HomeMy WebLinkAboutAPA1389I .. i -J ' r ,
[" I • I
I
I
I susrrNA H'lDROELECTF-1iC PROJECT
I
ACRES INTE:~NAL REVIEW BOARD
I f•AEETI NG # 4
I
I
I
I .j
I
J
' I I
I
I REPO~T I
SEPTE~IIBER 8, ~981
I
I
I
~repared Jy:
I
r-
' I I
I hfJ~f~ .. I l1!~Lj I I
I
I
I
I I • ~---At t\SY.' \ POWER AUTHOR IT"!' ~
-·-------...... J '·· "'•,/• L__
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ALASKA POWER AUTHORitY ~
SUSITNA HYDROELECTRIC PROJECT
Internal Review Board Meeting No. 4
MINUTES OF MEETING
held at the offices of
Acres Consulting Services,
Niagara Fa 11 s, Canada on
September 8, 1981
TABLE OF CONTENTS
Agenda/List of Attendees
1. General Remarks
2. Status of Studies
3. Status of Seismic Studies
4. Status of Geotechnical Field Work
5. Approach to Spillway Designs
6. Devi 1 Canyon Layout Studies
7. De vi 1 Canyon Ar::h Dam An a lyses
8. Approach to Watana Layout Studies
9. Watana Dam Design
10. Watana Dam Layout Studies
11. Watana Relict Channel Studies
APPENDIX A -Supporting Documentation
APPENDIX B -Review Board Report
September 30, 1981
P5700.J.3
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
I
ALASKA PO~lER AUTHORITY
SUSITNA HYDR!)ELECTRIC PROJECT ·
INTERNAL REVIEW BOARD MEETING NO. 4,
NIAGARA FALLS, CANADA
SEPTEMBER 8, 1981
AGENDA
1 -0830 -General Remarks -Dr. D. MacDonald
2 -0845 -Status of Studies -J. D. Lawrence
3 -0915 -Status of Seismic Studies -V. Singh
4 -0945 -Status of Geotechnical Field Work -S. N. Thompson
-1015 -Coffee and Discussion
5 -1030 -Approach to Spillway Designs -Dr. J. W. Hayden
6 -1115 -DevJ1 Canyon Layout Studie$ -R. K. Ibbotson
1200 -Lunch and Discussion
7 -1300 -Devil Canyon Arch Dam Analyses -R. K. Ibbotson
8 -1330 -Approach to Watana Layout Studies -J. D. Lawrence
9 -1345 -Watana Dam Design -D. W. Lamb
1500 -Coffee and Discussion
10 -1515 -Watana Dam Layout Studies -R. K. Ibbotson
11 -1630 -Watana Relict Channel Studies -V. Singh
ATTENDEES
Review Panel Dr. D. H. MacDonald
Dr,. I. McCaig
J. G. S. Thomson
L. Wolofsky
H. Eichenbaum
I
••
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I-
I
Presenters
Observers
J. D. Lawrence ~
J. W. Hayden.,
S .. N. Thompson
. V. Singh
R. Ibbotson
D. W. Lamb
A,. Burgess (afternoon only)
G. Krishnan
D. Meilhede
R. Miller (afternoon only)
L. Duncan
R. Shery
D. Shandalov (10:30 -13:30)
M. Dumont
T. Gwozdek (afternoon only)·
D. t.Jillett
M. Vanderbu_rgh
I 'j""\ ' , A_l • . A.'
" "" • I •
.r\ ,, ••
( i ,\.f •. ~· r .
I
I
I
I
I
I
I
I -I
I
I
I
I
I
I
I
I
I
I
1. General Remarks (Dr •. D.H. MacDonald)
In view of the restricted time available and the amount of material to be
presented and -discussed, Dr. MacDonald suggested that only pertinent
remarks be raised at the meeting. Separate meetings should be arranged
later for detailed discussion of points of interest.
2. Status of Studies (J.D. Lawrence)
General
J.D. Lawrence reiterated the tight schedule of the Agenda, and requested
close adherence to it, without wishing to prevent useful discussionb He
also requested that the Review Board members summarize and confirm in
writing their major concerns and points raised during the meeting.
Minutes·
M. F .. Dumont waul d be recording the Minutes of the Meeting; J.D. La\"trence
requested all presenter·s should provide him with copies of ail pertinent
documentation, slides and figures.
1981 Progress
(i) Hydrology:
-Field recording of flows and sedimentation studies
-Flood analysis continues
-Energy studies continue based on reservoir simulation progl'·am
(ii) Seismic:
(iii)
-13 features have been identified as significant for study. Geo-
logic mapping continuing.
Geotechnical:
Intensive program of seismic refraction studies and auger boring
continues at both sites.
Field studies continue on foundation conditions and material from
·~the borrow areas.
-In addition, further study of the relict channel is anticipated.
( i v) Design:
-The development of design· for the dam and power facilities at
each site continues.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
•
~
I
I
(v) Environment:
-Studies continue on temperature stratification and water quality
in the reservoirs with particular emphasis for design, and on fish and game impacts~
-Access roads
-Transmission line route
(vi) Costs/Schedule:
-An upper limit cost estimate was prepared earlier this year.
-Preliminary cost estimates for the preferred developments will be
.prepared in October/November for vetting by an external
consultant (to be elected by APA).
(vii) Licensing:
-On schedule
(viii) Finance/Risk:
-The State has passed legislation which should ensure the
financial viability of the project. The implications are being 1 ook ed i nt. 0.
Deadlines
(i) Development Selection Report:
-The draft has now been reviewed by Client, Federal and State
Agencies and is being revised for general issue.
(ii} w.c.c. Fieldwork:
-On schedule
(iii) R&M Fieldwork:
-On schedule
(iv) APA External Board:
-Meeting scheduled for October 6-8, in Buffalo, to consider
recommended layouts at Hatana and Devil Canyon. (Economics and
environmental aspects are not scheduled for discussion.)
(v) Cost Estimates:
-Preliminary cos~ estimates will be provided as follows:
Devil Canyon: End of October·I981
Watana: End of November 1981
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
I
• • . .. . ~J . '. .. • '. • . . . • . • ., . !1 . I • I. .. • • . .
·-.· . ·~·: .. -~ r .. · • . :.. . •. .;_.~ .. ~ ·. ;_. . : .. < '. • .~:· .. :.··. . ... ·. · . .' ·-~-.' -
: ·.: -. . . · .. '· . . . . : . . . . . : . . : ~.... . : . . :. : .·. . . . . . . : ··"· ,
(vi) Geotechnical Report:
-1980 Program -September 1981
-1981 Program -February 1982
(vii) Feasibility Report:
-First draft due February 1982
-Final draft must be available by March 15, 1982 for general
ci rcu l at ion. (Certain environment a 1 aspects wi 11, however, be
studied further between March 1982 and June 1982; APA are aware of this) ..
(viii) FERC license:
-Submit to APA by May 1982, for both Watana and Devil Canyon, (as
a result of a previous Review ~oard recommendation).
Previous Points of Discussion (for reference)
( . ' 1 I
( 1 i)
(iii)
Acres Internal Review Board Meeting No. 3 (February 1981):
-Watana Dam slopes of 2.5H:lV U/S, 2.0H:1V DIS reviewed
-Fingerbuster (downstream shear zone) to be included in WCC studies
-Nitrogen supersaturation problem highlighted (spillways)
-Low level outlet design concepts discussed
-Multi-level intake design requirements
-Earthfill dam at Devil Canyon considered
-Watana dam schedule tight for the volume involved
-license application should include Devil Canyon
Acres External Review Board Meeting (Februaryj:
... Seismic activity along Talkeetna Thrust, KD 37 (line along
river), Susitna feature, Benioff Zone, and nfloating" eq
-Nature of the andesite/ diorite cant act
-Relict channe 1
-Depth of a 11 uvi urn at the upstream cofferdam
-Devi 1 Canyon: Concern about shear zones
Design of underground powerhouse, sul'·face powerhouse, dam section, .Watana arch alternative.
APA Review Board Meeting (June)
-Fieldwork in the relict channel
-Underground powerhouse exploration
-Downstream erosion
-Seismic1ty and nitrogen supersaturation problems highlighted
-The Orovi 11 e dam s 1 ope was considered acceptable for upper 1 i mit cost estimate for Watana (2.75 H:lV)
-Downstream water qua 1 i ty concerns emphasized
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
il
I
3.
Current Layouts
These would be described in detail later by R.K. Ibbotson but major changes would be:
De vi 1 Canyon:
Watana: Orifice spillways changed to HB valves
Dam slope upstream amended to 2.4 major structures on the right bank
Status of Seismic Studies (V. Singh)
Previous Work
Thirteen features had been identified as requiring further study; 9 at Devil Canyon, 4 at Watana.
Three features were accepted as having a major effect on the sites:
-Denali Fault (8.5 M)
-Castle Mountain Fault (7.5 M)
-Benioff Zone (8.5 M)
w.c.c. Findings from 1981 Studies
-Watana:
-Talkeetna Feature: Considered to be inactive.
-Susitna Feature: No evidence of a fault.
-KD37 (River Feature): No evidence of a fault.
-Fins: A fault but size is insignificant.
-Devil Canyon
- 3 faults identified, but inactive.
- 6 others may be faults, but also considered inactive.
w.c.c. Co~clusions
-Three major features identified are Denali, Benioff, and Castle
~1ountai n.
-
11 Floating 11 earthquake, is related to the Benioff Zone, (5 to 5 .. 5 M).
Report may propose probab i 1 i st i c approach to potentia 1 movements near structures.
Panel Comments
-On what basis was Talkeetna considered inactive? s. Thompson explained
good evidence available to the South (50 million years), less good to the
north (only 12,000 years).
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I •
I
I
I
I
4.
5.
-The panel were concerned with a probabilistic approach to prediction of
1 ikely earthquake motions near structures.
-It was notei· that fault inactivity was presumed on a basis of 1 ack of
specific e r~dence of activity.,
StatU$ of Geotechnical Field Work (S. Thompson)
Summary of 1981 Work
(a) Watana:
-BH 12 (powerhouse left bank) drilled.
-BH 1 (powerhouse right bank) drilled.
~ BH 3 (powerhouse right bank) drilled.
-Seismic refraction studies in the river upstream and .downstream to
assess the depth of alluvium.
-A summary of rock quality (RQD values) with depth was presented; the
right bank pO\'Ierhouse v1ill be in good quality rock.
(b) Devil Canyon:
-Pond feature has been confirmed as a shear alignment (inactive)
-BH 5, BH SA drilled in and near the river.
- A feature in the river at the Devi 1 Canyon arch dam site has been
identified from Acres drilling and confirmed by interpretation of
Corps of Engineers cores as probably an inactive fault, thought to
be small at this time. Not sufficient evidence to justify changing
from arch dam design to rockfill at this time. Further
investigations are in progress to obtain more data on this feature.
(c) Layouts:
-Watana: Avoid Fins structure with upstream diversion portal~
Approach to Spillway Designs (J. Hayden)
Current Design Concepts
-Philosophy:
( i)
f .. ) \11
Diversion flow -1 in 50 years
Nitrogen s_upersaturati on -accepted 1 in 100 years
Design flood -1 in 10~000 years ( i i;)
( iv) Probable Maximum Flood
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-Devi 1 Canyon:
Values allow for routing through Watana,_which is assumed constructed.
(a) Watana
Diversion:
2 tunnels 35 feet diameter
-Lo\>Jer tunnel_ pressi.!re, upper free flow vlhich can be converted to low
level outlet. Both concrete lined, design velocity 50 ft/sec.
-Upper tunne 1 waul d be c 1 eat~ of possi b 1 e upstream sedimentation
-Emergency capacity of 10-30,000 cfs, capacity dependent on head,
and energy dissipater for flood during construction.
Service Spillway (tunnel and values):
-6 H.B. valves designed to mitigate nitrogen supersaturation for any
flood up to the 1 in 100 year occurrence. Also provides mid level
release for drawing down top 200 feet of reservoir.
Power Flow:
- A 11 owed in fl cod routing up to 1 in 100 year floods Not for any
higher flow.
Auxiliary Spillway (headgates, chute and flip bucket):
-Used for floods greater· than the 1 in 100 year occurrence, when
nitrogen supersaturation is considered acceptable, up to the 1 in
10,000 year flood, with some surchanging of the reservoir (up to 7
feet).
Emergency Spillway:
-Fuse plug dam fails~ passing the PMF.
(b) Devil Canyon
-Diversion: One tunnel
-Service Spillway: 5 HB valves in the face of the dam
-AuxiTi ary Spi 11 way: Chute and st i 11 i ng basin on the right bank
-Emergency: Fuse plug dam as at Watana
Panel Comments
-Precedents should be established for diversion tunnel velocity of 50
ft/s, HB operation requirements and spillway design concepts ..
I
I
·I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-Dam break analysis of cofferdam required in vie\~ of volume of water
retained; possible costs of damage down·stream would affect optimization
of tunne 1 diameter, and te.:d toward 1 arger tunne 1 with 1 ower coffer darn ..
~ All chutes will require aeration.
-Possible to design a cofferd~m that can safely be overtopped.
-Fuse plug dam must bE: stable up to a fixed level and collapse ~hereafter;
a gated structure waul d be more expensive, but more re l i ab 1 e.
-Stilling basin walls at Devil Canyon are subject to dynamic water
1 oadi ng.
-HB valves would cause icing problems in winter; although normal spillway
operation would be in summer, it could also occur at unscheduled times.
Loss of 1 oad owing to major industria 1 action \vas cited as a precedent
for forced spilling.
6. Dev i 1 Canyon Layout Studies (R. K,. Ibbotson)
Options Considered
(a) Powerhouse on right bank, 2 diversion tunnels on left bank, 4 orifices
in the dam for auxiliary spillway discharging into a plunge pool at
the dam toe, chute and flip service spillway on right bank.
(b) As (a) but service spillway replaced with chute and flip on left
bank.
(c) As (a) but service spillway replaced by stilling basin on the right
bank~
The preferred option was the stilling basin, to avoid extensive
erosion downstream of the dam, and consequent high maintenance costs.
Nitrogen Supersaturation
Because of the nitrogen supersaturation problem, the orifice spillway has
been changed to 5 H.B. valves as a service spillway; the stilling basin
now will be used as the auxiliary spillway for floods in excess of the 1 in
100 year occurrence.
Extension to Portage Creek
Cost/benefit analysis for the tailrace extension to Portage Creek has been
done, indicating CBR of about 1o Difficult tunnelling with little
geotechnical data available.
Panel Comments
-Stilling basin walls are too thin if unsupported by rock.
I
I
I
I
I
I·
I
I
I
I.
I
I
I
I
I
I
I
I
I
-Need for precedent/experience report on HB valves particularly with
regard to vibration and winter operation. Model studies will be required in design stage.
(•
-Recommended at· least lOD straight section before the valve to establish
linear flow pattern~ (particularly at Watana).
-To avoid supercooling the trashracks on the intake should not be exposed above W~L,
-Switchyard position is on opposite bank to powerhouse ..
-Tailrace shown is freeflow; one extra set of gates?
7. Devil Canyon Arch Dam Analyses (R .. K. Ibbotson)
Previous \~ark
-Static analysis was completed.
Current Studies
-Dynamic.analysis has now been completed plus minor geometry chan9es to
achieve a more symmetrical distribution of stress.
-Crest elevations are 10 feet lower than present thinking~ (1445 EL).
-All work is done by Trial-load method.
Results
Static Cases:
(i) Self weight+ normal hydrostatic
{ii) s.w. + drawdown (1295)
(iii} Full reservoir +temperature
(iv) Drawdown + temperature
Tensions stresses were as follows:
(i) -27 psi
{ii) -97 psi
(iii) -393 psi
Dynamic:
0.5g and 5% damping ratio: -2470 psi in arch
These results were discussed with Merlin Copen who stated 10% damping ratio
was applicable. Design earthquake was also reduced to 0.4g and the
analysis repeated.
Revised stresses (maximum tension); -1390 psi in arch
I
I
.~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Allowing for redistribution of_tensile stresses by cracking, the maximum
tensile stress is -322 psi in the arch. If the water dynamic load is
reduced 60% for valley shape and constricted approach~ the maximum tensile
stress is -251 psi.
Pane 1 Comments
• Consider possible finite element analysis check on desigD by ISMES
(Italy) D. Shandalov stated F.E. analysis does not allow for stress
r e 1 i ef by crack i n g.
-Plastic non-recoverable deformation of abutments. This may be offset by
grouting, which would tend to strengthen rock and give a more elastic
response under load.
8. ~oach to Watana Layout Studies (J. D. Lawrence)
It had been agreed that until the rockfill dam design had advanced
sufficiently to warrant steeper dam slopes, conservative Oroville dam
slopes would be adopted for layout studies on the other major structures,
(2 .. 75:1 upstream, 2:1 downstream). These slopes were also used to prepare
the upper limit cost estimate. Field data are now being used to firm up
the design with a view to steepening the side slopes to ease the site
congestion.
9. Watana Dcm Design (D. W. Lamb)
Borrow Areas
(~) Ti11 from borrow area D has hig: Jermeability (lo-5 em/sec) but is
otherwise suitable for the cor~-On the wet side of optinum moisture
content by 2-5%. Control on con:o. ction wi 11 be difficult. Estimates
are to be adjusted to allow for haul distance, placing and compaction
methods. Low P. I. on most s amp 1 es. Some evi de nee of no c 1 ay at
depth. Borrow area His also available; longer haul distance.
(b) Filter material (Area E) must be processed for use,~ probably from a
dragline operation, in 2 bands:
-Fine grained
-~ Coarse
Some of fine grained may be s~iJ:eb 1 e for the core.
(c) Rockfill -This will be from quarry.
(d) Minimal data on river alluvium. Core. and filter specs may need to be
tightened up, which will affect costs.
(e) Quantities -·An average of 2 to 5 times the volume requirements, which
is on the low side. Fine filter materia 1 may be tight.
I
I
I
I
I
1:
I
I
I
I
I
I
I
I
I
I
I
I
I
(f) Quarry is in the andesite (at least at the surface), which may not be
suitable for concrete aggregates.
Design Factor~
{a)
(b)
(c)
(d)
Core thickness will be about 50% of· the head of water acting. Core
·wfll be central and essentially symmetrical. Filters are a minimum of
Hi ·feet thick. Crest width currently 50 feet for provision of a
road&
Present sl ooes fall ow Oro vi n ~ dam which sustained 5. 8M in 1975
without damage. Checks su9gest it is safe up to 8.25M. Design work
currently assessing stability of upstream slope of 2.25.
Fai 1 ure under earthquake 1 oadi ng was discussed, as de.scribed in Seed's
Rankina Lecture,. together with design details which would avoid
possible failure mechanisms, e.g., use of rounded gravels as upstream
fill. -
Grouting ~tiOuld be either from the surface or from a gallery under the
dam. The gallery is believed to be useful for instrumentation!t access
for remedial works, and to avoid schedule delays. Disadvantage is
drainage and pumping necessary.
(e) Core contact. This will be flared to 100 feet minimum at the
abutments.
Analysis (A. Burgess)
(i) 2.25 slope dynamic analysis is being done at present by computer
·analysis, using assumed rockfill properties. Variation in material
properties caused by current 1 ack of rea 1 i sti c test data for fill
materials will be subject of sensitivity analysis. Static analysis
and slope stability studies will be done later.
c
(ii) Finite element methods are being used to assess the dynamic stability
under earthquake loading. Material properties under cyclic leading
are available only for sand, these have been uprated to estima~ed
gravel v-~lues. ·
Static analysis results shown (performed initially to determine
stress levels in dam) represent arching across the core, with some
cantilever action of the up~er coreo Dynamic stress analysis shows
highest stresses in the upstream face of the core and the upstr·eam
rockfill, using a simulated earthquake of record. This has to be
repeated 1 ater with the WCC predicted earthquake record. The last
ph as~ of design wi 11 be amending these dynamic results to a 11 O\\f for
pore water pressure distribution.
Panel Comments
-Any problems with frost damage in the core ? Shou1 d be a 11 ov1ed for in the
unit costs
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-Widths of filters and transitions are too smalL.
-Several Chinese rockfill dam failures under earthquake have been analyzed
and failure modes reconstructed; the published work (ICOLD, 1980) should
be studied.
-Assumed' lift height currently 3 feet for rockfill. This is very critical
to schedule.
10. Watana o·am Layout Studies (R.K. Ibbotson)
All 1 ayouts are governed by the requirement to set dam and .structures
between the major shear features (Fins and Fingerbuster).
( i) Cascade spillway on 1 eft bank. This 1 ayout has been kept in as a
means of resolving the nitrogen supersaturation problem. Trade off
in rockfill for use in the main dam was allo\>led for. Rockbc1ting and
other strengthening measures allowed for in cost estimate~&
(ii) Preferred (least cost) layout has chute and flip on right bank;
nitrogen supersaturation up to 1 in 100 year flood eliminated by use
of HB valves as service spillway.
The upstr~am dam slopeais shown at 1 in 2.4. 1 in 2.25 is at present being
analyzed, which would give more flexibility with arrangements of structures
and position of dam centerline.
Panel Comments
-Downstream tunnel portals are too close together for construction.
-Precedent for use of HB valves as primary release devices? Need for a
report on their use was reiterated.
-Significance of upstream dam slope? Change from 2. 75 to 2.40 reduces
cost by $10 million, with adjustment of dam center line.
11. Watana ~elict Channel Studies (V. Singh)
-Since the channel ·may affect the feasibi 1 ity of the project, a cost has
been assigned to cover investigation. and remedial work.
-Seismic lines were extended to trace the extent of the channel. Cross
sections have been drawn, based on present information.
45 million dollars has been allowed for a continuous cut-off (slurry
trench) to avoid piping failure. Saddle dam slopes are flat to allow for
earthquake settlement and maintain stability ..
I
I
I
I
I
I
I
I
I
I
-•
I.
I
I
I
••
I
I
I
-Further study will be undertaken in Phase 2 {auger drilling, Becker
dri 11 i ng) e Rock surface contours wi Tl be drawn based on 6 boreho 1 es and
seismic refraction lines. Permeability measurements will be required in
Phase 2; also adits may be driven to assess rock conditions at depth.
MFO/ah
I
I
I
I
I
I
I
, I.
I
I
··-
1
I
I.
I
I
I
I
I
APPENDIX A
SUPPORTING DOCU~tENTATION
I
. . 1·,
I
I
J:
.I
I
I
I
I
I·
I
I
I
I
I
I
I
I
SUSITNA HYDROELECTRIC PROJECT
STATUS OF STUDIES (J. Lawrence)
,,
'
-t 1i .. t -, -· -, -f -- ----~ -I_., -III -...
· oJ SU~lTNA ST/\TV6 _, .
-G-€;Ctfec.H N \CAL. E-KPLor:tA 'fro N
. -W/\TAN/\ te/lL CNJ7C>N ~16-N
Of>f1M l 2.A 11 ON
-tSNVI~N MENTAL.
-*fl#(~lS:stOI'l
-CoNSfRUC1't oN Cos-r.s ~ So#tt:SOlJI eG
-LtceN~NGr
t -ftNPcNelAL ~ .f<I~K S-(UD\6-5
-'D;A'"DL\N€6-
-ftNN-tefa..cpMENl S~rroN R€Pdl:T-seP. 11'1
-~eN OF Wee!, Ft6LD WMK-seR tgl
-R.evtew !>P. AclteoJ~<~wt Aa...c Wt>~<K-SSP. &-1
-APA exteRNAL P~er.... R,€Vusw-lPT. ~ 1
-~a\ MINAI<'/ ~IL CANtoN 6S7ft\1A16 -OCT. il
"-Pi<aJMirl~'/ WATA:NA e671MATe ~ Nov. WI
-fltiN. &eoreo~. ~ ... ~~-2'2
-ft(at.~1 ~Ff ftASl61LlT)' f2Et?a<--r-FE$6 ... tr2.
-FJNpq_ J1lAf-r 0 fel>r;~r~rwrj REPtne,--.fMe.rs-~.e.
• -~e~ WeEN$€-DY::i.JtAeNTO -MA'/ ~'2..
. . --.• ;--· --- -,. --·•· - - ---·-
.
c=SU61TNA
DEVELOPMENT SELECTiON
WATAN~ : -t=ll-L "DAM SSo F"1'.
-2. 75 t-1 : l " ·tfs ~oPE.
-loS M\w...toN CU. Y.D.
-4oo MW \qc::J'S
-.fOO MW \qq'-
D£Vt L CAN'/0 N : -Al<.a.t DAtvt G:»5o FT.
-400 MW :2c:oo
. l
. .. -...... s-: -.... -· - --: -.j.~ ;-
-Aef.<.-65 IW1~N~L P~€L .. I
f€8. lGlf?l
. I
~ '"' A-.'r AN A_ <;J _nO,.e~ s 2 • ~ t\ : \. 'I ll( .s ·!fr'\ ~---,.F"' w-1. ~-,,
2.) .. : 1 v 'b/ ~
'---lNeiJJRS f=l~etSc$~ ttJ sef>M\C ~1U1>)' ·
-N\1"~o6(arl SUP~<;f\1\J~ION ~oet.GM
(. CWl LLWA '/t6)
-LoW 1..£.\fet.,. OU"Tlw~T. ~6N C£Nc.eprs
'-MUL-rl-leVEl-lriTAK6 ~6tN ~C€P~
-Ct>N~Iotf< 6A~T.t--l FILL. "DAM A.i :D.c...
-WJ><fANA ~\Or\1-""f est:,f-lEDU I e.. toQ... ~M
-l't\C,L\J'QO DC.· tN L\C6N56 APPL..\eATtoN
-'---· -· --~--. . -1 ....... -·-•• ! i--.• .
-ACR.tf'::> GXTtRNAL PA~t..J ·~ -
f c e. t q 'B" 1
'
-7ALK€£TNA. -r-H~U&T
--kDS --7
. ---t;~\TNA F6ATUQG . .
~ FL..o"-r t N~ 6~H Q\JAKS
__, 9~lOFt=
'NAfANf' -ANbt-~\"(6 'bol<l"f~ eoMTPCf
t11 NNE.L~)
__, ~a.J '-'1 CHANN E.(.,
-ALLUV\\JM I?J€P1"J4 )
(Go Ffe{l DAtA~
't>6Vll CAW'/oM ~ c?\-\-6~ z.oNes
WA&ANJ:\ -UN~Gr~OONO P/1-\
-'5U~FAOE-P/H AL.. -r.
~ ~V\Lt.,E-:>EOrtoN
-Co~~~~
--•a .--·w a .. ~ .~ ~ .. -· ~ .._ ··• -.. --· -APA. E.X\eRNAL ~NEL-
· JUN C I qb"l
• I
-WATANA :-~e;; CftANN~L. 6XA-oAA1low
l
-UN~~UNt> fJjH 6xPL..OAA1'tON
-~AL..\(e,E,TNA 7HRus-r I suc;rJNA
fet\1"UR6 INVe=!Tlt:;rA. "Tr of\l~
-~GNI OFF 7-0N'S EI\R.,-1-t &.UAJ<6-s
. ..., OP..OVtt .. J .... 6 OftM SeJ::lTI oN t:::'OR
WAl~~ l :2c7S'H: tv uf:s SLOPs)
-tvt-rt<.oertsN S\JPaeSA-ru~ATic:lC\1
. lSPIU..WA-ts)
-DoWN~-T~M Gf.<.OS& ON
(SPlU..WA "')'dQ)
t .
-tbwNS1~ WA1€ce QtJ~-ry
(%olrl1 ~-rA.-n~~. ·. M~f'HOL..OG:f't.
ftSHERlee=> J
' \ a I
t,
• \ H> . \;,_ .... ~
.,
I
·l
I
i
----·~-•
.r--.. ··-:----.... .............._
,.--·~-· ...
PUTE 7.1
GENERAL ARRANGEMENT
• • ' t •
·-~------------------------------------
·-·----...------------------------..
SECTION A·A ··
' . ..
. .
--------------~---
--·-·-!--..
SECTION B-8 •
-----I I, --.. --• •
GENERAL ARRANGEMENT
ltAU_IA
• • , t • •
-
0
~ ...
0
~·
t
---
•
-·~· --
•
SECTION A•A
l&ll[!l
..
·-
CQlTfi:!IA
~~;ce ~II.I..WA'I" oe!afQI( ~---"--IIIIJlDCI.C.P.
tMUIC.tlo.II;:Y, :.I'IU.WA.V IM'kl~ l'U)OO -~U
IIC:~Q\OIR. ~ IA.blt.II.N -..,l\Wil·~-bll:l)·
~lt'YOIIt ~~M~ 1.1twi,. W\TM. ·so~ .::.__ ·-
•
I
I
I
I
I
I
I
I
I
••
I
I
I
I
I
I
I
I
I
SEISMIC STUDIES (V. Singh)
--
~
~
:D
0
0 ,..
-< 0 m
n
0 z
"' c r-
-4 >-z -c
0
-& g ,.
~
II a
t -~
-
.. ·~
,•
-
~
.. ' ..
1004 Earthqu•ke
Rupturt Zone · · ·
---
(
~ .
'.
'
------------
..
Zone of low Historic Seismicity
Plate Motion Relative tq North American Plate
NOTES
1. S#t Figure_6-1 for IOGation of Section A-·A·.
2. Geolovh: date aoorcea included in thoH c:hed
in figures 4·1 ttnd 5-1. · 0
I
Prepared by: Woodward-Clyde Cpnsultants, 1980
SCHEMATIC TAlKEETNA
. TERRAIN SECTION
50 100 Milt
F I J
0 60
-I
I
I
I
I
I
I
10
I
I
-....
" ' • .
. . . ·r
...
J~· ,
. ... . . ~ .
.. :~-
. , ...
~ . .
: ·~.
. ·; .. ·.e;:. .. .
.... . . . .
-
• ,.
. .. -
--.
-
LEGEND
--Indeterminate _. A fe~ture
-·-Indeterminate • B feature
,. -o-indetermin.te • B t. feature
NOTES
1. Explanation of feature c:tassifica.tion presented
Section 8.2
. 2~ Explanation of alphanumeric: symbol presented
in A~dix A.
DEVtL CANYON SITE
SIGNIFICANT FEATURE MAP
0 1 2 Miles
cg: ? \
0 1 2 3 Kil
I
I
I.
I
I
I
I
I
I
I
I
I
I
.I
I
. _-·t-(. l l--... .. ./ • " ..
J \ , ._ji -_..;-.f
,.--~ I
I' l i
~-. \.
/iJ~·
../.~ff 1 'i· .. i .. ! . , ..
: I "" '~~ ~,:-.::: ~ ... '. ~ .:--. ...,
DEVIL CANYON DAM SITE
.
-·--~-
•
.. ....
___ __. ______ "
'="' ••
_, '· ! .
/
.. ~ . / . i :.
~ ,;:o:p .;~· ' ! 0 ...
~_, --,~
~-... . ·; . ..
? ~--l
..
. .: t.
. I
..... ,
: . .. ~--:,. .....
0
0
.I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'1. '
I
I
GEOTECHNICAL FIELD EXPLORATION ( S. Thompson) -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1981 WAIANA P.ROGRAM
8DDITIONAL WORK
1) GEOLOGY MAPPING & EMPHASIZE SPECIAL FEATURES /
2) DRILL POWERHOUSE AREA *
3) ·RELICT CHANNEL MAPPING, SEISMIC LINES *
4) ROUNDED SHELL MATERIAL UPSTREAM OF THE DAM
5) RESERVOIR SLIDE POTENTIAL RECONNAISSANCE
NOTE: * RECOMMENDED BY APA EXTERNAL REVIEY/ BOARD
APA PANEL RECOMMENDED DRILLING TO DETERMINE
MATERIAL PROPERTIES IN BURIED CHANNEL. ·
iERVAL 100 FEET
·.t_•, t ,_., fQOr CO~HilUP<; 11CAI.. OATUM OF 1929
i. GEOlOGlCAl SURVEY
lORAuO 80225. OR RESTON, VIRGINIA 22092 AINn sYMBOLS 1s AVAilAI!LE ON REQUEST
I
n ~ _.J8 .;./ l;,...
,• ,,:/' ' / ~ "' Borrow Area
BORROW AREAS ---WATANA
'" i
1Conttoi
' ROAD ClASSIFICATION : Toc"';;r;;
laio.cn 1r
No roods or tra•ls m !his area
,Un•vcrs.
; lO.OOO
lOOOm
,;one6.
TALKEETNA MOUNTAINS {0-4).
1 Land ~n ALASKA,pr1'1etc
· Foho$'2 N6245-W14830j15X30
1951
Mllf(JII ~1$1()1;'; l"t\5
I
~l
I I
I !
~f~oo
l
.IOo I
'IVATANA SITE . .
cv/ , f
~ I
1980 GEOTECHNICAL INVESTIGATION
0 PREVIOUS WORK
I • f980 PROGRAM -DIAf~lOND CORE HOLES
J----! ... SEISNlC LINES
.r.
I
I
II \VAT ANA SITE
I 1981 GEOTECHNICAL
0 PREVIOUS WORK
I .4 r 980 PROGRAM
··---12 81 PROGRAr~
-r-
y'
INVESTIGATION
BOREHOLES
-DIAMOND CORE HOLES
I
I
! ~
... . ' .
I
I
SEIS~~IC LINES
1---f 1980
. 1---4 1981
I
I
I
I
I
I
BORROW AREA F
)"
/
/
()
JJ
.
. .
NOTE:
AP17 •
I) SECnON SHOWN ON FIGURE _
2) TOPOGRAPHIC CONTouRS ARE APPROXIMATE
t..
1 , Previous Work
r--...., 1981 Work
198'! SEISMIC LINES SCHEMATIC
WATANA EXPLORATION
-----
-1
L. BH-1
BH-3
1000 NORTH ABUTUEHT
ZIOO
IIOC
tOOO 1 PREVIOUS
1981
-•• ---
BH·6
f;;i-i: ~ SllO. Cll
IIOT1'C5il 7CI CIS
SECTIOt! A-A
LOOKING U/S N as• W •
ftiWR'I
£DQf;
·I
I
SECTION B-B
LOOKING U/S N 4~ W
----
SOUTif ABUTMENT
aoo • • aoo "CC ~ t ---,
K,jU .• l'lllT
GEOLOGIC CROSS-SECTION WATANA
-' ' --
•,
BH-12
I
I
I.
I
I
I
I
I
. I
I
I
I
I
I
I
I
I
I,
I
VERT I CAL DEPTH
BELO\·J ROCK
SURFACE
< ()I . -
"..] 50 1
l::f\ I -1 t::O I _,~u -' •
150' -~Jt::n' ~JV
250' -350'
350 1 -450'
450 1
-550'
550' -650'
SITE AVERAGE
vJATANA
RQD SUf·1r'!ARY
FEET DRILLED
944.7
1472.0
753 I L~
L~67, 7
338.2
233.0
196,8
4405.8
RQD %
S"Cll Lio
61%
74%
80%
83%
..,6c;' I IC
03ct 0 Ia
67%
DATA BASE: DH-1.~ 4.~ 5.~ 6,~ 7.~ 8.~ 9.~ 10.~ 11.~ 12.~ 21.~ 23_, 24.~ £8.
BH-2.~ 6_, 8.
RQD SUrMARY TABLE
% WITHIN RANGE 0-25 25-50 50-75 75-9C 95-lDO
__ ._. __ ._ _________ .-a_::::;. _______ ,_. _________________ ~--------..... -----"-'-~----,_-
1lo;-
.... '" 12 25 10 17
I
I
I
• BOREHOLES BH
TEST PITS SL
ft.H
DEVIL CANYON SITE
PREVIOUS GEOTECHNIGAL INVESTIGATIONS
• AH-G4
..
<!' "·
I
•tOO ~··
I\~
_)
I
I
I
I
I
BH-2
DEV1L CANYON SITE
1981 GEOTECHNICAL INVESTIGATIONS
PREVIOUS 19cl1
• BOREHOLES 0
• TEST PITS :6
f--f SEISMIC LINES r---i
-----
t'l)OO
1400
IZOO
NORTH ABUTMENT
l'OO
600
PROJ£CT£D zoo' Cl/S
PREVIOUS WORK
1981
-
BH-5b .
BH-1
BOTTOM ~0' U/$
LOOKING U/S N lie E
-· -.. -
DH-1 (PROJECTED)
BH-3
I
SOUTH ABUTMENT
BH-5a
100 ,
ICAU Ill nn
l't£F£fa!CES: l flUfttAU OF RECLAt.t.UION. 1~60
~ CORP$ OF [MGIIIEERS • 197S
~ $01.1'-0 15ecl Wvt:STIG.A'~
GEOLOGIC CROSS-SECTION DEV~LCANYON
--
BH--7
BH:4
B()TJOW 250' DIS
-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
VERT I C.A.L DEPTH
BELO\~i ROCK
SURFACE
01 -. 50!
50' -150 1 ~
150' -· 250 I
250' -350'
350' -450 1
450' -550'
550' -650'
650 1 -750'
SITE AVERAGE
DEVIL CANYON
RQD SUf·1t·1ARY
FEET DRILLED
477.60
924,90
727.70
626.1
412.8
223.9
128.8
"7 L} ~ :> • .,.,
3556.3
~ ~ .. . , ,, .
RQD SUt~t:ARY TABLE
I
RQD%
72%
76%
81%
87%
91%
90%
85%:
85o; fr::.
81%
% ~ITHIN RANGE Q-25 25-50 50-75 75-90 · 90-95 £5-lOC ___________ ._ ___________________ ;_ ... ___ ..... __________ .., ________________ ._.._, __ ..., __
CE 05 1lJ
-loo • 22 1~ _.,., 38
.I
I
I
I
I
I
I
I
I APPROACH TO SPILLWAY DESIGNS (J. Hayden)
I
I
I
I
J, .;,
I
I
I
I
'1
I
I
·I
SusrrNA HYDROELECTRIC PRG~Ecr I PROJECT FLO\AfS
I
I •
I
INFLOW
REIURN PERIOD YRS,
;
I . IMEAN ANNUAL
1 IN 50
1 IN 100
1 IN lOJOOO
PMF
(DesIGN)
TABLE 1 -RIVER FLOv!S (Fr 3/S)
WATANA
ANNUAL SUMMER
PEAK PEAK
' !
~,· 36)000
I 84., 000
i 92JOOO
1156)000
!
1310,000
I
·-
-
I
I
I * WITH WATANA DEVELOPMENT UPSTREAM.
I
I
I
I
I
I
I
I
.!J N A-rtJ RPt '-Fl-IJ W
.ANNUAL SUMMERi
PEAK PEAK :
t .!!
: 41~'000
; 53J 208
; 54)000
·140)000
325)000
I
l
I
I
l
-I '· !
-l I
I
I
I
I
I
TABLE 2 -ROUTED FLONS FOR DISCHARGE FACILITIES (FT 3/S)
RETURN PERron YRs. WATANA DEVIL CANYON
1:50 · DIVERSION CAPACITY . I 1: 100 ANNUAL .YfATANA RESERVOIR STARTING
LEVEL AT 2172' (HIGHEST
SIMILATED TIME LEVEL) I
I
I
I
I
I
I.
I
I
I
I
I
1:100 SUMMER
1:10;000
PMF
120)000
270)000
50;000
D, C. N0Rf.4.AL MAX-OPERATING
LEVEL
BOTH RESERVOIRS AT NORMAL
MAX. OPERATING LEVEL
BOTH RESERVOIRS AT NORMAL
MAX, OPERATING LEVEL
BOTH RESERVOIRS AT NORMAL
MAX. OPERATING LEVEL
1) FIGURES TENTATIVE -OPTIMIZATION STUDIES UNDERWAY,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~BLE 3 ~ DISCHARGE CAPACITY OF OUTLET FACILITIES CFT 3;s)
FACILlTY
Ave. RIVER FLOW
MAx. AvG. MONTHLY FLOW
CJUNE)
MrN. AvG. MONTHLY FLOW
(filAR)
SeRVICE SPILLWAY
AUXILIARY SPILLWAY
EMERGENCY SPILLWAY
LOWLEVEL OUTLET FOR)
COMPENSATION FLOW ~
MAX, CAPACITY )
EMERGENCY DRAWDOWN
YIATANA
7)860
23)100
890
33)000
giJOOO
150;000
10)000
24JOOO
33)000
D.C.
8)960
26)200
1)030
45JOOQ
45Jnco
REMARKS
1:100 YRa RATED FLOW
LESS 75% POWERHOUSE.
1:10)000 YR. FLOW
LESS 1:100 FLOW (NO
POWERHOUSE AVAILABLE).
PMF LESS l:IO~DOO YR.
FLOW (NO POWERHOUSE
AVAILABLE) I
AT 100 1 HEADr
I AT 600 HEAD.
Sc:RvicE SPI LL~ti,~Y
USED FOR EMERGENCY
DRAWDOWN,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I.
I
DEVIL CANYON LAYOUT STUDIES (R. Ibbotson)
.,
-----. --
"
t •
..
' \ ··,
1 .......
\
' I
I ',
\
J , ,' ...... -,
' \
--
.... _ •• ,..otjo •
. . ,e.
···'··-
•• -
ie.oo ,...._...__
-
PLATE 7.1
ALASKA POViU AUTHO~rrt J
,..,.,,.., ... .,..,., .. t«"tltt •••u-c-•·
OE.VIl.. CAN'iON
SCI-tEME. I
FLAW "'4o SI:CTtOH
-
--.. -11 .. , .•.. 1.
• .. .. ... ................ ~ .. .... "' -·-· .. -............... ..... a .... ·-
w.~------------------------------~
... 1-----------------
-u.L------·-------------·-·-··
OAM P~OFILE (LOO~ UASTii&AM)
11~ 1---------
IIA L------------·-.
SECtiON. .T~Q.l) SPU .. ~WA.V
·-,.·---·~ .. • t I
;.,~ ,,,.,,_.,._, _____ .....,._...~~·----------~---------------
-
'""_ . ...., ___ _
t
OE.VH.. CAN'IO).l
SC~EMC. ' SECTIO~~
--
• • • •
\
""GENERAL ARRANGEMENT
10 I t ? f a ~----~~----~--_.--~~~----~----------------~------~------~--~----------~ ·~~
--....
t
-· -
*
~· . JOO,.l••wu ~oou.r'Gia MA41' -~ .. ·1-"~"0 .. -~""' ~T ......
P\..A'TE 7. 3
AUS!CA. POW£~ AUTHOI:ITY
....... '" -···· , •• llt ,, .... t, ...
_._,_,
_'Y" .... --.·-.. ·----· _....._ ... _..,...... .... ....__ ...... ., ...... . .. .. .. ~· ' '
GtNER
-
~ l_~~------r-~~~~~~~~-.~~~.~~~~~~-.~M~O--~~~~~~~. ~~~~~-i~~i~~~~~~jU.-~~"rt;-
llOO
1109
gwW..& 11'4 PUT
SECI!QN B•B ·-
SECTION A·A
(fMAU 11'11.\JIAl)
SECTION C·C.
-----· -----------------:
----·-··-..... ----~
---.. -~ .. ----,-,L(-·--· _._,c.;_ ___ _
-~ . StCTION F-F ---/f~·--
SECTION E·E
~.n 'fv't .. !! ..
10 ""~"'''"Co.IIC.
AlASKA POWflt. AUtHORITY
DEVIL CANYON
SCHEME a
-
!
I
I
t ' t q
! .
+'\
f
1
i • .
\
I
(
' '
----
• I
1
-l
i'IIITtlt.{Ao
[ii:..lll4'/
. l-
t •
. . . ' ···-·.. • .. l'lt.ATE: 9..1
itrr · ALASKA lib\\'i'k AtJTHOi:ltY lk~nl ....................... t nauec•
D£\111.: CAN'I'ON
SCHrt.it
''IT -~! T ;l Jl ''1, I. L •. ' ; -; ! -~ i : l.w ·. } ~ : t ! • +
I .:..I;
: : -11 . ~ . } .
...
-
..
it •
fi
t·l
·-·\
-,~..-r,_{;-,,.~p·r-"'!'Y --· -~--~··~,-·~x--~ --,~-T. ~. m H ft . i . ft ~ ~ i : . . t I I ! 1: I a: '. ! ! . ,. Jl l ~I ~-~ ~ I I~~ ! • I trW· ' : l't;t' I. d! '
l -~ § ~ i• i· §. H i· §•
I 1·1 ~ .i
. . . i j_! : ~ : ; i " . !: 'F
j: J; : ....
15 z
i !·
/·
t I I. I . . .
I It ,., t I I i ll ~i
m
Ill'>~ .. H'i'i
D' ....
t -
~
....
5
§·
8
'i i a B A ft ~~
..
!
!
0
..
f ~ ~~ f·~ it. i I M
~-i !l l I J I I $ a
-,... ....... -·· .. -
~-~~ .
-
.
' -~"'
" . D·
!.,.;;...,..;....,IIWI..L.'-.-'~~~~t .... .., .... ,.-__ JJ"'•tio!ll-· .. tti ..... t&!l ~ ........ _., ... -------~--~~l:~~----------------------••••·••·--•t--•••-•-w I 1 -tiL It::'
• 0 • l _, • ! t . i I l i I i ..,.I
'i
}
i ...
l
. ...
' 1 • i
' t
.
i
• ••
. .. : . • i
I
;
i ; ..
\
·i
l
' .
u •
' I
I
I -!
.: I
! . .
IP .. .
!
. i
~
i :
1
..
.....
..
J.
. ,,
"
,·,
.
·'
I
---' •• ---.... ••
tW1
UN
au•
~ nH
I tiM
a
i
' ilU. i
....
.f ..
lio
-----._.__ ----............ ......
.......... ·-:riGa
... -...., ..... .,4_.,.,../f'-~--~-:· ........ "'--
t ' ' t '
--
lUI
. ~ t:~·
.w.•\ 1\J.; -~ f
.
lUI .. liU .fit'
•t 11
liM
.... ....
tHo\ .r-J ....
u.. ·""' ·~"rt . ... (.
.. M .=<iO,.
ll>o 0 It \0 .. ,U. ~ ~'
"t(f~ A>cci.U. (fl4)
-
I . .
I
I
1\
I
I
I
I UiV!~ CANYON ARCH DAM ANALYSIS (R. Ibbotson)
I
I ~
I
It
I
I
I
I
I
I
I
I
~.
I
I
I
I
I
I
I
I
I ,,
I
I
I
I
I
I
I
4 -DESIGN CRITERIA
4 .. 1 -Material Propertie!_
a) Concrete
Frost Resistance Concr·ete Strength {365 day)
Unit Weight
Static Modulus {)f Elasticity (susta'ined)
Dynamic Modulus of Elasticity (instantaneous)
Poissons Ratio
Tensile Strength:
Static (for estimating cracking only) 5% of strength
Dynamic Flexural 15% of strength
Thermal Properties:
Conductivity
Specific Heat
Coefficient of Thermal Expansion
Diffusivity
b) Foundation Rock
Deformation Modulus (sustained)
Poissons Ratio
4. 2 -Temperatures ( °F)
Air Temperature:
Mean Annual
0 High Mean Monthly -
Low Mean Monthly
Highest Mean Monthly Maximum
Lowest Mean Monthly Minimum
c
5,000 psi
150 1b/ft3
3 x 106 psi
5 x 106 psi
0.2
250 psi
750 psi
1.52 BTU/ft/hr/°F
0.22 BTU/lb/°F
-6
5. 6 X 10 ft/ft/0 f
0.046 ft2/hr
2 x 106 psi
0.2
28.9
55.0
4.4
63.8
-3.6
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Highest Maximum
Lowest Minimum
Lowest Difference Between Any Nean Monthly Maximum
and the Corresponding Mean Monthly Minimum
RESERVOIR WATER TEMPERATURE
Depth Below M 0 N i H
Surface (ft) 4 5 6 I 8 9 10 11 .
0 -50 ~_f 32 !!& 51 53 45 39 32
70 to Reser-
voir Bottom . 39 39 39 39 39 39 39 39
12
32
39
91.0
-48.0
-14.5
1
~2
39
The effe~t of solar radiation has been at this stage neglected.
Grouting temperature of vertical construction joints: 39°F
4.3 --Earthquake
2 3
32 3Z
39 39
For maximum credible earthquake conditiors •wo vers~ons of the mean response
spectra for the Pen1 off zone, developed by Woodward Clyde Consultants have been
used.
Peak Ground Acceleration
0.5 g
o. 4 g
4.4 -Hydraulic Data
.
Reservoir Water Levels:
Normal Maximum
*Normal Minimum
1:10,000 Yr Flood Level
Probable Maximum Flood
Damping Factor
5%
10%
1,455 ft
1,430 ft
1,460 ft
1,465 ft
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-I
I
I
I
••
Effect of tailwater, silt deposits, ice load, and uplift loads (internal pres-
sur~ within th~ dam) have been neglected.
*Thts was assumed as 1,295 ft for stress calculations. However, minimum operat-
ing level has now been maintained at 1~430 ft from standpoint of firm energy
considerations. Hence, this condition will be far less extreme.
4.5 -Loading Combinations:
a) ~~~al Loading Combination -Combination of basic loads that can
simultaneously occur during time design life of the dam (self-weight,
temperature and hydrostatic load condition.)
b) Unu~ual Loading Combination -Combination of loads that are possible, but
which are unlikely to occur during the design life of the dam (probable
maximum flood conqitions.)
c) Extreme Loading Combination-Are related to earthquakes.
The loading combinations cases are given in Table 4.1.
4 .• 6 -Factors of Safety:
a) Usual Loadin~ Case UL-1, UL-2
-Compressive stresses -F.O.S. > 4
-Tension stresses -not allowable.*
b) Usual Loading Case UL-3, UL~4, and Unusual Case
-Compressive stresses -F.o.s. 2 3
-Tension stresses not to excec; 250 psi. a
-Tensile stresses above 250 psi are to be redistributed to other resistance
mechanisms by local joint openings.
*These factors of safety correspond to the trial load method and are in line
\'lith the previous practice.. They do not necessarily apply to ether methods of
analysis •
' ~. .
-I • f ~ • • . "' ' ~ '\ .
. ·: . ' ,;')~ . \ . . .
\. )• ; ,. ·: ~ ' • : • CJl • • .4
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
c) Ext~eme Loading Case EL-l, El-2
-Compressive stresses -F. 0. S._ ~1.
-Tension stresses exceeding the tensile strength of 750 psi are to be
redistributed to other resistance mechanisms.
In case of horizontal tensile stresses across the arches the dam should be
considered as a set of unrestrained cantilevers 50 percent of full height,
because of opening vertical construction joints.
·.
---, .. -----------
TABLE 4.1
I CombinatJ:cn ~lass u 5 U A L Unusual Ext reme
load Combinationf CombinatJ.on Number 1JL..:1 UL--Z UL-.} UL-4 1JNC-1 ll-1 t.l-Z
5 Df.AO l 0 A 0 X X X X X X X
T
A
B T
A I Air and Reservoir fcbt•uary X
5 r.
I Watur l empeJ·atun~s April X
f. L
0 Reservoir Water 1,455 X X X X
A 1,46:> X
D Levels 1,Z~') X
L 5 1. 4.)1) X X
0
A 0 I 0 y I N
A
t-1 n.s c
c I Ma~imum Credible 5% Damp. X
A c s
E l f..arthquake fl.4G
5 0 10 Damp. X
A
0 s
•-
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
5 -METHOD OF ANALYSIS
5.1 -General
The Arch Dam Stress Ana 1ys is System (ADSAS) program which is a computerized
version of the trial load method, is used for static and earthquake dynamic
analysis. In the analysis the arch dam is assumed to be a continuous structure.
The dead load is applied in the cantilever direction (construction joints
grouted at full height of sections).
The computer program SAP IV is used for the unrestrained crown _cantilever analy-
sis in cases where the dam is subjected to ~trong earthquake motions, causing
opening of the upper part of vertical construction joints.
0
5.2 -Method of Definition of Loads
a) Temperature Load
The two-dimensional heat transfer program (heatflow) is used for
determi nation of temperature d i str i but ion in the dam body.
The USBR Engineering Monography N34 is used for computation of the amplitude
of the sinusoidal cycles,
(Annua 1, 15-0ay and Da i 1y). The temperature 1 oads input into ADSAS are
presented in Appendix A.
b) Hydrodynamic Load
The hydrodynamic pressure due to horizontal earthquake on the dam upstream
face (nadded mass 11
) is defined by using Westergaards Formula
and is reduced to 60%, due to the effect of narrowness of the gorge, inclination
of the dam face and water compressibility (see Appendix C.)
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
6 -ARCH DAM GEOMETRY
The arch dam abutments are founded on the sound bedrock of the canyon. The
sound unweathered rock is determined as generally 40 feet be1 ow the bedrock
surface and the foundation is trimmed so as not to cause an abrupt change in the
dam profile and hence a concentration of stresses ..
At the bottom of the valley, the dam sits on a massive concrete plug which can
adjust to any disconformities of the bedrock at the valley floor without
changing the geometry of the dam. Sound bedrock does not continue above approx-
imately ·elevation 1350 feet on the left bank and a massive thrust block is con-
structed to take the thrust of the upper 100 feet of arches. A similar block is
founded deep in the rock on the right side in order to preserve the symmetry of
the dam profile.
The dam geometry is shown on Plate 6.2. It is a double curvatur.e structure with
the cupola shape of the crown cantilever defined by vertical curves of approxi-
mately 1352 feet and 869 foot radius. The horizontal arches are prescribed by
varying radii moving along two pairs of center lines. The shorter radii of the
intrados face cause a broadening of the arches at the abutment reducing the con-
tact stresses. The dam reference plane is approximately centra 1 to the bottom
of the va 11 ey and the two center confi gur at ion assign l anger radii to the arches
on the wider side of the va 11 ey thus pro vi ding comparab 1 e contact areas on both
sides of the arches at the concrete/rock interface. The longer radii will also
allow the thrust from the arches to be directed more into the abutment rather
than parallel to the river. The net effect of this two center layout will be to
improve the symmetry of the stresses right across the dam.
' The crown cantilever is 635 feet high. It is 20 feet thick at the crest ar1d 90
feet thick at the base. The bottom mass concrete plug is 50 feet high. The
slenderness coefficient of the arch is equal to 90/635 = 0,142 and the radii of
the dam axis at crest level are 710 feet and 780 feet for the left and right
angles of the dam, respectively. The central angles vary between 51.5 DEG at
El. 1300 and 25 DEG at the base for the left side of the arch dam and 58 DEG to
30 DEG for the right side. The ratio of crest length to height for the dam is
1260:635:: 1.98:1 {thrust blocks not included).
I
I
I
I
I
I
••
I
I
I
I
I
I
I
I
I
I
I
I
The left bank thrust block is 105 feet high and 170 feet long at the base. The
right bank thrust block has a maximum height of 100 feet and a length of 155
feet and is adjacent to the spillway control structure, which will behave as a
continuation of the thrust b:ock, transferring the thrust directly into the
rock.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
7 -STATIC LOAD CONDITIONS
7.1 -Dead Load
!n all analyses, the vertical construction joints within the dam are assumed to
be ungrouted and hence the weight of the dam is considered as confined within
the cantilevers, with no distribution through the ar·:hes, and directed verti-
cally downwards into the foundation.
7.2 -Hydrostatic
Hydrostatic loadings induced by the reservoir at specified levels were consid-
ered in all load combinations. The effect of tailwater and uplift pressures
will have little effect on the overall stresses and are not considered at this
time.
7. 3 -!_emperature
(a) Solar Radiation ·
The dam orientation, running north-south, and the narro\'f valley will cause
solar radiation to have only minor effects on concrete temperatures and
hence stresses frDm radiation will be neglected at this time.
(b) Air Temperatures
Because of absence of temperature records, temperatures at the Devi.l Canyon
site have been interpolated from records taken at two stations: Summit
(El. 2405 feet) and Talkeetna (El. 345 feet). The stat·tons are equidi.stant
from Watana and their average altitude is similar to river level at Watana.
The temperatures from the two stations were averaged to obtain the
following temperatures at the dam site:
I
I
I
I
I
I
I
I
I
I
• I
I
I
I
I
I
I
I
I
(c)
AMBIENT AIR TEMPERATURE (°F)
Mean Annual ............................................. 28.9
High Mean Monthly •.......•...•.....•.....•....•....... 55.0
Low Mean Monthly ...•......•... : .................. ~...... 4.4
Highest Me an Month 1y Maxi mum . . . . . • . . . . . • . . • . . • . • . . . . . . 63.8
Lowest Mean Monthly Minimum ••...•........• H ........... -3.6
Highest Maxi mum . • • • • . . • • . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . 91.0
Lowest Minimum ....•..•....•••......•••.......•.•.••..• -48.0
Lowest Difference between any Mean Monthly
Maximum and the Corresponding Mean
Month 1 y Mi n i mum . . . . . • • . . • . • . . • . . . . • . . . . • . . . . . . . . . . . . 14. 5
Three sinusoidal temperature cycles-annual, 15-day and daily are
developed based on USBR ENG MONOGRAPH No. 34.
The temperatures obtained are as follows:
EXTREME CONDITIONS USUAL CONDITIONS
Above Below Above Below
0
Mean (DEGF) Mean (DEGF) Mean (DEGF) Mean jDEGF)
Annua 1
15-day
Daily
26.1
28.8
7.25
Reservoir Water Temperature
24.5
42.15
7.25
26.1
15.15
7.25
24.5
22.95
7.25
Average monthly reservoir temperatures are given below. Temperatures
throughout the top 50 feet are as shown and below 50 feet they vary
lineraly to 39°F at a depth of 70 feet.
I
I
I
I
I
I
I
I
I
I
I
I
I
••
I
I
I
I
I
(d)
(e)
Month
April
May
June
July
August
September
October
November
December
· January
February
March
Grouting Temperature
32
32
46
57
53
45
39
32
32
32
32
32
Below 70 ft
From Surface (°F) ·
39
39
On account of the cold climate and the possibility of freezing, grouting
temperature was selected at 39°F~ as low as considered practicable, in
order to reduce tension in the dam induced by shrinkage at lower tempera-
tures.
Temperature Distribution
The temperature distribution in the dam body was determined using the two
d irnensi on a 1 heat transfer program "HEATFLOW' obtai ned from the U.s.
Department of the Interior (formerly USBR) and was input as a uniform tem-
perature combined with a linear distribution as described in Appendix A.
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
••
I
7.4 -Load Combinations
Static analyses were performed for the following normal loading combinations:
UL-1 -Hydrostatic and dead loads at normal reservoir level 1445 feet
UL-2 -Hydros~atic and dead loads at maximum drawdown reservoir level 1295 feet
UL-3 -The same as UL-1 plus temperature (February)
UL-4-The same as UL-2 plus temperature (April)
UL-1 and UL-2 Conditions
The cantilever and arch stresses along the face of the dam are shown in Figures
87-1 to 87~4 in Appendix B. In both the arch and cantilever directions, the
_entire structure is in compression and below the allowable stress of 1250 psi,
except for a few isolated areas where small tensile stresses occur. Maximum
(compression) and minimum (tension) stress for conditions Ul-1 an UL-2 are shown
in Tab 1 e 7 .1.
The arch and cantilever stresses for loading combinations UL-3 and UL-4 are
shown in Figures 7.5 to 7.12.
The maximum and minimum stresses along the rock/concret~ interface and in the
dam above the foundation are given in Tab 1 e 7 .2.
7.5 -Conclusion
(1) Under hydrostatic loading, minor isolated tensile stresses occur up to a
maximum of 97 psi.
( 2) In bo;-;1 cases with temperature 1 oadi ngs UL-3 and UL-4, the compressive
stresses are below the allowable limit .
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
(3) In UL-3 case, tensile stresses are acting in isolated areas. The tensile
stresses is possi b 1 e to e 1 i min ate by refining the shape of the arch.
(4) In UL-4 case, the crest of the dam is in the arch direction subjected to
almost axi a 1 tension. Ten~i 1 e stresses up to 200 psi are found at the
whole height of the crown downstream face.
. Prevention of these tensile stresses is possible only by application of special
measures such as:
-Low closure temperatures at the upper part of the arch which may be obtained
by using closure slots between adjacent blocks filled up with concrete in
spring time when the blocks are at minimum temperature.
-Thermal insulation of the downstream face.
-Prestressing the upper part of the dam by means of flat jacks.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Arch
Max
Min
TABLE 7.1
EXTREME ~mGN!TUDES OF STRESSES
AT ROCK/CONCRETE INTERFACE
Loading Combination (stresses in psi)
UL•l
792 (D. El 1100)
23 ( U . El 1 000)
Cantilever
Max
Min
722 (D. El 820)
-27 (D El 1370)
Principal
t·1aX 1 049 ( 0. 1 000)
Min -140 (D. 900)
-indicates tension
D indicates downstream face
U indicates upstream face
UL-2
432 (U El 900)
3 (U El 1 000)
760 (U El 900)
-97 (0 El 1200)
MAXIMUM STRESSES IN DAM ABOVE FOU~DATION
Arch
Max
Min
Cantilever
Max
Min
UL-1
958 (U El 1100)
182 (D E1 1 000)
575 (D El 1000)
0 {0 El 1370)
UL-2
· • .~ 548 (U El 1000)
-36 (D El 13i0)
542 (U El 1000)
-44 (U El 1295)
I.
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
· Arch
Max
Min
Cantilever
Max
r4in
Arch
r4ax
Min
Cantilever
Max
Min
TABLE 7.2
EXTREME MAGNITUDES OF STRESS
ALONG ROCK/CONCRETE INTERFt'.~g_
Loadi~g Combination
UL-3 (point) UL-4 {point)
747 (U El 900) 381 {D 1100)
-182 (U El 1455) -157 (D 900)
689 (0 El 820) 804 (U El 900)
-393 (0 El 1370) -281 (D E1·1455)
EXTREME f~GNITUDES OF STRESSES
IN DAM ABOVE FOUNDATION
Loading Combination
UL-3 (point) UL-4 (point)
.
1180 ( U El 1200) 717 ( U El 11 00)
-134 (D E1 1000) -268 (U E1 1455)
t U E l 1455)
515 (U El 900) 608 (U El 1000)
-75 (D E1 1370) -62 (U El 1295)
I:
I
I
.I'
I
I ...
I
I
I
I
I
I
I
I
I
I
I
I
8 -DYNAMIC ANALYSE.S
Preliminary assumptions for purposes of analysis are as follows:
The assumed . ..response spectra input to AOSAS is from Figure 3-4 of the ~~oodward
Clyde Draft Report 11 Prelirninary Earthquake Ground Motion Studies for the
Proposed Susitna Hydroelectric Project". The mean response spectra for the
Benioff zone is scaled up to 0.5g peak from 0.37g. The damping ratio is five
percent. The response spectrum is shown in Figure 8.1. The response spectrum
analysis was initially attempted for 1 to 20 modes. A larger displacement mode
was encountered on mode 19. The high displacement induced unreasonable stresses
in the dam and therefore made the results useless. The problem was re-analyzed
using 14 modes of vibration.
The response spectrum analysis assumed an instantaneous concrete modulus of
5,000,000 psi.
The results of positive and negative earthquake are presented in the following
tables. The load combinations are hydrostatic and grvity + earthquake and
hydrostatic + gravity + uniform and linear temperature~ earthquake:
Tab 1 e 8.1 -Response Sect rum Analysis -Arch Stresses
Table 8.2 -Crown Cantilever Stresses
The resultant tensile stresses of 2580 psi and 729 psi in the arch and canti-
levers, respectively, are greatly in access of the allowable tensile stress of
500 psi.
The results of a dynamic analysis of Devil Canyon Arch Dam based on a 0.4g peak
ground acceleration, 10% damping, the Woodward Clyde Consultants response
spectrum (see Figures 8. 2) and using the ADSAS program are shown on Figures B.15
and 8.16. For comparison~ the results of dynamic analyses for a peak ground
' acceleration 0.5g and 5% damping are presented on Figures 8.13 and 8.14
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
The ·change of earthquake parameters to 0.4g and 10% damping has reduced the
compressive~ tensile and shear stresses at a 11 points on the dam faces by a
factor of 1.58 compared to the O.Sg acceleration and 5% damping case.
The case of upstream ground movement {hydrostatic, gravity and earthquake
loads), the maximum cantilever tensile stress at the upstream face dropped from
729 psi to 427 psi (at elevation 1285 feet on the crown cantilever). The maxi-
mum compressive arch stresses at the upstream face (crown El. 1370) dropped from
3657 psi to 2551 psi. Stresses on the downstream face are much lower than on
the upstream.
Downstream ground movEment (hydrostatic and gravity minus earthquake load) shows
extremely high tensile stresses across the arches (see Table 8.3). The stresses
computed are not realistic .. As discovered by field observations and model tests
on other projects, earthquake induced ground movement in the downstream direc-
tion causes the radial construction joints at the upper part of an arch dam to
open. The tension induced in the upper part of these arches is relaxed and the
dam eva 1 ves into a set of independent, unrestrained cant l1 evers, deflecting
freely in the upstream direction.
In order to accord more closely with the actua 1 behavior of the Devil Canyon ·
Arch Dam, when subjected to strong earthquake motions, dynamic ana lyses on the
unrestrained crown cant i 1 ever were pfrformed using the computer program SAP IV.
Model test on other arch dams with simulated radial construction joints~ per-
formed by 11 I sr.-tES" have shown that opening of the joints take p 1 ace over the top
1/3 to 1/2 (depending on the narrowness at the gorge) of the dam, while the
lower part remained intack.
The ana lyses are based on:
(1) The Woodward Clyde Consultants response spectrum curves for the Benioff
zone with peak ground accelerations of O.Sg and 0.4g and damping rates of
5% and 10%.
I
I
I
I
••
I
I
I
I
I
I
I
I
I
.I
I
I
I
I
(2) The hydrodynamic stress di stri buti on as proposed by Westerguard approach
and reduced to 60% due to the effect of narrowness of the gorge, inclina-
tion of the dam upstream. face and water compressibility (see Appendix C) ..
(3) Full reservoir water level 1445 feet computer program for dynamic analysis
has been used •
The following combinations of earthquake parameters have been examined:
Peak Ground
Acceleration "G"
0.5
0.-4
Damping Ratio
(Percent)
5
10
0
5
10
The results of the cantilever dynamic analysis are as follows:
Added Mass
(Percent)
100
60
100
60
100
60
100
60
(1) The natural period of vibration 11 T11 is 0.62 sec, 0.15 sec and 0.09 sec.
(Various magnitudes of acceleration and added mass have little effect).
For comparison, a full height cantilever, which is slender, has been
computed. The periods were found 2.42 sec, 0.49 sec and 0.20 sec. The
stresses in the upper part of the arch in this case were smaller than in
the short cantilever.
I
I.
I
·:-
1
I
I.
I
I
I
I
I
I
I
I;
I
I
I.
I:
(2) The stresses due to hydrostatic and gravity and dynamic loads are presented
separately and in combinations. In Tables 8.4 and 8.5 and in Figure 4,
maximum tensile stresses of 880 psi at the downstream face were obtained in
the case of 0.5g, 5% damping and full Westergaard's added mass at 170 feet
bel ow crest leveL. Compressive stresses at the upstream face at that level
are 1100 psi. The maximum tensi1e stresses in case of 0.5g, 10% damping
and 60% of Westergaard's added mass are equal to 451 psi.
The change of damping from 5% to 10% decreases the maximum tensile stresses
approximately 1.6 ·times. Th·e application of 60% added mass instead of full
Westergaard's provides a reduction of the maximum tensile stresses of about
25%.
In a 11 comb in at ions of dyanmi c J oads considered, the tens i 1 e stresses at the
base of cantilever have changed to compressive (except of case O.Sg, 5% damping
and full added mass, where tension is reduced to 55 psi) (Figure 8.4).
In the case of 0.4g, ground acceleration, the maximum tensile stresses at the
downstream face of cantilever dropped to 509 psi 120 feet below the crest with
5% damping and full added mass, and to 272 psi with 10% damping and 60% added
mass.
The effects of the change in damping and added mass are approximately the same
as in the case of 0.5g acceleration.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.I
I
I
i) Arch.at Elv. 1455'
STATION FACE
E
1000
I
E
1143
I
E
1259
I
E
1393
I .
E
1526
I
E
1638
I
E
1711
I
Q E
1714
I
TABLE 8. i
RESPONSE SPECTRUM ANALYSIS
~ HYDRO + HYDRO + HYDRO + ! HYDRO + GRV
GRAVITY GRAVITY + EO GRAVITY-EO r + TEMP + EO
467 3404 -2470 3294
313 1943 -1630 1784
516 3229 -2197 3122
307 2304 -1690 2146
484 2948 -1980 2843
366 2749 -2017 2611
406 2498 -1686 2383
438 3019 -2143 2896
324 2033 -1385 1877
417 2566 . -1732 2376
303 . 1591 -985 1356
342 2232 -1548 1962
274 2513 -1965 2105
576 2409 -1257 2465
267 2574 -2040 2125
607 2478 -1267 . 2596
HYDRO + GRV
+ TE~1P -EO
-2580
-1476
-2304
-1848
-2085
-2155
-1801
-2266
-1541
-1922
-1220
-1818
-2373
-1201
-2409
-1146
I
I
I
I
I
I
.1·
I
I
I
I
I
I
I
I
I
I
I
I
TABLE 8.~
RESPONSE SPECTRUM ANALYSIS
ii) Arch at E1ev. 1370'
I H.YDRO + HYDRO + I HYDRO + I
STATION FACE GRAVITY GRV + EQ GRV -EQ
E 642 3657 -2373
1000
I 255 949 -439
t:' 707 3222 -1808 lu
1143
I 258 1597 -1081
E 593 2461 -1275
1259
r 396 2247 -1455 .
E 416 1634 -802
1393
' I 518 2558 -1522
E 295 1188 ... 599
1526
I 498 2383 -1387
E 206 1071 -659
1638
I 413 1979 -1153
E 110 1220 -1000
1711
I 374 1449 -701
.HYDRO + GRV l HYDRO+ GRV.
+ TEMP + EQ + TEMP -EO
4119 -1911
697 -€91
3677 -1353
1355 -1323
2884 -852
2021 -1681
2006 l -430
'
2323 -1757
1511 -275
2111 ' -1659
1297 l ·433 I 1733 -1399
1266 -954
1345 -805
-•-
·1
I
I ..
I
I'
I
I
I
••
I
I
I
I. -
I
I
' I
I
ELEV.
1455
1370
1285
1200
1100
1000
900
820
FACE
u
D
u
n
u
D
u
D
u
D
u
D
u
D
u
D
TABLE 8.2
RESPONSE SPECTRUM ANALYSIS
CROHN CANTILEVER
HYDRO + HYDRO ·+ HYDRO + ! HYDRO + GRV HYDRO + GRV
GRAVITY GRAVITY + E_Q GRAVITY-EQ + TEMP + EO + TEMP -EO
0 0 0 0 0
0 0 0 0 0
109 -581 799 -564 816
56 653 -561 658 -576
98 -729 925 -655 999
222 1021 -577 950 -648
71 -629. 771 -508 892
402 1111 ... 307 988 -430
102 -435 639 -282 792
544 1110 -22 948 -184
223 -142 638 -31 19.9.
575 1026 124 ' 851 -51
383 -19 785 113 917
539 988 90 842 -56
305 -402 1012 -373 1041
722 1541 -97 1508 -130
--.. ---
EARTHQUAKE ELEVA11Uff) Of fACE Of DAM
ARCH FT.
0.5G u
1455
D
'
5% Damp. I u
1370
. D
u
0.4G 1455 .
0
u
10% Damp. 1370
D
--· --· .-.. ,_ ... -: .. , .. -
TABLE 8.3
DISTANCE ALONG THE ARCH (FT)
CROWN ABUTMEtff
0 143 394 638 714
-2470 -2197 -1686 -985 -2040
-1630 -1690 -2143 -1548 -1261
-2373 -1808 -803 -659 -lOOQ
-439 -1081 -1522 -1153 -70l
-1392 -1203 -919 -512 -1149
-720 -957 -1196 -855 -751
-1267 -887 -355 -341 -592
-185 -589 -774 -578 -306
--·--. . -· ·---
Table 8.4
DEVIL CANYON ARCH DAM RESULTS Of SINGLE CANTILEVER DYNAMIC
ANALYSIS fOR 0.5 G PEAK GROUND ACcELERATION
1428 -5 29 + 180 + 144 + 177 + 141
1375 -72 148 + 760 + 604 + 685 + 546
1322 -265 405 +1210 + 960 +1075 + 856
1269 -530 750 +1630 +1300 +1450 +1150
1216 -930 1230 +2060 +1635 +1823 +1440
1163 -1495 1885 +'2620 +2081 +"2300 "+1825
1110 -2295 2785 +2840 +2255 +2490 +1570
1. Resultant stresses are computed for dynamic loads applied upstream
2. 11 *11 indicates maximum tensile stresses; 11011 indicates corresponding
compressive stresses at the opposite side of the same level.
3. (-} indicates. tension.
-t51
-612
-805
-880*
-830
-735
-55
sses
at Downstream Face
-114 -148
-456 -537
-555* -670
-550 -700*
-ll05 -593
-196 -415
530 205
---
s
-112 175 139 112 136
-398 688 532 .b13 474
-451* 945 695° -S10 591°
-400 1100° 770 920° 620
-21C 1135 705 -S93 510
60 1125 536 !lOS 330
315 545 -70 195 -325
Table 8.5
DEVIL CANYON ARCH DAM RESULTS OF SINGLE CANTILEVER DY.NAMIC
ANALYSIS FOR 0.4 G PEAK GROUND ACCELERATION
1425 -5 29 + 143 + 114 + 140 + 112
1375 -72 148 + 577 + 459 + 528 + 420
1322 -265 405 + 914 + 727 + 826 + 656
1269 -530 750 +1233 + 977 +1110 + 885
1216 -930 1230 +1547 +1230 +1394 +1105
1163 -1495 1885 +1971 "+1560 +1750 +1390
1110 -2295 2795 +2130 +1692 +1897 +1504
1. Resultant stresses are computed for dynamic loads ap~lied upstream
2. 11 *11 indicates maximum tensile stresses; 11011 indicates corresponding
compressive stresses at the opposite side of the same level.
3. (-) indicates tension.
-1'14 -85 -111
-429 -311 -380
-509* -322* -421*
-483 -227 -360
-317 0 -164
-86 325 135
655 1093 888
-83 138 109 135 107
-272*' 505 382 456 .348°
-251 649° 462° 561° 391
-135 703 447 580 355
125 617 300 464 175
495 476 65 .255 -105
1381 -165 -603 -398 -791
-liS ._ ~-
1.2r-~--------------------------------------------~--------------~ ..
I • .
1.0 +
ap = 0.21g
0.2
0.03 0.1
.
Damping Ratio== 0.05 · .
,
+
. . 0.3 1 3 10
Period (seconds)
MEAN RESPONSE SPECTRA AT THE DEVIL·s CANYON SITE FOR
MJl,XlMUM EARTHQUAKES ON KNOWN ACTIVE FAULTS
.. ---~--•.
...-
0') ...._
ItS
(/)
...
c
0
•r-
4..J
ItS s...
<U .--
<lJ u u
a:::(
r-
I'd s...
4-)
u
<lJ a.
(/)
1.2.------------------------------------
DAMPING RATIO= 0.10
1.0
?
0.8
BENIOFF ZONE
0.6
/ DENALI FAULT
0.4 a = 0.37g p
a = 0.2lg p
0.2
Period ·(seconds)
0~--------~--~------~----------~--------·--~----------~--------~ 0.01 0.03 0.1
Prepared by Acres, 6/4/81 from data
, provided by M. Powers, WCC
1 . .3 .10
MEAN RESPONSE.SPECTRA AT THE DEVIL.CANYON.SITE
FOR MAXIMLKv1 EARTHQUAKES ON KNOWN .ACTIVE .FAULTS
--.• t.'DJ ---' @II
I ot SJNTEGRA.TEO PAl<
OF ARCH DAM
J+A
lNTACT PART
OF A.I<C~ OA!'-"
-----,
\-I'(OROSTATlC ADDE.D MASS
-151
-<#l'l
-805
-88/:J
-8'00
-7~5
545 +Tn7777.m7J.~ .-65
-ss(-e~)
(~4-8) "08'2..
-52'2. (-'251)
(~55) 441 ,__~~ _221 (·l~S)
(116) ~00 1-...:;:::::.-10 (l25)
(-105) ~5 J==::::J o'2. s ( 4~'!>)
-b7'J'7h.T7777,..&
109~ Q~81)
0.6 G f. 5X DAMPING 0.4-G f 10~ DAMPING
tOO o/.2 AODE.O MASS 100% ADDE.O MASS (4 !SO Yo IN BAACK.E.TS)
CANTILE.Vl:.R STRE..5SE.S (PSI) . "
SE..CTION A-A
DIRC:.CTION OF GFlOlJ~ t-AQVEMENT
NOTE-;
0 (MH-lUS) tNDICATSS 'Tt:~SILE STR.E~SS
Ql {PLUS) lt-.IDICA.TE.S.. 4:;0MPI<.E.S51VE.
ST,aE.$5.
OE.VIL CANYON ARC\-\ DAM
E:ARTl-tQUA.K.E DYNAMIC ANAL-YSlS
fiGURE
I·
I ,,
I
I
I
I .,.,.
I
I
WATANA LAYOUT STUDIES
(J. Lawrence, R. Ibbotson)
I
I
I "'
I
I
' I
I
I
I
:-':._·.· .. ·. · .. ~-.. :::·. ·<· . ,..~· .. : .· · ... ' ·_.· .. · .. -... · _:_ .· .. · .. _· · .. ' . ·\~ .· ":~ .. · ., :
'.: • • • ._ .. _. ~ • -: • ' • • ~ •• ~ • ' < :-. • ~ • • ' f : • • • • • • • . : ••• •• : ' • • • • ·' • • • \ ...
-~-
l>GV~atT
Seu:c;t1~
bf.\fV\ pes lt.SwN ~'*---4------~~ l.-1\ tou-rs
f
. . .
~----~-
-----------
-
,.,... ... / ... ......---··· ---··
,..._. ... --..... ............._ .,....-···
. .
.................. "." ·-.... ~----.-. _____ .,_.,.,. __ .. "!"" __ -.,_ .. ______ , ______ .... --·-------·-----.. --., __ , ____ ...,_.._ ..... __ ....__ .. ..,._,. ............. ..
- --.. -• c.~.---
I _..,_ -------
.. ~ .. I
2.~00
t!IOO
'tliOO
~·oo
lOOO
1900 OtiiGIIU.\. --· --· ·--------------
11~00 ...... --.,.~ ··--·· --------·-----------
I "tOO
1!000 ··---~------------
1!:.00 . ··---------·---------------
14.00
SECTION A-A
'\UOO
't'ZOO
'1100
'ZOOO
-· .. ___ ,., ________ _
1900
1800
l!Ulf'£ noo
tGOO
1!>00
1400
SECTION B-8 Pl.AT'E 7.2:
WATANA
t..11\IN o.t.t.1· tAll. SCHE\t!!S1
......... ·-t 7 t • t 4 s t It
F£FF rrrl-·rt -----.... _ .. ___ .._, _________ .........,.__. ___ ..
-------------
I ~
,,s,o
1..::0
1330
lo!!QO
1750
I'JOO
IG50
1<000
I !>SO
ISOO
t4SO
1400
-
!I•WIIf.f.l.l\lc:UOIT1!0~ .40'w. !>0'..,
IP._ '!>~'"'• AO~.--·
SECTION A·A
sc...ut•A
0 t
-............. ___ .. __ .,...._ .. ,_ .... ~-.. ·-·.
---
SPILLWAY PROFILE
' .,
-
g+C
SECTION 0-~-.... ·-:-·-stw--["
&C:AI.~t A ta!O .,. ----\·---JIIIIIIl)
ltc>O ·----··~---·
§ECTIQN E-E
~'A
TYPICAL CHUTE WALL SECTION
~·e.
ll200f
21!SO
2100
SECTION C·C
~•A
SECTION B·B
~LatA
GE~J<M. RI!.YJSION
t . ' t
''". -·~· .. ._ ~-... -
- -----
~~~s---
GENERAL ARRANGEMENT ......-----'''So~
SCAI.X!A
• 7 • •
-- --· --
ADCC.O ~101'1 . •
t
--
SECTION A-A
~[18
CI21TE2fA
~IZ'IICC. l!PIU.~ ~· ~001:1 IIQ,.ClO t:.~
tM!.RG!JlCY !!.PIU.Wfo.V MAX~ n.«!!....;.-170.alol:.i':
«:st~ ~ !AA'(I¥1,~ ~ h::Yt.,Oll-2ZOO'
~ll. IW>lllhiW u1~ 'Wim ~~-'I!~
-
PLATE 7.4
WATAAA
SCHEM£3A1 Pl~N ~ SECTlON
--· -
1.'700
SPILLWAY PROFILE
I 'fOCI -·-····~. ·---.... ··--·------
1!!.00
SECTION A·A SECTION 8-8
.... , tq . ' • t • t •
- - -----
0 100 li)O F1tl'
....
. .
r
1
...I
I
I
I
AlASKA. POWER AUTHOitTY
~tANA
S~~AI . SPilLWAY
, _ _....._,. ______ ..... ,.., __ ,.._. _...., ____ , ___ .,. ____ .,. _____ ,. ... A .. ·:,.;.-.. ~1"-----.......... , ••
---
.. /-" .. ___ .. .--... ·~···~~::-\'
,...--··-···-----... --·· / _,.......,.
--------
-
11100
1500
1400 1----------·-··----.
-~-----
' ' ~~
I
I
~A
rt>B
---·•-. .... _ ... .__ ______ a..'ltG&'
SPILLWAY CONTROL STRUCTURE (tHLAIZGI.O)
SCAUl. t &
u.n ~~----·---Coetl ·--·--------
SECTION A-A
1:1(; ... 1.1. • 0
...........
•• !.. .... ·~
,.
c~~l'lr'*l
SPILLWAY PROFI,LJ;:
-llc:AL£ I .a..
............................... ""' ...
l 1
I I
·--....... -... .. _____ _
•• --··-·--1 ,, __
I '
SECTION C·C
'SGA.Uio t & .
.......
_____ ...,_....,._ .......... ~ ........ __ , ... ·-·-·-·-···-·--------,-...__,., ___ ... _____ .. ..., ______ _
-•• ---.. 0 ---
~-........... ..., N, ,f,
q.
-~----
........ •• t ' . -· 1.
----Q --
• t .
--- -
PLATE 8.1
\VAT ANA
VA~/£ M'£ ~'lAY ~llliltu.TM:
~t>lt.~ AAAANGEMENT
--
1900
t3qO
'2,'2.00
tiOO
tooo
I 'tOO
1600
noo
1600
1500
I<&QO
MAIN DAM -PROFILE
.MAIN DAM SECTION AT MAXIMUM HEIG!iT
I&Oor----------------------------b·~----------------------~---------------------------------------------------
• tcnn~
ta~YTR~
.. ,, . ~~':m. UPSTREAM COFFERDAM SECTION
"'~~~'illT
' HOIIW.L ftNtlt ~~--~~~~~~~~~------------~-t--~~----~-r----~---\i~~--~~~ -~.M~I
~~ II.J' ,,~L_----~--~~~===Ll=====================~~~==~~====jljt======~~~--
• t • . I t 15 t
•• <I\ ... ..,~ ... , ...... -........-, ........... _..,.._..,.__, ___ ,,._. __ _
--- -
--,.,{)--
.... -. .,-
PLATE S.2
l~TANA
VALVE TYPE-SPillWAY AlTERNATN'E
MI\IN 'Of\M /I.NO Cl\'£RSIOH
f a •
F'FFI--FI
. '
-Cii* --· --. . ~.-.. . ~ . . . ~ -
' ·~ ~ 'f' • .. • • \. 4 ~ ~ • •
~ .. . . . . . . . " ~ '
. ·. ~ ~ . . .. ·~ ' . ... ... . . " .
'·
J;i<IO:... ---
. --
-:-------·----,-----
---~-------'--·~·.-
POWER FACILITIES -PROFILE
----· , ... , .• :J"f, ....... "-··~
·----------,''l-!~·1>'~ ~
---.. ··---·-·-·.. -·----------SPILLWi\v-:.-·pRoFiLE
________________ __..........__ ... ···--
~ --------------.. -. ... ----. ~--.. ---~ -1------~~1<~~
-·---~-----------------------
SERVICE SPILLWAY ______ ___,; __________ .. ,, ___ ::; ___ ~--~-~-~ .. :.; ... ~-~..-...:=-~-·····-----·-·
-------------·. ·--·-·-··-·--·--·-·--------------------·-----------' ---·-------·
~----·--.. ,..,._..... ........... --. .....1!. --....... , . .,., ·-
----... ----·
---···-'-· -·--
•· ·* , ..... ~-·.:;-., ........... -... -· ' .. -·* ....... ~ ...... -·-.. " . ...-.---
~
~---=~~~-!.~"!!~"'~~~~~ -·-·-----~r~
WAtANA
t.OOP.TlON CF' SHU-ll 2DNES
-----·--·---
·~!'
-• t • 7 t • . , .
""·-"'-..... .. --.. -.-· ...
..
.. ---·· -· ... ,......,._ ... _ _..,...... ........ ~,._ . .,. .... -
------~--. ~ ~~ -.. .-Q -
?-~ O·f' 1.111
i-9ll -.f.J;~
~J·'l9 !}qtl
,.q:> r.n .... ~-~ , ... loot-
•oa; ;~
1 ..CIIi '!ll• .... ,$'lt)
LATE 8·1
AlA$b.. POWER .l.UTHOiriY
WATANA
p.f\M VOLUMES
rrrrrr ... " .
---
I
.I
I
I
I
.I
I
()
I
I WATANA DAM DESIGN
I 1. General Considerations (W. Lamb)
I
I
I
I
I
I
I.
I
I
BORROW AREAS
. 10-EET .
• r~Q~TOURS
11. DATUM OF 1929
§\lA.':kA. • • •
~ . .... ~ ....
:I Gil. SURVEY •
8 • OR RESTON. VIRGIN!.\ 22092
QiiAOr:ANGlE lOCATION
S'(MOQLS IS AVAilABL£ Ott REQUEST
••
WATANA
14t·3Q"
1Mapped,
lconhol by
ROAD CLASSIFICATION \Tnl"l<l'l~>'aonM
N d . . !IC~l\cn o roa s or lta•ls m this area
:UOIVCt5J1
TALKEETNA MOUNTAINS (0-4) .
N6245-W14830/15X30
1951
.MUO!l!£YI$t011S 11165
po.ooo .
;1000
!zone 6 •
ltanri
Folios S·l
-
__,
0'1
I
.....a
'-0 co
.....a
0
0 !)
SUSITNA RNER
•
"2_,0~
nl/·1)3
T~'.AP·21
.~:--·-••
u.s, Slonjiord Sieve Optnlnga In lnc:hu
f!j·
un ..
eo.
.
70 -~
t1\ ;
~0 . I ~0 ·-J:: o-·-' ... .
~
;II. 60 4;0 ,.. ..c.
~ . ..Q. "" &
L..
0 ~0 c: ·-U-
II\
~ ...
0
0 u -c:: -C) 40 (.) ... i$0 c
:. ...
u
IU ; ... n. \ ...
I D.. . .
30 '70
1
i
\
' ; ISO
l
J so
tOO
0.0~ 0 100 '~0 .. 10 . 5 0.5 0.05 0,1 0.0~ 0.005
Gram Size in Millimeters .
J I . . SAND, SILT or CLAY GRAVEL.
Coar$0 I Fine I Coarse. J Medium Fine
PI CLASSIFICATION 8 DESCRIPTION
SM ~---------+~~~~~~-+------r.------r------r--------------------~--------------------~ Typical Gradation Curves ~~~~~--~,--~--~~---~--~---~-----t-------·1--------------------------------------------~
SM
SM \ --. SM
AH-02-4 SM
AH-02-5 SM .
AH-02-8 SM
AH-02-9 SM . . DRAWN BY DL
BORROW AREA D APPAOVSJ 61 j
C 0 N SULTAN TS, IN C. SU~RY OF GRAIN SIZE DISTRIBUTIONS .DATE DEC. 198Y
- - - - -.. ,c!!JI .. ) -ae --•e!!•· ... - - - -
. .
. .
..
'
U,i.lf.N.1UJD iQVI Of'D.tNO 14 tiCifa'.S
I . . .
I ' f
I 4
.
I . • ' . r :. . . I. :
• I •
. .
• • .. . I • • J • •
. . . ··~
. ,• . •
-t-i--+--1---10
H--H--t--1--l---lta
t--t--1----liQ
. . .•. ,,I I
• I 1 . I if.nv~lqio Of JrDdjl~lpn· CUfVOS do~ived. frpm tests of samples from test pits. 8 t1uu 19 t Uorra\.t area D.. "
(Outside lines represent extreme
range of preliminary 1981 results}
!
...
•
l.
I'
---.. --; --r -· .. -•-\-: .. _ -... •
. .
00
40
)(
~
·Z -
'I: 30 u -t--
U)
ct
..J
A.
20
10
7
4
0
BORROW AREA D
ATTERBERG LIMITS FOR MATERIAL 0-10 FEET
Natural Water Contents
®
. --AH
10
AH = Auger Hole Results
TP = Test Pits
-
(
; .
\~o 0
NP = Non Plastic samples
#200 SIEVE
·®
TP
."'I
)
40· 50 80 70·
LIQUID ·LIMIT
.,
•
:-
80
--·-
90 100
--- --- -.• -.. --·· -· -·--- -
~ z -
BORROW AREA D
ATTERBERG LIHITS FOR MATERIAL 10-20 FEET
10...--
Natural Water Contents #200 SIEVE
eo..,.__
40~--~~---~-----4-----4-----+-----+-----r~~~-----r----,
0 10
• .
40 60 60
LIQUID LIMIT
70 80 90 100
•
-~-.. t --..... ·--·tal· ·-· ~ ---··-. --
..
~ z -
Natural Water Contents
so ..... -
50.,___
BORROW AREA 0
ATTERBERG LIMITS FOR MATERIAL >20 FEET
#200 SIEVE.
40~--~----~----4-----+---~-----t--~~~'-t-----r----t:
~~oL---~--~----4----4----+----~~--r-~~--~r---t 0 r.:: en cg
..J
0.. . 20L---~----~----4-----+--~~-----+~--~--~t-----r----.
@
• f·.~~ ~., •. __ .J.. _ __,~-~~h.L...J..~~-+---+---t---;---r--;
, "
1
00 60 70 80 90 100
LIQUID LIMIT
I
I
I
I
I
I
I
I
.I
I
I
I
I
·~.
I ..
I
I
I
I
I
. . ...
R a M Consulbnt Inc.
LABORATORY COMPACTION CQNT.RQ.. REFQ3T
Jal) Nome ~ l.Dcafi"'"--..::.:.::z.&.a.MRL-.I..;:a.-...-...M:~~J~il.olo.li ..... ____ """"""=-'"-'--............ -,.....-~---~~--.--~--~-......... ~
Alchitect «Enginll4!' &ere• .-.rice z •
Contractor •
J
A. Oalcripti~ of Soil: Vall Grad.C 'tttill'-GRAVELLY SILT! SAHD W '1'RJ.CE CLA
. . Unifutd AASHO
Mctwiol Merit-·------------ClassificotiOR _SM _____ Clas$fM:Otion
. .
Sautee o1 Material. Deadman cr.!ek ~l:!._~_w_-_ao-_J __ oo _ _...(_A_re_a_D __ ) -------~
Natuiol Wator Ccmnt 6 I" 0/o Natural ~ Density . PCF Speci fie: Gr04ity_
Uquid Limit l1otl Viscous 0/e Pt0$tic: Umit _____ •t. Plasticity lndex Non Pla.£tic ~
C. Tet Results: Maximum CNy Oensity_-.o:l::.:::l:;.;;;:S~·..:.O _____ PCF Optimum ~ater Content_..,g.,.~
140 I
1\
Sieve Analysis \
\
2 •
lis •
1 10
3/4a
l/2.
Jta•
t " f 10
140
1200
.02Jza
.oos .oo:z
100
95
93
89
87
86
80 g
76 ...
58 g
! 26.9u
9-.2Q:
3.~
135
130
125
. ·-
~
/
1/
"" /
1/
.I
/
f
I
J
:
-~ . . ~
::, i .,
!: .I
:·.
l ·: ..
I
i
I
-_\
/" ' / \
(1 ~
/ -
l_L~ \
\
\
:--:;,; ,..
!
-. lr..
I .
I
:
I
I . ·.• .
! ; .
' i '
~·;
I
l_ I
~ . i
\~
\ ~ " 1
"\ ... ' ' ';--\_
. I
1\.'~'~ i
\"i
\ iA .
\ F.:' ft.
l\
\ t
\ t
\9_ \ •
\ ~-
_'l ,,
\
\ \
\ ' l
~ -\
\
\
' I
\ I
•\ I
\ I
' ! _!
I
\ I I
\ I l
\I I
'4 I
Range of natural water con~en t
10 15
0
c
-·--·--~-.... --,~ ·-- ----£.··--~------·--·--·-------·--·------------~-----·---·----------··-·-----------t:l TP-80-19· \\:tentative) ~ " . AH-E9 8 I
raoo·----··----
WATANA BORROW AREA E ..
PREVIOUS EXPLORATIONS
21 TEST PITS FROM 1981 NOT SHOWN
0 TP-80-18
e Af-!-f:8 3.75'
0 TP-80-17
.+.cP
focP
"'
10ft -lliJtOC LDI. rltflW *)It~-
I:DaiiJ ~L
J
i
t-[.1.:./~ -1 Seismic Line .
. • /111--7
. 0 TP-9
Auger Hole
Test Pit
---:---; --' ' :.-· . . , ..
·~-------
U.S. Standard Slt'tl Opening a In lnch.oo U.S. Sh'mdard Sieve Numben Htdromahr .
3 ~ 11/Z I 3/4 1/Z !/8 ! 4 6 B Jl f4 16 20 30 40 506070 too l.i\0 200 no 0 100 ~f\ I II • I I l r 1 \; ~ u. I I I I I II
to.
\. I' tC! 90 h. 10 r\ ......
~
eo !\,. ~ 20 ~ "' 70 ~ i';;: 'lP E !21 1-1 SHALL0\•1 30 -"® -..:::: -(0-8 FEET) ;o.
..c.
C\ \
,•1()
'ii '3:
::: GO 40 '>.
>-t-.1'-.;Q
.0 ......
'I'-·'CI
~ ...... tl 50 L-,. 50 ·~ c: t-=A. :t:J ·-t-....... lL 0
f... (0 .... ""'( ~ c DEEP SAMPLES -~ 40 60 ...::
u """'-. I ~ ,_ -. ·.0. ., r-... "-
0.. ..... ~
" ill..
30 ~ 70 -.;;. ' .
~ ........
"'-.... 20 I .. 80 ~
• TP ~1 10
. E r-2 90
'
0 too 100
~0. 10 5 I 0.5 0.1 0.05 0.01 0.00~ 0.001
Grain Size in Millimeters
. I GRAVEL I SAND I SILT or CLAY I Coarse I Fine I Coarse Medium Fine
SAMPLE NO. MOISllJRE
t;UNIENT OE~~ITY LL Pl CLASSlFICATlON a DESCRIPTION
TP E21-1 SANDY SILT t'IITH TRACE CLAY
TJ:l E21-2 Gt-1 SANDY GRAVEL \'lij'H ~nMF. SILT
'
. !
.
DRAWN BY R E L
'} Engineering 8r Geological Consultants GRADATION CURVES FOR BORROW AREA E APPROVED BY MC H--
fVI ANCHORAGE FAIRBANKS ALASKA JUNEAU SUSITNA HYDROELECTRIC PROJECT DATE AU G. 1981
: PROJEcf NO. lJ5250'b
TYPICAL GRADATION
U.S. Standard Slave Openings In lnchn U.S. Slandard Sieve Numben Hydrometer
100
~ 2 .L..l/Z I !14 112. ~/! '!! ' R ll ll 14 I 6 ~r 30 4( 50 60 7( 100 {41) 2 00 2.1 0 , ~ ~ ~ ~ ~ X' --. ~~ r--~ I I! I
"'I.: .....;;;: ~ lh -
90 ' ' ~ ~" ~ ""-.. "'-.....; ~ "'l ~ "'-...! ~ ..... ~ ..... ...
\ ~ ~ ~' ~ 11111111 Iiiii :--. ' ~ ~ ---..:::: ~;;;::::
80 ' ~ ~ '"'~ :"'...... -I" ...... ~ t\\ ~ ~ ~
~ ~~ ~~ ~ "'r-. ..... ill ~,.. ~ ~ ~ ~\ ,\\\ ~" :--..... ...
~~ ~· :'--,. ~tl.. -t--. ~ ~ l\" l\ \ \\~ ~-' r-... i\ ···-70 -.c ' ~~ ~" ~ \ ~ 1\\ \\\\ I' SHALLO~J SAHPLE RANGE
0\
'Cij
?;: 60
>.
.0 .... .,
50 c
1.1..
' ~ ~ r--' r' ~ too. ~
~\~ ~~ ~ ~ ~ ~ ~ ~
'-~ ~~ ~ ~ ~ ' ~ ~
' '\:-., ' ~ ~ ~ ~ ~ \ -c .,
40 0
L.
Cl) n.
30
... ~ ~ ~ ~ ~ ~ ~
) i"lll ~ ~ ~ ~ ~ ~
~~ --.. ~ ~
~ ~
20 ~
10
~0 100 50 10
GRAVEL
Coarse Fine
SAMPLE NO. LL PI
1 Engineering a Geological Consultants
II ANCHORAGE ·FAIRBANKS ALASKA JUNEAU '------------
""" \ ~\ \\\ i\
~ r.. " ~\\\ " ~i '\ \ ' ~\\\ \ \ \.
~~ ~k--~ \ ~'\~
~ ~~ ~ ~ \ \\\.\ ~\
~~ t--o~ ~ ~ ~ \\ ,~""t\ ..... ~
~F: ~~
,, t' ~ " '-\ ~ ~ ~' ~ 0 ~ \ ~~' ~ ~~ ~~ ~ ~ ~~ ~~ ~ t\[\ :\. ..
~ '~ ~~ ~ ~ ~ ~ ...... ~ DEEP SAMPLE RANGE
" """ ~ ~ ~~~ ~ .... ... ~~ ~ ...... Q ~ ~----...;;; ,s .... ~
~ ~
0~ ~· 0.0!1 0.00 O.OQ~
Groin Size In Millimeters
SAND
Medium Fine SILT or CLAY
CLASSIFICATION a DESCRIPTION
COMPOSITE GRADATION CURVES FOR BORROWN AREA E
SUSITNA HYDROELECTRIC PROJECT
0
10
20
30 -cth
•20
~
-\0 :>.
..Q:l:
"""' <lti
""" 50 ......
tn
<0 •<.(;) -60 i.t::
'4b to ......
~ ...... ~
70
eo
90
100
0.001
•• ------•• ----.. -
~ .< .
U. s. StonJkrd Slave Of lAing• In ln,hn U.S, ~Uondotd ta.ve N11mben Hydrometer .
3 2 11/2 t !1/4 liZ 3/0 -l 4 • 8 12._ _14 16 20 '10 "0 506070 100 l40 200 210 . 0 100 il ~ ' J II I I' I I I I I . I I I I I I II . ..... -. 90
~ ~ ~ 10 ' ~ Ill --.
""
. .... i . -~ ....... ' .
10 ~ ~Q . .. . .. ·~
"'
~r--.:---
......... ~ .
.. ~ ~ ~w~" ~,5~ . ~ ~ ' -70 . .. ~ ~ . '30 ..:.::: -" ~ ~ ..c ~ -01. -. ..
i 3 }-2!:6-~ ~ .I' I"'' ~ ~ . ~r-~ :. 80 . . 1,~ "":---~ 4Q ::; . • '-Preliminary Limit of Gradation .}; . ~ R:--. '-. ' . ......_~ '-~~, . ·~ ... '
,.,.
~ ~0 ill ~0 ---. . !'~ ~ ~ . :0 ... ·0 u.. .... Q -.. . N ~ ~ ---
c -., 40 ~~ 6Q ,:;:::
u '• -. -... ~ "'r-. " ., ~ h. -a. . ' t' '<:'II ' -. I ~ • a
30 ..... -1!1.. --70: ... . ' . -.....; ~ . ~ . .. •• i -=+ --~ --1'-: ~
_,_
. ao ~~~--6Q . ~ ~-----.
~ .... ~-~ ... .. -~ ...... ["'Il! . . .......... :--......_ ~ ~ ~0 . . '• . ., -~ 'I
90; . r--. , . --. -
I tOO 0 too eao ..
10 ·~ I 0.6 . 0.1 0.0~ 0.01 0.005 0001 . .
Groin Size in Millimeters \
'G'RAVEL . I SAND \ ,, J . Coarse_ r Fine 1 c·oarse I Medium Fine SILT or CLAY
. .. .
. MOISTURE ORY .
SAMPLE NO. !;ONlEt.!T. OENSlTY LL PI CLASSIFICATION a DESCRIPTION
W-80-256 10.9 21.7 9.2 ---W-B0-257 12 .. 3 17. 1' 2.5
\
' .
-~
' .
.
BORROW AREA H DRAWN BY DL
R ¢M APPROVED B't J
CONSUt..TANTS, lN C. SUV1MARY OF GRAIN SIZE DISTRIBUTION PATE DEC. 198JY
-· OCftT UA_....._-
I
I
I
I
I
I
l
I
I
j .
I
J
••
I
~
I
I
I
I
I
I
' ·. r •
R 8 M Consultant lnc.
LABORATORY COMPACTION CONTROL REPORT
Architect or Engineer Acres American Inc~.
Contractor ~ · -----..--'"-----------------~
• Unified Material Mark_. __ c ____________ Classification GC-sc
.
AASHO .
Classific.otioo
Source of Material --Bo_r_r_o_w_Ar_e_a_· _H_._s_am __ p::...l._e_N_o_._w_-_a_o_-_2_5_6 __ --=----:-------1
. · Natural Water Content 10 .• 9 • 0/o Natural Ofy Density ______ PCF Specific Gravity_~
Liquid Umit __ 2_1_._7 ____ 0/o Plastic Umit_. _____ 0/o Plasticity Index.._. ---"'-"-"'---4
a Test Procedure Used __ · __ __._~~...J,;;I.S;;.J.J.~L..-.J..L_----.:;.AA~s~HT~O~------------~
C. Test Results.:Moxirnum Ory~Density_.1_3_9_·._o _______ PCF Optimum Water Content 6. 2 -
\
Sieve Analysis ~
. f\ I
Size % Passing \ i J I
"
~"
rf
4''
a~
4
10
40
00
.02nun
.005
.002
100
95
88
84
81
78
71
64 b
53 ~
38 .. 2 0
140
24.3 ~ 135
13.6 (..)
0::: 8.6 w
0.. _.
uj
co
-'
>-
}-u;
~ 130
0
>-a:
0
I
.
I
I
: I
I
I
_.l
T
f
I
I
l
1
!•
I
I
' '
_\_ I I
.... \I
' t\ I
\ l I i
\ I
' l I
J "'\ ·I r \ I b. J I i
I C'\. J ~· j
I \. I· l 'o I j
II I ...... 1 ~
I \.1 ~'t 1
! ~. ·v J l {
I II l\. .. ..;; l
II 1\..-\-.\. J I
II "'\ ....., 1-b" j c s I <U
ll ....., \ c
l 0 ~ r u J1 ! I
I I s.. \ I
QJ \ I 4-'
1 I ttl I \ !
I I 3 • [\ 1
I 1 -! \ nl ~ ,s..
! I_ ::::J ! \ I
t
.....,
1 ' I ~ z !\
! • • . \
! ~ .1
I I j \
t I I J 1\ -
f I \
5 10 f5
WATER CONT.ENT -PERCENT OF CRY WEIGHT
~---------------------------------------------------------------------------
I
1-,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
I
I
WATANA DAr~ SITE
RIVER ALLUVIUt1 AVAILABLE Cx 10E CY)
LOCATION DISTANCE TO AXIS FROM LONGEST HAUL
-----~---,.._-...._ ... ______ .._ _______ .... ._.. ____________ ...,._,... ... __ ._..,. _____ _.._._. ...... _. ...... ~--
1 2 3 5 E 7 .
----------...-------------------~-----------_, ____ .,.. _______ ~-------~ .....
UPSTREA~~ c 17 25+ 25+ 25+ 25+ 25+
DO~/NSTREA~1 0 0. 0 .31 47 79
TOTAL 0 17 25 8E 72 104 120
HIGH CONFIDENCE ESTir~ATE ON ABOVE QUANTITIES:
UPSTREAM I) 7 14 14+ 14+ 14+ 14+
DOWNSTREPJ1 0 0 0 15 23 33 48
TOTAL 0 7 ±4 29 37+ L~7+ E2+
I
I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I
I
rJATANA DA~
EMBANKMENT QUANTITIES
<xloE CY)
<DEPENDENT ON FINAL LP,YOUT REFINEr~ENTS)
TYFE OF MATERIAL REQUIRED EST AVAIL. SOURCE
-------------------------------------------------~---------
I~1PERVIOUS
FINE FILTERS ·
COARSE FILTERS
ROCKFILL
GRAVEL FILL
CONCRETE Jl.GG I
ROUGH TOTAL
10-15
5-6
. 1-2
55-60
71-83 ~1CY
50-75 AREA D
5-10+ AREA H
12.5 AREA E
1E AREA E
100+ QUARRY A
47-104 WITHIN 6 MILES OF
. AXIS., IN RIVER.
10+ AREA E
2-5 TIMES REQUIREMENTS~
BASED ON PRELIMINARY
TAKEOFFS.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
. . .. . '
POSSIBLE WAYS. IN WHICH AN EARTHQUAKE
MAY CAUSE FAILURE OF AN EARTH DAM
' .
1 -Disruption o~ dam by major fault movement in foundation~
. 2 -Loss of freeboard due to differential tectonic ground
movements.
3-Slope ·failures· induced by ground motions. . .
4 -Loss of freeboard due to slope failure or soii compaction ..
5 -Sliding of dam on weak foundation materials.
.. 6 -Piping failure through cracks induced b.y ground motions~
...
7 -Overtopping of dam due to seiches in re ;~z--o~r.
8 -overtopping of dam due to slides or·r0ckfalls into
reservoir.
9 -Failure of spillway or ou.tlet works.
(Seed, 1979 -19th Rankine
Lecture)
\
l
)
----------------------------------------~------~--------------~-----------------~
.I
••
I
I
I
I
••
I
I
I
I
I
I
I
I
I
I
I
I
DEFENSIVE MEASURES ·. . .
J
l -Al:low ample freeboard to allow for settlement, slumping
or fault movements.
2 -Use wide transi~io.n zones of material not vulnerable
to cracking •
.
3 -Use chimney drains near the central portion of embankment •
.
4 -Provide ample .drainage zones to allow for possible flow
o£ ttla ter :through cz:acks •· ·
.
5 -Use wide core zones 6f plastic materials not vulnerable
to cracking.
6 -Use a well-gr~ded filter upstream. of the core to serve
as a crack stopper. , ..
.
7 -Provide crest details which will prevent erosion in
the event of overtopping_
8 -Flare the embankment core lit abutment contacts.
9 Locate the core to minimize the degree of saturation
of materials.
"'
10 -S1;.abi1ize slopes around th,r-reservoir to prevent slides.
• A •
11 -Provide special details if danger of fault movement in
foundation.
(Seed, 1979 -19th Rankine
Lecture)
l
• I
;.-~ -~-~.:. • .. ..: .... •• 0 '_·'.:. •• ·_. • ••• .•• ~. •• :-•• ' • -• .r __ · .. ~ _.·. . . .. ;: •,. ' 7 . : ... · .. '. _.. :.··· .. ·· ~ : . ' .. _ ·~: .... · .. :.;·. ~ • "··~, ~ . . ·.' . '·
. ' . --IIIII -··----IIIIi ------------~-------------~~
Aai1 l
.·1~
\!..) '
®
~1.900.
~
\
0 ~ 200 400ft.
,-., ~ ' ~!!!J , and \~~ -lmpe~vious core from main b?rrow area. .
~.---\ ...
and \.2f.:-J ·-Transition zone consisting· of well graded mixture of.
silts,sand!2, gravels, cobbles and boulders to 15-inch maxirnwn.size. · ·:
Shell zone of predominantly sands, gravels, cobbles and boulders to
24-inch maximum size.
(£) Imperious core from selected abutment stripping.
@·and @ Orainage zones consisting of grav,~ls, cobbles and
boulders.
. ' FIG. 112 MAXHIUM (}11lANKMEiiT SECTION--OROVIllE DA~
®.
®
@)
®
..
..
. .
. .
Con ere te to.re block
Seepage. meas'ute~n t ba~!tier
Rip rap
Grout curtain
-~ · .
. .
f
''-----·--·----·--· ------·---·---------------____________ ......_ ___ , ___ ,. .... ,/
uao
uoo
• t\00
' . •U3flt
·~ ~------~--~~--~,------l=~--~~~~~--------------------------------------~~~~~~--~~a.--~~----
1100
·~
I "!'CC
••oo
I lOCO
t<&oo
\&00
1400
~
'
_,-.......,
...... ~ ......
, TIJA)IItL.S
/
, ,. ~~-----e_)(TE~.~r pf (;.(.DvT c vR~J JJ.
~lollli!IUol "' • ..J>d-:
~LM.l. LLUI't' T
l 1 oour a 11!2' ..
..,.._.. ~~~, ! ............. . ~ IJ. ~~ ~· '/-\\ "'-..._ ,i-5'· . t"l . \ \.., ~
r.,. 11 L s-\ \r ~ -....... ... IIUPf!M>,~
~
...L:_
AOCI( ~~ n.1. .J.l ~ \ \ ROCI\ U&) ~ f'IU. "" ~ A.'TIA ---:/_j_ ,:;--\ \--~ """'"'" .............
FINL FlLTIA -J./tl.OIPE~ ~ 1 · \ ..\_--l'llfl. f'l1.:ru "-.,
LL I _l ' CALL~Y _ .. ~ l-.~ v.wt~1'. \
MAIN DAM SE~l\ION AT MAXIMUM HEIGHT
~ f,)~tfJI,I .qc..r=.
t-toL~J
,.._ . -/~ .,_
'
~r-----------------------~~---------------------------------------------------------------
• CCFI'\:"Doi.M l !IUMY 11UWI
STitUC.'Tu~e •
. '
. .
'·
UPSTREAM COFFERDAM SECTION
#>')
I
C) 0 0 .
- - - - - - - - - - - - ---..
-·
. '
• l
--~----
. . .
..
. .
0
'.
. .
'
-·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
WATANA DAM DESIGN
2. Seismic Analysis (A. Burgess)
• • • ··: •• .t;
. . ... ~ . . . ·, .·
• .~ '• • •r ',. :· ·_f • ';
, I· .
I
••
I
I
I
.I
I
I
I
I
I
I
I
.
I
I
I
I
• I
'· ~ A65 I A./S 7A7S /£.,/ T't
h"eol"? Pw.? qeAr~l?oAJ
{t.s. A-oss o~'='" ~IZ5NQ71:1)
.(6 d) IS Fotert.A--poN 7)vzuv9
::f?fiAKIN'Y ( ?JYN-+Nic.
l.,~'"'"l CA:VSIIVC, ~7"/ZENC,TI-I
;s.x.c~ € Jer£)
.,
I
I
I
I
I t
I
I
I
I
r J 1
Aa.. U ..
I
I
I
I
I
I .,
I
I
••
I:
I
I
I
I
I
I
I
I
I
I
I
'P/4-krlid./ 7-'op'f#~· ·
.3o ~p
F&H ~ot:lvtl
.___~. u Ylt/l'rrt I c
~-n?,ISS~G~
•
PwP
CoM. pa./-4 '24val'l
~ ~efyMa.M:e. /o
~r •sf <;/-tJ..,/J/1,~
,____ ___ ., piSS IP~7' 91\J
,. 'C/!ZS:N(iTJ.I
~~~·
I,
I
I
I
I
I
••
I
I
••
I
I
I
I
I
I
I
I
I
K ( n ;4-om /i4ret.lzu-e
?oi,ro"''r Z:v-io v· ~
dra.l,-e.d ~cUhO;,s · (~ o.z~),
. ~ ~ K, l>;c.t I
lf2. fYoe-...... (ik,~
12 -et:!ucJ.U,"" e.~; t1. -sA -eo.#" -sh--a., h
(;o~v--. 71n·e~ curv ~1 frY' · ·
J4~~t,cl. t ~ar.
l
\
"' .,
--... "'' '
f
f
f
f
• f
l
. -,
s,.~ •• ,\
Yeh• -uo.
~, .. ~,, K
v ..... 5
Sta .t t c Run
6 c 0 r f c ti .J
•UO-•tOO. •$0· -60. -~o. -20. -10. ·5. o.
L " H 0 p Q R s ro. zo. 40. 60. ijQ. 100. 120. HO.
2 -Vcrt1c1il Effe£:t I vo Strue CS J Gv') (fclbf/ftu2J
... _ ... _______ "' -····-"' ..... --}
-
foi t<>
s1 .. 1o • .\ n c 0 l f G ti J
t~ .... ·••o. •12:). ·I:)(;, ·!>0. •liO. ·.C!). -~D. •I ::l. .:;, o.
~, ... \ ,. '( I. 11. .. 0 p Q 1\ ~ ....... ~ t.:). ... -~· .tQ .. 1)0. 60 . l::l:i 120 • 140.
c.;t;,tlt Run 2-3-D (ff.,. taH C.:~nffnang Stru~:$ lSIG3') (klbrlrt .. 2J
-----
s, ..... A 8 c 0 E f G ... J
hh• •teo. •120. ·I GO .• ·iO. -~o. ·40. -..:!o. -10· -~. o.
s,.ht K t. 11 w 0 p Q R s
Vth" !>. 10. ~~-<60. !iO. 60. 100. 120· 140.
Shtlc Run 2 -Shtor Str•s~ (T AUx y) (klbt/ft••2l
s, .. ~,, A a c 0 E f G .. i ,J
v ..... ·lO.Q -s.o -6.0 -4.0 -2.0 -t .• o ·O.'; -0.:! -o.1 o.o
s, .. ~., It L 11 H 0 p 0 It s
v ..... o.l 0.2 O.'.i 1.0 2.0 ... o 1>.0 S-0 10.()
Sbd 1 c Run 2 -local XY Shcllr Exceodance n AUx y /Shl
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
"
•-
WATANA
Relict Channel (V. Singh)
I
I
I
I ·,
I
I
I
I
I
••
I
I .
I
I
I
I
I
I
I
. .
U:GENO
~POINTS
~ OR IU. HOt.E
A , SElSMLC UNE STATtON
-DEPTH TO BEDROCK CONTOUR APPROXIMATE •
..c --• SUR I EO CHANN!n. THALW~G
,..,..;w MA.IOR BEDROCK OUTCROPS
;;,
INFERRED LOCATION OF
O?Z SHEAR ZONE
KNOWN LOCATION OF
SHEAR ZONE
• PROBABLE
RELICT CHANNEL
ENTRANCES WATANA ---SPECIAL FEATURES
I
I
I
I
I
I
I
I·
I
I
I
I
I
I.
I
I
I
I
I
APPENDIX B
REVIEW BOARD REPORT
I
·~
I
I
I
I
• I
I
I
I
I
I
I
I
I
I
I
I
I
SUSITNA HYDROELECTRIC PROJECT
BOARD MEMBERS 1 S SUGGESTIONS AS A
RESULT OF A MEETING WITH PROJECT
GROUP HELD IN NIAGARA FALLS ON
SEPTEMBER 8~ 1981
1 -GEOLOGY AND SEIS~1ICITY
Board members believe that every effort should be made to expedite final logs of
drill holes and drawings of geological plans and sections using old as well as
new data. Early accomplishment of this will significantly aid the consideration
of the fractured zone under the river at De vi 1 Canyon.
The seismic ground motion for use in preliminary design should be defined in a
manner which could be used in the license application:
2 -DAM DESIGN
Design of the Watana earth-fill dam is not yet a definitive stage but slopes
have been selected which would facilitate construction of diversion and anci 1-
lary works. The adoption of these slopes in proposed ar-rangements should be
reinforced by analysis or by a statement of precedents used in other dams of
simi 1 ar materials and in simi 1 ar seismic terrain. Concern was expressed over
the narrow width of filter zones at all elevations, and in particular nea,." the
base where a poor transition at rock contact could lead to piping.
The Board suggested that reference be made to the filter criteria in use in the
James Bay structures. Board members suggested that grouting tunnels unde~ the
dam can be shown on the drawings, but the probabi 1 i ty of main use is sti 11 an
open question.
Although the arch dam appeared to limit str·ess levels to satisfactory value
during earthquakes up to 0.4 g with a damping factor of 10 percent, some board
members felt that a more comprehensive examination was required of other para-
meters such as in situ rock stresses in the abutma.nt.
I
I
I
I
I
I
I:
I
I·
I
I
I
I
I·
I
I
••
3 -RIVER DIVERStON, SPILLWAY AND OUTLET WORKS
Board members thought that precedents for each element of design in the river
diversion, spillway and outlet works should be clearly stated.
The river diversion works at Watana appeared out of balance. The height of the
upstream cofferdam was 140 feet and retained 125,000 acre feet of storage. The
velocity of flow in the diversion tunnels was 50 ft/s, a high value. The econo-
mic optimum arrangement presented exceeded precedents and should be reviewed
with the object of reducing risks in.the event of the cofferdam overtopping.
The merits of free flow tunnels should be considered more fully.
The avoidance of nitrogen supersaturation downstream from the dams during
spillage or release of water from the reservoir has dominated the design and
stretched a precedent in a number of areas. In view of the design implications
of these criteria, the Board be 1 i eves that every effort must be made to justify
the need for these criteria.
The use of 1 arge Howe 11 Bunger valves for spillway discharge requires trashracks
upstream. The H.B. valves· would cause an inordinate amount of SJ6ray in the
summer and ice in the winter and could be subject to vibration. A precedent fo.r
Howell Bunger valves to be used for such duty had not been given. Neither had a
precedent been given for a chute spillway with as 1 arge a drop and unit dis-
charge.
The use of a fuse plug in the emergency spillway creates risks of accident al
failure with catastrophic release of water or no failure when neededo The Board
pr.eferred a positive control of emergency releases by use of gates or similar
structures.
Board members stated that more consideration should be given to other types of
low and intermediate level outlet works. The Board suggested that 11 break head
orifices" could he used in these works as was done at Mica.
The use of cascade spillways for service and auxiliary use should be considered
in more detai 1 at Watana.
:1
I
•• . .
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
The structural adequacy of the sti llin_g basin at Devi 1 Canyon was questioned ..
The fuse plug in the emergency spillway should, if possible, be replaced by a
positive control •
I an McCaig questi a ned the necessity of a diversion tunne 1 at Devil Canyon. No
diversion tunnel was used at Kariba. In many cases, diversion is made initially
through a channel and 1 ater through a port in the dam.
4 -INTAKE, POWERHOUSE AND TAILRACE TUNNELS
The Board considered that the intake trashracks projecting above the water sur-
face increases the probability of trashrack blockage by frazi·l ice. Reference
should be made to the Churchill Falls design. The need for drawoff at various
reservoir levels at Watana requires better definition. Definition might allow
simp 1 ifi cation of the design.
The location chosen for the underground powerhouse should be justified by rock
quality, proximity to access and power lines, etc.
Gates or stoplogs in the draft tube and tunnel outlet would, as shown, be sub-
ject to freezing; some modification is needed.
Successful operation of the facilities during construction, and in service after
completion, requires that special attention be given to operating conditions and
problems resulting from the vigorous winter climate in Alaska.
5 -CONSTRUCTION AND CONSTRUCTION MATERIALS
At Watana, the tunnel outlets for diversion, tailrace and spillway are located -very close together. Cofferdam and penstock arrangements would be unduly com-
plicated. The construction sequence should be considered in arriving at layout,
particularly at Watana, since close location of structures can create problems
for construction and for the operation of the facilities.
Borrow pits for earth dam construction have been established and the suitability
of grading determined. Exploratory work is currently underway on concrete
aggregates and the resul.ts will soon be available.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Same andesites are kno,wn to produce aggregates sub,iect to alkali-aggregate
reaction. The properties of all potential concrete aggregates that would be
used in the Devil Canyon and Watana dams and powerhouses should be established
soon.
cc: J. Lawrence
J. G. Warnock
A 11 Board Members
J. MacPherson