ ,.~, r
"" ·". ".": (1. r~.: . ,, .
" \ · .. · ::
'l' '' ' '"'·t
. ':~
,'
·r
<·
0
r :~ ...
-.~-' ...-~-~--,"" -"'~-~, ...... ~----...~~..,.,......._ ___ :,.....:.. ____ . ---·-· .
iili' ------l.. ·--.. -... --· .... --~--·--
_, I
I t5oo
I
/lfoo
\
I 13oo
12.oo'
/IJ>O '
/DOD
I
CJoo'
Br»'
7oo1
LIM liE«.
SPILLWfl'"/ \
\.
\
GROliTIP.I~ ~Alb
biZAtA.IA~E 0.4LLI&4Y
Access
' ' .....
.....
('-OOKJA.'C
.....
'
Sus 1TN A HY b~D Eu:c.l/l.tc:. Plo:rt:c.T
DEVIL CA-W YDIJ bAM
{;.£ouTIIIJ C 1Tit R..fw' E.hEu"i'
.....
..... ~ ORJC-1~AL G~OLIAJb .JUlFtttE
' .....
' '4 \ r ' ll-.S~une.b EJ!.. C4¥ A-TIOA.J
LOJc,
I ,
\
' ..
" \
\
V t ST;(E:A-f'-1 )
\.
\.
\
'\
\
\.
GA-LLEI\ 'I I ft) b ~~ I
I
' "'
I
I
I
I
I
TO &IJU.iUY IIJ 1
.......
b~""t /
' '
..... _
-
------.·
/ ,
3oo'
/
I
,.-
/
/
"'
_,
I
/
I
I
J
I
I
I
I
El I It.'S
,_I ..,.,.,~UJT
~
I
I
"' ... ...
" ~
I I
I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
;
I
I
~ /EY-TetJT Of!
I GtlouT C.ulll11tJ
I
I
I
S 1!1'7 14 I <J 9 I
·.r.;>... (~
t_~ :
I
I \,;"
DEVIL CANYON RQD SUMMARY
I tiOrehoJ.e BH-1 ~~~ 6.~~4 BH-:,a ~~>b ~"~ ~ro~ Ground Surface El. 1415 1)53 980
I Top of Rock El. 1404 1212 1346 ----Depth
Borhole Dio 67° 60° 60" 45° 45° so• 320 Averaoe
Vertical
--~ :?---;-· '~~
Depth RQD
I 0'-50' Drilled (ft S2.7 60.2 58.2 72.5 71.8 (i7 .9 94.3 477.6
RQD Length-34.7 47.6 50.6 46.35 45.55 39.6 77.2 341.6
RQ~ (ft 66~ 79:"; 8711; 64~ 63:'; sa:; 8z:; 72l;
'·
I 50'-150' " 107 .o 113.4 113.8 138.7 128.5 134.8 188.70 924.9
69.8 82.15 111.0 110.2 105.5 85.25 139.0 702.9
65:"; 72l; 98:00 79:'0 8z:; 63:; 74:'; 76':.
~.-
I 150'-250' n 108.8 116.4 117.9 143.2 141.2 100.2 727.7
94.2 104.4 105.4 117.9 121.9 45.4 589.2
87~ 90:; 89:; 8zr:. 86':. 45% 81%
I
I
I
,I
!
250'-350 1 n 111.1 115.1 114.3 142.2 143.4 626.1
95.6 100.4 103.2 125.55 117.95 542.7
86~ 87':. 90:; as:; 8z:; 87%
350'-450' n 109.8 117.2 84.5 101.3 412.8
98.7 109.6 80.65 84.8 373.75
90:; 94% 95~ 84~· 91%
450' -550' " 107.7 116.2 223.9
103.1 98.25 201.35
96':. 85':. 90%
550'-650' " 113.8 15.0 128.8
95.1 14.0 109.5
84% 96% 85~
650'-750' " 34.5 34.5
29.3 29.3
85% 85~
I . I I l t I ' I Jq
I Hole n 745.4 653.5 488.7 597.9 200.3 487.3 383.2 3556.3
Average 620.5 556.8 450.85 484.8 151.05 364.7 261.6 2890.3
83':. 85~ 92lll 81l\l 75lll 75lll 68% 81%
---. I
j
.! I \.1.
0 -:r
. I
J
.j I -~'-:
I (J
I
Lle
" +t i ;w *'" •+P'W4P?f0 #¢ Q$ .i!( . J2 WJ _i •.
I ' . . . . i~,
• 1" "
; -. . . . I l~~~~~-· . ......:~.-:..:.~-"-"~1-'" · --· .. ~~ec·;,,L~~ ~.. ' • !t .· .. ·;' ;· .·· .. ··.·C;,J:>r: ;t: ;'(:·::'~1\!
' n
r··
I"
r
{ '
1
i .•
SUPPORT MATERIAL TO TASK 6
DESIGN DEVELOPMENT
\ li
'i: •
. ..
! ·J
l
..
..
.j
" i
WATANA LAYOUT STUDIES
t'
i i· .
I
l
I ! '
1 1 ! . I ,;. .,
lt'";r-
ft
r:·
I (1 ; I l '. .
!
t ::1 I ~ ' .
.-
::J ·~· ~ " ..
l]
··-
'·t·· .
. .
~·~
. rl . u __ .
Ll··· L---
•• ; l
L·~·
.. 1
!I
'--
•••• ····~'
I
r·
~l
\ I
u
\J
~
l
\\.
v
I
t
1 -INTRODUCTION
As discussed in the DSR. the recommended Watana deve1opment {P1ates 12 and 13)
consisted of the following:
-Dam:
• Crest:
• Height:
• Volume:
• Slopes:
• Cofferdams:
-Spi 11way:
• Capacity:
• Type:
• Location:
Earth and roc;k fi 11
2,225 feet
880 feet
63 million cu. yds.
2.75:1V upstream
2H:1V downstream
Integral
Three-gated agee section
235,000 cfs (PMF)
Chute and flip bucket
Right bank
~ Power P 1 ant:
Studies have continued to deve1op an optimized genera1 arrangement for the
Watana site.
800 MW (ultimate), left bank
_" ___ ... I ' t l e a ... ~ I I r~ I I I
w~
t-""
I
:::>l!
0 9
~I
(.)
Z< o-
\
§i
w
(f)
I \
'
I
;· 8
si
2 0 .. 0 .. .. ..
~
I ' ~ ~ ~
i I \
\ 0
I
(.) .
I
'
0
t.
0 ' ~. ~ fS~
0~
~\ i=3
~' O"'
5~ " \
w•
9~
(f)
'
~ i \
~ s
uar
... ~ s
~~
.. .. .. .. ..
-·
g
., ...
i~
a. <
~ ~ ~
'
~· ~
~
\
'
'
I \
l
I ;i I
' l
C'
I I
N
! i\
I
~
I
0'1
I
i I
<( \
I I ~ .
I
<(
t\
i ~ <c
z<
~
..
Q-
i \
.... ~ ~~
~~ \
...
i
I .J; ... ... ~ ~.
~
~ 8 ~ R • Sl s ~ .. g H .. .. .. 0 ~ ~ .. !! ~ ~
!:. ~ ~ 8 0 ~ 0
lit l! ~ .. g
~ '! ~ B .. ..
-
-r--[--rau t·i .. aiJ I ·-. . rail -
..
• .
1 u/a 2.5a1 a-l!lat aide curved
d/a 2~1 upettoa
u/s 2.25a1 dQht and left aldea
d/a 2a1 curved upehe811 .
2
u/a 2.25a1 r l~t and left sldeq
d/s 2a1 curved upab:e011
2A
u/a 2.25&1 d!#tt an.t left aldoa
d/a 2a1
28
u/a 2.2Sa1 a-1ght and loft aldaa
d/s 2a1 CUi"Vod upatro011
2C
u/a 2.25&1 a-ldlt and loft eldea
d/o 2a1 oorved upatro8111
3)
u/a 2.5a1 r Jf#lt and loft atdaa
d/o 2a1 curved upatre~~~a '
4 u/a 2.5a1 left bank skewed
d/s 2a1 upatro&ll
r-;-:-·""'"1
;, .. .. -.. -.... ~
! .. f--
r' .
flip bucket rl~t bank
csocado, ulnglo left bank
coolrol structure
c&flcado, dusi loft bank
control structures
dotillo etlU1ng loft bank
baa in
double atll ling
baaln ·
fUp bucket
cascade
fUp bucket
left bank
loft banfc
lef~ bank
lof~ b~
... ..,--1 ..
inclined
..-unod
chamel
4<~,~-J
E!lf
flip bucket
---.,
1!11'
left bank
Jlght bank
..
L __ .____ ____ ---------------
ei1 "'-~-. .,. -< •• ··-·-l -I f!lll
" ... ~ 1 . . ' j
I!W· =-·
88
tocat!f!! I
' 1
mdorground loft be1'*
st~rface right bBfltc
surface right b&flk
aurfateQ right b&nk
aurfece rlght bank
mwrground l'ldl~ bank
undergrotMld loft bank
&Jlde l'QfDII.Ind laft bank
lfl l
! ~-
1 I I] , I \
' ~
l r1 ; I .
' ~ '
: l.
; , 'I 1 r
~ {
~ .
;-....
: rl· J·.
L
rl !._
fl
{.._ .....
I .
J ,.
~_:,;.
rl
I . \......
~·· . r
~ ..... _ ~ ! 2 .. ..
(
• i
l
;··· tUJ .
·L.. ... ... . '
l
i_;,.,;.
r·l
t ........
il
' ' ......... ...
\ ~ ...
g
!
0
(
\ l
0
2 ..
... ~-· ""--;~_· ·U ...... ' ~. ' i ~ '
~ ~·' . I
f
.r_. r·~-, I
~ :
: j ' . l
'
fl
.,, ,.,.1
I
• I . ; ' .
' ·-~1! ' !·
, . . . -
f"l !' .. '
. r __ ~ •. ' : .
. ....
rt . J
·~
I f1
t, ••
f·l
l -
1 ••••
i '
·I· . '
; 't
8 ! (
...
~ ; rm· ·. ·. ! j . . . .. .
fl
• >
, rl ~ : . '
I .
: t
r_.~. i '
' · .. ' .
, ·~I ' ' .~ L .
r ..
',fl. ,.,
! .
' '
·-.. rl
;~·-· ....
' ..•. ' '
l· ·.
rl I .. .__
. rJ ' l ' i'
\.-
' . r:l··
' } , .
,_
· rl
~ ..
. ·· rl .. •
L.
rl" • t
~-.
\..._
. i I
. -~·-. . . ' .·; : .. . '
. ~. ' l
i '
'
:.:. ·~I ' '
' . '
'; 'i. ' . .
·, l!.' ·.
' ' '
C •.. ' l'
~ "·.
' :1
t~-
' rJ·.
' '
[_I
: ~··' ; ' c
. rl I
' ~~ ,'
"*:..
Fl
~~
:. '1.·· ', '
: i .
5 .;..,_,;,.,!
' '1: \ ~ ' ,, ' .
~ 1
® I (
. ·--
:""• .. !ti
fl
iE
; •.. ' . : ~
!I
rl '·· t . ' :~
~-···· : ' ,.i
i:l
L.
r-1 . .
' Lo...:.
r.l'
;
•···
~•
~-. i
r,
~ ...
;,
~;
_,.
l ' .. ,-, ~
• ! .
1 .•. . ' i ,;_
~1
1:.
--· . .
. ~'-1
. f"l
... , ..
rl·· t .,
1-'
'~~ -
:I
·--
!·1
. ! ··-·! '~ . '''j :I ·~
-I! '· , '
: -~.
[I
'·~
-~ '~
:. ''1
t l ,.I
! . ~ ",
I ; . ~~t
• 'I . •·
'll : r
1. '·" I .. ~ .: ..
;a
~~
~a l·
~· '.
tl
l..-...
il
··IJ : ,'
:I .,
~c<.O
;I i ~~
I
;I
8 ; c
I (
1 I t
·. \ \ ;
; ~
!
\
0 ~
.. ... .. ~ ;~ §
: ;;;
2 ui 1&1 !« w ~ 2 Q. Je~ z~ 1:1~-~~ "<i. a: <tw ~l!t:l i<C<
)
···m i :J : . ~
; 1 .
1 i. ! . . . ;,
rfJ I .
·L-_ ..
~-~.:J t~
L"
, .. ,
I·-'1 t l .. "
L:
3 -COMPARISONS OF FOUR PREFERRED LAYOUTS
The four layouts described in Section 2 were developed in greater detail {see
Plates 7.1 and 7. 3 to 7. 7), taking into account any new data that had become
available and based on expanded and updated design criteria. Capital cost
estimates of the layouts were prepared and the schemes were evaluated to
determine the two arrangements that were the most favorable.,
-Design Criteria
The principal project parameters and design criteria on which the layouts were
based are shown in Table 3.1. Parts of this criteria wilil be superseded as
more information becomes available. Where assumptions Wf~re made, they were
based on the best information available at that time.
-Evaluation Criteria
The review of layouts was carried out and assessments of the different schemes
made on the basis of the following evaluation criteria:
{a)
(b)
(c)
(d)
(e)
(f)
Technical feasibility of the scheme;
Overall cost of the scheme;
Ease of construction of the project. This will pa.rtly
the cost of the scheme and be eva 1 uated under (b);,
Impact on construction schedule;
Environmental considerations; and
Operating characteristics.
-Selected Schemes
The selected schemes for further development are:
be reflected in
(a) Right bank diversion, mid-level release acting a!S a first-stage service
spillway, right bank chute and flip b~cket as a backup spillway, rock
channel.as an emergency spillway, and a right bank underground
powerhouse;
{b) Right bank diversion, left bank rock cascade ser·vice spillway, right bank
rock channel emergency spillway, and a right bank underground
powerhouse.
These schemes are shown on Plates 8.1 through 8.4.
-Cost Comparisons
Table 1 summarizes cost comparisons for the four se'lected developments.
TABLE ~.1 DESIGN CRITERIA
River Flows
Average flow (over 30 years of record):
Probable maximum flood (routed):
Maximum inflow with return period of 1:10,000 years:
Maximum flood with return period of 1:500 years:
Maximum flood with return period of 1:50 years:
Reservoir normal maximum operating level:
Reservoir minimum operating level:
Area of reservoir at maximum operating level:
Reservoir .live storage:
Reservoir full storage:
Dam
Type:
Crest elevation at center:
Height:
Cutoff and foundation t~eatment:
Upstream slope:
Downstream slope:
Crest width:
flm Diversion
f"•lf! ~~t .....
Lll
["~ L~
I r J
i
l I . ....
I . . .
1. ' ' r .
~--~
. r.··'~i~
! 'f
!
I i
'
' ' >
Cofferdam types:
Discharge capacity:
Cutoff and foundation:
Upstream cofferdam crest elevation:
Downstream cofferdam crest elevation:
Maximum ·pool level during construction:
Water passages
Outlet structures:
Final closure of diversion tunnels:
Releases during impounding:
Spillway
Des i gn. fl oods :
7,860 cfs
235,000 cfs
155,000 cfs
116,000 cfs
87,000 cfs
2,200 ft MSL
2,050 ft MSL
40,000 a~res
4.6 x 10 acre ft
10.0 x 106 acre ft
Rockfi 11
2,225 ft MSL
890 ft above foundation
Core founded on rock
grout curtain and down-
stream drains
1V:2.75H
1V:2.0H
80 ft
Rockfi 11
1:50 yrs. routed flow
Slurry trench to bedrock
1,560 ft MSL
1,500 ft MSL
1,555 ft MSL
Concrete lined
Low level structure with
high head slide gates
to operate under low
heads
Mass concrete plugs in
line with dam grout
curtain
2,000 cfs min. via bypass
to outlet structure
Passes pmf, preserving
integrity of dam
Passes routed 1:10,000-·
year flood with no ·
damage to structures
~· ' •
.. . ' .
TABLE 3.1 (Continued)
Spillway (continued)
Main spillway -Capacity:
-Control structure:
Emergency spillway -Capacity:
-Type:
Power Intake
Type:
Number of intakes:
Draw-off requirements:
Drawdown:
Penstocks
Type:
Number of penstocks:
f -~ Powerhouse
L .
r·m·!o'.' l ; ' '· L
I r ;
: j, L ..
(•!)
" l ' ')
\..;...
~-~
'I' '
:•,• . '
t ,!
I ,
I " r .
.....
I t
( ;_
Type:
Transformer area:
Control room and administration:
Access -Vehicle:
-Personnel:
Power Plant
Type of turbines:
Number and rating:
Rated net head:
Design flow:
Normal maximum gross head:
Type of generator:
Rated output:
Power factor:
Frequency:
Transformers:
Routed 1:10,000-year
flood with 5 ft
surcharge
Gated agee crests
Pmf minus 1:10,000-yr
flood
Fuse plug
Massive concrete
structure embedded in
rock
4
Multi-level corresponding
to temperature strata
150 feet
Concrete-lined tunnels
with downstream steel
1 i ners
4
Underground
Separate gallery
Surface
Rock tunnel
Elevator from surface
Francis
4 x 200 MW
690ft
5,300 cfs per unit
745 ft
Vertical synchronous
222 MVA
0.9
60 HZ
222 MVA-13.8-345 kV,
3-phase
~· .
' .
r,
f·
1.
-!! ' ...
''"it···· . ~'
:::.. ~
-~ {.
J . I L. ..
rt
1..--
-~m \ r
; , r •.
L.;
r£ L-'·
~
Pf:· C'
rz· 1 ~A I ,.
j
L,
t· --j .
I •
I
'--
I' \ l!
I
'--
• ••••
TABLE 3.1 (Continued)
Tailrace
Water passages:
Elevation of water passages:
·Surge:
Average tailwater elevation:
Main Access:
Transmission:
2 concrete-lined tunnels
Below minimum tailwater
Separate surge chambers
1,475 ft MSL
Assumed from the north
side
Assumed from the north
side.
.. r·-··--· r-·--, ~~ ···----~~-r:-.'<> r-·--1 '-:.::.:1.....
•·· ..-...., ~! ~~·-~~ r ....... L!~ ~~ r·· ....,_ 1 ~t·· ·•. ~-.. -, .----·· ~ ·;
IL!I C.!!!i . ~
I ~ ... •-.-.1 "{t:-, r.~ .. ~-~ .._ -~~. "~ ~ \~ ~ 'w--·~~~ ~ • . . • ' '~/" . "Jl
Unit
Description Unit Price --·-. -
Diversion/Cofferdams
[~cavate Rock Portal cy 15
[>:.cavate Tunnels cy 55
Concrete liner at
Portals cy 260
Concrete liner Tunnel cy 250
Concrete Inlet
Porta 1 Hcadwa ll cy 260
Concrete Inlet
Portal Pier CJ( 295
Concrete Outlet
Headwall Clf 260
.
Concrete Plugs C)l 500
Upstream Cofferdam C)' 4.20
Downstream Cofferd~n C)' 7.35
Dewatering LS J,675,000
Cutoff LS 6,825,000
Reinforcing Steel Ton 2,100
Rockbo Its T unne 1 s Ton 3,500
Rockbolts Portals Ton 3,500
Rock Surface Treatment sy 15.80
Support Steel Ton 3,675
Gates, Etc. LS 4,600,000
SU8101Al OIV[flSION/
COff[ROAMS
TABl£ 1 -WATANA
COMPARATIVE COST ESTIMATE -NON-COMMON ITEMS
JUI.Y 1981 (JANUARY 1982 OOlU\RS)
Scheme :lA 5cheme JA1
Quantitv $000 Quantity $000
290,000 $ 4,J50 290,000 $ 4,350
435,000 2J,925 536,00fJ 29~480
4,200 1,092 4,200 1,092
67,6110 16,900 83,600 20,900
17,200 4,472 17,200 4,472
600 177 600 177
7,500 1,950 7,500 1,950
20,000 10,000 20,000 10,000
3,140p000 13,188 3,140,000 13,189
125,fJOO 919 125,000 919
3·,675 3,675
6,825 6,825
1,226 2,575 1,306 2,911
475 1,663 575 2,013
125 438 125 438·
2,700 43 2,700 43
1,250 4,594 1,525 5,604
4,600 4,600
$101,386 $112.637
!
~~
., 4 •• \
~ ~:-::~~~
-~ ... '
~ "" --
·--.... 1
·~ -·--~\
-~ ~~:-~.;-.·:~:if~
I
·i~
Page 1 of 5
Scheme 'AZ SCheme 4A '
Quantity $000 Quantity $000
290,rmo $ 4,J50 290,000 $ 4, 350
435,000 2'5,925 450,000 24,750
4,200 1,092 4,200 1,092
67,600 16,900 69,900 17,475
17,200 4,472 17,200 4,472
600 177 600 177
7,500 1,950 7,500 1,950
20,000 10,000 20,000 10,000
3,140,000 13,188 3,140,000 13,188
125,000 919 125,000 919
3,675 3,675
6,825 6,825
1,226 2,575 1,249 2,623
475 1,663 500 1,750
125 430 125 438
2,700 43 2,700 43
1,250 4,594 1,300 40 777
4,60Q. 4,600
$101,306 $103 1 104
....... ~
,~ _ _.,_ ~· ......
...... ~ .-.... fi::~·· . ~ F~:.:· ~\~ -·-~ ~~-4{~
WATANA
·~·· ...... ~-~
COMPA~ATIV£ COST ESTIMATE -NON-COMt-10N lll:HS (Cont 'd)
-LJnlt
. il!~·a. ·~
I lii:;'"•"•-""l
Scheme 4!A
Description Unit Price Quantity $000
Service S~iiJwa~
(,..cavate Rock cy 17 1,567,200 26,642
r.,..cavate Overburden cy 6.30 1,301,000 8,196
Concrete tla lls
formed Ono face cy 260 32,600 8,476
Concreto Walla
foraood Doth faces cy 280 19,100 5,348
Concrete Slab Approach cy 190 . 2,900 551
Concrete Slab
No forms cy 170 79,600 13,532
Conct·ete Slab
formed One face cy 190 2,100 399
Concrete Slab
formed Both faces cy 200 15,500 3,100
Concrete Gate/Chute
formed One Side cy 295 2=500 738
Conc1·ete Gate/Chute
formed Both Sides cy 315 . 5,100 1,607
Concrete Structm·e
No fot·ms cy 210 2,1011 441
.
Concrete Structut·e
formod cy 250 11,400 2,850
Concrete 81•idge cy 600 2,150 1,290
Concrete lmu~r Piers
Bridge cy 295 NA NA
Concrete lower Bridge
Deck cy 500 NA NA
Reinforcing Steel Ton 2,100 5,896 12,382
Rockbo)ts Ton 3,500 1,000 3,500
. iitflflliil
~
~·---. ·~~
Scheme ~Al
:~
Quantity $000
3,114,000 52,9)8
969,000 6,105
59 0 000 15,340
75,300 21,084
. 2, 600 494
284,500 40,365
. a, 100 1,539
NA NA
2p200 649
4,700 1,481
3,400 714
10,100 2,525
2,000 1,200
NA NA
NA NA
15,7J5 :n,o4J
106 651
~~ . ~~ ~.· ~ ...
"!. ~·.c::tl ~. r;~.;_-:~ . :~1 ~ . . ""
Page 2 of 5
Scheme JA4! Scheme -lfA
Quantity $000 Quantity $000
1,456,0110 24,752 10,074,000 171,250
1,224,000 7,711 2,150,000 13,545
30,700 7,982 950 247
/
19,500 5,460 19,700 5,516
2,600 494 3,900 741
70,400 11,968 13,000 2,210
9,100 1,729 20,000 J,aoo
13,800 2,760 NA NA
2,200 649 3,100 914
4,700 1,481 11,200 3,528
J,400 714 11,300 2,373
10,100 2,525 17,400 4,350
2,000 1,200 J,OflO 1,800
NA NA 9,700 2,861
NA NA 3,900 1,950
6,081 12,770 5,577 11,712
920 ),220 8,460 29,610
_,... r--··; r-·~··· ( ·-~ r~ r-~ 1 r--·""'j )"~--~
~ .._ • ....,.\ .... 1, ... ~: ............... ~~~~~·~~~
.... .oJ ... -,
~
:----·..,
mAil
WATANA
COMPARAT J\'E COST ESTIMATE -NON-COMMON IU:MS (Cont 'd)
lfnl.t !lcllcme ZA
Description Unit Price Quantity $000
Cates LS 4,500
Dental Concrete LS 4,800
Grouting lS 2,100
Winterization LS 7,000
Alluvium Removal
Above Water level cy 7 760,000 5,320
Alluvium Removal
Below Water level cy 17 860,000 14,620
Additional Haul Roads Mile 40,000 2 80
Surface Treatment
Vertical sy 15.80 17,000 274
Surface Treatment
Horizontal sy 10.50 30,400 403
SUBTOTAL SERVICE
SPILLWAY 128,149
[mergcnct SJ!i!lwa~
[)l.cavate Rock cy 17 NA
[)l.cavate Overburden cy 6.50 NA
Place fuse Plug cy 6 NA
SUBTOTAL EM£RGf.NCY
SPILLWAY ---~-----
~-·-·,
"
~_:l
~
&heme ,,A 1
_.,!
~
Quantity $000
2,900
4,800
2,100
11,000
NA
NA
NA
50,000 791
56,100 589
208,308
1,383,000 23,511
3,551,000 23,082
54,200 325
46,918
····-· .1 .... . "'
. " .. I
·~ 1st~ •H-i.O.,'
.~ ... ·-1
~
~ ...... ..., ..... , ... ,_
e ........ ,.-"'\ .....
~
Page J of 5
Scheme 'AZ Scheme ltA
Quantity $000 Quanti tv $000
2,900 4,000
4,800 NA
2,100 500
6,500 6,000
760,000 5,'20 NA
860,000 14,620 NA
2 80 NA
.
.
19,100 302 . 9,000 142
33,100 348 11,500 121
122,385 267,178
1,383,000 23,511 NA
3,551,000 23,082 NA
54,200 325 NA
46,918
-··. r-·-.-· r-·-·""'• r·---. ...,..,....-, ~-............. r--~-, ......... ~ ..... , ---··-; r-· -i
t .. i . l • ' ~ . t ' . •
........ ·~~I ..... 1 ; ...... • ~ , ~ 1 ....... ·~~--• (~ .~ ~~~~~t~.~~~~
. .. '.,
~.~~
~~...._ ., -"(. .. -·
"' • 1
~
~ ~.~ .,
·M ~ -· -
,...--·' !
~
. . ...• ,
M
--......... "' ~ ~:---1
~· .,.., J r
-···-·--;
t.t!l
WATANA
COMPARATIVE COST ESTIMATE-NON-COMMON ITEMS (Cont'd)
Page 4 of 5
lklit Scheme 2A Scheme '1\1 Scheme 'A:Z Scheme lfl\
Description Unit Price Quanti~ $000 Quantity $000 Quantity $000 Quantity $000
TaU race T unne 1
[>c.cavate Tumcla cy 50 97,200 4,860 97~200 4,860 97,200 4,860 59,000 2,950
Concrete line Tunnels cy 2'75 14,850 4,'104 14,850 4,084 . 14,050 4,004 9,000 2,475
Reinforcing Steel Ton 2~ HJO 150 J15 150 J15 150 315 90 189
Rockbolts Ton J,500 480 1,680 480 1,680 480 1,680 J15 1,1112
Support. Steel Ton 3,675 590 2,168 590 2,168 590 2,168 J60 -~,J2J
SUBTOTAL TAILRACE
TUNNf:L 13,107 1J,107 n, 101 0,039
Credit for Use of
Rock in Dam C)' 8 1,466,001) <111728' J,900,000 <J1120Q_. 2,344,000 <181752: 9,044,000 (721352> .
TOIAL
NON~COMMON ITEMS 230,914 349,770 265_,044 305,969
-"' --r-, ·-r ~~i r"' ··~-r---·-.., r~-~:; . r-· ~.... -··---r··-~ .. ,
-
1 .... ' Blliiilliill; ..... I . I. ~· I .... J.....:. ,,)._.. ~ , . ·~ ·~ ~ M ~ ~· ~ ·~ ·~
ESTIMATE S~~HARY -WATANA
COMPARATIVE COST [STIMAlE-JULY 1981
($000,000 JANUARY 1982 DOLLARS)
-·~-. . .., e
Description Scheme :.!A Scheme JA1
NON-COMMON llt:MS 231
CotflON ITEMS 1,643
SWTOTAL 1,874
Camp & Suppm·t Costs
(16~) :mo
SUBTOTAL 2,174
Contingency 20~ 435
SUBTOTAL 2,609
[ngr/Admin 12.5~ 326 _ .... _
TOTAL 2,935
.. -. """'" ..... ~
.,.~ .. -. ., ,..--·1
'!!'~ ,_
~-' ,__ ,· .....
!)cheme 'Al.
350 265
1,643 1,643
1,992 1,908
319 305
2,312 2,213
462 442
. 2, 774 2,655
347 332
3,121 2,907
~ -~
~ ~ ·~
Page 5 of 5
Scf\eme li~
306
1,64'
1,949
311
2,260
452
2,712
339
31051
~l
-·r~· . " ~ ' :.-f . . -~:
..
l • I . > -··ll· I. } ' ~ t \:!!!-'"
l
l ~--.. r .
i ~ t l
: .~l·tt,
• '1,
\ : .;
'!
I
~·: ; .\\\
··-1' '. .
I
. I' .'. . ... . .
; i
" '·-
\ t
_, . 1\
' ' '
I I . \. . .:--.
r' ~rl· !. ~ .
,__
,-J~. , f
J :1
..... ., I r
I . .
\~·
.. I
• • c
J !
I r
... 0
u • .I ' . i ~ .·-t, ' 4 ""*" t ., t i e § r~ 1-0 --r·~ 1 ~ .( tO ~ i ~~
.. ~;.·[; ; j
• r
! ·-_,..
LIJ • sl 0 25 6
...J ~~ ~ t5i a.. ~ ~
\
...... 1'.· . 'lit ·~
j :
.. I. ! . j.
l '. i
' .
. ·t-: ; \t . •
' ~ -
Ll
· c·l
,__
'.·1.: ' ~ j ,.
·..._
\ li \ 8 s s i .( .. . .. .. ..
\ i ~i \ ~ s \ . I !I .. > 3 ,\ ru ~~ ! il I I 2 co i g I
: ' ! ~; ! I I
co
i ! ~ i 5~ i I .,. --lt/ -~ I l ;I ~~
: I I: . I ~
\ ! ~I I I .. \ i c , . I I c
0 ~. i ~~ /I I.:
0 . 'I I I t. * I -; ~· ) I ~\ 1-.,
Sl 8 8 ~· Sl §' i /'! ,/ . .. .. .. en .. .. .. al " \ , i v.:l ~~ LIJ .. i
»~ ..J ;; ;~ I "~ 1.1.. g I / .· 0 a: /I ,• I a.. ~ ..... ~ ~ § .i-~ .. /. .
-.::r'!-/ . • 00 ~ .. or .. .. ~ , I
a l: / /· ,' 3 -a..
b!i en
.. f\ 1 ./I· ..... =~!! b :-{ /·,~ Si!" \ "• a's II ;1~/ /, ~~~ \ ~s~ g I l§ ,' 1 ~ ~ :!t i§ //~/,A ~¥ .,..,
1\ r '/
I 1,//-,. .
l Lfr· .// ; ~ . < I. ·; -\ <
l . I .. /1 g ' . zc l I /I.// g·
I<\ \ .... ~ I I ... i \ ~~ . It· I . I ~1§ I ! \ / '/if a§ 0 -\ i ·~ ~:~ I .h
~ /: ,___, . ~
' -~·· . s,
I I ......, ~ ;ta. ' I ~ j" oft \
I ·~1 A
I I I I I I I I I I I I I I I I ,
! i ~ s s 0
H s i ~ § i ~ ~ ~ ~ ~ 0 8 Sl § ~ a ..
"' .. 0 ! :: ~ '! '! ~ • ... .. .. • I"'
0 II. w Q u • < v-.... .. _
·I I
""<H~ '\ f'" "' .... -"" ~-, .. ~"-'""'"' .,.,. ....... ., ~ r=·-· ·-., -.. •.; -',!>.· ~-·-~-( ..
10
c e
l
I
r-··, r·-~. r-.--; ~-............. ~; .. ' '~ .. ~ .... ~ \ ....... ' ,_,.. • ;
. •• ..... ..... • ~ ,fJ "~ '"' tJ. ¥'
GENERAL ARRANGEMENT
;r,,,s---
~~~~eo~
ICAUIA
~ ' ' 1 -
0
-.c>.U! f>, !
0
ecA&.r. a
·-·~; ...\·-·--->: .,. . .., .. ....,. : '. l ~ . . ' . . :-l ... .... ~ ,.. ~ "' :: ·'-"' ....... , ..... 1 -~ " ..
. .
• 1 ·--·-·-~n. \\ ::::..~:.....: ~-···-·--··· hAICJaiP.IWC .<
~.... \:;;;;v;;;cu.-;----· ·---· -· ...•.
a:o o400ru.T
5iii
!10 100 I'U.T
5ii
SECTION A-A
ICAlUI ,
ll
..
CQITfg!~
~e SPIU..'Ifl.llt' oeatc~ I'UIOO ____ ns.ooo
lMf.RGf.NC'i -U.-MAXIMUM FUlO!J ---nG.ODC>C.F.al
CIC!M:~ -.c.6l. 1-tAXI ...... OPUIATIOIG ~-UC0 1
~Ill WO<I-Le-veL wrm !l<l~ --a2.0a 1
WATANA
SCHEME !AI
PLAN e SECTION
D
c
,..,
,..,._ ": .... ·f-
'1 . " ' .. : ) • Ill u • ~-, , ~ .. j I ' ' " J j ~, ' ·: .~:·;)
H if
. -, I --
I ' .. --· ,._ Ill
~ ------·-r-~; :~
\ . .. .. .
<: ~
t ;~ r(~ " ---: "
:l :
·-· 91 ~ ,. u . •
' '
'
I r""· ~
' ,. i
·t . " ~ .
I. ' . ... • l.tJ .. .. :=l ;f ~ ~ i a: a.
~ ~ \ tl· ..!
0.
C/')
CD
c.D
'I z
0 ' ... i= J· ' l " ! 0
l.tJ
\.. .. · C/')
~· •
l '
I ~--
··t } " : . -·
' ..........
.• r.
•
r <
I
' . < ; .,. -·· ...
I a , __
I ""'-~ ~ l
\I . §!i i=
i 0 . a: ~
• i i . !
~-;
rl.4
§ g 8 § ~ 8 ~ I ~ 8 g 8 ~ g .. ; ; .. !! :t ~ :t . '
L. " ... Ill t Q u • c
, .• ,
v-. -... _
..
. .
.I l :r ., . . ·.~
if
rl
... , ' .•
. ,
·t·
·t
•••• . -~ .
:-~J··
1. .
. ·.: il:
·c
~·I
··-
.~,:' i
\,;.*
fl
.·1
"'"'"'' ,.g,
·-· .I·
-
·o
, ... ._. ...... J "-' ... .. "'·'••'<'"': ~f·"~ "-,. ·-·*"···, ,,, .. .., .. h1 •. """""" '\ ••. '"1 .. ,._ ... '• . . ., ' ' ' 1 ·-.--' '"t ...... ~·-·:-1 ' l . " •. 1
. • ... _r 1
'_.· 1 • !-· · ·. · --• ~ .. I~ .... • -··Ifill·-···· ,,--•.•. 1-
0
.,
E
D
c
II
-t·
~
' I
1400
uoo
1100
1100
1000 ._,
1100
noo -11100
·~
10 • 7
~ONT~~ SfAUCTU~
~· IHI.Aitla&D 1>11'"1'-) ~~ . . -··--;;~~~~~~
5
± ~ ,, ____ ... 1:-'"--=--: -:---~~-:.-~---~···--· .. --------------------~~~ ;.._:. .. :-~. ·-i:=:=,~-.:__:__~ ___ .:~. ~-~~;~x ~:;· ~-::. ---.-._= ... a ...
,,. ..... ·-
--·--... --........ _ ~ ••• ...;;::. .. --!._ .. ·-· ·--·"C:"7:'<: -.--·-7
'·---·-------~------------
.·
.
'""··· .. -~-•• •·· ..... !..-.u. .•. -*·-·----------·· ! .............. ,-.: ==1 >J( ~-
&------·--------' ·---·· ----·"·-._ .............. -·-. L ••• ~~:---' ~
~_______L_______j______j_______t__t __ _j_t ___ _L______j~j _ _j~ __ l_ ___ l _____ j __ l .J J J I J l I J I I I • l t l I I 1 I ·t I_ l f __ l _l __ t
& ,., II ID 2111 llO K 40 a 110
e.w.wsa llf P'U.t
SPILLWAY PROFH.E
eu...ll lA
--~~----------~---
l~ ------------
:noo 1-------· r...T.~.) 1 -------
a&.o'ZIC•'
21110
-·liiiOO
:I ''""""""--I!L.'ZIIO' ---=..IN-=-:
ID..'II201
I
I
.. A .. B
SPilLWAY CONTROL STRUCTURE (lHL&RGao) SECTION B-B
&eM.&• a SCAt.l. I e,
cua IIO.:ST:I~ -·------: r:.:7':!_------C-4t
:~--..... _
1110
I I
·-·--·--ll--1 I
c..., ..,_
tiO'W • I&..,M
WMCIL M)lllffiP CO.llB
SECTION A-A SECTION C-C fEU
llc.t.L& • ., SCAULte>
5eAU. & 0 bO 100 FliT
~
•
fl'
0
c
•
I·
•••
~-.
~·· ;-, .
. ~.t
:1
:·-·,
:I
.·1·
···t·
'
~·· ' ~
r•-1 :' ,._ t .
'---
~·:1
~I
'
~I
,__
I
.·g
1-·
•
·h -~ i I
= .J i
~ If!-~ ~ . ~
~
~
-. li:l
0
,.
El
-·
o•
c
11100
rroo
·I
lt.OO
1700
1400
I 'iA
~
' I ...............
-· •"t ...... 1 .. '...,_ . ~ • + ~· ~-·;; .. .. • ~ 'U ~
I.
IIIII .. -r·· -~-.... ... • ----.. .. ....
QIOO
1100
1100
eooo
1901)
1800
noo
UiOQ
1500
l•oo
taoo
uoo
ZIOO
2000
1900
1800
noo
IGoOO
1!100
••oo
10
•
. -· ""==--• , at.oFE 1 t-~-h.:;:'{&_~_f-_'oo.._tt_4_o_' ---!ll-·-lME--0-------------=.<:-----'
I. ~~-. . ----:; -_;;sC-d--·. -~ ~-----------===---------·--------------~------~~----~~~~~~~~--------~-----~'"i~~-~~
~
~~.:_~ -----~?-~
ORt!Oll>N.. GROUND ~II. -......:::.:.:· -~"-./ '~ ~'~-
Mllf!OQ( aJIIF'AU ""'':"' ~-7,:'7
ll!lcCJ.VImOI>I FDA OOM "-"', '\ ~ '~ --::?'7
-Woli!IU4
""'~--.4::::;;' "'-~~--u~:;.~ .. ;,;;;;;--.............. , ___ ... _.,..,.-
~
MAIN DAM fftOFILE
-• ... t-517 . ·--· I .... u·--· U.ttlt ~~'·l-~-,r~=f=srt:L-::lt:=40,-:,,-------------·-----·-
r-------·----------------------~~~~-H ,1\~---~"~~-------------------------./"' 'l f\ \' ""' r-------------,.;:'r_,.~~-----.· r/J \ \~ ~
RIP PI>#'~ tTJ]LI• \ \1 ......___.,
~ AOCI( ,_,~FlU. // \ \ AOCII, Am~ PlU. "
~ ~ I:I».RW. Fl\,.'fiA --ll _\ _l--~HI'll . .'JaR "
....e::. ....... ....... ~ Fl»r.Fll.:Tli\-~/IIAP£RYIW. I \ ~FJNf.Pli..TIR " ./ ~--
.L.L ' .} '
1 AtRYI
MAIN DAM SECTION AT MAXIMUM HEIGHT
• aCCI'nllDIM
·~V'mOtCH
UPSTREAM COFFERDAM SECTION
I
"'
WATANA
VALVE Tl'PE-SPI!..lWAY ALTERNATIVE
MAl~ nt.M ANO DJVERSIOH
j -
til
,
IE ..
...
D
c
II
. . . f • .. • 1 . -~· ., --·-·-
Ul7l:l
.
' -.. J~ ··--.. .-.. ~·"""'"-"" ~ .. _, ,... . -~ . ~ _ .... : .....
7
0 llM\.~§tiij''"lliiP?l ..... -I H--flti)D
1100 -
fOOO
F 1100 ·-------·~-•·11··-·-·-·
llf.M
I&' 4 COJ«:, LINeP feli5TOCI<.
IJOO ·-·-··--------
f"' ~ou _..., 't
:"" 7 ...... '1 ~-.. . ..... " ., . ----
• ..
, ............. __ .-,__ -----·---
... ~-·····" -···----------
. '1 .. ,.
·-----------·
·-···· l -.. I -
•
.,
, !GOO c· .. . ..... ~.H-··--··--~~-----·-. ~--. u 'jiiUtG~~:~~~~~R ------------· \ ~
1
11:
E r \.\. I. lBO' .. I • n LJ ..et.~· -----....__ •
IIICO -··-·~ .. ---· .. ·•
D
c:
•
~A
~
' I
1400
2400
uoo
1J:10
ZIOD
1JXP
f·WIIEfl. NDIIHTEO OAT~· !S'Vh4&'11
~~UII.!--·
ll!lllf PlAINS
POWER FACILITIES -P~ILE
1100 1---·-------· .. -· SPILLWAY -PROFfCE
I frt~ trloo ---z--.co---· ... OQ ~·00
·-···· --~--· . ··~ -t
"""'" .~ ..,_, __ ........ ··-·
~--·
~---·
------··--------·
.-co IGiOO ··oo
IGoiOO
·~-=:-------.. ----'
~-
--==:--~·--
...
D
--------.---·----
c:
·-----
•
Ill! CO ~017 '2t~ lt>OO
B-1 AlASKA POWEI·A~;;,.~-I A
' --
. -· ·-f~?-'}."'=_---~*" .. !:_··.--:~~'-,._ ,..;_-.-.·, .. -.-:"'.: .. --_• ... -_·.~ .-.. ·.·._._._ ... -__ ..... -.'_.·.·_._ '-'-·, _, .... ·.·-._· ... ~-··-__ ·· .. ·----_._.-_ .. -·---~-··, .··-·_·__;._-_··-._ .. · .:·_~l,,._ .... ,'"---""'"'---"-' ""~ .:""~~ -·~~~~.,. ._.. ~-,.-~~-__,_..,...;.:_~·-··~........,._. """""'""'"'""'"---~-~-".:;_ ___ _.!, ______ ,,_n·---~--~~.:..~.-~-·~· .:_,..:;.t::;_~ _ __.,•_,£:.:._;;~-:._~~:J:,:.~ .. ::: ... <~~-'·-/·.t~:..~..,,~._'!,.~-;._--'-~~U'.O::;;._;,~--• .-":!:_.,.: •""""":'·-· •-~:_.
f1
r1
fJ
:·1
l
l •
{ 1
;J
WATANA DAM DESIGN
t:u::::::a
!
l
!'
1 r.-
;1
r.·:·l
'
rl I •
WATANA DAM DESIGN
f
1
i
I
l
1
~~.-~ Ill
~·-
; ··~ ·1. . . .
i?
'.: J .. i .. • . ·. '
'
CONTENTS
1 -GENERAL
2 -TYPICAL CROSS SECTIONS
2.1 -GENERAL
:I 2.2 -CREST DETAIL
. ~--~.;
' .t f
· ·u. 3 -INSTRUMENTATION
1(·, ...
" ~ '• :
• l ·----· _.,.
fl
.· [J:
· r1 \ . ;.-..
L[
! ·i [.
\-.
,~f . L~.
rl
ll -
t
~ ;·., ...
' i
~-
'J
j i .... ,
; ·;_ ,·
! '
i '
L~
cr
. r::r1 ·+ I \-: \JL._"l
· r.T~
L:-·''~
' · vt
!.:.-
WATANA OAa.,
1 -GENERAL
THE WATANA DAM WILL CONSIST OF A CENTRAL VERTICAL IMPERVIOUS CORE
PROTECTED BY FINE AND COARSE FILTERS ON THE UPSTREAM AND DOWNSTREAM
SLOPES. THE OUTER SHELLS OF THE DAM WILL CONSIST OF RIVER ALLUVIU~
GRAVELS AND ROCKFILL. MATERIAL. THE DESIGN SHOULD PROVIDE A STABLE
EMBANKMENT UNDER ALL LOADING CONDITIONS. DYNAMIC AND STATIC STABILITY
ANALYSIS ARE IN PROGRESS.
,., ~-~ .Lt : ,'f
!.
.. ~·
~ ·:
. I'•·
< •' t ;;.
cr
:U
' r~r
. t.~ .~ '
' ti.
' ..
· r·· L.
\,....
f
' )
.• ~-'<~
2 -TYPICAL CROSS SECTION
2.1-GENERAL
THE TYPICAL CROSS SECTION OF THE DAM AT THE MAXIMUM HEIGHT IS SHOWN ON
FIGURE NO. 1. THE SLOPES AND THICKNESS OF THE VARIOUS ZONES ARE BASED ON
A REVIEW OF PREVIOUS DESIGNS AND THE PROPERTIES OF THE CONSTRUCTION
MATERIALS. MINIMUM CORE-FOUNDATION CONTACT WILL BE 100 FEET REQUIRING
FLARING OF THE CROSS SECTION AT EACH END OF THE EMBANKMENT. THE UPSTREAM
AND DOWNSTREAM FILTERS ARE SIZED TO PROVIDE PROTECTION AGAINST POSSIBLE
LEAKAGE THROUGH TRANSVERSE CRACKS IN THE CORE THAT COULD OCCUR DUE TO
SETILEMENT OR RESULTING FROM DISPLACEMENT DURING A SEISMIC EVENT. THE
WIDE FILTER ZONES PROVIDE SUFFICIENT MATERIAL FOR HEALING OF ANY CRACKS
IN THE CORE AND THE INCREASED SIZE OF THE DOWNSTREAM COARSE FILTER WILL
ENSURE ITS CAPABILITY TO HANDLE ANY ABNORMAL LEAKAGE FLOWS.
THE SHELLS. OF THE DAM WILL CONSIST OF ZONES OF ROCKFILL AND RIVER ALLUVIUM
GRAVELS. SLOPE PROTECTION ON THE UPSTREAM SLOPE WILL CONSIST OF A 10 FOOT
ZONE OF OVERSIZED MATERIAL UP TO 6 FEET IN DIAMETER.
2.2 -CREST DETAIL
THE PROPOSED CREST DETAIL IS SHOWN ON FIGURE NO. 2. THE SLOPES AND
THICKNESS OF THE VARIOUS ZONES ARE CONTROLLED BY THE 35 FOOT WIDE CREST.
'.l ,I
I W ·g.,. ··1·1::-__ ._· .. · .... ·.·•· ... · ..•. ~ •. ···"
~----"-" ~
il
I
il
I t
il
ttl
II
i\
jl\
i'
i
i
I
I·
fl
fl
i
a-
tW ...., ..._
::0:
fC) -It--< ,... ... _, ...
___["" """"' "'" [t.2215
___.._ ---
\_ROCI: AND GRAHULAR rill
' I
i
J
I
COARSE rJLTER Ia
FIll£ fILTH. l I•
~·
. H 35ft. 'I ~1 El. 2240
tmCI: MID GR/.'1\Jl"R fill
\ CO~RSE rlLlER
fliiE rJL1ER
IHrERYIOUS
~AI~ DAM SECTION AT MAXIMUM
l ~
I
il
\
-~~NORMAL OPERATING LEVEL EL. 2215
i
I
I.
I
I
I
I.
I
ill· l '
'l
I
~17.5ft.~
EL. 2240
EL. 2215
~2.75~3
,___ ___ COARSE FILTER ___ __,
SCALE 1:20
CREST DETAIL
[·
·-
f~
ll
l
1.: ..
I'
I ,
I
1 ..
m.·
I
••
·~
i
i
1 1};:;
i
;·
I
J . ·;I
I
3 -INSTRUMENTATION.
INSTRUMENTATION WILL BE INSTALLED WITHIN ALL PARTS OF THE DAM TO PROVIDE
MONITORING DURING CONSTRUCTION AS WELL AS DURING OPERATIONS. INSTRUMENTS
FOR MEASURING INTERNAL VERTICAL AND HORIZONTAL DISPLACEMENTS, STRESSES
AND STRAINS, AND TOTAL AND FLUID PRESSURES AS WELL AS SURFACE MONUMENTS
AND MARKERS WILL BE INSTALLED. THE QUANTITY AND LOCATION WILL BE DECIDED
DURING FINAL DESIGN. TYPICAL INSTRUMENTATION IS AS FOLLOWS:
A) PIEZOMETERS TO MEASURE THE STATIC PRESSURE OF THE FLUID IN THE PORE
SPACES OF THE SOIL AND ROCKFILL.
B) DEVICES FOR MEASURING I~7ERNAL VERTICAL MOVEMENT.
1) CROSS-ARM SETTLEMENT DEVICES AS DEVELOPED BY THE USBR.
2) VARIOUS VERSIONS OF TAUT-WIRE DEVICES HAVE BEEN DEVELOPED TO
MEASURE INTERNAL SETTLEMENTS.
3) HYDRAULIC SETTLEMENT DEVICES OF VARIOUS KINDS.
C) INTERNAL HORIZONTAL.. MOVEMENT DEVICES
1) TAUT-WIRE ARRANGEMENTS.
2) CROSS-ARM DEVICES.
3) INCLINOMETERS.
4) STRAIN METERS.
I
{ .
• ' .
I
\
I I
11
'·
I .. :
I
.I
I
I
I
I
·I
I
l i·
~
t
I
: ·~~ ·i
·' '·
I
D) OTHER MEASURING DEVICES
1) STRESS METERS.
2) SURFACE MONUMENTS AND ALIGNMENT MARKERS.
3) SEISMOGRAPHIC RECORDERS AND SEISMOSCOPES.
II f'
I· .
I
'
1~ ..
' r .
•• \
I. i.: . ,.
1:
'··
E.
~
'·
ll;·
.·
:.
1· . . .
I
..
I
I
I
I .
:.~
I
t
I ~
·.
STATIC AND DYNAMIC
STABILITY ANALYSES
FOR THE
WATANA DAM
I·
I
I .
1:
I .
II
i
t·
1:
I
ll
.~
.~
I
I
I
I
I:
t;
,.
t
t
TABLE OF CONTENTS
1 -INTRODUCTION
2 -METHODOLOGY
3 -STATIC ANALYSES
3.1 -General
3&2 -Soil Properties
3.3 -Loading Conditions and Factors of Safety
3.4 -SAP IV Analyses
4 -DYNAMIC ANALYSES
4.1 -General
4.2 -Soil Properties
4.3 -Design Earthquake
4.4 -Dynamic Analyses
NOTE: Only Figure 1 Dam Cross Section, Figure 3 Static Stability Analysis,
Normal Operating Case and Figure 12 Design Earthquake Time History
are included with this submittal.
II"
"
.
11,
1
'
r
I
t "
•• \
I ·,,._
I <'
" '
'
'
m:·
"
' ._,
I~
""~"
I . .
. ... __
• 11.
I
I .
.
" .
I
IY IJ:
II:
.•
' [.
' . 1: ..
1 -INTRODUCTION
Static and dynamic stability analyses are being performed to establish the
upstream and downstream slopes of the Watana dam. Static and slope
stability analyses indicates stable slopes under all conditions for a
2~25 horizontal tu i.O vertical upstream slope and a 2.0 horizontal to
1.0 vertical downstream slope. Typical cross section and details are
shown in Figure No. 1 .
The static analyses have been done using the STABL computer program
developed to handle general slope stability problems by adaptation of the
Modified Bishop method and a linear elastic finite element progr~ (SAPIV)
to determine the initial stresses in the dam during normal operating
conditions. The results and conclusions are presented in the Static
Analyses Section.
The dynamic analyses have been done using the QUAD 4 finite element program
which incorporates strain dependent shea~ modulus and damping parameters.
The design earthquake for the dynamic analyses was developed by Woodward-
Clyde Consultants for a Benioff zone event. The results available at this
time are presented in the Dynamic Analyses Section .
I
I
I < .
'
'
ll
I
'
I.
~ ·~ \
I
I
l.' '
.~ 15
I
II
I! ~ -
11· li:
ll
I
I
I
.
I
I
2 -METHODOLOGY
An assessment of the static ana seismic response of the Watana dam for the
'
static and postulated seismic loading involves the following:
Static Analyses
-STABL program to determine general slope stability.
-SAPIV (linear elastic finite element program) to determine the initial
stresses in the dam prior to seismic event.
Dynamic Analysis
-QUAD 4 program to determine the dynamic shear stresses due to the
postulated earthquake.
~ GADFLEA program to determine the pore water pressure generation and
dissipation.
The data available on-site specific materials are limited, and therefore,
the static and dynamic properties were assigned using the material
characteri sti.cs. and published i nforma ti on.
.· ..--;
I
f
I·
\
1:.· '. ...
~~ .
" IJ ,.
I
\
I l .
I
I.
I.
I
ll
I
I
I
.
I
I
3 -STATIC ANALYSES
..
3.1 -General
The slope stability analyses were done using the STABL computer program
for the general solution of slope stabil1ty problems by a two-dimensional
limiting equilibrium method. The calculation of the factor of safety
against instability of a slope is performed by an adaptation of the
Modified Bishop method of slices.which allows the analysis of trial failure
surfaces other than those of circular shape.
3.2 -Soil Properties
The following soil properties were used in the analyses:
Core Material
Fi 1 ter Materia 1
Rockfill Material
Y Wet ( 1 b/ft3 )
146
146
129
Y Sat (lb/ft3 ) ·~
147 30
150 35
140 40
c ( 1 b/ft2 )
500
0
0
3e3 -Loading· Conditions and Factors of Safety
The following conditions were analyzed:
Condition
Construction
Normal Operating
Rapid Drawdown
Normal Operating With Maximum Pool
Minimum Factor
of Safety
1.3
1. 5
1.0
1 o3
Calculated Factor of
Safety ·
U/S Slope 0/S SJope
2 .. 9-2.2
2.0
1.8-2.0
2.0-2.1
The calculated factors of safety as shown in the above table and on
Figures No. 2 through 5 indicate no general slope stability problems.
[
f .
f .
I
r·
I
'
(
[
I
I
(.
I.
I
I
I
...
I
t
I .
I
..
I
3.4 w SAP IV Analysis
The static analyses using the linear elastic finite element program (SAPIV)
were done to determine the initial stresses in the dam during normal
operating conditions. Young•s Modulus was determined from the following
relationship:
where: E -·:= Young • s Modu 1 us
Pa ~= Atmospheric Pressure
a 3 = Confining Pressure
Kjn = Constants
The initial values of the parameters K and n and the Poisson's Ratio (v)
for the various dam materials used in the program are as follows:
-K v n ---
Core Material 300 0.333 0.2
Filter Material 2000 0.299 0.2
Rockfill Material 2000 0.263 0.3
A parametric study utilizing a reasonable range for the K values will be
performed at a later date.
The resulting initial stresses are used to determine material properties
for QUAD 4 and for assessment of dynamic undrained strength.
The following plots were developed from the linear elastic finite element
program. (SAPIV):
I
I
f .
(
.. ~
(.
i
r·
I
r-
' .,
I.
(
(
I
I
I
t
I
I
I
FigoreNo.
6
7
8
9
10
11
Subject
Finite Element Mesh
Two-Oime~siona1 Confining Pressure
Three-Dimensional Confining !Pressure
Vertical Effective Stress
Shear Stress
Maximum Shear Stress
r
r
r·
r~~-
~.
f---=.
'
'
["";'
' ~· ..
r~
i
.
[~
..
("'
.: ..
[
r··
['.
1"7'
1 ...
l··r
-~
f.
' ~~
[
I:
l·
4.4 -Dynamic Analyses.
Two one-dimensional models were analyzed to determine the sensitivity to
the number of elements. One model consisted of 20 elements of equal size
while the other model consisted of 8 elements. Both were the same height
as the full dam model. Convergence was reached in three iterations. A
comparison of the results indicate that the full dam model as proposed
would provide satisfactory results.
The two-dimensional finite element model of the dam Figure No. 6 was.
·-···analyzed and the following plots were developed:
figure No.
13
14
15
16
17
18
19
20
21
22
Subject
Maximum Dynamic Shear Stresses
Maximum Dynamic Shear Stresses Divided by the
Vertical Effective Stress
Vertical Slice Acceleration at Center of Dam
Stress History for Elements 20 and 30
Stress History for Elements 33 and 35
Stress History for Elements 54 and 57
Stesss History for Elements 59 and 78
Stress History for Elements 81 and 83
Stress History for Elements 94 and 96
Stress History for Element 105
A copy of the computer output showing the accelerations, material properties~
and maximum stresses from the three iterations is included in Appendix A.
No laboratory data is available for the e..yclic shear strength of rockfi11.
The procadure adopted by Sidigh ct .. al. (1978) will be followed, i.e~ cycl·ic
strength values for sand at the same relative density as the rockfill will
be increased by 70%. Strength will be defined as 5% strain in 25 cycles.
A comparison of the results from the dynamic analyses and the calculated
available shear strength of the rockfill material is in progress at
this time.
r
r
r
r-
r:
r·~
f~'
r-·
r
lr
'[
m·;
JL.
.tr
..
It.
. , ..
1 ..
1 ..
1.
t
4 -DYNAMIC ANALYSES
4 ;1 -Genera 1
The dynamic analyses were done using the QUAD-4 computer programo Complete
details of the program including theoretical basis, data preparation, and
output are given in the manua 1 ( Idri ss, Lysmer, ~Jang, and Seed, 1973).
The dynamic analysis model is shown on Figure No~ 6.
4.2 -.. soil Properties
The initial values of shear modu'lus and damping ratio used in the analyses
were derived from typical values available in the literature and are as
follows:
Core ~1a teri a 1
Filter Material
Rock ~1ateri a 1
G/Su
2500
100
180
Da-nping/Shear
T.ype·curve
· ~ ·clay
·::.. .. Sand
Sand
A parametric study utilizing a reasonable range of K2 values will be
performed at a later date.
4.3 -Design Earthquake
The required earthquake time history was developed by Woodward-Clyde
Consultants and is shown on Figure No. 12. The significant features of
this earthquake time history are as follows:
a) Magnitude 8.5 Richter.
b) Location 40 kilometers below site (Benioff Zone) •
c) Maximum acceleration of .436g.
d) Duration of strong motion -45 sec.
e) Significant number of cycles -25.
;.:,
j ',
r·
~~-
r
r~·.
I;
[
(...'·
I'·
l~
1':
l:
,~ _·
~--=
-~·
[.
..
I
1:-·,:
, '
The penneability of the rockfi11 material is estimated to be greater tha-
100 em/sec indicating that possibly -;he rate of pore pressure dissipation
will be equal to or greater than the pore pressure generation. A para--
metric study will be done using th~ GADFCEA program to establish the
required rockfill properties for equal generation and dissipation.
I I I I.
I
1..--
I
'
I
••• ·--
•• ~ ~
~
N ..
•• -I • -;: ;:
~
i .. ,. '
'
I ..
'
.
I
...
I.
I
!
I ... --' ·-''
I ! I I I I I I I .....I
i !! § § ·~ I ~ I ~ ! ... .. .. ..
I c.t.Ju> ICiUwirn·
I
I ell ....: «") . c z ..... !5 I , ~ Col:' -~ u If c = = ..... . . . ~ > N N N ... "" ..... C!J ..... c z "" -wi 5 ..... u 1:1. :!: Q = ~ = "" c CD "" I ! 1 ..... < = y Q = :z: = ...J -~
I I I
I )
I .
I
I
I
I
I
I
I
I
I
I
I ',
I
I ~ .. 0 z lM ~ =· •• ! -IJ. t; "" c "' IJ. = CICI = 5 . . . > --N = ... "" ~ IJ. < 1.1) ~ I Q "" Q u -< ~ IJ. = = ·-= < = u "' I I I
1."' < = u = = .... -< I.a.. •••
•.• J
·;·.
·-
I u
••
I
I
r.n ,..,. ....
I Q
N . ....
"" ....
8 , ..
I
g.. 11~
1"""1·'
I
r··
I
..
I
l ...
I
--·-
,.,
C)
L..J<>
:z
{.)
(..)()
<t. ·-:
(.)
w'
UJ
c(
(!10
L'
.. ~ .. : .. !---' ...
·-r~~~~--~~~-r--~--~--r-~~-.
JQ,QO JL.OO 42.00 ~a.oo 54.00
TIME fSf:CJ
;-·-:--·--·-.. -
I I 1
~4.00 90.00 96.00
DESIGN EARTHQUAKE Iii TIME HISTORY IJI[f
FIGURE HO. 12 II(··
I
I
I
I
I
;
I
I .
I
I
.I
I
I
I
I
I
I
I
.
I
I
REFERENCES
1. Idriss, I.M., Lysmer, J., Hwang, R., and Seed, H. Bolton (1973)
11 QUAD-4, A Computer Program for Evaluating the Seismic Response of
Soil Structures by Variable Damping Finite Elements,11 Earthquake
Engineering Research Center, Report No. EERCi3-16, University of
California, Berkeley, August.
2. Sadigh, K., Idrisss I.M., and Youngs, R.R. (1978) 11 Drainage Effects on -· Seismic Stability of Rockfill Dams, .. Proceedings ASCE Geo. Engino .
Div., Specialty Conference on Earthquake Engin. and Soil Dynamics,
Vol. III, June 19-21, Pasedena, California •
','~
~
:m
~
I~ ~
; .: :-.. • ·· --··-· · -· · ·· :c"~;::. .. :::~:e~:":t,.""::'j(l~:l
DEVIL CANYON LAYOUT STUDIES
1'
1
if \.,
':';
·~ 'r
1 -INTRODUCTION
The layout for the Devil Canyon Project presented in the DSR (Plates 10 and 11)
were·the basis of further refinement and optimization studies.
Principal features of the DSR layout are as follows:
-Dam:
• Crest Elevation:
• Height:
-Diversion:
-Main Spillway:
o Type:
• Capacity:
• Location:
-Auxiliary Spillway:
• Type:
• Capacity:
• Location:
-Emergency Spillway:
• Type:
• Capacity:
• Location:
-Power Plant:
• Location:
• Capacity:
Thin arch concret.e with earthfill saddle darn (left
abutment)
1,460 feet
650 feet
Twin concrete-lined tunnels, 26 feet diameter
Three-gated ogee section, chute and tlip
90,000 cfs
Right abutment
Three-gated orifice, 15 feet x 15 feet
40,000 cfs
In arch dam
Fuse plug
100,000 cfs maximum
Left bank
Underground, right bank
400 MW, 4 units
~ ~ ~-~ ~·· ~· .· ~ ·~ ~
@ . ~l
------. -~~\----'---• .~ M 'v /
'\,
'
J ..
J ·9-26
~ ~ ~ -~~ ·~
..,.,,c>&.,.ao
'~
........ !) -••
GENEQAL ARQANGEM£NT
~ ~ ---:···· . -~
PLATE 10
~ ~
DIVIL CANYON
ICI!II:MI I
PLIIII ANO lt:C110M
~
r r ·r r
r
r
r
r
r
[
r
·L
r.
[
~" ..
[
f
[
I I '
I I
I I I
l I
l
:z
Q g
If)
:z s
0
~
0
~ 1 l 1 ... ! =
f1 ~
H b ~~
!§
~·
. u
~
l :i ~!% / ~~ il
l: >· /
~~. / en
Ill
E
-1
~
~ ~
:I
(l(
F£
:z
0
i=
1,) •
w
1/) ......
C\1
I
01
..,
~ ~ 8 § ~ 8 i !:! ...
r ' ,.
I
r
r
r
r
r
r
r
~ .
r·
r.,.
~
r ~.
[. '
f
t.
' t
t
[
2 -ALTERNATIVE LAYOUTS CONSIDERED
. ,.
The DSR layout formed the basis of the continuation of Devil Canyon layout
studies from which three basic components were developed for comparison (Plates
7.1 through 7.4).
These layouts were based on the criteria listed in Table 2.1.
Cost comparisons are listed in Table 1.
r
r
r
r-
r
[
r.·
"""·"'
r
r
!'
.: ~ ... ,
r
..
".
[ ..
i ~.
.
l-.
i
• ~· .
TABLE 2.1 -PROJECT PARAMETERS AND DESIGN CRITERIA
River Flows
Average flow (over 30 years of record):
Probable maximum flood:
Maximum flood with return period of 1:10,000 years:
Maximum flood with return period of 1:50 years:
Reservoir normal maximum operating level:
Reservoir minimum operating level:
Area of reservoir at maximum operating level:·
Reservoir live storage:
Reservoir full storage:
Dam
Type:
Crest e 1 evat ion:
Height:
Cutooff and foundation treatment:
Diversion
Discharge capacity:
Cofferdam types:
Cut-off and foundation:
Upstream cofferdam crest elevation:
Downstream cofferdam crest elevation:
Maximum pool level during construction:
Water passages:
Outlet structures:
Final closure:
Releases during impounding:
Spillway
Design floods:
8,960 cfs
270,000 cfs
135,000 cfs (after
routing through Watana)
42,000 cfs (after
routing through Watana)
1,455 feet MSL
1,400 feet MSL
21,000 ac~es
0.75 x 106 acre feet
1.1 x 106 acre feet
Concrete arch
1,455 feet MSL
635 feet above foundation
Founded on rock. Grout
curtain and downstream
drains
42,000 cfs
Rockfi 11
Founded on alluvium with
slurry trench to rock
960 feet MSL
900 feet MSL
955 feet MSL
Concrete lined
Low level structure with
slide closure gate
Mass concrete plugs in
1 i ne with dam grout
curtain
2,000 cfs minimum
Passes P.M.F., preserving
integrity of dam
Passes routed 1:10,000
year flood with no
damage to structures
r
~ TABLE 2.1 (Continued)
r
r·
r
r·
r .,
r-
r .
r··
r· .. ~
[
E.~~
r.:
t·.
r
Power Intake
Type:
Number of intakes:
Penstocks
Type:
Number of penstocks:
Powerhouse
Type:
Transformer area:
Control room and administration:
Access:
Massive concrete
structure embedded in
rock
4
Concrete-lined rock
tunnels with downstream
steel liner
4
Underground
Separate gallery
Separate gallery
Rock tunnel
,..~ ~~
f .
I
v-·· . ~· ~1 ~-
~
·~~
I
--.
Description Unit
Diversion/Ccfferdams
E~cavote Rock Portal cy
[)(cavate Overburden
Portal cy
[~cavate Tunnels cy
Concrete liner at
Portals cy
Concrete liner Tt.mnel cy
Concrete Inlet
Portal Headwall C}'
Concrete lnl~t
Portal PiP.r cy
r.oncrete Outlet
Headwall cy
Concrete Plugs cy
Upstream Cofferdam cy
Reinforcing Steel Ton
Rockbolts Tunnels Ton
Rocl<bo.l ts Porta Is Ton
Rock Surface Treatment sy
Support Steel Ton
~ -~
'
'r---"; -~ -~ .-~ ·~
I
TABLE 1 -DEVIL CANYON
COMPARATIVE COST ESTIMATE -NON-COMMON ITEMS
JUlY 19e1 (JANUARY 1902 DOllARS)
Unit ~heme 1 5cherne
Price Quantity $000 Quontit1_
15 114,500 $ 1,718 114,500
5.50 146,000 00) 146,000 .
55 107,550 5,915 107,550
260 3,250 045 3,250
250 19,500 4,075 19,500
260 5,200 1,J52 5,200
295 5()() 140 500
260 9, no 2,530 9, no
500 5,600 2,000 5,600
7.50 92,000 690 92,000
2,100 550 1,155 550
3,500 1J5 473 1J5
3,500 350 1,225 350
15.00 1,600 25 ~,600
3,675 JOO 1,397 JOO
$000
$ 1, 718
OOJ
5,915
845
4,875
1,352
140
z,s:m
2,800
690
1,155 I
47, I
1,225
I
I
125
1, J97
Gates, Etc. lS 3,100,000 )1100 J, 100
SUBTOTAl DIVERSION/
COffERDAMS $ J2 051
---·-----~----~----~ '---.. -$ J2.051
··~ ~ -~ ~ ·~
\
Page 1 of 4
$000
114,500 $ 1,718
146,000 803
1Jfl,050 7,153
3,250 045
24,000 6,000
5,200 1,J52
500 148
9, 730 2,530
5,600 2,000
92,000 690
600 1,260
165 578
J50 ·1,225
1,600 25
460 1,691
---l!.1110
i 'Jla.91R ..,... ----
~-~~-~~ .,,< • ~-·.· ~-~ ~~ r-"1 ~ ·~ -~ ~ .,__, ··~-~ ~ ........., ··~ ~
OCVIL CANYON Page 2 of 4
COMPARATIVE COST ESHMAT£ -NON-COHt-tON ITI:MS (Cont 'd)
-\ill[ Scheme 1 Scheme 2 Schmne J ·
Descrietion Unit Price Quanti tv · $000 Quantity $000 Quantitv $000
Service Sf!Ulwa~
Excavate Rock C)' 11 625,000 $10,625 559,000 $ 9,503 1,176,000 $19,992
Concrete Walls
Formed One face cy 260 20,200 5,252 :n, 5oo o, 710 57,700 15,002
Concrete Walls
formed Both races cy 280 6,100 1,708 0,900 2,492 26,700 7,476
Concrete Slab
t No forms cy 170 29,100 4,947 30,500 5,105 44,800 7,616
Concrete Slab
formed Ono Side cy 190 16;000 3,192 22,600 4,294 16,800 J, 192
Concrete Slab
formed Two Sides cy 200 NA NA 17,400 },480
Concrete Piers cy 295 6,700 1,977 6,700 1,977 6,700 1,977
. I .. Concrete Road Deck C)' 170 NA NA 6,700 1,139
Reinforcing Steel ton 2,100 2,664 5,595 3,274 6,075 5,418 11,307
Rockbolts ton 3,5ll0 500 1,750 500 2,0JO 750 2,625
Cates lS 2 0 900,000 2,900 2,900 2,900
Dental Concrete u~ z,ooo,ooo 2,000 2,000 2,000
Grouting LS 1,000,000 1,000 1,000 1,000
Winterization lS 1,800 2,30f) 4,000
Au"i liary Cofferdam cy 7 36,000 252 36,000 252 36,000 252
Alluvium Removal cy 12 23,000 276 z:s,ooo 276 54,000 648
Plunge Pool Excavation cy 7 398,000 2,786 398,000 2,786 NA
Additional •laul Roads mile 40,00() 1 40 1 40 NA
J>t,water ing lS 300 JOO NA .
Surface Treatment
Vertical sy 15.80 10,250 162 11,300 17~' 18,900 299
~Jrface Treatment
Horizontal sy 10.50 18,400 19J 21,300 Z24 23,100 242 --.... --~-
SUBTOTAl SERVICE
SPillWAY $ 46,755 $ 53,32) $ 85,227
~· Ji
r---t~ --~~ ~ .. . .
").. ' . . ". . .
~·-~ ~1 ~ ,..,._., .~ ,,..._.,. .~
OCVIL CANYON
COMPARATIVf. COST ESTIMATE -NON-4:0Mt.fJN ITO'S (Cont 'd)
tklit Scheme 1
Dsscription Unit Price Quantity $000
Service S~iJ Jwa~
El\cavate Rock C)' 17 625,000 $10,625
Concrete Walls
Formed One Face cy 260 20,200 5,252
Concrete Wal Is
Formed Both races cy 200 6,100 1, 708
Concrete S.l ab
No Forms cy 170 29,100 4,947
Concrete Slab
Formed Ono Side cy 190 16,800 3,192
Concrete Slab
Formed Two Sides cy 200 NA
Concrete Piers cy 295 6,700 1,977
Concrete Road Deck C)' 170 NA
Reinforcing Steel ton 2,100 2,664 5,595
Rockbolta ton 3p500 500 1,750
Gates LS 2,900,000 2,900
Dental Concrete LS 2,ono,ooo 2,001)
Grouting LS 1,ono,ooo 1,000
Winterization LS 1,800
Aul\iliary Cofferdam cy 7 36,000 252
AJiuvium Removal cy 12
I
2J,OOO 276
Plunge Pool Excavation cy 7 398,000 2,786
Additional Haul Roads mile 40,000 1 40
pewatering LS JOO
Surface Treatment I
I
Vertical sy 1 15.80 10,250 162
~Jrface Treatment
Horizontal BY 10.50 18,400 193
SUBTOTAL SERVICE
SPILLWAY $ 46,755
----........ g ·~
Page 2 of 4
Scheme Z Scheme J ·
Quantity $000 Quantity $00~
559,000 $ 9,503 1,176,000 $19,992
JJ,500 8,710 57,700 15,002
.
0,900 2,492 26,700 7,476
30,500 5,185 44,800 7,616
22,600 4,294 16,800 3,192
NA 17,400 3,480
6,700 1,977 6,700 1,977
NA 6,7UO 1,139
3,274 6p875 5,418 11,387
580 2,030 750 2,625
2 9 900 2,900
2,000 2,000
1,000 1,000
2,300 lJ,fJOO
36,000 252 36,000 252
23,000 276 54,000 648
398,000 2, 706 NA
1 40 NA
300 NA
11,300 179 19,900 299
21,JOO 224 23,100 242
$ 5J,J23 $ 85.227
}!~'~. :"\'~-··~ .. :~. ··-. ~~ ·~ -~ -:~ ··'~ ~ .. -~ ..··~ ··'~ -~ l~ ' '11 _., • • ,'i .: ' ~ ; ~-); .. ' ' ~ -~ . . '
" ' ·~ ~
ll:VIl CANYON Page J of 4
COMPARATIVE COST ESTIMATE -NON-Cmt~ON ITEMS (Cont'd)
'Uillf Scheme 1 Scheme 2 Scheme J
Oeser iption Unit Price Quantity $000 Quantity $000 Quantitv $000
f.mergenc~ Selllwa~
f."'cavate Rock C)' 17 1,468,000 $24,956 1,460~000 $ 24,956 1,468,000 $24,956
Place fuse Plug cy 6 43,000 258 43,000 258 43,000 258
SUBTOTAL EMf.RGENCY
SPillWAY 25,214 25,214 25,214
Saddle Dam
L>~cavate Overburden cy 6.30 240,000 1,512 251,0110 1,581 240,000 1,512
Earth rut cy 12.50 700,000 8,750 496,000 6,200 700,000 8,750
Core cy 10.50 285,000 2,99J 347 ,ooo 3,64fl 285,300 2,993
Transition C)' 16.00 76,000 1,216 91,000 18 456 76,000. 1,216
Rip Rap cy 12.50 34,00(} 425 23,500 294 34,000 425 -·I
Sluny Trench sy 615 6,800 4,182 7,4()0 4,551 6,800 4p182
.. '( Rock Surface Treatment sy 15.80 54,300 850 52,300 826 54,3011 858
SUBTOTAL SADDLE DAM 19,936 18,552 19,936
TOTAL
NON-COMMON ITEMS ---
123,956 129;139 165.295
-~ - ---~---------------~--~--
(~ i~· ~ .... 't.:r-· .. ' '
-~~ ~-~~ ~· -~ • .. 11.
ESTIMATE SUMMARY -DEVIL CANYON
COMPARATIVE COST [STIMATE -JULY 1981
($000,000 JANUARY 1982 DOllARS)
Ocacrlpt1on
NON-COMMON ITEMS
COMt.fON 11015
SUBTOTAl
Camp & Support Coats (16%)
SUBTOTAl
Contingency 20~
SUBTOTAL
[ngr/Admin 12.5~
TOTAL
.~th· ,
~enema 1
124
758
'002
141
1,02J
204 --
1,227
153
1,380
·'1!11~ ~ ·~ ~~ <~ ~ ........ -~ ... ·.~ ~ •:l . ::~ ~ • 11 :~ .,.· . . ~ ::;:., ~· . . • --r·
Page 4 of 4
Scheme l ~cheme .t
129 165
758 750
887 92)
.
142 148
1,029 1,071
206 214
1,235 1,285
154 161
1.389 1,446
u •
. ·e.· ;
a u • < v-. -·-
~-
'.
,_:;,
:~I
0
,.
I[
D
c
•
f'
·~
•
~-. .·~ ": ·~; ··.
COhCAa'l&
CROWt-1 SECTION
----J .,_,,~
IOIX)
'100 ... -·-
e<oL..----·-
~· ~~
•
.-Pr-•~· 1411'
__ u-,. ..... . ~ •;]" -'"! •'t" ,.c••"4} "'""'-~"11
II
""'t -·-......... ..
~
-~ ..
.... ~~="""=
.... 1--------
.... ~-----------------·
. .,... .,.._ ~ .... " "'!l.
• ..
I' ,.
.. ';"" .... ""-.~
111,,145 ••••
"'""'~ ""' ,s
-~
•
'..,
',, AVIIII!-II'f II'U---D a~ e /
.. "'"~' ' ----.;:
, ' ... ,,......-.--MDIIOCX ~ • IJNTQ...... //./
'\..'-.. . ', .......... -{-.L .. .
lifO
,, ·~, IOUWO Dto•OCOI -FAU·~ar-1 //
', I ---~--------··· ····--" ·. '\..._..-. . . . ,/
·~ ~-----------------------------
~~, .... ·1 l
I • •
\. J/_ .. \.. I I . --· ..
~ '->_•, •• ,/ --• ·if-~-___d~~ ~-LS . ~ .. ___ ;, ~ ""' ,...,_,...., w
.,. .... · ... ---·· ·--•.• -x:·;: •... T-.... -•. I I -----. -------...
DAM PROF~ {.LOOI(flG IJP51QW,.)
-
....
.... ·--··-·-······----·----,---..... ~~
........ IWL ----=~-··--!~~-
'·-.......'fi"t.!r.';to~ t a._ ... __ •
~...... . ~
'• ' -14\liJAAL Slmi'AQI.
•• , ~ (oiiGUT ruo.)
--~ .
"·' 1!00 '\'--.
\ ' Ill UIIIMA•i'l\lk \ '' i5lULUtiiiiG • , . .
.§ECTIOI-t T~RU SPILLWA.'I
\...... '-', rt.a..!loo'
~--·:=t=r '! -.. . iili:~ . 1 ~ill"'
ae"LI. o
l!!!!!!!'!'!l"'[.i=;;;;;;;;:;~
(lbOIIT IWC)
;;o:~,
ri>.W..TWL
IlL. a'!IO' -
....__&Llt!VUMI Oli;!'~llOOW'7~
MObiL. 1\-....nOH 01' l44t' _, oot -·
...,._ .. -eout LIMo. Ill' out',~
,. ..lUI VOl• t.tvr.l. -~ON. • ....... ... "• .. I
·-· lll.A!ICA MWII AUIHOIIIY
• I I --SECTION lHRU POWER. FACILITIES
J
..
f'
'i
D
c
•
[ r r r ~r
("·
r
I
I
(
(:
I~
).:t.J
(
·;~ ..
I.·
(
I{
I
I~
(.
----
c u •
.I I
i
i
I
l
I •
•
0 0
!!
(.
..
" .... g . ..
,, ,,
'• '• '• ,, ,, ,,
lu
IJI
II! ,,
t:1 •I
bl
i •
0 ~ 0 ~ 8 3 0 ~ !! :! ::!:
a
! 0 0 ~ ! ~ l! •
•
0 g
I
8
2
UJ
l.iJ
. z
I, S @
I en
!
I
.,..------..-----------------------------------,....:=~,.~--+-f"'ifi't1 ,.,. __________ ...., _______________ ,, ______________ :?~;...-.~...::;-.~.,.(--f~-
• Cl u • v... ·-·-
[-
(
('-
(
I ,.
••
I
I.
(.
~ ...
·~
I.
,._
r:
I
I~'
·~
I
3 ~ COMPARISON OF LAYOUTS
As the arch dam, saddie dam, power facilities and diversion vary only in a minor
degree between the alternatives, a comparison of schemes rests solely with a
comparison of the spillway facilities.
As can be seen from a comparison of costs in Table 1, the flip-bucket spillways
are substantially cheaper to construct than the stilling-basin type of Scheme 3.
The left side spillway of Scheme 2 runs at a sharp angle to the river eject the
discharge jet from high on the canyon face towards the opposite side of the
canyon. Over a long period of operation, scour of the heavily jointed rock
could be a considerable problem causing undermining of the canyon sides and
their consequent instability together with the possibility of a build-up of
material downs~ream with a corresponding elevation of the tailrace.
Construction of a spillway on the steep left side of the river could be more
difficult than on the right si1e because of the presence of deep fissures and
1 arge unstab 1 e blocks of rock ~:1 ose to the top of the canyon.
The right side flip-bucket spi'i'lway takes advantage of a downstream bend in the
river to eject discharges parallel to the course of the river. This will reduce
the effects of erosion, but it :ould still be a serious problem.
The safest spillway would be th1! stilling-basin type of Scheme 3 which would
greatly reduce any erosion prob'lems 'within the canyon. Cavitation could be a
problem under the high flow velocities experienced at the base of the chute but·
this would be alleviated by aeration of the flows.
r·
r
r
I
I
I
••
I
I
••• ,.
I
I
~~-
1
,.
I·
' I'
.
I
1'.
I
4 -SELECTED LAYOUT
The chute and flip-bucket spillways of Schemes 1 and 2 pose large erosion
problems which will entail considerable maintenance costs and reduced efficiency
in operation of the project at a future date. The anticipated maximum scour
will also be unacceptable environmentally. The additional cost of a stilling
basin over the right side flip-bucket spillway is $62 million including
contingencies, engineering, and administration. This appears a relatively small
cost for the additional security of this type of spillway~ and Scheme 3 was
therefore selected as the most favorable layout for additional study.
~-Further development of the Scheme 3 layout has resulted in the currently
preferred arrangement shown in Plates 9.1 and 9~2.
-
•• • -•• ••
f
I.
(:
I
I
••
I
••
I
I.
I
I:
I.
• 0 u •
------.r--____ . -. / -----~
c u •
--·---. I u • c ..... . ... .. I I 0 i I
I
I Iii r
J .. I ! ! .. .
1! I
j! l i -!!_ l
! I • I ~ @ § I -l ~ ~ ~ I
I
i • !
I l
' I
1
I
I i ~ I I ~ _§ a
I
I
I
' I I I 01
I ~ ~ ~ § g -~ I
I I I .I I i I 8 § I ~ l.'l I·
u II c: .... I v-... _
I·
DEVIL CANYON ARCH DAM DESIGN
:1, ~ !
.-t'
1
·-l
l•
"l
l'
l
'1,
/ . . •
"1.
:I
.I
··:
,~
~~
I
l
lt
I
I
I
ABSTRP.t.:T FR0~1
DEVIL CANYON ARCH 0~1 DESIGN REPORT
I I
I
I
I '
.
I:
~.
I·
1:.
I
4 -DESIGN CRITERIA
4.1 -Material Properties
a) Concrete
Frost Resistance Concrete Strength (365 day)
Unit Weight
Static Modulus of Elasticity (sustained)
Dynamic Modulus of Elasticity {instantaneous)
Poissons Ratio
Tensile Strength:
Static (for estimating cracking only) 5% of strength
Dynamic Flexural 15% of strength
Thermal Properties:
Conductivity
Specific Heat
Coefficient of Thermal Expansion
Diffusivity
I[_ b) Foundation Rock
' I . ,..
I
I.
~. ·:
'I
'·
I
~~ It
(
I
Deformation Modulus (sustained)
Poissons Ratio
4.2 -Temperatures (°F)
Air Temperature:
Mean Annual
High Mean Monthly
Low Mean Monthly
Highest Mean Monthly Maximum
Lowest Mean Monthly Minimum
,c-
5,000 psi
150 1b/ft3
3 x 106 psi
5 x 106 psi
0.2
250 psi
750 psi
1.52 BTU/ft/hr/°F
0 .. 22 BTU/lb/°F
-6 5.6 X 10 ft/ft/°F
0.046 ft2/hr
2 x 106 psi
0.2
28.9
55.0
4.4
63.8
-3.6
I
I
~-
1·
11
I
I
J
ll-.
I
(
f,
I .
-...
' ..
~-,:
,_
.
I··
1.·
Highest Maximum
Lowest Minimum
Lowest Difference Between Any Mean Monthly Maximum
and the Corresponding Mean Monthly Minimum
RESERVOIR WATER TEMPERATURE
Depth Below M .o N T H
Surface (ft) 4 5 6 7 8 9 10 11
0 -50 32 32 46 57_ 53_ 45 39 32
70 to Reser-
voir Bottom 39 39 39 39 39 39 39 39
12
32
39
91.0
-48.0
-14.5
1
_g
39
The effect of solar radiation has been at this stage neglected.
Grouting temperature of vertical construction joints: 39°F
4.3 -Earthquake
2 3
_g ~
39 39
For maximum credible earthquake conditions two versions of the mean response
spectra for the Penioff zone, developed by Woodward Clyde Consultants have been
used ..
Peak Ground Acceleration
0.5 g
0.4 9
4.4 -Hydraulic Data
Reservoir Water Levels:
Normal Maximum
*Normal Minimum
1:10,000 Yr Flood Level
Probable Maximum Flood
Damping Factor
5%
10%
1,455 ft
1,430 ft
1,460 ft
1,465 ft
I
I
I ' '
1
•. 11
1-.. -:.,..
I
~~
I. ..
[·
J~'
If'
fl:..
J . .
...
t.
f·-
-. .
Effe:ct of tai1water, silt deposits, ice load, and uplift loads (internal pres-
sure within the dam) have been neglected.
*This was a~sumed as 1,295 ft for stress calculations. However, minimum operat-
ing 1eve1 has now been maintained at 1,430 ft from standpoint of firm energy
considerations. Hence, this condition will be far less extreme.
4.5 -Loading Combinations£
a) Q2ual Loading Combination -Combination of basic loads that can
simultaneously occur during time design life of the dam (self-weight,
te!mperature and hydrostatic load condition.)
b) ~1usual Loading Combination -Combination of loads that are possible, but
which are unlikely to occur during the design life of the dam (probable
maximum flood conditions.)
c) gxtreme Loading Combination -Are related to earthquakes.
The loading combinations cases are given in Table 4.1.
4.6 -Factors of Safety:
a) Usual Loading Case UL-1, UL-2
-Compressive stresses-F.o.s. > 4
-Tension stresses -not allowable.*
b) Usual Loading Case UL-3, UL-4, and Unusual Case
-Compressive stresses -F.o.s. > 3
-Tension stresses not to exceed 250 psi.
-Tensile stresses above 250 psi are to be redistributed to other resistance
mechanisms by local joint openings.
*These factors of safety correspond to the trial load method and are in line
with the previous practice. They do not necessarily apply to other methods of
analysis.
I
I • '.
I t
I
I . -
JJ'
l
I
J
I.
IJ.
I
I:
il
I.
I. , ....... J
l
~-
1
I
c) Extreme Loading Case EL-l, EL-2
-Compressive stresses -F. 0. S. > 1.
-Tension stresses exceeding the tens·; 1 e strength of 750 psi are to be
redistributed to other resistance mechanisms.
In case of horizontal tensile stresses across the arches the dam should be
considered as a set of unrestrained cantilevers 50 percent of full height,
because of opening vertical construction joints.
ioJii llfl!'l"' ... * . " --' ~ ~ ~1 QJ!~!I!. " ~ ~ 1Jlll' :~ ~~ ;~ ~ ... ----~·~ ...... ~ :"'"~· ····-,~ ... ~~ +~ ~ ~ .··~ ',_
TABlf: 4.1
I L:oml)1nat1on L:lass u 5 U A l Unusual t_)\ I rcme
lo!!d Combination 1 _!:omb_!na~1on N~Jmj1er lll·-1. Ul-2 Ul-J ~-~ YNl..-J Jl..~l II..-~
5 0 [A 0 l 0 A 0 )( X X X X X X .
T
A
B T
A I Ail' and Reservoir rcbruat·y ~ s c
I Water T emperatm·es April X c l -
0 Rmmrvoir Water 1_f_455 I X X X X .
A l,Lib) X
0 levels l,Z~~ X
l s ~ X }\
0
A 0
0 v
N
A
H 0.5 G
c I Ma)\imum Credible 5~ Damp. X
A r.
5
E t larthquake 0.4G .
s 0 10 Oampe X
A
0
5
I
I
.~ .
J·
·-.
I.
• ·-'
I
I_
~~
It
I.
I
a
I.
\1_ ~ ~ :
5 -METHOD OF ANALYSIS
5.1 -General
The Arch Dam Stress Analysis System (ADSAS) program which is a computerized
version of the trial load method, is used for static and earthquake dynamic
analysis. In the analysis the arch dam is assumed to be a continuous structure.
The dead load is applied in the cantilever direction (construction joints
grouted at full height of sections).
The computer program SAP IV is used for the unrestrained crown cantilever analy-
sis in cases where the dam is subjected to strong earthquake motions, causing
opening of the upper part of vertical construction joints.
5.2 -Method of Definition of Loads
a) Temperature Load
The two-dimensional heat transfer program (heatflow) is used for
determination of temperature distribution in the dam body.
The USBR Engineering Monography N34 is used for computation of the amplitude
of the sinusoidal cycles,
(Annual, 15-Day and Daily). The temperature loads input into ADSAS are
presented in Appendix A.
b) Hydrodynamic Load
The hydrodynamic pressure due to horizontal earthquake on the dam upstream
face C'added mass") is defined by using Westergaards Formula
and is reduced to 60%, due to the effect of narrowness of the gorge, inclination
of the dam face and water compressibility (see Appendix C.)
I . '
I
I
I
I ., • .
•• ~
J
I ··-
1'
I
I
I
' 11
! I
! 11
I ~.
Jl
'I \ . 'I
J,
L.,
6 -ARCH DAM GEOMETRY
The arch dam abutments are founded on the sound bedrock of the canyon. The
sound unweathered rock is determined as generally 40 feet below the bedrock
surface and the foundation is trimmed so as not to cause an abrupt change in the
dam profile and hence a concentration of stresses.
At the bottom of the valley, the dam sits on a massive concrete plug which can
adjust to any disconformities of the bedrock at the valley floor without
changing the geometry of the dam •
i mate ly e 1 evat ion 1350 feet on the
structed to take the thrust of the
Sound bedrock does not continue above approx-
left bank and a massive thrust block is con-
upper 100 feet of arches. A similar block is
founded deep in the rock on the right side in order to preserve the symmetry of
the dam profile.
The dam geometry is shown on Plate 6.2. It is a double curvature structure with
the cupola shape of the crown cantilever defined by vertical curves of approxi-
mately 1352 feet and 869 foot radius. The horizontal arches are prescribed by
varying radii moving along two pairs of center lines. The shorter radii of the
intrados face cause a broadening of the arches at the abutment reducing the con-
tact stresses. The dam reference plane is approximately cent~al to the bottom
of the valley and the two center configuration assign longer radii to the arches
on the wider side of the valley thus providing comparable contact areas on both
sides of the arches at the concrete/rock interface.. The 1 onger radi. i wi 11 a 1 so
allow the thrust from the arches to be directed more into the abutment rather
than parallel to the river. The net eff~ct of this two center layout will be to
improve the symmetry of the stresses right across the dam.
.
The crown cantilever is 635 feet high. It is 20 feet thick at the crest and 90
feet thick at the base. The bottom mass concrete plug is 50 feet high. The
slenderness coefficient of the arch is equal to 90/635 = 0,142 and the radii of
the dam axis at crest level are 710 feet and 780 feet for the left and right
angles of the dam, respectively. The centrai angles vary between 51.5 DEG at
El. 1300 and 25 DEG at the base for the left side of the arch dam and 58 DEG to
30 DEG for the right side. The ratio of crest length to height for the dam is
1260:635 = 1.98:1 (thrust blocks not included).
I
I
.~
I <\'
I
I
·, <
I .
I
••• '1
I .
' ae-,,.
I ' .
• '
1:
I
I
I .
•• ·JJ:
I
j
.
' I
••
The left bank thrust block is 105 feet high and 170 feet long at the base. The
right bank thrust block has a maximum height of 100 feet and a length of 155 .
feet and is adjacent to the spillway contro 1 structure, which wi 11 behave as a
continuation of the thrust block, transferring the thrust directly into the
rock.
r
r-
r~
.
r·
t
r
t .
r·
r·
r
I'
(
[
[
(
[•'
[
(.
ir;· J ~
; ~1
"' :0. *" ;(
•\
·: ~~ .
I
' ~.~.;
~1
J
7 -STATIC LOAD CONDITIONS
7.1 -Dead Load -
In all analyses, the vertical construction joints within the dam are assumed to
be ungrouted and hence the weight of the dam is considered as confined within
the cantilevers, with no distribution through the arches, and directed verti-
cally downwards into the foundation •
7.2 -Hydrostatic
Hydrostatic loadings induced by the reservoir at specified levels were consid-
ered in all load combinations. The effect of tailwater and uplift pressures
will have little effect on the overall stresses and are not considered at this
time.
7.3 -Temperature
(a) Solar Radiation
The dam orientation, running north-south, and the narrow valley will cause
solar radiation to have only minor effects on concrste temperatures and
hence stresses from radiation will be neglected at this time.
(b) Air Temperatures
Because of absence of temperature records, temperatures at the Devil Canyon
site have been interpolated from records taken at two stations: Surrmit
(El. 2405 feet) and Talkeetna (El. 345 feet). The stations are equidistant
from Watana and their average altitude is similar to river level at Watana.
The temperatures from the two stations were averaged to obtain the
following temperatures at the dam site:
-
·r
f··
f
r·-
r·-
r··.
r-.
,.
[
f"
r·
(
r·.
[« ,.
I"
' I.
I
(c)
.AMBIENT AIR TEMPERATURE {°F)
Mean Annual • • . . • • • • • • • • • . . • • . . . • • • • • • • • • • • • • • • • • • • • • . • 28.9
High Mean Monthly • • . • • • • • • • • • • . • . • . • • . . • . • • • . . • . • • • • . • 55.0
Low Mean Monthly ······••a····························· 4 .. 4
Highest Mean Monthly Maximum···············~·········· 63.8
Lowest Mean Monthly Minimum ••••.••••••••••••••••••••.. -3.6
Highest Maximum .••••.•••..•••.••.•.••.•.•.•..•••.•..•. 91.0
Lowest Minimum •••••••.••••••..•.••.•.••...••••..••••.. -48.0
Lowest Difference between any Mean Monthly
Maximum and the Corresponding Mean
Monthly Minimum .•.•.•••••••••.••••••.••••••.••••..••• 14.5
Three sinusoidal temperature cycles-annual, 15-day and daily are
developed based on USBR ENG MONOGRAPH No. 34.
The temperatures obtained are as follows:
EXTREME CONDITIONS USUAL CONDITIONS
Above Below Above Below
Mean (DEGF) Mean (DEGF) Mean (DEGF) Mean (DEGF)
Annual 26.1 24.5 26.1 24.5
15-day 28.8 42.15 15.15 22 .. 95
Daily 7.25 7.25 7.25 7.25
Reservoir Water Tem2eratur~
Average monthly reservoir temperatures are given below. Temperatures
throughout the top 50 feet are as shown and below 50 feet they vary
lineraly to 39°F at a depth of 70 feet.
I
~ ' ..
I
I .
I·
I
\
r
I
I
(•
f~.
I
I .:. ·.
·~
(
li
~~
I
r
I
.
I
I
(d)
(e)
Month
April
May
June
July
August
September
October
November
December
January
February
March
Grouting Temperature
32
32
46
57
53
45
39
32
32
32
32
32
Below 70 ft
From Surface (°F)
39
39
On account of the cold climate and the possibility of freezing, grouting
temperature was selected at 39°F, as low as considered practicable, in
order to reduce tension in the dam induced by shrinkage at lower tempera-
tures.
Temperature Distribution
The temperature distribution in the dam body was determined using the two
dimensional heat transfer program "HEATFLOW" obtained from the u.s.
Department of the Interior (formerly USBR) and was input as a uniform tem-
perature combined with a linear distribution as described in Appendix A.
-
I
I 7.4 -Load. Combinations
I Static analyses were performed for the following normal loading combinations:
•
I
I
'
I
I·
'
I f
j
I I,.
I'
I
I.
II
I
I
I
I
UL-1 Hydrostatic and dead loads at normal reservoir level 1445 feet
UL-2 -Hydrostatic and dead loads at maximum drawdown reservoir level 1295 feet
UL-3 -The same as UL-1 p 1 us temperature (February)
UL-4-The same as UL-2 plus temperature (April)
UL-1 and UL-2 Conditions
The cantilever and arch stresses along the face of the dam are shown in Figures
87-1 to 87-4 in Appendix B. In both the arch and cantilever directions, the
entire structure is in compression and below the allowable stress of 1250 psi,
except for a few isolated areas where small tensile stresses occur. Maximum
(compression) and minimum (tension) stress for conditions Ul-1 an UL-2 are shown
in Tab 1 e 7 .1.
The arch and cantilever stresses for loading combinations UL-3 and UL-4 are
shown in Figures 7.5 to 7.12.
The maximum and minimum stresses along the rock/concrete interface and in the
dam above the foundation are given in Table 7.2.
7.5 -Conclusion
(1) Under hydrostatic loading~ minor isolated tensile stresses occur up to a
maximum of 97 psi.
(2) In both cases with temperature loadings UL-3 and UL-4, the compressive
stresses are below the allowable limit.
-
i
,I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
' I
!'"'•
I
I
·I
I
(3) In UL-3 case, tensile stresses are acting in isolated areas. The tensile
stresses is possible to eliminate by refining the shape of the arch.
(4) In UL-4 case, the crest of the dam is in the arch direction subjected to
almost axial tension. Tensile stresses up to 200 psi are found at the
whole height of the crown downstream face.
Prevention of these tensile stresses is possible orily by application of special
measures such as:
-Low closure temperatures at the upper part of the arch which may be obtained
by using closure slots between a~jacent blocks filled up with concrete in
spring time when the blocks are at mi~imum temperature.
Thermal insulation of the downstream face.
-Prestressing the upper part of the dam by means of flat jacks.
I
I
11
I
I
I
r·
I
I
ll
••
I
II
II
I
I
I
I
I
Arch
~1ax
Min
Cantilever
Max
Min
Principal
t·1ax
~,in
TABLE 7.1
EXTREME ~1AGN !TUDES OF STRESS£5 ~~~~~~~~~~.~-
;..;.AT;.....o.;..;RO;;.;;C-.;:KI;...;:C;.;:;,;ON_C;.;;.;R;;;.;ET;..;;;;E..-I;;.;.;N~TE;;.;.;R;;..;:F A-=-CE
Loading Combination (stresses in psi)
UL-1
792 (D. El 1100)
23 ( U. El 1 000)
722 (D. E1 820)
-27 (D El 1370)
-indicates tension !
D indicates downstream face ·
U indicates upstream face
UL-2
432 (U El 900)
3 (U El 1000)
760 (U El 900)
-97 (0 El 1200)
MAXIMUM STRESSES IN DAM ABOVE FOUNDATION
Arch
Max
~1in
Cantilever
. Max
Min
UL-1
958 (U El 1100}
182 ( D El 1 000)
575 (D E1 1000)
0 (D El 1370)
-
UL-2
548 (U El 1 000)
-36 (D E1 1370)
542 (U E1 1000)
-44 (U E1 1295)
I
I
I·
•
I
I
I
I -='J'
I .
I.
I
I
I
ll
I
I
I
I
11
Arch
Max
Min
Canti 1 ever _ .
Max
Min
Arch
f-1a.x
Min
Cantilever
Max
Min
TABtE 7.2 -
EXTREME MAGNITUDES OF STRESS
ALONG ROCK/CONCRETE INTERFACE
Loading Combination
UL-3 (point)
747 (U El 900)
-182 (U El 1455)
689 (D El 820)
-393 {D El 1370)
EXTREME MAGNITUDES OF STRESSES
IN DAM ABOVE FOUNDATION
Loading Combination
UL-3 (point)
1180 (U E1 1200)
-134 (D E1 1000)
~ U El 1455l
515 (U E1 900)
-75 (D E1 1370)
UL-4 (point)
381 (D 1100)
-157 (D 900)
804 (U El 900)
-281 {D E1 1455)
UL-4 (point)
717 ( U E1 1 1 00)
-268 (U E1 1455)
608 ( U El 1 000)
-62 (U E1 1295)
I
I
'I
••
I
I
1-
~~
11
.
'
~.
I
-.
IJ
I
I
I
8 -DYNAMIC ANALYSES
Preliminary assumptions for purposes of analysis are as follows:
The assumed response spectra input to ADSAS is from Figure 3-4 of the Woodward
Clyde Draft Report "Preliminary Earthquake Ground Motion Studies for the
Proposed Susitna Hydroelectric Project". The mean response spectra for the
Benioff zone is scaled up to 0.5g peak from 0.37g. The damping ratio is five
percent. The response spectrum is shown in Figure 8.1. The response spectrum
analysis was initially attempted for 1 to 20 modeso A larger displacerrient mode
was encountered on mode 19. The high displacement induced unreasonable stresses
in the dam and therefore made the results useless. The problem was re-analyzed
usi n·g 14 modes of vibration.
The response spectrum analysis assumed an instantaneous concrete modulus of
5,000,000 psi.
The results of positive and negative earthquake are presented in the following
tables. The load combinations are hydrostatic and grvity ~ earthquake and
hydrostatic+ gravity+ uniform and linear temperature~ earthquake:
Table 8.1 -Response Sectrum Analysis -Arch Stresses
Table 8.2 -Crown Cantilever Stresses
The resultant tensile stresses of 2580 psi and 729 psi in the arch and canti-
levers, respectively, are greatly in access of the allowable tensile stress of
500 psi.
The results of a dynamic analysis of Devil Canyon Arch Dam based on a 0.4g peak
ground acceleration, 10% damping, the Woodward Clyde Consultants response
spectrum (see Figures 8.2) and using the ADSAS program are shown on Figures B.l5
and B.l6. For comparison, the results of dynamic analyses for a peak ground
acceleration 0.5g and 5% damping are presented on Figures B.13 and B.14
-'
I
I
I
I , ..
I
I
ll
II
I
I
IJ
I
I
,
~-
1
I
I
I
The change of earthquake parameters to 0.4g and 10% damping has reduced the
compressive, tensile and shear stresses at all points on the dam faces ·by a
fac·tor of 1.58 con~oared to the 0.5g acceleration and 5% damping case.
The case of upstream ground movement (hydrostatic, gravity and earthquake
loads), the maximum cantilever tensile stress at the upstream face dropped from
729 psi to 427 psi (at elevation 1285 feet on the crown cantilever). The maxi-
mum compressive arch stresses at the upstream face (crown El. 1370) dropped from
3657 psi to 2551 psi. Stresses on the downstream face are much lower than on
the upstream.
Downstream ground movement (hydrostatic and gravity minus·earthquake load) shows
extr·emely high tensile stresses across the arches (see Table 8.3). The stresses
computed are not realistic. As discovered by field observations and model tests
on other projects, earthquake induced ground movement in the downstream direc-
tion causes the radial construction joints at the upper part of an arch dam to
open. The tension induced in the upper part of these arches is relaxed and the
dam evolves into a set of independent, unrestrained cantilevers, deflecting
freely in the upstream direction.
In m·der to accord more closely with the actual behavior of the Devil Canyon
Arch Dam, when subjected to strong earthquake motions, dynamic analyses on the
unrestrained crown cantilever were performed using the computer program SAPIV.
Model test on other arch dams with simulated radial construction joints, per-
formed by 11 lSMES" have shown that opening of the joints take place over the top
1/3 to l/2 (depending on the narrowness at the gorge) of the dam, while the
lower part remained intack.
The analyses are based on:
(1) The Woodward Clyde Consultants response spectrum curves for the Benioff
zone with peak ground accelerations of 0.5g and 0.4g and damping rates of
· 5% and 10%.
I
I
ifi ·~
I
I
ll
I
·-· 1
·j
.... ;'
I
I
I
I
I
The change of earthquake parameters to 0.4g and 10% damping has reduced the
compressive, tensile and shear stresses at all points on the dam faces ·by a
factor of 1.58 compared to the O.Sg acceleration and 5% damping case.
The case of upstream ground movement (hydrostatic, gravity and earthquake
loads), the maximum cantilever tensile stress at the upstream face dropped from
729 psi to 427 psi (at elevation 1285 feet on the crown cantilever). The maxi-
mum compressive arch stresses at the upstream face (crown El. 1370) dropped from
3657 psi to 2551 psi. Stresses on the downstream face are much lower than on
the upstream.
Downstream ground movement (hydrostatic and gravity minus·earthquake load) shows
extremely high tensile stresses across the arches (see Table 8.3). The stresses
computed are not realistico As discovered by field observations and model tests
on other projects, earthquake induced ground movement in the downstream direc-
tion causes the radial construction joints at the upper part of an arch dam to
open. The tension induced in the upper part of these arches is relaxed and the
dam evolves into a set of independent, unrestrained cantilevers, deflecting
freely in the upstream direction.
In order to accord more closely with the actual behavior of the Devil Canyon
Arch Dam, when subjected to strong earthquake motions, dynamic analyses on the
unrestrained crown cantilever were performed using the computer program SAPIV.
Model test on other arch daws with simulated radial construction joints, per-
formed by 11 ISMES 11 have shown that opening of the joints take place over the top
1/3 to 1/2 (depending on the narrowness at the gorge) of the dam, while the
lower part remained intack.
The analyses are based on:
{1) The Woodward Clyde Consultants response spectrum curves for the B~nioff
zone with peak ground accelerations of O.Sg and 0.4g and damping rates of
· 5% and 10%.
-
I
I
I
l
I
I
l
I
11
I
I
.,~
I ~ '¢~·
11
-
I
I-
I
I
(2) The hydrodynamic stress distribution as proposed by Westerguard approach
and reduced to 60% due to the effect of narrowness of the gorge, inclina-
tion of the dam upstre~~ face and water compressibil)ty (see Appendix C).
(3} Full reservoir water level 1445 feet computer program for dynamic analysis
has been used.
The following combinations of earthquake parameters have been examined:
Peak Ground
Acceleration 11 G11
0.5
0.4
Damping Ratio
(Percent)
5
10
5
10
The results of the cantilever dynamic analysis are as follows:
Added Mass
(Percent)
100
60
100
60
100
60
100
60
(1} The natural period of vibration urn is 0.62 sec, 0.15 sec and 0.09 sec.
(Various magnitudes of acceleration and added mass have little effect).
For comparison, a full height cantilever, which is slender, has been
computed. The periods were found 2.42 sec, 0.49 sec and 0.20 sec. The
stresses in the upper part of the arch in this case were smaller than in
the short cantilever.
-
I
I ,.
'&
I
l
I.
I
I
I
I
I
~~
II
I
I
(2) The stresses due to hydrostatic. and gravity and dynamic loads are presented
separately and in combinations. In Tables 8.4 and 8.5 and in Figure 4,
maximum tensile stresses of 880 psi at the downstream face were obtained in
the case of O.Sg, 5% damping and full Westergaard•s added mass at 170 feet
below crest level. Compressive stresses at the upstream face at that level
are 1100 psi. The maximum tensile stres~ case of O.Sgt 10% damping
and 60% of Westergaard's added mass are equal \o 451 psi.
The change of damping ·from 5% to 10% decreases the maximum tensile stresses
approximately 1.6 times .. The application of 60% added mass instead of full
"Westergaard's provides a reduction of the maximum tensile stresses of about
25%.
In all combinations of dyanmic loads considered, the tensile stresses at the
base of cantilever have changed to compressive {except of case O.Sg, 5% damping
and full added mass, where tension is reduced to 55 psi) {Figure 8.4).
In the case of 0.4g, ground acceleration, the maximum tensile stresses at the
downstream face of cantilever dropped to 509 psi 120 feet below the crest with
5% damping and full added mass, and to 272 psi with 10% damping and 60% added
mass.
The effects of the change in damping and added mass ar~ approximately the same
as in the case of O.Sg acceleration.
I
I
I
I "
i) Arch at Elv. 1455'
(•
I STATION FACE
I E
1000
I .
~
I
E
I 1143
I
E
I 1259
I
I E
1393
I
I E
1526
I
I "
E
1638
t -~"'
I
E
1711
11 I
E
I I :
1714
I
I
(.
I ......
I
TABLE S.it
RESPONSE SPECTRUM ANALYSIS
HYDRO + HYDRO + HYDRO + I HYDRO + GRV
GRAVITY GRAVITY + EO GRAVITY-EO + TEMP + EO
467 3404 -2470 3294
313 1943 -1630 1784
516 3229 -2197 3122
307 2304 -1690 2146
484 2948 -1980 2843
366 2749 -2017 2611
406 2¢98 -1686 2383
438 3019 -2143 2896
324 2033 -1385 1877
417 2566 -1732 2376
303 1591 -985 1356
342 2232 -1548 1962
274 2513 -1965 2105
576 2409 -1257 2465
267 2574 -2040 2125
607 2478 -1267 2596
I
HYDRO + GRV.
+ TE~1P -EO
-2580 ·.,...
-1476
.. 2304
-1848
-2085
-2155
>;·'
-1801
-2266
-1541
-1922
-1220
-1818
-2373
-1201
-2409
-1146
I
I
I
.I
I
I
(
~ £.. ..
·I
I
I
I
I
t .... -.,...-" ,,
-~-
t
... , I';
I •
-~
I
.
I
IJ"
.. TABLE 8.1
RESPONSE SPECTRUM ANALYSIS
ii) Arch at Elev. 1370'
I
FACE I H.YDRO + HYDRO + I HYDRO +
STATION GRAVITY GRV + EQ GRV -EQ
E 642 3657 -237.3
1000
I 255 949 -439
E 707 3222 -1808
1143 '
I 258 1597 -1081
E 593 2461 -1275
1259
I 396 2247 -1455
E 416 1634 -802
1393
~a I 518 2558 -1522 ':
E 295 1188 -598
1526
I 498 2383 -1387
E 206 1071 -659
1638
I 413 1979 -1153
E 110 1220 -1000
1711
I 374 1449 -701
-
I HYDRO + GRV I HYDRO + GRV
+ TEMP + EQ +"TEMP -EO
4119 -1911 I
697 -691
3677 -1353
1355 -1323
2884 -852
2021 -1681
2006 -430
2323 -1757
1511 -275
2111 -1659
1297 -433
1733 -1399
1266 -954
1345 -805
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
.
I
I
I
I
aEV. FACE
u
1455
0
u
1370
D
u
1285
D
u
1200
0
u
1100
0
u
1000
0
u
900
D
u
820
0
TABLE 8.2
RESPONSE SPECTRUM ANALYSIS
CR0~1N CANT! LEVER
HYDRO + HYDRO:'.+ HYDRO +
GRAVITY GRAVITY + EQ GRAVITY-EO
0 0 0
0 0 0
109 -581 799
56 653 -561
98 -729 925
222 1021 -577
71 -629 771
402 1111 -307
102 -435 639
544 1110 -22
223 -142 638
575 1026 124
383 -19 785
539 988 90
305 -402 1012
722 1541 -97
HYDRO + GRV HYDRO + GRV
+ TEMP + EO + TEMP -EO
0 0
0 0
-564 816
658 -576
-655 999
950 -648
-508 892
988 -430
-282 792
948 -184
-31 799
851 -51
113 917
842 -56
-373 1041
1508 -130
~ ~--~ ~-~-~·~: ~ ~ ~ ~ ~.~.~ ~ ~-~ ~
TABLE 8.3
.. u a.., 1 nn\la.. na..unu 1 ua.. nn\111 \ t 1 I_
EARTHQUAKE E.LEVA1ION)UF FACE Of DAM CROWN ABUTMEfU
AIRCH FT. 0 143 394 638 714
0.5G u -2470 -2197 -1686 -985 -2040
1455
D -1630 -1690 -2143 -1548 -1267
5% Damp. u -2373 -1808 -803 -659 -1000
1370
D -439 -1081 -1522 -1153 -701
u -1392 -1203 -919 -512 -1149
0.4G 1455 . D -720 -957 -1196 -855 -757
u -1267 -887 -3~)5 -341 -592
10% Damp. 1370
D _ _ _o.JHS_ _ _ ___ -~ _ ______-: 5tl9~ ~-_-1li_ -578 -306
---------~---------------------~-~-----------~ ------~~-
': .
w:--:=
Node
2
J
4
5
6
1
8
~. ..,. ' ~., ~i ~i .Jillll. _., --· ,..,. .. <.., • -p
,... . .,...
5t resses uue to
Static loads
(Hydrostatic &
Grav ·tv) (psi)
Elevation Upstream Uownstrean
(ft) face · face
1428 -5 29
1375 -72 148
1322 -265 405
1269 -530 750
1216 -930 1230
1163 -1495 1885
1110 -2295 2785
Table 8.4
DEVIL CANYON ARCH DAM RESULTS Of SINGLE CANTILEVER DYNAMIC
ANALYSIS fOR 0.5 G PEAK GROUND ACCELERATION
Stresses We to terthqual<e loads Resultant Stresses
(Concrete Inertia & Added Haas at Downstream face
(psi) of Water -WeEter Goard)
-100~ Ac ded Mass 6U:'G Adc ed Haas 10U:'C A( ded Mass 60~ Added! Mass
5~ Damp 10% Damp 5~ Damp 10~ Damp 5~ Damp 10~ Damp 5~ DamP 10~ Damp·
+ lBO + 144 +177 + 141 -151 -114 -148 -112
+ 760 + 604 + 685 + 546 -612 -456 -537 -398
"+1210 + 960 +1075 + 856 -805 -555* -670 -451*
+16)0 +1300 +1450 "+1150 -880* -550 -700* -400
+2060 "+16)5 +1823 +1440 -OJO -405 -593 -210
+2620 "+2001 "+2300 +1825 -735 -196 -415 60
+2840 +2255 +2490 +1570 -55 530 205 315 --
Notes: 1. Resultant stresses are computed for dynamic loads applied upstream
I
2. "*" indicates maximum tensile stresses; "011 indicates corresponding
compressive stresses at the opposite side of the same level.
3. (-) indlcatas tension.
~ ··fiM .. .. ...
Resultant Stresses
at Upstream face
(psi) ·
1UUJ; Ac 'dad Mass 60~ A( ided Mass
5~ DamP 10% DamP 5~ Damp 10% Damp
175 139 172 1J6
608 5J2 613 474
945 695° 810 591°
1100° 770 920° 620
1135 '105 89) 510
1125 536 805 :uo
545 -70 195 -325
-· ~ ~-1\111 . .. : . ,_,., '
... 1
Stresses uue to
Static loads
... ... -... ,...... ---
Table 8.5
DEVIL CANYON ARCH DAM RESULTS or SINGLE CANTILEVER DYNAMIC
ANALYSIS FOR 0.4 G PEAK GROUND ACCELERATION
:>tresses Due to t.arthqual<e loads Hesultant Stresses
(Concrete Inertia & Added t-1ass at Downstream Face
(osi)
-
(Hydrostatic & of Water -Wester Gaard)
Gravitv) (psi) 1uu:. Ac ded t~ass 6U:O Am ed Mass -1UU~ Ac ded Mass 6U~ Addeo tfass
. ;
Elevation Upstream Downstreao
Node (ft) race race 5~ Damp 10% Demo 5% Demo 10% Damp
2 1425 -5 29 + 143 + 114 + 140 + 112
3 1375 -72 148 + 571 + 459 + 520 + 420
4 1322 -265 405 + 914 + 727 + 026 + 656
5 1269 -530 750 +123) + 977 +1110 + 805
6 1216 -930 1230 +1547 +1230 '+1394 +1105
7 1163 -1495 1885 +1971 +1560 +1750 +1390
0 1110 -2295 2795 +2130 "+1692 '+1097 +'1504
Notes: 1. Resultant stresses are computed for dynamic loads applied upstream
2. "*" indicates maximum tensile stresses; 11011 indicates corresponding
compressive stresses at the opposite side of the same level.
J. (-) indicates tension •
---~
5~ Damp 10% Demo 5% Damo 10~ Damp
-114 -85 -111 -8J
-429 -311 -380 -272*.
-509* -322* -421* -251
-483 -227 -360 -135
-317 0 -164 125
-86 325 135 495
655 1093 aao 1301
--~ --
Hesultant Stresses
at Upstream race
{osi)
100~ A( ided Mass 6U:. A( lded Moss
5~ Damp 10~ Demo 5% Damo 10~ Damp
138 109 135 107
505 J82 li56 340°
649° 462° 561° 391
703 447 580 J55
617 300 464 175
476 65 255 -105
-165 -603 -398 -791
..
••
-.. --· ......... -: ... --... ·--:----.. I
I
..
1.2 .. .
••
.
Damping Ratio =r 0.05!
1.0 + +
'
.
o; 0.8 t-. •J \ ~Benioff ~one
. -
(/)"' .. c
0 ·p
~ cu
. Qj 0.6 u u
~
~
l 0.4l
. I / "'' \~Denali Fault .
. . . .
ap • 0.~7g -•
+
. ..;'
-1-
o• • 1 · 1 1 1 I
0.01 0.03 0.1 . . ·~ 0.3 1 3 10
~:-. ..
Period (seconds)
MEAN RESPONSE SPECTRA AT THE DEVIL'S CANYON SITE FOR
MAXIMUM EARTHQUAKES ON KNOWN ACTIVE FAUlTS
Figure 8.1
··. :.::"
':.
---.... -·· -·· ... -· -... .., .. --.. ·--... -
.. ..
,-...
Ol ........
rO en
" c:::
0 .,.. ......,
rO
~ a;
r-
QJ
u u
o::(
r-
fd
S-....,
u
QJ
0.
V)
1.2,------------------r l
1.0
0.8
0.6
0.4
0.2
a = 0.379 p
a = 0.21g p
DAMPING RATIO= 0.10
.{
BENIOFF ZONE
~ DENALI FAULT
Period (seconds)
0~------~~--------~------------------~--------~--------~
0.01 0,03 0.1
Prepared by Acres, 6/4/81 from data
provided by M. Powers, WCC
0. 3 .. 1 . .. 3 10
MEAN RESPONSE.SPECTRA.AT THE DEVIL.CANYON.SITE
FOR MAXIMUM EARTHQUAKES ON KNOWN ACTIVE .FAULTS
Figure 8.2 -----···
l
_ .......... . -: -·--·--·----·-·-
:t
" .. .•
~· .,
r
I OISIHTEGR.A..TEO PAR:
OF' ARCH DAM
J+A
:t
'k • ![~ H.YOROSTATIC.:
~ ' ('I -• ~
-'Do~
...... ul . :t':r~> ....... __ _ /?1-------~---------~-
:ltL !i
'\ miL 3 1 4o
l+A f.l'(DR05TATIC ADDED MASS
-151
-G-1'2
-80S
-880
-eao
-7D5
545 t;;;;;;;;J .. 65
A.SSUMI!.O Sci-QE.MI!. OF ANAL"{SIS
·as(·&?»)
(~4-8) !>8'2. f::::-.J-~11 (-'2.l2)
-&2.'2 (-'251)
(!>~) 44-1 W -221 (-l~s~
(l"lf>) !loo '===-/o ( 1'25)
(·105) tP5 ,._ :J ~'2. 6 ( 4~1!1)
~ lnoh>»m 1
eog~ Q361)
<:>.5 G f 6% DAMPING O .... G f 10" DAMPING
100~ AOOEO MASS 100% ~DE.O MASS (f !SO"-IN e>AACK.E.Ts)
CANTILE.VE.I< 5TRE.55E.S (PSI)
5E..CTION A-A
" n
__ ,.....
DIRECTION OF G~Ut.ID MOVEMIE.NT
NOTE.:
9 (MINUS) IND:CATeS TENSIU:. STRESS
CD (PLUS) lt-JDICA.TE.S COMPR.ES~IVI!.
.STf2.ES5.
bE.VIL CANYON ARCI4 DAM
EARTI-IG>UAK.E DYNAMIC ANAL-'YSIS
FIGURE o.a Iii
-;:-~ .~ .-
,.
---~"' -<~" ..,_, J-'; _ ...... ,.....,_:.,_~~ ~ ~ !;._ _::, __ j_5~l._· __ ~_ -~--.t' ,, ... ,.,., .. -· .. ~.-....:...._:___.__:_~·-
'i
f
·; "";:U;"~~~&~~~~~ .. , ·'··..;;;;.~.:: -· -··-· ·~· 'c~=•c~~•• ""~"' c·• J~ ''" ·•-~ • ~~c .• •·" " " .... ~~~-··="==~· """·--•·••• '"'"• : •. -··~•··• "">•; ,.,,.,],,
I
I
fl
fl
fl
I
fl Ill-
~ 'I ' L
~
.I
I
••
. .
~1EETING AGENDA
., ~~~~~~~~~~~~~~.-·-------~~-~-~-~-~----:•=-·--··-~~;--. f~ ~~--:7:"--r ..
r cumrmamw
'
' ~---~-.
·'
;:a:::;:u;::m;rmc
I
I
:I
. ..
. I
I
'I
,_1
••
:I
:I
:I
··I ~ ··~-
. ;··I
!I 1--'--
;·I
t_.-
~·· .. "_.
••
I
·I
I
ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
EXTERNAL REVIEW BOARD MEETING #3
OCTOBER 6-8, 1981, BUFFALO, NoY .
AGENDA
OCTOBER 6. Moderator: D. Wozniak
0830 Introductory remarks -E. Yould
0845 Meeting objectives and study status -J. Lawrence
0915 Report on hydrologic field program -J. Hayden
1015 Coffee
1030 Report on seismic studies -J. Lovegreen
1130 Discussion
· 1200 Lunch (brought in)
1300 Report on geotechnical field program -J. Gill
1400 Geotechnical interpretation: Watana -S. Thompson
(Geology, construction materials, bedrock conditions,
underground structures, relict channel)
1500 Coffee
1515 Discussion
1545 Geotechnical interpretation: Devil Canyon -S. Thompson
(Geology, construction materials, bedrock conditions,
underground structures)-·
1645 Discussion
1715 Adjourn
1830 Dinner -courtesy of Acres (M&T Plaza Suite)
OCTOBER 7. Moderator: J. Gi11
0830 Introductory remarks -J. Lawrence
0845 Report on hydraul i.e studies -J. Hayden
{power/energy estimates, flood estimates, reservoir
level optimization, sedimentation studies)
1000 Coffee
1015 Discussion
~~
---... [
:]
;-I
.r1
f~l
' .. I '
l .. : ~
fl
:··· ...
!I
cl . L..
fl L"
rl {
Lr~
r·l
il \
i .__
rl
'-'"
. :I
:I
1045 Watana Dam Design -D. W. Lamb/Ao S. Burgess
1200 Lunch {brought in)
· 1300 Watana Spillway Studies J. Hayden
1345 Watana Layout Studies -J. Lawrence
1430 Discussion
1500 Coffee
1515 Watana/Devil Canyon Low Leve1 Outlets -R. Ibbotson
1545 Watana/Devil Canyon Power Developments -J. Hayden
1615 Discussion
1715 Adjourn
OCTOBER 8. Moderator: D. Wozniak
· 0830 Introductory remarks -J. Lawrence
0845 Devil Canyon Dam Design -R. Ibbotson
0930 Discussion
1000 Coffee
1015 Devil Canyon Spillway Studies -J. Hayden
1100 Devil Canyon Layout Studies -J. Lawrence
h200 Lunch (as required)
1300 Discussion
1400 Adjourn (Panel to prepare report)
1630 Closing Statements: E. Yould/panel.
page 2