Loading...
HomeMy WebLinkAboutAPA1381[M]£00~£ c [§liD£®©© Susitna Joint Venture Document Number = le CopY r~, [361 ~. --~~~---=-~.====~-------~----------------~~ Please Return To DOCUMENT CONTROL ., ._, ~ EXTERNAL REVIEW BOARD 1 _, MEETING #4 '"I (~ ~ : ' ' : I I I I l l Pr.-,pared by: .liBI INFORMATION PACKAGE lCf8{ JANUARY 12 -13., 498± i . I I l ... ALASKA POWER AUTHORITY _____ I__, ll 1: ... · l \ I .I •• ·I I ,I I I I :I :1 I il I I I I I TABLE OF CONTENTS _, ~ TASK 5 -GEOTECHNICAL INVESTIGATIONS -TASK 6 -UPDATE OF DESIGNS FOR: ·wATANA DAM .RELICT CHANNEL TREATMENT -SUBTASK 6.25 -CLOSEOUT REPORT • OPTIMIZATION OF DAfv1 HEIGHTS JiECEIVl::D D~C 3 o 1981 7-\LASKA POWfrR AUTHORITY I .I I I I I I • I I TASK 5 I I •• ·I I :I :I : I I I I I I I I I I I I I I I I I I I I I I + o;o'm:t i ~ a -[I ~~ ~,.-. ..... . .. ,....,.. ~ ~~~· I ZlJ>P :E-'}II -~ ---- ~ .. .. JOIHT STATION DCJ·2 N•IOO ---- E -- • ,T ~~£:) cs a~y ' -:). -----COW>OliiTE JOINT PLOT SOUTH BANK N•479 .. ------ " ~SET 0~-u w ,..----··· \I{DC...:!;l..__ ~·/•' ... ~ == -:-,.--~---------.... ,.,., -~·· I ~2.. SUSITIIIA RIV;;---·" •. • ~··· JOINT STATION---......._...____ DCJ·4 lt•IOO ( ... .........__ ... ~ I ~ ~~ • -..___ .. ,.r----·-r----......_,.. . .. II JOINT STATION OCJ-lS N•IOO _____.!-._ II COUPOSITE JOINT PLOT NORTH BANK 11•714 ' . . . .. .tl2ill I. CONTOURS All£ PERCENT Ot' .IOIHTI Pt:R I'll. Ill' AAU, COIITOUIIINTPIVAL•I,S,II,l,IO,IS, a 2K 2. 1\1 EQUAI.I ICUIIBEII Of DATA POINTI 15. COWOSIT£ PLOTS INCOIII'OR4TE ALL .IOIMT DATA. JOINT STA'fiON PLOTS COIITllet IIUA fltOiil IIRCifll: .IOIIIT ITATIOIIa. 4. fOR JOINT I'I.OTTHI IIETitOD sa . : p : •• , •• I I I I -----~------------- ~ ~ ·-f ~~~~ ..... _ ~ r oaa•-. AZIMU'C'H -:a-20• OF SECI'ION LOOKIH!'l st!UTH RIVER FlDIJt-.. 100 "'::0 0 L--J--1 o. • ...... --~I ~:~ i· ~ .... ~I .. • 0'" .,..,. -m ~1000 I !!!.lll:JICA AIY£R , RIVER fiDW- :>'"-,,.,.,,_,,.,,..,,, •. ,.,..... .. ! .... "I ~ ~ ·--~···.·:l.-i•<···;~·f"·•·<,:'. .. ':.i·'•·· .. . ~CTED .:.~~··~.-.· l -...... lf-·'t:·:··,,'.:·;·.-·· I " • uf -~'Y"-''f'Ji· -· --ti~! ~ ~! I 1}1 F.-~ TREI<O i· 1 ~ l f.,.. TfiEII.) 51)00 )40·-..fj · I I I GOO L. ii \ J~ l \oo..:CTED I I f . t30'a ~CTEO :,V~£CTEO -~·~~~m~W~jy~·~:::.;;;;.~ PEV!b CAHYOt' GEOLOGIC SECTION DC· I ID!ill..~ lliffRRED IIIIAII--1 1IIEHD J40" • I .,taoo -1 - IY~ .~J i -f COOP . ~ I t . - I i f ' IIII'ERRED i I '"EAR I 1 TllfMD zo•-J - L 0 "-'I.E ~IFEU ·: PRDmJARY • . . . ! I I I I I I I I I I I I~ I I I I I I • • . 0 t ~ j:~ ~ =ti ::) ~t! " t~ 0 <::::::-.. ··-::::::---.. .. ~ .. .. ._:::----··--··-.......; .. . . .::::::::.-.. . ..::::::.-.. ··~ I I I I I I .I I I I t§ i I j: ... t; :I~ a. :I ::1 ~~ ~ ~ § I I I I I I •• (J.l3~1 NOIUI\lni I I I I I I I I I !II 8-----~-~-·~y-·:·'·'"""1 I I I I I I I I I I I • I I I I I I . ·--~ ;, ::s I t~. ~s vt~ ;:;.., ia: c~ i!~ I ~ §a: . .., ~ c ·-·-r; ·-·-·-hi tr- I I I I ll I 11 I •• I I I I I I I I I I I I I I '11 II 11 ~ IJ.JUl HOI.I.W.I'1ll L -'"ii " " " ~ ' ·~, ~ • ... ~ ... .;..·,,·,_,, I!@ 1500 E ~ ~ i ~ 1000 100 tfiJ ---... -""" •• --11118 ,. - SIISITHA ocr o-90",.__. AZIMIJTH -2100 OF SECTION LOOKING SOUJl'H RIVERFLCNI-.... IIIV£11 IIOIIIIO<It AREA 0 -ITHA IIIVIR .iLOOIQIIu •1. CAU.UVIAL FAll) ·r ILOOKIIIII DOWMmi£AI;II .. 1 ~, UI'STMAIII • , ••• ·.:nz FPS·.•·.·•··· •· /;/ ~~ ~- 11,100 fi'S r;; t:{:i~~'~J~ J ;;f {f L:. /--~· I ' i PAru[CTfll I iilc'i'll"i i II I ~, .... DC·3 l Afi&Hi O'J"fCAOII' AlifA I 111-1 TJI[ND , ~-l ""'! / 91 ,, ~,. t· I • I ' jr !·· ~~ 1 l 1/ ~cij r Jf DIU.: I i ~27~_. k ~ r d 'r ~ h 'I I . ~""" I: li )J • =rtfRYD II • .F r TRfHD 'I fEU~C aoo• D1!CE ' ·~~~.~ ; IIEHD/;~~~~· /) il 011• • • ' r -.. -•• I !lOCI 1000 0 100 too FEEl' ICAL( 500 ~YIL ~AN)'()ff GEOLOGIC SECJ!ON DC-8 PRIDtrililARY. • ~ ' ;:.~_ ' -,!-,- .. ILJ! ...,, ----•• till -.. --·----- r 1 .. ~ .. 0.09 1+1 0.0& 1+1 O.CHI . ., 24 oos o om O.OG 0.09 STRAIII 1'111 0.03 0 ~ 0.05 0.06 0.09 STRAIII 1'111 ~: "'<~ ---*: !;:,. ROCI! TYPE: GRAY WAC!:£ fU.IJII£ 11Tfi£Sft: 0,463 pol Ereo•ll.&atoi l)tl, II•O.n Es•tt.a•to1 Pol. 11•0.2;>. 10R£1101..£• IH•i , IAIM'LE Ito.: 80•41 DEPTH •1110.15 Llo•ZJif, ~·lliil.tpd 0.12 OJ' 0.18 0.21 1-l IIOCII TYPE• GIIAYWA.CII£ lilli..UR£ !TRESS: 21,5G8 pol Etoo•to.lllto1 pol, II•OD Es•to.4•to5 1)tl, \I•O.D IORfHOI.£: BH·:S, SAioii'L£ IG.; 0•3·211.0 DEPTH• 2110 Llp•211t, ~tUI0.4pel 0.12 0.1~ OJI D.ZI 0.24 I-I 0.06 1•1 !r II ~ .. , t,z 0 • c;J o o.os o.oe 'fRAIN I'll! ! 10 005 0 0.05 0.00 STRAIH 1111 0 c;J c;J IIOCII TYPE' AIIGILLITE FAILilAE STIIESSI 11,407 ptl E TOO •11.1 1101 pol E1 •u.t•eo•,at loGRfHOI.It•lll·S, SA¥1'1.£ IG,I 0·3-ti&G DrPTHp 18.1 L/p•ZGa, ~ •1711.3 pel 0.09 0.12 0.~ H IIOQC TYPE: GRA\'WACU f.a/LUIIE STR£}!1: 13,420 pol Eno•l,latol,.t, 11•0.11 E1 •11.1a 101 pol, II•DJt IOIII!ttoU:t BH•Z, SAUPLE Ito. IO"'l D£PlH • 4411.2 L/p •2.110, lJ •1111.2 pof 0.011 0.12 0.10 0.18 1-1 o.oa It I ~Mfi!Hi 1rrR€SS -STRAIN CURVES 9 WlSW! 0 AJIW. STIIAIII 8 VOI.UIIItTII!C STRAIN I!J OIAIIETIUC STRAIN E,, KCAHT NOO\IUII EToo TNI!lfHT NllllUIIIICI 11011. liWI.I.flt ~ •. 110C11 TYn: ARGa.LITE FAII.IIlE 8Tf!£5SI £1,017 I'll Eteo•4.4 •toll psi, >J•o.zo Es•44•eo'po~, ll•o.zo IIOil[tl)t.EIIIit·Z 0 SAWI.£ teo.; 80•66 DEPTH•I.'U.O Lfo •z.eu, If •168.6 pel ~--~o~~~---o~--~o~.o~,----o~.oa----n~~ noa 1+1 om 3TIIAIII nl.l 1-l ! ~Till ~ 0.05 ITRAIH 1%1 '< ROCII TYPE• AJIOWTE fAUIRE STRESS: 1$,221 pol Eroo•tz.7oto1 ;al, II•O.t!> Es•tuatd' pot, II•O.tll IOfiEHOLE: BII·OA, S-.1: tlo.: D·8A·2~.3 DrPTH•Z!II.S L/o•2.14, O.OG 0.0!1 r ·no.a pet 0.12 , ... 1. f J •• .. ~t~.~·~ Ui~~~:~J~~' f.J,l~~~U.U"' .. ~ lll£ 4·~ .•• Iil ~ .. r ~· f'· •. I I I r I I I. I I \ . ,. \ \ ' \ \ \ \ \ ; f! ,,.I§ ~· ,...... {- J •--;.,r ~ >_i' ------~ ,.,. liL-i~ ..... .. JOINT STATION WJ-0 N•l ~0 H JOINT STATIOtl WJ-6 . w .... fiiiJI E " JOINT STATION WJ·:S N•80 .. e --~ N JOINT STATION WJ·IO N•IOO 1111!11 • -~ -... --- H JOINT STATION WJ-8 N•IOO 'ARY I N !!!!! STOlllllt ~ A ~--;--80'1E D 050' 10' c 041' IO'NW ll 071' IO'ME E 0' so•w NOTE• PLOTUN<I It I'I!OJ£CTIOH Of' l>£1lF£111DICUUIII 1D .KliNT PUICI llll SUIII'ACI! W UlWER llhiiSII'IIIM. I'OIIITI All! f\OfTEil 011 AN tGUoll.• AIIIAHU JOINT PLOTTII'IG METHOD ... .../ I. CONTOU!iS All( P£Rct:NT 0# JOlltTI P£11 1% Of AREA. COUTOUIIINTEIIVAL•I,S,CI,7,IO,aiO%, 2. H EQUAL I NUll SEll 0# !lATA I'OtNTI, ~ "· __,_ :~ ~ •.• _,...._~-~~~:"t~ .... "*-'! ~ ____ / •• I ·~~&R. J.&f.. ·~~~~,:'II!JS!,,ii&t£t :":'""·.)ft ... fit!¥ ~-···~' . . ---· ...... -....,Jill~-· ~, ~. ~ .~ _, _.,_ ~·a~ ~ll$,)1l£4J *WIQQl $ GJ 44\ lL.-JI. ... ,... II COWPOSITE JOINT PLOT SOUTHEAST QUADRANT H•721 II COMPOSITE JOINT PLOT NORTHEAST QUADRANT N•!l211 w -... - ! . ...,. .... • COMPOSITE .IOIHT PLOT SOUTHWEST QUADRANT N•~2t .. .. ... -• - --......._.j. APPtiOX. INT£RSECTIOII Of llAII " ~ ----WITII C:EIITQI OF Rl\'111 " ____. ... ---<rJ-· AWJ-1 ~ ··r·-· -------------... "' /' r---.. '-...... __.,. ... -----~ AW~~ ~ ·~ ... ~ ----- 1 --~, /_..-------------· E w "----... ...____.A'~~-· t; w II ~lltftl rW1r"AR'· y & A' I •• ti!JW1. NOTE!! L IXIHTOUftt ARC: P£RC£1i!T Of .KiliiTI 1'£11 IW. Of AII£A. COIITOUIIIIITERIIU. -t,S, a 8%. I. H E014\LI 1111111£11 Of DATA POIHTI. 3, COMPOIITE PU!TIIIICOIII'OIIATE ALL .IOIIIT III.TA FIIOIII Tlf!llt IIQP£CnVE lliJAIIIIAMTa. 4. :rrr I'LOTI fOR JOitiT GTATIONIIWJ•I,I 1S111,1,7,0 alii D. Filii oKliiiT PLOTllNG MrniOO Sf£ FIG. .• ·. ~ '~ ~ ...... ~ --. ~ ... E· -·eJ• M COYPOSITE JOINT PLOT SUUTri£AS'i Ul.WiiiAitl N•721 -... .. I w -.,.., .... • COMPOSITE .JOIHY PLOT SOUTHWEST QUADRANT N•1121 - ·• -.. ... -- _____..------------·-~··~APtR~~a~~~OFOA:;···~ 1 VIJ~ / 7 ·' ~~-:~-~~-------> ·~ .. ~ -~ ... ---------~.~ •"" . . -~' / • __....---~ " '""\t... --__/" /~ .~ .. ~ , s~ ~ .. --------, • ~ ( " c1 < 'A. "-------------- 1 r ' 0 -r\VJ ~ " --~~ . ("'~·~ ~. •,r • v s ' "'"• ' oum . ., I I + .. . ' t;)N R? N~::WUME • .Y ' ......... ~~- .} + •• ...._...:.;'•'•"'' "~"•MMU w-• ' "' w ,_.,., , __ ., m ,. • ...,.--. " "' ·--_..oli~-~ 011 I'LOTII fllll .10tH ~ fiiOIII T STATIONS IWJ 0. FOR ~T I'UITTIUG •1,2,5,11,8,7,1 6 tl lolfiHOD SU: FlO. _____ ./ II COMPOSITE JOINT PLOT NORTHEAST QUADRANT H•li21i • 1lfiDirHNARY ·. .• :I I 1\ I I' I I } t i ~""" t 1\ .( l t' . d; i !:j•~ l.ll:UI HIIIIJ.YIIJ'IJ ---..... ~ -~ ~ ~ ~ r·· f ~ ~ I ~ ~-...... -~ tiOO 2000 1~00 1000 ~ "'RQO 100 :10 0 L-.1-.-J-~ ~.,, .-12n DH·ll -.!!!1~ L IW~Clt:ll IlK! 0 'i ·"-· 0(. •.v -• 343•-. AZIMUTH -163" OF SECTION LOOKING UPSTREAM I I I I I ' I I I I tfl' 0 o-~~ ~~ ~; IIOITOM i'IIOJECTED ..... -- "•flO 100 10 0 l.-..L._j 11. ~;o., "'IIQO 100 GO 0 3-~ =---tnt =·:i .,.D,A ··A · fii.IIC Dill& 80111)11 :O~CTED ~ ili!-OOiC St:CTION W-I ~HEET 2 OF 2 .. ~ ''-'-~ 1500 2000 1600 ]~ --fi-J -\- 10 IICALC:,,. 100 ROOflt:T 5iiiiiiiiiiiiii ~ALd:t I ~d Q'j" !J X \.I : Dmll. rt· ,..n """~;'-... r~ ;';"N.Tj1_\R~ . V iil I~ . till II •• '· I I (.l.lUI NOIJ.'II\313 0 0 !! -.. ·~· -- tiOO zooo ~ z 0 !i 5 1100 1000 .. Jllra .... iillliil ,..,. ,..110 100 110 10 'il·:-01 -.:..ISH Dfl•l ow·c UUSITIIA RIVfll •I t -· rr 028"~-AZIWTH -208" uF SECTIOH- LOOI<JHG L!f>STREAM RIVER flOW- .. ... -illliillllil ..... j- 1 1000 !IIIUII 0.2' GOUGe: ----..·:.:.:l.::.1'f•'f:;:·.·;.~·:lliltl. ·~:~· iiAJOII'.tiJtll,UIQN -·-· --;'·!.:l."•.::...::~DIOIIITf Nil)- AH1J FIUCl1JIW:~ ANlEiiiT£ TREND 290 ~ GEOLOGIC SECTION W -!I SHEET 2 OF 2 1100 1000 .. illlillli ...,. fll1 --.~ \.._ 0 100 200 F£Er KAlE . PR.EL!~~··. "1 '~,,. . 4 I ·~1 ·~ fJ£ ~~; ~ \.. ... 1.... 1.·~ C l:..L ~. , .. I 11 ,.1 :1 I e :~ j ~ .......-----'" '-... ;§ -~.. ......... ..~ ~ ii! c i!! ! ;t.:/ [I ~ ·~. """' ~ ~ 1 J .. :::i ~ ~ I l· :::-.. ·I ~ I I· § .. I I . I .• i ! loli § I !:JliJIIi I I I I I I I I I I I I ~ N I t ~~~1 j~ 0~ ~~~a: I + 9~ rt. 8 I I I I I . I [ 0 8 .. • ~~~ .. ~~~-~--··~--1f-.. ......:... .. ~.-=...-----.;;.m ____ _ I I I I I I \ ~~ \ Hli I \ \ \ .-·- \ .-·-:1 ~--·-i~ \ ~ \ i! --~-~------- \ ' }--~--­,-.. _ ... _,. __ ' ' ' ~ I I ll 11 I •• lt I IJ.:IUI NOIJ.'II\111 ~ IIJiiiiiiiJ ~ ~ s I= ~ ~ w liDO 1000 ~~ 1000 fliiiJ Jl!iil I I I I I ANDESITE/ DIORITE I PORPHYRY I I I I I I I •• ~ ~ .. -IlL I 023,.._,_, AZIMUTH _203, OF SECTION lOOKING UPSTREAM le,OOOFPI L_ I IL-10•1 l'llnlfCIDI «fw WAI!H6. 9EOLOGIC SECTION W-7 SHEET I Of 2 •-~· IIIII ---- -- I uoo 2000 !&CO 0 100 200 FUT SCAl.f 1000 P'r t'l. fP r~·~ ~ A ry 1\.tL!ifill~i\l{ [iJ .• . , fiiiiiiJ. (liiiiiiJ ZDDO 2000 § e ; iii 1500 1000 (iii!i1 ~ liiiiiiJ liil too"':" 0 100 ... :0 ° a..~ 1..-.1..-.1 1.-.l--J~IJU ----llll·4 OIH ~ ~ ~' r·--SUSITMA lltYER . I llll·4 Dlt·5 l'llOJECTfD PRO.IEl:TED . ,.... --.. ,.J ~ 't..,·.J.:-:.~:~~~.:~:·:-· ...... · ~ ..... .. .... ·. .. . ,• -~~· ... 4-· I ~~ 7/~.:.::;· ...... , .. :.::::;-·_, .. !, ..... '::;::·.::.;;-f!'·_,,:.;/ :1i . ~ ... ~·;;;::f·:,,·;:. ;_ ... ,~::.'.: ... .-\,/ ~l !j' .... ;!~·: i\•i:':J:•:.~ ,, I ':B!jj -Tf . ,! (II I / ARfA OF FRACn*£ /J ~-~ .-~~IIIHOR l!lilll liJiiiil -.. - AZIMUTH 02:5"-Cf SECTIOH-20:5" LOOKING UPSTiif.AU ,/' ~., .p Q ~ .:~ .. 'IC.AOI> 100 00 0 '--'---' IL. -IMI DIN I IIOT10II PIIOJ£c:TED ZZS'W -- WMAffA. §fiQl.OGIC S£CDOH W ·I SHEET 2 QF2 -·-·-· 'JI.AOO 100 DO ~fL. 3-- ~ ~=~ -ISZ2 --•----·· .. - 2500 zooo 1!100 eooo -.,. v O~~~l!ji00ii;;;iiii;~200 FEET SCALE ~ [i] .... ... ... .... O.o9 0.00 1+1 , .. , ,.. !I a' ~u tiS ~ o~s o o.os 0.01 &TRAIN I'll.! II STRAIIlllY ~ ,.... tiJIII O.Oll JI()Q( TYPE I ANlt:SIT£ llUUR BTR£Slll zo.s" "' Erw•a.t•IU•jJOI, \1•0.24 Es•ns•IC!'•"· \l•o2:1 IIORWOI.£•11H•l, SAMI'I.£ Iii.: 2·10 O£Pm • 27.08 l,!o•Z.OG, II'•Mt~rcr 0.12 0.15 0.18 1-1 ROQI TYf'£1 DIORIT£ fAIIJJfiE STRESS: 20,1JU '" ET 110 •~eus•I0 8 ptt, \1•0.27 Es•ID.I • Jl6 '"· \1 .o.r• IKIR£IIllf•IH•S, S.UCPU: No.:W-J•3l0.7 D€Pm• !20.7 Lto•l.60, II'•III.IP<I 0.12 010 o .• 021 H W!IAti! - STRESS· STRA!H CURYa - 0.011 1+1 D-Oll HI o.os il .• !Til 0 STRAIN I'll! ! 12 aTIIAIH 1%1 L.. 0.011 0.01 -1111.11 ROCII TVPf:l Alll£511£ IUIJR£ llllm: IT,2~ jJOI ETw"JO.a •to•ptl,\)•o 21 E5 •10S•Jl''"' \l•ozr IIOI!EHOU•III·2, lAMPI.£ leo.: li·IO DUTil• 40.1 l,!o•Z.DI, ll•tll.&pol 0.12 OJS tlll H ROQ( TYPE I DIORITE IUUil£ STRUJ• 14,414 pol Erao• D.s •to pol, \1•0.24 Es• II.II•Jl8 ptl, \1•0.24 -Eitol.£1 811·4, SAII'I.£ No. I W•4·69D.I DEPTH•CIIO.I l,!0 •z.41, ¥•tea.o,.r 012 ,_, •• IIIII - ~ 0 AXIAL ITIIAIII A WUIIImiiC SlRAII I!J CIAwt:TNC; ITI!AIII fa KCAHT 11CC1W11 - ETIIO TNIIlDIT IICCIWII AT 00% FAII.IJII: ma&~ ,. PREIJAih,ARY [i] I I li I I I •• .. I I I I I I I I I I. I I EXPLORATION PROGRAM 1982~83 . ' . •• I I I I I I I •• I .I I I I I I I I, I PROPOSED 1982-1983 GEOTECHNICAL ACTIVITIES 0 BORROW AREA INVESTIGATION - D - E - H - I - J 0 RELICT CHANNEL 0 ACCESS ROAD 0 MISCELLANEOUS STUDIES IN SUPPORT OF FERC LICENSE 0, .... , ,,, ·.1'•" liiiii liiia liiii liiiiii liiiiii liiiii .. liiii -&II Ill -.. -----.. I MAR I APR I MAY I JUN I JUL I AUG I SEP I OCT I NOV I DEC I JAN I FEB I MAR I APR I MAY I JUN I JUL I AUG SCOPE 82'-93' PROGRAMIIIJr--- PERMITS PREPARE SPECIFICATIONS a PREPARE CONTRACTS PREP. SPEC. J ISSUE J PREP. ....!/ PERMITS RELICT CHANNEL INVESTIGATION BORROW AREA INVESTIGATION ACCESS ROAD MISCELLANEOUS INVESTIGATIONS FOR BIDS CONTRACTS MOBILIZATION ! DRILUNG a 111!1111--------·---... --. TESTING I I. 1 DRILLING 8 TESTING ·----· , .... lliliiiiiiiiiilllllllllllllllll SURVEY -----•11111 llllllllll DRILLING a TESTING IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJIIIIIIDIIIIIIIIDIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII PROPOSED 1982 -1983 GEOTECHNICAL PROGRAM (ii I I I I I I I 'I ,: I I :1 11 I ll I ·~ lll - I .I TASK 6 11.· l \ I' I i I I I tl l II I I :I ~· 1 -INTRODUCTION SUSITNA HYDROELECTRIC PROJECT UPDATE OF DESIGNS FOR WATANA DAM AND RELICT CHANNEL TREATMENT 1he approach to the Watana Dam design and treatment of the relict channel immediately downstream of the Watana Dam have been revised to take account of comments resulting from the consultant review meetings held in Buffalo in October (APA Panel) and November (Acres Panel). The major changes from the presentation made in October are as fol'lows. 2 -WATANA DAM 2.1 -Upstream Shell The Acres panel were strongly of the opinion that quarried rock fill would be subject to more settlement due to crushing of point contact between individual rock pieces during re~servoir filling than a compacted river gravel. Such settlement tends to produce longitudinal cracks along the core. In addition, the compaction of rock fill would tend to produce fines which would result in lower permeabilities than would be expected from the initial gradation of the material. It is now proposed that the upstream shell be constructed of compacted processed river alluvium ext~acted from borrow areas along the Susitna river. The river gravels will be processed to remove all material finer than 1/2 11 and all pieces largt~r than 18". It is proposed that this material be compacted ·in 3-foot lifts to provide a dense, free draining upstream shell. The objective is to provide a strong relatively incompressible shell of high permeabil·ity ·such that there will be no build up of pore pressures in the saturated upstream zone of the dam during seismic shaking and relatively minor seismic slumping. 2.2 -Downstream Shell ----.;;...;..;..;;;;..;,..;.. The downstream shell will consist of compacted unprocessed river gravels except that mater•ial larger than 18 11 will be removed. Since this zone will be unsaturated, there is no possibility of pore pressures developing during seismic loading and hence 1 ow p·enneabi 1 i ty is not a requirement. However the compress i bi 1 i ty cha racteri sti cs of the downstream shell will be comparable to those for the upstream shell~ I I I I I I I I I I I I I I I I I I I - 2 The saturated toe of the downstream shell below maximum tail water 1eve1 will be constructed of processed gravel, :similar to the upstream shell~ to eliminate any risk of instability in this area undE:rseismic loading. 2.3 -Core Material Questions were raised at the October meeting regarding the suitability of material fr·om Borrow Area D fOl" the core. Although this material is marginall aly SM by classification, it is relatively well graded with typically 75 to 85% passing No. 4 sieve and 35 to 45% passing No. 200 sieve. The grading is very similar to tills utilized in a number of large dams in Canada, for example Mica, and the James Bay dams. Additional testing has been carried out on composite samples from Areas D & H, particularly Standard Proctor compaction on material passing No. 4 sieve, which as expected, gave a higher optimum moisture content. 2o4 -Filter Zones Granular material from borrow area E will be used for both fine and coarse filters. The Acres panel emphasized the need for careful design of filters in accordance with current practice to ensure that core material could not pass into the filters. 2.5 -Core Geomet~y The essentially central core has been maintained to ensure higher vertical stresses · in the core as a result of downdrag from the shells, which will tend to shake down ~>re than the core. 2.6 -Dam Design The design criteria are discussed in the attached: draft E~ntitled "Watana Dam - Design Criteriau while the methodology proposed for dynamic analysis of tht: dam is discussed in attachment entitlEid "Outline of Methodology for Stability Analysis - Watana Damn. Both of the above are dated December 1981. I I I I I I I I I I I I ·I I I •• I I I - 3 3 -· RELICT CHANNEL 3.1-Introduction At the October meeting it was proposed that the relict channel treatment should include an extensive grouted slurrywall cut-off and saddle dam at the critical section. Available soils data is limited but in view of high permeabilities in some boreholes it was considered necessary to provide a positive cut-off to limit leakage. Other problem areas identified in the relict channel include zones of permafrost and soils which may be subject to liquefaction under earthquake loading. As the permafrost thaws due to heat flow from the reservoir, the effective permeability may increase, there could be settlement due to drainage following thawing and the risk of lique- faction would increase. However it is not possible now and in any event would require extensive site investigation to completely define the nature of the problems outlined above. It was proposed to make allowance for settlement by over-building the saddle dam, and on the basis of the results of further investigations, locate the dam clear of any foundation materials with high potential for liquefa~tion. Even so, any settlement due to thawing permafrost or liquefaction would not be uniform along the saddle dam and there would be a risk of transverse crack- ing of the dam. The only method of completely eliminating the potential problems associated with the saddle dam is to eliminate the need for the dam by lowering the top water level in the reservoir. The limiting level is then that level which will provide sufficient width of natural ground above water tnat local settle- ment in that area due to thawing and drainage will not produce a channel which would allow leakage. This width is somewhat arbitrary but grades are very flat in the natural saddle. It is proposed that the maximum reservoir level under PMF conditions should not exceed lowest ground level at the natural saddle. Under normal conditions, this will provide at least 1000 feet of "dry 11 ground at the saddle. ;::,... I I I I I I I I I I I I I I 'I I I I II - 4 With such an arrangement; surface flows are controlled but subsurface leakage must also be controlled. Of the three alternatives considered -upstream blanket, grouted/slurry cut-off, downstream filter, -the upstream blanket is costly and probably impractical, the cut-off wall as previously proposed is costly and its effectiveness cannot be demonstrated until permafrost has thawed throughout the channel area. However major initial costs are incurred during initial construction. The downstream filter concept was originally rejected on grounds of cost, assuming that a very large area would have to be protected. However, the Acres Review Panel considered that since the estimated water loss is not eco- nomically significant, control of downstream seepage is the most positive control measure. It would not be necessary to treat the whole area, but only those zones of emergence if piezometric observations indicate potential pip- ing. The observational approach has the advantage of only treating critical areas and hence minimum cost. However it may be many years before equilibrium with respect to permafrost is established in the r~elict channel area following reservoir filling. Monitoring throughout this period by suitably qualified personnel will be essential, and there must be a continuing ability to treat any areas. This would involve the placement of granular material excavated from borrow area E, downstream of the main dam. In summary, the treatment of the relict channel area presently proposed will involve: 1. Monitoring of piezometric levels and temperature throughout the relict channel. 2. Inspection of the potential area of seepage emergence to identify critical zones and any zones now showing signs of seepage and ·pi ping. 3. Development of access roads from borrow area E to the area. 4. Treatment of active zones of seepage discharge. 5. Establishment of stockpiles of filter material for emergency use. 6. Monitoring of ground elevation in critical areas of the channel and making good any "lost 11 ground following thawing of permafrost. I I I I I I I I I I I I I I I I I 1\ I WATANA DAM DESIGN CRITERIA DRAFT DECEMBER 1981 I I I I I I I I I I ,I I I I I I I I I' WATANA DAM DESIGN CRITERIA TABLE OF CONTENTS Page 1 -MAIN DAM EMBANKMENT ...................... " ................... . 1.1 -General •................................................ 1 1 1 1 3 4 5 6 6 7 7 7 7 7 7 1.2-Design Philosophy····················~·················· 1 . 2 . 1 -Gene r a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2-Impervious Core Design ............... 4 •••••••••• 1.2.3-Earthquake Resistance Design Feature ··~········· 1.2.4 -Freeboard and Static Settlement .... ~ ........... ~ 1.3-Typical Cross Section .................................. . 1.4-Core Material .......................................... . 1.4.1 -General ............................... G ••••••••• 1.4.2-Basic Data ..................................... , 1.4.2.1 -Gradation •............•............... 1.4.2.2-Atterberg Limit ...................... . 1.4.2.3 -Permeability .......................... . 1.4.2.4-Compaction Properties ................ . 1.4.2.5 -Consolidation Parameters ............. . 1.4.2.6-Special Gravity ...................... . 1.4.2.7 -Natural Water Content ................ . 1.4.2.8-Shear Strength ....................•... 1.4.2.9 -Dispersion Potential ................. . 1.4.3-Placement and Compaction ....................... . 1.4.3.1-Excavation ........................... . 1.4.3.2 -Placement and Compaction ............. . 1.5 -Fine and Coarse Filters ................................ . 1.5.1-General ........................................ . 1.5.2-Basic Data ..................................... . 1. 5. 2 .1 -Gradation ........... ,, ................ . 1.5.2.2 -Permeability ......................... . 1.5.2.3-Shear Strength ....................... . 1.5.3-Excavation, Placement, and Compaction .......... . 1 . 5 . 3 .1 -Exc av at ion .... ,. ...................... . 1.5.3.2-Placement and Compaction ............. . 1.6-Alluvium Fill Material ................................. . 1. 6 .1 -Genera 1 .....••........................•...•...•. 1.6.2 ... Basic Data ..................................... . 1.6.2.1-Gradation ......... ." .................. . 1. 6. 2. 2 -Per me ab i 1 i ty ......................... . 1.6.2.3-Shear Strength ....................... . 1.6.3-Excavation, Placement, and Compaction .......... . 1.6.3.1-Excavation •........................... 1.6.3.2-Placement and Compaction .............• 1.7 -Rio.,Rap Material ....................................... . ;' 1 G 1 . . . -en era .......................... · · · · · · · · · · · · · · · .~.. ... ~ -Bas i c D at a . . . . ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 7. 2 .1 -Gradation ............................ . 8. 8 8 8 8 8 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 I I I I' I I I I 'I I I I I I I I I I I TABLE OF CONTENTS {Cor:~" 1 d) Page 1.7.3-Excavation~ Placement and Compaction ............ 13 1.7.3.2-Placement and Compaction .............. 13 1.7.3.1-Excavation ............................ 13 1.8-Stability Analyses ...................................... 14 1.8.1-Introduction .................................... 14 · 1.8.2 -Methodology ......................... ~........... 14 1.8.3 -Static Analyses ............................... c.. 15 1.8.3.1-General ............................... 15 1.8.3.2 -Soil Properties . . . . .. . . . . . . . . . . . . . . . . . 15 1.8.3.3 -Loading Conditions and Factors of Safety ........................... , . . . . 16 1.8.3.4-FEADAM Analyses ....................... 16 1.9-Construction ............................................ 17 1. 9.1 -Climatic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.9.2 -Impervious Gore Material and Fine Filter Placement ...................................... . 1.9.3-Coarse Filter, Alluvium Fill Placement ·····~···· 1.9.5-Longterm Exposure .............................. . 1.10 -Instrumentation ........................................ . 1.10~1-Piezometers ................................... . 1.10.2-Internal Vertical Movement Devices ............ . 1.10.3-Internal Horizontal Movement Devices .......... . 1.10.4 -Other Measuring Uevices ....................... . I I I •• I I I I I I I .I I I I . I . I I I ' ~ 1 -MAIN DAM EMBANKMENT 1.1 -General The main dam will consist of a compacted core protected by fine and coarse fil-·- ters on the upstream and downstream slopes. The downstream outer shell will consist of alluvium gravel; and the upstream outer shell of clean alluvium gravel. -The dam is designed to provide a stable embankment under all condi- tions. 1.2 -Design Philosophy 1 .. 2.1 -General The design of the embankment is dependent on the type of core chosen, either a vertical core or an inclined core, and its location, upstream or central in the embankment. 1.2.2 -J.mpervious Cot"e Design The advantages to both types of cores are as follows: (a) Vertical Core -Provides better contact with the foundation; -Provides slightly more thickness of the core for the same quantity of the core material; and -Settlement of the core will be independent of the post-cor.struction or seismic displacement settlement of the downstream shell . - •• I.·. \ .... I I I I I I I t· I I I I I I I I 'I - 2 (b) Inclined Cnre -Can place bulk quantity of downstream shell before placing core material; -Can carry out foundation treatment during placement of shell materia 1; and -Pore pressure resulting from rapid drawdown are lass. The major disadvantages for each type of core are as follows: (a) Vertical Core -Placement of core material controls placement of filters and shell materia 1 s; and -Possible arching of a thin core by transferring weight to adjacent f_ilters and shell materials during settlement or seismic displacements. (b) Inclined Core Excessive post-construction settlement or seismic displacement of downstream shell may cause rupture of core. Location of core may effect upstream slope by making it flatter for stability reasons. A central vertical core was'chosen for the embankment based on a review of previous designs and the nature of the proposed impervious material. The majority of rockfill dams in high seismic areas have a central vertical core with slopes ranging from .25 to .7 horizontal to 1 vertical for the upstream slope, and .1 to .75 horizontal to 1 vertical for the downstream slope~ For preliminary design, slopes of 1.0 horizontal to 3.0 vertical for the upstream slope and 1.0 horizontal to 6.0 vertical for the downstream slope were chosen (see Figure NoA1). •• It I I I I I I· I I I I I r I I ....... I I ' 'tao;:· - 3 The impervious material is a glacial moraine material with a wide grain size distribution6 This material is nonplastic and would tend to crack rather than deform under tensile stress and may be very susceptible to erosionQ For a sloping core the possibility exists of cracks developing in the core for a nonplastic material due to lateral settlement or dis- placement during a seismic event. It also becomes difficult to avoid high tensile and shearing stresses in an inclined core. Settlement data indi- cates that the magnitude of water load settlements in rockfill dams may increase at a rate greater than direct proportion to the height of the darn. For these reasons a central vertical core will be used in the Watana Dam c~oss section. 1.2.3 -Earthquake Resistance Design Features Due to the apparent low plasticity of the material to be used in the im- pervious core and the requirement for an earthquake resistance design, the following design features will be incorporated into the main dam cross sections: (a) The core-foundation contact will be widened near the ends of the em- bankment to ensure seepage contro'l dur·ing normal operating conditions and any seismic event. {b) Thick filter zones will be placed upstream and downstream of the im- pervious core to prevent breaching of the core from either post- construction settlement and cracking or from any cracking resulting from a seismic event. {c) The filters will be designed to be self-healing in case of transverse cracks in the core resulting fr~ either post-construction settlement or a seismic event. (d) The downstream filters will be designed to be capable of handling any abnormal flows which could result from transverse cracking at the core from post-construction settlement or a seismic event. I I I": -. I I I I I; I '1\ I I I I. I .. l f I ,, - 4 (e) The proposed width of the core will prevent arching of the core caused by transfer of load to the shell or filter materials. (f) Compacted river alluvium gravel will be used to construct the down- stre&1l outershell and compacted clean river alluvium gravel will be used to construct the upstream outershell to minimize settlement and displacement that could be caused by a seismic event. 1~2.4 -Freeboard and Static Settlement The maximtm required crest elevation of the Watana Dam, not including static and seismic settlement, was aetermined for each of the following conditions. Condition (1) -top of core settles under dynamic loading to reservoir 10,000 year flood level. Condition (2) -minimum crest elevation based on normal operation conditions. Condition (3) -minimum crest elevation based on 1:10,000 year reservoir 1 evel. Condition (4) -fuse plug crest based on 50 year flood and overtopping and additional freeboard on main dam. Condition {5) -fuse plug based on 10,000 year flood and overtopping and additional freeboard on main dam. Table I shows the resulting crest elevations for each condition . The required crest elevations shown in Table I are at the maximum section of the dam and are based on a normal operating water level of 2185. The governing crest elevation excluding static and seismic settlement is 2205 at the maximum section and 2201 4t the abutments. - I I I I I I I I I ,~ I '" REQUIREMENT Normal Operating Level 1:50 year reservoir elevation (6 ft. sur- charge) 1:10~000 year reser- voir elevation (8 ft. surcharge) Wave run-up Dry freeboard Water depth over use Road base Crest Elevation TABLE I (1) (2) 29185 2,185 --6 . 8 -- --6 ft --3 ft ---- 3 ft 3 ft 2,196 2,203 ,- CONDITION (3) (4) (5) 2,185 2,185 2,185 --6 -- 8 --8 6 ft 6 ft 6 ft fuse plug --3 ft fuse -·-p·lug --2 ft 2 ft 3 ft 3 ft 3 ft 2,202 2,205 2,204 -''· ;··:· \ I I I I I ·I It I tt If I I I I I I I I~ -5 The expected static settlement of 1 percent of the height of the dam (and seismic settlement of 0.5 percent of the height of the dam) will be incor- porated in the design by locally steepening the slopes of the top of the dam to obtain 15 feet additional freeboard at the maximum section and 3 feet additional freeboard at the abutments. The expected static settle- ment will result from post-construction settlement and does not include any construction settlement. The expected seismic settlement will result from the postulated earthquake event. 1.3 -Typical Cross Section The typical cross section would be as sho\lm in FigureA1. The impervious core slopes would be, on the reservoir side, 1.0 horizontal to 3.0 vertical sloped upstream, and on the tailwater side, 1.0 horizontal to 6.0 vertical sloped down- stt .. eam with a crest width of 15 feet. Minimum core-foundation contact would be 50 feet requiring flaring of the cross section at left end of the embankment. The upstream filters will have the following slopes: (a) Fine filter zone will be 1.0 horizontal to 2.7 vertical sloped upstream on the reservoir side, and on the core side 1.0 horizontal to 3.0 vertical sloped upstream. (b) Coarse filter zone will be 1.0 horizontal to 2.35 vertical sloped upstream on the reservoir side, and on the fine side l~O horizontal to 2.7 vertical sloped upstream. The downstream filter zones will have the following slopes: (a) Fine filter zone will be 1.0 ;,orizontal to 4.5 vertical sloped downstream on the tailwater side, and on the core side 1.0 horizontal to 6.0 vertical sloped downstream. (b) Coarse filter zone will be 1.0 horizontal to 3.75 vertical sloped down- stream on the tailwater side, and on the fine filter side 1.0 horizontal to 4.5 vertical sloped downstream. f· [ f l ' f l. (· f f l v::.... f '~ I> ... : {, - 6 The upstream anq downstream filters are sized to pr"'ovide protection against pos- sible leakage through transverse cracks in the core that could occur due to settlement or resulting from displacement during a seismic event. The wide fil- ter zones provide sufficient material for healing of any cracks in the core and the size of the downstream filter zones will ensure its capability to handle any abnormal le,akage flows. The shells of the dam will consist of compacted river alluvium gravels. To min- imize pore pressure generation and ensure rapid dissipation during a seismic event~ the saturated upstream shell will consist of compacted clean river alluv- ium gravels. This material will be processed to remove all fines less than 1./2" size. The downstream shell will consist of compacted unprocessed alluvium gravels since it will not be effected by pore pressure generation during a seis- mic event. Slope protection on the upstream slope will consist of a 10 foot zone of over- size aterial up to 6 feet in diameter placed and compacted by suitable equip- ment. The typical crest detail is shown in FigureA2. Because of the narrowing of the crest dam, the filter zones are reduced in width and the upstream and downstream coarse filter is eliminated above elevation 2230. A layer of filter fabric is incorporated to protect the core material from damage from frost penetration and dessication, and to act as a coarse filter where required. 1.4 -Core Material 1.4.1 -General The core material will be obtained from Borrow Area 11 0" which consists of a series of glacial tills separated by alluvial and lacustrine materials. Processing and blending will be necessary to provide the required moisture content and gradation and to remove any oversize material. Obtaining the required moisture content may prove difficult because of sensitivity of material to changes in moisture content. Frozen material will either be hauled to a waste area or left in place. . '. II -,, I· I I I II ·I I I- I I ·I ''· I I· I 11 I 1·, -7 1.4.2 -Basic Data _.._ 1.4.2.1 -Gradation The proposed gradation will be as shown in Figure 1. Maximum size particle will be 6 inches in greatest dimension. Composite grada- tion curves are shown in Figures 2 and 3. 1.4.2.2 -Atterberg Limits The Atterberg Limits will be within the following limits: a) Plasticity Index-0-20 b) Liquid Limit -10-45 c) Above the 11 A'' 1 ine 1.4.2.3-Permeability Initial permeability tests indicate a permeability of 1o-5cm/ sec. Comparison of the proposed core material to other glacial tills used in various dams indicate an inplace permeability range of 1o-7 to 1o-9cm/sec. 1.4.2.4 -Compaction Properties Modified Proctor Compaction tests on material passing 3/4'' sieve indicate the optimum moisture content was 7.5 percent with a maxi- mum dry density of 135.5. pcf. Standard Proctor Compaction test on material passing No. 4 sieve indicate the optimum moisture con- tent was 10.4 percent with a maximum dry density of 127.6 pcf. See Figures 4 and 5. 1.4.2.5 -Consolidation Par·ameters Consolidation tests indicate a compression index (Cc) of*· * testing in progress. f ~-~ ,. I; l r\ '; ~~- 1 t I I I I. I· I· I- I.· 1.' I· I_ - 8 1.4.2.6 -~pecific Gravitt Specific gravity tests indicate a specific gravity of 2.71. 1.4.2.7 -Natural Water Content The natural watel" contents of samples tested ranged from 7 to 26 percent. The optimum moisture content is 7.5 percent, based on Modified Proctor Compaction tests. The material placed in the core zone will be allowed to be a maximum of 3 percent above the optimum (10.5 percent). It is anticipated that the blending and processing of the core material will enable it to meet this re- quirement~ 1.4.2.8 -~1ear Strength Consolidated undrained test results, see Figure 6, at 95 percent Modified Proct()r Density at 2 percent above optimum moisture con- tent, indicate the following strength parameters. Unit Weight (pcf) 126 1.4.2.9 -Dispersion Potential C' 0 37 Because of the nature of the core material, a glacial till, it is not expected to be dispersive. 1 .. 4. 3 -P 1 c!fement and Compaction 1.4.3.1 -Excavation The borrow area is approximately 40 to 60 feet in depth and will be developed in three branches ranging from 13 to 20 feet. Pro- cessing and blending of the material will be done during excava- tion. Oversized material (greater than 6 inches) will have to be· - ·I I I I I I I· I I ,I: '• I I I -9 removed by grizzlies. Frozen material will have to be left in place or loosened by blasting and ripping for haulage to waste area. Moisture conditioning should be done in the borrow area and will have an effect on the placement and compaction operation. 1.4.3.2 -Placement and Compaction Material will be placed in 8-inch lifts at a maximum moisture con- . tent of 3 percent above optimum moisture content, and compacted to 95 percent of the maximum density obtained from the Modified Proc- tor Test (ASTM 0698). Type of roller, number of passes, thickness of 1 ift and moisture content can be adjusted based on field tests and equipment to be used. 1.5 -Fine and Coarse Filters 1.5.1 -General Fine and coarse filter material will be obtained from Borrow Areas E, I, and J. The material will require processing to provide the proper gradations for the fine and coarse filters as shown in Figure 1. No froze·1 rr,;;.teri al is expected to be found within the borrow areas. Design of the fine and coarse filters are based on the following criterias and the average gradation. curve for the core material. Criterion 1: The 15 percent size (015) of a filter material must be not more than four or five times the 85 percent size (085) of a protected soil. Criterion 2: The 15 percent size {015) of a fi'lter material should be at least four or five times the 15 percent size (015) of a protected soil. --... . ~ I I I I I I I I I I I I I I I i I I I I -10 Criterion~: The 50 percent size (050) of a filter material must be not more than twenty-five times the 50 percent size (050) of a protected soil. 1.5.2 -Basic Data 1.5.2.1 -Gradation The required gradation of the fine and coarse filter material are shown in Figure 1. All filter material is to be well graded .. Composite gradations for Borrow Areas I, J, and E are shown in Figures 7, 8, and 9, respectively. 1 .. 5.2.2-Permeability Permeability of the fine filter and coarse filter will be greater than 1 em/sec and 100 em/sec, respectively. Permeability will be verified by large scale field or laboratory tests. 1.5.2.3 -Shear StrengtQ Assumed properties for tre fine and coarse filter material are based on avail able data: Unit Weight 145 pcf c 0 Actual properties to be determined from large scale triaxial tests and/or by modeling the gradation for standard triaxial tests for rinal design .. 1. 5 .. 3 -f:.~c av at ion, P 1 acement, and Compaction 1.5.3.1 -Excavation The borrow areas will be developed by a method which will supply I I I I I I I I I I I I I I I I I I I -11 the required amounts of fine and coarse filter material for con- struction. Material will be processed by screening and blending using wet screening methods. Oversized material will have to be removed and either used as an aggregate source or pos.s ibly used in the outershell of the dam. 1.5.3.2 -Placement and Compaction The method of placement and compaction will depend on the results of full scale test fills to be done prior to construction using the proposed equipment and materials. It is assumed that 12-inch lifts with four passes of a large vibratory roller will provide the required compaction. 1.6 -Alluvium Fill Material 1. 6 .1 -General The alluvium fill will be obtained from Borrow Areas I and J. The up- stream shell of the dam will be constructed using processed river alluvium gravel with the material less than 1/2-inch removed. The downstream shell will'be constructed using unprocessed alluvium fill material. Any over- sized material (greater than 24 inches) w'ill be stockpiled and used in the rip-rap zones. 1.6.2 -Basic Data 1.6.2.1 -Gradation The gr"adation of the alluvium fill will be as shown in Figures 7 and 8. Maximum size of river gravel will be 18 inches in the greatest dimension. ' . ) ::...\ J I I I I I I I I I I I I I I I I I I -12 1.6.2.2-Permeability Permeability of the processed alluvium fill will be greater than 100 em/sec. 1.6.2.3 -Shear Strength Assumed properties for the alluvium fill material are based on avail able data: Unit Weight 145 pcf c 0 Actual properties to be determined from large scale triaxial tests and/or by modeling the gradation for standard triaxial tests for final design. 1.6.3 -Excavation, Placement, and Compaction I 1.6.3.1 -Excavation The alluvium fill material will be obtained from the main dam found at ion excavation and from the river bed upstream and down- stream of the main dam (Borrow Areas I and J). Method of excava- tion would either be by hydraulic mining or dragline operation. The material would have to be processed to remove the undersized and oversized material. 1.6.3.2 -Placement and Compaction The method of placement and compaction will depend on the results of full scale test fills to be done prior to construction using the proposed equipment and material. It is assumed that 24-inch lifts for the alluvium fill material with four passes of a large vibratory roller will provide the required compaction. I ·I I I I I I I I I I I I I I I I I I -13 1.7 -Rip-Rap Material 1.7.1 -General The rip-rap material (slope protection) will be obtained from the oversize material from the various borrow areas, Quarry A and any other rock exca- vations. The rip-rap material will be placed on the upstream slopes and in certain are.as on the downstream slope of the dam. 1.7.2 -Basic Data 1. 7. 2 .1 -Gr· ad at ion The gradation of the rip-rap materialr Figure 1, is based on a 6-foot wave height using a nomograph, Figure 5-6, from EM1110-2- 2300. The maximum size of rip-rap material wi.il be 24 inches in the greatest dimension. 1.7.3-Excavation, Placement, and Compaction 1.7.3.1 -Excavation The rip-rap material would be obtained from Quarry Are.a A, over- size· from various borrow areas, and various rock excavations by blasting or ripping. The material would have to be processed to remove any undersized and oversized material. 1.7.3.2 -Placement and Compaction The method of placement and compaction will depend on the results of full scale test fills to be done prior to construction using the proposed equipment and mate~"ial. It is assumed that 36-inch lifts for the rip-rap zone with four passes of a large vibratory roller will provide the required compaction. I I ll I I I I I I I I I I I I I I I I -14 1.8 -Stability Analysis 1.8.1 -Introduction Static and dynamic stability analyses have been performed to establish the upstrean and downstrecm slopes of the Watana dam. The analyses indicates stable slopes under all conditions for a 2.25 horizontal to 1.0. vertical upstream slope and a 2.0 horizontal to 1.0 vertical downstream slope. Typical maximum cross section is shown in Figure 1. The static analyses have been done using the STABL computer program devel- oped to handle general slope stability problems by adaptation of the Modi- fied Bishop method and a finite element progran for static analysis of earth and rockfill dams (FEADAM) to determine the initial stresses in the dam during normal operating conditions. The results and conclusions are presented in the Static Analyses Section. The dynamic analyses* have been done using the QUAD 4 finite element program which incorporates strain dependent shear modulus and damping parameters. The design earthquake for the dynamic analyses was developed by Woodward Clyde Consultants for a Benioff zone event. The results and conclusions are presented in the Dynamic Analyses Section. 1.8.2 -Methodologx An assessment of the static and seismic response of the Watana dam for the static and postulated seismic loading involves the following: Static Analyses -STABL program to determine general slope stability. *These-analyses have not yet been completed See attachment for outline of proposed methodology. -'• ,.. .· I I li I I I I I I I I I I I I I I I I -15 -FEADAM -Finite Element Analysis of Dams to determine the initial static stresses in the dam by stage construction. Dynamic Analysis -QUAD 4 program to determine the dynamic shear stresses due to the postu- 1 ated earthquake. -GADFLEA program to determine the pore water pressure generation and dis- sipation. The data available on the site specific materials are limited, and there- fore!/ the static and dynamic properties were assigned using the material characteristics and published information. 1.8.3 -Static Analyses 1.8.3.1 -General The slope stability analyses were done using the STABL computer program for the general solution of slope stability problems by a two-dimensional limiting equilibrium method. The calculation of the factor of safety against instability of a slope is performed by an adaptation of the Modified Bishop method of slices which allows the analysis of trial failure surfaces other than those of a circular slope. 1.8.3.2 -Soil Properties The following soil properties were used 1n the analyses: Unit Weight (lb/ft3) 00 c (lb/ft2) Core Material 140 35 0 Transition Material 145 35 0 She 11 Materia 1 145 35 0 -~,..' .. . I I I I I I I ! I I I I I I I I I I I -16 1.8.3.3 -Loading Conditions and Factors of Safety The following conditions were analyzed: Condition Construction Normal Operating Rapid Drawdown Normal Operating with Maximum Poo 1 Minimum Factor of Safety 1.3 1.5 1.0 1.3 Calcu·J ated Factor of Safety U/S Slc~ DIS Slope 2.2 -2.2 1.7 2.0 1.7 1.8 -2.0 1.7 2.0 -2.1 1.7 The calculated factors of safety as shown in the above table and on Figures 2 through 5 indicate no general slope stability problems. 1.8.3.4 -FEADAM Analyses (To follow when analyses completed.) I I ! 11 I f1 IJ I I I I I I I I I I I I -17 1.9 -Construction 1.9.1 -Climatic Effects Construction of the embankment will oe controlled by the climatic condi- tions at the site. The placement of river alluvium gravel all year round appears to be possible and will control the construction schedule. 1.9.2 -Impervious Core Material and Fine Filter Placement The majority of the impervious core material and fine material will be placed during the short summer periods. Sufficient amounts of this material will be placed each summer to allow placement of large quantities of coarse filter and exterior shells during the winter months without hav- ing to stop work for extensive periods of time. Placement of core material and fine filter material during the winter months may be possible if sufficient quantities are stockp~,~ed during the summer months and prevented from freezing during the winter. The stock- piled soil can be kept from freezing by various means suchas heating under a tarpaulin cover. The placement of this material requires additional steps during the winter months and would reduce the quantity ~.1d atea that can be placed and worked. 1.9.3 -Coarse Filter Alluvium Fill Placement The coarse filter and alluvium fill will be stockpiled during the summer months and placed in the embankment during the summer and winter months. The summer months will allow these materials to drain so that freezing of the materia 1 during the winter months wi 11 not result. · Once these mater- ials drain it will not be necessary to prevent exposure of these materials to freezing temperatures. I I !1 11 I 11 I I I I I I I I I I I I I -18 1.9.4 -Schedule The schedule for placement of material will have to be established so that the available equipment and personnel will not vary extensively from the summer period to the winter period. Extra equipment and personnel may be used during the summer period to provide the required stockpiled material. The schedule will be controlled by the amount of placement of the coarse filter and shell materials during the winter period. Placement of core and fine filter material will be done during the summer period with suffi- cient stockpiles to allow placement during the winter period if required. 1.9.5 -Longterm Exposure The effects of longterm exposure on the embankment will vary between the upstream and downstream slopes. The exposed downstream shell and crest will be susceptible to forming a permafrost regime and possible related ice lenses will develop due to rainfall and snowmelt. Any disturbances of the downstream slopes due to ice lens build up can be corrected during normal maintenanceo Extensive disturbance of the shell material is not expected. The upstream slopes depending on the reservoir level will be unfrozen due to the reservoir water and will not be subject to ice lens build up. If large variations in the reservoir level occur during the winter period, possible ice and ice lens damage could result in the up~ stream slopes. The use of oversize material for slope protection shoulo minimize any damage. Minor corrective measures will have to be taken dur- ing normal maintenance. The expected seepage will be minimal, however, it will be of sufficient volume to prevent freezing of the drainage layers and possible hydrostatic pressure build up within the downstream embank- ment shell. 1.10 -Instrumentation Instrumentation will be installed within all parts of the dam to provide moni- toring during construction as well as during operations. Instruments for meas- uring internal vertical and horizontal displacements, stresses and strains, and - I I li 11 I I I I I • I I I I • I I I I I I -19 total of fluid pressures, as well as surface monuments and markers will be in- stalled. The quantity and location will be decided during final design. Typi- cal instrumentation is as follows: 1.10.1 -Piezometers Piezometers are used to measure static pressure of fluid in the pore spaces of soil and rockfill. 1.10.2 -Internal Vertical Movement Devices (a) Cross-arm settlement devices as developed by the USSR. (b) Various versions of the taut-wire devices have been developed to measure internal settlement. (c) Hydraulic settlement devices of various kinds . 1.10.3 -Internal Horizontal Movement Devices (a) Taut-~ire arrangements. (b) Cross-arm devices. (c) Inclinometers. (d) Strain meters. 1.10.4 -Other Measuring Devices (a) Stress meters. (b) Surface monuments and alignment markers. (c) Seismographic recorders and seismoscopes. .. Ml .. [ 2·400a-~"' ·-_,..._....,_.., ___ ~-, ~l'OO 2uOO•- aiJOOo--------- IC.OOt• -·· ---·- 1100•--·· - liDO •· -- ···--... , .. _ II§ -ml· HlJRaiAL UU ... Uioj DP£RATIOIG LEVEL EL 2185 -.;;-- .-.lJlf. {jf ll!IQ!- .. , •.. -- • -~.!'~!.!!!:..!!!.!~~~-==--=-.:-::·.../ liii!IIMik W::!...illlllll an // lllllii.I!!I!D JZ:;.:~ - ..--~_[JA!bJ_tFIGOIIE A21 /' DAU CR[SJ _mnth m~-=- ~. it:-.:.:~ -~ !!Jigi.~· ~ ~ ~ I;;.~ --···-·------- -····----~ SECTION THROUGH MAIN DAM AT WAXIUU ... UFIGHJ SCAlf A ~--.. ---·~·-,_ ... __ .. --~. ---· OOWNSIREAU COffUlllAU • /ITO B£ PARTU RCaiDVED / Aflfll CDljSJfiiiCIIDIU -........ __ ----... --..... ···zoo• luiilt---- WATANA DAN FIGURE AI N llfJ --filtJI ,_ NORMAL MAXIMUM OPERATING LEVEL EL.2185 -:;:::- .. 1111 1!1 LEVEL OF DAM AFTER DYNAMiC AND STATIC SETTLEMENT l!a .... ,_§ ~ .,. ng ~ ~ e. ,... f!ll 3! fiOAD BASE ..jw'!p'!!f!!!.umf!]L;>< 5' OVERBUILD FOR SEISMIC ~ ' ' SETTLEMENT -SEE PROFILE DETAIL DETAIL I CREST AT MAXIMUMJ:fE!GHT SECTION SCALE 8 1.0 liiil.----- WATANA DAM FIGURE A2 -------1-~.:';. I ACIIl5 AMJIIICIIH INCOIIfOIIAloO l,, \ \ . ·' ! i ., i '' I ' f > l ';\ ~ ~ II!J rllllilia ~ lL~ ~~v tal ~ ~-~ ~ ·~~ SIEVE SIZE IN INCHES (!!~ ·~;~ -~ ~ ~:-~ U.S. STANDARD S~EVE SIZE ~ ~"u'·""" ~, .. ~ """-• ""~ ~ -~ L. ~ 36 ,4 18 12 ID 8 6 54 3 2 ·~ • T ~w 110.4 t!O.IO N0.20 N0.40 N0.60rl00 rn200 100 1111 I n II' : 'lr 11 , I M 11 ~I I ; ; II nf'hJ I 1111111 U I I I 1 I Ill I I I I I -1" • ~ I fl I I I 90 I I 1 I I I I I I I I I 80 I I l I I -I \TTI!IT rt I I "" I II . ... I I I I I Ill' I [\J I I \ I ~ I I -~ I j I li I ,. I I , I I N' I t\ It -I ~ ~ I I II j 'I I " I I II I I I I"' I I I A~ 1 "II I I" I I I CORE I 1 I f jl 70 J\1 J ~ I J '~ I [\ I MATERIAL I I r'\ I I I I I I I I l' I 1 ' I I ·I 1"'1. I !r !\. i I I ~ I I I '-I [\ ~ I I I"' li ~ I, I 1\ I I , FINE " If\ I ~ I I" I ~ 60 1 Ill_ I I ~ FILTER n I I I I l1 1 _I _t ._ _t .J ~ 1\ I I I \I I M.. I I I \ I I I ' Ill I I I I I I >-I I '4 I \ I ~ I J 1\ I\. II i I ' m I ' I • 1\. I I N. I I' "-I I I I IU 0: I II\ I I i \. I I I " t " . -. I I I I 11'1 I I I I I I ~ 50 I ' ' I I ' I! I I .... ' I' " I I I I Ill I I I I I I ~ I I ~I 1 I I I t~ I I ~ '\.. I I I j a-I . ' 1 1 COARSE'~ I I ~· '-I 1'-" I I I I z 40 w J ,I J ·~FILTER:\ IL l b I' I I" I I i IIIII I I I I ·-· -I I \1 I I • I' I I I I I I'.. I I I JIIJII I I I I I . I I _I I I IIIII ~ I 1~ ,.__ __ L . ~ ~ ~ I"~ I I I IJ I u 0: w a.. DiTIIIIi • -,m • 1 ""i'l • 1 """L ~--r----"11~ 1 N ~ 1 r 20 Ill 1 1 1 I I 1 \i I I j -k I i' i I "-I ~ I I I, _L .J. I I I I B I I I I I I I I I I I '-I I ... " I " I ~ N.. "'-I' i I I L I ~I t I I i'..... .... ...... I i i" " ~ I 30 I I 1\t I I I I I "-I i' I ...._ I I ""l. "'~ I 10 IU I j_ JL I i \1 I I I I I ;....... I ['..... I N I ~''-fij I I I I I I IIIII •• I 1\ I I I I I I .... I ~ I l ...... ll J Ill~ I I I I 1 I I ~ _i i I I -•~ 1 .._, l. "'-I i~ I I I I I I I I I I I I 1"-. ; ~ ~I i ! ~ I I I I I 0 II I I l J I I I I \. I I I I l II ~ "~ I I ""-II a a 1 1 1 r 1 ~--. ~ 1000 200 100 10 1.0 0.1 0.01 GRAIN SIZE IN MILLIMETERS REQUIRED GRADATIONS WATANA DAM FIGURE I N • .. t· ~ .. \. 0 - ? 1 ~ NOTE: - il!l.l IP:II ,. 11~ ~!1M r!l ~ P.':l ~ ~ ~ ~ ~ £:1._·~ ~ 'L .. ,,, ~ \;, .. ~ ~ \:,;;i!l~ , .. U.S. STANDARD SIEVE SIZE 100 21N. IIN.3/41N.I/21N. N0.4 NO.IO N0.20 N0.40N0.60 NO.IOO N0.2.00 I I lllllll~~~-~~~~~~~f~_fJJ.u_J 11.1[[." I I ...... I I I I 90 1 I 111111 11~11Tf1#1 111111111 I IIIII I I I I I 80 11 Iff~ IIi ll ~ I ! II IIIli H II I ~~~ t• 1 1 1 1 ~~~-ri..., -:-o ~ I I I I I I "'-I\NJI...I\..'r0.'"'-· ~!\l\1'"-"n., I IIi I I I HilI I I : -1 I I ' ,, """'f....'l""'' 1\.1'. 1-...'1... •• I I I I I ill I I I I 70 I I I i\~~~~~ ~~~~ ~~~ I ~ I !1 I r... "-~' -'l'l'\~1 I ~ I I I ,., l'\.' 0-" I"\.'""' f\ "[' "-.. '\. ·~(\.._ ~ It l _l I _1. _l II I I I I I I I C) I 1i I I 1\.'-1"-""-"\.. "\.." 1--. r-.. f'-.__ "'--~ w 60 ! I ,· I '~" '~ ['1\~~ l\f\~~~ I ~ J. I I '" "'-~"' 1'-.. "i._" "-l! > . ' ' I I r! '~ "~ 1\ ['\ I' t\ ~ 1'<'4, '") n I I ' I _l _L _l I I _l I _l _l I J m 1 I I I I ~' "\.. "~'-" " L"' , 15 5o I ; , ; 1 ~ ~~ ~\~~~ I ~ ' l : I I '" ~1\1\~ t\~~ . ~ 1 1 1 I I I I I I -' I I I I I " .......... " ' l"-)...'' I ~ 40 ' 1 ! I ~1\~~ l'N"'I'... 'l".. '\ I I&J I I I '" -''t'l"\..'\..'' ~~ ~ ~ I I I I ~ ~ t'\ ~~[\, "-. '"'\ It 1 1 1 1 1 Ll I Ll I I ..l I -I LIJ I li I II ·'~L'"'-""' L! 0.. 30 : I I' I• I I I I~' ~' [! I I I I I ~ 20 1 I llllr! Ill f: ! 1111111·1 I 11~1111 FRMII fll I 11111111 1 I I I I I 1-I I"\ 101 I I I I I I I I I _L_ --J o I I 111111 I I ; ~ : 111111: I I J 11:1 IIIII I : I : Ill H I I I I I IIIII I I I I I 200 •oo 10 ID ~I 0.01 0.001 GRAIN SIZE IN MILLIMETERS N NATURAL MOISTURE CONTENT RANGED FROM 6 TO 16 °/0 -AVERAGE OF U 0/0 COMPOSITE CURVES FOR D-5 THRU D-9 FIGURE 2 \1a\ ~ ·~J --~ 100 ,. I I 90 ~~ 80 ~ ;b.:.ll . ),f 70 \ . I 1- % G . ~" l I -so .,.~.,!01 !It-~ I I )- ! CD I . J ffi so ~· z I k: ! ~ 40 lLI (.) 0:: IJJ G. 30 I 20 NOTE: 6=2.7! 10 0 - 200 100· f.~!! ~ ,£::~ wn ~ ~::..:....~ r~ ~ ~ ~ -'·-.... ~ U.S. :;TANOARO SIEVE SIZE ~ \;~"'~~ ~ ~ .. ' . 2 IN. IIN.3/4 GNJ/21N. N0.4 NO.IO N0.20 N0.40N0.60 NO.IOO N0.200 I "' ~ II I 1r : I ~ I! I ~ I I I ~ I I I I II I I ...... 185°/o L. No.4 I I I I I II I ~ I I I I r r 1'-.. I t I I \ : ~ I I .k.,. I I : : I ~ I ; I I I I I I I I I I I I I I I I I I I r-... ' I I It 1: I II I H I I I: I I ~ I I I I I I I :{ I I I I I I I I I I f I 'I I I \J I I I ' : I I I I ll I I ~ I: I I I I . J I I 1 I I : I I ~~ 45°/o L No. 200 I I I I I l I I I I I ~ I II~ ~ I I li I I I r I -I I I ; : I ' ;'\ I Ia I I ' I ' I I I I I r I I 'I ~ I I II · I I I I I I I I ; I I IJ ~ I I I I I I I I ; I . ! I " . I II I I II t ; I : I I i I I I . I ' I I : I I : I I I I I If I I I I I I : : : I I t ; f I I! I I i ~ : I I I 1: : I I I II I I 10 ID 0.1 0.01 GRAIN SIZE IN,MILLIMETERS COMPOSITE CURVES FOR AREA D r-... ~ rL:.. .• .:._~ r-.... r-..... ~ ~ L ·..:~'!II K. I ~~ ~ I I I 0.001 FIGURE 3 li1 I \ j I ~ ~ ! m !1 I tl ' c fl I [I I I I 145 . 140 135.5 --135 (J Q. - >-.... u; 2 L&J 0 >- /. -~ !) .2°/o a: 130 0 128.7 125 120 4 t:!Q!g: MATERIAL PASSING 3/411 SIEVE . . I •T ' v T 7.5o/o ~ \ ~5o/o MAX DRY I ~ENS I py \ -- tO. 1\ \ \ 6 8 10 WATER CONTENT (o/o) MODIFIED PROCTOR COMPACTION COMPOSITE SAMPLE BORROW AREA D ·- 12 -··1-- 14 16 f'lGURE 4 • • IJ I ~ r1 ~ ;n··.~.· i) . ...; P. Ui c . f f}. I . I 1 . n I \I ll 135 t30 127.6 ;:-125 8. ->-..... en z UJ c 121.2 >-a:: 0 120 J v ~ 0/o M h. po/o w. VI I~ 0.4°/c ~ \ ~X Of Y DE NSITY ~ - 12 so~ .... v 1\ I 1\ 115 110 4 6 8 10 12 WATER CONTENT (0/0 ) ~: MATERIAL PASSING No. 4 SIEVE STANDARD PROCTOR COMPACTION COMPOSITE SAMPLE BORROW AREA D ,·.~ .... , 14 - ~ I' 16 18 FIGURE 5 '.:::- M 'Ia 'l --4;~_.,.., ~ ~-·• ~ t;i ·~ ~ . ~tJ. 12~~ ~· "n ~·-~~:~ ' ~ .,. ~ r . ~ ~~ .. !;1 ~ ' t!{l1!J ~·~"","' I 801 so ·r I I I / I--·· I.__ I I I -·u; n. - ~ , 1 I I '\: I ~ 40 1 I I :h----I --t- U) 0:: <( w :r: en 2 0 t-· Ll" I I I I I I ' ' I I :;rrr 1 ' " 20 NOTE: (EFFECTIVE STRESSES -coNSOLIDATED UNDRAINED SHEAR) 40 60 eo NORMAL STRESS (psa) COMPOSITE SAMPLE BORROW AREA H 100 120 140 160 FIGURE 6 ~ • ' ·~ -~· ~. ·~ r:~~ M ·Y:~ ~ ~ ~~ ~~ ~ , '~ ~ ~ ~o , ~ '',;·-. ,, ' -'-.-'"'--· .lli.. ~;.n•"'-...""~' , "'~··· 80 I 20 40 NOTE: ·-(EFFECTIVE STRESSES -CONSOLIDATED UNDRAINED SHEAR) 60 80 100 NORMAL STRESS (psi) COMPOSITE SAMPLE BORROW AREA D 120 140 160 FIGURE ~A t~ • ilit.£!1 ;;, .. ",.-~ ~ J ~ i ~ ·~ ~ ·~ ~ f.>'' . :;.. ~· ~ --~ ' ~ ,t,;=:~ ~ \7' ' ,, ~ ~lit f~ ~ I& ·.'.1 .~ ... . ·;,. ~ r~/~ U.S. STANDARD SIEVE SIZE IO 2 IN. IIN.3/41N.I/21N. N0.4 NO.IO N0.20 N0.40N0.60 NO.IOO N0.200 0 I I IIJ J. I' ~ I If ~ II . . I I I : I I I I I I II I I I I I I M I 1\ f' L"'\ r-... I I I It I j I i 1 \ l l ':~ 0 ' ., \1. ~I~ '~ kf I I I I I I I 90 I I I I f' " " ~ i\.' ~""' I I I I i I i 11 I I I ! i II I I I I I I I I I Ill ~"·~ ... ~I ,. I ! I I II I I I 111111 I I I I ~l"\~l'l\.~l~l I I I i I ·' l' .~" ·' "-" I I I I , t I 80 I I Ill I I t\ ~ ~ i'\.::~"' ii II I j I I i I I I I I II I I I I I I I I I I I I I I I l:\~"\.l\..~1l'· ''".. ~' I I I I I I I I I I I II I I I I I I I I i \l\:"1..1\. ~' '~ ~~~l . J I I I I 70t I Ill Ill ~~15: 1\f\K~ 1-p \,: '' """ ""'"'-I I f I "' ,,~~ ~~ '\i'\ ,,,,,, I I I I if !! , " ' ' ' "' ~ ~ '-I ~, I i I ' ' ' ~ 60 '" ~['.. '\' \ '' ,, '"'' I I I I ,!' I I I I I ;~' ' • I ' •. • r 1'\ '\ ' ,, ,, '\,."\,. ~ I I '.!, ill I I T I I I ~ I K ~~ ' '' \ '. "'' '' "\." i I I I 1 T ''"''·'-''-''' ~ I h r r , Ci 50 I I~ ::::::s [\ ' ' ' ' ,, '' ~ ill> I : I' I I I I ; ii-" ' . !: I I '\,. '\ ~ ' !\ 1\. \,' '" \. "\,.0; \ \ ~ -. I I 11 I I I T I I I i ... ~ I I ~" . ' ' \ ' ' '' "' "" ' ' \, "' I I .... I T I "" \' '",, "' \.'\, ::-;; \'' I II ' ' ' • z 40 I I 1! '\::~ ' 'i'\ '~ "0 * ' " ~ ~ I 1 1 r T 1 1 II II I I 1 1 ~ ! I 1 ~" · ' ' '!..' ,, '-'\,"' " \ ' '-\.' .).~ I I ·I 0:: I " ' ' '\ ' V :'\:' ~ ' '-' ~ "'\. 'i"\ ~ I w ' ' ' , ,, '\. "-;:\. \ ' , , , I , , ... 30 I I ., ' \ ' ' '' ~ .... ~~ ' \ ' ~ 'R ~ I I I I I I : " ' ' ' ' • • • I l 1 : \1"\l\''\..'\~~ ,,,, ~ ........ ~~~ ~ IITII I 1 1 I 1 I J I Jl I ~~~ \j~~ :\. ~ \J\1\1' 'i.'"' II J ~b.J ~ ~~ j~~~~~JI:[: I: : : :::::: : : : i 20 l I lffil! Ill f ! lll~!ll f II I 11111111 I I 10 1 I IIIII i II! I! Ill IIlli I~ IIIII III I I o I I filii : [[1--LJ 111111: 1-r -r --ll!l ll r:t Sk\1 I 200 100 10 a.o 0.1 o.oa o.ooa GRAIN SIZE IN MILLIMETERS •.. COMPOSITE· CURVES FOR AREA I FIGURE 7 • :'\ ~: ;;. . . J·· ,{ \ ·lj I . 'tJ .:t -q -\, • ,f ~ i . "' ·~ ~--~~~ t~ ~ ~ -~ \~·-·"'# ~ ·.~.·.! • 'cJ p,.t' ~ J~ i'f;z"ljJ 1:· U.S. STANDARD SIEVE SIZ.E ~ ~Pi\ ' . 1(':~ ,. " ·~ '( •• '4-~ IOO 21N. UN.3/41N.I/21N. N0.4 NO.IO N0.20 N0.40N0.60 NO.IOO N0.200 l C ltmil II II JJliJJnl J l fiHJJJJL I LI_~LUJII!IIIII I IIIII III I I 90 t t mrrr-rml n 11 1 u IIIIIHt HJUJ m1u t±J t 1tw L I I I I sol I fl~1fli-Tflln~rr-r -111111111 r i II 111!11111 I IIIIU I I I I ~~f\['\t0~i\ I I 70 l I 1\ "'. I-..' f\.f\ I I I~ I I I I I rt.l\ 1'\..' ~~ '\1 I I I ' I I lll I I I I !ii; 1\ 1\. !. '\ 1\. i\.: I lj I I I I 1 II -, -, 1 T :: ' " ' ' ' • "' t-.. ·'' :-.. I'\ I I I I II I I I I I I , bi 60 ~ l'\ ~ i\ h.' ~ : f I I 1 ~ ' ,, ' ·' ~~I I I I I; I I ' I I >-I ~'"" .... ''{ I '•' i I I I' I I I I I H I : : : : i I "' ! \ '\ " l'\ !\.'-.'I.\ I I 1 I I -, a: 50 I \ '-:\ "'\..._ 'i ~ ~ I ~ I I fT ~ 'I l'-."\ "'"" I J I it. A i I I k: Nf"\: "' 'l' [\ I II I il I ,. 1 I I I I : I : : : I : : : ! ~!\."\'' 11. I li -. ~ 40 I i \ 1\. \,. 't'\ ' ~" ~ ,: I I I I fl t&.l I r\ .. '-"'-.' r-... ~ I I ' I I I I I 0 I t"\'l' "~,,~.. I I I I 1111 J I ~~''11 ••• II: I .. '' I I I .. I I I I T I I , ~ 30 1 I ~ 1\ ~ ~ ~ ~ ~ I I I 1 rJ J l I I I l't-.... 1\.. 11...' ~ ~ ~ I I I I I I I I . I I I I'~ i\ I .... ~' 1,. " I l I I rn I I I -. II I I I I I '' " '"· b.. ~ r-I I I i n • • I • I • • -. -T---~ 20 : II I I I I I I I I I 101 I IIIII! II! 1111111111 ~~~111111111 111111 Ill I 0 • , 11111 r 1 1 : 11--f ut r r ~ 1 r r 1 ru I rr :1 1 : ~11 1 1 1 1 m 111 1 1 1 J r~,. ~ J~~ ··~ 200 100 10 1.0 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS COMPOSITE CURVES FOR AREA J FIGURE 8 (i) ~-----------------------------------------------------------------------------------------------------------~----------------------------------------------~ I I I l ' . . ~·l l I I . ! : J ··l 1 'f~ ~ ..... !t ~ if"'·~ ,.~ ~ r~~ ~ ' .... ~ ~ ~ .. ~ ~ ~ ~ ,.( ~ '-'~~ ~ ~ .,~ . ' ~ . . . . "' u;.._ '-,; ,,._ ~ ~ tt ~ . ~"' ~ ·,.. \ .. . . . . . U.S. STANDARD SIEVE SIZE I :!IN. IIN.3/~IN.I/21N. N0.4 NO.IO N0.20 N0.40N0.60 NIQIOO N0.200 90~~~~~~~~~~~-H++~~t--r~~~~~~~_.-j!tt 1\~r-. "f'~r\"'~rs;-I 70 l'"-"'-.:~ r--r--.~t'\~'l~ '~' 1 ~ 11 ~~~t\:~~~ I ~""'. ' '\ '-' t\..' -~I II'\.~"·~'-~.'\.. l\!1 ~ ~' l' "'-' r-. ~·..:'\'' '~' "'c !I a '-.~ '-'~ "-~ 0 ""''" \1'\'\~ '""A I I I ~~'""' M w 60 \.."-" 'l'. \. 't\ '-"'\.~ : I 1\ ~"!'\... "\ ~ ~ 0'~ '" ·""" ·~ ~' ~K' I I ~."\.i'....., ~. I I I I I ~~" '\:'\.'f...'\ I "l' '' 'i' li I I I I~"-" H I I I I I II I I I I I I I I l'\." '~ ~ ~ " " " " I I I I I '\1\."' II I I I I I I l o: 50 ~~ '~~~~~ ~~ "~,: ! 1 1 I ~ ". taJ \.'-.,'\., \1\ ,,, ........... ·''" I ''"' ~I I ~ u\'.. '\ '' '\ '-" :i_'-""' r-._ ~ ~ ~ ~ '-I I I I ' ~~ • : I I I II II I I I 1 1 1 >-m ~ 40 'V ~~N:':0'~~:::: ~~~\~~~ I : : I ~I:' : : ::;:I: : : -i P.aJ ' '\1\ '('\~ !\.. ·"' '\!'\ '\' j'\1\:" '\.." i I I 4t I _I_ I I I 0 \ t\:\ ,. ['\~' ~"""' '~ ~ '~ '~" ~ I 'i I I u I I I I ~ II : : I : I : I Q: " ~ '" " '. k' 1"'-. ~ i . I I ' ~ 30 ~~~"~~~~ '~~~~~~~ ~ I I 1 "::::\'!\..'~""'-,,,~,. ''~"\."\' '~'' I I I I I I I I II I I 'h.'~ ~'~~,,~~ ~).~,,~I J I( I I I •J I II I I: I : 1 20 8 LOtttlft lllill Ill I Ill II I II I I 10 1 I llllli II! f: ~IIIII I 111111 11 I I 0 1 I IIIII: Ill~ ! IJJIIIlll I I ... ~~~~I I ~ , 200 100 10 1.0 0.01 0.001 GRAIN SIZE IN MILLIMETERS COMPOSITE CURVES FOR TP-EI THRU TP-E21 FIGURE 9 r:) . . (i) _,/ n 1 : . ~ . ' [ t ~~ [ I. 1~ "J r t, • ~ i 1 -INTRODUCTION SUSITNA HYDROELECTRIC PROJECT OUTLINE OF METHODOLOGY FOR STABILITY ANALYSIS WATANA DAM December 1 Yf!: P5700l.O~ A static and dynamic stability analyses of the proposed Watana Dam will be performed. The static analysis will be done using the FEADAM computer program (Finite Element Analysis of Dams) to determine the initial stresses, strains, and displacements in the dam during normal operating conditions. The dynamic analysis wi11 be done using the QUAD 4 finite element program which incorporates the strain dependent shear modulus and damping parameters with the results from the static analyses. 2 -FINITE ELEMENT MODEL The finite element model will consist of 20 layers of elements with approximately 550 nodes and 520 elements. Different soil parameters as desc~ibed in the following sections have been chosen for the core, transition material and the shell material. The transition material will consist of the fine and coarse filter zones. A detailed finite element mesh has not been developed at this time. 3 -STATIC ANALYSIS The static analysis·using the finite element program for static analysi$ of earth and rockfill dams (FEADAM) will be done to detc""mine the initial stresses in the dam during normal operating conditions, The program calculates the stresses, strains and displacements in the dam simulating the actual sequence of construction operations. Appropriate nonlinear and stress-dependent stress-strain properties for the soils were taken from information compiled in Table 5 in Duncan et al (1980). Table 1 presents the values which will be used in the analysis. Two analyses will be performed to show the effects of relatively soft versus stiff core materia1. 4 -DYNAMIC ANALYSIS The dynamic analysis will be done using the QUAD 4 computer program. The initial values of shear modulus and damping ratio to be used in the analyses were derived from typical values available in Banerjee et al (1979) and are as follows: - -2 K2 Damping Shear ZONE Type Curve Core Material Soft 90 sand Stiff 120 sand Transition 150 sand Material Shell Material 180 sand • I[ The design earthquake time history was developed by Woodward Clyde Consultants and r_ 1!. ·r1f ' . . '!i. r tJ I. l{ ., "' ,r··· 1 ~ . . •·, IS~ I ·~ is shown on Figure No. 1. The significant features are as follows: (a) magnitude 8.5 Richter; (b) location 40 kilometers below site (Benioff Zone); (c) maxi~um acceleration of 0.35g; (d) duration of strong motion -45 sec; and (e) significan~ number of cycles -25. The preliminary dynamic analysis had peak output values occurring about 24 seconds into the earthquake acceleration time history. Based on these results, the three iterations for the proposed dynamic analysis will be performed using the following sections of the earthquake time hi story (see Figure No. 1 ) : Iteration No. 1 -from 10 to 30 seconds Iteration No. Z -from 10 to 30 seconds Iteration No. 3 -from 10 to 70 seconds It is expected that this will minimize cost and provide the required output for the preliminary dynamic analyses. ·- [ r lr ... u [ J ' - [ ·~ &J ·" i [ [ TABLE 1. ¥ -Unit Weight, pcf K -Modulus Number, ksf Kur -Elastic Un 1 oading Modulus Number~ ksf n -Modulus Exponent Rf -Fa i 1 u re Ratio K -Bulk Modulus Number, ksf m -Bulk Modulus Exponent I C -Cohesiofl,. psf j ¢ -Friction Ang1 e, degrees ! ~~ -Decrease in Friction Angle Perlog Cycle Increase in ~,degrees Ko -Earth Pressure Coefficient '6 K Kur n Rf Kb m c !CORE MATERIAL 140 200 300 .8 .6 60 .8 0 l Soft I Stiff I 140 iOO 800 .35 .8 280 .2 0 I • I •t. . ran:n .: 1 on 145 1300 1500 .4 • 72 900 . 22 0 Materiai Shell Material 145 1800 2000 .4 .67 1300 . 16 0 . .. ' ~ ·- cp ll<P Ko ~ 35 0 t .43, 35 0 .43 35 6 .43 35 6 .43 ·[.· i .r 'P t E [ r :[ 1 [ r· ~ [' ' ' ' I [ ': ~ [ ~ REFERENCES l. Duncan, J. M. , Byrne, P. , Wong, K. S. and Mabry, P. (1980) "Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses:' Geotechnical Engineering Research Report No. UCB/GT/80-01, Department of.Civil Engineering, University of California, Berkeley, August 1980 .. 2. Banerjee, N.G., Seed, H.B. and Chan, C.K. (1979) 11 Cyclic Behavior of Dense Coarse-Grained Material in Relation to The Seismic Stability of Dams 11 , Earthquake Engineering Research Center Report No. UCB/EERC-79/13, College of Engineering, University of California, Berkeley, June 1979. -· ~ t ~ [ [ ( r l [ ~ ~ .( ~ SLISITNA HYDROELECTRIC PROJECT· TASK 6-DESIGN DEVELOPMENT SUBTASK 6. 25-CLOSEOUT REPORT OPTIMIZATION OF DAM HEIGHTS DECEMBER 1981 . FIRST DRAFT rl < r r k, ~< < < WATANA DAM HEIGHT OPTIMIZATION . The level of Watana reservoir and hence the crest elevation of the rockfill dam is determined on the basis of the relative costs of Susitna energy and the energy produced from the alternative cheapest but acceptable source; a mix of thermal installations and small hydroelectric developments. Average annual energies and construction and operating costs are derived for a Susitna Develop- ment with different Watana Dam height~ and their impact is assessed on the over- all cost of generation within the railbelt over a 50 year period. Firm and average annual ener_gi es produced by the Sus itna development are based on 30 years of hydrological records and are determined from computer simulations of both the Watana and Devil Canyon Reservoirs. Operation of the Susitna development within the system is matched with existing and new generating sources, constr11cted as rt~quired, to meet the load demand on the system. Different reservoir drawdowns have been examined at both developments and draw- downs producing the maximum firm energy consistent with economic costs of the intake structures have been selected. (See Section ___ ). Certain minimum flows have been imposed at both project sites based on mechani- cal plant and fisheries related restrictions. (See Section _____ ). In order to match ·system demand Susitna development is staged, with 900 MW of capacity coming on line at Watana in 1993 and 600 MW at Devil Canyon in the year 2000. System demand and monthly and daily load patterns within the railbelt over a 50 year period are based on forecasts developed by 11 ISER" and 11 Woodward Clyde Con-sultants". System present worth costs with different levels of Watana development within the system have been assessed by means of the OGP 1 computer programme. (See Section ). The overall development pattern of generation is determined for the railbelt based on the load and load pattern forecasts and the introduction within the system at required intervals of time of the most economic acceptable energy source. The costs for the Watana and Devil Canyon projects have been based on the final conceptual layouts and 1 atest construct ion rates and methods. Costs for con- struction and operation of alternative sources have been provided by 'Batelle'. Optimization of the dam height was initially based on three dam heights with crest elevations at the center part of the dam 2,240', 2,190', and 2,140'. These crest elevations correspond to a maximum operating level of the reservoir [ £ [ [· ' r. ~ [ , !lL i - 2 of 2,215', 2,165', and 2,11~', respectively. Firm and average energies were determined from the simulat1on model and are given below together with corres- ponding Susitna development costs. The data from Table 1 was used as input to the OGP V computer programme to determine pattern of development of the system over-so years; thence, to derive the present worth costs of constructing and operating the different system in- corporating the corresponding levels of Watana development. Present worths of the system are shown in Table 2. The system present worths are plotted against dam height in Figure 1. The low- est system present worth (cost of producing a specific energy demand) appears to o:cur at crest elevation 2,190 ft (reservoir elevation 2,165 ft) and this repre- sents the optimum elevation of the dam crest. At this point the cost benefit ratio, relative to alternative energy sources, of additional energy produced at Watana by raising the dam height is 1.0. As the dam ~eight is raised above this point the cost benefit ratio of additional energy gradually increases making it uneconomic. As the dam height is lowered the cost benefit ratio of the incre- mental decrease in energy falls below 1.0, indicating that economic energy is not being developed. REVIEW OF OPTIMIZATION The three values of present worth from the OGP V computer runs poorly define the relationship between system present worths and Watana dam height. In order to examine further the cost of energy increments with variation of dam height the costs of the Susitna Development and the associated energies are examined sep- arately from and compared graphically to the cost of usable alternative energy over the period considered. The costs of different levels of project development are determined and average annual energies are determined from the simulation programme. The costs· of alternative energx were determined from the present worths already obtained from the OGP ! programme as shown in Table 3. It was anticipated that there would be little variation in the value of incre- ments of alternative energy over a restricted range of dam heights as this e~ergy would generally continue to be provided by a similar method of genera- tlon. A possible difference in the present worth would arise from timing of in·.- stallation of generating capacity e.g. 200 GWH of coal fired thermal generation ~f introduced in 2005 would have a smaller present worth when attendant operat- lng costs were considered than the same installation introduced in year 2000. Sue~ a diff~rence would be very minor however in the context of the 50 year per1od cons1dered and over the small range of energies examined. This is born out by the values of $1.05 X 106 and $1.00 X 106 per GWH for incremental energy (the difference is well within the accuracy of OGP V). Hence over, the range of energies considered the value of equal increments-of energy is assumed constant. ... [. ' [- - l - 3 Average energies and costs fo~ the Susitna Project corresponding to different Watana dam heights are shown 1n Table 4. Present worth of alternative energy = $1.05 X 106/GWH. The costs of the various levels of the Susitna Project are plotted against cor- responding average annual energy in Figure 2. The value of alternative incre- ments of energy is also plotted as a straight line together with lower and high- er present worths to show dam height sensitivity. The gradient of these graphs indicates the present worth/GWH of incremental enerr~' at a particular level of Susitna (or Watana) development. The point at which the gradient of the curve matches the gradient of the altern- ative energy line is the point of optimum development (optimum dam height) at which the cost benefit ratio will be 1. Results of the graphical solution of Figure 2 based on a replacement cost of $1.05 X 106/GWH for incremental energy show an optimum dam crest elevation of 2,193 ft. As a measure of sensitivity, variations of approximately 30 percent in the cost of alternative energy were examined. A replacement enegy cost of $1.40 X 106 per GWH would give a crest elevation of 2,224 ft. An energy cost of $0.70 X 106 per GWH woula give an elevation of 2,137 ft. Similar crest elevating would arise from approximately 30 percent decrease or increase, respectively in the cost of materials for constructing the additional dam height. Conclusions: From the above the optimum level would be 2,193 ft. On the right side of the reservoir there is a low saddle which dips to an eleva- tion of 2,000 ft. If water levels rise above this a saddle dam would be re- quired. Although the cost of this saddle dam has been included in the project estimates for higher elevations, it would involve construction in an area of the site otherwise unworked and the point at which the dam becomes necessary, would seem to provide a convenient physical limitation on reservoir and main dam height {providing the cost benefit ratio of the final increment of energy from raising the dam is close to 1.0). Hence, the elevation of the center of the dam has been set at elevation 2,210 ft (cortesponding to 2,207 ft at the abutments). At this elevation reservoir levels will not reach the low spot on the saddle for floods of up to 1:10,000 year frequency. Raising the dam to elevation 2,210 ft the co;t of the last increment of energy gained is $1.20 X 106/GWH. The cost/benefit ratio of this energy is 1.05/1.20 = 0.875. -·l· · ... '·' ,. t:' 1 : _- I. _· .- •- l -, . 1 l I ~-~ ~ . ' r--F-'" ... ·: Watana Dam Crest Elevation (ft MSL) ~.~- 2,240 (2,215 ft reservoir elevation) 2,190 (2,165 ft reservoir elevation) 2,140 (2,115 ft reservoir elevation) ~ ~~ r-:::::::::; Watana*+ Cost ($ X 106) 4,076 3,785 3,516 ,.......,""""':"", ~. ~~-~;:! ~ ' ~> ~ ,_......,;,; TABLE 1 Combined Watana and Devil Canyon Operation Devil Canyon** Cost ($ X 10 6 ) 1,711 1,711 1,711 Total Cost ($ X 106) 5,787 5,496 5,227 Average Annual Energy (GWH) 6,809 6,586 6,264 Watana Project alone (prior to year 2000) Crest Elevation (ft MSL) Average Annual Energy (GWH) i,240 2,190 2,140 3,542 3,322 3,071 *Cost in January 1982 dollars. j-,. ,,;.-"'' E.:-: ....,.,, ~-~-i " . . ~ Firm Annua 1 Energy (GWH) 5,809 5,401 Firm Annual Energy (GWH) 3,179 2,864 2,534 +Original costs adjusted to exclude Watana relict channel cut-off but include drainage blanket. '"' ~, '{l r"'~~ ~, 1 ~[ r Watana Dam Crest El ev at ion (ft MSL) 2,240 (reservoir elevation 2,215 ft) 2,190 (reservoir elevation 2,165 ft) 2,140 (reservoir elevation 2,115 ft) *January 1982 dollars. TABLE 2 System Present*+ Worth ($ X 106) 7,110 7,053 7,099 +Original costs adjusted to exclude Watana relict channel cut-off but include drainage blanket. . .,:: .·· •,' i[ ., :~ -• ' i~ t~ Watana Dam Crest Elevation (ft MSL) 2,240 2,190 2,140 *c-a System Present Worth ($ X 106) 7,110 7,053 7,099 (a) Present Worth ($ X 106) 57.0 -54.0 TABLE 3 Average Sus i tna Engery (GWH) 6,809 6,586 6,264 (b) Susitna Energy (GWH) 223 322 - = Cost/GWH of incremental alternative energy. b :L-.-.i ~ ! :i..--J . . L-...J t ' ~...J ~ . ~; <'I ...... -~ ~,-l L" __ J .:_._..;J .:.._._ . .J ---~_J Sus i tna Capital Cost ($ X 106) 5,787 5,496 5,227 -~ .. (c) Watana Cost ($ X 10 6 ) 291 269 -~~.J ~.]<.-~] c-a* b ($ X 106/GWH 1.05 1.00 -r~ __ j --·"~'_:) <] '\'~· -~_j' TABLE 4 Watana Dam Susitna Crest El ev at ion Capital Cost Average Annual (ft MSL) ($ X 106) . Energy (GWH) 2,240 5,787 6,809 ,.-- 2,215 5,635 6,697 2,190 5,496 6,586 - 2,165 5,357 6,423 2,140 5,227 6,264 ~ ® 6,·~ /-' / ,,,, I ' p / _,e-<::: I -· ---------~==~~,1~-:;~~fiW,A~k~~~~-~~~) " ···~ {;., "'$-_,. ···-{ ... ~ '<;. •·. RIV["R \ ~I ~ ./ ~, ~ ~,~ ;r_\~ .. ~\, ~ \1 ~} ) r ··--.. .. "'-' ... ""-· .. ~ \ ~ ~ ,, I! '!I \. . ; \ ~ .• ; ., ; ! .. !!? .. . ~ l! !' .. ~ ~ 0 :! GULF Of. A.t.ASK. KEY Lp LEGEND ---@>--PRIMARY PAVED UNDIVIDED HIGHWAY ---SECONDARY PAVED UNDIVIDED HIGHWAY ·---· SECONDARY GRAVEL HIGHWAY ..._....._ RAILROAD -·~-WATERWAY SCALE ~ 2ecz:& MILES ) . . 1/_fl \) rEWARD( . /iflb~ · / [ ·. : ~-:. ;~-~'·.·.~:J 1/ #~:;:.; ~ -60""------~----H--~ . ~~/) , } ;. ~ ·s SUSITNA RIVER BASIN LOCATION MAP {/' ... ~ I "' . ,, ~ WATANA AND DEVIL CANYON LOCATION MAP::; F "/~ ....... ~~"; ....... ~ .. .:::>~-l"l'"l'-----~ ..... .e ""'"bY ~ · · •· ,.,. ·· ·"' r 'l' -~.-.~ f • ·...... •• t.: • , '::)\, ~ :Y • #• ~ " 't..~ I .t, '\ $1 ~ • •"" ~· .>IJ. .:! ' _. • ;;: r.. .r~ ~~~ ~ n ~ t .· !. i_~~ .: 't1i ~ /ft a1 1\. ~?.: ~ r:~ r ·: ,. : .. :.: '4· i 'f.;. · i. ~~.. · ~ 't\ .. 1:1 · t-···r, · · F""'· J. n. C#JI.·~~!,_:._"':<f, ' 1:. :~ : .. ;~ ~· ~" -;-.! ~ 1-J ~~ .... 2600 2500 I I . 2400 2300 2200 2100 ;: a.l ... ~ l5 2000 I= ~ ~ a.l 1900 1600 1700 I I I l i I l I ! I I I I 1 1 / ~ I I /v: I : /I I I ! / I ! I I ~r I I I I /[ f I • l I I 1600 1500 I 1400 ; 0 2 4 6 8 10 12 14 VOLUME (ACRE FEET) X 101 RESERVOIR VOLUME ;:- a.l ... ~ z 0 ;::: ~ ... ... ... 1480 1475 1470 1465 1460 1455 I j ~ ,y _j X Y' v z _l .I l I I I. r1 v f I I "'" o-J:-I I I I I I 1 2u 40 60 60 100 120 140 160 DISCHARGE (CFS) X 103 TAILWATER RATING .. 0 160 165 150 135 120 x 105 iii ... ~ Ill 90 !a 0 ~75 60 45 30 15 0 r--· / / v· / ~ - I I 1/ ! ANNUAL 000 I~ -·f -U[J! 000 LOOD I lj I I ~ rv ~ v / / / 0 1.005 2 5 10 :t:O 50 100 IOOC 10,000 RETURN PERIOD (YEARS) FLOOD FREQUENCY CURVE l~· P.v~~ -FJ JMf~\~ARY ~ l:Z • f.~>)~ :r .r ~ ' .•. ~~~~.~---~ . .., ... ~. . ~ . ..~ . . ' WATANA HYDROLOGY SHEET I OF4 ~ .,r'_,-4..,/ %\..·~-/ j -; LOCATION MAP / (? . ,, --~ ,,: _... • ' OIEEIC I -~-l ~GOUl ( \ .... r : { r ~~"---<., • .4 ?----;.k;---:1/ ~' /' / ............ # /1 WATANA RESERVOIR PLAN . '~ I I • _,_~- -000rll'L 3 I I • Ooo'~L3 .• ~ ® 'I I liz I I go l 15~ me I I I ~~ I III:J ~,i: j I l i ~ §! 1-zc 0 §~ ~ co1 z <( "'' ~ • l:t ~ ZJ "' Zj zj NORMAL YAXIl>tiM OPERATING LEVEl.. EL.tiB!I .....- 16001------- I ,r~.-, t400 I • ...: ~. 12.00 PROFILE SCALE• A "'"'wr------------------------------- NORMAL MAXIMUM OPERATING LEVEL :Mhl CHt;St EL. <:~:2.._ I El ?IRS 2200 ~ ' 2000 1 · -1 ~.;:; ~ arl// I ~iu> ~ ~U•J!a: __ U3001 EL.I8o0 ~ Jjj , \'\\ ~:O ~ IOJ 111.0 • I I l. IWCIR SHEA!! ZOHE -/ ·~ -~ EXCAVATION FOR~·'\. g' CORE a FILTER .,;;r ~._./ PROFILE SHOWING CREST ELEVATIONS N:r.s ORIGINAL GROI.IiO SURFACE OOWNSTREAM COFFE!mAM t6001 I cu,..;>tn~;.""' ~ I J COFFERDAM :;::::::--'' II 'I ' rr r: · \ ~ / (TO BE I'ARTL'I' REMOVED •6011\' Af'TER CONSTRUCnON) -n ' ~ , COURSE 1400 I "-~ TOP OF Roac...., ~ ---.. "'?=-, el] L ~ _ ~ ..... _ .. .-~ __ ,, ... ... -.--;;-; , __ ,. .. -/ ~ ----- ' • • .. ---,-... ... <0 ---...;. __ ,...... h. ,..._ " .. __ , __ , __ _ 1200 TOP OFSOUNOROCKJ •---_-... ___ ,, ___ ,., "' ... '" '" ~SLOPE VARIES • ~ · ~ El-2210' ! t.L.auo. / -4;;;:;; !I' OVERBOLD FOR SEISMIC 7 -SETTLEloiEHT-SEE PROFLE DETAl. DETAIL I CREST AT MAXNUIA HEIGHT SECTION SCALE I GRAVEL FILL Sf.CTION THOUGH MAIN QAJA t.T MAXIIoiUtA HEIGHT SCALE A PR-i,,. JIQ~iA.. RY' t' · I ~ill 1·. · ~ : • :..J1.~Lt:t-: 2. f .. ~~! ~-.;,..~~ ,AO WATM~A MAIN PAM SECTIONS 24 ... .., .., 2000 ... ~ z: 0 ~ > 111100 .., iii 1600 1400 ;--a.ERGENCY SPILLWAY --------------------·------... B ·---..... ,_ "-~· ~' ,..A ------------------:~~------------------------------------:-----~-----------ACCESS •• 'ftiNHEt.;:--r-----., t'400 SPILLWAY CONTROL D!IM CII!';ST STRUCTURE ERMANENT ACCESS EL2t10 l ~-- '"'" I ~ -~~ ' , I"" ..___.___,__ GALLEB"_!_N SPILLWAY = ORllfflALCR"GUND -... -~··~-,_ C::.:::;,C 1 1 1 ~~'N~'tAY-----TEW>oC"'--RARY BENEATH CORE \ -·-· ----·--:L-_I I 2000 ~ , .. ,u.a,..o~or~ w~QTRUCT'IDN I _....,_..-I ,_.-·-I - - - -t"" MAJOR SHEAR ZONE , 1 ~·~~~~~~~~~~-------+-------------------~------~·800 r , ··,, -.-u.):."lf '. ~~-CONCRETE~ ~':? til \ /-QROUTCURTAIN 11600 I ----------------------...-;;:-:~------"iE~L~14~!Q~=·=;=;~~ -. , • ....._........_ PLtlO '-h ~ ... G ~ 1-l..t...8 APPROX. __ .-:.-~"', :i:: ' . ~' .N -' :;;\ '~llROUTING AND ~ 1'\HJP"r.rol.,..li.o 11400 PEtiSTOtK~ ~'~~~~.;·-../~~4~-~-~'~fi~\:J.~~··:;-;;;;;;;;;.--------------------------------TO'"""' " ""•r '·I =:-,_~ "'""+'"""'"" 0 0 0 0 0 ' ..:_·.. ..... .... ' iHl """T ,. .,.,..,.,., ~· ..... .,. '·, NORUAL OPERATING WATER EL. 2185 COARSE I FILTER EL2210 ' .... ..... ..... , ........... , .... ......... .......... e ..A ij FINE FILTER J LONGITUbiNAL SECTION (~COKING UPSTREAM) SCALE A DRAINAGE lfOLES GROUT CURTAIN ll l..tr4-FINE FILTER ZONE OF CONSOLIDATION GROUTING ~ DRAINAGE GllOUND SURFACE\ SECTION A-A SCALE A t ~: £1] :::;::;-,:~ ~C8.r CURTAIN ·I I 2200 NORMAL MAXIMUM INTAKE \ Cit I T ~r~~~~NG LEVEL r . ~~==---------------If If II- II DETAIL-GALLERY GROUTING'& DRAINA.QL SCALED 2100 2000~ ~· ... 1900 ... ... ... !!: z: 1!100 0 ;:: ~ a 1700 1-,~ ~0 ~ ~ 1500 1400 J-------TUNNEL .......:i: ACCIZSS ....., ~ SECTION 8-~ SCALE 8 :, It EXTENSION OF DAM-. II GROUT CURTAIN =ili- 11 I . 5ACCESS · HAFT CABLE • ... ,----iLJJ DRAINAGE- GALLERY .I ~ I o• I ,, il II 40.0' s.rJ I r ,f· 5.0' ~~~REA.IL!-E_ • .1.. . ..2,_._t -2., . .!. ,i ,!... ~ .,..!...~_,_! -~ _! ~!2W§m&AM.!.~...!.. ~ ..!. 2 . .!. .2-.!. ..!.. 1....~ ..!.. ~ .! ROW Q p • ·-r _i P • PRIMARY GROUT HOLES HOLES GROUT HOLE SPACING SCALE C . S • SECONDARY • T• TERTIARY 0• QUARTERMARY POWERHOUSE . -~ ~ ~~· . ~£! fjj ·~ ,·lli~.~~jj:·i···.·~~~ ~·.~. · . ~~, ~oWly a RY .... ~ ... '· •• '" ,_ ~ ·'->0 -" A. .... \ ... • ... ~ )i 1. ;r ·~ ~ ii .• r. . • • P ,, ,, ""· • ---~ fJ '"l "'~ •• >.; i ' ,...h ~ ~. ~., , . '(l -· SCALE A r 20° 49~ ~ET SCALE B f ' 'is. 200 FEET --. SCALEC y lO so FEET SCALE 0 ~ 5 10 fEET '-ii'iiil WAi'ANA MAIN DAM GROUTING a DRAINAGE I '\ \ ~, -·--------~-- r-1 I I I I I I I I 1 I I I I I I I t I --:----.:... 0--00 0- ~JORMAL lot.AXIM~ •• ..J:a.Z20~------ 0PERATING LEVEL, ~ -- 2200 1 ~ 7 < --------~-~ zrooj ~ l:i%sLQo£ __ 2000 ------·~ 1900 ---· 0 ----~---'AERATioN AND 1800-t------- DRAINAGE GALLERY ·~I I I --+ . 1600 000 1 J . . I . "'"+---::5:-+.D:::o:---+--+J---+---1 °--4 --~----~--+--t ·-·- ~00'-L--------------+'--..., . Oo --1---"t- IO•oo e•oo PROFILE MAIN SPILLWAY SCALE A (-·-.f.,·--1--0 20•00 . ~fll:J trr:~ml$fN. AnY :t}:tt . 0~ ~ ~ ~ £i~ ~ . ·. 0 K ·t-., ~-~~·-~!1 ·~~ \, -~" ~-· 1":. ~ :It!' ! :-~ ~ ~~ .. 41 . ~ .. k .... I.:....;, .. .J..-:.-... ""' .. .;n..U, ..... ~ ..... !. 'fJ~. ,'· .. ,_: SCALE A f 100 so WATANA MAIN SPil-LWAY GENERAL ARRANGEMENT PLAN &. PROFILE ~ .,. 2%00 2JBO 20' 21!i0 21<10 2120 2100 2080 ~ /.NCHOR!> 20GO lqoo 1880 IB!iO IS40 1620 ,....-··· .. --·· ··--20° {SPILLWAY --.. ........-·· _......... .. ---·· --··-- SLUDRXIC LML~r _......... .. --. .. ~ ..... ---- A I• I w.;ur;s II-,:ft.fllll. I· -I 1 i,J i 1 i J,-4;,1 . ' 'hi~'-~ < \ .., C:., '...._ \ ~ ,..,. :lltA,hAG£ \oi~L.tS .;"' TO t.o• DRAih~ ---------10'•10° DltAI~E G4U.ER'I' SECTION A-A ~e ... Lil A t sPILLWAY SECTION C·C .5CAI.E. A AERATION GALLERY SECTION D-D SeALE 2120 ·2100 20° 2oeo 20GO 2040 2020 ---2:t:" 2()Cl:) L ....__ • • ,. . ,_, .... ,...,. ==..._j ..._ \ Cj, " --.......... I ' ' .!t=>c SECTION B-B SCfJ.E A OR.AINAGI!: HOLE~ ~v-'"h._ ...,_ "L.._ "--" ..... 4:"" .......... "' •. "--~ ...... -.I ~*.:\.. ~ f "" ~ ,; i 1 1-' -=.:• ..,; • .. •• ~' 11 tt: ~ ~ ..j ;: ~ ~": ~\ $1 ~~ ·~ ; ,f?.~, ~., ~ .. ·,-:-· t 'f" ~ ~ .. . ...., !f .,.-."" '.~ v • ' ·( ~ :· '<t ". t~ ~-' ~';. ]' ~ .r ~. ~.~ ·1,~;~ v k . ~ t.. ,-""'" ........... -. ' ,."" -t ...... ~ • ..,. -~~ ;!. J: n ,._ • • ' ... • 1 ..., .... .. • .. • .. • • ... • ... :,,. t..-.. ... _ • .::., %..%'r ... .: ... ... . -- ·: ... ___ ... ~· 0 SCALE. A ~~5.-~ WATANA MAIN SPILLWAY SECTIONS ... t. ~t2~s ~--~----------------~ q 'I ·----·· ~ORfliA..,.MA,._ 01>"...._.11'-'G Lii!El. E.L2~ , I f ,;,1 f A I I I ' EL 2125 ' :.roPLa:; C,UIOE.> ui'S' • FAtE 1+-v GQOJT-:{ j;-,?, DIAM;;.j1iQ ~C CUWf,il~ Ri.L.t!:C ~ • . , ~-_ ------____ lo~~P..._. BO•o SECTION B·B !l P !'Ill . . l I l I ' ' I : i ' ; l : , I I I ll I I j j • ' ! I : ; l ! I I II I I I I I . . l ~ • l ; t • ' • · . 1 I ~ ; I"-. 1 1 .... , ... c MOVEMEHl i ! : I ~ 1 I i ' . t l COI<TRO• ~OLL WAY I I : . r : ' FLOW - ~ ~ -~--i ·~·r·n --~,T-~~--:----. ·--··-----ht+ t i ! rg:; r .-·~·· .. , ,,., 1 j v. ..... -v"- SI;.CTION A·A ,'1 " l A 0 0 0 ' 0 H015T CHO\ISINU ~ 0 0 l I t CONiROL SIRUClURE ~ RO(t WA~ ROLLWA"' VI! I I I _,.r{_ ~ ..,.; -..r.P~;-: cu;~r.vor. ~ ~;4·~-~- "'-' ,... .,, ~ .. t---,....----_i ___ -+-\3'~~6---..-----, \ ~~ ---L-~------I----____ _J_ __ .J '------'----------~'---------+---1 sz:o· 1 111'·0" !>2'·0· 52'·0" oB'·o· SECTION C-C ou~~ \.~'-~~ o~<'"'"t.\.._~-~­-~ ,u·-o· ~-"~--------·· EL 21Z5' SECTION D·D 0 SCALE 0 16 32 i'EEf PR :J;~"·--:~.1 f~l'l\1 1_ !I_ y -~-.,. ·f~~ ~-, 1\~ ll K h • I ~-. _: t•· ~ .. ~~ Pfi' ~.,. It~ ~ . .,-!t "-' r.t ~: ~ ~· ~ .,..... .............. • ..... ,.:\;.:, ......... ,~. ~t .. :·~ • :&. ..... ~ ;~ ('.· WATANA MAIN SPILLWAY CONTROL STRUCTURE PLAN AND DETAILS ~ ,/ ~./ /' II~ o\ r::P _,...-.. ,./ lf, ~~·~ ~() ~ -' \ #' 0 'b .. • c ,.<:..,0-...... {\.._) 'b o. ~ ~ -~0, ~ ·~ __:P90 o o ~····· /\ 'b ) ~ ~ "'· J .....,..,. 9SI."" .. K 't)OO o' ~ J ~0 ~ 'f..o -:,. ,... ~-\ o. ~ ~ ./· ,.,_r:p _.../ 'J,~-..9 . \ . \ { \ ) \ 'l-0flo ( ( 'b\ o,G FUS£ PLUG .-.J J / ...... ... ~ .\ ' ~·· ''· ---,...-·· .-· .... ---~ ................. "" \/ ... ~·---_ ) _,.. I PLAN SCALE• A FLOW • NORUAL . • ~--------------ORIGINALGROllNDLEYEL·RIGHTSIOE ---__;---------------------.. -f-2200 ,.. ·--=~·-· -··· -, .. -.--.. -·-··---·------..L..______ ··=====--------=-,~~~ •• .. ~;:o, 1'J:',t_,OUDM.DE£XO,WAI<O "''""'L· ., . ---"=·--=·=......:::. . .:::::e: 'i-" ""''"""'"'' . --·---·--·-·-~00 uoo-,-L__ ·· · · "1::6"' . , -·-. .......,.., .. _ ~--·----. . -... -·-.. .._.. .. ··-·---,.,., "" "" v----·--:::=: ~ -~.-"""' .... -""''-. '"""""' ·=j - - t----------------..oo====-=-J..,.>J<, "'" ~ .. ... -· ---· "F' . . .. ... -'"'' .... . . . ' ..... .. ... --------------------~2300 1900 0 10+00 20+00 30+00 PROFILE SCALE• A "' ~CHANNEL I • --·:;ar 2300 ~~~~~~~-' ·j .. TOP-OFf!~~ •• -.. 2150 I f CHANNEL . _, 2150 ORIGINAL GROUND SURFACE 2300 f CHAtlNEL ------------_rDRI~~-~~~-----··---~~~:~t. -··-··-··-----··-·· 1 2100 ~-. -----~---------·· 2100 2250 I I ~ I ·I 12050 205e ~~ .r --~ TDPOFROCk·J_-.l--·· ~ll •• I 2250 I .. --·· I C:'> ROAD FUSE PLUG CREST I .. 2200 e . 31l_ ____________ ~,----~~~~r-~ EL22•o-I _L ROAD BRIDGE rROAD ~ WORMAL MAXIMIJM_ i ; 'I OPERATING I LEVEI.2185 2200 I ~ ; ' r I 2000 "11M i1J 1 2000 ... -"""' I 2150 ---I ~ ...... , _j -310' 2150 SECTION A-A SCALE:B --- 2200-l-------------------------- 2190 lWJk"'f'rlN~'f<~~~~ 218~ "¥" 2180 • 50' ------. ~EL 2200 t-=--1 SECTION 8-8 FUSE PLUG SCALElB _5ECIION C-C SCALE•B I 2200 24 .,.......... ~ 2 ::;>' -...:..::::;z::;:-,~;-.--------------------------!-1 2190 ............... I 2180 ----------------~ ; s• f 5•1.5'% , 2170 I I Jt c EL21TO ~~ ~I I • J !iiuAII\§0111 .~ = j 2110 ;jlj\#Jil\'' ,,. Ql 2160 1 SECTION THROUGH FUSE PLUG SCALE:C (J (] SCALE 0 SCALE A 1!!1!1 100 200 s il WATANA EMERENCY SPILLWAY GENERAL ARRANGEMENT PLAN PROFILE & SECTIONS ll (/ ' ' . . .. ,; ' ' ' ••• v ' ' • ' • ,I ;t, ~-. ' ~ " ·.o, ., ,o ' . ' "' ., \. / \ .. "-~ .·· '·, " ·-........ ' ·::.... '-'-...._ \, . y \ ' 1-1-..._ / ',' . ........_ ' '--.. -~\ ", ..... , "·,. ·, ... t ' ' ' .... ' ' . "·· \ . ! ' I ' . . ·,, ' \ -.. . ',, \' '-' --"-.. ~ \-.__ -{_!__ .f~M--·...._ ··. ' '··, . . ..._ -~, ,~~--·:::.--... \\ ~ \ '--. '· ..... '· ''------~ -~ · .. 1 I ; · , " ~. . ::~,. 1 ~/s:-:;.~::'--r ,. \ ' ' . '·. . ...... -~ ~ /,;~-:---• . . ' . .... -' --~ -·-' ' ~-.. --==-=, _./ '• O T< '"C<WAV • ·•-·v-. -/•(~~======- \ / /' -'3=~~-""--.::,_ 1:1:~-------v ----, TU'"""''U.WAV ~-~------~:.__ :r, • :;__--/~DETAIL -~--· y ./ R ONTAk<' • 0 ''<>~ 8 •00' ' oo,-~~-~~~""'-4Qw.:::::=..::_ -~--=::::::_~--~;/ ~ ' \ --.... .. ._ /e, ~ __....,~, -~ 1 1 , J4•o_o ___ .,_.,._oo "·oo "·"<>-=.o --=--::::.,'='.:.r= , _...-• , t?.oo -.... ~o0 . , J J , --. \ ' ·oo ~'.'""-"" ~ . . ' \ .. ....-· .' -~ --~ ' ·---. fi''5"'"' ..... -.. .... . --....... ...... -....., .• ,. , -,_--~--L . .J~-~ • 7 ''o, _ ~ -~: "'-.-? ~ '·\. ~.,8oo -...... \ ' . -~ -~ ---~ ~~,, J t "'""""o""-\ "'<>, ' . ' ' o~ "'-.__ t9oo.... .. • ...._ ' '· ' / 'i'o ' -.. o \ ' •o '-,_/ --~. -1: -i ,1' ' \, '..... ~--.. ------; ' \ ' ·-... . ' \ ...... : . \ "~"....... L I \. '•.. ' PL~ --...1 ---. ...... ''"'" ...... , / 220Ct " :C-e-.. -------I ,...._ . ...,.,.. ··----··--·---·~,___ .. -. -. r'""""A -----------··---....c .. -• .__-::;:::_-=--·-. ...______ I --.. --.. --f OUTL>«--• ·-=--.. -c·~ ~ RC<o. ·-·--·~ EL.220?-·-·~----L.._, CO<OlTUe.CCWAV .J "~ .. ~--.. ~. -1111"11' ·-c::;···~.:: --.-•. ---·-------.. ~---------.. _J ..... -----~. '-. ...... r .... . . ·-.._ ' -· -..... ---".-' .. - .. '" "':--. 1900 -------~ 1 f -~ ·--_ _ smg.t.ew ... ""' ___ ·-·-·-_ -i I ....... = ------= == -------Q L . ----·--·------- J.llE.. ".f.Lli!.~ 0 f>CALE C 11f~~~5iiiiiiii~ ~ ...., ~CALE & b ~0 B0 0 iii/ &CALE A IOO ZOO zo 40 -------------... - '"' "1 .. , ... ·------r , I•" -··---·----_,_ .. ·-·--·-•·----···--· -t&>Ua:'§TE .11-JE:D ":Jf\l"-P.::. ~ •~<E>: 000 I I I 1--EEl LIMED ONC I ,:li ----------------- O•OO O•OC 00•00 00•00 I _PROFILE I I I sCAJ.t A ~o+oo Z5•00 .:so.oo IA4t PLAN ~ DETAIL I OUTLE'T FACILITIES·MJ>,HIF'OLO SECTION lA-lA SCALE C MIN, CONCRETE 'THICI\NE&S•2.510· • , STEEL LINING • . ' ~ ~0"0~~ l•IICKN£.5!> • 2.!>' 6~Tl~tJ. A~A ' . ~E"CTIC~· B-6 RY ~ c -n J;f _m~ ~· fi_l -, . ....,.' . p 1': ,._ ~:·.! :,, ~., & ~., t:.;,. 't A)!).'-· . .... )ii '<' .. '!1 ,. t.1 Ill ~ • ' ., 'tlo" h, .... ~.~ ,.::0 !'~ .. ~ ~ ~'l ~ . i .A ' ,·. WA~ArJA OUTLET FACILITIES ~ENERAL ~RRANGEME Plf.:..i-l PR~FILE & SECTION I I I 1--------- ~I 1 I I I 0 0 8 2 0 .. ... r:< ~ "' ... ...,., ~"( ~ / 1-u. " l' 111 ~ l \:: < 0 w 2 ::i ,~,_--r,..- w I _L --~---1:.=-t---~ =------r--r 1 : l I : w J 9 Ill ~ < v 0 w :z .J ~ 0 .!:! 0 0 0 0 0 0 0 0 0 0 0 0 :! 0 0 !9 !:: 2 !:! 0 !!! .. 0 0 !!! ~ . I N~--~· .. ... r' ( / '( w _......_ ) .,.· ,... """'-·· -~ ........ \ _..,// ··~f · .. ~ ~lJ \. WATAHA DAM ..E!::M!. ,, ' r---------------------------~----, .! ) I ( DEVIL CAMYOH "j RESERVOIR "4 ~· \, _,, ,. •• --........ ~-1_·. '"~-CREEK . J • . . /,DAM J .... I J... 1 ..... ' I \ ~·· ("-.--\ t \ \ ~' "\ Zl r I-• \, LOCATION MAP -.... / -----NORMAL lll(IXlt.lllol · R~RVOI!I ELEVATION i·~~,. ~~ t~'t;.""*-. "i ~ ~~ "'f:l, 7. 1455 • f . . 8tli ttr~· 1"_ f.t ~ ~ ~.;.; :::<l'!J i\ . . .. 4 . -~:· ··Wi"'-:..,.~. ~1 ~ . 11 . • { •. tt; •• , 11 r· . ... . .'f j-!l,..~.. • ' .... • *,;~ ~ ... ,lf. ~tti .F._ I: dl • '\1 ~ ' ~ JJ•lj" -~ ......... ~ ~ /.Iii.! ..... ~ • to.\ .,. ....... ~ J_, .. ~~,11·· . ~ ~ . ~ . :-"-'( i'' a= ' """'· . # ~ ··,......, ·::.:.::..~ ~I ' . . I ~ ~, ~/ ~«-rfr ~-. ....... r:F:."~"" ..,J.-.Y ... '1 SCALE!O 4 8 MILES SCALE; 0 I 2 "MILES DEVIL CANYON RESERVOIR PLAN . . -.,.. . .. ..,. , .. ~ .. ~- 875 1500 / v uro / / / v 1400 865 I I / /' I : I= w w ~ .... 860 ::c "' w X w "' < "' 855 1300 ;:: w ... !!:: § .... ~ ... 1200 _, ... 1100 i i j I l I I I ~--' 1000 850 845 900 0 2 4 6 B 10 12 14 VOLUME I~ FEET) X 101 RESERVOIR VOLUME ~.1, ~.·.· f/ l 20 '10 60 eo 100 120 140 160 DISCHARGE ICFS) ~ to' TAILWATER RATING CURVE lBO 165 896 150 135 120 5 '0 ~ ;c 105 ~ ~ ~ BBB ~ Ill 90 w a: ..J < ... ::c 0: !il w c 75 ... ~ ~ 60 45 878 30 15 0 D 1.005 2 5 10 20 50 100 1000 10,000 RETURN PERIOD (YEARS) lBO 200 FLOOD FREQUENCY CURVE ·~··p; R~[IM·~,IN.1 n~y . ~ ~--.... ~:.o.~ .. ~a. .~~ .. ID\ DEVIL CANYON HYDRAULICS SHEET I OF 3 61 ~I / ' ' / / /I 1/ ,.., &,213,000 § ..: ii. tu' PLAN 1400 ,... ...... ----~-- 1300 1200 1100 1000 qoo I Eb ~rn,c / !lGO L.__ __ ._ -·-"------~--.. -- ---·· d----/..-;~~ -.. --t,:·------ ./,.------. ~-e ~~ /._ .:...1':7·~=----.---·--'\. --// "'""'.·.~. _____ .. ____ --·-···. .-i/·· ~ -~, --·-y' --. ·;c.r .. --~" . " -··---"·L ______ .. -=::____ I\'\ ___ -----·- _, ---j--~ : ' ~ I --·-----------, \\-....... ---~;t;t,k !J.;/I.;.I;:H : <!Hl;t;; -···----·--t· ~--~ .. "'"" ~-r;;:: _j '~1 ."'-. •-C ~ :: ~ . -u-~e }~ . JJ..-;c:-"'·~ CO!.lCRETE Pi.LG ,,j:;),W I Jlll . F! --~-:t=/16"'-,_!ll....~ ee.NP ---------.--... -_" ____ .,.__ ----~-~-,.,.._ ___ ---- PROFILE ll. ·.~~ r.· ':i.. 'P\r'~· ~ ~ tr?ll't:i~,-. ·~':~ Rlr-. . . . ~ ~ • ' ~~~ '{ At;.~ • tl' )' ,.. _.. ,., ., ~ • 4-:..~ if . ~ . ' . . r.t ft : ~ ~ ~!" ~:~ i ~ ., k j>, • . ~ : f:· ; ~= .It •• ~ r. . : 1! ~-~ " ·t~ ~l > «~---"'·M'"''""-•-""' ~... ~ ' i"' ··~._··i '. ,.,., ~~,-. ·' Y' ·!-· '' .. ' ~ : SCALE 0 100 200 I=EE.T I I I t"•aoo' DEVIL CANYON DIVERSION GENERAL ARRANGEMENT PLAN AND PROFILE ~ \~~ /,.AXW - ,..---"t~O' ~ORM r "? ~~v EL 870 bl -o• ... I I '"~Q" ~ I • -Lo .. B ~~lLIN( H11l1 5EC. TIO!'l A·A. R~~~;:!.l,_,(, ___ _ bEALfAC:E PLP.N C! ELEVATION ~a5 • pC5T 1EN~''"' l~ .. DON AlltHCJrl. + •11 I!Ot:l< DOWEL D Pi<AI .... GE HOLE DIVERSION· 11'-ILC:T ~TRUC..lURE !JTAIR T;..,t;~l I , f ;: . ' i 1 . I l 4 I --~-·1--~ .... ,"": ':. . .. -~· __ . .,.,. ..... i--~~"1-~~ __: . I . '· I '· ELEVATION B·B EL B10 t "' \. I \. --f'·---r- 'FlOW -..-- . ....... 1::::::::::::.:::.=: I i I i k OF ~U!i~ • : 'q.. ~--------· -------- 1 I ~C El '4!0 II !:JEC.TION C·C c PlAN e ELEVATION :poD DIVERSION OUTLET .5TRUCTURE. 0 ..... 3l. SCII\.E e iiiiil DEVIL CANYON DIVERSION INLET AND OUTLET STRUCTURES PLANS AND SECTIONS ~---------------------------------------~~ 1600 1500 1400 "'" J__ / ,~ , / I J200 .. "' I 1:! RELIEF DRAIN ~ 1100 ~ Ill d 1000 900 800 Pl.. AN --·• ----·--. -----·-··-., .... -·-·-· -··------------· _ _,________ ------------------..__,_ ----............. _...__ -1 -• ''X' .... -•-/ I --~----------·-·-· -- MAX.1:W.L EL. 915 RELIEF ---~............. ,__.,..-........... ~--'-:::~ ,----............... __ .,..,..,- .... !1;.00 10 ... 00 l!if.OO "PROFILE . I Pu' !.~ #P'!.r'f'P ~ n~v. ruo,y i/o'• . ~ ; ~·~ 'l t!: . . . ' • .,_, 1 ~t t.,. • .-... I: I1Y' t ; ~. . • ... ~-.!l ~: r·~ ,. : .. ~· ~, .,f. t I. --·· . ·. ,.., r~ ,~ .~ .,.,. It" .... >06 ·~ ~ • ~ .. I rt ....... ,.... .. e<, 1!J .,l>O:~ j;·''"... . T ' . . t: ·. * .f.'l .J?< ;., ti ~ ~ .. ti • • • . ~\ ·"' .7 • ...~ • ' ..... ~ ...... ~ ~·~ "' .:!.. . i\, . -:c,;.l< ... -, . ,;. (• .._: b wQ 5r DEVIL ·CANYON MAIN SPILLWAY· GENfqAL ARRANGEMENT PLAN t PROFILE ... ---:-......_~_ ~~/~A~URFACE ~----.,,_J -=-------~ I I I 1 /BOX DRAINS I J./"~fK)RS ... ~~-r\r-rrf-/ ,./"\. J l ', \ I I _. -{, '-, '~/ ,-" DETAIL 2 ', \ I ,-"~DRAINAGE HOLES TO --------' I BOX DRAINS ... ' \ I ... " ]' GALLER't (lo'XIO'I ,;- ' \ I ,.-"' ', \ I I ,-"\ ' ' \ .I -' •DRAINAG ~_..-" BOX OR~N~OLES lO SECTION C-c SCALE• A GALLERY Ito' II 10'1 ' " ' ... I \lL4 "t,J l fT l X ~~/f --l ' \ ~ I I )\_ROCK ', \ 1 I ,'\, • ANCHORS t ',~/ /' '\_DRAINAGE HOLES TO -----BOX DRAINS - ' GAU.£RY (10'1110') _ £~~CK ANCHORS scALE• a . ... "- SCALE A ·~ DEVIL CANYON MAIN SPILLWI'>Y CHJ'TE SECTIONS ~ .DETAILS fll':• ~ ~ -a ,.·-~ • •. ,:f-'t.; ;. •. : ' . -~r-.'fr\~~7i .. W ~ ~ ~11~ .. 7~ ;;:.:· ~ 0.. y ~·~ ~= !Y -t• · .. l-.¢ ~~ ~ :~! ~ l!;~ .. . .. •• ·. li .~~ '· cs t'" • .· . 1. 1lli: r •••. J .\:"' . JJ .. ~ ,:-, ' ... ~ . . . ,. . ··~ : '.' $-~·~ i;"' ~ ..... •••. ·~ .. ' .. ~..,., .(.1< • .., . -... ~" -· n·-... ··-f· .-.. 1!'1..-.,-.• s: · ~ ~ ~~ .... ;.: Jh. ~ :; -~ -::; ;; k ~~ .. _ .. u, flj ·,. ·~ . I ...... ,. ·.·.~.i!..,.~:J ~· ~ .:.: •• .,# :-.!.-..:::... ~. . :> .. -•• __ . t ' ··-· .. {!:t-,\',r"" t'·"'!.. ... .. ':'-."'!.; ', '";' "'." '"'~~-,· t ,......;~ ~-f'J "\ ""':-.... ·, ' • \ ... ·, ~~ ;I:Ji"'"-':1 ... : ·'· ... , ~. t .:~· • ·; ', ~·~· .. ·~' ~ ··:·:~ .. ' I ~ .. B GATE -!fOIST =~N~~~ llll--IU I EL1455 -~ROLLWAY ~ ... STO!>LOG GUIDES f A 'b 12 'b ~ 'b b ROLLWAY - TYPICAL SECTION THRU Ct::NTERLINE OF ROLLINAY GALLERY ..., i 'i ' I ' ; !1 , I I i ! ,, ' I ; 11 .1. j1ljilllf-'1 I ) I Ill I ·I t---------1 ... I "o !2 ~ '" ~ H. ~-L I ' ~,.- SECTION A-A .. A .. I I ·~·--~~_ ••. ·-,i:f.'::- :,, ,.0 0 0 : u .... ~ HOIST r;JOUSti,G o : o o o ,II U I Jt ,I: ,. !j ll~ v \ lllll\ I I .-ENCLOSED v i \ ....-;r STAII!WAY ~~~ = ' . ~~1111 . t ROLL\W II\ • f,'OU..W.III' t ROU.Ml C-41 . I . .1\ . j . ~--·--I I ·.---.J •..----.1 , I ' 1• I I I l I 1 1 1 ARCH DAN-THRUST Bl.OCK ::-. ~ ~ 1- ffi ::£ N : 1' ....... ~1----IL ... NI I I I I I I ,. rr'"' r. I ~ I I I I I I ' I I I ' I I I I 12~o"1 !w-o" ~~ la'.J. ; ~>'-o" lifo 11'-d. 30'-o" ~ .~ - - -i '------1 I I I I I I I . J 1-I I I I I I 1 ~ ~ I I I I I 1 1 I -. I I I I , I l 1 I 1-I J I ' 'I 1 l I l i5 I I l I /, l' I 1 I ilj I l . I I I I I. ;I f .I,~ I -·~~· 1 :! I . 1 I 1 I : .I 1 1 '. !I :a I EL 1404 -i . IJ ' . :I t I ~ ---1 1/~ ~\~ ~~ \~~~~\ ~ ~-I ' ll I I ., ~ -------------t---------~J-----J-----_/:~ :. s2'-o• • ELEVATION B-B r. eo•-a• EL 1466 NORMAl. MAXIMUI.I I \ •' F= OP~TING LEVEL EL.J.~ STORAGE VAU'-T f'I\'M'~i>We'llll\ STOP LOG STOIUGE """"ll'<1111i'e#lf\ SECTION C-C :C' ~ e! . 'J . . tl4 . . • ~~· .. , ~-"' ~ • ~.. . f.) • ; P-::;;:~ ~. ~~ ~~-ff,~~A RY a ~~.!llt.~!d~! . !I ' ~ ,• SCALE 0 16 I 5 DEVL CANYON MAIN SPUWAY CONTROL STRUCTURE PLAN AND SECTIONS ~FEET J\~ S4DDt.E !ltl~ PLAN IC.OO NORMAl. MAXII.Illhl r FU~e. Pl..U6 -RI::SiR\01~ uw. a. 1455 ~ ;·~141.4-.. -::;::::::::: •• -":?'" !!!-14 !A ~, """' ' ~.1410 Ill-OPE EL...I400 _ 1500 '-COI-CRETI!. --. '" 1400 LIN I'-D 2.' rHICK ·~ I:Z.OO 1100 ------ 1000 ---·---...-------------··--- PROFILE ~~ ---·\ [~OF ROCK RIG!-IT Sl~ ________,- ~OFIIGIN.i>.l.. GROUNO St.JRF,ACE: !!1...1410 • RIGHT SlOE \ El...I~O SLOPE ~ 1!1...1!30~1 """''"'" "'" ......_ -----~12e!i' ......... "=•• ' --·- - --=>I..Vt'lll. -- . I ---.... ecM-1! 0 100 200 ~ ~ .. I DEVL CANYON EMERGENCY SPiLLWAY GENERAL ARRANGEMENT ~ ~ --...:~ -,_ ~'N A y -~ ·!.. ~"'";. 'W"i)-:.,· 'tilt'· • .,., . ' . ' ., f~1:f. ~--~-~~-~: ~~~~-_ ~ ~: ·'. .R· . ~ ,,.. ~ . ~ ~j~ ·~ R. ... . \ '!'-< ~ f•, ........ !~;;. ii-". ". 1-~ ~ .... """ !' '*. : ~ ~ . - -•• L. • · •"' .. J, !i <•'.J..-'> 2!J ~ 11 . ·'' >l· ..• ,T . 1550 r---------------------·----------------·-------------------------------------------------- IC.OO 1500 r--------------------------------------------------------------------- ISSO 1------------t ----c~~~u·~~-u··~·~··L:~-------------r~~~~~,~~~.:-~---------------------------------1450 ________ i__ ~~----------- n;ool "$~--===-:~ t.. L .. ~ /' ~; ... ::. < I C~T OF Fv.;.e l'l.1J<: liL lq 1450 1400 ~-22Q' - ll!l50 ---.. ---~-·---·--------··------- 1400 QRIGINA.L..- G~OUNO 5U~F~E TOP OF- J ROCK ! -----------~~ 1550 1 __ . .-~ 'i:"" -···=----··-.X~ 1300 ~ ·250 1-----. ----------·-·----·------------- 1500 -•200 --~-··--' ·- SECTION A-A (623Al SECTION 8-8'(6Z3A) 1500 1.1150 1400 g~~~5-l 5U"'F .. CE •~so 1 .....,'=::' ' _ ~00 .r ,, .. 'I I -----·· ......... .. . .. ~ I 1250 dl@ll'i$)1ii§'l~----•• : 1200L------------------------------------------------------------------------- SECTION C-C (6ZlA) P~ ~-~"'· ~~"~v··.,~ ......... f'. "='""Vt"' " ..,..~ ..... " ..... ,. .. ~ • \ \. J,;J. t ''," ~~ ~ .. r-4 ~· r.:;. ~ .v ;.,:.;, ?· r~. ~1 w \-) ' '£,·~· i:-, ~~ r* ~ ,.i ~tll .. t ''ll •1 ;. :: .. -+ ~< 1-It ~ ~ "; t:" •• ·:. ;;. ~ t"'l • . "' E ...... ; ~ ~ w: f ... ,..J) 't ·~~ r.; •• ~ r; . .1; .; ;; ••• ... d "' "~ . ·, \ ..• r ~ -•• I ..-•' •• r l::r. ~ «t.JJ •'nt*--··-··-·~ .... -. ·-.... _. ... _ "'* ... , ,. ... ~-· ,_..., -· '\~ . .L'' '··Jt~« ~" ""~_.;., ,,,_. .....-...L:..--~ '!'•,.t;'•C~.•,,•• ~ . .0.' 1:--*• ,,..,")o'-1~ •!:_z," --:l'-¥•· '1'1..·•~-• •. -''" j( ··lo> .·, • .::.••. ~' ., _ _,.._ '•C· ·.0 o~~~~50;;;;;;;;;;;;;;'~oo FEe:r SC,_I..E ,_ DEVIL CANYON EMERGENCY SPILLWAY SECTIONS .·.;,